
HAL Id: tel-01439330
https://theses.hal.science/tel-01439330

Submitted on 18 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pathwise decompositions of Lévy processes: applications
to epidemiological modeling

Miraine Dávila Felipe

To cite this version:
Miraine Dávila Felipe. Pathwise decompositions of Lévy processes: applications to epidemiological
modeling. Probability [math.PR]. Université Pierre et Marie Curie, 2016. English. �NNT : �. �tel-
01439330�

https://theses.hal.science/tel-01439330
https://hal.archives-ouvertes.fr


Université Pierre et Marie Curie

École Doctorale de Sciences Mathématiques de Paris Centre

Thèse de doctorat
Discipline : Mathématiques

présentée par

Miraine Dávila Felipe

Pathwise decompositions of Lévy processes:
applications to epidemiological modeling

dirigée par Amaury Lambert
Bernard Cazelles

Après avis des rapporteurs :

M. Jean-François Delmas École des Ponts ParisTech
M. Joaquín Fontbona Universidad de Chile

Soutenue le 14 décembre 2016 devant le jury composé de :

M. Jean-François Delmas École des Ponts ParisTech rapporteur
Mme Irina Kourkova Université Paris 6 examinatrice
M. Amaury Lambert Université Paris 6 directeur
Mme Sylvie Méléard École Polytechnique présidente
M. Florian Simatos ISAE Supaero examinateur



2

LPMA – UPMC
Laboratoire de Probabilités
et Modèles Aléatoires
4 Place Jussieu
75005 Paris

ED 386
Ecole Doctorale de Sciences
Mathématiques de Paris Centre
4 place Jussieu
75252 Paris Cedex 05



A mi familia.

Los locos encontraron cerrada la puerta del jardín.
Los cuerdos también la encontraron cerrada.

Los cuerdos se tendieron allí sin llaves
y sus cuerpos se llenaron de hormigas y hojas secas.

Los locos –los locos– rieron, mirando con fijeza
y pasaron todos a través de la puerta.

Teresa Melo (Santiago de Cuba, 1961)





Résumé

Décompositions trajectorielles de processus de Lévy:
application à la modélisation de dynamiques

épidémiologiques

Résumé
Résumé: Cette thèse est consacrée à l’étude de décompositions trajectorielles de pro-

cessus de Lévy spectralement positifs et des relations de dualité pour des processus de ram-
ification, motivée par l’utilisation de ces derniers comme modèles probabilistes d’une dy-
namique épidémiologique. Nous modélisons l’arbre de transmission d’une maladie comme
un arbre de ramification, où les individus évoluent indépendamment les uns des autres,
ont des durées de vie i.i.d. (périodes d’infectiosité) et donnent naissance (infections sec-
ondaires) à un taux constant durant leur vie. Le processus d’incidence dans ce modèle
est un processus de Crump-Mode-Jagers (CMJ) et le but principal des deux premiers
chapitres est d’en caractériser la loi conjointement avec l’arbre de transmission partielle-
ment observé, inféré à partir des données de séquences. Dans le Chapitre I, nous obtenons
une description en termes de fonctions génératrices de la loi du nombre d’individus in-
fectieux, conditionnellement à l’arbre de transmission reliant les individus actuellement
infectés. Une version plus élégante de cette caractérisation est donnée dans le Chapitre
II, en passant par un résultat général d’invariance par retournement du temps pour une
classe de processus de ramification. Finalement, dans le Chapitre III nous nous intéres-
sons à la loi d’un processus de ramification (sous)critique vu depuis son temps d’extinction.
Nous obtenons un résultat de dualité qui implique en particulier l’invariance par retourne-
ment du temps depuis leur temps d’extinction des processus CMJ (sous)critiques et de
l’excursion hors de 0 de la diffusion de Feller critique (le processus de largeur de l’arbre
brownien d’Aldous).

Mots-clefs

Processus de Lévy, processus de branchement, dualité, modélisation de maladies infec-
tieuses, méthodes phylodynamiques
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Abstract
This dissertation is devoted to the study of some pathwise decompositions of spectrally

positive Lévy processes, and duality relationships for certain (possibly non-Markovian)
branching processes, driven by the use of the latter as probabilistic models of epidemio-
logical dynamics. More precisely, we model the transmission tree of a disease as a splitting
tree, i.e. individuals evolve independently from one another, have i.i.d. lifetimes (periods
of infectiousness) that are not necessarily exponential, and give birth (secondary infections)
at a constant rate during their lifetime. The incidence of the disease under this model
is a Crump-Mode-Jagers process (CMJ); the overarching goal of the two first chapters is
to characterize the law of this incidence process through time, jointly with the partially
observed (inferred from sequence data) transmission tree. In Chapter I we obtain a de-
scription, in terms of probability generating functions, of the conditional likelihood of the
number of infectious individuals at multiple times, given the transmission network linking
individuals that are currently infected. In the second chapter, a more elegant version of
this characterization is given, passing by a general result of invariance under time reversal
for a class of branching processes. Finally, in Chapter III we are interested in the law
of the (sub)critical branching process seen from its extinction time. We obtain a duality
result that implies in particular the invariance under time reversal from their extinction
time of the (sub)critical CMJ processes and the excursion away from 0 of the critical Feller
diffusion (the width process of the continuum random tree).

Keywords

Lévy processes, branching processes, duality, epidemic modeling, phylodynamics
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Introduction

“In branching processes, they all meet: pure mathematical development, biology,
physics, and demography, and the concoction is spiced to perfection by the social
and cultural context in which it is formed.”

– Peter Jagers, Oberwolfach, January 2009

The mathematical modeling of epidemics and in particular the emerging field of phy-
lodynamics [GPG+04], which seeks to understand how pathogen genetic variation and
phylogenies are shaped by epidemiological processes, is the core motivation for this work.
On that account, this dissertation is devoted to the study of some pathwise decompositions
of spectrally positive Lévy processes (SPLP), and duality relationships for certain (possi-
bly non-Markovian) branching processes, driven by the use of the latter as probabilistic
models of epidemiological dynamics.

The growing availability of pathogen genetic data and the increase in computer pro-
cessing power provide an unprecedented opportunity to shed light on the role of evolution
in infectious diseases processes [PR09]. Consequently, it has become important to de-
velop mathematical models and statistical methods that can cope with this fast trend
and fully exploit the potential of these data. Here we focus on the question of linking
sequence data to more traditional sources of information on disease processes, in partic-
ular incidence data, to better understand the dynamics of an epidemic [FPG+15, Sca16].
In this direction, we have obtained several results characterizing the properties of a class
of stochastic processes that are suitable models for transmission dynamics. In particu-
lar when the population of susceptible individuals is sufficiently large (e.g. outbreaks),
one can be placed in the context of a simplified model without density dependence. A
suitable class of these models are birth and death (BD) processes with constant rates
[SKvW+12, LGBS13, SKBD13], or more generally Crump-Mode-Jagers process (CMJ),
where the lifetimes of individuals (periods of infectiousness) are not necessarily exponen-
tial, and individuals might have infinitely many offspring (secondary infections). More
precisely, the transmission network is modeled as a splitting tree and the incidence of a
disease is a CMJ [LS13, LAS14], so we make no restrictive assumption on the distribution
of the duration of infection. These results have a number of potential applications to
phylodynamics and molecular epidemiology that are outlined in Chapter I.

The overarching goal of the two first chapters is to characterize the law of the inci-
dence process through time, jointly with the partially observed (inferred from sequence
data) transmission tree. In Chaper I we obtain a first description in terms of probability
generating functions of the conditional likelihood of the number of infectious individuals
at multiple deterministic times (including present time) given the transmission network
linking individuals that are currently infected. This quantity was previously unknown for
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this model and is required for applications involving data. However, the inversion of the
Laplace transform of these joint distributions is a difficult problem and poses some obsta-
cles so the result can be used in terms of statistical data analysis, which are discussed in
this chapter.

Then, in Chapter II a more elegant version of this characterization is given, passing by
a general result of invariance under time reversal for a class of branching process which is
of independent interest. We consider a random forest F∗, defined as a sequence of i.i.d.
BD trees, each started at time 0 from a single ancestor, stopped at the first tree having
survived up to a fixed time T . We denote by (ξ∗t , 0 ≤ t ≤ T ) the population size process
associated to this forest, and we prove that if the BD trees are supercritical, then the
time-reversed process

(
ξ∗T−t, 0 ≤ t ≤ T

)
, has the same distribution as

(
ξ̃∗t , 0 ≤ t ≤ T

)
,

the corresponding population size process of an equally defined forest F̃∗, but where
the underlying BD trees are subcritical, obtained by swapping birth and death rates, or
equivalently, conditioning on ultimate extinction. We generalize this result to splitting
trees (i.e. life durations of individuals are not necessarily exponential), provided that
the i.i.d. lifetimes of the ancestors have a specific explicit distribution, different from
that of their descendants. The results are based on an identity between the contour of
these random forests truncated up to T and the duality property of Lévy processes. An
important consequence is that it allows to derive other useful properties of the forests
with potential applications in epidemiology. In particular, this result paves the way for
the development and implementation of effective methods for epidemiological inference
and their application to sequence and incidence data for pathogens such as HIV-1.

In Chapter III, we are interested in the law of the of a (sub)critical branching process
seen from its extinction time, so we consider a spectrally positive Lévy process X that
does not drift to +∞, coding for its genealogical structure (in the sense of a contour or
exploration process [LGLJ98, Lam10]). Denote by I the past infimum process defined
for each t ≥ 0 by It := inf [0,t]X. Let γ be the unique time at which the excursion of
the reflected process X − I away from 0 attains its supremum. Then, we prove that the
pre-γ and the post-γ subpaths of this excursion are invariant under space-time reversal.
This implies in particular that the local time process of this excursion is also invariant
when seen backward from its height. These results show that some (sub)critical branching
processes such as the (sub)critical Crump-Mode-Jagers (CMJ) processes and the excursion
away from 0 of the critical Feller diffusion, which is the width process of the continuum
random tree, are invariant under time reversal from their extinction time.

This introductory chapter aims at giving to the reader the general mathematical frame-
work we work with and a brief description of the main results obtained.

1 Preliminaries

1.1 Basic notation and definitions

Let E = R ∪ {∂} where ∂ is a topologically isolated point, so-called cemetery point.
Let B(E) denote the Borel σ-field of E. Consider the space D(R+, E) (or simply D) of
càdlàg functions ω from R+ into the measurable space (E,B(E)) endowed with Skorokhod
topology [JS03], stopped upon hitting ∂ and denote the corresponding Borel σ-field by
B(D). Define the lifetime of a path ω ∈ D as ζ = ζ(ω), the unique value in R+ ∪ {+∞}
such that ω(t) ∈ R for 0 ≤ t ≤ ζ, and ω(t) = ∂ for every t > ζ. Here ω(t−) stands for the
left limit of ω at t ∈ R+, ∆ω(t) = ω(t)−ω(t−) for the size of the (possible) jump at t ≤ ζ



1. Preliminaries 11

and we make the usual convention ω(0−) = ω(0). Notice that if ∆ω(ζ) 6= 0, the path is
not right-continuous at ζ. This unusual convention is made for commodity regarding the
notation and the results here are still valid under the usual convention of keeping the path
constant right after ζ (stopped trajectory), which has also the property of recording the
possible jump of the path at its lifetime.

We consider stochastic processes, on the probability space (D,B(D), P ), say X =
(Xt, t ≥ 0), also called the coordinate process, having Xt = Xt(ω) = ω(t). In particular,
we consider only processes with no-negative jumps, that is such that ∆Xt ∈ R+ for every
t ≥ 0. The canonical filtration is denoted by (Ft)t≥0.

Let P(E) be the collection of all probability measures on E. We use the notation
Px(X ∈ ·) = P (X ∈ ·|X0 = x) and for µ ∈ P(E),

Pµ(X ∈ ·) :=
∫
E

Px(X ∈ ·)µ(dx).

In the sequel, the absence of subscript indicates that the process starts at 0. For any
measure µ on [0,∞], we denote by µ its tail, that is

µ(x) := µ([x,+∞]).

Define by τA := inf{t > 0 : Xt ∈ A}, the first hitting time of the set A ∈ B(E), with
the conventions τx = τ{x}, and τ−x = τ(−∞,x), τ+

x = τ(x,+∞) for any x ∈ R.

Some path transformations of càdlàg functions

In this subsection we will define some families of operators on the space of càdlàg
functions ω ∈ D:
• the classical shift operators, θs, s ∈ R+, defined by

[θs(ω)]t := ωs+t, ∀t ∈ R+

• the non-standard shift operators, θ′s, s ∈ R+, defined by

[θ′s(ω)]t := ωs+t − ωs, ∀t ∈ R+

• the killing operators, ks, s ∈ R+ , defined by

[ks(ω)]t :=
{
ωt if t < s
∂ otherwise

the killing operator can be generalized to killing at random times, for instance
kTA(X) = kTA(X)(X), denotes the process X, killed at the first passage into A.
It is easy to see that if X is a Markov process, so is kTA(X). We set

k0(ω) = ∂.

1.2 Spectrally positive Lévy processes (SPLP)

The aim of this section is to recall and establish some results within the theory of Lévy
processes (i.e. processes with stationary and independent increments, and almost sure
right continuous with left limits paths), that will be used later to prove our results. We
refer to [Ber96] or [Kyp06] for a detailed review on the subject.
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Let X = (Xt, t ≥ 0) be a real-valued Lévy process with no negative jumps, also called
spectrally positive. Its Laplace exponent ψ, is defined ∀λ ≥ 0 by,

E0
[
e−λXt

]
= etψ(λ),

and is expressed as follows thanks to the Lévy-Kintchine formula,

ψ(λ) = αλ+ βλ2 +
∫

(0,∞]

(
e−λr − 1 + λr1{r<1}

)
Π(dr), (1)

where α ∈ R, β ≥ 0 is called the Gaussian coefficient and Π is a σ- finite measure on
(0,∞], called the Lévy measure, satisfying

∫
(0,∞)(r2 ∧ 1)Π(dr) <∞. Notice we allow Π to

charge +∞, which amounts to killing the process at rate Π({+∞}).
The asymptotic behavior of the paths of X is deduced from the characteristics of its

Laplace exponent around the origin. Indeed, this behavior can be separated in three
exhaustive cases
• subcritical = drifts to −∞, iff ψ′(0+) > 0,
• critical = oscillates, iff ψ′(0+) = 0,
• supercritical = drifts to +∞, iff ψ′(0+) < 0.

The paths of X have finite variation (on every compact time interval) a.s. if and only
if β = 0 and

∫
(0,1] rΠ(dr) <∞ (otherwise they have infinite variation a.s.), in which case

the Laplace exponent adopts the simplest form

ψ(λ) = −dλ−
∫

(0,∞]

(
1− e−λr

)
Π(dr), (2)

where d is called the drift coefficient. If X has increasing paths a.s. it is called a sub-
ordinator, then d ≥ 0. When d < 0 and Π is finite, is called a compensated com-
pound Poisson process and in this case the Laplace exponent is infinitely differentiable,
strictly convex (when Π 6≡ 0), ψ(0) = 0 (except when Π charges +∞, in which case
ψ(0) = ψ(0+) = −Π({+∞})) and ψ(+∞) = +∞. Suppose from now that Π(+∞) = 0.
Define in this case

η := sup{λ ≥ 0 : ψ(λ) = 0}, (3)

the largest root of ψ. We have that η = 0 is the unique root of ψ when ψ′(0+) ≥ 0.
Otherwise, the Laplace exponent has two roots, 0 and η > 0. It is also known that for any
x > 0,

Px (τ0 < +∞) = e−ηx.

We are interested in particular in the case whereX has Laplace exponent 2 with d = −1. In
this case, letting m :=

∫
(0,∞) rΠ(dr), we have that η = 0 if and only if m = 1−ψ′(0+) ≤ 1.

More generally, to solve exit problems for completely asymmetric Lévy processes (that
make no positive or no negative jumps) there exists a very useful tool, called the scale
function, which can be defined as the unique continuous increasing functionW : [0,+∞)→
[0,+∞), characterized by its Laplace transform,

+∞∫
0

e−λxW (x)dx = 1
ψ(λ) , λ > η,

such that for any 0 < x < a,

Px
(
τ0 < τ+

a

)
= W (a− x)

W (x) . (4)
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Local times and excursion theory

Suppose Π(+∞) = 0. Denote the past infimum process of X by It := inf0≤s≤tXs.
We will now give some elements on excursion theory for Lévy processes reflected at their
infimum X − I, which are also a Markov processes in the canonical filtration (Ft)t≥0 of X
(and also in their own natural filtration). One can construct a local time at 0 and develop
an excursion theory for the reflected process, as we explain hereafter. For further details
about the following results, we refer to [Ber96, Chapter IV].

For a Markov process, a point x of its state space is said to be regular or irregular for
itself, if Px(τx = 0) is 1 or 0. In a similar way, when the process is real-valued, we can say
it is regular downwards or upwards if we replace τx by τ−x or τ+

x respectively. The following
result due to Rogozin [Rog66] states that in the case of a spectrally positive Lévy process,
(A.1) 0 is regular for (−∞, 0) and
(A.2) 0 is regular for (0,∞) (or equivalently for itself) if and only if β > 0 or

∫ 1
0 rΠ(dr) =

+∞, that is when the paths of X have unbounded variation.
The proofs can be found in [Rog66] and also in [Cha94, Ber96].

A consequence of (A.1) is that {0} is always regular for itself for the reflected process
X − I. Then, according to the general theory for Markov processes, there exists a local
time at 0 for X − I, here denoted by (Lt, t ≥ 0) that can be defined as the unique (up
to a multiplicative constant) adapted additive functional that grows only on the zeros of
X − I. Furthermore, the fact that X has no negative jumps entails that −I satisfies these
conditions, so it is an explicit local time for the reflected process. Then, we consider in
the sequel that L = −I. Its right-continuous inverse

L−1
t := inf {s > 0 : Ls > t} ,

is the same as τ−t = inf{s ≥ 0 : Xs < −t}, the first hitting time of (−∞,−t) under P0.
Notice that we write τ−t for τ−−t since in the spectrally positive case they are a.s. identical.
Moreover, τ−t is a (possibly killed) subordinator whose jumps coincide exactly with the
excursion intervals of X − I, so it represents the appropriate time scale for the so-called
excursion process, that we will now describe.

Let E be the space of real-valued càdlàg functions with finite lifetime ζ ∈ [0,∞). Define
the excursion process ε = (εt, 0 < t ≤ L∞), taking values in E ∪ ∂ as follows

εt :=
{ (

(XL−1
t−+s − IL−1

t−
, 0 ≤ s ≤ L−1

t − L−1
t−

)
, if L−1

t − L−1
t− > 0,

∂, if L−1
t − L−1

t− = 0, or t =∞
for t ≥ 0.

Then according to Itô’s excursion theory, (t, εt)t≥0 is a Poisson point process, possibly
stopped at the first excursion with infinite lifetime (which arrives only and a.s. when X
drifts to +∞). Its intensity is dt n(dε), where n is a measure on E called the excursion
measure.

Let ε be the generic excursion of X − I away from 0, define the local time process
(Γ(ε, r), r ≥ 0) for the canonical excursion ε ∈ E as a Borel function satisfying

ζ(ε)∫
0

φ (εs) ds =
∞∫
0

Γ (ε, r)φ(r)dr, (5)

for any continuous function φ with compact support in [0,∞). This local time processes
are known to exist in the infinite variation case, see for instance [Ber96]. When X has
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finite variation we can define an equivalent process, taking values in N ∪ {+∞}, as the
number of times the excursion hits level r, i.e.

Γ (ε, r) =
∑

0≤s≤ζ
1{εs=r}. (6)

Time-reversal duality for Lévy processes

One of the key ingredients of our results is the duality property under time-reversal
of Lévy processes (see [Ber96, Chapter II]). Roughly speaking, it states that if a path is
space-time-reversed at a finite time horizon, the new path has the same distribution as
the original process. We will use the following formulation subsequently: for every fixed
t > 0 and every non-negative measurable function F we have that

E [F (kt ◦X)] = E [F (ρ ◦ (kt ◦X))] , (7)

where kt denotes the killing operator at t ∈ R+ and ρ denotes the space-time-reversal
operator, that can be defined for any ω ∈ E as

ρ ◦ ω := (ωζ− − ω(ζ−s)−, 0 ≤ s ≤ V ).

By integrating over t, this result is still valid if the process is killed at an independently
distributed finite time.

1.3 Branching processes and trees

We consider branching processes as stochastic processes with non-negative values sat-
isfying the branching property, meaning that for any x, y > 0, the process started at x+ y
has the same distribution as a sum of two independent copies of itself, starting respec-
tively at x and y. The simplest branching processes are those in discrete time and state
space, the well-known Bienaymé-Galton-Watson (GW) processes [AN72]. In the case of
discrete time and continuous state-space, we use the term Jirina processes as in [Lam10].
For continuous time and discrete state space we speak of Crump-Mode-Jagers (CMJ) pro-
cesses and finally the so-called continuous state branching process (CSBP) for continuous
time and state spaces. Our results concern mainly the latter two, so we will spend more
time specifying their characteristics. In particular CMJ processes are the only branching
processes to be possibly non-Markovian. We refer to [AN72, Jag75] for the general theory
of branching processes.

Splitting trees and Crump-Mode-Jagers process

Splitting trees were introduced in [Gei96] and [GK97] as random trees that arise from a
model where individuals behave independently from one another, have i.i.d. life durations,
and give birth at constant rate during their lives. A more general definition is given in
[Lam10] including the case where the birth rate is infinite. They represent the genealogical
structure of a population (or particle system) originating at time 0 with one single progen-
itor and evolving under such model. These models are a generalization of the BD model,
in which the lifetimes of individuals do not necessarily follow exponential distributions,
and individuals might have infinitely many offspring. We give here an intuitive description
of splitting trees, and we refer to [Lam10, Sec. 4.1] for a rigorous definition.

A splitting tree is a random variable T in the space of chronological trees (see [Lam10]),
characterized by a σ-finite measure Π on (0,∞] called the lifespan measure, satisfying
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0

t 1 2 3 4 5 6

Figure 1 – An example of splitting tree with finite length (sum of all edges). The vertical
axis indicates time; the horizontal axis has no meaning, but the dotted horizontal lines
show filiation. Six individuals are alive at time t (bold lines), labeled from 1 to 6.

∫
(0,∞] (r ∧ 1) Π(dr) < ∞. When Π is finite with mass b, the tree corresponds to a popu-
lation where individuals have i.i.d. lifetimes distributed as Π(·)/b and give birth to single
descendants throughout their lives at constant rate b, all having the same independent be-
havior. In the general definition individuals may have infinitely many offspring and most
of the forthcoming results remain valid if Π is infinite, as in [Lam10]. However, we will
treat only the finite case and assume Π finite from now on, for simplicity on the proofs.

We represent splitting trees in the half-plane as in Fig. 1, with time running from
bottom to top, and dotted lines representing filiations between individuals: the one on
the left is the parent, and that on the right its descendant. All edges are parallel and the
children of a given individual are placed to the right of this individual, from the youngest
one (to the left) to the eldest one (to the right). This allows to consider a way of labeling
the (countable) set of individuals alive at a given time t, as it is shown in Fig. 1. Hereafter
we always refer to that order when labeling extant individuals at a given time.

We can define the width process of a splitting tree, which counts the number of particles
alive in the tree over time, as a functional Ξ that maps a splitting tree T to the function
ξ : R+ → N counting the number of extant individuals at time t ≥ 0

Ξ(T ) := (ξt(T ), t ≥ 0) .

These functions are càdlàg, piecewise constant, from R+ into N∪{+∞}, and are absorbed
at 0. Then we can define the extinction event Ext := {limt→∞ ξt (T ) = 0} and the time of
extinction of the population in a tree as

TExt := inf{t ≥ 0 : ξt(T ) = 0},

with the usual convention inf ∅ =∞. A tree, or its width process Ξ, is said to be subcritical,
critical or supercritical if

m :=
∫

(0,+∞]

rΠ(dr).
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is less than, equal to or greater than 1.
The width process Ξ(T ) = (ξt(T ), t ≥ 0) of a splitting tree with finite lifespan measure

is known to be a binary homogeneous Crump-Mode-Jagers process (CMJ). This process
is not Markovian, unless Π is exponential (birth-death process) or a Dirac mass at {+∞}
(Yule process).

1.4 Links between SPLP and BP

There are a few recent but now well known results that establish different forms of bi-
jections between random trees and certain real-valued stochastic processes, usually called
exploration processes. In particular, the study of the genealogy associated to branch-
ing processes is an important aspect towards their application in multiple fields such as
population dynamics, population genetics and evolutionary biology. The idea of cod-
ing this genealogical structure through a continuous or jumping stochastic process repre-
sents a powerful tool to analyze the properties of the trees generated by the branching
mechanism and it has been widely exploited with diverse purposes. See for instance
[GK97, LGLJ98, DLG02, Pop04, Lam10, BPS12].

Another link between branching processes and Lévy processes that is worth mentioning
for the sake of completeness, is the so-called Lamperti’s transform. It is a bijection, via a
random time change between CSBP and SPLP killed upon hitting 0. We refer the reader
to [Lam67] and a more recent study [CLUB09].

The continuum random tree and Feller’s branching diffusion

Real trees can be defined as the continuous limiting object of rescaled discrete trees
and can be coded by a continuous function in a way similar to the coding of discrete
trees by their contour functions. Aldous’ Continuum Random Tree (the so-called CRT)
can be defined as the random real tree coded by a normalized Brownian excursion e, i.e.
the positive Brownian excursion conditioned to have lifetime 1. More generally, the tree
coded by Brownian motion (possibly with drift) reflected at 0, is called Brownian forest.
We refer to [Ald93, LG05] for the formalism on real trees.

The second one of the two classical Ray-Knight theorem [RY91] establishes that the
local time process of a reflected Brownian motion is Feller’s branching diffusion. More
precisely, let B be a Brownian motion reflected at 0 and (Las , s, a ≥ 0) the family of its
local times, where the index s corresponds to the time of the original process B and a is
the level variable moving in the state-space of B. Consider, for x > 0,

ςx = inf{s : L0
s > x}.

Then, the process (Ltςx , t ≥ 0), viewed as a process indexed by t, which corresponds to the
(total) local time accumulated by the resulting path at height t, is equal in distribution
to the square of a 0-dimensional Bessel process started at x, that is, a standard Feller
branching diffusion (Zxt , t ≥ 0). The latter is defined as the unique strong solution of the
SDE

dZxt = 2
√
Zxt dW x

t , with Zx0 = x.

This may be understood as a description of the genealogy encoded in Feller’s branching
diffusion. The exploration path is a concatenation of Brownian excursions, with each
excursion corresponding to a CRT and the reflected Brownian motion coding (in the sense
of Aldous) the real tree which describes the genealogy of the population that evolves
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Figure 2 – An example of chronological tree with finite length (left) and its JCCP (right).

according to Feller’s diffusion [LG05]. The local time of the exploration path at height t
measures the mass (or size) of the population that is alive at this level in the genealogical
forest and this mass is Zt, the state of the branching process at time t.

The contour process

There exist different versions of the contour process of a splitting tree. In this work we
will focus our attention in a particular way of exploring a splitting tree, a non-continuous
version of the so-called contour processes, introduced in [Lam10] and more recently gen-
eralized to totally ordered measured (TOM) trees satisfying the splitting property, which
are the continuum analogue of splitting trees in the setting of real trees, as it is shown in
[LB16]. Here we give only an intuitive description of the process, and we refer to these
papers for the rigorous definition. In the sequel, we will often prefer to use the more
accurate denomination given by [Lam10], that of jumping chronological contour process
(JCCP) of the splitting tree. Given a tree T , embedded in the plane, its contour or JCCP,
denoted by C(T ) is a continuous time, real-valued process, that starts at the lifespan of the
ancestor and then rolls backward along the right-hand side of this first branch at speed −1
until it encounters a birth event, when it jumps up of a height of the lifespan of this new
individual, getting to the next tip, and then repeating this algorithm until it eventually
hits 0, as shown in Fig. 2.

The JCCP visits all the existence times of each individual exactly once and the number
of times it hits a time level, say s ≥ 0, is equal to the number of individuals in the
population at time s. More precisely, for any finite tree T , the local time of its contour
process is the population size process of the tree, that is

(Γ (C(T ), r) , 0 ≤ r ≤ TExt) = Ξ(T ),

where Γ is defined as in Equation (6).
One of the main results in [Lam10], which is key to our study, is that the JCCP of a

splitting tree is a spectrally positive Lévy process Y , with Laplace exponent given by (2)
with d = −1 and then the binary homogeneous CMJ is its local time. More precisely, the
result is the following.

Theorem [Lam10, Th.4.3]. Let T be a fixed positive time and T (T ) be a splitting tree with
lifespan measure Π in (0,+∞), truncated below height T . The process C(T (T )), conditional
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on the lifespan of the root individual to be x, the JCCP of the tree, is distributed as Y ,
started at x, reflected below T and killed upon hitting 0. Moreover, conditional on Ext and
on the lifespan of the root individual to be x, the JCCP is distributed as Y , started at x,
conditioned on and killed upon hitting 0.

An important consequence of this result is that in the (sub)critical regime, under Px

(Γ (kτ0 ◦ Y, r) , r ≥ 0) (8)

is a CMJ with lifespan measure Π, starting with one progenitor with lifespan x. This
result also holds in general (including supercritical) for the process Y and the splitting
tree truncated below T or conditioned on extinction.

Other interesting consequences of this theorem, that we can also find in [Lam10], are
the following. First, for any x > 0, conditional on being nonzero, the size of the population
in the tree a time T , that is ξT , follows the geometric distribution with success probability
1/W (T ), Secondly, in the supercritical case (m > 1), conditional on Extc,

e−ηtξt −→
t→∞

E, P − a.s.,

where E is an exponential random variable with parameter ψ′(η). This result justifies that
η is seen as the so-called Malthusian parameter.

The coalescent point process

Let us now explain how the reconstructed genealogies of splitting trees can be studied
using the JCCP. Fix a time level T > 0 and consider a splitting tree T with lifespan
measure Π that survives up until time T . Let (xi(T ), 1 ≤ i ≤ ξT (T )) denote the individ-
uals on the tree at time T , ranked according to the order described before (see Fig. 1).
Conditional on the population size ξT (T ) at time T , denote by Hi, 1 ≤ i ≤ ξT (T )− 1, the
coalescence times between the i-th and the (i + 1)-th individual , that is the time until
the most recent ancestor (abbreviated TMRCA in the literature) of individuals xi(T ) and
xi+1(T ). We have the following result characterizing the law of this sequence with the
help of the scale function previously introduced and Equation (4).

Theorem [Lam10, Th.5.4]. Conditional on ξT (T ) ≥ 1, the sequence of coalescence times
(Hi, 1 ≤ i ≤ ξT (T )− 1) is distributed as a sequence of i.i.d. random variables stopped at
its first value greater than T . The common distribution is that of H = inf [0,t]X, where
X is a Lévy process with Laplace exponent given by (2) (with d = −1), started at T and
killed when exiting (0, T ]. Moreover, conditionally on ξT (T ) > 1, the common distribution
of the random variables (Hi, 1 ≤ i ≤ ξT (T )− 1) is given by

P (H ≤ x | H < T ) = 1− 1/W (x)
1− 1/W (T ) , for 0 ≤ x ≤ T.

The sequence (Hi, 1 ≤ i ≤ ξT (T )− 1) is called coalescent point process (CPP) and fully
characterizes the genealogy of the extant population at T , since the coalescence time
between any pair of individuals i and i+ k, can be defined as maxi<j≤i+kHj .

2 Statement of results

2.1 Main results of Chapter I

In this chapter we consider the first model described in Subsection 1.3, that of splitting
trees. The population of infected individuals follows this model from time 0, where the
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epidemic originated, until present time T0. More precisely we suppose the transmission
tree of an epidemic between 0 and T0 is distributed as a splitting tree, denoted by T ,
with lifespan measure Π of mass b. Then the infected population size process, denoted by
(It)0≤t≤T0 , has the law of the associated CMJ, that is, for each 0 ≤ t ≤ T0,

It = ξt (T ) .

In the case where susceptible individuals are abundant, such as in outbreaks, this
model without density dependence is suitable for the dynamics of the infected population
and has been widely used in this context. See for instance [Bec74, Bec77, TFLS06] and
more recently [Sta09, SKvW+12]. The main motivation of this chapter is to pave the way
for the statistical inference on the parameters of this model on the basis of data consisting
in

• The reconstructed transmission tree (i.e. the information about non sampled hosts is
erased from the original process). These trees are indeed considered to be estimated
from pathogen sequences from hosts sampled at present time T0, so in our model we
make no distinction between the phylogeny of sequences and the transmission tree
(and no uncertainty on the branch lengths is considered). This hypothesis makes
sense when the epidemiological and evolutionary timescales can be supposed to be
similar [VKB13, PFR13].
• Incidence time data, sparsed between 0 and T0. That is, the number of new cases
registered through time, typically daily, weekly or monthly. This information may
come from hospital records, surveillance programs (local or national), and is not
necessarily collected at regular intervals.

We also take into account the sampling intensity of individuals that are currently infected
through an additional parameter p, whose role is the following: each host at T0 is sampled
independently with probability p.

There is an increasing number of works on modeling and inferring population dynamics
from phylogenetic data, e.g. [VPW+09, Sta11, RBK13, SKBD13, SKRdP14]. However,
important aspects remain to be explored and there are still many challenges so that phylo-
dynamic inference methods can be extended to more complex systems and data [FPG+15].
In particular, few models exist linking sequences and incidence data, and most of them
make further hypothesis about their independence, which is not always justified (e.g. in
a context of dense sampling such as HIV epidemic). Therefore, in our approach, these
observed statistics are assumed to be generated from a unique forward in time process
and they are not independent in general. This assumption makes the computation of the
likelihood as their joint distribution a delicate and complex issue, even in the linear BD
model, since it requires to integrate over all the possible extinct (unobserved) subtrees
between 0 and T0.

We know from [Lam10] that the reconstructed phylogenetic tree of extant (sampled)
individuals under this model, conditionally on the population to be non extinct at time T0
(i.e. IT0 6= 0), is a coalescent point process, that is, a sequence of i.i.d. random variables
Hi, i ≥ 1, killed at the first value greater than T0, as described in Subsection 1.4. We
recall that at any level, individuals are labeled from left to right as we have explained in
in Subsection 1.3, also depicted in Fig. 3, that is by the sequence (i)1≤i≤IT0

. Additionally,
for 1 ≤ i < j ≤ XT0 − 1, the i-th and j-th infected individuals coalesce (find the most
recent common origin of their infection) at a time distributed as the maximum of j−i i.i.d.
random variables with same law H, for instance Hi+1, . . . Hj . In particular, conditional on
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Figure 3 – An example of splitting tree between 0 and T0 (bold lines, left). The CPP of
the 11 extant individuals at T0 (blue) and the CPP of the 5 sampled individuals (red).
The variables Hi (in blue) represent the TMRCA between individuals i and i + 1, for ,
1 ≤ i ≤ 10. The dashed curved arrows represent the sequence of variables (Zi, 0 ≤ i ≤
ϑ− 1, Zϑ), counting the number of individuals between two sampled ones.

XT0 6= 0, XT0 follows a geometric distribution with parameter P(H < T0). The common
law of these so-called branch lengths distributed as H is

P(H > s) = 1
W (s) ,

where W is the scale function of a Lévy process X with Lévy measure Π and Laplace
exponent defined by (2). In everything that follows, we suppose that H has a distribution
that is absolutely continuous w.r.t. Lebesgue measure and its probability density function
will be denoted by f . See Fig 3 (left) for an example of coalescent point process.

Furthermore, we include the sampling scheme described above, where each infected
individual at T0 is sampled with probability p. Denote by ϑ = ϑ(p, T0) the number
of sampled individuals at any T > 0. Then, conditionally on ϑ ≥ 1, the resulting p-
reconstructed tree is also a coalescent point process (H̃i, 1 ≤ i ≤ ϑ), with a common law
that we will denote by H̃, corresponding to the maximum of a sequence of G independent
random variables distributed as H, where G ∼ G(p), that is

H̃ := max
1≤i≤G

Hi.

Conditional on ϑ, we let (x̃i, 1 ≤ i ≤ ϑ) be the labels of sampled individuals at T , that is,
a subsequence of [1, IT ]. As well as in [Lam10, Theorem5.4], we have that conditional on
ϑ ≥ 1, (H̃i, 1 ≤ i ≤ ϑ) is distributed as a sequence of i.i.d. r.v., stopped at its first value
greater than T . The common law of these branch lengths H̃ is, for any x ≥ 0,

P
(
H̃ ≤ x

)
= pP (H ≤ x)

1− pP (H ≤ x) .

Then, the typical distribution of the TMRCA between two consecutive sampled individuals
at T (if any) is

P
(
H̃ ≤ x | H̃ < T

)
= P (H ≤ x | H < T ) 1− pP (H ≤ T )

1− pP (H ≤ x) , for 0 ≤ x ≤ T.

See Fig 3 (right) for an example of p-coalescent point process.
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Random sampling at present time

Under this incomplete sampling model presented above, our goal is, in a first stage,
to calculate the probability function of a vector of times corresponding to the coalescence
times between the ϑ sampled individuals, jointly with the population size at the present
time, IT0 . Since we cannot access to this likelihood directly as was pointed out before, we
will rather look at the probability generating function of IT0 under the event of observing
the coalescence times vector Tϑ−1 and ϑ = K, where ϑ is the random number of sampled
infected individuals at T0. Let us define the function G : [0, 1]→ R+ as follows

G(u) = E
[
uIT0 1{

H̃1<t1,...,H̃ϑ−1<tϑ−1
}1{ϑ=K}

∣∣∣∣ IT0 6= 0
]
. (9)

We have the following description (see Fig. 3),
- Z0 = x̃1, the number of unsampled individuals until the first sampled one,
- Zi = x̃i+1− x̃i, the number of unsampled individuals between the i-th and the (i+ 1)-th

sampled individuals for i = 1, . . . , ϑ− 1,
- Zϑ = IT − x̃ϑ, the number of unsampled individuals with label greater than the last

sampled one,
- H(i)

j , i, j ≥ 1 are i.i.d. random variables with same law as H,

- H̃i = max
{
H

(i)
1 , . . . ,H

(i)
Zi

}
for i = 1, . . . , ϑ− 1, i.e. the TMRCA between individuals x̃i

and x̃i+1.
According to this notation, the total population extant at T0 can be expressed as (see
Fig. I.5)

IT0 = Z0 + . . .+ Zϑ−1 + Zϑ.

Additionally, it is not hard to see that individuals with a label smaller than x̃1 or greater
than x̃ϑ, which are counted in variables Z0 and Zϑ, do not take part in any coalescent
event of interest. Hence, we can establish the following result.

Theorem. Let G(u) denote the probability generating function of IT0 defined by (9). We
have the following identity for all u ∈ [0, 1],

G(u) =
(
K−1∏
i=1

pP(H < ti)u
1− (1− p)P(H < ti)u

)
× pP(H > T0)u

(1− P(H < T0)(1− p)u)2 . (10)

Likelihood based on data at two times

Now we consider that we have, additionally to the data in the previous section, the
incidence at a time T1 < T0 (see Fig. 4). We want to calculate an analogous generating-
type function, now in two variables u, v ∈ [0, 1], that we will define below. First, to
simplify, the vector TK−1 = (t1, . . . , tK−1) is supposed ordered, that is

0 < t1 < . . . < tk−1 < T0 − T1 < . . . < tK−1,

so that the first k sampled individuals coalesce between present time T0 and T1, and the
rest of them between T1 and the more distant past time 0. Then, the first k−1 coalescent
events can be modeled as in the previous theorem, and those depths that might be greater
than T0 − T1 are studied with the help of some results on the JCCP of a splitting tree.
What we should notice is that, when we include coalescence events that take place between
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Figure 4 – An example of splitting tree (bold lines, left) of a p-sampled population (in
red), together with IT0 = 5 and IT1 = 6.

0 and T1, we also add information about extant individuals at T1, which do not survive
up to time T0. Therefore, for each of these coalescence events, there is an input in the
total population at T1 that needs to be quantified in the likelihood below. Then for these
variables representing the coalescence times larger than T0 − T1, we will use the notation
Ĥi, i ≥ k. So function G in two variables can be defined as

G(u, v) = E
[
1{

H̃1<t1,...,H̃k−1<tk−1,Ĥk<tk,...,Ĥϑ−1<tϑ−1
}1{ϑ=K}u

IT1vIT0

∣∣∣∣ IT0 6= 0
]
. (11)

The description of variables H̃ and IT0 is the same as in the previous subsection. To
describe IT1 we need to count the total number of branches Hi larger than T0 − T1,
until the first one larger than T0. Between any pair of such branches we will have a
number of individuals extant at T1 distributed as variable that we will denote by N ,
whose distribution we will specify hereafter. Accordingly, we associate to each Ĥi an
independent Bernoulli r.v. Bi, with common distribution defined as follows,

P(B = 0) = P(H ≤ T0 − T1)
P(H < T0) , P(B = 1) = P(T0 − T1 < H < T0)

P(H < T0) (12)

Suppose that for the individual labeled i at T , we have that {Ĥi > T0 − T1}, which is
equivalent to the associated Bi to be equal to 1, according to (12). This coalescence time
between individuals i and i + 1 corresponds to the minimum of an excursion from T0 of
the JCCP reflected at this level. Moreover, the number of hitting times of the level s by
this excursion, for any 0 ≤ s ≤ T0 is equal to the number of individuals that are placed to
the right of i and to the left of i− 1 (following the order we specified in the introduction).
Then, conditional on Ĥi > T0 − T1, the probability of Ĥi > T − ti, jointly with having n
individuals that were extant at t, that are to the right of i and the left of i+ 1 in the tree,
and from which only one has alive descendants at time T , can be expressed as follows in
terms of the JCCP. Denote by (τ ix)i≥0 the successive hitting times of level x ∈ [0, T0] by
X, and the counting process of these hitting times before the process exits the interval
[0, T0], defined as

N(x, T0) :=
∑
i≥1

1

(
τ ix < τ0 ∧ τ+

T0

)
,

We have the following for any 0 ≤ s < T1

PT1

(
τ+
T < τs, N(T1, T0) = n

)
= (ρ1(s))n ρ2(s)
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with

ρ1(s) = 1− W (T0 − s)
W (T1 − s)W (T0 − T1) ,

ρ2(s) = W (T0 − s)−W (T0 − T1)
W (t− s)W (T0 − T1) .

To find an explicit expression for G(u, v) we also need to use the function h defined as
follows for a random variable B with distribution given by (12), independent of X,

h(v, s) := E
[(

1{X
τ0∧τ

+
T

>s}v
N+1

)B]
= P(H ≤ T0 − T1)

P(H < T0) + ρ2(s)v
1− vρ1(s)

P(T0 − T1 < H < T0)
P(H < T0) .

(13)

Using (I.14) and the strong Markov property we also have that

h̃(v, x) := Ex
[
1{τ+

T <τ0}v
N(t,T )

]
= Px

(
τt ≥ τ+

T

)
+ Et

[
1{τ+

T <τ0}v
N(t,T )

]
Px
(
τt < τ+

T

)
= P (T − x < H ≤ T − t)

P (H > T − x) + P (H > T − t)
P (H > T − x)

ρ2(0)v
1− vρ1(0) . (14)

We can finally state the result.
Theorem. The function G(u, v) satisfies the following identity for h defined by (13),

G(u, v) =
(
k−1∏
i=1

pP(H < ti)u
1− (1− p)P(H < ti)u

)
× pu

(1− P(H < T )(1− p)u) ×
ρ2(0)

1− vρ1(0)
K−1∏
i=k

pP(H ≤ T )h(v, T − ti)u
1− (1− p)P(H ≤ T )h(v, T − ti)u

× h(v, 0) (1− (1− p)P(H < T ))
1− (1− p)P(H < T )uh(v, 0) × h̃(v, x),

for a function h defined by (13) and h̃ by (14).

Finally, a generalization of the previous theorems is obtained for n variables u, u1, . . . , un ∈
[0, 1], and the probability generating function defined as follows,

G(u, u1, . . . , un) = E
[
1{

H̃1<t1,...,H̃ϑ−1<tϑ−1
}1{ϑ=K}u

IT u
IT1
1 . . . u

ITn
n

∣∣∣∣ IT 6= 0
]

where T = T0 > T1 > . . . Tn > 0 are fixed times between present time T and time 0, is
assumed again to be the origin of the epidemic. This last result will be proved only in the
birth and death case, and involves a description of the population size process, backward
in time, as a sum of inhomogeneous branching processes with immigration.

2.2 Main results of Chapter II

The results obtained in this chapter appear in [DFL15], and are, in some sense, a
generalization of those obtained in Chapter I. Indeed, here we consider the same model as
in the previous chapter, denoting present time by T . Then, we obtain a characterization
of the law of the infected population size process I := (It, 0 ≤ t ≤ T ) as a continuous time
process between 0 and T , conditionally on the reconstructed phylogeny of hosts at time
T , when I is distributed as a CMJ and then the total phylogeny is a splitting tree, as
depicted before. This is accomplished with the help of a more general result for branching
processes that we will subsequently describe. The results are based in the identity in law
between the JCCP of a splitting tree and a SPLP as it was stated in the preliminaries,
and the duality property that enjoy the latter. Also, a few elements on excursion theory
for Lévy processes are necessary.
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Definitions

Define a forest as any finite sequence of independent splitting trees, each starting from
one individual. More specifically, consider a finite measure Π with mass b and for any
positive integer m, let a m-forest be defined as F = (T1, T2, . . . , Tm), where T1, T2, . . . , Tm
are i.i.d. splitting trees with lifespan measure Π. It is straightforward to extend the notion
of width process to a forest as the sum of the widths of every tree of the sequence, i.e.,

Ξ(F) :=
m∑
i=1

Ξ(Ti).

As well, we can extend the notion of contour process to a forest F = (T1, T2, . . . , Tm)
of finite trees, similarly to the way it is done in [DLG02], by concatenating the contour
functions,

C(F) := [Ct(T1), Ct(T2), . . . , Ct(Tm)] .

It will be denoted simply C when there is no risk of confusion. We should notice that the
function thus obtained determines a unique sequence of chronological trees since they all
start with one single ancestor.

Fix a finite horizon T . We call a forest stopped at 1st surviving tree, denoted by F∗,
a sequence of i.i.d. splitting trees stopped at the first tree that survives up until T .

Also define for p ∈ (0, 1) a forest Fp as a sequence of independent splitting trees(
T1, . . . , TNp , T

(T )
Np+1

)
, where,

- T1, . . . TNp : are i.i.d. conditioned on extinction before T
- TNp+1: is conditionned on survival up until time T
- Np: is an independent geometric random variable with P(Np = k) = (1−p)kp, k ≥ 0

Consider now a finite variation spectrally positive Lévy process Y with Lévy measure
Π and Laplace exponent ψ given by (2) (with d = −1). Consider η as in (II.2) and define
an associated measure Π̃ as follows

Π̃(dr) := e−ηrΠ(dr).

Consider also an analogous process Ỹ with Laplace exponent ψ̃ defined as ψ but with
Lévy measure Π̃. Let W and W̃ denote the respective scale functions of ψ and ψ̃. From
now on P denotes the probability measure of Y and P̃ that of Ỹ .

For a finite variation SPLP, the undershoot and overshoot at 0 of an excursion starting
at 0 and conditional on τ+

0 < +∞ are defined as the amounts of the jump ∆Yτ+
0

that are
respectively below and above level 0. See [Kyp06] for the details and see Fig. 5 for an
example. We denote respectively by µ> and µ⊥(dv) their probability measures on [0,∞)
under P0

(
·
∣∣∣τ+

0 < +∞
)
, defined as follows,

µ>(du) := P0
(
−Yτ+

0 −
∈ du

∣∣∣τ+
0 < +∞

)
= e−ηuΠ(u)

m ∧ 1 du (15)

µ⊥(dv) := P0
(
Yτ+

0
∈ dv

∣∣∣τ+
0 < +∞

)
= eηvΠ̃(v)

m ∧ 1 dv (16)

We define forests Fp>,F
p
⊥ distributed as Fp, but with the lifetimes of the ancestors

having the distribution µ> and µ⊥, which differs from that of the rest of individuals in
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Figure 5 – Example of a finite variation SPLP process Y until it crosses level 0.

the trees, i.e. Π(·)/b. In the sequel, the subscripts ⊥ and > are used to refer to trees and
forests where the ancestors have these particular distributions.

Finally define the following parameters γ and γ̃ corresponding to the probabilities of
non-extinction at time T of the populations in the trees T̃> and T⊥ respectively. Thanks to
[Lam10, Th.4.3 and Th.5.4] these probabilities can also be expressed in terms of the scale
functions W and W̃ , and correspond to hitting time inequalities for the Lévy proceses Y
and Ỹ . More precisely we have the following,

γ = 1
W (T ) = P

(
ξT
(
T̃>
)
6= 0

)
= P̃>

(
τ+
T < τ0

)
= PT

(
τ0 < τ+

T

)
,

γ̃ = 1
W̃ (T )

= P (ξT (T⊥) 6= 0) = P⊥
(
τ+
T < τ0

)
= P̃T

(
τ0 < τ+

T

)
.

We prove that, in the supercritical case (m ≥ 1, η > 0), a forest F γ̃⊥ is the same as
a forest stopped at first surviving tree, where the splitting trees are distributed following
the couple of measures (⊥,Π), respectively for the ancestor and the descendants. In the
same way, F̃γ> has the law of a forest stopped at first surviving tree with measures (>, Π̃).
This allows to obtain the following result of duality under time-reversal.

Theorem. We have the following identity in distribution,(
ξT−t

(
F γ̃⊥
)
, 0 ≤ t ≤ T

)
d=
(
ξt
(
F̃γ>
)
, 0 ≤ t ≤ T

)
In the subcritical and critical cases (i.e. m ≤ 1),

(
ξT−t

(
Fγ⊥
)
, 0 ≤ t ≤ T

) d=
(
ξt
(
Fγ>
)
, 0 ≤ t ≤ T

)
and actually in this case µ⊥(dr) = µ>(dr) = Π(r)

m
dr.

In the exponential case, that is when Π(dr) = bde−drdr (for some d > 0), the popula-
tion size process of the splitting tree is a linear BD process. Moreover, for this choice of Π,
the overshoot (16) and undershoot (15) are also exponentially distributed with parameter
d and b ∨ d respectively. Accordingly, in this case the previous theorem adopts a simpler
form and can be stated as follows. Fix the parameters b and d such that b ≥ d (supercriti-
cal case) and define two analogous forests stopped at 1st surviving tree: F∗ with birth and
death parameters (b, d) and F̃∗ with birth and death parameters swapped, that is (d, b),
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which is the same as the supercritical process conditioned on extinction [AN72]. Then, we
have the next identity in distribution,

(ξT−t (F∗) , 0 ≤ t ≤ T ) d=
(
ξt
(
F̃∗
)
, 0 ≤ t ≤ T

)
.

Furthermore, the result obtained in [DFL15] is more general, since it concerns not only
a duality between the population size processes forward and backward in time, but also on
the genealogies of the forests. In other words, we establish that we can construct a dual
forest F̃∗, from the forest F∗, by setting up different filiations between individuals, but
letting the edges of the initial trees unchanged, as depicted in Fig 6. This new genealogy
has no interpretation in terms of the original family to our knowledge, and can be seen as
the tool to reveal the intrinsic branching structure of the backward-in-time process.

Conditional on the reduced tree: applications to epidemiology

As a consequence of the previous results we are able to propose now a description of
the population size process I := (It, 0 ≤ t ≤ T ), conditional on the coalescence times of
hosts at time T (i.e. the reconstructed phylogeny) to be t1, . . . , tn. We consider that

It = ξt
(
F γ̃⊥
)
.

We state, under these conditions, that the process I, backward in time, is the sum of the
width processes of n independent splitting trees, each conditioned on dying out at ti for
1 ≤ i ≤ n, plus an additional i.i.d. tree conditioned on surviving up until time T , see
Fig. 7.

Theorem. Consider a forest F γ̃⊥ and let (Hi)i≥1 be the coalescence times from individuals
at T . Define

P̃>,i := P̃>(·|TExt = ti), ∀i ≥ 1 and P̃>,∗ := P̃>(·|TExt > T ).

Then

(
ξT−t(F γ̃⊥), P(·|Hi = ti, 1 ≤ i ≤ n)

)
=
(
n+1∑
i=1

ξt (Ti) , (P̃>,1 ∗ . . . ∗ P̃>,∗)(·)
)
.

The fact that in our model the sampled epidemic comes from one single ancestor at
time 0 corresponds to different strains of the pathogen in their attempts to invade the
population, but where only one succeeds (at time T ). However, if various invading strains
succeed, analogous results can be deduced by concatenating (summing) an equal number
of forests. The general assumption will be then, that for each successful strain, there
is a geometric (random) number of other strains of the pathogen that become extinct
before time T . The probability of success of these geometric r.v. depends on the recovery
and transmission parameters. Finally, estimating these parameters from molecular and
epidemiological data using this branching processes model, can be addressed through MLE
or Bayesian inference. These statistical questions are not directly treated here.
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Figure 6 – Example of splitting forest stopped at first surviving tree, F∗ (top left) and
the sequence of transformations leading to the dual forest F̃∗ (bottom right). Individuals
belonging to the same family in F∗ are given the same color (top right), so that we can
notice how they are related in the dual forest F̃∗(bottom right).

2.3 Main results of Chapter III

This work is a follow-up to the previous chapter, where we have obtained a property
of invariance under time-reversal, from a deterministic time T , for the branching process
corresponding to the population size process of the forests stopped at 1st surviving tree.
Now we study a similar property of duality, not from a deterministic time, but from the
(random) extinction time of the process. It is worth stressing that, besides the implications
concerning branching processes, some of our lemmas are interesting in their own right since
they give some invariance results for subpaths of SPLP. The results are exposed in the
paper [DFL16].

Let X = (Xt, t ≥ 0) be a SPLP with Laplace exponent ψ given by (1). We suppose



28 Introduction

Figure 7 – Top: example of splitting forest stopped at first surviving tree, F∗ with 4
surviving individuals (hosts) at T and respective coalescence times between them equal to
t1, t2, t3. Bottom: the same forest after space-time-reversal.

that X is (sub)critical, meaning that it does not drift to +∞, which is equivalent to
ψ′(0+) ≥ 0. We consider the process reflected at its infimum X − I as defined in the
preliminaries, with the excursion measure n normalized so that −I is the associated local
time and τ−t = inf{s ≥ 0 : Xs < −t} the inverse local time.

Let ε be the generic excursion of X − I away from 0 and γ the last instant at which
this excursion attains its supremum, that is

γ = γ(ε) = sup{s > 0 : εs = εs},

where εs = sup[0,s] ε. We are interested in the decomposition of ε at γ.
Consider the following space-time-reversal transformation of the paths in E , that we

call rotation, and can be defined for any ω ∈ E as

ρ ◦ ω := (ωV− − ω(V−s)−, 0 ≤ s ≤ V ).

We prove that the pre-supremum and the post-supremum processes, denoted respec-
tively ←ε γ = (εs, 0 ≤ s ≤ γ) and →ε γ = (εγ+s−εγ , γ ≤ s ≤ V ), are invariant under rotation.
We summarize this result in the following proposition.

Proposition. For any measurable functional h : E → R+ we have the following identities
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under the excursion measure of X − I

n
(
h
(←
ε γ
))

= n
(
h ◦ ρ

(←
ε γ
))
,

n
(
h
(→
ε γ
))

= n
(
h ◦ ρ

(→
ε γ
))
.

Moreover, these results imply the following theorem, for which we need first to define
the functional χ : E → E as

χ (ε) :=
[
ρ
(←
ε γ
)
, ρ
(→
ε γ
)

+ εγ
]
,

where for any two elements ω1, ω2 ∈ E , [ω1, ω2] stands for their concatenation.

Theorem. For every bounded measurable functionals F : E → R+ we have

n (F ) = n (F ◦ χ)

A first consequence of this theorem is the invariance under time reversal of the local
time process of the excursion of X − I away from 0.

Corollary. The local time process of the excursions of X − I away from 0, is invariant
under time reversal, that is

(Γ (ε, r) , 0 ≤ r ≤ εγ) d= (Γ (ε, εγ − r) , 0 ≤ r ≤ εγ) .

Moreover, the (sub)critical CMJ’s branching process and excursion away from 0 of the
critical Feller’s branching diffusion, are invariant under time reversal from their extinction
time.

The idea behind the second part of this Corollary, is again, the one-to-one relationship
that can be established between a SPLP and branching process, in particular through
the JCCP. Similar results concerning the duality by time-reversal of branching processes
have been given in the litterature. In particular, in [AP05] we can find a time-reversal
invariance principle for the linear birth and death process in the critical case, when the
process is conditioned on the number of individuals at the time of reversal to be equal to n.
As suggested by the authors, the rescaled limit of the time-reversed process when n→∞,
is the Feller branching diffusion. This suggests an alternative way of obtaining the second
result on the previous Corollary. See also [Est75] and more recently [AR02, KRS07, DH13]
for the treatment of the reverse of Galton-Watson processes and specifically the Esty time
reversal, which is the limit obtained by conditioning a GW process in negative time upon
entering the state 0 (extinction) at time 0 and starting in the state 1 at time −n, when
n tends to +∞. We also refer to [BD16] for a time reversal property for the number of
ancestors process of a stationary CSBP with sub-critical quadratic branching mechanism.





Chapter I

Inferring population dynamics from
virus phylogenies

“The lack of real contact between mathematics and biology is either a tragedy,
a scandal, or a challenge, it is hard to decide which.”

– Gian-Carlo Rota, [Kac08]

Introduction

Phylodynamic models seek to characterize the relationship between evolutionary and
epidemiological processes by combining concepts from phylogenetics, epidemiology, pop-
ulation genetics and immunology into a mathematically explicit and statistically rigorous
framework [WDD07]. This approach has helped to illuminate many aspects of infec-
tious disease biology such as historical patterns of incidence, transmission between pop-
ulations, cryptic structure due to heterogeneity in host susceptibility and behavior, and
host-mediated selection on parasite genomes [GPG+04, PR09]. It has also been used as
theoretical support for the evaluation of control strategies for the spread of infectious
diseases [MSM+13]. In recent years, this field has witnessed the development of many
new mathematical models and statistical tools, but these have mostly relied exclusively
on pathogen sequences. Integrating multiple sources of data promises to provide deeper
insights into infectious disease dynamics and better opportunities for reconstructing the
past and predicting the future[VPW+09, RRK11].

When the population of susceptible individuals is sufficiently large (e.g. outbreaks), one
can be placed in the context of a simplified model without density dependence, a process of
birth and death at constant rates. A birth event should be interpreted as the transmission
of the infection to a healthy individual and a death event as an infective individual that
stops being contagious (recovery, death, etc.). The purpose of this work is to infer the
parameters that control the dynamics of this simplified model by taking advantage of the
information brought by the reconstructed phylogenetic tree (or coalescent) from living
individuals (or only sampled), in the present time, and given the number of total cases
at some other earlier times. On that account, we consider the first model described in
Subsection 1.3, that of splitting trees and Crump-Mode-Jagers (CMJ) processes. Then,
the population of infected individuals follows this model from time 0, where the epidemic
originated, until present time T . More precisely we suppose the transmission tree of an
epidemic between 0 and T is distributed as a splitting tree, denoted by T , with lifespan
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measure Π of mass b. Then the infected population size process, denoted by (It)0≤t≤T ,
has the law of the associated CMJ process, that is, for each 0 ≤ t ≤ T ,

It = ξt (T ) ,

where (ξt(T ), t ≥ 0) denotes the width process of a splitting tree, which counts the number
of particles alive in the tree over time as defined in the Introduction. Recall that birth
and death processes are a particular case of this model. See Fig I.1.

In recent years, interest in using phylogenies of extant taxa to infer the patterns of
diversification has considerably grown. In [NMH94] authors apply the birth-death process
to phylogenies of extant taxa by introducing the reconstructed birth-death process. It
was the first likelihood based-method presented to infer speciation and extinction rates
on the basis of reconstructed phylogenies. This method has been widely used for esti-
mating speciation and extinction rates and several likelihood-based approaches now exist
that infer these rates under different scenarios (see for instance [AP05]). In forthcoming
Subsection 2.1 we give a brief review of some of these different approaches, where there
is a common basic idea: speciation and extinction rates are determined that maximize
the likelihood of the reconstructed tree. However, even in the linear birth-death model,
one of the simplest one might consider, the quantification of the likelihood on the basis
of available data can be a delicate and complex issue. Especially when one considers that
the state of the population at the present is only partially observed, i.e. the population
is incompletely sampled. If additionally, we have some extra information about the past,
such as the total extant population at earlier moments, the likelihood function can be even
more complicated to characterize.

Here, we obtain expressions for the probability generating function of the number of
cases in the present and/or at prior times, conditional on the coalescent or reconstructed
tree from present time hosts, assuming a splitting tree as underlying model. We exploit the
fact that the jumping chronological contour process (JCCP) of these trees with finite length
is a Lévy process, that is a càdlàg process with stationary and independent increments
(see Subsection 1.4 for more details). We recall that the genealogy of a splitting tree
conditioned to be extant at a fixed time T (IT 6= 0) is given by a coalescent point process
(CPP), that is, a sequence of i.i.d. random variables Hi, i ≥ 1, killed at its first value
greater than T . More specifically, for 1 ≤ i < j ≤ IT − 1 the time elapsed into the past
until the i-th and j-th individuals alive at time T coalesce, i.e. find their most recent
ancestor (TMRCA), is distributed as the maximum of j − i i.i.d. random variables with
same law as H, for instance Hi+1, . . . Hj . In particular, conditional on IT 6= 0, IT follows a
geometric distribution with parameter P(H < T ). The common law of these so-called node
depths is characterized with the help of the scale function of the JCCP of the splitting
tree [Lam10].

Additionally, we consider that each host at time T is sampled independently with
probability p ∈ (0, 1), so the genealogy of the sample is still that of a coalescent point
process with a typical node depth distributed as

H̃ := max
1≤i≤ξ

Hi

where ξ ∼ G(p) (geometric) is independent from the i.i.d. sequence {Hi}i≤1.
We denote by ϑ the number of sampled individuals at time T , and we consider that

the observed data consists in the sequence (H̃i)1≤i≤ϑ−1 and the vector (IT , IT1 , . . . , ITN ),
where T > T1 > . . . > TN > 0 are deterministic times. Then, our main results consist
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in characterizations of the probability generating function of these variables, defined as
follows, for any u, u1, . . . , uN ∈ [0, 1],

G(u, u1, . . . , uN ) = E
[
1{

H̃1<t1,...,H̃ϑ−1<tϑ−1
}1{ϑ=K}u

IT u
IT1
1 . . . u

ITN
N | IT 6= 0

]
.

We give an explicit expression for this function in the cases of N = 1, 2 considering
the general CMJ process as underlying model. A characterization is also obtained for
N ≥ 3, but only in the birth and death case, where the function G is expressed as the
composition and product of several probability generating functions (pgf ), each of them
well characterized.

Figure I.1 – An example of splitting tree up to time T (left, bold lines), the coalescent
point process (Hi)1≤i≤5 from extant individuals at T (left, blue arrows) and the reduced
tree (right, bold lines). The population size at times T, T1, T2, T3 is represented at the
respective levels. The red tips in the right panel represent sampled individuals at t, with
respective coalescence times (H̃i)i=1,2

The chapter is organized as follows. There is a section of preliminaries, where we give
some basic notions about reconstructed trees and coalescent processes. A section con-
taining containing our main results follows, preceded by a brief review on some previous
works concerning the problem of likelihood computation and a remind on spectrally posi-
tive Lévy processes [Ber96], which are indispensable in our approach [Lam10]. At the end
we present some conclusions and perspectives of this work.

1 Preliminaries

The evolutionary relationships between a set of organisms or groups of organisms,
called taxa, are most often represented as phylogenetic trees. Then, for our purposes, we
need to consider the trees associated to the processes, from the beginning of the epidemic
at time 0 with a single host (origin of the population), up to present time T . We will first
consider a linear birth and death model and the associated family tree. We call reduced
or reconstructed tree, and also reconstructed phylogeny or coalescent from individuals at
a fixed time T , the subtree spanned by infected individuals at T , consisting in an oriented
(to the right), ultrametric binary tree characterized by the coalescence times (or node
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depths) between extant hosts, i.e. the extinct lineages are removed from the complete tree
Fig. I.2 (left).

We will describe now a non-homogeneous Markov process associated to the birth and
death tree, which is related to the reconstructed tree. This new process allows us to
formulate the main questions we intend to answer in this work. Afterwards, we recall some
results concerning the coalescent process derived from a more general class of branching
processes, the Crump-Mode-Jagers (CMJ) processes [Lam10, Lam11].

Figure I.2 – An example of total tree up to time T (left), the coalescence times between
extant individuals at T (blue arrows) and the reduced tree (left)

1.1 Model: non-homogeneous Markov processes associated to a linear
birth-death model

On a probability space (Ω,F ,P) let us consider a continuous time birth and death
process (It)t≥0, with constant rates λ and µ starting from I0 = 1. From the biological
point of view this model represents a population where individuals evolve independently
from each other and reproduce or die at exponential times with rates λ and µ respectively.
Then, It represents the number of individuals alive at t ≥ 0. As we mentioned in the
introduction, we have in mind applications of this model to the field of epidemiology.
Hence, the birth and death process represents the transmission process of a pathogen in
a sufficiently large susceptible population (no density dependence is considered here).

Consider a fixed time T corresponding to present time. We will now define a non-
homogeneous Markov process on N2, denoted {Yt, Zt}t≥0, associated to I, that can be
defined for 0 ≤ t ≤ T as follows (for abbreviation the dependence on T is omitted)
• Yt is the number of individuals at t having extant descendants at time T ,
• Zt = It − Yt.

According to this definition (Y0, Z0) = (1, 0) conditional on IT > 0. If we denote by p0(t) =
P1 (It = 0) , 0 ≤ t ≤ T , that is the probability of extinction of the population before time
t, and by q(t) the probability of surviving (clearly p0(t)+q(t) = 1 ∀0 ≤ t ≤ T ), the process
(Y, Z) will have the following transition dynamics, conditional on (Yt, Zt) = (n,m):

(Yt, Zt)


(n,m)→ (n− 1,m) with rate 0,
(n,m)→ (n+ 1,m) with rate λnq(T − t),
(n,m)→ (n,m− 1) with rate µm/(1− q(T − t)),
(n,m)→ (n,m+ 1) with rate λ(m+ n)(1− q(T − t)).
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Kolmogorov equations lead to the following ordinary differential equation satisfied by p0
(see for instance [AN72]){

p′0(t) = µ− (λ+ µ)p0(t) + λp2
0(t)

p0(0) = 0 ,

which admits an explicit solution

p0(t) = µ− µe(λ−µ)t

µ− λe(λ−µ)t .

More generally, if we denote by pn(t) the probability that a lineage leaves n descendants
at time t, a result from [Ken49] states that for λ > µ ≥ 0, setting a = µ

λ and r = λ − µ,
we have

p0(t) = P1(It = 0) = µ(ert − 1)
λert − µ

,

p1(t) = P1(It = 1) = r2e−rt

(λ− µe−rt)2 ,

pn(t) = an−1p1(t)(p0(t))n−1 n ≥ 2.

With the above description we can set the problem and describe the available data we
focus on here. Consider a finite sequence of times 0 ≤ s1 ≤ s2 · · · ≤ sk ≤ T . Our goal is to
describe the joint law of (Ys)0≤s≤T and Is1 , Is2 , . . . Isk , so we can estimate the parameters
of the model (for instance λ, µ) based on the observation of these variables. Additionally,
we will incorporate later a sampling scheme to this model.

1.2 Reconstructed phylogenetic tree

The situation depicted in the previous section concerns the dynamics of birth and
death processes, but indeed, some of the results we obtain here are established in a
more general branching model, a binary homogeneous Crump-Mode-Jagers process (CMJ)
[Lam10, Lam11]. A CMJ process describes a population where individuals reproduce in-
dependently of each other, have i.i.d. lifetime durations with arbitrary distribution (not
necessarily exponential), and give birth at constant rate during their lifetime, giving rise
to a single offspring at each birth event. A particular aspect of this model is that, since
no assumption is made on the distribution of the lifetime durations of individuals, the
process is not necessarily Markovian (unless the lifetime distribution is exponential or a
Dirac mass at {∞}). The tree associated to the genealogy of a CMJ process is a splitting
tree. We refer to the introduction and to [Lam10] for a more complete description of these
processes.

As pointed out before, our aim is to derive an analytic formula for the likelihood of
the reconstructed transmission tree under these dynamics, jointly with the population size
process. To be more precise, we are interested in computing the likelihood of the recon-
structed tree from N individuals alive at time T which coalesced at times t1, t2, . . . tN−1,
derived from a CMJ process that started with a single individual at time 0 (I0 = 1), as
in Fig. I.3. It should be noted that we are not interested in the topology of the coales-
cence process since the likelihood does not depend on the topology of the reconstructed
phylogeny, see for instance [Tho75] or [EHS+11, LS13], we will come back to this fact
later.
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Figure I.3 – A representation of a splitting tree (bold lines), with the descendants placed
to the right of their parent and the reconstructed tree from 6 extant individuals at T (blue
arrows), the coalescent point process (Hi)1≤i≤5.

In a first step we assume that the total population extant at time T is observed,
IT = N and their respective coalescence times are available. We start by presenting
different approaches found in the literature to solve this problem, where the constraints
on the calculation of the likelihood may vary depending on the available data and other
considerations. They all lead to slightly different, but equivalent expressions. We will
focus our attention on the calculation through the coalescent point process, which is the
approach we will use to extend the result to the case of incomplete sampling at the present,
with possibly available data at present and prior times.

1.3 Some results about the coalescent point processes

As we have explained in the introduction, in [Lam10] the author establishes that the
genealogy of a splitting tree conditioned to be extant at a fixed time T (IT 6= 0) is given
by a coalescent point process, that is, a sequence of i.i.d. random variables Hi, i ≥ 1,
killed at its first value greater than T . In other words, for 1 ≤ i < j ≤ IT − 1 the
time elapsed into the past until the i-th and j-th individuals alive at time T find their
TMRCA, is distributed as the maximum of j − i i.i.d. random variables with same law as
H, for instance Hi+1, . . . Hj . In particular, conditional on IT 6= 0, IT follows a geometric
distribution with parameter P(H < T ).

In everything that follows, we suppose that H has a distribution that is absolutely
continuous w.r.t. Lebesgue measure and its probability density function will be denoted
by f . The common law of these so-called node depths distributed as H is [Lam10]:

P(H > s) = 1
W (s)

where W is a non-negative, nondecreasing, differentiable function, which is characterized
by its Laplace transform and is called scale function (of a Lévy process). Again, we refer
to the introduction for a precise definition of this function.

Even if most of the results presented here are valid for a general CMJ processes, we
will often specify the implications in the Markovian case governed by the exponential
distribution, which is the most widely exploited case in the literature. In this case I is a
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linear birth-death process and the scale function takes the form

W (x) = λerx − µ
r

, for λ 6= µ, x ≥ 0, and

W (x) = 1 + λx, for λ = µ x ≥ 0,

and the probability density function of H is

f(s) = −W
′(s)

W 2(s) = λr2ers

(µ− λers)2 = λp1(s). (I.1)

If we denote by fT the probability density function of the variable H conditioned on
{H < T} [Lam11], we have for every 0 < s ≤ T ,

fT (s)ds = P(H ∈ ds | H < T ) = f(s)ds
1− 1

W (T )
=
(
µ− λerT

λ(1− erT )

)(
λr2ers

(µ− λers)2

)
ds = µp1(s)

p0(T ) ds.

2 Likelihood computation

2.1 Completely sampled population: review of previous results

As we said in the introduction, Nee et al. [NMH94], were the first to present a
likelihood-based method to infer speciation and extinction rates on the basis of recon-
structed phylogenies [Sta11]. Before them, some authors have already been interested in
the derivation of an analytic formula for the likelihood of the reconstructed tree. Let us
briefly review some previous solutions to this problem, included that of [NMH94].

As we defined at the end of Subsection 1.1, pn(t) is the probability that a lineage
leaves n descendants at time t under a birth-death process. Different expressions have
been computed for the density of coalescence times, i.e. of observing N lineages at present
time T that coalesce at times t1 > t2 . . . > tN−1 in the past. We denote by TN−1 =
(t1, . . . , tN−1) the vector of these coalescence times and we set again a = µ

λ and r = λ−µ.

[Tho75] (pp. 54-58) In the Theorem on page 56, the author states that the density of
the evolutionary tree satisfies that:

Lik(TN−2, N, F | λ, µ, T ) is proportional to
N−2∏
j=1

(p1(tj))

Where F is the topology of the tree. A remarkable fact about this result is that it
shows the likelihood to be independent of F , as we pointed out before.

[NMH94] (pp. 308, eq. (21)) They obtain the likelihood for a phylogenetic tree as
follows, considering t1 (the coalescence time of the last two groups of individuals,
also called the crown age) as the origin of the tree

Lik(TN−1) = (N − 1)!rN−2 exp
(
r
N−2∑
n=1

tn+1

)
(1− a)N

×
N−1∏
n=1

1
(exp(rtn)− a)2
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[Ran97] (pp. 419, eq. (8)) He calculates the joint density of coalescence times of N
individuals that are descended from a single ancestral lineage that appeared at time
0, conditioned on the present population size to be N :

Lik(TN−1 | IT = N,T, λ, µ) = (N − 1)!
N−1∏
i=1

(
µ
p1(ti)
p0(T )

)
(I.2)

In our approach the likelihood of coalescence times {t1, . . . , tN−1} jointly with IT = N
can be seen as a sequence of i.i.d. random variables Hi, i ≥ 1, where the first N − 1 are
equal to ti, 1 ≤ i ≤ N − 1 and are killed at the first value greater than T :

Lik(TN−1 | IT 6= 0, T, λ, µ) = (N − 1)!
N−1∏
i=1

f(ti)P(H > T )

All the above expressions are equivalent and can be obtained from each other if we
take into account the different considerations. Let us just see briefly how our formula
agrees with Equation (I.2) by [Ran97] :

Lik(TN−1, IT = N | IT 6= 0) = Lik(TN−1 | IT = N)P(IT = N | IT 6= 0)

= (N − 1)!
(
N−1∏
i=1

(
µ
p1(ti)
p0(T )

))
(1− P(H > T ))N−1 P(H > T )

= (N − 1)!
(
N−1∏
i=1

fT (ti)P(H < T )
)
P(H > T )

which corresponds to our expression as we announced. Note that conditional on IT = N ,
the node depths are independent copies of H conditioned on H < T .

Then, using Equation (I.1) for the density on the Markovian case we have:

= (N − 1)!rN−1(1− a)N 1
λerT − a

exp
(
r
N−1∑
i=1

ti

)
N−1∏
i=1

1
(λerti − a)2

2.2 Incomplete sampling: model description and some results

Now will be assumed that at present time T we do not observe all the extant individuals
but only a fraction of them. Indeed, we will do as follows: each individual alive at time T
will be sampled independently with probability p ∈ (0, 1), so that the sampling action can
be considered as a sequence Bi, i ≥ 1 of i.i.d. Bernoulli trials. As it is shown in [LT13], if
a coalescent point process is sampled in this way, then the genealogy of the sample is still
that of a coalescent point process with a typical node depth distributed as

H̃ := max
1≤i≤ξ

Hi

where ξ ∼ G(p) is independent from the i.i.d. sequence {Hi}i≤1.

We see clearly that the law of H̃ is totally characterized by that of H and parameter
p, which can be summed up by the following statement (proof in the Appendices).

Lemma 1. Let f denote the probability density function of H. Then, the probability
density function of H̃, denoted by f̃ , is

f̃(t) = f(t)p
(1− P(H ≤ t)(1− p))2 , for t ≥ 0.
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We will establish and prove some results concerning the reconstructed tree (Fig. I.4)
obtained by this sampling scheme, which will be used later for the calculation of the
likelihood.

Figure I.4 – A coalescent point process where extant individuals are sampled with proba-
bility p. From a total population of 6 individuals at T , only 3 were sampled (in red). In
this case ϑ = 3 and the labels of sampled indivduals are x̃1 = 2, x̃2 = 3, x̃3 = 5. Red lines
represent the coalescence times between two consecutive sampled individuals.

Computing the law of the number of sampled individuals

We are now interested in the total number of sampled individuals at T , that we denote
by ϑ := ϑ(p, T ), see Fig. I.4. Conditional on IT = N , ϑ follows a binomial distribution with
parameters (p,N). Nevertheless, we are more interested in determining its distribution
without conditioning on the total population size, but just on the fact that IT 6= 0. The
result is the following.

Proposition 2. Conditionally on IT 6= 0, the r.v. ϑ, counting the number of sampled
individuals at T has the following probability generating function

E
[
uϑ
]

= P(H > T )(1− p) + pP(H > T )u
1− (1− p)P(H ≤ T )− (1− p)P(H > T )u, for 0 ≤ u ≤ 1.

Proof. We know that conditional on IT 6= 0, the number of individuals alive at T follows
a geometric distribution, hence, we can express ϑ as follows,

ϑ =
G∑
i=1

Bi,

where Bi ∼ Bernoulli(p), i = 1, 2 . . . and G ∼ G(P(H > T )) are independent random
variables. This represents the number of sampled individuals from a total of G extant
individuals at T , conditional on IT to be nonzero. In order to simplify the notation we
define α = p, β = P(H > T ) and γ = 1− (1− α)(1− β). We work with these parameters
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to make the calculations and we replace them at the end. We have that

E
[
uϑ
]

= E
[
u
∑G

i=1 Bi

]
=
∑
n≥1

E
[
u
∑n

i=1 Bi
]
P(G = n) =

∑
n≥1

(
E
[
uB1

])n
P(G = n)

=
∑
n≥1

(uα+ (1− α))n (1− β)n−1 β = β(1− α) + αβu

γ − (1− α)βu

Replacing α = p, β = P(H > T ), and γ as defined before leads to the result.

Comparing two geometric variables

In what follows we will often need to evaluate expressions involving the comparison
between two geometric random variables with different parameters. Thus, we give the
following result that can be easily shown through very simple calculations, which are
included in the Appendix for the sake of completeness.

Lemma 3. Let X1 and X2 be two independent geometric random variables with parameters
α and β respectively, α, β ∈ (0, 1). Then, conditionally on {X1 ≤ X2} or {X1 < X2}, X1
also follows the geometric distribution with parameter γ = 1− (1− α)(1− β). Moreover,
the probability generating functions of X1 under {X1 ≤ X2} and X1 under {X1 < X2}
are, for |u| ≤ 1,

E[uX11{X1≤X2}] =: g(u, α, β) = αu

1− u(1− γ) , (I.3)

E[uX21{X2<X1}] = g(u, β, α)(1− α) = β(1− α)u
1− u(1− γ) . (I.4)

We keep the definition of γ for the rest of the work, depending on α and β. We also
state the following (trivial) result, which despite being very simple will be repeatedly used
in the sequel.

Lemma 4. For any sequence of i.i.d. random variables {Xi}i≥1 and an independent
discrete r.v. N taking its values in N. For every x, u ∈ R, |u| ≤ 1, it holds that:

E
[
1{X1≤x,X2≤x,...XN≤x}u

N
]

= E
[
(P(X1 ≤ x)u)N

]
2.3 Sampled reconstructed tree from the total population at present

time

Our goal in this section is to characterize the probability distribution of the total pop-
ulation size at T , conditionally on the coalescence times of sampled individuals, following
the sampling model presented before. This is a delicate and complex issue, even in the
linear birth-death model, since it requires to integrate over all the possible extinct (unob-
served) subtrees between 0 and T, so it is not possible to compute the likelihood directly.
Therefore, we will rather look at the probability generating function of IT on the event of
observing the TMRCA between sampled individuals at T , to be smaller than the times in
vector Tϑ−1 = (t1, . . . , tϑ−1) and the number of sampled individuals to be ϑ = K. We will
exploit the previously stated fact that the genealogy of a splitting tree conditioned to be
extant at a fixed time T is given by a coalescent point process.

We remind the labeling order introduced in Subsection 1.3 for the total population of
the splitting tree at a given level, say T . Individual labels are denoted by (xi, 1 ≤ i ≤ IT )
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and we set xi = i for i ≥ 1. Now, let (x̃i, 1 ≤ i ≤ ϑ) be the labels of sampled individuals
at T , that is, a subsequence of [1, IT ]. Let us define the function G : [0, 1]→ R+ as follows

G(u) = E
[
uIT 1{

H̃1<t1,...,H̃ϑ−1<tϑ−1
}1{ϑ=K}

∣∣∣∣ IT 6= 0
]
, (I.5)

where, consistently with the notation used in previous sections, we let

- H̃i = max
{
H

(i)
1 , . . . ,H

(i)
Zi

}
for i = 1, . . . , ϑ− 1, i.e. the TMRCA between individuals x̃i

and x̃i+1,
- Z0 = x̃1, the number of unsampled individuals until the first sampled one,
- Zi = x̃i+1− x̃i, the number of unsampled individuals between the i-th and the (i+ 1)-th

sampled individuals for i = 1, . . . , ϑ− 1,
- Zϑ = IT − x̃ϑ, the number of unsampled individuals with label greater than the last

sampled one,

- H(i)
j , i, j ≥ 1 are i.i.d. random variables with same law as H.

According to this notation, the total population extant at T can be expressed as (see
Fig. I.5)

IT = Z0 + . . .+ Zϑ−1 + Zϑ.

Additionally, it is not hard to see that individuals with a label smaller than x̃1 or greater
than x̃ϑ, which are counted in variables Z0 and Zϑ, do not take part in any coalescent
event of interest. Notice also that G depends also on T0,K the vector TK−1 and of course
on the parameters of the model, i.e. p and λ, µ in the Markovian case. These dependencies
are not made explicit here in order to avoid heavy notation.

Figure I.5 – An example of splitting tree (bold lines, left), of CPP (blue) and of sampled
coalescent (red). The dashed curved arrows represent the sequence of variables (Zi, 0 ≤
i ≤ ϑ− 1, Zϑ), counting the number of individuals between two sampled ones.

Theorem 5. Let G denote the probability generating function of IT as defined by (I.5).
We have the following identity for all u ∈ [0, 1] and K ≥ 2,

G(u) =
(
K−1∏
i=1

pP(H < ti)u
1− (1− p)P(H < ti)u

)
× pP(H > T )u

(1− P(H < T )(1− p)u)2 . (I.6)
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Proof. Following the above description of variables Zi and Proposition 3, and thanks to
the lack of memory of the geometric distribution, we can establish that, conditionally on
ϑ

Z0 = G′01{G′0≤G′′0},

Zi = G′i1{G′i<G
′′
i }, for i = 1, . . . , ϑ− 1,

Zϑ =
(
G′′ϑ − 1

)
1{G′′

ϑ
≤G′

ϑ
},

where G′i ∼ G(p) and G′′i := inf{j ≥ 1 : H(i)
j > T} ∼ G(P(H > T )) are two sequences of

i.i.d. random variables independent of each other. We should note that conditional on the
number of sampled individuals ϑ, the pairs of random variables (H̃i, Zi) are independent
of each other and their distributions are totally characterized by G′i, G′′i .

Then the generating function G satisfies,

G(u) = E
[(

ϑ−1∏
i=1

1{
H̃i<ti

}) 1{ϑ=K}u
Z0+...+Zϑ−1+Zϑ

∣∣∣∣∣ IT 6= 0
]

= E
[(

K−1∏
i=1

1{
H̃i<ti

}uG′i1{G′i<G′′i }
)
uG
′
01{G′0≤G′′0}u

G′′K−11{G′′K≤G′K}

]

then thanks to the independence and the i.i.d. condition of H(i)
j ,

=
K−1∏
i=1

E
[
1{

H̃i<ti
}uG′i1{G′i<G′′i }

]
E
[
uG
′
01{G′0≤G′′0}

]
E
[
uG
′′
K−11{G′′K≤G′K}

]

=
K−1∏
i=1

E

1{
H

(i)
1 <ti,...,H

(i)
G′
i

<ti

}uG′i1{G′i<G′′i }
E [uG′01{G′0≤G′′0}

]
E
[
uG
′′
K−11{G′′K≤G′K}

]
.

It is clear from the definition of G′′i that
{
H

(i)
1 < ti, . . . ,H

(i)
G′i
< ti

}
⊂ {G′i < G′′i }. Then,

applying Lemma 4 and the function g defined as in Equation (I.3), we get,

=
K−1∏
i=1

E
[
(P (H < ti)u)G

′
i

]
E
[
uG
′
01{G′0≤G′′0}

]
E
[
uG
′′
K−11{G′′K≤G′K}

]

=
(
K−1∏
i=1

pP(H < ti)u
1− (1− p)P(H < ti)u

)
g(u, p,P(H > T ))g(u,P(H > T ), p)

u

=
(
K−1∏
i=1

pP(H < ti)u
1− (1− p)P(H < ti)u

)
× pP(H > T )u

(1− P(H < T )(1− p)u)2 ,

which completes the proof.

MLE algorithm

It is possible to implement a maximum likelihood estimation (MLE) algorithm starting
from a generating function such as the one presented in the previous section. In fact it is
not hard to see that,

1
n!
∂nG

∂un
(0) = P (IT = n,TK−1 | IT 6= 0)
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then to find the MLE within a set of parameters Θ ⊂ Rd we just need to maximize
the right-hand side on the above equation with respect to the parameter θ ∈ Θ. For
instance, in the Markovian case θ might be (p, λ, µ) or just (λ, µ) if we considered known
the sampling rate.

A special case

Let us review a simple example which is not covered by Theorem 5: ϑ = 0.
In the case that no individual is sampled at present time T we have,

G(u) = E
[
uIT 1{ϑ=0}

∣∣∣ IT 6= 0
]

= E
[
uG
′′1{G′′<G′}

]
= pP(H < T )u

1− (1− p)P(H < T )u

and

∂G

∂u
= (1− p)P(H > T )

(1− (1− p)P(H < T )u)2

then
∂G

∂u
(0) = (1− p)P(H > T )

which corresponds with the model, since it means the first depth H was larger than T so
there is only one individual alive at T and it is not sampled.

If we compute the second derivative we have

1
2
∂2G

∂u2 = (1− p)2P(H > T )P(H < T )
(1− (1− p)P(H < T )u)3

then
∂2G

∂u2 (0) = (1− p)2P(H > T )P(H < T )

which means there are two individuals alive at T and none of them is being sampled.
And in general if there are n extant individuals at present, all of them unsampled the

probability function is,

P (IT = n, ϑ = 0 | IT 6= 0) = (1− p)n(P(H < T ))n−1P(H > T )

2.4 Likelihood based on incidence data at two times

In long time studies of populations and their phylogenies, we might have not only the
observed reconstructed tree from extant and sampled individuals at present time, but also
the total population at different time points in the past. We are interested to incorporate
this information to the model, which shall improve the estimations. To do this we need to
compute a new likelihood function, resulting from adding the information of the population
size at a past time, say t. This section is devoted to give a characterization of the law of
(H̃i, 1 ≤ i ≤ ϑ − 1), jointly with (It, IT ) for t < T , analogous to that of Theorem 5. To
this end, we first need to establish some results concerning the theory of Lévy processes
that will be used later.
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Coding splitting trees through their contour

We refer to Subsection 1.4 for the description of the Jumping Chronological Contour
Process (JCCP) of a splitting tree, which is one of the one-to-one mappings existing that
link branching processes to SPLP. We recall that, given a tree embedded in the plane,
its contour or JCCP is a continuous time, real-valued process, that starts at the lifespan
of the ancestor and then rolls backward along the right-hand side of this first branch at
speed −1 until it encounters a birth event, when it jumps up of a height of the lifespan
of this new individual, getting to the next tip, and then repeating this algorithm until it
eventually hits 0, as in Fig. 2. The JCCP visits all the existence times of each individual
exactly once and the number of times it hits a time level, say s ≥ 0, is equal to the number
of individuals in the population at time s.

One of the main results in [Lam10], which is key to our study, is that the JCCP of a
splitting tree is a SPLP, with Laplace exponent given by (2) with d = −1 and then the
binary homogeneous CMJ is its local time. We let X = {Xt, t ≥ 0} denote such a SPLP
in the sequel and we will calculate some expressions related to it hereafter. Define also the
running infimum and the running supremum of the process X as follows for any t ≥ 0,

Xt := inf
0≤s≤t

Xs, and Xt := sup
0≤s≤t

Xs.

Some excursion calculations for spectrally positive Lévy processes

We are interested in calculating the probability that a single excursion of X remains
within a certain interval. As introduced before, we denote by Px its distribution conditional
on X0 = x. We refer to [Ber96, Kyp06] and the introductory chapter for the basic
definitions concerning Lévy processes.

Let us first recall [Ber96, Theorem VII.2.8], concerning the two-sided-exit problem
(exit of an interval from the bottom or from the top by X), which adapted to the case of
SPLP, states that for 0 ≤ x ≤ a:

Px(τ0 > τ+
a ) = 1− W (a− x)

W (a) , (I.7)

where τ0 = inf{t > 0 : Xt = 0}, τ+
a = inf{t > 0 : Xt > a} are stopping times with

respect to X andW is the scale function introduced before, a non-negative, nondecreasing,
differentiable function, such that W (0) = 1 (finite variation), which is characterized by
its Laplace transform. More generally, in the context of finite variation processes, we can
define the following stopping times

τ1
x = τx = inf{t > 0 : Xt = x},
τnx = inf{t > τn−1

x : Xt = x}, n ≥ 2.

We know from the general theory for Markov processes, that the entire path of a SPLP
can be decomposed into subpaths called excursions, with the help of these stopping times
[Kyp06], as we will now describe. Notice in particular that for each n ≥ 1, τn+1

x − τnx is
equal in distribution to τx. Thanks to the strong Markov property and the fact that the
process has stationary independent increments, it holds that for every n ≥ 2, in the event
{τn−1
x < +∞} the path

εn = {Xt : τn−1
x < t ≤ τnx }

is independent of Fτn−1
x

and has the same law as ε1 (with τ0
x := 0). The sequence of

independent and identically distributed sections of path (εn)n≥1 are called excursions of
X from x.
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t0

a

x

y

Figure I.6 – A trajectory of the process X until the exit time of the interval (0, a], that is
τ+
a ∧ τ0, in this case from the top. In red: the first excursion of X from x, i.e. ε1.

We focus now our attention on the behaviour of X before leaving the interval [0, a] at
a random time τ0 ∧ τ+

a which is a.s. finite under Px for any x ∈ [0, a]. We can define a
random variable with values in N, counting the number of excursions away from x without
leaving an interval A such that x ∈ A as follows

Nx(A) :=
∑
n≥1

1{τnx<τAc}. (I.8)

where τA is the hitting time of interval A. We set Nx(y, a) = Nx ((y, a)), and in general
we will omit the dependence on the set A when there is no risk of confusion. Then, we
are looking for the probability that X makes n excursions from x, before it makes its first
exit from the interval (y, a) at a, which is

Px
(
τ+
a < τy, Nx(y, a) = n

)
, for 0 ≤ y ≤ x, n ∈ N. (I.9)

By applying recursively the strong Markov property, it is not hard to see that for n ≥ 0
we have the following relationship,

Px
(
τ+
a < τy, Nx(y, a) = n

)
=
(
Px
(
τx < τy ∧ τ+

a

))n
Px
(
τ+
a < τy ∧ τx

)
.

Finally, the next lemma allows us to calculate these probabilities.

Lemma 6. Let X be a SPLP with the previous assumptions and notations. Then it holds
that:

Px
(
τx < τ0 ∧ τ+

a

)
= 1− W (a)

W (x)W (a− x)

Proof of Lemma 6. First, we denote by S the desired quantity, that is S := Px (τx < τ),
where τ = τ0 ∧ τ+

a . Using the properties of independence and equal distribution of the
excursions, the probability that X exits the interval (0, a] from the top can be expressed
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as follows

Px(τ+
a < τ0) = E

[
Ex[1{τ+

a <τ0}

∣∣∣ Nx(0, a)]
]

=
∑
n≥0

Px
(
τ+
a < τ0

∣∣∣ Nx(0, a) = n
)
Px(Nx(0, a) = n)

=
∑
n≥0

Px
(
τ+
a < τ0

∣∣∣ τnx < τ < τn+1
x

)
Px

∑
k≥1

1{τkx<τ} = n


=
∑
n≥0

Px
(
τ+
a < τ0

∣∣∣ τx > τ
)
Px
(
τ1
x < τ, . . . , τnx < τ, τn+1

x > τ
)

=
∑
n≥0

Px
(
τ+
a < τ0

∣∣∣ τx > τ
)
Px

(
n∑
i=0

τ̃ ix < τ <
n+1∑
i=0

τ̃ ix

)
,

where τ̃ ix = τ ix − τ i−1
x , i ≥ 1. We can expand the second factor using strong Markov

property and the i.i.d. condition of these excursions,

Px

(
n∑
i=0

τ̃ ix < τ <
n+1∑
i=0

τ̃ ix

)
= Px

(
τ <

n+1∑
i=0

τ̃ ix

∣∣∣∣∣
n∑
i=0

τ̃ ix < τ

)
Px

(
n∑
i=0

τ̃ ix < τ

)

= Px (τ < τx)Px

n−1⋂
i=0

 sup
τ ix<t≤τ

i+1
x

Xt < a, inf
τ ix<t≤τ

i+1
x

Xt > 0




= Px (τ < τx) (Px(τx < τ))n

then going back to the sum we get a geometric series and since Px (τx < τ) 6= 1

=
∑
n≥0

Px
(
τ+
a < τ0

∣∣∣ τx > τ
)
Px (τx > τ) (Px (τx < τ))n

=
∑
n≥0

Px
(
τ+
a < τ0, τx > τ

)
(Px (τx < τ))n

= 1
1− Px(τx < τ)Px

(
τ+
a < τ0, τx > τ

)
,

where

Px
(
τ+
a < τ0, τx > τ

)
= Px

(
τ+
a < τ0, τ

+
a < τx

)
= Px

(
τx < τ0, τ

+
a < τx

)
= Px (τx < τ0)− Px

(
τx < τ0, τ

+
a > τx

)
= Px (τx < τ0)− Px (τx < τ) .

The first term in the above difference can be seen as the union of increasing events,
{τx < τ0} =

⋃
a>x, a∈Q{τ+

a < τ0}. Then, (I.7) and the continuity of the function W we
get that

Px (τx < τ0) = lim
a↓x

1− W (a− x)
W (a) = 1− 1

W (x)

and hence the following equation on S is satisfied,

1− W (a− x)
W (a) =

1− 1
W (x) − S
1− S , (I.10)

which proves the lemma.



2. Likelihood computation 47

We can apply the lemma to calculate the probabilities in (I.9). By a simple translation
of the origin to y we obtain that

Px(τx < τy ∧ τ+
a ) = 1− W (a− y)

W (x− y)W (a− x)

Px(τ+
a < τy ∧ τx) = W (a− y)−W (a− x)

W (x− y)W (a− x)

Then for n ≥ 0 and 0 ≤ y ≤ x ≤ a,

Px
(
τ+
a < τy, Nx(y, a) = n

)
=
(

1− W (a− y)
W (x− y)W (a− x)

)n W (a− y)−W (a− x)
W (x− y)W (a− x) (I.11)

Likelihood computation

We have gathered the elements needed to calculate a generating-type function as in
the previous section, now in two variables u, v ≤ 1, defined as follows,

G(u, v) = Ex
[
1{

H̃1<t1,...,H̃ϑ−1<tϑ−1
}1{ϑ=K}u

ItvIT
∣∣∣∣ IT 6= 0

]
, (I.12)

where we condition on the life duration of the ancestor (individual originating the epi-
demic) to be equal to x ≥ t. In order to simplify the notation and without loss of
generality, the vector TK−1 = (t1, . . . , tK−1) is taken ordered, that is

0 < t1 < . . . < tk−1 < T − t < . . . < tK−1

so that the first k sampled individuals coalesce between present time T and t, and the rest
of them might find their TMRCA between t and the more distant past time 0. Therefore,
the first k − 1 coalescence events can be modeled as in Theorem 5. Those that might
be greater than T − t need a more delicate study, that will be done with the help of
the results on Lévy processes we have just seen. What we should notice is that, when
we include coalescence events that take place between 0 and t, we also add information
about extant individuals at t, which do not survive up to time T . Hence, for each of
these coalescence events, there is an input in the total population at t that needs to be
quantified in (I.12). In that sense, for these coalescence times that might be larger than
T − t we change the notation to Ĥi, i ≥ k. Consequently, the function G takes the form

G(u, v) = Et
[
1{

H̃1<t1,...,H̃k−1<tk−1,Ĥk<tk,...,Ĥϑ−1<tϑ−1
}1{ϑ=K}u

ItvIT
∣∣∣∣ IT 6= 0

]
.

This notation is set just to highlight the fact that the events of the type {H̃i < ti} differ
from {Ĥi < ti} when considered within the above expectation. Then, to describe It we
need to know which of these Ĥi node depths is larger than T −t. Accordingly, we associate
to each Ĥi} an independent Bernoulli r.v. Bi, with common distribution defined as follows,

P(B = 0) = P(H < T − t)
P(H < T ) = PT

(
τ+
T < τt

∣∣∣ τ+
T < τ0

)
, (I.13a)

P(B = 1) = P(T − t ≤ H < T )
P(H < T ) = PT

(
τt ≤ τ+

T

∣∣∣ τ+
T < τ0

)
. (I.13b)

Suppose that for the individual labeled i at T , we have the situation of {Ĥi > T − t}, or
equivalently Bi = 1. This coalescence time between individuals i and i+ 1 corresponds to
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the minimum of an excursion from T of the JCCP reflected at T . Moreover, the number
of hitting times of the level s by this excursion, for any 0 ≤ s ≤ T is equal to the number
of individuals that are placed to the right of i and to the left of i− 1 (following the order
we specified in the introduction). Then, conditional on Ĥi > T − t, the probability of
Ĥi > T − ti, jointly with having n individuals that were extant at t, that are to the right
of i and the left of i + 1 in the tree, and from which only one has alive descendants at
time T , can be expressed as follows in terms of the JCCP, thanks to Lemma 6 and the
formulae before it, for any 0 ≤ s < t,

Pt
(
τ+
T < τs, Nt(t, T ) = n

)
= (ρ1(s))n ρ2(s), (I.14)

where

ρ1(s) = 1− W (T − s)
W (t− s)W (T − t) ,

ρ2(s) = W (T − s)−W (T − t)
W (t− s)W (T − t) .

To compute the likelihood we will also need to use the functions h and r defined as
follows for a random variable B with distribution (I.13)

h(v, s) := Et
[(

1{τ+
T <τs}

vNt(t,T )+1
)B]

= P(H < T − t)
P(H < T ) + Et

[
1{τ+

T <τs}
vN(t,T )+1

] P(T − t ≤ H < T )
P(H < T )

= P(H < T − t)
P(H < T ) + ρ2(s)v

1− vρ1(s)
P(T − t ≤ H < T )

P(H < T ) . (I.15)

Using (I.14) and the strong Markov property we also have that

h̃(v, x) := Ex
[
1{τ+

T <τ0}v
N(t,T )

]
= Px

(
τt ≥ τ+

T

)
+ Et

[
1{τ+

T <τ0}v
N(t,T )

]
Px
(
τt < τ+

T

)
= 1− W (T − x)

W (T − t) + ρ2(0)v
1− vρ1(0)

W (T − x)
W (T − t)

= P (T − x < H ≤ T − t)
P (H > T − x) + ρ2(0)v

1− vρ1(0)
P (H > T − t)
P (H > T − x) . (I.16)

Then we are ready to state the next result,

Theorem 7. Let G(u, v) denote the probability generating function of (It, IT ) as defined
by (I.12). We have the following identity for all u ∈ [0, 1] and K ≥ 2,

G(u, v) =
(
k−1∏
i=1

pP(H < ti)u
1− (1− p)P(H < ti)u

)
× pu

(1− P(H < T )(1− p)u) ×
ρ2(0)

1− vρ1(0)
K−1∏
i=k

pP(H ≤ T )h(v, T − ti)u
1− (1− p)P(H ≤ T )h(v, T − ti)u

× h(v, 0) (1− (1− p)P(H < T ))
1− (1− p)P(H < T )uh(v, 0) × h̃(v, x),

for a function h defined by (I.15) and h̃ by (I.16).

Proof. As in Theorem 5, consider two independent sequences of random variables G′l ∼
G(p) and G′′l ∼ G(P(H > T )), 1 ≤ l ≤ K. For every l ≥ k we need to compute the law of
the coalescence time being smaller than the corresponding tl, jointly with the generating
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function of the number of individuals involved in this coalescence event. Set sl = T − tl
for every k ≤ l ≤ K and define

ϑl := ϑ(G′l) =
G′l∑
i=1

Bi,

where we take a sequence of i.i.d. random variables (Bi)i≥1 distributed as B (I.13) and
independent from G′l, G

′′
l . Each term Bi in this sequence, for every 1 ≤ i ≤ G′l, stands for

the event that the node depth of the individual x̃l+i (label at T ), reaches or not level t. We
let the pairs (Dl

i, N
l
i )i,l≥1 denote i.i.d. random variables distributed as

(
Xτ0∧τ+

T
, N(t, T )

)
under Pt. Then we can compute for each sl, G′, G′ the following functions,

g(u, v, sl) = E
[
1{Ĥl<tl}v

∑ϑl
i=1(N l

i+1)uG
′
l1G′

l
<G′′

l

]
= E

[
1{min1≤i≤ϑl D

l
i>sl}

v
∑ϑl

i=1(N l
i+1)uG

′
l1G′

l
<G′′

l

]
= E

[
1{Dli>sl, 1≤i≤ϑl}v

∑ϑl
i=1(N l

i+1)uG
′
l1G′

l
<G′′

l

]

= E

 ϑl∏
i=1

(
1{Dli>sl}v

(N l
i+1)

)
uG
′
l1G′

l
<G′′

l


= E

 G′l∏
i=1

((
1{Dli>sl}v

(N l
i+1)

)Bi
u

)
1G′

l
<G′′

l


=

∑
j≥1

E

 j∏
i=1

((
1{Dli>sl}v

(N l
i+1)

)Bi
u

)P(G′l = j,G′l < G′′l )

=
∑
j≥1

(
Et

[(
1{X

τ0∧τ
+
T

>sl}v
N(t,T )+1

)B])j
ujP(G′l = j,G′l < G′′l )

which is the generating function ofG′l1{G′l<G′′l }, (I.4), evaluated in Et

[(
1{X

τ0∧τ
+
T

>sl}v
N(t,T )+1

)B]
u,

which is the same as h(v, sl)u. Then

g(u, v, sl) = pP(H ≤ T )h(v, sl)u
1− (1− p)P(H ≤ T )h(v, sl)u

.

Hence, as in Theorem 5, the function G can be expressed as a product

G(u, v) = E
[
uG
′
01{G′0≤G′′0}

] k−1∏
i=1

E
[
(P(H < ti)u)G

′
i 1G′i<G′′i

]K−1∏
i=k

g(u, v, T − ti)×

E
[
1{Di>0,i=1,...,ϑ(G′′K)}u

G′′K−11{G′′K≤G′K}v
∑ϑ(G′′

K
)

i=1 NK
i vNK

]
Ex
[
vN01{D0>0}

]
where NK represents the last individuals alive at t which die before T , that is those
placed to the right of the last sampled individual at T , in the order defined by the JCCP.
This variable NK has the same law as N(t, T )1{X

τ0∧τ
+
T

>0} under PT , in the same way as
N01D0>0, which stand for the individuals alive at t before there is one that survives up to
time T .
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Then, in order to complete the proof we only need to compute the last two expected
values. The last one can be evaluated using (I.16) since

Ex
[
vN01{D0>0}

]
= Ex

[
vN(t,T )

1{τ+
T <τ0}

]
= h̃(v, x).

The first one is

E
[
1{Di>0,i=1,...,ϑ(G′′K)}u

G′′K−11{G′′K≤G′K}v
∑ϑ(G′′

K
)

i=1 NK
i +1

]
E
[
vNK

]

= 1
u
E

G′′K∏
i=1

(
vN

K
i +1

)Bi
u1{G′′K≤G′K}

Et [vN(t,T )1{X
τ0∧τ

+
T
>0}

]

remember that G′′, conditional on G′′ ≤ G′ is geometric with parameter γ = 1 − (1 −
p)P(H < T ), and that the second expectation can be evaluated again thanks to (I.14),
then

= 1
u

uE
[(

1{D>0}v
N+1

)B]
γ

1− (1− γ)uE
[(

1{D>0}vN+1
)B]E [vN1{D>0}

]

= h(v, 0)γ
1− (1− γ)uh(v, 0)

ρ2(0)
1− vρ1(0) ,

which ends the proof.

2.5 Generalization: a backward inhomogeneous branching process in
the exponential case

In this subsection we are interested in computing a generating-type function as in the
previous section, but now in N variables u, u1, . . . , uN ∈ [0, 1], defined as follows,

G(u, u1, . . . , uN ) = E
[
1{

H̃1<t1,...,H̃ϑ−1<tϑ−1
}1{ϑ=K}u

IT u
IT1
1 . . . u

ITN
N

∣∣∣∣ IT 6= 0
]

where T = T0 > T1 > . . . TN > 0 are fixed times between present time T and time 0, which
is assumed to be the origin of the epidemic. Again, variables H̃ represent the coalescence
times between two consecutive individuals, among the ϑ sampled individuals at T , and
we are given a sequence of real variables {ti}i∈N ⊂ [0, T ]. We define the complementary
sequence s as

si = T − ti, ∀i ∈ N.

Throughout this subsection we consider only the case where I is a birth and death process,
that is, the periods of infectiousness are exponentially distributed. This hypothesis comes
from the fact that in the general case the CMJ process is non-Markovian and this property
turns out to be essential for the techniques we use to prove our results, as we will now
see. We also suppose that the life duration of the individual at the origin of the epidemic
is equal to x and we work with Px.

Thanks to a path-wise decomposition of the JCCP of a birth and death tree, relying on
the strong Markov property and the independence of sampled individuals at T , it is possible
to describe the law of (IT , IT1 . . . , ITN ), as a sum of independent subpopulations, as it is
shown in Fig. I.7. This subpopulations, when seen backward in time, are inhomogeneous
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Figure I.7 – A splitting tree (left, bold lines), the CPP of sampled individuals at T (red)
and the population size of the process at times 0 < T2 < T1 < T . The corresponding
JCCP is represented in the right panel. The curved arrows represent the subpopulations
described by variables (Y i)0≤i≤5 (left) and the corresponding excursions of the reflected
JCCP (right).

branching processes (IBP). The reproduction laws vary from one subpopulation to another,
and two of them (first and last, following the forthcoming notation) allow immigration.

The idea behind this decomposition is very simple. First, thanks to the independence
of the excursions of the JCCP below level T , conditional on IT , the law of Is at any prior
time s < T , can be split into a sum of IT + 1 random variables (Iis, 0 ≤ i ≤ IT ) (that we
call subpopulations), corresponding to the excursions of the contour process between any
pair of these individuals, plus the excursion before hitting T for the first time, as depicted
in Fig. I.7. To clarify, conditionally on IT , we have for any 0 ≤ s ≤ T that

Is =
IT∑
i=0

Iis, (I.17)

where the law of each Iis can be specified with the help of excursion theory for Lévy
processes. On this account, we can identify in (I.17) a branching structure, where for
1 ≤ i ≤ IT , the i-th individual at T has Iis descendants at time T − s, and I0

s are the
number of immigrants arrived to the population at that time.

Adding the sampling scheme presented previously, where individuals are sampled in-
dependently at time T with probability p, amounts to consider IT , conditional on the
number of sampled individuals ϑ, as a sum of ϑ + 1 random variables as it was done in
Section 2. More precisely, the joint law of (IT , IT1 . . . , ITN ), under Px is that of the sum
of IBP’s with different reproduction laws, i.e.

(IT , IT1 . . . , ITN ) =
K+1∑
l=0

(
Y l

0 , Y
l

1 , . . . , Y
l
N

)
,

where for each 0 ≤ l ≤ K + 1, Y l is an inhomogeneous branching processes (with immi-
gration for l = 0,K + 1), more precisely, for every 1 ≤ l ≤ K, 1 ≤ k ≤ N , conditioned on
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Y l
k−1,

Y l
k =

Y lk−1∑
i=1

ξl,ki

and

Y 0
k =

Y 0
k−1∑
i=1

ξ0,k
i + φk, Y K+1

k =
Y K+1
k−1∑
i=1

ξK+1,k
i + ψk.

The index l (sub-population index) indicates the dependence on sl, the coalescence time
between the l-th and (l+1)-th sampled individuals (we set s0, sK+1 = 0); and k (generation
index) denotes the dependence on levels Tk, Tk−1.

Initial sub-populations:

As in the previous sections, conditional on ϑ, the number of sampled individuals at T ,
we can describe the population extant at T as a sum of geometric variables in competition,
that is

- Y 0
0 = G′01G′0<G′′0 , where G

′
0 ∼ G(p) starting from 0, and G′′0 ∼ G(βT ) starting from

1 are independent r.v, with βT = PT (τ+
T < τ0), i.e. for n ≥ 0,

P(Y 0
0 = n) = P(G′0 = n,G′0 < G′′0) = (1− p)np(βT )n

Then, its probability generating function is given by,

g0,0(u) = E
[
uY

0
0
]

= p

1− (1− p)βTu
(I.18)

- Y l
0 = G′l1G′l<G

′′
l
, for 1 ≤ l ≤ K. Both are geometric independent variables starting

from 1: G′l ∼ G(p), G′′l ∼ G(βT ), then for n ≥ 1,

P(Y l
0 = n) = P(G′l = n,G′l < G′′l ) = (1− p)n−1p(βT )n

Again, with pgf,

g0,l(u) = E
[
uY

l
0
]

= pβTu

1− (1− p)βTu
(I.19)

- Y K+1
0 = G′′K+11G′′K+1≤G

′
K+1

, and G′K+1 ∼ G(p), G′′K+1 ∼ G(βT ), then for n ≥ 1,

P(Y K+1
0 = n) = P(G′′K+1 = n,G′′K+1 ≤ G′K+1) = (1− p)n−1(βT )n−1(1− βT )

With,

g0,K+1(u) = E
[
uY

K
0 +1

]
= (1− βT )u

1− (1− p)βTu
(I.20)

Reproduction law:

For each l and k (0 ≤ l ≤ K+ 1, 1 ≤ k ≤ N), such that sl < Tk, variables (ξl,ki )i≥1 are
i.i.d., taking values in N and counting the number of hits of the contour process of level
Tk, starting at Tk−1 before it exits the interval [sl, Tk−1] by the top. Then

P
(
ξl,k = 0

)
= PTk−1

(
τ+
Tk−1

< τTk

)
= 1− 1

W (Tk−1 − Tk)
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and for n ≥ 1

P
(
ξl,k = n

)
= PTk−1

(
τ+
Tk−1

> τTk

) (
PTk

(
τTk < τ+

Tk−1
∧ τsl

))n−1
PTk

(
τ+
Tk−1

< τTk ∧ τsl
)

=
(

1− W (Tk−1 − sl)
W (Tk − sl)W (Tk−1 − Tk)

)n−1 W (Tk−1 − sl)−W (Tk−1 − Tk)
W (Tk − sl)W 2(Tk−1 − Tk)

.

Notice that ξl,k = 0, Px a.s. ∀k ∈ N, k ≥ inf{n ∈ N : Tn < sl}.
In order to simplify the computation of the pgf for these variables we will introduce

some notation:
• ∆k = Tk−1 − Tk, for every 1 ≤ k ≤ N

• βs = 1− 1
W (s) , for s ≥ 0

• αk,l = 1− W (Tk−1 − sl)
W (Tk − sl)W (Tk−1 − Tk)

, for every l, k such that Tk − sl ≥ 0

Then, the pgf for these variables are,

gk,l(u) = E
[
uξ

l,k
]

= β∆k
+ (βTk−sl − αk,l)

(
1− β∆k

)
u

1− αk,lu
(I.21)

Immigration in Y K+1:

Variables ψk are analogous to ξ0,k but exit will be from the bottom of the interval
[0, Tk−1], they describe the last visits of the process before it is killed, i.e. the visits to
level Tk, starting at Tk−1, before leaving the interval [0, Tk−1] by 0. So they are distributed
as follows, for n ≥ 0

P (ψk = n+ 1)

= PTk−1

(
τ+
Tk−1

> τTk

) (
PTk

(
τTk < τ+

Tk−1
∧ τsl

))n−1
PTk

(
τ0 < τ+

Tk

)
=
(

1− W (Tk−1)
W (Tk)W (Tk−1 − Tk)

)n 1
W (Tk)W (Tk−1 − Tk)

In this case we can easily see that,

hk,K+1(u) = E
[
uψk

]
= (1− βTk)

(
1− β∆k

)
u

1− αk,lu
(I.22)

Immigration in Y 0:

Variables φk, on the other hand, will count the first visits of level k, before it visits for
the first time the level above, k−1, conditional on the fact that the process leaves [0, T ] by
the top. This is due to the condition IT 6= 0 in function G. Besides, since these variables
describe the first excursions of the contour process, which starts at x (the lifespan of the
first individual), before it hits T by the first time, we need to compute their law under
Px. There will be several cases to consider depending on the position of other levels with
respect to x. See Fig. I.8. Notice this result is proved only in the exponential case, with
birth and death parameters λ and µ, and where we set r = λ − µ. In this case the scale
function W is known and it was specified before, however to avoid a heavier notation we
keep using W in the sequel.
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Lemma 8. For each x ∈ [0, T ], there exists a unique k∗ between 1 and N such that: Tk∗ ≤
x < Tk∗−1. Then, the laws of the immigrants in the process Y 0, under P̃ = Px(· | XT 6= 0)
can be described as follows,

P̃(φk∗ = 0) = W (Tk∗−1)
W (Tk∗−1 − Tk∗)

(
W (Tk∗−1 − Tk∗)−W (Tk∗−1 − x)

W (T )−W (T − x)

)
er(T−Tk∗−1),

P̃(φk∗ = n) = W (Tk∗−1)
W (Tk∗−1 − Tk∗)

(
W (Tk∗−1 − Tk∗)−W (Tk∗−1 − x)

W (T )−W (T − x)

)
er(T−Tk∗−1),

×
(

1− W (Tk∗−1)
W (Tk∗)W (Tk∗−1 − Tk∗)

)n−1 1
W (Tk∗−1) , n ≥ 1

with hk∗,0(u) = Ẽ
[
uφ

k∗
]

=

W (Tk∗−1)
W (Tk∗−1 − Tk∗)

(
W (Tk∗−1 − Tk∗)−W (Tk∗−1 − x)

W (T )−W (T − x)

)
er(T−Tk∗−1)

(
1 +

(1− βTk∗−1)u
1− αk∗,0u

)

For every 0 ≤ k < k∗,

P̃(φk = 0) = W (Tk−1)
W (Tk−1 − Tk)

( 1
W (T )−W (T − x)

)
er(T−Tk),

P̃(φk = n) = W (Tk−1)
W (Tk−1 − Tk)

(
W (Tk−1 − x)

W (T )−W (T − x)

)
er(T−Tk−1),

×
(

1− W (Tk−1)
W (Tk)W (Tk−1 − Tk)

)n−1 W (Tk−1)−W (Tk−1 − Tk)
W (Tk−1 − Tk)

,

with hk,0(u) = Ẽ
[
uφ

k∗
]

=

W (Tk−1)
W (Tk−1 − Tk)

( 1
W (T )−W (T − x)

)
er(T−Tk)

W (Tk−1 − x) +

(
W (Tk−1)

W (Tk−1−Tk) − 1
)
u

1− αk∗,0u

 .

And for every k > k∗, φk = 0, then hk,0(u) = 1.

Proof. We will detail the proof for k∗, since we can proceed in a very similar way for
the other values of k. Notice that the variable φk∗ will count the number of times the
JCCP hits level Tk∗ , starting at x, before it leaves the interval [0, Tk∗−1], conditional on
leaving [0, T ] by the top. Then, applying the strong Markov property, Lemma 12 and
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Equation (A-I.5) we obtain,

P̃(φk∗ = 0) = Px
(
τ+
Tk∗−1

< τTk∗
∣∣∣ τ+

T < τ0
)

=
Px
(
τ+
Tk∗−1

< τTk∗ , τ
+
T < τ0

)
Px
(
τ+
T < τ0

)
=

Px
(
τ+
Tk∗−1

< τTk∗
)

Px
(
τ+
T < τ0

)
 T−Tk∗−1∫

0

PTk∗−1+v
(
τ+
T < τ0

)
P
(

(Xτ+
Tk∗−1

− Tk∗−1) ∈ dv
)

+P
(

(Xτ+
Tk∗−1

− Tk∗−1) > T − Tk∗−1

))

=
Px
(
τ+
Tk∗−1

< τTk∗
)

Px
(
τ+
T < τ0

)
 T−Tk∗−1∫

0

PTk∗−1+v
(
τ+
T < τ0

)
µe−µvdv + e−µ(T−Tk∗−1)


=

1− W (Tk∗−1−x)
W (Tk∗−1−Tk∗ )

1− W (T−x)
W (T )

(
W (Tk∗−1)
W (T ) er(T−Tk∗−1) − e−µ(T−Tk∗−1) + e−µ(T−Tk∗−1)

)

= W (Tk∗−1)
W (Tk∗−1 − Tk∗)

(
W (Tk∗−1 − Tk∗)−W (Tk∗−1 − x)

W (T )−W (T − x)

)
er(T−Tk∗−1)

And similarly, for n ≥ 1,

P̃(φk∗ = n)

= Px

τTk∗ < τ+
Tk∗−1

,
{
τ

(i)
Tk∗

< τ+
Tk∗−1

∧ τ0
}
i=1,...,n−1

, τ+
Tk∗−1

∧ τ0 < τ
(n)
Tk∗︸ ︷︷ ︸

event εn

∣∣∣∣∣∣∣∣ τ
+
T < τ0


= Px (εn)

Px
(
τ+
T < τ0

)Px (τ+
T < τ0

∣∣∣ εn)

where, by strong Markov property, we have,

Px
(
τ+
T < τ0

∣∣∣ εn) = W (Tk∗−1)
W (T ) er(T−Tk∗−1)

and

Px (εn)

= Px
(
τTk∗ < τ+

Tk∗−1

) (
PTk∗

(
τTk∗ < τ+

Tk∗−1
∧ τ0

))n−1
PTk∗

(
τ+
Tk∗−1

< τTk∗ ∧ τ0
)

= W (Tk∗−1 − x)
W (Tk∗−1 − Tk∗)

(
1− W (Tk∗−1)

W (Tk∗)W (Tk∗−1 − Tk∗)

)n−1 (
1− W (Tk∗−1 − Tk∗)

W (Tk∗−1)

)
leading to the announced expression.

Some results on inhomogeneous branching processes

Lemma 9. Let (Xn)n≥0 be an inhomogeneous branching process such that the reproductive
law on generation n has probability generating function gn, i.e.

gn(u) := E
[
uXn

∣∣∣ Xn−1 = 1
]
, n ≥ 1, u ∈ [0, 1],
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Figure I.8 – The excursions of the JCCP of a splitting tree and the corresponding subpop-
ulations. In blue, the immigrants, i.e. the number of visits of level Tk∗ , before the process
goes above Tk∗−1 (upper level), without hitting 0. Black dots represent the descendants,
i.e. number of visits of Tk∗ , starting from Tk∗−1, before it goes again above Tk∗−1, without
hitting 0. In red, sampled individuals, i.e. the visits of level T0 which are sampled (with
probability p).

with initial population with pgf g0. Then for every N ≥ 0,

E
[
uX0

0 uX1
1 · · ·u

XN
N

]
= g0 (g1 (. . . (gN (uN )uN−1))u0)

Proof. It follows from a direct application of branching property, that we have for any
k ≥ 0 that Ek

[
uX1

1

]
= (g1(u1))k, then

E
[
uX0

0 uX1
1

]
=
∑
k≥0

Ek
[
uX1

1

]
uk0P(X0 = k) = g0(g1(u1)u0)

and by induction on N we obtain the formula in the lemma.

Lemma 10. Let (Xn)n≥0 be an inhomogeneous branching process with immigration char-
acterized by the probability generating functions of: its initial population (g0), its repro-
ductive law at generation n (gn) and the law of the immigrants at generation n (hn). More
precisely for each n ≥ 0,

Xn+1 =
Xn∑
i=1

ξn,i + ψn

where ξn,i, i ≥ 1 are i.i.d., independent of ψn, characterized by their respective pgf gn and
hn. Then for every N ≥ 0,

E
[
uX0

0 uX1
1 · · ·u

XN
N

]
= g0 (g1 (. . . gN (uN ) . . .)u0)

N−1∏
i=1

hi (gi+1(. . . gN (uN ) . . . ui+1)ui)

Proof. Again, an application of the branching property together with the independence
of the immigrant population, and recursion on N , leads to the result. We define for each
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k ≥ 0 the function g̃k1 (u) = E
[
uX1 |X0 = k

]
and it is not hard to see that,

g̃k1 (u) = E
[
u
∑k

i=1 ξ1,iuψ1

]
= (g1(u))k h1(u)

The formula holds trivially for N = 0, and supposing it is also satisfied for N , by adding
another generation we get,

E
[
uX0

0 · · ·u
XN
N u

XN+1
N+1

]
=

∑
k≥0

E
[
uX1

1 · · ·u
XN+1
N+1 | X0 = k

]
uk0P(X0 = k)

=
∑
k≥0

E
[
u

∑k

i=1 ξ1,i+ψ1
1 uX2

2 · · ·u
XN+1
N+1

]
uk0P(X0 = k)

The expectation in the sum can be computed using the induction hypothesis, by changing
the initial population law and by translating the reproductive laws of the branching process
at each generation in the following way,

g0 −→ g̃k1

gi, hi −→ gi+1, hi+1 for all 1 ≤ i ≤ N

Then

=
∑
k≥0

g̃k1 (g2 (. . . gN+1(uN+1) . . .)u1)
N−1∏
i=1

hi+1 (gi+2(. . . gN+1(uN+1) . . . ui+1)

×uk0P(X0 = k)

=
N−1∏
i=1

hi+1 (gi+2(. . . gN+1(uN+1) . . . ui+1)h1 (g2(. . . gN+1(uN+1) . . . u1)

×
∑
k≥0

(g1 (g2 (. . . gN+1(uN+1) . . .)u1))k uk0P(X0 = k)

=
N∏
i=1

hi (gi+1(. . . gN+1(uN+1) . . . ui)× g0 (g1 (. . . gN+1(uN+1) . . .)u0)

Which concludes the proof of the lemma.

All the elements exposed above lead to the following result about the functionG defined
at the begining of this section.

Theorem 11. The pgf G : [0, 1]N+1 → R+, which is defined as

G(u0, u1, . . . , uN ) = Ẽ
[
1{

H̃1<t1,...,H̃K−1<tK−1
}uXT0

0 u
XT1
1 . . . u

XTN
N

]
,

satisfies the following identity under the framework described in this section and the cor-
responding notation,

G(u0, u1, . . . , uN ) =
K∏
l=1

g0,l (g1,l (. . . (gN,l(uN )uN−1))u0)×

∏
l=0,K+1

(
g0,l (g1,l (. . . gN,l(uN ) . . .)u0)

N−1∏
i=1

hi,l (gi+1,l(. . . gN,l(uN ) . . . ui+1)ui)
)
,

where the functions g’s and h’s are defined by (I.18), (I.19), (I.20), (I.21) and Lemma 8.
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2.6 Conclusion

We have briefly reviewed some of the solutions given so far to the problem of cal-
culating the likelihood of a reconstructed tree when the underlying model is a birth and
death process. We have subsequently extended some of these approaches by characterizing
the conditional likelihood of the number of infectious individuals through time given the
transmission tree linking individuals that are currently infected. This quantity was pre-
viously unknown for this model and is required for applications involving data. However,
the inversion of the generating functions we have obtained here is a difficult problem,
computationally and mathematically, so the expressions obtained are difficult to use in
terms of statistical data analysis.

Beyond the practical aspects of the application of our results, according to our under-
standing, the most important contribution of this work is hidden in (I.17), which allowed
us to unveil a nice time-reversal duality for CMJ processes, that was unknown even in the
case of birth and death process and is the target of the forthcoming Chapter II.
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Appendix

I.A Remaining proofs

Proof of Lemma 1.

P(H̃ ≤ t) = E[1{H̃≤t}] = E[E[1
H̃≤t | ξ]] =

∑
j≥1

E[1{H̃≤t} | ξ = j]P(ξ = j)

=
∑
j≥1

P( max
1≤i≤j

Hi ≤ t)P(ξ = j) =
∑
j≥1

P(H1 ≤ t, . . . ,Hj ≤ t)P(ξ = j)

=
∑
j≥1

(P(H ≤ t))j P(ξ = j) = E[(F (t))ξ] = F (t)p
1− F (t)(1− p)

Where F (t) = P(H ≤ t). Note that since p < 1 the numerator of the last expression
is nonzero. Finally under the assumption that H has probability density function f(t) =
F ′(t) it holds:

f̃(t) = f(t)p
(1− F (t)(1− p))2

Proof of Lemma 3. With an elementary calculation we can compute the law of X1 condi-
tional on X1 ≤ X2). For every k ≥ 1,

P(X1 = k | X1 ≤ X2) = P(X1 = k,X1 ≤ X2)
P(X1 ≤ X2) = P(X1 = k,X2 ≥ k)∑

j≥1
P(X1 = j,X2 ≥ j)

= P(X1 = k)P(X2 ≥ k)∑
j≥1

P(X1 = j)P(X2 ≥ j)
= (1− α)k−1α(1− β)k−1∑

j≥1(1− α)j−1α(1− β)j−1

= ((1− α)(1− β))k−1(1− (1− α)(1− β))
= (1− γ)k−1γ, (A-I.1)

wich is a geometric distribution with parameter γ.
The same holds for X1 conditional on X1 < X2, which is also G(γ). Notice that the

symmetry on the parameter γ implies the result also holds if we swap X1 and X2.
Now we are interested to calculate the probability generating function of X1, when

X1 is smaller than X2, where X1 ∼ G(α) and X2 ∼ G(β) are independent. Using Equa-
tion (A-I.1) and the fact that P(X1 ≤ X2) = α

γ we obtain that

E[uX11{X1≤X2}] =
∑
k≥1

ukP(X1 = k,X1 ≤ X2) =
∑
k≥1

ukP(X1 = k | X1 ≤ X2)P(X1 ≤ X2)

=
∑
k≥1

uk(1− γ)k−1γ
α

γ
= αu

1− u (1− γ)

A similar procedure yields the second generating function in the lemma.
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I.B Some useful formulas and calculations

Formula (8.29) in [Kyp06] can be easily adapted to spectrally positive Lévy processes,
then for x ∈ (0, t), and every u ∈ (0, t], v ∈ (0,+∞):

Px
(
(Xτ+

t
− t) ∈ dv, (t−Xτ+

t
) ∈ du, τ+

t < τ0
)

=
[
W (t− x)W (t− u)−W (t)W (t− x− u)

W (t)

]
duΛ(dv + u) (A-I.2)

Lemma 12. In the Markovian (finite) case, the law of the overshoot of the contour process
above a level t, is still exponential with same parameter as the life span of individuals, and
it is independent of the fact that the process reaches (t,+∞) before 0, under Px (with
x < t). More precisely:

Px
(
(Xτ+

t
− t) ∈ dv, τ+

t < τ0
)

= Px(τ+
t < τ0)µe−µvdv (A-I.3)

Proof. We can directly compute this probability by integrating (A-I.2) with respect to
variable u, from 0 to t, and replacing W by its expression in the exponential case where
Λ(ds) = λµe−µsds, which is known to be

W (s) = λers − µ
r

, if s ≥ 0, W (s) = 0, otherwise.

This result can also be admitted without any computation, from the strong Markov prop-
erty and the lack of memory of the exponential distribution.

An elementary calculation using (I.7) leads to the following two formulas which will
be used several times to prove our main results,

t∫
0

W (t− u)e−µudu = ert − 1
r

= W (t)− 1
λ

, (A-I.4)

and for every t ∈ [0, T ] we have

T−t∫
0

Pt+u
(
τ+
T < τ0

)
e−µudu = er(T−t) W (t)

W (T ) − e−µ(T−t). (A-I.5)



Chapter II

Time reversal dualities for some ran-
dom forests

This chapter is based in the article [DFL15] appeared in ALEA Lat. Am. J. Probab.
Math. Stat.

1 Introduction

We consider a model of branching population in continuous time, where individuals be-
have independently from one another. They give birth to identically distributed copies of
themselves at some positive rate throughout their lives, and have generally distributed life-
time durations. A splitting tree [GK97, Lam10] describes the genealogical structure under
this model and the associated population size process is a so-called (binary, homogeneous)
Crump-Mode-Jagers (CMJ) process. When the lifetime durations are exponential or infi-
nite (and only in this case) this is a Markov process, more precisely, a linear birth-death
(BD) process.

Here, trees are assumed to originate at time 0 from one single ancestor. For a fixed
time T > 0, we define a forest F∗ as a sequence of i.i.d. splitting trees, stopped at the
first one having survived up to T , and we consider the associated population size or width
process (ξ∗t , 0 ≤ t ≤ T ). In the case of birth-death processes we have the following identity
in distribution .

Theorem 13. Let F∗ be a forest as defined previously, of supercritical birth-death trees
with parameters b > d > 0, then the time-reversed process satisfies

(
ξ∗T−t, 0 ≤ t ≤ T

) d=
(
ξ̃∗t , 0 ≤ t ≤ T

)
where the right-hand side is the width process of an equally defined forest, but where the
underlying trees are subcritical, obtained by swapping birth and death rates (or equivalently,
by conditioning on ultimate extinction AN72).

We further generalize this result to splitting trees, provided that the (i.i.d.) lifetimes of
the ancestors have a specific distribution, explicitly known and different from that of their
descendants. This additional condition comes from the memory in the distribution of the
lifespans when they are not exponential, that imposes a distinction between ancestors and
their descendants as we will see in Section 3. To our knowledge, this is the first time a
result is established that reveals this kind of duality in branching processes: provided the
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initial population is structured as described before, the width process seen backward in
time is still the population size process of a similarly defined forest.

Furthermore, these dualities through an identity in distribution are established not
only for the population size processes, but for the forests themselves. In other words, we
give here the construction of the dual forest F̃∗, from the forest F∗, by setting up different
filiations between them, but where the edges of the initial trees remain unchanged. This
new genealogy has no interpretation, so far, in terms of the original family, and can be
seen as the tool to reveal the intrinsic branching structure of the backward-in-time process.

The results are obtained via tree contour techniques and some properties of Lévy pro-
cesses. The idea of coding the genealogical structure generated by the branching mecha-
nism through a continuous or jumping stochastic process has been widely exploited with
diverse purposes by several authors, see for instance [Pop04, GK97, LGLJ98, DLG02,
Lam10, BPS12].

Here we make use of a particular way of exploring a splitting tree, called jumping
chronological contour process (JCCP). We know from [Lam10] that this process has the
law of a spectrally positive Lévy process properly reflected and killed. The notion of JCCP
can be naturally extended to a forest by concatenation. Then our results are proved via a
pathwise decomposition of the contour process of a forest and space-time-reversal dualities
for Lévy processes [Ber92]. We define first some path transformations of the contour of a
forest F∗, after which, the reversed process will have the law of the contour of a forest F̃∗.
The invariance of the local time (defined here as the number of times the process hits a
fixed value of its state-space R+) of the contour after these transformations, allows us to
deduce the aforementioned identity in distribution between the population size processes.

Branching processes are commonly used in biology to represent, for instance, the
evolution of individuals with asexual reproduction [Jag91, KA02], or a group of species
[NMH94, Sta09], as well as the spread of an epidemic outbreak in a sufficiently large sus-
ceptible population [Bec74, Bec77, TFLS06]. We are particularly interested in the last
application, which was the primary motivation for this work, and where our duality result
has some interesting consequences.

When modeling epidemics, we specify that what was called so far a birth event should
be thought of as a transmission event of the disease from one (infectious) individual to
another (susceptible, assumed to be in excess). In the same way a death event will cor-
respond to an infectious individual becoming non-infectious (will no longer transmit the
pathogen, e.g. recovery, death, emigration, etc.). Then the branching process describes
the dynamics of the size of the infected population, and the splitting tree encodes the
history of the epidemic.

In the last few decades, branching processes have found many applications as stochastic
individual-based models for the transmission of diseases, especially the Markovian case
(notice however, that the assumption of exponentially distributed periods of infectiousness
is mainly motivated by mathematical tractability, rather than biological realism). In recent
years, the possibility of sequencing pathogens from patients has been constantly increasing,
and with it, the interest in using the phylogenetic trees of pathogen strains to infer the
parameters controlling the epidemiological mechanisms, leading to a new approach in the
field, the so-called phylodynamic methods [GPG+04]. A very short review on the subject
is given later in Section 4.

Here we consider the situation where the data consists in incidence time series (number
of new cases registered through time) and the reconstructed transmission tree (i.e. the
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information about non sampled hosts is erased from the original process). These trees
are considered to be estimated from pathogen sequences from present-time hosts. These
observed statistics are assumed to be generated from a unique forward in time process
and since no further hypothesis is made, they are not independent in general. Hence, the
computation of the likelihood as their joint distribution quickly becomes a delicate and
complex issue, even in the linear birth-death model, since it requires to integrate over all
the possible extinct (unobserved) subtrees between 0 and T .

Therefore, to solve this problem, we propose a description of the population size process
I := (It, 0 ≤ t ≤ T ), conditional on the reconstructed genealogy of individuals that
survive up until time T (i.e. the reconstructed phylogeny). This result is a consequence
of the aforementioned duality between random forests F∗ and F̃∗. We state that, under
these conditions, the process I, backward in time, is the sum of the width processes of
independent birth-death trees, each conditioned on its height to be the corresponding time
of coalescence, plus an additional tree conditioned on surviving up until time T .

The structure in the population, that is the definition of our forests, and the fact that
in our model the sampled epidemic comes all from one single ancestor at time 0, can be
thought of as a group of strains of a pathogen in their attempts to invade the population,
but where only one succeeds (at time T ). However, if various invading strains succeed,
analogous results can be deduced by concatenating (summing) an equal number of forests.
The general assumption will be then, that for each successful strain, there is a geometric
(random) number of other strains of the pathogen that become extinct before time T . The
probability of success of these geometric r.v. depends on the recovery and transmission
parameters. Finally, estimating these parameters from molecular and epidemiological
data using this branching processes model, can be addressed through MLE or Bayesian
inference. However, these statistical questions are not directly treated here.

For the sake of clarity, and in order to be consistent with most of the literature on
branching processes, we will prefer to use the terms of birth and death events throughout
the document, except when we present the outcomes of our results in the specific context
of epidemiology in Section 4. The rest of the paper is organized as follows: Section 2
is dedicated to some preliminaries on Lévy processes, trees, forests and their respective
contours. Finally, in Section 3, we state our main results and give most of their proofs,
although some of them are left to the Appendix.

2 Preliminaries

Basic notation

Let E = R ∪ {∂} where ∂ is a topologically isolated point, so-called cemetery point.
Let B(E) denote the Borel σ-field on E. Consider the space D(R+, E) (or simply D) of
càdlàg functions ω from R+ into the measurable space (E,B(E)) endowed with Skorokhod
topology [JS03], stopped upon hitting ∂ and denote the corresponding Borel σ-field by
B(D). Define the lifetime of a path ω ∈ D as ζ = ζ(ω), the unique value in R+ ∪ {+∞}
such that ω(t) ∈ R for 0 ≤ t < ζ, and ω(t) = ∂ for every t ≥ ζ. Here ω(t−) stands for
the left limit of ω at t ∈ R+, ∆ω(t) = ω(t)− ω(t−) for the size of the (possible) jump at
t 6= zeta and we make the usual convention ω(0−) = ω(0).

We consider stochastic processes, on the probability space (D,B(D),P), say X =
(Xt, t ≥ 0), also called the coordinate process, having Xt = Xt(ω) = ω(t). In particular,
we consider only processes with no-negative jumps, that is such that ∆Xt ∈ R+ for every
t ≥ 0. The canonical filtration is denoted by (Ft)t≥0.
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Let P(E) be the collection of all probability measures on E. We use the notation
Px(X ∈ ·) = P (X ∈ ·|X0 = x) and for µ ∈ P(E),

Pµ(X ∈ ·) :=
∫
E

Px(X ∈ ·)µ(dx).

For any measure µ on [0,∞], we denote by µ its tail, that is

µ(x) := µ([x,+∞])

Define by τA := inf{t > 0 : Xt ∈ A}, the first hitting time of the set A ∈ B(E), with
the conventions τx = τ{x}, and τ−x = τ(−∞,x), τ+

x = τ(x,+∞) for any x ∈ R.

Some path transformations of càdlàg functions

In this subsection we will define some deterministic path transformations and function-
als of càdlàg stochastic processes. Define first the following classical families of operators
acting on the paths of X:
• the shift operators, θs, s ∈ R+, defined by

θs(Xt) := Xs+t, ∀t ∈ R+

• the killing operators, ks, s ∈ R+ , defined by

ks(X) :=
{
Xt if s < t
∂ otherwise

the killing operator can be generalized to killing at random times, for instance X ◦
kτA = kτA(X) = kτA(X)(X), denotes the process killed at the first passage into A. It
is easy to see that if X is a Markov process, so is X ◦ kτA .
• the space-time-reversal operator ρs, s ∈ R∗+, as

ρs(X)t := X0 −X(s−t)− ∀t ∈ [0, s)

and we denote simply by ρ the space-time-reversal operator at the lifetime of the
process, when ζ < +∞, that is

ρ(X)t := X0 −X(ζ−t)− ∀t ∈ [0, ζ)

The notations P ◦ θ−1
s , P ◦ k−1

s and P ◦ ρ−1 stand for the law of the shifted, killed and
space-time-reversed processes when P is the law of X.

When X has finite variation we can define its local time process, taking values in
N ∪ {+∞} as follows,

Γr(X) = Card{t ≥ 0 : Xt = r}, r ∈ R,

that is the number of times the process hits r (before being sent to ∂).
For a sequence of processes in the same state space, say (Xi)i≥1 with lifetimes (ζi, i ≥

1), we define a new process by the concatenation of the terms of the sequence, denoted by

[X1, X2, . . . ]
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where the juxtaposition of terms is considered to stop at the first element with infinite
lifetime. For instance, if ζ1 < +∞ and ζ2 = +∞, then for every n ≥ 2

[X1, X2, . . . , Xn]t =
{
X1,t if 0 ≤ t < ζ1
X2,t−ζ1 t ≥ ζ1

We consider now a clock or time change that was introduced in [Ber96, Don07] in order
to construct the probability measure of a Lévy process conditioned to stay positive, that
will have the effect of erasing all the subpaths of X taking non-positive values and closing
up the gaps. We define it here for a càdlàg function X, for which we introduce the time
it spends in (0,+∞), during a fixed interval [0, t], for every t ≤ ζ(X),

At :=
t∫

0

1{Xu>0}du

and its right-continuous inverse, α(t) := inf {u ≥ 0 : Au > t}, such that a time substitution
by α, gives a function with values in [0,+∞) ∪ {∂}, in the following sense,

(X ◦ α)t =
{
Xα(t) if α(t) < +∞
∂ otherwise

Remark 14. Analogous time changes αs (or αs) can be defined for any s ∈ R, removing
the excursions of the function above (or below) the level s, that is by time-changing X via
the right-continuous inverse of t 7−→

∫ t
0 1{Xu<s}du (or t 7−→

∫ t
0 1{Xu>s}du).

Last passage from T to 0: Fix T > 0. Define the following special points for X

gT := inf{t > 0 : Xt = T}
g0 := inf{t > gT : Xt− = 0}
gT := sup{t < g0 : Xt = T}

and suppose g0 < +∞. We want to define a transformation of X so that the subpath in
the interval [gT , g0) will be placed at the beginning, shifting to the right the rest of the
path. Therefore, we define the function ϑ(X) = ϑ : [0, g0]→ [0, g0] as,

ϑ(t) :=
{
gT + t if 0 ≤ t < g0 − gT
t− (g0 − gT ) if g0 − gT ≤ t ≤ g0

and then we consider the transformed path χ(X), defined for each s ≥ 0 as,

χ(X)s :=
{
Xϑ(s) if s ∈ [0, g0)
∂ if s ≥ g0

2.1 Spectrally positive Lévy processes

Lévy processes are those stochastic processes with stationary and independent incre-
ments, and almost sure right continuous with left limits paths. During this subsection we
recall some classic results from this theory and establish some others that will be used



66 II. Time reversal dualities for some random forests

later. We refer to [Ber96] and [Kyp06] for a detailed review on the subject.

We consider a real-valued Lévy process Y = (Yt, t ≥ 0) and we denote by Px its law
conditional on Y0 = x. We assume Y is spectrally positive, meaning it has no negative
jumps. This process is characterized by its Laplace exponent ψ, defined for any λ ≥ 0 by

E0
[
e−λYt

]
= etψ(λ).

We assume, furthermore, that Y has finite variation. Then ψ can be expressed, thanks to
the Lévy-Khintchine formula as

ψ(λ) = −dλ−
∞∫
0

(
1− e−λr

)
Π(dr), (II.1)

where d ∈ R is called drift coefficient and Π is a σ- finite measure on (0,∞], called the
Lévy measure, satisfying

∫∞
0 (r ∧ 1)Π(dr) < ∞. Notice we allow Π to charge +∞, which

amounts to killing the process at rate Π({+∞}).
The Laplace exponent is infinitely differentiable, strictly convex (when Π 6≡ 0), ψ(0) =

0 (except when Π charges +∞, in which case ψ(0) = ψ(0+) = −Π({+∞})) and ψ(+∞) =
+∞. Suppose Π({+∞}) = 0 and d = −1 and define

η := sup{λ ≥ 0 : ψ(λ) = 0}, (II.2)

the largest root of ψ and

m :=
∫

(0,∞)
rΠ(dr).

Then we have that η = 0 is the unique root of ψ, when ψ′(0+) = 1 −m ≥ 0. Otherwise
the Laplace exponent has two roots, 0 and η > 0. It is known that for any x > 0,

Px (τ0 < +∞) = e−ηx.

More generally, we know from Theorem VII.8 in [Ber96] that or completely asymmetric
Lévy processes (that make no positive or no negative jumps) there exists a unique contin-
uous increasing function W : [0,+∞) → [0,+∞), called the scale function, characterized
by its Laplace transform,

+∞∫
0

e−λxW (x)dx = 1
ψ(λ) , λ > η,

such that for any 0 < x ≤ a,

Px
(
τ0 < τ+

a

)
= W (a− x)

W (a) . (II.3)

Pathwise decomposition

For a Markov process, a point x of its state space is said to be regular or irregular for
itself, if Px(τx = 0) is 1 or 0. In a similar way, when the process is real-valued, we can say it
is regular downwards or upwards if we replace τx by τ−x or τ+

x respectively. For a spectrally
positive Lévy processes we know from [Ber96] that Y has bounded variation if and only if
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0 is irregular (and irregular upwards). In this case there is a natural way of decomposing
the process into excursions from any point x on its state space. For simplicity, here we
depict the situation for x = 0, the generalization being straightforward from the Markov
property.

The process Y under P0, can be described as a sequence of independent and identically
distributed excursions from 0, stopped at the first one with infinite lifetime. Define the
sequence of the successive hitting times of 0, say (τ (i)

0 , i ≥ 0) with τ (0)
0 = 0. For i ≥ 0, on

{τ (i)
0 < +∞}, define the shifted process,

εi :=
(
Y
τ

(i)
0 +t, 0 ≤ t < τ

(i+1)
0 − τ (i)

0

)
.

The strong Markov property and the stationarity of the increments imply that (εi, i ≥ 0) is
a sequence of i.i.d. excursions, all distributed as (Yt, 0 ≤ t ≤ τ0) under P0, with a possibly
finite number of elements, say N + 1, which is geometric with parameter P0(τ0 = +∞),
corresponding to the time until the occurrence of an infinite excursion. Hence, the paths
of Y are structured as the juxtaposition of these i.i.d. excursions, N with finite lifetime,
followed by a final infinite excursion.

We now introduce, for any a > 0, the process Y reflected below a, that is the process
being immediately restarted at a when it enters (a,+∞). This process is also naturally
decomposed in its excursions below a, in the same way described before. More precisely,
let (εi, i ≥ 1) be a sequence of i.i.d. excursions distributed as Y under Pa, but killed
when they hit (a,+∞), that is, with common law Pa ◦ k−1

τ+
a
. Notice that since the process

is irregular upwards, then necessarily these excursions have a strictly positive lifetime
Pa-a.s.. Define the reflected process Y (a) as their concatenation, that is

Y (a) := [ε1, ε2, . . .] (II.4)

Overshoot and undershoot

Formula (8.29) from [Kyp06] adapted to spectrally positive Lévy processes gives the
joint distribution of the overshoot and undershoot of Y when it first enters the interval
[a,+∞], without hitting 0. Let x ∈ (0, a), then for u ∈ (0, a] and v ∈ (0,+∞),

Px
(
(a− Yτ+

a −) ∈ du, (Yτ+
a
− a) ∈ dv, τ+

a < τ0
)

=
(
W (a− x)W (a− u)

W (a) −W (a− x− u)
)

duΠ(dv + u) (II.5)

In the same way, if the restriction on the minimum of the process before hitting [a,+∞)
is removed, choosing x = a = 0 for simplicity, we have for u, v ∈ (0,+∞)

P0
(
−Yτ+

0 −
∈ du, Yτ+

0
∈ dv, τ+

0 < +∞
)

= e−ηuduΠ(dv + u) (II.6)

Then we can compute the distribution of the undershoot and overshoot of an excursion
away from 0, of the process Y starting at 0 on the event τ+

0 < +∞. By integrating (II.6)
we get,

P0
(
−Yτ+

0 −
∈ du, τ+

0 < +∞
)

= du
∫

[0,+∞]

e−ηuΠ(dv + u) = e−ηuΠ(u)du

P0
(
Yτ+

0
∈ dv, τ+

0 < +∞
)

= eηvdv
∫

[v,+∞]

e−ηyΠ(dy) = eηvΠ̃(v)dv
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where we define the measure
Π̃(dy) := e−ηyΠ(dy)

on (0,+∞) of mass b̃ := b− η when Π has mass b.
Further, we can deduce again from Theorem VII.8 in [Ber96] that

P0
(
τ+

0 < +∞
)

= 1− W (0)
W (∞) = 1 ∧m (II.7)

as a consequence of (II.3) and

lim
t→+∞

W (t) =
{

+∞ if m ≥ 1
1

1−m if m < 1 , W (0) = 1.

These two formulas come from the analysis of the behavior at 0 and +∞ of W ’s Laplace
transform, 1/ψ, followed by the application of a Tauberian theorem. We refer to Propo-
sitions 5.4 and 5.8 from [Lam10] for the details.

We denote by µ> the probability measure on [0,∞) of the undershoot away from 0
under P0

(
·
∣∣∣τ+

0 < +∞
)
, defined as follows,

µ>(du) := P0
(
−Yτ+

0 −
∈ du

∣∣∣τ+
0 < +∞

)
= e−ηuΠ(u)

m ∧ 1 du (II.8)

Analogously the probability distribution of the corresponding overshoot is,

µ⊥(dv) := P0
(
Yτ+

0
∈ dv

∣∣∣τ+
0 < +∞

)
= eηvΠ̃(v)

m ∧ 1 dv (II.9)

Remark 15. In the exponential case with rates b, d > 0, that is when Π(dr) = bde−drdr
and

ψ(λ) = λ− bλ

d+ λ
, λ ≥ 0,

it is not hard to see that the overshoot is also exponentially distributed with parameter
d, and the undershoot with parameter b ∨ d.

Process conditioned on not drifting to +∞

The following statements are direct consequences of Corollary VII.2 and Lemma VII.7
from [Ber96]. The process Y drifts to −∞, oscillates or drifts to +∞, if ψ′(0+) is re-
spectively positive, zero, or negative. As we mentioned before, only in the last case the
Laplace exponent ψ has a strictly positive root η, which leads to considering a new family
of probability measure P̃x via the exponential martingale (e−η(Yt−x), t ≥ 0), that is with
Radon-Nikodym density

dP̃x
dPx

∣∣∣∣∣
Ft

= e−η(Yt−x).

As we will show later, this can be thought of as the law of the initial Lévy process condi-
tioned to not drift to +∞, and in fact, Y under P̃ is still a spectrally positive Lévy process
with Laplace exponent

ψ̃(λ) = ψ(η + λ) = −dλ−
∞∫
0

(
1− e−λr

)
Π̃(dr),
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which is the Laplace exponent of a finite variation, spectrally positive Lévy process with
drift d and Lévy measure Π̃. Furthermore, it is established that for every x > 0, the law
of the process until the first hitting time of 0, that is (Yt, 0 ≤ t < τ0), is the same under
Px(·|τ0 < +∞) as under P̃x(·), that is

Px(·|τ0 < +∞) ◦ k−1
τ0 = P̃x ◦ k−1

τ0 (II.10)

Finally, we compute the following convolution products, which will be used hereafter,
obtained from a direct inversion of the Laplace transform for W and W̃ (see p. 204-205 in
[Ber96]), where W̃ is the scale function defined with respect to the Laplace exponent ψ̃,

T∫
0

W (T − v)Π(v)dv = W (T )− 1 (II.11)

T∫
0

W̃ (T − v)Π̃(v)dv = W̃ (T )− 1 (II.12)

Time-reversal for Lévy processes

Another classical property of Lévy processes is their duality under time-reversal in the
following sense: if a path is space-time-reversed at a finite time horizon, the new path
has the same distribution as the original process. More precisely, in the case of spectrally
positive Lévy processes we have the following results from [Ber92]:

Proposition 16 Duality. The process Y has the following properties:
(i) under P0 (·|τ0 < +∞), (Yt, 0 ≤ t < τ0) and

(
−Y(τ0−t)−, 0 ≤ t < τ0

)
have the same

law
(ii) under P0

(
·
∣∣∣−Yτ+

0 −
= u

)
the reversed excursion,

(
−Y(τ+

0 −t)−
, 0 ≤ t < τ+

0

)
has the

same distribution as (Yt, 0 ≤ t < τ0) under Pu (·|τ0 < +∞)

(iii) under P0
(
·
∣∣∣−Yτ+

0 −
= y,∆Y (τ+

0 ) = z
)
, the processes

(
−Y(τ+

0 −t)−
, 0 ≤ t < τ+

0

)
and(

Yτ+
0 +t, 0 ≤ t < τ0 − τ+

0

)
are independent. The first one has law Py(·|τ0 < +∞)◦k−1

τ0

and the second one has law Pz−y ◦ k−1
τ0

2.2 Trees and forests

We refer to [Lam10] for the rigorous definition and properties of discrete and chrono-
logical trees. The notation here may differ from that used by this author, so it will be
specified in the following, as well as the main features that will be subsequently required.

A discrete tree, denoted by U , is a subset of U :=
⋃
n≥0 Nn, satisfying some specific well

known properties. From a discrete tree U we can obtain an R-tree by adding birth levels to
the vertices and lengths (lifespans) to the edges, getting what is called a chronological tree
T . For each individual u of a discrete tree U , the associated birth level is denoted by α(u)
and the death level by ω(u) (α(u) ∈ R+, ω(u) ∈ R+ ∪ {+∞} and such that α(u) < ω(u)).

Then T can be seen as the subset of U × [0,+∞) containing all the existence points
of individuals (vertices of the discrete tree): for every u ∈ U , s ∈ [0,+∞), then (u, s) ∈ T
if and only if α(u) < s ≤ ω(u). The root will be denoted by ρ := (∅, 0) and π1 and π2
stand respectively for the canonical projections on U and [0,+∞). T denotes the set of
all chronological trees.
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For any individual u in the discrete tree U = π1(T ), we denote by ζ(u) its lifespan,
i.e. ζ(u) := ω(u)− α(u). Then the total length of the chronological tree is the sum of the
lifespans of all the individuals, that is,

`(T ) :=
∑

v∈π1(T )
ζ(v) ≤ +∞.

We will also refer to the truncated tree up to level s, denoted by T (s) for the chrono-
logical tree formed by the existence points (u, t) such that t ≤ s. A chronological tree is
said to be locally finite if for every level s ∈ [0,+∞) the total length of the truncated tree
is finite, `(T (s)) < +∞.

We can define the width or population size process of locally finite chronological trees
as a mapping Ξ that maps a chronological tree T to the function ξ : R+ → N counting
the number of extant individuals at time t ≥ 0

Ξ(T ) := (ξt(T ), t ≥ 0) (II.13)

where for every t ≥ 0,

ξt(T ) = Card{v ∈ π1(T ) : α(v) < t ≤ ω(v)}

These functions are càdlàg, piecewise constant, from R+ into N∪{+∞}, and are absorbed
at 0. Then we can define the time of extinction of the population in a tree as TExt :=
inf{t ≥ 0 : ξt(T ) = 0}.

Chronological trees are assumed to be embedded in the plane, as on Fig. II.1 (right),
with time running from bottom to top, dotted lines representing filiations between indi-
viduals: the one on the left is the parent, and that on the right its descendant.

We will call a forest every finite sequence of chronological trees, and we will denote
the set of all forests by F. More specifically for every positive integer m, let us define the
set of m-forests as follows,

Fm := {(T1, T2, . . . , Tm) : T1, T2, . . . , Tm ∈ T}

then,
F =

⋃
m∈N

Fm

It is straightforward to extend the notion of width process to a forest, say F = (T1, T2, . . . , Tm) ∈
F, as the sum of the widths of every tree of the sequence, i.e.,

Ξ(F) :=
m∑
i=1

Ξ(Ti)

2.3 The contour process

As mentioned before, the genealogical structure of a chronological tree can be coded via
continuous or càdlàg functions. They are usually called contour or exploration processes,
since they refer mostly to deterministic functions of a (randomly generated) tree. In this
case, the contour is a R-valued stochastic process containing all the information about the
tree, so that the latter can always be recovered from its contour. Among the different
ways of exploring a tree we will exploit the jumping chronological contour process (JCCP)
from [Lam10].
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Figure II.1 – An example of chronological tree with finite length (left) and its contour
process (right).

The JCCP of a chronological tree T with finite length ` = `(T ), denoted by C(T ), is
a function from [0, `] into R+, that starts at the lifespan of the ancestor and then walks
backward along the right-hand side of this first branch at speed −1 until it encounters a
birth event, when it jumps up of a height of the lifespan of this new individual, getting to
the next tip, and then repeating this procedure until it eventually hits 0, as we can see in
Fig. II.1 (see [Lam10] for a formal definition).

Then it visits all the existence times of each individual exactly once and satisfies that
the number of times it hits a time level, say s ≥ 0, is equal to the number of individuals
in the population at time s. More precisely, for any finite tree T

Γ ◦ C(T ) = Ξ(T ),

and more generally, if T is locally finite, this is also satisfied for the truncated tree at any
level s > 0, that is

Γ ◦ C(T (s)) = Ξ(T (s)).

We can extend the notion of contour process to a forest F = (T1, T2, . . . , Tm) of finite total
length ` :=

∑m
i=1 `(Ti), similarly to the way it is done in [DLG02], by concatenating the

contour functions,

[(Ct(T1), t ∈ [0, `(T1)) , (Ct(T2), t ∈ [0, `(T2)) , . . . , (Ct(Tm), t ∈ [0, `(Tm))] .

It will be denoted as well by C(F) or simply C when there is no risk of confusion. We
notice that the function thus obtained determines a unique sequence of chronological trees
since they all start with one single ancestor.

2.4 Stochastic model

We consider a population (or particle system) that originates at time 0 with one single
progenitor. Then individuals (particles) evolve independently of each other, giving birth
to i.i.d. copies of themselves at constant rate, while alive, and having a life duration with
general distribution. The family tree under this stochastic model will be represented by a
splitting tree, that can be formally defined as an element T randomly chosen from the set
of chronological trees, characterized by a σ-finite measure Π on (0,∞] called the lifespan
measure, satisfying

∫
(0,∞] (r ∧ 1) Π(dr) <∞.

In the general definition individuals may have infinitely many offspring. However,
for simplicity we will assume that Π has mass b, corresponding to a population where
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individuals have i.i.d. lifetimes distributed as Π(·)/b and give birth to single descendants
throughout their lives at constant rate b, all having the same independent behavior. In
most of the following results this hypothesis is not necessary, and they remain valid if Π
is infinite (see [Lam10]).

Under this model the width process Ξ(T ) = (ξt(T ), t ≥ 0) counting the population size
through time is a binary homogeneous Crump-Mode-Jagers process (CMJ). This process
is not Markovian, unless Π is exponential (birth-death process) or a Dirac mass at {+∞}
(Yule process).

A tree, or its width process Ξ, is said to be subcritical, critical or supercritical if

m :=
+∞∫
0

rΠ(dr)

is respectively less than, equal to or greater than 1, and we define the extinction event
Ext := {limt→∞ ξt (T ) = 0}.

For a splitting tree we can define, as well as for its deterministic analogue, the JCCP.
Actually, the starting point of the present work, is one of the key results in [Lam10], where
the law of the JCCP of a splitting tree truncated up to T or conditional on having finite
length is characterized by a Lévy process.

Theorem 17 [Lam10]. If X(T ) is the JCCP of a splitting tree with lifespan measure Π
truncated up to T ∈ (0,+∞) and Y is a spectrally positive Lévy process with finite variation
and Laplace exponent ψ(λ) = λ−

∫∞
0 (1− exp(−λr))Π(dr), λ ≥ 0, then conditional on the

lifespan of the ancestor to be x, X(T ) has the law of Y , started at x ∧ T , reflected below
T and killed upon hitting 0. Furthermore, conditional on extinction, X has the law of Y
started at x, conditioned on, and killed upon hitting 0.

We state here without proof the following elementary lemma that is repeatedly used
in the proofs.

Lemma 18. Let Z be a r.v. in a probability space (Ω,F,P), taking values in a measurable
space (E,A). Let A ∈ A be such that p := P(Z ∈ A) 6= 0. Let Z1, Z2, . . . be a sequence
of i.i.d. r.v. distributed as Z, and set N := inf{n : Zn ∈ A}. Then we have the following
identity in distribution,

(Z1, . . . , ZN ) d=
(
Z ′1, . . . , Z

′
G, Z

′′
G+1

)
,

where
• G is a r.v. independent of Z ′1, . . . , Z ′G, Z ′′G+1 that has geometric distribution with
parameter p, i.e. P(G = k) = (1− p)kp, for k ≥ 0,
• Z ′1, . . . Z ′G are i.i.d. r.v. with probability distribution P (Z ∈ ·|Z /∈ A),
• Z ′′G+1 is an independent r.v. distributed as P (Z ∈ ·|Z ∈ A).

3 Results

From now on we consider a finite measure Π, on (0,+∞), of mass b and m :=∫+∞
0 rΠ(dr) and Y a spectrally positive Lévy process with drift coefficient d = −1, Lévy
measure Π, and Laplace exponent denoted by ψ, i.e.,

ψ(λ) = λ−
∞∫
0

(1− e−λr)Π(dr), λ ≥ 0 (II.14)
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As in the preliminaries, we denote by Px the law of the process conditional on Y0 = x,
by W the corresponding scale function and by η the largest root of ψ. For any s ∈ R+,
denote by Y (s) the process reflected below s, as defined in the preliminaries.

We also recall the definition of the measure Π̃(dy) := e−ηyΠ(dy) on (0,+∞). Then
ψ̃, m̃, W̃ , P̃ , Ỹ , will denote the Laplace exponent, the mean value, the scale function, the
law, and the process itself with Lévy measure Π̃. As we have seen before, this spectrally
positive Lévy process with Laplace exponent ψ̃, killed when it hits 0, has the same law
as (Yt, 0 ≤ t < τ0) conditioned on hitting 0, when starting from any x > 0, that is
P̃x ◦ k−1

τ0 = Px(·|τ0 < +∞) ◦ k−1
τ0 .

Fix p ∈ (0, 1) and T ∈ (0,+∞). We define a forest Fp consisting in Np + 1 splitting
trees with lifespan measure Π as follows,

Fp :=
(
T1, . . . , TNp , TNp+1

)
where,

• T1, . . . TNp are i.i.d. splitting trees conditioned on extinction before T
• TNp+1 is an independent splitting tree conditioned on survival up until time T
• Np is a geometric random variable with parameter p, independent of all trees in the

sequence, i.e. P(Np = k) = (1− p)kp, for k ≥ 0.
Notice that, if p = P(ξT (T ) 6= 0), then Fp has the same distribution as a sequence of

i.i.d. splitting trees, stopped at its first element surviving up until time T (see Lemma 18).
Hereafter we will frequently make use of this identity in law.

We will add a subscript to denote equally constructed forests, but where the i.i.d.
lifetimes of the ancestors on the splitting trees are different from that of their descendants.
More precisely we will refer to Fp⊥ or Fp> if the ancestors are distributed respectively as
the overshoot and undershoot defined by (II.9) and (II.8), conditional on {τ+

0 < +∞},
i.e.,

⊥ : ζ(∅) ∼ µ⊥ > : ζ(∅) ∼ µ>

We follow the same convention for splitting trees, that is, T> and T⊥ denote trees starting
from one ancestor with these distributions, as well as for their probability laws, denoted
by P>,P⊥.

Finally, we use the notation F̃p when the lifespan measure of all individuals is Π̃,
instead of Π. The addition of a subscript is assumed to affect the lifetime distribution of
the ancestors in the exact same way as described before.

We start with the following result, which is the extension of Propositions 16 and
Theorem 17 to the case of these splitting trees with size-biased ancestors. Its proof is
given later in the Appendix.

Lemma 19. Let T⊥ be a splitting tree and Y a spectrally positive Lévy process, as defined
in Section 3, then the contour process C = C(T⊥) has the following properties

(i) Under P⊥ (·|Ext), C has the same distribution as
(
Yτ+

0 +t, 0 ≤ t ≤ τ0 − τ+
0

)
under

P0 (·|τ0 < +∞).

(ii) Under P⊥ (·|ξT = 0), C has the distribution of
(
Yτ+

0 +t, 0 ≤ t ≤ τ0 − τ+
0

)
under

P0
(
·
∣∣∣τ0 < τ+

T , τ
+
0 < +∞

)
.
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(iii) Under P⊥, the contour of the truncated tree T
(T )
⊥ , is distributed as

(
Yτ+

0 +t, 0 ≤ t ≤ τ0 − τ+
0

)
under P0

(
·
∣∣∣τ+

0 < +∞
)
, reflected at T and killed upon hitting 0.

Define now the two parameters,

γ := 1
W (T ) = PT

(
τ0 < τ+

T

)
and γ̃ := 1

W̃ (T )
= P̃T

(
τ0 < τ+

T

)
.

We have the following two results on forests,

Lemma 20. In the supercritical and critical cases (m ≥ 1) we have

γ̃ = P⊥ (ξT 6= 0) and γ = P̃> (ξT 6= 0) .

Proof. See Appendix.

Define the following forests stopped at first surviving tree,
• F∗ := a sequence of i.i.d. splitting trees with law P⊥ stopped at the first tree that
survives up to time T .
• F̃∗ := a sequence of i.i.d. splitting trees with law P̃> stopped at the first tree that

survives up to time T .

Lemma 21. In the supercritical and critical cases (m ≥ 1) we have

F γ̃⊥
d= F∗ and F̃γ>

d= F̃∗.

Proof. By definition, a forest F∗ consists in a number of trees, say Ñ + 1, where Ñ is a
geometric random variable with probability of success P⊥(ξT 6= 0), counting the trees that
die out before T , until there is one that survives. Hence, thanks to Lemma 18, the only
thing that remains to prove is that γ̃ is exactly this probability of success for the forest
F∗, in the same way that γ for the forest F̃∗, which is the statement in Lemma 20.

Then we are ready to state our first result concerning the population size processes of
these forests,

Theorem 22. We have the following identity in distribution,(
ξT−t

(
F γ̃⊥
)
, 0 ≤ t ≤ T

)
d=
(
ξt
(
F̃γ>
)
, 0 ≤ t ≤ T

)
.

In the subcritical and critical cases (m ≤ 1),

(
ξT−t

(
Fγ⊥
)
, 0 ≤ t ≤ T

) d=
(
ξt
(
Fγ>
)
, 0 ≤ t ≤ T

)
and actually in this case ζ(∅) has density µ⊥(dr) = µ>(dr) = Π(r)

m
dr.

In the supercritical and critical cases (m ≥ 1) we have

(ξT−t (F∗) , 0 ≤ t ≤ T ) d=
(
ξt
(
F̃∗
)
, 0 ≤ t ≤ T

)
.

Remark 23. Theorem 13 from the Introduction is a particular case of this theorem when
Π is exponential.
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Figure II.2 – An example of forest F∗ consisting in three chronological trees (left) and its
dual (right).

Remark 24. Whenm < 1, F̃γ⊥ has no interpretation as a stopped sequence of i.i.d. splitting
trees as in Lemma 21, because γ 6= P̃> (ξT 6= 0). Indeed, in this case

P0
(
τ0 < τ+

T

∣∣∣τ+
0 < +∞

)
=

T∫
0

Pv
(
τ0 < τ+

T

)
P0
(
Yτ+

0
∈ dv

∣∣∣τ+
0 < +∞

)

=
T∫

0

W (T − v)
W (T )

Π(v)
m

dv = 1
m

(
1− 1

W (T )

)
where the last equality comes from (II.11). This entails that in this case the number of
trees on the forest F̃∗ is geometric with parameter

1−
1− 1

W (T )

1− 1
W (∞)

6= γ.

Actually, we will state a more general equality in distribution in the subsequent The-
orem 25, concerning not only the underlying population size processes of the forests, but
the two dual forests themselves (see Fig. II.2). For a forest F consisting of N chronological
trees that go extinct before T , and an (N +1)-st tree TN+1 that reaches time T , truncated
up to this time, its dual forest (in reverse time) can be defined as follows: its roots are
the individuals of F extant at T , birth events become death events and vice versa, and
the parental relations are re-drawn from the top of edges to the right (when looking in the
original time direction), such that daughters are now to the left of their mothers. This
rule is applied to all edges, except for those which are to the right of the last individual
that survives up until time T , that are translated to the left of the first ancestor before
re-drawing the parental relations, as it is shown in Fig. II.2. Hence, we postpone the proof
of Theorem 22, that will be established later as a consequence of this more general result.

Hereafter, we will consider the contour process of a forest F truncated at T (i.e. each
tree is truncated at T ) for which we use the following notation C(T )(F) = C(F (T )). Also
define for a càdlàg process X, a deterministic transformation of its path by

K(X) := ρ ◦ χ(X)
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which exists when g0(X) < +∞ (see preliminaries). This operator has the effect of shifting
the last excursion from T to 0 to the left and then apply the space-time-reversal of the
process as defined in the preliminaries.

Theorem 25. Let C(T )(F γ̃⊥) be the JCCP of a random forest F γ̃⊥ truncated at T . Then,
after applying the operator K, the process obtained has the law of the contour of a forest
F̃γ>, also truncated at T . More precisely,

K
(
C(T )(F γ̃⊥)

)
d= C(T )

(
F̃γ>
)

Now the proof of Theorem 22 can be achieved as a quite immediate consequence of
this second theorem.

Proof of Theorem 22. Recall our definition of the local time Γ of a process Y with finite
variation and finite lifetime. We only need to notice that, for any càdlàg function X such
that g0(X) < +∞,(

ΓT−t(X ◦ kg0(X)), 0 ≤ t ≤ T
)

= (Γt ◦ K(X), 0 ≤ t ≤ T ) .

This is true, in particular, when X is the contour of a truncated forest C(T )(F̃γ>), which
lifetime is precisely g0(C). Since the local time process of the contour of a tree, Γ ◦ C, is
the same as its population size process Ξ, the first result is established.

The second statement about the subcritical and critical cases is immediate from the
first one, and the fact that measures µ> and µ⊥ are the same, as well as Π and Π̃, when
m ≤ 1.

Finally, the third identity is also a consequence of the first one and Lemma 21.

To demonstrate Theorem 25 we will consider first two independent sequences, with also
independent elements, distributed as excursions of the process Y starting at 0 or T and
killed upon hitting 0 or T . Notice that, P0-a.s., we have {τ0 < τ+

T , τ
+
0 < +∞} = {τ0 < τ+

T }
and {τ+

T < τ0, τ
+
0 < +∞} = {τ+

T < τ0}, however we choose to use the left-hand-side events
in the definitions below, to emphasize the fact that the process is conditioned on hitting
(0,+∞). More precisely define the sequence (εi, 1 ≤ i ≤ Ñ + 1) as follows
• (εi) are i.i.d. with law P0(·|τ0 < τ+

T , τ
+
0 < +∞) ◦ k−1

τ0 for 1 ≤ i ≤ Ñ ,
• ε

Ñ+1 has law P0(·|τ+
T < τ0, τ

+
0 < +∞) ◦ k−1

τ+
T

• Ñ is an independent geometric random variable with probability of success γ̃.
Also define the sequence (ε̃i, 1 ≤ i ≤ N + 1) as
• ε̃i are i.i.d. with the law PT (·|τ+

T < τ0) ◦ k−1
τ+
T

for 1 ≤ i ≤ N

• ε̃N+1 has law PT (·|τ0 < τ+
T ) ◦ k−1

τ0

• N is an independent geometric random variable with probability of success γ.
We denote by Z the process obtained by the concatenation of these two sequences of

excursions in the same order they were defined, that is Z := [ε, ε̃] (see Fig. II.3). We will
prove first that, after a time change erasing the negative values of these excursions and
closing up the gaps, the process thus obtained has the same law as the contour of the
forest F γ̃⊥ truncated at T .

Claim 1: We have the following identity in law:

Z ◦ α d= C(T )(F γ̃⊥)
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Figure II.3 – (a) An example of the Lévy process Z with Ñ = 3 excursions before
hitting T , and N = 2 excursions before hitting 0 again, and some path transfor-
mations of Z: (b) χ(Z) places the last excursion ε̃3 at the origin and shifts to the
right the rest of the path; (c) ρ ◦ χ(Z) is the space-time-reversal of the path at (b);
and (d) (ρ ◦ χ(Z)) ◦αT erases the sub-paths of (c) taking values greater than T and
closes up the gaps, hence the shorter length of the path.



78 II. Time reversal dualities for some random forests

Proof. Since a forest F γ̃⊥ is a finite sequence of independent trees and, when truncated,
its contour process, say C(T )(F γ̃⊥) :=

(
Ct, 0 ≤ t ≤ `

)
, is defined as the concatenation of

the contour of the trees of this sequence, its law will be characterized by the law of the
sequence of the killed paths ei := (Cti+t, 0 ≤ t < ti+1 − ti), where t0 = 0, ti =

∑i
j=1 `(T⊥,i)

for 1 ≤ i ≤ Nγ̃ , tNγ̃+1 = tNγ̃ + `(T (T )
⊥,Nγ̃+1) = `(F γ̃⊥). Here Nγ̃ + 1 is the number of trees

in F γ̃⊥. These killed paths are then the JCCP’s of each of the trees in the forest, that is
ei = C(T (T )

⊥,i ) for every 1 ≤ i ≤ Nγ̃ + 1, which are by definition independent, and their
number Nγ̃ + 1 is geometric with parameter γ̃. The first Nγ̃ are identically distributed
and conditioned on extinction before T , and the last one conditioned on surviving up until
time T .

On the other hand, define for the sequence of excursions ε, the lifetime of its terms,
ζi = ζ(εi) and the first time they hit [0,+∞), ζ+

i = ζ+(εi). These excursions start at 0
and always visit first (−∞, 0). Under {τ+

0 < +∞}, 0 is recurrent for the reflected process,
so we have 0 < ζ+

i < ζi < +∞, P0-a.s. for every i ≥ 1. If now we apply to each of these
excursions the time change α, removing the non positive values and closing up the gaps,
we obtain for 1 ≤ i ≤ Ñ + 1,

εi ◦ α =
(
εi(ζ+

i + t), 0 ≤ t < ζi − ζ+
i

)
so, for 1 ≤ i ≤ Ñ , εi ◦ α has the law of (Yτ+

0 +t, 0 ≤ t ≤ τ0 − τ+
0 ) under P0(·|τ0 < τ+

T , τ
+
0 <

+∞). Thanks to Lemma 19 (ii), this is the same as the law of the contour of each of the
first Nγ̃ trees on the forest F γ̃⊥.

The last excursion, ε
Ñ+1 ◦ α has the law of (Yτ+

0 +t, 0 ≤ t ≤ τ
+
T − τ

+
0 ) under P0(·|τ+

T <

τ0, τ
+
0 < +∞), that is, an excursion of Y starting from an initial value distributed accord-

ing to µ⊥, conditioned on hitting T before 0.
If we look now at the second sequence ε̃, we notice that, since γ = PT (τ0 < τ+

T ), it
is distributed as a sequence of i.i.d. excursions with law PT ◦ kτ0∧τ+

T
(·), stopped at the

first one hitting 0 before (T,+∞). Thus, Theorem 4.3 in [Lam10] guarantees that the
concatenation [ε

Ñ+1 ◦ α, ε̃] has the law of the contour of the last tree in the forest F γ̃⊥
truncated at T , say T (T )

⊥,Nγ̃+1.
Finally, since Ñ has the same distribution as Nγ̃ , we have,

[ei, 1 ≤ i ≤ Nγ̃ + 1] d= [εi ◦ α, 1 ≤ i ≤ Ñ + 1, ε̃i, 1 ≤ i ≤ N + 1]

Now the right-hand-side equals [ε, ε̃] ◦ α, because the time change α is the inverse of
an additive functional, so it commutes with the concatenation, and the elements of the
sequence ε̃ do not take negative values, so the time change α has no effect on them. This
ends the proof of the claim.

Now we will look at the process Z after relocating the last excursion of the second
sequence, ε̃N+1 to the beginning and shifting the rest of the path to the right. More
precisely, consider the process

V = [ε̃N+1, ε1, . . . , εÑ+1],

and consider also the space-time-reversed process ρ ◦ V (see Fig. II.3). It is not hard to
see that

ρ ◦ V = [T + ρ ◦ ε
Ñ+1, T + ρ ◦ ε

Ñ
, . . . , T + ρ ◦ ε1, ρ ◦ ε̃N+1],
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since V (0) = ε
Ñ+1(0) = T and all the other excursions in V take the value 0 at 0. Then

we have the following result on the law of this process, reflected at T .

Claim 2: We have the following identity in law:

(ρ ◦ V ) ◦ αT d= C(T )
(
T̃ ′>
)

where T̃ ′> is a splitting tree conditioned on surviving up until time T .
For the proof of Claim 2 we will need the following two results that are proved in the

Appendix.

Lemma 26. The probability measure PT
(
·
∣∣∣τ0 < τ+

T

)
◦ k−1

τ0 is invariant under space-time-
reversal.

Lemma 27. For any a > 0, x ∈ (0, a) and Λ ∈ Fτa the following identity holds

P̃x
(
Λ, τ+

a < τ0
)

= Px
(
Λ, τ+

a < τ0, τa < +∞
)

e−η(a−x)

In particular, P̃x
(
τ+
a < τ0

)
= Px

(
τ+
a < τ0, τa < +∞

)
e−η(a−x), hence

P̃x
(
Λ|τ+

a < τ0
)

= Px
(
Λ|τ+

a < τ0, τa < +∞
)

Proof of Claim 2. We can deduce from Proposition 16 the following observations about
the laws of the space-time-reversed excursions:
(1) conditional on ε

Ñ+1(ζ−) = T − u, the reversed excursion T + ρ ◦ ε
Ñ+1 has law

Pu(·|τ+
T < τ0, τT < +∞) ◦ k−1

τT

(2) for 1 ≤ i ≤ Ñ , the excursions T + ρ ◦ εi have law PT (·|τ+
T < τ0, τT < +∞) ◦ k−1

τT

and thanks to Lemma 26, we also have

(3) ρ ◦ ε̃N+1
d= ε̃N+1, with common law PT (·|τ0 < τ+

T ) ◦ k−1
τ0 .

Now we would like to express the laws of the excursions in (1), (2) and (3) in terms of
the probability measure P̃ , the probability of Y conditioned on not drifting to +∞ (see
preliminaries). For (3) we easily have, from (II.10), that

PT (·|τ0 < τ+
T ) ◦ k−1

τ0 = PT (·|τ0 < τ+
T , τ0 < +∞) ◦ k−1

τ0 = P̃T (·|τ0 < τ+
T ) ◦ k−1

τ0

The result in Lemma 27 entails in particular that excursions in (1) and (2), killed at
the time they hit (T,+∞), have distribution P̃u(·|τ+

T < τ0) ◦ k−1
τ+
T

and P̃T (·|τ+
T < τ0) ◦ k−1

τ+
T

respectively. Besides, notice that to kill these excursions at τ+
T is the same as applying

the time change αT , i.e. removing the part of the path taking values in (T,+∞).
Then, conditional on V (ζ−) = T − u, the reversed process after the time change αT ,

that is (ρ ◦ V ) ◦ αT consists in a sequence of independent excursions distributed as the
Lévy process Ỹ killed at τ0 ∧ τ+

T , all starting at T , but the first one, starting at u. There
are Ñ excursions from T , conditioned on hitting T before 0 and a last excursion from T
conditioned on hitting 0 before returning to T , and killed upon hitting 0. Observe that
Ñ has geometric distribution with parameter γ̃, which is exactly the probability that an
excursion of Ỹ , starting at T , exits the interval (0, T ) from the bottom, that is P̃T (τ0 < τ+

T )
(Equation (II.3)). This implies that excursions in (2) and (3) after the time change αT ,
form a sequence of i.i.d. excursions of Ỹ starting at T , killed at τ0 ∧ τ+

T , ending at the
first one that hits 0 before [T,+∞) (Lemma 18).
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The fact that the time change αT commutes with the concatenation, allows to conclude
that (ρ ◦ V ) ◦ αT , conditional on V (ζ−) = T − u, has the law of the process Ỹ starting at
u, conditioned on hitting T before 0, reflected below T and killed upon hitting 0.

From the definition of the sequence ε we deduce that V (ζ−) = ε
Ñ+1(ζ−) has the law

of the undershoot of Y at T of an excursion starting at T and conditioned on hitting
0 before (T,+∞). As usual, the strong Markov property and the stationary increments
of the Lévy process entail that this excursion is invariant under translation of the space,
hence this undershoot has the distribution P0

(
−Yτ+

0 −
∈ ·
∣∣∣τ−T < τ+

0 < +∞
)
. This implies

that the law of (ρ ◦ V ) ◦ αT is

T∫
0

P0
(
−Yτ+

0 −
∈ du

∣∣∣τ−T < τ+
0 < +∞

)
P̃u
(
Y (T ) ∈ ·

∣∣∣τ+
T < τ0

)
◦ k−1

τ0 , (II.15)

and we will show this is the same as

P̃>
(
·
∣∣∣τ+
T < τ0

)
◦ k−1

τ0 =
∫ T

0 µ>(du)P̃u
(
Y (T ) ∈ ·, τ+

T < τ0
)
◦ k−1

τ0∫ T
0 µ>(du)P̃u

(
τ+
T < τ0

) . (II.16)

The strong Markov property and Proposition 16 imply that

P0
(
−Yτ+

0 −
∈ du

∣∣∣τ−T < τ+
0 < +∞

)
= µ>(du)

Pu
(
τ+
T < τ0

∣∣∣τ0 < +∞
)

P0
(
τ−T < τ+

0

∣∣∣τ+
0 < +∞

) .
Then by using this identity and (II.10), we have that (II.15) equals

T∫
0

µ>(du)
Pu
(
τ+
T < τ0

∣∣∣τ0 < +∞
)

P0
(
τ−T < τ+

0

∣∣∣τ+
0 < +∞

) P̃0
(
Y (T ) ∈ ·, τ+

T < τ0
)
◦ k−1

τ0

P̃u(τ+
T < τ0)

=

T∫
0
µ>(du)P̃0

(
Y (T ) ∈ ·, τ+

T < τ0
)
◦ k−1

τ0

P0
(
τ−T < τ+

0

∣∣∣τ+
0 < +∞

) .

Finally, the numerator in the last term is the same as the one in the right-hand-side of
(II.16), due again to (II.10) and the dualities from Proposition 16.

Then, as announced, (ρ ◦ V ) ◦ αT has the law (II.16), which is, thanks to Lemma 19,
the contour of a splitting tree of lifespan measure Π̃ and ancestor distributed as µ>,
conditioned on surviving up until time T and truncated at T , say T̃ ′>.

It remains to understand the effect on the i.i.d. excursions (ε̃i, 1 ≤ i ≤ N), of the
reversal operator ρ, which is given in the following statement.

Claim 3: For 1 ≤ i ≤ N ,
ρ ◦ ε̃i

d= C
(
T̃>,i

)
where T̃>,i is a sequence of i.i.d. splitting trees conditioned on dying out before T .

Proof. We know from Proposition 16 that, conditional on ε̃i(ζ−) = T − u, the reversed
excursions ρ ◦ ε̃i, has the law of Ỹ starting from u, conditioned on hitting 0 before T and
killed upon hitting 0, that is P̃u(·|τ0 < τ+

T ) ◦ k−1
τ0 .
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The same reasoning as for Claim 2 yields that T − ε̃i(ζ−) has distribution

P0
(
−Yτ+

0 −
∈ ·
∣∣∣τ+

0 < τ−T < +∞
)
,

for every 1 ≤ i ≤ N , and then, each of the reversed excursions ρ ◦ ε̃i has the law P̃>(·|τ0 <
τ+
T ) ◦ k−1

τ0 . This is the same as the contour process of splitting trees, say T̃>,i, all i.i.d. for
1 ≤ i ≤ N and conditioned on dying out before T .

Proof of Theorem 25. We have now all the elements to complete the proof of this result.
Notice the transformations we have done to the trajectories of the process Z = [ε, ε̃] in
terms of its excursions, can also be expressed in terms of the time-changes α, αT and the
path transformations ρ, χ (Fig. II.3), as follows

χ(Z) = [V, ε̃1, . . . , ε̃N ]

and stressing that all these paths start by taking the value T , we have

ρ ◦ χ(Z) = [ρ ◦ ε̃N , . . . , ρ ◦ ε̃1, ρ ◦ V ].

On the other hand, after Claim 1, we have C(T )(F γ̃⊥) = Z ◦ α, so

K(C(T )(F γ̃⊥)) d=K ◦ Z ◦ α = (ρ ◦ χ) ◦ (Z ◦ α) =

= [ρ ◦ ε̃N , . . . , ρ ◦ ε̃1, (ρ ◦ V ) ◦ αT ]

We have proved that the right-hand term in the last equation has the law of the contour of
a sequence of independent splitting trees T̃>,i, which are i.i.d. for 1 ≤ i ≤ N , conditioned
on dying out before T , and a last tree T̃> conditioned on surviving up until time T . Since
N is geometric with parameter γ, this is the same as the process C(T )(F̃γ>), which concludes
the proof.

4 Epidemiology
In general, in the context of epidemiology, phylogenetic trees are considered to be

estimated from genetic sequences obtained at a single time point, or sampled sequen-
tially through time since the beginning of the epidemic. There exists several methods
allowing this estimation, which are not addressed here. We assume the estimated recon-
structed trees (i.e. the information about non sampled hosts is erased from the origi-
nal process) are the transmission trees from sampled individuals and no uncertainty on
the branch lengths is considered. This hypothesis makes sense when the epidemiologi-
cal and evolutionary timescales can be supposed to be similar [VKB13]. These recon-
structed phylogenies can provide information on the underlying population dynamic pro-
cess [Tho75, NMH94, DPR03] and there is an increasing amount of work on this relatively
new field of phylodynamics.

Most of phylodynamic models are based on Kingman’s coalescent, but its poor realism
in the context of epidemics (rapid growth, rapid fluctuations, dense sampling) has moti-
vated other authors to use birth-death or SIR processes for the dynamics of the epidemics
[VPW+09, RRK11, SKvW+12, LT13, LAS14]. A common feature for most of these works
is that they use likelihood-based methods that intend to infer the model parameters on
the basis of available data, via maximum likelihood estimation (MLE), or in a Bayesian
framework.
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Usually, not only the reconstructed phylogenies described above are available, but also
incidence time-series, that is, the number of new cases registered through time (typically
daily, weekly or monthly). This information may come from hospital records, surveillance
programs (local or national), and is not necessarily collected at regular intervals. As we
mentioned before, here we are interested in the scenario where both types of data are
available: phylogenetic trees (reconstructed from pathogen sequences) and incidence time
series.

From the probabilistic point of view, we are interested in the distribution of the size
process of the host population, denoted by I := (It, 0 ≤ t ≤ T ), conditional on the
reconstructed transmission tree from infected individuals at time T . More precisely, we
want to characterize the law of I, conditional on σ = (σi, 1 ≤ i ≤ n) to be the coalescence
times in the reconstructed tree of transmission from extant hosts at T .

We suppose that the host population has the structure of a forest F γ̃⊥, so we consider
there are a geometric number Ñ (with parameter γ̃) of infected individuals at time 0, for
which the corresponding transmission tree dies out before T , and a last one which is at the
origin of all the present-time infectives. Let (Hi)1≤i≤N be the coalescence times between
these infected individuals at T , where as before, N is an independent geometric r.v. with
parameter γ. Here we are interested in characterizing the distribution of Ξ(F γ̃⊥), the total
population size process of infected individuals on [0, T ], conditional on Hi = σi, 1 ≤ i ≤ N .

Since in our model, all infected individuals at T belong to the last tree in the forest,
which we know from the definition, is conditioned on surviving up until time T , a result
from [Lam10] and the pathwise decomposition of the contour process of a forest from
the previous section, tells us that these coalescence times are precisely the depths of the
excursions away from T of C(F γ̃⊥), that is, Hi

d= inf ε̃i for 1 ≤ i ≤ N . We recall that ε̃i are
i.i.d. with law PT (·|τ+

T < τ0) ◦ k−1
τ+
T

.
Then, conditioning the population size process on the coalescence times is the same

as these excursions of the Lévy process Y conditioned on their infimum, which becomes,
after the corresponding space-time-reversal, their supremum, since, PT (·|τ+

T < τ0) ◦ k−1
τ+
T

-
a.s., we have sup[0,τ+

T ) ρ ◦ ε̃ = supt∈[0,τ+
T ) T − ε̃((τ

+
T − t)−) = inf [0,τ+

T ) ε̃. Besides, thanks to
Theorem 25, when we reverse the time, these excursions themselves are distributed as the
contour of independent subcritical (with measure Π̃) splitting trees conditioned on hitting
0 before T , starting from a value distributed as µ> in [0, T ]. Therefore, conditioning these
excursions on their supremum is the same as conditioning the corresponding trees on their
height, that is, conditioning on the time of extinction of each tree with lifespan measure
Π̃ to equal the corresponding time of coalescence σi. We notice that conditioning on an
event as {TExt = s}, is possible here since the time of extinction of a tree T̃> always has
a density (because µ> has a density).

We also know from the proof of Theorem 25, that the total population process of the
forest, also takes into account the width process of the excursion V ◦α, which is independent
of ε̃i, 1 ≤ i ≤ N , and when reversed, has the law of the contour of a splitting tree truncated
up to T , and conditioned on surviving up until time T , that is (ρ ◦ V ) ◦ αT d= C(T )(T̃ ′>) as
stated in Claim 2.

More precisely we have the following result,

Theorem 28. Let F γ̃⊥ and (Hi)i≥1 as defined before. Then, under P (·|Hi = σi, 1 ≤ i ≤
N), the population size process backward in time, (ξT−t(F γ̃⊥), 0 ≤ t ≤ T ), is the sum of the
width processes of N + 1 independent splitting trees (T̃>,i)1≤i≤N+1, where,

• for 1 ≤ i ≤ N , T̃>,i are subcritical splitting trees with lifespan measure Π̃, starting
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with an ancestor with lifespan distributed as µ>, and conditioned on its time of
extinction to be σi, that is with law P̃>(·|TExt = σi)
• the last tree T̃>,N+1 is a subcritical splitting tree with lifespan measure Π̃, starting
with an ancestor with lifespan distributed as µ>, and conditioned on surviving up
until time T , that is with law P̃>(·|TExt > T ).



84 II. Time reversal dualities for some random forests

Appendix

A-II.1 Remaining proofs

In this section we proceed to the proofs of Lemma 19, Lemma 20, Lemma 26 and
Lemma 27.

Proof of Lemma 19. These statements are quite immediate consequences of Theorem 4.3
from [Lam10], the strong Markov property and stationarity of the increments of Y . We
will expand the arguments for (i) and the other statements can be proved similarly. We
know from 17, that conditional on Ext and ζ(∅) = x, the contour C = C(T⊥) has the law
of (Yt, 0 ≤ t ≤ τ0) under Px (·|τ0 < +∞). Hence, it follows from the definition of T⊥ and
by conditioning on its ancestor lifespan that,

P⊥ (C ∈ ·|Ext) =
∞∫
0

P (C ∈ ·|Ext, ζ(∅) = x)P⊥ (ζ(∅) ∈ dx)

=
∞∫
0

Px (Y ◦ kτ0 ∈ ·|τ0 < +∞)P0
(
Yτ+

0
∈ dx

∣∣∣τ+
0 < +∞

)

=
∞∫
0

P0
(
Y ◦ θτ+

0
◦ kτ0 ∈ ·

∣∣∣Yτ+
0

= x, τ0 < +∞
)
P0
(
Yτ+

0
∈ dx

∣∣∣τ+
0 < +∞

)
= P0

(
Y ◦ θτ+

0
◦ kτ0 ∈ ·

∣∣∣τ0 < +∞
)
,

which ends the proof of (i).

Proof of Lemma 20. First we want to prove that γ̃ = P⊥ (ξT 6= 0). To do that, we can
express this probability in terms of the contour process, thanks to Lemma 19 (ii), we have

P⊥ (ξT = 0) = P0
(
τ0 < τ+

T

∣∣∣τ+
0 < +∞

)
According to (II.7), in the supercritical case, we have P0(τ+

0 < +∞) = 1. The probability
that the process Y , starting from 0, returns to 0 before it reaches the interval [T,+∞),
can be computed by integrating with respect to the measure of the overshoot at 0, of an
excursion starting from 0. Then, by applying the strong Markov property, equations (II.3)
and (II.12), we prove the first identity,

P0
(
τ0 < τ+

T

)
=

T∫
0

Pv
(
τ0 < τ+

T

)
P0
(
Yτ+

0
∈ dv

)

=
T∫

0

Pv
(
τ0 < τ+

T

)
eηvΠ̃(v)dv =

T∫
0

W (T − v)
W (T ) eηvΠ̃(v)dv

= 1
W (T )e−ηT

T∫
0

W (T − v)e−η(T−v)Π̃(v)dv = 1
W̃ (T )

T∫
0

W̃ (T − v)Π̃(v)dv

= 1− 1
W̃ (T )
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The second statement is that γ = P̃> (ξT 6= 0), which follows from,

P̃>
(
τ0 < τ+

T

)
=

T∫
0

P̃u
(
τ0 < τ+

T

)
P0
(
−Yτ+

0 −
∈ du

)

=
T∫

0

W̃ (T − u)
W̃ (T )

e−ηuΠ(u)du =
T∫

0

eη(T−u)W̃ (T − u)
eηT W̃ (T )

Π(u)du

= 1
W (T )

T∫
0

W (T − u)Π(u)du = 1− 1
W (T )

The second statement can also be established thanks to Proposition 16 (ii). This
duality property, together with Equations (II.3) and (II.10), imply that

P̃> (ξT = 0) = P̃>
(
τ0 < τ+

T

)
= PT

(
τ+
T < τ0

)
= 1− 1

W (T )

which is the expected result.

Proof of Lemma 26. Let ε := Y ◦ kτ0 = (Yt, 0 ≤ t < τ0), we want to prove that ε and ρ ◦ ε
have the same law under the probability measure PT

(
·
∣∣∣τ0 < τ+

T

)
.

Define
ςT := sup{t ∈ [0, τ0) : Yt = T}.

First, since the process makes no negative jumps, we have the following identities P0-a.s.

{ςT < +∞} = {∃t < τ0 : Yt = T} ∩ {τ0 < +∞} = {τT < τ0 < +∞} = {τ+
T < τ0 < +∞}.

Consider ε under P0(·|τ+
T < τ0 < +∞). Under this probability, τT < +∞ a.s., so we can

apply the strong Markov property at τT and we have that

P0
(
ε ◦ θτT ∈ ·

∣∣∣ τ+
T < τ0 < +∞

)
= PT (· | τ0 < +∞) ◦ k−1

τ0 .

Now consider the excursions away from T of the process Y under PT (·|τ0 < +∞) ◦ k−1
τ0 ,

which consist in a sequence of i.i.d. subpaths distributed as PT (·|τ+
T < +∞)◦k−1

τT
, stopped

at the first one that hits 0 before T and killed at τ0 (see the introduction of the chapter
for a description of the excursion process away from a point in the irregular case). This
“last” excursion in the sequence has distribution PT (·|τ0 < τ+

T )◦k−1
τ0 . Thanks to the above

identity, this last excursion can also be defined as the excursion shifted to the last passage
at T , that is ε ◦ θςT under P0(·|τ+

T < τ0 < +∞). Hence we have that

P0(ε ◦ θςT ∈ ·|τ
+
T < τ0 < +∞) = PT

(
·
∣∣∣τ0 < τ+

T

)
◦ k−1

τ0 . (A-II.1)

On the other hand, we know from Proposition 16 that the probability measure of
ε starting at 0 and conditional on {τ0 < +∞} is invariant under space-time-reversal,
meaning that for every bounded measurable function F we have

E0 [F (ε)|τ0 < +∞] = E0 [F (ρ ◦ ε)|τ0 < +∞]

In particular, for any f also bounded and measurable, take

F (ε) = f(ε ◦ θςT (ε))1{sup ε≥T}.
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If we now apply this function to the reversed excursion, it is not hard to see that, P0(·|τ0 <
+∞) a.s. we have, {sup[0,τ0] ρ ◦ ε ≥ T} = {inf [0,τ0] ε ≤ −T} and ςT (ρ ◦ ε) = τ0(ε)− τ−T (ε).
From the definition of space-time-reversal and shifting operators it also follows that

(ρ ◦ ε) ◦ θςT (ρ◦ε) = (−ε((τ0 − t)−)) ◦ θτ0−τ−T (ε) = −ε((τ−T − t)−) = ρ ◦ (ε ◦ kτ−T ).

Hence for any bounded measurable f it holds that

E0
[
f(ε ◦ θςT )1{sup ε≥T}

∣∣∣τ0 < +∞
]

= E0
[
f
(
ρ ◦ (ε ◦ kτ−T )

)
1{inf ε≤−T}

∣∣∣τ0 < +∞
]
,

and in particular for f ≡ 1 we have

P0 (sup ε ≥ T |τ0 < +∞) = P0 (inf ε ≤ −T |τ0 < +∞) .

Combining these two equations and using that {sup ε ≥ T} = {τ+
T < τ0} and {inf ε ≤

−T} = {τ−T < τ+
0 } a.s. under P0(·|τ0 < +∞), we have

P0
(
ε ◦ θςT ∈ ·

∣∣∣τ+
T < τ0

)
= P0

(
ρ ◦ (ε ◦ kτ−T ) ∈ ·

∣∣∣τ−T < τ+
0

)
. (A-II.2)

According to (A-II.1), the left-hand-side in (A-II.2) equals PT
(
·
∣∣∣τ0 < τ+

T

)
◦ k−1

τ0 . Fi-
nally, the conclusion comes from the following consequences of the strong Markov property.
First, the excursion ε ◦ kτ−T has the same law under P0(·|τ−T < τ0, τ0 < +∞) as under
P0(·|τ−T < τ+

0 ) . And ρ ◦ (ε ◦ kτ−T ) under P0(·|τ−T < τ+
0 ) has the same law as ρ ◦ (ε ◦ kτ0)

under PT (·|τ0 < τ+
T ).

Proof of Lemma 27. We need to prove that for any a > 0, x ∈ [0, a] and Λ ∈ Fτa the
following identity holds

P̃x
(
Λ, τ+

a < τ0
)

= Px
(
Λ, τ+

a < τ0, τa < +∞
)

e−η(a−x).

Recall that η = 0 ⇐⇒ m ≤ 1, in which case P̃ = P and the process drifts to −∞ so
this identity is trivial. Hence we will suppose from now η > 0. Since the process makes
only positive jumps, we have {τa < τ0} = {τ+

a < τ0}, P̃x a.s., so we can look instead at
P̃x (Λ, τa < τ0).

Indeed, we can prove the following more general identity, for any Θ ∈ Fτa ,

P̃x (Θ, τa <∞) = Ex
[
1{Θ,τa<∞}e

−η(a−x)
]
. (A-II.3)

Let t > 0. First notice that Θ ∩ {τa < t} ∈ Fτa . This, together with the definition of P̃ ,
the strong Markov property and the martingale property of e−η(Yt−x), allow to state that

P̃x (Θ, τa < t) = Ex

[
1{Θ,τa<t}

e−ηYt
e−ηx

]
= Ex

[
1{Θ,τa<t}Ex

[
e−ηYt
e−ηx

∣∣∣∣∣Fτa
]]

= Ex

[
1{Θ,τa<t}

e−ηa

e−ηx

]
.

Now, with the help of the Monotone Convergence Theorem, we can take the limit when
t ↑ ∞, which leads to (A-II.3). Finally, by choosing Θ = Λ ∩ {τa < τ0} we obtain the
desired result.



Chapter III

Branching processes seen from their
extinction time via path decompo-
sitions of reflected Lévy processes

This chapter is based in the article [DFL16].

1 Introduction

There exist several links between spectrally positive Lévy processes (SPLP) and branch-
ing processes that have been known and exploited for a few decades already. We can
find their origin in the seminal works of Lamperti [Lam67], where it is shown that there
exists a one-to-one correspondence, via a random time change (the so-called Lamperti
transformation) between continuous state branching processes (CSBP) and possibly killed
SPLP [CLUB09, LSZ13]. Lévy processes also provide a suitable way of coding the ge-
nealogical structure of branching processes, through exploration or contour processes
[LGLJ98, Lam10, LB16]. Additionally, Ray-Knight type theorems link the local time
processes of SPLP to the width processes of branching populations [PW11, LB16].

Here we consider a Lévy process with no negative jumps X = (Xt, t ≥ 0), with
probability distribution Px = P (·|X0 = x) and with Laplace exponent ψ, defined by

E0[exp(−λXt)] = exp(tψ(λ)).

Thanks to the Lévy-Kinchin formula, ψ can be expressed as follows for any λ ≥ 0,

ψ(λ) = αλ+ βλ2 +
∞∫
0

(
e−λr − 1 + λr1r<1

)
Π(dr), (III.1)

where α ∈ R, β ≥ 0 is called the Gaussian coefficient and Π is a σ- finite measure on
(0,∞), called the Lévy measure, satisfying

∫
(0,∞)(r2 ∧ 1)Π(dr) <∞. The paths of X have

finite variation a.s. if and only if β = 0 and
∫

(0,1] rΠ(dr) < ∞. Otherwise they have
infinite variation a.s. We assume that X is (sub)critical, meaning it does not drift to +∞,
which is equivalent to ψ′(0+) ≥ 0.

We consider the process reflected at its infimum X− I, where for each t ≥ 0 we denote
It := inf [0,t]X. A result due to Rogozin [Rog66] states that for SPLP processes 0 is always
regular for (−∞, 0), so is also regular for itself for the reflected process (and it is regular
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for (0,+∞) if and only if X has infinite variation paths a.s.). We know from general
theory for Markov process that there exists a local time at 0 for X − I, here denoted by
(Lt, t ≥ 0) that can be defined as the unique (up to a multiplicative constant) adapted
additive functional that grows exactly on the zeros of X − I. Furthermore, the fact that
X has no negative jumps entails that −I satisfies these conditions, so it is an explicit local
time for the reflected process. Then, its right-continuous inverse

τt := inf {s > 0 : −Is > t}

is the same as T−t = inf{s ≥ 0 : Xs < −t}, the first hitting time of (−∞,−t). It is a
(possibly killed) subordinator whose jumps coincide exactly with the excursion intervals
of X − I so it represents the appropriate time scale for the so-called excursion process,
that we will now describe.

Let E be the space of real-valued càdlàg functions with finite lifetime V ∈ [0,∞),
and we denote by ∂ a topologically isolated state, so-called cemetery point. Define the
excursion process ε = (εt, 0 < t ≤ −I∞), taking values in E ∪ ∂ as follows

εt :=
{ (

(Xτt−+s − Iτt− , 0 ≤ s ≤ τt − τt−
)
, if τt − τt− > 0,

∂, if τt − τt− = 0, or t =∞, for t ≥ 0.

Then according to Itô’s excursion theory, (t, εt)t≥0 is a Poisson point process, possibly
stopped at the first excursion with infinite lifetime (which arrives only and a.s. when X
drifts to +∞). Its intensity is dt n(dε), where n is a measure on E called the excursion
measure. We refer to [Ber96, Chapter IV] for further details.

Let ε be the generic excursion of X − I away from 0 and γ the last instant at which
this excursion attains its supremum, that is

γ = γ(ε) = sup{s > 0 : εs = εs},

where εs = sup[0,s] ε. We are interested in the disintegration of ε at γ. Define the space-
time-reversal transformation ρ for any excursion ω ∈ E , as ρ ◦ ω := (ωV− − ω(V−s)−, 0 ≤
s ≤ V ). We also call it rotation. We prove that the pre-supremum and the post-supremum
processes, denoted respectively ←ε = kγ◦ε = (εs, 0 ≤ s ≤ γ) and →ε = θ′γ◦ε = (εγ+s−εγ , 0 ≤
s ≤ V − γ), are invariant for this space-time-reversal transformation under the measure
n. Moreover, this results implies the following theorem, for which we need first to define
the functional χ : E → E as

χ (ε) :=
[
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ εγ

]
,

where for any two elements ω1, ω2 ∈ E , [ω1, ω2] stands for their concatenation.

Theorem 29. For every bounded measurable functionals F : E → R+ we have

n (F ) = n (F ◦ χ)

Williams [Wil74] studied the decomposition of the generic excursion X − I at its
maximum for Brownian motion, showing it consists in two Bessel processes of dimension 3,
started at 0, running to encounter each other, and killed upon hitting the same independent
random variable (see e.g. [RY91, Chapter XII] or [Cha94, Section 5]). This result has been
generalized to SPLP by Chaumont [Cha96], and for general Lévy processes by Duquesne
[Duq03]. The law of each, the pre-γ and post-γ subpaths is characterized in [Cha96] and
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[Duq03] in terms of the law of X conditioned to stay positive, denoted P ↑. Our study
differs from these works since here we show that this distributions are invariant under
space-time-reversal. Rather our results provide in passing properties of reversal invariance
under the law P ↑ that we state later in Section 3. For further details on path decomposition
theorems for Lévy processes at the overall maximum, minimum and other random times,
we refer to [Mil77b, Mil77a, GP80].

More recently, in [AD09, DH13] the authors also establish Williams decompositions un-
der the excursion measure for the exploration process associated with the Lévy continuum
random tree and super-processes with a spatially non-homogeneous quadratic branching
mechanism. Several properties of these branching processes are then derived from these
decompositions, such as a closed formula for the probability of hitting zero for a CSBP
with immigration. In [DH13], the Q-process is obtained by looking at the super-process
from the root and letting the extinction time tend to infinity. Moreover, an equivalent of
the Esty time reversal from [KRS07] is given in a continuous setting.

Another result is obtained by Miermont in [Mie01] concerning a similar decomposition
via the Vervaat’s transform. Proposition 1 in [Mie01] applied to SPLP of infinite varia-
tion not drifting to +∞ and having bi-continuous marginal densities w.r.t. to Lebesgue
measure, has the following implications: the excursion above the infimum conditioned to
have a duration equal to l is well defined, and if we cut this excursion at a uniform point
υ and we concatenate the post-υ and the pre-υ subpaths (in this order), we get a Lévy
bridge going from 0 to 0 in l units of time (which is well defined under these hypotheses).
Such a bridge is clearly invariant by rotation and hence, by conditioning respectively on
the events {υ < γ} and {υ > γ}, we could have obtained that the laws of ←ε and →ε are
also invariant by rotation. This approach provides an alternative way of obtaining some
of our results under the technical hypothesis of continuity on the marginal densities.

A first consequence of Theorem 29 is the invariance under time reversal of the local
time process of the excursion X−I away from 0. To be more specific, define the local time
process (Γ(ε, r), r ≥ 0) for the canonical excursion ε ∈ E as a Borel function satisfying

V (ε)∫
0

φ (εs) ds =
∞∫
0

Γ (ε, r)φ(r)dr, (III.2)

for any continuous function φ with compact support in [0,∞). This local time processes
are known to exist in the infinite variation case, see for instance [Ber96]. When X has
finite variation we can define an equivalent process, taking values in N ∪ {+∞}, as the
number of times the excursion hits level r, i.e.

Γ (ε, r) =
∑

0≤s≤V
1{εs=r}. (III.3)

Then we can state the following result.

Corollary 30. The local time process of the excursions of X−I away from 0, is invariant
under time reversal, that is

(Γ (ε, r) , 0 ≤ r ≤ εγ) d= (Γ (ε, εγ − r) , 0 ≤ r ≤ εγ) . (III.4)

As we previously pointed out, the main motivation that led us to look into this pathwise
decomposition comes from branching processes, that is stochastic processes with non-
negative values satisfying the branching property. This means that for any x, y > 0, the
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process started at x + y has the same distribution as a sum of two independent copies
of itself, starting respectively at x and y. The simplest branching processes are those in
discrete time and state space, the well-known Bienaymé-Galton-Watson (GW) processes
[AN72]. In the case of discrete time and continuous state-space, we use the term Jirina
processes as in [Lam10]. For continuous time and discrete state space we speak of Crump-
Mode-Jagers (CMJ) processes and finally the so-called continuous state branching process
(CSBP) for continuous time and state spaces. Our results concern mainly the latter two,
so we will spend more time specifying their characteristics in Section 4, but we refer to
[AN72, Jag75] for the general theory of branching processes.

Splitting trees are random trees formed by individuals that behave independently from
each other, have i.i.d. lifetime durations (possibly infinite), and give birth to i.i.d. copies
of themselves during their lives (single births). The excursion of X − I can be viewed, in
the finite variation case, as the contour process of a (sub)critical splitting tree and then
its local time process is a CMJ [Lam10]. In the infinite variation case, under some mild
assumptions, this excursion codes the genealogy of a totally ordered measured (TOM) tree
satisfying the splitting property, which are the continuum analogue of chronological trees
in the setting of real trees, as it is shown in [LB16]. Hence, Theorem 29 leads in particular
to the invariance under time reversal from its extinction time of the (sub)-critical CMJ
process which is the local time of the SPLP characterized by (III.1). The same holds for
the excursion away from 0 of the critical Feller diffusion, which is the width process of
the continuum random tree, [Ald91]. This can be summarized in the following corollary
of Theorem 29.

Corollary 31. The (sub)critical CMJ’s branching process and excursion away from 0
of the critical Feller’s branching diffusion, are invariant under time reversal from their
extinction time.

Similar results concerning the duality by time-reversal of branching processes have been
given in the litterature. In particular, in [AP05] we can find a time-reversal invariance
principle for the linear birth and death process in the critical case, when the process is
conditioned on the number of individuals at the time of reversal to be equal to n. As
suggested by the authors, the rescaled limit of the time-reversed process when n→∞, is
the Feller branching diffusion. This suggests an alternative way of obtaining the second
result on the previous Corollary. See also [Est75] and more recently [AR02, KRS07, DH13]
for the treatment of the reverse of Galton-Watson processes and specifically the Esty time
reversal, which is the limit obtained by conditioning a GW process in negative time upon
entering the state 0 (extinction) at time 0 and starting in the state 1 at time −n, when
n tends to +∞. We also refer to [BD16] for a time reversal property for the number of
ancestors process of a stationary CSBP with sub-critical quadratic branching mechanism.

This paper is a follow-up to [DFL15], where we have obtained a property of invariance
under time-reversal, from a deterministic time T , for the population size process of certain
random forests. The latter are defined as a sequence of splitting trees stopped at the first
tree surviving up to time T . In [DFL15] we focused on the time-reversal from a determin-
istic time T whereas here we are interested in the same property from the extinction time
of the process. It is worth stressing that, besides the implications concerning branching
processes, some of our lemmas are interesting in their own right since they provide some
invariance results for subpaths of SPLP.

The paper is organized as follows. In a short Section 2 we introduce some preliminary
notions and notations. It is followed up by Section 3, which contains our main results on
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the path decompositions of SPLP reflected at their infimum under the excursion measure.
In Section 4 we recall some notions linking SPLP to branching processes and give the
main implications of our results in the context of the latter. Finally Section 5 is devoted
to completing the remaining demonstrations.

2 Preliminaries

Basic notation

Let B(R) denote the Borel σ-field of R. Consider the space D(R+,R) (or simply D) of
càdlàg functions ω from R+ into the measurable space (R,B(R)) endowed with Skorokhod
topology [JS03]. Denote the corresponding Borel σ-field by B(D). Define the lifetime of
a path ω ∈ D as V = V (ω) := inf{t ≥ 0 : ω(s) = ω(t), ∀s ≥ t}, with the convention
inf ∅ =∞. Here ω(t−) stands for the left limit of ω at t ∈ R+, ∆ω(t) = ω(t)− ω(t−) for
the size of the (possible) jump at t ≤ V and we make the usual assumption ω(0−) = ω(0).
The subspace of functions in D with finite lifetime is denoted E as in the introduction.

We consider stochastic processes, on the probability space (D,B(D), P ), say X =
(Xt, t ≥ 0), also called the coordinate process, havingXt = Xt(ω) = ω(t). In particular, we
will consider only processes with no negative jumps, that is such that ∆Xt ∈ R+ for every
t ≥ 0. The canonical filtration is denoted by (Ft)t≥0 and we let P(E) be the collection of all
probability measures on any space E. We use the notation Px(X ∈ ·) = P (X ∈ ·|X0 = x).
In the absence of subscript the process is considered to start at 0 a.s.

Define by TA := inf{t > 0 : Xt ∈ A}, the first hitting time of the set A ∈ B(R), with
the conventions T0 = T{0}, and for any x > 0, T−x = T(−∞,−x), Tx = T(x,+∞). Note that
in general T{±x} 6= T±x, for x > 0. However, since X has no negative jumps, X is a.s.
continuous at T−x for all x > 0, and then it holds that T{−x} = T−x = T(−∞,−x) a.s.

As usual, for real valued functions, ‖ · ‖∞ stands for the uniform norm on the corre-
sponding space, and ‖ω‖S := sup[0,S] |ω| for the supremum up to a finite value.

Some path transformations of càdlàg functions

In this subsection we will define some families of operators on the space of càdlàg
functions ω ∈ D:
• the classical shift operators, θs, s ∈ R+, defined by

[θs(ω)]t := ωs+t, ∀t ∈ R+

• the non-standard shift operators, θ′s, s ∈ R+, defined by

[θ′s(ω)]t := ωs+t − ωs, ∀t ∈ R+

• the killing operators, ks, s ∈ R+ , defined by

[ks(ω)]t :=
{
ωt, if t < s
ωs, otherwise

the killing operator can be generalized to killing at random times, for instance
kTA(X) = kTA(X)(X), denotes the process X, killed at the first passage into A.
It is easy to see that if X is a Markov process, so is kTA(X). We set

k0(ω) = ∂.
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What we call killed path here, is more commonly denominated stopped path. The
difference is that killing usually refers to the path being sent to an isolated state after
the killing time, whereas here they remain constant with a real value. We highlight
our interest in keeping the track of the final jump of the functions we study, which
justifies this choice.
• the space-time-reversal mapping ρs, s ∈ R∗+, as

[ρs(ω)]t :=
{
ωs − ω(s−t)− ∀t ∈ [0, s]
ωs − ω0 if t > s

and when V < +∞, we call rotation, denoted simply by ρ, the space-time-reversal
operator at the lifetime of a path, that is ρ = ρV . Notice that [ρs(ω)]0 = ∆ωs
(possibly 6= 0).

The notations P ◦ θ−1
s , P ◦ k−1

s and P ◦ ρ−1 stand for the law of the shifted, killed and
space-time-reversed processes when P is the law of X.

For a sequence of functions in the same state space, say (ωi)i≥1 with lifetimes (Vi, i ≥ 1),
we define a new process by the concatenation of the terms of the sequence, denoted by

[ω1, ω2, . . . ]

where the juxtaposition of terms is considered to stop at the first element with infinite
lifetime. For instance, if V1 < +∞ and V2 = +∞, then for every n ≥ 2

[ω1, ω2, . . . , ωn]t =
{
ω1,t if 0 ≤ t ≤ V1
ω2,t−V1 t > V1

.

Notice that a concatenation of càdlàg functions thus defined, might not be a càldàg func-
tion, since, for instance, in the case where n = 2, the first function might end with a jump,
so the new function [ω1, ω2] will be càdlàg only if ω1,V1 = ω2,0. This is always the case in
our applications, that is why we choose to concatenate functions in this less usual way,
which has the property of recording the final jump of each path.

Skhorokhod topology

As mentioned before, we consider the space of càdlàg functions D and the subset
of excursions E (paths with finite lifetime), to be endowed with the topology induced by
Skorokhod’s topology, which makes D a Polish space. We refer to [JS03] for further details
on this topology, which can be characterized as follows: a sequence (εn) on E converges to
ε when n→∞, if and only if there exists a sequence (λn) of changes of time (continuous,
strictly increasing functions, with λn(0) = 0 and λn(t) ↑ ∞ when t ↑ ∞), such that
‖λn − Id‖∞ → 0 and ‖εn ◦ λn − ε‖T → 0 for all T ≥ 0. The space of continuous bounded
functions from E into R+ with respect to the Skorokhod topology, will be denoted by
Cb(E ,R+).

Properties of the Laplace exponent and scale function of a SPLP

The Laplace exponent given by III.1 is infinitely differentiable, strictly convex (when
Π 6≡ 0 or β 6= 0), ψ(0) = 0 and ψ(+∞) = +∞. Let η := sup{λ ≥ 0 : ψ(λ) = 0}. Then
we have that η = 0 is the unique root of ψ, when ψ′(0+) ≥ 0. Otherwise the Laplace
exponent has two roots, 0 and η > 0. It is known that for any x > 0,

Px (T0 < +∞) = e−ηx.
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More generally, there exists a unique continuous increasing function W : [0,+∞) →
[0,+∞), called the scale function, characterized by its Laplace transform,

+∞∫
0

e−λxW (x)dx = 1
ψ(λ) , λ > η,

such that for any 0 < x < a,

Px (T0 < Ta) = W (a− x)
W (x) . (III.5)

Time-reversal duality for Lévy processes

One of the key ingredients of our results is the duality property under time-reversal of
Lévy processes (see [Ber96, Chapter II] for details). Roughly speaking, it states that if a
path is space-time-reversed at a finite time horizon, the new path has the same distribution
as the original process. We will use the following formulation subsequently: for every fixed
t > 0 and every non-negative measurable function F we have that

E [F (kt ◦X)] = E [F (ρ ◦ (kt ◦X))] . (III.6)

By integrating over t, this result is still valid if the process is killed at an independently
random finite time.

3 Main results

Throughout this section X denotes a SPLP with Lévy measure Π on (0,+∞), whose
Laplace exponent denoted by ψ is defined by (III.1). As in the preliminaries, we let Px
denote the law of the process conditioned on X0 = x. We assume ψ′(0+) ≥ 0, meaning we
are in the (sub)critical regime. Let St := sup{Xs, 0 ≤ s ≤ t} and It := inf{Xs, 0 ≤ s ≤ t}
be the running supremum and the running infimum of the Lévy process X.

Pre-supremum processes

We recall that n denotes the excursion measure of the process X − I away from 0. Let
gt and dt be the left and right-end points of the excursion straddling t, denoted et, that
is,

et := (Xgt+s − It, 0 ≤ s ≤ dt − gt) .

For any excursion ε and any s ∈ R+ define its supremum εs := sup[0,s] ε and the last
instant where the supremum is attained on the interval [0, s], that is

γ(s) = γ(s, ε) := argmax [0,s]ε = sup
{
s′ ∈ [0, s] : ε(s′) = εs

}
.

A result from [Mil77b, Duq03] ensures this instant is unique a.s. thanks to the regularity
of 0 for (−∞, 0). Let also V = V (ε) stand for the lifetime of the excursion (in particular
V (et) = dt − gt). In general when using γ and V , the dependence on the excursion under
focus will be omitted unless there is a risk of confusion. Notice that under n, γ(s, ε) = 0
if and only if ε = ∂ or s = 0.
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Define in a similar way, for the process X,

σt(X) := argmax [0,t]X, and
σt(X) := arginf [0,t]X = sup

{
s′ ∈ [0, t] : Is′ = Xs′−

}
.

Let ω ∈ D be any path with finite lifetime. We are interested in the trajectories where
the infimum is attained before the maximum, so let us define the event

A(ω) := {arginf ω < argmax ω} .

We will be interested in particular in A(kt ◦X) where

A(kt ◦X) = {σt(X) < σt(X)} =
{
Sgt −Xgt < sup

(0,t−gt)
et

}
.

We can now state the next result.

Proposition 32. The pre-supremum process of the excursion of X − I away from zero is
invariant under time reversal, that is, for any measurable functional h : E → R+,

n
(
h
(
kγ(V ) ◦ ε

))
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

))
. (III.7)

This result is based on the following lemmas, for which we need first to define the set H
of functions of exponential type in the lifetime of excursions. That is, measurable functions
f : E → R+, satisfying f(∂) = 0, such that there exist two non-negative constants c and
C such that f(ε)e−cV (ε) ≤ C, for every ε ∈ E .

Lemma 33. For any functional f ∈ H, the function

n
(
f
(
kγ(s) ◦ ε

)
1{s<V }

)
is right-continuous for every s > 0.

Proof. See Section 5.

Lemma 34. For any functional f ∈ H and every s ≥ 0, we have the following identities
(i)

n
(
f
(
kγ(s) ◦ ε

)
1{s<V }

)
= n

(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }

)
, (III.8)

(ii)

n
(
f(kγ(V ) ◦ ε)1{γ(V )<s<V }

)
= n

(
f ◦ ρ(kγ(V ) ◦ ε)1{γ(V )<s<V }

)
. (III.9)

Proof. Let us define the following functional

F1 (kt ◦X) = f
(
kγ(V ) ◦ θ′σt(X) ◦ kt(X)

)
1{(σt−σt)(X)>0}g

(
Xσt −Xσt−, Xt −Xσt−

)
,

where f, g are also non-negative measurable functions, such that f(∂) = 0. It is not hard
to see that a.s. A(kt ◦ X) = {(σt − σt)(X) > 0} = A(ρ(kt ◦ X)) since σt(ρ(X ◦ kt)) =
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t− σt(kt ◦X) and σt(ρ(kt ◦X)) = t− σt(kt ◦X). Hence, the duality (III.6) applied to F1
gives that

E
[
f
(
Xσt+s −Xσt−, 0 ≤ s ≤ σt − σt

)
1{σt<σt}g

(
Xσt −Xσt−, Xt −Xσt−

)]
= E

[
f
(
Xσt −X(σt−s)−, 0 ≤ s ≤ σt − σt

)
1{σt<σt}g

(
Xσt −Xσt−, Xσt

)]
.

Notice that σt is the left-end point of et, the excursion straddling t, this point is denoted
gt. Similarly, σt is the point where this excursion attains its maximum before t. This
implies that P -a.s. on A(kt ◦X), we have kγ(t−gt) ◦ et =

(
Xσt+s −Xσt−, 0 ≤ s ≤ σt − σt

)
and ρ

(
kγ(t−gt) ◦ et

)
=
(
Xσt −X(σt−s)−, 0 ≤ s ≤ σt − σt

)
, which allows us to write the

preceding identity as follows

E
[
f
(
kγ(t−gt) ◦ et

)
1A(kt◦X)g (et(γ(t− gt)), et(t− gt))

]
(III.10a)

= E
[
f
(
ρ
(
kγ(t−gt) ◦ et

))
1A(ρ◦(kt◦X))g (et(γ(t− gt)), et(γ(t− gt)) + It)

]
. (III.10b)

We will first develop the left-hand side of this equation. First, rewrite A(kt ◦ X) as
{Sgt − Xgt < max(0,t−gt)(et)} and instead of stopping the process at t, we kill it at an
exponential independent rate, or equivalently, we integrate (III.10a) against qe−qt, giving

+∞∫
0

qe−qtdt E
[
f
(
kγ(t−gt) ◦ et

)
1{Sgt−Xgt<et(γ(t−gt))}g (et (γ(t− gt)) , et (t− gt))

]
.

As in the introduction, we let (τu)u≥0 denote the inverse of the local time at 0 of the
process X − I, and by εu the excursion starting at τu−. If we exchange the expectation
and the integral in the preceding equation (Fubini’s theorem), we can express the quantity
inside the expectation as a sum taken over all the excursion intervals of X − I away from
0

+∞∫
0

qe−qtdtE
[ ∑
u:∆τu>0

1{τu−<t≤τu}f
(
kγ(t−τu−) ◦ εu

)
1{Sτu−−Xτu−<εu(γ(t−τu−))}

× g (εu (γ(t− τu−)) , εu (t− τu−))
]

= E

[ ∑
u:∆τu>0

∞∫
0

qe−qtdt1{τu−<t≤τu}f
(
kγ(t−τu−) ◦ εu

)
1{Sτu−−Xτu−<εu(γ(t−τu−))}

× g (εu (γ(t− τu−)) , εu (t− τu−))
]
.

We have applied Fubini’s theorem once more for the last step. By the change of variable
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s = t− τu−, taking again the expectation and applying the compensation formula we get

E

 ∑
u:∆τu>0

∆τu∫
0

qe−qτu−e−qsds f
(
kγ(s) ◦ εu

)
1{Sτu−−Xτu−<εu(γ(s))}g (εu (γ(s)) , εu (s))


(III.11a)

= E

 +∞∫
0

du e−qτu
∫
n(dε)

V (ε)∫
0

ds qe−qsf
(
kγ(s) ◦ ε

)
1{Sτu−Xτu<εγ(s)}g

(
εγ(s), εs

)
= E

 +∞∫
0

du e−qτuϕ (Sτu −Xτu)

 , (III.11b)

where ϕ(x) = n
(∫ V (ε)

0 ds qe−qsf(kγ(s) ◦ ε)1{x<εγ(s)}g
(
εγ(s), εs

))
.

Define Gq := arginf (0,eq)X, where eq) is exponentially distributed with parameter q
and is independent of X. Then we can apply again the compensation formula to expand
the last expression as follows

E
[
ϕ
(
SGq −XGq

)]
= E

 ∑
u:∆τu>0

1{τu−<eq<τu}ϕ
(
Sτu− −Xτu−

)
= E

 ∑
u:∆τu>0

(
e−qτu− − e−qτu

)
ϕ
(
Sτu− −Xτu−

)
= E

 +∞∫
0

du e−qτuϕ (Sτu −Xτu)

n (1− e−qV
)
.

So we get that (III.11a) is equal to
E
[
ϕ
(
SGq −XGq

)]
n (1− e−qV ) , (III.12)

and by applying Fubini’s theorem one more time, and replacing ϕ by its expression this
is equal again to

q

n (1− e−qV )E

n
 V∫

0

ds e−qsf
(
kγ(s) ◦ ε

)
1{Yq<εγ(s)}g

(
εγ(s), εs

)
= q

n (1− e−qV )n

 V∫
0

ds e−qsf
(
kγ(s) ◦ ε

)
P
(
Yq < εγ(s)

)
g
(
εγ(s), εs

)
= q

n (1− e−qV )

∞∫
0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }P

(
Yq < εγ(s)

)
g
(
εγ(s), εs

))
.

where Yq stands for an independent random variable, distributed as SGq −XGq .
We now go back to Equation (III.10) and apply all the above arguments to (III.10b). By

choosing the same function f and observing that εγ(s) = max[0,s] ε = max[0,s] ρ
(
kγ(s) ◦ ε

)
,

we obtain that this is equal to the following expressions, analogous to (III.11) and (III.12),

E

 +∞∫
0

du e−qτuϕ̃ (Sτu −Xτu , Iτu)

 =
E
[
ϕ̃
(
SGq −XGq , IGq

)]
n (1− e−qV ) ,



3. Main results 97

where ϕ̃(x, y) = n
(∫ V (ε)

0 dsqe−qsf ◦ ρ(kγ(s) ◦ ε)1{x<εγ(s)}g
(
εγ(s), εγ(s) + y

))
. Using the

same arguments as before, and denoting by (Yq, Zq) a pair distributed as (SGq−XGq , IGq),
this is also equal to

q

n (1− e−qV )E

n
 V∫

0

ds e−qsf ◦ ρ
(
kγ(s) ◦ ε

)
1{Yq<εγ(s)}g

(
εγ(s), εγ(s) + Zq

)
= q

n (1− e−qV )

∞∫
0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }E

[
1{Yq<εγ(s)}g

(
εγ(s), εγ(s) + Zq

)])
,

where it should be noted that the expectation is taken with respect to the law of (Yq, Zq).
Finally, since the first term in the above product is the same for (III.10a) and (III.10b),
Equation (III.10) is equivalent to

∞∫
0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }P

(
Yq < εγ(s)

)
g
(
εγ(s), εs

))

=
∞∫
0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }E

[
1{Yq<εγ(s)}g

(
εγ(s), εγ(s) + Zq

)])
. (III.13)

(i) In order to prove the first identity in the lemma we start by taking g ≡ 1. The
probability P

(
Yq < εγ(s)

)
is also a function of kγ(s) ◦ ε, that is in addition strictly

positive since εγ(s) = 0 only if ε = ∂. Therefore we can consider

f
(
kγ(s) ◦ ε

)
=
h
(
kγ(s) ◦ ε

)
eαγ(s)

P
(
Yq < εγ(s)

) , ∀s > 0, h(∂) = f(∂) = 0,

where h is a non-negative bounded function and α a non-negative constant. Then,
(III.13) entails

∞∫
0

ds e−qsn
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)

=
∞∫
0

ds e−qsn
(
h ◦ ρ

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)
.

Under regularity conditions guaranteeing the existence and injectivity of the Laplace
transform, this identity implies (III.8). This is true in particular if both sides in
(III.8) are right-continuous functions of s, for every s ∈ (0,+∞), grow at most
exponentially and are locally integrable on [0,+∞) [Zay96]. Lemma 33 (i) ensures
the right-continuity on (0,+∞), so we will now focus on showing that the r.h.s. in
(III.8) satisfies the other two conditions. Notice all the arguments we use below also
apply when changing h by h ◦ ρ.
Let us first show local integrability. For q > α, s > 0 and any constant K > 0, we
have that∫ K

0
ds n

(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)
≤ ‖h‖∞eαK

∫ K

0
ds n (s < V )

= ‖h‖∞eαKn (V ∧K)
≤ CK,h,αn (V ∧ 1) ,
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where as usual, ‖ · ‖∞ stands for the uniform norm (on the space E in this case),
CK,h,α is a non-negative constant and n (V ∧ 1) is always finite.
The exponential growth condition is also straightforward

n
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)
≤ ‖h‖∞

∫
n (dε) eαs1{s<V }

≤ ‖h‖∞n (V > s) eαs ≤ C ′′eαs,

for every s > 1, since as we have mentioned before, n(V > 1) is finite.
Thus, we can conclude that the Laplace transform of both functions in (III.8) exist,
so this identity holds for every s ≥ 0 (is trivial for s = 0).

(ii) In order to prove the second identity we will follow a similar path. Go back to
Equation (III.13), on its r.h.s., we disintegrate n with respect to εγ(s), getting

∞∫
0

ds e−qs
∫

x∈(0,+∞)

n
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
E
[
1{x>Yq}g (x, x+ Zq)

]

=
∞∫
0

ds e−qs
∫

x∈(0,+∞)

n
(
f
(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
E
[
1{x>Yq}g (x, x+ Zq)

]

=
∞∫
0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }E

[
1{εγ(s)>Yq}g

(
εγ(s), εγ(s) + Zq

)])

=
∞∫
0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }P

(
εγ(s) > Yq

)
g
(
εγ(s), εs

))
.

We have applied the identity (III.8) for the first step, which implies in particular
that for every f ∈ H and s > 0,

n
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
= n

(
f
(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
,

since εγ(s) is invariant under time reversal of the excursion ε◦kγ(s) and f ◦ρ◦ρ ≡ f .
The latter argument also justifies the last equality, when applied directly to (III.13).
Moreover, since this is also equal to the l.h.s. in (III.13) we have

∞∫
0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }P

(
εγ(s) > Yq

)
g
(
εγ(s), εs

))

=
∞∫
0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }P

(
εγ(s) > Yq

)
g
(
εγ(s), εs

))
. (III.14)

We choose the function g as follows, for 0 < z < x,

g(x, z) = Ez [H (kT0 ◦X,x)]
P (Yq < x) ,

where H : E × (0,+∞)→ R+ is a measurable function.
Then, the Markov property of n yields, for every s ≥ 0,

n
(
f
(
kγ(s) ◦ ε

)
1{s<V }Eεs

[
H
(
kT0 ◦X, εγ(s)

)])
= n

(
f
(
kγ(s) ◦ ε

)
1{s<V }H

(
θs ◦ ε, εγ(s)

))
.
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In particular, for H(ε, x) = 1{sup ε<x} this is equal to

n
(
f
(
kγ(s) ◦ ε

)
1{s<V }1{sup θs◦ε<εγ(s)}

)
.

Consequently, for this choice of g and H, Equation (III.14) becomes,

∞∫
0

ds e−qsn
(
f
(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

)

=
∞∫
0

ds e−qsn
(
f ◦ ρ

(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

)
. (III.15)

Here again we have the identity between the Laplace transform of two functions
of s. When f(ε) = h(ε)eαV for some h bounded and α > 0, both integrands
are locally integrable on [0,+∞) by the same arguments used previously for (i).
Right-continuity also holds thanks to Lemma 33 (ii), so we can inverse the Laplace
transform in (III.15), leading to the desired identity for s > 0. The condition
h(K) = 0 allows to conclude.

Proof of Proposition 32. Let us go back to Equation (III.9). We can replace f(·) by
h(·)eqγ(V (·)), for h a bounded mesurable function. Then we integrate both sides with
respect to qe−qsds and apply Fubini’s theorem, which leads to

n
(
h
(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

))
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

))
,

or equivalently,

n
(
h
(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

)
1{V−γ(V )>0}

)
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

)
1{V−γ(V )>0}

)
.

Since h is non-negative, monotone convergence applies when q → +∞, leading to

n
(
h
(
kγ(V ) ◦ ε

)
1{V−γ(V )>0}

)
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

)
1{V−γ(V )>0}

)
,

Finally, notice that {γ(V ) = V } = {V = 0}, so the condition h(∂) = 0 ensures that the
identity in the proposition holds for any h bounded. This is still true for any non-negative
function, again by a monotone convergence argument.

Post-supremum process

We now give a result analogous to Proposition 32 for the post-supremum process of
the excursions of X − I away from 0.

Proposition 35. The post-supremum process of the excursion of X − I away from zero
is invariant under time reversal, that is, for any measurable functional h : E → R+,

n
(
h
(
θ′γ(V ) ◦ ε

))
= n

(
h ◦ ρ

(
θ′γ(V ) ◦ ε

))
. (III.16)
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Before we proceed to prove this result, we need to establish some lemmas, and the
following proposition, which is interesting in its own right, since besides serving to prove
our main results, it gives the invariance under time-reversal of parts of the trajectory of a
killed SPLP.

Proposition 36. Let x > 0 and X be a SPLP starting at 0 and killed upon hitting
(−∞,−x). This process shifted to the largest value where it attains its supremum before
T−x is invariant by rotation. More precisely, for every x > 0, P -a.s.

θ′γ(V ) ◦ kT−x ◦X
d= ρ

(
θ′γ(V ) ◦ kT−x ◦X

)
.

We also need the following lemma, whose proof can be found in Section 5.

Lemma 37. For every x > 0 and every functional h ∈ Cb(E ,R+), the function z :
[0,+∞)→ [0,+∞) defined as

z(x) := E
[
h
(
θ′γ(V ) ◦ kT−x ◦X

)]
is right-continuous on (0,+∞).

Proof of Proposition 36. To demonstrate this result we follow a similar path to that of the
proof of Lemma 34. We start by considering the complementary of the event A defined
at the beginning of this section, that is

Ac(kt ◦X) = {σt(X) < σt(X)}.

Notice that we may have ∆Xσt
6= 0, in particular in the finite variation case in which

the excursions of X − I away from 0 starts by a jump [Cha96, CD05]. In order to make
the notation less heavy we develop the proof only for the infinite variation case. Just a
few modifications are needed to treat the general case. Likewise, the bounded variation
case is a straightforward consequence of Lemma 3.8 in [DFL15], where, conditionally on
εγ = x, the post-supremum process is shown to have the law Px(·|T0 < Tx) ◦ k−1

T0
, which is

invariant under time-reversal.

We define the functional F2 as follows

F2 (kt ◦X) = f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt) ,

where f and g are non-negative measurable functions and such that f(∂) = 0. In order
to apply the duality property (III.6) to this function, let as look at F2 ◦ ρ(kt ◦ X) or
equivalently F2(ρ ◦ kt ◦X). Notice first that Ac and Xt are invariant under time-reversal
at t, and additionally, under Ac, we also have that σt = σσt , so it holds that

E
[
f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
= E

[
f ◦ ρ

(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
.

Let us integrate this equality in t against the Lebesgue measure,∫ +∞

0
dt E

[
f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
(III.17a)

=
∫ +∞

0
dt E

[
f ◦ ρ

(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
. (III.17b)

Using the same strategy as before, we can express some quantities in this equation in
terms of the excursion straddling t of the process reflected at its infimum. We recall that
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(τu)u≥0 denotes the inverse of the local time at 0 of the process X−I, and εu the excursion
starting at τu−. Recall also that −I is the local time at 0 for this excursion process and
its inverse is τu = T−u = T(−∞,−u). Thus, we can expand (III.17b) as follows
∞∫
0

dt E
[
f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]

=
∞∫
0

dt E

 ∑
u:∆τu>0

1{τu−<t≤τu}f
(
θ′γ(V ) ◦ kτu− ◦X

)
1{sup(0,t−τu−) εu<Sτu−−Iτu−}g (Xt)

 .
Thanks to Fubini’s theorem and the change of variable s = t − τu−, followed by the
application of the compensation formula, we obtain that this is equal to

= E

 ∑
u:∆τu>0

∆τu∫
0

ds f
(
θ′γ(V ) ◦ kτu− ◦X

)
1{sup(0,s) εu<Sτu−−Iτu−}g

(
Xτu−+s

)
= E

[∫ ∞
0

duf
(
θ′γ(V ) ◦ kτu ◦X

) ∫
n(dε)

∫ V

0
ds 1{sup(0,s) ε<Sτu−Iτu}g (Xτu + εs)

]

=
∫ ∞

0
due−quE

[
f
(
θ′γ(V ) ◦ kT−u ◦X

)
Cq
(
ST−u − IT−u

)]
,

where for any y ≥ 0 we set Cq(y) = n
(∫ V

0 eqεsds 1{εγ(s)<y}
)
and we have taken the function

g of the form g(x) = eqx, with q > 0. Fubini’s theorem was applied again in the last step.
Now notice that ST−u − IT−u is precisely the height of the excursion θ′γ(V ) ◦ kT−u ◦X,

which allows us to choose the function f as follows,

f(ω) = h(ω)
Cq (supω − inf ω) ,

for any ω ∈ E and f(∂) = h(∂) = 0, where h is bounded, measurable and positive function.
This is a valid choice for f as long as, for any y > 0, conditionally on the height of the
excursion ω to be equal to y, Cq(y) is not 0 nor +∞. By Fubini’s theorem we have that

n

(∫ V

0
eqεsds 1{εγ(s)<y}

)
=
∫ +∞

0
ds n

(
eqεs1{εγ(s)<y,s<V }

)
,

which is equal to 0 if and only if n
(
eqεs1{εγ(s)<y}

)
= 0 for almost every s > 0, but this is

not possible since by monotone convergence we have that

n
(
eqεs1{εγ(s)<y,s<V }

)
≥ n

(
1{εγ(s)<y,s<V }

)
↗ n(V > 0) = +∞, when s↘ 0.

On the other hand, Cq(y) is also finite since∫ +∞

0
ds n

(
eqεs1{εγ(s)<y,s<V }

)
≤ eqy

∫ 1

0
ds n (s < V ) + eqy

∫ +∞

1
ds n

(
εγ(s) < y, s < V

)
.

The first term in the sum is equal to eqyn(V ∧ 1) which is always finite. For the integral
in the second term we have that∫ +∞

1
ds n

(
εγ(s) < y, s < V

)
≤
∫ +∞

1
ds
∫

(0,y)
n (ε1 ∈ dx, 1 < V )Px (s− 1 < T0 < Ty)

=
∫

(0,y)
n (ε1 ∈ dx, 1 < V )

∫ +∞

1
ds Px (s− 1 < T0 < Ty)
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and we have that
∫+∞

1 ds Px (s− 1 < T0 < T0 < Ty) ≤ Ex
[
T01{T0<Ty}

]
≤ Ex [T0 ∧ Ty]

which is finite for any x ∈ (0, y), whether the process oscillates or drifts to ±∞, and is
even more continuous for every x ∈ [0, y] as we will now see. Consider the q-resolvent
kernel for the two-sided exit problem form the interval (0, y), that is for any borel set
A ⊆ (0, y) let

U q(x,A) = Ex

[∫ T0∧Ty

0
e−qt1{Xt∈A}dt

]
, q ≤ 0.

We know from [Ber97] that since the Lévy process has absolutely continuous resolvent
kernels, there exists a q-resolvent density for the killed process that is given by [Ber97,
Theorem 1] and that leads to the following

Ex [T0 ∧ Ty] = U0 (x, (0, y)) = W (x)
W (y)

∫ y

0
W (y − r)dr −

∫ x

0
W (x− r)dr,

which is finite and continuous on every x ∈ [0, y] thanks to the properties of the scale
function (defined by (III.5)). Thanks to the continuity on x, by integrating Ex [T0 ∧ Ty]
against the finite measure n (ε1 ∈ dx, 1 < V ) over the bounded set (0, y), we get a finite
value, so we can conclude that Cq(y) is also finite.

Once we know we can choose f this way, and taking into account that all the preceding
steps are valid for both sides in (III.17), in particular that the height of the excursion
θ′γ(V ) ◦ kT−u ◦X is invariant by the transformation ρ, Equation (III.17) becomes∫ ∞

0
du e−quE

[
h
(
θ′γ(V ) ◦ kT−u ◦X

)]
=
∫ ∞

0
du e−quE

[
h ◦ ρ

(
θ′γ(V ) ◦ kT−u ◦X

)]
.

We have one more time an identity between Laplace transforms of two functions. In
virtue of Lemma 37, for any h ∈ Cb(E ,R+), this functions are right-continuous on (0,+∞).
Besides, they are both bounded since h is, hence we have for any h ∈ Cb(E ,R+) that

E
[
h
(
θ′γ(V ) ◦ kT−u ◦X

)]
= E

[
h ◦ ρ

(
θ′γ(V ) ◦ kT−u ◦X

)]
,

which completes the proof.

Proof of Proposition 35. We can expand the l.h.s. in (III.16) by applying the Markov
property of n for any 0 < s < γ(V ) in the following manner,

n
(
h
(
θ′γ(V ) ◦ ε

)
1 (s < γ(V ))

)
=
∫
x∈(0,+∞)

∫
y≥x

n
(
1

(
s < γ(V ), εs ∈ dx, εγ(V ) ∈ dy

)
h
(
θ′γ(V ) ◦ ε

))
=
∫
x∈(0,+∞)

∫
y≥x

n (εs ∈ dx, εs < y, s < V )Ex

[
h
(
θ′γ(V ) ◦ kT0 ◦X

)
1

(
sup
[0,T0]

X ∈ dy
)]

=
∫
x∈(0,+∞)

∫
y≥x

n (εs ∈ dx, εs < y, s < V )Ex

[
h ◦ ρ

(
θ′γ(V ) ◦ kT0 ◦X

)
1

(
sup
[0,T0]

X ∈ dy
)]

= n
(
h ◦ ρ

(
θ′γ(V ) ◦ ε

)
1 (s < γ(V ))

)
, (III.18)

where we have used Proposition 36 in the third line, which is possible since Px-a.s.

sup
[0,T0]

X = sup θ′γ(V ) ◦ kT0 ◦X = sup ρ
(
θ′γ(V ) ◦ kT0 ◦X

)
.

Finally, since h is non-negative, the monotone convergence theorem can be applied to
III.18 when s ↓ 0 and allow us to conclude.
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We are now ready to prove our main result, stated in the introduction, that we recall
now. We first recall that the functional χ : E → E is defined as

χ (ε) :=
[
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ εγ

]
.

Theorem 29. For every bounded measurable functionals F : E → R+ we have

n (F ) = n (F ◦ χ)

Proof. In the unbounded variation case, 0 is regular for both half-lines, so we can apply
Theorem 4.10 from [Duq03], which ensures that the supremum of the excursion of X − I
away from zero, i.e. εγ(V ), admits a density w.r.t. to Lebesgue measure under n. What is
more, this theorem states that for every x > 0, the pre and post-supremum subpaths are
independent under n(·|εγ = x). When the trajectories have finite variation, the conditional
independence also holds, this result is due to [Mil73, GP80] and also [Cha94, Cha96].
Hence, we can disintegrate by the law of εγ and use this independence property, which
together with Propositions 32 and 35, lead to the following identities

n (F (ε)) = n (F ([kγ ◦ ε, θγ ◦ ε])) =
∫

x∈(0,+∞)

n
(
F ([kγ ◦ ε, θγ ◦ ε])1{εγ∈dx}

)

=
∫

x∈(0,+∞)

n (F ([kγ ◦ ε, θγ ◦ ε]) |εγ = x)n (εγ ∈ dx)

=
∫

x∈(0,+∞)

n
(
F
([
kγ ◦ ε, θ′γ ◦ ε+ x

])
|εγ = x

)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

∫
F
([
η, η′

])
n
(
kγ ◦ ε ∈ dη, θ′γ ◦ ε+ x ∈ dη′|εγ = x

)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

∫ ∫
F
([
η, η′

])
n (kγ ◦ ε ∈ dη|εγ = x)n

(
θ′γ ◦ ε+ x ∈ dη′|εγ = x

)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

∫ ∫
F
([
η, η′

])
n (ρ (kγ ◦ ε) ∈ dη|εγ = x)n

(
ρ
(
θ′γ ◦ ε

)
+ x ∈ dη′|εγ = x

)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

n
(
F
([
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ x

])
|εγ = x

)
n (εγ ∈ dx)

= n
(
F
([
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ εγ

]))
= n (F (χ ◦ ε)) .

Corollary 30. The local time process of the excursions of X−I away from 0, is invariant
under time reversal, that is

(Γ (ε, r) , 0 ≤ r ≤ εγ) d= (Γ (ε, εγ − r) , 0 ≤ r ≤ εγ) . (III.4)

Proof. For a fixed path ε ∈ E corresponding to an excursion of X − I away from 0, let us
identify the local time process of χ(ε), defined by the occupation density formula (III.2),
as the measurable function (Γ(χ(ε), r), r ≥ 0) satisfying

V (ε)∫
0

φ ([χ(ε)]s) ds =
∞∫
0

Γ (χ(ε), r)φ(r)dr, (III.19)
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for any continuous function φ with compact support in [0,∞). Its existence is guaranteed
by Theorem 29 since χ(ε) d= ε. The l.h.s. in this equation can be expanded in the following
way (writing γ = γ(V ))

V (ε)∫
0

φ ([χ(ε)]s) ds =
γ(V )∫
0

φ ([χ(ε)]s) ds+
V∫

γ(V )

φ ([χ(ε)]s) ds

=
γ(V )∫
0

φ
(
εγ − ε(γ−s)−

)
ds+

V∫
γ(V )

φ
(
εγ − ε(γ+V−s)−

)
ds

=
V (ε)∫
0

φ (εγ − εs) ds =
∞∫
0

Γ
(
χ′(ε), r

)
φ(r)dr, (III.20)

where [χ′(ε)]s = εγ − εs, for any s ≥ 0. On the other hand, we know from Theorem 29
that for any function φ satisfying the conditions mentioned before, we have that

∞∫
0

Γ (χ(ε), r)φ(r)dr d=
∞∫
0

Γ (ε, r)φ(r)dr.

Finally, this identity, together with (III.19) and (III.20), imply that

Γ (ε, ·) d= Γ
(
χ′(ε), ·

)
,

which terminates the proof.

Remark 38. Beyond the independence between the pre and post-supremum subpaths,
Theorem 4.10 in [Duq03] gives the following characterization of the law of the pre and
post-supremum processes under n(·|εγ = x) in terms of the laws P ↑ and P ↓, corresponding
to the process X conditioned respectively to stay positive or negative. We refer to [Ber93,
Ber96] and also [Duq03] for the details on the construction of these laws. The result in
the aforementioned theorem has the following implications in our setting in the case of
infinite variation. For every positive measurable functional h : E → R+ we have

n
(
h
(
kγ(V ) ◦ ε

)∣∣∣εγ = x
)

= E↑ [h (kTx ◦X)|XTx = x] ,

n
(
h
(
θ′γ(V ) ◦ ε

)∣∣∣εγ = x
)

= E↓
[
h
(
kT−x ◦X

)]
.

Thus, these identities combined with Propositions 35 and 32 imply that for any x > 0, the
laws P ↑ ◦ k−1

Tx
(·|XTx = x) and P ↓ ◦ k−1

T−x
are also invariant by rotation. Additionally, we

know from [Ber96, Chapter VII] that when the process drifts to −∞, the law P ↓ can be
viewed as the conditional law n(·|V =∞), or equivalently, as the law of X − S shifted at
its last passage time at the origin. Here n denotes the excursion measure of X − S away
from 0, defined as in [Duq03] such that it records the final jump of the excursion. Hence,
we also have for any positive measurable function h that

n
(
h
(
kT−x ◦ ε

)∣∣V =∞
)

= n
(
h ◦ ρ

(
kT−x ◦ ε

)∣∣V =∞
)
.
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4 Applications
The study of the genealogical structure of branching processes is an essential aspect

when it comes to their applications in the fields of population dynamics, population ge-
netics and evolutionary biology. In the case of discrete state-space, the genealogy comes
naturally from discrete trees, while for continuous-state processes their definition is a more
delicate issue and is done via a non-Markovian process called the height process, which
was introduced by Le Gall and Le Jan [LGLJ98] and is a functional of a SPLP. We will
now briefly outline a few connections between random trees, branching processes and Lévy
processes.

4.1 The continuum random tree

Real trees can be defined as the continuous limiting object of rescaled discrete trees
and can be coded by a continuous function in a way similar to the coding of discrete
trees by their contour functions. Aldous’ Continuum Random Tree (the so-called CRT)
can be defined as the random real tree coded by a normalized Brownian excursion e, i.e.
the positive Brownian excursion conditioned to have lifetime 1. More generally, the tree
coded by Brownian motion (possibly with drift) reflected at 0, is called Brownian forest.
We refer to [Ald93, LG05] for the formalism on real trees.

Ray-Knight theorems

The second Ray-Knight theorem [RY91] establishes that the local time process of a
reflected Brownian motion is Feller’s branching diffusion. More precisely, let B be a
Brownian motion reflected at 0 and (Las , s, a ≥ 0) the family of its local times, where the
index s corresponds to the time of the original process B and a is the level variable moving
in the state-space of B. Consider, for x > 0,

ςx = inf{s : L0
s > x}.

Then, the process (Ltςx , t ≥ 0) is equal in distribution to the square of a 0-dimensional
Bessel process started at x, that is, a standard Feller branching diffusion (Zxt , t ≥ 0). The
latter is defined as the unique strong solution of the SDE

dZxt = 2
√
Zxt dW x

t , with Zx0 = x.

This may be understood as a description of the genealogy encoded in Feller’s branching
diffusion, meaning that reflected Brownian motion codes (in the sense of Aldous) the real
tree which describes the genealogy of the population which evolves according to Feller’s
diffusion [LG05].

4.2 Splitting trees, CMJ’s and contour process

A chronological tree is the subset of
⋃
n≥0 Nn × [0,+∞) containing all the existence

points of individuals living for a certain amount of time and giving birth to other during
their lifetime. They are represented in the plane, as in Fig. III.1 (right), with time running
from bottom to top, dotted lines representing filiations between individuals: the one on
the left is the parent, and that on the right its descendant. We refer to [Lam10] for the
details.
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Figure III.1 – An example of chronological tree with finite length (left) and its contour
process (right).

Consider a population (or particle system) that originates at time 0 with one single
progenitor, where individuals (particles) evolve independently of each other, giving birth
to i.i.d. copies of themselves at constant rate, while alive, and having a lifetime duration
with general distribution. The family tree under this stochastic model is a splitting tree,
that can be formally defined as an element T randomly chosen from the set of chrono-
logical trees, characterized by a σ-finite measure Π on (0,∞] called the lifespan measure,
satisfying

∫
(0,∞] (r ∧ 1) Π(dr) <∞. This means that if Π has mass b, the tree corresponds

to a population where individuals have i.i.d. lifetimes distributed as Π(·)/b and give birth
to single descendants throughout their lives at constant rate b, all having the same inde-
pendent behavior. In the general definition individuals may have infinitely many offspring
and most of the following results remain valid if Π is infinite.

We can define the width or population size process of locally finite chronological trees
as a mapping Ξ that maps a chronological tree T to the function ξ : R+ → N counting
the number of extant individuals at time t ≥ 0

Ξ(T ) := (ξt(T ), t ≥ 0) .

These functions are càdlàg, piecewise constant, from R+ into N, and are absorbed at 0.
Then we can define the extinction event Ext := {limt→∞ ξt (T ) = 0} and the time of
extinction of the population in a tree as

TExt := inf{t ≥ 0 : ξt(T ) = 0},

with the usual convention inf ∅ =∞. A tree, or its width process Ξ, is said to be subcritical,
critical or supercritical if

m :=
∫

(0,+∞]

rΠ(dr).

is less than, equal to or greater than 0.
The width process Ξ(T ) = (ξt(T ), t ≥ 0) of a splitting tree is known to be a binary

homogeneous Crump-Mode-Jagers process (CMJ). This process is not Markovian, unless
Π is exponential (birth-death process) or a Dirac mass at {+∞} (Yule process).

The contour of a splitting tree

As mentioned before, the genealogical structure of a chronological tree can be coded
via continuous or càdlàg functions. We focus in particular in the jumping chronological
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contour process (JCCP) from [Lam10]. The JCCP of a chronological tree T with finite
length ` = `(T ) (the sum of lifespans of all individuals), denoted by C(T ), is a function
from [0, `] into R+, that starts at the lifespan of the ancestor and then runs backward
along the right-hand side of this first branch at speed −1 until it encounters a birth event,
when it jumps up of a height of the lifespan of this new individual, getting to the next
tip, and then repeating this procedure until it eventually hits 0, as we can see in Fig. III.1
(see [Lam10] for a formal definition).

The JCCP visits all the existence times of each individual exactly once and the number
of times it hits a time level, say s ≥ 0, is equal to the number of individuals in the
population at time s. More precisely, for any finite tree T , the local time of its contour
process is the population size process, that is

(Γ (C(T ), r) , 0 ≤ r ≤ TExt) = Ξ(T ),

where Γ is defined as in Equation (III.3).
One of the main results in [Lam10] states that the law of C(T ) when the tree has

lifespan measure Π, conditional on Ext and on the lifespan of the root individual to
be x, is a spectrally positive Lévy process Y , with Laplace exponent ψ(λ) = λ−

∫∞
0 (1−

exp(−λr))Π(dr), λ ≥ 0, started at x, conditioned and killed upon hitting 0. A consequence
of this result is that, under Px

(Γ (kT0 ◦ Y, r) , r ≥ 0) (III.21)

is a CMJ with lifespan measure Π, starting with one progenitor with lifespan x.

These arguments together with Theorem 29 lead to Corollary 31.

4.3 Other results

In the same way as we did in Section 3, we consider the excursion process of X − S
away from 0, the canonical excursion is denoted by ε, and n is the excursion measure of
this process, defined as in [Duq03] such that it records the final jump of the excursion.
Define for any s ∈ R+, the largest instant at which the excursion attains its minimum on
the interval [0, s], that is

ν(s) = ν(s, ε) := arginf [0,s]ε = sup
{
s′ ∈ [0, s] : ε(s′−) = εs

}
,

where εs := inf [0,s] ε. We write ν = ν(V ) for the infimum up to the lifetime of the excursion.
Then, the following results can be derived from those obtained in Section 3.

Lemma 39. The post-supremum of the excursion of X − I, conditioned to have height
x has the same distribution as the pre-infimum of the excursion of X − S conditioned to
have depth greater than x killed upon hitting x by the first time. That is, for every bounded
measurable functional F : E → R+ we have

n
(
F
(
θ′γ ◦ ε

)
|εγ = x

)
= n

(
F
(
kT−x ◦ ε

)
|T−x <∞

)
(III.22)

Lemma 40. The conditional measure n◦k−1
ν(V ) (·|V <∞) is invariant under time reversal.

That is, for every bounded measurable functional F : E → R+ we have

n (F (kν ◦ ε) |V <∞) = n (F ◦ ρ (kν ◦ ε) |V <∞) .

Moreover, conditionally on εν = x, they are also equal to n(F (kT−x ◦ ε)|T−x <∞).
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5 Remaining proofs

Proof of Lemma 33. Every function f ∈ H can be expressed as f(ε) = h(ε)eαV (ε), for
a non-negative bounded function h satisfying h(∂) = 0 and a non-negative constant α.
Hence, here we want to prove that for every non-negative bounded function h with h(K) =
0 and any non-negative constant α, the functions

n
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)

n
(
h
(
kγ(V ) ◦ ε

)
eαγ(s)

1{γ(V )<s<V }
)

are right-continuous for every s > 0.
Let us start by (i). Fix s > 0, and a sequence (sn) ⊂ R+ such that sn ↓ s. For δ > 0,

define the following subsets of E :

Υs(δ) := {ε ∈ E : ε(s− δ) = ε(s+ δ)} ,

Then, we can analyze the continuity of n
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)
at s by splitting the

space E as follows for any δ′ > 0∣∣∣n (h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V }

)
− n

(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)∣∣∣

≤
∫ ∣∣∣h (kγ(sn) ◦ ε

)
eαγ(sn)

1{sn<V } − h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε)

=
∫

V≤s+δ′
| · | n (dε)

︸ ︷︷ ︸
(1)

+
∫

(Υs(δ))c,V >s+δ′

| · | n (dε)

︸ ︷︷ ︸
(2)

+
∫

Υs(δ),V >s+δ′
| · | n (dε)

︸ ︷︷ ︸
(3)

.

Notice the subtractions below make sens since n(V > s) < +∞ for any s > 0. Now let us
see what happens with each of the terms in this sum:
(1) Since sn ≥ s, 0 ≤ γ(s) ≤ s and h is bounded, we have∫

V≤s+δ′

∣∣∣h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V } − h

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε)

≤ 2‖h‖∞eα(s+δ′)n
(
s < V ≤ s+ δ′

)
.

For every s, δ′ > 0 it holds that n(s < V ≤ s + δ′) < +∞. Therefore, downward
monotone convergence applies and it implies that

n
(
s < V ≤ s+ δ′

)
−→ 0, when δ′ → 0.

This allows to choose, for every η > 0, a suitable δ′ such that the term (1) is smaller
than η

2 .
(2) Again, h bounded implies that∫

(Υs(δ))c
V >s+δ′

∣∣∣h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V } − h

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε)

≤ 2‖h‖∞eα(s+δ′)n
(
(Υs(δ))c , V > s+ δ′

)
.
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On the other hand, from the definition of Υs(δ) and since the supremum is attained
at a unique point n-a.s., it follows from the dominated convergence theorem that

lim
δ→0

n
(
(Υs(δ))c , V > s+ δ′

)
= n

(
εs = εs, V > s+ δ′

)
. (III.23)

We now show that the r.h.s. of this limit is 0 for every fixed s > 0. For any u ∈ (0, s),

n
(
εs = εs, V > s+ δ′

)
=

∫
x∈(0,+∞)

∫
y≥x

n
(
εs = εs, V > s+ δ′, εu ∈ dx, εu ∈ dy

)
=

∫
x∈(0,+∞)

∫
y≥x

n (εu ∈ dx, εu ∈ dy)Px
(
T−0 > s+ δ′ − u, Ss−u = Xs−u ≥ y

)
,

where the last line comes from the Markov property. Besides, for y ≥ x

Px
(
T−0 > s+ δ′ − u, Ss−u = Xs−u ≥ y

)
= P0

(
T−−x > s+ δ′ − u, Ss−u = Xs−u ≥ y − x

)
≤ P0 (Ss−u = Xs−u) = P

(
∃t > 0 : L−1(t) = s− u

)
= P

(
L−1(Ts−u) = s− u

)
,

where L−1 is the so-called ladder time process, which is the inverse of the local time
at 0 of the process reflected at its supremum, S −X; and Tv := inf{t : L−1(t) > v}
for any v ≥ 0. We know from [Ber96] that L−1 is a subordinator, with drift equal
to 0 when 0 is regular for (−∞, 0), which is always the case in absence of negative
jumps (see for instance [Cha13]). Another result from [Ber96, Chapter III.2] tells
us that any subordinator Y with drift 0 never creeps over any level x > 0, that is
P
(
YT+

x
= x

)
= 0. Hence, we can conclude that

n
(
εs = εs, V > s+ δ′

)
= 0, (III.24)

which guarantees, together with (III.23), that for any η > 0, we can choose δ < δ′

sufficiently small that∫
(Υs(δ))c
V >s+δ′

∣∣∣h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V } − h

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε) < η

2 .

(3) Let Nδ be such that for n ≥ Nδ, |sn − s| < δ, then ∀n ≥ Nδ,∀ε ∈ Υs(δ), such that
V (ε) > s+δ′, we have γ(sn, ε) = γ(s, ε) and 1{sn<V } = 1{s<V } = 1. Hence the third
term is 0 for n ≥ Nδ.

Finally, we can conclude that the function n
(
f
(
kγ(s) ◦ ε

)
1{s<V }

)
is right-continuous for

every s > 0.

For (ii) take as well s > 0 and sn ↓ s. Fix δ > 0, then there exists Nδ such that for
every n ≥ Nδ, |sn − s| < δ and also∣∣∣n (f (kγ(V ) ◦ ε

)
1{γ(V )<sn<V } − n

(
f
(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

))∣∣∣
=
∫
f
(
kγ(V ) ◦ ε

) ∣∣∣1{s≤γ(V )<sn<V } − 1{γ(V )<s<V≤sn}

∣∣∣n(dε)

≤ ‖h‖∞eα(s+δ) (n (s ≤ γ(V ) < sn < V ) + n (γ(V ) < s < V ≤ sn)) .

Moreover, by dominated convergence, when n→∞,

n (γ(V ) < s < V ≤ sn) −→ n(∅) = 0
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and

n (s ≤ γ(V ) < sn < V ) −→ n (s = γ(V ), s < V ) ≤ n (εs = εs, s < V ) = 0,

as we has just proved in (III.24). So the function in (ii) is also right-continuous.

Proof of Lemma 37. Notice first that for all x > 0, since X has no negative jumps, X
is a.s. continuous at T−x, that is P

(
∆XT−x = 0

)
= 1. This allow us to apply [JS03,

Proposition VI.2.11 and VI.2.12], which ensure in this context that if we have xn ↓ x, then
a.s. T−xn ↓ T−x, and moreover, the killed paths kT−xn ◦X also converge to kT−x ◦X when
n → ∞ in Skorokhod topology. Hence, it exists a sequence (λn) of changes of time (see
Section 2) such that ‖λn− Id‖∞ → 0 and ‖kT−xn ◦X ◦λn−kT−x ◦X‖M → 0 for allM ≥ 0.

Additionally, since the sequence (xn) is decreasing, we deduce from the definition of γ
that (γ(T−xn , X)) is also a decreasing sequence, and that for all n ≥ 0 we have

γ(T−xn , X) ≥ γ(T−x, X).

Hence γ(T−xn , X) ↓ ` for some ` ≥ 0. Suppose that ` > γ(T−x, X), this implies that for
every n ≥ 0, T−x < γ(T−xn , X), so we have

T−x < γ(T−xn , X) ≤ T−xn .

Then, the convergence of (T−xn) entail that γ(T−xn , X) ↓ T−x, which in turn, since X is
continuous at T−x, implies that Xγ(T−xn ) ↓ XT−x = −x. The latter is not possible since
P -a.s., sup[0,T−xn ]X ≥ 0 for every n. Hence, we can conclude that ` = γ(T−x, X), i.e.

γ (T−xn , X) ↓ γ(T−x, X).

Moreover, since for T−x we also have that P -a.s., sup[0,T−x]X ≥ 0, we can ensure that
γ(T−x, X) < T−x, so the sequence (γ (T−xn , X)) is not only convergent, but it is constant
from some N ≥ 0. As a consequence, we have that ∀n ≥ N

θ′γ(V ) ◦ kT−xn ◦X = θ′γ(T−x) ◦ kT−xn ◦X,

whereby

‖θ′γ(V ) ◦ kT−xn ◦X ◦ λn − θ
′
γ(V ) ◦ kT−x ◦X‖M ≤ ‖kT−xn ◦X ◦ λn − kT−x ◦X‖M → 0,

for all M ≥ 0.
These arguments, together with the continuous mapping theorem applied to h ∈

Cb(E ,R+), lead to the convergence of h
(
θ′γ(V ) ◦ kT−xn ◦X

)
to h

(
θ′γ(V ) ◦ kT−x ◦X

)
. Fi-

nally, since h is bounded, the dominated convergence theorem applies, and we can conclude
that

lim
n
z(xn) = z(x),

that is, z is right-continuous at x > 0. Since x is arbitrary, the result is proved.
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