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Résumé en français

Le présent résumé est une version condensée en français de l'ensemble des
considérations, hypothèses et expérimentations, agrémentées de leurs résultats,
présentés en langue anglaise dans cette thèse. Dans ce résumé, un soin partic-
ulier a été apporté au respect du même ordre de présentation des idées apportées
dans la thèse en anglais et dans le présent résumé, de sorte que chaque chapitre
du premier correspond à une section du dernier. Par exemple, la sectionII du
présent résumé décrit le contenu du chapitre2 dans la partie en langue anglaise.

Introduction

Les travaux de thèse présentés dans ce documents portent sur le sujet qu'est
la synthèse de la parole à partir du texte, lequel peut être décrit comme un
objet d'étude pluridisciplinaire [Boë 1990;Boe�ard 2004]. En e�et, l'étude de
la parole humaine fait autant appel aux considérations anatomiques, et donc
issues de la médecine, pour décrire l'appareil vocal humain qu'à la physique
pour comprendre la mécanique des �ux d'air (l'acoustique) interagissant au
sein de ce dernier. En outre, parce que la parole est le vecteur d'un message
doté de sens, l'étude de ce dernier, la linguistique, y prend également une place
prépondérante.

La synthèse de la parole fait appel à l'ensemble de ces sciences, auxquelles il
faut ajouter l'informatique. Avec l'émergence de l'informatique, les � machines
parlantes � sont sorties des salles où elles étaient entreposées et où elles étaient
souvent commandées à la main pour se retrouver au coeur de calculateurs aux
capacités de traitement et de stockage en constante évolution. En e�et, la syn-
thèse de la parole visant la production d'un outil capable de produire un signal
de parole sans intervention humaine directe, cet outil doit être doté d'un degré
minimal d'automatisation. Comme dans de nombreux domaines, la majorité
des systèmes de synthèse de la parole actuels ne tentent pas de reproduire le
fonctionnement naturel de la bouche, du larynx et des poumons. Des systèmes
relevant de cet ordre existent bel et bien (il s'agit de la synthèse dite articu-
latoire), mais leur intérêt reste académique : ils visent à toujours mieux mod-
éliser l'appareil vocal humain a�n de le comprendre, de la même manière que
les modèles de systèmes planétaires ou galactiques en physique visent à valider
des théories par l'expérimentation. Lorsque la qualité de la parole synthétique
est un objectif, les systèmes actuels visent plutôt, soit à reproduire la parole via
des connaissances expertes sur la composition du signal vocal une fois produit,
soit à utiliser ces connaissances expertes pour sélectionner les meilleures por-
tions d'un corpus de parole pré-enregistré reproduisant le message à produire
puis les joindre.

Les travaux présentés dans cette thèse s'inscrivent dans le cadre de la sec-
onde solution, nommée synthèse par sélection d'unités ou encore Synthèse Par
Corpus (SPC). Les contributions présentées peuvent être réparties en deux par-
ties. Tout d'abord (section VI), une analyse approfondie et un diagnostic de
l'algorithme de sélection d'unités, lequel recherche dans le treillis des portions de
corpus (nommées unités) utilisées, sont présentés. L'importance de l'optimalité
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de la solution est discutée et une nouvelle mise en oeuvre de la sélection basée
sur un algorithme A � est proposée. La deuxième partie des contributions, elle-
même subdivisée en trois portions, traite d'améliorations apportées à la fonction
de coût permettant à l'algorithme de sélection de trier les séquences d'unités en
vue de sélectionner la meilleure. Une méthode de calcul de coût cible est testée
sur un coût visant les durées phonétiques des unités (sectionVII). Une méth-
ode visant à améliorer l'intonation de la parole synthétisée est ensuite présentée
(section VIII). En�n, un système de pénalités nuancé par une fonction �oue,
lequel a pour but d'améliorer les jonctions entre unités est décrit (sectionIX).

Avant la présentation de ces travaux, un état de l'art est dressé dans cet
ordre : introduction sur la parole humaine (sectionI), historique de la synthèse
de la parole et présentation de l'état courant des recherches (sectionII) et en�n
présentation des di�érents éléments constitutifs d'un système de Synthèse Par
Corpus (sectionsIII et IV). Le chapitre résumé par la sectionV se charge,
quant-à-lui, de présenter le protocole expérimental, les voix de synthèse ainsi
que les outils pour gérer ces voix utilisés dans la thèse.

Pour les travaux présentés dans cette thèse, nous travaillons dans un cadre
ou la contrainte sur le temps réel lors de la synthèse est levée (le focus est sur
la qualité) mais l'on s'y intéresse ponctuellement tout au long de la thèse, en
particulier dans le chapitre traitant des algorithmes de synthèse (résumé en
sectionVI). En outre, les travaux présentés dans cette thèse portent sur la syn-
thèse du français. La majorité des résultats peuvent toutefois raisonnablement
s'appliquer à de nombreuses langues.

I De la production de la parole

La parole humaine est un signal acoustique dont l'analyse permet de la
subdiviser en deux composantes : la composante phonétique et la composante
prosodique. La composante phonétique est la plus évidente. La parole peut être
découpée en unités de sens plus ou moins grandes : phrases, groupes de sou�e
(séparés par une inspiration du locuteur), mots, syllabes et en�n phonèmes.
Aux phonèmes, au nombre d'environ 35 en français (le nombre exact peut varier
en fonction de composantes régionales ou historiques), on adjoint la notion de
phone. Un phone est une réalisation acoustique d'un phonème. La parole étant
in�uencée par de nombreux facteurs de variabilité, des phones correspondant au
même phonème (dans ce cas, on parle d'allophones) peuvent être très di�érents.
Cela peut notamment être dû au phénomène dit de coarticulation, qui veut
que la prononciation d'un phonème soit directement in�uencée par celles de
son prédécesseur et son successeur, voire par la prononciation de phonèmes
plus distants. En�n, une dernière notion revêt une importance considérable :
il s'agit du diphone. Plusieurs recherches entreprises dans les années 50-60 ont
en e�et montré que les concaténations e�ectuées en milieu de phone étaient
en règle générale de bien meilleure qualité que celles réalisées en frontière de
phone [Peterson et al. 1958;Dixon and Maxey 1968]. De cette constatation est
née une nouvelle unité : le diphone. Un diphone est une unité dont les deux
frontières sont les centres de deux phones successifs, le centre du diphone étant
la frontière entre les deux phones. Par exemple, la séquence de deux phones

iv



[a o] contient un seul diphone commençant à la moitié du [a] et �nissant à la
moitié du [o].

La deuxième composante de base de la parole est sa prosodie. La prosodie
regroupe toutes les informations que la composante phonétique ne prend pas
en considération. Di Cristo [Di Cristo 2000] caractérise la prosodie comme �
la représentation formelle (aspect phonologique) des éléments de l'expression
orale tels que les accents, les tons, l'intonation et la quantité, dont la mani-
festation concrète, dans la production de la parole, est associée aux variations
de la fréquence fondamentale (F0), de la durée et de l'intensité (paramètres
prosodiques physiques), ces variations étant perçues par l'auditeur comme des
changements de hauteur (ou de mélodie), de longueur et de sonie (paramètres
prosodiques subjectifs). � Dans la dé�nition ci-dessus, un élément particulière-
ment important est la F0, laquelle est perçue par l'auditeur comme la hauteur
de la voix. Il s'agit en fait de la fréquence la plus basse du signal de parole, un
signal de parole étant représentable (les portions voisées � générées par vibra-
tion des cordes vocales � sont d'ailleurs périodiques) dans le domaine spectral.
La F0 correspond à la première harmonique du signal. Les harmoniques suiv-
antes, F1 et F2 du moins, peuvent également être mises en relation avec des
aspects physiologiques de l'appareil de production de la parole (ouverture de la
bouche et position de la langue).

II Une histoire de la synthèse de la parole

Le chapitre suivant est consacré à un historique de la synthèse de la parole et
à un inventaire des techniques actuelles. Depuis la machine parlante du baron
Von Kempelen, à la �n du XIII ème siècle, laquelle était intégralement consti-
tuée de composants mécaniques, en passant par le Voder et ses résonateurs
électroniques, les méthodes de construction de ces machines ont considérable-
ment évolué. La première tentative documentée de reproduction de sons de
parole humaine est due à Christian Kratzenstein qui, en 1779, utilisant des
résonateurs acoustiques pour reproduire les sons de 5 voyelles. Douze ans plus
tard, le baron hongrois Wolfgang Ritter von Kempelen, publia un livre détail-
lant plus de 20 ans de recherches et la construction d'une machine parlante de
son invention permettant de produire des lambeaux de parole. Au cours des 200
ans qui ont suivi, trois manières de synthétiser de la parole ont été explorées.

La première, historique, consiste à reproduire le système articulatoire hu-
main. Cette méthode, basée sur la résolution d'équations di�érentielles haute-
ment complexe, demande beaucoup de calculs et reste aujourd'hui trop lente
pour une utilisation industrielle. De plus, la parole produite par ce biais reste de
faible qualité en comparaison des autres techniques. Rien n'empêche cependant
d'imaginer un retour en force de cette approche dans le future si une évolution
favorable à cette technique se produisait.

La seconde, développé principalement à des �ns de télécommunication (au
moins au début), dans les années 1970, est de construire/apprendre des modèles
de réalisation de la parole qui peuvent ensuite être utilisés de manière généra-
tive. Les méthodes basées sur cette technique ont l'avantage d'être �exibles
et jouissent d'un très faible encombrement (les modèles actuels ne font que
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quelques méga-octets). Les méthodes actuelles reposant sur ce principe sont
regroupées sous le sigle SPSS, pourStatistical Parametric Speech Synthesis, et
comprennent principalement la synthèse dite par HMM (Hidden Markov Model)
et plus récemment par DNN (Deep Neural Network) [Black et al. 2007;Yamag-
ishi et al. 2008;Hashimoto et al. 2015]. Cette approche statistique paramétrique
a été l'objet de nombreux travaux universitaires ces dernières années. Cette
méthode o�re un contrôle avancé sur le signal et produit une synthèse très
intelligible, mais la voix générée manque de naturel.

La troisième façon de produire des énoncés de parole est par concaténation
de parole préexistante. La méthode dite par sélection d'unités, ou Synthèse
Par Corpus (SPC) [Sagisaka 1988;Black and Campbell 1995;Hunt and Black
1996; Taylor et al. 1998; Breen and Jackson 1998;Clark et al. 2007] qui fait
partie de cette catégorie et fait l'objet de notre travail est celle qui produit
actuellement les signaux de parole synthétique de meilleure qualité. Le princi-
pal inconvénient de cette méthode est la nécessité de garder en mémoire une
quantité considérable de parole naturelle pré-enregistrée : le corpus de parole
ou voix de synthèse. Ce corpus peut regrouper plusieurs heures, voire plusieurs
dizaines d'heures de parole provenant d'un même locuteur. La Synthèse Par
Corpus (SPC), est un ra�nement de la synthèse par concaténation où l'on dis-
pose d'un simple dictionnaire de diphones, avec plusieurs variantes pour chaque
diphonème. La SPC permet la création de synthèse de haute qualité, dont le
naturel et la qualité prosodique restent inégalés par les autres méthodes grâce
à l'utilisation de parole naturelle pour réaliser la synthèse. La plupart des
systèmes industriels actuels fonctionnent grâce à cette méthode qui, outre la
taille conséquente du corpus de parole, à quelques inconvénients, telle la di�-
culté à contrôler la prosodie et le risque d'artefacts de concaténation pénalisant
l'intelligibilité. Cette méthode fait intervenir la notion d'unité, laquelle est une
liste de segments (des diphones généralement) contigüs dans un corpus de pa-
role correspondant à une partie de la séquence cible de segments à synthétiser.

Fondamentalement, avant les années 50, l'objectif principal de la plupart
des études sur la synthèse de la parole était de produire une preuve de con-
cept et d'étudier la parole via un outil. Ensuite, dans les années 50, grâce
à un intérêt croissant pour la synthèse de la parole porté par les opérateurs
téléphoniques, l'objectif principal est devenu la construction de systèmes de
synthèse produisant une parole parfaitement intelligible. Cette étape a été at-
teinte au cours des années 80/90. La recherche s'est donc portée sur la qualité
de la parole, en particulier pour la parole neutre ; et plus généralement la qual-
ité du message porté par la prosodie de la parole synthétique et plus récemment
sur l'expressivité.

III L'étage d'analyse et le corpus

Les travaux présentés dans cette thèse portent, au sein d'un système de SPC,
sur le module de sélection d'unité. Ce module utilise deux types d'informations
: une séquence d'informations représentant le signal de parole à produire et la
voix de synthèse, contenant les unités (portions de corpus) à concaténer. Le
chapitre 3 présente, d'une part, l'interface entre le texte fourni par l'utilisateur
en entrée du système et le bloc de sélection d'unité et, d'autre part, le processus
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de création du corpus de parole. Le texte fourni en entrée par l'utilisateur
est annoté par une succession d'outils. Le texte est d'abord nettoyé de tout
caractère incohérent ou non géré puis découpé en groupes de sou�es et en mots.
L'étape suivante, dite de phonétisation, génère la séquence de phonèmes reliés
aux di�érents mots. En�n, la syllabation produit la séquence de syllabes reliées
d'une part aux phonèmes et d'autre part aux mots. Ce sont ces annotations
qui, sous le nom de séquence cible (de phonèmes, de syllabes, ...), sont fournies
au moteur de sélection d'unité.

Le corpus de parole, quant-à-lui, doit être mono-locuteur et couvrir un cer-
tain nombre d'attributs comme l'ensemble des phonèmes disponibles dans une
langue, l'ensemble des diphones et ce au moins plusieurs fois (surtout pour les
plus utilisés) ou bien encore la plus grande partie des syllabes d'une langue. Le
script d'enregistrement du corpus, lu et enregistré ensuite en studio, peut être
produit par pure construction de phrases en couvrant les attributs requis, par
condensation d'un corpus textuel de taille considérable (trop grand pour être
enregistré) ou bien via une approche mixte. Dans tous les cas, le compromis
entre la taille et la richesse du corpus est le point clé pour obtenir une qualité
vocale satisfaisante avec le système de synthèse.

IV Le bloc de sélection d'unité

Le chapitre suivant présente les spéci�cités du module de sélection d'unités,
lequel est immédiatement suivi d'un module réalisant la concaténation des por-
tions de corpus de la séquence sélectionnée et appliquant généralement un lis-
sage à l'emplacement de la concaténation voire des modi�cations prosodiques
comme un ajustement du rythme de la phrase ou de sonpitch (hauteur de la
phrase et perception qu'a un auditeur de laF0), par exemple via un algorithme
nommé PSOLA.

A�n de discriminer les segments provenant du corpus qui correspondent
aux besoins exprimés par l'intermédiaire de la séquence cible, la méthode
habituelle [Black and Campbell 1995] est de classer les unités en évaluant le
degré de ressemblance avec la séquence cible (coût cible) et le risque de créer
un artefact lors de la concaténation des unités (coût de concaténation) via des
fonctions de coût.

Cette méthode fait intervenir la notion d'unité, laquelle est une liste de
segments (des diphones généralement) contigüs dans un corpus de parole cor-
respondant à une partie de la séquence cible de segments à synthétiser.

L'ensemble des unités disponibles correspondant à la séquence cible sont
regroupées dans un graphe où une unité est un noeud et où un arc représente
une possible concaténation. Plus précisément, ce graphe se trouve être un
treillis. Le problème de sélection d'unités est donc un problème de recherche
de meilleur chemin (un chemin étant une séquence d'unités correspondant à
la séquence cible) dans un treillis. Il existe plusieurs algorithmes résolvant ce
problème dont Viterbi et A � . L'algorithme de sélection utilise la fonction de
coût composée des coûts cible et de concaténation pour trier les séquences et
sélectionner la meilleure.
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V Données expérimentales et méthodologie de test

Dans le chapitre 5, nous présentons les corpus de parole utilisés dans la
thèse, les outils permettant de les gérer et la méthodologie de test employée.
Les corpus utilisés dans la thèse sont gérés par letoolkit Roots , développé dans
l'équipe. Un autre format, binaire lui, est utilisé lors de la synthèse pour des
motifs de rapidité. Nous utilisons deux voix dans nos expériences :Audiobook,
qui est une voix masculine avec unF0 moyen très bas (moyenne sur les portions
voisées uniquement) à 87Hz etIVS , une voix féminine deF0 moyen de 163Hz.
Des sous-portions de ces voix ont été extraites au préalable pour former deux
corpus de test auxquels est ajouté un troisième corpus de test de 27 141 phrases.
Ces corpus de test sont utilisés pour générer des stimuli de parole à évaluer à
la fois via des mesures objective et des évaluations subjectives, ces dernières
se traduisant par des tests d'écoute en aveugle. Compte tenu de la complexité
de la tâche d'évaluation de la parole synthétique, aucune méthode objective
n'a encore réussi a donner pleinement satisfaction à ce jour. Les évaluations
sont donc principalement subjectives. Les tests subjectifs peuvent évaluer la
préférence des utilisateurs dans une confrontation de systèmes (tests AB) ou
bien établir un score pour chaque système évalué (indépendamment (tests MOS,
DMOS, ...) ou les deux avec un type de test plus récent :Mushra. Les tests
cités sont tous utilisés dans la thèse, en priorité les tests AB. En particulier,
le protocole décrit dans [Chevelu et al. 2015] est régulièrement utilisé dans nos
tests.

VI Concernant le choix de l'algorithme de sélection

Dans le chapitre 6, nous présentons tout d'abord le système de synthèse
de parole de l'IRISA, auquel les travaux de cette thèse ont apporté une im-
portante contribution. Notre premier travail a ensuite porté sur l'étude et
l'amélioration de l'algorithme de sélection d'unité. Nous avons implémenté une
stratégie d'exploration très utilisée dans le domaine (algorithme de Viterbi) et
l'avons comparé à une approche utilisant l'algorithmeA � , jugée moins combi-
natoire. Plus exactement, 3 approches de typebeam-search(version de Viterbi
sous-optimale mais plus rapide car élaguée) ont été testées avecA � : un beam-
searchavec un fort élagage (faisceau de 10 unités) mais très rapide, une version
intermédiaire avec 100 unités et en�n une version quasi-optimale avec 1000
unités. En particulier, la question était d'identi�er si oui ou non, l'optimalité
de la solution (i.e. la séquence de fragments de corpus à concaténer) était
importante et sinon, quelle stratégie de recherche était la meilleure.

La comparaison, comprenant des mesures objectives ainsi que plusieurs éval-
uations subjectives, a été faite en utilisant les mêmes �ltres de pré-sélection, la
même fonction de coût et les deux corpus présentés plus haut. Les résultats ont
montré que A � dans sa version admissible se montre plus e�cace qu'unbeam-
searchavec une grande taille du faisceau (celui de taille 1000). Cependant, il a
également été montré que les algorithmes explorant un treillis fortement élagué,
même s'ils sont perçus comme moins performants (autant dans les tests percep-
tifs qu'avec les données objectives), ne présentent pas un écart considérable en
terme de qualité de synthèse. Même siA � réalise un nombre de concaténations
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inférieur aux autres algorithmes, les évaluations perceptives montrent que cela
ne se traduit pas par un écart de qualité considérable. Les résultats semblent
indépendants à la fois du style vocal utilisé et de la voix. Cela nous amène à
deux conclusions : d'abord, trouver la solution optimale au problème de sélec-
tion d'unité semble de peu d'utilité. En e�et, des algorithmes modérément
élagués présentent une qualité de synthèse perçue identique. Cela s'explique
par la variabilité entre les meilleures séquences qui est très faible. En outre, on
montre que A � est mieux adapté que Viterbi au problème de sélection d'unité.
Dans le reste du document, nous utilisons toutefois toujoursA � en version
optimale lors de la génération des stimuli de test.

En outre, la sélection des unités est fortement dépendante de la stratégie
de présélection (qui empêche les unités jugées trop mauvaises d'arriver dans
le treillis de sélection en se basant sur un vecteur binaire de caractéristiques à
respecter). La présélection pose en e�et une contrainte sévère sur le moteur.
Nous avons donc évalué l'impact des �ltres sur la qualité de la synthèse. Nous
avons montré que les �ltres que nous utilisons ne dégradent pas la synthèse
tout en économisant un temps de calcul considérable (en réduisant la taille du
treillis par élagage).

VII Proposition d'un nouveau coût cible de durée
phonétique

Le chapitre suivant présente une nouvelle façon � dans le coût cible � de
minimiser les di�érences spectrales en sélectionnant des séquences d'unités min-
imisant un coût moyen au lieu d'unités minimisant chacune un coût cible de
manière absolue. Ce coût est testé pour une distance sur la durée phonémique
mais peut être appliqué à d'autres distances. Le but est de sélectionner la
séquence complète d'unités qui minimise une distance de durée phonémique
avec des valeurs prédites par un ANN (Arti�cial Neural Network) plutôt que
de choisir la séquence contenant des unités qui minimisent individuellement
la même distance de durée. Ceci est destiné à éviter des cas tels qu'une ex-
cellente synthèse pénalisée par quelques très mauvaises unités uniquement en
produisant la séquence la plus homogène possible (ce qui est déjà favorisé par
le coût de concaténation, bien qu'insu�samment). Les expériences ont montré
que cette nouvelle mesure donne de bons résultats sur les échantillons de parole
qui présentent des problèmes de durées, en particulier pour les voix expres-
sives. En outre, nous montrons que la nouvelle mesure ne semble pas a�ecter
les échantillons synthétisés qui ont de bonnes durées depuis le début.

VIII Proposition d'un nouveau coût cible pour le
contrôle du pitch

Notre deuxième proposition sur la fonction de coût est une fonction de coût
cible visant à améliorer l'intonation en se basant sur des coe�cients extraits à
travers une version généralisée du modèle de Fujisaki. Ce modèle utilise des
fonctions gamma modélisant le contour deF0 appelées atomes. Les paramètres
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de ces fonctions sont utilisés au sein d'un coût cible. L'hypothèse sous-jacente
est que ces fonctions gamma (dont certains paramètres semblent correspondre
à des fonctions physiologiques) sont positionnés à des endroits où les variations
acoustiques induites par les facteurs physiologiques auxquels les atomes (nom
donné à ces fonctions) semblent corrélés sont importantes et doivent être respec-
tées. Nous supposons également que le processus de sélection d'unité choisit
naturellement des unités qui disposent d'uneF0 plus ou moins homogène au
niveau de la phrase. En e�et, une distance évaluant la di�érence deF0 est
présente dans le coût de concaténation. De manière à assurer cette hypothèse,
le coût de concaténation deF0 pourrait suivre la formulation proposée dans le
chapitre précédent.

Concernant l'intonation des phrases synthétiques, la plupart des problèmes
proviennent de segments qui ont un contour local (à l'horizon phone-syllabe)
de F0 très di�érent de ce qui est attendu. Comme les atomes locaux se
situent précisément au niveau des segments voire au niveau syllabique, et
comme les atomes locaux pourraient être liés à des facteurs physiologiques liés
à l'intonation, nous avons fait l'hypothèse que l'utilisation de ces données via
une contrainte de type coût cible peut améliorer la prosodie synthétisée. Une
fonction de coût utilisant le contour de F0 reconstruit à l'aide des atomes a
été construite. Une seconde fonction, utilisant uniquement les paramètres des
atomes (les paramètres des fonctions gamma) a également été créé et testé. Les
expériences menées ensuite ont montré que ces deux méthodes surclassent une
distance standard deF0.

IX Unités sandwich pour le coût de concaténation

Le rôle du coût de concaténation est de s'assurer que l'assemblage de deux
segments de parole ne causera l'apparition d'aucun artefact acoustique. Pour
cette tâche, des distances acoustiques (MFCC,F0) [Stylianou and Syrdal 2001;
Tihelka et al. 2014] pour évaluer le niveau de ressemblance spectrale entre deux
stimuli vocaux sur et autour du point de jonction. Ces coûts de concaténation
sont toutefois loin d'être parfaits et de nombreux artefacts apparaissent à la
fois dans les systèmes commerciaux et de recherche, même après un traitement
post-concaténation. Plusieurs analyses ont montré que ces artefacts se pro-
duisent plus souvent sur certains phonèmes que sur d'autres [Yi 1998;Cadic
et al. 2009]. Cette observation est à l'origine d'une méthode de construction de
script d'enregistrement dans [Cadic et al. 2009] où la couverture de � sandwichs
vocaliques � vise à favoriser les concaténations sur des diphonèmes jugés peu
risqués. Ainsi, dans le dernier chapitre de cette thèse, nous proposons d'intégrer
ces contraintes directement dans la fonction de coût, sans l'aide d'un corpus
construit avec des sandwichs vocaliques.

Nous intégrons ainsi une pénalité en fonction de la classe de phonèmes dans
la fonction de coût lors de la sélection d'unité. Deux versions sont proposées
: d'abord en utilisant une pénalité �xe puis une fonction �oue visant à rendre
la pénalisation des unités plus �exible. La version faisant appel à une fonc-
tion �oue est capable de relâcher la pénalité en fonction du positionnement des
sous-coûts de concaténation des deux unités à joindre par rapport à sa distri-
bution observée dans le corpus ayant servi à construire la voix de synthèse. En
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somme, pour deux unités jouissant par exemple d'un des meilleurs coûts de
concaténation possibles, la pénalité induite par la prise en compte des classes
phonétiques des diphones composant les deux unités à joindre sera nécessaire-
ment faible voire nulle. Une évaluation objective montre que la pénalité est
e�cace et amène à un meilleur classement des séquences d'unités candidates
au cours de la sélection tandis qu'une évaluation subjective révèle une perfor-
mance supérieure de l'approche �oue.

Conclusion

Les contributions apportées par cette thèse se répartissent donc sur deux
axes. D'une part, il a été montré que l'algorithme A � présentait des avan-
tages conséquents sur Viterbi ou mêmebeam-search. En outre, commeA � peut
également être élagué, il est une solution tout-à-fait convenable, préférable à
Viterbi, pour la sélection d'unité. Notre travail sur les algorithmes a égale-
ment montré que la recherche de la solution optimale au problème de sélection
n'est pas nécessaire puisque qu'un algorithme explorant un graphe de sélection
modérément élagué fait jeu égal dans les tests subjectifs. La variabilité entre
les meilleures séquences candidates étant faible, la dégradation de la synthèse
n'intervient qu'avec un très fort élagage.

D'autre part, nous avons mené trois travaux sur la fonction de coût ayant
amené à une meilleur performance générale (en terme de qualité) : un coût
améliorant les durées phonétiques, un autre améliorant l'intonation et en�n un
système de pénalités nuancé par une fonction �oue permettant des concaténa-
tions de meilleure qualité.

Les principales possibilités d'extension de la thèse concernent la distance de
durée et la pénalité �oue sur les sandwichs. En e�et, la méthode de calcul
du coût de durée pourrait être étendue à toutes les distances (cible et de con-
caténation) de la fonction de coût, moyennant une adaptation de la méthode
pour les coûts de concaténation. Il serait par exemple envisageable de pondérer
les coûts de concaténation par une distance comparant les paramètres d'une
unité à la moyenne des valeurs des mêmes paramètres observées précédemment
dans la portion déjà sélectionnée de la séquence candidate. D'autre part, le sys-
tème de pénalité pourrait être testé dans d'autres con�gurations et sur d'autres
langues. En particulier, d'autres fonctions qu'une fonction linéaire pourraient
être appliquées et les classes de pénalités pourraient être revues. En outre, le
coût d'intonation ayant la particularité dans nos travaux de n'avoir été testé
que sur un système � oracle �, c'est-à-dire sans prédictions depuis le texte mais
directement avec des annotations réelles, il serait souhaitable de tenter la pré-
diction du contour d'atomes reconstruit (prédire les paramètres directement
semblent di�cile) pour ensuite intégrer ces prédictions et avoir ainsi un coût
d'intonation pleinement fonctionnel.
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Abstract
This PhD thesis, entitled �Étude des algorithmes de sélection d'unités pour la
synthèse de la parole à partir du texte� (Study of Unit Selection Text-To-Speech
Synthesis Algorithms), focuses on the automatic speech synthesis �eld.

Two main strategies are currently under consideration in this �eld. The �rst one
relies on a statistical parametric approach where models of speech signals are
created. Models are then used in a generative way to produce speech utterances.
It is widely known as the Statistical Parametric Speech Synthesis approach
(or SPSS). The second strategy, which is an evolution of concatenation-based
synthesis, consists in preserving and annotating a large speech corpus (usually
several hours or even tens of hours), then extract fragments (called units) and
paste them together to reproduce a textual utterance to synthesize (called the
target utterance). The mechanism (not trivial) by which these fragments are
selected is referred to as unit selection. The general technique is called Corpus-
Based Speech Synthesis.

My thesis aim is to explore, diagnose unit selection mechanism and suggest
improvements. To meet these objectives, a corpus-based speech synthesis was
needed. For reasons of independence, �exibility and to ensure a transversal
control of the software, it was decided to build a completely new system rather
than using and modifying an existing tool. I spent a considerable amont of time
during my thesis contributing to the implementation of the synthesis engine
within my research team and adding features to it.

I �rst took interest in evaluating the impact of the search algorithm on unit
selection. In particular, I considered whether or not optimality of the solution
(i.e. corpus units to be concatenated) was important. My conclusion was that
the search algorithm sensibly impacts the selection process only when searching
for the optimal solution (or near optimal). For most applications, optimality
of the solution is not necessary however. Even a very pruned unit selection
process can be used with rather few sensible �aws.

The second part of my work focused on the cost function that allows the search
algorithm to rank corpus units according to their suitability to solve the prob-
lem. This function is composed of a concatenation and a target cost. The �rst
one measures the ability of a unit to be pasted after another one without caus-
ing artefacts. The second one judges the level of dissimilarity between a unit
and what is desired. A fuzzy penalty function using the �Vocalic Sandwich�
criterion was designed and tested. Its goal is to try avoiding concatenations on
corpus units where more atefacts are usually found. This method has the par-
ticularity to be �exible and does not always penalize units. Indeed, it also takes
into account the value concatenation cost. New target cost strategies have been
implemented and tested. A �rst cost, which integrates long-term constraints in
the phonemic duration target cost, was tested. Its aim is to produce a sentence
with units of roughly equivalent quality. The second cost is based on the atom-
based intonation decomposition technique, a generalized version of Fujisaki's
Command-Response model. It aims at enhancing intonation in sentences pro-
duced by the Text-To-Speech synthesis system. Both two target costs and the
�Vocalic Sandwich� penalty were shown to enhance synthesis quality, especially
the last one, which should really be the subject of more research.
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Introduction

Speech synthesis democratization accelerated dramatically in recent decades � and even

more in recent years � with the appearance and the popularization of new needs. If foresee-

ing the future of human-computer interfaces1 is much of a guessing game, an observation

of recent changes in technology shows a clear trend: the �traditional�2 mouse and keyboard

setup tends to be replaced by touch and voice-enabled interfaces whenever and wherever

possible. Why is that so? Simply because touching, hand-manipulating and speaking

are the essence of interaction of a human being with his environment. But why is this

revolution happening now, while it did not occur a few decades ago? After all, touch-

screens, speech synthesis and to a lesser extent Automatic Speech Recognition (ASR) are

not younger than the computer mouse. Once again, the answer is simple. The technology

was not ready until the beginning of the XXIst century.

So, now concerning speech synthesis, what changed between now and then? Speech

synthesis began, with baron Wolfgang Ritter von Kempelen during the XVIIIth century,

as an experiment focused on testing the feasibility of producing speech arti�cially. It was

also a simple way to better understand speech by reproducing it. The emergence of elec-

tronics allowed experiments like Homer Dudley's Voder but it is only with the arrival of

the computer age that speech synthesis could be fully automated, this time generating

speech stimuli from a textual input. The �rst Text-To-Speech synthesis systems (TTS)

emerged in conjunction with the expansion of telecommunications. And it is precisely tele-

com operators that �rst saw a potential in TTS. It enabled them, along with automatic

switching systems, to replace human telephone operators with machines. Hence, TTS

enabled-telephone servers began to appear in the 90s. With the arrival of unit selection-

based speech synthesis, which we will discuss in an instant, TTS ultimately reached a

quality level su�cient for commercialization. It is only in the last years though that TTS

and ASR increasingly invaded the consumer market, thanks to the conjunction of four

elements. First, the dramatic increase in computation capabilities, even in small embed-

ded and mobile systems. Second, the increase of storage capability, especially in mobile

1The term human-machine is perhaps even better as identifying new technological devices as computer-
driven tends to be more and more di�cult for the public.

2Can a technology that reached the mass market in the 80s, like the mouse did, be called traditional 30
years later?

1
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devices (allowing TTS directly on a smartphone for instance). Third (and perhaps the

most important), the democratization of internet access on all devices, allowing to perform

the synthesis on powerful servers before sending the synthesized speech stimuli back to

the users. Fourth, the re�nement of unit selection TTS and the emergence of SPSS (cf.

next paragraph) boosted synthetic speech quality. For all these reasons, TTS is taking,

along with ASR, an increasingly important place in the human-machine communication

paradigm.

Let us now focus on the current state of the art of research in the TTS �eld. In recent

years, research in text-to-speech synthesis essentially focused on two major techniques.

The statistical parametric approach (SPSS), which mainly includes HMM and DNN-based

systems, is the most recent and has been the focus of many academic work in recent

years. This method o�ers advanced control on the signal and produces very intelligible

speech but generated voice lacks naturalness. The historical one, unit selection [Sagisaka

1988; Hunt and Black 1996], is a re�nement of concatenative synthesis, which principle

is very simple: record speech, split it into small units and paste these units in order to

match a textual utterance. Sound created with this method features high naturalness and

its prosodic quality is unmatched by other methods, as it basically concatenates speech

actually produced by a human being. While most industrial TTS systems rely on unit

selection, this method has its drawbacks, for instance the di�culty to force prosody and

the possibility to get concatenation artefacts penalizing intelligibility. In the formulation

of the unit selection problem, a unit is a list of contiguous segments (in the speech corpus)

�tting a portion of the target sequence. In order to discriminate the segments coming from

the corpus that �t the requirements expressed via the target sequence, the usual method

is to rank the units by evaluating the context matching degree (target cost) and the risk

of creating an artefact if concatenating the unit (concatenation cost) via balanced cost

functions. Due to the complexity of the problem � unit selection has to process millions

of candidate units to synthesize an average utterance � pruning is often needed to give

a result in an acceptable time or even in real time for most industrial applications. In

this thesis, we take abstraction of this real time constraint as we work on uncompromised

synthesis quality. We will nevertheless focus punctually on this constraint, especially in

chapter 6, when dealing with unit selection algorithms.

The work presented in this thesis entitled "Study of Unit Selection Text-To-Speech

Synthesis Algorithms", we focus on unit selection solely. Our work aims at exploring, di-

agnosing unit selection mechanism and adding algorithmic improvements both in the unit

selection process and in the selection cost. For this, we built a new Text-To-Speech syn-

thesis system within IRISA/Expression team. We decided to build this system instead of

choosing an existing one for reasons of independence, �exibility and to ensure a transversal

control of the software, especially as an extensive part of this thesis was spent working on

the inside of the unit selection engine. A non-negligible amount of time was spent, during

this thesis, contributing to the implementation and maintenance of the synthesis engine
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and adding features.

This thesis is articulated around tree main parts. In the �rst part, we describe the

state of the art in speech synthesis. We start with a presentation of the basic concepts on

which TTS relies in an introductory chapter (chapter 1). The second chapter (chapter2)

show the place of our work within the �TTS world� by making a chronology on speech syn-

thesis. In particular, we highlight the main problems researchers addressed throughout the

history of speech synthesis, �nishing with the main problems in current research. The two

remaining chapters, in the �rst part deal with the full TTS chain, namely the TTS fron-

tend (chapter 3) and backend (chapter4) and their sub-components. We present each of

them extensively. In the last chapter, we de�ne formally the unit selection problem and we

discuss its characteristics in detail. In this thesis, we pay a particular attention to present

the problem in its variable-size version, and not as often the reduced diphone-based version.

In the second part of this thesis, we focus on the whole unit selection block and we

analyze its key algorithmic components. The �rst chapter of that part (chapter 5) presents

the databases and database management tools we use throughout the thesis. In that chap-

ter, we also give precisions concerning the test methodology used in this document. In the

second chapter (chapter6), we describe the TTS system we built and we present our work

on the unit selection algorithm. In most cases, the Viterbi algorithm is used to perform the

unit selection task, but it is not the only possible one. Since unit selection can be formu-

lated as a path �nding problem, other graph exploration algorithms can also be applied,

which is what we do in this chapter. We also present important results on the preselection

�lters and the cost function.

Finally, the third part focuses on the cost function. A total of three propositions are

presented, two within the target cost and one in the concatenation cost (following Black

& Campbell's formulation [Black and Campbell 1995]). In chapter 7, a duration cost is

presented. Its aim is to select the unit sequence that best minimizes, as a whole, duration

distance rather than choosing the sequence containing units that individually minimize a

duration distance. This is intended to avoid cases like excellent synthesis penalized by few

very bad units. This cost is tested on a phonemic duration cost but can perfectly be applied

to any other cost. Chapter 8 presents a target cost aiming at improving the intonation

of synthesized sentences. For this task, it uses the parameters of Atom-based intonation

decomposition technique, a recent generalization of Fujisaki's Command-Response model.

Finally, we present a work on a penalty system using the concept of �Vocalic Sandwiches�

�rst presented by D. Cadic et. al. [Cadic et al. 2009] in chapter9. In particular, a fuzzy

membership function depending on the distribution of concatenation costs was designed.

It softens the penalty with regard to the relative cost of a unit in the speech corpus cost

distribution.
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Chapter 1

On Speech Production

�Speech or human language is the ability to communicate one's feelings or
thoughts to his fellows by di�erent voice intonations.�

Von Kempelen's de�nition of speech in 1791,
in �Mechanismus Der Menschlichen Sprache�,

Wolfgang Ritter von Kempelen (1734�1804)

Speech is a multidisciplinary subject of study and can be seen as the crossing between

three domains: Medicine and anatomy on one side to characterize the human speech appa-

ratus; Physics for the study of the acoustic dimension and �nally linguistics to analyze the

message actually conveyed by this way of expression. To these �elds we must add Computer

Science [Boë 1990; Boe�ard 2004]. The main goal in this short introduction chapter is to

give some basic vocabulary and de�nitions. Though we use several other sources, like the

Springer Handbook of Speech Processing [Benesty et al. 2008], the main source of inspira-

tion of this chapter is the �La parole et son traitement automatique� book (French) [Calliope

1989]. We �rst de�ne the nature of speech signals, focusing on its decomposition into mean-

ingful units. We discuss the notion of acoustic variability that makes speech synthesis and

recognition particularly di�cult. We also focus on the human vocal apparatus and its main

components. Then, we de�ne the notion of prosody. Finally, we present brie�y speech in

the spectral domain.

1 What Is Speech ?

The distinction between speech signals and other sounds is made thanks to speci�c char-

acteristics, directly related to the acoustic mechanisms they originate from in the speech

apparatus (larynx, voice chords, tongue, hard palate, aperture,etc.). There are two ways

7
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to produce speech sounds. First, by vocal folds' vibration, also called voicing and second,

by a direct air �ow from the lungs into the vocal tract, without the use of vocal folds. A

voiced sound is a sound that was produced by a vibration of vocal folds, though it may

later be modi�ed by articulators. Vocal sounds may be retained for a time by a closure of

the vocal tract at lips level.

Figure 1.1: The vocalic trapezium as shown on Wikipedia encyclopedia. The horizontal
axis corresponds to tongue position (front on the left, central in the middle row and back
on the right) while the vertical one is for mouth opening (closed in the upper part and
open in the bottom).

Speech sounds in a language � mostly French in our case, are called phones. Phones are

sorted in two big categories: vowels and consonants. Vowels are characterized by their in-

trinsic properties: nasality, opening level of the vocal tract, tongue position (front or back

on both horizontal and vertical dimensions) and lips articulation (roundness). Tongue

height, backness and roundness may be used for de�ning the vocalic IPA vowel trapezium,

shown on �gure 1.1 1. On this trapezium, the horizontal axis corresponds to the tongue

position, from front position on the left to back on the right, while vertical one is for

mouth opening, also called aperture or vowel closeness. Open vowels are at the bottom

while closed ones are on top.

Consonants are classi�ed depending on their voicing (vowels are always voiced),i.e.

the use or not of vocal folds, the manner of articulation (obstruent, sonorant, lateral or

trill) and the place of articulation (labial, bidental, coronal, dorsal, laryngeal or peripheral)

[Calliope 1989;Benesty et al. 2008].

These di�erent properties inherent to phones allow to gather them into a set of classes

that serve to formalize elementary sounds of a language: phonemes. Several phones in a

language can be related to a same phoneme. The distinction between phone and phoneme
1These characteristics can be analyzed and quali�ed in terms of frequency through the notion of formant.
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lies on a di�erence of domain: acoustic versus phonologic. A phone is the acoustic realiza-

tion of a phoneme, the latter being a phonological unit. The classes formed by phonemes

can be observed on the general IPA trapezium above for English language. Depending on

the language or even the regional accent, the position of these classes may change and some

classes may not be present while some others may appear (as all languages don't use the

same sets of phonemes). The phoneme usually constitutes the �rst and smallest entity of

a language. As several distinct phones are related � in a language � to the same phoneme,

elements of the set of phones related to a same phoneme are called allophones2.

By chaining phonemes one after the other we get the notion of syllable. A syllable

is made out of 3 elements: an onset, a nucleus and a coda. The nucleus is the core of

the vowel and is necessarily a vowel. The onset and the coda are the sets of consonants

respectively preceding and following the vowel core of the syllable. They may eventually

be empty (one or the other or even both). Syllables are usually de�ned as the smallest

meaningful units in a language, as the latter basically happens to be a concatenated chain

of them. They have particular importance in syllabic languages, like French, Romanian

or Vietnamese. In those languages, on the contrary of stress languages (like English) the

rhythm of the sentence is de�ned by the speed syllables are pronounced, each one of them

being pronounced with the same length.

2 Acoustic Variability

A huge number of parameters causes spectral characteristics of speech production to vary

� sometimes considerably. Gender, age, ethnic and cultural origin, education level, emo-

tional state, sickness,etc. are as many parameters that cause speech stimuli corresponding

to a same sentence to be di�erent. Some allophones pronounced by two di�erent speakers,

or even by the same speaker in two di�erent contexts, may vary up to a point where a

listener might not even recognize them as the realization of a same phoneme. That e�ect

is particularly intense on vowels. As an example why, we will discuss the three biggest

sources of di�erences.

First Male and female speech apparatuses are not entirely identical. Female vocal

tracts generally are 15% shorter than male ones. Furthermore, male larynx is located

deeper (lower) than female larynx, which induces a di�erent articulation of the tongue for

the two genders: masculine tongue articulation is more open (less cramped articulatory

channel) than for females.

Second, the shape of the nasal tract changes from an individual to another. Nasal

2 It has to be kept in mind that the allophone set is language dependent. Phones realizing the same
phoneme in one language are not necessarily allophones in another.
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sounds, which require a communication between nasal cavity and oral tract, are therefore

di�erent among di�erent people.

But then, beyond dissimilarity between male and female articulatory apparatus or even

the in�uence of culture on pronunciation, the key phenomenon to explain such variability

is co-articulation. Co-articulation is the in�uence one sound exerts on its successor(s). In

order to produce the �rst sound, the speaker has to put his articulatory apparatus in the

required con�guration and then rearrange quickly the apparatus to meet the con�guration

necessary to pronounce the following sound. Thus, the regular �ow in pronunciation and

the continuity of the sound dictate a di�erence in the characteristics of the second sound

compared to its archetype. In practice, the speaker has to �nd a good compromise between

the required position his articulators must have to pronounce the right sound and the time

he can spend pronouncing this sound. Hence, the sound the speaker actually produces is a

compromise of these two prerequisites. As an example, let us focus on French syllable [du],

transcribing word � doux � (soft). To pronounce it, the speaker must �rst say phoneme [d]

for which the tongue has to be in the front position in the mouth, and then shift the tongue

to the rear as quickly as possible for the second sound [u]. As in practice the speaker only

has a small amount of time to get his tongue back, the latter generally is not in the usual

position for pronouncing the [u]. The faster the speech �ow, the most intense the e�ect.

As co-articulation is a matter of compromise, the �rst phoneme ([d] in the example above)

is also impacted by the second one ([u]) though it is to a smaller extent. Co-articulation

ranges most of the time over two phones, but it may also occur on a wider range (three or

even four phones).

Because co-articulation is so important, unit selection � which will be introduced in

chapter 2 and presented in detail in chapter4 � uses a base unit called diphone instead of

phonemes. A diphone is the speech signal segment between the half of a �rst phone and the

half of its successor. Though it was originally invented by Küpfmüller and Warns in 1956,

the unit was �rst introduced in [Peterson et al. 1958], where it was called a "dyad" and

then diphone in [Dixon and Maxey 1968]. Figure1.2 gives an example of phone/diphone

segmentation on syllable "aba". On the upper part, we have phone frontiers, with the

label of the phoneme each phone is a realization of. The lower part shows diphones, which

frontiers are placed on the middle of each phone.

This has the advantage of having the concatenations (in a unit selection synthesizer)

on phone centers, which are the most stable parts of the signal and the least impacted by

coarticulation.

Beyond stepping up the di�culty of the challenge Automatic Speech Recognition (ASR)

systems face, this increased acoustic variability can prove di�cult to reproduce in synthetic

speech. It is nonetheless essential, to reproduce it in order to keep naturalness of the voice.



3. ANATOMY OF THE VOCAL APPARATUS 11

Figure 1.2: An example of phone/diphone annotation. Here, syllable "Aba" is decomposed
in phones in the upper part and in diphones, with a frontier in the middle of each phone,
in the lower part.

3 Anatomy of the Vocal Apparatus

Before serving for speech production, the human vocal apparatus is a key part of both

the respiratory system and the alimentary system. Many of its components are common

to most mammals, especially among primates. What makes the distinction of the human

system is a set of unique features: a �at tract, small lips, small teeth, short oral cavity,

rounded tongue and independent control over phonation and articulation. The incremental

usage of the vocal apparatus as a communication tool over human evolution caused dense

and direct neural connections from the language related areas to the articulatory system

through the cortex [Benesty et al. 2008].

The speech production apparatus, as described in �gure 1.3, may be divided into two

distinct parts. First, the phonation system composed of both the lungs and the larynx are

responsible for the production of the air �ow and vocal vibration. Then, the articulatory

system adds resonance and modulates the signal. Cavities, situated both in the vocal tract

and nasal system, cause the air to resonate.

The lungs, by setting the sub-glottal air pressure create the voice source sound. The

air pressure is the pressure caused by the air blocked and accumulated in the entry of the

larynx before the vocal folds open and let the air �ow. The larynx, pictured on the right

part of �gure 1.4, contains the glottis and the vocal folds. It creates a vibration of the

air by vibration of the vocal folds when the air �ows through it. This happens only for

voiced sounds though; unvoiced sounds travel through the larynx without being stopped

at the level of the glottis. In the beginning of a breath group, the sub-glottal pressure is

maximal and evolves by about 15% through time before dropping drastically in the end of

the breath group.

The opening of the glottis � housing vocal folds � is called abduction while glottal clo-

sure is named adduction. They are permitted by the arytenoid muscle, which moves vocal
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Figure 1.3: A view of the human vocal apparatus, dissociating parts responsible of phona-
tion and the main articulators. The sounds produced by these mechanisms propagate and
resonate into three cavities/tracts. Figure extracted from the Springer Handbook of Speech
Processing [Benesty et al. 2008].

folds. Both are represented in the lower view of �gure1.4. This cycle of adduction and

abduction events has a periodic nature and its frequency is calledF0, or fundamental fre-

quency. It is perceived as the pitch,i.e. the sound level in speech. Together with rhythm,

pitch forms the melody of a sentence, exactly as they form the melody of a musical piece.

In other words, F0 is the lowest frequency of a periodic waveform (i.e.its �rst harmonic).

Higher frequencies in which the signal can be decomposed are associated toF1, F2, ... (see

section 5).

Left part of the �gure positions the articulators that cause a modulation of the air as

it travels through the vocal tract. Most articulators are situated in the vocal tract and

the mouth, the most important being the tongue, lips, palate and jaws. A part of the air,

depending on the position of the velum (that acts like a trap-door between oral and nasal
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Figure 1.4: Left: A global view of the articulators and cavities involved in speech production
inside the vocal apparatus. Right: Detailed views of the laryngeal framework and the
glottal adduction (left part of the glottis sketch) and abduction (right part). Figures
extracted from the Springer Handbook of Speech Processing [Benesty et al. 2008].

cavities), also enters the nasal tract. For the production of nasal sounds, the velum let's

all the air enter the nasal cavity.

4 Prosody

Speech signals are not exclusively constituted of phones, syllables and words. When we

speak, elements like voice height, intensity of speech and speech rate vary in permanence.

This complex process, which mainly intervenes at the supra-segmental level, with the no-

table exception of phonemic duration, is called prosody. It adds to the signal information

that meaningful units alone cannot convey. It provides the information of modality3, shows

the relative importance of the di�erent elements in the sentence via intonation and accents

and tells the emotional state of the speaker.

Di Cristo [Di Cristo 2000] characterizes prosody as the elements of oral expression like

accents, tones, intonation and quantity; which are linked to the temporal evolution of the

three prosodic parameters that are fundamental frequency (F0), duration and intensity.

The listener interprets these as melody, length and tonal variations.

3The syntactic structure, i.e. indication on neutral, interrogative or exclamatory nature, of the sentence.
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4.1 Parameters

The three prosodic parameters (F0, intensity and duration) are all produced relatively

independently by the speaker. Nonetheless, relations exist �rst betweenF0 and intensity

as both of them are factors of the sub-glottal pressure (F0 is also a factor of the tension

in the vocal folds). Duration also being dependent of the sub-glottal pressure, prosody is

usually represented solely by theF0 curve [Calliope 1989]. While possible ranges ofF0 are

about 80-400Hz for males and 120-800Hz for females, they usually vary between 80 and

250Hz for males and 150 to 400 for females [Benesty et al. 2008]. ChildrenF0 usually varies

in the 200-600Hz range, but can go much higher.

4.2 Constituents

Intonation is the variation of pitch aiming at describing attitudes and emotions of the

speaker, modality of the utterance. It is one of the main constituents of prosody. Pierre

Delattre [Delattre 1966] established a classi�cation of the 10 main types of intonation in

French: �nality, major or minor continuation, implication, order, question, interrogation,

aside, echo and exclamation. Modality can be declarative, exclamatory or interrogative.

The accent component of prosody is what emphasizes elements of the sentence, usually

a word or a syllable. Most often, the main way accent is expressed is through a greater am-

plitude (sound level)4 and a longer duration (resulting from an accentuated pronunciation).

Accent is usually used to de�ne three categories of languages [Lolive 2008]:

ˆ Languages where emphasis is not placed at a �xed position, like English.

ˆ Languages where emphasis placement is not free but is constrained by the number

of syllables. French is part of that category.

ˆ Tonal languages, where tone is used as a semantic information.

In French, �nal accent � on the last syllable is particularly important.

A last constituent of prosody is �ow rate, which can, when varying, put emphasis on

some part of the spoken message, underline hesitation or insistence or translate some emo-

tion. It is very in�uenced by pauses. In French, the �ow is about 4 to 7 syllables per second.

Prosody is also characterized by the phenomenon of microprosody. As speech is subject

to production constraints (cf. section 2), prosody is also subject to variations with the

nominal values. These variations are called microprosody or micromelody.

4More speci�cally, for a periodic signal, amplitude is the maximum value of the signal. Here, it can be
assimilated to the highest sound level for a given cycle. As speech sound waves change through time, so
does frequency and amplitude.



5. SPECTRAL ANALYSIS 15

5 Spectral Analysis

In the temporal domain, speech is de�ned � as for other sounds � by the ambient sound

level; sampled at a rate usually varying between 8 and 48kHz, depending on the �nality.

Speech temporal domain characteristics can therefore be studied, but a lot more informa-

tion is observed in the frequency domain. Such study is mainly based on the analysis of

spectrograms, which are time/frequency representations of speech. Time is the x axis while

frequency is the y axis. The diagram shows the quantity of energy carried by frequency

bands in function of time through a color or gray scale.

Phonemes can be identi�ed on spectrograms based on their spectral, characteristics, the

most important being the formants. They are the harmonics that correspond to spectral

maxima, i.e. frequency ranges possessing peaks of energy. They are calledF1, F2, F3, F4,

etc., F1 being associated to the second lowest frequency of the signal afterF0 and the others

being associated to increasingly higher frequencies. Some of them, the main formantsF1

and F2 for instance, can also be put in relation with physiologic events [Calliope 1989]. F1

is correlated with mouth opening, and ranges between 320 and 1000 Hz for the di�erent

vowels in French. A relation exists betweenF2 and the position of the tongue in the mouth.

F2 ranges between 800 and 3200 Hz for French vowels. Formants namedF1 and F2 are

very useful for identifying vowels. F3 is correlated with the con�guration of the lips for

vowels. Other formantsF4, F5, etc. are of a more limited use.

6 Conclusion

In this chapter, we brie�y presented the basic concepts on which TTS, and more precisely

unit selection, relies. We �rst focused on speech signal, actually de�ning what is to be re-

produced by the synthesizer. In order to introduce one of the main issues in concatenative

synthesis � and therefore in unit selection, we presented the notion of speech unit, in par-

ticular the diphone. Then, we de�ned the notion of prosody, detailing its main components

and origin, hence showing its importance in a reconstructed speech stimuli. As an introduc-

tion to the next chapter, we described the human vocal apparatus and its main components.

Finally, we brie�y presented the fundamental notion of formant.
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Chapter 2

A History of Text-To-Speech
Synthesis

�We shall never cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the �rst time.�

Thomas Stearns Eliot (1888�1965)

Many see in the usage of pipes leading to idols mouths � meant to feign the divinity's

response to worshipers' requests � in antique Mediterranean societies the �rst expression

of human desire, if not to recreate speech, at least to make an object talk. But it is only

during the Age of Enlightenment that �rst serious work was made, this time with more

sel�ess goals in mind. From baron von Kempelen's talking machine to Statistical Paramet-

ric Speech Synthesis or unit selection text-to-speech synthesis, a number of original ideas

have been explored to make machines produce human speech. On evolutions to revolu-

tions, speech synthesizers �rst tried to mimic the vocal apparatus, then recorded or modeled

phonemes and tried to paste them together. They used rules to guess formant trajectories

or tried to create models of the human vocal system. Finally, they analyzed speech data to

learn how to speak. Or they searched that data to �nd and paste the right pieces. The scope

of Text-To-Speech technologies for synthesis is vast and complex, let's dive into the matter.

The history described in the present chapter is mainly based on three reference articles

on the subject: [Flanagan 1972], [Klatt 1987] and [Schroeder 1993], at least for work

earlier than the 80s. The description of von Kempelen's machine comes mostly from his

book [Kempelen 1791].

17
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Figure 2.1: Kratzenstein's resonators for synthesizing �ve vowel sounds. Air was sent inside
resonators by blowing a reed attached at its extremity [Flanagan 1972].

1 Inception � Reproducing What Works

The �rst real e�orts to reproduce arti�cially human speech, during the renaissance period,

come bundled into the larger scope of speech study. Hence, the �rst documented work

aiming at reproducing speech arti�cially comes at the end of the Age of Enlightenment,

with two simultaneous attempts by physiologist Christian Gottlieb Kratzenstein in Russia

and Baron Wolfgang von Kempelen in Austria.

1.1 Kratzenstein's Resonators

In 1779, the annual prize of the Imperial Academy of St. Petersburg subject was, according

to Flanagan [Flanagan 1972]: "(1) What is the nature and character of the sounds of the

vowelsa, e, i, o, u, [that make them] so di�erent from one another? (2) Can an instrument

be constructed like thevox humanapipes of an organ, which shall accurately express the

sounds of the vowels?". Christian Kratzenstein, the winner of the contest, constructed

5 resonators, which dimension was similar to the human apparatus, each one meant to

reproduce one of the 5 required vowels. They are pictured on �gure 2.1. Each resonator

reproduced the believed con�guration of the mouth and larynx. They were activated by

blowing into a vibrating reed, on top of which sat the resonator.

The overall accuracy was quali�ed "tolerable" and though the resonators answered the

second part of the question. The �rst one, on the processes at the origin of each vowel

sound, wasn't answered.

1.2 Wolfgang von Kempelen's Talking Machine

At the same time in Austria, Hungarian baron Wolfgang Ritter von Kempelen had been

undertaking much more thorough research since 1769. In 1791, he published a book,

"Mechanismus Der Menschlichen Sprache Nebst Beschreibung Seiner Sprechenden Mas-

chine" (The mechanism of human speech followed by the description of a talking machine)

[Kempelen 1791]1, where he gathers the results of his more than 20 years work.

1Though the original book was in German, a French translation was also released at the same time,
which title was "Le mécanisme de la parole".
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In his book, he describes the machine he built to synthesize speech, shown on �gure

2.2. The construction of the machine aimed at reproducing the principal components of

the human apparatus. The bellows, shown on the central frame reproduced the lungs; the

pipe inside the wooden box they blew into reproduced the larynx and comprises a reed

reproducing the glottis and vocal cords2. The elements attached at the extremity of the

pipe � detailed on the top and bottom frames � reproduced both nasal and oral cavities.

The conical element at the extremity of the machine was carved out of elastic gum � a

matter von Kempelen chose for its excellent elastic properties � and could be shaped by

the left hand of the operator. The right hand went on top of the wooden box, �ngers

taking place on the two spindles and two holes (respectively named s, sch, m and n on the

bottom frame) allowing the elbow to take place on the top of the bellows. The spindles

are used for the production of unvoiced fricatives. The two holes represent nostrils that

can be plugged on the same principle as a �ute.

The machine was said to produce honorable accuracy in the reproduction of human

speech, but was very di�cult to master. Despite its degree of elaboration, the machine

couldn't reproduce all plosives, and von Kempelen used phoneme [p] as a replacer. The

conical end in elastic gum of the machine was described by its creator as very imperfect as

it missed lips, teeth, tongue and reproduces the palate properties quite poorly.

1.3 A Period of Stagnancy

Most attempts to make a talking machine throughout the XIX th century and the begin-

ning of the XX th ended up being improvements of von Kempelen's machine, with various

degrees of success. Among the best advances are sir Charles Wheatstone's work, who cre-

ated an improved version of von Kempelen machine. Then Alexander Graham Bell and

his father Alexander Melville re�ned Wheatstone's machine by adding rubber lips and a

wooden tongue. The century wasn't empty for speech synthesis, as Wheatstone, Robert

Willis and Herman von Helmholtz laid down the basics of modern understanding of the

acoustic processes involved in the production of speech.

In particular, the rise of telecommunication technologies drew a new type of researchers

to consider speech synthesis. Before the 30s, speech synthesis was a tool used by physiolo-

gists to understand the mechanisms of voice production and test their theories. With the

arrival of telecommunication technologies and electronics, people started to think of speech

synthesis as part of a vocoder, or voice coder that would ease transmissions bandwidth by

translating voice into a set of commands that could be transmitted and reproduced (re-

synthesized).

2That part of the machine is directly inspired by the acoustics of �utes.
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Figure 2.2: Baron Wolfgang von Kempelen's speaking machine.Top: Detailed view of the
extremity of the machine, reproducing nasal and oral cavities. Part A mainly reproduces
the larynx, part B the nasal cavity and part C the mouth. It is elastic and can be modeled
by the user's hand to mimic lips articulation. Middle: The bellows mimic lungs while the
wooden box contains a reproduction of the larynx that include a pipe and a reed.Bottom:
General view of the machine after the bellows. The two spindles can be operated and the
two holes plugged by the user's hand. Figures come from von Kempelen's book published
in 1791, digitalized by Google Inc. [Kempelen 1791].
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1.4 The VODER

The revolution in the �eld comes in 1939 with the VODER (or Voice Operation Demonstra-

tor) and the emergence of electronic technologies. During New York Universal Exposition,

Homer Dudley from Bell laboratories presented a machine, entirely composed of electronic

chips, that was able to produce speech from a bunch of successive narrow band �lters

(i.e. connected in parallel) acting as resonators. It is described on �gure2.3. The device

followed the source-tract separation principle, either a voiced or unvoiced sound source

could be selected and then modi�ed by the resonance box containing the �lters. A wrist

bar selected the sound source: a random noise source for unvoiced sounds and a relax-

ation oscillator for voiced ones. An additional foot pedal was used to adjust the pitch of

the oscillator. The �lters, each having a resonance similar to individual speech sounds,

were controlled through a keyboard of ten keys � one for each �lter � that could acti-

vate or deactivate them. Filters outputs pass through potentiometer gain controls and are

added. Another key controlled the ampli�er and three others caused a transient excitation

of the �lters selected by the ten �rst keys to simulate stop-constant sounds [Flanagan 1972].

The quality was su�cient to be understood, at least for short utterances. However,

operators had to train for at least a year before being able to demonstrate the machine

during live sessions.

2 Articulatory Synthesis

All the mechanical methods we described earlier had one point in common: they tried to

reproduce the functioning of the human vocal apparatus, and they only got better because

we understood better and better the way it works over time. Von Kempelen's, Wheat-

stone's, Bell's machines, the VODER,etc.; all followed that principle. With the arrival of

computer era, di�erential calculus and �uid mechanics allowed a much more formal mod-

ernization of the vocal tract, but without notable results on the �nal quality of produced

speech [Mermelstein 1973]. The aim of the technique, nowadays, is to digitally reproduce

the human apparatus and all its components and to perform synthesis by simulating its

behavior when stimulated by an air �ow while taking into account human physiological

constraints [Rubin and Baer 1981].

These systems have two major downsides. On the one hand, because of the huge

number of parameters that have to be taken into account to reproduce a valid speech ap-

paratus, designers are forced, even today, to carry out a lot of approximations that end up

to a severe degradation of the system's e�ciency. Hence, �nal speech ends up being quite

poor. On the other hand, systems based on a modelling of the human apparatus are highly

computational and the synthesis is still di�cult to handle in real time. Those downsides

make articulatory synthesis almost impossible to use in real time [Story 2009]. A recent
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Figure 2.3: Top: The keyboard controlling the VODER. An additional foot command
controlled pitch. A web page dedicated to the VODER shows pictures and videos of
the VODER at work: http://120years.net/the-voder-vocoderhomer-dudleyusa1940/. The
top image is extracted from that website. Bottom: The VODER consisted of a bank of
electronic �lters excited by an impulse train or noise. Image extracted from Flanagan's
article on the history of TTS [Flanagan 1972].
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investigation in that �eld, generating intelligible voices, is given by Brad Story [Story 2011].

Today, articulatory speech synthesis continues to live and progress, but not for pure

TTS purpose. As a matter of fact, other recent speech synthesis methods outmatch it

nowadays. However, articulatory synthesis has other arrows in its quiver. It is a fabulous

tool to formulate, implement and test new acoustic models of the human speech apparatus;

allowing to verify the positions of articulators, like lips, jaw and glottis with an experimen-

tal model. It is now the main focus of articulatory systems, though this use of articulatory

synthesis is not recent [Maeda 1979].

With the explosion of computational capacity in recent years though, and with the con-

stant re�nement of our knowledge on the speech apparatus, it is possible that articulatory

speech synthesis becomes, again, competitive.

3 Rule-based and Formant Synthesis

Synthesis techniques that reproduce the way humans talk are not the only ones, many

others were developed along decades. The principle of rule-based speech synthesis is to

be able to model the di�erent parameters de�ning the acoustic signal (historically the for-

mants) by using a set of production rules based on linguistic and phonetic analysis of the

utterance. Via these rules, the question is principally to be able to represent frequencies,

amplitudes and bandwidth of these di�erent formants depending on the constraints of the

text, in particular co-articulation.

Generally, the rule-based approach describes evolution rules for a generation model of

speech. The models of the speech signal usually rely on a source-�lter representation of

speech, which assumes that the speech signal is convoluted, at the larynx position, to a

�lter (most often linear) that characterizes resonance modes of the vocal tract. On the

contrary of articulatory approaches, these systems rely on much simpler models and not

on complex constraints on the air �ow in a dynamic environment, allowing a drastic sim-

pli�cation of the computations which leads to e�cient systems that could, back in the

70s-80s perform in real time. The major disadvantage was the lack of naturalness in the

tone which emphases the arti�cial origin of the voice.

Rule-based and formant synthesis usually go together, the rule-based part generating

a representation of speech that's possible to synthesize with a formant synthesizer. The

formant synthesizer itself is based on the principle that the main perceptual information is

carried by formants. F1, F2 and F3 are generally enough to get an acceptable synthesis. A

formant synthesizer uses formant-related information � central frequency, bandwidth and

amplitude � to reproduce voiced segments while noise bands may be used for unvoiced

speech. Other parameters could be taken into account like nasality. Twelve or more fea-
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tures are su�cient to output intelligible speech. As no formant analyzer existed, formant

synthesizers used the hand-tuned rules described earlier to perform synthesis.

In 1922, J.-Cl. Stewart made the �rst formant-based synthesizer. According to Jean-

Sylvain Lienard, cited in the Calliope book [Calliope 1989], it was composed of a periodical

source and of two electric resonators allowing reproduction of vowels, diphthongs and a few

words like "mama, Anna"3. The VODER, which contained an analyzer extracting acoustic

components from speech, can also be considered an ancestor of formant synthesis.

In 1950, Cooper's "Pattern Playback" synthesizer was able to synthesize speech from

a spectrogram [Cooper et al. 1951]. It can be considered as the �rst full automatic speech

synthesis system as no intervention from the operator is needed while reading the spectro-

gram. The two most famous formant-based systems, Walter Laurence's PAT (Parametric

Arti�cial Talker) and Gunnar Fant's OVE (Orator Verbis Electrics), emerged soon after,

in 1953. On the contrary of Pattern Playback, both used distinct electronic resonators for

generating each formant. This last point is the key to subsequent formant synthesizers,

where a set of resonators are placed either in parallel or in cascade to generate formants

[Holmes 1983].

More recently, a famous rule-based system, the Klattalk system [Klatt 1982;Klatt

1987], featured about �ve hundred rules starting from the letters of the utterance plus an

exception dictionary of more than 1500 words which translations to speech were hand-made.

They generated 20 parameters featuringF0, duration and stress, among others segmental

level phonological features. Then, the result was provided to a formant synthesizer that

generated the speech signal.

These rules could be numerous, complex and needed expert knowledge of the �eld. For

example, a work on duration [Bartkova and Sorin 1987] provides complex trees of rules,

modulated by elongation and shortening coe�cients, solely for estimating duration.

Historically, rules were hand-made and deterministic and were processed by expert

systems. For a long time, the couple rules/formant synthesis was the best in the TTS �eld

but the emergence of unit selection in the 90s overcame these systems. The arrival of HMM-

based systems (see section6.1) and to a further extent SPSS (Statistical Parametric Speech

Synthesis) in general in early 2000s brought back these ideas when proposing statistical

rules. Sets of HMMs are �rst learnt on a speech corpus in order to obtain the spectral

dynamics of temporal events. HMMs are then used in generation mode to get synthetic

spectral observations. A vocoder (voice coder), relying on somead-hoc modelization of

speech into features, is used to convert these arti�cial signals into actual speech.

3Translated from French: "constitué d'une source périodique et de deux résonateurs électriques perme-
ttant de reproduire des voyelles, des diphtongues et quelques mots tels que � mama, Anna �".
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4 Linear Prediction Synthesis

Linear prediction was a competing approach to formant synthesis. It was a speech-to-

speech analysis/synthesis method, and was mainly studied for telecommunications [Atal

1971]. It is based on the principle that a speech frame is a linear combination of preceding

frames. To compute a new frame, an algorithm computes linear combination coe�cients of

preceding frames [Makhoul 1975]. The coe�cients are computed by minimizing the average

quadratic error between real and predicted signals in the temporal domain. Coe�cients are

updated every 5-20ms [Calliope 1989]. This approach, though producing speech of good

quality, carried a buzzy noise due to oversimpli�cation of the vocal source and reproduced

some phonemes quite poorly, like nasals.

5 Concatenative Synthesis

The idea that's conceptually the simplest way to generate speech is to peek actual speech

samples into a dictionary of prerecorded phonetic units and to join them one after the other

to reproduce a given phonetic sequence. The choice of the acoustic unit to record, store

in the dictionary and concatenate is one of the main problems these systems had to face.

The �rst ones, in the 50s, used phones [Harris 1953]. The discontinuities in the prosody of

synthesized sentences, the inexistent management of co-articulation e�ects and their poor

restitution [Pols et al. 1987] caused the resulting speech to be particularly unintelligible.

The search for a better way to perform concatenations ended up providing a new acoustic

unit in 1956, invented by Küpfmüller and Warns: the diphone. It was introduced as a

"dyad" in [Peterson et al. 1958] and then took the name of diphone in [Dixon and Maxey

1968].

The �rst concatenative speech synthesis system relying on diphones was developed by

Estes et al. [Estes et al. 1964]. Diphone-based concatenative synthesis had a far better

quality than phones but wasn't perfect either. So other units were tested, each one longer

than the previous: half-syllables [Fujimura 1976], syllables and disyllables. Other attempts

were made on sub-phonemic units, for instance half-phones [Conkie 1999]. It is important

to take note the impact of these units on the size of the dictionary and thus on the footprint

of the system. The consequences on the computation charge to browse the dictionary and

get data also are important. For instance, let's say the phonetic alphabet in language that

has to be reproduced features 35 phonemes, which is about what you get in French, there

are 35 phonemes, theoretically352 diphones (a bit less in reality as some combinations

cannot occur), 353 triphones (about 43 000), hundreds of thousands of syllables and mil-

lions of words. The complexity of the problem and the system footprint are even bigger

in the case of systems featuring multi-represented units,i.e. the dictionary contains more

than one instance of each acoustic unit, in di�erent contexts.
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After selection, an algorithm is used to perform concatenations, the goal being to o�er

smooth concatenation areas. Hence, it often does more than just pasting speech samples

one after the other. The usual approach is to mix part of the two speech signals over a few

frames before and after the concatenation spot; but other techniques, like the generation

of a small signal part to make the link, are possible. Algorithms may then be used to

modify parameters of the signal prosody like pitch or duration modi�cation, usually Pitch

Synchronous OverLap-Add method, or PSOLA [Moulines and Charpentier 1990]. This

aims at getting a signal as close as possible to the prosody that has to be reconstructed

and that are determined by linguistic processing of the textual input.

The vision of the unit dictionary evolved a lot through time. The idea of adding several

representatives of the same unit (multi-represented units), motivated by the huge di�er-

ences between units depending on their apparition context, caused an explosion of the

size of speech recordings; not in a dictionary anymore this time, but as a long sequence

of annotated speech. Annotations, distributed on several levels, range from the allophone

temporal start and end marks to the same for syllables and �nally for words and named

entities at the highest annotation level. It was also permitted, for systems with a large

footprint, by the increase of computational and storage power. From this new point of

view, the speech database ceases to be a dictionary with sound samples mapped to a base

unit. It becomes a continuous speech corpus, and this corpus is annotated on several levels

with several unit types (allophone, syllable part, syllable, word, lemma, ...). When a unit

is needed, an algorithm will select in the corpus the most appropriate one to the desired

context during synthesis. This unit can be anything: a diphone, a sequence of diphones,

a syllable, a word, a set of words, even the whole utterance if it appears in the corpus. It

can even be any set of diphone, with no relation to any linguistic criterion, no matter the

size. This implies making a ranking of units, from the least to the most adapted, hence the

need to de�ne a concept of cost to minimize. This principle is called unit selection. It was

�rst presented in [Sagisaka 1988]4 and is depicted on �gure 2.4. Sometimes, it is simply

called corpus-based speech synthesis, though some other techniques are also corpus-based

(SPSS learns models from a corpus for instance).

It's in the 1990s that those systems using "units of variable size" (referred thereafter

simply as units) �nally emerged. This is particularly the case of the CHATR system [Black

and Taylor 1994;Hunt and Black 1996]. In such systems, one sees coexistence between units

of di�erent sizes (diphones, triphones, syllables,etc.). Because it generates speech from

units actually produced by a human speaker, unit selection systems vehicle the identity of

the original speaker much more accurately than systems based on speaker models. This in

particular gives a much more natural generated voice. In some cases, however, the absence

of an acceptable unit in the database requires the use of another unit (for replacement).

4Yoshinori Sagisaka's work presents the concept of unit selection but does not present a working imple-
mentation at the time



5. CONCATENATIVE SYNTHESIS 27

Figure 2.4: The general framework of a unit selection-based TTS system. Figure inspired
by [Cadic 2011].
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This unit was most likely produced in a very di�erent context that the unit that is needed.

This may reduce the quality of the prosody in the synthesized voice and causes glitches

to occur at concatenation points with that unit. This can go up to seriously in�uence the

sentence intelligibility in the worst cases. It does occur however only in few cases5, usually

with a small database, and much less if the base is large. It is, however, a weak point

of the method, especially if compared to HTS and its siblings (see section6.1) for which

the intelligibility is nearly guaranteed regardless of the circumstances. Another weakness

is the rigidity of the method. In recent years, techniques adapting the speaking style of a

corpus from one speaker to another (or learning mean voices and then adapting them [Fan

et al. 2015]) became popular. In concatenative synthesis, this kind of speaker adaptation

is impossible. Moreover, prosody proves di�cult to model and control. The reason for this

relies in the temporal width of the signal segments the unit selection algorithm takes into

account, which is centered on two units (possibly a few more if wide contextual features

are used). The ranking provided by the algorithm and its cost function is therefore based

on considerations taken on short time periods which totally contrasts with the nature of

prosody; for which most components have an e�ect on the long term: several syllables

at least, more generally at breath group level and even at the sentence level. Another

reason is that prosody is highly dependent of the speaker, while unit selection cost func-

tion components are not. In particular, strict recording conditions, aiming at getting the

best concatenation experience, strip corpora of any expressiveness. Nowadays, to give the

system more �exibility, large corpora are recorded; sometimes featuring di�erent emotions

along with neutral speech.

As our work focuses on unit selection, this technique will be discussed in detail in the

next chapter.

6 Statistical Parametric Speech Synthesis

6.1 HMM-based Speech Synthesis

Until recently, with the generalization of model-based synthesis in what's now called SPSS

(see next section), only HMMs were used for statistical parametric modelling of speech.

This method, named HMM-based synthesis, still is � now with other SPSS techniques � the

main competitor of unit selection. This method relies on HMM-based (for Hidden Markov

Model-based) speech synthesis. Initiated by K. Tokuda in 1995 [Tokuda et al. 1995] with

the HTS (HMM-based speech synthesis) system [Zen et al. 2007], it is still a very active

research �eld, though HMMs are more and more abandoned for DNNs. While being a more

recent approach than unit selection, HTS and its pairs can be seen as distant descendants

of the couple synthesis by rules/formant synthesis, as the probabilistic models placed in

decision trees used in the method are from this point of view the equivalent to the rules

5Generally when using uncommon words containing rare diphones.
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Figure 2.5: A block diagram representing the general learning and synthesis processes in
HTS, the main HMM-based TTS system. Figure extracted form [Black et al. 2007].

of synthesis. In addition, HMMs based synthesis uses much more parameters than single

formant trajectories.

Decision Trees and H(S)MMs

HMM-based TTS systems depend on two elements: HMMs and decision trees [Yoshimura

et al. 1999]. The HMMs (HSMMs in reality, for Hidden Semi-Markov Models) are used

to model spectrum and pitch information. In the HTK framework, which HTS relies on,

one HMM corresponds to one phoneme. In order to make sentence reconstruction possible,

each HMM have to be concatenated. To enable this, HTK adds two non-emitting states at

start and end of the HMM; on which concatenation is done [Le Maguer 2013]. Every state

of the Markov models is associated to a decision tree describing the di�erent prosodic and

linguistic contexts (constructed through prede�ned set of features, also called questions)

a�ecting this state. Each node of the tree corresponds to one contextual property of the

question set. Each leaf contains a statistic distribution that's re�ned during learning.

During synthesis, the leaf that corresponds to the right context is selected. The emission

probability of its associated HMM state then becomes tied to the statistic distribution

contained in the selected leaf. Another decision tree, independent of the HMMs, is used to

de�ne the duration of the various states [Yoshimura et al. 1999].

General Process of the Synthesis

The general process of both learning and synthesis tasks is summarized on �gure2.5. First

of all, learning the model (HMMs and decision trees) is made with a speech corpus. Though
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a very small corpus is su�cient to learn a voice (one of the method main strengths), it

is preferable to have a few hours of speech in the learning corpus; as more data in the

corpus yields to better modelling and therefore better speech quality. In addition, SPSS is

quite sensitive to the quality of annotations (more than unit selection) and voice quality is

strongly impacted by the quality of automatic annotation tools. Speech does not necessary

come from one and only one speaker contrary to unit selection: both mono-speaker and

multi-speaker modeling is possible [Yamagishi et al. 2009]. One can even learn an average

voice of many di�erent speakers, then adaptable to a particular voice with only a few data

(100 utterances of the target voice is usually enough)6. Synthesis process begins the same

way as unit selection: target textual utterance is parsed and converted into a sequence of

descriptors on several levels (phonological and linguistic plus some prosodic features). From

this sequence of descriptors, a HMM matching the sentence to produce is reconstructed by

concatenating HMMs retrieved by exploration of the decision tree. Then, this new model

is used to synthesize the trajectories the speech signal will take on each parameter taken

into account in the system (parameters of the vocoder). As an example, the HTS system

features include: MFCC coe�cients, aperiodicity coe�cients [Zen et al. 2007], prosodic

parameters,F0 (fundamental frequency), etc. Finally, parameter trajectories are provided

to a vocoder, usually STRAIGHT [Kawahara et al. 2008] or SPTK[Fukada et al. 1992], to

generate the sound signal.

HMM-based synthesis has the advantage of providing a very intelligible voice in almost

all contexts. It is also very adaptable as speech is represented by a model. Production of

creaky or mu�ed voice for instance, with few data only, is possible through adaptation of

a model learnt with another voice corpus. However, its overall quality remains quite lower

than unit selection. In particular, synthetic voices feature a buzzy background noise due

to an oversimpli�cation of the model used to describe speech in the vocoder. The voice

also appears mu�ed usually. This is due to the over-smoothing of speech frames during

training of the statistical model [King 2010]. These systems are therefore, for the moment,

less close acoustically to the identity of the speaker's voice used for learning.

6.2 The (Re-)mergence of DNNs

More recently, in the last three years, parametric synthesis has been the epicenter of a new

revolution: the great return of deep Arti�cial Neural Networks (ANN) to the stage. The

use of neural networks in both ASR and TTS �elds is not new, and a lot of work has been

done in the 80s-90s to model speech or some of its components with them. We will discuss

it further when introducing our work on duration modeling for unit selection, but let's just

say the use of ANNs for modeling duration has been investigated in the 90s. Work was done

to explore the feasibility of using Deep Neural Networks (DNN) for ASR in the 80s, with

6The possibility to build average voices raised an interesting question: "Is the average of all male/female
voices the best male/female voice ?".
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limited results. At that time, HMMs proved to be better and work focused on them. To-

day, DNNs achieve better performance than HMMs in many domains. So what did change

between then and now? Almost nothing, basically, if not the number of features that

drastically increased to reach several hundreds and even more than a thousand sometimes.

We speak of DNNs today but they already existed in the 90s, it wasn't only about simple

ANNs. What really changed is the size of learning/validation/test sets. Learning a DNN

on a few tens of minutes of speech seems meaningless today, though studies twenty-�ve

years ago rarely used more. But the evolution of both storage and computational power

(especially recent improvements on GPUs) now allows learning of deep neural architectures

over several hours or even tens of hours of manually annotated speech.

Currently, systems use DNNs, RNNs (Recurrent Neural Networks - a variant of DNNs)

or more speci�cally LSTM-RNNs (Long Short-Term Memory Recurrent Neural Networks)

both in learning and generative ways. LSTM-RNNs seem to show the best results so far

[Zen and Sak 2015]. DNNs may be used either for mono or multi-speaker learning, as in

[Fan et al. 2015] where a 3-layers (hidden) DNN is learnt, the DNN having as much output

layers (79 features per output layer) as the learning set has speakers. In particular, this

work shows the adaptation of such a multi-speaker model to the acoustic space of a speaker

who has an unusual way of speaking7 actually keeps the identity of the speaker as intended

but also tends to correct the speaker's pronunciation problems.

Nonetheless, it would be quite short-sighted to think DNNs are the solution to all

problems in synthesis (regarding the current trend to put neural networks everywhere, the

question seems valid). In a study on the potential bene�t of integrating DNNs in HTS,

[Hashimoto et al. 2015] shows that DNNs handle the learning task better than the usual

decision trees and HMMs, but show lesser performance than SPTK's Maximum Likelihood

Parameter Generation algorithm (MLPG) for trajectories generation. In that study, the

couple DNN and MLPG shows the best performance while the usage of DNNs for trajectory

generation (along with HMMs for learning) shows worse performance than the usual HMMs

and MLPG.

7 Conclusion and Graphical Summary

To conclude this section, we present a chronological summary of speech synthesis in �gure

2.6. Basically, over the last 200+ years since Kratzenstein and his acoustic resonators,

speech synthesis techniques explored three main ways to produce speech. The �rst one,

historical, is to reproduce the human articulatory system. The second, mainly developed

for telecommunication purposes (at least in the beginning), is to build/learn models that

can afterwards be used in a generative way. Methods based on that point of view have the

7 In mandarin in the experiment.
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advantage of being very �exible and have a very small footprint. The third way to produce

speech utterances is by concatenating pre-existing speech. unit selection, which is part of

that category and is the subject of our work produces the best sounding synthetic speech

nowadays, but has a very large memory footprint, isn't adaptable to new voices very quickly

and is less �exible than leading SPSS techniques. Finally, the wish to make SPSS/unit

selection hybrids, where the unit selection is guided by trajectories/parameters produced by

a statistical parametric model is always tempting. Basically, before the 50s, one of the

main objectives of most studies on speech synthesis was to produce proof of concepts. Once

this step was passed, around the 50s, and with the increasing interest in speech synthesis,

the main issue became the construction of very intelligible speech synthesis systems. This

step was reached during the 80s/90s, and research then focused on speech quality, especially

for neutral speech; and more generally quality of the message carried by synthetic speech

prosody, especially expressiveness.
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Chapter 3

The TTS Frontend and Corpus

�From a drop of water a logician could infer the possibility of an Atlantic or a
Niagara without having seen or heard of one or the other.�

Arthur Conan Doyle (1859�1930)

From now on, our main focus shall be on unit selection speech synthesis. In the two

next chapters, we will describe in detail the complete organization of a speech synthesis sys-

tem based on that principle, describing each block and the main technics explored with unit

selection. We will organize this chapter in two parts. In the �rst one, as a reminder, we

will come back again on the general organization of unit selection systems. In particular,

we will describe the TTS frontend, which shows how the input text is transformed into a

data sequence �t for the synthesizer's own input. As little work was carried on the fron-

tend during my PhD, we will not discuss it further. The second one describes the corpus

building process, along with the issues it brings. This part is particularly important because

unit selection is heavily dependent on the corpus, especially the method used to make it. In

addition, there is a link between the corpus creation method (covering features especially)

and the unit selection strategy (cost function particularly).

1 Conceptual Overview

As we saw in the last chapter, any TTS system may be divided into a frontend and a

backend part. This is shown on �gure 3.1.

35
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Figure 3.1: General block diagram of a TTS system.

1.1 Frontend Block

The frontend is responsible for translating the user's input into a message that's actually

understandable and rich enough in terms of information to be used by the TTS system

for speech generation. This means �rst processing the text in order to correct or delete

words and punctuation mistakes. This allows to get valid sentences with valid punctua-

tion symbols and pronounceable words. Lemmas can then be derived from words. This

step is called tokenization as the output is a vector of normalized entities also called tokens.

Once the input utterance has been tokenized, it is processed by the phonetizer, in order

to get a vector of phonemes representing the oral version of the utterance. This is usually

called the grapheme-to-phoneme conversion task. Finally, the sequence of syllables that

matches with generated phonemes is extracted using a syllabication algorithm.

In some cases, some additional processes may be done, like adding target prosodic

information predicted from the text or provided by the user (context for generating ex-

pressiveness for example).

It is interesting to note that, though whe focus on Text-to-Speech synthesis, the input

of synthesis processes is not necessarily raw text. For instance, Steve J. Young introduced

in 1979 the notion of Concept-to-Speech synthesis [Young 1979]. In that work, a concept

is a sentence portion for which we know the syntax. Sentence "Georges irons his blanket.�,

for instance, can be transformed into the single concept (.IRON, Georges, blanket) where

verb �IRON� is a function taking two parameters �Georges� and �blanket�. Infering these

concepts from text is possible, though not straightforward.

1.2 Backend

The TTS backend, often referred to as �the synthesizer�, aims at transforming this descrip-

tion of the target utterance into an acoustic voice signal. Examples of such a thing are

the formant, linear prediction, diphone-based, statistical parametric speech synthesizers

we saw in the last chapter; and of course unit selection.

Let us now consider the case of the unit selection backend from now on.
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2 The Corpus

Before addressing the unit selection problem, let us focus on the speech corpus. After

getting the utterance processed by the frontend, the corpus is the only external component

the unit selection block will use.

2.1 Presentation

The corpus can be represented as a long strip of speech, annotated on several levels with

linguistic, phonetic, and acoustic information. The choice of what to include or not in it

is not obvious at all. Neither are the size of the corpus, its encoding quality, the in�exion

the speaker should use, the literary genre to employ,etc. In order to build a quality non-

specialized voice, several hours of neutral speech are a minimum for unit selection. But

the content of the corpus itself, in terms of phonological units, has to be varied and rich

enough in terms of current phonological units in the target language to guarantee that the

Unit selection algorithm will �nd units that are su�ciently close to the target.

The corpus size depends directly on two elements: the aim of the voice and the techni-

cal constraints of the platform where it should be deployed.

The aim of the voice characterizes the way the voice will be used. The main question

is: will it be used for some domain-speci�c synthesis or does it have to be generalist, or is it

in the between? For instance, a GPS voice comes with many prerecorded sentences/words

from the driving vocabulary like "road", "roundabout� or �turn�. But as it may also have

to pronounce street or city names, it has also to provide more generalist units, like a basic

diphone covering. The other question is: what is the target audience? A voice reading

books to children will probably not be �t for the same task with adults.

For the technical constraints, it results from four main axes:

ˆ Does speech have to be generated in real time?

ˆ What are the computational power, storage and RAM access speed of the device that

will have to perform the synthesis task?

ˆ What is the storage capability available on the device?

Once the size and desired content have been selected, the corpus is recorded by a

speaker (usually a professional actor), who reads arecording script. The recording script

is the list of all sentences contained in the corpus, accompanied by reading constraints and

instructions. For instance, a same sentence can appear twice in the script, �rst asking the

reader to emphasize a particular word and then without that constraint.
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2.2 Corpus Creation Methods

To create that recording script, two methods are widely exploited in the literature. The

�rst one is corpus condensation, the second one being sentence construction. Corpus

condensation is by far the most explored in the literature and consists in selecting one

by one the sentences that improve most some covering strategy (cf.section 2.3) within

an initial bigger corpus (made out of books, letters, political speech, theater plays,etc.).

The other one is sentence construction. Its aim is to generate sentences of the new corpus

that maximize the covering objectives. The problem in that case is to generate sentences

that may be pronounced in a real context, for the speaker would otherwise have di�culties

pronouncing a sentence that's deprived of any sense.

2.3 Corpus Condensation

The corpus condensation method assumes that a corpus of considerable size is available,

we will call it the initial corpus. This corpus is supposed to present a very wide range of

linguistic, phonetic and prosodic attributes, but is too huge to be recorded. The goal of

corpus condensation is to solve that situation by reducing the size of the corpus as much as

possible. This is usually done by choosing then utterances, usually sentences, that contain

the most interesting attributes. The corpus condensation hence forms a tradeo� between

size and abundance of covered attributes.

Problem Representation

In the corpus covering problem, the starting point is a huge initial corpus in which one has

to pick up the most interesting utterances, which optimize a cost function. To �nd the most

interesting utterances, a set of attributes must be de�ned. For instance, a corpus covering

objective can be to have in the �nal corpus a covering of some unit distribution (phonemes,

diphonemes, syllables, vocalic sandwiches �cf. chapter 9 �, etc.). Other objectives than

unit distributions may be used as well. For instance, expressiveness type of an utterance:

depending on the aimed content of the corpus, it may appear useful to have a certain

amount of utterances pronounced with di�erent emotional states. So in order to realize

corpus covering, a criterion has to be selected. The cost function to optimize is usually the

following:

utterance cost =
number of new attributes covered

utterance length
(3.1)

Given an initial corpus including a total of n utterances and an alphabet ofk units to
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cover, the problem can be represented by the following matrix:

A =

2

6
6
6
6
6
6
4

u1 u2 u3 : : : un

� 1 � 11 � 12 � 13 : : : � 1n

� 2 � 21 � 22 � 23 : : : � 2n
...

...
...

...
. . .

...

� k � k1 � k2 � k3 : : : � kn

3

7
7
7
7
7
7
5

(3.2)

where each utteranceu1, u2, . . . , un is represented by a column of values indicating the

number of times it matches covers attributeai ; i 2 [1; k]. In other words, for i 2 [1; k] and

j 2 [1; n], � ij represents the number of times attributeai is covered in utteranceuj . 1

Using that matrix, the question is: which utterances should be chosen to cover attributes

a1; :::; ak with a minimal number of utterances?

Let B be the column vector of constraints a set of utterance must meet to be considered

as a solution to the covering problem:

B =

0

B
B
B
B
B
B
B
@

b1
...

bi
...

bk

1

C
C
C
C
C
C
C
A

(3.3)

where bi is the minimal number of occurrence of attribute ai in the corpus. Let also

X 2 f 0;1gn be a column vector of binary values:

X =

0

B
B
B
B
B
B
B
@

x1
...

x j
...

xn

1

C
C
C
C
C
C
C
A

(3.4)

where x j = 1 if utterance uj is part of the condensed corpus and 0 otherwise. Hence, the

corpus covering problem can be de�ned as the search for the vector X that best minimizes

the sum of all selected utterance costs:

X � = arg min
A�X �B

(
nX

j =1

cj � x j ) (3.5)

wherecj is the cost of utteranceuj (using for instance the cost function de�ned in equation

1Due to the usually huge quantity of units to cover, a lot of zeros appear in each column. From a
global point of view, only a few percent of the � ij di�er from 0. Matrices are hence represented as sparse
matrices.
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3.1).

This problem is actually a specialized case of the Set Covering Problem, or SCP (which

is known to be NP-complete). For this reason, corpus condensation has to be performed on

a corpus and with a vector of attributes of reasonable size (e.g. covering phones, diphones

and the most common syllables in a language with an initial corpus of 5 million sentences

and having at least 100 occurrences of each diphone).

Covering Objectives

In order to build the corpus, two strategies may be used:

ˆ The size of the �nal corpus is �xed to a certain corpus size that must maximize the

covering of the attributes (with ai = 1; 8i) while minimizing utterance cost (a cost

has to be set in order to avoid extremely long sentences).

ˆ The �nal corpus must cover the constraints up to a certain acceptable percentage. A

minimum corpus size is also set.

For measuring the level of covering, a handful of criteria may be used, in particular:

ˆ Having x i realizations of constraint ci within the �nal corpus. For example, a con-

straint could be to include at least x i times the diphone [ub]. Diphone synthesis

dictionaries in the 90s were based on that principle.

ˆ Using a natural distribution to de�ne x i . It can be one existing in the initial corpus,

like A. Krul et al. did [Krul et al. 2006]. More generally, the goal can be to keep the

quality of the initial corpus covering within a smaller one.

Several criteria may be used for the same covering. For unit distributions, Zipf and

Zipf-Mandelbrot laws, describing the appearance frequency of a base unit (phone, diphone,

etc.) in a language, have to be taken into account: One has to privilege the most frequently

used units in the target language2, most frequent units being present in a wider number

of contexts while the least frequent appear in less contexts. They may even be absent

depending on the constraints on the database size.

In any case, the choice of the constraints to cover is not trivial and may have a signi�cant

impact on the �nal corpus size. A diphone covering is of course the minimum, but is not

enough to obtain smooth concatenations.

2This can only be a sub-set of the language. For instance, in order to produce speech for a telephone
dialog voice, it is preferable to use the units that are frequent in telephone conversations or in text messages
rather than those frequent in poems or literary work.
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Covering Algorithms

In order to get the �nal corpus from the initial one, given a set of constraints, two algo-

rithmic approaches are relevant: approaches that rely on heuristics with no guaranty of

optimality (greedy one mainly) and approaches with heuristics giving a guarantee. These

algorithms have three optimization axes: the quality of the �nal corpus, the size of that

corpus and the time needed to �nd a solution. The algorithm has to �nd the right tradeo�

between those axes. Greedy methods are the most popular, as they are easy to implement

and yield good results. The most popular versions of the algorithm are the following:

Agglomerative: The agglomerative is the most popular way to build a corpus. It consists

in iterating over the initial large corpus, picking up the utterance that best improve

the score function, until these objectives are met. The �nal corpus is composed of the

selected utterances. Jean-Luc Gauvainet al. [Gauvain et al. 1990] presented such an

approach.

Spitting: The reverse, as it is presented in [Francois and Boe�ard 2002], is also possible.

Instead of adding utterances to the �nal corpus, the spitting algorithm starts from the

initial big corpus and removes the least helpful utterances iteration after iteration,

until no utterance can be removed without breaking the covering criteria.

Pair exchange: The pair exchange algorithm di�ers from the agglomerative and spitting

algorithm in the sense that it tries to optimize an existing corpus by exchanging its

content with the initial corpus. This initial corpus can either have been constructed

randomly, as it is done in [Kawai et al. 2000] for instance; or built with another corpus

building algorithm [Francois and Boe�ard 2002]. It works as follows: an initial set

of utterances is extracted from the main corpus to build a �rst version of the target

corpus. The algorithm then iterates over the main corpus and, at each iteration,

picks up an utterance that isn't in the target corpus and selects another, this time in

the target corpus. The two utterances are switched and the new corpus covering is

computed. If it is better than before the switch, the exchange is validated; otherwise,

it is discarded. Finally, the algorithm terminates when the covering goal is reached.

As said in the last point, combinations of these algorithms are possible. The comparison

Hélène François and Olivier Boe�ard carried out in 2002 showed that the best greedy ap-

proach is an agglomerative algorithm followed by a spitting one [Francois and Boe�ard

2002]. They also emphasized the slowness of the pair exchange algorithm. The compar-

ison was made using a corpus of 3 000 French sentences over several comparison criteria

(sentence usefulness for instance).

Other Approaches

While greedy approaches are easy to implement and give good results, other ones may be

used that can yield to better covering and provide some guarantee over the quality of the
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covering. Cheveluet al. [Chevelu et al. 2007;Barbot et al. 2012] present an algorithm that

builds a corpus based on the principle of Lagrangian relaxation. The algorithm is called

LamSCP for Lagrangian based Algorithm for Multi-represented SCP and gives some in-

dication of the quality of the covering that is obtained. Lagrangian relaxation has the

advantage of producing an optimal solution to the Set Covering Problem for problems of

reasonable size, which is unfortunately not the case for greedy implementations. In the

case of greedy techniques, the order of complexity is too high, with typically thousands of

sentences and millions of units. LamSCP presents the advantage to provide a value for the

cost of the optimal covering.

The algorithm is composed of three phases, �rst computing an approximation of the

optimal Lagrangian multipliers vector and a �rst under-optimal solution (obtained by com-

puting a �rst solution to the problem with a greedy algorithm). This under-optimal solution

is assimilated to an upper bound to the cost function evaluating the quality of the covering.

The second step consists in an exploration of the neighborhood of the �rst solution and

greedy functions process the neighbor Lagrangian vectors to obtain the new covering, the

best one becoming the new upper bound. The third phase aims at reducing the size of

the problem with the help of heuristics. After these 3 phases, the algorithm comes back

to phase 1 in a loop that lasts until either the residual sub-problem is empty or if the

Lagrangian function becomes more expensive that the best solution yet found (which acts

as an upper bound).

The real quality of the �nal solution given by the algorithm can therefore be assessed

and in their tests, the authors get coverings only 0.8% bigger than the optimal phones

and diphones covering. Furthermore, it gets a 10% better covering than a standard greedy

algorithm (agglomerative followed by spitting algorithm).

2.4 Sentence Construction

An entirely di�erent approach is described in Didier Cadic's work [Cadic et al. 2010;Cadic

2011]: sentence construction. In all the strategies presented earlier, sentences where con-

sidered as atomic,i.e. they couldn't be cut. The problem consisted in knowing, for the

bigger corpus, whether or not a sentence had to be included into the �nal corpus. The idea

of the sentence construction problem, as its name indicates, is to build sentences appearing

in the �nal corpus. Sentences are built so that they increase covering as much as possible.

Having the possibility to create sentences allows the algorithm to increase corpus covering

more easily than corpus covering methods.

The di�culty with this method is that all sentences cannot be constructed. A �rst

constraint is that the sentence has to be pronounceable, for obvious reasons. But the cor-

rectness of the sentence grammatical structure is important as the speaker would �nd it
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di�cult to read a sentence that is grammatically wrong. In that case, the laboriousness of

the task would make him/her bored or exhausted quickly. But this is not enough, because

sentence prosody also has to be accurate, which means the speaker should read sentences

that have a minimum of sense. If the meaning of the sentence is aberrant, the speaker

might be perturbed in his reading.

As a fully automatic algorithm that builds sentences is very di�cult to design, an

intermediate � semi-automatic � method is often chosen. In his thesis [Cadic 2011], Didier

Cadic describes an approach based on sentence building that uses a distributed architecture

with Weighted Finite State Transducer (WFST) that builds and proposes sentences to a

number of human operators. The latter can either validate or reject each sentence and all

validated sentences are added to the �nal corpus. This method yields very good results,

with a consequent densi�cation of the corpora, but it is very costly both in time, money

and human intervention. It also caused a degradation of the sentences consistency.

2.5 Corpus Building Method Choice

To conclude on the corpus construction problem, one can say the choice of the corpus

building method is directly linked to:

ˆ Nature of the corpus;

ˆ Storage capability;

ˆ Budget;

ˆ Human resources;

ˆ Time delay to build the corpus.

The corpus characteristics will be determined by the nature of the task it is built for.

If the corpus is very specialized (e.g.: a voice for a city's bus system), the corpus will sim-

ply consist of important keywords and sentences, possibly completed by a simple diphone

covering obtained with a greedy algorithm. If the corpus is more generalist, bigger corpora

will be necessary, and covered features will have to be chosen appropriately. If resources

are limited, greedy algorithms will be the obvious choice. However, with more time and

technical and physical resources, a better corpus can be obtained with an algorithm based

on Lagrangian relaxation. Finally, the corpus building technique yields the best covering,

but this comes to the price of a high technical complexity and high human, time and �-

nancial cost.

Finally, corpus building is directly impacted by the quality of annotations, particularly

in the case of automatic annotations. In 2007, Lambertet al. published a paper where two

corpora where built from the 2007 Blizzard Challenge corpus [Lambert et al. 2007]. One
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was phonetically balanced while the other consisted of random sentences. The authors

stated that automatic annotations where much better in the randomly selected corpus.

This resulted in better unit choices and better prosody modelling for the Unit-Selection

TTS system and eventually to better rating in both objective and subjective tests. The

authors stated that this better performance of the random corpus was certainly caused by

quality of alignments in the original corpus.

3 Conclusion

This chapter was devoted to the presentation of a classical TTS front-end and main corpus

building methods in the scope of unit selection-based synthesis. We have �rst shown how

the input text is transformed into a multi-leveled representation of the requested utterance,

through the use of successive annotation tools. Then, we focused on the problem posed by

the speech corpus: we saw that the size and richness of the corpus was the key point for unit

selection in order to get a satisfactory speech quality. However, we saw that algorithmic

and contextual constraints limit the actual size of the corpus, which led us to present the

problem of corpus reduction that aims to get the best possible tradeo� between corpus size

and corpus richness.



Chapter 4

The Unit Selection Backend Block

�All life is a concatenation of ephemeralities.�

Alfred Edward Kahn (1917�2010)

In the last chapter, the TTS fronted and the construction of the corpus were presented.

This chapter will now focus on the second part of the TTS process: the TTS backend. This

part takes the information inferred by the frontend, the description of the utterance to pro-

duce. Its task is to make the most of the corpus to get a sequence of concatenated speech

segments as close as possible to the description given by the frontend. This part will be the

one to be given the greatest attention as it is the heart of the thesis. It will consist of a de-

tailed description of the backend of the speech synthesis system, often called the synthesizer.

In this part, we will now focus on the unit selection backend block. Having the an-

notated corpus and a textual utterance enriched with linguistic and phonetic information

(the sentence to produce) obtained with the TTS frontend, the last part of the process

is to determine which portions of the corpus should be used to reproduce the utterance,

extract them and carry out concatenations (and possibly prosodic modi�cations).

The term �unit selection� is often used in literature to refer to the whole backend block

(in the title of this section for example), which means in that case �Backend block based

on the unit selection technique�, including the concatenation and smoothing steps. In fact,

the unit selection process is only the �rst part of the block, i.e. the search for the right

units to concatenate. But as the steps that follow in the backend block depend on the

selection process, and as the unit selection process is the di�erentiating part with other

concatenative systems, it is possible to refer to the whole block as unit selection.

From now on though, in order to avoid any confusion, the term unit selection will only

refer to the actual selection step alone.

45
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Moreover, synthesis in the unit selection block is done breath group by breath group,

mainly in order to decrease the complexity of the problem as concatenation over two silences

(as there is between breath groups) is straightforward.

1 Topology of the Problem

The unit selection block has two inputs: the utterance generated by the TTS frontend,

which represents the target to synthesize, and the speech corpus. This is represented in

�gure 4.1. An important point is that the corpus is not part of the selection block: it

must be seen as completely interchangeable without any modi�cation on the unit selection

engine. In output of the block is the sequence of corpus units that has been selected for

concatenation.

1.1 The Base Unit

The problem of �nding the best mapping between units from the corpus and the input

utterance requires the de�nition of a base unit. In chapter 2, we discussed this problem,

showing that a large range of units were investigated for usage in speech synthesis. The

problem is a footprint/performance tradeo�. Long units like syllables or words ensure good

TTS performance but creating a corpus with a full covering of words or even syllables, not

even speaking of multi-representation, is very di�cult to achieve in non-domain-speci�c

Figure 4.1: Black box view of the unit selection process. The process looks for the best
way to reconstruct acoustically the input utterance by joining units from the corpus. The
process is completely generic (i.e.independent of the corpus). The output of that process
is an ordered list of corpus units; here represented by couples where the �rst number is the
position of the �rst phone in the unit and the second is the number of subsequent phones
that belong to that unit. The units in this list are those to be concatenated.
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synthesis. Indeed, a signi�cant amount of time and substantial resources would be needed

to record it and its footprint would be considerable, which would also make it di�cult to use

in practice. Short units (demi-phones, phones, diphones, 2-phones, 3-phones, ...) require

a much smaller corpus but imply more concatenations as less contexts are represented

in the database. In addition, some base units make more sense in some languages than

other. Syllable, for example, are more likely to help increase synthesis quality for syllabic

languages than tonal languages. For many languages though, the diphone remains the

reference unit. It allows the creation of small corpora (less than half an hour) that can

still be enriched by adding more covering constraints during the creation of the corpus. As

we will see in the following, a diphone corpus can perfectly be used to carry out synthesis

by concatenating on bigger units than diphones. In the following, we shall consider the

diphone as the base unit.

1.2 The Notion of Sequence

In our representation of the problem, the corpus is viewed as a long stream of speech,

where sub-parts are accessible by using the absolute phone annotation. Therefore, units

are de�ned by a couple (index, size) where the index is the absolute position of the �rst

phone of the unit in the corpus and the size is the number of phones in the unit. A unit

ranges from positionindex to index+size-1. The part that will actually be concatenated

will begin by the second part of the �rst phone of the unit and end with the �rst part

of the last phone. Hence the impossibility to have sequences smaller than 2 phones1. An

illustration of this concept is given by �gure 4.2, which shows the joining of two units [Ke]

and [ey].

As the input utterance is basically a sequence of diphones enriched with additional

information � mainly over the characteristics of the wanted diphones, it is broadly referred

to as the target sequence (of diphones). In the same way, a sequence that matches the

target sequence is called candidate sequence, itself composed of candidate units matching

subparts of the target sequence. As synthesis is done breath group by breath group, the

target sequence (and therefore candidate sequences) always begins and ends with a silence,

which we will refer to with a # symbol in the following.

1.3 Speech Units

The unit selection problem, �rst de�ned in Sagisaka's work in 1988 [Sagisaka 1988], di�ers

to basic concatenative synthesis in two points:

1. Multi-representation of units: a same unit is represented several times in the corpus.

2. Variable length units: the size of the unit is not �xed, it can be any number of base

unit, possibly the whole target sequence.

1The corpus annotations are made by phone while concatenations are made on diphones.
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Figure 4.2: Joining unit [Ke] with unit [ey] requires concatenating on the last phone of left
unit [ Ke] and the �rst phone of right unit [ey], i.e. on phone [e]. Concatenations are made
on diphone borders, hence in the middle of the [e]. Once centers of [e] phones of both units
are aligned, the left part of the concatenated phone is taken from the left unit, the other
from the right unit. A PSOLA merge is carried out (red area) to soften the junction (see
section 4). Final unit is represented by the blue stripes. The left unit is composed of two
phones of index 78576 and 78577 and the right unit of 5, from 1554 to 1558 for the right
one in the corpus.

While the �rst point is also encountered in advanced concatenative TTS systems (that

are not unit selection based)2, the second is a particularity of unit selection. The di�erence

on the �rst point between unit selection and basic concatenative systems holds in the rep-

resentation of the corpus. For unit selection systems, the corpus is a whole �speech strip�

where speech is extracted only during concatenation while other systems use a dictionary

structure to classify speech sounds.

For one target sequence, there is a number of possible candidate sequences, a huge

number in fact when the corpus is hours long. The following equation, from H. François's

thesis (proof and formula are on pages 79-80), gives an idea of the number of candidate

sequences in the case of a corpus with featuring the same number M of representatives of

each phone (which is often not the case in unit selection, the number of each phone being

usually di�erent) [Francois 2002]:

Npaths =
NX

c=0

M c+1
�

c
N � 1

�
(4.1)

where N is the number ofphones in the target sequence (meaning there are up to N-1

concatenation points, each on diphone boundaries).c is the number of concatenations

made in the sequence, which varies from 0 to N-1 concatenations. Finally,
� c

N �1

�
is the

number of combinations ofc in N � 1. To illustrate the di�culty of the problem, let us take

2Concatenative systems may or may not handle multi-represented units but all unit selection systems
do.
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the example of sentence �Yes.�. If we consider a constant M of 10 phones, there is 6 410

candidate sequences. With a more likely M=1 000 (for a 10 hours corpus for instance), the

number of candidate sequences jumps to over 6 billion. And the problem is the same for

a bigger target sequence, �Bonjour tout le monde.� (French for �Hi everyone.�), there are

4:3 � 1023 candidate sequences only for M=10,etc.

As we said earlier, a unit is not necessarily a diphone. Longer units, which size is

variable and thus unde�ned before execution, composed of contiguous diphones (in the

corpus) are also to be considered (and usually favored). As an example, for 10 hours

of speech, the number of units (no matter the size) is superior to 5 million while there is

approximatively around 400 000 diphones. Such a quantity of data means all possible paths

cannot be parsed in real time, as of 2015. Two possibilities are then feasible to make the

problem solvable in real time. First, the corpus can be explored by a greedy algorithm that

only considers what it expects to be the best combinations. This leads to under-optimal

solutions. It is typically that approach that is used in most beam-search Viterbi-based

algorithms used for unit selection. Secondly, algorithms that do not need to parse all units

to �nd the (optimal) solution of the problem might be used instead. This leads to much

lower processing time. Unfortunately, with a large speech corpus of several hours, this is

not enough to get an optimal solution in real time. To achieve that, non-trivial admissible

heuristics would have to be found. In particular, the framework for such an heuristic

is o�ered by A � algorithm. With A � , if the heuristic gives an estimation systematically

inferior or equal to the real cost, it is insured that the algorithm is admissible. A proof of

this property is provided in N. Nilsson's book, �Principles of Arti�cial Intelligence� [Nilsson

1982]. Nonetheless, such an heuristic is very hard to �nd for the unit selection problem.

But �nally, this real time TTS problem relies on the following two questions:

1. Does getting an under-optimal solution to the unit selection problem consistently

degrade synthesis?

2. How much does pruning a�ect perceived quality of speech synthesis? Or, how much

pruning can be allowed in the selection algorithm so that degradation is not per-

ceived?

Those concerns will be addressed in chapter6 where my work on the unit selection

algorithm is detailed.

1.4 The Candidate Units Graph

Now, in order to solve the unit selection problem, the algorithm must have some way to

structure corpus data and explore it e�ciently. As the search algorithm has to �nd a

way to concatenate a �nite number of units that have to be selected into a �nite (though

considerable) number of units with an ordering relation between them and a cost for passing

from one unit to the other, the problem �nally comes back to a shortest-path �nding

problem in a directed weighted graph.
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Formally, units can be organized in a graphG = (V; A; C ) where the nodes setV

represents the set of all corpus units that can be used to match the target sequence.A is

the set of arcs transcribing possible concatenations between units. As the graph is directed,

there is an ordering between the nodes: an arc from a node A to a node B means B can

be joined after A. C is the set of costscij linked to each arc (i; j ) 2 E of the graph. It

quanti�es the risk of creating audible artefacts when concatenating two units.

Several nodes in the graph can represent the same corpus parts. For example, a unit

corresponding to the phonetic sequence [# - s - u] is composed of diphones [# - s] and

[s - u]. While there is a node representing that unit, there are two other distinct nodes

representing the two smaller corpus units composed by the diphones. A same unit can also

be used more than one time in the graph as it might be candidate for matching the target

sequence several times. For instance, our unit [s - u] from the last example can be used

twice to synthesize the target utterance [# - s - u - s - u].

Arcs between the units only transcribe concatenations that mark a progress in matching

the target sequence3. This means two things. First, that the selection graph is a sub-graph

of a global non-oriented graph that models all possible concatenations in the corpus. This

graph is fully connected. Secondly, this means the graph is always built during the selection

stage, as it is related to the target sequence. It cannot be constructed prior selection as

the target sequence is unknown then.

Furthermore, the graph matches following properties:

Finite The corpus, though huge, contains a �nite number of nodes.

Acyclic As each unit introduced into the graph is linked to a particular portion of the

target sequence, once it is selected, it cannot loop. If the same unit is selected twice,

even one after the other, it will be represented by two di�erent units in the graph,

each one linked to a particular part of the target sequence.

Directed An edge linking two units transcribes a progression in the construction of a

sequence matching the target sequence. Hence, there is a time relation between the

two units: one is necessarily preceding the other. In addition, going from the second

unit to the �rst is impossible because (1) it would not mark any progression in the

target sequence (2) it would not match the target sequence and (3) it would break

the acyclicity constraint. The graph is therefore directed and edges are called arcs.

Weighted An arc from one node to another transcribes the fact of joining two units.

Joining two units comes to a cost. Therefore, arcs bear a weight formed by the cost

of the operation of adding the new node to the existing candidate sequence.

Furthermore, in order to simplify the work for the algorithm, two non-synthesizable

nodes may be added. An "init" node is added to the graph with arcs bearing an empty

3Concatenations that would cause a candidate sequence to diverge from the target sequence are forbid-
den.
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cost to every possible unit (i.e. node) that match �rst diphones of the target sequence.

Similarly, an "end" node is added as a successor to every node that match the end of the

target sequence. As a result, the graph matches all the properties of a lattice. Indeed, with

these nodes, every couple of nodes of the graph possess at least one predecessor and one

successor in common. The fact that the graph is a lattice enables the usage of dynamic

programming for the selection algorithm, which we will detail in the next section. The

modeling of the problem via a lattice is widely used in the literature (in [Donovan 1996],

[Yi 1998], [Klein and Manning 2003] or [Vepa 2004] for instance). Another representa-

tion has been used in the literature, mainly in the 90s: modeling of the problem via a

tree. In 1999, Taylor and Black proposed an algorithm called PSM (Phonological Struc-

ture Matching) which was based on a hierarchical selection of units, which were placed in

a phonological classi�cation tree [Taylor and Black 1999]. The tree represents the target

utterance, with nodes depicting �rst words and then syllables, stress information and �-

nally phone sets from the corpus on the leaves. The phones in the leaf sets are those that

match the information represented by parent nodes in the graph. The algorithm then uses

a scoring function to get the best phone of each leaf and concatenates them. Of course,

this technique answers to the problem of unit selection only if the scoring function takes

into account the relation between each set in order to ensure that phones in two sets are

considered as part of a same bigger unit if they are contiguous in the corpus. Nodes in the

sets could also be rearranged into a small graph and a new (smaller and easier to solve)

unit selection problem emerges (this is in particular the way PSM works). In that case,

the construction of the tree and its leaf sets can be viewed as a method of preselection, or

pruning.

As in this thesis my work is aiming to be as generalist as possible, we will keep consid-

ering the most generalist point of view: a graph.

In order to illustrate previous paragraphs, let's consider we want to synthesize the

utterance �Sous une autre forme.� (Under another form.). Figure 4.3 shows the beginning

of the related graph. The start point of any search algorithm, in the graph, is the node

"init". From that node, there is a link to every node that represent a corpus unit matching

the beginning of the target sequence. This node is introduced in order to avoid arbitrary

choice of the �rst node. We make a similar choice by introducing a unique end (target)

node. Several units are only a diphone [# - s], while some also match the third phoneme

of the sentence, giving a longer unit: [# - s - u]. There might have been even longer units,

to the limit of the target sequence size. The size of a unit is determined by the number

of related diphones in the corpus that match the target sequence. In particular, if an

utterance in the corpus happened to correspond to the complete target sequence, a unique

node corresponding to that utterance would be added to the graph and it would be linked

on one side to the init node and on the other side to the end node. Nodes representing

a diphone [# - s] only have arcs that link them to units that match the next part of the

target sequence, beginning with diphone [s - u]. The longest possible size for the nodes
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Figure 4.3: Example of the unit selection graph modeling where nodes are corpus units.
Each arc is possible way to bind two units. The binding's cost is in red.

accessed by [# - s] nodes isN � 1 where N is the size of the target sequence of diphones

T = ( d̂1; d̂2; :::; d̂N ).

Another modeling, completely equivalent, is worth mentioning, as it has been widely

used in the literature (for instance in Hunt and Black's unit selection founder article [Hunt

and Black 1996]). It is to considerV as the set of possible states while browsing the target

sequence. In that case, the arcs become the corpus units and each arc bears the cost for the

selection of that unit, in the context of the emitting and receiving states. As there is very

likely much more than one unit that allows passing from one node to another, the graph is

multivalued. For example (see �gure4.4 for an illustration of that example), the �rst state

of the graph the selection algorithm will visit in sentence�Sous une autre forme.� (after

the initialization node) is state [# - s] which we reach when a diphone [# - s] has been



2. SELECTION ALGORITHM 53

Figure 4.4: Example of the unit selection graph modeling where nodes are states in the
target sequence. Each arc is a corpus unit (black part of the label) with a selection cost
(in red).

selected. This state is directly linked to state [# - s - u] where two diphones [# - s] and [s

- u] have been selected by the selection algorithm. As there is probably a big number of

diphones [s - u] in the corpus, every one of them is represented by an arc between states [#

- s] and [s - u]. The two phonemes can be on a contiguous segment, in which case they form

only one unit. In that case, this unit was selected by taking an arc from the initialization

node directly to [# - s - u].

A complete example of that modelization is given by �gure4.5 [Francois 2002]. This

modeling is more compact than previous one, and may be easier for presenting the unit

selection algorithm but it is also very di�erent from what actually happens in the heart of

the algorithms implemented in my work. This is why in the following we will use the �rst

modeling presented where each node is a corpus unit and an arc represents the action of

concatenating two units at some cost (potentially null).

2 Selection Algorithm

The goal of the unit selection algorithm is to �nd the cheapest path in the graph. Given

the nature of the graph, especially the fact that it is actually a lattice (or a tree if the

end node is removed), dynamic programming has been the most popular way to perform

selection, since Hunt and Black's original work on the CHATR system in 1996 [Hunt and
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Figure 4.5: The unit selection sequence graph for the French sentence�Sous une autre
forme.� . Each edge has a label and a number. The label represents the unit that's added
to the sequence and the number is the quantity of units of that type in the corpus. To
reproduce the whole graph, this number would need to be replaced by as many edges, along
with the cost of that particular unit in sequence (i.e. taking into account the previously
selected unit in the sequence). Such a representation is of course impossible given the size
of the problem. Nodes represent a common state in the sequence: 0 means nothing was
selected, 1 that the �rst phone related to the target sequence was selected,etc. Figure
extracted from Hélène François' thesis [Francois 2002].
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Black 1996]. In that work, a lattice of phones representing the content of the database4 is

created and pruned. Viterbi algorithm is used to �nd the best sequence of graph nodes,

hence the best unit sequence. The solution is under-optimal as the lattice was pruned.

In 1998, M. Beutnagel, A. Conkie and A. Syrdal used the same principle but replaced

phones by diphones [Beutnagel et al. 1998]. Then, this method has been reproduced in

most publications on unit selection until today, for instance in D. Schwarz's presentation of

concatenative sound synthesis (musical synthesis, explorative synthesis, artistic synthesis

[Schwarz 2007]) or in a work on the sub-costs of the concatenation cost function by Blouin

et al. [Blouin et al. 2002].

Over time, several enhancements of the algorithm were proposed, for instance in S.

Sakai, T. Kawahara and S. Nakamura's work [Sakai et al. 2008] where stopping criteria

aiming at pruning the Viterbi lattice are presented. It was further re�ned and perceptually

evaluated in a work by D. Tihelka, J. Kala and J. Matou²ek [Tihelka et al. 2010], where

no perceptual degradation caused by the pruning criteria is spotted while the algorithm is

up to 58 times faster than the baseline algorithm (a beam-search Viterbi).

2.1 Viterbi Algorithm

Now, to simplify, let us put aside the init and end nodes that just serve to initialize, launch

and terminate the search. LetT = (d 1; d2; :::; dN ) the target sequence of diphonemes of

size N , with dk being the kth diphoneme of the sequence, for anyk 2 J1;N K. We note

	 k =
n

d1
k ; d2

k ; :::; dM k
k

o
the set of the M k candidate diphones in the corpus that match the

target diphonemed̂k . With i; j 2 J1;N K,i < j , a corpus unit matching target diphonemes

i to j is noted Ux
i;j , x meaning the unit is the x th matching the target sequence fromdi

to dj
5. Hence, we de�ne
 i;j =

n
U1

i;j ; U2
i;j ; : : : ; UM i;j

i;j

o
as the set of all corpus units that

match the target sequence from diphonemesdi to dj included. In the following, we use

U! i;j
i;j 2 
 i;j to refer to any unit of 
 i;j . The set of all units in the corpus is the following:


 =
[

i;j 2J 1;N K
i<j


 i;j (4.2)

Using these notations and with 1 � h < i, the unit selection problem can now be

written as an optimization problem, aiming at �nding the unit sequence that minimizes a

cost function C:

U� = arg min
U=U

! 1;h
1;h ;:::;U

! j;N
j;N

(C(U
! 1;h
1;h ; U

! h;i
h;i ; : : : ; U! j;N

j;N )) (4.3)

4They are called states though not in the sense of the state in the target sequence, as in the modeling
presented in the last section.

5Here, ranking of the corpus units with attribute x is purely arbitrary, as no ordering of the candidates
Ux

i;j is necessary.x is here used as an identi�er for the unit among its siblings.
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The cost of each unit is determined by two cost functionsCt and Cc. Hence, the general

cost function evaluating each node takes the formC(U! i;j
i;j ) = Ct (U

! i;j
i;j ) + Cc(U

! h;i
h;i ; U! i;j

i;j )

where U
! h;i
h;i is the predecessor of unitU! i;j

i;j in the candidate sequence. Equation 4.3 then

becomes:

U� = arg min
U=U

! 1;h
1;h ;:::;U

! j;N
j;N

(Wtc

X

U

Ct (U
! i;j
i;j ) + Wcc

X

U

Cc(U
! h;i
h;i ; U! i;j

i;j )) (4.4)

Ct is called the target cost and measures the degree of suitability of a corpus unit

to represent the corresponding part of the target sequence.Cc is called the concatenation

cost. It evaluates the expected quality of the joining point in the signal after concatenating

a unit with its predecessor in the candidate sequence (i.e.the preceding graph-node in the

path being built by the algorithm). We will focus on these costs in section3.

The Viterbi algorithm was �rst introduced in a 1967 article by A. J. Viterbi [Viterbi

1967] to �nd an upper bound to the probability of error in decoding an optimal convolu-

tional code. More recently, Viterbi gave a simpler and more generalist description (though

still centered on digital sound processing) of the algorithm in the IEEE Signal Process-

ing Magazine [Viterbi 2006]. The algorithm is based on dynamic programming, with the

following recursion formula6:

C(U! i;j
i;j ) =

8
<

:

Ct (U
! 1;j
1;j ) if i = 1

min

 h;i

�
C(U

! h;i
h;i ) + Cc(U

! h;i
h;i ; U! i;j

i;j )
�

+ Ct (U
! i;j
i;j ) otherwise. (4.5)

Starting from the last units, the algorithm directly calls the preceding unit on the

optimal path, which is computed with the minimum on the recursive call, in practice

expressed with a breadth-�rst search (no recursion in the algorithm since it's dynamic

programming).

The algorithm's asymptotic computational complexity is O(N � K + N � K 2), K being

the number of candidate phones in the corpus andN being the number of diphonemes

in the target sequence [Schwarz 2007]. More precisely, the target cost function counts for

O(N � K ) computations while the concatenation cost is computedO(N � K 2) times.

2.2 Beam-search Algorithm

This complexity can be reduced toO(N � K + N � B 2) with a beam-search optimization of

the Viterbi algorithm, B being the size of the beam in question. Beam-search strategy is,

given a unit, to compute the target costs of all possible preceding units in the graph (as it

is usually done in the baseline Viterbi algorithm) and only keep theB best ones for further

consideration. Hence, at each level of the search, onlyB solutions for matching the target

6Again with h; i; j 2 J1;N K,h < i < j .
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sequence are considered, as all others have been pruned at the previous level (remember

this is a breadth-�rst strategy, so we are progressing level by level, even if each level has

variable-size units).

It is actually this technique that is used in most (if not all) unit selection engines

around the world, for a simple reason: the baseline Viterbi algorithm cannot compute the

solution to the unit selection problem in real-time. Of course, using a beam-search strategy

makes Viterbi algorithm under-optimal, but we will see in chapter6 that with a reasonable

beam size, optimality of the solution to the unit selection problem is not crucial and that

reasonably good solutions can be obtained in a very short time with (almost) no perceived

degradation of synthesized speech.

2.3 Non-Viterbi Approaches

In most cases, the Viterbi algorithm is used to �nd the best unit sequence, but it is not

the only possible one. As the unit selection problem is about �nding the shortest path in

a graph, all algorithms able to solve that problem are susceptible to be used.

The most famous of these surely is Dijkstra's algorithm (constantly cited as one of the

most used algorithms in the world). Dijkstra's algorithm the shortest path problem in

O(jV 2j), i.e. O(n2) time according to S. Saha Ray [Saha Ray 2013],n being the number

of nodes traversed by the algorithm7.

A more general algorithm, the Floyd-Warshall All-Pairs-Shortest-Path algorithm, is

also �t for the task. Unlike Viterbi or Dijkstra, which have a single source (or init) node,

it can compute the shortest path between any two nodes or vertices in the network [Saha

Ray 2013]. It relies on dynamic programming and has a time complexity inO(n3), thus

making Dijkstra better for the unit selection task.

Another algorithm is often used (even more than Dijkstra actually) for shortest path

problems: A � . Contrary to the Viterbi algorithm, A � algorithm develops a graph. At each

time instant, it explores the best node of the graph using a cost function that depends

on both the path from the source node and the estimated cost to the target. Originally

introduced in 1968 by P. E. Hart, N. J. Nilsson and B. Raphael [Hart et al. 1968], the

algorithm basically operates by searching for a path in a directed graph, whose nodes only

have a �nite number of successors, between a start node and a target node.

At each step,A � takes the most promising node according to a cost functionf (U! i;j
i;j ) =

C(U! i;j
i;j ) + h(U ! i;j

i;j ) and expends its successors (computing their cost by the way) until the

target node t is reached.h(U ! i;j
i;j ) is a heuristic that enables to speed up the algorithm by

privileging the nodes that seem to be on an optimal path over those which have a better

cost but may lead to greater costs in the future [Nilsson 1982].

Considering a unique target node, one of the main advantages ofA � is that the algorithm

delivers an optimal solution if the heuristic is admissible,i.e. if h(U ! i;j
i;j ) � h� (U! i;j

i;j ), where

h� (U! i;j
i;j ) is the real minimum value of the distance to the target node. In particular, note

7 jV j is the number of nodes in the graph.
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that the algorithm is optimal in the trivial case h(U ! i;j
i;j ) = 0, i.e. if there is no heuristic,

and turns out to be equivalent to Dijkstra's algorithm.

Other algorithms, like the D algorithm presented in 1959 by E. Moore or Busacker and

Saaty's dynamic programming implementation may also be used.

Very di�erent techniques may also be used for unit selection, the most exotic being

perhaps Rohit Kumar's work [Kumar 2004], where a genetic algorithm is used, relying

on genetic operators very similar to the target and concatenation costs. This algorithm

achieves to �nd an acceptable (i.e. under-optimal though the genetic algorithm converges

to the optimal solution) solution faster than using an optimization based algorithm.

Evaluating the interest of these alternatives to Viterbi algorithm has been the �rst task

I have undertaken in my work [Guennec and Lolive 2014a;Guennec and Lolive 2014b]. In

chapter 6, we present the results of that work.

2.4 Concerning Variable-size Units

A particular point is that the term unit selection is used indi�erently in the literature to

describe two processes:

ˆ Parsing a graph where nodes represent diphones in the database (most publications);

ˆ Parsing a graph modeling variable-size units.

While the second point follows exactly the de�nition of unit selection, the �rst one seems

to match more concatenative synthesis (without variable-size units) than unit selection.

Actually, provided that all arcs between nodes that model contiguous diphones in the

corpus get a null cost, both come back to exactly the same thing. Hence, using only

diphone units provide an immense advantage: the graph is much smaller when including

only diphones and no longer units and it is easier to work on as all units have the same size.

That means also that the size of the problem is much smaller, leading to both algorithmic

space and time economy. In this thesis, we use the general point of view. Variable-size

units are used in order to make the discourse as comprehensive as possible, but in practical

applications referring to the diphone graph only is su�cient, if and only if arcs between

nodes that model contiguous diphones in the corpus get a null cost.

3 Selection Cost

As previously said, Hunt and Black �rst came with this target cost/concatenation cost for-

mulation [Hunt and Black 1996]. This division into two procedures is particularly adapted

to the problem and has been wildly reproduced until today. It presents nonetheless one

important disadvantage: global constraints are not taken into account as the costs are local

to the nodes of the graph. We will come back on that matter in section3.5.

Before going further, an important remark has to be kept in mind: the goal of the

selection cost construction task is to build a function that penalizes units the way a human
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would, with quality of experience in mind. What this means is that a unit sequence, once

concatenated, can present discontinuities that human ears cannot discern (i.e.buzzing at

50 kHz). Such things should not be taken into account in the cost function. Doing so may

cause a unit with perceptible issues to be selected instead of a unit bringing multiple but

imperceptible problems.

So the main issue of the selection cost is the following: what criteria should be assessed

and what weighting should be operated between them? Of course, the answer to that

question is language dependent.

It is also important to note that the constraints used into the selection cost (especially

the target cost) need to be as close as possible to the constraints that were used to build

the corpus. The ideal case is to have exactly the same costs in the function that scores the

utterances during corpus construction and in the unit selection cost function. Indeed, the

criteria used to build the corpus have an impact on its composition (phonetic, linguistic,

etc.). Using the same (or close enough) criteria for selection allows to take advantage

of this exotic corpus content. Of course, the selection cost function should ideally be as

independent of the corpus as possible. Corpora should be commutable without modifying

the cost function. Actually, this is not the case in reality: the cost function e�ciency

is directly a�ected by the corpus content. Thus, using the same constraints for corpus

construction and unit selection is a welcomed optimization.

3.1 Target Cost

The target cost aims at sorting each candidate unit set
 i;j according to its level of cor-

respondence to the description of the corresponding portion of the target sequence. This

knowledge can be based on:

ˆ Linguistic and phonetic target sequence descriptors acquired with automatic anno-

tation (only a few predicted)

ˆ Predicted values likeF0, phonemic duration, energy,etc.

ˆ Rules (especially prosodic)

Starting from these descriptors and predictions, distance functions are built to com-

pare this data to each corpus unit annotations, which are stored in the corpus (i.e. not

predicted). This set of distance or di�erence functions is called the set of target sub-cost

functions. Together, they form the unit selection target cost:

Ct (U
! i;j
i;j ) =

KX

k=1

wkCk
t (U! i;j

i;j ) (4.6)

K being here the number of target sub-cost functions, andCk
t (U! i;j

i;j ) being the function

associated tokth sub-cost.
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The actual nature of the sub-costs is rarely stated in the literature, for example A. Black

and N. Campbell where the target cost is described as containing 20 to 30 sub-costs without

giving more detail [Black and Campbell 1995]. Nonetheless, the features usually chosen

are linguistic/phonological attributes (it may also be implemented via a preselection �lter

which would make selection much faster,cf. paragraph 3.4), pitch, energy or phonemic

duration. For example, Alíaset al. use predictions of normalized pitch, energy and duration

for their target cost [Alías et al. 2011].

The main problem of this formulation concerns the reach of most features used in the

cost (this will be further discussed in section3.5): as the formulation of the problem forces

the use of local features, usually centered around the elementary unit (e.g. diphone),

possibly with contextual information ; no or few attention is given to long term constraints

(integration of the unit in regard to the expected prosody of the breath group, consistency

with the rest of the candidate sequence for example). This is one of the points we will

discuss later on in chapter7.

3.2 Concatenation Cost

The concatenation cost goal is to prevent concatenation of units susceptible to cause the

appearance of a concatenation artefact or any other inconsistency by awarding a cost to any

candidate unit considered to be added to the sequence. This cost measures the di�erence

between a candidate unit and the last unit of the candidate sequence under construction.

The computed cost is then added to the cost of the candidate unit.

Equation 4.7 presents the integration of concatenation sub-costs in the global join cost

function:

Cc(U
! h;i
h;i ; U! i;j

i;j ) =
KX

k=1

wkCk
c (U

! h;i
h;i ; U! i;j

i;j ) (4.7)

When using acoustic or prosodic features in the target cost, the target data is generated

by a model, which induces a bias. In the case of the concatenation cost, the advantage is

that this data comes from corpus annotations of both left (U
! h;i
h;i ) and right ( U! i;j

i;j ) units.

Distances over these attributes � and most concatenation sub-costs are based on acoustic

features � is therefore more reliable.

Empirically, synthesis made with a concatenation cost but no target cost is usually

acceptable while synthesis made without any concatenation cost often results in unintelli-

gible sentences. One could hence say that the concatenation cost is the main element of

the selection cost.

As the concatenation cost composition is particularly important, literature gives it more

focus than it does with the target cost. Thus, many spectral distances are implemented in

the concatenation target sub-costs though the most important distance is probablyF0 as

say D. Tihelka et al. in a paper presenting a re�nedF0 cost computing the slopes between

the 5 F0 measures around the concatenation point [Tihelka et al. 2014]. Elsewhere in the
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literature, Black and Campbell used normalized pitch in 1995 [Black and Campbell 1995],

which was also the case of F. Alíaset al. more recently [Alías et al. 2011]. The latter also

used an Euclidean distance on MFCCs around the joining point. Cepstral distance is also

quite popular: FFT-based (Fast Fourier Transform) and LPC-based (Linear Prediction

Coe�cient) cepstral distances were used in many publications, like M. Macon, J. Wouters

and A. Cronk's work [Macon et al. 1998] [Wouters and Macon 1998], A. Black and N.

Campbell's [Black and Campbell 1995], A. Hunt and A. Black [Hunt and Black 1996] or Y.

Stylianou and A. Syrdal's [Stylianou and Syrdal 2001]. The same also used Line Spectral

Frequency (LSF) [Macon et al. 1998;Wouters and Macon 1998;Stylianou and Syrdal 2001].

M. Macon, J. Wouters [Macon et al. 1998] and A. Cronk [Wouters and Macon 1998] also

tested symmetrized Itakura distance and Log Area Ratio (LRA). In Y. Stylianou and A.

Syrdal's work, LSF (with a Kullback-Leiber distance) computed either by LPC or by PLP

(Perceptual Linear Prediction) is evaluated [Stylianou and Syrdal 2001]. They also test log

power spectrum (Euclidean distance) computed by FFT, LPC or PLP and power spectrum

(Kullback-Leiber distance) also computed by FFT, LPC or PLP. They found Kullback-

Leibler distance between FFT-based power spectra and the Euclidean distance between

MFCCs to perform the best, while M. Macon and J. Wouters claim a mel-based Itakura

distance yields to the best prediction of concatenations discontinuities, but the authors of

both studies warn these costs alone are not su�cient to make an adequate candidate unit

ranking (allophones in their case).

Many works focus on predicting concatenation issues on resynthesized speech. They do

not use the costs they develop to generate synthetic speech: the cost is used on data that

was already generated to �nd the position of concatenation artefacts (if any). These are

then compared with human predictions. This comes back to the same problem: predicting

which unit is likely to engender an annoying concatenation artefact. Actually, this method

is the best way to test a new concatenation cost, as its �rst quality must be not to detect

whether a concatenation artefact exists or not, but whether or not a human can perceive

it and be annoyed by it. The issue is that, in the unit selection engine, this cost will be

among other measures, and its ability to keep working well with the bias induced by other

costs also needs to be investigated.

Concerning synthesis of French, Blouinet al. [Blouin et al. 2002] used distances based

on energy and energy derivative,F0 and F0 derivative, delta energy, duration and pre-

dicted duration8, phonological identity, various phonemic characteristics and positional

information (position in syllable, word and breath group) to compute the concatenation

cost function.

In order to speedup unit selection, a popular approach is to pre-compute the concate-

nation cost as the target utterance isn't needed. This approach was �rst presented in 1999

by M. Beutnagel et al. [Beutnagel et al. 1999]. Doing so avoids millions of concatenation

cost calculations during synthesis but comes at the expense of memory storage. In e�ect,

8Using duration in the concatenation is quite odd as the concatenation cost should only focus on a
restricted part of the signal and not be in�uenced by target cost speci�c features (like duration).
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corpora usually reaching hours to tens of hours, pre-computing all possible unit concate-

nations requires considerable storage amount and computation time. Accessing the stored

information also becomes complicated at that stage. Also, the slightest change in the for-

mulation of the cost forces to recompute everything. Avoiding the concatenation cost by

caching is therefore usable for some precise applications, when the system or the voice are

not likely to be altered in the short run and when there is su�cient storage available.

3.3 On Weighting Issues

The toughest problem concerning unit selection cost functions is not which sub-costs should

be used but what weighting should be made between each sub-cost.

Let us take back equation4.3, integrating by the same occasion equations4.6 and 4.7:

U� = arg min
U=U

! 1;h
1;h ;:::;U

! j;N
j;N

(Wtc

X

U

Ct (U
! i;j
i;j ) + Wcc

X

U

Cc(U
! h;i
h;i ; U! i;j

i;j )) (4.8)

= arg min
U=U

! 1;h
1;h ;:::;U

! j;N
j;N

(Wtc

X

U

KX

k=1

wkCk
t (U! i;j

i;j ) + Wcc

X

U

KX

k=1

wkCk
c (U

! h;i
h;i ; U! i;j

i;j )) (4.9)

In this equation, two types of sub-cost weights can be distinguished:

ˆ Wtc and Wcc are the weights given to the whole target cost and the whole concatena-

tion cost respectively. Their aim is to give a balance between the two costs. Either

to favor one over the other or to give them the same average magnitude if the costs

are not normalized.

ˆ The wks are the weights given to each sub-cost inside the target and concatenation

costs. Their purpose is the same asWtc /W cc.

These weights are usually �xed in the TTS engine but nothing forbids imagining a sys-

tem where they would be updated on the go, depending on expert knowledge on linguistic

features of the candidate unit for example.

In the literature, the weight tuning problem has been intensively explored. Weight

tuning methods can be classi�ed in two categories: objective or subjective. C. Blouinet

al. [Blouin et al. 2002], comparing several versions of a unit selection cost, also compared

objective and subjective tuning of the wk weights. They proposed to optimizewks auto-

matically using the average of the costs found using the content of a speech corpus. In the

same paper, they also proposed a system with hand-made weights chosen in function of the

phonetic class of the demi-phones composing the unit. The automatically tuned version

proved to fare better than its manual counterpart in every tested case.

Main objective methods use mathematical optimization techniques to search a dis-

cretized reduction of the weight space. Another choice based on mathematical optimization

is the use of multilinear regression between the sub-costs and some objective measure can

be computed to re�ne the weights. As an example of objective tuning, F. Alías along with
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X. Llorà proposed in 2003 a genetic algorithm for tuning thewk weights of both target

and concatenation costs simultaneously [Alias and Llorà 2003].

On the subjective side, hand-tuning the weights is by far the most popular option,

done mostly using expert knowledge. Another method is to use subjective tests as a post-

mapping stage to re�ne the weights, but this is a costly practice, both in terms of resources

and time. Semi-automatic algorithms, based on interaction between the algorithm and a

human operator can also be used.

F. Alías et al. provide a very good review of all proposed weight tuning techniques in

their paper [Alías et al. 2011].

3.4 Concerning Preselection

As the problem of searching for variable-sized units in a corpus is computationally expen-

sive, preselection �lters are often implemented to (drastically) speed up the unit selection

process, as for example in A. Conkieet al. work [Conkie et al. 2008]. They are used to prune

very di�erent units (according to the target cost philosophy) added to the graph or the

lattice and contains phonetic, linguistic and prosodic related information. This technique

was �rst presented in a 2000 paper by A. Conkie, along with another preselection method

consisting in doing massive synthesis and remembering which triphones (the biggest unit)

were used so that consecutive synthesis only uses these triphones [Conkie et al. 2000].

To achieve preselection with �lters, a key containing discrete information (mostly bi-

nary) is created for each speech segment (phoneme or non-speech sound) in the corpus.

That enables the algorithm to take or reject the unit quickly by just comparing the values

in the key with target values. The key may contain phonetic, linguistic and prosodic in-

formation. Hereafter is an example of a set of �lters that may be used for the preselection

task, for each speech segment constituting the unit:

1. Is the segment a non-speech sound?

2. Is it in the onset of the syllable?

3. Is it in the coda of the syllable?

4. Is it in the last syllable of its breath group?

5. Is the current syllable in word end?

6. Is the current syllable in word beginning?

In this example (used in the IRISA TTS system), if no unit corresponding to the current

set of �lters is found, the preselection �lters are relaxed one by one, starting from the end

of the list. This mechanism ensures �nding a path in all cases, but the drawback is that

we can explore candidates far from the target features we want, thus risking to produce

artifacts.
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Actually, the purpose of the preselection �lters is twofold. First, as we just said,

it considerably prunes the graph explored by the unit selection algorithm, making the

selection process faster. Second, it serves as a set of binary target cost functions relying

on the assumption that if a unit doesn't respect the required set of features, it can't be

used for selection. The preselection �lters should therefore be seen as part of the cost for

a node.

3.5 On Global Constraints

The selection algorithm and costs are particularly �t for short context problems. Fortu-

nately, most problems unit selection faces concern the short context: concatenation of two

speech segments on a few hundred signal samples and similarity measure between a unit

and its target description. In addition, the formulation of the problem easily allows the use

of contextual data (data concerning the predecessor/successor in the target sequence or in

the corpus, data from predecessors in the candidate sequence) to improve selection. For

example, for a pitch target cost, it may be more e�cient to perform a distance over some

considered diphone plus its predecessor and its successor than the sole diphone so that the

global trend in the corpus part the candidate diphone comes from is also captured.

There is one thing that is not taken into account though: integration of long term

constraints, i.e. constraints ranging on several syllables, words, constraints on the breath

group or even on the sentence or more.

A few work proposed ways to integrate the missing information. For instance, an

attempt to address that problem has been made by A. Popescuet al. [Popescu et al. 2006]

by integrating a new set of sub-costs in equation4.3, targeting wide-range constraints.

As this drastically increased the complexity of the problem, making the optimal solution

impossible to compute in reasonable time, a simulated annealing variant constructing an

approached solution was also proposed.

In chapter 7, we will discuss another method to adapt the duration target cost so that

it does not necessarily try to �nd the sequence that gives the best approximation of the

predicted target duration but tries to obtain a sequence with an homogeneous distance

to the target. The goal of this method is to guarantee that the selected sequence is free

of compensation e�ects (i.e. none of the selected units presents an outlier duration that

would have been compensated).

4 Signal Concatenation

The output of the unit selection stage is as simple as a sequence of unit positions in the

corpus. The last component of the TTS chain is therefore the module handling retrieval

and concatenation of the selected units. In addition to that task, it can also perform limited

prosody modi�cations (or prosody adaptation) over the complete signal, like changing the

pitch or accelerating speech rate.
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The concatenation of two signals is greatly improved, as we said earlier, when done on

the central part of phones, alias on diphone boundaries. An alternative worth mentioning

is performing a search of the best point of concatenation between the two units, as done in

A. Conkie and S. Isard's work in 1994 [Conkie and Isard 1994] where the authors propose

a method to �nd the minimal spectral mismatch frames between the units. But even then,

putting phonemes end to end is very insu�cient to prevent the appearance of artefacts,

which can be sorted in two categories:

ˆ Pure concatenation distortions, caused for instance by unsuccessful interpolation or

smoothing.

ˆ Prosodic breakage, when joining diphones with very di�erent prosody.

Thus, many techniques have been tested to eliminate these discontinuities but all actually

end up spreading (but also attenuating) the artefacts on long portions of the concatenated

speech segments. This contributes to the reasons for the quality drop between natural

and concatenated speech: the latter is a set of speech fragments not intended to be put

together, joined by a series of unnatural speech portions of non-negligible length where

concatenations were performed.

The most common way to minimize distortions is by interpolation 9 of the signals to

join on a few pitchmarks on the end of the left unit and on the beginning of the right unit.

The corresponding interpolated segment is then used in replacement of the originals. This

approach is directly inspired of TD-PSOLA algorithm [Moulines and Charpentier 1990].

The drawback is that this method is very basic and can cause a perceptible breakage of

formantic trajectories.

A spectral smoothing solution presented by H. P�tzinger in 2004 [P�tzinger 2004] took

that problem into account. The two signals derivative logarithmic magnitude spectra are

�rst estimated, then the spectra are aligned using Dynamic Frequency Wrapping (DFW)

which allows computing smoothed interpolated frequency responses (with a weighted linear

interpolation between the two spectral representations). This spectrum is then converted

to auto-regressive �lter coe�cients realizing a smoothed transition between units.

Another method, leading to better results than TD-PSOLA [Syrdal et al. 1998] but

signi�cantly more complex, has been developed by Y. Stylianou in 1996. The Harmonic

plus Noise Model (HNM) represents the spectrum in two components: quasi-periodic har-

monically related sinewaves and a noise component for representing non-periodic speech

sounds (e.g. produced by friction). This model is used for performing concatenations by

interpolating harmonic parameters of the model [Stylianou et al. 1997;Stylianou 2001],

keeping a soft evolution of the spectrum parameters.

In 2001, J. Wouters and M. Macon also proposed a method that builds "fusion units"

on the concatenation point. These units are built by reproducing the Line Spectrum

9According to [Syrdal et al. 1998; Laprie and Colotte 1998], among others.
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Frequencies (LSF) parameters of a natural example of the concatenation point [Wouters

and Macon 2001].

On the prosody modi�cation stage, methods like PSOLA and its variants, HNM or

STRAIGHT [Kawahara et al. 2008] can perform limited prosodic-order modi�cations of

the signal: pitch adaptation and speech rate adjustment mainly. Modi�cation must remain

modest (no more than a�1:5� modulation of the speech rate for example) in order not

to degrade generated speech.

However, the prosody adaptation part is less and less used/developed in recent years,

for two reasons: �rst, the risk of degradation is important and secondly, SPSS methods

allow much better (and safer) prosody control for a decent output quality, most work on

speech control is therefore centered around SPSS now.

5 Conclusion

In this chapter, we presented the second part of the TTS process: the TTS backend. Hav-

ing a multi-level representation of the target utterance (from the input text) and the TTS

voice, we presented how the unit selection engine builds a graph of units and we presented

the graphs properties in detail. In particular, we showed that the unit graph is actually

a lattice. We then presented the nature of the unit selection problem, a minimum cost

path�nding problem in a lattice, and the usual way to solve: via a path�nding algorithm.

These algorithms were then introduced, especially the most employed for the task: Viterbi.

We then presented a literature review of the content and nature of the selection target and

concatenation costs that drive the selection algorithm. Finally, we showed the standard ways

unit joining is performed once the sequence of corpus units to concatenate was obtained by

the selection algorithm.
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Chapter 5

Experimental Data and Evaluation

Methodology

�Imagine how hard it would be to use a dictionary if its words were not

alphabetized!�

Donald Ervin Knuth (1938�)

The Art of Computer Programming

Volume 3, chapter 5

We will now focus on the data, data storage tools and test protocols used through this

document. This chapter is split into two main parts. In the �rst one, we will begin with a

description of the ROOTS toolkit that is used to store the data and then the conversion to

a lighter format, used by the TTS system. Then, we will describe the automatic annotation

process developed in the Expression team. We will �nish that �rst part by a description of

the two voices used in our experiments: Audiobook and IVS.

Finally, the evaluation methodology used throughout the thesis will be detailed in the last

section, with a presentation of the evaluation technique focusing on di�erences we presented

recently [Chevelu et al. 2015].

1 Speech Synthesis Data Management

Speech data used for this thesis is managed by theROOTS toolkit [Chevelu et al. 2014],

developed within the team. ROOTS allows to store, analyze and manipulate speech data

69
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conveniently. The base problem it aims to solve is the disparity of tools available for

speech analysis. These tools rarely use the same input/output format and are rarely fully

compatible from the beginning. The solution to that problem is to have a tool able to

represent and store data and at the same time give an easily usable interface able to

import and export data from and to analysis tools, see �gure 5.1for an illustration of this

philosophy with ROOTS. The way data is represented in that system must be consistent,

ordered and should be able to transcribe the totality of the information provided by analysis

tools so that analysis is made possible. In addition, it must be able to represent as much

annotation levels as possible and it ought to be upgradable so that new data can be

represented by it. It is also preferable to make it usable from a wide variety of computer

programming languages, especially script languages. TheROOTS toolkit was designed to

respond to these issues.

Although other solutions exist such asAtlas, Agtk , Emu, Hrg or IrcamCorpus-

Tools to cite a few, the wish to have a representation format as complete and upgradable

as possible (contrary toHrg which favors access speed over comprehensiveness) is one of

the few factors that triggered the development ofROOTS.

1.1 ROOTS Toolkit

The ROOTS toolkit is based on the Object paradigm. It describes a corpus with the

following concepts, from the smallest to the greatest reach:

Items: The basic element inROOTS is the item. An item describes an element of an-

notation corresponding to a certain type. For example, it can be a phoneme, which

in the ROOTS toolkit translates into an instance of the class Phoneme, a syllable,

a lemma, a word,etc. An object can be a specialization of another object (Object

notion of inheritance): A F0Segment and a SpectralSegment are specializations of a

Figure 5.1: Positioning of the ROOTS toolkit in the hierarchy of speech analysis and
management tools.
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Segment.

Sequences: Sequences describe a temporal ordering of several homogenous items. De-

pending on the sequence, items may or may not be immediately subsequent in time

but a same sequence can only represent one type of item. For instance, a sequence

containing instances of the class Phoneme cannot contain an instance of class Word.

Furthermore, a given item can be present in one and only one sequence.

Relations: A relation marks a link between the items of two sequences. Relations link

two sequences that are part of the same utterance. They are not binary: an item in

a sequence can be linked with none, one or several items of the other sequence. A

relation between two items is directed. When loading a corpus,ROOTS creates a

graph of all existing relations between the sequences. An example is given on �gure

5.2. Provided existing relations in the graph form a link between two sequences not

directly put in relation, ROOTS can compute the direct relation form existing ones.

This is why, when building a ROOTS utterance, only a partial set of relations is

su�cient to be able to derive a complete graph of relations between sequences. This

is not always the case though as some relations may be meaningless (i.e.a relation

between the phoneme sequence and the non-speech sounds sequence).

Layers: A self-su�cient group of sequences and relations can be put in a layer of an

utterance. This allows to segment the utterance data in function of the annotation

level it refers to. For instance, if only phonetic data is needed, the corresponding layer

is the only one that needs to be accessed. This component of theROOTS toolkit is

only present to enhance utterance management and is in no way mandatory.

Utterances: All sequences and relations referring to a same corpus part, organized into

layers or not, are grouped into an utterance. The Utterance class provides means

to manage sequences relations and layers directly and can even retrieve item-level

information.

Chunks: Huge corpora can be divided into chunks, each containing a given number of

utterances.

Figure 5.3 illustrates the arrangement of these elements in aROOTS corpus. Re-

lations, though not presented on this �gure, are usually represented as sparse matrices.

Furthermore, items (as described previously) feature one particular case: some sequences

use special �compound items�. A compound item is an item that cannot exist without

one or several other items (usually elementary). For instance, a syllable cannot exist if

the phonemes related thereto are not present in the corpus. This leads to the notion of

embedded relation. Compound elements embed links to the items that are in relation with,

even though these items are part of another sequence.ROOTS mechanisms ensures that

when an elementary element is deleted, related compound elements are destroyed. This

concept is implemented inROOTS for two cases: syllabic and syntactic trees.
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Figure 5.2: Simpli�ed view of sequences and relations present in the data used for the
thesis and managed usingROOTS. The sequences are grouped by thematic layer. The
grapheme sequence is present in all layers to ensure syncing of the layers (the grapheme
sequence is then used as a hub for joining other sequences and relations.)

Layers for ROOTS corpora are grouped according to the following (expandable) base

groups:

ˆ Linguistic data;
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Figure 5.3: ROOTS toolkit data hierarchy.

ˆ Phonological data;

ˆ Textual data;

ˆ Acoustic data.

The physical organization of ROOTS corpora puts utterances within separated JSON

�les, one for each layer, allowing to load only some layers in spite of the whole utterance.

A meta�le links them all together.

Corpus data in this thesis includes sequences and relations summarized in �gure5.2.

It is divided into four distinct parts, according to the speci�cation of the ROOTS layers

presented previously. In order to make the link between each layer so that they can

be merged when loading a full utterance, a pivot sequence is needed. This pivot is the

sequence of graphemes, which is copied into each layer, with the exception of the acoustic

one. The reason is that sequences in the acoustic layer all contain only oneROOTS item,

which makes the link between the utterance and an external resource. For instance, the

F0 sequence contains an interface to exploit a �le containing allF0 marks concerning the

current utterance. The information is su�cient for a program using ROOTS to make the

link between items in other sequences with information provided by the �les interfaced in

the acoustic layer. The signal sequence allows to manipulate the wav �le linked to the

utterance.

1.2 Automatic Voice Creation Process

Based onROOTS, the annotation method summarized in 5.4 has been developed in the

team to create a corpus from rushes and import the data intoROOTS [Boe�ard et al.

2012]. This process performs automatic annotation of an audio signal given the full version

of the script. It was intended for audiobook automatic annotation, like Audiobook, one of
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our two voices. The process performs annotation on several levels: linguistic, phonologic

and acoustic mainly.

The process is divided in two main parts. The �rst one aligns every sentence in the

text with the corresponding speech signal using an ASR system. In order to allow further

manual checking and subsequent analysis, the speech signal is cut on pauses at the begin-

ning of the process. In other words, they are cut by breath group. This cutting process is

based on pause length and energy level in the speech signal with thresholds depending on

the speakers' �ow speed and recording level. ASR is carried out on each token and the re-

sulting utterance is aligned to the original text. The matching portions serve as landmarks

to align the non-matching parts of the recognized text with the original. Matching text

associated with the right speech signal is then removed from the complete text during the

alignment process. The ASR word recognition error rate can be used to signal a portion

of the alignment that has to be controlled by an operator. Then, breath groups are joined

to respect strong punctuation marks and exported toROOTS. Information on the breath

group boundaries is kept.

The second step enriches this simple alignment by performing syntactical, grammati-

cal, phonological analysis and more. During the process, once the sentence alignment is

achieved, correspondingROOTS sequences and relations are created. Starting from that

Figure 5.4: General description of the annotation operation. The process begins with
two inputs, the complete book text and the audio signal coming from the corresponding
text. It is divided in two steps; the �rst one aligning every sentence in the book with the
corresponding speech signal using an ASR system. In the second step, the aligned data is
analyzed and annotated using the ROOTS toolkit. This �gure is inspired from [Boe�ard
et al. 2012].
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point, all annotation steps directly enrich that simple ROOTS annotation by adding new

sequences and relations.

In some cases, annotation data is available along with the original corpus. This is for

instance the case forIVS corpus � which we will present in section2.1 � where annotations,

manually corrected phone segmentation in particular, were available. In that case, these

annotations are added as new sequences and relations with scripts speci�cally built for the

task.

1.3 TTS Corpus Format

The ROOTS toolkit is very e�cient when it comes to managing, importing, exporting or

analyzing speech data. However, it is not designed to be fast in read/write. Accessing

ROOTS data is slow, although there are cache mechanisms to allow faster reading of

already used relations/sequences. Storing data in text �les makes the access operation

slow (even with a format as compact and fast reading as JSON). The fact that all data

of at least one sub-�le has to be read to allow accessing a single acoustic segment data is

particularly problematic. This makes directly interfacing ROOTS with the TTS system

impossible.

This is why we designed a compact but very fast representation structure for commu-

nicating data to the TTS system. The goal is to be able to load a voice into the TTS

system hash tables as fast as possible. For this, annotations are stored in the structure

presented on �gure5.5, recorded in a single binary �le. In this format, the base unit is the

acoustic segment, phone or NSS, which is put in a �xed-size sub-structure. Each item is

composed of a header, a key used for unit selection and sub-items with additional acoustic

and prosodic information that might be needed both for selection acoustic costs and when

extracting and concatenating the stimuli. The information available in the key is given in

appendiceA.

The segment sub-item makes the link between annotations and the speech data, stored

in a separated signal �le1. A third �le contains pitchmarks associated to each item. Acous-
1The signal �le is a lossless PCM �ux encoded in mono with a depth of 16 bits. Sampling frequency

depends on the voice (16, 44,1 or 48kHz).

Figure 5.5: Structure of the TTS corpus. Each segment is pre�xed by a header and a key
and has a �xed size to make recovery and reading speed faster



76 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

tic segments are stored in a table-like structure with a header containing the alphabets

needed to interpret some item components and as every structure has a �xed size, the

location in memory of all elements can be inferred easily. This, with the binary format

by which data is stored, allows to load a full 10 hours voice in less than 15 seconds while

loading from ROOTS would take several minutes. Once loaded in the TTS system hash

tables, the voice can be used for as much synthesis as needed. Access time to the corpus

during unit selection is reduced to hash-tables access time. During the signal generation

step, access to the corpus is in real time, while loading data fromROOTS would once

more perform much worse.

2 Corpora

In this thesis, we use two di�erent speech corpora as our TTS voices. All synthesized

speech samples we use in the experiments are synthesized with the two voices created with

sub-sets of these corpora. In the major part of this section, we will discuss the content of

the two voices we used in this thesis,IVS and Audiobook. We will �nish by describing our

various test and validation corpora. Some of them are extracted fromIVS and Audiobook

and also feature spoken samples, another one is entirely textual. To complete this section,

appendix B provides detail on the exact content of our voice corpora from the phonetic

point of view. All corpora are in French language.

2.1 Voice Corpora

Audiobook

The �rst of our two voice corpora (i.e. TTS corpora) is an expressive corpus built from

an audiobook. Thereafter, we call itAudiobook. The speaker is a male and the meanF0

value for voiced segments is particularly low, with an average of 87Hz on voiced segments.

Speech signal is sampled at 44.1kHz, in mono (1 channel). It is stored with a lossless

encoding. The corpus is automatically annotated using the global process described in

section 1.2 and is represented using theROOTS toolkit.

Since it is an audiobook, the content of the corpus and expressivity are completely

uncontrolled. In particular, as the voice has not been recorded for TTS purposes, prosody

is sometimes exaggerated. Nevertheless, it features homogeneous speech and recording was

made under excellent conditions yielding to excellent signal quality.

The Audiobook corpus is composed of 3 339 distinct utterances, ranging from a few

words to the size of a small paragraph. An extreme case is the utterance composed solely

of the onomatopoeia �Ah !�. The average length of an utterance is of 39.92 phones. Each

utterance is actually a paragraph in the book that is read. The corpus counts 10 hours and

45 minutes of speech. It contains a total of 11 305 distinct words (133 277 occurrences in

total), including 6 909 nouns. 91% of that amount consist of non-proper nouns. Due to the

literary nature of the corpus, distinct proper nouns in Audiobook are few: 13% of observed
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proper noun occurrences are distinct2. In comparison, on our second corpus,IVS , this

number is 62%. Names of a few important characters of the novel are repeated more than

a hundred times. The main character, Albertine, has her name cited 689 times. Finally,

sentences are mostly a�rmative (149 exclamatory utterances and 223 interrogative).

For the needs of several experiments, speech samples from the same speaker annotated

the same way (and possibly from the same literary style) that are not included in the TTS

voice are necessary. To satisfy that need, 200 utterances were removed randomly from the

corpus to create two 100 utterances corpora:Audiobook test and Audiobook validation.

The remaining part of the corpus (3 139 utterances) constitutes the actual TTS voice. It is

called Audiobook learning. Besides its use as our TTS voice,Audiobook learning is also

employed to train our models, like the ANN used in chapter 7. Validation set is used to

verify the e�ciency of the models after training. The test corpus is used during the training

process of our models (when using some) to control training quality at each epoch. But

Audiobook test is mainly used as a test corpus for cases when an original speech stimulus

is necessary for comparison to natural speech. For the tests, sentences including the most

frequent proper nouns are avoided as much as possible for obvious reasons.

Thereafter, when using the termAudiobook, we will be referring to the full Audiobook

corpus. Audiobook learning, Audiobook testand Audiobook validation will be employed

when speaking of the 3 sub-corpora. The same will be done with our other corpus,IVS ,

which is also cut in 3 sub-corpora in the same way.

Main statistics of corpus Audiobook
Corpus Full corpus Learning Test Validation
Utterances 3 339 3 139 100 100
Acoustic segments 404 279 376 418 14 875 12 986
Phones 379 897 353 691 13 987 12 219
Non-speech sounds 24 382 22 727 888 767
Syllables 165 320 153 917 6 102 5 301
Words 133 277 124 110 4 901 4 266
Length 10h45'12s 10h00'14s 24'02s 20'56s

Figure 5.6: Main statistics of Audiobook corpus and its sub-corporaAudiobook learning,
Audiobook testand Audiobook validation.

Table B shows the main statistics concerningAudiobook corpus and its three sub-

corpora. The distributions observed on the full corpus (phones, syllables, words) is uni-

formly distributed over the tree sub-corpora. Non speech sounds are mainly pauses and

inspirations. The distribution of phonemes, showed in �gure5.7, is uniformly distributed

among all four corpora and consistent with appearance frequencies of phonemes in spoken

French as observed by F. Wioland [Wioland 1985]. AppendixB provides a comparison of

Wioland's phoneme appearance frequencies with those observed onAudiobook and IVS .

The diphoneme coverage of the learning corpus is not full (78%) but all the most commonly

2390 distinct words for 3 064 occurrences.
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used diphonemes are present. The missing ones are mostly very rare or even impossible

diphonemes in French language.

IVS

Our second voice corpus, which we will refer to as theIVS voice, is also used for the

experiments. It was recorded for TTS purposes within an Interactive Vocal System with a

hand-made recording script which aim was to cover all diphonemes present in French and

comprises the most used words in telecommunications vocabulary. It features a Female

voice sampled at 16kHz (lossless encoding, 1 channel) with a meanF0 at 163Hz for voiced

segments, which is quite low for a female speaker. The corpus expression style is completely

neutral and very controlled. In terms of intended goal and speaking style,IVS is Audiobook

opposite. IVS was built for synthesis purposes whileAudiobook wasn't. It is neutral and

controlled while Audiobook is uncontrolled and quite expressive. The other strong contrast

between the two corpora is over the annotation process becauseIVS annotations were

manually corrected, which is not the case forAudiobook. In these conditions, opposing the

results for the two voices in experiments is particularly useful.

The corpus is composed of 7 855 utterances, 245 232 phonemes and 20 961 Non Speech

Sounds for 7h48' of speech data. Utterances inIVS are much shorter than in Audiobook

with an average of 10.4 phonemes per utterance. In practice, they correspond to the

utterances of the reading script, so almost always a sentence. Among the 81 662 words in

IVS , 13 511 are distinct, 1 642 of which being proper nouns while 5 880 are non-proper.

Few proper nouns are present several times and only six appearing more than 20 times3.

Proper nouns are present in only 1 794 utterances out of 7 855. Sentences, as forAudiobook,

are mostly a�rmative (115 exclamatory utterances and 454 interrogative).

As for Audiobook, Agnes is sub-divided into three sub-corpora:IVS learning, IVS

test and IVS validation . The three corpora are used for the same tasks, withIVS test

and IVS validation also featuring 100 sentences, though this means the two corpora are

smaller (as utterances are). As forAudiobook learning, the corpus IVS learning is the

TTS voice. Thereafter, we simply refer toIVS learning voice asIVS .

Table 2.1 gives the main data forIVS corpus and its 3 sub-corpora, which shows data

is uniformly distributed among the corpora. Figure 5.8 showsIVS phonemes distribution,

which is also uniformly distributed among the sub-corpora ofIVS . It is also very close

to Wioland's phoneme appearance frequencies, much more thanAudiobook, as it is more

representative of spoken French than a novel.

3Words �Aujourd'hui� (today, used as a proper noun like in the newspaper �Aujourd'hui en France�),
�Europe�, �État� (the state) and �Jean� (John) appear 22, 25, 27 and 29 times respectively. �Paris� and
France appear 41 and 75 times respectively.
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Main statistics of corpus IVS
Corpus Full corpus Learning Test Validation
Utterances 7 855 7 655 100 100
Acoustic segments 266 193 259 227 3 548 3 418
Phones 245 232 238 820 3 253 3 159
Non-speech sounds 20 961 20 407 295 259
Syllables 106 587 103 794 1 417 1 376
Words 81 662 79 511 1 138 1 013
Length 7h48'06s 7h36'26s 3'37s 2'53s

Figure 5.9: Main statistics of IVS corpus and its sub-corporaIVS learning, IVS test and
IVS validation .

Test Corpora

As described in the preceding sections, we useAudiobook testand IVS test for subjective

and objective evaluations when a natural reference or speci�c annotations are needed.

When this is not the case, we use two other test corpora, only textual. The �rst one is

named Combescure(after the name of Pierre Combescure, who designed it) and features

100 phonetically balanced sentences. It is used to get reliable statistics for French.

The second text corpus consisting in 27 141 French sentences extracted from a wide

variety of audiobooks, featuring many di�erent styles. It will be called Various Styles

thereafter. A part of that corpus was recorded by a male speaker. Speech was recorded in

mono with a sampling frequency of 48kHZ. The speaking style adopted by the speaker was

neutral as the voice was recorded for TTS purposes (in order to be used as a TTS voice,

which it is not in this thesis). This speaker is di�erent from those that recorded Audiobook

and IVS corpora. Recorded data for that corpus is meant for the same use asAudiobook

test and IVS test. An extract of the 27 141 sentences of corpusVarious Styles is given in

appendix C. This corpus is used when no natural reference or speci�c annotation is needed.

3 Evaluation Methodology

In this section, we will review the protocol observed for all subjective tests performed in

the following chapters.

When it comes to proposing a new feature in a TTS system, comparing features or

even present a whole new system, a listening test is almost compulsory. The main goal

being to produce speech that will be targeted at human listeners, human beings are the

�nal judges concerning quality of speech synthesizers. Classically, both objective and

subjective evaluations can be used. On the one hand, objective evaluations have the big

advantage of being cheap and fast but no matter how pertinent they are, they still cannot

replace subjective tests. On the other hand, to be interesting, subjective evaluations need

a large number of samples to be evaluated and also a large number of listeners both chosen

depending on the application domain of the system.
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3.1 Objective Evaluation of Speech

On the matter of objective measures, considerable research has been put on the devel-

opment of a good evaluation system that would evaluate speech with the right criteria,

but none of the methods that have been proposed are su�ciently reliable, especially for

evaluation of unit selection. Some measures were proposed for evaluating degradations on

a voice signal, one of the most famous being PESQ (Perceptual Evaluation of Speech Qual-

ity) [ITU-T 2001], originally developed to assess the quality of voice codecs on telephone

infrastructures. PESQ was tested as a potential subjective test replacer by M. Cernak and

M. Rusko [Cernak and Rusko 2005]. The study showed that PESQ o�ered high correlation

with MOS (Mean Opinion Score) perceptive tests, but the experiment was done under par-

ticular circumstances. Data from the same speaker was used for reference and test stimuli

in one to one matching and synthesis consisted in groups of ten (called �decades�) uncorre-

lated phonetically rich words chosen for their covering of Slovak language phonemes. The

test was done using a diphone-based system with 3 di�erent output stages. The authors in-

sist on the fact that PESQ measures cannot be used directly on full test sentences. Indeed,

this would require a guarantee on the quality of the time alignment between the two stimuli

evaluated, which is hard to achieve. Instead, they segment synthetic and reference speech

into words and compute the PESQ score and average for the whole test corpus. While

very promising, this methodology remains restrictive as natural stimuli are very di�erent

to the �decades� the authors used. Another work, by F. Hinterleitneret al., tests 3 objec-

tive measures (POLQA, DIAL and PESQ) on data from the Blizzard challenge (2008-2010

editions) [Hinterleitner et al. 2011a]. They con�rm the time alignment issue but get much

lower correlation with MOS values, especially while comparing full sentences.

Assessment of global speech quality is not the only type of objective measure available.

Speci�cally focused on unit selection, some work tries to predict presence and position of

concatenation artefacts, as for example J. P°ibilet al. [P°ibil et al. 2015]. In that work, a

GMM-based statistical method is used with promising result.

In general, though, objective evaluation of speech stimuli remains very imperfect,

mainly due to the di�culty to �nd measures that reproduce the cognitive processes hap-

pening in human minds. So subjective perceptual evaluations are still the main element to

prove a new system or a new feature.

3.2 Subjective Evaluation of Speech

Several di�erent types of perceptive evaluations are commonly used. Among all the meth-

ods, we can distinguish preference tests like AB and ABX, score tests like MOS, DMOS

and more recentlyMushra. All these methods serve the same purpose, which is ranking

systems according to some subjective criteria.

In the literature, most of the propositions are perceptually evaluated. For instance,

for the Blizzard challenge, a large scale evaluation campaign is used [King and Karaiskos

2012; Prahallad et al. 2014], but each time the number of utterances under test is restricted.
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The same is true in the majority of the evaluations done. To cite a few examples, we can

mention Inaki's work with 350 sentences [Sainz et al. 2014], Garcia's with 7 sentences for

5 systems [Garcia et al. 2006] or Hinterleitner with two blocks of 18 stimuli [Hinterleitner

et al. 2011b]. Usually, the explanation for these low numbers of stimuli is that perceptual

evaluations are really time-consuming. Some recent work have questioned the evaluation

methodology, like [Latorre et al. 2014] which investigates the impact of listeners mental

reference on perceptual tests results, or have proposed protocol modi�cations as in [Hinter-

leitner et al. 2011b;Viswanathan and Viswanathan 2005]. Even some alternatives to classic

methodologies have also been used, based on crowdsourcing as described in [Buchholz et al.

2013].

More important than the small number of samples chosen, the fact that they are chosen

randomly and not for their signi�cance to the evaluated systems may bias the results of

evaluations. In a work made in the Expression team [Chevelu et al. 2015], contrary to what

is usually done, we proposed to synthesize a large number of samples (several thousands),

using texts from various domains. Considering the high number of samples, we introduced

an alignment cost between samples from a pair of systems to rank the samples by similarity.

In order to do this, the alignment cost is based on Dynamic Time Wrapping (DTW). Once

it is done, a perceptual evaluation using the most di�erent samples was made. This way, no

assumption is made concerning the quality of a system among the other, we simply focus

the evaluation on what may make a di�erence between the systems. Such a strategy enables

reducing the size of a perceptual evaluation to assess the di�erence signi�cance between

systems evaluated. This methodology was successfully tested both with a statistical system

(HTS) and a corpus-based one. The results we obtained for AB preference tests are clearly

signi�cant while it is not the case when randomly choosing the samples.

3.3 Methodology Followed in the Experiments

For the experiments presented in this thesis, we use a group of 10 expert listeners. A larger

group (20 listeners) would be preferable, but the lack of resource did not enable us to

gather such a group (except for chapter7 where 3 more testers were available). All testers

are native French speakers with experience with synthetic speech.

We will mainly use AB tests to evaluate the new features we proposed. When circum-

stances do not permit the use of AB tests, typically when the goals of our experiments make

it unusable, we will make use of MOS tests (or MOS derivatives like DMOS for evaluation

of degraded speech). We will also make use of aMushra test. The choice to use mainly

AB tests, besides the obvious fact that we mostly want to assess user preference between

several systems, was made for several reasons.

First, our experience with Mushra tests showed that this kind of test is very di�cult

to build and very di�cult for listeners to perform. It is di�cult to build because it normally

needs systems serving as anchors to give higher and lower bounds to interpret test results.

It is di�cult for listeners to perform it because they are often proposed a test with 5 or
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more speech stimuli per test step and interpreting each one's quality, �nding how each one

compares to the others and �nally marking them is simply too much of a task. This results

in an increase of fatigue for testers and might consequently cause a drop in quality of the

results to occur. This is the reason we do not make intensive use ofMushras in this

thesis. Nonetheless,Mushra tests also present appreciable advantages. The lower and

higher bounds, when present, allow some control on the results of the tests: results must be

between the two bounds. More importantly, they o�er, in only one test, the possibility to

rank systems and thus get information on which system is preferred to which one, appreciate

the performance gap between two systems. This is typically the conjunction of all major

results MOS on the one side and AB tests on the other side can provide. Finally, less users

are needed than for other tests to get meaningful results [ITU-R 2015] (even though the

norm recommends 20 non-expert listeners). For these two reasons, especially the latter,

we perform aMushra test in chapter 8. Indeed, not all our testers were available for this

test (only 7 out of 10 listeners).

Secondly, MOS tests , probably the most popular listening tests class, should only

be used for an absolute ranking (in terms of absolute performance4), and not for direct

confrontation in a 1 versus 1 opposition. In the literature, it is sometimes used to get

conclusions on user preferences, which is biased as basic MOS tests never compare systems

directly one against the other. In chapter 6, we will make use of MOS and degradation

MOS tests exclusively in order to get an absolute mark and thus an absolute ranking of

the systems we will compare. Degradation MOS (DMOS) compares a reference system to

others, these other systems being considered as degraded versions of the �rst one. The

mark, from 1 to 5, measures the harm caused by the degradation from �very important

degradation� to �inaudible degradation�. User preferences will be assessed only through

AB tests. In addition, an issue with MOS tests is the � possibly huge � di�erence of

rating scale from a tester to the other. A second issue is the possible presence of outliers.

Removing these outliers means to privilege the majority of testers/answers and smooth

the �nal results while including them may be seen as a potential noise (especially if it

corresponds to a novice or unknown tester).

Finally, AB tests present the considerable advantage to be very easy to perform for

testers, thus minimizing mistakes. They face only two stimuli and have a very limited

choice (see next paragraph), so there is no fatigue, di�erence of rating scale or outlier

problem with that kind of test. It also has the advantage of being and looking (which is

even more important) fast and easy to perform, so more listeners are likely to make the

e�ort to answer the test.

Unless stated otherwise, our AB tests will always have three possible answers: System

A, System B or Indi�erent. Including a fourth choice �Unable to answer the question�

might sometimes be a good idea for AB listening tests, allowing to remove irrelevant data.

It was implemented in some of our tests, but given the very few answers of that type, the

4Performance here refers to how well a system does what thequestion posed in the test asks.
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answer was removed in subsequent tests. In most cases, the question focuses on overall

quality. It is the following: �Of A or B, which sample seems to be of the best quality for

you?� (French: � De A ou de B, quel échantillon vous paraît de meilleure qualité ? �). We

will state the question when it is di�erent but evaluating general quality is usually the best

option as more speci�c questions can be biased by tester incomprehension of the question

or side e�ects in�uencing her or his judgment.

In order to have results as general as possible, our evaluation protocol targets various

points that may strongly in�uence listening tests. Indeed, focus will be given on the

following aspects:

ˆ Automatic or Manual segmentation/annotation;

ˆ Gender of the corpus speaker;

ˆ Impact of the proposition on randomly selected samples versus samples that are the

most a�ected by the new features (as is [Chevelu et al. 2015]).

In order to assess the two �rst points, we conduct every AB test on our two voices

Audiobook and IVS . Audiobook represents the male voice and the voice with automatic

annotations while IVS is the female hand-checked voice. The same is done for the third

point: a �rst AB test is made with randomly picked sentences in Various Styles, then a

second test is done with the pairs of sentences that were attributed the biggest di�erence

score. Most di�erent sentences might be selected through a DTW, as we did in [Chevelu

et al. 2015], or with other criteria that will be detailed in the related experiments. Hence,

in order to perform one comparison of two systems, we carry out 4 AB tests:

ˆ IVS voice, randomly picked sentences;

ˆ IVS voice, most di�erent sentences;

ˆ Audiobook voice, randomly picked sentences;

ˆ Audiobook voice, most di�erent sentences.

Concerning objective measures, we did not de�ne a global methodology, given what

was presented earlier. Consequently, objective measures used in the experiments will be

directly linked to the nature of the problem and will depend of the goal set in each case.

4 Conclusion

In this chapter, we presented in a �rst part the speech corpora we will use in the rest of the

thesis. The �rst part of the chapter concerned the description of the tools we use to generate,

store and exploit our speech data and corresponding annotations. We began by presenting

the ROOTS toolkit that is used to store the data and then the lighter TTS-corpus format,

used by the TTS system. We �nally presented the two voices used in our experiments:



86 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

Audiobook and IVS, along with the test corpora we use to generate speech stimuli. The

second part was devoted to the description of the test protocols. We �rst discussed the need

of perceptual measures in the literature and then gave the considerations, hypothesis and

the protocols we followed in this thesis.



Chapter 6

On the Choice of the Selection

Algorithm

�With a whole assortment, we will have more choice.�

Extract from IVS voice recording script.

In this chapter, we will �rst give a technical description of the TTS system developed in

the team, called hereafter the IRISA TTS system. The TTS backend is the place where we

conducted our work. Once the TTS system was available, our work was divided into two

successive steps. First, we explored the impact of the search algorithm on unit selection. In

particular, one of the questions is to assess the ranking made by selection costs and therefore

to know whether optimality of the solution to the unit selection problem was necessary (or

at least preferable). Once that step is realized, we focused on the cost function components.

We will investigate the �rst step on unit selection algorithms in the second part of this

chapter. The second step will be dealt with in the following chapters.

Speech synthesis systems usually use the Viterbi algorithm or sub-optimal variants � most

notably beam-search algorithm � to solve the unit selection path-�nding problem. However,

this is not the only possible choice. In this work, we study a speech synthesis system relying

on theA � algorithm, which is a general path�nding strategy developing a graph rather than a

lattice. Using state of the art techniques, the algorithm is analyzed and compared to Viterbi

before being evaluated through objective and perceptive experiments. Before conducting this

comparison though, the �rst task is to assess the impact of preselection �lters and cost

functions on the selection to assert that they actually work as expected. In particular, a

subjective evaluation of the N-best paths returned is made.

87
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The conclusions drawn from the experiments are twofold. First, theA � approach is an

excellent alternative to beam-search, achieving better performance in the optimal case and

also allowing optimizations to speed it up. Second, the impact on quality of the pre-selection

�lters set, used to restrict the number of candidates to the most promising ones, is low

while they improve signi�cantly the search performance. However, testers feedbacks show

that �lters improve prosody and naturalness perception of synthesized speech. In de�nitive,

this study is a proof of concept aiming at demonstrating the feasibility and usefulness of

using an A � algorithm to drive the unit selection process.

In this chapter, we �rst describe the IRISA TTS synthesis system, which is the base we

use for our work in section 1. We then introduce a modi�cation to the selection block

in which an A � algorithm is used for unit selection (section2). Our evaluation of these

strategies, in the following sections (3� 5), are distributed into three axes. We �rst study

preselection �lters and selection cost function to make sure they sort the selection graph as

intended. Subsequently, we evaluate ourA � algorithm and compare it to the usual beam-

search strategies. Finally, we investigate whether an optimal solution to the unit selection

problem is necessary.

1 The IRISA TTS Synthesis System

The system that we use as the basis of all the work presented in the present document is

the IRISA Text-To-Speech system. This system was in large part developed during the

time of the PhD and most of its features were implemented to respond to research needs.

All propositions in this thesis were implemented on successive re�nements of the system.

However, all results presented in this thesis are based on the last (2016) version of the

system. The descriptions of the system in our various publications, despite the fact they

do not refer to the same iteration of the system are nevertheless close to the current state

of the software.

1.1 General View

Figure 6.1 gives a general view of the IRISA Text-To-Speech system. The �rst part of

the process � the frontend � creates aROOTS utterance enriched with annotations like

phoneme, syllable or word sequences from the input text. It is done with automatic tools.

The second part � the backend � is made of the unit selection block and the signal generation

block. It communicates with the corpus through a hash table1 that is precomputed before

launching the TTS process and placed in shared memory.

The link between frontend and backend is performed by a conversion stage that converts

the ROOTS utterance created along the frontend into the binary format of the TTS corpus.

1A set of hash tables actually. Each hash table contains references to the corpus with a �xed unit size.
There are as much hash tables as there are possible unit sizes. In practice, units are set to be as long as
two to three phonemes but it is possible to go much higher.
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Figure 6.1: Work�ow view of the IRISA TTS system.

1.2 Frontend

The �rst step in the TTS frontend is to convert the textual input into a ROOTS entry.

This is done by a set of tools that produces aROOTS utterance with a word sequence

and a grapheme sequence linked by a relation. If the text to synthesize is consequent, the

ROOTS entry can be split into several utterances according to strong punctuation marks.

Thereafter, to simplify, we will consider the case of only one utterance. In the case of a

multi-utterance entry, utterances are processed one after the other at each step. When this

is done, this ROOTS utterance is enriched with three successive tools:

POS tagging: This step performs a Part Of Speech analysis and adds a POS sequence in

the ROOTS utterance. To do so, two tools are available: The Stanford and Synapse

POS taggers. In this work, we use the Stanford POS tagger, on account of its support

of multiple languages.

Phonetization: The phonetization step adds a phoneme sequence, NSS sequence, word

sequence (from phonetic analysis, as on �gure5.2) and relations between phoneme,

grapheme words and NSS sequences. In our engine, three phonetizers are available:

Liaphon [Bechet 2001], Espeak and an experimental tool in development in the team.

In this thesis, we use Liaphon for theAudiobook voice as it was annotated with that
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phonetizer and Espeak forIVS .

Syllabication: ROOTS syllabication algorithm is used to produce the corresponding

sequence. The phoneme sequence is modi�ed to make the link with the syllable

sequence.

This is the default steps included in the frontend. Other steps may be added as well, for

instance prediction steps to add acoustic or prosodic sequences. In chapter 7 for example,

we add a frontend step that predicts and includes durations into the phoneme sequence.

This step, when activated, takes place immediately after syllabication.

1.3 Backend

The backend part, described in detail on �gure6.2, starts with feature extraction from the

ROOTS �le generated by the frontend containing the target sequence with the needed

annotations. The advantage of using aROOTS �le for the interface between the frontend

and the backend is that almost anyROOTS �le, from any corpus, can also be provided

to the backend for synthesis. This is particularly useful for a task like synthesis using

manually checked annotations or comparison with natural stimuli. Then the unit selection

step is done using one of our selection algorithms. This step is parameterized by a cost

function and user parameters (for example, requesting the best path or the N-best paths,

requesting a sub-optimal version of the selection algorithm, deactivating the preselection

�lters, etc). Finally, signal generation is performed by mixing each two units with a

PSOLA-like algorithm on a horizon of 2 pitch periods, using Hann windows.

Basic Concatenation Cost

The baseline concatenation cost is composed of MFCC (�� coe�cients), amplitude and

F0 Euclidean distances; three sub-costs, well rated in the state of the art (see section3.2

for a review of interesting subcosts). Basic rules addressing duration were �rst included

and then dropped, �rst because they did not show a real improvement and also because

generated speech seems generally well enough. Nevertheless, the inclusion of a target

cost or intonation models are interesting matters, which will be discussed in the following

chapters. Equation 4.7 can thus be speci�ed:

Cc(U
! h;i
h;i ; U! i;j

i;j ) = Cmfcc (U
! h;i
h;i ; U! i;j

i;j ) + Camp (U
! h;i
h;i ; U! i;j

i;j ) + CF0 (U
! h;i
h;i ; U! i;j

i;j ); (6.1)

where Cmfcc (U
! h;i
h;i ; U! i;j

i;j ), Camp (U
! h;i
h;i ; U! i;j

i;j ) and CF0 (U
! h;i
h;i ; U! i;j

i;j ) are the three sub-costs

for MFCC, amplitude and F0.

The corpus data for each cost isz-scorenormalized during the conversion of theROOTS

corpus to the TTS format. Therefore, all sub-costs are given equal importance to each sub-

cost on a phoneme basis. Though all cost weights (Wtc , Wcc and wks in equation 4.9) are

�xed at 1, the engine keeps the ability to introduce a di�erent weighting. We use it in

chapter 7 for manipulating the target cost/concatenation cost magnitudes.
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Figure 6.2: Technical description of the IRISA TTS system unit selection and signal gen-
eration blocks.
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Preselection and Basic Target Cost

As the problem of searching for variable-sized units in a corpus is computationally expen-

sive, hash tables and pre-selection �lters are implemented to speed up the unit selection

process [Beutnagel et al. 1998].

In the basic con�guration of our system, we do not use any target cost and we setCt to

0. Instead, we �lter the candidate units from the corpus, by including in the selection graph

only those matching a set of linguistic and phonetic features, which we call preselection

�lters [Donovan 2001].

Formally, let D i;j the sequence of target diphonemes from diphonemedi to dj . we

consider that we have a tuple ofJ �lters modeled by indicator functions f j (U! i;j
i;j ; D i;j )

(j 2 [0 ;J ]) equal to 1 if each diphone inU! i;j
i;j respects the condition posed by �lter j on

the corresponding target diphone ofD i;j and 0 otherwise. We consider the set of units

satisfying the I �rst �lters for the target sub-sequence D i;j :

O(I i;j ; D i;j ) =

8
<

:
U! i;j

i;j =
I i;j �JY

i=1

f i (U
! i;j
i;j ; D i;j ) = 1

9
=

;
: (6.2)

The preselection step aims at searching, for each target diphoneD i;j , the set O(I i;j ; D i;j )

of candidate nodes for whichI i;j is maximal:

I i;j = arg min card(O(I i;j ; D i;j )) � MIN u : (6.3)

Concretely, �lters are implemented as keys containing discrete information (mostly

binary) for each speech segment (phoneme or non-speech sound) in the corpus. This is the

�item key� element described in section1.3. When looking for a unit, the search algorithm

asks for a particular key to a hash table, which takes or rejects the corpus items quickly by

just comparing the values in their keys with the one provided by the algorithm. Matching

elements are sent back to the algorithm which inserts them in the search graph. Binary

masks are used to get access only to the desired information during runtime.

All the elements presented in appendixA are not used as �lters. The reason is that too

many �lters tend to degrade the quality of synthesis, which is logical: as �ltering is done

before adding a node to the search graph, it can select or reject units based on its own

criteria, without considering concatenation cost criteria. As the cost is a subtle balance

between target and concatenation costs, giving too much importance to one (the target

cost here), deprives the other of its working base and therefore renders it useless. Two

�lters are mandatory and are always included:

1. Unit label (always active).

2. Is the segment a non-speech sound (always active)?

These �lters cannot be relaxed. As for other preselection �lters, the default set we use in

our experiments is the following, for each speech segment constituting the unit:
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Table 6.1: List of the preselection �lters for the French Language. The �lters are sorted by
scope width. Filters in bold are part of the �lter set used in the thesis, others are discarded
in this work but were taken in consideration and can be used in the engine.

Preselection �lters for the French Language
Syllable level

Is the current syllable F0 on a rising pattern?
Is the current syllable F0 on a descending pattern?

Is the current segment in the syllable onset?
Is the current segment in the syllable coda?

Is the current segment the �rst phone of its syllable?
Is the current segment the last phone of its syllable?

Does current syllable have a coda?
Does current syllable have an onset?

Is the current segment in the onset of the syllable?
Word level

Is the current syllable in word beginning?
Is the current syllable in word end?

Sentence level
Is current segment in the last syllable of its breath group?

Is current segment in the last syllable of its sentence?

1. Is it in the last syllable of its sentence?

2. Is it in the last syllable of its breath group?

3. Is the current syllable in word end?

4. Is the current syllable F0 on a rising pattern?

5. Is the current syllable F0 on a descending pattern?

The priority order of the �lters is the one given above. The pre-selection �lters are

relaxed one by one, starting from the end of the list. In the case of a non-speech sound,

the only feature that matters is the �rst one, the others being all set to false. In our

experiments, small variations to this set may be used, with very little or no impact at all.

It is a subset of a wider �lters set, which we tested extensively during the thesis (table

6.1).

The remaining information in the key may be used on particular occasions or for other

languages than French. For example, the default �lter set for English also included �lters

for the stress information.

Our default sets were constructed mainly using empirical knowledge. If all units are

rejected, the �lter set is relaxed until a su�cient number of units are accepted. In our

work, the minimum number of units is 10. The set is temporarily relaxed (removing one

by one the features that seem the less helpful) until a su�cient number of units is found.

Though this is done to reduce the size of the selection graph (hence reduce selection time),
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it is important also to consider it as part of the selection cost. In fact, it serves as a set

of binary target cost functions relying on the assumption that if a unit doesn't respect the

required set of features, it can't be used for selection. This means we have an absolute

vision of what features units must match. One might argue this is not optimal, but by

experience more re�ned tuning doesn't prove to be better.

In our implementation, the target cost is not directly incorporated in the cost function.

Indeed, we consider that there is no need to integrate the nodes failing to show a certain

�tting to the target sequence in the graph. As other works showed, the nodes achieving

a good target cost are generally equally satisfying. Hence, features used for preselection

also stand as binary target sub-costs. This means there is no target cost mark in our

implementation, units are processed by pass or reject preselection �lters. As the values we

use are binary, their integration into the preselection �lters is easy. Thus, the units that

satisfy a given level of �lters are considered equivalent regarding the target cost.

1.4 Perceptual Evaluation of the baseline System

The system described here is thereafter calledbaseline.

In order to give an indication of this baselinesystem overall quality, and especially its

quality when combined with our own voices, we performed a MOS listening test involving

10 expert listeners. The four following con�gurations were presented to the listeners:

ˆ Natural samples fromAudiobook voice;

ˆ Natural samples fromIVS voice;

ˆ Synthetic samples made withbaselinesystem andAudiobook voice;

ˆ Synthetic samples made withbaselinesystem andIVS voice.

Each tester has been presented 10 stimuli for each of the four con�gurations, this makes

100 test occurrences per con�guration overall.

In order to perform a valid comparison, natural stimuli for each voice are taken from

IVS test or Audiobook test and synthetic ones are the arti�cial versions of the same

utterances using thebaselinesystem. The results of the evaluation are presented on table

6.2. In order to give an indication of the e�ect of having a full corpus (respectively 7 and 10

hours for IVS and Audiobook), the same results for a bi-gram corpus obtained by reducing

IVS learning and Audiobook learning are also provided. Bi-gram corpora were assessed

with the same function in an identical but earlier test.
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Table 6.2: MOS test results forAudiobook and IVS voices using theA � algorithm. The

evaluation has been made on theAudiobook testand IVS test corpora respectively.
Audiobook IVS

natural 4:82 �0:08 4:88 �0:07

baseline 3:38 �0:25 3:17 �0:21

bi-gram corpus (indication) 2:14 �0:14 1:72 �0:08

The system is rated between3:38and 3:17, depending on the voice, which corresponds

to fair quality and is quite representative of the state of the art. Re�nements achieved on the

unit selection block are discussed further on in this thesis and are therefore not represented

in this test. Testers seem to give higher marks toAudiobook voice compared toIVS , in

all cases. In all the experiments carried so far, this better rating and overall preference

for Audiobook was always present. We assume there are two reasons for this result: First,

Audiobook has a much greater expressivity, due to its audiobook origin and, second, the

sampling frequency for the audio �les of Audiobook is higher than IVS 's (44.1kHz vs.

16kHz). In consequence, synthesis withAudiobook seems substantially more natural.

2 Back to the Unit Selection Path�nding Problem

We now come back to the unit selection engine described previously and consider whether

the usual choice of a Viterbi-like algorithm is the best choice regarding the speci�cs of the

problem.

2.1 Motivations

As we saw in chapter4, computing the best sequenceU� leads to a path�nding problem in

a graph. To solve that problem, Viterbi algorithm [Viterbi 1967] (and its derivatives) has

been almost the only one employed [Hunt and Black 1996;Conkie 1999;Clark et al. 2007],

albeit it is not the only usable one. Over time, several enhancements of the algorithm were

proposed, for instance by S. Sakaiet al. [Sakai et al. 2008] or Tihelkaet al. [Tihelka et al.

2010]. In particular, the real-time constraint imposed by many TTS application �elds led

to a broad use of under-optimal beam-search algorithms to solve the problem.

Other path �nding algorithms like Bellman-Ford, Dijkstra or A � [Russell and Norvig

2003;Nilsson 1982;Guennec and Lolive 2014a] are also �tted for the task. Even an exotic

attempt to use a genetic algorithm by R. Kumar can be mentioned [Kumar 2004].

Strangely, there is little research in the literature concerning alternatives to Viterbi-like

algorithms. There isn't much work giving justi�cation for the choice of that algorithm over

other alternatives. Actually, most implementations simply follow unit selection founding

articles [Black and Campbell 1995;Hunt and Black 1996]. Most proposals simply try to

re�ne it by adding preselection, clever heuristics or enhancements to the algorithm, but

rarely propose to modify core mechanics of the selection process. Many contributions tend
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to focus on the concatenation cost complexity, which is indeed the point consuming the

greatest part of the computation time: O(N � K 2) versus O(N � K ) for the target

cost, K being the number of candidate phones in the corpus andN being the number

of diphonemes in the target sequence. Little work was done, however, to decrease the

computational complexity by changing drastically the search strategy (hence completely

changing the search algorithm). One of most cited arguments to justify the choice of the

Viterbi algorithm is its time-synchronous search in the selection graph, which � thanks to

the lattice property of the selection graph � can e�ectively prove a useful property for on-

the-�y synthesis/ASR 2. For instance, it allows to begin the selection process while the user

is still entering text. However, this constraint only exists in some of the TTS applications

(and even when applicable, it is often not implemented), and many other cases simply do

not require such an ability, i.e. full synthesis of an audiobook, resynthesis after translation

(where the full sentence is usually needed before translating), simple TTS system, etc.

Possibility to prune the graph is also highly cited as an argument for Viterbi, even though

pruning is possible in most path �nding algorithms.

In our work, we considered that Viterbi might not be the best algorithm for unit

selection, and we proposed to investigate the interest of changing the exploration strategy

in unit selection. Another inquiry that comes with this one is the following: what is the

real importance of getting the optimal unit sequence? As the cost function used by the

search algorithm is far from being perfect � it doesn't reproduce exactly the assessment

a human would make of a speech stimulus, otherwise we wouldn't need perceptual tests

anymore � one might ask whether or not it is really important to get the best sequence

according to that cost function. An under-optimal result might do just as well. So the

question is: can an under-optimal result to the unit selection problem be used instead of

the optimal solution, and if so, how far from the optimum can it be before a substantial

degradation is perceived?

In order to answer these questions, we decided to perform a comparison between beam-

search Viterbi algorithms and an implementation of the A � algorithm for unit selection.

Several reasons justify our will to test anA � implementation over other algorithms. First,

A � presents structural advantages for the inclusion of improvements, which is less true for

Viterbi. In particular, A � is better-suited for heuristic introduction to speed up the unit

selection step, n-best path generation or preselection: all these options are available without

modi�cation. Of course, Viterbi can also do this, but only by introducing non-trivial

modi�cations into the algorithm. Moreover, to enable the exploration of expressive corpus-

based synthesis, we have to explore the in-depth behavior of the system and especially cost

functions. Having the list of the n-best possible sequences proves useful in that matter.

furthermore, the search strategy forA � in the graph is drastically di�erent to Viterbi: best-

�rst instead of breadth-�rst for the latter. This is one of the reasons why A � is regularly

2Normally, as Viterbi is a dynamic programming algorithm, computation is made in reverse order, from
the end of the target sequence to the beginning. The lattice property of the unit graph allows reversing
the algorithm however.
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cited as one of the most used algorithms in the world over all applications.

Unit selection algorithms, especially Viterbi, have been presented in detail in section2.

In this section, we �rst introduce implementation details of the A � algorithm after a quick

reminder concerning Viterbi and its beam-search variant. We show how the algorithm is

set in order to respond to the problem of �nding the best unit sequence according to the

cost function. The goal of this section being to present the speci�cities and advantages of

A � , we will not come back on these details again in this chapter.

2.2 Beam-search and Viterbi Algorithms

The basic version of Viterbi can be enhanced with several heuristics and improvements

([Sakai et al. 2008;Tihelka et al. 2010]), the simplest and most e�cient being stopping the

evaluation of a candidate unit when a following candidate has a better way to be accessed

(making the algorithm a step closer toA � ). Better computation time can be achieved with

harsher pruning.

Beam-search is a breadth-�rst search algorithm that keeps, for each target unit, only

the N best nodes (best cumulated paths). This algorithm is a sub-optimal version of the

Viterbi algorithm that avoids to explore the whole lattice of speech units, thus permitting

real-time synthesis. This drastically prunes the lattice and breaks the optimality guarantee,

but gives a much faster unit selection while generally keeping an under-optimal but still

good quality solution. This algorithm is the one classically used to solve the path-�nding

problem and is implemented in our system.

2.3 A � Algorithm

The second algorithm implemented in our system isA � [Guennec and Lolive 2014a]. Con-

trary to the Viterbi algorithm, which computes a lattice containing all the candidate nodes

(or at least M nodes for each time instant),A � algorithm develops a graph. At each time

instant, it explores the best node of the graph using a cost function that depends on both

the path from the source node and the estimated cost to the target.

Originally introduced in 1968 by [Hart et al. 1968], the algorithm basically operates

by searching for a path in a directed graph, whose nodes only have a �nite number of

successors, between a start node and a target node. The dedicated start nodeinit is used

to avoid arbitrary choice of the start node. It has the �rst candidate units as successors.

The unique target node is calledend. The algorithm uses a cost function of the form

f (n) = g(n) + h(n) with g(n) being the cost of the sub-path betweeninit and current

node n and h(n) being the estimated (heuristic) cost betweenn and end.

At each step, A � takes the most promising node according tof (n) and expends its

successors (computingf (n) by the way) until end is reached. h(n) is a heuristic that

enables to speed up the algorithm by privileging the nodes that seem to be on an optimal

path over those which have a betterg(n) cost but may lead to greater costs in the future

[Nilsson 1982].
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Considering a unique target node, one of the main advantages ofA � is that the algorithm

delivers an optimal solution if the heuristic is admissible,i.e. if h(n) � h� (n), where h� (n)

is the real minimum value of the distance to the target node. In particular, note that the

algorithm is optimal in the trivial case h(n) = 0, i.e. if there is no heuristic, and turns out

to be equivalent to Dijkstra's algorithm.

2.4 Adaptation to the Unit Selection Problem

Algorithm 1 presents the implementation of A � adapted for unit selection. The main

functions that need to be adapted to our problem are (1) the cost function computation

and (2) the successor function. In this work, we only consider theg(n) part of the cost

function, thus putting h(n) to 0 which insures algorithm optimality. Function g(n) is the

regular unit selection cost function local to a node n. In consequence, using the formulation

introduced in precedent chapters, the cost function is the following3:

g(n) = C(U! i;j
i;j ) = Ct (U

! i;j
i;j ) + Cc(U

! h;i
h;i ; U! i;j

i;j ): (6.4)

Concerning the successor function, it needs to consider domain-based knowledge. During

the search process, each phone of the target sequence is considered as the start of a potential

unit for developing the graph.

Furthermore, to improve algorithmic performance, the OPEN list is implemented as a

binary heap sorted according to the cost function and a joined hash table to get quick mem-

bership queries. In addition, all the graph nodes are not computed, only those expanded

during the successors search are really created.

In order to explore cost functions behavior, we modi�ed the algorithm to be able to get

the N-best paths, and also to get the N-best paths between a minimum and a maximum

cost.

3 Evaluation of the Unit Selection Engine

3.1 Experimental Data

For the purposes of our experiments, we use our two voices:IVS and Audiobook. The

sentences used as input of our experimental system,i.e. our test corpus, come from 3

di�erent sources: IVS test, Audiobook testand Combescuretest corpora.

3.2 Objectives

Our main objectives for this evaluation were the following:

ˆ Assessing the impact of the �lters on the selection process;

3Reminder: h; i; j 2 J1;N K,h < i < j .
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Input: Graph G to explore, a sorted list OPEN and a list CLOSE , both empty.

// Add start unit init of G into OPEN
add(G, init);

while OPEN 6=; do
// Extract the first unit of list OPEN into u
u = extract_head(OP EN);
// Insert unit u into list CLOSE
insert_unit(CLOSE , u);
if is_target_unit(u ) then

// Add end unit after u in the candidate sequence.
complete_path(u, end);
// Exit backtracking the path from init to u
backtrack(init,u );

end
// Function successors() returns the sub-set of G containing all

the successors of unit u.
foreach u0 among successors(G, u) do

f(u 0) = g( u0) + h(u 0);
if contains(OPEN , u0) or
contains(CLOSE , u0) then

if stored_cost(u0) > C (u0) then
// Set a new cost f( u0) to unit u0. Each unit stores its

own cost.
update_cost(u0, C(u0)) ;
// Set u as the new parent of u0. Each unit stores the

pointer to its parent in the graph.
update_parent(u0, u );

end
else

insert_unit(OP EN , u0);
end

end
end

Algorithm 1: The A � algorithm. u (used to lighten notations) is any corpus unit (i.e.
selection graph node) andu0 is a successor unit ofu in the selection graph.
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ˆ Evaluating the e�ciency of the A � algorithm for corpus-based synthesis and compar-

ing it with the usual beam-search strategy;

ˆ Exploring the best-ranked paths according to the cost function to see if a degradation

is quickly perceptible and therefore if getting an optimal solution is necessary (or not).

To achieve these goals, experiments we conducted intend to:

1. Prove that a TTS system usingA � to drive a unit selection process is viable;

2. Assess the overall performance of the system;

3. Compare the performance (time and space usage as well as global synthesis quality)

of the system when using the preselection and without;

4. Verify the stability of the cost functions presented above by:

ˆ Explore the variability & ranking accuracy for the n-best paths found by our

system.

ˆ Assessing e�ect of reverting the cost function,i.e. selecting the worst possible

path.

For our experiments on the n-best paths, we decided to �x n to 100, following empirical

considerations over the average number of paths available with our voices. The goal here

being to look only at a sample of the best paths, then = 100 is a relatively small number

in comparison to the usual thousands of paths usually available.

4 General Impact of the Cost Function and Pre-Selection Fil-

ters

Preselection has a tremendous impact on unit selection in the sense that harsh preselection

will likely cause a unit shortage for the selection algorithm, thus making the cost function

mostly ine�ective. This is a particularly important problem as the concatenation cost,

which is solely present in the cost function � unlike the target cost, which can be replaced

by preselection �lters, has the heaviest impact on synthetic speech quality. The �rst task

to undertake is therefore to test whether our preselection set does not have a negative e�ect

on the quality of TTS.

To evaluate pre-selection �lters impact on quality, we conducted a DMOS subjective

evaluation involving our 10 listeners. Each listener assessed 20 stimuli. We also took

advantage of this test to verify that our cost function sorts paths e�ectively by introducing

a variant to our cost function that reverts the score awarded to each unit. Therefore, in

spite of selecting the best unit sequence, the algorithm selects the worst one.

The following four systems are compared:

ˆ �lter is the reference system with �lters as presented previously (baseline);
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Figure 6.3: DMOS evaluation of the baseline cost function and preselection �lters. The
4 versions of the system, from left to right: without �lters, with �lters, with �lters and
reverted cost function, without �lters and with reverted cost function.

ˆ no-�lter is the reference system without �lters (all units are considered based on their

label);

ˆ reverted-�lter is the cost function is reverted to �nd the worst solution but �lters are

used;

ˆ reverted-no-�lter is the cost function is also reverted but no �lters are used.

The results are summarized in �gure6.3. First, the scores obtained when reverting the

cost function are signi�cantly di�erent from the reference system, actually getting almost

the lowest possible score (1) withreverted-no-�lter (it our aim was to get the worst possible

voice, we would be done here). This is interesting because it shows that the cost function

works as intended: it sorts quite appropriately unit sequences from un�t ones to better

ones. Activating or not the �lters for the normal cost function ( i.e. �lter and no-�lter

systems) leads to a substantial di�erence. Filters thus have a signi�cant impact on quality

showing that their in�uence on the cost function is real. This impact is also present, though

to a lower scale betweenreverted-�lter and reverted-no-�lter . In this speci�c case, it avoids

a drop in quality.

We can conclude that this result corroborates the fact that �lters should be considered

fully as part of the cost function. Using �lters, as anticipated, also dramatically improves

unit selection time (approximately by a factor 100).

5 Comparison of Selection Algorithms

5.1 Objective Evaluation

The main goal of this experiment is to study the behavior ofA � vs. beam-search in terms of

performance and quality. First, we evaluate theA � approach in terms of several objective

factors:

ˆ Unit selection execution time (in ms),
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ˆ Mean number of nodes passing �lters,

ˆ Mean number of nodes expanded,

ˆ Number of concatenations

Data from the synthesis step has been gathered forA � and three variants of beam-

search (BS10, BS100, BS1000 depending on the size of the beam,i.e. 10, 100, 1000), with

the two aforementioned voices and 3 di�erent corpora. Results are presented in table 6.3,

�gure 6.4 and �gure 6.5.

The number of nodes passing the �lters shows thatA � is more restrictive than BS1000,

itself being a bit more con�ning than other beam-search versions. Moreover, this number is

quite high (above 100 nodes), even forA � . The mean number of �lters activated is almost

constant with a value of 11.83 out of 12 �lters, which means that, for all selected units,

the 12 �lters were activated almost all the time. Consequently, considering these results,

more �lters may be added to be more selective and thus speed up the selection process.

The number of concatenations that were made to synthesize thetest corpus is the

highest for BS10, drops for BS100 and BS1000 and reaches a minimum withA � . That

meansA � is able to �nd longer units in the learning corpus than other algorithms.

If confronted to mean breath group size, (around 19 forAudiobook test and IVS test,

and 21.5 forCombescure, depending on the phonetization tool used) BS10 and BS100 tend

to make more than 1 concatenation each 2 units and BS1000 andA � less.

For all corpora, the number of concatenations is clearly lower forA � compared to the

other algorithms, except for BS1000. These two results show thatA � tends to develop

a smaller graph than beam-search versions. Thus, it tends to show that applyingA � is

more e�cient in the sense that it �nds the optimal solution while exploring less candidates.

Moreover, the algorithms need almost 5 more units to synthesizeCombescurebreath groups

than they need for Audiobook test when usingAudiobook voice, where they need only 2

more for IVS . This is an indicator of a greater unit coverage inIVS which is linked to the

origins of this corpus. Considering time needed to perform unit selection, we see that there

is one order di�erence between BS10 and BS100 (real time) and BS1000 andA � . The other

point is that BS1000, while giving a sub-optimal result, takes more time thanA � (slightly

with IVS voice and much more withAudiobook).

Figure 6.4 and �gure 6.5 present the mean selection time and the mean number of

nodes selected by target segment. Both �gures show thatA � can be considered as a good

tradeo� as it develops less nodes than BS1000 and thus gives a solution more quickly

(which is optimal). Moreover, we see an order di�erence between BS10 and BS100 values,

and one order between BS100 and the two other systems. ConsideringA � and BS1000, the

last one explores twice as much nodes while taking more time. This last result depends

on the cost function which is guaranteed to be null for units that are consecutive in the

corpus. This allowsA � algorithm to process quickly when it �nds such consecutive units
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Table 6.3: Objective factors for di�erent algorithms on test corpora for Audiobook and
IVS voices. The mean number of concatenations is given by breath group. Mean synthesis
time, mean number of explored nodes and mean cost are given by target selection.

Criterion BS10 BS100 BS1000 A �

Audiobook voice - Test Corpus : Audiobook test
Mean number of nodes passing �lters 288 290 271 202
Total number of concat. 8 608 7 767 6 741 6 500
Mean number of concat. 11 1 0 9 8
Mean synthesis time (ms) 11 99 679 206
N. of nodes in �nal paths 13 493 13 230 11 785 10 270
N. of corpus units in synthesized paths 9 395 8 554 7 528 7 287
N. of corpus units by breath group 12 11 1 0 9
Mean number of nodes explored 8 79 559 139
Mean cost 572 390 313 309
Mean number of arcs created 41 869 40 330 28 923
Mean number of pre-selection �lters passed 10.95 10.95 10.95 10.95

Audiobook voice - Test Corpus : Combescure
Mean number of nodes passing �lters 266 266 237 192
Total number of concatenations 1 953 1 842 1 677 1 659
Mean number of concatenations 16 15 14 13
Mean synthesis time (ms) 12 99 634 346
N. of nodes in �nal paths 2 478 2 442 2 227 2 035
N. of corpus units in synthesized paths 2 074 1 963 1 798 1 780
N. of corpus units by breath group 17 16 15 15
Mean number of nodes explored 8 74 538 198
Mean cost 1 003 787 713 710
Mean number of arcs created 41 855 42 897 37 336
Mean number of pre-selection �lters passed 10.68 10.68 10.65 10.61

IVS voice - Test Corpus : IVS test
Mean number of nodes passing �lters 218 221 203 126
Total number of concatenations 2 146 1 884 1 681 1 573
Mean number of concatenations 11 1 0 9 8
Mean synthesis time (ms) 12 73 450 311
N. of nodes in �nal paths 3 137 3 056 2 695 2 348
N. of corpus units in synthesized paths 2 341 2 079 1 876 1 768
N. of corpus units by breath group 12 11 1 0 9
Mean number of nodes explored 8 70 422 163
Mean cost 400 316 284 280
Mean number of arcs created 38 761 24 955 48 571
Mean number of pre-selection �lters passed 10.87 10.87 10.86 10.83

IVS voice - Test Corpus : Combescure
Mean number of nodes passing �lters 229 236 222 123
Total number of concatenations 1 728 1 548 1 368 1 288
Mean number of concatenations 13 12 11 9
Mean synthesis time (ms) 6 64 516 443
N. of nodes in �nal paths 2 354 2 322 2 057 1 773
N. of corpus units in synthesized paths 1 857 1 677 1 497 1 417
N. of corpus units by breath group 14 13 12 11
Mean number of nodes explored 9 75 492 197
Mean cost 421 330 295 292
Mean number of arcs created 41 867 31 867 66 176
Mean number of pre-selection �lters passed 10.86 10.86 10.85 10.83
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Figure 6.4: Mean selection time by target segment in ms. From left to right, bars represent
the following combinations of voices and test corpora:Audiobook voice + Audiobook test
(blue), Audiobook voice + Combescure(red), IVS voice + IVS test (brown) and IVS voice
+ Combescure(green).
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Figure 6.5: Mean number of nodes expanded by target segment. From left to right, bars
represent the following combinations of voices and test corpora:Audiobook voice + Au-
diobook test(blue), Audiobook voice + Combescure(red), IVS voice + IVS test (brown)
and IVS voice + Combescure(green).

while the BS1000 has to explore all the combinations (even if limited by beam size). It is

also important to remember that, if real time is involved, implementing a pruned version

of A � is possible. It is possible to do it in many ways, for example by using non-admissible

heuristic functions. Note that an admissible heuristic, though harder to �nd, could as well

improve computation time.

A �rst conclusion about A � usability, is that it seems to be a valuable approach to insure

optimality while maintaining a reasonable search complexity: synthesis is not performing

in real time but is much faster than a standard Viterbi.

5.2 Subjective Evaluation

In order to see what these results imply when synthesizing, a number of listening tests was

accomplished. This evaluation intends to verify the global quality di�erence between all

four algorithms. To perform this, we followed our two steps AB-based test methodology,

presented in the previous chapter. For each of the four tests we made (randomly picked

with IVS voice, Audiobook voice and most di�erent according to a DTW distance with
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Table 6.4: Results of the AB listening tests comparingA � algorithm to 3 beam-search
alternatives. The table is split in four distinct parts, depending on the synthetic voice
that was used and the method for selecting speech stimuli included in the tests. The two
�rst parts concern randomly picked samples fromIVS test and Audiobook testwhile the
3rd and 4th are for the most di�erent stimuli, selected via a DTW distance. Algorithms
are confronted via two-by-two comparisons. For each comparison, there are three
values. The �rst (red) is for the algorithm in the corresponding column head
(also in red). The second is the number of "Indi�erent" answers. The last one
(blue) is for the algorithm in the corresponding row head (also in blue). Values
are in vote percentage (40 votes for each con�guration).

IVS corpus (%)
A � BS100 BS1000

BS10 37.5 40 22.5 35 42.5 22.5
BS100 27.5 50 22.5 35 37.5 27.5
BS1000 22.5 52.5 25

Audiobook corpus (%)
BS10 52.5 22.5 25 47.5 30 22.5
BS100 37.5 25 37.5 42.5 25 32.5R

an
do

m
ly

pi
ck

ed

BS1000 30 25 45
IVS corpus (%)

BS10 65 17.5 17.5 52.5 22.5 25
BS100 35 35 30 30 45 25
BS1000 35 25 40

Audiobook corpus (%)
BS10 42.5 27.5 30 42.5 20 37.5
BS100 45 30 25 57.5 22.5 20M

os
t

di
�e

re
nt

BS1000 37.5 30 32.5

IVS , Audiobook voice), each one of our 10 listeners evaluated 20 distinct couples of stimuli.

Each test confronted 5 di�erent couples of algorithms (A� vs. BS10, BS100, BS1000 and

BS100 vs. BS10, BS1000), which means all pairs of algorithm were confronted 40 times

one with the other. Each algorithm was represented by 20 stimuli for each pair, so that

each comparison between two stimuli was done two times, by di�erent testers. Test stimuli

are extracted from IVS test and Audiobook test.

The results of the test are described on table6.4. For each pair of systems, three values

are provided. The red one corresponds to the number of times the system in the �rst

row (the header) was chosen while the blue one corresponds to the system in the column

header. The middle number, in black, is the number of "Indi�erent" answers. Numbers

are in percent of the total amount of votes for each con�guration (40 votes). All possible

comparisons were not performed. Indeed, the BS1000vs. BS10 confrontation was left on

the side, as its outcome � given the data from table6.3 we discussed previously � was

very likely to be extremely close to the results of the BS1000vs. BS10 comparison. This

conclusion is reinforced by the results ofA � vs. BS10 and BS100vs. BS10 comparisons,

which each put the �rst system (A � and BS100) ahead of BS10. BS1000, yielding results

that are much closer toA � than BS100, should be very close toA � result. For this reason,
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Figure 6.6: Mean cost by target segment for all 4 systems. From left to right, bars represent
the following combinations of voices and test corpora:Audiobook voice + Audiobook test
(blue), Audiobook voice + Combescure(red), IVS voice + IVS test (brown) and IVS voice
+ Combescure(green).

the comparison was omitted, which permitted to lower the complexity of the test.

When looking at the results for randomly picked stimuli, a clear pattern appears indif-

ferently for both voices. All confrontations between BS10 and another con�guration ends

up with a clear defeat of BS10 (52.5%versus 25% for A � vs. BS10 with Audiobook voice

for instance), meaning this very pruned strategy yields inferior results. Then, all other

comparisons are inconclusive, ending up in a draw and most often getting many "Indi�er-

ent" answers. A particular point is the A � vs. BS1000 comparison withAudiobook voice

where BS1000 has a limited lead, but the same comparison results in a very clear draw

with IVS (22.5% to 25% with 52.5% abstention). This suggest the small lead of BS1000

with Audiobook voice is more related to a side e�ect than to superiority of the BS1000

strategy.

An important di�erence in the number of "Indi�erent" answers between IVS and Au-

diobook can also be noted. While these answers count for about 40 to 50% forIVS voice

when comparisons end up in a draw,Audiobook has a lower rate around 25%. There can

be two reasons for that. First, variability for IVS is lower than for Audiobook, as IVS is

a neutral voice that was recorded with much constraint whileAudiobook is a very expres-

sive audiobook. Second, segmentation forIVS was manually corrected whileAudiobook

ones are fully automatic, hence more subject to substantial variations especially where the

concatenation process is concerned.

The result we have here is that speech quality only begins to degrade with very small

beam sizes, lower than 100. This can be put in relation with the mean cost by target

segment of the selected unit sequence, presented on �gure6.6. Here, the same pattern is

observed:A � , BS1000 and BS100 have very close mean costs, while it is signi�cantly higher

for BS10.

Now, in order to see if this result holds, we can look at testers answers for the most

di�erent stimuli. For these results, the same trends are observed forIVS voice: A � , BS1000

and BS100 are di�cult to order, while BS10 is clearly performing worse.

For Audiobook, there is one exception to that rule. Indeed, BS10 in on par with BS100

with a score of 42.5% (BS10)vs. 37.5% (BS100) votes and 20% abstention. Furthermore,

BS100 is largely dominated by bothA � and BS1000, as for the BS1000vs. BS100 duel for
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randomly picked sentences. Another striking result is that the gap between BS10 andA � ,

while existing, is quite small (42.5% forA � against 30% for BS10). These results can be

explained by the important variability in Audiobook corpus. A very plausible explanation

for that phenomenon is the following. Costs along the best candidate sequences are quite

homogeneous in terms of magnitude: the best case is that all units have a cost as close

to zero as possible. Now, if a sequence is the absolute best but has a few units with

substantially higher costs than its own average, these units might not be present in the

BS10 graph while they might be present in the case of BS100. So BS10 might end up

selecting a sequence with a higher cost in average, but more homogeneously distributed

among the sequence units. The result is, for BS100, a stimulus that will perhaps feature

an artefact on the part with a higher cost (which often occurs in the listening test)versus

a stimuli featuring a worse cost in average but with a lesser risk of artefact in the case of

BS10. As other results in this chapter indicate though, amodestdi�erence of cost between

two sequences does not imply that the sequence with the lowest cost is actually better.

This reasoning is in fact the foundation of our work on the target duration cost, which is

presented in chapter7. In this work, we try to favor sequences with an homogeneous cost,

with very encouraging results.

Overall now, considering the results of all listening tests along with objective measures,

we can draw the conclusion that:

1. Speech generated with a beam-search algorithm is perceived as qualitatively equiva-

lent to an optimal algorithm like A � or non-pruned Viterbi until the size of the beam

gets (at least) as little as 100 nodes.

2. Looking for the optimal solution of the unit selection problem is super�uous as a

BS100 search yields (except forAudiobook most di�erent sentences) a solution in real

time, hence much faster.

5.3 Behavior of the Cost Function With the 100-Best Paths

In order to understand this phenomenon, let us look at the (sorted) list of the best possible

unit paths in the selection graph4. Figure 6.7 shows the evolution of the global cost for the

100 best paths found. The target sentence is"Car ce n'est pas le chagrin qui la �t partir."

(Because it is not grief that caused her to leave). Due to the di�erences between selected

units among the paths, costs are reported to each phoneme on the sequence (x axis). At

�rst glance, we observe little variability among the paths. Most changes seem to occur on

the �rst/last units (non-speech sounds here actually). The mean number of units passing

the �lters is approximately 200, with a mean size of 3.8 phones for selected units, which is

satisfying. We noted that the relaxation of �lters was quite rare, which could signify other

�lters can be added to re�ne our target cost.

4Obtaining this list is particularly easy with A � algorithm as the only thing that needs to be done to
get it is to continue the search after the optimal solution was found, which leads to the second best, and
so on.
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Figure 6.7: Global cost evolution for 100-best paths (French sentence"Car ce n'est pas le
chagrin qui la �t partir." ).
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Figure 6.8: DMOS test results for the1st , 10th , 50th and 100th paths of the cost function.
The voice used for this experiment isIVS .

Given these results, we have decided to conduct a DMOS test in order to evaluate the

loss in performance when selecting a candidate far from the optimal path. Each time, the

natural signal is confronted to a synthesized signal corresponding to the1st , 10th , 50th or

100th path according to unit selection and a duplicated natural reference. Each listener

hears the 12 same sentences for each system. Figure6.8 (right part) shows results of the

test.

The results for the 1st and 10th paths are identical at 3:11� 0:4 and 3:12� 0:4 respec-

tively, meaning slightly annoying degradation in average. The two other con�gurations get

lower marks. The 50th path is rated at 3:00� 0:4 and the 100th gets 2:78� 0:4. No clear

preference can be observed, in particular due to con�dence intervals. In fact, it can be put

in relation with the AB listening tests on A � and beam-search algorithms where a similar

trend is observed. The performance of BS10 can be compared to the result of the 100th

path in the current test, with a comparable increase in selection cost and drop in quality.

As for the AB tests also, the �rst paths get the same marks. Quality then seems to degrade
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faster and faster: about 0.10 points between the 10th and 50th path compared to over 0.20

between the 50th and the 100th . Actually, two major cases were encountered in the test.

First, many stimuli were very close, if not sounding identical (in particular between the

10th and 50th paths but not only). Second, many others di�ered in their prosodic contours,

often a lot. Many times though, both were correct or as close to be correct but in di�erent

contexts (questionvs. a�rmation mostly). As no prosodic target is provided by the high-

levels though (except for theF0 preselection �lter), these stimuli were rated the same way.

Nonetheless, as these prosodic variations seem (logically) random, a listening test with a

particular focus on prosody should not give a di�erent result.

To conclude, this test further reinforces our conclusion that the optimal solution to

the unit selection problem is needed at the 10th , for example, will perform just as well.

Thankfully though, the selection function works appropriately and the optimal solution

fares as well as the 10th .

6 Conclusion

An experimental corpus-based TTS system and a complete evaluation of the algorithmics

of its unit selection module were proposed in this chapter. The system, designed as an

experimental platform to explore the behavior of concatenative speech synthesis in depth,

implements state of the art mechanisms to perform the unit selection. A comparison was

made between two approaches for performing the unit selection part in a corpus based TTS

system: the usual beam-search strategy and a newA � -based algorithm. The comparison,

considering objective measures as well as subjective assessment by listeners, was made us-

ing the same pre-selection �lters, cost function and corpora for all unit selection algorithms

tested.

The results showed thatA � in its admissible version performed faster and better than a

beam-search algorithm with a huge beam size. However, beam-search with a tiny beam, far

from the optimal solution but running in real time, is actually perceived as good as other

algorithms results. Even ifA � achieves a lower number of concatenations, compared to the

other algorithms, subjective evaluations show that it does not imply better speech quality.

The results seem independent both of the voice style used and the target corpus used. This

leads us to two conclusions: �rst, �nding the optimal solution to the unit selection problem

seems of little use, as heavily pruned algorithms fare as well as admissible ones. This is

because the variability between the best paths is very low. Second,A � is indeed better suited

than Viterbi for unit selection. In particular, even though this was not demonstrated here,

it can also be pruned in order to get an under-optimal solution faster. However, in the

rest of this document, we will always use the optimal unit sequence withA � algorithm when

generating test stimuli. The reason is that pruned search could be a side e�ect adding a

bias in our further results.

Furthermore, as unit selection is highly dependent of the preselection strategy as this puts

a severe constraint on the engine, we evaluated the impact of �lters on quality of the syn-
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thesis. We showed that our current set of �lters did not degrade synthesis while saving a

considerable amount of computation time.
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Work on the Unit Ranking
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Chapter 7

Work on the Duration Target Cost

�Oh time, you devourer of things,

and you, envious old age,

Together you destroy everything.

And slowly gnawing at them with your teeth,

You consume all things, little by little, in lingering death!�

Publius Ovidius Naso (Ovid)

(43 BC�17/18 AD)

Metamorphoses, volume 15, 234-236

In this chapter, and the next one, we focus on the target cost; formulating new proposi-

tions to enhance it. Here, we describe a new duration target cost that takes a whole sequence

into account [Guennec et al. 2015]. It aims at selecting a sequence globally good, instead

of a very good sequence almost everywhere but having a few local duration cost leaps that

are counter-balanced by other units. The problem of weighting this new duration cost with

other sub-costs is also investigated. Experiments showed this new measure performed well

on sentences featuring duration artefacts, while not deteriorating others.

The proposed target cost and the underlying duration model are presented in section2. Ex-

perimental evaluation on French corpora including objective assessments of both the model

and the target cost (3.2) and subjective evaluation by listeners (3.3) are presented in section

3. Conclusions and future work are presented in section4.

113
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1 Motivation

Speech created using unit selection features naturalness and prosodic quality unmatched

by other methods, as it basically concatenates speech actually produced by a human be-

ing. For this reason, most industrial TTS systems mainly use either pure unit selection

approaches or hybrid ones. However, unit selection o�ers less control than statistical para-

metric methods, especially over prosody. Moreover, artefacts may appear in the synthesized

signal and penalize intelligibility. While obtaining good speech output with neutral voice

is (almost) a solved problem with unit selection, getting prosody right for natural and ex-

pressiveness is entirely another matter. Prosody modi�cation methods after selection - like

TD-PSOLA for adapting duration - are an option, but for now none has been convincing.

The possibility of in�uencing selection to choose units that are the closest to the required

prosody remains. A good state of the art for expressive speech synthesis is made in [Govind

and Prasanna 2012].

As phonetic durations are subject to a lot of changes when considering voices with

di�erent levels of expressiveness, controlling duration gets particularly important. Lastly,

decision trees have been the most widely used method to predict duration, for instance, in

systems like HTS, with only a few mentions to using a target duration cost (e.g., in [Alías

et al. 2011]) within unit selection cost function. Recent approaches where DNNs replace

HTS decision tree can also be mentioned [Hashimoto et al. 2015].

In this chapter, we propose a new way of computing duration target cost, not only

based on the assumption that we want to get units as close as possible to a predicted

duration. Thus, we try to �nd the units that stay the closest to requested duration by

optimizing the mean duration error with respect to the previous units. Hence, it prevents

inadequate units in terms of duration from being selected if other units are available while

not forcing a path with homogeneous durations. The main idea is that it is better to have

units globally longer or shorter than to have only one or two units with a big duration

error in the synthesized speech.

2 An Adaptive Duration Target Cost

2.1 Neural Network

Prediction of phoneme duration has a long history in the TTS �eld. It was �rst performed

by creating expert hand-made rules that were integrated in rules-based (formant synthesis)

and concatenation synthesizers. Over last years, decision trees have been the most widely

used method to predict duration, for instance, in systems like HTS. In particular, the use

of neural networks for phoneme duration prediction starts in the early '90s. A TTS system

using a set of ANNs (one for each phoneme) trained on cepstral coe�cients can be cited

[Tuerk and Robinson 1993]. A TDNN (Time Delay Neural Network) has also proven to

be very e�cient for predicting duration, though the learning set was small [Karaali et al.

1996]. In following years, major improvements in the technique were obtained mainly by



2. AN ADAPTIVE DURATION TARGET COST 115

Figure 7.1: The neural network used for the prediction phonemic durations, composed of
250 input neurons for as much input features, 1 recti�ed linear hidden layer of 512 neurons
and one output linear Gaussian neuron (the predicted duration).

increasing the number of input features and the size of the learning corpus. The advantage

of neural networks is that, contrary to decision trees, they do not cluster predicted values

(at least when properly trained). When the network faces an unknown set of features,

the predicted value is di�erent from an assimilated result for the closest feature set, which

can result in much better results [Taylor 2006]. Recent work in speech synthesis is now

focusing on deep approaches (DNNs, DBNs, DRNs). For duration prediction, we did not

think such deep approaches were necessary. Thus, we use a MLP (Multi-Layer Perceptron)

with batch gradient descent. Input data is composed of a set of 50 features by phoneme,

mainly phonetic and linguistic parameters. We also take into account the contextual infor-

mation for the two preceding and following phonemes. Thus, the network has a topology

of 250 input neurons, 1 recti�ed linear hidden layer of 512 neurons and one output linear

Gaussian neuron (directly predicting durations in ms as other measures likelog ms were

not performing better). This layout is summarized in �gure 7.1. These parameters were

the best among the di�erent con�gurations tested.

2.2 Duration Target Cost

The proposed duration target cost aims at in�uencing selection so that selected units are,

on average, at the same distance of the predicted unit durations. De�ning the cost that

way means we prefer a sequence moderately close to predicted values, but homogeneous

in the repartition of the duration distance among units, to a sequence of perfect elements

featuring one unit with dramatic cost. The cost for the nth candidate unit U! i;j
i;j (U

! h;i
h;i
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being the (n � 1)th ) in the sequenceU� (see eq. 4.3, chapter4) is as follows:

De = jD t (U
! i;j
i;j ) � D (U! i;j

i;j )j (7.1)

Cd(U! i;j
i;j ) = j�(U

! h;i
h;i ) � Dej (7.2)

�(U ! i;j
i;j ) =

�(U
! h;i
h;i ) � (n � 1) + De

n
(7.3)

with �
U

! i;j
i;j

being the mean distance to predicted duration for previous target units in the

sequence (from the �rst selected unit toU! i;j
i;j ), D t (U

! i;j
i;j ) the target duration for unit U! i;j

i;j ,

D (U! i;j
i;j ) the duration of U! i;j

i;j and Cd(U! i;j
i;j ) the target duration cost for unit U! i;j

i;j .

Equation (7.1) computes the local cost between the target duration and the current

unit. This cost is then used to compute the duration target cost in equation (7.2), which

takes into account the mean distance to predicted duration for all the previous units.

Finally, the mean duration error is updated using equation (7.3). Thus, the quality of the

current unit depends on the quality of previous units. In other words, it means that if

U! i;j
i;j is longer (resp. shorter) that desired, the target cost will be low if the previous units

are also longer (resp. shorter). This way, we want to keep the consistency between the

di�erent units which might be better than inconsistency and perhaps produce a credible

speaking rate slow-down or speed-up.

3 Experiments

We have conducted experiments aiming at (i) testing the accuracy of our ANN, (ii) measur-

ing the impact of the new target cost on the unit selection algorithm and (iii) subjectively

assessing the improvement in produced speech.

3.1 Experimental Data

Our two voice corpora, IVS learning and Audiobook learning, were used both as learning

sets for ANNs and TTS voices. Test and validation corpora for these voices were also

used for ANN learning rate evaluation. For the purpose of the tests, we use a sub-set of

100 sentences fromVarious Styles, insuring that a wide variety of styles, from di�erent

audiobooks, were represented.

3.2 Objective Analysis

Neural Network

The mean RMS error for IVS voice is slightly better (RMS=24.24, std=9.07) than for

Audiobook (RMS=26.58, std=6.61). Pearson scores show that predictions are strongly

correlated to real values, and the probability of error on the Pearson score is extremely

weak. A detailed analysis on a per phoneme basis shows that the worst phonemes are

those having very few representations in the learning corpus, for each voice. For instance,
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/n/ has only 2 realizations in the Audiobook learning corpus, and only one inAudiobook

validation (cf. appendix B). Finally, when looking at real and predicted centroids for each

phoneme, most of them are very close, if not identical. Given these results, which we

consider as fair, and knowing we do not need extremely accurate predictions as they are

solely used to in�uence selection, these models have been kept as is.

Behavior of the Cost Function

To evaluate the impact of duration cost and its interactions with concatenation costs, we

considered all {Wtc ; Wccg couples in the[0;100] interval with a pace of 10. For each weight

con�guration, we generated the 100 sentences in ourVarious Styles corpus. Sentence (not

utterance) based measures were extracted for each con�guration. In this section, we will

only discuss these measures onIVS voice, but exactly the same patterns are observed on

Audiobook voice. Only small variations in magnitudes are observed between the two voices.

It is important to point out that costs presented here are obtained without applying Wtc

and Wcc weights. Magnitudes due to these weights have been removed to get raw costs.

Figure 7.2 shows the evolution of the mean delta per phoneme inms between predictions

by the network and �nal produced durations in relation to target and concatenation costs

magnitudes for IVS voice. The same forAudiobook voice is shown on the bottom part of

the �gure. As it can be seen, the general trend is that distance increases when the target

cost increases, which shows a good functioning of our target cost. Moreover, when getting

the worst target cost, the delta largely increases. An unexpected result is the relation

between the delta and concatenation cost when target cost is high which seems to suggest

that concatenation cost excludes units with worst duration, improving the delta. When

concatenation cost increases again, the delta dramatically increases again too. We can

further note that duration delta at high target costs and low concatenation costs, while

being good, remains much higher than the delta we get at lower target costs (this time

independently of concatenation cost).

This result led us to think it would be worth investigating the behavior of a system

where the duration target cost would be activated only on certain conditions, like for high

concatenation cost or when confronted to a drastic relaxation of preselection �lters.

3.3 Subjective Evaluation

Based on precedent measures, we selected con�gurationfW tc = 30; Wcc = 70g for listening

tests. This choice was motivated by the low variability in terms of duration costs when

getting over Wtc = 30 and the fact that concatenation cost alteration at this level is low.

The same reasoning led us toWcc = 70. In consequence, listening tests were performed

using two system con�gurations: baselinesystem, which logically corresponds to con�gu-

ration fW tc = 0; W cc = 100g; and the con�guration incorporating our duration distance,

fW tc = 30; Wcc = 70g, called Controlled.

We performed two AB tests involving 13 testers for the �rst and 11 for the second (a
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Figure 7.2: Duration delta between model predictions and synthesized durations evolution
when target and concatenation costs vary forIVS voice (top) and Audiobook (bottom).
Distance, per phoneme, is given in ms. Data computed using synthesis fromVarious Styles
corpus.

few more listeners than our pool of ten people was available) on thebaseline and Con-

trolled systems. Both Audiobook and IVS voices were mixed in each test. The �rst test

was based on a random selection of speech stimuli to present to the testers, while the sec-

ond one was based on a random selection within the sub-set of synthesized sentences that

featured audible duration artefacts with baseline. In order not to bias this second test, the

stimuli produced by Controlled are not involved (and especially not listened to) in the pro-

cess of selection for the listening test. The second test is of great importance here. Indeed,

though duration issues in the synthesis remains a major problem in synthesized speech, the

number of speech stimuli presenting signi�cant duration incoherencies is somewhat small
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Figure 7.3: AB test results. Uncontrolled featuring duration artefacts is opposed toCon-
trolled system. First and second row are a decomposition of the third one.Controlled is
clearly preferred.

with large voices like IVS or Audiobook, even without duration control; therefore, there is

a good chance that stimuli selected for the �rst listening test mostly present minor or even

inaudible duration artefacts. In such cases, listeners might be in�uenced in their judgment

by other factors, even though the question asked clearly states that they should focus on

duration (which is a di�cult exercise). The second test aims at preventing this problem.

The �rst test presented 20 stimuli for each voice,taken randomly in the TTS test

set. The testers were asked to assess the rhythm of speech and select the best system.

On raw results, systems were getting almost as much votes (43% forbaselineand 38% for

Controlled with overlapping con�dence intervals). We spotted extremely di�erent scales of

notation among testers, with none seeming to have the same way of performing the test.

Thus, no hard conclusion can be derived from this test. Nonetheless, it suggests the two

systems are on par. It is important to underline that post-analysis of the stimuli presented

for this test showed that very few samples had strong duration incoherencies.

An important point is that IVS corpus featuring only neutral voice, duration artefacts

are less serious and less frequent. On the contrary,Audiobook, being very expressive,

features much more minor duration issues. Major duration problems are also much more

frequent.

The second testfocused on sentences having audible duration artefacts. 22

di�erent sentences featuring duration artefacts (of various amplitudes but all being audible)

were extracted frombaselinesynthesis (11 for each voice). They were confronted to their

equivalent with Controlled system. The testers were asked to say which system has the

most natural voice. The testers were also asked to pay particular attention to rhythm (but

not exclusively).

Results for this second test are presented on �gure 7.3. First row shows results for

Audiobook voice only, second forIVS only while the third one is the global result. In this
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test, Controlled is strongly preferred by testers, especially forAudiobook voice which is

normal as it is the voice the most likely to generate artefacts. It was also interesting to see

that testers all followed the same trend, placingControlled ahead with di�erent levels of

preference. Experts especially had a strong preference forControlled when using expressive

voice Audiobook, and less forIVS .

Given these results, it can be derived that our target costs behave well in enhancing

durations when needed and only when needed, while not deteriorating synthesis on other

aspects.

4 Conclusion

We presented a new duration target cost for unit selection. This cost aims at selecting

the whole unit sequence that best minimizes duration distance with predicted values rather

than choosing the sequence containing units that individually minimize a duration distance.

This is intended to avoid cases like excellent synthesis penalized by few very bad units.

Experiments showed that this new measure performs well on speech samples that feature

durations issues, especially on our expressive voice. Furthermore, the new measure does

not seem to a�ect synthesized samples that have good durations from the beginning. While

the new cost is here used only for phone durations, it is extendable to all target costs. It

could even be extended to the concatenation cost the following way. Some concatenation

sub-costs are not adapted (MFCC for instance), but others are (e.g. theF0 sub-cost). Each

adapted concatenation sub-cost, operating on some parameter (likeF0), could be mixed with

a second sub-cost trying to minimize the distance, on the same parameter, between the unit

and the mean in the candidate sequence. This extension to all applicable distances in both

target and concatenation costs should be tested.



Chapter 8

Work on the Pitch Target Cost

�The cello is a hero because of its register - its tenor voice. It is a masculine

instrument, whereas the violin is feminine because of its soprano pitch.�

Mstislav Rostropovich (1927�2007)

The study introduced in this chapter presents two unit selection target costs aiming at

controlling candidate units F0 contours. It uses an atom-based decomposition method to

decomposeF0 into a breath group-wide gamma shape called a phrase atom and smaller

syllable/segment-level gamma shapes called local atoms. Based on the belief that unit level

pitch contour is governed by physiologically pertinent local atoms, which cause small but no-

ticeable variations to F0, these target costs use atom parameters for one and reconstructed

variations (induced by atoms) ofF0 for the other to impact on unit selection. In that work,

the TTS system is an oracle. It uses annotations from real speech stimuli for the target

sequence, instead of predictions (preventing evaluation error that would result from predic-

tions). Particular attention was paid to evaluating the impact of the method on the prosody

of synthetic sentences during experiments. First results proved both costs were more e�-

cient than a traditional F0 distance in listening tests.

The chapter is organized as follows. In section2, a presentation of atom-based intona-

tion modeling is provided. Section3 describes how atom-based unit selection target costs

were designed and implemented in the TTS system. Finally, sections4 and 5 include an

evaluation of these new costs and give some insight on the perspectives.

121
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1 Motivation

As TTS systems get better and better in quality when synthesizing neutral speech, focus

is more and more centered on expressiveness; a number of companies now sell what they

call expressive voices, generally featuring the 6 main emotional states [Ekman and Friesen

1969]. However, they fail at providing real naturalness, not to mention expressivity (which

is much more complex than 6 emotional states [Cowie and Cornelius 2003]). One can work

on applying expressiveness to the voice only if prosody for the neutral voice is adequately

managed, which is not the case of all TTS systems. For unit selection especially, prosody

is di�cult to model and control. In particular, strict recording conditions, aiming at

getting the best concatenation experience, strip corpora of any expressiveness. This is

why it is interesting to search for the ability to control prosody for voices that feature

many di�erent styles, like in audiobooks. In this chapter, we use a set of selection costs to

constrain target speech prosody by using atom decomposition-based intonation modeling

[Honnet et al. 2015]. Atom-based intonation modeling is a generalization of the command-

response model. In that representation, intonation is decomposed into an utterance-size

gamma function (phrase atom) and a set of phoneme/syllable-size local gamma shapes

(local atoms). These local atoms, having a time span that's similar to most corpus units

that are selected, seem well-suited to feed a target cost on intonation. In particular,

we assume local atoms are correlated to events at the origin of intonation in the vocal

apparatus, which would reinforce their interest in a target cost.

Atom-basedF0 decomposition is explained in the next section. For a complete descrip-

tion of the method, Honnet et. al. can be cited [Honnet et al. 2015]. The work presented in

this chapter was originally performed during a 5 month stay at IDIAP, Martigny, Switzer-

land in 2015.

2 Atom-Based F0 Decomposition

Among the many models aiming at representing intonation, Fujisaki's command-response

(CR) model has gained a very high credit [Fujisaki and Nagashima 1969;Hirose and Fujisaki

1982]. Command-Response model assumeslog F0 is the sum of a base sound level, a

breath-group level phrase component and local accent components. Whilst the phrase

component can be explained directly in relation with subglottal pressure evolution (which

evolves slowly within a range of about 15% during phrase phonation, and drastically drops

at the end of the breath group), local commands are related to voice muscle activity

(cricothyroid, vocalis and sternohyoid muscles). The CR model decomposes the signal in

impulses, corresponding to the phrase component, and step functions, corresponding to

the accent components. The atom-based intonation decomposition model (Generalized

Command-Response model, or GCR) is a generalization of the step into a sequence of
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impulses that can be expressed as:

G� (t) =

8
<

:

1
� 2 te�1=� for t � 0;

0 for t < 0:
(8.1)

This de�nition is an order k = 2 gamma function which higher order form is:

Gk;� (t) =
1

� k �(k )
tk�1 e�1=� for t � 0 (8.2)

Basically, the atom prosody modeling decomposesF0 into a set of gamma shaped kernel

functions where every atom is expressed according to the preceding function. The breath-

group sized atom, representing the phrase component, is also de�ned through a gamma

form. Atom annotations are computed from the logF0 contour using a matching pursuit

algorithm. Basically, the algorithm tries to approximate the contour by �nding the best

linear combination of a prede�ned set of kernel functions of sizeM :

f 0(t) =
MX

m=1

I mX

i=1

� m;i � m (t � � m;i ) + �(t) t � 0 (8.3)

In the above formula, the gamma function amplitude � m;i may be positive or negative.

� m is the mth kernel function. I m instances of the mth kernel function are evaluated.

� m;i is the temporal position of atom impulse. In order to make the building of the cost

function easier, the temporal position� of the associated gamma function maximum and

the temporal width w of the function that is considered in the computation are added into

the atom de�nition. Finally, the atom set is the following:

	 = f(k; �; �; �; max; w )=k 2 N; � 2 R; (8.4)

�; �; max; w 2 R+ g

where an atom is thus de�ned with k and � that are the parameters of Gk;� , amplitude

(� ), initial temporal position ( � ), temporal position of the function maximum (max) and

temporal width ( w). In this work, following a recent investigation [Honnet et al. 2015],

only order k = 6 atoms are used in the dictionary as they give the best results.

3 Atoms for Driving a Unit Selection Target Cost

Most contributions in the literature making use of Fujisaki's model are related to SPSS

(mostly HMM-based) frameworks, for example [Hirose et al. 2005]. In this work, we take

a very di�erent approach: we focus on how to use atom annotations for building a unit

selection target cost.
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3.1 De�ning New Prosody Target Costs

The motivation for using atoms in this particular task relies on two fundamental hypothe-

ses. First, we assume that the decomposition into phrase and local atoms is not only

virtual but is related to the muscle activity in the vocal apparatus (hyp. 1); i.e. atoms

are the responses to muscle impulses. Second, we make the hypothesis that perceptual

inconsistencies in synthesized prosody are due to the fact that the underlying speech pro-

duction mechanisms are not taken into account (hyp. 2). For instance, a pitch distance

functioning as a target cost only focuses on elements resulting from an analysis of pro-

duced speech (or predicted), and not on analysis of the mechanisms that produced that

speech. The problem is that the pitch contour itself is altered by microprosody acting as

noise. In those conditions, a basicF0 distance is de�nitely biased. As atoms (especially

higher amplitude ones) seem to be correlated to the muscular work in question, a target

cost exploiting atom decomposition might prove e�cient in selecting units with the right

prosody. In addition, an F0 regenerated using atoms only may be much more suitable as

it removes microprosody. Taking these hypotheses into account, two main ideas have been

considered for a target cost.

Target Cost with Atom Properties

The �rst idea, called Atom-Param, is to directly use atom parameters to compute a cost

between a candidate and a target unit. First, we de�ne the cost between two atoms and

' as:

C( ; ' ) = Wmax j max � ' max j + Ww j w � ' w j + W� j � � ' � j (8.5)

where the notation  X , ' X is used to denote the parameterX of atoms and ' as de�ned

in (8.4). Magnitudes of the sub-costs are homogenized with manually set weights.

Let ST and SC be the atom sets in the target and candidate unit respectively. Let

Smin be the smallest of them, andSmax the biggest, in terms of cardinal. We construct

the set L which pairs each element ofSmin with the closest atom in Smax according to the

following:

( ; ' ) = arg min
 2S T ;'2S C

(Wmax j max � ' max j + W� j � � ' � j) (8.6)

We also de�ne a multiplicative penalty K as:

K ( ; ') =

8
<

:
K max if  �

' �
� 0;

1 otherwise:
(8.7)

where  and ' are two atoms andK max is the highest possible costC( ; ') between two

atoms measured on the corpus.

The �nal target cost for a unit is the sum of this atom cost for each pair in L. We add
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a full penalty for each atom that is part of Smax but not of any pair in L, i.e. atoms of

Smax that cannot be aligned with atoms in Smin . We note jLj the cardinal of set L.

T Cost =
X

( ;' )2L

K ( ; ') � C( ; ' )

+ ( max(jS T j; jSC j) � jLj) � K max (8.8)

Target Cost Exploiting Atom-reconstructed F0

Having obtained atom annotations, the next step is to regenerateF0 using atoms only.

Then, the idea is to see whether the regeneratedF0 might prove better than original

F0. The second cost, calledAtom-Pred, aims at checking whether this is true or not. It

reconstructs F0, for each unit, from parameters of the atoms linked to that unit using

function 8.2. The sampled reconstructed signalS is then used for a Euclidean cost:

T Cost =
card(S )X

s=1

jf t
0(s) � f c

0(s)j (8.9)

where f t
0 and f c

0(s) are F0 sequences for target and candidate units resp.

4 Experiments

4.1 Experimental Process

While the objective is evidently to start from text and predict atoms, our work is divided

into 2 distinct steps. The aim, in a �rst step, is to determine whether atom decomposition

can help enhanceF0 contours in synthesized speech by �rst looking at what happens when

using only atom annotations (see3.1) and then to investigate ifF0 resynthesized with atoms

performs better than original in a target cost. For that �rst step, we synthesize texts for

which real speech exists, hence real atom annotations and real originalF0 measures are

used. This spoken version might come either from the same speaker as the speech corpus

or another one. So in this �rst case, the target cost data comes from an oracle. Then, in

a second step, models may be used to predict atoms or atom-based reconstructedF0, at

least if target costs prove to be e�cient enough. In this work, we focus on the �rst part

and we use 4 system variants:

ˆ The baseline system: �lters and concatenation cost only.

ˆ F0-sys system: baseline + target cost using F0 (from real speech stimuli) and

making a Euclidean distance with corpus units.F0 annotations were obtained with

the Kaldi pitch extractor [Ghahremani et al. 2014].

ˆ Atom-Pred-sys system: baseline+ Atom-Pred target cost.

ˆ Atom-Param-sys system: baseline+ Atom-Param target cost.
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Figure 8.1: Example of atom-basedF0 decomposition. The �rst frame showslog F0 ex-
tracted with Kaldi, reconstructed F0 and the phrase atom. In this graph, the phrase atom
is shown in brown, Kaldi F0 in blue and green and reconstructedF0 in pink. Second frame
shows a view of local atoms. Each atom is given a single color in that frame.

4.2 Experimental Data

For the experimental evaluation of this contribution, technical constraints concerning the

sampling frequency ofIVS voice (too low for one of our analysis tools) made it impossible

to use. We will therefore useAudiobook voice only. For the tests, we will use two corpora.

The �rst one is Audiobook test. In order to reduce the bias caused by having the same

speaker forAudiobook voice and the test corpus, we will also use another test corpus for

which the speaker is di�erent. This corpus consists of the same 100 sentences fromVarious

Stylesas in chapter7. In earlier chapter, only the text versions of the sentences inVarious

Styles were used. In this chapter, we also use the related speech recording to getF0

annotations and atoms. Each unit in both test corpora andAudiobook voice is annotated

with all atoms belonging to the unit, even if the impulse is located in an earlier unit. In

order to do this, we use the recordings made onVarious Styles (made by a di�erent speaker

than the one that recordedAudiobook). All atoms above an amplitude of 0.03 are used for

the cost function. It corresponds to the smallest amplitude threshold that is given to the

atom extraction tool while annotating the corpus.

4.3 Atom Decomposition

Atom decomposition is illustrated in �gure 8.1. The �rst frame shows log F0 extracted

with Kaldi tools (blue and green), reconstructed F0 (pink) and the phrase atom (line in

the middle, in brown). The second frame is a visualization of local atom positioning in

the sentence. We can clearly see in that frame that atoms that have a stronger amplitude

(positive or negative) are to be given a greater importance, which is the case in costAtom-

Param-sys. The reconstructed F0, here using only atoms that have an amplitude bigger

than 0.03, is actually very good. The main e�ect when comparing reconstructedF0 to
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Figure 8.2: In dark, the curve shows pitch contour and atom reconstruction of that contour
for the original sentence. Light gray ones show the same data for the synthesized version
of the sentence (withAtom-Param-sys).

original data as extracted by Kaldi is a smoothing of the curve, stripping it from smaller

variations. This is fortunate in our case as those smaller variations might indeed act as

noise in the cost function.

Figure 8.2 shows the same test stimulus synthesized withAtom-Param-sys. There,

dark curves representlog F0 for the original stimulus (from a di�erent speaker to the one

who recorded the corpus). Light curves representlog F0 for the generated sentence. The

two smooth curves show the atom-reconstructed contour while the other two give the real

one. Though the gap before the spike in the middle of the sentence does not exist in the

generated version, the rest of the curve seems to match correctly (for unit selection). It

has to be noted that even if synthesized samples appear to show better correlation for

Atom-Pred-sys and Atom-Param-sys, the overall distance between generated and original

F0 is similar for all 4 systems. Initial work shows there is no strong linear correlation

between generated and original contours but we assume a more complex form exists. No

particularly annoying phenomenon (beyond the forecastable meanF0 magnitude change)

to a di�erence of speaker was observed between sentences using atom annotations.

4.4 Subjective Evaluation

As an evaluation of the target costs, we performed aMushra test involving 7 native French

speakers. One of the main advantages ofMushra tests is that they do not require as much
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System Mean mark Centered mean
baseline 56.4 ±4.3 47.2 ±3.9
F0-sys 57.2 ±3.6 48.6 ±3.2
Atom-Param-sys 60.4 ±4.3 52.9 ±3.9
Atom-Pred-sys 60 ±3.6 51.3 ±3.3

Figure 8.3: Results of theMushra test with 7 listeners. Column mean mark shows raw
results. Centered mean is the same but centered to 50. Con�dence intervals are at 95%.

testers as other tests , so a capital of 7 testers is here better used than with a MOS or

an AB. The question proposed to testers was not targeted at general quality. Instead, the

question was the following: "How do you assess the quality of the PROSODY (intonation,

rhythm), and only prosody, of this sample?". As assessing only prosody is di�cult, only

experts used to listen to unit selection-based speech synthesis performed the test. Each of

the 12 steps of the test consists of a set of sentences (for each system tested), generated

from the same text, that the listener has to mark from 0 to 100 in relation to the question

above. 6 of the sentences came fromVarious Styles and 6 from Audiobook test. Again,

no real di�erence was observed in test results between sentences fromVarious Styles and

Audiobook test. Test conditions conformed to ITU-T recommendations [ITU-R 2015].

Table 8.3 shows the results for the test. Basically, the �rst column shows raw results

for the test. The second column shows the same results when centered to 50. What we can

observe is a distinct preference for atom-based costs, withAtom-Param-sys being more

than 5 points better than baseline on the centered data. While there is a degradation

with Atom-Pred-sys (regeneratedF0), it still outperforms both baselineand F0-sys. This

last one is performing particularly poorly, as it doesn't show any real improvement over

baseline. This is striking as the only real di�erence betweenF0-sys and Atom-Pred-sys is

the use of resynthesizedF0 in Atom-Pred-sys. More careful analysis, isolating trends for

each tester shows a quasi-unanimous ranking:Atom-Param-sys > Atom-Pred-sys > F 0-

sys � baseline.

As for now, more testers will be needed to re�ne results. Proof of a strong (non-linear)

correlation has also to be discovered. Nonetheless, atom-based target cost has proven to

be e�cient in listening tests. Moreover, resynthesizedF0 proves to be better �tted for unit

selection than original F0.

5 Conclusion

In this chapter, we described a newF0 target cost, which we elaborated in order to constrain

the F0 contour, based on atom decomposition of pitch. We assume the unit selection process

naturally chooses units that feature a homogeneousF0 (F0 is part of the concatenation

cost), most issues come from segments that have a very di�erent local contour than what is

expected. As local atoms model that segment-level/syllable-level information, and as there

are elements suggesting local atoms are related to physiological work, we made the hypothesis
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that using this data enhances synthesized prosody. A �rst target cost using parameters of

atoms was created and performed much better than a target cost based on realF0 in listening

tests. Regenerating theF0 from atoms and using this new contour in the target cost also

performed much better than originalF0. We can therefore validate our hypothesis. This

allows us to think that a target cost based on predictions of atom-reconstructedF0 (or

directly using predicted atoms, though it might be harder) will perform better than direct

prediction of F0, as it gets rid of microprosodic and estimation errors.
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Chapter 9

Work on the Concatenation Cost

�Enjoy every sandwich.�

Warren Zevon (1947�2003)

The role of the concatenation cost is to insure that joining two voice segments will not

cause any acoustic artefact to appear. For this task, acoustic distances (MFCC,F0) are

typically used but in many cases, this is not enough to prevent concatenation artefacts.

Among other strategies, the improvement of corpus covering by favoring units that natu-

rally support well the joining process (vocalic sandwiches) seems to be e�ective on TTS.

In this chapter, we investigate if vocalic sandwiches can be used directly in the unit selection

engine when the corpus was not created using that principle. First, the sandwich approach

is directly transposed in the unit selection engine with a penalty that greatly favors concate-

nation on sandwich boundaries. Second, a derived fuzzy version is proposed to relax the

penalty based on the concatenation cost, with respect to the cost distribution. We show that

the sandwich approach, very e�cient at the corpus creation step, seems to be ine�cient

when directly transposed in the unit selection engine. However, we observe that the fuzzy

approach enhances synthesis quality, especially on sentences with high concatenation costs.

1 Motivation

Discriminating the segments coming from the corpus that �t the requirements expressed via

the target sequence is usually done by ranking the units with an evaluation of the context

matching degree (target cost) and the risk of creating an artefact if concatenating the

unit (concatenation cost) via balanced cost functions. The concatenation cost typically
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relies mainly on acoustic features (MFCC,F0) [Stylianou and Syrdal 2001; Tihelka et

al. 2014] to evaluate the level of spectral resemblance between two voice stimuli on and

around the concatenation point. As for now, concatenation costs are far from being perfect

and audible artefacts appear both in commercial and research TTS systems, even after

post-concatenation processing. A few analyses, for example [Yi 1998], showed that these

artefacts occur more often on some phoneme than others. For instance, phonemes with

high context-dependency (e.g. liquids) might show substantial inter-occurrence spectral

variability [Lindblom 1963], which is particularly dangerous for unit selection, especially

because joining is usually done on phone centers (i.e., diphone boundaries). This being

considered, some authors tried to use phonologically motivated rules to prevent joining

on �risky� phonemes. For instance, in [Yi 1998] the authors successfully tested a penalty

system based on the phonological class of candidates to concatenation. A re�ned version of

this idea was used by D. Cadic in the context of recording-script construction in [Cadic et

al. 2009] to favor covering of what has been called "vocalic sandwiches", also with success.

Based on these considerations, we decided to assess the impact of vocalic sandwiches

back in the concatenation cost of a modern unit selection system, when a corpus was

not created using the �sandwich� process described in [Cadic et al. 2010]. We use the 3

phonologically-based phoneme clusters de�ned by [Cadic et al. 2009] to forbid concatena-

tions on phones believed to often cause joining artefacts. Believing this direct transposition

marginalizes acoustic concatenation costs, we develop an enhanced version that softens

penalties. This is done through the use of a fuzzy function that relaxes the penalty based

on the acoustic concatenation cost distribution. It allows to smoothen the constraints

imposed by sandwich penalties.

The main impact of this study is to improve TTS in the case of less controlled data,

such as audiobooks, by transposing a constraint originally proposed for the corpus creation

step directly into the TTS engine [Guennec and Lolive 2016]. The challenge is to know if

the e�ciency obtained at corpus building level can be found also at unit selection level. To

that respect, unit selection makes it much simpler than SPSS to add the sandwich feature

and test its e�ciency. Experiments show the e�ciency of the proposed approach and its

suitability for corpus-based approaches at a low cost.

The remainder of the chapter is organized as follows. In section2, we will present the

concept of vocalic sandwich as it is implemented in our work. Section3 �rst presents the

integration of sandwiches into the system as a simple penalty constraint system. Then a

fuzzy enhancement of the sandwich system, much more adaptive, is introduced. In section

4, we �rst describe our test data and then our experimental protocol. The experiments

and their results are then presented and discussed.

2 Enhancing Speech Corpora With Vocalic Sandwiches

Analysis of sentences containing artefacts shows that concatenation on some phonemes,

especially vowels and semi-vowels, is more likely to engender artefacts than others (plo-
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sives and fricatives for example, especially unvoiced ones) [Yi 1998]. Phonemes featuring

voicing, high acoustic energy or important context dependency are generally subject to

more distortions. Based on this claim, [Cadic et al. 2009;Cadic and D'Alessandro 2010]

proposed a corpus covering criterion where the objective is to get a maximum covering of

�sandwich units�. A sandwich unit is a sequence of phonemes where one or several syllabic

nuclei are surrounded by two phonemes considered as not likely to cause artefacts (we call

it �resistant� to concatenation artefacts). A sandwich can therefore be formally de�ned as:

R(A � V A� )+ R (9.1)

where + means 1 or more occurrences, * means 0 or more occurrences and R, A and V are

the three following phonetic clusters, which Cadicet al. justi�es in [Cadic et al. 2009]:

V (vowel) : Vowels, on which concatenation is hardly acceptable.

A (acceptable) : Semi-vowels, liquids, nasals, voiced fricatives and schwa. These units

are viewed as acceptable concatenation points, but still precarious.

R (resistant) : the remaining phonemes (unvoiced consonants, voiced plosives), where

concatenation is de�nitely possible. The word �Resistant� is used in the following to

describe units of this class.

3 Sandwiches in a Unit Selection Engine

In this section, we describe how we integrate sandwich clusters into the unit selection

concatenation cost, �rst with simple penalties and then with a much more re�ned fuzzy

version.

3.1 Phonologically Motivated Penalty Based on Sandwich Classes

For the purpose of our study, we de�ned two penalization methods based on the three

phonetic clusters de�ned in section2.

We chose these clusters speci�cally because they are the same as those presented and

justi�ed in [ Cadic et al. 2009], though the choice of elements put inside each cluster is

arguable, for example the choice of considering all vowels dangerous areas for joining.

As said earlier, using the phonetic class to constrain or penalize phonemes considered

as problematic for concatenation is not a novel idea, and a few works can be cited, for

example [Donovan 2001;Yi 1998]. However, in these works, costs and penalties are very

constraining, always trying to �nd the perfect unit (which may not exist in the corpus).

A key point of the idea we investigate here is that, because we do not want to add too

many constraints in the cost function, we only de�ned 3 subsets of phonemes. The purpose

of the penalty is not to act as a standalone cost, but simply to introduce knowledge that

is not captured by the concatenation cost and then help achieve a �ner ranking of units.
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Moreover, the proposed classes are based simply on basic linguistic/phonological knowledge

and it may be necessary to adapt them depending on the language.

The �rst method for applying the penalty, called pho-class, is to give a �xed penalty p(v)

to each phoneme class: 0 for phonemes in R, a penalty slightly higher than the highest value

of Cc observed in the corpus for all phonemes in A. Vowels (V) are given a huge penalty, big

enough to prevent compensation by other costs in the candidate sequence. It corresponds

to a penalization of candidate units based on the phonemes on which concatenation may

be performed if choosing this unit. In this case, a new concatenation cost functionC0
c is

formulated as:

C0
c(u; v) = Cc(u; v) + K (u; v) (9.2)

where K (u; v) = p(v) is the penalty depending on the phoneme that begins the unitv as

described before, which is the same as the phoneme endingu as we perform joining on

diphone boundaries.

3.2 Fuzzy Penalty System

The second method, calledfuzzy-pho-class, is to relax the penalty in certain cases. Thus,

we introduce a fuzzy weighting function giving to each penalty a weight ranging between 0

and 1 as shown on �gure9.1. It describes how satisfying the candidate unit is with respect

to its concatenation quality. Assuming MFCC, Amplitude and F0 cost distributions follow

normal distributions, we de�ne two thresholds for each sub-cost. For instance, the two

thresholds T1
F0

and T2
F0

for the F0 sub-cost may be de�ned as:

T1
F0

= � CF 0
� � CF 0

(9.3)

T2
F0

= � CF 0
+ � CF 0

(9.4)

Formally, the fuzzy function is de�ned, for the F0 sub-cost, as:

f F0 (u; v) =

8
>>><

>>>:

0 if CF0 (u; v) < T 1
F0

;

1 if CF0 (u; v) > T 2
F0

;

1:0 �
(T 2

F 0
�C F 0 (u;v ))

(T 2
F 0

�T 1
F 0

) otherwise:

(9.5)

The same is done forf MF CC (u; v) and f amp (u; v). This process sets thresholds at� � �

and � + � for each distribution. If a unit's sub-cost values less than� � � , it will get no

penalty. if it is more than � + � , a full penalty is applied. Finally, if it is in the between

(corresponding to about 70% of the distribution), a linear function is used to apply a weight

between 0 and 1 to the penalty.

The choice for that tolerance interval is motivated by the observation of real cost

distributions. Indeed, we observed that the 30% of the distributions that are under

� � � and over � + � are respectively much lower and much bigger than costs between
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Figure 9.1: Fuzzy function over the distribution of sub-costs. The weight 0 (resp. 1) is
given to units that have a concatenation costs approximately among the 15% lowest (resp.
highest) costs. Between these thresholds, the weight increases linearly.

these thresholds. To be complete, the choice of the thresholds should be di�erentiated

depending on the type of sub-cost and optimized separately.

Finally, the penalty is modi�ed in the following way:

K (u; v) = (f mfcc (u; v) + f amp (u; v) + f F0 (u; v)) � p(v) (9.6)

where f mfcc (u; v), f amp (u; v) and f F0 (u; v) correspond to the fuzzy functions of the form

described in �gure 9.1 respectively for MFCC, amplitude and F0. With those functions,

the main idea is to decrease the penalty when the unit has a concatenation sub-cost value

which is statistically among the best ones. These distributions are estimated using the

voice corpus by computing concatenation sub-costs forF0, amplitude and MFCC using all

units present in the corpus.

To sum up, if concatenation cost is above the higher threshold then we de�nitely have

to apply the full penalty as the unit considered is among worst possible units. Between the

two thresholds, we augment progressively the penalty as the concatenation cost increases.

4 Experimental Evaluation

In this section, we �rst analyze the behavior of our three methods (baseline, pho-classand

fuzzy-pho-class) in terms of concatenation costs, then our experimental protocol for the

perceptual evaluation is presented and �nally the results of our experiments.

4.1 Concatenation Costs Analysis

First we studied the evolution of costs using the three systems by comparing mean con-

catenation costs for resistant units only (class R), non-resistant units only (classes A, V)
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Table 9.1: Concatenation costs without penalties following the three strategies on 100
sentences ofVarious Styles. Note that penalties have been subtracteda posteriori. R, A
and V refers to classes introduced in section3.1.

Resistant units (R) Nonresistant Units (A, V) Both
IVS

� (std) N � (std) N � (std) N
baseline 2:90 (0:69) 582 3:14 (0:70) 1249 3:06 (0:71) 1831
pho-class 3:28 (0:92) 1025 3:35 (0:88) 813 3:31 (0:90) 1838
fuzzy-pho-class 3:35 (0:92) 1095 2:58 (0:42) 1169 2:95 (0:80) 2264

Resistant units (R) Nonresistant Units (A, V) Both
Audiobook

� (std) N � (std) N � (std) N
baseline 2:44 (0:52) 606 2:90 (0:60) 1057 2:74 (0:61) 1663
pho-class 2:65 (0:71) 865 3:14 (0:78) 785 2:88 (0:78) 1650
fuzzy-pho-class 2:65 (0:64) 907 2:47 (0:38) 1139 2:55 (0:52) 2046

and both together, each time excluding contiguous diphonemes. All these results are pre-

sented in table 9.1 for the same 100 sentences fromVarious Styles as in chapter 7. As we

can notice, the baseline system has lower costs for both resistant and nonresistant units

compared to pho-class system. An explanation is that the pho-class system, by penal-

izing non-resistant units, favors resistant units even if their concatenation cost is higher.

The number of concatenations made on resistant units (1025for IVS ) is then signi�cantly

higher compared tobaseline system (582for IVS ). As for fuzzy-pho-class, the results in

terms of number of concatenations are more balanced. Indeed, as good concatenations

on nonresistant units have no or low penalization, thefuzzy-pho-classsystem achieves the

lowest cost for nonresistant units. Introduction of variable penalties enables to evaluate

units more �nely than with pho-classsystem, for which all penalized units are equivalent.

A counterpart of this is that the number of concatenations globally increases for thefuzzy-

pho-classsystem, which is not a problem since they are better controlled. It is worth to

mention that these results are equivalent on both voices. We can then consider them to be

fairly independent from the voice type.

To sum up, the penalty seems to behave well as it enables to favor unit sequences with

a lower cost on sensible units and more concatenations on resistant units.

4.2 Subjective Evaluation Process

For test purposes, we used our two voicesAudiobook and IVS . The evaluation corpus is

the full test corpus Various Styles. The 27 141 test sentences were synthesised for our

3 systems (baseline, pho-classand fuzzy-pho-class). In order to evaluate the two sandwich

concatenation cost adaptations presented earlier, we carried out a total of 12 AB listening

tests split in 3 groups of four tests:

Random sentences: 4 tests where the sentences are picked up randomly among those

generated in our test set. This serves as a baseline evaluation which aims at studying if

the sandwich systems are, in average (i.e., in general), an enhancement overbaseline.
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Most di�erent sentences: 4 tests where the most di�erent synthesized stimuli pairs are

chosen. Choice of the most di�erent stimuli is made using DTW, as we presented in

[Chevelu et al. 2015]. It aims at revealing di�erences that might have been obscured

by the �rst set of tests by comparing the stimuli that are the most impacted by

sandwich methods. If tested methods are worse thanbaseline in these tests, this

methodology allows us to say sandwiches have mostly a negative impact on TTS, or

the reverse if results are in favor of sandwiches.

Sentences with highest concatenation cost: 4 tests where the sentences are the ones

that feature the biggest concatenation costs for thebaselinesystem. They correspond

to the sentences that most need improvement, and thus the primarily target we wish

to enhance with the sandwich costs. If these sentences are not enhanced, this most

likely means that sandwiches are ine�cient as their purpose is to prevent disastrous

concatenations more than enhancing joining quality.

Each test was made by 10 expert testers, each one evaluating 10 distinct stimuli pairs. 100

stimuli pairs are evaluated in total (all 100 synthesized from distinct sentences), each tester

evaluating his own set of stimuli. In every test, the standard question concerning overall

quality is asked. For the last set of tests however, (high concatenation costs), a second

question is asked along with the �rst one, this time over concatenation quality. Because

of the di�culty to answer this question, the choice of expert testers is here particularly

justi�ed. For each set of 4 tests, we carry out two tests usingIVS voice and two with

Audiobook. For each voice, one test compares systembaseline with pho-class, the other

with fuzzy-pho-class. Test conditions are studio-like and follow ITU-T recommendations.

4.3 Results

Table 9.2 presents the results of the tests for the comparisonbaseline versus pho-class.

Each line corresponds to one AB test. Column 1 indicates the voice used for the test and

column 2 the selection method for the test sentences (�R.� for random, �DTW� for most

di�erent and �C. C.� for highest concatenation cost). Column 3 refers to the question asked

during the test: either �C. Q.� for the question on concatenation quality or �G. Q.� for the

assessment of global quality. Using the same representation, results for thefuzzy-pho-class

method are presented on table 9.3.

First, if we compare the behavior of the systems regarding the number of concatena-

tions (table 9.1), we �nd that both pho-classand fuzzy-pho-classlead to a larger number

of concatenations thanbaseline. This situation is completely normal as the acoustic con-

catenation cost aims at minimizing the number of concatenations as selecting a long unit

means putting one or several diphone costs to 0. The sandwich cost aims at forbidding

concatenations on some phonemes, some of them being long unit boundaries. This is not

a problem: two well made (and therefore inaudible) concatenations are worth much more

than one failed joining. When looking at the phoneme classes on which concatenations are
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Table 9.2: Results for the AB listening tests for thepho-classsystem. Lines concerning
tests on random sentences have the mention �R.� in the second column. �DTW� is for tests
with most di�erent sentences and �C. C.� for tests on sentences ofbaselinewith the highest
concatenation costs. Column 3 displays �G. Q.� when the question was on global quality
and �C. Q.� when it was on concatenation quality only.

Answers
Base pho-class Indi�erent

R. G. Q. 45% 34% 21%
DTW G. Q. 31% 34% 35%

C. C.
C. Q. 33% 30% 37%

IVS

G. Q. 30% 35% 35%
R. G. Q. 38% 39% 23%

DTW G. Q. 47% 32% 21%

C. C.
C. Q. 38% 31% 31%

Audiobook

G. Q. 39% 30% 31%

Table 9.3: Results for the AB listening tests for thefuzzy-pho-classsystem. Please refer
to table 9.2 caption for explanation of the table.

Answers
Base fuzzy-pho-class Indi�erent

R. G. Q. 35% 40% 25%
DTW G. Q. 31% 48% 21%

C. C.
C. Q. 20% 59% 21%

IVS

G. Q. 27% 49% 24%
R. G. Q. 43% 42% 15%

DTW G. Q. 42% 46% 12%

C. C.
C. Q. 33% 38% 29%

Audiobook

G. Q. 36% 43% 21%

made, we see thatpho-classand fuzzy-pho-classproduce much more (about twice more)

concatenations on robust (cluster R) phonemes. This is the proof the two methods work

as expected. In addition,fuzzy-pho-classalso causes substantially more concatenation on

A and V clusters, as intended. DTW score distributions are similar in terms of shape

(Gaussian) and magnitude.

Second, from the listening tests results, we observe that thepho-classapproach seems

largely ine�cient (at best) when integrated directly in the unit selection engine, as shown

in every test made with the method. In some cases, it was even counter-productive: the

AB test on random sentences forIVS clearly show it, and the same conclusion can be

observed on 3 tests out of 4 concerningAudiobook voice. What is also noticeable is the

high quantity of �indi�erent� ratings, proof that the di�erence between the two systems

isn't very clear. So we can say that, if sandwiches proved useful for the construction of a

recording script (cf. Cadic et al. 2009), they prove ine�cient, or even counter-productive

when directly integrated into the concatenation cost.



5. CONCLUSION 139

On the contrary, for almost every test with IVS voice, a clear superiority of thefuzzy-

pho-classapproach can be observed. The result is also observable forAudiobook voice,

though with a smaller gap. Audiobook voice faring better than IVS , the lesser di�erence

for the �rst one seems logical. Concatenation quality is perceived better withfuzzy-pho-

class. The number of �Indi�erent� answers is also consistently lower for fuzzy-pho-class,

meaning that di�erences are more easily felt. In conclusion,fuzzy-pho-classapproach proves

to be e�ective thanks to the degree of �exibility it adds in regard to pho-classmethod.

In particular, we observe that fuzzy-pho-classranking is betweenpho-classand baseline,

which means it alters baseline ranking, based solely on acoustic measures that we know

are imperfect, but not as much aspho-class(which completely changes the ranking and

loses the information of acoustic measures). It is also interesting to see that the controlled

corpus IVS , was more a�ected by sandwiches thanAudiobook, which is completely uncon-

trolled. The question this raises is the following: is it the quality of Audiobook voice or

its uncontrolled nature that causes the observed lower performance of sandwiches for that

voice?

We believe that the key to the success of all these measures (includingfuzzy-pho-class),

is a close integration in the concatenation cost. The penalty cannot hide the ranking

provided by acoustic costs, and this for a good reason: these penalties aim at correcting

acoustic rankings on key points, using expert knowledge (and it is exactly what sandwiches

at corpus building level does). But a too constraining penalty system (i.e., pho-class),

which is not a good concatenation cost on its own, causes a complete re-ranking of the

system, hence the drop in quality.

Though this contribution was made with a particular focus on French language but our

conclusions should apply to other language, especially syllable-timed languages. Indeed,

besides French,fuzzy-pho-classmethod was also applied on Indian languages for the Bliz-

zard Challenge 2015 [Alain et al. 2015]. Though no dedicated listening test was carried

out to compare fuzzy-pho-classto baselineon these languages, the former seemed to yield

better results.

5 Conclusion

In this chapter, we have presented a study of the impact of vocalic sandwiches back in the

concatenation cost of a modern unit selection system, through two penalty-based systems.

This penalty enables to avoid some artefacts during synthesis and its fuzzy version pre-

serves the ranking made by acoustic components of the concatenation cost. The subjective

experiments we conducted show a better performance for fuzzy version both for a neutral

and an expressive voice. It shows that the concatenation cost does not capture all the per-

ceptual information and that adding some preferences over the type of units to concatenate

improves the synthesized speech quality. On the contrary, pho-class method, which fares

well at script construction level, seems largely ine�cient when integrated directly in the

unit selection engine. Along with other elements, this leads us to think that penalty sys-
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tems are not a form to privilege in the cost function. The impact of the fuzzy method is

particularly clear with IVS voice, which we can explain by the fact that its quality is lower

than Audiobook (so that there is more room for improvement).



General Conclusion

Work during this thesis has been centered around unit selection algorithms and cost

functions for corpus-based speech synthesis systems. As part of this e�ort, our �rst task

was to participate in the creation and sustained development of a completely new TTS

engine, the IRISA Text-To-Speech system. This task has taken considerable development

and maintenance time. Nonetheless, it allowed us to conceive the system, from the very

beginning, so that several search algorithms and modular cost function could be easily

implemented.

In chapter 5, we presented the tools that were used to feed the TTS system with speech

data, which we also worked on intensively: theROOTS toolkit and then the lighter TTS-

corpus format were used to allow synthesis with an expressive male voice,Audiobook, and

a neutral voice, IVS . We saw that IVS and Audiobook voices were close to average French

corpora, with slight variations for Audiobook due to its literary origins. Working on two

French speaking voices, our work is consequently to be put in the context of that language,

even though we occasionally synthesized English and several Indian languages for the Bliz-

zard challenge.

Our research work was done in two successive parts: �rst, we focused on the selection

algorithm and the constraints posed by the preselection �lters. Then, our work focused

on the selection cost, where we made three propositions: a proposition to use atoms � a

generalized version of Fujisaki's command-response model � to controlF0 (and possibly

more general prosodic aspects), a proposition of cost integrating long-term constraints in

the usually short term cost function � used to constrain duration but transposable to other

measures � and �nally a proposition of fuzzy penalty system for the concatenation cost.

Most of our work was achieved at ENSSAT, France. The work on atoms was performed

during the 5 (exciting) month we spent at IDIAP, Switzerland, in our 3 rd year of PhD

though.

141
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Summary of the Contributions

The �rst � and consequent � part of our research work focused on the unit selection algo-

rithm and the unit selection graph (therefore including preselection �lters), in particular

the consequences of preselection on the richness of the selection graph. In our design, at

least for the baseline system we presented in chapter 6, preselection �lters act as a bi-

nary target cost, considering that if a unit does not �t a minimum number of linguistic

and phonological criteria it has no place in the selection graph. Now, this is a double

edged sword: the least there is nodes in the selection graph, the fastest selection will be;

but the fewest the nodes, the least e�ective is the selection function (as it will then lack

enough choice to be e�cient). The join cost is particularly a�ected by the lack of choice

as preselection �lters implement target cost features. Our �rst experiment was therefore

to assess the impact of our �lters on the synthesis. The experiments we conducted proved

our �nal set of �lters, presented in section 1.3, to be e�cient in reducing selection time

without causing harm to the selection algorithm. Furthermore, this experiment allowed

us to perform a �rst veri�cation of the e�ectiveness of our cost function: confronting the

best possible path with the worst one showed a very consequent gap, as expected. In the

same experiment, we tested the impact of the preselection step on synthesis quality. We

saw that �lters did bring a consequent increase in speech quality, validating our point of

view that it should be considered as part of the cost function, even though it is acting

before the insertion of a node in the unit graph. This last point means that the more

preselection �lters are used, the less choice is given to the actual cost function as less nodes

are added to the graph. This means a subtle balance between the number of �lters and

the number of nodes included in the graph has to be respected to yield best result. During

the development of our system, we therefore added a mechanism relaxing the �lter set

when a minimal constraint on the number of nodes selected by the �lters was not met (10

nodes in our experiments). Nonetheless, even with this mechanism, adding too many �l-

ters may result in a quality drop as the minimal number of nodes would rarely be exceeded.

Once these preliminary � but fundamental � results were obtained, we investigated the

impact of the selection algorithm on the unit selection process; this is our �rst contribu-

tion. We implemented a unit selection block where the selection process searching the best

unit sequence relied on anA � search algorithm, which is more generalist that the usual

Viterbi. Yet, we showed memory usage and ultimately computation time was more inter-

esting with A � than Viterbi and even some under-optimal Viterbi-based algorithms, like

the beam-search algorithm we implemented (when the beam size in su�ciently consequent

of course). For this experiment, we implemented 3 variants of the beam-search algorithm,

with beam sizes of 10, 100 and 1 000 units (i.e. nodes).

This result is nuanced by the overall speech quality obtained with the 4 algorithms,

which listening tests showed as roughly equivalent forA � and beam-search with a beam
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size of a few hundred. The results of the beam-search begin to degrade only when pruning

gets consequent (i.e. with a beam size between 100 and 10 units). This result, which

may sound astonishing at a glance, is easier to understand with the last experiment we

performed. We explored the � sorted � list of the 100-best paths found by our optimalA �

algorithm and saw there was quite few variabilities in the selected sequences. A listening

test comparing the 1st , 10th , 50th and 100th paths showed some degradation of the signal

over the rank of the selected path, especially for the 100th , but not as big as one could

have thought.

After this work, we focused on the target cost and proposed two enhancements. The

�rst one is a new way to compute a cost which aims at selecting the whole unit sequence

that best minimizes a distance rather than choosing the sequence containing units that in-

dividually minimize the same distance. The objective is to include long term dependencies

directly in the cost function, without any modi�cation anywhere else. This new cost com-

putation technique was tested on a phonemic duration distance, with the intent to avoid

cases like excellent synthesis penalized by few very bad units. As the computation method

is independent from the distance used within, it can also be used for the concatenation

cost. Experiments showed that the new cost yielded to better synthesis, especially with an

expressive voice.

The second proposition on the target cost we presented is aF0 cost, aiming at con-

straining the F0 contour via a generalized version of Fujisaki's Command-Response model

called �atom decomposition of pitch�. This cost is based on the assumption that the unit

selection process naturally chooses units that feature a homogeneousF0, a consideration

reinforced by the fact F0 is part of the concatenation cost. As most issues come from

segments that have a very di�erent local contour than what is expected, we believe that

local atoms � modelling segment-level/syllable-level information by Gaussian functions �

can enhance synthesized prosody if integrated in an appropriate target cost. We built a

prototype which used parameters of atoms and compared it to a system using a regular

F0 target cost (in addition to the concatenation F0 cost, present in both systems). Both

systems were oracles, meaning they used realF0 and real atom parameters extracted from

it instead of predicted values. In that perceptive test, we saw our new cost performing

much better than the regular F0 target cost.

Finally, leaving the target cost, we developed a penalty system based on the notion of

vocalic sandwich [Cadic et al. 2009]. Following an ordering of phonemes into 3 phonologi-

cally motivated clusters � the same as D. Cadic's [Cadic et al. 2009], penalties are applied

in order to favor concatenations on phonemes known for their ability to support concate-

nations well. That kind of penalty has been the subject of several contributions for unit

selection. Most propositions focused on two aspects: either preventing concatenations on

vowels, known to be di�cult to join without causing the appearance of artefacts in the
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signal, or favoring the concatenation on syllable borders; which is almost equivalent. The

di�erence with the approach we explored lies in the fact that we consider some phonemes

that are not vowels can potentially prove as problematic (perhaps even more) than vowels

(this is the case of liquids), and we also tend to prevent concatenations on these phonemes.

The second and biggest di�erence lies in the fuzzy function we de�ned to smoothen the

penalty based on the relative magnitude of the concatenation sub-costs in regard to their

distributions. This fuzzy function is the key point of the technique we presented. E�ec-

tively, experiments did show a clear superiority of that approach over ourbaselinesystem

and the result stands for all tested voices, expressive or not.

Perspectives

During this thesis, I �rst reviewed the standard unit selection mechanics and proposed an

updated search architecture based on theA � algorithm. In a second part, I focused on the

component driving the search algorithm, the selection cost, and proposed enhancements to

its sub-parts that enhanced synthesis quality.

My contributions helped identify and understand clearly the impact on synthesis of all

major components of the unit selection search engine � preselection �lters and subsequently

the unit graph (and graph size), search strategy, formulation of the cost and sub-costs � as

well as the interactions existing between these components. Even though, the work I have

been undertaking could bene�t several extensions, some planned but not realized by lack

of time, others simply diverging too much from my research topic. The most important

extensions are detailed hereafter:

On the selection algorithms work: For the work on the selection costs, we have fo-

cused on a very precise comparison,A � versus Beam-search (and Viterbi by exten-

sion). Albeit this comparison probably is the one that makes most sense, it could be

extended to more algorithms, including some exotic algorithms already experimented

(R. Kumar's genetic implementation for instance). The experiment we accomplished

concerning the 100-best paths is a punctual � yet embryonic � work. The aim of this

analysis was never to complete an extensive study of the variability of unit sequences

in all possible paths as it is a full study subject on its own. Such a subject would espe-

cially require an experimentation on a consequent quantity of data. Rather, our aim

was to give some insight on what level of variability actually existed on the supposed

range of paths that could be selected by the algorithms we have been taking into

consideration. Even though, extending our study to a larger scale would certainly

yield interesting conclusions. Concerning preselection �lters, a full experiment could

be made with very di�erent sets of �lters. Optimization methods, allowing to �nd

the best set among a range of �lters would also prove interesting. Indeed, presently,
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preselection �lters are often � if not always � selected by hand, at best with a small

empirical evaluation (as for target and concatenation costs weights and sub-weights).

On the duration target cost: An interesting extension of our work on the �adaptive�

duration target cost is to test activating the duration cost only on some sub-parts of

the target sequence, when particular conditions are met. For instance, it could prove

particularly useful when strong relaxation of preselection �lters happened or simply

when there is a high concatenation cost. A distinct pause duration model, which could

use the same speci�cations as the duration target cost could and even should also be

added. Implementing an intonation target cost relying on aF0 contour prediction

model is also part of our next work. However, the most important extension to this

work should certainly be to test the generalization of the new �adaptive� distance

to more costs (target and concatenation) of the cost function. This would require

some deep changes inside concatenation sub-costs though, as the �adaptive� cost is

based on a distance with a target value. However, some concatenation sub-cost (the

F0 sub-cost in particular), operating on some parameter, could be mixed with a

second sub-cost trying to minimize the distance, on the same parameter, between a

candidate unit and the mean in the candidate sequence. All sub-costs are not �t for

this (our MFCC sub-cost for instance), but the problems the �adaptive� cost tries to

�x are present for most sub-costs of the cost function.

On the atom target cost: In our work on atoms, we tested an �oracle�. The TTS sys-

tem, for the atom cost, relies on atom components extracted from actual annotations

made on real speech data. Therefore, this work is not absolutely complete. Prediction

of atom components and atom-reconstructed contours must be done, and evaluation

of the resulting system has to be performed to get a reliable indicator of gains using

atoms in a target cost. We assume directly predicting reconstructed contour is easier

than predicting discrete events or parameters like atom impulses or amplitude. As

it is smoother than real F0, and especially as it is a sum of Gaussian functions, the

reconstructed contour is easier to predict than realF0. Results (especially from the

listening test) are good, but the gap between atom-based costs and others is not as

wide as expected. As the predictions given by a model may degrade the quality of

atom annotations, �nal results using a predictor might not be strongly better than

the current ones.

On the sandwich penalty system: Further improvement of the fuzzy method can be

made though. In particular, more advanced fuzzy patterns might be investigated.

Further work should be conducted about classi�cation of phonemes in sets R, A and

V. These subsets shouldn't be considered �xed and investigation on how they com-

pare with other classi�cations should be done. In particular, liquids and glides could

be added to V as they are usually problematic. Investigating language dependence of

those classes is another important path. Finally, it would be particularly interesting
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to activate the fuzzy penalty only when the concatenation cost magnitude becomes

considerable. Moreover, the e�ectiveness of the fuzzy approach may be evaluated on

corpora built using a recording script optimizing vocalic sandwich covering (following

methodology in [Cadic et al. 2009]).

Finally, considering the fact that all our experiments were made on French corpora,

internationalization of our conclusions is another challenge that takes sense. Since recently,

this task is possible with the integration of new multi-lingual tools in the frontend of

the IRISA TTS system. Some of our results are certainly directly transposable in most

languages (the work on selection algorithms for instance) while others might share a bound

with the French language, for example the duration cost (even though the cost mechanism

itself � the most important part actually � seems directly transposable). In particular, our

work on the fuzzy sandwich penalty should be tested on other languages, as it shows great

promises.
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Appendix A

TTS Corpus Key Content

Each item in the TTS corpus has a key that is loaded on runtime (see section1.3). The

list of the 69 subparts of the key is given on the following �gure:

Table A.1: List of the 69 subparts of the TTS corpus key

de�ning each phone and NSS.

subkey bit sta. bit len. value m. code meaning

0 0 6 34 0 segmental label

1 6 1 0 1 phone is in the onset of the syllable

2 7 1 0 2 phone is in the coda of the syllable

3 8 1 0 3 item is a non-speech sound

4 9 1 0 4 phone ends a breath group

5 10 1 0 5 phone ends a word

6 11 1 0 6 phone ends a sentence

7 12 1 0 7 phone is in the last syllable before NSS1

8 13 1 0 8 syllable is at the beginning of the word

9 14 1 0 9 syllable is at the end of the word

10 15 1 0 10 sandwich robustness class C

11 16 1 0 11 sandwich robustness class W

12 17 1 0 12 sandwich robustness class V

13 18 1 0 14 has to be ignored during selection process

14 19 1 0 15 syllable has an onset

15 20 1 0 16 syllable has a coda

16 21 1 0 17 phone position in the syllable

17 22 1 0 19 item is the �rst phone of the syllable

18 23 1 0 20 item is the last phone of the syllable

Continued on next page

1 i.e.; at the end of the end of the breath group.
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subkey bit sta. bit len. value m. code meaning

19 24 1 0 21 syllable is the last one in the sentence

20 25 1 0 22 phone is rising

21 26 1 0 23 phone is descending

22 27 1 0 24 syllable is rising

23 28 1 0 25 syllable is descending

24 29 1 0 26 phone has diacritic long

25 30 1 0 27 phone is nasalized

26 31 1 0 28 phone has a low stress

27 32 1 0 29 phone has a high stress

28 33 1 0 30 phone is vowel

29 34 1 0 31 phone is liquid

30 35 1 0 32 phone is pulmonic

31 36 1 0 33 phone is plosive

32 37 1 0 34 phone is fricative

33 38 1 0 35 phone is approximant

34 39 1 0 36 phone is trill

35 40 1 0 37 phone is lateral

36 41 1 0 38 phone is �ap

37 42 1 0 39 phone is dental

38 43 1 0 40 phone is alveolar

39 44 1 0 41 phone is velar

40 45 1 0 42 phone is glottal

41 46 1 0 43 phone is front

42 47 1 0 44 phone is back

43 48 1 0 45 phone is palatoalveolar

44 49 1 0 46 phone is retro�ex

45 50 1 0 47 phone is palatal

46 51 1 0 48 phone is uvular

47 52 1 0 49 phone is pharyngeal

48 53 1 0 50 phone is epiglottal

49 54 1 0 51 phone is near front

50 55 1 0 52 phone is central

51 56 1 0 53 phone is near back

52 57 1 0 54 phone is close

53 58 1 0 55 phone is near close

54 59 1 0 56 phone is near open

55 60 1 0 57 phone is mid

56 61 1 0 58 phone is close mid

Continued on next page
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subkey bit sta. bit len. value m. code meaning

57 62 1 0 59 phone is open mid

58 63 1 0 60 phone is click

59 64 1 0 61 phone is voiced implosive

60 65 1 0 62 phone is ejective

61 66 1 0 63 phone is bilabial

62 67 1 0 64 phone is labiodental

63 68 1 0 65 phone is rounded

64 69 1 0 66 phone is double

65 70 1 0 67 phone is a�ricate

66 71 1 0 68 phone is voiced
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Appendix B

Phonemic Alphabets and

Appearance Frequencies

ConcerningIVS corpus, distributions are very close to those F. Wioland observed [Wioland

1985], except for phonemes [ø] and [@], which are inverted. The reason is the low di�erence

between the two phonemes in French. Some phonemes [ø] can therefore be noted [@] in the

database. In particular, [@] is often pronounced when it could be omitted. It is introduced

by epenthesis, that is, it serves to ease the pronunciation of neighboring phones and is

usually equivalent to a schwa (which is not a phoneme). Phoneme [ñ] is assimilated to

the sequence [nj] and is therefore absent formIVS . [­], used quasi-exclusively for words

imported from English, is also omitted. [ñ] and [­] are present in Audiobook.

In both corpora, liquid consonant [K] is grouped with its regional variants [r] and [ö].

All three are noted [K]. Phoneme [ �÷] is not present in Audiobook. It is assimilated to

phoneme [�E]. Appearance frequencies forAudiobook are compatible with Wioland's, with

sensible variations due to the literary nature of the corpus.
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Phonemes representation Frequency of the phoneme (%)
IPA IVS Audiobook Example Wioland [Wioland 1985] IVS Audiobook

Consonants
K K rr rat 7,5 8,23 7,89
l l ll lait 6 6,64 6,21
s s ss sac 6,5 6,04 5,52
t t tt tas 5,5 5,74 5,43
d d dd dos 4,5 4,45 4,42
p p pp pas 4 3,47 3,59
k k kk cas 4,5 3,37 4,09
n n nn nid 3 3,26 3,15
m m mm mot 3 2,83 3,92
v v vv v ie 2,5 2,27 2,46
z z zz zèbre 1,5 1,87 1,71
f f � f in 1,5 1,53 1,32
b b bb bien 1 1,22 1,22
Z Z jj joue 1,5 1,13 1,52
g g gg gare 0,5 0,77 0,50
S S ch vache 0,5 0,62 0,55
ñ - gn agneau - - 0,08
­ - ng parking - - 0,00

Semi-vowels
j j yy taille 2 2,17 1,54
w w ww oui 1 0,91 0,95
4 4i uy puis 0,5 0,40 0,43

Vowels
a a aa plat 8 7,46 7,54
ø ø eu jeu 0,5 4,29 3,85
E E ai fait 5 4,20 6,57
i i ii lit 5,5 5,23 4,89
o o au mot 2 2,13 1,11
u u ou cour 2,5 1,79 2,16
y y uu rue 2 2,21 2,14
e e ei dé 5,5 5,84 4,95
O O oo bosse 1,5 1,46 1,68
÷ ÷ oe coeur 0,5 0,68 0,53
@ @ ee cheval 3,5 0,64 1,70
ã ã an blanc 3,5 3,34 3,37
õ õ on ton 2 2,09 1,61
�E �E in brin 1 1,21 1,41
�÷ �÷ - brun 0,5 0,51 -

Figure B.1: Phonemes used in the thesis voice corpora and their appearing frequencies.
Equivalents to IPA standard notations (used throughout the thesis) are given for IVS
and Audiobook (full corpora). Symbol �-� means the phoneme is not present in the given
corpus (never realized or merged with another phoneme). Appearance frequency for these
phonemes are given for the two corpora, along with the frequencies observed by F. Wioland
[Wioland 1985].
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Example of Sentences Used in the

Listening Tests

The following text is an extract of the 27141 sentences synthesized for each listening test:

Ils sont absolument privés de tous leurs droits civiques ;

Mais je ne dois pas laisser les questions de politique scolaire me détourner de

mon sujet.

Reste, comme je l'ai signalé plus haut, une objection :

Mes lecteurs vont penser à présent que je ne suis guère logique avec moi-même.

Mais bornons là notre éloge de cet élément bénéfique et expliquons-nous.

Un exemple fera plus pour éclairer ma pensée que tout un volume de généralités.

Supposons que je voie approcher deux individus dont je désire déterminer le rang.

Mais je ne dois pas céder à la tentation de m'étendre sur ce sujet.

Telle est du moins la pénible leçon que l'expérience m'a enseignée.

La situation de cette minorité qui n'a pas réussi est réellement pitoyable.

Rejetés par les classes supérieures, ces gens sont aussi méprisés par leurs infé-

rieurs.

Les professions libérales, les services publics leur sont fermés ;

La dimension des côtés dépendra, bien entendu, de l'âge de l'individu.

Mais la dimension de nos côtés n'est pas notre propos.

Si nos côtés étaient inégaux, nos angles pourraient l'être aussi.

Mais la vie serait trop brève pour ces tâtonnements monotones.

Et sinon, comment l'empêcher de semer la désolation dans les rangs de ses camara-

des ?

La mode se répandit comme une traînée de poudre.

Inutile de dire qu'elle ne tarda pas à s'étendre aux régions voisines ;

En ce temps-là, vivre était un délice en soi, car vivre, c'était voir.

Toute assemblée, même réduite, réjouissait le regard ;

Il suffira d'une brève explication pour le leur faire comprendre.
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Vous verrez, bien entendu, une ligne droite, moitié rouge, moitié verte.

La malheureuse épousée se suicida en découvrant la fraude dont elle avait été vic-

time.

Un certain nombre d'entre elles s'y avouèrent ouvertement opposées ;

Il leur faudrait à présent sacrifier cette ambition honorable.

La bataille, ou plutôt le carnage, fut de courte durée.

Je devrais plutôt dire qu'il aurait beaucoup de mal à le faire ;

Plus d'un enfant plein de promesses a été sacrifié de cette manière.
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Résumé : La synthèse de la parole par corpus (sélection d'unités) est le sujet principal

de cette thèse. Tout d'abord, une analyse approfondie et un diagnostic de l'algorithme

de sélection d'unités (algorithme de recherche dans le treillis d'unités) sont présentés.

L'importance de l'optimalité de la solution est discutée et une nouvelle mise en oeuvre

de la sélection basée sur un algorithmeA � est présenté. Trois améliorations de la fonction

de coût sont également présentées. La première est une nouvelle façon � dans le coût cible

� de minimiser les di�érences spectrales en sélectionnant des séquences d'unités minimisant

un coût moyen au lieu d'unités minimisant chacune un coût cible de manière absolue. Ce

coût est testé pour une distance sur la durée phonémique mais peut être appliqué à d'autres

distances. Notre deuxième proposition est une fonction de coût cible visant à améliorer

l'intonation en se basant sur des coe�cients extraits à travers une version généralisée du

modèle de Fujisaki. Les paramètres de ces fonctions sont utilisés au sein d'un coût cible.

En�n, notre troisième contribution concerne un système de pénalités visant à améliorer le

coût de concaténation. Il pénalise les unités en fonction de classes reposant sur une hiérar-

chie du degré de risque qu'un artefact de concaténation se produise lors de la concaténation

sur un phone de cette classe. Ce système est di�érent des autres dans la littérature en cela

qu'il est tempéré par une fonction �oue capable d'adoucir le système de pénalités pour les

unités présentant des coûts de concaténation parmi les plus bas de leur distribution.

Mots clés: Synthèse de la parole ; synthèse par corpus ; sélection d'unités ; algorithme

de recherche de chemin dans un graphe ; coût cible ; coût de concaténation.

Summary: This PhD thesis focuses on the automatic speech synthesis �eld, and more

speci�cally on unit selection. A deep analysis and a diagnosis of the unit selection algo-

rithm (lattice search algorithm) is provided. The importance of the solution optimality is

discussed and a new unit selection implementation based on aA � algorithm is presented.

Three cost function enhancements are also presented. The �rst one is a new way � in the

target cost � to minimize important spectral di�erences by selecting sequences of candi-

date units that minimize a mean cost instead of an absolute one. This cost is tested on

a phonemic duration distance but can be applied to others. Our second proposition is

a target sub-cost addressing intonation that is based on coe�cients extracted through a

generalized version of Fujisaki's command-response model. This model features gamma

functions modeling F0 called atoms. Finally, our third contribution concerns a penalty

system that aims at enhancing the concatenation cost. It penalizes units in function of

classes de�ning the risk a concatenation artefact occurs when concatenating on a phone

of this class. This system is di�erent to others in the literature in that it is tempered by

a fuzzy function that allows to soften penalties for units presenting low concatenation costs.

Keywords: Speech synthesis; corpus-based speech synthesis; unit selection; graph

path�nding algorithm; target cost; concatenation cost.
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