
HAL Id: tel-01439413
https://theses.hal.science/tel-01439413v1

Submitted on 18 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of unit selection text-to-speech synthesis
algorithms
David Guennec

To cite this version:
David Guennec. Study of unit selection text-to-speech synthesis algorithms. Data Structures and
Algorithms [cs.DS]. Université de Rennes, 2016. English. �NNT : 2016REN1S055�. �tel-01439413�

https://theses.hal.science/tel-01439413v1
https://hal.archives-ouvertes.fr

ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
École doctorale Matisse

présentée par

David Guennec
préparée à l’unité de recherche IRISA UMR6074

Institut de Recherche en Informatique et Systèmes Aléatoires
École Nationale Supérieure des Sciences Appliquées et de

Technologie

Étude des algorithmes

de sélection d’unités
pour la synthèse de

la parole à partir du

texte

Thèse soutenue à Lannion
le 22 septembre 2016

devant le jury composé de :

Nick Campbell
Professeur, Trinity College Dublin / rapporteur

Ingmar Steiner
Senior researcher, Université de Saarland / rappor-
teur

Yves Laprie
Directeur de recherche, CNRS, LORIA/examinateur

Élisabeth Delais-Roussarie
Directrice de recherche, CNRS, LLF/ examinatrice

Philip N. Garner
Senior researcher, Idiap Research Institute / exami-
nateur

Damien Lolive
Maître de conférences, Université de Rennes 1 / Di-
recteur de thèse

“No one regards what is before his feet; we all gaze at the stars.”

Quintus Ennius (239–169 BC)

Acknowledgements

i

Résumé en français

Le présent résumé est une version condensée en français de l’ensemble des
considérations, hypothèses et expérimentations, agrémentées de leurs résultats,
présentés en langue anglaise dans cette thèse. Dans ce résumé, un soin partic-
ulier a été apporté au respect du même ordre de présentation des idées apportées
dans la thèse en anglais et dans le présent résumé, de sorte que chaque chapitre
du premier correspond à une section du dernier. Par exemple, la section II du
présent résumé décrit le contenu du chapitre 2 dans la partie en langue anglaise.

Introduction

Les travaux de thèse présentés dans ce documents portent sur le sujet qu’est
la synthèse de la parole à partir du texte, lequel peut être décrit comme un
objet d’étude pluridisciplinaire [Boë 1990; Boeffard 2004]. En effet, l’étude de
la parole humaine fait autant appel aux considérations anatomiques, et donc
issues de la médecine, pour décrire l’appareil vocal humain qu’à la physique
pour comprendre la mécanique des flux d’air (l’acoustique) interagissant au
sein de ce dernier. En outre, parce que la parole est le vecteur d’un message
doté de sens, l’étude de ce dernier, la linguistique, y prend également une place
prépondérante.

La synthèse de la parole fait appel à l’ensemble de ces sciences, auxquelles il
faut ajouter l’informatique. Avec l’émergence de l’informatique, les « machines
parlantes » sont sorties des salles où elles étaient entreposées et où elles étaient
souvent commandées à la main pour se retrouver au coeur de calculateurs aux
capacités de traitement et de stockage en constante évolution. En effet, la syn-
thèse de la parole visant la production d’un outil capable de produire un signal
de parole sans intervention humaine directe, cet outil doit être doté d’un degré
minimal d’automatisation. Comme dans de nombreux domaines, la majorité
des systèmes de synthèse de la parole actuels ne tentent pas de reproduire le
fonctionnement naturel de la bouche, du larynx et des poumons. Des systèmes
relevant de cet ordre existent bel et bien (il s’agit de la synthèse dite articu-
latoire), mais leur intérêt reste académique : ils visent à toujours mieux mod-
éliser l’appareil vocal humain afin de le comprendre, de la même manière que
les modèles de systèmes planétaires ou galactiques en physique visent à valider
des théories par l’expérimentation. Lorsque la qualité de la parole synthétique
est un objectif, les systèmes actuels visent plutôt, soit à reproduire la parole via
des connaissances expertes sur la composition du signal vocal une fois produit,
soit à utiliser ces connaissances expertes pour sélectionner les meilleures por-
tions d’un corpus de parole pré-enregistré reproduisant le message à produire
puis les joindre.

Les travaux présentés dans cette thèse s’inscrivent dans le cadre de la sec-
onde solution, nommée synthèse par sélection d’unités ou encore Synthèse Par
Corpus (SPC). Les contributions présentées peuvent être réparties en deux par-
ties. Tout d’abord (section VI), une analyse approfondie et un diagnostic de
l’algorithme de sélection d’unités, lequel recherche dans le treillis des portions de
corpus (nommées unités) utilisées, sont présentés. L’importance de l’optimalité

iii

de la solution est discutée et une nouvelle mise en oeuvre de la sélection basée
sur un algorithme A∗ est proposée. La deuxième partie des contributions, elle-
même subdivisée en trois portions, traite d’améliorations apportées à la fonction
de coût permettant à l’algorithme de sélection de trier les séquences d’unités en
vue de sélectionner la meilleure. Une méthode de calcul de coût cible est testée
sur un coût visant les durées phonétiques des unités (section VII). Une méth-
ode visant à améliorer l’intonation de la parole synthétisée est ensuite présentée
(section VIII). Enfin, un système de pénalités nuancé par une fonction floue,
lequel a pour but d’améliorer les jonctions entre unités est décrit (section IX).

Avant la présentation de ces travaux, un état de l’art est dressé dans cet
ordre : introduction sur la parole humaine (section I), historique de la synthèse
de la parole et présentation de l’état courant des recherches (section II) et enfin
présentation des différents éléments constitutifs d’un système de Synthèse Par
Corpus (sections III et IV). Le chapitre résumé par la section V se charge,
quant-à-lui, de présenter le protocole expérimental, les voix de synthèse ainsi
que les outils pour gérer ces voix utilisés dans la thèse.

Pour les travaux présentés dans cette thèse, nous travaillons dans un cadre
ou la contrainte sur le temps réel lors de la synthèse est levée (le focus est sur
la qualité) mais l’on s’y intéresse ponctuellement tout au long de la thèse, en
particulier dans le chapitre traitant des algorithmes de synthèse (résumé en
section VI). En outre, les travaux présentés dans cette thèse portent sur la syn-
thèse du français. La majorité des résultats peuvent toutefois raisonnablement
s’appliquer à de nombreuses langues.

I De la production de la parole

La parole humaine est un signal acoustique dont l’analyse permet de la
subdiviser en deux composantes : la composante phonétique et la composante
prosodique. La composante phonétique est la plus évidente. La parole peut être
découpée en unités de sens plus ou moins grandes : phrases, groupes de souffle
(séparés par une inspiration du locuteur), mots, syllabes et enfin phonèmes.
Aux phonèmes, au nombre d’environ 35 en français (le nombre exact peut varier
en fonction de composantes régionales ou historiques), on adjoint la notion de
phone. Un phone est une réalisation acoustique d’un phonème. La parole étant
influencée par de nombreux facteurs de variabilité, des phones correspondant au
même phonème (dans ce cas, on parle d’allophones) peuvent être très différents.
Cela peut notamment être dû au phénomène dit de coarticulation, qui veut
que la prononciation d’un phonème soit directement influencée par celles de
son prédécesseur et son successeur, voire par la prononciation de phonèmes
plus distants. Enfin, une dernière notion revêt une importance considérable :
il s’agit du diphone. Plusieurs recherches entreprises dans les années 50-60 ont
en effet montré que les concaténations effectuées en milieu de phone étaient
en règle générale de bien meilleure qualité que celles réalisées en frontière de
phone [Peterson et al. 1958; Dixon and Maxey 1968]. De cette constatation est
née une nouvelle unité : le diphone. Un diphone est une unité dont les deux
frontières sont les centres de deux phones successifs, le centre du diphone étant
la frontière entre les deux phones. Par exemple, la séquence de deux phones

iv

[a o] contient un seul diphone commençant à la moitié du [a] et finissant à la
moitié du [o].

La deuxième composante de base de la parole est sa prosodie. La prosodie
regroupe toutes les informations que la composante phonétique ne prend pas
en considération. Di Cristo [Di Cristo 2000] caractérise la prosodie comme «
la représentation formelle (aspect phonologique) des éléments de l’expression
orale tels que les accents, les tons, l’intonation et la quantité, dont la mani-
festation concrète, dans la production de la parole, est associée aux variations
de la fréquence fondamentale (F0), de la durée et de l’intensité (paramètres
prosodiques physiques), ces variations étant perçues par l’auditeur comme des
changements de hauteur (ou de mélodie), de longueur et de sonie (paramètres
prosodiques subjectifs). » Dans la définition ci-dessus, un élément particulière-
ment important est la F0, laquelle est perçue par l’auditeur comme la hauteur
de la voix. Il s’agit en fait de la fréquence la plus basse du signal de parole, un
signal de parole étant représentable (les portions voisées – générées par vibra-
tion des cordes vocales – sont d’ailleurs périodiques) dans le domaine spectral.
La F0 correspond à la première harmonique du signal. Les harmoniques suiv-
antes, F1 et F2 du moins, peuvent également être mises en relation avec des
aspects physiologiques de l’appareil de production de la parole (ouverture de la
bouche et position de la langue).

II Une histoire de la synthèse de la parole

Le chapitre suivant est consacré à un historique de la synthèse de la parole et
à un inventaire des techniques actuelles. Depuis la machine parlante du baron
Von Kempelen, à la fin du XIIIème siècle, laquelle était intégralement consti-
tuée de composants mécaniques, en passant par le Voder et ses résonateurs
électroniques, les méthodes de construction de ces machines ont considérable-
ment évolué. La première tentative documentée de reproduction de sons de
parole humaine est due à Christian Kratzenstein qui, en 1779, utilisant des
résonateurs acoustiques pour reproduire les sons de 5 voyelles. Douze ans plus
tard, le baron hongrois Wolfgang Ritter von Kempelen, publia un livre détail-
lant plus de 20 ans de recherches et la construction d’une machine parlante de
son invention permettant de produire des lambeaux de parole. Au cours des 200
ans qui ont suivi, trois manières de synthétiser de la parole ont été explorées.

La première, historique, consiste à reproduire le système articulatoire hu-
main. Cette méthode, basée sur la résolution d’équations différentielles haute-
ment complexe, demande beaucoup de calculs et reste aujourd’hui trop lente
pour une utilisation industrielle. De plus, la parole produite par ce biais reste de
faible qualité en comparaison des autres techniques. Rien n’empêche cependant
d’imaginer un retour en force de cette approche dans le future si une évolution
favorable à cette technique se produisait.

La seconde, développé principalement à des fins de télécommunication (au
moins au début), dans les années 1970, est de construire/apprendre des modèles
de réalisation de la parole qui peuvent ensuite être utilisés de manière généra-
tive. Les méthodes basées sur cette technique ont l’avantage d’être flexibles
et jouissent d’un très faible encombrement (les modèles actuels ne font que

v

quelques méga-octets). Les méthodes actuelles reposant sur ce principe sont
regroupées sous le sigle SPSS, pour Statistical Parametric Speech Synthesis, et
comprennent principalement la synthèse dite par HMM (Hidden Markov Model)
et plus récemment par DNN (Deep Neural Network) [Black et al. 2007; Yamag-
ishi et al. 2008; Hashimoto et al. 2015]. Cette approche statistique paramétrique
a été l’objet de nombreux travaux universitaires ces dernières années. Cette
méthode offre un contrôle avancé sur le signal et produit une synthèse très
intelligible, mais la voix générée manque de naturel.

La troisième façon de produire des énoncés de parole est par concaténation
de parole préexistante. La méthode dite par sélection d’unités, ou Synthèse
Par Corpus (SPC) [Sagisaka 1988; Black and Campbell 1995; Hunt and Black
1996; Taylor et al. 1998; Breen and Jackson 1998; Clark et al. 2007] qui fait
partie de cette catégorie et fait l’objet de notre travail est celle qui produit
actuellement les signaux de parole synthétique de meilleure qualité. Le princi-
pal inconvénient de cette méthode est la nécessité de garder en mémoire une
quantité considérable de parole naturelle pré-enregistrée : le corpus de parole
ou voix de synthèse. Ce corpus peut regrouper plusieurs heures, voire plusieurs
dizaines d’heures de parole provenant d’un même locuteur. La Synthèse Par
Corpus (SPC), est un raffinement de la synthèse par concaténation où l’on dis-
pose d’un simple dictionnaire de diphones, avec plusieurs variantes pour chaque
diphonème. La SPC permet la création de synthèse de haute qualité, dont le
naturel et la qualité prosodique restent inégalés par les autres méthodes grâce
à l’utilisation de parole naturelle pour réaliser la synthèse. La plupart des
systèmes industriels actuels fonctionnent grâce à cette méthode qui, outre la
taille conséquente du corpus de parole, à quelques inconvénients, telle la diffi-
culté à contrôler la prosodie et le risque d’artefacts de concaténation pénalisant
l’intelligibilité. Cette méthode fait intervenir la notion d’unité, laquelle est une
liste de segments (des diphones généralement) contigüs dans un corpus de pa-
role correspondant à une partie de la séquence cible de segments à synthétiser.

Fondamentalement, avant les années 50, l’objectif principal de la plupart
des études sur la synthèse de la parole était de produire une preuve de con-
cept et d’étudier la parole via un outil. Ensuite, dans les années 50, grâce
à un intérêt croissant pour la synthèse de la parole porté par les opérateurs
téléphoniques, l’objectif principal est devenu la construction de systèmes de
synthèse produisant une parole parfaitement intelligible. Cette étape a été at-
teinte au cours des années 80/90. La recherche s’est donc portée sur la qualité
de la parole, en particulier pour la parole neutre ; et plus généralement la qual-
ité du message porté par la prosodie de la parole synthétique et plus récemment
sur l’expressivité.

III L’étage d’analyse et le corpus

Les travaux présentés dans cette thèse portent, au sein d’un système de SPC,
sur le module de sélection d’unité. Ce module utilise deux types d’informations
: une séquence d’informations représentant le signal de parole à produire et la
voix de synthèse, contenant les unités (portions de corpus) à concaténer. Le
chapitre 3 présente, d’une part, l’interface entre le texte fourni par l’utilisateur
en entrée du système et le bloc de sélection d’unité et, d’autre part, le processus

vi

de création du corpus de parole. Le texte fourni en entrée par l’utilisateur
est annoté par une succession d’outils. Le texte est d’abord nettoyé de tout
caractère incohérent ou non géré puis découpé en groupes de souffles et en mots.
L’étape suivante, dite de phonétisation, génère la séquence de phonèmes reliés
aux différents mots. Enfin, la syllabation produit la séquence de syllabes reliées
d’une part aux phonèmes et d’autre part aux mots. Ce sont ces annotations
qui, sous le nom de séquence cible (de phonèmes, de syllabes, ...), sont fournies
au moteur de sélection d’unité.

Le corpus de parole, quant-à-lui, doit être mono-locuteur et couvrir un cer-
tain nombre d’attributs comme l’ensemble des phonèmes disponibles dans une
langue, l’ensemble des diphones et ce au moins plusieurs fois (surtout pour les
plus utilisés) ou bien encore la plus grande partie des syllabes d’une langue. Le
script d’enregistrement du corpus, lu et enregistré ensuite en studio, peut être
produit par pure construction de phrases en couvrant les attributs requis, par
condensation d’un corpus textuel de taille considérable (trop grand pour être
enregistré) ou bien via une approche mixte. Dans tous les cas, le compromis
entre la taille et la richesse du corpus est le point clé pour obtenir une qualité
vocale satisfaisante avec le système de synthèse.

IV Le bloc de sélection d’unité

Le chapitre suivant présente les spécificités du module de sélection d’unités,
lequel est immédiatement suivi d’un module réalisant la concaténation des por-
tions de corpus de la séquence sélectionnée et appliquant généralement un lis-
sage à l’emplacement de la concaténation voire des modifications prosodiques
comme un ajustement du rythme de la phrase ou de son pitch (hauteur de la
phrase et perception qu’a un auditeur de la F0), par exemple via un algorithme
nommé PSOLA.

Afin de discriminer les segments provenant du corpus qui correspondent
aux besoins exprimés par l’intermédiaire de la séquence cible, la méthode
habituelle [Black and Campbell 1995] est de classer les unités en évaluant le
degré de ressemblance avec la séquence cible (coût cible) et le risque de créer
un artefact lors de la concaténation des unités (coût de concaténation) via des
fonctions de coût.

Cette méthode fait intervenir la notion d’unité, laquelle est une liste de
segments (des diphones généralement) contigüs dans un corpus de parole cor-
respondant à une partie de la séquence cible de segments à synthétiser.

L’ensemble des unités disponibles correspondant à la séquence cible sont
regroupées dans un graphe où une unité est un noeud et où un arc représente
une possible concaténation. Plus précisément, ce graphe se trouve être un
treillis. Le problème de sélection d’unités est donc un problème de recherche
de meilleur chemin (un chemin étant une séquence d’unités correspondant à
la séquence cible) dans un treillis. Il existe plusieurs algorithmes résolvant ce
problème dont Viterbi et A∗. L’algorithme de sélection utilise la fonction de
coût composée des coûts cible et de concaténation pour trier les séquences et
sélectionner la meilleure.

vii

V Données expérimentales et méthodologie de test

Dans le chapitre 5, nous présentons les corpus de parole utilisés dans la
thèse, les outils permettant de les gérer et la méthodologie de test employée.
Les corpus utilisés dans la thèse sont gérés par le toolkit Roots, développé dans
l’équipe. Un autre format, binaire lui, est utilisé lors de la synthèse pour des
motifs de rapidité. Nous utilisons deux voix dans nos expériences : Audiobook ,
qui est une voix masculine avec un F0 moyen très bas (moyenne sur les portions
voisées uniquement) à 87Hz et IVS , une voix féminine de F0 moyen de 163Hz.
Des sous-portions de ces voix ont été extraites au préalable pour former deux
corpus de test auxquels est ajouté un troisième corpus de test de 27 141 phrases.
Ces corpus de test sont utilisés pour générer des stimuli de parole à évaluer à
la fois via des mesures objective et des évaluations subjectives, ces dernières
se traduisant par des tests d’écoute en aveugle. Compte tenu de la complexité
de la tâche d’évaluation de la parole synthétique, aucune méthode objective
n’a encore réussi a donner pleinement satisfaction à ce jour. Les évaluations
sont donc principalement subjectives. Les tests subjectifs peuvent évaluer la
préférence des utilisateurs dans une confrontation de systèmes (tests AB) ou
bien établir un score pour chaque système évalué (indépendamment (tests MOS,
DMOS, ...) ou les deux avec un type de test plus récent : Mushra. Les tests
cités sont tous utilisés dans la thèse, en priorité les tests AB. En particulier,
le protocole décrit dans [Chevelu et al. 2015] est régulièrement utilisé dans nos
tests.

VI Concernant le choix de l’algorithme de sélection

Dans le chapitre 6, nous présentons tout d’abord le système de synthèse
de parole de l’IRISA, auquel les travaux de cette thèse ont apporté une im-
portante contribution. Notre premier travail a ensuite porté sur l’étude et
l’amélioration de l’algorithme de sélection d’unité. Nous avons implémenté une
stratégie d’exploration très utilisée dans le domaine (algorithme de Viterbi) et
l’avons comparé à une approche utilisant l’algorithme A∗, jugée moins combi-
natoire. Plus exactement, 3 approches de type beam-search (version de Viterbi
sous-optimale mais plus rapide car élaguée) ont été testées avec A∗: un beam-
search avec un fort élagage (faisceau de 10 unités) mais très rapide, une version
intermédiaire avec 100 unités et enfin une version quasi-optimale avec 1000
unités. En particulier, la question était d’identifier si oui ou non, l’optimalité
de la solution (i.e. la séquence de fragments de corpus à concaténer) était
importante et sinon, quelle stratégie de recherche était la meilleure.

La comparaison, comprenant des mesures objectives ainsi que plusieurs éval-
uations subjectives, a été faite en utilisant les mêmes filtres de pré-sélection, la
même fonction de coût et les deux corpus présentés plus haut. Les résultats ont
montré que A∗ dans sa version admissible se montre plus efficace qu’un beam-
search avec une grande taille du faisceau (celui de taille 1000). Cependant, il a
également été montré que les algorithmes explorant un treillis fortement élagué,
même s’ils sont perçus comme moins performants (autant dans les tests percep-
tifs qu’avec les données objectives), ne présentent pas un écart considérable en
terme de qualité de synthèse. Même si A∗ réalise un nombre de concaténations

viii

inférieur aux autres algorithmes, les évaluations perceptives montrent que cela
ne se traduit pas par un écart de qualité considérable. Les résultats semblent
indépendants à la fois du style vocal utilisé et de la voix. Cela nous amène à
deux conclusions : d’abord, trouver la solution optimale au problème de sélec-
tion d’unité semble de peu d’utilité. En effet, des algorithmes modérément
élagués présentent une qualité de synthèse perçue identique. Cela s’explique
par la variabilité entre les meilleures séquences qui est très faible. En outre, on
montre que A∗ est mieux adapté que Viterbi au problème de sélection d’unité.
Dans le reste du document, nous utilisons toutefois toujours A∗ en version
optimale lors de la génération des stimuli de test.

En outre, la sélection des unités est fortement dépendante de la stratégie
de présélection (qui empêche les unités jugées trop mauvaises d’arriver dans
le treillis de sélection en se basant sur un vecteur binaire de caractéristiques à
respecter). La présélection pose en effet une contrainte sévère sur le moteur.
Nous avons donc évalué l’impact des filtres sur la qualité de la synthèse. Nous
avons montré que les filtres que nous utilisons ne dégradent pas la synthèse
tout en économisant un temps de calcul considérable (en réduisant la taille du
treillis par élagage).

VII Proposition d’un nouveau coût cible de durée
phonétique

Le chapitre suivant présente une nouvelle façon – dans le coût cible – de
minimiser les différences spectrales en sélectionnant des séquences d’unités min-
imisant un coût moyen au lieu d’unités minimisant chacune un coût cible de
manière absolue. Ce coût est testé pour une distance sur la durée phonémique
mais peut être appliqué à d’autres distances. Le but est de sélectionner la
séquence complète d’unités qui minimise une distance de durée phonémique
avec des valeurs prédites par un ANN (Artificial Neural Network) plutôt que
de choisir la séquence contenant des unités qui minimisent individuellement
la même distance de durée. Ceci est destiné à éviter des cas tels qu’une ex-
cellente synthèse pénalisée par quelques très mauvaises unités uniquement en
produisant la séquence la plus homogène possible (ce qui est déjà favorisé par
le coût de concaténation, bien qu’insuffisamment). Les expériences ont montré
que cette nouvelle mesure donne de bons résultats sur les échantillons de parole
qui présentent des problèmes de durées, en particulier pour les voix expres-
sives. En outre, nous montrons que la nouvelle mesure ne semble pas affecter
les échantillons synthétisés qui ont de bonnes durées depuis le début.

VIII Proposition d’un nouveau coût cible pour le
contrôle du pitch

Notre deuxième proposition sur la fonction de coût est une fonction de coût
cible visant à améliorer l’intonation en se basant sur des coefficients extraits à
travers une version généralisée du modèle de Fujisaki. Ce modèle utilise des
fonctions gamma modélisant le contour de F0 appelées atomes. Les paramètres

ix

de ces fonctions sont utilisés au sein d’un coût cible. L’hypothèse sous-jacente
est que ces fonctions gamma (dont certains paramètres semblent correspondre
à des fonctions physiologiques) sont positionnés à des endroits où les variations
acoustiques induites par les facteurs physiologiques auxquels les atomes (nom
donné à ces fonctions) semblent corrélés sont importantes et doivent être respec-
tées. Nous supposons également que le processus de sélection d’unité choisit
naturellement des unités qui disposent d’une F0 plus ou moins homogène au
niveau de la phrase. En effet, une distance évaluant la différence de F0 est
présente dans le coût de concaténation. De manière à assurer cette hypothèse,
le coût de concaténation de F0 pourrait suivre la formulation proposée dans le
chapitre précédent.

Concernant l’intonation des phrases synthétiques, la plupart des problèmes
proviennent de segments qui ont un contour local (à l’horizon phone-syllabe)
de F0 très différent de ce qui est attendu. Comme les atomes locaux se
situent précisément au niveau des segments voire au niveau syllabique, et
comme les atomes locaux pourraient être liés à des facteurs physiologiques liés
à l’intonation, nous avons fait l’hypothèse que l’utilisation de ces données via
une contrainte de type coût cible peut améliorer la prosodie synthétisée. Une
fonction de coût utilisant le contour de F0 reconstruit à l’aide des atomes a
été construite. Une seconde fonction, utilisant uniquement les paramètres des
atomes (les paramètres des fonctions gamma) a également été créé et testé. Les
expériences menées ensuite ont montré que ces deux méthodes surclassent une
distance standard de F0.

IX Unités sandwich pour le coût de concaténation

Le rôle du coût de concaténation est de s’assurer que l’assemblage de deux
segments de parole ne causera l’apparition d’aucun artefact acoustique. Pour
cette tâche, des distances acoustiques (MFCC, F0) [Stylianou and Syrdal 2001;
Tihelka et al. 2014] pour évaluer le niveau de ressemblance spectrale entre deux
stimuli vocaux sur et autour du point de jonction. Ces coûts de concaténation
sont toutefois loin d’être parfaits et de nombreux artefacts apparaissent à la
fois dans les systèmes commerciaux et de recherche, même après un traitement
post-concaténation. Plusieurs analyses ont montré que ces artefacts se pro-
duisent plus souvent sur certains phonèmes que sur d’autres [Yi 1998; Cadic
et al. 2009]. Cette observation est à l’origine d’une méthode de construction de
script d’enregistrement dans [Cadic et al. 2009] où la couverture de « sandwichs
vocaliques » vise à favoriser les concaténations sur des diphonèmes jugés peu
risqués. Ainsi, dans le dernier chapitre de cette thèse, nous proposons d’intégrer
ces contraintes directement dans la fonction de coût, sans l’aide d’un corpus
construit avec des sandwichs vocaliques.

Nous intégrons ainsi une pénalité en fonction de la classe de phonèmes dans
la fonction de coût lors de la sélection d’unité. Deux versions sont proposées
: d’abord en utilisant une pénalité fixe puis une fonction floue visant à rendre
la pénalisation des unités plus flexible. La version faisant appel à une fonc-
tion floue est capable de relâcher la pénalité en fonction du positionnement des
sous-coûts de concaténation des deux unités à joindre par rapport à sa distri-
bution observée dans le corpus ayant servi à construire la voix de synthèse. En

x

somme, pour deux unités jouissant par exemple d’un des meilleurs coûts de
concaténation possibles, la pénalité induite par la prise en compte des classes
phonétiques des diphones composant les deux unités à joindre sera nécessaire-
ment faible voire nulle. Une évaluation objective montre que la pénalité est
efficace et amène à un meilleur classement des séquences d’unités candidates
au cours de la sélection tandis qu’une évaluation subjective révèle une perfor-
mance supérieure de l’approche floue.

Conclusion

Les contributions apportées par cette thèse se répartissent donc sur deux
axes. D’une part, il a été montré que l’algorithme A∗ présentait des avan-
tages conséquents sur Viterbi ou même beam-search. En outre, comme A∗ peut
également être élagué, il est une solution tout-à-fait convenable, préférable à
Viterbi, pour la sélection d’unité. Notre travail sur les algorithmes a égale-
ment montré que la recherche de la solution optimale au problème de sélection
n’est pas nécessaire puisque qu’un algorithme explorant un graphe de sélection
modérément élagué fait jeu égal dans les tests subjectifs. La variabilité entre
les meilleures séquences candidates étant faible, la dégradation de la synthèse
n’intervient qu’avec un très fort élagage.

D’autre part, nous avons mené trois travaux sur la fonction de coût ayant
amené à une meilleur performance générale (en terme de qualité) : un coût
améliorant les durées phonétiques, un autre améliorant l’intonation et enfin un
système de pénalités nuancé par une fonction floue permettant des concaténa-
tions de meilleure qualité.

Les principales possibilités d’extension de la thèse concernent la distance de
durée et la pénalité floue sur les sandwichs. En effet, la méthode de calcul
du coût de durée pourrait être étendue à toutes les distances (cible et de con-
caténation) de la fonction de coût, moyennant une adaptation de la méthode
pour les coûts de concaténation. Il serait par exemple envisageable de pondérer
les coûts de concaténation par une distance comparant les paramètres d’une
unité à la moyenne des valeurs des mêmes paramètres observées précédemment
dans la portion déjà sélectionnée de la séquence candidate. D’autre part, le sys-
tème de pénalité pourrait être testé dans d’autres configurations et sur d’autres
langues. En particulier, d’autres fonctions qu’une fonction linéaire pourraient
être appliquées et les classes de pénalités pourraient être revues. En outre, le
coût d’intonation ayant la particularité dans nos travaux de n’avoir été testé
que sur un système « oracle », c’est-à-dire sans prédictions depuis le texte mais
directement avec des annotations réelles, il serait souhaitable de tenter la pré-
diction du contour d’atomes reconstruit (prédire les paramètres directement
semblent difficile) pour ensuite intégrer ces prédictions et avoir ainsi un coût
d’intonation pleinement fonctionnel.

xi

Abstract
This PhD thesis, entitled “Étude des algorithmes de sélection d’unités pour la
synthèse de la parole à partir du texte” (Study of Unit Selection Text-To-Speech
Synthesis Algorithms), focuses on the automatic speech synthesis field.

Two main strategies are currently under consideration in this field. The first one
relies on a statistical parametric approach where models of speech signals are
created. Models are then used in a generative way to produce speech utterances.
It is widely known as the Statistical Parametric Speech Synthesis approach
(or SPSS). The second strategy, which is an evolution of concatenation-based
synthesis, consists in preserving and annotating a large speech corpus (usually
several hours or even tens of hours), then extract fragments (called units) and
paste them together to reproduce a textual utterance to synthesize (called the
target utterance). The mechanism (not trivial) by which these fragments are
selected is referred to as unit selection. The general technique is called Corpus-
Based Speech Synthesis.

My thesis aim is to explore, diagnose unit selection mechanism and suggest
improvements. To meet these objectives, a corpus-based speech synthesis was
needed. For reasons of independence, flexibility and to ensure a transversal
control of the software, it was decided to build a completely new system rather
than using and modifying an existing tool. I spent a considerable amont of time
during my thesis contributing to the implementation of the synthesis engine
within my research team and adding features to it.

I first took interest in evaluating the impact of the search algorithm on unit
selection. In particular, I considered whether or not optimality of the solution
(i.e. corpus units to be concatenated) was important. My conclusion was that
the search algorithm sensibly impacts the selection process only when searching
for the optimal solution (or near optimal). For most applications, optimality
of the solution is not necessary however. Even a very pruned unit selection
process can be used with rather few sensible flaws.

The second part of my work focused on the cost function that allows the search
algorithm to rank corpus units according to their suitability to solve the prob-
lem. This function is composed of a concatenation and a target cost. The first
one measures the ability of a unit to be pasted after another one without caus-
ing artefacts. The second one judges the level of dissimilarity between a unit
and what is desired. A fuzzy penalty function using the “Vocalic Sandwich”
criterion was designed and tested. Its goal is to try avoiding concatenations on
corpus units where more atefacts are usually found. This method has the par-
ticularity to be flexible and does not always penalize units. Indeed, it also takes
into account the value concatenation cost. New target cost strategies have been
implemented and tested. A first cost, which integrates long-term constraints in
the phonemic duration target cost, was tested. Its aim is to produce a sentence
with units of roughly equivalent quality. The second cost is based on the atom-
based intonation decomposition technique, a generalized version of Fujisaki’s
Command-Response model. It aims at enhancing intonation in sentences pro-
duced by the Text-To-Speech synthesis system. Both two target costs and the
“Vocalic Sandwich” penalty were shown to enhance synthesis quality, especially
the last one, which should really be the subject of more research.

xiii

Contents

Résumé en français iii
Introduction . iii
I De la production de la parole . iv
II Une histoire de la synthèse de la parole . v
III L’étage d’analyse et le corpus . vi
IV Le bloc de sélection d’unité . vii
V Données expérimentales et méthodologie de test viii
VI Concernant le choix de l’algorithme de sélection viii
VII Proposition d’un nouveau coût cible de durée phonétique ix
VIII Proposition d’un nouveau coût cible pour le contrôle du pitch ix
IX Unités sandwich pour le coût de concaténation x
Conclusion . xi

Introduction 1

I State of the Art 5

1 On Speech Production 7
1 What Is Speech ? . 7
2 Acoustic Variability . 9
3 Anatomy of the Vocal Apparatus . 11
4 Prosody . 13

4.1 Parameters . 14
4.2 Constituents . 14

5 Spectral Analysis . 15
6 Conclusion . 15

2 A History of Text-To-Speech Synthesis 17
1 Inception – Reproducing What Works . 18

1.1 Kratzenstein’s Resonators . 18
1.2 Wolfgang von Kempelen’s Talking Machine 18
1.3 A Period of Stagnancy . 19
1.4 The VODER . 21

2 Articulatory Synthesis . 21
3 Rule-based and Formant Synthesis . 23
4 Linear Prediction Synthesis . 25
5 Concatenative Synthesis . 25
6 Statistical Parametric Speech Synthesis . 28

xv

6.1 HMM-based Speech Synthesis . 28
6.2 The (Re-)mergence of DNNs . 30

7 Conclusion and Graphical Summary . 31

3 The TTS Frontend and Corpus 35
1 Conceptual Overview . 35

1.1 Frontend Block . 36
1.2 Backend . 36

2 The Corpus . 37
2.1 Presentation . 37
2.2 Corpus Creation Methods . 38
2.3 Corpus Condensation . 38
2.4 Sentence Construction . 42
2.5 Corpus Building Method Choice . 43

3 Conclusion . 44

4 The Unit Selection Backend Block 45
1 Topology of the Problem . 46

1.1 The Base Unit . 46
1.2 The Notion of Sequence . 47
1.3 Speech Units . 47
1.4 The Candidate Units Graph . 49

2 Selection Algorithm . 53
2.1 Viterbi Algorithm . 55
2.2 Beam-search Algorithm . 56
2.3 Non-Viterbi Approaches . 57
2.4 Concerning Variable-size Units . 58

3 Selection Cost . 58
3.1 Target Cost . 59
3.2 Concatenation Cost . 60
3.3 On Weighting Issues . 62
3.4 Concerning Preselection . 63
3.5 On Global Constraints . 64

4 Signal Concatenation . 64
5 Conclusion . 66

II Work on the Unit Selection Process 67

5 Experimental Data and Evaluation Methodology 69
1 Speech Synthesis Data Management . 69

1.1 ROOTS Toolkit . 70
1.2 Automatic Voice Creation Process 73
1.3 TTS Corpus Format . 75

2 Corpora . 76
2.1 Voice Corpora . 76

3 Evaluation Methodology . 81
3.1 Objective Evaluation of Speech . 82
3.2 Subjective Evaluation of Speech . 82
3.3 Methodology Followed in the Experiments 83

xvi

4 Conclusion . 85

6 On the Choice of the Selection Algorithm 87
1 The IRISA TTS Synthesis System . 88

1.1 General View . 88
1.2 Frontend . 89
1.3 Backend . 90
1.4 Perceptual Evaluation of the baseline System 94

2 Back to the Unit Selection Pathfinding Problem 95
2.1 Motivations . 95
2.2 Beam-search and Viterbi Algorithms 97
2.3 A∗ Algorithm . 97
2.4 Adaptation to the Unit Selection Problem 98

3 Evaluation of the Unit Selection Engine . 98
3.1 Experimental Data . 98
3.2 Objectives . 98

4 General Impact of the Cost Function and Pre-Selection Filters 100
5 Comparison of Selection Algorithms . 101

5.1 Objective Evaluation . 101
5.2 Subjective Evaluation . 104
5.3 Behavior of the Cost Function With the 100-Best Paths 107

6 Conclusion . 109

III Work on the Unit Ranking 111

7 Work on the Duration Target Cost 113
1 Motivation . 114
2 An Adaptive Duration Target Cost . 114

2.1 Neural Network . 114
2.2 Duration Target Cost . 115

3 Experiments . 116
3.1 Experimental Data . 116
3.2 Objective Analysis . 116
3.3 Subjective Evaluation . 117

4 Conclusion . 120

8 Work on the Pitch Target Cost 121
1 Motivation . 122
2 Atom-Based F0 Decomposition . 122
3 Atoms for Driving a Unit Selection Target Cost 123

3.1 Defining New Prosody Target Costs 124
4 Experiments . 125

4.1 Experimental Process . 125
4.2 Experimental Data . 126
4.3 Atom Decomposition . 126
4.4 Subjective Evaluation . 127

5 Conclusion . 128

xvii

9 Work on the Concatenation Cost 131
1 Motivation . 131
2 Enhancing Speech Corpora With Vocalic Sandwiches 132
3 Sandwiches in a Unit Selection Engine . 133

3.1 Phonologically Motivated Penalty Based on Sandwich Classes 133
3.2 Fuzzy Penalty System . 134

4 Experimental Evaluation . 135
4.1 Concatenation Costs Analysis . 135
4.2 Subjective Evaluation Process . 136
4.3 Results . 137

5 Conclusion . 139

General Conclusion 141
Summary of the Contributions . 142
Perspectives . 144

A TTS Corpus Key Content 149

B Phonemic Alphabets and Appearance Frequencies 153

C Example of Sentences Used in the Listening Tests 155

Publications During the Thesis 160
1 International Conferences with a Reading Comitee 160
2 International Conferences with a Reading Comitee in French Language . . . 160

Bibliography 163

xviii

Introduction

Speech synthesis democratization accelerated dramatically in recent decades – and even
more in recent years – with the appearance and the popularization of new needs. If foresee-
ing the future of human-computer interfaces1 is much of a guessing game, an observation
of recent changes in technology shows a clear trend: the “traditional”2 mouse and keyboard
setup tends to be replaced by touch and voice-enabled interfaces whenever and wherever
possible. Why is that so? Simply because touching, hand-manipulating and speaking
are the essence of interaction of a human being with his environment. But why is this
revolution happening now, while it did not occur a few decades ago? After all, touch-
screens, speech synthesis and to a lesser extent Automatic Speech Recognition (ASR) are
not younger than the computer mouse. Once again, the answer is simple. The technology
was not ready until the beginning of the XXIst century.

So, now concerning speech synthesis, what changed between now and then? Speech
synthesis began, with baron Wolfgang Ritter von Kempelen during the XVIIIth century,
as an experiment focused on testing the feasibility of producing speech artificially. It was
also a simple way to better understand speech by reproducing it. The emergence of elec-
tronics allowed experiments like Homer Dudley’s Voder but it is only with the arrival of
the computer age that speech synthesis could be fully automated, this time generating
speech stimuli from a textual input. The first Text-To-Speech synthesis systems (TTS)
emerged in conjunction with the expansion of telecommunications. And it is precisely tele-
com operators that first saw a potential in TTS. It enabled them, along with automatic
switching systems, to replace human telephone operators with machines. Hence, TTS
enabled-telephone servers began to appear in the 90s. With the arrival of unit selection-
based speech synthesis, which we will discuss in an instant, TTS ultimately reached a
quality level sufficient for commercialization. It is only in the last years though that TTS
and ASR increasingly invaded the consumer market, thanks to the conjunction of four
elements. First, the dramatic increase in computation capabilities, even in small embed-
ded and mobile systems. Second, the increase of storage capability, especially in mobile

1The term human-machine is perhaps even better as identifying new technological devices as computer-
driven tends to be more and more difficult for the public.

2Can a technology that reached the mass market in the 80s, like the mouse did, be called traditional 30
years later?

1

2

devices (allowing TTS directly on a smartphone for instance). Third (and perhaps the
most important), the democratization of internet access on all devices, allowing to perform
the synthesis on powerful servers before sending the synthesized speech stimuli back to
the users. Fourth, the refinement of unit selection TTS and the emergence of SPSS (cf.
next paragraph) boosted synthetic speech quality. For all these reasons, TTS is taking,
along with ASR, an increasingly important place in the human-machine communication
paradigm.

Let us now focus on the current state of the art of research in the TTS field. In recent
years, research in text-to-speech synthesis essentially focused on two major techniques.
The statistical parametric approach (SPSS), which mainly includes HMM and DNN-based
systems, is the most recent and has been the focus of many academic work in recent
years. This method offers advanced control on the signal and produces very intelligible
speech but generated voice lacks naturalness. The historical one, unit selection [Sagisaka
1988; Hunt and Black 1996], is a refinement of concatenative synthesis, which principle
is very simple: record speech, split it into small units and paste these units in order to
match a textual utterance. Sound created with this method features high naturalness and
its prosodic quality is unmatched by other methods, as it basically concatenates speech
actually produced by a human being. While most industrial TTS systems rely on unit
selection, this method has its drawbacks, for instance the difficulty to force prosody and
the possibility to get concatenation artefacts penalizing intelligibility. In the formulation
of the unit selection problem, a unit is a list of contiguous segments (in the speech corpus)
fitting a portion of the target sequence. In order to discriminate the segments coming from
the corpus that fit the requirements expressed via the target sequence, the usual method
is to rank the units by evaluating the context matching degree (target cost) and the risk
of creating an artefact if concatenating the unit (concatenation cost) via balanced cost
functions. Due to the complexity of the problem – unit selection has to process millions
of candidate units to synthesize an average utterance – pruning is often needed to give
a result in an acceptable time or even in real time for most industrial applications. In
this thesis, we take abstraction of this real time constraint as we work on uncompromised
synthesis quality. We will nevertheless focus punctually on this constraint, especially in
chapter 6, when dealing with unit selection algorithms.

The work presented in this thesis entitled "Study of Unit Selection Text-To-Speech
Synthesis Algorithms", we focus on unit selection solely. Our work aims at exploring, di-
agnosing unit selection mechanism and adding algorithmic improvements both in the unit
selection process and in the selection cost. For this, we built a new Text-To-Speech syn-
thesis system within IRISA/Expression team. We decided to build this system instead of
choosing an existing one for reasons of independence, flexibility and to ensure a transversal
control of the software, especially as an extensive part of this thesis was spent working on
the inside of the unit selection engine. A non-negligible amount of time was spent, during
this thesis, contributing to the implementation and maintenance of the synthesis engine

IX. UNITÉS SANDWICH POUR LE COÛT DE CONCATÉNATION 3

and adding features.

This thesis is articulated around tree main parts. In the first part, we describe the
state of the art in speech synthesis. We start with a presentation of the basic concepts on
which TTS relies in an introductory chapter (chapter 1). The second chapter (chapter 2)
show the place of our work within the “TTS world” by making a chronology on speech syn-
thesis. In particular, we highlight the main problems researchers addressed throughout the
history of speech synthesis, finishing with the main problems in current research. The two
remaining chapters, in the first part deal with the full TTS chain, namely the TTS fron-
tend (chapter 3) and backend (chapter 4) and their sub-components. We present each of
them extensively. In the last chapter, we define formally the unit selection problem and we
discuss its characteristics in detail. In this thesis, we pay a particular attention to present
the problem in its variable-size version, and not as often the reduced diphone-based version.

In the second part of this thesis, we focus on the whole unit selection block and we
analyze its key algorithmic components. The first chapter of that part (chapter 5) presents
the databases and database management tools we use throughout the thesis. In that chap-
ter, we also give precisions concerning the test methodology used in this document. In the
second chapter (chapter 6), we describe the TTS system we built and we present our work
on the unit selection algorithm. In most cases, the Viterbi algorithm is used to perform the
unit selection task, but it is not the only possible one. Since unit selection can be formu-
lated as a path finding problem, other graph exploration algorithms can also be applied,
which is what we do in this chapter. We also present important results on the preselection
filters and the cost function.

Finally, the third part focuses on the cost function. A total of three propositions are
presented, two within the target cost and one in the concatenation cost (following Black
& Campbell’s formulation [Black and Campbell 1995]). In chapter 7, a duration cost is
presented. Its aim is to select the unit sequence that best minimizes, as a whole, duration
distance rather than choosing the sequence containing units that individually minimize a
duration distance. This is intended to avoid cases like excellent synthesis penalized by few
very bad units. This cost is tested on a phonemic duration cost but can perfectly be applied
to any other cost. Chapter 8 presents a target cost aiming at improving the intonation
of synthesized sentences. For this task, it uses the parameters of Atom-based intonation
decomposition technique, a recent generalization of Fujisaki’s Command-Response model.
Finally, we present a work on a penalty system using the concept of “Vocalic Sandwiches”
first presented by D. Cadic et. al. [Cadic et al. 2009] in chapter 9. In particular, a fuzzy
membership function depending on the distribution of concatenation costs was designed.
It softens the penalty with regard to the relative cost of a unit in the speech corpus cost
distribution.

4

Part I

State of the Art

5

Chapter 1

On Speech Production

“Speech or human language is the ability to communicate one’s feelings or
thoughts to his fellows by different voice intonations.”

Von Kempelen’s definition of speech in 1791,
in “Mechanismus Der Menschlichen Sprache”,

Wolfgang Ritter von Kempelen (1734–1804)

Speech is a multidisciplinary subject of study and can be seen as the crossing between
three domains: Medicine and anatomy on one side to characterize the human speech appa-
ratus; Physics for the study of the acoustic dimension and finally linguistics to analyze the
message actually conveyed by this way of expression. To these fields we must add Computer
Science [Boë 1990; Boeffard 2004]. The main goal in this short introduction chapter is to
give some basic vocabulary and definitions. Though we use several other sources, like the
Springer Handbook of Speech Processing [Benesty et al. 2008], the main source of inspira-
tion of this chapter is the “La parole et son traitement automatique” book (French) [Calliope
1989]. We first define the nature of speech signals, focusing on its decomposition into mean-
ingful units. We discuss the notion of acoustic variability that makes speech synthesis and
recognition particularly difficult. We also focus on the human vocal apparatus and its main
components. Then, we define the notion of prosody. Finally, we present briefly speech in
the spectral domain.

1 What Is Speech ?

The distinction between speech signals and other sounds is made thanks to specific char-
acteristics, directly related to the acoustic mechanisms they originate from in the speech
apparatus (larynx, voice chords, tongue, hard palate, aperture, etc.). There are two ways

7

8 CHAPTER 1. ON SPEECH PRODUCTION

to produce speech sounds. First, by vocal folds’ vibration, also called voicing and second,
by a direct air flow from the lungs into the vocal tract, without the use of vocal folds. A
voiced sound is a sound that was produced by a vibration of vocal folds, though it may
later be modified by articulators. Vocal sounds may be retained for a time by a closure of
the vocal tract at lips level.

Figure 1.1: The vocalic trapezium as shown on Wikipedia encyclopedia. The horizontal
axis corresponds to tongue position (front on the left, central in the middle row and back
on the right) while the vertical one is for mouth opening (closed in the upper part and
open in the bottom).

Speech sounds in a language – mostly French in our case, are called phones. Phones are
sorted in two big categories: vowels and consonants. Vowels are characterized by their in-
trinsic properties: nasality, opening level of the vocal tract, tongue position (front or back
on both horizontal and vertical dimensions) and lips articulation (roundness). Tongue
height, backness and roundness may be used for defining the vocalic IPA vowel trapezium,
shown on figure 1.1 1. On this trapezium, the horizontal axis corresponds to the tongue
position, from front position on the left to back on the right, while vertical one is for
mouth opening, also called aperture or vowel closeness. Open vowels are at the bottom
while closed ones are on top.

Consonants are classified depending on their voicing (vowels are always voiced), i.e.
the use or not of vocal folds, the manner of articulation (obstruent, sonorant, lateral or
trill) and the place of articulation (labial, bidental, coronal, dorsal, laryngeal or peripheral)
[Calliope 1989; Benesty et al. 2008].

These different properties inherent to phones allow to gather them into a set of classes
that serve to formalize elementary sounds of a language: phonemes. Several phones in a
language can be related to a same phoneme. The distinction between phone and phoneme

1These characteristics can be analyzed and qualified in terms of frequency through the notion of formant.

2. ACOUSTIC VARIABILITY 9

lies on a difference of domain: acoustic versus phonologic. A phone is the acoustic realiza-
tion of a phoneme, the latter being a phonological unit. The classes formed by phonemes
can be observed on the general IPA trapezium above for English language. Depending on
the language or even the regional accent, the position of these classes may change and some
classes may not be present while some others may appear (as all languages don’t use the
same sets of phonemes). The phoneme usually constitutes the first and smallest entity of
a language. As several distinct phones are related – in a language – to the same phoneme,
elements of the set of phones related to a same phoneme are called allophones2.

By chaining phonemes one after the other we get the notion of syllable. A syllable
is made out of 3 elements: an onset, a nucleus and a coda. The nucleus is the core of
the vowel and is necessarily a vowel. The onset and the coda are the sets of consonants
respectively preceding and following the vowel core of the syllable. They may eventually
be empty (one or the other or even both). Syllables are usually defined as the smallest
meaningful units in a language, as the latter basically happens to be a concatenated chain
of them. They have particular importance in syllabic languages, like French, Romanian
or Vietnamese. In those languages, on the contrary of stress languages (like English) the
rhythm of the sentence is defined by the speed syllables are pronounced, each one of them
being pronounced with the same length.

2 Acoustic Variability

A huge number of parameters causes spectral characteristics of speech production to vary
– sometimes considerably. Gender, age, ethnic and cultural origin, education level, emo-
tional state, sickness, etc. are as many parameters that cause speech stimuli corresponding
to a same sentence to be different. Some allophones pronounced by two different speakers,
or even by the same speaker in two different contexts, may vary up to a point where a
listener might not even recognize them as the realization of a same phoneme. That effect
is particularly intense on vowels. As an example why, we will discuss the three biggest
sources of differences.

First Male and female speech apparatuses are not entirely identical. Female vocal
tracts generally are 15% shorter than male ones. Furthermore, male larynx is located
deeper (lower) than female larynx, which induces a different articulation of the tongue for
the two genders: masculine tongue articulation is more open (less cramped articulatory
channel) than for females.

Second, the shape of the nasal tract changes from an individual to another. Nasal
2It has to be kept in mind that the allophone set is language dependent. Phones realizing the same

phoneme in one language are not necessarily allophones in another.

10 CHAPTER 1. ON SPEECH PRODUCTION

sounds, which require a communication between nasal cavity and oral tract, are therefore
different among different people.

But then, beyond dissimilarity between male and female articulatory apparatus or even
the influence of culture on pronunciation, the key phenomenon to explain such variability
is co-articulation. Co-articulation is the influence one sound exerts on its successor(s). In
order to produce the first sound, the speaker has to put his articulatory apparatus in the
required configuration and then rearrange quickly the apparatus to meet the configuration
necessary to pronounce the following sound. Thus, the regular flow in pronunciation and
the continuity of the sound dictate a difference in the characteristics of the second sound
compared to its archetype. In practice, the speaker has to find a good compromise between
the required position his articulators must have to pronounce the right sound and the time
he can spend pronouncing this sound. Hence, the sound the speaker actually produces is a
compromise of these two prerequisites. As an example, let us focus on French syllable [du],
transcribing word « doux » (soft). To pronounce it, the speaker must first say phoneme [d]
for which the tongue has to be in the front position in the mouth, and then shift the tongue
to the rear as quickly as possible for the second sound [u]. As in practice the speaker only
has a small amount of time to get his tongue back, the latter generally is not in the usual
position for pronouncing the [u]. The faster the speech flow, the most intense the effect.
As co-articulation is a matter of compromise, the first phoneme ([d] in the example above)
is also impacted by the second one ([u]) though it is to a smaller extent. Co-articulation
ranges most of the time over two phones, but it may also occur on a wider range (three or
even four phones).

Because co-articulation is so important, unit selection – which will be introduced in
chapter 2 and presented in detail in chapter 4 – uses a base unit called diphone instead of
phonemes. A diphone is the speech signal segment between the half of a first phone and the
half of its successor. Though it was originally invented by Küpfmüller and Warns in 1956,
the unit was first introduced in [Peterson et al. 1958], where it was called a "dyad" and
then diphone in [Dixon and Maxey 1968]. Figure 1.2 gives an example of phone/diphone
segmentation on syllable "aba". On the upper part, we have phone frontiers, with the
label of the phoneme each phone is a realization of. The lower part shows diphones, which
frontiers are placed on the middle of each phone.

This has the advantage of having the concatenations (in a unit selection synthesizer)
on phone centers, which are the most stable parts of the signal and the least impacted by
coarticulation.

Beyond stepping up the difficulty of the challenge Automatic Speech Recognition (ASR)
systems face, this increased acoustic variability can prove difficult to reproduce in synthetic
speech. It is nonetheless essential, to reproduce it in order to keep naturalness of the voice.

3. ANATOMY OF THE VOCAL APPARATUS 11

Figure 1.2: An example of phone/diphone annotation. Here, syllable "Aba" is decomposed
in phones in the upper part and in diphones, with a frontier in the middle of each phone,
in the lower part.

3 Anatomy of the Vocal Apparatus

Before serving for speech production, the human vocal apparatus is a key part of both
the respiratory system and the alimentary system. Many of its components are common
to most mammals, especially among primates. What makes the distinction of the human
system is a set of unique features: a flat tract, small lips, small teeth, short oral cavity,
rounded tongue and independent control over phonation and articulation. The incremental
usage of the vocal apparatus as a communication tool over human evolution caused dense
and direct neural connections from the language related areas to the articulatory system
through the cortex [Benesty et al. 2008].

The speech production apparatus, as described in figure 1.3, may be divided into two
distinct parts. First, the phonation system composed of both the lungs and the larynx are
responsible for the production of the air flow and vocal vibration. Then, the articulatory
system adds resonance and modulates the signal. Cavities, situated both in the vocal tract
and nasal system, cause the air to resonate.

The lungs, by setting the sub-glottal air pressure create the voice source sound. The
air pressure is the pressure caused by the air blocked and accumulated in the entry of the
larynx before the vocal folds open and let the air flow. The larynx, pictured on the right
part of figure 1.4, contains the glottis and the vocal folds. It creates a vibration of the
air by vibration of the vocal folds when the air flows through it. This happens only for
voiced sounds though; unvoiced sounds travel through the larynx without being stopped
at the level of the glottis. In the beginning of a breath group, the sub-glottal pressure is
maximal and evolves by about 15% through time before dropping drastically in the end of
the breath group.

The opening of the glottis – housing vocal folds – is called abduction while glottal clo-
sure is named adduction. They are permitted by the arytenoid muscle, which moves vocal

12 CHAPTER 1. ON SPEECH PRODUCTION

Figure 1.3: A view of the human vocal apparatus, dissociating parts responsible of phona-
tion and the main articulators. The sounds produced by these mechanisms propagate and
resonate into three cavities/tracts. Figure extracted from the Springer Handbook of Speech
Processing [Benesty et al. 2008].

folds. Both are represented in the lower view of figure 1.4. This cycle of adduction and
abduction events has a periodic nature and its frequency is called F0, or fundamental fre-
quency. It is perceived as the pitch, i.e. the sound level in speech. Together with rhythm,
pitch forms the melody of a sentence, exactly as they form the melody of a musical piece.
In other words, F0 is the lowest frequency of a periodic waveform (i.e. its first harmonic).
Higher frequencies in which the signal can be decomposed are associated to F1, F2, ... (see
section 5).

Left part of the figure positions the articulators that cause a modulation of the air as
it travels through the vocal tract. Most articulators are situated in the vocal tract and
the mouth, the most important being the tongue, lips, palate and jaws. A part of the air,
depending on the position of the velum (that acts like a trap-door between oral and nasal

4. PROSODY 13

Figure 1.4: Left: A global view of the articulators and cavities involved in speech production
inside the vocal apparatus. Right: Detailed views of the laryngeal framework and the
glottal adduction (left part of the glottis sketch) and abduction (right part). Figures
extracted from the Springer Handbook of Speech Processing [Benesty et al. 2008].

cavities), also enters the nasal tract. For the production of nasal sounds, the velum let’s
all the air enter the nasal cavity.

4 Prosody

Speech signals are not exclusively constituted of phones, syllables and words. When we
speak, elements like voice height, intensity of speech and speech rate vary in permanence.
This complex process, which mainly intervenes at the supra-segmental level, with the no-
table exception of phonemic duration, is called prosody. It adds to the signal information
that meaningful units alone cannot convey. It provides the information of modality3, shows
the relative importance of the different elements in the sentence via intonation and accents
and tells the emotional state of the speaker.

Di Cristo [Di Cristo 2000] characterizes prosody as the elements of oral expression like
accents, tones, intonation and quantity; which are linked to the temporal evolution of the
three prosodic parameters that are fundamental frequency (F0), duration and intensity.
The listener interprets these as melody, length and tonal variations.

3The syntactic structure, i.e. indication on neutral, interrogative or exclamatory nature, of the sentence.

14 CHAPTER 1. ON SPEECH PRODUCTION

4.1 Parameters

The three prosodic parameters (F0, intensity and duration) are all produced relatively
independently by the speaker. Nonetheless, relations exist first between F0 and intensity
as both of them are factors of the sub-glottal pressure (F0 is also a factor of the tension
in the vocal folds). Duration also being dependent of the sub-glottal pressure, prosody is
usually represented solely by the F0 curve [Calliope 1989]. While possible ranges of F0 are
about 80-400Hz for males and 120-800Hz for females, they usually vary between 80 and
250Hz for males and 150 to 400 for females [Benesty et al. 2008]. Children F0 usually varies
in the 200-600Hz range, but can go much higher.

4.2 Constituents

Intonation is the variation of pitch aiming at describing attitudes and emotions of the
speaker, modality of the utterance. It is one of the main constituents of prosody. Pierre
Delattre [Delattre 1966] established a classification of the 10 main types of intonation in
French: finality, major or minor continuation, implication, order, question, interrogation,
aside, echo and exclamation. Modality can be declarative, exclamatory or interrogative.

The accent component of prosody is what emphasizes elements of the sentence, usually
a word or a syllable. Most often, the main way accent is expressed is through a greater am-
plitude (sound level)4 and a longer duration (resulting from an accentuated pronunciation).
Accent is usually used to define three categories of languages [Lolive 2008]:

• Languages where emphasis is not placed at a fixed position, like English.

• Languages where emphasis placement is not free but is constrained by the number
of syllables. French is part of that category.

• Tonal languages, where tone is used as a semantic information.

In French, final accent – on the last syllable is particularly important.

A last constituent of prosody is flow rate, which can, when varying, put emphasis on
some part of the spoken message, underline hesitation or insistence or translate some emo-
tion. It is very influenced by pauses. In French, the flow is about 4 to 7 syllables per second.

Prosody is also characterized by the phenomenon of microprosody. As speech is subject
to production constraints (cf. section 2), prosody is also subject to variations with the
nominal values. These variations are called microprosody or micromelody.

4More specifically, for a periodic signal, amplitude is the maximum value of the signal. Here, it can be
assimilated to the highest sound level for a given cycle. As speech sound waves change through time, so
does frequency and amplitude.

5. SPECTRAL ANALYSIS 15

5 Spectral Analysis

In the temporal domain, speech is defined – as for other sounds – by the ambient sound
level; sampled at a rate usually varying between 8 and 48kHz, depending on the finality.
Speech temporal domain characteristics can therefore be studied, but a lot more informa-
tion is observed in the frequency domain. Such study is mainly based on the analysis of
spectrograms, which are time/frequency representations of speech. Time is the x axis while
frequency is the y axis. The diagram shows the quantity of energy carried by frequency
bands in function of time through a color or gray scale.

Phonemes can be identified on spectrograms based on their spectral, characteristics, the
most important being the formants. They are the harmonics that correspond to spectral
maxima, i.e. frequency ranges possessing peaks of energy. They are called F1, F2, F3, F4,
etc., F1 being associated to the second lowest frequency of the signal after F0 and the others
being associated to increasingly higher frequencies. Some of them, the main formants F1

and F2 for instance, can also be put in relation with physiologic events [Calliope 1989]. F1

is correlated with mouth opening, and ranges between 320 and 1000 Hz for the different
vowels in French. A relation exists between F2 and the position of the tongue in the mouth.
F2 ranges between 800 and 3200 Hz for French vowels. Formants named F1 and F2 are
very useful for identifying vowels. F3 is correlated with the configuration of the lips for
vowels. Other formants F4, F5, etc. are of a more limited use.

6 Conclusion

In this chapter, we briefly presented the basic concepts on which TTS, and more precisely
unit selection, relies. We first focused on speech signal, actually defining what is to be re-
produced by the synthesizer. In order to introduce one of the main issues in concatenative
synthesis – and therefore in unit selection, we presented the notion of speech unit, in par-
ticular the diphone. Then, we defined the notion of prosody, detailing its main components
and origin, hence showing its importance in a reconstructed speech stimuli. As an introduc-
tion to the next chapter, we described the human vocal apparatus and its main components.
Finally, we briefly presented the fundamental notion of formant.

16 CHAPTER 1. ON SPEECH PRODUCTION

Chapter 2

A History of Text-To-Speech
Synthesis

“We shall never cease from exploration
And the end of all our exploring
Will be to arrive where we started

And know the place for the first time.”

Thomas Stearns Eliot (1888–1965)

Many see in the usage of pipes leading to idols mouths – meant to feign the divinity’s
response to worshipers’ requests – in antique Mediterranean societies the first expression
of human desire, if not to recreate speech, at least to make an object talk. But it is only
during the Age of Enlightenment that first serious work was made, this time with more
selfless goals in mind. From baron von Kempelen’s talking machine to Statistical Paramet-
ric Speech Synthesis or unit selection text-to-speech synthesis, a number of original ideas
have been explored to make machines produce human speech. On evolutions to revolu-
tions, speech synthesizers first tried to mimic the vocal apparatus, then recorded or modeled
phonemes and tried to paste them together. They used rules to guess formant trajectories
or tried to create models of the human vocal system. Finally, they analyzed speech data to
learn how to speak. Or they searched that data to find and paste the right pieces. The scope
of Text-To-Speech technologies for synthesis is vast and complex, let’s dive into the matter.

The history described in the present chapter is mainly based on three reference articles
on the subject: [Flanagan 1972], [Klatt 1987] and [Schroeder 1993], at least for work
earlier than the 80s. The description of von Kempelen’s machine comes mostly from his
book [Kempelen 1791].

17

18 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

Figure 2.1: Kratzenstein’s resonators for synthesizing five vowel sounds. Air was sent inside
resonators by blowing a reed attached at its extremity [Flanagan 1972].

1 Inception – Reproducing What Works

The first real efforts to reproduce artificially human speech, during the renaissance period,
come bundled into the larger scope of speech study. Hence, the first documented work
aiming at reproducing speech artificially comes at the end of the Age of Enlightenment,
with two simultaneous attempts by physiologist Christian Gottlieb Kratzenstein in Russia
and Baron Wolfgang von Kempelen in Austria.

1.1 Kratzenstein’s Resonators

In 1779, the annual prize of the Imperial Academy of St. Petersburg subject was, according
to Flanagan [Flanagan 1972]: "(1) What is the nature and character of the sounds of the
vowels a, e, i, o, u, [that make them] so different from one another? (2) Can an instrument
be constructed like the vox humana pipes of an organ, which shall accurately express the
sounds of the vowels?". Christian Kratzenstein, the winner of the contest, constructed
5 resonators, which dimension was similar to the human apparatus, each one meant to
reproduce one of the 5 required vowels. They are pictured on figure 2.1. Each resonator
reproduced the believed configuration of the mouth and larynx. They were activated by
blowing into a vibrating reed, on top of which sat the resonator.
The overall accuracy was qualified "tolerable" and though the resonators answered the

second part of the question. The first one, on the processes at the origin of each vowel
sound, wasn’t answered.

1.2 Wolfgang von Kempelen’s Talking Machine

At the same time in Austria, Hungarian baron Wolfgang Ritter von Kempelen had been
undertaking much more thorough research since 1769. In 1791, he published a book,
"Mechanismus Der Menschlichen Sprache Nebst Beschreibung Seiner Sprechenden Mas-
chine" (The mechanism of human speech followed by the description of a talking machine)
[Kempelen 1791]1, where he gathers the results of his more than 20 years work.

1Though the original book was in German, a French translation was also released at the same time,
which title was "Le mécanisme de la parole".

1. INCEPTION – REPRODUCING WHAT WORKS 19

In his book, he describes the machine he built to synthesize speech, shown on figure
2.2. The construction of the machine aimed at reproducing the principal components of
the human apparatus. The bellows, shown on the central frame reproduced the lungs; the
pipe inside the wooden box they blew into reproduced the larynx and comprises a reed
reproducing the glottis and vocal cords 2. The elements attached at the extremity of the
pipe – detailed on the top and bottom frames – reproduced both nasal and oral cavities.
The conical element at the extremity of the machine was carved out of elastic gum – a
matter von Kempelen chose for its excellent elastic properties – and could be shaped by
the left hand of the operator. The right hand went on top of the wooden box, fingers
taking place on the two spindles and two holes (respectively named s, sch, m and n on the
bottom frame) allowing the elbow to take place on the top of the bellows. The spindles
are used for the production of unvoiced fricatives. The two holes represent nostrils that
can be plugged on the same principle as a flute.

The machine was said to produce honorable accuracy in the reproduction of human
speech, but was very difficult to master. Despite its degree of elaboration, the machine
couldn’t reproduce all plosives, and von Kempelen used phoneme [p] as a replacer. The
conical end in elastic gum of the machine was described by its creator as very imperfect as
it missed lips, teeth, tongue and reproduces the palate properties quite poorly.

1.3 A Period of Stagnancy

Most attempts to make a talking machine throughout the XIXth century and the begin-
ning of the XXth ended up being improvements of von Kempelen’s machine, with various
degrees of success. Among the best advances are sir Charles Wheatstone’s work, who cre-
ated an improved version of von Kempelen machine. Then Alexander Graham Bell and
his father Alexander Melville refined Wheatstone’s machine by adding rubber lips and a
wooden tongue. The century wasn’t empty for speech synthesis, as Wheatstone, Robert
Willis and Herman von Helmholtz laid down the basics of modern understanding of the
acoustic processes involved in the production of speech.

In particular, the rise of telecommunication technologies drew a new type of researchers
to consider speech synthesis. Before the 30s, speech synthesis was a tool used by physiolo-
gists to understand the mechanisms of voice production and test their theories. With the
arrival of telecommunication technologies and electronics, people started to think of speech
synthesis as part of a vocoder, or voice coder that would ease transmissions bandwidth by
translating voice into a set of commands that could be transmitted and reproduced (re-
synthesized).

2That part of the machine is directly inspired by the acoustics of flutes.

20 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

Figure 2.2: Baron Wolfgang von Kempelen’s speaking machine. Top: Detailed view of the
extremity of the machine, reproducing nasal and oral cavities. Part A mainly reproduces
the larynx, part B the nasal cavity and part C the mouth. It is elastic and can be modeled
by the user’s hand to mimic lips articulation. Middle: The bellows mimic lungs while the
wooden box contains a reproduction of the larynx that include a pipe and a reed. Bottom:
General view of the machine after the bellows. The two spindles can be operated and the
two holes plugged by the user’s hand. Figures come from von Kempelen’s book published
in 1791, digitalized by Google Inc. [Kempelen 1791].

2. ARTICULATORY SYNTHESIS 21

1.4 The VODER

The revolution in the field comes in 1939 with the VODER (or Voice Operation Demonstra-
tor) and the emergence of electronic technologies. During New York Universal Exposition,
Homer Dudley from Bell laboratories presented a machine, entirely composed of electronic
chips, that was able to produce speech from a bunch of successive narrow band filters
(i.e. connected in parallel) acting as resonators. It is described on figure 2.3. The device
followed the source-tract separation principle, either a voiced or unvoiced sound source
could be selected and then modified by the resonance box containing the filters. A wrist
bar selected the sound source: a random noise source for unvoiced sounds and a relax-
ation oscillator for voiced ones. An additional foot pedal was used to adjust the pitch of
the oscillator. The filters, each having a resonance similar to individual speech sounds,
were controlled through a keyboard of ten keys – one for each filter – that could acti-
vate or deactivate them. Filters outputs pass through potentiometer gain controls and are
added. Another key controlled the amplifier and three others caused a transient excitation
of the filters selected by the ten first keys to simulate stop-constant sounds [Flanagan 1972].

The quality was sufficient to be understood, at least for short utterances. However,
operators had to train for at least a year before being able to demonstrate the machine
during live sessions.

2 Articulatory Synthesis

All the mechanical methods we described earlier had one point in common: they tried to
reproduce the functioning of the human vocal apparatus, and they only got better because
we understood better and better the way it works over time. Von Kempelen’s, Wheat-
stone’s, Bell’s machines, the VODER, etc.; all followed that principle. With the arrival of
computer era, differential calculus and fluid mechanics allowed a much more formal mod-
ernization of the vocal tract, but without notable results on the final quality of produced
speech [Mermelstein 1973]. The aim of the technique, nowadays, is to digitally reproduce
the human apparatus and all its components and to perform synthesis by simulating its
behavior when stimulated by an air flow while taking into account human physiological
constraints [Rubin and Baer 1981].

These systems have two major downsides. On the one hand, because of the huge
number of parameters that have to be taken into account to reproduce a valid speech ap-
paratus, designers are forced, even today, to carry out a lot of approximations that end up
to a severe degradation of the system’s efficiency. Hence, final speech ends up being quite
poor. On the other hand, systems based on a modelling of the human apparatus are highly
computational and the synthesis is still difficult to handle in real time. Those downsides
make articulatory synthesis almost impossible to use in real time [Story 2009]. A recent

22 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

Figure 2.3: Top: The keyboard controlling the VODER. An additional foot command
controlled pitch. A web page dedicated to the VODER shows pictures and videos of
the VODER at work: http://120years.net/the-voder-vocoderhomer-dudleyusa1940/. The
top image is extracted from that website. Bottom: The VODER consisted of a bank of
electronic filters excited by an impulse train or noise. Image extracted from Flanagan’s
article on the history of TTS [Flanagan 1972].

3. RULE-BASED AND FORMANT SYNTHESIS 23

investigation in that field, generating intelligible voices, is given by Brad Story [Story 2011].

Today, articulatory speech synthesis continues to live and progress, but not for pure
TTS purpose. As a matter of fact, other recent speech synthesis methods outmatch it
nowadays. However, articulatory synthesis has other arrows in its quiver. It is a fabulous
tool to formulate, implement and test new acoustic models of the human speech apparatus;
allowing to verify the positions of articulators, like lips, jaw and glottis with an experimen-
tal model. It is now the main focus of articulatory systems, though this use of articulatory
synthesis is not recent [Maeda 1979].

With the explosion of computational capacity in recent years though, and with the con-
stant refinement of our knowledge on the speech apparatus, it is possible that articulatory
speech synthesis becomes, again, competitive.

3 Rule-based and Formant Synthesis

Synthesis techniques that reproduce the way humans talk are not the only ones, many
others were developed along decades. The principle of rule-based speech synthesis is to
be able to model the different parameters defining the acoustic signal (historically the for-
mants) by using a set of production rules based on linguistic and phonetic analysis of the
utterance. Via these rules, the question is principally to be able to represent frequencies,
amplitudes and bandwidth of these different formants depending on the constraints of the
text, in particular co-articulation.

Generally, the rule-based approach describes evolution rules for a generation model of
speech. The models of the speech signal usually rely on a source-filter representation of
speech, which assumes that the speech signal is convoluted, at the larynx position, to a
filter (most often linear) that characterizes resonance modes of the vocal tract. On the
contrary of articulatory approaches, these systems rely on much simpler models and not
on complex constraints on the air flow in a dynamic environment, allowing a drastic sim-
plification of the computations which leads to efficient systems that could, back in the
70s-80s perform in real time. The major disadvantage was the lack of naturalness in the
tone which emphases the artificial origin of the voice.

Rule-based and formant synthesis usually go together, the rule-based part generating
a representation of speech that’s possible to synthesize with a formant synthesizer. The
formant synthesizer itself is based on the principle that the main perceptual information is
carried by formants. F1, F2 and F3 are generally enough to get an acceptable synthesis. A
formant synthesizer uses formant-related information – central frequency, bandwidth and
amplitude – to reproduce voiced segments while noise bands may be used for unvoiced
speech. Other parameters could be taken into account like nasality. Twelve or more fea-

24 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

tures are sufficient to output intelligible speech. As no formant analyzer existed, formant
synthesizers used the hand-tuned rules described earlier to perform synthesis.

In 1922, J.-Cl. Stewart made the first formant-based synthesizer. According to Jean-
Sylvain Lienard, cited in the Calliope book [Calliope 1989], it was composed of a periodical
source and of two electric resonators allowing reproduction of vowels, diphthongs and a few
words like "mama, Anna"3. The VODER, which contained an analyzer extracting acoustic
components from speech, can also be considered an ancestor of formant synthesis.

In 1950, Cooper’s "Pattern Playback" synthesizer was able to synthesize speech from
a spectrogram [Cooper et al. 1951]. It can be considered as the first full automatic speech
synthesis system as no intervention from the operator is needed while reading the spectro-
gram. The two most famous formant-based systems, Walter Laurence’s PAT (Parametric
Artificial Talker) and Gunnar Fant’s OVE (Orator Verbis Electrics), emerged soon after,
in 1953. On the contrary of Pattern Playback, both used distinct electronic resonators for
generating each formant. This last point is the key to subsequent formant synthesizers,
where a set of resonators are placed either in parallel or in cascade to generate formants
[Holmes 1983].

More recently, a famous rule-based system, the Klattalk system [Klatt 1982; Klatt
1987], featured about five hundred rules starting from the letters of the utterance plus an
exception dictionary of more than 1500 words which translations to speech were hand-made.
They generated 20 parameters featuring F0, duration and stress, among others segmental
level phonological features. Then, the result was provided to a formant synthesizer that
generated the speech signal.

These rules could be numerous, complex and needed expert knowledge of the field. For
example, a work on duration [Bartkova and Sorin 1987] provides complex trees of rules,
modulated by elongation and shortening coefficients, solely for estimating duration.

Historically, rules were hand-made and deterministic and were processed by expert
systems. For a long time, the couple rules/formant synthesis was the best in the TTS field
but the emergence of unit selection in the 90s overcame these systems. The arrival of HMM-
based systems (see section 6.1) and to a further extent SPSS (Statistical Parametric Speech
Synthesis) in general in early 2000s brought back these ideas when proposing statistical
rules. Sets of HMMs are first learnt on a speech corpus in order to obtain the spectral
dynamics of temporal events. HMMs are then used in generation mode to get synthetic
spectral observations. A vocoder (voice coder), relying on some ad-hoc modelization of
speech into features, is used to convert these artificial signals into actual speech.

3Translated from French: "constitué d’une source périodique et de deux résonateurs électriques perme-
ttant de reproduire des voyelles, des diphtongues et quelques mots tels que « mama, Anna »".

4. LINEAR PREDICTION SYNTHESIS 25

4 Linear Prediction Synthesis

Linear prediction was a competing approach to formant synthesis. It was a speech-to-
speech analysis/synthesis method, and was mainly studied for telecommunications [Atal
1971]. It is based on the principle that a speech frame is a linear combination of preceding
frames. To compute a new frame, an algorithm computes linear combination coefficients of
preceding frames [Makhoul 1975]. The coefficients are computed by minimizing the average
quadratic error between real and predicted signals in the temporal domain. Coefficients are
updated every 5-20ms [Calliope 1989]. This approach, though producing speech of good
quality, carried a buzzy noise due to oversimplification of the vocal source and reproduced
some phonemes quite poorly, like nasals.

5 Concatenative Synthesis

The idea that’s conceptually the simplest way to generate speech is to peek actual speech
samples into a dictionary of prerecorded phonetic units and to join them one after the other
to reproduce a given phonetic sequence. The choice of the acoustic unit to record, store
in the dictionary and concatenate is one of the main problems these systems had to face.
The first ones, in the 50s, used phones [Harris 1953]. The discontinuities in the prosody of
synthesized sentences, the inexistent management of co-articulation effects and their poor
restitution [Pols et al. 1987] caused the resulting speech to be particularly unintelligible.
The search for a better way to perform concatenations ended up providing a new acoustic
unit in 1956, invented by Küpfmüller and Warns: the diphone. It was introduced as a
"dyad" in [Peterson et al. 1958] and then took the name of diphone in [Dixon and Maxey
1968].

The first concatenative speech synthesis system relying on diphones was developed by
Estes et al. [Estes et al. 1964]. Diphone-based concatenative synthesis had a far better
quality than phones but wasn’t perfect either. So other units were tested, each one longer
than the previous: half-syllables [Fujimura 1976], syllables and disyllables. Other attempts
were made on sub-phonemic units, for instance half-phones [Conkie 1999]. It is important
to take note the impact of these units on the size of the dictionary and thus on the footprint
of the system. The consequences on the computation charge to browse the dictionary and
get data also are important. For instance, let’s say the phonetic alphabet in language that
has to be reproduced features 35 phonemes, which is about what you get in French, there
are 35 phonemes, theoretically 352 diphones (a bit less in reality as some combinations
cannot occur), 353 triphones (about 43 000), hundreds of thousands of syllables and mil-
lions of words. The complexity of the problem and the system footprint are even bigger
in the case of systems featuring multi-represented units, i.e. the dictionary contains more
than one instance of each acoustic unit, in different contexts.

26 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

After selection, an algorithm is used to perform concatenations, the goal being to offer
smooth concatenation areas. Hence, it often does more than just pasting speech samples
one after the other. The usual approach is to mix part of the two speech signals over a few
frames before and after the concatenation spot; but other techniques, like the generation
of a small signal part to make the link, are possible. Algorithms may then be used to
modify parameters of the signal prosody like pitch or duration modification, usually Pitch
Synchronous OverLap-Add method, or PSOLA [Moulines and Charpentier 1990]. This
aims at getting a signal as close as possible to the prosody that has to be reconstructed
and that are determined by linguistic processing of the textual input.

The vision of the unit dictionary evolved a lot through time. The idea of adding several
representatives of the same unit (multi-represented units), motivated by the huge differ-
ences between units depending on their apparition context, caused an explosion of the
size of speech recordings; not in a dictionary anymore this time, but as a long sequence
of annotated speech. Annotations, distributed on several levels, range from the allophone
temporal start and end marks to the same for syllables and finally for words and named
entities at the highest annotation level. It was also permitted, for systems with a large
footprint, by the increase of computational and storage power. From this new point of
view, the speech database ceases to be a dictionary with sound samples mapped to a base
unit. It becomes a continuous speech corpus, and this corpus is annotated on several levels
with several unit types (allophone, syllable part, syllable, word, lemma, ...). When a unit
is needed, an algorithm will select in the corpus the most appropriate one to the desired
context during synthesis. This unit can be anything: a diphone, a sequence of diphones,
a syllable, a word, a set of words, even the whole utterance if it appears in the corpus. It
can even be any set of diphone, with no relation to any linguistic criterion, no matter the
size. This implies making a ranking of units, from the least to the most adapted, hence the
need to define a concept of cost to minimize. This principle is called unit selection. It was
first presented in [Sagisaka 1988] 4 and is depicted on figure 2.4. Sometimes, it is simply
called corpus-based speech synthesis, though some other techniques are also corpus-based
(SPSS learns models from a corpus for instance).

It’s in the 1990s that those systems using "units of variable size" (referred thereafter
simply as units) finally emerged. This is particularly the case of the CHATR system [Black
and Taylor 1994; Hunt and Black 1996]. In such systems, one sees coexistence between units
of different sizes (diphones, triphones, syllables, etc.). Because it generates speech from
units actually produced by a human speaker, unit selection systems vehicle the identity of
the original speaker much more accurately than systems based on speaker models. This in
particular gives a much more natural generated voice. In some cases, however, the absence
of an acceptable unit in the database requires the use of another unit (for replacement).

4Yoshinori Sagisaka’s work presents the concept of unit selection but does not present a working imple-
mentation at the time

5. CONCATENATIVE SYNTHESIS 27

Figure 2.4: The general framework of a unit selection-based TTS system. Figure inspired
by [Cadic 2011].

28 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

This unit was most likely produced in a very different context that the unit that is needed.
This may reduce the quality of the prosody in the synthesized voice and causes glitches
to occur at concatenation points with that unit. This can go up to seriously influence the
sentence intelligibility in the worst cases. It does occur however only in few cases5, usually
with a small database, and much less if the base is large. It is, however, a weak point
of the method, especially if compared to HTS and its siblings (see section 6.1) for which
the intelligibility is nearly guaranteed regardless of the circumstances. Another weakness
is the rigidity of the method. In recent years, techniques adapting the speaking style of a
corpus from one speaker to another (or learning mean voices and then adapting them [Fan
et al. 2015]) became popular. In concatenative synthesis, this kind of speaker adaptation
is impossible. Moreover, prosody proves difficult to model and control. The reason for this
relies in the temporal width of the signal segments the unit selection algorithm takes into
account, which is centered on two units (possibly a few more if wide contextual features
are used). The ranking provided by the algorithm and its cost function is therefore based
on considerations taken on short time periods which totally contrasts with the nature of
prosody; for which most components have an effect on the long term: several syllables
at least, more generally at breath group level and even at the sentence level. Another
reason is that prosody is highly dependent of the speaker, while unit selection cost func-
tion components are not. In particular, strict recording conditions, aiming at getting the
best concatenation experience, strip corpora of any expressiveness. Nowadays, to give the
system more flexibility, large corpora are recorded; sometimes featuring different emotions
along with neutral speech.

As our work focuses on unit selection, this technique will be discussed in detail in the
next chapter.

6 Statistical Parametric Speech Synthesis

6.1 HMM-based Speech Synthesis

Until recently, with the generalization of model-based synthesis in what’s now called SPSS
(see next section), only HMMs were used for statistical parametric modelling of speech.
This method, named HMM-based synthesis, still is – now with other SPSS techniques – the
main competitor of unit selection. This method relies on HMM-based (for Hidden Markov
Model-based) speech synthesis. Initiated by K. Tokuda in 1995 [Tokuda et al. 1995] with
the HTS (HMM-based speech synthesis) system [Zen et al. 2007], it is still a very active
research field, though HMMs are more and more abandoned for DNNs. While being a more
recent approach than unit selection, HTS and its pairs can be seen as distant descendants
of the couple synthesis by rules/formant synthesis, as the probabilistic models placed in
decision trees used in the method are from this point of view the equivalent to the rules

5Generally when using uncommon words containing rare diphones.

6. STATISTICAL PARAMETRIC SPEECH SYNTHESIS 29

Figure 2.5: A block diagram representing the general learning and synthesis processes in
HTS, the main HMM-based TTS system. Figure extracted form [Black et al. 2007].

of synthesis. In addition, HMMs based synthesis uses much more parameters than single
formant trajectories.

Decision Trees and H(S)MMs

HMM-based TTS systems depend on two elements: HMMs and decision trees [Yoshimura
et al. 1999]. The HMMs (HSMMs in reality, for Hidden Semi-Markov Models) are used
to model spectrum and pitch information. In the HTK framework, which HTS relies on,
one HMM corresponds to one phoneme. In order to make sentence reconstruction possible,
each HMM have to be concatenated. To enable this, HTK adds two non-emitting states at
start and end of the HMM; on which concatenation is done [Le Maguer 2013]. Every state
of the Markov models is associated to a decision tree describing the different prosodic and
linguistic contexts (constructed through predefined set of features, also called questions)
affecting this state. Each node of the tree corresponds to one contextual property of the
question set. Each leaf contains a statistic distribution that’s refined during learning.
During synthesis, the leaf that corresponds to the right context is selected. The emission
probability of its associated HMM state then becomes tied to the statistic distribution
contained in the selected leaf. Another decision tree, independent of the HMMs, is used to
define the duration of the various states [Yoshimura et al. 1999].

General Process of the Synthesis

The general process of both learning and synthesis tasks is summarized on figure 2.5. First
of all, learning the model (HMMs and decision trees) is made with a speech corpus. Though

30 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

a very small corpus is sufficient to learn a voice (one of the method main strengths), it
is preferable to have a few hours of speech in the learning corpus; as more data in the
corpus yields to better modelling and therefore better speech quality. In addition, SPSS is
quite sensitive to the quality of annotations (more than unit selection) and voice quality is
strongly impacted by the quality of automatic annotation tools. Speech does not necessary
come from one and only one speaker contrary to unit selection: both mono-speaker and
multi-speaker modeling is possible [Yamagishi et al. 2009]. One can even learn an average
voice of many different speakers, then adaptable to a particular voice with only a few data
(100 utterances of the target voice is usually enough) 6. Synthesis process begins the same
way as unit selection: target textual utterance is parsed and converted into a sequence of
descriptors on several levels (phonological and linguistic plus some prosodic features). From
this sequence of descriptors, a HMM matching the sentence to produce is reconstructed by
concatenating HMMs retrieved by exploration of the decision tree. Then, this new model
is used to synthesize the trajectories the speech signal will take on each parameter taken
into account in the system (parameters of the vocoder). As an example, the HTS system
features include: MFCC coefficients, aperiodicity coefficients [Zen et al. 2007], prosodic
parameters, F0 (fundamental frequency), etc. Finally, parameter trajectories are provided
to a vocoder, usually STRAIGHT [Kawahara et al. 2008] or SPTK[Fukada et al. 1992], to
generate the sound signal.

HMM-based synthesis has the advantage of providing a very intelligible voice in almost
all contexts. It is also very adaptable as speech is represented by a model. Production of
creaky or muffled voice for instance, with few data only, is possible through adaptation of
a model learnt with another voice corpus. However, its overall quality remains quite lower
than unit selection. In particular, synthetic voices feature a buzzy background noise due
to an oversimplification of the model used to describe speech in the vocoder. The voice
also appears muffled usually. This is due to the over-smoothing of speech frames during
training of the statistical model [King 2010]. These systems are therefore, for the moment,
less close acoustically to the identity of the speaker’s voice used for learning.

6.2 The (Re-)mergence of DNNs

More recently, in the last three years, parametric synthesis has been the epicenter of a new
revolution: the great return of deep Artificial Neural Networks (ANN) to the stage. The
use of neural networks in both ASR and TTS fields is not new, and a lot of work has been
done in the 80s-90s to model speech or some of its components with them. We will discuss
it further when introducing our work on duration modeling for unit selection, but let’s just
say the use of ANNs for modeling duration has been investigated in the 90s. Work was done
to explore the feasibility of using Deep Neural Networks (DNN) for ASR in the 80s, with

6The possibility to build average voices raised an interesting question: "Is the average of all male/female
voices the best male/female voice ?".

7. CONCLUSION AND GRAPHICAL SUMMARY 31

limited results. At that time, HMMs proved to be better and work focused on them. To-
day, DNNs achieve better performance than HMMs in many domains. So what did change
between then and now? Almost nothing, basically, if not the number of features that
drastically increased to reach several hundreds and even more than a thousand sometimes.
We speak of DNNs today but they already existed in the 90s, it wasn’t only about simple
ANNs. What really changed is the size of learning/validation/test sets. Learning a DNN
on a few tens of minutes of speech seems meaningless today, though studies twenty-five
years ago rarely used more. But the evolution of both storage and computational power
(especially recent improvements on GPUs) now allows learning of deep neural architectures
over several hours or even tens of hours of manually annotated speech.

Currently, systems use DNNs, RNNs (Recurrent Neural Networks - a variant of DNNs)
or more specifically LSTM-RNNs (Long Short-Term Memory Recurrent Neural Networks)
both in learning and generative ways. LSTM-RNNs seem to show the best results so far
[Zen and Sak 2015]. DNNs may be used either for mono or multi-speaker learning, as in
[Fan et al. 2015] where a 3-layers (hidden) DNN is learnt, the DNN having as much output
layers (79 features per output layer) as the learning set has speakers. In particular, this
work shows the adaptation of such a multi-speaker model to the acoustic space of a speaker
who has an unusual way of speaking 7 actually keeps the identity of the speaker as intended
but also tends to correct the speaker’s pronunciation problems.

Nonetheless, it would be quite short-sighted to think DNNs are the solution to all
problems in synthesis (regarding the current trend to put neural networks everywhere, the
question seems valid). In a study on the potential benefit of integrating DNNs in HTS,
[Hashimoto et al. 2015] shows that DNNs handle the learning task better than the usual
decision trees and HMMs, but show lesser performance than SPTK’s Maximum Likelihood
Parameter Generation algorithm (MLPG) for trajectories generation. In that study, the
couple DNN and MLPG shows the best performance while the usage of DNNs for trajectory
generation (along with HMMs for learning) shows worse performance than the usual HMMs
and MLPG.

7 Conclusion and Graphical Summary

To conclude this section, we present a chronological summary of speech synthesis in figure
2.6. Basically, over the last 200+ years since Kratzenstein and his acoustic resonators,
speech synthesis techniques explored three main ways to produce speech. The first one,
historical, is to reproduce the human articulatory system. The second, mainly developed
for telecommunication purposes (at least in the beginning), is to build/learn models that
can afterwards be used in a generative way. Methods based on that point of view have the

7In mandarin in the experiment.

32 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

advantage of being very flexible and have a very small footprint. The third way to produce
speech utterances is by concatenating pre-existing speech. unit selection, which is part of
that category and is the subject of our work produces the best sounding synthetic speech
nowadays, but has a very large memory footprint, isn’t adaptable to new voices very quickly
and is less flexible than leading SPSS techniques. Finally, the wish to make SPSS/unit
selection hybrids, where the unit selection is guided by trajectories/parameters produced by
a statistical parametric model is always tempting. Basically, before the 50s, one of the
main objectives of most studies on speech synthesis was to produce proof of concepts. Once
this step was passed, around the 50s, and with the increasing interest in speech synthesis,
the main issue became the construction of very intelligible speech synthesis systems. This
step was reached during the 80s/90s, and research then focused on speech quality, especially
for neutral speech; and more generally quality of the message carried by synthetic speech
prosody, especially expressiveness.

7. CONCLUSION AND GRAPHICAL SUMMARY 33

F
ig
ur
e
2.
6:

T
im

el
in
e
of

th
e
sp
ee
ch

sy
nt
he
si
s
fie

ld
an

d
m
ai
n
re
se
ar
ch

fo
cu
s
ev
ol
ut
io
n.

34 CHAPTER 2. A HISTORY OF TEXT-TO-SPEECH SYNTHESIS

Chapter 3

The TTS Frontend and Corpus

“From a drop of water a logician could infer the possibility of an Atlantic or a
Niagara without having seen or heard of one or the other.”

Arthur Conan Doyle (1859–1930)

From now on, our main focus shall be on unit selection speech synthesis. In the two
next chapters, we will describe in detail the complete organization of a speech synthesis sys-
tem based on that principle, describing each block and the main technics explored with unit
selection. We will organize this chapter in two parts. In the first one, as a reminder, we
will come back again on the general organization of unit selection systems. In particular,
we will describe the TTS frontend, which shows how the input text is transformed into a
data sequence fit for the synthesizer’s own input. As little work was carried on the fron-
tend during my PhD, we will not discuss it further. The second one describes the corpus
building process, along with the issues it brings. This part is particularly important because
unit selection is heavily dependent on the corpus, especially the method used to make it. In
addition, there is a link between the corpus creation method (covering features especially)
and the unit selection strategy (cost function particularly).

1 Conceptual Overview

As we saw in the last chapter, any TTS system may be divided into a frontend and a
backend part. This is shown on figure 3.1.

35

36 CHAPTER 3. THE TTS FRONTEND AND CORPUS

Figure 3.1: General block diagram of a TTS system.

1.1 Frontend Block

The frontend is responsible for translating the user’s input into a message that’s actually
understandable and rich enough in terms of information to be used by the TTS system
for speech generation. This means first processing the text in order to correct or delete
words and punctuation mistakes. This allows to get valid sentences with valid punctua-
tion symbols and pronounceable words. Lemmas can then be derived from words. This
step is called tokenization as the output is a vector of normalized entities also called tokens.

Once the input utterance has been tokenized, it is processed by the phonetizer, in order
to get a vector of phonemes representing the oral version of the utterance. This is usually
called the grapheme-to-phoneme conversion task. Finally, the sequence of syllables that
matches with generated phonemes is extracted using a syllabication algorithm.

In some cases, some additional processes may be done, like adding target prosodic
information predicted from the text or provided by the user (context for generating ex-
pressiveness for example).

It is interesting to note that, though whe focus on Text-to-Speech synthesis, the input
of synthesis processes is not necessarily raw text. For instance, Steve J. Young introduced
in 1979 the notion of Concept-to-Speech synthesis [Young 1979]. In that work, a concept
is a sentence portion for which we know the syntax. Sentence "Georges irons his blanket.”,
for instance, can be transformed into the single concept (.IRON, Georges, blanket) where
verb ”IRON” is a function taking two parameters ”Georges” and ”blanket”. Infering these
concepts from text is possible, though not straightforward.

1.2 Backend

The TTS backend, often referred to as ”the synthesizer”, aims at transforming this descrip-
tion of the target utterance into an acoustic voice signal. Examples of such a thing are
the formant, linear prediction, diphone-based, statistical parametric speech synthesizers
we saw in the last chapter; and of course unit selection.

Let us now consider the case of the unit selection backend from now on.

2. THE CORPUS 37

2 The Corpus

Before addressing the unit selection problem, let us focus on the speech corpus. After
getting the utterance processed by the frontend, the corpus is the only external component
the unit selection block will use.

2.1 Presentation

The corpus can be represented as a long strip of speech, annotated on several levels with
linguistic, phonetic, and acoustic information. The choice of what to include or not in it
is not obvious at all. Neither are the size of the corpus, its encoding quality, the inflexion
the speaker should use, the literary genre to employ, etc. In order to build a quality non-
specialized voice, several hours of neutral speech are a minimum for unit selection. But
the content of the corpus itself, in terms of phonological units, has to be varied and rich
enough in terms of current phonological units in the target language to guarantee that the
Unit selection algorithm will find units that are sufficiently close to the target.

The corpus size depends directly on two elements: the aim of the voice and the techni-
cal constraints of the platform where it should be deployed.

The aim of the voice characterizes the way the voice will be used. The main question
is: will it be used for some domain-specific synthesis or does it have to be generalist, or is it
in the between? For instance, a GPS voice comes with many prerecorded sentences/words
from the driving vocabulary like "road", "roundabout” or ”turn”. But as it may also have
to pronounce street or city names, it has also to provide more generalist units, like a basic
diphone covering. The other question is: what is the target audience? A voice reading
books to children will probably not be fit for the same task with adults.

For the technical constraints, it results from four main axes:

• Does speech have to be generated in real time?

• What are the computational power, storage and RAM access speed of the device that
will have to perform the synthesis task?

• What is the storage capability available on the device?

Once the size and desired content have been selected, the corpus is recorded by a
speaker (usually a professional actor), who reads a recording script. The recording script
is the list of all sentences contained in the corpus, accompanied by reading constraints and
instructions. For instance, a same sentence can appear twice in the script, first asking the
reader to emphasize a particular word and then without that constraint.

38 CHAPTER 3. THE TTS FRONTEND AND CORPUS

2.2 Corpus Creation Methods

To create that recording script, two methods are widely exploited in the literature. The
first one is corpus condensation, the second one being sentence construction. Corpus
condensation is by far the most explored in the literature and consists in selecting one
by one the sentences that improve most some covering strategy (cf. section 2.3) within
an initial bigger corpus (made out of books, letters, political speech, theater plays, etc.).
The other one is sentence construction. Its aim is to generate sentences of the new corpus
that maximize the covering objectives. The problem in that case is to generate sentences
that may be pronounced in a real context, for the speaker would otherwise have difficulties
pronouncing a sentence that’s deprived of any sense.

2.3 Corpus Condensation

The corpus condensation method assumes that a corpus of considerable size is available,
we will call it the initial corpus. This corpus is supposed to present a very wide range of
linguistic, phonetic and prosodic attributes, but is too huge to be recorded. The goal of
corpus condensation is to solve that situation by reducing the size of the corpus as much as
possible. This is usually done by choosing the n utterances, usually sentences, that contain
the most interesting attributes. The corpus condensation hence forms a tradeoff between
size and abundance of covered attributes.

Problem Representation

In the corpus covering problem, the starting point is a huge initial corpus in which one has
to pick up the most interesting utterances, which optimize a cost function. To find the most
interesting utterances, a set of attributes must be defined. For instance, a corpus covering
objective can be to have in the final corpus a covering of some unit distribution (phonemes,
diphonemes, syllables, vocalic sandwiches – cf. chapter 9 –, etc.). Other objectives than
unit distributions may be used as well. For instance, expressiveness type of an utterance:
depending on the aimed content of the corpus, it may appear useful to have a certain
amount of utterances pronounced with different emotional states. So in order to realize
corpus covering, a criterion has to be selected. The cost function to optimize is usually the
following:

utterance cost =
number of new attributes covered

utterance length
(3.1)

Given an initial corpus including a total of n utterances and an alphabet of k units to

2. THE CORPUS 39

cover, the problem can be represented by the following matrix:

A =

u1 u2 u3 . . . un

α1 α11 α12 α13 . . . α1n

α2 α21 α22 α23 . . . α2n

...
...

...
...

. . .
...

αk αk1 αk2 αk3 . . . αkn

 (3.2)

where each utterance u1, u2, . . . , un is represented by a column of values indicating the
number of times it matches covers attribute ai, i ∈ [1, k]. In other words, for i ∈ [1, k] and
j ∈ [1, n], αij represents the number of times attribute ai is covered in utterance uj . 1

Using that matrix, the question is: which utterances should be chosen to cover attributes
a1, ..., ak with a minimal number of utterances?

Let B be the column vector of constraints a set of utterance must meet to be considered
as a solution to the covering problem:

B =

b1
...
bi
...
bk

(3.3)

where bi is the minimal number of occurrence of attribute ai in the corpus. Let also
X ∈ {0, 1}n be a column vector of binary values:

X =

x1

...
xj
...
xn

(3.4)

where xj = 1 if utterance uj is part of the condensed corpus and 0 otherwise. Hence, the
corpus covering problem can be defined as the search for the vector X that best minimizes
the sum of all selected utterance costs:

X∗ = arg min
A·X≥B

(
n∑
j=1

cj · xj) (3.5)

where cj is the cost of utterance uj (using for instance the cost function defined in equation

1Due to the usually huge quantity of units to cover, a lot of zeros appear in each column. From a
global point of view, only a few percent of the αij differ from 0. Matrices are hence represented as sparse
matrices.

40 CHAPTER 3. THE TTS FRONTEND AND CORPUS

3.1).

This problem is actually a specialized case of the Set Covering Problem, or SCP (which
is known to be NP-complete). For this reason, corpus condensation has to be performed on
a corpus and with a vector of attributes of reasonable size (e.g. covering phones, diphones
and the most common syllables in a language with an initial corpus of 5 million sentences
and having at least 100 occurrences of each diphone).

Covering Objectives

In order to build the corpus, two strategies may be used:

• The size of the final corpus is fixed to a certain corpus size that must maximize the
covering of the attributes (with ai = 1, ∀i) while minimizing utterance cost (a cost
has to be set in order to avoid extremely long sentences).

• The final corpus must cover the constraints up to a certain acceptable percentage. A
minimum corpus size is also set.

For measuring the level of covering, a handful of criteria may be used, in particular:

• Having xi realizations of constraint ci within the final corpus. For example, a con-
straint could be to include at least xi times the diphone [ub]. Diphone synthesis
dictionaries in the 90s were based on that principle.

• Using a natural distribution to define xi. It can be one existing in the initial corpus,
like A. Krul et al. did [Krul et al. 2006]. More generally, the goal can be to keep the
quality of the initial corpus covering within a smaller one.

Several criteria may be used for the same covering. For unit distributions, Zipf and
Zipf-Mandelbrot laws, describing the appearance frequency of a base unit (phone, diphone,
etc.) in a language, have to be taken into account: One has to privilege the most frequently
used units in the target language2, most frequent units being present in a wider number
of contexts while the least frequent appear in less contexts. They may even be absent
depending on the constraints on the database size.

In any case, the choice of the constraints to cover is not trivial and may have a significant
impact on the final corpus size. A diphone covering is of course the minimum, but is not
enough to obtain smooth concatenations.

2This can only be a sub-set of the language. For instance, in order to produce speech for a telephone
dialog voice, it is preferable to use the units that are frequent in telephone conversations or in text messages
rather than those frequent in poems or literary work.

2. THE CORPUS 41

Covering Algorithms

In order to get the final corpus from the initial one, given a set of constraints, two algo-
rithmic approaches are relevant: approaches that rely on heuristics with no guaranty of
optimality (greedy one mainly) and approaches with heuristics giving a guarantee. These
algorithms have three optimization axes: the quality of the final corpus, the size of that
corpus and the time needed to find a solution. The algorithm has to find the right tradeoff
between those axes. Greedy methods are the most popular, as they are easy to implement
and yield good results. The most popular versions of the algorithm are the following:

Agglomerative: The agglomerative is the most popular way to build a corpus. It consists
in iterating over the initial large corpus, picking up the utterance that best improve
the score function, until these objectives are met. The final corpus is composed of the
selected utterances. Jean-Luc Gauvain et al. [Gauvain et al. 1990] presented such an
approach.

Spitting: The reverse, as it is presented in [Francois and Boeffard 2002], is also possible.
Instead of adding utterances to the final corpus, the spitting algorithm starts from the
initial big corpus and removes the least helpful utterances iteration after iteration,
until no utterance can be removed without breaking the covering criteria.

Pair exchange: The pair exchange algorithm differs from the agglomerative and spitting
algorithm in the sense that it tries to optimize an existing corpus by exchanging its
content with the initial corpus. This initial corpus can either have been constructed
randomly, as it is done in [Kawai et al. 2000] for instance; or built with another corpus
building algorithm [Francois and Boeffard 2002]. It works as follows: an initial set
of utterances is extracted from the main corpus to build a first version of the target
corpus. The algorithm then iterates over the main corpus and, at each iteration,
picks up an utterance that isn’t in the target corpus and selects another, this time in
the target corpus. The two utterances are switched and the new corpus covering is
computed. If it is better than before the switch, the exchange is validated; otherwise,
it is discarded. Finally, the algorithm terminates when the covering goal is reached.

As said in the last point, combinations of these algorithms are possible. The comparison
Hélène François and Olivier Boeffard carried out in 2002 showed that the best greedy ap-
proach is an agglomerative algorithm followed by a spitting one [Francois and Boeffard
2002]. They also emphasized the slowness of the pair exchange algorithm. The compar-
ison was made using a corpus of 3 000 French sentences over several comparison criteria
(sentence usefulness for instance).

Other Approaches

While greedy approaches are easy to implement and give good results, other ones may be
used that can yield to better covering and provide some guarantee over the quality of the

42 CHAPTER 3. THE TTS FRONTEND AND CORPUS

covering. Chevelu et al. [Chevelu et al. 2007; Barbot et al. 2012] present an algorithm that
builds a corpus based on the principle of Lagrangian relaxation. The algorithm is called
LamSCP for Lagrangian based Algorithm for Multi-represented SCP and gives some in-
dication of the quality of the covering that is obtained. Lagrangian relaxation has the
advantage of producing an optimal solution to the Set Covering Problem for problems of
reasonable size, which is unfortunately not the case for greedy implementations. In the
case of greedy techniques, the order of complexity is too high, with typically thousands of
sentences and millions of units. LamSCP presents the advantage to provide a value for the
cost of the optimal covering.

The algorithm is composed of three phases, first computing an approximation of the
optimal Lagrangian multipliers vector and a first under-optimal solution (obtained by com-
puting a first solution to the problem with a greedy algorithm). This under-optimal solution
is assimilated to an upper bound to the cost function evaluating the quality of the covering.
The second step consists in an exploration of the neighborhood of the first solution and
greedy functions process the neighbor Lagrangian vectors to obtain the new covering, the
best one becoming the new upper bound. The third phase aims at reducing the size of
the problem with the help of heuristics. After these 3 phases, the algorithm comes back
to phase 1 in a loop that lasts until either the residual sub-problem is empty or if the
Lagrangian function becomes more expensive that the best solution yet found (which acts
as an upper bound).

The real quality of the final solution given by the algorithm can therefore be assessed
and in their tests, the authors get coverings only 0.8% bigger than the optimal phones
and diphones covering. Furthermore, it gets a 10% better covering than a standard greedy
algorithm (agglomerative followed by spitting algorithm).

2.4 Sentence Construction

An entirely different approach is described in Didier Cadic’s work [Cadic et al. 2010; Cadic
2011]: sentence construction. In all the strategies presented earlier, sentences where con-
sidered as atomic, i.e. they couldn’t be cut. The problem consisted in knowing, for the
bigger corpus, whether or not a sentence had to be included into the final corpus. The idea
of the sentence construction problem, as its name indicates, is to build sentences appearing
in the final corpus. Sentences are built so that they increase covering as much as possible.
Having the possibility to create sentences allows the algorithm to increase corpus covering
more easily than corpus covering methods.

The difficulty with this method is that all sentences cannot be constructed. A first
constraint is that the sentence has to be pronounceable, for obvious reasons. But the cor-
rectness of the sentence grammatical structure is important as the speaker would find it

2. THE CORPUS 43

difficult to read a sentence that is grammatically wrong. In that case, the laboriousness of
the task would make him/her bored or exhausted quickly. But this is not enough, because
sentence prosody also has to be accurate, which means the speaker should read sentences
that have a minimum of sense. If the meaning of the sentence is aberrant, the speaker
might be perturbed in his reading.

As a fully automatic algorithm that builds sentences is very difficult to design, an
intermediate – semi-automatic – method is often chosen. In his thesis [Cadic 2011], Didier
Cadic describes an approach based on sentence building that uses a distributed architecture
with Weighted Finite State Transducer (WFST) that builds and proposes sentences to a
number of human operators. The latter can either validate or reject each sentence and all
validated sentences are added to the final corpus. This method yields very good results,
with a consequent densification of the corpora, but it is very costly both in time, money
and human intervention. It also caused a degradation of the sentences consistency.

2.5 Corpus Building Method Choice

To conclude on the corpus construction problem, one can say the choice of the corpus
building method is directly linked to:

• Nature of the corpus;

• Storage capability;

• Budget;

• Human resources;

• Time delay to build the corpus.

The corpus characteristics will be determined by the nature of the task it is built for.
If the corpus is very specialized (e.g.: a voice for a city’s bus system), the corpus will sim-
ply consist of important keywords and sentences, possibly completed by a simple diphone
covering obtained with a greedy algorithm. If the corpus is more generalist, bigger corpora
will be necessary, and covered features will have to be chosen appropriately. If resources
are limited, greedy algorithms will be the obvious choice. However, with more time and
technical and physical resources, a better corpus can be obtained with an algorithm based
on Lagrangian relaxation. Finally, the corpus building technique yields the best covering,
but this comes to the price of a high technical complexity and high human, time and fi-
nancial cost.

Finally, corpus building is directly impacted by the quality of annotations, particularly
in the case of automatic annotations. In 2007, Lambert et al. published a paper where two
corpora where built from the 2007 Blizzard Challenge corpus [Lambert et al. 2007]. One

44 CHAPTER 3. THE TTS FRONTEND AND CORPUS

was phonetically balanced while the other consisted of random sentences. The authors
stated that automatic annotations where much better in the randomly selected corpus.
This resulted in better unit choices and better prosody modelling for the Unit-Selection
TTS system and eventually to better rating in both objective and subjective tests. The
authors stated that this better performance of the random corpus was certainly caused by
quality of alignments in the original corpus.

3 Conclusion

This chapter was devoted to the presentation of a classical TTS front-end and main corpus
building methods in the scope of unit selection-based synthesis. We have first shown how
the input text is transformed into a multi-leveled representation of the requested utterance,
through the use of successive annotation tools. Then, we focused on the problem posed by
the speech corpus: we saw that the size and richness of the corpus was the key point for unit
selection in order to get a satisfactory speech quality. However, we saw that algorithmic
and contextual constraints limit the actual size of the corpus, which led us to present the
problem of corpus reduction that aims to get the best possible tradeoff between corpus size
and corpus richness.

Chapter 4

The Unit Selection Backend Block

“All life is a concatenation of ephemeralities.”

Alfred Edward Kahn (1917–2010)

In the last chapter, the TTS fronted and the construction of the corpus were presented.
This chapter will now focus on the second part of the TTS process: the TTS backend. This
part takes the information inferred by the frontend, the description of the utterance to pro-
duce. Its task is to make the most of the corpus to get a sequence of concatenated speech
segments as close as possible to the description given by the frontend. This part will be the
one to be given the greatest attention as it is the heart of the thesis. It will consist of a de-
tailed description of the backend of the speech synthesis system, often called the synthesizer.

In this part, we will now focus on the unit selection backend block. Having the an-
notated corpus and a textual utterance enriched with linguistic and phonetic information
(the sentence to produce) obtained with the TTS frontend, the last part of the process
is to determine which portions of the corpus should be used to reproduce the utterance,
extract them and carry out concatenations (and possibly prosodic modifications).

The term ”unit selection” is often used in literature to refer to the whole backend block
(in the title of this section for example), which means in that case ”Backend block based
on the unit selection technique”, including the concatenation and smoothing steps. In fact,
the unit selection process is only the first part of the block, i.e. the search for the right
units to concatenate. But as the steps that follow in the backend block depend on the
selection process, and as the unit selection process is the differentiating part with other
concatenative systems, it is possible to refer to the whole block as unit selection.

From now on though, in order to avoid any confusion, the term unit selection will only
refer to the actual selection step alone.

45

46 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Moreover, synthesis in the unit selection block is done breath group by breath group,
mainly in order to decrease the complexity of the problem as concatenation over two silences
(as there is between breath groups) is straightforward.

1 Topology of the Problem

The unit selection block has two inputs: the utterance generated by the TTS frontend,
which represents the target to synthesize, and the speech corpus. This is represented in
figure 4.1. An important point is that the corpus is not part of the selection block: it
must be seen as completely interchangeable without any modification on the unit selection
engine. In output of the block is the sequence of corpus units that has been selected for
concatenation.

1.1 The Base Unit

The problem of finding the best mapping between units from the corpus and the input
utterance requires the definition of a base unit. In chapter 2, we discussed this problem,
showing that a large range of units were investigated for usage in speech synthesis. The
problem is a footprint/performance tradeoff. Long units like syllables or words ensure good
TTS performance but creating a corpus with a full covering of words or even syllables, not
even speaking of multi-representation, is very difficult to achieve in non-domain-specific

Figure 4.1: Black box view of the unit selection process. The process looks for the best
way to reconstruct acoustically the input utterance by joining units from the corpus. The
process is completely generic (i.e. independent of the corpus). The output of that process
is an ordered list of corpus units; here represented by couples where the first number is the
position of the first phone in the unit and the second is the number of subsequent phones
that belong to that unit. The units in this list are those to be concatenated.

1. TOPOLOGY OF THE PROBLEM 47

synthesis. Indeed, a significant amount of time and substantial resources would be needed
to record it and its footprint would be considerable, which would also make it difficult to use
in practice. Short units (demi-phones, phones, diphones, 2-phones, 3-phones, ...) require
a much smaller corpus but imply more concatenations as less contexts are represented
in the database. In addition, some base units make more sense in some languages than
other. Syllable, for example, are more likely to help increase synthesis quality for syllabic
languages than tonal languages. For many languages though, the diphone remains the
reference unit. It allows the creation of small corpora (less than half an hour) that can
still be enriched by adding more covering constraints during the creation of the corpus. As
we will see in the following, a diphone corpus can perfectly be used to carry out synthesis
by concatenating on bigger units than diphones. In the following, we shall consider the
diphone as the base unit.

1.2 The Notion of Sequence

In our representation of the problem, the corpus is viewed as a long stream of speech,
where sub-parts are accessible by using the absolute phone annotation. Therefore, units
are defined by a couple (index, size) where the index is the absolute position of the first
phone of the unit in the corpus and the size is the number of phones in the unit. A unit
ranges from position index to index+size-1. The part that will actually be concatenated
will begin by the second part of the first phone of the unit and end with the first part
of the last phone. Hence the impossibility to have sequences smaller than 2 phones1. An
illustration of this concept is given by figure 4.2, which shows the joining of two units [Ke]
and [ey].

As the input utterance is basically a sequence of diphones enriched with additional
information – mainly over the characteristics of the wanted diphones, it is broadly referred
to as the target sequence (of diphones). In the same way, a sequence that matches the
target sequence is called candidate sequence, itself composed of candidate units matching
subparts of the target sequence. As synthesis is done breath group by breath group, the
target sequence (and therefore candidate sequences) always begins and ends with a silence,
which we will refer to with a # symbol in the following.

1.3 Speech Units

The unit selection problem, first defined in Sagisaka’s work in 1988 [Sagisaka 1988], differs
to basic concatenative synthesis in two points:

1. Multi-representation of units: a same unit is represented several times in the corpus.

2. Variable length units: the size of the unit is not fixed, it can be any number of base
unit, possibly the whole target sequence.

1The corpus annotations are made by phone while concatenations are made on diphones.

48 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Figure 4.2: Joining unit [Ke] with unit [ey] requires concatenating on the last phone of left
unit [Ke] and the first phone of right unit [ey], i.e. on phone [e]. Concatenations are made
on diphone borders, hence in the middle of the [e]. Once centers of [e] phones of both units
are aligned, the left part of the concatenated phone is taken from the left unit, the other
from the right unit. A PSOLA merge is carried out (red area) to soften the junction (see
section 4). Final unit is represented by the blue stripes. The left unit is composed of two
phones of index 78576 and 78577 and the right unit of 5, from 1554 to 1558 for the right
one in the corpus.

While the first point is also encountered in advanced concatenative TTS systems (that
are not unit selection based)2, the second is a particularity of unit selection. The difference
on the first point between unit selection and basic concatenative systems holds in the rep-
resentation of the corpus. For unit selection systems, the corpus is a whole “speech strip”
where speech is extracted only during concatenation while other systems use a dictionary
structure to classify speech sounds.

For one target sequence, there is a number of possible candidate sequences, a huge
number in fact when the corpus is hours long. The following equation, from H. François’s
thesis (proof and formula are on pages 79-80), gives an idea of the number of candidate
sequences in the case of a corpus with featuring the same number M of representatives of
each phone (which is often not the case in unit selection, the number of each phone being
usually different) [Francois 2002]:

Npaths =

N∑
c=0

M c+1

(
c

N − 1

)
(4.1)

where N is the number of phones in the target sequence (meaning there are up to N-1
concatenation points, each on diphone boundaries). c is the number of concatenations
made in the sequence, which varies from 0 to N-1 concatenations. Finally,

(
c

N−1

)
is the

number of combinations of c in N−1. To illustrate the difficulty of the problem, let us take

2Concatenative systems may or may not handle multi-represented units but all unit selection systems
do.

1. TOPOLOGY OF THE PROBLEM 49

the example of sentence “Yes.”. If we consider a constant M of 10 phones, there is 6 410
candidate sequences. With a more likely M=1 000 (for a 10 hours corpus for instance), the
number of candidate sequences jumps to over 6 billion. And the problem is the same for
a bigger target sequence, “Bonjour tout le monde.” (French for “Hi everyone.”), there are
4.3× 1023 candidate sequences only for M=10, etc.

As we said earlier, a unit is not necessarily a diphone. Longer units, which size is
variable and thus undefined before execution, composed of contiguous diphones (in the
corpus) are also to be considered (and usually favored). As an example, for 10 hours
of speech, the number of units (no matter the size) is superior to 5 million while there is
approximatively around 400 000 diphones. Such a quantity of data means all possible paths
cannot be parsed in real time, as of 2015. Two possibilities are then feasible to make the
problem solvable in real time. First, the corpus can be explored by a greedy algorithm that
only considers what it expects to be the best combinations. This leads to under-optimal
solutions. It is typically that approach that is used in most beam-search Viterbi-based
algorithms used for unit selection. Secondly, algorithms that do not need to parse all units
to find the (optimal) solution of the problem might be used instead. This leads to much
lower processing time. Unfortunately, with a large speech corpus of several hours, this is
not enough to get an optimal solution in real time. To achieve that, non-trivial admissible
heuristics would have to be found. In particular, the framework for such an heuristic
is offered by A∗ algorithm. With A∗, if the heuristic gives an estimation systematically
inferior or equal to the real cost, it is insured that the algorithm is admissible. A proof of
this property is provided in N. Nilsson’s book, “Principles of Artificial Intelligence” [Nilsson
1982]. Nonetheless, such an heuristic is very hard to find for the unit selection problem.
But finally, this real time TTS problem relies on the following two questions:

1. Does getting an under-optimal solution to the unit selection problem consistently
degrade synthesis?

2. How much does pruning affect perceived quality of speech synthesis? Or, how much
pruning can be allowed in the selection algorithm so that degradation is not per-
ceived?

Those concerns will be addressed in chapter 6 where my work on the unit selection
algorithm is detailed.

1.4 The Candidate Units Graph

Now, in order to solve the unit selection problem, the algorithm must have some way to
structure corpus data and explore it efficiently. As the search algorithm has to find a
way to concatenate a finite number of units that have to be selected into a finite (though
considerable) number of units with an ordering relation between them and a cost for passing
from one unit to the other, the problem finally comes back to a shortest-path finding
problem in a directed weighted graph.

50 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Formally, units can be organized in a graph G = (V,A,C) where the nodes set V
represents the set of all corpus units that can be used to match the target sequence. A is
the set of arcs transcribing possible concatenations between units. As the graph is directed,
there is an ordering between the nodes: an arc from a node A to a node B means B can
be joined after A. C is the set of costs cij linked to each arc (i, j) ∈ E of the graph. It
quantifies the risk of creating audible artefacts when concatenating two units.

Several nodes in the graph can represent the same corpus parts. For example, a unit
corresponding to the phonetic sequence [# - s - u] is composed of diphones [# - s] and
[s - u]. While there is a node representing that unit, there are two other distinct nodes
representing the two smaller corpus units composed by the diphones. A same unit can also
be used more than one time in the graph as it might be candidate for matching the target
sequence several times. For instance, our unit [s - u] from the last example can be used
twice to synthesize the target utterance [# - s - u - s - u].

Arcs between the units only transcribe concatenations that mark a progress in matching
the target sequence3. This means two things. First, that the selection graph is a sub-graph
of a global non-oriented graph that models all possible concatenations in the corpus. This
graph is fully connected. Secondly, this means the graph is always built during the selection
stage, as it is related to the target sequence. It cannot be constructed prior selection as
the target sequence is unknown then.

Furthermore, the graph matches following properties:

Finite The corpus, though huge, contains a finite number of nodes.

Acyclic As each unit introduced into the graph is linked to a particular portion of the
target sequence, once it is selected, it cannot loop. If the same unit is selected twice,
even one after the other, it will be represented by two different units in the graph,
each one linked to a particular part of the target sequence.

Directed An edge linking two units transcribes a progression in the construction of a
sequence matching the target sequence. Hence, there is a time relation between the
two units: one is necessarily preceding the other. In addition, going from the second
unit to the first is impossible because (1) it would not mark any progression in the
target sequence (2) it would not match the target sequence and (3) it would break
the acyclicity constraint. The graph is therefore directed and edges are called arcs.

Weighted An arc from one node to another transcribes the fact of joining two units.
Joining two units comes to a cost. Therefore, arcs bear a weight formed by the cost
of the operation of adding the new node to the existing candidate sequence.

Furthermore, in order to simplify the work for the algorithm, two non-synthesizable
nodes may be added. An "init" node is added to the graph with arcs bearing an empty

3Concatenations that would cause a candidate sequence to diverge from the target sequence are forbid-
den.

1. TOPOLOGY OF THE PROBLEM 51

cost to every possible unit (i.e. node) that match first diphones of the target sequence.
Similarly, an "end" node is added as a successor to every node that match the end of the
target sequence. As a result, the graph matches all the properties of a lattice. Indeed, with
these nodes, every couple of nodes of the graph possess at least one predecessor and one
successor in common. The fact that the graph is a lattice enables the usage of dynamic
programming for the selection algorithm, which we will detail in the next section. The
modeling of the problem via a lattice is widely used in the literature (in [Donovan 1996],
[Yi 1998], [Klein and Manning 2003] or [Vepa 2004] for instance). Another representa-
tion has been used in the literature, mainly in the 90s: modeling of the problem via a
tree. In 1999, Taylor and Black proposed an algorithm called PSM (Phonological Struc-
ture Matching) which was based on a hierarchical selection of units, which were placed in
a phonological classification tree [Taylor and Black 1999]. The tree represents the target
utterance, with nodes depicting first words and then syllables, stress information and fi-
nally phone sets from the corpus on the leaves. The phones in the leaf sets are those that
match the information represented by parent nodes in the graph. The algorithm then uses
a scoring function to get the best phone of each leaf and concatenates them. Of course,
this technique answers to the problem of unit selection only if the scoring function takes
into account the relation between each set in order to ensure that phones in two sets are
considered as part of a same bigger unit if they are contiguous in the corpus. Nodes in the
sets could also be rearranged into a small graph and a new (smaller and easier to solve)
unit selection problem emerges (this is in particular the way PSM works). In that case,
the construction of the tree and its leaf sets can be viewed as a method of preselection, or
pruning.

As in this thesis my work is aiming to be as generalist as possible, we will keep consid-
ering the most generalist point of view: a graph.

In order to illustrate previous paragraphs, let’s consider we want to synthesize the
utterance ”Sous une autre forme.” (Under another form.). Figure 4.3 shows the beginning
of the related graph. The start point of any search algorithm, in the graph, is the node
"init". From that node, there is a link to every node that represent a corpus unit matching
the beginning of the target sequence. This node is introduced in order to avoid arbitrary
choice of the first node. We make a similar choice by introducing a unique end (target)
node. Several units are only a diphone [# - s], while some also match the third phoneme
of the sentence, giving a longer unit: [# - s - u]. There might have been even longer units,
to the limit of the target sequence size. The size of a unit is determined by the number
of related diphones in the corpus that match the target sequence. In particular, if an
utterance in the corpus happened to correspond to the complete target sequence, a unique
node corresponding to that utterance would be added to the graph and it would be linked
on one side to the init node and on the other side to the end node. Nodes representing
a diphone [# - s] only have arcs that link them to units that match the next part of the
target sequence, beginning with diphone [s - u]. The longest possible size for the nodes

52 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Figure 4.3: Example of the unit selection graph modeling where nodes are corpus units.
Each arc is possible way to bind two units. The binding’s cost is in red.

accessed by [# - s] nodes is N − 1 where N is the size of the target sequence of diphones
T = (d̂1, d̂2, ..., d̂N).

Another modeling, completely equivalent, is worth mentioning, as it has been widely
used in the literature (for instance in Hunt and Black’s unit selection founder article [Hunt
and Black 1996]). It is to consider V as the set of possible states while browsing the target
sequence. In that case, the arcs become the corpus units and each arc bears the cost for the
selection of that unit, in the context of the emitting and receiving states. As there is very
likely much more than one unit that allows passing from one node to another, the graph is
multivalued. For example (see figure 4.4 for an illustration of that example), the first state
of the graph the selection algorithm will visit in sentence ”Sous une autre forme.” (after
the initialization node) is state [# - s] which we reach when a diphone [# - s] has been

2. SELECTION ALGORITHM 53

Figure 4.4: Example of the unit selection graph modeling where nodes are states in the
target sequence. Each arc is a corpus unit (black part of the label) with a selection cost
(in red).

selected. This state is directly linked to state [# - s - u] where two diphones [# - s] and [s
- u] have been selected by the selection algorithm. As there is probably a big number of
diphones [s - u] in the corpus, every one of them is represented by an arc between states [#
- s] and [s - u]. The two phonemes can be on a contiguous segment, in which case they form
only one unit. In that case, this unit was selected by taking an arc from the initialization
node directly to [# - s - u].

A complete example of that modelization is given by figure 4.5 [Francois 2002]. This
modeling is more compact than previous one, and may be easier for presenting the unit
selection algorithm but it is also very different from what actually happens in the heart of
the algorithms implemented in my work. This is why in the following we will use the first
modeling presented where each node is a corpus unit and an arc represents the action of
concatenating two units at some cost (potentially null).

2 Selection Algorithm

The goal of the unit selection algorithm is to find the cheapest path in the graph. Given
the nature of the graph, especially the fact that it is actually a lattice (or a tree if the
end node is removed), dynamic programming has been the most popular way to perform
selection, since Hunt and Black’s original work on the CHATR system in 1996 [Hunt and

54 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Figure 4.5: The unit selection sequence graph for the French sentence ”Sous une autre
forme.”. Each edge has a label and a number. The label represents the unit that’s added
to the sequence and the number is the quantity of units of that type in the corpus. To
reproduce the whole graph, this number would need to be replaced by as many edges, along
with the cost of that particular unit in sequence (i.e. taking into account the previously
selected unit in the sequence). Such a representation is of course impossible given the size
of the problem. Nodes represent a common state in the sequence: 0 means nothing was
selected, 1 that the first phone related to the target sequence was selected, etc. Figure
extracted from Hélène François’ thesis [Francois 2002].

2. SELECTION ALGORITHM 55

Black 1996]. In that work, a lattice of phones representing the content of the database4 is
created and pruned. Viterbi algorithm is used to find the best sequence of graph nodes,
hence the best unit sequence. The solution is under-optimal as the lattice was pruned.
In 1998, M. Beutnagel, A. Conkie and A. Syrdal used the same principle but replaced
phones by diphones [Beutnagel et al. 1998]. Then, this method has been reproduced in
most publications on unit selection until today, for instance in D. Schwarz’s presentation of
concatenative sound synthesis (musical synthesis, explorative synthesis, artistic synthesis
[Schwarz 2007]) or in a work on the sub-costs of the concatenation cost function by Blouin
et al. [Blouin et al. 2002].

Over time, several enhancements of the algorithm were proposed, for instance in S.
Sakai, T. Kawahara and S. Nakamura’s work [Sakai et al. 2008] where stopping criteria
aiming at pruning the Viterbi lattice are presented. It was further refined and perceptually
evaluated in a work by D. Tihelka, J. Kala and J. Matoušek [Tihelka et al. 2010], where
no perceptual degradation caused by the pruning criteria is spotted while the algorithm is
up to 58 times faster than the baseline algorithm (a beam-search Viterbi).

2.1 Viterbi Algorithm

Now, to simplify, let us put aside the init and end nodes that just serve to initialize, launch
and terminate the search. Let T = (d1, d2, ..., dN) the target sequence of diphonemes of
size N , with dk being the kth diphoneme of the sequence, for any k ∈ J1;NK. We note
Ψk =

{
d1
k, d

2
k, ..., d

Mk
k

}
the set of the Mk candidate diphones in the corpus that match the

target diphoneme d̂k. With i, j ∈ J1;NK, i < j, a corpus unit matching target diphonemes
i to j is noted Uxi,j , x meaning the unit is the xth matching the target sequence from di

to dj 5. Hence, we define Ωi,j =
{
U1
i,j ,U2

i,j , . . . ,U
Mi,j

i,j

}
as the set of all corpus units that

match the target sequence from diphonemes di to dj included. In the following, we use
Uωi,ji,j ∈ Ωi,j to refer to any unit of Ωi,j . The set of all units in the corpus is the following:

Ω =
⋃

i,j∈J1;NK
i<j

Ωi,j (4.2)

Using these notations and with 1 ≤ h < i, the unit selection problem can now be
written as an optimization problem, aiming at finding the unit sequence that minimizes a
cost function C:

U∗ = arg min
U=U

ω1,h
1,h ,...,U

ωj,N
j,N

(C(Uω1,h

1,h ,Uωh,ih,i , . . . ,U
ωj,N
j,N)) (4.3)

4They are called states though not in the sense of the state in the target sequence, as in the modeling
presented in the last section.

5Here, ranking of the corpus units with attribute x is purely arbitrary, as no ordering of the candidates
Uxi,j is necessary. x is here used as an identifier for the unit among its siblings.

56 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

The cost of each unit is determined by two cost functions Ct and Cc. Hence, the general
cost function evaluating each node takes the form C(Uωi,ji,j) = Ct(U

ωi,j
i,j) + Cc(U

ωh,i
h,i ,U

ωi,j
i,j)

where Uωh,ih,i is the predecessor of unit Uωi,ji,j in the candidate sequence. Equation 4.3 then
becomes:

U∗ = arg min
U=U

ω1,h
1,h ,...,U

ωj,N
j,N

(Wtc

∑
U
Ct(U

ωi,j
i,j) + Wcc

∑
U
Cc(U

ωh,i
h,i ,U

ωi,j
i,j)) (4.4)

Ct is called the target cost and measures the degree of suitability of a corpus unit
to represent the corresponding part of the target sequence. Cc is called the concatenation
cost. It evaluates the expected quality of the joining point in the signal after concatenating
a unit with its predecessor in the candidate sequence (i.e. the preceding graph-node in the
path being built by the algorithm). We will focus on these costs in section 3.

The Viterbi algorithm was first introduced in a 1967 article by A. J. Viterbi [Viterbi
1967] to find an upper bound to the probability of error in decoding an optimal convolu-
tional code. More recently, Viterbi gave a simpler and more generalist description (though
still centered on digital sound processing) of the algorithm in the IEEE Signal Process-
ing Magazine [Viterbi 2006]. The algorithm is based on dynamic programming, with the
following recursion formula6:

C(Uωi,ji,j) =

 Ct(U
ω1,j

1,j) if i = 1

min
Ωh,i

(
C(Uωh,ih,i) + Cc(U

ωh,i
h,i ,U

ωi,j
i,j)

)
+ Ct(U

ωi,j
i,j) otherwise. (4.5)

Starting from the last units, the algorithm directly calls the preceding unit on the
optimal path, which is computed with the minimum on the recursive call, in practice
expressed with a breadth-first search (no recursion in the algorithm since it’s dynamic
programming).

The algorithm’s asymptotic computational complexity is O(N ∗K +N ∗K2), K being
the number of candidate phones in the corpus and N being the number of diphonemes
in the target sequence [Schwarz 2007]. More precisely, the target cost function counts for
O(N ∗ K) computations while the concatenation cost is computed O(N ∗ K2) times.

2.2 Beam-search Algorithm

This complexity can be reduced to O(N ∗K+N ∗B2) with a beam-search optimization of
the Viterbi algorithm, B being the size of the beam in question. Beam-search strategy is,
given a unit, to compute the target costs of all possible preceding units in the graph (as it
is usually done in the baseline Viterbi algorithm) and only keep the B best ones for further
consideration. Hence, at each level of the search, only B solutions for matching the target

6Again with h, i, j ∈ J1;NK, h < i < j.

2. SELECTION ALGORITHM 57

sequence are considered, as all others have been pruned at the previous level (remember
this is a breadth-first strategy, so we are progressing level by level, even if each level has
variable-size units).

It is actually this technique that is used in most (if not all) unit selection engines
around the world, for a simple reason: the baseline Viterbi algorithm cannot compute the
solution to the unit selection problem in real-time. Of course, using a beam-search strategy
makes Viterbi algorithm under-optimal, but we will see in chapter 6 that with a reasonable
beam size, optimality of the solution to the unit selection problem is not crucial and that
reasonably good solutions can be obtained in a very short time with (almost) no perceived
degradation of synthesized speech.

2.3 Non-Viterbi Approaches

In most cases, the Viterbi algorithm is used to find the best unit sequence, but it is not
the only possible one. As the unit selection problem is about finding the shortest path in
a graph, all algorithms able to solve that problem are susceptible to be used.

The most famous of these surely is Dijkstra’s algorithm (constantly cited as one of the
most used algorithms in the world). Dijkstra’s algorithm the shortest path problem in
O(|V 2|), i.e. O(n2) time according to S. Saha Ray [Saha Ray 2013], n being the number
of nodes traversed by the algorithm 7.

A more general algorithm, the Floyd-Warshall All-Pairs-Shortest-Path algorithm, is
also fit for the task. Unlike Viterbi or Dijkstra, which have a single source (or init) node,
it can compute the shortest path between any two nodes or vertices in the network [Saha
Ray 2013]. It relies on dynamic programming and has a time complexity in O(n3), thus
making Dijkstra better for the unit selection task.

Another algorithm is often used (even more than Dijkstra actually) for shortest path
problems: A∗. Contrary to the Viterbi algorithm, A∗ algorithm develops a graph. At each
time instant, it explores the best node of the graph using a cost function that depends
on both the path from the source node and the estimated cost to the target. Originally
introduced in 1968 by P. E. Hart, N. J. Nilsson and B. Raphael [Hart et al. 1968], the
algorithm basically operates by searching for a path in a directed graph, whose nodes only
have a finite number of successors, between a start node and a target node.

At each step, A∗ takes the most promising node according to a cost function f(Uωi,ji,j) =

C(Uωi,ji,j) + h(Uωi,ji,j) and expends its successors (computing their cost by the way) until the
target node t is reached. h(Uωi,ji,j) is a heuristic that enables to speed up the algorithm by
privileging the nodes that seem to be on an optimal path over those which have a better
cost but may lead to greater costs in the future [Nilsson 1982].

Considering a unique target node, one of the main advantages ofA∗ is that the algorithm
delivers an optimal solution if the heuristic is admissible, i.e. if h(Uωi,ji,j) ≤ h∗(Uωi,ji,j), where
h∗(Uωi,ji,j) is the real minimum value of the distance to the target node. In particular, note

7|V | is the number of nodes in the graph.

58 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

that the algorithm is optimal in the trivial case h(Uωi,ji,j) = 0, i.e. if there is no heuristic,
and turns out to be equivalent to Dijkstra’s algorithm.

Other algorithms, like the D algorithm presented in 1959 by E. Moore or Busacker and
Saaty’s dynamic programming implementation may also be used.

Very different techniques may also be used for unit selection, the most exotic being
perhaps Rohit Kumar’s work [Kumar 2004], where a genetic algorithm is used, relying
on genetic operators very similar to the target and concatenation costs. This algorithm
achieves to find an acceptable (i.e. under-optimal though the genetic algorithm converges
to the optimal solution) solution faster than using an optimization based algorithm.

Evaluating the interest of these alternatives to Viterbi algorithm has been the first task
I have undertaken in my work [Guennec and Lolive 2014a; Guennec and Lolive 2014b]. In
chapter 6, we present the results of that work.

2.4 Concerning Variable-size Units

A particular point is that the term unit selection is used indifferently in the literature to
describe two processes:

• Parsing a graph where nodes represent diphones in the database (most publications);

• Parsing a graph modeling variable-size units.

While the second point follows exactly the definition of unit selection, the first one seems
to match more concatenative synthesis (without variable-size units) than unit selection.
Actually, provided that all arcs between nodes that model contiguous diphones in the
corpus get a null cost, both come back to exactly the same thing. Hence, using only
diphone units provide an immense advantage: the graph is much smaller when including
only diphones and no longer units and it is easier to work on as all units have the same size.
That means also that the size of the problem is much smaller, leading to both algorithmic
space and time economy. In this thesis, we use the general point of view. Variable-size
units are used in order to make the discourse as comprehensive as possible, but in practical
applications referring to the diphone graph only is sufficient, if and only if arcs between
nodes that model contiguous diphones in the corpus get a null cost.

3 Selection Cost

As previously said, Hunt and Black first came with this target cost/concatenation cost for-
mulation [Hunt and Black 1996]. This division into two procedures is particularly adapted
to the problem and has been wildly reproduced until today. It presents nonetheless one
important disadvantage: global constraints are not taken into account as the costs are local
to the nodes of the graph. We will come back on that matter in section 3.5.

Before going further, an important remark has to be kept in mind: the goal of the
selection cost construction task is to build a function that penalizes units the way a human

3. SELECTION COST 59

would, with quality of experience in mind. What this means is that a unit sequence, once
concatenated, can present discontinuities that human ears cannot discern (i.e. buzzing at
50 kHz). Such things should not be taken into account in the cost function. Doing so may
cause a unit with perceptible issues to be selected instead of a unit bringing multiple but
imperceptible problems.

So the main issue of the selection cost is the following: what criteria should be assessed
and what weighting should be operated between them? Of course, the answer to that
question is language dependent.

It is also important to note that the constraints used into the selection cost (especially
the target cost) need to be as close as possible to the constraints that were used to build
the corpus. The ideal case is to have exactly the same costs in the function that scores the
utterances during corpus construction and in the unit selection cost function. Indeed, the
criteria used to build the corpus have an impact on its composition (phonetic, linguistic,
etc.). Using the same (or close enough) criteria for selection allows to take advantage
of this exotic corpus content. Of course, the selection cost function should ideally be as
independent of the corpus as possible. Corpora should be commutable without modifying
the cost function. Actually, this is not the case in reality: the cost function efficiency
is directly affected by the corpus content. Thus, using the same constraints for corpus
construction and unit selection is a welcomed optimization.

3.1 Target Cost

The target cost aims at sorting each candidate unit set Ωi,j according to its level of cor-
respondence to the description of the corresponding portion of the target sequence. This
knowledge can be based on:

• Linguistic and phonetic target sequence descriptors acquired with automatic anno-
tation (only a few predicted)

• Predicted values like F0, phonemic duration, energy, etc.

• Rules (especially prosodic)

Starting from these descriptors and predictions, distance functions are built to com-
pare this data to each corpus unit annotations, which are stored in the corpus (i.e. not
predicted). This set of distance or difference functions is called the set of target sub-cost
functions. Together, they form the unit selection target cost:

Ct(U
ωi,j
i,j) =

K∑
k=1

wkC
k
t (Uωi,ji,j) (4.6)

K being here the number of target sub-cost functions, and Ckt (Uωi,ji,j) being the function
associated to kth sub-cost.

60 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

The actual nature of the sub-costs is rarely stated in the literature, for example A. Black
and N. Campbell where the target cost is described as containing 20 to 30 sub-costs without
giving more detail [Black and Campbell 1995]. Nonetheless, the features usually chosen
are linguistic/phonological attributes (it may also be implemented via a preselection filter
which would make selection much faster, cf. paragraph 3.4), pitch, energy or phonemic
duration. For example, Alías et al. use predictions of normalized pitch, energy and duration
for their target cost [Alías et al. 2011].

The main problem of this formulation concerns the reach of most features used in the
cost (this will be further discussed in section 3.5): as the formulation of the problem forces
the use of local features, usually centered around the elementary unit (e.g. diphone),
possibly with contextual information ; no or few attention is given to long term constraints
(integration of the unit in regard to the expected prosody of the breath group, consistency
with the rest of the candidate sequence for example). This is one of the points we will
discuss later on in chapter 7.

3.2 Concatenation Cost

The concatenation cost goal is to prevent concatenation of units susceptible to cause the
appearance of a concatenation artefact or any other inconsistency by awarding a cost to any
candidate unit considered to be added to the sequence. This cost measures the difference
between a candidate unit and the last unit of the candidate sequence under construction.
The computed cost is then added to the cost of the candidate unit.

Equation 4.7 presents the integration of concatenation sub-costs in the global join cost
function:

Cc(U
ωh,i
h,i ,U

ωi,j
i,j) =

K∑
k=1

wkC
k
c (Uωh,ih,i ,U

ωi,j
i,j) (4.7)

When using acoustic or prosodic features in the target cost, the target data is generated
by a model, which induces a bias. In the case of the concatenation cost, the advantage is
that this data comes from corpus annotations of both left (Uωh,ih,i) and right (Uωi,ji,j) units.
Distances over these attributes – and most concatenation sub-costs are based on acoustic
features – is therefore more reliable.

Empirically, synthesis made with a concatenation cost but no target cost is usually
acceptable while synthesis made without any concatenation cost often results in unintelli-
gible sentences. One could hence say that the concatenation cost is the main element of
the selection cost.

As the concatenation cost composition is particularly important, literature gives it more
focus than it does with the target cost. Thus, many spectral distances are implemented in
the concatenation target sub-costs though the most important distance is probably F0 as
say D. Tihelka et al. in a paper presenting a refined F0 cost computing the slopes between
the 5 F0 measures around the concatenation point [Tihelka et al. 2014]. Elsewhere in the

3. SELECTION COST 61

literature, Black and Campbell used normalized pitch in 1995 [Black and Campbell 1995],
which was also the case of F. Alías et al. more recently [Alías et al. 2011]. The latter also
used an Euclidean distance on MFCCs around the joining point. Cepstral distance is also
quite popular: FFT-based (Fast Fourier Transform) and LPC-based (Linear Prediction
Coefficient) cepstral distances were used in many publications, like M. Macon, J. Wouters
and A. Cronk’s work [Macon et al. 1998] [Wouters and Macon 1998], A. Black and N.
Campbell’s [Black and Campbell 1995], A. Hunt and A. Black [Hunt and Black 1996] or Y.
Stylianou and A. Syrdal’s [Stylianou and Syrdal 2001]. The same also used Line Spectral
Frequency (LSF) [Macon et al. 1998; Wouters and Macon 1998; Stylianou and Syrdal 2001].
M. Macon, J. Wouters [Macon et al. 1998] and A. Cronk [Wouters and Macon 1998] also
tested symmetrized Itakura distance and Log Area Ratio (LRA). In Y. Stylianou and A.
Syrdal’s work, LSF (with a Kullback-Leiber distance) computed either by LPC or by PLP
(Perceptual Linear Prediction) is evaluated [Stylianou and Syrdal 2001]. They also test log
power spectrum (Euclidean distance) computed by FFT, LPC or PLP and power spectrum
(Kullback-Leiber distance) also computed by FFT, LPC or PLP. They found Kullback-
Leibler distance between FFT-based power spectra and the Euclidean distance between
MFCCs to perform the best, while M. Macon and J. Wouters claim a mel-based Itakura
distance yields to the best prediction of concatenations discontinuities, but the authors of
both studies warn these costs alone are not sufficient to make an adequate candidate unit
ranking (allophones in their case).

Many works focus on predicting concatenation issues on resynthesized speech. They do
not use the costs they develop to generate synthetic speech: the cost is used on data that
was already generated to find the position of concatenation artefacts (if any). These are
then compared with human predictions. This comes back to the same problem: predicting
which unit is likely to engender an annoying concatenation artefact. Actually, this method
is the best way to test a new concatenation cost, as its first quality must be not to detect
whether a concatenation artefact exists or not, but whether or not a human can perceive
it and be annoyed by it. The issue is that, in the unit selection engine, this cost will be
among other measures, and its ability to keep working well with the bias induced by other
costs also needs to be investigated.

Concerning synthesis of French, Blouin et al. [Blouin et al. 2002] used distances based
on energy and energy derivative, F0 and F0 derivative, delta energy, duration and pre-
dicted duration8, phonological identity, various phonemic characteristics and positional
information (position in syllable, word and breath group) to compute the concatenation
cost function.

In order to speedup unit selection, a popular approach is to pre-compute the concate-
nation cost as the target utterance isn’t needed. This approach was first presented in 1999
by M. Beutnagel et al. [Beutnagel et al. 1999]. Doing so avoids millions of concatenation
cost calculations during synthesis but comes at the expense of memory storage. In effect,

8Using duration in the concatenation is quite odd as the concatenation cost should only focus on a
restricted part of the signal and not be influenced by target cost specific features (like duration).

62 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

corpora usually reaching hours to tens of hours, pre-computing all possible unit concate-
nations requires considerable storage amount and computation time. Accessing the stored
information also becomes complicated at that stage. Also, the slightest change in the for-
mulation of the cost forces to recompute everything. Avoiding the concatenation cost by
caching is therefore usable for some precise applications, when the system or the voice are
not likely to be altered in the short run and when there is sufficient storage available.

3.3 On Weighting Issues

The toughest problem concerning unit selection cost functions is not which sub-costs should
be used but what weighting should be made between each sub-cost.

Let us take back equation 4.3, integrating by the same occasion equations 4.6 and 4.7:

U∗ = arg min
U=U

ω1,h
1,h ,...,U

ωj,N
j,N

(Wtc

∑
U
Ct(U

ωi,j
i,j) + Wcc

∑
U
Cc(U

ωh,i
h,i ,U

ωi,j
i,j)) (4.8)

= arg min
U=U

ω1,h
1,h ,...,U

ωj,N
j,N

(Wtc

∑
U

K∑
k=1

wkC
k
t (Uωi,ji,j) + Wcc

∑
U

K∑
k=1

wkC
k
c (Uωh,ih,i ,U

ωi,j
i,j)) (4.9)

In this equation, two types of sub-cost weights can be distinguished:

• Wtc and Wcc are the weights given to the whole target cost and the whole concatena-
tion cost respectively. Their aim is to give a balance between the two costs. Either
to favor one over the other or to give them the same average magnitude if the costs
are not normalized.

• The wks are the weights given to each sub-cost inside the target and concatenation
costs. Their purpose is the same as Wtc/Wcc.

These weights are usually fixed in the TTS engine but nothing forbids imagining a sys-
tem where they would be updated on the go, depending on expert knowledge on linguistic
features of the candidate unit for example.

In the literature, the weight tuning problem has been intensively explored. Weight
tuning methods can be classified in two categories: objective or subjective. C. Blouin et
al. [Blouin et al. 2002], comparing several versions of a unit selection cost, also compared
objective and subjective tuning of the wk weights. They proposed to optimize wks auto-
matically using the average of the costs found using the content of a speech corpus. In the
same paper, they also proposed a system with hand-made weights chosen in function of the
phonetic class of the demi-phones composing the unit. The automatically tuned version
proved to fare better than its manual counterpart in every tested case.

Main objective methods use mathematical optimization techniques to search a dis-
cretized reduction of the weight space. Another choice based on mathematical optimization
is the use of multilinear regression between the sub-costs and some objective measure can
be computed to refine the weights. As an example of objective tuning, F. Alías along with

3. SELECTION COST 63

X. Llorà proposed in 2003 a genetic algorithm for tuning the wk weights of both target
and concatenation costs simultaneously [Alias and Llorà 2003].

On the subjective side, hand-tuning the weights is by far the most popular option,
done mostly using expert knowledge. Another method is to use subjective tests as a post-
mapping stage to refine the weights, but this is a costly practice, both in terms of resources
and time. Semi-automatic algorithms, based on interaction between the algorithm and a
human operator can also be used.

F. Alías et al. provide a very good review of all proposed weight tuning techniques in
their paper [Alías et al. 2011].

3.4 Concerning Preselection

As the problem of searching for variable-sized units in a corpus is computationally expen-
sive, preselection filters are often implemented to (drastically) speed up the unit selection
process, as for example in A. Conkie et al. work [Conkie et al. 2008]. They are used to prune
very different units (according to the target cost philosophy) added to the graph or the
lattice and contains phonetic, linguistic and prosodic related information. This technique
was first presented in a 2000 paper by A. Conkie, along with another preselection method
consisting in doing massive synthesis and remembering which triphones (the biggest unit)
were used so that consecutive synthesis only uses these triphones [Conkie et al. 2000].

To achieve preselection with filters, a key containing discrete information (mostly bi-
nary) is created for each speech segment (phoneme or non-speech sound) in the corpus.
That enables the algorithm to take or reject the unit quickly by just comparing the values
in the key with target values. The key may contain phonetic, linguistic and prosodic in-
formation. Hereafter is an example of a set of filters that may be used for the preselection
task, for each speech segment constituting the unit:

1. Is the segment a non-speech sound?

2. Is it in the onset of the syllable?

3. Is it in the coda of the syllable?

4. Is it in the last syllable of its breath group?

5. Is the current syllable in word end?

6. Is the current syllable in word beginning?

In this example (used in the IRISA TTS system), if no unit corresponding to the current
set of filters is found, the preselection filters are relaxed one by one, starting from the end
of the list. This mechanism ensures finding a path in all cases, but the drawback is that
we can explore candidates far from the target features we want, thus risking to produce
artifacts.

64 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Actually, the purpose of the preselection filters is twofold. First, as we just said,
it considerably prunes the graph explored by the unit selection algorithm, making the
selection process faster. Second, it serves as a set of binary target cost functions relying
on the assumption that if a unit doesn’t respect the required set of features, it can’t be
used for selection. The preselection filters should therefore be seen as part of the cost for
a node.

3.5 On Global Constraints

The selection algorithm and costs are particularly fit for short context problems. Fortu-
nately, most problems unit selection faces concern the short context: concatenation of two
speech segments on a few hundred signal samples and similarity measure between a unit
and its target description. In addition, the formulation of the problem easily allows the use
of contextual data (data concerning the predecessor/successor in the target sequence or in
the corpus, data from predecessors in the candidate sequence) to improve selection. For
example, for a pitch target cost, it may be more efficient to perform a distance over some
considered diphone plus its predecessor and its successor than the sole diphone so that the
global trend in the corpus part the candidate diphone comes from is also captured.

There is one thing that is not taken into account though: integration of long term
constraints, i.e. constraints ranging on several syllables, words, constraints on the breath
group or even on the sentence or more.

A few work proposed ways to integrate the missing information. For instance, an
attempt to address that problem has been made by A. Popescu et al. [Popescu et al. 2006]
by integrating a new set of sub-costs in equation 4.3, targeting wide-range constraints.
As this drastically increased the complexity of the problem, making the optimal solution
impossible to compute in reasonable time, a simulated annealing variant constructing an
approached solution was also proposed.

In chapter 7, we will discuss another method to adapt the duration target cost so that
it does not necessarily try to find the sequence that gives the best approximation of the
predicted target duration but tries to obtain a sequence with an homogeneous distance
to the target. The goal of this method is to guarantee that the selected sequence is free
of compensation effects (i.e. none of the selected units presents an outlier duration that
would have been compensated).

4 Signal Concatenation

The output of the unit selection stage is as simple as a sequence of unit positions in the
corpus. The last component of the TTS chain is therefore the module handling retrieval
and concatenation of the selected units. In addition to that task, it can also perform limited
prosody modifications (or prosody adaptation) over the complete signal, like changing the
pitch or accelerating speech rate.

4. SIGNAL CONCATENATION 65

The concatenation of two signals is greatly improved, as we said earlier, when done on
the central part of phones, alias on diphone boundaries. An alternative worth mentioning
is performing a search of the best point of concatenation between the two units, as done in
A. Conkie and S. Isard’s work in 1994 [Conkie and Isard 1994] where the authors propose
a method to find the minimal spectral mismatch frames between the units. But even then,
putting phonemes end to end is very insufficient to prevent the appearance of artefacts,
which can be sorted in two categories:

• Pure concatenation distortions, caused for instance by unsuccessful interpolation or
smoothing.

• Prosodic breakage, when joining diphones with very different prosody.

Thus, many techniques have been tested to eliminate these discontinuities but all actually
end up spreading (but also attenuating) the artefacts on long portions of the concatenated
speech segments. This contributes to the reasons for the quality drop between natural
and concatenated speech: the latter is a set of speech fragments not intended to be put
together, joined by a series of unnatural speech portions of non-negligible length where
concatenations were performed.

The most common way to minimize distortions is by interpolation 9 of the signals to
join on a few pitchmarks on the end of the left unit and on the beginning of the right unit.
The corresponding interpolated segment is then used in replacement of the originals. This
approach is directly inspired of TD-PSOLA algorithm [Moulines and Charpentier 1990].
The drawback is that this method is very basic and can cause a perceptible breakage of
formantic trajectories.

A spectral smoothing solution presented by H. Pfitzinger in 2004 [Pfitzinger 2004] took
that problem into account. The two signals derivative logarithmic magnitude spectra are
first estimated, then the spectra are aligned using Dynamic Frequency Wrapping (DFW)
which allows computing smoothed interpolated frequency responses (with a weighted linear
interpolation between the two spectral representations). This spectrum is then converted
to auto-regressive filter coefficients realizing a smoothed transition between units.

Another method, leading to better results than TD-PSOLA [Syrdal et al. 1998] but
significantly more complex, has been developed by Y. Stylianou in 1996. The Harmonic
plus Noise Model (HNM) represents the spectrum in two components: quasi-periodic har-
monically related sinewaves and a noise component for representing non-periodic speech
sounds (e.g. produced by friction). This model is used for performing concatenations by
interpolating harmonic parameters of the model [Stylianou et al. 1997; Stylianou 2001],
keeping a soft evolution of the spectrum parameters.

In 2001, J. Wouters and M. Macon also proposed a method that builds "fusion units"
on the concatenation point. These units are built by reproducing the Line Spectrum

9According to [Syrdal et al. 1998; Laprie and Colotte 1998], among others.

66 CHAPTER 4. THE UNIT SELECTION BACKEND BLOCK

Frequencies (LSF) parameters of a natural example of the concatenation point [Wouters
and Macon 2001].

On the prosody modification stage, methods like PSOLA and its variants, HNM or
STRAIGHT [Kawahara et al. 2008] can perform limited prosodic-order modifications of
the signal: pitch adaptation and speech rate adjustment mainly. Modification must remain
modest (no more than a ±1.5× modulation of the speech rate for example) in order not
to degrade generated speech.

However, the prosody adaptation part is less and less used/developed in recent years,
for two reasons: first, the risk of degradation is important and secondly, SPSS methods
allow much better (and safer) prosody control for a decent output quality, most work on
speech control is therefore centered around SPSS now.

5 Conclusion

In this chapter, we presented the second part of the TTS process: the TTS backend. Hav-
ing a multi-level representation of the target utterance (from the input text) and the TTS
voice, we presented how the unit selection engine builds a graph of units and we presented
the graphs properties in detail. In particular, we showed that the unit graph is actually
a lattice. We then presented the nature of the unit selection problem, a minimum cost
pathfinding problem in a lattice, and the usual way to solve: via a pathfinding algorithm.
These algorithms were then introduced, especially the most employed for the task: Viterbi.
We then presented a literature review of the content and nature of the selection target and
concatenation costs that drive the selection algorithm. Finally, we showed the standard ways
unit joining is performed once the sequence of corpus units to concatenate was obtained by
the selection algorithm.

Part II

Work on the Unit Selection Process

67

Chapter 5

Experimental Data and Evaluation
Methodology

“Imagine how hard it would be to use a dictionary if its words were not
alphabetized!”

Donald Ervin Knuth (1938–)
The Art of Computer Programming

Volume 3, chapter 5

We will now focus on the data, data storage tools and test protocols used through this
document. This chapter is split into two main parts. In the first one, we will begin with a
description of the ROOTS toolkit that is used to store the data and then the conversion to
a lighter format, used by the TTS system. Then, we will describe the automatic annotation
process developed in the Expression team. We will finish that first part by a description of
the two voices used in our experiments: Audiobook and IVS.
Finally, the evaluation methodology used throughout the thesis will be detailed in the last
section, with a presentation of the evaluation technique focusing on differences we presented
recently [Chevelu et al. 2015].

1 Speech Synthesis Data Management

Speech data used for this thesis is managed by the ROOTS toolkit [Chevelu et al. 2014],
developed within the team. ROOTS allows to store, analyze and manipulate speech data

69

70 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

conveniently. The base problem it aims to solve is the disparity of tools available for
speech analysis. These tools rarely use the same input/output format and are rarely fully
compatible from the beginning. The solution to that problem is to have a tool able to
represent and store data and at the same time give an easily usable interface able to
import and export data from and to analysis tools, see figure 5.1 for an illustration of this
philosophy with ROOTS. The way data is represented in that system must be consistent,
ordered and should be able to transcribe the totality of the information provided by analysis
tools so that analysis is made possible. In addition, it must be able to represent as much
annotation levels as possible and it ought to be upgradable so that new data can be
represented by it. It is also preferable to make it usable from a wide variety of computer
programming languages, especially script languages. The ROOTS toolkit was designed to
respond to these issues.

Although other solutions exist such as Atlas, Agtk, Emu, Hrg or IrcamCorpus-

Tools to cite a few, the wish to have a representation format as complete and upgradable
as possible (contrary to Hrg which favors access speed over comprehensiveness) is one of
the few factors that triggered the development of ROOTS.

1.1 ROOTS Toolkit

The ROOTS toolkit is based on the Object paradigm. It describes a corpus with the
following concepts, from the smallest to the greatest reach:

Items: The basic element in ROOTS is the item. An item describes an element of an-
notation corresponding to a certain type. For example, it can be a phoneme, which
in the ROOTS toolkit translates into an instance of the class Phoneme, a syllable,
a lemma, a word, etc. An object can be a specialization of another object (Object
notion of inheritance): A F0Segment and a SpectralSegment are specializations of a

Figure 5.1: Positioning of the ROOTS toolkit in the hierarchy of speech analysis and
management tools.

1. SPEECH SYNTHESIS DATA MANAGEMENT 71

Segment.

Sequences: Sequences describe a temporal ordering of several homogenous items. De-
pending on the sequence, items may or may not be immediately subsequent in time
but a same sequence can only represent one type of item. For instance, a sequence
containing instances of the class Phoneme cannot contain an instance of class Word.
Furthermore, a given item can be present in one and only one sequence.

Relations: A relation marks a link between the items of two sequences. Relations link
two sequences that are part of the same utterance. They are not binary: an item in
a sequence can be linked with none, one or several items of the other sequence. A
relation between two items is directed. When loading a corpus, ROOTS creates a
graph of all existing relations between the sequences. An example is given on figure
5.2. Provided existing relations in the graph form a link between two sequences not
directly put in relation, ROOTS can compute the direct relation form existing ones.
This is why, when building a ROOTS utterance, only a partial set of relations is
sufficient to be able to derive a complete graph of relations between sequences. This
is not always the case though as some relations may be meaningless (i.e. a relation
between the phoneme sequence and the non-speech sounds sequence).

Layers: A self-sufficient group of sequences and relations can be put in a layer of an
utterance. This allows to segment the utterance data in function of the annotation
level it refers to. For instance, if only phonetic data is needed, the corresponding layer
is the only one that needs to be accessed. This component of the ROOTS toolkit is
only present to enhance utterance management and is in no way mandatory.

Utterances: All sequences and relations referring to a same corpus part, organized into
layers or not, are grouped into an utterance. The Utterance class provides means
to manage sequences relations and layers directly and can even retrieve item-level
information.

Chunks: Huge corpora can be divided into chunks, each containing a given number of
utterances.

Figure 5.3 illustrates the arrangement of these elements in a ROOTS corpus. Re-
lations, though not presented on this figure, are usually represented as sparse matrices.
Furthermore, items (as described previously) feature one particular case: some sequences
use special “compound items”. A compound item is an item that cannot exist without
one or several other items (usually elementary). For instance, a syllable cannot exist if
the phonemes related thereto are not present in the corpus. This leads to the notion of
embedded relation. Compound elements embed links to the items that are in relation with,
even though these items are part of another sequence. ROOTS mechanisms ensures that
when an elementary element is deleted, related compound elements are destroyed. This
concept is implemented in ROOTS for two cases: syllabic and syntactic trees.

72 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

Figure 5.2: Simplified view of sequences and relations present in the data used for the
thesis and managed using ROOTS. The sequences are grouped by thematic layer. The
grapheme sequence is present in all layers to ensure syncing of the layers (the grapheme
sequence is then used as a hub for joining other sequences and relations.)

Layers for ROOTS corpora are grouped according to the following (expandable) base
groups:

• Linguistic data;

1. SPEECH SYNTHESIS DATA MANAGEMENT 73

Figure 5.3: ROOTS toolkit data hierarchy.

• Phonological data;

• Textual data;

• Acoustic data.

The physical organization of ROOTS corpora puts utterances within separated JSON
files, one for each layer, allowing to load only some layers in spite of the whole utterance.
A metafile links them all together.

Corpus data in this thesis includes sequences and relations summarized in figure 5.2.
It is divided into four distinct parts, according to the specification of the ROOTS layers
presented previously. In order to make the link between each layer so that they can
be merged when loading a full utterance, a pivot sequence is needed. This pivot is the
sequence of graphemes, which is copied into each layer, with the exception of the acoustic
one. The reason is that sequences in the acoustic layer all contain only one ROOTS item,
which makes the link between the utterance and an external resource. For instance, the
F0 sequence contains an interface to exploit a file containing all F0 marks concerning the
current utterance. The information is sufficient for a program using ROOTS to make the
link between items in other sequences with information provided by the files interfaced in
the acoustic layer. The signal sequence allows to manipulate the wav file linked to the
utterance.

1.2 Automatic Voice Creation Process

Based on ROOTS, the annotation method summarized in 5.4 has been developed in the
team to create a corpus from rushes and import the data into ROOTS [Boeffard et al.
2012]. This process performs automatic annotation of an audio signal given the full version
of the script. It was intended for audiobook automatic annotation, like Audiobook , one of

74 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

our two voices. The process performs annotation on several levels: linguistic, phonologic
and acoustic mainly.

The process is divided in two main parts. The first one aligns every sentence in the
text with the corresponding speech signal using an ASR system. In order to allow further
manual checking and subsequent analysis, the speech signal is cut on pauses at the begin-
ning of the process. In other words, they are cut by breath group. This cutting process is
based on pause length and energy level in the speech signal with thresholds depending on
the speakers’ flow speed and recording level. ASR is carried out on each token and the re-
sulting utterance is aligned to the original text. The matching portions serve as landmarks
to align the non-matching parts of the recognized text with the original. Matching text
associated with the right speech signal is then removed from the complete text during the
alignment process. The ASR word recognition error rate can be used to signal a portion
of the alignment that has to be controlled by an operator. Then, breath groups are joined
to respect strong punctuation marks and exported to ROOTS. Information on the breath
group boundaries is kept.

The second step enriches this simple alignment by performing syntactical, grammati-
cal, phonological analysis and more. During the process, once the sentence alignment is
achieved, corresponding ROOTS sequences and relations are created. Starting from that

Figure 5.4: General description of the annotation operation. The process begins with
two inputs, the complete book text and the audio signal coming from the corresponding
text. It is divided in two steps; the first one aligning every sentence in the book with the
corresponding speech signal using an ASR system. In the second step, the aligned data is
analyzed and annotated using the ROOTS toolkit. This figure is inspired from [Boeffard
et al. 2012].

1. SPEECH SYNTHESIS DATA MANAGEMENT 75

point, all annotation steps directly enrich that simple ROOTS annotation by adding new
sequences and relations.

In some cases, annotation data is available along with the original corpus. This is for
instance the case for IVS corpus – which we will present in section 2.1 – where annotations,
manually corrected phone segmentation in particular, were available. In that case, these
annotations are added as new sequences and relations with scripts specifically built for the
task.

1.3 TTS Corpus Format

The ROOTS toolkit is very efficient when it comes to managing, importing, exporting or
analyzing speech data. However, it is not designed to be fast in read/write. Accessing
ROOTS data is slow, although there are cache mechanisms to allow faster reading of
already used relations/sequences. Storing data in text files makes the access operation
slow (even with a format as compact and fast reading as JSON). The fact that all data
of at least one sub-file has to be read to allow accessing a single acoustic segment data is
particularly problematic. This makes directly interfacing ROOTS with the TTS system
impossible.

This is why we designed a compact but very fast representation structure for commu-
nicating data to the TTS system. The goal is to be able to load a voice into the TTS
system hash tables as fast as possible. For this, annotations are stored in the structure
presented on figure 5.5, recorded in a single binary file. In this format, the base unit is the
acoustic segment, phone or NSS, which is put in a fixed-size sub-structure. Each item is
composed of a header, a key used for unit selection and sub-items with additional acoustic
and prosodic information that might be needed both for selection acoustic costs and when
extracting and concatenating the stimuli. The information available in the key is given in
appendice A.

The segment sub-item makes the link between annotations and the speech data, stored
in a separated signal file1. A third file contains pitchmarks associated to each item. Acous-

1The signal file is a lossless PCM flux encoded in mono with a depth of 16 bits. Sampling frequency
depends on the voice (16, 44,1 or 48kHz).

Figure 5.5: Structure of the TTS corpus. Each segment is prefixed by a header and a key
and has a fixed size to make recovery and reading speed faster

76 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

tic segments are stored in a table-like structure with a header containing the alphabets
needed to interpret some item components and as every structure has a fixed size, the
location in memory of all elements can be inferred easily. This, with the binary format
by which data is stored, allows to load a full 10 hours voice in less than 15 seconds while
loading from ROOTS would take several minutes. Once loaded in the TTS system hash
tables, the voice can be used for as much synthesis as needed. Access time to the corpus
during unit selection is reduced to hash-tables access time. During the signal generation
step, access to the corpus is in real time, while loading data from ROOTS would once
more perform much worse.

2 Corpora

In this thesis, we use two different speech corpora as our TTS voices. All synthesized
speech samples we use in the experiments are synthesized with the two voices created with
sub-sets of these corpora. In the major part of this section, we will discuss the content of
the two voices we used in this thesis, IVS and Audiobook . We will finish by describing our
various test and validation corpora. Some of them are extracted from IVS and Audiobook
and also feature spoken samples, another one is entirely textual. To complete this section,
appendix B provides detail on the exact content of our voice corpora from the phonetic
point of view. All corpora are in French language.

2.1 Voice Corpora

Audiobook

The first of our two voice corpora (i.e. TTS corpora) is an expressive corpus built from
an audiobook. Thereafter, we call it Audiobook . The speaker is a male and the mean F0

value for voiced segments is particularly low, with an average of 87Hz on voiced segments.
Speech signal is sampled at 44.1 kHz, in mono (1 channel). It is stored with a lossless
encoding. The corpus is automatically annotated using the global process described in
section 1.2 and is represented using the ROOTS toolkit.

Since it is an audiobook, the content of the corpus and expressivity are completely
uncontrolled. In particular, as the voice has not been recorded for TTS purposes, prosody
is sometimes exaggerated. Nevertheless, it features homogeneous speech and recording was
made under excellent conditions yielding to excellent signal quality.

The Audiobook corpus is composed of 3 339 distinct utterances, ranging from a few
words to the size of a small paragraph. An extreme case is the utterance composed solely
of the onomatopoeia “Ah !”. The average length of an utterance is of 39.92 phones. Each
utterance is actually a paragraph in the book that is read. The corpus counts 10 hours and
45 minutes of speech. It contains a total of 11 305 distinct words (133 277 occurrences in
total), including 6 909 nouns. 91% of that amount consist of non-proper nouns. Due to the
literary nature of the corpus, distinct proper nouns in Audiobook are few: 13% of observed

2. CORPORA 77

proper noun occurrences are distinct2. In comparison, on our second corpus, IVS , this
number is 62%. Names of a few important characters of the novel are repeated more than
a hundred times. The main character, Albertine, has her name cited 689 times. Finally,
sentences are mostly affirmative (149 exclamatory utterances and 223 interrogative).

For the needs of several experiments, speech samples from the same speaker annotated
the same way (and possibly from the same literary style) that are not included in the TTS
voice are necessary. To satisfy that need, 200 utterances were removed randomly from the
corpus to create two 100 utterances corpora: Audiobook test and Audiobook validation.
The remaining part of the corpus (3 139 utterances) constitutes the actual TTS voice. It is
called Audiobook learning . Besides its use as our TTS voice, Audiobook learning is also
employed to train our models, like the ANN used in chapter 7. Validation set is used to
verify the efficiency of the models after training. The test corpus is used during the training
process of our models (when using some) to control training quality at each epoch. But
Audiobook test is mainly used as a test corpus for cases when an original speech stimulus
is necessary for comparison to natural speech. For the tests, sentences including the most
frequent proper nouns are avoided as much as possible for obvious reasons.

Thereafter, when using the term Audiobook , we will be referring to the full Audiobook
corpus. Audiobook learning , Audiobook test and Audiobook validation will be employed
when speaking of the 3 sub-corpora. The same will be done with our other corpus, IVS ,
which is also cut in 3 sub-corpora in the same way.

Main statistics of corpus Audiobook
Corpus Full corpus Learning Test Validation
Utterances 3 339 3 139 100 100

Acoustic segments 404 279 376 418 14 875 12 986

Phones 379 897 353 691 13 987 12 219

Non-speech sounds 24 382 22 727 888 767

Syllables 165 320 153 917 6 102 5 301

Words 133 277 124 110 4 901 4 266

Length 10h45’12s 10h00’14s 24’02s 20’56s

Figure 5.6: Main statistics of Audiobook corpus and its sub-corpora Audiobook learning ,
Audiobook test and Audiobook validation.

Table B shows the main statistics concerning Audiobook corpus and its three sub-
corpora. The distributions observed on the full corpus (phones, syllables, words) is uni-
formly distributed over the tree sub-corpora. Non speech sounds are mainly pauses and
inspirations. The distribution of phonemes, showed in figure 5.7, is uniformly distributed
among all four corpora and consistent with appearance frequencies of phonemes in spoken
French as observed by F. Wioland [Wioland 1985]. Appendix B provides a comparison of
Wioland’s phoneme appearance frequencies with those observed on Audiobook and IVS .
The diphoneme coverage of the learning corpus is not full (78%) but all the most commonly

2390 distinct words for 3 064 occurrences.

78 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

used diphonemes are present. The missing ones are mostly very rare or even impossible
diphonemes in French language.

IVS

Our second voice corpus, which we will refer to as the IVS voice, is also used for the
experiments. It was recorded for TTS purposes within an Interactive Vocal System with a
hand-made recording script which aim was to cover all diphonemes present in French and
comprises the most used words in telecommunications vocabulary. It features a Female
voice sampled at 16kHz (lossless encoding, 1 channel) with a mean F0 at 163Hz for voiced
segments, which is quite low for a female speaker. The corpus expression style is completely
neutral and very controlled. In terms of intended goal and speaking style, IVS is Audiobook
opposite. IVS was built for synthesis purposes while Audiobook wasn’t. It is neutral and
controlled while Audiobook is uncontrolled and quite expressive. The other strong contrast
between the two corpora is over the annotation process because IVS annotations were
manually corrected, which is not the case for Audiobook . In these conditions, opposing the
results for the two voices in experiments is particularly useful.

The corpus is composed of 7 855 utterances, 245 232 phonemes and 20 961 Non Speech
Sounds for 7h48’ of speech data. Utterances in IVS are much shorter than in Audiobook
with an average of 10.4 phonemes per utterance. In practice, they correspond to the
utterances of the reading script, so almost always a sentence. Among the 81 662 words in
IVS , 13 511 are distinct, 1 642 of which being proper nouns while 5 880 are non-proper.
Few proper nouns are present several times and only six appearing more than 20 times 3.
Proper nouns are present in only 1 794 utterances out of 7 855. Sentences, as for Audiobook ,
are mostly affirmative (115 exclamatory utterances and 454 interrogative).

As for Audiobook , Agnes is sub-divided into three sub-corpora: IVS learning , IVS
test and IVS validation. The three corpora are used for the same tasks, with IVS test
and IVS validation also featuring 100 sentences, though this means the two corpora are
smaller (as utterances are). As for Audiobook learning , the corpus IVS learning is the
TTS voice. Thereafter, we simply refer to IVS learning voice as IVS .

Table 2.1 gives the main data for IVS corpus and its 3 sub-corpora, which shows data
is uniformly distributed among the corpora. Figure 5.8 shows IVS phonemes distribution,
which is also uniformly distributed among the sub-corpora of IVS . It is also very close
to Wioland’s phoneme appearance frequencies, much more than Audiobook , as it is more
representative of spoken French than a novel.

3Words “Aujourd’hui” (today, used as a proper noun like in the newspaper “Aujourd’hui en France”),
“Europe”, “État” (the state) and “Jean” (John) appear 22, 25, 27 and 29 times respectively. “Paris” and
France appear 41 and 75 times respectively.

2. CORPORA 79

F
ig
ur
e
5.
7:

A
pp

ea
ra
nc
e
fr
eq
ue
nc
ie
s
of

th
e
ph

on
em

es
in

A
ud

io
bo
ok

co
rp
us
.
T
he

ge
ne
ra
ld

is
tr
ib
ut
io
n
is
cl
os
e
to

th
at

of
sp
ok
en

Fr
en
ch

[W
io
la
nd

19
85
].

80 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

F
igure

5.8:
A
ppearance

frequencies
of

the
phonem

es
in

IV
S

corpora.
For

IV
S
,the

generaldistribution
is

very
close

to
that

ofspoken
French

[W
ioland

1985].

3. EVALUATION METHODOLOGY 81

Main statistics of corpus IVS
Corpus Full corpus Learning Test Validation
Utterances 7 855 7 655 100 100

Acoustic segments 266 193 259 227 3 548 3 418

Phones 245 232 238 820 3 253 3 159

Non-speech sounds 20 961 20 407 295 259

Syllables 106 587 103 794 1 417 1 376

Words 81 662 79 511 1 138 1 013

Length 7h48’06s 7h36’26s 3’37s 2’53s

Figure 5.9: Main statistics of IVS corpus and its sub-corpora IVS learning , IVS test and
IVS validation.

Test Corpora

As described in the preceding sections, we use Audiobook test and IVS test for subjective
and objective evaluations when a natural reference or specific annotations are needed.

When this is not the case, we use two other test corpora, only textual. The first one is
named Combescure (after the name of Pierre Combescure, who designed it) and features
100 phonetically balanced sentences. It is used to get reliable statistics for French.

The second text corpus consisting in 27 141 French sentences extracted from a wide
variety of audiobooks, featuring many different styles. It will be called Various Styles
thereafter. A part of that corpus was recorded by a male speaker. Speech was recorded in
mono with a sampling frequency of 48 kHZ. The speaking style adopted by the speaker was
neutral as the voice was recorded for TTS purposes (in order to be used as a TTS voice,
which it is not in this thesis). This speaker is different from those that recorded Audiobook
and IVS corpora. Recorded data for that corpus is meant for the same use as Audiobook
test and IVS test . An extract of the 27 141 sentences of corpus Various Styles is given in
appendix C. This corpus is used when no natural reference or specific annotation is needed.

3 Evaluation Methodology

In this section, we will review the protocol observed for all subjective tests performed in
the following chapters.

When it comes to proposing a new feature in a TTS system, comparing features or
even present a whole new system, a listening test is almost compulsory. The main goal
being to produce speech that will be targeted at human listeners, human beings are the
final judges concerning quality of speech synthesizers. Classically, both objective and
subjective evaluations can be used. On the one hand, objective evaluations have the big
advantage of being cheap and fast but no matter how pertinent they are, they still cannot
replace subjective tests. On the other hand, to be interesting, subjective evaluations need
a large number of samples to be evaluated and also a large number of listeners both chosen
depending on the application domain of the system.

82 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

3.1 Objective Evaluation of Speech

On the matter of objective measures, considerable research has been put on the devel-
opment of a good evaluation system that would evaluate speech with the right criteria,
but none of the methods that have been proposed are sufficiently reliable, especially for
evaluation of unit selection. Some measures were proposed for evaluating degradations on
a voice signal, one of the most famous being PESQ (Perceptual Evaluation of Speech Qual-
ity) [ITU-T 2001], originally developed to assess the quality of voice codecs on telephone
infrastructures. PESQ was tested as a potential subjective test replacer by M. Cernak and
M. Rusko [Cernak and Rusko 2005]. The study showed that PESQ offered high correlation
with MOS (Mean Opinion Score) perceptive tests, but the experiment was done under par-
ticular circumstances. Data from the same speaker was used for reference and test stimuli
in one to one matching and synthesis consisted in groups of ten (called “decades”) uncorre-
lated phonetically rich words chosen for their covering of Slovak language phonemes. The
test was done using a diphone-based system with 3 different output stages. The authors in-
sist on the fact that PESQ measures cannot be used directly on full test sentences. Indeed,
this would require a guarantee on the quality of the time alignment between the two stimuli
evaluated, which is hard to achieve. Instead, they segment synthetic and reference speech
into words and compute the PESQ score and average for the whole test corpus. While
very promising, this methodology remains restrictive as natural stimuli are very different
to the “decades” the authors used. Another work, by F. Hinterleitner et al., tests 3 objec-
tive measures (POLQA, DIAL and PESQ) on data from the Blizzard challenge (2008-2010
editions) [Hinterleitner et al. 2011a]. They confirm the time alignment issue but get much
lower correlation with MOS values, especially while comparing full sentences.

Assessment of global speech quality is not the only type of objective measure available.
Specifically focused on unit selection, some work tries to predict presence and position of
concatenation artefacts, as for example J. Přibil et al. [Přibil et al. 2015]. In that work, a
GMM-based statistical method is used with promising result.

In general, though, objective evaluation of speech stimuli remains very imperfect,
mainly due to the difficulty to find measures that reproduce the cognitive processes hap-
pening in human minds. So subjective perceptual evaluations are still the main element to
prove a new system or a new feature.

3.2 Subjective Evaluation of Speech

Several different types of perceptive evaluations are commonly used. Among all the meth-
ods, we can distinguish preference tests like AB and ABX, score tests like MOS, DMOS
and more recently Mushra. All these methods serve the same purpose, which is ranking
systems according to some subjective criteria.

In the literature, most of the propositions are perceptually evaluated. For instance,
for the Blizzard challenge, a large scale evaluation campaign is used [King and Karaiskos
2012; Prahallad et al. 2014], but each time the number of utterances under test is restricted.

3. EVALUATION METHODOLOGY 83

The same is true in the majority of the evaluations done. To cite a few examples, we can
mention Inaki’s work with 350 sentences [Sainz et al. 2014], Garcia’s with 7 sentences for
5 systems [Garcia et al. 2006] or Hinterleitner with two blocks of 18 stimuli [Hinterleitner
et al. 2011b]. Usually, the explanation for these low numbers of stimuli is that perceptual
evaluations are really time-consuming. Some recent work have questioned the evaluation
methodology, like [Latorre et al. 2014] which investigates the impact of listeners mental
reference on perceptual tests results, or have proposed protocol modifications as in [Hinter-
leitner et al. 2011b; Viswanathan and Viswanathan 2005]. Even some alternatives to classic
methodologies have also been used, based on crowdsourcing as described in [Buchholz et al.
2013].

More important than the small number of samples chosen, the fact that they are chosen
randomly and not for their significance to the evaluated systems may bias the results of
evaluations. In a work made in the Expression team [Chevelu et al. 2015], contrary to what
is usually done, we proposed to synthesize a large number of samples (several thousands),
using texts from various domains. Considering the high number of samples, we introduced
an alignment cost between samples from a pair of systems to rank the samples by similarity.
In order to do this, the alignment cost is based on Dynamic Time Wrapping (DTW). Once
it is done, a perceptual evaluation using the most different samples was made. This way, no
assumption is made concerning the quality of a system among the other, we simply focus
the evaluation on what may make a difference between the systems. Such a strategy enables
reducing the size of a perceptual evaluation to assess the difference significance between
systems evaluated. This methodology was successfully tested both with a statistical system
(HTS) and a corpus-based one. The results we obtained for AB preference tests are clearly
significant while it is not the case when randomly choosing the samples.

3.3 Methodology Followed in the Experiments

For the experiments presented in this thesis, we use a group of 10 expert listeners. A larger
group (20 listeners) would be preferable, but the lack of resource did not enable us to
gather such a group (except for chapter 7 where 3 more testers were available). All testers
are native French speakers with experience with synthetic speech.

We will mainly use AB tests to evaluate the new features we proposed. When circum-
stances do not permit the use of AB tests, typically when the goals of our experiments make
it unusable, we will make use of MOS tests (or MOS derivatives like DMOS for evaluation
of degraded speech). We will also make use of a Mushra test. The choice to use mainly
AB tests, besides the obvious fact that we mostly want to assess user preference between
several systems, was made for several reasons.

First, our experience with Mushra tests showed that this kind of test is very difficult
to build and very difficult for listeners to perform. It is difficult to build because it normally
needs systems serving as anchors to give higher and lower bounds to interpret test results.
It is difficult for listeners to perform it because they are often proposed a test with 5 or

84 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

more speech stimuli per test step and interpreting each one’s quality, finding how each one
compares to the others and finally marking them is simply too much of a task. This results
in an increase of fatigue for testers and might consequently cause a drop in quality of the
results to occur. This is the reason we do not make intensive use of Mushras in this
thesis. Nonetheless, Mushra tests also present appreciable advantages. The lower and
higher bounds, when present, allow some control on the results of the tests: results must be
between the two bounds. More importantly, they offer, in only one test, the possibility to
rank systems and thus get information on which system is preferred to which one, appreciate
the performance gap between two systems. This is typically the conjunction of all major
results MOS on the one side and AB tests on the other side can provide. Finally, less users
are needed than for other tests to get meaningful results [ITU-R 2015] (even though the
norm recommends 20 non-expert listeners). For these two reasons, especially the latter,
we perform a Mushra test in chapter 8. Indeed, not all our testers were available for this
test (only 7 out of 10 listeners).

Secondly, MOS tests , probably the most popular listening tests class, should only
be used for an absolute ranking (in terms of absolute performance4), and not for direct
confrontation in a 1 versus 1 opposition. In the literature, it is sometimes used to get
conclusions on user preferences, which is biased as basic MOS tests never compare systems
directly one against the other. In chapter 6, we will make use of MOS and degradation
MOS tests exclusively in order to get an absolute mark and thus an absolute ranking of
the systems we will compare. Degradation MOS (DMOS) compares a reference system to
others, these other systems being considered as degraded versions of the first one. The
mark, from 1 to 5, measures the harm caused by the degradation from “very important
degradation” to “inaudible degradation”. User preferences will be assessed only through
AB tests. In addition, an issue with MOS tests is the – possibly huge – difference of
rating scale from a tester to the other. A second issue is the possible presence of outliers.
Removing these outliers means to privilege the majority of testers/answers and smooth
the final results while including them may be seen as a potential noise (especially if it
corresponds to a novice or unknown tester).

Finally, AB tests present the considerable advantage to be very easy to perform for
testers, thus minimizing mistakes. They face only two stimuli and have a very limited
choice (see next paragraph), so there is no fatigue, difference of rating scale or outlier
problem with that kind of test. It also has the advantage of being and looking (which is
even more important) fast and easy to perform, so more listeners are likely to make the
effort to answer the test.

Unless stated otherwise, our AB tests will always have three possible answers: System
A, System B or Indifferent. Including a fourth choice “Unable to answer the question”
might sometimes be a good idea for AB listening tests, allowing to remove irrelevant data.
It was implemented in some of our tests, but given the very few answers of that type, the

4Performance here refers to how well a system does what the question posed in the test asks.

4. CONCLUSION 85

answer was removed in subsequent tests. In most cases, the question focuses on overall
quality. It is the following: ”Of A or B, which sample seems to be of the best quality for
you?” (French: « De A ou de B, quel échantillon vous paraît de meilleure qualité ? »). We
will state the question when it is different but evaluating general quality is usually the best
option as more specific questions can be biased by tester incomprehension of the question
or side effects influencing her or his judgment.

In order to have results as general as possible, our evaluation protocol targets various
points that may strongly influence listening tests. Indeed, focus will be given on the
following aspects:

• Automatic or Manual segmentation/annotation;

• Gender of the corpus speaker;

• Impact of the proposition on randomly selected samples versus samples that are the
most affected by the new features (as is [Chevelu et al. 2015]).

In order to assess the two first points, we conduct every AB test on our two voices
Audiobook and IVS . Audiobook represents the male voice and the voice with automatic
annotations while IVS is the female hand-checked voice. The same is done for the third
point: a first AB test is made with randomly picked sentences in Various Styles, then a
second test is done with the pairs of sentences that were attributed the biggest difference
score. Most different sentences might be selected through a DTW, as we did in [Chevelu
et al. 2015], or with other criteria that will be detailed in the related experiments. Hence,
in order to perform one comparison of two systems, we carry out 4 AB tests:

• IVS voice, randomly picked sentences;

• IVS voice, most different sentences;

• Audiobook voice, randomly picked sentences;

• Audiobook voice, most different sentences.

Concerning objective measures, we did not define a global methodology, given what
was presented earlier. Consequently, objective measures used in the experiments will be
directly linked to the nature of the problem and will depend of the goal set in each case.

4 Conclusion

In this chapter, we presented in a first part the speech corpora we will use in the rest of the
thesis. The first part of the chapter concerned the description of the tools we use to generate,
store and exploit our speech data and corresponding annotations. We began by presenting
the ROOTS toolkit that is used to store the data and then the lighter TTS-corpus format,
used by the TTS system. We finally presented the two voices used in our experiments:

86 CHAPTER 5. EXPERIMENTAL DATA AND EVALUATION METHODOLOGY

Audiobook and IVS, along with the test corpora we use to generate speech stimuli. The
second part was devoted to the description of the test protocols. We first discussed the need
of perceptual measures in the literature and then gave the considerations, hypothesis and
the protocols we followed in this thesis.

Chapter 6

On the Choice of the Selection
Algorithm

“With a whole assortment, we will have more choice.”

Extract from IVS voice recording script.

In this chapter, we will first give a technical description of the TTS system developed in
the team, called hereafter the IRISA TTS system. The TTS backend is the place where we
conducted our work. Once the TTS system was available, our work was divided into two
successive steps. First, we explored the impact of the search algorithm on unit selection. In
particular, one of the questions is to assess the ranking made by selection costs and therefore
to know whether optimality of the solution to the unit selection problem was necessary (or
at least preferable). Once that step is realized, we focused on the cost function components.
We will investigate the first step on unit selection algorithms in the second part of this
chapter. The second step will be dealt with in the following chapters.
Speech synthesis systems usually use the Viterbi algorithm or sub-optimal variants – most
notably beam-search algorithm – to solve the unit selection path-finding problem. However,
this is not the only possible choice. In this work, we study a speech synthesis system relying
on the A∗ algorithm, which is a general pathfinding strategy developing a graph rather than a
lattice. Using state of the art techniques, the algorithm is analyzed and compared to Viterbi
before being evaluated through objective and perceptive experiments. Before conducting this
comparison though, the first task is to assess the impact of preselection filters and cost
functions on the selection to assert that they actually work as expected. In particular, a
subjective evaluation of the N-best paths returned is made.

87

88 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

The conclusions drawn from the experiments are twofold. First, the A∗ approach is an
excellent alternative to beam-search, achieving better performance in the optimal case and
also allowing optimizations to speed it up. Second, the impact on quality of the pre-selection
filters set, used to restrict the number of candidates to the most promising ones, is low
while they improve significantly the search performance. However, testers feedbacks show
that filters improve prosody and naturalness perception of synthesized speech. In definitive,
this study is a proof of concept aiming at demonstrating the feasibility and usefulness of
using an A∗ algorithm to drive the unit selection process.
In this chapter, we first describe the IRISA TTS synthesis system, which is the base we
use for our work in section 1. We then introduce a modification to the selection block
in which an A∗ algorithm is used for unit selection (section 2). Our evaluation of these
strategies, in the following sections (3 – 5), are distributed into three axes. We first study
preselection filters and selection cost function to make sure they sort the selection graph as
intended. Subsequently, we evaluate our A∗ algorithm and compare it to the usual beam-
search strategies. Finally, we investigate whether an optimal solution to the unit selection
problem is necessary.

1 The IRISA TTS Synthesis System

The system that we use as the basis of all the work presented in the present document is
the IRISA Text-To-Speech system. This system was in large part developed during the
time of the PhD and most of its features were implemented to respond to research needs.
All propositions in this thesis were implemented on successive refinements of the system.
However, all results presented in this thesis are based on the last (2016) version of the
system. The descriptions of the system in our various publications, despite the fact they
do not refer to the same iteration of the system are nevertheless close to the current state
of the software.

1.1 General View

Figure 6.1 gives a general view of the IRISA Text-To-Speech system. The first part of
the process – the frontend – creates a ROOTS utterance enriched with annotations like
phoneme, syllable or word sequences from the input text. It is done with automatic tools.
The second part – the backend – is made of the unit selection block and the signal generation
block. It communicates with the corpus through a hash table1 that is precomputed before
launching the TTS process and placed in shared memory.

The link between frontend and backend is performed by a conversion stage that converts
the ROOTS utterance created along the frontend into the binary format of the TTS corpus.

1A set of hash tables actually. Each hash table contains references to the corpus with a fixed unit size.
There are as much hash tables as there are possible unit sizes. In practice, units are set to be as long as
two to three phonemes but it is possible to go much higher.

1. THE IRISA TTS SYNTHESIS SYSTEM 89

Figure 6.1: Workflow view of the IRISA TTS system.

1.2 Frontend

The first step in the TTS frontend is to convert the textual input into a ROOTS entry.
This is done by a set of tools that produces a ROOTS utterance with a word sequence
and a grapheme sequence linked by a relation. If the text to synthesize is consequent, the
ROOTS entry can be split into several utterances according to strong punctuation marks.
Thereafter, to simplify, we will consider the case of only one utterance. In the case of a
multi-utterance entry, utterances are processed one after the other at each step. When this
is done, this ROOTS utterance is enriched with three successive tools:

POS tagging: This step performs a Part Of Speech analysis and adds a POS sequence in
the ROOTS utterance. To do so, two tools are available: The Stanford and Synapse
POS taggers. In this work, we use the Stanford POS tagger, on account of its support
of multiple languages.

Phonetization: The phonetization step adds a phoneme sequence, NSS sequence, word
sequence (from phonetic analysis, as on figure 5.2) and relations between phoneme,
grapheme words and NSS sequences. In our engine, three phonetizers are available:
Liaphon [Bechet 2001], Espeak and an experimental tool in development in the team.
In this thesis, we use Liaphon for the Audiobook voice as it was annotated with that

90 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

phonetizer and Espeak for IVS .

Syllabication: ROOTS syllabication algorithm is used to produce the corresponding
sequence. The phoneme sequence is modified to make the link with the syllable
sequence.

This is the default steps included in the frontend. Other steps may be added as well, for
instance prediction steps to add acoustic or prosodic sequences. In chapter 7 for example,
we add a frontend step that predicts and includes durations into the phoneme sequence.
This step, when activated, takes place immediately after syllabication.

1.3 Backend

The backend part, described in detail on figure 6.2, starts with feature extraction from the
ROOTS file generated by the frontend containing the target sequence with the needed
annotations. The advantage of using a ROOTS file for the interface between the frontend
and the backend is that almost any ROOTS file, from any corpus, can also be provided
to the backend for synthesis. This is particularly useful for a task like synthesis using
manually checked annotations or comparison with natural stimuli. Then the unit selection
step is done using one of our selection algorithms. This step is parameterized by a cost
function and user parameters (for example, requesting the best path or the N-best paths,
requesting a sub-optimal version of the selection algorithm, deactivating the preselection
filters, etc). Finally, signal generation is performed by mixing each two units with a
PSOLA-like algorithm on a horizon of 2 pitch periods, using Hann windows.

Basic Concatenation Cost

The baseline concatenation cost is composed of MFCC (∆∆ coefficients), amplitude and
F0 Euclidean distances; three sub-costs, well rated in the state of the art (see section 3.2
for a review of interesting subcosts). Basic rules addressing duration were first included
and then dropped, first because they did not show a real improvement and also because
generated speech seems generally well enough. Nevertheless, the inclusion of a target
cost or intonation models are interesting matters, which will be discussed in the following
chapters. Equation 4.7 can thus be specified:

Cc(U
ωh,i
h,i ,U

ωi,j
i,j) = Cmfcc(U

ωh,i
h,i ,U

ωi,j
i,j) + Camp(U

ωh,i
h,i ,U

ωi,j
i,j) + CF0(Uωh,ih,i ,U

ωi,j
i,j), (6.1)

where Cmfcc(U
ωh,i
h,i ,U

ωi,j
i,j), Camp(U

ωh,i
h,i ,U

ωi,j
i,j) and CF0(Uωh,ih,i ,U

ωi,j
i,j) are the three sub-costs

for MFCC, amplitude and F0.
The corpus data for each cost is z-score normalized during the conversion of the ROOTS

corpus to the TTS format. Therefore, all sub-costs are given equal importance to each sub-
cost on a phoneme basis. Though all cost weights (Wtc, Wcc and wks in equation 4.9) are
fixed at 1, the engine keeps the ability to introduce a different weighting. We use it in
chapter 7 for manipulating the target cost/concatenation cost magnitudes.

1. THE IRISA TTS SYNTHESIS SYSTEM 91

Figure 6.2: Technical description of the IRISA TTS system unit selection and signal gen-
eration blocks.

92 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

Preselection and Basic Target Cost

As the problem of searching for variable-sized units in a corpus is computationally expen-
sive, hash tables and pre-selection filters are implemented to speed up the unit selection
process [Beutnagel et al. 1998].

In the basic configuration of our system, we do not use any target cost and we set Ct to
0. Instead, we filter the candidate units from the corpus, by including in the selection graph
only those matching a set of linguistic and phonetic features, which we call preselection
filters [Donovan 2001].

Formally, let Di,j the sequence of target diphonemes from diphoneme di to dj . we
consider that we have a tuple of J filters modeled by indicator functions fj(U

ωi,j
i,j , Di,j)

(j ∈ [0 ;J]) equal to 1 if each diphone in Uωi,ji,j respects the condition posed by filter j on
the corresponding target diphone of Di,j and 0 otherwise. We consider the set of units
satisfying the I first filters for the target sub-sequence Di,j :

O(Ii,j , Di,j) =

Uωi,ji,j /

Ii,j≤J∏
i=1

fi(U
ωi,j
i,j , Di,j) = 1

 . (6.2)

The preselection step aims at searching, for each target diphone Di,j , the set O(Ii,j , Di,j)

of candidate nodes for which Ii,j is maximal:

Ii,j = arg min card(O(Ii,j , Di,j)) ≥MINu. (6.3)

Concretely, filters are implemented as keys containing discrete information (mostly
binary) for each speech segment (phoneme or non-speech sound) in the corpus. This is the
“item key” element described in section 1.3. When looking for a unit, the search algorithm
asks for a particular key to a hash table, which takes or rejects the corpus items quickly by
just comparing the values in their keys with the one provided by the algorithm. Matching
elements are sent back to the algorithm which inserts them in the search graph. Binary
masks are used to get access only to the desired information during runtime.

All the elements presented in appendix A are not used as filters. The reason is that too
many filters tend to degrade the quality of synthesis, which is logical: as filtering is done
before adding a node to the search graph, it can select or reject units based on its own
criteria, without considering concatenation cost criteria. As the cost is a subtle balance
between target and concatenation costs, giving too much importance to one (the target
cost here), deprives the other of its working base and therefore renders it useless. Two
filters are mandatory and are always included:

1. Unit label (always active).

2. Is the segment a non-speech sound (always active)?

These filters cannot be relaxed. As for other preselection filters, the default set we use in
our experiments is the following, for each speech segment constituting the unit:

1. THE IRISA TTS SYNTHESIS SYSTEM 93

Table 6.1: List of the preselection filters for the French Language. The filters are sorted by
scope width. Filters in bold are part of the filter set used in the thesis, others are discarded
in this work but were taken in consideration and can be used in the engine.

Preselection filters for the French Language
Syllable level

Is the current syllable F0 on a rising pattern?
Is the current syllable F0 on a descending pattern?

Is the current segment in the syllable onset?
Is the current segment in the syllable coda?

Is the current segment the first phone of its syllable?
Is the current segment the last phone of its syllable?

Does current syllable have a coda?
Does current syllable have an onset?

Is the current segment in the onset of the syllable?
Word level

Is the current syllable in word beginning?
Is the current syllable in word end?

Sentence level
Is current segment in the last syllable of its breath group?

Is current segment in the last syllable of its sentence?

1. Is it in the last syllable of its sentence?

2. Is it in the last syllable of its breath group?

3. Is the current syllable in word end?

4. Is the current syllable F0 on a rising pattern?

5. Is the current syllable F0 on a descending pattern?

The priority order of the filters is the one given above. The pre-selection filters are
relaxed one by one, starting from the end of the list. In the case of a non-speech sound,
the only feature that matters is the first one, the others being all set to false. In our
experiments, small variations to this set may be used, with very little or no impact at all.
It is a subset of a wider filters set, which we tested extensively during the thesis (table
6.1).

The remaining information in the key may be used on particular occasions or for other
languages than French. For example, the default filter set for English also included filters
for the stress information.

Our default sets were constructed mainly using empirical knowledge. If all units are
rejected, the filter set is relaxed until a sufficient number of units are accepted. In our
work, the minimum number of units is 10. The set is temporarily relaxed (removing one
by one the features that seem the less helpful) until a sufficient number of units is found.
Though this is done to reduce the size of the selection graph (hence reduce selection time),

94 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

it is important also to consider it as part of the selection cost. In fact, it serves as a set
of binary target cost functions relying on the assumption that if a unit doesn’t respect the
required set of features, it can’t be used for selection. This means we have an absolute
vision of what features units must match. One might argue this is not optimal, but by
experience more refined tuning doesn’t prove to be better.

In our implementation, the target cost is not directly incorporated in the cost function.
Indeed, we consider that there is no need to integrate the nodes failing to show a certain
fitting to the target sequence in the graph. As other works showed, the nodes achieving
a good target cost are generally equally satisfying. Hence, features used for preselection
also stand as binary target sub-costs. This means there is no target cost mark in our
implementation, units are processed by pass or reject preselection filters. As the values we
use are binary, their integration into the preselection filters is easy. Thus, the units that
satisfy a given level of filters are considered equivalent regarding the target cost.

1.4 Perceptual Evaluation of the baseline System

The system described here is thereafter called baseline.

In order to give an indication of this baseline system overall quality, and especially its
quality when combined with our own voices, we performed a MOS listening test involving
10 expert listeners. The four following configurations were presented to the listeners:

• Natural samples from Audiobook voice;

• Natural samples from IVS voice;

• Synthetic samples made with baseline system and Audiobook voice;

• Synthetic samples made with baseline system and IVS voice.

Each tester has been presented 10 stimuli for each of the four configurations, this makes
100 test occurrences per configuration overall.

In order to perform a valid comparison, natural stimuli for each voice are taken from
IVS test or Audiobook test and synthetic ones are the artificial versions of the same
utterances using the baseline system. The results of the evaluation are presented on table
6.2. In order to give an indication of the effect of having a full corpus (respectively 7 and 10
hours for IVS and Audiobook), the same results for a bi-gram corpus obtained by reducing
IVS learning and Audiobook learning are also provided. Bi-gram corpora were assessed
with the same function in an identical but earlier test.

2. BACK TO THE UNIT SELECTION PATHFINDING PROBLEM 95

Table 6.2: MOS test results for Audiobook and IVS voices using the A∗ algorithm. The
evaluation has been made on the Audiobook test and IVS test corpora respectively.

Audiobook IVS

natural 4.82 ±0.08 4.88 ±0.07

baseline 3.38 ±0.25 3.17 ±0.21

bi-gram corpus (indication) 2.14 ±0.14 1.72 ±0.08

The system is rated between 3.38 and 3.17, depending on the voice, which corresponds
to fair quality and is quite representative of the state of the art. Refinements achieved on the
unit selection block are discussed further on in this thesis and are therefore not represented
in this test. Testers seem to give higher marks to Audiobook voice compared to IVS , in
all cases. In all the experiments carried so far, this better rating and overall preference
for Audiobook was always present. We assume there are two reasons for this result: First,
Audiobook has a much greater expressivity, due to its audiobook origin and, second, the
sampling frequency for the audio files of Audiobook is higher than IVS ’s (44.1 kHz vs.
16 kHz). In consequence, synthesis with Audiobook seems substantially more natural.

2 Back to the Unit Selection Pathfinding Problem

We now come back to the unit selection engine described previously and consider whether
the usual choice of a Viterbi-like algorithm is the best choice regarding the specifics of the
problem.

2.1 Motivations

As we saw in chapter 4, computing the best sequence U∗ leads to a pathfinding problem in
a graph. To solve that problem, Viterbi algorithm [Viterbi 1967] (and its derivatives) has
been almost the only one employed [Hunt and Black 1996; Conkie 1999; Clark et al. 2007],
albeit it is not the only usable one. Over time, several enhancements of the algorithm were
proposed, for instance by S. Sakai et al. [Sakai et al. 2008] or Tihelka et al. [Tihelka et al.
2010]. In particular, the real-time constraint imposed by many TTS application fields led
to a broad use of under-optimal beam-search algorithms to solve the problem.

Other path finding algorithms like Bellman-Ford, Dijkstra or A∗ [Russell and Norvig
2003; Nilsson 1982; Guennec and Lolive 2014a] are also fitted for the task. Even an exotic
attempt to use a genetic algorithm by R. Kumar can be mentioned [Kumar 2004].

Strangely, there is little research in the literature concerning alternatives to Viterbi-like
algorithms. There isn’t much work giving justification for the choice of that algorithm over
other alternatives. Actually, most implementations simply follow unit selection founding
articles [Black and Campbell 1995; Hunt and Black 1996]. Most proposals simply try to
refine it by adding preselection, clever heuristics or enhancements to the algorithm, but
rarely propose to modify core mechanics of the selection process. Many contributions tend

96 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

to focus on the concatenation cost complexity, which is indeed the point consuming the
greatest part of the computation time: O(N ∗ K2) versus O(N ∗ K) for the target
cost, K being the number of candidate phones in the corpus and N being the number
of diphonemes in the target sequence. Little work was done, however, to decrease the
computational complexity by changing drastically the search strategy (hence completely
changing the search algorithm). One of most cited arguments to justify the choice of the
Viterbi algorithm is its time-synchronous search in the selection graph, which – thanks to
the lattice property of the selection graph – can effectively prove a useful property for on-
the-fly synthesis/ASR 2. For instance, it allows to begin the selection process while the user
is still entering text. However, this constraint only exists in some of the TTS applications
(and even when applicable, it is often not implemented), and many other cases simply do
not require such an ability, i.e. full synthesis of an audiobook, resynthesis after translation
(where the full sentence is usually needed before translating), simple TTS system, etc.
Possibility to prune the graph is also highly cited as an argument for Viterbi, even though
pruning is possible in most path finding algorithms.

In our work, we considered that Viterbi might not be the best algorithm for unit
selection, and we proposed to investigate the interest of changing the exploration strategy
in unit selection. Another inquiry that comes with this one is the following: what is the
real importance of getting the optimal unit sequence? As the cost function used by the
search algorithm is far from being perfect – it doesn’t reproduce exactly the assessment
a human would make of a speech stimulus, otherwise we wouldn’t need perceptual tests
anymore – one might ask whether or not it is really important to get the best sequence
according to that cost function. An under-optimal result might do just as well. So the
question is: can an under-optimal result to the unit selection problem be used instead of
the optimal solution, and if so, how far from the optimum can it be before a substantial
degradation is perceived?

In order to answer these questions, we decided to perform a comparison between beam-
search Viterbi algorithms and an implementation of the A∗ algorithm for unit selection.
Several reasons justify our will to test an A∗ implementation over other algorithms. First,
A∗ presents structural advantages for the inclusion of improvements, which is less true for
Viterbi. In particular, A∗ is better-suited for heuristic introduction to speed up the unit
selection step, n-best path generation or preselection: all these options are available without
modification. Of course, Viterbi can also do this, but only by introducing non-trivial
modifications into the algorithm. Moreover, to enable the exploration of expressive corpus-
based synthesis, we have to explore the in-depth behavior of the system and especially cost
functions. Having the list of the n-best possible sequences proves useful in that matter.
furthermore, the search strategy for A∗ in the graph is drastically different to Viterbi: best-
first instead of breadth-first for the latter. This is one of the reasons why A∗ is regularly

2Normally, as Viterbi is a dynamic programming algorithm, computation is made in reverse order, from
the end of the target sequence to the beginning. The lattice property of the unit graph allows reversing
the algorithm however.

2. BACK TO THE UNIT SELECTION PATHFINDING PROBLEM 97

cited as one of the most used algorithms in the world over all applications.
Unit selection algorithms, especially Viterbi, have been presented in detail in section 2.

In this section, we first introduce implementation details of the A∗ algorithm after a quick
reminder concerning Viterbi and its beam-search variant. We show how the algorithm is
set in order to respond to the problem of finding the best unit sequence according to the
cost function. The goal of this section being to present the specificities and advantages of
A∗, we will not come back on these details again in this chapter.

2.2 Beam-search and Viterbi Algorithms

The basic version of Viterbi can be enhanced with several heuristics and improvements
([Sakai et al. 2008; Tihelka et al. 2010]), the simplest and most efficient being stopping the
evaluation of a candidate unit when a following candidate has a better way to be accessed
(making the algorithm a step closer to A∗). Better computation time can be achieved with
harsher pruning.

Beam-search is a breadth-first search algorithm that keeps, for each target unit, only
the N best nodes (best cumulated paths). This algorithm is a sub-optimal version of the
Viterbi algorithm that avoids to explore the whole lattice of speech units, thus permitting
real-time synthesis. This drastically prunes the lattice and breaks the optimality guarantee,
but gives a much faster unit selection while generally keeping an under-optimal but still
good quality solution. This algorithm is the one classically used to solve the path-finding
problem and is implemented in our system.

2.3 A∗ Algorithm

The second algorithm implemented in our system is A∗ [Guennec and Lolive 2014a]. Con-
trary to the Viterbi algorithm, which computes a lattice containing all the candidate nodes
(or at least M nodes for each time instant), A∗ algorithm develops a graph. At each time
instant, it explores the best node of the graph using a cost function that depends on both
the path from the source node and the estimated cost to the target.

Originally introduced in 1968 by [Hart et al. 1968], the algorithm basically operates
by searching for a path in a directed graph, whose nodes only have a finite number of
successors, between a start node and a target node. The dedicated start node init is used
to avoid arbitrary choice of the start node. It has the first candidate units as successors.
The unique target node is called end. The algorithm uses a cost function of the form
f(n) = g(n) + h(n) with g(n) being the cost of the sub-path between init and current
node n and h(n) being the estimated (heuristic) cost between n and end.

At each step, A∗ takes the most promising node according to f(n) and expends its
successors (computing f(n) by the way) until end is reached. h(n) is a heuristic that
enables to speed up the algorithm by privileging the nodes that seem to be on an optimal
path over those which have a better g(n) cost but may lead to greater costs in the future
[Nilsson 1982].

98 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

Considering a unique target node, one of the main advantages ofA∗ is that the algorithm
delivers an optimal solution if the heuristic is admissible, i.e. if h(n) ≤ h∗(n), where h∗(n)

is the real minimum value of the distance to the target node. In particular, note that the
algorithm is optimal in the trivial case h(n) = 0, i.e. if there is no heuristic, and turns out
to be equivalent to Dijkstra’s algorithm.

2.4 Adaptation to the Unit Selection Problem

Algorithm 1 presents the implementation of A∗ adapted for unit selection. The main
functions that need to be adapted to our problem are (1) the cost function computation
and (2) the successor function. In this work, we only consider the g(n) part of the cost
function, thus putting h(n) to 0 which insures algorithm optimality. Function g(n) is the
regular unit selection cost function local to a node n. In consequence, using the formulation
introduced in precedent chapters, the cost function is the following3:

g(n) = C(Uωi,ji,j) = Ct(U
ωi,j
i,j) + Cc(U

ωh,i
h,i ,U

ωi,j
i,j). (6.4)

Concerning the successor function, it needs to consider domain-based knowledge. During
the search process, each phone of the target sequence is considered as the start of a potential
unit for developing the graph.

Furthermore, to improve algorithmic performance, the OPEN list is implemented as a
binary heap sorted according to the cost function and a joined hash table to get quick mem-
bership queries. In addition, all the graph nodes are not computed, only those expanded
during the successors search are really created.

In order to explore cost functions behavior, we modified the algorithm to be able to get
the N-best paths, and also to get the N-best paths between a minimum and a maximum
cost.

3 Evaluation of the Unit Selection Engine

3.1 Experimental Data

For the purposes of our experiments, we use our two voices: IVS and Audiobook . The
sentences used as input of our experimental system, i.e. our test corpus, come from 3
different sources: IVS test , Audiobook test and Combescure test corpora.

3.2 Objectives

Our main objectives for this evaluation were the following:

• Assessing the impact of the filters on the selection process;

3Reminder: h, i, j ∈ J1;NK, h < i < j.

3. EVALUATION OF THE UNIT SELECTION ENGINE 99

Input: Graph G to explore, a sorted list OPEN and a list CLOSE , both empty.

// Add start unit init of G into OPEN
add(G, init);

while OPEN 6= ∅ do
// Extract the first unit of list OPEN into u
u = extract_head(OPEN);
// Insert unit u into list CLOSE
insert_unit(CLOSE, u);
if is_target_unit(u) then

// Add end unit after u in the candidate sequence.
complete_path(u, end);
// Exit backtracking the path from init to u
backtrack(init,u);

end
// Function successors() returns the sub-set of G containing all

the successors of unit u.
foreach u′ among successors(G, u) do

f(u′) = g(u′) + h(u′);
if contains(OPEN , u′) or
contains(CLOSE, u′) then

if stored_cost(u′) > C(u′) then
// Set a new cost f(u′) to unit u′. Each unit stores its

own cost.
update_cost(u′, C(u′)) ;
// Set u as the new parent of u′. Each unit stores the

pointer to its parent in the graph.
update_parent(u′, u);

end
else

insert_unit(OPEN , u′);
end

end
end

Algorithm 1: The A∗ algorithm. u (used to lighten notations) is any corpus unit (i.e.
selection graph node) and u′ is a successor unit of u in the selection graph.

100 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

• Evaluating the efficiency of the A∗ algorithm for corpus-based synthesis and compar-
ing it with the usual beam-search strategy;

• Exploring the best-ranked paths according to the cost function to see if a degradation
is quickly perceptible and therefore if getting an optimal solution is necessary (or not).

To achieve these goals, experiments we conducted intend to:

1. Prove that a TTS system using A∗ to drive a unit selection process is viable;

2. Assess the overall performance of the system;

3. Compare the performance (time and space usage as well as global synthesis quality)
of the system when using the preselection and without;

4. Verify the stability of the cost functions presented above by:

• Explore the variability & ranking accuracy for the n-best paths found by our
system.

• Assessing effect of reverting the cost function, i.e. selecting the worst possible
path.

For our experiments on the n-best paths, we decided to fix n to 100, following empirical
considerations over the average number of paths available with our voices. The goal here
being to look only at a sample of the best paths, the n = 100 is a relatively small number
in comparison to the usual thousands of paths usually available.

4 General Impact of the Cost Function and Pre-Selection Fil-
ters

Preselection has a tremendous impact on unit selection in the sense that harsh preselection
will likely cause a unit shortage for the selection algorithm, thus making the cost function
mostly ineffective. This is a particularly important problem as the concatenation cost,
which is solely present in the cost function – unlike the target cost, which can be replaced
by preselection filters, has the heaviest impact on synthetic speech quality. The first task
to undertake is therefore to test whether our preselection set does not have a negative effect
on the quality of TTS.

To evaluate pre-selection filters impact on quality, we conducted a DMOS subjective
evaluation involving our 10 listeners. Each listener assessed 20 stimuli. We also took
advantage of this test to verify that our cost function sorts paths effectively by introducing
a variant to our cost function that reverts the score awarded to each unit. Therefore, in
spite of selecting the best unit sequence, the algorithm selects the worst one.

The following four systems are compared:

• filter is the reference system with filters as presented previously (baseline);

5. COMPARISON OF SELECTION ALGORITHMS 101

filter no-filter reverted-filter reverted-no-filter
1

2

3

4

5
D
M
O
S
sc
or
e

Figure 6.3: DMOS evaluation of the baseline cost function and preselection filters. The
4 versions of the system, from left to right: without filters, with filters, with filters and
reverted cost function, without filters and with reverted cost function.

• no-filter is the reference system without filters (all units are considered based on their
label);

• reverted-filter is the cost function is reverted to find the worst solution but filters are
used;

• reverted-no-filter is the cost function is also reverted but no filters are used.

The results are summarized in figure 6.3. First, the scores obtained when reverting the
cost function are significantly different from the reference system, actually getting almost
the lowest possible score (1) with reverted-no-filter (it our aim was to get the worst possible
voice, we would be done here). This is interesting because it shows that the cost function
works as intended: it sorts quite appropriately unit sequences from unfit ones to better
ones. Activating or not the filters for the normal cost function (i.e. filter and no-filter
systems) leads to a substantial difference. Filters thus have a significant impact on quality
showing that their influence on the cost function is real. This impact is also present, though
to a lower scale between reverted-filter and reverted-no-filter . In this specific case, it avoids
a drop in quality.

We can conclude that this result corroborates the fact that filters should be considered
fully as part of the cost function. Using filters, as anticipated, also dramatically improves
unit selection time (approximately by a factor 100).

5 Comparison of Selection Algorithms

5.1 Objective Evaluation

The main goal of this experiment is to study the behavior of A∗ vs. beam-search in terms of
performance and quality. First, we evaluate the A∗ approach in terms of several objective
factors:

• Unit selection execution time (in ms),

102 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

• Mean number of nodes passing filters,

• Mean number of nodes expanded,

• Number of concatenations

Data from the synthesis step has been gathered for A∗ and three variants of beam-
search (BS10, BS100, BS1000 depending on the size of the beam, i.e. 10, 100, 1000), with
the two aforementioned voices and 3 different corpora. Results are presented in table 6.3,
figure 6.4 and figure 6.5.

The number of nodes passing the filters shows that A∗ is more restrictive than BS1000,
itself being a bit more confining than other beam-search versions. Moreover, this number is
quite high (above 100 nodes), even for A∗. The mean number of filters activated is almost
constant with a value of 11.83 out of 12 filters, which means that, for all selected units,
the 12 filters were activated almost all the time. Consequently, considering these results,
more filters may be added to be more selective and thus speed up the selection process.

The number of concatenations that were made to synthesize the test corpus is the
highest for BS10, drops for BS100 and BS1000 and reaches a minimum with A∗. That
means A∗ is able to find longer units in the learning corpus than other algorithms.

If confronted to mean breath group size, (around 19 for Audiobook test and IVS test ,
and 21.5 for Combescure, depending on the phonetization tool used) BS10 and BS100 tend
to make more than 1 concatenation each 2 units and BS1000 and A∗ less.

For all corpora, the number of concatenations is clearly lower for A∗ compared to the
other algorithms, except for BS1000. These two results show that A∗ tends to develop
a smaller graph than beam-search versions. Thus, it tends to show that applying A∗ is
more efficient in the sense that it finds the optimal solution while exploring less candidates.
Moreover, the algorithms need almost 5 more units to synthesize Combescure breath groups
than they need for Audiobook test when using Audiobook voice, where they need only 2
more for IVS . This is an indicator of a greater unit coverage in IVS which is linked to the
origins of this corpus. Considering time needed to perform unit selection, we see that there
is one order difference between BS10 and BS100 (real time) and BS1000 and A∗. The other
point is that BS1000, while giving a sub-optimal result, takes more time than A∗ (slightly
with IVS voice and much more with Audiobook).

Figure 6.4 and figure 6.5 present the mean selection time and the mean number of
nodes selected by target segment. Both figures show that A∗ can be considered as a good
tradeoff as it develops less nodes than BS1000 and thus gives a solution more quickly
(which is optimal). Moreover, we see an order difference between BS10 and BS100 values,
and one order between BS100 and the two other systems. Considering A∗ and BS1000, the
last one explores twice as much nodes while taking more time. This last result depends
on the cost function which is guaranteed to be null for units that are consecutive in the
corpus. This allows A∗ algorithm to process quickly when it finds such consecutive units

5. COMPARISON OF SELECTION ALGORITHMS 103

Table 6.3: Objective factors for different algorithms on test corpora for Audiobook and
IVS voices. The mean number of concatenations is given by breath group. Mean synthesis
time, mean number of explored nodes and mean cost are given by target selection.

Criterion BS10 BS100 BS1000 A∗

Audiobook voice - Test Corpus : Audiobook test
Mean number of nodes passing filters 288 290 271 202
Total number of concat. 8 608 7 767 6 741 6 500
Mean number of concat. 11 1 0 9 8
Mean synthesis time (ms) 11 99 679 206
N. of nodes in final paths 13 493 13 230 11 785 10 270
N. of corpus units in synthesized paths 9 395 8 554 7 528 7 287
N. of corpus units by breath group 12 11 1 0 9
Mean number of nodes explored 8 79 559 139
Mean cost 572 390 313 309
Mean number of arcs created 41 869 40 330 28 923
Mean number of pre-selection filters passed 10.95 10.95 10.95 10.95

Audiobook voice - Test Corpus : Combescure
Mean number of nodes passing filters 266 266 237 192
Total number of concatenations 1 953 1 842 1 677 1 659
Mean number of concatenations 16 15 14 13
Mean synthesis time (ms) 12 99 634 346
N. of nodes in final paths 2 478 2 442 2 227 2 035
N. of corpus units in synthesized paths 2 074 1 963 1 798 1 780
N. of corpus units by breath group 17 16 15 15
Mean number of nodes explored 8 74 538 198
Mean cost 1 003 787 713 710
Mean number of arcs created 41 855 42 897 37 336
Mean number of pre-selection filters passed 10.68 10.68 10.65 10.61

IVS voice - Test Corpus : IVS test
Mean number of nodes passing filters 218 221 203 126
Total number of concatenations 2 146 1 884 1 681 1 573
Mean number of concatenations 11 1 0 9 8
Mean synthesis time (ms) 12 73 450 311
N. of nodes in final paths 3 137 3 056 2 695 2 348
N. of corpus units in synthesized paths 2 341 2 079 1 876 1 768
N. of corpus units by breath group 12 11 1 0 9
Mean number of nodes explored 8 70 422 163
Mean cost 400 316 284 280
Mean number of arcs created 38 761 24 955 48 571
Mean number of pre-selection filters passed 10.87 10.87 10.86 10.83

IVS voice - Test Corpus : Combescure
Mean number of nodes passing filters 229 236 222 123
Total number of concatenations 1 728 1 548 1 368 1 288
Mean number of concatenations 13 12 11 9
Mean synthesis time (ms) 6 64 516 443
N. of nodes in final paths 2 354 2 322 2 057 1 773
N. of corpus units in synthesized paths 1 857 1 677 1 497 1 417
N. of corpus units by breath group 14 13 12 11
Mean number of nodes explored 9 75 492 197
Mean cost 421 330 295 292
Mean number of arcs created 41 867 31 867 66 176
Mean number of pre-selection filters passed 10.86 10.86 10.85 10.83

104 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

BS10 BS100 BS1000 A∗
0

200

400

600

M
ea
n
se
le
ct
io
n
ti
m
e
(m

s)

Figure 6.4: Mean selection time by target segment in ms. From left to right, bars represent
the following combinations of voices and test corpora: Audiobook voice + Audiobook test
(blue), Audiobook voice + Combescure (red), IVS voice + IVS test (brown) and IVS voice
+ Combescure (green).

BS10 BS100 BS1000 A∗
0

200

400

600

M
ea
n
nu

m
be

r
of

no
de
s

Figure 6.5: Mean number of nodes expanded by target segment. From left to right, bars
represent the following combinations of voices and test corpora: Audiobook voice + Au-
diobook test (blue), Audiobook voice + Combescure (red), IVS voice + IVS test (brown)
and IVS voice + Combescure (green).

while the BS1000 has to explore all the combinations (even if limited by beam size). It is
also important to remember that, if real time is involved, implementing a pruned version
of A∗ is possible. It is possible to do it in many ways, for example by using non-admissible
heuristic functions. Note that an admissible heuristic, though harder to find, could as well
improve computation time.

A first conclusion about A∗ usability, is that it seems to be a valuable approach to insure
optimality while maintaining a reasonable search complexity: synthesis is not performing
in real time but is much faster than a standard Viterbi.

5.2 Subjective Evaluation

In order to see what these results imply when synthesizing, a number of listening tests was
accomplished. This evaluation intends to verify the global quality difference between all
four algorithms. To perform this, we followed our two steps AB-based test methodology,
presented in the previous chapter. For each of the four tests we made (randomly picked
with IVS voice, Audiobook voice and most different according to a DTW distance with

5. COMPARISON OF SELECTION ALGORITHMS 105

Table 6.4: Results of the AB listening tests comparing A∗ algorithm to 3 beam-search
alternatives. The table is split in four distinct parts, depending on the synthetic voice
that was used and the method for selecting speech stimuli included in the tests. The two
first parts concern randomly picked samples from IVS test and Audiobook test while the
3rd and 4th are for the most different stimuli, selected via a DTW distance. Algorithms
are confronted via two-by-two comparisons. For each comparison, there are three
values. The first (red) is for the algorithm in the corresponding column head
(also in red). The second is the number of "Indifferent" answers. The last one
(blue) is for the algorithm in the corresponding row head (also in blue). Values
are in vote percentage (40 votes for each configuration).

IVS corpus (%)
A∗ BS100 BS1000

BS10 37.5 40 22.5 35 42.5 22.5
BS100 27.5 50 22.5 35 37.5 27.5
BS1000 22.5 52.5 25

Audiobook corpus (%)
BS10 52.5 22.5 25 47.5 30 22.5
BS100 37.5 25 37.5 42.5 25 32.5R

an
do
m
ly

pi
ck
ed

BS1000 30 25 45
IVS corpus (%)

BS10 65 17.5 17.5 52.5 22.5 25
BS100 35 35 30 30 45 25
BS1000 35 25 40

Audiobook corpus (%)
BS10 42.5 27.5 30 42.5 20 37.5
BS100 45 30 25 57.5 22.5 20M

os
t
di
ff
er
en
t

BS1000 37.5 30 32.5

IVS , Audiobook voice), each one of our 10 listeners evaluated 20 distinct couples of stimuli.
Each test confronted 5 different couples of algorithms (A∗ vs. BS10, BS100, BS1000 and
BS100 vs. BS10, BS1000), which means all pairs of algorithm were confronted 40 times
one with the other. Each algorithm was represented by 20 stimuli for each pair, so that
each comparison between two stimuli was done two times, by different testers. Test stimuli
are extracted from IVS test and Audiobook test .

The results of the test are described on table 6.4. For each pair of systems, three values
are provided. The red one corresponds to the number of times the system in the first
row (the header) was chosen while the blue one corresponds to the system in the column
header. The middle number, in black, is the number of "Indifferent" answers. Numbers
are in percent of the total amount of votes for each configuration (40 votes). All possible
comparisons were not performed. Indeed, the BS1000 vs. BS10 confrontation was left on
the side, as its outcome – given the data from table 6.3 we discussed previously – was
very likely to be extremely close to the results of the BS1000 vs. BS10 comparison. This
conclusion is reinforced by the results of A∗ vs. BS10 and BS100 vs. BS10 comparisons,
which each put the first system (A∗ and BS100) ahead of BS10. BS1000, yielding results
that are much closer to A∗ than BS100, should be very close to A∗ result. For this reason,

106 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

BS10 BS100 BS1000 A∗
0

500

1,000

M
ea
n
co
st

Figure 6.6: Mean cost by target segment for all 4 systems. From left to right, bars represent
the following combinations of voices and test corpora: Audiobook voice + Audiobook test
(blue), Audiobook voice + Combescure (red), IVS voice + IVS test (brown) and IVS voice
+ Combescure (green).

the comparison was omitted, which permitted to lower the complexity of the test.

When looking at the results for randomly picked stimuli, a clear pattern appears indif-
ferently for both voices. All confrontations between BS10 and another configuration ends
up with a clear defeat of BS10 (52.5% versus 25% for A∗ vs. BS10 with Audiobook voice
for instance), meaning this very pruned strategy yields inferior results. Then, all other
comparisons are inconclusive, ending up in a draw and most often getting many "Indiffer-
ent" answers. A particular point is the A∗ vs. BS1000 comparison with Audiobook voice
where BS1000 has a limited lead, but the same comparison results in a very clear draw
with IVS (22.5% to 25% with 52.5% abstention). This suggest the small lead of BS1000
with Audiobook voice is more related to a side effect than to superiority of the BS1000
strategy.

An important difference in the number of "Indifferent" answers between IVS and Au-
diobook can also be noted. While these answers count for about 40 to 50% for IVS voice
when comparisons end up in a draw, Audiobook has a lower rate around 25%. There can
be two reasons for that. First, variability for IVS is lower than for Audiobook , as IVS is
a neutral voice that was recorded with much constraint while Audiobook is a very expres-
sive audiobook. Second, segmentation for IVS was manually corrected while Audiobook
ones are fully automatic, hence more subject to substantial variations especially where the
concatenation process is concerned.

The result we have here is that speech quality only begins to degrade with very small
beam sizes, lower than 100. This can be put in relation with the mean cost by target
segment of the selected unit sequence, presented on figure 6.6. Here, the same pattern is
observed: A∗, BS1000 and BS100 have very close mean costs, while it is significantly higher
for BS10.

Now, in order to see if this result holds, we can look at testers answers for the most
different stimuli. For these results, the same trends are observed for IVS voice: A∗, BS1000
and BS100 are difficult to order, while BS10 is clearly performing worse.

For Audiobook , there is one exception to that rule. Indeed, BS10 in on par with BS100
with a score of 42.5% (BS10) vs. 37.5% (BS100) votes and 20% abstention. Furthermore,
BS100 is largely dominated by both A∗ and BS1000, as for the BS1000 vs. BS100 duel for

5. COMPARISON OF SELECTION ALGORITHMS 107

randomly picked sentences. Another striking result is that the gap between BS10 and A∗,
while existing, is quite small (42.5% for A∗ against 30% for BS10). These results can be
explained by the important variability in Audiobook corpus. A very plausible explanation
for that phenomenon is the following. Costs along the best candidate sequences are quite
homogeneous in terms of magnitude: the best case is that all units have a cost as close
to zero as possible. Now, if a sequence is the absolute best but has a few units with
substantially higher costs than its own average, these units might not be present in the
BS10 graph while they might be present in the case of BS100. So BS10 might end up
selecting a sequence with a higher cost in average, but more homogeneously distributed
among the sequence units. The result is, for BS100, a stimulus that will perhaps feature
an artefact on the part with a higher cost (which often occurs in the listening test) versus
a stimuli featuring a worse cost in average but with a lesser risk of artefact in the case of
BS10. As other results in this chapter indicate though, a modest difference of cost between
two sequences does not imply that the sequence with the lowest cost is actually better.
This reasoning is in fact the foundation of our work on the target duration cost, which is
presented in chapter 7. In this work, we try to favor sequences with an homogeneous cost,
with very encouraging results.

Overall now, considering the results of all listening tests along with objective measures,
we can draw the conclusion that:

1. Speech generated with a beam-search algorithm is perceived as qualitatively equiva-
lent to an optimal algorithm like A∗ or non-pruned Viterbi until the size of the beam
gets (at least) as little as 100 nodes.

2. Looking for the optimal solution of the unit selection problem is superfluous as a
BS100 search yields (except for Audiobook most different sentences) a solution in real
time, hence much faster.

5.3 Behavior of the Cost Function With the 100-Best Paths

In order to understand this phenomenon, let us look at the (sorted) list of the best possible
unit paths in the selection graph4. Figure 6.7 shows the evolution of the global cost for the
100 best paths found. The target sentence is "Car ce n’est pas le chagrin qui la fit partir."
(Because it is not grief that caused her to leave). Due to the differences between selected
units among the paths, costs are reported to each phoneme on the sequence (x axis). At
first glance, we observe little variability among the paths. Most changes seem to occur on
the first/last units (non-speech sounds here actually). The mean number of units passing
the filters is approximately 200, with a mean size of 3.8 phones for selected units, which is
satisfying. We noted that the relaxation of filters was quite rare, which could signify other
filters can be added to refine our target cost.

4Obtaining this list is particularly easy with A∗ algorithm as the only thing that needs to be done to
get it is to continue the search after the optimal solution was found, which leads to the second best, and
so on.

108 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

Figure 6.7: Global cost evolution for 100-best paths (French sentence "Car ce n’est pas le
chagrin qui la fit partir.").

1st 10th 50th 100th
1

2

3

4

5

D
M
O
S
sc
or
e

Figure 6.8: DMOS test results for the 1st, 10th, 50th and 100th paths of the cost function.
The voice used for this experiment is IVS .

Given these results, we have decided to conduct a DMOS test in order to evaluate the
loss in performance when selecting a candidate far from the optimal path. Each time, the
natural signal is confronted to a synthesized signal corresponding to the 1st, 10th, 50th or
100th path according to unit selection and a duplicated natural reference. Each listener
hears the 12 same sentences for each system. Figure 6.8 (right part) shows results of the
test.

The results for the 1st and 10th paths are identical at 3.11± 0.4 and 3.12± 0.4 respec-
tively, meaning slightly annoying degradation in average. The two other configurations get
lower marks. The 50th path is rated at 3.00± 0.4 and the 100th gets 2.78± 0.4. No clear
preference can be observed, in particular due to confidence intervals. In fact, it can be put
in relation with the AB listening tests on A∗ and beam-search algorithms where a similar
trend is observed. The performance of BS10 can be compared to the result of the 100th

path in the current test, with a comparable increase in selection cost and drop in quality.
As for the AB tests also, the first paths get the same marks. Quality then seems to degrade

6. CONCLUSION 109

faster and faster: about 0.10 points between the 10th and 50th path compared to over 0.20
between the 50th and the 100th. Actually, two major cases were encountered in the test.
First, many stimuli were very close, if not sounding identical (in particular between the
10th and 50th paths but not only). Second, many others differed in their prosodic contours,
often a lot. Many times though, both were correct or as close to be correct but in different
contexts (question vs. affirmation mostly). As no prosodic target is provided by the high-
levels though (except for the F0 preselection filter), these stimuli were rated the same way.
Nonetheless, as these prosodic variations seem (logically) random, a listening test with a
particular focus on prosody should not give a different result.

To conclude, this test further reinforces our conclusion that the optimal solution to
the unit selection problem is needed at the 10th, for example, will perform just as well.
Thankfully though, the selection function works appropriately and the optimal solution
fares as well as the 10th.

6 Conclusion

An experimental corpus-based TTS system and a complete evaluation of the algorithmics
of its unit selection module were proposed in this chapter. The system, designed as an
experimental platform to explore the behavior of concatenative speech synthesis in depth,
implements state of the art mechanisms to perform the unit selection. A comparison was
made between two approaches for performing the unit selection part in a corpus based TTS
system: the usual beam-search strategy and a new A∗-based algorithm. The comparison,
considering objective measures as well as subjective assessment by listeners, was made us-
ing the same pre-selection filters, cost function and corpora for all unit selection algorithms
tested.
The results showed that A∗ in its admissible version performed faster and better than a
beam-search algorithm with a huge beam size. However, beam-search with a tiny beam, far
from the optimal solution but running in real time, is actually perceived as good as other
algorithms results. Even if A∗ achieves a lower number of concatenations, compared to the
other algorithms, subjective evaluations show that it does not imply better speech quality.
The results seem independent both of the voice style used and the target corpus used. This
leads us to two conclusions: first, finding the optimal solution to the unit selection problem
seems of little use, as heavily pruned algorithms fare as well as admissible ones. This is
because the variability between the best paths is very low. Second, A∗ is indeed better suited
than Viterbi for unit selection. In particular, even though this was not demonstrated here,
it can also be pruned in order to get an under-optimal solution faster. However, in the
rest of this document, we will always use the optimal unit sequence with A∗ algorithm when
generating test stimuli. The reason is that pruned search could be a side effect adding a
bias in our further results.
Furthermore, as unit selection is highly dependent of the preselection strategy as this puts
a severe constraint on the engine, we evaluated the impact of filters on quality of the syn-

110 CHAPTER 6. ON THE CHOICE OF THE SELECTION ALGORITHM

thesis. We showed that our current set of filters did not degrade synthesis while saving a
considerable amount of computation time.

Part III

Work on the Unit Ranking

111

Chapter 7

Work on the Duration Target Cost

“Oh time, you devourer of things,
and you, envious old age,

Together you destroy everything.
And slowly gnawing at them with your teeth,

You consume all things, little by little, in lingering death!”

Publius Ovidius Naso (Ovid)

(43 BC–17/18 AD)
Metamorphoses, volume 15, 234-236

In this chapter, and the next one, we focus on the target cost; formulating new proposi-
tions to enhance it. Here, we describe a new duration target cost that takes a whole sequence
into account [Guennec et al. 2015]. It aims at selecting a sequence globally good, instead
of a very good sequence almost everywhere but having a few local duration cost leaps that
are counter-balanced by other units. The problem of weighting this new duration cost with
other sub-costs is also investigated. Experiments showed this new measure performed well
on sentences featuring duration artefacts, while not deteriorating others.
The proposed target cost and the underlying duration model are presented in section 2. Ex-
perimental evaluation on French corpora including objective assessments of both the model
and the target cost (3.2) and subjective evaluation by listeners (3.3) are presented in section
3. Conclusions and future work are presented in section 4.

113

114 CHAPTER 7. WORK ON THE DURATION TARGET COST

1 Motivation

Speech created using unit selection features naturalness and prosodic quality unmatched
by other methods, as it basically concatenates speech actually produced by a human be-
ing. For this reason, most industrial TTS systems mainly use either pure unit selection
approaches or hybrid ones. However, unit selection offers less control than statistical para-
metric methods, especially over prosody. Moreover, artefacts may appear in the synthesized
signal and penalize intelligibility. While obtaining good speech output with neutral voice
is (almost) a solved problem with unit selection, getting prosody right for natural and ex-
pressiveness is entirely another matter. Prosody modification methods after selection - like
TD-PSOLA for adapting duration - are an option, but for now none has been convincing.
The possibility of influencing selection to choose units that are the closest to the required
prosody remains. A good state of the art for expressive speech synthesis is made in [Govind
and Prasanna 2012].

As phonetic durations are subject to a lot of changes when considering voices with
different levels of expressiveness, controlling duration gets particularly important. Lastly,
decision trees have been the most widely used method to predict duration, for instance, in
systems like HTS, with only a few mentions to using a target duration cost (e.g., in [Alías
et al. 2011]) within unit selection cost function. Recent approaches where DNNs replace
HTS decision tree can also be mentioned [Hashimoto et al. 2015].

In this chapter, we propose a new way of computing duration target cost, not only
based on the assumption that we want to get units as close as possible to a predicted
duration. Thus, we try to find the units that stay the closest to requested duration by
optimizing the mean duration error with respect to the previous units. Hence, it prevents
inadequate units in terms of duration from being selected if other units are available while
not forcing a path with homogeneous durations. The main idea is that it is better to have
units globally longer or shorter than to have only one or two units with a big duration
error in the synthesized speech.

2 An Adaptive Duration Target Cost

2.1 Neural Network

Prediction of phoneme duration has a long history in the TTS field. It was first performed
by creating expert hand-made rules that were integrated in rules-based (formant synthesis)
and concatenation synthesizers. Over last years, decision trees have been the most widely
used method to predict duration, for instance, in systems like HTS. In particular, the use
of neural networks for phoneme duration prediction starts in the early ’90s. A TTS system
using a set of ANNs (one for each phoneme) trained on cepstral coefficients can be cited
[Tuerk and Robinson 1993]. A TDNN (Time Delay Neural Network) has also proven to
be very efficient for predicting duration, though the learning set was small [Karaali et al.
1996]. In following years, major improvements in the technique were obtained mainly by

2. AN ADAPTIVE DURATION TARGET COST 115

Figure 7.1: The neural network used for the prediction phonemic durations, composed of
250 input neurons for as much input features, 1 rectified linear hidden layer of 512 neurons
and one output linear Gaussian neuron (the predicted duration).

increasing the number of input features and the size of the learning corpus. The advantage
of neural networks is that, contrary to decision trees, they do not cluster predicted values
(at least when properly trained). When the network faces an unknown set of features,
the predicted value is different from an assimilated result for the closest feature set, which
can result in much better results [Taylor 2006]. Recent work in speech synthesis is now
focusing on deep approaches (DNNs, DBNs, DRNs). For duration prediction, we did not
think such deep approaches were necessary. Thus, we use a MLP (Multi-Layer Perceptron)
with batch gradient descent. Input data is composed of a set of 50 features by phoneme,
mainly phonetic and linguistic parameters. We also take into account the contextual infor-
mation for the two preceding and following phonemes. Thus, the network has a topology
of 250 input neurons, 1 rectified linear hidden layer of 512 neurons and one output linear
Gaussian neuron (directly predicting durations in ms as other measures like log ms were
not performing better). This layout is summarized in figure 7.1. These parameters were
the best among the different configurations tested.

2.2 Duration Target Cost

The proposed duration target cost aims at influencing selection so that selected units are,
on average, at the same distance of the predicted unit durations. Defining the cost that
way means we prefer a sequence moderately close to predicted values, but homogeneous
in the repartition of the duration distance among units, to a sequence of perfect elements
featuring one unit with dramatic cost. The cost for the nth candidate unit Uωi,ji,j (Uωh,ih,i

116 CHAPTER 7. WORK ON THE DURATION TARGET COST

being the (n− 1)th) in the sequence U∗ (see eq. 4.3, chapter 4) is as follows:

De = |Dt(U
ωi,j
i,j)−D(Uωi,ji,j)| (7.1)

Cd(U
ωi,j
i,j) = |∆(Uωh,ih,i)−De| (7.2)

∆(Uωi,ji,j) =
∆(Uωh,ih,i) ∗ (n− 1) +De

n
(7.3)

with ∆U
ωi,j
i,j

being the mean distance to predicted duration for previous target units in the

sequence (from the first selected unit to Uωi,ji,j), Dt(U
ωi,j
i,j) the target duration for unit Uωi,ji,j ,

D(Uωi,ji,j) the duration of Uωi,ji,j and Cd(U
ωi,j
i,j) the target duration cost for unit Uωi,ji,j .

Equation (7.1) computes the local cost between the target duration and the current
unit. This cost is then used to compute the duration target cost in equation (7.2), which
takes into account the mean distance to predicted duration for all the previous units.
Finally, the mean duration error is updated using equation (7.3). Thus, the quality of the
current unit depends on the quality of previous units. In other words, it means that if
Uωi,ji,j is longer (resp. shorter) that desired, the target cost will be low if the previous units
are also longer (resp. shorter). This way, we want to keep the consistency between the
different units which might be better than inconsistency and perhaps produce a credible
speaking rate slow-down or speed-up.

3 Experiments

We have conducted experiments aiming at (i) testing the accuracy of our ANN, (ii) measur-
ing the impact of the new target cost on the unit selection algorithm and (iii) subjectively
assessing the improvement in produced speech.

3.1 Experimental Data

Our two voice corpora, IVS learning and Audiobook learning , were used both as learning
sets for ANNs and TTS voices. Test and validation corpora for these voices were also
used for ANN learning rate evaluation. For the purpose of the tests, we use a sub-set of
100 sentences from Various Styles, insuring that a wide variety of styles, from different
audiobooks, were represented.

3.2 Objective Analysis

Neural Network

The mean RMS error for IVS voice is slightly better (RMS=24.24, std=9.07) than for
Audiobook (RMS=26.58, std=6.61). Pearson scores show that predictions are strongly
correlated to real values, and the probability of error on the Pearson score is extremely
weak. A detailed analysis on a per phoneme basis shows that the worst phonemes are
those having very few representations in the learning corpus, for each voice. For instance,

3. EXPERIMENTS 117

/n/ has only 2 realizations in the Audiobook learning corpus, and only one in Audiobook
validation (cf. appendix B). Finally, when looking at real and predicted centroids for each
phoneme, most of them are very close, if not identical. Given these results, which we
consider as fair, and knowing we do not need extremely accurate predictions as they are
solely used to influence selection, these models have been kept as is.

Behavior of the Cost Function

To evaluate the impact of duration cost and its interactions with concatenation costs, we
considered all {Wtc,Wcc} couples in the [0, 100] interval with a pace of 10. For each weight
configuration, we generated the 100 sentences in our Various Styles corpus. Sentence (not
utterance) based measures were extracted for each configuration. In this section, we will
only discuss these measures on IVS voice, but exactly the same patterns are observed on
Audiobook voice. Only small variations in magnitudes are observed between the two voices.
It is important to point out that costs presented here are obtained without applying Wtc

and Wcc weights. Magnitudes due to these weights have been removed to get raw costs.
Figure 7.2 shows the evolution of the mean delta per phoneme inms between predictions

by the network and final produced durations in relation to target and concatenation costs
magnitudes for IVS voice. The same for Audiobook voice is shown on the bottom part of
the figure. As it can be seen, the general trend is that distance increases when the target
cost increases, which shows a good functioning of our target cost. Moreover, when getting
the worst target cost, the delta largely increases. An unexpected result is the relation
between the delta and concatenation cost when target cost is high which seems to suggest
that concatenation cost excludes units with worst duration, improving the delta. When
concatenation cost increases again, the delta dramatically increases again too. We can
further note that duration delta at high target costs and low concatenation costs, while
being good, remains much higher than the delta we get at lower target costs (this time
independently of concatenation cost).

This result led us to think it would be worth investigating the behavior of a system
where the duration target cost would be activated only on certain conditions, like for high
concatenation cost or when confronted to a drastic relaxation of preselection filters.

3.3 Subjective Evaluation

Based on precedent measures, we selected configuration {Wtc = 30,Wcc = 70} for listening
tests. This choice was motivated by the low variability in terms of duration costs when
getting over Wtc = 30 and the fact that concatenation cost alteration at this level is low.
The same reasoning led us to Wcc = 70. In consequence, listening tests were performed
using two system configurations: baseline system, which logically corresponds to configu-
ration {Wtc = 0,Wcc = 100}; and the configuration incorporating our duration distance,
{Wtc = 30,Wcc = 70}, called Controlled.

We performed two AB tests involving 13 testers for the first and 11 for the second (a

118 CHAPTER 7. WORK ON THE DURATION TARGET COST

Audiobook - Duration

 0 100 200 300 400 500 600 700
Target cost

 40
 60

 80
 100

 120
 140

 160
 180

Concatenation cost

 10
 11
 12
 13
 14
 15
 16

D
u
ra

ti
o
n
 d

is
ta

n
ce

 10

 11

 12

 13

 14

 15

 16

Figure 7.2: Duration delta between model predictions and synthesized durations evolution
when target and concatenation costs vary for IVS voice (top) and Audiobook (bottom).
Distance, per phoneme, is given in ms. Data computed using synthesis from Various Styles
corpus.

few more listeners than our pool of ten people was available) on the baseline and Con-
trolled systems. Both Audiobook and IVS voices were mixed in each test. The first test
was based on a random selection of speech stimuli to present to the testers, while the sec-
ond one was based on a random selection within the sub-set of synthesized sentences that
featured audible duration artefacts with baseline. In order not to bias this second test, the
stimuli produced by Controlled are not involved (and especially not listened to) in the pro-
cess of selection for the listening test. The second test is of great importance here. Indeed,
though duration issues in the synthesis remains a major problem in synthesized speech, the
number of speech stimuli presenting significant duration incoherencies is somewhat small

3. EXPERIMENTS 119

Figure 7.3: AB test results. Uncontrolled featuring duration artefacts is opposed to Con-
trolled system. First and second row are a decomposition of the third one. Controlled is
clearly preferred.

with large voices like IVS or Audiobook , even without duration control; therefore, there is
a good chance that stimuli selected for the first listening test mostly present minor or even
inaudible duration artefacts. In such cases, listeners might be influenced in their judgment
by other factors, even though the question asked clearly states that they should focus on
duration (which is a difficult exercise). The second test aims at preventing this problem.

The first test presented 20 stimuli for each voice, taken randomly in the TTS test
set. The testers were asked to assess the rhythm of speech and select the best system.
On raw results, systems were getting almost as much votes (43% for baseline and 38% for
Controlled with overlapping confidence intervals). We spotted extremely different scales of
notation among testers, with none seeming to have the same way of performing the test.
Thus, no hard conclusion can be derived from this test. Nonetheless, it suggests the two
systems are on par. It is important to underline that post-analysis of the stimuli presented
for this test showed that very few samples had strong duration incoherencies.

An important point is that IVS corpus featuring only neutral voice, duration artefacts
are less serious and less frequent. On the contrary, Audiobook , being very expressive,
features much more minor duration issues. Major duration problems are also much more
frequent.

The second test focused on sentences having audible duration artefacts. 22
different sentences featuring duration artefacts (of various amplitudes but all being audible)
were extracted from baseline synthesis (11 for each voice). They were confronted to their
equivalent with Controlled system. The testers were asked to say which system has the
most natural voice. The testers were also asked to pay particular attention to rhythm (but
not exclusively).

Results for this second test are presented on figure 7.3. First row shows results for
Audiobook voice only, second for IVS only while the third one is the global result. In this

120 CHAPTER 7. WORK ON THE DURATION TARGET COST

test, Controlled is strongly preferred by testers, especially for Audiobook voice which is
normal as it is the voice the most likely to generate artefacts. It was also interesting to see
that testers all followed the same trend, placing Controlled ahead with different levels of
preference. Experts especially had a strong preference for Controlled when using expressive
voice Audiobook , and less for IVS .

Given these results, it can be derived that our target costs behave well in enhancing
durations when needed and only when needed, while not deteriorating synthesis on other
aspects.

4 Conclusion

We presented a new duration target cost for unit selection. This cost aims at selecting
the whole unit sequence that best minimizes duration distance with predicted values rather
than choosing the sequence containing units that individually minimize a duration distance.
This is intended to avoid cases like excellent synthesis penalized by few very bad units.
Experiments showed that this new measure performs well on speech samples that feature
durations issues, especially on our expressive voice. Furthermore, the new measure does
not seem to affect synthesized samples that have good durations from the beginning. While
the new cost is here used only for phone durations, it is extendable to all target costs. It
could even be extended to the concatenation cost the following way. Some concatenation
sub-costs are not adapted (MFCC for instance), but others are (e.g. the F0 sub-cost). Each
adapted concatenation sub-cost, operating on some parameter (like F0), could be mixed with
a second sub-cost trying to minimize the distance, on the same parameter, between the unit
and the mean in the candidate sequence. This extension to all applicable distances in both
target and concatenation costs should be tested.

Chapter 8

Work on the Pitch Target Cost

“The cello is a hero because of its register - its tenor voice. It is a masculine
instrument, whereas the violin is feminine because of its soprano pitch.”

Mstislav Rostropovich (1927–2007)

The study introduced in this chapter presents two unit selection target costs aiming at
controlling candidate units F0 contours. It uses an atom-based decomposition method to
decompose F0 into a breath group-wide gamma shape called a phrase atom and smaller
syllable/segment-level gamma shapes called local atoms. Based on the belief that unit level
pitch contour is governed by physiologically pertinent local atoms, which cause small but no-
ticeable variations to F0, these target costs use atom parameters for one and reconstructed
variations (induced by atoms) of F0 for the other to impact on unit selection. In that work,
the TTS system is an oracle. It uses annotations from real speech stimuli for the target
sequence, instead of predictions (preventing evaluation error that would result from predic-
tions). Particular attention was paid to evaluating the impact of the method on the prosody
of synthetic sentences during experiments. First results proved both costs were more effi-
cient than a traditional F0 distance in listening tests.
The chapter is organized as follows. In section 2, a presentation of atom-based intona-
tion modeling is provided. Section 3 describes how atom-based unit selection target costs
were designed and implemented in the TTS system. Finally, sections 4 and 5 include an
evaluation of these new costs and give some insight on the perspectives.

121

122 CHAPTER 8. WORK ON THE PITCH TARGET COST

1 Motivation

As TTS systems get better and better in quality when synthesizing neutral speech, focus
is more and more centered on expressiveness; a number of companies now sell what they
call expressive voices, generally featuring the 6 main emotional states [Ekman and Friesen
1969]. However, they fail at providing real naturalness, not to mention expressivity (which
is much more complex than 6 emotional states [Cowie and Cornelius 2003]). One can work
on applying expressiveness to the voice only if prosody for the neutral voice is adequately
managed, which is not the case of all TTS systems. For unit selection especially, prosody
is difficult to model and control. In particular, strict recording conditions, aiming at
getting the best concatenation experience, strip corpora of any expressiveness. This is
why it is interesting to search for the ability to control prosody for voices that feature
many different styles, like in audiobooks. In this chapter, we use a set of selection costs to
constrain target speech prosody by using atom decomposition-based intonation modeling
[Honnet et al. 2015]. Atom-based intonation modeling is a generalization of the command-
response model. In that representation, intonation is decomposed into an utterance-size
gamma function (phrase atom) and a set of phoneme/syllable-size local gamma shapes
(local atoms). These local atoms, having a time span that’s similar to most corpus units
that are selected, seem well-suited to feed a target cost on intonation. In particular,
we assume local atoms are correlated to events at the origin of intonation in the vocal
apparatus, which would reinforce their interest in a target cost.

Atom-based F0 decomposition is explained in the next section. For a complete descrip-
tion of the method, Honnet et. al. can be cited [Honnet et al. 2015]. The work presented in
this chapter was originally performed during a 5 month stay at IDIAP, Martigny, Switzer-
land in 2015.

2 Atom-Based F0 Decomposition

Among the many models aiming at representing intonation, Fujisaki’s command-response
(CR) model has gained a very high credit [Fujisaki and Nagashima 1969; Hirose and Fujisaki
1982]. Command-Response model assumes log F0 is the sum of a base sound level, a
breath-group level phrase component and local accent components. Whilst the phrase
component can be explained directly in relation with subglottal pressure evolution (which
evolves slowly within a range of about 15% during phrase phonation, and drastically drops
at the end of the breath group), local commands are related to voice muscle activity
(cricothyroid, vocalis and sternohyoid muscles). The CR model decomposes the signal in
impulses, corresponding to the phrase component, and step functions, corresponding to
the accent components. The atom-based intonation decomposition model (Generalized
Command-Response model, or GCR) is a generalization of the step into a sequence of

3. ATOMS FOR DRIVING A UNIT SELECTION TARGET COST 123

impulses that can be expressed as:

Gθ(t) =

 1
θ2
te−1/θ for t ≥ 0,

0 for t < 0.
(8.1)

This definition is an order k = 2 gamma function which higher order form is:

Gk,θ(t) =
1

θkΓ(k)
tk−1e−1/θ for t ≥ 0 (8.2)

Basically, the atom prosody modeling decomposes F0 into a set of gamma shaped kernel
functions where every atom is expressed according to the preceding function. The breath-
group sized atom, representing the phrase component, is also defined through a gamma
form. Atom annotations are computed from the logF0 contour using a matching pursuit
algorithm. Basically, the algorithm tries to approximate the contour by finding the best
linear combination of a predefined set of kernel functions of size M :

f0(t) =

M∑
m=1

Im∑
i=1

αm,iΦm(t− τm,i) + ε(t) t ≥ 0 (8.3)

In the above formula, the gamma function amplitude αm,i may be positive or negative.
Φm is the mth kernel function. Im instances of the mth kernel function are evaluated.
τm,i is the temporal position of atom impulse. In order to make the building of the cost
function easier, the temporal position τ of the associated gamma function maximum and
the temporal width w of the function that is considered in the computation are added into
the atom definition. Finally, the atom set is the following:

Ψ = {(k, α, θ, τ,max,w)/k ∈ N, α ∈ R, (8.4)

θ, τ,max,w ∈ R+}

where an atom is thus defined with k and θ that are the parameters of Gk,θ, amplitude
(α), initial temporal position (τ), temporal position of the function maximum (max) and
temporal width (w). In this work, following a recent investigation [Honnet et al. 2015],
only order k = 6 atoms are used in the dictionary as they give the best results.

3 Atoms for Driving a Unit Selection Target Cost

Most contributions in the literature making use of Fujisaki’s model are related to SPSS
(mostly HMM-based) frameworks, for example [Hirose et al. 2005]. In this work, we take
a very different approach: we focus on how to use atom annotations for building a unit
selection target cost.

124 CHAPTER 8. WORK ON THE PITCH TARGET COST

3.1 Defining New Prosody Target Costs

The motivation for using atoms in this particular task relies on two fundamental hypothe-
ses. First, we assume that the decomposition into phrase and local atoms is not only
virtual but is related to the muscle activity in the vocal apparatus (hyp. 1); i.e. atoms
are the responses to muscle impulses. Second, we make the hypothesis that perceptual
inconsistencies in synthesized prosody are due to the fact that the underlying speech pro-
duction mechanisms are not taken into account (hyp. 2). For instance, a pitch distance
functioning as a target cost only focuses on elements resulting from an analysis of pro-
duced speech (or predicted), and not on analysis of the mechanisms that produced that
speech. The problem is that the pitch contour itself is altered by microprosody acting as
noise. In those conditions, a basic F0 distance is definitely biased. As atoms (especially
higher amplitude ones) seem to be correlated to the muscular work in question, a target
cost exploiting atom decomposition might prove efficient in selecting units with the right
prosody. In addition, an F0 regenerated using atoms only may be much more suitable as
it removes microprosody. Taking these hypotheses into account, two main ideas have been
considered for a target cost.

Target Cost with Atom Properties

The first idea, called Atom-Param, is to directly use atom parameters to compute a cost
between a candidate and a target unit. First, we define the cost between two atoms ψ and
ϕ as:

C(ψ,ϕ) = Wmax|ψmax − ϕmax|+Ww|ψw − ϕw|+Wθ|ψθ − ϕθ| (8.5)

where the notation ψX , ϕX is used to denote the parameter X of atoms ψ and ϕ as defined
in (8.4). Magnitudes of the sub-costs are homogenized with manually set weights.

Let ST and SC be the atom sets in the target and candidate unit respectively. Let
Smin be the smallest of them, and Smax the biggest, in terms of cardinal. We construct
the set L which pairs each element of Smin with the closest atom in Smax according to the
following:

(ψ,ϕ) = arg min
ψ∈ST ,ϕ∈SC

(Wmax|ψmax − ϕmax|+Wθ|ψα − ϕα|) (8.6)

We also define a multiplicative penalty K as:

K(ψ,ϕ) =

Kmax if ψαϕα ≤ 0,

1 otherwise.
(8.7)

where ψ and ϕ are two atoms and Kmax is the highest possible cost C(ψ,ϕ) between two
atoms measured on the corpus.

The final target cost for a unit is the sum of this atom cost for each pair in L. We add

4. EXPERIMENTS 125

a full penalty for each atom that is part of Smax but not of any pair in L, i.e. atoms of
Smax that cannot be aligned with atoms in Smin. We note |L| the cardinal of set L.

TCost =
∑

(ψ,ϕ)∈L

K(ψ,ϕ) ∗ C(ψ,ϕ)

+ (max(|ST |, |SC |)− |L|) ∗Kmax (8.8)

Target Cost Exploiting Atom-reconstructed F0

Having obtained atom annotations, the next step is to regenerate F0 using atoms only.
Then, the idea is to see whether the regenerated F0 might prove better than original
F0. The second cost, called Atom-Pred , aims at checking whether this is true or not. It
reconstructs F0, for each unit, from parameters of the atoms linked to that unit using
function 8.2. The sampled reconstructed signal S is then used for a Euclidean cost:

TCost =

card(S)∑
s=1

|f t0(s)− f c0(s)| (8.9)

where f t0 and f c0(s) are F0 sequences for target and candidate units resp.

4 Experiments

4.1 Experimental Process

While the objective is evidently to start from text and predict atoms, our work is divided
into 2 distinct steps. The aim, in a first step, is to determine whether atom decomposition
can help enhance F0 contours in synthesized speech by first looking at what happens when
using only atom annotations (see 3.1) and then to investigate if F0 resynthesized with atoms
performs better than original in a target cost. For that first step, we synthesize texts for
which real speech exists, hence real atom annotations and real original F0 measures are
used. This spoken version might come either from the same speaker as the speech corpus
or another one. So in this first case, the target cost data comes from an oracle. Then, in
a second step, models may be used to predict atoms or atom-based reconstructed F0, at
least if target costs prove to be efficient enough. In this work, we focus on the first part
and we use 4 system variants:

• The baseline system: filters and concatenation cost only.

• F0-sys system: baseline + target cost using F0 (from real speech stimuli) and
making a Euclidean distance with corpus units. F0 annotations were obtained with
the Kaldi pitch extractor [Ghahremani et al. 2014].

• Atom-Pred-sys system: baseline + Atom-Pred target cost.

• Atom-Param-sys system: baseline + Atom-Param target cost.

126 CHAPTER 8. WORK ON THE PITCH TARGET COST

Figure 8.1: Example of atom-based F0 decomposition. The first frame shows log F0 ex-
tracted with Kaldi, reconstructed F0 and the phrase atom. In this graph, the phrase atom
is shown in brown, Kaldi F0 in blue and green and reconstructed F0 in pink. Second frame
shows a view of local atoms. Each atom is given a single color in that frame.

4.2 Experimental Data

For the experimental evaluation of this contribution, technical constraints concerning the
sampling frequency of IVS voice (too low for one of our analysis tools) made it impossible
to use. We will therefore use Audiobook voice only. For the tests, we will use two corpora.
The first one is Audiobook test . In order to reduce the bias caused by having the same
speaker for Audiobook voice and the test corpus, we will also use another test corpus for
which the speaker is different. This corpus consists of the same 100 sentences from Various
Styles as in chapter 7. In earlier chapter, only the text versions of the sentences in Various
Styles were used. In this chapter, we also use the related speech recording to get F0

annotations and atoms. Each unit in both test corpora and Audiobook voice is annotated
with all atoms belonging to the unit, even if the impulse is located in an earlier unit. In
order to do this, we use the recordings made on Various Styles (made by a different speaker
than the one that recorded Audiobook). All atoms above an amplitude of 0.03 are used for
the cost function. It corresponds to the smallest amplitude threshold that is given to the
atom extraction tool while annotating the corpus.

4.3 Atom Decomposition

Atom decomposition is illustrated in figure 8.1. The first frame shows log F0 extracted
with Kaldi tools (blue and green), reconstructed F0 (pink) and the phrase atom (line in
the middle, in brown). The second frame is a visualization of local atom positioning in
the sentence. We can clearly see in that frame that atoms that have a stronger amplitude
(positive or negative) are to be given a greater importance, which is the case in cost Atom-
Param-sys. The reconstructed F0, here using only atoms that have an amplitude bigger
than 0.03, is actually very good. The main effect when comparing reconstructed F0 to

4. EXPERIMENTS 127

Figure 8.2: In dark, the curve shows pitch contour and atom reconstruction of that contour
for the original sentence. Light gray ones show the same data for the synthesized version
of the sentence (with Atom-Param-sys).

original data as extracted by Kaldi is a smoothing of the curve, stripping it from smaller
variations. This is fortunate in our case as those smaller variations might indeed act as
noise in the cost function.

Figure 8.2 shows the same test stimulus synthesized with Atom-Param-sys. There,
dark curves represent log F0 for the original stimulus (from a different speaker to the one
who recorded the corpus). Light curves represent log F0 for the generated sentence. The
two smooth curves show the atom-reconstructed contour while the other two give the real
one. Though the gap before the spike in the middle of the sentence does not exist in the
generated version, the rest of the curve seems to match correctly (for unit selection). It
has to be noted that even if synthesized samples appear to show better correlation for
Atom-Pred-sys and Atom-Param-sys, the overall distance between generated and original
F0 is similar for all 4 systems. Initial work shows there is no strong linear correlation
between generated and original contours but we assume a more complex form exists. No
particularly annoying phenomenon (beyond the forecastable mean F0 magnitude change)
to a difference of speaker was observed between sentences using atom annotations.

4.4 Subjective Evaluation

As an evaluation of the target costs, we performed a Mushra test involving 7 native French
speakers. One of the main advantages of Mushra tests is that they do not require as much

128 CHAPTER 8. WORK ON THE PITCH TARGET COST

System Mean mark Centered mean
baseline 56.4 ±4.3 47.2 ±3.9
F0-sys 57.2 ±3.6 48.6 ±3.2
Atom-Param-sys 60.4 ±4.3 52.9 ±3.9
Atom-Pred-sys 60 ±3.6 51.3 ±3.3

Figure 8.3: Results of the Mushra test with 7 listeners. Column mean mark shows raw
results. Centered mean is the same but centered to 50. Confidence intervals are at 95%.

testers as other tests , so a capital of 7 testers is here better used than with a MOS or
an AB. The question proposed to testers was not targeted at general quality. Instead, the
question was the following: "How do you assess the quality of the PROSODY (intonation,
rhythm), and only prosody, of this sample?". As assessing only prosody is difficult, only
experts used to listen to unit selection-based speech synthesis performed the test. Each of
the 12 steps of the test consists of a set of sentences (for each system tested), generated
from the same text, that the listener has to mark from 0 to 100 in relation to the question
above. 6 of the sentences came from Various Styles and 6 from Audiobook test . Again,
no real difference was observed in test results between sentences from Various Styles and
Audiobook test . Test conditions conformed to ITU-T recommendations [ITU-R 2015].

Table 8.3 shows the results for the test. Basically, the first column shows raw results
for the test. The second column shows the same results when centered to 50. What we can
observe is a distinct preference for atom-based costs, with Atom-Param-sys being more
than 5 points better than baseline on the centered data. While there is a degradation
with Atom-Pred-sys (regenerated F0), it still outperforms both baseline and F0-sys. This
last one is performing particularly poorly, as it doesn’t show any real improvement over
baseline. This is striking as the only real difference between F0-sys and Atom-Pred-sys is
the use of resynthesized F0 in Atom-Pred-sys. More careful analysis, isolating trends for
each tester shows a quasi-unanimous ranking: Atom-Param-sys > Atom-Pred-sys > F0-
sys ≥ baseline.

As for now, more testers will be needed to refine results. Proof of a strong (non-linear)
correlation has also to be discovered. Nonetheless, atom-based target cost has proven to
be efficient in listening tests. Moreover, resynthesized F0 proves to be better fitted for unit
selection than original F0.

5 Conclusion

In this chapter, we described a new F0 target cost, which we elaborated in order to constrain
the F0 contour, based on atom decomposition of pitch. We assume the unit selection process
naturally chooses units that feature a homogeneous F0 (F0 is part of the concatenation
cost), most issues come from segments that have a very different local contour than what is
expected. As local atoms model that segment-level/syllable-level information, and as there
are elements suggesting local atoms are related to physiological work, we made the hypothesis

5. CONCLUSION 129

that using this data enhances synthesized prosody. A first target cost using parameters of
atoms was created and performed much better than a target cost based on real F0 in listening
tests. Regenerating the F0 from atoms and using this new contour in the target cost also
performed much better than original F0. We can therefore validate our hypothesis. This
allows us to think that a target cost based on predictions of atom-reconstructed F0 (or
directly using predicted atoms, though it might be harder) will perform better than direct
prediction of F0, as it gets rid of microprosodic and estimation errors.

130 CHAPTER 8. WORK ON THE PITCH TARGET COST

Chapter 9

Work on the Concatenation Cost

“Enjoy every sandwich.”

Warren Zevon (1947–2003)

The role of the concatenation cost is to insure that joining two voice segments will not
cause any acoustic artefact to appear. For this task, acoustic distances (MFCC, F0) are
typically used but in many cases, this is not enough to prevent concatenation artefacts.
Among other strategies, the improvement of corpus covering by favoring units that natu-
rally support well the joining process (vocalic sandwiches) seems to be effective on TTS.
In this chapter, we investigate if vocalic sandwiches can be used directly in the unit selection
engine when the corpus was not created using that principle. First, the sandwich approach
is directly transposed in the unit selection engine with a penalty that greatly favors concate-
nation on sandwich boundaries. Second, a derived fuzzy version is proposed to relax the
penalty based on the concatenation cost, with respect to the cost distribution. We show that
the sandwich approach, very efficient at the corpus creation step, seems to be inefficient
when directly transposed in the unit selection engine. However, we observe that the fuzzy
approach enhances synthesis quality, especially on sentences with high concatenation costs.

1 Motivation

Discriminating the segments coming from the corpus that fit the requirements expressed via
the target sequence is usually done by ranking the units with an evaluation of the context
matching degree (target cost) and the risk of creating an artefact if concatenating the
unit (concatenation cost) via balanced cost functions. The concatenation cost typically

131

132 CHAPTER 9. WORK ON THE CONCATENATION COST

relies mainly on acoustic features (MFCC, F0) [Stylianou and Syrdal 2001; Tihelka et
al. 2014] to evaluate the level of spectral resemblance between two voice stimuli on and
around the concatenation point. As for now, concatenation costs are far from being perfect
and audible artefacts appear both in commercial and research TTS systems, even after
post-concatenation processing. A few analyses, for example [Yi 1998], showed that these
artefacts occur more often on some phoneme than others. For instance, phonemes with
high context-dependency (e.g. liquids) might show substantial inter-occurrence spectral
variability [Lindblom 1963], which is particularly dangerous for unit selection, especially
because joining is usually done on phone centers (i.e., diphone boundaries). This being
considered, some authors tried to use phonologically motivated rules to prevent joining
on “risky” phonemes. For instance, in [Yi 1998] the authors successfully tested a penalty
system based on the phonological class of candidates to concatenation. A refined version of
this idea was used by D. Cadic in the context of recording-script construction in [Cadic et
al. 2009] to favor covering of what has been called "vocalic sandwiches", also with success.

Based on these considerations, we decided to assess the impact of vocalic sandwiches
back in the concatenation cost of a modern unit selection system, when a corpus was
not created using the “sandwich” process described in [Cadic et al. 2010]. We use the 3
phonologically-based phoneme clusters defined by [Cadic et al. 2009] to forbid concatena-
tions on phones believed to often cause joining artefacts. Believing this direct transposition
marginalizes acoustic concatenation costs, we develop an enhanced version that softens
penalties. This is done through the use of a fuzzy function that relaxes the penalty based
on the acoustic concatenation cost distribution. It allows to smoothen the constraints
imposed by sandwich penalties.

The main impact of this study is to improve TTS in the case of less controlled data,
such as audiobooks, by transposing a constraint originally proposed for the corpus creation
step directly into the TTS engine [Guennec and Lolive 2016]. The challenge is to know if
the efficiency obtained at corpus building level can be found also at unit selection level. To
that respect, unit selection makes it much simpler than SPSS to add the sandwich feature
and test its efficiency. Experiments show the efficiency of the proposed approach and its
suitability for corpus-based approaches at a low cost.

The remainder of the chapter is organized as follows. In section 2, we will present the
concept of vocalic sandwich as it is implemented in our work. Section 3 first presents the
integration of sandwiches into the system as a simple penalty constraint system. Then a
fuzzy enhancement of the sandwich system, much more adaptive, is introduced. In section
4, we first describe our test data and then our experimental protocol. The experiments
and their results are then presented and discussed.

2 Enhancing Speech Corpora With Vocalic Sandwiches

Analysis of sentences containing artefacts shows that concatenation on some phonemes,
especially vowels and semi-vowels, is more likely to engender artefacts than others (plo-

3. SANDWICHES IN A UNIT SELECTION ENGINE 133

sives and fricatives for example, especially unvoiced ones) [Yi 1998]. Phonemes featuring
voicing, high acoustic energy or important context dependency are generally subject to
more distortions. Based on this claim, [Cadic et al. 2009; Cadic and D’Alessandro 2010]
proposed a corpus covering criterion where the objective is to get a maximum covering of
“sandwich units”. A sandwich unit is a sequence of phonemes where one or several syllabic
nuclei are surrounded by two phonemes considered as not likely to cause artefacts (we call
it “resistant” to concatenation artefacts). A sandwich can therefore be formally defined as:

R(A∗V A∗)+R (9.1)

where + means 1 or more occurrences, * means 0 or more occurrences and R, A and V are
the three following phonetic clusters, which Cadic et al. justifies in [Cadic et al. 2009]:

V (vowel) : Vowels, on which concatenation is hardly acceptable.

A (acceptable) : Semi-vowels, liquids, nasals, voiced fricatives and schwa. These units
are viewed as acceptable concatenation points, but still precarious.

R (resistant) : the remaining phonemes (unvoiced consonants, voiced plosives), where
concatenation is definitely possible. The word “Resistant” is used in the following to
describe units of this class.

3 Sandwiches in a Unit Selection Engine

In this section, we describe how we integrate sandwich clusters into the unit selection
concatenation cost, first with simple penalties and then with a much more refined fuzzy
version.

3.1 Phonologically Motivated Penalty Based on Sandwich Classes

For the purpose of our study, we defined two penalization methods based on the three
phonetic clusters defined in section 2.

We chose these clusters specifically because they are the same as those presented and
justified in [Cadic et al. 2009], though the choice of elements put inside each cluster is
arguable, for example the choice of considering all vowels dangerous areas for joining.

As said earlier, using the phonetic class to constrain or penalize phonemes considered
as problematic for concatenation is not a novel idea, and a few works can be cited, for
example [Donovan 2001; Yi 1998]. However, in these works, costs and penalties are very
constraining, always trying to find the perfect unit (which may not exist in the corpus).

A key point of the idea we investigate here is that, because we do not want to add too
many constraints in the cost function, we only defined 3 subsets of phonemes. The purpose
of the penalty is not to act as a standalone cost, but simply to introduce knowledge that
is not captured by the concatenation cost and then help achieve a finer ranking of units.

134 CHAPTER 9. WORK ON THE CONCATENATION COST

Moreover, the proposed classes are based simply on basic linguistic/phonological knowledge
and it may be necessary to adapt them depending on the language.

The first method for applying the penalty, called pho-class, is to give a fixed penalty p(v)

to each phoneme class: 0 for phonemes in R, a penalty slightly higher than the highest value
of Cc observed in the corpus for all phonemes in A. Vowels (V) are given a huge penalty, big
enough to prevent compensation by other costs in the candidate sequence. It corresponds
to a penalization of candidate units based on the phonemes on which concatenation may
be performed if choosing this unit. In this case, a new concatenation cost function C ′c is
formulated as:

C ′c(u, v) = Cc(u, v) +K(u, v) (9.2)

where K(u, v) = p(v) is the penalty depending on the phoneme that begins the unit v as
described before, which is the same as the phoneme ending u as we perform joining on
diphone boundaries.

3.2 Fuzzy Penalty System

The second method, called fuzzy-pho-class, is to relax the penalty in certain cases. Thus,
we introduce a fuzzy weighting function giving to each penalty a weight ranging between 0
and 1 as shown on figure 9.1. It describes how satisfying the candidate unit is with respect
to its concatenation quality. Assuming MFCC, Amplitude and F0 cost distributions follow
normal distributions, we define two thresholds for each sub-cost. For instance, the two
thresholds T 1

F0
and T 2

F0
for the F0 sub-cost may be defined as:

T 1
F0

= µCF0 − σCF0 (9.3)

T 2
F0

= µCF0 + σCF0 (9.4)

Formally, the fuzzy function is defined, for the F0 sub-cost, as:

fF0(u, v) =

0 if CF0(u, v) < T 1

F0
,

1 if CF0(u, v) > T 2
F0
,

1.0−
(T 2
F0
−CF0 (u,v))

(T 2
F0
−T 1

F0
)

otherwise.

(9.5)

The same is done for fMFCC(u, v) and famp(u, v). This process sets thresholds at µ−σ
and µ + σ for each distribution. If a unit’s sub-cost values less than µ − σ, it will get no
penalty. if it is more than µ + σ, a full penalty is applied. Finally, if it is in the between
(corresponding to about 70% of the distribution), a linear function is used to apply a weight
between 0 and 1 to the penalty.

The choice for that tolerance interval is motivated by the observation of real cost
distributions. Indeed, we observed that the 30% of the distributions that are under
µ − σ and over µ + σ are respectively much lower and much bigger than costs between

4. EXPERIMENTAL EVALUATION 135

 0

 0.2

 0.4

 0.6

 0.8

 1

P
e
n
a
lt

y
 c

o
e
ffi

ci
e
n
t

μ - σ μ - σ

Figure 9.1: Fuzzy function over the distribution of sub-costs. The weight 0 (resp. 1) is
given to units that have a concatenation costs approximately among the 15% lowest (resp.
highest) costs. Between these thresholds, the weight increases linearly.

these thresholds. To be complete, the choice of the thresholds should be differentiated
depending on the type of sub-cost and optimized separately.

Finally, the penalty is modified in the following way:

K(u, v) = (fmfcc(u, v) + famp(u, v) + fF0(u, v)) ∗ p(v) (9.6)

where fmfcc(u, v), famp(u, v) and fF0(u, v) correspond to the fuzzy functions of the form
described in figure 9.1 respectively for MFCC, amplitude and F0. With those functions,
the main idea is to decrease the penalty when the unit has a concatenation sub-cost value
which is statistically among the best ones. These distributions are estimated using the
voice corpus by computing concatenation sub-costs for F0, amplitude and MFCC using all
units present in the corpus.

To sum up, if concatenation cost is above the higher threshold then we definitely have
to apply the full penalty as the unit considered is among worst possible units. Between the
two thresholds, we augment progressively the penalty as the concatenation cost increases.

4 Experimental Evaluation

In this section, we first analyze the behavior of our three methods (baseline, pho-class and
fuzzy-pho-class) in terms of concatenation costs, then our experimental protocol for the
perceptual evaluation is presented and finally the results of our experiments.

4.1 Concatenation Costs Analysis

First we studied the evolution of costs using the three systems by comparing mean con-
catenation costs for resistant units only (class R), non-resistant units only (classes A, V)

136 CHAPTER 9. WORK ON THE CONCATENATION COST

Table 9.1: Concatenation costs without penalties following the three strategies on 100
sentences of Various Styles. Note that penalties have been subtracted a posteriori. R, A
and V refers to classes introduced in section 3.1.

Resistant units (R) Nonresistant Units (A, V) Both
IVS

µ (std) N µ (std) N µ (std) N
baseline 2.90 (0.69) 582 3.14 (0.70) 1249 3.06 (0.71) 1831
pho-class 3.28 (0.92) 1025 3.35 (0.88) 813 3.31 (0.90) 1838
fuzzy-pho-class 3.35 (0.92) 1095 2.58 (0.42) 1169 2.95 (0.80) 2264

Resistant units (R) Nonresistant Units (A, V) Both
Audiobook

µ (std) N µ (std) N µ (std) N
baseline 2.44 (0.52) 606 2.90 (0.60) 1057 2.74 (0.61) 1663
pho-class 2.65 (0.71) 865 3.14 (0.78) 785 2.88 (0.78) 1650
fuzzy-pho-class 2.65 (0.64) 907 2.47 (0.38) 1139 2.55 (0.52) 2046

and both together, each time excluding contiguous diphonemes. All these results are pre-
sented in table 9.1 for the same 100 sentences from Various Styles as in chapter 7. As we
can notice, the baseline system has lower costs for both resistant and nonresistant units
compared to pho-class system. An explanation is that the pho-class system, by penal-
izing non-resistant units, favors resistant units even if their concatenation cost is higher.
The number of concatenations made on resistant units (1025 for IVS) is then significantly
higher compared to baseline system (582 for IVS). As for fuzzy-pho-class, the results in
terms of number of concatenations are more balanced. Indeed, as good concatenations
on nonresistant units have no or low penalization, the fuzzy-pho-class system achieves the
lowest cost for nonresistant units. Introduction of variable penalties enables to evaluate
units more finely than with pho-class system, for which all penalized units are equivalent.
A counterpart of this is that the number of concatenations globally increases for the fuzzy-
pho-class system, which is not a problem since they are better controlled. It is worth to
mention that these results are equivalent on both voices. We can then consider them to be
fairly independent from the voice type.

To sum up, the penalty seems to behave well as it enables to favor unit sequences with
a lower cost on sensible units and more concatenations on resistant units.

4.2 Subjective Evaluation Process

For test purposes, we used our two voices Audiobook and IVS . The evaluation corpus is
the full test corpus Various Styles. The 27 141 test sentences were synthesised for our
3 systems (baseline, pho-class and fuzzy-pho-class). In order to evaluate the two sandwich
concatenation cost adaptations presented earlier, we carried out a total of 12 AB listening
tests split in 3 groups of four tests:

Random sentences: 4 tests where the sentences are picked up randomly among those
generated in our test set. This serves as a baseline evaluation which aims at studying if
the sandwich systems are, in average (i.e., in general), an enhancement over baseline.

4. EXPERIMENTAL EVALUATION 137

Most different sentences: 4 tests where the most different synthesized stimuli pairs are
chosen. Choice of the most different stimuli is made using DTW, as we presented in
[Chevelu et al. 2015]. It aims at revealing differences that might have been obscured
by the first set of tests by comparing the stimuli that are the most impacted by
sandwich methods. If tested methods are worse than baseline in these tests, this
methodology allows us to say sandwiches have mostly a negative impact on TTS, or
the reverse if results are in favor of sandwiches.

Sentences with highest concatenation cost: 4 tests where the sentences are the ones
that feature the biggest concatenation costs for the baseline system. They correspond
to the sentences that most need improvement, and thus the primarily target we wish
to enhance with the sandwich costs. If these sentences are not enhanced, this most
likely means that sandwiches are inefficient as their purpose is to prevent disastrous
concatenations more than enhancing joining quality.

Each test was made by 10 expert testers, each one evaluating 10 distinct stimuli pairs. 100
stimuli pairs are evaluated in total (all 100 synthesized from distinct sentences), each tester
evaluating his own set of stimuli. In every test, the standard question concerning overall
quality is asked. For the last set of tests however, (high concatenation costs), a second
question is asked along with the first one, this time over concatenation quality. Because
of the difficulty to answer this question, the choice of expert testers is here particularly
justified. For each set of 4 tests, we carry out two tests using IVS voice and two with
Audiobook . For each voice, one test compares system baseline with pho-class, the other
with fuzzy-pho-class. Test conditions are studio-like and follow ITU-T recommendations.

4.3 Results

Table 9.2 presents the results of the tests for the comparison baseline versus pho-class.
Each line corresponds to one AB test. Column 1 indicates the voice used for the test and
column 2 the selection method for the test sentences (“R.” for random, “DTW” for most
different and “C. C.” for highest concatenation cost). Column 3 refers to the question asked
during the test: either “C. Q.” for the question on concatenation quality or “G. Q.” for the
assessment of global quality. Using the same representation, results for the fuzzy-pho-class
method are presented on table 9.3.

First, if we compare the behavior of the systems regarding the number of concatena-
tions (table 9.1), we find that both pho-class and fuzzy-pho-class lead to a larger number
of concatenations than baseline. This situation is completely normal as the acoustic con-
catenation cost aims at minimizing the number of concatenations as selecting a long unit
means putting one or several diphone costs to 0. The sandwich cost aims at forbidding
concatenations on some phonemes, some of them being long unit boundaries. This is not
a problem: two well made (and therefore inaudible) concatenations are worth much more
than one failed joining. When looking at the phoneme classes on which concatenations are

138 CHAPTER 9. WORK ON THE CONCATENATION COST

Table 9.2: Results for the AB listening tests for the pho-class system. Lines concerning
tests on random sentences have the mention “R.” in the second column. “DTW” is for tests
with most different sentences and “C. C.” for tests on sentences of baseline with the highest
concatenation costs. Column 3 displays “G. Q.” when the question was on global quality
and “C. Q.” when it was on concatenation quality only.

Answers
Base pho-class Indifferent

R. G. Q. 45% 34% 21%
DTW G. Q. 31% 34% 35%

C. C. C. Q. 33% 30% 37%IVS

G. Q. 30% 35% 35%
R. G. Q. 38% 39% 23%

DTW G. Q. 47% 32% 21%

C. C. C. Q. 38% 31% 31%Audiobook

G. Q. 39% 30% 31%

Table 9.3: Results for the AB listening tests for the fuzzy-pho-class system. Please refer
to table 9.2 caption for explanation of the table.

Answers
Base fuzzy-pho-class Indifferent

R. G. Q. 35% 40% 25%
DTW G. Q. 31% 48% 21%

C. C. C. Q. 20% 59% 21%IVS

G. Q. 27% 49% 24%
R. G. Q. 43% 42% 15%

DTW G. Q. 42% 46% 12%

C. C. C. Q. 33% 38% 29%Audiobook

G. Q. 36% 43% 21%

made, we see that pho-class and fuzzy-pho-class produce much more (about twice more)
concatenations on robust (cluster R) phonemes. This is the proof the two methods work
as expected. In addition, fuzzy-pho-class also causes substantially more concatenation on
A and V clusters, as intended. DTW score distributions are similar in terms of shape
(Gaussian) and magnitude.

Second, from the listening tests results, we observe that the pho-class approach seems
largely inefficient (at best) when integrated directly in the unit selection engine, as shown
in every test made with the method. In some cases, it was even counter-productive: the
AB test on random sentences for IVS clearly show it, and the same conclusion can be
observed on 3 tests out of 4 concerning Audiobook voice. What is also noticeable is the
high quantity of “indifferent” ratings, proof that the difference between the two systems
isn’t very clear. So we can say that, if sandwiches proved useful for the construction of a
recording script (cf. Cadic et al. 2009), they prove inefficient, or even counter-productive
when directly integrated into the concatenation cost.

5. CONCLUSION 139

On the contrary, for almost every test with IVS voice, a clear superiority of the fuzzy-
pho-class approach can be observed. The result is also observable for Audiobook voice,
though with a smaller gap. Audiobook voice faring better than IVS , the lesser difference
for the first one seems logical. Concatenation quality is perceived better with fuzzy-pho-
class. The number of “Indifferent” answers is also consistently lower for fuzzy-pho-class,
meaning that differences are more easily felt. In conclusion, fuzzy-pho-class approach proves
to be effective thanks to the degree of flexibility it adds in regard to pho-class method.
In particular, we observe that fuzzy-pho-class ranking is between pho-class and baseline,
which means it alters baseline ranking, based solely on acoustic measures that we know
are imperfect, but not as much as pho-class (which completely changes the ranking and
loses the information of acoustic measures). It is also interesting to see that the controlled
corpus IVS , was more affected by sandwiches than Audiobook , which is completely uncon-
trolled. The question this raises is the following: is it the quality of Audiobook voice or
its uncontrolled nature that causes the observed lower performance of sandwiches for that
voice?

We believe that the key to the success of all these measures (including fuzzy-pho-class),
is a close integration in the concatenation cost. The penalty cannot hide the ranking
provided by acoustic costs, and this for a good reason: these penalties aim at correcting
acoustic rankings on key points, using expert knowledge (and it is exactly what sandwiches
at corpus building level does). But a too constraining penalty system (i.e., pho-class),
which is not a good concatenation cost on its own, causes a complete re-ranking of the
system, hence the drop in quality.

Though this contribution was made with a particular focus on French language but our
conclusions should apply to other language, especially syllable-timed languages. Indeed,
besides French, fuzzy-pho-class method was also applied on Indian languages for the Bliz-
zard Challenge 2015 [Alain et al. 2015]. Though no dedicated listening test was carried
out to compare fuzzy-pho-class to baseline on these languages, the former seemed to yield
better results.

5 Conclusion

In this chapter, we have presented a study of the impact of vocalic sandwiches back in the
concatenation cost of a modern unit selection system, through two penalty-based systems.
This penalty enables to avoid some artefacts during synthesis and its fuzzy version pre-
serves the ranking made by acoustic components of the concatenation cost. The subjective
experiments we conducted show a better performance for fuzzy version both for a neutral
and an expressive voice. It shows that the concatenation cost does not capture all the per-
ceptual information and that adding some preferences over the type of units to concatenate
improves the synthesized speech quality. On the contrary, pho-class method, which fares
well at script construction level, seems largely inefficient when integrated directly in the
unit selection engine. Along with other elements, this leads us to think that penalty sys-

140 CHAPTER 9. WORK ON THE CONCATENATION COST

tems are not a form to privilege in the cost function. The impact of the fuzzy method is
particularly clear with IVS voice, which we can explain by the fact that its quality is lower
than Audiobook (so that there is more room for improvement).

General Conclusion

Work during this thesis has been centered around unit selection algorithms and cost
functions for corpus-based speech synthesis systems. As part of this effort, our first task
was to participate in the creation and sustained development of a completely new TTS
engine, the IRISA Text-To-Speech system. This task has taken considerable development
and maintenance time. Nonetheless, it allowed us to conceive the system, from the very
beginning, so that several search algorithms and modular cost function could be easily
implemented.

In chapter 5, we presented the tools that were used to feed the TTS system with speech
data, which we also worked on intensively: the ROOTS toolkit and then the lighter TTS-
corpus format were used to allow synthesis with an expressive male voice, Audiobook , and
a neutral voice, IVS . We saw that IVS and Audiobook voices were close to average French
corpora, with slight variations for Audiobook due to its literary origins. Working on two
French speaking voices, our work is consequently to be put in the context of that language,
even though we occasionally synthesized English and several Indian languages for the Bliz-
zard challenge.

Our research work was done in two successive parts: first, we focused on the selection
algorithm and the constraints posed by the preselection filters. Then, our work focused
on the selection cost, where we made three propositions: a proposition to use atoms – a
generalized version of Fujisaki’s command-response model – to control F0 (and possibly
more general prosodic aspects), a proposition of cost integrating long-term constraints in
the usually short term cost function – used to constrain duration but transposable to other
measures – and finally a proposition of fuzzy penalty system for the concatenation cost.

Most of our work was achieved at ENSSAT, France. The work on atoms was performed
during the 5 (exciting) month we spent at IDIAP, Switzerland, in our 3rd year of PhD
though.

141

142 CHAPTER 9. WORK ON THE CONCATENATION COST

Summary of the Contributions

The first – and consequent – part of our research work focused on the unit selection algo-
rithm and the unit selection graph (therefore including preselection filters), in particular
the consequences of preselection on the richness of the selection graph. In our design, at
least for the baseline system we presented in chapter 6, preselection filters act as a bi-
nary target cost, considering that if a unit does not fit a minimum number of linguistic
and phonological criteria it has no place in the selection graph. Now, this is a double
edged sword: the least there is nodes in the selection graph, the fastest selection will be;
but the fewest the nodes, the least effective is the selection function (as it will then lack
enough choice to be efficient). The join cost is particularly affected by the lack of choice
as preselection filters implement target cost features. Our first experiment was therefore
to assess the impact of our filters on the synthesis. The experiments we conducted proved
our final set of filters, presented in section 1.3, to be efficient in reducing selection time
without causing harm to the selection algorithm. Furthermore, this experiment allowed
us to perform a first verification of the effectiveness of our cost function: confronting the
best possible path with the worst one showed a very consequent gap, as expected. In the
same experiment, we tested the impact of the preselection step on synthesis quality. We
saw that filters did bring a consequent increase in speech quality, validating our point of
view that it should be considered as part of the cost function, even though it is acting
before the insertion of a node in the unit graph. This last point means that the more
preselection filters are used, the less choice is given to the actual cost function as less nodes
are added to the graph. This means a subtle balance between the number of filters and
the number of nodes included in the graph has to be respected to yield best result. During
the development of our system, we therefore added a mechanism relaxing the filter set
when a minimal constraint on the number of nodes selected by the filters was not met (10
nodes in our experiments). Nonetheless, even with this mechanism, adding too many fil-
ters may result in a quality drop as the minimal number of nodes would rarely be exceeded.

Once these preliminary – but fundamental – results were obtained, we investigated the
impact of the selection algorithm on the unit selection process; this is our first contribu-
tion. We implemented a unit selection block where the selection process searching the best
unit sequence relied on an A∗ search algorithm, which is more generalist that the usual
Viterbi. Yet, we showed memory usage and ultimately computation time was more inter-
esting with A∗ than Viterbi and even some under-optimal Viterbi-based algorithms, like
the beam-search algorithm we implemented (when the beam size in sufficiently consequent
of course). For this experiment, we implemented 3 variants of the beam-search algorithm,
with beam sizes of 10, 100 and 1 000 units (i.e. nodes).

This result is nuanced by the overall speech quality obtained with the 4 algorithms,
which listening tests showed as roughly equivalent for A∗ and beam-search with a beam

5. CONCLUSION 143

size of a few hundred. The results of the beam-search begin to degrade only when pruning
gets consequent (i.e. with a beam size between 100 and 10 units). This result, which
may sound astonishing at a glance, is easier to understand with the last experiment we
performed. We explored the – sorted – list of the 100-best paths found by our optimal A∗

algorithm and saw there was quite few variabilities in the selected sequences. A listening
test comparing the 1st, 10th, 50th and 100th paths showed some degradation of the signal
over the rank of the selected path, especially for the 100th, but not as big as one could
have thought.

After this work, we focused on the target cost and proposed two enhancements. The
first one is a new way to compute a cost which aims at selecting the whole unit sequence
that best minimizes a distance rather than choosing the sequence containing units that in-
dividually minimize the same distance. The objective is to include long term dependencies
directly in the cost function, without any modification anywhere else. This new cost com-
putation technique was tested on a phonemic duration distance, with the intent to avoid
cases like excellent synthesis penalized by few very bad units. As the computation method
is independent from the distance used within, it can also be used for the concatenation
cost. Experiments showed that the new cost yielded to better synthesis, especially with an
expressive voice.

The second proposition on the target cost we presented is a F0 cost, aiming at con-
straining the F0 contour via a generalized version of Fujisaki’s Command-Response model
called “atom decomposition of pitch”. This cost is based on the assumption that the unit
selection process naturally chooses units that feature a homogeneous F0, a consideration
reinforced by the fact F0 is part of the concatenation cost. As most issues come from
segments that have a very different local contour than what is expected, we believe that
local atoms – modelling segment-level/syllable-level information by Gaussian functions –
can enhance synthesized prosody if integrated in an appropriate target cost. We built a
prototype which used parameters of atoms and compared it to a system using a regular
F0 target cost (in addition to the concatenation F0 cost, present in both systems). Both
systems were oracles, meaning they used real F0 and real atom parameters extracted from
it instead of predicted values. In that perceptive test, we saw our new cost performing
much better than the regular F0 target cost.

Finally, leaving the target cost, we developed a penalty system based on the notion of
vocalic sandwich [Cadic et al. 2009]. Following an ordering of phonemes into 3 phonologi-
cally motivated clusters – the same as D. Cadic’s [Cadic et al. 2009], penalties are applied
in order to favor concatenations on phonemes known for their ability to support concate-
nations well. That kind of penalty has been the subject of several contributions for unit
selection. Most propositions focused on two aspects: either preventing concatenations on
vowels, known to be difficult to join without causing the appearance of artefacts in the

144 CHAPTER 9. WORK ON THE CONCATENATION COST

signal, or favoring the concatenation on syllable borders; which is almost equivalent. The
difference with the approach we explored lies in the fact that we consider some phonemes
that are not vowels can potentially prove as problematic (perhaps even more) than vowels
(this is the case of liquids), and we also tend to prevent concatenations on these phonemes.
The second and biggest difference lies in the fuzzy function we defined to smoothen the
penalty based on the relative magnitude of the concatenation sub-costs in regard to their
distributions. This fuzzy function is the key point of the technique we presented. Effec-
tively, experiments did show a clear superiority of that approach over our baseline system
and the result stands for all tested voices, expressive or not.

Perspectives

During this thesis, I first reviewed the standard unit selection mechanics and proposed an
updated search architecture based on the A∗ algorithm. In a second part, I focused on the
component driving the search algorithm, the selection cost, and proposed enhancements to
its sub-parts that enhanced synthesis quality.

My contributions helped identify and understand clearly the impact on synthesis of all
major components of the unit selection search engine – preselection filters and subsequently
the unit graph (and graph size), search strategy, formulation of the cost and sub-costs – as
well as the interactions existing between these components. Even though, the work I have
been undertaking could benefit several extensions, some planned but not realized by lack
of time, others simply diverging too much from my research topic. The most important
extensions are detailed hereafter:

On the selection algorithms work: For the work on the selection costs, we have fo-
cused on a very precise comparison, A∗ versus Beam-search (and Viterbi by exten-
sion). Albeit this comparison probably is the one that makes most sense, it could be
extended to more algorithms, including some exotic algorithms already experimented
(R. Kumar’s genetic implementation for instance). The experiment we accomplished
concerning the 100-best paths is a punctual – yet embryonic – work. The aim of this
analysis was never to complete an extensive study of the variability of unit sequences
in all possible paths as it is a full study subject on its own. Such a subject would espe-
cially require an experimentation on a consequent quantity of data. Rather, our aim
was to give some insight on what level of variability actually existed on the supposed
range of paths that could be selected by the algorithms we have been taking into
consideration. Even though, extending our study to a larger scale would certainly
yield interesting conclusions. Concerning preselection filters, a full experiment could
be made with very different sets of filters. Optimization methods, allowing to find
the best set among a range of filters would also prove interesting. Indeed, presently,

5. CONCLUSION 145

preselection filters are often – if not always – selected by hand, at best with a small
empirical evaluation (as for target and concatenation costs weights and sub-weights).

On the duration target cost: An interesting extension of our work on the “adaptive”
duration target cost is to test activating the duration cost only on some sub-parts of
the target sequence, when particular conditions are met. For instance, it could prove
particularly useful when strong relaxation of preselection filters happened or simply
when there is a high concatenation cost. A distinct pause duration model, which could
use the same specifications as the duration target cost could and even should also be
added. Implementing an intonation target cost relying on a F0 contour prediction
model is also part of our next work. However, the most important extension to this
work should certainly be to test the generalization of the new “adaptive” distance
to more costs (target and concatenation) of the cost function. This would require
some deep changes inside concatenation sub-costs though, as the “adaptive” cost is
based on a distance with a target value. However, some concatenation sub-cost (the
F0 sub-cost in particular), operating on some parameter, could be mixed with a
second sub-cost trying to minimize the distance, on the same parameter, between a
candidate unit and the mean in the candidate sequence. All sub-costs are not fit for
this (our MFCC sub-cost for instance), but the problems the “adaptive” cost tries to
fix are present for most sub-costs of the cost function.

On the atom target cost: In our work on atoms, we tested an “oracle”. The TTS sys-
tem, for the atom cost, relies on atom components extracted from actual annotations
made on real speech data. Therefore, this work is not absolutely complete. Prediction
of atom components and atom-reconstructed contours must be done, and evaluation
of the resulting system has to be performed to get a reliable indicator of gains using
atoms in a target cost. We assume directly predicting reconstructed contour is easier
than predicting discrete events or parameters like atom impulses or amplitude. As
it is smoother than real F0, and especially as it is a sum of Gaussian functions, the
reconstructed contour is easier to predict than real F0. Results (especially from the
listening test) are good, but the gap between atom-based costs and others is not as
wide as expected. As the predictions given by a model may degrade the quality of
atom annotations, final results using a predictor might not be strongly better than
the current ones.

On the sandwich penalty system: Further improvement of the fuzzy method can be
made though. In particular, more advanced fuzzy patterns might be investigated.
Further work should be conducted about classification of phonemes in sets R, A and
V. These subsets shouldn’t be considered fixed and investigation on how they com-
pare with other classifications should be done. In particular, liquids and glides could
be added to V as they are usually problematic. Investigating language dependence of
those classes is another important path. Finally, it would be particularly interesting

146 CHAPTER 9. WORK ON THE CONCATENATION COST

to activate the fuzzy penalty only when the concatenation cost magnitude becomes
considerable. Moreover, the effectiveness of the fuzzy approach may be evaluated on
corpora built using a recording script optimizing vocalic sandwich covering (following
methodology in [Cadic et al. 2009]).

Finally, considering the fact that all our experiments were made on French corpora,
internationalization of our conclusions is another challenge that takes sense. Since recently,
this task is possible with the integration of new multi-lingual tools in the frontend of
the IRISA TTS system. Some of our results are certainly directly transposable in most
languages (the work on selection algorithms for instance) while others might share a bound
with the French language, for example the duration cost (even though the cost mechanism
itself – the most important part actually – seems directly transposable). In particular, our
work on the fuzzy sandwich penalty should be tested on other languages, as it shows great
promises.

Appendices

147

Appendix A

TTS Corpus Key Content

Each item in the TTS corpus has a key that is loaded on runtime (see section 1.3). The
list of the 69 subparts of the key is given on the following figure:

Table A.1: List of the 69 subparts of the TTS corpus key
defining each phone and NSS.

subkey bit sta. bit len. value m. code meaning
0 0 6 34 0 segmental label
1 6 1 0 1 phone is in the onset of the syllable
2 7 1 0 2 phone is in the coda of the syllable
3 8 1 0 3 item is a non-speech sound
4 9 1 0 4 phone ends a breath group
5 10 1 0 5 phone ends a word
6 11 1 0 6 phone ends a sentence
7 12 1 0 7 phone is in the last syllable before NSS1

8 13 1 0 8 syllable is at the beginning of the word
9 14 1 0 9 syllable is at the end of the word
10 15 1 0 10 sandwich robustness class C
11 16 1 0 11 sandwich robustness class W
12 17 1 0 12 sandwich robustness class V
13 18 1 0 14 has to be ignored during selection process
14 19 1 0 15 syllable has an onset
15 20 1 0 16 syllable has a coda
16 21 1 0 17 phone position in the syllable
17 22 1 0 19 item is the first phone of the syllable
18 23 1 0 20 item is the last phone of the syllable

Continued on next page

1i.e.; at the end of the end of the breath group.

149

150 APPENDIX A. TTS CORPUS KEY CONTENT

subkey bit sta. bit len. value m. code meaning
19 24 1 0 21 syllable is the last one in the sentence
20 25 1 0 22 phone is rising
21 26 1 0 23 phone is descending
22 27 1 0 24 syllable is rising
23 28 1 0 25 syllable is descending
24 29 1 0 26 phone has diacritic long
25 30 1 0 27 phone is nasalized
26 31 1 0 28 phone has a low stress
27 32 1 0 29 phone has a high stress
28 33 1 0 30 phone is vowel
29 34 1 0 31 phone is liquid
30 35 1 0 32 phone is pulmonic
31 36 1 0 33 phone is plosive
32 37 1 0 34 phone is fricative
33 38 1 0 35 phone is approximant
34 39 1 0 36 phone is trill
35 40 1 0 37 phone is lateral
36 41 1 0 38 phone is flap
37 42 1 0 39 phone is dental
38 43 1 0 40 phone is alveolar
39 44 1 0 41 phone is velar
40 45 1 0 42 phone is glottal
41 46 1 0 43 phone is front
42 47 1 0 44 phone is back
43 48 1 0 45 phone is palatoalveolar
44 49 1 0 46 phone is retroflex
45 50 1 0 47 phone is palatal
46 51 1 0 48 phone is uvular
47 52 1 0 49 phone is pharyngeal
48 53 1 0 50 phone is epiglottal
49 54 1 0 51 phone is near front
50 55 1 0 52 phone is central
51 56 1 0 53 phone is near back
52 57 1 0 54 phone is close
53 58 1 0 55 phone is near close
54 59 1 0 56 phone is near open
55 60 1 0 57 phone is mid
56 61 1 0 58 phone is close mid

Continued on next page

151

subkey bit sta. bit len. value m. code meaning
57 62 1 0 59 phone is open mid
58 63 1 0 60 phone is click
59 64 1 0 61 phone is voiced implosive
60 65 1 0 62 phone is ejective
61 66 1 0 63 phone is bilabial
62 67 1 0 64 phone is labiodental
63 68 1 0 65 phone is rounded
64 69 1 0 66 phone is double
65 70 1 0 67 phone is affricate
66 71 1 0 68 phone is voiced

152 APPENDIX A. TTS CORPUS KEY CONTENT

Appendix B

Phonemic Alphabets and
Appearance Frequencies

Concerning IVS corpus, distributions are very close to those F. Wioland observed [Wioland
1985], except for phonemes [ø] and [@], which are inverted. The reason is the low difference
between the two phonemes in French. Some phonemes [ø] can therefore be noted [@] in the
database. In particular, [@] is often pronounced when it could be omitted. It is introduced
by epenthesis, that is, it serves to ease the pronunciation of neighboring phones and is
usually equivalent to a schwa (which is not a phoneme). Phoneme [ñ] is assimilated to
the sequence [nj] and is therefore absent form IVS . [ŋ], used quasi-exclusively for words
imported from English, is also omitted. [ñ] and [ŋ] are present in Audiobook .

In both corpora, liquid consonant [K] is grouped with its regional variants [r] and [ö].
All three are noted [K]. Phoneme [œ̃] is not present in Audiobook . It is assimilated to
phoneme [Ẽ]. Appearance frequencies for Audiobook are compatible with Wioland’s, with
sensible variations due to the literary nature of the corpus.

153

154 APPENDIX B. PHONEMIC ALPHABETS AND APPEARANCE FREQUENCIES

Phonemes representation Frequency of the phoneme (%)
IPA IVS Audiobook Example Wioland [Wioland 1985] IVS Audiobook

Consonants
K K rr rat 7,5 8,23 7,89
l l ll lait 6 6,64 6,21
s s ss sac 6,5 6,04 5,52
t t tt tas 5,5 5,74 5,43
d d dd dos 4,5 4,45 4,42
p p pp pas 4 3,47 3,59
k k kk cas 4,5 3,37 4,09
n n nn nid 3 3,26 3,15
m m mm mot 3 2,83 3,92
v v vv vie 2,5 2,27 2,46
z z zz zèbre 1,5 1,87 1,71
f f ff f in 1,5 1,53 1,32
b b bb bien 1 1,22 1,22
Z Z jj joue 1,5 1,13 1,52
g g gg gare 0,5 0,77 0,50
S S ch vache 0,5 0,62 0,55
ñ - gn agneau - - 0,08
ŋ - ng parking - - 0,00

Semi-vowels
j j yy taille 2 2,17 1,54
w w ww oui 1 0,91 0,95
4 4i uy puis 0,5 0,40 0,43

Vowels
a a aa plat 8 7,46 7,54
ø ø eu jeu 0,5 4,29 3,85
E E ai fait 5 4,20 6,57
i i ii lit 5,5 5,23 4,89
o o au mot 2 2,13 1,11
u u ou cour 2,5 1,79 2,16
y y uu rue 2 2,21 2,14
e e ei dé 5,5 5,84 4,95
O O oo bosse 1,5 1,46 1,68
œ œ oe coeur 0,5 0,68 0,53
@ @ ee cheval 3,5 0,64 1,70
ã ã an blanc 3,5 3,34 3,37
õ õ on ton 2 2,09 1,61
Ẽ Ẽ in brin 1 1,21 1,41
œ̃ œ̃ - brun 0,5 0,51 -

Figure B.1: Phonemes used in the thesis voice corpora and their appearing frequencies.
Equivalents to IPA standard notations (used throughout the thesis) are given for IVS
and Audiobook (full corpora). Symbol “-” means the phoneme is not present in the given
corpus (never realized or merged with another phoneme). Appearance frequency for these
phonemes are given for the two corpora, along with the frequencies observed by F. Wioland
[Wioland 1985].

Appendix C

Example of Sentences Used in the
Listening Tests

The following text is an extract of the 27141 sentences synthesized for each listening test:

Ils sont absolument privés de tous leurs droits civiques ;

Mais je ne dois pas laisser les questions de politique scolaire me détourner de

mon sujet.

Reste, comme je l’ai signalé plus haut, une objection :

Mes lecteurs vont penser à présent que je ne suis guère logique avec moi-même.

Mais bornons là notre éloge de cet élément bénéfique et expliquons-nous.

Un exemple fera plus pour éclairer ma pensée que tout un volume de généralités.

Supposons que je voie approcher deux individus dont je désire déterminer le rang.

Mais je ne dois pas céder à la tentation de m’étendre sur ce sujet.

Telle est du moins la pénible leçon que l’expérience m’a enseignée.

La situation de cette minorité qui n’a pas réussi est réellement pitoyable.

Rejetés par les classes supérieures, ces gens sont aussi méprisés par leurs infé-

rieurs.

Les professions libérales, les services publics leur sont fermés ;

La dimension des côtés dépendra, bien entendu, de l’âge de l’individu.

Mais la dimension de nos côtés n’est pas notre propos.

Si nos côtés étaient inégaux, nos angles pourraient l’être aussi.

Mais la vie serait trop brève pour ces tâtonnements monotones.

Et sinon, comment l’empêcher de semer la désolation dans les rangs de ses camara-

des ?

La mode se répandit comme une traînée de poudre.

Inutile de dire qu’elle ne tarda pas à s’étendre aux régions voisines ;

En ce temps-là, vivre était un délice en soi, car vivre, c’était voir.

Toute assemblée, même réduite, réjouissait le regard ;

Il suffira d’une brève explication pour le leur faire comprendre.

155

156 APPENDIX C. EXAMPLE OF SENTENCES USED IN THE LISTENING TESTS

Vous verrez, bien entendu, une ligne droite, moitié rouge, moitié verte.

La malheureuse épousée se suicida en découvrant la fraude dont elle avait été vic-

time.

Un certain nombre d’entre elles s’y avouèrent ouvertement opposées ;

Il leur faudrait à présent sacrifier cette ambition honorable.

La bataille, ou plutôt le carnage, fut de courte durée.

Je devrais plutôt dire qu’il aurait beaucoup de mal à le faire ;

Plus d’un enfant plein de promesses a été sacrifié de cette manière.

List of Figures

1.1 The vocalic trapezium. 8

1.2 An example of phone/diphone annotation. 11

1.3 The speech apparatus places of production and articulation. 12

1.4 The speech apparatus articulators. 13

2.1 Kratzenstein’s resonators. 18

2.2 Von Kempelen’s machine. 20

2.3 The Voder. 22

2.4 The general framework of a unit selection-based TTS system. 27

2.5 Block diagram representing the general learning and synthesis processes in
HTS. 29

2.6 Timeline of the speech synthesis and main challenges 33

3.1 General block diagram of a TTS system. 36

4.1 Black box view of the unit selection process. 46

4.2 Concatenation of speech units. 48

4.3 Example of the unit selection graph modeling where nodes are corpus units. 52

4.4 Example of the unit selection graph modeling where nodes are states in the
target sequence. 53

4.5 Example of a unit selection graph for a small French sentence. 54

5.1 Positioning of the ROOTS toolkit in the hierarchy of speech analysis and
management tools. 70

5.2 Sequences and relations for ROOTS data. 72

5.3 ROOTS data hierarchy. 73

5.4 Audiobook annotation operation. 74

5.5 Sequences and relations for ROOTS data. 75

5.6 Main statistics for Audiobook corpus . 77

5.7 Audiobook and IVS phonemes frequencies 79

5.8 Audiobook and IVS phonemes frequencies 80

5.9 Main statistics for IVS corpus . 81

157

158 LIST OF FIGURES

6.1 Workflow view IRISA TTS System. 89
6.2 Technical description of unit selection and signal generation blocks. 91
6.3 DMOS evaluation of the baseline cost function and preselection filters. . . . 101
6.4 Mean selection time by target segment in ms. 104
6.5 Mean number of nodes expanded by target segment. 104
6.6 Mean cost by target segment for all tested algorithms. 106
6.7 Global cost evolution for 100-best paths on a French sentence. 108
6.8 DMOS results for the several paths of the cost function. 108

7.1 Representation of the neural network used for the prediction of phonemic
durations. 115

7.2 Duration delta between model predictions and synthesized durations evolu-
tion when target and concatenation cost weights vary. 118

7.3 AB test of the duration target cost results. 119

8.1 Example of atom-based F0 decomposition. 126
8.2 Confrontation of original and synthesized pitch contour using our target cost.127
8.3 Mushra perceptual test of the atom-based target cost. 128

9.1 Fuzzy function topology over the distribution of sub-costs. 135

B.1 Phonetics and frequencies for the thesis corpora. 154

List of Tables

6.1 List of the preselection filters for the French Language. 93
6.2 MOS evaluation setting the baseline quality of the IRISA TTS system. . . . 95
6.3 Objective factors for different algorithms on test corpora for Audiobook voice.103
6.4 Results of the AB tests comparing A∗ to 3 beam-search algorithms. 105

9.1 Concatenation costs without penalties following the baseline, pho-class and
fuzzy-pho-class strategies. 136

9.2 Results for the AB listening tests for the pho-class system. 138
9.3 Results for the AB listening tests for the fuzzy-pho-class system. 138

A.1 List of the 69 subparts of the TTS corpus selection key. 149

159

160 LIST OF TABLES

Publications During the Thesis

1 International Conferences with a Reading Comitee

(1) D. Guennec and D. Lolive, “Unit Selection Cost Function Exploration Us-
ing an A* based Text-to-Speech System”, 17th International Conference
on Text, Speech and Dialogue, 2014.

(2) D. Guennec, J. Chevelu and D. Lolive, “Defining a Global Adaptive Dura-
tion Target Cost for Unit Selection Speech Synthesis”, 18th International
Conference on Text, Speech and Dialogue, 2015.

(3) J. Chevelu, D. Lolive, S. Le Maguer and D. Guennec, “How to Compare
TTS Systems: A New Subjective Evaluation Methodology Focused on
Differences”, 16th Interspeech Conference, 2015.

(4) P. Alain, J. Chevelu, D. Guennec, G. Lecorvé and D. Lolive, “The IRISA
Text-To-Speech System for the Blizzard Challenge 2015”, Blizzard Chal-
lenge workshop, 2015.

(5) E. Delais-Roussarie, D. Lolive, H. Yoo and D. Guennec, “How to improve
rhythmic patterns according to literary genre in synthesized speech”, 8th

Speech Prosody Conference, 2016.

(6) M. Sečujski, B. Gerazov, T. G. Csapó, V. Delić, P. N. Garner, A. Gjoreski,
D. Guennec, Z. Ivanovski, A. Melov, G. Németh, A. Stojković and G. Sza-
szák, “Design of a Speech Corpus for Research on Cross-Lingual Prosody
Transfer”, 18th International Conference on Speech and Computer, 2016.

(7) D. Guennec and D. Lolive, “On the suitability of vocalic sandwiches, a
corpus-based TTS engine”, 17th Interspeech Conference, 2016.

2 International Conferences with a Reading Comitee
in French Language

(1) D. Guennec and D. Lolive, “Utilisation d’un algorithme A* pour l’analyse
de la sélection d’unités en synthèse de la parole”, 30th Journées d’Études
sur la Parole, 2014.

(2) D. Guennec and D. Lolive, “Une pénalité floue fondée phonologiquement
pour améliorer la Sélection d’Unité”, 31th Journées d’Études sur la Parole,
2016.

(3) E. Delais-Roussarie, D. Lolive, H. Yoo and D. Guennec, “Patrons Ryth-
miques et Genres Littéraires en Synthèse de la Parole”, 31th Journées
d’Études sur la Parole, 2016.

2. INTERNATIONAL CONFERENCES WITH A READING COMITEE IN FRENCH
LANGUAGE 161

(4) J. Chevelu, D. Lolive, S. Le Maguer and D. Guennec, “Se concentrer sur
les différences : une méthode d’évaluation subjective efficace pour la com-
paraison de systèmes de synthèse”, 31th Journées d’Études sur la Parole,
2016.

162 LIST OF TABLES

Bibliography

[Alain et al. 2015]
Alain, P., J. Chevelu, D. Guennec, G. Lecorvé, and D. Lolive (2015). “The IRISA
Text-To-Speech System for the Blizzard Challenge 2015.” Blizzard Challenge work-
shop (cit. on p. 139).

[Alias et al. 2003]
Alias, F. and X. Llorà (2003). “Evolutionary weight tuning based on diphone pairs
for unit selection speech synthesis.” Proceedings of the 8th European Conference on
Speech Communication and Technology (EuroSpeech). 1, pp. 1333–1336 (cit. on p. 63).

[Alías et al. 2011]
Alías, F., L. Formiga, and X. Llorá (2011). “Efficient and reliable perceptual weight
tuning for unit-selection text-to-speech synthesis based on active interactive genetic
algorithms: A proof-of-concept.” Speech Communication, 53 (5), pp. 786–800 (cit. on
pp. 60, 61, 63, 114).

[Atal 1971]
Atal, B. S. (1971). “Speech Analysis and Synthesis by Linear Prediction of the Speech
Wave.” The Journal of the Acoustical Society of America, 50 (2B), p. 637 (cit. on
p. 25).

[Barbot et al. 2012]
Barbot, N., O. Boeffard, and A. Delhay (2012). “Comparing performance of different
set-covering strategies for linguistic content optimization in speech corpora.” Interna-
tional Conference on Language Resources and Evaluation (LREC’12), (cit. on p. 42).

[Bartkova et al. 1987]
Bartkova, K. and C. Sorin (1987). “A model of segmental duration for speech syn-
thesis in French.” Speech Communication, 6 (3), pp. 245–260 (cit. on p. 24).

[Bechet 2001]
Bechet, F (2001). “Liaphon - Un systeme complet de phonetisation de textes.” Traite-
ment Automatique des Langues (T.A.L.) edition Hermes, 42 (1) (cit. on p. 89).

163

164 BIBLIOGRAPHY

[Benesty et al. 2008]
Benesty, J., M. M. Sondhi, and Y. Huang, eds. (2008). Springer Handbook of Speech
Processing. Springer-Verlag Berlin Heidelberg, pp. XXXVI, 1176 (cit. on pp. 7, 8,
11–14).

[Beutnagel et al. 1998]
Beutnagel, M., A. Conkie, and A. K. Syrdal (1998). “Diphone synthesis using unit
selection.” The Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis
(cit. on pp. 55, 92).

[Beutnagel et al. 1999]
Beutnagel, M., M. Mohri, and M. Riley (1999). “Rapid unit selection from a large
speech corpus for concatenative speech synthesis.” Proceedings of the European Con-
ference on Speech Communication and Technology (Budapest, Hungary).Vol. 2, pp. 607–
610 (cit. on p. 61).

[Black et al. 1995]
Black, A. W. and N. Campbell (1995). “Optimising selection of units from speech
databases for concatenative synthesis.” Proc. Eurospeech, pp. 581–584 (cit. on pp. vi,
vii, 3, 60, 61, 95).

[Black et al. 1994]
Black, A. W. and P. Taylor (1994). “CHATR: a generic speech synthesis system.” 15th
conference on Computational linguistics. Association for Computational Linguistics,
pp. 983–986 (cit. on p. 26).

[Black et al. 2007]
Black, A. W., H. Zen, and K. Tokuda (2007). “Statistical Parametric Speech Syn-
thesis.” IEEE International Conference on Acoustics, Speech and Signal Processing
- ICASSP ’07, 4 (cit. on pp. vi, 29).

[Blouin et al. 2002]
Blouin, C., O. Rosec, P. Bagshaw, and C. D’Alessandro (2002). “Concatenation cost
calculation and optimisation for unit selection in TTS.” IEEE Workshop on Speech
Synthesis, pp. 0–3 (cit. on pp. 55, 61, 62).

[Boë 1990]
Boë, L.-J. (1990). “Éléments d’unification pour les Sciences de la Parole.” Habilitation
à Diriger des Recherches. Institut National Polytechnique de Grenoble, INPG. (cit.
on pp. iii, 7).

[Boeffard 2004]
Boeffard, O. (2004). “Contributions à la synthèse de la parole.” Habilitation à Diriger
des Recherches. Rennes 1 / ENSSAT (cit. on pp. iii, 7).

BIBLIOGRAPHY 165

[Boeffard et al. 2012]
Boeffard, O., L. Charonnat, S. Le Maguer, D. Lolive, and G. Vidal (2012). “Towards
Fully Automatic Annotation of Audio Books for TTS.” LREC, pp. 975–980 (cit. on
pp. 73, 74).

[Breen et al. 1998]
Breen, A. and P Jackson (1998). “Non-uniform unit selection and the similarity
metric within BT’s Laureate TTS system.” The Third ESCA/COCOSDA Workshop
(ETRW) on Speech Synthesis (cit. on p. vi).

[Buchholz et al. 2013]
Buchholz, S., J. Latorre, and K. Yanagisawa (2013). “Crowdsourced assessment of
speech synthesis.” Crowdsourcing for Speech Processing, pp. 173–216 (cit. on p. 83).

[Cadic 2011]
Cadic, D. (2011). “Optimisation du procédé de création de voix en synthèse par
sélection.” PhD thesis. Université Paris-sud 11 (cit. on pp. 27, 42, 43).

[Cadic et al. 2010]
Cadic, D. and C. D’Alessandro (2010). “High Quality TTS Voices Within One Day.”
Seventh ISCA Workshop on Speech Synthesis (cit. on p. 133).

[Cadic et al. 2009]
Cadic, D., C. Boidin, and C. D’Alessandro (2009). “Vocalic sandwich, a unit de-
signed for unit selection TTS.” Tenth Annual Conference of the International Speech
Communication Association. 1, pp. 2079–2082 (cit. on pp. x, 3, 132, 133, 138, 143,
146).

[Cadic et al. 2010]
Cadic, D., C. Boidin, and C. D’Alessandro (2010). “Towards optimal TTS corpora.”
Proceedings of the Seventh International Conference on Language Resources and
Evaluation (LREC 2010), Valetta, Malta, pp. 99–104 (cit. on pp. 42, 132).

[Calliope 1989]
Calliope (1989). La parole et son traitement automatique. Éditions Masson (cit. on
pp. 7, 8, 14, 15, 24, 25).

[Cernak et al. 2005]
Cernak, M. and M Rusko (2005). “An evaluation of synthetic speech using the PESQ
measure.” Proc. of European Congress on Acoustics, pp. 1–4 (cit. on p. 82).

[Chevelu et al. 2007]
Chevelu, J., N. Barbot, O. Boëffard, and A. Delhay (2007). “Lagrangian relaxation for

166 BIBLIOGRAPHY

optimal corpus design.” Proceedings of the 6th ISCA Tutorial and Research, pp. 211–
216 (cit. on p. 42).

[Chevelu et al. 2014]
Chevelu, J., G. Lecorvé, D. Lolive, G. L. Jonathan Chevelu, and D. Lolive (2014).
“ROOTS: a toolkit for easy, fast and consistent processing of large sequential anno-
tated data collections.” LREC, pp. 619–626 (cit. on p. 69).

[Chevelu et al. 2015]
Chevelu, J., D. Lolive, S. Le Maguer, and D. Guennec (2015). “How to Compare
TTS Systems: A New Subjective Evaluation Methodology Focused on Differences.”
Interspeech, (cit. on pp. viii, 69, 83, 85, 137).

[Clark et al. 2007]
Clark, R. A., K. Richmond, and S. King (2007). “Multisyn: Open-domain unit se-
lection for the Festival speech synthesis system.” Speech Communication, 49 (4),
pp. 317–330 (cit. on pp. vi, 95).

[Conkie 1999]
Conkie, A. (1999). “A robust unit selection system for speech synthesis.” The Journal
of the Acoustical Society of America, 105 (2), p. 978 (cit. on pp. 25, 95).

[Conkie et al. 1994]
Conkie, A. and S. Isard (1994). “Optimal coupling of diphones.” Second ESCA/IEEE
Workshop on Speech Synthesis, (September), pp. 293–304 (cit. on p. 65).

[Conkie et al. 2000]
Conkie, A., M. C. Beutnagel, A. K. Syrdal, and P. E. Brown (2000). “Preselection of
candidate units in a unit selection-based text-to-speech synthesis system.” Interna-
tional Conference on Spoken Language Processing - ICSLP. Vol. 3. Icslp, pp. 314–317
(cit. on p. 63).

[Conkie et al. 2008]
Conkie, A., A. Syrdal, Y. J. Kim, and M. Beutnagel (2008). “Improving preselection
in unit selection synthesis.” Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, pp. 585–588 (cit. on p. 63).

[Cooper et al. 1951]
Cooper, F. S., A. M. Liberman, and J. M. Borst (1951). “The Interconversion Of
Audible And Visible Patterns As A Basis For Research In The Perception Of Speech.”
Psychologie, 37, pp. 318–325 (cit. on p. 24).

BIBLIOGRAPHY 167

[Cowie et al. 2003]
Cowie, R. and R. R. Cornelius (2003). “Describing the emotional states that are
expressed in speech.” Speech Communication, 40 (1-2), pp. 5–32 (cit. on p. 122).

[Delattre 1966]
Delattre, P. (1966). “Les Dix Intonations de base du francais.” The French Review,
40 (1), pp. 1–14 (cit. on p. 14).

[Di Cristo 2000]
Di Cristo, A. (2000). “Interpréter la prosodie.” Actes des XXIIIèmes Journées d’Etude
sur la Parole, pp. 13–29 (cit. on pp. v, 13).

[Dixon et al. 1968]
Dixon, N and H Maxey (1968). “Terminal analog synthesis of continuous speech
using the diphone method of segment assembly.” IEEE Transactions on Audio and
Electroacoustics, AU-16 (1), pp. 39–50 (cit. on pp. iv, 10, 25).

[Donovan 1996]
Donovan, R. E. (1996). “Trainable speech synthesis.” PhD thesis. Cambridge (cit. on
p. 51).

[Donovan 2001]
Donovan, R. E. (2001). “A new distance measure for costing spectral discontinuities
in concatenative speech synthesizers.” ITRW (cit. on pp. 92, 133).

[Ekman et al. 1969]
Ekman, P. and W. V. Friesen (1969). “The repertoire of nonverbal behavior: Cate-
gories, origins, usage, and coding.” Semiotica, 1, pp. 49–98 (cit. on p. 122).

[Estes et al. 1964]
Estes, S., H. Kerby, H. Maxey, and R. Walker (1964). “Speech synthesis from stored
data.” IBM Journal of Research and Development, (cit. on p. 25).

[Fan et al. 2015]
Fan, Y., Y. Qian, F. K. Soong, and L. He (2015). “Multi-speaker modeling and
speaker adaptation for DNN-based TTS synthesis.” IEEE International Conference
on Acoustics, Speech and Signal Processing, (cit. on pp. 28, 31).

[Flanagan 1972]
Flanagan, J. L. (1972). “Voices of men and machines.” The Journal of the Acoustical
Society of America, 51 (5), pp. 1375–1386 (cit. on pp. 17, 18, 21, 22).

[Francois 2002]
Francois, H. (2002). “Synthèse de la parole par concaténation d’unités acoustiques :

168 BIBLIOGRAPHY

construction et exploitation d’une base de parole continue.” PhD thesis. Université
de Rennes 1, pp. 1–204 (cit. on pp. 48, 53, 54).

[Francois et al. 2002]
Francois, H. and O. Boeffard (2002). “The greedy algorithm and its application to
the construction of a continuous speech database.” Proceedings of LREC. Vol. 5,
pp. 1420–1426 (cit. on p. 41).

[Fujimura 1976]
Fujimura, O (1976). “Syllables as concatenated demisyllables and affixes.” The Jour-
nal of the Acoustical Society of America. Vol. 59. 1 (cit. on p. 25).

[Fujisaki et al. 1969]
Fujisaki, H and S Nagashima (1969). “A model for the synthesis of pitch contours of
connected speech.” Annual Report of the Engineering Research Institute, University
of Tokyo, 28, pp. 53–60 (cit. on p. 122).

[Fukada et al. 1992]
Fukada, T., K. Tokuda, T. Kobayashi, and S. Imai (1992). “An adaptive algorithm for
mel-cepstral analysis of speech.” Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 1992, 1, pp. 137–140 (cit. on
p. 30).

[Garcia et al. 2006]
Garcia, M.-n., C. D’Alessandro, G. Bailly, P. Boula De Mareüil, and M. Morel (2006).
“A joint prosody evaluation of French text-to-speech synthesis systems.” LREC,
pp. 55–57 (cit. on p. 83).

[Gauvain et al. 1990]
Gauvain, J.-L. L, L. F. Lamel, and M. Eskenazi (1990). “Design considerations
and text selection for BREF, a large French readspeech corpus.” Proc. of ICSLP,
pp. 1097–1100 (cit. on p. 41).

[Ghahremani et al. 2014]
Ghahremani, P. et al. (2014). “A pitch extraction algorithm tuned for automatic
speech recognition.” IEEE International Conference on Acoustics, Speech and Signal
Processing (cit. on p. 125).

[Govind et al. 2012]
Govind, D. and S. R. M. Prasanna (2012). “Expressive speech synthesis: a review.”
International Journal of Speech Technology, 16 (2), pp. 237–260 (cit. on p. 114).

[Guennec et al. 2014a]
Guennec, D. and D. Lolive (2014a). “Unit Selection Cost Function Exploration Using

BIBLIOGRAPHY 169

an A* based Text-to-Speech System.” 17th International Conference on Text, Speech
and Dialogue, pp. 449–457 (cit. on pp. 58, 95, 97).

[Guennec et al. 2014b]
Guennec, D. and D. Lolive (2014b). “Utilisation d’un algorithme A* pour l’analyse
de la sélection d’unités en synthèse de la parole.” XXXèmes journées d’études sur la
parole (cit. on p. 58).

[Guennec et al. 2016]
Guennec, D. and D. Lolive (2016). “On the suitability of vocalic sandwiches in a
corpus-based TTS engine.” 17th Interspeech conference (cit. on p. 132).

[Guennec et al. 2015]
Guennec, D., J. Chevelu, and D. Lolive (2015). “Defining a Global Adaptive Duration
Target Cost for Unit Selection Speech Synthesis.” 18th International Conference on
Text, Speech and Dialogue. Plzen, pp. 149–157 (cit. on p. 113).

[Harris 1953]
Harris, C. (1953). “A study of the building blocks in speech.” The Journal of the
Acoustical Society of America, 25, p. 183 (cit. on p. 25).

[Hart et al. 1968]
Hart, P., N. Nilsson, and B Raphael (1968). “A formal basis for the heuristic de-
termination of minimum cost paths.” IEEE Transactions of Systems Science and
Cybernetics, 4 (2), pp. 100–107 (cit. on pp. 57, 97).

[Hashimoto et al. 2015]
Hashimoto, K., K. Oura, Y. Nankaku, and K. Tokuda (2015). “The Effect Of Neural
Networks In Statistical Parametric Speech Synthesis.” IEEE International Confer-
ence on Acoustics, Speech and Signal Processing. Melbourne, pp. 4455–4459 (cit. on
pp. vi, 31, 114).

[Hinterleitner et al. 2011a]
Hinterleitner, F, S Zabel, S Möller, L Leutelt, and C Norrenbrock (2011a). “Predict-
ing the Quality of Synthesized Speech Using Reference-Based Prediction Measures.”
Proc. of the 22th Konferenz Elektronische Sprachsignalverarbeitung (ESSV), Aachen,
Germany, pp. 99–106 (cit. on p. 82).

[Hinterleitner et al. 2011b]
Hinterleitner, F., G. Neitzel, S. Moller, and C. Norrenbrock (2011b). “An Evaluation
Protocol for the Subjective Assessment of Text-to-Speech in Audiobook Reading
Tasks.” Proc. Blizzard Challenge Workshop (cit. on p. 83).

170 BIBLIOGRAPHY

[Hirose et al. 1982]
Hirose, K and H Fujisaki (1982). “Analysis and synthesis of voice fundamental fre-
quency contours of spoken sentences.” Acoustics Speech and Signal Processing IEEE
International Conference on ICASSP 82, 7, pp. 950–953 (cit. on p. 122).

[Hirose et al. 2005]
Hirose, K., K. Sato, Y. Asano, and N. Minematsu (2005). “Synthesis of F0 contours
using generation process model parameters predicted from unlabeled corpora: Appli-
cation to emotional speech synthesis.” Speech Communication, 46 (3-4), pp. 385–404
(cit. on p. 123).

[Holmes 1983]
Holmes, J. (1983). “Formant synthesizers: Cascade or parallel?” Speech communica-
tion, 2 (4), pp. 251–273 (cit. on p. 24).

[Honnet et al. 2015]
Honnet, P.-e., B. Gerazov, and P. N. Garner (2015). “Atom decomposition-based in-
tonation modelling.” IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 1–5 (cit. on pp. 122, 123).

[Hunt et al. 1996]
Hunt, A. J. and A. W. Black (1996). “Unit selection in a concatenative speech syn-
thesis system using a large speech database.” 1996 IEEE International Conference
on Acoustics, Speech, and Signal Processing Conference Proceedings. Vol. 1. Ieee,
pp. 373–376 (cit. on pp. vi, 2, 26, 52, 53, 58, 61, 95).

[ITU-R 2015]
ITU-R (2015). Method for the subjective assessment of intermediate quality level of
audio systems. Tech. rep. International Telecommunication Union, pp. 1–18 (cit. on
pp. 84, 128).

[ITU-T 2001]
ITU-T (2001). ITU-T Recommendation P.862 - PESQ measure. Tech. rep. Interna-
tional Telecommunication Union (cit. on p. 82).

[Karaali et al. 1996]
Karaali, O., G. Corrigan, and I. Gerson (1996). “Speech synthesis with neural net-
works.” World Congress on Neural Networks, (September), pp. 45–50 (cit. on p. 114).

[Kawahara et al. 2008]
Kawahara, H et al. (2008). “Tandem-STRAIGHT: A temporally stable power spectral
representation for periodic signals and applications to interference-free spectrum, F0,
and aperiodicity estimation.” Acoustics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE International Conference on, pp. 3933–3936 (cit. on pp. 30, 66).

BIBLIOGRAPHY 171

[Kawai et al. 2000]
Kawai, H., S. Yamamoto, N. Higuchi, and T. Shimizu (2000). “A Design Method
of Speech Corpus for Text-To-Speech Synthesis Taking Account of Prosody.” Sixth
International Conference on Spoken Language Processing (ICSLP 2000), pp. 420–425
(cit. on p. 41).

[Kempelen 1791]
Kempelen, W. von (1791). Mechanismus der meschlichen Sprache. Bauer, B. (cit. on
pp. 17, 18, 20).

[King 2010]
King, S. (2010). “A beginners’ guide to statistical parametric speech synthesis” (cit.
on p. 30).

[King et al. 2012]
King, S. and V. Karaiskos (2012). “The blizzard challenge 2012.” Proc. Blizzard
Challenge workshop 2012 (cit. on p. 82).

[Klatt 1982]
Klatt, D. H. (1982). “The Klattalk text-to-speech conversion system.” Acoustics,
Speech, and Signal Processing, IEEE, 02139 (1), pp. 1589–1592 (cit. on p. 24).

[Klatt 1987]
Klatt, D. H. (1987). “Review of text-to-speech conversion for English.” The Journal
of the Acoustical Society of America, 82 (3), pp. 737–793 (cit. on pp. 17, 24).

[Klein et al. 2003]
Klein, D. and C. D. Manning (2003). “A* parsing: fast exact Viterbi parse selection.”
Proceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology - NAACL ’03. June,
pp. 40–47 (cit. on p. 51).

[Krul et al. 2006]
Krul, A., T. Moudenc, G Damnati, F Yvon, and T. Moudenc (2006). “Corpus design
based on the Kullback-Leibler divergence for Text-To-Speech synthesis application.”
Proc. of ICSLP, pp. 2030–2033 (cit. on p. 40).

[Kumar 2004]
Kumar, R. (2004). “A genetic algorithm for unit selection based speech synthesis.”
Eighth International Conference on Spoken Language Processing (cit. on pp. 58, 95).

[Lambert et al. 2007]
Lambert, T., N. Braunschweiler, and S. Buchholz (2007). “How (Not) to Select Your

172 BIBLIOGRAPHY

Voice Corpus: Random Selection vs. PhonologicallyBalanced.” SSW6, pp. 264–269
(cit. on p. 43).

[Laprie et al. 1998]
Laprie, Y. and V. Colotte (1998). “Automatic pitch marking for speech transfor-
mations via TD-PSOLA.” Proceeding of the European Signal Processing Conference,
pp. 1133–1136 (cit. on p. 65).

[Latorre et al. 2014]
Latorre, J., K. Yanagisawa, V. Wan, B. Kolluru, and M. J. F. Gales (2014). “Speech
intonation for TTS: Study on evaluation methodology.” Proceedings of Interspeech
(cit. on p. 83).

[Le Maguer 2013]
Le Maguer, S. (2013). “Evaluation expérimentale d’un système statistique de synthèse
de la parole, HTS, pour la langue française.” PhD thesis. Université de Rennes 1 (cit.
on p. 29).

[Lindblom 1963]
Lindblom, B (1963). “Spectrographic study of vowel reduction.” The Journal of the
Acoustical Society of America, 35 (November 1963), pp. 1773–1781 (cit. on p. 132).

[Lolive 2008]
Lolive, D. (2008). “Transformation de l’intonation.” PhD thesis. Université de Rennes
1 (cit. on p. 14).

[Macon et al. 1998]
Macon, M., A. Cronk, and J. Wouters (1998). “Generalization and discrimination
in tree-structured unit selection.” Third ESCA/COCOSDA Workshop (ETRW) on
Speech Synthesis, pp. 1–6 (cit. on p. 61).

[Maeda 1979]
Maeda, S. (1979). “An Articulatory Model of the Tongue Based On a Statistical
Analysis.” The Journal of the Acoustical Society of America, 65 (1), S22–S22 (cit. on
p. 23).

[Makhoul 1975]
Makhoul, J. (1975). “Linear Prediction: a Tutorial Review.” Proceedings of the IEEE,
63 (4), pp. 561–580 (cit. on p. 25).

[Mermelstein 1973]
Mermelstein, P (1973). “Articulatory model for the study of speech production.”
Journal of the Acoustical Society of America, 53 (4), pp. 1070–1082 (cit. on p. 21).

BIBLIOGRAPHY 173

[Moulines et al. 1990]
Moulines, E. and F. Charpentier (1990). “Pitch-synchronous waveform processing
techniques for text-to-speech synthesis using diphones.” eng. Speech communication,
9 (5-6), pp. 453–467 (cit. on pp. 26, 65).

[Nilsson 1982]
Nilsson, N. J. (1982). Principles of Artificial Intelligence. Springer-Verlag (cit. on
pp. 49, 57, 95, 97).

[Peterson et al. 1958]
Peterson, G. E., W. S. Y. Wang, and E. Sivertsen (1958). “Segmentation techniques in
speech synthesis.” The Journal of the Acoustical Society of America, 30 (8), pp. 739–
742 (cit. on pp. iv, 10, 25).

[Pfitzinger 2004]
Pfitzinger, H. R. (2004). “DFW-based spectral smoothing for concatenative speech
synthesis.” Interspeech (cit. on p. 65).

[Pols et al. 1987]
Pols, L., J. Lefevre, G. Boxelaar, and N. Son (1987). “Word intelligibility of a rule
synthesis system for French.” European Conference on Speech Technology. September,
pp. 1179–1182 (cit. on p. 25).

[Popescu et al. 2006]
Popescu, A., C. Boidin, and D. Cadic (2006). “Contraintes globales pour la sélection
des unités en synthèse vocale.” XVIèmes Journées d’Etude sur la Parole. Vol. 0, p. 38
(cit. on p. 64).

[Prahallad et al. 2014]
Prahallad, K. et al. (2014). “The blizzard challenge 2014.” Proc. Blizzard Challenge
workshop 2014 (cit. on p. 82).

[Přibil et al. 2015]
Přibil, J., A. Přibilová, and J. Matoušek (2015). “Experiment with GMM-Based
Artefact Localization in Czech Synthetic Speech.” Text, Speech, and Dialogue: 18th
International Conference. Ed. by P. Král and V. Matoušek. Pilsen: Springer Inter-
national Publishing, pp. 23–31 (cit. on p. 82).

[Rubin et al. 1981]
Rubin, P. and T. Baer (1981). “An articulatory synthesizer for perceptual research.”
The Journal of the Acoustical Society of America, 70 (2), p. 321 (cit. on p. 21).

174 BIBLIOGRAPHY

[Russell et al. 2003]
Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach. Prentice
H. Prentice Hall (cit. on p. 95).

[Sagisaka 1988]
Sagisaka, Y. (1988). “Speech synthesis by rule using an optimal selection of non-
uniform synthesis units.” ICASSP-88., International Conference on Acoustics, Speech,
and Signal Processing. Ieee, pp. 679–682 (cit. on pp. vi, 2, 26, 47).

[Saha Ray 2013]
Saha Ray, S. (2013). Graph Theory with Algorithms and its Applications. Springer
India (cit. on p. 57).

[Sainz et al. 2014]
Sainz, I., E. Navas, I. Hernaez, A. Bonafonte, and F. Campillo (2014). “TTS eval-
uation campaign with a common Spanish database.” LREC, pp. 2155–2160 (cit. on
p. 83).

[Sakai et al. 2008]
Sakai, S., T. Kawahara, and S. Nakamura (2008). “Admissible stopping in Viterbi
beam search for unit selection in concatenative speech synthesis.” Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
(January 2016), pp. 4613–4616 (cit. on pp. 55, 95, 97).

[Schroeder 1993]
Schroeder, M. R. (1993). “A brief history of synthetic speech.” Speech Communica-
tion, 13 (1-2), pp. 231–237 (cit. on p. 17).

[Schwarz 2007]
Schwarz, D. (2007). “Corpus-Based Concatenative Synthesis.” IEEE signal processing
magazine, (March), pp. 92–104 (cit. on pp. 55, 56).

[Story 2009]
Story, B. H. (2009). “Simulation of sentence-level speech with kinematic models of the
vocal tract shape and vocal folds.” third international symposium on biomechanics,
human function and information science. Kanazawa, pp. 55–61 (cit. on p. 21).

[Story 2011]
Story, B. H. (2011). “TubeTalker: An airway modulation model of human sound
production.” First International Workshop on Performative Speech and Singing Syn-
thesis, 8 (cit. on p. 23).

[Stylianou et al. 2001]
Stylianou, Y and A. K. Syrdal (2001). “Perceptual and objective detection of discon-

BIBLIOGRAPHY 175

tinuities in concatenative speech synthesis.” International Conference on Acoustics,
Speech, and Signal Processing. Vol. 2, pp. 837–840 (cit. on pp. x, 61, 132).

[Stylianou 2001]
Stylianou, Y. (2001). “Applying the harmonic plus noise model in concatenative
speech synthesis.” IEEE Transactions on Speech and Audio Processing, 9 (1), pp. 21–
29 (cit. on p. 65).

[Stylianou et al. 1997]
Stylianou, Y., T. Dutoit, and J. Schroeter (1997). “Diphone Concatenation using a
Harmonic plus Noise Model of Speech.” Interspeech, pp. 613–616 (cit. on p. 65).

[Syrdal et al. 1998]
Syrdal, A. K., Y. Stylianou, L. Garrison, A. Conkie, and J. Schroeter (1998). “TD-
PSOLA versus Harmonic Plus Noise Model in Diphone Based Speech Synthesis.”
International Conference on Acoustics, Speech, and Signal Processing, pp. 273–276
(cit. on p. 65).

[Taylor 2006]
Taylor, P. (2006). “The Target Cost Formulation in Unit Selection Speech Synthesis.”
Stress: The International Journal on the Biology of Stress, pp. 2038–2041 (cit. on
p. 115).

[Taylor et al. 1999]
Taylor, P. and A. W. Black (1999). “Speech synthesis by phonological structure
matching.” Proceedings of EuroSpeech, 4, pp. 1531–1534 (cit. on p. 51).

[Taylor et al. 1998]
Taylor, P., A. W. Black, and R. Caley (1998). “The architecture of the Festival speech
synthesis system.” Proc. of the ESCA Workshop in Speech Synthesis, pp. 147–151 (cit.
on p. vi).

[Tihelka et al. 2010]
Tihelka, D., J. Kala, and J. Matoušek (2010). “Enhancements of Viterbi search for
fast unit selection synthesis.” INTERSPEECH, pp. 174–177 (cit. on pp. 55, 95, 97).

[Tihelka et al. 2014]
Tihelka, D., J. Matoušek, and Z. Hanzlíček (2014). “Modelling F0 Dynamics in Unit
Selection Based Speech Synthesis.” Text, Speech and Dialogue, 1 (Springer), pp. 457–
464 (cit. on pp. x, 60, 132).

[Tokuda et al. 1995]
Tokuda, K., T. Kobayashi, and S. Imai (1995). “Speech parameter generation from

176 BIBLIOGRAPHY

HMM using dynamic features.” Acoustics, Speech and Signal Processing. Vol. 1. 5.
IEEE, pp. 660–663 (cit. on p. 28).

[Tuerk et al. 1993]
Tuerk, C and T Robinson (1993). “Speech synthesis using artificial neural networks
trained on cepstral coefficients.” EUROSPEECH. Vol. 1, pp. 4–7 (cit. on p. 114).

[Vepa 2004]
Vepa, J. (2004). “Join cost for unit selection speech synthesis.” Speech Synthesis. The
University of Edinburgh. College of Science and Engineering. School of Informatics,
pp. 35–62 (cit. on p. 51).

[Viswanathan et al. 2005]
Viswanathan, M. and M. Viswanathan (2005). “Measuring speech quality for text-
to-speech systems: development and assessment of a modified mean opinion score
(MOS) scale.” Computer Speech & Language, 19 (1), pp. 55–83 (cit. on p. 83).

[Viterbi 1967]
Viterbi, A. J. (1967). “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm.” IEEE Transactions on Information Theory, 13 (2),
pp. 260–269 (cit. on pp. 56, 95).

[Viterbi 2006]
Viterbi, A. J. (2006). “A personal history of the Viterbi algorithm.” IEEE Signal
Processing Magazine, 23 (4), pp. 120–142 (cit. on p. 56).

[Wioland 1985]
Wioland, F. (1985). Les Structures syllabiques du français : fréquence et distribution
des phonèmes consonantiques : Contraintes idiomatiques dans les séquences conso-
nantiques. Genève : S (cit. on pp. 77, 79, 80, 153, 154).

[Wouters et al. 2001]
Wouters, J. and M. W. Macon (2001). “Control of Speech Dynamics in Concatenative
Speech Synthesis.” IEEE Transactions on Speech and Audio Processing, 9 (1), pp. 30–
38 (cit. on p. 66).

[Wouters et al. 1998]
Wouters, J. and M. Macon (1998). “A perceptual evaluation of distance measures for
concatenative speech synthesis.” ICSLP, pp. 5–8 (cit. on p. 61).

[Yamagishi et al. 2008]
Yamagishi, J., Z. Ling, and S. King (2008). “Robustness of HMM-based speech syn-
thesis.” Science And Technology, pp. 2–5 (cit. on p. vi).

BIBLIOGRAPHY 177

[Yamagishi et al. 2009]
Yamagishi, J. et al. (2009). “Robust Speaker-Adaptive HMM-Based Text-to-Speech
Synthesis.” IEEE Transactions on Audio, Speech, and Language Processing, 17 (6),
pp. 1208–1230 (cit. on p. 30).

[Yi 1998]
Yi, J. (1998). Natural-sounding speech synthesis using variable-length units. Tech.
rep. Massachusetts Institute of Technology (cit. on pp. x, 51, 132, 133).

[Yoshimura et al. 1999]
Yoshimura, T., K. Tokuda, and T. Masuko (1999). “Simultaneous modeling of spec-
trum, pitch and duration in HMM-based speech synthesis.” On Speech, (cit. on p. 29).

[Young 1979]
Young, S. (1979). “Speech synthesis from concept: a method for speech output from
information systems.” The Journal of the Acoustical Society of America, 66 (3),
pp. 685–695 (cit. on p. 36).

[Zen et al. 2015]
Zen, H. and H. Sak (2015). “Unidirectional Long Short-term Memory Recurrent Neu-
ral Network With Recurrent Output Layer For Low-latency Speech Synthesis.” IEEE
International Conference on Acoustics, Speech and Signal Processing. Melbourne,
pp. 4470–4474 (cit. on p. 31).

[Zen et al. 2007]
Zen, H., T. Nose, J. Yamagishi, and S. Sako (2007). “The HMM-based speech syn-
thesis system (HTS) version 2.0.” SSW6, pp. 294–299 (cit. on pp. 28, 30).

ek;dawid

runen

fahido

Résumé : La synthèse de la parole par corpus (sélection d’unités) est le sujet principal
de cette thèse. Tout d’abord, une analyse approfondie et un diagnostic de l’algorithme
de sélection d’unités (algorithme de recherche dans le treillis d’unités) sont présentés.
L’importance de l’optimalité de la solution est discutée et une nouvelle mise en oeuvre
de la sélection basée sur un algorithme A∗ est présenté. Trois améliorations de la fonction
de coût sont également présentées. La première est une nouvelle façon – dans le coût cible
– de minimiser les différences spectrales en sélectionnant des séquences d’unités minimisant
un coût moyen au lieu d’unités minimisant chacune un coût cible de manière absolue. Ce
coût est testé pour une distance sur la durée phonémique mais peut être appliqué à d’autres
distances. Notre deuxième proposition est une fonction de coût cible visant à améliorer
l’intonation en se basant sur des coefficients extraits à travers une version généralisée du
modèle de Fujisaki. Les paramètres de ces fonctions sont utilisés au sein d’un coût cible.
Enfin, notre troisième contribution concerne un système de pénalités visant à améliorer le
coût de concaténation. Il pénalise les unités en fonction de classes reposant sur une hiérar-
chie du degré de risque qu’un artefact de concaténation se produise lors de la concaténation
sur un phone de cette classe. Ce système est différent des autres dans la littérature en cela
qu’il est tempéré par une fonction floue capable d’adoucir le système de pénalités pour les
unités présentant des coûts de concaténation parmi les plus bas de leur distribution.

Mots clés: Synthèse de la parole ; synthèse par corpus ; sélection d’unités ; algorithme
de recherche de chemin dans un graphe ; coût cible ; coût de concaténation.

Summary: This PhD thesis focuses on the automatic speech synthesis field, and more
specifically on unit selection. A deep analysis and a diagnosis of the unit selection algo-
rithm (lattice search algorithm) is provided. The importance of the solution optimality is
discussed and a new unit selection implementation based on a A∗ algorithm is presented.
Three cost function enhancements are also presented. The first one is a new way – in the
target cost – to minimize important spectral differences by selecting sequences of candi-
date units that minimize a mean cost instead of an absolute one. This cost is tested on
a phonemic duration distance but can be applied to others. Our second proposition is
a target sub-cost addressing intonation that is based on coefficients extracted through a
generalized version of Fujisaki’s command-response model. This model features gamma
functions modeling F0 called atoms. Finally, our third contribution concerns a penalty
system that aims at enhancing the concatenation cost. It penalizes units in function of
classes defining the risk a concatenation artefact occurs when concatenating on a phone
of this class. This system is different to others in the literature in that it is tempered by
a fuzzy function that allows to soften penalties for units presenting low concatenation costs.

Keywords: Speech synthesis; corpus-based speech synthesis; unit selection; graph
pathfinding algorithm; target cost; concatenation cost.

	Résumé en français
	Introduction
	De la production de la parole
	Une histoire de la synthèse de la parole
	L'étage d'analyse et le corpus
	Le bloc de sélection d'unité
	Données expérimentales et méthodologie de test
	Concernant le choix de l'algorithme de sélection
	Proposition d'un nouveau coût cible de durée phonétique
	Proposition d'un nouveau coût cible pour le contrôle du pitch
	Unités sandwich pour le coût de concaténation
	Conclusion

	Introduction
	I State of the Art
	On Speech Production
	What Is Speech ?
	Acoustic Variability
	Anatomy of the Vocal Apparatus
	Prosody
	Parameters
	Constituents

	Spectral Analysis
	Conclusion

	A History of Text-To-Speech Synthesis
	Inception – Reproducing What Works
	Kratzenstein's Resonators
	Wolfgang von Kempelen's Talking Machine
	A Period of Stagnancy
	The VODER

	Articulatory Synthesis
	Rule-based and Formant Synthesis
	Linear Prediction Synthesis
	Concatenative Synthesis
	Statistical Parametric Speech Synthesis
	HMM-based Speech Synthesis
	The (Re-)mergence of DNNs

	Conclusion and Graphical Summary

	The TTS Frontend and Corpus
	Conceptual Overview
	Frontend Block
	Backend

	The Corpus
	Presentation
	Corpus Creation Methods
	Corpus Condensation
	Sentence Construction
	Corpus Building Method Choice

	Conclusion

	The Unit Selection Backend Block
	Topology of the Problem
	The Base Unit
	The Notion of Sequence
	Speech Units
	The Candidate Units Graph

	Selection Algorithm
	Viterbi Algorithm
	Beam-search Algorithm
	Non-Viterbi Approaches
	Concerning Variable-size Units

	Selection Cost
	Target Cost
	Concatenation Cost
	On Weighting Issues
	Concerning Preselection
	On Global Constraints

	Signal Concatenation
	Conclusion

	II Work on the Unit Selection Process
	Experimental Data and Evaluation Methodology
	Speech Synthesis Data Management
	ROOTS Toolkit
	Automatic Voice Creation Process
	TTS Corpus Format

	Corpora
	Voice Corpora

	Evaluation Methodology
	Objective Evaluation of Speech
	Subjective Evaluation of Speech
	Methodology Followed in the Experiments

	Conclusion

	On the Choice of the Selection Algorithm
	The IRISA TTS Synthesis System
	General View
	Frontend
	Backend
	Perceptual Evaluation of the baseline System

	Back to the Unit Selection Pathfinding Problem
	Motivations
	Beam-search and Viterbi Algorithms
	A* Algorithm
	Adaptation to the Unit Selection Problem

	Evaluation of the Unit Selection Engine
	Experimental Data
	Objectives

	General Impact of the Cost Function and Pre-Selection Filters
	Comparison of Selection Algorithms
	Objective Evaluation
	Subjective Evaluation
	Behavior of the Cost Function With the 100-Best Paths

	Conclusion

	III Work on the Unit Ranking
	Work on the Duration Target Cost
	Motivation
	An Adaptive Duration Target Cost
	Neural Network
	Duration Target Cost

	Experiments
	Experimental Data
	Objective Analysis
	Subjective Evaluation

	Conclusion

	Work on the Pitch Target Cost
	Motivation
	Atom-Based F0 Decomposition
	Atoms for Driving a Unit Selection Target Cost
	Defining New Prosody Target Costs

	Experiments
	Experimental Process
	Experimental Data
	Atom Decomposition
	Subjective Evaluation

	Conclusion

	Work on the Concatenation Cost
	Motivation
	Enhancing Speech Corpora With Vocalic Sandwiches
	Sandwiches in a Unit Selection Engine
	Phonologically Motivated Penalty Based on Sandwich Classes
	Fuzzy Penalty System

	Experimental Evaluation
	Concatenation Costs Analysis
	Subjective Evaluation Process
	Results

	Conclusion

	General Conclusion
	Summary of the Contributions
	Perspectives

	TTS Corpus Key Content
	Phonemic Alphabets and Appearance Frequencies
	Example of Sentences Used in the Listening Tests
	Publications During the Thesis
	International Conferences with a Reading Comitee
	International Conferences with a Reading Comitee in French Language

	Bibliography

