N

N

Discrete Event Systems with Standard and Partial
Synchronizations

Xavier David-Henriet

» To cite this version:

Xavier David-Henriet. Discrete Event Systems with Standard and Partial Synchronizations. Computer
science. Université d’Angers, 2015. English. NNT: 2015ANGE0010 . tel-01440193

HAL Id: tel-01440193
https://theses.hal.science/tel-01440193
Submitted on 19 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01440193
https://hal.archives-ouvertes.fr

universite

angers

@ I

These de doctorat en co-tutelle

Xavier DAVID-HENRIET

Mémoire présenté en vue de 'obtention du grade de Docteur de I'Université d’Angers
Sous le label de I'Université Nantes Angers Le Mans

Spécialité : Automatique et Génie Informatique
Discipline : Génie Informatique, Automatique et Traitement du Signal
Laboratoire : Laboratoire Angevin de Recherche en Ingénierie des Systémes EA 7315

Soutenue le 19 mars 2015

Ecole doctorale : ED STIM
Thése N°1472

DISCRETE EVENT SYSTEMS WITH STANDARD AND
PARTIAL SYNCHRONIZATIONS

Jury
Rapporteurs : Stéphane GAUBERT Directeur de Recherche, INRIA
Thomas MOOR Professeur, Universitat Erlangen-Nirnberg
Examinateurs : Bertrand COTTENCEAU Maitre de Conférences, Université d’Angers

Rolf NIEDERMEIER Professeur, Technische Universitat Berlin

Directeurs de thése : Laurent HARDOUIN Professeur, Université d’Angers
Jorg RAISCH Professeur, Technische Universitat Berlin

Laboratoire Angevin de Recherche en Ingénierie des Systémes, Université d’Angers
62 Avenue Notre Dame du Lac, 49000 Angers, France

Fachgebiet Regelungssysteme, Fakultat IV - Elektrotechnik und Informatik
Technische Universitat Berlin, Einsteinufer 17, 10587 Berlin, Germany






g

universite

angers

DISCRETE EVENT SYSTEMS WITH STANDARD AND
PARTIAL SYNCHRONIZATIONS

Vorgelegt von
M.Sc. Xavier David-Henriet

von der Fakultat IV - Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Rolf NieDERMEIER ~ Technische Universitit Berlin
stellv. Vorsitzender: Dr. Bertrand COTTENCEAU ~ Université d’Angers

Gutachter: Prof. Stéphane GAUBERT INRIA

Gutachter: Prof. Dr.-Ing. Thomas Moor Universitat Erlangen-Niirnberg
Gutachter: Prof. Laurent HARDOUIN Université d’Angers

Gutachter: Prof. Dr.-Ing. Jorg Raiscu  Technische Universitét Berlin

Tag der wissenschaftlichen Aussprache: 19. Mérz 2015

Berlin 2015
D 83






PhD Thesis

DiscRETE EVENT SYSTEMS WITH STANDARD AND
PARTIAL SYNCHRONIZATIONS

XAVIER DAVID-HENRIET



Xavier David-Henriet: Discrete Event Systems with Standard and Partial Synchronizations
PhD Thesis, © January 2015

SUPERVISORS:
Prof. Laurent Hardouin
Prof. Dr.-Ing. Jérg Raisch

LocATIONS:

Laboratoire Angevin de Recherche en Ingénierie des Systémes, Université d’Angers, 62
Avenue Notre-Dame du Lac, 49000 Angers, France

Fachgebiet Regelungssysteme, Fakultit IV - Elektrotechnik und Informatik, Technische
Universitat Berlin, Einsteinufer 17, 10587 Berlin, Germany



Abstract

Many transportation networks can be modeled by (max, +)-linear systems, ie., discrete
event systems ruled by standard synchronizations (conditions of the form: "for all k > 1,
occurrence k of event e; is at least T units of time after occurrence k — 1 of event e;"). In
some applications, it is also necessary to model simultaneity between events (e.g., , for a road
equipped with traffic lights, a vehicle can cross an intersection only when the associated traffic
light is green). Such conditions cannot be expressed using standard synchronizations. Hence,
we introduce the partial synchronization (condition of the form: "event e, can only occur
when event e occurs"). In this thesis, we consider a class of discrete event systems ruled by
standard and partial synchronizations, called (max, +)-systems with partial synchronization.
Such systems are split into a main system and a secondary system such that there exist only
standard synchronizations between events in the same system and partial synchronizations
of events in the secondary system by events in the main system. We adapt some modeling and
control approaches developed for (max, +)-linear systems to (max, +)-systems with partial
synchronization. Optimal feedforward control and model predictive control for (max, +)-
linear systems are extended to (max, +)-systems with partial synchronization. Furthermore,
transfer relation and model reference control are provided for the secondary system under a
predefined behavior of the main system.

Keywords: discrete event system, synchronization, (max, +)-algebra, dioid, transportation
network
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Résumé

De nombreux systémes de transport peuvent étre modélisés par des synchronisations or-
dinaires (pour tout k > 1, I'occurrence k de I’événement e se produit au moins T unités
de temps apreés 'occurrence k — 1 de I’événement e1). Ces systémes sont linéaires dans 1’al-
gebre (max, +). Pour certaines applications, il est primordial de modéliser la simultanéité
entre événements (par exemple, un véhicule ne peut franchir un feu tricolore que quand
celui-ci est vert). Comme la synchronisation ordinaire ne suffit pas a exprimer ce phénomene,
nous introduisons la synchronisation partielle (I’événement e, ne peut se produire que quand
I’événemet e se produit). Dans ce mémoire, des méthodes développées pour la modélisation
et le controle de systémes linéaires dans I’algébre (max, +) sont étendues a des systémes régis
par des synchronisations ordinaires et partielles. Nous considérons uniquement des systémes
divisés en un systéme principal et un systeme secondaire et gouvernés par des synchronisa-
tions ordinaires entre événements dans le méme systéme et des synchronisations partielles
d’événements dans le systéme secondaire par des événements dans le systeme principal. ous
introduisons une commande optimale et une commande prA@dictive pour cette classe de
systAsmes pour cette classe de systémes par analogie avec les résultats disponibles pour les
systémes linéaires dans I’algébre (max, +). En considérant un comportement donné pour le
systéme principal, il est aussi possible de représenter le systeme secondaire par une fonction
de transfert et de modifier sa dynamique pour suivre un modéle de référence.

Mots clés : systéme a événements discrets, synchronisation, algébre (max, +), dioide, sys-
teme de transport
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Zusammenfassung

Viele Verkehrsnetzwerke konnen mit Hilfe von Standardsynchronisationen (zum Beispiel,
fir k > 1, das Auftreten k des Ereignisses e, findet mindestens T Zeiteinheiten nach dem
Auftreten k — 1 des Ereignisses e; statt) modelliert werden. Eine interessante Eigenschaft
solcher Systeme ist die Moglichkeit, sie als lineares System in der (max, +)-Algebra abzu-
bilden. Fiir viele Anwendungen ist eine Modellierung der Gleichzeitigkeit zwischen Ereignis-
sen erforderlich (ein Fahrzeug kann, zum Beispiel, eine Kreuzung tiberqueren nur wenn
die dazugehorige Ampel griin ist). Aus diesem Grund wird die partielle Synchronisation
eingefithrt. Formal ist die partielle Synchronisation durch die folgende Bedingung definiert:
Ereignis e, kann nur auftreten wenn Ereignis e; auftritt. In dieser Arbeit wird eine Er-
weiterung der Methoden zur Modellierung und Steuerung von (max, +)-linearen Systemen
vorgestellt. Die betrachtete Systemklasse besteht aus Systemen geteilt in ein Hauptsystem
und ein Nebensystem, so dass jede Synchronisation entweder einer Standardsynchronisa-
tion zwischen Ereignissen im selben System entspricht oder eine partielle Synchronisation
eines Ereignisses im Nebensystem durch ein Ereignis im Hauptsystem darstellt. Analog zu
(max, +)-linearen Systemen werden optimale Steuerung und modellpradiktive Regelung fiir
die oben gegebene Systemklasse eingefiihrt. Des Weiteren besteht die Moglichkeit, das Neben-
system als eine Ubertragungsmatrix abzubilden, wenn das Verhalten des Hauptsystems vor-
gegeben ist. In diesem Sonderfall werden verfiigbare Methoden zur Berechnung von Vors-
teuerungen und Riickfithrungen fiir (max, +)-lineare Systeme an dem Nebensystem angepasst.

Stichworter: ereignisdiskretes System, Synchronisation, (max, +)-Algebra, Dioidalgebra,
Verkehrsnetzwerk
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Introduction

A discrete event system (e.g., [6]) is a dynamical system driven by the instantaneous oc-
currence of events. In a discrete event system, two basic elements are distinguished: the set
of events and the rule describing the admissible behaviors of the system. Many formal ap-
proaches have been investigated to express this rule such as finite-state automata (e.g., [28])
and Petri nets (e.g., [33]). In some applications, time plays an important role in the dynam-
ics of the system. Therefore, the rule describing the admissible behaviors of the system can
be equipped with time. This gives rise to timed versions of the previous approaches, namely
timed automata and timed Petri nets. Depending on the selected modeling approaches, differ-
ent theories, such as supervisory control theory for finite-state automata [35] or state-based
control for Petri nets (e.g., [27]), have been introduced to tackle control problems. During
the last decades, the framework of discrete event systems has been widely applied to model,
analyze, and control both man-made systems such as manufacturing systems (e.g., [5]) or
transportation networks (e.g., [26]) and natural systems such as biological systems (e.g., [17]).

In this thesis, we focus on discrete event systems where the rule describing the admissible
behaviors is only composed of synchronizations (i.e., conditions on the timed behavior of one
event in relation to one event). A well-known synchronization is the standard synchroniza-
tion and corresponds to the following condition: for all k > 1, occurrence k of event e; is at
least T units of time after occurrence k — 1 of event e; with T € Rg and | € Ny. Discrete
event systems where the rule describing the admissible behaviors is only composed of stan-
dard synchronizations are called (max, +)-linear systems. This terminology is due to the fact
that a specific behavior namely the behavior under the earliest functioning rule is described



1. Introduction

by linear equations in particular algebraic structures such as the (max, +)-algebra. In the
literature, only this specific behavior is usually considered. For (max, +)-linear systems, it is
possible to partition the set of events into input, state, and output events and based on this
partition to derive a (max, +)-linear state-space model of the system. Therefore, much effort
has been made during the last decades to adapt key concepts from standard control theory
to (max, +)-linear systems. Transfer function matrices have been introduced for (max, +)-
linear systems by using formal power series [1, 8, 22, 32]. Furthermore, some standard control
approaches such as optimal feedforward control [9, 31], model reference control [14, 30], and
model predictive control [20, 34] have been extended to (max, +)-linear systems. Graphi-
cally, (max, +)-linear systems are represented by a class of timed Petri nets, namely timed
event graphs. Other synchronizations have recently been investigated. In [21], soft synchro-
nization is introduced: a soft synchronization is a standard synchronization which can be
occasionally ignored by paying a penalty. In [18], partial synchronization is defined by the
following condition: event e, can only occur when, not after, event e; occurs.

The main contributions of our work relate to (max, +)-systems with partial synchroniza-
tion. Such systems have a rule described by standard and partial synchronizations and are
split into a main system and a secondary system such that there exist only standard synchro-
nizations between events in the same system and partial synchronizations (represented by
dashed arrows in Fig. 1.1) of events in the secondary system by events in the main system.
The main system corresponds to a (max, +)-linear system, as the synchronizations affecting
an event in the main system are standard synchronizations by events in the main system.
However, due to partial synchronization, some events in the secondary system can occur
only when, not after, associated events in the main system occur. Therefore, the modeling
and control methods developed for (max, +)-linear systems cannot be directly extended to
(max, +)-systems with partial synchronization. In this thesis, we investigate how to adapt
some of these methods to (max, +)-systems with partial synchronization.

Main System

Secondary System

Figure 1.1.: A schematic view of a (max, +)-system with partial synchronization

Before giving the structure of the thesis, let us briefly illustrate the practical interest of
(max, +)-systems with partial synchronization. The main system often offers a service for
a time window to the secondary system. Furthermore, while obtaining this service is es-



sential for the secondary system, the secondary system does not affect the main system. In
the following, two concrete examples of (max, +)-systems with partial synchronization are
introduced. The first example (discussed in detail in § 7 and § 8) considers a road network sub-
ject to traffic lights. The traffic lights solve the resource allocation problems at intersections
and give permission to vehicles to cross intersections for time windows. This is expressed by
partial synchronizations: a vehicle can cross an intersection only when the associated traffic
light is green. Furthermore, while the color of a traffic light affects the behavior of the ve-
hicles, the presence or absence of vehicles at an intersection is irrelevant for the associated
traffic lights. In this example, the main system corresponds to the traffic lights and the sec-
ondary system corresponds to the road network. In the second example (discussed in detail
in § 5 and in § 6), a supply chain for intermodal containers shuttling back and forth between
warehouses A7 and By is investigated. The supply chain is divided in three sections: a road
transport section between warehouse A1 and train station A, a rail transport section between
train stations A and B, and a road transport section between train station B and warehouse
Bj. The train line offers the service of transporting containers between train stations A and
B for a time window, i.e., this service can start only when a train is leaving the train station.
Furthermore, while taking a train is a necessary step in the supply chain, not taking a con-
tainer does not affect the train. In this example, the main system corresponds to the train line
and the secondary system corresponds to the supply chain.

This thesis is divided in two parts. The first part focuses on the mathematical aspects and
is structured as follows:

Chapter 2 provides a broad overview of general mathematical concepts, mainly residuation
theory and dioid (or idempotent semiring). Furthermore, some classical results related
to the dioid Nmax’v ['v] are summarized. In particular, the fundamental theorem linking
periodicity, rationality, and realizability in Nyaxy [v] is recalled.

Chapter 3 introduces the dioid of residuated mappings over Ny, denoted N, and the
concepts of causality, periodicity, and rationality are discussed in F_ .

Chapter 4 defines, by analogy with Nyaxy [v], the dioid FRyy [Y]- The concepts of causal-

a

ity, periodicity, rationality, and realizability are extended to Fg_ " ['y]- This leads to a

fundamental theorem in 757 [v] similar to the one obtained in Ninax,y[Y]. Further-
more, left- and right-divisions are investigated in Fiy - [v].

The second part makes explicit how to use the mathematical tools discussed in the first part
to model and control (max, +)-systems with partial synchronization.

Chapter 5 focuses on the modeling of (max, +)-systems with partial synchronization. Sim-
ilarly to (max, +)-linear systems, the timed behavior can be captured by daters. This
leads to a model in the (max, +)-algebra.

Chapter 6 describes optimal control for (max, +)-systems with partial synchronization based
on the model discussed in § 5. Optimal feedforward control and its closed-loop version,
namely model predictive control, are presented.
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Chapter 7 focuses on operatorial representation. An operatorial representation for (max, +)-
systems with partial synchronization is not available. Then, only an operatorial repre-
sentation for a particular dynamics of (max, +)-systems with partial synchronization
is considered: the dynamics of the secondary system under a predefined behavior of
the main system. In the following, such a system is called a (max, +)-system subject
to partial synchronization. The suitable algebraic structure for the associated operato-
rial representation is the dioid iy ['v]- This leads to transfer function matrices for
(max, +)-systems subject to partial synchronization and clarifies, in terms of system
theory, the meaning of the fundamental theorem in 755 - [Y]-

Chapter 8 adapts some results of model reference control developed for (max, +)-linear
systems to (max, +)-systems subject to partial synchronization. This approach based
on operatorial representation aims at matching the dynamics of the system with a
predefined model reference. In particular, the concepts of prefilter and feedback are
investigated.



Part I.

Algebraic Tools






Mathematical Preliminaries

In this chapter, the mathematical concepts on which this thesis is based are defined. These
concepts are mainly related to residuation theory and dioid theory. Most of the following
definitions and results are directly taken from the literature. Some minor contributions are,
as far as we know, Prop. 1 and Lem. 3.

2.1. Residuation Theory

In the following, some basic concepts and results of residuation theory are recalled. A
survey is available in [3, 4, 7].

Definition 1 (Isotone mapping). Let f : E — F with E and F ordered sets. Mapping f is said
to be isotone if

Vx,yek, x<y="~f(x)<f(y)

Definition 2 (Residuated mapping). Let f : E — F with E and F ordered sets. Mapping f is
said to be residuated if f is isotone and if, for ally € F, the least upper bound of the subset
{x € E|f(x) <y} exists and lies in this subset. This element in E is denoted f*(y). Mapping
% fromF to E is called the residual of f.

The following theorem characterizes residuated mappings.



2. Mathematical Preliminaries

Theorem 1 ([3]). Let f : E — F with E and F ordered sets. The following statements are
equivalent:

1. f is residuated

2. f is isotone and there is an isotone mapping g : F — E such that g o f > Idg and
fog<Idr

Furthermore, if f is residuated, the mapping g in the second condition is unique and corre-
sponds to the residual of f.

Duality leads to dual versions of Def. 2 and Th. 1.

Definition 3 (Dually residuated mapping). Letf : E — F with E and F ordered sets. Mapping
f is said to be dually residuated if f is isotone and if, for all'y € F, the greatest lower bound of
the subset {x € E|f(x) >y} exists and lies in this subset. This element in E is denoted f’(y).
Mapping > from F to E is called the dual residual of f.

Theorem 2 ([3]). Let f : E — F with E and F ordered sets. The following statements are
equivalent:
1. f is dually residuated

2. T is isotone and there is an isotone mapping g : F — E such that g o f < Id¢ and
fog>Idr

Furthermore, if f is dually residuated, the mapping g in the second condition is unique and
corresponds to the dual residual of f.

Remark 1. make explicit a link between residuated mappings and dually residuated map-
pings. If a mapping f is residuated, then its residual f* is dually residuated and (1‘:ﬁ)b = f. Du-
ally, if a mapping f is dually residuated, then its dual residual f* is residuated and (fb)ti =f.

2.2. Dioid

Dioids (or idempotent semirings) are algebraic structures which play a major role in the
rest of this thesis. Some basic definitions of dioid theory are recalled in this section. A more
exhaustive discussion is available in [1].

Definition 4 (Dioid). A dioid is a set D endowed with two binary operations, denoted ® and
®, such that:
— @ is associative, commutative, idempotent (Va € D,a ® a = a), and admits a neutral
element .
— ® is associative and admits a neutral element e.
— ® is distributive with respect to @ from both sides:

a®(Mb®c)=(a®b)®(a®c)

Va,b,c e D,
(a®b)®c=(a®c)®(b®c)
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— ¢ is absorbing for ®:
VaeD, a®Qe=e®a=c¢
If ® is commutative, then dioid D is said to be commutative.

Formally, the operations @ and ® are very similar to 4+ and x in rings. Therefore, these
operations are respectively called addition and multiplication. Then, ¢ is the zero element
of the dioid D and e is its unit element. As in classical algebra, & is often omitted and the
multiplication of two elements is simply denoted by juxtaposition (i.e., a @b is denoted ab).

Remark 2. In the literature, dioid might refer to slightly different algebraic structures. In
[29], @ is not idempotent and € is not absorbing for ®. In [32], @ is not idempotent, but ¢ is
absorbing for ®. In [24], @ is not idempotent, but € is absorbing for @ and another condition
on @ is given:

VYa,b e D, (3c1,czeD,a=b®c1 andb=a€|—)c2)$a=b
Clearly, the previous condition holds if ® is idempotent.

As @ is associative, commutative, and idempotent, it induces an order < on D defined by
a<b< a®b =b. Therefore, a dioid is an ordered set admitting the bottom element ¢,
ie,Va € D, e < a. Furthermore, the least upper bound of {a, b} € D correspondsto a@®b.
Due to the distributivity of ® with respect to @ from both sides, the product by a constant is
isotone. Formally,

ac < be

YVceD, a<b=
ca<cb

Remark 3. Let S be a set and let D be a dioid. The set of mappings from S to D, denoted
M (8, D), is endowed by an operation @ and an order < induced by the operation ® and the
order < on D. Formally, for f1,f; € M (S, D),

Vs e S, (ﬁ (—sz) (S) =f; (S) ef (S)
fi <f, & VseS,f (S) sz(s)

Definition 5 (Selective dioid). A dioid D is said to be selective if, Va,b € D, a ® b is equal
either to a or to b.

Example 1 (Dioid Ry,ax). The set Rg U {—w} endowed with max as addition and + as
multiplication is a dioid denoted R« Its zero element € is equal to —c0 and its unit element
e is equal to 0. The order induced by @ coincides with the standard order in Rg . Obviously,
dioid R,ax is selective and commutative. This dioid (along with other dioids using max as
addition and + as multiplication) is often called (max, +)-algebra in the literature.
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2.2.1. Complete Dioid

Definition 6 (Complete dioid). A dioid D is said to be complete if it is closed for infinite sums
and if distributivity is extended to infinite sums. Formally, for all subsets X of D,

@xeD andVaeD,{ a® (Drex ¥) = Diex (a®X)
(Prexx)@a = Dyex (x@a)

In a complete dioid D, @), .p X, denoted T, belongs to D. Then, dioid D admits T as top
element, i.e, Va € D, a < T. A new binary operation A is defined on a complete dioid D by

xeX

anb= @ xwithDgp = {x € D|x < aand x < b}

XE/Da’b

Obviously, A is commutative, idempotent, and associative. Furthermore, A admits T as
neutral element in D. Dioid D is stable for A-operation over infinite sets. For all subsets )
of D,

/\y = @ xwith Dy = {x € D|Vy € Y,x <y}
yey XEDy

Furthermore, the greatest lower bound of {a, b} € D correspondsto a A b.

Remark 4. In general, ® is not distributive with respect to A. But, since the multiplication by
a constant is isotone,

Va,b,ceD, a(bac)=<abaacand (a Ab)c <ac Abc
In selective dioids, ® is distributive with respect to A from both sides, i.e.,
Va,b,ceD, a(bac)=abaacand (aAb)c=acAbc

In general, @ is not distributive with respect to A and A is not distributive with respect to
@. However,

Va,b,ceD, a®(bac)<(a®b)A(ad®ec) (2.1)
Va,b,ceD, an(b®c)>=(arb)®(anc) (2.2)

In [1], distributive dioids are defined as complete dioids where equality holds in (2.1) and (2.2).

Definition 7 (Distributive dioid). A dioid D is said to be distributive if it is complete and, for
all subsets X of D,

YaeD, { a® (NAgexr®) = Nyer (a®x)
an (®xeX X) = @XE;( ((1 A X)

10
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Lemma 1. Let D be a complete selective dioid. Then, D is distributive.

Proof. It remains to show that, for all subsets X" of D,

Vae D, { a® (Nyex®) = MNyex (@®x)
an (C—Bxex X) = C"Bxe/\.’ (Cl A X)

Only the first equality is considered. The result for the second equality is obtained by duality.
As D is selective, a @ (/. X) is either equal to /A, X or equal to a.
Ifa® (Nyerx) = /\yex % then, forall x € X, x > a. Thus,

a® (/\x> = Ax=/(aex)

xeX XEX XEX

Otherwise, a @ (/\,cx x) = aand a > /\ .y x. Then, there exists X’ € X such that
x’ } a. Consequently, as D is a selective dioid, a ® x’ = a. Thus,

a:a(—Dx'z/\(a@x)za

xeX

O

Example 2 (Dioid Ry,y). The set Ry U {—0, +w0} endowed with max as addition and +
as multiplication is a complete dioid denoted Ry,x. Its zero element € is equal to —o0, its
unit element e is equal to 0, and its top element T is equal to +00. The order induced by
@® coincides with the standard order in Rg. Obviously, Rynax is selective and commutative.
Therefore, according to Lem. 1, Ry, is distributive.

Example 3 (Dioid Niax). The set Ny U {—o0, +00} endowed with max as addition and +
as multiplication is a complete dioid denoted Ny,x. Its zero element € is equal to —o0, its
unit element e is equal to O, and its top element T is equal to +00. The order induced by

@ coincides with the standard order in Ny. Obviously, Ny is selective and commutative.
Therefore, according to Lem. 1, Ny is distributive.

Example 4 (Boolean dioid B). The Boolean dioid B = {e, e} is the dioid composed of ¢ and
e. Dioid B is complete, commutative, and selective. Therefore, according to Lem. 1, B is
distributive.

Residuation Theory in Complete Dioids

In the following, residuation theory is investigated when the considered ordered sets are
complete dioids.

11
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Definition 8 (Lower semi-continuity). A mapping f from complete dioid D1 to complete dioid
D, is said to be lower semi-continuous if

VX c Dy, f(@x) =P f(x)

xeX XeX

The next result gives a very handy characterization of residuated mappings when the con-
sidered ordered sets are complete dioids.

Theorem 3 ([1]). Let f : Dy — D; with D1 and D; complete dioids. The following statements
are equivalent:

1. f is residuated

2. T is lower semi-continuous and f(¢) = ¢
Corollary 1. Let a be an element in a complete dioid D. The mappings Ly : x — a ® x (left-
multiplication by a) and Rq : x — x ® a (right-multiplication by a) over D are residuated.
The residuals are denoted by Lg(x) = akx (left-division by a) and Rgl(x) = xpa (right-
division by a). By definition, ab (resp. bga) denotes the greatest solution x of the inequality
a®x <b(resp. x®a < b)

Next, some calculation rules with left- and right-divisions are recalled.

Lemma 2 ([1]). Let D be a complete dioid. For X < D and a,b,c in D,

(@x> ka = /\ xka and af (@ x> = /\ afx (2.3)

XEX XEX xeX XEX
ak (@ x> > P akx and (@ x) fa > @ xpa (2.4)

XEX XEX XEX XEX
(bc) ka = ck(bka) and af (bc) = (agc) gb (2.5)

Example 5. In Ny, akb = bfa, as ® is commutative. Besides,

T ifa=corb=T
akb =ba =1 ¢ ifa>b
b—a ifb>aanda,beNy

Proposition 1. Let f1 and f, be two residuated mappings from a complete selective dioid Dy
to a distributive dioid D;. The mapping g from Dy to D, defined by, Yx € Dy, g(x) =
1 (x) A f2(x), is residuated.

12
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Proof. This proof is based on Th. 3. As f; and f; are residuated mappings, g (¢) = e. It
remains to check that g is lower semi-continuous. As f; and f; are isotone, g is isotone.
Therefore, for all X < Dy,

g (@X) > D gk

xeX xeX

Furthermore, as f and f, are lower semi-continuous,

(@)= (@0) (@)

= ((—B f] (X])) A ((—B fz (Xz))
X1€X X26X

As D; is a distributive dioid,

(&)= (- (@)

P D (f1(xa) A fa(x2))

X1EX x2€X

As f1 and f; are isotone,
g ((—B x) < (—B (—B (f1 (x1 ®x2) A 2 (x1Dx2))
xeX X1€X x2€X

As Dy is a selective dioid, X1 @x; is either equal to X or to x;. Therefore, x; @ x; belongs to
X. Then,

g (69 X) < @D (f1 (x) A f2(x))

xeX xeX

<P g

xeX

Duality leads to a dual version of Def. 8 and of Th. 3.

Definition 9 (Upper semi-continuity). A mapping f from complete dioid D1 to complete dioid
D, is said to be upper semi-continuous if

VX € Dy, f(/\x) = A f(x)

xeX XeX

13



2. Mathematical Preliminaries

The following result gives a very handy characterization of dually residuated mappings
when the considered ordered sets are complete dioids.

Theorem 4 ([1]). Let f : D1 — D, with Dy and D; complete dioids. The following statements
are equivalent:

1. f is dually residuated

2. f is upper semi-continuous and f (T) = T

Kleene Star

Definition 10 (Kleene star). Let D be a complete dioid. The Kleene star of a € D, denoted a*,
is defined by

keN, a® a1 otherwise

a* = @akwithak={ eifk =0

Some properties of the Kleene star are recalled in the following proposition.

Proposition 2 ([22]). In a complete dioid D, the following equalities hold for all a,b € D:

(a*)* = a* (2.6)
a*a* = a* (2.7)
(a®b)* = (a*b)* a* (2.8)
(a*b)" =e®(a®b)*b (2.9)

The next theorem plays an essential role in the following to solve implicit inequality of the
formx > ax @ b.

Theorem 5 (Kleene star theorem, [1]). Let D be a complete dioid and a,b € D. Then, the
inequality x > ax @ b admits a*b as least solution. Furthermore, this solution achieves
equality.

Example 6. In Ny, a* is either equal to e if a € B or to T otherwise. Then, the equation
x = ax ® b admits b as least solution ifb = € ora € B and T otherwise.

2.2.2. Subdioid

The concept of subdioid matches the concept of subrings in standard algebra.

Definition 11 (Subdioid). A subset S of a dioid D is a subdioid of D if S is closed with respect
to®,®ande,e €S.

14
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Remark 5. A subdioid S of a dioid D is a dioid. Besides, if D is commutative (resp. selective),
then S is commutative (resp. selective). This does not hold for completeness or distributivity.
A subdioid S of a complete dioid D is complete if, and only if, S is closed under infinite sums.

Proposition 3 ([4]). Let S be a complete subdioid of a complete dioid D. Then, the canonical
injection i from S to D is residuated. Its residual i, also denoted Prs, satisfies the following
conditions:

1. Prs o Prg = Prg
2. Prg < Idp
3. x=Prs(x) ©xeS§

Remark 6. Let S be a complete subdioid of a complete dioid D. The operations AS, left-
division § s> and right-division # s are defined on S, as S is a complete dioid. Furthermore,

VX c S, /\SX:PrS (/\x>

XEX XEX
Va,be S, bkga=Prs(bka) and afsb = Prs (agb)

Example 7. Niax is a complete subdioid of the complete dioid Ruax. Then, the canonical
injection from Niax 10 Rynax is residuated and its residual is defined by

Prsy,. (%) = [x]

Rational Closure

Definition 12 (Rational closure). Let D be a complete dioid and let £ be a subset of D such
that B C £. The rational closure of £, denoted £*, is the least subset of D containing all
finite combinations of additions, multiplications, and Kleene stars over £. A subset € of D
with B C & is said to be rationally closed if E* = £.

Remark 7. Let D be a complete dioid and let £ be a subset of D such thatB < £. The rational
closure of €, denoted £, is a subdioid of D. Dioid £* might not be complete, but £* is stable
with respect to the Kleene star. Furthermore, £* is rationally closed.

Example 8. In the complete dioid Rinax, the rational closure of {€, e, 1} is the subdioid Ninax-

Lemma 3. Let D be a complete dioid and a,b,c € D. If abdc = badc for all d €
{e,e,a,b}", then

(a®b)*c =a*b*c

15
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Proof. According to (2.8),

(a®b)*c = (a*b)" a*c

(e ®P (a*b)k> a*c

k=1

a*c® @ (a*b)*a*c

k=1

Due to the assumption abdc = badc for all d € {¢, e, a, b}",

. +w .
VjeNp,Vd e {e,e,a,b}*, a*ba*bdc=a* P ba*bdc
k=0

+o0 .

=a* @ a“vitldc
k=0

= a*btldc

Therefore, Vk € N, (a"‘b)k a*c = a*b*c. Then,
(a®b)*c=a*c®@ a*bkc
k=1
= a*b*c
O

Remark 8. The previous lemma is a minor extension of the classical formula recalled in [22]:

(a@®b)* = a*b* ifa and b commute

2.3. Morphism

A morphism usually refers to a structure-preserving mapping between two algebraic ob-
jects. Next, the notion of morphism is only defined when the domain and the co-domain are

dioids.
Definition 13 (@®-morphism). A mapping f from dioid D to dioid D, is a ®-morphism if
f(e) =eandVa,be Dy, f(a®b) =f(a)df(b)

Lemma 4. Let f be a @-morphism from dioid D to dioid D,. Then, mapping f is isotone.

16
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Proof. For a,b € Dy,
a>b=a=a®b
=f(a)=f(a®b) =f(a)Df(b)
= f(a) > f(b)

O

Lemma 5. Let f be a residuated mapping from complete dioid Dy to complete dioid D,. Then,
f is a ®-morphism.

Proof. This is a direct consequence of Th. 3. O
Definition 14 (®-morphism). A mapping f from dioid Dy to dioid D, is a ®-morphism if
f(e) =eandVa,be Dy, f(a®b) =f(a)®f(b)

Definition 15 (Homomorphism). A mapping f from dioid D1 to dioid D, is a homomorphism
if it is both a ®-morphism and a ®-morphism.

Definition 16 (Isomorphism). A mapping f from dioid D to dioid D; is an isomorphism if it
is a bijective homomorphism. If there exists an isomorphism from dioid D to dioid D;, then
dioids D1 and D, are said to be isomorphic.

Lemma 6. Let f be an isomorphism from dioid D; to dioid D,. Then, £~ is an isomorphism
from dioid D; to dioid D;.

Proof. Mapping f~! is bijective. It remains to check that f~! is a homomorphism. We only
check the behavior of £ ! with respect to @, as the result concerning ® is obtained in a
similar manner. First, as f (¢) = ¢,

1) =fTof(e) =¢
Second, let aj, by € Dy and ay, b, € D, such that a; = f~' (ay) and by = £~ (b5). Then,
f 1 (a2®by) =f ' (f(a) ®F (by))
=71 (f(a1 ® b))
=a Dby
= (@) ®f (b2)
]

Lemma 7. Let f be an isomorphism from dioid D; to dioid D,. Then, f is residuated and its
residual f* is £,

Proof. Mappings f and ™! are isotone. Besides, fof ™! < Idp, and f~'of > Idp,. Therefore,
according to Th. 1, f is residuated and its residual is £, O
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2.3.1. Dioid of ®-Morphisms

The set of mappings over a dioid D is endowed with a binary operation @ induced by the
binary operation @ over the dioid D as mentioned in Rem. 3. Formally,

VxeD, (f1@f)(x)="f (x)®f(x)

Another binary operation ® is defined as the composition o of mappings. Next, the algebraic
structure (with respect to these operations) of particular classes of mappings over dioid D is
investigated.

Proposition 4 ([32]). The set of ®-morphisms over a dioid D, denoted Ep, endowed with the
binary operations @ and ® is a dioid. Its zero element ¢ is defined by, Vx € D, € (x) = €. Its
unit element e is defined by, Vx € D, e (x) = x.

An interesting problem is to determine whether the dioid Ep is complete. A necessary
condition is to consider a complete dioid D. However, the completeness of D is not sufficient
to ensure the completeness of Ep as shown in the following example.

Example 9. Let f, withm € Ny denote the ®-morphism over the complete dioid Ninax defined
by

eifx =¢
fn(x) =4 nifxeNy
Tifx=T

Then,

(fo® (69 fn>> (6) =fo(T)=T
neNy

(@ (f0®fn)> (e) =P fo(n)=e

neNy neNy

Therefore, right-distributivity cannot be extended to infinite sums. Hence, the dioid Ep with
D = Npx is not complete.

Proposition 5 ([7]). The set of residuated mappings over a complete dioid D, denoted Fp,
endowed with the previously defined binary operations ® and ® is a complete dioid.

Proof. First, we show that Fp is a subdioid of Ep. According to Lem. 5, Fp is a subset of Ep.
Furthermore, a direct consequence of Th. 3 is that the set of residuated mappings coincides

18
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with the set of lower semi-continuous @-morphisms. Obviously, ¢ and e are lower semi-
continuous. It remains to check that Fp is closed with respect to @ and ®. For f1,f; € Fp
and X € D,

o) <@x> _t, (@x) of (@x)

—@Ehxe@fx)

xeX xeX
=@ (f1@f) (%)
xeX

o (@) =0 (x(8))

=1y ((—B f (X)) since f; is residuated

XEX
= @ (f1 ® f2) (x) since fy is residuated
XEX

Hence, mappings f1 @ f; and f; ® f; are lower semi-continuous. Therefore, Fp is a subdioid
of ED.

Next, we show that the dioid Fp is complete. Consider H € Fp and f = @,y h. AsD
is complete, f is a mapping from D to D. Furthermore,

=@ he) =

heH

VX c D, f(@x) =P Phkx)=Pf(x)

xeX heH xeX XEX

Therefore, Fp is closed for infinite sums. It remains to show that distributivity extends to
infinite sums. For left-distributivity, it comes directly from the definition of operations @ and

®.

Vg € Fp,Vx €D, ((@h)®g> = Ph(g

heH heH

= (69 (h®9)> (x)

heH
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For right-distributivity, due to lower semi-continuity,

Vg e Fp,Vx e D, (g@ (@h)) (x)=g (@ h(x))
hH heH
((—B (9 ®h)> (x)
heH

O

The next step is to determine whether Fp is distributive. This problem is not solved in the
general case. As Fp is a complete dioid, the operation A is defined. But, for H = Fp, the
calculation of /\; <4, h might not be obvious. Of course,

Vx €D, (/\h) x) < /\h(x)

heH heH

However, the mapping g from D to D defined by g (x) = /\ ¢y 1 (x) may not be residuated.
A particular case has already been investigated in Prop 1. If D is a complete selective dioid
and H is a finite subset of Fp,

Vx € D, (/\h) x) = /\ h(x)

heH heH

However, it is not sure that the equality still holds when H is not finite. This problem is
addressed for the particular case D = N,  in § 3.

2.4. Matrix Dioid

In this section, some facts on matrices with entries in a dioid are recalled. By analogy with
standard linear algebra, the operations @ and ® are extended to matrices with entries in a
dioid D.

VA,BGD“XP, (AG—)B) =Aij®Bij

VA € DVP VB e DP*9,  (A®B), @AlkBk]

20



2.4. Matrix Dioid

Besides, if the dioid D is complete, the operations A, %, and ¢ are also extended to matrices.

VA, Be fanp’ (A A B)ij = Aij A Bij
n

VA € D™ ¥B € DV, (A%B)y = /\ AiiBig
k=1

P
VA € DV, ¥B e DVP,  (BJA); = /\ BudAj
k=1

The order < induced by operation @ corresponds to the standard order for matrices with
entries in an ordered set.

A<B&Vi,j Ay <By

According to this order, A @ B (resp. A A B) is the least upper bound (resp. greatest lower
bound) of {A, B} and AXB (resp. B#A) corresponds to the greatest solution X of the inequal-
ity AX < B (resp. XA < B).

Proposition 6 ([8]). Let D be a dioid. The set D™*™ endowed with the operations ® and ® is a
dioid. Besides, if D is complete (resp. distributive), then D™*™ is complete (resp. distributive).

In the matrix dioid D™*™, the zero element ¢ is defined by €i; = ¢ for all 1,j and the unit
element e is defined by

{ eifi=j

€j = .

¢ otherwise

If D™*™ is complete, then T is defined by Ty; = T for all i,j. Dioid D™*™ inherits neither
commutativity nor selectivity from dioid D.

Remark 9. In Th. 5, if x or b are not square matrices, it is still possible to extend a, x, and b
with e-rows and e-columns to come down to square matrices. Therefore, the least solution of
the matrix inequality x > ax @ b is a*b.

Lemma 8. Let S be a subdioid of dioid D. The set S™*™ is a subdioid of dioid D™*™.

Proof. The set S™*™ contains the zero element and the unit element of D™*™. Furthermore,
S™*™ is closed with respect to @ and ®. O

Lemma 9. If dioids Dy and D, are isomorphic, then dioids D™ and Dy *™ are isomorphic.

Proof. There exists an isomorphism ¢ from Dj to D;. Then, ® from D;"*" to D} *™ defined
by
VAeD" ™", (@ (A))ij = ¢ (Ay)

is an isomorphism. O
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The next results focus on Kleene star of matrices and rationality.

Lemma 10 ([1, 8]). Let D be a complete dioid andnq,n; € N. Consider matrices A € D™ *™,
B e Dn] XTIZ’ C = 'DTIzXTllj andD (= anzxnz' Then,

A B\ _( (A@BD*C)* A*B(CA*B@D)*
C D (CA*B®D)*CA*  (CA*B®D)*

Theorem 6 ([8]). Let D be a complete dioid and let £ be a subset of D such that B € £. The
subdioids (E™™)* and (£*)™*™ are identical.

2.4.1. Rational Representation

Next, a particular representation, namely the (B, C)-representation, for a class of matrices
is introduced. Later on, this representation appears to play a major role in system theory.

Definition 17 ((B, C)-representation). Let D be a complete dioid and let £ be a subset of D
such that B € £. An element X € D™*P admits a (B, C)-representation with respect to £ if
there existn € N, C € B™*" A € E™", and B € B™*P such that X = CA*B.

Theorem 7 ([8]). Let D be a complete dioid and let £ be a subset of D such that B < £.
The dioid £* coincides with the set of elements x € D admitting a (B, C)-representation with
respect to &.

Proposition 7. Let D be a complete dioid and let £ be a subset of D such that B < £. For
X € D™*P_ the following statements are equivalent:

1. X admits a (B, C)-representation

2. each entry of X admits a (B, C)-representation
Proof. 1 = 2: X admits a (B, C)-representation, then there exist n € N, C € B™*™, A €
E™M, and B € B™*P such that X = CA*B. Consequently, Xj; = C; A*B; where C;. is the
i-th row of C and B ; the j-th column of B. Then, X;; admits a (B, C)-representation.

2 = 1: Xy is admits a (B, C)-representation. There exist nyj € N, C;j € B/, A €
EMiXMi and B € B %! such that Xij = CijA{“jBij. Then, X = CA*B with

A:diag(An,...,A]p,...,Am1,...,Amp)
C zdiag([C11 ...C1p],...,[Cm1 ...Cmp])

diag (B11, .. .,B1p)
B = :

diag (Bm1 sy Bmp)

Hence, X admits a (B, C)-representation. O
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2.5. Dioid of Formal Power Series

Formal power series with coefficients in a dioid D provide an elegant way to manipulate
mappings from ZP (with p € N) to D. A complete survey on formal power series with
coefficients in a dioid is available in [1].

Definition 18 (Formal power series). A formal power series in p commutative variables with
coefficients in a complete dioid D is a mapping from ZP toD. A compact notation for a formal
power series S is

s= P s(k)z ... 25 wherek = (ki,...,kp)
kezZr

The set of formal power series in'p commutative variables z1, . . ., z, with coefficients in D is
denoted D[z, ...,zp].
The support of a formal power series s, denoted supp (), is defined by

supp (s) = {k € ZP[s (k) # ¢}

The valuation of a formal power series s, denoted val (s), is the greatest lower bound of its
support. The degree of a formal power series s, denoted deg (s), is the least upper bound of its
support.

A polynomial (resp. monomial) is a formal power series with a finite support (resp. with an
empty support or a support reduced to a singleton).

Usually, only the values on the support are made explicit in the writing of a formal power
series. The set D[z1,...,zp] is endowed with the binary operation @® already mentioned in
Rem. 3, i.e,

Vk e ZP, (s1®s2) (k) = s1 (k) D sz (k)
Another operation ® is defined as the Cauchy product.

VkeZP, (s1®s2) (k) = @ s1()sa(k—j)
jezr

Proposition 8 ([1]). Let D be a complete dioid. The set D[z1,...,z,] endowed with the
operations @ and ® defined before is a complete dioid. If D is commutative (resp. distributive),
then D[z, ...,z is commutative (resp. distributive).

The Cauchy product justifies the restriction to complete dioids as shown in the next exam-
ple.
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2. Mathematical Preliminaries

Example 10. Let f; and f; be two mappings from Z to the non-complete dioid R,y defined
by

Vke Z, f1(k)=max(k,0) andf; (k) =e
Then,

(1 ®f2) (0) = D (i (k) ®F2 (k)

keZ

:@k

keNp
= +00 ¢ I&max

Therefore, the Cauchy product may not be defined when the dioid of coefficients is not com-
plete.

The zero element ¢ of D[z1,...,zp] is defined by € (k) = ¢ for all k € ZP. The unit
element e of D[z1,...,z,] is defined by

e (k) = eifk = (0,...,0)
¢ otherwise

As D[z,...,zp] is a complete dioid, operation A exists for formal power series and is de-

fined by
VkeZP, (s1 A 82) (k) =s1(k) Asz(k)

The top element T of D[zy,...,zp] is defined by T (k) = T for all k € ZP. Besides, for all
k € ZP, left-division and right-division are defined by

(s1%s2) (k) = /\ s1 () %s2 (k +7) (2.10)
jezr

(s28s1) (k) = /\ s2 (K +7) #s1 (5) (2.11)
jezp

Lemma 11. If complete dioids D1 and D; are isomorphic, then dioids D, [[21,...,zp]] and
D;|z1y...,zp] are isomorphic.

Proof. There exists an isomorphism ¢ from D; to D;. Then, ® from D[z1,...,z,] to
D;z1y. ..y zp] defined by

Vs e Di[z1y...,2p], DP(s)=¢os

is an isomorphism. O
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2.5. Dioid of Formal Power Series

Lemma 12. Let S be a complete subdioid of a complete dioid D. The set S[z1,...,zp] is a
complete subdioid of D[z1, ..., zp].

Proof. The set S[z1,...,z,] contains the zero element and the unit element of D[z1, ...,z ].
Furthermore, S[z1,...,z,] is closed under infinite sums and with respect to ®. O

Example 11 (Dioid Ny [Y]). The dioid Nmax[Y] is the dioid of formal power series in"y with
coefficients in the complete dioid Nyax equal to € over {k € Z|k < 0}. The seriess = 3@ 7y°
belongs to Npay [Y] and corresponds to the mapping from Z to Nyay defined by

3ifk=0
s(k) =1 7ifk=5

¢ otherwise

Furthermore, supp (s) = {0,5}. Then, s is a polynomial, val (s) = 0, and deg (s) = 5.

2.5.1. Dioid of Isotone Formal Power Series

Let D be a complete dioid. In the following, we only consider formal power series in a
single variable 'y with coefficients in D. Sets Z and D are ordered. Then, a formal power
series s € D[y] is isotone if

Vk,leZ, k=1=s(k)>s(l)
The following lemma gives a simple characterization of isotone formal power series.
Lemma 13. Lets in D[y]. Series s is isotone < s = y*s.

Proof. = Asy™* > e, y*s > s. Conversely, as s is isotone, Yk € Z, s(k + 1) > s (k). Thus,
s > ys. This leads to s > y*s. Hence, s = y*s.
= s = y*s implies

VkeZ, s(k)=Psk—j)
j€No

Therefore,
Vk,leZ, k=1=s(k)>s(l)
Hence, s is an isotone formal power series. O

Lem. 13 allows us to easily determine the algebraic structure of the set of isotone formal
power series.
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2. Mathematical Preliminaries

Proposition 9. Let D be a complete dioid. The set of isotone formal power series in D[Y]
endowed with the operations @ and ® is a complete dioid, denoted D,, [y]. Furthermore, if D
is commutative, Dy [y] is commutative.

Proof. Let s7 and s, be two isotone formal power series in D[y].

S1TDs; =Y s1 ®Y* sy = v* (s1Ds2)
S1®s2=(Y*s1)s2 =v" (51 ®s3)

Then, D, [y] is closed with respect to @ and ®.

As D, [y] is included in D[y], the operation @ is associative, commutative, and idem-
potent, and the operation & is associative and distributive on both sides with respect to @.
Furthermore, the zero element of D[] is isotone: it is the neutral element ¢ for @ in D, [y].
Consequently, ¢ is absorbing for ®. For s € D,[y], s = y*s and, obviously, s = sy*.
Therefore, y* is the neutral element e for ® in D, [y]. Thus, D,[y] is a dioid included in
D[], but not a subdioid of D[y].

Dy [v] is stable under infinite sums and distributivity extends to infinite sums. Hence,
D, [v] is a complete dioid.

Clearly, if D is commutative, D[y] is commutative. Hence, if D is commutative, D, [y] is
commutative. O

As Dy[y] is a complete dioid, the operation Ay, %, and ¢, are defined on Dy [y]. Fur-
thermore, s1 Ay s2, 81 }gysz, and sz)ﬁym correspond respectively to the greatest isotone formal
power series less than or equal to s1 A s, s1%s2, and sy#sy. It is easy to check that these
series are isotone. Thus, s1 Ay $2 = 81 A S2, 81 }gysz = s1%s2, and szyfys1 = $2$87.

Lemma 14. Let D a complete dioid. If D is distributive, Dy [Y] is distributive.

Proof. As D is distributive, D[y] is distributive. As A and @ are the same operations in
D[y] and in Dy [y], Dy [v] is distributive. O

2.6. Quotient Dioid

By analogy with quotient rings (e.g., Z/nZ with n € N), quotient dioids are defined. More
details on quotient dioids can be found in [11].

Definition 19 (Congruence relation). A congruence relation on a dioid D is an equivalence
relation R on D such that

(a®c)R(bdc)

YVceD, aRb=
caRchb and acRbc
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Proposition 10 ([11]). Let D be a dioid. The quotient set of D by the congruence relation R
endowed with

ar @br = (a@b); andar ®br = (a@b)g

is a dioid named quotient dioid of D by R and denoted Dy. Besides, Dr inherits complete-
ness, commutativity, and selectivity from D.

The zero element e (resp. the unit element e) of Dy is the equivalence class of € (resp.
e).
If a quotient dioid is considered, no distinction is usually made between an equivalence
class (an element in D) and one of its representatives (an element in D). An element in
D is associated with its equivalence class. To tackle the inverse problem (i.e., associating an
element in D with an element in D), a canonical representative for an equivalence class is
defined. In this section, this question is not addressed in general.

2.6.1. Quotient Dioid of a Dioid of Formal Power Series

Quotient dioids of dioids of formal power series play an important role in the following.
The notion of support is generalized to quotient dioids of dioids of formal power series.

Definition 20. Let D[z1,...,z,] be a dioid of formal power series and let R be a con-
gruence relation on D[z1,...,z,]. The support of the equivalence class sg of a series
s € Dz1,...,zp] is defined as

supp (sr) = [ ) supp (s)

SESR
A polynomial (resp. monomial) in D[z1,...,z,||r is an equivalence class with a finite sup-
port (resp. an empty support or a support reduced to a singleton).
Congruence for the Dioid of Isotone Formal Power Series

Let D be a complete dioid. The complete dioid of formal power series in 'y with coefficients
in D is considered. In the following, the congruence relation R is defined on D[y] by

aRb < v*a =v*b
Lemma 15. Dioids Dr[y] and D, [y] are isomorphic.

Proof. Let @ be the mapping from D, [y] to Dr[y] defined by @ (s) = sg.
For sy, s, in D [y],

D (s1) = D(s2) = V*s1 =Y"s2

= 81 =982
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Therefore, @ is injective.

For S in D [y] and s € S, y*s belongs to S n D, [y]. Therefore, ® (y*s) = S. Then, ®
is surjective. Mapping @ is a bijection from D, [y] to Dr[y].

Furthermore, for sy, s, in Dy [y],

D(e) =¢er

Q") =vr =er

D (s1@s2) =sir@sor = D (s1) DD (s2)
D(s1®s2) =s1r ®@s2r = D (51) @D (s2)

Consequently, @ is an isomorphism from D, [y] to Dr[y]. O

A series s in D, [y] is associated with an element S in Dg[y]. Therefore, a representative
s’ of S characterizes s. This is sometimes written in a slightly ambiguous manner s = s’.
This leads to richer definitions for support, monomials, and polynomials in the dioid D, [y].

Definition 21 (y-support). Lets be a series in Dy[y]. They-support of s, denoted supp, (s),
is defined by supp,, (s) = supp (sr).
The classical definitions of polynomials leads to a single polynomial in D, [y], namely e.

Therefore, from now on, monomials and polynomials in D, [y] are defined with respect to
the y-support.

Definition 22. Let s be a series in D, [y]. Series s is a polynomial if its y-support is finite.
Series s is monomial if its y-support is either empty or a singleton.

The greatest lower bounds of supp, (s) and val (s) coincide. However, the least upper
bound of supp,, (s) might be less than deg(s). Then, the y-degree of series s, denoted
deg, (s), is defined as the least upper bound of supp, (s). Next, the canonical representa-
tives for a subclass of polynomials in D, [y] is introduced.

Definition 23. Let p be a polynomial in D, [y] fulfilling the condition: there exists k € Z

such that p (k) = €. Ifp = ¢, its canonical representative is €. Otherwise, the canonical

representative of P is Dyesupp_ () P (K) vk
Y

An algorithm to compute the canonical representative of an element in the previous class
of polynomials from any representative consists in, first, maximizing the coefficients and,
second, deleting the redundant coefficients.

2.7. Dioid Ny y[Y]

The dioid Nyyaxy [Y] plays a major role in the modeling and control of (max, +)-linear sys-
tems (e.g., [1, 14]). In this chapter, the dioid Nmax’v [v] is briefly introduced and the concepts
of periodicity, rationality, and realizability are recalled for this dioid. The presented results
mainly come from [1, 8, 22].
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Definition 24 (Dioid Nmax’y [Y]). The distributive dioid Nmax,y [v] is defined as the dioid of
isotone formal power series iny with coefficients in the distributive dioid Np,.x equal to € over
{k € Z|k < 0}. Furthermore, as Nyay is commutative, Npmay [Y] is commutative.

According to Prop. 9 and Lem. 14, the previous definition is valid. By definition, a series s
in Npax y[v] is an isotone mapping from Z to Ny such that s (k) = € for k < 0.

Example 12. Lets = 1y @ 4y> be a series in Nmax,y vl

eifk <1
s(k)=14 1ifk=1,2
4ifk >3

The y-support of s is {1,3}. Therefore, s is a polynomial and, according to Def. 23, its canon-
ical representative is 1y @ 4y>. A graphical representation of s is drawn in Fig. 2.1.

4] ®
34
2 |
14

‘ T T T —
0 1 2 3 4 5 k

Figure 2.1.: Series s = 1y @ 4y?

2.7.1. Periodicity

Definition 25 (Periodicity). A series s in Nuaxy[Y] is said to be periodic if there exist two
polynomials P, q in Npax[Y], T € No, and v € N such that s = p @ q (ty¥)*. A matrix
with entries in Npax+[Y] is said to be periodic if all its entries are periodic.

A canonical representative for periodic series in Nmax,y [v] has been introduced in [22, 23].
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Definition 26 (Throughput). The throughput of a non-zero periodic seriess = p @ q (ty")*
in Niax.y[Y], denoted o (s), is defined by

+00 if s is a polynomial andVk € Z,s (k) < T
0(s) =4 0ifs isa polynomial and Ik € Z|s (k) = T

~ otherwise

Example 13. Let s be a periodic series in Nmax’v [y] with the canonical representative 3 @
4v? @ (6y° ® 8v*) (3y?)". Then,

Vk >3, s(k+2)=3s(k)

The transient of s is given by the polynomial p = 3 @ 4y*. The pattern of s is given by the
polynomial q = 6y> ® 8y*. Due to the periodicity 3y?, the pattern q is repeated (translation
of two units to the right and three units to the top). The throughput of s is

A graphical representation of s is drawn in Fig. 2.2.

Calculations with Periodic Series

Proposition 11 (Sum of periodic series [11, 22]). Let s1 and s, be two periodic series in
Nmaxy [Y]. Series s1 @ s, is periodic. Furthermore, if s and s; are different from ¢, then

0 (s1 @ s2) = min (o (s1),0(s2))

Proposition 12 (Greatest lower bound of periodic series [11]). Let s1 and s, be two periodic
series in Nmax y[Y]. Series s1 A s, is periodic. Furthermore, if s1 and s, are different from e,
then

0 (s1 A s2) = max (0 (s1),0(s2))

Proposition 13 (Product of periodic series [11, 22]). Let s1 and sy be two periodic series in

Nmaxy [Y]. Series s1 ® s, is periodic. Furthermore, if sy and s, are different from ¢, then
0(s1®s2) =min (o (s1),0(s2))

Proposition 14 (Division of periodic series [11]). Let s1 and s; be two periodic series in
Nmaxy [Y]. Series s1%sy and syfsy are periodic. Furthermore, if s1 and s, are different from
E:

~ 51882 = spfs1 = e if 0 (s1) < 0 (s2)

— 0(s1%s2) = 0 (s2681) = 0 (s2) otherwise
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Figure 2.2.: Series s = 3 @4y @ (6y> @ 8y*) (3v?)"

According to Prop. 11 and Prop. 13, the set of periodic series in Nyayy[Y] is a subdioid of
Naxy [Y], denoted Nﬁf;x,y [Y]- Moreover, the dioid N f;;rxﬁ [v] is rationally closed as shown
in the next proposition.

Proposition 15 (Kleene star of periodic series [11, 22]). Let s be periodic series in Nyax.y [Y]-
Series s* is periodic.

However, ane;x,y [v] is not a complete dioid: series s, = (n x n)y™ with n € N belongs

to Njy , [Y]. but @,y sn does not belong to NPT - [v].

ax.

Remark 10. Software tools to manipulate periodic series in Nyaxy[Y] exist, e.g., [13].

2.7.2. Rationality

Definition 27 (Rationality). A series s in Nyaxy[Y] is said to be rational if s belongs to the
rational closure of {€, e,y,1}. A matrix with entries in Nyay [ Y] is said to be rational if all
its entries are rational.
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2.7.3. Realizability

Definition 28 (Realizability). A matrix S in Nyaxy[Y]™*P is said to be realizable if S admits
a (B, C)-representation with respect to {¢, e, 1,v}.

2.7.4. The Fundamental Theorem in N, ,[v]

Theorem 8 ([1, 8]). Let S be a matrix in Nypax [Y]™*P. The following statements are equiv-
alent:

1. S is periodic
2. S is rational

3. S is realizable
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In this chapter, the dioid /5y based on the set of residuated mappings over Nppax is intro-
duced. Furthermore, the concepts of causality, periodicity, and rationality are defined in the
dioid Fz _and some properties of the dioid F5 are also proved. The dioid F is used
in§4as the dioid of coefficients to develop a d101d ‘of formal power series similar to the dioid

Ninaxy [Y]-

Definition 29 (Dioid Fy_ ). The complete dioid Fiy__is the set of residuated mappings over
Npax endowed with the operations ® and ® defined by

Vi, f2€ Fy y VX €Npa, (f@®f2)(x)="f (x)®F(x)
fi®f,="fiof

The order in the dioid meaX is induced by the order in Ninax i.€.,
Vi, fo e meax, f1<f) e Vxe Nmax, fi (X) <f (X)

According to Prop. 5, the previous definition is valid. In the next two lemmas, a simple
characterization of the residuated (resp. dually residuated) mappings over Ny, is derived
from Th. 3 (resp. Th. 4) using particular properties of Np,. These two lemmas are used to
check whether a mapping over Ny, is residuated or dually residuated.

Lemma 16. Let f be a mapping over Npay. The following statements are equivalent:
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3. Dioid ]:Nmax

1. T is residuated

2. f(e) = ¢, f is isotone, and @, . f (n) = T (T)

Proof. 1 = 2: By definition, f is isotone. Besides, according to Th. 3, f (¢) = ¢ and f is lower
semi-continuous. Therefore,

@ f(n) :f(@n) =f(T
neN neN

2 = 1: According to Th. 3, it remains to prove that f is lower semi-continuous. As f is
isotone,

VA S Nipay (69 ) D f(x
XeX xeX
In the dioid Ny, VX S N,

@ f(x) > f(x) :f(@x)

xeX xeX

maxs X = @),y X is either in X or equalto T. If x € X,

Otherwise, x = T. Hence, for all n € N, there exists x,;, € X such that x,; > n. Then,

D)= Pf(n)=@f(n)=1(T)=F(x) =f<69><>

xeX neN neN xeX

Therefore, f is lower semi-continuous. O

Lemma 17. Let f be a mapping over Nyay. The following statements are equivalent:
1. f is dually residuated
2. T(T) =T and f is isotone

Proof. 1 = 2: Mapping f is dually residuated. By definition, f is isotone. Besides, according
to Th. 4, f(T) =T.

2 = 1: According to Th. 4, it remains to prove that f is upper semi-continuous. As f is
isotone,

YA S Ninax, (/\x></\f

xeX XEX

In the dioid Nypay, YA S Npjay, X = /\ex X belongs to X.

A\ f(x) < (%) =f</\x)

xeX xeX

Therefore, f is upper semi-continuous. O
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As the dioid JF__ is complete, right-division is defined in Fiy and f4fy corresponds
to the greatest solution in meax of f ® fi < f;. The previous lemma leads, under some
conditions, to a simple expression for right-division in F_ .

Lemma 18. Let f1,f; be two mappings in Fiz  such that fy (T) = T. Then,

f2pf1 = F, @)

Proof. Mapping f; is isotone and f; (T) = T. According to Lem. 17, f; is dually residuated.
As f% is residuated (see Rem. 1), f% belongs to Fry . Let g be a mapping in Fy_ . Then,

gOf <hHh=ga"hOf <Hof
=g<fHef asf®f >Id
Furthermore,

9<Hhefl=g@fi<Hhef ®f
=g®f ﬁfzasf%®f1 <Id

Hence, g® 1 < f, & g < 2 ® ). Thus, f2ff; = L, @ }. O

3.1. Projection on Fy__

In this section, a projection, denoted Pr’, from the set of isotone mappings over Ny to
FR,,, is introduced. This allows us, in particular, to prove the distributivity of F .

Proposition 16. Let f be an isotone mapping over Npax. There exists a greatest mapping in
JR,,, denoted PR (f), such that Pr® (f) < f. Mapping Pr™ (f) is defined by

eifx =¢
Vx € Npay,  Pr7(f) (x) = f(x) ifx € Ny
@neNf(n) l'fX =T

Proof. The mapping g over Ny, is defined by

cifx =¢
VX € Nmax, g (x) =4 f(x) ifx e Ny
@Ppen f(n) ifx =T

Clearly, g is isotone, g (¢) = ¢, and

Dagm)=Dfn)=g(T)

neN neN
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Therefore, according to Lem. 16, g is residuated. Furthermore, as f is isotone,

g(T)=@Df(n) <f(T)

neN

Then, g < f. Let h be a residuated mapping less than or equal to f. For x = ¢, h(e) = ¢ =
g (e). Forx e Ng, h(x) < f(x) = g(x). Forx =T,

(T =@hm)<DFfm) =9g(T)

neN neN

Hence, h < g. Thus, g is the greatest residuated mapping less than or equal to f. O

Remark 11. The previous proposition is reminiscent of Prop. 3. However, as shown in Ex. 9,
the set of isotone mappings over Ny is not a complete dioid. Of course, it is possible to
reformulate Prop. 3 in terms of lattices (see [2, 3]). Then, the previous proposition is a direct
consequence of the lattice-version of Prop. 3, as the set of isotone mappings over Ny, and
Fx,,, are complete lattices.

The next lemma investigates the behavior of Pr”* with respect to @.

Lemma 19. Let f1, f; be two isotone mappings over Niex. Then,
prt (fr@f,) = prt (f1) ® prt (f2)
Proof. This comes directly from the definition of Pr* (f) in Prop. 16. O

As the dioid iy is complete, left-division is defined in iy and f; §f corresponds to

the greatest solution in Fy of f; ® f < f,. The projection Pr* leads to a simple expression
for left-division in Fiy__similar to the one obtained for right-division in Lem. 18.

Lemma 20. Let fy, T, be two mappings in Fgy__ .
14y = PR (5 o f,)
Proof. Let g be a mapping in Fy_ .

fil®g=<f, & Vxe Ninax, f1 (g(x)) < f2(x)
< Vxe Nmax) g (X) < fg (fZ (X))

sg<fiof

As fﬁi does not belong to fy__, fﬁi o f may not belong to Fry_ . Then, as fq o f; is an isotone

mapping over Ny, Prop. 16 leads to

f]@Qﬁfz@QSPrRO:qofz)
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In a complete dioid D, according to Lem. 2,

xeX xeX XEX XeX

ay (@ x> > @ akxand (@ x> fa > @ xfa

with a € D and X € D. In the complete dioid Ff__, equality holds under some conditions
as shown in the following lemma.

Lemma 21. Let H be a finite subsets of Fy__ and let 1, be two mappings in Fry_  such
that f, (T) = T. Then,

1% (@ h) = P fikh and (@ h) #r = @ hf,

heH heH heH heH

Proof. First, left-division is considered. As fg is isotone,

heH heH

VX € Npaxy, P (h(x)) < (@ h (x))

As H is finite, for all x € Ny, there exists hy € H such that @5, h (x) = hy (x). Then,

VX € Npax, T (69 h(x)) =i (hy(x)) < D} (h(x))

heH heH
This implies
fqo (@h) = @f%oh
heH heH

Consequently, according to Lem. 19 and Lem. 20,

f1y (@h) = PR (fﬁ o (@h))

— prR ((—B f oh)

heH

- @ P (fion)

heH

=@ fikh

heH
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Second, right-division is considered. According to Lem. 18,

CREN I

=P (h ® fg) by distributivity
heH

= P htf,

heH

O

The projection Pr’ is also used in the expression of the greatest lower bound in the com-
plete dioid Ffy__ . The greatest lower bound over finite subsets has already been addressed in
Prop. 1. The next proposition is more general and deals with infinite subsets.

Lemma 22. Let H be a subset of Fy_ . Then, Nney h = Pr® (g#) where gy, is an isotone
mapping over Ny defined by

Vx € Nmax» IH (X) = /\ h (X)
heH

Proof. Letf € Fy_ .

f< A\hevheH, f<h
heH

< VheH,Vx € Npay, f(x) <h(x)
& Vx € Npay, f(x) < gy (%)
< f<gy

As gy is an isotone mapping, f < gy < f < Pr’ (gy). Therefore, /\;cyy h = Pr’* (gu).
U

The previous lemma leads to the distributivity of F .
Proposition 17. The complete dioid Fy_  is distributive.
Proof. As ]:Nmax is a complete dioid, it remains to check that, for all f € ]:Nmax and H < meaX,

f@(/\h) = A\ (f@h) and f A (@h) =P (fah)

heH heH heH heH
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3.2. Subdioid F

To prove these equalities, we use Lem. 22 and the distributivity of Niax- Only the case x = T
is not obvious.

(f(-D (/\h)) M=FfMa®P /\h(n) see Lem. 22

heH neN heH

(f A (@ h)) (T)y=1(T) A (@ h) (T) see Prop. 1
heH heH

3.2. Subdioid Fx

In this section, a subdioid of ]:Nmax’ denoted F, isomorphic to Ninax is introduced. The
mapping A from Ny to Ny is defined by A (x) = L; (x) = Tx. According to Cor. 1, A
belongs to iy and its residual AF is often denoted A* (x) = 1%x.

Lemma 23. The set Fo = {e, T,Aj withj € No} endowed with the op_erations @ and ®
defined over Fry_is a complete selective subdioid of Fy__ isomorphic to Nyax. Furthermore,

39



3. Dioid meaX

there exists a single isomorphism, denoted ¢, from Ny to Fa. Mapping ¢ is defined by

eifx =¢
VX € Nimaxy, ¢ (x) =< A¥ifx e Ny
Tifx=T

Proof. The zero element ¢ and the unit element e = A° of Jy,,. belong to Fz. Obviously,
Fa is stable for @ and ®. Then, Fx is a subdioid of meax. Furthermore, F, is stable under
infinite sums. Thus, F4 is a complete subdioid of Fy .

The mapping ¢ from Npax to Fa defined before is an isomorphism. Therefore, Npax and
Fa are isomorphic dioids. Hence, as Ninax is selective, Fy is selective.

Finally, the uniqueness of ¢ is checked. Let 1 be an isomorphism from Npnax to Fa. Then,
P (&) = ¢, as P is a D-morphism. We now show by induction over k € Ny that { (k) = A¥.
This equality holds for k = 0, as 1V is a ®-morphism. Let us assume that the equality holds
for a given k in Np. As 1 is isotone, P (k + 1) > A¥. Equality ¥ (k + 1) = A* = ¥ (k)
is absurd, as 1 is injective. Then, P (k + 1) > A**1. Inequality P (k 4+ 1) > A**2 is also
absurd, as 1) is surjective. Thus, P (k +1) = A**'. As is isotone, P (T) > A for all
j € Np. Consequently, ) (T) = T. Hence, P = ¢. O

The next lemma makes explicit a nice property of mappings in Fa.
Lemma 24. Let a in Fp and f, g in meaX.
a(fAg)=af Aag
Proof. There exists k € Ny, such that, for all x € Ny, a (x) = kx. Then,
¥X € Nimax,  (a(f A g)) (x) =k (f(x) A g (x))
= kf (x) A kg (x)

= (af) (x) A (ag) (x)
= (af A ag) (x)

3.3. Quasi-Causality and Causality

In this section, the concepts of quasi-causality and causality are introduced for residuated
mappings over N,y (i.e., mappings in Fy_ ).

Definition 30 (Quasi-causality). A mapping f in Fg__ is said to be quasi-causal if f = € or
if there exists Y € Ny such that

f(x)=¢ifx<Y
f(x) >xifx>Y
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3.3. Quasi-Causality and Causality

The set of quasi-causal mappings in Fg_  is denoted }-I;TLmax

Lemma 25. Endowed with the operations ® and ® defined over ]:Nmax’ ‘7:%
subdioid of Fiy

is a complete

Proof. The zero element and the unit element of iy  are quasi-causal. For % < fg

@y h is obviously quasi-causal. Let f; and f; be two mappings in }% . Iffyor fpis
equal to ¢, then f1 ® f; = ¢ is quasi-causal. Otherwise, Y7 and Y are elements in Ny defined
by

Vi = A\ € ol (00> €} and Ya = A\ fr € Moalfa (0 > €}

Then, Y = A\ {x € Npax|f2 (x) > Y]} belongs to Np, as f2 (Y1 ®Y2) = Y1 @Y, > Yq, and

{ (fi®f) (x) =cifx <Y
(fi®1f2) (x) = f2(x) =xifx =Y

Thus, .7-"% is closed with respect to ®. Hence, .7-"% is a complete subdioid of meX. O

max max

Definition 31 (Quasi-causal projection). The quasi-causal projection, denoted Pr., is a map-
ping from F_ to ]:+ deﬁned as the residual of the canonical injection from F&  to

max

F Ny

As FX is a complete subdioid of R, the canonical injection from fg to Fr, . 1s
residuated (see Prop. 3). Hence, the prev10us definition makes sense. Let f be a mapping in

FR,,.- Mapping Pr., (f) is the greatest quasi-causal mapping (i.e., in .7-" + ) less than or equal
to f. To calculate Pr . (f), the subset A of Ny, is defined by A = {X e Nmax|x > f( )} If

A is not finite, Pry (f) = . If A is empty, Pry (f) = f. Otherwise, Z = @, 4 1a belongs
to Ny and Pr (f) is defined by

) eifx<Z
Pr+(f)(x)—{ f(x) ifx>Z

As }% is a complete dioid, the greatest lower bound A*, the left-division %, and the

max

right-division ¢, are defined in ]—% . Furthermore, according to Rem. 6,

max

VH S FL /\+h = Pr, (/\ h)

heH heH
Vf,ge Fy , fi.g="Pr.(fkg) and gf f = Pr, (gff)
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3. Dioid ]:Nmax

Lemma 26. The operation A" in F=  coincides with the operation A in Fy;  over F= .
Nmax max Nmax

Formally, let H < fgmax, /\f:eq{ h = Aney -

Proof. To prove the previous equality, it is sufficient to show that /\; ., h is quasi-causal. If
¢ € H, then /\heH h = ¢ is quasi-causal. Otherwise, for all h € H,

Yy = /\{x € Npax |1 (x) > x} e Ny

IfY = T, for all x € Ny, there exists h € H such that h (x) = €. Then,

Vx € Ny, (/\h) (x):/\h(x):e

heH heH
Furthermore,
(/\h) M= (/\h(n)> =¢
heH neN \he#H

Hence, /\pey 1 = € is quasi-causal.
Otherwise, Y € N,

Vx <Y, (/\h) (x):/\h(x):s

heH heH
Vx >=Y,x #T, (/\h) (x) = /\h(x) > X
heH heH
= (AW -@ (Are) = @n-
heH neN \he# n=Y
Hence, /\j ¢y h is quasi-causal. O

Definition 32 (Causality). A mapping f in Jy__ is said to be causal if f = ¢ or if, for all
X € Niax, T (X) > x. The set of causal mappings in Jr,,, is denoted ]—%Jr .

Lemma 27. Endowed with the operations ® and ® defined over Fy | }‘§+ is a complete
subdioid of Fy__ .

Proof. The unit element and the zero element of Ffy__ are causal. For H < .7'“% -, @hep N
is obviously causal. Let f; and f; be two mappings in .7-"% * . If f1 or f is equal to €, then
f1 ® f2 = € is causal. Otherwise,

Vx € Nmam (f] X fz) (X) > T (X) > X

Thus, }% * is closed with respect to ®. Hence, }% * is a complete subdioid of F N O

max
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3.4. Periodicity

Definition 33 (Causal projection). The causal projection, denoted Pr ., is a mapping from
IR, fo FIT defined as the residual of the canonical injection from .7-"Jr+ to Fy,,

max

As .7-" % is a complete subdioid of JR,,, the canonical injection from .7-"% * to IR, 18
re51duated (see Prop. 3). Hence, the prev10us definition makes sense. Let f be a mapping in
JFR,,.- Mapping Pry (f) is the greatest causal mapping (i.e., in .7-" Ry ) less than or equal to

f. To calculate Pr . (f), the subset A of N,y is defined by A = {X e Nmax|x > f(x } If A
is not empty, Pry (f) = €. If Ais empty, Pro (f) = f.
As fgg * is a complete dioid, the greatest lower bound A", the left-division % 44> and

max

the right-division ¢, , are defined. Furthermore, according to Rem. 6,

VH S Rl /<+h = Pry, (/\ h)

heH heH
Vfge Fi ', R, g="Pri(fyg) and gf  f=Pr. (gff)

Lemma 28. The operation AT in fgg * coincides with the operation A in IR, over fg +
max max

Formally, let H = .7-"++ /\he?—[ h = /\he?—[ h.

Proof. To prove the previous equality, it is sufficient to show that | ey his causal. If € € H,
/ey h = € is causal. Otherwise, for all h € #H and for all x € Npyay, h (x) > x. Then,

vx # T, (/\h)(x)=/\h(x)>x
heH heH
(A0 () - @n
heH neN \heH neN

Hence, /\jcy N is causal. O

3.4. Periodicity
In this section, the concept of periodicity is introduced for mappings in JFg_

Definition 34 (Periodicity). A mappingf in Fyy_ is said to be periodic with respect to X € No
and w e N if

Vx > X, f(wx)= wf(x)

A mapping f periodic with respect to X and w is completely defined by its values f (k)
with e < k < wX. The following lemma makes explicit a property of periodic mappings,
which plays an essential role in §4.
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3. Dioid meaX

Lemma 29. Let f be a mapping in Fy_  periodic with respect to X and w. Then,
FAXTC = AVFAX

Proof. If x = ¢,
fAXTY (6) = £ = AYTAX ()

Otherwise, Xx > X. Therefore,

fFAXT® (x) = f (WwXx) = wf (Xx) = ACTAX (x)

3.4.1. Calculation with Periodic Mappings

Next, properties of periodic mappings with respect to operations @, A, ®, ¥, and # is
investigated.
Sum of Periodic Mappings

Proposition 18 (Sum of periodic mappings). Let f1 (resp. f2) be a mapping in Fy__ periodic
with respect to X1 (resp. X3) in Ny and wq (resp. wy) in N. Mapping f1 @ f; is periodic with
respect to X = X7 @ Xz and w = lem (w1, w;).

Proof.

Vx =X, (fi®fz) (wx) = f (wx) ®f (wx)
wfy (x) ® wf; (x)

w (f] 6—) fz) (X)

Greatest Lower Bound of Periodic Mappings

Proposition 19 (Greatest lower bound of periodic mappings). Let f1 (resp. f2) be a mapping
in Fg, _ periodic with respect to X; (resp. X3) in No and wy (resp. w3 ) inN. Mapping f1 A f;
is periodic with respect to X = X1 @ X; and w = lem (w1, wy).

Proof. According to Prop. 1,

Vx € Npax,  (f1 A F2) (x) = 1 (%) A 2 (x)
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3.4. Periodicity

Hence,

Vx =X, (f1 A ) (wx) = f1 (wx) A 2 (Wx)
= wfy (x) A wfy (x)
= w (f1 (x) A f2(x)) see Rem. 4
= w (f1 A f2) (x)

Product of Periodic Mappings

Proposition 20 (Product of periodic mappings). Let f1 (resp. f2) be a mapping in Fy_
periodic with respect to Xy (resp. X3) in Ny and w1 (resp. w;) in N. Mapping f1 @ f, is
periodic with respect to

X — 0 iffz = £
X ® /\ {X € Nmax“:z (x) =Xy } otherwise

w = lem ((U] y wz)

Proof. If f; = ¢, then f; ® f; = ¢ is periodic with respect to 0 and w. Otherwise, by
periodicity, there exists x € Ny such that f; (x) > Xj. Therefore, X belongs to Ny. For
x > X,

(ﬁ ®f2) (wx) =f; ((,Ufz (X)) asx > Xy
=w (f] ®f2) (X) as (X) > X

Left-Division of Periodic Mappings

In the following, the periodicity of f §f; is investigated when f; and f; are periodic map-
pings in Fy .

Example 14. Let f1 and f; be two causal periodic mappings in Fy__ defined by
) =4 XT3 g 0 = x
Tifx>=3
Then,

x ifx < 2

(F1%F2) (x) = P® (] 0 £2) (x) = { i 2

Therefore, mapping f1 Xf, is not periodic.
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3. Dioid ]:Nmax

Ex. 14 shows that the periodicity of f; and of f, does not imply the periodicity of f7 %f;.
From now on, we focus on the quasi-causal case. In the following, we investigate the period-
icity of f1%, f2 when fy and f; are quasi-causal periodic mappings in Fi; . First, the effect
of the periodicity of f on its residual f* is examined.

Lemma 30. Let f be a periodic (with respect to X and w) mapping in Fg,__ . Then,
vy = £(X), fF(wy) = wff (y)
Proof.

Yy > f(X), f(wy) =@ {x € Nnulf (x) < wy}
=P {x = wX|f (x) < wy}
=w@ {x = X[f(x) <y}
=w@ {x € Nna|f (x) <y}
= wf* (y)

O

Proposition 21. Let 1 (resp. f2) be a quasi-causal mapping in F__ periodic with respect
to Xy (resp. X3) in Ng and w1 (resp. wy) in N. Mapping f1 X} f; is periodic with respect to
X=X ®X; and w = lem (w1, wy).

Proof. According to Lem. 20, f1 §f; = Pri (fl]i o fz). Then,
fiy, fa = Pr (fisf2) = Pr, (P (fhof2))
In the following, two cases are distinguished.

First Case: We assume that, for all Z € Ny, there exists z > Z such that f; (z) > f; (z). If
(f‘} o fz) (2) >z,

f2(2) > (ﬁ off o fz) (2) = f1 (2) > 2 (2)

This is absurd. Then, (ft]1 o fz) (z) < z. Hence, for all Z € Ny, there exists z > Z such that
Prik (fﬁi o fz) (z) < z. Then,

fiyfo = Pry (PR (fofy)) = e

Mapping 1}, f; is periodic with respect to X and w.
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3.4. Periodicity

Second Case:  We assume that there exists Z € Ny such that, Vx > Z, f; (x) < f; (x). By
periodicity, Vx > X, f1 (x) < f, (x). Hence,

Vx> X, <f§i o fz) (x) > <f§i o ﬁ) (x) > x
This leads to
vx =X, (fix.f2) (x) = (1“%i o fz) (x)
Thus,
Vx =X, (A%, f2) (wx) = (fo fz) (wx)
= £} (wf; (x)) asx > X > X,
As, for x > X, f3 (x) > f1 (x) > f1 (X1), Lem. 30 leads to
Vx > X, (ﬁ §+fz) (wx) = w (f%i o fz) (x)
=w (f1},f2) (x)
Mapping 1}, f3 is periodic with respect to X and w. O
Right-Division of Periodic Mappings
In the following, the periodicity of f,#f; is investigated when f; and f; are periodic.
Example 15. Let f1 and f; be two causal periodic mappings in Fgy__ defined by
fi (x) = { xifx <3 and f; (x) = x
Tifx >3

Then,

x ifx <3

(f2#1) (x) = (2®5) (x) = { i3

Mapping f,4f1 is not periodic.

Ex. 15 shows that the periodicity of f; and of f; does not imply the periodicity of f¢f;.
From now on, we focus on the quasi-causal case. In the following, we investigate the period-
icity of f2¢ f1 when f; and f; are quasi-causal periodic mappings in IR, Next, for a dually
residuated mapping f, the effect of the periodicity of f on its dual residual * is examined.
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Lemma 31. Let  be a dually residuated periodic (with respect to X and w) mapping in Fg__
such that f (X) # T. Then, f is periodic with respect to 1f (X) and w.

Proof. As f is dually residuated, f # €. Furthermore, f (X) # T implies 1f (X) € Ny. Then,

vy > 1£(X), f(wy) = /\ {x € Nnulf (x) > wy}
/\{x > wX|f (x) = wy}
= w A {x > X|f (x) > y}
w/\{xeNmaXH(x) >y}
wf’ (y)

g

Proposition 22. Let fy (resp. f2) be a quasi-causal mapping in F__ periodic with respect to
Xy (resp. X3) in Ny and wq (resp. w3 ) in N. Mapping 24 f1 is periodic with respect to

_ ) e@Thi (Xi®Xy) iffi (X)) # T
e ® 11 (/\ {x € Npax[f1 (x) = T};ﬂ) otherwise

w = lem (w1, wy)

Proof. If f1 = ¢, fy¢, f1 = T is periodic with respect to X and w. In the following, we
assume that f; # e. As f; is a non-zero quasi-causal mapping, f1 (T) = T. Then, according
to Lem. 18,

fof , f1 = Pry (fa6f1) = Pry. (fz ®f%)
Let Y = A {x € Npa|f1 (x) = T}. In the following, three cases are distinguished.

First Case: We assume that, for all Z € Ny, there exists z > Z such that f; (z) > f; (z).
Then, for all Z € Ny, there exists z > Z @ X; such that f; (z) > f; (z). Thus, as f] ® f; < Id,

@)= (hefieh) e

Asfy # eandz > Z® Xy, f1 (z) > Z. Then, for all Z € Ny, there exists 2’ = f; (z) > Z
such that

(fpf1) () = 12 (£} (2))) < 2/

Consequently, due to quasi-causality, f,¢, f1 = ¢ is periodic with respect to X and w.
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Second Case:  We assume that Y € Ny and that there exists Z € Ny such that, for all
x > Z, 3 (x) > 1 (x). For x > e ® 1f1 (Y#1), f] (x) = Y. Then,

Vx> e@ 11 (YA1),  (f2¢1) (x) = f2(Y)
Consequently,

Tiff(Y) =T

¢ otherwise

Vx = e@ 1 (Y1), (26, 1) (x) = {
Therefore, f2¢, f1 is periodic with respect to X = e ® 1f1 (Y#1) and w.

Third Case: We assume that Y = T and that there exists Z € Ny such that, for all x > Z,
2 (x) > f1 (x). By periodicity, Vx > X1®Xj, f2 (x) > f1 (x). Then, Vx > e®1f; (X; ® X3),
2 (x) > Xj @ X. This leads to

Vx> e @11 (X1 @X2), (Fapfr) (x) = (fz @f%) (x) > (ﬁ @f%) (x) > x
Therefore,

ez e® 1 (G @X), (f2h,f1) () = (Faff1) () = (R F) (v
Hence,

Vx> e@ 1 (X1 ©X2), (faf, 1) (wx) = (fz F

— 1 (w

N———
—~~
€
x
~

3.5. Rationality

The complete dioid Nmax,y [v] has already been introduced in §2.7. It corresponds to the
dioid of isotone formal power series s with coeflicients in Npax and with a single variable y
such that s (k) = € for k < 0. Based on Ny y[Y], a particular class of causal elements in
Fx,.. is presented and the concepts of rationality for mappings in F_ is introduced.

Definition 35 (c-mapping). The x-mapping s associated with a series s € Nyaxy[v] is the
causal element in Fr; defined by

as (x) = N\ {z>xlze Im(s) U {T}}
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A link exists between the periodicity of a series in Nyax[v] and the periodicity of the
associated o-mapping in F_ .

Proposition 23. Let s be a series in Nyayy[Y]. If s is periodic, then o is periodic.

Proof. Depending on the throughput of series s, four cases are distinguished.
s =¢& s = 1 is periodic.

0 (s) = 0: s is a polynomial with the canonical representative (—BE:] ax Y™ such that N €
NOSnm <---<nnande <a; <---<ay=T.IfN > 2 & (x) = T for
x > lan_1. Otherwise (i.e, N = 1), &g = T. Thus, «s is periodic with respect to

Xz{ Tan—1ifN =2 and w =1

eif N =1

0(s) = +o0: s is a polynomial with the canonical representative @Eﬂ axyY™ such that
NeNO<n<:---<nn,ande < a; <--- <an < T. Then, a5 (x) = T for
x > lan. Thus, o is periodic with respect to X = Tay and w = 1.

0 < 0(s) < 4oo: There exist K € Ny and T, v € N such that s (K) € Ny and s (k +v) =
Ts (k) for k = K. For T > x > 1s (K),

o () = A\ {s (k) > x|k € Z}
= A\ {s (k) > x|k > K + v}
=1 A {s (k) > x[k > K}

= Tas (%)

Thus, & is periodic with respectto X = Ts (K) and w = 7.

The concept of rationality in Ffy__ is based on &-mappings.

Definition 36 (Rationality). A mapping f in Fgy_  is said to be rational if there exists a

finite set {r1,...,TN} of periodic series in Nmax,y [y] such that f belongs to the rational
closure of {€,e, &, ..., X }. An expression of f as an element of the rational closure of
{e,e, 0,y .., ey} is called a rational expression of f.

Proposition 24. Let f be a causal periodic mapping in F_ . Then, f is rational.

Proof. Mapping f is a causal mapping in Fiy_: f = ¢ or f(x) > xforallx € Npax. Obvi-
ously, ¢ is rational. Next, the case f (x) > x for all x € Ny, is considered. By assumption,
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3.5. Rationality

f is periodic with respect to X € Ny and w € N. First, f is written as a finite sum of simple
causal periodic mappings in Fg_ .

where the causal periodic mappings f; are defined by

xifx <1

Visuchthat 0 <i< X, fi(x)=
x @ f (1) otherwise

xifx <i
Visuchthat X <i< X+ w, fi(x)=1 wf(i)®xif wi<x < wiwithje Ny
Tifx =T
Second, the rationality of the mappings f; is investigated in each case. If 0 < 1 < X, then
fi = o, where

i—1

ri=@k efi)y (1v)"
k=0

If X+ w > 1> X, two subcases are distinguished depending on L = (1f (1)) ¢ (wi). If
L = ¢, fi = a;, where

i1 M1 .
=@k (@ (K (1) M) (ev™)
k=0 k=0
with M = (wti) ¢ (1f (i)). Otherwise, the discussion is slightly more complicated. First of all,

the particular case corresponding to w = 1 comes down to periodic mappings with w = 2.
Indeed, if w = 1, then f; = f1; @ f,; with causal periodic mappings f1 ; and f; ; defined by

xifx <1
flilx) =4 f(i)flifx =1
T®2f(1) if 1 @21 <x < 3®Jiwithje Ny

xifx <1
21 (x) ={ '

Vf(i) if 1 < x < 2+ with j e Np

Afterwards, we assume that w > 2. Then, f; = ®{‘=0 &y, , With

i1
it = P ky* @ (lwpl) v (wy)*
k=0
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3. Dioid meaX

Example 16. Rational expressions of some particular causal periodic mappings in Fy_ are
presented. First, A = o, @ o, with1y = (2y)* and v, = 1(2y)*. Second, the causal
periodic mapping g defined by

x ifx <4
g(x) =13 7®3 if4®3 <x <7Q3 withj € N,
Tifx=T

admits the rational expression &, ;, with

e@d 1y ®2y* @3y @6y* (3y)*
e@®ly @2y’ @3y  @7v* (3y)*

T

T2
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In this chapter, the dioid /5, [v] is investigated. This dioid is built by analogy with the
dioid Nypay [ Y] However, the coefficients of the formal power series belong to Fx,,, instead

of belonging to Niax. The main objective of this chapter is to obtain a fundamental theorem
in the dioid Fiy . [Y] similar to the one in the dioid Nyaxy [Y] (see Th. 8).

Definition 37 (Dioid Fy | [Y]). The distributive dioid Fiy _  [v] is defined as the dioid of
isotone formal power series in 'y with coefficients in the distributive dioid Fy_  equal to ¢

over {k € Z|k < 0}.

According to Prop. 9 and Lem. 14, the previous definition is valid. By definition, a series s
in Fy, ., [v] is an isotone mapping from Z to 7y such that s (k) = ¢ for k < 0. Then,

s (k) (x) denotes the value in Ny, of the mapping s (k) at x € Ny, Next, an alternative
representation for series in Fiy _ [v] is introduced.

Definition 38 (Slicing mapping \p). The slicing mapping\p is a mapping from Fy__ [y] to
the set of mappings from Nyax to Npay y[Y] defined by

Vs € Py, VL VX € Nua, ¥ (s) (%) = P s (k) () ¥
keZ

or, equivalently,

Vs € meaX,‘y [h/]]) Vx € NmaX) Vk € Z) P (S) (X) (k) =S (k) (X)
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Remark 12. Basic properties of the slicing mapping\p are

Vs e F YL VX E Ny 1 (v5) () = 1 (5) ()
P (85) (x) = T (5) (x)

Lemma 32. Let s be a series in Fy, [v]. The mapping \ (s) from Ninax 20 Ninaxy[v] is
residuated.

Proof. This proofis based on Th. 3. For all k € Z, as mapping s (k) is residuated, s (k) (¢) = ¢
and s (k) is lower semi-continuous. Then,

P(s)(e) =@Ds (k) () v  =¢

keZ
VX Nmaxa P (S) (@ X) = @S (k) (@ X) yk
xeX keZ xeX

=D D sk )"
kEZ xeX

=D (s) ()
XEX

Hence, 1 (s) is residuated. O

The previous lemma shows that the slicing mapping 1 is actually a mapping from fy_ vl
to the set of residuated mappings from Ny, to Nmax,y [v], denoted Fg (Nmax, Nmax,y [h/]])

Lemma 33. The slicing mapping \p from meax,y [v] to Fr (Nmax, Ninax,y [h/]]) is bijective. The
mapping Y= from Fr (Nmax, Nmaxy [Y]) to Fpury [Y] is defined by

VS € 7k (Nmax; Nmaxy [Y]) , Vk € Z,¥x € Ninaw, ' (S) (k) (x) = S () (k)
Furthermore, mappings \p and ™" are isotone. Hence, \ is residuated.

Proof. Let ¢ be the mapping from Fy (Nmax, Nmax’v [[y]]) to meax’y [] defined by

VS € Fr (Nmaxs Nmax,y [Y]) Yk € Z, VX € Nppa, ¢ (S) (k) (x) = S (x) (k)
First, we check that ¢ is well-defined. For S € Fp (Nmax, Nmax’v [[y]]) and k € Z,

o (S) (k) (e) =S(e) (k) =e(k) =

VX S Niax, ¢ (S) (k) (@x) =S (@x) (k)
xeX
= DS (k)
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Therefore, ¢ (S) (k) is residuated, i.e., ¢ (S) (k) belongs to F__. Furthermore, for k,j € Z,

k>j=VxeNnw S k) >S®Kx) ()
= VX € Ny () (k) (%) = ¢ (S) (§) (%)
= ¢ (S) (k) = $(S) ()
k <0=Vx€Npnx, S(x)(k)=
= VX € Npa, W (S) (
= Vx € Npa, W(S)(k)=c¢

Hence, ¢ (S) belongs to Fy_ - [Y].
Second, d o = Id and P o ¢ = Id. Then, V is b_ijecti\E and ™! = ¢.
Finally, let sq,s; € ]:me’y[[y]] and S$1,S; € Fx (me,Nmax,y [[y]]) such that S1 = (s1)
and S; = VP (Sz).
st=1"" (S1) =52 =" (S2) & VK € Z, VX € Ninay 51 (K) (x) = 52
& Yk € Z,Yx € Npay, S1 (%) (k) = S; (x) (k)
< S1=YP(s1) =S2 =V (s2)

Thus, mappings 1\ and " are isotone. O

The next lemma investigates how the operations @, ®, and A in meax Y [v] interact with
the slicing mapping 1.

Lemma 34. Let s1,S2 be two series in ]:Nmax,v [v]- Then,
Vx € Nmaxa U (31 @® 32) (X) =1 (31) (X) eV (SZ) X)

(
(s As2) () = (s1) (x) A (s2) (%)
b (s1@52) () = P (s1) (W (2) (%) () ¥

JEZ
Proof. For the sum @,

Vx € NmaX) ) (31 @® SZ) (X) = @ (31 S SZ) (]) (X) Yj

JEZ

=@ (s1G) (x) ®s2(G) (x)) ¥
JEZ

= @Psi1 () Y oPDs26) x)7
ez JEZ

=1 (s1) (x) @V (s2) (x)

55



4. Dioid Fry [V

For the greatest lower bound A,

VX € Niax, W (81 A 82) (%) = C‘B (s1 A s2) () (x)Y

Therefore,

Vx € Nmax>vj €Z, (31 A 32) (X) (]) =8 (]) (X) A S2 (]) (X)

Furthermore,
Vx € Nmax, Yj € Z, (W (s1) (x) AW (52) (%)) () = W (s1) (%) (G) A ¥ (s2) (%) ()
=51 (j) (x) A s2(j) (%)
Thus,
VX € Nimayy W (s1 A 52) (%) =W (s1) (x) A W (s2) ()
For the product ®,
Vx € Nmax» ) (31 &® SZ) (X) = @ (51 ® SZ) (]) (X) Yj
jEZ
=PPDs1(G-V (s2() (x)) ¥
jEZ 1eZ
=@V (1) (s2(V) (x)) v
leZ
=PV (s1) (W (s2) () V)Y
leZ
O

Next, a simple example illustrates the intuitive graphical interpretation of the slicing map-
ping.
Example 17. Let s be a series in F5, _ [v] defined by

€ ifx=c¢
s=y@®Ffy’ withf(x) ={ 3[5] ifxeNp
T ifx=T
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They-support of s is {1,3}. Then, s is a polynomial with the canonical representative y@®fy>.

The mapping P (s) in Fr (Nmax, Nmax,y [Y]) is defined by

-

€ ifx =c¢

Xy ifx = 3 withj e Ny
11)(5)(7‘)={ xy ®2xy®  ifx = 1®3 withj e Ny
xy ®Ixy?  ifx =2®3 withj e Ny
L Ty ifx =T

A graphical representation of series s is drawn in Fig. 4.1. The expression s = y ® fy3
leads to the planes (x, s (k) (x)) fork € Z (i.e., corresponding to the 2D-representation of the
mapping s (k) in Fy__). The series (s) (x) provides the planes (k, s (k) (x)) forx € Nmax
(i.e., corresponding to the 2D-representation of the series P (s) (x) in Npaxy[Y]): ¥ (s) (x)
corresponds to the slice of the series s atx € Niax-

Figure 4.1.: Series s = y @ fy?>
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4. Dioid Fry [V

4.1. Subdioid Fa[Y]

Definition 39 (Dioid Fa [Y]). The distributive dioid Fa,[Y] is defined as the dioid of iso-
tone formal power series in 'y with coefficients in the distributive dioid Fa equal to € over

{ke Z|k < 0}.

According to Prop. 9 and Lem. 14, the previous definition is valid. Obviously, Fa [Y]
is a subdioid of the dioid Ffy [v]. According to Lem. 23, Fj is isomorphic to Npay.
Then, Fa[v] is isomorphic to Nyaxy[Y]. An isomorphism @ from Nyaxy[Y] to Fay[v]
is defined by, Vs € Nmax,y [v], @ (s) = ¢ o s, where ¢ is the isomorphism from Ny, to
Ja mentioned in Lem. 23. Therefore, all results presented in § 2.7 are transposed in Fp Iyl
through the isomorphism @. In particular, the concepts of periodic series and throughput are
directly extended to Fa y[v]. Furthermore, the calculation rules for periodic series developed
in § 2.7 are also valid in Fa  [v].

The following lemma illustrates a link between the slicing mapping 1 and the isomorphism
@ from Niaxy [ Y] to Fay [

Lemma 35. Let s be a series in Nyax[Y]. Then, ¥ (P (s)) (e) = s.

Proof. First, notice that, for all x € Ny, ¢ (x) (¢) = x where ¢ is the isomorphism from
Npax to FaA mentioned in Lem. 23. Then,

Example 18. Lets =y @ A3y3, a series in Fay[Y]. The mapping \ (s) is defined by

eifx =¢
b (s) () =4 x(y@3y?) ifxe N
Tyifx=T

Series s is associated with seriesy @ 3y in Ninax,y[Y]- A graphical representation of series s
is drawn in Fig. 4.2.
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4.2. Quasi-Causality and Causality

Figure 4.2.: Series s = y @ A3y?>

4.2. Quasi-Causality and Causality

The concepts of causality and quasi-causality introduced in § 3 for F_  are extended to

the dioid F5_  [v].

Definition 40 (Quasi-causality). A series s in Fiy . [y] is said to be quasi-causal if s (k) is
quasi-causal for allk € Z.

The set of quasi-causal series in Fgy . [y] is denoted ]—% N [v]. In the next lemma, the

algebraic structure of ]—% N [v] is investigated.

Lemma 36. Endowed with the operations @ and ® defined over F . [v], .7-"% ' y[h/]] is a
complete subdioid of Fy . [Y]-

Proof. This is a direct consequence of Lem. 12, Lem. 25, and Prop. 9. O

Definition 41 (Causality). A series s in Fy [v] is said to be causal if s (k) is causal for
k e Z.
A matrix with entries in F_ y[h/]] is said to be causal if all its entries are causal series.
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4. Dioid Fry [V

The set of causal series in Fy_ [v] is denoted ]—% + y[[y]]. In the next lemma, the alge-

braic structure of .7-"% + y[h/]] is discussed.

Lemma 37. Endowed with the operations @ and @ defined over Fy_ [v]. .7-"% + y[h/]] is a

maxyY

complete subdioid of 7y [Y]-
Proof. This is a direct consequence of Lem. 12, Lem. 27, and Prop. 9. O

According to Prop. 3, the canonical injection from .7-"% + y [v] to T, [¥] is residuated.

Its residual is named causal projection and denoted Pr. ;. For s € Fiy  _ [v], Pri+ (s) is the
greatest causal series less than or equal to s. Furthermore, the causal projection is defined by

Vs € Fy,.y[Y],  Pris(s) (k) =Priq (s(k))
A simple characterization of }% * y[[y]] is based on the mapping .

P;‘oposition 25. Let s be a non-zero series in Fy [Y]- The following statements are equiv-
alent:

1. S is causal
2. VX € Npao U (5) (x) > xy*2l)

Proof. 1 = 2: By assumption, s is causal. As s is a non-zero causal series, val (s) € Ny and
s (val (s)) is a causal mapping in Fy__ different from . Consequently,

Vx € Ninaxy 1 (5) (x) = s (val (5)) (x) Y = xy™®)

2 = 1: For all x € Ny, 1 (s) (x) is greater than or equal to xy"(8). First, s (k) # ¢
implies s (k) > s (val (s)). This leads to, for all x € Ny, s (k) (x) > s (val (s)) (x) > x, as
WP (s) (x) = xy"S), Then, for all k > val (s), s (k) is causal. Consequently, s is causal. ]

4.3. Periodicity
The concept of periodicity introduced in § 3 for iy is extended to Fy [v] by analogy
with periodicity in Ny v [Y]-

Definition 42 (Periodicity). A seriess in Fy [v] is said to be periodic if there exist N € N,
periodic mappings f1,...,fN in ]:Nmax’ niy...,nn in Ny, T1,...,Tn in Ny, and v in N such
that

N
s= @ @n)” iy
k=1

A matrix with entries in Fry_ y[h/]] is said to be periodic if all its entries are periodic.
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4.3. Periodicity

The following proposition investigates the periodicity of the causal projection of a periodic
series.

Proposition 26. Let s be a periodic series in Fy__ y[h/]]. The causal projection of s, denoted
Priy (s), is periodic.

Proof. There exist N € N, periodic mappings f1, ..., fn in meax, niy...,nninNg, Try...,TN
in Ny, and v in N such that

N
5= @ (@) fir™
k=1

If, for all j € Z, s(j) is either equal to ¢ or non-causal, then Pri, (s) = ¢ is periodic.
Otherwise, let | be the least element in Ny such that s (]) is a non-zero causal mapping in
]:Nmax' Then,

N
Prii(s)=s(])y ® P sk
k=1
with

o = | ATV >
(ATkYV)* ALkafkynk+LkV with Ly, = [%1 ifng < J

Thus, Pry 4 (s) is periodic. O

Example 19. The seriess = f1 @ (Azy) * f) @® (A3y)* f3 where f1, f2, and f3 are periodic
mappings in Jy__ defined by

rsifx:e

fi(x) =4 3ifx=0,1,2

[ xifx>3

fsifxﬁz

f2(x) =1 5ifx=3,4

[ x ifx =5

((eifx <3

f3(x) =3 703 if4®3 <x <7®3 withj e N
L Tifx=T

is a causal periodic series in Fiy _ [v] drawn in Fig. 4.3.
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4. Dioid Fry [V

Figure 4.3.: Series s = 1 @ (A%y) e (A3y) .

4.3.1. Canonical Representative of Periodic Series

In this section, a canonical representative for periodic series in J y[[y]] is introduced
maxy

based on the associated mapping 1V (s) in Fg (Nmax, Nmax’v [[y]]) The main idea is to use the

existing canonical representative for periodic series in Nyay [ Y] introduced in [22, 23]. First,
the effect of the periodicity of series s on the mapping 1 (s) is investigated in the following
lemma.

Lemma 38. Let s be a series in Jiy [v]. If s is periodic, then

Vx € Npax, U (8) (x) is a periodic series in Nmax’v Iv]
IX € Ny, Jw € N such that Vx > X, (s) (wx) = awn (s) (x)

Proof. There exist N € N, periodic mappings f1, ..., fn in Fg_ ,11,...,nninNo, 71, ..., TN
in Np, and v in N such that

N
s= @ @n)” iy
k=1
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4.3. Periodicity

As 1 is residuated, 1 is lower semi-continuous. Hence,

N
Ve Nna B (5) (%) = DV (A™y")" fiy™) (x)
k=1

According to Prop. 11, to prove the periodicity of 1 (s) (x), it is sufficient to prove the peri-
odicity of P ((A™yY)* firy™) (x). As 1 is lower semi-continuous, Rem. 12 leads to

— +00 . .
Ve Ny (A7) fir™) (0 = D (A" hiy™ ) ()
j=0

oo
= Dty (fy™) (x)
j=0
= (mey")* ¥ (™) (x)
= (tey")" fic () y™
Then, P ((A™yY)* fiy™) (x) is a periodic series in Ny [Y]. Consequently, P (s) (x) is

a periodic series in Nypay [ v]. Furthermore, the mapping fy is a periodic mapping in Fg
there exist Xy € Ny and wy € N such that

max

Vx > Xy, fic(wix) = wifi (x)
Let X = @,l] Xy and w = lem (w1, ..., wy). Then,

Vx =X, W (A" fiy™) (wx) = (1r)* fi (wx) Y™
= w (my")* fi () y™
= wip ((A™")* y™) (x)

Thus,

O

This leads to a unique representative in Jg (NmaX,NmaXW [[y]]) of a periodic series s in
FNpuy Y] obtained from 1 (s) by, first, minimizing w and, second, minimizing X. In the
following, a canonical representative of s is derived from { (s). If {(s) = ¢, then the
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4. Dioid Fry [V

canonical representative of s is €. Next, the case s # ¢ is investigated. There exists Yy € Ny
such that P (s) (Yof1) = e and P (s) (Yo) # €. The mapping  from {x € Npax|x > Yo} to
Q v {40} is defined by

L (x) = o (P (s) (%)
As s is a non-zero periodic series s, (s) (T) = Tyval(s) and X, (T) =0.
Lemma 39. Let s be a non-zero periodic series. The mapping X is non-increasing.

Proof. Let X1,X2 € Ny greater than or equal to Yo. Then, U (s) (x7) and VP (s) (x;) are
different from ¢. Furthermore,

O

Lemma 40. Let s be a non-zero periodic series in Fg_ Y[[y]]. There exists X € Ny such that,
for all x € Ny, withx > X, Xs (x) = Xs (X). Furthermore, a possible choice for X is given in
Lem. 38.

Proof. According to Lem. 38, there exist X € Ny and w € N such that, Vx > X, ¥ (s) (wx) =
w (s) (x). For x € Ny, such that x > X, x = w*x’ with k € Ny and X < x’ < wX. Then,
P (s) (x) = w*P (s) (X'). This implies g (x) = Zg (x'). Furthermore, as \ (s) is isotone,

P (5) (%) < (5) () < b (5) (@X) = wnp (s) (X)
Therefore, £ (x) = L (x') = Zg (X). O

According to Lem. 39 and Lem. 40, there exist Yy, ..., Y[ in Z such that

Y (s) (Yo) # e andp (s) (Yopl) = ¢
o (1 (5) (Yir)) = 0 (W (s) (Yif1)) > o (b (5) (¥p) with 1 < i< L
Vx, suchthat T > x > Yy, o (b (s)(x)) =0o(b(s)(Yr))

By convention, we set Y; 1 to T. The canonical representative of 1 (s) (x) for x > Yp is
denoted py @ gy (TxY"*)*. According to Lem. 38, there exist X € Ny and w € N such that

Vx =X, P (s) (wx) = wi(s) (x)
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4.3. Periodicity

Then,

—0ifpy =cand qx = ¢
M = max ax = max  ay where ay = { deg(px) + 1if qx = ¢ and py # ¢

x>Yo wX>x>Yyp
val (qy) if gy # €

'
V' = lemysy, Vi = lemgxsx-v, Vx

Vi = max vy with0 <i<L
Yig1 AwX>x>Y;

/
v .
T = — max T, | with0<i<L
v Yig1 AwX>xx=Yj

!
i i

’ &
For all x, such that Yi11 > x > Y;, 1 (s) (x) admits a representative px @® qx (T{‘YV ) with
val (gx) = M obtained by developing the Kleene star. Furthermore,

m = min val (px) = min al (p
R (Px) WXoxayy (Px)

Polynomials px and gy admit the following non-canonical representatives:

N gif m = +oo o MV 1
Px = and Gy = s(D) (x)y

h { {\i;] s (1) (x) y* otherwise b 1@4

The polynomials p, qo, . .., qu in F, . [v] are defined by
) egifm =+
- M—1 1 .
lem 8 (1) y" otherwise
M+~ —1 .
) eif x < Yy

k= f J’Yl with f 1(x) =

| 1=@M o awt () s (1) (x) if x > Yy

As s is a periodic series, s (1) with 1 € Z is a periodic mapping in F5__ . Then, p and qy are

/ / *
polynomialsin 7y . [v] with periodic coefficients. Therefore, s’ = p@@tzo (ATky" ) qx

is a periodic series in Fy_ | [v].

Ve e Ny B (5) () =% () () ©ED (r”) ¥ (1) (x)

k=0
Ifm =40, (p) (x) = € = Px. Otherwise,
M—1
VxeNm ¥ () ()= D s ()Y
l=m
= Py
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4. Dioid Fry [V

Therefore,

Vx € Nuo W (5) (x Px@B@(TkY) (qi) (x)

Ifx < Yo, Y (s)(x) =e=1(s) (x). IfY; <x < Yis1,

() 0 =50 (0”) (a1 (0
k=0
i w [M+V/ =1
( S (9 v‘)
k=0 =M

— P @ (1)
= (5) (%)

Furthermore, VP (s) (T) = 1 (s’) (T) comes from the lower semi-continuity of 1 (s) and
P (s’). Then, s = s’ as is injective. The canonical representative of s is

L ! ! *
SZPC'D@(ATkYV) i
k=0
where the canonical representatives of polynomials p, qo, ..., i are considered.
Example 20. For the periodic series s defined in Ex. 19,
(¢ ifx =¢
3ifx=0,1,2

b(s)(x) =1 52y)" ifx=3
IQ7(3Y)* if4®3 <x <7®3 withje Ny

L Tifx=T
Then, Yy = 0 and
+o0 ifx =0,1,2
1_' =
Li(x) = 2 X =3
Tifa<x<T
Oifx=T
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4.3. Periodicity

The canonical representative of s is f1 @ (Azy) Ly ® (A3y) * f3y with

[ eifx=c¢
3ifx=0,1,2

f1(x) =< 5ifx=3
703 if4®3 <x <7®3 withje Ny
[ Tifx=T
( eifx <3

) =4 IX=3 .
10®3if4®3 <x <7®3 withj e Ny
| Tifx=T
( eifx <4

f3(x) =4 1003 ifd®3 <x <7®3 withj e Ny
L Tifx=T

Throughput

Lem. 39 and Lem. 40 allow us to extend the notion of throughput to periodic series in

Vs Ninax,Y [v]-

Definition 43 (Throughput). Let s be a non-zero periodic series in meaX)y [Y]- The through-
put of s, denoted 0 (s), is Ls (X) with X € Ny such that X5 (X) = Xs(x) for x € Ny greater
than or equal to X.

Example 21. For the periodic series s defined in Ex. 19,

Quasi-Causal Periodic Series

The following proposition provides a characterization of quasi-causality for periodic series.
Proposition 27. Let s be a periodic series in Fy_ [y] with the canonical representative
PeD ®1E=0 (A™yY)* qy. The following statements are equivalent:

1. s is a quasi-causal series

2. P, qoy- .., qL are quasi-causal polynomials
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Proof. 1 = 2: If m = 400, p = ¢ is a quasi-causal polynomial. Otherwise,

cifl<m
VieZ, p(l) = s(ifm<1l<M
sM—-1)ifl>=M

As s is a quasi-causal series, p is a quasi-causal polynomial. Furthermore,

cifl<M
VI,GZ, qk(l)= qu)lifM+]<l<M+\/
qu,M+v—1 fl>M+v

with

fo 1 (%) eif x < Yy
)L =
a s(1) (x) if x > Yi

Mapping fg, | is quasi-causal, as s is quasi-causal. Then, gy is a quasi-causal polynomial.
2= 1:ForleZ,

s(l) = p)ifl<M
p@®@L_ Al g (1— |EM]y) ifL =M

Therefore, s is quasi-causal. O

4.3.2. Calculation with Periodic Series

Next, the behavior of periodic series with respect to operations @, ®, A, ¥, and ¢ is inves-
tigated.

Proposition 28 (Sum of periodic series). Let s1 and s be two periodic series in Fy_ y[[y]].
Series s1 @ sy is periodic. If s1 and s; are different from ¢, then

0 (s1 @s2) = min (0(s1),0(s2))
Proof. See § A.1.1. O

Proposition 29 (Greatest lower bound of periodic series). Let s1 and s, be two periodic series
in Fy,..y[Y]- Series s A s; is periodic. If sy and s are different from €, then

0 (s1 A s2) =max (0(s1),0(s2))

Proof. See § A.1.2. O
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4.3. Periodicity

Proposition 30 (Product of periodic series). Let s and s, be two periodic series in Fy_ Iyl
Series s1 ® s; is periodic. If s1 and s; are different from ¢, then

O'(S] X® Sz) = min (0‘(81) s 0‘(52))
Proof. See § A.1.3. O

Remark 13. According to Prop. 28 and Prop. 30, the set of periodic series in F__ y[h/]] is a

subdioid of Fiy . [Y]. denoted ]:gr y[[y]]. However, ]:gr y[[y]] is not complete. But, the

m

operation A is well-defined on fﬁer' y[h/]] according to Prop.29.

Proposition 31 (Left-division of quasi-causal periodic series). Let 1,2 be two quasi-causal
periodic series in Fry | [v]. Series s1% s is periodic. If sy and s, are different from ,

~ ifo(s1) < o(s2), thensiy, s; = ¢

- ifo(s1) = 0(s2) = +00, then s1%, s, is either equal to € or 0 (s1%,.82) = +0

- ifo(s2) # +o0 and 0 (s1) = 0 (s2), then 0 (s1%,.82) = 0 (s2)

Proof. See § A.1.4. O

Proposition 32 (Kleene star of causal periodic series). The Kleene star of a causal periodic
series is a causal periodic series.

Proof. See § A.1.5. O

Remark 14. A direct consequence of the previous proposition is that the dioid of causal peri-

odic series .7-"% +’pyer[h/]] is rationally closed. However, this dioid is not complete.

The last operation to investigate is the right-division. The set of quasi-causal series in
FRpay Y] is @ complete dioid. Therefore, the product is residuated. s¢, sy is the greatest
quasi-causal series s such that s®s; < s;. However, the periodicity of ;¢ 481 is not ensured
as shown in the next example.

Example 22. Let us consider s; = (sz)* and s; = (Ay)* f with
eifx =¢

f(x) =13 eifx=ce

T otherwise

According to (2.3),

S2f,. 81 = /\5275+ (Aiyzi)

j=0
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4. Dioid Fry [V

Then, according to (2.11),

VIeZ, (saf.s1)(1)= /\ (Szﬂ (AjYzj)) (L)

j=0

= As2(L+2)) 4,4

j=0

By definition, (s2¢,s1) (1) = € if 1 < 0. Otherwise,

VleNo, (s26,51) (1) = /\ Pry (A1+ij (Ai)b)

j=0

Asf > Id,
AW (AJ’)b > A2 (AJ’)b > A > 1
Thus,

. A D
V1 e Np, (Sz%+81) (1) = /\Fj with Fj = AW2r (AJ)

j=0
Clearly,
eifx =¢
F(x) =14 Zife<x<j
Tifx>j
Then,
VleNo,¥x e No, (s2f,s1) (1) () = A\ Fj (%)
j=0
=¥’
Thus,
VLEN,  (safos1) () = ((AY)" ) (1) with g (x) = <2
Then,

s2f, 51 = (Ay)" g

Therefore, sy¢, s1 is not a periodic series in Fy . [Y], as g is not a periodic mapping in

meax :
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4.3. Periodicity

4.3.3. Subdioid 72 [y]

Nmax

In the following, we restrain ourselves to a subdioid of causal periodic series, denoted
fgr’c ['v]l, which is closed with respect to the right-division.

Definition 44. The subset .7-" pene [[y]] of .7-" per [[y]] is defined as
fgr’cy[[y]] ={e} U {s € ]:per [[y]]|o‘( )=0((s)(e)) ands is causal}

Canonical Representative of Series in fg:d:’ [v]

A series s in FT per’cy[h/]] is a periodic series in F5_  [v]. Therefore, a canonical repre-
m

sentative for s is available in § 4.3.1. In the followmg, partlcular properties of the canonical
representative of a series s in Fg pene [[y]] are discussed depending on the value of o (s).

de )

0(s) = +00: s is a polynomial with the canonical representative

fry™ withny <--- <nyandfi (x) # T forx # T

w
I
D>

0(s) =0: sisapolynomial with the canonical representative

N
s=@fiy™ withn; <--- <nyandfy =T
k=1

0 < 0o(s) < 4o0:  The canonical representative of s has the following form
S=p@(AY)* g
with T, v in N and causal polynomials p, q in ‘7:% + y[[y]]. Furthermore, 0 (s) = ¥,p = ¢ or

o(p) = +0,and 0 (q) = +o0.

Calculation with Series in 72 [y]
NmaX)Y

Next, the behavior of series in }% r’cy[[y]] with respect to operations ®, ®, A, %, and ¢
defined on 7y ['v] is investigated.

Proposition 33 (Sum of series in J Pene [[y]]) Let s1 and sy be two series in F2°°_[y].

max )’Y

Series s1 @ s, belongs to flger Cy[h/]]. Ifs1 and s; are different from ¢, then

0 (s1 @ s2) = min (0 (s1),0(s2))
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4. Dioid Fry [V

Proof. See § A.2.1. O

Proposition 34 (Greatest lower bound of series in fgr’cy[[y]]). Let sy and sy be two series in

f%er’cy[[y]]. Series s1 A sy belongs to f%er’cy[[y]]. If sy and s; are different from €, then

0 (s1 A s2) =max (0(s1),0(s2))

Proof. See § A.2.2. O

Proposition 35 (Product of series in fgr’cy[[y]]). Let s1 and s; be two series in ]:%er’c Iyl

max )’y

Series s1 ® s, belongs to f%er’cy[[y]]. If s1 and s, are different from €, then

0 (s1 ®s2) = min (o (s1),0(s2))

Proof. See § A.2.3. O

Proposition 36 (Left-division of series in f%er’cy[[y]]). Let s1,s2 be two series in f%er’cy[[y]].

Series s1%, , 2 belongs to f%::y[[y]]. If s1 and s; are different from e,
- ifo(s1) < o(sy), then 31\{++sz =¢
- ifo(s1) = 0(sz) = 400, then sy, . s, is either equal to € or 0 (1%, $2) = 4+
— ifo(s2) # +o0 and o (s1) = 0 (s2), then o (s1%,,52) = 0 (s2)

Proof. See § A.2.4. O

Proposition 37 (Right-division of series in f%:a’:)y [v]). Let sy, sy be two series in f%::’y Iyl
Series syp., , s1 belongs to .7-"%:;y [Y]- If s1 and s; are different from e,

— ifo(s1) < o(s2), thensyt,  s1=¢

— ifo(s1) = 0(s2) = +oo, then sy¢,, 81 is either equal to € or o (s2¢, . $1) = +0

- ifo(sy) # +o0and 0 (s1) = 0 (s2), then 0 (s2f, . s1) = 0 (s2)

Proof. See § A.2.5. O

4.4. Rationality

In this section, the concept of rationality is extended from Fy  to Fy Iyl

Definition 45 (Rationality). A series s in Fy__ y[[y]] is said to be rational if there exists a

finite number N of periodic seriesT1,...,TN in Nmax’v ['v] such that s belongs to the rational
closure of {€,€, A, 0tryy ..y Oryy Y-
A matrix with entries in Fry_ y[h/]] is said to be rational if all its entries are rational.

In the following proposition, the rationality of causal periodic series is investigated based
on the rationality of causal periodic mappings (see Prop. 24).
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4.5. Realizability

Proposition 38. A causal periodic series in Fg_ y[[y]] is rational.

Proof. Let s be a causal periodic series. If s = ¢, s is rational. Otherwise, s is a non-zero
causal periodic series. Then, there exists N € N, non-zero quasi-causal periodic mappings
f1y..., N in]—"Nmax,m,...,nN in Np, T1,..., TN in Np, and v € N such that

E}—)z

(ATy)* iy

i

1

We defined Yy by Yi = A {x € Npax|fi (x) # €}. As fy is a quasi-causal mapping, fi (x) >
x for x > Yy. In the following, the series s is defined by

N
§ =@ Rey™)* giy™

Ry (x) = xif x < Yy and gy (x) = xifx < Yy
TX if x > Yk fk (X) if x > Yk

As Ry and g are causal periodic mappings in Fg . they are rational mappings in Fg_
according to Prop. 24. Then, § is a rational series. In the following, we prove that s = 5. As
s is causal,

N
Vx e NmaX) @ ( TkY )Ynk S Xynk)
k=1
N
= @ ) with My (x) = (ticy™)™ fic () y™ @ xy™
Clearly,

My, (%) xy™eif x < Yy
k —
(Ty)™ fic () Y™ if x > Yy

Then, My = P ((Rey"*)* giy™*). Consequently, P (s) = 1 (). This implies s = §, as
is injective (see Lem. 33). Thus, s is a rational series. ]

4.5. Realizability

The concept of realizability is defined for F | ['v] by analogy with the realizability in
Ninay [Y]
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4. Dioid Fry [V

Definition 46 (Realizability). A matrix S in Fy__ y[[y]]mx]ﬁ’ is said to be realizable if there

exists a finite number N of periodic series T1,...,TN in Nmax,y [y] such that S admits a
(B, C)-representation with respect to {€,e,A, &, ,...,%,Y} where all non-diagonal en-
tries of A belong to {¢, e, A, v}.

In the following, two lemmas on realizability in 75 [y] are proved.
Lemma 41. Let S be a matrix in Fy__ y[h/]]mXp. The following statements are equivalent:

1. S is realizable

2. there exists a finite number N of periodic series T1,...,TN in Nyaxy[v] such that S
admits a (B, C)-representation with respect to {€, €, A, Xy, ..., Xy, Y}

Proof. 1 = 2 This comes directly from the definition of realizability.

2 = 1 There exists a finite number N of periodic series 11,...,TN in Nmax,y ['v] such that
S admits a (B, C)-representation with respectto £ = {e,e,A, &, ..., &, V}. Then, there
existn e N,A e &™™ B € B"*P, and C € B™*"™ such that S = CA*B. In the following,
we show how to remove a non-diagonal entries of A equal to a x-mapping, denoted x, by
increasing n by 1. Let 1,j with 1 # j such that Aj; = ;. The matrix A in EMM is defined

by

- eifk=1iandl =
Ax =
A otherwise

The matrices A in EMFD*M+D) B in BO+D*P and € in B™(+1) are defined by the
following block representations:

ﬁ\:(é} Ei),gz(w,ande:(c )

where Ey denotes the vector in B™*! defined by

(E). = { eifk =i

¢ otherwise
According to Lem. 10,
CA*B = (A@EwE ) B
= C(A@«EE]) Basar = af and Eiox, = o

= CA*BasA@ o EiEf = A
=S
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4.6. The Fundamental Theorem in Fry - [v]

Hence, A, B, and C form a (B, C)-representation with respect to £ of matrix S. Therefore,
repeating the previous process leads to a (B, C)-representation with respect to £ of matrix S
where all non-diagonal entries of A belong to {¢, e, A,v}. O

Lemma 42. Let S be a matrixin gy [Y]™*P. The following statements are equivalent:
1. S is realizable

2. all entries of S are realizable

Proof. Let us consider the following statements:
1. S is realizable

2. there exists a finite number N of periodic series 17,...,TN in Nmax’v [] such that S
admits a (B, C)-representation with respect to {€, e, A, & ..., &ry, Y}

3. there exists a finite number N of periodic series 17, ..., TN in Nmax,y [v] such that each
entry of S admits a (B, C)-representation with respect to {€, e, A, &r,..., &ry,V}

4. all entries of S are realizable

According to Lem. 41, 1 & 2 and 3 < 4. Furthermore, according to Prop. 7, 2 < 3. Hence,
1 < 4. O

4.6. The Fundamental Theorem in 7 . [v]

Using the definitions discussed before, the fundamental theorem in Ny [v] is extended

to 7 Ninax,Y [vI

Theorem 9. Let S be a matrix in F Nonacry [Y]™*P. The following statements are equivalent:
1. S is causal and periodic
2. S is rational

3. S is realizable

Proof. As causality, periodicity, rationality, and realizability of a matrix come down to causal-
ity, periodicity, rationality, and realizability of its entries. It is sufficient to consider the scalar
case. Let s be a series in i [v].

1 = 2: s is causal and periodic, then s is rational according to Prop. 38.

2 = 1: sisrational, then s is causal and periodic: {€,e,A, &y ..., %y, Y} S ]:%mt:f)yer Iyl
and .FN:::’;F [v] is rationally closed.
2 < 3: Using Th. 7 and Lem. 41, the following statements are equivalent:
1. s is rational
2. there exists a finite number N of periodic series 11,...,TN in Nmax,y [v] such that s

belongs to the rational closure of {€, e, A, &y ,..., vy, Y}
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4. Dioid Fry [V

3. there exists a finite number N of periodic series 11,...,TN in Nmax,y [v] such that s
admits a (B, C)-representation with respect to {e, e, A, &y, ..., Xy, YV}

4. s is realizable
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Modeling

In this chapter, the modeling of (max, +)-systems with partial synchronization by recur-
sive equations in the (max, +)-algebra is discussed. Let us first briefly recall the structure of
(max, +)-systems with partial synchronization drawn in Fig. 5.1. A (max, +)-system with
partial synchronization is split into a main system and a secondary system such that there
exist only standard synchronizations between events in the same system and partial synchro-
nization of events in the secondary system by events in the main system. The modeling of
(max, +)-systems with partial synchronization is widely based on an analogy with the mod-
eling of timed event graphs, e.g., [1]. The following results have been partly published in
(18, 19]. The modeling approaches presented in this chapter are illustrated with Ex. 23.

Main System

Secondary System

Figure 5.1.: A schematic view of a (max, +)-system with partial synchronization
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5. Modeling

Example 23. This example deals with a supply chain, where intermodal containers are shut-
tling back and forth between warehouses A1 and B1. The supply chain is divided in three
sections:

1. a road transport section between warehouse A1 and train station A
2. a rail transport section between train stations A and B
3. a road transport section between warehouse B1 and train station B

This system is drawn in Fig. 5.2, where the solid loop represents the train line, the dashed
loops represent the road transport sections, and the dotted loop summarizes the complete
supply chain. The characteristics of the train line and of the supply chain are now made

Train station A Train station B

Warehouse A; Warehouse B

Figure 5.2.: The supply chain and the train line

explicit. Two trains are shuttling back and forth between train stations A and B. Initially, one
train is in train station A and the other is in train station B. The travel time between train
stations A and B is ten units of time. A train stays at least two units of time in a train station
before returning. Due to safety practices, the number of trains on each railroad track shall not
exceed one. A single container, initially in warehouse A1, is shuttling back and forth between
warehouses A1 and By. The duration of each road transport section (between train station A
and warehouse A1 or between train station B and warehouse B1) is estimated to five units
of time. To allow loading and unloading, the container stays at least three units of time in a
warehouse before returning.

In the following, the train line and the supply chain are modeled by discrete event systems
ruled by synchronization. The model of the train line is based on the following events:

ua (resp. up) authorization for train departure from train station A (resp. B)
da (resp. dg) train departure from train station A (resp. B)

aa (resp. ag) train arrival in train station A (resp. B)

yYa (resp. yg) notification of train arrival in train station A (resp. B)

The previous description of the train line corresponds to the following synchronizations:
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— for all k > 0O, occurrence k of event ap (resp. ag) is at least ten units of time after
occurrence k of event dg (resp. da)
— for allk = 1, occurrence k of event da (resp. dg) is at least two units of time after
occurrence k — 1 of event ap (resp. ag)
— for allk > 1, occurrence k of event da (resp. dg) is at least zero units of time after
occurrence k — 1 of event ag (resp. ap)
— for allk > O, occurrence k of event da (resp. dg) is at least zero units of time after
occurrence k of event up (resp. ug)
— for allk = 0, occurrence k of event ya (resp. yg) is at least zero units of time after
occurrence k of event aa (resp. ag)
Then, the behavior of the train line is adequately expressed by standard synchronizations
(i.e., the train line is a (max, +)-linear system). The model of the supply chain is based on the
following events:

Ua, (resp. up,) authorization for container departure from warehouse A1 (resp. By)
da, (resp. dg,) container departure (by truck) from warehouse Aj (resp. By)

aa, (resp. ag,) container arrival (by truck) in warehouse A1 (resp. B1)

Ya, (resp. yg,) notification of container arrival in warehouse A1 (resp. B1)

dca (resp. dcg) container departure (by train) from train station A (resp. B)

aca (resp. acg) container arrival (by train) in train station A (resp. B)

The previous description of the supply chain includes the following standard synchronizations:
— forallk = 0, occurrence k of event dca (resp. dcg) is at least five units of time after
occurrence k of event da, (resp. dg,)
— forallk > 1, occurrence k of event da, is at least three units of time after occurrence
k — 1 of event ax,
— forallk > 0, occurrence k of event dg, is at least three units of time after occurrence k
of event ag,
— forallk > 0, occurrence k of event aa, (resp. ag,) is at least five units of time after
occurrence k of event aca (resp. acg)
— forallk = 0, occurrence k of event aca (resp. acg) is at least ten units of time after
occurrence k of event dcg (resp. dca)
— forall'k > 0, occurrence k of event da, (resp. dg,) is at least zero units of time after
occurrence k of event up, (resp. ug,)
— forallk = 0, occurrence k of event ya, (resp. yg,) is at least zero units of time after
occurrence k of event aa, (resp. ag,)
So far, the container/truck interactions (in the road transport sections) and the container/train
interactions (in the rail transport section) have been neglected. While this hypothesis makes
sense for the container/truck interactions (e.g., sufficiently many trucks are available to deliver
containers), the container/train interactions have to be taken into account. To do so, the
following partial synchronizations are used:
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5. Modeling

— event dca (resp. dcg) can only occur when event da (resp. dg) occurs

— event aca (resp. acp) can only occur when event ap (resp. ag) occurs
Therefore, the complete system is a (max, +)-system with partial synchronization, where the
main system corresponds to the train line and the secondary system corresponds to the supply
chain.

5.1. Conventions

5.1.1. Input, Output, and State Events

By analogy with (max, +)-linear systems, the event set of a (max, +)-system with partial
synchronization is partitioned into

input events these events are the source of (standard or partial) synchronizations, but not
subject to (standard or partial) synchronizations

output events these events are subject to (standard or partial) synchronizations, but not the
source of (standard or partial) synchronizations

state events these events are both subject to and the source of (standard or partial) synchro-
nizations

Events which are neither subject to nor the source of (standard or partial) synchronizations
are neglected, as we focus on interactions between events. In the rest of this thesis, we
consider (max, +)-systems with partial synchronization, where:
— the sets of input, output, and state events in the main and secondary system are not
empty
— there are only partial synchronizations between state events
— there exist no direct standard synchronizations of output events by input events
- the main and the secondary system are structurally controllable: each state event is
affected by at least one input event belonging to the same system
— the main and the secondary system are structurally observable: each state event affects
at least one output event belonging to the same system
In practice, these assumptions either hold or can be made to hold by adding or deleting events.
Furthermore, the following convention for notation is used. Parameters in the main system
are denoted with subscript 1, while parameters in the secondary system are denoted with
subscript 2. The numbers of input, output, and state events are respectively denoted by m,
P, and .. Input, output, and state events are respectively denoted by u, y, and x and integer
subscripts are used to distinguish events of the same kind in the main or secondary system.

Example 24. In Ex. 23, the set of events is partitioned into
— input events Up, U, Ua,, and ug,
— state events da, dg, aa, ag, dAl, dBp QaA;, QB dca, dcg, aca, and acg
— output events Ya, s, Ya,, and yg,
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5.1. Conventions

Uua | ug | da | ag | dg | aa | Y | ya

Wip | W2 | X0 [ X12 | %13 | %14 | Y1 | Y12

Table 5.1.: Notation for events in the main system

Ua us dA] dCA acpg | ap, dB] dCB aca | aa, YB, YA,

Uz | W22 | X201 | X22 | X23 | X24 | X25 | X206 | X27 | X28 | Y21 | Y22

Table 5.2.: Notation for events in the secondary system

These events are relabeled according to the above convention (see Tab. 5.1 and Tab. 5.2). In
this case, 1 =4,y = §,andmy =my =p; =p2 = 2.

5.1.2. Petri Net Representation

For the graphical representation of (max, +)-systems with partial synchronization, the
convention valid for (max, +)-linear systems is extended to take into account partial syn-
chronizations. Events are represented by bars. For example, the standard synchronization
“for all k > 3, occurrence k of event e; is at least five units of time after occurrence k — 3
of event e;” is drawn in Fig. 5.3. Furthermore, partial synchronizations are represented by

€1 €2

Figure 5.3.: Graphical representation of a standard synchronization

dashed arrows. For example, the partial synchronization “event e, can only occur when
event ey occurs” is drawn in Fig. 5.4. Due to visual resemblance with Petri nets, the obtained
graphical representation is called Petri net representation.

Example 25. The Petri net representation associated with Ex. 23 is given in Fig. 5.5.

5.1.3. Earliest Functioning Rule

Partial and standard synchronizations only specify conditions enabling occurrences of
events, but never force an event to occur. Therefore, a (max, +)-system with partial syn-
chronization is not deterministic: a predefined timing pattern of the input events may lead to

83



5. Modeling

€1

- — — —

€2
Figure 5.4.: Graphical representation of a partial synchronization

different timing patterns for the state and output events. The only requirement is that these
timing patterns are admissible with respect to standard and partial synchronizations required
by the considered system.

In this thesis, we only consider a particular behavior for (max, +)-systems with partial
synchronization, namely the behavior under the earliest functioning rule. The earliest func-
tioning rule requires that each state or output event occurs as soon as possible. Under the
earliest functioning rule, a (max, +)-system with partial synchronization is deterministic: a
predefined timing pattern of the input events leads to a unique timing pattern for the state
and output events. This fundamental property is formally proven in § 5.2.3.

In practice, the earliest functioning rule is often suitable, as standard and partial synchro-
nizations express conditions on the occurrence of events. Then, as soon as the conditions are
met, the associated event shall occur.

5.2. Dater Representation

In this section, we derive a model for (max, +)-systems with partial synchronization based
on daters. A convenient algebraic structure to express this model is the (max, +)-algebra

Rpmax. Furthermore, we present a method based on this model to compute the output induced
by a predefined input.

5.2.1. Daters

To capture the timed dynamics of a discrete event system, a mapping, called dater, is as-
sociated with each event such that the dater gives the times of occurrences of the considered
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ut

D mm

725 ug 2

e

(Y22 "8 M o6 w5 ugy
Warehouse 4; Train Station A Train Station B Warehouse B;

Figure 5.5.: Petri net representation of the supply chain and of the train line

event. From now on, we consider daters from Z to Ry, and no distinction in the notation
is made between an event and the associated dater. Hence, for an event d, d (k) denotes the
time of occurrence k of event d. This leads to the following interpretation for daters:

d (k) = e occurrence k of event d is at t = —o0. By convention, occurrence k (with k < 0)
of an event always is at t = —o0.

d (k) e Rj: occurrence k of event d is at time d (k). By convention, events are required to
occur eitheratt > Ooratt = —oo.

d (k) = T: occurrence k of event d never happens.

Furthermore, occurrence k + 1 of event d occurs after occurrence k of event d. Therefore, as
the order in R, coincides with the standard order,

VkeZ, d(k+1)>d(k)
Thus, a dater is isotone. The previous discussion leads to a formal definition for daters.

Definition 47 (Dater). A dater, denoted d, is an isotone mapping from 7 to Ry such that
d (k) = € fork < 0. The set of daters is denoted D.
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According to Rem. 3, D is endowed with an operation @ and an order < induced respec-
tively by the operation @ and the order < in the dioid Ryax.

Remark 15. It is also possible to see daters as formal power series in @max,y [v] (i.e., as isotone
formal power series iny with coefficients in Ryay). This allows us to denote daters by formal
power series.

5.2.2. Expressing Synchronizations with Daters

In the following, standard and partial synchronizations are expressed in terms of daters.
This leads to an algebraic representation for (max, +)-systems with partial synchronization.

Expressing Standard Synchronizations with Daters

The standard synchronization “for all k > 1, occurrence k of event e; is at least T units of
time after occurrence k — 1 of event e;” corresponds to the following inequality in Rx:

VkeZ, ey(k)>=Ter(k—1)

Furthermore, the effect of several standard synchronizations on a single event is also ex-
pressed by a single inequality in Rp.y. For example, the standard synchronizations “for all
k = 14, occurrence k of event e, is at least T; units of time after occurrence k — 1; of event
eq,1” and “for all k > 1;, occurrence k of event e; is at least T units of time after occurrence
k — 1, of event e ;” are both expressed by a single inequality in Rinax:

VkeZ, ey(k)=merr(k—1)@me(k—1)

Therefore, matrix inequalities in Rynax are suitable to express standard synchronizations.
The standard synchronizations between events in the main system are summarized by
L . .
x1 (k) = @iy (Arix1 (k—1) ® By (k — 1)) (5.1
L . .
Y1 (k) = DLy Crixar (k—1)

where x7, w7, and y; respectively correspond to the vectors of daters associated with state,
input, and output events in the main system and L; denotes the greatest parameter 1 over
all standard synchronizations in the main system. Furthermore, matrices A1, By, and Cy 3
T XN 7M1 XMy P1 XN

belong respectively to R, ', R .- ',and R} . The entries of these matrices are given

by the parameters of the standard synchronizations in the main system. In the same way, the
standard synchronizations between events in the secondary system are summarized by

{ x2 (k) = @20 (Azxz (k= 1) @Bz (k — 1)) 62)

Y2 (k) = @2, Caiixa (k — 1)
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where x;, Uy, and y; respectively correspond to the vectors of daters associated with state,
input, and output events in the secondary system and L, denotes the greatest parameter 1
over all standard synchronizations in the secondary system. Furthermore, matrices A, ;, B, 1,
. N2 XNy /Ny Xmy P2 XMN2 . .

and Cj; respectively belong to R o “, R ° ", and R ;. The entries of these matrices
are given by the parameters of standard synchronizations in the secondary system.

To simplify (5.1) and (5.2), the event set of the considered (max, +)-system with partial
synchronization is extended by additional state events. This allows us to convert (5.1) and

(5.2) to first-order recursions. The theoretical validity of this step is ensured by Lem. 43.

Lemma 43. Let1 € N. In a (max, +)-system with partial synchronization, the following (sets
of) synchronizations are equivalent:

1. “forallk =1, occurrence k of event e, is at least T units of time after occurrence k — 1
of event ey”

2. “for allk = 1 — 1, occurrence k of event e; is at least T units of time after occurrence
k + 1 —1ofevent e;” and “for allk > 1, occurrence k of event e; is at least zero units
of time after occurrence k — 1 of event e; ” where state event e; only appears in the two
previous standard synchronizations

3. “forallk = 1, occurrence k of event e; is at least zero units of time after occurrence
k —1 of event e;”and “for allk = 1 — 1, occurrence k of event e; occurs at least T units
of time after occurrence k — 1 + 1 of event e; ” where state event e; only appears in the
two previous standard synchronizations

Proof. Only 1 < 2 is checked, as T < 3 can be obtained in the same way.

1 = 2: Let us consider an event e; only subject to the following standard synchronization:
for all k > 1, occurrence k of event e; is at least zero units of time after occurrence k — 1 of
event e1. Then,

VkeZ, ei(k)>=e(k—1)

It remains to prove that the system includes the standard synchronization: “forall k > 1— 1,
occurrence k of event e, is at least T units of time after occurrence k + 1 — 1 of event e;”.
Event e; is only subject to this standard synchronization. Hence, according to the earliest
functioning rule,

VkeZ, ei(k)=e(k—1)
Therefore,
VkeZ, e(k)>ter(k—1) =tej(k—-1+1)

Then, in terms of standard synchronizations, “for all k > 1 — 1, occurrence k of event e; is
at least T units of time after occurrence k + 1 — 1 of event e;”.
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2 = 1: Conversely, the two standard synchronizations “for all k > | — 1, occurrence k of
event e is at least T units of time after occurrence k + 1 — 1 of event e¢;” and “for all k > 1,
occurrence k of event e; is at least zero units of time after occurrence k — 1 of event e;”
correspond, in terms of daters, to

VkeZ, ey(k)>Tei(k—1+1) andei(k)>e;(k—1)
This implies, as the product is isotone in a dioid,
VkeZ, ex(k)>=Ter(k—1)

The previous inequality corresponds to the standard synchronization “for all k > 1, occur-
rence k of event e, is at least T units of time after occurrence k — 1 of event e;”. O

According to Lem. 43, the different synchronization relations between events e; and e;
pictured in Fig. 5.6 are equivalent.

€1 T €9
(a)
€1 €; T €2
(b)
el T €; €2

Figure 5.6.: Equivalent synchronizations if no other synchronizations affect event e;

By using repetitively Lem. 43, it is possible to set all entries of A;j; and Ay; fori > 2
and of By, Cq4, Bai, and Cp; for i > 1 to € with additional state events. This leads to
the simplified representations for standard synchronizations in the main system and in the
secondary system respectively given in (5.3) and (5.4).

{ x1 (k) > Aroxy (k) @ Argx1 (k — 1) @ Byouy (k) (5.3)

y1 (k) = Croxq (k)
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5.2. Dater Representation

{ x2 (k) > Agoxz (k) @ Agixa (k — 1) @ Baouy (k) (5.4

Y2 (k) > Caoxz (k)

In the following, only these representations are considered.

Example 26. For the (max, +)-system with partial synchronization introduced in Ex. 23, the
following matrix inequalities are obtained:

€ €& € ¢ e e ¢ 2 e ¢
10 ¢ ¢ ¢ € € € ¢ £ ¢
X1 (k) P X1 (k) &) X1 (k - ]) &) W (k)
) € & I3 e 2 ¢ e £ e
e ¢ 10 ¢ € € € ¢ £ €
€ e ¢ ¢
y1 (k) > x1 (k)
e & ¢ e
Y
X2 (k) > Az)on (k) &) Az)]X] (k — ]) &) Bz)ouz (k)
€ € € e € € € ¢
Y2 (k) > x2 (k)
€ € € € € € € e
with
€ € € € € €& € ¢ e ¢
5 € € ¢ € € ¢ ¢ e €
e 10 ¢ ¢ ¢ ¢ ¢ ¢ e €
e € 5 ¢ ¢ € ¢ ¢ £ €
Az = Boo =
e € € 3 ¢ ¢ ¢ ¢ e e
€ € € € 5 € ¢ ¢ £ €
e ¢ € ¢ ¢ 10 ¢ ¢ £ ¢
e € € ¢ ¢ € 5 ¢ £ €
and
€ € € € ¢ ¢ ¢ 3
€ € € € €& & € €
€ € € € €& & € €
€ € € € €& €& € €
Ayl =
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5. Modeling

Expressing Partial Synchronizations with Daters

The partial synchronization “event e, can only occur when event e; occurs” is expressed
by the following condition on daters:

VkeZ, e;(k)e A(er) with A(e) ={e1(§)|j e Z} u {T}

The element T is included in A (e;) to model the non-occurrence of event e;. Thus, ¢ and
T always belong to A (eq). The effect of several partial synchronizations on a single event is
easily expressed by an intersection of sets. For example, the partial synchronizations “event
ey can only occur when event e occurs” and “event e, can only occur when event ej
occurs” correspond to

VkeZ, e(k)eAlerr)n A(ery)

To model partial synchronizations in a (max, +)-system with partial synchronization, we
first recall that, as mentioned in § 5.1.1, only partial synchronizations of state events in the
secondary system by state events in the main system are considered. Then, a subset of Ry,
denoted \Aj, is associated with each state event x, ; in the secondary system. Let us denote
A the set of state events in the main system synchronizing event x; ;. Then, A; is defined by

o { Rinax if X = & (5.5)

Meex, A (x) otherwise

Hence, the partial synchronizations in a (max, +)-system with partial synchronization are
expressed by the following condition

Vke Z,Yi, x2i(k) e A
Example 27. For the example introduced in Ex. 23,

-/41 =A4=-/45=-A8=Emax
./42 = A(X])]) and.A3 = .A(X]’z)
-A6 = A(X])g) andA7 = .A(X1)4)

Algebraic Representation of a (max, +)-system with Partial Synchronization by
Daters

The main system is modeled by

{ x1 (k) = Aroxt (K) DA% (k—1) @By o (k) (5.6)

y1 (k) = Croxq (k)
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5.2. Dater Representation

The secondary system is modeled by

x2 (k) > Azoxz (k) @ Az 1x2 (k — 1) @ Byou, (k)

Y2 (k) > Caoxz (k) (5.7)

Vi, xi(k) € Ay
In (5.7), the first two equations represent the standard synchronizations in the secondary
system and the third equation represents the partial synchronization of state events in the
secondary system by state events in the main system. Then, the main system affects the

secondary system through the sets .4; which depend on the timing pattern of the state events
in the main system (see (5.5)).

5.2.3. Input-Output Behavior

In the following, a method to compute the response of a (max, +)-system with partial
synchronization to a predefined input specified by daters is discussed. As the secondary
system does not affect the main system, we first focus on the main system. Second, we
investigate the secondary system under a predefined behavior of the main system.

Main System

The synchronizations affecting the main system are summarized in (5.6). By convention,
x1 (k) and y; (k) have all entries equal to ¢ for k < 0. This choice is valid according to (5.6).
As the behavior under the earliest functioning rule is considered, the time of occurrence
k > 0 of state events (i.e., x1 (k)) is given by the least solution of

x = A1ox @ A711x1 (k—1) @ B1ou (k)
x>x1(k—=1)

These two inequalities can be lumped into a single inequality.
x> A1ox @ (A1 @ 1d)x1 (k — 1) @ By oy (k)
Therefore, according to Th. 5,
x1 (k) = Ao (A1 @1d) x1 (k= 1) @ A7 B1 0wy (k)

Furthermore, as the behavior under the earliest functioning rule is considered, the time of
occurrence k > 0 of output events (i.e., y; (k)) is given by the least solution of

X > C])oX] (k)
x>yy(k=1)
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5. Modeling

This leads directly to y1 (k) = Cqox1 (k) @y1 (k — 1). This expression can be simplified by
noticing that, for L in N,

C]po] (k) ®y1 (k - 1) = C])()X] (k) @C]po] (k— l) @y] (k— l— ])
=Cio(x1(k)@x1 (k—=1) @y (k—1-1)
= C])oX] (k) D Y1 (k—l— 1) as X1 (k) > X1 (k—l)

Then, as y7 (—1) = ¢,
y1 (k) = Crox1 (k) @y1 (k=1) = Crox1 (k) @y1 (=1) = Cyox7 (k)

As, according to (2.7), x1 (k) = AJyx1 (k), the main system is described by

{ x1 (k) = A1x; (k= 1) @ Biw (k) (5.8)

y1 (k) = Cixq (k)

where Aj = AJ, (A11 @Id) Aj,, By = A B, and C; = CypAJ,. As mentioned in the
introduction, the main system is a (max, +)-linear system. This is not surprising, as the main
system is only subject to standard synchronizations.

Remark 16. Equation (5.8) leads to an isotone input-output mapping from D™ to DP', de-
noted Hy and defined by H1 (w) = y;.

Remark 17. The structural controllability of the main system means that each row of A} B

contains at least one non-zero entry or, equivalently, each row of (@;1:10*1 A]1) By contains

at least one non-zero entry.
The structural observability of the main system means that each column of C1 A contains

at least one non-zero entry or, equivalently, each column of C; ((.B]“:l(;1 Ajl) contains at least
one non-zero entry.

Secondary System

The synchronizations affecting the secondary system are summarized in (5.7). By conven-
tion, x; (k) and y; (k) have all entries equal to € for k < 0. This choice is valid according to
(5.7). As the behavior under the earliest functioning rule is considered, the time of occurrence
k > 0 of state events (i.e., x; (k)) is given by the least solution of

x = Ag0x @ Az1%x2 (k — 1) @ Baous (k)
Vi, Xi € .Ai
x>x2(k—1)
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5.2. Dater Representation

where the sets A; are obtained from the behavior of the main system. As in the main system,
it is possible to lump the first and the third equations. This leads to

X > A0x® (Azy] @ld)x; (k—1)® B2 ouw; (k)
Vi, Xi € ./41

Due to partial synchronizations, it is not possible to directly use Th. 5 to calculate x; (k).
However, using a reasoning very similar with [1, § 2.5.3], we can assume that A is strictly
lower triangular by deleting state events, lumping state events, and adding input events. This
allows us to get rid of the implicit terms by writing the first inequality componentwise. This
leads to

Vi { xi = @)1 (A20)y %) @ (A1 ©1d) %2 (k — 1) © Baous (k)
’ Xi € .Ai

To compute x; (k), the mapping @; from R,y to Ryay is introduced. Formally, mapping ®@;
is defined by

Vx € Rpay, @i (x) = /\ {ze Ailz > x}

As T € A;, mapping @; is well defined. Then, @; (x) is the least element in A; greater than
or equal to x. Therefore,

i1
Vi, x2i(k) = @y (@ (A20)i %25 (k) © (A2 @ 1d) x2 (k — 1) © Boouz (k))i>
Pt

In practice, the entries of x; (k) have to be computed in a specific order (i.e., for i from
1 to n,). For the output events, a reasoning similar to the one for the main system gives
Y2 (k) = Coxz (k) with C; = C, 0. Thus, the secondary system is described by

{ x2 (k) = H (e (k= 1), u2 (k) 50)
Y2 (k) = Cxa (k)
where the mapping H from R x RI'2 to R'2 is defined by
i—1
H(x,u); = @4 ((—B (Az0) H (6 w); @ (A ©1d) x @ Bz,ou)i> (5.10)
j=1

Remark 18. Equation (5.9) leads to an isotone input-output mapping from D™2 to DP2, de-
noted H ., and defined by H.,, (U2) = Yz. Due to partial synchronization, this mapping
depends on the input of the main system Wy. Then, this leads to an input-output mapping ‘H
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5. Modeling

for the complete (max, +)-system with partial synchronization. Mapping H is defined from
D™ x D™2 to DP1 x DP2 py

H(u,u2) = (y1,92) = (Hr (), Hap, (u2))
Mapping H might be not isotone with respect to the canonical order as shown in Ex. 28.

Example 28. Consider the (max, +)-system with partial synchronization drawn in Fig. 5.7.

The input u! is defined by

Uy T11
|
|

up | Yo

OO

T2

Figure 5.7.: A simple (max, +)-system with partial synchronization

e fork <0 e fork <0 e fork <0
ul; (k) =% efork=0 w,(®)={ 2fork=0 uy(X)=1% 1fork=0
T fork >0 T fork >0 T fork >0

The output induced by u! is

e fork <0 fork <0
Ik.= 2 k=0 Ik.= € Jor
Y7 (k) for yz (k) T fork >0

T fork >0
The input ul is defined by

e fork <0
(K =9 Tfork=0 wp=w, u =1
T fork >0
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5.2. Dater Representation

The output induced by y"! is

e fork <0
F=ul yf® =% 1frk=0
T fork >0

Then, w! < u!l, but y' > y'. Hence, the input-output mapping H associated with this

system is not isotone.

Example 29. For the example introduced in Ex. 23, the output induced by

€ fork <0
wg (k) =wia (k) =uz1 (k) =uz2(k) =4 efor0<k <15
T fork = 15
is computed. The main system is described by
( 10 e 12 2 e
20 10 22 12 10 ¢
x1 (k) = x1(k=1)® u; (k)
) 12 2 10 e e e
22 12 20 10 e 10
10 e ¢ ¢
yi (k) = ( >X1 (k)
L e ¢ 10 e
This leads to
e fork <0
Y1 (k) =yi2(k) =4 10012* for0 <k < 15
T fork =15

Furhtermore, the sets A necessary for the dynamics of the secondary system are

.A] =A4:.A5 :ASZKmaX
Ay = Ag = {e, e,12,24,36,48,60,72, 84, 96,108,120, 132, 144, 156, 168, T}
As = A; = {€,10,22,34,46, 58,70, 82,94,106,118, 130, 142, 154, 166,178, T}
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5. Modeling

The output of the secondary system is given by

( e fork <0
Yy (k) =14 27048 for0 <k < 4
(| T fork >4
(¢ fork <0
Y22 (k) =1{ 51@48% for0 <k <3
L T fork >3

96



Optimal Control

In this chapter, optimal control for (max, +)-systems with partial synchronization is ad-
dressed. An output reference representing a deadline for output events is given. The aim of
this approach is to enforce the just-in-time behavior: input events occur as late as possible
while inducing an output respecting, as much as possible, the output reference. In practice,
this objective is very interesting: for a transportation network, departures are delayed as
much as possible while ensuring the schedule. Other criteria are presented in [20], but are
not investigated in this thesis. Next, this control strategy is only investigated when the prior-
ity is given to the main system over the secondary system: the optimal input is first computed
for the main system and, second, for the secondary system under a predefined behavior of
the main system. In many applications, this assumption makes sense as the main system is
shared by many independent secondary systems. Then, it might not be wise to operate the
main system only to satisfy a single secondary system. This configuration might correspond
to Ex. 23, if the train line is shared by many supply chains.

In the following, optimal feedforward control and its closed-loop version, namely model
predictive control, are successively presented. Our approach is based on an analogy with
results obtained for (max, +)-linear systems: optimal feedforward control and model pre-
dictive control for (max, +)-linear systems have been respectively developed in [9, 31] and
in [20, 34]. The following results have been partly published in [18, 19]. To illustrate these
control approaches, the results are applied to Ex. 23.
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6. Optimal Control

6.1. Optimal Feedforward Control

In optimal feedforward control, the output reference is given over a finite horizon and the
input ensuring the just-in-time behavior is computed offline. The output reference for the
main (resp. secondary) system is specified by a predefined vector of daters z; € DP' (resp.
zy € DP2). Furthermore, the restriction to a finite horizon means that there exists K € Ny
such that, for all k > K, z;(k) = T and z; (k) = T. To respect the output reference,
the occurrences of output events should occur before or at the dates specified by the output
reference. Formally, this requirement corresponds to y; < z7 and Y, < z;. Hence, the finite
horizon assumption means that the output reference is constraining for the first K occurrences
of output events. The optimal inputs u for the main system and uj for the secondary system
are selected to enforce the just-in-time behavior (i.e., input events occur as late as possible
while inducing an output respecting the output reference). As the priority is given to the
main system over the secondary system, u} is computed by neglecting the secondary system
and, then, uj is computed under the behavior of the main system induced by uy'.

Main System

The main system is described by

{ x1 (k) = Axg (k— 1) @By (k)
Y1 (k) = Cixq (k)

The optimal input uj is selected to enforce the just-in-time behavior (i.e., input events occur
as late as possible while inducing an output respecting the output reference). Therefore, uy
corresponds to the greatest vector of daters inducing an output less than or equal to the output
reference z;. Hence, u] is given by the greatest solution in D™ of

{ X1 (k) Aqxq (k - ]) @ Biwy (k) (6.1)
z1 (k) > Cixq (k)

Aszy (k) = Tfork > K,uj (k) = T for k > K. Therefore, it remains to determine the value
of uj (k) for 0 < k < K. In the following, we denote (; (k) the least upper bound of x; (k)
in (6.1). Obviously, {; (k) = T for k > K, as z; (k) = T for k > K. Furthermore, as the only
conditions on (; (k) expressed by (6.1) are z; (k) > C1(; (k) and &y (k+ 1) > A8 (k),
(1 (k) is given by the backward recursive equation

G (k) = ARG (k+1) A Cr¥zg (k)

This relation allows us to calculate ¢ (k) for 0 < k < K. Furthermore, the single condition
onu; (k) induced by (6.1) is ¢7 (k) > Byuy (k). Therefore, ug (k) < By}(; (k). As Ay > 1d,
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6.1. Optimal Feedforward Control

the condition (; (k + 1) > Aq¢; (k) implies ¢; (k + 1) > ¢ (k). Then, as the left-division
by B is isotone,

Bi}Gr (k+1) = BykG (k)

Therefore, taking uj (k) = B1}(; (k) is a valid choice. Hence, the optimal input uj (k) for
0 < k < K s given by

{ G (k) = Crxzr (k) A ARG (k+ 1) with ¢ (K) = T (6.2)

uj (k) = B1yG (k)

Secondary System

The secondary system is described by

{ x2 (k) = H(x (k= 1),z (k)
Y2 (k) = Coxz (k)

The mapping H from E}éx X Enmlazx to K&éx is defined by

i1
H(x,u); = @y (@ (A20)5 H(xw); @ (A @ 1d) x @ Bz,ou)i>
=1

where @; (x) = A {z € Ai|z > x} with set .A; depending on the behavior of the main sys-
tem.

The optimal input uj is selected to enforce the just-in-time behavior (i.e., input events
occur as late as possible while inducing an output respecting the output reference). Therefore,
uj corresponds to the greatest vector of daters inducing an output less than or equal to the
output reference z. Hence, uj is given by the greatest solution in D™2 of

{ x2 (k) = H(x2 (k= 1), (k)

2 (k) = Cox; (K) (6.3)

Aszy (k) = T for k > K, uj (k) = T for k > K. Therefore, it remains to determine the
value of uj (k) for 0 < k < K. Before solving this problem, some properties of the mappings
®; and H are formalized.

Lemma 44. Let A be a finite subset of Ry such that {e, T} € A. The mapping ® defined
by

VX € Ry @ (x) = \ {z€ Alz>x}
is residuated and its residual is given by

VX € Rpaxy, @F (x) = P {z € Az <}
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6. Optimal Control

Proof. This proof is based on Th. 1. Let us denote ¥ the mapping from Rinax 10 Ryax defined
by

VX € Rpaxy, Y (x) =@ {ze Az <x}

Mappings @ and V¥ are well defined, as € and T belong to .A. Furthermore, mappings @ and
Y are isotone. Finally, @ (x) and ¥ (x) always belong to A, as A is finite. Then,

VX € Rpax, (Wo®@)(x) =@ (x)
(® W) (x) =W (x) <

%

X
X

This leads to W o @ > Id and ® o ¥ < Id. Hence, according to Th. 1, @ is residuated and its
residual is V. |

Remark 19. Lem. 44 does not hold anymore when A is not finite. Consider the set A defined
by

A={2—1|neN}
n

Then, ® (Dyeqx) = ©(2) = T, but @y 4 © (x) = 2. Then, according to Th. 3, ® is not

residuated.

Lemma 45. Let H be the mapping defined in (5.10) and z € @Eﬁlx. If all mappings @; are
residuated, the inequality H (x,u) < z admits a greatest solution denoted (F(z),G (z))

defined by
F (Z) = (Az)] ® ld) &R and G (Z) = Bz)o\gR
where Ry = CD%i (ry) andry = z; A /\}1=Zi+1 (A2,0);i kR;.

Proof. First, we prove that H(x,u) < z & H(x,u) < r. As, by definition, r < z,
H (x,u) < r implies H (x,u) < z. Conversely, we reason by induction over index i de-
creasing from ny to 1. For i = ny, as T, = zn,, H (x,u),,, < zn, implies H (x, 1), , < Tn,.

For 1 <1 < ny, we assume that H (x, u)]- < mjfori <j < ny. Then,

Viwithi<j<mny, H(x,u); <1

j—1
= Vjwithi<j<mng, @ (Az)yHuw) <R

k=1
= Vjwithi<j<ny, H(x, u)i < (AZ,O)ji &Rj
n,
= H(x,u); < /\ (A2,0)5: 8Rj
j=it1
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AsH (x,u) < z,

ny
H (x, u)i <ziA /\ (AZ,O)ji k(Rj =Ti
jit]

This completes the induction. Therefore,

H(x,u) <z
e H(xu <r
i-1

e Vi, @ (Az)yHxu);® (A1 ®1d) x ® Baou); < Ry
j=1

Furthermore, as H (x,u) <,

— i—1
@Azo (x,u); ﬁ@Azou

A
DL
E,’

( Az,o)ﬁ &Ri)

IA
E

Hence,

H(x,u) <z

Vi, (A1 ®1d)x®Bjou); <R;
S (A1 @Id)x®Bypou <R

& x < (A1 ®@Id) §Rand u < By %R

Therefore, the inequality H (x, 1) < z admits a greatest solution (F (z), G (z)) given by
F(z) = (A21 @1d) §Rand G (z) = By ¥R
]

In the following, we denote (; (k) the least upper bound of x; (k) in (6.3). Obviously,
(2 (k) = T fork > K, as z; (k) = T for k > K. Furthermore, the only conditions on (; (k)
expressed by (6.3) are z (k) > C20; (k) and (p (k+ 1) > H (¢ (k),uz (k + 1)). Besides,
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6. Optimal Control

as the main system is structurally controllable,

Tl]f1

Vk>K+my, xf(k) > @ ABuf (k—j)
j=0

TL]-] .
> @ ABiT
j=0

Tl]f1 .
(@ A]181> T
j=0

> T according to Rem. 16

%

Therefore, x} (k) = T for k > K 4+ n;. Hence, for all state event X2,i, either the sets A;
associated with @ is finite or ®; = Id. In both cases, according to Lem. 44, mapping @; is
residuated. Hence, according to Lem. 45, (; (k) is given by the backward recursive equation

G2 (k) =F (G (k+1)) A Cakza (k)

This relation allows us to calculate (; (k) for 0 < k < K. Furthermore, the single con-
dition on u; (k) induced by (6.3) is (2 (k) > H (2 (k —1),uz (k)). Therefore, u; (k) <
G (¢2 (k)). As the mapping F is isotone, (; (k +1) > (; (k). Then, as the mapping G is
isotone,

G(Ga(k+1)) =G (G (k)

Therefore, taking uj (k) = G ((; (k)) is a valid choice. Hence, the optimal input uj (k) for
0 < k < Kis given by

{ G2 (k) = Cakza () AF(Ga (k+T)) - L oy = T (6.4)

uj (k) = G (G2 (k)

Remark 20. The previous control strategy consists in finding the greatest, according to a
specific order denoted <, solution of

H(w,u2) < (z1,22)

where z1 (resp. z;) denotes the vector of daters associated with the output reference for the
main (resp. secondary) system. The order <. corresponds to a lexicographic order based on
the partition in main system and secondary system, i.e.,

ul <l
I .1 I 11
(ubuz) =<r <U1 ,Uz) < or

u =ullandu} <ull

102



6.1. Optimal Feedforward Control

The inequality H (u1,uz) < (z1,z2) admits a greatest, according to <, solution. But, in
Ex. 28, u! <, ull, buty' > y". Then, mapping H is not isotone.

Furthermore, the inequality H (w1, uy) < (z1,z2) might not admit a greatest, according to
<, solution, as shown in Ex. 30. Hence, the specific order <, has not only a practical meaning,

but ensures also the existence of a unique optimal input.

Example 30. Let us consider the (max, +)-system with partial synchronization drawn in
Fig. 6.1. The following output reference is considered.

uy Ty 1 €12 n
Uz ! Y2

Figure 6.1.: A simple (max, +)-system with partial synchronization

€ fork <0 e fork <0
z1(k) =4 2fork =0 z3(k) =4 efork=0
T fork >0 T fork >0

The incomparable inputs u' and u'! defined by

e fork <0 fork <1
£ <
W) =2 1frk=0 uwi) =4 I
T fork > 1
T fork >0
e fork <0
ui' () =uf (k) = { efork=0
T fork >0

induce outputs less than or equal to z. However, the input u! ®u!! does not lead to an output
less than or equal to the reference output. Hence, the inequality H (w1, uy) < (21,z2) does
not admit a greatest solution with respect to <.
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6. Optimal Control

Example 31. In the following, optimal feedforward control is applied to Ex. 23. The output
reference z1 for the main system is defined as

e fork <0
217 (k) =z12 (k) = { 10®20* for0 < k < 20
T fork = 20

This leads to the following optimal input uj for the main system.

e fork <0
uiy (k) =ufy (k) =< 20% for0 < k < 20
T fork = 20
The output induced by uy, denoted y7, is equal to z1. Hence, yi < z1. Under this specific

behavior of the main system, the optimal input for the secondary system is computed. The
considered output reference, denoted z;, is defined as

e fork <0 e fork <0
221 (k) =1 20080 for0 <k <5 andzo(k) =13 55®@80% for0 <k <5
T fork =5 T fork=5

This leads to the following optimal input U} for the secondary system.

€ fork <1 € fork <0
wy; (k) =1 75080 for1 <k <5 anduj, (k) =1 35®80F for0 <k <5
T fork =5 T fork =5

The output induced by u5, denoted y3, is

e fork <1 € fork <0
Y71 (k) § 95@80% ! for1 <k <5 andyj, (k) =13 55@80% for0 <k <5
T fork=5 T fork =5

Clearly, y5 < z;.

6.1.1. Feasibility

In the previous reasoning, the practical implementation of the optimal input has not been
considered. This aspect may cause a problem: in Ex. 31, the optimal input leads to a first
occurrence of input event u;; at t = —o0, but this requirement cannot be met in practice,
as the system starts at t = 0. To tackle this problem, the notion of realizability for daters is
introduced.
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Definition 48 (Realizable dater). A dater d is said to be realizable if, for allk € Ny, d (k) > e.
The least realizable dater, denoted 1, is defined by

r(k) = e fork <0
e fork =0

A vector of daters is said to be realizable if all its entries are realizable.

Intuitively, a realizable dater is a dater which can be implemented in practice as the timing
pattern of an input event. In the following, we require the optimal input to be realizable. This
comes at a price: the output reference cannot be respected in general. In Ex. 31, requiring
the optimal input to be realizable leads to u3y; (0) > e. Then, the realizable optimal input
cannot be less than or equal to the optimal iﬁput computed in Ex. 31. Hence, the output of
the secondary system cannot be less than or equal to the output reference z;. This illustrates
the need for relaxing the output reference to obtain a realizable optimal input. To formalize

this condition, the notion of feasibility for an output reference is introduced.

Definition 49 (Feasibility). In a (max, +)-system with partial synchronization, an output
reference is said to be feasible if the associated optimal input is realizable.

Hence, the problem is to find a feasible output reference z, partitioned in output reference
Z1 for the main system and output reference z, for the secondary system, greater than or
equal to the original output reference z. Furthermore, as the behavior of the system should
respect as much as possible the original output reference, we require z to be the least feasible
output reference greater than or equal to z. In the following, the problem of finding this
output reference is first addressed for the main system and, then, for the secondary system
under a predefined behavior of the main system.

Main System

Let wi be an output reference for the main system. The feasibility of wy is equivalent
to an optimal input associated with w; greater than or equal to u; where u; is the vector
in D™ with entries equal to r. As H; is isotone, this implies Wy > H; (u;). Conversely,
wi > H1 (1) implies that the optimal input associated with wy is greater than or equal to
u;. Therefore,

wy is feasible < wy > Hp (wy)
Hence, the least feasible output reference z; greater than or equal to z; is given by
Z1 =Hi (W) @z

With the method developed before, the calculation of 7 (u;) requires an infinite amount of
time. However, as the original output reference z; is defined over a finite event horizon, z;
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is also defined over the same finite event horizon and can be computed in a finite amount of
time. The realizable optimal input 1} is obtained from the feasible output reference z; using
the method developed before.

Secondary System

The previous approach can be directly transposed to the secondary system. Then, 115 is
obtained from the relaxed output reference z; = z; @ Hz’ﬂ?‘ (u,), where u, is the vector in
D™2 with entries equal to 1, by using the method developed before.

Example 32. The previous method is applied in Ex. 31 to obtain a realizable optimal input.
The problem is already solved for the main system, as uj is realizable. However, for the
secondary system, W) is not realizable. Hence, the output reference z, defined by

e fork <0 e fork <0
221 (k) =9 20080% for0 <k <5 andz(k) =13 55@80% for0 <k <5
T fork =5 T fork=5

is not feasible and has to be relaxed. The least feasible output reference greater than or equal
to z3, denoted z;, is defined by

e fork <0 e fork <0
221(k) =1 35®@80%for0 <k <5 andz(k) =13 75@80% for0 <k <5
T fork =5 T fork =5

This leads to a realizable optimal input 115 for the secondary system where

e fork <0 e fork <0
(k) =4 15080 for0 <k <5 andtj, (k) =14 55@80 for0 <k <5
Tfork =5 T fork =5

The output induced by 115, denoted 45, is equal to Z;. Hence, J5 < z;. However, 5 is not less
than or equal to z;.

6.1.2. Characterization with Cost Functions

The aim of this section is to characterize with cost functions the optimality criterion de-
veloped in § 6.1.1. First, two particular cost functions are introduced. The first cost function,
denoted J1 7 for the main system and J; ; for the secondary system, corresponds to the tardi-
ness criterion and is defined by

pi K—1

Jii () = D, Y] max (yi (k) — zi5 (k),0) withie {1,2}

j=1k=0
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In the tardiness criterion, a penalty is paid for delays with respect to the output reference z;.
The second cost function, denoted J 1 for the main system and ] ; for the secondary system,
corresponds to the just-in-time criterion

my K—1

J2i(yi) = = > > wi (k) withie {1,2}

j=1%k=0

In the just-in-time criterion, a penalty is paid when input events are brought forward.

In the following, an optimal control approach based on these cost functions is investigated.
The problem is first solved for the main system and, second, for the secondary system under
a predefined behavior of the main system. For each system, the tardiness criterion is first
minimized. Then, among all inputs optimal with respect to the tardiness criterion, an input
optimal with respect to the just-in-time criterion is selected. In practice, this approach makes
sense: the objective is to respect the output reference (i.e., the schedule) and, under this con-
dition, it might also be interesting to ensure just-in-time behavior (i.e., delay the departures).

To avoid a cumbersome discussion over infinite costs, we assume that the reference output
z and y (ie. the response to the least realizable input 1) take value in R] over the finite
event horizon of length K. In practice, this assumption is not restrictive.

Main System

The first step consists in finding the optimal cost for the tardiness criterion. Formally, this
corresponds to solving the following optimization problem:

minimize J; ; (Y1)

subject to

X1 (k) = A]X] (k— ]) @B]LL] (k)
(k) = Cix1 (k)
up (k+ ) >y (k)
) =¢u1(0) > e,
Asy} > yll implies J1 4 (y%) = J11 (y%l), it is sufficient to find the least output yj in (6.5).

Furthermore, as the input-output mapping H; associated with the main system is isotone, it

is sufficient to find the least input uX admissible with respect to (6.5). The entries of the input

g‘f are all equal to ex defined by

6.
for0<k <K (6.5)

w (K)=T

efork <0
ex (k) = efor0 <k <K
Tfork > K
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Thus, the optimal cost in (6.5), denoted ]?ﬁt, is given by Jj 1 (H]f) where H]1< = H; (L_L]1<) By

assumption, ]?ﬂt is finite. The second step consists in solving
)

minimize J1 (ur)

subject to
x1 (k) = Ax; (k—=1)@®Bjuy (k)

w (k+1) >wuy (k)

Jia () = I
X1 (_]) =& (0) = e,y (K) =T

Since Y 2E],for0 <k<Kand1 <j <py,
max (y1, (k) = 215 k), 0) = max (y, ; (k) = 21,5 (K),0)

Hence, as I?ﬁt is finite, J11 (W) = I?ﬁt is equivalent to, for 0 < k < Kand 1 <j < py,
max (y1, (k) = z1; (k),0) = max (y, ; (k) = 215 (k) ,0)

If 215 (k) >y, j (k)
max (y1, (k) — 21, (k) ,0) = max (y, ; (k) = 215 (k),0)

< max (yy5 (k) —z15(k),0) =0
<y (k) <z (k)

Otherwise, if 1 (k) <y, ; (k),

max (y1, (k) = 21 (k),0) = max (y, . (k) = 215 (k) ,0)
< max (Y15 (k) — 215 (k),0) = Yy (k) — z1;
<Y1 (k) =y, (k)

<y, (k) <y, (k)
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6.1. Optimal Feedforward Control

Thus, 11 (wr) = ]?qt is equivalent to yj < z7, where Z; is the least feasible output reference
greater than or equal to z;. Hence, (6.6) is equivalent to

minimize J1 (u)

subject to
X1 (k) = A1Xq (k—])@-)Bﬂ,L] (k) 6.7)
z1 (k) = Cixq (k) for0 <k <K

Asu} > ull implies J1 2 (u%) <2 (u%l), the optimal cost in (6.6) is reached for the optimal
input obtained in § 6.1.1. Therefore, the optimal input computed in § 6.1.1 is optimal with
respect to the just-in-time criterion under an optimal cost for the tardiness criterion.

Secondary System

The previous approach is directly transposed to the secondary system under a predefined
behavior of the main system. Hence, for the secondary system, the optimal input obtained
in § 6.1.1 is optimal with respect to the just-in-time criterion under an optimal cost for the
tardiness criterion.

Remark 21. In optimal control or model predictive control [20], the cost function has some-
times the form J1 (y) + BJ2 (u) where

— J1 is a cost function quantifying the tracking error

— ], is a cost function quantifying the input effort

- B is an element in R representing the trade-off between the cost functions ] and J. In

practice, {3 is often selected small but strictly positive.

The objective is to compute the input W minimizing the overall cost function according to
the dynamics of the system. Intuitively, our problem for the main system or the secondary
system is similar, but the parameter [3 is assumed to be infinitesimall.

6.1.3. Complexity

The computation time of the optimal input for the main system is obtained by solving the
backward recursive relation (6.2) over the event horizon of length K. As the computation
time associated with each step is constant with respect to the length K of the event horizon,
the computation time of the optimal input for the main system is linear with the length K of
the event horizon. The computation time of the optimal input for the secondary system is
obtained by solving the backward recursive relation (6.4) over the event horizon of length K.
However, the computation time associated with each step may not be constant with respect
to the length K of the event horizon, as the computation of d)g1 (x) for x € Ryax (necessary for
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the mappings F and G) may depend on the length K of the event horizon. But, it is possible
to come down to a constant time in average over occurrence index k by reusing information
from the previous step. Hence, the computation time of the optimal input for the secondary
system is linear with the length K of the event horizon. Therefore, the computation time
of the optimal input for a (max, +)-system with partial synchronization is linear with the
length K of the event horizon.

To compute the realizable optimal input, it is only necessary to precede the solving of the
backward recursive relation by the solving of a forward recursive relation over the event
horizon of length K. The aim of this preliminary step is to relax the output reference. Using
a reasoning similar to the one presented before, the computation time associated with this
preliminary step is linear with the length K of the event horizon. Hence, the computation
time of the realizable optimal input for a (max, +)-system with partial synchronization is
linear with the length K of the event horizon.

Example 33. Let us consider Ex. 23 with the output reference

( e fork <0

z171 (k) =z12(k) =41 10®20* for0 <k <K
( T fork > K

[ ¢ fork <0

221 (k) =222 (k) = { 20®80% for0 < k < K
L T fork > K

A Scilab simulation leads to the following results for the computation time of the realizable
optimal input.

K 64 | 128 | 256
Computation time (ins) | 1.39 | 2.59 | 5.04

As expected, the computation time is linear with the length K of the event horizon.

6.2. Model Predictive Control

Model predictive control (MPC) is a closed-loop version of optimal feedforward control.
At each time step, an output reference for the next K occurrences of each output event is con-
sidered. Based on this output reference, an optimal input is computed with a method similar
to the one presented in § 6.1.1. Then, this optimal input is used to implement occurrences
of input events during the next time step. The main difficulty in comparison with optimal
feedforward control is to consider the history of the system. The advantage of this control
approach is the ability to take into account changes in the output reference (e.g., changes in
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the schedule) and perturbations. The drawback is the cost associated with the online compu-
tation of the optimal input and the additional communication network necessary to update
information online.

Let us now examine the precise timing of this control approach. At time t, the behavior
of the system before time t and the timing pattern of the input events over the time interval
[t,t + 1[ are known. Based on this information and on the output reference, an optimal
input is computed using a method similar to the one presented in § 6.1.1. As this step has
to be done during the time interval [t,t + 1[, the associated computation time is crucial:
a computation time linear with the length K of the event horizon is achieved. Then, the
computed optimal input is used to determine the timing pattern of the input events over the
time interval [t + 1,t + 2[. Hence, the information necessary to start again the process at
time t 4 1 is available at time t 4 1. In practice, the occurrence times of input events during
the time interval [0, 1] has to be guessed or computed offline, as they cannot come from the
previous step.

The link between the time domain and the event domain is formalized, for event e, by the
parameter K . defined as the index of the first occurrence of event e after or at time t. At
time t, e (k) is known for k < Ki, as it corresponds to a past occurrence of event e, and
e (k) > tfor k > K. Furthermore, as the timing pattern of an input event, denoted v, over
the time interval [t, t 4 1[ is known at time t, v (k) is known, at time t, for k < K;1,. The
output reference considered at time t, denoted z!, is defined by

yj (k) for k < Kyy,
zi (k) = 4z (k) @tfor Ky, <k < Key, +K
T fork > Kt‘yj +K

where z is the required output reference.

In the following, a method to compute the optimal input at time t is presented. As before,
the problem is first solved for the main system by neglecting the secondary system and,
second, for the secondary system under a predefined behavior of the main system.

Main System
The main system is described by
x1 (k) = Aix (k—=1) @B (k)
y1 (k) = Cix1 (k)
The output reference associated, at time t, with the main system, denoted z}‘, is defined by
y1,5 (k) fork < Ky,

215 (k) = § z15 (k) @t for Kyy,, <k < Ky, +K
T fork > Kt,y1,j + K
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The first task consists in identifying the occurrences of input and state events in the main
system affecting the next K occurrences of output events in the main system. Let us consider
state event x7 j and output event ys ;. In the following discussion, two cases are distinguished.

First case: Ky, ; < Ky, ;. Due to the structure of the model, y1; (k) is not affected by
x1j (1) for 1 > k. Hence, as Ky y, ;, + K -1 < Kix,; + K, the next K occurrences of output
event Yy ; are not affected by occurrences k of state event x; ; with k > Ky x, st K. Thus, to
capture the influence of state event x; ; on the next K occurrences of output event yj ;, it is
sufficient to predict the timing pattern of state event x; ; over Ktm,j <k< Kt»th + K.

Second case: Ky, > Kiy, ;- Due to the model,

Vie NO) Yii (Kt,ym - 1) = <C1A%)l] X1 (Kt,yu —1- 1)

Thus, for 0 < 1 < Kiy, — Ky — 1 (C1A%)i]. = & as Y14 (Kt,y])i —1) < tand
X1 (Keyy s =1 =1 = xq (Kt)X],j) > t. Therefore, ys ; (k) is not affected by x; (1) for
lL>k— Kt»ym + Ktm’j. Thus, to capture the influence of state event x;; on the next K
occurrences of output event yy ;, it is sufficient to predict the timing pattern of state event
X1, OVer Ktm,j <k< Ktm,j + K.

A similar reasoning can be applied to input events. Let us consider input event u, ; and
output event yj ;. To capture the influence of input event 17 ; on the next K occurrences
of output event Yy ;, it is sufficient to predict the timing pattern of input event w;; over
Ky ; €k < Keay; + K

A direct consequence of the previous discussion is that the predicted state, input, and
output of the main system, denoted X1, {11, and {j1, are considered over a finite event horizon
of length K and set to T after this horizon. Hence,

214 (k) x14 (k) fork < Kiy, ,
() = ,
' Tfork > Key,, +K

ﬁ_] i (k) _ Ui (k) fork < KH—],u]@
T fork > Kt,uu + K
Yr,i (k) fork < Ky, ,

01 (k) =
Tlork = Ky, +K

As occurrences of input events over time interval [t,t + 1[ have been determined with this

method, Ky, < Kyy, + K If Keyu, . = Ky, + K, no occurrences of input events

during the time interval [t 4 1,t + 2[ are required and the process is completed. Hence, only

the case Ky, ; < Kt,um + K is investigated.
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The problem is then to efficiently fill in the event window with unknown entries for each
dater. To solve this problem, a method similar to the one presented in § 6.1.1 is used. Notice
that X1, i1, and {J; may not represent a valid future behavior of the system, but they will be
selected such that they respect its dynamics for the event occurrences affecting the next K
occurrences of output events.

The first step consists in finding the least feasible output reference greater than or equal to
z}‘, denoted i}‘. The least realizable input, denoted Qi is defined by

uyi (k) fork < Kiyqu
A3 (k) = < Tt for Kesry, < k < Ky, +K
T fork > Kt,um +K

The state induced by 4, ;, denoted X, ;, is calculated by using the recurrence relation
x1 (k) = Axqp (k=1) @B (k)

A naive approach consists in computing this relation for K;,, < k < Ktm + K, where
Kix, = min (Kt’xuﬂ <i<mny)and K[’X] = max (Kt’xuﬂ <1 < ny). However, as Ktm —
Kt x, might not be bounded, the computation time associated with this problem might grow
to infinity. A better approach is to compute X7 (k) only when at least one of its entries
is unknown. This computation has to be done according to increasing occurrence indices,
i.e., the event windows with unknown entries have to be filled from left to right. Using this
approach, the computation time to obtain X; is linear with the length K of the event horizon.
The trick of computing only the needed value to fill in the event windows with unknown
entries is used redundantly for model predictive control and allows us to obtain an overall
computation time linear with the length K of the event horizon. Then, the unknown entries
of §,, the output induced by {i; are computed using y; (k) = Cyx; (k). Once again, §; (k)
is computed only when at least one of its entries is unknown. This allows us to compute the
least feasible output reference zj, given by 2§ = zj @ § ;- The computation time associated
with this step is linear with the length K of the event horizon.

The second step consists in calculating the optimal input associated with output reference
zY. Using a similar reasoning, the predicted least upper bound for state events, denoted Gy, is
partly known, i.e.,

N X714 (k) for k < Ky, .
Cri(k) = 1 (k) for it
T fork > Kt,xm +K

To fill in the event window with unknown entries, the recursive relation
C1 (k) = A1RG (k+1) A Crizy (k)

is considered. However, as for the calculation of X, e (k) is only computed when at least
one of its entries is unknown to maintain a computation time linear with the length K of the
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event horizon. This computation has to be done according to decreasing occurrence indices,
i.e., the event windows with unknown entries have to be filled from right to left. Finally, the
optimal input is given by the relation uj (k) = Bq%}(; (k). To maintain a computation time
linear with the length K of the event horizon, {1; (k) is computed only when at least one of its
entries is unknown. The computation time associated with this step is linear with the length
K of the event horizon.

Secondary System

The secondary system is described by

{ x2 (k) = H(xz (k = 1), (K))
Y2 (k) = Coxz (k)

The output reference associated, at time t, with the main system, denoted z}, is defined by

Y2, (k) fork < Kt,yz,j
z55 (k) = 225 (k) @ tfor Ky, <k < Kyy,; +K
Tfork = Kiy,; +K

The first task consists in identifying the occurrences of input and state events in the sec-
ondary system affecting the next K occurrences of output events in the secondary system.
As the only synchronizations between events in the secondary system are standard synchro-
nizations, it is possible to discard partial synchronizations for this task and apply the method
used for the main system. Hence, to capture the influence of state event x,; (resp. input
event Uy ;) on the next K occurrences of output event yj;, it is sufficient to predict the be-
havior of state event X, ; (resp. input event uy;) over Kixy; € k < Kiyyy +K (resp.
Ky <k < Ky + K).

The remaining part of optimal input calculation consists in adapting the method developed
in § 6.1 to the moving event horizon. This problem is very similar to the one solved for
the main system and is not discussed further. The computation time associated with the
calculation of the optimal input for the secondary system under a predefined behavior of the
main system is linear with the length K of the event horizon. Hence, the overall computation
time to compute the optimal input at time t is linear with the length K of the event horizon.

Remark 22. A formulation of the previous control approach with cost functions is direct by
using the characterization of optimal feedforward control in terms of cost functions developed
in § 6.1.2. Furthermore, in standard MPC, a prediction horizon K, is considered, but the
input is only optimized over a control horizon Ky, < K. This lowers the computation time
associated with the optimization problem solved online. In our approach, due to backward
recursive relations, K = K, = Ky and it is not possible to choose K, < K,. However,
reducing the computational time might be unnecessary, as the computation time to solve
online the optimization problem is linear with the length K of the prediction horizon.
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Example 34. The example introduced in Ex. 23 (i.e., the supply chain) is considered with a
simulation time horizon T = 800 and a prediction event horizon of length K = 4 (unless
otherwise specified).

Reference case:  The output references are given by

eifk <0
21K =z )= SFE=0
15®20% ifk >0
1 (k) = esz<ko' and 22, (k) = Elfk<k0'
20 ® 80% ifk =0 55 ® 80 ifk = 0
The input provided by MPC is
e ifk <0
upy (k) =w2 (k) =1 5®20%if0 < k < 40
T ifk > 40
e ifk <0 e ifk <0
uy (k) =4 20080%if0 <k <10 anduys (k) =1 60®80%if0 <k < 10
Tifk>10 T ifk =10

This input corresponds to the optimal input obtained with the method presented in § 6.1.1 by
truncating the output reference at k = 40 and forcing the input events to occur after or at
time t = 1 (this last condition is required by the timing of MPC). Hence, the length of the
prediction horizon is sufficient to predict the behavior of the system.

Complexity analysis:  The reference case is run with different lengths K for the predic-
tion horizon. A Scilab implementation leads to the following computation time to solve the
optimization problem for a single time step.

K 4 8 16
Computation time (ins) | 2.05 | 4.09 | 8.18

As expected, the computation time is linear with the length K of the prediction horizon.

Change in the output reference:  Output reference z1 starts with a throughput of one
train every 20 units of time. Att = 200, the throughput is suddenly increased to one train
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every 15 units of time. Output reference z, is the same than in the reference case. The input
provided by MPC is

(¢ ifk <0

5®20% if0 <k < 10

uir (k) =wo(k) =< 2011210 if10 <k < 16
275 ® 15571 if16 < k < 52

[ T ifk>52
(¢ ifk <0 [ eifk <0
20080 if0<k<3 60 ®80% if 0 < k < 2
uyi (k) =19 232ifk=3 anduy) (k) = { 208 @482 if2<k <4
285® 6084 ifd <k < 13 315604 ifd <k <13
[ Tifk>13 [ Tifk>13

After t = 200, the main system operates at the maximal throughput (i.e., one train every
12 units of time) to catch up with the new output reference. Afterwards, the main system
takes the correct throughput (i.e., one train every 15 units of time). But, the secondary system
drifts: the throughput increases to one container every 60 units of times after the change in
the output reference instead of staying at one container every 80 units of time. This is due to
a prediction horizon too short with respect to the new throughput of the train line. Indeed, if
we consider a prediction horizon of length K = 5. The input wy remains the same, but u; is
given by

(¢ ifk <0 [ eifk <0
20080% if0 <k <3 60 ®80% if0 <k < 2
232ifk =3 208 ifk =2
wy (k) =14 31575 *ifd <k<6 anduyy(k)=1 270®75*3if3<k<5
480 @755 if6 <k <9 435 @75 if5 <k < 8
7207557 if9 <k < 11 6757558 if8 <k <10
[ Tifk>11 [ T ifk =10

With a longer prediction horizon, the throughput of the secondary systems remains at one
train every 80 units of time after the change in the output reference.

Perturbation:  The reference case is considered, but a perturbations delays the third occur-
rence of event x1 4 (i.e., the arrival in train station B) untilt = 80. This might be caused by
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an unexpected mechanical breakdown. The input provided by MPC is

(¢ ifk <0
5®20%if0 <k <2
82®10%2 if2 <k <4
wg (k) =wip(k) =< 106@104if4 <k<6

130 ifk = 6
145 ® 2057 if 7 < k < 40
[ T ifk > 40
(e ifk <0
e ifk <0
20fl=0 89 ifk = 0
wy (k) =4 125ifk =1 anduy; (k) = ! _k—1 '
2 160 ® 80K if1 <k < 10
200 @ 8052 if2 < k < 10
Tifk>10
L T ifk>10

After the perturbation at t = 80, the main system operates at the maximal throughput
(i.e., one train every 12 units of time) to catch up with the output reference. The secondary
system takes these changes in the behavior of the main system into account.
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Operatorial Representation

In this chapter, operatorial representation for (max, +)-systems with partial synchroniza-
tion is discussed. The principle of operatorial representation is to model the dynamics of the
system by mappings over daters. This approach has been successfully applied to (max, +)-
linear systems [1, 8, 22, 32] and extended to take into account event batching [10, 15, 16].
The main outcome of operatorial representation for (max, +)-linear systems is a concept
equivalent to transfer function matrices in standard control theory. Furthermore, a handy
mathematical representation for the class of operators appearing in (max, +)-linear systems
is provided by the dioid Nyaxy[v] recalled in § 2.7. Unfortunately, an operatorial repre-
sentation for (max, +)-systems with partial synchronization does not exist. However, it
is still possible to capture some dynamics using this method. In particular, an operatorial
representation for the secondary system under a predefined behavior of the main system
is obtained. In the following, such systems are called (max, +)-systems subject to partial
synchronization. Note that a (max, +)-linear system is a (max, +)-system subject to par-
tial synchronization, as a (max, +)-linear system corresponds to a secondary system, which
is not subject to any partial synchronizations. Hence, (max, +)-systems subject to partial
synchronization form a larger class of systems than (max, +)-linear systems. A suitable al-
gebraic structure for this operatorial representation is the dioid Fy | [v] introduced in § 4.
In practice, (max, +)-systems subject to partial synchronization appear when the input of
the main system is known and perturbations affecting the main system are unlikely. Hence,
the dynamics of the main system can be neglected and predetermined synchronizing daters
are considered in partial synchronizations. From now on, we assume that the considered dis-
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crete event systems are time-driven (i.e., events only occur at clock ticks). This assumption
is also made in operatorial representation for (max, +)-linear systems and allows us to only
consider standard synchronizations with a time delay T € Ny (while, previously, T € RSL ) and
daters in Npax+[v]. In this chapter, the discussed results are mainly illustrated with Ex. 35
described below.

Example 35. This example deals with a one-way road from A to C via B. The road is equipped
with two traffic lights in B and in C. The traffic light B allows other users such as pedestrians
or trains to cross the road, but is not regulating an intersection with another road. There-
fore, a vehicle entering the road in A passes through B and leaves the road in C. Next, the
characteristics of the road are made explicit. The travel time from A to B or from B to C
is ten units of time. The capacity of each section (i.e., from A to B or from B to C) is three
vehicles. When the traffic light is green, at most one vehicle can pass the traffic light per unit
of time. Furthermore, the behavior of the traffic lights is known: each traffic light is green for
teim(d) U {T} whered = (e ® 1y ®2y?) (6y3)*. Initially, no vehicles are on the road.

In the following, the system is modeled by a discrete event system ruled by synchronization.
The model is based on the following events:

W a vehicle arrives on the road
X1, X2, X3 a vehicle passes respectively through A, B, C
Yy a vehicle leaves the road

The previous description of the system corresponds to the following synchronizations:

— for all k = 0, occurrence k of event x; (resp. x3) is at least ten units of time after

occurrence k of event x1 (resp. X2)

— for all k = 1, occurrence k of event x; (resp. x3) is at least one unit of time after

occurrence k — 1 of event x; (resp. x3)

— for all k = 3, occurrence k of event X1 (resp. x3) is at least zero units of time after

occurrence k — 3 of event x; (resp. x3)

— for all’k = 0, occurrence k of event x1 (resp. y) is at least zero units of time after

occurrence k of event u (resp. x3)

— event x; (resp. x3) can only occur att € Im (d) u {T}

A graphical representation of the road is given in Fig. 7.1. The dynamics of the main system
(i.e., the traffic lights) is completely neglected and the partial synchronizations are only using
the predefined dater d as timing pattern of the synchronizing events. Hence, this system is a
(max, +)-system subject to partial synchronization.

7.1. Algebraic Definition of Operatorial Representation

In the following, a general presentation of operatorial representation is made. Daters have
been defined in § 5.2.1 as isotone mappings from Z to Ny (not to Rp.x, as a time-driven
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Figure 7.1.: Petri net representation of the road equipped with traffic lights

dynamics is assumed) equal to € over {k € Z|k < 0}. The set of daters is denoted D. Let us
now formally define operators.

Definition 50 (Operator). An operator is a residuated mapping over the set of daters.

Example 36 (Operator y). An operator of interest is the shift in the event domain denoted y
and defined by

Vde D,VkeZ, vy(d)(k)=d(k-1)
The residual of the operatory, denoted Y%, is defined by

e fork <0

Vde D,Vke Z, +*(d) (k)=
(@) (k) {d(k—i—])forkzo

Proposition 39. The set of operators, denoted O, endowed with the operations @ and &
defined by

VYo1,0, €O, VdeD, (01®o0;)(d) =o01(d)@oz(d)

01 ®02 = 07002
is a complete dioid.

Proof. As D is a complete dioid (a possible operation ® to obtain a dioid is the Cauchy
product), this proposition is a direct consequence of Prop. 5. O
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According to § 2.4, matrices of operators are endowed with operations @ and ®. Fur-
thermore, the set of square matrices with entries in O is a complete dioid. The following
definition gives a meaning to matrices of operators.

Definition 51 (Matrix of operators). Let O € O™*™. Matrix O denotes a mapping from D™
to D™ defined by

vde D", 0O(d); =P 0y (d;)

Lemma 46. Let O € O™*™. Mapping O is residuated.

Proof. Obviously, mapping O is isotone. Let z € D™.

Ox)<zeVi, O(x), <z
< Vi, j, Oij (Xj) <z

& Vi,j, % < 0L (z)

m
<V, x=< /0=

i=1

Therefore, the inequality O (x) < z admits a greatest solution. Hence, mapping O is residu-
ated. O

Finally, the previous definitions allow us to formalize what is meant by operatorial repre-
sentation.

Definition 52 (Operatorial representation). LetS be a discrete event system ruled by synchro-
nization, such that its event set is partitioned inton state events, denoted X1, . .., Xn, M input
events, denoted Uy, ..., Wy, and p output events, denoted yi,...,Yp. The system S admits
an operatorial representation if there exist A € O™*™, B e O™™, and C € OP*" such that
the admissible behaviors are characterized by

x> AXx)®B(uw)
y>C(x)

7.1.1. Transfer Function Matrix

In the following, an input-output mapping, called transfer function matrix due to simi-
larities with standard control theory, is derived from the operatorial representation. This
reasoning is based on an analogy with Th. 5. The first step consists in finding the least (as the
earliest functioning rule is considered) solution of

x> AXx)®B(uw)
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Let us consider the vector of daters .A*3 (u). This is a solution, as
+00
AA*Bu)@B(u)=A ((—B A*B (u)) ® B (u)
k=0

+00
=P A 1B (1) @ B (u) as A is lower semi-continuous
k=0

= A*B(u)

Furthermore, by induction, we prove that x > A*B (u) for all k € Ny. For k = 0, x > B (u),
as x > A (x) ® B (u). Let us now assume that, for k > 0, x > .A*B (11). Then,

x> A(x)®B(uw)
> A (.AkB (u)) as A is isotone
> ATB (1)

This completes the induction. Hence, for all k € Ny, x > A*B (u). Thus, x > A*B(u).
Consequently, the least solution of x > A (x) ® B (u) is A*B (u). This leads directly to a
transfer function matrix, denoted H, such that y > H (u) where H = CA*B.

Remark 23. AsH is residuated, H is isotone. Therefore, in general, operatorial representation
is not suitable to represent (max, +)-systems with partial synchronization, as the associated
input-output mapping is not necessarily isotone (see Ex. 28).

7.1.2. Composition Operators

In the following, a particular class of operators, namely composition operators, is defined
based on the dioid meX introduced in § 3. First, a lemma provides the theoretical foundation
to the definition of composition operators.

Lemma 47. Let f be a mapping over Ny . The following statements are equivalent:
1. mapping Ly, defined by L¢ (d) = f o d ford € D, is an operator

2. mapping f is residuated

Proof. 1 = 2: Let d be a dater. As L (d) is a dater,
fle) =f(d(=1) =Le(d)(-1) =¢

Furthermore, let X < Np... We associate to each element x in Ny, a dater dy in D such
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that dy (0) = x. Then,

f <§x> =f (S% dy (0))

ny (@ dx) (0)

xeX

= P L (dy) (0) as Ly is lower semi-continuous
XEX

=Dk

xeX

Hence, f is lower semi-continuous. According to Th. 3, f is residuated.
2 = 1: Let d be a dater. The first step consists in proving that L¢ (d) is a dater. Obviously,

L¢ (d) is a mapping from Z to Nyay. For k < 0,
L¢(d) (k) = f(d(k)) = f(e) = ¢ as f is residuated

Furthermore, as mappings f and d are isotone, L (d) = f o d is also isotone. Hence, L; is a
mapping over daters. It remains to check that Ly is residuated. Let us define the mapping g
over D by

efork <0

vVdeD,VkeZ, g(d) (k) ={ % (d (k)) fork =0

Mapping g is obviously an isotone mapping over D. Furthermore,
efork <0
2 (f(d (k))) fork =0

efork <0
f (f* (d (k))) fork >0

VdeD,VkeZ, (golys)(d) (k)= {

(Lo g) (d) (k) = {

Asflof > IdeaX and fo ff < ldeaX,
VdeD, (golf)(d)>dand (Lfog)(d) <d
Hence, g o Lt > Idp and L o g < Idp. Therefore, according to Th. 1, L¢ is residuated. [

Definition 53 (Composition operator). An operator o is said to be a composition operator if
there exists a mapping f € iy such thato = Ly.

A composition operator simply composes a dater by a given mapping in fy_ . Lem. 47
shows that composition operators are operators and that only composition by mappings in
Jx,,, leads to operators.
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Example 37 (Operator 8). A composition operator of interest is the shift in the time domain
denoted d and defined by La. The mapping A in Fiy_  has previously been introduced in § 3.2
and is defined by
Vx € Npax, A (x) = 1x
The following lemma investigates the algebraic structure of the set of composition opera-
tors.
Lemma 48. The set of composition operators, denoted O, is a complete subdioid of O. Fur-

thermore, O¢ and J5_ are isomorphic.
max

Proof. First, we prove that OC is a complete subdioid of O. The operator ¢ (resp. e) is equal
to L, (resp. L¢). Hence, € (resp. e) belongs to OC. Let £L < OF. For o in L, f, denotes a
mapping in Fgy_such that o = Ly,. Then,

¥d e D,Vk € Z, (@ 0) (d) (k) = Do (d) (k)

oeL

= F(d(k)) whereF = (P,

oLl

= L (d) (k) as F belongs to F5

Therefore, @OE ~ 0 belongs to OC. Thus, OF is closed under infinite sum. Furthermore, for
the composition operators L¢, and Ly,,

Vd e D, (Lﬁ ®sz) (d) = (f1®f2)od
= Lhier, (d)
Hence, as f; ® f; belongs to F_, OC is closed for the product. Thus, O¢ is a complete
subdioid of O.

Second, we prove that the mapping @, defined by @ (f) = Ly, is an homomorphism from
the dioid meax to the dioid OF. First of all,

O(e)=Lg=candP(e) =L =e
Furthermore, for f1,f; € Fy_,

Vde D,VkeZ, O (fi@f,)(d) (k) =L¢ e (d) (k)
= (fi ®1f2) (d (k))
= f1(d (k) @ f2(d (k)
=Ly, (d) (k) @ Ly, (d) (k)
= (Ly, ®Ly,) (d) (k)
= (O (f1) @@ (f2)) (d) (k)

125



7. Operatorial Representation

Vde D,VkeZ, O (fi®f,)(d) (k) =L¢ e (d) (k)
= 1 (f2(d (k)))
=Ly, (f20d) (k)
= Ly, (L, (d)) (k)
= (L, ® Ly,) (d) (k)
= (@ () @ @ (f2)) (d) (k)
Hence, @ (f; ®f;) = @ (f1) ® © (f2) and @ (f; ® ;) = © (f1) ® @ (f;). Thus, ® is an
homomorphism.

Finally, it remains to prove that @ is bijective. By definition, @ is surjective. The injectivity
of @ is shown by the following reasoning. Let f,f; in Ffy_ and consider a set of daters

{dx|x € Nmax} such that, for all x € Ny, dy (0) = x. Then,

@ (f1) = @ (f2) = Vx € Npay, @ (f1) (dy) (0) = @ (f2) (dy) (0)
= Vx e Nmam Lf] (dx)
= Vx € Npay, f1 (dy (0

= Vx € Ny, f1 (X) = 2 (x

= f] = fz
O
An interesting property of composition operators is presented in the following lemma.
Lemma 49. The operatory commutes with all composition operators.
Proof. Let L; be a composition operator associated with a mapping f in F N
vdeD,VkeZ, (y®Lp)(d)(k)=Le(d)(k—1)
= f(d(k—1))
f(y(d) (k)
= Li (v (@) ()
= (Lr®7v) (d) (k)
Hence, y® Ly = L ®v. ]

The next proposition shows the interest of the dioid F Ny ['v] to represent a particular
class of operators.

Proposition 40. The complete dioid spanned by O U {y}, denoted O%Y, is isomorphic to
F iy [Y]-
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Proof. The complete dioid spanned by O U {y} is, by definition, the least complete dioid
containing O¢ U {y}. According to Lem. 49, an element 0 in O%Y can be written as

+o00
o= (—B 0rY* where o € o¢
k=0

Furthermore, as y < e, y* = e. Hence,

+00 k 5 +00 5
o=v'o=@ Doc)v* = Doyy
0 k=0

k=0 \j=

where 0y = @};0 oy belongs to OC. The previous notation leads directly to a bijective
mapping ® from O to (’)§j [] defined by

Yoe OSY VkeZ, @ (o) (k)=oyx
Furthermore,

O(e)=cand D (e) =e
V01,0, € O%Y, @ (01 ®0z) = @ (01) DD (07)
Yoi,07 € OC’V, D (01 ®0z) = (07) ®D (072)

Hence, @ is an isomorphism and the dioids O%Y and (’)yC [y] are isomorphic. According to
Lem. 48, O€ and meax are isomorphic. Thus, OSY and me . y[h/]] are isomorphic. O

a

In the following, we only consider operatorial representation where the entries of A, B,
and C belong to O%Y. This allows us to transpose these matrices in F Ny [v] and to apply
the tools developed in § 4.

Impulse Response

In the following, an interpretation in terms of system theory is given to the mapping 1V (s)
associated with series s in iy [y]. Let us first recall that \ (s) is a mapping from Niax

to Nmax,y ['v] defined by

+
8

VX € Ninaxy ¥ (8) (%) = @ s (k) () v*
0

=
Il

Let us consider a SISO discrete event system with an operatorial representation where
the entries of A, B, and C belong to Fy . [v]- As Fy_ . [v] is a complete dioid, H =
CA*B is a series in Fgy,_[v]. For (max,+)-linear systems and (max, +)-systems with
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partial synchronization, an impulse for an event corresponds to all occurrences k > 0 of the
considered event at time O and is modeled by the dater e defined by

e (k) = efork <0
efork >0

Hence, for the considered SISO system,

Thus, the impulse response is directly given by 1 (#) (e). In the same way, the dater
P (H) (x) with x € Ny corresponds to the output induced when all occurrences k > 0 of
the input event are at time x.

In the following, we discuss how to use the previous results to compute the output induced
by input u. The transfer function H of a (max, +)-linear system is both event-invariant
(ie, YH = Hvy) and time-invariant (i.e., 8H = HJ). Therefore, the input induced by u is
equal to the (max, +)-convolution of the impulse response and the input u. However, transfer
functions in meax,v [y] are still event-invariant, but, in general, they are not time-invariant.
Therefore, the output induced by u cannot be simply obtained by (max, +)-convoluting the
impulse response and the input u. Next, a method to calculate the output induced by input
u in this more general case is presented. First, as u belongs to Nyax[Y], it is possible to
associate to u a series & = @ (u) in Fy_ . [v] (see § 4.1). Then, according to Lem. 35,
U (e) = u. Hence,

H(u) = (HU) (e) = b (HU) (e)

Therefore, if we are able to calculate the series Hi/{ in meax{Y [v], the output induced by u is
easily obtained.
A generalization of the previous discussion to the MIMO case is straightforward.
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7.2. Operatorial Representation for (max, +)-linear Systems

In the following, the operatorial representation for (max, +)-linear system is recalled. Let
us consider the standard synchronization “for all k > 1, occurrence k of event e; is at least T
units of time after occurrence k — 1 of event e;”. This corresponds to the following inequality
in Npay:

VkeZ, ex(k)>=Ter(k—1)

Rewriting this relation with the operators y and & leads to e; > (STyl) (e7). Furthermore,
the combinations of several standard synchronizations on the same event can be expressed
by the operation @® over daters and operators. For example, standard synchronizations “for
all k > 1y, occurrence k of event e is at least T units of time after occurrence k — 1; of event
e1,1” and “for all k > 1y, occurrence k of event e; is at least T, units of time after occurrence
k — 1 of event e ;” are both expressed by a single inequality:

e; > (6“1/1‘) (e1,1) @ (STZle) (e12)

Therefore, a (max, +)-linear system admits an operatorial representation. Furthermore, as
the entries of matrices A, B, and C belong to O%7, it is possible to obtain an operato-
rial representation in Fg_ y[h/]]. An additional simplification is to rewrite this operatorial

representation in Npax[Y], as the entries of A, B, and C belong to Fa,[y]. Hence, the
fundamental theorem in Nmax’v [v] recalled in § 2.7.4 leads to important results concerning
(max, +)-linear systems. The transfer function matrix # of a (max, +)-linear system is given
by C.A*B. Matrices A, B, and C are rational. Then, according to Th. 6, . A* is rational. Hence,
the transfer function matrix # is rational. Consequently, according to the fundamental theo-
rem in Nmax,y [v], the transfer function matrix H is periodic. Conversely, let M be a periodic
matrix in Nmax,y [y]™*P. According to the fundamental theorem in Nmax,y ], matrix M is
realizable, ie., , there exist n € N, A € {e,e, 1,v}"*™, B € B"*P, and C € B™*" such that
M = CA*B. Hence, M corresponds to the transfer function matrix of the system described
by the operatorial representation

x> AXx)®B(uw)
y>=C(x)

This system is (max, +)-linear as operators e, vy, and 1 (i.e., d) respectively correspond to the
following standard synchronizations:
— forall k > 0, occurrence k of event e, is at least zero units of time after occurrence k of
event eq
— for all k > 1, occurrence k of event e is at least zero units of time after occurrence
k — 1 of event e;
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— for all k > 0, occurrence k of event e, is at least one unit of time after occurrence k of

event e

Furthermore, the results on calculation with periodic series in Ny y[v] and the software
tools presented in § 2.7 are helpful to compute transfer function matrices and outputs induced

by periodic inputs for (max, +)-linear systems.

Example 38. To illustrate operatorial representation of (max, +)-linear systems, let us con-

sider the train line in Ex. 23 recalled in Fig. 7.2.

(G

Figure 7.2.: Petri net representation of the train line

This system is a (max, -+)-linear system and its operatorial representation in O%Y is

™
o
o
™
M M M

(x1)

Y1 =

( 2% e &%y e
€ € €
X1 > 5 (X] ) &)
v ¢ v

£ €

.

Then, its operatorial representation in Fiy [v] is

( e v e Ay
10
X > A i ¢ ¢ (x1)®
e Ay ¢ 2%

Y1 =
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Finally, its operatorial representation in Ny y[v] is

-

e v € 2y e ¢
10 ¢ ¢ ¢ €
X7 > (x1)® (u)
) e 2y ¢ vy € e
e ¢ 10 ¢ £ €
e e ¢ ¢
Y1 = ( > (x1)
L € € € e

The transfer function matrix of the considered (max, +)-linear system, denoted H1, is given
by

_ [ (0®20y) 24v%)"  (22v@32y%) (24"
22y ®32¢%) (24v%)"  (10®20y) (24v2)"

As expected, the transfer function matrix H, is periodic. Let us consider the particular input
w; defined by w1 = w2 = e®20y? (15y)*. The outputyy induced by inputy is given by

10 ® 22y @ 34v2 @ 46y3 @ 60y* (15y)*
U1=7'l1(u1)=7'l1®u1=< ©22y B3ty Gy OOy (1) >

10 @ 22y @ 34v? @ 46y @ 60v* (15y)*

Note that the notation is slightly ambiguous, as H1 corresponds both to the transfer func-
tion matrix (i.e., a matrix of operators) and to a matrix of impulse responses (i.e., a matrix of
daters).

7.3. Operatorial Representation for (max, +)-systems Subject to
Partial Synchronization

In the following, the operatorial representation for (max, 4 )-systems subject to partial
synchronization is introduced. As for (max, +)-linear systems, standard synchronizations
are modeled using the operators 'y and 8. The main difficulty is to represent partial synchro-
nizations by operators. This problem is solved by using the «-mappings introduced in § 3.5.
As a reminder, the a-mapping associated with a dater d, denoted &4, is a mapping in Fg_

defined by

vxeNmaxa Xd (X) = /\{Z ZX|Ze Im (d) Y {T}}
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Let x be an event and d be a predetermined dater.

event x is subject to a partial synchronization by dater d
S VkeZ, x(k)elm(d)u{T}

SVkeZ, x(k)=oaq(x(k))

&S VkeZ, x(k)>oaxq(x(k)) asag > Id
SXZ=ZXgoX

& x = Ly, (x) as g € Fy

max

Therefore, partial synchronizations are modeled by composition operators based on -
mappings. As before, a combination of several (standard and/or partial) synchronizations af-
fecting the same event boils down to a single inequality by using the operations @ over daters
and operators. This leads to an operatorial representation in O%Y for (max, +)-systems sub-
ject to partial synchronization. As shown in Prop. 40, this operatorial representation can be
written in F_  [v].

Example 39. The operatorial representation in OCY associated with Ex. 35 is

3

€ 8% € €

x> | 80 L, @y V3 e e [
3 610 Locd (‘D SY €

y > ( € € e ) (x)

In meax,v [v], the operatorial representation becomes

13 v3 € e

x> | AY oAy P )& | e |(w
€ A1° xqg @ Ay €

UZ(E 3 e)(X)

The dater d represents the behavior of the traffic lights and is known.

7.3.1. Periodic Case

In the following, only the particular case where the predefined daters in partial synchro-
nizations are periodic is considered. Then, according to Prop. 23, the a-mappings associated
with partial synchronizations are periodic. Hence, the entries of A, 13, and C are causal pe-
riodic series in meaw ['y]- This leads to an interpretation in terms of system theory for the
fundamental theorem in Fry ['v] introduced in § 4.6. The transfer function matrix of the
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system is H = CA*B. Matrices A, B3, and C are rational. Then, according to Th. 6, A* is
rational. Hence, the transfer function matrix # is rational. Consequently, according to the
fundamental theorem in F Ny [], the transfer function matrix # is causal and periodic.
Conversely, let M be a causal and periodic matrix in F Ny [y]™*P. According to the funda-
mental theorem in F Ny ['v], matrix M is realizable. Hence, there exists a finite number N

of periodic series T1, . .., TN in Niaxy [ Y] such that S admits a (B, C)-representation with re-
spect to {e, e, A, &, ..., &y, Y} Where all non-diagonal entries of A belong to {¢, e, A, v}.
Therefore, M corresponds to the transfer function matrix of the system described by the
operatorial representation

x> AXx)®B(uw)
y>=C(x)

This system is a (max, +)-system subject to partial synchronization. Indeed, entries of A, 15,
and C equal to operators e, 'y, or A (i.e., 8) respectively correspond to the following standard
synchronizations:

— forall k > 0, occurrence k of event e, is at least zero units of time after occurrence k of

event eq

— for all k > 1, occurrence k of event e is at least zero units of time after occurrence

k — 1 of event e;
— for all k > 0, occurrence k of event e; is at least one unit of time after occurrence k of
event e
Furthermore, the entries of A corresponding to a «x-mapping are diagonal and correspond
to partial synchronization of the event by a predefined periodic dater. This interpretation
makes clear the necessity of forcing the x-mappings to be on the diagonal of matrix A in the
definition of realizability.

Moreover, the results on calculation with periodic series in Fy [v] introduced in § 4
are helpful to compute transfer function matrices and outputs induced by periodic inputs for
(max, +)-systems subject to partial synchronization. In the following, several examples are
discussed.

Example 40. The transfer function of the (max, +)-system subject to partial synchronization
introduced in Ex. 35 (i.e., a one-way road equipped with two traffic lights) is given by

H = <A12Y3) ' (ﬁ Dy d f3Y2)
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where
f1(x) = 1
fy (X) =<
f3(x) = <

[ x ifx e {eT}

As expected, the transfer function ‘H is causal and periodic. A graphical representation of the
transfer function H is drawn in Fig. 7.3. The transfer function leads directly to the impulse
response of the system (i.e., the output induced by an infinity of vehicles arriving att = 0).

H (e)

Let us consider the periodic input u equal to e ® v> (6y)*. This input models the arrival
of four vehicles att = 0 and of one vehicle at t = 6k with k € N. In Fa,[v], input u

\

24 @68 if6F < x < 5® 6" withk e Ny
30 @68 ifx = 5® 6" withk € Ny
xifxe{g T}

256 if6F < x < 4® 6" withk e Ny
306" ifx = 4® 6" withk € Ny

31 ®6F ifx = 5® 6" withk e Ny
xifxe {g T}

26 @65 if6F < x <3®6" withk e Ny
306" ifx = 3® 6" withk € Ny

31 @6 ifx = 4®6* withk € Ny
326 ifx = 5® 6" withk € Ny

¥ (H) () = (24 ® 25y @ 26y2) (12y3) "

corresponds to the series U defined by

U=ed(a%)

Then,

HU =11 @y @3y’ @ A1y’ @ Ay @ ATy © A% f1y°
*
® A2y @ (A1 @ 4% ) vi @ (A%Y) A%hy’

Hence, the output induced by u is given by

H (u) = HU (e)
— (M) (e)

= 24 @ 25y @ 26Y* @ 36y @ 37" @ 38y° D 48y° @49y’ @ 54v8 (6y)*
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Figure 7.3.: Transfer function of the road equipped with traffic lights

Example 41. In this example, operatorial representation in meax’y[[y]] is used to calculate
outputs induced by periodic inputs for (max, +)-systems with partial synchronization. We
consider the (max, +)-system with partial synchronization presented in Ex. 23 (i.e., the supply
chain). The periodic input is defined by

, e ®20v% (15y)*
uy; =uy) = (90y)*

U = w2

The main system is a (max, +)-linear system and the output yy induced by input w; has
already been computed in Ex. 38. Furthermore, this input leads to the following daters for the
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7. Operatorial Representation

state events in the main system.

e @12y @ 24vy? @ 36y> @ 50v* (15v)*
10@ 22y @ 34y2 @ 46y3 @ 60v* (157)*
e @12y @ 24vy? @ 36y° @ 50v* (15y)*
10 ® 22y @ 34y @ 46y @ 60v* (15y)*

Hence, under this behavior of the main system, the secondary system corresponds to a (max, +)-
system subject to partial synchronization. The transfer function matrix, denoted Hj, of this
(max, +)-system subject to partial synchronization is given by

_ [ Mm@ @%y) iy fay® (A%y)" ARy
Hy = 60\ * A30 604\ *
21 ® (A%y)" Afyy 20 ® (A%y)" foy

where

( xifx e {e T}

27 ife <x < 8

39 if 8 < x < 20

510f20 < x < 32

65 if32 < x < 46

80 ® 155 if 46 ® 15% < x < 61 ® 15 with k € N

f11 (x) = 1

xifx e {e T}

ifx=ce

51if1 <x <13

flz(x) =4 65if13 <x <25

80 if25 < x < 37

95 if37 < x < 51

[ 110®15% if 51 ® 15% < x < 66 ® 15 withk € N

xifx e {e T}

51 ife <x < 8

65 if 8 < x < 20

80 if20 <x < 32

95 if32 < x < 46

110 ® 15% if 46 ® 15 < x < 61 ® 155 with k € Ny

21 (x) = <%
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7.3. Operatorial Representation for (max, +)-systems Subject to Partial Synchronization

[ xifxe{eT}
15ifx=ce
27 if1 <x <13
fo(x) =14 392if13<x <25
51 if25 <x < 37
65 if37 < x < 51
[ 80 ® 15 if 51 ® 15% < x < 66 ® 15% withk € Ny

[« ifxe{e T}
80 ife<x <38
95if8 <x <20
110 if20 < x < 32
125 if32 <x < 46
140 ® 15% if 46 ® 155 < x < 61 ® 15% with k € Ny
xifxe{e T}
65ifx =e
80 if1 <x <13
f2(x) =1 95if13 <x <25
110 if25 <x < 37
125 if 37 < x < 51
[ 140 ® 155 if 51 ® 15% < x < 66 ® 15% withk € N
The impulse response of this (max, +)-system subject to partial synchronization is given by
o () = ( b (Ha) (&) @b (Ha2) (€) )
¥ (Ha1) (e) @ (Ha22) (€)
_( 27 @ 80y (60y)* )
~ \ 51@110y (607)*

Next, we compute the response of this (max, +)-system subject to partial synchronization to
the input uy. The matrix with entries in Fp [v] associated with u;,, denoted Us, is given by

U, = ( (A%Y)* >
(A7)
Then,

Holdy = ( f11 ® (A%Y): f11A70y )
21 @ (Ay)" f1A70y
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7. Operatorial Representation

Hence,
Ha (w2) = Halhr (e)

_ ( ¥ (Halh),) (e) >
¥ (Halh),) (e)

_ [ 27@110y(90y)*
51 @ 140y (90y)*

Example 42. In the previous examples, transfer function matrices have entries in the dioid
f%er"cy[[y]]. In terms of system theory, this means that the throughput of an impulse response
does not depend on the occurring time t € Ny of the impulse. In the following, we present
a (max, +)-system subject to partial synchronization where the throughput of an impulse
response depends on the occurring time t € Ny of the impulse. Let us consider the (max, +)-

system subject to partial synchronization drawn in Fig. 7.4.

1= (29)*

d
\

dy=e@1(27)*

Figure 7.4.: Petri net representation of a (max, +)-system subject to partial synchronization exhibiting
impulse responses with different throughputs
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7.3. Operatorial Representation for (max, +)-systems Subject to Partial Synchronization

The corresponding operatorial representation in Fg_ Iv] is

xZ(ad‘ Y )(x)@<€>(u)
e x4, e
yx=(e e )X

This leads to the transfer function ‘H defined by

eifx <1
Tifx =1
T®2%if2% <x < 2" withke N
Tifx=T

H=cd (Azy)*fwithf(x) _

A graphical representation of H is drawn in Fig. 7.5. For an impulse occurring at t = 0,

Figure 7.5.: Transfer function H = e ® (Azy) Y f

the throughput of the induced output is +00, while, for an impulse occurring att € N, the
throughput of the induced output is 2.
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Model Reference Control

In this chapter, model reference control for (max, +)-systems with partial synchronization
is discussed. A model reference representing a required transfer function matrix is given.
The aim of this approach is to modify the transfer function matrix of the system to match as
closely as possible the model reference. A prerequisite for this approach is the existence of
transfer function matrices. Hence, model reference control cannot be applied to (max, +)-
systems with partial synchronization. However, it makes sense for (max, +)-linear systems
and (max, +)-systems subject to partial synchronization, as transfer function matrices are
provided by the operatorial representations in Nyaxy[v] and in FRpaiy [Y]- For (max, +)-
linear systems, model reference control has been widely investigated [12, 14, 25, 30]. In the
following, we investigate how to extend these results to (max, +)-systems subject to partial
synchronization. We mainly focus on adding prefilters and feedbacks to modify the transfer
function matrix of the system. However, more sophisticated control structures already de-
veloped for (max, +)-linear systems could be adapted to (max, +)-systems subject to partial
synchronization in the same way.

The fundamental difference between optimal control and model reference control is that
optimal control acts by applying a particular input while model reference control modifies the
dynamics of the system. Hence, model reference control does not contain any requirement
on the input. In many applications, the input is not a degree of freedom, but depends on
external factors. In Ex. 35, the arrival of vehicles (i.e., the input) is not a degree of freedom,
but depends on the overall traffic. Therefore, optimal control is not suitable for this case, but
model reference control leads to interesting results presented in the following.
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8. Model Reference Control

8.1. Prefilter

Let us consider a (max, +)-system subject to partial synchronization with a transfer func-
tion matrix H in Fry  [y[P*™. A prefilter P in Fg [y]™*™ is added ahead of the
system. The model reference is specified by the matrix G in F Ry [y]P*™. The problem
formulation is summarized in Fig. 8.1.

- —_- - - - - - - e e e e e e e e e e e e = === =

—_—— e e - —

Figure 8.1.: Model reference control with prefilter

The transfer function matrix of the overall system is HP. Indeed,
y=H(w =H(P (V) =HP (V)

The aim of model reference control is to match as closely as possible the model reference
G. This is formalized by finding the greatest solution P of HP < G. Then, G represents a
least upper bound for the admissible behavior of the overall system. Furthermore, taking the
greatest solution maximizes the input u = P (v) of the original system (i.e., delays as much
as possible the occurrences of input events). As the dioid Fy [v] is complete, the greatest
solution, denoted Py, of HP < G is given by

Pmax = H&Q

The previous reasoning is not constructive and does not lead to a practical implementa-
tion of Ppay. In practice, the prefilter can only use information from the past to compute
occurrences of input events. Hence, the prefilter P is required to be causal. Hence,

Pmax = Pr++ (Pmax) = ,Hxﬁ__,_g

Furthermore, if H and G are causal periodic matrices (for H, this means considering periodic
synchronizing daters), Prop. 26 and Prop. 31 give an algorithm to compute Pp,x and ensure
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8.1. Prefilter

that Ppax is periodic. Thus, according to the fundamental theorem in meaX y[[y]], Prax is
realizable (i.e., Ppax can be seen as the transfer function matrix of a (max, +)-system subject
to partial synchronization). This leads to a practical implementation of Pyay.

Remark 24 (Neutral prefilter). An interesting particular case is choosing G = H. Then,
Puax = HY, H. In the literature, this prefilter is called neutral prefilter as it does not
modify the transfer function matrix of the system, i.e., HPyax = H.

Example 43. In the following, the neutral prefilter, denoted Ppax, for the (max, +)-system
subject to partial synchronization introduced in Ex. 35 (i.e., a one-way road equipped with two

traffic lights) is computed. The transfer function H of this system has already been computed
in Ex. 40. Hence,

Prax = My, H = <A12Y3)* (Pl ®p2y ®P3Y2)
with

[ xifxe{eT}

2®6% if6* < x < 3® 6 withk € Ny
pP1(x) =< 3®6%ifx =3®6" withk e Ny
4® 6% ifx =4 ® 6" withk e Ny

[ 8®6" ifx =5® 6" withk e Ny

( xifxe{e T}

3®68 if6" < x < 3® 6" withk e Ny
4Q@ 68 ifx =3® 6" withk € N

96X if4 ®6F < x < 61 withk € Ny

[ xifxe{eT}
P3(x) =1 4®@6%if6* <x <3®6F withk e Ny
[ 10®6" if3®6" < x < 61 withk e Ny

A graphical representation of the neutral prefilter Pmax is drawn in Fig. 8.2. Furthermore,

a realization of Pmax as (max, +)-system subject to partial synchronization is provided in
Fig. 8.3.

Example 44. In the following, the neutral prefilter, denoted Ppay, for the (max, +)-system
subject to partial synchronization introduced in Ex. 42 is computed. Note that the considered
transfer function H fulfills H = H*. Hence, finding the neutral prefilter Ppay is equivalent
to finding the greatest causal solution of H*P < H*. Consequently, Ppax = H* = H.
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Figure 8.2.: Neutral prefilter for the road equipped with traffic lights

8.2. Feedback

Let us consider a (max, +)-system subject to partial synchronization with a transfer func-
tion matrix H in Fy  [y[P*™. An output feedback F in Fiy  [y][™*P is added. The

model reference is specified by the matrix G in Ffy [y]P*™. The problem formulation is
summarized in Fig. 8.4.

Asy =H (u) and u = F (y) ®v, output y corresponds to the least solution of
y=HFY) OH()

Hence, the transfer function matrix of the overall system is (H.F)* H.

The aim of model reference control is to match as closely as possible the model reference
G. This is formalized by finding the greatest solution F of (HF)* H < G. Then, G represents
a least upper bound for the admissible behavior of the overall system. Furthermore, taking
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8.2. Feedback

dy = (2 D3y D 4"/2) (673) *
dy = (2@ 37) (6+?) '

dg =2(6)"

AQ_:

d3
Figure 8.3.: Realization of the neutral prefilter for the road equipped with traffic lights

the greatest solution maximizes the input u = F (y) @ v of the original system (i.e., delays
as much as possible the occurrences of input events). Obviously, this problem may have no
solution, e.g., if G is not greater than or equal to H. Using the reasoning developed in [14],
this problem is solved for the class of model reference G defined by

G ={ge Fy,, IVIP""BAE Fy [y]™™ such that G = HA* |

maxyY

v {g € meax{Yl]:y]]pxm|3A € meax{Yl]:y]]pxp such that g - A*H}
and the greatest solution, denoted F,ax, is given by
]:max = /Hkg){H

The previous reasoning is not constructive and does not lead to a practical implementa-
tion of Fyax. In practice, the feedback can only use information from the past to compute
occurrences of input events. Hence, the feedback F is required to be causal. In the following,

we only consider the case of a transfer function matrix ‘H in ]_-%emy[h/]]mxp and a reference
maxy

model G in f%::)v [y]™*P such that G = HA* with Ain Fg  [y]P*P. Then,

(HF)*H <G < (HF)" <Gf, Has (HF)" is causal

Furthermore, as entries of G and H belong to }%::N [Y]™*P, entries of G¢_ , H belong to

f%er"cy[[y]]mw according to Prop. 37. As G > XH < G > XG,

Gpp H=07,.0

Furthermore, as XG < G = X2G < G,

(Q%++H)* = (Q%++Q)* =0, G=0G¢,,H
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8. Model Reference Control

Figure 8.4.: Model reference control with output feedback

Hence,

(HF)* <G, HeHF <G H
o F<HY, G H

Therefore, according to Prop. 36, Frmax = H¥,  G¢, , H belongs to f%::y[[y]]pxm‘ Thus,
according to the fundamental theorem in meax,v ['v]s Fax is realizable (ie., ’]-"max can be seen
as the transfer function matrix of a (max, +)-system subject to partial synchronization). This
leads to a practical implementation of Fp,x. Using a similar reasoning, it is possible to deal
with a reference model G in f%::y[[y]]mw such that G = A*H with Ain Fg  [y][™™
Then, for a (max, +)-system subjéct to partial synchronization with a transfer function ma-
trix H in .7-"%:: [y]™*P, we provide an algorithm to compute and realize the feedback for a

Y
model reference G in GP¢"¢ with

per,c __ per,c pXm -
G - {g € meax»'Y [[Y]] |E|A € meaX)Y

[y]™ ™ such that G = HA*}

(o< A 1 sk e = )

Remark 25 (Neutral feedback). An interesting particular case is choosing G = H. Then,
Frax = H§++’H%++H. In the literature, this feedback is called neutral feedback as it does
not modify the transfer function matrix of the system, i.e., (HFmax)” H = H. Note that if H

belongs to f%er’cy[[v]]pxm, then model reference G = H belongs to GP*"©.

Example 45. In the following, the neutral feedback, denoted Fi.x, for the (max, +)-system
subject to partial synchronization introduced in Ex. 35 (i.e., a one-way road equipped with two
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8.2. Feedback

traffic lights) is computed. The transfer function H of this system has already been computed
in Ex. 40 and belongs to f%er"cy[[y]]. Hence, we can compute and realize the feedback Fpax.
Thus, )

Fax = My HE  H = (A”W)* (m D2y @)psvz) ve
with

[ xifxe{eT}

26 ife < x < 21

P1(x) =4 26®6°if21 ®6* < x <25® 6 withk € Ny
27 ® 6% ifx = 25® 6% with k € Ny

[ 28®6" ifx = 26 ® 6% withk € N

xifxe {e T}

27 ife <x <20

27 ®6F if20 @ 6F < x < 25® 6 withk € Ny
28® 6" ifx = 25® 6* withk € Ny

xifxe {e T}
p3(x) =< 28ife<x <19
[ 28®6% if19 @68 < x < 25® 6% withk € Ny

A graphical representation of the neutral feedback Frx is drawn in Fig. 8.5. Furthermore,
a realization of Fmay as (max, +)-system subject to partial synchronization is provided in
Fig. 8.6.

Example 46. In the following, the neutral feedback, denoted Fpnax, for the (max, +)-system
subject to partial synchronization introduced in Ex. 42 is computed. As H does not belong to

%:CV[[y]], no algorithms has been providing to compute F_ . [v]. However, as H = H*,
ﬁndi;{g the neutral feedback Fpn,x is equivalent to finding the greatest causal solution of
(H*F)* H* < H*. Consequently, Fax = H* = H.
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8. Model Reference Control

Figure 8.5.: Neutral feedback for the road equipped with traffic lights
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Figure 8.6.: Realization of the neutral feedback for the road equipped with traffic lights
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Conclusion

In the literature, discrete event systems ruled only by standard synchronization (e.g., for all
k = 1, occurrence k of event e is at least T units of time after occurrence k—1 of event e) are
widely considered [1, 6, 26]. These systems are called (max, +)-linear systems, as they admit
a linear state-space representation in the (max, +)-algebra. Many applications for (max, +)-
linear systems are found in the fields of manufacturing systems and transportation networks.
Based on an analogy with standard control theory, modeling and control strategies have been
developed for (max, +)-linear systems such as transfer function matrix [1, 8, 22, 32], optimal
feedforward control [9, 31] , model reference control [14, 30], and model predictive control
[20, 34]. In this work, we extend these tools to a class of discrete event systems ruled by
standard synchronization and partial synchronization (e.g., event e, can only occur when,
not after, event e occurs). Partial synchronization often appears in transportation networks.
For example, a vehicle can cross an intersection only when the associated traffic light is green
or a user can take a bus only when a bus is at the bus stop.

The first contribution relates to (max, +)-systems with partial synchronization, i.e., dis-
crete event systems split into a main system and a secondary system such that there exist only
standard synchronizations between events in the same system and partial synchronizations of
events in the secondary system by events in the main system. A modeling in the (max, +)-
algebra based on daters is introduced for (max, +)-systems with partial synchronization.
Furthermore, predicting the output induced by a predefined input corresponds to solving a
recursive equation in the event domain. This leads to an input-output mapping for (max, +)-
systems with partial synchronization. The main difference between (max, +)-linear systems
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9. Conclusion

and (max, +)-systems with partial synchronization is that the input-output mapping asso-
ciated with a (max, +)-system with partial synchronization may not be isotone. Therefore,
operatorial representation (used to get transfer function matrices for (max, +)-linear sys-
tems) cannot be extended to (max, 4 )-systems with partial synchronization. Hence, transfer
function matrices are not available to model (max, +)-systems with partial synchronization.
Concerning the control of (max, +)-systems with partial synchronization, optimal feedfor-
ward control has been extended. The aim of this control approach is to respect an output
reference (i.e., ensure that output events meet a deadline) under the just-in-time condition
(i.e, input events occur as late as possible). This problem is reformulated in terms of cost
functions and the optimal input is computed when priority is given to the main system over
the secondary system (i.e., the performance of the main system is never degraded only to
improve the performance of the secondary system). Model predictive control is also ex-
tended to (max, +)-systems with partial synchronization. This control approach consists in
a closed-loop version of optimal feedforward control. For each time step, the optimal input is
computed over a prediction horizon, but only the occurrences of input events in the next time
step are applied to the system. The main advantage of model predictive control in comparison
with optimal feedforward control is the ability to take into account changes in the output ref-
erence and perturbations. The main disadvantage is the computational cost associated with
the online calculation of the optimal input. In the selected approach, this computational cost
is linear with the length of the prediction horizon. Model reference control is not extended
to (max, +)-system with partial synchronization, as transfer function matrices are not avail-
able. The previous methods are illustrated with a supply chain for containers using a rail
transport section. Therefore, a container can only leave a train station by train when a train
is leaving the train station. Hence, the train line corresponds to the main system and the
supply chain corresponds to the secondary system. As the train line may be shared by several
supply chains, it makes sense not to degrade the performance of the train line only to improve
the performance of a single supply chain.

The second contribution relates to (max, +)-systems subject to partial synchronization,
i.e., (max, +)-systems with partial synchronization where the behavior of the main system
is predefined. Hence, a (max, 4 )-system subject to partial synchronization corresponds to
a (max, +)-linear system, where occurrence times of events belong to predefined sets. All
techniques developed for (max, +)-systems with partial synchronization are available for
(max, +)-systems subject to partial synchronization. Furthermore, operatorial representa-
tion is extended and leads to transfer function matrices for (max, +)-systems subject to
partial synchronization. A convenient dioid to express these transfer function matrices is
F Ny ['v], a dioid of isotone formal power series in 'y with residuated mappings over Nyax
as coefficients. A major achievement is the fundamental theorem in Fr [v] which pro-
vides methods to compute transfer function matrices and to find (max, +)-systems subject to
partial synchronization associated with a predefined transfer function matrix. Then, model
reference control is extended to (max, +)-systems subject to partial synchronization. The
aim of this approach is to match a model reference by modifying the dynamics of the system.
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In particular, the use of prefilters and feedbacks is investigated. The results are obtained by
analogy with model reference control for (max, +)-linear systems. But, for feedbacks, some
additional assumptions have to be made on the transfer function matrix and the model ref-
erence. The previous methods are illustrated with a road equipped with traffic lights. As the
behavior of the traffic lights is predetermined, this system corresponds to a (max, +)-system
subject to partial synchronization.

An ambitious goal for future work is to develop a theory for discrete event systems ruled by
standard and partial synchronizations instead of considering only specific structures. Getting
handy transfer function matrices for this class of systems might be tricky, as a reasoning based
on operatorial representation is not possible. It is also of interest to investigate the dual in the
event domain of partial synchronization. Then, the class of systems dual to (max, +)-systems
subject to partial synchronization leads to transfer function matrices which are formal power
series in 0. Similarities between such systems and weight-balanced timed event graphs or
time-varying (max, +)-systems, investigated in [15, 16], are expected.
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Proofs

A.1. Calculation with Periodic Series in ]:Nmax,v[h/]]

A.1.1. Sum of Periodic Series

Proposition 41 (Sum of periodic series). Let s1 and s, be two periodic series in Fr_ y[h/]].
Series s1 @ s; is periodic. If s1 and s; are different from ¢, then

O'(S] @ Sz) = min (0‘(81) s 0‘(52))

Proof. Forie {1,2}, there exist Ny € N, periodic mappings f; 1,...,fin, in Fy_ ,Ni1y..., N,
in No, Ty 1y...,Ti,N; in No, and v; in N such that

z

i
si = (@ (AT fipy™ex
i

~
Il

Let us define v, my, and m; by
v =lem (v, v2) = myvy = myv;

Then,

Nl mi—1
Vi{1,2}, si (A™TRpY)* AT LY
k=1 1=0
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Therefore, by definition, s; ®s; is a periodic series. Besides, according to Lem. 38, there exist
X1,X2 € Ny and w1, w; € N such that

Vx > X1, WP (s1) (wix) = wid (s1) (x)
Vx> Xa, P (s2) (wax) = wad (s2) (%)

Therefore, with X = X; @ X; and w = lem (w1, w;),
Vx =X, P (s1Ds2) (wx) = wi (s1) (x) © wip (s2) (%)
= w (s1 D s2) (%)

According to Def. 43 and Lem. 40,

U(S1®Sz)=0( (s1@52) (X))
o (P (s1) (X) @V
—mln(ff(ll)( 1) (X)
0 (s1),0(s2)

(s2) (X))
), 0 (b (s2) (X)))
)

= min (

A.1.2. Greatest Lower Bound of Periodic Series

Before starting with the proof of Prop. 29, two intermediate lemmas are introduced to
handle the degenerated cases.

Lemma 50. Let f1 and f; be two mappings in meax andng,ny € Ny.
fIy™ A £y = (f1 A ) ym(mon2)

Proof.

cifk <mny cifk <mny
VkeZ, (fy™)(k) = and (f7y™2) (k) =
| ) (k) {ﬁifk;n ( ) (k) fifk=n

Hence,
(Fry™ A f2y™2) (k) = (fiy™) (k) A (f2v™2) (k)

) eifk < max(ny,ny)
f1 A f if k = max (ng,ny)

Thus, f1y™ A f2y™2 = (fi A fp)ymex(min2), O

154



A.1. Calculation with Periodic Series in Fy__ " Iyl

Lemma 51. Let f1 be a periodic mapping in Fry s be a periodic series in F Ny [v], and
ng in Ny. Series f1y™ A sy is periodic.

Proof. As s; is a periodic series in ]:Nmax,y ['v], there exist N in N, periodic mappings f21y...yf2N
in }—N SR FRRRRN 1SRN ] No, T1y...,7TN in Ny, and v in N such that

N
= @ (ATYY)* fopy"2k
k=1

As Fg, . [yl is a distributive dioid,

N

fiy™ A sy =@ (Fy™ A (A™yY)" faiy"2¥)
k=1

Therefore, according to Prop. 28, to prove the periodicity of f1y™" A s;, it is sufficient to show
that s is a periodic series, where s = f1y™ A (A™yY)* f;y"2 with periodic mappings f7, f;
in ]:Nmax, ni,ny € Z, v € N, and T € Ny. Furthermore, as, for all L in N,

L-1

f],ym A (AT,YV)* fz'YnZ — @ (f],ym A Alezy“2+1V)
1=0

o (fﬂ/m A (AT,YV)* ALsz,ynz-i-Lv)
Therefore, according to Prop. 28, it is sufficient to consider the case where n, > n;.
If f1 or f; is equal to ¢, then s = ¢ is a periodic series. The case T = 0 has been solved in

Lem. 50. In the following, we assume that f1, f, are non-zero mappings and T > 0. For all
keZ,

eifk <mny
f1y™) (k) =
( ) (k) {f] ifk > mny
eifk <ny
AN ifny +jv <k <ny + (j + 1)v withj € Ny

((A™Y)* f2y™2) (k) = {

Then, for all k € Z,

s (k) = eifk <ny
f1 AN ifny +jv <k <ny + (G + 1)vwithj e Ny
Furthermore, as f1 and f, are non-zero mappings, Y1 = {X € Npax|f1 (x) > s} andY; =

A {x € Npax[f2 (x) > £} belong to Ny. According to Prop. 1,

ceifx <Y

VieNy, (f1AA)((x) = ,
’ ( ) f1 (x) A DF2 (x) ifx > Y
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with Y = Y; @ Y,. By decomposing f; in a sum of two periodic mappings in Fy_, we can
assume that either f1 (x) # T forall x € Ny or f1 (Y7) = T.

If f1 (x) # T for all x € Ny, f (x) is finite for all x € Ny greater than or equal to Y. Then
there exists K € Ny such that

Vi =K Vx>Y, fi(x)ATH(x)="f(x)
Thus,
K . .
=@ (f1 A &)y
j=0

Hence, s is a periodic series.
Otherwise, f1 (Y1) = T. This leads to

(f] A A]sz) (X) _ Evle <Y
Ufy (x) if x =Y
Then,

f1 A A, = AN, with f; (x) = { eifx <Y
fa(x) ifx>Y
Thus,
s = (ATyY)" fy™
Hence, s is a periodic series. 0

Proposition 42 (Greatest lower bound of periodic series). Let s1 and s, be two periodic series

nFgy, y[h/]]. Series s1 A s is periodic. If s1 and s are different from ¢, then
0(s1 Asy) =max(0(s1),0(s2))

Proof. sy and s; are periodic series in Fg . [Y]. For i € {1,2}, there exist N; € N, periodic

mappings fm yoooy fi,Ni in meax, Ty ooy THN; in No, TiTy ooy TUN; in No, and Vi in N
such that

N;

(‘B Ale Vl 1ky

k=1

As Fy,.. [yl is distributive,

N] NZ
S1AS) = @ (AT‘ R V]) fi kynl KA @ ATZJYVZ) fz)ﬂ,nzl
k=1 j=1

N7 N3

— @ @( AT Ky Vl f] ynl KA (ATszVZ) fz’j‘ynz,j)
k=1j=1
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According to Prop. 28, it is sufficient to show that
s' = (ATYY) TRy A (A7) fyy™

is a periodic series. The degenerated cases are considered in Lem. 51. Therefore, in the
following, we assume that T; and T, are strictly greater than 0 and that f; and f, are non-
zero periodic mappings. Furthermore, v, m;, my, Ty, and T, are defined by

v = lem (V],Vz) =MV = myVvy, T] = myT, and Tz = M1,

Then,
mi—1 ®
Vie (12), (A% Ryt = @ (ATy) Aty
1=0
As Fy, [yl is distributive, this leads to

—imz— * *
@ @ ((AT] YV) Al’n f] ,YTH +1vq A (ATZ'YV) A]"rz fzynz +j\/2)

=0
Consequently, it is sufficient to show that
T ES T ES
s = (A W”) f1y™ A (A Zvv) fry™
is a periodic series. From now on, we assume that n; > n;. Then, for k € Z,
T £ T £
s() = ((A"y) 1v) (9 A ((A™yY) 12 ()
eifk <ny

= AR A AT ifny + v <k <ng + (K41 +5§)v withj e Ny
AKHENTE A AR ifng + (K+T1+§)v <k <ny + (j+1)v withj e Ny
with K = | "2 |, Furthermore, as f; and f are non-zero mappings, Y1 = A {x € Npa|f1 (x) > €}

and Y2 = A\ {x € Nipax|f2 (x) > ¢} belong to Ny. According to Prop. 1, for j € No,

(A(KH)T] f] A AjTZfz) (X) = Eéf:( <Y .
T 1 (x) A T%fz (x) ifx >Y

(ACHIT gy A AT ) (x) = e - .
T (x) AT (x) ifx > Y

withY =Y, ®Y>. } }
Let us define mappings f; and f; in Fy_ by

];1()(): 51fx<.Y andfz(x): e1fx<.Y
f1(x) ifx >Y fa(x) ifx >Y
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First Case: Ty > T,. By decomposing f; in a sum of two periodic mappings in Fry_, we
can assume that either f; (x) # T forall x € Ny or f, (Yz) = T.

If f, (x) # T for all x € Ny, f; (x) belongs to Ny for all x in Ny greater than or equal to Y.
Then, there exists L € Ny such that

VizLVx =Y, T () AT () = T2 (x)
Then,
Vi1, AKIITf A ATf = AT
Therefore,
+00
s = @ (ACTTiy A AT )y GB@ (AT AT2gy ) yr+Ke1 )Y
j=0

400
—p® (_B AiTzfzynzﬂ'V
j=L

—p® ( ATZYV) ¥ ALT2 fyyna Ly
where p is the polynomial defined by
L-1
p= @ (A(K+j)T1 f1 A Aszfz) n2+Hv g @ < AKH+DT; 1 A A]Tzfz) g+ (K+14j)v
j=0
Hence, s is a periodic series.

Otherwise, f; (Y2) = T. Then,

ceifx <Y

VjeN AR A ATT2E, ) (%) = \
e ( )( ) T (x) ifx = Y

; ; ifx <Y
A(K+]+1)Tl f] A A]Tzfz X) = i .
( ) () T (x) ifx > Y
Thus,

VjeNy, AKITg A AlT2g, = AKHITIE,
AKHENDT g o ATz, = ARHHDTIE
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Consequently,

+
s = éo (A(K+J’)T1 f1 A AJ'Tzfz) 2 +jv @C‘B ( AKF+1 Tlf A A]Tzfz) ny+(K+14j)v

—.
o

8

+
A(K+j)T1 1?1 ,yn2+jv D @ A(K+j+1)T1 1?1 Vm +(K+1+4j)v
j=0

_ (AT1YV)*AKT1 fry™ @ (ATWV)"‘A(KM)T1 frymH )Y

o

—.

Hence, s is a periodic series.

Second Case: T, > Ty. By decomposing f; in a sum of two periodic mappings in F_ ,
we can assume that either f (x) # T forall x € Ny or f1 (Y1) = T.

If f1 (x) # T for all x € Ny, fy (x) belongs to Ny for all x in Ny greater than or equal to Y.
Then, there exists L € Ny such that

VizLvx=Y, T () AT (x) = TF (x)

Vi =1, AKHEDTe A AT2f, = AKH DT
Therefore,

+00
s = @ (A(KH)T] 1 A Aszfz) N2 +jv (‘D@ ( AKHFDTE A]Tzfz) 4+ (K+T45)v
j=0

+00 o ‘ ‘ ) |
=p® (_B A(K+J)T1 fn/nzﬂv @ @ A(K+]+1)T1 fﬂ/nl +(K+T4j)v
j=L j=L

* ~ *
= p (_D (AT] YV) A(K+L)T] f1 ,YTIZ"FLV ('D (AT] YV) A(K+L+] )T] f] ,YTH +(K+] +L)V

where p is the polynomial defined by
L-1
p= @ <A(K+j)T1 f1 A Aszfz) n2+Hv g C_B < AKH+DT; 1 A A]Tzfz) g+ (K+14j)v
j=0
Hence, s is a periodic series.

Otherwise, f1 (Y1) = T.

Vj e Ny (A(K+1)T1 f1 A Aszfz) (X) _ Ejle < Y
Tfy (x) ifx =Y

(A(K+j+1)T] f] A Aszfz) (X) — £ le <Y
Tify (x) ifx > Y
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Thus,

¥jeNo, AKTITE A AT = AT,

AKH+DT 1 A AjTZfz _ AJ'Tzfz

Consequently,

400 400
s = @ (A(KH)T] f1 A AiTzfz) ,ynzHV @@ (A(K+i+1)T1 f1 A Aszfz) Yn1+(K+1+j)v
j=0 =0

+00 +00
= @ ATz fz,ynz-i-iv @ @ A]'Tzfz,ynl +(K+1+j)v
=0 =0

* o
= (ATZVV) fy™
Hence, s is a periodic series.
Third Case: T; =T, = T. According to Lem. 24,
AT A ATH = AT (AKTﬁ A fz)
A(K+j+1)Tf1 AANTE = AT ( A(K+1)Tf1 A fz)

Then,

£ 400
s=0P (A(KH)Tf] A Aijz) Y e P (A(K+j+1)Tf1 A Aijz) Yy KT )Y
j=0 j=0

* *
= <ATYV) (AKTﬁ N fz) Y2 ® (ATYV) <A(K+1)Tf1 N fz) YKy
Hence, s is a periodic series.

Throughput Series s7 and s, are assumed to be different from ¢. According to Lem. 38,
there exist X7, X, € Ny and w;, w; € N such that

Vx > X1, WP (s1) (wix) = wid (s1) (x)
Vx > Xz, WP (s2) (wax) = wab (s2) (x)

According to Lem. 34,

Vx =X, W (s1 A 82) (wx) = wi (s1) (x) A wip(s2) (x)
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with X = X7 @ X3 and w = lem (w1, w3). Then, for all x > X, as N,y is a selective dioid,

VkeZ, P (s1As2)(wx) (k) =aw(s1)(x) (k) A w(s2) (x) (k)
= w (P (s1) (x) (k) AW (s2) (%) (k)
= w (P (s1) (x) AW (s2) (%)) (k)
= w (s1 A 52) (%) (k)

Consequently,

Vx> X, Y (s1 A s2) (wx) = wi (s1 A 82) (%)

According to Def. 43 and Lem. 40,

o (s1 A s2) =0 (s1 A s2) (X))
=0 (W (s1) (X) A (s2) (X))
= max (o (P (s1) (X)), 0 (P (s2) (X))
)

= max (0 (s1), 0 (s2)

A.1.3. Product of Periodic Series

Before starting with the proof of Prop. 30, two intermediate lemmas are introduced. The
next lemma gives a simple expression of the throughput of a non-zero periodic series s in
FRay Y] Without using the slicing mapping 1.

Lemma 52. Let s be a non-zero periodic series such that s = @521 (ATyVE)* fry™ with
N in N, non-zero periodic mappings f1,...,fN in meaw [v], vy ...y inNg, T1y ..., TN

in Ny, and v in N,

(s) 0 if there exists k and x € Ny such that fy (x) = T
o(s) =
ming<x<N (%) otherwise

Proof. If there exist k and x € Ny such that fy (x) = T,

o(s) oW (s)(x) =0
Then, o (s) = 0.
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Otherwise, we assume that mapping fy is periodic with respect to Xy € Ny and wy € N.
Let X = @511 Xk, according to Lem. 40 and Prop. 28,

o(s) =0 (s) (X))
N
(@ (YY) * fie (X) v k)

min o ((tey)”™ fie (X) y™)

1<k<N

v
= min — as fi (X) e Ny
1<k<N Ty

O

Lemma 53. Let s be a series in F,  [v] such thats = fy" (A™Y)* with a periodic
mapping f in Fy ,n € No, veN, andT € No. Then, s can be written under the form

s=p@ (AT'YV')* q

with p, q polynomials with coefficients of the form fA'® wherej € Ny, T in Ny, and v/ in N
such that ‘T’—,, =X

T

Proof. If T = 0, s = fy™ and the result holds.
If T # 0, f is, by assumption, periodic with respect to X € Ny and w € N. Then, there
exists K > 0 such that Kt > X. Let ' = lem (1, w) = mtand v/ = mv. Then,

K—1 LNk m—
s = @ fAlT‘yThLW Qf (AT ,Yv ) AKT,YKV+TL @ h’ lv

1=0 1=0

’ ! ® / ! *
According to Lem. 29, (AT % ) ART = (AT 0% ) fAXT. Consequently,

E

K—1 s [meT
s = @ fAh',ynHv o (AT YV ) ( fA(K+1)TYTI+(K+1)V)
1=0 1

Il
o

=p® (AT'VV') "4
0

Proposition 43 (Product of periodic series). Let sy and s, be two periodic series in Fy Iyl
Series s1 ® sy is periodic. If s1 and s; are different from ¢, then

0 (s1 ®s2) = min (o (s1),0(s2))
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Proof. Forie {1,2}, there exist N; € N, periodic mappings f; 1,...,fin, in Fy_ ,Ni1y..., N,
in No, Ty 1y...,Ti,N; in Np, and v; in N such that

si = @ (AT fy™

Then,

N N
$1®s2 = (B D sy with s = (AT frp (ATIyY2)" £y
k=1j=1

According to Prop. 28, to prove that s;1 ® s; is a periodic series, it is sufficient to show that
Sk,j is a periodic series. According to Lem. 53,

oy (AT Y2) Y = pys @ (AT,Z‘WV/“)* qk,j

with 755 € No and v/3; € N such that —le = % and Py j, qi,j polynomials with periodic

coeflicients of the form f; )kAlTZJ where 1 € Ny. Then,

skj = (AT YY) pijfa; © (AT RyY)T (ATZ Y 2”) it
Besides, by using results from Nypay [ Y],

(amy)* (a%y2 ) = p @ (A%iy ) g

where py 5, qj ; are polynomials in Fa, [Y], Ty ; € No, and vy ; € N such that

_V/I !
kj . Vi Vi . Vi V2
o = min | ——, —= | =min { ——, —
Txj Tk T3 Tk T2,
Hence,

*
T1 kA V1 . / . v / I
sij = (ATFY") " pijfa; @ Pigjdif2; @ (A IV ) i kg
is a periodic series. Thus, s1 @ s; is a periodic series.

Throughput If s; and s; are non-zero periodic series, we can assume that fy  and f3; are
non-zero periodic mappings. Then, sy j are non-zero periodic series. According to Prop. 28,

0(s1®s7) = mkin(r(sk,j)
y
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If there exist k (or j) and x € Ny such that f1y (x) = T (or 25 (x) = T), then, according
to Lem. 52, 0 (i) = 0. Consequently,
0 (s1®s2) =0 =min (0 (s1),0(s2))
Otherwise, according to Lem. 52,
. . Vi V2
vk i) = —_— =
)y o (Sk,]) min <T] ,k’ TZ,]' >

Then,
. . vi V2
0 (s1 ®s2) = min (mm <—1, —))
K, Tk T2

. . V1 . V2
=mmi mm|{—|, rmn —
k \Tik j T2,

Hence, according to Lem. 52, 0 (s1 ® s2) = min (0 (s1), 0 (s2)). O

A.1.4. Left-Division of Quasi-Causal Periodic Series

The set of quasi-causal series in F [v] is a complete dioid. Therefore, the product
is residuated. s;% 82 is the greatest quasi-causal series s such that s ® s < s;. In the
following, the periodicity of 1%, s is investigated when s1 and s, are periodic series. Next,
two intermediate lemmas are proved.

Lemma 54. Lets be a quasi-causal periodic series in meaw ['v] and let f be a non-zero quasi-
causal periodic mapping in Fy_ . Forn € No, (fy™) ks is a periodic series in Fiy . [Y].
Furthermore,

— ifs =¢eoro(fy") < o(s), then (fy") §, s = e.

~ ifo(fy") = o(s) = +a, then (Fy™) ks = ¢ oro(( Y™k, ) o (s).

- ifo(s) # 4+ and 0 (fy™) = o (s), then o ((fy™) ¥,s) = o (

Proof. According to (2.10),

eifl <0

vieZ, ((fy")%s) (1) = { f, s(1+mn) ifl >0

The particular case s = ¢ is first addressed.

Ve Ny, ((fy™) %.s) (1) = fy e

As f is a non-zero mapping, for all Z € Ny, there exists z > Z such that f(z) > ¢. Con-
sequently, according to Prop. 21, f§, & = &. Thus, (fy™) § s = ¢ and series (fy™) }_ s is
periodic.
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From now on, we assume that s # ¢. Then, according to Prop. 27, there exist N € N,
non-zero quasi-causal periodic mappings f1,...,fy in mea ,Npy. .,y in Ny, T1,...,TN
in Ny, and v in N such that

N

s = @ (A% fiy™
k=1

The following notations are introduced:

m = max (O, ,fnin (ny — n)> and M = | max O,k —m)

Ve = A {x € Nl (x) > ¢} and Z = A\ {x € Ny (x) = T}
Vi = A {x € N fic (x) > €} and Ze = A {x € N fic (x) = T}
Then,
eifl<m
Lhnony

i, (@lt]ﬂ AT Jkak) ifl>M

In the following, four cases are distinguished.

((FY™) %ys) (V) =

First Case: 0 (s) = o (fy™) = +00. According to Lem. 52, Ty = 0. This leads to
N
V=M,  ((fy") %.s) (1) = fy, fwith f = P fx
k=1
Therefore, (fy™) ¥, s = (—B{\i m ((FY™) %,s) (1)¥! is a periodic series. Furthermore,
iy f=pr (PR (Fof)) < fof
As f is a non-zero quasi-causal mapping,

Wem,(wijgﬁﬁaggn@ﬁ@)

As o (s) = +oo, f(x) # x for all x € Ny. Therefore, for all x € Ny, (f&ﬂ?) (x) # T.
Consequently, (fy™) s is either equal to € or o ((fy™) ¥, s) = 400 = 0 (s).

Second Case: 0(s) > Oand o(fy™) = 0. Aso(s) > 0, foralll € Z and x € Ny,
s (1) (x) # T. Furthermore, o (fy™) = 0 implies Z; € Np. Then, if x # T, f* (x) < Z#1.
This leads to

Vie Z,¥xe Ny, ((fy™) %, s) (1) (x) < (s(L+1) (x)) < Z¢f1

As ((fy™) ¥.s) (1) is a quasi-causal mapping, ((fy™) %, s) (1) = €. Thus, (fy") §,.s = ¢
and (fy™) ¥, s is a periodic series.
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Third Case: o(s) = o(fy™) = 0. As o(fy™) = 0, Z; belongs to Ny. According to
Lem. 21,

Vi=M,  ((fy") ks) (1) = Pry (fis (L+n))
= pr, (@ £y (Al Tw))

We associate a parameter Ly in Ny with each mapping f¥ (Allﬁvi i fk).
If Ty = 0, then Ly = M and
VUL fy (AT ) =

If T > 0, there exists L = M such that

[Lk+n_“kJ
Ty v fi (Yk) >f (Zf?{])
Then,
o~ i (e) if x < Yy
V1 > Ly, Vx € Np, £ (TL M Jfk (X)) = Zf}q if Zy >x > Yy

Tifx > Zy

As Ty ( = nkJkak) _ pR (fﬁ o AL kJkak) £y ( v_nkJkak) is defined by

eifx = eff (¢) ife < x < Yy
Jkak)) (x) =3 Zf1if Zy > x = Y
Tifx > Zyx

V1> Ly, Vx € No, <f§ (

l+n—my

In both cases (i.e., Tx = 0 or T, > 0), T} (Al
Therefore,

VL, fYy (Alf kak) — fy (Alf kak)

Consequently,

I fk) does not depend on 1 for 1 > L.

L
(FY") ks = @ (") kys) (V' with T = max Ty
l=m

Hence, (fy™) %, s is a periodic series. Furthermore, as o (s) = 0, there exists X € Np such
that s (L +n) (X) = T. Then,

((Fy™) %) (L) (X) = (s (L+m) (X)) = F(T) =T
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Therefore, Vx > X, ((fy™) %s) (L) (x) > x. Consequently,
((Fy™) ®ys) (L) (X) = (") k) (D (X) =T
Thus, o ((fy™) §,s) = 0.

Fourth Case: o(s) # 400 and o(fy") = 400. Let K = {k|tx > 0} and Ky =
{k|tx = 0}.

V=M, s(l+n)=f@@A" I with f = @ i

kel keko
VI=M,  ((Fy™) k) (1 —fhf@@ﬂa( )
ke

" (fﬁ o f) ® PP (fﬁ o ALY “kJkak)

Then, according to Lem. 20 and Lem. 21,

ke
Fork e IC,
Loy 2 (e) ifx < Yy
A T f — l+n—ny
( ° k) ( ) f# <TL M Jfk (X)> ifx > Yy
Then, ff o Al Itef, — £, @ fi1 with

— eif x < Yy
Vx € Nmax, fe (X) = fﬁ (E) and fkl (X) = [l+n—nk
’ T,

Jfk (X)) ifx > Yy
This leads to, according to Lem. 19,
VLEM, (") %) () = PR (Fof@t.) ® @ P (fiy)
ke

Note that fi; (¢) = € and fy; is isotone. Furthermore,

|-l.+n.7nk

¥xeNy, 1o ¥ fi(x) < f(R) with R e Ny

is absurd, as 0 (fy™) = +00 and fy is a non-zero quasi-causal mapping. Then, for all R €
No, there exists x € Ny such that fi1(x) > R. Then, @, Tk (M) = T = i, (T).
Consequently, according to Lem. 16, fy 1 is residuated. Hence,

VIZM, (")) ) =P (Fofof)od
kelC
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Moreover, as f (resp. fy) is periodic with respect to X (resp. Xi) and w (resp. wy), there exists
L; > M such that

L1+n7nkJ

Yk e K, Vx > Yy, TL Yo (x) = f(x)

Then, for 1 > Ly, fy 1 is quasi-causal. Therefore,

Y=Ly, ((Fy™) %es) (1) = Pry (((FY™) &s) (
( (fti ) &P fk,l)

kel
Pr, (PrR (fti ) &P fi, ®@P fk,l)

+ Pr

kel kel

PR (flof@f. ) @C—Bfu) ® D iy

kel kekC
= ) %ys) (L) ® ED fiy
kel
Consequently,
L +00
(M ks =D (M s) WY oD D fry'
l=m kek 1=,

Furthermore, there exists L > L such that

L+n—my

vk e K, TL Yo i (V) = £(X)

Then, forx e Ngand 1 > L, if x < Yy, fi 110y (X) = € and, if x > Yy, according to Lem. 30,

1+n ny

fieoy (X) = FF <T§’T}< s (x))

= T fi1 (%)

Hence, fy 14wy = AY™fy for 1 > L. Thus,

P~

wv—1
(FY™) 8. = D ((Fy™) kys) WY @ P (AL @) ( P fk,HwL“)
1=0

1 kelC

I
3

According to Prop. 21, for L > L, fi1 is a periodic (with respect to X @ Xy and lem (w, wy))
mapping. Thus, (fy™) }_ s is a periodic series. Furthermore, if 0 (s) = 0, a reasoning similar
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to the third case leads to o ((fy™) %, s) = 0. Otherwise, K is not empty. For 1 € Ny with
m<1l<L

N
VX € Nmay,  ((FY™M) %,8) (D (%) < P Y@ 1s (1 + 1) (x)
k=1

and, for Ll € Ny with 0 < 1 < wv,
|-L+l+n7nkJ

Vx € Nmaxa fk,L—H (X) <Ye® ]Tk M T (X)

Then, the values of the previous mappings for x # T are different from T. Furthermore, the
mappings fy 1 1 are, by definition, non-zero. Consequently, according to Lem. 52,

o (/™) Y.5) = min — = o (s)

ke Tk

O

Lemma 55. Let s be a quasi-causal periodic series in ]:Nmax,y[h/]] and let v, T € N. Series
(A™yY)* X s is periodic. Furthermore,

— ifs =¢coro(s) > o ((A™yY)") then (A™yV)* { s =¢

— ifo(s) < o ((A™Y)") theno ((A™y")" k,s) = 0 (s)
Proof. The particular case s = ¢ is considered. As (ATyY)* x,s < ek, s <s, (A™y")* § s =
e. Hence, series (A™yY)* %, s is periodic.

From now on, we assume that s # ¢. Then, according to Prop. 27, there exist N € N,
non-zero quasi-causal periodic mappings fi,...,fy in Fy,_, 11,..., NN in No, 11,00, TN
in Ny, and v; in N such that

@ (ATYVT)* fiey™
k=1
According to (2.3),
(AY)* ks = \ (AjTVjV) RS
j=0
Then,

viez, ((A%Y)* = A\ A% s (1+5v)
j=0

The following notations are introduced:

m = min ngand M = max Ny
1<k<N 1<k<N
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IfFL<m, ((A™Y)* %, s) (1) < s(1) = e. This leads to ((A™y"¥)* §, s) (1) = €. Otherwise,

((AT,YV)* &_,’_S) (l) _ /\ AjT¥+S (l +]V /\A]T¥ ( szlnkJkak)

R>j=0 i=R

with R = [M=], The set K is defined by

K= {kHXENo,fk(X) = TOI‘; = —}

In the following, two cases are distinguished.

First Case: 0 (s) > o ((A™")") (or equivalently K = ). For L > m

o )0

For | > m and x € N,

( m( “”Tkm)) ) = (&) (&szln”fk (x))
_ (ﬁ{[% Sl (x)> 4o

To show that (A™yY)* }, s = ¢, it is sufficient to show that, for all 1 > m and for all x in N,
there exists j = R such that

ll+jv—nk

vk, T 7 fi(x) <7
It is sufficient to show that, for all | > m and for all x € Ny, there exists L > [%] such that

Ly+| =0k

vk, T, " Jfk (x) < T

Let us denote IO = {k|fy (x) # e}. If K = (J, the previous equation holds for all j > R
Otherwise, as fy (x) # T, the previous equation is equivalent in the standard algebra to

l _
Vke Ky, Lvre+| nkJTk + fr (x) < Lvit

'L_
&SVkey, L(vit—vry) > | nkJTk+fk(X)
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As K = &, viT — vT > 0. Then, the previous equation is equivalent to

1—
L> [ = max ([l R )J+1,[%]>

keKx VIT— VT

This inequality proves the existence of a suitable parameter L. Hence, for 1 > m, ((ATYV) "R, s) (1) =
e. Thus, (A™yY)* }, s = ¢ is a periodic series.

Second Case: 0 (s) < 0 ((A™yY)") (or equivalently K # ). Let Y be defined by

Y=/\{xeNmax|@fk(x) >£}

kelC

Let us define the quasi-causal periodic series s by

N :
§= (D (A™y")* Fy™ with fi (x) = | F0X <Y

k=1 fi (x) ifx >Y
Clearly, 0 (s) = 0 (3). In the following, it is shown that (A™yY)" %, s = (ATy¥)* %, 5. A
sufficient condition is to show that (ATyY)* ks = (A™yY)" k3.

For L <m, ((A™")" ks) (1) = € = ((A™")* %3) ().

Forl > m and X < Y, a reasoning similar to the first case (i.e, K = () leads to
((A™")* &s) (1) (x) = . Furthermore,
8) (M (x) <sM)(x) =¢

(A" %s) (1
Then, ((A™Y)* %8) (1) (x) is also equal to €.
Forl>mandx >,

ATYV

(A7) 3) 1 00 = A (87) (s (14 5%) ()

j=0

~ A G0+ ()
j=0

~ ((AY")" %) (1) (9

Hence, (A™y") §s = (A™y") §s. Next the periodicity of (ATy") ¥, § is investigated. As
before, if | > m,

(A 08 = A ATS+v) A A AT, ( “”ka>

R>j=0 =R
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By definition of I, there exists ] > R such that

L+jv7nk T 1+jv— “k

N
viz), @Al M- @Al
k=1

kelC

Consequently, for L > m.

(A7) — A AT S v) A A\ AT, (@ kJka>
kel

J>j=0 =]

. Ly , | Ltivn
A]T}M- (@A Vi kfk> = Pry ((‘B AJT&( kJka ))
kel kel

Then,

Yk e /C, A(]}LV])T& <A[WJTk_Fk> ]+v1 1}2 (AVTkAl_ Jz] nkJka >

QT\ QVTk VTQ[ By J[kf
Hence, as - < —] fOf k € ]C,

Vke K, A(J+V1)Tx{< l%m ) AJW{( szfnkJkak)

Therefore,
. N L+)v ny ]+VT_1 X N l+)v ny
/\A]T}ﬁL (@ Jka ) /\ A]T§+ @ Jka
k=1 k=1

i=] j=]

Thus, forl > m

(@) 5,8 O = (A ) M= A (A7) %3) O

Then,

J+vi—1

A hs= N (AVY) 8
j=0

Consequently, according to Lem. 54 and Prop. 29, (A™y")* 8 is a periodic series and

o ((A™YY)* {,s) = 0 (8) = o (s)

172



A.1. Calculation with Periodic Series in Fy__ " Iyl

Proposition 44 (Left-division of quasi-causal periodic series). Let 1, be two quasi-causal
periodic series in F [Y]. s1%,82 is a periodic series. If sy and s, are different from e,

- ifO‘ (S]) < 0'(52), then sq ¥+Sz = E.

— ifo(s1) = 0(s2) = 400, then 1%, 57 is either equal to € or 0 (s1%,s2) = +0.

- ifo(sy) # +o0 and 0 (s1) = 0 (sy), then o (s1%,.52) = 0 (s2).

Proof. If s1 = €,s1%, 52 = T isaperiodic series. Otherwise, according to Prop. 27, there exist
N € N, non-zero quasi-causal periodic mappings f1,...,fN, n1,..., N in Np, T1,...,7TN
in Np, and v in N such that

z

@ ATk TLk

According to (2.3) and (2.5),

N

sihes2 = /\ (Fy™) &, (A™y")* ¥,52)

k=1
Then, using Lem. 54, Lem. 55, and Prop. 29, s1 % 82 is a periodic series. To determine the

throughput of 51}, s;, three cases are distinguished.

First Case: 0 (s1) < 0 (s2).
There exists k such that o ((A™yY)*) < o(s;) or 0 (fxy™) < 0(s;2). Consequently,
according to Lem. 54 and Lem. 55, s; §+sz = E.

Second Case: 0 (s7) = 0(s2) = +c0.
For all k, Ty, = 0. Then,

N

sihs2 = /\ (Fy™) ks

k=1

Thus, according to Lem. 54, s1 §+sz is either equal to € or o (51 §+ 52) = +400.

Third Case: 0 (s2) # +o0and 0(s1) = 0(sy).
Then, according to Lem. 54 and Lem. 55, for all k,

o (fr™) &y ((A™YY)" k;s2)) = 0 (s2)
Thus, o (S] }§+52) = O'(Sz) O
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A.1.5. Kleene Star of Causal Periodic Series
Causal Polynomial

In the following, we prove that the Kleene star of a causal polynomial with periodic coef-
ficients is a periodic series.

Lemma 56. Let p be a non-zero causal polynomial in Fr_ Y[h/]] such that all its coefficients
are periodic with respect to X, € Ng and wy, € N. Then,

Xp+R+1 Xp R
VR e N, 69 p'=@Pr'e (@ﬁ‘) prt!
1=0 1=0
where

eifx <X,
p (L) () ifx > X,

Proof. The canonical representative of p is denoted

viez, ﬁ(l)(X)={

with N in N, non-zero causal periodic mappings f1,...,fy in F Ny [v], and ny, ..., nn
in No. By assumption, fy is periodic with respect to X, in Ny and wy, in N. Furthermore,

N .
@ Fy™ with f (x) = eifx <X,
i=1 fi (X) if x > Xp

This lemma is shown by induction on R. First, the initial step (i.e., R = 1) is proved. The
aim is to show that

Xp+2 Xp+1
D pl = D pl@pptet]
1=0 1=0

By definition, p > p. Therefore,

Xp+2 Xp+1
@ pl > (_B ple_)f)pxpﬂ
1=0 1=0
Conversely,
Xp+1 Xp+2 Xp+1
pXp+2S @ pLG-)f)PXPH — @ plﬁ (_B ple_)f)pxpﬂ
1=0 1=0 1=0
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Therefore, it is sufficient to show that

Xp+1
¥x € Ny, ¥ (px'””) (x) <V ( @ »' @ﬁpx'”*]) (x)
1=0

As
N N Xp+2 5042
N ny.
Vx € Npaxy, U (po+2) X)=@... P ® f, ;
ilz] ixp+2=1 ] 1
it is sufficient to show that
_ Xp+2 ‘p+2 Xp+1
Viry .oy ix, +2, VX € Nipax, (@ f1)> 25y < (@ plC_Bf)po-H) (x)
1=0

Depending on the values of <®]X£2+ 2 fij) (x), several cases are distinguished.

If (@Xp“fj)( ) = ¢, then
Xp+2 Xp+1
<® ﬂ,) e =£$w<@pl®ﬁpxp“>(><)

1=0

( Xp +2 fx,) ) > Xy, then, according to the definition of P,

Xp+2 Xp+2
(@ a,) (fu °® f1,>
Therefore,
Xp+2 S Xp+1
<® ﬂ,) D= <4 (ppx"“) (x) < (69 pl@ﬁv’“’“) (x)
1=0

Otherwise, e < (®]X£2+2 fij) (x) < Xp. As fy; is non-zero and causal, fi; > Id. Then,

Xp+2
eﬁfixp+2(x)ﬁ---$ <® f1j> (X)<X
j=2

Therefore, there exists K with 2 < K < Xp12 such that
Xp+2 Xp+2
(@ fij> (x) = ( (29) fij> (x)
j=2 j=2,j#K
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Besides, due to the causality of p, nj, > 0. Therefore,
Xp+2 Xp+2 Xp+2
(50) o < (5 st
J 1,j#K
< (1) ()

(é_r)o @prvH) (x)

Henceforth, the result holds for R = 1. Second, the inductive step is proved. It is assumed
that, for a given R € N,

Xp+R+1 Xp R
D pt= D ' (@ﬂ) pXo !
1=0 1=0

I/\

1=0

Next, the equality is checked for R + 1.
Xp+R+2 Xp+R+1
@ p‘=e®p< @ pl)
1=0 =

Xp+2
@ P ® ((—BPP) Xp+1

xp+1

=@ prepp™t e (@ pf)l) p*»*1 using the results for R = 1
1=0 1=1

Furthermore, due to the definition of p, pp = p?. Thus,
Xp+R+2 R+1
69 p —6919 (69151> pr !
1=0
This achieves the induction. U

Lemma 57. Let p be a non-zero causal polynomial in Fgy Y[h/]] such that all its coefficients
are periodic with respect to X, € Ng and wy, € N. Then,

Xp

p* — ®pl G_)f)*po+1
1=0

where
eifx <X,

VieZ, f’(l)(x):{p(l)(x) ifx > Xp
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Proof. It is a direct consequence of the previous lemma by considering R approaching +-co.

O

In the next lemma, the periodicity of p* is investigated where p is a non-zero quasi-causal
polynomial with periodic coefficients fulfilling some additional properties.

Lemma 58. Letp be a non-zero quasi-causal polynomial in meaw Y] such that all its coef-
ficients are periodic with respect to X, in Ny and wy, in N and

VieZ,Vx <Xy, p()(x) =¢
Then, p* is a periodic series in Jg . [Y].
Proof. The canonical representative of p is denoted
N
p= @ fry™

with N in N, non-zero causal periodic mappings f1,...,fn in Fg_ y[h/]], andny < -+ <
ny in Np. By assumption, fy is periodic with respect to X, in Ny and wyp, in N and fy (x) = ¢
for x < X,,. Obviously,

Then,

— N N k 5
et e T (7)) = @ @ (@ f) pyE ™
i1=1 =1 j=1

For a mapping f in Fiy_, the set of fixed points of f, denoted fix (f), is defined by fix (f) =

{x € Ninax|f (x) = x}. In the following, two cases are distinguished depending on the sets of
fixed points of the coefficients of p.

First Case: ﬂ?‘ﬂ fix (f;) # {€, T}. There exists one fixed point b shared by all mappings

fi such that X, < b < wpX;,. Due to the periodicity of fi, w%gb with j € Ny is also a fixed
point.

N N wp+1 wp+1
¥ (pwp+1) (x) = (—{2 @ ( ® fij> (X)Y2j=1 g

twopr1=1 \ j=1

177



A. Proofs

In the following, we prove that p*» > p*»*1 or equivalently for all x € Ny, 1 (p©P) (x) >
¥ (p@rt!) (x). For x < X,

b (P (%) = e =¥ (prHT) (x)

For x > X,,, we reason on the monomials composing (p“’PH) (x). Ifx =T,as Nigy 41 =

05
wp+1 wp+1 wp +1 w
( ® ﬂj) (T)y5=r ™ = Ty5i ™ < TR ™ <4 (pr) (T)
j=1

Otherwise, B is defined as the least fixed point greater than or equal to x. Clearly, B < wpx.
Then, as f; (x) > x for x > X,

wp+1

xﬁﬂpr (x) <--- < (@ fij> (x) < B < wpx
=1

Therefore, there exists K such that

wp+1 wp+1
<® fij) (x) = ( 29 fij) (x)
=1 j=1,j#K

As Ny = 0,
(,Up+1 wp+1 wp+1 wp+1
<® ﬂj) ORSEIE ( ® ﬂj) (9 YRI5 < (p7) (x)
j=1 j=1,j#K

Consequently, p“»*! < p®». Thus, p* is a periodic series equal to (—B{U:po ph.

Second Case: [\, fix (f;) = {&, T}. As f < --- < i, fix (fn) = {&, T}.

First, we show that the calculation of p* reduces to the calculation of p* where p is a non-
zero quasi-causal polynomial in F Ny ['y] such that all its coefficients are periodic with
respect to X;, in Ny and wy, in N and

{ Ve Z,¥x < Xy, P(1)(x) =¢
YLz val(5), fix(p (1) = ¢, T}

Let us consider a sequence (Pm),,o of non-zero quasi-causal polynomials pr, such that
all their coefficients are periodic with respect to X, in Ny and wy, in N and

Ve Z,¥x < Xp, pm(l)(x) =¢

The canonical representative of py, is denoted py, = (—Bl\l:”{ m,iY"™ where mappings fi ;
are, by assumption, periodic with respect to X;, and wy. The sequence (Pm ), is defined

by the following algorithm:
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1. Initialization: set po to p and set m to 0
2. While fix (fn,1) # {€, T}, set pmi1 to (f,1y™™1)* ((—Bizﬂi fm,n/“mi) and set m to
m+ 1

As fix (fm1) # {&, T}, (fmay™™ 1) is a polynomial with periodic coefficients. Therefore,
Pm+1 is a polynomial with periodic coefficients. According to (2.8),

Pm = Pt (fmJVnm’])*

Then, as fix (fi,1) # {€, T}, to show the periodicity of p}, it is sufficient to prove the peri-
odicity of p}. . ;. Therefore, to show that the calculation of p* boils down to the calculation
of p*, it is sufficient to check that the previous algorithm stops after a finite number of steps
(i.e, there exists M € Ny such that fix (fm1) = {¢, T}), as fix (fm,1) = {&, T} implies
fix (fm,i) = {&, T} for all i. Obvious properties of the sequence (pm),,~ are

vYm e Ny, val (pm-H) =Mm41,1 = Np2 > N1 = val (pm) (A.l)
Vme No,Vi<m, fm1=pmMm1)>pi(nm1) (A.2)

According to (A.1), there exists M € Ny such that val (pm) > non,. Then, according to
(A.2), fm1 > po (val (pm)) = fon,- As fix (fon,) is equal to {e, T}, fix (fam,1) is equal to
{e, T}. Therefore, in the following, we only consider a non-zero quasi-causal polynomial p
such that all its coefficients are periodic with respect to X, in Ny and wy, in N and

{v1ez,\1x<xp, p()(x) =
Vs val(p), fix(p (V) = {¢, T}

Second, some work is done using condition fix (f;) = {¢, T} to consider only a subclass of
polynomials.

wp—1
p* = (p*7)* ( &) pl)
1=0

with
N N  wp
Wp — . /MY
= @ @ @™
=1 dwp=1j=1
Np
no
= @ pr»iy ot
i=1

where the last expression denotes the canonical representative of p“’». Clearly,

w
val (p“?) = ng,1 = wpny and f,, 1 = 177
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As f1 does not admit any fixed point, f;Up (Xp) = wpX,. Furthermore, as fwpitt = Twpis
fwp,i (Xp) = wpXy,. Therefore, in the following, we investigate the periodicity of p* with a
non-zero quasi-causal polynomial p such that all its coefficients are periodic with respect to
Xp in Ny and wp, in N and

{ Ve Z,¥x < Xy, p(l)(x) =¢
Vi=val(p), p(l)(Xp) > wpX,

The canonical representative of p is denoted p = @{\111 fiy™ with N in N, non-zero causal
periodic mappings f1, ..., fn in Fg,  ,[v],andny <--- <ny in No. By assumption, fy is
periodic with respect to X;, in Ng and wy, in N, fy (x) = € for x < X, and fy (Xp) > wpX,.

Finally, the periodicity of p* is obtained by analogy with [15]. If fn (Xp) = T, then,
V1 = nn, p* (1) = fy and, for 1 < ny, the coefficients of p* can be obtained by developing
the expression. Then, p* is a polynomial with periodic coefficients: p* is a periodic series.
Otherwise, f; (X,) belongs to Ny for all i. It is easy to check that

wp—1 ¢
£ = @ Afi(Xp) (Ak+xp)
k=0

where V is a periodic mapping in Jiy_ defined by

V(x)={ eifx = ¢

[wipjwp ifx > e
Therefore, polynomial p can be written under the form
M
P = DA™Y (AT Y
k=1
Then,
M Mk
VkeN, pk=@ ... ®A™V (A™) ™
i1=1  ig=1j=1
By noticing that

lePJwv

b |
Vi, k € No, (Ak) AN = N ¥ifj > kand VAV = A v

we obtain

k
Vk>2, RQA™IV (AH)F = A™AKY (ATL)?
j=1
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with

The condition my,,, > Ty, is ensured by the hypothesis f; (X;,) > w},X,. Then, a matrix ¢
in Fa[y]M*M is defined by

mj—Ti
by = Al loryns

This leads to

M Mk
k=3, pr=@... D QA™V(AY) Y

M M i "i] Jw
- @ @A™ (@A Iy ) v
i]=] 1k=1
M M
_ @ ) @ A™; ®d)1)1)+1 Ank)ﬁymk
i=1 =1

Il
S E
Pz
>

™ (@ @ ®¢1m+1> Arik)ﬁynik

i,=1 ik_1=1j=1
M M
— @A™ (¢1) V(Aan)iyy
I]
Therefore,

*—edp@p’ @B@p

k=3

As ¢* is periodic, p* is a periodic series. O

Proposition 45. The Kleene star of a causal polynomial with periodic coefficients is a periodic
series.
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Proof. Let p be a causal polynomial in Fg y[[y]] with periodic coefficients. If p = ¢, then
p* = e is a periodic series. Otherwise, we can find X, € Ny and w, € N such that all
coefficients of p are periodic with respect to X;, and wy,. Then, according to Lem. 57,

Xp+1

1=0

where

eif x < Xy

vieZ, p)(x)= { p (1) (x) ifx > X,

As p fulfills the condition of Lem. 58, p* is a periodic series. Thus, p* is a periodic series. [

Causal Periodic Series

In the following, we prove that the Kleene star of a causal periodic series is a causal periodic
series.

Proposition 46. The Kleene star of a causal periodic series is a causal periodic series.

Proof. Let s be a causal periodic series in F__ y[[y]] with the canonical representative:

N *
s =P@k62 (AT“Y ) qx

Furthermore, we define X € Ny and w € N such that all coefficients of q1, ..., qn and p are
periodic with respect to X and w.

Series s* is causal, as the dioid of causal series is a complete subdioid of F Ny [yl It
remains to show that s* is periodic.

The proof is done by induction on N. The initial step N = O corresponds to the polyno-
mial case, which has been solved in Prop. 45. For the inductive step, it is assumed that the
proposition holds for N — 1 with N € N.

If iy = 0, s* is a periodic series according to the induction hypothesis. If Ty > 0, there
exists L > 0 such that Lty > X. Let us define T and v by T = lem (w, Ty) = m1y, and
v = mvV’. Then, s is rewritten using the parameters L, T, and v.

s=51®(A%Y") g

with
L-1 , N-1 N
s1=p 6‘) @AITN qN,Yh/ 6‘) @ (A"rk,yv) qk
1=0 k=1
m—1 ,
q= @ A(L+1)TN qu(L+1)v
1=0

182



A.2. Calculation with Series in fgr’c Iyl

max,Y

According to (2.8),
& = (57 (A7) q)" 51

Consider a series d in {e, e, 51, A™y"}*. Series d is causal as s; and A™y" are causal.
Then,

Yk € Z,Yx € Nna,  (s14%YYdq) (k) () = @D (s1(1)ATd () q (1) (x)
(i,j,1)es

where S = {(i,j,l) € Z3|i+j +14+v= k}
By definition, q (1) (x) is either equal to € or greater than or equal to Lty. Then, as d (j)

is causal, (d (j) q (1)) (x) is either equal to € or greater than or equal to Lty. Due to the
periodicity of s1 (i) and to the fact that w divides T,

D s1)AdG g = D As1(D)dG)q)

(1,j,0€es (L,j,1)es

Therefore, for all series d in {¢, e, s1,YYA™}", s1A%yYdq = A%y"Vs1dq. Then, according to
Lem. 3,

sT(AY) g =(s1©4%")"q
Consequently, according to (2.9),
s = ((s1@A™")"q)"sf
= (e@(s1®Y'A"®q)" q) s}

Using the induction hypothesis, s* is a periodic series. O

A.2. Calculation with Series in F%i:y[y]]

I per,c
A.2.1. Sum of Series in ]:N vl

max )’y

Proposition 47 (Sum of series in f%er’cy[[y]]). Let s1 and s; be two series in Fo°_[y].

max )’Y

s1 @ s, belongs to fgr’cy[[y]]. If s1 and s; are different from ¢, then

O'(S] @ Sz) = min (0‘(81) s O‘(Sz))

Proof. According to Prop. 28, it remains to show that s; @ s, belongs to fgr’cy[[y]]. If s

or sy is equal to ¢, then s @ s, obviously belongs to f%er’cy[[y]]. Otherwise, according to
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Lem. 34,
P (s1Ds2)(e) = (s1)(e) DY (s2) (e)
= o (P (s1Ds2) (e)) = min (o (P (s1) (), 0 (W (s2) ()
= 0 (P (s1@s2) (e)) = min (o (s1),0(s2))
= o (P (s1@s2) (e)) = 0(s1@Ds2)

A.2.2. Greatest Lower Bound of Series in .Fpercy[h/ﬂ

Proposition 48 (Greatest lower bound of series in ]: pene [[y]] Let s1 and s be two series in
Fpene

Vo [h/]] $1 A s2 belongs to .Fperc [[y]] If s3 and sz are different from ¢, then

0 (s1 A s2) = max (0 (s1),0(s2))

Proof. According to Prop. 29, it remains to show that s; A s; belongs to fgr’cy[[y]]. If s

or sy is equal to €, then s; A s, obviously belongs to f%er’cy[[y]]. Otherwise, according to
Lem. 34, h

) (e) A (s2) (e)
ax (0 (b (s1) (€)), 0 (P (s2) (e)))

= max (0 (s1),0(s2))
=0

per,c
A.2.3. Product of Series in F5 * y[h/}]

Proposition 49 (Product of series in .FB:’C [v])- Let sy and s, be two series in fg::) Iyl
[[y]] If s1 and s; are different from ¢, then

per,c

s1 ® sz belongs to .7-"

0‘(81 ® Sz) = min (0‘(81) , 0'(52))

Proof. According to Prop. 30, it remains to show that s; ® s; belongs to ]:%erl’cv[[y]]. If s

or Sy 1s equal to €, en Sj S obvious elongs to J— Y- erwise, accorading to
is equal to ¢, th ® s obviously belongs t J-“Iger’cy Otherwi ding t
Lem. 34, h

V(51 ®52) (e) = P (s1) 2) (e)(§)Y

JEZ

In the following, two cases are discussed depending on o (s;).
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max,Y

First Case: 0 (sy) =0oro(sy) = +o0.

Series s is a polynomial with the canonical representative
N

S; = fiy™ withny < -+ <ny
k=1

Then,

N
P (s1®52) (6) = @ W (s1) (Fic (€)) y™

k=1
This leads to

o (P (s1®s2)(e)) = min (o (P (s1) (fi (e))))

1<k<N

_ { o(sy) ifo(sy) =4

Oifo(sy) =0
= min (o (s1),0(s2))
=0(s1®s2)

Second Case: 0 < 0(sz) < +o0.

As s7 is a periodic series in Jy y[[y]], there exist, according to Lem. 38, X € Ny and
w € N such that

Vx =X, b (s1) (wx) = wi (s1) (x)

Furthermore, as (s;) (e) is a periodic series with o (P (s2) (e)) = o (s2), there exist K, T, v
in N such that

¥ (s2) (e) (K) = X
Vk =K, W (s2)(e) (k+v) =1 (s2) () (k)

¥ = 0(s2) and w divides T

Then,

Y (51®52) () = P (s1) (W (s2) (e) (§)) ¥
JEZ
=PV (s1) (W (s2) (e) ()Y

j<K

v—1
@ (T'YV)* (@ 1]) (51) (1]) (52) (e) (K + k)) ,YK+k)
k=0
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Thus,

o (b (s1 ®s2) () = min (0(81) , %)
= min (o (s1),0(s2))
=0(s1®s2)

. C e ppenc
A.2.4. Left-Division of Series in FNmaxﬂ/ [v]

The set of causal series in Fy [v] is a complete dioid. Therefore, the product is residu-
ated. Series s s, is the greatest causal series s such that s1®s < s;. In the following, we
ted. Seri +4 82 is the great 1 seri h th ® In the following
investigate whether s1% s, belongs to f%er’cy[[y]] when s; and s, belong to F2°_ [y].

maxy max )’Y

The periodicity of s1%, | s is ensured by Prop. 26 and Prop. 31. Next, two intermediate
lemmas are proved.

er,c

Lemma 59. Let s be a series in ]—"% y[[y]] and let f be a non-zero causal periodic mapping

in Fy, . Forn e No, (fy™) %, ;s is a series in ffj;’;y [v]. Furthermore,
— ifs =¢eoro(fy") < o(s), then (fy") %, s =¢.
- ifo (fy") = o (s) = +oo, then (fy™) § . s = e or o ((fy™) §, ,s) = o (s).

- ifo(s) # 4w and o (fy™) = o (s), then o ((fy™) ¥, . s) = 0 (s).

Proof. Series (fy™) %, . s is causal by definition and periodic (see Prop. 26 and Prop. 31).
Therefore, it remains to check the results on the throughput and that either (fy™) %, . s = ¢
or

o ((FY") kyps) = o (W ((FY") ki) (e))

According to (2.10),

eifl<0

VieZ, ((Fy")%yys) (V)= { fy, . s(l+n)ifl>0

The remaining of the proof is divided in four cases.

First case: s =coro(fy") < o(s).
Obviously, (fy™) %, s < (fy™) }_s. Then, according to Prop. 31, (fy™) §, , s = €.
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Second case: 0 (s) = o (fy™) = +oo.
The canonical representative of s is denoted

N
s =@ fiy™ withny < - <ny
k=1

For | > M = max (0,nN — ),

((ﬁ/n) }Y++S) (1) = f¥++fN

Then,
e l
(") Reps =D ((FY") ¥yys) Oy
1-0
If fx,  fn = e, then (fy™) }, s = e. Otherwise, as f§,  fy < fy and fy,  fy isa

non-zero causal mapping,
o ((fy") kpus) = o (W ((FY") ki 48) (e)) = +0
Third case: o (s) = 0.
The canonical representative of s is denoted
N
s=@fiy™ withny <--- <nyandfy =T
k=1

Forl > M = max (0,nN — ),

((ﬁ/n) }Y++S) (1) = f¥++—|— =T
Then,

Z

(FY™) %yys = @ ((FYY keys) WY @ Y

T
o

Therefore,

o ((fy") &yus) = o (W ((FY") ki y8) (e)) =0
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Fourth case: 0 < 0 (s) < 400 and o (fy") = +o0.
The canonical representative of s is denoted p @ (A™y")* q with T,v in N and causal
polynomials p, q in Fg [y] with the canonical representatives

Np Ng
p =@ fpxy™* and q = D fqpy" "
k=1 k=1

Let us consider M = max (O, NpN, — Mg N, — n).

Nq l+n—m Np
VIZM, s(l+n)=fod@P Al;vqihfq,k with f, = @ o
k=1 k=1

Then, according to Lem. 20 and Lem. 21,

Nq n—ng
V=M, ((fy") ks) (1) = frf, @ D Y (ALH v ’kJqu,k>
k=1

Nq l+n—m
= PR (F@f,) ® PP (fﬁ ® Alvq’kJqu,k)
k=1

Nq
= PR (F @f,) ® P Pr™ (fiy)
k=1
with

cifx =¢

Vx € Nmax» fk)l (X) = fﬁ <T[L+“an)kij)k (X)) ifx # ¢

fi1 (¢) = € and fy 1 is isotone. Furthermore,
_ l+n—m ,
Vx € Npax,  f° (Tl;‘ﬁ g (x)) > 4 (f (x)) > x

Then, as 0 (fy™) = 40, @, oy frt () = T = i1 (T). Consequently, according to Lem. 16,
fi1 is residuated. Hence,

Nq
V=M, ((fy") ks) (1) = Pr° (F @ fp) @ D iy
k=1

Moreover, as mapping f (resp. fy) is causal and periodic with respect to X (resp. Xy) and w
(resp. wy), there exists L1 = M such that

L +n_“g,k

vk, Tl = f
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Then, for 1 > Ly, fy is causal. Therefore,

VI= T, (™) %ips) (1) = Pros (V) %) (1)

Nq
=Pry. (PrR (fFef,) ® (‘Bfk,l)

k=1

Nq
R(Fefp) @@ fi
k=1
Consequently,

Ly

Ng +o0
(fyn) }?++S = (’B ((ﬁ’n) §++S) (l) 'Yl @ (‘B (‘B fk,ﬂ/l
1=0 k=11=L,
Furthermore, there exists L > L such that

L+n—m
vk, T e (e) = £(X)

Then, for x € Ny and 1 > L, according to Lem. 30,

l+n— ng k
filrwy (X) = f* (T Tl qu,k (X)>
= 1%f 1 (%)

Hence, fi 14wy = A®™f 1 for 1 > L. Thus,

L Ng wv—1
( §++ @( k(++ ) ( )Y @ AwT wv (@ fk L+1Y >
1=0 k=1 1=0

Forle Nowithl < L,
VX € Npax,  ((FY™) %48) (1) (x) < 1s(L+n) (x)

and, for0 < 1 < wv,

o L+l+n—m k
Vx € Nmaxa fk,L-H (X) < ]Tlqu;qu»k (X)

Then, the values of the previous mappings for x # T are different from T. Furthermore, the
mappings fy 1 1 are, by definition, non-zero and causal. Consequently,

o ((Fy™) &, ,s) = o (W ((FY™) %, ,5) (€) = ~ = o (s)

T
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Lemma 60. Let s be a series in fg::’y [v] and let v, T € N. Series (A™y")* X, | s belongs to
FPE Ty]. Furthermore,

Nmaxv

- ifs=coro(s) > o ((A™Y)"), then (A™yY)* %, s = €.
— ifo(s) < o ((A™Y)"), then o ((A™Y¥)* %, ,s) = o (s).

Proof. Series (A™y")" ks is causal by definition and periodic (see Prop. 26 and Prop. 31).
Therefore, it remains to check the results on the throughput and that either (A™y¥)* % s =
€ or

o ((ATYV)* \{++s) =0 (ll) ((ATYV)* \{++s) (e))
The remaining of the proof is divided in three cases.
First case: s =c¢oro(s) > o ((A™Y)").

Obviously, (A™yY)* §, ;s < (A™y")* §_s. Then, according to Prop. 31, (A™yY)* §, s =
€.

Second case: 0 (s) =0.
The canonical representative of s is denoted

N
s=@fky“kwithn1 <---<nnandfy =T
k=1

According to (2.3),
(A™Y)* %, s = /\ (Ahij) RS
i=0

Duo to causality, ((A%yY)* %, s) (1) = € for | < 0. Furthermore,

VieNy, ((AY)* %, s) (1) = AAY,  s(1+5v)
j=0

) . ] n
= A\ A%, s(L+jv) with ] = [TN]
J=j=0

Then,

(A™YY) ki++ /\ (A]TYJV) RS

]=j=0

According to Prop. 34 and Lem. 59,

o ((ATYV)* \{++s) =0 (ll) ((ATYV)* \{++s) (e)) =0
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Third case: 0 < o (s) < o ((A™)").
The canonical representative of s is denoted p @ (A™y¥1)* q with 77, vy in N and causal
polynomials p, q in Fry [v] with the canonical representatives

Np Ng
P = @ oy and q = @) fqu™*
k=1 k=1
Then, there exists L > Mg N, such that

l-—n

.k |0
N J]‘Cq,k

Ng
V=L s(l)=@al
k=1

Therefore,
Ve Ny, ((A")* %, 8) ()= /\ A% s(l+jv) A
R>j=>0
. N] l+jv7ng)k
/\A]T\{++ (@Al N JT]fq)k)
i>R k=1

with ] = [L]. Furthermore,
1+(G+vy)v—m Fv—n

vk, A(].+V1)T}Y (Al#]qi]ﬁ fq,k) _ A(j+v1)q? (AVﬂAlH)VlkJTT fq,k)

— AjT\{ (AVT] —vrrA V7

T T
Hence, as §, < ﬁ

) l+(j+v1)vfng)k . L+jv—ng’k
Vk, A(]+V1)T}R (Al Iz g fq,k) > A]Tki <A[ V7 1 fq,k)

Therefore,
Ng LHjv—mg J+vi—1 N L+Hjiv—mg

/\A]TX@WL (@ AL%JT] fq»k> - /\ AR T (@ Al%m fq»k>

=] k=1 =] k=1
Thus,

]+V171 ) )
vleNy, ((A%)*%,.s) () = (A7) %ous)
j=0
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Then,

J+vi—1

(y'AT)* Ryi S = /\ (AjTYjV) RiyS

j=0
Consequently, according to Lem. 59 and Prop. 34,
o ((AYY)" ki ys) = o (¥ ((A™Y")* ¥, 45) (e)) =0
O

Proposition 50 (Left-division of series in f%er’cy[[y]]). Let s1, s be two series in f%er’cy[[y]].
$1%,. 52 belongs to fgr’cy[[y]]. If s1 and s, are different from e,

— ifo(s1) < o(sy), thensyk,  s; = €.

- ifo(s1) = 0(s2) = 40, then sk, , s, is either equal to € or 0 (s1%, . $2) = +00.

- ifo(sy) # +o0 and o (s1) = 0 (s2), then o (s1%,,82) = 0 (s2).
Proof. If s1 = ¢, s1%, 52 = T belongs to fgr’cy[[y]]. Otherwise, there exist N € N, non-
zero causal periodic mappings f1,...,fn, M,y...,nn in Np, T1,...,7Tn in Ny, and v in N
such that

N
s1= @ (AT™y")" fiy™
k=1

According to (2.3) and (2.5),

N

S8, 82 = /\ (fy™) & ((ATkYV)* ¥++52)
k=1

Then, using Lem. 59, Lem. 60, and Prop. 34, 1% , 2 belongs to fgr’cy[[y]]. Next, the result
on the throughput is checked. Three cases are distinguished. ’

First Case: 0 (s1) < 0 (s2).
Ass1¥, . S2 < 518,852,818, 52 = € according to Prop. 31.

Second Case: 0 (s7) = 0(s2) = 0.
For all k, Ty = 0. Then,

N

S18,,82 = /\ (fiy™) &, 52

k=1

Thus, according to Lem. 59 and Prop. 34, s \g++sz is either equalto e or o (31 §++sz) = 400.
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Third Case: 0 (s;) # +0and o (s1) = o (s2).
Then, according to Lem. 59 and Lem. 60, for all k,

Y ((fkynk) }Y++ ((ATkYV)* ¥++52)) = O‘(Sz)

Thus, according to Prop. 34, 0 (31 §++sz) = 0(sy).

A.2.5. Right-Division of Series in .Fpe” [v]

NiaxyY

The set of causal series in F_ y[h/]] is a complete dioid. Therefore, the product is resid-
uated. Series sy¢ 4481 is the greatest causal series s such that s ® s; < s;. In the following,
we investigate whether s,¢, | s1 belongs to .F%::’y [v] when s and s; belong to .F%::’y Iyl

Next, two intermediate lemmas are proved.

Lemma 61. Let s be a series in fper’c [[y]] and let f be a non-zero causal periodic mapping

max

inFy_ - Forne Ny, s¢, , (fy") belongs to fper o [[y]] Furthermore,

- ifs=¢eoro(fy") < o(s), thensp, | (fy )

- ifo(fy™) = o(s) = +oo, then sp, , (fy™) = e or o (sp,, (fy™)) = o (s).
- ifo (fy™) = o (s) and o (s) # +a0, then o (sp,, (fy™)) = o (s).

Proof.

eifl <0

(sfyr (FY™) (1) = { s(l+m)g, fifl>0

First Case: s =¢.
As f is a non-zero causal mapping,

VieNo, (sf,, (Fy™) () =ef, F<e

Then, s¢, | (fy™) = ¢ belongs to ]—'per “ Tyl

max Y

Second Case: 0 (s) = o (fy™) = +o0.
The canonical representative of s is denoted

N
s = @fky"k withny < --- < ny
k=1

For | > M = max (0,nN — ),

(37{++ (ﬁ/n)) (l) = fN}Z{++f

193



A. Proofs

Then,

Z

s, (fy™) @(s%++ fy™) )(l)yl

1=0

If fng,  f = e, thensg, | (fy™) = e. Otherwise, as fng, | f < fiy and fng, |, f is a non-zero
causal mapping,

0 (5 (VM) = 0 (b (56, (FY™) (e)) =+
Thus, s¢, , (fy™) belongs to 72 [y].

max )’y

Third case: 0 (s) > 0and o (fy™) = 0.
If (sf,, (Fy™)) (1) # ¢, then (s¢, . (fy™)) (1) > e by causality. Thus,

s(l4n) > (s(l+n)g, f)f>f
(

This is absurd as 0 (s) > 0 and o (fy™) = 0. Then,

VieNo, (sf, . (fy™) (1) =¢

Consequently, s¢, , (fy™) = € belongs to F2°_[v].

max )’Y

Fourth case: 0o (s) = 0.
The canonical representative of s is denoted

N
s=@fky“kwithn1 <---<nnandfy =T
k=1

Forl > M = max (0,nN — ),

(st (VM) () =gy f=T
Then,
M—

St (FY") (7 (M) WY @ TV
1=0

_.

Thus, s¢ , (fy™) belongs to .F%:XCW [y]and o (s¢, , (fy™)) = 0.
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Fifth case: o (fy™) = 400 and +o0 > o (s) > 0.
The canonical representative of s is denoted p @ (A™y")* q with T,v in N and causal
polynomials p, q in Fg_ [v] with the canonical representatives

Np Ng
p= @™t and g = @ ™
k=T k=T

Consider M = max (O, NNy — n).

l+n—m
V=M, s(l+n)=@A—""l%,,
k=1
Then, according to Lem. 18,
VIS M, (5£(Fy™) (1) = 5 (Lt ) g
Nq l+n—m
@ l—q—kJqu ® f
k=1
Ngq
=P fry
k=1
l+n—m
with fi; = Al Jqu « ® . Clearly, fy 14y = AT 1. As 0 (fy™) = 400, according to

Lem. 31, f* is a non-zero periodic mappings. Then, mapping fy | is periodic. Furthermore, as
£ (x) > e for x > e, there exists L > M such that, for all k, fy1 is causal. Then,

V=L, (s (VM) (V) @fkl
Consequently,

L Ng oo

o () = D (ot (V) (07 0 @ D e
1=0 S
L Ng v—1 )

=@ (sf44 (FYM) Wy @ (YY) <® fk,LH'YU—J)

=0 k=1j=0

Then, s¢, | (fy™) is a causal periodic series. Furthermore, the previous expression leads to

o (¢, (FY™) = o (b (75, (FY™) (€)) = = = o (s)

Then, s¢, , (fy™) belongs to ‘FIEI:;, Tyl O
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Lemma 62. Let s be a series in flzler “ [v] and let v, € N. Series s¢, . (A™y")* belongs to
FP Ty]. Furthermore,

Nmaxv

—ifs=c¢coro(s V)*), thens;f++(AT V) =,
- ifo(s) < ((AT )*) z‘herz(r(s;z<+Jr(AT V)*) =0 (s).

Proof. According to (2.3),

5)5++ AT v /\ 5)5+ (AiTij)
j=0
Then,
cifl<0
Njso s (L+5V) f, AT

In the rest of this proof, five cases are distinguished.

VieZ, (st (AY")") ()= {

First Case: s = ¢.

sp, (A™Y)" <s=¢

Then, s¢, | (A™yY)" = ¢ belongs to J£ Cv[h/]]
Second Case: o0 (s) >0 ((ATYV)*) =

As FX [y] is a complete dioid, s

¥y
T
Nmax )

A™yY)* exists.
+00

sfoy (AYY)" = k@() giy* with g € FZ*

Then,
vkeNo, ¥ (gur* (AY")") () < (s) (e)
For k € Ny, gy # ¢ implies v* (ty¥)* < (s) (e). Then,
=20 (s)(e) = 0(s)

This contradicts the assumption. Therefore, gy = &. Consequently, sf, , (A™yY)* = ¢

belongs to F=. p:a: o Tyl
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Third Case: o (s) = 0.
The canonical representative of s s is denoted

N
s = (—Bfkynk withny <---<nyandfy =T
k=1
Then,
VieNo, (st (AY)*) (1) = N\ s +jv)f, A"
j=0
= N sU+jv)f,.,A"
R>j=0
- ( I\ b (AW‘V)) v
R>j=0

with R = [ZX]. Due to causality, this equality also holds for 1 < 0. Therefore,

37{++ (AT,YV)* — /\ S)é—H- (A]'T,Yiv)

R>j=0

Then, according to Lem. 61 and Prop. 34, s¢, , (A™y")" belongs to f%er"c . ['y] and its through-

put is equal to 0 (s).

Fourth Case: o ((A™")*) =2 > o(s) > 0.
The canonical representative of s is denoted

s=P® (A" q

with 71,V in N and p, q causal polynomials in Fg y[h/]]. Furthermore the canonical
representative of g is denoted @511 fiy™ with non-zero causal periodic (with respect to Xy
and wy) mappings in Fi . The condition o ((A™Y)*) > o (s) implies vr; > V1.

Let us denote X = maxj<k<n Xk and w = lemycr<n wy. Consider K in N such that v;
divides Kv and w divides Kt. According to (2.3),

st . (AKT,YKV)* _ /\s%++ (A]’KTY]'KV)

j=0
Then,
Vle Ny, (S}Z{-H- (AKT,YKV)*) 1) = /\ (S%-H- (AjKTYjKV)) 1)
j=
= A\s(L+jKv) ¢, A
=0
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Furthermore, there exists L > maxj<x<n Tk such that
N [l |
V=L s()=@Aa 1 T

Then, for | € N,
(s)a++ (AKWK")*) W= A s(U+iKv)f, A%

TZR Pry, (@ ALY )a (AJ‘KT)b>

where R = [£] and v/ = 5—:’

Forj > R, the mapping Fj in F_ is defined by
F— @A< v <AjKT)b

Consider ] € N. For x < oK

|5k v
Fjiy (x (‘B T]V fi (e)
= T{V Fi (x)
>F(x)
For x > XtU+DK,

k=1

> é\—l) T]KTE%J—HVIfk (TGH)K ng) as Kt < TV
k=1

NS+ .

>@PT " fi (TJka) as w divides KT and 07K xx > X
k=1

> Fj(x)

Therefore,
P4y = F

& Vx with XT0TK > x > 0K Fi ) (x) > F (x)

Vx with X > x > e,
< llv:lkj+jv/ link

GHIREC

sy

[ =1+
fr (X) > @511 T ! fr (T]KX)
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A sufficient condition is

. 1— . 1—
;v V[

Jv +1; ] A s KJ .
vk, T, fi(e) > T4 V1 (X) as w divides Kt

As 0 (s) > 0, this equation can be written in standard algebra.
vk, ] (VT = K1) = fi (X) — fi (e)

A sufficient condition is
vk, ] (VT — K1) = fi (X) — fi (e)

As v't; > Kr, a sufficient condition is

J > max (MJ) _j

1<k<N vt — KT

Consequently, Vj > R, F; 5 > F;. Then, Vj > R, Pry (FJ'+T) > Pryy (Fj). Therefore,

Ve No, (374++ (AKTyKV)*) W= A sQ+iKv)d A A A Pro(F

R>j=0 R+]>]>R

= A sU+jkv)d, A%
R+j>j=0

= A st (YY) O

R+]>j=0

This equality also holds for | < 0. Thus,

Sp.. (AKT,YKV)* _ /\ S (AjKTYjKV)

R+]>j=0

According to Lem. 61 and Prop. 34, s¢ . (AX™YXY) * belongs to .7-"%::” [v] and

o (syij+ (AKTVKV)*) =0(s)

Furthermore, as

=1 *
S}Z{-H- AT v /\ (S}Z{-H- (AKT,YKV) )7{++ (Ak”r,ykv)
According to Lem. 61 and Prop. 34, s, . (A™y")" belongs to fgr’cy[[y]] and

o (S}{++ (ATVV)*) =o0(s)
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Fifth Case: Y =0 ((A™Y)*) =0 (s) > 0.
The canonical representative of s is denoted

s=P®(A"Y") g

with T, vy in N and p, q causal polynomials in Fy y[[y]]. Furthermore the canonical

representative of q is denoted @}L] fiy™ with non-zero causal periodic (with respect to Xy
and wy) mappings in Fiy . The condition o ((A™Y)*) = o (s) implies vT; = V1.

Let us denote X = maxj<r<n Xk and w = lemy<ren wy. Consider K in N such that v;
divides Kv, w divides KT, and X < Kt. According to (2.3),

S, (AKT,YKV)* _ /\s%++ (AjKTYjKV)
j=0

Then,

Vle N, (S%H (AKT,YKV)*) 1) = /\ (Sf{++ (A]'KTYJ'K«/)) V)

)=

= A\ s +iKv)g, A%

=0
Furthermore, there exists L > maxj<x<N Nk such that
l—n

N AL
VIZL s()=PAa ™
k=1

Then, for | € N,

(s)a++ (AKWK")*) W= A sU+iKv)f, A%

R>j=0

R /\Pr++ (é\é A(Ll}‘:kjﬂv')n fi (AjKT)b)
k=1

j=R

where R = [5] and v/ = &,

Forj > Rand | € Ny, the 1mapping Fijin F_ is defined by
N l-n i/ . b
Ry = @al S )mg (&)
k=1
F; is a periodic mapping in F; . In the following, L is defined by

L= /\ {1 € Ng|Fy is causal}
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Clearly, L < ny,as

b

Fm )R Z ARV,T] f‘] (ARKT)
b v v
> ARKT (ARKT) as fq is causal and — = =1
T T

>1d

Therefgre, L <n.
For L > 1 > 0, there exists a in Ny such that F g (a) < a. Then,

N ’ Loy +Rv/ b
Firyg (aTIK) = (‘BT%V TE ! T ((ARKT) (a)>
k=1

= TIKFL’R ((1) as X = ﬂ
T T
< atX
Therefore,
*
(s;f++ (AKTVKV) ) (1) (aT]K) < Fir4J (aTIK)
< atkX

Thus, by causality, for L>1> 0,

(sﬁ++ (AKT,YKV)*) V) =¢

Forl > L, Vj >R,

o N ) NN LY b . b
Vx € N, Fl,j (X) _ C_BTK(]—R)T]]2 +[ 2 Jfk <<ARKT) <<A(]—R)KT) (X))>

k=1

. . b
_ 2Rk <<A(1R)KT) (X)>

o l-RK (AofR)KT)b x)

> X

Thus, Fy; is causal. This implies that, for 1 > f_,

(s#ss (AKTVKV)*) W= A sU+iKv)f, A% A Gy

R>j=0
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where G| = /\j>R Fy;. Clearly, Gy is causal and

T T
Glyy, = /\Fl+v1,j = /\A "Fiy =AY Gy
>R >R

In the following, it is shown that Gy is periodic. Consider T > x > XTNR. There exists ] > R

fk (e) A

D=

1

T?\"
Il

such that XTU+DK s x > X7/K, Then,
NS+

=D
as TUT2K > x and w divides K. Then, G, ( ) = 18Gy (x) for x > XT*R. Therefore, G,
is periodic. Furthermore, GL << Gr = G Then, forl L
Consequently, for | > f_,
*
(o ()0

N l l—ny .V, ) b
/\@ Vi 1+ £ ((A]KT) (X))
j=R k=1
In 1 )
SOV <( AT+K) (X))
k=1
A(‘T}TEL_VTkh v ( ARKT
k=1
L+vq
V1 1
G- (@ (@ o)) o
k=0
. . V1 1
( /\ Py (A]KTYJKV) (A%y (@ GL+kY )) )
R>j=0

Due to the results obtained for 0 < 1 < L and to quasi-causality, this equation also holds for
1 < L. Then,

54, (AKT,YKV)* _ /\ 5, (AjKT,Y]'KV) .
R>j=0
with s7 = (ATIyY1)* (@151 Gukyuk). Clearly, s; belongs to f%::)y [v] and o (s1) =
0 (s). Then, according to Lem. 61 and Prop. 34, s, . (AX"y¥")" belongs to f%er’cy[[y]] and
o (s;f++ (AKTYKV)*) = 0 (s). Furthermore, as

~

—1

st . (A™YY) (s}{++ (AKT,YKV)*) b, (Ak"rykv)

=0

=
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A.2. Calculation with Series in ]:gr’c Iyl

max,Y

According to Lem. 61 and Prop. 34, s¢, . (A™y")" belongs to f%::,y [vland o (sf, , (A™YY)*) =
o (s)- O
Proposition 51 (Right-division of series in f%er “ Ty])- Letsy, sz be two series in flger Cy Iyl
Series syp, | s1 belongs to fgr’cy[[y]]. If s1 and s, are different from e,

— ifo(s1) < o(s2), thensyp, . s1 = e.

- ifo(s1) = 0(s2) = +oo0, then sy, 81 is either equal to € or 0 (s2¢, ,$1) = +00.

— ifo(sy) # 400 and 0 (s1) = 0(s2), then o (s2f, , s1) = 0 (s2).
Proof. If s1 = ¢, spf, . s1 = T belongs to f%er"cy[[y]]. Otherwise, there exist N € N, non-
zero causal periodic mappings fq, ..., fn, N1,y.. :,nN in Ny, T1,...,7Tn in Ny, and v in N
such that

z

@ ATk TLk

According to (2.3) and (2.5),

N

327{++31 = /\ (327{++ (fkynk)){++ (ATkYV)*)

k=1

er,C

Then, using Lem. 61, Lem. 62, and Prop. 34, s2£., , s1 belongs to .7-"p [h/]] Next, the result

on the throughput is checked. Three cases are distinguished.

First Case: 0 (s1) < 0 (s2).
There exists k such that o ((A™yY)*) < o(s;) or 0 (fxy™) < 0(s2). Consequently,
according to Lem. 61 and Lem. 62, 52;4++s1 = E.

Second Case: 0 (s7) = 0(s2) = +c0.
For all k, Ty = 0. Then,

N

2P, .81 = /\52?{++ (fiy™)

k=1

Thus, according to Lem. 61 and Prop. 34, sz%++s1 is either equal to € or © (52;4++s1) = 400.

Third Case: 0 (s2) # +o0and 0(s1) = 0(sy).
Then, according to Lem. 61 and Lem. 62, for all k,

o ((s2f44 (AY™)) Ay (A™YY)*) = 0 (s2)

Thus, according to Prop. 34, 0 (3275++51) = 0(sz). O
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Modeling with Counters

Discrete event systems only ruled by standard synchronization (i.e., (max, +)-linear sys-
tems) are modeled by linear equations in the (max, +)-algebra, when daters are used to
capture the dynamics. Such systems are also modeled by linear equations in the (min, +)-
algebra, when counters are used to capture the dynamics. In the following, we investigate the
modeling of (max, +)-systems with partial synchronization by counters. The goal is to find
(min, +)-equations describing the dynamics of (max, +)-systems with partial synchroniza-
tion (i.e., equations in the (min, +)-algebra similar to (5.8) and (5.9)).

B.1. Mathematical Preliminaries

In the following, some useful concepts are introduced.

Definition 54 (Antitone mapping). Let f : E — F with E and F ordered sets. Mapping f is
said to be antitone if

Vx,yeE, x<y="f(x)>"f(y)
Further, the definition of the (min, +)-algebra is recalled.

Example 47 (Dioid Npin). The set Ny U {_ +0o0} endowed with min as addition and + as
multiplication is a complete dioid denoted Nyiy. Its zero element € is equal to +00, its unit
element e and its top element T are both equal to 0. The order induced by @ is the dual of
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B. Modeling with Counters

the standard order in Ny. Clearly, Ny, is selective and commutative. This dioid (along with
other dioids using min as addition and + as multiplication) is often called (min, +)-algebra
in the literature.

B.2. Counter Representation

In this section, we derive a model for (max, +)-systems with partial synchronization based
on counters. A convenient algebraic structure to express this model is the (min, +)-algebra

Niin. Furthermore, we present a method based on this model to compute the output induced
by a predefined input.

Remark 26. In the counter representation, we assume that the considered discrete event sys-
tem is time-driven (i.e., events only occur at clock ticks). this restriction allows us to only
consider standard synchronizations with a time-delay T in Ny (while T belongs to RSL in the
dater representation).

B.2.1. Counters

To capture the timed dynamics of a discrete event system, a mapping, called counter, is
associated with each event such that the counter gives the number of occurrences of the
considered event before or at a particular time instant. From now on, we consider counters
from Z to Ny, and no distinction is made in the notation between an event and the associated
counter. Hence, for an event ¢, ¢ (t) denotes the number of occurrences of event ¢ before or
at time t. This leads to the following interpretation for counters:

c(t) = e: No occurrence of event c is before or at time t.
c (t) € N: Exactly ¢ (t) occurrences of event ¢ are before or at time t.

c(t) = &: An infinity of occurrences of event c is before or at time t and no occurrence of
event c is strictly after time t.

According to the standard order in Ny, the number of occurrences of event ¢ before or at
time t is less than or equal to the number of occurrences of event c before or at time t + 1.
Then, as the order in N,,;, is the dual of the standard order in Ny, the number of occurrences
of event ¢ before or at time t is, according to the order in Ny, greater than or equal to the
number of occurrences of event ¢ before or at time t + 1. Therefore,

VteZ, c(t)>c(t+1)

Hence, a counter is antitone. Furthermore, as for dater representation, we assume that an
event either occurs att = —oo or at t > 0. This leads to the following condition for counters.

Vt<0, c(t)=c(t—1)

The previous discussion leads to a formal definition for counters.
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B.2. Counter Representation

Definition 55 (Counter). A counter, denoted c, is an antitone mapping from Z to Ny, such
thatc (t) = c (t — 1) fort < 0. The set of counters is denoted C.

According to Rem. 3, C is endowed with an operation @ and an order < induced respec-
tively by the operation @ and the order < in the dioid Nyj,.

Remark 27. A dater (i.e., a mapping fromZ to Ny, as a time-driven dynamics is considered)
or a counter is sufficient to fully describe the timing pattern of an event. Hence, it is possible
to convert a dater to a counter or, conversely, a counter to a dater. For dater d and counter ¢
associated with the same event, these relations are expressed by

VteZ, c(t)=max{keZ|d(k—1) <t}
VkeZ, d(k)=min{teZ|c(t) < Tk}

with the convention min (& = +co0.

Example 48. Let us consider the dater d defined by

[ eifk <0
5ifk =0

d(k) =1 7ifl<k<4

15 ifk = 4

[ Tifk=5

The corresponding counter c is defined by

0Oift<b

1if5<t<7
4if7<t<15
5ift =15

c(t) =

B.2.2. Expressing Synchronizations with Counters

In the following, standard and partial synchronizations are expressed in terms of counters.
This leads to an algebraic representation based on counters for (max, +)-systems with partial
synchronization.

Expressing Standard Synchronizations with Counters

The standard synchronization “for all k > 1, occurrence k of event e; is at least T units
of time after occurrence k — 1 of event e;” is reformulated as, in the standard algebra, “at
all time instant t € Z, the number of occurrences of event e; before or at time t is less than
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B. Modeling with Counters

or equal to the number of occurrences of event e; before or at time t — T incremented by
1”. As the order in Ny, is the dual of the standard order, this corresponds to the following
inequality in Np,:

VteZ, e(t)>1le(t—n)

Furthermore, the effect of several standard synchronizations on a single event is also ex-
pressed by a single inequality in Np,,. For example, th standard synchronizations “for all
k = i, occurrence k of event e is at least T7 units of time after occurrence k — 1; of event
eq,1” and “for all k > 1y, occurrence k of event e; is at least T, units of time after occurrence
k — 1, of event e ;” are both expressed by a single inequality in Niin:

VtEZ, ex(t)=lhe(t—11)@hLer,(t—12)

Therefore, matrix inequalities in Ny, are suitable to express standard synchronizations.
The standard synchronizations between events in the main system are summarized by

{ X1 (t) = @1 Arix (t—1) @By (t— 1) (B.1)

Y1 (1) = @I, Craxg (t — 1)

where X1, uy, and yj respectively correspond to the vectors of counters associated with state,
input, and output events in the main system and T; denotes the greatest parameters T over
all standard synchronizations in the main system. Furthermore, matrices Ay, By, and Cy 5
belong respectively to N ™' NI ™ and NPL ™ The entries of these matrices are given
by the parameters of the standard synchronizations in the main system. In the same way, the
standard synchronizations between events in the secondary system are summarized by

{ X2 (t) = @12 Azixa (t — 1) @ Bow (t — 1) (B.2)

Y2 () > @24 Coxa (t— 1)

where X2, Uy, and y; respectively correspond to the vectors of counters associated with state,
input, and output events in the secondary system and T, denotes the greatest parameters T
over all standard synchronizations in the secondary system. Furthermore, matrices A, ;, B2,
. 2 XNz g2 Xmy P2 XNz . .
and Cj; respectively belong to N ;. “, Nt 7, and Nj ;. The entries of these matrices
are given by the the parameters of the standard synchronizations in the secondary system.
To simplify (B.1) and (B.2), the event set of the considered (max, +)-system with partial
synchronization is extended by additional state events. This allows us to convert (B.1) and

(B.2) to first-order recursions. The theoretical validity of this step is ensured by Lem. 63.

Lemma 63. Let T € N. In a (max, +)-system with partial synchronization, the following
synchronizations are equivalent:

1. “forallk =1, occurrence k of event e; is at least T units of time after occurrence k — 1
of event e1”
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2. “for allk > 1, occurrence k of event e; is at least T — 1 units of time after occurrence
k — 1 of event e;” and “for allk = 0, occurrence k of event e; is at least one unit of time
after occurrence k of event e;” where state event e; only appears in the two previous
standard synchronizations

3. “forallk = 0, occurrence k of event e, is at least one unit of time after occurrence k
of event e;” and “for all k > 1, occurrence k of event e; is at least T — 1 units of time
after occurrence kK — | of event e ” where state event e; only appears in the two previous
standard synchronizations

Proof. Only 1 < 2 is checked, as 1T < 3 can be obtained in the same way.

1 = 2: Let us consider an event e; only subject to the following standard synchronization:
for all k > 0, occurrence k of event e; is at least one unit of time after occurrence k of event
e1. Then,

VteZ, e (t)>=e(t—1)

Event e; is only subject to this standard synchronization. Hence, according to the earliest
functioning rule,

VteZ, e(t)=e(t—1)
Therefore,
VteZ, e(t)>=leg(t—1)=leg(t—1+1)

Then, in terms of standard synchronizations, “for all k > 1, occurrence k of event e; is at
least T — 1 units of time after occurrence k — 1 of event e;”.

2 = 1: Conversely, the two standard synchronizations “for all k > 1, occurrence k of
event e; is at least T — 1 units of time after occurrence k — 1 of event e;” and “for all k > 0,
occurrence k of event e; is at least one unit of time after occurrence k of event e;” correspond,
in terms of counters, to

VteZ, e(t)>=lei(t—Tt+1) andei(t) > e (t—1)
This implies, as the product is isotone in a dioid,
VteZ, e(t)>1le(t—r)

The previous inequality corresponds to the standard synchronization “for all k > 1, occur-
rence k of event e, is at least T units of time after occurrence k — 1 of event e;”. O

According to Lem. 63, the different synchronization relations between events e and e;
pictured in Fig. B.1 are equivalent.
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€1 5 €9
(2)
el 1 € 4 )
(b)
(&5] 4 €; 1 €9

Figure B.1.: Equivalent synchronizations if no other synchronizations affect event e;

By using repetitively Lem. 63, it is possible to set all entries of Aj; and Ay fori > 2
and of By;, Cqi, By, and Cy; for i > 1 to ¢ with additional state events. This leads to
the simplified representations for standard synchronizations in the main system and in the
secondary system respectively given in (B.3) and (B.4).

{ x1(t) = Ajoxt (1) @ Aq1xg (t—1) @Byous () (B.3)

Y1 (t) > Cyoxg (1)

{ X2 (t) > Agoxz (1) @ Azixa (t — 1) @ Baous (1) (B.4)
Y2 (1) = Cooxz (1)

In the following, only these representations are considered.

Example 49. For the (max, +)-system with partial synchronization introduced in Ex. 23
(i.e, the supply chain), the number of state events, obtained after state-space extension,
amounts to 24 state events in the main system and 46 state events in the secondary system.
Due to size restriction, the matrices appearing in (B.3) and (B.4) are not made explicit.

Expressing Partial Synchronizations with Counters

Partial synchronization “event e, can only occur when event e occurs” is expressed by the
following condition on counters:

vVt € Z, 61(t)=€1(t—1):>€2(t)Zez(t—U
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The effect of several partial synchronizations on a single event is easily expressed by a logical
OR. For example, partial synchronizations “event e, can only occur when event ej ; occurs”
and “event e can only occur when event e ; occurs” correspond to

VteZ, (enq(t)=en(t—T)ore(t)=epn(t—1)=e(t)=e(t-1)

To model partial synchronizations in a (max, +)-system with partial synchronization, we
first recall that, as mentioned in § 5.1.1, only partial synchronizations of state events in the
secondary system by state events in the main system are considered. Then, a mapping from
No to {0, 1}, denoted «;, is associated with each state event x,; in the secondary system.
Let us denote X} the set of state events in the main system synchronizing event x; ;. Then,
mapping «; is defined by

. (B.5)
1 otherwise

o (1) :{ Oift < OorIxe Xifx(t) =x(t—1)

If o; (t) = 1, the partial synchronizations affecting state event x; ; authorize occurrences at
time t. Otherwise, if «; (t) = O, the partial synchronizations affecting state event x; ; forbid
occurrences at time t. Hence, the partial synchronizations in a (max, +)-system with partial
synchronization are expressed by the following condition

VteZ,Vi, oy (t) =0= X2i (t) = X2 (t—1)

Algebraic Representation of a (max, +)-system with Partial Synchronization by
Counters

The main system is modeled by

{ X1 (t) > Arox1 (1) @ A% (£ = 1) ®Byow (1) (B.6)

y1 (t) > Cyoxq ()

The secondary system is modeled by

X2 (t) > Az)on (t) &) Azy]Xz (t — ]) D Bz)ouz (t)
Y2 (1) = Cooxz (1) (B.7)
Vi, X (t) =0= X2, (t) = X2 (t — ])

In (B.7), the first two equations represent the standard synchronizations in the secondary
system and the third equation represents the partial synchronization of state events in the
secondary system by state events in the main system. Then, the main system affects the
secondary system through the mappings «; which depend on the timing pattern of the state
events X1 in the main system (see (B.5)).
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B.2.3. Input-Output Behavior

In the following, a method to compute the response of a (max, +)-system with partial
synchronization to a predefined input specified by counters is discussed. As the secondary
system does not affect the main system, we first focus on the main system. Second, we
investigate the secondary system under a predefined behavior of the main system.

Main System

The following method is very similar to the one used for dater representation in § 5.2.3.
However, some additional steps are necessary as counters are antitone (while daters are iso-
tone). The synchronizations affecting the main system are summarized in (B.6). Under the
earliest functioning rule, we are interested in the greatest, according to the standard order,
number of occurrences of state events before or at time t. Thus, as the canonical order in

Niin is the dual of the standard order, we are actually interested in least solutions. Hence,
the number of occurrences of state events occurring before or at time t (i.e., X1 (t)) is given
by the least solution of

X > A1 ox @D Aq1X (t— ])@B])oli] (t)
t<0=x=x(t—1)
x1(t—1) >=x

First, a candidate solution X1 (t) is found by neglecting the condition x; (t — 1) > x. Second,
we check that this candidate solution fulfills the omitted condition. For t < 0, X; (t) =
X1 (t — 1) by assumption. Hence, X1 (t) is given by the least solution of

x> (A0 ® A1) x®Byoug (t)
According to Th. 5, this leads to

Vi< 0, X1(t)=(A10DA11)"Biou (—1) asuy (1) =y (1)
For t > 0, X1 (t) is given by the least solution of

X = A1 ox @ A% (t— 1) ®Byoug (1)
According to Th. 5, this candidate solution is given by

X1 (t) = A;“)OAWZ] (t-1) @A;“}OBwu] (1)

These choices ensure that, if the candidate solution is a solution, it is the least solution.
Finally, the condition X7 (t —1) > X; (t) is checked. For t < O, the property holds, as
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1). For t > 0, we reason by induction. First, we prove the initial step

— % (t—
(e, %1 (—=1) = %1 (0)). As A1 @D Aq1 > Ajpand uy (—1) > uy (0),
X1 (=1) = (A0 ®A11)* Brow (1) = AfoB1ou (0)

Furthermore,

AToA11% (1) = AT A1 (A0 @ A11)" Brow (—1)
= AT oA (AT pA11)" AT oB1ouy (—1) according to (2.8)
< AT A1 (AT pA11)" AT oBrow (=1) @ AT By ow (=1)
< (AT A1) AT oBrow (=1)

(A1,0®A1,1)" Biou (—1) according to (2.8)

X1 (=1)

Hence, X1 (=1) > AJ A11%1 (=1) @ A7 Biow (0) = %1 (0). Second, we assume that
X1 (t—1) > X (t). As the product is isotone in a dioid and wu; is composed of counters,
AT)OAL])NC] (t—1) > AT’OAL])N(] (t) and AT,OBLOLL] (t) > AT,OBLOLL] (t +1). Hence,

<
<

Vte Ny, Xp(t)= AT,OAU;“ (t-—1) C‘DA?‘,OBLOUJ (t)
> AT,OAU;“ (t) (—BAT’OBL()LL] (t + 1)
>x(t+1)

Consequently, the candidate solution X; (t) is a solution. Thus, the state behavior of the main
system is given by

x1 (t) = (A10@A11)" Byow (1) if t <0
AToALx (t=T) @ AT Byous (1) ift >0

The number of occurrences of output events before or at time t (i.e., y; (t)) is given by the
least solution of

{ X = C1)0X1 (t

As for the state events, we first ignored the condition yj (t — 1) > x. This leads to a candi-
date solution §j (t) = Cjox1 (t). Second, we check that the condition §; (t — 1) > U (t)
is fulfilled for the candidate solution. As the product is isotone in a dioid and x; is composed
of counters,

PEt=1)=Cxa(t=1)>Cixq(t) =11 (t)
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Hence, the candidate solution 1j; (t) is a solution. Then, y; (t) = Cjoxq (t). Thus, by
noticing that x; (t) = AJxs (t) for all t € Z, the main system is described by

X (1) = _ift <0
1 A (t=1) @By (t) ift >0 (B.3)
Y1 (t) = Cixq ()

where X1,—- = (A]’o @A]y])* B]yoll] (—]), A] = AT,OAHAT,O’ B] = AT,OBLO’ and C] =
C1)0AT,O'

Secondary System

The synchronizations affecting the secondary system are summarized in (B.7). By analogy
with the main system, the number of occurrences of state events occurring before or at time
t (i.e, x2 (t)) is given by the least solution of

X > A0x D A21%2 (t—-1)® B2 ou; (t)
Vi, oq(t)=0$xi=x2‘i(t—1)

x2(t—1) >=x

where the mappings o are obtained from the behavior of the main system. Notice that, as
o (t) = Ofort < 0, the condition added for partial synchronizations imply x; = x2; (t — 1)
for t < 0. For t < 0, the solution is obtained using a reasoning similar to the one for the
main system.

V<0, x2(t) = (A20®A21)" Byouz (—1)

In the following, we only consider the case t > 0. Due to partial synchronizations, it is not
possible to directly use Th. 5 to find x; (t). However, using a reasoning very similar with [,
§ 2.5.3], we can assume that A is strictly lower triangular by deleting state events, lumping
state events, and adding input events. This allows us to get rid of the implicit terms by writing
the first inequality componentwise. This leads to, for all 1,

i—1
Xi = @ (A20)i5% @ (Az1x2 (t = 1) @ Baoua (1)), (B.9a)
j=1
a(t)=0=>x = X2.4 (t—1) (B.gb)
X2 (t — ]) > Xi (B.9c)

Let us consider a candidate solution z defined by

2 = Xz)i(t—]) ifoci(t):O
D21 (A20)y521 @ (Az1xz (t — 1) @Boouy (1)) if o (t) = 1
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Next, we prove that the candidate solution z is the least solution of (B.9). For a particular i
between 1 and n;, we assume that the components j < 1 of z are known. Then, it remains to
prove that z; is the least solution of (B.9).

Case 1: «; (t) = 0. According to (B.9b), zi = x2; (t — 1) is the single valid solution.
Then, if this is a solution, this is the least solution. Obviously, if z; = X (t—1), (B.goc)
holds. It remains to check (B.ga). Asxp; (t — 1) > zjforj <i,x(t—2) >xp(t— 1), and
w(t—1) = u(t),

Zi = X24 (t — ])
1
(A20)y %2 (t = 1) ® (Azix2 (t = 2) @ Boouz (t — 1)),
j=1
i—1
> D (A20)5 2 @ (Az1x2 (t = 1) @ Baowz (1)),
1

%
-

—.

Case 2: ; (t) = 1. Equation (B.ga) holds and ensures that, if z; is a solution, z; is the least
solution. As «; (t) = 1, (B.gb) does not express any conditions on z;. It remains to check
(B.gc). As x5 (t—1) > zjforj <i,xp(t—2) =x(t—1),anduy (t — 1) > uy (),

i—1

zi = @ (A20)y5 5 @ (Az1x2 (t — 1) ® Byous (1));

=1
—1

PEVENEN

<@ (Az0)ix25 (t = 1) @ (Az1%2 (t = 2) @ Baoua (t = 1)),
j=1

<xi(t—1)

)

Thus, x; (t) is given by z. In practice, the entries of x, (t) have to be computed in a
specific order (i.e., for i from 1 to n;). For the output events, a reasoning similar to the one
for the main system gives Y, (t) = Cax; (t) with C; = C, 0. Thus, the secondary system is
described by

{ x2(t) =H(2(t=1),uz(t),t) (B.10)
Y2 (t) = Caxa (1)

2 X RIZ x Zto Ry is defined as follows, for i from 1 to

where the mapping H from R
nz,

(A0 ®A21)" Baoup (—1)), ift <0
H(x,u,t); =< xif o (t) =0andt >0 (B.11)
@};} (Az20)y H(x,u,t); ® (Az1x @ Byou); otherwise
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Remark 28. The results on optimal control developed in § 6 could also be obtained using
counters. In particular, counters lead to an easier implementation for MPC with a prediction
horizon in the time domain: the counter representation is suitable for online simulations, as
the iteration in (B.8) and in (B.10) is done in the time domain. With dater representation,
online simulation is also possible, but more complicated, as it is necessary to navigate be-
tween time instants and event occurrences. However, the price of counter representation is the
restriction to time-driven dynamics, while dater representation is able to model event-driven
dynamics.

Example 50. For the example introduced in Ex. 23, the output induced by

efort <0

ur (8) = wip (1) = wa (t) = uz2 (1) = { 5 fort >0

is computed. For the main system, this leads to

(e fort <10
1for10 <t <22
2for22 <t<34
3for34 <t <46
4 ford6 <t <58

| 5 fort >58

Y11 () =y12(t) = A

Furthermore, the mappings «; necessary for the dynamics of the secondary system are

1ift=>0
1ifte {0,12,24,36,48}
0 otherwise
1ifte {10,22,34,46,58}

O otherwise

o (t)=064(t)=oc5(t)=o¢8(t):{ 0ift<0
o (t) = g (t) ={

o3 (t) = o7 (t) = {

The output of the secondary system is given by

efort <27
Yz (1) = Jor
1 fort > 27

e t < 51
Y22 (t) = for
1 fort = 51

As expected, these results confirm the results obtained in Ex. 29 with the dater representation.
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B.2. Counter Representation
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