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Introduction

This thesis discusses the optimization of maintenance scheduling in the electricity industry and
particularly focuses on a problem rising in the onshore wind industry. This introductory chapter
aims to make the reader understand the positioning, the motivation, and the relevance of this work.

Nowadays, the electricity industry experiences major challenges and is currently in a transitional
phase in various respects. The opening of the electricity market to competition, following the dereg-
ulation of the sector, has notably triggered fundamental changes. Electricity prices are no longer
essentially regulated by the government (hence the terms deregulation and liberalization), but they
are subject to market interactions. Given the success of this system in the aeronautics and telephone
industries, this reform is promoted as a benefit for the sector. It is intended to favor innovation,
to lower prices, and to lead to better services. But the fact is that the transition from the original
monopoly (state) system is a slow and lengthy process. Indeed, this new system introduces new
actors and redefines the role or activities of the existing ones in such a way that this raises new is-
sues, especially on the organization and the regulation of the market. Along with this change, the
sector is steadily growing. With the increasing world population, the development of countries, the
overall needs for energy services for the world is predicted to be multiplied by 3.2 between 2000 and
2100 (European Commission, 2011). If we exclusively focus on the electricity industry, the demand
is predicted to increase at a rate of 2% per year until 2035 (European Commission, 2011). In a market
driven economy, electric companies are turned towards cost-management and profitability. There-
fore, in this growth context, they tend to pledge for more and/or reliable electricity to maintain their
position on the market or to gain market share. Predominantly, companies in the sector consistently
aim to be able to meet the demand they committed to produce with a high degree of reliability while
being cost-effective for suppliers. As a long-term development strategy, they may also choose to
built more generating units or to increase the capacity of those existing if the return on investments
is worth it. The different electricity generating technologies then present various investments options
to those companies.

As it is widely known, electricity can be produced from fuel (e.g., oil, gasoline, uranium, gas,
coal, wood) or natural forces (e.g., sun, wind, water, biomass, geothermal). The costs incurred in
producing electricity and the revenue generated from its sale vary depending on the generating tech-
nologies. Take the example of nuclear power plants; the construction costs excesses by far the fuel
(uranium and heavy water), operating and maintenance costs (even if these latter costs are signifi-
cant). On the contrary, fossil fuel power plants (coal, oil or natural gas) are less expensive to build, but
the fuel costs are more important and subject to rising or volatility. Similar to nuclear plants, hydro-
electric power stations have much higher fixed costs than fossil fuel technologies but, once installed,
tend to require less maintenance and last much longer than their nuclear and fossil-fuel counterpart.
The remarkable advantage of hydroelectricity is the elimination of fuel costs. The same holds for
wind farms and photovoltaic (PV) power stations for which the costs are essentially composed of
the building costs and some maintenance costs. Nonetheless, for the amount of electricity they can
generate, renewable energy technologies are quite often more expensive. One should not ignored
that the renewable sources of power are usually located in the desert, the mountains, or off-shore,
that is far away from the location of the large proportion of the demand. New transmission lines
are therefore required to connect to the existing network, and these building costs are significant.
However, in the past decade, the investment and exploitation costs of renewable energy technologies
have already drastically reduced to make them competitive alternatives, especially if we also take
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10 INTRODUCTION

into account tax breaks and incentives that have been set up in many countries. Nonetheless, perfor-
mance and efficiency of electricity generating technologies still remain the most critical point when
speaking about profitability. If one looks at the availability factor (AF) of generating units, renew-
able energy sounds attractive. Indeed, while gas, coal, and nuclear plants carry AF over 80%, often
around 90%, wind farms AF top 95%, PV power plants AF reach over 98%, and hydro power plants
AF stays above 90% every summer (but fell as low as 75% in fall and spring). However, high AF does
not translate into a full capacity power generation. For instance, it is not always possible to release all
the water needed to reach the maximum power. In the same way, in the middle of the night, during
cloudy days, or during winter, an available PV power plant will not generate any output or a very
small one. Similarly, a wind farm will not generate power if the wind speed is too low. In order to
assess the effectiveness of the electricity generating technologies, the most relevant criterion is the
capacity factor (CF). Figures are then clearly different. Nuclear plants have a CF usually between
80% and 90% , gas and coal plants around 50-60%, biomass around 80%, geothermal around 60%,
hydro power plants around 40% and wind farms around 25-30%, while PV power stations barely
reach 15-20% 1. However, the choice of an electricity generating technology over another cannot be
made solely based on this factor.

Taking a look at the evolution of the electricity production per fuel type from 2005 to 2015 for the
countries part of the Organization for Economic Co-operation and Development (OECD) and for the
particular case of France (see Figure 1), we observe that the share of renewable energy sources has
significantly increased, whereas the share of combustible fuels (coal, gas) and nuclear have slightly
reduced in the past decade. Although CF figures and the profit-driven nature of companies raise le-
gitimate questions about renewable energy sources (as pointed out above), the unprecedented boom
experienced by renewable energy is in fact explained by the increasing development of policies to
reduce (if not cut) greenhouse gas emissions. Driven by climate change mitigation and adaptation
measures (e.g., the tax incentives previously mentioned), the renewable energy sector is called to
keep growing as producing low-carbon power or carbon-free electricity becomes the priority. The
Paris Agreement – resulting from the 2015 United Nations Climate Change Conference (COP21) –
is in this respect a clear evidence supporting this claim. Nuclear and/or natural gas power stations
(called to replace coal power plants since they produce twice less CO2 emissions) are then usually
predicted to compensate the intermittency of renewable energy as long as energy storage devices are
not fully developed and applicable on a wide scale. It is therefore clear that the transition to a low
carbon society by 2050 has already a significant impact on the electricity industry, and this impact
will continue to grow.

This brief overview of the energy sector points out the very important challenges faced nowadays
by the electricity industry to reconcile the quest of profits – which grew out with the policy of opening
up competition – with environmental sustainability.

The issue of profitability is naturally, although not exclusively, linked to the question of relia-
bility. Indeed, electrical companies aim to avoid costly unexpected breakdowns and try to mini-
mize the downtime that follows. Maintenance management is therefore a major economic issue as it
saves some investment costs with the life extension of the generating units and prevents unnecessary
downtime and excessive operational costs. Just to cite few examples, equipment maintenance man-
agement in electric power systems is concerned with decisions such as: when to stop a generation
unit for maintenance, according to what criteria, and when to re-start it again. These decisions are
taken under complex environments and constraints such as resource availability, demand satisfac-
tion, and reliability thresholds. They aim to build effective and efficient business strategies based
on revenue or profits maximization. Maintenance in the electricity industry is therefore an ongoing
challenge. For clarification purposes, maintenance represents the actions required to ensure that a
generating unit provides reliable service. Maintenance is generally split into two categories accord-
ing to the nature of the actions, whether they are proactive or reactive. On the one hand, as a reactive
approach, corrective maintenance is performed after a breakdown in order to restore the serviceability

1. U.S. Energy Information Administration - Electric generator capacity factors vary widely across the world,
http://www.eia.gov/todayinenergy/detail.cfm?id=22832

http://www.eia.gov/todayinenergy/detail.cfm?id=22832
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Figure 1 – Electricity production per fuel type

of the generating unit. On the other hand, preventive maintenance intends, as a proactive approach,
to reduce the probability of failure. It is performed at predetermined intervals (based on a calendar
or a routine system) or according to some prescribed criteria usually coupled with real-time moni-
toring. In the last case, the maintenance is usually referred as predictive maintenance or condition-based
maintenance. Basically, companies are interested in increasing the probability that a generating unit
will function in the required manner over its design life cycle with a minimum of maintenance. The
process of determining the most effective maintenance approach refers to the concept of reliability-
centered maintenance (RCM). In today’s competitive world economy, RCM translates obviously into
savings. Questions such as why failures happens, what should be done when they happen, and how
to predict or prevent each failure should be answered by the framework to be implemented. Two
noticeable approaches can be jointly considered. On the one hand, topics such as failure prediction
or maintenance policies that manage the risks of generating unit failure in the most effective way
have been widely studied. The results of these studies help to identify the best time windows for
maintenance operations and allow to define maintenance service contracts (e.g., preventive mainte-
nance has to be performed every six months on each turbine). However, theses studies fall out of the
scope of this thesis. We refer the reader to Doyle (2004) and Yssaad et al. (2014) for literature dealing
with it. On the other hand, electrical companies are interested in precisely defining time intervals
for the preventive maintenance of generating units under financial (cost minimization, profits max-
imization) and/or reliability (leveling, maximization of the net reserves) considerations. As a very
common practice in the Operations Research (OR) studies focusing on the topic, the first approach is
then often assumed to part of an upstream work, as it provides valuable inputs to set the maintenance
time window constraints for each generating unit. Thereafter, maintenance scheduling optimization
refers to this last approach.

The issue of environmental sustainability leads us to concentrate on the renewable energy in-
dustry. As it generates very little pollution and hazardous waste, it therefore provides a valuable
alternative to non-renewable fossil fuels. With a 63-Gigawatts (GW) increase in the global installed
capacity in 2015 (and a total of about 432 GW), wind energy is currently the world’s fastest-growing
source of electricity (The Global Wind Energy Council, 2016). Figure 2 illustrates the evolution of
the wind installed capacity in the world and in France during the past 15 years. Boosted by the
ever-increasing environment awareness and the constantly-decreasing cost of turbines, wind power
is expected to account for up to 20% of the global electricity production by 2050 (The Global Wind
Energy Council, 2016) (vs. 2.4% in 2015). It accounts already for around 10% of the European Union

http://www.iea.org/statistics/monthlystatistics/monthlyelectricitystatistics


12 INTRODUCTION

(UE) electricity production (3.9% in France). With an eye to the future, focusing on the wind indus-
try is therefore particularly relevant. In this context of rapid growth, the cost-effectiveness of wind
energy exploitation is essential. Since the maintenance costs account for a significant part of the to-
tal cost incurred by the wind industry, there is an incentive to optimize the maintenance process in
wind farms. Piloting this process in the best possible way demands a deep understanding of tur-
bine performance. Wind farms are usually equipped with a supervisory control and data acquisition
(SCADA) system. The data provided by this system may be used, along with mathematical models,
to diagnose performance issues and risks of failure. This input is then used to define time windows
where the preventive maintenance must be scheduled. As mentioned before, this is beyond the scope
of this thesis. Nonetheless, the problem still contains a significant degree of operational flexibility.
Defining a preventive maintenance plan on a short-term horizon (from a few days to two weeks) is
a relevant challenge for the OR field. Contrary to the maintenance of generating units in traditional
power plants that is primarily based on electricity price and/or demand satisfaction considerations,
maintenance of wind turbines should be scheduled in a way that it minimizes the loss of production.
Indeed, although wind turbine CF is primarily the result of the wind power intermittency and of
design decisions (for a fixed wind speed, the larger are the blades the more electricity the turbine can
produce), the impact of operational decisions (among them the maintenance) on its value is also non
negligible due to the uncontrollable nature of the wind. Producing a maintenance plan in which no
operations generate a loss of production (e.g., every task is scheduled during time periods where the
wind speed is below 3.5 m.s−1, which is too low to produce electricity) can almost never be achieved
in practice, since human resources are a major bottleneck. In this way, focusing on the electricity
production while scheduling the maintenance helps to guarantee the highest possible CF, which es-
sentially leads to higher revenue. Finding efficient strategies for this problem is a challenge that has
motivated this work.
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Figure 2 – Wind installed capacity between 2000 and 2015

The purpose of this thesis is first to analyze the OR studies on the planning of maintenance oper-
ations in the electricity industry and then to expand this research to a relatively unexplored area: the
wind industry.

Two different fundings have enabled to produce this thesis. First, this thesis is partially funded by
the research grant program of Angers Loire Metropole. This funding has been provided to address
problems faced by the electricity industry on the maintenance scheduling of generating units and to
investigate the impact of data uncertainty on these problems. The discussions above demonstrate a
major interest to tackle these issues. Nonetheless, the topic being large, there was a need to frame
the subject and to focus on a specific topic. While the knowledge and understanding of the above-

http://www.rte-france.com/fr/article/bilans-electriques-nationaux
http://www.rte-france.com/fr/article/bilans-electriques-nationaux
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mentioned main tenets were becoming increasingly clear, it turns out that we were approached by a
Canadian company called WPred 2. This company is specialized in the supply of weather forecasts
and, more specifically, on power production forecasts for wind and solar energy. Wind farm oper-
ators as well as wind-turbines maintenance companies are among the main customers of WPred,
which proposes a calendar application to help these companies to find the best time windows of
opportunity for their maintenance operations. This application is essentially a communication tool
where companies can manually fill maintenance tasks planning and work assignments with the help
of a weather and production predictions feed. Although from our side we seem to distinguish the
potential of OR contribution to the maintenance scheduling in the wind industry, it has become
clearly evident since then. The collaboration with WPred has allowed this work to be supported by
the Natural Sciences and Engineering Research Council of Canada through its grant program. This
thesis has therefore been conducted between: i) the Institut de Mathématiques Appliquées part of the
Université Catholique de l’Ouest in Angers (France) under the supervision of Professors Eric Pinson
and Jorge E. Mendoza and ii) Polytechnique Montréal and the Interuniversity research center on enterprise
networks, logistics, and transportation in Montreal (Canada) under the supervision of Professors Michel
Gendreau and Louis-Martin Rousseau 3.

The contributions of this work are multifold and are reported subsequently while we define the
outline of this thesis.

The first part of this thesis is devoted to the presentation of the general orientations and provides
methodological details.

By now, the literature contains a sound body of work focused on improving decision making in
generation unit and transmission line maintenance scheduling. Chapter 1 updates the state-of-the-art
on maintenance scheduling in the electricity industry and provides a global overview of the current
stream of research in this field. We study both regulated and deregulated power systems and enhance
the changes that have followed the deregulation of the sector. We explore some important features
such as network considerations, fuel management, and data uncertainty. We also introduce a mul-
tidimensional classification of references (problem solved, power system targeted, solution method
used, among other things) to make easier to researchers working on this topic identifying the prob-
lem they are working on and what have been the main methods used for solving it. We also point out
one of the motivations of our focus on the wind industry by identifying the lack in the OR literature.

To help with reading the remainder of the work, Chapter 2 provides some technical background
on the solutions methods put into practice in this dissertation. More specifically, we first emphasize
the difference between constraint programming (CP) and linear programming (LP). Then, we set out the
large neighborhood search (LNS) metaheuristic framework. Afterwards, we present the wide-spread
exact approach called Benders decomposition, and we point out the potential improvements to the
original method that have been proposed. We also talk about its implementation. We then briefly
speak about the Dantzig-Wolfe decomposition. Finally, to address the inherent uncertainty in many
real-life problems, we introduce robust optimization.

The second part of this thesis is devoted to its most notable achievements as it presents the re-
search conducted on the main optimization problem we have worked on.

Chapter 3 identifies and defines a challenging maintenance scheduling problem rising in the on-
shore wind industry. While the research in the field primarily focuses on condition-based mainte-
nance strategies, we aim to address the problem on a short-term horizon considering a multi-skill
workforce. The objective is to find a preventive maintenance plan that maximizes the revenue gen-
erated by the electricity production of the wind turbines while taking into account wind predictions,
multiple task execution modes, and daily restrictions on the routes of the technicians. We prove
that the problem is strongly NP-hard. In order to test optimization algorithms, we put together the
insight on wind prediction and maintenance operations that we obtained from WPred and their cus-
tomers to build an instance generator. Although devising a perfect instance generator is nothing but

2. Official website: http://www.wpred.com
3. one year in France followed by one year and a half in Canada and finally the last six months in France

http://www.wpred.com
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impossible, we believe our instances represent reality with a good degree of accuracy.
At a first step, we tackle the deterministic problem introduced in Chapter 3 as we assume perfect

knowledge of the wind speed during the planning horizon.
Chapter 4 proposes different integer linear programming (ILP) formulations of this problem. While

providing an alternative way to define this latter, these mathematical models allow us to judge at
a first sight the difficulty of the problem and the relevance of designing more complex strategies.
Computational results indicate that, generally, the models cannot be directly used to solve realistic
instances. Indeed, an ILP commercial solver is unable to solve to optimality most of the medium and
large-sized instances after 3 hours, and the gap with respect to best known upper bounds is still very
large. Nevertheless, we emphasize considerable differences in the effectiveness of the formulations.

After assessing the complex nature of the problem, we then explore two different approaches to
tackle it.

Chapter 5 provides a heuristic solution method. More specifically, we propose a constraint programming-
based large neighborhood search (CPLNS) approach. Starting from an initial maintenance plan, we itera-
tively alternate between a destroy stage (basically consisting in removing tasks from the maintenance
plan) and a repair stage (basically consisting in rescheduling the tasks that have been removed) in
order to improve the baseline maintenance plan. We develop multiple destruction operators either
specifically conceived for the problem or adapted from the literature. The repair operator consists
in solving a CP model with some fixed variables using branching strategies specially tailored for
the problem. The CPLNS produces high quality solutions when the availability of the technicians
is not binding. For instances where the availability of the technicians is scarce, the gap with respect
to optimal solutions if known, or to the best upper bounds, grows as the number of tasks and the
time horizon increase. Nonetheless, the computational results demonstrate the overall efficiency of
the proposed metaheuristic. At this end of this chapter, we outline our specific work with WPred, as
the CPLNS is the solution method implemented for the industrial prototype we provide them. We
present the specificities taken into account in this particular case and the integration of the optimiza-
tion tool in their existing product.

Chapter 6 investigates the possibility of designing an efficient exact approach that addresses the
problem. We decompose our wind turbine maintenance scheduling problem into a task scheduling
problem and a technician-to-task assignment sub-problem, and we solve it using a branch-and-check
(B&C) approach. More specifically, while solving the task scheduling problem, we discard by means
of cuts, all along the branch-and-bound tree, maintenance plans that cannot be performed by the
technicians. In addition to the generic Benders cuts, we introduce problem-specific cuts based on
several approximations to the sub-problem, and we demonstrate that they are key to speed-up the
convergence of the approach. For most of the instances, the method finds an optimal solution in a
short execution time. For the remaining instances where the 3-hour time limit is reached, it delivers
solutions with a small gap with respect to upper bounds. The results suggest that this B&C approach
significantly outperforms the direct resolution of ILP models and, in a certain context, the previously
introduced metaheuristic (i.e. the CPLNS).

Chapter 7 tackles the problem with an alternative objective consisting in maximizing the avail-
ability of the turbines. We show in our experiments that this widespread objective when scheduling
the maintenance of wind farms does not seem to be the most appropriate choice to address the cost-
efficiency and/or profitability issues faced by wind farm operators and maintenance companies.

To meet another intended objective, Chapter 8 addresses the inherent uncertainty of the wind
speed in the decision-making process for the problem introduced in Chapter 3. Indeed, operational
decisions have to handle with care the quite unpredictable nature of the wind: the maintenance plan
can become infeasible due to safety concerns or/and the revenue can vary widely if the wind speed
deviates from its nominal value. After analyzing the possible approaches and, in particular stochastic
optimization, we choose to rely on robust optimization, as it appears to be the most suitable approach
in the context. We introduce a budgeted uncertainty set with additional constraints to deal with the
possible spatial and time-wise correlation of the wind speed. We solve the problem using a cutting
plane method built on top of the decomposition approach originally designed for the deterministic
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version of the problem and presented in Chapter 6. Our computational experiments demonstrate
that the robust problem is more difficult to solve than its deterministic version, but we are able to
compute near-optimal solutions in short solution times. We show that using robust solutions avoid
feasibility issues while barely penalizing the revenue. To allow decision-makers to take the right
decisions according to which kind of maintenance plan they are interested in, we study the impact
of taking into account correlations or not and the impact of the budget on the quality of the robust
solution. We also present an alternative robust approach in which we aim to ensure that the solution
performs decently in the worst-case but very good in the nominal case. As a perspective to reduce the
solution time for the robust problem, we briefly investigate the combination of a column generation
process with the decomposition approach.

Finally we summarize the overall research, present the final conclusion and outline some research
perspectives.





List of publications

The research reported in this thesis has been presented in many conferences and has been wrapped
up on several articles either published or submitted to scientific journals on Operations Research.

Refereed publications in scientific journals

1. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016) Maintenance
scheduling in the electricity industry: A literature review. European Journal of Operational Re-
search, 251(3):695-706.

Papers submitted to scientific journals

1. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016). Solving a wind
turbine maintenance scheduling problem. Submitted for possible publication to Journal of Schedul-
ing (under second round of review).

2. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016). A branch-and-
check approach to solve a wind turbine maintenance scheduling problem. Submitted for pos-
sible publication to Computers & Operations Research (under first round of review).

Conference talks

1. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016, november). A
branch-and-check approach to solve a wind turbine maintenance scheduling problem. Institute for Op-
erations Research and the Management Sciences - INFORMS annual meeting, Nashville (USA).

2. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016, july). Une approche
de type branch-and-check pour optimiser la planification de la maintenance dans l’industrie éolienne.
Journée du groupe de recherche en Ordonnancement Théorique et Appliqué (GOTha), Angers
(France).

3. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016, may). A branch-
and-check approach to solve a wind turbine maintenance scheduling problem. ISCO - 4th International
Symposium on Combinatorial Optimization, Vietri-Sul-Mare (Italy).

4. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016, february). Optimi-
sation de la planification de la maintenance de parcs éoliens. ROADEF - 17ème congrès annuel de la
Société française de recherche opérationnelle et d’aide à la décision, Compiègne (France).

5. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2015, november). Main-
tenance scheduling in wind farms. GDR-RO - Journée conjointe des groupes de recherche P2LS,
GT2L et GOTha sur le thème des problèmes d’optimisation intégrés, Paris (France).

6. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2015, june). A MIP
Model and Several Approaches to Schedule Maintenance in Wind Farms on a Short-term Horizon.
CORS/INFORMS2015 – Joint international meeting, Montreal (Canada).

7. Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2015, february). Planifi-
cation de la maintenance d’équipements de production d’électricité. ROADEF - 16ème congrès annuel
de la Société française de recherche opérationnelle et d’aide à la décision, Marseille (France).

17





I
Context, literature, and technical

background

19





Chapter 1

Maintenance scheduling in the electricity
industry: a literature review

The research reported in this chapter has been wrapped up on a journal article published in European
Journal of Operational Research.

Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016) Maintenance scheduling in
the electricity industry: A literature review. European Journal of Operational Research, 251(3):695-706.

The reliability of power plants and transmission lines in the electricity industry is crucial for meet-
ing demand. Consequently, timely maintenance plays a major role reducing breakdowns and avoid-
ing expensive production shutdowns. By now, the literature contains a sound body of work focused
on improving decision making in generation unit and transmission line maintenance scheduling. The
purpose of this chapter is to review that literature. We update previous surveys and provide a global
overview of the problem. We study both regulated and deregulated power systems, and we explore
some important features such as network considerations, fuel management, and data uncertainty.

Introduction

As the world population is expanding and a significant number of countries are experiencing (or
are predicted to experience) a strong economic growth, the overall needs of energy services for the
world is predicted to be multiplied by 3.2 between 2000 and 2100. If we exclusively focus on the
electricity industry, the demand is predicted to increase at a rate of 2% per year until 2035 (European
Commission, 2011). The rise of consumerism specially oriented on high-tech electronic devices is
also an important factor. In this growth context, electric companies tend then to pledge for more
and/or reliable electricity to maintain their position on the market or to acquire a more comfortable
market share. Predominantly, they consistently aim to be able to meet the demand they committed
to produce with a high degree of reliability while being cost-effective for suppliers. In this context,
equipment maintenance management is a major economic issue as it saves some investment costs
with the life extension of the generating units and prevents unnecessary downtime. Just to cite few
examples, equipment maintenance management in electric power systems is concerned with deci-
sions such as: when to stop a generating unit for maintenance, when to re-start it again, and how
much resources (e.g., technicians) are to be assigned to the maintenance of a given unit during a
given period. These decisions are taken under complex environments and constraints such as re-
source availability, demand satisfaction, and reliability thresholds.

One of the most successful contributions of OR to improve decision making in equipment main-
tenance management is the application of optimization techniques to solve maintenance planning
and scheduling problems. In the particular case of electric power systems, these problems range
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from simple technician-to-equipment assignments to complex problems considering interactions be-
tween different stakeholders and uncertainty in the problem parameters. We build here on the work
of Yamayee (1982); Kralj and Petrović (1988); Dahal (2004); Khalid and Ioannis (2012) to update the
state-of-the-art, and we provide a global overview of the current stream of research in the field.

The chapter is organized as follows. Section 1.1 presents a brief description of the energy indus-
try, Section 1.2 reviews maintenance scheduling problems rising in regulated and deregulated environ-
ments. Section 1.3 discusses existing solution methods for these problems. Section 1.4 concludes the
chapter and outlines research perspectives in this sector.

1.1 The energy industry

The energy industry carries out three activities: production, transmission, and distribution. Tra-
ditionally the industry is organized in a centralized vertically integrated way (see Figure 1.1): a single
company has a monopoly of the entire system in its area of operation. However, the government reg-
ulates the situation directly or indirectly: no entity must not take advantage of the end consumer.
Therefore, the term regulated monopoly utilities is also used. With the deregulation of the electricity
industry from the end of the 1990s, competition has been replacing monopolies in most places.

The deregulation (or liberalization) of the power industry has opened up the electricity market to
competition. Several companies can now produce or distribute energy; it is, however, more difficult
to introduce competition for the transmission management. Energy prices are no longer regulated by
the government (hence the terms deregulation and liberalization) but are subject to market interac-
tions. Regulations remain (sometimes the term restricted power system is used), but monopolies are no
longer acceptable. Given the success of this system in the aeronautics, gas, and telephone industries,
this reform is promoted as a benefit for the sector. It is intended to favor innovation, to lower prices,
and to lead to better service. This new system introduces challenges such as the organization of the
electricity market, the price-setting mechanism, and the coordination of the various actors.

Indeed, the introduction of market players leads to the emergence of new actors or redefines the
role or activities of existing actors. An independent system operator (ISO) is responsible for the reliability
and security of the system. It dispatches all or part of the energy transactions and can decrease
loads on the network to avoid congestion. The ISO is the leading entity in a power market, and it
must be fair. It manages the interactions between three key entities: generation companies (GENCOs),
transportation companies (TRANSCOs), and distribution companies (DISCOs). When a single TRANSCO
owns the entire transmission network, the ISO operates the transmission lines. The TRANSCO is
then paid for the use of its lines and the maintenance of its network (Shahidehpour et al., 2002).
Retail energy service companies (RETAILCOs) act as intermediaries between GENCOs and consumers
by buying energy from the former to sell to the latter. Other actors exist, but their roles are relatively
minor.

Energy transactions of different natures can take place in this new market structure. In a power
exchange model, GENCOs and RETAILCOs negotiate bilateral contracts defining prices and quantities
independently of the ISO. However, the availability of the transmission lines must be checked with
the system operator to maintain security. This decentralized approach is opposed to the centralized
approach (hereafter referred to as the pool-based model) where market participants share extensive in-
formation (e.g., energy offer, start-up costs, generation costs, ramp-rate for each generator) with the
ISO, which is responsible for ensuring the social and economic welfare of the market while keeping
the system safe. The ISO received two kinds of bids: producers’ bids consist of energy blocks and
their selling prices, and buyers’ bids consist of energy blocks and their buying prices. The power
price is determined by the balance between supply and demand using a market clearing process.
Several markets, such as day-ahead, intra-day, real-time or a combination, can be encountered. Al-
though they are different, both pool-based and power exchange models can coexist. Moreover, a
transmission market deals with the purchase and sale of transmission rights. For a more detailed
explanation of all these specificities, the reader is referred to Shahidehpour et al. (2002). Figure 1.2
summarizes the various interactions between the actors. It is however difficult to define a typical
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organization because several structures are possible.

Production

Transmission

Distribution

Customers

Power flow

Money flow

Figure 1.1 – Interactions in a vertically regulated
utility

GENCOs

ISO
TRANSCOs

RETAILCOs

Customers

DISCOs

Scope of the ISO
Power flow

Money flow

Figure 1.2 – Interactions between market players
under deregulation

Liberalization modifies and sometimes complicates power industry issues. GENCOs, TRANSCOs,
and DISCOs mainly serve their own interests, which may call into question the stability of energy
production and/or energy distribution. Regulations are therefore required.

After this brief presentation of the electricity industry, we discuss, in the next section, optimiza-
tion problems in maintenance scheduling of generating units and transmission lines rising in both
regulated and deregulated power systems. We focus on network constraints, on data uncertainty,
and on fuel consumption and supply management. To provide a global overview, we classify in
Section 1.5 the references according to the problem they solve, the power system they target and the
features they deal with.

1.2 Maintenance in the electricity industry

Maintenance represents the actions required to ensure that a product provides reliable service.
Maintenance can be split into two categories: corrective and preventive. Corrective maintenance
is performed after a breakdown. Preventive maintenance, as a proactive approach, intends to re-
duce the probability of failure. It is performed at predetermined intervals (based on a calendar or
a routine system) or according to some prescribed criteria usually coupled with real-time monitor-
ing. In the last case, the maintenance is usually referred as predictive maintenance or condition-based
maintenance. Basically, companies are interested in increasing the probability that a generating unit
will function in the required manner over its design life cycle with a minimum of maintenance. The
process of determining the most effective maintenance approach refers to the concept of RCM. In
today’s competitive world economy, RCM translates obviously into savings. Questions such as why
failures happens, what should be done when it happens, and how to predict or prevent each failure
should be answered by the framework to be implemented. Two approaches are noticeable and can
be jointly considered. On the one hand, topics that will manage the risks of generating unit failure in
the most effective way, such as failure prediction or maintenance policies, have been widely studied.
The results of these studies help to identify the best time windows for maintenance while taking into
account unexpected breakdowns, and allow to define maintenance service contracts (e.g., preventive



24 LITERATURE REVIEW

maintenance has to be performed every six months on each turbine). However, as mentioned in the
introduction, theses studies fall out of the scope of this thesis.

On the other hand, electrical companies are interested in precisely defining time intervals for
the preventive maintenance of generating units under financial (cost minimization, profits maxi-
mization) and/or reliability (leveling, maximization of the net reserves) considerations. As a very
common practice in the OR studies focused on the topic, the first approach is then often assumed to
part of an upstream work as it provides valuable inputs to set the maintenance time window con-
straints for each generating unit. Thereafter, maintenance scheduling optimization refers to this last
approach.

Maintenance in the electricity industry concerns generating units and transmission lines; the hori-
zon can be long-term or short-term.

1.2.1 Maintenance scheduling of generating units

The maintenance scheduling of generating units has been widely studied. On its basic version,
the maintenance scheduling problem consists in defining when to stop the generating units for pre-
ventive maintenance in order to maintain the system reliability and to reduce the general operational
costs. We refer to it as the generation maintenance scheduling (GMS) problem. Additional constraints
include, but are not limited to:

— maintenance tasks: maintenance window (possible time for maintenance), sequence, incom-
patibility, spacing, and overlapping of tasks.

— generating units: highest/lowest production levels, ramp-rate 1.

— manpower: availability for each period, requirements by maintenance tasks.

— resources: availability for each period, requirements, consumption by maintenance tasks.

— network: transmission-line capacity (see Section 1.2.2), voltage.

— demand: fully satisfied or not, meeting of demand, energy-not-served (ENS) threshold.

— reliability: minimum reserve required by period, risk levels, ENS.

This optimization problem is generally NP-hard and may be nonlinear and nonconvex. Notice that
the problem is generally solved at a strategic level as it mainly considers a long-term horizon.

Moreover, the power production is strongly impacted by maintenance decisions. To include load
constraints, especially demand satisfaction, in the GMS problem, it can be necessary to simultane-
ously decide the production levels of the generating units and the maintenance scheduling. The so-
lutions obtained can then be used as guidelines for unit commitment (UC) with a short time horizon.
UC aims to schedule generating units level to meet forecasted load and reserve requirements.

In the next two sections we discuss the GMS problem in regulated and deregulated power sys-
tems.

Regulated power systems

Although the deregulation of the electricity industry has expanded very rapidly in the world, mo-
nopolies still operate in some regions. In a vertically integrated utility, the maintenance is scheduled
in a centralized way, and all the information is available (costs, network, etc.). The various studies
can be classified according to the nature of the considered objective function:

— Reliability-based
References: (Baskar et al., 2003; Canto and Rubio-Romero, 2013; Chen and Toyoda, 1991; Dahal and
McDonald, 1997; Dahal et al., 1999; Dahal and Chakpitak, 2007; Ekpenyong et al., 2012; El-Amin et al.,
2000; Fetanat and Shafipour, 2011; Foong et al., 2007; Mohanta et al., 2004, 2007; Reihani et al., 2012;

1. Output gap limitation between two successive time periods for a generating unit
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Schlünz and van Vuuren, 2013; Suresh and Kumarappan, 2013; Volkanovski and Mavko, 2008; Wang
and Handschin, 2000; Yare and Venayagamoorthy, 2010).

For reliability considerations, the main optimization criterion is the leveling of the net reserves
along the planning horizon. For a given time period t, the net reserves correspond to the maxi-
mal power that can be produced by the available generating units not in maintenance during t
minus the estimated demand during t. The most common approach is to minimize the sum of
squares of the net reserves by period (Dahal and McDonald, 1997; Dahal et al., 1999; Dahal and
Chakpitak, 2007; Ekpenyong et al., 2012; Foong et al., 2007; Mohanta et al., 2004, 2007; Reihani
et al., 2012; Schlünz and van Vuuren, 2013; Yare and Venayagamoorthy, 2010). Nonetheless,
alternative criteria have been studied. Chen and Toyoda (1991) maximized the reserve margin
when they tackled isolated power systems, whereas they leveled the reserve margin for each
area when they consider a multi-area system. Suresh and Kumarappan (2013) and Wang and
Handschin (2000) leveled the reserve margin by minimizing an objective function based on the
deviation between a reserve rate and its average (i.e. the average reserve rate over the plan-
ning horizon). Suresh and Kumarappan (2013) defined the reserve rate as the ratio of the net
reserve to the sum of the generation capacity plus the predicted maximum load while Wang
and Handschin (2000) defined the reserve rate as as the ratio of the difference between the sum
of the generation capacity and the maximum predicted load to the maximum predicted load.
El-Amin et al. (2000) considered the deviation between the reserve by period and the average
reserve along the horizon. Baskar et al. (2003) considered the square of this deviation, and they
studied the impact of a crew constraint (manpower availability at each period) on the results.
Canto and Rubio-Romero (2013) maximized the sum by period of the ratio of the net power
reserves to the gross power reserves. They introduced geographical, seasonal, and coordina-
tion constraints for a problem with wind farm turbines and thermal and hydroelectric power
plants. Volkanovski and Mavko (2008) minimized the annual value of the loss of load expec-
tation (LOLE) 2 taking into account the forecasted outage rate of the generating units. Finally,
Fetanat and Shafipour (2011) defined an objective function such that the generating units have
to be maintained as promptly as possible to reduce the expenses related to damaged machines.
To our knowledge, only Ekpenyong et al. (2012) and Suresh and Kumarappan (2013) gave out-
lines to schedule the power production. Ekpenyong et al. (2012) also considered ramp-rate
constraints for the generating units. Otherwise, the remaining studies ensure for each period
that the generating capacities that are not in maintenance are sufficient to cover the demand
plus sometimes a reserve constraint.

— Cost-based
References: (Abirami et al., 2014; Al-Khamis et al., 1992; Anghinolfi et al., 2012; Baskar et al., 2003; Brandt
et al., 2013; Buljubasic and Gavranovic, 2012; Burke and Smith, 2000; Canto, 2008; Charest and Ferland,
1993; Chattopadhyay, 1998; Digalakis and Margaritis, 2002; Ekpenyong et al., 2012; El-Amin et al., 2000;
El-Sharkh et al., 2003; El-Sharkh, 2014; Fattahi et al., 2014; Fourcade et al., 1997; Frost and Dechter, 1998;
Fu et al., 2007; Gardi and Nouioua, 2011; Godskesen et al., 2013; Gorge et al., 2012; Jost and Savourey,
2013; Khemmoudj et al., 2006; Kralj and Petrovic, 1995; Leou, 2006; Lusby et al., 2013; Marwali and
Shahidehpour, 1998, 1999a, 2000a; Mollahassani-pour et al., 2014; Mytakidis and Vlachos, 2008; Rozen-
knop et al., 2013; Saraiva et al., 2011; Satoh and Nara, 1991; Silva and Morozowski, 1995; Silva, 2000;
Yellen and Al-Khamis, 1992).

The other common objective is to minimize the general operational costs. These are produc-
tion costs (e.g., fuel consumption), maintenance costs (e.g., loss of profit), and sometimes unit
start-up costs (Canto, 2008). The production costs depend on the power output of the gener-
ating units, so it is necessary to compute an approximate schedule for their production level.
An economic dispatch problem is usually solved with an objective of satisfying the demand
at a minimum cost. The units with the lowest marginal costs are used to meet the system re-
quirements; the other units produce only during the peak time periods. Some of these studies

2. expected time during which the demand is greater than the available capacity of the power system
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took also into account the transmission network when scheduling the maintenance (see Sec-
tion 1.2.2). Other authors included a fined-grained fuel management (see Section 1.2.4).

— Reliability-and-cost-based
References: (Huang, 1997; Kralj and Petrovic, 1995; Muñoz-Moro and Ramos, 1999).

The literature reports on some studies dealing with objective functions that are based on both
reliability and cost. The goal is to find the best trade-off between these two conflicting objec-
tives. Muñoz-Moro and Ramos (1999) proposed a lexicographic ordering of the two objectives
considering first the operational costs and then the reserve margins. A parameter controls the
increase of the cost when optimizing the reliability of the system.

Deregulated power systems

Deregulation changes the maintenance scheduling problem. The GENCOs and TRANSCOs are
now usually responsible for maintaining their equipment. The ISO ensures the smooth running of
the system in terms of reliability and security. Risk is managed by guaranteeing sufficient reserves of
energy for each period to meet uncertainties in, for example, the demand or the generator deteriora-
tion. The different actors may have conflicting interests: GENCOs and TRANSCOs want to maximize
their profits, whereas the ISO is concerned with demand satisfaction and congestion avoidance. For
example, GENCOs tend to perform maintenance when the energy price is at its lowest, which may
make it difficult to meet the demand. Thus, in an iterative way (see Figure 1.3), the GENCOs and
TRANSCOs submit their preferred maintenance schedules to the ISO, which verifies the acceptable
behavior of the system on the basis of all the market-player information. If the ISO is not satisfied, it
will request modifications (e.g., the rescheduling of one or more maintenance tasks). Notice that the
coordination procedure may vary from one system to another.

ISO

GENCOs TRANSCOs

Required 
modifications

Reliability and 
security checks

Maintenance planning 
submission

Required 
modifications

Figure 1.3 – Coordination procedure in a deregulated power system

Since the opening up to competition, the GMS problem in deregulated power systems has been
widely studied (Badri and Niazi, 2012; Barot and Bhattacharya, 2008; Billinton and Abdulwhab, 2003;
Bisanovic et al., 2011; Bozorgi et al., 2016; Chattopadhyay, 2004b,a; Conejo et al., 2005; Elyas et al.,
2013; Eshraghnia et al., 2006; Feng et al., 2009; Fu et al., 2007; Geetha and Shanti Swarup, 2009; Han
et al., 2011; Kim et al., 2005; Latify et al., 2013; Marwali and Shahidehpour, 1999a,b, 2000a,b; Min et al.,
2013; Shabanzadeh and Fattahi, 2015; Wu et al., 2008; Zhan et al., 2014). The problem has globally the
same constraints as for the vertically integrated case. Among some specificites, Bisanovic et al. (2011)
introduced bilateral contracts (defined through prices and power quantities to supply) in their model.
Chattopadhyay (2004b), Latify et al. (2013), Marwali and Shahidehpour (1999b), and Marwali and
Shahidehpour (2000a) considered fuel based constraints. Indeed, restrictions on the maximum fuel
supplied each week, month, and year may arise due to contractual agreements with fuel suppliers
(see Section 1.2.4).

As noted for regulated power systems, it may be necessary to compute an approximate schedule
for the production of the different generating units. Indeed, it allows for the more accurate estimation
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of the revenue and operating costs and can be required, among others, by the introduction of network
constraints.

In some studies (Badri and Niazi, 2012; Fu et al., 2007; Marwali and Shahidehpour, 1999a,b,
2000a,b), cost minimization is still the objective. These studies generally deal with a security-constrained
GMS problem operating under a pool-based model. Nonetheless, profit maximization is a much
more common objective (Barot and Bhattacharya, 2008; Bisanovic et al., 2011; Bozorgi et al., 2016;
Chattopadhyay, 2004b,a; Conejo et al., 2005; Elyas et al., 2013; Eshraghnia et al., 2006; Feng et al.,
2009; Geetha and Shanti Swarup, 2009; Kim et al., 2005; Latify et al., 2013; Min et al., 2013; Shaban-
zadeh and Fattahi, 2015; Wu et al., 2008; Zhan et al., 2014). Note that these two objectives are different
because profits depend on both costs and revenue. A very recent study by Dahal et al. (2015) explains
how maintenance costs can be precisely modeled in deregulated markets considering, among others:
failures, contractual compensations, rescheduling, and market opportunities. The authors demon-
strated the importance and the impact of market related costs in maintenance schedules.

Under deregulation, the GENCOs have limited information about the system. The coordination
of the decisions and information exchange between the GENCOs and the ISO are therefore very
important. The interactions between these two latter actors have received intensive interest (Barot
and Bhattacharya, 2008; Conejo et al., 2005; Elyas et al., 2013; Eshraghnia et al., 2006; Geetha and
Shanti Swarup, 2009; Han et al., 2011; Min et al., 2013; Zhan et al., 2014). When the GMS problem is
considered from the point of view of the ISO, one generally works with reliability-based objectives:
maximizing the reserve throughout the horizon (Eshraghnia et al., 2006), maximizing the sum of
the ratio of the net reserves to the gross reserves by period (Conejo et al., 2005), minimizing the
standard deviation of this last ratio (Zhan et al., 2014), or minimizing a risk penalty factor related to
an adequate level of reliability (Geetha and Shanti Swarup, 2009). More scarcely, one may consider
cost minimization as in (Barot and Bhattacharya, 2008).

Many authors presented iterative coordination methods (between the GENCOs and ISO) based
on rescheduling signals. Eshraghnia et al. (2006) suggested a coordination procedure where at every
iteration the ISO indicates permissible and impermissible maximum power for the maintenance of
the generating units in each period. In the same way, Barot and Bhattacharya (2008) coordinated the
decisions through corrective signals sent by the ISO to the GENCOs, indicating the maximal capac-
ities that can be in maintenance during critical time periods. These signals are calculated according
to the responsibility of each GENCO for not supplying the load. These capacity-based signals can
be replaced by penalties and/or incentive signals. Conejo et al. (2005), Geetha and Shanti Swarup
(2009), and Min et al. (2013) penalized the scheduling of maintenance tasks during peak time periods
or when the reliability of the system is uncertain. The objective function associated with the GENCO
problem is modified at each iteration to represent the ISO’s recommendations. In Conejo et al. (2005),
GENCOs that adjust their maintenance plans are paid to offset their losses compared to their initial
plans; the cost is paid by the customers. Latify et al. (2013) studied the maintenance of generating
units that use natural gas as fuel. They introduced a complex coordination scheme between different
entities (among them the ISO) as the GMS problem affects and is affected by gas price uncertainty,
gas availability variations, and gas network constraints. Penalties based on reliability indices are sent
from the ISO to the GENCOs in order to make the latter shift the maintenance of their units when the
demand is low.

Among the alternative approaches, Han et al. (2011) proposed an ISO coordination procedure to
adjust the individual generator-maintenance schedules according to the preferences of each GENCO,
while guaranteeing system reliability. Elyas et al. (2013) gave the ISO the responsibility for mainte-
nance scheduling. They took into account consumer satisfaction by maximizing the annual social
welfare and also considered the profit-seeking GENCOs. They suggested a maintenance bidding ap-
proach to model the coordination mechanism. Finally, Zhan et al. (2014) analyzed the relationship
between the ISO and the GENCOs using a multiobjective approach.
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1.2.2 Transmission maintenance scheduling and network considerations

Along with generation maintenance, the maintenance of the transmission lines must be sched-
uled. It is necessary to ensure that taking a line out for maintenance does not impact the network
reliability and security. This problem, usually called the transmission maintenance scheduling (TMS)
problem, has received less attention in the literature than the GMS problem (Abirami et al., 2014;
Fu et al., 2007; Geetha and Shanti Swarup, 2009; Langdon and Treleaven, 1997; Lv et al., 2012; Mar-
wali and Shahidehpour, 1998, 1999b, 2000b). The TMS constraints are globally the same as those
for GMS (e.g., time windows for maintenance tasks, resource requirements, demand satisfaction).
These are also constraints on the line capacity and the problem may include voltage considerations.
The network can be modeled as either a transportation model (Abirami et al., 2014; Marwali and
Shahidehpour, 1998, 1999b) or a more complex but more realistic DC power flow model 3 (Fu et al.,
2007; Geetha and Shanti Swarup, 2009; Langdon and Treleaven, 1997; Lv et al., 2012; Marwali and
Shahidehpour, 2000b).

The TMS problem can be addressed independently from the GMS problem (Langdon and Tre-
leaven, 1997; Lv et al., 2012; Marwali and Shahidehpour, 2000b). In this approach, the state of the
network appears as a constraint during the resolution of the GMS problem. Although this approach
is especially valid for regulated systems it may also apply to deregulated power systems. For in-
stance, Marwali and Shahidehpour (2000b) looked for a trade-off between maintenance costs and
loss of revenue over a short-term horizon.

When the TMS problem is tackled jointly with the GMS problem (Abirami et al., 2014; Fu et al.,
2007; Geetha and Shanti Swarup, 2009; Marwali and Shahidehpour, 1998, 1999b), it becomes more
complex. The maintenance must take into account economic considerations while minimizing the
unsatisfied demand. The GMS and TMS problems have been solved generally on a monthly or
weekly basis. Marwali and Shahidehpour (1998) coordinated maintenance decisions over a long-
term horizon. Marwali and Shahidehpour (1999b) included fuel and emission constraints in the
problem, considering local transmission lines within a GENCO. Fu et al. (2007) proposed an opti-
mal coordination approach between generation and transmission outages, mid-term maintenance
outage and hourly security constrained generation scheduling. The technique can be used by a com-
pany in a monopoly position or by an ISO. Abirami et al. (2014) solved the integrated maintenance
scheduling problem on hourly basis and consider partial maintenance for transmission lines. When
deregulated power systems are based on the power exchange model, the GENCOs and TRANSCOs
are profit-oriented and do not have global information about the state of the system. As explained
earlier, the ISO has to coordinate the submitted schedules; the cheapest transmission lines and gener-
ators might be overloaded. To our knowledge, only one study applies to this case; Geetha and Shanti
Swarup (2009) solved the problem for every actor (ISO, GENCOs, and TRANSCOs) and coordinated
the decisions through penalties.

Network considerations and especially coordination between GMS and TMS problems are im-
portant to maintain the security as well as the efficiency of the global system. If the TMS problem
is not solved jointly with the GMS problem, network constraints can be introduced when the lat-
ter problem is solved (Badri and Niazi, 2012; Barot and Bhattacharya, 2008; Chattopadhyay, 1998;
Chen and Toyoda, 1991; El-Sharkh et al., 2003; Leou, 2006; Marwali and Shahidehpour, 2000a, 1999a;
Silva and Morozowski, 1995; Silva, 2000; Wu et al., 2008). These constraints can implicitly include
the maintenance tasks planned for the network. Maintenance and unit commitment decisions must
never exceed the line capacities. To our knowledge, Chen and Toyoda (1991) were the first to con-
sider these constraints in a multi-area problem, but they did not handle unexpected breakdowns.
The transportation model is widely used, except by Silva (2000) who modeled a DC power flow.

1.2.3 Management of uncertainty

Uncertainty in the GMS and TMS problems can be significant and it requires specific manage-
ment. Indeed, the load curve as well as the fuel and energy prices may be difficult to estimate pre-

3. Linearization of an AC power flow model
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cisely. Furthermore, corrective maintenance, following unexpected breakdowns, has a real impact on
the production. Uncertainty has therefore to be handled with care.

Reserve constraints can help to deal with these risks. Reliability objectives, as discussed earlier,
can also be used. However, using only deterministic strategies may be inappropriate in the case of
large disturbances.

To explicitly consider unexpected breakdowns, researchers generally associate a forced outage rate
(FOR) with generating units or transmission lines. The FOR represents the probability that the equip-
ment will not be available for service when required. It impacts the quantity of energy that can be
supplied. Thus, it prevents unsuitable maintenance schedules when load constraints are considered.
One can also (artificially) reduce the capacity of the generators and solve a deterministic problem,
but the not-supplied energy can be overestimated. However, the use of stochastic reliability indices,
such as the expected energy not served (EENS) (Baskar et al., 2003; Chattopadhyay, 2004b; Geetha
and Shanti Swarup, 2009; Lv et al., 2012; Marwali and Shahidehpour, 1999a,b; Silva and Morozowski,
1995; Yellen and Al-Khamis, 1992) and the loss of load probability (LOLP) (Billinton and Abdulwhab,
2003; Han et al., 2011; Mohanta et al., 2004, 2007; Reihani et al., 2012; Suresh and Kumarappan, 2013;
Volkanovski and Mavko, 2008), is better suited to tackle problems in this context. The EENS is mini-
mized or a threshold for acceptability is defined. Satisfying EENS within a specific threshold results
in an acceptable LOLP. Mohanta et al. (2007), Reihani et al. (2012), and Suresh and Kumarappan
(2013) considered the LOLP reliability index in a stochastic levelized risk method. The first step of
this technique is to build an outage capacity probability table (COPT) by associating a probability to
every generation capacity level taking into account the forced outage rate of each generating unit.
The table can be computed with a convolution algorithm. The second step consists in finding the
system’s risk characteristic coefficient, defined as the change of the generating unit’s outage capacity
in MW when the system’s risk changes by a certain factor. Each unit capacity is then replaced by
an effective load carrying capacity based on the system’s risk characteristic coefficient and the FOR.
It represents the actual capacity of the units which is used for meeting the load demand. Similarly,
the load of each interval is replaced by a value, called the equivalent load, which takes into account
the peak variation during this interval and the system’s risk characteristic coefficient. Leveling the
risk may be finally realized by minimizing the sum of the squares of the reserves in the planning
period. The reserve in each interval is obtained by subtracting the effective load carrying capacity
of the available generating units and the equivalent load. In Mohanta et al. (2007), the risk associ-
ated with the resulting plan is evaluated by giving a confidence interval for the LOLP. Suresh and
Kumarappan (2013) presented a coordination scheme to minimize the LOLP and the deviations of
annual supply reserve ratio by considering the system’s risk characteristic coefficient as a control
parameter of their method. We refer the reader to the previous given references for more details.
Several other approaches have been proposed. As a fairly closed approach, Volkanovski and Mavko
(2008) chose to minimize directly the annual value of the LOLE. Billinton and Abdulwhab (2003)
discussed a health levelization technique over a short-term horizon. Incorporated in a probabilistic
framework, the objective is to maximize the health/security of the system, defined as the probability
that the available reserves are greater than the required reserves. Chattopadhyay (2004b) simulated
random outages using the Monte Carlo technique and proposed a stochastic optimization frame-
work based on a game theory model to tackle the GMS problem. Geetha and Shanti Swarup (2009),
Lv et al. (2012), Marwali and Shahidehpour (1999a), Marwali and Shahidehpour (1999b), Marwali
and Shahidehpour (2000a), and Silva and Morozowski (1995) proposed a probabilistic approach that
takes FOR into account in a problem incorporating network constraints. Last but not least, Feng et al.
(2009) analyzed the impact of unexpected unit failures on the GMS solution and especially on: main-
tenance time periods, producer benefits, maintenance costs, and the costs of repairing or replacing
some generating units. A modified superposed power law process models the unit failure rate. Its
parameters are determined via the Gauss–Newton algorithm.

Fuzzy logic theory is also used to handle some data uncertainties in (Huang, 1997; Dahal et al.,
1999; El-Sharkh et al., 2003; Mohanta et al., 2004; Bozorgi et al., 2016). It allows the representation
and the use of linguistic knowledge. This concept is mainly used through fuzzy fitness function in a
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genetic algorithm (GA). Huang (1997) used triangular and trapezoidal membership functions for the
multiple objectives (reserve margin, production cost) and for the soft constraints (manpower, time
windows, geographical constraint). They used a GA to tune the membership functions. Dahal et al.
(1999) introduced a fuzzy evaluation function combining the reliability objective function, the man-
power constraint and a penalty factor associated with the inflexible demand satisfaction constraint.
Based on their experience, they used triangular and trapezoidal membership functions to define the
fuzzy sets. El-Sharkh et al. (2003) simulated the demand and the cost uncertainties using triangu-
lar membership functions.Mohanta et al. (2004) studied the incorporation of an uncertainty on the
forced outage rate of the generating units by evaluating the reliability of power plants using fuzzy
theory. They used a fuzzy LOLP to assess the quality of the method. Bozorgi et al. (2016) used fuzzy
number to address the uncertainty on the production costs, on the electricity price, and on the de-
mand. The major point when using a fuzzy logic approach is the intensive need of expert knowledge
and substantial amounts of data.

The power demand may also be uncertain. Its stochastic nature can be explicitly considered. A
set of scenarios that model alternative demands is used in (Anghinolfi et al., 2012; Brandt et al., 2013;
Buljubasic and Gavranovic, 2012; Canto, 2008; Canto and Rubio-Romero, 2013; Gardi and Nouioua,
2011; Godskesen et al., 2013; Gorge et al., 2012; Jost and Savourey, 2013; Lusby et al., 2013; Rozenknop
et al., 2013). The maintenance decisions ensure that the demand is met in all the scenarios. Ekpeny-
ong et al. (2012) presented an effective method, called model predictive control, that detects demand
disturbances and makes appropriate corrections.

When the objective is profit-based, it may be necessary to take into account the volatility of market
prices. Wu et al. (2008) used a stochastic model based on an hourly price-based unit commitment.
The hourly electricity and fuel prices are modeled as a set of scenarios determined via a Monte-
Carlo method. Shabanzadeh and Fattahi (2015) proposed a robust approach to solve a maintenance
scheduling problem defined from the viewpoint of GENCOs. They assumed the prices take their
values into known intervals. The goal is to take a risk-averse decision by maximizing the profits
of the GENCO in the worst-case scenario for the prices. To avoid overconservatism, the deviations
from the nominal prices are bounded by a parameter called the uncertainty budget. The author
applied duality theory to reformulate the problem into a deterministic problem with some additional
variables and constraints (see Section 2.5 for more details on robust optimization).

The uncertainty can also affect the available quantity of fuel. In a complex coordination scheme
with several actors, Latify et al. (2013) considered multiple scenarios for the availability of gas (used
as the primary fuel in this study) and solved the extensive form of the stochastic program.

1.2.4 Fuel management and maintenance scheduling

Thermal production represents around 80% of the total global electricity production 4. Fuel is
fundamental for the effective functioning of these plants and refueling can impact the GMS problem.
Nonetheless, only few studies include refueling considerations.

In some cases, refueling can be done continuously without significantly affecting electricity pro-
duction (Al-Khamis et al., 1992; Chattopadhyay, 1998, 2004b; Latify et al., 2013; Marwali and Shahideh-
pour, 1999b, 2000a; Muñoz-Moro and Ramos, 1999), but sometimes (e.g., for nuclear reactors) it can
occur only when the generators are offline (Anghinolfi et al., 2012; Brandt et al., 2013; Buljubasic and
Gavranovic, 2012; Fourcade et al., 1997; Gardi and Nouioua, 2011; Godskesen et al., 2013; Gorge et al.,
2012; Khemmoudj et al., 2006; Jost and Savourey, 2013; Lusby et al., 2013; Rozenknop et al., 2013). The
introduction of fuel management into the GMS problem increases its complexity but also makes it
more realistic. Badri and Niazi (2012) limited the fuel consumption for every generating unit during
each time period. If fuel shortages occur, electricity can be purchased externally. Wu et al. (2008)
limited the fuel allocations by group of generating units. These groups depend on predetermined
contracts with suppliers. Al-Khamis et al. (1992) and Latify et al. (2013) considered fuel availability

4. International Energy Agency - http://www.iea.org/statistics/monthlystatistics/
monthlyelectricitystatistics/

http://www.iea.org/statistics/monthlystatistics/monthlyelectricitystatistics/
http://www.iea.org/statistics/monthlystatistics/monthlyelectricitystatistics/
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constraints. Muñoz-Moro and Ramos (1999) were concerned with the maximum fuel storage capaci-
ties of thermal plants. Marwali and Shahidehpour (1999b, 2000a) solved a fuel dispatch problem with
multiple suppliers. The fuel consumption is limited by week, month, and year and is linked with the
output level of the generators. Marwali and Shahidehpour (2000a) discussed the coordination of
long-term and short-term maintenance decisions. Chattopadhyay (1998) discussed coal supply man-
agement with different transport modes from the mine to the power stations. Chattopadhyay (2004b)
introduced fuel contracts with suppliers (with fixed fuel prices and volumes) in a GMS model and
describes a successive linearization scheme to approximate the fuel consumption as a linear function.
Finally, Fourcade et al. (1997) and Khemmoudj et al. (2006) planned production shutdowns to carry
out refueling and maintenance operations (the fuel quantity to supply is known in advance).

A challenge submitted jointly by EURO 5 and ROADEF 6 in collaboration with EDF 7 has renewed
interest in this latter problem. It presents a large-scale energy management problem with many con-
straints (Porcheron et al., 2010). The time horizon is long and fine-grained (up to 277 weeks with
7 or 21 timesteps per week). Two types of production units are considered. Non–nuclear plants
can refuel continuously whereas nuclear plants must be shut down when fuel is supplied. In con-
trast to previous studies (Fourcade et al., 1997; Khemmoudj et al., 2006), the amount of fuel that is
supplied for every nuclear plant is left as a decision variable. Furthermore, the production levels
for the plants have to be planned under demand uncertainty modeled by a set of scenarios (up to
500). The objective is to plan the production and refueling while minimizing the production costs of
non–nuclear plants and the refueling costs of nuclear plants. The problem has been proved to be NP-
hard (Godskesen et al., 2013). Almost twenty teams participated in this challenge, and some of them
(Anghinolfi et al., 2012; Brandt et al., 2013; Buljubasic and Gavranovic, 2012; Gardi and Nouioua,
2011; Godskesen et al., 2013; Jost and Savourey, 2013; Lusby et al., 2013; Rozenknop et al., 2013) pub-
lished their results. Gorge et al. (2012) also considered this problem, but they introduced with some
simplifications. Notice that the problem is often decomposed into several components: planning of
the refueling, computation of the refuel amounts, and planning of the production.

1.2.5 Benchmarks

Publicly accessible data to test optimization algorithms for maintenance scheduling in electricity
systems are rather scarce. Probably the most classical instance is the IEEE 8 Reliability Test System
(IEEE-RTS) published in 1979 (Reliability Test System Task Force of the Application of Probability
Methods Subcommittee, 1979) and released in 1996 (Reliability Test System Task Force of the Appli-
cation of Probability Methods Subcommittee, 1999). The IEEE-RTS includes data on the network, the
generating units, the demand, and the costs. This benchmark has been used in several articles (Badri
and Niazi, 2012; Billinton and Abdulwhab, 2003; Elyas et al., 2013; Eshraghnia et al., 2006; Fattahi
et al., 2014; Feng et al., 2009; Geetha and Shanti Swarup, 2009; Marwali and Shahidehpour, 1998,
1999a,b, 2000a; Mollahassani-pour et al., 2014; Schlünz and van Vuuren, 2013; Suresh and Kumarap-
pan, 2013; Zhan et al., 2014). Another commonly used set of instances contributed by the IEEE 9

represent portions of the North American electricity system; this set served as a benchmark in (Abi-
rami et al., 2014; El-Sharkh et al., 2003; El-Sharkh, 2014; Fu et al., 2007; Marwali and Shahidehpour,
2000b). In addition, an instance with 21 generating units described by Yamayee et al. (1983) regularly
serves as a test case (Baskar et al., 2003; Dahal et al., 1999; Dahal and Chakpitak, 2007; Ekpenyong
et al., 2012; Schlünz and van Vuuren, 2013; Suresh and Kumarappan, 2013; Yare and Venayagamoor-
thy, 2010). Data associated with real cases are often used to validate proposed techniques. However,
to our knowledge, the only publicly available data is that published of the EURO-ROADEF-EDF
challenge (Porcheron et al., 2010).

5. Association of European Operational Research Societies
6. Société française de recherche opérationnelle et d’aide à la décision
7. Electricité de France
8. Institute of Electrical and Electronics Engineers
9. University of Washington Electrical Engineering, Power systems case archive,
http://www.ee.washington.edu/research/pstca/

http://www.ee.washington.edu/research/pstca/
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1.2.6 Electricity generating technologies

It is noteworthy that the scope of the OR studies on maintenance scheduling optimization cover
essentially the traditional power plants (nuclear and fossil-fuels). This may be partially explained by
the strong predominance of these latter in the world. Consequently, renewable energies are barely
mentioned in the OR literature about maintenance scheduling optimization. In the rare studies they
are taking into consideration, it is always with other electricity generating technologies and, to our
knowledge, only in the case of a regulated power system where the problem can be solved consid-
ering a large part (or the totality) of the network (Canto and Rubio-Romero, 2013). This situation is
quite surprising, but maintenance scheduling optimization is not overlooked for renewable electric-
ity generating technologies. It is just drawing the attention of another field of research. For the sake of
conciseness, we just focus here on the wind industry. Exploring some existing studies, maintenance
optimization for wind turbines has recently started to received attention in literature related to elec-
trical and reliability engineering (we refer the reader to Ding et al. (2013) for a survey). This stream
of research primarily focused on RCM. Indeed, studies are essentially interested in the definition of
maintenance policies according to failure models or/and condition monitoring. For instance, Carlos
et al. (2013) proposed a stochastic model to find a maintenance strategy minimizing the operational
costs and maximizing the annual electricity production while taking into account meteorological con-
ditions, degradation, and failures. The underlying methodology uses the Nelder-Mead method. The
results of the optimization process is a maintenance time interval for each turbine. The study consid-
ers each turbine in isolation which is very common as studies usually choose to focus at most on a
single wind farm. However, these studies do not build detailed maintenance plans that can be used
on a daily or weekly basis, since human and material resource management is generally overlooked.
To our knowledge, only few studies have responded to this issue. Kovács et al. (2011) considered
fine-grained resource management while scheduling on a one-day horizon maintenance operations
for onshore wind turbines. These authors aimed to minimize lost production due to maintenance
and failures. They solved an ILP formulation of the problem with a commercial solver. With re-
gard to offshore wind farms, Irawan et al. (2016) optimized a maintenance routing and scheduling
problem minimizing labor, travel and penalty costs. They proposed a solution method based on
Dantzig-Wolfe decomposition in which all the feasible routes for each vessel are generated a priori.

1.3 Solution methods

Various heuristic and exact approaches have been proposed for the GMS and/or TMS problems.
The solution techniques mainly focus on metaheuristics and mathematical programming. This sec-
tion provides details about all these techniques and discusses their applicability to the problems
defined in the previous sections. To provide a global overview, Table 1.1 classifies the references
according to the solution method they apply.

1.3.1 Mathematical programming approaches

Mathematical programming methods are essentially based on dynamic programming, pure mixed-
integer programming, branch-and-bound, Lagrangian relaxation, and Benders decomposition.

Until the 90s, dynamic programming was often used for solving the GMS problem because of its
sequential decision process. For instance, Huang (1997) combined dynamic programming with fuzzy
logic in a multiobjective problem. However, the “curse of dimensionality” limits the application of
this method (Yamayee, 1982).

Alternatively, many mixed integer programming models are proposed for the GMS and TMS
problems. Objectives and constraints widely vary from one study to another; a clear indicator of the
difficulty to point out a general model. Only linear models are likely to be handled by commercial
solvers and only small or medium-sized instances can be efficiently solved. Badri and Niazi (2012),
Barot and Bhattacharya (2008), Bisanovic et al. (2011), Canto and Rubio-Romero (2013), Chen and
Toyoda (1991), Conejo et al. (2005), Fourcade et al. (1997), Latify et al. (2013), Mollahassani-pour et al.
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(2014), Muñoz-Moro and Ramos (1999), Shabanzadeh and Fattahi (2015), and Wu et al. (2008) formu-
lated mixed-integer linear programming (MILP) models and solved them combining branch-and-bound
algorithms with simplex or interior-point methods (see Section 2.1 for more details). Among studies
based on multiobjective optimization, Kralj and Petrovic (1995) designed a customized branch-and-
bound, and Muñoz-Moro and Ramos (1999) proposed a two-stage goal programming approach in
which each problem is solved by branch-and-bound.

The direct use of mixed integer programming is sometimes unsuitable as the computational time
grows prohibitively with problem size. To overcome this drawback, decomposition techniques can
be applied. The most studied technique is Benders decomposition. For more details, the reader is
invited to consult Section 2.3. This decomposition technique applies particularly well to the GMS
problem because of the problem’s intrinsic two-stage structure. The master problem is generally
concerned only with the constraints regarding the scheduling of the maintenance tasks as well as
the resources requirement if needed. Load and network constraints, as well as fuel management,
are moved into the sub-problems. Benders decomposition is applied for both regulated (Al-Khamis
et al., 1992; Canto, 2008; Fu et al., 2007; Marwali and Shahidehpour, 1998, 1999a; Silva and Moro-
zowski, 1995; Silva, 2000; Yellen and Al-Khamis, 1992) and deregulated (Fu et al., 2007; Geetha and
Shanti Swarup, 2009; Marwali and Shahidehpour, 1999b, 2000a) power systems. Lv et al. (2012) in-
troduced modified Benders feasibility cuts. They also define an index of critical lines –related to
the system reliability– to reduce the computational complexity and the solution time. Marwali and
Shahidehpour (2000a) coordinated long-term and short-term generation decisions with a dynamic
scheduling algorithm. They used a Benders decomposition to define the maintenance decisions and
an augmented Lagrangian relaxation to solve the underlying unit commitment. The same authors
proposed also a deterministic (Marwali and Shahidehpour, 1998) and a probabilistic (Marwali and
Shahidehpour, 1999a) Benders based approach to jointly solve the GMS and TMS problems.

Mathematical programming may be coupled with heuristic approaches. For instance, LP has
been used in combination with local search (Gardi and Nouioua, 2011), genetic algorithms (Feng
et al., 2009), and customized heuristics (Jost and Savourey, 2013). Examples of the latter include the
work of Rozenknop et al. (2013) who combined column generation with customized heuristics, and
that of Gorge et al. (2012) who applied a technique based on semidefinite programming, followed by
a randomized rounding procedure.

It is worth noting that mathematical programming does not seem to be better adapted to one or
other of problems discussed in the previous sections. However, all the methods presented in this part
are mainly suitable when only linear objectives and constraints are considered in the GMS and/or
TMS problems. Therefore, they cannot be used without any adaptation with the main reliability
criterion (i.e. the minimization of the square of the reserves) or with quadratic cost functions.

1.3.2 Heuristics and metaheuristics

Due to the NP-hardness of the maintenance problems faced in power systems and the size of
real-word instances, heuristic techniques have been largely developed. These methods also allow for
more flexibility to deal with non linear or very complex constraints and/or objectives.

Genetic algorithms

GAs are widely used for solving the GMS problem due, mainly, to the structure of the decisions
that are made. These algorithms are inspired by natural evolution. A population of abstract represen-
tations of solutions, called individuals, evolves through an iterative process toward better solutions.
Solutions are usually encoded to facilitate the application of the several techniques used in GAs such
as selection, mutation and crossover. In the particular case of the GMS problem, different coding
methods have been considered. In the binary representation, an individual has G × T genes (where
G is the number of generating units and T is the number of time periods) and the value of gene (g, t)
is set to 1 if and only if unit g starts maintenance at the beginning of time period t. In the integer
representation, a individual has G genes and the value of gene g corresponds to the maintenance
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starting period of generating unit g. Binary or gray encoding of the latter values may also be used.
Dahal and McDonald (1997) showed that integer-coding is the most efficient encoding strategy since
it generates the smallest search space. Moreover, the integer coding reduces the probability of in-
feasibility during the process, and it avoids the overhead necessary to code and decode a solution.
Baskar et al. (2003) revisited the binary for integer representation, the real encoding (using real val-
ues instead of integer values), and the classic integer encoding. For their experiments, integer coding
proves to be the best independently of the problem size. Wang and Handschin (2000) and Reihani
et al. (2012) reached the same conclusions about the efficiency of integer-coding. Despite these find-
ings, binary coding is still used in some approaches (Eshraghnia et al., 2006; Leou, 2006; Mohanta
et al., 2004, 2007; Suresh and Kumarappan, 2013). Finally, Volkanovski and Mavko (2008) introduced
a completely different encoding strategy that uses real values between 0 and 1 obtained by dividing
the maintenance starting time value by the number of time periods in the time horizon.

Needless to say, contrary to solution encoding, the fitness function associated with every indi-
vidual is problem dependent. Usually, it includes penalties associated with the violations of some
constraints. Fuzzy models may be developed to handle data uncertainties (see Section 1.2.3) through
the use of fuzzy evaluation functions.

Being population-based metaheuristics, GAs require initial solutions to built the initial popula-
tion. The literature reports on randomly generated solutions (Dahal et al., 1999; Huang, 1997; Leou,
2006; Mohanta et al., 2004, 2007; Reihani et al., 2012) and heuristically generated solutions (Burke
and Smith, 2000; Dahal and Chakpitak, 2007; Volkanovski and Mavko, 2008). The latter are often
built using constructive methods that are mainly based on the following process: ranking generat-
ing units in order of decreasing capacity, and iteratively schedule the maintenance of the units when
the demand is at its lowest level, while satisfying the constraints of the model. GAs try to improve
solutions by applying the classic operators such as tournament or roulette wheel selection, one or
two-point crossovers, random mutation and a replacement policy based usually on elitism. To re-
duce the probability of trapping in local optima, Dahal and Chakpitak (2007); Mohanta et al. (2004,
2007) accepted non-improving solutions at each iteration according to the probabilistic acceptance
criterion of simulated annealing (SA). Langdon and Treleaven (1997) designed a GA to schedule the
maintenance of the transmission lines combined with some greedy heuristics. Some GAs include a
local search algorithm for improving the quality of the solutions. Neighborhoods are usually defined
by changing the maintenance starting time of a randomly selected generator. Burke and Smith (2000)
tested the combination of a genetic algorithm with several local search methods: a basic hill climb-
ing technique, a SA, and a tabu search (TS). Hybridization with TS proved to be the most efficient
approach in their experiments. El-Sharkh et al. (2003) maintained feasibility using a hill climbing
technique during the solution process. Leou (2006) executed SA for each individual solution of the
population. Reihani et al. (2012) designed an hybrid algorithm based on extremal optimization and
a GA.

GAs are mostly used in regulated power systems; they allow dealing with the non linearity of the
main reliability-based objectives.

Particle swarm optimisation

Recent studies (Ekpenyong et al., 2012; Suresh and Kumarappan, 2013; Yare and Venayagamoor-
thy, 2010) applied particle swarm optimization (PSO) to the GMS problem. PSO is another population-
based metaheuristic which bares many similarities with GAs. It simulates the social behaviour of
birds within a flock, or even fishes within a school evolving by information exchange. The popula-
tion is composed of particles moving in the search space of the optimization problem. The position of
a particle represents a candidate solution. Each particle is guided according to the best solution (fit-
ness) it has achieved so far, and according to the current best particle, or particles if multiple swarms
are considered. On its original version, PSO handles only continuous variables; however, Ekpenyong
et al. (2012) introduced a penalty function to deal with the discrete nature of the variables involved
in the GMS problem. Suresh and Kumarappan (2013) chose to test a particular binary version of
PSO. They defined the particle according to the capacity outage probability table. To improve the
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effectiveness of the algorithm, they applied crossover and mutation operators to some particles dur-
ing the iterative process. Yare and Venayagamoorthy (2010) considered only the latter operator in
a multiple swarms-modified discrete PSO where information sharing is enhanced by using multi-
ple populations. Non linear reliability-based objectives (Suresh and Kumarappan, 2013; Yare and
Venayagamoorthy, 2010) and cost-based objectives (Ekpenyong et al., 2012) of regulated power sys-
tems have been tackled using PSO.

Other populations-based methods

Apart from GAs and PSO, other population-based techniques have been explored in the literature.
The first three studies deal with regulated power systems and are concerned with the maintenance
and generation costs.

Digalakis and Margaritis (2002) applied a parallel co-operating cultural algorithm to solve the
GMS problem. Contrary to GAs, this method considers multiple populations but uses similar opera-
tors (selection, crossover, mutation). The exchange of individuals between the populations allows to
guide the algorithm towards the promising areas of the search space. The authors used local search
to improve the quality of the solutions after the initialization and the application of the genetic oper-
ators.

El-Sharkh (2014) tested a clonal selection algorithm (CSA) to schedule the maintenance in a regu-
lated power system. CSA imitates the mechanisms of the adaptive immune system. From a popula-
tion of individuals randomly generated, all infeasible individuals are repaired using a hill climbing
algorithm. The best individuals are then cloned and a mutation operator is applied to these copies.
The hill climbing technique is used again to repair them. According to the outages planning, an eco-
nomic load dispatch problem is solved within the process. This algorithm is also used for deregulated
power systems in (Elyas et al., 2013).

Recently, Abirami et al. (2014) presented a teaching-learning based optimization algorithm (TLBO)
for solving the GMS problem. This technique is inspired by the transfer of knowledge between
teacher and students in the classroom. TLBO is a population-based iterative learning algorithm.
However, it does not use genetic operations like selection, crossover, and mutation, but tries to im-
prove individuals based on their interaction with the teacher and the communication with the other
individuals. The population is initialized by randomly setting the starting period for the mainte-
nance of the generators and the transmission lines. The best individual is deemed as the teacher.
Other individuals are modified to move towards the teacher.

Finally, Zhan et al. (2014) proposed an approach based on a novel evolutionary algorithm called
group search optimizer inspired by animal searching behaviour. They computed a set of Pareto-
optimal solutions for a multiobjective problem based on reliability, costs, and profits.

Simulated annealing

SA is a stochastic metaheuristic inspired by the annealing process in metallurgy. At each iteration,
SA randomly generates a neighbor of the current solution. The algorithm accepts non-improving so-
lutions according to some probability, allowing the search to escape local optima. These probability
decrease as the number of iterations increases. SA has been used as the main approach to solve the
GMS problem in (Burke and Smith, 2000; Dahal and Chakpitak, 2007; Fattahi et al., 2014; Han et al.,
2011; Saraiva et al., 2011). Fattahi et al. (2014) used in addition customized heuristics to solve the
underlying UC. Saraiva et al. (2011) built new solutions by randomly selecting a generating unit and
setting a new random maintenance starting time for it. At each iteration, Han et al. (2011) selected
first the unit with a weighted roulette wheel where weights are fixed according to the LOLP asso-
ciated with each generator, and then change randomly its maintenance starting time. SA has been
also combined with other techniques. For instance, Anghinolfi et al. (2012) hybridized SA and LP;
Godskesen et al. (2013) coupled a SA and CP; and Burke and Smith (2000), Dahal and Chakpitak
(2007), Mohanta et al. (2004), Mohanta et al. (2007), and Leou (2006) embedded a SA into a GA. SA
has been primarily used to solve problems arising in the regulated power systems.
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Tabu search

TS is a local search-based metaheuristic that avoids revisiting solutions by recording the recent
history of the search in a short-time memory called tabu list. To escape local optimum, non improving
solutions are accepted during the algorithm. To our knowledge, TS has only been applied to solve
the GMS problem in regulated power systems. Burke and Smith (2000) found better computational
results when TS is used as a local search embedded in a GA. The neighborhoods are those described
in the Section 1.3.2. El-Amin et al. (2000) applied TS by randomly selecting a generating unit and
modifying its maintenance starting time.

Ant colony optimization

Ant colony optimization (ACO), a constructive metaheuristic inspired by the behavior of ant colonies,
has been also applied to solve the GMS problem in regulated power systems with a cost-based ob-
jective (Foong et al., 2007; Fattahi et al., 2014; Mytakidis and Vlachos, 2008). The algorithm builds
solutions incrementally by selecting a maintenance starting period for each generating unit. The se-
lection process is based on the combination of pheromone level, related to the number of times the
component has been selected, and some greedy heuristics. Fattahi et al. (2014) combined ACO with
some sub-algorithms to deal with a complex problem based on operational hours. According to the
outages fixed in the previous phase, UC is solved by a customized heuristic which proves to be better
in their experiments than a GA.

1.3.3 Constraint programming

CP is particularly useful for highly constrained problems. It is a powerful and flexible tool which
makes expressing complex constraints relatively easy. It applies particularly well to the ROADEF
challenge where maintenance tasks faced a variety of constraints such as overlapping, spacing, and
incompatibility (Buljubasic and Gavranovic, 2012; Godskesen et al., 2013; Brandt et al., 2013). Brandt
et al. (2013) coupled CP to a greedy heuristic to solve the unit commitment and the refueling prob-
lems. Buljubasic and Gavranovic (2012) presented a heuristic approach combining a constraint sat-
isfaction problem to both a local search based on the marginal cost and a constructive optimization
algorithm. Godskesen et al. (2013) used it with a local search and a greedy heuristic in a 3-phase
algorithm. For a quite similar problem, Khemmoudj et al. (2006) proposed an approach combining
CP and local search.

CP is less suitable when the main objective of the problem is to find near-optimal solutions. There-
fore, it has been scarcely used for solving the GMS problem. Frost and Dechter (1998) iteratively
applied CP to solve a cost bound problem; learning constraints are added to improve the efficiency
of the algorithm.

1.3.4 Game theory

Game theory-based approaches have been explored on the problem arising in deregulated power
systems (Bozorgi et al., 2016; Chattopadhyay, 2004a; Kim et al., 2005; Min et al., 2013). These ap-
proaches are especially suitable since every GENCO tries to predict its competitors actions so as to
stay one step ahead. The strategies adopted by the GENCOs are defined by a Nash equilibrium
of the game. Since they took into account data uncertainty, Bozorgi et al. (2016) solved a dynamic
non-cooperative fuzzy game.

1.4 Conclusion and perspectives

The GMS and TMS problems are the two main maintenance scheduling problems in the electric-
ity industry. The constraints are related to the maintenance tasks (time windows, incompatibility,
sequence), the resource requirements, the reliability, and the demand satisfaction. Sometimes, e.g.,
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for nuclear power plants, fuel consumption management is required. The GMS and TMS problems
can be solved jointly or network constraints can be introduced into the former. Production plan-
ning is often incorporated into GMS, especially over a short-term horizon. This results in a complex
problem that is generally NP-hard.

Maintenance scheduling is a major challenge in the electricity industry, especially since the lib-
eralization of the electricity market. The objectives of regulated power systems are based mainly on
the reliability (leveling, maximization of net reserves) and the costs (minimization of the operational
costs). These objectives are not necessarily suitable for deregulated systems. It may be more appro-
priate to maximize the profits of the GENCOs and to coordinate the decisions of the various actors.
The objectives of regulated systems remain relevant to the ISO –the actor that must ensure system
reliability and security– but may conflict with the goals of the other actors (GENCOs, TRANSCOs,
DISCOs). A multiobjective optimization is thus a future solution framework to propose solution
taken into account the conflicting interests of the different actors.

Many solution methods have been proposed for the GMS and/or TMS problems. They include
heuristics, metaheuristics (GA, PSO, SA, TS, ACO, hybrid approaches, mathematical programming
(dynamic programming, MILP, branch-and-bound, Benders decomposition), CP, and game theory.
As the problem complexity increases making frontal resolution impracticable, the use of decomposi-
tion techniques become more and more relevant.

To the best of our knowledge, some problems have not yet been investigated. These include load
uncertainty and price volatility when the TMS problem is solved jointly with the GMS problem or
where coordination is needed between the GENCOs and the ISO. Taking into account numerous un-
expected breakdowns, short-term rescheduling could be investigated. Apart from that, the growing
renewable energy industry and the stochastic nature of the associated power sources have an in-
creasing impact on the planning problems in power systems. For instance, maintenance decisions in
the solar and wind industries are quite specific, since the consequence of shutting down an equip-
ment on the power production depends on an uncontrollable factor: the weather. Moreover, due to
safety concerns, the weather has a direct impact on the possible concrete realization of the mainte-
nance operations. Furthermore, since solar and wind power forecasting can only be established in
a very short term horizon, explicitly handling these uncertainties, as well as those associated with
the demand, may lead to substantial energy and cost savings. However, these new issues have not
been investigated upfront by the OR community, despite research opportunities coming from recent
environmental pressure measures. In conclusion, future research will have to improve the handling
of uncertainty, the coordination of decisions as regards the different actors of the power systems as
well as to answer the new challenge power systems face, especially with the growing renewable in-
dustry. Part II of this thesis responds to this need as we address a maintenance scheduling problem
of onshore wind farms.

1.5 Classification of the bibliographical references

Table.1.1 classifies each reference according to:

— the problem it solves: GMS, TMS (a checkmark in both GMS and TMS columns means that the
two problems are addressed in the chapter), GMS with network constraints (GMS+N)

— the power system it targets: regulated (Rg) or/and deregulated (Dg)

— the objective function it handles: reliability-based (R), cost-based (C), profits-based (P).

— some features it deals with: FOR, stochastic demand (D), refueling management (F).

— the solution method it proposes.

It is not however exhaustive to cover the wide range of features that can occur for the maintenance
scheduling in electricity industry. Some classifications may also be debated since some studies do
not fit well into the boxes, but we aim at being the most consistent.
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Chapter 2

Technical background

This chapter provides some technical background on the solutions methods put into practice in
this dissertation. Section 2.1 first briefly introduces two important programming paradigms, namely
constraint programming (CP) and linear programming (LP), and discusses their differences. Then,
Section 2.2 presents the large neighborhood search metaheuristic framework. Next, Section 2.3 in-
troduces the wide-spread exact approach known as Benders decomposition. It discusses its imple-
mentation and it point out some strategies that have been proposed in the literature for potentially
improve the original method. Section 2.4 then briefly describes the Dantzig-Wolfe decomposition.
Finally, Section 2.5 introduces robust optimization as a modeling framework widely-used to address
the uncertainty inherent to real-life problems.

2.1 Constraint programming vs Linear programming

Nowadays, two different programming paradigms, namely LP and CP are widely used tech-
niques in OR. These two paradigms may differ, among others, by the nature of the decision variables
that can be used, the constraints that can be considered, and the resolution techniques that can be
applied. Naturally, there usually exist several possible ways to model the same problem. The choice
of one model over another one is then essentially made based on efficiency concerns. For the sake of
completeness and clarity, we propose here a brief overview of LP and CP:

— LP is concerned with maximizing or minimizing a linear function over a convex polyhedron
specified by linear equality and inequality constraints. The objective and the constraints are
algebraically expressed in terms of the parameters and the (continuous) decision variables.
Without lost of generality, in the remainder of this section, unless it is explicitly said we refer to
the optimization problem at hand as a maximization problem. There essentially exist two dif-
ferent kinds of methods to solve a LP model: simplex methods and interior point methods (also
known as barrier methods). Simplex methods explore in sequence the vertices of the polytope
(by moving along the edges of the polytope) in non-decreasing values of the objective func-
tion until they prove that an optimum has been reached. In contrast to simplex algorithms,
interior-point methods construct a sequence of feasible points moving through the interior of
the polytope until they converge to an optimum on the boundary of this latter. Both methods
are iterative, but, while simplex methods may require a large number of inexpensive iterations,
interior point methods may converge in a small amount of expensive iterations. Regarding
the efficiency of each method, the worst-case time complexity for simplex methods is exponen-
tial, while it is polynomial for interior point methods. However, the average-case analysis of
simplex methods shows a polynomial time convergence that makes them competitive against
interior point methods. Nonetheless, for very large scale and sparse problems, interior point
methods seem to work better.
When LP models contain some decision variables that are restricted to be integers (those vari-
ables are referred to as integer variables), we are then speaking about MILP or ILP if the model
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contains only integer variables. Solving MILP and ILP models is (theoretically) difficult as
MILP (and therefore ILP) lie in the class of NP-hard problems. Nonetheless, branch-and-bound
algorithms, cutting plane algorithms or an hybridization of these two algorithms are known to
be successful – to a certain extent– in solving these models.
Branch-and-bound algorithms are enumeration techniques combining the partitioning of the
search space (known as branching) with efficient bounding strategies. LP-based techniques
start with the resolution of the continuous relaxation of the current model (the integrity con-
straints on the integer variables are relaxed yielding a LP model). Branching rules intend to
exclude the LP solution by partitioning the problem into two or more sub-problems (the root
node of the tree is associated with the original problem and a node is created for each new sub-
problem). Branching can be performed on a single disjunction (a single variable at a time) or
on a general disjunction (linear inequality on a group of variables). While the latter generally
leads to a smaller size tree, solving the sub-problems may be more time-consuming, since new
rows are introduced (which increases the size of the basis). Efficiency of branch-and-bound
algorithms partially relies on finding the right disjunctions to branch on as this can limit the
enumeration. The efficient exploration of the search tree is also impacted by the quality of the
upper and lower bounds on the value of the objective function that are computed for each node
throughout the search. At each node, the upper bound relies on solving the LP relaxation of
the sub-problem, while the lower bound is usually based on heuristics. A comparison of these
bounds allows to prune (i.e., remove) nodes that will never lead to an optimal solution (i.e.,
the lower bound is larger than the upper bound). Moreover, preprocessing techniques, such
as fixings and variable aggregations, are often very useful since they usually lead to a smaller
problem with a tighter relaxation.
Cutting plane algorithms work differently. They are based on the successive resolution of the
LP relaxation of the model, strengthened at each iteration by the addition of a special type of
valid inequalities known as cuts (or cutting planes). A valid inequality is a linear inequality that
is redundant to the original model (i.e., it does not discard any feasible solution). It is called a
cut if it separates the current LP solution (i.e. if adding this cut to the model eliminates the LP
solution). The algorithm ends as soon as the LP solution is a solution to the original model or
when the LP model becomes infeasible.
The hybridization of branch-and-bound and cutting plane algorithms yields what is commonly
known as branch-and-cut algorithms. The elimination of the LP solution is either performed by
branching or by the addition of valid cuts. These algorithms are known to be more efficient
than considering the two previous methods separately.
For more details on linear and integer programming, we refer to (Schrijver, 1998; Wright, 1997).

— Unlike LP whose origins lie in the 1940s, the principles of CP were established in the late 1970s.
CP consists in modeling the problem by a set of variables taking their values in a finite set or in
an interval defined by real numbers and linked to each other by mathematical or/and symbolic
constraints. Indeed, contrary to LP, CP allows logical constraints, non-linear constraints, and
global constraints (a constraint that encapsulate a subset of other constraints) in addition to
algebraic constraints. CP is therefore an attractive tool which makes expressing complex con-
straints relatively easy. The resolution of a CP model combines an enumeration phase with do-
main reductions strategies based on logical reasoning and constraint propagation techniques.
A solution is found as soon as the domain of every variable contains a single value (i.e., all the
variables are instantiated).
Constraint propagation intends to limit the search space. It is based on filtering algorithms. A
filtering algorithm is defined for a specific constraint and aims to reduce the domain of the
involved variables by removing values that cannot be feasible for that constraint. During the
propagation, filtering algorithms are applied in cascade again and again until the search reaches
a fix point or meets certain predefined criteria (e.g., number of calls, activation only after the in-
stantiation of one variable). A fix point is reached when applying the filtering algorithms in
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cascade to a given set of constraints does not lead to changes in the domain of any of the vari-
ables involved in those constraints. Filtering algorithms associated with global constraints can
therefore take advantage of the knowledge of multiple constraints and then achieve stronger
domain pruning.

Propagation itself is usually not enough to determine a solution. In that case, the domain of
a non instantiated-variable is split into several sub-domains, each sub-domain being handled
in a different sub-problem (also referred to as a node). This partitioning relies on heuristics
(also called branching strategies) that define the variable on which the branching needs to be
performed and the decision to apply for splitting its domain. Solving a CP model relies then on
exploring a search tree. Constraint propagation is applied (by calling the filtering algorithms
associated with the constraints of the model) to each sub-problem newly created. One still
needs to define the order in which the nodes are explored. For memory consumption concerns,
the most common exploration strategy is the depth first search (also known as chronological
backtracking) since it restricts the number of active nodes. However, the first decisions taken
using this strategy are very critical since the whole sub-tree needs to be explore before having
the possibility to refute these decisions. To overcome this drawback, Harvey and Ginsberg
(1995) introduced Limited Discrepancy Search (LDS). This technique relies on the intuition that
branching strategies are efficient to lead to a solution or otherwise may only fail by making few
mistakes (called discrepancies). LDS therefore restricts the search to paths which do not diverge
more than k times from the choices recommended by the branching strategy (i.e., k is an upper
bound on the allowed number of discrepancies). This yields a heuristic search. In order to
define a complete search, one can always consider an iterative procedure based on increasing
values of k.

There exist several ways to improve the exploration of the search space. Nogood recording is
one of them. A nogood is a set of assignments and branching constraints that are not consistent
with any solution (Rossi et al., 2006) and thus implies new constraints that can be propagated as
the other constraints of the model. Nogood can help to record the past experience of the search.
Alternatively, since the search can be stuck in local optima or in a sub-tree with no solution,
restart policies can be implemented to allow diversification. The idea is too restart the search
from the root node to explore another part of the search space. Branching heuristics need then
to be randomized in order to explore different parts of the search space. Nogoods can also be
added to this effect as in (Lecoutre et al., 2007).

CP is mostly applied to constraint satisfaction problems. Finding optimal solutions using CP
is harder as it does not benefit from good bounds on the objective value. However, CP can be
very powerful for highly constrained problems when compared to MILP.

Combinations of LP and CP have also been developed. For instance, reduced costs provided by
the LP relaxation are used for domain reduction by Focacci et al. (1999). Hooker and Osorio (1999) in-
troduced mixed logical-linear programming which combines LP relaxation and constraint propagation
techniques. Jain and Grossmann (2001) proposed a set of hybrid algorithms based either on decom-
position methods or branch-and-bound algorithms. One of the most successful hybrid method is
logic-based Benders decomposition (LBBD) introduced by Hooker (2000). In that technique, the problem
is decomposed into a master problem and a set of sub-problems and the method iterates between
solving these problems. New constraints known as cuts are added to the master problem based on
the sub-problem results. Thorsteinsson (2001) presented a closely related framework called B&C
which requires solving the master problem only once (as opposed to the optimal resolution of the
restricted master problem before solving the sub-problems). In this framework, the sub-problems
are then checked all along the branch-and-bound tree. LBBD and B&C are very flexible in terms
of the paradigm used to solve the sub-problems and thus in terms of the nature of the constraints
that can be considered. If considering CP, cuts can be derived from nogoods or constraint propaga-
tion. Finally, CP can also be used to solve the column generation sub-problem in the Dantzig Wolfe
decomposition (Gualandi and Malucelli, 2009).
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CP is also commonly used in local search techniques as it can efficiently explore the neighborhood
of a solution while considering complex constraints. The combination of mathematical programming
techniques and (meta)heuristics (often called matheuristic) has also given satisfactory results.

2.2 Large Neighborhood Search

Large neighborhood search (LNS) is a metaheuristic originally proposed by Shaw (1998) for a
vehicle routing problem. Due to its nature, LNS can be applied to a wide range of optimization
problems. In LNS, the current solution is successively partially destroyed and repaired in order to
improve its quality. It can be observe that the LNS is a local search technique as the destroy and repair
operators implicitly define the neighborhood of the solution to which they are applied. Notice also
that the method can be alternatively perceived as a combination of fixing and optimization phases.
Indeed, destroying the solution is equivalent to fixing some parts of the solution while repairing the
solution means re-optimizing it.

Algorithm 1 presents the general structure of the method. The algorithm enters an iterative pro-
cess. It starts with an initial solution that may be provided by any heuristics. At each iteration, it
partially destroys the current solution and then repairs this latter. If the resulting solution s′ meets
the acceptance criterion (later discussed), s′ replaces the current solution s for the next iteration. If ap-
propriate, the algorithm updates the best solution s∗ found so far. Then, the search moves to the next
iteration. The whole procedure is repeated until one of the stopping criteria is met. The optimization
returns solution s∗.

The acceptance of the solutions built throughout the algorithm is an important component of
LNS. The original version of LNS proposed by Shaw (1998) uses an elitist strategy to accept solutions
(i.e. it accepts only improving solutions). On the other hand, the LNS by Pisinger and Ropke (2007)
uses the Metropolis criterion to accept solutions. According to this criterion, solutions are accepted
with a given probability. If the newly found solution s′ improves the current solution s the probability
equals to one. Otherwise, if f refers to the objective value function of the problem, the probability is
computed using the Boltzmann expression: e−(f(s)−f(s′))/T (for a maximization problem). Parameter
T is commonly known as the temperature. It is updated after each iteration using what is commonly
known as the geometric cooling schedule: T = T × σ, where σ ∈ [0, 1[. Then, the probability of
accepting non-improving solutions decreases over the iterations. As the same solution can be the
starting point of several iterations, randomization of operators usually proves to be necessary.

Ropke and Pisinger (2006) extended the LNS framework into what is known as adaptive large
neighborhood search (ALNS). The fundamental difference comes from the implementation of several
destroy and repair operators. The operators are selected with an adaptive layer according to their
performance in the previous iterations. Performance does not necessarily mean improvement as op-
erators leading to diversification are also interesting to avoid being trapped in local optima. Several
strategies have been proposed to handle the selection of the operators. Traditionally a weight is as-
signed to each destroy and repair operators independently, but the score can be directly assigned to
each destroy-repair operator pair. The operators are then selected according to these values. The
weights are updated at each iteration or after a certain number of iterations (usually referred to to
as a segment). A decay or reaction factor controls the degree of response to the changes in the effec-
tiveness of the heuristics. The intuition behind this enhancement is to let the algorithm adapt to the
current state of the search by choosing the best suitable operators. Indeed, some operators may prove
to be efficient to significantly improve the solution during the first iterations, but they might stuck
the algorithm in local optima later on. We therefore expect other operators to take over. Algorithm
2 presents the general structure of the method. It only contains few changes from the LNS structure.
Henceforth, at the beginning of each iteration, it now randomly selects (according to some weights) a
destroy operator o1 and a repair operator o2. It also records their efficiency and updates their weights
at the end of each iteration.

It is noteworthy that ALNS is controlled by many parameters mainly coming from the adaptive
layer. However, this can be problematic, since finding the right combination of values requires a lot
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of tuning experiments. This may also question the efficiency of the method as well as its applicability
to instances that were not originally considered in the calibration process. As suggested by Pisinger
and Ropke (2007), the operators can simply be selected with equal probability.

Algorithm 1: Script of the LNS algorithm
1 s← initial solution
2 s∗ ← s
3 repeat
4 s′ ← repair (destroy (s) , s)
5 if s′ is accepted then
6 s← s

′

7 end
8 if s′ is strictly better than s∗ then
9 s∗ ← s′

10 end
11 until stopping criteria are not met;
12 return s∗

Algorithm 2: Script of the ALNS algorithm
1 s← initial solution
2 s∗ ← s
3 n← 1 (current number of iterations)
4 repeat
5 (o1, o2)← selectOperators(n) .
6 s′ ← repair (o2,destroy (o1, s) , s)
7 if s′ is accepted then
8 s← s′

9 end
10 if s′ is strictly better than s∗ then
11 s∗ ← s′

12 end
13 Update weights of o1 and o2 according to

the potential solution improvement and to
the value of n

14 n← n+ 1

15 until stopping criteria are not met;
16 return s∗

Moreover, one can consider repairing a solution using MILP or even CP formulations. Indeed,
since the problem is reduced, these latter usually become tractable. One can then expect the explo-
ration of larger neighborhoods and a potential faster convergence to high-quality solutions.

2.3 Benders decomposition

In many cases, tackling the full problem all at once is very complex, especially if one is interested
in an exact approach. For example, directly solving MILP formulations on large-scale instances is
very likely to be impractical. For this reason, decomposition techniques have been widely studied in
mathematical programming and, in particular, in LP. One of the most famous method is the Benders
decomposition introduced by Benders (1962). This method decouples a large-scale problem into a
master problem and one or several independent small-scale subproblems which are easier to solve.

Let us consider the following general class of MILP problems where c ∈ Rn1 ,f ∈ Rn2 , b ∈ Rm,
A ∈ Rn1×m, B ∈ Rn2×m, X ⊆ Rn1

+ and Y = Rn2
+ (the sets X and Y will be discussed further below).

maximize cTx+ fTy (2.1)
s.t. Ax+By ≤ b (2.2)

x ∈ X (2.3)
y ∈ Y (2.4)

The idea underlying Benders decomposition is to project the problem (2.1)-(2.4) onto the space
defined by the variables x. To this end, let us defined the sub-problem according to a vector x ∈ X .

maximize fTy

s.t. By ≤ b−Ax
y ∈ Y
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The dual of this sub-problem reads:

minimize (b−Ax)
T
λ

s.t. BTλ ≥ f
λ ∈ Rm+

Let us introduce Π as the set of extreme rays of the cone {π ∈ Rm | BTπ ≥ 0} and Λ as the set of
extreme points associated with the polytope {λ ∈ Rm+ | BTλ ≥ f}. Using Farkas’ Lemma and duality
theory, we then obtain the following master problem equivalent to the original problem:

maximize cTx+ z (2.5)

s.t. (b−Ax)
T
π ≥ 0 ∀π ∈ Π (2.6)

(b−Ax)
T
λ ≥ z ∀λ ∈ Λ (2.7)

x ∈ X (2.8)

The constraints (2.6) and (2.7) are called Benders optimality cuts and Benders feasibility cuts. The num-
ber of these constraints is finite but may be very large. However, they usually do not need to be
exhaustively generated, since only a subset of them will be active in an optimal solution. An iterative
cutting plane algorithm can thus be used to generate only the subset of cuts that will yield an optimal
solution.

In the following, the term restricted master problem refers to a problem (2.5)-(2.8) that contains none
(or only a small subset) of constraints (2.6) and (2.7).

The original implementation of Benders decomposition relies on Kelley’s cutting plane algorithm
(Kelley, 1960), which was originally proposed to solve convex non-differentiable problem and is
based on the idea that each convex function can be approximated by piecewise linear functions. The
algorithm successively solves a restricted master problem and the sub-problem. If the sub-problem
is infeasible, this means that the partial solution provided by the current restricted master problem
does not yield a feasible solution to the original problem. A violated Benders feasibility cut (2.6) is
then identified and introduced in the restricted master problem to discard this partial solution. If the
sub-problem is not a constraint satisfaction problem (i.e., f 6= 0), a violated Benders optimality cut
(2.7) is identified when the sub-problem is feasible and introduced in the restricted master problem.
The method iterates between the restricted master problem and the sub-problem until it converges or
concludes that there is no solution. Figure 2.1 presents the scheme of the original implementation of
Benders decomposition. Notice that the primal or the dual of the sub-problem can be solved equiva-
lently, the choice depending usually on efficiency consideration. This method has been successfully
applied to (the list is not exhaustive): power systems (Shahidehopour and Fu, 2005), hub network
design (Cordeau et al., 2006), cargo shipping (Agarwal and Ergun, 2008).

One noticeable disadvantage of the original implementation of Benders decomposition is that the
restricted master problem is repeatedly solved to optimality. Moreover, the time needed to solve it
tends to increase with each iteration since new constraints are introduced. To overcome this draw-
back, as an alternative implementation, Benders cuts can be generated dynamically in the branch-
and-bound tree used to solve an initial restricted master problem. The sub-problem is then solved
during the search for a solution to the master problem. More specifically, at each integer node of the
branch-and-bound tree, the corresponding solution is sent to the sub-problem in order to generate
the Benders cuts. This works since the Benders cuts are valid inequalities for the problem. Naoum-
Sawaya and Elhedhli (2010) gave a proof of this latter statement. Figure 2.2 presents the scheme of
this alternative implementation of Benders decomposition. This approach is referred as a Benders-
based branch-and-cut algorithm in (Naoum-Sawaya and Elhedhli, 2010) or as a branch-and-Benders-cut
method in (Gendron et al., 2014). It has been used to solve several types of problems: hub location
(De Camargo et al., 2011), production routing under demand uncertainty (Adulyasak et al., 2015),
location-design (Gendron et al., 2014), facility location and network design (Naoum-Sawaya and
Elhedhli, 2010), and hop-constrainted survivable network (Botton et al., 2013). Botton et al. (2013)
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reported a significant improvement using this method compared to the classical Benders decomposi-
tion, while Gendron et al. (2014) outlined the benefits of the Benders-based branch-and-cut in terms
of solution quality, scalability, and robustness.

The difference between the two implementations previously described is very similar to the dif-
ference between two methods primarily used for LP and CP hybridization: the Logic-based Benders
decomposition and the B&C framework (the two methods are described in Section 2.1). As with the
Benders-based branch-and-cut, the B&C framework method involves a single resolution of the re-
stricted master problem. Thorsteinsson (2001) applied it to a planning and scheduling problem,
while Sadykov (2008) used it for a complex scheduling problem on a single machine.

Figure 2.1 – Scheme of the original implementation of Benders decomposition

Figure 2.2 – Scheme of the alternative implementation of Benders decomposition

Researchers have proposed a number of improvements to the general Benders decomposition
framework. These improvements usually focus on speeding up the convergence of the method
(which is typically an issue).

Observing that the sub-problem has usually more than one optimal solutions, the quality of the



48 CHAPTER 2. TECHNICAL BACKGROUND

optimality Benders cuts may vary substantially from one chosen extreme point to another. Magnanti
and Wong (1981) thus proposed a technique to generate the optimality cut that dominates all the
other optimality cuts. This specific cut is said Pareto-optimal. Generating the strongest possible cut is
naturally meant to speed-up the convergence. Nonetheless, the method requires a Benders master
problem core point and an auxiliary problem needs to be solved along with the sub-problem. As
a practical enhancement, Papadakos (2008) suggested to use an approximation to the core point as
a convex linear combination of the optimal solutions provided when solving the restricted master
problem in the previous iterations. Moreover, the author defined a new auxiliary problem, indepen-
dent from the solution to the sub-problem, as an alternative to the one introduced by Magnanti and
Wong (1981) for which the two previous elements are interdependent.

McDaniel and Devine (1977) proposed an efficient strategy to generate an initial set of valid cuts.
The idea is to first solve the linear relaxation of the problem using Benders decomposition. While
dealing with a much easier problem, this may identify potential useful Benders cuts.

In decompositions where it is hard to obtain a feasible sub-problem, a large number of Benders
feasiblity cuts are generated but no information is provided to the restricted master problem about
the sub-problem’s objective (since no optimality cuts are generated). When the sub-problem is infea-
sible, Saharidis and Ierapetritou (2010) generated a cut having the same form as a Benders optimality
cut. This cut is based on solving the maximum feasible subsystem of the sub-problem.

In the discussions above, we have considered a mixed-integer master problem (X ⊆ Rn1
+ ) and a

continuous sub-problem (Y = Rn2
+ ). However, having a mixed-integer or a pure integer sub-problem

is common in practice. If the sub-problem does possess the integrality property (i.e., the constraint
matrix of the sub-problem is totally unimodular), solving its linear relaxation leads to an optimal
solution y∗ that belongs to Y . Otherwise, the classical Benders decomposition framework is not well-
adapted to solve the problem. However, with mild changes, it can still apply to some particular
cases. If some of the x variables are restricted to be binary, one needs to generate additional cuts
called integer Benders cuts. When the sub-problem is infeasible, one may use combinatorial Benders
cuts as introduced by Codato and Fischetti (2006) to invalidate the current solution to the restricted
master problem. Note that these cuts are similar to the cuts defined in the Logic-based Benders
decomposition by Hooker and Ottosson (2003). Let C be the set of indices of the variables x restricted
to be binary and x∗ the current solution to the restricted master problem. Denoting S = {i ∈ C|x∗i =
1}, a combinatorial Benders cut can be defined as follows:∑

i∈S
xi +

∑
i∈C\S

(1− xi) ≥ 1 (2.9)

Clearly, this cut states that, in the next iteration, at least one of the variables of the master problem
must change its value with respect to the current solution x∗. This cut is also known as a no-good
cut. Although not required and not self-sufficient, the classical Benders cuts can still be generated
for efficiency purposes since they potentially invalidate more than just the current solution to the
problem.

When the sub-problem is feasible (and we are not dealing with a constraint satisfaction problem),
one has to generate integer optimality cuts as those introduced by Laporte and Louveaux (1993) for
the integer L-shaped method. If we assume that the master problem is bounded by UB and we
denote h∗ the optimal value of the sub-problem, the cut to add to the restricted master problem is
defined as follows:

(h∗ − UB)

∑
i∈S

xi −
∑
i∈C\S

xi

− (h∗ − UB) (|S| − 1) + UB ≥ z (2.10)

If some of the x variables are restricted to be integer (not binary), these variables must be ex-
pressed using additional binary variables. The previous cuts (2.9) and (2.10) can then be expressed
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with these new variables. Notice that those cuts are very weak as they just discard the current solu-
tion.

All the cuts mentioned in this part are generic. As a general principle, the efficiency of Benders
decomposition is highly related to the strength of the cuts introduced in the restricted master prob-
lem. Generating problem-specific cuts can therefore plays a key role. These cuts can replace or be
used along with the generic Benders cuts.

2.4 Dantzig-Wolfe decomposition

As Benders decomposition, Dantzig-Wolfe decomposition is an exact approach to solve complex
LP formulations.

Let us consider the following general class of LP problems where c ∈ Rn, b1 ∈ Rm1 , b2 ∈ Rm2 ,
A1 ∈ Rn×m1 , A2 ∈ Rn×m2 .

[P ] maximize cTx (2.11)
s.t. A1x ≤ b1 (2.12)

A2x ≤ b2 (2.13)
x ∈ Rn+ (2.14)

The x variables can be written as follows:

x =
∑
q∈Q

xq +
∑
r∈R

xr

where {xq}q∈Q are the extreme points and {xr}r∈R are the extreme rays of the polyhedron {x ∈
Rn|A2x ≤ b2}. The problem (2.11)-(2.14) can be rewritten:

[PM ] maximize
∑
q∈Q

(
cTxq

)
λq +

∑
r∈R

(
cTxr

)
ηr (2.15)

s.t.
∑
q∈Q

(A1x
q)λq +

∑
r∈R

(A1x
r) ηr ≤ b1 (2.16)

∑
q∈Q

λq = 1 (2.17)

λ ∈ Rn+ ∀q ∈ Q (2.18)
η ∈ Rn+ ∀r ∈ R (2.19)

[PM ] is the Dantzig-Wolfe reformulation of [P ]. Notice that this new formulation [PM ] has m2 less
constraints than this original formulation [P ], but the number of variables is drastically larger here.
Indeed, although the sets Q and R are finite, they may contain an exponential number of points.

Let us just focus here on the case where the previous polyhedron is bounded (R = ∅). Let us
assume that we only know a subset Q∗ ⊆ Q of these extreme points. The problem [PM ] restricted to
this set Q∗ reads:

[PMR(Q∗)] maximize
∑
q∈Q∗

(
cTxq

)
λq (2.20)

s.t.
∑
q∈Q∗

(A1x
q)λq ≤ b1 (2.21)

∑
q∈Q∗

λq = 1 (2.22)

λ ∈ Rn+ ∀q ∈ Q∗ (2.23)



50 CHAPTER 2. TECHNICAL BACKGROUND

Let us now associate the dual vector π and the dual variable µ to the constraints (2.20) and (2.23) of
[PMR(Q∗)]. The reduced cost of a variable λq is thus equal to

(
cT − πTA1

)
xq − µ. If the reduced

cost of all points in Q is less or equal to 0, then the solution to problem (2.20)-(2.23) is the optimal
solution to problem (2.15)-(2.19). Otherwise, there exists an extreme point x̂q in Q \ Q∗ such that(
cT − πTA1

)
x̂q − µ > 0. One way to check the existence of such a point is to solve the problem

[PP (π, µ)] for given dual values π and µ.

[PP (π, µ)] maximize
(
cT − πTA1

)
x− µ (2.24)

s.t. A2x ≤ b2 (2.25)
x ∈ Rn+ (2.26)

The problem [PP (π, µ)] is called pricing problem. If the optimum value of this problem is strictly
greater than 0, then the optimal solution x∗ of [P ] is such that x∗ = xq∗ with q∗ ∈ Q \Q∗. Therefore,
this extreme point needs to be added to the restricted problem [PMR(Q∗)] (i.e. Q∗ = Q∗ ∪ {q∗})
as variable λq

∗
should enter the basis. Otherwise (i.e., the optimum value is less or equal to 0), an

optimal solution to problem [P ] has been reached.
The previous remark suggests an iterative algorithm to solve problems rewritten using Dantzig-

Wolfe decomposition. Such an algorithm is known as the column generation method. It generally
starts by initializing the set Q∗ using one or more heuristic solutions. Then, the problem [PMR(Q∗)]
is solved, yielding a solution x∗ and dual values π and µ. Solving the pricing problem [PP (π, µ)]
allows to check the optimality of the solution x∗. The method iterates between the restricted problem
and the pricing problem as long as there exists a column (i.e., a variable λq) with a strictly positive
reduced cost. The motivation of this method comes from the observation that a lot of variables λq are
equal to 0 at the optimum, and the exponential size of Q makes inefficient handling all the columns
at once. Moreover, computing Q is usually computationally prohibitive.

The Dantzig-Wolfe decomposition can also apply to MILP and ILP problems. If we assume that
the problem [P IP ] is bounded, this latter can be rewritten as problem [PM IP ] .

[P IP ] maximize cTx (2.27)
s.t. A1x ≤ b1 (2.28)

A2x ≤ b2 (2.29)
x ∈ Nn+ (2.30)

[PM IP ] maximize
∑
q∈Q

(
cTxq

)
λq (2.31)

s.t.
∑
q∈Q

(A1x
q)λq ≤ b1 (2.32)

∑
q∈Q

λq = 1 (2.33)

λq ∈ {0, 1}n ∀q ∈ Q (2.34)

Solving the ILP problem involves a combination of branch-and-bound and column generation.
This method is known as branch-and-price. Column generation is used to solve the linear relaxation
of the problem restricted to a pool of columns. Branching generally occurs when two conditions are
satisfied: no columns can enter the basis and the LP solution does not satisfy the integrality con-
ditions. The efficiency of branch-and-price primarily relies on fast algorithms to solve the pricing
problem (note that it has become a ILP formulation) and on effective branching strategies. For exam-
ple, branching on the variables λ is usually not the right choice as their number is very large. On the
opposite, branching on the variable x of the original problem seems preferable as it reduces the size
of the search tree and can generally be handled easily in the pricing problem. For more details on
column generation and branch-and-price, we refer to (Barnhart et al., 1998; Desaulniers et al., 2006).

Lastly, it is noteworthy that applying Benders decomposition to a LP problem is equivalent to
applying Dantzig Wolfe decomposition to the dual of this problem.
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2.5 Robust optimization

It is very common that optimization problems involve uncertain data. One can work with nom-
inal or expected values for these uncertain parameters, but this, when implemented in practice, can
lead to infeasible or poor-quality solutions.

To specifically deal with uncertainty, one can distinguish two main methodologies: stochastic
programming and robust optimization. While stochastic programming has been widely applied in
the OR field, robust optimization has only recently received due attention (despite being introduced
back the early 70’s by Soyster (1973)). Choosing which approach is the most suitable in a given
context depends on the problem to solve and particularly on the available data. On the one hand,
stochastic programming relies massively on the availability of historical data to derive probability
distributions or generate scenarios (as in the sample average approximation method). Moreover, this
approach may suffer from the difficulty of fitting probability distributions to the uncertain data. It
can also be complicated to identify or generate scenarios and their probability. Indeed, one should
determine the number of scenarios that leads to a good-quality estimation of the uncertainty (which
is usually not easy). In addition, the number of scenarios is required to be small for computational
efficiency, but this might limit the range of future states under which the decisions are evaluated.
In some cases, robust optimization appears then to be a valuable alternative to stochastic program-
ming. Indeed, robust optimization requires a very limited information about the uncertain parame-
ters, since it only needs a discrete or convex description of the uncertainty. From a practical point of
view, robust optimization is often easier to implement and usually very understandable by decision-
makers. Whereas stochastic programming usually increases the complexity of the problem to solve,
the robust counterpart of uncertain problems is computationally tractable if the uncertainty sets de-
fined in robust optimization satisfies mild convexity and computability assumptions (e.g., explicit
systems of equations) (Ben-Tal et al., 2009). However, while robust optimization models are usually
designed for risk-averse decision-making (immunization against uncertainty), stochastic program-
ming is more flexible, as one can search to compute or estimate the expectation function or to control
the risk (e.g., considering the average value-at-risk measure). Deciding the best approach to a prob-
lem is not always clear, but, as pointed out by Roy (2010), one can always state that every model is
an approximation to a real-world decision problem.

In the following, we focus on robust optimization. Originally, robust optimization was developed
to compute a solution that is feasible for any possible realization of the uncertain parameters and/or
to guarantee a certain solution value. Robust optimization is therefore often known as worst-case
optimization.

Let us consider the following general class of MILP problems where c = (cj) ∈ Rn, b = (bi) ∈ Rm,
A = (aij) ∈ Rn×m, and X ⊆ Rm+ .

maximize
m∑
j=1

cjxj (2.35)

s.t.
m∑
j=1

aijxj ≤ bi ∀i = 1...n (2.36)

x ∈ X (2.37)

Conventionally, one assumes that each uncertain coefficient (parameter) aij belongs to an interval
[āij − âij ; āij + âij ] where āij and âij ≥ 0 are given in advance. The parameter āij is often referred to
as the nominal value of coefficient aij . For the sake of simplicity, we only consider here symmetric
intervals. The concept below apply also for non symmetric intervals.

The most common robust approach considers row-wise uncertainty, meaning that the constraints
are independently protected against the uncertainty. For the i− th row, let us introduce Ui as the set
of all possible values for vector (a·j). We refer to this set as the uncertainty set of the parameters. The
robust counterpart of the problem (2.35)-(2.37) – hereafter also referred to as the robust problem –
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consists in the following problem:

maximize
m∑
j=1

cjxj (2.38)

s.t.
m∑
j=1

aijxj ≤ bi ∀i = 1...n,∀ (ai·) ∈ Ui (2.39)

x ∈ X (2.40)

Different uncertainty sets have been introduced in the literature. For the sake of comparison, we
define the set Ui to be dependent on another set Vi (defined further below) as follows:

Ui = {(ai·) |∃(ξi·) ∈ Vi, aij = āij + âijξij j = 1...m}

The robust problem (2.38)-(2.40) is then equivalent to the problem:

maximize
m∑
j=1

cjxj (2.41)

s.t.
m∑
j=1

āijxj + max
(ξi·)∈Vi

m∑
j=1

âijξijxj ≤ bi ∀i = 1...n (2.42)

x ∈ X (2.43)

We now present some of the most commonly used uncertainty sets.

— Soyster (1973) considered the full uncertainty set as Vi is defined as follows:

Vi = {(ξi·) | ‖ξi·‖∞ ≤ 1}

The robust counterpart (2.41)-(2.43) is then equivalent to the problem where each uncertain
coefficient takes its extreme value:

maximize
m∑
j=1

cjxj

s.t.
m∑
j=1

(āij + âij)xj ≤ bi ∀i = 1...n

x ∈ X

The over-conservatism of robust optimization is then a common criticism as one easily observe
that the previous approach can result in very poor quality solutions because it is optimal for extreme
values of the parameters but usually not for nominal values. To address this issue, one can think
to reject extreme realizations from the previous uncertainty set since it is very unlikely that all the
uncertain parameters take extreme values. This strategy motivates the definition of the following
uncertainty sets:

— Bertsimas and Sim (2003) proposed to consider a polyhedral uncertainty set – intersection of
the L1-norm and the L∞-norm – where for each row i the deviations from the nominal values
are bounded by a value Γi ≥ 0 called the uncertainty budget. The uncertainty budget allows to
control the robustness of the solution. The value of Γi is fixed by decision-makers as a trade off
between robustness and performance. Setting Γi to 0 means considering the nominal values for
all the coefficients whereas setting Γi to m is equivalent to considering the approach of Soyster
(1973). Bertsimas and Sim (2004) suggested to fix the uncertainty budget in the order of the
square of the total number of uncertain parameters.
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Vi = {(ξ−i· , ξ
+
i· ) | ξ

−
ij ≥ 0, ξ+

ij ≥ 0, ‖ξ−i· + ξ+
i· ‖1 ≤ Γi, ‖ξ−i· + ξ+

i· ‖∞ ≤ 1}

Using duality theory, the robust problem (2.41)-(2.43) can be reformulated as:

maximize
m∑
j=1

cjxj (2.44)

s.t.
m∑
j=1

āijxj + Γiν +

m∑
j=1

(
γ−ij + γ+

ij

)
≤ bi ∀i = 1...n (2.45)

ν + γ−ij ≥ −âijxj ∀i = 1...n,∀j = 1...m (2.46)

ν + γ+
ij ≥ âijxj ∀i = 1...n,∀j = 1...m (2.47)

ν ≥ 0 (2.48)

γ−ij , γ
+
ij ≥ 0 ∀i = 1...n,∀j = 1...m (2.49)

x ∈ X (2.50)

This approach has the particularity to maintain the linearity of the problem, which makes the
robust counterpart as tractable as the nominal problem (i.e., the problem where each uncertain
parameter takes its nominal value). One can directly solve the reformulation of the problem
as proposed in (Bertsimas and Thiele, 2006; Fischetti and Monaci, 2012; Babonneau et al., 2013;
Bertsimas et al., 2016). Alternatively, one can use a cutting plane algorithm as proposed by
Fischetti and Monaci (2012) and Bertsimas et al. (2016). In this approach, we separate the con-
straints (2.39). The computational experiments conducted in the two latter studies suggest that
a cutting plane approach usually outperforms the resolution of the linear reformulation of the
robust problem.

— Ben-Tal and Nemirovski (2002) proposed an ellipsoidal uncertainty set where the L2-norm of
the deviations is bounded for each row i by a predefined parameter Ωi ≥ 0. As for the previous
approach, this parameter controls the degree of overconservatism of the solution.

Vi = {(ξ−i· , ξ
+
i· ) | ξ

−
ij ≥ 0, ξ+

ij ≥ 0, ‖ξ−i· + ξ+
i· ‖2 ≤ Ωi, ‖ξ−i· + ξ+

i· ‖∞ ≤ 1}

The robust counterpart (2.41)-(2.43) is then equivalent to the problem (see for example (Babon-
neau et al., 2009) for a proof):

maximize
m∑
j=1

cjxj

s.t.
m∑
j=1

āijxj +

m∑
j=1

âijyj + Ωi

√√√√ m∑
j=1

(âijzj)
2 ≤ bi ∀i = 1...n

xj ≤ zj + yj ∀j = 1...m

yj ≥ 0 ∀j = 1...m

zj ≷ 0 ∀j = 1...m

x ∈ X

This approach has the drawback of changing a linear problem into a quadratic problem (thus
non-linear). This makes solving the robust counterpart of the problem more complex than
solving the nominal problem.
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This short (and not exhaustive) overview shows that tractability and conservatism considera-
tions are very important when modeling the uncertainty. Indeed, the definition of the uncertainty
set largely impacts the expression and the complexity of the robust counterpart of a problem. Other
norms have been studied in (Bertsimas et al., 2004), but, to our knowledge, they have not been ap-
plied to practical problems. For interested readers, Ben-Tal et al. (2015) proposed, in turn, a list of
robust counterparts for different types of linear and non-linear constraints.

The uncertainty set can also be a finite set as proposed by Kouvelis and Yu (1997). Let Si be the
set of scenarios for row i and asij the value of coefficient aij in scenario s ∈ Si.

maximize
m∑
j=1

cjxj

s.t.
m∑
j=1

asijxj ≤ bi ∀i = 1...n,∀s ∈ Si

x ∈ X

The coefficient c of the objective function can also be uncertain. Although different single robust-
ness measures can be considered (e.g., minimization of the absolute or relative regret in the worst
case scenario), the most commonly used is the maximization of the solution value in the worst-case.
In other words, when the uncertainty is in the objective function, robust optimization seeks to pro-
duce a solution that performs the best in the worst-case. All the previous approaches apply since the
objective can always be considered as a constraint by simply adding an auxiliary variable. However,
this classical approach suffers from the fact that it only considers a single realization of the param-
eters and does not depend on the other realizations that are part of the uncertainty set. It may be
interesting to have a solution that performs decently in the worst-case but very good on the majority
of scenarios. This is however not guaranteed when using the previous approaches.

To accomplish the aforementioned goals, Roy (2010) proposed new measures of robustness based
on the definition of two values B,W ∈ R. According to the direction of the optimization, the pa-
rameter W corresponds to a value that needs to be satisfied for all the realizations of the uncertainty,
whereas B is a value that we want to exceed or not in the largest number of scenarios. Let S be
the discrete set of scenarios that contains all the realizations of the uncertain cost vector c and cs the
vector associated with scenario s ∈ S.

maximize
q∑
s=1

ys

s.t.
m∑
j=1

csjxj ≥W (1− ys) +Bys ∀s ∈ S

m∑
j=1

aijxj ≤ bi ∀i = 1...n

ys ∈ {0, 1} ∀s ∈ S
x ∈ X

Originally proposed when considering finite sets of scenarios, Gabrel et al. (2013) extended this
approach to the case where each parameter takes its value within an interval. However, this comes
with an increased complexity of the robust counterpart of the problem.

An alternative approach is to optimize the problem considering the nominal values of the un-
certain parameters in the objective function, while ensuring that in the worst-case the value of the
solution is greater than W . In that case, assuming that each coefficient cj belongs to the interval
[c̄j − ĉj ; c̄j + ĉj ] and denoting U the uncertainty set associated with the cost vector c, the robust coun-
terpart of the problem is defined as follows:
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maximize
m∑
j=1

c̄jxj

s.t. min
c∈U

m∑
j=1

cjxj ≥W

m∑
j=1

aijxj ≤ bi ∀i = 1...n

x ∈ X

So far, we have considered row-wise uncertainty with the uncertainty being located in the ob-
jective or in the constraint matrix. Notice that the uncertainty can occur on the right-hand side of
the constraints (vector b). The applicability of the previous approaches is not challenged as one can
consider fixed variables associated with each constraint. The relevance is however questioned as
only one coefficient is uncertain per constraint. It should be better to consider a single uncertainty
set for the vector b. This approach is known as column-wise uncertainty. Soyster (1973) was the first
one to investigate it by simply replacing each parameter bi by its minimal value in the uncertainty
set. Aside from this first approach, column-wise uncertainty is essentially investigated by introduc-
ing the possibility to take recourse actions once the uncertainty has been revealed. This approach is
often known as adaptive robust optimization (on the opposite, the term static robust optimization can be
associated with row-wise uncertainty) and yields two-stage problems. The objective is still to pro-
tect against the worst-case scenario, but recourse actions are defined – as in multi-stage stochastic
programming – after the uncertainty has been revealed. In the two-stage case, the recourse problem
is a non-convex max-min (or min-max) problem that can be solved by cutting plane techniques or
by reformulating it as a MILP problem (using duality theory and linearization techniques). The full
multi-stage (traditionally two-stage) robust problem can be solved by a cutting plane method (Mi-
noux, 2011; Souyris et al., 2012; Jiang et al., 2012; Zeng and Zhao, 2013; Billionnet et al., 2014; Gabrel
et al., 2014a; Lorca and Sun, 2014). A full recourse property is often assumed but is not required.
Jiang et al. (2012) derived feasibility cuts inside a cutting plane approach in a case in which the full-
recourse property does not hold. Since two-stage robust optimization problems can be intractable
when there is large flexibility regarding the recourse decisions, Ben-Tal et al. (2004); Ardestani-Jaafari
and Delage (2016) restricted the recourse decisions to be affine functions to the uncertain parame-
ters which yields in approximate policies. For more details, we refer to (Roy, 2010; Bertsimas et al.,
2011; Gabrel et al., 2014b) for extensive surveys and to (Ben-Tal et al., 2009) for an exhaustive book
on robust optimization.

In this chapter, we have presented two different programming paradigms, namely LP and CP,
and pointed out their differences. We have introduced LNS as a framework to heuristically solve
optimization problems. We have also described two decomposition methods (Benders and Dantzig-
Wolfe decompositions) to exactly solve large-scale problems. Finally, we have introduced robust
optimization as a methodology to tackle problems containing uncertain parameters. This technical
background intends to help the reader understand the solution methods put in practice or discussed
in Part II.
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A wind turbine maintenance scheduling
problem in the onshore wind industry
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In this part, we introduce a challenging maintenance scheduling problem with resource manage-
ment rising in the onshore wind power industry. This problem is deeply inspired by our collaboration
with WPred, a Montreal-based company specialized in the supply of weather forecasts and, more
specifically, on power production forecasts for wind and solar energy. Chapter 3 defines our research
problem. The objective is to schedule the maintenance operations in order to maximize the revenue
generated by the total power production of the wind turbines while taking into account wind predic-
tions, multiple task execution modes, task assignment constraints to a multi-skilled workforce, and
daily restrictions on the routes of the technicians. Since wind predictions can only be reliably estab-
lished few days in advance, the work thus targets a short-term horizon that contains multiple days.
We point out that reading Chapter 3 is an absolute prerequisite before reading Chapters 4 to 8. At a
first step, we tackle the deterministic problem assuming perfect knowledge of the wind speed during
the whole time horizon. Chapter 4 proposes different integer linear programming (ILP) formulations
of our problem. We then explore two different approaches to tackle it. Chapter 5 provides a heuristic
solution method, namely a constraint programming-based large neighborhood search (CPLNS) ap-
proach. Chapter 6 investigates the possibility of designing an efficient exact approach to tackle the
problem. Based on a decomposition of the problem, we present a branch-and-check (B&C) approach.
When the length of the time horizon increase or when good quality forecasts are unavailable, Chap-
ter 7 studies the problem the objective of maximizing the revenue is substituted by the objective of
maximizing the availability of the turbines. Finally, Chapter 8 aims to take into account the uncertain
nature of the wind speed in the decision making process. We introduce a robust approach taking into
consideration the potential spatial and time-wise correlation of the wind speed.

Notice that all the main notations used throughout this part are summarized in Appendix A.





Chapter 3

Problem description

3.1 Context

As the energy sector is facing major challenges to produce low-carbon power or carbon-free elec-
tricity, the share of renewable energies has significantly increased in recent years. Boosted by climate
change mitigation and adaptation efforts (e.g., tax incentives and Paris climate change agreement)
and the constantly-decreasing cost of turbines, wind energy is currently the world’s fastest-growing
source of electricity (63 GW of new wind power capacity in 2015), accounting nowadays for around
3.3% of the world electricity production (The Global Wind Energy Council, 2016). Although wind
turbines AF tops 95%, their CF is usually around 25-30% as a result of the intermittency of the wind
and of design decisions (for a fixed wind speed, the larger are the blades the more electricity the
turbine can produce). The impact of operational decisions on this value is also non negligible. As
the wind industry is steadily growing, reliability and profitability of wind farms naturally becomes
one of the priorities of the sector. In this context, developing optimization techniques to efficiently
schedule wind turbine maintenance operations is essential to prevent unnecessary downtimes and
excessive operational costs.

Maintenance planning and scheduling has been widely studied in different industrial contexts
(see for example Budai et al. (2008) for a survey). In general, however, solutions remain sector-
specific. In the particular case of the maintenance of the generating units, Chapter 1 shows that
the problem is concerned with the definition of time intervals for preventive maintenance of gen-
erating units under financial (cost minimization, profits maximization) and/or reliability (leveling,
maximization of the net reserves) considerations. Unfortunately, the studies focus essentially on the
traditional electricity generating technologies (nuclear, fossil fuels). The approaches are thus inappli-
cable to the wind power industry. One of the main reasons is that wind farms are usually owned by
investment funds, and the operation and the maintenance of the turbines are often outsourced to a
third party. As it stands, the stakeholders and the contractors face potentially conflicting objectives:
maximize electricity production vs. minimize maintenance costs. Therefore, service contracts are set
between these two entities. These contracts essentially fix a target value for the annual availability of
the wind farms to produce electricity and fix the timely preventive maintenance operations (e.g., pre-
ventive maintenance on a wind farm should be performed every 6 months during the first two years
and then every year). This choice is partially motivated by the fact that this value is relatively easy
to compute. However, since maximizing AF is not equivalent to maximizing CF, the stakeholders
retain the right to question the maintenance plan if it leads to large losses of production. To reduce
such interference, service contracts include financial incentives. Indeed, maintenance companies can
sometimes expect bonuses if the availability of the wind farm is larger than a certain percentage (e.g.,
97%). Moreover, they may obtain a share of the revenue on every percentage of availability larger
than a specified value. Some contracts also explicitly mention production targets, but the values are
very easily reachable as wind faces volatility (there are more windy years than others). Penalties
also exist if the goals related to the AF and/or CF are not met. From a field investigation and from
discussions with WPred, it results that maintenance companies are not always taking into account
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production concerns. Usually, it is essentially done in order to limit the interference with the wind
farms owners and/or to avoid potential penalties if they are below the targets or if they feel that some
bonuses are reachable. Another specificity of the wind power industry is that maintenance decisions
are not correlated with the electricity demand since producers are mostly not required to satisfy pro-
duction goals fixed in advance. The objective then tends to be the maximization of the efficiency
of the wind turbines. Last but not least, the wind power production is inherently volatile, and the
meteorological conditions have a great impact on the maintenance plan and can induce last-minute
adjustments. In summary, the aim of maintenance companies is to schedule the preventive mainte-
nance in order to meet their contract commitments. Although it is not their top priority, producing
maintenance plans for which the production of the turbines is maximized, while taking into consid-
eration their internal constraints, is a meaningful strategy to avoid interference with the stakeholders
and to potentially increase their revenue. If the maintenance is not outsourced, this objective is all
the more relevant.

Maintenance optimization for wind turbines has only recently started to receive attention in the
engineering and reliability literature (once gain, we refer the reader to Ding et al. (2013) for a sur-
vey). This stream of research primarily focuses on the definition of maintenance policies according
to failure models or/and condition monitoring. The results of the optimization process is a mainte-
nance time interval for each turbine. Although existing studies precisely define time intervals during
which the maintenance has to be performed in order to reduce the loss of electricity production, they
usually focus on a single wind farm or wind turbine and do not consider a fine-grained resource man-
agement. Therefore, the obtained results are used more as guidelines than as an actual maintenance
schedule. In this regard, they can be used to set the service contracts.

Fine-grained resource management implies, among others, considering a multi-skilled workforce,
coping with individual or global resource unavailability time periods (e.g., vacations), and taking
into account resource location-based constraints. Dealing with these issues requires considering a
short-term planning horizon. In this context, existing studies do not deliver a solution to the prob-
lem but do provide valuable input. Indeed, they allow planners to define the tasks to be performed
during the planning horizon and to set the maintenance time window constraints. Considering fine-
grained resource management then results in detailed maintenance plans that can be used on a daily
or weekly basis. These latter provide more accurate estimates of turbine downtimes and loss of pro-
duction; two metrics that can otherwise be underestimated, which may lead to significant prediction
errors. Indeed, producing a maintenance plan in which no operations generate a loss of production
(e.g., is scheduled during time periods where the wind speed is below 3.5 m.s−1, which is too low
to produce electricity) can almost never be achieved in practice, since human resources are a major
bottleneck.

Only few studies included a fine-grained resource management when scheduling the mainte-
nance of wind turbines. For the particular case of offshore wind farms, Irawan et al. (2016) optimized
a maintenance routing and scheduling problem minimizing labor, travel, and penalty costs. They
proposed a solution method based on Dantzig-Wolfe decomposition in which all the feasible routes
for each vessel are generated a priori. If one considers the onshore industry, the problem to solve
is very different. Kovács et al. (2011) considered the scheduling of the maintenance operations on
a one-day time horizon. These authors aimed to minimize lost production due to maintenance and
failures. They introduced incompatibilities between pairs of tasks and managed the assignment of
teams of multi-skilled workers to tasks. They modeled the problem as an integer linear program and
solved it with a commercial solver. They performed experiments on instances with up to 50 tasks.

We formally introduce our research problem in the next section. Notice beforehand that it dif-
fers from that introduced by Kovács et al. (2011) in several ways. First, we consider an individual
management of the technicians through a space-time tracking taking into consideration availability
calendars. Second, we consider multiple task execution modes that impact the duration of tasks as
well as the resource requirements (De Reyck et al., 1998). Third, we present an alternative way to
consider the travel times of the technicians by imposing restrictions on their routes.
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3.2 Problem statement

The aim of the problem we consider is to schedule a set I of maintenance tasks during a discrete
and finite planning horizon T while maximizing the revenue generated by the wind electricity pro-
duction of a set W of wind turbines. The wind turbines are geographically spread across a set of
locations L. We denote lw ∈ L the location of wind turbine w ∈ W and li the location where task
i ∈ I has to be performed.

The time horizon is a totally ordered set partitioned into |T | time periods of identical length. T
spans over several days from a set D. We denote Td the time periods that belongs to day d ∈ D.
Moreover, since the execution of a task can impact the production during non-working hours, we
introduce a special time period (hereafter referred to as a rest time period) between two consecutive
days to represent, for example, a night or a weekend. Maintenance tasks are non-preemptive (in
the sense that a task cannot be interrupted by another task and resumed after the completion of
the latter), but, obviously, they are interrupted during rest time periods if they overlap different
consecutive days (e.g., a technician can start a task at the end of one day and complete it at the
beginning of the next day).

Figure 3.1 – Illusration of the construction of the time horizon T and the set of days D

Although we do not include rest time periods in T (see Figure 3.1), we count in the objective func-
tion the loss of revenue generated by tasks overlapping these specific time periods. Tasks may have
different impacts on the availability of the turbines. Some tasks shut down one (or more) turbine(s)
since the task starts until the task ends. For instance, during the maintenance of a wind farm’s sub-
station 1 no turbines in the farm can produce electricity. It should be noted, however, that tasks that
shut down more than one turbine are very rare in practice. Some tasks shut down the turbines when
the technicians are effectively working on the task but not necessarily during the rest time periods
they overlap. This is the case for the majority of the preventive maintenance operations, as well as
for wind turbines retrofit. Other tasks do not have any impact on the electricity production (e.g.,
usually wind farm inspections). We model the impact of the tasks on electricity production using
two parameters. First, binary parameter bwi takes the value 1 if and only if task i ∈ I shuts down
turbine w ∈ W when technicians are effectively working on the task. Second, binary parameter b̃wi
takes the value 1 if and only if task i additionally shuts down turbine w during the rest time periods
it overlaps. Notice that parameters bwi and b̃wi are equal to 0 if turbine w is not located at the location
where the task i has to be performed (i.e., if li 6= lw).

To execute the maintenance tasks, we have a finite set R of technicians. Each technician masters
one or multiple skills from a set S. We express technician skills by a binary vector ζr over S such
that ζrs = 1 if and only if technician r masters skill s ∈ S. In our problem, each task i ∈ I requires
a specific skill si ∈ S . Our work on the field revealed that this is a reasonable assumption in our
context. Indeed, some companies prefer to assign, say, two interchangeable technicians to the same
maintenance operations because they can both take care of any part of the task. For convenience, we
define asRi the set of technicians that can perform task i (i.e.,Ri = {r ∈ R|ζrsi = 1}).

1. A wind farm substation collects the electricity produced by all the turbines of the farm and distributes it through the
grid
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To avoid expensive travel times and save valuable time, we constraint technicians to work during
a single day on tasks located within reduced geographic regions. To this effect, we define a binary
parameter σll′ taking value of 1 if and only if a technician is allowed to work at both locations l, l′ ∈ L
during the same day (naturally σll′ = σl′l). Let us assume that tmax is the maximum travel time
between two locations that we can consider “negligible” with respect to the duration of a time period.
The value of parameter σll′ is then equal to 1 if and only if the travel time between l and l′ is less
than or equal to tmax. Figure 3.2a illustrates how these parameters are set. During a single day, a
technician is allowed to work at a set of locations if and only if for every couple (l, l′) of locations
in this set we have σll′ = 1 (see Figure 3.2b). For instance, one should observe that, during a day, a
technician can only execute tasks at l1 and l2 or l3 but not both. We refer to these restrictions as daily
location-based incompatibilities. It is worth mentioning that wind turbine maintenance tasks usually
span along hours (if not days), and therefore technicians tend to travel between very few locations
during a single working day.

(a) Setting of the parameters {σl1l′}l′∈L

(b) Definition of the maximum sets of locations on which a technician is allowed to work
during a day

Figure 3.2 – Illustration of the daily location-based incompatibilities

Each technician r ∈ R has also an individual availability schedule expressed by a binary vector
ρr, with ρtr = 1 if and only if r is available during time period t ∈ T . The availability schedule of
every technician is related to training times, personal holiday times, and assignments to tasks (not
part of the optimization) that have been already started or that are performed along with external
companies. When a technician r is not available during a time period t, his or her location is fixed to
ltr ∈ L. Notice that for technician personal holidays and training sessions, this parameter is set to a
dummy location l∗ such that ∀l ∈ L, σl∗l = 1. We assume that all the technicians work the same shift,
which is a common practice according to our industrial partners.

Multiple execution modes are available for each task. For each task i ∈ I, we denote asMi its set
of execution modes. For each mode m ∈Mi, there are an associated task duration dim and a number
qim of required technicians. It is noteworthy that switching modes after starting the execution of a
task is forbidden. We also consider that a technician cannot perform more than one task during a
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given time period. Moreover, an important feature of the problem is that a technician assigned to a
task has to work on it from the beginning to the end, even if the task overlaps one or multiple rest
time periods.

Tasks can only be executed during some specific time periods. These take into account spare
parts availability and external restrictions imposed by the operator and/or the stakeholders. These
restrictions are included in the definition of parameter ϑti which is set equal to 1 if and only if task
i ∈ I can be executed during time period t ∈ T . Safety work conditions (e.g., a technician cannot
perform certain tasks on a turbine when the wind is too strong) need to be included as well. To this
end, we introduce parameter ϑ̈ti which is set equal to 1 if and only if task i can be executed during
time period t according to the wind speed. Additionally, some subsets of tasks cannot overlap due,
for instance, to the use of disjunctive resources, an interference (e.g., two tasks cannot be executed on
the same turbine at the same time), or managerial preferences. We define ov (I) the set containing all
subsets of tasks that should not overlap.

The objective of the problem is to determine a schedule that maximizes the revenue generated
by the electricity production of the wind farms while meeting the constraints previously described.
The electricity production depends on the wind speed. It also relies on the selling price of wind
electricity, the nominal power and the capacity factor curve (see Figure 3.3) associated with the wind
turbines. We denote as gtw the value of the revenue generated by wind turbine w ∈ W if it can
produce electricity during time period t ∈ T . Similarly, we denote as g̃dw the revenue generated by
wind turbine w if it can produce electricity during the rest time period following day d ∈ D. The
revenue is estimated according to the forecasted wind speed. These values are used in Chapters 4, 5,
and 6, while the uncertainty on the wind speed predictions is tackled in Chapter 8.

In this study, we do not consider maintenance costs: we assume that, as it is common in practice,
technicians earn a fixed salary, and we disregard travel costs as they are irrelevant to the decision-
making process.

One particularity of the problem is the possibility to postpone the scheduling of some tasks until
the next planning horizon. To model the postponement of task i ∈ I, we create an additional execu-
tion mode m0

i and we add it toMi (we have qim0
i

= 0 and dim0
i

= 0). When task i is postponed, we
apply to the objective a penalty of oi ≥ 0. The value of this penalty is fixed according to the relative
degree of priority of the task. This priority depends on reliability consideration (the more a mainte-
nance operation is delayed, the higher is the probability of failure) and contract commitments. If a
task is postponed, it obviously does not impact the production of any wind turbines, and thus the
value of the revenue. Therefore, if a task needs to be scheduled during the time horizon, this penalty
has to be fixed in connection to the revenue in order to ensure that the postponement of this task is
non-profitable. This penalty includes an estimation of the loss of revenue induced by the schedule
of the corresponding task, to which may be added outsourcing costs (the decision maker then being
responsible for the choice of outsourcing of task rather than postponing it). Since the time horizon
contains a finite number of time periods and the number of technicians is limited, we cannot en-
sure scheduling all the maintenance tasks. So, if the penalties are high enough, postponing a task is
just triggered to overcome a possible lack of technicians. In this case, the problem is a lexicographic
optimization problem where maximizing the number of tasks is the primary objective and maximiz-
ing the revenue generated by the electricity production of the turbines is the secondary objective.
Combining these two objectives into one single-objective scalar function (often known as scalariza-
tion technique and in that case weighted-sum technique) enables to solve this multiobjective problem. In
summary, regardless of the intended purpose, the objective function to be maximized in the problem
always corresponds to the difference between the revenue and the postponing penalties.

Finally, we use the following terminology to refer to some critical wind speed. The cut-in speed
value [WCI] corresponds to the wind speed – around 3.5 m.s−1 – below which the capacity factor is
equal to 0 (i.e., the wind turbine cannot produce electricity). On the opposite side, at cut-out speed
[WCO], the turbine is forced to stop because there is a risk of damage to the rotor. We also introduce
the rated output speed [WR] – around 14 m.s−1 – from which the capacity factor is equal to 1 (i.e, the
turbine generates at full capacity until the wind reaches the cut-out speed). The CF function is a con-
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Figure 3.3 – Capacity factor of a wind turbine according to the wind speed

tinuous non-decreasing function on the interval [0,WCO[. The point WCO is a jump discontinuity
of the function where the value of this latter drops from 1 to 0.

3.3 Complexity

It is rather direct to note that the wind turbine maintenance scheduling problem (WTMSP) de-
scribed in the previous section includes various central scheduling problems as particular cases. Be-
fore analyzing more formally its complexity, we define the decision problem WTMSPdec associated
with WTMSP. In this problem, a parameter G ∈ R is given as a lower bound on the value of the
objective function (computed as the difference between the revenue and the penalties incurred due
to postponed tasks). The problem WTMSPdec is to decide whether there exists a schedule of the tasks
such that the objective value is greater than or equal to G. We propose in this section a polynomial
reduction of the cumulative scheduling problem (CuSP) – known to be NP-complete in the strong sense
(Baptiste et al., 1999) – to WTMSPdec (see Proposition 3.3.1).

Let us recall that a CuSP instance consists of a single resource with a given capacity C and a set
J of n jobs where each job j ∈ J has a release date rj , a deadline dj , a processing time pj and a
capacity resource requirement aj . The problem is to decide whether there exists a schedule of all the
jobs satisfying the timing and the resource capacity constraints.

Proposition 3.3.1. WTMSPdec is NP-complete in the strong sense.

Proof. First, let us prove that CuSP polynomially reduces to WTMSPdec. From an instance of CuSP, we build
an instance of WTMSPdec by setting T = {min

j∈J
rj , ...,max

j∈J
dj} 2, |D| = 1, L = {l}, S = {s}, |R| = C, |W| = 1,

|I| = n. For each job j ∈ J , we create a task i such that li = l, si = s,Mi = 1, di1 = pj and qi1 = aj . We set
ϑ̈ti = 1 for every time period t ∈ T , and set ϑti = 1 if rj ≤ t < dj and ϑti = 0 otherwise. For every technician
r ∈ R, we set ρtr = 1 for every time period t and ζrs = 1. For turbine w ∈ W , we fix bwi = 0 and b̃wi = 0 for
each task i ∈ I, gtw = 0 for each time period t, and gdw = 0 for each day d ∈ D. The penalty incurred when
a task i is postponed is fixed to ci = 1. We finally set G = 0. For the resulting instance, if oi takes value 1
when task i is postponed, the objective to maximize is −

∑
i∈I cioi. In summary, we reduce CuSP to a slightly

relaxed version of WTMSPdec where: i) the tasks have no impact on the availability of the turbines, ii) there
exists only one execution mode for each task, iii) there exists only 1 skill, iv) the technicians do not have any
availability schedule and can be assigned to any task, v) there are no daily location-based incompatibilities,
and vi) the aim of the problem is to maximize the number of tasks scheduled during the planning horizon.

We now prove that there exists a solution to CuSP if and only if WTMSP has a solution with an objective
value greater than 0.

2. For two integers a1 and a2, symbol {a1, ..., a2} refers to [a1; a2] ∩ Z where Z is the set of integers.
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Conversely, let us assume that there exists a solution to CuSP. Each job j ∈ J has then been assigned a
starting time Sj such that the timing and the resource capacity constraints are satisfied. For each task i we
set its starting time to the starting time Sj of its associated job j. Since rj ≤ Sj and rj + pj ≤ dj , the task i
is scheduled during di1 consecutive time periods t such that ϑti = 1 and ϑ̈ti = 1. Then, we iterate over the
time horizon while keeping a pool R̂ of available technicians (initialized to R). More specifically, at each time
period t, we operate as follows: (1) for each task i starting at the beginning of time period t we remove qi1
technicians from the set R̂ and we assign them to i (2) for each task i ending at the end of time period t, we
add the technicians previously assigned to i to the set R̂. Since during each time period the jobs require less
than or exactly C resources, we are ensured that there are always enough technicians to be assigned to the
tasks. Lastly, we end up this construction scheme with no tasks set to be postponed. The objective value of the
resulting solution is therefore equal to 0.

Let us assume that there exists a solution to WTMSP with G = 0. To each job j ∈ J , we assign the same
starting time as the associated task in WTMSP. From the definition of the problem WTMSP, we are ensured that
during each time period the operations require less than or exactly C resources and that the timing constraints
are satisfied. The resulting schedule is therefore a solution to CuSP.

We can now state that CuSP polynomially reduces to WTMSPdec. Moreover, WTMSPdec is obviously in
NP, as it is easy to see that a solution can be checked in polynomial time. Since CuSP is NP-complete in the
strong sense, the same holds for WTMSPdec.

Since the decision problem WTMSPdec is NP-complete in the strong sense, WTMSP is therefore
strongly NP-hard. Notice that in some particular cases solving WTMSP becomes trivial. Indeed,
if the postponement penalties are all equal to 0, the solution consisting in delaying all the tasks is
optimal. A rather similar observation is that each task having a postponement penalty equal to 0 can
be set to be delayed, without affecting the value of the optimal solution, prior to the optimization.

3.4 Instance generation

In order to assess the quality of our models and optimization algorithms for the problem, we
needed data. Unfortunately, despite our close collaboration with WPred and their best efforts to
help us accessing data we were unable to obtain reliable real datasets. One of the main obstacles
we faced was their customers’ (i.e., the maintenance companies) lack of proper information systems.
For instance, when we could get access to the location of the maintenance task, we could not trace
back their duration. To overcome these difficulties, we put together the insight on wind prediction
and maintenance operations that we obtained from WPred and their customers to build an instance
generator. Although devising a perfect instance generator is nothing but impossible, we believe our
instances represent reality with a good degree of accuracy. For a thorough discussion on the instance
generation process, the reader is referred to Appendix B.

We created one testbed, denoted G1, to test the efficiency of our different solutions methods to
solve the problem defined in this chapter. We considered time horizons of different lengths (5 days
and 10 days with 2 or 4 time periods per day), different number of tasks (20, 40, 80), and different
number of skills (1 or 3). Each task can be executed in several modes (1 to 3). For each combination
of parameters, we generated two categories of instances: 5 instances with a tight technicians-to-work
ratio (i.e., technicians can perform the majority of the tasks, but they are not guaranteed to be enough
to perform all the tasks), and 5 instances with a regular technicians-to-work ratio (i.e., we are sure
that all the tasks can be executed by the technicians). We refer to the former as type A and to the
latter as type B. We obtained 160 instances divided into 32 families of instances (see Table 3.1) as
representative as possible of the wide range of situations which may occur.
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Table 3.1 – Families of instances in testbed G1

Family |T | |D| |S| |I| Type # instances
10_2_1_20_A 10 2 1 20 A 5
10_2_1_20_B 10 2 1 20 B 5
10_2_3_20_A 10 2 3 20 A 5
10_2_3_20_B 10 2 3 20 B 5
10_2_1_40_A 10 2 1 40 A 5
10_2_1_40_B 10 2 1 40 B 5
10_2_3_40_A 10 2 3 40 A 5
10_2_3_40_B 10 2 3 40 B 5
20_4_1_20_A 20 4 1 20 A 5
20_4_1_20_B 20 4 1 20 B 5
20_4_3_20_A 20 4 3 20 A 5
20_4_3_20_B 20 4 3 20 B 5
20_4_1_40_A 20 4 1 40 A 5
20_4_1_40_B 20 4 1 40 B 5
20_4_3_40_A 20 4 3 40 A 5
20_4_3_40_B 20 4 3 40 B 5
20_2_1_40_A 20 2 1 40 A 5
20_2_1_40_B 20 2 1 40 B 5
20_2_3_40_A 20 2 3 40 A 5
20_2_3_40_B 20 2 3 40 B 5
20_2_1_80_A 20 2 1 80 A 5
20_2_1_80_B 20 2 1 80 B 5
20_2_3_80_A 20 2 3 80 A 5
20_2_3_80_B 20 2 3 80 B 5
40_4_1_40_A 40 4 1 40 A 5
40_4_1_40_B 40 4 1 40 B 5
40_4_3_40_A 40 4 3 40 A 5
40_4_3_40_B 40 4 3 40 B 5
40_4_1_80_A 40 4 1 80 A 5
40_4_1_80_B 40 4 1 80 B 5
40_4_3_80_A 40 4 3 80 A 5
40_4_3_80_B 40 4 3 80 B 5



Chapter 4

Formalization

This chapter proposes different integer linear programming (ILP) formulations of the problem
defined in Chapter 3. These formulations differ by the definition of the variables and the modeling
of the different constraints. They also provide an alternative way (using mathematical notations)
to understand the problem. Section 4.1 presents two natural formulations for the problem. Section
4.2 then introduces two compact formulations (the term "compact" is coming from the fact that they
have a reduced number of constraints) better suited to run on commercial solvers. Finally, Section
4.3 reports computational experiments carried on the four proposed formulations.

Remark: To avoid introducing a large amount of notation, we use the same letter to represent decision
variables that are part of different formulations (in that case, we aim to use the same letter for variables
sharing the closest definition).

4.1 Natural ILP formulations

Let us introduce the following decision variables:

xim =

{
1 if task i ∈ I is executed in mode m ∈Mi,
0 otherwise.

sti =

{
1 if task i ∈ I starts at the beginning of time period t ∈ T ,
0 otherwise.

yri =

{
1 if technician r ∈ R is assigned to task i ∈ I,
0 otherwise.

cti =

{
1 if task i ∈ I ends at the end of time period t− 1 ∈ T ,
0 otherwise.

eti =

{
1 if task i ∈ I is executed during time period t ∈ T ,
0 otherwise.

udi =

{
1 if task i ∈ I is executed during day d ∈ D,
0 otherwise.

f tw =

{
1 if turbine w ∈ W can produce electricity during time period t ∈ T ,
0 otherwise.

f̃dw =

{
1 if turbine w ∈ W can produce electricity during the rest time period following day d ∈ D,
0 otherwise.

ztri =

{
1 if technician r ∈ R is assigned to task i ∈ I during time period t ∈ T ,
0 otherwise.

vtrl =

{
1 if technician r ∈ R is at location l ∈ L during time period t ∈ T ,
0 otherwise.

69
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A first intuitive formulation is defined as the following integer linear program [P1]:

[P1] max
∑
w∈W

(∑
t∈T

gtwf
t
w +

∑
d∈D

g̃dwf̃
d
w

)
−
∑
i∈I

oixim0
i

(4.1)

subject to:∑
m∈Mi

xim = 1 ∀i ∈ I, (4.2)

e0
i = 0 ∀i ∈ I, (4.3)

eti = et−1
i + sti − cti ∀i ∈ I,∀t ∈ T , (4.4)∑

t∈T
sti = 1 ∀i ∈ I, (4.5)∑

t∈T
cti = 1 ∀i ∈ I, (4.6)

eti ≤ ϑtiϑ̈ti ∀i ∈ I,∀t ∈ T , (4.7)∑
i∈B

eti ≤ 1 ∀B ∈ ov (I) ,∀t ∈ T , (4.8)∑
t∈Td

eti ≤ |Td|udi ∀i ∈ I,∀d ∈ D, (4.9)

f tw + bwie
t
i ≤ 1 ∀w ∈ W,∀i ∈ I,∀t ∈ T , (4.10)

fdw + b̃wi
(
udi + ud+1

i

)
≤ 2 ∀w ∈ W,∀i ∈ I,∀d ∈ D, (4.11)∑

t∈T
eti =

∑
m∈Mi

dimxim ∀i ∈ I, (4.12)

∑
r∈Ri

yri =
∑

m∈Mi

qimxim ∀i ∈ I, (4.13)

eti + yri − ztri ≤ 1 ∀i ∈ I,∀r ∈ Ri,∀t ∈ T , (4.14)

ztri ≤ yri ∀i ∈ I,∀r ∈ Ri,∀t ∈ T , (4.15)

ztri ≤ eti ∀i ∈ I,∀r ∈ Ri,∀t ∈ T , (4.16)∑
i∈Il∩Ri

ztri ≤ ρtrvtrl ∀r ∈ R,∀l ∈ L,∀t ∈ T , (4.17)

∑
l∈L

vtrl = 1 ∀r ∈ R,∀t ∈ T , (4.18)

vtrltr = 1 ∀r ∈ R,∀t ∈ T s.t. ρtr = 0, (4.19)

vtrl +
∑

l′∈L|σll′=0

vt
′

rl′ ≤ 1

∀r ∈ R,∀d ∈ D,∀(t, t′) ∈ Td × Td, t 6= t′,∀l ∈ L, (4.20)

eti ∈ {0, 1} ∀i ∈ I,∀t ∈ T ∪ {0}, (4.21)

sti, c
t
i ∈ {0, 1} ∀i ∈ I,∀t ∈ T , (4.22)

udi ∈ {0, 1} ∀i ∈ I,∀d ∈ D, (4.23)

f tw ∈ {0, 1} ∀w ∈ W,∀t ∈ T , (4.24)

fdw ∈ {0, 1} ∀w ∈ W,∀d ∈ D, (4.25)
yri ∈ {0, 1} ∀i ∈ I,∀r ∈ Ri, (4.26)

ztri ∈ {0, 1} ∀i ∈ I,∀r ∈ Ri,∀t ∈ T , (4.27)

vtrl ∈ {0, 1} ∀r ∈ R,∀l ∈ L,∀t ∈ T . (4.28)

The objective in (4.1) is defined as the difference between the revenue generated by the elec-
tricity production from the wind turbines and the penalties induced by the postponement of tasks.
Constraints (4.2) guarantee that exactly one execution mode is selected for each task. For each task,
constraints (4.3)-(4.6) ensure consistency between the starting time, ending time, and execution time
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period variables. Constraints (4.7) prevent a task to be scheduled during forbidden time periods.
Constraints (4.8) are the non-overlapping constraints. Constraints (4.9) couple the time periods dur-
ing which each task is performed to its execution days. Constraints (4.10) and (4.11) compute the
impact of the tasks on the availability of the turbines to produce electricity. Constraints (4.12) con-
nect the duration of each task to its selected execution mode. Constraints (4.13) ensure that the tech-
nician requirements are fulfilled. Constraints (4.14) force technicians to be assigned to a task from
its beginning to its end. For each technician, constraints (4.15)-(4.16) ensure consistency between the
global assignment and the time-indexed assignment variables. Constraints (4.17) couple the location
of the technicians to the tasks they perform. Constraints (4.18) prevent technicians to perform multi-
ple tasks during the same time period. When technicians are not available, constraints (4.19) ensure
compliance with their known locations. Constraints (4.20) define the daily location-based incompat-
ibilities for each technician. Finally, (4.21)-(4.28) state the binary nature of the decision variables.

As an alternative to avoid the use of the variables cti and the constraints (4.3)-(4.6), one can rede-
fine the variables sti as follows:

stim =

{
1 if task i ∈ I starts at the beginning of time period t ∈ T and is executed in mode m ∈Mi \ {m0

i },
0 otherwise.

This alternative formulation – denoted [P1bis] – reads:

[P1bis] max
∑
w∈W

(∑
t∈T

gtwf
t
w +

∑
d∈D

g̃dwf̃
d
w

)
−
∑
i∈I

oixim0
i

subject to:
(4.2), (4.7)− (4.20)

xim =
∑
t∈T

stim ∀i ∈ I,∀m ∈Mi \ {m0
i }, (4.29)

eti =
∑

m∈Mi\{m0
i }

t′=t∑
t′=t−dim+1

stim ∀i ∈ I,∀t ∈ T , (4.30)

stim ∈ {0, 1} ∀i ∈ I,∀t ∈ T ,∀m ∈Mi \ {m0
i } (4.31)

(4.21), (4.23)− (4.28)

Constraints (4.29) and (4.30) couple the selected executing mode and the execution time period vari-
ables to the newly created variables. Note that the constraints (4.12) are not useful anymore, but it
may improve the efficiency of an ILP solver in case of a direct resolution of [P1bis].

4.2 Compact ILP formulations

In order to restrict the number of constraints involved in the formulations [P1] and [P1bis], we
built two more compact formulations. The models are based on the concept of plans. A plan asso-
ciated with task i ∈ I defines a feasible schedule for i by setting an execution mode, a consistent
starting time period, and, by induction, a duration and a resource requirement. For example, con-
sider a task i with two execution modes m1 and m2. Let dm1 and dm2 denote the corresponding
duration and qm1 and qm2 the corresponding number of required technicians. Assume that task i can
be executed during the whole time horizon. For each time period t ∈ T such that t ≤ |T | − dm1 ,
we create a feasible plan to represent the planning of task i within mode m1 from period t to pe-
riod t + dm1 with a requirement of qm1 technicians. The same procedure is applied for mode m2.
Obviously, we take into consideration the impossibility of preempting tasks when building plans.

All the plans are generated a priori. Since the number of time periods is assumed to be short
and there are only a few execution modes, the total number of plans is not so large. We denote by P
the set of plans, ip the task involved in plan p ∈ P , and Pi the set of all plans involving task i (i.e.,
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Pi = {p ∈ P|ip = i}). For each task i, we also create a plan p0
i ∈ Pi representing the postponement

of the task. For a plan p, we express the execution time periods of ip by a boolean vector ap where
atp = 1 if and only if ip is executed during time period t ∈ T . We also denote Sp and Cp the starting
and completion time periods of plan p (i.e., Sp = mint∈T a

t
pt and Cp = maxt∈T a

t
pt). Similarly, we

introduce another binary vector ãp over D such that ãdp = 1 if and only if ip overlaps the rest time
period following day d ∈ D. We also denote Dp as the set of days overlapped by the plan p. For
convenience and with a slight abuse of notation, we introduce parameters sp, lp, bwp, and b̃wp equal to
sip , lip , bwip , and b̃wip respectively. Moreover, we denoteRp the set of technicians that can be assigned
to plan p. More specifically, Rp contains all technicians r ∈ Rip such that for every time period t we
have ρtr ≥ atp and for every day d ∈ Dp and every time period t ∈ Td, we have πtr = 1 or both ρtr = 0
and σlpltr = 1. We also define qp as the number of technicians required to execute plan p. Finally,
parameter op is the penalty incurred if plan p is selected (note that ∀i ∈ I,∀p ∈ Pi \ {p0

i }, op = 0 and
op0
i

= oi).
Scheduling the tasks becomes rather implicit as it simply means to select a plan for each task.

Nevertheless, we still need to manage the technician-to-task assignments without violating for each
technician the daily location-based incompatibilities. Clearly, technicians can be indifferently as-
signed to plans sharing the same starting and completion time periods, the same location and the
same skill. These previous four parameters define what we call a pattern. Directly assigning techni-
cians to patterns results in a smallest number of assignment variables. We denote H and hp the set
of all patterns and the pattern linked to plan p ∈ P . We also define as Ph the set of plans sharing the
same parameters than pattern h ∈ H. For convenience, for a pattern h, we introduce parameters sh,
lh and Rh that respectively define: its required skill, its location, and the set of technicians that can
be assigned to it. Conversely, we define Hl = {h ∈ H | lh = l} the set of patterns associated with
location l ∈ L. For a pattern h, we express its active time periods by a binary vector ah over T such
that ath = 1 if and only if h is active during time period t ∈ T (Sh and Ch are used to represent the
starting and completion time periods of the pattern).

From these previous notions (plan and pattern), we create two new ILP formulations that only
differ on the space-time tracking of the technicians. We still use some decision variables defined in
Section 4.1, but we also introduce the following decision variables:

xp =

{
1 if plan p ∈ P is selected,
0 otherwise.

yrh =

{
1 if technician r ∈ Rp is assigned to pattern h ∈ H,
0 otherwise.

4.2.1 Baseline formulation

The first compact formulation of the problem is defined as the following integer linear program
denoted as [P2].

[P2] max
∑
w∈W

(∑
t∈T

gtwf
t
w +

∑
d∈D

g̃dwf̃
d
w

)
−
∑
p∈P

opxp (4.32)

subject to:∑
p∈Pi

xp = 1 ∀i ∈ I, (4.33)

∑
p∈Pi

atpxp ≤ ϑtip ϑ̈
t
ip ∀i ∈ I,∀t ∈ T , (4.34)

∑
i∈B

∑
p∈Pi

atpxp ≤ 1 ∀B ∈ ov (I) ,∀t ∈ T , (4.35)

f tw +
∑
p∈Pi

bwpa
t
pxp ≤ 1 ∀w ∈ W,∀i ∈ I,∀t ∈ T , (4.36)
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f̃dw +
∑
p∈Pi

b̃wpã
d
pxp ≤ 1 ∀w ∈ W,∀i ∈ I,∀d ∈ D, (4.37)

∑
i∈I|si∈S̄

∑
p∈Pi

atpqpxp ≤ |RtS̄ | ∀t ∈ T ,∀S̄ ⊆ S, (4.38)

∑
r∈Rh

yrh =
∑
p∈Ph

qpxp ∀h ∈ H, (4.39)

∑
h∈Hl

athyrh ≤ ρtrvtrl ∀r ∈ R,∀l ∈ L,∀t ∈ T , (4.40)

(4.18), (4.19), (4.20), (4.28)
xp ∈ {0, 1} ∀p ∈ P, (4.41)

f tw ∈ {0, 1} ∀w ∈ W,∀t ∈ T , (4.42)

f̃dw ∈ {0, 1} ∀w ∈ W,∀d ∈ D, (4.43)
yrh ∈ {0, 1} ∀h ∈ H,∀r ∈ Rh (4.44)

The objective in (4.32) is defined as the difference between the revenue generated by the wind
turbines and the penalties related to the postponement of some tasks. Constraints (4.33) ensure that
at least one plan involving each task is selected (i.e., each task is either executed or postponed).
Constraints (4.34) are related to the restrictions on the time periods during which each task can be
effectively executed. Notice that these constraints are not needed if we build the set of plans such that
for every plan p ∈ P we have atp ≤ ϑtip ϑ̈

t
ip

. In our experiments, we build the set P to avoid including
these constraints. Constraints (4.35) are the non-overlapping constraints. Constraints (4.36) and (4.37)
couple turbine availability variables to plan selection variables. Constraints (4.39) ensure that the
technician requirements are fulfilled. Constraints (4.40) couple the locations of the technicians to the
tasks they perform. Constraints (4.18), (4.19), and (4.20) are used to handle the daily location-based
incompatibilities and the availability calendars of the technicians. Finally, constraints (4.28),(4.41)-
(4.44) state the binary nature of the decision variables.

To strengthen the formulation [P2], we add the cumulative scheduling constraints (4.38), even
if they are redundant since they can be deduced from constraints (4.39) and (4.40). To build these
constraints, we introduce for each time period t ∈ T the bipartite graph Gt =

((
S,Rt

)
,U t
)

in which,
with a slight abuse of notation, vertices from S represent skills, vertices fromRt indicate technicians
available during time period t (i.e., Rt = {r ∈ R|ρtr = 1}), and edges from U t are defined as follows:
∀s ∈ S, ∀r ∈ Rt (s, r) ∈ U t if and only if ζrs = 1. Applying a generalization of König-Hall theorem
(see Lemma 4.2.1), the constraints (6.7) thus correspond to necessary and sufficient condition of the
existence of a maximum cardinality b-matching from S to Rt where function b is defined for every
vertex s that belongs to S by b(s) =

∑
i∈I|si=s

∑
p∈Pi a

t
pqpxp, and by b(r) = 1 for every vertex r that

belongs toRt. To express these constraints, we denoteRtS̄ the set of technicians available during time
period t and mastering at least one skill in subset S̄ ⊆ S (i.e.,RtS̄ = {r ∈ R|∃s ∈ S̄, ζrs = 1∧ρtr = 1)}).

Theorem 4.2.1. (König-Hall theorem):
Let G = [X ∪ Y,U ] be a bipartite graph, a matching of G saturatingX exists if and only if ∀X̂ ⊆ X, |N(X̂ )| ≥
|X̂ | where N (X̂ ) denotes the set of vertices of Y adjacent to the vertices of X̂ .

Lemma 4.2.1. (Generalization of König-Hall theorem):
Let G = [X ∪ Y,U ] be a bipartite graph and b : V → N a function. A b-matching of G saturating X exists if
and only if ∀X̂ ⊆ X,

∑
v∈N(X̂ ) b(v) ≥

∑
v∈X̂ b(v) whereN (X̂ ) denotes the set of vertices of Y adjacent to the

vertices of X̂ .

Last but not least, the number of these constraints are exponential
(
2|S| − 1

)
× |T |). In our ex-

periments, however, the number of these constraints tends to be small; we therefore add all these
constraints to our model.
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4.2.2 Alternative formulation

A potential improvement of the previous model concerns the space-time tracking of the techni-
cians. Observing that the number of constraints (4.20) is usually very large, we attempt to develop
an alternative technician management strategy. This new strategy is based on finding all the maxi-
mal cliques (cliques that cannot be enlarged) in a graph where each vertex represents a location, and
there exists an edge between two vertices if the underlying locations l and l′ can be visited during
the same day by the same technician (i.e., we have σll′ = 1). Figure 4.1 illustrates the computation
of these maximal cliques. For the purpose of finding all the maximal cliques, we use the algorithm
introduced by Bron and Kerbosch (1973).

Figure 4.1 – Example of how maximal cliques are computed

DenotingK the set of all maximal cliques in the previous graph, we defineKdr as the set of cliques
to which technician r can be assigned during day d. More specifically, Kdr is equal to {k ∈ K | ∀t ∈
Td, ρtr = 1 ∨

(
ρtr = 0 ∧ ltr ∈ k

)
}. We then introduce the following binary variables:

udrk =

{
1 if during day d ∈ D technician r ∈ R can only performed tasks at locations included in clique k ∈ Kdr
0 otherwise.

Denoting dt as the day to which time period t belongs, we can track the location of the technicians
with the following constraints:∑

k∈Kdr

udrk = 1 ∀r ∈ R,∀d ∈ D, (4.45)

∑
h∈H|r∈Rh

athyrh ≤ ρtr ∀r ∈ R,∀t ∈ T , (4.46)

∑
h∈Hl

athyrh ≤
∑

k∈Kdtr |l∈k

udtrk ∀r ∈ R,∀l ∈ L,∀t ∈ T (4.47)

udrk ∈ {0, 1} ∀r ∈ R,∀d ∈ D,∀k ∈ k ∈ Kdr (4.48)

Constraints (4.45) state that a technician is assigned to only one clique on each day. This ensures the
compliance with the location-based incompatibility constraints. Constraints (4.46) prevent a techni-
cian to be assigned to multiple tasks during a given time period and constraints (4.47) couple assign-
ment and space-time tracking variables.

Finally, we define as [P3] the model resulting from replacing constraints (4.18)-(4.20),(4.28),(4.40)
by constraints (4.45)-(4.48) in the formulation [P2].

4.2.3 Breaking symmetries

From a feasible solution to the problem, we observe that we can build alternative solutions by
just switching the tasks assigned to two technicians who master the same skills (as long as the new
assignment is compatible with both techicians’ unavailability time periods and the daily-location
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based incompatibilities). The technician-to-task assignments therefore faces symmetries which usu-
ally affect the efficiency of a direct resolution using an ILP solver. One way to counter that is to add
symmetry breaking constraints. First, we decompose R into n disjoint subsets {R̃b}b∈{1,..,n} of tech-
nicians such that each subset R̃b contains all technicians mastering the same skills. Clearly, we have
R =

⋃
b∈{1,..,n}

R̃b and R̃b ∩ R̃b′ = ∅ when b 6= b′. We also introduce two additional parameters. Binary

parameter ςhh′ is equal to 1 if and only if a technician can be assigned to plans h and h
′

considering
the daily location-based incompatibilities. Binary parameter τrh takes value 1 if and only if technician
r ∈ R can be assigned to pattern h ∈ H regarding its own personal availability schedule. We also
consider here the setH as a totally ordered set.

We introduce the following symmetry breaking constraints:

yrh ≤ y(r−1)h +

 ∑
h′∈H|ςhh′=0∧h′<h

y(r−1)h′

+
(
1− τ(r−1)h

)
∀b ∈ {1, .., n},∀r ∈ R̃b \ {1},∀h ∈ H s.t. r ∈ Rh

(4.49)

These constraints rank technicians having the same skills according to a lexicographic order, and
ensure that the technician r can be assigned to a pattern h only if one of the three following conditions
hold:

— The technician r − 1 is assigned to a pattern h

— The technician r − 1 is assigned to a pattern h′ with an index less than h (we assume that the
patterns are ranked) that prevents him to work on pattern h.

— The technician r−1 is unavailable during a time period that prevents him or her to be assigned
to pattern h

One should however observe that the number of these constraints (4.49) is very large which may
prevent them to be efficient in practice.

4.3 Computational experiments

We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R) X5675 (3.07Ghz) and
12GB of RAM. We rely on Gurobi 6.5.1 for solving the ILP formulations of the problem. We set a 3-
hour time limit to solve the different formulations (notice that all CPU times are reported in seconds
and rounded to the closest integer). In order to assess the quality of our results, we compute the gap
with respect to the optimal solution when it is known, or to the best upper bound we found among
all the tests reported in this thesis manuscript. More precisely, all gaps reported in the manuscript
are computed as: gap = (zUB− z)/|z|, where z is the objective function of the computed solution and
zUB is the objective function of the optimal solution or the best (minimal) upper bound.

We do not include the symmetry breaking constraints (4.49) in formulations [P2] and [P3] as
preliminary tests show that they do not help speeding up the resolution of the models.

In Table 4.1, we report the average number of variables (#Vars) and constraints (#Cstrs) in each ILP
formulation. We also show in Table 4.2 the average number of plans (#Plans), patterns (#Patterns),
and location-based cliques used in formulation [P4] (#Cliques). These figures allow the reader to
assess the size of the different formulations. We observe that the two compact formulations [P2]
and [P3] have around seven and twelve times less constraints than the natural formulations [P1] and
[P1bis] while having a small number of additional variables. Notice also that the number of plans is
low-enough to lead to models that can be handled by ILP solvers.

In Table 4.3, we report the average, over all the instances belonging to the same family or sharing a
common characteristic, of: the gap (Gap), the solution time (Time), and the percentage of tasks sched-
uled (i.e., not-posponed) in the best solution (%S). We also report the number of optimal solutions
found within the time limit (#Opt).
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Table 4.1 – Average number of variables and constraints in each ILP formulation

Testbed [P1] [P1bis] [P2] [P3]
#Vars #Cstrs #Vars #Cstrs #Vars #Cstrs #Vars #Cstrs

G1 50 129 50 126 59 24 51 13
NB: numbers are in thousands in the table are rounded to the nearest
thousand

Table 4.2 – Average number of plans, patterns and location-based cliques

Testbed #Plans #Patterns #Cliques
G1 2,394 1,218 8

NB: numbers are rounded to the nearest integer

Remark: In order to have a meaningful comparison, the average solution times only takes into account
those instances for which an optimal solution has been found within the time limit. Similarly, the average
gap and percentage of scheduled tasks takes into account only the instances which are not optimally
solved. This allows a better understanding of the results. Indeed, since in our instances postponing a task
is non-profitable and heavily penalized, a large gap is often related to a low percentage of tasks scheduled
during the time horizon. Notice that on average 99% of the tasks are scheduled in the optimal or best-
known solutions for testbed G1.

First, we observe that the compact formulations [P2] and [P3] outperform by far the natural for-
mulations [P1] and [P1bis] ([P1bis] seems slightly better than [P1]) for small and medium-sized in-
stances. For the large-sized instances, all the formulations struggle reaching optimal solutions, but
compact formulations perform worst than natural formulations (as they fail more often to schedule
a large proportion of the tasks). We believe these results can be explained as follows. The compact
formulations contains far less constraints than the natural formulations and the value of the LP re-
laxation is around 2% smaller on average, which leads to tighter upper bounds computed by the ILP
solver.

Formulation [P3] also seems to slightly outperform formulation [P2]. However, the comparison
between these two formulations is difficult as the best model regarding the gap and solution time if it
is not optimally solved can vary within a family from one instance to another one. This may highlight
the erratic behavior of the solver for the medium and large-sized instances when one does not tailor
the search and leaves the solver to make branching decisions and to build heuristic solutions. It is
then hard to derive definitive conclusions on the relative efficiency of formulations [P2] and [P3]. We
also observe that, at least in our 3-hour time limit, optimality is only reached for small-sized instances
and that whenever optimality is reached the CPU time is rather long (around 30 minutes on average).

In summary, the average gap when directly solving the ILP formulations is considerable for the
majority of the families of instances (the solver fails to schedule a large proportion of the tasks), and
when optimality is reached it is on average after a considerable solution time. It is not very surprising
since the formulations only involve binary variables and their size is quite large. We therefore reach
the following conclusion: directly solving the ILP formulations using a commercial solver does not
yield suitable exact approaches for the problem.
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Table 4.3 – Detailed computational results on testbed G1 when solving the ILP formulations.

Family [P1] [P1bis] [P2] [P3]
Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

10_2_1_20_A 1.4% 97% 0/5 - 1.3% 98% 1/5 2,368 - - 5/5 598 - - 5/5 152
10_2_1_20_B 0.01% 100% 4/5 744 0.01% 100% 4/5 1,242 - - 5/5 12 - - 5/5 37
10_2_1_40_A 7.1% 95% 0/5 - 5.9% 96% 0/5 - 0.01% 100% 2/5 1,813 0.01% 100% 1/5 7
10_2_1_40_B 0.00% 100% 3/5 6,015 0.00% 100% 3/5 4,421 - - 5/5 205 - - 5/5 121
10_2_3_20_A 2.0% 96% 1/5 326 1.4% 96% 2/5 891 - - 5/5 2,635 - - 5/5 1,574
10_2_3_20_B 0.02% 100% 3/5 305 0.0% 100% 3/5 180 - - 5/5 31 - - 5/5 18
10_2_3_40_A 9.6% 96% 0/5 - 8.3% 96% 0/5 - - - 5/5 3,220 - - 5/5 3,996
10_2_3_40_B 0.00% 100% 4/5 2,857 0.03% 100% 4/5 1,707 - - 5/5 180 - - 5/5 295
20_2_1_40_A 42% 76% 0/5 - 7.7% 93% 0/5 - 2.4% 98% 2/5 8,074 1.4% 98% 2/5 2,858
20_2_1_40_B 1.6% 99% 0/5 - 2.0% 99% 0/5 - 0.01% 100% 4/5 232 - - 5/5 2,078
20_2_1_80_A 28% 87% 0/5 - 19% 90% 0/5 - 436% 0% 0/5 - 334% 20% 0/5 -
20_2_1_80_B 6.2% 96% 0/5 - 3.0% 98% 0/5 - 318% 50% 3/5 1,485 229% 49% 3/5 3,823
20_2_3_40_A 6.2% 93% 0/5 - 4.2% 96% 0/5 - 1.25% 99% 1/5 322 1.2% 99% 3/5 5,534
20_2_3_40_B 0.02% 100% 2/5 2,561 0.05% 100% 4/5 3,322 - - 5/5 376 - - 5/5 155
20_2_3_80_A 23% 89% 0/5 - 17% 91% 0/5 - 257% 20% 0/5 - 156% 39% 0/5 -
20_2_3_80_B 4.3% 97% 0/5 - 1.3% 99% 0/5 - - - 5/5 3,415 196% 50% 3/5 2,456
20_4_1_20_A 5.3% 93% 0/5 - 6.3% 91% 0/5 - 1.8% 96% 0/5 - 1.3% 97% 0/5 -
20_4_1_20_B 0.25% 100% 3/5 6,264 1.3% 98% 2/5 1,726 5/5 204 - - 5/5 405
20_4_1_40_A 161% 46% 0/5 - 43% 81% 0/5 - 264% 0% 0/5 - 61% 75% 0/5 -
20_4_1_40_B 12.8% 91% 0/5 - 8.6% 94% 0/5 - 174% 49% 1/5 5,208 107% 74% 1/5 1,968
20_4_3_20_A 7.9% 92% 0/5 - 6.9% 93% 0/5 - 1.2% 98% 0/5 - 2.4% 95% 4/5 5,005
20_4_3_20_B 1.2% 98% 2/5 2,152 0.55% 100% 2/5 3,251 0.01% 100% 4/5 52 - - 5/5 113
20_4_3_40_A 416% 33% 0/5 - 25% 84% 0/5 - 373% 20% 0/5 - 5.3% 95% 0/5 -
20_4_3_40_B 204% 56% 0/5 - 14% 92% 0/5 - 1.5% 99% 2/5 6,112 0.03% 100% 3/5 2,108
40_4_1_40_A 147% 54% 0/5 - 44% 77% 0/5 - 352% 0% 0/5 - 106% 76% 0/5 -
40_4_1_40_B 157% 73% 0/5 - 8.3% 94% 0/5 - 1,594% 40% 0/5 - 3.0% 98% 0/5 -
40_4_1_80_A 49% 80% 0/5 - 50% 77% 0/5 - 4,948% 0% 0/5 - 4,948% 0% 0/5 -
40_4_1_80_B 39% 83% 0/5 - 42% 83% 0/5 - 331% 0% 0/5 - 331% 0% 0/5 0-
40_4_3_40_A 170% 43% 0/5 - 36% 78% 0/5 - 1,087% 20% 0/5 - 4.6% 96% 0/5 -
40_4_3_40_B 13% 88% 0/5 - 13% 90% 0/5 - 477% 20% 0/5 - 0.8% 99% 2/5 2,118
40_4_3_80_A 48% 77% 0/5 - 55% 77% 0/5 - 2,813% 0% 0/5 - 2,727% 18% 0/5 -
40_4_3_80_B 24% 84% 0/5 - 15% 89% 0/5 - 3,899% 0% 0/5 - 3,899% 0% 0/5 -

Characteristic [P1] [P1bis] [P2] [P3]
Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

|S| =
{

1
3

47% 83% 10/80 3,981 17% 91% 10/80 2,405 854% 35% 32/80 1,108 621% 61% 34/80 1,035
68% 81% 12/80 1,841 15% 91% 14/80 2,004 1,036% 39% 37/80 1,677 982% 61% 43/80 1,896

|T |
|D|

=

{
2
4

10% 94% 17/80 2,283 5.9% 96% 20/80 2,107 179% 56% 57/80 1,383 144% 60% 57/80 1,461
97% 73% 5/80 4,619 24% 87% 4/80 2,488 1,197% 30% 12/80 1,555 1,014% 61% 20/80 1,757

Type =

{
A
B

71% 78% 1/80 326 21% 88% 2/80 1,629 878% 38% 20/80 2,618 759% 65% 25/80 2,838
39% 88% 21/80 2,932 9% 94% 22/80 2,220 1059% 35% 49/80 921 802% 53% 52/80 913

All 57% 82% 22/160 2,814 16% 91% 24/160 2,171 940% 37% 69/160 1,413 773% 61% 77/160 1,538
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For testbed G1, our results suggests that the number of skills does not have a strong impact on
the difficulty of the instances (although we observe that instances with 3 skills appear to be easier to
solve). This may be a result of a smaller number of symmetries among the technicians and of feasible
configurations to schedule the tasks. On the other hand, the number of tasks seems to have an impact
on the difficulty of the type A instances. This can be explained by the higher difficulty of finding a
maintenance plan when considering more tasks. Moreover, the ILP formulations perform better
on instances with 2 time periods per day; the solution time is shorter and the number of optimal
solutions is larger than in those with 4 time periods per day. A plausible explanation is that the
daily location-based incompatibilities are more binding in the latter case. Indeed, a larger number
of periods provides a wider choice of task starting times and therefore more opportunities to move
technicians between locations during a single day. Instances with 4 time periods per day also have
a larger number of plans and patterns; this may also explain their higher difficulty. In conclusion,
according to our experiments on testbed G1, the difficulty of an instance increases with the number
of time periods per day and the tightness of the technicians-to-work ratio.



Chapter 5

A constraint programming-based large
neighborhood search to solve the
deterministic problem

The research reported in this chapter (except Section 5.5) has been wrapped up on a article submitted
for possible publication in Journal of Scheduling and currently under second round of review.

Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016). Solving a wind turbine
maintenance scheduling problem. Submitted to Journal of Scheduling. Under review.

This chapter presents a heuristic solution method for the problem defined in Chapter 3. Sec-
tion 5.1 formally defines the problem using an alternative programming paradigm to ILP, namely,
constraint programming (CP). Section 5.2 introduces a constraint programming-based large neigh-
borhood search (CPLNS) to tackle the problem. The proposed approach uses destruction operators
either specifically conceived for the problem or adapted from the literature. The repair operator con-
sists in solving a CP model with some fixed variables using branching strategies specially tailored
for the problem. We also present a new acceptance criterion based on elitism and Metropolis. Section
5.3 reports computational experiments on testbed G1. Section 5.4 concludes the research presented
in this chapter up to this point. At the end of the chapter, Section 5.5 outlines our specific work with
WPred as the CPLNS is the solution method implemented for the industrial prototype we provide
them. We point out specifities of the problem being solved and briefly discuss the inclusion of the
created optimization tool in their existing product.

5.1 Constraint programming formulation

Chapter 4 presents several ILP formulations of the problem. Motivated by the successful imple-
mentation of CP models for solving other hard and, to some extend, related optimization problems
(Baptiste et al., 2001; Rodriguez, 2007; Malapert et al., 2012), we decided to approach our problem
using CP.

First of all, note that defining for each task: i) an execution mode, ii) a starting time, and iii) the
technicians assigned to it, is enough to obtain a solution to our problem. Therefore, for each task
i ∈ I, we introduce the variables Mi ∈ Mi and Si ∈ T to represent its execution mode and starting
time period, and we use binary variables (yri)r∈Ri to decide if technician r performs or not task i.
More specifically, yri is equal to 1 if and only if the technician r is assigned to task i. To make some
constraints easier to model, we introduce integer variablesCi ∈ T ,Di ∈ {dim}m∈Mi ,Qi ∈ {qim}m∈Mi

and set variables Ei ⊆ {t ∈ T | ϑtiϑ̈ti = 1} defining for task i its completion time period, its duration,
its number of assigned technicians, and its set of execution time periods, respectively.

79
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Execution time periods of each task are coupled to their starting and ending time periods with
constraints (5.1) and (5.2).

Si +Di − 1 = Ci ∀i ∈ I, (5.1)
t ∈ Ei ⇔ t ∈ {Si, ..., Ci − 1} ∀i ∈ I (5.2)

For each task, its duration (5.3) as well as the number of assigned technicians (5.4) are coupled
with the selected execution mode.

Di = diMi
∀i ∈ I, (5.3)

Qi = qiMi
∀i ∈ I (5.4)

Constraints (5.5) are the non-overlapping constraints.⋂
i∈B

Ei = ∅ ∀B ∈ ov (I) (5.5)

Constraints (5.6) ensure that the technician requirements are fulfilled for each task.∑
r∈Ri

yri = Qi ∀i ∈ I (5.6)

To forbid a technician r ∈ R to be assigned to multiple tasks during a time period, we introduce
set variables Y t

r ⊆ I∪{i0} defining the set of tasks that the technician can potentially perform during
time period t ∈ T . Index i0 represents a dummy task, created in order to prevent a technician to
work during his or her unavailability time periods. Constraints (5.7) couple these variables to the
global assignment variables (yri)i∈I|r∈Ri . Restrictions imposed on the locations visited by a techni-
cian within each day lead to the introduction of the set variables V t

r ⊆ L defining the set of potential
locations for technician r during time period t. Constraints (5.8) and (5.9) restrict the set of tasks that
a technician can possibly execute according to his or her potential locations. Set L(Î) defines the set
of locations of the tasks in set Î. Note that L(Î) = {l ∈ L | ∃i ∈ Î s.t. li = l}.

yri = 1⇒
(
Y tr = {i} ∀t ∈ Ei

)
∀i ∈ I,∀r ∈ Ri, (5.7)

V tr = L(Y tr ) ∀r ∈ R,∀t ∈ T , s.t. ρtr = 1, (5.8)

V tr = {ltr} ∧ Y tr = {i0} ∀r ∈ R,∀t ∈ T , s.t. ρtr = 0 (5.9)

Constraints (5.10) ensure that the daily location-based incompatibilites are not violated for each
technician.

V tr = {l} ⇒
(
l′ /∈ V t

′

r ∀l′ ∈ L s.t. σll′ = 0,∀t′ ∈ Tdt s.t. t′ 6= t
)
∀r ∈ R,∀t ∈ T ,∀l ∈ L (5.10)

In order to define the objective function of our problem, we introduce two set variables. Variables
F dayw ⊆ {1, . . . , |T |} define the set of all time periods during which turbine w ∈ W can produce
electricity. Variables F restw ⊆ {1, . . . , |D|} define the set of days for which turbine w can produce
electricity during the corresponding rest time periods. More specifically, a day d belongs to this
set if turbine w can produce electricity during the rest time period that occurs between d and d + 1.
Additionally, we denote by trestd the last period t ∈ T before the rest time period following day d ∈ D.
We introduce constraints (5.11), (5.12), (5.13), and (5.14) which state that a turbine is available to
produce electricity during a time period if and only if no tasks requiring its shutdown are scheduled
at the same time.
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t ∈ Ei ⇒ t /∈ F dayw ∀w ∈ W,∀i ∈ I s.t. bwi = 1,∀t ∈ T , (5.11)

t /∈
⋃

i∈I|bwi=1

Ei ⇒ t ∈ F dayw ∀w ∈ W,∀t ∈ T , (5.12)

trestd ∈ Ei ∧ (trestd + 1) ∈ Ei ⇒ d /∈ F restw ∀w ∈ W,∀i ∈ I, s.t. b̃wi = 1,∀d ∈ D, (5.13)∧
i∈I|̃bwi=1

(
{trestd , trestd + 1} 6⊆ Ei

)
⇒ d ∈ F restw ∀w ∈ W,∀d ∈ D (5.14)

Constraint (5.15) defines the objective function variable obj ∈ R of our problem.

obj =
∑
w∈W

 ∑
t∈Fdayw

gtw +
∑

d∈F restw

g̃dw

− ∑
i∈I|Mi=m0

i

oi (5.15)

To remove some symmetries, we add constraints (5.16) to impose the starting time period of a
postponed task to be equal to 0.

Mi =M0
i ⇔ Si = 0 ∀i ∈ I (5.16)

5.2 A constraint programming-based large neighborhood approach

We use the CP model introduced in Section 5.1 as the main building block of a constraint programming-
based large neighborhood (CPLNS) approach. This method is based on the LNS metaheuristic pre-
sented in Section 2.2. In the CPLNS, we use the CP model to repair the solutions that have been
destroyed. We tested the use of the ALNS framework rather than the LNS framework. After some
preliminary experimentation we decided to drop the adaptive layer because its contribution to the
accuracy of the method did not payoff the loss of simplicity and the effort needed to fine tune the
additional parameters. We then randomly select operators with equal probability. The general struc-
ture of the method is outlined in Algorithm 2 (in Section 2.2). To compute the initial solution, we use
the CP model and we stop the execution as soon as we find the first solution.

5.2.1 Destroy operators

At each iteration, the algorithm selects Γ tasks to remove from the current solution. The value of
Γ is randomly fixed in the interval [max (n−, n× p−) ; min (n+, n× p+)], where n− and n+ denote the
minimal and maximal number of tasks that are allowed to be removed during an iteration; similarly,
p− and p+ denote the minimal and maximal proportion of tasks that could be removed. The param-
eters p− and p+ allow the algorithm to adapt to all instances independently of their size. We use the
following settings: (n−, n+, p−, p+) = (5, 20, 0.1, 0.4). We also always consider postponed tasks in
the current solution as tasks to be removed. However, we do not count them among the Γ tasks to
remove.

After setting Γ, the algorithm selects the tasks using one of the following six removal operators:

— Operator A: random removal
This operator randomly removes Γ tasks from the current solution. The intention behind this
operator is to diversify the search.

— Operator B: worst removal
This operator removes the tasks which penalize the most the objective function of the current
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solution. Let f be the current value of the objective function, f−i its value if task i is removed,
and ∆f(i) = f−f−i. The Γ tasks with the greatest values of ∆f(i) are removed from the current
solution in order to insert them at better positions.

— Operator C: technicians duties removal
This operator is based on the following procedure. First, it randomly selects a skill s∗. Sec-
ond, as long as the number of removed tasks is lower than Γ, it randomly selects a technician
mastering s∗ and remove from the current solution those tasks in which the selected techni-
cian uses skill s∗. The operator then switches to another skill if it has not removed Γ tasks yet.
Freeing up a pool of technicians along the whole time horizon may allow the reinsertion of
possibly misplaced tasks at more convenient time periods (i.e, periods where they penalize less
the revenue).

— Operator D: similar tasks removal
This operator removes similar tasks. More specifically, the operator aims to remove non-overlapping
tasks (or tasks that overlap as little as possible) having similar duration and skill require-
ments. The similarity between two tasks i, j ∈ I in a solution sol is formally defined as:
φ(i, j, sol) = α1 × |d̄i − d̄j | + α2 × 1(si 6=sj) + α3 × ov(i, j, sol), where d̄i is the average duration

of task i (i.e., d̄i =
1

|Mi \ {m0
i }|
∑

m∈Mi\{m0
i }
dim). Function ov(i, j, sol) computes the number

of overlapping time periods between i and j in the current solution sol. Coefficients α1, α2,
and α3 weight the three components of the similarity function, namely, task duration, skill re-
quirements, and task overlapping. In our experiments, (α1, α2, α3) = (1, 3, 5). To select the
tasks to remove, the operator first initializes a set Ĩ with a random task. While |Ĩ| ≤ Γ, the
procedure randomly selects a task i∗ from Ĩ, and it adds to Ĩ the task j ∈ I \ Ĩ with the min-
imal value of φ(i∗, j, sol). The intuition behind this operator is that removing and re-inserting
similar tasks that are scheduled in non-overlapping time periods increases the likelihood of a
solution improvement.

— Operator E: task maximal regret
This operator removes the tasks having the largest difference between the loss of revenue they
currently generate and the minimal loss of revenue they can induce (we called this difference
regret). Let us denote Wi the set of turbines shut down by the execution of a task i (clearly,
Wi = {w ∈ W|bwi = 1 ∨ b̃wi = 1}). The loss induced by task i is equal to the sum over
all the turbines in Wi of the revenue lost due to its scheduling. Notice that if multiple tasks
impact a turbine during a specific time period, the loss is set proportionally to the number of
these tasks. Prior to the optimization, the operator computes for each task i a metric called
lossbesti equal to the smallest loss of revenue that can be achieved when one only considers
the scheduling of this task. Then, during the optimization, the operator first computes the
lost revenue losssoli generated by task i in the current solution sol. Afterwards, the operator
computes the regret ∆loss(i) = losssoli − lossbesti for each scheduled task i. The operator then
removes from the current solution sol the Γ tasks associated with the largest value of ∆loss(i).
Removing tasks that currently generate considerably more loss of revenue than they could
may allow the algorithm to schedule those tasks in better positions in the next iterations. It is
then plausible to assume that this operator increases the probability of finding better-quality
solutions.

— Operator F: turbine maximal regret
This operator works almost in the same way as operator E. Instead of reasoning by task, we fo-
cus on each turbine. Prior to the optimization, the procedure computes for each turbine w ∈ W
a metric called lossbestw , estimating the smallest loss of revenue that can be achieved when one
only considers the set Iw of tasks that prevent turbine w to produce electricity when scheduled
(i.e., Iw = {i ∈ I|bwi = 1 ∨ b̃wi = 1}). The value of lossbestw is computed by running the CP
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formulation presented in Section 5.1 on the instance containing only the tasks belonging to Iw.
The solution time is most of the time insignificant, but nevertheless we impose a time limit
of 1 second. It is noteworthy that, if we find a smaller loss of revenue during the execution
of the CPLNS, we update the value of lossbestw . Our tests, however, suggest that this is a very
rare event. During the optimization, the procedure starts by computing the lost revenue losssolw
generated by the tasks in Iw if they are executed as scheduled in the current solution. Notice
that the penalties related to postponed tasks are included in the computation of lossbestw and
losssolw . Afterwards, the operator initializes a set W̃ with all the turbines ofW and compute the
regret ∆loss(w) = losssolw − lossbestw associated with each turbine w ∈ W̃ . As long as W̃ is not
empty and Γ tasks are not removed, the operator removes from W̃ the turbine w∗ associated
with the largest value of ∆loss(w) and removes from the current solution sol all the scheduled
tasks belonging to Iw∗ .

We work with randomized versions of operators B, D, E, and F to explore the search space more
broadly. Indeed, an operator can destroy different parts of the same solution each time it is applied
to it. This can then lead to building different solutions and to avoiding being trapped in local optima.
Although the randomization strategy we use is relatively simple, we explain it here for the sake of
completeness. The strategy is based on the one proposed by Cordeau et al. (2010). Let %o denote the
randomization factor of operator o. When selecting tasks for removal, the operator first sorts a list L
containing all the tasks using its selection criterion (i.e., largest penalization for operator B, largest
similarity with a specified task for operator D, largest regret for operators E and F). The first positions
of L contains the tasks that the destroy operator has to target first according to its criterion. Then the
operator draws a random number y ∈ [0, 1[ and it selects for removal task i in position by%o × |L|c in
L (positions in L are indexed from 0). A randomization factor %o = 1 makes the operator completely
random, while higher values of %o make the operators more deterministic. In our experiments we set
%B = %D = %E = %F = 3 and we use only the randomized versions of these four operators.

Although it is very simple, Algorithm 3 presents the general structure of a destroy operator used
as a subroutine in Algorithm 2.

Algorithm 3: Destroy(o,sol)
Data: a solution sol
a destroy operator o
Result: a set of tasks to remove from sol

1 F ← ∅
2 F ←Apply destroy operator o to sol
3 return F

5.2.2 Repair operators

We use the CP formulation introduced in Section 5.1 to repair partially destroyed solutions. More
specifically, if F denotes the set of tasks that have been removed, we fix for each task i ∈ I \ F the
value of the variablesMi, Si, and (yri)r∈Ri to their value in the current solution, and we solve the
resulting model.

A solution to the CP model is found as soon as the decision variables Mi, Si, and (yri)r∈Ri are
instantiated for every task i ∈ I. Therefore, the branching strategy should focus only on these vari-
ables. It is worth noting that a CP solver can make meaningful deductions for a task when the domain
of the variable related to its executing mode not longer contains the postponement mode. Moreover,
fixing the starting time period of a task before knowing its execution mode leads to a weak propa-
gation on the bound of the revenue variable and on the possible starting time periods and execution
modes of other tasks. Furthermore, since variables yri have an impact only on the feasibility of a



84 A CP-BASED LARGE NEIGHBORHOOD SEARCH

solution but not on its quality, fixing last these variables (i.e., after having fixed the variables Mi and
Si for each task i ∈ I) implies that the solver has to explore a large sub-tree before reconsidering a
bad decision. Based on these observations we adopt a task-by-task scheduling strategy in which the
technicians assignment is made after having chosen an execution mode and a starting time period
for the current task.

It is well-known that quickly reaching a good-quality solution increases the efficiency of the
search. It is, however, not clear if fixing the execution mode of a task i ∈ I (i.e., Mi) to a spe-
cific execution mode and then exploring all its potential starting time periods before setting Mi to
another value is the best searching strategy. This observation suggests that simultaneously setting
variables Mi and Si may lead to achieve a greater flexibility during the search. To implement this
mechanism, we therefore choose to reuse the concept of plans introduced for the ILP formulations of
the problem in Section 4.2. For each task i ∈ I, we introduce variable Xi ∈ Pi that defines the plan
selected for task i. We add the constraints (5.17)-(5.18) to couple these variables to the variablesMi

and Si.

Mi = modeXi ∀i ∈ I, (5.17)
Si = startXi ∀i ∈ I (5.18)

For a plan p ∈ P , modep is the selected execution mode for the task ip and startp represents the
starting time period of ip. In summary, task by task, we first define its execution mode along with
its starting time by fixing variable Xi, and we finally assign the required technicians by fixing the
variables (yri)r∈Ri .

To reach feasible solutions faster, we maintain arc consistency on constraints (5.17) and (5.18). We
also designed customized propagators to try to keep, during the search, the domain of Xi consistent
with the availability of the technicians. More specifically, these propagators rely on a comparison
between the task requirements and the number of technicians available at each time period of the
planning horizon considering the required skills and the daily location-based incompatibilities. They
also take into account that technicians have to work on a task from its beginning to its end. For in-
stance, if during a time period t∗ no more than 2 technicians mastering a specific skill s∗ are available,
then for each task i such that si = s∗ we can remove from the domain of Xi all the plans overlapping
t∗ and requiring more than 2 technicians.

The most critical part of the procedure is the selection of the next task to be considered by the
branching strategy. We select the next task to schedule using a look-ahead regret heuristic that oper-
ates as follows. Let I0 denote the set of tasks which have not yet been processed at the current node
of the search. Let also ∆fki be the k-th smallest value of the revenue loss that task i can generate when
scheduled using one of its possible plans. Our heuristic, regret-q, chooses the task to be scheduled
as task i∗ = arg max

i∈I0

∑k=q
k=2

(
∆fki −∆f1

i

)
. The algorithm computes ∆fki according to the values of

Ψ(i, p), a function representing the revenue loss if task i uses plan p ∈ Pi (i.e., the task is performed
in mode modep and starts at the beginning of time period startp). Function Ψ(i, p) is computed using
functions Ψday(i, p) and Ψrest(i, p) which represent, if task i uses plan p ∈ Pi, the lost revenue during
the time periods from T and during the rest time periods. These functions are defined as follows:

Ψ(i, p) = Ψday(i, p) + Ψrest(i, p),

Ψday(i, p) =


op if p = p0

i ,∑
w∈W|bwi=1

t<startp+dimodep∑
t=startp

g(w, t) otherwise.
,
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Ψrest(i, p) =

 0 if p = p0
i ,∑

w∈W|̃bwi=1

∑
d∈Dp

g̃(w, d) otherwise. ,

Functions g(w, t) and g̃(w, d) are defined as:

∀w ∈ W,∀t ∈ T , g(w, t) =

{
gtw if t ∈ Env(F dayw ),
0 otherwise. ,

∀w ∈ W,∀d ∈ D, g̃(w, d) =

{
g̃dw if d ∈ Env(F restw ),
0 otherwise. ,

where Env(Z) denotes the set of elements that may belong to the set variable Z in a solution at the
current node of the search tree.

Let Dom(z) denote the domain of variable z (i.e., all the possible values that z can take). We have
∆f1

i = min
p∈Dom(Xi)

Ψ(i, p). More generally, ∆fki is the k-th smallest value of Ψ(i, p). Once task i∗ has

been selected, it is scheduled using plan p∗ = arg min
p∈Dom(Xi∗ )

Ψ(i∗, p).

During our preliminary experiments we observed that sometimes our regret-q heuristic is unable
to lead the search to good solutions. It is indeed possible that a task with a small regret at a given
point of the search is not chosen to be scheduled, but that this decision leads to a large revenue
loss later when exploring the associated subtree. To overcome this potential issue, we designed

another branching strategy that selects the task i∗ = arg max
i∈I0

(
min
p∈Pi

Ψ(i, p)

)
for which the minimal

revenue loss is maximal. Again, once task i∗ has been selected, it is scheduled using plan p∗ =
arg min

p∈Dom(Xi∗ )
Ψ(i∗, p). We refer to this branching strategy as MaxMinLoss.

The resources assignment is then done technician by technician as long as the request is not ful-
filled. We choose as a priority the compatible technician which is already working during the days
that belong to Dp∗ . Since constraints (5.10) related to the daily location-based incompatibilities are
very restrictive, it should be preferable to use technicians that are already working at the same loca-
tion or at compatible locations. Otherwise, the number of technicians that will be available for other
tasks, especially those at incompatible locations, may be drastically restricted. If during the days
d ∈ Dp∗ multiple technicians work the same number of time periods, we choose first the technician
that could perform the least number of tasks among those remaining. If several technicians can still
be selected, we select one randomly.

Exploring the whole neighborhood of a solution is time-consuming; therefore we only allow a
certain number$max of backtracks (we set$max = 200 in our experiments). Thus, different solutions
can be obtained using different branching strategies. Different repair operators are therefore defined
using different branching strategies. In our experiments, we use regret-2 and regret-3 branching
strategies, as well as a randomized version of MaxMinLoss, where the probability of selecting a
task is inversely proportional to the minimal revenue loss it generates at this point of the search.

Algorithm 4 presents the general structure of a repair operator used as a subroutine in Algorithm
2.

5.2.3 Acceptance criteria

In our experiments, we tested the elitist strategy and the Metropolis criterion to accept new so-
lutions. We also tested a mix of them: we apply an elitist strategy during the first k iterations, and
then we activate the Metropolis criterion. We based our choice in two observations. First, using the
elitist strategy, the search is often trapped in local optima after a certain amount of iterations, and
then it struggles to improve the solution. Second, as we do not ensure that our algorithm starts from
a good-quality solution, reaching a good solution can be time-consuming.
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Algorithm 4: Repair(o,F ,s)
Data: a solution sol
a set F of tasks
a repair operator o (branching strategy)
Result: a new solution sol′

1 foreach i ∈ I \ F do
2 Fix the values ofMi, Si, (yri)r∈Ri as in solution sol in the CP model
3 end
4 Solve the CP model applying repair operator o, yielding sol′

5 return sol′

In our experiments, k is set to 250 and T to 0.9975. The initial temperature is fixed to− 0.25

ln0.5
f(sol0)

where f(sol0) is the value of the objective function of the initial solution sol0. Therefore, in the first
iteration our approach accepts solutions that are 2.5% worse than the current solution with a proba-
bility of 0.5.

5.3 Computational experiments

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We rely on Choco 3.3.1 for solving the
CP formulation (see Prud’homme et al. (2014)). We ran our experiments on a Linux 64 bit-machine,
with an Intel(R) Xeon(R) X5675 (3.07Ghz) and 10GB of RAM.

In order to assess the quality of our results, we compute the gap with respect to the optimal
solution when it is known, or to the best upper bound we found among all the tests reported in this
thesis manuscript.

5.3.1 CP formulation

Figure 5.1 summarizes the global results found solving the CP model with our regret-2 branching
strategy (BS) and with a randomized version of the latter coupled to a geometrical restart policy (we
restart the search from the root node) based on the number of backtracks (BS+restart). Notice that
the default branching strategy of the solver is most of the time unable to provide a feasible solution
to the problem after several minutes. This is somehow expected since we work with many different
kinds of variables. On the opposite, a solution is always quickly found using our regret branching
strategy. Guaranteeing feasibility is, however, relatively easy since tasks can be postponed. Coupling
our branching strategy with a restart policy give the best results as the average gap is improved
approximately by 6% on testbed G1. Jointly using a randomized branching strategy with a restart
policy allows us to explore different parts of the search tree which increases the likelihood of finding
better solution. However, we observe that the initial solutions are little improved during the search
whatever solution strategy we use. It seems that the CP model is facing some symmetry issues,
especially on the technicians assignment. This drawback is not overcome with our restart policy.

Table 5.1 reports additional results when solving the CP model with the BS+restart configuration.
It shows in the different columns the relative average mean gap 1 (Gap) and the mean percentage
of tasks scheduled (i.e., not-posponed) in the solution 2 (%S) with 15, 30, 60, 180, and 300 seconds
of CPU time limit. Appendix C.1 presents the detailed results when solving the CP model with the
first solution strategy (BS). Solving the CP model provides near optimal solutions for instances with 2
time periods per day and for type B instances. Moreover, we can notice that the CP formulation gives
better overall results on the large-sized instances than the ILP formulations presented in Chapter 4.

1. average of the mean gap found for each instance over 3 runs
2. average of the mean percentage of tasks scheduled in the solution found for each instance over 3 runs



5.3. COMPUTATIONAL EXPERIMENTS 87

0 50 100 150 200 250 300
0

2

4

6

8

10

Time limit (s)

G
ap

(%
)

BS
BS+restart

Figure 5.1 – Average computational results on testbed G1 when solving the CP formulation according
to the solution strategy (average over 3 runs)

Table 5.1 – Computational results on testbed G1 when solving of the CP formulation (BS+restart -
average over 3 runs)

Family 15s 30s 60s 180s 300s
Gap %S Gap %S Gap %S Gap %S Gap %S

10_2_1_20_A 1.6% 98% 1.3% 98% 1.3% 98% 1.3% 98% 1.3% 98%
10_2_1_20_B 0.5% 100% 0.5% 100% 0.4% 100% 0.4% 100% 0.4% 100%
10_2_1_40_A 2.9% 99% 2.5% 99% 2.4% 99% 2.4% 99% 2.4% 99%
10_2_1_40_B 0.5% 100% 0.4% 100% 0.4% 100% 0.4% 100% 0.4% 100%
10_2_3_20_A 2.4% 96% 2.0% 97% 2.0% 97% 2.0% 97% 2.0% 97%
10_2_3_20_B 0.3% 100% 0.3% 100% 0.3% 100% 0.3% 100% 0.3% 100%
10_2_3_40_A 3.5% 98% 2.4% 99% 2.4% 99% 2.3% 99% 1.9% 99%
10_2_3_40_B 1.0% 100% 0.8% 100% 0.8% 100% 0.8% 100% 0.8% 100%
20_2_1_40_A 2.8% 98% 2.7% 98% 2.5% 99% 2.5% 99% 2.5% 99%
20_2_1_40_B 0.4% 100% 0.3% 100% 0.3% 100% 0.3% 100% 0.3% 100%
20_2_1_80_A 4.6% 98% 3.8% 98% 3.2% 99% 3.2% 99% 3.2% 99%
20_2_1_80_B 0.3% 100% 0.2% 100% 0.2% 100% 0.2% 100% 0.2% 100%
20_2_3_40_A 1.7% 99% 1.6% 99% 1.6% 99% 1.6% 99% 1.6% 99%
20_2_3_40_B 0.2% 100% 0.2% 100% 0.2% 100% 0.2% 100% 0.2% 100%
20_2_3_80_A 2.1% 99% 1.7% 100% 1.2% 100% 1.2% 100% 1.1% 100%
20_2_3_80_B 0.3% 100% 0.3% 100% 0.3% 100% 0.2% 100% 0.2% 100%
20_4_1_20_A 2.6% 95% 2.5% 95% 2.4% 95% 2.2% 95% 2.1% 95%
20_4_1_20_B 1.7% 99% 1.2% 100% 1.0% 100% 0.9% 100% 0.9% 100%
20_4_1_40_A 10.9% 93% 10.1% 93% 9.9% 93% 9.6% 93% 9.5% 93%
20_4_1_40_B 4.3% 98% 3.4% 99% 2.9% 99% 2.9% 99% 2.9% 99%
20_4_3_20_A 6.8% 94% 6.4% 94% 6.3% 94% 5.7% 94% 5.7% 94%
20_4_3_20_B 1.7% 99% 1.7% 99% 1.7% 99% 1.7% 99% 1.7% 99%
20_4_3_40_A 8.5% 93% 7.0% 94% 6.9% 94% 6.9% 94% 6.9% 94%
20_4_3_40_B 3.2% 98% 2.2% 99% 1.9% 99% 1.8% 99% 1.8% 99%
40_4_1_40_A 8.1% 94% 7.8% 94% 7.8% 94% 7.8% 94% 7.8% 94%
40_4_1_40_B 1.3% 100% 1.2% 100% 0.8% 100% 0.7% 100% 0.5% 100%
40_4_1_80_A 11.5% 93% 10.6% 94% 9.7% 94% 8.8% 95% 8.8% 95%
40_4_1_80_B 1.5% 100% 0.6% 100% 0.5% 100% 0.5% 100% 0.5% 100%
40_4_3_40_A 6.2% 96% 5.7% 96% 5.5% 96% 5.5% 96% 5.4% 96%
40_4_3_40_B 1.3% 100% 1.0% 100% 0.6% 100% 0.6% 100% 0.6% 100%
40_4_3_80_A 9.3% 94% 8.1% 95% 8.0% 95% 7.9% 95% 7.9% 95%
40_4_3_80_B 1.1% 100% 0.5% 100% 0.5% 100% 0.4% 100% 0.4% 100%

Characteristic 15s 30s 60s 180s 300s
Gap %S Gap %S Gap %S Gap %S Gap %S

|S| =
{

1
3

3.5% 98% 3.1% 98% 2.9% 98% 2.7% 98% 2.7% 98%
3.1% 98% 2.6% 98% 2.5% 98% 2.4% 98% 2.4% 98%

|T |
|D|

=

{
2
4

1.6% 99% 1.3% 99% 1.2% 99% 1.2% 99% 1.2% 99%
5.0% 96% 4.4% 97% 4.2% 97% 4.0% 97% 4.0% 97%

Type =

{
A
B

5.3% 96% 4.8% 96% 4.6% 96% 4.4% 96% 4.4% 96%
1.2% 100% 0.9% 100% 0.8% 100% 0.8% 100% 0.8% 100%

All 3.3% 98% 2.9% 98% 2.7% 98% 2.6% 98% 2.6% 98%
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5.3.2 CPLNS

Previous results show some limitations of solving the CP model. They demonstrate the relevance
of a CPLNS approach that may be more suitable than a restart policy to escape local optima. For this
latter method, we also imposed a time limit as the stopping criterion. Since the neighborhoods are
partially randomized, we launched the algorithm ten times for each instance.

Our first experiment aimed to select the best acceptance criterion for our CPLNS. To achieve our
goal, we ran our algorithm with three different solution acceptance criteria: elitism (El), Metropolis
(MT), and both (El+MT) and three different time limits: 60, 180, and 300 seconds. Table 5.2 shows
that coupling an elitist strategy with the Metropolis acceptance criterion leads to the smaller average
gap independently of the time limit. We therefore use this acceptance criterion in the remainder of
our experiments.

Table 5.2 – Average computational results on testbed G1 according to the solution acceptance criterion

Time limit Average gap
60s 180s 300s

El 1.54% 1.33% 1.26%
MT 1.58% 1.34% 1.25%

El + MT 1.54% 1.30% 1.21%

We now discuss more thoroughly the performance of the CPLNS algorithm. Table 5.3 reports the
results delivered by our CPLNS for each family of instances. It shows in the different columns the
relative average mean gap 3 (Gap) and the mean percentage of tasks scheduled in the solution 4 (%S)
running with a 15, 30, 60, 180, and 300 seconds of CPU time limit. These experiments aim to enable
a decision-maker to define a CPU time limit according to the trade-off between solution time and
quality of the results he or she is interested in.

Since the gap is computed with respect to upper bounds for some type A instances of testbed G1,
assessing the intrinsic quality of the CPLNS using only the gap is sometimes not conclusive enough.
However, the overall average gaps of 1.2% after 5 minutes for testbed G1 show the effectiveness
of our approach. We may expect to be closer to the optimal solutions for the large-sized instances.
For testbed G1, the algorithm provides near optimal solutions for all the type B instances, but the
performance is slightly inferior for the type A instances in which the number of time periods per day
is equal to 4. This last observation can be explained by the fact that the number of plans and thus the
model to be considered by the CP model when repairing the solution is larger. Since we only allow
a limited number of backtracks, the quality of the first decisions taken in our branching strategies
strongly impacts the capacity of the algorithm to improve the current solutions. The algorithm may
then sometimes fail building better solutions with the CP model, although it could be have been
possible if it explored the whole search space.

3. average of the mean gap found for each instance over 10 runs
4. average of the mean percentage of tasks scheduled in the solution found for each instance over 10 runs
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Table 5.3 – Computational results on testbed G1 for the CPLNS (average over 10 runs)

Family 15s 30s 60s 180s 300s
Gap %S Gap %S Gap %S Gap %S Gap %S

10_2_1_20_A 1.0% 98% 0.9% 98% 0.8% 98% 0.8% 98% 0.8% 98%
10_2_1_20_B 0.1% 100% 0.0% 100% 0.0% 100% 0.0% 100% 0.0% 100%
10_2_1_40_A 1.6% 99% 1.3% 99% 1.0% 100% 0.5% 100% 0.4% 100%
10_2_1_40_B 0.1% 100% 0.0% 100% 0.0% 100% 0.0% 100% 0.0% 100%
10_2_3_20_A 1.1% 98% 0.9% 99% 0.8% 99% 0.7% 99% 0.6% 99%
10_2_3_20_B 0.0% 100% 0.0% 100% 0.0% 100% 0.0% 100% 0.0% 100%
10_2_3_40_A 2.0% 99% 1.8% 99% 1.5% 99% 1.1% 99% 1.0% 99%
10_2_3_40_B 0.1% 100% 0.1% 100% 0.1% 100% 0.1% 100% 0.0% 100%
20_2_1_40_A 2.0% 98% 1.8% 99% 1.4% 99% 1.0% 99% 0.9% 99%
20_2_1_40_B 0.1% 100% 0.1% 100% 0.1% 100% 0.0% 100% 0.0% 100%
20_2_1_80_A 3.8% 98% 3.5% 98% 3.1% 98% 2.5% 99% 2.2% 99%
20_2_1_80_B 0.1% 100% 0.1% 100% 0.1% 100% 0.1% 100% 0.1% 100%
20_2_3_40_A 1.2% 99% 1.1% 99% 0.9% 99% 0.6% 100% 0.6% 100%
20_2_3_40_B 0.0% 100% 0.0% 100% 0.0% 100% 0.0% 100% 0.0% 100%
20_2_3_80_A 0.8% 100% 0.6% 100% 0.5% 100% 0.4% 100% 0.3% 100%
20_2_3_80_B 0.1% 100% 0.1% 100% 0.1% 100% 0.1% 100% 0.1% 100%
20_4_1_20_A 1.3% 95% 1.2% 95% 1.1% 95% 1.1% 95% 1.0% 95%
20_4_1_20_B 0.5% 100% 0.2% 100% 0.1% 100% 0.1% 100% 0.1% 100%
20_4_1_40_A 7.2% 93% 6.5% 94% 6.2% 94% 5.4% 94% 5.3% 94%
20_4_1_40_B 1.6% 99% 1.3% 99% 1.2% 99% 0.5% 100% 0.2% 100%
20_4_3_20_A 4.1% 95% 3.5% 95% 3.1% 95% 2.6% 96% 2.0% 96%
20_4_3_20_B 0.6% 100% 0.5% 100% 0.3% 100% 0.2% 100% 0.2% 100%
20_4_3_40_A 5.7% 94% 5.1% 94% 4.7% 95% 4.0% 95% 3.9% 95%
20_4_3_40_B 0.9% 100% 0.8% 100% 0.8% 100% 0.6% 100% 0.5% 100%
40_4_1_40_A 5.8% 95% 5.0% 96% 4.7% 96% 4.5% 96% 4.4% 96%
40_4_1_40_B 0.3% 100% 0.3% 100% 0.2% 100% 0.2% 100% 0.1% 100%
40_4_1_80_A 6.2% 96% 6.0% 96% 5.8% 96% 5.4% 96% 5.4% 96%
40_4_1_80_B 0.4% 100% 0.3% 100% 0.3% 100% 0.2% 100% 0.2% 100%
40_4_3_40_A 4.3% 97% 4.0% 97% 3.8% 97% 3.1% 98% 2.8% 98%
40_4_3_40_B 0.3% 100% 0.3% 100% 0.2% 100% 0.2% 100% 0.1% 100%
40_4_3_80_A 7.0% 95% 6.7% 95% 6.3% 95% 5.9% 95% 5.6% 96%
40_4_3_80_B 0.4% 100% 0.3% 100% 0.2% 100% 0.2% 100% 0.2% 100%

Characteristic 15s 30s 60s 180s 300s
Gap %S Gap %S Gap %S Gap %S Gap %S

|S| =
{

1
3

2.0% 98% 1.8% 98% 1.6% 98% 1.4% 99% 1.3% 99%
3 1.8% 98% 1.6% 99% 1.5% 99% 1.2% 99% 1.1% 99%

|T |
|D|

=

{
2
4

0.9% 99% 0.8% 99% 0.7% 99% 0.5% 100% 0.4% 100%
2.9% 97% 2.6% 97% 2.4% 98% 2.1% 98% 2.0% 98%

Type =

{
A
B

3.4% 97% 3.1% 97% 2.9% 97% 2.5% 97% 2.3% 97%
0.4% 100% 0.3% 100% 0.2% 100% 0.2% 100% 0.1% 100%

All 1.9% 98% 1.7% 98% 1.5% 99% 1.3% 99% 1.2% 99%
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In Table 5.4, we report in the different columns the relative average mean gap (Mean), the average
best gap 5(Best), and the average worst gap 6(Worst) for the CPLNS with 300 seconds of CPU time
limit (detailed results are available in Appendix C.2). The CPLNS seems to have a suitable stability
for testbed G1 as on average the difference between the best and the worst solution found over the
10 runs is a reduced 0.68%.

Table 5.4 – Aggregated computational results on testbed G1 for the CPLNS with a time limit of 300
seconds (10 runs)

Characteristic Mean Best Worst

|S| =
{

1
3

1.32% 1.04% 1.65%
1.12% 0.76% 1.50%

|T |
|D|

=

{
2
4

0.45% 0.25% 0.66%
2.00% 1.55% 2.50%

Type =

{
A
B

2.33% 1.75% 2.93%
0.12% 0.05% 0.22%

All 1.22% 0.90% 1.58%
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Figure 5.2 – Average computational results on testbed G1 for the CPLNS according to the time limit

5.4 Conclusions

In this chapter, we have proposed a mathematical formulation of the problem based on CP.
Computational results indicate that the CP model produces high quality solutions for small-sized
instances. However, it does not yield very good results, in general, for realistic instances. Its perfor-
mance actually seems to be affected by symmetry issues, especially on the technicians assignment.
To provide an alternative solution approach, we have developed a CPLNS. We have successfully
adapted some destroy operators to this new problem and proposed some new ones. Moreover, we
have designed several branching strategies to effectively repair solutions solving a CP model with
fixed variables. We have also introduced and demonstrated the relevance of a new acceptance cri-
terion combining elitism and Metropolis. If we fix a reasonable CPU time limit of 5 minutes, the
CPLNS shows on testbed G1 an average gap of 1.2% with respect to the optimal solutions if known,
or to the best upper bounds otherwise. It provides near optimal solutions when the availability of the
technicians is not binding, whereas, when this availability is scarce, the gap increases as the problem
size (number of tasks and number of time periods per day) grows. Nonetheless, the computational
results demonstrate the efficiency of the proposed method.

5. average of the best (minimal) gap found for each instance over 10 runs
6. average of the worst (maximal) gap found for each instance over 10 runs
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5.5 Industrial prototype for WPred

We present here our specific collaboration with the canadian company WPred. This company is
specialized in the supply of weather forecasts and, more specifically, on power production forecasts
for wind and solar energy. Wind farm operators as well as wind-turbines maintenance companies
are among the main customers of WPred. Indeed, this company proposes a calendar application to
help its customers to find the best windows of opportunity for their maintenance operations. This
application is essentially a communication tool where companies can manually input a maintenance
plan and work assignments with the help of a weather and production predictions feed. A study
by WPred estimates to 1% the increase of the CF using this online maintenance calendar overlayed
with a weather predictions feed rather than using Excel tables and post-it notes as it still sometimes
occurs today in this industry. Adding an optimization engine to this online calendar application is
aimed to assist maintenance schedulers in taking well-advised decisions. Indeed, when manually
scheduling the maintenance it is very difficult for them to take into account all the fined-grained
data. Moreover, the combinatorial nature of the problem makes it virtually impossible to build the
best maintenance plan according to what they consider relevant. As part of our collaboration with
WPred, we developed a prototype for this optimization tool.

Let us define how this optimization tool is going to interact with the online calendar application.
First of all, this interaction aims to take advantage of the knowledge of the schedulers about mainte-
nance scheduling. Indeed, they have a strong expertise and know some information that cannot be
embedded in the optimizer (e.g., preferences to assign specific work to some technicians, some tech-
nicians may work faster on particular tasks, adverse weather conditions may quickly happen in some
wind farms, there must be not too many holes in the resulting maintenance plan, the capacity of the
resulting planning to absorb delays is not adequate). Therefore, WPred and its customers think the
maintenance scheduling optimization as an iterative process. This process is summarized in Figure
5.3. First, the schedulers define the time horizon, the set of tasks that need to be scheduled and they
also set all the others parameters that are required by the optimization tool. Then, they launch the
optimization. When they stop it (possible at any time), one or multiple maintenance plans are pro-
posed to the schedulers according to the selected settings. If one of this plan satisfies the schedulers
then they still can slightly modify it before accepting it as the baseline maintenance plan. Otherwise,
they can fix the schedule of some tasks according to their own expertise, or they can refine their time
windows according to what they consider to be the best time periods to schedule the maintenance.
They can also assign technicians to some tasks while leaving them unscheduled. Then they call again
the optimization tool as long as they are not satisfied or they distinguish the opportunity to improve
the current plan (mainly based on production considerations).

The optimization tool needs to take into consideration this intended use as well as the restriction
imposed by WPred to work with free optimization software (WPred cannot afford any licensing
fees). This restricts a bit the solution methods we can implement (although they are nowadays more
and more free optimization software). We therefore came up with the idea to use the CPLNS. This
present multiple advantages. First, we can implement the CPLNS with Choco, a free (and open-
source) library that enables working with CP (notice that this library requires the use of the Java
programming language). Second, with an eye on the future, the method is flexible, in the sense that
new constraints can be easily added. Third, the method is clearly understandable by practitioners
with limited OR knowledge.

A short time has also been dedicated to the integration of the optimization tool in WPred existing
product. Figure 5.4 actually shows in the solid line boxes the work that we took care of.

As previously mentioned, the problem considered in this work for WPred slightly differs from
the one defined in Chapter 3. Let us now present the specificities taken into account in this particular
case. We list them below (for the sake of readability, we keep the same notations):

— In this new problem, we do not directly take into account skills for technicians. Actually, each
wind farm is assigned to a service point which is in charge of the maintenance operations. A
technician usually belongs to one service point (seen then as his or her home depot), but it may
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Figure 5.3 – Flow chart of the iterative process intended to schedule the maintenance

Figure 5.4 – A brief overview of the integration of the optimization tool into the online calendar
application fo WPred
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happen that some technicians belong to multiple service points. This still underlie the notion
of skills (clearly we create as many skill as there are combination of service points considered
for the technicians).

— Before the optimization, we allow technician-to-task (pre-)assignments. These assignments
may correspond to preferences or some hidden required skill(s). This translates into the fix-
ing of some variables y in the CP model. More specifically, we set yri = 1 if technician r should
be assigned to task i (regardless to its schedule). In that case, the task i cannot be postponed
anymore and can only be scheduled when the technician r is available.

— Wind farms may belong to different customers. According to the relative importance of these
customers, one should prioritize the maintenance operations of some them. This means to
avoid postponing these tasks and to prefer scheduling them when the wind is at its lowest.
The importance of each customer is summarized in a positive value from a finite predefined
set. The easiest way to take this specificity into account is by weighting the revenue and the
penalties in the objective function.

— The optimization tool may have to schedule known corrective maintenance operations even
if, currently, a pool of technicians is continuously kept to only deal with these unexpected
breakdowns. Indeed, if the wind is too low to produce electricity for many consecutive days,
there is a flexibility in the scheduling of these tasks. For a task i, we denote b̈wi = 1 if and only
if the task is a corrective task to perform on turbine w. We remove constraints (5.12) and (5.14)
and we add the following constraints to the CP model:

t ≤ Ci ⇒ t /∈ F dayw ∀w ∈ W,∀i ∈ I s.t. b̈wi = 1,∀t ∈ T , (5.19)t /∈ ⋃
i∈I|bwi=1

Ei

 ∧
 ∧
i∈I|b̈wi=1

(t > Ci)

⇒ t ∈ F dayw ∀w ∈ W,∀t ∈ T , (5.20)

(trestd + 1) ≤ Ci ⇒ d /∈ F restw ∀w ∈ W,∀i ∈ I, s.t. b̈wi = 1,∀d ∈ D, (5.21) ∧
i∈I|̃bwi=1

(
{trestd , trestd + 1} 6⊆ Ei

) ∧
 ∧
i∈I|b̈wi=1

(
trestd + 1 > Ci

)⇒ d ∈ F restw

∀w ∈ W,∀d ∈ D (5.22)

Constraints (5.19) and (5.21) state that a turbine w is unavailable during a time period as soon
as a corrective maintenance task to perform on w is still not completed. Constraints (5.20) and
(5.22) state that a turbine is available to produce electricity during a time period if and only if no
preventive tasks requiring its shutdown are scheduled at the same time and if all the corrective
tasks are completed.

For each technician r ∈ R, the vector ρr is set according to: i) training and/or personal holiday
times already planned, ii) some work to perform along with external companies and that is already
fixed in time, and iii) an assignment to a task started before the beginning of the planning horizon
(for the cases ii) and iii) the locations ltr for each unavailability time period t are set accordingly).
For each task i, the vector ϑ̈i is fixed according to the weather predictions feed of WPred, and the
maximal wind speed allowed for maintenance operations is fixed according to the customer owning
the wind farm li.

To assess the efficiency of the optimization tool, we completed along with WPred a short proof of
concept based on data generated by WPred (according to some private customer data). According to
these preliminary tests, the addition of the optimization engine to the online calendar is thought to
increase the CF by at least 1% with respect to the current situation. More extensive testing by their
clients is expected to start soon.

This work (more specifically the resulting product) has been presented at the Canadian Wind
Energy Association annual conference (CANWEA2015). This collaboration has met the expectations
of WPred.





Chapter 6

A branch-and-check approach to solve the
deterministic problem

The research reported in this chapter has been wrapped up on a journal article submitted in Computers
& Operations Research and currently under first round of review.

Froger A., Gendreau M., Mendoza J.E., Pinson E., and Rousseau L-M. (2016). A branch-and-check ap-
proach to solve a wind turbine maintenance scheduling problem. Under review.

Chapter 5 presents a heuristic method to tackle the wind turbine maintenance scheduling prob-
lem introduced in Chapter 3. We now aim to develop an efficient exact approach to that problem.
Chapter 4 shows that directly solving integer linear programming (ILP) formulations is usually com-
putationally intractable as these formulations are very large. Another way to address this complex
combinatorial problem may come from decomposition techniques that allow to decouple a large scale
problem into several problems that are easier to solve. This chapter therefore proposes an exact so-
lution method based on this idea. The problem is decomposed into a task scheduling problem and a
technician-to-task assignment sub-problem, and solved using a branch-and-check (B&C) approach.
More specifically, while solving the task scheduling problem, we discard, by means of cuts all along
the branch-and-bound tree, selections of plans that cannot be performed by the technicians. Section
6.1 describes the decomposition of the problem. In addition to the generic Benders cuts, Section 6.2
introduces problem-specific cuts. Section 6.3 discusses the general scheme of the method. Section
6.4 reports computational results on testbed G1. Finally, Section 6.5 presents our conclusions on the
efficiency of the method.

6.1 Problem decomposition

The exact approach presented in this chapter takes advantage of the intrinsic decomposition of
the problem into a task scheduling problem and a technician-to-task assignment sub-problem. The
task scheduling problem consists in selecting a plan for each task in order to maximize the difference
between revenue generated by the wind electricity production and the postponing penalties. In this
problem, technician considerations have been partially dropped. If we assume a fixed selection of
plans, the technician-to-task assignment sub-problem (hereafter occasionally referred to simply as the
sub-problem) checks if the technician requests can be satisfied while respecting the daily location-
based incompatibilities and coping with individual resource availability time periods. The aim of
our approach is thus to design a coordination procedure between these two problems. Note that
an optimal solution to the scheduling problem leading to a feasible technician-to-task assignment
sub-problem is optimal for the whole problem. The ILP formulations (presented below) of these two
problems are essentially inspired by formulations [P2] and [P3] presented in Chapter 4 (we refer the
reader to this chapter for the definition of the variables and the explanation of the constraints).
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First, let us introduce the scheduling problem. An initial ILP formulation [ShP1] of this problem
reads:

[ShP1] max
∑
w∈W

(∑
t∈T

gtwf
t
w +

∑
d∈D

g̃dwf̃
d
w

)
−
∑
p∈P

opxp (6.1)

subject to:∑
p∈Pi

xp = 1 ∀i ∈ I, (6.2)

∑
p∈Pi

atpxp ≤ ϑtip ϑ̈
t
ip ∀i ∈ I,∀t ∈ T , (6.3)

∑
i∈B

∑
p∈Pi

atpxp ≤ 1 ∀B ∈ ov (I) ,∀t ∈ T , (6.4)

f tw +
∑
p∈Pi

bwpa
t
pxp ≤ 1 ∀w ∈ W,∀i ∈ I,∀t ∈ T , (6.5)

f̃dw +
∑
p∈Pi

b̃wpã
d
pxp ≤ 1 ∀w ∈ W,∀i ∈ I,∀d ∈ D, (6.6)

∑
i∈I|si∈S̄

∑
p∈Pi

atpqpxp ≤ |RtS̄ | ∀t ∈ T ,∀S̄ ⊆ S, (6.7)

xp ∈ {0, 1} ∀p ∈ P, (6.8)

f tw ∈ {0, 1} ∀w ∈ W,∀t ∈ T , (6.9)

f̃dw ∈ {0, 1} ∀w ∈ W,∀d ∈ D, (6.10)

Let us now assume a fixed selection (x̄p)p∈P of plans (hereafter referred to simply as x̄) solution
to [ShP1]. An ILP formulation [SP2(x̄)] of the technician-to-task assignment sub-problem reads:

[SP2(x̄)] min
∑
h∈H

θh (6.11)

subject to:∑
r∈Rh

yrh + θh =
∑
p∈Ph

qpx̄p ∀h ∈ H, (6.12)

∑
h∈H

s.t. r∈Rh

yrh ≤ 1 ∀r ∈ R,∀H ∈ Cmax (G) , (6.13)

θh ≥ 0 ∀h ∈ H, (6.14)
yrh ∈ {0, 1} ∀h ∈ H,∀r ∈ Rh (6.15)

We introduce slack variables (θh)h∈H for the technician requirements constraints (6.12). The un-
availability time periods of each technician are respected by definition of the set Rh. The clique
constraints (6.13) ensure that the technician assignments comply with the daily location-based in-
compatibilities. More specifically, set Cmax (G) contains to all the maximal cliques in a graphGwhere
each vertex represents a pattern inH, and there exists an edge between two vertices if the underlying
patterns h and h′ cannot be visited by the same technician. More precisely, this edge exists if the
following clause holds:

(Sh′ ≤ Ch ∧ Sh ≤ Ch′) ∨
(
(∃d ∈ D, Td ∩ {Sh, ..., Ch} 6= ∅ ∧ Td ∩ {Sh′ , ..., Ch′} 6= ∅) ∧ σlhlh′ = 0

)
One can visualize graphG as an extended version of an interval graph. To define the sub-problem

for a given solution x̄ (and therefore to compute all the maximal cliques), we only need to consider
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the patterns of setH(x̄) = {h ∈ H |
∑

p∈Ph qpx̄p > 0}. This allows to significantly reduce the number
of variables in [SP2(x̄)] and the number of clique constraints (6.13) as we consider a sub-graph of G.

It is worth noting that the technician-to-task assignment sub-problem is NP-complete. This can
be proved by its equivalence to a L-coloring problem. Nonetheless, under certain assumptions, the
sub-problem becomes solvable in polynomial time. For the sake of clarity, we do not present any
details here. We refer the reader to Section 6.6 at the end of this chapter for a thorough discussion on
the complexity of the sub-problem.

Notice also that the cumulative scheduling constraints (6.7) in [ShP1] help to speed-up the con-
vergence of a coordination procedure between the two problems. Indeed, solving the task scheduling
problem without any information regarding the availability of the technicians would result in selec-
tion of plans that would unlikely lead to a feasible technician-to-task assignment sub-problem.

It is fairly easy to observe that [SP2(x̄)] always admits a feasible solution thanks to the slack
variables (θh)h∈H. However, we can conclude that the technician-to-task assignment sub-problem is
feasible only if the value of the optimal solution to [SP2(x̄)] is equal to zero.

Let [SPLR2 (x̄)] be the linear relaxation of formulation [SP2(x̄)]. More precisely, constraints (6.15)
of [SP2(x̄)] are substituted in [SPLR2 (x̄)] by the following constraints:

yrh ≤ 1 ∀h ∈ H,∀r ∈ Rh, (6.16)
yrh ≥ 0 ∀h ∈ H,∀r ∈ Rh, (6.17)

Because the constraint matrix of [SPLR2 (x̄)] is not totally unimodular, integrity constraints (6.15)
on variables yrh cannot be relaxed while ensuring they will be satisfied by any optimal solution to
problem [SP2(x̄)].

When the cost of a solution to [SP2(x̄)] is strictly positive (i.e., the technician-to-task assignment
sub-problem is infeasible), we therefore use a combinatorial Benders cut as introduced in Section 2.3.
Using the binary variables (xp)p∈P , we can define such a cut as follows:

∑
p∈P|x̄p=0

xp +
∑

p∈P|x̄p=1

(1− xp) ≥ 1 (6.18)

Clearly, this cut states that at least one of the variables related to the selection of plans in the
scheduling problem [ShP1] must change value with respect to x̄. It is also known as a no-good cut.
Observing that a solution contains always |I| non-zero variables xp since exactly one plan has to be
selected per task, we can then replace inequality (6.18) by the following cover inequality (denoting
P(x̄) = {p ∈ P|x̄p = 1}):

∑
p∈P(x̄)

xp ≤ |I| − 1, (6.19)

Hereafter, we refer to the combinatorial Benders cuts (6.19) as CB cuts.
Since the feasible region of our problem is bounded, the number of integer points satisfying all the

constraints of [ShP1] is finite and, thus, the same holds for the number of CB cuts. Let us denote F̄ the
set of all solutions x̄ to [ShP1] that lead to an infeasible technician-to-task assignment sub-problem.
The whole maintenance scheduling problem can therefore be reformulated as the following master
problem [P ]:

[P ] max
∑
w∈W

(∑
t∈T

gtwf
t
w +

∑
d∈D

g̃dwf̃
d
w

)
−
∑
p∈P

opxp

subject to:
(6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10)∑
p∈P(x̄)

xp ≤ |I| − 1 ∀x̄ ∈ F̄ (6.19)
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In the remainder of the document, we denote [RMP ] a restricted master problem of problem [P ]
that contains none or only a small subset of constraints (6.19).

6.2 Cut generation procedure

For every solution x̄ to the restricted master problem [RMP ], we need to check the feasibility of
the technician-to-task assignment sub-problem. We can directly solve [SP2(x̄)] to optimality using a
commercial solver. Nevertheless, this approach has two major drawbacks. First, since [SP2(x̄)] is a
pure ILP model, solving the model may be too time-consuming. Second, if the cost of the solution is
strictly positive, the resulting CB cut (6.19) may be too weak because it does not identify the causes of
the infeasibility of the technician-to-task assignment sub-problem. Indeed, the infeasibility is likely
to be caused by only a subset of the selected plans. To overcome these drawbacks and to build up
stronger cuts, we propose 3 different cut generation strategies based on different approximations to
the sub-problem.

6.2.1 Benders feasibility cuts

First, we can generate cuts based on solving the linear relaxation [SPLR2 (x̄)] of the formulation
[SP2(x̄)]. Since a solution x̄ to [RMP ] is feasible for the whole problem only if the optimum of
[SPLR2 (x̄)] is zero, x̄ is feasible for the whole problem only if the optimum of the dual [DSPLR2 (x̄)] of
[SPLR2 (x̄)] is less or equal to zero (duality theorem). Let us associate the dual variables ιh, %Hr , and
ϕrh to constraints (6.12),(6.13), and (6.16), respectively. The dual [DSPLR2 (x̄)] of [SPLR2 (x̄)] reads:

[DSPLR2 (x̄)] max Θx̄(ι, %, ϕ) =
∑
h∈H

∑
p∈Ph

qpx̄pιh +
∑
r∈Rh

ϕrh

+
∑
r∈R

∑
H∈C(H)

s.t. r∈
⋃
h∈H

Rh

%Hr (6.20)

subject to:

ιh + ϕrh +
∑

H∈C(H)
s.t. h∈H

%Hr ≤ 0 ∀h ∈ H,∀r ∈ Rh, (6.21)

ιh ≤ 1 ∀h ∈ H, (6.22)
ϕrh ≤ 0, ∀h ∈ H,∀r ∈ Rh, (6.23)

%Hr ≤ 0 ∀H ∈ C (H) ,∀r ∈ R s.t. r ∈
⋃
h∈H

Rh (6.24)

Let D be the polyhedron defined by the constraints of the dual problem [DSPLR2 (x̄)]. Since
[SPLR2 (x̄)] always admits a feasible solution, the dual problem [DSPLR2 (x̄)] is bounded and achieves
its optimum on an extreme point of D. Denoting η1, η2, ..., ηn (with ηk = (ιk, %k, ϕk)) the finite set
of extreme points of D, by weak duality theorem, the following inequalities must hold to ensure the
existence of a zero value solution to [SPLR2 (x)]:

Θx(ιk, %k, ϕk) ≤ 0 ∀k ∈ {1, ..., n} (6.25)

Constraints (6.25) are the classical Benders feasibility cuts (hereafter referred to as BF cuts). Since
a solution to [SPLR2 (x̄)] is not guaranteed to be a solution to [SP2(x̄)], a cut generation algorithm
responsible for identifying violated constraints (6.25) will therefore not, in general, retrieve a feasible
solution to [P ]. Nevertheless, identifying violated BF cuts may help to generate less CB cuts. The
advantages are that: i) BF cuts are faster to compute than CB cuts since we only need to solve a
continuous linear model and ii) they may discard more solutions than just the current solution to the
restricted master problem [RMP ]. One persistent drawback of BF cuts is that they are generic, and
therefore likely to be weak.
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The efficiency of a coordination procedure between the two problems relies primarily on finding
reduced subsets of plans causing the infeasibility of the technician-to-task assignment sub-problem.
In the following subsections, we then describe two different problem-specific procedures to find these
reduced subsets and we show how we build up stronger problem-specific cuts.

First, we introduce the following notation to refer to the constraints of the sub-problem:

[C1] The technician requirements for each task have to be fulfilled by technicians mastering the
desired skill.

[C2] A technician cannot perform more than one task during a given time period.

[C3] The technician assignments must not violate the daily location-based incompatibilities.

[C4] Each technician has an availability schedule which must be respected.

[C5] A technician assigned to a task has to work on it from the beginning to the end, even if the task
overlaps some rest time periods.

Obviously, the sub-problem is feasible if and only if constraints [C1], [C2], [C3], [C4], and [C5] are all
satisfied.

Second, to simplify the discussion, we introduce the concept of jobs that, hereafter, simply refer
either to patterns or to technician unavailability time periods. We define a job j with the following
notation (lj , Sj , Cj , sj ,Rj , qj) where lj denotes the location where j is executed, Sj its starting time
period, Cj its completion time period, Sj a set of skills such that a technician should master at least
one of these skills in order to perform j,Rj the set of technicians who can perform j, and qj the num-
ber of technicians required for executing job j. For every unavailability time period of a technician
r ∈ R occurring at a time period t (t ∈ T such that ρtr = 1), we build an artificial job defined by
the vector

(
ltr, t, t,Sr, {r}, 1

)
where Sr = {s ∈ S|ζrs = 1} is the set of skills mastered by technician

r. If a technician is unavailable during contiguous time periods and if he or she is assigned each
time at the same location (with regard to ltr), we associate only one job for his or her unavailability
time periods. We denote as JR the set of jobs associated with technician unavailability time peri-
ods. We also associate with each solution x̄ to the restricted master problem [RMP ] a set J (x̄) of
jobs. We build this set following two steps. First, we add to J (x̄) all the jobs of JR. Then, for every
pattern h ∈ H such that qh(x̄) > 0 (with qh(x̄) =

∑
p∈Ph qpx̄p), we create a job defined by the vector

(lh, Sh, Ch, {sh},Rh, qh(x̄)). Hereafter, we denote as JH(x̄) the set of jobs associated with patterns.
We also define the parameter hj as the pattern associated with job j ∈ JH(x̄).

6.2.2 Maximum cardinality b-matching cuts

In this section, we aim to extend the idea used to generate constraints (6.7) by partially taking
into account the constraints [C3] and [C5] while fully taking into account the constraints [C1], [C2],
and [C4]. More precisely, when building the potential assignments of the technicians to the tasks,
we consider the unavailability time periods of the technicians and the restriction of not switching
technicians during the execution of a task. We then show that the sub-problem can be approximated
solving a series of maximum cardinality b-matching problems (as many as the length of the time
horizon).

First, for a fixed time period t ∈ T of the time horizon and for a given solution x̄ to the restricted
master problem [RMP ], we introduce an undirected graph qGt(x̄) composed of:

— a set of vertices qVt where qVt = qVtJ ∪ qVtR
— qVtJ : for each job j ∈ J (x̄) such that Sj ≤ t ≤ Cj , we add a vertex in qVtJ . Parameter

jν denotes the job associated with a vertex ν ∈ qVtJ . Conversely νj denotes the vertex
associated with job j.

— qVtR: a vertex of qVtR represents a technician r ∈ R during time period t. We denote rv the
technician associated with a vertex ν ∈ qVtR.

— a set of edges qU t defined such that ∀ν1 ∈ qVtJ ,∀ν2 ∈ qVtR: (ν1, ν2) ∈ qU t ⇔ rν2 ∈ Rjν1
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We now formally describe in Proposition 6.2.1 and Corollary 6.2.1 the link between the technician-
to-task assignment sub-problem and a series of maximum cardinality b-matching problems defined
in the graphs previously introduced.

Proposition 6.2.1. Let x̄ be a solution to the restricted master problem [RMP ] and assume that constraints
[C3] and [C5] are relaxed. The technician-to-task assignment sub-problem for x̄ is equivalent to |T | maximum
cardinality b-matching problems in graph qGt(x̄) where for each time period t ∈ T function b is defined by
bν = qjν for every vertex ν ∈ qVtJ and by bν = 1 for every vertex ν ∈ qVtR.

Proof. Notice that since constraints [C3] and [C5] are relaxed, the sub-problem can be independently solved
for each time period of the planning horizon.

Assuming that during each time period t we can find a maximum cardinality b-matching in each of the
graphs Gt(x̄) with a cardinality equal to

∑
j∈J (x̄) 1{Sj≤t≤Cj}qj , we can immediately build a solution to the

technician-to-task assignment sub-problem from the selected edges by making the underlying assignments.
Assume now that we know a feasible solution to the technician-to-task assignment sub-problem. For each

time period t, we can build a b-matching in qGt(x̄) from the working schedule of each technician during this
specific time period. If a technician r ∈ R is assigned to a pattern h ∈ H during time period t, we select the edge
(ν1, ν2) ∈ U where jν1

= jh (jh denoting the job associated with the pattern h) and rν2
= r. This construction

ensures the building of a b-matching. Moreover, since all the requirements are fulfilled, this b-matching has
the maximum possible cardinality.

Corollary 6.2.1. If we assume that constraints [C3] and [C5] are relaxed, the technician-to-task assignment
sub-problem is feasible for a solution x̄ to the restricted master problem [RMP ] if and only if the maximum
cardinality b-matching in graph qGt(x̄) for each time period t ∈ T contains

∑
j∈J (x̄)

1{Sj≤t≤Cj}qj edges of qU t.

Proof. This is a direct consequence of Proposition 6.2.1.

Let us assume a fixed time period t. Solving the maximum cardinality b-matching in qGt(x̄) from
qVtJ to qVtR is equivalent to solving a maximum flow problem in a slightly modified version of this
graph. We use this equivalence to derive new cuts. We denote Ĝt(x̄) this new directed graph and V̂t

and Û t the new sets of vertices and arcs. We build graph Ĝt(x̄) as follows:

1. We define V̂t as V̂t = qVt ∪ {ωt, ωt} where the two new vertices ωt and ωt represent the source
and the sink vertices.

2. For every directed arc (ν1, ν2) ∈ Û t, we denote as γmaxν1ν2
its maximal capacity and as fν1ν2 the

number of units of flow on the arc. We formally define Û t as follows:

— ∀ν1 ∈ qVtJ , ∀ν2 ∈ qVtR: (ν1, ν2) ∈ Û t ⇔ rν2 ∈ Rjν1 and γmaxν1ν2
= +∞

— ∀ν ∈ qVtJ : (ωt, ν) ∈ Û t and γmax
ωtν

= qjν

— ∀ν ∈ qVtR: (ν, ωt) ∈ Û t and γmaxνωt = 1

Let us denote f∗(t, x̄) the value of the maximum flow in Ĝt(x̄). If f∗(t, x̄) <
∑

ν∈qVtJ
qjν then the

jobs of J (x̄) overlapping t cannot be fully scheduled during this time period. We therefore have to
to discard the solution x̄. We first compute the minimum flow cut in graph Ĝt(x̄) (see Figure 6.1).
The minimum flow cut can be described by the sets V̂t(+) and V̂t(−) that are composed as follows:
V̂t(+) = {ωt} ∪ qVtJ (+) ∪ qVtR(+) and V̂t(−) = qVtJ (−) ∪ qVtR(−) ∪ {ωt} with qVtJ = qVtJ (−) ∪ qVtJ (+) and
qVtR = qVtR(−) ∪ qVtR(+).

Applying the max-flow/min-cut theorem on graph Ĝt(x̄), we can state that:

f∗(t, x̄) =
∑

ν∈qVtJ (−)

γmaxωtv +
∑

v∈qVtR(+)

γmaxvωt (6.26)
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Figure 6.1 – Minimum cut in graph Ĝt(x̄)

If we replace the capacity of each arc by its value, we obtain:

f∗(t, x̄) =
∑

ν∈qVtJ (−)

qjν + |qVtR(+)| (6.27)

The valid minimum flow cut (that invalidates x̄) reads:∑
ν∈qVtJ (−)

qjν + |qVtR(+)| ≥
∑
ν∈qVtJ

qjν (6.28)

which we can reformulate as follows: ∑
ν∈qVtJ (+)

qjν ≤ |qVtR(+)| (6.29)

Note that inequality (6.29) leads to the following valid constraint (hereafter referred to as a maxi-
mum cardinality b-matching (MCbM) cut) that eliminates the solution x̄ from the feasible region of the
restricted master problem [RMP ]:

∑
j∈JH(x̄)

s.t. νj∈qVtJ (+)

∑
p∈Phj

qpxp ≤ |qVtR(+)| −
∑
j∈JR

s.t. νj∈qVtJ (+)

qj (6.30)

We now demonstrate how in some cases it is possible to tighten the previous MCbM cut by rea-
soning about its composition. First, note that |qVtR(+)| 6= |R| because at least one of the cumulative
constraints (6.7) would be unsatisfied otherwise. This also implies that |qVtR(−)| 6= 0. By definition
of the max-flow/min-cut, the technicians associated with the set qVtR(−) are either not connected to
any other vertices or they are assigned to the jobs j ∈ J (x̄) such that νj ∈ qVtJ (−), but they cannot
be assigned to any of the jobs j such that νj ∈ qVtJ (+). The latter means that either these technicians
do not have the required skills to perform those jobs or they have at least one unavailability time
period that prevent them to be assigned to those jobs. We can deduce that inequality (6.29) is also
valid for every potential job that overlaps time period t and that cannot be performed by any of the
technicians associated with a vertex of set qVtR(−). The MCbM cut (6.30) can be rewritten as:

∑
h∈H

Ψt
qVtR(−)

(h)
∑
p∈Ph

qpxp ≤ |qVtR(+)| −
∑
j∈JR

s.t. νj∈qVtJ (+)

qj (6.31)

where Ψt
qVtR(−)

(h) is equal to 1 if and only if pattern h overlaps time period t and none of the techni-

cians associated with the set VtR(−) can be assigned to h.
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Last but not least, it is noteworthy that the maximum cardinality b-matching problem has only to
be solved for every time period t where at least one technician cannot be assigned to a job because of
an unavailability time period occurring at a time period other than t. Otherwise, constraints (6.7) are
necessary and sufficient condition of the existence of a b-matchings with the desired cardinality.

6.2.3 Maximum-weight clique cuts

Another strategy to check that a given solution x̄ to the restricted master problem [RMP ] leads
to a feasible sub-problem relies on proving that it is impossible to assign the technicians to the tasks
without violating the location-based incompatibilities. Since these constraints are defined by day, this
search decomposes into |D| independent searches in which for each day d ∈ D we only consider the
jobs of J (x̄) that overlap d. Moreover, since the daily location-based incompatibilities are checked
individually for each technician, they impact the number of available technicians at each location.
During the search, it is therefore necessary to take into account the skills required to perform the
different jobs. For a fixed subset S̄ ⊆ S , we only consider the jobs j ∈ J (x̄) such that Sj ∩ S̄ 6= ∅ and
the technicians mastering at least one skill of this subset. This procedure increases the likelihood of
finding violated daily location-based incompatibilities if the current solution to the restricted master
problem does not lead to a feasible technician-to-task assignment sub-problem. This is particularly
true when the ratio between the requirements and the number of available technicians varies widely
across skills.

To look for violated constraints, we solve for each day d and for each subset S̄ ⊆ S a maximum-
weight clique problem in an undirected graph G̃dS̄(x̄). The graph G̃dS̄(x̄) is composed of:

— a set of vertices ṼdS̄ such that each vertex maps a job j of set J (x̄) that i) overlaps day d (i.e.,
Td ∩ {Sj , ..., Cj} 6= ∅) and ii) requires at least one of the skill in S̄ (i.e., Sj ∩ S̄ 6= ∅). We denote
jν the job associated with vertex ν ∈ ṼdS̄ . We associate with every vertex ν a weight equal to the
number of technicians qjν required to perform job jν .

— a set of edges ŨdS̄ where for all vertices ν1, ν2 ∈ ṼdS̄ :

(ν1, ν2) ∈ ŨdS̄ ⇔ ν1 6= ν2 ∧
((
Sjν2 ≤ Cjν1 ∧ Sjν1 ≤ Cjν2

)
∨ σljν1 ljν2

= 0
)

There exists an edge between two vertices ν1 and ν2 in G̃dS̄(x̄) if and only if a technician cannot
be assigned to both jobs jν1 and jν2 with regard to constraints [C2] and [C3]. G̃dS̄(x̄) is a kind
of sub-graph of graph G used to derive the clique constraints (6.13) in formulation [SP2(x̄)].
The only difference comes from the insertion of jobs related to technician unavailability time
periods.

Proposition 6.2.2 formally describes the link between the resolution of the technician-to-task as-
signment sub-problem and the resolution of maximum-weight clique problems.

Proposition 6.2.2. The technician-to-task assignment sub-problem is feasible for a solution x̄ to the restricted
master problem [RMP ] if for each subset S̄ ⊆ S of skills and for each day d ∈ D, the maximum weight of a
clique in graph G̃dS̄(x̄) is less than or equal to |RS̄ |.

Proof. For a fixed day d and a fixed subset of skills S̄, suppose by contradiction that the maximum weight of a
clique in graph G̃dS̄(x̄) is strictly greater than |RS̄ |. By construction of G̃dS̄(x̄), a technician cannot perform more
than one job among the jobs whose vertices belong to that clique. Since we need more technicians than those
actually available, the technician-to-task assignment sub-problem is infeasible.

Let us now assume a fixed day d ∈ D and a fixed subset of skills S̄. Let us also denote CdS̄ (x̄) the
set of vertices that belong to the maximum-weight clique of graph G̃dS̄(x̄). If the total weight of the
vertices in G̃dS̄(x̄) is strictly greater than |RS̄ |, the constraint that eliminates x̄ is:

∑
ν∈CdS̄(x̄)

qjν ≤ |RS̄ | (6.32)
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The valid constraint (hereafter referred to as maximum-weight clique (MWC) cut) that discards a
solution x̄ to the restricted master problem [RMP ] is therefore:

∑
j∈JH(x̄)

s.t. νj∈CdS̄(x̄)

∑
p∈Phj

qpxp ≤ |RS̄ | −
∑
j∈JR

s.t. νj∈CdS̄(x̄)

qj (6.33)

This cut simply states that the number of technicians required by the jobs associated with the vertices
of the clique has to be lower than the number of technicians mastering at least a skill in S̄ . We derived
this cut not only for the maximum-weight clique but also for all the cliques that have a weight greater
than |RS̄ |.

It is possible to tighten the MWC cut (6.33) by adding some additional plans on its left side. More
precisely, we proceed as follows. First, we consider the sub-graph Gsub(x̄) of graph G (graph G is
used to derive the clique inequalities in the formulation [SP2(x̄)]) that includes a vertex for pattern
h ∈ H if: i) h ∈ H \ H(x̄) (i.e. qh(x̄) = 0), ii) h overlaps day d, iii) sh ∈ S̄, and iv) in the case that
a technician is assigned to h, he or she cannot be assigned to any job involved in CdS̄ (x̄) with regard
to constraints [C2] and [C3]. We then solve a maximum clique problem in sub-graph Gsub(x̄). Let us
denoteH

[
CdS̄ (x̄)

]
the set of patterns associated with the vertices that are part of the maximum clique

of Gsub(x̄). Observing that a technician cannot be assigned to more than one of the jobs in CdS̄ (x̄) or
one of the patterns ofH

[
CdS̄ (x̄)

]
, we can rewrite the MWC cut (6.33) as follows:

∑
j∈JH(x̄)

s.t. νj∈CdS̄(x̄)

∑
p∈Phj

qpxp +
∑

h∈H[CdS̄(x̄)]

∑
p∈Ph

qpxp ≤ |RS̄ | −
∑
j∈JR

s.t. νj∈CdS̄(x̄)

qj (6.34)

For efficiency consideration, we reduce the size of the sub-graph Gsub(x̄) observing that it is suffi-
cient to only consider one vertex for all the patterns that satisfy two conditions: same location and
overlapping of the same portion of the day. We point out that this remark also applies for graph
G̃dS̄(x̄).

Last but not least, to avoid overloading our algorithm, we solve the maximum-weight clique
problem only if: i) the sum of the weights of the vertices is greater than the number of available
technicians and ii) there exists during a particular day at least two jobs that do not overlap and
are executed at incompatible locations. Otherwise, the cumulative constraints (6.7) ensure for each
day and for each subset of skills the non-existence of a clique with a weight strictly greater than
the number of available technicians. We use the algorithms introduced in (Östergård, 2001) and
(Östergård, 2002) for solving the maximum clique and maximum-weight clique problems.

Since the approximations to the sub-problem described in Section 6.2.2 and in Section 6.2.3 can
be decomposed into a series of small problems, we can potentially identify multiple subsets of plans
that cause the infeasibility of the technician-to-task assignment sub-problem. This usually leads to the
generation of multiple cuts, which is known to significantly improve the efficiency of a cut generation
process. We can also think to run the resolution of those small problems in parallel.

6.2.4 Illustrative examples

For the sake of clarity, we provide here three examples to illustrate how we build the cuts pre-
viously described. For the approximations described in 6.2.2 and 6.2.3, the first two examples show
that there is no strict dominance of one over the other one (i.e., neither of the MCbM and MWC
cuts are the strongest cuts). The third example is meant to illustrate a case where the two previ-
ous approximations do not find any cut although the technician-to-task assignment sub-problem is
infeasible.
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Example 1

This example (referred to as Example 1) illustrates thoroughly how we build the different cuts
previously described.

We consider in this example a fixed time horizon made up of 8 time periods of identical length
(T = {1, 2, ..., 8}) and partitioned into two days: time periods 1 to 4 belong to day 1 (i.e., T1 =
{1, 2, 3, 4}) and time periods 5 to 8 to day 2 (i.e., T2 = {5, 6, 7, 8}). We have three different locations
denoted as l1, l2, and l3 (i.e., L = {l1, l2, l3}). Locations l2 and l3 cannot be visited by a technician
within the same day (i.e., σl2l3 = 0). We do not define any other daily location-based incompatibili-
ties. We consider 4 tasks to schedule (I = {A,B,C,D}), 3 technicians (R = {r1, r2, r3}), and 3 skills
(S = {s1, s2, s3}). The characteristics of the tasks and the technicians are defined in Table 6.1a and
in Table 6.1b. For the sake of simplicity, we do not explicitly introduce all the parameters defining
an instance of the problem, we introduce only those which are useful for the illustration of the cut
generation process.

Table 6.2 shows a given solution to the restricted master problem [RMP ] in which no cuts have
been previously added. According to the selected plans, the table reports the starting and completion
time periods of each task as well as the number of technicians required to perform every task. We
refer to this solution using symbol x̄. Note that x̄ satisfies the cumulative constraints (6.7) of the
restricted master problem 1.

Table 6.1 – Data of Example 1.

I li si
A l1 s1

B l2 s1

C l1 s2

D l3 s3

(a) Characteristics of the tasks.

R {s ∈ S | ζrs = 1} unavailability time periods
r1 {s1} at location l3 during time period 8
r2 {s1, s2, s3} –
r3 {s1, s3} –

(b) Characteristics of the technicians.

Table 6.2 – A solution to the restricted master problem for Example 1.

I Selected plan p Sp Cp qp Rp
A pA 2 5 1 {r1, r2, r3}
B pB 4 7 2 {r2, r3}
C pC 7 8 1 {r2}
D pD 1 3 2 {r2, r3}

In the following, symbol ur1 refers to the job associated with the unavailability time period of
technician r1. Observing that ur1 and pB both overlaps day 2 and are defined at two incompatible
locations l2 and l3, we can deduce that technician r1 cannot be assigned to plan pB (although he or
she has the required skill).

Note that in solution x̄ we have as many patterns as selected plans, and therefore we introduce
as many jobs as plans. Job jA refers then to plan pA, job jB refers then to plan pB , and so on.

First, let us look at the potential generation of MCbM cuts. Figure 6.2 describes graph qGt(x̄) for
each time period of the planning horizon for Example 1.

For time period t = 7, the value of the maximum flow problem in graph Ĝ7(x̄) is equal to 2 and so
is the maximum cardinality of a b-matching in G7(x̄). Since qjB + qjC = 3, x̄ is an infeasible solution
to the whole problem. We then compute the minimum cut in graph Ĝ7(x̄) (see Figure 6.3).

From the general expression (6.30), we build the MCbM cut (6.35).

2xpB + 1xpC ≤ 2 (6.35)

1. For instance, at time period 7 we have seven cumulative constraints. Plugging in the values of the vari-
ables, we obtain 2 ≤ 3, 1 ≤ 1, 0 ≤ 2, 3 ≤ 3, 2 ≤ 3, 1 ≤ 2, 3 ≤ 3 when S̄ is respectively equal to
{s1},{s2},{s3},{s1, s2},{s1, s3},{s2, s3},{s1, s2, s3}
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NB: in bold a solution to the maximum cardinality b-matching problem, a rectangular dash-line box means that no
b-matching with the desired cardinality can be found

Figure 6.2 – Structure of graphs qGt(x̄) for Example 1 and different values of t ∈ T .

Figure 6.3 – Minimum cut in graph Ĝ7(x̄) for Example 1.

Second, let us look at the potential generation of MWC cuts. For illustration purposes, Figure 6.4
depicts G̃dS̄(x̄) for every day d ∈ {day 1, day 2} and every subset S̄ ⊆ S of skills.

NB: in bold a solution to the maximum-weight clique problem, a rectangular dash-line box means that the weight of
this clique is strictly greater than the maximum allowed

Figure 6.4 – Structure of G̃dS̄(x̄) for Example 1

Looking at Figure 6.4, one can see that the maximum-weight clique is strictly greater than the
number of available technicians in 4 different cases. From the general expression (6.33), we build the
MWC cuts (6.36) and (6.37).
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1xpA + 2xpB + 1xpC ≤ 3 (6.36)
2xpB + 1xpC ≤ 2 (6.37)

The cut (6.36) is built from the clique computed either in G̃1
{s1,s2,s3}(x̄) or in G̃1

{s1,s3}(x̄). In the same

way, the cut (6.37) is built from the clique computed either in G̃2
{s1,s2,s3}(x̄) or in G̃2

{s1,s2}(x̄).

Third, let us solve the formulation [SPLR2 (x̄)] with a commercial solver. Since its optimum value
is strictly greater than zero (equal to 2), we identify the violated BF cut (6.38).

2xpB + xpC + 2xpD ≤ 3 (6.38)

Fourth, let us solve the ILP formulation [SP2(x̄)]. As with the linear relaxation, the optimum
value is equal to 2. We then generate the CB cut (6.39).

xpA + xpB + xpC + xpD ≤ 3 (6.39)

Table 6.3 reports the infeasible sections of plans discarded by the MCbM, MWC, BF, and CB cuts.
We denote each selection of plans using a four dimensional vector where the first, second, third
and fourth coordinate refers to the plan selected for task A, task B, task C, and task D, respectively.
Symbol "..." simply means that the infeasibility of the plans selection holds for any executing plan
selected at the corresponding coordinate.

Table 6.3 – The infeasible plans selections discarded in Example 1.

Plans selection CB BF MCbM MWC
(pA, pB , pC , pD) X X X X
(pA, pB , pC , ...) X X
(pA, pB , ..., pD) X X
(..., pB , pC , pD) X X X
(..., pB , pC , ...) X X
(..., pB , ..., pD) X X

For the cut (6.35), notice that we can build a stronger MCbM cut of type (6.31) as described in
Section 6.2.2. Indeed, we can add to the left hand side of the cut (6.35) all the patterns overlapping
time period 7 to which technician r1 cannot be assigned (this is the only technician associated with a
vertex of set qVtR(−)).

For the MWC cuts (6.36) and (6.37), we can build stronger MWC cuts of type (6.34) as described in
Section 6.2.3. To strengthen MWC cut (6.36), we consider the sub-graphGsub(x̄) ofG that includes the
vertices linked to: i) patterns at location l1 overlapping time periods 3 and 4, ii) patterns at location
l2 overlapping time periods 4, and iii) patterns at location l3 overlapping at least time period 2, 3, or
4. Indeed, one technician cannot be assigned to any of the previous patterns if he or she is assigned
to pattern pA, pB or pD. We then solve a maximum clique problem in this sub-graph, and we add
to the left hand side of the MWC cut (6.36) all the plans associated with the patterns involved in the
maximum clique. We proceed on a similar way for cut (6.37) by considering the sub-graph Gsub(x̄)
of G that includes the vertices linked to: i) patterns at location l1 overlapping time periods 7 and
8, ii) patterns at location l2 overlapping at least time period 7 or 8, and iii) patterns at location l3
overlapping at least time period 8. Indeed, one technician cannot be assigned to any of the previous
patterns if he or she is assigned to pattern pB , pD or to the job ur1 . Again, we solve a maximum
clique problem in this sub-graph, and we add to the left hand side of the MWC cut (6.37) all the plans
associated with the patterns involved in the maximum clique. In this example, it is worth noting
that when building the sub-graph, we do not pay a special attention to the skill associated with the
patterns because the MWC cuts (6.36) and (6.37) have been computed with S̄ = S . Otherwise, only
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the patterns having their skill in S̄ can be added to the left hand side of the cuts. (since the right hand
side of the cuts is based on the total number of technicians mastering at least one skill of S̄).

Example 1 illustrates a case where the approximation described in Section 6.2.3 dominates the ap-
proximation described in Section 6.2.2 (i.e., a case where the MWC cuts are stronger than the MCbM
cuts)

Example 2

We introduce now a second example (referred to as Example 2) to illustrate a case where the
approximation described in Section 6.2.2 dominates the approximation described in Section 6.2.3
(i.e., a case where the MCbM cuts are stronger than the MWC cuts)

In this example, we consider a fixed time horizon made up of 4 time periods (T = {1, 2, 3, 4}) and
partitioned into two days: time periods 1 and 2 belongs to day 1 and time periods 3 and 4 belongs
to day 2. We consider 1 location (L = {l}), 2 tasks to schedule (I = {E,F}), 1 skill (S = {s}),
and 2 technicians (R = {r4, r5}). The technician r2 is unavailable during time periods 1 and 3. The
characteristics of the tasks and the technicians are summarized in Table 6.4a and in Table 6.4b. We
denote with symbol ur5 the jobs associated with the unavailability time periods of technician r5.

Table 6.4 – Data of Example 2.

(a) Characteristics of the tasks.

I li si
E l s
F l s

(b) Characteristics of the technicians.

R {s ∈ S | λrs = 1} unavailability time periods
r4 {s} –
r5 {s} at location l during time periods 1 and 3

Table 6.5 shows a given solution to the restricted master problem [RMP ] in which no cuts have
been previously added. According to the selected plans, the table reports the starting and completion
time periods of each task as well as the number of technicians required to perform every task. Note
that x̄ satisfies the cumulative constraints (6.7) of the restricted master problem.

Table 6.5 – A solution to the restricted master problem for Example 2.

I Selected plan p Sp Cp qp Rp
E pE 1 2 1 {r4}
F pF 2 4 1 {r4}

First, let us look at the potential generation of MCbM cuts. Figure 6.5 describes graph qGt(x̄) for
each time period of the horizon for Example 2.

NB: in bold a solution to the maximum cardinality b-matching problem, a rectangular dash-line box
means that no b-matching with the desired cardinality can be found

Figure 6.5 – Structure of graphs qGt(x̄) for Example 2 and different values of t ∈ T .

Since technician r2 cannot be assigned to task B because of its personal availability schedule,
the maximum cardinality of a b-matching at time period 2 is equal to 1 whereas the tasks scheduled
during this time period require a total of two technicians. The following MCbM cut is then produced:

xpE + xpF ≤ 1 (6.40)
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Second, let us look at the potential generation of MWC cuts. Figure 6.6 depicts G̃dS(x̄) for every
day d ∈ {day 1, day 2}.

NB: in bold a solution to the maximum-weight clique problem

Figure 6.6 – Structure of G̃dS(x̄) for Example 2

We immediately see that solving maximum-weight clique problems does not enable us to produce
any MWC cut for this example. Therefore, Example 2 illustrates a case where the approximation
described in Section 6.2.2 dominates the approximation described in Section 6.2.3.

Example 3

This third example (referred to as Example 3) is meant to illustrate a case where the problem-
specific approximations do not find any cut although the technician-to-task assignment sub-problem
is infeasible.

We consider in this example a fixed time horizon of 8 time periods (T = {1, ..., 8}) and partitioned
into two days: time periods 1 to 4 belongs to day 1 and time periods 5 and 8 belongs to day 2. We
consider 1 location (L = {l}), 4 tasks to schedule (I = {G,H, I, J}), 3 skills (S = {s6, s7, s8}), and
2 technicians (R = {r6, r7}). The characteristics of the tasks and the technicians are summarized in
Table 6.6a and in Table 6.6b.

Table 6.6 – Data of Example 3.

(a) Characteristics of the tasks.

I li si
G l s6

H l s6

I l s7

J l s8

(b) Characteristics of the technicians.

R {s ∈ S | λrs = 1} unavailability time periods
r6 {s6} –
r7 {s6, s7, s8} –

Table 6.7 shows a given solution to the restricted master problem [RMP ] in which no cuts have
been previously added. According to the selected plans, the table reports the starting and completion
time periods of each task as well as the number of technicians required to perform every task. Again,
it is easy to verify that x̄ satisfies the cumulative constraints (6.7) of the restricted master problem.

Table 6.7 – A solution to the restricted master problem for Example 3.

I Selected plan p Sp Cp qp Rp
G pG 2 5 1 {r6, r7}
H pH 4 7 1 {r6, r7}
I pI 7 8 1 {r7}
J pJ 1 3 1 {r7}

First, let us look at the potential generation of MCbM cuts. Figure 6.7 describes graph qGt(x̄)
for each time period of the horizon for Example 3. We observe that solving maximum cardinality
b-matching problems does not enable us to produce any MCbM cut for this example.

Second, let us look at the potential generation of MWC cuts. Figure 6.8 depicts G̃dS(x̄) for every
day d ∈ {day1, day2}. Similarly, no MWC cuts are produced from this approximation.
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NB: in bold a solution to the maximum cardinality b-matching problem

Figure 6.7 – Structure of graphs qGt(x̄) for Example 3 and different values of t ∈ T .

NB: in bold a solution to the maximum-weight clique problem

Figure 6.8 – Structure of G̃dS(x̄) for Example 3

However, it is easy to see that the technician-to-task assignment sub-problem does not admit any
solution. This comes from two observations. First, it is clear that technician r7 has to perform tasks
I and J. Second, tasks G and H cannot be performed by the same technician since they overlap. The
same holds for tasks G and J as well as for tasks H and I. The technician-to-task assignment sub-
problem therefore does not admit any solution since technician r7 cannot perform either tasks G, I
and J, or tasks H, I and J.

The resolution of formulation [SPLR2 (x̄)] gives an optimum value strictly greater than zero (equal
to 1). We then identify the violated BF cut (6.41) (which has here the same expression as a CB cut).

xpG + xpH + xpI + xpJ ≤ 3 (6.41)

This example illustrates a case where no MCbM and/or MWC cuts are identified although the
technician-to-task assignment sub-problem is infeasible.

6.3 The algorithm: general structure

To efficiently solve the problem while exploiting the decomposition described in section 6.1, one
can easily distinguish two different implementation approaches. Indeed, since this decomposition
can be seen as a Benders decomposition of the problem, these two different implementations are
presented in Section 2.3. Since the formulation of the master problem is a pure ILP model, solving
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it is very likely to be too time-consuming. Therefore, it seems better suitable to solve the problem
with the alternative implementation of the Benders decomposition (see Figure 2.2). Moreover, one
drawback of applying the classical implementation (see Figure 2.1) to our problem is that a feasible
solution (and optimal) is only obtained at the end, whereas the alternative implementation may pro-
vide feasible solutions throughout the resolution of the master problem. We choose to refer to our
method as a B&C approach. Although we do not use CP in the method, we choose this terminol-
ogy since the technician-to-task assignment sub-problem is a feasibility test, and the approximations
to this sub-problem yields something rather similar to filtering algorithms. Figure 6.9 outlines the
general structure of our two-stage method:

NB: All the steps denoted with a rectangular dash-line box are performed by an ILP solver.

Figure 6.9 – Flow chart of the B&C approach

— Stage 1 (solve a linear relaxation of [P ])):
The purpose of this first stage is to generate potential useful MCbM and MWC cuts while
working with a much easier problem. To this end, we consider [ShPLR1 ] the linear relaxation of
[ShP1] (“Initialization 1"). Using a LP solver, we solve this linear relaxation (“Solve [ShPLR1 ]"). We
then solve the approximations to the sub-problem described in Sections (6.2.2) (the maximum
cardinality b-matching becomes a fractional maximum cardinality b-matching) and (6.2.3) for
the continuous solution x̄ of [ShPLR1 ] ("Solve MWC and MCbM problems"). If we generate some
MCbM and/or MWC cuts, we add them to [ShPLR1 ] ("Add cuts to [ShPLR]") and we re-optimize
this problem. Otherwise, we stop this first stage.
Last but not least, to avoid wasting too much time generating cuts that may not be all useful, we
choose arbitrary to stop the resolution ("Stop 1") after the first 100 iterations if it is not stopped
sooner ("Cuts ? No"). For efficiency consideration, we also only compute the clique with the
maximum-weight in the corresponding approximation to the sub-problem. This comes from
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the fact that the graph is larger when considering continuous solutions.

Remark: Note that this stage could have been performed at the root-node of the search tree
defined for the second stage. However, our aim is to take advantage of the preprocessing
techniques embedded in ILP solvers.

— Stage 2 (Solve the master problem [P ]):
In the second stage, we first check ("solution to the problem ?") if the solution x̄∗ obtained during the
previous stage is feasible for [P ] (i.e., if x̄∗ is integer and leads to a feasible technician-to-task
assignment sub-problem). If it is not the case, we solve the master problem by a branch-and-
cut method implemented in a commercial solver. We initialize the restricted master problem
[RMP ] with all the cuts that have been previously generated ("Initialization 2") and we forward it
to the ILP solver. As long as the solution computed by the solver is continuous ("Solution ? contin-
uous"), we let it make its own branching decisions to produce integer solutions ("Apply branching
procedure"), its own exploration of the search tree ("Choose the next [RMP ] problem"), and we let it
use its own techniques to compute feasible solutions and generic cuts which help to reduce
the list of active nodes ("Update the list of [RMP ] problems"). For every integer solution x̄ to the
current restricted master problem [RMP ] ("Solution ? integer"), we check if x̄ is feasible regarding
the technician-to-task assignment sub-problem. We start by solving the maximum cardinality
b-matching and the maximum-weight clique problems ("Solve MWC and MCbM problems"). If it
produces at least one MCbM or MWC cut, we discard the current solution x̄ by adding the gen-
erated cut(s) to [RMP ] ("Add cuts to [RMP ]"). Otherwise, we solve the LP formulation [SPLR2 (x̄)]
("Solve [SPLR2 (x̄)]"). If we identify a violated BF cut of type (6.25), we add it to [RMP ] ("Add cuts
to [RMP ]"). Otherwise, we cannot directly conclude to the feasibility of the technician-to-task
assignment sub-problem before solving the ILP formulation [SP2(x̄)] ("Solve [SP2(x̄)]"). If the so-
lution has a strictly positive cost, we generate a CB cut of type (6.19) and add it to the restricted
master problem ("Add cuts to [RMP ]"). Otherwise, we conclude that x̄ is a new feasible solution
to our problem ("New best solution"). Note that the branch-and-bound scheme ensures that x̄ is
strictly better than the best previous solution. We end up this phase ("Stop 2") with the optimal
solution to [P ] or with a feasible solution if a time limit has been reached. Note that if no solu-
tion is found within the time limit, one can always consider the feasible solution in which all
the tasks are postponed.

Remark: As described above, the sub-problem is solved at each integer node of the branch-and-
bound tree during the second stage. In order to improve the value of the linear relaxation and to
potentially speed-up the algorithm (especially in case where integer solutions are scarce), one
can also decide to check the approximations to the sub-problem at non-integer-nodes because
it may produce cuts that eliminate continuous infeasible solutions. However, adding too many
of these cuts to the restricted master problem can decrease the efficiency of the approach, since
it is likely to increase the time needed to solve the linear relaxation at each node. In preliminary
experiments, we tested this strategy checking the maximum-weight clique and the maximum
cardinality b-matching problems at non-integer nodes. We arbitrarily added the cuts whose
value of slack variable is greater or equal to 0.5. Additionally, we stopped the search for a cut
as soon as the first cut is found. We did not observe any significant improvement of the results
and therefore dropped this idea.

6.4 Computational experiments

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We rely on Gurobi 6.5.1 for solving
LP and ILP models. We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R)
X5675 (3.07Ghz) and 12GB of RAM. We set a 3-hour time limit to solve the different instances (notice
that all CPU times are reported in seconds and rounded to the closest integer). In order to assess the
quality of our results, we compute the gap with respect to the optimal solution when it is known, or
to the best upper bound retrieved by the solver over all our different experiments.
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6.4.1 Results of the exact approaches

To quantify the relevance and the contribution of the problem-specific cuts (MCbM and MWC
cuts) introduced in Sections 6.2.2 and 6.2.3, we present the computational results of the B&C approach
without (B&C) and with (B&C) the MCbM and MWC cuts. To be clear, these two approaches only
differ on the inclusion of step "Solve MWC and MCbM problems" in the scheme presented in Figure 6.9.
For the sake of comparison, we also present the computational results for the direct resolution of the
ILP formulation [P3] which seems to give the best results according to Chapter 4.

In Table 6.8, we report the average, over all the instances belonging the same family or sharing a
common characteristic, of the gap (Gap), of the solution time (Time), and of the percentage of tasks
scheduled in the best solution (%S). We also report the number of optimal solutions found within the
time limit (#Opt).

Remark: In order to have a meaningful comparison, the average solution times only takes into account
those instances for which an optimal solution has been found within the time limit. Similarly, the average
gap and percentage of tasks scheduled takes only into account the instances which are not optimally
solved. Indeed, since in our instances, postponing a task is non-profitable and heavily penalized, a large
gap is often related to a low percentage of tasks scheduled during the time horizon. This allows a better
understanding of the results. Notice that on average 99% of the tasks are scheduled in the optimal or
best-known solutions for testbed G1.

First, we observe that the B&C approach outperforms by far the direct resolution of ILP formu-
lations, and this for every family of instances. Indeed we are able to solve to optimality 80% of the
instances for testbed G1, in this case, the solution time is importantly reduced. Moreover, the overall
average gap when optimality is not reached is small (1.7%).

Second, we can state that the performance of the B&C approach is strongly correlated with the
cuts generated from the approximations to the technician-to-task assignment sub-problem. Indeed,
including the problem-specific cuts allows us to find the optimal solution on 63 additional instances.
On the remaining instances, it also significantly reduces the gap from 4.0%. This highlights the weak-
ness of the Benders cuts and the strength of the problem-specific cuts.

Third, we can draw the same conclusions on the difficulty of the instances than those drawn
after having tested the different ILP formulations. The technicians-to-work ratio, the number of time
periods per day, and, to a lesser extent, the number of tasks are the most complicating factors. While
the impact of the first factor is particularly evident, the difficulty to solve instances with a large
number of time periods per day is mainly related to the fact that there are more patterns, which
creates more opportunity for a technician to change from one task to another one in the same day.
The daily location-based incompatibilities are then more binding. Morerover, although the number
of plans is larger when considering more tasks, the number of patterns does not grow proportionally,
which results in a moderately more complicated technician-to-task assignment sub-problem.

In Table 6.9, we present a brief description of the average number of cuts generated during the
execution of the B&C approach. The average, over all the instances with a common characteristic,
of the total number of cuts (#Cuts) is decomposed into the CB, BF, MCbM, and MWC cuts. Detailed
results for each family of instances are available in Appendix C.3.

First, we observe that, on average, 90% of the cuts are problem-specific cuts whereas the other
10% are generic cuts. These results naturally show that the approximations are not always able to
identify the infeasibility of the technician-to-task assignment sub-problem. However, when |S| =
1, it is noteworthy that solving the maximum cardinality b-matching and maximum-weight clique
problems allow almost always to identify the infeasibility of the sub-problem. We observe that we
generate more cuts for instances with 3 skills, 4 time periods per day and a tight technicians-to-work
ratio. This is due to the largest number of patterns in the first two cases and to the fact that there
is less potential configuration to schedule the tasks in the last case. Notice that we never generate
CB cuts. Actually, we observe that the optimal solution to the relaxed sub-problem [SPLR2 (x̄)] is
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Table 6.8 – Detailed computational results on testbed G1 for the different exact approaches.

Family [P3] B&C B&C
Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

10_2_1_20_A - - 5/5 152 - - 5/5 2,272 - - 5/5 5
10_2_1_20_B - - 5/5 37 - - 5/5 2 - - 5/5 1
10_2_1_40_A 0.01% 100% 1/5 7 0.70% 100% 2/5 3,379 - - 5/5 7
10_2_1_40_B - - 5/5 121 - - 5/5 8 - - 5/5 1
10_2_3_20_A - - 5/5 1,574 1.0% 97% 2/5 2,871 - - 5/5 162
10_2_3_20_B - - 5/5 18 - - 5/5 94 - - 5/5 2
10_2_3_40_A - - 5/5 3,996 2.2% 98% 2/5 4,040 - - 5/5 17
10_2_3_40_B - - 5/5 295 - - 5/5 18 - - 5/5 1
20_2_1_40_A 1.4% 98% 2/5 2,858 6.4% 96% 1/5 7,301 - - 5/5 230
20_2_1_40_B - - 5/5 2,078 - - 5/5 695 - - 5/5 4
20_2_1_80_A 334% 20% 0/5 - 8.2% 96% 0/5 - 0.02% 100% 4/5 300
20_2_1_80_B 229% 49% 3/5 3,823 0.13% 100% 4/5 580 - - 5/5 5
20_2_3_40_A 1.2% 99% 3/5 5,534 4.6% 95% 1/5 1,136 2.1% 98% 4/5 40
20_2_3_40_B - - 5/5 155 - - 5/5 525 - - 5/5 3
20_2_3_80_A 156% 39% 0/5 - 3.3% 98% 0/5 - - - 5/5 51
20_2_3_80_B 196% 50% 3/5 2,456 0.02% 100% 4/5 163 5/5 5
20_4_1_20_A 1.3% 97% 0/5 - 2.1% 95% 0/5 - 2.2% 95% 3/5 1,715
20_4_1_20_B - - 5/5 405 - - 5/5 131 - - 5/5 2
20_4_1_40_A 61% 75% 0/5 - 8.6% 93% - - 1.2% 98% 2/5 1,586
20_4_1_40_B 107% 74% 1/5 1,968 0.3% 100% 4/5 630 - - 5/5 6
20_4_3_20_A 2.4% 95% 4/5 5,005 3.1% 95% 0/5 - 2.0% 95% 4/5 237
20_4_3_20_B - - 5/5 113 3.1% 95% 4/5 134 5/5 9
20_4_3_40_A 5.3% 95% 0/5 - 6.7% 94% 0/5 - 0.85% 98% 1/5 8,888
20_4_3_40_B 0.03% 100% 3/5 2,108 0.29% 100% 1/5 1,608 5/5 11
40_4_1_40_A 106% 76% 0/5 - 15.7% 89% 0/5 - 2.1% 98% 0/5 -
40_4_1_40_B 3.0% 98% 0/5 - 0.7% 100% 0/5 - - - 5/5 31
40_4_1_80_A 4,948% 0% 0/5 - 16.1% 90% 0/5 - 1.5% 99% 0/5 -
40_4_1_80_B 331% 0% 0/5 - 1.8% 99% 0/5 - - - 5/5 89
40_4_3_40_A 4.6% 96% 0/5 - 14.6% 90% 0/5 - 1.5% 99% 0/5 -
40_4_3_40_B 0.84% 99% 2/5 2,118 0.3% 100% 0/5 - - - 5/5 36
40_4_3_80_A 2,727% 18% 0/5 - 14.3% 90% 0/5 - 2.3% 98% 0/5 -
40_4_3_80_B 3,899% 0% 0/5 - 0.96% 100% 0/5 - - - 5/5 86

Characteristics [P3] B&C B&C
Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

|S| =
{

1
3

621% 61% 34/80 1,035 6.7% 95% 36/80 957 1.6% 98% 64/80 179
982% 61% 43/80 1,896 4.9% 96% 29/80 722 1.7% 98% 64/80 186

|T |
|D|

=

{
2
4

144% 60% 57/80 1,461 3.9% 97% 51/80 982 1.0% 99% 78/80 49
1,014% 61% 20/80 1,757 6.5% 95% 14/80 380 1.7% 98% 50/80 390

Type =

{
A
B

759% 65% 25/80 2,838 7.8% 94% 13/80 3,106 1.7% 98% 48/80 456
802% 53% 52/80 913 0.8% 100% 52/80 288 - - 80/80 18

All 773% 61% 77/160 1,538 5.7% 96% 65/160 852 1.7% 98% 128/160 182
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most of the time integer although the constraint matrix is not totally unimodular 2. We can also
note that we generate only few MCbM cuts. On the contrary, we generate many MWC cuts. The
reason for this is that the restricted master problem has no information about the daily location-
based incompatibilities at the beginning of the optimization. It is then more likely that these specific
constraints are not satisfied by the solutions to the restricted master problem.

Table 6.9 – Description of the average number of cuts generated in the B&C approach.

Characteristic #Cuts CB Other cuts
BF MCbM MWC

|S| =
{

1
3

102 0 0.3 3 98
224 0 28 10 186

|T |
|D|

=

{
2
4

56 0 9 3 44
270 0 19 10 241

Type =

{
A
B

262 0 24 10 229
63 0 4 4 56

All 163 0 14 7 142

Furthermore, we notice that all the components of the B&C approach have a favorable trade-off
between their efficiency and the time spent on it. Since the relaxation of the problem considered
in the first stage only contains continuous variables and no (or few) cuts, this first stage does not
require too much time: on average 1% of the CPU time. Notice also that the limit on the number of
iterations during this stage is never reached in our experiments. The results also show that solving
the restricted master problem in the B&C approach is the most time-consuming part of the second-
stage. Indeed, this component is responsible on average for 99% of the CPU time. This compares
with the negligible time spent on solving, for a solution x̄ to [RMP ], the formulations [SPLR2 (x̄)] and
[SP2(x̄)] with the commercial solver, or the approximations to the sub-problem.

6.4.2 A cooperative approach

As a second part of our experiments, we tested the use of the CPLNS introduced in Chapter 5
along with the B&C approach. More specifically, the idea is to run the CPLNS in parallel with the
algorithm. If the current solution to the CPLNS is better than the best solution found so far, we
provide this solution to the solver. If this improves the current lower bound of the ILP solver it may
help to prune some nodes in the branch-and-bound tree. This idea comes from the observation that
for the large-sized instances the solver has sometimes trouble with finding good quality solutions.
Table 6.10 summarizes the results. The last columns report the average gap and the proportion of
scheduled tasks of the best solution found by the CPLNS with the same execution time as the B&C
approach (i.e., we stop the CPLNS when the B&C approach finds the optimal solution or when it
reaches the time limit). More detailed results for each family of instances are available in Appendix
C.3. Since no additional instances are solved to optimality, we conclude that running the CPLNS in
parallel with the B&C approach has no significant effect on its efficacy (even if the gap is reduced by
0.4% for the instances for which optimality is not reached). Above all, these results allow us to state
that, if we are given a 3-hour time limit, the B&C approach significantly outperforms the CPLNS
with an average difference of around 2% between the two gaps. It is mainly due to the difficulty
of the CPLNS in scheduling some tasks when the availability of the technicians is scarce. It also
highlights the fact that the metaheuristic may often be trapped in local optima. However, one may
find a smaller gap between the efficiency of the CPLNS and the B&C approach if one imposes another
time limit. Lastly, we notice that the characteristics that make the instances difficult to solve by the
B&C approach are the same for the CPLNS.

2. We found an instance - not part of testbed G1 - and a solution x̄ of [RMP ] where the optimal value of [SPLR2 (x̄)] is
equal to 0 whereas the optimal value of [SP2(x̄)] is equal to 1.



6.5. CONCLUSIONS 115

Table 6.10 – Aggregated computational results of the B&C approach coupled with the CPLNS.

Characteristics B&C CPLNS
Gap #Opt Time Gap1 Gap2

|S| =
{

1
3

1.6% 64/80 183 3.7% 1.2%
1.0% 64/80 195 2.7% 1.0%

|T |
|D|

=

{
2
4

0.09% 78/80 38 3.7% 0.90%
1.4% 50/80 399 3.2% 1.4%

Type =

{
A
B

1.3% 48/80 445 3.2% 1.9%
- - 80/80 20 - 0.61%

All 1.3% 128/160 179 3.2% 1.1%
1 Takes into account the instances where the time limit is reached in the B&C approach.
2 Takes into account the instances solved to optimality by the B&C approach.

6.5 Conclusions

In this chapter, we have proposed a B&C approach to solve the wind turbine maintenance schedul-
ing problem. This exact method takes advantage of the decomposition of the problem into a task
scheduling problem (in which technician considerations have been partially dropped) and a technician-
to-task assignment sub-problem. For each selection of plans, we actually check the existence of an
assignment of the technicians to the scheduled tasks that copies with the availability of every single
technician and that meets the travel limitations imposed on each day. Since the ILP formulation of
the sub-problem does not possess the integrity property, we use the concept of combinatorial Benders
cuts to invalidate infeasible selection of plans in the restricted master problem, while trying to iden-
tify violated classical Benders feasibility cuts beforehand. However the key part of the method comes
from the approximations to the technician-to-task assignment sub-problem as a series of maximum
cardinality b-matching and maximum-weight clique problems, which help us to build additional
cuts. Indeed, according to the experiments that we conducted, these problem-specific cuts proves to
be very effective speeding up the convergence of the B&C approach. This latter method finds opti-
mal solutions in short execution times for the large majority of the instances or delivers high-quality
integer solutions in those instances in which optimality is not reached. The B&C approach signifi-
cantly outperforms the direct resolution of ILP models as well as, in a certain context, the CPLNS
introduced in Chapter 5.

6.6 Complement: sub-problem and complexity

6.6.1 Equivalence to the L-coloring problem

To assess the complexity of the technician-to-task assignment sub-problem, we prove its equiva-
lence to the L-coloring problem

Definition 6.6.1. (L-coloring problem):
Let G = [V, E ] be an undirected graph and assume that each vertex v ∈ V is assigned a list L(v) of allowed
colors. The L-coloring problem consists in finding a coloring 3 c such that c(v) ∈ L(v) for all v ∈ V . If such a
coloring exists, we say that G is L-colorable.

First, let us associate a color colorr to every technician r ∈ R. For a given solution x̄ to the
restricted master problem [RMP ], let us also introduce the undirected graph G̈(x̄) composed of:

— a set of vertices V̈

— For each job j ∈ J (x̄), we add qj vertices in V̈ . Parameter jν denotes the job associated
with a vertex ν ∈ V̈ and V̈j the set of vertices associated with job j. Denoting Lν the set of
colors associated with vertex ν, we define Lν = {colorr}r∈Rj .

3. A coloring of graph G = [V, E ] is a mapping c: V → N such that c(v) 6= c(v′) for every edge (v, v′) ∈ E
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— a set of edges Ü defined such that ∀ν1 ν2 ∈ V̈ :
(ν1, ν2) ∈ Ü ⇔ ν1 6= ν2 ∧

((
Sjν2 ≤ Cjν1 ∧ Sjν1 ≤ Cjν2

)
∨ σljν1 ljν2

= 0
)

(There exists an edge between two vertices ν1 and ν2 in G̈(x̄) if and only if a technician cannot
be assigned to both jobs jν1 and jν2 with regard to constraints [C2] and [C3])

We prove in Proposition 6.6.1 the equivalence between the technician-to-task assignment sub-
problem and the L-coloring problem in graph G̈(x̄).

Proposition 6.6.1. Let x̄ be a solution to the restricted master problem [RMP ]. The technician-to-task as-
signment sub-problem for x̄ is equivalent to the L-coloring problem in graph G̈(x̄).

Proof. Assume that we know a feasible solution to the technician-to-task assignment sub-problem.
This solution directly yields the list Rassj of technicians assigned to every job j ∈ J (x̄) (in that so-
lution). We can then build a solution to the L-coloring problem by iterating through the vertices of
G̈(x̄). More specifically, for each vertex ν ∈ V̈ , we pick a technician r ∈ Rassjν

(and remove it from this
set) and color the vertex ν with colorr. By construction of the graph, we are ensured that for a job j
the set Rassj becomes empty only when every vertex of V̈j is colored. We are also ensured that the
graph is L-colorable since each vertex ν ∈ V̈ picks up an admissible color in Lν .

Alternatively, assume that we know a solution c to the L-coloring problem in graph G̈(x̄). This
solution directly yields the list Rassj of technicians assigned to every job j ∈ J (x̄). More specifically,
for each vertex ν ∈ V̈ , we add to Rassj the technician r ∈ R such that colorr = c(ν). We then induce
the underlying assignment of the technicians to the plans selected in the solution to the restricted
master problem. By construction of the graph G̈(x̄), the assignments copy with individual technician
availability time periods and do not violate the location-based incompatibilities. This produces a
feasible solution to the technician-to-task assignment sub-problem.

Since the graph coloring problem is a specific case of the L-coloring problem, the strong NP-
completeness of the former (Jensen and Toft, 2011) implies the strong NP-completeness of the latter.
We can therefore state that the technician-to-task assignments sub-problem is NP-complete in the
strong sense. It is noteworthy that in the case of interval graphs, the L-coloring problem stays NP-
complete (Biro et al., 1992) although the graph coloring problem becomes polynomial.

Hall’s condition (see Definition 6.6.2) provides a necessary condition for the existence of a L-
coloring in a graph. However, at first sight, the direct use of this condition to derive cuts is compu-
tationally intractable as one should solve several maximal independent set problems for each sub-
graph of G̈(x̄).

Definition 6.6.2. (Hall’s condition):
Let G = [V, E ] be an undirected graph and assume that each vertex v ∈ V is assigned a list L(v) of allowed
colors. If for each sub-graph Gsub of graph G, we have

∑
c∈L(Gsub)

α(c,Gsub, L) ≥ |Gsub| (where L(Gsub) =⋃
v∈Gsub

L(v) and α(c,Gsub, L) denotes the maximum number of independent vertices of Gsub having the color c

in their list), then G is L-colorable.

6.6.2 Special cases of polynomial complexity

We describe below two special cases where the technician-to-task assignment sub-problem is solv-
able in polynomial time.

— Assumptions: relaxation of constraints [C3] and [C5]
The technician-to-task assignment sub-problem is solvable in polynomial time since it is equiv-
alent to a series of maximum cardinality b-matching problems (see Proposition 6.2.1 in Section
6.2.2).

— Assumptions: |S| = 1; relaxation of constraints [C4]; substitution of constraints [C3] by
chaining constraints
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Substituting the constraints [C3] by chaining constraints means that we replace the daily location-
based incompatibilities by the following constraints: a technician can work consecutively at
locations l and then l′ if and only if σll′ = 1.
The technician-to-task assignment sub-problem consists in that case in solving a circulation
flow problem in graph GF (x̄) defined by:

— a set of vertices: V = {ω} ∪ Vstart ∪ Vend ∪ {τ}
— ω: source vertex.
— τ : sink vertex.
— Vstart: a vertex of Vstart represents an aggregate node for all the technicians assigned

to a job j ∈ J (x̄). We denote o a vertex of Vstart and jo the job associated with this
vertex.

— Vend: a vertex of Vend represents a dispersion node of all the technicians that have
performed a job j ∈ J (x̄). We denote d a vertex of Vend and jd the job associated with
d.

— a set of edges: (v, v
′
) ∈ U with minimal capacity γmin

vv′
and maximal capacity γmax

vv′
(if fvv′

denotes the flow on edge (v, v
′
), we must have γmin

vv′
≤ fvv′ ≤ γ

max
vv′

). More precisely:

— ∀o ∈ Vstart, ∀d ∈ Vend : (o, d) ∈ U ⇔ jo = jd, γminod = qjo , γmaxod = +∞
— ∀d ∈ Vend, ∀o ∈ Vstart : (d, o) ∈ U ⇔ startjo ≥ endjd ∧ (dstartjo 6= dendjd ∨ σljo ,ljd = 1),

γmindo = 0, γmaxdo = +∞
— ∀o ∈ Vstart : (ω, o) ∈ U , γminωo = 0, γmaxωo = +∞
— ∀d ∈ Vend : (d, τ) ∈ U , γmindτ = 0, γmaxdτ = +∞
— (τ, ω) ∈ U , γminτω = 0, γmaxτ,ω = |R|

Figure 6.10 shows the general structure of the graph GF (x̄).

Figure 6.10 – Structure of graph GF (x̄)

Solving this circulation flow problem is equivalent to solving a maximum flow problem in
a modified graph where edges from the source and the sink are added to remove the lower
bound on the flow associated with some edges. The technician-to-task assignment sub-problem
is therefore solvable in polynomial time.





Chapter 7

Maximizing availability vs maximizing
revenue: a short comparative study

When good quality wind forecasts are unavailable (usually when the length of the planning hori-
zon increases), maximizing the revenue generated by the electricity production of the turbines is not
longer possible. As an alternative objective, we can maximize the availability of the turbines (i.e.,
minimize their total downtime). This objective is actually the most common criterion used by main-
tenance schedulers, since the large majority of the maintenance contracts are based on the annual
availability factor (AF) of the turbines. Nonetheless, it should be observed that a short downtime
for the wind turbines does not necessarily mean a negligible lost electricity production (although
these two elements are inextricably linked), and therefore minimizing the former is not equivalent to
minimizing the latter. This chapter aims to quantify this difference.

This alternative objective of maximizing the availability of the turbines requires only a minor
adjustment to the problem defined in Chapter 3, and it can be easily handled by the models and the
solutions methods defined in Chapters 4 and 6. Indeed, one needs to modify only the value of the
parameters used in the objective function. Let δ be the number of hours in a time period of T . Since
time periods in T have identical length, we set each parameter gtw to δ for every wind turbine w. Let
δ̃d be the number of hours in the rest time period following day d. For every day d and every turbine
w, parameter g̃dw takes the value of δ̃d.

We conducted experiments only on the type B instances of testbed G1 since we have been able to
compute the optimal solution for each of them. Tables 7.1 and 7.2 summarize the results of the ILP
formulation [P3] and the B&C approach with the two different objective functions: maximizing the
revenue generated by the wind electricity production (max R) and maximizing the availability of the
turbines (max A). For the direct resolution of the ILP formulation [P3], more instances are solved to
optimality within the 3-hour time limit when maximizing the availability of the turbines. For the B&C
approach, results appear to be independent of the selected objective function. First, one should notice
that the problem contains far more symmetries when maximizing the availability of the turbines.
Indeed, the value of the objective function is almost only based on the duration of each task but not
on the time periods during which these tasks are scheduled. This also makes the problem a bit easier
to solve because a lot of maintenance plans have the same objective value. Although directly solving
the ILP formulation provides an acceptable solution approach, it is still significantly outperformed
by the B&C approach. Last but not least, the difficulty of the instances seem to be related to the same
characteristics for the two different objective functions (the number of time periods per day and, to
a lesser extent, the number of tasks). We did not conduct our experiments on the type A instances
(part of testbed G1), but it is highly likely that they will still remain harder to solve. Indeed, the
difficulty of solving these instances is though to be related to the tightness of the technicians-to-work
ratio which does not depend at all on the selected objective function.
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Table 7.1 – Detailed computational results on testbed G1 (type B) for the ILP formulation [P3] accord-
ing to the selected objective function.

Family [P3] - max R [P3] - max A
Gap %S #Opt Time Gap %S #Opt Time

10_2_1_20_B 5/5 47 5/5 1
10_2_1_40_B 5/5 93 5/5 10
10_2_3_20_B 5/5 23 5/5 1
10_2_3_40_B 5/5 417 5/5 13
20_2_1_40_B 5/5 2,120 5/5 33
20_2_1_80_B 456% 0% 4/5 4,584 5/5 946
20_2_3_40_B 5/5 143 5/5 16
20_2_3_80_B 7,848% 49% 3/5 3,982 5/5 220
20_4_1_20_B 5/5 358 5/5 11
20_4_1_40_B 103% 60% 5/5 244
20_4_3_20_B 5/5 111 5/5 9
20_4_3_40_B 1.4% 99% 3/5 2,513 5/5 374
40_4_1_40_B 57% 79% 5/5 2,457
40_4_1_80_B 314% 0% 172% 75%
40_4_3_40_B 2.9% 97% 2/5 2,920 5/5 3,560
40_4_3_80_B 10,333% 0% 149% 61% 2/5 5,469

Characteristic [P3] - max R [P3] - max A
Gap %S #Opt Time Gap %S #Opt Time

|S| =
{

1
3

176% 43% 24/40 1,309 172% 75% 35/40 529
5,614% 49% 28/40 1,028 149% 61% 37/40 862

|T |
|D|

=

{
2
4

5,384% 33% 37/40 1,202 40/40 155
2,162% 47% 15/40 1,048 163% 70% 32/40 1,382

All 2,507% 46% 52/80 1,158 163% 70% 72/80 700

Table 7.2 – Detailed computational results on testbed G1 (type B) for the B&C approach according to
the selected objective function.

Family B&C - max R B&C - max A
#Opt Time #Opt Time

10_2_1_20_B 5/5 9 5/5 1
10_2_1_40_B 5/5 2 5/5 2
10_2_3_20_B 5/5 3 5/5 1
10_2_3_40_B 5/5 2 5/5 2
20_2_1_40_B 5/5 4 5/5 7
20_2_1_80_B 5/5 6 5/5 15
20_2_3_40_B 5/5 4 5/5 8
20_2_3_80_B 5/5 6 5/5 19
20_4_1_20_B 5/5 2 5/5 4
20_4_1_40_B 5/5 7 5/5 11
20_4_3_20_B 5/5 15 5/5 5
20_4_3_40_B 5/5 13 5/5 17
40_4_1_40_B 5/5 27 5/5 36
40_4_1_80_B 5/5 173 5/5 68
40_4_3_40_B 5/5 38 5/5 68
40_4_3_80_B 5/5 72 5/5 174

Characteristic B&C - max R B&C - max A
#Opt Time #Opt Time

|S| =
{

1
3

40/40 27 40/40 18
40/40 19 40/40 37

|T |
|D|

=

{
2
4

40/40 3 40/40 7
40/40 43 40/40 48

All 80/80 23 80/80 27
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More importantly, as a second part of our tests, Table 7.3 compares the optimal solutions obtained
considering the two objectives functions separately. More precisely, let us denote mpA and mpR the
maintenance plans obtained when maximizing the availability of the turbines and when maximizing
the revenue generated by their electricity production. We then compute for each instance two metrics,
∆A and ∆R, defined as follows:

∆A =
A(mpA)−A(mpR)

A(mpR)
∆R =

R(mpA)−R(mpR)

R(mpR)

where A(.) and R(.) are functions giving the total availability of the turbines and the total revenue
generated by the wind electricity production in a maintenance plan. Metrics ∆A and ∆R give the
relative deviation of the solutions obtained using one objective function when evaluated against the
other.

From Table 7.3, we observe that the maintenance plans obtained by maximizing the revenue yield
a total availability for the turbines that is close to the optimal one (a gap of 0.20% on average). On
the opposite, the maintenance plans obtained by maximizing the availability of the turbines yield
on average a total revenue that is quite far from the optimal (a gap of 5.76% on average). In that
case, notice that it is likely that many symmetric solutions exist, which can make this value smaller
or larger if one considers alternative solutions. However, these results highlight the fact that solving
the problem with this alternative objective does not guarantee the highest revenue. Although highly
suspected, this short comparative study proves the validity and the relevance of maximizing the
revenue when solving the short-term maintenance scheduling problem in the onshore wind power
industry.

Table 7.3 – Comparison of the optimal solutions for the two objective functions (testbed G1, type B).

Family ∆A ∆R
10_2_1_20_B 0.07% 9.89%
10_2_1_40_B 0.09% 6.76%
10_2_3_20_B 0.19% 8.91%
10_2_3_40_B 0.00% 10.45%
20_2_1_40_B 0.68% 4.09%
20_2_1_80_B 0.35% 3.30%
20_2_3_40_B 0.25% 4.03%
20_2_3_80_B 0.34% 3.98%
20_4_1_20_B 0.21% 8.46%
20_4_1_40_B 0.10% 5.93%
20_4_3_20_B 0.23% 7.60%
20_4_3_40_B 0.11% 5.77%
40_4_1_40_B 0.05% 3.28%
40_4_1_80_B 0.23% 3.00%
40_4_3_40_B 0.18% 3.75%
40_4_3_80_B 0.16% 2.99%

Characteristic ∆A ∆R

|S| =
{

1
3

0.22% 5.59%
0.18% 5.94%

|T |
|D|

=

{
2
4

0.25% 6.43%
0.16% 5.10%

All 0.20% 5.76%





Chapter 8

A robust approach to tackle the stochastic
problem

In the problem described in Chapter 3, we assume perfect knowledge of the wind speed during
the whole time horizon. We develop several solution methods to address this deterministic problem
in Chapters 4, 5, and 6. In practice however, wind speed forecasts are subject to a certain degree of
uncertainty. In this chapter, we propose a robust optimization approach to tackle this uncertainty. We
introduce a budgeted uncertainty set with additional constraints to deal with the possible spatial and
time-wise correlation of the wind speed. We solve the robust problem using a cutting plane method
built on top of the decomposition technique designed in Chapter 6 for the deterministic version of
the problem. We report computational results on the type B instances of testbed G1.

The chapter is organized as follows. Section 8.1 provides a short overview on wind uncertainty
and, more precisely, on wind prediction techniques. This section provides the background needed
to understand the choice of working with robust optimization as a valid modeling paradigm to our
problem. In order to take into consideration the wind uncertainty, Section 8.2 presents additional
elements in the definition of our maintenance scheduling problem. Section 8.3 describes how we
model this uncertainty. Section 8.4 defines the robust counterpart of the problem and Section 8.5
presents the solution method to solve it. Section 8.6 reports computational experiments. Section 8.7
concludes this chapter.

8.1 Introduction

Dealing with a short-term maintenance scheduling problem rising in the onshore industry, we
aim to find a maintenance plan that maximizes the revenue generated by the electricity production
of the turbines while ensuring their safe operation. To avoid computing a maintenance plan that
becomes infeasible or/and whose revenue is not optimal when the wind speed deviates from its
forecasted values, we need to explicitly address this uncertainty when solving the problem.

To specifically deal with uncertainty, one can distinguish two main methodologies: stochastic
programming and robust optimization (see Section 2.5 for more details).

To define the most suitable approach to our problem, we first examine how wind speed can be
modeled. In practice, the frequency of wind speeds at a particular wind farm are modeled using
different probability distributions. Probably the most commonly-used distribution is the Weibull
distribution. Another distribution that is often used by wind power companies is the Raleigh dis-
tribution. Indeed, since the shape factor of the Weibull distribution is usually close to 2, a Raleigh
distribution with the same scale factor as the Weibull distribution is an acceptable approximation
often employed by wind power systems companies. Gamma and Lognormal distributions are also
sometimes considered. As an alternative to these univariate distributions, more complex distribu-
tions have been proposed. For example, multivariate distributions have been produced to jointly fit
wind speed and wind direction. For the purpose of accuracy, Zhang et al. (2013) derived a multivari-
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ate and multimodal wind distribution for wind speed, wind direction, and air density.
One of the primary uses of finding an accurate distribution to model the frequency of the wind

speed is to estimate the number of hours per year that certain wind speeds are likely to be observed,
a key input to estimate the total power output of a wind turbine per year. This information is vi-
tal when assessing the wind resource potential when looking for potential for candidates areas for
building wind farms. However these wind speed frequency distributions are ineffective for wind
speed prediction in a short-term horizon because they neglect time-wise correlations, as well as as
some likely spatial correlations.

Wind predictions techniques are based on: physical models, statistical models, artificial neural-
network, fuzzy-logic, and hybrid (Wang et al., 2011; Lawan et al., 2014). Schematically, the physical
models use numerical weather prediction models (based for example on kinematic equations) to
provide wind forecasts with a particular spatial resolution, and they then use some topological in-
formation to refine these forecasts. They take into account multiple meteorological variables such as
temperature, pressure, and humidity. On the contrary, statistical models work with historical data
along with on-line measures. The prediction techniques then rely on multivariate time series, autore-
gressive–moving average models, and Gaussian copulas (the list is not exhaustive). The application
of artificial neural networks or fuzzy logic is also very popular since they can handle very easily non
linear relations among the inputs. Hybrid models have also been developed to take advantage of
the strength of multiple approaches. We can classify the predictions into two categories according to
their outputs: a single value (point forecasts) or an interval (interval forecasts). The former are largely
developed whereas the latter are juts beginning to receive more attention (Qin et al., 2015).

Meanwhile, scenario forecasting of wind power generation is very suitable for decision-making.
The meteorological community obtains scenarios, called ensemble forecasts or ensemble-based time-
trajectories, from the perturbation of initial conditions and parameters in their numerical weather
prediction models. However, linking probabilities to these scenarios seems quite unrealistic. Indeed,
even a simple equiprobability assumption among the scenarios may be not verified in practice. The
generation of wind speed scenarios have recently received increasing attention (Morales et al., 2010;
Pinson and Girard, 2012). We refer the reader to (Zhang et al., 2014) for a survey on these techniques.

Despite a significant amount of work devoted to prediction techniques and scenario generation,
they suffer from some drawbacks: curse of dimensionality when estimating the parameters, need of
an extensive amount of data, and difficulty to characterize the interdependence structure of the wind
speed.

Taking into account the difficulty to fit probability distributions to wind speed or to generate
valid scenarios and their probability of occurrence, we decided to apply robust optimization to our
problem. Indeed, robust optimization requires limited information on the uncertainty. We can then
rely on the previous wind predictions techniques to provide us with the required data. Moreover, a
robust approach suits well to our problem as we aim to take risk-averse decisions. We actually aim:
i) to guarantee that the maintenance plan can be executed independently of the actual wind speed
and ii) to build a maintenance plan yielding reasonably good revenue even if the wind deviates from
its nominal value. These two concerns are even stronger if we take into account that a maintenance
plan is executed only once.

8.2 Additional elements in the problem definition

In order to take into consideration the wind uncertainty, we provide some additional elements
in the definition of the problem described in Chapter 3. For the sake of convenience, we introduce
the totally ordered set T + formed by the union of the totally ordered set T and the set of rest time
periods that occur between each day. More specifically, the set is built by adding every rest time
period at its natural position in the time horizon T (see Figure 8.1). Introducing T + allows us to
simplify the tracking of wind turbine availability. It also allows us to avoid overloading the chapter
with new notation. The set T is still used for some constraints, since the tasks can only be performed
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during this particular time periods and the technicians constraints are also only related to those time
periods.

Figure 8.1 – Construction of T + from T and D

To model uncertainty we need to introduce additional parameters. We denote Υi the maximal
wind speed allowed to perform task i ∈ I. Note that this parameter is used in the deterministic
problem to build vector ϑ̈i, which contains the information on the possibility of executing every task
i. We also introduce function gtw(φ) which gives the revenue that may be generated by turbinew ∈ W
during time period t ∈ T if the wind speed is equal to φ ≥ 0. More specifically, we assume that gtw(φ)
is equal to the product of four elements: the selling price of 1kWh of wind power, the nominal power
Pw (in kWh) of turbine w, the number of hours hours(t) in time period t, and the capacity factor
CF (φ) of w associated with the wind speed φ.

gtw(φ) = 0.08 · Pw · hours(t) · CF (φ) (8.1)

Last but not least, we make the following assumption.

Assumption 8.2.1. Thereafter, we assume that the wind speed at a particular location during a particular
time period is equal for all the turbines.

8.3 Definition of the uncertainty considered in the problem

Uncertainty on the wind speed impacts the revenue generated by the turbines and can jeopar-
dize the execution of some tasks due to safety concerns. We choose here to work with row-wise
uncertainty (see Section 2.5). More specifically, we aim to protect independently each task against a
potential cancellation due to strong wind, and we want to take a risk averse decision regarding the
revenue by maximizing its value in the wort-case.

Every robust approach is based on the definition of the set of potential values for all the uncertain
parameters. In the remainder of this section, we define two different type of uncertainty sets whether
we take into account the potential correlations in the wind speed or not. Notice that Assumption 8.2.1
makes sufficient to only consider one wind speed for every time period and every location when
modeling the uncertainty set.

8.3.1 Non-correlated uncertainty set

In this section, we represent the uncertainty of the problem using an adaptation of the polyhedral
approach introduced by Bertsimas and Sim (2003) – see Section 2.5 for more details. We denote φtl
the uncertain wind speed at location l ∈ L during time period t ∈ T +. Each uncertain parameter
φtl belongs to the interval [φ̂tl − φ−tl , φ̂tl + φ+

tl ] with φ−tl , φ
+
tl ≥ 0. It is noteworthy that we do not

make any assumptions on the probability distribution of each uncertain parameter, except that we
assume that φ̂tl represents its nominal value. To avoid overprotecting the system, we control the
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level of robustness of the solution by bounding independently the number (or amount) of changes
from the nominal values among all the uncertain parameters for each time period t ∈ T + by Γt. Each
parameter Γt is a so-called uncertainty budget. The value of Γt is fixed for each time period by decision-
makers according to their trade off preferences between robustness and performance (in our case the
revenue). Notice that we choose to bound the deviations by time period to prevent inappropriate
cases where all the deviations happen at the beginning of the time horizon. The deviations are more
likely to be spread out over the time horizon. The uncertainty set is defined by:

ΦNC(Γ) = {φ |∃(δ−, δ+) ∈ ∆NC(Γ), φtl = φ̂tl − δ−tlφ
−
tl + δ+

tlφ
+
tl ∧ φtl ≥ 0 t ∈ T +, l ∈ L} (8.2)

and

∆NC(Γ) =

{
(δ−, δ+)

δ−tl ≥ 0, δ+
tl ≥ 0 t ∈ T +, l ∈ L,

‖δ+
t. + δ−t. ‖1 ≤ Γt ∧ ‖δ+

t. + δ−t. ‖∞ ≤ 1 t ∈ T +

}
(8.3)

One may observe that if ∃t ∈ T̂ s.t. Γt < |L| this excludes those cases where every uncertain
parameter simultaneously takes a value far from its nominal value. However, they can be pre-
sumed rare from a practical perspective. If for every time period t, Γt = |L|, we go back to the
approach of Soyster (1973). In that case, we can just remove all the plans that are not feasible in
the worst-case scenario (i.e. we fix xp = 0, ∀p ∈ P0,∀t ∈ T s.t. Sp ≤ t ≤ Cp, φ̂tlp + φ+

tlp
>

Υip) and we simply associate with each time period t of availability of a turbine w the revenue

min
(
gtw(φ̂tlw − φ−tlw), gtw(φ̂tlw + φ+

tlw
)
)

generated when one considers the worst-case scenario for the

wind speed 1. This approach is known to be overly conservative. To assess the conservatism of our
method, we show in our experiments how our robust solutions evolves when varying the value of
the vector Γ.

8.3.2 Correlated uncertainty set

When defining the uncertainty set ΦNC(Γ), we implicitly assume that the wind speed at a location
during a particular time period is independent on the past wind speed and the wind observed at the
other locations. More realistically, it is very likely that some correlations exist between the wind speed
at locations that are very closed to each other. Moreover, there can be some correlations between the
wind speed observed during time period t and that observed during previous time periods. We
arbitrarily assume that the wind speed at location l during time period t depends on the wind speed
at locations that are within a distance of l lower than Dmax, and on the wind speed at l during the
k time periods previous to t. As a result, we do no longer work directly with intervals for every
wind speed. We now consider two new positive variables δ̈tl and ε̈tl to describe the deviations of the
wind speeds from their nominal values. We then define the correlated uncertainty set in a way that
is largely inspired from the developments of Lorca and Sun (2014), who addressed the uncertainty of
the wind power for the economic dispatch of power systems.

ΦC(Γ) = {φ |∃((δ̈, ε̈) ∈ ∆C(Γ), φtl = φ̂tl + δ̈tl ∧ φtl ≥ 0 t ∈ T +, l ∈ L, } (8.4)

and

∆C(Γ) =


(δ̈, ε̈) |

δ̈tl =
t−1∑

t′=max(0,t−k)

αtt′ δ̈t′l +
∑
l′∈L

βll′
(
−δ−tl ε̈

−
tl′ + δ+

tl ε̈
+
tl′

)
t ∈ T +, l ∈ L,

‖ε̈−t. + ε̈+t.‖1 ≤ Γt, ‖ε̈−t. + ε̈+t.‖∞ ≤ 1 t ∈ T +}

 (8.5)

1. According to the CF function represented in Figure 8.2, the minimum production of a turbine w ∈ W during time
period t ∈ T can only occur at the lower bound and upper bound of the interval describing all the possible wind speed at
location lw during time period t.
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with βll′ =
max(0, Dmax −Dll′)∑
l′∈Lmax(0, Dmax −Dll′)

(Dll′ denotes the distance between the locations l and l′) and

αtt′ < 1 denote the coefficient of time correlation between the deviation of the wind speed during
time periods t′ and t (t > t′).

In the following sections, we use Φ(Γ) to refer either to ΦNC(Γ) or ΦC(Γ). We point out when
these latter sets require more individual attention.

8.4 Robust counterpart of the problem

Solving the problem using a robust approach and considering row-wise uncertainty implies that:
i) we want to build a maintenance plan that is associated with the largest revenue in the worst case
scenario (defined by the uncertainty set) of the wind speed and ii) we want to ensure that every
task (except those set to be postponed) can be effectively performed for all the realizations of the
uncertainty in Φ(Γ). Indeed, from a practical perspective, it is quite irrelevant to schedule a task
during time periods where there is a probability that the wind speed will not allow its execution.
Although it may be seen as a conservative decision, it is noteworthy that the two worst-case scenarios
for the uncertainty (minimal value of the revenue and the impossibility of execution of some tasks)
are essentially opposed. Indeed, the revenue is almost always minimal when the wind speed is
lower than its nominal value, whereas some tasks cannot be performed anymore only when the wind
speed is higher than its nominal value. This means that generally we do not impact the revenue by
preventing tasks to be scheduled during time periods where the safety limit can be exceeded.

We choose to express the robust counterpart of the problem based on the deterministic formula-
tion [P2] described in Chapter 4. One can notice that the revenue is based on the CF function which
is not linear. In order to formulate the problem using ILP, we approximate the CF function with a
piecewise linear function – denoted C̃F (.) – on the interval [0; Υmax] where Υmax is a maximal wind
speed that cannot be reached in all the locations we consider in our problem (see Figure 8.2). We
use 9 points for this approximation and we denote φ̇k the wind speed associated with the k-th point.
We have φ̇0 = 0 and as φ̇9 = Υmax. For every segment between points k and k + 1, we also denote

ak the slope (i.e., ak =
CF (φ̇k+1)− CF (φ̇k)

φ̇k+1 − φ̇k
) and as bk the y-intercept (i.e., bk = CF (φ̇k) − akφ̇k).

Note that the function is convex on the interval [φ0;φ5], concave on the interval [φ5;φ7[, and again
convex on the interval [φ7;φ9]. We have the wind-speeds VWI, WR and WCO equal to φ̇2 ,φ̇6, and φ̇7,
respectively.
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Figure 8.2 – Capacity factor of a wind turbine according to the wind speed

The robust counterpart [RP (Γ)] of the problem (hereafter referred to simply as the robust prob-
lem) reads:
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[RP (Γ)] max−
∑
p∈P

opxp + min
φ∈ΦΓ

0.08
∑
t∈T +

∑
l∈L

C̃F (φtl)
∑
w∈Wl

Pw · hours(t) · f tw (8.6)

subject to:

φtli

∑
p∈Pi

atpxp ≤ ϑtipΥi ∀i ∈ I,∀t ∈ T ,∀φ ∈ ΦΓ, (8.7)

∑
p∈Pi

xp = 1 ∀i ∈ I, (8.8)

∑
i∈B

∑
p∈Pi

atpxp ≤ 1 ∀B ∈ ov (I) ,∀t ∈ T , (8.9)

f tw +
∑
p∈Pi

bwpa
t
pxp ≤ 1 ∀w ∈ W,∀i ∈ I,∀t ∈ T +, (8.10)

∑
i∈I|si∈S̄

∑
p∈Pi

atpqpxp ≤ |RtS̄ | ∀t ∈ T ,∀S̄ ⊂ S, (8.11)

∑
r∈Rh

yrh =
∑
p∈Ph

qpxp ∀h ∈ H, (8.12)

∑
h∈Hl

athyrh ≤ ρtrvtrl ∀r ∈ R,∀l ∈ L,∀t ∈ T , (8.13)

∑
l∈L

vtrl = 1 ∀r ∈ R,∀t ∈ T , (8.14)

vtrltr = 1 ∀r ∈ R,∀t ∈ T s.t.ρtr = 0, (8.15)

vtrl +
∑

l′∈L|σll′=0

vt
′

rl′ ≤ 1

∀r ∈ R,∀d ∈ D,∀(t, t′) ∈ Td × Td, t 6= t′,∀l ∈ L, (8.16)
xp ∈ {0, 1} ∀p ∈ P, (8.17)

f tw ∈ {0, 1} ∀w ∈ W,∀t ∈ T +, (8.18)
yrh ∈ {0, 1} ∀h ∈ H,∀r ∈ Rh (8.19)

vtrl ∈ {0, 1} ∀r ∈ R,∀l ∈ L,∀t ∈ T (8.20)

It is worth noting that for producing consistent decisions we only make use of one uncertainty
set for the whole problem. The objective in (8.6) is defined as the difference between the minimal
revenue that can be generated by the wind turbines according to ΦΓ and the penalties related to the
postponement of some tasks. Constraints (8.7) ensure that each scheduled task can be perform for
any wind speed in the uncertainty set ΦΓ. They also impose that the maintenance plan meets the ex-
ternal restrictions (e.g., reliability concerns, contract commitments). Although the other constraints
have been defined first in Section 4.2, we describe them again for the sake of clarity. Constraints (8.8)
ensure that at least one plan involving each task is selected (i.e., each task is either executed or post-
poned). Constraints (8.9) are the non-overlapping constraints. Constraints (8.10) couple electricity
production variables to maintenance plan variables. We have the cumulative scheduling constraints
(8.11). Constraints (8.12) ensure that the technician requirements are fulfilled. Constraints (8.13) cou-
ple the locations of the technicians to the tasks they perform. Constraints (8.14), (8.15), and (8.16)
are used to handle the daily location-based incompatibilities and the availability calendars of the
technicians. Finally, constraints (8.17)-(8.20) state the binary nature of the decision variables.

8.5 Solution method

Since the CF function is not linear, we cannot reformulate the robust problem using duality the-
ory to generate a linear problem equivalent to [RP (Γ)] (see Section 2.5). As an alternative, a cutting
plane method appears to be an appropriate method to solve the robust problem.
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8.5.1 Problem reformulation

First, let us start by presenting a reformulation of the robust counterpart of the problem more
adapted to a cutting plane approach. To this end, we associate with each time period of availabil-
ity of a wind turbine the maximum revenue that it can generate. From that, we modify the objec-
tive function such that its value is always an upper bound on the true objective value. We denote
C̃F

max

tl = maxφtl∈Φ(Γ)CF (φtl) the maximum capacity factor that can be reached at location l during

time period t. Notice that setting C̃F
max

tl = CF
(
φ̂tl

)
is also a valid approach since, in the worst-case,

the revenue is at most equal to the revenue considering the nominal value of the wind. We then in-
troduce variable θ representing the difference between the maximum revenue that can be generated
according to a fixed maintenance plan and the true value of the revenue in the worst case scenario.
The robust problem can be rewritten as follows:

[RP (Γ)] max−
∑
p∈P

opxp + 0.08

(∑
t∈T +

∑
l∈L

C̃F
max

tl

∑
w∈Wl

Pw · hours(t) · f tw − θ

)
(8.21)

subject to:

max
φtli∈ΦΓ

φtli

∑
p∈Pi

atpxp ≤ ϑtipΥi ∀i ∈ I,∀t ∈ T , (8.22)

θ ≥
∑
t∈T +

∑
l∈L

(
C̃F

max

tl − C̃F (φtl)
)( ∑

w∈Wl

Pw · hours(t) · f tw

)
∀φ ∈ ΦΓ, (8.23)

θ ≥ 0 (8.24)
(8.8), (8.9), (8.10), (8.11), (8.12), (8.13), (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), (8.20)

Applying a cutting plane approach to problem [RP (Γ)] implies separating constraints (8.22) and
(8.23). Let us explain how we achieve that goal.

First, given a maintenance plan x̄p (hereafter referred to as x̄), we check if all the tasks (except
those set to be postponed) can be effectively performed for all the realizations of the uncertainty in
ΦΓ. For each task i ∈ I, we consider that a task cannot be performed if there exists one particular
execution time period of i during which the wind exceeds the safety limit Υi. For a task i executed
during time period t, the worst-case scenario is obtained by maximizing over the uncertainty set ΦΓ

the wind speed φtli and by comparing the resulting value to Υi. Indeed, we can just rewrite the
constraints (8.22) as follows:

max
φtli∈ΦΓ

φtli

∑
p∈Pi

atpxp ≤ ϑtipΥi ∀i ∈ I,∀t ∈ T (8.25)

Note that constraints (8.25) are equivalent to setting xp = 0 for every plan p for which the following
clause holds:

∃t ∈ {Sp, ..., Cp}, max
φtlp∈ΦΓ

φtlp > ϑtipΥip (8.26)

A prepossessing technique can therefore achieve the goal of ensuring that the selected maintenance
plan can be performed for any wind speed in the uncertainty set. We apply this process and, there-
fore, eliminate the need of separating constraints (8.22).

Second, given an availability of the wind turbines f̄ tw (hereafter referred to as f̄ ), we compute the
minimum revenue generated by the electricity production of the wind turbines that can be reached
according to the uncertainty set. To model the piecewise linear approximation C̃F (.) of the func-
tion CF (.), we use a multiple choice model as an alternative to the widespread convex combination
model. Although these two models have the same LP relaxation and lead to the same bounds (Crox-
ton et al., 2003), the former seems to work better in practice according to Vielma et al. (2010). We
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introduce binary variable yktl taking the value 1 if and only if the wind speed at location l during time
period t is within the interval [φ̇k; φ̇k+1[ (i.e., lies on the k-th segment). We also introduce for every
location l and every time period t the continuous variable φktl taking a value equal to the wind speed
if and only if the latter lies on the k-th segment. The inner minimization problem [SRP (f̄ ,Γ)] reads:

[SRP (f̄ ,Γ)] min
φ∈ΦΓ

∑
t∈T +

∑
l∈L

(
n∑
k=1

akφ
k
tl + bky

k
tl

)( ∑
w∈Wl

Pwhours(t)f̄ tw

)
(8.27)

subject to:

φtl =

n−1∑
k=1

φktl ∀l ∈ L,∀t ∈ T +, (8.28)

φ̇ky
k
tl ≤ φktl ≤ φ̇k+1y

k
tl ∀l ∈ L,∀t ∈ T +,∀k ∈ {1, ..., n− 1}, (8.29)

n−1∑
k=1

yktl ≤ 1 ∀l ∈ L,∀t ∈ T +, (8.30)

φktl ≥ 0 ∀l ∈ L,∀t ∈ T +,∀k ∈ {1, ..., n}, (8.31)

yktl ∈ {0, 1} ∀l ∈ L,∀t ∈ T +,∀k ∈ {1, ..., n} (8.32)

It is worth noting that we only have to consider the revenue function in the interval [minφ∈ΦΓ
φtl,

maxφ∈ΦΓ
φtl] for each location l and each time period t. This can significantly reduce the number of

points to consider for the piecewise linear approximation to the CF function. For the non-correlated
uncertainty set ΦNC

Γ , such interval is equal to [φ̂tl−min(1,Γt)φ
−
tl , φ̂tl+min(1,Γt)φ

+
tl ]. For the correlated

uncertainty set ΦC
Γ , the expression of the interval is less straightforward, but it can also be computed

beforehand.

We denote φ̄tlk and ȳtlk the value of φktl and yktl in the optimal solution to [SRP (f̄ ,Γ)]. Let also θ̄ be
the current value of the variable θ in [RP (Γ)]. The revenue generated by the electricity production of
the wind turbines is overestimated if we have:

θ̄ <
∑
t∈T +

∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pwhours(t)f̄ tw

)

In that case, we introduce the robustness cut (8.33).

θ ≥
∑
t∈T +

∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
t
lk + bkȳ

t
lk

))( ∑
w∈Wl

Pw · hours(t) · f tw

)
(8.33)

The sub-problem [SRP (f̄ ,Γ)] always admits a feasible solution and is bounded. We denote D(Γ)
the finite set of its extreme points for a given Γ. The robust problem can finally be reformulated as
the following master problem [RP∗(Γ)].

[RP∗(Γ)] max−
∑
p∈P

opxp + 0.08

(∑
t∈T +

∑
l∈L

C̃F
max

tl

∑
w∈Wl

Pw · hours(t) · f tw − θ

)
subject to:

θ ≥
∑
t∈T +

∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pw · hours(t) · f tw

)
∀(φ̄, ȳ) ∈ D(Γ) (8.34)

xp = 0 ∀p ∈ P,∃t ∈ {Sp, ..., Cp} s.t. max
φtlp∈ΦΓ

φtlp > ϑtipΥip (8.35)

(8.8), (8.9), (8.10), (8.11), (8.12), (8.13), (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), (8.20)

This formulation is independent of the type of uncertainty set that we consider. However, if we
consider the non-correlated uncertainty set ΦNC

Γ , one can slightly modify the formulation of the ro-
bust problem. Indeed, one can observe that the sub-problem [SRP (f,Γ)] can be decomposed in |T +|
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independent sub-problems, one per time period. Denoting [SRPt(f,Γ)] the sub-problem restricted
to time period t ∈ T +, we have opt ([SRP (f,Γ)]) =

∑
t∈T + opt ([SRPt(f,Γ)]). We therefore replace

the variable θ in the robust counterpart of the problem by one variable θt for every time period t. For
every time period t, let θ̄t be the current value of variable θt in [RP∗(Γ)]; the revenue generated by
the electricity production of the wind turbines during t are overestimated if:

θ̄t <
∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pwhours(t)f̄ tw

)

The robustness cut then reads:

θt ≥
∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pw · hours(t) · f tw

)
(8.36)

Let us denote Dt(Γ) the finite set of extreme points of [SRPt(f̄ ,Γ)]. If we consider non-correlated
uncertainty, the robust master problem can be reformulated as the following master problem:

[RP∗(Γ)] max−
∑
p∈P

opxp + 0.08

(∑
t∈T +

∑
l∈L

C̃F
max

tl

∑
w∈Wl

Pw · hours(t) · f tw −
∑
t∈T +

θt

)
subject to:

θt ≥
∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pw · hours(t) · f tw

)
∀t ∈ T +,∀(φ̄, ȳ) ∈ Dt(Γ) (8.37)

xp = 0 ∀p ∈ P,∃t ∈ {Sp, ..., Cp} s.t. φ̂tlp + max(1,Γt) > ϑtipΥip (8.38)

(8.8), (8.9), (8.10), (8.11), (8.12), (8.13), (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), (8.20)

8.5.2 General scheme of the solution method

To efficiently solve [RP∗(Γ)] we rely on the decomposition approach built to solve the determin-
istic problem in Chapter 6. Replacing the constraints (8.13), (8.14), (8.15), (8.16), (8.17), (8.18), (8.19),
and (8.20) by the combinatorial Benders cuts (6.19), the robust problem can be rewritten as follows:

[RP∗(Γ)] max−
∑
p∈P

opxp + 0.08
∑
t∈T +

∑
l∈L

C̃F
max

tl

∑
w∈Wl

Pw · hours(t) · f tw − θ

subject to:

θ ≥
∑
t∈T +

∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pw · hours(t) · f tw

)
∀(φ̄, ȳ) ∈ D(Γ) (8.37)

xp = 0 ∀p ∈ P,∃t ∈ {Sp, ..., Cp} s.t. max
φtlp∈ΦΓ

φtlp > ϑtipΥip (8.38)

(8.8), (8.9), (8.10), (8.11), (8.17), (8.18),∑
p∈P(x̄)

xp ≤ |I| − 1 ∀x̄ ∈ F̄ (6.19)

We initialize a restricted master problem [RRP∗(Γ)] with no robustness cuts (8.34) (if considering
ΦC

Γ ) or (8.37) (if considering ΦNC
Γ ) and no combinatorial Benders cuts (6.19). We then apply the same

scheme, with some small adaptations, as the one presented in Figure 6.9 for the B&C approach. At
each integer node (x̄, f̄), we now check two sub-problems. First, we check the existence of a fea-
sible technician-to-task assignment according to the selection of plans x̄ in the same way as for the
deterministic problem. Second, we solve the sub-problem [SRP (f̄ ,Γ)] with a MILP solver. The non-
convexity of the C̃F function and the complexity of the uncertainty set ΦC(Γ) makes it difficult to
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propose an alternative solution method as efficient as the direct resolution of theMILP formulation.
If the technician-to-task assignment sub-problem is feasible and the revenue is correctly estimated
(i.e., no robustness cuts (8.34) – if considering ΦC

Γ – or (8.37) – if considering ΦNC
Γ – need to be intro-

duce in the restricted master problem). Otherwise, we add all the generated cuts. To speed-up the
process, we can solve in parallel the two sub-problems. Similar to our approach for the deterministic
problem, we start the method by iteratively solving a linear relaxation of the scheduling problem un-
til the technician-to-task assignment sub-problem does not produce any cuts. During this first stage,
we also solve the sub-problem [SRP (f̄ ,Γ)] at each iteration.

8.5.3 Alternative robust approach

One drawback of the robust approach described up to this point is that the optimization only
takes the worst-case scenario into consideration for the computation of the revenue (see the discus-
sion in Section 2.5). Let us consider two maintenance plans xA and xB with an negligible difference
in terms of minimal revenue (we assume that the minimal revenue is larger for xA) but a significant
difference for the revenue when considering the nominal wind speed (we assume that the average
revenue is larger for xB). One may consider maintenance plan xB to be preferable to maintenance
plan xA since it seems that it is more “probable" that selecting xB will generate more revenue. How-
ever, the previous approach would select the maintenance plan xA since the objective is to maximize
the revenue in the worst-case.

One possible way to address this issue is to maximize the revenue based on the nominal wind
speed while ensuring that in the worst-case scenario, the revenue is larger than a specified value
LB (this value should be set by the decision-maker). Fixing this value is not trivial and requires a
considerable expertise. Notice that a LB that is too large (i.e., LB is equal to a value not reachable for
any feasible maintenance plan) can lead to infeasibility. We refer to this approach as the LB robust
approach (as an alternative to the baseline robust approach previously described). From the robust
formulation described in Section 8.5.1, the LB robust problem reads:

[RPLB∗ (Γ)] max−
∑
p∈P

opxp + 0.08
∑
t∈T +

∑
l∈L

CF (φ̂tl)
∑
w∈Wl

Pw · hours(t) · f tw (8.39)

subject to: (8.40)

−
∑
p∈P

opxp + 0.08
∑
t∈T +

∑
l∈L

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

)( ∑
w∈Wl

Pw · hours(t) · f tw

)
≥ LB ∀(φ̄, ȳ) ∈ D(Γ) (8.41)

xp = 0 ∀p ∈ P,∃t ∈ {Sp, ..., Cp} s.t. max
φtlp∈ΦΓ

φtlp > ϑtipΥip (8.38)

(8.8), (8.9), (8.10), (8.11), (8.17), (8.18),∑
p∈P(x̄)

xp ≤ |I| − 1 ∀x̄ ∈ F̄ (6.19)

The objective in (8.39) is defined as the difference between the nominal revenue generated by the
wind turbines and the penalties related to the postponement of some tasks. Constraints (8.7) ensure
that the worst-case revenue (according to the uncertainty set ΦΓ) yielded by the maintenance plan is
at least equal to LB. We separate these constraints when solving this alternative robust problem.

8.6 Computational experiments

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We rely on Gurobi 6.5.1 for solving
LP and ILP models. We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R)
X5675 (3.07Ghz) and 12GB of RAM. We set a 3-hour time limit to solve the different instances (notice
that all CPU times are reported in seconds and rounded to the closest integer). In order to assess the
quality of our results, we compute the gap with respect to the optimal solution when it is known, or
to the best upper bound retrieved by the solver.
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We decided to conduct our experiments only on the instances that solved to optimality when
considering the deterministic problem. Thus, we only considered the type B instances of testbed G1.

Since we work with randomly generated instances, we have no information on the distribution
of the wind speed. We only assume that the nominal value of the wind speed at each location during
each time time period is equal to the wind speed in the deterministic problem. However, we need
to define the uncertainty set, that is, to assign a value to parameters φ−tl and φ+

tl for every location
l ∈ L and every time period t ∈ T + and to fix the value of the vector Γ. We choose to fix the values
of φ−tl and φ+

tl according to the number of hours between the beginning of time period t and the
beginning of the time horizon. Since the accuracy of wind predictions degrade over time, the larger
the difference is the larger is the value of the coefficient. In contrast, we do not make any distinction
between locations as for a time period the parameters are all set equal (in practice, it is not necessarily
true as it is difficult to estimate the wind speed in complex terrain). Note that these parameters can be
determined by using historical data. In our case, we consider symmetric values for these parameters.
For the first time period, we fix a reference value of φ−1l = −0.25 and φ−1l = 0.25 for every location
l. Then, every 12 hours, we increase this value by 0.125. For illustration purpose, for every location
l ∈ L parameters φ−t∗l and φ+

t∗l are equal to ±1.25 m.s−1 if t∗ is the time period corresponding to the
beginning of the time horizon plus 5 days. If we consider the uncorrelated uncertainty set Φ(Γ) and
a nominal value of φt∗l = 5 m.s−1, this means that the range of possible values for the wind speed is
[3.75 m.s−1; 6.25 m.s−1]. Figure 8.3 illustrates on two different examples the possible range of values
for the wind speed at a particular location during the time horizon.
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Figure 8.3 – Two examples of the deviations allowed for the wind speed at a particular location
according to the uncertainty set

We also need to define parameter ∆MAX for the spatial correlation and parameters αtt′ for the
time correlation of the wind speed. Since we do not have historical data that we can use to estimate
these parameters (e.g., using time series models), we set ∆MAX to an arbitrary value of 15 kms.
Moreover, we consider a time correlation of maximum 5 hours. In our case, this means that the wind
speed during a time period depends on the deviations observed in, at most, the last two time periods.
More specifically, if the number of hours between the beginning of a time period t and the beginning
of the time period t − 1 is larger or equal to 5 hours, we set the parameters αtt−1 = 0.5 and αtt′ = 0
if t′ 6= t− 1. If the number of hours is strictly less than 5 hours, we set the parameters αtt−1 = 0.375,
αtt−2 = 0.125, and αtt′ = 0 if t′ 6= t− 1 and t′ 6= t− 2.

For the budget vector Γ, we consider different values defined as a proportion of the number
of uncertain parameters {0, 0.1|L|, 0.2|L|, 0.3|L|, 0.4|L|, 0.5|L|, |L|}. For simplicity purpose, once the
proportion is chosen, we set all the uncertainty budgets Γt equal to the same value. This proportion
thus represents the percentage of total deviation from the nominal wind speed allowed during each
time period.



134 A ROBUST APPROACH

8.6.1 Baseline robust approach

We present in this part the computational results for the robust approach. In Tables 8.1 and 8.2,
we report the average gap (Gap) over all the instances which are not optimally solved and belong-
ing to the same family or sharing a common characteristic. For the instances with a proven opti-
mum, we report the solution time (Time), the time spent solving the robust sub-problem [SRP (f̄ ,Γ)]
(Time.SPR), the number of optimal solutions found within the time limit (#Opt), and the number
of robustness cuts generated (#Cuts). For all the instances, we also report the percentage of plans
(%rm) that have been removed during the preprocessing stage to ensure the execution of each task
for any wind speed in the uncertainty set. First, we observe that we are not able to reach optimality
for some of the instances independently of the value of the budget vector Γ and the type of uncer-
tainty set. Nonetheless, this only concerns few instances and the gap is then very small. Moreover,
it seems that solving the problem using the uncorrelated uncertainty set ΦNC(Γ) is easier than using
the correlated uncertainty set ΦC(Γ). Indeed, we are able to compute more optimal solutions and the
solution time is shorter. This partially comes from the fact that adding the disaggregated cuts (8.37)
provides more information to the restricted master problem than adding the cuts (8.34). Solving the
robust problem is also more time-consuming as the value of the budget grows. We point out here that
for a budget proportion set to 100% (all the deviations of the wind speed are allowed), the solution
to the sub-problem is simply found when the wind speed φtl at each time period and each location
takes the value of min(φ̂tl − φ−tl , φ̂tl + φ+

tl ). Furthermore, to guarantee that each scheduled task can
be performed for all the realizations of the wind speed in the uncertainty set, we remove on average
12% of the plans in P . We noticed in our experiments that starting from a budget value of 10% we
do not almost always remove any plans by increasing this value. This is explained by the fact that
the wind speed at a particular time period t and a particular location l can take the value of φ̂tl + φ+

tl

even for small value of the budget proportion. Although this can be thought as a very conservative
management, we usually only remove plans that are linked with time periods where the nominal
wind speed is already high. These plans are unlikely to be part of any optimal solution. However,
when the time horizon spreads over two weeks, the wind speed may vary considerably and it should
be pointed out that it is probable that, if the wind speed is around 7m.s−1, only a few maintenance
operations are planned at the end of the time horizon in the optimal solution. Nonetheless, this does
make sense in practice.

Table 8.1 – Detailed computational results for the robust approach when considering the correlated
uncertainty set ΦC.

Characteristic Γ Gap #Opt Time Time.SPR #Cuts %rm

1 week

10% 40/40 23 8 65 1%
20% 0.00% 39/40 37 9 67 2%
30% 0.10% 39/40 171 14 100 2%
40% 0.10% 39/40 275 17 116 2%
50% 0.15% 38/40 180 17 110 2%

100% 0.10% 38/40 6 1 30 2%

2 weeks

10% 0.03% 34/40 539 216 92 21%
20% 0.13% 22/40 450 139 120 22%
30% 0.23% 18/40 784 100 148 22%
40% 0.24% 20/40 1009 117 164 22%
50% 0.10% 24/40 1097 81 125 22%

100% 0.01% 33/40 237 1 33 22%

All

10% 0.03% 74/80 260 104 77 11%
20% 0.13% 61/80 186 56 86 12%
30% 0.22% 57/80 364 41 115 12%
40% 0.23% 59/80 524 51 133 12%
50% 0.14% 62/80 535 42 116 12%

100% 0.03% 72/80 112 1 31 12%

In Figure 8.4, we show the evolution of the minimal revenue opt([RP (Γ]) according to the type of
uncertainty set and the budget vector. The curve is a decreasing convex function where we observe a
quick decrease of opt([RP (Γ]) with small values of Γ followed by a slow decrease. This comes from
the modelization of the uncertainty, since when Γ increases the most influential deviations of the
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Table 8.2 – Aggregated computational results for the robust approach.

Uncertainty Γ Gap #Opt Time Time.SPR #Cuts %rm

ΦC

10% 0.03% 74/80 260 104 77 11%
20% 0.13% 61/80 186 56 86 12%
30% 0.22% 57/80 364 41 115 12%
40% 0.23% 59/80 524 51 133 12%
50% 0.14% 62/80 535 42 116 12%
100% 0.03% 72/80 112 1 31 12%

ΦNC

10% - 80/80 72 15 115 1%
20% 0.00% 78/80 106 14 138 1%
30% 0.04% 75/80 221 13 152 1%
40% 0.00% 73/80 290 13 154 1%
50% 0.04% 72/80 439 12 164 1%
100% 0.00% 78/80 184 1 94 1%

wind speed on the revenue are chosen first.
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Figure 8.4 – Evolution of the minimal revenue according to the uncertainty budget vector

After evaluating the capacity of the robust approach to find optimal solutions and its perfor-
mance, we now estimate the quality of the robust solutions. To this end, we perform two different
experiments. Notice that we only present here the aggregated results over all the instances since
their characteristics do not seem to have a particular influence. We refer to the maintenance plans
obtained when considering ΦC(Γ) and ΦNC(Γ) as the robust correlated and non-correlated mainte-
nance plans. We also refer to the maintenance plan obtained when solving the deterministic problem
as the deterministic maintenance plan.

First, we performed simulations using a Monte-Carlo scheme. Notice that by construction of
the uncertainty sets, the coordinates of the uncertain vector δ = δ+ − δ− – used in the definition of
ΦNC(Γ) – are all assumed to be independents. The same holds for the uncertain vector ε̈ = ε̈+ − ε̈−
used for the definition of ΦC(Γ). We separately considered two different probability distributions:
uniform U(−1; 1) and truncated Gaussian distributions N (0, 1) on the interval [−1; 1]. From the
chosen distribution, we created a sample of 5,000 realizations (i.e., scenarios) for the uncertain vector.
We then evaluate the robust solutions on each of these realizations.

We report in Table 8.3 a 95% confidence interval for the proportion of wind speed scenarios (in
the uncertainty set) for which the deterministic (line “Uncertainty=D" - "Γ = 0%), the robust correlated
(lines “Uncertainty= ΦC(Γ)), and the robust non-correlated (lines “Uncertainty= ΦNC(Γ)) maintenance
plans are feasible (i.e., for every task i the wind speed during the time periods it is executed is strictly
less than the maximal authorized value Υi). Let us focus on the simulation performed considering
the correlated uncertainty set (columns 3 and 5 associated with the symbol ΦC(Γ)). We observe that
almost all, if not all, the robust correlated maintenance plans for different budget vectors are fea-
sible for any realization of the wind speed. This is not surprising, since the robust approach aims
to take risk-averse decisions. On the contrary, the deterministic maintenance plan as well as the
non-correlated maintenance plans are infeasible in 1% of the realizations. Second, if we focus on
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the simulation performed considering the non-correlated uncertainty set (columns 4 and 6 associ-
ated with the symbol ΦNC(Γ)), only the deterministic maintenance plans are likely to be infeasible.
This can be explained by the fact that we are much more conservative when considering correlated
uncertainties. Indeed, it is clear that if we evaluate the correlated maintenance plans considering
the non-correlated uncertainty set ΦNC(Γ) they are always feasible. One should also note that small
values of Γ seem more appropriate to avoid overconservatism.

Table 8.3 – 95% confidence intervals for the proportion of wind speed scenarios for which the main-
tenance plan is feasible

Distribution
Uniform Gaussian

Uncertainty Γ ΦC ΦNC ΦC ΦNC

So
lu

ti
on

s

D 0% [98.5% ; 98.7%] [99.2% ; 99.3%] [98.8% ; 99.0%] [99.4% ; 99.5%]

ΦC

10% [99.9% ; 100%] [100% ; 100%] [100% ; 100%] [100% ; 100%]
20% [100% ; 100%] [100% ; 100%] [100% ; 100%] [100% ; 100%]
30% [100% ; 100%] [100% ; 100%] [100% ; 100%] [100% ; 100%]
40% [100% ; 100%] [100% ; 100%] [100% ; 100%] [100% ; 100%]
50% [100% ; 100%] [100% ; 100%] [100% ; 100%] [100% ; 100%]

100% [100% ; 100%] [100% ; 100%] [100% ; 100%] [100% ; 100%]

ΦNC

10% [99.2% ; 99.4%] [100% ; 100%] [99.4% ; 99.6%] [100% ; 100%]
20% [99.1% ; 99.4%] [100% ; 100%] [99.3% ; 99.5%] [100% ; 100%]
30% [99.0% ; 99.3%] [100% ; 100%] [99.3% ; 99.5%] [100% ; 100%]
40% [98.9% ; 99.2%] [100% ; 100%] [99.3% ; 99.5%] [100% ; 100%]
50% [99.0% ; 99.2%] [100% ; 100%] [99.3% ; 99.6%] [100% ; 100%]

100% [99.0% ; 99.3%] [100% ; 100%] [99.4% ; 99.6%] [100% ; 100%]
D: deterministic case

The simulation also enables to capture the average value of the revenue as well as its variance.
Figure 8.5 depicts the box plots of the distribution of the revenue (considered only when the main-
tenance plan is feasible for the associated realization) for different budget vectors and for the two
different type of uncertainty sets. Notice that the ends of the whiskers represent the 1st decile and
the 9th decile. This box plot aggregates the results over all the instances (by taking mean values for
the average, the quartiles, the deciles, and the extreme values).

As for the previous table, the results are almost identical independently of the chosen distribu-
tion. We therefore do not make explicit references to a distribution in the following analysis. The
distribution of the revenue does not appear to be particularly impacted by the solutions we consider
even if the deterministic maintenance plan is generally better. Obviously, we observe that the mainte-
nance plans computed considering large budget proportions generally leads to the smallest revenue.
The percentage difference between the revenue yielded by deterministic maintenance plans and ro-
bust maintenance plans computed using a budget proportion of 50% is less than 1% and around
2% for maintenance plans computed considering the wort-case (i.e., 100%). We also notice that non-
correlated maintenance plans usually yield larger revenue, which confirms that the associated solu-
tions are less conservative than the ones associated with correlated maintenance plans. However,
as reported in Table 8.3, non-correlated maintenance plans are not always feasible. The robust ap-
proach then seems to provide an interesting trade-off between feasibility and minimal revenue in the
worst-case.

Second, one should be aware of the fact that each maintenance plan is actually optimal regard-
ing a particular uncertainty set; it is protected against any feasibility issue if the wind speed lies in
this uncertainty set, and the associated revenue is maximal when one considers the wort-case (ac-
cording to this uncertainty set) for the wind speed. For different type of uncertainty sets (correlated
or non-correlated) and budget vectors Γ, we therefore observe that the robust approach produces
different maintenance plans. Since it is not easy for decision-makers to fix the value of the budget
according to their trade off preferences between robustness and performance, we would like to assess
the quality of the maintenance plans when considering a different uncertainty set (i.e. different type
and/or different budget vector). For each maintenance plan obtained for a particular uncertainty
set, we therefore computed the minimal revenue and we tested its feasibility in the worst-case if one
considers an alternative uncertainty set. Table 8.4 reports the percentage of instances with a feasible



8.6. COMPUTATIONAL EXPERIMENTS 137

0% 10%
ΦC|ΦNC

200%
ΦC|ΦNC

30%
ΦC|ΦNC

40%
ΦC|ΦNC

50%
ΦC|ΦNC

100%
ΦC|ΦNC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Solutions

R
ev

en
u

Uniform distribution - Correlated uncertainty

0% 10%
ΦC|ΦNC

200%
ΦC|ΦNC

30%
ΦC|ΦNC

40%
ΦC|ΦNC

50%
ΦC|ΦNC

100%
ΦC|ΦNC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Solutions

R
ev

en
u

Gaussian distribution - Correlated uncertainty

0% 10%
ΦC|ΦNC

200%
ΦC|ΦNC

30%
ΦC|ΦNC

40%
ΦC|ΦNC

50%
ΦC|ΦNC

100%
ΦC|ΦNC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Solutions

R
ev

en
u

Uniform distribution - Non-correlated uncertainty

0% 10%
ΦC|ΦNC

200%
ΦC|ΦNC

30%
ΦC|ΦNC

40%
ΦC|ΦNC

50%
ΦC|ΦNC

100%
ΦC|ΦNC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Solutions

R
ev

en
u

Gaussian distribution - Non-correlated uncertainty

Figure 8.5 – Box plots of the distribution of the revenue in the simulation according to different
distributuions and uncertainty sets
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maintenance plan. Let us consider a maintenance plan and a particular uncertainty set. For each
task, we checked if for any of its execution time periods the wind speed can be above the safety limit
according to the selected uncertainty set. Table 8.5 reports the average gap to the optimal minimum
revenue computed over all the instances with a feasible maintenance plan. Again, let us consider
a maintenance plan and a particular uncertainty set. We computed the minimal revenue according
to the selected uncertainty set that is yielded by this maintenance plan. We then computed the gap
(percentage change) between this value and the maximum value (for the minimal revenue) that can
be reached. This intends to help a decision maker to find a desire trade-off between revenue and
guarantee of feasibility.

If we evaluate the maintenance plans assuming correlated uncertainties, we observe that the de-
terministic and the robust non-correlated maintenance plans are not feasible for half of the instances.
On the opposite, the correlated maintenance plans are always feasible. If the wind speed deviates
from its nominal value, this underlines the contribution of using the appropriate robust approach.
Indeed, considering non-correlated uncertainties when correlation exists yields feasibility issues. In
contrast, the opposite does not hold. Regarding the minimal revenue, we observe that the deter-
ministic maintenance plan behaves quite well when the wind speed is uncertain, even if its quality
degrades when the uncertainty increases. More generally, we observe that for a maintenance plan
optimal for a budget of Γ∗ (and a certain type of uncertainty set), the more we restrict (by considering
values of Γ lower than Γ∗) or expand (by considering values of Γ larger than Γ∗) the uncertainty the
larger is the gap to the optimal minimum revenue. Fixing the budget proportion around 20% seems
to provide the best results for the robust correlated maintenance plans. This is in line with the obser-
vation of Bertsimas and Sim (2004) that suggested to fix the uncertainty budget in the order of

√
|L|

to avoid overconservatism.

Table 8.4 – Percentage of instances with a feasible maintenance plan for different uncertainty sets and
different budget vectors

Worst-case evaluation
Uncertainty D ΦC ΦNC

Γ 0% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

So
lu

ti
on

s

D 0% 100% 53% 51% 51% 51% 51% 51% 95% 95% 95% 95% 95% 95%

ΦC

10% 100% 100% 96% 96% 96% 96% 96% 100% 100% 100% 100% 99% 100%
20% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
30% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
40% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
50% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

ΦNC

10% 100% 51% 49% 49% 49% 49% 49% 100% 100% 100% 100% 100% 100%
20% 100% 50% 49% 49% 49% 49% 49% 100% 100% 100% 100% 100% 100%
30% 100% 50% 48% 48% 48% 48% 48% 100% 100% 100% 100% 100% 100%
40% 100% 49% 48% 48% 48% 48% 48% 100% 100% 100% 100% 100% 100%
50% 100% 49% 46% 46% 46% 46% 46% 100% 100% 100% 100% 100% 100%
100% 100% 48% 46% 46% 46% 46% 46% 100% 100% 100% 100% 100% 100%

D: deterministic case
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Table 8.5 – Average gap to the optimal niminum revenue for different uncertainty sets and different
budget vectors

Worst-case evaluation
Uncertainty D ΦC ΦNC

Γ 0% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%
So

lu
ti

on
s

D 0% 0.0% 0.1% 0.3% 0.5% 0.7% 0.8% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%

ΦC

10% 0.3% 0.0% 0.1% 0.4% 0.7% 1.0% 1.2% 0.2% 0.2% 0.3% 0.5% 0.6% 0.8%
20% 0.6% 0.3% 0.0% 0.2% 0.4% 0.8% 1.0% 0.5% 0.4% 0.4% 0.5% 0.6% 1.0%
30% 0.9% 0.6% 0.3% 0.0% 0.2% 0.5% 0.9% 0.9% 0.8% 0.7% 0.6% 0.6% 1.0%
40% 1.1% 1.0% 0.7% 0.3% 0.0% 0.2% 0.7% 1.1% 1.1% 1.0% 0.9% 0.7% 1.0%
50% 1.3% 1.2% 1.0% 0.7% 0.2% 0.0% 0.5% 1.4% 1.3% 1.3% 1.2% 1.0% 0.9%

100% 1.8% 1.8% 1.7% 1.6% 1.3% 1.1% 0.0% 1.9% 1.9% 1.9% 1.8% 1.7% 0.9%

ΦNC

10% 0.1% 0.1% 0.2% 0.3% 0.5% 0.6% 1.0% 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
20% 0.2% 0.0% 0.1% 0.2% 0.4% 0.5% 0.9% 0.1% 0.0% 0.1% 0.2% 0.3% 0.5%
30% 0.4% 0.1% 0.1% 0.1% 0.2% 0.3% 0.8% 0.2% 0.1% 0.0% 0.1% 0.2% 0.5%
40% 0.5% 0.2% 0.2% 0.1% 0.2% 0.2% 0.7% 0.4% 0.3% 0.1% 0.0% 0.1% 0.4%
50% 0.6% 0.2% 0.2% 0.2% 0.1% 0.2% 0.6% 0.5% 0.4% 0.3% 0.1% 0.0% 0.3%

100% 0.6% 0.3% 0.4% 0.4% 0.4% 0.4% 0.4% 0.7% 0.7% 0.7% 0.7% 0.6% 0.0%

D: deterministic case

8.6.2 Alternative robust approach

We also tested the LB robust approach described in Section 8.5.3. We present the computational
results in Table 8.6. For each instance, we set the value LB according to the solution computed by the
CPLNS presented in Chapter 5 after 15 seconds (the average gap for the CPLNS is equal to 0.5% for
the deterministic version of the problem if the time limit is set to 15 seconds). More specifically, we set
LB to the minimal revenue according to the uncertainty set that can be generated when one executes
the maintenance plan retrieved by the CPLNS. We are indeed interested in maintenance plans that
yield a minimal revenue larger than LB. Contrary to the approach presented above, all the instances
are optimally solved in less than 2 minutes. This may be linked to the fact that adding the robustness
cuts (8.41) does not directly influence the objective function. The method may then converge faster.
Nonetheless, since the low number of robustness cuts generated may indicate that the value LB is
not very binding, only some additional experiments with higher values of LB could assess this latter
statement. Otherwise, we globally reach the same conclusions as above on the impact of the chosen
uncertainty set.

Table 8.6 – Aggregated computational results on testbed G1 (type B) for the robust approach.

Uncertainty Γ #Opt Time Time.SPR #Cuts %rm

ΦC

10% 80/80 88 47 11% 1
20% 80/80 78 39 12% 3
30% 80/80 69 29 12% 7
40% 80/80 72 26 12% 5
50% 80/80 65 22 12% 11

100% 80/80 37 1 12% 1

ΦNC

10% 80/80 46 6 1% 1
20% 80/80 47 6 1% 1
30% 80/80 45 5 1% 3
40% 80/80 48 5 1% 5
50% 80/80 48 5 1% 4

100% 80/80 38 1 1% 1

For each solution, we computed the minimal revenue and we tested its feasibility in the worst-
case if one considers an alternative uncertainty set to the one for which the solution is optimal. Table
8.7 reports the percentage of instances with a feasible maintenance plan and Table 8.8 reports the
average gap to the optimal minimum revenue computed over all the instances with a feasible main-
tenance plan. The results we obtained are very similar to the one previously obtained. If we compare
the solutions computed using this LB robust approach and the baseline approach, we observe that
the former solutions are always feasible and yield a minimum revenue that is, in the worst-case, not
far from the one reached for the latter solutions. However, solutions given by the LB robust approach
appear to be less conservative as the minimal revenue seems slightly better for small deviations of
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the wind speed.

Table 8.7 – Percentage of instances with a feasible maintenance plan according to the uncertainty
considered

Worst-case evaluation
Uncertainty D ΦC ΦNC

Gamma 0% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

So
lu

ti
on

s

ΦC

10% 100% 100% 96% 96% 96% 96% 96% 100% 100% 100% 100% 100% 100%
20% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
30% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
40% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
50% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

ΦC

10% 100% 53% 51% 51% 51% 51% 51% 100% 100% 100% 100% 100% 100%
20% 100% 53% 51% 51% 51% 51% 51% 100% 100% 100% 100% 100% 100%
30% 100% 53% 51% 51% 51% 51% 51% 100% 100% 100% 100% 100% 100%
40% 100% 50% 49% 49% 49% 49% 49% 100% 100% 100% 100% 100% 100%
50% 100% 53% 50% 50% 50% 50% 50% 100% 100% 100% 100% 100% 100%

100% 100% 53% 51% 51% 51% 51% 51% 100% 100% 100% 100% 100% 100%

D: deterministic case

Table 8.8 – Average gap to the optimal niminum revenue according to the uncertainty considered
computed over all the instances with a feasible maintenance plan

Worst-case evaluation
Uncertainty D ΦC ΦNC

Γ 0% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

So
lu

ti
on

s

ΦC

10% 0.1% 0.1% 0.3% 0.6% 0.8% 1.1% 1.4% 0.2% 0.3% 0.4% 0.5% 0.7% 0.8%
20% 0.2% 0.2% 0.3% 0.6% 0.9% 1.1% 1.4% 0.2% 0.4% 0.5% 0.6% 0.8% 0.9%
30% 0.2% 0.2% 0.3% 0.6% 0.8% 1.1% 1.4% 0.2% 0.3% 0.5% 0.6% 0.7% 0.9%
40% 0.1% 0.2% 0.3% 0.6% 0.9% 1.1% 1.4% 0.2% 0.3% 0.5% 0.6% 0.7% 0.9%
50% 0.2% 0.2% 0.3% 0.6% 0.8% 1.1% 1.3% 0.2% 0.3% 0.5% 0.6% 0.7% 0.9%

100% 0.2% 0.2% 0.4% 0.6% 0.9% 1.1% 1.4% 0.2% 0.4% 0.5% 0.6% 0.8% 0.9%

ΦNC

10% 0.0% 0.1% 0.3% 0.5% 0.6% 0.8% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%
20% 0.0% 0.1% 0.3% 0.5% 0.6% 0.8% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%
30% 0.0% 0.1% 0.3% 0.4% 0.6% 0.7% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%
40% 0.0% 0.1% 0.3% 0.4% 0.6% 0.7% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%
50% 0.0% 0.1% 0.3% 0.4% 0.6% 0.7% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%

100% 0.0% 0.1% 0.3% 0.5% 0.6% 0.7% 1.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%

D: deterministic case

8.7 Conclusions

In this chapter, we have proposed a robust approach to take into account the uncertainty related to
the wind speed in our maintenance scheduling problem. We have considered row-wise uncertainty.
More precisely, we produce maintenance plans that are protected against any feasibility issues. In
other words, we are ensured that all the maintenance tasks can be performed according to the safety
limit imposed in relation to the wind speed. We also maximize the minimum revenue – according to
the uncertainty set – generated when implementing the maintenance plan. We have introduced two
different type of uncertainty sets: a set that takes into account the spatial and time-wise correlations
of the wind and another set where no correlations are considered.

To tackle the robust problem, we have implemented a method built on top of the decomposition
approach presented in Chapter 6. For each selection of plans, along with checking the existence of
a technician-to-task assignment, we compute the minimal revenue that can be generated, and we
introduce robustness cuts in the restricted master problem if this revenue has been overestimated.

According to the experiments that we conducted, the robust problem is more difficult to solve
than its deterministic version. Indeed, we are not able to solve to optimality all the instances. How-
ever the gap with respect to upper bounds is almost negligible. We have shown the relevance of
computing robust solutions, as we can face feasibility issues if we only take into account the nominal
values of the wind speed. Although the revenue is usually slightly smaller for robust solutions, these
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latter provide an adequate trade-off between revenue and guarantee of feasibility. We also studied
the impact of taking into account correlations or not and the impact of the budget vector Γ on the
quality of the solution. Not considering correlations when they exist does not produce adequate so-
lutions, whereas the opposite case has only a slight impact on the revenue. This study could allow
decision-makers to take the right decisions according to which kind of maintenance plan they are
interested in.

We have also introduced an alternative approach that consists in maximizing the nominal revenue
while bounding the minimal revenue in the worst-case. We have introduced different robustness
cuts to discard selection of plans for which the minimal revenue is not large enough. Although we
have conducted limited tests, this robust problem appears to be as easy to solve as the deterministic
problem (we find optimal solutions in short computation times). Moreover, the solutions seem less
conservative than using the previous approach. They produce a maintenance plan almost always,
if not always, feasible while barely penalizing the revenue. Extensive computational experiments
should be conducted to confirm this. An interesting perspective could also be to iteratively solve the
robust problem while increasing the bound on the minimal revenue.

As a perspective to avoid overconservatism when ensuring the feasibility of the maintenance
plans, one could consider an alternative uncertainty budget to remove the plans in which the safety
limit can be exceeded (this approach is discussed by Poss (2013) where the author considered a dif-
ferent uncertainty budget for each constraint). Moreover, since a time period usually covers multiple
hours, the wind speed is likely to variate inside a time period. Using the average wind speed does
not guarantee the right estimation of the wind production since the CF function is not linear. For the
sake of precision, it is possible to increase the number of time points during which we evaluate the
wind speed. However, one disadvantage of this solution is the corresponding linear increase of the
number and of constraints required to model the robust problem. Nonetheless, this could be neces-
sary to ensure more consistent decision-making. Additionally, we could try to adopt more refined
strategies to take into consideration the spatial and space-time correlations faced in the wind speed.

Dealing with column-wise uncertainty could be also investigated, but strong challenges arise to
define relevant recourse actions. Indeed, one can also think to allow some minor changes in the
schedule when the wind speeds are revealed, especially if the wind becomes too strong. As we may
have to reschedule some tasks, the corresponding technicians assignments may could be revised.
Depending on when the uncertainty is realized, one can naturally think of two different courses of
action. If the actual speed of the wind is known a few moments before a technician moves to a loca-
tion to execute a task, then it would be possible to re-assign the technician to a different task (aiming
to speeding up its execution). On the other hand, If the actual speed of the wind is only revealed
upon the technician’s arrival at the location, it would be hardly possible to assign the technician to
another task. In both cases, the canceled tasks may be re-schedule latter. Both approaches are close
to reactive scheduling or dynamic scheduling since we work with a short-term horizon. It is worth
noting that typical two-stage stochastic approaches are not well-adapted to our problem. Indeed, it
is implausible to assume that the actual wind speeds for each location and time period are disclosed
at the beginning of the planing horizon. Therefore, if there is too much wind to execute a given task
at period t ∈ T +, we may want to reschedule it between t+ 1 and |T |. The recourse action must then
be taken before the realization of the uncertainty for the remaining periods. A multi-stage approach
(e.g., one with one stage per day) would then suit the problem better. Solving multi-stage prob-
lems, however, requires complicated techniques (e.g., nested methods and scenario decomposition
approaches based on a scenario tree).

8.8 Complement: combining column generation with the decomposition

As a perspective to reduce the solution time for the robust problem, one can think to combine a
column generation process (see Section 2.4 for more details) for the plans ofP with the decomposition
approach. Indeed, although the complete enumeration of the set P is possible (as shown in our
experiments) and not so large, it has a huge impact on the solution time. It may then be interesting
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to generate them dynamically. Although we investigate this challenging alternative approach from
a theoretical point of view, at the writing of these lines we had not implemented and experimented
this approach.

In this new method, at each node of the branch-and-bound tree, we now solve the linear relax-
ation of the restricted master problem [RRP∗(Γ)] with a column generation algorithm. This approach
could also be used to solve the deterministic problem, taking into account that on some large-sized
instances, our B&C either reports large solution times or struggles proving optimality in the 3-hour
time limit.

First, one should notice that the cuts potentially introduced after checking the technician-to-task
assignment sub-problem are expressed using the variables xp. In order to make the pricing problem
easier to model (and to solve), we define two new kinds of decision variables. First, we introduce the
decision variables zh related to the number of selected plans that are associated with pattern h ∈ H.
We therefore have zh =

∑
p∈Ph

xp ∀h ∈ H. To derive combinatorial Benders (CB) cuts, we express each

variable zh using |Ph| binary variables zkh that take value 1 if at least k ∈ {1, .., |Ph|} plans from set Ph
are selected, and assume value 0 otherwise. Second, we also introduce the variables ẑh to represent
the number of technicians required to be assigned to pattern h ∈ H. Observing that the Benders
feasibility (BF), MCbM, and MWC cuts always include for each pattern h ∈ H either none or all the
plans ofPh, we can replace the terms

∑
p∈P qpxp by ẑhp in each of these cuts. In order to apply column

generation, we reformulate the master problem [RP∗(Γ)] as follows:

[RP∗(Γ)] max−
∑
p∈P

opxp +
∑
t∈T +

∑
l∈L

C̃F
max

tl

∑
w∈Wl

Pw · hours(t) · f tw − θ (8.42)

subject to:

θ ≥
∑
t∈T +

∑
l∈L

(
C̃F

max

tl −

(
n∑
k=1

akφ̄
k
tl + bkȳ

k
tl

))( ∑
w∈Wl

Pw · hours(t) · f tw

)
∀(φ̄, ȳ) ∈ D(Γ) (8.37)

∑
p∈Pi

xp = 1 ∀i ∈ I, (8.43)

∑
i∈B

∑
p∈Pi

atpxp ≤ 1 ∀B ∈ ov (I) ,∀t ∈ T , (8.44)

f tw +
∑
p∈Pi

bwpa
t
pxp ≤ 1 ∀w ∈ W,∀i ∈ I,∀t ∈ T +, (8.45)

∑
i∈I|si∈S̄

∑
p∈Pi

atpqpxp ≤ |RtS̄ | ∀t ∈ T ,∀S̄ ⊆ S, (8.46)

ẑh =
∑
p∈Ph

qpxp ∀h ∈ H, (8.47)

zh =
∑
p∈Ph

xp ∀h ∈ H, (8.48)

zh =

k=|Ph|∑
k=1

zkh ∀h ∈ H, (8.49)

zk+1
h ≤ zkh ∀h ∈ H,∀k ∈ {1, .., |Ph| − 1}, (8.50)∑
h∈H

∑
k∈{1,...,|Ph|}s.t.z̄kh=1

zkh ≤ |I| − 1 ∀z̄ ∈ F̄ , (8.51)

θ ≥ 0 (8.52)
xp ∈ {0, 1} ∀p ∈ P, (8.53)
ẑh ≥ 0 and integer ∀h ∈ H, (8.54)
zh ≥ 0 and integer ∀h ∈ H, (8.55)

zkh ∈ {0, 1} ∀h ∈ H,∀k ∈ {1, .., |Ph|}, (8.56)

f tw ∈ {0, 1} ∀w ∈ W,∀t ∈ T +, (8.57)
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Constraints (8.37) are the robustness cuts introduced in this chapter. We assume here that the
set P is built taking into consideration the constraints (8.38). Constraints (8.49) ensure that the sum
of binary variables zkh is equal to variable zh for each pattern h ∈ H. Constraints (8.50) are sym-
metry constraints to guarantee a unique representation of each variable zh using the variables zkh.
Constraints (8.51) are the new combinatorial Benders cuts.

Again, we denote [RRP∗(Γ)] as a restricted master problem containing none or a reduced number
of robustness, CB, BF, MCbM, and MWC cuts. We introduce [RRP∗(Γ, P̄)] as the problem [RRP∗(Γ)]
restricted to a subset P̄ of plans P . We denote [RRPLR∗ (Γ, P̄)] its linear relaxation.

Let us now associate in [RRPLR∗ (Γ, P̄)] the dual variables πi, ιtβ , ϕtwi, %
t
S̄ , ς̂h and ςh to, respectively,

constraints (8.43), (8.44), (8.45), (8.46), (8.47), and (8.48). The reduced cost RC(p) associated with
column (plan) p ∈ P is equal to:

RC(p) = −cp − πip + qpς̂hp + ςhp −
∑
t∈T

atp

 ∑
β∈ov(I)
s.t. ip∈β

ιtβ + qp
∑
S̄⊆S

s.t. sp∈S̄

%tS̄

− ∑
t∈T +

∑
w∈W

atpbwpϕ
t
wip (8.58)

Since the set P can be computed prior to the optimization, we can simply loop over the set P \ P̄
to find columns (plans) with a positive reduced cost. The computational complexity of the pricing
problem is then up to O

(
|T |
∑

i∈I |Mi|
)
.

The general scheme of a method combining column generation with the decomposition of the
problem differs in several aspects from the one introduced in Section 8.5.2. At first, we can initial-
ize the set P̄ from solutions given by the CPLNS in a short solution time. Henceforth, at each node
(non necessarily integer), we solve the current restricted master problem [RRPLR∗ (Γ)] using a column
generation algorithm. At each iteration of this algorithm, as long as we find plans with a positive re-
duced cost, we successively solve [RRPLR∗ (Γ, P̄ )] and the pricing problem by looping over the set
P \P̄ (where P̄ is the current set of plans considering in the restricted master problem). Let us denote
x̄ and f̄ the optimal value of variables x and f at a node in the search tree. If the current node is
integer (i.e. if the solution of [RRPLR∗ (Γ)] is integer), we check the feasibility of the technician-to-
task assignment sub-problem for x̄, and we check if the revenue is not overestimated by solving the
robust sub-problem [SRP (f̄ ,Γ)]. We solve the current restricted master problem (using the column
generation algorithm) as long as one of the two sub-problems leads to the introduction of some cuts
in the model and the solution we obtain is integer. If the current node is or becomes continuous
(i.e. if the solution of the current restricted master problem is continuous), we apply the following
branching strategy. The enumerative strategy we propose is a binary branching scheme preserving
the structure of the pricing sub-problem and explored using a depth-first search. It is based on forc-
ing/forbidding execution time periods for tasks. More precisely, at each continuous node, we adopt
the following procedure. We select the plan p1 with the highest fractional value in the LP relaxation.

Clearly p1 = arg min
p∈P̄

(
1

2
− (x̄p − bx̄pc)

)
. We denote i∗ the task involved in plan p1 (i.e., i∗ = ip1).

Then constraint (8.43) for i∗ implies that there exists at least another plan in P̄i∗ with a fractional
value. We take the plan p2 ∈ P̄i∗ with the second highest fractional value x̄p2 . Then, there is obvi-
ously at least one time period t∗ ∈ T for which at

∗
p1
6= at

∗
p2

. We therefore create two branches, one
forcing task i∗ to be scheduled during time period t∗, the other one forbidding i∗ to be scheduled
during time period t∗. Concretely, we remove from P̄i∗ all the plans p such that at∗p = 0 for the first
branch, whereas we remove from P̄i∗ all the plans p such that at∗p = 1 for the second branch. We
can simply set the variables corresponding to those plans to 0. Note that the maximal depth for the
search tree is |I||T | compared to |P| if we only branch on the x variables. Notice also that this branch-
ing strategy ensures that variables f tw, f̃dw, ẑh, and zh are all integer. However one may also need to
branch on the zkh variables if we have introduced CB cuts. Actually, we can observe that variables zh,
ẑh, and zkh need only to be generated for a pattern h once a plan of Ph is involved in a cut generated
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when checking the technician-to-task assignment sub-problem. We may also want to solve the robust
sub-problem [SRP (f̄ ,Γ)] at non-integer nodes to improve the quality of the upper bound provided
by the linear relaxation, which may help to reduce the size of the search tree.

If one solve the deterministic problem with this approach, the main difference comes from the
fact that only the technician-to-task sub-problem is checked at each integer node.

Since no implementation and experiments have been made to test the previous ideas, a more
insightful study would be required to assess the efficacy of the whole process.



General conclusion and perspectives

This research has explored the optimization of maintenance scheduling in the electricity industry.
First, we have reviewed the OR literature on this topic. We have observed that the maintenance

scheduling problem may be defined in a wide variety of ways. We have studied the problem in
both regulated and deregulated power systems. We have discussed network considerations, fuel
management, and data uncertainty. One of the contribution of this work has been the introduction
of a multidimensional classification of the references to make easier to researchers working on this
topic identifying the problem they are working on and what have been the main methods used for
solving it. From this detailed analysis, we have identified a certain lack of OR studies addressing the
new challenges presented by the growing renewable energy sector.

Second, to respond to the need previously identified, we have defined and tackled a new and
challenging maintenance scheduling problem faced by the onshore wind power industry. Some of
the special features of this problem are the presence of alternative execution modes for each task
and an individual management of a multi-skilled workforce through a space-time tracking impos-
ing technician assignments to comply with daily location-based incompatibilities. Addressing the
problem on a short-term horizon, the objective is to find a maintenance plan that maximizes the rev-
enue generated by the electricity production of the turbines. This original objective is actually rather
far from the classical scheduling concerns as it directly links the revenue to the time periods dur-
ing which the maintenance operations are performed. We have proved that the problem is strongly
NP-hard.

Facing some difficulties to obtain exploitable and realistic data for the problem, we have nonethe-
less managed to generate a testbed with input from wind forecasting and maintenance scheduling
software companies. We have conducted all our experiments on this dataset.

We have first proposed four integer linear programming formulations of the problem. Although
the direct resolution of these models is computationally intractable for most of the instances, we have
found that the mathematical formulations based on the prior generation of all the feasible schedules
of each task seem to produce the best results.

As a heuristic solution method, we have developed a constraint programming-large neighbor-
hood search approach. This method is based on the successive resolution of a CP formulation of the
problem in which we have previously fixed the variables associated with some tasks. We have built
several destruction operators (to choose the tasks associated with the variables we free up) either
specifically conceived for the problem or adapted from the literature. Moreover, to effectively repair
solutions we have designed several branching strategies for the resolution of the CP model. We have
demonstrated the efficiency of the proposed method as the CPLNS shows in most cases a reduced
average gap with respect to the optimal solutions if known, or to the best upper bounds otherwise.
This method has been the core of an optimization tool that we developed for the company WPred as
part of our collaboration.

In order to develop an appropriate exact method, we have decomposed the problem into a mas-
ter problem and a satellite sub-problem. The master problem is concerned with fixing the starting
time and execution mode of each task while maximizing the revenue generated by the electricity
production of the turbines. From a solution to this latter problem, the sub-problem checks the ex-
istence of a task-technician assignment coping with the individual unavailability time periods of
the technicians and taking into account the daily location-based incompatibilities. On this basis, we
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have proposed a coordination procedure relying on a branch-and-check technique. More specifically,
while solving a restricted master problem with a branch-and-bound algorithm, we check at each in-
teger node the feasibility of the sub-problem. As a priority, we discard infeasible selection of plans
using problem-specific cuts. These cuts are based on approximating the sub-problem as a series of
maximum cardinality b-matching and maximum-weight clique problems. Since this step only allows
to assess a potential infeasibility of the sub-problem but not to prove it, we also use generic cuts: Ben-
ders feasibility cuts and combinatorial Benders cuts as the integer linear programming formulation
of the sub-problem does not possess the integrality property. In the experiments we conducted, the
problem-specific cuts proved to be key speeding up the convergence of the B&C approach. We have
found optimal solutions in a short solution time for 80% of the instances and high-quality integer
solutions for the remaining instances where the 3-hour time limit is reached.

Lastly, we have proposed a robust approach to tackle the uncertainty of the wind speed. The
method aims to take risk-averse decisions. We protect maintenance plans against feasibility issues
in cases of strong wind. We also maximize the revenue yielded by a maintenance plan in the worst-
case scenario for the wind speed (usually when it is significantly lower than predicted). We have
introduced an uncertainty set which takes into consideration the possible spatial and time-wise cor-
relation of the wind speed. To solve the robust counterpart of the problem, we have adapted the
branch-and-check approach previously described. More specifically, at each integer node, we intro-
duce robustness cuts if the minimal revenue is overestimated in the restricted master problem. Our
computational experiments have demonstrated that the robust problem is more difficult to solve than
its deterministic version, but the method computes near-optimal solutions in short execution times.
We have shown that using robust maintenance plans avoids feasibility issues while barely penalizing
the revenue. To allow decision-makers to take the right decisions according to which kind of main-
tenance plans they are interested in, we have studied the impact of taking into account correlations
or not and the impact of the value of the budget on the quality of the robust solutions. We have
also presented an alternative robust approach in which we aim to ensure that the solution performs
decently in the worst-case but very good in the nominal case. Preliminary results have suggested
that the resulting solutions may be less conservative.

We identify several perspectives to improve this thesis work.
First, to improve the efficiency of the branch-and-check approach (especially on the largest in-

stances), we could further investigate the equivalence of the technician-to-task assignment sub-problem
and the L-coloring problem in order to derive new problem-specific cuts. To this purpose, exploring
the practical use of Hall’s condition could be an idea. We could also implement specific branch-
ing strategies to explore the search tree more efficiently while reducing its size. This could improve
the quality of the upper bound as it sometimes barely progresses despite the processing of a large
number of nodes.

As discussed at the end of Chapter 8, a potential improvement of the decomposition approach
(used to exactly solve the deterministic problem and the robust problem) could be to solve the LP
relaxation of the restricted master problem at each node using column generation. It would then be
necessary to express the cuts (generated when the technician-to-task assignment sub-problem is in-
feasible) with alternative variables in order to simplify the resolution of the pricing problem. A slow
convergence could be an issue, but only computational experiments could assess the performance of
this combined approach.

As another interesting perspective of work, we could try to avoid the individual assignment of
the technicians to the tasks in the CP model since it is the main reason of the symmetry issues faced by
the method. To this end, one could investigate the creation of one or several global constraint(s) based
on the use of the approximations to the technician-to-task assignment sub-problem mentioned above
(b-matching problem, maximum-weight clique problem, L-coloring problem) as filtering algorithms.
However, it presents important implementation challenges to ensure a fast propagation phase.

To ensure more consistent decision-making in the robust approach, we could increase the number
of time periods during which we evaluate the wind speed. Indeed, since the CF function is not
linear, the shorter (in number of hours) are the time periods the better we estimate the wind output
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while working with the average wind speed. Nonetheless, slow convergence issues may arise as
incrementing the number of time periods corresponds to a linear increase of the number and of
constraints required to model the robust problem. Additionally, we could try to adopt more elaborate
strategies to take into consideration the spatial and space-time correlations faced in the wind speed,
since our strategy is rather simple. If we would manage to have a relevant set of scenarios for the
wind speed (maybe from a further collaboration with WPred), we could also investigate the approach
of Roy (2010).

Last, we could extend the definition of the problem. For instance, we could investigate the case of
technicians working different shifts. Two different approaches could be considered: either one allows
tasks to be initiated by some technicians and finished by other technicians (since tasks can last more
than the duration of a shift) or one restricts tasks to be performed by technicians working the same
shift. From a practical perspective, the first proposition does not seem advisable in this industry. The
second proposition is compatible – with slight adjustments – with the solution method presented in
Chapters 6 and 8. Actually, every plan (i.e., every feasible schedule for a task) would be associated
with a single shift (we would not create a plan that overlaps two different shifts). The technician-
to-task assignment sub-problem could then be solved independently for each shift. The method
presented in Chapter 5 would require a broader change to take multiple shifts into consideration as
the duration of a task would depend on the number of days it overlaps.
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Appendix A

Notations

To help the reader, we summarize below the main notations used in Part II.

For two integers a1 and a2, symbol {a1, ..., a2} refers to [a1; a2]∩Z where Z is the set of integers.

Time horizon

— T : time horizon (totally ordered set)

— D: set of days

— Td: set of time periods that belongs to day d ∈ D
— trestd : last time period t ∈ T before the rest time period following day d ∈ D
— dt: day associated with time period t ∈ T

Locations

— L: set of locations (wind farms and technician home depots)

— δll′ =

{
1 if a technician is allowed to work at both locations l and l′ during the same day,
0 otherwise.

Technicians

— S: set of skills

— R: set of technicians

— ζrs =

{
1 if technician r ∈ Rmasters skill s ∈ S,
0 otherwise.

— ρtr =

{
1 if technician r ∈ R is available during time period t ∈ T ,
0 otherwise.

— ltr: location of technician r ∈ Rwhen he or she is not available
during time period t ∈ {t′ ∈ T | ρt′r = 1}

Tasks

— I: set of tasks to perform at the different locations

— ov(I): family of sets of tasks that cannot overlap

— li: location where task i ∈ I has to be performed

— Il: set of tasks to perform at location l ∈ L (i.e. Il = {i ∈ I | li = l})
— Mi: set of execution modes for task i ∈ I
— m0

i : execution mode related to the postponement of task i ∈ I (m0
i ∈Mi)

— qim: number of technicians required during each time period to perform task i ∈ I in
mode m ∈Mi (qim0

i
= 0)

— dim: duration of task i ∈ I if performed in mode m ∈Mi (dim0
i

= 0)
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— ϑti =

{
1 if task i ∈ I can be executed during time period t ∈ T (time windows, preferences) ,
0 otherwise.

— ϑ̈ti =

{
1 if task i ∈ I can be executed during time period t ∈ T (safety concerns),
0 otherwise.

— si: skill required to perform task i ∈ I
— oi: penalty if task i ∈ I is postponed

Turbines

— W : set of turbines

— lw: location of turbine w

— Wl: set of turbines at location l ∈ L (i.e. Wl = {w ∈ W | lw = l})

— bwi =


1 if the execution of task i ∈ I shuts down turbine w ∈ W when technicians

are effectively working on i,
0 otherwise.

— b̃wi =


1 if the execution of task i ∈ I shuts down turbine w ∈ W during the rest time

periods it overlaps,
0 otherwise.

— gtw: profit if turbine w ∈ W can produce electricity during time period t ∈ T
— g̃dw: profit if turbine w ∈ W can produce electricity during the rest time period following

day d ∈ D

Plans

— P : set of plans

— Pi: set of plans involving task i ∈ I
— ip: task involved in plan p ∈ P

— atp =

{
1 if task ip is executed during time period t ∈ T
0 otherwise.

— Sp: starting time period of plan p ∈ P (Sp = mint∈T a
t
pt)

— Cp: ending time period of plan p ∈ P (Cp = maxt∈T a
t
pt)

— Dp: set of days overlapped by plan p

— qp: number of required technicians if plan p ∈ P is selected

— sp = sip

— lp = lip

— Rp = Rip
— bwp = bwip

— b̃wp = b̃wip

— op = oip

Patterns

— H: set of patterns

— Ph: set of plans associated with pattern h ∈ H
— hp: pattern associated with plan p ∈ P

— ath =

{
1 if pattern h covers time period t ∈ T
0 otherwise.

— Sh: starting time period of pattern h ∈ H (Sh = mint∈T a
t
ht)
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— Ch: completion time period of plan p ∈ P (Ch = maxt∈T a
t
ht)

— sh: skill associated with pattern h ∈ H
— lh: location associated with pattern h ∈ H
— Hl: set of patterns associated with location l ∈ L
— Rh: set of technicians that can be assigned to pattern h

Jobs

— JH(x̄): set of jobs associated with the patterns involved in the selection of plans x̄

— JR: set of jobs associated with technician unavailability time periods

— J (x̄): set of jobs associated with the selection of plans x̄
J (x̄) = JH(x̄) ∪ JR

— hj : pattern associated with job j

— qj : number of technicians required by job j

— Sj : starting time period of job j

— Cj : completion time period of job j

— Sj : set of skills such that a technician should master at least one of these skills in order to
perform job j

— lj : location associated with job j

— Rj : set of technicians that can be assigned to job j





Appendix B

Instance generation

The purpose of this section is to describe how we randomly generate the instances used in our
computational experiments.

An instance of the problem is primarily characterized by:

— a finite time horizon (a finite number of time periods)

— a number of time periods per day (yielding the number of days)

— a set of locations (wind farms + home depot)

— a set of wind turbines distributed over the wind farms

— a set of maintenance tasks to perform at the different locations and that impact the availability
of the turbines

— a set of technicians to perform the tasks

— wind speed for each time period and location

— postponing penalties

The generator is based on the following parameters:

— nT , nD, nI , nS (length of time horizon, number of days, number of wind farms, number of
tasks, and number of skills)

— DnL: probability distribution of the number of locations

— Dlxy: probability distribution of the coordinates associated with each location

— DnLW : probability distribution of the number of turbines per location

— DnWI : probability distribution of the number of tasks per turbine

— ∆lmin: minimum distance between two locations

— ∆rmax: maximum distance between two locations such that they can be visited by the a techni-
cian during the same day

— K: set of all types of preventive tasks that we consider

— p(k): probability of generating a task of type k ∈ K
— Diimpact(k): probability distribution of the impact of each type of preventive task on the wind

turbines

— Didur(k): probability distribution of the duration of each type of preventive task

— Direq(k): probability distribution of the number of technicians that can perform each type of
preventive task during any time period

— Dr#skills: probability distribution of the number of skills mastered by a technician

— DrP(unv): probability that a technician has some unavailability time periods during the time
horizon
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— Dr#unv: probability distribution of the number of time periods during which a technician is
unavailable

— Drdunv : probability distribution of the duration of the unavailability of a technician (in man-
hours)

— Dwpower: probability distribution of the nominal power (in kW) of each turbine

— φ̂: average wind speed on each wind farm

— Υsafety
max : maximum wind speed allowed to perform a task

— ∆lmax: maximum distances for the spatial correlation of the wind speed

— δ: number of values used in the moving average for the time-wise dependency between the
wind speeds

— α: correlation factor between wind speed

We generate an instance following multiple steps. First of all, the length of time horizon, the
number of days, the number of tasks, and the number of skills are input values. This yields directly
the set T of time periods and the set D of days.

We then start the generation of an instance by building the set L of locations whose cardinality
is set by sampling the DnL distribution. According to the distance ∆lmin, we then generate the
coordinates of each location by sampling theDlxy distribution. Based on these coordinates and on the
distance ∆rmax, we compute the parameters (δll′)(l,l′)∈L2 that enables us to define the daily location-
based incompatibility constraints.

Afterwards, we built the setW of wind turbines. To this end, according to the target number of
tasks, we start by generating a number of wind turbines per locations by sampling theDnLW distribu-
tion. For each location where there is at least one wind turbine (i.e., this location is a wind farm), we
then generate a nominal power by sampling the Dwpower distribution and we set the nominal power
Pw equal to this latter value for each wind turbine w ∈ W of the wind farm.

After that, we call procedure genTasks() to create the set I of tasks. Notice that for each task
i ∈ I we build the setMi of execution modes such that it meets the two following requirements:

— ∀m,m′ ∈Mi, qim 6= qim′ ,

— ∀m,m′ ∈Mi, qim < qim′ → dim > dim′ .

Arbitrarily, we build ov(I) considering that overlapping tasks are forbidden on the same turbine.
Notice that, according to some experts in the field, it is reasonably realistic to only consider these
subsets. After the generation of the tasks, we generate the set R of technicians using procedure
genTechnicians().

The last part of the generator concerns the parameters related to the objective function. For the
sake of convenience, we introduce the set T + of all time periods formed by the union of set T and the
set of rest time periods that occur between each day. More specifically, we include a rest time period

after every
|T |
|D|

consecutive time periods of T .

As it concerns the wind speed at hub height, the main purpose is to use realistic values. First,
we generate wind speed φ̄tl for every location l ∈ L and every time period t ∈ T + using a Rayleigh

distribution with a scale parameter equal to φ̂
√

2

π
(so that the expected wind speed is φ̂). Since space

correlation can be significant, we compute a corrected wind speed ¯̄φtl for every location l and every
time period t as follows:

¯̄φtl =

∑
l′∈L

s.t. ∆ll′<∆lmax

(∆lmax −∆ll′) φ̄
t
l′

∑
l′∈L

s.t. ∆ll′<∆lmax

(∆lmax −∆ll′)
.
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Procedure genTasks

1 I ← ∅
2 for i ∈ {1, ..., nI} do

; /* Creation of a new task i */
3 Associate randomly a wind turbine to task i by sampling the DnWI distribution
4 Define the type k ∈ K of the task according to the probabilities p(k)
5 Define the impact of the task on the wind turbines by sampling the Diimpact(k) distribution
6 Draw randomly the skill si required by task i from the set S
7 Set the minimal (qMIN

i ) and the maximal (qMAX
i ) numbers of technicians that can perform

task i at any given time period by sampling the Direq(k) DnWI
8 Generate a task duration di by sampling the Didur(k) distribution
9 nMi ← qMAX

i − qMIN
i + 1

10 Mi ← ∅
; /* dprevi : duration of the last executing mode created for task i */

11 for m ∈ {1, ..., nMi} do
12 Create executing mode m for which task i requires qMi technicians and lasts dMi time

periods with:
13 qMi ← qMAX −m+ 1

; /* We assume that the duration of a working day is 8 hours.

*/

14 dMi = max(dprevi + 1, b di|T |
8|D|qMi

+ 0.5c

15 Add the created executing mode toMi

16 dprevi ← dMi
17 end
18 Add the created task i to I
19 end

Wind speeds were generated independently from a time period to another one. However, this time-
wise independence assumption is unlikely to be verified in practice. To smooth out the speed-values,
we use a δ-weighted moving average that yields wind speed φtl according to the following formula:

φtl =

¯̄φtl +
max(0,t−1)∑

t′=max(0,t−δ)
αt−t

′
φt
′

l

1 +
max(0,t−1)∑

t′=max(0,t−δ)
αt−t′

.

The resulting values are rounded to the nearest tenth. From our perspective, they compare well to
realistic data.

Afterwards, for each task i ∈ I and every time period t ∈ T , we compute the binary parameter ϑ̈ti
equal to 1 if and only if φtl < Υsafety

max (i.e. the task i can be scheduled during time period t according
to safety concerns). Arbitrarily, we set each parameter ϑti equal to 1 for every task i and every time
period t. We point out here that this choice makes the instances more complicated to solve as there is
a wide flexibility to schedule the maintenance operations. This also matches field observations.

The last step consists in computing the revenue value gtw for every wind turbine w ∈ W during
each time period t ∈ T +. We compute the revenue from the nominal power Pw of the wind turbine
and from the wind speed φtl . We also use an estimation hours(t) of the number of hours during every
time period t. More specifically, we compute the revenue gtw generated by each turbine w ∈ W that
is available during time period t ∈ T as follows:

gtw = 0.08 · Pw · hours(t) · CF (φtlw).
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Procedure genTechnicians

1 Let dunv be the average number of time periods during which a technician is not available
according to Dr#unv and Drdunv .

2 R ← ∅
3 for s ∈ {1, ..., nS} do

; /* compute the average total request of the tasks RSavgs */

4 RSavgs =
∑
i∈I
si=s

1

|Mi|
∑

m∈Mi

qim

; /* ns minimum number of technicians mastering skill s */

5 ns ← ε · RS
avg
s

dunv
6 for r ∈ {1, ..., ns} do
7 Create a technician mastering skills s and generate his or her unavailability time

periods by sampling the Dr#unv and Drdunv distributions
8 Add this technician toR
9 end

10 end
11 for r ∈ |R| do
12 Sample the Dr#skills distribution to generate the number of skills mastered by technician r
13 According to the previous value, generate additional skills for technician r
14 end

where

— 0.08: is an approximation to the selling price in euros of 1 kWh of wind energy (this selling
price is guaranteed for the next 10 years in France).

— hours(t): estimation of the number of hours during time period t ∈ T +

— Pw: nominal power of wind turbine w ∈ W
— φtlw : wind speed during time period t at the location of turbine w ∈ W

— CF (φ) 1: the ratio of the net electricity generated according to a wind speed equal to φ to the
electricity that could have been generated at full-power operation (this ratio is given by a piece-
wise linear function estimated from real data)

Finally, we compute a single postponing penalty set equal for each task. This penalty is equal to
the maximum loss of revenue that can be generated by the scheduling of a task of I plus one. With
this definition, we almost always (if not always) ensure that postponing a task is non-profitable. With
this penalty we therefore almost ensure to schedule the maximum number of tasks during the time
horizon according to the availability of the technicians. This is quite in line with the practice in the
field.

Table B.1 presents the detail parameter setting used in the generation process.

1. see Figure 3.3
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Appendix C

Detailed computational results

C.1 CP formulation

Table C.1 – Computational results on testbed G1 for the direct resolution of the CP formulation (BS)

Family 15s 30s 60s 180s 300s
Gap %S Gap %S Gap %S Gap %S Gap %S

10_2_1_20_A 9.8% 93% 9.8% 93% 9.8% 93% 9.7% 93% 9.7% 93%
10_2_1_20_B 3.5% 99% 3.5% 99% 3.5% 99% 3.5% 99% 3.5% 99%
10_2_1_40_A 8.3% 95% 8.3% 95% 8.3% 95% 8.3% 95% 8.3% 95%
10_2_1_40_B 1.7% 99% 1.7% 99% 1.7% 99% 1.7% 99% 1.7% 99%
10_2_3_20_A 11.8% 90% 11.7% 90% 11.7% 90% 11.7% 90% 11.7% 90%
10_2_3_20_B 1.1% 100% 1.1% 100% 1.1% 100% 1.1% 100% 1.1% 100%
10_2_3_40_A 15.1% 93% 15.1% 93% 15.1% 93% 15.1% 93% 15.1% 93%
10_2_3_40_B 2.9% 99% 2.9% 99% 2.9% 99% 2.9% 99% 2.9% 99%
20_2_1_40_A 11.5% 94% 11.2% 94% 11.2% 94% 11.2% 94% 11.2% 94%
20_2_1_40_B 0.4% 100% 0.4% 100% 0.4% 100% 0.4% 100% 0.4% 100%
20_2_1_80_A 11.2% 94% 11.2% 94% 11.2% 94% 11.2% 94% 11.2% 94%
20_2_1_80_B 0.7% 100% 0.7% 100% 0.7% 100% 0.7% 100% 0.7% 100%
20_2_3_40_A 6.1% 94% 5.6% 95% 5.6% 95% 5.6% 95% 5.6% 95%
20_2_3_40_B 0.7% 100% 0.7% 100% 0.7% 100% 0.7% 100% 0.7% 100%
20_2_3_80_A 3.0% 99% 3.0% 99% 3.0% 99% 3.0% 99% 3.0% 99%
20_2_3_80_B 0.5% 100% 0.5% 100% 0.5% 100% 0.5% 100% 0.5% 100%
20_4_1_20_A 18.8% 87% 18.3% 87% 18.2% 87% 18.2% 87% 18.2% 87%
20_4_1_20_B 19.1% 90% 19.1% 90% 19.1% 90% 17.6% 91% 17.6% 91%
20_4_1_40_A 23.6% 88% 21.9% 89% 21.9% 89% 21.9% 89% 21.9% 89%
20_4_1_40_B 6.2% 96% 6.2% 96% 6.2% 96% 6.2% 96% 6.2% 96%
20_4_3_20_A 19.0% 89% 18.9% 89% 18.9% 89% 18.8% 89% 18.8% 89%
20_4_3_20_B 5.5% 96% 5.4% 96% 5.4% 96% 5.4% 96% 5.4% 96%
20_4_3_40_A 14.4% 91% 13.1% 91% 13.1% 91% 13.1% 91% 13.1% 91%
20_4_3_40_B 7.1% 96% 7.1% 96% 7.1% 96% 7.1% 96% 7.1% 96%
40_4_1_40_A 21.6% 85% 19.3% 86% 18.5% 87% 18.5% 87% 18.5% 87%
40_4_1_40_B 1.2% 100% 1.2% 100% 1.2% 100% 1.2% 100% 1.2% 100%
40_4_1_80_A 14.1% 91% 14.1% 91% 14.1% 91% 14.1% 91% 14.1% 91%
40_4_1_80_B 3.5% 98% 3.5% 98% 3.0% 99% 3.0% 99% 3.0% 99%
40_4_3_40_A 13.8% 91% 12.9% 91% 12.9% 91% 12.9% 91% 12.9% 91%
40_4_3_40_B 3.1% 98% 3.1% 98% 3.1% 98% 3.1% 98% 3.1% 98%
40_4_3_80_A 18.8% 89% 18.8% 89% 18.8% 89% 18.8% 89% 18.8% 89%
40_4_3_80_B 2.7% 98% 2.7% 98% 2.7% 98% 2.7% 98% 2.7% 98%

Family 15s 30s 60s 180s 300s
Gap %S Gap %S Gap %S Gap %S Gap %S

|S| =
{

1
3

9.7% 94% 9.4% 94% 9.3% 94% 9.2% 94% 9.2% 94%
7.9% 95% 7.7% 95% 7.7% 95% 7.7% 95% 7.7% 95%

|T |
|D|

=

{
2
4

5.5% 97% 5.5% 97% 5.5% 97% 5.5% 97% 5.5% 97%
12.0% 93% 11.6% 93% 11.5% 93% 11.4% 93% 11.4% 93%

Type =

{
A
B

13.8% 91% 13.3% 92% 13.3% 92% 13.3% 92% 13.3% 92%
3.8% 98% 3.7% 98% 3.7% 98% 3.6% 98% 3.6% 98%

All 8.8% 95% 8.5% 95% 8.5% 95% 8.4% 95% 8.4% 95%
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C.2 CPLNS

Table C.2 – Computational results on testbed G1 for the CPLNS with a time limit of 300 seconds
(average over 10 runs)

Family Mean Best Worst
10_2_1_20_A 0.75% 0.70% 0.87%
10_2_1_20_B 0.03% 0.00% 0.03%
10_2_1_40_A 0.42% 0.11% 0.95%
10_2_1_40_B 0.02% 0.01% 0.03%
10_2_3_20_A 0.60% 0.37% 0.79%
10_2_3_20_B 0.01% 0.01% 0.03%
10_2_3_40_A 1.05% 0.22% 1.78%
10_2_3_40_B 0.05% 0.01% 0.08%
20_2_1_40_A 0.86% 0.20% 1.68%
20_2_1_40_B 0.04% 0.02% 0.09%
20_2_1_80_A 2.24% 1.49% 2.92%
20_2_1_80_B 0.06% 0.04% 0.08%
20_2_3_40_A 0.58% 0.47% 0.70%
20_2_3_40_B 0.02% 0.01% 0.04%
20_2_3_80_A 0.34% 0.26% 0.43%
20_2_3_80_B 0.07% 0.05% 0.09%
20_4_1_20_A 1.03% 0.96% 1.28%
20_4_1_20_B 0.09% 0.01% 0.21%
20_4_1_40_A 5.30% 4.52% 5.81%
20_4_1_40_B 0.24% 0.09% 0.87%
20_4_3_20_A 2.02% 1.03% 3.52%
20_4_3_20_B 0.23% 0.04% 0.42%
20_4_3_40_A 3.86% 2.78% 4.35%
20_4_3_40_B 0.46% 0.17% 0.71%
40_4_1_40_A 4.37% 4.26% 4.50%
40_4_1_40_B 0.13% 0.07% 0.20%
40_4_1_80_A 5.38% 3.99% 6.67%
40_4_1_80_B 0.23% 0.16% 0.30%
40_4_3_40_A 2.79% 1.71% 3.95%
40_4_3_40_B 0.12% 0.06% 0.19%
40_4_3_80_A 5.62% 4.86% 6.76%
40_4_3_80_B 0.17% 0.12% 0.22%
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C.3 Branch-and-check

Table C.3 – Description of the average number of cuts generated in the B&C approach for testbed G1.

Family All CB Other cuts
BF MCbM MWC

10_2_1_20_A 21 0 0 2 19
10_2_1_20_B 10 0 0 1 9
10_2_1_40_A 36 0 0 0.8 35
10_2_1_40_B 12 0 0 0.6 12
10_2_3_20_A 153 0 94 9 50
10_2_3_20_B 28 0 7 6 15
10_2_3_40_A 66 0 16 9 41
10_2_3_40_B 17 0 0.2 2 15
20_2_1_40_A 67 0 0 1 66
20_2_1_40_B 28 0 0 1 27
20_2_1_80_A 105 0 0 3 101
20_2_1_80_B 18 0 0 1 17
20_2_3_40_A 144 0 17 7 120
20_2_3_40_B 40 0 5 2 32
20_2_3_80_A 118 0 6 5 107
20_2_3_80_B 31 0 0.6 0.8 30
20_4_1_20_A 94 0 0 5 90
20_4_1_20_B 26 0 0 3 23
20_4_1_40_A 202 0 5 12 185
20_4_1_40_B 57 0 0 3 54
20_4_3_20_A 314 0 34 16 263
20_4_3_20_B 84 0 21 13 50
20_4_3_40_A 392 0 38 26 329
20_4_3_40_B 96 0 20 10 66
40_4_1_40_A 229 0 0 3 226
40_4_1_40_B 91 0 0 2 88
40_4_1_80_A 480 0 0 5 476
40_4_1_80_B 151 0 0 4 146
40_4_3_40_A 672 0 65 19 588
40_4_3_40_B 144 0 9 6 129
40_4_3_80_A 1,106 0 102 33 971
40_4_3_80_B 184 0 5 5 174
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Table C.4 – Detailed computational results on testbed G1 of the B&C approach coupled with the
CPLNS.

Family B&C CPLNS
Gap #Opt Time Gap1 Gap2

10_2_1_20_A - 5/5 9 - 2.6%
10_2_1_20_B - 5/5 3 - 0.48%
10_2_1_40_A - 5/5 8 - 3.1%
10_2_1_40_B - 5/5 3 - 0.52%
10_2_3_20_A - 5/5 101 - 1.1%
10_2_3_20_B - 5/5 3 - 0.09%
10_2_3_40_A - 5/5 13 - 2.5%
10_2_3_40_B - 5/5 3 - 0.44%
20_2_1_40_A - 5/5 115 - 0.82%
20_2_1_40_B - 5/5 5 - 0.22%
20_2_1_80_A 0.02% 4/5 288 5.3% 1.1%
20_2_1_80_B - 5/5 7 - 0.16%
20_2_3_40_A 0.16% 4/5 35 2.2% 0.28%
20_2_3_40_B - 5/5 4 - 0.07%
20_2_3_80_A - 5/5 57 - 0.72%
20_2_3_80_B - 5/5 6 - 0.15%
20_4_1_20_A 2.1% 3/5 1,130 2.1% 0.29%
20_4_1_20_B - 5/5 4 - 1.2%
20_4_1_40_A 1.3% 2/5 2,188 4.4% 5.1%
20_4_1_40_B - 5/5 8 - 2.7%
20_4_3_20_A 2.0% 4/5 340 2.0% 4.3%
20_4_3_20_B - 5/5 11 - 1.0%
20_4_3_40_A 0.64% 1/5 9,416 3.0% 2.4%
20_4_3_40_B - 5/5 13 - 1.8%
40_4_1_40_A 2.0% 0/5 - 2.9% -
40_4_1_40_B - 5/5 30 - 0.19%
40_4_1_80_A 1.4% 0/5 - 4.5% -
40_4_1_80_B - 5/5 108 - 0.22%
40_4_3_40_A 0.51% 0/5 - 1.1% -
40_4_3_40_B - 5/5 36 - 0.33%
40_4_3_80_A 1.8% 0/5 - 4.3% -
40_4_3_80_B - 5/5 70 - 0.20%

1 Takes into account the instances for which the time limit is reached in the B&C approach.
2 Takes into account the instances solved to optimality by the B&C approach.
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Planification de la maintenance d’équipements de production d’électricité : une
attention particulière portée sur un problème de l’industrie éolienne terrestre

Maintenance scheduling in the electricity industry: a particular focus on a
problem rising in the onshore wind industry

Résumé
L’optimisation de la planification de la maintenance des
équipements de production d’électricité est une question
importante pour éviter des temps d’arrêt inutiles et des coûts
opérationnels excessifs. Dans cette thèse, nous présentons
une classification multidimensionnelle des études de
Recherche Opérationnelle portant sur ce sujet. Le secteur
des énergies renouvelables étant en pleine expansion, nous
présentons et discutons ensuite d’un problème de
maintenance de parcs éoliens terrestres. Le problème est
traité sur un horizon à court terme et l’objectif est de
construire un planning de maintenance qui maximise le
revenu lié à production d’électricité des éoliennes tout en
prenant en compte des prévisions de vent et en gérant
l’affectation de techniciens. Nous présentons plusieurs
modélisations du problème basées sur la programmation
linéaire. Nous décrivons aussi une recherche à grands
voisinages basée sur la programmation par contraintes.
Cette méthode heuristique donne des résultats probants.
Nous résolvons ensuite le problème avec une approche
exacte basée sur une décomposition du problème. Dans
cette méthode, nous construisons successivement des
plannings de maintenance optimisés et rejetons, à l’aide de
coupes spécifiques, ceux pour lesquels la disponibilité des
techniciens est insuffisante. Les résultats suggèrent que
cette méthode est la mieux adaptée pour ce problème.
Enfin, pour prendre en compte l’incertitude inhérente à la
prévision de vitesses de vent, nous proposons une
approche robuste dans laquelle nous prenons des décisions
garantissant la réalisabilité du planning de maintenance et le
meilleur revenu pour les pires scénarios de vent.

Abstract
Efficiently scheduling maintenance operations of generating
units is key to prevent unnecessary downtime and excessive
operational costs. In this work, we first present a
multidimensional classification of the body of work dealing
with the optimization of the maintenance scheduling in the
Operations Research literature. Motivated by the recent
emergence of the renewable energy sector as an
environmental priority to produce low-carbon power
electricity, we introduce and discuss a challenging
maintenance scheduling problem rising in the onshore wind
industry. Addressing the problem on a short-term horizon,
the objective is to find a maintenance plan that maximizes
the revenue generated by the electricity production of the
turbines while taking into account wind predictions, multiple
task execution modes, and technician-to-task assignment
constraints. We start by presenting several integer linear
programming formulations of the problem. We then describe
a constraint programming-based large neighborhood search
which proves to be an efficient heuristic solution method.
We then design an exact branch-and-check approach based
on a decomposition of the problem. In this method, we
successively build maintenance plans while discarding –
using problem-specific cuts – those that cannot be
performed by the technicians. The results suggest that this
method is the best suited to the problem. To tackle the
inherent uncertainty on the wind speed, we also propose a
robust approach in which we aim to take risk-averse
decisions regarding the revenue associated with the
maintenance plan and its feasibility.

Mots clés
recherche opérationnelle, planification, maintenance dans le
secteur de l’électricité, éolien terrestre, programmation
linéaire en nombre entiers, programmation par contraintes,
branch-and-check, optimisation robuste.

Key Words
operations research, scheduling, maintenance in the
electricity industry, onshore wind farms, integer linear
programming, constraint programming, branch-and-check,
robust optimization.
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