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Résumé

Pour aborder le développement d’applications concurrentes et distribuées, le modèle

de programmation à objets actifs procure une abstraction de haut niveau pour pro-

grammer de façon concurrente. Les objets actifs sont des entités indépendantes

qui communiquent par messages asynchrones. Peu de systèmes à objets actifs

considèrent actuellement une exécution multi-threadée. Cependant, introduire un

parallélisme contrôlé permet d’éviter les coûts induits par des appels de méthodes

distants.

Dans cette thèse, nous nous intéressons aux enjeux que présentent les objets

actifs multi-threadés, et à la coordination des threads pour exécuter de façon

sûre les tâches d’un objet actif en parallèle. Nous enrichissons dans un premier

temps le modèle de programmation, afin de contrôler l’ordonnancement interne des

tâches. Puis nous exhibons son expressivité de deux façons différentes: d’abord

en développant et en analysant les performances de plusieurs applications, puis

en compilant un autre langage à objets actifs avec des primitives de synchroni-

sation différentes dans notre modèle de programmation. Aussi, nous rendons nos

objets actifs multi-threadés résilients dans un contexte distribué en utilisant les

paradigmes de programmation que nous avons développé. Enfin, nous développons

une application pair-à-pair qui met en scène des objets actifs multi-threadés. Glob-

alement, nous concevons un cadre de développement et d’exécution complet pour

les applications hautes performances distribuées. Nous renforçons notre modèle

de programmation en formalisant nos contributions et les propriétés du modèle.

Cela munit le programmeur de garanties fortes sur le comportement du modèle de

programmation.



iv

Abstract

In order to tackle the development of concurrent and distributed systems, the

active object programming model provides a high-level abstraction to program

concurrent behaviours. Active objects are independent entities that communicate

by the mean of asynchronous messages. Compared to thread-based concurrent

programming, active objects provide a better execution safety by preventing data

races. There exists already a variety of active object frameworks targeted at a large

range of application domains: modelling, verification, efficient execution. However,

among these frameworks, very few of them consider a multi-threaded execution of

active objects. Introducing a controlled parallelism within active objects enables

overcoming some of their well-known limitations, like the impossibility of commu-

nicating efficiently through shared-memory.

In this thesis, we take interest in the challenges of having multiple threads

inside an active object, and how to safely coordinate them for executing the tasks

in parallel. We enhance this programming model by adding language constructs

that control the internal scheduling of tasks. We then show its expressivity in

two ways: first in a classical approach by developing and analysing the perfor-

mance of several applications, and secondly, by compiling another active object

programming language with different synchronisation primitives into our program-

ming model. Also, we make multi-threaded active objects resilient in a distributed

context through generic engineering constructs, and by using our programming

abstractions. Finally, we develop a peer-to-peer application that shows multi-

threaded active objects and their features in action. Overall, we design a flexible

programming model and framework for the development of distributed and highly

concurrent applications, and we provide it with a thorough support for efficient

distributed execution. We reinforce our programming model by formalising our

work and the model’s properties. This provides the programmer with guarantees

on the behaviour of the programming model.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

At the age of e-commerce, ubiquitous chats, collaborative on-line editors, synced

cloud storage, real-time games and connected objects, each and every of our digital

habits involve simultaneous multi-party interactions. Such now common usages are

inherently supported by concurrent and distributed computer systems that have

been evolving through the multi-core era. However, the languages for program-

ming these systems have not evolved as fast as the hardware and applications,

although the purpose of programming languages is to map the applications to the

hardware. This is especially true for the programming languages that are well es-

tablished in the industry. In general, existing programming models and languages

lack of support for handling the concurrency of parallel programs and for writing

distributed applications. As such, parallel and distributed systems have coped for

decades with programming languages that barely provide support for parallelism.

1



2 CHAPTER 1. INTRODUCTION

This support is embodied by so-called threads, an abstraction for independent,

asynchronous sequences of instructions. Threads represent the oldest parallel pro-

gramming abstraction that is given in the hands of the programmer, yet they are

still omnipresent. Currently, all programming languages provide at least an API

to create and start threads. The problem in the programmer manipulating bare

threads is that he must have a precise knowledge of the right way to use and

synchronise threads, which is not trivial. Synchronisation in concurrent systems is

what can lead to two well-known categories of concurrency bugs: deadlocks, where

there exists a circular dependency between tasks, and data races, where several

threads access a shared resource with no synchronisation. Typically, in a shared-

variable concurrency model, one must analyse where data protection is required,

most often by the mean of locks [And99]. Not doing this analysis exposes the

application to the risk of non-deterministic bugs [Lee06]. In short, with threads,

the burden of parallelism is put on the shoulders of the programmer.

On the other hand, as programming languages evolved, modularity of pro-

grams has become a major leitmotiv. A representative of this organisational

change is object-oriented programming, which represent a reality-like abstraction

for programs. The fact that data structures and procedures could be manipu-

lated together as a whole was first explored in the ‘algorithm language’ ALGOL

60 [Bac+63]. Later on, Simula 67 [DN66], an extension of ALGOL 60, introduced

the main concepts of object-oriented programming in term of classes, and in term

of objects as instance of classes. The creator of SmallTalk [Kay93] introduced the

term of object-oriented programming and the pervasion of objects was carried to

the extreme in further versions of SmallTalk [GR83], where each and every entity

is seen as an object. Since then, multi-paradigm programming languages have

been perpetually developed, and almost all of them include an object layer that is

strongly inspired from the SmallTalk approach. Object-oriented programming is

now borne by the programming language triptych - C++, Java, C# - to support

production code in the industry.

As said earlier, programmer-side support for threads is massively embedded

in mainstream programming languages. Thus, object-oriented programming and

multi-threaded programming are often mixed in the same language, although they

are conceptually orthogonal. Indeed, objects encapsulate a state which should



1.2. OBJECTIVES 3

only be modified through messages, seen as object methods. By allowing sev-

eral threads of control to execute these methods, the encapsulation of objects

becomes broken. Moreover, this architectural inconsistency is worsen by the use

of locks within a class: locks force an exposure of the object’s variables on which

the synchronisation applies. Finally, using threads in a distributed context is not

adapted, because threads that are settled on different computers cannot commu-

nicate through shared-memory. A global shared-memory in distributed architec-

tures is rather difficult to obtain, and often comes at a too high performance cost.

Alternatively, it can be efficient if full data consistency is not guaranteed, but

approximate distributed systems are out of our scope. The current programming

languages clearly lack of parallel and distributed abstractions that fit the currently

developed applications. They do not enforce by default a safe parallel execution

nor offer a programmer-friendly way to program concurrently.

1.2 Objectives

Already, we have given many reasons why threads, coupled with object-oriented

programming, cannot be the right approach for implementing parallel and dis-

tributed systems. In order to write applications with higher-level constructs, in-

herently concurrent and distributed, one has to let the developers focus on the

application business, and for that, they need well-integrated abstractions for con-

currency and distribution which they can trust and rely on. They must be given

frameworks that provide convenient constructs and thread safety guarantees, and

not at the expense of the application’s performance. A complete stack of technolo-

gies can help the programmer in this objective. My work focuses on the elements

of the stack that are the closest to the programmer, and that are directly used

by him: the programming models, the programming languages, and their APIs.

Crafting a programmer experience that is as pleasant as possible while keeping

application’s safety and performance is the guideline of this thesis. On one hand,

low-level abstractions for programming parallel and distributed systems must be

given up, first because they are not user-friendly, and second because they do not

scale with the intricacy of programs. One the other hand, high-level abstractions

are often incomplete or lack efficiency, which also cuts off scalability. In particular,
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there is a need for unifying the abstractions that are given for parallelism: we need

to redefine concurrent abstractions so that they do not only work in the case of

shared-memory architectures, if we aim at raising them to a distributed execution.

In this thesis, we want to offer a parallel and distributed programming model

and runtime that balances the ease of programming and the performance of the

application. We offer the abstractions that the programmer needs in order to

effectively and safely program modern systems, that are necessarily parallel and

distributed. In particular, we focus on the active object programming model, be-

cause it gives the building blocks for safe parallelism and distribution. The active

object programming model also reconciles object-oriented programming and con-

currency. A characteristic of active objects is the absence of shared memory, which

makes them adapted to distributed execution as well. Each active object has its

own local memory and cannot access the local memory of other active objects.

Consequently, objects can only exchange information extra-memory through mes-

sage passing, implemented with requests sent to active objects. This characteristic

makes object accesses easier to trace, and thus it is easier to check their safety.

Active objects enable formalisation and verification thanks to the framework they

offer: the communication pattern is well-defined as well as the accesses to objects

and variables. This facilitates static analysis and validation of active object-based

programs. For all these reasons, the active object model is a very good basis for

the construction of programming languages and abstractions that match the influx

of concurrent and distributed systems.

In this thesis, our goal is to promote holistic approaches when considering

active object languages. We aim at studying both the implementation of the

languages and their semantics. The gap between language semantics and language

implementation is often not enough considered, and our objective is to show that

this gap can nevertheless be fulfilled with the right approaches and the right tools.

1.3 Contributions

The global contribution of this thesis is to come with a global approach for tack-

ling the development and the controlled execution of concurrent and distributed

systems. We build a complete framework based on multi-threaded active objects.
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We use it for bridging a gap between active object languages, and for develop-

ing realistic applications. More precisely, the contribution of this thesis comes in

three aspects, summarised below. More details on the content of the chapters are

available in Section 1.4.

Local scheduling for multi-threaded active objects. The first contribution extends

the multi-threaded active object programming model with a set of annota-

tions that controls the local scheduling of requests. This contribution allows

the programmer to manage the internal execution of multi-threaded active

objects, while keeping the safety ensured by the automated interpretation of

declarative annotations.

From modelling to deployment of distributed active objects. The second contri-

bution is an encoding of cooperative active object languages into a precise

configuration of multi-threaded active objects. We provide one fully imple-

mented translator and prove its correctness. This general study about active

object languages provides the users and the designers of active object lan-

guages with a precise knowledge of the guarantees given by active object

programming models and frameworks.

Efficient execution support for multi-threaded active objects. A third contribution

of this thesis is to improve the execution support of the multi-threaded active

object programming model. We provide a post-mortem debugger for its

applications. It helps the developer in seeing the effects of annotations on

the application’s execution. It makes the development iterations easier and

faster by providing a comprehensive feedback on an application’s execution.

We also come with a preliminary fault tolerance protocol and implementation

for multi-threaded active objects. It provides the developer with a recovery

mechanism that automatically handles crashes in distributed executions of

multi-threaded active objects.

Finally, to illustrate the programming model and to show the effectiveness of

our framework, we use fault tolerant multi-threaded active objects in the realistic

scenario of a peer-to-peer system. We provide a middleware approach to implement

a robust distributed broadcast.
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1.4 Outline

The contributions are structured around four core chapters. Each chapter is ended

with a conclusion that summarises the content of the chapter, along with a com-

parison to the related works for this chapter. We summarise the chapters of this

thesis below.

Chapter 2 presents the context of this thesis which is the active object pro-

gramming model. We introduce there the key notions that are related to this

programming model and organise them into a classification, that we bring from

a general study of active object languages. We then give an overview of active

object languages regarding the classification. We also introduce multi-threaded

active objects, that represent the basis of this thesis. More precisely we introduce

the multiactive object programming model in details, the formal calculus that is

associated to it, MultiASP, and finally its implementation in ProActive, the Java li-

brary that is the main technology used to implement the different works presented

in this thesis.

Chapter 3 introduces the first contribution of this thesis, published in [3],

which offers advanced scheduling controls in the context of multi-threaded active

objects. The idea is to empower the programmer with safe constructs that impact

on the priority of requests and their allocation on available threads, in the context

of multiactive objects. The mechanisms are introduced in a didactic manner and

presented as they are implemented in the ProActive library. The properties of the

priority specification are studied in details and evaluated with micro-benchmarks.

The chapter is concluded with related works on application-level scheduling in

active object programming languages.

Chapter 4 promotes the work published in [4]. In this work, we use the

multiactive object framework to encode another active object language, ABS. First,

we present a backend for this language that automatically translates ABS programs

into ProActive programs. Secondly, we use MultiASP, the calculus of ProActive, to

formalise the translation and prove its correctness. The associated proofs are

presented in appendix of this thesis. We show in the thesis the relevant elements

of the proofs, the lemmas on which we rely, the equivalence relation, and the

restrictions that apply. We give an informative feedback on the outcome of this
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translation in the conclusion of this chapter.

Chapter 5 highlights the latest works done around multiactive objects. In

particular, it is split into two major parts. The first part presents a visualiser

of multiactive object executions, that helps in debugging multiactive object-based

applications. We review the debugger tool and we present two use cases in which it

proves to be useful. The second part deals with the fault tolerance of multiactive

object. To enter this subject in details, we first introduce the fault tolerance

protocol that was developed for active objects in ProActive. We then present our

generic adaptation of the protocol for multiactive objects. We give as well the

current limitations of the new protocol and some possible solutions and directions

to improve it in a future work.

Chapter 6 exposes an application that we have developed with the multiactive

object programming model and that is set in the context of peer-to-peer systems.

We start by introducing the Content-Addressable Network (CAN) together with

our contribution, published in [2], dealing with the challenge of efficiently broad-

casting information in a CAN. We then move to the developed application that

consists in making the efficient broadcast in CAN robust, thanks to fault tolerant

multiactive objects. This chapter actually brings together several notions that

were introduced in the previous chapters.

Chapter 7 concludes the thesis in two parts. It first summarises the thesis by

recalling the methodology that was employed throughout the works, and by going

over the main contributions of each chapter. Finally, it presents the perspectives

that have been opened by this thesis.
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In this chapter, we introduce the ecosystem of this thesis, which starts from

the active object programming model. We first introduce the context in which

active objects were created, and the models that inspired active objects. We then

propose a classification of active object-based languages based on implementation

and semantic aspects. After that, we offer an overview of active object-based

languages and frameworks, taking into account the previous classification. Then,

we focus on multi-threaded active objects, that represent the specific context of this

thesis. Finally, we relate the content of this thesis with the ecosystem presented

before and justify its relevance there.

2.1 The Active Object Programming Model: Ori-

gins and Context

The active object programming model, introduced in [LS96], has one global objec-

tive: facilitate the correct programming of concurrent entities. The active object

paradigm derives from actors [Agh86]. Actors are concurrent entities that com-

municate by posting messages to each other. Each actor has a mailbox in which

messages arrive in any order. An actor has a thread that processes its messages

sequentially. Only the processing of a message can have a side effect on the ac-

tor’s state. This is a way to inhibit the effect of preemption on operating system

threads. Since actors evolve independently, they globally execute concurrently.

Yet, actors ensure the absence of data races locally. A data race exists if two

parallel threads can access the same memory location. As actors encapsulate their

state, an actor’s state cannot be modified by other threads than the unique thread

associated to the actor.

Once a message is posted to an actor, the sender continues its execution, with-

out knowing when the message will be processed by the other actor. This is called

an asynchronous communication pattern. In the original actor model, actors do
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Figure 2.1 – Structure of an activity.

not guarantee the order in which messages are processed. If another computation

is dependent on the result of the processing of a message, then a new message

should be issued to the initiator of the first message. We call this new message a

callback message.

Active objects are the object-oriented descendants of actors. They commu-

nicate with asynchronous method invocations. Asynchronous communication be-

tween active objects is First In First Out (FIFO) point-to-point, which means

that the messages are causally ordered, preserving the semantics of two sequential

method calls. In this sense, active objects are less prone to race conditions than ac-

tors, because their communications characterise more determinism. Like an actor,

an active object has a thread associated to it. This notion is called an activity : a

thread together with the objects managed by this thread. An activity contains one

active object and several encapsulated objects that are known as passive objects.

Figure 2.1 pictures the structure of an activity.

When an object invokes a method of an active object in another activity, this

creates a request on the callee side. The invoker continues its execution while the

invoked active object processes the request asynchronously. A request is dropped

in the active object request queue, where it awaits until it can be executed. Con-

trarily to the messages of actors, the method invocations of active objects return

a result. And since method invocations can be asynchronous, the result of the

invocation might not be known just after the invocation. In order to have room

for the prospected result, and to allow the invoker to continue its execution, a
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place holder is created for the result of the asynchronous invocation. This place

holder is called a future. A future represents a promise of response. It is an empty

object that will later be filled by the result of the request. We commonly say that

a future is resolved when the value of the future is computed and available. Fu-

tures have seen their early days in functional languages: in MultiLisp [Hal85] and

in ABCL/1 [YBS86]. They have been later on formalised in ABCL/f [TMY94],

in [FF99], and, more recently, in a concurrent lambda calculus [NSS06], and in

Creol [BCJ07]. A future is a particular object that will eventually hold the result

of an asynchronous method invocation. In the meantime, a future allows the caller

to continue its execution even if the result has not been computed yet, until the

value of the future is needed to proceed.

In practice, actors and active objects have fuzzy boundaries, one being the

historical model that inspired the other model. When actor frameworks are imple-

mented using object-oriented languages, they often mix the characteristics of actors

and active objects, that were established in the original models. For example, some

actor frameworks (detailed in Paragraph 2.3.7), like Salsa, are implemented using

method invocations to post messages. Others, like Scala actors and Akka, allow

actors to synchronise on futures, which is not strictly part of the original model

proposed in [Agh86]. Actors and active objects share the same objectives and have

the same architecture, so there is not point in distinguishing the two models, apart

from a comparative point of view on specific instances. This is the reason why,

in the rest of the manuscript, we might use interchangeably actor or active object

terms depending on the context. We also use sometimes the terms ‘request’ and

‘message’ interchangeably, whether we take the point of view of active objects or

actors. These different denominations have no impact on their actual meaning.

In summary, active objects and actors enforce decoupling of activities: each

activity has its own memory space, manipulated by its own thread. This strict

isolation of concurrent entities makes them suited to distributed systems. Further-

more, the notion of activity provides a convenient abstraction for implementing

non functional features of distributed systems like components, built on top of

objects, or like process migration, group communication, and fault tolerance.

More recently, active objects have been playing a part in service-oriented pro-

gramming, and especially in mobile computing [CVCGV13; Gör14], thanks to
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their loose coupling and to their execution safety. However, the strict active ob-

ject model suffers from obsolescence from a particular perspective: it processes

requests in a mono-threaded way. Thereby, many extensions and adaptations of

the active object programming model have been proposed through the past ten

years, in order to fit with new usages, new technologies, and new hardware. These

enhancements have scattered the active object paradigm such that each new branch

of active objects is adapted to a particular environment and targets a particular

objective.

2.2 A Classification of Active Object Languages

In this section, we present the aspects under which active object languages can

be studied, and the choices that must be made in order to implement them. In

particular, there are crucial questions to answer when implementing an active ob-

ject language. Answering these questions often determines the application domain

to which the language is the most adapted. We will see that those aspects will

have a large impact on the contributions of this thesis. Throughout the following

subsections, we briefly mention corresponding related works in order to illustrate

the point without going much into details. Related works are presented in details

in the next section.

2.2.1 Object Models

All active object-based languages define a precise relation between active objects

and regular objects. Considering the object models in active object languages

boils down to answering the question “how are objects associated to threads?”, or

more precisely, in active object words, “how are objects mapped to activities?”.

In existing active object languages, we can find three categories of object models.

Uniform Object Model. In this model, all objects are active objects with their

own execution thread, and with their own request queue. All communi-

cations between objects are made through requests. The uniform object

model is convenient to formalise and reason about, but can lead to scala-

bility issues when put into practice. Indeed, in the case where the model is
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implemented with as many threads of control as objects, the performance of

the application becomes quickly poor when executed on commodity comput-

ers. Alternatively, the model can be implemented by associating each object

to a logical thread. Logical threads are threads that are seen, and that

can plainly be manipulated as threads, at the application level, but that

might not exist at the operating system level. In this case, several logical

threads are mapped to one operating system thread. Although this solu-

tion would scale in number of threads managed by a computed, it has two

main drawbacks. Firstly, logical thread are sometimes difficult to implement

considering the underlying execution platform. Secondly, even with logical

threads, the whole active object baggage is carried anyway: the active object

queue, the request scheduler, and in general all the non-functional structure

of the active object, which can also be problematic at some point. Neverthe-

less, the concern of scalabilty might not be relevant considering the target of

the language. Creol, detailed in Section 2.3.1, is representative of this active

object model and has a compositional proof theory [BCJ07].

Non Uniform Object Model. This model involves active and passive objects. A

passive object is only directly accessible (in term of object reference) locally

and cannot receive asynchronous invocations. In this sense, passive objects

are only accessible remotely through an active object, i.e. they are part

of the state of the active object. ASP, the foundation stone of this thesis,

presented in Section 2.3.4, features a non uniform object model and restricts

the accessibility of a passive object to a single active object. In this case,

a passive object exists in a single activity, which prevents concurrent state

alterations. In general, an activity contains one active object and several

passive objects. The non uniform object model is scalable at a large scale as

it requires less remote communications and runs with less concurrent threads.

Reducing the number of activities also reduces the number of references that

must be globally accessible in a distributed execution. Thus, a large number

of passive objects can still be instantiated. However, this model is tougher

to formalise and reason about than the uniform object model.

Object Group Model. The object group model is inspired from the notion of
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group membership [BJ87] that applies to the partitioning of processes in

distributed systems. However, with group membership, the groups are dy-

namically formed, whereas in the object group model, groups are assigned

only once. In this model, an activity is made of a set of objects sharing the

same execution thread and the same request queue. The difference with the

non uniform object model is that all objects in the group can be invoked

from another activity, there is no notion of passive object. Compared to the

two previous object models, this approach has a balanced scalability, due to

the reduced number of concurrent threads, and a good propensity to formal-

isation, because there exists only one category of objects. Nevertheless, this

object model presents a major drawback in distributed settings: all objects

are accessible from any group. This fact implies that an object-addressing

layer, that applies on top of shared-memory, must be created and maintained.

Thus, in distributed setting, such a model does not scale as all objects cre-

ated by the program must be registered in a global directory in order to be

further retrieved for invocation. ABS, detailed in Section 2.3.3 and often

referred to in this thesis, is an example of active object-based language that

features the object group model.

Other hybrid kinds of object models have been released in actor models and

languages. The E programming language [MTS05] is an actor-based programming

language that features inter object communication through message passing. E

uses many kinds of object references in order to identify suspect accesses, which is

called isolating coordination plans, and handles object state hazards. Other works

on the actor model attempt to release the constraint of having message-passing as

an exclusive communication pattern. Some of these works make actors partially

communicate through shared memory. In [DKVCD12], the actor model is extended

to provide actors with a dynamic safe communication through shared memory,

based on the notions of object domains and of synchronisation views. This is done

by an inversion of control in which it is the user of the resource - and not its owner

- that has an exclusive access to the resource. In [LL13], the performance of the

actor model is optimised specifically for the single-writer multiple-reader case. In

this case only, data is communicated through shared memory instead of message
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passing.

2.2.2 Scheduling Models

Active objects are tightly related to threads through the notion of activity. Latest

developments in the active object programming model have led to the emergence

of new request execution patterns. This brings to the question “how requests”

are executed in active objects. Although we divided here the classification into

three categories based on threading aspects, the focus of our analysis is on the

interleaving of request services.

Mono-threaded Scheduling Model. This threading model is the one supported

in the original active object programming model. It specifies that an active

object is associated to a single thread of execution. In addition, it specifies

that the requests of an active object are served sequentially up to completion,

which is, without interleaving possibilities. In this case, data races and race

conditions, as defined in Section 2.1, are completely avoided. ASP features

this scheduling model. The drawback of this model is that deadlock are likely

to arise in the presence of reentrant requests. So the application must be

designed according to this constraint.

Cooperative Scheduling Model. A major development in active object request

scheduling, introduced first by Creol, consists in having the possibility to

release the single thread of control of an active object, explicitly, at the

application level. Cooperative scheduling represent a solution to the need

for a controlled preemption of requests. The cooperative scheduling model is

based on the idea that a request should not block the progression of another

request if it temporarily cannot progress itself. For that, a running request

can explicitly release the execution thread before completion, based on some

condition or unconditionally, in order to let another request progress. In

this model, requests are not processed in parallel, but they might interleave.

Consequently, data races are avoided, as a single thread is running at a time,

but race conditions can occur because the execution of requests interleaves.

Here, contrarily to the mono-threaded scheduling model, the result of the
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execution does not only depends on the request execution order, but also on

the order in which futures are resolved. As a result, much more execution

possibilities exist in the cooperative scheduling model. The possibilities are

also increased depending on the request activation mechanism, whether the

scheduler favours starting or resuming requests, or if it activates one them

not deterministically. The cooperative scheduling model takes its inspiration

in the concept of coroutines, that enable multiple entry points for suspending

and resuming execution. Coroutines are opposed to subroutines in the sense

that subroutines have a single entry point at the beginning and a single exit

point at the end of the routine. Coroutines were first introduced in [Con63]

and first implemented in a programming language in Simula 67 [DMN68]

for concurrent system simulation, using a single thread of control. Since

then, many modern languages offer a native support for coroutines, such

as C#, Erlang, Haskell, JavaScript and Python, but not all of them: for

example Java. In this case, implementing cooperative scheduling is made

more difficult.

Multi-threaded Scheduling Model. As computer processors were becoming multi-

cores, the hardware started to be adapted to several simultaneous flows of

control. In return, high-level programming models have to adapt to this

evolution in order to map to the hardware at best. In the multi-threaded

scheduling model for active objects, several threads are executed in a parallel

manner inside a same active object. In this category, we distinguish two kinds

of multi-threading. In the first kind of multi-threading, contrarily to the

cooperative scheduling model, multiple requests can be allowed to progress

at the same time. Each request runs to completion without yielding the

thread they have been assigned. In this case, data races and race conditions

are possible if the requests processed in parallel manipulate the same part

of the memory (e.g. the active object fields). However, data races can

only occur within an activity because activities are still isolated from each

other. MultiASP, a key component of this thesis, presented in details in

Section 2.4.3, is based on the multi-threaded scheduling model. Hereafter,

we call the active objects featuring this scheduling model multiactive objects.
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The second kind of multi-threading that can apply in active object languages

is when data-level parallelism is allowed inside a request. In this case, the

requests may not execute in parallel, but a single request processing may use

more than one thread. This kind of multi-threading can also lead to data

races, but only within a single request. Encore, presented in Subsection 2.3.6,

features this particular kind of multi-threading.

In the context of actors, many works extend the actor model in order to enable

parallelism within an actor. Parallel Actor Monitors (PAM) [STDM14] offer a par-

allel message processing approach in which an actor can be associated to a monitor

that decides if messages can be processed in parallel. The parallelisation decision

can be user-defined to enable fine-grain filtering. It is claimed that PAM save the

programmer from having to rewrite data parallelism into task parallelism, as it

should be done with regular actors. Other works propose the unification of the ac-

tor model with other parallel models to achieve intra-actor parallelism. In [IS12],

the async-finish task-parallel model is embedded in an actor so that it can be

used in the body of a function that processes a message. This reunification enables

strong synchronisation at the finish stages, where bare actors cannot easily syn-

chronise due to the non deterministic order on the messages. In [Hay+13; HSF15],

several parallel message processing strategies that mix transactional memory with

the actor model prove to increase message throughput, either without failing the

actor semantics (in an optimistic approach for low contention workloads) or by

avoiding transactional memory rollbacks if inconsistent snapshots only include

readers (in a pessimistic approach for high contention workloads).

2.2.3 Transparency

Whether the programmer is aware of concurrency aspects and whether the pro-

grammer is able to manipulate them through language constructs is a key point of

comparison of active object languages. Besides, the transparency of the language is

the aspect that impacts the most the end users of active objects: the programmers.

The active object programming model is designed such that it integrates well with

object-oriented programming. Nevertheless, the level of integration can substan-

tially vary depending on the active object language design and of the underlying
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object-oriented paradigm. In case of fully transparent active object language, the

programmer manipulates active objects as regular objects, without any difference.

In this case, points of desynchronisation and resynchronisation are completely

hidden from the programmer by the active object runtime. In the other cases,

some language constructs are given to the programmer to explicitly mark either

desynchronisation or resynchronisation, or both. In this case, the programmer is

responsible for a good placement of those language constructs. We review below

concrete situations where the transparency of an active object language can be

discussed.

Transparency of asynchronous method calls. In active objects, remote method

invocations are the points of desynchronisation in an execution flow, where

the invoker continues its execution concurrently with the request processing.

In some active object languages, like Creol, such points of desynchronisa-

tion are explicitly placed in the program by the programmer. In this case,

a special syntax is used: where usually a dot is the symbol of synchronous

method invocation, separating the object instance from the called method,

another symbol is used to mark an asynchronous method call. For example,

Creol and ABS use the exclamation mark (!) in order to distinguish asyn-

chronous method calls from synchronous ones. On the other hand, some

other active object languages offer transparent asynchronous method calls:

the same syntax is used both for synchronous and asynchronous method

calls. In this case, the active object runtime distinguishes the two kinds of

method calls thanks to the nature of the invoked objects: if it is an active ob-

ject, then the method call will be asynchronous; if it is a passive object, then

the call will be synchronous. Further local optimisations can be made from

this basic rule. ASP is an example of active object language that features

transparent asynchronous method calls.

Transparency of futures. In all active object languages, the asynchronous invo-

cation of a method is coupled with the creation of a future. And, in most

active object languages, a future is implemented as an object. However, ac-

tive object languages differ whether they show to the programmer the future

object, through a dedicated type, or if they hide the future thanks to inher-
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itance techniques. Often, when futures are explicit, a dedicated type exists

and it is parametrised with the enclosed type, as in Fut<Int> (ABS syn-

tax). Additionally, when futures are statically identified, they can also be

accessed and polled explicitly. A dedicated operator, like .get in ABS, al-

lows the programmer to retrieve the value of the future. If the future is

not yet resolved when accessed through the operator, the execution flow is

blocked until the future’s value is computed. Explicit futures also allow the

programmer to explicitly release the current thread if a future is not resolved.

This is implemented with a particular keyword, usually named await. This

possibility is strongly tight to the cooperative scheduling model described

in Subsection 2.2.2 above. On the other hand, in active object languages,

futures can also be implicit: the programmer does not see them in the pro-

gram, as futures are only identifiable at runtime. In case of implicit futures,

the expressions that need the future’s value to be computed (as knows as

blocking operations) automatically trigger a synchronisation: the program is

blocked at this point until the future is resolved. This behaviour is known

as wait-by-necessity. In some active object implementations, futures can be

given as parameters of requests without resolving them before. Futures that

have this ability are called first class futures. In practice, explicit or implicit

futures can be implemented as objects that can be globally accessed through

proxies. All activities to which the future has been passed can then access

the future through its proxy.

Transparency of distribution. As not all active object languages offer a support

for distributed execution, we focus here on the ones that can execute their

program across distributed resources connected through a network. In this

case, a major question that remains for the design of a distributed active

object language is whether the programmer is aware of distributed aspects,

and if distribution appears in the program. This is not specially related to

active objects but to the level of abstraction of the distributed layer. For

example, if the program must deal with Internet Protocol (IP) addresses in

order to contact a remote active object, then the transparency of distribution

of the language is very low. On the contrary, if active objects are addressed
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like regular objects (by various means: distributed global memory, abstract

deployment layer, indirection, etc.) even if they lie on the other side of

the world, then the active object languages has a transparent distribution.

With such active object languages, there is almost no difference between a

distributed program and usual objects. This is what ProActive (detailed in

Subsection 2.3.4) offers. Transparent distribution is an important point to

take into account as abstracting away distribution greatly facilitates the im-

plementation of advanced features of active objects, such as automatic trans-

mission of future references and automatic future updates (related to first

class futures). Defining a level of abstraction for distribution also defines the

semantic options offered by the language. For example, several active object

languages that target distributed execution forbid synchronous method calls

on remote active objects (e.g. AmbientTalk, presented in Subsection 2.3.5).

Overall, the active object languages that are not transparent facilitate static

verifications on the program, for example in order to statically detect deadlocks.

Also, having explicit constructs for the aspects that are related to active objects

makes the programmer aware of where futures are created. They offer to the pro-

grammer a better control on execution, but also assume that the programmer has

experience with the key notions of active objects. On the other hand, transparent

active object languages are handier and more accessible to programmers, as par-

allel sections are spawned automatically, and as joining phases hold automatically

as well. In return, transparent active object languages must be equipped with a

sophisticated runtime, in order to detect the points in the program where the be-

haviour should differ from standard object-oriented execution, for example when

a wait-by-necessity must be triggered out of a simple object access expression, or

when an asynchronous method call must take place instead of a synchronous one.

2.3 Overview of Active Object Languages

In this section, we review the main active object languages that have arisen in

the past ten years, and that have inspired the newest active object languages.

Voluntarily, the presented active object languages are instances of the various
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(a) Step 1. (b) Step 2.

Figure 2.2 – Cooperative scheduling in Creol.

kinds of active objects that we have introduced in the classification of Section 2.2.

As mean of syntactic comparison, we show a same code snippet for most of the

presented active object languages, in order to emphasise their features. The given

example gives room for using most of the language constructs that are important

in the context of this thesis. Finally, we present major actor systems because they

are also a relevant source of inspiration for the design of active object languages.

2.3.1 Creol

Creol [JOY06] is an uniform active object language in which all objects are active

objects: they all come with a dedicated execution thread. The full semantics of

Creol with minor updates is presented in [BCJ07]. Creol objects are perfectly out-

lined so that no other thread than the object’s execution thread can access the

methods (and the fields) of the object. Consequently, objects can only communi-

cate through asynchronous method calls and futures; no data is shared between

objects. In Creol, asynchronous method calls and futures are explicit, but futures

are not first class. Creol is based on a cooperative scheduling of requests, which

softens its strict object partitioning. Figure 2.2 shows an example of execution of

a Creol program in two steps. The example involves a cooperative scheduling of

requests by using the await language construct.

The await Creol keyword can be used by the programmer in a method’s body

in order to yield the execution thread if the future on which the await is applied

is not resolved. In Figure 2.2a, object a does an asynchronous method invocation

on object b, and then awaits for the result. When the await instruction actually
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releases the execution thread because the future is not resolved, another request

for this object can start (if it is in the request queue) or can resume (if it was

deactivated by a previous call to await). In Figure 2.2b, while taskA is put back in

the queue of object a, taskX gets activated. In Creol, when a request is deactivated

or finished, the choice for the next request to start or resume is not deterministic.

Finally, a .get() call can be used to eventually retrieve a future’s value, like in

Figure 2.2a at the end of taskA. Contrarily to await, get is a blocking construct,

so the current request is never deactivated upon a .get() call and also, no other

request is activated if the future is still not resolved at this point.

As mentioned in Subsection 2.2.2, Creol avoids data races thanks to its co-

operative scheduling of requests offered by the await language construct. But

in practice, interleaving of requests in a Creol program can be quite complex, as

release points are highly needed to avoid the deadlocks that arise from circular

request dependencies. Overall, the goal of Creol is to ‘reencapsulate’ the object

state that can be infringed in multi-threaded environments. It achieves this goal

by having a rich and precise active object language. However, the drawback of

Creol is that its safety of execution strongly depends on how well the program-

mer places the release points in the program. Indeed, not enough release points

would lead to deadlocks whereas too many release points would lead to complex

interleaving of requests, which could violate the semantic integrity of the object’s

state.

2.3.2 JCoBox

JCoBox [SPH10] is an active object programming model, together with its program-

ming language implementation in Java. JCoBox mixes the non uniform and the

object group model presented in Subsection 2.2.1). The objects are organised into

groups, called CoBoxes, such that each CoBox is responsible for maintaining its

own coherent concurrency model. At each time, each CoBox has one single thread

that is actively processing a request for any of the active objects contained in the

CoBox. However, there might exist multiples other threads (plain Java threads)

in the CoBox, but in this case, all they can do is wait for an unresolved future. A

CoBox contains two kinds of objects: first, active objects, called standard objects,
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Figure 2.3 – Organisation of JCoBox objects.

that are accessible from other CoBoxes via asynchronous method calls, and sec-

ond, passive objects, called transfer objects, that are local to a CoBox. In addition,

JCoBox offers a third kind of objects: immutable objects. Immutable objects are

passive objects that can safely be shared between active objects. Figure 2.3, taken

from [SPH10], represents all objects kinds and their permitted communications,

as well as the cooperative scheduling featured in each CoBox. Like in Creol (Sub-

section 2.3.1 above), asynchronous method calls and futures are explicit. Requests

are executed according to the cooperative scheduling model. The methods get()

and await() are used on future variables to respectively retrieve a future’s value

in a blocking way and to release the execution thread in the case where a future

is not resolved. Additionally, JCoBox defines a static yield() method in order to

unconditionally release the execution thread. The yield() method can optionally

take as parameter a minimum waiting time before being rescheduled. To sum-

marise, JCoBox interleaves the request execution of all the objects lying in a same

CoBox, where Creol only interleaves the requests for a single object. However,

contrarily to Creol, that executes requests not deterministically, JCoBox enforces

a FIFO requests execution policy, where incoming requests and ready-to-resume

requests are put together in a ready queue. From an implementation point of view,

both blocked (by a get()) and descheduled (by an await() or a yield()) requests

are put in the ready queue once they satisfy the resuming condition. However, de-
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Figure 2.4 – An example of ABS program execution

scheduled requests are appended whereas blocked requests are prepended to the

ready queue, in order to enforce the desired semantics.

JCoBox has a prototyped runtime for the support of distributed execution us-

ing Java Remote Method Invocation [WRW96] (RMI) as the communication layer.

In this case, the unit of distribution is the CoBox. Generally, JCoBox better ad-

dresses practical aspects than Creol: it is integrated with Java, its design tolerates

distribution, and the object group model improves the scalability in number of

threads. The interleaving of request services in JCoBox is similar to the one of

Creol; request services can even be more interleaved due to object groups. Thus,

the request scheduling of JCoBox has the same advantages and drawbacks as Creol.

2.3.3 ABS

The Abstract Behavioral Specification language (ABS) [Joh+11] is an object-

oriented modelling language based on active objects. ABS takes its inspiration

in Creol for the cooperative scheduling and in JCoBox for the object group model.

ABS is intended at modelling and verification of distributed applications. The

object group model of ABS is based on the notion of Concurrent Object Group

(cog), that partition the objects of an application into several cogs. A cog man-

ages a request queue and a set of threads that have been created as a result of

asynchronous method calls to any of the objects inside the cog. The cog granu-

larity ensures that only one thread among the managed threads is executing (also

said active) at a time. Figure 2.4 shows an ABS configuration with a request

sending (dotted line) between two cogs.

In an ABS progam, new objects can be instantiated in a new cog with the

new keyword. In order to instantiate an object in the current cog, the new local
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keyword combination must be used. As in Creol and JCoBox, ABS features an

await language construct, that unschedules the thread if the specified future is

unresolved and a get language construct, that blocks the thread execution until

the specified future is resolved. In ABS, await can also be used to pause on a

condition. In addition, there is a suspend language construct (counterpart of

yield in JCoBox) that unconditionally releases the execution thread. Contrarily

to JCoBox, ABS makes no difference on the objects’ kind: all objects can be

referenced from any cog and all objects can be invoked either synchronously or

asynchronously. Moreover, all kinds of object invocation fall in the request queue

of the enclosing cog. Asynchronous method calls and futures are explicit.

1 BankAccount ba = new local BankAccount(459818225, Fr);

2 ...

3 TransactionAgent ta = new TransactionAgent(ba);

4 WarningAgent wa = new WarningAgent(ba.getEmail(), ba.getPhone());

5 ...

6 Transaction dt = new DebitTransaction(42.0, Eur);

7 Fut<Balance> bfut = ta!apply(dt);

8 await bfut?;

9 Balance b = bfut.get;

10 wa!checkForAlerts(b);

11 ...

12 b.commit();

Listing 2.1 – Bank account program example in ABS.

Listing 2.1 shows an ABS code snippet. The example consists of an (ac-

tive) agent that handles the transactions on a bank account, and another (ac-

tive) agent that is responsible for triggering alerts, based on the transactions that

happened. As the transaction agent and the warning agent are supposed to be

highly loaded, they are instantiated in their own cog (new is used instead of

new local). Note that, in this program, we could wait and retrieve the future

variable after the call of checkForAlert, passing the variable bfut instead of

b. But for that, the checkForAlerts method signature must be changed from

checkForAlert(Balance) to checkForAlert(Fut<Balance>), which might not

be convenient for other usage of checkForAlerts. This code snippet would be

similarly implemented in Creol and JCoBox, this is why we did not present it in
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the respective subsections.

ABS comes with numerous engines1 for verification of concurrent and dis-

tributed applications and their execution. Below is a list of the verification tools

provided for ABS:

– A deadlock analyser [GLL15] allows the programmer to statically detect

deadlocks in ABS programs, thanks to an inference algorithm that is based

on a behavioural description of methods.

– A resource consumption analyser [JST15] enables the comparison of application-

specific deployment strategies

– A termination and cost analyser, COSTABS [Alb+12], that has two parts.

The first ability of this tool is to find deadlocks in an ABS program, in

a different way than [GLL15] by the use of a solver. The second purpose

of COSTABS is to evaluate the resources that are needed to execute an

ABS program. In this case, computer resources are abstracted away through

a model with quantifyable measures. COSTABS has also been generalised

for concurrent object-based programs [Alb+14]

– A program verifier, KeY-ABS [DBH15; Din+15], allows the specification and

verification of general, user-defined properties on ABS programs. KeY-ABS

is based on the KeY reasoning framework [BHS07].

In addition to verification tools, ABS tools also comprise a frontend compiler

and an Integrated Development Environment (IDE) support through an Eclipse

plugin for ABS programs. In addition, several backends translate ABS programs

into various programming languages, including into the Maude system, Java, and

Haskell [BB16]. The Java backend for ABS translates ABS programs into local Java

programs that enforce the ABS semantics. The Haskell backend for ABS performs

the translation into distributed Haskell code. The ABS semantics is preserved

thanks to the thread continuation support of Haskell, which is not supported on

the JVM. A Java backend for ABS based on Java 8 [Ser+16] is currently under

development and experiments different approaches to encode thread continuation

1
ABS related tools can be found at: http://abs-models.org/

http://abs-models.org/
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on the Java Virtual Machine (JVM). In Chapter 4, we present another backend

for ABS that specially targets distributed High Performance Computing (HPC)

with ProActive (Subsections 2.3.4 and 2.4.2). This backend is fully implemented

and, moreover, the correctness of the translation is formally proven. The imple-

mentation of the ProActive backend for ABS is compared with the design of the

Java 8 backend for ABS in [1].

2.3.4 ASP and ProActive

ASP [CHS04] is an active object programming language tailored for distributed

computing. ASP has proven properties of determinism, and particularly fits the for-

malisation of object mobility, groups, and componentised objects [CH05]. ASP fol-

lows a non uniform active object model with high transparency: active and passive

objects are almost always manipulated in the program through the same syntactic

constructs. Contrarily to the cooperative scheduling model of Creol, JCoBox, and

ABS, in ASP a request cannot be punctuated of release points. Once a request

starts to be executed, it runs up to completion without ever releasing the thread.

Synchronisation is also handled automatically: futures are implicitly created from

asynchronous remote method calls. In practice, future types are dynamically cre-

ated and inherit the return type of the method that was called asynchronously.

Futures are, as such, completely transparent to the programmer. ASP features

the wait-by-necessity behaviour upon access to an unresolved future: the program

execution automatically blocks when a future’s value is needed to pursue the pro-

gram execution. A wait-by-necessity is triggered when the future is an operand

of a strict operation, that is when, not only the reference of the future is needed,

but also its value. ASP has first class futures, which means that futures can be

passed between activities without being resolved beforehand. This happens when

futures are not part of strict operations, for example when a future is a param-

eter of a local or remote method call. Indeed, as futures are transparent, they

are also transparently passed between activities. When the future is resolved, its

value is automatically updated for all activities it has been passed to. Several fu-

ture update strategies have been explored in ProActive for this purpose [Hen+11].

ASP ensures causal ordering of requests by enforcing a rendez-vous upon all asyn-
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chronous communications. When a caller asynchronously invokes method on a

callee, the caller is only allowed to continue its execution when the request has

been successfully put in the queue of the callee. Thus, two successive asynchronous

method calls are always put in the request queue of the recipient in a causal order.

This characteristic enforces FIFO point-to-point request channels, and makes the

semantics of ASP programs very close to the one of a sequential execution. This

latter point allows the programmer to predict the behaviour of the program more

easily.

ASP forms the theoretical foundation of ProActive [Bad+06], the implementa-

tion of ASP in Java. The active object model [LS96] and the distributed object

model of Java (Java Remote Method Invocation (RMI)) [WRW96] were released

the same year in seminal papers. ProActive has combined those two models and

has implemented the semantics of ASP in a Java library that offers full support for

distributed execution. As the active object model of ASP is transparent, ProAc-

tive active objects follow as much as possible the syntax of regular Java objects.

The only difference is when an active object is created: a static method of the

library, named newActive, must be used for that. Passive objects are created as

standard Java objects with the new keyword.

1 BankAccount ba = new BankAccount(459818225, Country.FR);

2 ...

3 TransactionAgent ta = PAActiveObject.newActive(

4 TransactionAgent.class, new Object[]{ba}, node);

5 Object[] warningParams = {ba.getEmail(), ba.getPhone()}

6 WarningAgent wa = PAActiveObject.newActive(

7 WarningAgent.class, warningParams, node);

8 ...

9 Transaction dt = new DebitTransaction(42.0, Currency.EUR);

10 Balance b = ta.apply(dt); // dt is deeply copied

11 wa.checkForAlerts(b); // if b is a future it is passed transparently

12 ...

13 b.commit(); // a wait-by-necessity is possible here

Listing 2.2 – Bank account program example in ProActive. node is not defined

here.

Listing 2.2 shows the transaction agent example written in ProActive. Again,



30 CHAPTER 2. BACKGROUND AND RELATED WORKS

the transaction agent and the warning agent have their own thread of control,

and in ProActive, they can be settled on different machines. The transaction

agent and the warning agent are two active objects created through the call to

PAActiveObject.newActive with three parameters: the class to instantiate, the

parameters of the constructor, and optionally, the node on which the active object

must be deployed (ProActive supports remote instantiation of active objects). As

opposed to ABS, we can notice in the example that first class futures are com-

pletely transparent: line 11 will proceed even if b is an unresolved future. Thus,

the ABS and ProActive programs have in fact a slightly different semantics. In

Chapter 4, we will see that an updated version of ASP, namely MultiASP, intro-

duced in Subsection 2.4.3, allows us to encode ABS programs in ProActive, giving

exactly the same semantics.

In ProActive, when an active object is created, it is registered in the Java

RMI registry, RMI being the main communication layer used in ProActive. ProAc-

tive uses the RMI registry in order to have active objects accessible through the

network and identified by Uniform Resource Locator (URL). When an RMI URL

is requested, the RMI registry returns a Java object that is a proxy to the requested

active object. The proxy encapsulates network communication and serialisation

mechanisms, in order to remotely invoke methods on the active object. Proxies

enable transparent distributed program execution. In practice, ProActive active

objects are always manipulated through proxies that delegate all asynchronous in-

vocations to the active object. In the example given above, the references returned

by the calls to newActive are references to the local proxies of the remote active

objects.

One aspect of ProActive is also dedicated to components [BHR15]. ProAc-

tive active objects form a programming model that is suitable for component-

based composition of distributed applications through the GCM2 model. The

Vercors platform [HKM16] enables the design, specification and verification of

ProActive components through an Eclipse plugin, similarly to the verification abil-

ities of ABS.

ProActive is intended for distribution, it forms a complete middleware that sup-

ports application deployment on distributed infrastructures such as clusters, grids

2Grid Component Model
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and clouds. The deployment mechanism of ProActive, named GCM Deployment,

is based on the concept of virtual nodes: a virtual node is an aggregation of phys-

ical machines that are declared in configuration files (XML files). Such virtual

nodes can be denoted in a ProActive program through identifiers. This allows the

programmer to choose indirectly a location on which to deploy an active object.

The ProActive middleware has proven to be scalable and suitable for distributed

HPC [Ame+10]. It is the main technology used as a basis to implement the works

that are presented in this thesis. This first description of ProActive is enriched in

Section 2.4, where the multi-threaded extension of ASP, MultiASP, is presented

together with its implementation in ProActive.

2.3.5 AmbientTalk

AmbientTalk [Ded+06; Cut+07] is a distributed actor-based programming lan-

guage targeting distributed execution in mobile ad hoc networks. Although Am-

bientTalk would rather work with message passing instead of Remote Procedure

Call (RPC), we liken it to an active object language because the concurrency layer

is highly entangled with object-oriented notions, and because it makes an advanced

use of futures, specially for dealing with network failures. So, in the following, as

we speak of active object, AmbientTalk usually use the term actor. AmbientTalk is

inspired from the E actor-based programming language [MTS05] for most of the

concurrency layer. AmbientTalk follows both a non uniform model and an object

group object model (see Subsection 2.2.1): it features active and passive objects.

Asynchronous invocations are explicit and return dynamically typed futures (ob-

ject typing is dynamic in AmbientTalk). Only passive objects that are owned by the

same active object can communicate through synchronous message passing (with

syntax o.m()). AmbientTalk follows a mono-threaded scheduling model (see Sub-

section 2.2.2), where request processing is atomic: requests are executed one after

the other and always run up to completion. Yet, an AmbientTalk program execu-

tion never leads to a deadlock because the execution flow never stops. The reason

for deadlock-freedom in AmbientTalk is that a future access is a non-blocking oper-

ation: accessing an unresolved future results in an asynchronous call that returns

another future. In our context, this is the most atypical aspect of AmbientTalk.
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This way, even unresolved futures can receive messages intended to the not yet

computed future’s value. In order to implement this behaviour, futures are imple-

mented like active objects, where the messages are accumulated in a queue until

the future becomes resolved. Moreover, a callback can also be attached to a future

in order to do something with the future’s value as soon as it is available. In a

sense, callbacks on futures can be likened to the first class futures of ASP.

1 when: contactFut becomes: { |contactInfo|

2 // execution is postponed until future is resolved

3 system.println("Found item, contact: " + contactInfo);

4 } catch: { |exception| ... };

5 // code following when: is processed immediately

Listing 2.3 – AmbientTalk when:becomes:catch clause example.

Listing 2.3, taken from [Cut+07], shows an example of a future’s handler, where

the callback is located in the becomes: block. The event-based execution of the

different activities makes sequences of actions difficult to enforce in AmbientTalk.

However, an AmbientTalk program is always partitioned into separate event han-

dlers that maintain their own execution context; this is known as an inversion of

control. Thus, reasoning on AmbientTalk programs is a bigger challenge compared

to the other active object languages presented in this thesis.

1 def ba := BankAccount.new(459818225, Fr);

2 ...

3 def ta := actor: {

4 def myBankAccount := ba;

5 def apply(debitTransaction) {

6 ...

7 };

8 };

9 def wa := actor: {

10 def email := ba.getEmail();

11 def phone := ba.getPhone();

12 def checkForAlerts(balance) {

13 ...

14 };

15 };

16 ...

17 def dt := DebitTransaction.new(42.0, Eur);
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18 def b = ta<-apply(dt);

19 wa<-checkForAlerts(b);

20 ...

21 b.commit();

22 when: b becomes: { |resB|

23 system.println("Balance is computed. Commit can proceed.");

24 } catch: { |e|

25 system.println("Exception: " + e);

26 };

Listing 2.4 – Bank account program example in AmbientTalk.

Listing 2.4 represents the bank account example written in AmbientTalk. The

active objects (characterised with the actor: definition in the program) are de-

clared inline: they are created at the same time as their behaviour is defined.

As ProActive, AmbientTalk is primarily made for distributed execution. Un-

like JCoBox, the support for deployment on distributed infrastructures is much

experienced. In particular, AmbientTalk features a dynamic active object discov-

ery mechanism, based on the publish/subscribe pattern, that allows unexpected

resources to be a part of the application. AmbientTalk also deals with unexpected

disconnections of distributed resources by the mean of leasing, that denotes a lim-

ited access in time to an object. The lease is automatically renewed when objects

communicate. Considering its resilient approach, AmbientTalk is probably the ac-

tive object language that is the most representative of active objects as a service.

Finally, AmbientTalk programs run on the JVM and, as such, must comply to

the JVM constraints. In return, AmbientTalk can hit a potentially large audience

thanks to this fact.

2.3.6 Encore

Encore [Bra+15] is an active object-based parallel language that is currently un-

der development. Encore is inspired from the works carried out around the Joëlle

programming language [Cla+08], oriented towards a theory and practice of ob-

ject ownership. The philosophy of Encore is to provide a programming language

that is parallel by default, and that relies on the active object programming model

mixed with other parallel patterns. Encore is essentially based on a non uniform
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object model and a cooperative scheduling model (see Subsections 2.2.1,2.2.3).

Encore features active and passive objects. Method calls are transparently asyn-

chronous or synchronous, depending whether the called object is active or passive.

Although futures are typed dynamically, their value must be explicitly retrieved

via a get construct. Unlike the other presented active object languages, Encore na-

tively includes two forms of asynchronous computation: asynchronous method calls

(like the other languages) and asynchronous parallel constructs inside a request.

Internal parallelism can be explicit through async blocks, or it can be implicit

through parallel combinators, an abstraction that spawns Single Instruction Mul-

tiple Data (SIMD) tasks and joins them automatically. What is special about

Encore is that all parallel constructs are unified with the use of futures for han-

dling asynchrony [FRCS16]. In Encore, active objects encapsulate passive objects,

in terms of ownership, but unlike ProActive and AmbientTalk, passive objects can

be shared by reference across the activity boundaries. In this context, in order

to prevent concurrent modifications on passive object, the programmer gives to a

passive object a capability type, that defines both the accessible interface of the

object and the level of accessibility of this interface. The capability possibilities

include not exhaustively: exclusive access from one control thread, optimistic and

pessimistic sharing, and unsafe sharing. The capability system of Encore has been

formalised in [CW16]. Regarding request scheduling, Encore features the same

cooperative scheduling as Creol and ABS with the await and suspend language

constructs.

1 let ba = new local BankAccount(459818225, Fr); // BankAccount is a passive class

2 in {

3 let

4 ta = new TransactionAgent(ba);

5 wa = new WarningAgent(ba.getEmail(), ba.getPhone());

6 ...

7 dt = new DebitTransaction(42.0, Eur);

8 in {

9 let bfut = ta.apply(dt)

10 in {

11 await bfut;

12 let b = get bfut

13 in {



2.3. OVERVIEW OF ACTIVE OBJECT LANGUAGES 35

14 wa.checkForAlerts(b);

15 ...

16 b.commit();

17 }

18 }

19 }

20 }

Listing 2.5 – Bank account program example in Encore.

Listing 2.5 shows the bank account example written in Encore. Here, we sup-

pose that the BankAccount and DebitTransaction classes are passive, and that

TransactionAgent and WarningAgent are classes declared without special key-

word (and in this case, ta and wa are automatically active objects). The manipu-

lation of futures is similar to what can be found in Creol or ABS programs. But in

addition, Encore provides a chaining operator ↝ that adds a callback to a future, in

order to execute it when the future is resolved. This chaining operator is somehow

similar to the callbacks of AmbientTalk. Cooperative scheduling and future chain-

ing mix explicit and automatic synchronisation, which might save the programmer

from the burden of precisely placing all the release points in the program.

An Encore program is compiled through a source-to-source compiler, written

in Haskell, that produces C code complying to the C11 standard. Consequently,

all tools that apply to C programs can also be applied to a compiled Encore pro-

gram. In conclusion, Encore is oriented towards massively parallel execution, but

its design makes it not adapted for high performance distributed execution, due

to the predominance of object sharing.

2.3.7 Actor Languages and Frameworks

Like active objects, since the publication of the original actor model in [Agh86],

many implementations of actors have emerged, along with the needs of the pro-

grammers throughout the years. These implementations have various character-

istics that differentiate them from each other, and that makes them adapted to

particular contexts. An informative study [KSA09] compares several actor frame-

works that execute on the JVM platform and discusses their guarantees. We review

below the actor languages and frameworks that execute on various platforms and
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whose characteristics are remarkable in our context.

Rebeca

Rebeca [Sir+04] is an actor-based programming language featuring classical asyn-

chronous message passing without reply between actors. Rebeca aims at using

actor-based concepts for the specification and model-checking of reactive systems.

The only difference of Rebeca against the original actor model is that Rebeca

actors preserve the order of messages that are sent between two actors. This com-

munication model is known as FIFO point-to-point communications, as in ASP.

However, contrarily to ASP, message sending is non blocking. Consequently, upon

reception, messages can be reordered depending on their timestamps. Each Re-

beca actor encapsulates its own variables, so there exists no data sharing between

actors. In addition, the execution model of Rebeca actors is mono-threaded, which

makes Rebeca programs intrinsically data race free. As ABS, Rebeca has many

frontend verifier tools, and several backend translators into various languages. One

of the backends translate Rebeca models into the Erlang programming language,

that has a solid background and support for concurrent programming [VWW96].

Rebeca also supports componentised model-checking [Sir+05], and an extension

of Rebeca enables verification of Rebeca models in the presence of timed con-

straints [Kha+15].

Scala and Akka actors

Scala actors [HO09] are pioneers and ones of the most successful actors that par-

ticipated to their popularisation. Their impact on the developement of support

for concurrency and on newly designed technologies is nowadays as much visible in

education as in industry [Hal12]. A more recent implementation of actors in Scala

is available in the Akka library [Inc12], that mainly improves the performance of

distributed actors on the JVM. This is mainly due to a better implementation

of serialisation compared to standard Java serialisation. Akka actors also offer a

facilitated way to distribute the execution of actors, compared to Scala actors, by

making the deployment more transparent. Both Scala and Akka actors support

the use of futures for the convenience of the programmer, although this makes a
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significant difference with respect to the original actor model.

Kilim

Kilim [SM08] is an actor implementation that provides lightweight threads on top

of Java. To this end, actor’s threads are cooperatively scheduled, which makes

the execution of Kilim actors slightly different from the execution of actors in the

original model. Also, Kilim allows the message content to reference objects that

are outside the actor’s boundaries. Such object sharing can lead to inconsistent

state. It is then on the shoulders of the programmer to realise a copy of the

shared object, or to protect it accordingly. An extension of Kilim [GB13] enables

ownership-based isolation of objects in order to better structure object accesses.

Another aspect of Kilim is that, in order to drop a message to an actor, one must

get the local reference of the actor’s mailbox. This has the drawback of breaking

the actor’s encapsulation and of relying on local references to target an actor.

All of these properties make Kilim handy and efficient but not yet adapted to

distribution.

SCOOP

The Maude model and the C runtime of SCOOP [Mor+13], that stands for Simple

Concurrent Object-Oriented Programming, provides a concurrency model based

on the notion of handlers. A handler is an autonomous thread of control that

is able to execute actions on an object. In SCOOP, method calls on an object

reference are performed asynchronously if they are placed in a special separate

block, that mentions this object reference. What distinguishes SCOOP from other

actor models is that a whole sequence of actions can be registered to an object’s

handler. For that, the actions just need to lie in a same separate block. The

sequence of actions that are in a separate block is ensured to be delivered in

order. Additionally, these actions are ensured to be executed atomically, which is,

without interleaving with actions from other separate blocks. Although SCOOP

is well studied and optimised for local concurrency [WNM15], it also starts to be

adapted to distributed execution [SPM16].
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Salsa

Salsa [DV14] is an actor-based programming language that targets distributed

computing above all goals. Salsa is implemented in Java and can be used as

follows. A Salsa program must be first compiled into Java code with a dedicated

compiler, and then compiled into Java bytecode through a standard Java compiler.

Although both Kilim and Salsa are made for running actors on the JVM, they

pursue a radically different goal. Indeed, Kilim is oriented towards efficient multi-

core computing and Salsa is oriented towards distributed execution. Salsa allows

no shared state between actors and offers a location-transparent distribution of

actors, based on the notion of universal naming. It targets grid computing, mobile

computing and internet-based computing. This illustrates well how the objective of

the language can lead to completely different implementations of the actor model.

Java 8-based actors

New language constructs based on functional programming have been introduced

lately in the version 8 of Java. Even though this cannot change the possibilties of

the underlying execution platform of Java, namely the JVM, recent works [NB14;

Ser+14; Ser+16] investigate whether those new constructs make Java more adapted

to the implementation of actor frameworks, and make optimistic conclusions. Be-

fore Java 8, a lot of high level parallel constructs, such as lightweight asynchronous

tasks, barrier, phasers and transactions, required the modification of the compiler,

hence to have a language-based approach. The Java 8 runtime allows most of these

constructs to be directly embodied without intricate underlying implementation.

Habanero Java actors

Habanero-Java (HJ) [Cav+11] is a parallel programming language built on top

of Java and based on the X10 programming language [Cha+05]. HJ is primarily

oriented toward portable multicore computing through the provision of parallel

constructs and of lightweight tasks that are missing from Java. A new implemen-

tation of HJ, HJ-lib, has been written using Java 8 [IS14]. In particular, this new

version uses closures through Java 8 lambda expressions for the safe implementa-

tion of the former parallel constructs, and also led to an implementation of actors.
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The execution of HJ-lib actors deviate from the original actor model in the sense

that an actor can be multi-threaded if a message contains parallel constructs. For

example, it is possible with HJ-lib to have an actor processing a message using an

async call.

Table 2.1 summarises the active object languages that have been presented in

this section. Their main features are highlighted and placed according to the clas-

sification given in Section 2.2. Many mixed combinations of preponderant features

have been experimented through each language, especially for the transparency

of asynchronous method calls and futures. Yet, through this table we can notice

the emergence of categories of language. Creol, JCoBox, and ABS share a lot of

common features in the scheduling and transparency aspects. ProActive and Am-

bientTalk have the same object model and full support distribution, they belong to

a same category of language where their models that are adapted to distribution.

Finally, Encore would rather join the cooperative-based languages but its wide

range of possibilities makes it unfitted to any of the categories.

2.4 Focus on Multi-threaded Active Objects

In this thesis, we mainly contribute to the multi-threaded active object model,

this is why we propose in this section a particular focus on multi-threaded active

objects, hereafter multiactive objects. Firstly, we present the multiactive object

programming model and then, the way it is implemented in the ProActive library

(Subsection 2.3.4). Afterwards, we present MultiASP, the multi-threaded exten-

sion of ASP (Subsection 2.3.4), that formalises the implementation of multiactive

objects in ProActive.

2.4.1 Multiactive Object Model

As mentioned in Subsection 2.2.2, controlled multi-threading is gaining attention

in the actor and the active object communities, in order to embrace the raise

of multi-core computer architectures. Multiactive objects [HHI13] are a multi-

threaded extension of the active object programming model. The principle of mul-

tiactive objects is to enable the execution of multiple requests of an active object
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in parallel, while having control on the concurrency. Such a parallelism proceeds

at the request level inside the active object: several requests can be executed at

the same time, where the original active object programming model advocates the

processing of one request at a time. The request scheduling of multiactive objects

differs from cooperative scheduling in the sense that cooperative scheduling can-

not make an active object take advantage of multi-core architectures, because it

has only one single thread that is active at a time. On the opposite, multiactive

objects feature not only multi-tasking but also true parallelism of tasks. An alter-

native for benefiting from multi-cores could be to have as many threads running

as the number of cores of the machine on which they are deployed on. And, for

the frameworks that implement logical threads, like Encore and ABS, many more

active objects than running threads can fit on the same machine. Indeed such a

solution would load all the cores of the machine. Nonetheless, this does not remove

the communication overhead that exists when active objects communicate, due to

the presence of remote method calls. This is a limitation that multiactive objects

overcome thanks to shared-memory between threads.

In order to keep a notion of safety inside a multiactive object, the requests that

execute in parallel must be acknowledged by the programmer: the programmer

must say beforehand which requests are compatible regarding data race freedom

and execution ordering. The compatibility of two requests is declared statically

(when writing a class), but may depend on dynamic parameters. So, in multiactive

objects, the execution safety is partially handed over to the programmer. Nonethe-

less, it is more accessible to the standard programmer to specify compatibilities

rather than manipulating low-level concurrency construct, such as protecting each

shared variable and critical section with a lock. This way, the multiactive ob-

ject programming model preserves the ease of programming of the active object

programming model.

2.4.2 Implementation in ProActive

ProActive implements the multiactive object programming model as an extension

to the active object implementation presented in Subsection 2.3.4. ProActive offers

to the programmer a specification language that allows him to declare compatibil-
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ity of requests, and thus to have multiactive objects. The specification language

used for multiactive object business is based on the Java annotation mechanism,

that allows the programmer to add metadata to a Java program. Java annotations

can be either intended to compile-time tools or to run time libraries. In the case

of ProActive, annotations related to multiactive objects are processed at runtime,

which enables dynamic parameters.

In practice, a Java class can be annotated with the multiactive object annota-

tions that are available in the ProActive library. In this case, when an active object

of such a class is created (with the static method PAActiveObject.newActive), it

is interpreted as a multiactive object. This basic rule implies that, if no annotation

is found in the class of an active object, then it remains a ‘basic’ active object;

otherwise, it is a multiactive object. ProActive allows the programmer to define

request compatibility in three steps:

– First, a @Group annotation must be declared on top of a class to define a

group of requests. A group is meant to gather requests that have the same

concerns (semantic partitioning) and/or the same compatibility requirements

(practical partitioning). Methods belonging to the same group must share

the same compatibility rules.

– Second, @MemberOf annotations can be defined on top of method definitions,

in order to make them belong to a group (previously defined).

– Third, @Compatible annotations must be used to specify the groups that are

compatible, so, in extension, to specify which requests can be run in parallel

safely.

Declaring compatibilities of groups instead of methods increases the abstraction

level of the specification of request parallelism. If a method is not assigned to a

group, then it is compatible with nothing. Also, if the group names specified in

the @MemberOf and @Compatible annotations do not correspond to any group, a

warning message is produced, but the execution proceeds anyway. As an example,

consider a distributed peer-to-peer system implemented with multiactive objects.

A class Peer is defined, with methods that deal with: joining a peer in the network,
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adding a value in the system, retrieving a value, and monitoring the peer. Such a

class is displayed on Listing 2.6.

1 public class Peer {

2

3 public JoinResponse join(Peer other) { ... }

4

5 public void add(Key key, Value value) { ... }

6

7 public Value lookup(Key key) { ... }

8

9 public void monitor() { ... }

10

11 }

Listing 2.6 – Peer class

When creating Peer objects with PAActiveObject.newActive in ProActive,

all of such objects already run concurrently and can receive requests for any of

the methods they define. Without further specifications, for each peer all requests

are processed sequentially. However, it might be interesting to parallelise the op-

erations that are done within a peer execution. For example, let us assume that

monitoring a peer can be done at the same time as any other requests, since it

does not modify the peer and it does not rely on the peer’s state. Similarly, adding

values in parallel should be feasible as long as it does not apply on the same key.

On the opposite, joining a peer in the network must be a strict atomic operation,

otherwise the peer-to-peer network architecture could be corrupted. All of those

synchronisation notions can be expressed with multiactive object annotations, ap-

plicable on the Peer class.

1 @DefineGroups({

2 @Group(name="atomic", selfCompatible=false),

3 @Group(name="concurrentRW", selfCompatible=true, parameter="Key",

4 condition="!equals"),

5 @Group(name="monitoring", selfCompatible=true)

6 })

7 @DefineRules({

8 @Compatible({"atomic", "concurrentRW"}, condition="!isLocal"),

9 @Compatible({"concurrentRW", "monitoring"}),
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10 })

11 public class Peer {

12

13 @MemberOf("atomic")

14 public JoinResponse join(Peer p) { ... }

15

16 @MemberOf("concurrentRW")

17 public void add(Key k, Value v) { ... }

18

19 @MemberOf("concurrentRW")

20 public Value lookup(Key k) { ... }

21

22 @MemberOf("monitoring")

23 public void monitor() { ... }

24

25 }

Listing 2.7 – Peer class with multiactive object annotations.

Listing 2.7 shows how to map those notions with the ProActive multiactive

object annotations. The annotations previously introduced are used to partition

the methods of the Peer class into three groups of requests, named respectively

atomic, concurrentRW, and monitoring. All the methods of the Peer class are

assigned to a group and, because any not specified combination leads to an in-

compatibility, join requests are forbidden to be executed in parallel with monitor

requests. The @Group and @Compatibility annotations define more parameters

than just group names. The second parameter of the @Group annotation specifies

whether the requests of this same group are compatible. For example, the requests

of the atomic group are not compatible, because we do not want to have two peers

joining the same peer at the same time. The condition parameter of the @Group

and @Compatible annotations enables dynamic compatibilities: two considered

requests are compatible if the evaluation of the specified condition method returns

true. The parameter parameter of the @Group annotation specifies the parameters

to be taken into account for the evaluation of the condition method. Here, it is

specified that the parameters of the requests that have type Key must be taken

as parameters of the condition method. For example, in our case we allow join

requests to be executed in parallel with add requests only if the peer must not add
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the content to its own storage, but just route it to the next peer (the behaviour

of isLocal is not shown is the code snippet). Evaluation conditions and their

parameters enable very flexible and fine grained parallelism, provided that the

programmer is able to determine it. In conclusion, a few multiactive object an-

notations can greatly improve request processing throughput with a low overhead

compared to low-level optimisations for parallelism [HHI12]. Overall, program-

ming with multiactive objects can be summarised with the following principles:

– Without multiactive object annotations, a ProActive active object is mono-

threaded without any local parallelism nor race condition.

– If some parallelism is desired, compatibility must be declared between groups

of requests that can be safely executed at the same time and, for which the

execution order do not matter. Compatibility can be statically declared

or decided dynamically depending on invocation parameters and/or on the

object’s state.

– If even more parallelism is required, an expert programmer can still declare

more methods as compatible and manually protect the access to the shared

variables, using a lower-level synchronisation mechanism.

The multiactive object runtime is in charge of interpreting the multiactive an-

notations. In order to ensure maximum parallelism, multiactive objects enforce a

FIFO policy with possibility to overtake. More precisely, within a multiactive ob-

ject request queue, a request is executed if it is compatible with requests that are

already executing and with older requests in the queue. The first condition pre-

vents data races and the second condition preserves the ordering of non-compatible

requests. A side effect of the second condition is that starvation is avoided in the

presence of a continuous stream of incompatible requests. Indeed, request exe-

cution would not be fair if a request A could overtake a request B even though

incompatible, because then request A would prevent request B from executing,

and this could last as long as request B is overtaken by incompatible requests.

Besides, compatibility is a monotonic notion: once a request is marked as ready

for execution (it has been checked for all compatibility conditions), this status
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cannot change until the request is executed. This default policy of execution max-

imises the parallelism but does not take into account the execution needs at the

application-level. In Chapter 3, we extends the model in order to offer a wider

range of possibilities.

2.4.3 MultiASP

MultiASP is the active object programming language that extends ASP (see Subsec-

tion 2.3.4) for the support of multiactive objects (see Subsection 2.4.1). MultiASP for-

malises the multiactive objects that are implemented in ProActive, and allows us

to reason on multiactive object executions. A seminal version of MultiASP is given

in [HHI13], and the encoding of MultiASP in the proof assistant Isabelle/HOL is

publicly available [HK15]. We base this thesis on a slightly updated version of

MultiASP, that we introduce in this section from a syntactical point of view, and

for which we give the operational semantics in Chapter 4. We will also present

in Chapter 4 our contribution to MultiASP that regards scheduling aspects. The

preliminary formalisation of multiactive objects in [HHI13] is based on object in-

stances whereas the version presented in this thesis is based on classes. This mod-

ification allows us to compare MultiASP against ABS in Chapter 4. MultiASP is an

imperative programming language, whose syntax is inspired from object-oriented

core languages resembling to Featherweight Java [IPW01]. It is worth noticing that

the syntax of MultiASP is extremely close to what can be found in a ProActive pro-

gram. This is done on purpose, as minimising the gap between the formalism and

the practical implementation is, first, easier to transcribe, and second, ensures that

what is proven trough formalisation still holds in a practical execution.

Figure 2.5 shows the static syntax of MultiASP. A program consists of a set of

classes and one main method. Classes, methods, and statements are standard. In

MultiASP syntax, x ranges over variable names, C ranges over class names, and m

ranges over method names. We characterise a list of elements with the overlined

notation. The list x denotes local variables when it appears in method bodies

and denotes object fields when it appears in class declarations. In MultiASP, as

in ProActive, there are two ways to create an object: new creates a new object in

the current activity (a passive object), and newActive creates a new active object.
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P ∶∶= C {x ; s} program
S ∶∶= m(x) method signature

C ∶∶= class C(x) {x M } class
M ∶∶= S{x s} method definition
s ∶∶= skip ∣ x = z ∣ return e ∣ s ; s statement
z ∶∶= e ∣ e.m(e) ∣ new C(e) ∣ newActive C(e) expression with side effects
e ∶∶= v ∣ x ∣ this ∣ arithmetic-bool-exp expression
v ∶∶= null ∣ primitive-val value

Figure 2.5 – The class-based static syntax of MultiASP.

Also, no syntactic distinction exists between local and remote (asynchronous) in-

vocations, e.m(e) is the generic method invocation. Similarly, as synchronisation

on futures is transparent and handled through wait-by-necessity, there is no partic-

ular syntax for interacting with a future. A special variable, this, enables access

to the current object. The sequence operator is associative, with a neutral skip

element: a sequence of instructions is possibly rewritten s; s′, with s not a se-

quence. Although they are omitted in Figure 2.5, we assume that the if and while

constructs exist, even if we did not define their semantics explicitly. In Chapter 4,

we will present the complete semantics of MultiASP along with the contribution.

To recap, there are two main building blocks in this thesis: ProActive and

MultiASP. The two of them lie under a common programming model that is mul-

tiactive objects. Figure 2.6 summarises the technology pile introduced in this

section, including the historical background introduced in Subsection 2.3.4. This

diagram highlights the temporal evolution and gives an idea of the increment for

each block. The contributions of this thesis apply on the new stack displayed on

the picture, namely, the multiactive object model, MultiASP, and ProActive.

2.5 Determinism in Active Object Executions

Since active objects are concurrent entities, their global execution, characterised as

a sequence of communications, is non-deterministic. However, the design choices

and the implementation details of active object frameworks affect the level of
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Figure 2.6 – Interweaving of ASP, ProActive, multiactive objects, and MultiASP

determinism of active object executions. These choices and details make some

frameworks more or less deterministic than other, either globally, i.e. at the level

of the execution of the application, or locally, i.e. at the level of the execution

of the active object. In general, being more deterministic implies having more

properties on the execution. The programmer can use these properties to better

predict the behaviour of the program. It is thus easier to program under these

conditions: less interleavings to consider, and more sequential events. On the

other hand, having less determinism enables more flexibility on the implementation

side. It leaves room for choice and optimisation of the execution, for example

choosing the most efficient scheduling with less constraints. Sometimes, having

too strong constraints on the execution, and on the ordering of events, even makes

the execution impossible (deadlock); this is clearly a counter objective of program

determinism.

In the context of active objects and actors, a first variable source of determin-

ism is that the communication between them can be implemented with various

communication channels, that offer various guarantees. Although very specialised,

this implementation detail is of great importance for the programmer, because it

gives the set of possible executions that can be expected looking at asynchronous

invocations. Three examples of asynchronous invocations are given in Figure 2.7.
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They reflect the cases where the type of communication channel changes the ex-

ecution guarantees. Throughout the survey of active object languages conducted

in Section 2.3, we came across four different approaches of asynchronous com-

munications between active objects, summarised below with the guarantees they

offer.

No assumption on the order of reception of requests. In the original actor model,

the only guarantee that actors give is that messages are put in the mailbox

of actors in the same order as they are received. In [Agh86], this behaviour is

denominated as a FIFO arrival order. This type of communication channel

does not guarantee that two sequential invocations of the same active object

are received in the same order. In this case, instantiated in Figure 2.7a,

active object b has in its request queue either foo before bar, or bar before

foo. This unpredicted behaviour is motivated by the fact that objects a and

b might be separated by a network, which does not ensure ordering without

a specific additional layer. For example, ABS and Creol make no supposition

on the order of reception of requests. This semantics has the advantage

of not excluding any underlying execution platform for such active object

languages.

FIFO point-to-point. This communication channel ensures that all asynchronous

invocations that are sequentially sent from one sender are ordered in the

same sequence on the recipient side. If FIFO point-to-point ordering is used

in the case of Figure 2.7a, then the execution of this example becomes de-

terministic: the only possibility is that active object b receives request foo

before request bar. For example, Rebeca actor language offers this guaran-

tee. However, when requests arrive from different senders to a same recipient,

no assumption can be made. In Figure 2.7c, no one can tell if active object b

will receive request foo (sent from a) before request bar (sent from c) only

with a FIFO point-to-point ordering guarantee. The advantage is that the

programmer can send consecutive requests that have a dependency between

them.

Causally ordered. Communications that occur on causally ordered channels are

correlated with the happened-before relation: the sequence of requests are
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(a) No ordering vs.
FIFO point-to-point.

(b) FIFO point-to-point vs.
no interleaving.

(c) FIFO point-to-point vs.
causal ordering.

Figure 2.7 – Examples of invocations affected by communication channels.

preserved within multiple hops. In Figure 2.7c, considering that active object

a sends request foobar after request foo to active object b, all requests to b

that are sent during the execution of foobar are received after request foo on

b. Causal ordering of requests gives a stronger determinism in active object

executions FIFO point-to-point channels. For example, ASP - andMultiASP -

ensures causal ordering of requests. It has the same advantage as FIFO point-

to-point, but the guarantees also operate when there are intermediates in the

communication.

Interleaving-free sequences. This special kind of communication enables com-

pound asynchronous invocations that are ensured to be put in the request

queue of the recipient atomically: no other requests can be inserted in be-

tween the compound requests. In Figure 2.7b, if interleaving-freedom is

applied to the invocation sequences of active objects a and c, then b can

only receive these requests in two different orders: either foo and bar in

the first place, or foobar and barfoo before. For example, SCOOP actor

language features the specification of interleaving-free sections. Within an

interleaving-free sequence, the communication is intrinsically FIFO point-to-

point, but it gives more determinism with respect to concurrent invocations

from other senders. The advantage for the programmer is that he does not

have to consider the possibility of having other executed requests within a

sequence; thus it is easier to program correctly.
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It is worth noticing that the communication channel that is taken is distin-

guished from the scheduling policy that is applied, although both notions are

used complementarily. Indeed, the communication channel impacts on the order

of reception of requests whereas the scheduling policy impacts on the order of

their execution. A scheduling policy is often fully deterministic, although some

active object frameworks do not guarantee any execution order of requests, like

Creol and ABS. Additionally, since these languages feature cooperative scheduling

of requests, their global execution is highly non-deterministic. As we will see in

Chapter 4, when an active object language is implemented for a concrete execution

platform, it must define a scheduling policy that offers a minimum of guarantees.

Advanced scheduling policies are also studied in more details in Chapter 3 in the

context of ProActive, and also compared to related works.

Apart from communication channels and scheduling policies, another potential

source of non-determinism is when the active object language allows a request to

release the execution thread in the middle of its processing. This is the case of all

active object languages that feature cooperative scheduling. Cooperative schedul-

ing introduces an additional source of non-determinism because the request order

obtained through the communication channel is mixed with the order in which

awaiting requests are paused, typically consecutive to an await command, like

in Creol, JCoBox, ABS, and Encore. Contrarily to communication channels, that

impact on the global determinism of active object executions, the presence of

language constructs like await weakens the local determinism of active objects,

especially because, most of the time, the reactivation of an awaiting request de-

pends on the progression of another request in a concurrent activity. In ASP and

in AmbientTalk, since requests run to completion, the interleaving possibilities are

totally discarded. Thus, ASP and AmbientTalk programs execute more determinis-

tically than programs involving cooperative scheduling. Besides, when the active

object model is based on object groups, like in ABS and JCoBox, requests that

target different objects compete for the same execution thread. Thus, the schedul-

ing decision must be considered in addition to the decision between starting and

resuming requests, increasing even more the execution possibilities.

In conclusion, the multitude of aspects that impact the determinism of active

object executions make the active object languages and frameworks difficult to
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compare to each other. The experimental evaluation of their performance is in-

tricate, because they do not offer the same execution guarantees. The reason for

this difficulty is that the sources of non-determinism are placed at different levels

of the different languages. For example, MultiASP places the non-determinism at

the level of the activity, by allowing parallel requests. Because of parallelism, one

could think that MultiASP is less deterministic than active objects based on coop-

erative scheduling. However, MultiASP requests always run to completion, whereas

an execution thread of cooperative scheduling interleaves different requests, so it

is not possible to conclude directly whether cooperative scheduling provides more

or less determinism than multi-threaded scheduling. Nevertheless, MultiASP en-

sures a causal ordering of requests, which is the communication channel that gives

the most determinism. In general, the communication channel that is employed

gives the restrictions of the protocols that built upon an active object language.

In Chapter 5, we will see that having causally ordered communications is a basic

condition for having a correct fault tolerance protocol for MultiASP active objects.

Indeed, it makes programs fully deterministic, as it was formally proven for ASP in

[CHS04], under some conditions. Overall, the determinism in active object execu-

tions is a important aspect to consider when active object languages are developed

and when active object frameworks are compared to each other. Also, these as-

pects are crucial when active object languages are translated for specific execution

platforms; this is a problematic that we explore in Chapter 4.

2.6 Positioning of this Thesis

There is now an undeniable effervescence that surrounds asynchrony in program-

ming languages. This fact has led to the emergence of many programming mod-

els and languages, and also to soft evolutions in well-established programming

languages. The active object programming model and associated programming

models are becoming leaders in the asynchronous computing era, thanks to their

provided safety and convenience of programming. However, we are still facing a

gap between two categories of active object-based programming languages. The

programming languages that are developed in academics feature the latest pro-

gramming abstraction whereas the programming languages that are used in the
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industry, and that are put into production, still cope with modest increments that

are inspired from developments made in academics.

All the active object-based programming languages presented in Section 2.3

have the common point of being designed for a particular purpose, and excel in

it. This is because they have approached different areas. For example, ABS is

a powerful modelling language that focuses on property analysis and verification,

and offers hooks for code generation. Other languages, like Encore and ProActive,

target another objective, that is providing an efficient runtime for active objects.

But there too, two different directions are taken: Encore targets multicore plat-

forms whereas ProActive reaches its potential in distributed settings. Likewise,

distributed execution is the basis of AmbientTalk programs, but the runtime of

AmbientTalk is focused on connectivity in mobile ad hoc networks whereas the

runtime of ProActive is optimised for HPC, which leads to dissimilar programming

models and implementations.

Among the presented languages, some of them only have a limited support for

distributed execution (JCoBox), do not take distribution into account (Creol), or

not yet (Encore). Other languages make distributed execution their main focus,

but they are not yet fully implemented (some backends for ABS) or are not ready

for production code (AmbientTalk). A new trend is to study new programming

paradigms in a layered manner. Basically, the language for specifying and ver-

ifying the program is decoupled from the language of execution, which enables

using the language that is the most efficient in the considered layer. Such a design

implies having, in the middle, an automatic layer that translates the specifica-

tion language into the execution language. Yet, the two end points must map,

semantically. ABS has several backends but only two of them consider distributed

execution. The Haskell backend for ABS [BB16] provides a cloud aware translation

of ABS models. However, the execution language is not multi-platforms and, as

the implementation is based on Haskell continuations, it is not supported on in-

dustrial execution platforms like the JVM. The application domain of the Haskell

backend for ABS is thus relatively focused. The second distributed backend for

ABS, targeting the JVM, and based on Java 8 features [Ser+16], is starting to be

investigated and currently experiencing implementation challenges. In this thesis,

we also provide a fully working and proven backend for ABS that runs on the JVM,
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but with a novel approach: by encoding ABS in another active object language.

We believe that the layered approach for designing new programming languages is

the most beneficial when it relies on layers that are proven and experienced.

The programming languages developed in academics give a set of advanced

language constructs and abstractions that are likely to become the basis for all

programmers. However, at the time of Big Data, distributed execution is a ‘must

have’ for any language platform. In order to be accepted in the industry, the

programming languages must ensure a good performance in the first place, and

also be compatible with the industry platforms. But often, programming lan-

guages are developed from scratch in order to investigate new paradigms, and the

transposition to mainstream languages or platforms is then quite tough, because

the constraints of the execution platforms and execution environments have not

been taken into account. Moreover, industrial use cases and data are rarely made

available for research, necessarily leading to biased implementations. During the

HAT project3, an industrial use case from Fredhopper, a e-Commerce company4,

has been successfully modelled in ABS [WDS12]. As mentioned in the paper, this

partnership has highly influenced further decisions made for the design of ABS.

This is why, not only the design but also the implementation challenges have to

be tackled on the research side. Indeed, integrating new language features and

runtimes might entail severe design issues. Technological transfer from research to

industry is not a straightforward engineering work: it has crucial issues and is not

ensured to be successful, nor to stick to the original objective.

To some extent, the couple formed by ASP and ProActive, is representative of

this mixed approach. ASP provides a provable formalism on which to confront

new language constructs and abstractions. On the other hand, ProActive enables

checking that the new developments make sense in practical settings, and show

their applicability in general purpose computing. Moreover, both of them evolve

in a coordinated manner, which reduces the gap from theory to practice at each

iteration. As the fundamental model of ASP was becoming inadequate for multi-

core computing, a need for updating both the formal model and the library was

3EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software using Formal
Models (http://www.hats-project.eu)

4www.fredhopper.com

www.fredhopper.com
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inescapably rising. The presented, up-to-date model MultiASP started to give up

mono-threaded active objects in favour of controlled multi-threading, as well as its

seminal implementation in ProActive. Because the multiactive object model was, to

the best of our knowledge, the first active object model supporting multi-threaded

execution, it raised new challenges. Among them, cleverly adapting the local

execution is crucial to make the best use of parallelism. Multi-threaded execution

in ProActive also challenges the previously established non functional features that

make its strength, in particular, robustness of execution in distributed settings,

that are known to be extremely patchy. Clearly, a need for thorough support

of controlled multi-threading in multiactive objects appeared, both in the formal

model and in its implementation. These are the questions we tackle in this thesis.

Yet, multiactive objects did not only bring new problems, they also brought an

opportunity for a higher expressiveness. This is another aspect we explore in this

thesis, by challenging multiactive objects against the other models and this way,

probe their capacity.

Overall, we position this thesis as a complete contribution to multi-threaded,

asynchronous and safe programming models, although we mainly focus our work

on MultiASP for formalisation and on ProActive for implementation. This divided

approach is similar to the ones of ABS and Rebeca (Subsection 2.3.7), with their

use of backends: proving properties on a high-level, neat language, and relying

on massively used platforms for implementation burdens. Overall, throughout the

contributions of this thesis, we take a particular care in making interacting all

approaches. We believe that this work can impact both academic and industrial

fields. We have achieved the formalisation and implementation of a thorough

model and language that cater for a high expressiveness, and we are confident in

its success because it is experienced, proven, robust, and also resourceful for future

work.
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In this chapter, we present the first contribution of this thesis, which can be

summarised as an application-level scheduling for multiactive objects (see Subsec-

tion 2.4.1), and its implementation in the ProActive library (see Subsection 2.4.2).

After motivating the need for application-level scheduling in the first section, we

present an approach for controlling the creation and allocation of threads of multi-

active objects in the second section. Then, in a third section, we present a priority

specification mechanism that allows the processing of requests in prioritised order.

We will see that the way priorities are applied do not jeopardise the safety of mul-

tiactive object execution. The imbrication of the components in the multiactive

object scheduler of ProActive is summarised in a fourth section. The compositional

software architecture of the scheduler proves to have a well defined separation of

concerns and enables adaptation of scheduling components without affecting the

core of the active object library. Finally, in the last section, we test the priority

specification mechanism on several use cases and we experiment different internal

representation of priorities. This chapter is associated to the publication [3].

3.1 Motivation

The multiactive object programming model automatically provides a request-level

parallelism thanks to the specifications written by the programmer. Bringing

parallelism in active objects also brings the question “how parallel requests should

be scheduled for execution?”. In particular, an order of execution has to be chosen.

Also, a maximum degree of parallelism must be defined, otherwise all the benefits of

parallelisation could be lost with too many parallel threads. Indeed, in multiactive

objects, even if requests are compatible (see definition in Section 2.4.1), we cannot

infinitely create new threads on-the-fly, whenever some parallelism can be done,

and expect a good execution performance. One has to size the program for the

resources that will be needed for execution. Another thing that must be taken into

account is the applicative requirements. Often, the different requests sent to an

active object have different importance regarding the application business. This

fact must be reflected in the execution order of requests. A default multiactive
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Figure 3.1 – Indirect interaction between the programmer and the multiactive
object scheduler through the annotation interface

object execution policy, implemented in ProActive, ensures fairness and maximum

parallelism (see Section 2.4.2), but cannot fit the aforementioned aims because

request execution is not controllable by the programmer through the program. In

this first contribution, we empower the programmer with scheduling customisation

of request execution for multiactive objects. We extend the ProActive library and

propose new and updated multiactive object annotations for the programmer that

is interested in the performance of a multiactive object-based application. Using

this new set of annotations does not require more expertise on the programmer’s

side: the specification is purely declarative, and represent an interface between the

programmer and the request scheduler, as shown in Figure 3.1.

Although multiactive scheduling annotations enable high performance tuning,

the programmer does not have a direct interaction with the scheduler. Thanks to

this interface, the programmer can focus on what the tuning should do, and not

on how to do it. This is why we claim that it is a scheduling made at application-

level. However, empowering the programmer also means increasing the probability

of introducing bugs. In order to prevent unwanted behaviours, for example if

the programmer writes inconsistent annotations, we implement the interpreter of

multiactive object annotations with some guardrails.

Through this work, we aim at a complete programming model for high perfor-

mance computing that is suited to all programmers. Programmers that know the

benefits (but that ignore the challenges) of parallelism, concurrency, and schedul-

ing can easily and safely use this programming model. They are supposed to use

a small part of our tool set and to rely mainly on default behaviours. The range

ends with the most experimented programmers that, contrarily to beginners, know
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the challenges and are willing to rely on a high-level framework in order to pre-

cisely tune their applications while avoiding mistakes. For now, existing active

object and actor frameworks used in major development projects are either very

restrictive, and in this case, they are often mixed with other concurrent paradigms

(which can end up badly), or too permissive and in this case, they can lead to

incorrect usage. This phenomenon is well studied in [TDJ13]. Providing request

scheduling controls to the multiactive object framework is also a way to attract

the programmers with a better expertise in concurrency, by making the frame-

work complete and reasonably usable. Besides, as our annotation mechanism is

incremental, we offer a smooth transition between ease of usage and performance.

3.2 Threading Policy

Multiactive objects are based on several threads of execution. In order to allow the

programmer to have more control on the creation of threads and on their allocation

for requests, we propose a new set of annotations that can be divided into two parts.

We implement them in the ProActive library. On one hand, we define threading

constructs that apply at multiactive object grain. On the other hand, we define

threading constructs that apply at the grain of multiactive groups. Both kinds of

threading constructs must be declared on top of a class of a multiactive object.

We detail the two kinds of constructs in the two next subsections. When code

snippets are shown, they show the multiactive object annotations as they can be

used in ProActive.

3.2.1 Thread Limit per Multiactive Object

The first kind of threading construct developed for the multiactive object program-

ming model consists in defining, through a class annotation, the configuration of

threads that applies for all the multiactive objects that are instances of this class.

In practice, we introduce the @DefineThreadConfig class annotation to be able

to specify three characteristics related to thread management:

– The maximum number of threads handled by a multiactive object. We call

this maximum number of threads the thread limit of the multiactive object.
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On one hand, this parameter prevents creating too many threads and having

a thread explosion for a multiactive object. On the other hand, it allows,

internally, to initialise an adapted thread pool at multiactive object startup,

which avoids the latency of creating threads on-the-fly.

– The kind of thread limit. In our model, we say that a thread limit can be of

two kinds: either soft of hard. A soft thread limit counts, in the maximum

number of threads, only the threads that are currently active. In other words,

it counts only the threads that are not waiting for a future to be resolved, i.e.

which are not in the wait-by-necessity state. On the contrary, a hard thread

limit counts, in the maximum number of threads, all the created threads,

even the ones that are in wait-by-necessity. Consequently, with a soft thread

limit, there can exist more threads than the specified maximum number of

threads, which cannot happen with a hard thread limit. The rationale for

using a soft thread limit is that then, a multiactive object cannot deadlock

because the thread limit is too small.

– Finally, a reentrance parameter enables reusing a thread in wait-by-necessity

for the processing of a request that can unblock the wait-by-necessity. To

this end, we systematically trace chains of requests such that we know if a

request is an ancestor of another one. Thus, we stack the processing of a new

request on a waiting thread if we are sure that the request that is blocked

cannot be unblocked without the processing of this new request. This is

a way to drastically optimise the number of threads that are used by the

application. This is an advanced parameter.

1 @DefineThreadConfig(threadPoolSize=5, hardLimit=true, hostReentrant=false)

2 public class MyClass {

3 ...

4 }

Listing 3.1 – An example of thread configuration annotation.

Listing 3.1 gives an example of usage of the @DefineThreadConfig annota-

tion. A multiactive object created with this configuration strictly has five threads
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at maximum to process its requests all along its life span. Since the configu-

ration specifies a hard thread limit, no additional thread will ever be created

to compensate a thread that is blocked in wait-by-necessity. Moreover, in this

example reentrant requests are not allowed to be stacked on the same thread

(hostReentrant=false). Such a configuration has more chances of having a

deadlock at runtime, due to the impossibility of compensating the threads that

are blocked in wait-by-necessity. In this situation, unless the use case is well

studied, it might be better to release one of the two specified constraints with

either hardLimit=false to be able to use other threads when a thread is in wait-

by-necessity or hostReentrant=true to enable the re-utilisation of a thread in

wait-by-necessity by a request that can unblock this status.

As all multiactive object annotations, the @DefineThreadConfig annotation

is optional. Moreover, inside this annotation, parameters are also optional. If

they are not defined, default values are used: the maximum number of threads is

limited to highest possible integer1. By default, a multiactive object executes in

a soft thread limit, and does not enable reentrant calls. These threading features

were already primarily implemented in the core of the ProActive library. However,

they were hard coded in the library with minor dynamic adaptation, such as

automatically setting the maximum number threads to the number of cores of the

running machine, and necessitated to change the source code of the library in order

to take new values into account. This required the recompilation of the library

each time a value was set. My role was to design the programming interface of

the library that would allow the programmer to configure those aspects from the

application, and to make these values apply at runtime, by making the request

scheduler take them into account. Naturally, we chose the annotation mechanism

as programming interface in order to offer a good flexibility and to be as consistent

as possible with the existing multiactive object programming model.

1 public boolean switchHardLimit(boolean hardLimit) {

2 boolean formerLimit = this.limitTotalThreads;

3 this.limitTotalThreads = hardLimit;

4 return formerLimit;

1in Java, this number is pointed to by Integer.MAX VALUE and is encoded with 32 bits.
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5 }

Listing 3.2 – Scheduler method to change thread limit at runtime.

In addition to the configuration of threads through annotations, we proposed

an API to dynamically switch from soft thread limit to hard thread limit, and con-

versely. The rationale for this alternative is that, sometimes, scheduling decisions

need to be made at runtime, depending on current resource utilisation, or depend-

ing on events that are external to the application. In practice, the programmer

can call a method of the scheduler of a multiactive object that changes the kind of

its thread limit. Listing 3.2 shows the public method added to the scheduler that

enables dynamic switching of thread limit kind. This method returns the thread

limit kind that was applied before the change, which enables even more dynamic

decisions.

3.2.2 Thread Limit per Group

Limiting the number of threads per multiactive object is rather coarse grain and

does not enable specifying which requests are processed on these available threads.

Indeed, the default policy to allocate the threads does not enforce a special mean-

ing at the application level. A request that is ready to execute is allocated the next

available thread, regardless of how many requests of the same type already exe-

cute. But a programmer would like to balance the execution of requests according

to their business. Consider for example a weakly consistent database, where write

requests come regularly in a large batch. Then, one would like to balance reading

requests and write requests, in order to limit the impact of write batches on the

reading latency. In addition to the global thread limitation that applies per mul-

tiactive object, we propose a mechanism to set a limit on the number of threads

that are used at the same time by the requests of the same group. Typically, this

option allows the programmer to do two things. First, it allows the programmer to

reserve some threads for the processing of the requests of a given group. Second,

it allows the programmer to specify the maximum number of threads that can

be used by the requests of a given group at the same time. Those two options

can be combined to create scheduling behaviours that favour or curb some kind

of requests, and enables treating request in a qualitative way. Since such options



64 CHAPTER 3. REQUEST SCHEDULING FOR MULTIACTIVE OBJECTS

applies to groups of requests, we extend the @Group annotation with two optional

parameters that correspond to the two situations explained above.

1 @DefineGroups({

2 @Group(name="group1", selfCompatible="false", minThreads=2),

3 @Group(name="group2", selfCompatible="true", minThreads=1, maxThreads=2)

4 })

Listing 3.3 – An example of thread limit per group.

Listing 3.3 shows an example with two groups defined: group1 and group2.

group1 specifies only the number of threads that are reserved for the processing

of its requests. group2 specifies one one hand that one thread is reserved for

its requests and, on the other hand, that its requests cannot take more than two

threads at the same time. When the two of those options are specified, there exists

a fixed lower and upper bounds on the number of threads that are taken by the

mentioned group.

Naturally, for a given group, the number of reserved threads must be lower or

equal to the maximum number of threads specified for this group. As the thread

limit options are purely declarative, they can be easily used by a wide range of

programmers. But also, as we perform no static verification on annotations, there

can subsist inconsistencies in the programmer’s specifications. For example, a

wrong partitioning of threads between groups could lead to starvation of requests,

or even to deadlocks. Our primary aspiration is to trust the programmer’s anno-

tation, but our objective is also to ensure a certain safety of execution. This is

why we define a number of policies that override the programmer’s specifications

in the case we detect inconsistencies in the annotations at runtime. Here are the

policies we define for thread limits:

– If the number of reserved threads is higher than the maximum number of

threads for a given group, then the number of reserved threads of this group

is lowered to the maximum number of threads specified (both parameters

have the same value).

– If the sum of reserved threads for all groups is higher than the size of the

global thread pool, then we increase the size of the global thread pool to the

result of this sum.
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Figure 3.2 – The ready queue of a multiactive object.

– In those cases, a warning is displayed in the console in order to let the

programmer know about those automatic modifications.

Such policies constitute a precious guardrail for inexperienced programmers. They

prevent the programmer from making obvious mistakes and help him debugging

them.

3.3 Request Priority

3.3.1 Principle

In a multiactive object configuration where the number of threads is limited, re-

quests compete for thread resources. More precisely, the requests that compete for

execution are the ones that are, at a given moment, compatible with the requests

that are executing and compatible with the requests that were received before. We

qualify such requests as ready-to-execute requests, filtered in the reception queue

thanks to the compatibility predicate. Due to the limited number of threads, there

might exist requests ready for execution, but that cannot be executed because all

threads of the multiactive object are busy. Ready requests form a set that is a

subset of the requests that are present the reception queue. We call this subset the

ready queue of a multiactive object. The ready queue is, like the reception queue,

ordered according to the order of reception. It is represented on Figure 3.2.
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A step further in the qualitative processing of requests is to be able to reorder

requests that wait in the ready queue, according to their importance. Indeed, it is

possible that a programmer would like some requests to be executed before some

others if possible, that is, express a priority relationship between the requests. We

define the priority relationship in our context as the fact to reorder the requests

in the ready queue such that requests that have a high priority overtake requests

that have a low priority. Note that overtaking in this case does not contradict

the compatibility relationship, since the requests that are in the ready queue are

compatible altogether. In this section, we present a mechanism that allows the

programmer to specify a prioritisation of requests for request execution. This

priority mechanism applies on the ready request queue only, because applying

priority of requests on the reception queue would be unpredictable since it is not

sure that all requests of the reception queue can be executed. Obviously, the

main objective of priorities is to reduce the response time of the most important

requests. The criterion of importance can be established for various reasons and

is always determined by the programmer.

In the following, we introduce the programming model that allows the pro-

grammer to specify request priority in the ProActive library in Subsection 3.3.2.

In the ProActive runtime implementation, we maintain a priority graph to rep-

resent request priorities. We introduce the properties of this priority graph in

Subsection 3.3.3 and we discuss its implementation in Subsection 3.3.4.

3.3.2 Programming Model

To implement the priority specification mechanism on top of multiactive objects,

we must first answer the question “how does the programmer specify request pri-

orities?”. We will then answer the question “how are request priorities internally

represented?” in Subsection 3.3.4. In order to allow the programmer to define

request priorities, we extend the set of multiactive object annotations. In order

to remain consistent with the existing programming model, we apply priorities on

groups of requests (see Subsection 2.4.2). Consequently, all requests of the same

group have the same priority. This is not a significant restriction: a group can still

be split into several groups in order to assign them different priorities. We choose
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a graph-based data structure to represent the dependencies between priorities. A

classical approach for prioritised execution would have been to represent a prior-

ity with an integer. However, this approach entangles the programmer with the

internal representation of priorities, and forces him to take into account all the

values previously given before deciding on a new priority value. This argument

gets worse considering the fact that, in the ProActive implementation of multiac-

tive objects, annotations are inherited according to class inheritance. Moreover,

the graph-based representation can express a partial order, which is interesting in

our case because we do not want to force the programmer to define a priority for

all the methods of the class.

Multiactive object annotations that deal with group priority are led by the

@DefinePriorities annotation, that gathers several partial priority declarations.

@DefinePriorities can contain several @PriorityHierarchy annotations. A

@PriorityHierarchy annotation creates an ordering on several groups of requests.

The order in which the groups are declared defines the priority dependencies,

like group1 > group2 > group3. Several groups can belong to the same priority

level. A @PrioritySet annotation is used for this purpose. Overall, the priority

definition uses three nested priority annotations.

1 @DefineGroups({

2 @Group(name="atomic", selfCompatible=false),

3 @Group(name="concurrentRead", selfCompatible=true, parameter="Key",

4 condition="!equals"),

5 @Group(name="concurrentWrite", selfCompatible=true, parameter="Key",

6 condition="!equals"),

7 @Group(name="monitoring", selfCompatible=true)

8 })

9 @DefineRules({

10 @Compatible({"atomic", "concurrentRead", "concurrentWrite"},

11 condition="!isLocal"),

12 @Compatible({"concurrentRead", "concurrentWrite", "monitoring"}),

13 })

14 @DefinePriorities({

15 @PriorityHierarchy({

16 @PrioritySet(groupNames = {"concurrentWrite"}),

17 @PrioritySet(groupNames = {"concurrentRead"}),

18 @PrioritySet(groupNames = {"monitoring"})
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19 }),

20 @PriorityHierarchy{

21 @PrioritySet(groupNames = {"atomic"}),

22 @PrioritySet(groupNames = {"monitoring"})

23 })

24 })

25 public class Peer {

26

27 @MemberOf("atomic")

28 public JoinResponse join(Peer p) { ... }

29

30 @MemberOf("concurrentWrite")

31 public void add(Key k, Value v) { ... }

32

33 @MemberOf("concurrentRead")

34 public Value lookup(Key k) { ... }

35

36 @MemberOf("monitoring")

37 public void monitor() { ... }

38

39 }

Listing 3.4 – Peer class with priority annotations.

Listing 3.4 shows an example of priority annotations, applied on the Peer class

that was firstly introduced in Subsection 2.4.22. The priorities defined in this exam-

ple are pictured on Figure 3.3. In this example, we have defined that add requests

have a higher priority than lookup requests, through the priority specification of

their respective groups. Also, the priority annotations specify that both of these

groups have a higher priority than the monitoring group. As such, monitor re-

quests will have a lower priority compared to add and lookup requests. Aside,

another priority graph is defined through a second @PriorityHierarchy anno-

tation, that creates a priority dependency between the atomic and monitoring

groups. But since no priority relationship is defined between the atomic group and

the concurrentWrite and concurrentRead groups, their competing requests will

behave in a FIFO manner. This priority model is flexible: it is easy to add new

2Compared to the version of Subsection 2.4.2, separated multiactive object groups have been
created for holding add and lookup methods.
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Figure 3.3 – Dependency graph for Listing 3.4

priorities, independently from the priorities that were previously defined. Most of

the time, there are several ways to define the same dependency graph with different

priority annotations.

In spite of their convenience and their added value in multiactive object-based

applications, priorities can raise scheduling issue in case of thread-limited execution

(Section 3.2). Considering a limited number of threads and a prioritised execution

of requests, low priority requests can suffer of starvation. Starvation is a situation

where access to a resource is infinitely delayed such that the time to access it can-

not be bounded. In our context, requests compete for threads and requests have

priorities. A starvation situation occurs if there is a continuous stream of high pri-

ority requests, preventing low priority requests from being executed. The second

scheduling issue that can arise with priorities is known as priority inversion. When

all the available threads are already allocated, if a request with highest priority

arrives, then this request must wait whereas there might be lower priority requests

that are executing. This situation, where low priority requests block the execution

of high priority requests, cannot be avoided without request preemption. In order

to counterbalance starvation and priority inversion issues, the thread bounding

mechanism per group introduced in Subsection 3.2.2 must be used. The mecha-

nism for reserving threads per group can be used to avoid starvation whereas the

mechanism for limiting threads per group can be used to avoid priority inversion.

In practice, using a sufficient thread limit per multiactive object (Subsection 3.2.1)

is often a simple key to execution fairness, but it is not adapted to very specific

use cases where scheduling is a crucial point of the application.
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3.3.3 Properties

This subsection presents a formalisation of the priority specification mechanism

explained above. To recap, the priority of a ready-to-execute request is checked

against the priority of the other ready-to-execute requests, if any, in order to

determine the position of the request in the ready queue. We design the scheduling

process such that the scheduling time and the memory footprint are minimised.

The main question that must be answered is whether a ready-to-execute request

overtakes another one. In this section, we present the properties of the scheduling

process, that is based on the characteristics of the priority graph. Beforehand, we

introduce some notations. A request is denoted R, a group G and the ready queue

Q. The priority relationship is denoted with the relation Ð→, whose operands are

nodes of the graph. It relates two groups of requests, and is obtained through the

priority definition of the programmer. In the priority graph, reachability is denoted

Ð→+. For example, G1 Ð→
+ G2 means that there exists a directed path from node

G1 to node G2. In extension, group G1 has a higher priority than group G2. Ð→+

is also defined as the transitive closure of Ð→. Below are the characteristics of the

priority graph maintained in multiactive objects.

Graph construction. By construction, the priority graph is cycle-free. Since it

is possible, with a wrong usage of priority annotation, to create a circular

dependency, we guard the graph construction against this possibility, by pre-

venting any dependency that introduces a cycle. Thus, we enforce a directed

acyclic graph. More precisely, when a priority annotation is processed, we do

not add the dependency in the priority structure if it introduces a cycle. We

output an error message for feedback, but the execution proceeds. Also, we

ensure that each multiactive object group has a unique corresponding node

in the graph. As such, multiple occurrences of the same group name in the

priority annotations always point to the same priority node in the graph.

Possibility to overtake. A request from group G1 can overtake a request from

group G2 if and only if G1 Ð→
+ G2, which is, if there exists a directed path

from G1 to G2. A request from group G1 has no priority relationship with a

request from group G2 if (¬ G1 Ð→
+ G2 ∧ ¬ G2 Ð→

+ G1), which is, if there
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is no directed path from G1 to G2 and no directed path from G2 to G1; this

is denoted G1 // G2. Consequently, a request from group G1 cannot overtake

a request from group G2 if either G1 // G2 or G2 Ð→+ G1. Note that, for any

group G, G // G, which means that requests with the same priority have no

priority relationship.

Insertion in ready queue. When a request is marked as ready-to-execute, we check

the possibility to overtake the other requests in the ready queue, in order to

determine the position of the request in it. More precisely, if we consider a

request R belonging to group G, and a ready queue made of R1,R2, ...,Rn

respectively belonging to groups G1,G2, ...,Gn, then R is inserted just before

the Ri with the smallest i, such that GÐ→+ Gi, or at the end of the queue if

no such Ri exists. In other words, a request from group G must be inserted

just before the first request that can be overtaken, starting from the request

that is first in the ready queue (i.e. that has the highest priority and that is

the oldest having this priority).

The previously defined characteristics allow us to define the insertion process of a

request in the ready queue.

Definition 1. [Insertion process] Suppose group(R) = G, Q = [R1, ...,Rn], and

∀i ∈ 1..n, group(Ri) = Gi, then:

if ∀i, Gi Ð→
+ G ∨ G // Gi, then insert(R,Q) = [R1, ...Rn,R]

else let j =min(i ∣GÐ→+ Gi) in insert(R,Q) = [R1, ...,Rj−1,R,Rj, ...,Rn]

Definition 1 guarantees that the ready queue is always ordered according to the

characteristics of the priority graph, that defines the overtaking conditions. This

leads us to the ordering property of the ready queue.

Property 1. [Ready queue ordering] The ready queue is always ordered such that,

if i ≤ j, then Gi Ð→
+ Gj or Gi // Gj.

We prove this property below, by checking that the property is maintained both

when a request is inserted following Definition 1, and when the first request is

removed from the ready queue.
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Proof. By recurrence on the length of Q. Property 1 is trivially verified for an

empty request queue (length(Q) = 0). For the inductive case, assume that we have

a request from group G to insert in the ready queue that is made of R1,R2, ...,Rn

and that verifies Property 1. The requests R1,R2, ...,Rn respectively belong to

groups G1,G2, ...,Gn. We consider R from group GR to be inserted in the queue.

Let R′1,R
′
2, ...,R

′
n+1 be the new queue after insertion. Let us look at the two cases

of the insertion process of Definition 1.

1. Suppose that we did not find j ≤ n such that j =min(i∣GR Ð→+ Gi). Then,
by recurrence hypothesis, the beginning of the queue R′1,R

′
2, ...,R

′
n is ordered

and verifies Property 1. Additionally, ∀i ≤ n, R′i is before R in the new queue,

and because we did not find j, we have ¬(GR Ð→
+ Gi). Thus, Gi Ð→

+ GR

or Gi// GR.

2. Suppose now that we found j ≤ n such that j =min(i∣GR Ð→
+ Gi). Then we

have R1, ...,Rj−1,R,Rj, ...,Rn. Consider i ≤ k, we have to prove G′i Ð→
+ GR

or G′i//GR. If i and k ≠ j, then we conclude by recurrence hypothesis.

Otherwise, there are three cases to consider. We prove them by contradiction.

(i ≤ j = k) Since i ≤ j, we cannot have GR Ð→
+ G′i because this is contradictory

with the definition of j, which stipulates that j is the minimum i that

satisfies GR Ð→
+ G′i. Consequently, G

′
i Ð→

+ GR or G′i//GR.

(i = j < k) Suppose that we have G′k Ð→
+ GR. By definition of j, we have also

GR Ð→
+ G′j+1, so we have G′k Ð→

+ GR Ð→
+ G′j+1. By transitivity we

have G′k Ð→
+ G′j+1 and j+1 ≤ k, which is contradictory to the recurrence

hypothesis, that is that R1,R2, ...,Rn verifies Property 1. So, there

cannot exist a k > j such that G′k Ð→
+ GR.

(i = j = k) In this case, we have GR//GR, and this verifies Property 1.

All the cases converge towards the fact that the queue is always ordered if the

insertion process of Definition 1 is applied.

In summary, we have designed and implemented in ProActive a priority model

that the programmer can express through multiactive object annotations on top
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of a class. The multiactive object runtime, in our case ProActive, extracts from

the priority graph the overtaking possibilities. Thank to this knowledge, it can

systematically reorder the ready queue upon the event of a new request arrival.

Thus, we can give the guarantee that the first requests of the ready queue (the

ones that are executed first) are the ones that have the highest priority.

3.3.4 Implementation and Optimisation

According to the scheduling process defined in Subsection 3.3.3, in the worst case

the priority graph must be entirely searched for each request that is inserted in

the ready queue. Although using a graph for representing priority is expressive, it

might lead to a performance issue if the implementation of the graph exploration is

not efficient. This fact is mainly carried by the internal representation of the graph.

Some related works use integers as internal representation of priorities. We started

with a graph-based approach, that is less efficient than the integer approach. This

is why, in our implementation, we refine the internal representation of the graph in

order to have a performance similar to the integer-based representation. For that,

we rely on the transitive closure of a directed graph. The transitive closure of the

priority graph of Figure 3.3 is the same graph with an additional edge from node

concurrentRead to node monitoring. In our case, this basically means that, if

group A has higher priority than group B, and group B has a higher priority than

group C, then we know that group A has a higher priority than group C. We can

compute this knowledge for all pairs of groups. We can then store this knowledge

such that, afterwards, answering the question whether a request can overtake an-

other one takes a constant time. Indeed, the transitive closure of a graph can be

seen as a binary matrix that stores the overtaking possibilities between all pairs of

groups. In such a matrix M , of size N ×N where N is the number of groups, we

store a positive value in M[G1][G2] if there exists an edge from group G1 to group

G2 in the transitive closure of the priority graph. This computation happens just

once at application launching time, when the multiactive object annotations of the

class are processed. Then, this knowledge is used the whole execution time: each

time the priority of a pair of groups has to be considered, we just pick the priority

value associated to this pair in the matrix. The drawback of the matrix structure,
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compared to the graph, is the memory usage. Indeed, there are exactly N2 entries

in the matrix against only N nodes for the graph plus N × (N + 1)/2 edges at

maximum. In practice, the number of methods of an active objects that can be

remotely invoked (and thus, prone to priority ordering) is usually rather small.

However, if a performance problem still exists, whether in computing time or in

memory, the knowledge that is extracted from the priority graph can still be stored

using highly efficient probabilistic data structure, like the bloom filter [Blo70], in

order to store the overtaking possibilities.

Overall, the priority model is primarily based on a graph structure with solid

properties. The graph structure is adapted to represent priorities because it is

more expressive than the representations based on a total order: it does not force

to apply priorities on all requests. The programming model enables a piecewise

definition of the priority graph, which makes it scalable. The implementation of

the priority runtime is also scalable, because overtaking possibilities can be cached

in a flat structure in order to preserve execution throughput, at the expanse of

some latency at application start. Section 3.5 measures the performance of the

priority runtime of ProActive. Finally, the priorities defined by the programmer

are not dynamic, which is in part why we need to use thread limits per group to

prevent specific scheduling problems, like starvation. Dynamic priorities could be

considered in future work in order to adapt them to runtime events.

3.4 Software Architecture

In order to adapt the execution of multiactive object requests according to the

new scheduling constructs (related to thread management and priorities), we have

modified the ProActive runtime, and more specifically the multiactive object re-

quest scheduler. We focus this section on the implementation of the multiactive

object request scheduler of the ProActive library, more specifically on annotation

processing and on request execution. We detail the integration of the scheduling

mechanisms introduced in this chapter with the software architecture of ProAc-

tive. We also mention the data structures that are used to implement the different

components of the request scheduler of ProActive.
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Figure 3.4 – Class diagram of multiactive objects with scheduling controls

Figure 3.4 displays the compositional class diagram of the multiactive object

request scheduler that is implemented in ProActive. This diagram highlights the

most important interfaces that are available and that connect the different classes.

A multiactive object is associated to a multiactive service, in order to activate mul-

tiactive execution. The MultiactiveService class is composed of two entities: an

annotation processor and a request executor. Firstly, the AnnotationProcessor

class aims at processing the annotations that are written by the programmer in a

Java class. The annotation processor first initialises all the data structures needed

for an multiactive object execution. More precisely, it creates and fills the compat-

ibility mapping between groups, builds the priority graph, and stores the various

thread limits that will be checked all along the lifetime of a multiactive object.

Typically, this phase is where the optimisations for a further fast execution is

made, like for example the caching of request priorities to enable fast access (see

Subsection 3.3.4). Consequently, this phase incurs a certain latency when a multi-

active object is started. The overhead of multiactive object execution is evaluated

in [HHI13; HHI12] for the compatibility part and in Section 3.5 for the priority

part.

A multiactive service is also composed of a request executor, that encapsulates

the request scheduling behaviour. The RequestExecutor class is a black box that

outputs the next request to execute according to compatibilities, priorities and
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available threads. To this end, the request executor must keep track of what is

going on in the multiactive object, e.g. which requests are executing and with

which compatibilities, which requests are in the ready queue and with which pri-

ority, and which usage of threads is made. The request executor constantly relates

such dynamic information with the static information that was defined by the

programmer, and that is interpreted by the annotation processor.

The multiactive object request scheduler of ProActive defines a clear separation

of concerns between the classes that store static information, and the dynamic situ-

ation where all the metrics are tracked and checked at a given moment. The classes

that store static information appear at the leaves of the diagram of Figure 3.4, and

are named representatively of the data structure they use. The classes that hold dy-

namic metrics, i.e. the multiactive object situation at given time, are named with

the Tracker suffix. The classes that are named with the Manager suffix compare

the static structures against the tracked metrics, and offer the interfaces to inter-

act with this knowledge. In general, the request executor accesses the interfaces

of the compatibility manager, of the priority manager and of the thread manager.

In this thesis, we have introduced all the classes that relate to the priority stack

and to the threading stack. The priority mechanism relies on a customised pri-

ority queue that adheres to the producer/consumer design pattern. A dedicated

thread registers compatible requests to the priority queue while another thread

polls the queue to retrieve the requests that have the highest priority. The syn-

chronisation of the two threads is implemented using the native concurrency mech-

anisms of Java. The order in which the request executor proceeds is as follows. It

first filters requests in the reception queue thanks to the getCompatibleRequests

predicate of the CompatibilityManager class, giving back the requests that are

ready to be executed. Among ready requests, a second filter is applied using

the getHighestPriorityRequests predicate of the PriorityManager class. This

method returns the list of requests that have the highest priority. Then, for these

requests, each of them is evaluated in FIFO order such that the ones that satisfy

the hasEnoughThreads predicate of the ThreadManager class are immediately ex-

ecuted with a thread of the multiactive object. The requests that fail one of the

steps of compatibility, priority, and thread availability, will be checked again in

the next scheduling round in order to get executed.
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The software architecture applied in ProActive for the implementation of the

multiactive object runtime can be adapted to any other implementations of active

objects, provided that the language features meta-data (annotations) and features

reflection for meta-data processing.

3.5 Evaluation

In this section, we evaluate the performance of the implementation of multiactive

object priorities in ProActive through micro-experiments, that is, focusing on the

internal scheduling of one multiactive object. Regarding the implementation de-

tails of Section 3.4, a specific point that could be a bottleneck in the scheduling of

requests, is when the position of a request in the ready queue is computed. In this

sense, the priority mechanism must have a low overhead on the scheduling time in

order to be beneficial. Firstly, we check that our implementation of the priority

mechanism is effective: requests that have a high priority have a high throughput

compared to the requests with a lower priority. Then, we evaluate the insertion

time of requests in a setting where the ready queue grows, and we conclude on the

scalability of the priority model.

3.5.1 Experimental Environment and Setup

In all experiments, we execute an application, written with the ProActive library,

on a single machine. Indeed, although ProActive is a distributed library, we focus

here on the evaluation of local aspects. The machine used for the experiments

has four processors Intel Core Q6600 that have four cores each, and has 8GB of

memory. The experiments are made with a JDK in version 7.

We have developed the applications on the EventCloud platform [Pel14] that

relies on ProActive for implementing a distributed peer-to-peer storage and pub-

lish/subscribe system. The main Java class of the applications we develop for the

experiments is the PeerImpl class, that represents a peer in the peer-to-peer dis-

tributed system. We annotate this class with multiactive object annotations. The

methods of this class that are experimented have a small body definition, with

just a few logging instructions. In a realistic multiactive object setting, requests
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that are sent to a multiactive object should do enough computation to balance the

communication overhead. However, in our case small methods allow us to compare

the lowest execution time with the full overhead of priorities. In all experiments,

all groups are declared compatible in order for the ready queue to be as large

as the reception queue. In addition, before starting executing requests, we block

the multiactive object execution on purpose until all requests of the experiment

are registered in order to evaluate the insertion time of requests according to the

length of the queue. For all the previous reasons, the following experiments present

a worst-case scenario in which the priority mechanism is tested.

3.5.2 High Priority Request Speed Up

The first scenario aims at showing that the priority mechanism is effective. We

consider the PeerImpl class annotated with two groups of requests, that we name

group A and group B. These groups hold a single method that is respectively

named A and B. After instantiating a multiactive object of this class, we send

to it 1000 requests, alternating A and B requests. The class is configured with a

strict thread pool of four threads, and we specify no thread limit for any group.

This scenario is executed in two different priority settings: first with no priority

(setting #1), and second with group A having a higher priority than group B

(setting #2). We measure the execution time of a request according to its position

in the initial request set. We average the measured execution time for each 50

consecutive requests of the same group (either A or B), forming an evaluation

based on batches of requests. For example, the first point of a curve corresponds

to the averaged execution time for the 50 first requests of a given group (A or B).

This way we can see how much B requests have to wait compared to A requests,

depending on their position in the queue. More precisely, we measure the execution

time of requests from the time when the request queue is filled with all requests

and the time when the service of a request ends. Therefore, the execution time is

composed of: the time to insert the request in the ready queue (insertion time),

the time spent in the ready queue (waiting time), and the time to serve the request

(service time).

Figure 3.5 displays the results of the two experimented settings for this scenario.
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Figure 3.5 – Execution time of requests (per batch) with and without priority.

When not using priorities (setting #1), the execution time of requests increases

equally for the requests from group A and the requests from group B. This is

because the requests are executed in the same order as they are received, which is

alternatively A and B requests. Consequently, the time to insert a request in the

ready queue is the same for both kinds of requests, so is the time to wait in the

ready queue. A and B requests give exactly the same increasing global execution

time when no priority is applied.

When using priorities (setting #2), the execution time of A requests has a

dynamic that is different from the execution time of B requests. Since the com-

munication time and the service time of all requests are necessarily equal, it is the

insertion time and the waiting time that are dominating the dynamic of the curves.

First, we clearly see that the curve of high priority A requests (black dotted line)

is always kept below the curve of setting #1 without priority (crossed line). This

shows that the priority mechanism succeeds in increasing the throughput of high

priority requests. Secondly, the curve of low priority B requests (squared line) is

always above the one without priority (circled line). We notice that the execution

time of B requests is much longer than the one of A requests for the first batch of
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requests (0-50). This is due to the fact that the first B requests have to wait for

the execution of all A requests before being executed. Then, the execution time

of B requests increases slowly, because once A requests are treated, the insertion

time of B requests is reduced. Note also that the more requests there are in the

queue, the longer is a scheduling round (to choose the next request to execute

when a thread is freed), because of the manipulation of larger data structures.

In conclusion, the priority mechanism reduces the waiting time of high priority

requests, which is more visible when the queue is long. Reducing the waiting time

contributes to the speed up of the global execution of high priority requests.

3.5.3 Overhead of Prioritised Execution

We now experiment the priority mechanism of multiactive objects in two different

scenarios that evaluate the overhead of having priorities. In this context, the

overhead is the time needed to insert a request in the ready queue according to its

priority, from the moment the request is ready to be executed (i.e. is compatible).

In particular, when a request is inserted in the ready queue, the queue is locked

until the request is put at the right position, in order to prevent data races between

pushing and pulling threads. So, keeping the insertion time as small as possible

reduces the possibility of having a bottleneck at this point. As a comparison, we

can consider the time needed to insert a request when no priority applies: the

request is appended in constant time to the tail of the ready queue. However,

with priorities, we might look through the whole ready queue in order to find the

right position of a request. Consequently, this operation depends on the number

of requests that are in the ready queue. In addition, the structures used to store

and retrieve request priorities play a big part in the complexity of the insertion

process.

In this subsection, we compare the graph-based priority mechanism associated

to multiactive objects with a representation of priorities based on integers, that

we have developed specially as a point of comparison. Integer-based priorities

are less expressive because they force priorities to fit in a totally ordered set, but

the integer-based representation allows us to have a baseline for comparison with

the lowest memory footprint and the lowest access time. In the two following
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1 @DefinePriorities({

2 @PriorityHierarchy({

3 @PrioritySet(groupNames={"G1"}),

4 @PrioritySet(groupNames={"G2"}),

5 @PrioritySet(groupNames={"G3"}),

6 @PrioritySet(groupNames={"G4"}),

7 @PrioritySet(groupNames={"G5"})

8 })

9 })

Listing 3.5 – Graph-based.

1 @DefineIntegerPriorities({

2 @Priority(groupNames={"G1"}, val=5),

3 @Priority(groupNames={"G2"}, val=4),

4 @Priority(groupNames={"G3"}, val=3),

5 @Priority(groupNames={"G4"}, val=2),

6 @Priority(groupNames={"G5"}, val=1)

7 })

8

9

Listing 3.6 – Integer-based.

Figure 3.6 – Priority annotations for Alternate scenario.

experiments, we set a multiactive object thread pool of one thread, in order to

focus the study on priorities only, and we do not set any other thread limit.

Alternate High and Low Priority Requests

This scenario aims at evaluating the overhead of the priority mechanisms in a

simple configuration. Like in the previous scenario, we annotate the PeerImpl

class, but with new groups and new priorities. We define five groups of requests

from G1 to G5 with multiactive object annotations, and each of them holds one

method of the same name. We declare a linear priority dependency between the

groups: G1 has a higher priority than G2, G2 has a higher priority than G3, etc.

In the first setting, we declare the priorities with the integer-based mechanism

and in the second one we declare them with the graph-based priority specification.

Both priority definitions are displayed on Figure 3.6. These priority definitions

are semantically equivalent, although they use different annotations and rely on

different structures behind the scene.

The application consists in sending 1000 requests to the multiactive object.

Like in the previous application, we send alternatively one request of the highest

priority and one request of the lowest priority, that is alternatively from group G1

and from group G5. No request from the other groups is sent, other groups are

simply meant to have a bigger priority structure. We execute this application in

the two settings corresponding to the two kinds of priority annotations. For each

setting, we measure the average insertion time for each batch of 50 consecutive
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Figure 3.7 – Insertion time of low and high priority requests (per batch).

requests of the same group, like in the previous application.

Figure 3.7 shows the results of the graph-based and integer-based priority mech-

anisms, for the two groups of requests. For both evaluated mechanisms, the in-

sertion time of high priority requests is twice faster than the insertion time of low

priority requests, because high-priority requests have to be checked against half

less requests than low-priority requests. However, the time to insert a request us-

ing the priority graph takes almost twice more time than when using the priorities

based on integers. This is observable for both high and low priority requests. Thus,

using a priority graph is twice slower in this configuration, because the graph must

be searched each time a request is inserted in the ready queue. For this applica-

tion, we also measured the service time of a request. As we measure quasi-empty

request bodies, the result represents the minimum time required to execute a re-

quest. We measured an average request execution time of 1.4 ms. Knowing this,

the average insertion time of a request in the batch [200-250] represents only only

8% of the service time. In other words, the insertion time is always below 10% of

the minimal service time when the ready queue contains less than 200 requests,

which is a reasonable restriction. The cost of using a priority graph can be thus

balanced with this rational knowledge.
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Figure 3.8 – Dependency graph of scenario with sequential requests.

Sequential Requests from Not Linearisable Graph

This scenario illustrates a more realistic case than the previous one, in which the

priority dependencies are not linear, and in which all groups of requests participate

in the application. We define ten groups of requests, from G1 to G10, each of

them holding a single method, respectively named from g1 to g10. The priority

dependencies between them are expanded in Figure 3.8. This graph can be directly

translated into multiactive object priority annotations. The corresponding priority

graph definition is displayed on Figure 3.9. Declaring the same priority relationship

with an integer-based priority mechanism is not possible. In order to compare the

two priority mechanism anyway, we encode the priority graph as one of its possible

linear extensions for defining it with the integer-based priority mechanism: G1 has

value 4, G2 to G6 have value 3, G7 to G9 have value 2, and G10 has value 1, the

highest value being the one that has the highest priority.

In the application, we sequentially send a request of each group in a predefined

order (with no particular meaning), that is: g7−g1−g2−g9−g4−g10−g8−g3−g6−g5.
Using a predefined sequence of requests allows us to have deterministic results while

using the whole graph. We send 500 requests per group, so in total, 5000 requests

are sent to the multiactive object. Unlike the previous scenario, we do not look

specifically into the overhead of the priority graph just for a given priority, but
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1 @DefineGraphBasedPriorities({

2 @PriorityOrder({

3 @Set(groupNames = {"G1"}),

4 @Set(groupNames = {"G2"}),

5 @Set(groupNames = {"G7"}),

6 @Set(groupNames = {"G10"})

7 }),

8 @PriorityOrder({

9 @Set(groupNames = {"G1"}),

10 @Set(groupNames ={"G3","G4"}),

11 @Set(groupNames = {"G8"}),

12 @Set(groupNames = {"G10"})

13 }),

14 ...

15

Listing 3.7 – Part 1.

1 ...

2 @PriorityOrder({

3 @Set(groupNames = {"G1"}),

4 @Set(groupNames = {"G5"}),

5 @Set(groupNames = {"G10"})

6 }),

7 @PriorityOrder({

8 @Set(groupNames = {"G1"}),

9 @Set(groupNames = {"G6"}),

10 @Set(groupNames = {"G9"})

11 })

12 })

13

14

15

Listing 3.8 – Part 2.

Figure 3.9 – Graph-based priority annotations for Sequential scenario.

for all levels of priorities. We use again the batch granularity for our results and

compute the average insertion time each 50 consecutive requests sent from the

same group. After, we average these results among all groups for each batch of

requests.

Figure 3.10 shows the global average insertion time of a request depending

on the request batch, for three priority mechanisms. The overhead of the graph-

based priority mechanism on the insertion time is more than twice higher than

the overhead of the integer-based priority mechanism, which is bigger than in the

previous scenario. This is explained by the fact that, in this scenario, the graph

is more complex in terms of nodes and edges. The difference between the graph-

based and the integer-based priority mechanisms grows bigger as the number of

requests in the queue increases. In this sense, at some point the performance of

the application could suffer from the graph-based representation of priorities. To

address this problem, we use the optimisation of the internal representation of

graph-based priorities presented in Subsection 3.3.4. In this case, the transitive

closure of the priority graph is built and then, the knowledge that is extracted from

it is stored in a binary matrix of size 10 × 10. The results of the execution of the

application with this optimisation can be seen on Figure 3.10. In this case, using
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Figure 3.10 – Insertion time of sequential requests - Not linearisable priority graph.

the matrix is as efficient, in terms of insertion time, as using the integer-based

priority mechanism. Additionally, this optimised internal representation preserves

the ease of usage at the programming-level, and preserves the high expressiveness

of the priority graph.

3.6 Conclusion

In this chapter, we have presented advanced constructs that allow a programmer to

customise the request scheduling of multiactive objects. We have implemented the

presented constructs in the ProActive library, that offers now a thorough implemen-

tation of the multiactive object programming model. From the programmer point

of view, these mechanisms take the form of new multiactive object annotations

that can be optionally used and that predictably influence multiactive object exe-

cution. In a first place, we have defined new constructs related to the management

of multiple threads inside a multiactive objects. The introduced constructs allow

the programmer to control the parallelism and to allocate the threads in a bet-

ter way. Unsafe specifications are overriden by the multiactive object runtime in

order to prevent mistakes and to make the application execution come through.
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Robustness of multiactive object execution is deepened on an aspect that is differ-

ent from wrong configurations in Chapter 5. In a second place, we have enlarged

multiactive object annotations with request priorities. For that, the priority def-

inition and internal representation are based on a priority graph. We have given

the properties of the priority graph, as well as how it is efficiently implemented in

ProActive, enforcing a strict separation of concerns. Finally, we have experimented

multiactive object priorities in various settings that show that they are useful and

efficient. Throughout this work, we have completed the multiactive object frame-

work to give all the means to the experienced programmer to optimise step by step

its multiactive object-based applications. In summary, the obtained programming

model can be characterised as:

User-friendly. The threading specification and the priority relationship between

requests are easy to define for the programmer and also easy to maintain

and extend, even with a lot of multiactive object groups.

Expressive. The threading specification and the priority representation allow the

programmer to express a large variety of scheduling patterns, and allow him

to do as much as what could be possible with a low-level mechanism.

Consistent. Like in the existing multiactive object programming model, the ex-

tended features relating to request scheduling are based on meta-programming,

and ensure a backward compatibility.

Effective. The new specifications have a deterministic effect on the scheduling of

requests, and this effect can be rationally expected from the programmer.

Efficient. The new features introduce a minimal additional cost to the execution

of multiactive objects, more precisely when applying the scheduling policy.

The mentioned characteristics demonstrate the completeness of the multiactive

object programming model, and of its implementation in ProActive. Even with all

customisation possibilities of multiactive objects, involving compatibilities, priori-

ties and thread management, the scheduling of requests is still deterministic thanks

to a consistent framework. In addition, despite the fact that the implementation of
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the model was only described in the case of ProActive, the whole multiactive object

programming model is not tight to a particular language. It can be implemented

in any object-oriented programming language that supports meta programming,

and an existing active object-based language can be straightforwardly extended

for that. In conclusion, the contributions presented in this chapter enlarge the

multiactive object programming model, so that it can benefit from a very precise

scheduling while remaining high-level and safe.

∗ ∗ ∗

Other works have been conducted on concurrency models or on scheduling poli-

cies, that facilitate access to parallelism or that raise scheduling concerns at the

application-level. JAC (Java with Annotated Concurrency) [HL06] is an extension

of Java that adds concurrency constructs. JAC offers a set of annotations that

allow the programmer to specify whether an annotated entity must be guarded by

a lock, or if it can safely be executed concurrently by several threads. JAC offers

a simplified view of concurrency for the programmers that are not experts in this

domain. Unlike multiactive object annotations, JAC annotations are processed

before compilation. Low-level thread synchronisation is added where needed in

the program thanks to the analysis of JAC annotations. However, this prevents

dynamic decisions made at runtime, as it is possible with multiactive objects. In

addition, JAC offers a @schedule annotation, placed on top of a method, that al-

lows the programmer to define a boolean method for deciding whether the method

can safely be executed when it is invoked. In this boolean method, the list of meth-

ods awaiting to be executed is fully accessible, which makes it possible to define

fine-grain scheduling policies. This way to impact on the scheduling of requests

requires some expertise with queue manipulation but as it is programmatic, it is

more expressive than a declarative approach like ours or like the one of Creol(see

below).

Although ABS (see Subsection 2.3.3) has by default no special policy to execute

ready requests, ABS offers user-defined schedulers [Bjø+13] that can override the

non deterministic default policy. The programmer can define several customised

schedulers, and then associate them to object groups. In practice, user-defined

schedulers are methods that are directly written in ABS. Such methods can be
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used through the scheduler annotation, by simply mentioning the scheduler name.

Like in JAC, a user-defined scheduler selects a request to execute among a list of

waiting requests. A lot of information can be retrieved from a request, such as

arrival date, waiting time, request name, and request flags, so very precise schedul-

ing policies can be expressed. Again, this way of customising request scheduling in

active objects can be pretty complex for an inexperienced programmer. Compared

to multiactive object scheduling, ABS schedulers are less guarded: in our approach,

the interpretation of annotations and their automatic translation into scheduling

constraints enable a filtering of mistakes. But on the other hand, ABS schedulers

form a more powerful system in term of expressiveness.

Creol (see Subsection 2.3.1) also features an application-level scheduling mecha-

nism. In [Nob+12], the authors extend Creol with request priorities. Each request

has either a user-defined priority or a default priority, materialised by an integer.

In Creol, the lowest integer specifies the highest priority. In order to enable a

prioritised execution, an object interface must define a range of possible priority

values. Afterwards, when a method of an object is called, the caller may assign a

priority value in the defined range. Additionally, as the ‘client side’ might always

ask for the highest priority, the ‘server side’ can also set a priority value for par-

ticular method calls. Then, to decide on the final priority of a given request, the

object applies a deterministic function that takes into account both the priority of

the caller and the priority given when the method is defined.

In conclusion, Creol has a programming model for priorities that is sophisti-

cated but that is more difficult to reason about, as it is defined by the composition

of different priorities from different sources. On the other hand, both JAC and

ABS schedulers provide a fine-grained selection of requests, because the program-

mer directly manipulates the queue. However, one might argue that these solutions

are low-level and force the programmer to write a significant part of the scheduling

code, which is error-prone. On the contrary, multiactive object scheduling con-

structs are based on specification rather than programming. Consequently, using

the scheduling constructs of multiactive objects is easy and higher-level, but they

feature less expressiveness. The presented constructs hide the internal compo-

nents of an active object behind the annotations, which is not the case when the

programmer has a direct access to the request queue.
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This chapter globally makes an in-depth study of active objects languages,

by simulating different paradigms of active object languages with the paradigms

of multiactive objects. Concretely, we present an approach for translating active

object languages that are based on cooperative scheduling into a precise multi-

threaded execution of active objects. We instantiate our approach by translating

89
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ABS into ProActive, and this way realising a distributed execution backend for the

ABS modelling language. To this end, we use the request scheduling features of

multiactive objects that have been presented in Chapter 3. After giving a moti-

vation for this work in a first section, the high-level approach and implementation

details are given in a second section. An experimental evaluation of the ProAc-

tive backend for ABS is also presented there. A third section formalises and proves

the correctness of the translation using the ABS semantics and using the calculus

associated to ProActive, namelyMultiASP. We present in the same section the mod-

ifications/extensions that we have brought into MultiASP in order to integrate the

scheduling features of Chapter 3. Finally, the last section provides an informative

feedback on this work. This chapter is associated to the publication [4].

4.1 Motivation and Challenges

There are multiple reasons for providing ABS with a distributed execution through

ProActive. We have seen in Chapter 2 that the reason why there are many differ-

ent implementations of the active object programming model is because each of

them fits precise needs, from reasoning about programs to efficient execution in

practical settings. The active object languages that target application deployment

in real-world systems comply to constraints that are related to already existing

execution platforms and programming languages. Such active object languages

are mostly used by programmers interested in the performance of the application.

ProActive typically fits in this category. AmbientTalk and Encore also base their

execution on mainstream platforms. Other active object languages mostly tar-

get verification and proof of programs, but have not been originally designed for

distributed execution, like typically ABS, Creol, and Rebeca. In general, ABS is

massively used and developed by academics, and is also less constrained by existing

execution platforms.

Overall, in this chapter we present a generic approach for executing all forms

of cooperative active objects in distributed settings, relying on the experience of

ProActive in this field. Additionally, the proof of correctness ensures that the

verifications performed on the source code are still valid when the program is

executed. For demonstration of our approach, we implement it specifically with
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Figure 4.1 – From program development to program execution with backends.

ProActive and ABS, and present the ProActive backend for ABS. ProActive is repre-

sentative of practical concerns because it provides an asynchronous and distributed

programming model that is transparent to the programmer, making it more ac-

cessible to non-experts. Secondly, ProActive is a Java library, and can be executed

on any standard JVM, making it runnable quite everywhere. Also, the under-

lying object structure of ProActive, encapsulating objects in an activity, makes

the programming of application less intuitive but more scalable with the number

of activities and objects, thus directly usable practically to tackle industrial use

cases. ABS requires more expertise from the programmer because of the exis-

tence of asynchronous invocations, futures, and synchronisation points but this is

compensated by the convenience of its object group model, that only considers

one type of objects. Finally, some tools recently developed for ABS target cloud

settings, that are intrinsically distributed. Thus, providing ABS programs with a

distributed execution has a real significance. Using an existing, reliable platform to

do this is probably the most appropriate approach. While fully implemented and

effective, our practical translation of ABS into ProActive is certainly not restricted

to this single scope. Indeed, ProActive and ABS characteristics encompass most of

the paradigms that can be found in active object languages, and we discuss the

adaptability of our work to the other active object languages.

Approaching language adaptation through a backend provides flexibility: a

larger range of specific needs can be covered, separately at the modelling level

and at the execution level. The workflow from an application’s design to the

application’s execution is displayed on Figure 4.1. Backend-based application de-

velopment allows active object paradigms, classified in Section 2.2, to be mixed
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at will, in order to eliminate unwanted constraints at a given level. This work

advocates the rise active object languages based on multiple paradigms. How-

ever, backend-based application development also bring new challenges. The first

practical concern boils down to answering the question “how can we embody a

language construct that does not exist in the targeted language?”. The second

concern is summarised in the question “how can we prove that this incarnation

is correct?”. We answer those two questions throughout this chapter. We will

see that answering them actually compels us to analyse the languages, giving an

invaluable knowledge about active object languages and their implementations.

Overall, our contribution through this work benefits to two domains: formal

methods and high performance distributed computing. First, we allow experts in

formal methods, used to design programming languages and verification tools, to

deploy, with minimum effort, distributed and efficient applications. Second, the

work presented in this chapter should convince experts in distributed and high

performance computing that formally verified programs can also be run efficiently.

Having this guarantee should promote formal methods more largely in the industry.

4.2 Systematic Deployment of Cooperative Ac-

tive Objects

In this section, we present the ProActive backend for ABS in an example-driven

way. Basically, this section shows how the formal translation that is defined in

Section 4.3 is instantiated in practice. The implementation of the backend is

based on the Java backend for ABS1, that produces Java programs that comply to

the ABS semantics. Such Java programs solely execute locally, on a single machine.

The ProActive backend relies on the part of the Java backend that translates the

functional layer of the language. The translation of the object layer and of the

concurrency layer is modified in order to produce ProActive code instead of local

Java code. Finally, other adaptations are also made on the ABS compiler to enable

distributed execution.

1Available at http://abs-models.org/.

http://abs-models.org/
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4.2.1 A ProActive Backend for ABS

Object Addressing

In order to translate ABS into ProActive, a first challenge is to handle the dif-

ference of active object model. According to the classification of active object

languages given in Subsection 2.2.1, ABS follows an object group model whereas

ProActive follows a non uniform object model. As such, we must define an ap-

proach to embody object groups into active and passive objects, and in general

to define what happens when a new object is created. In ABS, all objects can be

referenced from any cog. In a distributed setting, local references cannot be used

to reference objects that are not in the same memory space. In order to access

objects across the network, a referencing system must be used. In ProActive, the

objects that can be referenced globally are active objects, because active objects

can be referenced beyond the local memory space through proxies and remote

method invocations (see Subsection 2.3.4). On the contrary, passive objects can

only be referenced locally.

For the implementation of the ProActive backend for ABS, translating each

ABS object into a ProActive active object in order to make them remotely accessi-

ble is not a viable solution. Indeed, in the ProActive translation, all objects would

have to be registered in the global referencing system. Also, all objects would have

to unnecessarily carry a thread and a request queue associated to them. More-

over, this solution would require a complex synchronisation of threads, in order to

comply with the semantics of the initial ABS program. The approach we choose

for representing ABS objects in ProActive is scalable both in the number of objects

and in the number of threads2. We put several translated ABS objects under the

control of one ProActive active object. In other words, all translated ABS objects

are passive objects in ProActive. This approach represents well the object group

model of ABS. Indeed, the ProActive active objects that gather the translated

ABS objects play the role of the ABS cog. However, for a distributed execution,

the translated ABS objects must be referenceable from remote memory spaces. To

this end, in the ProActive translation, we rely on a two-level object referencing

system. The ProActive backend introduces a Java class named COG that represents

2Recall that in ProActive, active object threads are plain Java threads
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Figure 4.2 – Representation of the translation of a cog in ProActive.

ABS cogs. Figure 4.2 shows an ABS cog and its associated ABS objects, trans-

lated into ProActive. A ProActive active object of class COG is instantiated for each

cog that is in the initial ABS program. Consequently, COG active objects have

a global, network-wide reference that makes them accessible remotely. Thus, we

consider the cog as unit of distribution. Finally, in the translated program, a COG

active object maintains a local reference to all the translated ABS objects that it

contains. For that, a hash map from object identifiers to object references is used.

Thus, in the ProActive translation of an ABS program, there are only active objects

of class COG, all the other objects are passive objects, and they are the translation

of the ABS objects. In other words, the COG active object is the global entry point

to reach the objects that it contains. This referencing system has a much reduced

overhead than translating all ABS objects into ProActive active objects.

In order to translate ABS object instantiation into ProActive active/passive

object instantiation, we need to translate the new and new local statements of

ABS into ProActive code. As an example, consider first an ABS code snippet where

a new ABS object is created in a new cog, as follows:

ABS1 Server server = new Server();

The ProActive backend for ABS translates the ABS code above into the following

ProActive code (the names of the ABS variables are preserved):

ProActive1 Server server = new Server();

2 COG cog = PAActiveObject.newActive(COG.class, new Object[]{Server.class}, node);

3 server.setCog(cog);

4 cog.registerObject(server);



4.2. SYSTEMATIC DEPLOYMENTOF COOPERATIVE ACTIVE OBJECTS95

In the ProActive translation, Line 1 creates a regular server object. Line 2 uses

the newActive ProActive primitive in order to create a new cog active object.

Additionally to the parameters of the COG constructor (in an object array), ProAc-

tive allows the programmer to specify a node onto which the active object is de-

ployed (this point is clarified in the ‘Distribution’ paragraph later). Line 3 lets

the server object have a reference to its cog. In order to do this, in the ProAc-

tive translation we make all translated ABS objects inherit from the ABSObject

class, that has the setCog method. Finally, in Line 4, we use the registerObject

method of the COG class in order to make available the server object in the object

registry maintained by this cog. Due to the nature of the cog object (it is an

active object), and due to the by-copy semantics of ProActive, in Line 4 the server

object is deeply copied in the local memory space of the created cog.

Additionally, we have to translate ABS objects that are created in the current

cogwith the new local keyword. When the ProActive backend encounters this

statement, the generated ProActive code is the same as above, but without the new

cog instantiation. Instead, the local cog is retrieved with a synchronous method

call, and the object is registered in this cog.

Object Invocation

With the approach described above, when an object is created in a new cog, in the

ProActive translation there exist two objects corresponding to the new ABS object:

the one that has been created locally, and the one that has been copied in the

activity of the new cog. In order to enable the same object invocation model

as in ABS, we translate each asynchronous ABS invocation (distinguishable with

the ! syntax3) into two ProActive method calls that navigate through our two-level

reference system: first accessing the cog of the invoked object, and then retrieving

the invoked object thanks to a local identifier. In the ProActive translation, the

pair (cog, identifier) is a global unique reference for each translated ABS object

and, allows the generated ProActive program to retrieve any translated ABS object

3In case the language featured transparent invocations, there would be two possibilities to
distinguish asynchronous method calls: either a static analysis of the code would have to be
made beforehand to detect the presence of an active object or, the generated code would offer
several branches in order adapt at runtime depending on the dynamic type of the object.
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at runtime.

As an ABS example, we consider the server object reference that we have

introduced previously, and we asynchronously call a start method on it:

ABS1 server!start();

The ProActive backend translates this asynchronous method call as follows:

ProActive1 server.getCog().execute(server.getId(), "start", new Object[]{});

The generic execute method of the COG class retrieves the local reference of

an object, thanks to the identifier returned by the getId() method, and invokes

a method on this object by reflection. As the execute method is invoked on the

active object returned by the getCog method4, this is an asynchronous method

call; this puts a request in the cog’s queue. The fact that the execute method

call is a remote invocation implies that the parameters of this call are copied in the

targeted activity. For the two first parameters of the execute method, that are the

identifier of the targeted object and the name of the method to invoke, making a

copy is not problem because these parameters are immutable and lightweight. The

third parameter of the execute method packages the parameters of the method to

invoke, if any, in an object array. In case the start method takes two parameters

in ABS, like in server!start(p1, p2), the corresponding translated objects in

ProActive are put in the object array parameter of the execute method call, as

follows:

ProActive1 server.getCog().execute(server.getId(), "start", new Object[]{p1, p2});

In this case, the whole object array is copied. Thus, the translated objects p1

and p2 are manipulated by copy in the remote activity. However, in the remote

activity, these copies can only be used to invoke a method on them5. Consequently,

any method invocation, translated using the execute method, will pass by the

cog that holds the original object. In the end, only the original object will ever

be modified during the program execution. Note that we call ‘original object’ the

4The object returned by getCog is precisely a proxy to the remote active object; see Subsec-
tion 2.3.4.

5In case the language enables field access, a method for getting and setting the field would
have to be generated in the translation, and any field access would have to be translated into
a getter or setter call, which could be done synchronously or asynchronously depending on the
targeted semantics.
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object that is locally referenced by its cog. In particular, the ‘original object’ is

not the first object that is created (with new), but the copy that is passed through

the registerObject method of the COG class. Thanks to this approach, in the

translated ProActive code, all the modifications that are made concurrently on the

copies of an object are centralised and sequentialised by the cog that manages this

object. This is in fact exactly the behaviour that we want to get in the translated

ProActive programs, since ABS programs pass the method parameters by reference.

The fact that only one copy of an object reflects all the modifications that

were made on it allows us to optimise the copies of an object, such that they are

reduced to the minimum information that they need to contain. In particular,

outside its original activity, there are only two characteristics of an object that are

needed: the local identifier of the object, and the (global) reference to its cog.

As a copy of an object is only used to reach the original one through its cog,

no information about the state of the object is needed in a copy. Consequently,

the ProActive backend for ABS offers a customised serialisation mechanism that

only embeds the aforementioned elements when an object is passed by copy to

another activity. This allows the generated ProActive program to save memory

and bandwidth when it is executed.

In ABS, synchronous method invocations are handled with an asynchronous

call whose future is directly gotten (with .get) just after. As such, we do not

need to add any special handler for translating ABS synchronous method calls

into ProActive, we simply use the composition of the translation of asynchronous

method calls and of the translation of ABS .get (see below).

Request Scheduling

Active object languages often support special threading and request scheduling

models. For that, they offer language constructs to the programmer in order to

interact with threads and futures. Most of these constructs can be translated

into ProActive thanks to the customisation capabilities of multiactive objects. We

demonstrate here the ability of multiactive objects to embody cooperative schedul-

ing of requests through the translation of the ABS await language construct into

multiactive objects. Specifically, we consider the translation of await on future
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variables (representative of cooperative scheduling), of get (representative of lan-

guages that do not offer transparent futures), and also the translation of await

on boolean conditions, and of suspend for completeness. The list of the features

of multiactive objects that are used in order to translate ABS constructs are the

following (see Subsection 2.4.2 and Chapter 3).

– Groups and compatibilities.

– Global thread limit and kind of thread limit (soft or hard).

– Thread limit per group.

The ABS await language construct on futures. An await statement releases

the execution thread if the specified future is not resolved. For example, let us

modify the previous ABS example in order to await on the future returned by the

asynchronous method call:

ABS
1 Fut<Bool> startedFut = server!start();

2 await startedFut?;

In order to have the same behaviour in the ProActive translation, we force a

wait-by-necessity. For that we use a special ProActive primitive, getFutureValue,

as follows:

ProActive
1 PAFuture.getFutureValue(startedFut);

Since, in ProActive, a wait-by-necessity blocks the current thread, we need to

adapt the multiactive object configuration in order to get a behaviour that is sim-

ilar to what happens in ABS. Previously, we have translated all ABS method calls

such that, in ProActive, they are wrapped in the execute method of the COG class.

Consequently, configuring the COG class with multiactive object annotations is suf-

ficient to control the way all translated ABS requests are scheduled. In practice,

when the ProActive backend creates the COG class, it also annotates it in order to

specify a thread pool limited to one thread, and a soft thread limit, which basi-

cally means that there can be many parallel threads for a COG object, but only

one thread is not in wait-by-necessity. The ProActive backend also annotates the
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execute method, and puts it in a multiactive object group that is self compati-

ble, so that many requests of this group can be executed on parallel threads. The

multiactive object annotations applied on the COG class are displayed in Listing 4.1

ProActive
1 @DefineGroups({

2 @Group(name="scheduling", selfCompatible=true)

3 })

4 @DefineThreadConfig(threadPoolSize=1, hardLimit=false)

5 public class COG {

6 ...

7 @MemberOf("scheduling")

8 public ABSValue execute(UUID objectID, String methodName, Object[] args) {

9 ...

10 }

11 ...

12 }

Listing 4.1 – Multiactive object annotations on the COG class for request scheduling.

Thanks to the fact that several execute requests can be executed in par-

allel and that at most one such request is not in wait-by-necessity, when the

getFutureValue is executed on an unresolved future, the current thread is au-

tomatically put in wait-by-necessity. Here, the ProActive runtime can schedule

another execute request that is not in wait-by-necessity, which is similar to the

behaviour of the original ABS program.

The ABS get language construct. In ABS, the get language construct blocks

the execution thread of the cog until the future is resolved, as for example on the

previously created future variable:

ABS
1 Fut<Bool> startedFut = server!start();

2 await startedFut?;

3 ...

4 Bool started = startedFut.get;

The translation of get into ProActive would have been straightforward with

the blocking getFutureValue primitive. However, we have disabled its blocking

aspect by using multiactive object annotations in order to translate await. In

order to correctly translate get, we temporarily harden the kind of thread limit
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(i.e. all threads, even the ones in wait-by-necessity, are counted in the thread

limit), so that no other thread of the COG object in ProActive can start or resume

as long as the future is not resolved. This is because the strict thread limit of

one thread is already reached considering the current thread. Each time a get

is encountered in ABS, the following ProActive code is injected in the translated

program:

ProActive
1 this.getCog().switchHardLimit(true);

2 PAFuture.getFutureValue(startedFut);

3 this.getCog().switchHardLimit(false);

In this code, since the retrieved cog is the local one, the switchHardLimit

method calls are synchronous. This ensures that the kind of thread limit is ef-

fectively hardened when the future is awaited. Note that, although we adapt the

thread policy dynamically, this approach is still safe because it is less permissive

than the configuration that is given by the multiactive object annotations.

The ABS await language construct on conditions. Another role of await

is to use it followed by a boolean condition:

ABS
1 await a == 3;

In the case of the ProActive backend, our approach is to wrap the evaluation of

the boolean condition in a method call that returns a future. After this invocation,

we can wait for this future with the getFutureValue primitive, like for the trans-

lation of await on future variables. In order to implement this approach, during

the translation of an ABS class, each time an await on a condition is encountered,

we generate a new method in its translated ProActive class. This method takes

all the parameters that are needed in order to check periodically if the condition

is fulfilled, and returns once it succeeds. Then, the await of the ABS program is

translated in the ProActive program into a generic awaitCondition asynchronous

method call, that is performed on the COG active object that holds the current

object. The result of this call is then waited, as follows:

ProActive
1 PAFuture.getFutureValue(this.getCog().

2 awaitCondition(this.getId(), "cond7517d1ff7c52", new Object[]{a}));
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The awaitCondition method of the COG class takes as parameters the name of

the generated condition method to execute, the identifier of the object that defines

the generated condition method, and the parameters needed for the condition

evaluation, here a. This asynchronous method call is wrapped in a forced wait-

by-necessity in order to let another request being scheduled while the condition

is evaluating. This is because the awaitCondition method is configured with

adequate multiactive object annotations. Thanks to the call to awaitCondition,

the COG object can execute the generated condition method by reflection. This

approach is similar to the the translation of ABS asychronous method calls into

ProActive, except that another method of the COG class is used. For the execution

of awaitCondition requests, we add a multiactive group and new thread limits in

the COG class, as can be seen on Listing 4.2:

ProActive
1 @DefineGroups({

2 @Group(name="scheduling", selfCompatible=true),

3 @Group(name="waiting", selfCompatible=true, minThreads=10, maxThreads=10)

4 })

5 @DefineRules({

6 @Compatible({"scheduling", "waiting"}),

7 })

8 @DefineThreadConfig(threadPoolSize=11, hardLimit=false)

9 public class COG {

10 ...

11 @MemberOf("scheduling")

12 public ABSValue execute(

13 UUID objectID, String methodName, Object[] args) {...}

14 @MemberOf("waiting")

15 public ABSValue awaitCondition(

16 UUID objectID, String conditionName, Object[] args) {...}

17 }

Listing 4.2 – Complete multiactive object annotations on the COG class.

In order to separate the evaluation of condition methods from the execution

of translated method calls, we dedicate new threads in a cog for the evaluation

of condition methods. For that, the ProActive backend sets a thread limit of 11

threads per cog object thanks to the appropriate multiactive object annotation.

The waiting group is self compatible (to enable parallel condition evaluations)



102CHAPTER 4. FROMMODELLING TODEPLOYMENTOF ACTIVE OBJECTS

as well as compatible with the scheduling group, because execute requests can

be processed at the same time as condition evaluation. Also, the waiting group

defines precise bounds on the number of threads that are taken by the requests of

this group. In particular, the number of threads that are reserved by the waiting

group is one less than the total number of threads, in order to leave a single thread

to the scheduling group. This ensures that the execution of applicative requests

are always handled by one active thread, like in ABS.

Distribution

In addition to the translation of active object paradigms, the ABS compiler is

slightly modified in order to enable distributed execution of ABS programs through

their translation into ProActive proactive programs, thanks to the ProActive back-

end. We also make some other adaptations in the generated Java classes in order

to ensure an efficient distributed execution.

Serialisation. The main challenge when moving objects from one memory space

to another is to reshape them so that they can be transmitted on the net-

work medium. In particular, a serialised version of an object must be created

by the sender so that afterwards the object graph can be rebuilt from the

serialised version by the recipient. As ProActive is based on Java RMI, all

objects that are part of a remote method call (i.e. parameters and return

values) must implement the Java Serializable interface, otherwise a dis-

tributed execution throws an exception. Thus, we take a particular care in

making the generated Java classes implement this interface, when needed.

Copy Optimisation. As said earlier for the translation of asynchronous calls, in

order to minimise copy overhead, in the ProActive translation we declare

the translated class fields with the transient Java keyword, which prevents

them from being embedded in a serialised version of an object (they are

replaced by null). The other fields that receive a value when the object is

created go through a customised serialisation mechanism: they are part of a

copy only the first time they are serialised (i.e. when the object is copied in

its hosting cog). Afterwards, we only embed in the copy of an object the

object’s identifier and the reference to its cog.
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Deployment. Any distributed program needs a deployment specification mecha-

nism in order to place pieces of the program on different machines. ProAc-

tive embeds a deployment descriptor that is based on XML configuration

files, where the programmer declares physical machines to be mapped to

virtual nodes (this is explained in more details in Section 5.1). Such virtual

nodes can then be denominated in the program in order to deploy an active

object on them. In our case, as the ProActive program is generated, we have

to raise the node specification mechanism at the level of the ABS program.

We slightly modified the ABS syntax (and parser) to allow the programmer

to specify a node on which a new cog must be deployed, thanks to the node

name. The ProActive backend then links this node name to the deployment

descriptor of ProActive. Now, an ABS new statement is optionally followed

by a string that identifies a node, as follows:

ABS

1 Server server = new "mynode" Server();

During translation, the ProActive node object corresponding to this node

identifier is retrieved, and given as parameter of the newActive primitive to

deploy the active object on this node. For this specification to work, a simple

descriptor file (XML) similar to the following must be created and attached

to the ABS program:

GCM/ProActive
1 <GCMDeployment>

2 <hosts id="mynode" hostCapacity="1"/>

3 <sshGroup hostList="172.16.254.1"/>

4 </GCMDeployment>

In this example, the node identified by the string "mynode" maps to the ma-

chine that has the IP address mentioned in the hostList attribute. Domain

Name System (DNS) names can be specified here as well. Many other de-

ployment options can also be defined. If several machines are specified in the

hostList, then the ProActive backend associated each of them to a new COG

active object in a round robin manner. If there is no node that is specified in

ABS, then the new COG object is created on the same machine in a different

JVM, enforcing this way a strict isolation of cogs.
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Wrap Up and Applicability

In conclusion, by carefully setting multiactive object annotations, and by adapt-

ing to distribution requirements, we are able to execute ABS programs through

distributed ProActive programs. This translation is automatically handled by the

ProActive backend for ABS. We formalise and prove the correctness of this trans-

lation in Section 4.3. The approach presented here and instantiated in the case of

ABS and ProActive is not restricted to this single scope: the translation concepts

are generic enough to be applied to most active object languages, and system-

atically turn them into deployable active object languages. The effort to port

our result to other active object languages depends on which of the two chosen

languages they are the closest to. Indeed, ProActive and ABS characteristics en-

compass most of active object languages. To get an efficient translation of different

active object models into distributed multiactive objects, one needs to answer the

questions that are related to the active object language classification given in Sec-

tion 2.2. Most of all, one must carefully consider the location of objects: “Should

objects be grouped to preserve the performance of the application? If yes, how

and under which control?”. When it comes to distribute active objects over several

memory spaces, the only viable solution is to address the objects hierarchically.

This strategy is easily applicable to any active object language based on object

groups. As such, adapting this work to JCoBox is straightforward. The most

challenging aspect is that in JCoBox the objects share a globally accessible and

immutable memory. In this case, the global memory could be translated into an

active object that serves its content: since it is immutable, communicating the

content by copy is correct. In the case of uniform active object languages, like

Creol, creating one active object per translated object handles straightforwardly

the translation but limits scalability. The best approach is to group several objects

behind a same active object for performance reasons, like building abstract object

groups that resemble ABS and JCoBox. In the case of Encore, objects are already

scattered into active and passive objects, which makes the translation of the ob-

ject model straightforward. Once the distributed organisation of objects has been

defined, then preserving the semantics of the source language relies on a precise

interleaving of local threads, which is accessible thanks to the various threading
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controls offered by multiactive objects. For instance, we have presented in the

context of the ProActive backend for ABS a precise threading configuration that

simulates cooperative scheduling. But other scheduling policies are easily workable

with multiactive objects. For example, the transposition of the ProActive backend

to AmbientTalk could seem tricky on the scheduling aspect, due to the existence of

callbacks. However, a callback on a future can still be considered as a request that

is immediately executed in parallel, but that starts by a wait-by-necessity on the

adequate future. In conclusion, the gap between active object languages can be

summarised in the global organisation of objects and threads, and we have given

in this section all the directions that enable a faithful translation.

4.2.2 Evaluation

In this section, we evaluate the ProActive backend for ABS by applying it on several

applications written in ABS. For all ABS applications we experiment, we compare

the execution of the ProActive program generated by the ProActive backend to the

execution of the program generated by the Java backend. The Java backend for

ABS encodes the ABS semantics in Java and is an accurate reference for the execu-

tion of ABS applications, although it only provides a local execution. Comparing

the generated ProActive programs to the generated Java programs for the same

ABS appplication allows us to analyse our results knowing that both versions are

run on the JVM.

The ABS tool suite6 offers a set of examples of ABS programs, introduced

in a tutorial paper [Häh13]. We first try the ProActive backend on these small

ABS applications. Four applications are tested: a Deadlock program that hangs

by circular dependencies between activities, a Bank account application that

synchronises withdrawal operations, a Leader election algorithm over a ring,

and a Chat application that redirects messages to clients. These applications

are specifically oriented towards coordination between independent entities, this is

why it is important to check that the behaviour of these applications is the same

when they are translated by the ProActive backend and executed in a distributed

manner with ProActive. The number of lines of ABS code as well as the number

6See http://abs-models.org/.

http://abs-models.org/.
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Application Lines of ABS code
Number of cogs (ABS) =

Number of JVMs (ProActive)
Deadlock 69 2

Bank account 167 3
Leader election 62 4

Chat 324 5

Table 4.1 – Characteristics of the ABS tool suite program examples.

of cogs for each application are displayed on Table 4.1.

In the ProActive translation of these programs, each COG active object is placed

in a separate JVM. Only one JVM is used for executing the program generated

by the Java backend. For all ABS applications, we observe that the behaviour of

the generated ProActive program is the same as the behaviour of the generated

Java program. In particular, the Deadlock program is also deadlocking in the

translation, and the right results are produced in the translation of the other pro-

grams. Thus, the request scheduling enforced in ProActive respects the one of the

reference implementation. Beyond the adequacy of the obtained results, we cannot

use the program examples of the ABS tool suite to evaluate the performance of the

generated ProActive programs. Indeed, these examples run in a few milliseconds

and, as such, they are inadequate for the performance analysis in a distributed

execution. We focus the rest of the experiments on a developed use case that

exhibits more computational requirements.

We develop in ABS an application of pattern maching of a DNA sequence in

a DNA database. In order to parallelise the search, we implement it using the

MapReduce programming model [DG08]. We implement the MapReduce pro-

gramming model in ABS with a MapReduce class that is responsible for splitting

the input data and dispatching map and reduce calls to several workers (Worker

class). Each worker is instantiated in a new cog so that workers can execute in

parallel. Workers do not communicate with each other, they only communicate

with the MapReduce object, that is in a separate cog.

We consider a searched pattern of 250 bytes, and a database of 5MB of DNA

sequences. The MapReduce object considers 100 DNA samples of 50kB each, and

creates 100 pairs of (pattern, sample). The pairs are distributed evenly to the
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workers and processed in parallel through the map method. Each mapper tries

to match the pattern on the given sample, and returns the maximum matching

sequence found in this sample. Once all mappers finish, all the results that are

locally produced by a mapper are aggregated and passed to a single reducer that

outputs the global maximum matching sequence. The general algorithm that is

used to match the pattern is shown on algorithm 1.

while pattern not ended do
while sample not ended do

while pattern matching sample do
update maximum matching

end while
end while

end while

Algorithm 1 Maximum matching sequence algorithm (mapper phase).

We compute the global execution time of the use case when varying the number

of workers, i.e. when varying the degree of parallelism. When executing the

program given by the Java backend, we execute it on a single machine, since

it does not support distribution. When using the ProActive backend, we deploy

two COG active objects (i.e. two workers) per machine. We used a cluster of the

Grid5000 distributed platform [Cap+05]. All machines have 2 CPUs of 2.6GHz

with 2 cores, and 8GB of memory.

Figure 4.3 shows the execution time of both ProActive and Java translations of

the ABS application from 2 to 50 workers. Therefore, 1 to 25 machines are used

in the case of the ProActive execution.

The execution time of the application generated by the ProActive backend is

sharply decreasing for the first added machines and then decreases at a slower rate.

On the other hand, the execution of the Java program reaches an optimal degree of

parallelism of 4 workers (which actually is the number of cores of the machine) and

then cannot benefit from higher parallelism; execution time even increases after-

wards due to context switching overhead, as the thread-based parallelism happens

on the same machine. On the opposite, increasing the degree of parallelism for

the application generated by the ProActive backend gives a linear speedup from
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Figure 4.3 – Execution time of DNA matching application. Each measurement is
an average of five executions.

the local Java programs, because it balances the load between machines. In the

best case, the application completes 12 times faster with the ProActive backend.

We can highlight that simply using 10 machines makes the application complete 5

times faster, and this is because the machines that are used are only half loaded:

two active objects are deployed on each of them although they have four available

cores. Still, thanks to the ProActive backend, the application completes precisely

in 19 minutes instead of 1 hour and 35 minutes in the case of the Java backend.

Nonetheless, we can notice that for the first experiment point, the program gen-

erated by the Java backend performs better than the ProActive one: precisely, it

is 7% faster. This is due to the overhead induced by the distributed execution,

involving a cost for serialisation and communication. This shows that the ProAc-

tive backend can be used for ABS applications that balance coordination aspects

with computational aspects.

We know now that the ProActive backend is beneficial thanks to the distributed

execution of ABS programs, compared to a local execution. The next question is

whether it is effective compared to a program that would be directly written in

ProActive. In other words, we want to evaluate the quality of the generated code,



4.2. SYSTEMATIC DEPLOYMENTOF COOPERATIVE ACTIVE OBJECTS109

Figure 4.4 – Execution time of DNA matching application without functional layer.

and the overhead of the simulation of ABS semantics with multiactive objects.

Figure 4.4 compares the execution time of the DNA matching application in two

versions: the first one is the generated program of the ProActive backend for ABS,

and the second one is a hand-written version of the application directly in ProAc-

tive, i.e. executing according to ProActive semantics. For this experiment, in

the program generated by the ProActive backend, we have manually replaced the

translation of functional ABS types (integers, booleans, lists, and maps) with the

corresponding standard Java types. Indeed, the implementation of the functional

layer of ABS in Java is not as efficient as primitive Java types. Considering that

our point is to evaluate the additional communication cost of the ProActive trans-

lation, we cannot let the performance of the implementation of ABS types in Java

confuse our evaluation7. In this setting, we can see that the overhead introduced

by the ProActive backend is rather low compared to a native version of the appli-

cation, since it is generally kept under 10%. At the biggest stage, the generated

application starts having a higher overhead because it involves too much commu-

7As can be compared in the case of the generated ProActive execution of Figures 4.3 and 4.4,
the difference is of an order of magnitude depending on the implementation of types; fixing this
problem has been first explored in [Ser+14].
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nication compared to the computational load of each entity, and since this glut

of communication has even more importance in the translated program (because

of additional accesses to intermediate objects), then the application’s execution

suffers even more from it.

In conclusion, the ProActive backend allows us to turn an ABS program into a

high-performance distributed application. In addition, the ProActive code, gener-

ated by the ProActive backend and simulating the ABS semantics, maintains a low

overhead compared to a hand-written ProActive application.

4.3 Formalisation and Translation Correctness

Beyond the didactic introduction of the ProActive backend for ABS in Section 4.2,

this section aims at proving the correctness of the translation given by the backend,

i.e. that a generated ProActive program simulates well an original ABS program.

In order to establish the correctness of the translation, we use the formalisation of

the two languages: the ABS semantics, and the formalisation of the ProActive li-

brary, namely MultiASP. We recall the two calculus in Subsection 4.3.1. Then, we

introduce in Subsection 4.3.2 the formalisation of the request scheduling mecha-

nisms that were presented in Chapter 3, as an extension of MultiASP. From the

complete semantics of the two languages, we establish a translational semantics

and an equivalence relation in Subsection 4.3.3. Finally, after having listed the re-

strictions and defined some properties in Subsection 4.3.4, we prove the correctness

of the translation through the proof of two precise theorems.

4.3.1 Recall of ABS and MultiASP Semantics

ABS Syntax and Semantics

For the formalisation of ABS, we refer to the ABS syntax and semantics given

in [GLL15]. In order to make this thesis standalone, we recall the syntax of ABS in

Figure 4.5, to which we added the while and suspend statements. This part of

the ABS syntax focuses on the concurrent object layer of ABS. In particular, the

syntax for its functional layer is omitted. We recall the runtime syntax of ABS in
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P ∶∶= I C {T x ; s} program
T ∶∶= primitive-type ∣ Fut <T> ∣ I type

I ∶∶= interface I {(S ;} interface

S ∶∶= T m(T x) method signature

C ∶∶= class C(T x) [implements I] {T x ; M} class

M ∶∶= S {T x ; s} method definition
g ∶∶= b ∣ x? ∣ g ∧ g′ guard
s ∶∶= skip ∣ x = z ∣ if e { s} else { s} ∣ while b { s} statement∣ return e ∣ s; s ∣ await g ∣ suspend
z ∶∶= e ∣ e.m(e) ∣ e!m(e) ∣ new [local] C(e) ∣ x.get expression with side effects
e ∶∶= v ∣ x ∣ this ∣ arithmetic-bool-exp expression
v ∶∶= null ∣ primitive-val value

Figure 4.5 – Syntax of the concurrent object layer of ABS.

cn ∶∶= ǫ ∣ fut(f, val) ∣ ob(o, a, p, q) ∣ invoc(o, f,m, v) ∣ cog(c,act) ∣ cn cn

act ∶∶= o ∣ ε val ∶∶= v ∣ �
p ∶∶= {l ∣ s} ∣ idle a ∶∶= [⋯, x↦ v,⋯]
q ∶∶= ǫ ∣ {l ∣ s} ∣ q q v ∶∶= o ∣ f ∣ . . .
s ∶∶= cont(f) ∣ . . .

Figure 4.6 – Runtime syntax of ABS.

Figure 4.6. An ABS configuration consists of objects (ob(...)), cogs (cog(...)), in-
vocations (invoc(...)), and futures (fut(...)). The operational semantics of ABS is

given on Figure 4.7. The notation JeKA represents the evaluation of expression

e in ABS. This semantics is slightly changed from the one of [GLL15], which al-

ready represents an adapted semantics of the ABS that was preliminary introduced

in [Joh+11] (minor updates). In the version presented here, the modifications we

make on the ABS semantics simply aim at making a clearer proof, syntactically;

the essence of the translation is preserved. For example, we make no difference be-

tween the initialisation of object fields through constructors or through a method

call at instantiation. This allows us to avoid considering initialisation methods in

the equivalence relation, which makes it easier to read. More precisely, we give

below the list of the modifications we bring to the ABS semantics:

– The distinction between class fields and class parameters has been removed,

they are syntactic sugar for class fields initialised automatically to null.



112CHAPTER 4. FROMMODELLING TODEPLOYMENTOF ACTIVE OBJECTS

(Skip)
ob(o, a,{l ∣ skip; s}, q)

a
→ ob(o, a,{l ∣ s}, q)

(Assign-Local)
x ∈ dom(l) v = [[e]]A

(a+l)

ob(o, a,{l ∣ x = e; s}, q)
a
→ ob(o, a,{l[x↦ v] ∣ s}, q)

(Assign-Field)
x ∈ dom(a) ∖ dom(l) v = [[e]]A

(a+l)

ob(o, a,{l ∣ x = e; s}, q)
a
→ ob(o, a[x↦ v],{l ∣ s}, q)

(Cond-True)
true = [[e]]A

(a+l)

ob(o, a,{l ∣ if e then {s1} else {s2}; s}, q)
a
→ ob(o, a,{l ∣ s1; s}, q)

(Cond-False)
false = [[e]]A

(a+l)

ob(o, a,{l ∣ if e then {s1} else {s2}; s}, q)
a
→ ob(o, a,{l ∣ s2; s}, q)

(Await-True)
f = [[x]]A

(a+l)
v ≠ �

ob(o, a,{l ∣ awaitx?; s}, q) fut(f, v)
a
→ ob(o, a,{l ∣ s}, q) fut(f, v)

(Await-False)
f = [[x]]A

(a+l)

ob(o, a,{l ∣ awaitx?; s}, q) fut(f,�)
a
→ ob(o, a,idle, q ∪ {l ∣ awaitx?; s}) fut(f,�)

(Release-Cog)
ob(o, a,idle, q) cog(c, o)
a
→ ob(o, a,idle, q) cog(c, ǫ)

(Activate)
c = a(cog)

ob(o, a,idle, q ∪ {l ∣ s}) cog(α, ǫ)
a
→ ob(o, a,{l ∣ s}, q) cog(c, o)

(Read-Fut)
f = JeKA

(a+l)
v ≠ �

ob(o, a,{l ∣ x = e.get; s}, q) fut(f, v)
a
→ ob(o, a,{l ∣ x = v; s}, q) fut(f, v)

(New-Object)
o′ = fresh(C) fields(C) = x

v = [[e]]A
(a+l)

a′ = [x↦ v, cog↦ c]

ob(o, a,{l ∣ x = new local C(e); s}, q) cog(c, o)
a
→ ob(o, a,{l ∣ x = o′; s}, q) cog(c, o)

ob(o′, a′,idle,∅)

(New-Cog-Object)
c′ = fresh( ) o′ = fresh(C) fields(C) = x

v = [[e]]A
(a+l)

a′ = [x↦ v, cog↦ c′]

ob(o, a,{l ∣ x = new C(e); s}, q)
a
→ ob(o, a,{l ∣ x = o′; s}, q)

ob(o′, a′,idle,∅) cog(c′, ǫ)

(Rendez-vous-Comm)
f = fresh( ) o′ = JeKA

(a+l)
v = JeKA

(a+l)

p′′ = bind(o′, f,m, v,class(o′))
ob(o, a,{l ∣ x = e!m(e); s}, q) ob(o′, a′, p′, q′)

a
→ ob(o, a,{l ∣ x = f ; s}, q) ob(o′, a′, p′, q′ ∪ p′′) fut(f,�)

(Context)

cn
a
→ cn′

cn cn′′
a
→ cn′ cn′′

(Cog-Sync-Call)
o′ = [[e]]A

(a+l)
v = [[e]]A

(a+l)
f = fresh( )

c = a′(cog) f ′ = l(destiny)
{l′ ∣ s′} = bind(o′, f,m, v, class(o′))

ob(o, a,{l ∣ x = e.m(e); s}, q)
ob(o′, a′,idle, q′) cog(c, o)

a
→ ob(o, a,idle, q ∪ {l ∣ await f?;x = f.get; s}) fut(f,�)

ob(o′, a′,{l′ ∣ s′;cont f ′}, q′) cog(c, o′)

(Cog-Sync-Return-Sched)
c = a′(cog) f = l′(destiny)

ob(o, a,{l ∣ cont f}, q) cog(c, o)
ob(o′, a′,idle, q′ ∪ {l′ ∣ s})
a
→ ob(o, a,idle, q) cog(c, o′)

ob(o′, a′,{l′ ∣ s}, q′)

(Self-Sync-Call)
f ′ = l(destiny) o = [[e]]A

(a+l)
v = [[e]]A

(a+l)

f = fresh( ) {l′ ∣ s′} = bind(o, f,m, v, class(o))
ob(o, a,{l ∣ x = e.m(e); s}, q)

a
→ ob(o, a,{l′ ∣ s′;cont(f ′)}, q ∪ {l ∣ await f?;x = f.get; s})

fut(f,�)

(Return)
v = [[e]]A

(a+l)
f = l(destiny)

ob(o, a,{l ∣ return e; s}, q) fut(f,�)
a
→ ob(o, a,idle, q) fut(f, v)

(Rem-Sync-Call)
o′ = [[e]]A

(a+l)
f = fresh( ) a(cog) ≠ a′(cog)

ob(o, a,{l ∣ x = e.m(e); s}, q) ob(o′, a′, p, q′)
a
→ ob(o, a,{l ∣ f = e!m(e);x = f.get; s}, q)

ob(o′, a′, p, q′)

(Self-Sync-Return-Sched)
f = l′(destiny)

ob(o, a,{l ∣ cont(f)}, q ∪ {l′ ∣ s})
a
→ ob(o, a,{l′ ∣ s}, q)

Figure 4.7 – Semantics of ABS.
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v ∶∶= o ∣ α ∣ . . .
elem ∶∶= fut(f, v, σ) ∣ fut(f,�) ∣ act(α, o, σ, p,Rq)
cn ∶∶= elem

E ∶∶= {ℓ ∣ s}
F ∶∶= E ∣ E ∶∶ F
p ∶∶= ÐÐÐ⇀

q ↦ F

Storable ∶∶= [ÐÐÐ⇀x↦ v] ∣ v ∣ f
σ ∶∶= ÐÐÐÐÐÐÐ⇀

o↦ Storable

q ∶∶= (f,m, v)
Rq ∶∶= ∅ ∣ q ∶∶ Rq
ℓ ∶∶= this↦ v,ÐÐÐ⇀x↦ v

s ∶∶= x = ● ∣ . . .
Figure 4.8 – The runtime syntax of MultiASP.

– Linked to the previous modification, an object is idle when it is instantiated,

instead of having the init request in the request queue (in the New-Object

case) or as current task (in the New-Cog-Object case). Consequently, a

cog that is newly created has no current activated object. We will see that

with the restrictions on the translation given in Subsection 4.3.4, this mod-

ification has no impact because we can still force a method being executed

first.

– Statements following a return instruction are discarded. This fits better

with most of mainstream programming languages. In addition, having a

second return in further statements would cause a deadlock in the semantics

since there would be no recipient for the associated future, so the rule could

not be reduced in this case8.

MultiASP Syntax and Semantics

The calculus of ProActive, MultiASP, takes its foundations in the mono-threaded

active object language ASP (see Subsection 2.3.4). MultiASP has been first in-

troduced in [HHI13]. Compared to this preliminary version, the MultiASP that

is presented in this thesis has a class-based syntax (briefly introduced in Sub-

section 2.4.3) instead of a syntax that is based on objects, and its semantics

has been adapted accordingly. This modification aims at making the syntax of

MultiASP closer to the syntax of ABS, enabling a more precise correspondence

between the two languages. In this thesis, we also extend the preliminary version

of MultiASP with threading capabilities in Subsection 4.3.2. For now, we simply

8Note that the original Java backend for ABS already implements this semantics for the
return rule.
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present the core of the language. MultiASP represents a classical object-oriented

language except the presence of the newActive keyword that is used to instantiate

a ProActive active object. Like in ABS, the runtime syntax of MultiASP consists of

a transition relation between configurations. It is shown in Figure 4.8 and detailed

hereafter. At runtime, the set of elements of a MultiASP configuration are of two

kinds: activities and future binders, described below. The transition relation uses

three infinite sets: object locations in the local store, ranged over by the terms

{o, o′, ⋯}; active objects names, ranged over by the terms {α, β, ⋯}; and future

names, ranged over by the terms {f , f ′, ⋯}. Additionally, the following terms are

defined:

Values are distinguished between runtime values (v, ⋯) and storable values. Run-

time values can be either static values, object locations, or active object

names. An object is represented as a mapping from field names to their

values, denoted with [ÐÐÐ⇀x↦ v]. Storable values are either objects, futures or

runtime values.

Activities are of the form act(α, o, σ, p,Rq). An activity contains terms that define:

– α, the name of the activity.

– o, the location of the active object in σ.

– σ, a local store mapping object locations to storable values.

– Rq, a FIFO queue of requests, awaiting to be served.

– p, a set of requests currently served: it is a mapping from requests to their

thread F. A thread is a stack of methods being executed, and each method

execution E consists of local variables that are present in ℓ and of a statement

s to execute. The first method of the stack is the one that is executing, the

others have been put in the stack due to previous local synchronous method

calls. ℓ is a mapping from local variables (including this) to runtime values.

Future binders are of two forms. The form fut(f,�) means that the value of the

future has not been computed yet: it is an unresolved future. The form

fut(f, v, σ) is used when the value of the future is known: it is a resolved

future. If the future’s value is a passive object, then v will be its location

in the piece of store σ. As only active objects are remotely accessible, the
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[[primitive-val]](σ+ℓ)≜primitive-val [[f]](σ+ℓ) ≜ �
[[α]](σ+ℓ)≜α [[null]](σ+ℓ) ≜ null
[[x]](σ+ℓ)≜[[ℓ(x)]](σ+ℓ) if x ∈ dom(ℓ)
[[x]](σ+ℓ)≜[[ℓ(this)(x)]](σ+ℓ) if x ∉ dom(ℓ)
[[o]](σ+ℓ)≜o if σ(o) = f or σ(o) = [ÐÐÐ⇀x↦ v]
[[o]](σ+ℓ)≜[[σ(o)]](σ+ℓ) else

Figure 4.9 – Evaluation function

part of the store referenced by this location must also be transmitted when

the future’s value is sent back to the caller. This step involves a serialisation

mechanism that is explained in the auxiliary functions below.

In the reduction rules of MultiASP semantics, we state that object o is fresh

if it does not exist in the store in which it will be added. Similarly, a future or

an activity name is fresh if it does not exist in the current configuration. The

freshness of an object or a future is also used in a similar way in the semantics

of ABS. We denote mappings by ÐÐ⇀↦ , and use union ∪ (resp. disjoint union ⊎)

over mappings. Mapping updates are of the form σ[x↦ v], where σ is a mapping

and the new value associated to x is v. dom returns the domain of a mapping.

Additionally, the following auxiliary functions are used in the semantic rules.

– [[e]](σ+ℓ) returns the value of e by computing the arithmetic and boolean

expressions and retrieving the values stored in σ or ℓ, according to the evalu-

ation function of Figure 4.9. It returns a value and, if the value is a reference

to a location in the store, it follows references recursively; it only returns a

location if the location points to an object 9.

– [[e]](σ+ℓ) returns the tuple of values of e.

– fields(C) returns the fields as defined in the class declaration C.

– bind initialises method execution: bind(o,m, v′) = {
ÐÐÐ⇀
y ↦ v′,

ÐÐÐÐÐ⇀
z ↦ null,this ↦

o ∣ s}, where the arguments of method m, typed in the class of o, are y, and

where the method body is {z; s}.

9Note that there is no guarantee that this terminates a priori.
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– ready is a predicate deciding whether a request q in the queue Rq is ready

to be served: ready(q, p,Rq) is true if q is compatible with all requests

in p (currently served by the activity) and with all requests in Rq that

have been received before q. More formally: ready(q, p,Rq) = true iff

∀q′ ∈dom(p).compatible(q, q′) ∧ ∀q′ ∈ Rq.compatible(q, q′).

– Serialisation reflects the communication style happening in Java RMI. All

references to passive objects are serialised when communicated between ac-

tivities, so that they are always handled locally. We formalise a serialisation

algorithm that marks and copies the objects to serialise recursively. serialise

is defined as the mapping verifying the following constraints:

serialise(o, σ) = (o↦ σ(o)) ∪ serialise(σ(o), σ)
serialise([ÐÐÐ⇀x↦ v], σ) = ⋃v′∈v serialise(v′, σ)
serialise(f, σ)=serialise(α,σ)=serialise(null, σ)=∅
serialise(primitive-val, σ)=∅

– renameσ(v, σ′) renames the object locations appearing in σ′ and v, making

them disjoint from the object locations of σ; it returns the renamed set of

values v′ and another store σ′′, as: (v′, σ′′).

Figure 4.10 shows the semantics of MultiASP. The rules only show the activ-

ities and futures involved in the reduction, the rest of the configuration is kept

unchanged. Most of the rules are triggered depending on the shape of the first

statement of an activity’s thread. The reduction rules of MultiASP are described

below:

– Serve picks the first request that is ready in the queue (i.e. compatible with

executing requests and with older requests in the queue) and allocates a new

thread to serve it. It fetches the method body and creates the execution

context.

– Assign-Local assigns a value to a local variable. If the statement to be

executed is an assignment of an expression that can be reduced to a value,

then the mapping of local variables is updated accordingly.
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Serve
ready(q, p,Rq) q = (f,m, v) bind(oα,m, v) = {ℓ ∣ s}

act(α, oα, σ, p,Rq ∶∶ q ∶∶ Rq’)→ act(α, oα, σ,{q ↦ {ℓ∣s}} ⊎ p,Rq ∶∶ Rq’)
Assign-Local

x ∈ dom(ℓ) v = [[e]](σ+ℓ)
act(α, oα, σ,{q ↦ {ℓ ∣ x = e; s} ∶∶ F} ⊎ p,Rq)→ act(α, oα, σ,{q ↦ {ℓ[x↦ v] ∣ s} ∶∶ F} ⊎ p,Rq)

Assign-Field
ℓ(this) = o x∈dom(σ(o)) x∉dom(ℓ) σ′ = σ[o↦ (σ(o)[x↦ [[e]](σ+ℓ)])]
act(α, oα, σ,{q ↦ {ℓ ∣ x = e; s} ∶∶ F} ⊎ p,Rq)→ act(α, oα, σ′,{q ↦ {ℓ ∣ s} ∶∶ F} ⊎ p,Rq)

New-Object
fields(C) = x o fresh σ′ = σ ∪ {o↦ [ÐÐ⇀x = v]} [[e]](σ+ℓ) = v

act(α, oα, σ,{q ↦ {ℓ ∣ x = new C(e); s} ∶∶ F} ⊎ p,Rq)
→ act(α, oα, σ′,{q ↦ {ℓ ∣ x = o; s} ∶∶ F} ⊎ p,Rq)

New-Active
fields(C) = x o, γ fresh σ′ = {o↦ [ÐÐ⇀x = v]} ∪ serialise(v, σ) [[e]](σ+ℓ) = v

act(α, oα, σ,{q ↦ {ℓ ∣ x = newActive C(e); s} ∶∶ F} ⊎ p,Rq)
→ act(α, oα, σ,{q ↦ {ℓ ∣ x = γ; s} ∶∶ F} ⊎ p,Rq) act(γ, o, σ′,∅,∅)

Invk-Active [[e]](σ+ℓ)=β [[e]](σ+ℓ)=v
f, o fresh σ1=σ ∪ {o↦f} (vr, σr)=renameσ′(v, serialise(v, σ)) σ′′=σ′ ∪ σr

act(α, oα, σ,{q ↦ {ℓ ∣ x = e.m(e); s} ∶∶ F} ⊎ p,Rq) act(β, oβ , σ′, p′,Rq′)
→ act(α, oα, σ1,{q ↦ {ℓ ∣ x = o; s} ∶∶ F} ⊎ p,Rq) act(β, oβ , σ′′, p′,Rq′ ∶∶ (f,m, vr)) fut(f,�)

Invk-Passive[[e]](σ+ℓ) = o [[e]](σ+ℓ) = v bind(o,m, v) = {ℓ′ ∣ s′}
act(α, oα, σ,{q ↦ {ℓ ∣ x = e.m(e); s} ∶∶ F} ⊎ p,Rq)

→ act(α, oα, σ,{q ↦ {ℓ′ ∣ s′} ∶∶ {ℓ ∣ x = ●; s} ∶∶ F} ⊎ p,Rq)
Return-Local

v = [[e]](σ+ℓ)
act(α, oα, σ,{q ↦ {ℓ ∣ return e; sr} ∶∶ {ℓ′ ∣ x = ●; s} ∶∶ F} ⊎ p,Rq)

→ act(α, oα, σ,{q ↦ {ℓ′ ∣ x = v; s} ∶∶ F} ⊎ p,Rq)
Return

v = [[e]](σ+ℓ)
act(α, oα, σ,{(f,m, v)↦ {ℓ ∣ return e; sr}} ⊎ p,Rq) fut(f,�)

→ act(α, oα, σ, p,Rq) fut(f, v, serialise(v, σ))
Update

σ(o) = f (vr, σr) = renameσ(v, σ′) σ′′ = σ[o↦ vr] ∪ σr

act(α, oα, σ, p,Rq) fut(f, v, σ′)→ act(α, oα, σ′′, p,Rq) fut(f, v, σ′)

Figure 4.10 – Semantics of MultiASP.



118CHAPTER 4. FROMMODELLING TODEPLOYMENTOF ACTIVE OBJECTS

– Assign-Field assigns a value to a field of the current object (the one pointed

to by this). It is similar to the previous rule except that it modifies the local

store.

– New-Object creates a new local object in the store at a fresh location,

after evaluation of the object parameters. The new object is assigned to a

field or to a local variable by one of the two rules above.

– New-Active creates a new activity that contains a new active object. It

picks a fresh activity name, and assigns the serialised object parameters:

the initial local store of the activity is the piece of store referenced by the

parameters. The freshness of the new active object ensures that it is not

already in the serialised store.

– Invk-Active performs an asynchronous remote method invocation on an

active object. It creates a fresh future with undefined value. The arguments

of the invocation are serialised and put in the store of the invoked activity,

possibly renaming locations to avoid clashes. The special case α = β requires

a trivial adaptation with the rule Invk-Active-Self:

MultiASP

Invk-Active-Self

[[e]](σ+ℓ)=α [[e]](σ+ℓ)=v f, o fresh σ1=σ⊎{o↦f}
(vr, σr) = renameσ1(serialise(v, σ)) σ′=σr ∪ σ1

act(α, oα, σ,{q↦{ℓ ∣x = e.m(e); s} ∶∶ F} ⊎ p,Rq)→
act(α, oα, σ′,{q ↦ {ℓ ∣ x=o; s}∶∶F} ⊎ p,Rq ∶∶(f,m, vr)) fut(f,�)

– Invk-Passive performs a local synchronous method invocation. The method

is retrieved and an execution context is created; the thread stack is extended

with this execution context. The interrupted execution context is second in

the stack; the result of the method execution will replace the hole ● when it

is computed.

– Return-Local handles the return value of local method invocation. It

replaces the hole ● in the second entry of the stack by the returned value.
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We know that the return statement corresponds here to a local invocation

because it is not the only execution context in the stack.

– Return is triggered when a request finishes. It stores the value computed

by the request as a future value. Serialisation is necessary to pack the objects

referenced by the future value.

– Update updates a future reference with a resolved value. This is performed

at any time when a future is referenced and the future value is resolved.

The local rules reflect a classical object oriented language: New-Object

and Assign-Field modify the local store, and Invk-Passive and Return-

Local affect the local execution context. The other rules, namely Serve, New-

Active, Invk-Active Return, and Update reflect how asynchrony, typical

to active object languages, is handled in MultiASP. The initial configuration of

a MultiASP program consists in evaluating a program P = C {x ; s}. To

this end, the main block is wrapped in a new activity that serves a single re-

quest containing the main block. Precisely, the initial MultiASP configuration is:

act(α0, o, o↦ ∅,{q0 ↦ {
ÐÐÐÐÐ⇀
x↦ null∣s}},∅).

4.3.2 Semantics of MultiASP Request Scheduling

In this subsection, we formalise the advanced mechanisms presented in Chapter 3,

that allow the programmer to control the scheduling of requests in multiactive ob-

jects. Our main approach is to introduce additional qualifiers on activities and on

requests. They are related to how the thread limits have been configured through

the multiactive object annotations and API, presented in Section 3.2. Such qual-

ifiers basically reflect the status of the given element at a given time. We also

define below the needed auxiliary functions to complement the MultiASP seman-

tics with the request scheduling aspects. But first of all, we extend the syntax of

MultiASP so that the thread limit mechanism can be programmatically changed

from a soft limit, i.e. a thread blocked in a wait-by-necessity is not counted in

the thread limit, to a hard limit, i.e. all threads are counted in the thread limit.

The statements accepted by the MultiASP syntax are thus extended with two new

possibilities:
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s ∶∶= ... ∣ setLimitSoft ∣ setLimitHard

Secondly, we extendMultiASP semantics such that the multiactive object group

of a request q can be retrieved through an auxiliary function group(q). Addition-
ally, a filtering operator p∣

g
returns the requests from group g among the set of

threads p. There can be a thread limit defined for each group of requests. The

thread limit of a group g can be retrieved with Lg. The semantics of MultiASP with

thread limits is an adaptation of the MultiASP semantics presented in Subsec-

tion 4.3.1. In order to indicate the status of each thread, we qualify each of the

currently served request as either active or passive. The set of threads p contains

then two kinds of served requests: actively served request, denoted with qA ↦ F,

and passively served requests (requests blocked in wait-by-necessity), denoted with

qP ↦ F. The auxiliary function Active(p) returns the number of actively served

requests in p.

Regarding activities, each activity has either a soft limit status written act(. . .)S
(which is the default for all created activities if not specified otherwise), or a hard

limit status written act(. . .)H . sh is used as a variable ranging over S and H.

Finally, the definition of the status of requests and activities and the definition

of auxiliary functions allow us to modify the reduction rules of MultiASP, in order

to formalise the threading policies of multiactive objects, as follows:

– We add a rule Activate-Thread for activating a thread. Indeed, to ac-

tivate a thread we need to look at the group of the considered request and

check if this group has not reached its thread limit. Note that in the rule, the

sh variable indicates that the kind of thread limit is kept unchanged during

the reduction.

MultiASP

Activate-Thread

Group(q) = g Active(p∣
g
) < Lg

act(α, oα, σ,{qP ↦ F} ⊎ p,Rq)sh → act(α, oα, σ,{qA ↦ F} ⊎ p,Rq)sh
– Each rule allowing a thread to progress requires that the request processed by
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this thread is active. To this end, q is replaced by qA in allMultiASP reduction

rules except for the Serve and Update rules.

– The Serve rule is only triggered if the thread limit of the group of the

considered request is not reached, i.e. if: Active(p∣
group(q)

) < Lg.

– We add two additional rules, Set-Hard-Limit and Set-Soft-Limit, for

changing the kind of thread limit of an activity, either to a hard or a soft

thread limit.

MultiASP

Set-Hard-Limit

act(α, oα, σ,{qA ↦ {ℓ ∣ setLimitHard; s} ∶∶ F} ⊎ p,Rq)sh
→ act(α, oα, σ,{qA ↦ {ℓ ∣ s} ∶∶ F} ⊎ p,Rq)H

MultiASP

Set-Soft-Limit

act(α, oα, σ,{qA ↦ {ℓ ∣ setLimitHard; s} ∶∶ F} ⊎ p,Rq)sh
→ act(α, oα, σ,{qA ↦ {ℓ ∣ s} ∶∶ F} ⊎ p,Rq)S

– If an activity has a soft thread limit status, a wait-by-necessity passivates

the current thread. Note that in MultiASP, a wait-by-necessity occurs only

in case of method invocation on a future, since field access is only allowed

on the current object this. We add a rule Invk-Future that encompasses

the case where a method invocation is performed on an unresolved future,

in which case the thread of the currently processed request becomes passive.

MultiASP

Invk-Future

[[e]](σ+ℓ) = o σ(o) = f
act(α, oα, σ,{qA ↦ {ℓ ∣ x = e.m(e); s} ∶∶ F} ⊎ p,Rq)S
→ act(α, oα, σ,{qP ↦ {ℓ ∣ x = e.m(e); s} ∶∶ F} ⊎ p,Rq)S

To conclude, a few precise modifications on the MultiASP semantics allow us

to formalise the threading policies of multiactive objects. Four rules are added,

and almost all existing rules are updated, but only with subtle additional infor-
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mation. Indeed, the threading extension of MultiASP is built upon the existing

MultiASP semantics and does not modify the core of the language.

4.3.3 Translational Semantics and Restrictions

This section formalises the translation of ABS programs into MultiASP programs,

thanks to the semantics of the two languages, presented above (Subsections 4.3.1

and 4.3.2). We show here the translational semantics that formalises the automatic

translation provided by the ProActive backend for ABS (Section 4.2). We present

afterwards the specific restrictions of the translation.

Translational Semantics

Most of the translation from ABS to MultiASP impacts the statements. The rest of

the source structure (classes and methods) is unchanged except the two following:

– We define a new class COG in the MultiASP translation. It has methods to

store and retrieve local objects, and to execute a method on a local object.

The structure of the COG is displayed in Listing 4.3. UUID is the type of

object identifiers. In practice, the body of the execute method is slightly

more complex since reflection must be used to go from the method name to

the method invocation.

MultiASP 1 Class COG {

2 UUID freshID()

3 UUID register(Object x, UUID id)

4 Object retrieve(UUID id)

5 Object execute(UUID id, MethodName m, params) {

6 w=this.retrieve(id);

7 x=w.m(params);

8 return x

9 }

10 }

Listing 4.3 – The COG class. Most method bodies are left out.

– All translated ABS classes are extended with two parameters: a cog parame-

ter, storing the COG object to which the object belongs, and an id parameter,



4.3. FORMALISATION AND TRANSLATION CORRECTNESS 123

Jx = e!m(e)K ≜ t = e.cog(); id = e.myId();
x = t.execute(id,m, e) Jawait x?K ≜ w = x.get()

Jawait g ∧ g′K ≜ Jawait gK; Jawait g′K

Jx = y.getK ≜ setLimitHard;
w = y.get();
setLimitSoft;
x = y

Jx = eK ≜ x = e

Jx=e.m(e)K ≜ a = e.cog(); b = this.cog();
if(a == b) {x = e.m(e)}
else {t = e.cog(); id = e.myId();

x = t.execute(id,m, e);
setLimitHard;
w = x.get(); setLimitSoft}

Jx=new local C(e)K ≜ t = this.cog();
id = t.freshId();
no = new C(e, t, id);
z = t.register(no, id);
x = no

Jx=new C(e)K ≜ newcog=newActive COG();
id = newcog.freshId();
no = new C(e,newcog, id);
z = newcog.register(no, id);
x = no

Jawait gKx ≜ if(¬g) { t = this.cog(); id = this.myId();
z = t.execute condition(id, condition g, x);w = z.get }

JsuspendK ≜ t = this.cog(); id = this.myId();
z = t.execute condition(id, condition True, x);w = z.get

Figure 4.11 – Translational semantics from ABS to MultiASP (the left part in JK is
ABS code and the right part of ≜ is MultiASP code).

storing the object’s identifier in that cog. Methods cog() and myId() return
those two parameters. A dummy method get() that returns null is added

to each object. For simplicity, we also use this method for primitive values

instead of writing specific cases.

The translation of statements and expressions is shown in Figure 4.11 and

explained below. Note that trivial rules like Js; s′K = JsK; Js′K are omitted. We also

suppose that necessary variables are declared locally in each method.

Object instantiation first gets a fresh identifier from the current cog. Then, the

new object is created with the current cog and the identifier10. It is stored

in a reserved temporary local variable no. Finally, the object is referenced

in the current cog and stored in x.

Object instantiation in a new cog is similar to object instantiation in the cur-

rent cog but method invocations on the newcog variable are asynchronous

10The step in which the cog of the new object is set in ProActive is directly encoded in the
object constructor in MultiASP.
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remote method calls. The new object is thus copied to the memory space of

the remote new cog via the register invocation, before being assigned to x.

Await on a future uses the get() method, that all translated objects have, in order

to trigger the wait-by-necessity mechanism and potentially block the thread

if the future is not resolved.

Get on a future sets a hard limit on the current activity, so that no other thread

starts, and then restores the soft limit after having waited for the future.

Await on conditions performs several sequential get() within an activity in soft

limit. Conditional guards are detailed later in this section.

Asynchronous method call retrieves the cog of the object and delegates the call

to the execute method of the COG class, as described in Subsection 4.2.1.

Synchronous local method call distinguishes two cases, like in ABS. Either the call

is local and an execution context is pushed in the stack, or the call is remote

and, like in the ABS semantics, we perform an asynchronous remote method

invocation and immediately wait the associated future within an activity in

hard limit.

All other instructions that do not deal with method invocation, future manip-

ulation, or object creation, are kept unchanged. Note that the guard statement is

slightly changed: in our case we suppose that it starts by a set of awaited futures

and finishes by boolean expressions. Indeed, futures are single-valued assignments,

and once they are available they will remain available. Thus, it is safe to check

them before, even if, as mentioned in [Häh13], the ABS await statement accepts

only monotonic guards and conjunctive composition.

The above translation from ABS to MultiASP is only valid under the condition

of a precise multiactive object configuration. In the translated MultiASP code, as

in ProActive, there exist different multiactive object groups and each group has its

own thread limit, as follows:
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group(freshId) = g1 group(execute) = g2 group(register) = g3
Lg1 = 1 Lg2 = 1 Lg3 =∞

∀q, q′. (q ≠ q′ ≠ freshId() ∧ (∄id.q = register(x, id) ∧ q′ = execute(id,m, e))) ⇒
compatible(q, q′)

Group g1 encapsulates freshId requests. These requests cannot execute in

parallel safely, so g1 is not self compatible, and can only use one thread at a

time. Group g2 gathers execute requests. It is limited to one thread to comply

with the threading model of ABS, and the requests are self compatible to enable

interleaving. Group g3 contains register requests that are self compatible and that

have an infinite thread limit. Concerning compatibility between groups, they are

all compatible except g3 and g2: their compatibility is defined dynamically such

that an execute request and a register request are compatible only if they do not

affect the same identifier.

In order to support ABS conditional guards (await on conditions), for each

guard g, we generate a method condition g that takes as parameters the needed

local variables x11. The method body can normally access the fields of the object

this. A condition evaluation g is defined as follows:

condition g(x) = while(¬g) skip;return null

We formally define the ABS suspend statement the same as conditions but

with a condition that is always true. We define an execute condition method in

the COG class that generically executes generated condition methods. The exe-

cute condition method has its own group with an infinite thread limit because

any number of conditions can evaluate in parallel. Thus, we have the following

additional information:

group(execute condition) = g4 Lg4 =∞

11If guards were not monotonic, we would have to check again the condition when the thread
that waits is resumed (at this point no other thread can interfere with the object state). In that
case, the conjunctive guards are expressed as a set of guards on futures (monotonic by nature)
plus a single conditional expression guard (possibly containing conjunction).
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Restrictions of the Translation

We define four specific restrictions on the translation. Firstly, MultiASP ensures

causal ordering of communications with a small rendez-vous that precedes all asyn-

chronous method calls: the request is dropped in the remote request queue syn-

chronously. This brief synchronisation does not exist in ABS where requests can

arrive in any order. The differences between communication channels in active ob-

ject languages are discussed in Section 2.5. We will reason on
a
→, the ABS semantics

with rendez-vous communications, where the message sending and reception rule

is replaced by the Rendez-vous-Comm rule:

ABS

Rendez-vous-Comm

fresh(f) i′ β = JeKAa+l v = JeKAa+l p′′ = bind(i′ β, f,m, v,class(o′))
ob(i α, a,{l∣x = e!m(e); s}, q) ob(i′ β, a′, p′, q′)

a→ ob(i α, a,{l∣x = f ; s}, q) ob(i′ β, a′, p′, q′ ∪ p′′) fut(f,�)

Secondly, in MultiASP, while thread activation can happen in any order, the or-

der in which requests are served is FIFO by default instead of the non-deterministic

activation of a thread featured by ABS semantics. In both the Java backend for

ABS and the developed ProActive backend, activation and request service are FIFO,

although ProActive supports the definition of different policies through multiactive

object annotations [3]. Consequently, we only reason on executions that enforce a

FIFO policy, i.e. executions that serve requests and restore them in a FIFO or-

der. Thirdly, the proof does not deal with local synchronous method invocations.

Considering them would make entangled proofs and would bring no particular

insight on the translation, because this part is similar to the Java backend for

ABS. Finally, the restriction of Theorem 4.3.5 on future’s values not being a future

reference is further detailed in Section 4.4.

4.3.4 Formalisation of Equivalence

In this subsection, we present an equivalence relation that defines the conditions

under which aMultiASP configuration is considered to be equivalent to an ABS con-

figuration. Secondly, we give the lemmas on which we rely for the proof of cor-
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rectness of the translation. Finally, we present in details the two theorems that

represent the correctness of the translation.

Beforehand, let us define precisely our methodology and give a brief insight

into our results. The two presented theorems state under which conditions the

operational semantics of the two languages simulates each other (we have one the-

orem for each direction of the simulation). We achieve the proofs of the theorems

in terms of weak simulation in the two cases. The weak simulation is due to the

additional steps that we must add to the simulation in order to ensure an eventual

equivalence of configurations. However, our results can be considered stronger

than the light guarantees given by a weak simulation. Indeed, all the steps that

we add in both simulations are deterministic, and none of them modify other ac-

tivities. Thus, the added steps in the simulations never introduce concurrency.

In this case, considering these steps as not observable in a simulation does not

jeopardise the theorems. Thanks to this determinism in the added steps, most of

the relevant properties that are proven on the source program still remain valid in

the translated program. Consequently, the way the two languages simulate each

other (in both directions) gives much more guarantees than a weak simulation,

even if technically it remains as such.

Equivalence Relation

We define an equivalence relation R between MultiASP and ABS terms. This

equivalence relation aims at proving that any single step of one calculus can be

simulated by a sequence of steps in the other. This is similar to the proof in [DP15].

In particular, we use the same observation notion: processes are observed based on

remote method invocations. The equivalence relation R is split into three parts:

equivalence of values, equivalence of statements, and equivalence of configurations.

In the following, we always refer to the notation Cn for an ABS configuration and

to the notation Cn for a MultiASP configuration.

Definition 2 (Equivalence of values). ≈Cn
σ is an equivalence relation between values

(or between a value and a storable), in the context of a MultiASP store σ and of

an ABS configuration Cn, such that:
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v ≈Cn
σ v f ≈Cn

σ f i α ≈Cn
σ [cog↦ α, Id↦ i, x↦ v′]

v ≈σ σ(o)
v ≈Cn

σ o

fut(f, v′) ∈ Cn v′ ≈Cn
σ v

f ≈Cn
σ v

Runtime values in ABS are either (global) object references, future references

or primitive values. The equivalence relation ≈Cn
σ specifies that two identical values

or futures are equivalent if they are the same. Otherwise, an object is characterised

by its identifier and its cog name. The two last cases are more interesting and

are necessary because of the difference between the future update mechanisms of

ABS and MultiASP. First, the equivalence can follow as many local indirections in

the store as necessary. Second, the equivalence can also follow future references in

ABS, because a future might have been updated transparently in MultiASP while

in ABS the explicit future read has not been performed yet.

Definition 3 (Equivalence of statements). Furthermore, we have an equivalence

on statements s ≈Cn
(σ+ℓ′)

s′ iff :

− either JsK = s′

− or s = (x = v; s1) ∧ s′ = (x = e; Js1K) with v ≈Cn
σ JeK(σ+ℓ′)

In other words, two MultiASP and ABS statements are equivalent if one is the

translation of the other. Or, two statements are equivalent if both statements

start with an assignment of equivalent values to the same variable, followed by

equivalent statements.

Definition 4 (Equivalence of configurations). Finally, ABS configuration Cn and

MultiASP configuration Cn are equivalent, written Cn R Cn, iff the condition

shown in Figure 4.12 holds.

In more details, the equivalence condition of Figure 4.12 globally considers

three cases, explained below:

– The first five lines deal with equivalence of cogs. This case compares both

activity content and activity requests on the ABS and MultiASP sides:
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1 ∃a. cog(α, a) ∈ Cn iff ∃oα, σ, p,Rq. act(α, oα, σ, p,Rq) ∈ Cn with

2 ∃v, p′, q.ob(i α,ÐÐ⇀x↦v, p′, q)∈Cn iff ∃o, v′. σ(o)=[cog↦α,myId↦ i,
ÐÐÐ⇀
x↦v′] with

3 v ≈Cn
σ v′ ∧

4 ( ∃l, s. p′ = {l∣s} iff ∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′. ((f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p
∧ ℓ′(this) = o) with ∀x ∈ dom(l)/destiny. l(x) ≈Cn

σ ℓ′(x) ∧ l(destiny) = f) ∧ s ≈Cn
σ+ℓ′ s

′ ) ∧

5 ∀f.
⎛
⎜⎜⎜⎜
⎝

(∃l, s.({l∣s} ∈ q ∧ l(destiny) = f) iff
∃i,m, v′′, ℓ′, s′, ℓ′′, s′′.( ((f, execute, i,m, v′′)P ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p ∧ ℓ′(this) = o)
∨ ((f, execute, i,m, v′′) ∈ Rq ∧ oα.retrieve(i)=o ∧ bind(o,m, v′′) = {ℓ′∣s′}) )
with (∀x ∈ dom(l)/destiny. l(x) ≈Cn

σ ℓ′(x)) ∧ s ≈Cn
σ+ℓ′ s

′)

⎞
⎟⎟⎟⎟
⎠

6 fut(f, v) ∈ Cn iff ∃v′, σ. (fut(f, v′, σ) ∈ Cn ∧Method(f) = execute) with v ≈Cn
σ v′

7 fut(f,�) ∈ Cn iff fut(f,�) ∈ Cn ∧Method(f) = execute

Figure 4.12 – Condition of equivalence between ABS and MultiASP configurations.
We use the following notation: ∃y.P iff ∃x.Q with R means (∃y.P iff ∃x.Q) ∧
∀x, y.P ∧Q⇒ R. This allows R to refer to x and y. Finally, Method(f) returns
the method of the request corresponding to future f .

● To compare activity content (Lines 1-3), we rely on the fact that activities

have the same name in ABS and in MultiASP. Each ABS object ob must

correspond to one equivalent MultiASP object in the equivalent activity α.

The object equivalent to ob must (i) be in the store, (ii) reference α as its

cog, (iii) have i as identifier (because the corresponding ABS identifier is

i α), and (iv) have the other fields equivalent to the ones of ob.

● To compare the requests of an activity, we need to compare the tasks that ex-

ist in ABS ob terms to the tasks that exist in the corresponding MultiASP act

terms. We consider again two cases:

1. Either the task is active (Line 4), and the single active task of ob in

ABS (in p′) must have exactly one equivalent active task inMultiASP (in

p). InMultiASP, this task must have two elements in the current stack12:

the call to the cog (the execute call) and the stacked call that redi-

rected to the targeted object o, where o is equivalent to ob. In addition,

values of local variables must be equivalent, except destiny that must

correspond to the future of the MultiASP request. Finally, the current

12In the proof, we only deal with asynchronous method calls for lightening it (the synchronous
case is the composition of an asynchronous method call and of the get statement). In this case,
we know that the stack never contains more than two elements.
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thread of the two tasks must be equivalent according to the equivalence

on statement.

2. Otherwise the task is inactive (Line 5), and two cases are possible. Ei-

ther the task has already started and has been interrupted: it is passive.

In this case, the comparison is similar to the active task comparison

above. Or the task has not started yet: there must be a corresponding

task in the request queue Rq of the MultiASP active object α, and we

check that (i) the future is equivalent, (ii) the invoked object o is equiv-

alent to ob, and (iii) the method body retrieved by the bind predicate

is equivalent to the ABS task.

– Line 6 deals with the equivalence of resolved futures. A future’s value in

MultiASP refers to its local store. Two resolved futures are equivalent if their

values are equivalent. In MultiASP, only futures from execute method calls are

considered, because they represent the applicative method calls.

– Line 7 deals with the equivalence of unresolved futures. In that case, the two

futures must be unresolved to ensure equivalence.

Overall, the association of the equivalence of values (Definition 2), the equiva-

lence of statements (Definition 3), and the equivalence of ABS and MultiASP con-

figurations (Definition 4), forms the global equivalence relation R. We rely on

equivalence R to prove that our systematic translation of ABS programs into

MultiASP programs is correct.

Preliminary Lemmas

Firstly, we define some notations and naming conventions. In order to establish

a proper link between ABS and MultiASP semantics, we identify activity names

of MultiASP with cog names (ranged over by α, β). Second, object locations are

valid only locally in MultiASP and globally in ABS, their equivalent global refer-

ence is the pair (activity name, identifier). We suppose that each object name

in ABS is of the form i α where α is the name of the cog where the object is

created, and where i is unique locally in activity α. The semantics then allows

us to choose the MultiASP identifier Id and i such that they are equal. In gen-
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eral, terms like Cn range over ABS configurations and terms like Cn range over

MultiASP configurations.

Secondly, we define some lemmas that help us establishing the equivalence

in the simulation. The proofs of the lemmas we present below can be found in

Appendix A.1.

Lemma 4.3.1 (Correspondence of activated objects). In an ABS configuration,

if an object ob has an active request that is not idle, then there exists a cog in

which ob is the current active object.

ob(i α,ÐÐ⇀x↦v, p, q)∈Cn ∧ p ≠ idle⇒ cog(α, i α) ∈ Cn

Lemma 4.3.2 (Equivalence of values).

v ≈Cn
σ v′ ⇒ v ≈Cn

σ Jv′K

Lemma 4.3.3 (Equivalence of evaluation functions). Let Cn be an ABS configura-

tion and suppose Cn R Cn. Let ob(o α, a,{l∣s}, q) ∈ Cn. By definition of R, there

exists a single activity act(α, oα, σ, p,Rq) ∈ Cn, with σ(o) = [cog↦α,myId ↦ i, a′]
and (f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p ∧ ℓ′(this) = o. For any ABS ex-

pression e we have:

JeKAa+l ≈
Cn
σ JeKσ+ℓ′

Lastly, the serialisation mechanism, together with the renaming of local references,

are crucial points of difference between ABS and MultiASP. We need Lemma 4.3.4

to deal with the serialisation and the renaming aspects, that are essential in a

distributed context.

Lemma 4.3.4 (Equivalence after serialisation and renaming).

v ≈Cn
σ v′ ∧ σ′ = serialise(σ, v′) ⇒ v ≈Cn

σ′ v′

v ≈Cn
σ v′ ∧ (v′′, σ′) = renameσ(v′, σ) ⇒ v ≈Cn

σ′ v′′

Besides the introduced lemmas, in order to deal with the proof of Theorem 4.3.5,

we rely on the fact that all ABS objects are locally registered in their cog, and

we define an invariant for that:



132CHAPTER 4. FROMMODELLING TODEPLOYMENTOF ACTIVE OBJECTS

Invariant Reg. For every activity α such that oα is the location of the active

object of activity α in its store σα, if the current task consists in an invocation

to oα.retrieve(i), then this invocation always succeeds, because the object has been

registered first. The invocation returns some object o′ such that i α ≈Cn
σ o′.

In conclusion, we use the correspondence of activated objects (Lemma 4.3.1),

the equivalence of values (Lemma 4.3.2), the equivalence of evaluation functions

(Lemma 4.3.3), the holding of equivalence after serialisation and renaming (Lemma

4.3.4), and the invariant on the accessibility of an object (Invariant Reg) in order

to prove Theorem 4.3.5 and Theorem 4.3.6, that are defined below.

Theorems

In order to prove the correctness of the translation from ABS to MultiASP, we

prove two theorems. The two theorems exactly specify under which conditions

each semantics simulates the other.

Theorem 4.3.5 (ABS to MultiASP). The translation simulates all ABS executions

with FIFO policy and rendez-vous communications, provided that no future value

is a future reference.

Cn0
a→
∗
Cn with a FIFO policy ∧∄f, f ′. fut(f, f ′)∈Cn ⇒ ∃Cn.Cn0→∗Cn ∧ CnRCn

Theorem 4.3.6 (MultiASP to ABS). Any reduction of the MultiASP translation

corresponds to a valid ABS execution.

Cn0 →∗ Cn⇒ ∃Cn.Cn0
a→
∗
Cn ∧CnRCn

The theorems are proven in Appendix A.2. We focus the proof on the less triv-

ial and most informative theorem: the proof that all ABS executions with FIFO

policy and rendez-vous based communications are simulated by MultiASP execu-

tions. This proof is completely realised in the sense that it exhaustively considers

all reduction rules of the ABS semantics. For the second proof, stating that a

MultiASP translation corresponds to a valid ABS execution, we expose the differ-

ences and similarities compared to the first proof and we conclude accordingly.

Globally, we are able to simulate the program execution in the other language.

Additional steps are introduced in the MultiASP translation, which we refer to as

silent actions, because they are always local and they never introduce concurrency.
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This is precisely why the equivalence relation R has to be adapted for the proof

of Theorem 4.3.6. The next section summarises our methodology for the proofs of

the two theorems and highlight our main results.

4.4 Translation Feedback and Insights

This chapter presented an approach for translating the paradigms of active object

languages with cooperative scheduling into an efficient setting of multiactive ob-

jects. We have first introduced the ProActive backend for ABS, a fully implemented

tool that automatically translates an ABS program into a ProActive program, and

allows it to be executed in a distributed environment. We have presented the cru-

cial points of the translation, related to the difference of active object paradigms,

that were introduced in Section 2.2. These differences impact the object instan-

tiation and addressing, the asynchronous remote method invocations, and the

scheduling of active object requests. We have formalised the translation using

MultiASP, the calculus of ProActive. We have extended MultiASP so that it could

take into account the advanced scheduling mechanisms introduced in Chapter 3.

By using MultiASP and the semantics of ABS, we could establish the translational

semantics, and we could prove the correctness of the translation, through the proof

of two well-defined theorems, and under specific restrictions. These restrictions are

however not major because the translation still cope with them and produce cor-

rect results. Moreover, the restrictions can be overcome with simple workarounds,

although we do not apply these in order to be able to compare better the languages.

The most informative result of this work rises from the proofs and from the

establishment of the equivalence of execution between the two active object lan-

guages. Because we used the simulation technique to formalise the translation, we

had to decide on which actions would be observable in the simulation. In our case,

we show in the proof that ABS request sending is simulated exactly in MultiASP,

and conversely. This is also true for method return, object creation, and field as-

signment. The most striking example of an observable reduction in ABS that is not

observable in MultiASP is the update of a future with its computed value. Indeed,

the transparency of futures and of future updates create an intrinsic difference

between the two programming languages. This is why, in the first proven theorem,
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we exclude the possibility to have a future’s value being a future in the ABS con-

figuration. Other ABS reductions can be observed in a MultiASP translation, but

not exactly. For example, the local assignments are not exactly observable because

of the existence of temporary variables in the MultiASP translation. Consequently,

assignments to ABS local variables can be exactly observed in MultiASP, but the

reverse is not ensured. Also, asynchronous method invocations are only observable

the applicative ABS requests, that can be filtered in the MultiASP translation by

looking at the name of the requests.

Identifying the differences of observability between active object languages is

a major result: it gives a significant insight on the design of programming lan-

guages. The reason why we could define this observational difference is because

we chose a faithful translational approach that matches the elements of ABS and

MultiASP configurations in a one-to-one way, as much as possible. Indeed, ABS re-

quests correspond to MultiASP requests, ABS objects correspond to MultiASP ob-

jects, and ABS futures correspond to MultiASP futures. Then, the divergent no-

tions could be spotted more easily thanks to our faithful translation.

To conclude, we summarise in five key points below the highlights of this work

on the translation and on the proofs. In particular, we summarise the princi-

ples of the equivalence between MultiASP and ABS configurations and the specific

differences between the two active object languages, and we contextualise the re-

strictions of the proof.

Communication and ordering of request service. The semantics of ABS relies on

completely asynchronous communication channels while MultiASP ensures

causal ordering of requests (see discussion about communication channels

in Section 2.5). The equivalence can only be valid for the specific ABS re-

ductions that preserve causal ordering of requests. Also, MultiASP serves

requests in FIFO order, so similarly we apply a FIFO service policy of ABS re-

quests. These restrictions already exist in the Java backend for ABS. And

here, we notice that these differences are more related to request scheduling

policies and to communication channels than to the nature of the two active

object languages.

Shallow translation. ABS requests, cogs and futures respectively matchMultiASP re-
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quests, active objects and futures. Likewise, in the translation for each

ABS object there exist several copies of this object in MultiASP. All copies

share the same cog and the same identifier, but only one of these copies (the

one that is hosted in the right cog/activity) is equivalent to the ABS object.

Futures. Because of the difference between the future update mechanism of

ABS and the one of MultiASP, the equivalence relation between ABS and

MultiASP configurations can follow as many local future indirections in the

store as necessary. Firstly, this means that a variable holding a pointer to a

future object in MultiASP is equivalent to the same variable holding directly

the future reference in ABS. Secondly, it means that the equivalence can

follow future references in ABS. This is because a future might have been

updated transparently in MultiASP while in ABS, the explicit future read has

not been performed yet.

Equating MultiASP and ABS configurations. As mentioned before, a crucial

part of the proof of correctness consists in stating whether an ABS and a

MultiASP configuration are considered equivalent. The principles of this

equivalence are summarised hereafter. The objects are identified by their

identifier and their cog name, and the equivalence can follow futures. This

has already been detailed in the two previous paragraphs. The equivalence

between requests distinguishes two cases. First, for active tasks, there is

a single active task per cog in ABS and it must correspond to the single

active thread serving an execute request in MultiASP. The second element

in the stack of method calls corresponds to the invoked request. Second,

inactive tasks in ABS correspond either to passive requests being currently

interrupted or to requests that have not been served yet in MultiASP. For

each task, the equivalence of executed statements, of local variables, and of

the corresponding future is checked.

Observational equivalence. The precise formulation of Theorem 4.3.5 and Theo-

rem 4.3.6 shows that the ABS behaviour is faithfully simulated by our trans-

lation and conversely. This is proven by adequately choosing the observ-

able and not observable actions in the weak simulation (we call the latter
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silent actions). For example, in ABS the configurations (i) fut(f, f ′) fut(f ′,�)
and the configuration (ii) fut(f,�) are observationally different, whereas in

MultiASP they are not. Thus, transparency of futures and of future updates

create an intrinsic an unavoidable difference between the two active object

languages. However, this is not a major restriction on expressiveness because

it is still possible to have a wrapper for futures values: a future value that is

an object containing a future. Designing such an encoding could have been

possible, but it would have broken the one-to-one mapping between ABS and

MultiASP futures. We chose to preserve the shallow translation instead.

A particular note can also be made on distributed future updates. In the simu-

lation of MultiASP in ABS (Theorem 4.3.6), one issue is that the distributed future

update mechanism of MultiASP cannot be strictly faithfully represented in ABS, al-

though workarounds can be used in order to still ensure equivalence. The problem

arises when futures are transmitted between activities, for example when a future

is a parameter of a request sent to another activity. In this case in MultiASP, two

proxies for the same future will exist in the store of the two activities, whereas only

one centralised future exists in ABS. This situation can create intermediate states

in MultiASP where the future value is available but not completely propagated to

all the locations where the future has been transmitted. This can create behaviours

that are not possible to reach in ABS, because a future update is atomically made

available to all activities referencing the future. Consequently, enforcing an atomic

future update in MultiASP would directly solve the issue. However, this is not a

realistic setting in a distributed context. In MultiASP, we choose to copy futures

and to propagate their value when they are available in an asynchronous manner.

This is a design that is adapted to distribution. If a centralised representation of a

future should be maintained, the performance of distributed applications would be

too poor because first, this would bring additional communications to access the

future’s value and second, a future would represent a potential bottleneck. The

solution we advocate for handling the difference in the future update mechanism

of the two languages is to rely on forward-based future updates. In this approach,

the value of a future is transmitted from activity to activity in a chaining man-

ner, as many times as the future was transmitted in the first place. If we extend
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the restriction of having FIFO communication channels to the transmission of fu-

ture values (instead of just having this restriction for request sending), then we

extend the causal ordering of messages so that it also applies to future updates.

This prevents any observable inconsistency in the future updates. This solution

also ensures a correct behaviour with respect to the possible behaviours in ABS,

because any operation made on a resolved future would arrive after the update

operation. Still, this solution avoids blocking the original activity until the future’s

value is propagated to all the locations where the future was transmitted. Thus,

it seems a reasonable and relevant solution in a distributed context.

Overall, our translational semantics fully respects the ABS semantics and sim-

ulates exactly all ABS executions that comply to the aforementioned restrictions.

The restrictions are quite light, since either they already exist in the Java backend

for ABS, or they can easily be coped with.

∗ ∗ ∗

A similar work to this one [Ser+16] is being conducted and aims at simulating

the ABS semantics with the paradigms of Java 8, by implementing a lightweight

thread continuation mechanism (representative of cooperative scheduling). This

work makes a particular focus on efficiency, as opposed to the seminal Java backend

for ABS. Preliminary results [1] showed that the Java 8 backend for ABS can scale

much better than the existing Java backend, in number of cogs in local execution

environments, i.e. in number of threads collocated on the same machine.

Another backend for ABS, the Haskell backend [BB16] focuses like our work on

a distributed translation of ABS programs. As opposed to Java-based backends,

lightweight thread continuations are natively available in Haskell, which makes

the Haskell backend for ABS very efficient even with a high degree of local paral-

lelism: much more cogs can be hosted on the same machine than with programs

generated by the ProActive backend. In this work, the ABS compiler is extended

to integrate the notion of deployment components within the ABS language. The

Haskell backend for ABS also has support for garbage collection of distributed

objects, built on top of the Haskell garbage collector. In ProActive, activation

of distributed garbage collection is optional, but it less crucial since all passive
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objects are normally garbage collected by the garbage collector of the JVM. Nev-

ertheless, to the best of our knowledge, the ProActive backend for ABS is the only

backend that generates a distributed and executable code that is formally proven

to be correct with respect to the ABS semantics.

In general, the effort to port our results to other active object languages de-

pends on the application domain they are the closest to: an active object language

that is close to ProActive will certainly be easier to translate. The active objects

languages that feature the same language constructs as ABS also are very easy

to adapt for the translation. Typically, because of their similarities with ABS,

and because we base the translation on the different aspects of the language, our

work can be straightforwardly adapted to any active object language featuring

cooperative scheduling. For example, adapting our work to Creol or JCoBox raises

no difficulty, and porting our results on AmbientTalk only requires minor design

adaptation. Similarly, the whole part of Encore that regards objects and thread

scheduling is straightforwardly translatable with our approach. Overall, we have

found that active object abstractions are most often a special instance of multiac-

tive objects. This already proves the expressiveness of this programming model.

All active object languages share the same basis but show them under different

abstractions. The intrinsic differences between active object-based programming

languages define what is possible and not possible to do with the language. The

range of possibilities is often defined at design time, and is hardly re-adaptable once

a choice has been made. This is why this work should help the designers of active

object languages, and more generally, the designers of concurrent programming

constructs and abstractions. Indeed, we have given in this chapter all the means to

design and implement efficient distributed active object languages, dominated by

three aspects that are object addressing, request scheduling, and synchronisation.
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Beyond the adequacy of an active object programming language with the ex-

pectation of the programmer in terms of functionalities (language constructs, sup-

ported execution platforms), what attracts and retains the programmer is the

quality of the tool set that is built around the programming language, that facili-

tates the development and the execution of applications. This is especially true for

the languages and frameworks that offer distributed execution and massive paral-

lelism: abstract away the complexity of an application deployment and help with

the debugging of concurrent events. In this chapter, we focus on non functional

139
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aspects of the multiactive object programming model. Non functional aspects rep-

resent the parts of an application that are not relevant to its business logic, but

that help the application to reach its objectives. We start by introducing how

non functional aspects of a distributed application are handled by the ProActive li-

brary. Then, we present a debugger tool that helps the programmer spotting what

happens in parallel in an application that is built with multiactive objects. The

advantage of this tool is that it is well integrated with multiactive object notions.

Finally, we take interest in the reliable execution of distributed multiactive objects,

by adapting a fault tolerance protocol, and by giving directions for future work.

5.1 Context: ProActive Technical Services

The main purpose of the ProActive library is to execute on distributed infrastruc-

tures such as clusters, grids and clouds. As such, setting a suitable environment

for the execution of a distributed application is a costly operation. In order to ease

the deployment phase, ProActive provides a model that is based on deployment

descriptors. The objective of the deployment model of ProActive is to decouple the

business logic of the application from the infrastrcuture that supports it. This way,

deployment descriptors can be modified at will without requiring the modification,

the re-compilation and the re-deployment of the application. Along with the de-

ployment model, deployment descriptors can be attached additional capabilities

that regard the non functional aspects of applications, especially fault tolerance,

communication security, load balancing, logging. The concept of defining non

functional requirements for a particular deployment is known in ProActive as a

technical service [CCD07], and is part of the Grid Component Model of ProAc-

tive [Bau+09]. The general objective of technical services is to increase the quality

of service of distributed ProActive applications.

In practice, ProActive deployment and technical services appear in configuration

files (XML files). The first step of the configuration of a deployment is to define the

virtual nodes that are involved in the distributed execution. The concept of virtual

nodes abstracts the physical machines such that they can be generically accessed

in the ProActive program, that is without their physical location being solved

in the program. Virtual nodes define a capacity on the number of JVMs/active
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objects they can host. The concept of virtual nodes also enables a clusterised

configuration of distributed entities. More precisely, when technical services are

attached to virtual nodes, they apply to all active objects that are deployed on

them. An example of configuration of a virtual node with two technical services

is displayed on Listing 5.1.

GCM/ProActive1 <virtualNode id=’node_identifier’ capacity=’1’>

2 <technicalServices>

3 <class name=’TechnicalServiceOneClass’>

4 <property name=’first_name_TS1’ value=’first_value_TS1’ />

5 <property name=’second_name_TS1’ value=’second_value_TS1’ />

6 </class>

7 <class name=’TechnicalServiceTwoClass’>

8 <property name=’name_TS2’ value=’value_TS2’ />

9 </class>

10 </technicalServices>

11 </virtualNode>

Listing 5.1 – Configuration of a virtual node with two technical services.

The configuration file gives the list of technical services that apply to all the

active objects that are deployed on the virtual node. The virtual node can be refer-

enced in the ProActive program through the given identifier (here node identifier).

The ProActive class corresponding to the technical service must be mentioned, as

well as all the parameters that are needed by the technical service, using key-value

pairs. Then, the behaviour of the technical service must be programmed in the

corresponding ProActive class, where the given parameters and their value can be

accessed. Non functional aspects have been engineered in ProActive such that new

technical services can be easily added to the library.

Another aspect of ProActive is to support the specification of non functional re-

quirements for componentised applications [Hen+14]. Such non functional aspects

are related to the application lifecycle and they are handled by non functional

components. However, non functional components involve concerns that are dif-

ferent from the ones of technical services. They apply at the application level, like

the reconfiguration of the application, or its replication, whereas technical services

deal with low-level aspects: they do not require the adaptation of the application,

but of the middleware instead.
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In the next two sections, we present two non functional aspects that we have

developed as technical services: they can be added to an application deployment,

and parametrised without requiring the re-compilation of the ProActive applica-

tion.

5.2 A Debugger for Multiactive Objects

The multiactive object programming model is designed such that there is a mini-

mum specification to be written by the programmer. The minimal specification of

a multiactive object-based application is the compatibility between the requests.

Then, the default values for the scheduling of requests suits to most of applica-

tions and give an acceptable performance. However, multiactive objects are also

very good for programming systems that need a precise coordination of entities

or massive parallelism. For these advanced cases, the default configuration needs

to be tuned and to be specifically adapted to the use case in order to hit a high

performance. In this context, using advanced multiactive object settings is a diffi-

cult task. Indeed, the multiactive object programming model is highly concurrent:

multiactive objects executes concurrently and also have intra-concurrency. Even

if safety is guaranteed to the application by design (if the model is correctly used),

reasoning clearly about the obtained performance is not trivial: listing the set of

events that can happen concurrently is already beyond human brain with a few

parallel entities.

The objective of the work that is presented in this section is to provide a tool

to understand complex multiactive object executions and help in debugging them,

in terms of concurrent events. To this end, relevant information is first extracted

from the execution of a multiactive object-based application via logging. Second,

a debugger tool reads this information and displays the execution of the multi-

active objects with notions that stick to the programming model. Especially, in

multiactive object executions the flow of concurrent events can create an awkward

situation, so we put a particular effort in representing time in the debugger tool

with accurate time lines. Our debugger provides a post-mortem feedback: the ex-

ecution is visible when the application is terminated. However, we give the means

to adapt it to a real time monitoring easily and efficiently. This work has been
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Figure 5.1 – Usage flow of the debugger for multiactive objects.

conducted with Pavlo Khvorostov, who has worked on the implementation of the

tool.

5.2.1 Visualisation of Multiactive Object Notions

To develop the multiactive object debugger, we have adapted a part of the ProAc-

tive library in order to log and to collect the information needed by the debugger.

The basic information that needs to be logged about a multiactive object execution

relates to the lifecycle of requests: when a request is sent and from which activ-

ity, when a request is received, served, paused, resumed, and finished. Once the

required logs are produced by the library, they can be aggregated and interpreted

by our debugger tool. Figure 5.1 shows a typical usage of the debugger tool. First,

the programmer activates the technical service for logging debug information, by

specifying it along with its application deployment. Second, the programmer ex-

ecutes its application, like he would usually do. Then, the programmer uses the

debugger tool to view the application’s execution, by giving as an input the log

files that have been produced during execution.

The ProActive library is extended to produce three kinds of logs required by

the debugger tool, as shown in Figure 5.2. Active object logs are meant to trace

threads and associate them to a multiactive object. Request logs save the needed

information to infer the complete lifecycle of a request. Finally, compatibility logs

involve the information that is related to multiactive object notions. We introduce

a new technical service in ProActive, whose purpose is to manage the logging of

information.

GCM/ProActive1 <technicalServices>
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Figure 5.2 – Production and gathering of multiactive object information.

2 <class name=’LoggingTechnicalService’>

3 <property name=’url_to_log_file’ value=’URL’ />

4 <property name=’is_enabled’ value=’true’ />

5 </class>

6 </technicalServices>

Listing 5.2 – Specification of the logging technical service.

An example of usage of the logging technical service is shown in Listing 5.2.

This technical service accepts two parameters: whether the logging mechanism is

activated, and the location of the log files in the local file system of the node. The

LoggingTechnicalService class, whose code is displayed in Listing 5.3, shows

the code of the technical service on the library side. In particular, it applies the

location of log files as a property of the virtual node on which the active object is

deployed, and it sets a boolean value that will activate or deactivate the logging

mechanism at different parts of the ProActive library.

ProActive1 public class LoggerTechnicalService implements TechnicalService {

2

3 private static final long serialVersionUID = 1L;

4 public static final String IS_ENABLED = "is_enabled";
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5 public static final String URL_TO_LOG_FOLDER = "url_to_log_file";

6 private boolean isEnabled;

7 private String logUrl;

8

9 @Override

10 public void init(Map<String, String> argValues) {

11 this.isEnabled = Boolean.parseBoolean(argValues.get(IS_ENABLED));

12 this.logUrl = argValues.get(URL_TO_LOG_FOLDER);

13 }

14

15 @Override

16 public void apply(Node node) {

17 try {

18 if (isEnabled) {

19 node.setProperty(IS_ENABLED, Boolean.toString(isEnabled));

20 node.setProperty(URL_TO_LOG_FOLDER, logUrl);

21 }

22 } catch (ProActiveException e) {

23 e.printStackTrace();

24 }

25 }

26 }

Listing 5.3 – Technical service class for logging.

The first step of the debugger tool is to ask the user to select a location where

the log files can be loaded. Then, the debugger tool builds a data model from the

logs, in order to link efficiently the different information. This step is likened to an

in-memory loading of serialised data. We implement the loading phase such that

the log files are read in parallel. This is possible because the order in which the file

are read is not significant. Depending on the number of events that are involved in

the application, treating the logs in parallel is useful to avoid some latency when

using debugger tool. Figure 5.2 shows the main components of the data model

of the debugger tool: multiactive objects are displayed sequentially and, within a

multiactive object, its threads are also displayed sequentially. As requests execute

on threads, a thread is represented by a sequence of requests. A screenshot of

the debugger tool is displayed on Figure 5.3; it shows the main frame of the tool.

The threads of a multiactive object (labelled in green) alternate yellow and blue
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Figure 5.3 – The main frame of the debugger tool.

sections to distinguish two requests that are next to each other. The idle time of a

thread is shown in white. In addition to display the components of the data model,

Figure 5.3 shows how the debugger tool represents the communications between

multiactive objects: an arrow is drawn from the thread that created a request to the

thread that processed the request (on the same or on different multiactive objects).

As every event is timestamped, the way the event is displayed is representative

of the duration of the event. A mouseover on a request displays the name of the

request, the identity of the sender, and the timestamp of its reception.

Besides displaying execution information, the debugger tool offers controls in

order to re-organise the components of the frame: active objects can be swapped

or moved to the top thanks to arrow-shaped controls. The threads of a multi-

active object can also be packed on the same time line in order to save vertical

space, thanks to the red/green lock, as can be seen with the last active object

of Figure 5.3. In this case, only the idle/busy time of the multiactive object can

be distinguished. Our implementation of the debugger tool also offer various cus-

tomisation possibilities such as zoom, scroll, undo, clear events, focus on a selected
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Figure 5.4 – Listing of requests for a given multiactive object and compatibility
information.

request, and automatic re-ordering.

The added value of the multiative object debugger is to view the information

that is related to multiactive object notions. In particular, we are interested in

the compatibility of the requests. A selected request is highlighted with a border.

On demand of the user, the debugger tool can highlight the compatibility of the

request with respect to others. The full information about a request can also be

displayed in a pop-up frame, as shown on Figure 5.4 (taken from [Khv15]). This

precise listing of requests is meant to focus on a particular timestamp: the requests

that are being executed at this timestamp are displayed in green; the requests that

are in the queue are in blue; the completed requests are in red; finally, the requests

that have been received after the focused timestamp are in white. The pop-up

frame also allows the programmer to focus on a particular request in order to

show its compatibility with respect to the other requests; this is another view

provided by the tool for the same notion shown in the main frame. Since request

compatibilities drive request parallelism, one can detect pretty easily the part of

the multiactive object configuration that led to an unwanted behaviour, and thus

can directly apply the modifications to the configuration in the program.

Since the multiactive object debugger aims at detecting the applications that do

not have an adapted multiactive object setting, it provides a feedback on erroneous

loading of the logs. An error message is displayed to the user, and the path to the

file which caused the error is given. Three kinds of error are rendered to the user.

The ‘wrong file format’ error is shown when the file does not satisfy the format

of the logs. The ‘wrecked file format’ error indicates that the format of the file

is correct, but the information that lies in it is not sound, which may happen in

case of a partial failure of the application. Finally, the ‘request never ends’ error
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Figure 5.5 – Representation of a deadlock by the debugger tool for multiactive
objects.

is precise enough to detect the origin of the error; we show an example of this

error in the next subsection. By default, all ProActive applications produce the

log files that are suitable for the debugger, in the default temporary location. If

the logs cannot be produced for any reason, then the logging mechanism turns off

automatically and silently. Finally, the logging technical service must be used in

order to explicitly turn off the logging mechanism.

5.2.2 Illustrative Use Cases

In this subsection, we show the usefulness of the multiactive object debugger by

reasoning on two common problems of coordinated and concurrent systems: the

case of a deadlock and the case of a data race. In active objects, a deadlock is

generally caused by a circular dependency in nested requests. With multiactive

objects, a deadlock also involves reentrant requests, but it is triggered by a special

constraint on the multiactive object: lack of compatibility or lack of threads.

We show in Figure 5.5 an example of a deadlocked multiactive object execution.

For this execution, the debugger produces the ‘request never ends’ error, that

is displayed for deadlocked executions, but that also can be displayed for other

reasons. More importantly, the debugger displays in red the requests that did not

end, which in our case helps in spotting the reason for the deadlock. In Figure 5.5,

we displayed the communications that occurred between the incriminated requests.

There is indeed a circular communication pattern involved, where active object

First calls a method of active object Second, and where Second makes a request

back to First, that is not executed. Here, two cases are possible: if the request

received by First is not compatible with the request that executes, then it will

never execute. Otherwise, here the deadlock means that there is a lack of threads:
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Figure 5.6 – Fix of a deadlock.

Figure 5.7 – Detection of a data race thanks to the debugger tool.

all threads are busy, and no more can be created. Thus, we can conclude that

the soft thread limit is not activated, because in this case another thread would

compensate the thread that is in wait-by-necessity.

In order to fix a deadlock in a multiactive object execution, one needs to

make sure that nested requests that come back to a sender are compatible with

each other, and that the thread limit of the multiactive object complies with

nested request execution: either the thread limit is at least as big as the maximum

number of callbacks to the multiactive object, or the kind of thread limit must be

a soft thread limit to handle those cases1. Figure 5.6 shows a fixed version of the

deadlocked execution, where no more errors are produced. For this execution, the

thread limit has been kept to one thread, but the kind of thread limit has been

changed to a soft thread limit for multiactive object First.

Another common situation that is source of unwanted behaviours in concurrent

systems is the race conditions. In this situation, the state of the system basically

1Alternatively, the kind of thread limit can remain strict (hard limit), but then the program-
mer must set the reentrance parameter of the multiactive object, in order to process reentrant
requests on the same thread.
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depends on the uncontrollable order of events. One possible setting in which a

race condition can occur is when a single variable is modified and read by many

threads. We have created the particular setting in which an active object holds

a variable that can be accessed (written and read) by many other active objects.

Since it is an active object that holds this variable, there cannot exist a data race

on this variable. However, the order in which the reads and writes are performed

depends on concurrent request sendings. We have analysed the situation with our

tool, as shown in Figure 5.7. The red arrows are added on the picture in order to

show our interpretation of the execution; they do not belong to the graphical frame

of the debugger tool. The MainDataRace object is responsible for orchestrating

the application. The DataHolder object contains the single variable that can be

accessed concurrently by three RaceExecutor objects. In the particular execution

that is shown in Figure 5.7, we can see that the reading of the variable happens in

between the first and second writing of the variable. Consequently the value that

is read cannot reflect the last written value. Knowing what sequence of actions is

performed by an active object is very informative for the programmer. Note that

since the debugger gives a faithful representation of time, the debugger tool can

also help in spotting race conditions that happen within a multiactive object.

To conclude, the debugger tool that we have developed is completely integrated

with the notions of multiactive objects. Going back and forth from the application

to the debugger is simpler than doing so with existing debugging tools. For exam-

ple, YourKit [Gmb03] is a powerful profiler of Java programs. It gives a holistic

description of an application’s execution, such as standard CPU monitoring to

memory leaks. However, it cannot reveal a particular multiactive object setting.

In the context of multiactive objects, this kind of debuggers forces the program-

mer to match the threads to multiactive objects by himself. With our debugger,

the threads are automatically matched to multiactive objects, which enables a

more comprehensive representation. Also, besides helping in solving true bugs of

the application, the multiactive object debugger can also help in determining its

bottlenecks, and thus improve the optimisation process.
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5.3 A Fault Tolerance Protocol for Multiactive

Objects

By nature, active objects are well adapted to a distributed execution of applica-

tions, thanks to the fact that they communicate with message passing. As stated

many times in the previous chapters, our implementation of multiactive objects,

ProActive, targets distributed environments, like clusters, grids, and clouds. Such

environments are known for being unpredictable and to have a significant failure

rate, that increases along with the scale of the distributed infrastructure [SG10].

As such, providing a fault tolerant distributed execution to multiactive objects is

relevant. A fault tolerant distributed application has the ability to avoid the failure

or to handle the failure one or several entities that participate to the distributed

application.

There are two main ways of dealing with failures: either the initial breakdown

must be avoided or the error that follows a breakdown must be intercepted and

corrected before leading the system to an erroneous state. The first case corre-

sponds to fully specified and proven systems. We rather focus on the second case

of failure management, because distributed systems involve too many parties to be

completely modelled and proven safe. In order to cope with a fault, when the fault

is detected2 two solutions can be considered: either the system backups on a sane

replicated instance of the faulty process, or the system is recovered to a previous,

not faulty state. The right solution to pick often depends on the characteristics of

the system. For example, a good metric is the mean time between failures [Jon87],

but the choice also depends on the application structure: replication can reveal

being costly. In this thesis, we do not focus on replication but rather on the

recovery of faulty applications: fault tolerance is embedded in all instances of a

ProActive application without requiring any modification in the source code. As a

rule of thumb, in the following we always make the assumption that the algorithms

are fully distributed, relying on no centralised authority, if not specified otherwise.

This is a guarantee of scalability.

In order to recover an application from a previous stable state, one need to

2Note that how to detect a fault is out of the scope of this thesis.
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collect the state of all the processes regularly. A collected state of a process is

called a checkpoint. A recovery line is a set of collected states for all the processes,

plus additional information that make this set consistent. Consistency is defined

here as the fact to have a final situation where no messages are lost, and no

messages are duplicated in case of recovery from a consistent recovery line.

In our case, the processes are likened to active objects, so the checkpoint of an

active object consists in a persistent view of the active object’s state. ProActive al-

ready offers resilience and fault tolerance for ProActive applications that are only

composed of active objects. However, the novel implementation of multiactive

objects in the ProActive library breaks the fault tolerance protocol for ProAc-

tive applications that involve multiactive objects, because of their multi-threaded

execution. In this section, we first explain the existing fault tolerance protocol of

ProActive and we detail its limitations in multiactive object settings. Then, we

propose a preliminary adaptation of the protocol that handles the fault tolerance

of multiactive objects for well-defined kinds of applications. Finally, we state the

current limitations of the new protocol and give directions for future work.

5.3.1 Existing Protocol and Limitations

The fault tolerance of ProActive active objects [Bau+05] is based on a hybrid

protocol that combines two protocols for recovering a faulty application: check-

pointing and message logging. A checkpoint is a persistent view of a process at a

given moment in the application’s execution. In our case, a checkpoint represents

the state of an active object at a given moment. Since we focus this section on

the fault tolerant protocol and not on an efficient storage mechanism, we assume a

centralised authority for storing the checkpoints. Checkpointing regularly, which

is, after some timeout, or Time To Checkpoint (TTC), the active objects’ state of

an application enables building up-to-date recovery lines. Then, if an active object

fails, all active objects can be restarted with the states that are available in the

last recovery line3. The checkpointing protocol that is implemented in ProActive is

based on Communication-Induced Checkpointing (CIC). CIC protocols normally

3And not with the state of the last checkpoint, since we are not sure that it is part of a
recovery line.
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Figure 5.8 – Checkpoints are only located in between the processing of two requests.

ensure consistent recovery lines without having to block all the entities during a

checkpoint. To this end, checkpoint indexes are piggybacked on messages, and

the message recipient updates its checkpoint index if it is late compared to the

message’s sender. The consistency of recovery lines is an important property that

prevents the system from restarting from the beginning in case of unsound recov-

ery lines (also known as the domino effect [DBS84]). However, to this end CIC

protocols require that the processes can checkpoint at any time, especially before a

request is received. Since ProActive is a Java library, one of its constraints4 is that

the state of a thread cannot be persisted (the Thread class is not Serializable),

thus checkpointing at any time is not possible. This is the reason why the CIC

protocol has been adapted in ProActive in order to cope with this constraint. In

ProActive, the checkpoint of an active object is always taken when the active ob-

ject does not process a request, i.e. when it is idle or in between the processing

of two requests, because the state of the execution thread is not relevant at this

point. Therefore, when a communication-induced checkpoint must be taken, this

information is flagged to be taken as soon as the current request finishes.

Active object checkpoints are represented on Figure 5.8. Similarly to the rep-

resentation of multiactive object executions given by the debugger introduced in

Section 5.2, each active object is associated to a time-line representation. The

requests that are sent between two active objects are represented with arrows (as

well as replies), and labelled Qi (Ri for replies). The service of a request is repre-

sented with a dashed rectangle on the time-line. In between two request processing

4Actually the constraint of the JVM.
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Figure 5.9 – An orphan request.

(where the time-line is empty), the active object is in a stable state, and we can

see on Figure 5.8 that a checkpoint can be taken there, noted CKPT . The impos-

sibility of taking checkpoint at any time raises two consistency problems regarding

the recovery lines that are built. They are explained below, focusing on requests,

but they apply the same way for replies.

Orphan requests. They represent requests that have been sent by the sender after

the recovery line CKPT n+1, and that have been received by the recipient

before the recovery line CKPT n+1, as shown in Figure 5.9. In case of a

recovery from such a recovery line, the orphan requests are duplicated.

In-transit requests. They represent requests that have been sent by the sender

before the recovery line CKPT n+1, and that have been received by the re-

cipient after the recovery line CKPT n+1, as shown in Figure 5.10. In case of

a recovery from such a recovery line, the in-transit requests are lost.

In order to solve these problems, an additional message logging mechanism

has been implemented in ProActive. It only deals with the orphan and in-transit

requests, since the rest of the requests are handled by the adapted CIC protocol.

Then, upon re-execution of logged requests during the recovery process, the order-

ing of execution must be enforced, in order to ensure execution equivalence with

the fault-free execution. To this end, the request reception history of an active

object is maintained until the next recovery line is built. The reception history

allows the correct re-execution of an orphan request: a logged orphan request must
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Figure 5.10 – An in-transit request.

wait until it has been received before being executed. In this case, it is called a

promised request, and it will be able to execute when we are sure that the sender

has re-sent it in the re-execution. To handle in-transit requests, the solution is to

log these requests and resend them in the right order upon recovery. Thus, the

resulting protocol constitutes a hybrid CIC/message logging protocol for the fault

tolerance of active objects.

Using checkpointing forces all entities to recover to a past stable state if only

one of the entities fails, whereas message logging only make the faulty process

restart. Consequently, a recovery with checkpointing protocols can be costly for

applications involving many entities, that are active objects in our case. In order

to solve this issue, the above protocol has also been extended to handle groups of

processes. It represents a mix of the above protocol with a pure message logging

protocol [Del07]. Indeed, in case of large systems, the fault tolerance can be han-

dled hierarchically with groups of processes. Checkpointing can be applied for the

active objects that are inside a group and message logging can be applied between

the groups. This enables restarting only the active objects of one group in case

of a failure, and the message logging mechanism is used between different groups

indifferently from the communication that happen inside the group. Hereafter, we

only focus on the adaptation of the hybrid CIC-message logging protocol detailed

before, since the hierarchical composition remains valid.

The described protocol is implemented and proven in ProActive, but it has

been designed for active objects, i.e. with a single thread of execution. When

using multiactive objects, multiple threads execute multiple requests at the same
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Figure 5.11 – Unsafe checkpoint (in the middle of the processing of two requests).

time, so a checkpoint can no longer be taken safely in between the processing of two

requests without additional conditions, because a request might still be executed

by another thread. In this case, the remaining of such a request would be lost if a

checkpoint were taken at this time. Figure 5.11 represents this situation where two

requests execute during the checkpoint. This is why the fault tolerance protocol

of ProActive needs to be adapted to multiactive objects’ execution.

Fault tolerance of ProActive active objects can be activated through a technical

service. Its main purpose is to define the location of the storage server and to define

additional nodes to be used in case of a node failure. We keep the fault tolerance

technical service unchanged when adapting the protocol to multiactive objects.

5.3.2 Protocol Adaptation and Implementation

Principles

In this work, the first contribution is to re-implement the existing fault toler-

ance protocol as a set of multiactive object notions. Basically, we process check-

points like multiactive object requests, that have a dedicated compatibility and

priority. Firstly, we generate checkpoint requests when they are needed. Since

a checkpoint must be taken as soon as possible when it is triggered, we arrange

a suitable compatibility and priority for checkpoint requests. Secondly, the exe-

cution policy of multiactive objects automatically handles the scheduling of the

checkpoint requests, taking into account the multiactive object setting specially
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made for checkpoint requests. The guarantees that are given by multiactive ob-

ject execution ensure that a checkpoint is correctly taken under the conditions

we set. This approach makes the implementation of the fault tolerance protocol

for active objects easier and more generic, because it is less entangled with the

ProActive middleware.

The second contribution of this work is to propose an approach to handle

the checkpointing of multiactive objects, by adapting the existing protocol. In

order to correctly checkpoint a multiactive object, we need to look at the first

property of the fault tolerance protocol: to checkpoint an active object, it must

be in a stable state. The only time when an active object is in a stable state is

when it is not processing any request. For a multiactive object, it means that

all its threads must be idle. Consequently, in order to checkpoint a multiactive

object, we must find the moment of the execution when all its threads are idle.

If one waited for this situation to happen without forcing it, there would be a

high probability that no checkpoint could ever be taken. Therefore, we propose

an approach that consists in flushing all the currently processed requests to reach

the stable state before a checkpoint is taken. The particularity of this approach is

that we only rely on multiactive object notions in order to reach this stable state.

The principle is to temporarily constrain the threads of a multiactive object when

a checkpoint request is triggered. By setting the thread limit to one thread, we

can ensure that, eventually, when all currently executed requests are completed,

only one thread is left to process a request. In addition, by setting the kind of

thread limit to a hard thread limit, we can ensure that no requests remain in

wait-by-necessity when checkpointing. These two manipulations leave room for a

checkpoint request to be executed in an isolated manner, and to be executed when

the state of the multiactive object is stable, because no applicative requests are

being executed nor paused meanwhile. As our approach presents limitations, we

will see in the next subsection the restrictions of our solution and some directions

to improve it. But first, we focus on the first contribution of this work which is a

generic implementation of the existing fault tolerance protocol, an that prepares

the context for the new protocol we propose.
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Checkpointing as a Request

In the new implementation of the existing fault tolerance protocol, we turn the

checkpointing action into a special request, that all fault tolerant active objects can

serve. Representing the checkpointing action like a request allows us to parametrise

it with multiactive object annotations. The method to execute for serving this

request has the reserved name checkpoint , and this method is put in a mul-

tiactive object group of the same name, programmatically. In practice, when the

annotations of a multiactive class are interpreted, the group, the compatibility and

the priority of the checkpoint group are automatically inserted, in addition

to what the programmer specified through annotations. Our goal is to execute

the checkpoint requests as quickly as possible, so we use a specific compatibility

and priority for that. In order to lift the checkpoint requests to the ready queue

(see Subsection 3.3.1), we make the checkpoint group compatible with all the

other groups of a multiactive object. In order to have the checkpoint requests first

in the ready queue, we assign to this group the highest priority, that is uniquely

defined for this group5. Thanks to this multiactive object setting, checkpoint re-

quests can overtake any request and can always be first in the ready queue, thus a

checkpoint is always taken as fast as possible. In the end, this approach is easier

to implement and to reuse because a checkpoint is treated like any other request,

and it also complies to the same multiactive object rules.

Triggering Checkpoints

Since the checkpoints can be faithfully represented as multiactive object requests,

we must figure out now when and how to generate them and put them in the

request queue. Firstly, the checkpoint requests are generated at the same place

as before when the checkpoint index is detected to be out of date. If it is the

case, in our re-implementation of the existing protocol we trigger a checkpoint

by creating a new checkpoint request and by putting it in the request queue. By

the multiactive object configuration explained in the previous paragraph, we know

that this checkpoint request will be the next request to be selected for execution

5More precisely, the checkpoint group has a priority dependency to all the roots of the
defined priority graph; thus it becomes the new single root of the new priority graph.
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by the multiactive object scheduler. Compared to the previous implementation

of the checkpointing action, this implementation requires less additional informa-

tion to carry together with the active object’s state when saving a checkpoint6.

Indeed, in the previous implementation the request that was responsible for the

triggering of a checkpoint had to be saved ‘manually’ along with the checkpoint,

because it was already removed from the request queue for execution. Now, in the

same situation, no additional information needs to be saved along with the active

object’s state, because this request is still part of the request queue, therefore part

of the active object’s state. Thus, the new implementation of the existing fault

tolerance protocol involves less special cases to consider, both when checkpointing

and when recovering. It fully handles the fault tolerance of active objects, and sets

a propitious context for adapting the protocol to the special case of multiactive

objects.

Flushing Parallel Requests & Checkpointing

We present now the adaptation of the fault tolerance protocol to handle the check-

pointing of multiactive objects. The main challenge in the case of multiactive

objects is to create sound checkpoints. Since this is a local problem, related to

the internal scheduling of requests and threads, we can again face it by using the

abilities of multiactive objects. The key to be able to checkpoint a multiactive

object is to ensure that none of its associated threads execute a request when

the checkpoint request is executed, that is to isolate the checkpoint request. In

order to isolate a request using multiactive object notions, one could think that

making the checkpoint requests incompatible with all other requests would fit.

However, since we want the checkpoint requests to be in the ready queue as soon

as possible (to execute them as soon as possible), we configured the checkpoint

request such that it is compatible with any other request. Still, in order to ensure

the isolated execution of checkpoint requests, the approach that we have chosen

uses the multiactive object API that manipulates the kind of thread limit, seen

in Subsection 3.2.1. When a checkpoint must be taken, we immediately set the

thread limit of the multiactive object to one thread, and we apply a hard thread

6As shown in [Del07], the checkpoint size has a significant impact on the performance of the
fault tolerance protocol.
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Figure 5.12 – Flushing of requests thanks to the thread limit of multiactive objects.
The illustrated queue represents the ready queue.

limit (i.e. all the threads, even those in wait-by-necessity, are taken into account

in the thread limit). Consequently, the checkpointing request is first in the ready

queue, and it cannot execute until the other requests complete. Note also that

the checkpointing request cannot execute upon the wait-by-necessity of the other

requests, because the hard thread limit prevents the compensation of a thread in

wait-by-necessity. Indeed, we do not want to checkpoint if a request is not finished.

Assuming that all requests can progress, this mechanism ensures that we can only

have a decreasing number of threads that process requests. This number decreases

until only one executed request is left, and allows the checkpoint request to be

executed just after the completion of this last request.

An example of scheduling of the checkpoint request is displayed on Fig-

ure 5.12. Request Q first triggers the need for checkpointing. The thread limit

is changed just after the completion of a request (ThL = 1), and the checkpoint
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request ends up first in the ready queue. Then, each time a request is completed,

the scheduling process checks if a request can be executed. Since the thread limit

is exceeded, no scheduling can occur until all currently processed requests are com-

pleted. When the last executed request terminates, the next selected request is

the checkpoint request. Finally, when the checkpoint completes, the original

thread limit is restored, as well as the original kind of thread limit, and a normal

execution can resume. Note that changing the thread limit and the kind of thread

limit in a dynamic manner at runtime is always legitimate as long as the modifica-

tions are more restrictive than the specifications given by the programmer. Indeed,

more restrictive modifications are harmless in the sense that they only reduce the

set of the executions that are possible (no new behaviours are introduced), except

when this reduction leads to a deadlock; this case discussed in Subsection 5.3.3. In

the case of our fault tolerance protocol, the modifications that we bring at runtime

always reduce the set of possible executions since the restrictions we apply are the

strongest possible restrictions related to threads.

Recovery

In order to complete the adaptation of fault tolerance to multiactive objects, not

only the checkpointing phase of the protocol must be adapted, but also the recovery

phase. In particular, the existing implementation of the recovery phase takes

a particular care in preserving the request ordering during a re-execution. To

this end, a special class is used to handle the re-execution of orphan requests.

In a re-execution, orphan requests are promised: they are in the request queue

before having been received. In ProActive, promised requests are wrapped in an

AwaitedRequest class, so that a promised request contains the history information

that allows the scheduler to provide an equivalent re-execution upon recovery. This

wrapper also allows the scheduler to wait for the reception of the awaited request.

However, in multiactive objects, the notions of compatibility, priority and thread

limit are the notions that massively control the order of execution of requests. As

such, promised requests must behave like the requests they enclose, in terms of

multiactive object execution, in order to ensure the equivalence of the re-execution.

This is not a major problem because we know the type of the request that we
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are waiting for. Consequently, we can easily obtain the static multiactive object

information of the request, that is mandatory for its scheduling.

5.3.3 Restrictions and Open Issues

So far, we have adapted the fault tolerance mechanism of the ProActive middleware

such that it can be applied to applications that are built with multiactive objects.

First, our adaptation is fully compliant with old-style active objects. Second,

multiactive object features allow a neater implementation of the fault tolerance

protocol of active objects. This provides a clearer framework to reason about the

protocol, extract its properties and prove them. However, the proposed protocol is

still seminal in the context of multiactive objects, because some restrictions apply

for a subset of multiactive object-based applications. In particular, two limitations

must be discussed.

The first limitation regards the recovery phase in case of dynamic compatibil-

ities. We have seen that looking at the static multiactive object information of a

promised request is easy, because the static information is embedded in the type of

the request. However, when a promised request features a dynamic compatibility

(that is decided upon a method execution, possibly using the request’s parameters,

see Subsection 2.4.2), some part of the knowledge is missing to be able to decide

on the scheduling of this promised request. Without further modifications of the

recovery phase, no decision can be taken until the promised request is actually

received by the recipient in the re-execution. One possible solution to handle dy-

namic compatibilities during a recovery could be to save more information in the

reception history, so that it can handle the orphan requests that feature dynamic

compatibilities. Nevertheless, this solution seems to be non trivial to design and to

implement, and it could have a significant runtime cost, that should be evaluated.

The second limitation regards the main mechanism of the new fault tolerance

protocol and more precisely, the way we flush the requests that are being executed

in order to take a checkpoint. Our approach to ensure that the multiactive object

is in a stable state before checkpointing is brute-force. In particular, we do not

check if, in order to complete a request, the multiactive object needs to execute

other requests. For example, this is the case for recursive calls: if the need for
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Figure 5.13 – Example of a deadlocked execution. The reply of Q3 is needed to
complete Q1.

checkpointing comes during the processing of a recursive request (this request

sends requests to the current multiactive object), then the application deadlocks.

A deadlock is also caused if a callback to the current multiactive object originates

from a request that must be flushed by our checkpointing mechanism, as shown

in Figure 5.13. In this example, the completion of request Q1 on multiactive

object a is required to perform the checkpoint. Also, the completion of request Q1

depends on the completion of request Q3, that is executed on multiactive object

b. However, the completion of request Q3 depends on the reply of another request

sent to multiactive object a. Since a is temporary in a hard thread limit of one

thread, it cannot process the required request. In the end, request Q1 will never

complete, and multiactive object a cannot execute requests any more.

In general, any request that leads to a dependency cycle between multiactive

objects will lead to a deadlock if this request is processed at the same time as a

checkpointing request is attempted to be served. A number of solutions can be

designed such that multiactive object checkpoints can be taken without a risk of

deadlock. We are reviewing below possible solutions or directions from the most

restrictive to the lightest approach.
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Cycle-free applications. A first solution is to remove all request dependencies in

the application, which means, never wait for a reply. This solution is pretty

restrictive because it forces applications to be refactored to this end, and

because the modifications must be applied at development time. However,

this solution is adapted for the applications that are based on a pure actor

model, when no synchronisation through futures is allowed.

Subset of execution cases. A second option could consist in avoiding the process-

ing of cyclic requests at the same time as a checkpoint is needed. However,

how to detect this situation a priori seems difficult, and can be very ineffi-

cient if the cycle involves many activities. Since finding a consistent recovery

line in this case is probably impossible, the only solution that is left is to

cancel this particular checkpoint, and retry later. However, the implemen-

tation of this behaviour might still be costly, and the checkpoints are taken

less regularly.

Dynamic deadlock detection. If a multiactive object cannot progress for a long

time, although there are available threads and the ready queue is not empty,

then the thread limit could be relaxed progressively in order to solve the

deadlock. But this solution is first not elegant and second not reliable, since

we must prevent all requests that are not involved in the deadlock to be

executed meanwhile.

Multiactive object configuration. Lastly, a more refined solution uses the thread-

ing setting of multiactive objects where reentrant requests are treated on

the same thread (see Subsection 3.2.1). By enabling the reentrance parame-

ter of a multiactive object (with the parameter hostReentrant=true in the

@DefineThreadConfig multiactive object annotation), we can make sure

that cyclic requests are processed on the same thread, that is, without re-

quiring any additional thread. In this case, the requests that are executing

when a checkpoint request is in the queue could be flushed even if the thread

limit is already set to one strict thread for the checkpoint. This solution re-

quires that all requests involved in a cyclic dependency are compatible in the

same multiactive object. However, the compatibility of such requests must
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also be fulfilled for a regular execution of the application (that is without

fault), thus it seems a reasonable prerequisite.

In the end, the most plausible solution for handling the integrity and the fea-

sibility of a multiactive object checkpoint is the last proposed solution. For now,

there is no implemented solution that both guarantees that a multiactive object

checkpoint can be taken in a bounded time and that the checkpointing process

cannot deadlock. Providing the two guarantees at the same time for a fault tol-

erant multiactive object-based application is still unresolved and unimplemented,

although we have given some directions for it, that should be further explored.

∗ ∗ ∗

In this chapter, we had a look at two non functional aspects related to the

support of development and execution of applications that are developed with the

multiactive object programming model. Firstly, we have focused on the debugging

of complex multiactive object-based applications, by visualising the execution of

multiactive objects through a debugger tool. What is special about this debug-

ger is that it keeps a close relationship between the notions that are manipulated

trough the development of the application with multiactive objects, and what can

be displayed by the debugger. Other debugging tools are very popular in the Java

community, but their are related to notions that are external to the program-

ming model. In ProActive, the IC2D debugging tool [Bau+01] has been developed

previously in the context of distributed active objects. It enables the dynamic

visualisation of the deployment of a ProActive application: active objects, virtual

nodes, and JVMs. IC2D was primarily introduced in the context of active object

migration [Bad+06; CH05]. Thus, IC2D is oriented towards the localisation and

wiring of active objects rather than towards their execution flow and interaction.

A merge of IC2D and our debugger tool should be addressed in future work. How-

ever, to this end our debugger must be adapted to support a dynamic actualisation.

Already, the way we process the logs (based on timestamps) fits such a dynamic

update of the visualisation frame without recomputing the information related to

the global execution.

Secondly, in this chapter we have focused on the reliable execution of mul-



166 CHAPTER 5. EXECUTION SUPPORT FOR MULTIACTIVE OBJECTS

tiactive objects, by adapting the fault tolerance protocol to make it adapted to

a multi-threaded execution. The new protocol that we have described makes an

extensive use of multiactive object notions in order to coordinate the threads and

enable a safe checkpointing. The presented approach, that handles isolation of

execution of checkpointing requests, is similar to the one we take in the ProAc-

tive backend for ABS (Subsection 4.2.1) for the simulation of a blocking awaiting

(get statement). This proves that the manipulation of multiactive object no-

tions can form a generic approach to implement specific execution policies, that

can also adapt during the execution of the application. Our adaptation of the

fault tolerance protocol is nevertheless limited to applications that do not have

recursive calls during the checkpointing process. In particular, our protocol can

introduce a deadlock upon specific executions. Removing such deadlocked execu-

tions is a short-term future work, and we have given in this thesis some directions

to progress on this issue. Afterwards, ProActive will be able to provide transpar-

ent fault tolerance for active and multiactive object-based applications, without

distinction and with a better implementation of the protocol. In summary, our

new implementation of the fault tolerance protocol is better integrated with the

ProActive middleware and takes advantage of the multiactive object programming

model, as a high-level abstraction. This generic approach makes it also fitted to

other active object languages, as well as to other multi-threaded paradigms.

Both of the aspects that were presented in this chapter are supported at de-

ployment time, using ProActive technical services as the standard configuration

mechanism for easily adding non functional aspects. Thanks to the various tuning

mechanisms that are offered by multiactive objects, the multiactive object pro-

gramming model is adapted to develop and execute high performance distributed

applications. However, this kind of applications requires powerful tool sets, that

allow the programmer to analyse and to tune the application iteratively. Also, this

kind of applications is usually long-running, so a failure might represent a huge

loss in terms of computing time. Consequently, the failure of the whole application

must be prevented as much as possible. We have addressed in this chapter these

two concerns and this way, we believe that we have raised the multiactive object

programming model at the level of expectation of high performance computing

programmers.
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In this penultimate chapter, we present an application that aggregates several

works developed in this thesis. First, we introduce the context of this chapter

by exposing the challenge of broadcasting in peer-to-peer networks, focusing more

particularly on one of them: the CAN. We present an efficient broadcast algorithm

for CAN that is published in [2]. Then, we present an application that consist in

a resilient broadcast in a CAN made of peers that are implemented with fault

tolerant multiactive objects, through the ProActive library. This contribution can

be seen both as a practical application of the fault tolerance protocol for multiactive

objects introduced in Chapter 5, and as a middleware approach for dealing with

faults in distributed broadcasts.
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6.1 Broadcasting in Peer-to-Peer Networks

6.1.1 Context: CAN Peer-to-Peer Networks

Structured overlay networks [EAH04] are defined as peer-to-peer networks that

operate at the application-level, and where the nodes are virtually organised ac-

cording to structural properties. In such networks, the nodes are called peers,

because they organise independently and only according to a local view of the net-

work. A peer can only communicate with a subset of the peers that belong to the

network. This subset represents the neighbours of a peer. The well-defined prop-

erties of structured overlay networks enables reaching a particular peer from any

other peer in a bounded number of hops. Providing guarantees on reachability is

the main advantage of structured overlay networks. When structured overlay net-

works are used to store and retrieve content, data are deterministically consigned

to a peer by following a precise computation of the data location. Consequently,

each peer in the network manages a well-defined set of data, such that content

retrieval complies to nice properties. The operation of retrieving content is always

bounded and gives a deterministic answer, although the guarantees depend on

the type of the considered structured overlay network. The CAN [Rat+01a] is a

type of structured overlay networks whose structure is ruled by a multidimensional

Cartesian coordinate space.

Structure

In CAN, a finite Cartesian coordinate space of dimension D is entirely partitioned

among the peers of the network. Each peer is responsible for a part of the coor-

dinate space, called a zone. Each zone is defined with an upper-bound coordinate

and lower-bound coordinate for all the dimensions of the space. Therefore, a zone

has the shape of an hyper-rectangle. Since the coordinate space of a CAN is en-

tirely partitioned, the zones abut each other in one or more dimensions. The set of

peers whose zone abuts the zone of a given peer represents the neighbours of this

peer. A peer has at least two neighbours per dimension, one in each direction (in-

creasing or decreasing, considering the coordinates), but the number of neighbours

of a peer is not bounded. A peer can only communicate with its neighbours, i.e.
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Figure 6.1 – A 2-dimensional CAN network.

with the peers whose zone abuts its own zone. Thus, there cannot exist a gap in

the coordinate space between a peer’s zone and its neighbours’ zones. Figure 6.1

displays a CAN in two dimensions with 13 peers in a [0,1]×[0,1] coordinate space.
In this example, peer A has 5 neighbours. Peer D and peer G are not part of the

set of neighbours of peer A, because they share no edge.

Data Storage and Retrieval

In order to store content in a CAN, one should first determine the location of

data in the data space. The usual way of storing content is by using a key-

value representation: the key determines the storage location while the value is

the content to be stored. To store data in a CAN, the data key it must first be

hashed to a point of the coordinate space. Once this point is computed, we can

determine the unique peer of the network whose zone contains the point. This

peer is responsible for storing the content. Searching for stored data is done in a

similar way: the corresponding key is hashed and used to find the peer that should
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store it. If the targeted peer does not have the searched data, then it guarantees

that it is not present in the network. Storing and retrieving are performed through

an iterative routing process. The process starts from any peer that initiates the

query, and then the query is forwarded by successive hops among neighbours until

the targeted peer is reached. Approaching the right zone step-by-step is finite and

bounded, because the distance from the searched point is reduced at each hop (at

least reduced in one dimension). In general, structured peer-to-peer networks give

better bounds than unstructured ones.

Construction

The general steps to build a CAN are the following. At the beginning, one peer

owns the entire coordinate space. When a new peer wishes to join the network,

it picks a point in the coordinate space. The zone that contains this point is split

into two parts: the new peer takes the responsibility of one part, and the peer that

owned this zone before takes the responsibility of the second part. The coordinates

of the zones are updated accordingly, as well as the sets of neighbours. Several

policies for selecting the peer to join can be used, for example to produce balanced

zones. Splitting is usually done alternatively in each dimension. For example,

for a CAN in two dimensions, the splitting is done alternatively vertically and

horizontally, as peers join the network.

6.1.2 Efficient Broadcast in CAN

Structured overlay networks are powerful underlying structures for communication-

oriented and storage-oriented distributed systems in large-scale settings. This

power is enabled by a fully decentralised management. As such, when a peer

needs to share an information with all the other peers, it cannot send this infor-

mation to a shared channel, nor communicate it directly to all the other peers.

Instead, it has to rely on its local view of the network, which is the set of its

neighbours. The basic approach to broadcast information under these conditions

is to progressively cover the network by forwarding the broadcast massage from

neighbours to neighbours. However, this approach has a high overhead in terms

of duplicated messages. Indeed, it does not use the properties of the underlying
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structure of the network to route the broadcast more efficiently. The goal of the

work that is presented in this subsection is to design a broadcast algorithm for

CAN that takes advantage of the CAN structure, so that a minimum number of

exchanged messages covers the whole network, and without any global knowledge.

This work is published in [2]. In existing broadcast algorithms for CAN, either

the broadcast operation is still noisy with a few duplicated messages, like the M-

CAN algorithm [Rat+01b], or it requires to maintain an additional overlay, e.g. a

spanning tree [Per85]. Here we propose an algorithm that is optimal in number of

messages: each peer of the CAN receives the broadcast message exactly once, and

no additional structure needs to be maintained for that.

Principle

Our algorithm extends M-CAN [Rat+01b]. It systematically removes the dupli-

cated messages that are left by the M-CAN algorithm, by specifying additional

forwarding constraints. We then add specific constraints that remove all of the

duplicates in any CAN configuration. In M-CAN, the broadcast starts from an

initiator peer that sends the broadcast message to all of its neighbours. Then,

the broadcast is propagated according to a given dimension (from dimension 1 to

dimension D), and to a given direction (either in ascending direction if the co-

ordinates are higher or in descending direction if the coordinates are lower). A

peer that receives the message from a neighbour along dimension i in direction dir

only forwards the message to all the neighbours that are located on dimensions

that are lower than i, plus to the neighbours that are located on dimension i but

only in the propagation direction dir. The broadcast message is never propagated

to neighbours that are located on higher dimensions than the dimension of re-

ception of the message. An example of M-CAN broadcast is given in Figure 6.2.

In addition to these general rules, in M-CAN a deterministic condition is used to

remove some duplicates: a peer forwards the broadcast to a neighbour that fulfil

the above rules only if it abuts the lowest corner of this neighbour. The lowest

corner is defined as the corner that is along the dimension of propagation and that

minimises all the coordinates in other dimensions. This deterministic condition is

called the corner criteria. In Figure 6.2, the corner criteria prevents 6 duplicated
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Figure 6.2 – M-CAN broadcast.

messages from being sent in the CAN. However, the M-CAN algorithm can still

lead to duplicated messages, notably when the CAN has a lot of dimensions. In-

deed, M-CAN only removes the duplicates that arise in the first dimension, which

is where most of the duplicates are present. The corner criteria cannot be applied

in higher dimensions without jeopardising the correctness of the broadcast, which

stipulates that all peers must received the broadcast message1.

In the efficient broadcast algorithm that we propose, we use the corner criteria

in addition to another constraint that we specially introduce to remove all the

duplicates. More precisely, our broadcast removes the duplicated messages that

arise in higher dimensions than the first one, and thus completes the M-CAN. To

this end, we introduce a spatial constraint, whose main idea is to reason on a sub-

CAN, in order to progress recursively, as if the broadcast was always propagating

on a single dimension. Our efficient broadcast algorithm for CAN is proven to be

correct and optimal in number of messages [BH13; 2].

1Note that in Figure 6.2 the peers’ zone are always split in the middle. If it were not the case,
for example for load balancing reasons, then the probability to have duplicates would be higher,
because the neighbours’ coordinates would not match exactly the peer’s coordinates.
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Figure 6.3 – Optimal broadcast.

Algorithm

In practice, to prevent having duplicates in high dimensions, we constraint the

peers to only consider the neighbours that belong to a particular hyperplane of

the coordinate space. We define the hyperplane as a set of fixed values in all the

dimensions apart from dimension D. The spatial constraint is thus a hyperplane

in dimension D − 1. In order to bootstrap the algorithm, the hyperplane must be

contained in the zone of the initiator of the broadcast. Then, the neighbours of

the initiator that belong to this hyperplane form a sub-CAN of dimension D −
1. Therefore, we can apply the same selection process on this sub-CAN with a

hyperplane of dimension D − 2. By recursion, the hyperplane eventually becomes

a line. Therefore, we can propagate the message along this line without any

duplicate, because the line can only be contained by one peer in each direction.

The peers that did not receive the message on a high dimension because of the

spatial constraint are ensured to receive the message later from another peer on

a lower dimension. This is what happens in Figure 6.3. The fact that the top-

right peer did not receive the message at hop number 2 (on dimension 2) is not a
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1: upon event reception of message M on dimension dim0 and direction dir0 on peer
2: for each k ≤ dim0 do

3: if k = D + 1 then

4: direction ← ∅
5: else

6: if k < dim0 then

7: direction ← {descending, ascending}
8: else

9: direction ← dir0
10: end if

11: end if

12: for each dir in direction do

13: for each neighbour on dimension k and direction dir do

14: for each i in 1 ... k − 1 do ▷ Spatial Constraint
15: if not ( neighbour.LB[i] ≤ constraint[i] < neighbour.UB[i]) then

16: skip neighbour
17: end if

18: end for each

19: for each i in k + 1 ... D do ▷ Corner Criteria
20: if not( peer.LB[i] ≤ neighbour.LB[i] < peer.UB[i]) then

21: skip neighbour
22: end if

23: end for each

24: send message on dimension k and direction dir to neighbour
25: end for each

26: end for each

27: end for each

28: end event

Algorithm 2 Efficient broadcast algorithm for CAN.

problem since it receives the message at hop number 3 (on dimension 1).

The precise algorithm is given in Algorithm 2. LB is the short for lower bound

and applies on a dimension i to retrieve the corresponding coordinate. Similarly,

UB is the short for upper bound and is applied in the same way as LB. Overall,

when scanning the neighbours, all the dimensions are either checked against the

spatial constraint (Lines 14-18) or against the corner criteria (Lines 19-23), except

the dimension on which the message was received (dimension k in Algorithm 2).

These two conditions filter the neighbours such that the ones that remain at the end

of the algorithm are the ones to which the broadcast message must be forwarded.
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Figure 6.4 – Average number of exchanged messages and optimal number of ex-
changed messages with a CAN in 5 dimensions.

In order to apply the conditions, the message piggybacks the spatial constraint as

well as the dimension and direction onto which the broadcast message is sent.

Experiments

We briefly present some experiments that highlight the benefits of our efficient

broadcast algorithm for CAN. The details of the experimental setup and platform

are further developed in [2]. The experiments represent realistic scenarios consid-

ering the distribution degree (using up to 200 machines, spread across a grid), the

number of peers in the CAN2 (up to 1500 peers), and the number of dimensions of

the CAN (up to 15 dimensions). The objective of the experiments is to show that,

in realistic situations, using a decentralised broadcast that exchanges the minimum

number of messages significantly reduces the volume of exchanged data, and thus

impacts positively on the execution time of the broadcast. We mainly compare the

performance of our efficient broadcast algorithm to the M-CAN algorithm, that

represents the best improvement of the broadcast operation in CAN, besides our

algorithm. We also show in comparison the performance of the naive broadcast

2We use an implementation of CAN in Java, the EventCloud [Pel14].
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algorithm, that covers the CAN by solely using the neighbour relationship.

Figure 6.4 shows the average number of exchanged messages for each broadcast

algorithm, where the optimal number of exchanged messages is highlighted by a

horizontal line. M-CAN already reduces greatly the number of duplicated mes-

sages compared to the naive broadcast. However, for 1500 peers, 395 duplicated

messages are recorded for M-CAN on average, and this number varies depending

on the shape of the CAN and on the location of the broadcast initiator. On the

other hand, our efficient broadcast always takes the minimum number of messages

in order to cover the CAN. We have also measured the total volume of exchanged

data for this experiment3. When the CAN is made of 1500 peers, M-CAN gen-

erated 25.6 MB of data on average. Our efficient broadcast generated only 20.3

MB of data on average, i.e. it led to a 20% reduction of exchanged data volume.

Besides exchanged messages, we also measure the execution time of the different

broadcast, i.e. the time needed for all the peers to receive the first broadcast

message, shown in Figure 6.5. The performance of the naive broadcast algorithm

suffers from the huge number of duplicates. On the contrary, both M-CAN and our

3The messages have no useful payload in these experiments.
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Figure 6.6 – Average number of exchanged messages and optimal number of mes-
sages with 100 peers in the CAN.

broadcast maintain a good performance as the CAN gets larger. However, com-

pared to the execution of the naive broadcast over 1500 peers, M-CAN reaches a

speed up of 5 whereas our efficient broadcast reaches a speed up of 8, again due

to the presence of duplicates in M-CAN.

Apart from varying the number of peers, we also take interest in varying the

number of dimensions of the CAN from 2 to 15 dimensions, with a fixed number

of 100 peers, as shown in Figure 6.6. We can observe a regular increase of dupli-

cates with M-CAN: from 5% of duplicated messages in dimension 2, to 112% of

duplicated messages in dimension 15, in average. This is due to the fact that the

number of dimensions is correlated to the average number of neighbours of the

peers, and by transitivity this impacts the propensity of duplicates.

The previous experiments show that the remaining duplicates of the M-CAN

algorithm have a clear impact on realistic systems. Our efficient broadcast algo-

rithm for CAN offers a significant improvement in terms of bandwidth and execu-

tion time by totally avoiding duplicated messages, especially when the number of

dimensions of the CAN is high.



178 CHAPTER 6. APPLICATION: FAULT TOLERANT PEER-TO-PEER

6.2 Fault Tolerant Broadcast with ProActive

The efficient broadcast algorithm for CAN that was presented in the previous

section has the particularity of being optimal in number of messages, which leads

to an efficient execution. In particular, the broadcast message is received only

once per peer, meaning that for each peer there exists a single peer from which the

message must be received. In this context, without preventive measures the crash

of a peer during the efficient broadcast inevitably leads the system in an erroneous

state, since some peers will end up in receiving the broadcast and some other

peers not. Alternative broadcast algorithms do not perform better in presence of

faults, because the peers that receive duplicated messages cannot be determined

in advance, thus duplicates cannot serve to robustness. Moreover, as the crash of a

peer generally entails the consistency of the data space of the peer-to-peer system,

relying on the fault tolerance of a distributed algorithm is not enough to carry

out a sane execution of the application. In this section, we propose to make the

broadcast operation for CAN completely reliable at the middleware-level, and to

automatically recover the data space consistency after the crash of a peer. To this

end, we rely on the fault tolerance mechanism of multiactive objects, introduced

in Section 5.3 and implemented in the ProActive library.

6.2.1 A CAN Implementation with Multiactive Objects

First of all, we propose an implementation of CAN realised with the ProActive li-

brary. The purpose of this application is to offer a high performance distributed

system for data storage. In this application, each peer of the CAN is implemented

with a multiactive object that is instantiated from a Peer class. The most inter-

esting part of the Peer class is shown in Listing 6.1.

1 @DefineGroups({

2 @Group(name="gettersOnImmutable", selfCompatible=true),

3 @Group(name="dataManagement", selfCompatible=true),

4 @Group(name="broadcasting", selfCompatible=false),

5 @Group(name="monitoring", selfCompatible=true)

6 })

7 @DefineRules({

8 @Compatible({"gettersOnImmutable", "broadcasting", "dataManagement"}),
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9 @Compatible({"gettersOnImmutable", "monitoring"})

10 })

11 @DefineThreadConfig(threadPoolSize=2, hardLimit=false)

12 public class Peer implements Serializable, RunActive {

13 // CAN matter

14 private Tracker tracker;

15 private LongWrapper identifier;

16 private Zone zone;

17 private RouteManager routeManager;

18 private DataManager dataManager;

19 // Broadcast matter

20 private int broadcastReceptionChecker;

21 private boolean broadcastAlreadyReceived;

22 ...

23 @MemberOf("gettersOnImmutable")

24 public LongWrapper getIdentifier() {

25 return this.identifier;

26 }

27 ...

28 public BooleanWrapper join(Peer p, int dimension) { ... }

29 ...

30 @MemberOf("dataManagement")

31 public AddResponse add(AddQuery query) {

32 AddResponse response;

33 if (this.manages(query.getKey()).getBooleanValue()) {

34 this.dataManager.store(query);

35 response = new AddResponse(this.identifier);

36 } else {

37 query.addtraversedPeerID(this.identifier);

38 response=this.routeManager.getPeerClosestTo(this.zone, query).add(query);

39 response.addtraversedPeerID(this.identifier);

40 }

41 return response;

42 }

43 ...

44 @MemberOf("broadcasting")

45 public void broadcast(Key spatialConstraint, RoutingPair routingPair,

46 int broadcastIteration, BroadcastRecoveryTest coordinator) {

47 // Implementation of Algorithm 2
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48 }

49 ...

50 }

Listing 6.1 – The Peer class of the fault tolerant broadcast application.

A peer has operations that are related to the construction of the CAN and its

maintenance, as well as operations that are related to data management. These

two concerns are respectively dealt with a RouteManager class and a DataManager

class. More precisely, a peer can join the CAN, split its zone in order to make

space for a new peer, add some data in its store, and return some data. Also, one

major responsibility of a peer is to route the queries that are meant for other peers

in the CAN.

The Peer class contains multiactive objects annotations, that allow some oper-

ations of a peer to be parallelised on two threads4. More precisely, four groups of

requests are defined, for each potentially parallelisable concerns of the class. The

gettersOnImmutable group gathers the methods that return the attributes of the

Peer class. The returned attributes are immutable by convention according to the

name of the group, like the identifier of the peer. This allows us to parallelise such

getters with other operations of the Peer class. Similarly, the monitoring group

regards peer dumping and does not interfere with getters. However, peer dump-

ing cannot be performed when operations are done on the data store of the peer,

which is the matter of the methods that are contained in the dataManagement

and broadcasting groups. In our use case, broadcasting and adding data are

independent actions, which is why we allow to perform them in parallel trough

the annotations. Similarly, as we only add distinct data in the data store, con-

current adds are permitted, thanks to the specification of self compatibility in the

dataManagement group. Adding data in the CAN is performed through routing

from peers to peers. Thus, an add query is routed through asynchronous invo-

cations of method add on successive peers (Line 41 of Listing 6.1). The implicit

future that is created at this point (response variable) enables tracing the route

that was taken by the add query. As in our system, only one broadcast operation

can be realised at a time, we do not make the broadcasting group self compati-

4Since the devices that support a peer-to-peer system can be of various nature, we focus on
commodity hardware that is assumed to have at least two parallel processing units.
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ble. The implementation of the broadcast method reflects the efficient broadcast

algorithm for CAN that we have introduced in Subsection 6.1.2. Other methods

of the Peer class are not in any multiactive object group, like the join method in

Listing 6.1. It means that the corresponding requests never execute other requests

at the same time.

In addition to the Peer class and all its associated classes, we have a class that

represents the entry point of the CAN: the Tracker class. The tracker is respon-

sible for settling a new joining peer on a ProActive virtual node (see Section 5.1)

and for picking a peer to join in the CAN. The tracker is also responsible for

recording centralised data (or metadata), for example if all the peers have received

an information in order to synchronise and start a new phase.

Our standard policy to build the CAN is deterministic: we split a peers’ zone

into two equal parts in a round robin manner, and we change the dimension to

be split at each round. This policy eventually creates zones of equal size. The

building policy is isolated such that other policies can be plugged easily. In our

use case, the CAN is static, which means that once it is built, no new peers join

the network nor existing peers leave the network. Also, when we build the CAN,

we load it with an initial dataset. Our implementation of CAN together with the

implementation of the use case represent 27 Java classes and roughly 2000 lines of

code (including tests).

6.2.2 Recovery of an Efficient Broadcast in CAN

Our implementation of CAN uses some of the multiactive objects features and

mechanisms that have been introduced this thesis. In particular, this implementa-

tion benefits from the fault tolerance mechanism that is the subject of Section 5.3.

We propose in this subsection to see the fault tolerance mechanism in action, by

forcing a crash during the realisation of an efficient broadcast algorithm in our

CAN. We focus on a functional evaluation of the mechanism, which means that

we are interested in the result of the application, i.e. whether a faulty execution

gives the same result as a sane execution.

Compared to the previous description of our CAN implementation, we add to

the application an external coordinator that manages the killing a ProActive vir-
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Figure 6.7 – Peer crash at hop number three.

tual node, and that checks the result of the application afterwards. The external

coordinator is the only active object that is not fault tolerant in the application,

so that when the coordinator kills a node, all active objects (peers and tracker)

recover besides the coordinator. Therefore, the coordinator can monitor the ap-

plication recovery after the fault and it can perform some sanity checks after the

recovery.

The particular scenario we study is the following. We initially add 10 000 key-

values pairs in a CAN in two dimensions such that keys are evenly distributed

throughout the data space. In order to distribute data evenly, we create one key

per possible discrete point of the data space, and associate a unique value of integer

type. Once all initial data are loaded in the CAN (we synchronise at this point

with a wait-by-necessity), we trigger an efficient broadcast (see Algorithm 2). The

broadcast is started from a particular peer that we get from the tracker. The

purpose of the broadcast is to add one to all the values that are initially stored

in the CAN. At the same time as the broadcast is performed, we continue adding

new data in the CAN, in parallel with the broadcast. Our application focuses

on the case where only new data are added, therefore adding new data does not

interfere with the modifications performed by the broadcast.
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In order to simulate a failure of a peer during the broadcast, we explicitly

crash a peer in the middle of the routing of the broadcast. The crash is triggered

with an abrupt virtual node termination that is available in the ProActive library

through a method. In order to drive the crash, we detect a particular iteration

of the broadcast (in number of hops from the initiator), and we randomly crash

one of the peers that receive the broadcast at this iteration. The broadcast is thus

received but not forwarded by the crashed peer, as shown in Figure 6.7, where a

peer located at the third iteration crashes (it#3 in the figure). Consequently, all

the peers that lie in the remaining of the broadcast route can no longer be reached

by the broadcast message until the crashed peer recovers. For the sake of the

test, we ensure that the last consistent recovery line is built during the broadcast,

precisely before the crash happens and before the end of the broadcast. Indeed, in

the other cases a successful broadcast would not bring any insight on the recovery

mechanism, since either no peers or all the peers would have correctly received the

broadcast when the system restarts. This is why it is important for our test that

a consistent recovery line is built when some peers have received the broadcast

message and some others not yet.

Our first objective is to perform a sanity check of the application’s execution:

we monitor the recovery of the application after the crash and we wait the re-

execution to run to the end; we can then know if it was successful. The main steps

of our methodology are summarised in five steps:

1. We build the CAN and we load it with initial data. We compute the sum of

the data values and keep it for reference.

2. We start the efficient broadcast from a peer that is deterministically chosen.

The purpose of the broadcast is to add one to all the values initially loaded.

New data are inserted in the CAN in parallel with the broadcast execution.

Meanwhile, checkpoints of the peers and of the tracker are taken.

3. We terminate a peer’s virtual node in the middle of the broadcast, where

some peers still need to be reached by the broadcast. The virtual node

terminates which leads to a peer crash that is caught by our fault detector.

The fault detector triggers the recovery mechanism.
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4. We wait for the recovery to be completed. We observe the particular check-

points at which the application restarts in order to check that they were

actually taken after the beginning of the broadcast and before its end. This

ensures the relevance of the scenario.

5. We check if the broadcast was successful (discussed below), and that the

application continues to checkpoint normally after the recovery.

In order to evaluate the successfulness of the broadcast, we focus on three

properties which allow us to determine the correctness of the broadcast in the

presence of a fault during its execution. We mainly need to define these properties

because the execution of our application is not fully deterministic. Indeed, the

program uses the busy waiting mechanism of Java (Thread.sleep) in order to

plan the crash of a peer. Thereby, the crash cannot be deterministically correlated

with the progression of the application. Also, the checkpointing mechanism is

buffered such that it cannot be performed too many times in a time frame. These

two aspects have an impact on the number of peers that have been reached by

the broadcast message before the crash. Therefore, the number of peers that need

to be monitored for checking that they successfully received the broadcast in the

re-execution can vary, and we have to adapt to this hazard in order to check the

result of our application. In order to observe the behaviour of our distributed

application, we chose the less intrusive coordination mechanism to trigger a crash

and to collect information upon recovery, which leads to a not fully deterministic

scenario.

We first verify that the broadcast message has been received by all the peers:

the recovery helped the application reaching its objectives. In our case, the result

of our application is correct if the final sum of all values initially loaded in the

CAN is equal to the sum that was computed at the beginning plus the number of

values. Secondly, we verify that the broadcast message has not been received twice:

the recovery did not introduce new messages. In order to know about duplicates,

we set a boolean value belonging to the peer’s state when the broadcast request

is executed (this value is checkpointed). By optimality of our efficient broadcast

algorithm for CAN (in terms of number of messages), we know that, if a peer

received the broadcast message more than once, it is not due to the broadcast
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algorithm but to an erroneous re-execution. Thirdly, we verify that new values

that are added at the same time as the broadcast are correct after the broadcast:

the recovery did not introduce concurrency that entailed the data sanity. This

means that, for this execution, the checkpoints from which the peers recovered

are sound. In the end, we successfully observed our scenario’s execution and we

verified the three properties above, that ensured a correct broadcast with fault

tolerant peers.

∗ ∗ ∗

In this chapter, we aimed at a practical setting for showing multiactive ob-

jects in action. To this end, we have developed an application in the context of

peer-to-peer systems, and more specifically in the context of Content-Addressable

Networks (CAN). CAN bases the network structure on geometrical properties

that make any part of the network reachable in a bounded number of steps. We

have first presented a contribution to the peer-to-peer ecosystem with an efficient

broadcast algorithm that specially operates in CAN. This contribution settled the

context of the application that we have developed in a second section. The appli-

cation combines the efficient broadcast algorithm for CAN and the fault tolerance

mechanism of multiactive objects introduced in Section 5.3. Multiactive objects

are particularly adapted to represent the peers of a peer-to-peer system: they are

independent, they can communicate asynchronously, and they can perform mul-

tiple tasks at the same time. Moreover, all of these aspects can be represented

in a single class and driven with multiactive object annotations, since all peers

behave similarly. Conversely, peer-to-peer systems represent challenging settings

to test the effectiveness of our middleware: the nodes of a peer-to-peer system are

by nature unreliable, which brings the need for fault tolerance.

We have presented a use case where the fault tolerance of a distributed broad-

cast is not embedded in the broadcast algorithm but rather carried by the mid-

dleware, in our case ProActive. This is an approach that is rarely explored when

dealing with fault tolerance of distributed algorithms. In the context of distributed

broadcast, duplication of messages can be seen as a form of fault tolerance. How-

ever, duplicates are often uncontrollable for most of the distributed broadcast

algorithms. Consequently, no one can ensure that a duplicate will be produced
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for a failed message. For example, in the case of M-CAN [Rat+01b], only a small

ratio of duplicates are produced, so they are not reliable for fault tolerance. Fur-

thermore, if duplicates can serve to fault tolerance, one should still implement this

non-trivial behaviour efficiently. In the context of peer-to-peer systems, the notion

of fault tolerance is often directly embedded in the system specification. This is

the case of Chord [Sto+01], that delegates the queries for a crashed peer to another

peer that is responsible for relaying the crashed peer. A similar approach also exist

in CAN [Rat+01a]. The advantage is that the management of faults can then be

adapted to any underlying implementation of the peer-to-peer structure, and also

be optimised at will. However, we argue that the support of a distributed system

is a middleware matter: in our case it allows the business of the peer-to-peer sys-

tem to be less entangled with its implementation, respecting a clear separation of

concerns. Indeed, the philosophy of peer-to-peer is to provide a multitude of light

but efficient nodes, so charging peers with more and more concerns can end up in

entailing the scalability of the peer-to-peer system.

To conclude, we have shown in this chapter that using the non functional fea-

tures of the ProActive middleware is a relevant approach for building scalable and

reliable distributed systems. Multiactive objects have proven to be well-adapted

to implement the presented application, and to support its faulty execution. The

peer-to-peer application that was proposed in this chapter gathered several chal-

lenges that we have tackled throughout this thesis, and thus prepared us for the

conclusion of the thesis.
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7.1 Summary

7.1.1 Methodology

For a decade, active objects and actors have represented safe concurrent comput-

ing, coming in an intuitive abstraction for the programmer. Lately, they have

become more relevant in the parallel era thanks to successive enhancements made

to the models and to the frameworks, such that active objects and actors also

tend now to be highly efficient locally. However, the increments that have been
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proposed have raised new questions, such as the best way to express local paral-

lelism and local data sharing. They have also raised new challenges, such as the

adaptation of the local scheduling of requests. The tools that were built around

the model also have to be re-thought. In this thesis, we study the active object

programming model raised with internal parallel execution, controlled through an

intuitive meta-programming model: the multiactive object programming model.

We bring a complete framework that offers advanced scheduling policies, debug-

ging, and fault tolerance, integrated in a library. Overall, we attach a particular

interest in three objectives: usability, correctness, and performance of our devel-

opments. These objectives cover the broad spectrum of a programming model:

design, specification, and execution. We give the guidelines of the programming

model’s usage through practical applications. Testing our developments in realis-

tic settings is important for us, because being efficient is part of our objectives,

and the fact that we target a distributed execution of applications makes their

evolution less predictable. This is why we systematically evaluate the solutions

we propose with experiments. On the other hand, we use a formalisation of our

developments to deal with their correctness and to highlight their properties. By

this mean, we believe that we reinforce the guarantees offered by the programming

model, on which the programmer can strongly rely on.

7.1.2 Contributions

In this thesis, our first contribution is to come with advanced scheduling mech-

anisms that are integrated with the multiactive object programming model, and

implemented in the ProActive library. The concerns of local parallelism cannot be

completely handled by default policies, especially for the applications that target

a high performance. This is why we offer convenient abstractions to deal with the

parallelised execution of multiactive objects. We give to the programmer a new

set of annotations that affect the priority of requests and the allocation of threads.

Behind the scene, the request scheduler interprets these annotations in order to

select the next request to execute. We expose the properties of the priority mech-

anism so that the behaviour of the program that derived from the programmer’s

annotations is easily predictable and intuitive. For example, the programmer must
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be aware that the priorities will be applied only over the requests that are com-

patible. We also experiment it with micro-benchmarks and we expose this way

the advantages and the drawbacks of representing the priorities with a priority

graph. We propose a solution to cache the priority relationship between groups of

requests so that the scheduling of requests can be accelerated.

Priorities and thread management, combined with multiactive object compat-

ibilities, reveal to be convenient to implement internal scheduling patterns. We

use these features in a second and in a third part of the thesis. We encode the

ABS language, that is based on active objects, into a precise setting of multiactive

objects. We release the ProActive backend for ABS, that automatically transforms

ABS models into distributable applications. We formalise the translation in order

to prove its correctness. To this end, we use MultiASP (the calculus of ProActive)

together with the operational semantics of ABS. We establish an equivalence rela-

tion between ABS and MultiASP configurations. We prove two theorems that cor-

roborate the correctness of the translation. Despite the expressiveness that allows

MultiASP to embody the ABS language, some configurations cannot be properly

represented. Notably, the future update mechanism is different in the two lan-

guages: a future resolution is not remarkable in a MultiASP program, whereas it

basically drives an ABS program. Such an event cannot be directly observed in

MultiASP, because MultiASP relies on a data-driven synchronisation. This thesis

provides a thorough study of active object languages and their implementations,

and the backend that we presented in the case of ABS and ProActive/MultiASP il-

lustrate those differences.

A third contribution covers the support of applications that are build with the

multiactive object programming model. More precisely, we take interest in the

development phase of such applications and in their execution phase. We propose

a debugger tool that allows the programmer to visualise the execution of a ProAc-

tive application and see what happened in parallel in multiactive objects. This

is the first visualisation tool that is in accordance with the notions of multiactive

objects. Regarding the support of the execution of multiactive object-based appli-

cations, we also come with an adapted fault tolerance protocol that allows faulty

multiactive objects to recover after a crash, thanks to regular checkpoints. We

generically implement a seminal version of this protocol by only relying on multi-
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active object abstractions. This makes a clear separation between the middleware

and the fault tolerance protocol.

Finally, we complete our developments with a concrete application, that takes

place in the particular setting of peer-to-peer systems. We focus on Content-

Addressable Networks (CAN), and more particularly on an efficient way of broad-

casting information in such networks. We implement a CAN with multiactive ob-

jects for embodying fault tolerant parallel peers. We play a scenario where a peer

runs an efficient broadcast, and where one of the peer crashes during the routing

of the broadcast. We rely on the fault tolerance mechanism adapted to multiactive

objects in order to enable the recovery of the faulty peer. The broadcast can thus

complete successfully even in the presence of a fault during its execution. This

constitutes a valid approach to implement robust distributed algorithms at the

middleware level.

Overall, we build a proven and thorough framework around multiactive ob-

jects. We implement scheduling patterns and non functional features by using

this programming model. We tackle in this thesis the questions raised by a multi-

threaded execution of active objects: the efficient local scheduling of requests, the

management of parallel execution flows with threads, and the support made to the

framework.

7.2 Perspectives

7.2.1 Impact and Short-Term Enhancements

The results we have obtained and presented in this thesis are promising for the

multiactive object programming model, both on practical aspects and on theoreti-

cal aspects. As it is now, the multiactive object programming model and the work

we have done around it is a suitable starting point of several research topics, that

we will discuss in the next subsections. The first impact of this thesis is immediate:

the multiactive programming model and all the the works that are presented in

this thesis are completely implemented and usable. A broader impact of this thesis

is enclosed in the deep understanding of active object programming languages. It

can serve as a guideline on the various ways to design and implement active object
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models and frameworks. In a short-term perspective, the ProActive middleware

and its surrounding tools can be further enhanced. Regarding the set of multiac-

tive object annotations that have been introduced in this thesis, having dynamic

priorities should be considered in future work. For now, the priorities that are

given to the requests of a multiactive object are static: they are defined by the

programmer once and they apply the whole execution time. In some situations,

following the prioritised specification of the programmer could lead to a starvation

of requests, for example if a continuous flow of high priority requests takes over

low priority requests. In this case, the multiactive object runtime should be able

to detect the starvation of low priority requests and to adopt a behaviour that

solves this issue. One of the possible solutions to implement this behaviour would

be to make the multiactive object runtime increase progressively the priority of

low priority requests, up to the point where the starvation is solved. This is an

approach that is used to handle the priority of tasks in operating systems. Indeed,

the starvation of requests is a situation that the beginner programmer is unlikely

to foresee. This is why dynamic priorities by default would be relevant in the

multiactive object framework. In order to implement this behaviour, a priority

Application Programming Interface (API) can be created, like for the manipula-

tion of the thread limit. In general, more systematic policies and guardrails like

this can be introduced in the middleware to prevent unexpected executions. Con-

sidering the large possibilities of multiactive objects, such policies could likely be

implemented using the abstractions offered by multiactive objects, in the same

spirit as we have driven most of our developments in this thesis.

7.2.2 Fault Tolerance and Debugging

Short and mid-term works will be carried out in the debugging and fault toler-

ance of multiactive objects. We first need to augment the fault tolerant protocol

of multiactive objects in order to make it work in larger settings of multiactive

objects. Indeed, currently the proposed protocol creates a deadlock if there are

recursive requests when the checkpoint is triggered. We proposed many directions

to solve this issue in Subsection 5.3.3. Most of them imply a core modification

of the multiactive object runtime, but we advocate one of the solutions that ele-
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gantly uses the generic multiactive object notions. To this end, the parameter of

multiactive object annotations that activates the reentrance of requests must be

set: the requests that generate new requests on the same multiactive object are

treated on the same thread. This solves the deadlocks that arise from having a

checkpoint triggered at the same time as a reentrant request is processed. How-

ever, when this solution is implemented in the future, one should analyse if having

this configuration does not create a side effect on the execution of the application’s

requests.

Regarding the tool set built around multiactive objects, the debugger tool

could provide even more information regarding an application’s execution. For

example, the kind of thread limit is an information that is missing in the current

visualisation, as well as the dynamic adaptation of the thread limit. Another

promising improvement of the debugger tool is to support runtime visualisation,

with instantaneous updates on the application’s status. This is possible thanks to

the efficient parsing of events that we provide.

A mid-term perspective that is conceivable is to provide a real-time debugging

of multiactive object-based application with breakpoints. Indeed, the debugging

of applications through breakpoints can be done by persisting the state of the

application at the breakpoint’s place. Then, continuing the execution from the

breakpoint is like restarting the application from a persisted state. The fault

tolerance mechanism of multiactive objects can be used in order to achieve this

behaviour. Indeed, the state of the application is regularly persisted with check-

points. Thus creating breakpoints from checkpoints can be made by raising the

checkpointing action from the middleware level to the application level. To this

end, the fault tolerance protocol for multiactive objects must be strengthened be-

forehand, and the solutions presented in Subsection 5.3.3 could be implemented in

this objective.

7.2.3 Multiactive Components

VerCors1 is a platform that allows the programmer to graphically specify dis-

tributed component-based applications. VerCors enables analysis, verification and

1https://team.inria.fr/scale/software/vercors/vcev4-download/
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validation of applications by generating a behavioural model from the specifica-

tion of an application, which is then suitable for a model checker [HKM16]. The

communication model that prevails in VerCors is based on asynchronous requests

and replies. Executable code can be automatically generated from the specifica-

tion. In particular, VerCors generates ProActive code behind the scene. Indeed, the

ProActive library provides components; they are implemented with ProActive active

objects. In this context, a perspective that arises from this thesis is the integration

of the advanced features of multiactive objects in multiactive components. This

objective regards the evolution of the ProActive library, but also of the VerCors

platform. In the future, it is planned to make the multiactive features accessible

from the graphical component editor. More details about the evolution of the

VerCors platform and of the usage of the ProActive library in the code generation

will be available in the forthcoming thesis of Oleksandra Kulankhina.

7.2.4 Formalisation and Static Analysis

Besides practical developments regarding multiactive objects, debugging, and fault

tolerance, a lot of theoretical works can be grounded on the proposed multiactive

object framework. Firstly, the work that has been started for the fault tolerance of

multiactive objects needs to be reinforced. The formalisation of the fault tolerance

protocol can help in its design, and help in defining the guarantees that the proto-

col should provide. Doing this work should also help in reasoning, more globally,

on the fault tolerance of distributed systems that involve local concurrency. More-

over, formalising the fault tolerance protocol of multiactive objects would build a

stronger basis for the design and implementation of a dynamic debugger through

breakpoints.

Another orientation that the multiactive object framework will probably take

in the future is the static analysis of programs made of multiactive objects. For

now, the multiactive object annotations that are given by the programmer are

interpreted at runtime. Apart from a few guardrails that we have set when the

annotations are interpreted, the annotations are not verified, and we trust the

programmer for most of the behaviour that is driven by the annotations. A refined

analysis of multiactive object annotations could provide a stronger confidence in
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the application’s execution. For example, being able to validate the compatibilities

given by the programmer with non-interference techniques (in order to spot data

races) would give a precious feedback to the programmer.

Finally, an on going work is pursued on the static detection of deadlocks in

multiactive object-based applications. The complete technique and results will be

available in the thesis of Vincenzo Mastandrea. The context of this work starts

from and effective deadlock analyser for the ABS language [GLL15]. However,

performing deadlock analysis in the case of a transparent active object language

like ProActive and MultiASP raises new challenges. The current results on this

work [Gia+16] include an effective parser for the MultiASP programming language,

and a seminal adaptation of the deadlock detection algorithm of ABS. The outcome

of this work could be particularly relevant in the case of the ProActive backend for

ABS, that we have introduced in this thesis, in order to confront the deadlocks that

can be found in the ABS source program and in the translated ProActive program.

The synergy of these works, specially focused on active object languages, builds

solid bridges and opens long-term collaborations with all the major players of active

object-based programming languages and models.
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Proofs

A.1 Proofs of Lemmas

Lemma 4.3.1, page 131 (Correspondence of activated objects). In an ABS con-

figuration, if an object ob has an active request that is not idle, then there exists

a cog in which ob is the current active object.

ob(i α,ÐÐ⇀x↦v, p, q)∈Cn ∧ p ≠ idle⇒ cog(α, i α) ∈ Cn

Proof of Lemma 4.3.1. The proof is done by induction on the ABS reduction rules.

Lemma 4.3.2, page 131 (Equivalence of values).

v ≈Cn
σ v′ ⇒ v ≈Cn

σ Jv′K

Proof of Lemma 4.3.2. We prove this lemma by recurrence on the proof of v ≈Cn
σ v′

(Definition 2). This corresponds to a recurrence on the number of indirections of

references that are followed to evaluate v′. We consider three cases:

– If v is a primitive value (case v ≈Cn
σ v), then v′ = v and the equivalence

v ≈Cn
σ v is direct because v = JvK.
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– If v is not a primitive value (
v ≈Cn

σ σ(o)

v ≈Cn
σ o

), then v′ = o and v ≈Cn
σ σ(o). There-

fore, we need to handle three cases:

● σ(o) = f . In this case, since JoK = o by the evaluation function of

Figure 4.9, then v ≈Cn
σ o.

● σ(o) = [ÐÐ⇀x↦v]. In this case, since the evaluation of o is also equal to o,

we also have v ≈Cn
σ o.

● σ(o) = v′′. In this case, since v ≈Cn
σ v′′, we have v ≈Cn

σ Jv′′K by recurrence

hypothesis. Then v ≈Cn
σ JoK = Jσ(o)K = Jv′′K by the evaluation function

of Figure 4.9.

– The other cases of Definition 2 are not applicable here, because they are not

a valid MultiASP value (e.g. a future is not a MultiASP value).

Lemma 4.3.3, page 131 (Equivalence of evaluation functions). Let Cn be an

ABS configuration and suppose Cn R Cn. Let ob(o α, a,{l∣s}, q) ∈ Cn. By defini-

tion of R, there exists a single activity act(α, oα, σ, p,Rq) ∈ Cn, with σ(o)=[cog↦
α,myId↦ i, a′] and (f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p∧ℓ′(this) = o. For

any ABS expression e we have:

JeKAa+l ≈
Cn
σ JeKσ+ℓ′

Proof of Lemma 4.3.3. We only consider here the case where x is a variable, be-

cause the other cases are not different from what is done in the Java backend for

ABS. In particular, the evaluation of arithmetic expressions relies on the equiva-

lence of variables and on the fact that the evaluation of the arithmetic expression

itself is the same.

We prove the equivalence of evaluation functions on variables by case analysis.

– Either the variable belongs to the fields of the object ob(o α, a,{l∣s}, q),
and not to the local variables: a(x) = v ∧ v ∉ dom(l). In this case, we

have ob(o α, a,{l∣s}, q) ∈ Cn with x ↦ v ∈ a. By definition of equivalence,
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we have act(α, oα, σ, p,Rq) ∈ Cn, ∃(f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∈ p with,

∀x ∈ dom(l)/destiny, l(x) = v ≈Cn
σ ℓ′(x) = v′ by Line 8 of equivalence con-

dition, and σ(o) = [mycog ↦ α,myId ↦ i, a′] by Line 2. Also by defi-

nition of equivalence, a′(x) = v′ and v ≈Cn
σ v′, because σ is the store of

α. We have JxKσ+ℓ′ = Jv′K by the definition of the evaluation function of Fig-

ure 4.9, with ℓ′(this) = o by the equivalence condition of Figure 4.12 (because

x ∉ dom(l) and hence, x ∉ dom(ℓ′)). Thus we have v ≈Cn
σ JxKσ+ℓ′ = Jv′Kσ+ℓ′ by

Lemma 4.3.2.

– Or the variable belongs to local variables: l(x) = v. In this case, we have

ob(o α, a,{l∣s}, q) ∈ Cn with l(x) = v and, by definition of equivalence,

act(α, oα, σ, p,Rq) ∈ Cn, ∃(f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∈ p with, ∀x ∈

dom(l)/destiny, l(x) = v ≈Cn
σ ℓ′(x) = v′ by Line 8 of equivalence condition.

Finally, JxKAa+l ≈
Cn
σ ℓ′(x) and by Lemma 4.3.2 JxKAa+l ≈

Cn
σ Jℓ′(x)Kσ+ℓ′ .

Lemma 4.3.4, page 131 (Equivalence after serialisation and renaming).

v ≈Cn
σ v′ ∧ σ′ = serialise(σ, v′) ⇒ v ≈Cn

σ′ v′

v ≈Cn
σ v′ ∧ (v′′, σ′) = renameσ(v′, σ) ⇒ v ≈Cn

σ′ v′′

Proof of Lemma 4.3.4. The proof relies mostly on the definition of equivalence

R. Concerning serialisation, the main difference is the fact that we check the

equivalence in a smaller (or equal) store. However, this store is self-contained

and every reference that could be followed by the equivalence always exist in the

serialised store. Concerning renaming, the proof is trivial as only the case where

the references are followed is changed and the renaming ensures the equivalence of

the reached values.

Invariant Reg, page 131. For every activity α such that oα is the location of the

active object of activity α in its store σα, if the current task consists in an invoca-

tion to oα.retrieve(i), then this invocation always succeeds, because the object has

been registered first. The invocation returns some object o′ such that i α ≈Cn
σ o′.
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Proof of Invariant Reg. To prove the Invariant Reg we rely on the translational

semantics provided in Figure 4.11. Suppose that a call to oα.retrieve(i) is per-

formed. We want to show that this call succeeds and returns an object equiv-

alent to i α. If we have such a call, it means that we are in the body of an

execute(id,m, parameters) call, with id = i. Since the execute method is a reserved

method name, we know that we are executing a remote method call, correspond-

ing to an expression: e.m(parameters) with e.cog() = α and e.myId() = id. Also,

we have e such that [[e]]σβ+ℓ = o and σβ(o) = [cog ↦ α,myId ↦ id,⋯]. Then,

we know that we cannot have method calls on the temporary variable no, that is

used to temporarily store a newly created object until it is registered to its cog,

because this variable is only known in the instantiation thread and no method

call is performed on it. Thus, since e cannot be no, it is necessarily a variable x

that has been assigned after a call to t.register(no) (where t↦ α), that makes the

cog t aware of the new object referenced by no. Consequently, the call to register

precedes the remote call e.m(parameters)1. Now, we have two cases.

– Either the register call is local because it comes with a new local object

instantiation (with the new local ABS keyword). In this case, since the

register call is synchronous, it is necessarily finished before e.m(parameters)
is invoked, so the later oα.retrieve(i) succeeds naturally.

– Or the register call is remote because it comes with a new remote object

instantiation (with the new ABS keyword). In this case, since the register

call is asynchronous, it may happen that the register and the execute requests

are both awaiting in the queue. However, thanks to causal ordering and to

FIFO service policy, we are guaranteed that the register request is in the

queue before the execute request, and that the register request will be served

first. In addition, considering the multiactive compatibilities defined for

the groups of register and execute, we see that an incompatibility is raised

between the two requests because they access the same identifier. Therefore,

the oα.retrieve(i) request cannot be served before the register request finishes,

and thus, the oα.retrieve(i) that is performed in the execute request succeeds.

1We also use the fact that a pointer could not be forged.
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Finally, in both cases we have: i α ≈Cn
σ o′.

A.2 Proofs of Theorems

A.2.1 From ABS to MultiASP

Theorem 4.3.5, page 132 (ABS to MultiASP). The translation simulates all

ABS executions with FIFO policy and rendez-vous communications, provided that

no future value is a future reference.

Cn0
a→
∗
Cn with a FIFO policy ∧∄f, f ′. fut(f, f ′)∈Cn ⇒ ∃Cn.Cn0→∗Cn ∧ CnRCn

Proof of Theorem 4.3.5. Firstly, we look at the starting configuration. Let P =

IC {x ; s} be an ABS program, let Cn0 be the initial configuration corresponding

to this ABS program: ob(start,∅, p,∅), where the process p corresponds to the ac-

tivation of the program’s main block: p = {l∣s}. The initial MultiASP configuration

corresponding to program JP K is: act(α0, o, [o ↦ ∅], q0 ↦ {l∣JsK},∅). It is easy

to see that this initial configuration has the same behaviour as: act(α0, o, [o ↦
∅, start ↦ [cog ↦ α0,myId ↦ 0], (f, execute, start,m) ↦ {l∣JsK} ∶∶ {∅∣x = ●},∅). We

denote this new MultiASP initial configuration Cn0. This way, we have the ABS ini-

tial configuration Cn0 that is equivalent, considering our equivalence relation R,

to the MultiASP configuration Cn0; this fact is denoted Cn0RCn0. We also use

→∗ to denote the transitive closure of →.
Secondly, Theorem 4.3.5 is proven by induction on the ABS reduction rules.

It relies on the definition of equivalence R shown in Figure 4.12, and on the

following induction step: If Cn0
a→
∗
Cn, CnRCn, Cn

a→ Cn′ with a FIFO policy,

and ∄f, f ′. fut(f, f ′) ∈ Cn′, then ∃Cn′. Cn →∗ Cn′ ∧ Cn′RCn′. First, note that

in the definition of equivalence between values and between statements (≈Cn
σ ), the

ABS configuration Cn is only used to track futures. Thus, in all the cases except

Return, ≈Cn
σ and ≈Cn′

σ are the same. Each case is concluded by arguments on

observability. We are interested in observing remote method invocations, return

of asynchronous method calls, assignments to field variables, and assignments to

local variables that were not introduced by the translation into MultiASP. Other

reduction rules are considered to be not observable and will be used transparently

as many times as necessary to simulate any ABS reduction.
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1) Case of the [Assign-Local] ABS rule.

We first consider the ABS Assign-Local rule, to show that we can observe equiv-

alent configurations on ABS and MultiASP side after reduction. In this rule, a

particular ABS configuration Cn leads to a configuration Cn′, noted Cn
a
→ Cn′,

as follows:

ABS

x ∈ dom(l) v = [[e]]A(a+l)
ob(i α, a,{l ∣ x = e; s}, q) a→ ob(i α, a,{l[x↦ v] ∣ s}, q)

Suppose that Cn is also related to a MultiASP configuration Cn by the definition

of equivalence, noted CnRCn. Then, we want to show that a configuration Cn′,

equivalent to Cn′, can be obtained by MultiASP semantics from Cn. In the case

of Assign-Local rule, it means that a local variable x must exist in Cn′ and

that its value after assignment must be equivalent to the value assigned to it in

ABS. To begin with, by Lemma 4.3.1 there must be a cog in the ABS starting

configuration where i α is the current active object: ∃cog(α, i α) ∈ Cn. Then, by

definition of the equivalence relation R, we have the following key points:

– First, there exists a correspondingMultiASP activity in theMultiASP starting

configuration: ∃oα, σ, p,Rq.act(α, oα, σ, p,Rq) ∈ Cn.

– Second, this activity has an active request initiated from an execute method

call, and maps to a current statement to execute:

∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′.((f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p with

(x = e; s) ≈Cn
σ s′ and ∀x ∈ dom(l) ∖ destiny.l(x) ≈Cn

σ ℓ(x). Thus, by the

definition of equivalence between statements, either s′ = (x = e; JsK), or e = v

(because ABS statement is x = v; s) and s′ = (x = e′; JsK) with v ≈Cn
σ Je′Kσ+ℓ′ .

In both cases, there is e′ such that s′ = [x = e′; JsK]

Those key points allow us to find the starting MultiASP configuration Cn and to

apply the MultiASP Assign-Local reduction rule:

MultiASP

x ∈ dom(ℓ′) v′ = [[e′]](σ+ℓ′)
act(α, oα, σ, p,Rq)→ act(α, oα, σ,{qA ↦ {ℓ′[x↦ v′] ∣ JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq)
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We have now to verify that the obtained MultiASP configuration Cn′ is in relation

R with the ABS configuration Cn′. First, we must have at least as many corre-

sponding terms in MultiASP as in ABS. In this case, we have cog(α, i α) ∈ Cn′ on

one hand, and act(α, oα, σ, p′′,Rq) ∈ Cn′ on the other hand. Recall that we only

consider the terms that changed in the reduction, not all the terms of a configura-

tion. Second, we must check equivalence of each element by checking the equiva-

lence of their content. We have on the ABS side the term ob(i α, a,{l[x↦ v]∣s}, q)
and on the MultiASP side the activity α which has in particular qA ↦ {ℓ′[x ↦
v′]∣JsK} ∶∶ {ℓ′′∣s′′} in the method execution stack, with v′ = Je′Kσ+ℓ′ . Then, to have

v ≈Cn′

σ v′ we must have v ≈Cn′

σ Je′Kσ+ℓ′ . Now, we have two cases:

1. either e′ = e by definition and therefore, by Lemma 4.3.3: [[e]]Aa+l ≈Cn′

σ [[e]]σ+ℓ′ .

2. or v ≈Cn′

σ JeKσ+ℓ′ and Je′Kσ+ℓ′ = v′ .

Both cases lead to the fact that the assigned values are equivalent. The rest of

the elements of the activity are unchanged except the remaining statements, but

in this case we have s ≈Cn′

σ+ℓ′ [[s]] by definition of equivalence.

2) Case of the [Assign-Field] ABS rule.

Like the previous case, suppose Cn
a
→ Cn′ with the Assign-Field ABS reduction

rule, as follows:

ABS

x ∈ dom(a) ∖ dom(l) v = [[e]]A(a+l)
ob(i α, a,{l ∣ x = e; s}, q) a→ ob(i α, a[x↦ v],{l ∣ s}, q)

With the same strategy as the previous case, namely by having first CnRCn, then

Cn → Cn′ and finally Cn′RCn′, we want to show that an object field x exists

in Cn′ and that its value after assignment is equivalent to the value assigned to

it in ABS. First, we have again by Lemma 4.3.1, ∃cog(α, i α) ∈ Cn. Second, by

definition of the equivalence relation R, we have:

– A corresponding MultiASP activity: ∃oα, σ, p,Rq.act(α, oα, σ, p,Rq) ∈ Cn.

– Values in the store σ that are equivalent to the values contained in a:

∃o, v′.σ(o) = [cog↦α,myId↦ i,
ÐÐÐ⇀
x↦v′] where v ≈Cn

σ v′ and ÐÐÐ⇀x↦ v = a.

Consequently, x ∈ dom(σ(o)) because x ∈ dom(a).
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– A statement currently executed that belongs to the current active request

of the activity: ∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′ such that: (f, execute, i,m, v′′)A ↦
{ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p and ℓ′(this) = o with (x = e; s) ≈Cn

σ s′. Like the previous

case, either s′ = (x = e; JsK) and e′ = e, or e = v and s′ = (x = e′; JsK) with

v ≈Cn
σ Je′Kσ+ℓ′ .

Then, this leads to the following MultiASP Assign-Field rule:

MultiASP

ℓ′(this) = o x∈dom(σ(o)) x∉dom(ℓ′) σ′ = σ[o↦ (σ(o)[x↦ [[e′]](σ+ℓ′)])]
act(α, oα, σ, p,Rq)→ act(α, oα, σ′,{qA ↦ {ℓ′ ∣ JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq)

Like in the previous case, we must now check that Cn′RCn′. First, we have

cog(α, i α) ∈ Cn′ and act(α, oα, σ′, p′′,Rq) ∈ Cn′, which are equivalent terms. Sec-

ond, we have to compare the content of ob(i α, a[x ↦ v],{l ∣ s}, q) to the content

of activity α with σ(o) = [cog↦α,myId ↦ i,ÐÐ⇀x↦v[x ↦ [[e′]]σ+ℓ′]]. Then, we must

have v ≈Cn′

σ v′, which is unchanged except for the particular value v that must

be equivalent to the evaluation of e′. Then, similarly to the Assign-Local case,

we have again v ≈Cn′

σ [[e′]]σ+ℓ′ . Finally, we have s ≈Cn′

σ+ℓ′ [[s]] by the definition of

equivalence R.

3) Case of the [Await-True] ABS rule.

We start from the ABS Await-True reduction rule, in which Cn
a
→ Cn′:

ABS

f = [[x]]A(a+l) v ≠ �
ob(i α, a,{l ∣ awaitx?; s}, q) fut(f, v) a→ ob(i α, a,{l ∣ s}, q) fut(f, v)

From the configuration Cn, we know that, by Lemma 4.3.1, there exists in

ABS α such that cog(α, i α) ∈ Cn. We also know, by equivalence relation R
and by translational semantics, that there exist in MultiASP oα, σ, p,Rq such that

act(α, oα, σ, p,Rq) ∈ Cn. Besides, there exist ℓ′, s′, ℓ′′, s′′ such that, by translational

semantics: {qA ↦ {ℓ′ ∣ w = x.get(); JsK} ∶∶ {ℓ′′ ∣ s′′}} ∈ p. Also, we know that there

are v′, σ′ such that fut(f, v′, σ′) ∈ Cn, with v ≈Cn
σ′ v′. Thus, we have the following

MultiASP configuration Cn, where CnRCn:

MultiASP act(α, oα, σ,{qA ↦ {ℓ′ ∣ w = x.get(); [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq) fut(f, v′, σ′)
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By Lemma 4.3.3, we have [[x]]A
(a+l)

≈Cn
σ [[x]](σ+ℓ′), and, by case analysis on the

definition of ≈Cn
σ (Definition 2), we have [[x]](σ+ℓ′) = o. Then, two cases are possible

in MultiASP: either σ(o) = f (fourth case and second case of the definition of ≈Cn
σ ),

or σ(o) = vf where v ≈Cn
σ vf (fourth case and fifth case of the definition of ≈Cn

σ ).

We consider the two possible cases below:

– In the first case, where o points to a future, we first perform a future update

on the MultiASP configuration Cn (the point here is to ‘catch up’ with the

ABS execution). Thus, we have Cn→ Cn′ where in Cn′ activity α is:

act(α, oα, σ′′,{qA ↦ {ℓ′ ∣ w = x.get(); [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq) with σ′′ =

σ[o ↦ vr] ∪ σr and (vr, σr) = renameσ(v′, σ′). After that, the current local

method call (f.get()) can be performed. Consequently, after applying a local

invocation and a local assignment, we have a MultiASP configuration Cn′′,

such that Cn′ →∗ Cn′′, as follows:

MultiASPact(α, oα, σ′′,{qA ↦ {ℓ′[w ↦ vr] ∣ [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq) fut(f, v′, σ′)
Now, we must compare Cn′ and Cn′′ to prove that they are equivalent. The

only change concerns the value pointed to by the variable x. Suppose x is a

field of the current object (the case where x is a local variable is similar). To

prove Line 3 of the definition of equivalence (Figure 4.12), we must ensure

that f ≈Cn′

σ′′ vr. Indeed, by definition of ≈Cn′

σ′′ , we need to have σ(o) = vr and

also v ≈Cn′

σ′′ vr. In our case, this is true because first, v ≈Cn′

σ′ v′ and second,

by Lemma 4.3.4, we have v ≈Cn′

σ′ v′ ∧ (vr, σr) = renameσ′(v′, σ′) ⇒ v ≈Cn′

σr

vr with σr ⊆ σ′′. Regarding activity α, the elements to be considered are

the local variables and the statements; the other elements did not change

in the reduction. MultiASPconfiguration Cn′ contains an additional local

variable w that comes from the get invocation; this local variable is not

used. The other local variables did not change, which preserves equivalence.

Finally, the remaining statements in ABS and in MultiASP are guaranteed

to be equivalent by the fact that s ≈Cn′

σ′′+ℓ′ [[s]], according to the definition of

equivalence R.

– In the second case, where o points to a value, the future has already been

updated in the past. Consequently, no preliminary future update is neces-
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sary and the last steps of the first case can be performed in the same way,

but directly with Cn instead of Cn′ and with vf instead of vr. The same

arguments in favour of the equivalence Cn′RCn′ can be applied.

4) Case of the [Await-False] ABS rule.

We start from the ABS Await-False reduction rule, where Cn
a
→ Cn′:

ABS

f = [[x]]A(a+l)
ob(i α, a,{l ∣ awaitx?; s}, q) fut(f,�) a→ ob(i α, a,idle, q ∪ {l ∣ awaitx?; s}) fut(f,�)
By Lemma 4.3.1, we know that there exists in ABS α such that cog(α, i α) ∈ Cn.

By the definition of equivalence R, we also know that there exist in MultiASP oα,

σ, p,Rq such that act(α, oα, σ, p,Rq) ∈ Cn. Furthermore, we have fut(f,�) ∈ Cn

and, by translational semantics, we have: ∃ℓ′, ℓ′′, s′′.{qA ↦ {ℓ′ ∣ w = [[x]].get(); [[s]]} ∶∶
{ℓ′′ ∣ s′′}} ∈ p. Thus, we have the following MultiASP configuration Cn, where

CnRCn:

MultiASP act(α, oα, σ,{qA ↦ {ℓ′ ∣ w = x.get(); [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq) fut(f,�)
By Lemma 4.3.3, we have [[x]]A

(a+l)
≈Cn
σ [[x]](σ+ℓ′). By case analysis on the defini-

tion of ≈Cn
σ , we have [[x]](σ+ℓ′) = o. Then, only one case is possible in MultiASP:

σ(o) = f , according to the fourth and second case of the definition of ≈Cn
σ . Indeed,

no other case is possible because the future has not been resolved yet. Thus, the

current statement of activity α is in fact a local method call to x.get(), where
σ(o) = f . Since f has not been resolved yet in MultiASP neither, the current

request of activity α switches to a passive status (qP ) by the MultiASP rule Invk-

Future2. Thus, we have the following MultiASP configuration Cn′, such that

Cn→ Cn′:

MultiASP act(α, oα, σ,{qP ↦ {ℓ′ ∣ w = x.get(); [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′,Rq) fut(f,�)
Now we have to prove Cn′RCn′ . In MultiASP, the only element that changed

in activity α is the status of the current request, from qA to qP . This corresponds

2Recall also that the activity has by default a soft thread limit status, only restraining the
number of threads with an active status.
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to the fact that the current task became idle in ABS. Indeed, in the definition of

equivalence Figure 4.12, as soon as there is an ABS term {l ∣ s} in p, there must be

a corresponding active thread in MultiASP (Line 4). Similarly, passive threads in

MultiASP correspond to some of the requests that are in the queue in ABS. Thus,

the passivation of the MultiASP thread corresponds exactly to the transfer of the

task to the request queue in ABS. Then, the equivalence of the two tasks is trivial,

because awaitx; s ≈Cn′

σ w = x.get(); [[s]].

5) Case of the [Release-Cog] ABS rule.

We have the following ABS reduction Cn
a
→ Cn′ with the Release-Cog rule:

ABSob(i α, a,idle, q) cog(α, i α) a→ ob(i α, a,idle, q) cog(α, ǫ)
From configuration Cn, by definition of equivalence R, we know that there ex-

ist in MultiASP oα, σ, p,Rq such that act(α, oα, σ, p,Rq) is in the corresponding

MultiASP configuration Cn, where CnRCn. Since, in Cn, the current task is

idle and all other objects in cog α are idle too (we know that by Lemma 4.3.1),

there exist in MultiASP no f, i,m, v′′, ℓ′, s′, ℓ′′, s′′ such that (f, execute, i,m, v′′)A ↦
{ℓ′ ∣ s′} ∶∶ {ℓ′′ ∣ s′′} ∈ p. In other words, there is no active execute request in the

set p of executed requests of activity α. In this case, we directly have Cn′RCn,

because the only term that changed from Cn to Cn′ is the cog term, and the state

of cog terms is not relevant in the definition of equivalence R.

6) Case of the [Activate] ABS rule.

We have the following ABS reduction Cn
a
→ Cn′ with the Activate rule:

ABS

α = a(cog)
ob(i α, a,idle, q ∪ {l ∣ s}) cog(α, ǫ) a→ ob(i α, a,{l ∣ s}, q) cog(α, i α)

From configuration Cn, by definition of equivalence R, we know that there exist

oα, σ, p,Rq such that act(α, oα, σ, p,Rq) is in a corresponding MultiASP configura-

tion Cn, where CnRCn. We also know that there is no active execute request

in the set p of executed requests of activity α, because in the ABS configura-

tion Cn, the current task is idle. As in ABS the {l ∣ s} request belongs to the
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pending requests of the ABS object i α, we have, by definition of equivalence R
(Figure 4.12, Line 5, passive requests case), two possible cases (for the two sides

of the disjunction of Line 5), detailed below:

– In the first case, a corresponding passive request in MultiASP is in the set of

executed requests p: ∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′.(f, execute, i,m, v′′)P ↦ {ℓ′∣s′} ∶∶
{ℓ′′∣s′′} ∈ p ∧ ℓ′(this) = o, with o the location of the object corresponding to

i α3. The requests involved in this case can only be execute requests. As we

have explained in the translational semantics from ABS toMultiASP (Subsec-

tion 4.3.3), execute requests belong to group g2 (group(execute) = g2) and this

group has a maximum thread limit of one thread (Lg2 = 1). Basically, this

means that only one execute request can be active at a time. Thus, since no

other request is active in p, we have the condition: Active(p∣
g2
) < Lg2 that

is verified. We can apply the Activate-Thread MultiASP rule to be in

configuration Cn′, where Cn→ Cn′:

MultiASP

Group(q′) = g2 Active(p∣
g2
) < Lg2

act(α, oα, σ,{q′P ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′}} ⊎ p′′,Rq)S
→ act(α, oα, σ,{q′A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′}} ⊎ p′′,Rq)S

Note that in the above reduction, we have q′ = (f, execute, i,m, v′′). We

now have to prove that Cn′RCn′. The only change in the reduction takes

place in the set of executed requests p: there is one less (execute) request

that is passive (one less request to match in R in Line 5 of Figure 4.12, but

one more (execute) request that is active. We must compare the (execute)

request with the current task in ABS, in Line 4 of R. Proving the condition

of Line 4 from the first case of the disjunction of Line 5 is trivial, because

all the elements perfectly match.

– In the second case, a corresponding request in MultiASP is in the queue

of activity α: ∃ℓ′, s′, i,m, . (f, execute, i,m, v′′) ∈ Rq ∧ oα.retrieve(i) = o ∧
bind(o,m, v′′) = {ℓ′∣s′} with (∀x ∈ dom(l)/destiny. l(x) ≈Cn

σ ℓ′(x)) ∧ s ≈Cn
σ+ℓ′

s′). Let q′ = (f, execute, i,m, v′′) and Rq = Rq0 ∶∶ q′ ∶∶ Rq1. In this case, since

no other request is active and since execute requests are compatible with

3Formally, σ(o) = [cog ↦ α,myId↦ i].



A.2. PROOFS OF THEOREMS 207

all other requests (they can run in parallel with any other request), the q′

request is ready to be served because the predicate ready(q′, p,Rq0) is true.

Here, we use the fact that we restricted ABS to the FIFO policy for request

activation: if a request in Rq0 could be served, then it would be served first.

Thus, we can apply theMultiASP Serve reduction rule to be in configuration

Cn′, where Cn→ Cn′:

MultiASP

ready(q′, p,Rq0) q′ = (f, execute, i,m, v′′) bind(oα, execute, v′′) = {ℓ′′ ∣ s′′}
act(α, oα, σ, p,Rq0 ∶∶ q′ ∶∶ Rq1)→ act(α, oα, σ,{q′A ↦ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq0 ∶∶ Rq1)

Note that in the above reduction, s′′ is the body of the execute method:

s′′ = (w = this.retrieve(i);x = w.m(params); return x). Furthermore, we also

have oα.retrieve(i) = o thanks the the Invariant Reg of Subsection 4.3.4

and thus, after a local method call to retrieve and a local assignment, we

can perform the main local method call m(params) on object o. We can

then apply the MultiASP Invk-Passive reduction rule and obtain a last

configuration Cn′′, where Cn′ →∗ Cn′′, as follows:

MultiASP

[[w]](σ+ℓ′′) = o [[params]](σ+ℓ′′) = v′′ bind(o,m, v′′) = {ℓ′ ∣ s′}
act(α, oα, σ,{q′A ↦ {ℓ′′ ∣ x = w.m(params); return x}} ⊎ p′′,Rq)
→ act(α, oα, σ,{q′A ↦ {ℓ′ ∣ s′} ∶∶ {ℓ′′ ∣ x = ●; return x}} ⊎ p′′,Rq)

Finally, we have to prove that Cn′RCn′′. To this end, there is one less

request to match in the second case of the disjunction of Line 5 of R, but

the new request has to be compared in Line 4 of R (Figure 4.12). We have:

∃l, s. p′ = {l∣s} iff ∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′.

((f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p ∧ ℓ′(this) = o)
with ∀x ∈ dom(l)/destiny. l(x) ≈Cn

σ ℓ′(x) ∧ l(destiny) = f) ∧ s ≈Cn
σ+ℓ′ s

′

Indeed, we constructed a request specially to match those conditions: each

condition is either a direct consequence of the applied reduction rules or

was ensured by the initial conditions on the request that was in the queue.

Besides, by definition of bind, bind(o,m, v′′) = {ℓ′ ∣ s′} implies that ℓ′(this) =
o, which confirms the last condition above.

7) Case of the [Read-Fut] ABS rule.
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We have the following ABS reduction Cn
a
→ Cn′ with the Read-Fut rule:

ABS

f = JeKA(a+l) v ≠ �
ob(i α, a,{l ∣ x = e.get; s}, q) fut(f, v) a→ ob(i α, a,{l ∣ x = v; s}, q) fut(f, v)

To begin with, from the ABS configuration Cn, we know that, by Lemma 4.3.1,

there exists in ABS α such that cog(α, i α) ∈ Cn. By the definition of equivalence

R, there exist in MultiASP oα, σ, p′,Rq such that act(α, oα, σ, p′,Rq) ∈ Cn. There

also exist ℓ′, s′, ℓ′′, s′′ such that {qA ↦ {ℓ′ ∣ s′} ∶∶ {ℓ′′ ∣ s′′}} ∈ p′. By definition of

equivalence on statements, we have (x = e.get; s) ≈Cn
σ s′. By translational seman-

tics, we have s′ = Jx = e.get; sK. Consequently, we have s′ = (setLimitHard;w =

e.get(); setLimitSoft; x = e); JsK). Thus, we have the following MultiASP configu-

ration Cn, where CnRCn:

MultiASP

act(α, oα, σ,
{qA ↦ {ℓ∣setLimitHard;w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)

fut(f, v′, σ′)
Note that we have v ≈Cn

σ′ v′ by definition of equivalence R. And by Lemma 4.3.3,

we have JeKAa+l ≈
Cn
σ JeKσ+ℓ. Now, we can reduce the configuration Cn to consume

the setLimitHard statement with the MultiASP Set-Hard-Limit rule (see Sub-

section 4.3.2), to be in configuration Cn′, where Cn→ Cn′, as follows:

MultiASP

act(α, oα, σ,{qA ↦
{ℓ ∣ setLimitHard;w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)S

→ act(α, oα, σ,{qA ↦ {ℓ ∣ w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)H
Note that in the above reduction, we have: JeKAa+l = f in ABS and JeKAa+l ≈

Cn
σ JeKσ+ℓ

by Definition 3. Now, two cases are possible, detailed below:

– In the first case, the future has not been updated yet, and we have: JeKσ+ℓ = o

and σ(o) = f . Then, a future update can occur through the MultiASP Up-

date reduction rule, to go in configuration Cn′′, where Cn′ → Cn′′, as

follows:

MultiASP

σ(o) = f (vr, σr) = renameσ(v′, σ′) σ′′ = σ[o↦ vr] ∪ σr

act(α, oα, σ, p′,Rq) fut(f, v′, σ′)→ act(α, oα, σ′′, p′,Rq) fut(f, v′, σ′)
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Note that in the above reduction, we have: p′ = {ℓ∣w = e.get(); setLimitSoft; x =

e; JsK} ∶∶ {ℓ′′ ∣ s′′} ⊎ p. At this point, the get() method call on object o can

be performed and this method call succeeds because the future has been up-

dated. Additionally, thanks to Lemma 4.3.4, v ≈Cn
σ′ v′ implies that v ≈Cn

σ′′ vr.

In other words, the value of the future after serialisation is preserved. Here,

we use the fact that we excluded the particular executions where the value

of a future is a future (see Subsection 4.3.4), so since v is not a future, then

neither v′ nor vr can point to a future. Finally, after applying some local

reduction rules (a local method invocation, a local assignment (changing ℓ

to ℓ′) and a change in the kind of thread limit), we end up in the following

MultiASP configuration Cn3, where Cn′′ →∗ Cn3:

MultiASPact(α, oα, σ′′,{qA ↦ {ℓ′∣x = e; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)S fut(f, v′, σ′)
Finally, we have to prove that Cn′RCn3. We have indeed v ≈Cn′

σ′′ v′ and

we also have: (x = v; s) ≈Cn′

σ′′ (x = e; JsK), because JeKσ′′+ℓ′ = vr and v ≈Cn′

σ′′ vr.

Lastly, the other elements need not being considered because they did not

change.

– In the second case, the future has already been updated, and we have:

JeKσ+ℓ = v′. By Lemma 4.3.3, we also have: f ≈Cn
σ v′. Then, performing

get on e has no visible effect, and after applying several local MultiASP re-

duction rules (like in the first case), we end up in a configuration Cn′′, where

Cn′ → Cn′′, as follows:

MultiASPact(α, oα, σ,{qA ↦ {ℓ′∣x = e; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq) fut(f, v′, σ′)
This final configuration is similar to the one of the first case. The only

difference is that no future update was needed and thus the local store is

unchanged. For the other elements, we can prove Cn′RCn′′ similarly to the

case above.

8) Case of the [New-Object] ABS rule.
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We start from the New-Object rule in which Cn
a
→ Cn′ as follows:

ABS

i′ α = fresh(C) fields(C) = x v = [[e]]A(a+l) a′ = [x↦ v, cog↦ α]
ob(i α, a,{l ∣ x = new local C(e); s}, q) cog(α, i α)

a→ ob(i α, a,{l ∣ x = i′ α; s}, q) cog(α, i α)ob(i′ α, a′,idle,∅)
By definition of equivalenceR, there is aMultiASP activity in Cn corresponding to

cog(α, i α): ∃oα, σ, p′,Rq.act(α, oα, σ, p′,Rq). By translational semantics, p′ con-

tains the statements that create an equivalent new object in MultiASP: p′ = {qA ↦
{ℓ ∣ t = this.cog(); id = t.freshId();no = new C(e, t, id); z = t.register(no, id);x =

no; [[s]]} ∶∶ E ⊎ p′′}. By definition of equivalence R, there is a MultiASP object in

Cn corresponding to ob(i α, a,⋯): ∃o, v′.σ(o) = [cog ↦ α,myId ↦ i,
ÐÐÐ⇀
x↦ v′], and

this object maps to the current local variable this: ℓ(this) = o. In summary, we

have the following MultiASP configuration Cn, where CnRCn:

MultiASP

act(α, oα, σ[o↦ [cog↦ α,myId↦ i,
ÐÐÐ⇀
x↦ v′]],{qA ↦ {ℓ[this↦ o] ∣ t = this.cog();

id = t.freshId();no = new C(e, t, id); z = t.register(no, id);x = no; [[s]]} ∶∶ E ⊎ p′′},Rq)
Then, Cn can be reduced by evaluating all local reductions of α until a configura-

tion Cn′ has the object instantiation as current statement. These reduction steps

only execute local assignments and local (synchronous) method calls fetching the

cog and the identifier of the invoked object. In particular, we focus on Cn→∗ Cn′

where Cn′ contains the activity α with the current thread executing the object in-

stantiation: qA ↦ {ℓ′ ∣ no = new C(e, t, id); z = t.register(no, id);x = no; [[s]]}, with
ℓ′ = ℓ[t ↦ α, id ↦ i′]4. This configuration Cn′ can be reduced to a configuration

Cn′′, such that Cn′ → Cn′′ by the MultiASP New-Object rule, as follows:

MultiASP

fields(C) = x o′ fresh σ′ = σ ∪ {o′ ↦ [cog↦ α,myId↦ i′,
ÐÐÐ⇀
x = v′′]} [[e]](σ+ℓ′) = v′′

Cn′ → act(α, oα, σ′,{qA ↦ {ℓ′ ∣ no = o′; z = t.register(no, id);x = no; [[s]]} ∶∶ E} ⊎ p′′,Rq)
The configuration Cn′′ has now the activity α containing the new object. By

now, this object has a proper identifier and points to the right activity α (it points

to its cog). The register method call is then evaluated. Its effect is handled by

4Note that i′, the same identifier as the fresh identifier allocated by ABS, can be chosen as
a fresh identifier by the method freshId. This is due to the definition of equivalence between
objects: if i′ was not fresh in α, i′ α would already be an existing ABS object and could not be
chosen as a fresh ABS object identifier.
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the Invariant Reg, which makes sure that the object is available to the system

after this call. We prove the Invariant Reg in Subsection 4.3.4, and it is verified

here. This leads us to the final configuration Cn′′′ such that Cn′′ →∗ Cn′′′, that

contains the following activity:

MultiASPact(α, oα, σ′,{qA ↦ {ℓ′′ ∣ x = no; JsK} ∶∶ E} ⊎ p′′,Rq)
Note that in the above reduction, we have: ℓ′′ = ℓ′[no↦ o′]. Now we have to prove

Cn′RCn′′′. Typically, we have two objects of the same cog affected in ABS (i α

and i′ α), and one activity affected in MultiASP by the reduction. We focus on the

state of the two modified elements below:

– Let us first consider i′ α. We have a fresh object i′ α in ABS that must be

equivalent to the fresh object o′ in the store of activity α in MultiASP. By

Definition 4 of R, in Line 2 of Figure 4.12, we have the additional fields of the

new object that point to the cog (activity α) and to the identifier i′, that

corresponds to the ABS identifier i′ α. The equivalence of the other fields of

the fresh objects (in ABS and in MultiASP) is obtained by Lemma 4.3.3. The

newly created object is idle in ABS with no pending request. Consequently,

Line 4 and Line 5 of Figure 4.12 are trivially verified.

– Secondly, let us consider i α. The currently served request is the only ele-

ment that changed, so only Line 4 of Figure 4.12 has to be checked. The set

of local variables did not change, except in MultiASP where the set of local

variables contains more variables. Finally, we have to check the equivalence

of the remaining statements. We fall in the second case of the definition

of the equivalence of statements: sabs = (x = i′ α; s) ∧ sMultiASP = (x =

no; JsK) with i′ α ≈Cn′

σ JnoK(σ′+ℓ′′). Indeed, the currently considered state-

ments in ABS and in MultiASP fit with the requirements of the definition.

Additionally, we have: JnoK(σ′+ℓ′′) = o′ and we have already shown before the

equivalence between i′ α and o′.

9) Case of the [New-Cog-Object] ABS rule.
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We start from the New-Cog-Object rule where Cn
a
→ Cn′, as follows:

ABS

β = fresh( ) i′ β = fresh(C) fields(C) = x v = [[e]]A(a+l) a′ = [x↦ v, cog↦ β]
ob(i α, a,{l ∣ x = new C(e); s}, q)

a→ ob(i α, a,{l ∣ x = i′ β; s}, q) ob(i′ β, a′,idle,∅) cog(β, ǫ)
From the ABS configuration Cn, we know that by Lemma 4.3.1, ∃α. cog(α, i α) ∈
Cn. And, by definition of equivalence R, ∃oα, σ, p′,Rq.act(α, oα, σ, p′,Rq) ∈ Cn

and ∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′.(f, execute, i,m, v′′)A ↦ {ℓ′ ∣ s′} ∶∶ {ℓ′′ ∣ s′′} ∈ p′ and

(x = new C(e); s) ≈Cn
σ+ℓ′ s

′. By definition of the equivalence on statements, and

by translational semantics, we have: (x = new C(e); s) ≈Cn
σ+ℓ′ s

′ implies s′ = Jx =

new C(e); sK . Consequently, the translational semantics gives us:

s′ = (newcog = newActive cog(); id = newcog.freshId();no = new C′(e,newcog, id);
z = newcog.register(no, id);x = no; JsK)

All of these elements allow us to define the MultiASP configuration Cn, where

CnRCn:

MultiASP

act(α, oα, σ,{qA ↦ {ℓ′ ∣ newcog = newActive cog(); id = newcog.freshId();no =
new C′(e,newcog, id); z = newcog.register(no, id);x = no; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq)

The MultiASP configuration Cn can be reduced with the New-Active rule to

the configuration Cn′, such that Cn→ Cn′:

MultiASP

fields(cog) = xcog
β, oβ fresh σ′ = {oβ ↦ [ÐÐÐÐÐÐÐ⇀xcog = vcog]} ∪ serialise(vcog, σ) [[ecog]](σ+ℓ′) = vcog

Cn→ act(α, oα, σ,{qA ↦ {ℓ′ ∣ newcog = γ; id = newcog.freshId();no =
new C′(e,newcog, id); z = newcog.register(no, id);x = no; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq)

act(β, oβ , σ′,∅,∅)
Note that we can pick β as a fresh activity name because, by definition of R,

as β is free in ABS , it is also free in MultiASP. Now, we can reduce Cn′ to a

configuration Cn′′ by two local assignments and a remote invocation (to get a
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fresh identifier), until the current statement is the new object instantiation:

MultiASP

act(α, oα, σ,{qA ↦ {ℓ′′′ ∣ no = new C′(e,newcog, id); z = newcog.register(no, id);x = no; JsK}
∶∶ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq) act(β, oβ , σ′,∅,∅) fut(f,�)

Note that in the above reduction, we have: ℓ′′′ = ℓ′[newcog↦ β, id↦ f]. Then, it
is possible to reduce this configuration until a fresh identifier is found and returned,

and where the future f has been updated in activity α. In particular, we focus

on the MultiASP configuration Cn3, such that Cn′′ →∗ Cn3 with the previous

requirements:

MultiASPact(α, oα, σ,{qA ↦ {ℓ′′′ ∣ no = new C′(e,newcog, id); z = newcog.register(no, id);x =
no; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq) act(β, oβ , σ′,∅,∅) fut(f, i′,∅)

Note that in the above reduction, we have: ℓ′′′(id) = i′ and we know that i′

is necessarily a fresh identifier in β. On Cn3, we can apply the New-Object

MultiASP rule to obtain the configuration Cn4 such that Cn3 → Cn4, as follows:

MultiASP

fields(C) = x
o fresh σ′′ = σ ∪ {o↦ [cog↦ β,myId↦ f,

ÐÐÐ⇀
x = v′′]} [[e]](σ+ℓ′) = v′′

act(α, oα, σ,{qA ↦ {ℓ′′′ ∣ no = new C′(e,newcog, id);
z = newcog.register(no, id);x = no; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq)

act(β, oβ , σ′,∅,∅) fut(f, i′,∅)→ act(α, oα, σ′′,{qA ↦ {ℓ′′′ ∣ no = o;
z = newcog.register(no, id);x = no; JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p′′,Rq)

act(β, oβ , σ′,∅,∅) fut(f, i′,∅)
Then, the final steps consist in reducing the local assignment and evaluating the

register remote method invocation. This brings us to the final configuration Cn5,

where Cn4 →
∗ Cn5, which contains the following MultiASP terms:

MultiASPact(α, oα, σ′′,{qA ↦ {ℓ4 ∣ x = no; JsK} ∶∶ E} ⊎ p′′,Rq) act(β, oβ , σ3,∅, (f ′, register, o′, i′))
fut(f, i′,∅) fut(f ′,�)

Note that in the above reduction, we have: ℓ4 = ℓ′′′[no ↦ o]. In particular,

σ3(o′) = [cog ↦ β,myId ↦ i′, x↦ v2] is the serialisation of o. Now we have to
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prove that Cn′ R Cn5. Two activities in MultiASP have to be considered: activity

α, that has been modified during the reductions, and activity β, that has been

introduced by the reductions. The two activities are detailed and checked against

the equivalence R below:

– The first MultiASP activity (α) corresponds to cog α in ABS (that exists by

Lemma 4.3.1), contains now in its store a copy of the new object o corre-

sponding to object i′ β in ABS. Objects o and i′ β are equivalent for two

reasons. First, o contains the required additional fields: cog that points

the new activity β, and myId with value i′. Second, the other fields are

only meaningful in activity β, thus we do not have to consider them in ac-

tivity α. Regarding the current request, first the set of local variables in

MultiASP contains two more variables, but the existing local variables did

not change in the reductions. Second, the remaining statements fall in the

second case of the definition of the equivalence of statements. Like in the

case of [New-Object], we have: sabs = (x = i′ β; s) ∧ sMultiASP = (x =

no; JsK) with i′ β ≈Cn′

σ′′ JnoK(σ′′+ℓ4). Since we have: [[no]](σ′′+ℓ4) = o, and since

we showed before that o is equivalent to i′ β, we can conclude that the re-

maining statements are equivalent.

– The second MultiASP activity (β) corresponds to the fresh cog β in ABS.

The content of this activity reflects the fresh object o′. Concerning the

object value, we must prove equivalence of object fields other than cog and

myId. Here, we recall the object’s fields that are meaningful are the ones

that are hosted in β. Precisely, we have: v = [[e]]A
(a+l)

and we also have:

(v2, σ3) = renameσ′([[e]](σ′′+ℓ4), serialise([[e]](σ′′+ℓ4), σ′′)). By Lemma 4.3.3

and by Lemma 4.3.4, we have: v ≈Cn′

σ3
v2. This verifies Line 3 of the definition

of equivalence R. In ABS, the new object is idle with no pending request.

Line 4 and Line 5 of the definition of equivalence R is verified, because no

request is currently served in ABS, and accordingly, in MultiASP there is no

execute request is currently served.

Finally, we have two additional futures in MultiASP concerning the freshId and the

register remote method calls. However, they are not considered in the equivalence
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because they do not correspond to an execute request (i.e. to an applicative

request).

10) Case of the [Rendez-vous-Comm] ABS rule.

In this case, we only deal with communications that are not performed on the

caller itself. Indeed, the self asynchronous method call is similar but requires a

specific proof instance. So we start from the following ABS Rendez-vous-Comm

reduction rule, where Cn
a
→ Cn′, and where α ≠ β, as follows:

ABS

f = fresh( ) i′ β = JeKA(a+l) v = JeKA(a+l) p′′ = bind(i′ β, f,m, v,class(i′ β))
ob(i α, a,{l ∣ x = e!m(e); s}, q) ob(i′ β, a′, p′, q′)

a→ ob(i α, a,{l ∣ x = f ; s}, q) ob(i′ β, a′, p′, q′ ∪ p′′) fut(f,�)
First of all, by Lemma 4.3.1, ∃α. cog(α, i α) ∈ Cn and ∃β. cog(β, i′ β) ∈ Cn. By

definition of equivalence R and of translational semantics, there exist oα, σα, p,

Rq, ℓ, ℓ′′, s′′, oβ, σβ, p′,Rq such that the following terms belong to theMultiASP con-

figuration Cn, where CnRCn, as follows:

MultiASP

act(α, oα, σα,{qA ↦
{ℓ∣t = e.cog(); id = e.myId();x = t.execute(id,m, e); JsK} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)

act(β, oβ , σβ , p′,Rq′)
In the MultiASP configuration, there must be an object equivalent to i′ β resulting

from the evaluation of e in activity α. This object has two copies: one in activity

α and one in activity β, but the value of its applicative fields in activity α are

meaningless (they are never used). Indeed, the copy of this object in activity α

plays the role of a proxy to its meaningful counterpart in β. More formally, we

have:
o′ ↦ [cog↦β,myId↦ i′, [ÐÐÐ⇀x↦ v′]] ∈ σα with JeKσ+ℓ = o

′

o′′ ↦ [cog↦β,myId↦ i′, [ÐÐÐÐ⇀x↦ v′′]] ∈ σβ with a′ ≈σβ
[ÐÐÐÐ⇀x↦ v′′]

The MultiASP configuration Cn can be reduced using local rules until a configu-

ration Cn′ contains the execute remote method invocation as current statement.

More formally, we have Cn→∗ Cn′, where the current thread of activity α in Cn′

is: qA ↦ {ℓ′∣x = t.execute(id,m, e); JsK} ∶∶ {ℓ′′ ∣ s′′}, with ℓ′ = ℓ[t ↦ β, id ↦ i′]. Then,
we can reduce Cn′ to a configuration Cn′′ by the MultiASP Invk-Active rule,
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such that Cn′ → Cn′′, as follows:

MultiASP

[[t]](σα+ℓ′)=β [[e]](σα+ℓ′)=v f, of fresh (vr, σr)=renameσβ
(v, serialise(v, σα))

act(α, oα, σα,{qA ↦ {ℓ′ ∣ x = t.execute(id,m, e); [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)
act(β, oβ , σβ , p′,Rq′)

→ act(α, oα, σα[of ↦ f],{qA ↦ {ℓ′ ∣ x = of ; [[s]]} ∶∶ {ℓ′′ ∣ s′′}} ⊎ p,Rq)
act(β, oβ , σβ ∪ σr, p

′,Rq′ ∶∶ (f, execute, i′,m, vr)) fut(f,�)
We finally have to prove that Cn′RCn′′. First, we have as many terms that

have changed in Cn′ as in Cn′′: there are two ob and act terms and one added

future in both configurations. Regarding the fresh future, it is the same in the two

configurations: we conclude by Line 6 of the definition of equivalence R.

Regarding activity α, the set of local variables remains unchanged, except for

temporary variables. The element that actually changed is the current statement.

We have: (x = f ; s) ≈Cn′

σα
(x = of ; JsK) by the second case of the definition of the

equivalence of statements. For that, we need to have: f ≈Cn′

σα
JofKσα+ℓ′ , which is

true because JofKσα+ℓ′ = of and because we have: σα(of) = f . Thus, we have:

f ≈Cn′

σα
σ(of) by definition of equivalence R. We conclude the equivalence between

activity and cog α using Line 4 of the definition of equivalence R.

Regarding activity β, a new pending request is created in the MultiASP con-

figuration Cn′′, corresponding to the new inactive thread in the ABS configu-

ration Cn′. According to Line 5 of the definition of equivalence R, we have:

{l∣s} ∈ q′ ∧ l(destiny) = f , with {l∣s} = bind(i′ β, f,m, v,class(i′ β)). Then, there
is only one case to consider because we know that the request is not served yet.

Thus, what we exactly have to prove is the following:

∃i′,m, vr, ℓβ, s′.(f, execute, i′,m, vr) ∈ Rq ∧ oβ.retrieve(i′)=o ∧ bind(o,m, vr) = {ℓβ ∣s′}
with ∀x ∈ dom(l)/destiny. l(x) ≈Cn′

σβ
ℓβ(x) ∧ s ≈Cn′

σβ+ℓβ
s′

Firstly, we have indeed the new request in the queue of activity β in theMultiASP con-

figuration Cn′′. Then, we need to ensure that: oβ.retrieve(i′)=o, which is guaran-

teed by the Invariant Reg (see Subsection 4.3.4). On the other hand, the result

of the auxiliary function bind in MultiASP is similar to the one that exists in ABS.

The local variables on the ABS side also appear on the MultiASP side equivalently,
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except for the two following points:

– There is no destiny variable in MultiASP. However, this is taken into account

by the definition of equivalence R, which compares the destiny variable with

the future of the corresponding MultiASP request.

– The transmitted parameters vr are the copies of the method parameters in

ABS. Ensuring equivalence between request parameters in this case is handled

by Lemma 4.3.3 for obtaining the equivalence of the emitted values, and by

Lemma 4.3.4 to ensure that equivalence still holds after the values being

serialised, sent to β and renamed.

11) Case of the [Return] ABS rule.

We start from the following Return ABS reduction rule, where Cn
a
→ Cn′, as

follows:

ABS

v = [[e]]A(a+l) f = l(destiny)
ob(i α, a,{l ∣ return e; s}, q) fut(f,�) a→ ob(i α, a,idle, q) fut(f, v)

From the starting ABS configuration, we have, by Lemma 4.3.1, ∃cog(α, i α) ∈ Cn.

By definition of equivalence R, ∃oα, σ, p,Rq such that act(α, oα, σ, p,Rq) ∈ Cn, and

∃f, i,m, v′′, ℓ′, s′, ℓ′′, s′′ such that (f, execute, i,m, v′′)A ↦ {ℓ′ ∣ s′} ∶∶ {l′′ ∣ s′′} ∈ p, and
return e; s ≈Cn

σ+ℓ′ s
′. By the definition of the equivalence of statements, we have:

s′ = (return e; JsK), since the first statement is not in the form of x = e; s. Also,

by Line 7 of the equivalence R, we have: fut(f,�) ∈ Cn. Furthermore, we know

that in our MultiASP translation, a method call on an object is always wrapped

in an execute method call on an active object (by definition of R). Therefore, we

have s′′ = (x = ●;return x). All of these elements allow us to find the following

MultiASP configuration Cn, where CnRCn:

MultiASP

act(α, oα, σ,{qA ↦ {ℓ′ ∣ return e; JsK} ∶∶ {ℓ′′ ∣ x = ●;return x}} ⊎ p′,Rq)
fut(f,�)

From Cn, we can apply the Return-Local MultiASP reduction rule to be in
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the configuration Cn′, such that Cn→ Cn′, as follows:

MultiASP

v′ = JeKσ+ℓ′

Cn→ act(α, oα, σ,{qA ↦ {ℓ′′ ∣ x = v′;return x}} ⊎ p′,Rq) fut(f,�)
Then, after applying the Assign-Local MultiASP reduction rule on Cn′, we are

in the configuration Cn′′, such that Cn′ → Cn′′:

MultiASP

act(α, oα, σ,{qA ↦ {ℓ′′[x↦ v′] ∣ return x}} ⊎ p′,Rq)
fut(f,�)

We now denote ℓ3 = ℓ′′[x↦ v′]. From Cn′′, we can apply theReturnMultiASP re-

duction rule to finally end up in the configuration Cn′′′, such that Cn′′ → Cn′′′, as

follows:

MultiASP

JxKσ+ℓ3 = v
′

Cn′′ → act(α, oα, σ, p′,Rq) fut(f, v′, serialise(v′, σ))
We further denote: σs = serialise(v′, σ), and we recall that: JeKσ+ℓ′ = v′. Now,

we have to prove that Cn′RCn′′′. Regarding the resolved future, we have the

future term f both in the ABS and MultiASP configurations. Secondly, we have

to ensure that: v ≈Cn′

σs
v′ and to this end, we have to ensure that: v ≈Cn′

σ JeKσ+ℓ′ .

Indeed, by Lemma 4.3.3, we have: JeKAa+l ≈
Cn′

σ JeKσ+ℓ′ . Thus, we have: v ≈Cn′

σ v′

and, by Lemma 4.3.4, we have: v ≈Cn′

σs
v′. Regarding activity α, the request

corresponding to future f does not exist any more, which matches with the fact

that the ABS current task becomes idle: in the definition of equivalence R, there

is one less request to compare in Line 4. Finally, the other elements of the activity

did not change, thus preserving their equivalence.

12) Case of the [Skip], [Cond-True], [Cond-False], [Context], [Cog-Sync-

Call], [Self-Sync-Call], [Cog-Sync-Return-Sched], [Self-Sync-Return-

Sched] and [Rem-Sync-Call] ABS rules.

To finish, none of these rules are considered in the proof of Theorem 4.3.5, for

different reasons. We review the reasons for not treating each of them below.

Firstly, in practice Skip, Cond-True, Cond-False and Context are kept

unchanged from the translation provided by the Java backend for ABS to imple-
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ment the ProActive backend for ABS. Consequently, their translation in an im-

perative programming language without remote method invocations and futures

is already supposed to be sound and correct, and is trivial because it does not

involve asynchronous remote method calls and futures. Furthermore, in the case

of the ProActive backend, the await statement on conjunctive guards and boolean

expressions is not handled using these rules. However, none of these four rules

raises a particular difficulty because they only involve local computation.

Secondly, all the rules dealing with local synchronous method calls, namely

Cog-Sync-Call, Self-Sync-Call, Cog-Sync-Return-Sched and Self-

Sync-Return-Sched are not considered in the proof. Indeed, the effect of these

rules send back the current task in queue and schedule it right away with the

continuation statement cont to mimic a synchronous treatment. Instead, we rely

on a classical stack of method calls and avoid considering the cont keyword. Be-

sides, these rules make use of statements that are treated in other cases, like await

and get. Consequently, considering these rules would be redundant and would not

bring any particular insight on the correctness of the translation. Additionally, the

practical translation of those aspects is again unchanged from the Java backend

for ABS.

Thirdly, in the case of the rule for remote synchronous method calls, namely

Rem-Sync-Call, the ABS rule is a composition of a remote asynchronous method

call and a future read; in the translation, we directly inline this composition. Thus,

the proof for this rule simply inlines the two cases of Rendez-vous-Comm and

Read-Fut.

In conclusion, all reduction rules of the ABS semantics ensure that an equivalent

final configuration is reachable with the MultiASP translation that we propose.

Consequently, the translation simulates all ABS executions with FIFO policy and

rendez-vous communications, provided that no future value is a future reference,

which completes the proof of Theorem 4.3.5.

Overall, although the equivalence of the ABS and MultiASP configurations is

achieved for all ABS reduction rules, it has some restrictions where it is impossible

to have a strong simulation, because of the intrinsic differences between the two
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languages. Indeed, to this end we must have considered some of the ABS and some

of the MultiASP rules as silent actions : On one hand, we have some ABS rules

that are strictly associated to one MultiASP rule, like for strong simulation. But

on the other hand, for some other ABS rules there is an associated MultiASP rule,

but also they must be associated with additional rules that are needed to reach

the correct simulation: we call these latter rules the silent actions. Also, some

ABS rules cannot be simulated by MultiASP rules. More precisely, they do not

strictly correspond to any MultiASP rule, so in this case either the equivalence

is just maintained, or some not observable transitions must be achieved (silent

actions). Table A.1 summarises our results on the simulation and on observability

of ABS and MultiASP rules. The ‘–’ character denotes the case where there is no

strict correspondence of rules. The ‘/’ character indicates a choice between two

rules depending on a criteria detailed in the proof but not in the table. Further

comments can be made about Table A.1.

Firstly, we can notice that an additional Invk-Passive and Assign-Local-

Tmp MultiASP rules are quite omnipresent. Indeed, we exhibited before that our

translation introduces additional communications and temporary variables. We

can notice that, if we ignore the introduction of those ‘harmless’ rules (in terms

of what we are interested in observing), most of the important ABS rules can be

simulated by a singleMultiASP rule, and in this case we achieve a strong simulation.

Secondly, we can notice that we can simulate the Await-False ABS rule

with the Invk-Future MultiASP rule, but the Await-True ABS rule has no

MultiASP equivalent. Then, for example it might have been more consistent in

Table A.1 to consider the Invk-Future MultiASP rule as a silent action for the

Await-False ABS rule too.

Thirdly, the New-Object and New-Cog-Object ABS rules are both sim-

ulated by the New-Object MultiASP rule, but we can easily distinguish the two

cases. Indeed, the New-Object MultiASP rule can distinguish whether the trans-

lated ABS cog is empty or not. More precisely, the New-Cog-Object ABS rule

is simulated by a New-Object MultiASP on an empty cog, while the New-

Object ABS rule is simulated by a New-Object MultiASP rule on a cog that

is not empty. There is thus no ambiguity in the simulation. From another point

of view, the New-Active MultiASP rule could be the observable rule (and not a
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ABS rule MultiASP rule Additional MultiASP rules

Assign-Local Assign-Local –
Assign-Field Assign-Field –
Await-True – Update / – ,

Invk-Passive, Return-Local
Assign-Local-Tmp

Await-False Invk-Future –
Release-Cog – –

Activate – Activate-Thread / (Serve,
Invk-Passive,Return-Local,

Assign-Local-Tmp)
Read-Fut – Set-Hard-Limit,

Update / – ,
Invk-Passive, Return-Local,

Set-Soft-Limit
Assign-Local-Tmp

New-Object New-Object Invk-Passive
Assign-Local-Tmp
Return-Local

New-Cog-Object New-Object New-Active,
Assign-Local-Tmp,

Invk-Active-Meta, Return
Rendez-vous-Comm Invk-Active Invk-Passive, Return-Passive,

Assign-Local-Tmp
Return Return Return-Local

Assign-Local-Tmp

Table A.1 – Summary table of the simulation of ABS inMultiASP.Assign-Local-
Tmp represents an Assign-Local on a variable introduced by the translation
instead of ABS local variables. In the same way, Invk-Active-Meta means that
it is like an Invk-Active but on a method that is not the execute method.

silent action) to simulate the New-Cog-Object ABS rule instead of the New-

Object MultiASP rule. However, doing so would mean that we create an (active)

object in MultiASP that has no equivalent object in ABS. This is why we prefer

tracing the New-Object rules in MultiASP.

For the simulation we introduced the Invk-Active-Meta MultiASP rule, that

always is a silent action because it only applies to meta-requests that do not exist
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in ABS, like the register and freshId requests. Symmetrically, the visible Invk-

Active MultiASP rule, that simulates the Rendez-vous-Comm ABS rule, only

corresponds to execute requests which are the ones that are observable in ABS ex-

ecutions. Again, as we can easily distinguish the requests of the Invk-Active

and Invk-Active-Meta rules, then there is no ambiguity in the simulation. A

similar remark can be made about the Assign-Local and Assign-Local-Tmp

MultiASP rules. The latter is for handling the temporary variables that are in-

troduced by the simulation. Finally, we can now easily list the MultiASP and

ABS rules that are involved but not observable in the simulation from ABS to

MultiASP:

The silentMultiASP actions are: New-Active, Serve, Invk-Passive, Return-

Local,Update,Activate-Thread, Set-Hard-Limit, Set-Soft-Limit,

Invk-Active-Meta, and (Assign-Local-Tmp). The otherMultiASP rules

are the ones that are observable in the simulation.

The silent ABS actions are: Await-True, Release-Cog, Activate, Read-

Fut. It is interesting to note that these rules are related to the manipulation

of futures and of execution threads in ABS, and that are manipulated dif-

ferently, or not at all, in MultiASP. For example, a single MultiASP rule is

necessary for an object to release a thread whether two rules are necessary

in ABS.

Such observable and silent actions in the simulation highlight the aspects that

are similarly designed, as well as the aspects that are differently handled in the

two active object programming languages. These remarks conclude the insights of

the proof of Theorem 4.3.5.

A.2.2 From MultiASP to ABS

Theorem 4.3.6, page 132 (MultiASP to ABS). Any reduction of theMultiASP trans-

lation corresponds to a valid ABS execution.

Cn0 →∗ Cn⇒ ∃Cn.Cn0
a→
∗
Cn ∧CnRCn

Proof sketch of Theorem 4.3.6. This proof sketch verifies that any MultiASP trans-

lation of an ABS program corresponds to an ABS execution that is possible. In this
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direction, the main difficulty is that we introduced additional steps in the reduc-

tion. However, for the proof we use the fact that the two active object languages

have few concurrent rules: method invocation and future awaiting, and since there

is only a single active thread at a time, it prevents local concurrency. Conse-

quently, we know that any sequence of additional MultiASP actions never performs

a wait-by-necessity, and runs until the end of the sequence without any observable

interruption. Overall, only thread activation, thread passivation, method invoca-

tion, and future update can create interleavings. We rely on this knowledge for

the proof.

Proving this direction of the simulation is complex, since the translated code is

more operational. In particular, we can be in intermediate states in MultiASP, and

these must be attached to the right state in ABS. Here, what must be observed

is that the translation of an ABS primitive mostly involves a single action that

impacts the state of the equivalent ABS program. For example, for remote invo-

cations, solely the execute requests impact the request queue of the recipient, and

has an effect on the equivalence relation. The principle is to see only those actions

and to allow the translation of statements to do the same. For example, in the case

of the execute remote method invocations, assignments to intermediate variables

are ignored in the equivalence, and all the states that precede the execution of the

remote method invocation are considered equivalent to the same ABS state. This is

mostly handled by ignoring adequately assignments to variables that are not part

of the ABS code. A particular other issue is that there is an intermediate state

when the request is served. However, the associated ABS method is not started

yet, so this case must also be considered in the notion of equivalence. A ‘just

started’ request is equivalent to having the same request in the queue. Finally, it

is also important to notice that the theorem no more needs a restriction on future

values because when a future access is possible in MultiASP, it can be faithfully

simulated in ABS. Indeed, ABS allows the program to have an explicit control on

the status of futures.

The goal here is not to do the exhaustive simulation, like for the proof of

Theorem 4.3.5, mostly because the technical details will be massively redundant.

However, what is important to show here is that the translation ensures that no

additional ABS behaviours can be introduced by the translationalMultiASP seman-
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s ≈Cn
(σ+ℓ) JsK

s ≈Cn
(σ+ℓ) (setLimitHard; s′)

s ≈Cn
(σ+ℓ) s

′

s ≈Cn
(σ+ℓ) (tmp=z; s′)

tmp is a local variable introduced by the translation

s ≈Cn
(σ+ℓ) s

′

s ≈Cn
(σ+ℓ) s

′

tmp is a local variable introduced by the translation

s ≈Cn
(σ+ℓ) (tmp=z; s′)

s ≈Cn
(σ+ℓ+(tmp↦JeK(σ+ℓ)))

s′

tmp is a local variable introduced by the translation

s ≈Cn
(σ+ℓ) (tmp=e; s′)

s = (x = v; s1) s′ = (x = e; Js1K) v ≈Cn
σ JeK(σ+ℓ)

s ≈Cn
(σ+ℓ) s

′

Figure A.1 – Refined equivalence of statements for the proof of Theorem 4.3.6.

tics. We provide here the most important points of the proof: the refinement of

the equivalence relation R, and a summary of the equivalence between reductions.

1) Adapting the equivalence relation.

To prove that all the MultiASP executions faithfully respect the ABS semantics,

the equivalence relation must take into account the fact that several rules are used

in MultiASP to simulate a single ABS rule. In practice, it is easy to identify the

case where the same statement is triggered both in MultiASP and in ABS, while

other MultiASP statements are preparing the main statement being executed, e.g.

fetching the identifier and the cog of the targeted object for a method invocation.

Thus, we define a new equivalence relation on statements, as shown in Figure A.1.

The first and the last rule of the equivalence are unchanged for the proof of

Theorem 4.3.6, but we add new rules in order to discard setLimitHard instruc-

tions: the thread that have just performed a setLimitHard is considered as still
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in the same state even if one statement is missing. Similarly, the assignments to

temporary variables can be added or removed, but when it is removed one can

use the assigned value only if it is a simple expression. This is useful to relate in

MultiASP the temporary variable no and use it in the remaining. The statement:

no = o; s;x = no in MultiASP should be equivalent to: x = o in ABS.

Two other modifications must be made regarding the equivalence of MultiASP

and ABS configurations (we recall Figure 4.12). Firstly, considering the direc-

tion from ABS to MultiASP, we have as many cog in ABS as active objects in

MultiASP. However, in ABS, when a cog is created, it is populated with at least

one object, whereas in the translation of the new ABS keyword, the instruction

that instantiate an active object (the newActive MultiASP keyword) is separated

from the instantiation of the new object that populates the cog in ABS. Even if, in

any case, the thread cannot be interrupted when doing these steps, this particular

moment of the execution is a point where the equivalence relation is not verified.

Such a situation is ruled out by considering, in Line 1 of Figure 4.12, only the

activities that contain at least one object. In other words, the activities that are

only populated with a cog active object in MultiASP are not considered to be part

of the configuration yet. This can easily be formulated by checking the content

of the local store of the activity: if σ only contains the cog object and no object

corresponding to an ABS object, then the activity should not be considered in the

equivalence. Specifically:

Line 1 of Figure 4.12: act(α, oα, σ, p,Rq) ∈ Cn
has the additional condition: σ has more than one entry.

Secondly, there is a floating state when the request has started to be served

in MultiASP but the corresponding ABS method has not started to be executed

(precisely, when the stack corresponding to this request has a single entry). In

this case, the corresponding thread that is currently executed is necessarily the

single thread that can be active. This situation must be considered in a way that

is similar to the case where the requests are still in queue. Specifically:

Line 4 of Figure 4.12: ((f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p ∧ ℓ′(this) = o)
has one more case and thus is be replaced by:

((f, execute, i,m, v′′)A ↦ {ℓ′∣s′} ∶∶ {ℓ′′∣s′′} ∈ p ∧ ℓ′(this) = o ∨
(f, execute, i,m, v′′)A ↦ {ℓ′′∣s′′} ∈ p ∧ oα.retrieve(i)=o ∧ bind(o,m, v′′) = {ℓ′∣s′})
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Modulo these minor changes in R, the proof of Theorem 4.3.6 is similar to the

proof of Theorem 4.3.5, but tedious and without novel aspects. Consequently, we

only provide the principles of the proof and Table A.2 for summarising our results

on the simulation.

2) Proof principles.

Like in the direction of the simulation from ABS to MultiASP, a notion of observ-

ability has to be defined, to focus on what is meaningful to consider for equivalence

of configurations. In our sense, the most important step to be observable in active

object executions is the emission of requests. Indeed, request sending characterises

by its own the available objects, the available cogs, the communications, and the

variables and statements that enabled the request sending.

We also give proof directions to handle the inconsistencies of future updates

for the simulation of MultiASP in ABS. We recall here that the problem is that,

due to distributed first class futures, a MultiASP program can have several copies

of a future, whereas only one such future exists in ABS. Two directions can be

taken to prove that the behaviour of the two programs is still equivalent. In

the case we have an atomic future update in MultiASP, then the equivalence is

trivial: when an Invk-Future rule in MultiASP is observed, an Await-False in

ABS can be exactly observed. However, in the case we do not rely on an atomic

future update, as it is likely the case in a distributed setting, an approach in order

to still prove the equivalence of the two programs would be to bring the problem

back to the trivial case of the atomic future update. To this end, we rely on

the causal ordering of events of MultiASP. Indeed, in between the update of the

original copy of a future and the update of the last copy of this future, many events

could have occurred meanwhile. However, by causal ordering relationship, none of

these events are related to the usage of this future’s value, because otherwise they

would necessarily occur after the considered future update. Consequently, we can

safely consider these events as not observable in the current configuration, so the

equivalence of the MultiASP and ABS configurations holds in this case.

We further rely on Table A.2 for commenting the simulation of theMultiASP trans-

lation with ABS executions. We review below each of the MultiASP rules. First
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MultiASP rule ABS rule Additional ABS rules

Assign-Local Assign-Local –
Assign-Local-Tmp – –

Assign-Field Assign-Field –
Invk-Future Await-False Release-Cog
Invk-Passive – –/Read-Fut/

Await-True
Activate-Thread Activate –

Serve Activate –
Invk-Active Rendez-vous-Comm –

Invk-Active-Meta – –
New-Object New-Cog-Object –

in an activity with no ABS object

New-Object New-Object –
in a non-empty activity

New-Active – –
Return-Local – –

Return Return –
Update – –

Set-Soft-Limit – –
Set-Hard-Limit – –

Table A.2 – Summary table of the simulation of MultiASP in ABS.

the Assign-Local and Assign-Field MultiASP rules raise no particular com-

ment, except that we can safely ignore them for the assignment of intermediate

variables introduced by the translation. The Invk-Future MultiASP rule only

activates if the current thread limit is a soft thread limit, which only happens in the

translation of an ABS await statement, and solely when the future is not resolved.

Indeed, no additional future can be awaited in ABS. Additionally, the cog is re-

leased in ABS, which is a silent action that cannot be observed in MultiASP. In

the case of the Invk-Passive MultiASP rule, two cases are possible. The cor-

responding ABS rule can be the Read-Fut rule if the invoked method is get()
and the current limit is a hard limit. Alternatively, the corresponding ABS rule

can be the Await-True rule if the invoked method is get() and if the current

thread limit is a soft thread limit. Lastly, the Invk-Passive MultiASP rule can
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also be not observable in ABS for all the requests that are introduced by the trans-

lation. Here, we use the fact that we do not consider in the proof the ABS local

method invocations. Then, the distinction between the Activate-Thread and

Serve MultiASP rules is made depending on the status of the request in MultiASP:

whether it has started to be served or not. Such a distinction does not exist in

ABS. The Invk-Active MultiASP reductions that involve an execute request ex-

actly match the Rendez-vous-Comm rule. Here, the preliminary steps and the

additional steps performed in the translation are handled by the equivalence re-

lation. Those steps also ensure that the object exists in ABS, and that it can

be accessed through its cog. Obviously, the Invk-Active reductions of other

methods (that we label Invk-Active-Meta) have no corresponding reduction

in ABS. The New-Object MultiASP rule can either correspond to the instanti-

ation of an object in the same cog (the New-Object ABS rule) or in a new

cog (the New-Cog-Object ABS rule) if the store of the MultiASP activity in

which the object is instantiated is empty (if it only contains the cog object). The

Return MultiASP rule is exactly matched with the Return ABS rule, except

that in MultiASP the request must be an execute request.

Finally, we can now easily list the ABS and MultiASP rules that are involved

but not observable in the simulation from MultiASP to ABS:

The silent ABS actions are: Await-True, Read-Fut, Release-Cog. Such

rules represent the execution steps that MultiASP does not feature.

The silent MultiASP actions are: New-Active, Invk-Passive, Return-

Local, Update, Set-Hard-Limit, Set-Soft-Limit, Invk-Active-

Meta, and Assign-Local-Tmp. We can note that except the Invk-

PassiveMultiASP rule, none of the aforementioned rules needs an additional

reduction on the ABS side: the reduced configuration is always equivalent to

the corresponding ABS configuration.

Again, observable and silent actions in this direction of the simulation represent

the manipulation that are permitted in a program and not in the other, or on the

contrary that are intrinsic. These remarks conclude the insights of the proof of

Theorem 4.3.6.
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Extended Abstract in French

B.1 Introduction

À l’heure du e-commerce, des salons de discussion virtuels, des éditeurs collab-

oratifs, des plateformes de stockages synchronisées, des jeux en ligne et des ob-

jets connectés, chacune de nos habitudes numériques implique des interactions

simultatnées et multi-tiers. Ces usages maintenant devenus courants sont sup-

portés par des systèmes informatiques qui évoluent de façon concurrente et dis-

tribuée. Les systèmes informatiques ont évolué en profitant de l’avènement du

processeur multi-coeur, aujourd’hui présent dans quasiment tous nos ordinateurs

et appareils électroniques. Cependant, les langages de programmation qui servent

à créer ces systèmes n’ont pas évolué aussi rapidement que le matériel sous-jacent

et que les applications que nous utilisons aujourd’hui. C’est tout spécialement

le cas pour les langages de programmation qui sont utilisés en production dans

l’industrie. En général, les modèles de programmation et les langages de program-

mation existants manquent de support pour gérer la concurrence des programmes

parallèles et pour créer des applications distribuées. Ce sont principalement les

threads, ou flots d’exécution, qui sont proposés par ces langages de programmation,

et qui représentent des séquences d’instructions asynchrones. Tous les langages

de programmation modernes offrent un support pour créer et démarrer des flots

d’exécution parallèles. Le problème de cette approche est que le programmeur doit

avoir une connaissance précise de la manière dont les différents flots d’exécution

229
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peuvent être synchronisés de façon sûre. Deux types de bugs peuvent apparâıtre

à cause d’une mauvaise utilisation des threads : les situations de compétitions sur

des ressources partagées, résolus par l’utilisation de verrous, et les interblocages

résultant la plupart du temps d’une mauvaise synchronisation des verrous. En

résumé, l’utilisation des threads place une charge supplémentaire sur les épaules

du programmeur.

Les notions de programmation orientée objet et multi-threadée sont souvent

embarquées dans un même langage de programmation, bien que leurs concepts

soient littéralement opposés. En effet, l’état d’un objet étant encapsulé, il ne de-

vrait être modifié qu’à travers l’exécution des méthodes de l’objet. En autorisant

plusieurs flots d’exécution à appeler ces méthodes de façon concurrente, l’état d’un

objet devient vulnérable. De plus, lorsque des verrous sont utilisés à l’intérieur

d’une classe, ils forcent une exposition des variables sur lesquelles la synchronisa-

tion s’applique. Enfin, utiliser les threads dans un environnement distribué n’est

pas adapté, car ils peuvent se trouver dans des espaces mémoire différents. Les

langages de programmation actuels manquent donc d’abstractions parallèles et

distribuées qui soient adaptées aux applications actuelles. Ils ne procurent pas par

défaut une exécution parallèle sûre, ni une façon de programmer concurrement qui

soit agréable pour le programmeur. Le programmeur devrait être munit de lan-

gages et de plateformes d’exécution qui procurent à la fois une sûreté d’exécution

et des performances satisfaisantes. Plusieurs moyens d’atteindre ces objectifs sont

possibles. Mon travail se focalise sur les moyens qui sont au plus près du program-

meur: les modèles de programmation, les langages de programmation et leur APIs.

Mon but est de concevoir une expérience de programmation concurrente et dis-

tribuée qui soit plaisante, tout en conservant sûreté et performance de l’exécution

des programmes.

Dans cette thèse, nous proposons un langage et des outils de développement,

réunis dans une même librairie, qui procure les abstractions parallèles et distribuées

avec lesquelles le programmeur peut bâtir des applications concurrentes et dis-

tribuées robustes. Plus précisément, nous nous basons sur le modèle de program-

mation à objet actif car il constitue une base solide de programmation concurrente

et distribuée dans un contexte orientée objet. Une des caractéristiques des ob-

jets actifs est l’absence de mémoire partagée, ce qui les rendent particulièrement
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adaptés aux environnements distribués. Chaque objet actif possède son propre es-

pace mémoire et ne peut pas accéder celui des autres objets actifs. En conséquence,

les objets actifs ne communiquent qu’à travers l’envoi de messages, matérialisés par

des appels de méthodes asynchrones. Cette caractéristique rendent les accès à un

objet actif plus facile à tracer, et ainsi leur sûreté est aussi plus facile à vérifier. Le

modèle de programmation à objets actifs permet formalisation et vérification des

programmes car le modèle de communication est bien défini. Cela facilite l’analyse

statique des programmes qui sont faits d’objets actifs. Pour ces raisons, le modèle

de programmation à objet actif représente une base solide pour la construction

de langages de programmation et d’abstractions de haut niveau pour program-

mer des systèmes concurrents et distribués de plus en plus complexes. Dans cette

thèse, nous choisissons une approche globale dans la considération des langages

à objets actifs: Nous étudions à la fois l’implantation de ces langages ainsi que

leur sémantique. Il existe généralement un décalage entre la formalisation de ces

langages et leur implantation, ainsi notre but est de montrer dans cette thèse que

cet écart peut néanmoins être comblé en utilisant les bonnes approches et les bons

outils.

B.2 Résumé des Développements

Nous démarrons cette thèse avec un aperçu étendu des langages de programmation

à objet actif dans le chapitre 2. Nous commençons par présenter les grandes lignes

du modèle de programmation et les termes associés. Un objet actif consiste en

l’association d’un flot d’exécution privé à un objet. Seul ce flot d’exécution est

autorisé à invoquer les méthodes d’un objet actif. Pour invoquer une méthode

d’un objet actif, l’appelant doit poster une requête. Cette requête est mise en

queue jusqu’à ce qu’il soit possible de l’exécuter : les requêtes sont exécutées

séquentiellement et de façon isolée par rapport aux autres requêtes. C’est la rai-

son pour laquelle l’exécution concurrente de plusieurs objets actifs est sûre. En

outre, ce modèle permet l’invocation de méthodes asynchrones : l’appelant con-

tinue son exécution pendant le temps de traitement de la requête par l’objet actif.

En attendant le résultat de la requête, une variable spéciale fait office de conteneur

pour le résultat à venir, c’est un futur. Après avoir décrit les principaux avantages
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et inconvénients des objets actifs, nous entammons la description d’une classifica-

tion des langages à objet actif, sous trois axes principaux: le modèle d’objet actif

utilisé, le modèle d’ordonnancement des requêtes, et la transparence du langage du

point de vue du programmeur. Nous présentons ensuite six langages à objet actif

majeurs: Creol, JCoBox, ABS, ASP/ProActive, AmbientTalk et Encore. Nous les

décrivons en utilisant les notions introduites dans la classification précédemment

établie. Ensuite, nous nous focalisons sur les objets actifs multi-threadés. Nous

présentons le modèle de programmation à objet multiactif et son implantation

dans la librairie ProActive sur laquelle repose cette thèse. Nous présentons aussi

brièvement ici la formalisation des objets multiactifs de la librairie ProActive, à

travers le language de programmation MultiASP. Enfin, après avoir détaillé les

sources variées de déterminisme dans les implantations actuelles des objets actifs,

nous positionnons cette thèse dans l’écosystème détaillé précédemment.

Le premier chapitre de contribution de cette thèse, le chapitre 3, concerne

l’adaptation de l’ordonnancement des requêtes des objets multiactifs aux attentes

du programmeur. Ce chapitre fait l’objet de la publication [3]. En effet, en la

présence de plusieurs flots d’exécution au sein d’un objet multiactif, une politique

par défaut d’allocation des requêtes aux threads disponibles n’est pas suffisante.

Elle ne permet pas d’atteindre les objectifs d’applications haute performance. C’est

pour cette raison que nous proposons une extension du modèle de programmation

à objet multiactif qui offre au programmeur la possibilité de spécifier, dans un

premier temps, le nombre de flots d’exécution disponibles par objet multiactif et

de manipuler cette limite dans le but de s’adapter à tout type de situations. Nous

proposons dans un deuxième temps un mécanisme de spécification de priorités

pour le traitement des requêtes d’un objet multiactif. Pour cela, le programmeur

peut appliquer des priorités sous forme d’annotations apportées à la classe con-

cernée. Le modèle de priorité se base sur un graphe de dépendances dont nous

donnons les propriétés. Ces mécanismes de spécification, complètement intégrés

dans la librairie ProActive, constituent un ordonnanceur de requêtes complet. Nous

présentons son architecture logicielle. Pour finir, nous évaluons le mécanisme de

spécification de priorités, ainsi que l’efficacité de plusieurs représentations internes

pour celui-ci, à travers plusieurs micros bancs de tests. La représentation qui

sacrifie une partie de mémoire contre un accès caché aux priorités au moment de
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l’exécution est la plus performante.

Le chapitre 4 présente un cas d’utilisation particulier des objets multiactifs.

Nous proposons dans ce chapitre l’encodage d’un langage de modélisation basé sur

un modèle à objet actif, ABS, dans une configuration précise d’objets multiactifs,

implanté en ProActive. Ce travail fait l’objet de la publication [4]. Nous implantons

un traducteur d’ABS vers ProActive, basé sur un traducteur d’ABS vers Java. La

particularité de cette traduction est qu’elle tranforme un programme ABS local en

un programme ProActive qui peut s’exécuter de façon distribuée. Les principaux

défis de cette traduction se situent dans les différences des deux langages, notam-

ment sur trois points: le modèle d’objet actif utilisé, l’ordonnancement interne

des requêtes, et la transparence des appels asynchrones et des futures dans le lan-

gage. Ces trois points représentent les axes principaux de la classification que nous

donnons au chapitre 2. Dans le but de simuler les objets actifs d’ABS, nous instan-

cions un objet multiactif ProActive par groupe d’objets ABS. Les objets ABS sont

représentés par des objets passifs en ProActive. Dans la traduction, l’objet multi-

actif fait donc office de point d’entrée pour contacter un objet sous-jacent, ce qui

rend ce concept particulièrement adapté à la distribution des applications. Nous

simulons l’exécution de programmes ABS avec une exécution d’objets multiactifs

qui n’ont qu’un seul flot d’exécution actif à la fois. Les autres flots d’exécution, s’il

y en a, sont bloqués dans l’attente d’un future. Nous évaluons notre traducteur

de façon expérimentale en comparant un programme traduit en ProActive avec un

programme traduit par le traducteur Java existant. Nous le comparons aussi avec

un programme écrit nativement en ProActive. Le traducteur ProActive introduit

un coût additionnel négligeable comparé aux bénéfices de pouvoir exécuter les pro-

grammes ABS de façon disitribuée. Dans un deuxième temps, nous prouvons la

correction de notre traduction en utilisant la sémantique du langage ABS et la

sémantique du langage MultiASP, qui formalise l’exécution des objets multiactifs

de la librairie ProActive. Les preuves des deux théorèmes associés sont présentées

en annexe de cette thèse. Nous exposons dans cette thèse les éléments pertinents

de la preuve de correction : les lemmes utilisés, la relation d’équivalence établie, et

les restrictions de la traduction. Nous concluons ce chapitre avec un récapitulatif

de la méthodologie de preuve et un retour d’expérience qui montre l’importance

des choix de conception qui sont faits au moment de la création d’un langage à
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objet actif.

Nous nous intéressons ensuite dans le chapitre 5 au développement des applica-

tions qui sont faites d’objets multiactifs, ainsi qu’à leur support à l’exécution. Pour

cela, nous introduisons dans un premier temps un outil que nous avons développé

pour visualiser l’exécution des objets multiactifs d’une application et leur commu-

nications. Cet outil permet de réaliser cela après l’exécution de l’application. Les

éléments de visualisation sont entièrement intégrés aux notions liées aux objets

multiactifs, ce qui en font un outil de débogage adapté à ce modèle de program-

mation. Tout particulièrement, l’utilisateur de ce débogueur peut visionner la

séquence des requêtes qui ont été exécutées par un flot d’exécution particulier

d’un objet multiactif, et de voir quelles autres requêtes étaient traitées par celui-ci

en parallèle à un moment donné. Notamment, la compatibilité entre les différentes

requêtes est mise en valeur et toutes sortes de contrôles permettent à l’utilisateur

de se focaliser sur un moment donné de l’exécution d’un objet multiactif. Nous

montrons l’utilité de ce débogueur à travers deux cas d’utilisation qui constituent

une source d’erreur récurrente dans les systèmes concurrents et distribués : le

cas d’un interblocage et le cas d’une situation de compétition pour une ressource

partagée.

Dans une deuxième partie de ce chapitre, nous nous intéressons à la tolérance

aux pannes des applications basées sur des objets multiactifs. Nous commençons

par présenter un protocole de tolérance aux pannes qui prenait en charge les ob-

jets actifs de la librairie ProActive. Cependant, l’introduction de plusieurs flots

d’exécution dans un objet actif rend ce protocole défaillant. Notre première con-

tribution dans le but d’adapter ce protocole à la tolérance aux pannes des ob-

jets multiactifs est de réimplanter le protocole existant uniquement avec des no-

tions liées aux objets multiactifs. Ainsi, les actions de sauvegarde d’état stable

(checkpoints) deviennent des requêtes génériques qui peuvent être soumisent aux

différentes spécifications possibles des objets multiactifs. Nous définissons des pri-

orités d’exécution adaptées pour ces requêtes, et nous faisons ainsi en sorte qu’elles

soient exécutées de façon similaire à l’implantation initiale. Ensuite, nous adap-

tatons ce protocole de tolérance aux pannes aux objets multiactifs. Le fait qu’un

objet multiactif soit constitué de plusieurs flots d’exécution rend plus difficile la

détection d’états stable permettant la capture de l’état de l’objet. Nous adaptons
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le protocole avec une approche qui fait décrôıtre progressivement le nombre de

flots d’exécution parallèles d’un objet multiactif. Lorsque que le nombre de flots

d’exécution est réduit à un, la capture d’état est alors rendue possible. Cette

approche présente des limitations que nous décrivont en fin de chapitre. Notam-

ment, elle peut introduire un interblocage si la demande de capture d’état apparâıt

lorsqu’une requête réentrante est en train d’être exécutée.

Dans un dernier chapitre, le chapitre 6, nous nous intéressons à un cas d’utilisation

pratique qui implique plusieurs des développements qui ont été introduits dans

cette thèse. Avant cela, nous présentons le contexte de ce cas d’utilisation qui

porte sur les réseaux pair-à-pair de type CAN. Nous introduisons les principales

caractéristiques du CAN : l’espace de données de ce type de réseaux est basé sur

un espace Cartésien multi-dimensionnel. Chaque pair du réseau gère une partie de

cet espace de données. Les requêtes d’insertion et de récupération de ces données

sont routées de pair-en-pair, et atteignent leur destination en un nombre borné

de sauts. Nous présentons un algorithme de broadcast efficace pour CAN qui fait

l’objet de la publication [2]. La particularité de cet algorithme est qu’il génère

un nombre optimal de messages, exactement un message par pair appartenant au

réseau, et de façon complètement décentralisée. Les propriétés spatiales du CAN

sont largement utilisées pour cela. L’idée principale est de restreindre la propaga-

tion du message aux pairs voisins qui se trouvent sur une branche de propagation

particulière. Pour cela nous raisonnons sur l’espace multi-dimensionnel du CAN

de façon récursive. Nous présentons ensuite notre cas d’application qui consiste en

une implantation de CAN où les pairs sont représentés avec des objets multiactifs

tolérants aux pannes. Nous utilisons pour cela la librairie ProActive, qui contient

l’implantation du protocole de tolérance aux pannes pour objet multiactif intro-

duit dans le chapitre précédent. Notre but dans cette application est de lancer

un broadcast efficace, et de montrer que, même en présence d’une panne d’un

pair durant le broadcast, le broadcast réussit quand même grâce au recouvrement

automatique effectué par notre protocole. Nous prouvons ainsi que l’approche

qui consiste à rendre les algorithmes distribués tolérants aux pannes au niveau de

l’intergiciel est pertinente.
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B.3 Conclusion

Depuis plusieurs années, le modèle de programmation à objet actif a représenté la

programmation concurrente et sûre, tout en étant contenu dans une abstraction

intuitive pour le programmeur. Dernièrement, ce modèle de programmation est

même devenu plus adapté à l’ère parallèle grâce aux améliorations apportées à la

fois au modèle et à ses différentes implantations. De ce fait, le modèle de pro-

grammation à objet actif peut maintenant être aussi efficace localement. Cepen-

dant, les améliorations qui ont été apportées dans ce sens ont aussi amené de

nouvelles problématiques, telles que la meilleure façon d’exprimer le parallélisme

local, sans retomber dans les méandres des threads. De nouveaux défis sont aussi

apparus, tels que l’adaptation de l’ordonnancement interne des requêtes. Les out-

ils qui avaient été bâtis autour des objets actifs doivent eux-aussi être repensés.

Dans cette thèse, nous avons étudié le modèle de programmation à objet actif

augmenté d’exécution parallèle controllée, à travers un méta-langage de program-

mation. C’est le modèle de programmation à objet multiactif. Nous proposons un

cadre de développement complet autour des objets multiactifs qui offre des poli-

tiques avancées d’ordonnancement et d’allocation des requêtes, de la tolérance aux

pannes et du débogage, tout cela intégré dans une librairie : la librairie ProActive.

Nous attachons un intérêt particulier à trois objectifs : l’utilisabilité, la correction

et la performance de nos développements. Ces objectifs couvrent le large spec-

tre des modèles de programmation en termes de conception, de spécification et

d’exécution. Nous donnons les grandes lignes de notre modèle de programmation

à travers des applications concrètes. Tester nos développements dans des environ-

nements réalistes a une importance déterminante, puisque nous nous positionnons

sur des applications distribuées, ce qui rend leur performances moins prédictibles.

C’est pourquoi nous menons systématiquement une évaluation expérimentale de

nos développements. D’autre part, nous formalisons nos travaux afin de démontrer

leur efficacité et leurs principales propriétés. De cette manière, nous renforçons les

garanties offertes par notre modèle de programmation, en lesquelles le program-

meur peut avoir confiance.

Le cadre de travail complet autour des objets multiactifs qui a été amené par

cette thèse est prometteur, tant dans un aspect pratique que théorique. Cette
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thèse peut en effet représenter le point de départ de plusieurs sujets de recherche.

Les travaux présentés dans cette thèse sont implantés et utilisables. Les idées ap-

portées autour de l’étude des langages à objet actif peuvent aussi consistuer un

point de départ dans la conception de nouveaux modèles de programmation et

outils de développement. Dans une perspective à court terme, la librairie ProAc-

tive pourra être améliorée. Les priorités appliquées par le programmeur peuvent

être rendues plus dynamiques afin de s’adapter aux aléas de l’exécution, par ex-

emple pour résoudre un cas de famine de requête. Concernant les outils construits

autour des objets multiactifs, notre débogueur pourra dans le futur procurer plus

d’informations sur l’exécution des objets multiactifs. Par exemple, le type de la

limite du nombre de flots d’exécution parallèles est une information qui est actuelle-

ment manquante dans cet outil. Un support de visualisation en temps réel pourra

aussi être développé assez rapidement, grâce à l’implantation modulaire que nous

avons fourni pour la classification des événements de l’application. Une évolution à

moyen terme que nous planifions est de procurer un débogage d’applications à objet

multiactif par points d’arrêt (breakpoints). L’arrêt de l’exécution de l’application

quand le point d’arrêt est rencontré peut être matérialisé par la sauvegarde de

l’état de ses objets multiactifs. Le mécanisme de sauvegarde d’état qui est in-

clut dans protocole de tolérance aux pannes peut être utilisé pour cela. Pour que

ce mécanisme soit accessible au niveau du programmeur, il faudra élever cette

fonctionnalité au niveau de l’API de la librairie ProActive.

Dans sa version courante, la librairie ProActive inclut aussi un support pour

l’exécution de composants distribués. Les composants représentent une abstrac-

tion plus large que les objets actifs et procurent une plus grande modularité pour

la construction de larges applications. Les composants de ProActive peuvent être

manipulés graphiquement pour modéliser, vérifier et générer des applications dis-

tribuées. L’éditeur graphique VerCors qui permet cela génère du code ProActive en

fin de châıne. Dans ce contexte, l’intégration des notions des objets multiactifs

pourra être effectuée au niveau des composants, afin de donner au programmeur

la possibilité de manipuler des composants multiactifs.

Enfin, de nombreux travaux théoriques peuvent être basés sur les résultats

de cette thèse. Tou d’abord, le travail qui a été démarré sur la tolérance aux

pannes des objets multiactifs devra être renforcé par une étude plus formelle. Cette
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étape fournira une base solide pour résonner plus généralement sur la tolérance

aux pannes des systèmes distribués. Cela aidera aussi la conception de l’outil

de débogage par points d’arrêt. Une autre piste prévue pour l’enrichissement

du cadre de travail que nous proposons est l’analyse statique de programmes

à objets multiactifs. Pour l’instant, les annotations appliquées par le program-

meur sont interprétées à l’exécution de l’application. En particulier, elles ne sont

pas vérifiées avant d’être exécutées, nous faisons principalement confiance au pro-

grammeur pour obtenir une exécution correcte de l’application. L’analyse sta-

tique des annotations spécifiées par le programmeur donnera plus de garanties à

l’exécution, notamment pour détecter des compatibilités qui mèneraient à une sit-

uation de compétition sur des ressources potentiellement partagées par plusieurs

flots d’exécution. Enfin, des travaux sont actuellement poursuivis pour la détection

statique d’interblocages dans les applications basées sur les objets multiactifs de

ProActive. Le contexte de ce travail prend racine dans la technique de détection

d’interblocage des programmes ABS. L’adaptation de cette technique à MultiASP,

le langage qui formalise la librairie ProActive, est pointue, notamment à cause de

la transparence du langage qui cache syntaxiquement les principaux emplacements

de synchronisation. Notamment, les résultats de ces travaux pourront directement

être applicables au backend ABS que nous présentons dans cette thèse.
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and Martin Steffen. “ABS: A Core Language for Abstract Behav-

ioral Specification”. In: Proceedings of the 9th International Confer-

ence on Formal Methods for Components and Objects. FMCO’10.

Graz, Austria: Springer-Verlag, 2011, pp. 142–164 (cit. on pp. 25,

111).

[Jon87] James V. Jones. Integrated Logistics Support Handbook. Blue Ridge

Summit, PA, USA: TAB Books, 1987 (cit. on p. 151).

[KSA09] Rajesh K. Karmani, Amin Shali, and Gul Agha. “Actor Frameworks

for the JVM Platform: A Comparative Analysis”. In: Proceedings

of the 7th International Conference on Principles and Practice of

Programming in Java. PPPJ ’09. Calgary, Alberta, Canada: ACM,

2009, pp. 11–20 (cit. on p. 35).

[Kay93] Alan C. Kay. “The Early History of Smalltalk”. In: SIGPLAN Not.

28.3 (Mar. 1993), pp. 69–95 (cit. on p. 2).

[Kha+15] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi Kaviani, Ramtin

Khosravi, and Mohammad-Javad Izadi. “Timed Rebeca schedula-

bility and deadlock freedom analysis using bounded floating time

transition system”. In: Science of Computer Programming 98, Part

2 (2015). Special Issue on Programming Based on Actors, Agents

and Decentralized Control, pp. 184 –204 (cit. on p. 36).

[Khv15] Pavlo Khvorostov. “A viewer tool for multi-active object”. MA the-

sis. Universite Nice Sophia Antipolis, Aug. 2015 (cit. on p. 147).

[LS96] R. Greg Lavender and Douglas C. Schmidt. “Pattern Languages of

Program Design 2”. In: ed. by John M. Vlissides, James O. Coplien,

and Norman L. Kerth. Boston, MA, USA: Addison-Wesley Long-

man Publishing Co., Inc., 1996. Chap. Active Object: An Object

Behavioral Pattern for Concurrent Programming, pp. 483–499 (cit.

on pp. 10, 29).



BIBLIOGRAPHY 253

[Lee06] Edward A. Lee. “The Problem with Threads”. In: Computer 39.5

(May 2006), pp. 33–42 (cit. on p. 2).

[LL13] Mohsen Lesani and Antonio Lain. “Semantics-preserving Sharing

Actors”. In: Proceedings of the 2013 Workshop on Programming

Based on Actors, Agents, and Decentralized Control. AGERE! 2013.

Indianapolis, Indiana, USA: ACM, 2013, pp. 69–80 (cit. on p. 15).

[MTS05] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. “Concur-

rency Among Strangers: Programming in E As Plan Coordination”.

In: Proceedings of the 1st International Conference on Trustworthy

Global Computing. TGC’05. Edinburgh, UK: Springer-Verlag, 2005,

pp. 195–229 (cit. on pp. 15, 31).

[Mor+13] Benjamin Morandi, Mischael Schill, Sebastian Nanz, and Bertrand

Meyer. “Prototyping a Concurrency Model”. In: Proceedings of the

2013 13th International Conference on Application of Concurrency

to System Design. ACSD ’13. Washington, DC, USA: IEEE Com-

puter Society, 2013, pp. 170–179 (cit. on p. 37).

[NSS06] J. Niehren, J. Schwinghammer, and G. Smolka. “A Concurrent Lambda

Calculus with Futures”. In: Theor. Comput. Sci. 364.3 (Nov. 2006),

pp. 338–356 (cit. on p. 12).

[NB14] Behrooz Nobakht and Frank S. Boer. “Leveraging Applications of

Formal Methods, Verification and Validation. Specialized Techniques

and Applications: 6th International Symposium, ISoLA 2014, Im-

perial, Corfu, Greece, October 8-11, 2014, Proceedings, Part II”. In:

ed. by Tiziana Margaria and Bernhard Steffen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2014. Chap. Programming with Actors

in Java 8, pp. 37–53 (cit. on p. 38).

[Nob+12] Behrooz Nobakht, Frank S. De Boer, Mohammad Mahdi Jaghoori,

and Rudolf Schlatte. “Programming and Deployment of Active Ob-

jects with Application-level Scheduling”. In: Proceedings of the 27th

Annual ACM Symposium on Applied Computing. SAC ’12. Trento,

Italy: ACM, 2012, pp. 1883–1888 (cit. on p. 88).



254 BIBLIOGRAPHY

[Pel14] Laurent Pellegrino. “Pushing dynamic and ubiquitous event-based

interactions in the Internet of services : a middleware for event
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