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Chapter 1

Introduction

Electric vehicles (EVs), which include hybrids, plug-in hybrids, and battery electric vehicles, are one of
the most promising technologies to reduce petroleum dependency and greenhouse gas emissions. Boosted
by government- sponsored programs worldwide, the EVs segment has become a small but important part
of the global automotive industry. Quoting a recent market study published by Berman & Gartner (2013),
“sales of plug-in EVs will grow at a compound annual growth rate of nearly 40 percent over the remainder
of the decade, while the overall auto market will expand by only two percent a year”.

Freight and personal transportation is one of the segments in which the use of EVs is expected to gen-
erate higher economical and environmental impact. Studies suggest that transportation represents between
one and two thirds of the total costs of logistics in a company (Tseng et al. 2005) and it is responsible for
up to 15% of the sale price of goods (Avella et al. 2004); a high portion of this cost is linked to vehicle
acquisition and operating costs. While the acquisition costs of EVs (vehicles + charging infrastructure)
remain significantly higher than those of traditional combustion vehicles (CVs), their operation costs are
sensibly lower. Indeed, on average the operating cost of an EV is around 0.11e/km, which is much lower
than the 0.22e/km of the average operation cost of a CV 1 (Bulk 2009). After analyzing a handful of
studies comparing the whole-life cost (or vehicle’s total cost of ownership) of EVs and CVs, Pelletier et al.
(2016) conclude that in some contexts (e.g., urban distribution, low speeds, and frequent stops) EVs area
financially viable alternative to CVs. With the advances on technology and the massive adoption of EVs
their economical benefits are expected to rise in the years to come. Nonetheless, in the short-to-mid term the
highest benefits derived from using EVs in freight transportation are the environmental returns. As a matter
of fact, estimates by Energy Information Administration (2008) suggest that transportation is responsible
for 33% of the total CO2 emissions in the United States (US), and Pedersen et al. (2005) estimates this
figure to be around 28% in the European Union (EU). In addition to economical and environmental aspects,
a massive implementation of EVs in both freight and personal transportation is a key strategic issue in terms
of energy security for the EU.

The use of EVs in freight and personal transportation is starting to get momentum. Because of the
economic benefits and the environmental regulations, several companies in different sectors have started to
use EVs in their operations. The courier sector is probably the leader in EV adoption. For instance, since
2011, La Poste operates at least 250 EVs and signed orders for an additional 10,000 (Kleindorfer et al.
2012). In 2011, UPS purchased 130 hybrid electric delivery trucks (HEVs) and added them to its fleet of
250 HEVs (UPS 2008). Likewise, the Portuguese postal company CTT operates with 10 small electric vans
(Post & Parcel 2014).

In the service sector, several companies have started EVs adoption programs of EVs. For instance, the
largest french electricity company ENEDIS has an ambitious fleet replacement program, they estimate to
have 2,000 EVs between 2015 and 2016, which represents the 10% of their current fleet (ERDF 2014).
The spanish electricity company Endesa expects to introduce 3,000 EVs in its fleet by 2020, which will
represent 80% of its fleet (H&E 2016). In Colombia, a health care company, Sura-EPS, uses EVs for the

1These costs include energy (fuel or electricity), maintenance, and taxes
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12 CHAPTER 1. INTRODUCTION

home healthcare service, in which physicians and nurses visit their patients (Loaiza 2014).
Other interesting cases can be found in the freight transportation. In 2013 Coca-Cola deployed more

than 30 EVs in selected cities across the U.S (Priselac 2013). Heineken have started to use the Europe’s
largest electric truck to distribute the beer within Amsterdam (Heineken 2013). In Mexico, the largest food
company, Bimbo, signed orders to buy 100 EVs which will use the energy from a wind farm (Ramirez
2015).

Despite these encouraging implementations, the massive adoption of EVs for freight transportation is
still hampered by technical constraints such as low driving ranges and long battery charging times. Indeed,
on average an EV has 120 km of autonomy and its charging time ranges between 0.5 and 12 hours (depend-
ing on the charging technology). This autonomy is much lower than the 500 km of average autonomy of a
CV, and the EV charging times are considerably longer than CV refueling times.

To overcome these constraints, considerable research has been, and still is, devoted via technological
advances in battery capacity, electric efficiency, and battery charging speed. However, as pointed out by
Felipe et al. (2014), a considerable effort is still needed to develop fleet management tools able to cope with
these restricting EV features. One of the fields in which the void is more critical is that of optimization
techniques for solving the electric vehicle routing problems (eVRPs).

VRPs are concerned with the design of efficient routes to deliver goods and services from (to) central
depots to (from) customer locations satisfying specific business constraints. From an economic perspective,
the application of operations research (OR) techniques to solve VRPs has led to savings ranging from 5% to
20% in the global transportation cost in the US and the EU (Toth & Vigo 2001). Similarly, the environmental
benefits of efficient routing have been remarkable. In particular, a case study reported by Hall & Partyka
(2008) points out that Paragon Routing identified in a United Kingdom brewery annual reductions of more
than 3,700 tons of CO2 emissions resulting from more efficient routing and depot allocation.

In the last 50 years, a vast amount of research has been devoted to solve VRP variants and it is fair to
say that excellent solution approaches exist for most of them (for a comprehensive overview the reader is
referred to Toth & Vigo (2014)). Unfortunately, most of those approaches are difficult, if not impossible,
to use in the context in which routes are performed by EVs. Indeed, classical VRP variants consider that
routes are performed by CVs. These vehicles have a long and easy-to-restore driving range (because petrol
stations are available almost everywhere and tank refueling takes a negligible time). As a result, most
classical routing algorithms focus on designing only one (long) route per vehicle and do not need to care
for scheduling visits to refueling stations. In contrast, due to the short driving range and long battery
recharging times of EVs and the limited availability of charging infrastructure (at least for 2016 standards),
routing algorithms for eVRPs need to consider the detours of the EVs to the charging stations (CSs) and the
decision of the amount of charge at each visited CS. In addition, the algorithms should take into account as
much as possible EV features as: the nonlinear charging function, the compatibility constraint between the
EVs and CS and the battery degradation cost, among others. To address these challenges, in recent years,
the vehicle routing community has started to develop techniques specially tailored for eVRPs.

To the best of our knowledge, the pioneering work in the field of eVRPs is the recharging vehicle
routing problem (RVRP) by Conrad & Figliozzi (2011). The RVRP extends the distance-constrained VRP
by assuming that routes are serviced by EVs. In this problem, the EVs recharge their batteries at some of the
customers. In 2012, Erdoğan & Miller-Hooks (2012) introduced the green vehicle routing problem (Green
VRP). The Green VRP is the first problem where the EVs detour to the CSs to recharge their batteries. To
solve the problem they proposed a constructive heuristic. That paper is probably the turning point in the
study of eVRPs. Since then, different authors have devoted effort not only to propose more sophisticated
methods for the Green VRP (Andelmin & Bartolini 2016, Koc̆ & Karaoglan 2016, Montoya et al. 2015,
Schneider et al. 2015, 2014) but also to study extensions, mostly focusing on EV applications. For instance,
Goeke et al. (2015), Schneider et al. (2014), Keskin & C̆atay (2016) and Desaulniers et al. (2014) extended
the problem to consider customer time windows. Felipe et al. (2014) studied a version of the problem where
multiple charging technologies are available and partial battery charges are allowed. In their problem, each
CSs has a subset of available technologies and the decision maker should plan the routes so a function of
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the travel, charging and battery degradation costs is minimized. Hiermann et al. (2016) tackled a slightly
different problem in which along with the routes, the decision maker must decide the size and composition
of the EV fleet. To compose the fleet, the decision maker chooses between vehicles of different capacity,
battery size, and acquisition cost. Goeke & Schneider (2015) work on a VRP with a fleet composed by EVs
and CVs. Finally, Sassi et al. (2015) studied the first rich eVRP. In the context of a joint project with La
Poste, they tackled a realistic version of the problem where: CSs have different technologies, the fleet is
made up of CVs and EVs of different types, there are compatibility constraints between the type of EV and
the charging technology of the stations, charging costs depend on the time of the day, and partial charges
are allowed.

Despite recent studies in the eVRP field, there is still the need to explore new solution approaches and
to study new eVRPs that are closer to reality. Therefore, the purpose of this thesis is to contribute to eVRP
field by proposing new methods for current eVRPs, and by studying new eVRPs. Following that objective,
each chapter of this manuscript tackles a different eVRP. In consequence, each chapter is self contained in
terms of the notation and literature review. A brief description of the dissertation structure follows.

In Chapter 2, we present a simple yet effective two-phase heuristic to tackle the Green VRP. In the first
phase our heuristic builds a pool of routes via a set of randomized route-first cluster-second heuristics. In
the second phase our approach assembles a Green VRP solution by solving a set partitioning formulation
over the columns (routes) stored in the pool. At the core of our first phase lies a novel repair mechanism
that optimally inserts visits to stations to restore the feasibility of routes violating the vehicle’s autonomy
constraint. This procedure solves a constrained shortest path problem on an auxiliary repair graph, that by
construction includes only the trips between stations that respect the vehicle’s autonomy constraint. To test
our approach, we performed experiments on a set of instances from the literature.

The Green VRP and the most of the existing eVRPs in the literature assume that the EVs fully charge
their batteries every time they reach a CS, and that the battery charge level is a linear function of the charging
time. In practical situations, however, the amount of charge is a decision variable, and the battery charge
level is a concave function of the charging time. In Chapter 3, we extend current eVRP models to consider
partial charging and non-linear charging functions. We presented a computational study comparing our
assumptions with those commonly made in the literature.

In Chapter 4, we propose an iterated local search (ILS) enhanced with heuristic concentration (HC)
to tackle the eVRP with non-linear charging function (eVRP-NL). The ILS component uses a variable
neighborhood descent (VND) procedure for the local search phase. Considering the importance of the
charging decisions (where and how much to charge) in eVRPs, we present a particular local search operator
for the charging decisions in the VND. This operator consists in solving a new fixed-route problem: the
fixed-route vehicle-charging problem (FRVCP). To solve the FRVCP, we propose a heuristic and a mixed-
integer linear programming formulation. The HC component assembles the final solution from the set of
all routes found in the local optima reached by the ILS. To test our approach, we propose a new set of
instances.

In order to tackle a real problem related with an operation with EVs, Chapter 5 introduces the technician
routing problem with conventional and electric vehicles (TRP-CEV), which is inspired in the real operation
of ENEDIS. This problem consists in routing a set of technicians to serve a set of geographically scattered
requests within their time windows. The technicians use a fixed fleet composed of CVs and EVs. This prob-
lem considers the working schedule, lunch break and skills of the technicians. The TRP-CEV involves not
only customer sequencing (i.e., routing) and charging decisions but also vehicle-to-technician assignments.
The objective function in the TRP-CEV seeks to minimize the total cost, defined as the sum of the travel
costs, battery charging fixed costs, the parking cost at CSs, and the fixed cost of using each technician. To
tackle the TRP-CEV, we proposed a two-phase parallel matheuristic (PMa). In the first phase, the PMa
builds a pool of feasible TRP-CEV routes solving, in parallel, a set of sub-problems. In the second phase
the PMa assembles a TRP-CEV solution by solving an extended set covering formulation. Furthermore,
we build a set of real instances based on data provided by ENEDIS. We analysed the solutions delivered
by our PMa on those instances, and evaluated the quality and structure of the solution as a function of the
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percentage of EVs in the fleet.
Finally, Chapter 6 presents a general conclusion and future research directions. Appendices describe

the detailed results of the algorithms proposed throughout the thesis.
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2.1 Introduction
The use of alternative fuel vehicles (AFVs) (e.g., electric vehicles, hydrogen vehicle, among others)

in freight transportation leads to new optimization problems. One of these problems is the green vehicle
routing problem (Green VRP)1, introduced by Erdoğan & Miller-Hooks (2012). The Green VRP is an
extension of the well-known vehicle routing problem, arising when a fleet of AFVs based at a central depot
services a set of geographically spread customers. The special feature of this VRP comes from the limited
range of AFVs. To ensure the feasible completion of trips, the AFVs may visit alternative fuel stations
(AFSs) en-route to refill the tank or recharge the battery.

Formally, the Green VRP is defined on an undirected and complete graph G = (V,E). The vertex set
V = {0}∪ I ∪F = {0, 1, 2, ..., n+a} is made up of a depot (vertex 0), a set of customers I = {1, 2, ..., n},
and a set F = {n + 1, n + 2, ..., n + a} of a AFSs. It is assumed that the depot can also be used as a
refueling station, and that all refueling stations can handle an unlimited number of vehicles. Each vertex
i ∈ V has a service time τi. If i ∈ I then τi is the service time at the customer; and if i ∈ F ∪ {0} then τi
is the refueling time, which is assumed to be constant. The set E = {(i, j) : i, j ∈ V, i 6= j} corresponds
to edges connecting vertices of V . Each edge (i, j) has two associated nonnegative attributes: a travel time
tij and a distance dij . The travel speeds are assumed to be constant over the edges. In addition, there is no
limit on the number of stops that can be made for refueling. When refueling occurs, it is assumed that the
tank is filled to its maximum capacity. The customers are served using a fleet of homogeneous AFVs with
tank capacity Q and consumption rate cr. The vehicle driving-range constraint is dictated by the fuel tank
capacity and a tour duration constraint Tmax.

In the Green VRP the objective is to find a set of routes of minimum total distance such that each
customer is visited exactly once; the level of the tank when the vehicle arrives at any vertex is nonnegative;
each route satisfies the maximum-duration limit; and each route starts and ends at the depot. Figure 2.1
depicts a feasible solution to a Green VRP.

The Green VRP is an NP-hard problem. Indeed, Lenstra & Kan (1981) showed that the classical VRP
is NP-hard. Since the VRP is a special case of the Green VRP, we can conclude that the Green VRP is also
NP-hard. Moreover, recent studies show that commercial solvers cannot solve to optimality instances of 20
customers in reasonable computational times (Schneider et al. 2014). Therefore, to tackle industrial-scale
Green VRP instances we need heuristic approaches.
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Figure 2.1 – Example of a feasible Green VRP solution

For the solution of the Green VRP we present a multi-space sampling heuristic (MSH), which is a

1Although in the green vehicle routing problem literature the most popular acronym is G-VRP, we prefer to use Green VRP
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simple yet effective heuristic introduced by Mendoza & Villegas (2013). The idea behind MSH is to sample
different solution representation spaces and then to assemble a solution with (parts of) the sampled elements.
Implementations of MSH have delivered competitive results to complex routing problems such as the VRP
with stochastic demands (Mendoza & Villegas 2013), the VRP with stochastic travel and service times
(Gómez et al. 2015), and the combined maintenance and routing problem (Fontecha et al. 2015). The
algorithm is built out of two main components: a set of sampling functions and an assembling procedure.
The sampling functions are randomized route-first, cluster-second heuristics. Using these heuristics MSH
draws a sample from the TSP solution representation space and extracts from it a sample of the route
representation space. Later, MSH uses the sampled routes to assemble a final solution. The assembling
procedure is a set partitioning model that runs over the set of routes sampled in the first phase. To implement
our MSH, we adapted the randomized route-first, cluster-second heuristics proposed in Mendoza & Villegas
(2013) to the Green VRP. This adaptation is far from being trivial, since route feasibility in the Green VRP
is difficult to assess. Indeed, a route that is fuel-infeasible (that is, infeasible for fuel autonomy) can be
repaired in a number of ways by inserting one or more visits to AFSs. Therefore, extracting Green VRP
routes from a giant TSP tour is much more complex than in problems previously tackled using MSH.
Existing metaheuristics for the Green VRP rely on insertion-based heuristics and neighborhood schemes
for repairing fuel-infeasible routes (Erdoğan & Miller-Hooks 2012, Schneider et al. 2014, 2015, Felipe
et al. 2014). In general, these strategies consider only one insertion at a time and therefore are exposed
to myopic choices. We propose an optimal procedure based on a reformulation of the repair problem as a
constrained shortest path problem.

The main contributions of this chapter are threefold: i) we introduce an optimal repair procedure based
on a constrained shortest path formulation that inserts refueling stations into Green VRP routes. One of
the main advantages of our procedure is that it can be used as a building block in any other Green VRP
heuristic; ii) we show how to use our procedure to build a simple and effective MSH heuristic for the Green
VRP; and iii) we update best-known solutions (BKSs) to 8 out of 52 standard benchmark instances for the
problem.

The remainder of this chapter is organized as follows. Section 2.2 reviews the related literature. Section
2.3 presents a detailed description of our version of the multi-space sampling heuristic. Section 2.4 presents
a computational evaluation of the proposed method. Finally, Section 2.5 concludes the chapter. For easy
reference, Section 2.6 summarizes the notation of this chapter.

2.2 Literature review
The Green VRP was introduced by Erdoğan & Miller-Hooks (2012). They propose a mixed-integer-

linear programming (MILP) formulation and two heuristics. The first heuristic is a modified Clarke and
Wright savings algorithm (MCWS) that repairs infeasible routes by inserting AFSs using a savings criterion,
and removes redundant AFSs after merging the routes. The second heuristic is a density-based clustering
algorithm (DBCA) that first builds clusters and then runs MCWS for each cluster. In their article, the authors
propose two sets of test instances: the set of “small” instances has 40 test problems with 20 customers, and
the set of “large” instances has 12 instances with 111 to 500 customers. Computational experiments showed
that CPLEX 11.2 was unable to solve to optimality even small instances using the MILP model. They also
indicated that there were no significant differences in performance between MCWS and DBCA.

The Green VRP is closely related to the classical distance-constrained VRP (Laporte et al. 1985), but
the latter does not consider the possibility of extending the vehicle’s distance limitation. Another problem
that is closely related to the Green VRP is the multi-depot vehicle routing problem with inter-depot routes
(MDVRPI) described by Crevier et al. (2007); this problem considers intermediate depots at which vehicles
can be replenished with goods. To solve this problem Crevier et al. (2007) presented a heuristic procedure
that combines ideas from adaptive memory programming, tabu search, and integer programming. Tarantilis

to avoid confusions with the already established and more-studied generalized vehicle routing problem (GVRP).
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et al. (2008) proposed a hybrid guided local search heuristic that outperforms the procedure proposed by
Crevier et al. (2007). Muter et al. (2014) proposed a branch and price algorithm for the MDVRPI; it solves
to optimality some instances with up to 50 customers.

Schneider et al. (2014) introduced the electric vehicle routing problem with time windows and recharg-
ing stations (E-VRPTW), which is an extension of the VRP with a fleet of EVs. The E-VRPTW considers
limited vehicle freight capacities, customer time windows, and the possibility of recharging at any of the
available stations using an appropriate recharging scheme. Schneider et al. (2014) presented an MILP for-
mulation and a hybrid metaheuristic combining variable neighborhood search and tabu search (VNS/TS).
Their VNS/TS explores infeasible solutions with respect to capacity, time windows, and battery-usage con-
straints. A dynamic penalizing scheme is used to guide the search toward feasible solutions. The VNS com-
ponent explores 15 neighborhoods based on cyclic exchanges (Thompson & Psaraftis 1993) that transfer
between routes sequences of customers of arbitrary length. Furthermore, Schneider et al. (2014) improved
the MILP formulation proposed by Erdoğan & Miller-Hooks (2012), and they evaluated their VNS/TS and
MILP approaches on the 52-instance testbed proposed by Erdoğan & Miller-Hooks (2012). Computational
experiments showed that CPLEX 12.2 was unable to solve to optimality instances with 20 customers using
their MILP model, and VNS/TS outperformed the constructive heuristics proposed by Erdoğan & Miller-
Hooks (2012).

Schneider et al. (2015) introduced the vehicle routing problem with intermediate stops (VRPIS) that
generalizes the Green VRP and the MDVRPI. To solve the VRPIS Schneider et al. (2015) propose an adap-
tive variable neighborhood search (AVNS). Their AVNS uses a modified savings algorithm to generate an
initial solution that is later improved with local search. The algorithm uses an adaptive shaking with twenty-
four neighborhood structures, five route selection methods, three vertex-sequence selection methods, and an
adaptive mechanism to choose the route and vertex-selection methods. The solution generated at the shak-
ing step is subsequently improved by several greedy local searches. Furthermore, the AVNS has a dynamic
penalization scheme to guide the search toward feasible solutions and a simulated annealing acceptance
criterion. Since the Green VRP is a special case of the VRPIS, Schneider et al. (2015) tested their approach
on the instances of Erdoğan & Miller-Hooks (2012). This method outperformed all previous methods both
in terms of solution quality and computational time.

Recently, Felipe et al. (2014) introduced the green vehicle routing problem with multiple technology
and partial recharges (GVRP-MTPR). As the name suggests, in this problem charging stations may have
different technologies (e.g., charging times) and EVs do not necessarily charge their batteries to the full
capacity when they reach a charging point. In their article, the authors presented an MILP formulation, a
local search method (48A), and a simulated annealing (SA). Their local search method uses 48 possible
combinations of 6 different neighborhoods and selects the best overall solution. Their SA uses a relocate
neighborhood to explore the solution space. Every time that the incumbent solution is updated, the SA uses
a deterministic local search to try to further improve the solution. Since the GVRP-MTPR is an extension
of the Green VRP, Felipe et al. (2014) tested their approaches on the instances of Erdoğan & Miller-Hooks
(2012). Their methods outperformed the constructive heuristics proposed by Erdoğan & Miller-Hooks
(2012), but are not competitive with the solution approaches of Schneider et al. (2014) and Schneider et al.
(2015). A plausible explanation for these results, is that their 48A algorithm and their SA are not specifically
tailored to the Green VRP.

Sassi et al. (2014) tackled an electric vehicle routing problem with heterogeneous mixed fleet and time
dependent charging costs. In their problem the authors consider a number of realistic features such as:
different charging technologies, coupling constraints between vehicles and charging technologies, charging
station availability time windows, and charging costs depending on the time of the day. Regarding charging
station capacity, the authors impose the maximum admissible power charge constraint over the charging
spots located at the depot; however, they assume that the other charging stations have an unlimited capac-
ity. They proposed an MILP formulation, a charging routing heuristic and a local search heuristic. They
performed computational experiments on real data instances.

Gonçalves et al. (2011) considered a VRP with pick-up and delivery (VRPPD) with a mixed fleet that
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consists of battery electric vehicles (BEVs) and vehicles with internal-combustion engines. The objec-
tive is to minimize the total costs (vehicle-related fixed and variable costs). They considered time and
capacity constraints and assumed a time for recharging the BEVs, which they calculated from the total dis-
tance traveled and the range for one battery charge. However, they did not incorporate the location of the
recharging stations into their model. Thus, they basically proposed a mixed-fleet VRPPD with an additional
distance-dependent time variable. They performed computational experiments with an MILP formulation
on instances with up to 17 customers.

Conrad & Figliozzi (2011) introduced the recharging vehicle routing problem (RVRP) wherein vehicles
with a limited range must service a set of customers but may recharge at certain customer locations before
continuing their trip. They proposed an MILP formulation of the problem. They performed computational
experiments on instances of 40 customers.

Juan et al. (2014) discussed the vehicle routing problem with multiple driving ranges (VRPMDR), an
extension of the classical routing problem where the total distance each vehicle can travel is limited and is
not necessarily the same for every vehicle. The VRPMDR finds applications in routing electric and hybrid-
electric vehicles, which can cover limited distances depending on the running time of their batteries. They
proposed an MILP formulation and a multi-round heuristic algorithm that iteratively constructs a solution
for the problem.

Finally, Pelletier et al. (2014) presented an overview of the field of goods distribution with EVs, that
includes a review of the main transportation science literature on EVs regarding fleet size and mix, vehicle
routing problem, and optimal paths.

2.3 Multi-space sampling heuristic
Mendoza & Villegas (2013) originally proposed the multi-space sampling heuristic for the vehicle rout-

ing problem with stochastic demands. Despite its simple design, MSH obtains competitive results. MSH
has two phases: sampling and assembling. In the sampling phase the algorithm uses a set of randomized
TSP heuristics to draw a biased sample from the set K of TSP-like tours (i.e., giant tours visiting all cus-
tomers). Following the route-first cluster-second principle (Beasley 1983, Prins et al. 2014), MSH extracts
every feasible route that can be obtained without altering the order of the customers of each sampled TSP
tour. MSH uses these routes to build a set Ω ⊂ R, whereR is the set of all feasible routes. In the assembling
phase MSH follows the principle of petal heuristics (Foster & Ryan 1976) and maps set Ω to a solution s
(in the set of all feasible solutions to the problem S) by solving a set partitioning formulation. Note that
in MSH the knowledge of the problem is embedded in two components: the procedure that extracts routes
from the TSP tours during the sampling phase and the set-partitioning formulation used in the assembling
phase. The former controls the feasibility and cost of each route while the latter controls the feasibility
and cost of the whole solution. To adapt MSH to the Green VRP we designed a tailored route extraction
procedure. To favor scalability we also modified the strategy used by the original MSH to build the route
pool Ω. For the sake of completeness, in the remainder of this section we present all the components used
in our MSH setting a special focus on those we specifically designed for the Green VRP.

2.3.1 General structure
Algorithm 1 describes the general structure of our MSH. The procedure starts by entering the sampling

phase (lines 5–19). At each iteration k ≤ K, the algorithm selects a sampling heuristic from a setH (line 6)
and uses it to build a TSP tour tsp. Then, the algorithm uses a tour splitting procedure (known as split)
to retrieve a solution s ∈ S . Differently to the original MSH, our version does not store in Ω all the routes
evaluated by split during the partitioning process but only the routes belonging to some of the retrieved
solutions. To decide if the routes of a solution s should join Ω we use the following condition (lines 9-
16): f(s) ≤ f(s∗) · (1 + λ) where s∗ is the best solution found, λ a positive parameter, and f(·) denotes
the objective function of a solution. The idea behind this choice is to favor computational scalability by
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reducing the size of Ω while assuring a good compromise between the diversity and the quality of the routes
in the pool. In the assembly phase (line 20), the heuristic invokes a procedure called SetPartitioning
to solve a set partitioning formulation over Ω using f(s∗) as an upper bound. The resulting solution R is
reported by the heuristic (line 21).

Algorithm 1 Multi-space sampling heuristic: General structure
1: function MULTISPACESAMPLING(G,H, K, λ)
2: Ω←− ∅
3: k ←− 1
4: while k ≤ K do
5: for j = 1 to j = |H| do
6: h←− Hj

7: tsp←− h(G)
8: s←− split(G, tsp)
9: if k = 1 and j = 1 then

10: s∗ ← s
11: else if f(s) ≤ f(s∗)× (1 + λ) then
12: Ω←− Ω ∪ s
13: if f(s) < f(s∗) then
14: s∗ ←− s
15: end if
16: end if
17: k ←− k + 1
18: end for
19: end while
20: R ←− SetPartitioning(G,Ω, s∗)
21: returnR
22: end function

2.3.2 Sampling heuristic
To sample K (line 7 in Algorithm 1), our approach uses randomized versions of three TSP constructive

heuristics. Although the strategies used to generate the randomized versions of the three heuristics are
directly borrowed from Mendoza & Villegas (2013), for the sake of completeness we briefly describe them
here.

Let tsp be an ordered set representing the TSP customer tour being built by a given sampling heuristic,
W the set of customers visited by tsp, and N = I \ W an ordered set of nonrouted customers. For the
sake of simplicity, we assume that setsW and N are updated every time a customer is added to tsp. Let l
be a random integer in {1, ...,min{L, |N |}}, where parameter L denotes the randomization factor of each
heuristic.

The first heuristic is randomized nearest neighbor (RNN). It initially sets tsp = (0) and u = 0. At
each iteration, RNN identifies the customer v that is the lth nearest customer to u, appends v to tsp, and
sets u = v. RNN stops when |N | = 0 and appends 0 to tsp to complete the tour. The second heuristic is
randomized nearest insertion (RNI). It initializes tsp as a tour starting at the depot and performing a round
trip to a randomly selected customer. At each iteration, RNI sorts N in nondecreasing order of dmin(v),
where dmin(v) is defined to be min{du,v|u ∈ W}. RNI then inserts v = Nl (i.e., the lth element in the
ordered set N ) into the tour tsp in the best possible position (i.e., the position generating the smallest
increment in the cost of the tour). RNI stops when |N | = 0. The third heuristic is randomized best insertion
(RBI). It initializes tsp as a tour starting at the depot and performing a round trip to a randomly selected
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customer. At each iteration RBI sortsN in nondecreasing order of ∆min(v), where ∆min(v) is defined to be
min{d(u, v) +d(v, w)−d(u,w)|(u,w) ∈ tsp}, and inserts v = Nl in tour tsp in the best possible position.
RBI stops when |N | = 0.

2.3.3 Split
To extract a feasible solution s from tsp (line 8 in Algorithm 1), our approach uses an adaptation of the

optimal tour splitting procedure for the VRP introduced by Prins (2004). The splitting procedure builds a
directed acyclic graph G∗ = (V ∗, A) composed of the ordered vertex set V ∗ = (v0, v1, ..., vi, ..., vn) and
the arc set A. Vertex v0 = 0 is an auxiliary vertex, while vertices v1, ..., vn ∈ tsp \ {0}. The vertices in
V ∗ are arranged in the same order in which they appear in tsp. Arc (vi, vi+nr) ∈ A represents a feasible
route rvi,vi+nr

with distance drvi,vi+nr
starting and ending at the depot and visiting customers in the sequence

vi+1 to vi+nr . Route rvi,vi+nr
may not satisfy the fuel constraint (i.e., the route’s fuel consumption is greater

than Q). If it does not, we try to repair it by inserting visits to AFSs. If the insertion of AFSs increases
the duration of the route beyond Tmax then we do not include the arc associated with the route in G∗. The
insertion of visits to AFSs is accomplished by the optimal repair procedure explained in Section 2.3.4. To
obtain a feasible solution s for the Green VRP, the procedure finds the set of arcs (i.e., routes) along the
shortest path connecting 0 and vn in G∗. It is worth noting that since G∗ is directed and acyclic, building
the graph and finding the shortest path can be done simultaneously (Prins 2004).

Algorithm 2 shows the tour splitting procedure based on the split algorithm for the capacitated VRP
(Prins 2004). After initializing the shortest path labels (lines 2–6), split enters the outer loop (lines 7–41).
Each pass through the outer loop sets the tail of an arc and initializes an empty route (lines 8–11). Then we
use the inner loop (lines 13–40) to scan all the arcs sharing the same tail node. At each inner-loop iteration,
we explore a new arc by simply adding the next customer to the route (line 16). In the next steps (lines 17–
23) we compute the weight and time of the arc (i.e., the total distance cr and total time tpr of the associated
route). If an arc is feasible for the duration constraint (line 24) we check the feasibility of the associated
route with respect to the fuel constraint (and store the result in a boolean variable fr). When a route is
infeasible for the fuel constraint but tpr ≤ Tmax, we try to repair the route using procedure Repair(r,G)
(line 27). For an arc (i, j) to be added to the graph, its corresponding route must be feasible for fuel and
time. If the shortest path label of the head node of arc (i, j) can be improved (i.e., labeli−1 + cr ≤ labelj),
then we update the shortest path label and the predecessor information (lines 35–38). The algorithm then
moves to the next inner-loop iteration or exits the loop. After completing the outer loop we retrieve the
solution using the tour tsp and the predecessor labels (for an algorithm to retrieve the solution we refer the
reader to Prins (2004)).

To adapt the tour splitting procedure to the Green VRP, it is necessary to introduce two important
functions: checkFuel (line 24), which evaluates the feasibility of a route with respect to the vehicle’s fuel
constraint, and Repair (line 26), which tries to repair the route, and returns a boolean variable (indicating
whether or not the route could be repaired) and the distance of the repaired route. Note, however, that there
are some cases where the repaired route is feasible for the fuel constraint but infeasible for the duration
constraint. This occurs because the time needed to recover the feasibility of the route (i.e., the travel time
to the AFSs and the service time there) increases its planned duration beyond Tmax; in these cases we do
not add the associated arc to the graph.

Figure 2.2 illustrates the tour splitting procedure. Figure 2.2a shows the TSP tour and the relevant
information. Figure 2.2b depicts the auxiliary graph G∗; the arcs in bold correspond to the shortest path.
Figure 2.2c is a table showing the evaluation of the arcs.

2.3.4 Repair procedure
Existing approaches for the Green VRP depend on insertion-based heuristics and neighborhood schemes

for repairing fuel-infeasible routes. The MCWS algorithm proposed by Erdoğan & Miller-Hooks (2012)
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Figure 2.2 – Splitting a TSP tour into a Green VRP solution
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Algorithm 2 Tour splitting
1: function SPLIT(G,tsp)
2: label0 ←− 0 . label: shortest path labels
3: for i = 1 to n do
4: labeli ←− +∞
5: predi ←− 0 . pred: predecessor labels
6: end for
7: for i = 1 to n do
8: r ←− (0) . Initialize route r
9: cr ←− 0 . Initialize total distance cr

10: tpr ←− 0 . Initialize total time tpr
11: j ←− i
12: continue←− true
13: while j ≤ n and continue=true do
14: v ←− tspj . Get customer in position j of tsp
15: v′ ←− tspj−1 . Get customer in position j − 1 of tsp
16: r ←− r ∪ {v}
17: if j = i then
18: cr ←− d0,v + dv,0 . Update total distance
19: tpr ←− t0,v + tv,0 + τv + τ0 . Update total time
20: else
21: cr ←− cr − dv′,0 + dv′,v + dv,0 . Update total distance
22: tpr ←− tpr − tv′,0 + tv′,v + tv,0 + τv . Update total time
23: end if
24: if tpr ≤ Tmax then . Check feasibility for time
25: fr ←− checkFuel(r) . Evaluate fuel feasibility
26: if fr = false then
27: 〈cr, fr〉 ←− Repair(r,G) . Repair route r
28: if fr = false then
29: continue←− false
30: end if
31: end if
32: else
33: continue←− false
34: end if
35: if labeli−1 + cr ≤ labelj and continue=true then
36: labelj ←− labeli−1 + cr . Update label
37: predj ←− i− 1 . Update predecessor
38: end if
39: j ←− j + 1
40: end while
41: end for
42: s←− RetrieveSolution(pred, tsp)
43: return s
44: end function
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starts inserting the AFS with the least insertion cost (i.e., distance added to the tour) in the fuel-infeasible
back-and-forth routes. After the routes merging step, MCWS inserts into each fuel-infeasible route the
AFS with the least insertion cost and then evaluates the possibility of eliminating redundant AFSs. Schnei-
der et al. (2014) used a penalization scheme for the fuel-infeasible routes and proposed an operator that
performs insertions and removals of AFSs. That operator uses a tabu list in order to control insertions al-
ready tested. Schneider et al. (2015) used a penalization scheme for the fuel-infeasible routes and presented
three operators to improve the location of AFSs within the route. The first operator moves an AFS to a
different position within a route. The second operator evaluates for each AFS visit of each route whether
visiting a different AFS decreases the routing cost. The third operator aims at removing redundant AFS
visits. Finally, Felipe et al. (2014) proposed a constructive heuristic, which considers the insertion of AFSs
to fuel-infeasible routes. They presented a neigboorhood scheme to improve the location of an AFS in a
route, without modifying the sequence of visits to the customers. Notice that all these strategies consider
only one insertion at a time and therefore are exposed to myopic choices. In contrast, our repair procedure
optimally chooses which stations to insert and where to insert them while considering all the possible com-
binations of insertions leading to an energy-feasible route. To accomplish its goal, our procedure relies on
a reformulation of the repair problem as a constraint shortest path problem.

Let Π = {π1, ..., πi, ..., πj, ..., πnr+1} be a route that violates the fuel constraint, and π1 = 0. The feasi-
bility of Π may be restored by inserting visits to AFSs. We use an optimal procedure that simultaneously
decides which stations must be visited and their optimal insertion position within the route. The procedure
can be seen as a constrained shortest path problem in a repair graph B = (Z,U). Figure 2.3 depicts the
structure ofB2. The vertex set Z = {α, ..., [i, k], ..., β} is made up of two dummy vertices (α and β) that act
as copies of the depot, representing the source and sink vertices ofB; and the vertices [i, k], which represent
a visit to station k ∈ F after visiting vertex πi (i.e., the ith element in route Π), where 1 ≤ i ≤ nr + 1 and
1 ≤ k ≤ a. To define the edge set U , let us first introduce some key elements. Let P = {p1, ..., pj, ..., p|P |}
be a path in G. For a given path P we define three metrics: its distance d(P ) =

∑|P |−1
j=1 dpj ,pj+1

, its total
planned time t(P ) =

∑|P |−1
j=1 tpj ,pj+1

+
∑|P |

j=2 τpj , and its fuel consumption q(P ) = cr × d(P ). The arc set

U is composed of five types of arcs, that is, U =
5⋃
i=1

Ui, where:

— U1: the outgoing arcs of α. An arc (α, [i, k]) represents the path P = (0, Fk) if i = 1, and P =
(0, ..., πi, Fk) if i > 1. Its cost and time are defined as cu:u∈U1 = d(P ) and tu:u∈U1 = t(P ) + τ0.

— U2: the arcs connecting two stations without visiting any customer. Arc ([i, k], [i, l]) represents the
path P = (Fk, Fl). Its cost and time are defined as cu:u∈U2 = d(P ) and tu:u∈U2 = t(P ).

— U3, the arcs connecting two stations and visiting some customers in between. Arc ([i, k], [j, l])
represents the path P = (Fk, πi+1, ..., πj, Fl). Its cost and time are defined as cu:u∈U3 = d(P ) and
tu:u∈U3 = t(P ).

— U4, the incoming arcs to β representing the return to the depot after visiting some customers since
the last visit to a station. Arc ([i, k], β) represents the path P = (Fk, πi+1, ..., πnr+1, 0). Its cost and
time are defined as cu:u∈U4 = d(P ) and tu:u∈U4 = t(P )− τ0.

— U5, the incoming arcs to β representing a return to the depot directly from a station after visiting the
last customer in route Π. The arc ([nr + 1, k], β) represents the path P = (Fk, 0). Its cost and time
are defined as cu:u∈U5 = d(P ) and tu:u∈U5 = t(P )− τ0.

We include in U only arcs with cu × cr ≤ Q and tu ≤ Tmax. With this graph construction procedure
we ensure that all paths from α to β represent a route that visits customers in the same order they appear in
Π and is feasible with respect to the fuel constraint. Note, however, that not every path connecting α and
β in B represents a route that is feasible in terms of the duration constraint. Therefore, to find an optimal
repair for route Π, we need to solve a constrained shortest path problem (CSP), where the maximum travel
time Tmax is the constrained resource. It is interesting to observe that since all the arcs of B are feasible for

2This graph resembles that used by Villegas et al. (2010) in a route-first cluster-second heuristic for the single truck and
trailer routing problem with satellite depots.
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Figure 2.3 – Outline of the structure of the repair graph B = (Z,U)

fuel, the tank capacity is not a constraint for the CSP. To solve the CSP we use the pulse algorithm (Lozano
& Medaglia 2013a). The algorithm is based on the idea of propagating pulses through a network from a
source node to a sink node (α and β in our case). At the core of the algorithm lies the ability to effectively
and aggressively prune pulses (i.e., prevent their propagation) without jeopardizing the optimal path. The
pulse algorithm is one of the state-of-the-art methods for the solution of resource-constrained shortest path
problems (Lozano & Medaglia 2013b).

Figure 3.3 shows a detailed example of the repair procedure. Figure 2.4a illustrates an infeasible route
with three customers and three AFSs for a Green VRP. Figure 2.4b shows the route after the optimal in-
sertion of the AFSs using the repair procedure. Figure 2.4c shows the corresponding repair graph and the
shortest path.
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Figure 2.4 – Optimal repair example for the three-customer sequence r = {0, A,B,C, 0}, three AFSs.

2.3.5 Set partitioning
In the assembly phase, MSH maps the set Ω to a solution in S by solving a set partitioning formulation(

minR⊆Ω

{∑
r∈R dr : ∪r∈R = V ; ri ∩ rj = 0 ∀ri, rj ∈ R

})
. The objective is then to select the best subset

of routes from Ω to build the set of routes R (i.e., the final solution) guaranteeing that each customer will
be visited by exactly one route.

2.4 Computational experiments
To test our approach, we ran it on the 52-instance testbed proposed by Erdoğan & Miller-Hooks (2012).

These instances consist of 5 sets. Four sets contain ten 20-customer instances ranging from 2 to 10 AFSs.
The remaining set, resulting from a case study, consists of 12 instances with the number of customers
ranging from 111 to 500 and between 21 and 28 AFSs. In this testbed there are instances with infeasible
customers. Therefore, Erdoğan & Miller-Hooks (2012), Schneider et al. (2014), Schneider et al. (2015),
and Felipe et al. (2014) filter the customers that either cannot be served directly within the maximum route
duration or whose direct service requires visiting more than one refueling station. To allow comparison
with previously published results, we followed the same convention and filter unfeasible customers. It is
important to remark that in the problem definition an AFS vertex could have as successor another AFS, so
it is possible to insert visits to more than one AFS between two customer visits. According to Erdoğan &
Miller-Hooks (2012), the geographical coordinates given for the customers have to be converted to Cartesian
coordinates using the Haversine formula (Bullard & Kiernan 1922) with an average Earth radius of 4,182.45
miles. It is worth noting that although Erdoğan & Miller-Hooks (2012) include an additional constraint on
the number of vehicles in their Green VRP formulation, their experiments are conducted with an unlimited-
fleet version of the problem. Therefore, our results are directly comparable to theirs.

We implemented our MSH in Java (jre V.1.7.0_51) and used Gurobi Optimizer (version 5.6.0) to solve
the set partitioning problem. We set a time limit of 10 · n seconds on Gurobi to control the running time
of the set partitioning problem. All the experiments were run on a computing cluster with 2.33 GHz Intel
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Table 2.1 – Summary results and comparison of our MSH with other methods on the small instances
of Erdoğan & Miller-Hooks (2012).

Metric MCWS VNS AVNS 48A MSH(1k) MSH(5k) MSH(10k)
/DBCA /TS

Number of BKS 2/40 38/40 40/40 29/40 35/40 40/40 40/40
Avg. Gap (%) NR NR 0.15% NR 0.38% 0.04% 0.01%
Max. Gap (%) NR NR 1.73% NR 3.61% 0.47% 0.13%
Avg. Best Gap (%) 8.72% 0.63% 0.00% 0.46% 0.09% 0.00% 0.00%
Cum. Number of Veh. 245 223 NR 225 222 222 222
Avg. Time (min) NR 0.65 0.17 0.02 0.01 0.04 0.07
Max. Avg. time (min) NR 0.88 0.38 0.04 0.02 0.06 0.12

Computer
Pentium 4 Core I5 Core I5 Core I5 XEON E5410
3.2GHz 2.67GHz 2.67GHz 2.8GHz 2.33 GHz

Runs NR 10 10 1 10 10 10
NR: not reported

Xeon E5410 processors with 16 GB of RAM running under Linux Rocks 6.1.1. Each replication of the
experiments was run on a single processor.

2.4.1 Results
After conducting a parameter tuning campaign, we set LRNN , LRNI , and LRBI to 2, and λ = 1. We

found that these parameters lead to a pool of well-diversified routes. For the sake of brevity, we will not
discuss these experiments.

Tables 2.1 and 2.2 summarize the results delivered by our MSH on the small and large Green VRP
instances running with 3 configurations: K = 1, 000;K = 5, 000; and K = 10, 000 (defined as MSH(K)).
We compare our results to the best result obtained by MCWS and DBCA by Erdoğan & Miller-Hooks
(2012), the VNS/TS by Schneider et al. (2014), the AVNS by Schneider et al. (2015), and the 48A and SA
by Felipe et al. (2014). The rows of Tables 2.1 and 2.2 indicate the number of times that each method found
the BKS, the average and maximum gap between the average solution and the BKS (in %), the average best
gap3 (in %), the cumulative number of vehicles4, and the average and maximum computational times (in
minutes). The results of VNS/TS, AVNS and our MSH are computed over 10 runs and the 48A and SA
over a single run. Erdoğan & Miller-Hooks (2012) reported the best solution of several runs with different
parameters but did not give the exact number of runs. The detailed results are reported in Appendix A.1.

For small instances, MSH(5k) and MSH(10k) have competitive results with reference to MCWS/ DBCA,
VNS/TS, AVNS, and 48A (Table 2.1). They have an average gap of only 0.04% and 0.01%, match
the 40 BKSs, and use the lowest cumulative number of vehicles. In terms of CPU time, MSH(5k) and
MSH(10k) are only outperformed by MSH(1k) and 48A. MSH(1k) is the fastest method, and outperforms
MCWS/DBCA, VNS/TS, and 48A in terms of solution quality.

For large instances, MSH(5k) outperforms MCWSA/ DCBA, VNS/TS, 48A, and SA in terms of both
solution quality (i.e., average best gap, and cumulative number of vehicles) and CPU time (Table 2.2). When
compared to AVNS, MSH(10k) has a better average best gap with respect to BKSs (0.05% vs. 0.17%) and
finds more BKSs (8/12 vs. 4/12), whereas AVNS is faster and it seems to scale better.

It is interesting to observe that for both the small and large instances our three MSH configurations use
the lowest cumulative number of vehicles.

In order to give a graphical view of key metrics presented in Tables 2.1 and 2.2, Figure 2.5 presents
a head-to-head comparison between the solution methods. It shows the trade-off between solution quality

3The best gap is the gap between the best solution and the BKS
4This metric is the sum of the number of vehicles of all best solutions (Bräysy & Gendreau 2005)
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Table 2.2 – Summary results and comparison of our MSH with other methods on the large instances of
Erdoğan & Miller-Hooks (2012).

Metric MCWS VNS AVNS 48A SA MSH MSH MSH
/DBCA /TS (1k) (5k) (10k)

Number of BKS 0/12 0/12 4/12 0/12 0/12 0/12 0/12 8/12
Avg. Gap (%) NR NR 0.92% NR NR 2.64% 1.48% 1.02%
Max. Gap (%) NR NR 1.84% NR NR 5.77% 4.21% 3.62%
Avg. Best Gap (%) 15.97% 1.38% 0.17% 4.50% 4.97% 1.42% 0.40% 0.05%
Cum. Number of Veh. 508 461 NR 466 459 454 445 444
Avg. Time (min) NR 159.58 6.20 157.03 156.05 27.92 31.47 35.04
Max. Avg. time (min) NR 525.52 19.51 514.68 456.26 80.11 84.95 89.95

Computer
Pentium 4 Core I5 Core I5 Core I5 Core I5 XEON E5410
3.2GHz 2.67GHz 2.67GHz 2.8GHz 2.8GHz 2.33GHz

Runs NR 10 10 1 1 10 10 10
NR: not reported
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Figure 2.5 – Trade-off between solution quality and CPU time

and CPU time5. Each method is represented as a point in the plot. The X coordinate of the point represents
the average best gap with respect to the BKS, while the Y coordinate represents the average CPU time.
Notice that MCWS and DBCA were not included in the comparison since CPU times for these algorithms
were not reported in by Erdoğan & Miller-Hooks (2012).

For the small instances, Figure 2.5a shows that MSH(5k) and MSH(10k) dominate the AVNS and
VNS/TS, while MSH(1k) dominates 48A and VNS/TS. Moreover, MSH(5k) has a remarkable performance
on small instances, because its CPU time is close to that of 48A (which is the fastest approach in the litera-
ture) and its average best gap is 0.00%. On the other hand, on the large instances, MSH(5k) and MSH(10k)
dominates SA, 48A and VNS/TS (Figure 2.5b). The comparison between MSH(10k) and AVNS shows
that there is not clear dominator: while the former dominates in solution quality, the latter dominates in
CPU time. Nonetheless, it is worth recalling that while AVNS uses elaborate components (i.e., an adaptive
shaking with twenty-four neighborhood structures, five route selection methods, among others), our MSH
uses simple building blocks that, with the notable exception of the repair procedure, are common in the
literature. Therefore our MSH is probably easier to implement and extend to tackle other problems.

Finally, we analyzed the CPU time of the two MSH phases (sampling and assembly). Figure 2.6 presents
the percentage of time spent on each phase for each instance size (in terms of number of customers). The

5This comparison tool was introduced by Vidal et al. (2015)
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Figure 2.6 – Percentage share of CPU time by MSH phases

results show that, for all instances, assembly is the more time consuming phase, and that the percentage of
time spent on the assembly phase increases with the instance size. However, the assembly phase contributes
to improve the solutions on average by 4.10%, which is key to obtain competitive results with respect to
existing approaches in the literature.

2.5 Conclusion
This chapter proposes a multi-space sampling heuristic for the Green VRP. This approach has three main

components: a set of three randomized TSP heuristics, a tour partitioning procedure, and a set partitioning
formulation. At the core of the tour partitioning procedure lies a novel repair mechanism that optimally
inserts visits to refueling stations to restore the feasibility of routes violating the vehicle’s fuel constraint.
This procedure solves a constrained shortest path problem on an auxiliary repair graph, that by construction
includes only the trips between refueling stations that respect the vehicle’s fuel constraint.

The procedure is based on a reformulation of the repair problem as a constrained shortest path problem
where i) the maximum travel time of a route is the constrained resource, and ii) each path from the source
node to the sink node in the underlying graph models a possible way to repair the route by inserting visits
to refuelling stations.

We tested our approach on a 52-instance public testbed for the Green VRP. Our approach found 8 new
BKSs for the testbed and matched another 40. When compared to state-of-the-art metaheuristics, the multi-
space sampling heuristic obtains competitive results in terms of solution quality and computational time,
and it is one of the simplest methods used to solve the Green VRP.
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2.6 Nomenclature

2.6.1 Notation for problem definition
G: Green VRP underlying graph G = (V,E).
V : Set of vertices of G.
0: Depot
I: Subset of V representing customers.
F : Subset of V representing alternative fuel stations.
E: Set of edges in G.
dij: Distance between vertices i and j (i, j ∈ V ).
tij: Travel time between vertices i and j (i, j ∈ V ).
n: Number of customers.
a: Number of alternative fuel stations.
Tmax: Tour duration constraint.
cr: Fuel consumption rate.
τi: Service time at a vertex. If i ∈ I then τi is service time at customer; if i ∈ F ∪ {0} then τi is
refueling time at AFS.
Q: Tank capacity.

2.6.2 Notation for multi-space sampling heuristic
G∗: Acyclic graph for the split procedure G∗ = (V ∗, A).
V ∗: Set of vertices of G∗.
A: Set of arcs of G∗.
K: Set of TSP-like tours.
R: Set of all feasible routes.
Ω: Subset ofR.
S: Set of all feasible solutions to Green VRP.
H: Set of sampling heuristics.
K: Number of iterations in sampling phase.
tsp: TSP tour (tsp ∈ K).
s: Green VRP solution (s ∈ S).
W: Set of customers visited by tsp.
N : Ordered set of nonrouted customers.
L: Randomization factor of each heuristic.
f(s): Objective function of solution s.
s∗: Best solution found during execution of method.
λ: Positive parameter.
cr: Total distance of route r.
tpr: Total time of route r.
fr: Binary variable equal to 1 if route is feasible.
labeli: Shortest path label i.
predi: Predecessor labels i.

2.6.3 Notation for repair procedure
B: Repair graph B = (Z,U).
Z: Set of vertices of B.
U : Set of arcs of B.
Π: Fuel-infeasible route.
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[i, k]: Vertex of set Z, which represents visit to station k ∈ F after visit to vertex ri (i.e., ith element
in route Π).
c: Arc cost of repair graph.
t: Arc time of repair graph.
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3.1 Introduction
As mentioned in the Chapter 1, because of the short driving range, eVRP solutions frequently include

routes with planned detours to charging stations (CSs) where the electric vehicles (EVs) recharge. In gen-
eral, eVRP models make assumptions about the capacity of the CSs, the EV energy consumption, and the
EV battery charging process. This chapter focuses on the latter. The objective is to evaluate the impact
of different charging assumptions commonly used in the literature on the quality and feasibility of eVRP
solutions.

The remainder of this chapter is organized as follows. Section 3.2 reviews the charging assumption
commonly used in the literature. Section 3.3 presents a mixed-integer linear programming (MILP) for-
mulation for a particular eVRP. With mild modifications, the model can be adapted to work with different
charging assumptions. Section 3.4 presents a computational experiment to compare the battery charging
assumptions. Finally, Section 3.5 concludes the chapter. For easy reference, Section 3.6 summarizes the
notation of this chapter.

3.2 Charging asumption in the literature
To model the battery charging process, eVRP models make assumptions about the charging policy and

the charging function approximation. The former defines how much of the battery capacity can be (or must
be) restored when an EV visits a CS, and the latter models the relationship between battery charging time
and charging level. With respect to the charging policies, the eVRP literature can be classified into two
groups: studies assuming full and partial charging policies. As the name suggests, in full charging policies,
the battery capacity is fully restored every time an EV reaches a CS. On the other hand, in partial charging
policies, the amount of charge (and thus the time spent at each charging point) is a decision variable.

In general, the charging functions are nonlinear, because the terminal voltage and current change during
the charging process. This process is divided into two phases. In the first phase, the charging current is
held constant, and thus the state of charge (SOC) increases linearly with time until the battery’s terminal
voltage increases to a specific maximum value (see Figure 3.1). In the second phase, the current decreases
exponentially and the terminal voltage is held constant to avoid battery damages. The SOC increases then
concavely with the time (Pelletier et al. 2015).

Figure 3.1 – Typical charging curve, where i and u represent the current and terminal voltage respectively.
(Source Hõimoja et al. (2012))
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Although the shape of the charging functions are known, their exact modeling is very complex because
it depends on many factors as: current, voltage, self-recovery and temperature, among others (Wang et al.
2013). The battery state of charge is then often described by differential equations. Since such equations are
difficult to integrate to optimization models for transportation problems, researchers rely on approximations
of the actual charging functions. We discuss these approximations bellow. For each of them, we present
a graphical comparison with respect to real charging data provided by Uhrig et al. (2015). These authors
conducted experiments to estimate the charging time for different charge levels with two types of EVs and
three types of CSs. It is worth noting that each approximation can be used in a full charge policy (FC) or in
a partial charge policy (PC).

First segment (FS) : To avoid dealing with the nonlinear segment, Bruglieri et al. (2014) use a linear
approximation that considers only the first segment (Figure 3.2).
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Figure 3.2 – First segment approximation (FS)

Linear approximations (L1 and L2) : Although several authors assume a linear approximation (Fe-
lipe et al. 2014, Sassi et al. 2014, Bruglieri et al. 2015, Desaulniers et al. 2014, Schiffer & Walther
2015, Keskin & C̆atay 2016), they do not explain how the approximation is estimated. Two options
can be considered. In the first one (L1) the charging rate of the function corresponds to the slope
of the first segment of the piecewise linear approximation (see Figure 3.3a). This approximation
is optimistic, because it assumes that batteries charge up to Q faster than they do in reality. In the
second approximation (L2) the charging rate is the slope of the line connecting the first and last
observations (see Figure 3.3b) of the charging curve. This approximation tends to be pessimistic,
because over a large portion of the curve, the charging rate is slower than in reality.
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(a) Linear approximation 1 (L1)
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(b) Linear approximation 2 (L2)

Figure 3.3 – Linear approximations of charging functions.

Piecewise linear approximations (PL) : This approximation, proposed by Zündorf (2014) for a short-
est path problem with EVs consists in approximating the charging function by a series of linear
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segments. This approximation is the closest to the real data (see Figure 3.4). To assess the quality
of this approximation, we fit piecewise linear functions to the Uhrig et al. (2015) data and obtained
approximations with an average relative absolute error of 0.90%, 1.24%, and 1.90% for CSs of 11,
22, and 44 kW, respectively.
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Figure 3.4 – Approximation vs real data

3.3 Setting up the study: problem and formulations
To accomplish our study about the impact of charging assumptions commonly used in the literature on

the quality and feasibility of eVRP solutions, we need two elements: an particular version of an eVRP and a
solution method of the problem. Note that the current charging function approximations are particular cases
of the piecewise linear. Therefore, if we define an eVRP with piecewise linear charging function and select
a method to solve it, we have all the elements to accomplish the study. We thus introduce in this section the
eVRP with non-linear charging function (eVRP-NL) (which has never been studied in the literature), and
use its MILP formulation and a commercial solver as solution method. The remainder of this subsection
describes formally the eVRP-NL and introduces its MILP formulation.

3.3.1 Problem description
Formally, the eVRP-NL can be defined on a directed and complete graph G = (V,A). The vertex

set V = {0} ∪ I ∪ F is made up of a depot (vertex 0), a set of customers I , and a set of CSs F . Each
customer i ∈ I has a service time pi. Each CS i ∈ F has a nonlinear charging function, which is modeled
using a piecewise linear approximation. This approximation is defined by a set of breakpoints B, where
each breakpoint k ∈ B is associated to a charging time cik and a charge level aik (see Figure 3.6a). The
set A = {(i, j) : i, j ∈ V, i 6= j} corresponds to arcs connecting vertices in V . Each arc (i, j) has two
associated nonnegative values: a travel time tij and an energy consumption eij . The customers are served
using an unlimited and homogeneous fleet of EVs. All the EVs have a battery of capacity Q (expressed in
kWh) and a maximum tour duration Tmax. It is assumed that the EVs leave the depot with a fully charged
battery, and that all the CSs can handle an unlimited number of EVs simultaneously. Feasible solutions to
this eVRP satisfy the following conditions: each customer is visited exactly once; each route satisfies the
maximum-duration limit; each route starts and ends at the depot; and the battery level when an EV arrives
to and departs from any vertex is between 0 and Q.

Since the distance is directly related to the energy consumption, most work on eVRPs with homoge-
neous fleet focuses on minimizing the total distance (Schneider et al. 2014, Desaulniers et al. 2014, Hier-
mann et al. 2016, Keskin & C̆atay 2016). However, this objective function neglects the impact of charging
operations in the cost of the solutions. This may lead to decisions such as: charging the batteries more
than needed, or charging the batteries when their level is high. These decisions directly affect the battery
long-term degradation cost (which can be as high as 3 times the energy cost according to Becker et al.
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Figure 3.5 – Example of a feasible eVRP-NL solution

(2009)) or the charging fees at CSs (Bansal 2015). To better capture the impact of charging operations, in
the eVRP-NL we minimize the total travel and charging time. This objective function has been studied by
Zündorf (2014) and Liao et al. (2016) on related routing problems.

Figure 3.5 presents a numerical example illustrating the eVRP-NL. The figure depicts a solution to
an instance with 7 customers and 3 CSs. The CSs have different technologies (slow and fast), and each
technology has a particular piecewise linear charging function. In the charging functions, variables qi and
oi specify the battery levels when an EV arrives at and departs from CS i ∈ F . The charging function
maps these variables to charging times si and ei, in order to estimate the time spent at the CS (∆i). In
this example, Route 1 does not visit any CS, because its total energy consumption is less than the battery
capacity. On the other hand Route 2 visits CS 8. In this route, the EV arrives at the CS with a battery level
q8 = 1.0, and it charges the battery to a level o8 = 6.0. To estimate the time spent at the CS, we use the
piecewise linear charging function: the charging time associated to q8 and o8 are si = 0.8 and ei = 6.0, then
the time spent at CS 8 is ∆8 = 6.0−0.8 = 5.2. The duration of Route 2 is the sum of the travel time (13.0),
the charging time (5.2), and the service time (1.0), that is, 19.2 which is lower than Tmax. The cost of this
route is 18.2 (travel time + charging time). Finally, Route 3 visits CSs 10 and 9; and it spends ∆10 = 7.2
and ∆9 = 1.6 time units charging in these CSs, respectively.

3.3.2 MILP formulation
To formulate the eVRP-NL, we introduce set F ′ containing the set F and β copies of each CS (i.e.,

|F ′| = |F | × (1 + β)). The value of 1 + β corresponds to the number of times that each CS can be visited.
For this MILP formulation, we use the following decision variables: variable xij is equal to 1 if an EV
travels from vertex i to j, and 0 otherwise. Variables τj and yj track the time and charge level when the EV
departs from vertex j ∈ V . Variables qi and oi specify the charge levels when an EV arrives at and departs
from CS i ∈ F ′, and si and di are the associated charging times (see Figure 3.6b). Variable ∆i = di − si
represents the time spent at CS i ∈ F ′. Variables zik and wik are equal to 1 if the charge level is between
ai,k−1 and aik, with k ∈ B \ {0}, when the EV arrives at and departs from CS i ∈ F ′ respectively. Finally,
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variables αik and λik are the coefficients of the breakpoint k ∈ B in the piecewise linear approximation,
when the EV arrives at and departs from CS i ∈ F ′ respectively. The MILP formulation follows:
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Figure 3.6 – Piecewise linear approximation for the charging function.

min
∑
i,j∈V

tijxij +
∑
i∈F ′

∆i (3.1)

subject to

∑
j∈V,i6=j

xij = 1, ∀i ∈ I (3.2)

∑
j∈V,i6=j

xij ≤ 1, ∀i ∈ F ′ (3.3)

∑
j∈V,i 6=j

xji −
∑

j∈V,i 6=j

xij = 0, ∀i ∈ V (3.4)

eijxij − (1− xij)Q ≤ yi − yj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ I (3.5)
eijxij − (1− xij)Q ≤ yi − qj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ F ′ (3.6)
yi ≥ ei0xi0, ∀i ∈ V (3.7)
yi = oi, ∀i ∈ F ′ (3.8)
y0 = Q (3.9)
qi ≤ oi, ∀i ∈ F ′ (3.10)

qi =
∑
k∈B

αikaik, ∀i ∈ F ′ (3.11)

si =
∑
k∈B

αikcik, ∀i ∈ F ′ (3.12)∑
k∈B

αik =
∑
k∈B

zik, ∀i ∈ F ′ (3.13)∑
k∈B

zik =
∑
j∈V

xij , ∀i ∈ F ′ (3.14)

αik ≤ zik + zi,k+1, ∀i ∈ F ′,∀k ∈ B \ {b} (3.15)
αib ≤ zib, ∀i ∈ F ′ (3.16)

oi =
∑
k∈B

λikaik, ∀i ∈ F ′ (3.17)

di =
∑
k∈B

λikcik, ∀i ∈ F ′ (3.18)∑
k∈B

λik =
∑
k∈B

wik, ∀i ∈ F ′ (3.19)
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∑
k∈B

wik =
∑
j∈V

xij , ∀i ∈ F ′ (3.20)

λik ≤ wik + wi,k+1, ∀i ∈ F,′ ∀k ∈ B \ {b} (3.21)
λib ≤ wib, ∀i ∈ F ′ (3.22)
∆i = di − si, ∀i ∈ F ′ (3.23)
τi + (tij + pj)xij − Tmax(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ I (3.24)
τi + ∆j + tijxij − (Smax + Tmax)(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ F ′ (3.25)
τj + tj0 ≤ Tmax, ∀j ∈ V (3.26)
τ0 ≤ Tmax (3.27)
xij = 0, ∀i, j ∈ F ′ : mij = 1 (3.28)
τi ≥ τj , ∀i, j ∈ F ′ : mij = 1, j ≤ i (3.29)

τj ≤ Tmax
∑
i∈V

xij , ∀j ∈ F ′ (3.30)∑
i∈V

xih ≥
∑
j∈V

xjf , ∀h, f ∈ F ′ : mhf = 1, h ≤ f (3.31)

xij ∈ {0, 1}, ∀i, j ∈ V (3.32)
τi ≥ 0, yi ≥ 0 ∀i ∈ V (3.33)
zik ∈ {0, 1}, wik ∈ {0, 1}, αik ≥ 0, λik ≥ 0, ∀i ∈ F ′,∀k ∈ B (3.34)
qi ≥ 0, oi ≥ 0, si ≥ 0, di ≥ 0,∆i ≥ 0, ∀i ∈ F ′ (3.35)

The objective function (4.1) seeks to minimize the total time (travel times plus charging times). Con-
straints (3.2) ensure that each customer is visited once. Constraints (3.3) ensure that each CS is visited at
most once. Constraints (3.4) impose the flow conservation. Constraints (3.5) and (3.6) track the battery
charge level at each vertex. Constraints (3.7) ensure that, if the EV travels between a vertex and the depot,
it has sufficient energy to reach its destination. Constraints (3.8) reset the battery tracking to oi upon depar-
ture from CS i ∈ F ′. Constraint (3.9) ensures that the battery charge level is Q at the depot. Constraints
(3.10) couple the charge levels when an EV arrives at and departs from any CS. Constraints (3.11–3.16)
define the charge level (and its corresponding charging time) when an EV arrives at CS i ∈ F ′ (based on
the piecewise linear approximation of the charging function). Similarly, constraints (3.17–3.22) define the
charge level (and its corresponding charging time) when an EV departs from CS i ∈ F ′. Constraints (3.23)
define the time spent at any CS. Constraints (3.24) and (3.25) track the departure time at each vertex, where
Smax = maxi∈F ′{cib}. Constraints (3.26) and (3.27) ensure that the EVs return to the depot no later than
Tmax. Constraints (3.28) and (3.31) help to avoid the symmetry generated by the copies of the CSs. The
parameter mij is equal to 1 if i and j ∈ F ′ represent the same CS. Finally, constraints (3.32–3.35) define
the domain of the decision variables.

This MILP formulation can be easily adapted to model the other approximations (FS, L1, and L2) and
the different charging policies (FC and PC):

— Full charge and piecewise linear approximations (FC-PL): we replace constraints (3.17) and (3.18)
by

oi =
∑
k∈B

λikaib,∀i ∈ F ′ (3.36)

ei =
∑
k∈B

λikcib,∀i ∈ F ′ (3.37)

— Partial charge using the first segment (PC-FS): To run our MILP formulation with this assumption,
we modify the input data to include only the first segment.

— Partial charge and linear approximations (PC-L): To run our MILP formulation with PC-L1 and PC-
L2, we modify the input data so that in the piecewise linear approximation there is a single segment
with the corresponding charging rate.
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3.4 Computational experiments

3.4.1 Experimental settings & Test instances
We conducted an experiment to compare the different charging assumptions commonly used in the lit-

erature, combining charging policies and charging function approximation. The evaluated assumption are:
partial charging and piecewise linear approximation (PC-PL), full charging and piecewise linear approxima-
tion (FC-PL), partial charging and first segment (PC-FS), Partial charge and linear approximations (PC-L1
and PC-L2).

With the aim that the conclusions of the comparison are independent of the solution method and conse-
quently of the quality solution, we just compare optimal solutions of the evaluated assumptions. To ensure
the optimal solution we solve a set of small instances.

We ran the experiments on a set of 20 randomly generated instances with 10 customers and 2 or 3 CSs.
We located the customers using either a random uniform distribution, a random clustered distribution, or a
mixture of both. The CSs are located using two criteria: randomly or using a simple p-median heuristic. To
generate the charging functions approximations we use the real charging data for a 16 kWh battery provided
by Uhrig et al. (2015). Finally, the maximum route duration for every instance was fixed to 10 hours.

3.4.2 Experimental environment & Parameter setting
As mentioned in the last section, the MILP formulation uses β copies of the CSs to model multiple

visits to the same CS. Although several authors followed this strategy (Conrad & Figliozzi 2011, Erdoğan
& Miller-Hooks 2012, Schneider et al. 2014, Sassi et al. 2014, Goeke & Schneider 2015, Hiermann et al.
2016), they do not explain how the value of β is set. It is worth noting that β plays an important role in the
definition of the solution space, and therefore it restricts the optimal solution of the model. For instance, an
optimal solution found with β = 3 may not be optimal for β = 4. In practice, there is no restriction on the
number of times that a CS can be visited, but large values of β result in models that are computationally
intractable. To overcome this difficulty, we designed an iterative procedure to solve the MILP formulation
for increasing values of β. Starting with β = 0, at each iteration, our procedure (i) tries to solve the MILP
formulation to optimality with a time limit of 100 h, and (ii) sets β = β + 1. The procedure stops when the
time limit is reached or an iteration ends with a solution sβ satisfying f(sβ) = f(s∗β−1), where f(·) denotes
the objective function and ∗ an optimal solution. We implemented our MILP formulation (and its variant)
in Gurobi 5.6

3.4.3 Results
Table 3.1 presents the results. Considering that the PC-PL assumption is the closest assumption to

the reality, the results obtained using the others assumptions are compared with reference to the results of
the PC-PL. For each charging assumption, we give the objective function value (of ), the percentage gap
between of and the PC-PL solution (G), the number of routes in the solution (r), and the value of β. Since
in practice the charging time is controlled by the nonlinear charging function, the charging decisions of the
PC-L solutions are evaluated a posteriori using the piecewise linear approximation. The last rows of Table
3.1 summarize the results. We present, for each assumption, the average and maximum percentage gap,
the number of solutions employing more EVs than in the PC-PL solution, and the number of infeasible
solutions.

The results show that solutions based on the full charging policy perform poorly in terms of both ob-
jective function (+20.11% on average) and number of routes (8 solutions use a larger fleet) with respect
to those based on the partial charging policy. This is because the EVs spend more time than necessary at
the CSs. The main motivation for a full charging policy is to avoid complex charging-quantity decisions.
However, according to our results, the gain in simplicity does not offset the loss of solution quality.
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In the PC-FS assumption EVs can charge their batteries up to only around 80% of the actual capacity.
Artificially constraining the capacity may force EVs to detour to CSs more often than necessary when
traveling to distant customers. Because the maximum route duration is limited, the time spent detouring
and recharging the battery reduces the number of customers that can be visited. Consequently, more routes
may be needed to service the same number of customers. Our results confirm this intuition: in 3 out of
the 20 instances the PC-FS assumption increases the number of routes. Furthermore, in practice some
distant customers may not be included in routes unless the EVs can fully use their battery capacity. In
our experiments, 9 instances become infeasible under PC-FS. In conclusion, although PC-FS simplifies
the problem (avoiding the nonlinear segment of the charging function) it may lead to solutions that are
infeasible, or with larger fleets and (on average) 2.70% more expensive.

As mentioned before, PC-L1 assumes that batteries charge faster than they do in reality (Figure 3.3a).
As a consequence, routes based on PC-L1 may in practice need more time to reach the planned charge
levels. The extra time may make a route infeasible if there is little slack in the duration constraint. Indeed,
the post-hoc evaluation shows that for 14 instances, the PC-L1 solutions are infeasible in practice. On the
other hand, PC-L2 assumes that batteries charge slower than in reality (Figure 3.3b). Overestimating the
charging times does not lead to feasibility issues, but the resulting routes may be overly conservative. For
instance, in our experiments PC-L2 leads to solutions that are (on average) 1.45% more expensive, and it
increases the number of routes in 2 instances.

Table 3.1 – Comparison of our charging assumptions with charging assumptions from the literature

Instance PC-PL FC-PL PC-FS PC-L1 PC-L2

Solution Evaluation Solution Evaluation

ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ

tc0c10s2cf1 19.75 3 2 20.82 5.42 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s2ct1 12.30 2 0 12.53 1.87 2 0 12.61 2.52 3 0 12.22 2 0 12.42 0.98 2 0 12.46 2 0 12.30 0.00 2 0
tc0c10s3cf1 19.75 3 2 20.82 5.42 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s3ct1 10.80 2 0 11.10 2.78 2 0 10.80 0.00 2 0 10.79 2 0 11.03 2.13 2 0 10.97 2 0 10.80 0.00 2 0
tc1c10s2cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s2cf3 16.37 3 2 21.33 30.30 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s2cf4 16.10 3 2 25.31 57.20 4 3 NFS NFS NFS NFS 15.66 3 2 NFE NFE NFE NFE 16.43 3 2 16.23 0.81 3 2
tc1c10s2ct2 10.75 3 1 11.14 3.63 3 0 10.75 0.00 3 1 10.75 3 0 10.76 0.09 3 0 10.94 3 0 10.78 0.28 3 0
tc1c10s2ct3 13.17 2 2 22.76 72.82 3 3 15.98 21.34 3 2 13.06 2 2 NFE NFE NFE NFE 13.60 2 2 13.17 0.00 2 2
tc1c10s2ct4 13.83 2 1 17.61 27.33 3 1 NFS NFS NFS NFS 13.34 2 1 NFE NFE NFE NFE 14.17 2 1 14.17 2.46 2 1
tc1c10s3cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s3cf3 16.37 3 1 21.33 30.30 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s3cf4 14.90 3 1 18.43 23.69 4 0 NFS NFS NFS NFS 14.56 2 1 NFE NFE NFE NFE 15.18 3 0 15.18 1.88 3 0
tc1c10s3ct2 9.20 3 0 11.14 21.09 3 0 9.20 0.00 3 0 9.19 3 0 NFE NFE NFE NFE 10.80 3 0 10.57 14.89 3 0
tc1c10s3ct3 13.02 2 0 17.06 31.03 3 0 13.07 0.38 2 1 12.98 2 0 13.16 1.08 2 0 13.60 2 0 13.02 0.00 2 0
tc1c10s3ct4 13.21 2 0 15.54 17.64 3 1 13.58 2.80 3 1 12.92 2 1 NFE NFE NFE NFE 13.71 2 0 13.21 0.00 2 0
tc2c10s2cf0 21.77 3 3 25.24 15.94 4 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 22.78 4 4 22.15 1.75 4 4
tc2c10s2ct0 12.45 3 2 15.05 20.88 3 3 12.45 0.00 3 2 12.44 3 3 NFE NFE NFE NFE 12.93 3 2 12.45 0.00 3 2
tc2c10s3cf0 21.77 3 2 25.24 15.94 4 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 23.02 4 3 22.20 1.98 4 3
tc2c10s3ct0 11.51 3 0 13.27 15.29 2 0 11.51 0.00 3 0 11.50 3 0 NFE NFE NFE NFE 11.92 3 0 11.54 0.26 3 0

Avg. Difference (%) 20.11 2.70 1.04 1.45
Max. Difference (%) 72.82 21.34 2.13 14.89
Solutions with larger fleet 8 3 0 2
Infeasible solutions 0 9 14 0

NFS: Non-feasible solution, NFE: Non-feasible evaluation
G(%) = (of − ofPC−PL)/ofPC−PL × 100

3.5 Conclusion
In this chapter, we reviewed the different assumptions used in the literature to model the charging

process in eVRPs. In order to know the impact of the charging assumption in the quality and feasibility of
the solutions, we conducted a study comparing the optimal solutions for an eVRP under different battery
charging assumptions. To conduct this study, we introduce the eVRP-NL, its MILP formulation (which can
adapted to model different charging assumption), and a set of small instances with a real information about
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the charging functions.
Our results show that the full charging policy may lead to overly expensive solutions. Furthermore, they

show that the linear charging and first segment approximation have a negative impact on the quality and
feasibility of the solutions. In consequence, it is advisable to consider charging function approximations
that capture the nonlinear behavior of the process when modelling eVRPs.

3.6 Nomenclature

3.6.1 Notation for the MILP formulation
G: eVRP underlying graph G = (V,A).
V : Set of vertices of G.
0: Depot
I: Subset of V representing customers.
F : Subset of V representing CSs.
F ′: Set that contain the set F and β copies of each CS.
A: Set of arcs in G.
B: Set of breakpoints of the piecewise linear charging function.
pi: Service time at customer i ∈ I .
cik: Charging time of the CS i ∈ F at the breakpoint k ∈ B.
aik: Charge level of the CS i ∈ F at the breakpoint k ∈ B.
eij: Energy consumption between vertices i and j (i, j ∈ V ).
tij: Travel time between vertices i and j (i, j ∈ V ).
Tmax: Tour duration constraint.
Q: Tank capacity.
xij: Binary variable, equal to 1 if an EV travels from vertex i to j and 0 otherwise.
τj: Depart time of the EV from vertex j ∈ V .
yj: Charge level when the EV departs from vertex j ∈ V .
qi: Charge level when an EV arrives at CS i ∈ F ′.
oi: Charge level when an EV departs from CS i ∈ F ′.
si: Charging time associated to the charge level qi.
di: Charging time associated to the charge level oi.
∆i: the time spent at CS i ∈ F ′.
zik: Binary variable, equal to 1 if the charge level is between ai,k−1 and aik, with k ∈ B \ {0}, when
the EV arrives at CS i ∈ F ′
wik: Binary variable, equal to 1 if the charge level is between ai,k−1 and aik, with k ∈ B \{0}, when
the EV departs from CS i ∈ F ′.
αik: Coefficients of the breakpoint k ∈ B in the piecewise linear approximation, when the EV
arrives at CS i ∈ F ′.
λik: Coefficients of the breakpoint k ∈ B in the piecewise linear approximation, when the EV
departs from CS i ∈ F ′.
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4.1 Introduction
In Chapter 3, we showed the importance of considering the partial charging and charging function

approximations that capture the nonlinear behavior of the charging process in the eVRPs. However, it is
necessary to propose an approach to solve industrial-sized instances of the electric vehicle routing problem
with non linear charging function (eVRP-NL). We thus propose a hybrid metaheuristic combining iterated
local search (ILS) and heuristic concentration (HC). The ILS component uses a variable neighborhood
descent (VND) procedure for the local search phase. The VND uses three local search operators. The first
two operators are classical relocate and 2-Opt moves. On the other hand, the third one is a specialized
operator for improving the charging decisions. This operator relies on solving the fixed-route vehicle-
charging problem (FRVCP). A new problem defining the charging decisions (i.e., where and how much to
charge) of an energy-infeasible fixed-route (i.e., a route infeasible with respect to the energy autonomy of
the vehicle). To solve the FRVCP, we propose a heuristic and a mixed-integer linear programming (MILP)
formulation. Finally, the HC component assembles the final solution from the set of all routes found in the
local optima reached by the ILS.

The main contributions of this chapter are threefold. First, we introduce and study a new variant of the
fixed-route vehicle-charging problem (FRVCP) that appears as a subproblem of the eVRP-NL. The FRVCP
consists in finding the optimal charging decisions (i.e., where and how much to charge) for a route servicing
a fixed sequence of customers. Second, we propose a hybrid metaheuristic to solve the eVRP-NL and assess
its performance in a new set of benchmark instances. Third, we analyze our solutions and provide some
insight into the characteristics of good eVRP-NL solutions.

The remainder of this chapter is organized as follows. Section 4.2 introduces our hybrid metaheuristic.
Section 4.3 discusses the FRVCP and presents two approaches to solve it. Section 4.4 presents a computa-
tional evaluation of the proposed method. Finally, Section 4.5 concludes the chapter. For easy reference,
Section 4.6 summarizes the notation of this chapter.

4.2 Hybrid metaheuristic
To solve the eVRP-NL we developed a hybrid metaheuristic combining ILS (Lourenço et al. 2010) an

HC (Rosing & ReVelle 1997). Figure 4.1 presents the general structure of the proposed approach (hereafter
referred to as ILS+HC).

To find an initial solution we follow a sequence-first split-second approach which uses a constructive
heuristic to build a TSP tour visiting all the customers and a splitting procedure to retrieve an eVRP-NL
solution. Then, at each iteration of the ILS we improve the current solution using a variable neighborhood
descent (VND) (Mladenović & Hansen 1997) with three local search operators: relocate, 2-Opt, and global
charging improvement (GCI). At the end of each ILS iteration, we update the best solution and add the
routes of the local optimum to a pool of routes Ω. To diversify the search, we concatenate the routes of the
local optimum to build a new TSP tour, and then perturb the new TSP tour. We start a new ILS iteration by
splitting the perturbed TSP tour. After K iterations the ILS component stops, and we carry out the HC. In
this phase, we solve a set partitioning problem over the set of routes Ω to obtain an eVRP-NL solution. In
the remainder of this section, we describe the main components of our method.

4.2.1 Initial solution
We generate the initial TSP tour using the simple and well-known nearest neighbor heuristic (NN). For

a description of NN see Rosenkrantz et al. (1974)
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Build TSP tour
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Relocate

GCI
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VND

ILS iteration

HC

Concatenate routes

Figure 4.1 – General structure of ILS+HC
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4.2.2 Split
To extract a feasible solution from a TSP tour, our approach uses an adaptation of the splitting procedure

introduced by Prins (2004). The splitting procedure builds a directed acyclic graph G∗ = (V ∗, A∗) com-
posed of the ordered vertex set V ∗ = (v0, v1, ..., vi, ..., vn) and the arc set A∗. Vertex v0 = 0 is an auxiliary
vertex, and each vertex vi represents the customer in the ith position of the TSP tour. Arc (vi, vi+nr) ∈ A∗
represents a feasible route rvi,vi+nr

with an energy consumption ervi,vi+nr
, starting and ending at the depot

and visiting customers in the sequence vi+1 to vi+nr .
Note that since the TSP tour only includes customers, route rvi,vi+nr

may be energy-infeasible (i.e., the
total energy needed to cover the route is greater than Q). In that case, we solve a FRVCP to obtain an
energy-feasible route by inserting visits to CSs. If visiting CSs increases the duration of the route beyond
Tmax, we do not include the arc associated with the route in A∗. Finally, to obtain a feasible eVRP-NL
solution, the splitting procedure finds the set of arcs (i.e., routes) along the shortest path connecting 0 and
vn in G∗.

4.2.3 Variable neighborhood descent
To improve the solution generated by the splitting procedure we use a VND based on three local search

operators. The first two operators, namely, relocate and 2-Opt1, focus on the customer sequencing decisions.
In other words, these two operators only alter the sequence of customers and do not have the ability to insert,
remove, or change the position of CSs. To update the charging times after a relocate or 2-Opt move we use
the rule proposed by Felipe et al. (2014): when visiting a CS, charge the strict minimum amount of energy
needed to continue the route until reaching the next CS (or the depot if there is no other CS downstream).
If reaching the next CS (or the depot) is impossible, even with a fully charged battery, the move is deemed
infeasible. Similarly, if after updating the charging times the resulting route is infeasible in terms of the
maximum-duration limit, the move is simply discarded. It is worth nothing that the Felipe et al. (2014) rule
is optimal when all CSs are homogeneous; nonetheless, that is not the case in our eVRP-NL.

As its name suggest, the third operator, global charging improvement or GCI, focuses on the charging
decisions. GCI is applied to every route visiting at least one CS. The operator works as follows. First, GCI
removes from the route all visits to CSs. If the resulting route is energy-feasible, the operator stops. On the
other hand, if the route is energy-infeasible, GCI solves a FRVCP trying to optimize the charging decisions
(where and how much to charge) for the concerned route. Depending on the configuration, our ILS+HC
solves the underlying FRVCP either heuristically or optimally. Full details on the FRVCP and the solution
techniques embedded in our approach to solve it are given in Section 4.3.

4.2.4 Perturb
To diversify the search our approach concatenates the routes of the current best solution to build a TSP

tour. Then, we perturb the resulting TSP tour with a randomized double bridge operator (Lourenço et al.
2010) and then apply the split procedure to obtain a new eVRP-NL solution.

4.2.5 Heuristic concentration
Finally, the heuristic concentration component solves a set partitioning formulation over the pool of

routes Ω. The objective is then to select the best subset of routes from Ω to build the final solution guaran-
teeing that each customer is visited by exactly one route.

1In our implementation we use intra-route and inter-route versions with best-improvement selection.
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4.3 The fixed-route vehicle-charging problem
As mentioned above our ILS+HC relies on solving a variant of the FRVCP at two specific points of

its execution: when evaluating routes in the split procedure, and when searching the GCI neighborhood.
The FRVCP is a variant of the well-known fixed-route vehicle-refueling problem (FRVRP). The FRVRP
seeks the minimum-cost refueling policy (which fuel stations to visit and the refueling quantity at each
visited station) for a given origin-destination route (Suzuki 2014). Most of the research carried on the
FRVRP and its variants applies only to internal combustion vehicles (which have negligible refueling times).
Nonetheless, a few FRVCP variants have received attention in the literature. Most of these variants assume
full charging policies (Montoya et al. 2015, Hiermann et al. 2016, Liao et al. 2016). To our knowledge, only
Sweda et al. (2014) assume a partial charging policy. Their problem differs from ours in three fundamental
ways: i) they do not take into account the charging times (because their objective is to minimize the energy
and degradation costs), ii) they do not deal with maximum route duration constraints, and iii) in their
problem the CSs are already included in the fixed route and no detours are to be planned. In the remainder
of this section we introduce our FRVCP and the techniques embedded in our approach to solve it. For the
sake of simplicity, in the remainder of the manuscript to refer to our FRVCP variant simply as the FRVCP.

Let Π = {π(0), π(1), ..., π(i), ..., π(j), ..., π(nr)} be an energy-infeasible route, where π(0) and π(nr)
represent the depot. The route has a total time t, which is the sum of the travel times plus the service times.
The feasibility of Π may be restored by inserting visits to CSs. As mentioned in Section 3.3, each CS j ∈ F
has a piecewise linear charging function defined by a set of breakpoints B. The piecewise linear function is
composed by a set of segments. Each segment is defined between the breakpoints k − 1 and k ∈ B, it has
a slope ρjk (representing a charging rate), and it is bounded between the battery levels ajk−1 and ajk (see
Figure 4.2a). Figure 4.2b shows the fixed-route Π and the possible visits to the CSs between two vertices of
Π. In Figure 4.2b the values eπ(i−1)π(i) and tπ(i−1)π(i) represent the energy consumption and the travel time
between vertices π(i − 1) and π(i) ∈ Π. Similarly, eπ(i−1)j and tπ(i−1)j represent the energy consumption
and the travel time between vertex π(i − 1) ∈ Π and CS j ∈ F , and ejπ(i) and tjπ(i) represent the energy
consumption and the travel time between the CS j ∈ F and vertex π(i) ∈ Π.

In the FRVCP the objective is to find the charging decisions (where and how much to charge) that
minimize the sum of the charging times and detour times while satisfying the following conditions: the
level of the battery when the EV arrives at any vertex is nonnegative; the charge in the battery does not
exceed its capacity; and the route satisfies the maximum-duration limit. Since the FRVRP is NP-hard
(Suzuki 2014) and the FRVCP generalizes the FRVRP, we can conclude that the FRVCP is also NP-hard.

4.3.1 Mixed-integer linear programming formulation
We formulate the FRVCP using the following decision variables: variable επ(i)j is equal to 1 if the EV

charges at CS j ∈ F before visiting vertex π(i) ∈ Π. Variable φπ(i) tracks the battery level. If επ(i)j = 0,
φπ(i) is the battery level when the EV arrives at vertex π(i). On the other hand, if επ(i)j = 1, φπ(i) is the
battery level when the EV arrives at CS j ∈ F right before visiting vertex π(i). Variable θπ(i)jk is equal to
1 if the EV charges on the segment defined by breakpoints k − 1 and k ∈ B at CS j ∈ F before visiting
vertex π(i) ∈ Π. Finally, variables δπ(i)jk and µπ(i)jk are (respectively) the amount of energy charged and
the battery level when the charging finishes on the segment between breakpoints k − 1 and k ∈ B at CS
j ∈ F before the visit to vertex π(i) ∈ Π. The MILP formulation of the FRVCP follows:

min
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π\{π(0)}

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i) − tπ(i−1)π(i)) (4.1)

Subject to

φπ(1) = Q−
∑
j∈F

επ(1)jeπ(0)j − eπ(0)π(1)

1−
∑
j∈F

επ(1)j

 (4.2)



4.3. THE FIXED-ROUTE VEHICLE-CHARGING PROBLEM 51

𝑎𝑖0

𝑎𝑖1

𝑎𝑖2
𝑎𝑖3 = 𝑄

B
at
te
ry

le
ve
l

Charging time

𝜌𝑖1

𝜌𝑖2
𝜌𝑖3

(a) Segments of the piecewise linear charging function

𝟏

𝝅(𝟏) 𝝅(𝒊 − 𝟐) 𝝅(𝒊 − 𝟏) 𝝅(𝒊) 𝝅(𝒏𝒓 − 𝟏) 𝝅(𝒏𝒓)

: depot : customer

: charging curve of the station 𝑗 ∈ 𝐹

(𝑒𝜋(0)𝜋(1), 𝑡𝜋(0)𝜋(1)) (𝑒𝜋(𝑖−2)𝜋(𝑖−1), 𝑡𝜋(𝑖−2)𝜋(𝑖−1)) (𝑒𝜋(𝑖−1)𝜋(𝑖), 𝑡𝜋(𝑖−1)𝜋(𝑖)) (𝑒𝜋(𝑛𝑟−1)𝜋(𝑛𝑟), 𝑡𝜋(𝑛𝑟−1)𝜋(𝑛𝑟))

(𝑒1,𝜋 1 , 𝑡1,𝜋 1 )

(𝑒𝜋 0 ,1, 𝑡𝜋(0),1)

(𝑒𝜋 0 ,𝑗,

𝑡𝜋 0 ,𝑗)

(𝑒𝑗,𝜋 1 , 𝑡𝑗,𝜋 1 )

(𝑒 𝐹 ,𝜋 1 , 𝑡 𝐹 ,𝜋 1 )

(𝑒𝜋 0 ,|𝐹|,

𝑡𝜋 0 ,|𝐹|)

(𝑒𝜋 𝑖−2 ,1, 𝑡𝜋 𝑖−2 ,1)

(𝑒1,𝜋 𝑖−1 , 𝑡1,𝜋 𝑖−1 )

(𝑒𝜋 𝑖−2 ,𝑗,

𝑡𝜋 𝑖−2 ,𝑗)

(𝑒𝑗,𝜋 𝑖−1 ,

𝑡𝑗,𝜋 𝑖−1 )

(𝑒𝜋 𝑖−2 ,|𝐹|,

𝑡𝜋 𝑖−2 ,|𝐹|)

(𝑒|𝐹|,𝜋 𝑖−1 ,

𝑡|𝐹|,𝜋 𝑖−1 )

(𝑒𝜋 𝑖−1 ,1, 𝑡𝜋 𝑖−1 ,1)

(𝑒1,𝜋 𝑖 ,𝑡1,𝜋 𝑖 )

(𝑒𝑗,𝜋 𝑖 ,

𝑡𝑗,𝜋 𝑖 )

(𝑒𝜋 𝑖−1 ,𝑗,

𝑡𝜋 𝑖−1 ,𝑗)

(𝑒|𝐹|,𝜋 𝑖 , 𝑡|𝐹|,𝜋 𝑖 )

(𝑒𝜋 𝑖−1 ,|𝐹|,

𝑡𝜋 𝑖−1 ,|𝐹|)

(𝑒𝜋 𝑛𝑟−1 ,1, 𝑡𝜋 𝑛𝑟−1 ,1)
(𝑒1,𝜋 𝑛𝑟 , 𝑡1,𝜋 𝑛𝑟 )

(𝑒𝜋 𝑛𝑟−1 ,𝑗,

𝑡𝜋 𝑛𝑟−1 ,𝑗)

(𝑒𝑗,𝜋 𝑛𝑟 ,

𝑡𝑗,𝜋 𝑛𝑟 )

(𝑒𝜋 𝑛𝑟−1 ,|𝐹|,

𝑡𝜋 𝑛𝑟−1 ,|𝐹|)
(𝑒|𝐹|,𝜋 𝑛𝑟 ,

𝑡|𝐹|,𝜋 𝑛𝑟 )

|𝑭|

𝒋

𝝅(𝟎)

𝟏

𝒋

|𝑭|

𝟏

𝒋

|𝑭|

𝟏

𝒋

|𝑭|

(b) Fixed-route

Figure 4.2 – Piecewise linear charging function and fixed-route for the FRVCP



52 CHAPTER 4. ILS+HC FOR EVRP-PNL

φπ(i) = φπ(i−1) +
∑
j∈F

∑
k∈B\{0}

δπ(i−1)jk −
∑
j∈F

επ(i−1)jejπ(i−1)−

∑
j∈F

επ(i)jeπ(i−1)j − eπ(i−1)π(i)

1−
∑
j∈F

επ(i)j

 ∀π(i) ∈ Π \ {π(0), π(1), π(nr)} (4.3)

φπ(nr) = φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk+

∑
j∈F

∑
k∈B\{0}

δπ(nr)jk −
∑
j∈F

επ(nr−1)jejπ(nr−1)−

∑
j∈F

επ(nr)j(eπ(nr−1)j + ejπ(nr))− eπ(nr−1)π(nr)

1−
∑
j∈F

επ(nr)j

 (4.4)

φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk −
∑
j∈F

ejπ(nr−1)επ(nr−1)j−∑
j∈F

eπ(nr−1)jεπ(nr)j ≥ 0 (4.5)

µπ(i)j1 = φπ(i) + δπ(i)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (4.6)

µπ(nr)j1 = φπ(nr−1) +
∑
l∈F

∑
k∈B\{0}

δπ(nr−1)lk−∑
l∈F

elπ(nr−1)επ(nr−1)l − επ(nr)jeπ(nr−1)j + δπ(nr)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (4.7)

µπ(i)jk = µπ(i)j,k−1 + δπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (4.8)
µπ(i)jk ≥ ajk−1θπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (4.9)
µπ(i)jk ≤ ajkθπ(i)jk + (1− θπ(i)jk)Q ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (4.10)∑
j∈F

επ(i)j ≤ 1, ∀π(i) ∈ Π \ {π(0)} (4.11)

θπ(i)jk ≤ επ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (4.12)
δπ(i)jk ≤ θπ(i)jkQ ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (4.13)

t+
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i) − tπ(i−1)π(i)) ≤ Tmax (4.14)

φπ(i) ≥ 0, ∀πi ∈ Π \ {π(0)} (4.15)
επ(i)j ∈ {0, 1}, ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (4.16)
θπ(i)jk ∈ {0, 1} ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (4.17)
δπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (4.18)
µπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (4.19)

The objective function (4.1) seeks to minimize the total route time (including charging and detour times).
Constraints (4.2-4.5) define the battery level when the EV arrives at vertex π(i) ∈ Π if επ(i)j = 0; or to
CS j ∈ F before visiting vertex π(i) ∈ Π, if επ(i)j = 1. Constraints (4.6-4.8) define the battery level
when the EV finishes charging at CS j ∈ F in the segment between breakpoints k − 1 and k ∈ B before
visiting vertex π(i) ∈ Π. Constraints (4.9-4.10) ensure that if the EV charges on a given segment, the
battery level lays between the values of its corresponding break points (aj,k−1 and ajk). Constraints (4.11)
state that only one CS is visited between any two vertices of the fixed route. Constraints (4.12) ensure that
the EV only uses segments of visited CSs. Likewise, constraints (4.13) ensure that the EV charges only at
selected segments of visited CSs. Constraint (4.14) represents the duration constraint of the route. Finally,
constraints (4.15-4.19) define the domain of the decision variables.
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4.3.2 Solving the FRVCP
To solve the FRVCP, we embedded into our method two different solution approaches. The first consists

in solving the MILP introduced in the previous subsection using a commercial solver. The second consist in
solving the problem using a greedy heuristic adapted from the literature. The remainder of this subsection
describes these approaches.

Approach 1: commercial solver

Because of its verbosity, at first glance the model introduced in Section 4.3.1 may seem too complex to
be efficiently solved using out-of-the-box software. Nonetheless, since in practice the number customers
per route and the number of available CSs tend to be low, the resulting MILP formulations are within the
scope of commercial solvers. For instance, on an problem with 8 CSs, the MILP formulation for a fixed
route serving 10 customers has: 539 continuous variables, 352 integer variables, and 1,263 constraints2. We
optimally solved that model using Gurobi Optimizer (version 5.6.0) in 0.06s. Based on this observation we
decided to embed into our ILS+HC a component that relies on a commercial solver to tackle the FRVCP.

To further reduce the size of the MILP formulation and consequently improve solver’s performance, we
propose four preprocessing strategies that eliminate infeasible CSs insertions. Our strategies rely on the two
following premises: (i) the energy consumption and the travel time between vertices satisfy the triangular
inequality; and (ii) since the piecewise linear charging function is concave (i.e., ρj,k−1 ≥ ρjk), the first
segment has the fastest charging rate.

We propose two types of strategies. The first three strategies filter CS insertions that are infeasible
independently of how the customers are packed and sequenced in the routes. These strategies are applied
only once before running the ILS+HC. On the other hand, the fourth strategy filters CS insertions that are
infeasible for a particular fixed route.

Strategy 1 : This strategy estimates the minimum time τ needed to visit CS j ∈ F between two vertices
i and h ∈ I ∪ {0}. This time is defined as the sum of a lower bound on the travel time (u) and a
lower bound on the charging time (v) of any route serving customers i and h. Note that in any
route serving customer i, t0i is a lower bound on the route’s duration from the start up to customer
i. Similarly, note that in any route servicing customer h, th0 is a lower bound on the time needed
to complete a route from vertex h. Based on these two observations we can compute the minimum
duration of a route visiting CS j between vertices i and h as u = t0i + tij + tjh + th0 + pi + ph. To
compute the minimum charging time v, we need to compute the minimum amount of energy (ec)
that an EV coming from vertex i and traveling to vertex h must charge at CS j. This amount is the
charge needed to recover the energy consumed to make the detour to j, that is, ec = eij + ejh − eih.
Because the battery level when the EV arrives at i in any eVRP-NL solution is unknown a priori,
we consider that the battery is charged at j using the fastest charging rate (ρ0j). Then v = ec

ρ0j
. It is

clear that if τ = u+ v > Tmax any route visiting CS j between customers i and h is infeasible. We
therefore forbid this insertion in our MILP.

Strategy 2 : This strategy computes a lower bound on the remaining energy that an EV must have at
arrival to customer i to be able to visit CS j right after. Note that in terms of energy remaining, the
best way to reach vertex i is to visit it right after fully charging at CS c(i) = arg minl∈F∪{0} eli. If
Q−ec(i)i < eij any route visiting j after i is energy-infeasible and we can safely forbid this insertion
in our MILP.

Strategy 3 : Note that o = Q − eji is a lower bound on the energy remaining when an EV arrives
at customer i right after charging at CS j. Note also that o must be enough to at least close the
route (reach the depot) or reach the closest CS in terms of energy consumption. If o < eic(i), where
c(i) = arg minl∈F∪{0} eil, any route visiting j before i is energy-infeasible and we can safely forbid
this insertion.

2We randomly picked the route from the best solution found to a randomly picked instance
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Strategy 4 : This strategy estimates a lower bound on the new duration of a given fixed route if CS
j ∈ F is inserted between vertices π(i) and π(i + 1) ∈ Π, i 6= nr. This bound, t′, is defined
as the sum of the new travel time (u) and a lower bound on the charging time (v). It is easy to
see that u = t + tπ(i)j + tjπ(i+1) − tπ(i)π(i+1). Similarly to Strategy 1, to estimate v, we consider
that the battery is charged at j using the fastest charging rate. Therefore v = ec

ρ0j
, where ec =

eπ(i)j + ejπ(i+1) − eπ(i)π(i+1) is the charge needed to recover the energy consumed in the detour to j.
If t′ = (u + v) > Tmax, inserting j between vertices π(i) and π(i + 1) leads to an infeasible route,
so we can safely forbid this insertion.

Applying our preprocessing strategies to the MILP formulation for the 10-customer route of the example
above, the model reduces to: 71 continuous variables, 40 integer variables, and 165 constraints. We solved
the model in Gurobi in 0.02s.

Approach 2: greedy heuristic

Existing metaheuristics for eVRPs use different approaches to make charging decisions. One popular
approach is the recharge relocation operator proposed by Felipe et al. (2014) for the green vehicle routing
problem with multiple technologies and partial recharges (GVRP- MTPR). This approach considers the
insertion of only one CS per route. Starting from an energy-feasible fixed-route the procedure first deletes
the current CS. Then, it tries to improve the charging decisions by inserting each CS into each arc of the
fixed-route. To decide how much energy to charge at the inserted CS, the algorithm applies a simple rule:
charge the minimum amount of energy needed to reach the depot (i.e., to complete the route). We propose
here a heuristic to solve the FRVCP based on this approach.

Our heuristic works in two phases: location of CSs and charge setting. In the first phase, the heuris-
tic iteratively inserts CSs into the arcs of the fixed-route Π in order to ensure the feasibility in terms
of energy. In the second phase, the heuristic improves the charging decisions by adjusting the energy
charged at each visited CS. Algorithm 3 describes the structure of our heuristic. It uses four important
procedures trackBattery(·), sumNegative(·), totalTime(·), and copyAndInsert(·). Proce-
dure trackBattery(·) computes the battery level Yi at each vertex i ∈ Π, assuming that the EV fully
charges its battery at each visited CS. Note that Yi may take negative values. Procedure sumNegative(·)
computes the sum of the battery levels with negative values (i.e., s =

∑
i∈Π min{0, Yi}). Procedure

totalTime(·) computes the total time t of the route (supposing a full charging policy). Finally, pro-
cedure copyAndInsert(·) takes as input a fixed route, a CS, and a position in the route; and returns a
copy of the fixed route with the CS inserted at the given position.

The heuristic starts by the location phase (line 2-27). After computing s for the current fixed-route Π,
the heuristic enters the outer loop (line 7-27). In each pass through the inner loop (line 8-25), the heuristic:
i) evaluates the insertion of a CS into each arc of Π assuming that the EV fully charges its battery, and ii)
selects the insertion that maximizes s (lines 14-18). If s = 0 (i.e., the route is energy-feasible), the heuristic
selects the insertion that minimizes t (line 19-23). Then, the heuristic performs the selected insertion (line
26). If the route Π is still energy-infeasible (i.e., s < 0), the heuristic starts again at line 8 and tries to insert
additional CSs until feasibility in terms of energy is reached.

In the charge setting phase (line 28), the heuristic invokes procedure ruleMinEnergy(Π) to set the
energy charged at each CS following the Felipe et al. (2014) rule. Finally, the heuristic evaluates if the
route satisfies the maximum-duration constraint (29-33). The heuristic returns a boolean variable indicating
whether or not the fixed-route is feasible (f ), and the route Π with the newly inserted CSs.

4.4 Computational experiments
In this section, we present three computational studies. The first study compares the quality of the

solutions obtained by two versions of our metaheuristic. The second study evaluates the CPU time of our
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Algorithm 3 Greedy heuristic

1: function GREEDYHEURISTIC(Π0,F )
2: Π←− Π0

3: Y ←− trackBattery(Π)
4: s←− sumNegative(Y )
5: t←−∞
6: f ←− false
7: while s < 0 do
8: for j = 1 to |F | do
9: for i = 0 to nr − 1 do

10: Π′ ←− copyAndInsert(Π, Fj, i)
11: Y ′ ←− trackBattery(Π′)
12: s′ ←− sumNegative(Y ′)
13: t′ ←− totalTime(Π′)
14: if s′ > s then
15: s←− s′

16: u←− j
17: v ←− i
18: end if
19: if s′ = 0 and t′ < t then
20: t←− t′

21: u←− j
22: v ←− i
23: end if
24: end for
25: end for
26: Π←− copyAndInsert(Π, Fu, i)
27: end while
28: 〈t,Π〉 ←− RuleMinEnergy(Π)
29: if t ≤ Tmax then
30: f ←− true
31: else
32: Π←− Π0

33: end if
34: return f , Π
35: end function
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metaheuristic, and assesses the impact of the preprocessing strategies. Finally, the third study analyses the
charging decisions of the best solutions found.

4.4.1 Test instances for the eVRP-NL
To test our approach, we generated a new 120-instance testbed built using real data of EV configuration

and battery charging functions. In order to ensure feasibility, we opted to generate our instances instead
of adapting a existing dataset from the literature. To build the instances we first generated 30 sets of cus-
tomer locations with {10, 20, 40, 80, 160, 320} customers. For each instance size, we generated 5 sets
of customers location. We located the customers in a geographic space of 120 x 120 km using either a
random uniform distribution, a random clustered distribution, or a mixture of both. For each of the 30 sets
of locations we chose the customer location strategy using a uniform probability distribution. Our main
motivation to choose a 120 x 120 geographic area was to build instances representing a semi-urban oper-
ation. These operations are the best suited applications for eVRPs. Indeed, in city operations routes tend
to be sufficiently short to be covered without mid-route charging. On the opposite side, in rural operations
routes tend to be long enough to required multiple mid-route charges but access to charging infrastructure
is very limited (at least for 2016 standards).

From each of the 30 sets of locations we built 4 instances varying the level of charging infrastructure
availability and the strategy used to locate the CSs. We considered two levels of charging infrastructure
availability: low and high. To favor feasibility, for each combination of number of customers and infras-
tructure availability level we handpicked the number CSs as a proportion of the number of customers. We
located the CSs either randomly or using a simple p-median heuristic. Our p-median heuristic starts from
a set of randomly generated CS locations and iteratively moves those locations trying to minimize the to-
tal distance between the CSs and the customers. In our instances, we included three types of CSs: slow,
moderate, and fast. For each CS we randomly selected the type using a uniform probability distribution.

The EVs in our instances are Peugeot Ion. This EV has a consumption rate of 0.125 kWh/km, and a
battery of 16 kWh. Note that an EV with this characteristics is well suited to service applications such as
homecare routing. In reality the exact energy consumption on an arc (eij) varies with parameters such as the
cumulative elevation gain, the external temperature, the speed, and the use of peripherals (e.g., the radio).
Nonetheless, for the sake of simplicity we followed the classical approach in the literature and assumed
that the energy consumption on an arc is simply the EV’s consumption rate multiplied by the arc’s distance.
To generate the charging functions we fit piece-wise linear functions to the real charging data for a 16 kWh
battery provided by Uhrig et al. (2015). Figure 4.3 depicts our piece-wise linear approximations. Finally, the
maximum route duration for every instance was fixed to 10 hours. Our 120 instances are publicly available
at www.vrp-rep.org (Mendoza et al. 2014)3.

4.4.2 Parameter settings & experimental environment
As discussed in Section 4.3.2 our ILS+HC can be configured to solve the FRVCP using two different

approaches, namely, the commercial solver and the greedy heuristic. We tested our algorithm with two
different configurations. The first configuration (ILS(S)+HC) uses the commercial optimizer to solve the
FRVCP in the GCI neighborhood, while the second configuration (ILS(H)+HC) uses the greedy heuristic.
In both configurations, the algorithm solves the FRVCP in the split procedure using the greedy heuristic.
This choice was guided by computational performance.

To fine tune the number of iterations of the ILS component (i.e., K), we conducted a short compu-
tational study. Our results showed that K = 80 provides the best trade-off between solution quality and
computational performance.

We implemented our ILS in Java (jre V.1.8.0) and used Gurobi Optimizer (version 5.6.0) to solve the
FRVCP and the set partitioning problem in the HC component. We set a time limit of 800 seconds on

3The instances will be made effectively public after the completion of the reviewing process

www.vrp-rep.org
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Type of CSs Slow Moderate Fast

Charging power (kWh/h) 11 22 44
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Figure 4.3 – Piecewise linear approximation for different types of CS charging an EV with a battery of 16
kWh.

Table 4.1 – Comparison of the two versions of the metaheuristic on small instances with proven optima

Metric ILS(H)+HC ILS(S)+HC

Number of optimal solutions 15/20 20/20
Avg. Gap (%) 1.97 0.34
Max. Gap (%) 17.07 1.87
Avg. Best Gap (%) 1.20 0.00

Gurobi to control the running time of the HC phase. All the experiments were run on a computing cluster
with 2.33 GHz Inter Xeon E5410 processors with 16 GB of RAM running under Linux Rocks 6.1.1. The
results delivered by the two ILS+HC configurations are compared over 10 runs. Each replication of the
experiments was run on a single processor.

4.4.3 Solution accuracy: optimal vs. heuristic charging decisions
Since the eVRP-NL is a new problem, there are no results or algorithms to benchmark against. To get

an idea of the quality of the solutions delivered by our ILS+HC, we ran its two versions, ILS(S)+HC and
ILS(H)+HC, on the twenty 10-customer instances and compared their results with optimal solutions found
using the MILP presented in Chapter 3. Table 4.1 summarizes the results comparing the two algorithms
under the light of four metrics: the number of optimal solutions found, the average and maximum gap with
respect to the optimal solution over the 10 runs, and the average best gap4. Appendix A.2 presents detailed
results for the 20 instances.

The results suggest that our algorithms are able to deliver high-quality solutions for the eVRP-NL.
As shown in the table, ILS(S)+HC matched the 20 optimal solutions while ILS(H)+HC matched 15. The
spread in the number of optimal solutions and the values reported for Avg. Best Gap tip the balance towards
ILS(S)+HC over ILS(H)+HC in terms accuracy. This result is not surprising since one could expect that
making optimal, instead of heuristic, charging decisions would translate into higher quality solutions. A
close look at the Avg. and Max. gaps reveals a less foreseeable result: ILS(S)+HC exhibits a significantly

4The best gap is the gap between the best solution found over 10 runs and the optimal solution
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Table 4.2 – Comparison of the two versions of the metaheuristic on large instances

Metric Gurobi ILS(H)+HC ILS(S)+HC

Number of solutions 25/100 100/100 100/100
Number of BKSs 7/100 7/100 100/100
Avg. Gap (%) 41.36 7.51 1.51
Max. Gap (%) NA 28.68 4.44
Avg. Best Gap (%) NA 5.28 0.00

more stable behavior than ILS(H)+HC.
To compare the performance of ILS(S)+HC and ILS(H)+HC on more industrial-sized instances we ran

both algorithms on the remaining 100 benchmarks. Table 4.2 summarizes the results. In the comparison
we employed the same metrics introduced above, replacing the number of optimal solutions by the number
of best known solutions (BKSs) found. As a reference, we included in the table the results delivered by the
commercial solver running the MILP for 10h. It is worth mentioning that Gurobi reported integer solutions
for only 25 out of the 100 instances. None of these 25 solutions has a certificate of optimality. Detailed
results for each instance can be found in Appendix A.2

The results in Table 4.2 confirm the conclusions drawn on our first experiment: optimally solving the
FRVCP in the ICG neighborhood leads to a more accurate and stable solution method. According to our
data, ILS(S)+HC not only found the 100 BKSs but also reported significantly lower Avg. and Max. gaps
(1.51% and 4.44% vs. 7.51% and 28.68%).

The cost of making optimal charging decisions

In Section 4.4.3 we showed the benefits of making optimal charging decisions when solving the eVRP-
NL. This benefits, however, comes at the price of losing computational performance. To estimate this loss,
we measured the execution times of three versions of our algorithm on the 120 instances: ILS(S)+HC,
ILS(H)+HC, and ILS(S’)+HC. The latter is a version of ILS(S)+HC running without our preprocessing
strategies (see Section4.3.2). Table 4.3 reports for each instance size, the average execution time (in sec-
onds) of each algorithm. In addition, the last column of the table reports the average speedup between
ILS(S′)+HC and ILS(S)+HC (measured as the ratio of their execution times).

Not surprisingly, the results show that ILS(H)+HC is the fastest approach. It is interesting to note that in
relative terms, the gap in computational performance between ILS(H)+HC and ILS(S)+HC decreases with
the size of the instance. This behavior can be explained by the positive correlation between the instance
size and the time needed to solve the set partitioning model in the HC phase. Indeed, the latter heavily
depends on the size of the pool Ω which, in turn, is more correlated to the size of the instance than to the
strategy used to generate the routes. In other words, on large instances both algorithms spend around the
same (considerable) amount of time solving the HC phase. As a consequence, the performance gap in the
ILS phase becomes less remarkable.

A second interesting conclusion from this study is that the preprocessing strategies have a remarkable
positive impact on the computational performance of the algorithm. As the table shows, on average, the
strategies are responsible for a 1.65 speedup on the execution time. The data also suggests that the speedup
is independent of the size of the instance. A plausible explanation for this behavior is that for a given
instance both ILS(S)+HC and ILS(S’)+HC evaluate around the same number of routes during the ILS
phase.

Characteristics of good eVRP-NL solutions

We analyze in this section the characteristics of the BKSs found in our experiments. We aim to provide
the reader with some insight that may be useful when designing new solution methods for the eVRP-NL.
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Table 4.3 – Average computing time (in seconds) of different variants of the metaheuristic

Instance size ILS(H)+HC ILS(S′)+HC ILS(S)+HC Speedup

10 0.64 8.54 5.62 1.52
20 1.75 17.47 10.56 1.65
40 8.48 64.16 35.35 1.82
80 39.35 148.76 80.11 1.86
160 289.08 976.84 568.02 1.72
320 2,568.94 5,759.67 4,397.64 1.31
Average 484.71 1,162.57 849.55 1.65
Max 4,766.36 10,335.56 7,636.50 2.53
Min 0.49 3.71 2.36 1.16
ILS(S)+HC and ILS(S′)+HC are the hybrid metaheuristic with and without preprocessing strategies, respectively

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 40 80 160 320

Number of customers

Routes with CSs Routes without CSs

Figure 4.4 – Percentage of the routes with/without visits to CSs by instance size.

In total, our BKSs are made up of 1,426 routes. Our first analysis concerns the fraction of those routes
that exploit mid-route charging. Figure 4.4 presents the percentage of routes with and without visits to CSs
grouped by instance size. The data shows that on average 71.47% of the routes in the BKSs visit at least
one CS. This percentage is roughly the same for each instance size. This figure provides two insights. First,
mid-route charging is a key element of good eVRP-NL solutions (probably because it gives algorithms
flexibility to better pack the customers into the routes). Second, since charging decisions concern most of
the routes making up a good solution, they play a critical role in its quality. The latter observation helps
explaining the spread on accuracy between ILS(S)+HC and ILS(H)+HC found in the computational studies
reported in Section 4.4.3.

The second analysis concerns the number of mid-route charges per route. Figure 4.5a and 4.5b present
histograms of the number mid-route charges per route and the maximum number of mid-route charges per
route on a solution. Figure 4.5a shows that among the routes performing mid-route charging, 58.58% do it
once, 40.00% twice, and 1.43% three times. Although a large portion of the routes perform a single mid-
route charge, 85.83% of the solutions contain at least one route performing more than one mid-route charge
(Figure 4.5b). This figures suggest that models and methods for the eVRP-NL can benefit from relaxing the
at-the-most-one-visit-to-a-CS-per-route constraint that is sometimes used in the eVRP literature.

The third analysis concerns the energy recovered through mid-route charges. Figure 4.6 presents the
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(b) Histogram of the maximum number of visited CSs in the
routes of each solution.

Figure 4.5 – Analysis of the number of visits to CSs

histogram of the average battery level (in % of the total battery capacity) after a mid-route charge. The
numbers show that over 90% of the mid-route charges are partial charges (i.e., they do not fully charge
the battery). This figure tips the importance of embedding components capable of making partial charging
decisions into eVRP-NL solution methods5. A second interesting observation from the data displayed in
Figure 4.6 comes from the percentage (around 12%) of mid-route charges that restore the battery above
80% of its capacity. As mentioned in the study reported in Chapter 3, one common assumption in the eVRP
literature is that the battery can only be charge on the linear segment of the charging curve (which ends at
roughly 80% of the battery capacity). Our data suggest that good eVRP-NL solutions often include routes
with mid-route charges that take the battery level up to the non-linear part of the charging function.

4.5 Conclusion
This chapter introduces an extension of the electric vehicle routing problem which considers more-

realistic assumptions about the battery charging process: the electric vehicle routing problem with nonlinear
charging function (eVRP-NL). To solve the problem we propose an iterated local search (ILS) enhanced
with heuristic concentration (HC). At the heart of the proposed method lays a neighborhood scheme consist-
ing in solving a new variant of the fixed-route vehicle-charging problem (FRVCP). This problem consists
in optimizing the charging decisions (where and how much to charge) of a route serving a fixed sequence
of customers. Depending on the configuration, our ILS+HC solves the underlying FRVCP either using a
greedy heuristic or a commercial solver. To improve the performance of the solver, we proposed four pre-
processing strategies that eliminate infeasible detours to CSs. To assess the performance of our method, we
built a set of 120 instances based on real EV and battery charging data. Tested on 20 small 10-customer
instances, our method matched the optimal solutions for every instance. Experiments conducted on larger
instances proved the value of equipping eVRP-NL algorithms with components capable of making optimal
charging decisions. Finally, we analyzed the solutions delivered by our method aiming to provide fellow
researchers with some insight into the characteristics of good eVRP-NL solutions. Our analysis concluded
that good eVRP-NL solutions tend to use multiple mid-route charges, exploit partial recharges, and employ
the non-linear segment of the battery charging function.

5Note that up to 2016 this was rather the exception than the rule in the eVRP literature
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Figure 4.6 – Histogram of the average battery level (in % of the total battery capacity) after a mid-route
charge

4.6 Nomenclature

4.6.1 Notation for problem description
G: eVRP underlying graph G = (V,A).
V : Set of vertices of G.
0: Depot
I: Subset of V representing customers.
F : Subset of V representing CSs.
A: Set of arcs in G.
B: Set of breakpoints of the piecewise linear charging function.
pi: Service time at customer i ∈ I .
cik: Charging time of the CS i ∈ F at the breakpoint k ∈ B.
aik: Charge level of the CS i ∈ F at the breakpoint k ∈ B.
eij: Energy consumption between vertices i and j (i, j ∈ V ).
tij: Travel time between vertices i and j (i, j ∈ V ).
Tmax: Tour duration constraint.
Q: Tank capacity.

4.6.2 Notation for hybrid metaheuristic
G∗: Acyclic graph for the split procedure G∗ = (V ∗, A∗).
V ∗: Set of vertices of G∗.
A∗: Set of arcs in G∗.
Ω: Pool of feasible eVRP-NL routes.
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4.6.3 Notation for the fixed-route vehicle-charging problem
Π: Energy-infeasible route.
t: Total time of the route Π, which is the sum of the travel times plus the service times.
ρjk: Slope of the segment defined between the breakpoints k − 1 and k ∈ B.
επ(i)j: Binary variable, equal to 1 if the EV charges at CS j ∈ F before visiting vertex π(i) ∈ Π.
φπ(i): Battery level. If επ(i)j = 0, φπ(i) is the battery level when the EV arrives at vertex π(i). On
the other hand, if επ(i)j = 1, φπ(i) is the battery level when the EV arrives at CS j ∈ F right before
visiting vertex π(i).
θπ(i)jk: Binary variable, equal to 1 if the EV charges on the segment defined by breakpoints k − 1
and k ∈ B at CS j ∈ F before visiting vertex π(i) ∈ Π.
δπ(i)jk: Amount of energy charged when the charging finishes on the segment between breakpoints
k − 1 and k ∈ B at CS j ∈ F before the visit to vertex π(i) ∈ Π.
µπ(i)jk: Battery level when the charging finishes on the segment between breakpoints k − 1 and
k ∈ B at CS j ∈ F before the visit to vertex π(i) ∈ Π.
τ : Minimum time needed to visit CS j ∈ F between two vertices i and h ∈ I ∪ {0}.
u: Lower bound on the travel time.
v: Lower bound on the charging time.
ec: Charge needed to recover the energy consumed to make the detour to j ∈ F .
o: Lower bound on the energy remaining when an EV arrives at customer i ∈ I right after charging
at CS j ∈ F .
c(i): Closest station to the customer i ∈ I (including the depot).
t′: Lower bound on the new duration of a given fixed route if CS j ∈ F is inserted between vertices
π(i) and π(i+ 1) ∈ Π, i 6= nr.
Yi: Battery level at each vertex i ∈ Π, assuming that the EV fully charges its battery at each visited
CS.
s: Sum of the battery levels with negative values.
t: Total time of the route (supposing a full charging policy).
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5.1 Introduction
Nowadays, service and utility companies have started to use electric vehicles (EVs) on their operations.

Considering that EVs are a new technology, and that the companies currently have a fleet of conventional
vehicles (CVs), the incorporation of EVs into their fleets is made gradually. For instance, the french elec-
tricity distribution company ENEDIS has started to incorporate 2,000 EVs in its fleet of 20,000 vehicles
(ERDF 2014). Similarly, the spanish electricity company Endesa has started to introduce EVs in its fleet;
they expected to have 3,000 EVs by 2020 (H&E 2016). The incorporation of EVs into existing fleets of
CVs gives birth to what is commonly known in the literature as vehicle routing problems with electric and
conventional vehicles (Goeke & Schneider 2015).

In this chapter, we introduce what we call the technician routing problem with conventional and electric
vehicles (TRP-CEV). The TRP-CEV is largely inspired by a problem faced by ENEDIS in their daily
operations. The problem consists in routing a set of technicians to serve a set of geographically scattered
requests within their time windows. The problem also considers the working schedules, the lunch breaks,
and skills of the technicians. The technicians use a fixed fleet composed of CVs and EVs of different types.
Each type of EV has its own autonomy charging protocol. The latter determines in which charging stations
(CSs) the EV can charge its battery. We assume that the charging functions are nonlinear as proposed in
Chapter 3. In the TRP-CEV decisions include the vehicle-to-technician assignment, the sequencing of the
routes followed by the technicians, and the battery charging program for the EVs (where and how much
to charge). The objective function seeks to minimize the total cost, defined as the sum of the travel costs,
battery charging fixed costs, the parking cost at CSs, and the fixed cost of each technician. Following
the definition of (Lahyani et al. 2015) the TRP-CEV lays in the category of rich vehicle routing problem
(RVRP) 1.

It is widely accepted that large-scale instances of complex RVRPs are out of the reach of exact meth-
ods. Moreover, in industrial contexts in which the problem must be solved on a daily (or even weekly)
basis, companies tend to prefer the more-balanced trade off between solution quality and speed offered by
metaheuristics. Since one of our primary objectives is to provide ENEDIS with an optimization algorithm
that can eventually be deployed to production, we leaned towards designing a parallel matheuristic (PMa)
for their problem. The proposed approach works in two phases. In the first phase, the algorithm decom-
poses the TRP-CEV into a set of “easier-to-solve” vehicle routing problems with time windows and lunch
breaks (VRPs-TWLB) and solves these problems in parallel using a greedy randomized adaptive search
procedure (GRASP). In the second phase, the algorithm assembles a solution to the TRP-CEV by solving a
set-covering formulation over a set of high-quality routes found for the independent VRP-TWLB.

The main contribution of this chapter are fourfold. First, we introduce the TRP-CEV. Second, we
propose a parallel matheuristic to solve the TRP-CEV which can be extended to other problems with com-
petitive results. Third, we develop a set of real instances based on the ENEDIS operation. Fourth, we study
the impact of different fleet compositions on relevant variables for ENEDIS.

The remainder of this chapter is organized as follows. Section 5.2 reviews the related literature. Section
5.3 describes the problem. Section 5.4 introduces our parallel matheuristic. Section 5.5 introduces the fixed-
route vehicle-charging problem with time windows, which arises as a subproblem of TRP-CEV. Section
5.6 presents the results of a computational experiment with ENEDIS real instances. Finally, Section 5.7
concludes the chapter. For easy reference, Section 5.8 summarizes the notation of this chapter.

5.2 Literature review
The TRP-CEV combines features from different problems in the literature: the technician routing prob-

lem (TRP), the vehicle routing problem with lunch breaks (VRP-LB) and the heterogeneous vehicle routing

1According to (Lahyani et al. 2015), if a VRP has at least nine physical characteristics, this problem can be classified as a
RVRP
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problem (HVRP). In the remainder of this chapter, we present a brief review of literature on these problems.
One of the first problems in the field of TRPs is the field technician scheduling problem (FTSP) by (Xu

& Chiu 2001). The FTSP consists in routing a set of technicians to serve a set of geographically scattered
requests. Each request has a time window, and a priority (represented by a weight). Each technician has
a working schedule, and a skill proficiency level for each request. The objective functions for the FTSP
is to maximize the number of served requests weighted their priority and minimize the total working time.
Dohn et al. (2009) proposed an interesting variant of the TRP, where some requests require collaboration
between technicians, and therefore the technicians must initiate the execution simultaneously. Pillac et al.
(2013) studied a version of the TRP where the technician-task compatibility includes spare parts and tools.
The technicians have the opportunity to replenish their tools and spare parts at a central depot at any time.
Kovacs et al. (2012) consider that technicians have different proficiency levels in several skills, and the
option that technicians can be grouped into teams to serve specifics request. Recently, Zamorano & Stolletz
(2016) extend the TRP considering multiple periods. In their problem, technicians are assigned every day
to a team, and the composition of the team remains fixed for the duration day. For a detailed review of the
TRP and other related problems the reader is referred to (Castillo-Salazar et al. 2016). As can be seen the
TRPs have many variations. In the case of the TRP-CEV, it only consider the technician-task compatibility
that depends of the required skills of the requests and the skills of the technicians.

VRPs with lunch breaks arise mainly in service industries. For instance, in home healthcare operations
where nurses and doctors visit a set of customers at home (Liu et al. 2016, Cheng & Rich 1998). In the
reparation or maintenance service, where the technicians serve a set of requests (Kovacs et al. 2012, Bostel
et al. 2008). To the best of our knowledge, all studies tacking VRP-LB consider a time window to start the
lunch break and a specified duration. Futhermore, most of the studies assume that the lunch break is taken
at a customer location (Liu et al. 2016, Cheng & Rich 1998, Kovacs et al. 2012). The only exception is the
study by Bostel et al. (2008), where the authors assume that the lunch break is taken at specified locations
(restaurants). In contrast with the previous studies, for the TRP-CEV the lunch break is defined between
two time points in the working time, where the technician must stops any activity to take the lunch break.

In the last 30 years, the HVRPs have been one the most studied problem in the VRP field (Koç et al.
2016, Baldacci et al. 2008). However, only recently researchers have started to study the HVRP with
EVs. Goeke & Schneider (2015) introduced the electric vehicle routing problem with time windows and
mixed fleet (E-VRPTWMF), which considers a fleet of CVs and EVs. Sassi et al. (2015) extended the E-
VRPTWMF considering different features motivated by a real-life industrial application. In their problem,
the CSs have different technologies and time windows, the charging cost depends on the time of the day,
and EVs can charge partially their batteries. Finally, Hiermann et al. (2016) introduced the electric fleet
size and mix vehicle routing problem with time windows and recharging stations (E-FSMFTW), where
the fleet is composed of different types of EVs. The objective of the E-FSMFTW is to select the size and
composition of the EV fleet. Although, other previous studies have assumed mixed fleet with EVs and CVs,
the TRP-CEV is the only to assume the nonlinear charging behavior of the charging process.

Despite in the literature there are several studies about the problems that compose the TRP-CEV, as far
as we know no other authors have studied a problem that combines all those components. Moreover, the
TRP-CEV is the only problem that introduces EVs in the technician operation context, taking into account
the existing real applications of EVs in operation with technician (ERDF 2014, H&E 2016).

5.3 Problem description
Formally, the TRP-CEV is defined on a directed and complete graph G = (N,A). The vertex set

N = {0} ∪ C ∪ F is made up of a depot (vertex 0), a set of requests C, and a set of CSs F . Each request
i ∈ C has a service time pi and a time window [eci, lci], and requires a technician with specific skills from
the set of skills S. Each CS i ∈ F has a parking cost pci. The request are served by a set of T technicians.
Each technician u ∈ T has the following characteristics: a fixed cost fu; a subset of skills su ⊆ S; a
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working schedule between stu and etu, that includes a lunch break between slu and elu; and a consumption
factor fcu associated to his or her driving profile (e.g., sport, regular and eco). The technicians drive a fixed
fleet of heterogeneous vehicles composed by different types of CVs and EVs. The set of vehicles types K
is made up of the subset of types of CVs (Kc) and the subset of types of EVs (Ke). There are mk vehicles
of type k ∈ K available in the fleet. Each type of vehicle k ∈ K has an unitary travel cost tck (expressed in
e/km). Additionally, EVs of type k ∈ Ke have a fixed cost gk for recharging the battery (expressed in e
and representing the degradation cost), and a battery capacity Qk (expressed in kWh). Due to technological
incompatibilities, each type of EV k ∈ Ke can charge only in a subset Fk of the CS. The charging function
of EVs is modelled using a discrete function. Parameter aikl represents the charging time of a vehicle of
type k ∈ Ke charging from zero to l percent of the battery at CS i ∈ F (with l ∈ B = 1, 2, ..., 100). Finally,
the set A = {(i, j) : i, j ∈ N, i 6= j} corresponds to arcs connecting vertices in N . Each arc (i, j) has three
associated nonnegative values: a travel time tij , a distance dij , and an energy consumption eijk for each
type of EV k ∈ Ke.

In the TRP-CEV the objective is to find a set of routes of minimum total cost, defined as the sum of
the total travel cost, fixed charging cost, parking cost, and the fixed cost of each technician, satisfying the
following conditions: each request is served exactly once within its time window by a technician with the
required skills; the level of the battery when the EVs arrive at any vertex is nonnegative; the EVs only
charge at CSs with compatible technology; each technician works only during his or her working schedule;
each technician takes a lunch break; and each route starts and ends at the depot.

5.3.1 Mixed-integer linear programming formulation
To allow several visits to the CSs, we introduce the set F ′ that contains the set F and copies of each

CS, and the set N ′ = {0} ∪ C ∪ F ′. Furthermore, since we need to track the information of each vehicle,
we introduce the set of vehicles V = Vc ∪ Ve that contains all the CVs (Vc) and EVs (Ve) available (i.e.,
|Vc| =

∑
k∈Kc

mk and |Ve| =
∑

k∈Ke
mk).

Furthermore, we introduce the following binary parameters: nil is equal to 1 if request i ∈ C needs a
technician with skill l ∈ S, and 0 otherwise. Likewise, mul is equal to 1 if technician u ∈ T has skill l ∈ S,
and 0 otherwise. Finally, hik is equal to 1 if the EV k ∈ Ve can charge at CS i ∈ F ′. In addition, the real
parameter Smax is the maximum charging time.

To model the TRP-CEV using a mixed-integer linear programming (MILP) formulation, we use the
following decision variables: xijku is equal to 1 if technician u ∈ T travels from vertex i to j ∈ N ′ in
vehicle k ∈ V , and 0 otherwise. Variable τiu tracks the arrival time of the technician u ∈ T at vertex
i ∈ N ′. Variable yik tracks the battery level of EV k ∈ Ve upon departure from vertex i ∈ N ′. Variables qik
and oik represent the battery level when EV k ∈ Ve arrives at and departs from CS i ∈ F ′. Variables αikl
and βikl are equal to 1 if the battery level is l ∈ B when vehicle k ∈ Ve arrives at and departs from the CS
i ∈ F ′ respectively. Variable ∆ik represents the time spent by vehicle k ∈ Ve at CS i ∈ F ′. Variable wiju is
equal to 1 if technician u ∈ T takes the lunch break on his way from i to j ∈ N ′, and 0 otherwise. Variable
ziju is equal to 1 if the technician u ∈ T takes the lunch break after travelling from vertex i to j ∈ N ′ and
0 otherwise. Variable z′iju is equal to 1 if the technician u ∈ T takes the lunch break before travelling from
vertex i to j ∈ N ′, and 0 otherwise. The MILP follows:

Min
∑
i∈N ′

∑
j∈N ′

∑
k∈V

∑
u∈T

xijku · dij · tck +
∑
i∈F ′

∑
k∈Ve

∆ik · pci+∑
i∈N ′

∑
j∈F ′

∑
k∈Ve

∑
u∈T

xijku · gk +
∑
j∈N ′

∑
k∈V

∑
u∈T

x0jku · fu (5.1)

Subject to:
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∑
i∈N ′

∑
k∈V

∑
u∈T

xijku = 1, ∀j ∈ C (5.2)∑
i∈N ′

xijku ≤ 1, ∀j ∈ F ′,∀k ∈ Ve,∀u ∈ T (5.3)∑
k∈V

∑
u∈T

xijku ≤ 1, ∀i, j ∈ N ′ (5.4)∑
j∈N ′

∑
u∈T

xijku ≤ 1, ∀i ∈ N ′, ∀k ∈ V (5.5)

∑
j∈N ′

∑
k∈V

xijku ≤ 1, ∀i ∈ N ′, ∀u ∈ T (5.6)

∑
j∈N ′

x0jku ≤ 1, ∀k ∈ V,∀u ∈ T (5.7)

∑
j∈N ′

xjiku −
∑
j∈N ′

xijku = 0, ∀i ∈ N ′, ∀k ∈ V,∀u ∈ T (5.8)

∑
i∈N ′

∑
k∈V

∑
u∈T

xijku ·mul ≥ njl, ∀j ∈ C,∀l ∈ S (5.9)∑
i∈N ′

xijku ≤ hjk, ∀j ∈ F ′, ∀k ∈ Ve,∀u ∈ T (5.10)

eijk · fcu · xijku − (1− xijku) ·Qk ≤ yik − yjk ≤
eijk · fcu · xijku + (1− xijku) ·Qk, ∀i ∈ N ′, ∀j ∈ C,∀k ∈ Ve,∀u ∈ T (5.11)

eijk · fcu · xijku − (1− xijku) ·Qk ≤ yik − qjk ≤
eijk · fcu · xijku + (1− xijku) ·Qk, ∀i ∈ N ′, ∀j ∈ F ′,∀k ∈ Ve,∀u ∈ T (5.12)

yik ≥ ei0k · fcu · xi0ku, ∀i ∈ N ′, ∀k ∈ Ve, ∀u ∈ T (5.13)

y0k = Qk, ∀k ∈ Ve (5.14)

yik = oik, ∀i ∈ F ′, ∀k ∈ Ve (5.15)

qik ≤ oik, ∀i ∈ F ′, ∀k ∈ Ve (5.16)

qjk ≤ Qk ·
∑
i∈N ′

∑
u∈T

xijku, ∀j ∈ F ′,∀k ∈ Ve (5.17)

ojk ≤ Qk ·
∑
i∈N ′

∑
u∈T

xijku, ∀j ∈ F ′,∀k ∈ Ve (5.18)

qik
Qk
· 100 ≥

∑
l∈B

l · αikl, ∀i ∈ F ′,∀k ∈ Ve (5.19)

qik
Qk
· 100− 1 ≤

∑
l∈B

l · αikl, ∀i ∈ F ′,∀k ∈ Ve (5.20)∑
l∈B

αjkl ≤
∑
i∈N ′

∑
u∈T

xijku, ∀j ∈ F ′,∀k ∈ Ve (5.21)

oik
Qk
· 100 ≤

∑
l∈B

l · βikl, ∀i ∈ F ′,∀k ∈ Ve (5.22)

oik
Qk
· 100 + 1 ≥

∑
l∈B

l · βikl, ∀i ∈ F ′,∀k ∈ Ve (5.23)∑
l∈B

βjkl ≤
∑
i∈N ′

∑
u∈T

xijku, ∀j ∈ F ′,∀k ∈ Ve (5.24)

∆ik =
∑
l∈B

aikl · βikl −
∑
l∈B

aikl · αikl, ∀i ∈ F ′,∀k ∈ Ve (5.25)∑
i∈N ′

∑
j∈N ′

wiju =
∑
i∈N ′

∑
k∈V

x0jku, ∀u ∈ T (5.26)
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wiju ≤
∑
k∈V

xijku, ∀i ∈ N ′, ∀j ∈ N ′,∀u ∈ T (5.27)

τiu + wiju · (elu − slu) + (tij + pi) · xijku−
(etu + (elu − slu)) · (1− xijku) ≤ τju, ∀i ∈ C,∀j ∈ N ′, ∀k ∈ Ve,∀u ∈ T (5.28)

τiu + wiju · (elu − slu) + ∆ik + tij · xijku−
(Smax + etu + (elu − slu)) · (1− xijku) ≤ τju, ∀i ∈ F ′,∀j ∈ N ′,∀k ∈ Ve,∀u ∈ T (5.29)

τiu + pi ≤ slu ·
∑
j∈N ′

wiju + etu · (1−
∑
j∈N ′

wiju), ∀i ∈ C,∀k ∈ V,∀u ∈ T (5.30)

τiu + ∆ik ≤ slu ·
∑
j∈N ′

wiju + etu · (1−
∑
j∈N ′

wiju), ∀i ∈ F ′,∀k ∈ Ve,∀u ∈ T (5.31)

τiu ≥ elu ·
∑
j∈N ′

wjiu + stu · (1−
∑
j∈N ′

wjiu), ∀i ∈ N ′,∀k ∈ V,∀u ∈ T (5.32)

slu · ziju − τiu − pi + etu · (1− ziju) ≥ tij · ziju, ∀i, j ∈ N ′, ∀u ∈ T (5.33)

τju − elu · z′iju ≥ tij · z′iju, ∀i, j ∈ N ′, ∀u ∈ T (5.34)

ziju + z
′
iju = wiju, ∀i, j ∈ N ′, ∀u ∈ T (5.35)

τiu − t0i ≥ stu, ∀i ∈ N ′,∀u ∈ T, (5.36)

τiu + pi + ti0 ≤ etu, ∀i ∈ C,∀u ∈ T (5.37)

τiu + ∆ik + ti0 ≤ etu, ∀i ∈ F ′,∀k ∈ Ve,∀u ∈ T (5.38)

eci ≤ τiu ≤ lci, ∀i ∈ C,∀u ∈ T (5.39)

xijku ∈ {0, 1} ∀i, j ∈ N ′, ∀k ∈ Ve,∀u ∈ T (5.40)

xijku ∈ {0, 1} ∀i ∈ N ′, j ∈ N ′ \ F ′,∀k ∈ Vc, ∀u ∈ T (5.41)

αikl ∈ {0, 1}, βikl ∈ {0, 1}, ∀i ∈ F ′,∀k ∈ Ve,∀l ∈ B (5.42)

τiu ≥ 0, ∀i ∈ N ′,∀u ∈ T (5.43)

yik ≥ 0, ∀i ∈ N ′,∀k ∈ Ve (5.44)

qik ≥ 0, oik ≥ 0, ∆ik ≥ 0, ∀i ∈ F ′,∀k ∈ Ve (5.45)

wiju ∈ {0, 1}, ziju ∈ {0, 1}, z′iju ∈ {0, 1}, ∀i, j ∈ N ′, ∀u ∈ T (5.46)
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The objective function (5.1) seeks to minimize the total cost (travel cost, parking cost, fixed charging
cost, fixed cost of the technicians). Constraints (5.2) ensure that each request is visited once. Constraints
(5.3) ensure that each copy if a CSs is visited at most once. Constraints (5.4) ensure that each arc is used
by at most one vehicle and technician. Constraints (5.5-5.7) ensure that at most only one technician is
allocated to one vehicle (and vice versa). Constraints (5.8) impose the flow conservation. Constraints (5.9)
ensure that each request is visited by a technician with the appropriate skills. Constraints (5.10) ensure that
EV i ∈ Ve only charges at CSs with compatible technology. Constraints (5.11) and (5.12) track the battery
level at each vertex for the EVs. Constraints (5.13) ensure that, if the EV travels between a vertex and
the depot, it has enough remaining energy to reach its destination. Constraints (5.14) impose that the EVs
depart from the depot with fully charged battery. Constraints (5.15) reset the battery tracking to oi upon
departure from CS i ∈ F ′. Constraints (5.16) couple the battery level when an EV arrives to and departs
from any CS. Constraints (5.17) and (5.18) ensure that the charge level is bounded by the battery capacity
when an EV arrives at and departs from CS j ∈ F ′. Constraints (5.19-5.24) define the battery level in
percentage when vehicle k ∈ Ve arrives at or departs from the CS i ∈ F ′. Constraints (5.25) define the time
spent charging at a CS. Constraints (5.26) ensure that the technician u ∈ T has to take the lunch break.
Constraints (5.27) ensure that the lunch break is taken between two visited vertices. Constraints (5.28) and
(5.29) track the arrive time at each vertex. Constraints (5.30)-(5.32) ensure that technician u ∈ T takes the
lunch break between slu and elu. Constraints (5.33-5.35) ensure that the technician takes the lunch after or
before travelling to vertex j ∈ N ′. Constraints (5.36-5.38) impose the working schedule of the technician.
Constraints (5.39) ensure that every request is served within its time window. Finally, constraints (5.40-
5.46) define the domain of the decision variables. Note that variables xijku are not defined for j ∈ F ′ and
k ∈ Vc

5.4 Parallel matheuristic
Considering the complexity of th TRP-CEV in terms of the number of constraints, we decide to use

an approach based on decomposition. As the name suggest, a decomposition approach decomposes the
problem in a set of sub-problems that consider less information or less constraints than the original problem.
Each sub-problem is solved individually, and the solutions found for each sub-problem are used to find a
solution of the original problem. This kind of approaches has been successful in the solution of different
rich VRPs (Doerner & Schmid 2010).

One alternative to address the set of sub-problems is to solve them in parallel using metaheuristics.
Parallel metaheuristics are commonly used to solve VRPs (Crainic 2008). They focus either on decompos-
ing the solution approach (e.g., using different local search strategies in parallel), or on decomposing the
problem domain (e.g., into geographic zone, or type of vehicle). We follow the latter approach. Successful
examples of this approach include (Taillard 1993) that proposes a parallel tabu search for the capacitated
VRP. In his method, the problem is divided spatially into regions and a problem is solved individually for
each region with tabu search. Doerner et al. (2005) follow the same decomposition principle but use and
savings based ants system (Reimann et al. 2004) for each sub-problem. Taillard (1999) propose a heuristic
column generation for the HVRP. This approach decomposes the HVRP in a set of homogeneous VRP (one
for each type of vehicle), and solve each VRP using an adaptive memory programming procedure. Then,
set partitioning formulation assembles a HVRP solution.

Our method shares the spirit of Taillard (1999). Algorithm 4 describes the general structure of our PMa.
In order to avoid symmetry problems, the algorithm starts by calling the procedure groupTechnicians(T)
–line 2–. This procedure groups the technicians that have the same characteristics (i.e., skills, fixed cost,
working schedule and lunch break), and generates the set E of technician types. Then, the algorithm
invokes the procedure buildCouples(E,K)–line 3–. It builds the set P of all possible couples com-
puting the cartesian product P = E ×K = {(u, k)|u ∈ E, k ∈ K}. Then, the algorithm starts in a parallel
phase –lines 5-9–. In this phase, for each couple p ∈ P it solves a VRP-TWLBp or an eVRP-TWLBp on
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each thread (the problem to be solved depends of the type of vehicle used a CV or an EV). To solve each
(e)VRP-TWLBp we ignore the fleet size and the limit on the number of technicians. Before to solve each
(e)VRP-TWLBp, we call the procedure feasibleRequests(G,p) that identifies the feasible requests
Cp for the couple p ∈ P . The details of this procedure are explained in Section 5.4.1. Then, the algorithm
invokes the metaheuristic GRASP(p,Cp,G) to solve the corresponding (e)VRP-TWLBp –line 7–. This
metaheristic returns a set Ωp of feasible routes for the underlying problem. The set Ωp joins the global set
Ω. After completing the parallel phase, the algorithm calls the procedure SetCovering(G,Ω,K,E)–
line 10–, which solves an extended set covering formulation over Ω to find a feasible TRP-CEV solution.
This formulation includes constraints on the number of technicians and vehicles. Finally, the resulting
solution σ is reported by PMa –line 11–.

Algorithm 4 Parallel matheuristic: General structure
1: function PARALLELMATHEURISTIC(G,T ,K)
2: E ←− groupTechnicians(T)
3: P ←− buildCouples(E,K)
4: Ω←− ∅
5: parallel for each p ∈ P
6: Cp ←− feasibleRequests(G,p)
7: Ωp ←− GRASP(p,Cp,G)
8: Ω←− Ω ∪ Ωp

9: end for
10: s←− SetCovering(G,Ω,K,E)
11: return σ
12: end function

5.4.1 Identifying feasible requests
Considering that each couple p ∈ P has specific features associated to the type of technician, and the

type of vehicle, before solving the (e)VRP-TWLBp we identify the feasible requests Cp for the couple
p ∈ P using a set of criteria. To explain those criteria, we use the notation introduced in Section 5.3, and
we denote u∗ and k∗ be the type of technician and type of vehicle of couple p ∈ P .

Skill criterion: If the type of technician u∗ has at least the required skills of the request i ∈ C (i.e.,
mu∗l ≥ nil, ∀l ∈ S), then the request i ∈ C is part of the set of feasible requests (i.e, Cp = Cp∪{i}).

Time window - working schedule criterion: If the latest time lci of time window request i ∈ C minus
the travel time from depot to request i is greater than the start time of the working schedule of the
type of technician u∗ (i.e, lci − t0i ≥ stu∗); and the earliest time lci of time window request i ∈ C
plus the its service time plus the travel time from request i to depot is lower than the end time of the
working schedule of the type of technician u∗ (i.e, eci + pi + ti0 ≤ etu∗), then Cp = Cp ∪ {i}.

Time window - lunch break criterion: If the time window [eci, lci] of request i ∈ C is not completely
contained in the lunch break of the type of technician u∗ (i.e., [eci, lci] 6⊂ [slu, elu]), then Cp =
Cp ∪ {i}.

Autonomy criterion: If the battery capacity Qk∗ of the type of EV k∗ is greater than the minimum
energy needed to reach request i ∈ C from any CSs or the depot (i.e., Qk∗ ≥ minj∈F∪{0}{ejik∗}),
then Cp = Cp ∪ {i}.

5.4.2 GRASP
To solve the (e)VRP-TWLBp associated to the couple p ∈ P , we developed a GRASP (Feo & Resende

1995). This metaheuristic is a memory-less multi-start method in which local search is applied to several
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initial solutions constructed with a greedy randomized heuristic. GRASP can be hybridized in different
ways, for instance by replacing the local search with an other metaheuristic such as tabu search, simulated
annealing, variable neighborhood search (VND), among others (Resende 2008). In this case, to build the
initial solution we use a randomized Solomon heuristic (RSH). Then at each iteration of the GRASP, we
improve the current solution using a VND (Mladenović & Hansen 1997). At each iteration we add a set of
routes to the pool of routes Ωp. To favour the diversity of the routes in this pool, we add to Ωp the routes
of the initial solution found by RSH and the routes of the local optimum after the VND. The execution of
GRASP stops after I iterations and we add the routes of Ωp to the global pool Ω (i.e., Ω = Ωp ∪Ω). A brief
description of the components of the GRASP follows:

Initial solution

We generate initial solutions for the (e)VRP-TWBLp using a randomized Solomon heuristic (Solomon
1987). In this heuristic, the seed request is randomly selected, and instead of selecting the best insertion, an
insertion is randomly selected among the κ best insertions.

To evaluate the feasibility of a request insertion, we first check if it satisfies the time window, working
schedule, and lunch break constraints. Using the concepts introduced by Savelsbergh (1992), this verifica-
tion is done in constant time. Then, if request is to be inserted on a route covered by an EV, we evaluate if
the insertion satisfies the energy constraint. If it does not, we try to turn the insertion feasible by inserting
visits to CSs into the route. If we cannot achieve our goal, we discard that request insertion.

The problem of inserting visits to CSs into an energy-infeasible route (i.e., a route that is infeasible in
terms of the energy autonomy of the vehicle) can be modelled using a fixed-route vehicle-charging problem
(FRVCP) as in Chapter 4. In this case, the FRVCP has to consider time windows and the working schedule.
We refer to this extension of the FRVCP simply as the FRVCP with time windows (FRVCP-TW). To favour
the computational efficiency during the construction of initial solutions, we use a simple heuristic to solve
the FRVCP-TW. This heuristic is explained in Section 5.5.

Variable neighborhood descent

To improve the solution generated by the RSH we use a VND based on three local search operators 2.
The first two operators, namely, relocated and swap, focus on the request sequencing decisions. On the
other hand, the third operator is an ejection chain, aimed at reducing the number of routes (Rousseau et al.
2002). To evaluate the feasibility of the moves performed by the operators, we use the same steps employed
during the generation of the initial solutions.

Global charging improvement

If the GRASP is solving an eVRP-TWLB, after the VND we try to improve the charging decisions
using a procedure based on the approach introduced in Section 4.3.2. This procedure called global charging
improvement, or GCI, is applied to every route visiting at least one CS. The procedure works as follows.
First, it removes from the route all visits to CSs. If the resulting route is energy-feasible, the procedure
stops. If the route is energy-infeasible, the procedure solves a FRVCP-TW on the concerned route. In this
case, to solve the FRVCP-TW we use a commercial optimizer to solve an MILP formulation of the problem.
Full details on the MILP formulation of the FRVCP-TW are given in Section 5.5.

5.4.3 Set covering
To find a feasible TRP-CEV solution, we solve a set-covering (SC) formulation over the pool of routes

Ω. To formulate the SC we use the following parameters: cr is the cost of the route r ∈ Ω, bri is equal to

2In our implementation we use intra-route and inter-route versions with best-improvement selection.
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1 if route r ∈ Ω serves request i ∈ C and 0 otherwise, pvrk is equal to 1 if route r ∈ Ω is performed by
a vehicle of type k ∈ K and 0 otherwise, hru is equal to 1 if route r ∈ Ω is performed by a technician of
type u ∈ E and 0 otherwise, and nu is the number of technicians of type u ∈ E. We denote by χr a binary
decision variable that takes the value of 1 if route r ∈ Ω is selected and 0 otherwise. We formulate the SC
as follows:

min
∑
r∈Ω

cr · χr (5.47)

Subject to ∑
r∈Ω

brj · χr ≥ 1 ∀j ∈ C (5.48)∑
r∈Ω

pvrk · χr ≤ mk ∀k ∈ K (5.49)∑
r∈Ω

hru · χr ≤ nu ∀u ∈ E (5.50)

χr ∈ {0, 1} ∀r ∈ Ω (5.51)

The objective function (5.47) seeks to minimize the total cost. Constraints (5.48) ensure that each
request is served at least once. Constraints (5.49) impose the maximum number of vehicles of each type.
Constraints (5.50) impose the maximum number of technicians of each type. Finally, constraints (5.51)
define the domain of the decision variables.

Considering that the requests must be served exactly once, a set-partitioning problem may seem more
appropriate. However, as pointed out by Pillac et al. (2013) for a similar technician problem, finding a good
combination of routes that visit all requests exactly once could be complex in some cases. Therefore, we
opted to use a SC formulation instead of a set-partitioning formulation. In the case that the solution found
by the SC formulation serves a request more than once, we remove the most costly duplicate visits using a
greedy heuristic.

5.5 The fixed-route vehicle charging problem with time windows
As previously mentioned, our GRASP for the eVRP-TWLB relies on solving the FRVCP-TW when we

have to take the charging decision of a given route. This problem is an extension of the FRVCP introduced
in Section 4.3, that includes the time window constraints, and the working schedule of the technician.

Let Π = {π(0), π(1), ..., π(i), ..., π(j), ..., π(nr)} be a route that violates the energy constraint, where
π(0) and π(nr) represent the depot. The feasibility of Π may be restored by inserting visits to CSs. The
route Π is performed by a technician u ∈ T using an EV of type k ∈ Ke. The technician has a work-
ing schedule [stu, etu] and a lunch break [slu, elu]. For the route Π, we consider as fixed the decisions
between which vertices the technician takes the lunch break. Let π(s) and π(e) be the requests served
right before and after the lunch break. To model the lunch break into the route Π, we create a dummy
vertex π(l), which has a time window [slu, slu], and a service time pl = elu − slu. Then, we define
Π = {π(0), ..., π(s), π(l), π(e), ..., π(nr)} as the route that includes the dummy vertex π(l). Using the
notation introduced in section 5.3, if the technician takes the lunch break before travelling from π(s)
to π(e), then dπ(s)π(l) = 0, tπ(s)π(l) = 0, eπ(s)π(l)k = 0, and dπ(l)π(e) = dπ(s)π(e), tπ(l)π(e) = tπ(s)π(e),
eπ(s)π(l)k = eπ(s)π(e)k. On the contrary, if the technician takes the lunch break after travelling from π(s) to
π(e), then dπ(s)π(l) = dπ(s)π(e), tπ(s)π(l) = tπ(s)π(e), eπ(s)π(l)k = eπ(s)π(e)k, and dπ(l)π(e) = 0, tπ(l)π(e) = 0,
eπ(s)π(l)k = 0.

In the FRVCP-TW the objective is to find the charging decisions that minimize the sum of the travel
cost, the fixed charging cost, and the parking cost, satisfying the following conditions: the level of the
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battery when the vehicle arrives at any vertex is nonnegative; the requests must be visited within their time
windows; and the route satisfies the working schedule and the lunch break of the technician.

We model the FRVCP-TW using an MILP formulation with the following decision variables: variable
επ(i)j is equal to 1 if the vehicle charges at CS j ∈ F before visiting vertex π(i) ∈ Π. Variable φπ(i) tracks
the battery level. If επ(i)j = 0, φπ(i) is the battery level when the EV arrives at vertex π(i). On the other
hand, if επ(i)j = 1, φπ(i) is the battery level when the vehicle arrives at CS j ∈ F right before visiting vertex
π(i). Variable γπ(i)j represents the energy charged at CS j ∈ F before visiting vertex π(i) ∈ Π. Variables
qπ(i)j and oπ(i)j represent the battery level when the EV arrives at and departs from CS j ∈ F before visiting
vertex π(i) ∈ Π. Variables απ(i)jl and βπ(i)jl are equal to 1 if the battery level is l ∈ B when the EV arrives
at and departs from the CS j ∈ F before visiting vertex π(i) ∈ Π, respectively. Variable δπ(i)j represents
the time spent at CS j ∈ F before visiting vertex π(i) ∈ Π. Variable τπ(i) represent the arrival time at the
vertex π(i) ∈ Π. The MILP formulation of the FRVCP-TW follows:

min
∑

π(i)∈Π\{π(0)}

∑
j∈F

(
tck · (dπ(i−1)j + djπ(i) − dπ(i−1)π(i)) · επ(i)j + gk · επ(i)j + pcj · δπ(i)j

)
(5.52)

Subject to

φπ(1) = Qk −
∑
j∈F

eπ(0)jk · επ(1)j − eπ(0)π(1)k · (1−
∑
j∈F

επ(1)j) (5.53)

φπ(i) = φπ(i−1) +
∑
j∈F

γπ(i−1)j −
∑
j∈F

ejπ(i−1)k · επ(i−1)j−∑
j∈F

eπ(i−1)jk · επ(i)j − eπ(i−1)π(i)k · (1−
∑
j∈F

επ(i)j) ∀π(i) ∈ Π \ {π(0), π(1), π(nr)} (5.54)

φπ(nr) = φπ(nr−1) +
∑
j∈F

γπ(nr−1)j +
∑
j∈F

γπ(nr)j−∑
j∈F

ejπ(nr−1)k · επ(nr−1)j −
∑
j∈F

(
eπ(nr−1)jk + ejπ(nr)k

)
· επ(nr)j−

eπ(nr−1)π(nr)k ·
(

1−
∑
j∈F

επ(nr)j

)
(5.55)

φπ(nr−1) +
∑
j∈F

γπ(nr−1)j −
∑
j∈F

ejπ(nr−1)k · επ(nr−1)j−∑
j∈F

eπ(nr−1)jk · επ(nr)j ≥ 0 (5.56)

φπ(i) −Qk · (1− επ(i)j) ≤ qπ(i)j ≤ φπ(i) +Qk · (1− επ(i)j) ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.57)

oπ(i)j = qπ(i)j + γπ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.58)∑
l∈B

l · απ(i)jl ≤
qπ(i)j

Qk
· 100 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.59)

∑
l∈B

l · απ(i)jl ≥
qπ(i)j

Qk
· 100− 1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.60)

∑
l∈B

l · βπ(i)jl ≥
oπ(i)j

Qk
· 100 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.61)

∑
l∈B

l · βπ(i)jl ≤
oπ(i)j

Qk
· 100 + 1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.62)∑

l∈B

απ(i)jl ≤ επ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.63)∑
l∈B

βπ(i)jl ≤ επ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.64)

δπ(i)j =
∑
l∈B

ajklβπ(i)jl −
∑
l∈B

ajklαπ(i)jl ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.65)

τπ(i) ≥ τπ(i−1) + pπ(i−1) +
∑
j∈F

επ(i)j ·
(
tπ(i−1)j + tjπ(i)

)
+
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tπ(i−1)π(i) ·
(

1−
∑
j∈F

επ(i)j

)
+
∑
j∈F

δπ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (5.66)

ecπ(i) ≤ τπ(i) ≤ lcπ(i) ∀π(i) ∈ Π \ {π(0), π(nr)} (5.67)

stu ≤ τπ(i) ≤ etu ∀π(i) ∈ Π (5.68)∑
j∈F

επ(i)j ≤ 1 ∀π(i) ∈ Π (5.69)

γπ(i)j ≤ Qk · επ(i)j ∀π(i) ∈ Π,∀j ∈ F (5.70)

γπ(i)j ≥ 0, δπ(i)j ≥ 0 ∀π(i) ∈ Π,∀j ∈ F (5.71)

επ(i)j ∈ {0, 1} ∀π(i) ∈ Π,∀j ∈ F (5.72)

φπ(i) ≥ 0 ∀π(i) ∈ Π (5.73)

απ(i)jl ∈ {0, 1}, βπ(i)jl ∈ {0, 1}, ∀π(i) ∈ Π,∀j ∈ F,∀l ∈ B (5.74)

qπ(i)j ≥ 0, oπ(i)j ≥ 0, ∀π(i) ∈ Π,∀j ∈ F (5.75)

The objective function (5.52) seeks to minimize the total cost given by the sum of the travel cost, the
fixed charging cost, and the parking cost. Constraints (5.53-5.56) define the battery level when the EV
arrives at vertex π(i) ∈ Π if επ(i)j = 0, or to CS j ∈ F before visiting vertex π(i) ∈ Π, if επ(i)j = 1.
Constraints (5.57 and 5.58) define the battery level when the EV arrives at and departs from CS j ∈ F .
Constraints (5.59-5.64) define the battery level in percentage when the EV arrives at or depart from CS
j ∈ F . Constraints (5.65) define the time spent at each visited CS. Constraints (5.66) track the arrival time
at each vertex. Constraints (5.67) ensure that every vertex is visited within its time window. Constraints
(5.68) impose the working schedule of the technician. Constraints (5.69) state that only one CS is visited
between any two vertices of the fixed route. Constraints (5.70) ensure that the EV charges only at a visited
CSs. Finally, constraints (5.71-5.75) define the domain of the decision variables.

To solve the FRVCP-TW, we use two different solution approaches. The first solves the MILP formula-
tion introduced using a commercial optimizer (we use this approach in the GCI component). The second is
a greedy heuristic (we use this approach in the initial solution and the VND component).

5.5.1 Greedy heuristic
We extended here the heuristic proposed in Section 4.3.2 to include the time window constraints. Algo-

rithm 5 describes the structure of our heuristic. It uses five important procedures trackTimeVariables(·),
trackBattery(·), sumNegative(·), totalCost(·), and copyAndInsert(·). Procedure track-
TimeVariables(·) computes the earliest departure time Dπ(i) and the latest feasible arrival times Lπ(i)

at each vertex π(i) ∈ Π. Procedure trackBattery(·) computes the battery level Yπ(i) at each vertex
π(i) ∈ Π. Note that Yπ(i) may take negative values. Procedure sumNegative(·) computes the sum of
the battery levels with negative values (i.e., sn =

∑
π(i)∈Π min{0, Yπ(i)}). Procedure totalCost(·) com-

putes the total cost c of the route. Finally, procedure copyAndInsert(·) takes as input a fixed route,
a CS, and a position in the route; and returns a copy of the fixed route with the CS inserted at the given
position.

The heuristic starts computing Dπ(i), Lπ(i) for each vertex, and the sum sn of the battery levels with
negative values for the current fixed-route Π (line 2-7). Then the heuristic enters the outer loop (line 8-38).
In each pass through the inner loop (line 9-31), the heuristic: i) computes a slack time st at CS Fj between
the vertices π(i) and π(i + 1) ∈ Π, and evaluates if the slack time is positive (line 11-12), ii) computes Y ′

and sn, considering that the amount of charge at the inserted CS Fj is min{ω(st), ec,Qk}, where ω(st) is
the the amount of energy that the EV can charge in st time units, and ec is the energy needed to complete
the fixed route (reach the depot) from CS Fj , iii) selects the insertion that maximizes sn (lines 18-22). If
sn = 0 (i.e., the route is energy-feasible), the heuristic selects the insertion (CS and position) that minimizes
the cost of the route c (line 23-28). If there is at least one feasible insertion (i.e, insertion=true), then the
heuristic performs the selected insertion (line 32-34). When no feasible insertion exists, the route can not be
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repaired and the algorithm stops (line 35-36). If after inserting the CS, the route Π is still energy-infeasible
(i.e., sn < 0), the heuristic starts again at line 9 and tries to insert additional CSs until feasibility in terms
of energy is reached.

Algorithm 5 Greedy heuristic

1: function GREEDYHEURISTIC(Π
0
,F )

2: Π←− Π0

3: < D,L >←− trackTimeVariables(Π)
4: Y ←− trackBattery(Π)
5: sn←− sumNegative(Y )
6: c←−∞
7: insertion←− false
8: while sn < 0 do
9: for j = 1 to |F | do

10: for i = 0 to nr − 1 do
11: st←− Lπ(i+1) −Dπ(i) − tπ(i)Fj

− tFj ,π(i+1)

12: if st ≥ 0 then
13: Π′ ←− copyAndInsert(Π, Fj, i)
14: Y ′ ←− trackBattery(Π′)
15: sn′ ←− sumNegative(Y ′)
16: c′ ←− totalCost(Π′)
17: insertion←− true
18: if sn′ > sn then
19: sn←− s′

20: u←− j
21: v ←− i
22: end if
23: if sn′ = 0 and c′ < c then
24: sn←− s′

25: c←− c′

26: u←− j
27: v ←− i
28: end if
29: end if
30: end for
31: end for
32: if insertion= true then
33: Π←− copyAndInsert(Π′, Fu, i)
34: < D,L >←− trackTimeVariables(Π)
35: else
36: return false, Π
37: end if
38: end while
39: return true, Π
40: end function
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5.6 Computational experiments

5.6.1 Test instances for the TRP-CEV
We generate a set of large instances using the data of ENEDIS operation. Maintenance and repair

operation of ENEDIS is divided into geographic zones. Each zone has a depot where the technicians start
and end their routes. We have 14 test instances classified according to the type geographic zone: four urban,
five semi-urban and five rural instances. The number of requests ranges between 54 and 167. The location,
time windows, service time, and required skills of the requests come from ENEDIS data. To complete
the instances, we added the actual CSs located in the geographic zone of the requests. We obtained the
information about of the location and type of technology (i.e., protocol and charging mode) from the open
data platform of the French government (Quest 2014). To compute the distance and travel time matrices,
we use road network data from Open Street Maps (OSM). Furthermore, to build the energy consumption
matrices, we use the energy consumption equations model of De Cauwer et al. (2015). As input of those
equations, we use fine-grained information on the roads (e.g., distance, speed, elevation) from OSM and
NASA, weather information from Metéo France, and real EV parameters (e.g, mass, rolling resistance).

The number of available technicians ranges between 9 and 12. The number of considered skills is two.
The skills, working schedule, and lunch break of each technician correspond to real data of the operation.
For confidentiality reasons, the cost of this problem was modified but we respect the magnitude and the
structure of the ENEDIS operation costs. We consider one type of CVs (Renault Kangoo) and two types of
EVs (Renault Kangoo ZE and Peugeot Ion). We took all data related to EVs features from technical sources
and specialized websites (Renault 2014, Peugeot 2015, Automobile-propre 2015, Uhrig et al. 2015). In
order to better understand the results of the following sections, it is important to know that the travel cost of
a Renault Kangoo is much higher than that of a Renault Kangoo ZE and a Peugeot Ion (i.e., 1 vs. 0.08 and
0.06 e/km). For each instance, we generate 5 scenarios changing the percentage of EVs in the fleet (0%,
20%, 40%, 60%, 80% and 100%).

In order to compare the results of our PMa against optimal solutions, we generate a set of small instances
with 5 or 10 requests, and 2 or 3 technicians and vehicles. These small instances can be solved using the
MILP formulation of the TRP-CEV. To generate each small instance, we randomly selected a large instance,
and then randomly drawn from it, requests, technicians, and types of vehicles (ensuring that at least one
vehicle is an EV). Our large and small instances are publicly available at www.vrp-rep.org (Mendoza
et al. 2014).

5.6.2 Parameter settings & experimental environment
The parameters of our PMa is the number of iterations of the GRASP component (i.e., I) and the κ best

insertion of the randomized Solomon heuristic. To fine tune I and κ, we conducted a short computational
study. For the sake of brevity we do not discuss the study in this chapter. Our results showed that I = 50
and κ = 10 provides the best trade-off between solution quality and computational performance. Although,
I = 50 may seem as a small number of iterations, notice that the GRASP component is used to feed the
pool of routes Ω for each couple < k, u >. A large pool of routes impacts the performance of the solution
of the SC formulation.

We implemented our PMa in Java (jre V.1.8.0) and used Gurobi Optimizer (version 6.0) to solve the
FRVCP-TW and the SC formulation. We set a time limit of 800 seconds on Gurobi to control the running
time of the SC. All the experiments were run on a computing cluster with 2.33 GHz Intel Xeon E5410
processors with 16 GB of RAM running under Linux Rocks 6.1.1.

5.6.3 Performance of PMa
Since the TRP-CEV is a new problem, there are no results or algorithms to benchmark against. To get

an idea of the quality of the solutions delivered by our PMa, we conducted different experiments. We ran

www.vrp-rep.org
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our PMa on the small instances and compared their results with optimal solutions found using the MILP
formulation. Furthermore, we ran our PMa on a set of 14 private industrial-scale instances of ENEDIS and
compared our results with solutions found by the routing tool used by the company. Finally, we ran our
PMa on a set of instances of a problem related with the TRP-CEV, and compared our results with the results
obtained by the approach proposed in the literature.

Results on small TRP-CEV instances

Table 5.1 compares the results of our PMa with the optimal solution on the small instances of the TRP-
CEV. In this table, we compare the results under the light of four metrics: the number of optimal solutions
found, the average gap with respect to the optimal solution over the 10 runs, the average best gap3, and the
average computing time. The results of this table suggest that PMa is able to deliver high-quality TRP-CEV
solutions for small instances. PMa matched the 10 optimal solutions and the values reported for Avg. Gap
shows that our approach is stable for those instances. Appendix A.3 presents detailed results for the 10
instances.

Table 5.1 – Comparison of the PMa on small instances with proven optima

Metric PMa

Number of optimal solutions 10/10
Avg. Gap (%) 0.00
Avg. Best Gap (%) 0.00
Avg. Time (s) 0.55

Results on private industrial-scale instances

Table 5.2 compares the results of our PMa with the results of the professional routing tool currently
deployed at ENEDIS on the set of large instances. It is worth noting that their tool cannot deal with EVs.
Therefore, the instances used in this section only consider CVs. Table 2 uses the same metrics of Table 1,
but the number of optimal solutions is replaced by the number of best known solutions (BKSs) found by
the routing software or by our PMa. Since we only have one solution of the routing tool for each instance,
we only compute the average gap for the routing software 4.

Table 5.2 – Comparison of the PMa with the routing software used by ENEDIS

Metric Routing software PMa

Number of BKSs 0/14 14/14
Avg. Gap (%) 6.56 2.71
Avg. Best Gap (%) - 0.00
Avg. Time (min) - 3.39

The results in Table 5.2 show that our PMa consistently outperforms the current routing tool used by
the company. It not only found the 14 BKSs but also reported a significantly lower average gap (2.71% vs.
6.56% ).

3The best gap is the gap between the best solution found over 10 runs and the optimal solution
4For confidentiality reasons, we do not report detailed results for each instance in this testbed
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Results for the E-FSMFTW instances

Hiermann et al. (2016) recently introduced the closely-related E-FSMFTW. This problem consists in
routing an unlimited heterogeneous fleet of EVs to serve a set of geographically scattered requests within
their time windows. For this problem Hiermann et al. (2016) assume that customers have a positive demand,
the EVs have limited hauling capacity, all CSs have the same technology, the EVs charge fully their battery
at CSs, the charging function is linear, the consumption rate is constant, and the EVs have a fixed cost. The
objective function of E-FSMFTW seeks to minimize the sum of the cost of the fixed cost of used vehicles
plus the total travelled distance.

We adapted our PMa to solve the E-FSMFTW instances. It is worth noting that we do not aim to
establish new state-of-the-art results for the E-FSMFTW. We rather want to show that our PMa can also be
competitive on a related problem with only mild modifications.

Hiermann et al. (2016) proposed a set of 108 small instances with the number of customers ranging
from 5 to 15, and a set of 168 large instances with 100 customers and 21 CSs. To solve those instances,
Hiermann et al. (2016) propose an adaptive large neighbourhood search (ALNS) and a branch-and-price
(BnP). Their BnP was able to obtain the optimal solution within the time limit of two hours for all the small
instances.

Tables 5.3 and 5.4 summarize the results delivered by our PMa and their ALNS on the small and large
E-FSMFTW instances. For the small instances, we compare the results obtained by PMa and ALNS with
the optimal solutions obtained by BnP. For the large instances, we compare the results obtained by PMa
and ALNS with the BKSs taken from Hiermann et al. (2016) 5 and updated with some new BKSs found
by our PMa. The results of the PMa and ALNS are computed over 10 runs. It is important to mention,
that Hiermann et al. (2016) only report the average cost of the solutions that they obtained for each large
instances. Appendix A.4 reports the detailed results of this experiment.

Table 5.3 – Comparison of our PMa with the ALNS by Hiermann et al. (2016) on small instances

Metric ALNS PMa

Number of optimal solutions 108/108 81/108
Avg. Gap (%) 0.55 0.32
Avg. Best Gap (%) 0.00 0.31
Avg. Time (min) 0.32 0.06

Computer Core2 Quad XEON E5410
with 2.4 GHz with 2.33 GHz

Table 5.4 – Comparison of our PMa with the ALNS by Hiermann et al. (2016) on large instances

Metric ALNS PMa

Number of BKS NR 69
Avg. Gap (%) 1.18% 2.20%
Avg. Best Gap (%) NR 1.52%
Avg. Time (min) 22.66 25.17

Computer Intel Core2 Quad XEON E5410
CPU Q6600 with 2.4 GHz with 2.33 GHz

On the small instances, PMa delivered competitive results with respect to ALNS. Although, PMa just
matched 81 optimal solutions, its average gap is smaller than the achieved by ALNS (0.32% vs 0.55%). In
terms of CPU time, PMa is faster than the ALNS.

5Hiermann et al. (2016) report the BKSs obtained using BnP or any run of their experiments
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The results for large instances show that PMa obtains competitive results, especially considering that it
was not originally conceived to tackle the E-FSMFTW (Table 5.4). Our PMa matched 69/168 BKSs; 61
are new BKSs 6. However, the PMa has a higher average gap (1.18% vs 2.20%). After carefully analyzing
the results, we believe this behavior may be explained by the characteristic of the Hiermann et al. (2016)
instances. Indeed, in their instances, since some of the EVs have an autonomy of about 50 km (which is
much lower than in reality). In consequence, it is possible that in order to reach some isolate customers it
may be interesting (from a cost point of view) to visit more than one CSs between two customers. Now, this
possibility is ruled out in our PMa. Note that in the definition of our FRVCP-TW visiting more than one CS
between two customers (hereafter called multiple consecutive visits) is forbidden. This was a deliberated
design decision motivated by three interrelated reasons. First, forbidding multiple consecutive visits vastly
simplifies and speeds up solving the FRVCP-TW (either with the heuristic or the solver). Second, we
conceived our algorithm to work on a problem where there is fixed cost for charging that largely offsets the
driving cost of an EV. Therefore, multiple consecutive visits are naturally discourage. Third, our algorithm
is meant to be used in a real-world context, where EVs have larger autonomies and, therefore, are less likely
to require multiple consecutive visits to reach a customer. We believe that the trade off between missing
some high-quality routes during the search and having a faster and simpler algorithm is positive.

5.6.4 Managerial insight
ENEDIS is starting the migration from a fleet of CVs to a mixed fleet of CVs + EVs. This process

raises a number of managerial questions regarding the fleet composition and the best strategies to exploit
EVs. To help managers answering those questions, we conducted a study analyzing the impact of the fleet
composition and the access to charging infrastructure in the feasibility and quality of TRP-CEV solutions.
To conduct this study, we used the 84(= 14 × 6) instances described in Section 5.6.1. For each instance
we ran our PMa 10 times and report average results. We analyze the data under the light of 4 metrics that
are important to ENEDIS managers: the total cost (and how it is split between fixed and variable costs), the
total CVs emissions 7, the number of visited CSs, and the number of routes.

Fleet composition analysis

We analyse in this section the behavior of the metrics when the proportion of EVs in the fleet changes.
Figure 5.1 shows of each fleet composition: the average fixed, variable and total cost. The symbol N.F.
indicates that in none of the 10 runs, our PMa could find a feasible solutions for the instance under the
given fleet composition. The latter is the case for every rural instance when the fleet is entirely composed
of EVs. Notice that a pathological case is observed on instance rural_21. A close look at the instance
data reveals that the requests are particularly scattered over a large geographical region. In consequence,
EVs need to charge their batteries quite often. Since charging the battery is a time-consuming process,
the resulting routes are long (in terms of travel time) and difficult (if not impossible) to conciliate with the
technicians’ availability schedules.

The data on the fixed costs reported in Figure 5.1 shows an interesting and somehow unexpected be-
havior. It is worth reminding that in our problem the fixed costs are directly (and exclusively) related to
the number of routes. Intuition says that on instances in which the fleet is composed mainly of EVs more
routes would be needed to service requests. The reason is that routes covered with EVs tend to serve fewer
requests than routes covered with CVs (because the EV spends a portion of their available time on charging
operations). The data, however, shows that (at least on our instances) the fixed cost remain constant across
the different fleet compositions.

6Notice that, because of Hiermann et al. (2016) just report the average solution, we could not compute the number of BKSs
and the average best gap for the ALNS

7This values were calculated by multiplying the distance travelled by the CVs by a constant emission rate available in their
technical information
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A more intuitive result comes from the data on the variable costs. As Figure 5.1 shows, the variable costs
decrease when the proportion of EVs in the fleet composition increases. This result is largely explained by
the considerably higher cost per kilometre allocated to CVs with respect to EVs. It is worth noting that
variable costs are higher on rural instances than in semi-urban and urban instances. The reason is simply
that in rural operations vehicles travel larger distances. For instances, the average travelled distance per
served request is 9.52 km on rural instances compared to 3.74 km and 1.94 km for the semi-urban and
urban instances, respectively.
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Figure 5.1 – Average fixed (i.e., the fixed cost of each technician), variable (i.e., the sum of the total travel
cost, fixed charging cost and parking cost), and total cost for each instance for each fleet composition.

Figure 5.2a shows the Kg of CO2 emitted (on average) by the CVs employed in the solutions to each
instance for each fleet composition. As expected, the emissions decrease when the proportion of EVs in the
fleet increases. Notice that rural instances represent the most significant potential for emission reductions
because vehicles travel longer distances. Finally, Figure 5.2b shows the maximum number of visited CSs
in a solution over the 10 runs of each instance for each fleet composition. Note that only the solutions of
the rural instances include routes visiting CSs. This behavior is expected because requests are geograph-
ically dispersed in those instances. This result confirms eVRPs arise mainly in the rural and semi-urban
operations.

Access to charging infrastructure

Up to today, ENEDIS does not own charging infrastructure outside their depots. Therefore, the mid-
route recharges take place in public CSs. For a number of reasons ranging from difficult access to high
charging costs, ENEDIS would prefer to avoid mid-route charging at public stations. To help them evaluate
the impact of disallowing mid-route charging outside the depot on the quality and feasibility of TRP-CEV
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(b) Maximum number of visited CSs.

Figure 5.2 – Average emission (in Kg CO2 per Km) and maximum number of visited CSs in a solution of
each instance for each fleet composition.

solutions, we conducted a small study. We ran our PMa on the rural instances with 20% to 80%8 of EVs in
the fleet, considering that the EVs departs from the depot with the battery full. We compared these results
to those obtained in the experiments reported in Section 5.6.4.

We were able to obtain feasible solutions for all the tested instances. However, our results suggest that
disallowing mid-route charging has a impact on the quality of the solution. Figure 5.3 shows the average
gap between the cost of the solutions with and without the option of visiting CSs 9.

The increment on the cost is explained by two factors: i) the solutions employed more vehicles, and ii)
CVs have to travel more distance (which leads to higher travel costs). Figure 5.4a shows the comparison
of the maximum number of routes over the 10 runs with and without the option of visit the CSs. Although
in most of cases the number of vehicles is the same, for instances rural_18 and rural_22 the solutions
employ an additional route when EVs are 80% of the fleet. This explains the large gap shown in Figure 5.3
for these instances. Figure 5.4b shows the gap in the average travelled distance of the CVs on the instances
without mid-route charge with respect to the original solutions reported in Section 5.6.4. Since the EVs can
not use the CSs, their autonomy is limited to the battery level when they leave the depot. Then, the CVs
have to visit more request, and thus they have to travel more distance.

8Note that re-running the algorithm on instances with no EVs in the fleet would lead to the same solutions and that running
the algorithm on instances with only EVs on the fleet would lead again to unfeasible solutions

9G(%) = (costwithoutCSs − costwithCSs)/costwithCSs × 100
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Figure 5.4 – Factors explaining the increment on the cost when the visits to the CSs are forbidden

5.7 Conclusion
In this chapter, we introduce what we call the technician routing problem with conventional and elec-

tric vehicles (TRP-CEV). The TRP-CEV is largely inspired by a problem faced by ENEDIS in their daily
operations. This problem consists in routing a set of technicians to serve a set of requests, using a fleet
composed by EVs and CVs of different types. This problem considers several real-life constraints such as:
time windows on the requests; technician skills, working schedules and lunch breaks; skills incompatibility
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between technicians and requests; incompatibility between CSs and EVS; nonlinear battery charging func-
tions; and a limited number of vehicles for each type. Decisions that must be taken simultaneously are the
vehicle-to-technician assignment, the sequencing of the routes, and the battery charging program.

To solve the TRP-CEV we proposed a parallel matheuristic (PMa). This approach decomposes the
TRP-CEV into a set of VRP-TW and eVRP-TW with lunch break (one for each couple technician-vehicle),
and solves each sub-problem in parallel using a greedy randomized adaptive search procedure (GRASP).
Later, PMa uses a set covering model to assemble a TRP-CEV solution. We built a set of real instances
based on the ENEDIS operation. The aim of these instances is to evaluate the performance of the PMa,
and to analyse the features of the solutions under the light of some important metrics for ENEDIS. The
proposed PMa provides competitive results when compared against the current routing software used by
the company and state-of-the-art methods for a related problem (the EFSMTW). Finally, we analyzed the
solutions delivered by PMa for the TRP-CEV aiming to provide ENEDIS team with some insight about
the behaviour of costs, emissions, and visits to CSs for different compositions of the fleet. Our analysis
concluded that the cost decreases in function of the number of EVs in the fleet, and that the visits to the CSs
are relevant only for the rural instances.

5.8 Nomenclature

5.8.1 Notation for the problem description
G: TRP-CEV underlying graph G = (N,A).
N : Set of vertices of G.
0: Depot.
C: Subset of N representing the requests.
F : Subset of N representing the CSs.
S: Set of skills.
T : Set of technicians.
K: Set of types of vehicles.
Ke: Set of types of electric vehicles.
Kc: Set of types of conventional vehicles.
A: Set of arcs in G.
B: Set of battery levels in percentage.
pi: Service time at request i ∈ C.
pci: Parking cost at CS i ∈ F .
[eci, lci]: Time window at request i ∈ C.
fu: Fixed cost of technician u ∈ T .
su: Subset of skills of technician u ∈ T .
[stu, etu]: Working schedule of technician u ∈ T .
[slu, elu]: Lunch break of technician u ∈ T .
fcu: Consumption factor of the technician u ∈ T .
mk: Number of vehicles of type k ∈ K in the fleet.
tck: Unitary travel cost of type of vehicle k ∈ K.
gk: Fixed cost of recharging the battery of vehicles type k ∈ Ke

Qk: Battery capacity of vehicles of type k ∈ K.
Fk: Subset of CS, where of vehicles of type k ∈ K can charge.
aikl: Charging time of a vehicle of type k ∈ Ke charging from zero to l ∈ B percent of the battery
at CS i ∈ F .
dij: Distance between vertices i and j (i, j ∈ N ).
tij: Travel time between vertices i and j (i, j ∈ N ).
eijk: Energy consumption between vertices i and j (i, j ∈ V ) of the type of vehicle k ∈ Ke.
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5.8.2 Notation for the MILP formulation
F ′: Set containing the set F and the copies of CSs.
N ′: Set of vertex containing the set F ′.
V : Set of vehicles.
Ve: Set of electric vehicles.
Vc: Set of conventional vehicles.
nil: Binary parameter, equal to 1 if request i ∈ C requires a technician with skill l ∈ S, and 0
otherwise.
mul: Binary parameter, equal to 1 if technician u ∈ T has skill l ∈ S, and 0 otherwise.
hik: Binary parameter, equal to 1 if the EV k ∈ Ve can charge at CS i ∈ F ′.
Smax: Maximum charging time of any charging function.
xijku: Binary variable, equal to 1 if technician u ∈ T travels from vertex i to j in vehicle k ∈ V ,
and 0 otherwise.
τiu: Arrival time of technician u ∈ T at vertex i ∈ N ′.
yik: Battery level of EV k ∈ Ve upon departure from vertex i ∈ N ′.
qik: Battery level when EV k ∈ Ve arrives at CS i ∈ F ′.
oik: Battery level when EV k ∈ Ve departs from CS i ∈ F ′.
αikl: Binary variable, equal to 1 if the battery level is l ∈ B when vehicle k ∈ Ve arrives at CS
i ∈ F ′.
βikl: Binary variable, equal to 1 if the battery level is l ∈ B when vehicle k ∈ Ve departs from CS
i ∈ F ′.
∆ik: Time spent by vehicle k ∈ Ve at CS i ∈ F ′.
wiju: Binary variable, equal to 1 if technician u ∈ T takes the lunch break between the vertex i ∈ N ′
and j ∈ N ′ and 0 otherwise.
ziju: Binary variable, equal to 1 if the technician u ∈ T takes the lunch break after travelling from
vertex i to j ∈ N ′ and 0 otherwise.
z
′
iju: Binary variable, equal to 1 if the technician u ∈ T takes the lunch break before travelling from

vertex i to j ∈ N ′, and 0 otherwise.

5.8.3 Notation for the PMa
E: Set of technician types.
P : Set of couples type of vehicle - type of technician.
Cp: Set of feasible request for couple p ∈ P .
Ωp: Pool of routes found for couple p ∈ P .
Ω: Global pool of routes.
σ: TRP-CEV solution.
I: Number of iterations of GRASP.
κ: The list size of the best insertion of the randomized Solomon heuristic.
cr: Cost of the route r ∈ Ω.
bri: Binary parameter, equal to 1 if route r ∈ Ω serves request i ∈ C and 0 otherwise.
pvrk: Binary parameter, equal to 1 if route r ∈ Ω is performed by a vehicle of type k ∈ K and 0
otherwise.
hru: Binary parameter, equal to 1 if route r ∈ Ω is performed by a technician of type u ∈ E and 0
otherwise.
nu: Number of technicians of type u ∈ E.
χr: Binary variable, equal to 1 if route r ∈ Ω is selected and 0 otherwise.
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5.8.4 Notation for the FRVCP-TW
Π: Route that violates the energy constraint.
Π: Route that includes the dummy vertex associated to the lunch break.
επ(i)j: Binary variable, equal to 1 if the vehicle charges at CS j ∈ F before visiting vertex π(i) ∈ Π.
If επ(i)j = 1, φπ(i) is the battery level when the vehicle arrives at CS j ∈ F right before visiting
vertex π(i).
φπ(i): Battery level if επ(i)j = 0, φπ(i) is the battery level when the EV arrives at vertex π(i).
απ(i)jl: Binary variable, equal to 1 if the battery level is l ∈ B when the vehicle arrives at j ∈ F
before visiting vertex π(i) ∈ Π.
βπ(i)jl: Binary variable, equal to 1 if the battery level is l ∈ B when the vehicle arrives at and departs
from CS j ∈ F before visiting vertex π(i) ∈ Π.
γπ(i)j: Energy charged at CS j ∈ F before visiting vertex π(i) ∈ Π.
qπ(i)j: Battery level when the EV arrives CS j ∈ F before visiting vertex π(i) ∈ Π.
oπ(i)j: battery level when the EV departs from CS j ∈ F before visiting vertex π(i) ∈ Π
δπ(i)j: Spent time at CS j ∈ F before visiting vertex π(i) ∈ Π.
Dπ(i): Earliest departure time at vertex π(i) ∈ Π.
Lπ(i): Latest feasible arrival time at vertex π(i) ∈ Π.
Yπ(i): Battery level at vertex π(i) ∈ Π.
c: Total cost of the route.
sn: Sum of the battery levels with negative values.



Chapter 6

General conclusions & perspectives

This final chapter summarizes the contributions of the thesis and offers future research directions.
This thesis is devoted to study the electric vehicle routing problems (eVRPs). These problems extend

classical VRPs to consider the main features of electric vehicles (EVs). Despite some researchers have
started to study these kind of problems, the gap with classical models and, most importantly, real-world
applications is still significant. Therefore, the purpose of this thesis was to contribute to closing that gap.

In Chapter 2, we proposed a simple yet effective two-phase heuristic to tackle the Green VRP. In the first
phase our heuristic builds a pool of routes via a set of randomized route-first cluster-second heuristics with
an optimal station insertion procedure. In the second phase our approach assembles a Green VRP solution
by solving a set partitioning formulation over the columns (routes) stored in the pool. To test our approach,
we performed experiments on a set of 52 instances from the literature. The results showed that our heuristic
is competitive with state-of-the-art methods. Our heuristic unveiled 8 new best-known solutions, matched
another 40, and delivered solutions with an average gap of 0.14% for the 4 remaining instances.

The Green VRP and most of the existing eVRP studied in the literature rely on one (or both) of the
following assumptions: (i) the vehicles fully charge their batteries every time they reach a charging station
(CS), and (ii) the battery charge level is a linear function of the charging time. In practical situations,
however, the amount of charge is a decision variable, and the battery charge level is a concave function
of the charging time. In Chapter 3, we extended current eVRP models to consider partial charging and
nonlinear charging functions. We presented a computational study comparing our assumptions with those
commonly made in the literature. Our results suggested that neglecting partial and nonlinear charging may
lead to infeasible or overly expensive solutions

To tackle large-scale instances of the eVRP with nonlinear charging function (eVRP-NL), in Chapter
4 we proposed an iterated local search (ILS) enhanced with heuristic concentration (HC). At each itera-
tion, our ILS applies a variable neighborhood descent (VND) procedure with three different local search
operators and stores the routes of the local optimum in a pool of routes. When the ILS finishes, the HC
component assembles the final solution by recombining routes from the pool. One original feature of our
approach is the use in the VND component of a local search operator that aims at improving the charging
decisions of each route (where and how much to charge). To achieve this goal, the operator solves a new
optimization problem: the fixed-route vehicle-charging problem (FRVCP). Our implementation solves the
FRVCP using a heuristic and a commercial solver. To test our approach, we proposed a 120-instance testbed
for the e-VRP-PNL . We discussed experiments assessing the performance of the proposed approach and
showing the relevance of making optimal charging decisions.

Finally, in Chapter 5, we introduced the technician routing problem with conventional and electric
vehicles (TRP-CEV), which is inspired in the real operation of ENEDIS . This problem consists in routing
a set of technicians to serve a set of geographically scattered requests within their time windows. This
problem considers the working schedules, the lunch breaks, and skills of the technicians. The technicians
use a fixed fleet composed of conventional and electric vehicles. The EVs have a limited autonomy, and
there are incompatibility constraints between EVs and CSs. In the TRP-CEV decisions include the vehicle-
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to-technician assignment, the sequencing of the routes followed by the technicians , and the battery charging
program for the EVs (where and how much to charge) considering that the charging functions are nonlinear.
The objective function of TRP-CEV seeks to minimize the total cost, defined as the sum of the travel costs,
battery charging fixed costs, the parking cost at CSs, and the fixed cost of using each technician. To tackle
the TRP-CEV, we proposed a two-phase parallel matheuristic (PMa). In the first phase, the PMa builds a
pool of feasible TRP-CEV routes solving in parallel a set of sub-problems. In the second phase the PMa
assembles a TRP-CEV solution by solving an extended set covering formulation. To test our approach, we
ran it on different benchmarks. The experiments showed that our PMa has competitive results. Furthermore,
we applied (tested) the approach on a set of real instances based on the ENEDIS operation. We analysed
the obtained solutions by our PMa on those instances, in order to evaluate the quality and structure of the
solution as a function of the percentage of EVs in the fleet.

As a general conclusion, in this thesis we have highlighted the importance to make optimal charging
decision in the eVRPs. We have found that the optimal charging decisions are essential to have competitive
results in terms of solution quality. Therefore, for all the eVRPs addressed in this thesis, we proposed
different approaches for making optimal charging decisions. On the other hand, in a large part of this thesis,
we included realistic assumptions about the battery charging process. Those assumptions are the partial
charging and the non-linear charging function. The incorporation of those assumptions into the eVRPs and
the proposed approaches to tackle these assumptions allow to model more realistic eVRP problems. Other
notable conclusion for the context of the eVRP is that the more complicated eVRPs (i.e., where there are
charging decisions) are in rural zones. In different experiments conducted during this thesis, we found that
only in rural areas there are day-long routes, where the travelled distance is larger than the EV autonomy.

To further our research we plan to design an exact method for the TRP-CEV to have a better base of
comparison for our results. Recently, researchers have proposed exact methods for problems directly related
to the TRP-CEV. For instance, a branch-and-price method for the technician dispatching problem (Cortés
et al. 2014), a branch-price-and-cut method for the eVRPs with time windows (Desaulniers et al. 2014)
and a branch-and-price method for a VRP with lunch break (Liu et al. 2016). Taking advantage of recent
studies, the idea behind this perspective is to integrate and extend those last advances to propose an exact
method for the TRP-CEV.

Despite this thesis contributes to bringing the eVRP closer to reality in terms of the battery charging
assumptions, there is a pending research about other assumptions of the eVRPs. We suggest that further
research should be undertaken in the following assumptions: the capacity of the CSs, and the uncertain CS
availability and energy consumption. In terms of the methods, an interesting perspective for the eVRPs
context is to explore alternative approach for the fixed-route charging-problems that ensures the optimal
solution with computing time faster. Despite we tried -without success- to find a polynomial time algorithm,
we still think that it is possible to find a better approach than the proposed in this thesis. Considering that in
the road network the consumption of energy, the travelled distance, and the travel time are not proportional,
another interesting perspective is to model the eVRP as a multi-graph. The idea behind this perspective is
that existing more than one edge between two nodes, where each edge represents attributes as the energy
consumption, the travel time, or the travelled distance.



Appendix A

Appendices

A.1 Detailed results for Green VRP instances
Tables A.1 and A.2 show the results of our three MSH configurations on the small and large Green

VRP instances. We compare our results to the best results obtained by the MCWS and DBCA heuristics
of Erdoğan & Miller-Hooks (2012), the VNS/TS of Schneider et al. (2014), the AVNS of Schneider et al.
(2015), and the 48A and SA of Felipe et al. (2014); they did not report result of the SA for the small
instances. For each instance, we report the problem name and the BKS taken from Erdoğan & Miller-
Hooks (2012), Schneider et al. (2014), Schneider et al. (2015), or Felipe et al. (2014) and updated with
some new BKSs found by our MSH.

Erdoğan & Miller-Hooks (2012) reported the best distance (Best), and the number of vehicles of the
best found solution (v) of multiple runs with different parameters for their MCWS and DBCA; they did not
give the exact number of runs. Schneider et al. (2014) reported the best distance, the number of vehicles
of the best found solution, and the average computing time (t in minutes) over ten runs of their VNS/TS,
Schneider et al. (2015) reported the best distance, the average distance (Avg.), and the average computing
time over ten runs of their AVNS. Finally, Felipe et al. (2014) reported the best distance, the number of
vehicles of the best found solution, and the computing time over a single run of their 48A and SA. For all
the algorithms, we provide the number of customers served (n). The last rows of the table summarize the
average BKS gap, the cumulative number of vehicles, the number of times each method found the BKS,
and the average running time. Values in bold indicate that a method found the BKS.
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Table A.1 – Results of MSH on small instances of Erdoğan & Miller-Hooks (2012).

MCWS/DBCA VNS/TS AVNS 48A MSH(1k) MSH(5k) MSH(10k)

Instance BKS n v Best n v Best t n Best Avg. t n v Best t n v Best Avg. t n v Best Avg. t n v Best Avg. t

20c3sU1 1797.49 20 6 1797.51 20 6 1797.49 0.69 20 1797.49 1797.49 0.16 20 6 1805.41 0.03 20 6 1797.49 1797.88 0.01 20 6 1797.49 1797.49 0.04 20 6 1797.49 1797.49 0.08
20c3sU2 1574.77 20 6 1613.53 20 6 1574.77 0.64 20 1574.78 1574.78 0.15 20 6 1574.78 0.02 20 6 1574.78 1574.78 0.01 20 6 1574.78 1574.78 0.04 20 6 1574.78 1574.78 0.07
20c3sU3 1704.48 20 7 1964.57 20 6 1704.48 0.64 20 1704.48 1704.48 0.13 20 6 1704.48 0.02 20 6 1704.48 1706.08 0.01 20 6 1704.48 1704.48 0.04 20 6 1704.48 1704.48 0.07
20c3sU4 1482.00 20 6 1487.15 20 5 1482.00 0.65 20 1482.00 1482.00 0.17 20 5 1482.00 0.03 20 5 1482.00 1482.00 0.01 20 5 1482.00 1482.00 0.04 20 5 1482.00 1482.00 0.07
20c3sU5 1689.37 20 5 1752.73 20 6 1689.37 0.67 20 1689.37 1689.37 0.18 20 6 1689.37 0.04 20 6 1689.37 1689.37 0.01 20 6 1689.37 1689.37 0.04 20 6 1689.37 1689.37 0.07
20c3sU6 1618.65 20 6 1668.16 20 6 1618.65 0.67 20 1618.65 1618.65 0.15 20 6 1618.65 0.03 20 6 1618.65 1618.65 0.01 20 6 1618.65 1618.65 0.04 20 6 1618.65 1618.65 0.07
20c3sU7 1713.66 20 6 1730.45 20 6 1713.66 0.64 20 1713.66 1713.66 0.19 20 6 1713.67 0.03 20 6 1713.66 1714.95 0.01 20 6 1713.66 1714.03 0.04 20 6 1713.66 1713.87 0.07
20c3sU8 1706.50 20 6 1718.67 20 6 1706.50 0.67 20 1706.50 1706.50 0.16 20 6 1722.78 0.03 20 6 1706.50 1706.50 0.01 20 6 1706.50 1706.50 0.04 20 6 1706.50 1706.50 0.07
20c3sU9 1708.81 20 6 1714.43 20 6 1708.81 0.66 20 1708.82 1708.82 0.19 20 6 1708.82 0.04 20 6 1710.90 1711.14 0.01 20 6 1708.82 1710.09 0.04 20 6 1708.82 1709.65 0.07
20c3sU10 1181.31 20 5 1309.52 20 4 1181.31 0.64 20 1181.31 1181.31 0.23 20 4 1181.31 0.02 20 4 1181.31 1181.31 0.01 20 4 1181.31 1181.31 0.04 20 4 1181.31 1181.31 0.07

20c3sC1 1173.57 20 5 1300.62 20 4 1173.57 0.62 20 1173.57 1173.57 0.38 20 4 1178.97 0.03 20 4 1173.57 1173.57 0.01 20 4 1173.57 1173.57 0.04 20 4 1173.57 1173.57 0.07
20c3sC2 1539.97 19 5 1553.53 19 5 1539.97 0.58 19 1539.97 1539.97 0.21 19 5 1539.97 0.02 19 5 1539.97 1539.97 0.01 19 5 1539.97 1539.97 0.04 19 5 1539.97 1539.97 0.08
20c3sC3 880.20 12 4 1083.12 12 3 880.20 0.25 12 880.20 880.20 0.15 12 3 880.20 0.01 12 3 880.20 880.20 0.01 12 3 880.20 880.20 0.03 12 3 880.20 880.20 0.04
20c3sC4 1059.35 18 5 1091.78 18 4 1059.35 0.53 18 1059.35 1077.71 0.23 18 4 1059.35 0.02 18 4 1059.35 1088.54 0.01 18 4 1059.35 1059.94 0.04 18 4 1059.35 1059.94 0.06
20c3sC5 2156.01 19 7 2190.68 19 7 2156.01 0.60 19 2156.01 2156.01 0.14 19 7 2156.01 0.02 19 7 2156.01 2157.31 0.01 19 7 2156.01 2156.56 0.05 19 7 2156.01 2156.04 0.10
20c3sC6 2758.17 17 9 2883.71 17 8 2758.17 0.71 17 2758.17 2758.17 0.14 17 8 2758.17 0.02 17 8 2758.17 2758.17 0.01 17 8 2758.17 2758.17 0.04 17 8 2758.17 2758.17 0.08
20c3sC7 1393.99 6 5 1701.40 6 4 1393.99 0.18 6 1393.99 1393.99 0.04 6 4 1393.99 0.00 6 4 1393.99 1393.99 0.01 6 4 1393.99 1393.99 0.03 6 4 1393.99 1393.99 0.06
20c3sC8 3139.72 18 10 3319.74 18 9 3139.72 0.62 18 3139.72 3139.72 0.08 18 9 3139.72 0.02 18 9 3139.72 3139.72 0.01 18 9 3139.72 3139.72 0.05 18 9 3139.72 3139.72 0.12
20c3sC9 1799.94 19 6 1811.05 19 6 1799.94 0.60 19 1799.94 1799.94 0.16 19 6 1799.94 0.02 19 6 1799.94 1799.94 0.01 19 6 1799.94 1799.94 0.05 19 6 1799.94 1799.94 0.10

20c3sC10 2583.42 15 8 2644.11 15 8 2583.42 0.45 15 2583.42 2600.39 0.09 15 8 2583.42 0.02 15 8 2583.42 2583.42 0.01 15 8 2583.42 2583.42 0.04 15 8 2583.42 2583.42 0.07

S1_2i6s 1578.12 20 6 1614.15 20 6 1578.12 0.71 20 1578.12 1578.12 0.16 20 6 1578.12 0.03 20 6 1578.12 1578.12 0.01 20 6 1578.12 1578.12 0.04 20 6 1578.12 1578.12 0.07
S1_4i6s 1397.27 20 5 1541.46 20 5 1397.27 0.75 20 1397.27 1397.27 0.16 20 5 1413.97 0.03 20 5 1397.27 1397.27 0.01 20 5 1397.27 1397.27 0.04 20 5 1397.27 1397.27 0.07
S1_6i6s 1560.49 20 6 1616.20 20 5 1560.49 0.73 20 1560.49 1560.49 0.20 20 6 1571.30 0.03 20 5 1560.49 1563.95 0.01 20 5 1560.49 1561.19 0.04 20 5 1560.49 1560.49 0.07
S1_8i6s 1692.32 20 6 1882.54 20 6 1692.32 0.74 20 1692.32 1692.32 0.17 20 6 1692.33 0.03 20 6 1692.32 1692.32 0.01 20 6 1692.32 1692.32 0.04 20 6 1692.32 1692.32 0.07
S1_10i6s 1173.48 20 5 1309.52 20 4 1173.48 0.71 20 1173.48 1173.48 0.24 20 4 1173.48 0.03 20 4 1173.48 1173.48 0.01 20 4 1173.48 1173.48 0.04 20 4 1173.48 1173.48 0.07
S2_2i6s 1633.10 20 6 1645.80 20 6 1633.10 0.75 20 1633.10 1633.10 0.19 20 6 1645.80 0.03 20 6 1633.10 1633.10 0.01 20 6 1633.10 1633.10 0.05 20 6 1633.10 1633.10 0.09
S2_4i6s 1505.07 19 6 1505.07 19 5 1532.96 0.88 19 1505.07 1505.07 0.14 19 6 1505.07 0.02 19 6 1505.07 1505.07 0.02 19 6 1505.07 1505.07 0.05 19 6 1505.07 1505.07 0.09
S2_6i6s 2431.33 20 10 3115.10 20 7 2431.33 0.78 20 2431.33 2431.33 0.13 20 8 2660.49 0.04 20 7 2431.33 2439.92 0.02 20 7 2431.33 2431.33 0.04 20 7 2431.33 2431.33 0.07
S2_8i6s 2158.35 16 9 2722.55 16 7 2158.35 0.57 16 2158.35 2158.35 0.09 16 7 2175.66 0.02 16 7 2158.35 2158.35 0.01 16 7 2158.35 2158.35 0.03 16 7 2158.35 2158.35 0.06
S2_10i6s 1585.46 16 6 1995.62 17 6 1958.46 0.61 16 1585.46 1585.46 0.15 16 5 1585.46 0.02 16 5 1585.46 1585.46 0.01 16 5 1585.46 1585.46 0.04 16 5 1585.46 1585.46 0.06

S1_4i2s 1582.20 20 6 1582.20 20 6 1582.21 0.63 20 1582.21 1582.21 0.13 20 6 1598.91 0.03 20 6 1582.21 1582.21 0.01 20 6 1582.21 1582.21 0.04 20 6 1582.21 1582.21 0.07
S1_4i4s 1460.09 20 6 1580.52 20 5 1460.09 0.68 20 1460.09 1460.09 0.16 20 5 1483.19 0.03 20 5 1460.09 1460.09 0.01 20 5 1460.09 1460.09 0.04 20 5 1460.09 1460.09 0.07
S1_4i6s 1397.27 20 5 1541.46 20 5 1397.27 0.75 20 1397.27 1397.27 0.16 20 5 1413.97 0.03 20 5 1397.27 1397.27 0.01 20 5 1397.27 1397.27 0.04 20 5 1397.27 1397.27 0.07
S1_4i8s 1397.27 20 6 1561.29 20 6 1397.27 0.82 20 1397.27 1397.27 0.17 20 6 1397.27 0.03 20 5 1397.27 1397.27 0.02 20 5 1397.27 1397.27 0.05 20 5 1397.27 1397.27 0.07
S1_4i10s 1396.02 20 5 1529.73 20 5 1396.02 0.85 20 1396.02 1396.02 0.23 20 5 1396.02 0.03 20 5 1396.02 1396.02 0.02 20 5 1396.02 1396.02 0.05 20 5 1396.02 1396.02 0.07
S2_4i2s 1059.35 18 5 1117.32 18 4 1059.35 0.51 18 1059.35 1069.42 0.23 18 4 1059.35 0.02 18 4 1059.35 1097.64 0.01 18 4 1059.35 1059.94 0.04 18 4 1059.35 1059.94 0.06
S2_4i4s 1446.08 19 6 1522.72 19 5 1446.08 0.60 19 1446.08 1449.17 0.21 19 5 1446.08 0.02 19 5 1476.91 1476.91 0.02 19 5 1446.08 1452.84 0.05 19 5 1446.08 1446.08 0.09
S2_4i6s 1434.14 20 6 1730.47 20 5 1434.14 0.69 20 1434.14 1445.35 0.20 20 5 1434.14 0.02 20 5 1440.10 1462.48 0.02 20 5 1434.14 1438.43 0.05 20 5 1434.14 1435.95 0.08
S2_4i8s 1434.14 20 6 1786.21 20 5 1434.14 0.75 20 1434.14 1434.14 0.20 20 5 1434.14 0.02 20 5 1440.10 1462.48 0.02 20 5 1434.14 1439.03 0.05 20 5 1434.14 1435.95 0.08
S2_4i10s 1434.13 20 6 1729.51 20 5 1434.13 0.78 20 1434.13 1455.31 0.24 20 5 1434.13 0.02 20 5 1440.09 1462.48 0.02 20 5 1434.13 1435.94 0.06 20 5 1434.13 1435.94 0.09
Avg. Gap above BKS 8.72% 0.63% 0.00% 0.15% 0.46% 0.09% 0.38% 0.00% 0.04% 0.00% 0.01%

NBKS 2 38 40 29 35 40 40
Cum. Number of Veh. 245 223 225 222 222 222

Avg. Time (min) 0.65 0.17 0.02 0.01 0.04 0.07
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Table A.2 – Results of MSH on large instances of Erdoğan & Miller-Hooks (2012).

MCWS/DBCA VNS/TS AVNS 48A SA

Instance BKS n v Best n v Best t n Best Avg. t n v Best t n v Best t

111c_21s 4770.47 109 20 5626.64 109 17 4797.15 21.76 109 4770.47 4791.53 1.78 109 18 4960.60 21.74 109 18 5062.06 12.35
111c_22s 4774.65 109 20 5610.57 109 17 4802.16 23.56 109 4776.81 4797.31 1.94 109 18 4914.20 21.23 109 18 5029.17 12.30
111c_24s 4767.14 109 20 5412.48 109 17 4786.96 21.90 109 4767.14 4790.84 2.16 109 18 4952.90 21.27 109 18 5010.59 12.13
111c_26s 4767.14 109 20 5408.38 109 17 4778.62 25.12 109 4767.14 4782.60 2.04 109 18 4934.11 21.25 109 18 5092.06 12.07
111c_28s 4765.52 109 20 5331.93 109 17 4799.15 24.17 109 4765.52 4781.26 1.73 109 18 4971.93 21.29 109 18 5038.84 11.99
200c_21s 8839.62 190 35 10413.59 192 35 8963.46 76.65 192 8886.00 8970.14 3.61 192 32 9276.63 76.41 192 32 9206.28 73.84
250c_21s 10482.52 235 41 11886.61 237 39 10800.18 120.90 237 10487.15 10531.20 3.67 237 39 11007.98 120.67 237 38 10885.71 108.10
300c_21s 12367.60 281 49 14229.92 283 46 12594.77 182.23 283 12374.49 12514.78 4.94 283 46 12869.17 184.27 283 45 12827.35 302.04
350c_21s 14073.34 329 57 16460.30 329 51 14323.02 232.03 329 14103.66 14271.56 7.11 329 54 14954.83 227.30 329 52 14828.63 332.38
400c_21s 16660.20 378 67 19099.04 378 61 16850.21 305.12 378 16697.21 16839.23 12.70 378 61 17351.92 302.03 378 60 17327.27 384.68
450c_21s 18241.48 424 75 21854.17 424 68 18521.23 525.52 424 18310.60 18512.47 13.19 424 68 19215.38 514.68 424 67 19085.91 456.26
500c_21s 20496.50 471 84 24517.08 471 76 21170.90 356.01 471 20609.67 20874.50 19.51 471 76 21636.59 352.16 471 75 21475.71 154.45
Avg. Gap above BKS 15.97% 1.38% 0.17% 0.92% 4.50% 4.97%

NBKS 0 0 4 0 0
Cum. Number of Veh. 508 461 466 459

Avg. Time (min) 159.58 6.20 157.03 156.05

MSH(1k) MSH(5k) MSH(10k)

Instance n v Best Avg. t n v Best Avg. t n v Best Avg. t
111c_21s 109 17 4798.52 4861.35 0.91 109 17 4780.01 4793.07 2.40 109 17 4777.91 4781.85 4.94
111c_22s 109 17 4795.26 4858.09 1.04 109 17 4776.75 4789.81 2.13 109 17 4774.65 4778.80 4.69
111c_24s 109 17 4795.19 4855.89 1.16 109 17 4776.68 4789.77 2.74 109 17 4773.67 4778.62 5.64
111c_26s 109 17 4795.19 4855.89 0.79 109 17 4776.68 4789.77 2.56 109 17 4773.67 4778.62 5.23
111c_28s 109 17 4793.57 4854.86 0.93 109 17 4775.06 4788.22 2.80 109 17 4772.46 4777.03 5.54
200c_21s 192 32 9005.58 9039.97 2.96 192 31 8894.56 8923.18 19.80 192 31 8839.62 8879.98 19.96
250c_21s 237 39 10702.76 10755.30 13.43 237 38 10534.52 10579.12 27.59 237 37 10482.52 10518.32 21.58
300c_21s 283 45 12663.49 12719.25 44.28 283 44 12444.48 12548.70 37.43 283 44 12367.60 12421.75 47.53
350c_21s 329 52 14431.27 14470.40 53.01 329 50 14146.67 14253.55 50.96 329 50 14073.34 14226.03 63.01
400c_21s 378 60 16873.51 17143.75 64.29 378 59 16745.24 17128.76 67.91 378 59 16660.20 17119.89 71.70
450c_21s 424 66 18569.58 18831.00 72.11 424 65 18351.72 19009.22 76.35 424 65 18241.48 18902.03 80.75
500c_21s 471 75 20960.18 21678.33 80.11 471 73 20610.36 21297.07 84.95 471 73 20496.50 20997.04 89.95
Avg. Gap above BKS 1.42% 2.64% 0.40% 1.48% 0.05% 1.02%

NBKS 0 0 8
Cum. Number of Veh. 454 445 444

Avg. Time (min) 27.92 31.47 35.04
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A.2 Detailed results of the eVRP-NL
Tables A.3 and A.4 show the results of our two ILS versions (i.e, ILS(S)+HC and MILP(H)+HC) for

the small and large eVRP-NL instances. In Table A.3, we compare our results with the optimal solutions
found by Gurobi using the MILP formulation. In Table A.4, we compare our results with the best results
obtained with Gurobi. For each instance, we report the problem name1, and the best solution (BKS) taken
from the results of Gurobi, ILS(H)+HC or ILS(S)+HC.

For the results obtained with Gurobi, we report the best solution (Best), and the gap with respect to the
BKS (G) 2. For the results obtained with the ILS(H)+HC and ILS(S)+HC, we report the best solution, the
average solution (Avg.), and the average computing time (t in seconds) over ten runs. For the ILS(S)+HC,
we also report the average computing time using the preprocessing procedure (t∗). For the two ILS+HC
versions, we provide the gap of the average solution and best solution with reference to the BKS. The last
rows of the table summarize the average and maximum BKS gap, the number of times each method found
the BKS, and the average and maximum running time. Values in bold indicate that a method found the
BKS.

Table A.3 – Results of ILS(H)+HC and ILS(S)+HC on the 20 small instances

Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Best G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c10s2cf0 21.77 21.77 0.00 22.49 3.31 22.51 3.40 0.61 21.77 0.00 21.77 0.00 10.54 8.53
tc0c10s2cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 0.60 19.75 0.00 20.12 1.87 4.59 3.86
tc1c10s2cf2 9.03 9.03 0.00 9.03 0.00 9.04 0.11 0.57 9.03 0.00 9.07 0.44 3.71 2.43
tc1c10s2cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 0.83 16.37 0.00 16.37 0.00 7.58 5.63
tc1c10s2cf4 16.10 16.10 0.00 16.10 0.00 16.13 0.19 0.66 16.10 0.00 16.10 0.00 6.67 4.79
tc2c10s2ct0 12.45 12.45 0.00 12.45 0.00 12.53 0.64 0.49 12.45 0.00 12.45 0.00 8.36 5.38
tc0c10s2ct1 12.30 12.30 0.00 12.30 0.00 12.35 0.41 0.62 12.30 0.00 12.34 0.33 6.08 3.99
tc1c10s2ct2 10.75 10.75 0.00 10.76 0.09 10.77 0.19 0.54 10.75 0.00 10.75 0.00 6.51 4.21
tc1c10s2ct3 13.17 13.17 0.00 13.17 0.00 14.16 7.52 0.84 13.17 0.00 13.18 0.08 9.85 7.56
tc1c10s3ct4 13.21 13.21 0.00 13.21 0.00 13.25 0.30 0.68 13.21 0.00 13.21 0.00 11.06 6.01
tc2c10s3cf0 21.77 21.77 0.00 22.49 3.31 22.51 3.40 0.61 21.77 0.00 21.77 0.00 11.86 8.90
tc0c10s3cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 0.63 19.75 0.00 20.12 1.87 6.46 4.41
tc1c10s3cf2 9.03 9.03 0.00 9.03 0.00 9.04 0.11 0.56 9.03 0.00 9.06 0.33 4.11 2.36
tc1c10s3cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 0.82 16.37 0.00 16.37 0.00 9.50 6.06
tc1c10s3cf4 14.90 14.90 0.00 14.90 0.00 14.94 0.27 0.62 14.90 0.00 14.90 0.00 11.27 6.72
tc2c10s3ct0 11.51 11.51 0.00 11.54 0.26 11.65 1.22 0.51 11.51 0.00 11.54 0.26 11.18 6.81
tc0c10s3ct1 10.80 10.80 0.00 10.80 0.00 10.81 0.09 0.60 10.80 0.00 10.80 0.00 8.91 4.83
tc1c10s3ct2 9.20 9.20 0.00 10.76 16.96 10.77 17.07 0.54 9.20 0.00 9.34 1.52 9.66 5.33
tc1c10s3ct3 13.02 13.02 0.00 13.02 0.00 13.12 0.77 0.64 13.02 0.00 13.02 0.00 15.72 9.77
tc1c10s2ct4 13.83 13.83 0.00 13.83 0.00 13.83 0.00 0.77 13.83 0.00 13.83 0.00 7.08 4.84

Avg. Gap 0.00 1.20 1.97 0.00 0.34
Max. Gap - 16.96 17.07 0.00 1.87
Best 20 15 20
Avg. Time 0.64 8.54 5.62
Max. Time 0.84 15.72 9.77

Table A.4 – Results of ILS(H)+HC and ILS(S)+HC on the 100 large instances

Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Best G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c20s3cf0 24.68 24.73 0.20 24.68 0.00 24.71 0.12 2.14 24.68 0.00 24.68 0.00 22.12 13.86
tc1c20s3cf1 17.50 17.55 0.29 17.51 0.06 17.68 1.03 1.39 17.50 0.00 17.53 0.17 19.54 12.32
tc0c20s3cf2 27.60 28.54 3.41 27.61 0.04 27.65 0.18 3.14 27.60 0.00 27.66 0.22 16.06 11.77
tc1c20s3cf3 16.63 16.81 1.08 16.63 0.00 16.79 0.96 1.41 16.63 0.00 16.78 0.90 13.15 8.41
tc1c20s3cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.20 17.00 0.00 17.00 0.00 5.77 3.77

Continued on next page

1tcαααcβββsµµµcεεε###, where ααα is the type of the location of the customers (i.e., 0:randomize, 1:cluster, 2: mixture of both), βββ is the
number of customers, µµµ is the number of the CSs, εεε is ‘t’ if we use a p-median heuristic to locate the CSs and ‘f’ otherwise, and
### is the number of the instance for each combination of parameters (i.e., # = 0, 1, 2, 3, 4)

2G(%) = (of − ofBKS)/ofBKS × 100
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Table A.4 – continued from previous page
Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Avg G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c20s3ct0 25.79 25.79 0.00 25.79 0.00 25.80 0.04 2.38 25.79 0.00 25.79 0.00 23.31 14.66
tc1c20s3ct1 18.95 19.38 2.27 19.55 3.17 19.65 3.69 1.58 18.95 0.00 19.38 2.27 23.49 15.25
tc0c20s3ct2 17.08 17.11 0.18 17.08 0.00 17.18 0.59 1.73 17.08 0.00 17.13 0.29 12.49 8.49
tc1c20s3ct3 12.65 12.68 0.24 12.75 0.79 12.82 1.34 1.76 12.65 0.00 12.72 0.55 15.36 8.86
tc1c20s3ct4 16.21 16.21 0.00 16.25 0.25 16.31 0.62 1.26 16.21 0.00 16.25 0.25 9.74 5.16
tc2c20s4cf0 24.67 25.36 2.80 25.29 2.51 25.35 2.76 1.77 24.67 0.00 24.69 0.08 25.90 14.63
tc1c20s4cf1 16.39 16.40 0.06 17.16 4.70 17.47 6.59 1.53 16.39 0.00 16.40 0.06 27.19 13.47
tc0c20s4cf2 27.48 - - 27.60 0.44 27.65 0.62 3.04 27.48 0.00 27.61 0.47 18.53 12.81
tc1c20s4cf3 16.56 16.80 1.45 16.80 1.45 16.84 1.69 1.44 16.56 0.00 16.80 1.45 14.77 8.69
tc1c20s4cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.17 17.00 0.00 17.00 0.00 7.61 4.17
tc2c20s4ct0 26.02 - - 26.49 1.81 26.51 1.88 2.01 26.02 0.00 26.02 0.00 25.92 15.25
tc1c20s4ct1 18.25 18.25 0.00 19.51 6.90 19.65 7.67 1.58 18.25 0.00 18.32 0.38 27.11 16.14
tc0c20s4ct2 16.99 17.21 1.29 17.06 0.41 17.12 0.77 1.62 16.99 0.00 17.10 0.65 15.25 9.33
tc1c20s4ct3 14.43 14.43 0.00 14.56 0.90 14.58 1.04 1.41 14.43 0.00 14.50 0.49 14.30 7.99
tc1c20s4ct4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.49 17.00 0.00 17.00 0.00 11.74 6.08
tc0c40s5cf0 32.67 - - 33.84 3.58 34.53 5.69 6.09 32.67 0.00 33.25 1.78 46.66 23.85
tc1c40s5cf1 65.16 - - 65.32 0.25 66.64 2.27 11.90 65.16 0.00 66.03 1.34 65.41 44.01
tc2c40s5cf2 27.54 38.93 41.36 28.22 2.47 28.86 4.79 7.67 27.54 0.00 27.67 0.47 48.50 31.64
tc2c40s5cf3 19.74 21.04 6.59 20.44 3.55 20.82 5.47 4.70 19.74 0.00 20.18 2.23 30.49 16.85
tc0c40s5cf4 30.77 36.47 18.52 33.06 7.44 34.21 11.18 11.08 30.77 0.00 31.49 2.34 49.91 33.33
tc0c40s5ct0 28.72 - - 29.22 1.74 29.78 3.69 8.55 28.72 0.00 29.35 2.19 41.76 24.50
tc1c40s5ct1 52.68 - - 54.54 3.53 55.05 4.50 12.64 52.68 0.00 53.36 1.29 94.40 58.52
tc2c40s5ct2 26.91 - - 26.99 0.30 27.15 0.89 8.18 26.91 0.00 27.02 0.41 38.38 22.85
tc2c40s5ct3 23.54 - - 23.56 0.08 23.90 1.53 5.77 23.54 0.00 23.77 0.98 43.87 26.48
tc0c40s5ct4 28.63 - - 29.72 3.81 30.84 7.72 10.49 28.63 0.00 28.72 0.31 45.55 32.55
tc0c40s8cf0 31.28 - - 32.73 4.64 33.68 7.67 6.11 31.28 0.00 32.02 2.37 72.91 33.59
tc1c40s8cf1 40.75 - - 45.86 12.54 50.71 24.44 12.11 40.75 0.00 42.33 3.88 108.49 69.99
tc2c40s8cf2 27.15 29.19 7.51 28.05 3.31 28.19 3.83 7.87 27.15 0.00 27.31 0.59 57.90 28.92
tc2c40s8cf3 19.66 22.01 11.95 19.86 1.02 20.17 2.59 5.41 19.66 0.00 20.24 2.95 45.15 19.46
tc0c40s8cf4 29.32 - - 32.53 10.95 33.69 14.90 9.93 29.32 0.00 29.86 1.84 91.10 43.05
tc0c40s8ct0 26.35 30.29 14.95 27.65 4.93 28.32 7.48 6.01 26.35 0.00 26.89 2.05 71.70 28.54
tc1c40s8ct1 40.56 - - 49.35 21.67 49.85 22.90 11.86 40.56 0.00 41.19 1.55 124.31 70.50
tc2c40s8ct2 26.33 - - 26.82 1.86 27.07 2.81 7.12 26.33 0.00 26.71 1.44 58.68 25.64
tc2c40s8ct3 22.71 23.51 3.52 23.26 2.42 23.44 3.21 5.16 22.71 0.00 23.23 2.29 63.76 25.25
tc0c40s8ct4 29.20 - - 29.82 2.12 31.68 8.49 10.93 29.20 0.00 29.27 0.24 84.36 47.46
tc0c80s8cf0 39.43 - - 39.78 0.89 40.52 2.76 31.70 39.43 0.00 39.86 1.09 104.77 56.41
tc0c80s8cf1 45.23 - - 46.48 2.76 47.33 4.64 76.55 45.23 0.00 45.73 1.11 183.74 121.27
tc1c80s8cf2 30.81 - - 32.52 5.55 33.30 8.08 31.57 30.81 0.00 31.83 3.31 79.36 50.99
tc2c80s8cf3 32.44 - - 32.53 0.28 32.90 1.42 43.83 32.44 0.00 32.60 0.49 95.72 64.05
tc2c80s8cf4 49.29 - - 50.41 2.27 51.06 3.59 45.59 49.29 0.00 49.69 0.81 160.43 99.84
tc0c80s8ct0 41.90 - - 42.18 0.67 42.89 2.36 27.68 41.90 0.00 42.76 2.05 99.20 54.35
tc0c80s8ct1 45.27 - - 46.39 2.47 47.50 4.93 82.12 45.27 0.00 45.85 1.28 195.16 129.66
tc1c80s8ct2 31.74 - - 32.59 2.68 32.90 3.65 37.77 31.74 0.00 32.36 1.95 93.21 59.73
tc2c80s8ct3 32.31 - - 32.74 1.33 33.41 3.40 25.10 32.31 0.00 32.55 0.74 111.47 65.15
tc2c80s8ct4 44.83 - - 49.08 9.48 50.31 12.22 43.42 44.83 0.00 46.61 3.97 178.48 111.24
tc0c80s12cf0 34.64 - - 36.01 3.95 37.25 7.53 29.39 34.64 0.00 35.59 2.74 126.00 57.24
tc0c80s12cf1 42.90 - - 43.81 2.12 45.51 6.08 35.17 42.90 0.00 44.07 2.73 157.55 74.58
tc1c80s12cf2 29.54 - - 32.61 10.39 33.34 12.86 31.52 29.54 0.00 30.73 4.03 112.44 61.34
tc2c80s12cf3 31.97 - - 34.10 6.66 35.13 9.88 25.63 31.97 0.00 32.70 2.28 159.17 75.64
tc2c80s12cf4 43.89 - - 47.95 9.25 48.57 10.66 50.96 43.89 0.00 44.97 2.46 274.06 131.13
tc0c80s12ct0 39.31 - - 39.97 1.68 40.48 2.98 32.01 39.31 0.00 39.83 1.32 159.79 65.54
tc0c80s12ct1 41.94 - - 42.56 1.48 43.67 4.12 35.06 41.94 0.00 43.03 2.60 162.38 73.32
tc1c80s12ct2 29.52 - - 31.11 5.39 32.33 9.52 29.45 29.52 0.00 30.66 3.86 122.60 58.85
tc2c80s12ct3 30.83 - - 32.09 4.09 32.31 4.80 28.06 30.83 0.00 31.59 2.47 123.57 57.57
tc2c80s12ct4 42.40 - - 47.16 11.23 48.40 14.15 44.51 42.40 0.00 42.82 0.99 276.16 134.33
tc1c160s16cf0 79.80 - - 88.37 10.74 90.49 13.40 298.56 79.80 0.00 80.75 1.19 1139.49 765.69
tc2c160s16cf1 60.34 - - 61.56 2.02 63.57 5.35 181.57 60.34 0.00 61.26 1.52 464.11 273.86
tc0c160s16cf2 61.20 - - 63.85 4.33 65.42 6.90 224.18 61.20 0.00 62.99 2.92 600.43 365.10
tc1c160s16cf3 71.76 - - 73.93 3.02 75.04 4.57 331.06 71.76 0.00 72.75 1.38 666.64 461.58
tc0c160s16cf4 82.92 - - 98.16 18.38 101.13 21.96 536.94 82.92 0.00 83.84 1.11 1662.82 1213.20
tc1c160s16ct0 79.04 - - 83.82 6.05 85.47 8.14 391.41 79.04 0.00 79.90 1.09 1012.72 643.27
tc2c160s16ct1 60.27 - - 61.97 2.82 62.64 3.93 177.27 60.27 0.00 60.62 0.58 507.69 287.64
tc0c160s16ct2 60.13 - - 64.10 6.60 64.50 7.27 204.82 60.13 0.00 62.80 4.44 587.52 341.86
tc1c160s16ct3 73.29 - - 75.29 2.73 76.55 4.45 180.48 73.29 0.00 75.11 2.48 483.20 278.67
tc0c160s16ct4 82.37 - - 95.78 16.28 97.20 18.00 433.62 82.37 0.00 83.08 0.86 1413.91 944.60
tc1c160s24cf0 78.60 - - 85.59 8.89 87.66 11.53 346.79 78.60 0.00 79.30 0.89 1343.54 741.12
tc2c160s24cf1 59.82 - - 61.30 2.47 63.62 6.35 182.55 59.82 0.00 61.14 2.21 653.44 304.66
tc0c160s24ct2 59.25 - - 62.93 6.21 63.31 6.85 206.85 59.25 0.00 60.19 1.59 861.85 409.80
tc1c160s24ct3 68.72 - - 71.78 4.45 74.54 8.47 196.47 68.72 0.00 69.98 1.83 756.39 358.35
tc0c160s24cf4 81.44 - - 95.47 17.23 99.35 21.99 508.19 81.44 0.00 82.13 0.85 1984.26 1209.32
tc1c160s24ct0 78.21 - - 83.38 6.61 84.84 8.48 284.88 78.21 0.00 79.35 1.46 1183.70 577.83

Continued on next page
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Table A.4 – continued from previous page
Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Avg G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c160s24ct1 59.13 - - 60.84 2.89 62.49 5.68 192.18 59.13 0.00 59.72 1.00 748.95 340.40
tc0c160s24cf2 59.27 - - 62.63 5.67 64.12 8.18 210.13 59.27 0.00 60.92 2.78 845.72 403.33
tc1c160s24cf3 68.56 - - 72.83 6.23 75.18 9.66 240.33 68.56 0.00 69.57 1.47 883.61 483.10
tc0c160s24ct4 80.96 - - 90.55 11.85 93.83 15.90 453.34 80.96 0.00 82.11 1.42 1736.76 956.94
tc2c320s24cf0 182.52 - - 195.23 6.96 210.45 15.30 3762.57 182.52 0.00 186.94 2.42 7855.89 6566.41
tc2c320s24cf1 95.51 - - 97.39 1.97 100.07 4.77 1003.08 95.51 0.00 96.42 0.95 1927.61 1456.16
tc1c320s24cf2 152.23 - - 177.71 16.74 185.68 21.97 3162.07 152.23 0.00 153.99 1.16 8370.48 7105.63
tc1c320s24cf3 117.48 - - 124.23 5.75 126.08 7.32 2089.09 117.48 0.00 118.36 0.75 3737.73 3065.82
tc2c320s24cf4 122.88 - - 134.30 9.29 136.17 10.82 2177.20 122.88 0.00 124.68 1.46 4961.50 3681.14
tc2c320s24ct0 181.50 - - 208.32 14.78 212.18 16.90 4434.40 181.50 0.00 186.23 2.61 8606.62 7204.02
tc2c320s24ct1 94.73 - - 96.69 2.07 99.71 5.26 942.21 94.73 0.00 96.49 1.86 1737.70 1259.26
tc1c320s24ct2 148.77 - - 173.82 16.84 182.34 22.57 3617.64 148.77 0.00 154.13 3.60 8231.61 6853.35
tc1c320s24ct3 116.64 - - 122.75 5.24 125.71 7.78 1984.42 116.64 0.00 119.17 2.17 3783.98 3273.79
tc2c320s24ct4 122.02 - - 131.87 8.07 133.68 9.56 3074.58 122.02 0.00 123.85 1.50 5447.73 4273.94
tc2c320s38cf0 177.01 - - 202.48 14.39 207.83 17.41 4007.13 177.01 0.00 182.31 2.99 9150.09 6733.82
tc2c320s38cf1 94.29 - - 97.55 3.46 99.54 5.57 1082.91 94.29 0.00 95.07 0.83 2443.29 1601.78
tc1c320s38cf2 141.68 - - 173.71 22.61 181.84 28.35 3208.78 141.68 0.00 147.08 3.81 9490.84 7235.62
tc1c320s38cf3 116.33 - - 122.49 5.30 125.30 7.71 2024.26 116.33 0.00 117.74 1.21 4600.98 3113.71
tc2c320s38cf4 122.32 - - 128.72 5.23 131.01 7.10 1814.78 122.32 0.00 123.47 0.94 4138.21 2660.68
tc2c320s38ct0 191.09 - - 205.08 7.32 208.44 9.08 4766.36 191.09 0.00 192.15 0.55 10335.56 7636.50
tc2c320s38ct1 94.53 - - 97.44 3.08 98.62 4.33 938.85 94.53 0.00 95.29 0.80 2284.16 1408.88
tc1c320s38ct2 141.14 - - 172.99 22.57 181.62 28.68 3660.78 141.14 0.00 145.09 2.80 9264.46 6974.34
tc1c320s38ct3 116.07 - - 122.91 5.89 126.17 8.70 1993.12 116.07 0.00 117.71 1.41 4559.66 3062.95
tc2c320s38ct4 121.66 - - 127.40 4.72 130.35 7.14 1634.65 121.66 0.00 123.15 1.22 4265.37 2784.91

Avg. Gap 4.71 5.28 7.51 0.00 1.51
Max. Gap 41.36 22.61 28.68 0.00 4.44
Found solution 25 100 100
Best 7 7 3 100
Avg. Time 581.52 1393.38 1018.33
Max. Time 4766.36 10335.56 7636.50
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A.3 Detailed results for the TRP-CEV
Tables A.5 shows the results of our PMa for the small TRP-CEV instances. We compare our results

with the optimal solutions found by Gurobi using the MILP formulation presented in Section 3.3.2. For
the results obtained with the PMa, we report the best solution, the average solution (Avg.), and the average
computing time (t in seconds) over ten runs. The last rows of the table summarize the average gap, the
number of times PMa found the BKS, and the average running time. Values in bold indicate that a method
found the BKS. Tables A.6 shows the results of our PMa for the large TRP-CEV instances. For each
instance and percentage of EVs in the fleet, we report the best solution, the average solution (Avg.), and the
average computing time (t in seconds) over ten runs. The last rows of the table summarize the average gap,
and the average running time.

Table A.5 – Results of PMa on small instances of TRP-CEV

Instance
Gurobi PMa

Best Best Avg Time (s)

1-5 805.30 805.30 805.30 0.01
2-5 806.31 806.31 806.31 0.02
3-5 801.26 801.26 801.26 0.02
4-5 802.52 802.51 802.51 0.02
5-5 801.63 801.63 801.63 0.02
1-10 810.14 810.14 810.14 1.32
2-10 1625.13 1625.13 1625.13 2.75
3-10 807.61 807.61 807.61 1.30
4-10 802.10 802.10 802.10 0.02
5-10 803.01 803.01 803.01 0.03

Avg. Gap 0.00 0.00
Best 10
Avg. Time 0.55



96
A

PPE
N

D
IX

A
.

A
PPE

N
D

IC
E

S
Table A.6 – Results of PMa on large instances of TRP-CEV

% of EVs in the fleet 0% 20% 40% 60% 80% 100%

Instance Best Avg. t(min) Best Avg. t(min) Best Avg. t(min) Best Avg. t(min) Best Avg. t(min) Best Avg. t(min)

rural_18 7309.13 7347.27 6.13 7062.45 7104.56 10.36 6856.54 6905.22 10.79 6791.60 6817.33 13.60 6639.04 6685.71 N.R. N.R. N.R. N.R.
rural_19 4568.71 4577.93 10.07 4337.86 4354.07 17.17 4243.67 4249.34 8.72 4243.14 4249.58 10.79 4243.14 4247.26 N.R. N.R. N.R. N.R.
rural_20 6533.76 6552.38 9.74 6263.10 6277.22 19.66 6066.01 6079.87 21.25 5976.84 6013.09 18.53 5885.27 5934.11 N.R. N.R. N.R. N.R.
rural_21 8465.34 8508.08 18.73 N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R. N.R.
rural_22 6611.81 6700.23 20.53 6356.17 6475.38 20.17 6131.63 6181.34 20.36 6033.61 6068.19 19.41 5863.80 5871.67 N.R. N.R. N.R. N.R.
semi_urbain_18 4362.85 4388.31 20.02 4158.41 4260.54 17.93 4026.93 4599.33 19.62 4028.21 4745.61 21.18 4024.50 4585.72 18.70 4024.97 4345.65 20.14
semi_urbain_19 3395.19 3400.45 19.51 3278.80 3285.17 19.24 3212.82 3213.21 19.34 3212.06 3212.36 19.98 3212.09 3212.39 20.85 3212.08 3212.28 20.28
semi_urbain_20 6898.40 7598.07 18.17 7503.12 7522.85 20.03 6582.82 7288.81 19.26 7275.06 7285.98 18.11 7233.03 7235.50 18.55 7231.85 7234.76 19.63
semi_urbain_21 6899.58 7537.84 22.18 7490.38 7522.74 19.38 6598.19 7264.17 20.31 7265.63 7274.67 19.14 6436.39 7078.40 19.05 7232.37 7234.52 18.63
semi_urbain_22 6096.59 6132.66 19.95 5874.59 5890.09 20.20 5683.24 6260.91 18.19 5631.99 6125.93 21.51 5634.75 6114.44 18.59 5630.73 6032.78 20.85
urbain_18 3355.42 3362.49 19.93 3331.72 3359.44 23.86 3211.44 3227.53 20.73 3210.76 3211.37 19.11 3210.76 3211.37 21.05 3210.76 3211.37 18.00
urbain_19 4104.48 4111.86 19.12 4090.84 4111.68 19.31 4055.55 4614.59 20.06 4031.57 4457.53 10.44 4816.51 4824.00 17.35 4816.74 4818.88 20.99
urbain_21 3342.50 3358.59 13.70 3256.36 3260.79 16.41 3211.39 3211.95 16.27 3210.53 3211.52 15.09 3210.53 3211.53 14.29 3210.53 3211.35 13.36
urbain_22 3356.74 3361.97 17.35 3356.74 3361.97 11.83 3356.74 3361.97 17.19 3356.74 3361.97 18.47 3214.70 3853.71 18.44 3214.70 3853.35 15.23

Avg. Gap 1.76 4.73 3.03 4.18 3.90
Avg. Time 16.80 18.12 17.85 17.34 18.54 18.57
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A.4 Detailed results for the E-FSMFTW
Tables A.7 and A.8 show the results of our PMa on the small and large E-FSMFTW instances. In Table

A.7, we compare the results of our PMa and the ALNS by Hiermann et al. (2016) with the optimal solution
found by the BnP by Hiermann et al. (2016). In Table A.8, we compare the results obtained by the PMa and
ALNS with the BKSs taken from Hiermann et al. (2016) 3 and updated with some new BKSs found by our
PMa.

Hiermann et al. (2016) reported the best solution (Best) only for the small instances, the average cost
(Avg.), and the average computing time (t in minutes) over ten runs of their AVNS. The last rows of the
table summarize the average BKS gap, the number of times each method found the BKS, and the average
running time. Values in bold indicate that a method found the BKS.

3Hiermann et al. (2016) report the BKSs obtained using BnP or any run of their experiments
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Table A.7 – Results of PMa on small instances of Hiermann et al. (2016).

Type A B C

Instance
BnP ALNS PMa BnP ALNS PMa BnP ALNS PMa

Best Best Avg. t (min) Best Avg. t (min) Best Best Avg. t (min) Best Avg. t (min) Best Best Avg. t (min) Best Avg. t (min)

c101c5 857.75 857.75 857.75 0.28 857.75 857.75 0.03 377.75 377.75 377.75 0.23 377.75 377.75 0.02 317.75 317.75 317.75 0.17 317.75 317.75 0.02
c103c5 476.05 476.05 476.05 0.21 476.05 476.05 0.02 236.05 236.05 236.05 0.15 236.05 236.05 0.02 206.05 206.05 206.05 0.15 206.05 206.05 0.02
c206c5 1261.88 1261.88 1262.19 0.22 1261.88 1261.88 0.02 461.88 461.88 461.88 0.16 461.88 461.88 0.02 361.88 361.88 361.88 0.16 361.88 361.88 0.02
c208c5 1164.34 1164.34 1164.34 0.18 1164.34 1164.34 0.02 364.34 364.34 364.34 0.11 364.34 364.34 0.02 264.34 264.34 264.34 0.15 264.34 264.34 0.02
r104c5 327.25 327.25 327.25 0.21 327.25 327.25 0.03 175.25 175.25 175.25 0.12 175.25 175.25 0.02 156.25 156.25 156.25 0.14 156.25 156.25 0.02
r105c5 346.08 346.08 346.08 0.19 346.08 346.08 0.02 194.08 194.08 194.08 0.13 194.08 194.08 0.02 175.08 175.08 175.08 0.13 175.08 175.08 0.02
r202c5 609.18 609.18 609.18 0.16 610.54 610.54 0.03 249.18 249.18 249.18 0.11 250.54 250.54 0.02 204.18 204.18 204.18 0.11 205.54 205.54 0.02
r203c5 645.63 645.63 645.63 0.20 645.63 645.63 0.03 285.63 285.63 285.63 0.11 285.63 285.63 0.02 240.63 240.63 240.63 0.13 240.63 240.63 0.02
rc105c5 511.96 511.96 511.96 0.14 511.96 511.96 0.02 295.96 295.96 295.96 0.15 295.96 295.96 0.02 268.96 268.96 268.96 0.13 268.96 268.96 0.02
rc108c5 532.04 532.04 532.04 0.18 532.04 532.04 0.02 313.93 313.93 313.93 0.17 313.93 313.93 0.02 283.93 283.93 283.93 0.17 283.93 283.93 0.02
rc204c5 496.74 496.74 496.74 0.12 498.74 498.74 0.02 255.55 255.55 255.79 0.17 258.74 258.74 0.02 220.55 220.55 220.86 0.16 228.74 228.74 0.02
rc208c5 328.89 328.89 328.89 0.15 328.89 328.89 0.02 208.89 208.89 208.89 0.14 208.89 208.89 0.02 193.89 193.89 193.89 0.13 193.89 193.89 0.02
c101c10 1302.15 1302.15 1302.15 0.24 1308.48 1308.48 0.03 582.15 582.15 582.15 0.25 588.48 588.48 0.03 492.15 492.15 492.15 0.27 498.48 498.48 0.04
c104c10 902.71 902.71 902.71 0.30 902.71 902.71 0.05 422.71 422.71 422.71 0.31 422.71 422.71 0.05 362.71 362.71 362.71 0.28 362.71 362.71 0.05
c202c10 1304.32 1304.32 1493.84 0.25 1312.91 1312.91 0.04 504.32 504.32 548.61 0.24 512.91 512.91 0.04 404.32 404.32 413.84 0.24 412.91 412.91 0.04
c205c10 2631.97 2631.97 2631.97 0.24 2661.17 2661.17 0.04 711.97 711.97 711.97 0.24 741.17 741.17 0.04 471.97 471.97 471.97 0.17 501.17 501.17 0.04
r102c10 595.34 595.34 595.34 0.23 595.34 595.34 0.05 325.19 325.19 325.19 0.24 325.19 325.19 0.05 287.19 287.19 287.19 0.20 287.19 287.19 0.05
r103c10 478.07 478.07 478.23 0.24 478.07 483.59 0.05 262.07 262.07 262.07 0.29 262.07 262.07 0.05 235.07 235.07 235.07 0.34 235.07 235.07 0.05
r201c10 1138.38 1138.38 1140.45 0.27 1138.38 1138.38 0.05 418.38 418.38 418.38 0.28 418.38 418.38 0.05 328.38 328.38 328.38 0.29 328.38 328.38 0.05
r203c10 952.16 952.16 956.50 0.23 956.59 956.59 0.06 392.16 392.16 438.29 0.23 396.59 396.59 0.06 322.16 322.16 350.29 0.22 326.59 326.59 0.06
rc102c10 1100.27 1100.27 1100.27 0.27 1100.27 1100.27 0.02 572.27 572.27 572.27 0.23 572.27 572.27 0.03 498.51 498.51 498.51 0.22 498.51 498.51 0.02
rc108c10 693.27 693.27 693.27 0.35 693.27 693.27 0.04 422.12 422.12 422.12 0.26 424.09 424.09 0.04 386.12 386.12 386.12 0.25 388.09 388.09 0.04
rc201c10 684.63 684.63 684.88 0.30 686.32 686.32 0.04 429.17 429.17 429.17 0.45 434.83 434.83 0.04 384.17 384.17 384.17 0.32 389.83 389.83 0.04
rc205c10 1064.59 1064.59 1067.44 0.29 1066.14 1066.14 0.05 504.59 504.59 504.59 0.38 506.14 506.14 0.05 429.69 429.69 429.69 0.27 429.69 429.69 0.05
c103c15 1291.03 1291.03 1291.46 0.50 1291.03 1291.03 0.11 571.03 571.03 571.78 0.55 571.03 571.03 0.10 481.03 481.03 481.64 0.43 481.03 481.03 0.10
c106c15 1253.59 1253.59 1253.59 0.49 1253.59 1253.59 0.08 533.59 533.59 538.28 0.55 533.59 533.59 0.08 415.13 415.13 440.52 0.48 415.13 415.13 0.07
c202c15 2403.35 2403.35 2403.35 0.64 2403.35 2403.35 0.10 803.35 803.35 803.35 0.61 803.35 803.35 0.10 603.35 603.35 607.82 0.61 603.35 603.35 0.10
c208c15 2325.89 2325.89 2325.89 0.53 2325.89 2325.89 0.11 725.89 725.89 725.89 0.47 725.89 725.89 0.11 525.89 525.89 526.29 0.38 525.89 525.89 0.11
r102c15 850.58 850.58 854.99 0.50 850.58 850.58 0.08 511.55 511.55 514.84 0.56 511.55 511.55 0.07 465.94 465.94 467.00 0.51 466.55 466.55 0.07
r105c15 760.13 760.13 762.48 0.41 760.13 760.13 0.08 436.89 436.89 436.89 0.43 436.89 436.89 0.08 387.89 387.89 387.94 0.38 387.89 387.89 0.08
r202c15 1311.24 1311.24 1316.84 0.92 1311.24 1311.24 0.15 591.24 591.24 591.24 0.74 591.24 591.24 0.15 495.64 495.64 495.64 0.55 498.05 498.05 0.15
r209c15 1033.50 1033.50 1033.50 0.64 1033.50 1033.50 0.15 473.50 473.50 473.50 0.63 473.50 473.50 0.15 403.50 403.50 403.50 0.55 403.50 403.50 0.15
rc103c15 840.97 840.97 840.98 0.52 840.97 843.01 0.08 499.67 499.67 499.67 0.43 499.67 499.67 0.07 448.67 448.67 448.67 0.43 448.67 448.67 0.07
rc108c15 1013.70 1013.70 1033.14 0.47 1013.70 1013.70 0.09 514.78 514.78 514.78 0.44 514.78 514.78 0.08 445.25 445.25 445.95 0.41 445.25 445.25 0.08
rc202c15 1101.61 1101.61 1101.61 0.56 1101.61 1101.61 0.13 541.61 541.61 541.61 0.51 541.61 541.61 0.13 471.61 471.61 471.61 0.44 471.61 471.61 0.13
rc204c15 810.90 810.90 810.90 0.54 810.90 810.90 0.21 410.90 410.90 410.90 0.59 410.90 410.90 0.21 360.90 360.90 360.90 0.52 360.90 360.90 0.20

Avg. Gap 0.00 0.52 0.10 0.00 0.62 0.33 0.00 0.52 0.50
Best 36 28 36 27 36 26
Avg. Time 0.34 0.06 0.32 0.06 0.29 0.06
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Table A.8 – Results of PMa on large instances of Hiermann et al. (2016).

Type A B C

Instance BKS
ALNS PMa

BKS
ALNS PMa

BKS
ALNS PMa

Avg. t (min) Best Avg. t (min) Avg. t (min) Best Avg. t (min) Avg. t (min) Best Avg. t (min)

c101 7162.01 7190.21 17.53 7162.01 7165.15 25.88 2495.00 2505.73 14.43 2495.00 2502.09 25.56 1809.93 1816.06 14.08 1810.12 1820.45 8.84
c102 7139.45 7162.24 17.95 7139.45 7142.80 26.02 2445.99 2450.73 14.41 2448.76 2451.39 25.86 1759.73 1766.14 14.36 1763.97 1770.44 9.20
c103 7121.12 7149.31 18.30 7121.12 7124.26 31.22 2430.72 2452.40 15.03 2430.72 2437.99 31.16 1746.80 1759.20 15.09 1746.80 1757.68 20.76
c104 7099.88 7110.43 17.75 7099.88 7103.79 32.93 2404.73 2428.95 15.07 2404.73 2410.12 32.85 1719.67 1735.86 15.60 1721.53 1727.72 29.04
c105 7140.31 7182.56 17.60 7140.31 7152.21 27.24 2472.93 2475.95 14.45 2473.79 2476.46 27.16 1783.25 1785.43 14.51 1785.31 1790.59 10.66
c106 7136.90 7168.94 17.69 7136.90 7141.66 27.28 2462.54 2468.13 14.71 2462.90 2466.25 27.20 1774.77 1777.67 14.64 1775.08 1780.39 11.10
c107 7139.12 7171.04 17.42 7139.12 7145.54 30.49 2458.37 2461.32 14.60 2458.37 2459.31 30.25 1764.02 1768.33 14.57 1765.45 1775.74 14.68
c108 7133.30 7153.77 17.53 7133.30 7142.39 30.22 2450.17 2463.02 14.33 2452.58 2455.74 30.17 1761.41 1769.76 14.80 1768.05 1772.78 20.58
c109 7120.33 7132.19 17.32 7123.15 7132.66 33.32 2431.87 2452.57 15.07 2431.87 2434.02 33.22 1740.18 1749.07 15.30 1744.09 1749.05 29.92
c201 5736.35 5757.53 39.28 5736.35 5741.28 19.36 1730.41 1739.26 35.76 1730.41 1730.50 14.14 1210.41 1213.63 31.30 1210.41 1210.50 13.50
c202 5740.43 5765.52 42.22 5740.43 5753.56 21.50 1729.73 1745.24 38.14 1729.73 1730.12 17.01 1209.73 1220.97 34.17 1209.73 1210.12 16.58
c203 5726.08 5751.99 47.69 5744.25 5783.33 28.27 1716.29 1742.76 39.38 1730.26 1743.23 23.73 1212.34 1227.69 33.07 1216.18 1226.22 30.01
c204 5705.82 5727.18 50.91 5724.75 5772.72 41.49 1699.07 1709.43 37.02 1724.75 1753.55 36.43 1179.25 1199.37 32.15 1204.68 1232.00 35.62
c205 5694.58 5725.41 46.16 5694.58 5701.83 24.43 1694.58 1715.09 37.83 1694.58 1701.83 17.33 1188.92 1195.24 31.64 1192.54 1195.35 16.70
c206 5689.08 5714.39 31.20 5689.08 5696.99 26.40 1689.08 1712.38 36.78 1689.08 1696.99 20.69 1183.42 1192.30 31.01 1188.81 1191.74 20.16
c207 5696.54 5713.44 32.58 5696.54 5716.37 27.61 1694.61 1710.70 35.05 1696.54 1715.61 22.19 1183.42 1190.37 31.44 1187.49 1190.65 21.52
c208 5682.60 5707.65 50.23 5682.60 5700.58 30.48 1681.47 1707.11 36.46 1682.60 1701.29 24.49 1181.47 1192.96 30.82 1182.60 1192.42 23.78
r101 4366.21 4465.51 14.47 4366.21 4379.64 21.41 2249.14 2281.28 13.68 2253.04 2253.93 10.71 1954.00 1977.89 14.36 1959.04 1959.07 9.45
r102 4176.82 4270.92 14.97 4176.82 4180.61 13.11 2047.89 2095.87 14.45 2053.42 2057.97 8.01 1757.13 1791.03 14.67 1761.48 1767.00 7.54
r103 4043.29 4130.86 16.43 4043.29 4049.01 15.53 1892.84 1927.52 15.11 1892.84 1897.06 13.13 1587.32 1618.81 15.52 1587.32 1593.13 12.54
r104 3969.12 4025.60 15.27 3969.12 3970.77 21.45 1747.65 1775.33 15.28 1749.48 1761.84 22.78 1424.30 1448.31 16.20 1427.76 1437.37 19.66
r105 4138.01 4215.34 15.37 4138.01 4140.08 12.94 1997.75 2030.12 15.08 1998.80 2007.01 9.17 1699.34 1728.12 14.68 1699.34 1705.56 8.25
r106 4068.15 4155.24 15.54 4068.15 4075.44 16.46 1925.83 1963.88 14.51 1925.83 1929.13 12.02 1604.55 1635.42 14.67 1609.78 1612.20 8.55
r107 4003.84 4093.59 15.30 4003.84 4008.71 24.07 1818.03 1844.20 15.50 1818.03 1820.75 22.10 1490.04 1514.01 15.99 1493.12 1499.00 17.35
r108 3955.48 4025.75 15.77 3955.48 3961.93 23.96 1720.78 1753.09 16.27 1720.78 1733.87 23.31 1397.86 1417.39 16.42 1397.86 1404.05 18.13
r109 4016.33 4110.98 15.58 4016.33 4024.49 19.92 1863.48 1904.12 15.37 1863.48 1867.32 25.36 1550.40 1580.14 15.65 1551.69 1554.22 16.98
r110 3969.02 4045.96 15.73 3969.02 3975.95 26.51 1752.40 1793.48 15.54 1752.40 1755.92 12.89 1420.13 1471.66 15.64 1420.13 1429.38 12.11
r111 3972.84 4048.42 15.93 3972.84 3976.91 25.10 1765.08 1808.36 15.66 1765.08 1775.04 22.45 1438.81 1479.75 16.16 1439.02 1443.94 12.62
r112 3942.68 4023.01 15.80 3942.68 3947.93 21.85 1714.93 1746.02 15.77 1714.93 1722.34 26.75 1388.22 1403.82 16.10 1388.22 1394.19 25.74
r201 3413.93 3432.83 42.20 3515.45 3543.81 17.91 1594.58 1618.25 31.21 1697.28 1714.30 40.11 1366.63 1378.77 29.69 1474.75 1480.55 39.50
r202 3270.49 3295.26 44.95 3366.13 3397.33 18.23 1468.05 1479.42 29.61 1541.45 1551.73 17.87 1236.97 1249.65 29.13 1316.45 1328.35 42.06
r203 3136.47 3169.97 49.40 3224.34 3252.78 23.86 1340.00 1354.24 30.70 1424.34 1438.89 23.68 1104.85 1124.07 30.23 1183.71 1205.32 56.20
r204 3008.01 3026.09 46.32 3098.94 3114.40 26.84 1203.89 1211.63 27.35 1278.59 1286.75 27.33 977.72 983.97 26.81 1032.48 1050.51 65.96
r205 3234.26 3261.16 40.89 3326.29 3356.01 21.28 1430.70 1455.08 30.16 1524.53 1534.24 20.82 1217.77 1232.63 29.15 1293.54 1308.90 47.77
r206 3172.50 3194.12 47.73 3261.05 3296.06 26.25 1361.69 1376.34 31.35 1461.05 1470.36 27.07 1136.83 1155.47 30.95 1230.67 1239.18 60.69
r207 3079.39 3099.52 46.87 3159.76 3175.13 23.25 1256.22 1268.66 28.18 1359.76 1364.12 23.60 1031.22 1057.22 26.31 1110.93 1136.77 58.58
r208 3010.51 3026.57 51.26 3088.29 3104.77 33.89 1198.39 1208.89 29.02 1281.92 1289.03 34.43 971.15 984.87 28.21 1032.20 1049.20 85.72
r209 3142.72 3161.57 45.06 3224.28 3255.62 25.29 1333.33 1345.50 30.30 1381.34 1407.39 25.18 1099.24 1117.68 29.62 1156.34 1170.58 57.01
r210 3110.90 3143.79 45.94 3181.95 3235.09 25.02 1314.16 1324.07 30.07 1359.10 1385.87 25.44 1087.21 1100.27 29.88 1134.10 1143.99 57.33
r211 3041.93 3079.24 44.29 3133.26 3147.32 20.83 1231.38 1244.73 26.30 1319.15 1326.35 21.33 1006.38 1026.07 25.93 1087.95 1098.37 51.81
rc101 5247.39 5346.49 14.13 5247.39 5255.03 13.21 2504.72 2560.33 13.71 2504.72 2508.65 9.42 2121.02 2153.24 13.80 2121.02 2123.26 8.96
rc102 5114.15 5180.03 14.63 5114.15 5118.29 24.81 2330.50 2359.92 14.35 2334.08 2335.72 9.68 1947.54 1972.85 14.68 1947.54 1950.16 9.40
rc103 4916.98 5007.37 14.53 4916.98 4924.38 18.60 2105.84 2136.78 14.14 2108.82 2113.31 10.78 1726.85 1764.22 14.54 1726.85 1736.49 10.72
rc104 4801.06 4862.65 16.03 4801.06 4815.22 24.28 1979.16 2002.33 15.56 1979.16 1984.66 14.39 1595.44 1614.09 15.80 1596.18 1605.91 15.20
rc105 5060.96 5117.09 14.48 5060.96 5068.85 14.74 2252.05 2287.95 13.87 2252.05 2264.49 9.81 1875.91 1900.42 14.14 1875.91 1880.03 9.93

Continued on next page
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Type A B C

Instance BKS
ALNS PMa

BKS
ALNS PMa

BKS
ALNS PMa

Avg. t (min) Best Avg. t (min) Avg. t (min) Best Avg. t (min) Avg. t (min) Best Avg. t (min)

rc106 4985.03 5102.46 14.69 4985.03 5001.29 14.12 2187.30 2232.05 14.50 2187.30 2194.98 10.21 1811.86 1844.99 15.18 1811.86 1814.49 9.96
rc107 4835.75 4913.90 15.24 4835.75 4853.96 15.67 2034.35 2050.20 15.43 2034.35 2039.77 15.20 1639.84 1675.58 15.31 1645.79 1659.27 15.60
rc108 4798.48 4862.41 15.64 4798.48 4819.12 23.59 1962.87 1995.41 14.99 1969.75 1975.91 16.03 1578.51 1601.47 14.98 1583.70 1588.87 14.15
rc201 4346.25 4361.17 14.27 4371.85 4388.86 32.88 1899.99 1931.42 15.69 1976.91 2013.94 16.64 1589.99 1617.52 15.64 1664.90 1682.78 14.79
rc202 4273.74 4295.27 14.59 4288.62 4313.51 31.02 1807.30 1825.07 16.19 1876.72 1921.19 19.55 1485.13 1497.99 16.72 1541.00 1587.09 15.11
rc203 4152.94 4186.28 15.98 4191.76 4227.27 36.69 1642.43 1660.93 19.00 1717.98 1749.83 22.51 1310.37 1333.25 19.35 1345.08 1363.51 48.90
rc204 4113.49 4127.11 19.18 4136.86 4160.55 46.62 1521.80 1543.04 22.13 1597.07 1638.89 34.12 1183.16 1193.93 22.69 1212.07 1224.22 77.59
rc205 4246.52 4273.59 14.86 4274.33 4294.99 33.33 1753.79 1774.22 19.03 1832.28 1892.25 21.98 1424.75 1440.00 20.95 1500.24 1508.13 39.75
rc206 4237.75 4270.25 15.09 4260.22 4289.85 33.95 1751.75 1767.75 17.79 1819.18 1883.33 23.71 1431.21 1439.17 18.11 1473.86 1493.94 43.46
rc207 4177.23 4199.60 16.20 4215.09 4242.41 36.42 1616.96 1640.23 19.07 1694.69 1782.89 27.96 1277.71 1299.14 21.30 1344.75 1364.75 49.95
rc208 4097.04 4122.12 18.13 4142.05 4173.32 42.75 1497.95 1520.76 22.03 1578.86 1660.49 32.61 1161.57 1171.52 22.91 1202.33 1216.16 64.83

Avg. Gap 1.01 0.66 1.04 1.24 1.91 2.82 1.29 1.98 2.72
Best 34 22 13
Avg. Time 25.68 25.57 21.47 21.96 20.83 28.08
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Koç, Ç., Bektaş, T., Jabali, O. & Laporte, G. (2016), ‘Thirty years of heterogeneous vehicle routing’,
European Journal of Operational Research 249(1), 1–21. 66

Koc̆, C. & Karaoglan, I. (2016), ‘The green vehicle routing problem: A heuristic based exact solution
approach’, Applied Soft Computing 39, 154 – 164. 12

http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm


104 BIBLIOGRAPHY

Kovacs, A. A., Parragh, S. N., Doerner, K. F. & Hartl, R. F. (2012), ‘Adaptive large neighborhood search
for service technician routing and scheduling problems’, Journal of Scheduling 15(5), 579–600. 66

Lahyani, R., Khemakhem, M. & Semet, F. (2015), ‘Rich vehicle routing problems: From a taxonomy to a
definition’, European Journal of Operational Research 241(1), 1–14. 65

Laporte, G., Nobert, Y. & Desrochers, M. (1985), ‘Optimal routing under capacity and distance restrictions’,
Operations Research 33(5), 1050–1073. 18

Lenstra, J. K. & Kan, A. (1981), ‘Complexity of vehicle routing and scheduling problems’, Networks
11(2), 221–227. 17

Liao, C.-S., Lu, S.-H. & Shen, Z.-J. M. (2016), ‘The electric vehicle touring problem’, Transportation
Research Part B: Methodological 86, 163 – 180. 38, 50

Liu, R., Yuan, B. & Jiang, Z. (2016), ‘Mathematical model and exact algorithm for the home care worker
scheduling and routing problem with lunch break requirements’, International Journal of Production
Research p. DOI:10.1080/00207543.2016.1213917. 66, 88

Loaiza (2014), ‘Convenio Sura-Celsia, por el bien del medio ambiente’, http://www.sura.com/
blogs/autos/convenio-sura-celsia-por-el-medio-ambiente.aspx. Last accessed
13/04/2016. 12

Lourenço, H. R., Martin, O. C. & Stützle, T. (2010), Iterated local search: Framework and applications, in
‘Handbook of Metaheuristics’, Springer, pp. 363–397. 47, 49

Lozano, L., D. D. & Medaglia, A. L. (2013a), ‘The pulse algorithm: A java implementation (jpulse)’.
URL: http://dspace.uniandes.edu.co:9090/xmlui/handle/1992/1162 26

Lozano, L. & Medaglia, A. L. (2013b), ‘On an exact method for the constrained shortest path problem’,
Computers & Operations Research 40(1), 378–384. 26

Mendoza, J. E., Guéret, C., Hoskins, M., Lobit, H., Pillac, V., Vidal, T. & Vigo, D. (2014), VRP-REP:
a vehicle routing community repository, in ‘Third meeting of the EURO Working Group on Vehicle
Routing and Logistics Optimization (VeRoLog). Oslo (Norway)’. 56, 77

Mendoza, J. E. & Villegas, J. G. (2013), ‘A multi-space sampling heuristic for the vehicle routing problem
with stochastic demands’, Optimization Letters 7(7), 1503–1516. 18, 20, 21
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Alejandro MONTOYA

Problèmes de tournées de véhicules électriques : modèles et méthodes de
résolution

Electric Vehicle Routing Problems: models and solution approaches

Résumé

Etant donné leur faible impact environnemental, l’utilisation des vé-
hicules électriques dans les activités de service a beaucoup aug-
menté depuis quelques années. Cependant, leur déploiement est
freiné par des contraintes techniques telles qu’une autonomie limi-
tée et de longs temps de charge des batteries. La prise en compte
de ces contraintes a mené à l’apparition de nouveaux problèmes de
tournées de véhicules pour lesquels, en plus d’organiser les tour-
nées, il faut décider où et de combien charger les batteries. Dans
cette thèse nous nous intéressons à ces problèmes au travers de
quatre études. La première concerne le développement d’une meta-
heuristique en deux phases simple mais performante pour résoudre
un problème particulier appelé "Green VRP”. Dans la seconde, nous
nous concentrons sur la modélisation d’un aspect essentiel dans ces
problèmes : le processus de chargement des batteries. Nous étu-
dions différentes stratégies pour modéliser ce processus et montrons
l’importance de considérer la nature non linéaire des fonctions de
chargement. Dans la troisième étude nous proposons une recherche
locale itérative pour résoudre des problèmes avec des fonctions de
chargement non linéaires. Nous introduisons un voisinage dédié aux
décisions de chargement basé sur un nouveau problème de charge-
ment sur une tournée fixée. Dans la dernière étude, nous traitons
un problème réel de tournées de techniciens avec des véhicules
classiques et électriques. Ce problème est résolu par une meta-
heuristique qui décompose le problème en plusieurs sous-problèmes
plus simples résolus en parallèle, puis qui assemble des parties des
solutions trouvées pour construire la solution finale.

Abstract

Electric vehicles (EVs) are one of the most promising technologies
to reduce the greenhouse gas emissions. For this reason, the use
of EVs in service operations has dramatically increased in recent
years. Despite their environmental benefits, EVs still face technical
constraints such as short autonomy and long charging times. Taking
into account these constraints when planning EV operations leads
to a new breed of vehicle routing problems (VRPs), known as elec-
tric VRPs (eVRPs). In addition, to the standard routing decisions,
eVRPs are concerned with charging decisions: where and how much
to charge. In this Ph. D thesis, we address eVRPs through 4 differ-
ent studies. In the first study, we tackle the green vehicle routing
problem. To solve the problem, we propose a simple, yet effective,
two-phase matheuristic. In the second study, we focus a key mod-
elling aspects in eVRPs: the battery charging process. We study dif-
ferent strategies to model this process and show the importance of
considering the nonlinear nature of the battery charging functions. In
the third study, we propose an iterated local search to tackle eVRP
with non-linear charging functions. We introduce a particular local
search operator for the charging decisions based on a new fixed-
route charging problem. The fourth and last study considers a real
technician routing problem with conventional and electric vehicles
(TRP-CEV). To tackle this problem, we propose a parallel matheuris-
tic that decomposes the problem into a set of easier-to-solve sub-
problems that are solved in parallel processors. Then the approach
uses parts of the solutions found to the subproblems to assemble
final solution to the TRP-CEV.

Mots clés
Problèmes de tournées de véhicules électriques ; Problèmes de
tournées de techniciens ; Green vehicle routing problems ; Problème
de chargement sur une tournée fixée ; Fonctions de chargement
non linéaires ; Méta-heuristique ; Matheuristique, Recherche locale
itérative
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Electric vehicle routing problems; Technician routing problems;
Green vehicle routing problems; Fixed-route vehicle charging
problems; Non linear charging functions; Metaheuristic;
Matheuristic; Iterated local search
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