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Abstract

In this manuscript, the optimization of the propulsion and control of AUVs is
developed. The hydrodynamic model of the AUVs is examined. Additionally,
AUV propulsion topologies are studied and models for fixed and vectorial
technology are developed. The fixed technology model is based on an off
the shelf device, while the modeled vectorial propulsive system is based on
a magnetic coupling thruster prototype developed in IRDL1 (ENI Brest).

A control method using the hydrodynamic model is studied, its adapta-
tion to two AUV topologies is presented and considerations about its appli-
cability will be discussed.

The optimization is used to find suitable propulsive topologies and con-
trol parameters in order to execute given robotic tasks, speeding up the
convergence and minimizing the energy consumption. This is done using a
genetic algorithm, which is a stochastic optimization method used for task-
based design. The results of the optimization can be used as a preliminary
stage in the design process of an AUV, giving ideas for enhanced propulsive
configurations.

The optimization technique is also applied to an IRDL existing robot,
modifying only some of the propulsive topology parameters in order to readily
adapt it to different tasks, making the AUV dynamically reconfigurable.

1Institut de Recherche Dupuy de Lôme CNRS FRE 3744, Brest-Lorient, France
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Résumé

Dans ce travail, l’optimisation de la propulsion et de la commande des AUV
(Autonomous Underwater Vehicles en anglais) est développé. Le modèle hy-
drodynamique de l’AUV est examiné. Également, son système de propulsion
est étudié et des modèles pour des solutions de propulsion différentes (fixe et
vectorielle) sont développés dans le cadre de la mobilité autonome.

Le modèle et l’identification de la technologie de propulsion dite fixe sont
basés sur un propulseur disponible commercialement. Le système de propul-
sion vectoriel est basé sur un prototype de propulseur magneto-couplé recon-
figurable (PMCR) développé à l’IRDL-ENIB.

Une méthode de commande non linéaire utilisant le modèle hydrody-
namique de l’ AUV est développée et son adaptation à deux systèmes de
propulsion est présentée. Des analyses portant sur la commandabilité du
robot et l’application de cette commande à différents systèmes sont pro-
posées.

L’optimisation globale est utilisée pour trouver des topologies propulsives
et des paramètres de commande adaptés à la réalisation de tâches robo-
tiques spécifiques. L’optimisation réalisée permet de trouver des solutions
capables d’assurer le suivi de trajectoire et de minimiser la consommation
génergétique du robot. L’optimisation utilise un algorithme génétique (algo-
rithme évolutionnaire), une méthode d’optimisation stochastique appliquée
ici à la conception orientée tâche de l’AUV. Les résultats de cette optimisation
peuvent être utilisées comme une étape préliminaire dans la conception des
AUVs, afin de donner des pistes pour améliorer les capacités de la propulsion.

La technique d’optimisation est également appliquée au robot RSM (fab-
riqué au sein de l’IRDL-ENIB) en modifiant seulement quelques paramètres
de sa topologie propulsive. Cela afin d’obtenir des configurations de propul-
sion adaptées au cours d’une seule et même mission aux spécificités locomotri-
ces des tâches rencontrées : Reconfiguration dynamique de la propulsion de
l’AUV.
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Chapter 1

Résumé

1.1 Introduction

1.1.1 Véhicules sous-marins non habités

L’impact et le potentiel des océans dans le développement humain est indéniable,
ils ont été tout au long de l’histoire un élément clé pour les domaines économique,
militaire et scientifique. D’un point de vue économique, les mers sont les
fondations de l’industrie de la pêche; elles sont également utilisés, depuis
l’antiquité, pour établir les routes commerciales. Aujourd’hui, en temps de
croissance démographique sans précèdent, les mers sont considérées comme
un élément essentiel de l’économie par ses ressources (c.-à.-d nourriture, eau
et énergie [1]). Les mers ont aussi un intérêt militaire, puisqu’elles sont con-
sidérées depuis toujours comme une composante importante pour la stratégie
et la géopolitique. Enfin, les mers sont également importantes pour l’étude
du changement climatique. Les variations dans leur composition chimique,
donnent aux chercheurs des informations sur la dégradation du climat et de
l’environnement [2].

L’humanité a toujours essayé d’exploiter les ressources de l’océan à l’aide
de la technologie. D’abord avec des navires et après avec des sous-marins
et de la technologie sous-marine. Dans la seconde moitié du XXe siècle,
grâce à la maturité de la technologie marine, les robots sous-marins ont
commencé à être utilisés dans l’exploration des océans. Des véhicules sous-
marins non habités (UUV’s, unmanned underwater vehicles en anglais) ont
été développés à cette époque, puis leurs caractéristiques ont été progressive-
ment améliorées grâce aux avancées technologiques [3]. On peut diviser les
UUV’s en deux catégories : robots sous-marins autonomes (AUV) et robots
sous-marins télé-opérés (ROV). Actuellement, l’utilisation des ROVs est très
répandue dans tous les domaines, alors que les AUV sont plutôt utilisés dans

23
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le domaine militaire pour leur autonomie.

Contexte opérationnel

Après plusieurs décennies d’opération, les robots sous-marins autonomes
ont démontré leur capacité à réaliser des missions de plus en plus diffi-
ciles. Ces robots étaient utilisés au début comme de simples dispositifs
d’appui, puis, au cours des années, ils sont devenus plus fiables grâce aux
progrès technologiques et scientifiques. Aujourd’hui ce type de robot peut
être utilisé pour réaliser des missions complexes en autonomie ou en mode
supervisé. Néanmoins, malgré leur succès, le développement des AUVs n’a
pas encore atteint son potentiel maximum. Effectivement, la prochaine étape
dans l’évolution des AUVs est l’amélioration de leur autonomie, ce qui leur
permettra de réaliser les mêmes mission que les ROVs en autonomie. Le
développement d’AUVs plus autonomes nous permettra de réaliser des mis-
sions dans lesquelles le robot pourra parcourir de grandes distances, réagir
en temps-réel et réaliser des interventions sans supervision humaine.

Les domaines d’activité utilisant déjà les AUVs bénéficieront de ce type
de robots sous-marins. Les océanographes, par exemple, pourront utiliser les
AUVs pour mesurer sur des grandes distances et prendre des échantillons de
façon autonome. L’industrie du pétrole pourrait utiliser ces robots pour in-
specter et faire de la maintenance de son équipement sous-marin. La défense
pourrait utiliser ces robots pour détecter, identifier et détruire des mines sans
mettre en péril la vie humaine.

Même si ces missions sont impossibles à réaliser par les AUVs actuels,
elles nous permettent de déterminer les caractéristiques nécessaires pour les
futurs robot sous-marins. Afin de réaliser ces missions, nous remarquons
qu’une bonne manoeuvrabilité et une bonne autonomie sont nécessaires. La
combinaison de ces deux caractéristiques n’est pas disponible dans les AUVs
d’aujourd’hui. Même si l’autonomie des AUVs a été améliorée, la manoeu-
vrabilité de ce type de véhicule reste réduite [27-29]. Une solution à ce
problème serait soit d’augmenter l’autonomie des ROVs, soit d’augmenter
la manoeuvrabilité des AUVs. Cependant, par leur nature, il est très com-
pliqué de donner des capacités de longue portée aux ROVs. Ces véhicules
sont étroitement attachés à leurs navire d’appui car ils y sont reliés par un
câble ombilical.

La deuxième option est plus faisable : augmenter la manoeuvrabilité
des AUVs. Effectivement, la capacité de calcul embarqué et les capteurs
actuels permettent d’implémenter des méthodes de commande avancées. Ces
développements, avec les avancements en termes de technologie propulsive,
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sont susceptibles d’augmenter la manoeuvrabilité des AUVs et leur autonomie.

1.1.2 Méthodologie de recherche

Dans ce manuscrit on travaillera sur la seconde solution proposée : L’amélioration
des capacités des AUVs par le biais d’une manoeuvrabilité augmentée. Effec-
tivement, nous allons nous concentrer sur l’étude des systèmes de propulsion
et leur efficacité afin d’augmenter la manoeuvrabilité des AUVs (mobilité et
vitesse). La propulsion est un aspect clé dans l’étude de la manoeuvrabilité
puisqu’elle intervient directement dans la mobilité et la commandabilité du
robot sous-marin.

Selon le type de propulsion, le robot pourrait avoir besoin de plus ou moins
de propulseurs, il pourrait être plus ou moins lourd, ou il pourrait même
être incapable de réaliser certaines missions. La conception des systèmes
de propulsion sera étudiée afin de déterminer son effet sur la performance
des AUVs. Différentes solutions technologiques (fixe et vectorielle) seront
étudiées. De plus, un propulseur magnéto-couplé réconfigurable (PMCR)
sera présenté, modélisé et simulé.

Nous étudierons, également, la topologie de propulsion, c’est à dire le
nombre, l’orientation, la position et le type d’actionneur. Nous essaierons
de déterminer la configuration propulsive la plus adaptée pour une tâche
donnée, ce qui comprend la topologie et la méthode de commande (structure
et paramètres).

Le problème de trouver la configuration propulsive la plus adaptée sera
traité ici comme un problème d’optimisation. A cause d’infinies possibilités
dans les solutions et du manque de formalisme mathématique, il n’est pas
possible d’utiliser des techniques conventionnelles d’optimisation (descente de
gradient). Afin de résoudre ce problème d’optimisation on utilisera des algo-
rithmes évolutionnistes (algorithme génétique). Ce type d’algorithme utilise
l’évolution artificielle afin de trouver des solutions adaptées au problème
d’optimisation.

L’AUV étant autonome, il est équipé de batteries. Les solutions pro-
posées ne doivent donc pas conduire à une forte consommation énergétique.
Ce compromis (manoeuvrabilité et efficacité énergétique), nous amènera à
privilégier des solutions avec un faible nombre de propulseurs idéalement
configurés pour maximiser leur potentiel.
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1.2 Modelisation de l’AUV

1.2.1 Modélisation des robots sous-marins autonomes

L’étude des robots sous-marins commence par la modélisation mécanique du
système, une étape fondamentale pour mâıtriser, commander et optimiser
n’importe quel robot. Les robots sous-marins nécessitent plusieurs modèles
pour être complètement décrits. Les principaux modèles représentent les
aspects cinématique et dynamique du système. De plus, on utilisera des
modèles décrivant les différents sous-systèmes tels que la topologie ou la
technologie propulsive. Ces modèles seront présentés dans cette section. Les
premiers seront issus de la littérature [146]. Ils font usage de l’approximation
par les masses ajoutées (coefficients hydro-dynamiques), sa précision est suff-
isante pour notre application.

Cinématique

Ici les équations cinématiques de l’AUV sont présentées. Afin de pouvoir
les développer, on doit faire les hypothèses suivantes :

� L’AUV est submergé loin du sol, des parois et de la surface de l’eau. Il
est dans un fluide homogène.

� Les courants marins sont négligés (non fondamentales pour la méthode).

� L’AUV est un corps rigide de masse constante.

Deux systèmes de coordonnées orthogonaux sont utilisés : R0 (O0,x0y0, z0)
le repère fixe (attaché à la terre) et Rb (Ob,xb,yb, zb) le repère mobile, lié a
l’AUV.

On peut trouver le vecteur de vitesse absolue de l’AUV exprimé dans R0

à partir de Rb en utilisant une matrice de transformation cinématique [146].

η̇ =
dη

dt

∣∣∣∣
R0

= J(η2)ν

avec ν = [u v w p q r], le vecteur combinant les vitesses absolues linéaire
et angulaire du robot dans Rb

Dynamique
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Les équations dynamiques non linéaires du robot sous-marins sont données
dans le repère Rb et peuvent être développées comme [3] :

Mν + Cν + Dν + G = τ

où M ∈ R6×6, C ∈ R6×6 et D ∈ R6×6 sont les matrices de masse, Corio-
lis et forces centripètes et forces de dissipation respectivement (incluant les
termes de masse ajoutée). G est le vecteur des forces et moments gravita-
tionnels. Enfin, τ est le torseur des efforts extérieurs.

τ , représente les forces et moments générés par les propulseurs. Il est
construit de la manière suivante :

τ = B up

où B est la matrice de configuration de la propulsion, qui dépend de
l’architecture de propulsion (nombre, position et orientation des actionneurs).
up est le vecteur des forces d’actionnement (c.-à-d. poussées des propulseurs).

Ces matrices sont créées en utilisant les lois de la physique du solide rigide
et hydro-dynamiques. La physique du solide rigide nous permet de modéliser
l’AUV comme un solide, donc d’appliquer les équations dynamiques du solide
(Newton - Euler). Par ce que l’AUV est submergé, on doit ajouter l’effet de
l’eau sur le robot afin de décrire complètement le système dynamique.

1.2.2 Modélisation de la propulsion

La prochaine étape dans la modélisation du robot sous-marin concerne sa
propulsion. Nous pouvons diviser la modélisation de la propulsion en deux
niveaux. Le premier, le plus global, décrit mathématiquement la topologie
(nombre, position et orientation) des propulseurs. Le second niveau, plus
spécifique, décrit la technologie utilisé dans chaque propulseur. Dans ce
manuscrit on présente deux technologies de propulsion : Fixe et vectorielle.

Propulsion fixe

Un propulseur fixe est un propulseur qui une fois monté dans le robot,
n’est pas capable de changer sa configuration (orientation). Ce type de
propulseur est très utilisée dans le domaine de la robotique sous-marine.
Il existe plusieurs modèles décrivant ce type d’actionneur, dans ce manuscrit
on utilisera le modèle le plus utilisé [147][148].
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A fin de développer le modèle pour ce type d’actionneur, on prendra
comme référence les actionneurs utilisés dans le robot RSM : Le propulseur
Seabotix BTD150 1, un propulseur avec un moteur à courant continu.

Propulsion vectorielle

Un propulseur vectoriel, est un propulseur capable de changer la direc-
tion de sa poussée. A fin de modéliser ce type d’actionneur, on utilisera le
propulseur magnéto-couplé reconfigurable (PMCR) comme base [150].

La figure 1.1 montre un schéma du PMCR. Le système consiste en un
moteur attaché à un axe. Un axe attaché à l’hélice fournit la force de propul-
sion. L’axe de propulsion est orientable par rapport à l’axe du moteur grâce
à une fourche, le lien entre le bâti du système et l’axe du propulseur. Le
couple généré par le moteur est transmis à l’hélice grâce à un accouplement
magnétique.

Fork

Propeller
rotor

Propeller Magnets Frame

Motor

Servomotor

Figure 1.1: Prototype du PMCR.

1.3 Commande basée modèle

Après avoir modélisé le robot, la prochaine étape dans l’étude du robot sous-
marin est la définition des méthodes de commande et d’estimation utilisées,
deux éléments indispensable pour simuler le robot en mission.

1http://www.seabotix.com/products/auv thrusters.htm
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Étant donné qu’on a un modèle assez précis du robot, il semble logique
de l’utiliser intensivement. La méthode choisie est le bouclage dynamique
linéarisant; Une technique de commande non-linéaire qui utilise complètement
les modèles cinématique et dynamique du robot.

Un filtre de Kalman étendu (EKF) est utilisé afin d’estimer les variables
d’état non mesurées par des capteurs, mais utilisées par la méthode de com-
mande. L’implantation des méthodes de commande et estimation est faite
en utilisant le système d’exploitation robotique ROS (bibliothèque écrite en
C++).

1.3.1 Bouclage dynamique linéarisant

Cette méthode de commande est très utilisée pour commander des AUVs
[160,161]. La commande utilise directement les modèles cinématique et
dynamique du robot. Cette caractéristique nous donne une vision claire
du fonctionnement intérieur de la méthode, ce qui nous permet de mieux
étudier la commandabilité du système. L’idée principale de cette méthode
de commande est de transformer algébriquement le système non-linéaire en
un système linéaire, afin de pouvoir appliquer des techniques de commande
linéaires (Fig. 1.2).

Robot in-
verse model

PID

Reference
trajectory

+

Robot State

Computed torque control

Figure 1.2: Principe de la méthode de commande utilisée.

La méthode du bouclage dynamique linéarisant est différente des méthodes
classiques de linéarisation puisque la linéarisation est faite avec une com-
pensation dynamique exacte et non pas par approximation linéaire. Le
bouclage dynamique linéarisant est basé sur l’idée de commander le système
en utilisant un actionnement subsidiaire capable de compenser les effets non-
linéaires du système et de pouvoir appliquer une correction au système ainsi
linéarisé.

La méthode est constituée des boucles cinématique et dynamique (Fig.
1.3). La boucle cinématique génère une vitesse de référence νuad qui fait
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qu’un point du robot (point traqué) e suive une trajectoire désirée ηed. Afin
de calculer cette vitesse, il utilise la vitesse de la trajectoire désirée η̇ed (an-
ticipation) et un terme de correction proportionnel (gain Λ) à l’erreur de
position/orientation.

La boucle dynamique calcule le torseur τa à appliquer à l’AUV (com-
pensation) afin qu’il suive νad. Elle utilise aussi une anticipation (dérivée
de νad) et une correction proportionnelle à l’erreur en vitesse (gain Kp).
Cette méthode est très efficace si l’architecture de propulsion est capable de
générer le torseur calculé τa et si le modèle est très précis (ou la période
d’échantillonage très petite). Il est indispensable que le robot soit command-
able sur la trajectoire ηed.

ηed Λ

d
dt

J−1

Ro −→ Rb

T−1

re −→ Ob

+ e +

νad

+ ˙ηed

Kp Eq.3.5 Σ
ea τa

d
dt

+ν̇ad
+

νad

ηe

−

ν−ν

Feedforward

Feedforward

Kinematic Control

Dynamic control

Figure 1.3: Commande par bouclage linéarisant.

1.4 Optimisation génétique de la propulsion

Le modèle et la méthode de commande présentés précédemment montrent les
différents paramètres et sous-systèmes auxquels le concepteur doit répondre
afin de créer le système de propulsion de l’AUV. Les paramètres et sous-
systèmes tels que les gains de la commande et la topologie de propulsion du
robot sont essentiels pour créer un robot opérationnel. De plus, même pour
un robot sous-marin fonctionnel, un léger changement dans les paramètres
de conception peut générer de grandes variations de la performance du robot.
Le robot sous-marin doit être alors une combinaison précise d’éléments de
conception étroitement couplés.
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La grande quantité d’éléments de conception et leur hétérogénéité, font
de la conception du robot un processus très complexe. Pour surmonter cette
difficulté, le concepteur peut choisir les stratégies suivantes :

� Utiliser une approche descriptive, la méthode classique où “humaine”.
Le concepteur utilise l’expérience précédente et des nouvelles idées
afin de créer le robot. Les idées sont transformées de façon itérative
jusqu’à ce qu’on trouve une idée satisfaisante. Ce processus étant semi-
empirique, le robot créé avec cette approche dépend fortement de la
capacité et de l’expérience du concepteur.

� Utiliser une approche numérique, qui nécessite un ordinateur pour créer
le système ou pour analyser un système déjà conçu. Cette approche
peut être utilisée pour trouver automatiquement les éléments par opti-
misation d’un système selon des critères objectifs déterminés.

Le problème de conception dans ce travail peut être formulé comme un
problème d’optimisation.

1.4.1 Algorithmes génétiques

Ce problème d’optimisation sera résolu en utilisant des algorithmes génétiques.
Étant un type d’algorithme évolutionniste, les algorithmes génétiques (GA)
sont basés sur la théorie de l’évolution de Darwin (1859) et les mécanismes
de la génétique découverts par Mendel (1866). Les algorithmes génétiques
utilisent des individus, regroupés en populations, une fonction objective ou
fitness et des opérateurs génétiques tels que sélection, croisement et mutation
[175].

Un algorithme génétique typique suit les étapes suivantes :

1. Une population d’individus est créée. Cette population peut être créée
aléatoirement ou en utilisant des connaissances antérieures.

2. Les individus de la population sont évalués et se voient attribuer une fit-
ness selon leur performance (basée sur une fonction objective d’évaluation
de leur gènes (codés en nombres binaires)

3. Les opérateurs génétiques utilisent la fitness de chaque individu afin de
créer de nouveaux individus :

(a) Sélection : les meilleurs individus (meilleures fitness) sont sélectionnés.
Cette sélection peut être stochastique ou déterministe (les deux
souvent).
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(b) Croisement : deux individus (parents) combinent leurs gènes afin
de créer deux nouveaux individus (enfants).

(c) Mutation: un changement de la valeur d’un gène chez certains
individus est réalisé aléatoirement. Ce changement (de 0 à 1 ou
inversement) est décidé avec des méthodes stochastiques (chaque
gène a une très petite probabilité d’avoir une mutation).

(d) Remplacement de la population: la nouvelle génération créée par
les opérateurs remplace complètement la génération précédente.

4. Aller à l’étape 2 si les solutions ne sont pas encore satisfaisantes, autrement,
finir l’algorithme.
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Problème d’optimisation

Le problème d’optimisation “créer un système de propulsion capable de
réaliser une mission donnée” doit être défini plus précisément. Évidemment,
une définition mathématique et concise du problème nous permettra de con-
cevoir et implémenter correctement l’algorithme génétique.

La commande calcule la force (donc la poussée) qui doit être fournie
par les propulseurs d’un robot sous-marin afin de qu’il suive une trajectoire
donnée. On peut considérer aussi qu’une mission de haut-niveau est une
succession de trajectoires enchâınées. Notre méthode de commande nous
permet alors de réaliser une mission spécifique tout en suivant des trajectoires
successives différentes.

Le robot solution pour le problème d’optimisation doit suivre précisément
la trajectoire désirée. Cela signifie que la distance entre le point traqué et la
trajectoire (à l’instant correspondant) doit converger vers zéro. Autrement
dit, l’intégrale de l’erreur de la trajectoire doit être la plus faible possible et
converger. Le problème d’optimisation est, alors, la minimisation de la fonc-
tion objective définie comme l’intégrale de l’erreur cinématique εkin. Cela
peut être écrit mathématiquement de la façon suivante (cas de la minimisa-
tion) :

Trouver x? ∈ IR|5n+5
[−1,1] /∀x ∈ IR|5n+5

[−1,1], g(x?) ≤ g(x)

avec :

x? L’individu le plus adapté créé à partir de 5n+5 gènes binaires
(bits). L’espace de recherche est IR|5n+5

[−1,1]

g(x) La fonction objective à minimiser , définit comme l’intégrale
de l’erreur cinématique de la méthode de commande.

n La quantité de propulseurs.

Le nombre de paramètres (donc de gènes) d’un individu peut changer.
Chaque propulseur a 5 paramètres : 3 coordonnées de position (xpi, ypi, zpi)

et 2 orientations (θpi, ψpi), définies par rapport au repère du robot. Étant
donné qu’on cherche également la meilleure topologie propulsive, le nombre
de propulseurs n est variable.

Le robot a seulement un seul contrôleur, ce qui nous donne 5 paramètres
à optimiser : 2 gains (pour les parties cinématiques et dynamiques de la
méthode de commande) et 3 coordonnées de position (xe, ye, ze) pour la
position du point traqué e.
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Paramètres de conception

Une liste exhaustive des paramètres de conception (pour le propulseur “i“)
est donnée ici :

� Paramètres de la propulsion

– Nombre de propulseurs : n

– Position du propulseur : Pix, Piy, Piz

– Orientation du propulseur : θi, ψi

� Paramètres de la méthode de commande

– Gains (cinématique et dynamique) : Λ, Kp

– Point traqué : Pex, Pey, Pez

1.4.2 Optimisation globale des robot sous-marins au-
tonomes

Dans cette étape de l’optimisation des robot sous-marins, on déterminera la
topologie complète du véhicule afin de faire une mission déterminée. On op-
timisera le nombre de propulseurs, les position et orientation des propulseurs
et les gains du contrôleur.

Mission

La mission qu’on utilisera pour l’optimisation consiste à inspecter une hy-
drolienne. Cette mission a été choisie à cause du coût élevé de la maintenance
des hydroliennes. Ces dispositifs pourraient être inspectés par des robots
sous-marins avec une manoeuvrabilité et une autonomie améliorée.

La mission d’inspection (Fig. 1.5) peut être divisée en trois phases :

� Scann du fond marin : dans cette étape, le robot suit une trajectoire
qui lui permet de scanner le fond marin (trajectoire dans le plan proche
de la surface). Le robot sous-marin peut utiliser un scanner latéral pour
scanner le fond marin jusqu’à ce qu’il trouve la cible.

� Plongé vers l’hydrolienne : une fois la cible trouvée, le robot com-
mence la phase de plongée. Dans cette phase le véhicule essaiera de se
rapprocher rapidement et directement de la turbine, tout en essayant
de minimiser la consommation énergétique.
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� Tomographie (inspection circulaire) de la turbine: dans la troisième
étape, le robot commence l’inspection de l’hydrolienne. Cette étape est
réalisée en utilisant une caméra afin de filmer la turbine. Pour cela, le
robot doit faire un cercle de rayon constant autour de la turbine tout
en restant radial au cercle (en pointant constamment l’hydrolienne).
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Figure 1.5: Trajectoires des différentes phases de la mission.

On appliquera l’algorithme génétique à chacune de ces trois étapes.

1.4.3 Reconfiguration dynamique de la propulsion

La méthode d’optimisation nous permet d’obtenir des solutions intéressantes
en termes de performance pour chaque phase, mais difficilement pour la mis-
sion complète. Une solution à ce problème est de réconfigurer dynamique-
ment le robot, selon la trajectoire suivie. Le robot changera alors sa config-
uration propulsive pendant la mission, sous l’eau et de manière autonome.
Actuellement, la réconfiguration de l’orientation des propulseurs est tech-
nologiquement possible (section 3.1.3.2).

Dans cette section on testera l’algorithme dans une application plus “réaliste”.
On essayera de trouver des solutions pour les trajectoires décrites précédemment,
mais avec un nombre fixe de propulseurs et avec des positions prédéterminées
(configuration du robot RSM). Seulement les orientations des propulseurs et
les paramètres de la méthode de commande seront optimisés. Cette solution
est réaliste, car elle peut être appliquée en utilisant les propulseurs magnéto-
couplés reconfigurables (PMCR) (section 4.2.3).
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1.4.4 Discussion

En analysant les résultats de la réconfiguration dynamique et de l’optimisation
globale (Tableau 1.1), on voit que l’approche global a de meilleurs résultats.
Pour le scan du fond marin, la fitness du meilleur individu trouvé avec
l’approche global est 1.35 fois plus grande que celle trouvée avec la réconfiguration
dynamique. On obtient un résultat similaire pour la plongée, l’optimisation
globale est 1.38 fois plus grande que celle trouvée avec la réconfiguration
dynamique. Cependant, pour la tomographie, la réconfiguration dynamique
trouve une meilleure solution que l’optimisation globale (1.09 fois plus adaptée).
Cela pourrait s’expliquer par l’espace de recherche réduit de la reconfigura-
tion dynamique et par le fait que la configuration de base était proche de
celle adaptée à la tâche.

Table 1.1: Résultats obtenus avec reconf. dyn et opt. globale.
Approche Tâche Meilleure fitness

Opt. Globale
Scan du fond marin 47.97

Plongée 50.2
Tomographie 32.45

Reconf. dyn
Scan du fond marin 35.52

Plongée 36.4
Tomographie 34.17

Concernant les valeurs de la fitness, l’optimisation globale est la plus
performante. Cependant, d’un point de vue technologique, la réconfiguration
dynamique semble plus intéressante. Effectivement, même si les valeurs de
fitness de la réconfiguration dynamique ne sont pas si bonnes, le fait que
les configurations soient adaptables dynamiquement, rend ces solutions plus
utiles.

Les avantages de la reconfiguration dynamique sont claires, elle per-
met aux AUVs sous-actionnés de réaliser des tâches complexes, grâce à
l’amélioration de leurs capacités propulsives. Effectivement, les AUVs équipées
de propulseurs réconfigurables, en utilisant les solutions trouvées par la réconfiguration
dynamique, sont capables de réaliser des tâches avec une bonne convergence
vers la trajectoire désirée et une consommation énergétique réduite. Cela per-
met d’augmenter l’agilité des AUVs et ainsi leur autonomie de déplacement.
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1.5 Conclusion

Pour concevoir un véhicule sous-marin autonome on doit définir une grande
quantité de paramètres de conception. Ces paramètres doivent être sélectionnés
et correctement configurés afin d’obtenir une performance et une autonomie
améliorées. Une manière d’améliorer l’autonomie est d’incrémenter les ca-
pacités propulsives, est d’adapter le robot aux tâches qu’il doit réaliser.

Actuellement, les AUVs doivent réaliser des tâches et des missions de plus
en plus exigeantes. Ces nouvelles missions demandent aux AUVs d’être très
efficaces et autonomes.

La majorité des méthodes de conception comptent sur l’expérience précédente,
prennent des solutions très connues et adoptent des approches classiques. Les
robots conçus avec ces méthodes, ne sont pas optimisés pour réaliser des mis-
sions spécifiques. Ces robots ont une manoeuvrabilité et efficacité médiocre.

Cette thèse propose une manière d’améliorer la conception des AUVs à
travers l’optimisation de leur configuration propulsive, ce qui permet d’incrémenter
leur performance et leur autonomie. Effectivement, une configuration propul-
sive adaptée à la mission à réaliser permet aux AUVs de réaliser des tâches
complexes avec plus d’efficience (efficacité à coûts réduits).

La technique d’optimisation proposée dans cette thèse utilise un simula-
teur de l’AUV afin d’évaluer les solutions trouvées. Ce simulateur, exploite
le modèle hydro-dynamique du robot, avec la dynamique du solide rigide et
les effets hydro-dynamiques (masse-ajoutée, force de flottaison et trâınée).

Le simulateur inclut également le modèle électromécanique d’un propulseur
réel. Un propulseur vectoriel a été étudié aussi dans cette thèse afin d’étudier
sa faisabilité. Le propulseur vectoriel permet de changer la direction de la
poussée grâce à un accouplement magnétique reconfigurable. Le modèle dy-
namique de ce dispositif a été développé et validé.

Afin de simuler correctement le comportement du robot, on utilise une
méthode de commande non-linéaire appelée bouclage dynamique linéarisant.
Cette méthode de commande utilise les modèles cinématique et dynamique
afin de compenser les effets hydro-dynamques et diriger l’AUV vers la tra-
jectoire désirée. La méthode de commande calcule le torseur nécessaire pour
suivre la trajectoire désirée. Une étape supplémentaire, appelée répartition
de la poussée, a été ajoutée afin de déterminer les poussées nécessaires dans
chaque propulseur du robot en fonction de la topologie propulsive.

Un filtre de Kalman étendu et son implantation dans l’architecture de
contrôle a été également présenté. Cette étape n’a pas été utilisée dans
l’optimisation génétique (car rendue non nécessaire par la simulation) mais
elle est indispensable dans le développement du robot expérimental réel (qui
ne dispose pas de capteurs de vitesse).
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En utilisant les éléments mentionnés précédemment, l’algorithme génétique
a été mis en place. Il nous permet, à partir d’un robot et une tâche donnés, de
trouver une topologie propulsive et des paramètres du contrôleur optimaux.
La solution trouvée sera adaptée pour la tâche demandée et le robot solution
sera très performant mais spécifique à cette tâche. Les solutions trouvées
par cette méthode sont difficiles à appliquer dans la réalité, donc une ap-
proche alternative a été présentée. Cette approche, appelée reconfiguration
dynamique, propose d’appliquer la méthode d’optimisation à un robot avec
le nombre de propulseur et leur positions fixés. Cette réduction de l’espace de
recherche peut donner des solutions moins efficaces. Cependant, ces solutions
sont techniquement faisables aujourd’hui. En appliquant la reconfiguration
dynamique au même robot pour différentes tâches, on peut trouver la con-
figuration optimale de la propulsion pour chaque tâche. Cette information
nous permettra, à l’aide des propulseurs reconfigurables, de créer des robot
sous-marins autonomes reconfigurables dans un futur proche.

Les travaux futurs se concentreront sur l’amélioration de l’algorithme
génétique. Cela pourrait être fait en améliorant son efficacité, en utilisant
des opérateurs avancés où en réduisant l’espace de recherche. Le nombre de
paramètres de conception pourrait être incrémenté sans augmenter le temps
de calcul.

Le jeu de paramètres étendu pourrait inclure différents types de com-
mande (PID, sliding mode, commande adaptative, etc). Effectivement, l’algorithme
génétique pourrait choisir le type de contrôleur, selon la tâche. Les termes de
correction utilisés dans la méthode présentée précédemment pourraient être
améliorés également, on pourrait utiliser des correcteurs intégral et dérivé.

L’algorithme génétique pourrait être amélioré avec des modèles plus précis
au niveau de la méthode de commande (on pourrait y inclure la dynamique
des propulseurs, par exemple). Effectivement, un modèle avec une descrip-
tion hydro-dynamique plus précise et un modèle dynamique des propulseurs
pourrait améliorer les solutions trouvées et les rendre plus facilement appli-
cables dans la réalité en augmentant notamment la robustesse du contrôle-
commande en situation réelle..

Enfin, des expérimentations en bassin avec les solutions trouvées par
l’algorithme génétique doivent être réalisées afin de valider la méthode. Cela
nécessitera la conception et la fabrication d’un AUV expérimental à propul-
sion reconfigurable. Ceci pouvant être fait en développant le PMCR ou en
trouvant des solutions alternatives.



Chapter 2

Introduction

2.1 Unmanned underwater vehicles

Oceans impact and potential in human development is undeniable, they have
been throughout history a key element in economic, military and, academic
activities. From an economic point of view, they are the foundation of the
fishing industry and they are used to establish reliable trade routes since an-
cient times. Nowadays, in times of unprecedented human population growth,
they are regarded as a crucial asset, thanks to its large amount of important
resources such as food, water and energy [1]. Oceans are also a topic of con-
cern for military reasons, since they have always been considered a strategic
aspect in geopolitics. A testimony of the strategic importance of the oceans
are the words of Charles De Gaulle, that in his speech in Brest in 1969 fore-
saw that: “Men activity will be focused on the research and utilization of the
sea. Naturally, states ambitions will seek to dominate the sea to control its
resources”. Lastly, oceans also play a key role in the study of environmental
and climate change. Variations in measured data such as chemical composi-
tion, for example, give scientists informations about the degradation of the
environment [2].

The importance of the ocean is well known by mankind since the dawn
of civilization. This is why, non surprisingly, humans have always tried to
harness its resources. All efforts for mastering oceans have been aided by
technology. First with surface ships and afterwards with submarines and
deepwater technology. In the second half of the 20th century, thanks to
marine technology maturity, marine robotics made its appearance in ocean
exploration. Namely, Unmanned Underwater Vehicles (UUVs) started be-
ing developed and since then, advancements in technology allowed to have
a rapid progression in their capabilities [3]. Nowadays, UUVs have become
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increasingly prevalent and are used for scientific, military and industrial pur-
poses. Current UUVs capabilities allow to perform tasks inconceivable fifty
years ago [4–6].

2.1.1 Underwater robots classification

Unmanned Underwater Vehicles can be divided in two large groups [3]: Re-
motely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles
(AUVs), each type of underwater robot presents a set of characteristics, which
are discussed next.

ROVs

Remotely Operated Vehicles (ROV) are a tethered type of underwater
robot. They are controlled by an umbilical cable which is used to transmit
orders, energy, and data between the robot and its operators. The opera-
tors pilot the ROV from a vessel or platform (or sometimes via a surface
unmanned vehicle), controlling most of the robot subsystems [7, 8].

The first ROV, the Poodle, was developed by the Frenchman Dimitri
Rebikoff in 1953. The U.S. Navy developed in 1966 the CURV (Cable Con-
trolled Underwater Recovery Vehicle), a ROV that became famous for recov-
ering an atomic bomb from Spanish coasts. After this promising start, the
ROV gained popularity in the Oil and Gas industry which rapidly adopted
this technology to support offshore interventions.

Remotely Operated Vehicles are typically equipped with at least six
thrusters, which actuate the six degrees of freedom of the robot, that makes
them fully actuated systems [9]. Thanks to this characteristic, ROVs are
very maneuverable, capable of hovering, for stationary interventions (includ-
ing light work) with good precision.

Maneuverability made of ROVs an important asset, since their applica-
tions are very diverse. Remotely Operated Vehicles are used nowadays for
commercial, military and scientific purposes. Classical applications include
hull inspection [10], drilling [8] and construction support [11], object recov-
ery [12], marine mine destruction [13] and environmental investigation [14].

Despite its many advantages, ROVs have a fundamental drawback: lack
of autonomy. Indeed, due to the fact that they are controlled by an operator,
this type of robots can only work efficiently if they are assisted by nearby
support vessels. Experienced and skilled operators on board of these support
vessels receive images from the ROV and use them to pilot the robot. More-
over, deployment and recovery operations are very difficult and dangerous
for the robot, they can be used only in calm weather. Furthermore, these
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robots use several thrusters in order to be fully maneuverable, making them
very dependent of the pilot skills.

AUVs

Autonomous Underwater Vehicles (AUV) are a type of underwater robot
that operates with on-board control and power supply. They navigate using
a combination of preprogrammed trajectories (or reactive motions), acoustic
ranging and detection, GPS technology and inertial sensors. The distinctive
property of these underwater vehicles is their autonomy, allowing them to
cover large distances to achieve complex missions without assistance.

The first AUV, the SPURV (Special Purpose Underwater Research Ve-
hicle), was developed by the University of Washington in 1957. It was used
to support oceanographic research and it had an autonomy of four hours.
Since AUVs use an on-board controller, they need powerful processing capa-
bilities. This stalled the development of this type of vehicle until technology
was ready to provide sufficient computational power. With technology ad-
vances in processing capabilities, power storage and sensors performance,
AUV became more reliable and autonomous [15,16].

Given its autonomous nature, AUVs are mostly used to perform survey
tasks [17] and are designed to be energy efficient. Designers aim at reducing
the power consumption by using hydrodynamic hulls [18], since this reduces
drag forces. Unlike ROVs, AUVs are typically under-actuated, i.e. they
have fewer actuators than the Cartesian space degrees of freedom. A com-
mon propulsive strategy has one ot two rear propellers plus control surfaces
(rudders), this configuration is adequate to perform long range missions.
However, AUVs using this configuration need to advance to be able to turn,
making them incapable of performing swerves, which are essential in a ma-
neuverable robot. Consequently, energy efficiency and long range capabilities
come at expense of maneuverability.

Autonomous Underwater Vehicles are used in tasks where long distances
have to be covered. Typical applications for this kind of vehicle are pipeline
and cable inspection [19], under-ice exploration [20], port surveillance [21],
mine warfare [22], hydro-graphic survey [23], location and study of shipwrecks
[24], among others like off-shore platform or airplane accidents.

Even thought AUVs have improved greatly in the last decades, there are
still issues that need to be solved. The first one is insufficient power storage
capabilities, since technology nowadays does not provide an efficient enough
power source [25, 26]. The second issue is AUV autonomy which remains
limited up to these days [17]. To solve this problem, efforts are needed in
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control methods, sensor technology and propulsion systems. Indeed, better
propulsion systems will improve maneuverability which will allow AUVs to
perform more complex tasks such as close object inspection, line or surface
following despite marine currents or performing sharp turns. The result of
a superior maneuverability will be a significant increase in AUVs overall
autonomy.

2.1.2 Motivation

Decades of development have proven the ability of AUVs to achieve increas-
ingly complex missions. These robots started as mere support devices, and
throughout the years thanks to scientific and technological advancements,
have gained reliability. Nowadays these robots can be trusted enough to
carry out fairly complicated missions on their own or on supervised mode.

However, despite their success, AUVs development has not yet reached
its full potential. Far from being in its maturity, AUVs capabilities can still
be greatly improved. Indeed, the next milestone in the evolution of AUVs
is the ability to accomplish autonomously the same tasks than ROVs. This
would result in underwater robots capable of traveling long distances, react in
real-time to unpredicted events and perform immediate intervention without
the supervision of a human operator.

Sectors that already use AUVs would evidently benefit from robots of
said characteristics. For oceanographers, for example, this would mean hav-
ing a robot capable of scanning large areas of the sea floor and taking sam-
ples autonomously. Gas and oil industry could use these robots not only
for inspecting pipelines but also to perform maintenance on their undersea
equipment. Renewable Marine Energy industry could use AUVs to inspect
and maintain their generators. Military would benefit of robots capable of
detecting, identifying and/or destroying mines without jeopardizing human
lifes.

Even if these tasks seem nowadays far from AUVs capabilities, they allow
us to determine the characteristics that an improved AUV would need. In
order to accomplish these tasks, we note that good maneuverability and au-
tonomy are needed. The combination of these properties is not yet available
on current AUVs. Even if great advances have been accomplished in terms
of autonomy, nowadays AUVs have reduced maneuverability [27–29].

A solution for this problem would be to give more autonomy to ROVs
or more maneuverability to AUVs. However, given its nature, it is intricate
to provide long range capabilities and autonomy to ROVs. The need of an
operator and an umbilical cable makes these vehicles fundamentally tied up
to their support vessels.
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The second option seems more feasible: to give AUVs more maneuver-
ability. Indeed, current computing processing and sensor technologies allow
to implement sophisticated control methods, which added to developments in
propulsive strategies and technology, would increase AUVs maneuverability
and, therefore, its autonomy.

2.2 Research methodology

In this manuscript we work on the second solution, which is improving AUVs
autonomy by means of enhanced maneuverability. More precisely, we will
focus on the study of propulsion systems and their efficiency in order to
achieve higher maneuverability (mobility and speed) for autonomous vehicles.

Propulsion is a key aspect of maneuverability since it can deeply affect the
robot mobility and control strategy. Depending on the propulsion, a robot
might need more or less actuators, be more or less heavy, or be incapable of
performing some missions. For this reason, propulsion systems design will
be studied in order to determine their impact in the performance of AUVs.
Technological solutions for AUV propulsion will be analyzed and modeled as
well. Additionally, a reconfigurable magnetically coupled thruster (RMCT)
is presented, modeled and simulated.

Another important aspect of propulsion that will be covered in this work
is the propulsion topology, i.e. the number, orientation, position and type of
actuators. We will try to determine the most suited propulsive configuration
for a given task, this includes topology and the control system (i.e. control
methods and parameters).

Finding the most convenient propulsive configuration will be treated as
an optimization problem. Giving the infinite available possibilities and the
lack of an unifying mathematical formalism to optimize, we can not use
classical optimization techniques (gradient based search). In order to solve
this optimization problem, we use evolutionary algorithms, which use the
power of artificial evolution to find suitable solutions to our problem.

Given that AUVs have an on-board power storage system, it is important
that improvements in maneuverability do not increase power consumption
beyond measure. This trade-off (maneuverability vs. power efficiency) will
guide us during our studies. In practice, it will lead us to favor solutions
consisting in a small number of multipurpose thrusters.
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2.3 Organization of this manuscript

This manuscript is organized in four additional chapters prior to conclusions.
Chapter 2 presents a state of the art of underwater robot design and estab-
lishes the parameters and methods that will be used in order to improve
maneuverability in AUVs. Chapter 3 introduces the hydrodynamic model of
AUVs and propulsion systems, also it describes the EAUVIVE1 dynamic sim-
ulator. Chapter 4 discusses control and estimation techniques applied to our
AUV simulation. Validation of the control system by “in-the-loop” methods
is presented. Chapter 5 shows the implementation of several evolutionary
algorithms for the task-based optimization of AUVs propulsion configura-
tion. Three methods are presented: sequential, global and dynamic configu-
ration optimization. Afterwards, a conclusion discussing results, advantages
and disadvantages of the presented methodology will be given. Additionally,
prospects opened by this work will be presented.

1ENIB AUV In Virtuo Experiment (IRDL-ENIB)



Chapter 3

Underwater robot design: State
of the art

3.1 Sub-systems design

The first step in the design process of an underwater vehicle is to determine
its sub-systems. These are the systems that define the robot features, and the
designer needs to modify in order to create a feasible vehicle. They constitute
the building blocks of the final system.

Given that underwater robot systems are object of extensive scientific
research since decades, a state of the art of these sub-systems is needed. This
is important in order to have a clearer view of the new ideas and features of
underwater robots.

In this state of the art, the design and characteristics of the hull will
be discussed. Propulsive characteristics of these vehicles, such as actuated
DOF and propulsive technologies will be reviewed. Lastly, the more common
control strategies will be analyzed.

After reviewing the main design parameters of AUV, this section will
focus on the study of design paradigms. Indeed, design paradigms explain
the steps necessary to design a system, starting from the idea until the com-
plete definition of said system. Different design methods will be reviewed,
ranging from classical experience-based and ad-hoc ones to the more globally
applicable ones.

3.1.1 Hull design

When designing an AUV, one of the most important components is its hull
(sometimes called shell or external structure). This component not only
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determines how the robot will look like, but also will have a deep impact in
the overall performances of the resulting system. As such, the design of the
hull can not be taken lightly.

The characteristics of the hull depend on the application of the AUV,
however, when designing a hull some general aspects need to be considered:

� External conditions: working pressure and temperature, impacts etc.

� Size requirements.

� Accessibility to internal components.

� Practicality and versatility to add new components.

� Operational conditions (speed, maneuverability or thruster needs)

As pointed in the list the hull must be able to resist the hydrostatic
pressure of the water at working conditions. Additionally, the hull needs
to minimize the drag forces of the water. These two characteristics depend
on the geometry of the hull, which in turn will also affect the AUV maneu-
verability and power consumption. Given that pressure resistance and drag
reduction play such an important role in AUVs performance, the definition
of the shape of the hull is almost an unavoidable step in the design process
of these vehicles [30,31].

Several shapes are used in order to create AUVs [32–34]. From a pressure
point of view, an spherically shaped AUV would be suitable, however, this
shape at high speeds can lead to instability due to hydrodynamic effects [35].
In the other hand, cylindrical hulls have a series of interesting characteristics
such as good pressure resistance and low longitudial drag [36]. Addition-
ally, due to its longitudinal shape, the cylinder is more compatible with the
shape of the inner components of an AUV (instruments, batteries, etc). A
drawbacks of this shape are the cavitation effect [35] and instability of the
robot [37].

Evidently, simple geometrical shapes are only a first approach, since usu-
ally these are based on previous experiences and studies. More sophisticated
methods exist, in which the determination of the better suited hull for a
given application is treated as an optimization problem. Indeed, optimiza-
tion techniques are also used in order to find shapes to minimize the drag and
improve pressure resistance [38]. Some studies use multi-objective optimiza-
tion approaches in order to find suitable shapes from a hydrodynamic point
of view and taking into account design considerations such as component
placement [39] and cost [40].
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Given that the determination of the drag forces relies heavily on hy-
drodynamic considerations, many studies are also carried out in order to
characterize the hydrodynamic properties of a robot [41, 42]. These studies
usually involve the use of finite element methods using specialized software
such as Fluent [43,44]. Hydrodynamic studies prove to be more useful in the
design stage of the robot. However, even when used as an evaluation tool,
they provide important information for the AUV user.

3.1.2 Propulsive topologies

The degree of actuation, the amount of degrees of freedom actuated in the
AUV, defines what kind of movements can be generated by the robot propul-
sive system (propulsive topology). Evidently, the more an underwater robot
is actuated, the more complex tasks it will be able of perform.

At the design stage, the designer needs to imagine the type of tasks that
the AUV will perform in order to determine the needed degree of actuation
of the vehicle. This task, simple at first sight, is decisive not only for the
final capabilities of the robot but also for its overall performance. Indeed,
a poorly chosen propulsive configuration can lead to an AUV incapable of
performing certain tasks or, at the least, to an under-performant vehicle.

To make sure an AUV is maneuverable enough to perform a great amount
of tasks, an immediate approach would be actuate all six degrees of freedom
of the Cartesian space, making it fully actuated. However, as stated in the
introduction of this thesis, another desired characteristic of an AUV is a high
degree of autonomy. An AUV actuated in all of its degrees of freedom will
certainly need many actuators, which would make the vehicle power-hungry.
This could cause a rapid consumption of the, necessarily limited, energetic
resources of the robot.

In the process of creating an AUV, at some point the designer must
face this dichotomy between actuation capabilities and autonomy (power
consumption). This is a key point in the development of the robot, since the
solution to this dilemma will be fundamental for the rest of the process.

Several kind of topologies can be found in the literature. This shows the
importance of this design domain, as well as the lack of a general solution
capable of satisfying most application cases. We can divide these robots in
two groups: fully actuated and underactuated robots.

3.1.2.1 Fully actuated robots

This type of underwater robots have six or more actuators actuating the six
degrees of freedom of the robot. This property allows these robots to perform
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a great variety of tasks, since with their propulsive resources they can move
in the space with complete freedom (or holonomy). This freedom comes,
however, at the cost of consuming great amounts of energy.

Despite their outstanding maneuverability, there are relatively few fully
actuated AUV. This could be because of their power consumption or due to
the fact that their potential agility is not yet matched with reliable control
and navigation systems. Another reason for the reduced number of fully
actuated AUVs can be the lack of appropriate missions. Indeed, for a great
number of tasks nowadays there is not a valid reason to actively control all
of the degrees of freedom of an AUV. This is due to the fact that AUV
operations are mostly meant to be planar and at a certain depth, without
many changes in orientation.

The importance of this type of vehicles; however, can not be neglected. A
testimony of this, are the research efforts made in order to correctly control
this AUV category. Some of these works mostly take a general approach
at the control of these vehicles, aiming their developments to a conceptual
level and not focusing on the robot particularities nor on a direct application
[45–47], while others tackle the control of an specific vehicle [3].

Industrial AUV tend to focus on survey-style tasks [48–50], in which ma-
neuverability is not as important as autonomy and velocity. In such an sce-
nario, fully actuated AUVs are not yet sufficiently attractive. However, for
academic proposes, fully actuated AUVs are very appealing. Indeed, due to
their maneuverability, these vehicles can be used as a test bench in order to
develop new control and localization methods [51–53]. Evidently, given the
maneuverability of these robots and thanks to new advances in control, these
underwater vehicles are receiving more attention from companies willing to
invest in this kind of technology [54].

3.1.2.2 Under actuated robots

The second type of robots reviewed in this section are called underactuated.
The main characteristic of thee AUV is that they are not able to fully control
all of their six degrees of freedom.

The amount of underactuated AUVs found in the literature is greater
than the amount of their fully actuated counterparts. This could be due to
the reduced power consumption (less actuators means less consumed energy)
or to the fact that most of the tasks for these robots only need the control
over a few degrees of freedom.

Many examples of underactuated AUVs are available in the literature.
Historically, the most common type were the torpedo-shaped underwater
robots [55]. These vehicles, designed to travel great distances in order to
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perform survey-style missions, were the first AUVs to find their way out of
research facilities and get adopted to commercial use [56, 57]. The range of
applications of torpedo-shaped AUVs is quite large, they are used to collect
data [58], to map the sea floor [59] and to inspect pipelines [60]. Motivated by
the need of autonomy and to travel great distances, a type of torpedo-shaped
AUV called glider has been developed in the last decades [61,62]. The main
advantages of these vehicles are the long range mission capabilities with low
energy consumption.

After the first wave of torpedo-shaped AUVs and thanks to advancements
in control, localization and path planing, AUVs applications have mutated
to other areas of interest. Along with the change of mission, the structure
of these AUVs have mutated to adapt to new missions. Nowadays, we can
find (mostly underactuated) AUVs acting as diving companions [63], cleaning
ship hulls [64] and reaching their application scope to intervention tasks [65].
Even if they seem complex, these tasks do not demand the control of all
degrees of freedom of the robot.

Control over this type of vehicle is more challenging than over fully ac-
tuated robots. Indeed, for underactuated AUVs, not every trajectory is
reachable, due to their propulsive limitations. Great efforts have been made
in order to overcome this drawback, in the literature we can find advanced
and creative control techniques [66–69] trying to solve this problem.

3.1.3 Propulsion means

Equally important as the propulsive technology, is the way in which the
propulsive forces are created. In this section, different propulsive means will
be discussed, ranging from classic technologies, such as control and control
surface, to the innovative biomimetic approach.

3.1.3.1 Fixed propulsion

The first type of propulsion technology analyzed in this section is the fixed
one. These actuators are able to generate the propulsive force along a fixed
direction with regard to the robot body. Usually, in order to properly con-
trol the degrees of freedom required by a mission, many fixed actuators are
needed.

The number, orientation and position of these actuators on the hull of
the AUV depend on the type of mission performed by the robot. In virtue
of this, no general rules exist to define said design parameters. This step of
the design process relies heavily on the previous experience of the designer.
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Several ways of creating a fixed propulsive force exist [70]. The two most
common being thrusters and water-jet actuators.

Thrusters are nowadays the most used technology, their relatively low
cost and the fact that they have been developed for decades, give these
actuators great advantages in terms of technological maturity. Given the
popularity of these actuators, we can find them mounted o AUVs of very
diverse types [71–73].

Also due to their popularity, several mathematical models explaining the
behavior of these devices exist [74–76], which encourages their use even more.
A sign of popularity of these actuators are the diverse studies we can find in
the literature. These go from researching the hydrodynamic interaction be-
tween the thruster and the hull [77] to the miniaturization of this technology
to be used in small AUVs [78].

The second type of fixed propulsive technology analyzed here is the jet-
based propulsion. Typically, these actuators draw water from an inlet into
a pump in charge of adding energy to the fluid. The water then passes
through a nozzle, which in turn, transforms the pressure of the liquid in
kinetic energy [70,79], creating a net thrust force used to control the robot.

Jet propulsion offers several advantages over typical thrusters [61, 70],
some of these are:

� Mechanical design (absence of rotating parts and transmission mecha-
nisms)

� Cost

� Robustness

� Safety (less likely to cause harm at low speed than thrusters)

However, with regard to traditional thrusters, water-jet actuators are less
efficient.

Even if this technology is not as widespread as thruster technology, a non
negligible amount of research is devoted to model and improve the character-
istics of this type of actuators [79–82]. This will probably lead into efficiency
improvements and eventually a bigger adoption of this technology.

3.1.3.2 Vectorial propulsion

Vectorial propulsion is a technology capable of creating an orientable propul-
sive force. A vectorial force actuators is then a device in which we have to
control no only the generated thrust but also the orientation of said force.
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Vectorial propulsion offers interesting possibilities. The first one is the
generation of thrust over directions that can change during the AUV opera-
tion. Using the reorientation we have access to more degrees of freedom per
thruster than a classical fixed propulsive arrangement. If used correctly, vec-
torial propulsion can provide an underactuated AUV similar capabilities than
a fully actuated one. This means giving the possibility to an underactuated
vehicle to follow trajectories that otherwise would have been unreachable [83].

Overall AUV weight reduction is a second advantage of this technology.
Indeed, given that one of these actuators can be in charge or controlling
different degrees of freedom, a reduced number of devices are needed to
control the movement of the AUV. A reduced number of actuators results in
a reduced AUV weight.

Vectorial propulsion is, however, not exempt of drawbacks and limita-
tions. From a fundamental point of view, vectorial propulsion generate new
challenges in control and trajectory planning of AUVs, such as the increase of
nonlinearities in the propulsive model [84] and coupling between its actuated
degrees of freedom [85]. The versatility of these actuators, when not properly
assessed, can be detrimental to the controllability of underwater robots.

From a practical point of view, the biggest limitation is the way of creating
the reorientation. Several approaches exist, using different technologies such
as water-jets [86, 87], creative mechanism [88], servomotors assemblages [89]
and magnetic couplings [90]. However, most of the current solutions are not
yet able to match the simplicity of the fixed propulsion approach.

As for water-jet propulsion, it does not mean that development of these
actuators has stalled. Improvements and studies about their design and
performance are conducted [91], making this a promising technology for the
years to come.

3.1.3.3 Control surfaces

Historically, the first applications of AUV involved performing survey-style
tasks. The classic AUV configuration for these missions was a torpedo-shaped
hull, a propeller in the rear of the structure and control surfaces [92–94].

In this type of propulsion, the propeller and control surfaces act together
in order to propel and steer the robot. The propeller, which is a device con-
sisting of several rotating blades, accelerates the water creating a propulsive
force. The control surfaces are in charge of controlling the thrust generated
by the propeller, they are airfoil shaped devices capable of generating a lift
when positioned at an angle with regard to the flow [95]. The lift depend
on the shape of the control surface, its angle and evidently the velocity of
the water. This last element is the link between the control surface and
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the propeller: in order to generate lift, the robot needs to have a non zero
velocity.

The propeller and control surface solution was used on ships before their
application to AUVs [70], which means that the technology was mature
enough when it was implemented on underwater robots. This made the ap-
plication of this technology in survey-type robots easier, given their efficiency
and proven efficacy in long range and high speed missions.

Given the success and popularity of survey style AUVs, the propeller and
control configuration was studied extensively [96–98]. Aspects as blade shape
optimization [99], interaction between propeller and hull [100] as well as the
control surface optimization [101] were thoroughly analyzed.

When AUVs missions started to include middle and short range opera-
tions, the limitations of this technology arose. Indeed, given that the steering
of the vehicle is only possible when the velocity of the water (with regard with
the robot) was high enough, operations with low velocities became inefficient
with this technology.

Nowadays, this technology is used almost exclusively in long range AUVs
[102] and in underwater vehicles with both long and short range applications
[95].

3.1.3.4 Biomimetics

The biomimetic approach proposes to base the AUV development in solutions
found in the nature. This means adopting shapes, propulsion systems and
locomotion control methods used by animals.

The basic idea behind this design approach is that after eons of evolution,
nature has found efficient and reliable locomotion solutions. Biomimetic
relies on the fact that the work of creating, testing and evolving, in this case,
propulsion systems, has been done already in a natural way [103].

In nature we can find fishes and other aquatic beings which are highly
maneuverable, power-efficient and capable of performing demanding tasks
such as station-keeping in presence of perturbations [104]. Clearly, the un-
derstanding of these systems can be used to inspire artificial human-made
underwater systems.

Biomimetic design, as a method for underwater vehicles, covers robot
shape, propulsion system and control (locomotion behavior control). In
virtue of this, biomimetics can be included in any other section of this chap-
ter. However, given that the final goal for biomimetic design in AUVs is to
emulate animal locomotion methods, it is included in this section.

Several examples of biomimetic AUVs exist in the literature, there are
robots copying the locomotion methods of squids [105], eels [106], turtles
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[107], dolphins [108] and fish [109]. Even if the animals inspiring the designs
are diverse, most of the biomimetic robots nowadays use (in some way or
another) fin propulsion as a base [110,111].

This technology has generated great interest in the scientific community,
and as such, extensive analysis about fins hydrodynamics [112] and real pro-
totypes have been carried out [113, 114]. Another proof of the popularity of
biomimetics is the diverse methods to achieve animal-like movement. Indeed,
in the literature we can find complex and creative mechanisms [106, 108] as
well as solutions using smart materials [115]. These materials have special
characteristics that, when applied correctly, allow biomimetic AUVs to per-
form complex movements. Evidently, biomimetic locomotion also supposes
the use of adapted control techniques in order to master the movement of
the robot, we can find several examples of these control methods in the lit-
erature [116–118].

3.1.4 Control techniques

Throughout the history of AUVs, the increasingly complex tasks have pushed
the limits of the technology of these vehicles. Something similar has hap-
pened with the control methods. Indeed, the mission of AUVs have changed
dramatically in the last decades, going from survey-style high speed tasks
to low-speed high precision ones. Certainly, in order to perform these new
tasks, designers had to make use of more efficient technology such as more
powerful batteries, more responsive propulsion methods and high-end sen-
sors. However, equally (or even more) important than technology are the
control methods used to perform said missions.

In the literature we can find several types of controllers used on AUVs.
From PID [119] and H∞ [120] approaches to sliding mode [121] and neural
network based techniques [122]. Most of the found techniques have been
extensively tried in simulations but only few have been transferred and suc-
cessfully tested on real devices [123]. This could be due to the lack of adapted
hardware.

Whether the missions are survey-style or with a focus on hovering and
maneuverability, most of the control techniques used for them are some vari-
ation of PID, sliding mode or adaptive control methods [123]. Given that
these three techniques are the most used, the focus on this section will be
put on them. These techniques will also be categorized in two groups: linear
and non-linear.



3.1. Sub-systems design 54

3.1.4.1 Linear

Despite its simplicity, PID [124] (proportional, integral and derivative) con-
trol remains even nowadays one of the most implemented methods in under-
water robotics [123].

Several factors favor the adoption of this technique. The main one is its
simplicity in terms of implementation and configuration. Indeed, even if the
gains Kp, Ki and Kd can be determined based on information of the system,
they can also be configured manually with good performances [125].

Another non negligible reason for using this technique is the available
information and examples in the literature. Indeed, we can find examples
of PID implementation in AUVs from 1994 such as the N-DRE robot [126]
performing survey motions and in articles from 22 years later [127]. This
shows the versatility of the technique and, at the same time, the need for
better and more advanced approaches in order to avoid the limitations of
PID. Even if PID is easy to implement and it has shown good performances
in AUVs, it is still a linear method trying to control a highly nonlinear system.
Performances are expected to decay when used in variable speed scenarios
(vehicle dynamics are nonlinear with respect to its velocity [128]).

PID is usually used for linear time invariant single input single output
(SISO)systems. In the case of AUVs, the degrees of freedom to control are
decoupled in order to apply the PID controller [119]. The correct choice of
the gains have received much attention as well. We can find implementations
of PID with gain selection based on the model of the AUV [129] or even
using machine learning approaches such as neural networks [130] and genetic
algorithms [131]. The selection of the best gains, given a robot and mission,
helps to improve AUV performance, however, once the PID technique has
reached its limits, it is better to use a more advanced nonlinear method.

3.1.4.2 Nonlinear

Sliding mode control and adaptive control are two popular nonlinear methods
used in AUVs. In the literature we can find several applications of these
controllers with good performances [132,133].

Sliding mode is a method in which, with regard to PID, offers robust-
ness and the possibility to better deal with disturbances and non modeled
dynamics [123]. Sliding mode gets the desired systems response even in the
presence of modeling error and disturbances by sliding through them in order
to track the desired trajectory. Indeed, in sliding mode, the desired trajectory
is known as the sliding surface [128]. The simplest way of implanting this
control technique is to have one action to apply when the system response is
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above the sliding surface and a different one when it is below it. Sliding mode
has a good response and allows to rapidly converge to the desired trajectory,
however it has a tendency to create chattering in the controller action. This
effect can be reduced of removed with appropriate techniques [128].

Another very popular approach is adaptive control [123]. It is a type of
controller that will adapt taking into account the AUV parameters, even if
they are uncertain. Adaptive methods are clearly adapted to AUVs, given
the nonlinear dynamics of these vehicles and their hydrodynamics, which are
not always properly identified and that may vary with the velocity.

This type of controller are very well established, in the literature we can
find several examples of its application to AUVs [134–136]. These controllers
usually include Model Reference Adaptive Control and Model Identification
Adaptive Control [137]. The first type uses a reference model which de-
fines the desired performance of the system. the controller sends a command
signal, containing variable parameters, to the system. The parameters are
changed in order to obtain asymptotic convergence of the real system towards
the reference one. The second approach, also called self-tuning control, per-
forms on-line system identification. The parameters of the systems are first
estimated and then, based on the parameter estimation, the controller is
designed.

3.2 Design methods

To finish the state of the art, different AUV design approaches will be dis-
cussed. The AUV being a complex mechanism with diverse subsystems from
very different domains (hydrodynamics, control, localization, etc.), needs to
be designed attending several constraints and specifications. Some of these
are counter-productive between them. For instance, the need of a large in-
terior volume to store the payload can result in an AUV with a mediocre
hydrodynamic behavior due to drag forces.

Naturally, given the need to reconcile the diverse aspects of AUV design,
different techniques and protocols have been used to obtain robots capable
of attending all needed characteristics.

The first type of design method used to build AUVs has been sheer expe-
rience and intuition. Engineers with previous experience in design of robots
and aquatic devices took (and take still nowadays) the daunting task of ad-
justing the several needed AUV characteristics. For some AUVs, methods,
ideas and techniques derived from ship design were borrowed.

The great amount of heterogeneous design parameters and the difficulty
of creating efficient AUVs based solely on experience, made optimization
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based design appealing.

Early optimization methods involved analyzing the risk of failure of the
AUVs components and using a computerized evaluation tool to evaluate the
need of redundant devices [138]. With advancements in computing power,
CFD (Computational Fluid Mechanics) techniques were used to optimize the
shape of the AUV, in order to obtain vehicles with low drag and capable of
operating at high pressures [43]. Also for reducing drag, other optimiza-
tion approaches have been taken, such as pattern search [139] and genetic
algorithms [140,141].

In order to take into account the different design parameters interven-
ing in the AUV, multidisciplinary design optimization [142] techniques are
also used. These methods use individual analysis for each subsystem and
then aggregate them using a system-level coordination procedure [143]. Sim-
ilarly, multi-objective optimization techniques using genetic algorithms are
used with the goal of optimize design parameters in order to obtain better
effectiveness, and reduce cost and risk [144,145].

3.3 Conclusion

From this review of underwater robot design, we can see how vast is the
spectrum of possibilities in order to optimize the AUVs sub-system. Indeed,
given the relatively young age of AUV technology, most of these design are
starting to gain maturity, offering exciting possibilities.

The great amount of options, however, implies that we have to carefully
choose the set of parameters to use in the optimization of the propulsive
capabilities of AUVs. Each chosen set of parameters could unveil possibilities
unlikely to find otherwise. For instance, the study of biomimetic design takes
us to the study of the fundamentals of sea creatures locomotion, something
that we probably would not do if we study the classical AUV approaches.

In this work, the design of the following sub-systems have been studied:

� Fixed and vectorial thruster technology: The former is an extensively
used and established technology. The latter is a promising technology,
capable of extending the propulsive capabilities of the AUV.

� Propulsive topology: Given its deep influence in the AUV capabilities
to perform complex tasks. Propulsive topology includes the type of
actuation (fully or underactuated), the number of thrusters and their
arrangement on the robot.
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� Control technique: For the sake of feasibility, a single nonlinear control
technique will be used and its parameters are optimized. This is mo-
tivated by its adaptation to dynamic tasks, in which linear controllers
may have a mediocre performance. Our study consist in adapting this
control to different propulsion systems.

Our strategy is to use an evolutionary algorithm to optimize the design of
these sub-systems. This choice is based on the good results of this technique
and its capabilities of optimizing systems with heterogeneous parameters.
For evaluation of robot designs, the choice have been made to rely on dy-
namic simulation. This can be justified by the complexity to asses the robot
performance with regard to the propulsion and control systems. The simu-
lation will show the behavior of the robot on its task without considering its
theoretical capabilities, which are hardly assessable.
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Chapter 4

Modeling and simulation

4.1 Autonomous underwater vehicles model-

ing

Our study of underwater robots will begin with their modeling, which is the
fundamental stage in order to understand, control and optimize any system.

Underwater robots need several models to be completely described, the
main ones represent the behavior of these vehicles from a kinematic and
dynamic point of view. Additionally, there are models describing the different
sub-systems of the robot, such as the propulsive topology or technology.

Said models will be described in this chapter. The first ones will be taken
from [146], including the calculation of hydrodynamic coefficients, since their
accuracy is enough for our purposes.

Also the development of a dynamic simulation, the tool we will use to
study the behavior of the underwater robot as a whole, will be discussed.

4.1.1 Kinematics

Here, the AUV kinematic equations are presented. In order to develop them,
we make the following assumptions:

� The AUV is submerged far from the bottom, walls and water surface
in a homogeneous fluid

� Underwater currents are neglected

� The AUV is a rigid body of constant mass

59
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Two orthogonal coordinate systems are used: R0 (O0,x0y0, z0) is the
earth-fixed frame and Rb (Ob,xb,yb, zb) is AUV body-fixed. In Fig 4.1, body-
fixed, and earth-fixed coordinate systems are shown together with a diagram
of the AUV.
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Figure 4.1: Earh-fixed and body-fixed frames.

The vectors describing the motion of the AUV in 6 DOF are:

η =

[
η1

η2

]
η1 =



x
y
z


 η2 =



φ
θ
ψ


 (4.1)

ν =

[
ν1

ν2

]
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[
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τ 2

]
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Z


 τ 2 =



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N




Here η is the vector of position and orientation in R0. The orientation η2

is defined using an Euler ZYX (ψ, θ, φ) convention as described in [146]. ν is
the linear and angular absolute velocity vector in Rb. τ is the external forces
and moments vector in the body-fixed frame, which accounts for propulsion
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forces applied on the AUV. Precisely, this vector will allow to model thrust
forces from different propulsion architectures.

To change the AUV velocity vector from one to another coordinate system
we use a velocity transformation matrix as given in [146]:

J(η2) =

[
J1(η2) 03×3

03×3 J2(η2)

]
(4.2)

Where,

J1(η2) =



cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sθsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ


 (4.3)

and

J2(η2) =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ




Using this transformation matrix, we can obtain the AUV absolute ve-
locity vector expressed in R0 from its expression in Rb [146]:

η̇ =
dη

dt

∣∣∣∣
R0

= J(η2)ν (4.4)

4.1.2 Dynamics

The nonlinear dynamic equations of an underwater robot, given in the Rb

frame, can be formulated as [3]:

Mν + Cν + Dν + G = τ (4.5)

where M ∈ R6×6, C ∈ R6×6 and D ∈ R6×6 are the matrices of mass,
Coriolis and centripetal terms, and damping respectively (including added
mass terms). G is the vector of gravitational forces and moments. Lastly, τ
is the wrench of external forces and moments.

The wrench τ , accounts for the propulsive forces generated by the thrusters.
It is calculated as follows:

τ = Bup (4.6)
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where B is the thrust control matrix (TCM), which depends on the
propulsive architecture (number, position and orientation) of the actuators.
up is the vector of the actuators forces (i.e., the control input of thrusters).

These matrices are constructed using rigid body and hydrodynamic con-
siderations. The rigid body dynamic part is based on the fact that the un-
derwater vehicle is nothing more than a solid, so the well known rigid body
dynamics applies. Given that these kind of vehicles operate solely under
water, we need to add a hydrodynamic component or layer to the dynamic
model in order to completely describe the robot. These hydrodynamic con-
siderations are explained next.

4.1.3 Hydrodynamics

The hydrodynamic matrices described in this section, account each one for
a specific dynamic effect of the water over the robot. Said effects are added
mass, drag forces and gravitational forces and moments, all of which are
described as follows.

4.1.3.1 Added mass

During its motion, underwater vehicles displace the water in its surroundings.
Since the AUV applies a force and a moment on the neighboring fluid, reac-
tion forces are applied to the AUV [146]. We take into account this reactive
force with the concept of added mass. Added mass is not a finite amount of
fluid to add to the AUV mass but a function of the robot geometry [3] and
motion velocities.

The global mass matrix (M) in the general nonlinear dynamic model (Eq.
4.5) accounts not only for the mass and inertia of the underwater robot but
also for the added mass contribution, namely:

M = Mb + Ma (4.7)

where Mb ∈ R6×6 is the mass matrix of the robot rigid body:

Mb =

[
mI3×3 −mS(bPG)
mS(bPG) 

]

with
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m : mass of the AUV
I3×3 : 3 × 3 Identity matrix
bPG : position vector of AUV CoG in Rb

 : Inertia matrix of AUV in Rb

S(X) : cross pre-product matrix of X

S([pqr]T ) =




0 −r q
r 0 −p
−q p 0




and Ma ∈ R6×6 is the added mass contribution, which can be defined in
an abbreviated form [146]:

Ma =

[
A11 A12

A21 A22

]

Where A11,A12,A21 and A22 ∈ R3×3 represent the added mass terms.
This matrix can be simplified for certain conditions and AUV structures. For
a robot completely submerged in the water, with a three plane of symmetry
structure and working at low speed, we can neglect the contribution of the
non-diagonal terms in Ma.

Added mass also contributes with Coriolis and centripetal terms. In the
general non linear dynamic equation (eq. 4.5), the Coriolis and centripetal
terms are included in the C matrix:

C = Cb + Ca (4.8)

where Cb ∈ R6×6 is the Coriolis and centripetal matrix of the rigid body:

Cb =

[
mS(ν2) −mS(ν2)S(bPG)

mS(bPG)S(ν2) −S(ν2)

]

and Ca ∈ R6×6 is the contribution due to the added mass:

Ca =

[
03×3 −S(A11ν1 + A12ν2)

−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

]
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4.1.3.2 Damping forces

Matrix D ∈ R6×6 in the dynamic equation accounts for dissipative effects
(drag forces due to shape and friction). As for the added mass matrix, we
can make simplifications for three plane of symmetry structures, which leads
to neglect the contribution of the non-diagonal terms. Giving the nature of
dissipative effects, this matrix is positive.

D(ν) > 0 (4.9)

4.1.3.3 Gravitational forces

These are gravitational and buoyancy forces, which act respectively through
the center of gravity bPG and the center of buoyancy bPB. Restoring force
and moment can be calculated in Rb as follows:

G = −
[

bfG(η2) + bfB(η2)
bPG × bfG(η2) + bPB × bfB(η2)

]
(4.10)

with





bfG(η2) = J−1
1 (η2)




0
0
W


 the weight of the robot

bfB(η2) = −J−1
1 (η2)




0
0
B


 the buoyancy force

(4.11)

(4.12)

W = mg : is the robot weight
B = ρ g∇ : is the buoyancy force

g = 9.81 m/s2 : is earth gravity acceleration
ρ = 998 kg/m3 : water density

∇ : displaced volume of water

4.2 Propulsion modeling

The next step in the modeling of the underwater robot is to describe its
propulsion. We can define two modeling levels for propulsion, the first and
more global one, is the one that mathematically describe the way in which
the thrusters are positioned and oriented in the robot. The second level,
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more specific, determines the technology used in each thruster. In this sec-
tion we will discuss first the Thrust configuration model and then we will
present models for two types of propulsion technologies: fixed and vectorial
propulsion.

4.2.1 Thrust configuration

From Eq. 4.6 we see that τ , is calculated by multiplying B and up.
up is a vector that contains the forces generated by the thrusters. For a

robot of n thrusters, this vector would be:

up =




u1
...
ui
...
un




(4.13)

where ui is the force generated by the ith thruster.
The B matrix represents the organization of the thrusters on the under-

water robot. It has a column per thruster and 6 lines (one per degree of
freedom in τ ). In each column, the three top elements represent the force
created by the thruster, whereas the bottom three elements represent the
created moment, which is a function of the thruster position.

Given that the lines of this matrix represent the contribution of all thrusters
to create τ , for different propulsive arrangements (propulsive topologies) we
will have different B matrices. In figure 4.2, we see the RSM robot with a
fixed thruster topology and its corresponding B matrix. In this figure (4.2),

the values of ~P account for the position of thrusters 1 to 4 in the RB frame.

Ob

G

xb
yb

zb

Roll

Surge

Heave

Yaw

u1
P1

u2
P2

u3

P3

u4

P4

B =




1 1 0 0
0 0 0 0
0 0 1 1
0 0 −P3y −P4y

P1z P2z P3x P4x

−P1y −P2y 0 0




Figure 4.2: RSM fixed propulsive topology.
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Similarly, Fig. 4.3 shows the RSM robot with a vectorial propulsive
topology. This type of propulsive topology uses one thruster capable of
changing its direction, thus creating a variable force vector. In figure 4.3, ~P
also accounts for the position of the only thruster of the topology, θ1 and ψ1

are the two reconfiguration angles and s(·) and c(·) designate sin and cos
respectively. The reconfiguration angles are the successive angles (using an
Euler ZYX convention) defining the orientation of the thruster axis. In the
first three lines of the thrust configuration matrix we see the components on
Rb of the thrust vector, whereas in the last three lines we see the moment
these components create. We define uv as the Cartesian space vector of the
thrust.

Defining the three components of uv on Rb as ux, uy and uz, we can
recalculate the configuration of the thrust vector as follows:

uv = [ux uy uz]

up = ||uv|| =
√
u2
x + u2

y + u2
z

θ1 = arcsin(
uz
up

) ψ1 = arctan(
uy
ux

)

Ob

G

xb
yb

zb
ψ1

θ1

up

Pitch
Surge

Yaw

B =




cθ1cψ1

cθ1sψ1

−sθ1
−sθ1 P1y − cθ1sψ1 P1z

cθ1cψ1 P1z + sθ1 P1x

cθ1sψ1 P1x − cθ1cψ1 P1y




Figure 4.3: RSM vectorial propulsive topology.

Finally, a last example is shown in figure 4.4, in which we see the Odin
robot [3] and its B matrix. The Odin robot has eight thrusters, which means
the thrust configuration matrix has eight columns as well. In the figure
s = sin(π/4), l1 = 0.381m and l2 = 0.508m.
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B =




s −s −s s 0 0 0 0
s −s −s −s 0 0 0 0
0 0 0 0 −1 −1 −1 −1
0 0 0 0 l1s l1s −l1s −l1s
0 0 0 0 l1s −l1s −l1s l1s

−l2 −l2 −l2 −l2 0 0 0 0




Figure 4.4: Odin propulsive topology.

4.2.2 Fixed propulsion modeling

A fixed thruster is a type of thruster that, once it has been installed on
the robot structure, it can not change its configuration (orientation). These
type of thrusters are the most widely used in underwater robotics, which
means that this technology is in its maturity. As such, several models exist
to describe the behavior of these actuators, here we will use the most broadly
known [147,148].

To develop the model of this type of thruster, we will take as a reference
the actuators used in the RSM robot, the Seabotix BTD150 1 (Fig. 4.5), a
ducted oil-filled direct-drive DC motor thruster.

Figure 4.5: Seabotix BTD 150 thruster.

4.2.2.1 Steady-state model

The hydrodynamic thruster model can be written as follows [147,148]:

1http://www.seabotix.com/products/auv thrusters.htm
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u = KT0 ω̇ +KT ω |ω| (4.14)

where u is the thrust force and ω is the rotational velocity of the propeller
shaft. KT0 and KT are lump parameters of various constants that need to
be determined.

The relation between the voltage V and he thrust force u is given by the
following motor electromechanical model:

{
V = RI + L İ + κω
u = KM I

(4.15)

Where R is the wiring resistance, L the inductance, I the current, κ is
the back-EMF constant of the motor and KM is the specific torque constant
related to thrust force.

Considering only the steady-state components of the model (İ = 0 and
ω̇ = 0), Eq. 4.14 and Eq. 4.15 can be reformulated as:

{
V = RI + κω
u = KT ω|ω| (4.16)

Combining these equations (4.15 and 4.16) we can derive the thruster
steady-state model:

V =
R

KM

u+ κ

√
u

KT

(4.17)

Eq. 4.17 will be used to calculate the open-loop control input of the
thrusters, for a desired thrust u.

4.2.2.2 Dynamic model

The thrusters DC brushed motor can be mechanically modeled as follows:

Jm ω̇ + Γf + ΓL = λ I (4.18)

where Jm is the motor shaft inertia, Γf is the resistive torque and ΓL
is the load torque. κ and λ, the torque constant, are considered equal if
expressed in SI units.

The resistive torque can be calculated as:
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Γf = kfv ω + kfs
ω

|ω| (4.19)

with kfs and kfv the dry and viscous friction coefficients, respectively.
The load torque can be calculated as [76]:

ΓL = KL ω|ω| (4.20)

where KL is a proportionality constant.
Using Eq. 4.15 and 4.18 we get an electro-mechanical model of the

thruster. The state-space system equations are:

[
ω̇

İ

]
=

[
−kfv

Jm
λ
Jm

− κ
L
−R
L

] [
ω
I

]
+

[
0
1
L

]
V +

[ −KLω|ω| − kfs ω|ω|
0

]
(4.21)

This last set of equations are important since they allow to calculate the
propeller angular speed ω, and thus the generated dynamical thrust u for
the dynamic simulation. To be able to apply the proposed models, a further
step is needed, the thruster parameter identification.

4.2.2.3 Parameter identification

Electromechanical parameters of the brushed DC motor are identified by
measuring motor voltage, current, and propeller angular speed. These mea-
surements took place outside the water, in order to neglect the influence of
the unknown resistive torque and to allow speed measurement. The identi-
fied parameters are as follows: R = 2.2Ω, L = 1.5mH, Jm = 0.000562kgm2,
λ = κ = 0.036Nm/A, kfv = 0.00012Nms, and kfs = 0.00135Nm.

Hydromechanic parameters are identified using an ATI Nano 17 multi-
axial submarine force sensor [149]. The test rig shown in Fig. 4.6 allows
performing static or dynamic force measurements. The identified parameters
are as follows: KM = 3.46N/A, KT = 0.00015Ns2, and KL = 0.00135Nms2.
Figure 4.7 shows that the model describes with accuracy the thruster real
behavior (maximum error of 8.6% on the higher extremity). For higher thrust
forces, the model seems to over-estimate the needed voltage value. This could
be explained by perturbations in the water surrounding the thruster due to
limited (1300 l) basin dimensions.

4.2.3 Vectorial propulsion modeling

A vectorial thruster is a type of thruster capable of changing the direction
of its thrust force. In order to model this type of actuator, we will base our
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Force sensor Thruster

Sliding zone

Figure 4.6: Force measuring test rig.
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Figure 4.7: Thrust model validation.

equations in the Flat reconfigurable magnetic coupling thruster (F-RMCT)
[150].

Figure 4.8 shows a diagram of the F-RMCT. This system consists of an
electric motor attached to an axis. An axis attached to the propeller provides
the propulsive force. The propeller axis is orientable with regard to the motor
axis thanks to the axis support (fork), which is the link between the frame
of the system and the propeller axis. The torque generated by the motor is
transmitted to the propeller axis via a magnetic coupling.

The magnetic coupling is made by two identical rotors (Fig. 4.9). Each
rotor consists of a circular polar part and four magnets with axial magne-
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Fork

Propeller
rotor

Propeller Magnets Frame

Motor

Servomotor

Figure 4.8: RMCT prototype.

tization. The magnets are glued to the polar part symmetrically and are
placed with opposed magnetic orientations with regard to its neighbor in the
rotor. Magnetic studies of F-RMCT has been undergone theoretically using
finite elements method (FEM). This work has been undergone by TE2M2

company.

Polar part

N N

N

N
S

SS S

S

S
N

N

Magnetic
loop

z3
x3y3

z1
y1

Figure 4.9: Magnetic coupling and forces (TE2M using Flux3D).

2Technique et Matériel Magnetique. Company based in Brest, France
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Figure 4.10 shows the kinematic diagram of the F-RMCT. R1,R2 and
R3 are the frames attached to the motor shaft, the fork and the propeller
shaft respectively. θm = (~x0̂,~x1) is the motor rotor angle, the rotation angle
of the x1 axis attached to the motor with respect to the reference axis ~x0 .
θh = (~y3̂,~y2) is the rotation of the propeller axis, that is, the rotation angle
of the y3 axis attached to the propeller with respect to the reference axis
~y0 = ~y2. α is the reconfiguration angle (angle between z0 and z3).

Propeller rotor

Bearing

Bearing

Motor rotor

θm ωm τ1

z1 = z0

y1

y0

z0

z2

y2 = y0

τ2

z3 = z2

y3

Γaccz

θh ωh τ3

Frame

Bearing

Fork

Figure 4.10: Flat RMCT kinematic diagram (shown in the neutral configu-
ration, α = 0).
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4.2.3.1 Mechanical model

To model the mechanism, the recursive Newton-Euler algorithm will be used
[124]. Thanks to this algorithm, we calculate all the kinematic and dynamic
equations. τ1, τ2, τ3 are the joint (external) torques between each solid
(Fig.4.10).

The torque transmitted by the motor shaft to the magnetic coupling is:

~M(~Fmag) · ~z1 = Γaccz1

As well for the transmitted torque to the propeller:

~M(~Fmag) · ~z3 = Γaccz3

with ~Fmag the magnetic force generated by the magnets of the rotors.
There is a planar symmetry between the two rotors, since all the rotation

axes pass through the center point O (Fig.4.10). This plan is defined by O,
~y0 and ~x∗0 (median between ~x1 and ~x3). Thanks to said symmetry we can
establish:

M(~Fmag) · ~z1 =M(~Fmag) · ~z3

Γaccz1 = Γaccz3 = Γaccz

Even though Γaccz varies according to α, θm and θh, its projections on
both axis ~z1 and ~z3 are equal. (Γaccz will be used for both equations).

ΓRest is the restoring moment created by the magnetic coupling along ~y2

when the rotors are not parallel (α 6= 0):

~ΓRest(θm, θh, α) · ~y2 = ΓResty (4.22)

I1,I2 and I3, are the motor, fork and propeller axes inertia matrices re-
spectively [146]:

I1 =



Ixx1 Ixy1 Ixz1
Iyx1 Iyy1 Iyz1
Izx1 Izy1 Izz1


 I2 =



Ixx2 Ixy2 Ixz2
Iyx2 Iyy2 Iyz2
Izx2 Izy2 Izz2




I3 =



Ixx3 Ixy3 Ixz3
Iyx3 Iyy3 Iyz3
Izx3 Izy3 Izz3




(4.23)

The dynamic equations (without friction) developed with the Newton-
Euler algorithm are the following, as presented in [90] for a similar RMCT
kinematics:
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Motor axis in R1

τ1 = Izz1θ̈m + ΓAccz (4.24)

With τ1 the torque generated by the motor.

Fork axis in R2

τ2 = α̈(Iyy2 + Ixx3 − cos2 θhIxx3 + cos2 θhIyy3 +m2α̈z
2
G2 +m3z

2
G3)+

2α̇θ̇h cos θh sin θh(Ixx3 − Iyy3) + ΓResty (4.25)

With τ2 the torque generated by the servomotor and applied to the axis
support mechanism (fork). ΓResty is the restoring moment created by the
magnetic coupling. zG2 and zG3 are the position of the center of gravity of
the axis support and the propeller axis, respectively.

Propeller axis in R3

τ3 = θ̈hIzz3 + α̇2 sin θh cos θh(Iyy3 − Ixx3) − ΓAccz (4.26)

With τ3 the joint torque. No load torque is applied since the propeller
is removed in our set up. Additionally, the experiments are made in the
air, so the hydrodynamic effects responsible for this load are not present.
An hydrodynamic model should be applied to compute τ3 for an underwater
propeller model.

Friction

Until now the model did not include the friction in the system. We call
Γm, Γf and Γh the frictions torques of the motor, fork and propeller axes
respectively. These terms are defined as follows:

Γm = sign(θ̇m)Γms + θ̇mΓmf

Γf = sign(α̇)Γfs + α̇Γff

Γh = sign(θ̇h)Γhs + θ̇hΓhf1 + sign(θ̇h) θ̇
2
h Γhf2 (4.27)

where Γms, Γfs, and Γhs are dry friction coefficients and Γmf , Γff , and
Γhf are viscous friction coefficients. Γhf2 accounts for hydrodynamic effects,
even if these effects are not expected to appear here, it has been included
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in the model as a placeholder for future experimentation. We can write the
complete joint torque equations including the friction terms in the following
way:

τm = τ1 + Γm (4.28)

τf = τ2 + Γf (4.29)

τh = τ3 + Γh (4.30)

These torques contain the dynamic behavior of the subsystems, calculated
thanks to the Newton-Euler recursive method, and additionally the friction
effects.

4.2.3.2 Magnetic model

Propeller dynamic model

For our prototype we will consider τh = 0 since there is no driving torque
other than Γaccz. Then from (4.26) and (4.30) ΓAccz can be deduced:

ΓAccz = Izz3 θ̈h + sign(θ̇h) Γhs + θ̇h Γhf1 + sign(θ̇h) θ̇
2
h Γhf2 (4.31)

which allows us to rewrite (4.28) as:

τm = Izz1 θ̈m + sign(θ̇m) Γms + θ̇m Γmf + ΓAccz (4.32)

This reduced model is developed to be used in the identification of the
dynamic parameters of the system, these parameters are independent of the
load τ3 and of α.

Magnetic coupling torque model

We use the reference angles (θm and θh) to establish the magnetic angle
θ. We can define it with the following equation (from Fig. 4.12),

θ = θm − θh (4.33)

as the difference between the angular position of the motor axis and the
angular position of the propeller axis. This angle will determine the torque
transmitted by the magnetic coupling. Indeed, the torque is created by the
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attraction force of the magnets, which is a function of θ since it regulates the
distance between magnets.

Coupling torque Γaccz interpolation

To model the torque transmitted by the magnetic coupling we need to
know the variation of the torque with respect to the reconfiguration angle α
and the magnetic angle θ. The magnetic coupling behavior can be modeled
analytically doing some simplifications [151, 152] but to account for its full
complexity we use FEM computations [153].

Using two experimental curves (Fig. 4.11) provided by TE2M3 (Flux3D)
we can “build” an interpolating function that will describe the variation of
the torque with α and θ.
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Figure 4.11: Interpolation curves for the magnetic coupling torque.

The variation of Γaccz in neutral configuration (α = 0) follows the mag-
netic forces behavior (Fig. 4.12): when θ = 0 two magnets of opposite
polarity are aligned, creating mutual attractive forces along z1 and no mag-
netic torque is created on this axis. When θ increases, a magnetic force arises
because of magnetic attraction. Halfway between two opposite polarity poles
(θ = 45°) the force is maximum, then decreases to zero when same polar-
ity poles are aligned (θ = 90°). In our application case, θ only varies from
-45°to 45°. As it was shown in [152], the overall coupling torque dwindles
exponentially with regard to coupling rotors distance along the z1 axis and
conversely.

3Technique et Matériel Magnetique. Company based in Brest, France
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Torque = 0 Torque = 0Torque 
max(stable) (unstable)

Figure 4.12: Magnetic coupling torque according to θ and polarity (α = 0).

Studying each curve individually, we obtain two interpolating functions
(with separated variables θ and α):

ΓAccz(θ, α = 0°) = 0.3256 sin 2θ = g(θ) (4.34)

and

ΓAccz(θ = 45°, α) =
1

cos(0.876α)
− 0.6736 = h(α) (4.35)

Combining these two functions in an extrapolating formula:

Γaccz(θ, α) = 1.75 sign(θ)
√
g(θ)2h(α)2 (4.36)

we get one bi-variable function that allows to extrapolate the value of the
torque for the different positions of the α and θ angles. Figure 4.13 shows
the surface generated by the interpolating bi-variable function (interpolating
error < 3%), including the two interpolated curves.

4.2.3.3 Electro-mechanical model

In order to complete the model of the prototype, the motor electrodynamics
are needed. The equation describing the torque generated by the motor is
the following [90]:

τ̇m =
λ

L
Um −

λ2

L
ωm −

R

L
τm (4.37)

with
E = λωm

and
τm = λ Im

for a DC motor, λ is the speed or torque constant, Im the current, L the
inductance, R the winding resistance and E the back-EMF. These parameters
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Figure 4.13: Extrapolating surface with experimental results (red for α = 0°
and green for θ = 45°).

are found in the technical documentation of the motor and are considered
accurate enough to be used straightforwardly (confirmed by measurements):

� λ = 38.9mNm/A,

� R = 2.7 Ω,

� L = 0.34mH

With these equations and using the previously developed dynamic model,
we can write the full state-space system equations:





θ̇m = ωm

θ̇h = ωh

τ̇m =
λ

L
Um −

λ2

L
ωm −

R

L
τm

ω̇m =
1

Iz1
(τm − ΓAccz − ΓFm)

ω̇h =
1

Iz3
(ΓAccz − ΓFh)

(4.38)
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4.2.3.4 Experimental validation

Using the complete system model (with α = 0) as well as the magnetic
coupling curve interpolation and identified dynamic parameters values [150],
we can model the prototype and simulate it. The model will be compared
with experimental results in order to be validated.

This simulation will be carried out in open-loop and the results will be
compared to the experimental data, obtained using the real prototype Fig.
4.14. This will allow to validate the models and the simulation.

In the prototype, the acquisition interface controls the motor and mea-
sures θm with its encoder. θh is measured with an encoder mounted on the
propeller rotor shaft. The reconfiguration angle α can be controlled by the
servomotor.

Encoder
Propeller position

Magnets

Acquisition interface

Motor/encoder

Servomotor

Figure 4.14: Flat RMCT prototype.
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Results

Figure 4.15 shows the comparison between simulated and experimental
angular speed of motor axis.

Making a zoom on the figure (transient and steady-state areas) we can
observe oscillations in the speed, which is caused by the spring-mass behav-
ior of the magnetic coupling and the motor frequency (due to mechanical
defects).

We see that the simulation is capable of reproducing this oscillatory be-
havior in the transient zone (corresponding to the natural frequency of the
magnetic coupling). In the steady-state zone we see that the oscillations do
not appear in the simulation, this is because the mechanical defects are not
simulated. In this area, however, there is a small error (< 2%).
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stateFigure 4.15: Simulation and experimental motor axis speeds. Input voltage

of 6V.

Figure 4.16 shows the evolution of the magnetic angle θ, thus, the pro-
peller axis behavior. The dynamics of this magnetic angle is well described
by the simulation, since we see a good correlation between simulated and
experimental magnetic angles (error ' 10% ). We can see as well, that the
simulation also reproduces correctly the spring-inertia system oscillation at
natural frequency. Also in Fig. 4.17, it is possible to observe that the sim-
ulated motor torque describes the behavior of the experimental one during
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both the acceleration and steady-state phases (error < 8%). These errors can
be explained by the quantization error of the incremental encoders (10−2rad)
and the small amplitude of the magnetic angle θ, which is used to calculate
Γaccz. Another factor to take into account are the perturbations generated
by the motor as well as the ones due to friction.
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Figure 4.16: Evolution of simulated and experimental magnetic angle θ. In-
put voltage of 6V.

Periodic disturbances

The frequencies of the system are analyzed in Fig. 4.18 using a Fourier
transform based on the motor angular speed, this frequency is the same for
the motor and propeller rotor. In this figure we can see two main frequencies:
One frequency (' 19Hz) is generated by the rotation of the motor which
means that the mechanism is not perfectly aligned. This frequency can also
be calculated as:

fmot =
ωm
2π

= 19.1Hz (4.39)

where ωm = 119.8 rad/s
Since this effect is due to imperfections in the system assembly, it can not

appear in the simulation unless we need to estimate this effect.
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Figure 4.17: Simulation and experimental values of motor and magnetic
coupling torque. Input voltage of 6V.

The second frequency is due to the natural frequency of the magnetic
coupling (15.1Hz from Fig.4.18). This frequency appears in the simulations
since it depends on the mass-spring features of the magnetic coupling. It can
be calculated using the following equation:

fmag =
1

2π

√
Kθ

Izz3
(1 + α2) = 15.14Hz (4.40)

With Kθ = 6.54 × 10−1Nm/rad, the magnetic coupling stiffness, which
was calculated experimentally as the quotient of the transmitted torque and
the magnetic angle θ.

Kθ =
ΓAccz
θ

α2 =
Izz3
Izz1

where Izz1 = 1.48× 10−4 and Izz3 = 1.41× 10−4 as identified in [150].

The fact that we find the same frequencies shows that not only the iden-
tified inertias are correct but also that the magnetic coupling dynamic model
is validated.
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Figure 4.18: Frequency analysis of the rotor axis angular speed using Fourier
Transform.

4.3 Simulation

In order to apply these models and to analyze the behavior of the underwater
robot as a whole, a simulator has been developed. This simulator, called
EAUVIVE 4, includes the robot models along with its propulsion system.
The simulation has been written in several programming languages, such as
MATLAB, Scilab and C++, and it is expandable, meaning that a control
technique can be added without much effort.

The EAUVIVE simulator is programmed to represent the behavior of
the RSM robot (Fig. 4.19), the dynamic and hydrodynamic parameters will
be based in its structure and characteristics. Furthermore, two propulsive
topologies will be implemented in order to compare the different propulsive
topologies under different working conditions. The simulation results will
also allow to perform a preliminary analysis of the propulsive systems.

4ENIB AUV In Virtuo Experiment
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Figure 4.19: RSM robot tested in Ifremer bassin (sea water, 20 m).

4.3.1 The RSM robot model

4.3.1.1 Hydrodynamic model

In our simulations and analyzes an AUV with cylindrical hull will be used,
which is meant to approximate the shape of the RSM robot. This will allow
to calculate the added mass and damping terms using the simplifications pro-
posed in the literature [3,146]. The dimensions shown in Fig. 4.20 correspond
to an existing AUV (robot RSM, Fig. 4.19), available in the laboratory as
an experimental platform. Details regarding the RSM AUV characteristics
are shown in Table 4.1.

xb yb

zb

PB ≡ Ob

PG R

L

Figure 4.20: Simplified representation of the RSM AUV.
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Table 4.1: RSM characteristics.

Category Symbol Name and unit Value

Rigid Body

R Circular section radius [m] 0.1
L Length [m] 0.6
m Mass [kg] 18.71
W Weight [N] 183.6
B Buoyancy force [N] 184.5
bPB Pos. buoyancy center [m] [0 0 0]T
bPG Pos. gravity center [m] [0 0 0.0125]T

J Inertia matrix [kg m2]




0.097 0 0
0 0.611 0
0 0 0.608




These values will be useful later, to calculate different parameters and
coefficients to run the simulation.

In what concerns the added mass effects, we can make some simplifica-
tions [146]. For a three plane of symmetry AUV we can neglect the contribu-
tion of the non-diagonal elements of the added mass matrix. Consequently,
only the diagonal elements are taken into account.

Ma = −diag{Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (4.41)

For the cylindrical model of the RSM robot:

Xu̇ = −0.1m

Yv̇ = −πρr2L

Zẇ = −πρr2L

Kṗ = 0

Mq̇ = − 1

12
πr2L3

Nṙ = − 1

12
πρL3

In the case of Kṗ, we can consider that no water is moved for roll motion.
For the same type of vehicle, the general form of the added mass con-

tribution to the Coriolis and centripetal effects matrix can be simplified as
follows:
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Ca =




0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0




(4.42)

Likewise, the cylindrical geometry of the AUV allows to simplify the
damping matrix. Only the linear and quadratic diagonal terms are considered
[3].

Dv = −diag{Xu, Yv, Zw, Kp,Mq, Nr}+ (4.43)

−diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|}
Furthermore, another simplification can be made if we consider that

the AUV speed is high enough to neglect linear terms with respect to the
quadratic ones [154] (and while the robot speed is very low, none of these ef-
fect are significant anyway.). In that case, only quadratic terms are included
in the damping matrix, using formulas adapted from [155,156]:

Xu|u| = −
1

2
ρ cd Af

Yv|v| = Zw|w| = −ρ cdc r L

Mq|q| = Nr|r| = −ρ cdc r
L4

4

Kp|p| = 0

Where cd is the axial drag coefficient, which is a function of the Reynolds
number [3]; Af is the vehicle frontal area; cdc is the cross flow drag coefficient.

In our case we are analyzing a finless structure, thus rolling drag coef-
ficient, Kp|p| is zero. An exception should be made for this term since it is
null. Then [157]:

Kp|p| = 2π µR2 L = 3.77 × 10−5 Nm/rad/s (4.44)

with µ = 0.001Pa s, the dynamic viscosity of the water (20°C).
Considering the very small value of this torque, it can therefore be ne-

glected in our simulations (with regard to the other effects). However, given



4.3. Simulation 87

that our robot has a square superstructure holding the tube, we set an ex-
perimentally estimated coefficient Kp|p| = 0.38 Nm/rad/s.

Regarding restoring forces and moments vector, G, its calculation is
straightforward if the mass, volume, center of gravity and buoyancy are
known.

A list of the added mass and hydrodynamic damping terms (based in Eq.
4.41 and Eq. 4.43) is shown on Table 4.2

Table 4.2: Added mass and hydrodynamic terms.
RSM Robot

Added Mass

Xu̇ -1.872 kg
Yv̇ -1.881 kg
Zẇ -1.881 kg
Kṗ 0.0 kg.m2

Mq̇ -0.057 kg.m2

Nṙ -0.057 kg.m2

Hydrodynamic

Xu|u| -12.541 kg/m
Yv|v| -71.856 kg/m
Zw|w| -71.856 kg/m

Damping Kp|p| 0.0 kg.m2/rad2

Mq|q| -3.88 kg.m2/rad2

Nr|r| -3.88 kg.m2/rad2

4.3.1.2 Propulsion system model

The simulator needs to know now the propulsive topology of the robot. Here
we are going to present two different propulsions and apply them to the
structure of the RSM robot. The first one is the widely used fixed propul-
sion system and the second one is the, relatively recent, vectorial propulsion
system. Additionally, the advantages and drawbacks of these systems will be
discussed.

Fixed propulsion

Robots with this type of propulsion are powered by several thrusters
placed along different axis in order to combine their thrust and provide six
(or less) actuated DOF to the robot. Various architectures within this group
can be found, each one with advantages and drawbacks. they share the same
principle, which is multi-directional propulsion based on thrust combination.
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In this work a four thruster configuration is tested (corresponding to our
RSM robot). As shown in Fig. 4.21, two horizontal thrusters are placed at
the rear of the AUV and two vertical thrusters are centered symmetrically
on the sides of the robot. This configuration provides actuation over the
following DOF:

Ob

xb
yb

zb

Roll

Surge

Heave

Yaw

u1
P1

u2
P2

u3

P3

u4

P4

Figure 4.21: RSM fixed propeller architecture.

� Surge (linear motion along the xb-axis)

� Heave (linear motion along the zb-axis)

� Yaw (rotation along the yb-axis)

� Roll (rotation along the xb-axis)

Conversely, due to the location of the four thrusters, the following DOF
can not be actuated:

� Pitch (rotation along yb-axis)

� Sway (linear motion along yb-axis)

Roll and Pitch motion are mechanically stabilized thanks to the relative
position of the buoyancy and gravity centers.

The sway is not controlled and not stabilized, thus free motion on yb-axis
(drift) is expected to occur.
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The fact that more thrusters should be added to the architecture in order
to obtain controlled pitch and sway motions, shows a disadvantage of this
type of propulsive strategy (lack of control in cartesian space). To control the
6 DOF at least 6 thrusters must be installed in the underwater vehicle, which
means a large power consumption, an increased weight and a higher cost.
Another important drawback is that in order to turn, the AUV propellers
(and motors) must accelerate/decelerate. This implies a lag time between
the moment the force is needed and the instant it is generated.

The position of each thruster is given, with regard to Rb, by the following
vectors (in meters):

bP1 =



P1x

P1y

P1z


 =



−0.21
−0.12

0


 ; bP2 =



P2x

P2y

P2z


 =



−0.21
0.12

0




bP3 =



P3x

P3y

P3z


 =




0
−0.105

0


 ; bP4 =



P4x

P4y

P4z


 =




0
0.105

0




The TCM can then, taking into account the alignments, be calculated as:

B =




1 1 0 0
0 0 0 0
0 0 1 1
0 0 −P3y −P4y

P1z P2z P3x P4x

−P1y −P2y 0 0




=




1 1 0 0
0 0 0 0
0 0 1 1
0 0 −P3y −P4y

0 0 0 0
−P1y −P2y 0 0




(4.45)

for the input vector:

up =




u1

u2

u3

u4




Where u1, u2, u3 and u4 are the thruster propulsion forces.

Vectorial Propulsion



4.3. Simulation 90

Vectorial propulsion combines thrust and steering in the same thruster
since the direction of thrust force can be changed with regard to Rb. In
an underwater robot fitted with a vectorial thruster placed at the rear, the
actuated DOF are:

Ob

G

xb
yb

zb
ψ1

θ1

up

Pitch
Surge

Yaw

Figure 4.22: RSM Vectorial Propulsion.

� Surge

� Pitch

� Yaw

The actuation of these DOF is achieved using only one propeller, which
is an interesting feature of this propulsive strategy, because it minimizes on
board devices.

The remaining DOF can not be actuated separately because whether they
are coupled or simply not actuated:

� Heave (coupled with pitch)

� Sway (coupled with yaw)

� Roll (not actuated)

The limitations of this propulsive strategy must be taken into account
in its evaluation. For instance, the angle range depends on the technology
carrying out the propulsion and steering task. Previous works [90] indicates
that a ±30° range is feasible using magnetic coupling technology. 45°could
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be achieved without too much efforts, (even up to 60°) but in theory nothing
but practical implementation prevents from reaching 90°or even more).

The vectorial thruster is placed at the rear of the AUV along the xb-axis
as shown in Fig. 4.22. Since the thrust force can be reoriented, vectorial
propulsion is obtained. This means very complex 3D movements can be
achieved by controlling this vector. Another important advantage of this
technology is that we can change the direction of the thrust without inverting
the rotation of the propeller. Therefore, losses (in time and energy) caused
by acceleration and deceleration are avoided. Nevertheless, a rapid change
in the direction of the rotating propeller will create a perturbation in the
thrust vector (conservation of angular momentum). Said perturbation has
to be rejected by the controller in order to ensure the performance of the
propulsion system. This means that the complexity of the controller will
increase, making the design of the underwater vehicle more challenging.

The position of the vectored thruster with regard to Rb is given by (in
meters):

bP1 =



P1x

P1y

P1z


 =



−0.21

0
0




The configuration matrix of this propulsive strategy is then:

B =




cos θ1 cosψ1

cos θ1 sinψ1

− sin θ1

− sin θ1P1y − cos θ1 sinψ1P1z

cos θ1 cosψ1P1z + sin θ1P1x

cos θ1 sinψ1P1x − cos θ1 cosψ1P1y




=




cos θ1 cosψ1

cos θ1 sinψ1

− sin θ1

0
sin θ1P1x

cos θ1 sinψ1P1x




(4.46)

for the input vector:

up =
[
u1

]
; uv = [ux uy uy]

T ; u1 = ||uv||

Where ψ1 and θ1 are the configuration angles (RPY convention, with si-
multaneous rotations around the fixed axes yb-axis and zb-axis, respectively).
These angles are necessary to define uv, the Cartesian thrust vector in Rb as
shown in Fig. 4.22.
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4.3.2 EAUVIVE simulator

4.3.2.1 Numeric resolution

Mathematical models provided in the previous sections are integrated in the
EAUVIVE numerical simulation code (Fig. 4.23), developed in the IRDL lab.
This simulator (developed in Scilab, Matlab and C++), allows evaluating
AUV behavior from the point of view of 3D solid -and hydrodynamics. In its
simulation, EAUVIVE integrates the models of the robot, a control module
(open loop for the following tests) and a graphical 3D visualization of the
robot. Additionally, the simulator allows to add a closed loop controller, in
that case, EAUVIVE includes also a desired trajectory to be followed by the
AUV and a control algorithm.

Figure 4.23: EAUVIVE Simulator (Scilab Version)

For the sake of the analysis, we will use the simulator in a set of ma-
neuvers. These maneuvers are established in order to have a performance
evaluation of the presented propulsion systems. Proposed maneuvers aim to
replicate the most common locomotion tasks performed by AUVs during its
deployment [158, 159]. Since this is a preliminary work, only speed will be
the objective criterion for performance of the propulsive strategies.

Normalization of the propulsion:

Since the propellers are not the same in both architectures, a maximum
overall total thrust of 20 N is assigned to each propulsive strategy. In the
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case of the vectorial propulsion, the two servomotors controlling the propeller
configuration have been assigned 1 N equivalent each. This value has been
estimated using considerations based on the power consumption of the servo-
motor used in RMCT (Futaba S3010)5 and RSM thruster devices (Seabotix
BTD 150)6.

4.3.2.2 Tasks and trajectories

Basic tasks

Each task being driven by open-loop controller, the control law have been
designed and tuned by hand with trial and error method (respecting given
limitations).

1. Top Speed:

Top speed is determined for forward motion (along the x0-axis). The
proposed hull has positive buoyancy, this means that a part of the
power consumption in both systems is spent for keeping the AUV at
the same depth during the task (depth regulation).

For the fixed propeller architecture, surge force is given by the two rear
thrusters, both working at 9.425 N. Depth regulation is obtained by
applying a downward thrust force of 0.575 N on each vertical thruster.
Top speed is then 1.22 m/s.

In the case of the vectorial propulsion strategy, forward motion and
depth regulation are achieved by orientating the thrust vector on pitch
axis (θ1 = -7°). Since the thrust force is 18 N (20 N minus 2 N for
servomotors), the resultant speed is slightly below to the previous con-
figuration: 1.19 m/s.

2. Dive Speed:

This simple task shows diving capabilities of the AUV equipped with
the proposed propulsive strategies. Each type of propulsion requires a
different method to achieve downward motion. This particular maneu-
ver is focused only in finding the maximum dive speed without taking
into account nor moderating any motions in the horizontal plane.

For the fixed strategy, the vertical thrusters pull the vehicle downwards
with a thrust force of 10 N each. In this mission, the drag forces along

5www.futaba-rc.com/servos/analog.html
6www.seabotix.com/products/auv thrusters.htm
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zb are higher. This is why the dive speed is 0.515 m/s, lower than
forward speed.

For the vectorial propulsion strategy, the descent motion is achieved by
pitching the vectorial thruster (ψv = -30°), allowing the AUV to rotate
downwards. Nevertheless, due to the restoring moment of the body,
a pure vertical descent is not possible and it is always coupled with a
forward displacement (on x0-axis) as shown in Fig. 4.24.

0 5 10 15
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110

y (m)

z
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)

Dive speed

Vectorial Propulsion

Fixed Propulsion

Figure 4.24: Displacements in dive tasks.

In this conditions, the dive speed is 0.641 m/s, which is significantly
better than the one achieved by the fixed propulsion system.

3. Circular Speed:

Turning capability is an appropriate way to determine the maneuver-
ability of an AUV. This task aims to determine the highest tangential
speed achievable by the AUV while following a 5 L radius circular tra-
jectory.

For the case of the fixed propulsion strategy, vertical thrusters have to
be active to counteract buoyancy forces. Vertical thrusters are set to
0.3 N each while horizontal thrusters are set to 18,375 N and 1.025 N.
The speed achieved with this strategy is 0.992 m/s. Figure 4.25 shows
the circular trajectory for both strategies.

In vectorial propulsion, a vertical component of the thrust vector must
be applied in order to cancel buoyancy forces (θ1 = -5.2°and ψ1 = 26.5°).



4.3. Simulation 95

0 1 2

−3

−2

−1

0

x (m)

y
(m

)

Circular speed

Figure 4.25: Circular trajectory.

The achieved tangential velocity of the AUV with vectorial propulsion
is 0.996 m/s, which is slightly better than the fixed thruster system.

Mission-oriented tasks

1. Diving in a confined space:

The motion will be limited by a maximum displacement in the horizon-
tal plane (descent into a well), this allows to evaluate the propulsion
strategy in a realistic mission.

Available diameter to perform the maneuver will be limited to 5 L (Fig.
4.26).
Since the fixed propeller configuration has two vertical thrusters placed
near the center of gravity, this task is straightforwardly performed. In
fact, the AUV descends along a vertical line (as for dive speed task).
The dive speed of the AUV is 0.515 m/s.

Because of coupled forward displacement seen in the diving task, the
vectorial propulsion needs to follow a spiral trajectory as shown in Fig.
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L

5L

Figure 4.26: Diving in confined space.

4.27. In order to perform such a motion, vectored thruster angles ψ1

and θ1 have been set to 10 and -30 degrees respectively.
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Figure 4.27: Spiral trajectory in confined dive motion.

Due to a better orientation of the robot, drag forces are lower than in
the case of the previously discussed propulsive strategy. This advan-
tage has a positive effect on the AUV dive speed, which is 0.555 m/s.
This strategy gets better results despite of the higher traveled distance
involved by the spiral trajectory.

2. Horizontal slalom:

A more dynamic insight of the agility of an AUV is given by its per-
formance in a slalom trajectory around gates. For this mission, a tra-
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jectory based on the robot length is proposed. The amplitude of the
slalom is 3.33 L and the longitudinal distance between two gates is 9
L (Fig. 4.28). The average speed along the x0-axis is computed to
evaluate the performance of the AUV to complete the slalom mission.

Evaluated Speed

9 L

3.33 L

Figure 4.28: Slalom trajectory (horizontal or vertical).

For fixed-propulsion, the open loop control law to follow the proposed
path (Fig. 4.28) is:

u1 = 9.4− 4.5 cos(0.75 t)

u2 = 9.4 + 4.5 cos(0.75 t)

u3 = 0.35

u4 = 0.35

The task speed to follow this trajectory is 1.066 m/s.

The vectorial thruster configuration is:

u1 = 18

θ1 = −5

ψ1 = 12.75 cos(0.72 t)

the AUV equipped with vectorial propulsion achieves a speed of 1.048
m/s, slower but close to the fixed strategy.
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3. Vertical slalom:

This slalom is similar to the previous one but must be performed in
the vertical plane. An additional difficulty for the AUV is that it has
to cope with its positive buoyancy. Again, the objective of the task is
to evaluate the average speed along the x0-axis.

For the fixed propulsion system, the following open loop control law
has been used:

u1 = 3

u2 = 3

u3 = 0.5 + 6.5 cos(0.4 t)

u4 = 0.5 + 6.5 cos(0.4 t)

The evaluated speed is 0.692 m/s.

The vectorial system open loop control is is:

u1 = 18

θ1 = −1.6 + 30 cos(0.7 t)

ψ1 = 0

Despite the presence of a restoring moment, the vectored architecture
succeed to follow the proposed path, achieving a speed of 1.019 m/s,
which is significantly better.

4.3.2.3 Results

Table 4.3 summarizes the results for the two propulsive strategies analyzed
in the previous section. As can be seen, some of them give advantage to fixed
propulsion (rather small) and some others to its vectorial counterpart (more
significant).

In forward speed and in horizontal slalom tasks, the fixed strategy is
slightly better, which can be explained by the use of non thrusting actuators
(servomotors) for the vectorial one.

Vectorial propulsion has a better performance in diving tasks. This is
explained by the fact that vectorial propulsion can orientate the robot body
in order to have weaker drag forces during the progression. This gives a
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Table 4.3: Summary of results
RSM Robot

Task Fixed Propulsion Vectorial Propulsion
Forward speed 1.22 m/s 1.19 m/s
Dive Speed 0.515 m/s 0.641 m/s
Circular Speed 0.992 m/s 0.996 m/s
Diving in a confined space 0.515 m/s 0.555 m/s
Horizontal slalom 1.066 m/s 1.048 m/s
Vertical slalom 0.692 m/s 1.019 m/s

significant advantage to the vectorial propulsion approach and shows the
potential superiority of this technology.

It can be noticed that the vectorial propulsion exhibits better perfor-
mances for the two missions that require a depth variation (dive speed and
vertical slalom). This superiority over the fixed propulsion is due to the fact
that the vectorial one uses its full power in all directions while the other
needs to share its power between different directions.The vectorial strategy
improves the isotropy of the propulsion system.

One must notice than the dynamics of thruster has not been taken into
account (accelerations/deceleration and gyroscopic effects), nor the power
consumption. If it had, then the vectorial propulsion would have clearly be
favored because of the energy and time required to achieve the variations of
thrust forces.

4.4 Conclusion

In this chapter, the dynamic model of an AUV including the hydrodynamic
effects has been studied. This model has been adapted to the RSM robot, a
prototype used as a testbed and reference in IRDL laboratory.

The models of two propulsive technologies have been presented as well.
The first model describes the behavior of a fixed thruster, the Seabotix
BTD150, a popular off the shelf thruster. The second model describes
a magnetic coupling vectorial thruster, which is based on RMCT prototype
developed in IRDL laboratory. This prototype allows to test an enabling
technology for the concept of vectorial thruster.

Finally, an AUV simulator has been developed and a brief comparison
between fixed and vectorial propulsive topologies have been carried out. The
simulator will allow to evaluate and study the behavior of the AUV.
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Chapter 5

Control and estimation

After having modeled the robot, the next steps in the study of the underwater
vehicle are the control technique and estimation methods used on it. These
are the key elements to simulate the behavior of the robot.

Given that we have a very precise model of the robot, it seems logical
to make intensive use of it. The chosen method is the computed torque (or
feedback linearization), a nonlinear control method that explicitly uses the
kinematic and dynamic model of the robot. Using the limits of this control
method as a starting point, the controllability of underwater robots will be
discussed as well.

An extended Kalman filter will be used in order to estimate the signals
needed for the controller. The implementation of the control and estimation
methods will be done using the ROS (Robotic Operative System) frame-
work.

5.1 Torque computation

5.1.1 Principle

This control method is broadly used to design feedback controllers for AUVs
[160, 161]. The method straightforwardly uses the kinematic and dynamic
models of the robot. This characteristic offers a clear view of the internal
workings of the controller, which will allows us to draw conclusions about
controllability and learn about the robot in general. The idea behind the
computed torque method is to algebraically transform nonlinear systems into
(fully or partly) linear ones, so that linear control techniques can be applied
(Fig. 5.1).

This control differs from conventional linearization method as lineariza-

101
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Figure 5.1: Computed torque control method principle.

tion is achieved by exact state transformation and feedback, rather than by
dynamic linear approximations. Computed torque control is based on the
idea of controlling a system by generating a control input that cancels out
the nonlinearity of the dynamic model and then applies a correction to the
therefore linearized system.

The control method used here consists in a kinematic and a dynamic
control level (Fig 5.2). The kinematic level generates the AUV reference
velocity νad which will make an arbitrary point e of the robot follow a desired
trajectory ηed. In order to calculate this speed, it uses the information of the
velocity of the desired trajectory η̇ed and a correction term proportional to
the error in position and orientation.

The dynamic level computes the needed wrench to be applied to the
AUV (linearization) such that it follows νad. It also adds a correction term
proportional to the velocity error, Kp. This method is quite efficient as long
as the propulsive architecture is able to generate the calculated wrench τa
and the model is very precise.

5.1.2 Kinematic level

The kinematic level is in charge of the calculation of the correct robot velocity
ν in order to make the point e converge toward the reference trajectory
ηed. To develop the corresponding control law, we start by determining the
velocity of the tracking point e.
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Figure 5.2: Computed torque control layers.

{
ν1e = ν1 + ν2 × ~re
ν2e = ν2

in Rb (5.1)

{
η̇1e = J1(η2)ν1e

η̇2e = J2(η2)ν2
in R0 (5.2)

Where the position vector of e in Rb is:

~re = [εx, εy, εz]
T (5.3)

Indeed, in Eq. 5.1 we calculate the velocity of e using rigid body kine-
matics.

We can re-write Eq. 5.1 in the following way:

νe =

[
ν1 + ν2 × ~re

ν2

]
=




1 0 0 0 εz −εy
0 1 0 −εz 0 εx
0 0 1 εy −εx 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




︸ ︷︷ ︸
T




u
v
w
p
q
r




︸ ︷︷ ︸
ν

(5.4)
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From the previous equation we can see that matrix T is the link between
the robot velocity and velocity of the tracking point.

Taking into account Eq. 5.4, we can turn Eq. 5.2 into:

η̇e = J(η2) νe = J(η2) Tν (5.5)

allowing us to determine the relation between the point e velocity η̇e and
the robot velocity ν:

ν = T−1 J(η2)−1 η̇e (5.6)

Based on this relation, and using the desired trajectory ηed and its deriva-
tive η̇ed, we can develop the following kinematic control law [162]:

νad = T−1 {J−1 [η̇ed + Λ ekin]} (5.7)

With Λ > 0 the gain matrix of the proportional kinematic controller
(diagonal) and ekin = ηed − ηe the kinematic (position + orientation) error.

When the kinematic error ekin is zero, we see that Eq. 5.7 turns into
Eq. 5.6. Indeed, when the controller manages to cancel the error, the feed-
forward control alone drives the robot in order to continue in the tracked
trajectory.

Additionally, if we replace ν in Eq. 5.5 for the expression of νad from
Eq. 5.7 we obtain the following dynamic error equation:

ėkin + Λekin = 0 (5.8)

which shows that the kinematic control law makes the robot converge
exponentially toward the desired trajectory.

5.1.3 Dynamic level

Obviously, the desired velocity of the robot νad can not be correctly achieved
with only kinematic control. Indeed, the robot needs to fight against the
dynamic effects acting on itself in order to precisely generate this velocity.
As seen in the previous chapter, these dynamic effects are a consequence of
the rigid body dynamics and caused by the water surrounding the vehicle.

The dynamic layer of the controller takes in charge the compensation of
all the dynamic effects on the robot and the generation of the needed torque
τa that will make the AUV to follow νad, that in its turn, will make the point
e follow the desired trajectory.

Based on the dynamic model of the robot described in Section 4.1.2:
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τ = Mν̇ + C(ν)ν + D(ν)ν + G (5.9)

the following dynamic control law is created (in Rb) [162]:

τa = M[ν̇ad + Kpedyn] + C(ν)ν + D(ν)ν + G (5.10)

with edyn = νad − ν, the dynamic error.
From the previous equation we see how all the terms of the dynamic

model of the robot are present, plus a proportional (Kp > 0) term for error
correction. If applied, the calculated torque τa will compensate the hydro-
dynamic effects on the robot and steer the velocity ν towards the desired
velocity νad .

If we replace τ from Eq. 5.9 by its expression from Eq. 5.10 we obtain
the following equation:

ėdyn + Kp edyn = 0 (5.11)

which shows that the non-linearities compensation makes the AUV con-
verge exponentially toward the desired robot velocity νad. Given that both
ekin and edyn converge exponentially, the controller as a whole (kinematic and
dynamic) is able of make an arbitrary point of the AUV to track a bounded
space trajectory.

5.1.4 Thrust allocation

Torque computation method is capable of calculating the needed τa to apply
on the robot in order to make the tracking point follow a desired trajectory.
However, it has no information about how to create said wrench. In order to
calculate the force on each thruster to generate τa we use the thrust allocation
method [163].

The thrust allocation method solves the following equation:

τa = Bup

where B is the thrust configuration matrix, as seen in Chapter 3. up is
the thrust forces vector, it contains the force generated by each thruster of
the robot.

Given τa, we can calculate the needed force on each thruster calculating:

up = B−1 τa (5.12)

Evidently, this equation is only valid if B is a square matrix. When this
matrix is not square, its pseudo-inverse [124] is used:
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up = (BTB)−1BT τa for m ≥ n (5.13)

up = BT (BBT )−1 τa for m ≤ n (5.14)

Where m and n are the number of lines and columns of B, respectively.

5.1.5 Space reduction

The given equations are specifically valid for fully (or over) actuated robots.
Indeed, in the creation of the torque τa, the dynamic control assumes that all
the degrees of freedom in Cartesian space are actuated, which is not true for
underactuated robots. A way of adapting this control method to any kind of
vehicle is needed, otherwise its application will be restricted to holonomous
robots only. The problem we are trying to solve here is, summing up, how
to use this technique with underactuated robots.

The approach taken here will be a practical one: the robot will only
try to follow the degrees of freedom of ηed attainable by the robot given its
propulsion capabilities.

An underactuated robot (incapable of creating all DOF of τa indepen-
dently) will only be able to follow a restricted number of trajectories. Indeed,
an underactuated τa will result in an underactuated ν (it will not be able to
control all its DOF independently), which in turn will not be able to gener-
ate all DOF of η̇e in R0 (Eq. 5.5). The reduced actuation space reduces the
reachable space of the robot, making it not controllable on all trajectories.

Evidently, this space reduction implies as well a modification on the con-
troller equations. The matrices need to be reduced according to the actuated
space and reachable space reduction. Additionally, a drift and disturbance
vector have to be added to both controller laws. These vectors take into ac-
count the contribution of the non actuated DOF over the actuated ones. The
first one accounts for the coupling elements in matrix T, while the second one
accounts for the efforts on the actuated space created by the non actuated
DOF of ν. Indeed, the product (C(ν) + D(ν))ν in the dynamic model will
allow the non actuated terms of ν to create efforts on the actuated DOF of
τa, thanks to the coupling terms of these matrices. This means that even if
these DOF are not controllable, it is possible to control their coupling effects
in the actuated space of the robot.

To illustrate these space reductions, we will apply the computed torque
technique to both studied underactuated robots: the fixed-thrusters and the
vectorial-thruster RSM robot. We will make these two robots to follow a
common trajectory, which will allow to compare the set up of the reduced
space and analyze their characteristics.
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5.1.5.1 Evaluation trajectory

The “dive in a confined space” trajectory, shown in section 4.3.2.2, will be
used. It allows to evaluate the pertinence of the controller, the application
to under actuated propulsive topologies and, additionally, the propulsion
strategy performance in a particular mission.

To follow this trajectory, the vehicle starts moving horizontally and then
dives following a vertical line. The control technique will make the AUV
follow only the position of the trajectory, leaving the orientation of the vehicle
uncontrolled (three DOF for task space to match the three DOF actuation
space of vectored propulsion).

Both propulsive architectures will follow the same trajectory using the
same control technique. However, the way of following the desired trajectory
will be different for each architecture. Additionally, in order to compare the
performance of the two propulsive systems, the energy consumption will be
measured. This will give us a general idea of the efficiency of each strategy.

In order to follow this common trajectory, the command laws must adapt
to the different propulsive topology. In the next sections we will see how.

5.1.5.2 Kinematic control law reduction

The reduced kinematic control law is described by the following equation:

νad = T−1{Jr
1
T(η2)[η̇ed + Λ(ηed − ηe)]− [vnc]

T} (5.15)

where [vnc]
T are the drift terms (non actuated linear motions) in Rb and

T is the kinematic transformation matrix that brings the speed from Rb to
the tracking point e.

The matrices are reduced stripping out the lines corresponding to the
unused degrees of freedom of ηed and the columns corresponding to the non
actuated elements of τ in Rb. The non actuated elements of τ are determined
by the B matrices of both propulsive topologies, which will determine what
elements of νad they are capable of generating. With this information and
using Eq. 5.5, we can determine the reachable space ηed.

In our first example (Fig. 5.3) the robot can generate surge, heave, roll
and yaw. With these four degrees of freedom and with the position of e:

~re = [0.3, 0.0, 0.1]T (5.16)

it is capable to follow the position of ηed. Additionally, it can follow the
orientation φ, which will be used in our calculations as a way of keeping a
squared T matrix.
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Figure 5.3: RSM robot with fixed propulsion topology.

Similarly, the vectorial example (Fig. 5.4 ) can generate surge, pitch and
yaw. This makes it also able of reaching the desired position on ηed.
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xb
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zb θv

ψv

up

Pitch
Surge

Yaw

Figure 5.4: RSM robot with vectorial thruster.

A list of the reduced elements for the propulsive topologies are the fol-
lowing:
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Fixed propulsion

νad = [u w p r]T

vnc = [0 v 0 0]T

ηed = [xed yed zed φed]
T

T =




1 0 0 −εy
0 0 −εz εx
0 1 εy 0
0 0 1 0




Λ = 10 ∗ I4×4

Vectorial propulsion

νad = [u q r]T

vnc = [0 v w]T

ηed = [xed yed zed]
T

T =




1 εz −εy
0 0 εx
0 −εx 0




Λ = 10 ∗ I3×3

5.1.5.3 Dynamic control law reduction

Similarly, the dynamic control law is reduced using the following equation:

τa = Mr[ ˙νad + Kpe] + Cr(ν)ν + Dr(ν)ν + Gr + d(ν) (5.17)

Where Mr, Cr, Dr, Gr are the reduced dynamics matrices and d(ν) is
the disturbance vector. For the dynamic control law, the matrix reduction
is made only taking into account the reduced actuated space. Indeed, in
Eq. 5.17, the reduction in the propulsive capabilities of τa only affects the
generated DOF of ν. The reduction is made then stripping out the lines and
columns corresponding to the non actuated DOF of τa.

For the fixed propulsion the matrices are :

Mr =




m+Xu̇ 0 0 0
0 m+ Zẇ 0 0
0 0 Ibx +Kṗ 0
0 0 0 Ibz +Nṙ




with Ibx, and Ibz the diagonal components of the inertia matrix.
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Cr =




0 mq 0 Yv̇v
−mq 0 −Yv̇v 0

0 Yv̇v 0 Mq̇q − 0.6113q
−Yv̇v 0 0.6113q −Mq̇q 0




Dr =




−Xu|u||u| 0 0 0
0 −Zw|w||w| 0 0
0 0 −Kp|p||p| 0
0 0 0 −Nr|r||r|




Jr
1 =




cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ 0
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ 0
−sθ cθsφ cφcθ 0

0 0 0 1




Kp = I4×4

Gr = Jr
1(η2)[0 mg 0 ρg∇]T

τa = [X Z K N ]T

And for the vectorized propulsion :

Mr =



m+Xu̇ λm 0
λm Iby +Mq̇ 0

0 0 Ibz +Nṙ




with Iby and Ibz the diagonal components of the inertia matrix and λ the
component on zb of distance between the center of gravity and the center of
buoyancy (placed in Ob in our robot).

Cr
a =




0 −Zẇw Yv̇v
Zẇw 0 0.0936p−Kṗp
−Yv̇v Kṗp− 0.0936p 0




Dr
a =



−Xu|u||u| 0 0

0 −Mq|q||q| 0
0 0 −Nr|r||r|




Jr
1 =



cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cφcθ



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Kp = 13×3

Gr = Jr
1(η2)[0 0 ρg∇]T

τa = [X M N ]T

5.1.5.4 Thrust allocation reduction

The next step in controlling the vehicle is to generate τa with the thrusters.
To do so, the AUV thrusters must produce an adequate thrust to comply
with:

τa = Bup (5.18)

To calculate the needed propulsion forces in each thruster, equation (5.18)
must be inverted. We need to reduce the B matrix for each propulsive system
to their respective actuated space. The reduction of the thrust configuration
matrix Br is obtained, as for the dynamic control law matrices, by stripping
out the lines of B corresponding to the non actuated elements of τ . The
amount of columns of this matrix will be determined by the quantity of
thrusters used in the propulsive topology and therefore will not be reduced.

In this case, given that the Br matrices are square thanks to the reduction,
there is no need to use the pseudo-inverse.

For the fixed propulsion system, Br is:

Br =




1 1 0 0
0 0 1 1
0 0 −P3y −P4y

−P1y −P2y 0 0




up = B−1
r τa = [u1, u2, u3, u4]T (5.19)

For the vectorial propulsion, we can rearrange the B matrix (Fig. 4.3)
and turn it into a matrix. With this change, in the equation 5.18, up contains
the components of the thrust vector in Rb (and not the module u1). This
is useful in our calculations since it turns B from a vectorial to a matrix
expression, more adapted to calculate up using the inverse :
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Br =




1 0 0
P1z 0 −P1x

−P1y −P1x 0




up = B−1
r τa = [ux, uy, uz] (5.20)

up in this configuration gives the components of the thrust on xb, yb
and zb.

From the components of up, we calculate u1, the force of the thruster and
the reconfiguration angles ψ1 and θ1 as follows:

u1 = ||up|| =
√
u2
x + u2

y + u2
z

θ1 = − arcsin(
uz
u1

) ψ1 = arctan(
uy
ux

)

5.1.6 Numerical validation

5.1.6.1 Mission simulation

A simulation for each propulsive strategy has been carried out. Since the fixed
thruster configuration has its center of gravity between vertical thrusters, this
task is straightforwardly performed. Consequently, the AUV dives along the
vertical line, keeping a zero pitch angle (black dotted line if Fig. 5.5).

Because of its actuation, the AUV equipped with vectorial propulsion
needs to orient itself vertically (blue dotted line in Fig. 5.5). In order to
perform such a motion, the computed torque method controls the pitch angle
of the propeller θ1. Fig. 5.5 shows the paths followed by the AUVs equipped
with fixed and vectorial propulsion. We can see how the vectorial AUV
diverts from the desired trajectory since it must rotate. After the abrupt
change of direction the AUV equipped with the vectorial propulsion manages
to recover the vertical trajectory and ends up converging towards it.

Figures 5.6 and 5.7 show the control inputs for the fixed and the vectorial
systems respectively. We can observe that the fixed control inputs stabilize
for horizontal and vertical thrusters rather quickly. Meanwhile, the vectorial
system thruster pitch (θ1) varies greatly during the diving. This can be
explained by the fact that the thruster is behind the tracking point and the
AUV center, which causes the control of the vehicle to be complicated.
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In order to evaluate the performance of the studied propulsive strategy
we will use the convergence of the vehicle towards the desired trajectory and
the energetic efficiency.
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Figure 5.7: Control input for the vectorial propulsion strategy (VP).

5.1.6.2 Results

To evaluate the convergence, the quadratic tracking error norm is analyzed:

||epos|| =
√

(xe − x)2 + (ye − y)2 + (ze − z)2 (5.21)

where xe, ye and ze are the position coordinates of ηed.

Fig. 5.8 shows this error for the fixed and vectorial propulsive systems.
The error for the fixed thruster system converges rapidly towards zero. The
vectorial thruster AUV error takes longer to converge due to the sharp turn
of the desired trajectory, which forces the AUV to change its orientation,
before converging again.

To evaluate the energetic efficiency of the systems we calculate the elec-
trical instantaneous power for each thruster:

P = V I (5.22)
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Figure 5.8: Position error quadratic norm.

where P is the instantaneous power (watt). V is the thruster voltage
(in V) and A is the motor current (in A), which were obtained with the
steady-state thruster model [164]:

V =
R

KM
u+ κ sign(u)

√
|u|
KT

and

I =
u

KM

The total power is obtained by adding each thruster power (Fig. 5.12).
The energy consumption is calculated by integrating over time. For the
fixed propulsion system the consumed energy is 2398 J and for the vectorial
system 922 J . This comparison indicates that the vectorial thruster was 2.6
times more energy efficient for this mission. This is because the vectorial
propulsion robot flips down in order to comply with the task, allowing the
use of a single thruster instead of four. Indeed, diving head down generates
less hydrodynamic drag, which makes the vectorial propulsion more efficient
for this kind of trajectories, even if it generates more transient errors (Fig.
5.8).

The used control technique has been successfully adapted to two different
propulsive technologies in an automatic way, which shows the flexibility of
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Figure 5.9: Total power consumption for fixed and vectorial propulsions.

the method and its applicability to a great number of robots. These features
are particularly interesting in the optimization of the capabilities of under-
water robots, since they allow to analyze their performance using a common
benchmark.

5.2 Controllability

The computed torque method offers good adaptation capabilities, however, it
does not mean that it can be applied to every robot to follow any trajectory.
Indeed, the space reduction, which is the key to the the adaptation of the
method to different types of robot, is also a limiting element of the method.

In the application of the control method, two matrices play a key role in
the success of the controller: the T and B matrices. The controller will be
able to follow the desired trajectory depending on the shape and conditioning
of these matrices.

5.2.1 T matrix

The T matrix, which intervenes in the kinematic control law, determines
which velocities will be created in the tracking point e. The velocities of this
point, are a function of the robot velocity at the origin of Rb, and depend on
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the rigid body kinematics :

νe =




1 0 0 0 εz −εy
0 1 0 −εz 0 εx
0 0 1 εy −εx 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




︸ ︷︷ ︸
T




u
v
w
p
q
r




︸ ︷︷ ︸
ν

(5.23)

The matrix T expresses then the rigid body kinematics of the robot. From
its shape we can clearly see how the linear velocities on e (in Rb) are created
by the linear and angular velocities of the robot on Rb. This information is
used by the kinematic control, through the inverse of T (Eq. 5.7), to define
which degrees of freedom of Rb will be needed to follow a given trajectory.

In a fully actuated robot, all the degrees of freedom in Rb (and so, in
R0) are actuated. Therefore, no reduction of the matrix T is needed and all
possible velocities of e can be created. Mathematically, it means that for any
value of εx, εy and εz, T will be invertible. However, when we use the same
control method on an underactuated robot, things are different.

In an underactuated case, we will reduce the columns of the T matrix
stripping out the ones corresponding to the non-actuated velocities in Rb.
The lines of the T matrix will be reduced as well, taking into account that in
order to calculate the inverse we need to obtain a square matrix. The deleted
lines of T will be those corresponding to the unreachable and undesired
velocities in e.

The reduced T matrix, even if it is square, will not always be invertible.
The invertibility of the matrix will depend, in this case, greatly of the position
of e. We can use the reduced T matrix of the fixed-RSM robot to exemplify
this:




ue
ve
we
pe


 =




1 0 0 −εy
0 0 −εz εx
0 1 εy 0
0 0 1 0







u
w
p
r


 (5.24)

Here, the actuated degrees of freedom are u, w, p and r, whereas the
wanted and reachable degrees of freedom are ue, ve, we and pe. These degrees
of freedom are those of the desired trajectory projected in Rb. From the
reduced matrix we see that its invertibility will depend on the position of e.
Indeed, if the values of εx and εz are zero, the inversion of T is no longer
possible, making the control unfeasible.
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The fact that matrix T is invertible, does not mean, however, that the
control will be successful. For some configurations, even if the coordinates
of e are non-zero, the controller is still not able to converge toward the
desired trajectory. We obtain this behavior when elements of η̇e (Eq. 5.5)
are generated only thanks to the laws of solid kinematics. In our example,
it is the case of the second line of the reduced T matrix, where angular
velocities p (roll) and r (yaw) are used to create linear velocity ve (sway) in
Rb. In R0, this will make e describe an arc of circle, which can be used to
follow a linear trajectory only for a brief period of time, after which the linear
velocity in Rb is no longer useful in R0. It means that the linear velocities
created thanks to a rotational velocity may be only helpful to create small
and brief corrections in the trajectory of e.

To summarize, the reduction of the lines of T (given that the columns
are determined by the actuated space) to define the reachable space is ruled
by two factors. The first one is the invertibility of this matrix, it has to be
squared and with lines and columns linearly independent, which depends on
the position of e. Secondly, the creation of linear velocities by the rotation
motions (p, q and r) is limited. This means that the DOF of the operational
space corresponding to these linear motions have to have a reduced variation.

Several possibilities to determine the controllability of AUVs on trajecto-
ries have been considered throughout this work. The kinematic compliance
of the AUV with the trajectory can be checked by anticipation method. This
method consists of placing successively on each trajectory position/orienta-
tion and testing the compatibility between task and actuated space (from
Eq. 5.5). This method has been tried with some success but has not reached
its conclusion to be mentioned here.

5.2.2 B matrix

The B matrix is also a critic factor in the success of the controller. It is in
charge of determining how the τa control wrench will be created. Obviously,
for a given τa that the robot is not capable to generate, the controller will not
be able to make e converge toward the desired trajectory. The thrust alloca-
tion method is the stage to the control wrench generation. This means that
even if the controller correctly calculates τa, an incorrect thrust allocation
can create a failing control.

As seen in Section 5.1.4, the thrust allocation method uses the inverse
(or pseudo-inverse) of the B matrix in order to calculate the force that each
thruster must generate. This establishes the first constraint of this matrix:
it must be invertible. A non invertible matrix means that the robot is not
capable of creating, with its propulsive topology, the demanded wrench τa.
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The B matrix, when multiplied by the up vector, must generate the ele-
ments of τa needed to follow the trajectory. If the product B up fails to do
so, the controller will not be able to achieve its mission. As explained before,
this matrix represents the propulsive configuration of the robot, each col-
umn corresponds to the contribution of a thruster to the creation of τa. The
number of columns of this matrix represents then, the number of thrusters.

Each thruster has its own coordinate frame, the convention used to define
the orientation of this frame with regard to Rb is the same as the one used
to define the orientation of Rb with regard to R0 (Eq. 5.25). This Euler
ZYX convention uses three successive rotations: ψi around ~zb, θi around
~y ′b and φi around ~x ′′b . The position of each thruster in Rb is given by a

vector ~Pi = [Pix, Piy, Piz]
T . With these elements we can determine the

homogeneous transformation matrix :

Hi =




cθi cψi −sψi cφi + cψi sθi sφi sψi sφi + cψi cφi sθi Pix
cθi sψi cψi cφi + sθi sθi sψi −cψi sφi + sθi sψi cφi Piy
−sθi cθi sφi cθi cφi Piz

0 0 0 1




(5.25)
Where c(·) and s(·) represent trigonometric functions cos and sin respec-

tively.

The force of each thruster follows, by convention, the ~x axis of its frame.
This means that when using the rotation matrix (Eq. 5.25) to calculate the
components of this force in Rb, only the first column of the rotation matrix
is used. The orientation of the thrust vector is then independent of φi.

Taking this into account, each thruster is represented in B, as follows:




X
Y
Z
M
N
K




︸ ︷︷ ︸
τa

=




. . . cθicψi . . .

. . . cθisψi . . .

. . . −sθi . . .

. . . −sθi Piy − cθisψi Piz . . .

. . . cθicψi Piz + sθi Pix . . .

. . . cθisψi Pix − cθicψi Piy . . .




︸ ︷︷ ︸
B




...
ui
...




︸ ︷︷ ︸
up

(5.26)

From the above equation, we see that if for some reason one of the lines
of the thrusters contributions are zero, the propulsion system will not be
able to actuate the corresponding degree of freedom. Such a situation may
arise when the orientation of the thruster is perpendicular to the degree of
freedom in question or when the moment arm is inexistent.
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Clearly, the fact that one thruster can generate components in all six de-
grees of freedom does not mean it can effectively control them. Indeed, more
important than generating forces in a degree of freedom is the capability
of independently controlling it. In order to generate independently several
elements of τa we need to add several thrusters (columns) as well. These
thrusters must be carefully positioned and orientated to avoid creating un-
wanted redundancies and to obtain an efficient contribution to the creation
of τa.

As seen from the creation of T and B, the initialization of these matrices
could be a complicated task. From T, the positioning of the tracking point e
determines the correct calculation of the kinematic law. From B, the quan-
tity, positioning and orientation of the thrusters will dictate if the dynamic
control law is applicable or not. This is due to the fact that, after the space
reduction, the (pseudo) inverse of Br must exist. If it does, then up can be
calculated to generate τa, otherwise the robot is not capable of generating
νad and therefore can not follow ηed.

Additionally, even for viable matrices, it is a hard task to clearly de-
termine which configuration will be the more efficient to follow the desired
trajectory. Indeed, in order to correctly set up a robot, we need to know
where to place e, how many thrusters we need to use, where to position
them and how to orientate then. Given the immense number of possibilities,
finding the optimal configuration of a robot (for a given task) is a daunting
task (likely to be the Non-Polynomial complete kind of problems). The ex-
haustive research of all the possibilities not being practical, a methodological
cost-effective approach is needed.

5.3 Kalman filter

Once the control method has been established, we need to find a way to
properly feed it with the information it needs to operate. Indeed, in order to
work, the computer torque method needs to know the values of positions and
velocities η1, η2, ν1 and ν2. This information is, however, not always directly
available.

The RSM robot, for instance, is equipped with a depth sensor and an
inertial measurement unit (IMU). These two sensors provide the following
data: ν̇1, ν2 and η2 (but not η1 and ν1), which is not sufficient to the con-
troller. Since the control method needs the complete state of the robot to
properly work, the remaining data needs to be at least estimated. The chosen
method of estimation is the widely used Kalman filtering.



5.3. Kalman filter 121

5.3.1 Principle

A Kalman filter is a recursive algorithm that, using measurements over time
and a dynamic model, generates an optimal estimation, from a statistical
point of view, of unknown variables. The application of the Kalman filter
assumes that both the system and the measurements are affected by Gaus-
sian noise and that the state representation of the system is linear [124].
Our problem being non-linear, we have to use an algorithm adapted to our
situation. Said algorithm is the Extended Kalman Filter (EKF) [124].

5.3.2 Extended Kalman filter

The extended Kalman filter is a version of the Kalman filter which extends
its application to systems in which the state model and/or the observation
model are non-linear.

In order to use this filter to estimate the state vector, the state model is
described in state-space notation by a non-linear vector:

ẋ(t) = f [x(t), u(t), v(t), t] (5.27)

Where f [·, ·, ·, ·] is a non-linear mapping of state and control input into
state transition. x(t) is the state vector, u(t) is the control input, v(t) is a
variable describing the uncertainty in the evolution of the state caused by
non modeled phenomena (Gaussian noise) and t is the time.

Similarly, the observation model is described in state-space notation as
follows:

z(t) = h[x(t), u(t), w(t), t]

Where h[·, ·, ·, ·] is also a non-linear mapping of state and control input to
observations and w(t) is a variable describing uncertainty in the observation
caused by sensor limitations (Gaussian noise).

This filter is, however, mostly used in discrete-time, which requires a
discrete-time version of the models:

x(k) = f [x(k − 1), u(k), v(k), k] (5.28)

z(k) = h[x(k), w(k)] (5.29)

Where k is the instant of calculation. The estimation of the state made
by the EKF proceeds in two stages:



5.3. Kalman filter 122

Prediction. In which a prediction x̂(k|k − 1) of the state at the instant
k and its covariance P (k|k − 1) are calculated. These predictions are based
on all the information until the time k−1 and are calculated in the following
way:

x̂(k|k − 1) = f [x̂(k − 1|k − 1), u(k)]

P (k|k − 1) = ∇fx(k − 1)P (k − 1|k − 1)∇Tfx(k − 1)

+Q(k − 1)

where x̂(k−1|k−1) and P (k−1|k−1) are an estimate of the state x(k−1)
and covariance P (k−1) at the time k−1 based on all the observations made
up to and including k − 1. Q(k − 1) is a known covariance and ∇fx is the
Jacobian of f .

Update. In which an observation z(k) is made at the time k and the
updated estimate x̂(k|k) of the state x(k) along with the updated estimate
covariance P (k|k) is calculated as follows:

x̂(k|k) = x̂(k|k − 1) +W (k){z(k)− h[x̂(k|k − 1)]}
P (k|k) = P (k|k − 1)−W (k)S(k)W T

where

W (k) = P (k|k − 1)∇Thx(k)S−1(k)

and

S(k) = R(k)

+∇hx(k)P (k|k − 1)∇Thx(k)

with ∇hx the Jacobian of h and R the known covariance of the measure-
ment noise.

5.3.3 Application

To apply this estimation method to our robot, we take into account that Eq.
5.29 can also be written as:
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x(k) = f [x(k − 1), u(k), k] + vk

z(k) = h[x(k)] + wk

where f [·, ·, ·], is the discretized model of the underwater robot. vk and
wk are the process noise and the measurement noise (both Gaussian) and
z(k) is the measurement affected by the noise wk.

For our robot, the discretized model can be calculated as:

f [x(k − 1), u(k), k] = νk−1 + Te {M−1 [τk−1 − (C + D)νk−1 −G]} (5.30)

where Te is the sample time, and k− 1 indicates the instant of time prior
to the calculation instant k. Matrices C and D are a function of νk−1, but
for the sake of clarity in the expression, this has not been written.

The observation model z(k) has the elements given by the IMU, and
depth sensor. Given that the IMU measures η2, ν2 and ν̇1, we can integrate
this last vector in order to obtain ν1:

ν1 = ν1 (k−1) + Te ν̇1 (k−1) (5.31)

The observation model will be then:

z(k) =




uk
vk
wk
zk
pk
qk
rk
φk
θk
ψk




+ wk (5.32)

The Jacobians used in the calculation of the prediction and update stage
are calculated using a complex step differentiation method, as described in
[165,166].

In order to test the kalman filter in our robot, we will ask the controller
to follow a spiral trajectory:





xe(k) = 0.5 cos(vspiral · k)
ye(k) = 0.5 cos(vspiral · k)
ze(k) = 1 + vspiral · k

(5.33)
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Where vspiral = 0.5m/s is a constant speed, used as a parameter to
calculate the reference trajectory. xe(k), ye(k) and ze(k) are the coordinates
of the spiral in R0 at the instant k.

The RSM robot, equipped with the fixed thruster topology will be used.
After applying the corresponding space reduction to the control laws, the
controller will use the values of x̂(k|k) to determine the thrust vector up.

Figure 5.10 shows the results of the estimation. In this figure, we can
see the components of the state ν1, ν2, η1 and η2 as well as their estimated
counterparts, designated with the symbol (̂·).
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Figure 5.10: Extended Kalman filter estimation. Solid lines represent the
real states and dotted ones represent the estimation.

We can see how during the time of the mission, the estimated values
match the ones of the state. This allows the controller to converge towards
the desired trajectory (Fig. 5.11) based solely in the estimated state, which
validates the efficacy of the estimation method as well as its pairing with the
controller.

5.4 Validation

Once we have determined the techniques to control and estimate the degrees
of freedom of the robot, we need to verify if they work properly on the
vehicle. Indeed, even if the techniques work in simulations using higher level
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Figure 5.11: Test trajectory for EKF (refence trajectory: magenta, actual
trajectory: blue).
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programming languages such as MATLAB, we need to test it on the real
hardware of the robot. This will allow us to validate the feasibility of these
techniques in more realistic conditions.

5.4.1 ROS programming

The system used to program the control and estimations techniques is ROS
(Robot Operating System) [167]. ROS consists of a series of software frame-
works that facilitate the creation of software for robots. This system pro-
vides capabilities typical of operating systems such as software abstraction,
libraries, package managing and device drivers.

Programming using the ROS framework can be done through C++ and
Python languages. This is a great advantage, since C++ is a language
renowned for its efficiency, which is convenient for the not so powerful hard-
ware of our robot.

The programs created within the ROS framework, as well as the data flux
are grouped in the two following categories:

� Nodes: these are the software written by the user. These programs
typically take data from the robot sensors (or other nodes), process it
and produce new useful data.

� Topics: they transport the information created by nodes. The nodes
asynchronously publish (write) and retrieve data from these entities.

Topic
(data flux)

Node
(process)

Node
(process)

Publication Subscription

Figure 5.12: ROS minimal structure example.

5.4.2 Control architecture

The control architecture programmed using ROS is the one shown in Fig.
5.13. It consist on several nodes (represented by an ellipse) which are in
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charge of manipulating data. On the left we can see two nodes called Sub-
marine, these nodes are interchangeable and represent a simulation of the
underwater vehicle or the real robot. In each case, the data created by these
nodes are the ones of an (IMU) and a depth sensor: u̇, v̇, ẇ, p, q, r, φ, θ, ψ
and z.

The IMU data and the depth of the robot are used by a node called Sub-
marine Localization, in charge of using the Kalman filter in order to estimate
η1, η2, ν1 and ν2. A node called Path planner Controller, calculates the ref-
erence trajectory to follow. It determines in each moment where the robot
should be.

The data created by Localization and Path planner are fed to a node
called Submarine Controller, which is in charge of calculating the force on
each thruster in order to follow the desired trajectory (applying the torque
computation method of section 5.1). This node contains both the computer
torque controller and thrust allocation methods.

Finally, the calculated forces on each thruster are taken by the Submarine
node. Which applies the forces to the simulation or on the real robot.

The last node, called UWSim is there only to provide a 3D visualization
of the robot, therefore, it does not intervene in other processes of the robot.

Figure 5.13: Control architecture in ROS of the RSM Robot.

5.4.3 Software-in-the-loop

Before applying the control method, a series of steps need to be taken. These
steps, called “-in-the-loop” methods, are necessary to test and assure the
viability of the control technique before using it in the real vehicle.

The preliminary method we obtained with Matlab simulation in the pre-
vious sections is sometimes called ”Model in the Loop (MIL)” but it is not a
true test loop since it uses high-level language programs, not representative
of what happens in embedded systems. Indeed, in the process of adapting
the control method from a high level language as Matlab to the real robot
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there might be errors. These errors, due to specificities of the programming
language or the hardware need to be addressed in a systematic way.

The first of these methods, called “software-in-the-loop” (SIL) allows to
test and debug the code written for the microprocessor of the robot. It uses a
simulator of the real vehicle and the controller written in the target language,
both running on the development (not embedded) computer (Fig. 5.14).

Development computer

Controller code

SIL Simulator

Figure 5.14: Software-in-the-loop schematic representation.

Using this method, we program the control algorithm on the development
computer exactly as it will be programmed on the robot hardware. This is
useful to emulate the working conditions of the robot in the computer, in
order to prevent missing dependencies.

The software-in-the-loop method allows to test the controller code in order
to find and repair errors in the algorithm or in the method itself. Additionally,
it is possible to test the controller for critic scenarios.

5.4.4 Processor-in-the-loop

In the processor-in-the-loop method, the controller algorithm is compiled to
be executed in the processor of the robot. The simulation, as in the previous
method, still runs on the development computer. The fact that ROS can be
installed in different platforms with virtually no operating differences allows
to easily compile the SI-validated source code in the processor.

The control algorithm, using this method, can interact with the rest of
the system using the input and outputs of the microprocessor. The rest
of the system (as its low-level electronics), is simulated in the development
computer. The inputs and outputs of the this computer are adapted in order
to make the microprocessor act as if it was working with the real robot.

This method allows to detect errors related to the microprocessor oper-
ational conditions (compilation, optimization, available memory, calculation
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power, frequency, latencies, etc).

Processor

PIL Simulation
Inputs

(TCP/IP,série)

Inputs Outputs

Outputs
(TCP/IP, série)

Figure 5.15: Processor-in-the-loop schematic representation.

Both SIL and PIL techniques have been used to validate the robot con-
troller. In figure 5.16 we can see a simulation using UWSim [168] as a graphic
output in which we test these two methods. For the SIL method the con-
troller code and the simulator (both written in C++) run on the development
computer. In the PIL method the simulation runs in the development com-
puter while the controller runs in the RSM robot CPU board. Despite the
differences in computing power and frequency (development computer far
more powerful than the RSM robot CPU), both SIL and PIL simulations
exhibit a similar behavior. This comparison between the two techniques val-
idates the implantation of the code on the RSM robot embedded high level
electronics.

SIL PIL

Figure 5.16: Simulations using SIL and PIL techniques.

An “-in-the-loop” method has not yet been applied, the hardware-in-the-
loop or HIL (ongoing collaboration work with partners of UNICAMP, state
of Sao Paulo, Brazil). This technique also uses the low level electronics of the
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robot and allows to test entirely the acquisition and control lines. However,
it needs a real time computer simulation in order to test the operations of the
system. This type of simulation is done by special hardware with real-time
capabilities (dSpace its used by our partners in Brazil).

5.5 Conclusion

In this chapter a nonlinear control method was introduced and a way of
adapting it to different topologies was developed. Additionally, considera-
tions about the applicability of this method (controllability over the trajec-
tory) depending on the robot configuration were given.

A comparison between two different topologies using the control method
was presented. In this comparison we observe how the same task can be
performed with a different strategy depending on the propulsive topology. It
also allows us to see how, depending on the chosen strategy, the performance
in terms of convergence toward the desired trajectory and energy consump-
tion can vary. This comparison confirms the importance of the propulsive
topology for the performance of the robot. How to choose the propulsive
topology in order to maximize the performance? is then the question raised
by this work. The selected method is presented in the next chapter.

The Kalman filter estimation method and its implementation in the sim-
ulation of the RSM robot has been presented and discussed. Additionally,
the controller has been programmed in C++ for its implantation on the
real robot CPU. The target-compiled code has been validated using “-in-the-
loop” techniques. While not yet integrated in the optimization of the AUV
propulsion, these are important steps in the development of the RSM robot
as an experimental platform.



Chapter 6

Genetic optimization

6.1 Introduction

The models, control technique and concepts presented in the previous chap-
ters show the many parameters and sub-systems that a designer needs to
address to successfully create an underwater robot propulsion system. Pa-
rameters and sub-systems as the gains of a controller and the propulsive
topology of the robot are essential to create a functional robot. Moreover,
even for a functional underwater robot, a slight change on these design ele-
ments can cause great variations of the robot overall performance as it can
be seen even in simulation.

When designing a robot to perform precise missions, said sub-systems and
parameters must be taken into account in order to create a robot adapted
to the user needs. The designer, faced with a blank sheet of paper at the
beginning of the project, needs to imagine the missions the robot will perform
and come up with an appropriate system. This system will be a carefully
chosen combination of the design elements previously discussed.

Given the large amount of design elements, and their heterogeneity, find-
ing a suitable configuration is a challenging task. If additionally, we are
looking for a highly performing configuration, the design process becomes
extraordinarily complex and no known systematic method exists.

To overcome such a complexity, the designer can choose from the following
strategies:

� Use a descriptive approach, which is the classical “human” approach.
The designer uses previous information and novel ideas in order to
solve the problem. The ideas are transformed iteratively in the mind
of the designer until a satisfactory solution is created. Since this pro-
cess occurs in a semi-empirical way, the final design is as good as the

131
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experience and capacity of the designer.

� Use a digital approach, which consists on giving to a computer the
tasks of creating a system or analyzing a previously designed one. This
approach provides several advantages. It can be used to automatically
find the design elements of a system that optimizes a certain character-
istic. Computer aided design (CAD) techniques, take precise instruc-
tions about the features to optimize and, using an iterative process,
find the most fitted solution(s).

Taking into account the number of parameters and sub-systems to de-
termine before properly designing a robot propulsion, it is clear that such
a difficult task would greatly benefit from a computer-based optimization
design method. Namely, the design problem discussed in this research work,
can be formulated as a global optimization problem.

6.1.1 Global optimization problem

The goal of this kind of problem is given in the following general definition:

Definition 1. Global minimum
Given a function f : M ⊆ IRn → IR, M 6= ∅, for ~x∗ ∈ M the value

f ∗ := f(~x∗) > −∞ is called a global minimum, iff

∀~x ∈M : f(~x∗) ≤ f(~x) (6.1)

Then, ~x∗ is a global minimum point, f is called objective function, and
the set M is called the feasible region. The problem of determining a global
minimum point is called global optimization problem.

In the case of the design of a robot, the global minimum would correspond
to the best set of parameters that minimizes (or maximizes) the objective
function f . It would correspond to the best robot, based on these parameters.

Generally, the objective function has several minima of different values.
The optimization can be attracted to follow one of these minima, called local
minima, even if its value is mediocre compared to other local minima or to
the global minima. We can define mathematically these local minima as:

Definition 2. Local minimum
For ~̂x ∈ M te value f̂ := f(~̂x) is called a local minima, iff

∃ε ∈ IR+∗ : ∀~x ∈M : ||~x− ~̂x|| < ε =⇒ f̂ ≤ f(~x) (6.2)

A local minima would correspond to a version of the robot which is locally
better than its neighboring robots, but not the best of all search space M ..
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6.1.1.1 Different types of methods

There are several classifications of the different global optimization methods.
Here, the classification given by Bäck [169] will be used. Indeed, we will
separate these methods in two large groups:

� Volume oriented: These methods are based on an exhaustive search
throughout the entire feasible configurations. This, of course, requires
a finite search space. Examples of methods using this paradigm are
Monte-Carlo strategies and cluster algorithms

� Path oriented: These methods follow a path in the feasible space,
starting from a point that can be placed whether randomly or using
previous knowledge. Path oriented methods can be divided into two
sub-groups:

– Prediction methods: these use an explicit model of the objec-
tive function to predict the best path to follow. Tunneling meth-
ods and gradient descent are examples of these type of approach.

– Exploration methods: these try different paths and discard the
ones that are not useful or successful. Examples of this approach
are pattern search, rotating coordinates method and, to a great
extent (they have traits corresponding to volume oriented and
prediction methods), evolutionary algorithms.

For this work, the evolutionary approach will be used to solve the global
optimization problem. This choice is based on the many successful applica-
tions of evolutionary algorithms to system design [170–173].

6.1.1.2 Evolutionary algorithms

Evolutionary algorithms are computational techniques based on the model
of natural evolution formulated by Darwin [174]. They model the evolution
process of a population of individuals using simplified processes of genetic
mechanisms as described by Mendel.

Evolutionary algorithms manipulate the genotype of a population of in-
dividuals using genetic operators, this population undergoes a fitness-based
selection process, in which the fitness of each individual depends on its adap-
tation to its “environment”. With the proper definition of “genotype”, “fit-
ness” and “environment” we can apply these optimization algorithms to a
myriad of problems, including robot design optimization [173].

From a mathematical point of view, an evolutionary algorithm can be
defined as follows [169]:
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Definition 3. An Evolutionary algorithm (EA) is defined as an 8-tuple

EA = (I,Φ,Ω,Ψ, s, ι, µ, λ) (6.3)

where I = Ax × As is the space of individuals, and Ax, As denote arbitrary
sets; Φ : I → IR denotes a fitness function assigning real values to individuals.

Ω = {ωΘ1 , ..., ωΘz |ωΘi
: Iλ → Iλ} ∪ {ωΘ0 : Iλ} (6.4)

is a set of probabilistic genetic operators ωΘi
, each of which is controlled by

specific parameters summarized in the sets Θi ⊂ IR.

sΘs : (Iλ ∪ Iµ+λ)→ Iµ (6.5)

denotes the selection operator, which may change the number of individuals
from λ or λ+µ to µ, where µ, λ ∈ IN and µ = λ is permitted. An additional
set Θs of parameters may be used by the selection operator. µ is the number
of parent individuals, while λ denotes the number of offspring individuals.
Finally, ι : Iµ → {true, false} is a termination criterion for the EA, and
the generation transition function Ψ : Iµ → Iµ describes te complete process
of transforming a population P into a subsequent one by applying genetic
operators and selection:

Ψ = s ◦ ωΘi1
◦ ... ◦ ωΘij

◦ ωΘ0 (6.6)

Ψ(P ) = sΘs(Q ∪ ωΘi1
(...(ωΘij

(ωΘ0(P )))...)) (6.7)

Here {i1, ..., ij} ⊆ {1, ..., z}, and Q ∈ {∅, P}

Several algorithms use the paradigms of evolutionary optimization, we
name here a few:

� Genetic algorithms: The most used technique within the evolution-
ary algorithms. Typically, the individuals are coded using binary en-
coding and they use crossover and mutation as operators [175].

� Evolution strategies: It was born to solve hydrodynamic problems
such as shape optimization and drag reduction [176,177]. In this tech-
nique the individuals are coded as vectors of real numbers. It uses
primarily mutation, which can be self-adapting, depending on the ob-
jective function. Genetic operators manipulate random variables and
are based on probabilistic formalism.
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� Evolutionary programing: This technique evolves a population of
computer programs to solve an algorithmic problem. The solutions to
the optimization problems given by this technique are, then, computer
programs [178].

Taking into account their ease of use, the simplicity of their implementa-
tion and their popularity (which gives many examples of applicability), the
genetic algorithm method will be used from now on to solve the optimiza-
tion problems in this work. Indeed, task-based propulsive solutions will be
created writing the design of an AUV as genetic algorithm.

6.2 Genetic algorithms

6.2.1 Principle

Being a type of evolutionary algorithm, genetic algorithms (GA) are also
based on the evolution theory of Darwing. Genetic algorithms use individ-
uals, genes, populations, a fitness function and operators such as selection,
crossover and mutation [175].

On a typical genetic algorithm application, the method follows these
steps:

1. A population of individuals is created. This population can be created
randomly or using previous information.

2. The individuals of the population are evaluated and given a fitness
according to their performance based on the objective function.

3. Using the fitness of each individual as information. Genetic operators
are applied to create new individuals:

(a) Selection: The best individuals (best fitnesses) are selected from
the population. This selection can be deterministic or stochastic.

(b) Crossover: Two individuals (parents) mix their genes in order to
create two new individuals (children).

(c) Mutation: A change of value of the genes (alleles) of the individ-
uals is applied. The change (from 0 to 1 or conversely) is decided
by stochastic methods (each gene has a tiny probability of being
mutated)

(d) Population replacement: The new generation created by the pre-
vious operators replaces completely the old generation.
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4. Go to step 2 if solutions are not yet satisfactory. Otherwise, finish the
algorithm
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Figure 6.1: Genetic Algorithm.

6.2.2 Components

6.2.2.1 Population initialization

The first step using a genetic algorithms is the creation of an original popu-
lation. This population will contain the first individuals, that later on, will
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be evaluated and affected by genetic operators.
The µ individuals of a population are typically coded using k binary genes.

The creation of these binary genes is made, most of the time, randomly.
Indeed, a binary random variable is sampled k·µ times in order to create every
single gene of all the individuals of the population. The process is equivalent
to a coin toss. The result is the start population P (0) = {~a1(0), ...,~aµ(0)}.

Other techniques of population initialization exist. Some of them place
individuals in zones of the population were the optimal solution is likely
to be found. This type of strategy requires previous knowledge about the
optimization problem and may lead to local optimization if mishandled.

6.2.2.2 Evaluation

Once created, the individuals of the population are evaluated. In order to
do this, each individual must be decoded from binary to decimal base first.

The decoding is made taking the integer value from 0 to 2k − 1 of each
individual and then mapping it to a real interval [ui, vi]. An example of this
conversion is given here:

Υi : IBkx → [ui, vi]Υ
i(ai1, ..., aikx) = ui +

vi − ui
2kx − 1

(
kx−1∑

j=0

a1(kx−j)2
j

)
(6.8)

The decoded individuals are then, one by one, evaluated using an objec-
tive function f(Υ(~x)) based on the characteristics to enhance/decrease. This
objective function is scaled to the domain of the positive real numbers, since
the selection operator needs positive fitness to work. This is done with a
scaling function δ:

δ : IR×Θδ → IR+ (6.9)

There are several scaling methods [175] (linear, logarithmic, exponential,
etc). The choice of the right method depends on the application.

The scaling function gives to each individual in the population a fitness
F, which describes their adaptation to the environment and it is useful to
apply the operators effectively .

6.2.2.3 Selection

Selection is the genetic mechanism from which the best individuals of the
population are saved from extinction.
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The selection is based on the survival of the fittest rule of Darwin. In this
type of selection, called proportional selection, each individual has a selection
probability (also called survival probability) proportional to its relative fitness.
It means that the better fitted an individuals is, with regards to the rest of
the population, the bigger the chances of its survival are.

Mathematically we can determine this probability for the individual ~ai(t) ∈
P (t) = {~a1(t), ...,~aµ(t)} as:

ps(~ai(t)) =
F (~ai)

µ∑
j=1

F (~aj(t)

(6.10)

Evidently this calculation only works if the values of the individual fitness
are positive.

Using the above defined probability and the number µ of individuals
in the population, we can calculate the expected number of occurrences of
individuals ~ai ∈ P (t) in the population after the selection:

η(~ai(t) = µ ps(~ai(t)) (6.11)

The proportional selection mechanism is materialized by a method called
the “roulette wheel“. In this digital roulette we assign to each individual a
slice of a size proportional to its relative fitness. Then a random number
is generated and the individual whose segment spans the random number
is selected (Fig. 6.1). This process is repeated for each individual of the
population.

6.2.2.4 Crossover

The crossover, considered as the most important operator [169], is the op-
erator by which new individuals on a population are created from parent
individuals of the previous population. Indeed, new individuals can be yield
from useful elements of different parents. These new individuals have the
combination of the characteristics of their ancestors.

The crossover operator selects two parents from the population and re-
combines their genes (binary data) to produce two new individuals. A pair of
individuals has a probability pc of being crossed. The value of this probability
depends on the application. In the literature we can find authors proposing
pc values ranging from 0.5 to 0.95.

Another topic of discussion is the crossover technique, that is, the way
in which the elements from the parents are combined to form their children.
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Several techniques exist [169, 179]. In figure 6.1 we can see the most basic
(and popularly used) technique: the single point crossover.

The single point crossover method, proposed by [180], uses a crossover
position χ ∈ {1, ...k − 1} which is selected randomly. The two resulting
children are then created exchanging the bits to the right of χ between the
parents. From two individuals ~s and ~v the resulting children are:

~s′ = (s1, ..., sχ−1, sχ, vχ+1, ..., vk) (6.12)

~v′ = (v1, ..., vχ−1, vχ, sχ+1, ..., sk) (6.13)

6.2.2.5 Mutation

The mutation operator, just like in nature, changes the genes of the indi-
viduals. In genetic algorithms, this operator will invert the bits (genes) of
the individual. The probability of a bit from an individual to be mutated
is given by a probability pm. Several pm values are proposed depending of
the author(e.g.pm = 0.001 for [181], pm = 0.01 for [182]). In this work we
will use a rule in which we will calculate pm in order to have 50% of mutants
expected per generation.

Mathematically, the individual after mutation is calculated in the follow-
ing way:

a′i =

{
ai , ifχi > pm

1− ai , ifχi ≤ pm
(6.14)

where χ ∈ [0, 1], as in the crossover operator, is a uniform random variable
which value is recreated for each bit.

6.2.2.6 Replacement

After applying selection, crossover, and mutation to the individuals of a
population P0, we obtain a new population P1. This new generation will
replace completely the old generation. The new individuals will take the
place of the old individuals, which will be extinct. New generations will
be created using this operation iteratively until the termination criteria is
reached.

The termination criteria depends on the application. It can be a simple
maximum number of generations or it can be associated to a specific fitness
value for the best individual or average fitness of the entire population.
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6.2.3 Application example

6.2.3.1 Rastringin function

Before applying the genetic algorithm to our particular problem, we need to
verify its efficacy. This verification is necessary from a theoretical and prac-
tical point of view. Theoretically, it will allow us to confirm the pertinence
of these type of algorithm and will improve our grasp over the method. From
a practical point of view, it will allow us to understand the logic behind our
code.

These type of verification are typically done using a known multimodal
multidimensional function, known as the test function. These test functions
have the property of having a great number of local minima and a known
global maxima, which makes them a challenging problem, perfect to test the
genetic algorithm.

Among the several functions found in the literature [183], in this work
we will use the Rastringin function. This function is multidimensional and
highly multimodal, with a large amount of local minima surrounding the
global maxima. Mathematically we can define this function as follows:

f(x) = 10n+
n∑

i=1

[x2
i − 10 cos(2π xi)] (6.15)

The limits of this function are restricted to the hypercube −5.12 ≥ xi ≤
5.12 , i = 1, ..., n. The global minima of this function is f(x) = 0, which is
the result of xi = 0 , i = 1, ..., n.

In Fig. 6.2 we can see a plot for the Rastringin function with n = 2.
For our test,we will use a Rastringin function with n = 20. The configu-

ration of the genetic algorithm is given next.

6.2.3.2 Parameters

In order to use the genetic algorithm, first we have to configure it correctly.
The configuration of the algorithm implies the definition of the following
parameters:

� pc: crossover probability

� pm: mutation probability

� µ : number of individuals per generation

� g : number of maximum generations
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Figure 6.2: Rasringin function with n = 2 (2D).

The determination of these parameters depends on the application and a
general method for their determination can not be stated.

For this particular problem, the chosen crossover probability will be the
one proposed by [175], which is pm = 50%.

The evolution is very sensible to the mutation effect, since a large muta-
tion probability would prevent the algorithm from finding suitable solutions.
For instance, a probability pm = 50% would be equivalent to a random walk.

In order to define the mutation probability, we will use the method used in
[171]. Using these method, the mutation probability is inversely proportional
to the number of bits of a chromosome (gene arrangement). If we want at
least 50% of the total population in average to mutate, then the mutation
probability is given by:

pm =
1

2n k
(6.16)



6.2. Genetic algorithms 142

with n the number of variables to optimize and k the number of bits
coding these variables.

The number of individuals per generation (µ) in a population must be
sufficiently large so the selection operator can pick from a great variety of
individuals. Just like in nature, selection is more efficient if it has several type
of individuals to chose from. This can lead to make the algorithm be able to
“explore” more solutions and “discover” areas of the feasible landscape M
that otherwise wold have been hidden.

A way of choosing the value µ can be based on the fact that it should
allow the possibility of having the full range of values attainable by the fitness
function F :

Ω(F (M)) = kmin = 1 +
1

Fe
(6.17)

with Fe the smallest possible variation on the fitness function, i.e. the
variation on the fitness function given by a change of the last significant bit
in a variable.

To determine the number of generations g we need to take into account
that it has to be sufficiently large so the evolution has enough time to find
suitable solutions and to improve the fitness of the population. We can chose
the number of generations in order to give time to the mutation of modifying
the complete chromosome of an individual. Given that the expected number
of mutations per generation over an individual is 0.5, the minimum number
of necessary generations is :

gmin = 2n k (6.18)

Lastly, we can use the previous parameters to check the number of total
evaluations on our genetic algorithm with regard to the cardinality of the
optimization problem. Indeed, we can evaluate the result of the following
equation:

µ g

Ω(M)
(6.19)

with M the set of solution candidates and Ω(M) the cardinal of the set
M . The smaller the result of this equation, the bigger the difference between
the evaluations made by the GA and the number of possible solutions of the
optimization problem.

For our test, we will use n = 20 (number of variables) and k = 14 (bit
for the encoding of each variable). This allows us to create the table 6.1.
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Table 6.1: Evolutionary parameters for Rastringin optimization test.
Parameter Symbol Numerical value

Crossover probability pc 0.5
Mutation probability pm 1.786× 10−3

Population size µ 1290
Number of generations g 560
Number of parameters n 20

Enconding bits per parameter k 14

6.2.3.3 Results

Using the genetic algorithm with the given configuration we find the following
results. In Fig. 6.3 we can see the evolution of both the best and average
fitness for the population. It is clear how the average fitness curve increases
along the best fitness curve. This shows how the genetic algorithm takes
the information from the parents in order to create better and more fitted
children as the generations go by. The gap between the two curves, created
by the difference in grow rate, is an evidence of the variety of solutions the
algorithm maintains during the evolution. Even if some of these solutions
are not as good as the best one, they may contain useful information that,
thanks to the crossover operator, can lead to improve the best fitness later on.
This gap, mostly maintained by the mutation taking place on the individuals
of the population, is very healthy for the evolution. Indeed, in its absence,
the population converges to µ copies of a single individual. At this point,
fitness improvement would become rather difficult and unlikely, since it is
only driven by mutation.

Figure 6.4 shows the evolution of the parameters of the best individual.
We can see how in the beginning the best solution has parameter values far
from zero and how, as the evolution progresses, the values of the variables
decrease as new areas of M are explored. The process continues, passing
through parameters corresponding to better local minima, until the global
minima configuration is found. At this point no further improvement is pos-
sible, but the genetic algorithm continues its research until the stop condition
is attained.

We can also evaluate the efficiency of the GA by calculating :

µ g

Ω(M)
= 3.7186× 10−19 (6.20)

which means that the number of evaluations made by the algorithm was
negligible when compared with the possibilities of the research space M .
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Figure 6.3: Best and average fitness evolution for Rastringin optimization
problem.

6.3 Adaptation to AUV propulsion design

An underwater robot, regardless of its category, is a complex system affected
by various and heterogeneous parameters. Indeed, a small change in these
parameters can greatly influence the overall performance of the robot. They
can even be the difference between a working and a defective robot. A non
exhaustive list of some of these important design parameters was given in
section 3.1

Considering this, the use of a genetic algorithms to find appropriate pa-
rameters to create a suitable robot for a given task seems reasonable.

In this section the adaptation of genetic algorithms to our specific under-
water robot optimization problem will be discussed. Descriptions about the
configuration of the evolution (probabilities, number of generations, number
of individuals, etc) and of the design parameters (type, encoding, initializa-
tion, etc) will be given.
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Figure 6.4: Evolution of the n variables of the Rastingin optimization prob-
lem.

6.3.1 Design parameters

Among the many design elements of an AUV, this work will focus on the
ones regarding the propulsion and the control. Namely:

� Propulsion parameters

– Number of thrusters: n

– Thruster position: Pix, Piy, Piz

– Thruster Orientation: θi, ψi

� Controller FBLN parameters

– Control gains: Λ, Kp

– Tracking point: Pex, Pey, Pez

Where i represents the ith thruster in the topology.
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6.3.1.1 Propulsion parameters

Propulsion parameters have a deep influence on the operation of underwa-
ter robots. The three propulsion parameters listed above will determine the
controllability of the underwater vehicle. Indeed, as seen in section 5.2, each
new propeller will contribute to the robot controllability with a propulsive
wrench. The wrench contribution depends on the position and orientation
of the thruster, since these parameters will dictate what DOF will be ac-
tuated by the thruster. For each additional thruster we use on the robot,
we will either expand its propulsive capabilities (controllability) or simply
add a redundancy on its DOF. For a robot with few thrusters, each new
thruster can easily improve the robot controllability. However, for a robot
with many thrusters each new thruster will have a decreasing contribution
on the controllability.

To follow a given trajectory, the necessary DOF can be determined using
kinematic considerations. In our genetic algorithm, this will be used to know
the minimum propulsive capabilities needed by a robot. This pre-analysis
provides an answer to What the robot needs in terms of DOF, while the
genetic algorithm is in charge of finding How to provide them.

The propulsion parameters also have an influence over the energetic per-
formance of the robot. The larger the number of thrusters, the heavier,
cumbersome and costly the robot will be. In our genetic algorithm, each
additional thruster penalizes the objective function, in order to account for
this effect.

Likewise, if the thrusters of the robot are badly placed and oriented, the
creation of the propulsive wrench will not be optimal, or worse inefficient,
even with an appropriate number of thrusters. A defective propulsion topol-
ogy needs to generate a greater propulsive wrench in order to follow a defined
trajectory. Since our simulation saturates the force on the thrusters (by us-
ing the electrodynamical thruster model with bounded voltage), a poorly
configured robot could not be as effective to follow said trajectory than a
properly configured one. This will translate on bigger tracking errors (and
energy consumption) throughout the evaluation.

6.3.1.2 Controller parameters

Controller parameters also play an important role on the performance of the
robot. These parameters have to be precisely tuned in order to make the
robot follow the desired trajectory efficiently.

The first parameter, the tracking point e, intervenes in the kinematic part
of the controller. It determines the rank of the T matrix, which represents
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the rigid body relation between the velocity of the tracking point νe and
the velocity on the mobile frame origin ν. The T matrix has to be inverted
in order to calculate the necessary velocity of the robot in order to follow
the desired trajectory. This means that the position of the tracking point
has to guarantee the invertibility of the T matrix after the space reduction.
Additionally, since ultimately it is the tracking point that follows the desired
trajectory, its position will determine as well the convergence seed. Indeed,
a tracking point far from the origin of the mobile frame will need less thrust
power to correct its trajectory. This is due to the fact that small changes on
the robot angular velocity result in big changes on the tracking point linear
velocities. The position of this point relatively to the robot may be dictated
as well by the task itself.

Lastly, the gain parameters of both the kinematic and dynamic control
layers will also influence the robot ability to follow the desired trajectory.
A fine tuning of these values is necessary to obtain a rapid and efficient
convergence to the reference trajectory. On one hand, both gains need to
be sufficiently large to guarantee a rapid convergence to the followed path.
However, on the other hand, the kinematic gain also needs to be small enough
to create a feasible reference velocity for the dynamic control layer (because
of acceleration limitations). Moreover, the dynamic gain need to be small
enough to avoid creating chattering on the propellers during the dynamic
controller correction.

6.3.2 Representation of solutions

To properly implement the genetic algorithm, we need to precisely define the
design parameters. These parameters are the building blocks used by the
genetic algorithm to find adequate solutions to our problem, and they will
become the solution at the end of the evolution process.

The parameters being of different nature (we have parameters of position,
orientation and others representing controller gains), we need to determine
each one on its own domain.

6.3.2.1 Number of thrusters

The topology of the underwater robot must be optimized, this means that
the number of thrusters is variable in the search. To account for this charac-
teristic we will use an activation bit. The activation bit will be in charge of
activating or deactivating a thruster, i.e. including or excluding the thruster
from the topology.
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6.3.2.2 Thruster position

The thruster position parameter is in reality a position vector, composed of
three coordinates expressed in the robot frame: Pi x, Pi y, Pi z (with i the
number of the thruster).

Since the robot has a fixed shape and size, these three coordinates have
different limits: Pi x can take values from [−L, L] and Pi y and Pi z take values
from [−rc, rc]. The volume described by these three coordinates is a cuboid,
this corresponds with the real RSM Robot (Fig. 6.5) with its metallic frame.
To avoid this heterogeneity we can make these parameters dimensionless:

P̃i = (x̃p i, ỹp i, z̃p i) ∈ IR3
[−1,1]

x̃p i =
2Pi x
L

ỹp i =
2Pi y
rc

z̃p i =
2Pi z
rc

(6.21)

with L and rc the length and radius respectively.

Figure 6.5: Structure of RSM robot (IRDL-ENIB, Brest Ifrement bassin).

Each one of these coordinates will be represented by a binary word of 5
bits. This representation will allow to identify 32 points on each axis of the
robot, as shown on Fig. 6.6, which allows to have a resolution of 3.23% of the
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total length. The choice of the discretization is a trade-off between accuracy
and calculation time. Indeed, a small resolution gives a good precision but
also increases the search space M , increasing the time necessary to solve the
problem.
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Figure 6.6: Thrusters position encoding (example of RSM robot).

6.3.2.3 Thruster orientation

Thruster orientation is a design parameter that contains two sub-parameters:
pitch angle θi and yaw angle ψi which were defined in section 5.2.2.

These angles can vary within a [-π/2, π/2] interval. The variation interval
have been shortened since we consider the thruster capable of generating the
same forces forward and backwards.

As we did with the position of the thruster, we can make these sub-
parameters dimensionless:
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Õi = (θ̃ i, ψ̃ i) ∈ IR2
[−1,1]

θ̃ i =
θ i
π/2

ψ̃ i =
ψ i

π/2

(6.22)

The encoding of these sub-parameters are made using 7 bits, which allows
us to identify 128 possible orientations for each angle, as shown in Fig. 6.7.
The encoding, with a resolution of 0.79% of the range, is also a trade-off
between accuracy and time of calculation.
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Figure 6.7: Thruster orientation encoding.

6.3.2.4 Control gains

The control method uses two gains, Λ for kinematic layer and Kp for the
dynamic one. For the implementation of the GA we have decided to limit
the values of these two sub-parameters to an interval [0, 63.75]. This choice
was made based on previous knowledge about the values of λ and Kp, and
because it is practical to encode each parameter with 8-bits, which allow us
to discretize the variation range in segments of 0.25.
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The definition of these two sub-parameters is the following:

G̃ = (Λ, Kp) ∈ IR[0,63.75] (6.23)

6.3.2.5 Tracking point position

Just as the thruster position, this tracking point position parameter contains
three coordinates expressed in the robot frame (with the same boundaries):
Pex, Pey and Pez.

The tracking point is the point that the controller will steer to follow the
desired trajectory. Typically, it must be located within the boundaries of the
robot (cylinder plus its metallic frame), because it should correspond to the
position of one of the robot equipments (IMU, SONAR, sensors or camera).
In our application, as we did for the thruster position parameters, we will
make these sub-parameters dimensionless.

To encode these sub-parameters we will use 5-bits, which will allow us to
obtain good precision (resolution of 32.3% on each axis) on the location of
the tracking point.

Mathematically, this design parameters is defined as:

P̃e = (x̃e, ỹe, z̃e) ∈ IR3
[−1,1]

x̃e =
2Pex
L

ỹe =
2Pey
rc

z̃e =
2Pez
rc

(6.24)

Table 6.2 sums-up the design parameters and their configuration.

6.3.3 Optimization problem

As it was introduced earlier, our optimization problem “create a suitable
robot propulsion system capable of performing a given mission” is not very
well defined. Evidently, a mathematical and concise definition of our problem
will allow us to correctly design and implement the genetic algorithm.

The controller calculates the force to generate on the thrusters of a spe-
cific robot in order to make it follow a desired trajectory. We can also con-
sider that a high level mission is a succession of properly tunned trajectories
chained one after the other. Taking into account these two statements we
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Table 6.2: Configuration of design parameters.
Name Symbol Enc. bits Range Resolution

Activation bit a 1 [0, 1] -
Thruster pos.(x) Pix 5 [-0.3 m,0.3 m] 0.019m
Thruster pos.(y) Piy 5 [-0.1 m,0.1 m] 0.006m
Thruster pos.(z) Piz 5 [-0.1 m,0.1 m] 0.006m
Thruster or. (~yb) θi 7 [−π/2, π/2] 0.025 rad
Thruster or.(~zb) ψi 7 [−π/2, π/2] 0.025 rad

Kin. gain Λ 8 [0, 63,75] 0.25
Dyn. gain Kp 8 [0, 63,75] 0.25

can conclude that our controller, by making the robot follow the desired
trajectory, also makes the robot comply with a given complex mission.

The optimal robot for the optimization problem must be one that follows
precisely the desired trajectory given to the controller. This means that
the distance from the tracking point to the desired trajectory must reach
to zero and stay like that. We can rephrase the last statement saying that
the integral of the trajectory error must be as close to zero as possible.
Our optimization problem is then, the minimization of an objective function
defined as the integral of the kinematic error εkin of the controller. This can
be put mathematically as follows:

Find x? ∈ IR|5n+5
[−1,1] : (∀x ∈ IR|5n+5

[−1,1], g(x?) ≤ g(x) (6.25)

with:
x? The most suitable individual formed by 5n + 5 parameters.

Its is searched in a discrete subspace of IR|5n+5
[−1,1]

g(x) The objective function to minimize, defined as the integral
of the kinematic error of the controller over the time of the
mission.

As seen in the previous equation, the number of parameters forming
an individual can change. Each propeller has 5 parameters : 3 position
coordinates(xpi, ypi, zpi) and 2 orientations (θpi, ψpi), all of these defined with
regard to the robot frame. Given that in the general optimization problem
we want to find not only the best position and orientation for the thrusters
but also an adequate propulsive topology, the number of thrusters, n, is a
variable.

Since the robot has only one main controller, we have 5 parameters to
optimize. The parameters of the controller are: 2 gains (for the kinematic
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and dynamic control layers) and 3 position coordinates (xe, ye, ze), for the
position of the tracking point e.

6.3.4 Evaluation

Once the optimization problem and the design parameters have been defined,
we need to establish how the genetic algorithm will determine whether an
individual is fitted or not. This is done through an evaluation phase, in which
the performance of an individual is determined by an objective function. The
result of the objective function will be then scaled to obtain a fitness function,
that will be used by the selection operator of the genetic algorithm.

The evaluation phase is done typically using a dynamic simulation of the
real system using a numerical model. This cost effective method allows a
great quantity of evaluations in a relatively short period of time. Addition-
ally, it allows to evaluate solutions that might be harmful for the robot in the
real world. This type of evaluation method has, however, a very important
draw back: the reality gap, an issue by which the solutions found using the
GA are not efficiently transfered to the real system [184]. This reality gap is
often created by inaccuracies in the model, which the GA can use to obtain
cheated higher fitness.

In the literature we find several attempts to cross the reality gap, here we
name a few:

6.3.4.1 Simulation based

Since one of the main reasons of the existence of the reality gap are the in-
accuracies of the simulations, a straightforward way of solving this problem
would be creating more precise simulations. However, the more accurate the
simulation is, the more computation-intensive it gets, which increases the
time needed to find proper solutions. Additionally, model accuracy improve-
ment has a limit, specially for systems involving fluid dynamics.

Other simulation-based methods propose to prioritize the evolution of
solutions presenting a robust behavior. This can be done by means of a
reduced simulation taking into account only the meaningful phenomena and
dismissing the complex behavior of the real system [185]. As a consequence
of this, the genetic algorithm is not able to exploit the inaccuracies of the
system, since they are hidden. Robustness is also obtained by evaluating
solutions on different simulation environments and initial conditions [186] or
by using adaptive mechanisms, such as neural network controllers [187].

However, despite the drawbacks linked to the inaccuracies, the used mod-
els generally describe the studied system in a proper way. Most models
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contain both accurate and inaccurate parts, the task of the GA user is to
interpret whether the outcome of these models is appropriate or not.

In our application of genetic algorithms, we will use simulation as a eval-
uation mean. Our simulator EAUVIVE, far from being perfect (lacking of
fluid dynamics and experimental validation of added mass terms), offers an
acceptable degree of accuracy considering our goal: finding clues that could
aid to the design of underwater robots.

6.3.4.2 Reality based

Needless to say, the simplest way of avoiding the reality gap problem is not
having it. The reality-based approaches are based on this premise, as they
consist on using the real system to evaluate the solutions. Evidently, a direct
application of this approach is very time consuming since each evaluation is
done in real time on the robot [187–189].

Other methods based on this approach have been tested. Namely a two
step method, in which simulation is used first to determine a set of well-fitted
solutions and then the evolution is completed on the real system [190,191].

Since these approaches are based on the use of simulation to narrow down
the research, they are subject to the same considerations of the simulation-
based methods.

6.3.4.3 Robot-in-the-loop based

This approach also uses a co-evolutionary process, in which the algorithm
evolves both the simulator and the controllers. Using this method, observed
real data has to be correctly described by the simulator, then the best con-
troller used on these simulators is implanted on the real system. This gen-
erates a new set of observed real data, which is what the simulator will try
to describe on the next iteration [192, 193]. Similar methods [194] based on
co-evolution try to reduce the fitness variation between the simulation and
the reality.

These methods are based under the assumption that a simulator can
be sufficiently improved to allow a perfect transfer between simulation and
reality.

Other methods based on the robot-in-the-loop approach use a transfer-
ability function [184]. This method, based on fixed non-evolving simulations,
makes the evolution aware of the limits of the model. It uses transferability
measures that compares the simulated behavior with the real one and cal-
culate its closeness. The transferability measures, as they are not possible
to calculate explicitly for the complete research space, is interpolated from a
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few selected solutions. With this method the fitness and the transferability
objective are optimized.

6.4 Global optimization of underwater robots

In this section, the results of the application of the genetic algorithm to the
underwater robot optimization problem are given. The results are ordered
increasing the complexity of the problem. This allows us to better understand
the complexity of the algorithm itself and to learn from the intermediate
solutions we find.

6.4.1 Separate optimization of sub-problems

Before applying the genetic algorithm to the general optimization problem
(find the underwater robot parameters that minimize the controller error),
we will use it to solve a series of sub-problems. This will teach us important
lessons about the design parameters relative importance in the design of
the robot and about the configuration of the genetic algorithm (number of
individuals, generations, encoding, etc).

For these sub-problems, the RSM robot will follow a straightforward task:
a circle. The circle (in meters) is defined as follows:





x = 15 + 2 cos(vcircle · t)
y = 15 + 2 cos(vcircle · t)
z = 3

(6.26)

with vcircle = 0.3m/s a constant speed used to calculate, using the time
t, the turning ratio.

The controller of the robot will be asked to control the position in space
of the tracking point (xe, ye, ze) and to keep the roll angle φ = 0.

The fitness calculation for the sub-problems studied here will be done
using the following equation:

F (x) =
100

1 + g(x)
(6.27)

Where g(x) is the objective function calculated as the addition of the
normalized integral of the kinematic error ekin (position) and the normalized
energy consumption :

g(x) =

∫ t
0
ek dt

Ne kin

+

∫ t
0
P dt

Nenerg

(6.28)
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with Nekin and Nenerg the normalizing factors corresponding to the kine-
matic error integral and the energy consumption, respectively. The first
factor is calculated as the integral of the kinematic error for a static robot
(not using at all its thrusters), its numerical value is 19ms. The second
factor is the energy consumed by the robot when all the four thrusters are
saturated for the duration of the task, the numeric value is 4728 J .

For each subproblem, a predefined configuration of the RSM robot will
be taken. The evolution will only act on one parameter concerned by the
subproblem, leaving the rest with the standard configuration. Said standard
configuration is shown in table 6.3 and it has a calculated fitness of 15.66.

Table 6.3: Standard configuration for the RSM robot.
Parameter Symbol Numerical value

Kinematic controller gain Λ 1.0
Dynamic controller gain Kp 1.0

Point e position re [0.3, 0.0, 0.1]T

Number of thrusters n 4
Thruster 1 position P1 P1x = −0.3, P1y = −0.1, P1z = 0.0

Thruster 1 orientation O1 θ1 = 0.0, ψ1 = 0.0
Thruster 2 position P2 P2x = −0.3, P2y = 0.1, P2z = 0.0

Thruster 2 orientation O2 θ2 = 0.0, ψ2 = 0.0
Thruster 3 position P3 P3x = 0.0, P3y = −0.1, P3z = 0.0

Thruster 3 orientation O3 θ3 = −π/2, ψ3 = 0.0
Thruster 4 position P4 P4x = 0.0, P4y = 0.1, P4z = 0.0

Thruster 4 orientation O4 θ4 = −π/2, ψ4 = 0.0

6.4.1.1 Optimization of control gains

The first sub-problem to address concerns the definition of the most suited
controller gains. In this case, x will contain only the elements of G̃ =
(Λ, Kp) ∈ [0, 63.75].

Given the reduced nature of the problem, the GA optimization parame-
ters need to be adapted. Taking into account the given procedure to select
these parameters (Section 6.2.3), we obtain the values of Table 6.4

The population size parameter, as for the crossover and mutation oper-
ator, depends on the application. Unlike the Rastringin example, here Fe
gives little information due to the fact that it corresponds to the numerical
precision of the computer. In the literature we find several propositions for
the population size, however a general rule for its determination is not avail-
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Table 6.4: Evolutionary parameters for control only sub-problem.
Parameter Symbol Numerical value

Population size µ 20
Number of generations g 35
Number of parameters np 2
Number of coding bits k 8

Size of genotype sgen 2 ∗ 8 = 16
Crossover probability pc 0.5
Mutation probability pm 31.25× 10−3

able. In our work, the determination of µ, the size of the population, is based
on trial and error.

Results The evolution of the best and average fitness is given in Fig. 6.8,
it shows the rapid increase of the maximal fitness from a fairly good value
found in the first generation (lucky start). The size of the population was
sufficiently large to provide a good dispersion of individuals over the re-
searchable space E. We can see as well how in the end of the evolution the
fitness reached 21.60, which is 2.5 times bigger than the fitness for the stan-
dard RSM Robot. This puts in evidence the ability of the genetic algorithm
to find suitable solutions for underwater robots controller design by use of
dynamic simulation.

The average fitness follows the maximum fitness curve. The average fit-
ness presents some variations due to the mutation operator, which creates
unpredictably individuals of assorted fitness levels (the search is still at work
till the end).

Figure 6.9 shows the searched parameters of the best individual for each
generation. In the first generations, the algorithm finds the fittest individuals
when it increases the value of the kinematic gains up to 3.5. Afterwards, it
finds even fitter individuals decreasing the value of Λ. Finally, it finds a set
of values (Λ = 1.5 and Kp = 0.25) that generates an individual with a fitness
unbeatable by the rest of the individuals of the evolution. For clarity, the
best individual found by this optimization is given in Table 6.5.

Table 6.5: Controller configuration parameters for the evolution best indi-
vidual

Parameter Symbol Numerical value
Kinematic gain λ 1.506
Dynamic gain Kp 0.25



6.4. Global optimization of underwater robots 158

0 5 10 15 20 25 30 350

5

10

15

20

Generation

F
it
n
es
s

Best Fitness
Average fitness

21.6

12.73

Figure 6.8: Maximum and average fitness of population for the optimized
controller research.

We can observe how the value of the dynamic gain Kp for the best found
individual is small, making the dynamic control loop less sensitive to the error
in the desired robot velocity νad. This can be explained by the fact that the
dynamic controller ignores the dynamic of the thrusters. In consequence, it
calculates a vector of forces ~up that, later on, is not generated instantly by
the thrusters. The delay in the establishment of the forces, introduced by
the thrusters dynamics, leads to an overshoot of the dynamic controller.

Evidently, in order to fight this overshoot, the controller must create a
control force ~up of opposite direction, which in turn, overshoots again around
the desired robot velocity. The solution found by the genetic algorithm is to
give to the controller a less sensitive Kp, which masks the delay created by the
thrusters dynamics and reduces the overshoot. A smaller overshoot reduces
the error in position and reduces the energy consumption on the thrusters
(less acceleration/deceleration cycles), which explains the good fitness of this
individual.

In this sub-problem we see how the GA is capable of adapting to a de-
fect in the controller model. The thrusters dynamic, not modeled in the
controller, is seen as a perturbation by the GA. In order to reject this per-
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Figure 6.9: Evolution of parameters of the best individual of each generation.

turbation, the algorithm adapts the solution, making it less susceptible to
this effect.

6.4.1.2 Optimization of point e position

In this separate subproblem optimization, the same circle task (Eq. 6.26)
with the standard RSM robot (Table 6.3) will be used to optimize the position
of the tracking point e.

Even if the position of the e point can have an impact in the calculation
of the fitness function, its position is often fixed by the type of tasks we are
trying to accomplish. For instance, in the case of a mission in which the
robot must use a video camera to record, we would put the point e on the
camera, in order to control and stabilize its position. However, as long as
the point e is a virtual one, it could be used to improve the convergence of
the robot to the desired task. In particular, it could be useful to help the
robot to converge faster to a new trajectory after finishing a previous one.
Indeed, changing the position of the point e, we can induce the robot to take
different paths between trajectories. The dynamic positioning of the point e
would be, in that case, a trajectory planning problem that is not addressed
in this work.
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Given that the point e can play different roles (it can be positioned arbi-
trarily for a specific task or used as a mean for the convergence). The goal of
the evolution of this point can be defined differently depending on the case.
Here, even if the position of the point e is evolved in order to minimize the
kinematic error, the underlying goal of this optimization is to learn about
our system. The configuration of this evolutions is given in Table 6.6.

Table 6.6: Evolutionary parameters for e position sub-problem.
Parameter Symbol Numerical value

Population size µ 20
Number of generations g 30
Number of parameters np 3 (xe, ye, ze)
Number of coding bits k 5

Size of genotype sgen 3 ∗ 5 = 15
Crossover probability pc 0.5
Mutation probability pm 32× 10−3

In figure 6.10 we can see the evolution of the maximum and average fitness
curves. The final robot is about 1.25 times fitter than the standard version of
the RSM Robot. This shows the effect of the positioning of this point in the
performance of the robot. The increment of the performance thanks to the
change in the point e position is, however, less important than the increase
of performance thanks to the choice of the controller gains.

The evolution of the coordinates of e, xe,ye and ze, are shown in figure
6.11. For the last generation, which contains the best configuration found
throughout the evolution, the coordinates of e are the following:

re = [0.1548, 0.0194, 0.1]T (6.29)

The point e is placed halfway forward and slightly on the right (Fig. 6.12).
The forwardly position can be explained in terms of stability. Indeed, a point
placed further on the xb axis would be affected by stronger lateral forces
(along yb axis) created by the horizontal thrusters action. The controller,
not being aware of the thruster dynamics, must control the position of the
point e correcting the overshoot created by the dynamic behavior of these
actuators. The overshoot increases with the distance along xb of the point
re. Conversely, the closer the point e is to the origin of Rb, the larger is
the thrust necessary to control it (shorter lever arm). The halfway forward
positioning is then a trade-off between these two effects.

The small offset along yb could be explained by the fact that the circle
does not change of direction. Given that to follow the circle the robot must
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Figure 6.10: Maximum and average fitness of population for the optimized
position of the point e.
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Figure 6.12: Position of e on the robot.

always turn to the same direction, the point e found by the GA leans closer
to the circle. Evidently, for a task with a change on the direction of the
circle, this bias would disappear.

The position of the point e along the zb axis can be explained similarly
to the position along the xb axis: in order to control the point, the vertical
thrusters benefit from a lever arm, allowing them to perform small corrections
on ve (as explained in section 5.2.2). It decreases the power consumption since
less forces are necessary to create the movement. Evidently, as discussed
before, a great lever arm can be counter-productive, but the small diameter
of the robot (0.1 m) prevents this to happen.

6.4.1.3 Optimization of thrusters position

For this separate optimization, the parameters of the standard RSM robot
will be taken and only the position of its four thrusters will be optimized.
This means that x will be composed only of the elements of P̃ = (x̃pi, ỹpi, z̃pi) ∈
IR3

[−1,1].

The parameters of the evolution have been recalculated and are displayed
on Table 6.7. Here, the population has been increased to account for the in-
crease of the number of parameters to find (3 coordinate values per thruster).
Again, this value has been selected based on trial and error.
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Table 6.7: Evolutionary parameters for thruster position sub-problem.
Parameter Symbol Numerical value

Population size µ 40
Number of generations g 120
Number of parameters np 4 ∗ 3 = 12 (Pix, Piy, Piz)
Number of coding bits k 5

Size of genotype sgen 4 ∗ 3 ∗ 5 = 60
Crossover probability pc 0.5
Mutation probability pm 8.35× 10−3

Results In figure 6.13 we can see how the sole optimization of the thrusters
position increases the fitness of the robot. The final fitness is 1.27 times bigger
than the fitness of the standard robot, however, best final fitness is not as
high as the one found with the optimization of the controller gains. The
figure also shows how, out of luck, the algorithm found an individual with a
fitness of 11.5 within the first generation. We observe as well how the curves
rapidly stabilize, which means that the optimization was very efficient and
the number of generation too large. For its part, the gap between the best
and average fitness curves shows that we have a good research in terms of
exploration/utilization of the individuals information.

Figure 6.14 shows the position of the thruster for the best fitted individual
found by the AG. Next to each truster we can see a curve showing the “way”
followed by the thruster before finding its last position. As we can see, most
of the thrusters had to endure several changes of position throughout the
optimization, specially along the xb axis.

Since the rest of the parameters are the same as the standard RSM robot,
the AG had to find a suitable solution for the tracking point instability caused
by the unoptimized parameters of the controller. The solution found by the
algorithm was to place three thrusters next to the tracking point.

The forces generated by three thrusters placed in the front of the robot
are more effective controlling the tracking point. In part, this is due to the
fact that they are now closer to e, which reduces the effect of the overshoot
created by the controller-ignored dynamics of the thrusters. Additionally,
the position of the thrusters provide a lever arm from which the controller
benefits, controlling e with reduced power consumption (larger forces). A
last thruster is placed in the rear of the robot, it enhances the stability of
the robot throughout the mission thanks to its pitch action.
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Figure 6.13: Evolution of the position of the thrusters of the RSM robot.
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Figure 6.14: Position of thrusters on the robot.
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6.4.1.4 Fixed thrusters orientation

In this separate optimization, the GA will only be able to modify the orienta-
tion (θi and ψi) of each thruster. It will keep the rest of the parameters of the
standard RSM robot, in order to follow the circle trajectory. Mathematically,
the genotype x will be composed only by elements of Õi = (θ̃i, ψ̃i) ∈ IR2

[−1,1].
The parameters of the evolution are given in Table 6.8. For this optimiza-
tion, the size of the population is still 40 but the number of generations
has been increased. The increase was motivated by improvements on the
fitness value occurring even in the last generations of the evolution (on trial
optimizations).

Table 6.8: Evolutionary parameters for thruster orientation sub-problem.
Parameter Symbol Numerical value

Population size µ 40
Number of generations g 160
Number of parameters np 4 ∗ 2 = 8 (θi, ψi)
Number of coding bits k 7

Size of genotype sgen 4 ∗ 2 ∗ 7 = 56
Crossover probability pc 0.5
Mutation probability pm 8.93× 10−3

The average and best fitness for each generation are shown in Figure 6.15.
As in the previous optimization, during the first generation the algorithm
already found a good fitness (10). Then it rapidly improved the fitness of the
best individual until it reaches 20, after that point the performance increase
was slower. We can see how the end fitness is about 1.28 times bigger than
the standard RSM robot. Considering that this fitness is achieved only by
changing the orientation of the thrusters. We can conclude that, for a given
task, using a canonical orientation of the thrusters (i.e. along the axis of the
robot) can be detrimental for the performance of the underwater robot.

In figure 6.16 we can see the thrusters orientation for the best fitted indi-
vidual found by the AG. Next to each thruster we can see the evolution of the
orientations throughout the generations. In order to find the most suitable
individual, the algorithm has spend the first 20 generations intensely chang-
ing the configuration of the best individual, increasing greatly the fitness in
each iteration. After that point, the fitness improvements were due to small
changes applied to the configuration found previously.

For this optimization, explaining the final individuals is a harder task.
The thrusters have to improve the control over the point e and reduce the
power consumption only by changing their orientation. We can see in figure
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Figure 6.15: Best and average fitness for the optimization of RSM robot
thrusters orientation.

6.16 that the rear thrusters have opposed orientations around the xb axis.
When the robot turns, this configuration will add up the components on yb of
these thrusters force (forces on opposite directions). The same components
on yb will be canceled out when the robot performs a surge movement. The
end result is an additional component of force on the yb axis during the
mission. The orientation of the fourth thruster (almost perpendicular to
the body) suggest that its main purpose is to create a force along the yb
axis. This thruster will compensate the forces on yb created by the rear
thrusters arrangement, improving the control of the point e over the yb axis.
Lastly, thruster number three will compensate the moment over the xb axis
introduced by the other thrusters and will generate the necessary forces to
keep the robot at the desired depth.

6.4.2 Global vs. sequential optimization

Clearly, for a given mission, the optimization of the underwater robot should
be applied to all of the design parameters and not individually. What needs
to be determined is the way of doing it, given that we can identify two
approaches. The first is to optimize groups of parameters sequentially, i.e.
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Figure 6.16: Orientation of thrusters on the RSM robot.

using the best parameters found in a previous optimization to configure the
optimization of the next set of parameters. This allows us to incrementally
generate better individuals at the end of each sequential evolution.

The second alternative is to perform the evolution globally (i.e. simul-
taneously). Using this method, all the parameters are evolved at the same
time. Given that the research space is larger than in the sequential opti-
mization, a greater number of individuals per generation must be used in
order to obtain a good distribution over M . This will lead to a harder and
longer optimization, but with the guarantee to have a genuinely global search
(avoiding local minima)

6.4.2.1 Sequential optimization

The first tried approach will be the sequential optimization. For this method
we will will rely on previous optimizations analyses. Consequently, we begin
by the optimization of thrusters position. After that, with the found posi-
tions, we will optimize the orientation of the thrusters. Finally, for the given
propulsion topology, we will optimize the control gains and tracking point
position. The configuration parameters of the evolutions are given in Table
6.9.

Figure 6.17 shows the fitness evolution of the three sequential optimiza-
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Table 6.9: Evolutionary parameters for sequential optimization.

Position

Parameter Symbol Num. value
Population size µ 40

Number of generations g 120
Number of parameters np 12
Number of coding bits k 5

Size of genotype sgen 60
Crossover probability pc 0.5
Mutation probability pm 8.35× 10−3

Orientation

Crossover probability pc 0.5
Population size µ 40

Number of generations g 160
Number of parameters np 8
Number of coding bits k 7

Size of genotype sgen 56
Crossover probability pc 0.5
Mutation probability pm 8.93× 10−3

Controller

Crossover probability pc 0.5
Population size µ 40

Number of generations g 65
Number of parameters np 5

Number of coding bits (gains) kgains 8
Number of coding bits (e) ke 5

Size of genotype sgen 31
Crossover probability pc 0.5
Mutation probability pm 16.1× 10−3

tions. The first plot, the one of the thrusters position optimization, corre-
sponds to the one already discussed in section 6.13. The central plot, shows
the evolution of the orientation of the thrusters using the optimized positions
found in the first evolution. The last plot shows the evolution of the control
parameters (controller gains and tracking point position). This last evolution
has been done using the found thrusters positions and orientation. Looking
at these curves we can note how the standard configuration of the RSM robot,
albeit effective, is not at all optimized for the task we are trying to perform.
It is clear that by following canonical design procedures, depending on the
task, we could be wasting most of the potential of the robot.

Figure 6.18 shows the simulation of the found propulsive solution while
it performs the desired task. Additionally we can see the evolution of the
kinematic error ekin, which slowly converges towards the trajectory.
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Figure 6.17: Optimization of the RSM robot parameters using sequential
evolution.
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Figure 6.18: EAUVIVE simulation and error evolution for circle task (se-
quential optimization).

The resulting robot can be seen on figure 6.19. After accepting the curious
arrangement of the solution found by the AG, we can see how the solution
partly neglects the surge movement. Indeed, we see how only thruster one is
in charge or driving the robot forward while thruster three is there only to
provide yaw. Thruster two generates a component of force along xb but its
main action is to generate heave and roll motions along with thruster four.

The controller parameters have also changed, the gains of the controller
are Λ = 1.5 and Kp = 1.0. The controller can be more demanding in its
reactions, it can allow itself to react rapidly to errors. This is due to the
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Figure 6.19: Resulting robot for the sequential optimization.
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improved stability brought by the point e, since the position and orientation
of the thrusters have been optimized to reduce the overshoot generated by
thrusters dynamics.

Point e presents an interesting location as well, by positioning itself on
the lower left edge of the robot it can benefit by the improved stability of that
position (closer to the thrusters). Additionally, that point is somehow aligned
with the direction of the force created by thruster one, which generates a
surge motion on e.

Figure 6.20 shows the forces on the thruster and the total consumed
propulsive power throughout the task. As we can see the thrusters one and
two (horizontal) are the ones doing most of the work driving the robot for-
ward, the other two thrusters are only in charge of stabilizing the robot. The
consumed power shows a peak in the first instants of the simulation, which
is caused by the controller suddenly asking the thrusters to give maximum
force in order to accelerate toward the task. The high value of the peak is due
to the integration step of the simulation, which is adapted to the dynamics
of the AUV rather than the dynamics of the thrusters (faster). The high
peak is present only in one step of the simulation (10ms) and does not affect
significantly the integration of the consumed power (i.e. energy). After the
peak, the power decreases rapidly until it stabilizes when the robot reaches
the proximity of the desired trajectory.
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Figure 6.20: Forces and power consumption during the circle mission (se-
quential opt.).

6.4.2.2 Global optimization

The second approach to evolve the design parameters of the robots is the
global one. The evolution will optimize all the parameters at the same time:
for each one of the four thrusters it will search the optimal position and ori-
entation and it will, at the same time, look for the best controller gains and
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tracking point position. In order to keep the comparison between the two
methods fair, we chose to give the same number of evaluations to both ap-
proaches (to assign the same CPU and time resources). Taking into account
this, we have configured the evolution as shown in Table 6.10.

Table 6.10: Evolutionary parameters for global optimization.
Parameter Symbol Numerical value

Population size µ 60
Number of generations g 230
Number of parameters np 25

Number of coding bits (thrust. or.) kpos 5
Number of coding bits (thrust. pos.) kor 7

Number of coding bits (gains) kgains 8
Number of coding bits (e. pos.) ke 5

Size of genotype sgen 147
Crossover probability pc 0.5
Mutation probability pm 3.4× 10−3

The fitness evolution can be seen in figure 6.21, from which we can ob-
serve two interesting characteristics. The first one concerns the final value
of the maximum fitness, which is higher than with the sequential approach.
The second is the speed of the fitness curve. Indeed, given that the algo-
rithm is able to evolve all the parameters at the same time, it is capable of
finding better individuals faster than the previous approach, making the re-
search process more efficient. These two points make the global evolutionary
research objectively better and preferable than the sequential evolution.

The simulation and kinematic error eking are given in figure 6.22.
The end result of the evolution is shown in figure 6.23. The first that

we notice when we see the robot is its resemblance with the resulting robot
of the sequential evolution. We see how the thrusters have tendency to
gather around the tracking point e. As discussed before, this masks the
thrusters dynamic effects while providing enough lever arm to easily control
the position of e.

If we analyze the positions and orientations of the four thrusters, we
can see that their contributions to the robot wrench are strongly coupled.
Thrusters one, two and three are mainly in charge of yaw and surge gen-
eration, they have also influence in the generation of roll due to their ψ
angles (components of force along yb). Thruster number one, being so close
to the center of the robot, generates mostly roll and forces along yb and xb.
Thruster four, for its part, is the only one with a strong vertical orientation,
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Figure 6.21: Fitness evolution for the global optimization of the RSM robot.
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Figure 6.22: EAUVIVE simulation and kinematic error evolution for circle
task (global opt.).

this is the thruster taking in charge the depth control of the vehicle. The
point e has been placed in front, over the lower left corner of the vehicle, a
similar position that the one found with the sequential method. Finally, the
controller gains have been modified as well, now the kinematic gain is higher
(Λ = 2.76), allowing the kinematic controller to be more demanding thanks
to improved propulsion. However, the value of the dynamic gain remains
rather low (Kp = 0.75), in order to mitigate the unknown (for the dynamic
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Figure 6.23: Final configuration of the RSM robot after global optimization.

controller) effects of the thruster dynamics.

Figure 6.24 shows thrusters force and the total propulsive power con-
sumption of the robot. We can see how thrusters one and three are the most
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used thrusters thanks to their ability to generate surge and yaw. The other
two thrusters are in charge of stabilizing the robot and controlling its depth,
judging by their produced force, these actions are not demanding. As for the
sequential optimization, the total propulsive power peaks in the first step
of simulation and then decreases until it stabilizes when the robot is in the
vicinity of the desired trajectory.
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Figure 6.24: Forces and power consumption during the circle mission (global
opt.).

6.4.3 Topology optimization

Comparing the results of the sequential and global optimization approaches
we can see that the former is outperformed by the latter. Global optimization
not only found a better solution (fitness 35 vs 32.5) but also matched the
fitness of the sequential method in a third of the generations. Taking into
account these two facts, it seems clear that the global approach should be
used to carry on the next stage in our study.

In this stage of the optimization of underwater robots design, we will ad-
dress the problem of determining the complete topology of the underwater
vehicle in order to perform a given complete robotic mission. The opti-
mization of the number of thrusters (up to twelve thrusters), position and
orientation as well as the controller design parameters will be undertaken.

Unlike the previous mission, in which we asked the robot to follow a circle,
we will now use a mission with a more realistic goal. The mission in question
will be the inspection of a marine current turbine. The reason to chose such a
mission is based on the fact that these devices, in addition to their installation
costs, are very expensive in terms of maintenance. These turbines, as with
any other structure installed in the sea, are exposed to aggressive degradation
factors such as corrosion and biofouling (among others). In order to verify
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the turbine condition, a team of divers check for signs of deterioration, which
increases the effort and cost of maintenance. Based on the current trends for
this type of operation, the use of underwater robots seems appropriate and
inevitable.

Evidently, given the complexity of a mission of these characteristics, a
good autonomy is needed. As discussed before, autonomy comes as a com-
promise between energy consumption and trajectory control.

The water turbine inspection mission (Fig. 6.25) can be divided in three
phases:

� Scanning of the seabed for the turbine: After activating this
phase, the robot follows a survey trajectory in order to find the position
of the water turbine by scanning the seabed. The underwater vehicle
can use multi-beam sonar information to scan the seabed, from near
surface depth, until it detects the wanted target.

� Diving toward the turbine: Once the robot has found its target, it
starts a diving phase. In this phase the robot will try to approach (but
not too close) the turbine as fast as possible, trying to minimize the
energy consumption at the same time.

� Tomography (inspection) of the water turbine: When the robot
reaches its target, it starts the inspection of the energy generator. This
phase is usually executed using a camera to record images of the turbine
from all azimuths. In order to correctly capture images, the robot needs
to encircle the device ensuring that it keep a constant distance from
the target and its xb axis always points the center of the circle.

We will apply our optimization algorithm to each one of these three phases
in order to determine a suitable topology and controller.

For the following optimizations, we will calculate the fitness using a topol-
ogy factor, Kt:

F (x) =
100

1 + g(x)/Kt

(6.30)

This factor accounts for the number of thrusters in the topology, and can
be calculated as follows:

{
Kt = 1 for Nt ≤ 3
Kt = 1.2252− 0.0813Nt for Nt > 3

(6.31)

with Nt the number of thrusters in the topology. Assuming that in order
to follow a trajectory in the space we need at least three actuators, we have
decided to penalize the inclusion of thrusters only beyond the third one.



6.4. Global optimization of underwater robots 177

0
1

2
3

4

0

1

2

1

1.5

2

2.5

Seabed scan

Diving
toward turbine

Turbine
inspection

Turbine

x
y

z

Figure 6.25: Trajectory for water turbine inspection.

The evolution parameters for the three phases described here are shown
in Table 6.11

Table 6.11: Evolutionary parameters for topology research.
Parameter Symbol Numerical value

Population size µ 50
Number of generations g max 600
Number of parameters np 77

Number of coding bits (thrust. or.) kpos 5
Number of coding bits (thrust. pos.) kor 7

Number of coding bits (gains) kgains 8
Number of coding bits (e. pos.) ke 5

Size of genotype sgen 391
Crossover probability pc 0.5
Mutation probability pm 1.27× 10−3

Given that for these tasks the position of e is desirable to be in the front
of the vehicle and along the xb axis (it corresponds to the positioning of the
eventual instruments and the advance direction), the position of this tracking
point will be limited to the positive section of xb.
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6.4.3.1 Optimization for scanning of the seabed

In this part of the inspection mission, the robot goes from idle (or from a
different mission) to scanning the seabed in order to find the water turbine.

The scan phase, also called survey mission, consists on exhaustively sweep-
ing an area until the robot is capable of determining were the target is located.
To perform such a task, the robot needs to control its position in space (surge,
sway and heave). In addition, the detection process could benefit from a sta-
bilized roll motion, so this degree of freedom will be also required (although
not included in the fitness calculation). Finally, since this task usually in-
volves going across great distances, the robot must consume the least amount
of energy possible.

Figure 6.26 shows the fitness evolution. We can see how, unlike the pre-
vious optimizations, the algorithm takes longer to converge. The ascension
phase of the curve is fast in the beginning but it decelerates rapidly as well.
After one hundred generations the genetic algorithm keeps looking for suit-
able solutions but with a small pay-off per generation, however, this small
increments add up and represent around 10% of the total fitness. This be-
havior is expected since the genetic algorithm is trying to evolve far more
complex individuals than before.
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Figure 6.26: Global optimization fitness for seabed scanning phase.

A snapshot of the simulation and the curve describing the position error
are shown in figure 6.27. We can observe how despite the difficulty of the
task, the robot maintains an error inferior to 10cm throughout the task.

The solution to the optimization problem found by the algorithm is shown
in Fig. 6.28. In order to perform this mission, the robot actuates four degrees
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Figure 6.27: EAUVIVE simulation and kinematic error evolution for seabed
scanning.

of freedom in Rb: surge, heave, roll and yaw using only 3 thrusters (actuating
space is 3-DOF). From the figure, we can observe the contribution of the three
thrusters to the actuated space.

In order to correctly perform this task, the robot must be agile in the
x − y plane. The topology achieves this using thrusters two and three to
produce surge and yaw, with these two thrust axes it can advance and correct
some light lateral deviations. Given that the main movement of the robot is
defined as a forward motion (along xb) with eventual turning motions, these
two thrusters are enough to control the robot in x and y. Thruster one also
contains a component of its force in the horizontal plane, which is used to
increase the control on the lateral displacement.

The task requires as well a control over the depth of the vehicle. This is
why all three thrusters have components over zb. Given the small buoyancy
of the vehicle (0.5% of the weight), a small control effort is needed to keep the
robot at a certain depth. Said control effort is created by a linear combination
of the vertical components of the thrusters. The vertical components of
thrusters three and two are also used to correct the roll motion. This degree
of freedom is mechanically stabilized thanks to the position of the center of
gravity and buoyancy, reducing the need of a intensive control effort.

In what concerns the controller solution, the point e is located on the front
of the robot, since advancing is the predominant motion of the mission. The
distance to the thrusters gives a chance to control the tracking point thanks
to the lever arm, which is long enough to favor control and to reduce the
overshoot. The values of the gains are Λ = 4.01 and Kp = 0.75, the intricate
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Figure 6.28: Final propulsion system for seabed scanning robot.

layout of the trajectory demands a tight kinematic control but, conversely, a
slow cancellation of the dynamic effects (acceleration) caused by the change
of direction.
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The evolution of forces and propulsive power consumption are given in
figure 6.29. Given that the robot has only three thrusters, all of them par-
ticipate actively in the control of the vehicle. This is specially clear during
the turning phases of the task (t = 2 and t = 9). Indeed, in order to comply
with the change in the trajectory, the robot uses all its available means. De-
spite the active use of the thrusters we can see how the controller manages
to follow the desired trajectory with small thrust forces.
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Figure 6.29: Forces and power consumption during the seabed scanning task.

6.4.3.2 Optimization for diving toward water turbine

After finding the location of the water turbine, the robot needs to reach it
to start the inspection. To do so, it will start a diving phase, in which the
main goal is to get closer to the target (at a given relative position, let say
1m before it).

The diving task consists simply on following a descending straight line.
All the resources of the robot are devoted to correctly follow this trajectory.
The task relies on the control of three degrees of freedom: surge, sway and
heave. Knowing that the drag forces are greater while diving horizontally, we
will also ask the controller to keep a pitch angle equal to the diving angle,
since this could improve the overall performance of the robot. However, since
we want to give the GA the liberty of choosing the diving method, this factor
will be controlled but not included in the performance and fitness calcula-
tion. Lastly, the power consumption will also be included in the performance
calculation.

In Fig. 6.30 we can see the evolution of fitness along the generations.
As in the previous phase, the fitness convergence takes longer, around 100
generations to begin to stabilize. After that point, the increments are even
smaller per generation, giving place to a long plateaus.
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Figure 6.30: Diving phase global fitness evolution.

Figure 6.31 shows the simulation of the task and the evolution of the
kinematic error. In this figure we see how the robot follows the trajectory
diving horizontally (not using pitch). Indeed, the GA found that with this
diving strategy it can maintain a kinematic error inferior to 10cm.
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Figure 6.31: EAUVIVE simulation and kinematic error evolution for diving
phase.

The found topology is shown in Fig. 6.32 where we can see how the
thrusters are located in the front and center of the robot.
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Figure 6.32: Final configuration for diving phase after global optimization.

Given that the success of the mission depends on following the position
of the straight line, the genetic algorithm only care about the x, y and z
position. The found solution is one that neglects the creation of pitch. Even
if a pitch angle dive reduces the hydrodynamic forces over the robot, the
control found by the algorithm still manages to follow the trajectory with a
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reduced power consumption.

Based on the geometry of the tasks, the two most important degrees of
freedom to control are surge and heave. We can see how the first degree of
freedom is controlled mainly by thruster three. Thruster two can generate a
component of force on xb but its main contribution is the correction over yb
thanks to the generation of yaw.

Finally, thruster number one is only there to control heave. Its position
creates a small moment arm to generate roll, but its vertical orientation
shows that its main contribution to the topology is the control over the
vertical displacement.

The e point is placed in the front of the robot, showing the preponderant
direction of motion. From this position it benefits of the yaw created by
thruster number two and three in the front. Lastly, the gain values are
Λ = 2.0 and Kp = 0.50, making the robot react rapidly to errors in position,
but loosely compensating the dynamic effects over the robot.

Figure 6.33 shows the thrusters force and the power consumed by the
propulsion system throughout the task. Not surprisingly, thruster one (ver-
tical) is the one generating most of the force. Thruster three produces the
forward motion and thruster two is in charge of lateral corrections, specially
in the beginning of the simulation, before the robot reaches the trajectory.
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Figure 6.33: Forces and power consumption during the diving task.

6.4.3.3 Optimization for tomography of water turbine

In the last stage of the mission, the robot arrives to the water turbine. At
this point it begins the phase of inspection of the energy generator. In order
to detect signs of deterioration, it needs to turn around the turbine making
sure that the camera is constantly pointing toward the center of the circle
(target position) and its distance from the target is constant.
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For this specific phase, not only the position of the robot is important, but
also its yaw orientation ψ. If the robot does not head toward the turbine, the
inspection could be unfruitful. This is why we have added a term related to
the yaw orientation of the robot in the fitness function. Now, the performance
of the robot will be calculated taking into account the position and yaw angle
error of the robot. Mathematically, it means that the objective function now
will add a term with the normalized integration of the yaw angle:

g(x) =

∫ t
0
ek dt

Ne kin

+

∫ t
0
eψ dt

Nψ

+

∫ t
0
P dt

Nenerg

(6.32)

Where eψ is the yaw error and Nψ the normalizing factor. This factor
is calculated as the integral of the yaw error for a static robot (starting
position).

Figure 6.34 shows the evolution of the fitness value. We can see that
despite the new added constraint (yaw angle error), the algorithm effectively
finds a suitable individual for this task. However, it is also true that this
time the ascending phase of the best fitness curve has been enlarged, with
smaller increments per generation.
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Figure 6.34: Fitness evolution for tomography phase.

Figure 6.35 shows the simulation of the task and the evolution of the
kinematic and yaw error. We can note the slow but steady convergence of
the position during the first stage of the simulation, which stabilizes with an
error inferior to 10cm. The yaw exhibits a faster convergence, and stabilizes
with an error inferior to 0.1 rad (0.57°).
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Figure 6.35: EAUVIVE simulation and kinematic error evolution for tomog-
raphy phase.

The found solution is shown in figure 6.36, after a brief inspection we can
observe that the topology is somehow not surprising. In order to perform this
mission, the degrees of freedom needed to control the position and orientation
of the e point are surge, sway, heave and yaw. From the figure we can see
how these four motions are created by the thrusters.

From the position and orientation of thrusters one, three and four we can
see that the motions to control are the lateral ones, sway and yaw. Indeed, all
of these three thrusters have a component of the force over yb, which allows
to create sway. Thrusters number three and four are also able to create yaw,
thanks to their moment arm.

Thruster number three also participates in the creation of surge, since
this degree of freedom only requires small corrections in this task, only a
component of the force over xb is enough to control it.

Thruster two is in charge mainly of creating heave, as with surge, the
necessary corrections are small which makes one thruster enough to control
it. This thruster also participates in the creation of surge.

The position of the point e confirms the importance of yaw in this phase
of the mission. Indeed, the fact that it is positioned close to the center, shows
how yaw motion is one of the dominant degrees of freedom of this task. The
closeness to the center of the coordinate frame is used by the controller to
create a pure yaw motion without spurious coupled thrusts.

Finally, the controller gains are Λ = 0.25 and Kp = 16.06, which makes
the robot to slowly converge to the desired trajectory but with a heavy
compensation of the dynamic effects (arisen by presence of yaw rotation).
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Figure 6.36: Final configuration for tomography task.

Figure 6.37 shows the propulsive forces and consumed power throughout
the task. The robot having a very exigent dynamic controller, demands full
force from the thrusters in the transient zone (before reaching the task), this
creates peaks in a similar way as in the beginning of the simulation. As
discussed before, these high peaks have a very short duration and have little
effect over the dynamic of the robot and the integration of the consumed
power. Given that the robot mostly uses surge and yaw in order to perform
this task, it is not surprising that thrusters number one and four are the
ones generating most of the force. Indeed, the actions of these thrust have
a direct impact in the concerned degreed of freedom (thruster one on sway
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and thruster four on yaw). The other two thrusters are in charge of small
corrections and therefore do not generate great forces.
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Figure 6.37: Forces and power consumption during the tomography task.

6.5 Dynamic configuration

The global optimization method allows us to obtain promising results in
terms of performance. We can find a suitable robot for a given task, which is
our main goal. However, giving the GA the complete liberty of searching the
best configuration for each single task could generate impractical solutions
(the same robot must perform several task in the same mission). Predicting
and optimizing all possible tasks appear to be impossible. The other op-
tion is to reconfigure dynamically the robot, which means it will change its
propulsion configuration during the mission, while it is under the sea.

Nowadays, propulsion technology is not capable of providing full reconfig-
uration capabilities. Reconfiguration of the orientation of the thrust seems to
be giving its first steps out of infancy as seen in section 3.1.3.2, but dynamic
(during mission) reconfiguration of the position of the thrusters has not yet
received interest.

Taking into account these restrictions, it seems interesting to test the al-
gorithm in a more realistic scenario. To do this, we will try to find suitable
solutions for the same inspection mission but without moving thrusters (po-
sitions are fixed) or changing their number (we keep RSM parameters, i.e.
4 fixed thrusters). Only the thrusters orientations and control parameters
will be optimized. This solution is realistic because it can be implemented
using vectorial thrusters such as the RMCT studied in section 4.2.3. We
will continue using the topology factor, in order to compare the fitness of
the dynamic configuration to the one of the global optimization. For these
optimizations the evolution parameters are shown in Table 6.12.
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Table 6.12: Evolutionary parameters for dynamic configuration.
Parameter Symbol Numerical value

Population size µ 40
Number of generations g max 500
Number of parameters np 25

Number of coding bits (thrust. or.) kpos 5
Number of coding bits (thrust. pos.) kor 7

Number of coding bits (gains) kgains 8
Number of coding bits (e. pos.) ke 5

Size of genotype sgen 147
Crossover probability pc 0.5
Mutation probability pm 5.74× 10−3

6.5.1 Seabed inspection

This time, the achievement of the optimization will be greatly limited since
the GA will only be able to change the orientation of the four thrusters and
the control parameters.

However, despite the constraints, the algorithms finds a solution compa-
rable in performance with the global one. The final fitness value is 35.52, as
seen in Fig. 6.38. This reduction could be due, evidently, to the fact that
less parameters can be changed, but also due to the fact that the number of
thrusters is set to four, changing the topology factor to 0.9.
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Figure 6.38: RSM robot fitness for seabed inspection (dynamic conf.).

Figure 6.39 shows the simulation and the evolution of the kinematic error.
The complexity of the tasks is observed in the evolution of the error. Indeed,
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we can see how, despite being small throughout the simulation, the error has
strong variations during the turning phases of the task.
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Figure 6.39: EAUVIVE simulation and kinematic error evolution for seabed
scanning phase (Dyn. conf.).

Figure 6.40 shows the configuration of the robot. We can see that thrusters
one, two and four are able to create yaw. Which is important to be able to
steer the vehicle during the turning phases. We see as well how surge is now
created by thrusters two and four. Even if they are on the same side, the
yaw perturbation gets compensated by the orientation of thruster two. Ad-
ditionally, thruster three gets to act over yb in order to strengthen the lateral
trajectory control.

All four thrusters have a component over zb, allowing them to intervene
in the control of heave and roll. The lack of dedicated thrusters in order to
fulfill this duty is due to the small control effort needed to correct these two
degrees of freedom for this robot.

The position of e is not surprising. The main movement of the robot is
to advance, so it is expected to be located in the front of the robot. Allowing
to profit from the moment arm from its position to the one of the thrusters.

As with the global controller gains, this time the GA has found a somehow
loose kinematic gain (Λ = 1) and a tighter control over the the dynamic
effects on the robot (Kp = 1.5).

Figure 6.41 shows that, as in the global optimization for this task, all
thrusters have a very active participation in the control of the vehicle. Indeed,
we can see how the thrust forces are constantly variating, specially during
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Figure 6.40: RSM robot for seabed inspection (dynamic conf.).

the turning phase, which creates a noticeable increment in the the consumed
power.
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Figure 6.41: Forces and power consumption during the seabed scanning phase
(dyn. conf.).

6.5.2 Diving toward water turbine

In this transition phase, the vehicle needs to dive preferably with a pitch
angle in order to reduce drag forces. This is a type of mission that the RSM
robot was not originally designed for. In the global optimization application
we have seen that the found configuration involved not controlling the pitch
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angle and just focusing in following the position of the trajectory. For this
optimization we give again the possibility to the algorithm to find creative
ways of performing the mission.

Figure 6.42 shows the fitness of the optimization. Despite the added dif-
ficulty of the problem (recreating the same movements than before but with
less parameters to modify), we see that the algorithm does not take longer
until it begins to consistently improve the individuals of the population.
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Figure 6.42: RSM robot fitness for the diving phase (dynamic conf.).

Simulation and the evolution of the kinematic error are shown in Fig-
ure 6.43. From the kinematic error evolution we can note how the task is
straightforwardly executed with minimal variations in the error after the de-
sired trajectory is reached. Additionally, we can also observe that this time
the GA has found a solution using pitch during the diving.

In figure 6.44 we see the solution found by the GA. The four degrees of
freedom needed to perform this task are surge, heave, pitch and yaw. From
the figure we can deduce how the motions are created.

The surge and yaw motions are created mainly by thrusters one and
four. These thrusters take in charge the advancement and lateral correction
of the trajectory of e. For their part, thrusters two and three are in charge
of the remaining degrees of freedom: heave and pitch, following a similar
arrangement as the other two actuators. The inverted configuration of the
thrusters gives stability while correctly controlling the degrees of freedom.

The point e is positioned in the front of the robot, this gives thrusters
one and four a better moment arm to create yaw. This position also helps
thrusters two and three create pitch. Controller gains are Λ = 0.5 and
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Figure 6.43: EAUVIVE simulation and kinematic error evolution for diving
phase (Dyn. conf.).
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Figure 6.44: Final robot for diving phase (dynamic conf.).

Kp = 2.76, this means that the kinematic controller slowly reacts to the error
but makes the dynamic controller rapidly compensate the dynamic effects.

Thrust forces during the simulation and the evolution of the consumed
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power are shown in Figure 6.45. We can see how the creation of pitch by
thruster number two and heave by thruster number three are very demanding
in terms of force. Indeed, in order to create pitch, thruster number two needs
to fight against the restoring forces, while thruster three needs to create the
diving force. Thrusters one and four are used to give small lateral corrections
on the trajectory.
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Figure 6.45: Forces and power consumption during diving phase (dyn. conf.).

6.5.3 Tomography

For the last part of the mission, the RSM robot needs to adapt its thrusters
to perform a task that, as seen in the global evolution section, involves mostly
sway and yaw.

Figure 6.46 shows the fitness throughout the evolution. We can see how
the GA smoothly converged to a solution despite the difficulty of the problem.
In fact, if we compare with the result of the global optimization for the same
task, the fitness in this case is slightly superior. This is due to the search space
reduction, now the genetic algorithm does not loose time evaluating unuseful
topologies. In the global optimization, the GA had to first find promising
topologies and then optimize their configuration. The fact that the global
approach found a four thrusters topology shows how, by reducing the problem
to the RSM robot configuration, we have spared the GA of great part of the
search effort (less time used for exploration and more exploitation).

Figure 6.47 shows a snapshot of the simulation and the evolution of the
kinematic error. As for the global optimization of this task, the robot con-
verges slowly but with a steady pace. Once the AUV has reached the desired
trajectory, the kinematic and yaw errors remain small (ekin < 0.1m and
eψ < 1.4°).

The configuration found by the GA is shown in Fig. 6.48. As stated in
the application of the global optimization, the necessary degrees of freedom
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Figure 6.46: Fitness evolution for tomography phase (dynamic conf.).
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Figure 6.47: EAUVIVE simulation and kinematic error evolution for tomog-
raphy phase (Dyn. conf.).

to control in order to perform this trajectory are surge, sway, heave and yaw.
In the figure we see how all thrusters have a force component over the yb
axis, which is understandable since it is the main direction of the motion.
Thrusters one and two are, like in the RSM robot, in charge of the yaw
movements. However, we see that only thruster two contributes to the surge
motion while thruster one generates heave and pitch. For its part, thruster
three generates mainly a lateral force, controlling sway. Lastly, heave is
generated by a composition of the forces over the zb from thrusters one and
four.

The main movements being sway and yaw, so the position of e was to
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Figure 6.48: Final robot configuration for the tomography phase (dynamic
conf.).

be expected. The position of the tracking point, close to the Rb origin,
favors the control over yaw. It gives the thrusters in charge of this degree
of freedom a long enough lever arm, which is also short enough to limit the
overshoot due to propeller dynamics. The GA chose again a small kinematic
gain (Λ = 0.25) making the robot slowly converge to the task, however, it
rapidly compensates the dynamic effects on the robot thanks to its dynamic
gain value (Kp = 9.28).

Figure 6.49 shows thruster forces and power consumption throughout the
task. As for the global optimization of this task, the strong dynamic com-
pensation of the controller demands full force from the thrusters, generating
in the force peaks of short duration. Once the robot has reached the desired
trajectory, we see how thruster number three generates the higher force in
order to move the AUV laterally. Thruster number two is the second biggest
force contributor, taking in charge the creation of yaw. Thrusters one and
four have a small contribution, they are mostly in charge of controlling depth.
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Figure 6.49: Forces and power consumption during tomography(dyn. conf.).

6.6 Conclusion

Analyzing the results of the dynamic configuration and global optimizations
(Table 6.13), we can see how the global approach tends to have better results.
For the seabed scanning, the fitness of the best individual found by the
global approach was 1.35 times better than the one found by the dynamic
configuration optimization. We obtain a similar outcome analyzing the two
approaches for the diving task, the global optimization best individual is 1.38
times fitter than the one found by the dynamic configuration. However, for
the tomography task, the dynamic configuration finds a better suited robot
than its global counterpart (1.05 times fitter), probably due to the reduced
search space and to a starting topology (RSM robot) well suited for the task.

Table 6.13: Results obtained with dyn. conf and global opt.
Approach Task Best fitness

Global opt.
Scanning of seabed 47.97

Diving toward turbine 50.2
Tomography of turbine 32.45

Dyn. configuration
Crossover probability 35.52
Scanning of seabed 36.4

Diving toward turbine 34.17

Solely based on the fitness of the best individual, it is clear that global
optimization is to be preferred. However from a technological point of view,
dynamic configuration seems to be more promising. Indeed, even if the per-
formances of this approach are not as good as the global ones, the fact that
they are technically feasible makes the dynamic configuration more useful.

In section 6.5 the RSM robot propulsion system, with predefined thruster
number and positions, was optimized to follow three different tasks included
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in a robotic mission. The three optimized configurations maximize the per-
formance of the robot in each task. A version of the RSM robot capable of
dynamically changing its propulsive configuration (vectorial thrusters) would
be able to achieve the three tasks in a row (i.e. the mission) with the best
performance. Given the current state of thrust configuration technology, this
idea seems applicable in the medium-term.

The advantages of dynamic configuration are clear, it can make under-
actuated AUVs capable of performing complex and demanding tasks in an
optimal way, enhancing the propulsive capabilities of these vehicles. Indeed,
AUVs with dynamically reconfigurable thrusters, using propulsion configu-
rations determined by this method, would be able to perform tasks with
good trajectory tracking convergence and reduced power consumption. This
would result in improving AUVs capabilities and therefore expanding their
autonomy.



Chapter 7

Conclusions and perspectives

The design of autonomous underwater vehicles supposes the definition of a
myriad of design parameters. Said parameters must be selected and properly
configured in order to obtain enhanced performance and autonomy. A way
of achieving autonomy in an AUV is increasing its propulsive capabilities,
adapting the robot to the tasks it is expected to perform.

Nowadays, AUVs are exposed to increasingly demanding tasks and mis-
sions. Far from the survey-style missions that made these vehicles popular,
the new missions demand the AUVs to have greater autonomy and efficiency.

Most of AUV design methods rely heavily on designers experience and
rules of thumb, taking well known designs and adopting classical approaches.
While capable of performing difficult tasks, these robots are not optimized to
perform these missions causing a decrease in their overall performance and
autonomy. Also their efficiency is not as high as it could be (using too many
thrusters).

This work proposes a way of improving the design of AUVs through the
optimization of its propulsive configuration, increasing their performances
and therefore enhancing their autonomy. Indeed, mission-adapted propulsive
configurations allow the AUV to perform otherwise difficult tasks, making
them less depending of human intervention.

The optimization technique used in this work uses an AUV simulator
in order to evaluate the candidate solutions. This simulator, contains the
hydrodynamical model of the robot, which includes rigid body dynamics and
hydrodynamic effects such as added mass and damping.

The EAUVIVE simulator also includes the electrodynamic model of a
real thruster, which parameters have been identified and validated using a
test rig. A vectorial thruster has been studied as well, in order to study
its feasibility. This vectorial thruster offers the possibility of changing the
direction of the thrust thanks to a magnetic coupling. The dynamic model
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of this device was developed and validated.
In order to correctly simulate the behavior of the robot, we use a model-

based nonlinear controller called torque computation. This controller uses
the kinematic and hydrodynamic model of the AUV in order to compensate
the hydrodynamic effects and steer the vehicle toward a desired trajectory.
This control technique generates the needed wrench in order to follow the
desired trajectory. An additional stage, called thrust allocation, was added
in order to determine the needed forces from each thruster of the robot.

Given that the genetic algorithm evaluates different propulsive topolo-
gies during its optimization work, a way of adapting the control technique
to different propulsive topologies was presented. Additionally, some consid-
erations about the conditions to successfully apply this control adaptation
method were discussed.

The extended Kalman filter estimation method and its implantation (along
with the control method) into the robot control architecture was discussed.
This is not yet used by the genetic algorithm optimization, but it is an un-
avoidable step in future robotic platform developments.

Lastly, using the aforementioned elements, the genetic algorithm was de-
veloped. It allows to, given a robot structure and a defined task, to find an
optimal propulsive topology and control parameters. The found solution will
be adapted for the demanded task, creating a robot with a good performance
but task-specific. Given that in the real world most of the solutions found
thanks to this method are difficult to apply, an alternative approach was
presented. This approach, called dynamic configuration, proposes to apply
the optimization method to a robot in which the position of its thrusters are
predefined. Restricting the GA possibilities of research by imposing some of
the design parameters can result in less efficient topologies. However, as a
compensation for the performance loss, the found solutions are technically vi-
able. Applying the dynamic configuration method with the same constrained
parameters but for different tasks, allows the AUV designer to calculate the
optimal topology configuration for each task. With this information, and
taking into account the advances in reconfigurable thruster technology, the
creation of a dynamically reconfigurable robot is possible in a near future. A
robot designed using this technique could be optimally adapted to a mission
including any number of different tasks.

Future work should focus on the improvement of the genetic algorithm.
This can be done increasing its efficiency using more advanced techniques
or by narrowing down the search space based on previous experience. This
could allow to expand the number of design parameters without increasing
the calculation time.

The expanded set of design parameters could include a different type of
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controller technique (for instance PID, sliding mode, adaptive methods, etc).
Indeed, giving the possibility to the GA of choosing the type of control used
in the robot could lead to a improvement of the AUV design. The correction
terms in the used computed torque control technique could be improved as
well, making it use not only the proportional correction but also the integral
and derivative ones.

The genetic algorithm would benefit as well by using improved models
in the control technique (for instance including the thruster dynamics in
computed torque method). Indeed, a more precise definition of the hydrody-
namic terms in the AUV model and a fully dynamic model of the thrusters
would help to reduce the reality gap, making the solutions found by the
optimization easier to apply in the real world.

Lastly, real experimentations using the RSM robot with the found propul-
sive topologies should be carried out, in order to validate and tune the solu-
tions found by the artificial evolution.
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C. Marfia, S. Dupré, G. Buffet, J. Mascle, J.-P. P. Foucher, S. Gauger,
A. Boetius, C. Marfia, T. A. A. Q. R. Team, T. A. A. Q. R.
Team, and T. B. scientific Party, “High-resolution mapping of large
gas emitting mud volcanoes on the Egyptian continental margin (Nile
Deep Sea Fan) by AUV surveys,” Mar. Geophys. Res., vol. 29, no. 4,
pp. 275–290, dec 2008.



References 209

[60] V. H. Fernandes, A. A. Neto, and D. D. Rodrigues, “Pipeline
inspection with AUV,” in 2015 IEEE/OES Acoust. Underw. Geosci.
Symp. (RIO Acoust. IEEE, jul 2015, pp. 1–5.

[61] A. Alvarez, A. Caffaz, A. Caiti, G. Casalino, L. Gualdesi, A. Turetta,
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