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Résumé

Le maïs (Zea mays L.) est une culture majeure présentant un hétérosis important pour les caractères liés à la biomasse. Pour exploiter ce phénomène, les programmes de sélection ont été organisés en groupes hétérotiques et la majorité des surfaces cultivées correspond à des hybrides F1. La valeur hybride peut être décomposée en Aptitudes Générales à la Combinaison (AGC) des lignées parentales et en Aptitude Spécifique à la Combinaison (ASC).

L'objectif de cette thèse était d'apporter de nouveaux éclairages sur la valeur hybride, concernant tant la compréhension de ses déterminismes génétiques sous-jacents que sa prédiction. Deux dispositifs multiparentaux connectés ont été analysés, mettant en jeu deux des principaux groupes hétérotiques utilisés pour la production de maïs fourrage dans le nord de l'Europe : les cornés et les dentés. Le premier dispositif était constitué de deux populations de type Nested Association Mapping (NAM). La population dentée comprenait dix familles biparentales et la cornée onze. Ces populations ont été évaluées pour leur valeur en croisement avec un testeur du groupe complémentaire. Le deuxième dispositif était constitué d'un factoriel entre deux populations multiparentales de lignées : une cornée et une denté, dérivées de deux demi-diallèles entre quatre lignées fondatrices. Les lignées ont été croisées entre elles selon un plan factoriel incomplet afin d'obtenir des hybrides inter-groupes. Pour les deux dispositifs, le phénotypage des hybrides a porté sur le rendement ensilage, le contenu en matière sèche, la date de floraison femelle et la hauteur de plante. Les hybrides des dispositifs NAM ont également été phénotypés pour la date de floraison mâle.

Une détection des locus impliqués dans la variation des caractères quantitatifs (QTL) a été mise en oeuvre en utilisant des modèles prenant en compte différents codages alléliques : allèles fondateurs haplotypes ou allèle observé au marqueur. Ces codages ont permis de mettre en oeuvre des modèles de types LA (Linkage Analysis) ou LDLA (Linkage Disequilibrium -Linkage Analysis). Une complémentarité des modèles a été observée.

Certains modèles ont permis la détection de QTLs multi-alléliques. Des QTLs différents ont été détectés dans les deux groupes hétérotiques, confirmant leur divergence ancienne. Pour le contenu en matière sèche et le rendement, nous n'avons pas détecté de QTL à effet majeur dans aucun des dispositifs à l'exception d'un QTL corné de floraison à effet pléiotropique dans le groupe corné. Bien que l'ASC représentait 20% de la variance génétique intra-population totale pour la plupart des caractères (sauf la hauteur de plante) le dispositif factoriel n'a permis la détection que d'un faible nombre de QTLs ayant un effet sur la dominance/ l'ASC.

Différents modèles de sélection génomique de type GBLUP ont été mis oeuvre dans le dispositif factoriel. Nous avons obtenu de bonnes qualités de prédictions, bien que la majorité des lignées ne fût parentes que d'un seul hybride. Nous avons montré qu'il était important de calibrer les prédictions sur des hybrides issus de lignées apparentées aux hybrides à prédire.

Nos modèles ont montré leurs limites quant à la capacité de prédiction de l'ASC mais ont permis d'obtenir de bonnes qualités de prédiction pour les AGC des lignées parentales. Notre étude ouvre de nouvelles perspectives pour reconsidérer les schémas de sélection des hybrides de maïs. Les évaluations des lignées candidates sur testeur pourraient être remplacées par une évaluation d'hybrides obtenus selon un plan de croisement factoriel incomplet entre groupes hétérotiques. Des évaluations complémentaires sont nécessaires pour comparer plus directement notre stratégie avec celle basée sur l'utilisation de testeurs.

Cependant des premiers résultats encourageants ont été obtenus.

Mots clés : maïs, valeur hybride, détection de QTL, sélection génomique, ensilage companies, could be replaced by single-cross evaluation, according to an incomplete factorial design, between the two heterotic groups to improve. Further evaluations are needed for comparing the efficiency of this strategy with the one of tester-based designs, but first obtained results are encouraging.

Keywords : maize, hybrid value, QTL detection, genomic selection, silage

General Introduction 20

Maize is widely used all over the world for food, grain feed, silage and over the last years also for bioethanol. It is grown on 140 million of hectares in the world and is the first cereal in the world in terms of volume of grain. It is the species that prompted the definition of the concept of heterosis (Shull 1914) and the development of F1 hybrids (Shull 1908), leading to the subsequent implementation of advanced breeding methods. In this introduction, we will focus on heterosis, presenting its genetic basis and the factors affecting it. Then, we will present maize breeding history and selection schemes before giving an insight on the contribution of molecular markers to understanding the genetics determinisms of phenotypic traits and improving breeding schemes. Finally, we will briefly present the experiments and approaches that were conducted during this PhD.

Heterosis

Heterosis -history and definition

In 1766, Koelreuter showed that some interspecific crosses in several genus such as Nicotinia and Datura could lead to hybrids presenting stronger vigor than their parents. Darwin in 1876, observed that for numerous species intraspecific cross-pollination led to better plants than selfpollination with increased performances for quantitative traits. This observation was later theorized by Shull (1908) at Cold Spring Harbor Laboratories in New York and East (1908) at Connecticut State College who defined the concept of heterosis (Shull 1914), after maize (Zea mays L. or Zea mays ssp mays) observations. There is heterosis when a hybrid offspring from genetically diverse individuals or populations shows increased vigor relative to its parents [START_REF] Fu | Utilization of crop heterosis: a review[END_REF]. According to the distance between the parents of the hybrid, three categories of heterosis can be defined depending if it is a cross between: (i) two individuals from two different species, (ii) two individuals from two different subspecies, (iii) two individuals from the same subspecies [START_REF] Fu | Utilization of crop heterosis: a review[END_REF]. Heterosis is widely used in plant and animal breeding. One of its earliest applications was mule breeding, mules being derived from the cross of individuals from two species: a female horse (Equus caballus) and a male donkey (Equus asinus) [START_REF] Springer | Allelic variation and heterosis in maize: How do two halves make more than a whole?[END_REF]. One example in plants of heterosis from wide hybridization is Triticale, a polyploid hybrid of both rye (Secale spp.) and wheat (Triticum spp.) which is widely sown [START_REF] Fu | Utilization of crop heterosis: a review[END_REF]. The rice hybrid indica x japonica which presents between 8 to 15% more heterotic potential than intraspecific hybrids for many traits is an example of intersubspecies heterosis. However, at first, these rice hybrids were not widely adopted due to problems of unstable seed setting and poor grain plumpness, problems solved recently [START_REF] Fu | Utilization of crop heterosis: a review[END_REF]. Intraspecies heterosis is certainly the type of heterosis that is the most used in plant breeding and more specifically in maize breeding (Figure 1). We will focus on intraspecific heterosis in the following and will refer to it as "heterosis".

Heterosis can be defined in two different ways. Geneticist heterosis (or mid-parent heterosis) is when one genotype is better than the mean of its two parents. Breeder heterosis (or best parent heterosis) is when the hybrid is better than the best of its parents. Note that although not strictly academic farmers may also have a third vision of heterosis which is the difference in performance between the best hybrid available on the market and the best inbred line variety.

From a statistical point of view, heterosis is a deviation to additivity. Its conceptual opposite is the inbreeding depression, which is a gradual reduction of vigor after reproduction of related individuals, over several generations. 

Heterosis -genetics basis

Even if heterosis is widely used in plant and animal breeding, our knowledge of the mechanisms underlying it is partial. Three main non-exclusive hypotheses exist regarding the phenomena underlying heterosis for a given trait in a given environment: dominance, overdominance and epistasis (Figures 2 and3). In the dominance hypothesis, heterosis is explained by the fact that each parental line carries recessive unfavorable alleles at different loci so that their effects are masked by their dominant counterpart when assembled in the hybrid (Figure 3). The hybrid benefits from the complementation of these deleterious alleles [START_REF] Davenport | Degeneration, albinism and inbreeding[END_REF][START_REF] Jones | Dominance of linked factors as a means of accounting for heterosis[END_REF]. Overdominance is an intralocus complementation for which the heterozygote state at one locus is phenotypically superior to both homozygote states [START_REF] Hull | Overdominance and corn breeding where hybrid seed is not feasible[END_REF]) (Figure 3). Few examples of overdominance exist and at our knowledge there is only one overdominance action which was fully proved in maize. [START_REF] Hollick | Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action[END_REF] provided evidence for overdominance at the Pl locus (purple plant locus) which controls the leaves anthocyanin synthesis. Strong correlation between two locus (or Linkage Disequilibrium LD) can be a problem for distinguishing dominance from overdominance gene action on phenotypes [START_REF] Springer | Allelic variation and heterosis in maize: How do two halves make more than a whole?[END_REF] since apparent overdominance can be the result of tight linkage between two loci with favorable dominant alleles in repulsion. This situation is called pseudo-overdominance [START_REF] Jones | Dominance of linked factors as a means of accounting for heterosis[END_REF] (Figure 3). Note that in situations where the favorable allele at a locus depends on the environment and is dominant, one can observe an overdominance effect for the average performance, referred to as marginal overdominance [START_REF] Wallace | Selection in favor of heterozygotes[END_REF]). Epistasis which corresponds to the interaction between alleles at two or more loci can also have an impact on heterosis [START_REF] Richey | Mock-dominance and hybrid vigor[END_REF][START_REF] Powers | An expansion of Jones's theory for the explanation of heterosis[END_REF][START_REF] Jinks | Estimation of the components of heterosis[END_REF][START_REF] Williams | Heterosis and the genetics of complex characters[END_REF]. Various molecular mechanisms may explain these genetic mechanisms. In addition to nonsynonymous single base mutations that can cause loss of function, maize presents a lot of structural variation as difference in genome organization and presence-absence variations.

These presence-absence variations can be at the gene level, gene regulating regions level or components of gene families level [START_REF] Springer | Allelic variation and heterosis in maize: How do two halves make more than a whole?[END_REF]. Combination of inbred lines presenting such variations can have an impact on the level of gene expression. One example is the expression in the B73 x BSSS53 hybrid of the zein1C gene family controlling the development of endosperm tissue. B73 expresses six genes of the family, BSSS53 seven, but only three are shared between the two genotypes. The hybrid expresses all 10 zein1C genes [START_REF] Springer | Allelic variation and heterosis in maize: How do two halves make more than a whole?[END_REF].

Factors affecting heterosis

Plant heterosis is highly variable depending on species. In general, heterosis is stronger in allogamous species (such as maize, onion and alfalfa) than in autogamous species (such as wheat, rice, Arabidopsis, tomato). This is because allogamy allows the development of the genetic load as recessive slightly deleterious alleles at low frequency are masked at the heterozygote state. In autogamous species, recessive unfavorable alleles cannot be masked and are thus counter selected, which explains why genetic burden is much less important [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF][START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF]. For allogamous species, when comparing inbred lines to the F1 generation, heterosis for grain yield or biomass is of 100 to 400% whereas for autogamous species it is between 0 and 100%. However, this result needs to be nuanced as for allogamous species it would be more logical to compare hybrid value with that of populations. Inbred lines are indeed created by forcing allogamous plants to become autogamous. The advantage of hybrids compared to populations from which parental lines are extracted is lower, between 10 and 15% [START_REF] Morrow | Field experiments with corn 1892[END_REF]. As heterosis is due in part to dominance, it is expected to be stronger when "distant" individuals are crossed. However, the relationship between genetic distance of the parents and importance of heterosis in the F1 is not straightforward. It has been observed that when genetic distance between the parents is too important, heterosis can be lower than for crosses between closer individuals [START_REF] Moll | The relationship of heterosis and genetic divergence in maize[END_REF] for an example on maize).

Heterosis is dependent on the considered trait. Indeed, in maize, heterosis is more important for grain yield than for plant height, which itself present more heterosis than leave width. Number of seeds presents more heterosis than thousand grain weight. Heterosis has a minor impact on number of leaves and number of ranks per kernel, which are mainly additive traits [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF]. Thus, heterosis tends to be more important for traits linked to fitness than for other traits.

It is more important for complex traits as grain yield or silage yield than for traits with simple genetic determinism [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF]). One explanation can be that many complex traits are multiplicative and can be decomposed in elementary components. If elementary traits present heterosis, the complex trait corresponding to their product will present more heterosis. In addition, multiplication of elementary components having complementarity characteristics in both parents (as one parent with long and narrow leaves and one parent with short and wide leaves), and not necessarily presenting heterosis, can conduct at heterosis at the hybrid level for the complex trait [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF]. Heterosis does not only affect the young or adult plants but is manifest already in the early stages, at the beginning of embryogenesis. For instance, size of the hybrid embryo six days after fecundation, speed of root development and some embryo enzymatic activities present mid-parent heterosis [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF].

Maize breeding history

From open-pollinated maize varieties to maize hybrids

The theorization by East and Shull of the heterosis phenomenon, has accompanied the transition of cultivated maize from landraces and open-pollinated varieties to hybrids in the USA. Openpollinated varieties correspond to a population of individuals all different one from each other, resulting from random crosses of plants from the previous generation. These populations have been created by mass selection and adaptation to environmental conditions from ancestral populations originated from Mexico (see Appendix 1 for a brief overview of the history of maize). F1 hybrids were seen as a way to produce at a large scale the best combination of gametes that could be derived from such populations (Shull 1908). As noted by Shull this idea is an extension of the isolation concept that was applied to autogamous species in order to make it applicable in the presence of inbreeding depression. Maize morphology allows an easy production of hybrids seeds as male flowers are on the top of the plant which can thus be easily castrated which allows a large-scale production of hybrid seeds [START_REF] Morrow | Field experiments with corn 1892[END_REF].

However, at the beginning, one main issue was the low rate of seeds produced by the first inbred lines derived from populations, due to the inbreeding depression. To circumvent this limitation and allow a production in quantity of identical seeds, [START_REF] Jones | The effect of inbreeding and crossbreeding upon development[END_REF] proposed the use of triplecross hybrids and double-cross hybrids. From 1922From -1924, best hybrids, as for example Cooper

Cross, presented a repeatable advantage of around 10% compared to the best open-pollinated varieties (Charcosset 2002). Such practical results led in the 1930s to the domination of triplecross and double-cross hybrids over open-pollinated varieties [START_REF] Troyer | Background of U.S. hybrid corn[END_REF]. For instance, in Iowa in 1935 less of 10% of the surface was sown with hybrids whereas it was over 90% in 1939 [START_REF] Reif | Heterosis and heterotic patterns in maize[END_REF]. Then, in the 1960s, with the improvement of inbred lines per se value, simple hybrids could be developed [START_REF] Troyer | Background of U.S. hybrid corn[END_REF] and are now widely used (Figure 4). This transition from open-pollinated varieties to double-cross and then single-cross hybrids was concomitant to an increase in maize yield (Figure 4). In the 1950s (North Central Regional Corn Improvement Conference 1949; Lamkey and Lorenz 2014), heterotic groups, structuring the genetic diversity, were created in order to increase heterosis, by avoiding relatedness between parental lines used as parents of hybrids. Heterotic groups can be defined "as a group of related or unrelated genotypes from the same or different populations, which display similar combining ability and heterotic response when crossed with genotypes from other genetically distinct germplasm groups" [START_REF] Melchinger | Overview of heterosis and heterotic groups in agronomic crops[END_REF]. First hybrids cultivated in Europe, before the late 1950s, were imported from USA and had only a limited success. After World War II, programs were started to develop hybrids adapted to Northern European conditions. In France, new lines were developed from the flint French Southwestern populations and crossed to dent inbred lines from the Corn Belt dent region in USA, as Wisconsin inbreds [START_REF] Troyer | Background and importance of "Minnesota 13" corn[END_REF]. The most successful flint inbred lines, F2 and F7, were derived from the Lacaune population (Tenaillon and Charcosset 2011).

In regions at the North of Loire valley, the resulting hybrids over yielded and were better adapted than the early flowering hybrids imported from Northern USA [START_REF] Troyer | Background and importance of "Minnesota 13" corn[END_REF]Tenaillon and Charcosset 2011). Currently, these dent and flint heterotic groups are still the ones mainly used for maize breeding in Northern Europe, for silage as well as for grain maize, although there is a growing tendency to introgress the flint pool with dent material. In breeding companies, these main heterotic groups are structured in smaller heterotic groups derived from the most popular inbred lines of their breeding programs.

Maize hybrid selection schemes -recurrent reciprocal selection

One main concern of hybrid breeding is to select the parental lines which in combination will give the best hybrid. One first option is to select the parental lines based on their per se value [START_REF] Jenkins | Correlation studies with inbred and crossbred strains in maize[END_REF]. However, correlation is low between per se value of an inbred line and the values of hybrids that can be derived from it for traits showing heterosis [START_REF] Richey | Effects of selection on the yield of a cross between varieties of corn[END_REF][START_REF] Richey | The productiveness of successive generations of selffertilized lines of corn and of crosses between them[END_REF]. Per se value selection generally allows the elimination of only the worst parents [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF]. In 1932, Jenkins and Bruson showed that the average value of the hybrids derived from an inbred line is better correlated to the value of the progeny of this inbred line with another inbred line, an hybrid or a population than to its per se value. [START_REF] Sprague | An estimation of the number of top-crossed plants required for adequate representation of a corn variety[END_REF] and [START_REF] Jenkins | The segregation of genes affecting yield of grain in maize[END_REF] suggested that combining ability of the tested inbred lines should be taken into account at early stages in the inbreeding process. Sprague and Tatum (1942) clearly defined the notions of combining abilities and introduced the partitioning of hybrid values in terms of General and Specific Combining Abilities (GCA and SCA respectively). The GCA of a line corresponds to its average performance in hybrid combinations. The SCA of a pair of parental lines is the difference between the hybrid value and its value predicted based on GCAs. It corresponds to the cases "in which certain combination do relatively better or worse than would be expected on the basis of the average performance of the lines involved" (Sprague and Tatum 1942).These notions can be extended to the case of hybrids between two heterotic groups (see Appendix 2). [START_REF] Hayes | Synthetic production of high protein corn in relation to breeding[END_REF] are credited as the first users of recurrent selection for maize breeding (Hallauer et al. 2010, Chapter 6), that is to say methods of selection conducted recurrently, i.e.

when similar procedures are repeated in successive cycles of selection. Recurrent selection methods are designed to increase the frequency of favorable alleles for quantitative traits while maintaining genetic variability allowing continuous genetic improvement (Hallauer et al. 2010, Chapter 6). [START_REF] Jenkins | The segregation of genes affecting yield of grain in maize[END_REF] suggested a method, modified by Hull in 1945, for improving SCA of a heterozygous population thanks to the use of a tester with a narrow genetic base. The used tester may be a pure line or a hybrid and is one of the parents of the future commercial hybrid.

Hull's method, which did not allow for much improvement on the tester side, would be efficient in presence of overdominance but inefficient for dominance when the tester carries favorable alleles [START_REF] Hull | Recurrent selection for specific combining ability in corn[END_REF]Comstock et al. 1949). Another possibility is to perform recurrent selection for GCAs. In this case, plants from one population are evaluated in cross with a ester presenting broad genetic base, identical for all populations. The tester used consisted in at least two single crosses between pure lines or in a variety. Then, selected plants of each populations are crossed and a new cycle can be initiated (Comstock et al. 1949;[START_REF] Lonnquist | Project report on recurrent and reciprocal selection in corn[END_REF]). These method is more efficient than the previous one in presence of dominance but not in presence of overdominance (Comstock et al. 1949). Comstock et al. proposed in 1949 a reciprocal recurrent method which is efficient regardless of the genetic mechanisms underlying heterosis and which maximize use of GCAs and SCA (Figure 5). Their procedure consisted in the simultaneous improvement of the two parental populations of the hybrid, testing plants from one population by crossing them with plants of the other population. Each plant of one population is crossed with four or five plants of the other population and the resulting hybrids are evaluated. In each population, plants are selected based on the value of their bulked test-cross progeny. Reciprocal recurrent selection proved its efficiency in several selection programs initiated in the 1960s and 1970s (see Hallauer et al. 2010, Chapter 7). Variations of the reciprocal recurrent selection procedure proposed by Comstock et al. (1949) were proposed as for instance reciprocal recurrent selection based on testcrosses of half-sib families [START_REF] Paterniani | Interpopulation improvement: Reciprocal recurrent selection variations[END_REF]) which reduces the effort for making testcrosses, reciprocal recurrent selection based on half-sib progenies of prolific plants (Hallauer et al. 2010, Chapter 12) and reciprocal full-sib selection on prolific plants [START_REF] Hallauer | Reciprocal full-sib selection[END_REF] or on one-ear plants (Hallauer et al. 2010, Chapter 12). In reciprocal fullsib selection, contrary to the method proposed by Comstock et al. (1949), full-sib progenies are evaluated rather than half-sib progenies (see Hallauer et al. 2010, Chapter 12 for more details on the procedure). These selection schemes showed their interest for maize hybrid breeding. Coors (1999) synthetized a large number of studies for several breeding method. He showed that reciprocal half-sib and full-sib recurrent selection methods were the ones allowing the highest direct responses for interpopulation improvement on a cycle basis and led to the highest gains in grain yield on an annual basis. In the breeding companies, generally a modified recurrent reciprocal selection procedure is used. Within each heterotic group; breeders cross pairs of inbred lines to generate biparental segregating populations that are evaluated for their test-cross values. Generally, a few testers (two or three) of the opposite heterotic group are used and correspond to good parental lines, which will be one of the future parents of the released hybrids. Selected plants are then selfed during several generations to derive new inbred lines. In a second stage, inbred lines selected in the different groups are crossed in order to identify the best hybrid combinations.

Understanding of the genetic basis of the phenotypic traits

QTL detection

Conventional breeding methods can be considered as "blind" approaches. When they were developed little was known on the genes or loci (or Quantitative Trait Loci, QTL) involved in the variation of quantitative traits. Detecting these QTLs is important for understanding the genetic basis of the traits. Molecular markers, when correlated to the trait, can bring information on location and polymorphism of these loci. The first molecular markers used were protein variants (isozymes) identified by electrophoresis and developed in the 1960s. They presented codominant variations but were not very polymorphic and did not cover the entire genome. In plants, first QTL detections were carried out in segregating populations derived from crosses between two inbred lines (Paterson et al. 1988 on RFLP).This approach relies on the fact that in these populations, correlations between markers and QTL is a simple function of the recombination rate. It has a limited resolution [START_REF] Darvasi | A simple method to calculate resolving power and confidence interval of QTL map location[END_REF] due to the low number of recombination events that occurred in such population. Moreover each biparental population represents only a small part of the generic diversity available. To circumvent these limitations, with the increase of marker density and the development of genotyping chips, it became possible to detect QTLs in a more diverse material, with no family relationships. It is the association mapping approach. This approach takes advantage of the LD present in panel of individuals that has been broken along generations by historical recombinations [START_REF] Pritchard | Linkage disequilibrium in humans: models and data[END_REF] which allows a better resolution than QTL detection in biparental populations. However, in association mapping populations, contrary to linkage mapping populations, LD is not only due to genetic linkage but also to the history of the population. It can be caused by structure, relatedness, drift and selection. To reduce false-positive associations caused by the history of the population, additional random or fixed terms (corresponding to structure or relatedness) can be added in the association mapping model (Yu et al. 2006).

Approaches were developed for improving QTL detection based on LA-mapping. For instance, QTL detection can be carried out in highly recombining inbred lines or intermated lines [START_REF] Darvasi | Advanced intercross lines, an experimental population for fine genetic mapping[END_REF]Huang et al. 2010). The higher number of recombinations in comparison to a traditional LA-mapping population allows a better accuracy of estimated QTLs positions. Synthesis of the information of several biparental QTL detection studies is also possible by performing meta-analysis [START_REF] Goffinet | Quantitative trait loci: a meta-analysis[END_REF]see Truntzler et al. 2010 for an example on silage maize) which can allow to explore more diversity and improve the resolution of the QTL mapping. Multiparental designs can also be a solution for improving the precision of QTL location while exploring more diversity. Among these designs, multiple connected biparental families designs can be developed by assembling biparental populations that have one parents in common (Rebaï et al. 1997). Nested Association Mapping (NAM) designs (Yu et al. 2008) are a specific case of such designs in which all biparental populations shred the same parent. Another possibility is the development of multiparental advancedgeneration intercross (MAGIC) populations [START_REF] Huang | MAGIC populations in crops: current status and future prospects[END_REF] where the initial crosses of the various founder lines are followed by several generations of inter-mating. Two types of analyses can be performed on multiparental designs: traditional linkage based analyses when looking at the parental alleles or LDLA analyses which synthesize both LD and LA approaches by looking at ancestral alleles or at the observed marker alleles.

Marker-Assisted Selection

Knowing position of QTL and of markers physically liked to the QTL is important from a fundamental point of view and offers interesting perspectives for Marker-Assisted Selection (MAS). Interest of markers in breeding was first discussed by Neimann-Sorensen and Robertson in 1961, in an animal breeding context. It is only in the 1980s that MAS became a more tangible reality in animal and plant breeding. One application of MAS is for traits determined by a major gene and difficult or expensive to phenotype. When the favorable allele at the major gene is associated to a specific allele at a marker, it can be cheaper and easier to genotype and screen for the marker than to phenotype. For more complex traits, influenced by many genes, [START_REF] Lande | Efficiency of marker-assisted selection in the improvement of quantitative traits[END_REF] proposed to estimate the genetic value of the individuals based on the sum of the effects of markers significantly associated to QTLs.

Phenotypic information can also be integrated to the selection scheme and integration of phenotype and genotype information lead to different MAS schemes. [START_REF] Hospital | More on the efficiency of marker-assisted selection[END_REF] shown that one of the main interest of MAS was an increase of genetic grain per unit of time when cycles with only marker information and with marker and phenotypic information were alternated. MAS is expected to be more interesting than conventional selection based on phenotype for traits with low heritability provided that QTLs can be detected [START_REF] Hospital | More on the efficiency of marker-assisted selection[END_REF][START_REF] Moreau | Marker-assisted selection efficiency in populations of finite size[END_REF]. One limit of these approaches is that selection on markers only lead to the quick fixation of favorable alleles at the biggest QTLs [START_REF] Hospital | More on the efficiency of marker-assisted selection[END_REF]Moreau et al. 2004) whereas unfavorable alleles can be fixed at the smallest QTLs. Another limit is that effects of the detected QTLs are often overestimated due to the Beavis effect [START_REF] Beavis | QTL analyses: power, precision and accuracy[END_REF] which lead to wrong weightings of the QTL effects in predictions based on markers and a reduced efficiency of MAS [START_REF] Moreau | Marker-assisted selection efficiency in populations of finite size[END_REF]Melchinger et al. 1998). When using detected QTLs, only a limited proportion of genetic variance is taken into account and "missing heritability" [START_REF] Maher | The case of the missing heritability[END_REF]) is important. Even if some studies reported a limited efficiency of MAS in biparental populations [START_REF] Moreau | Experimental evaluation of several cycles of marker-assisted selection in maize[END_REF]) others, notably some issued from the private sector, reported its interest [START_REF] Eathington | Molecular markers in a commercial breeding program[END_REF]). MAS appears particularly interesting when considering connected multiparental populations to assemble favorable alleles issued from several founder lines. Interest of this approach was tested by simulations [START_REF] Blanc | Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize[END_REF]) and validated experimentally [START_REF] Moreau | Marker-assisted selection in maize[END_REF].

Genomic selection

To circumvent some of QTL detection limitations, when the studied trait is controlled by many QTLs, one possibility is to use genomic selection. The basic principle of this method is to estimate all marker effects simultaneously, and use these effects for prediction, without conducting first a QTL detection step. The idea behind this approach is that if enough markers are available, the LD between markers and QTLs will enable markers to capture QTLs effects.

However, as the number of markers is generally higher than the number of performances, conventional fixed-effect models used for QTL detection cannot be used. In 2000, Whittaker et al. proposed to use the ridge regression to estimate marker effects and showed its interest compared to predictions based on QTL detection. Meuwissen et al. (2001) defined the concept of genomic selection and proposed to use additional approaches, based on Bayesian statistics, for estimating maker effects. He also proposed one approach of genomic selection (called GBLUP) which consists in using markers to estimate kinship relationships between individuals and use this matrix in a BLUP model to predict values of non-phenotyped individuals using performances of phenotyped ones. This GBLUP model was proved to be statistically equivalent to a random ridge regression (RR-BLUP) [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF]. It has to be noted that a very similar approach to the GBLUP model was proposed already in 1994 by Bernardo who used marker-based distances between parental lines of single-crosses for predicting performances of non-phenotyped single-crosses using performances of a related set of single-crosses.

Development of GS was favored by advances in high-throughput genotyping methods that are now available at a reasonable cost for most species of agronomical interest. Since 2006, GS showed its practical interest in dairy cows where it is now largely implemented.

It was facilitated by the pooling between different countries of phenotyping, genotyping and pedigree information in order to create a huge reference population used for calibration (through for instance the EuroGenomics consortium which groups European private and public actors of Holstein breeding). In plant breeding, simulations and fields experiments gave encouraging results for implementation of GS in populations with variable levels of diversity. For instance, Bernardo and Yu (2007) showed using stimulations that GS provided 18 to 43% more genetic gain per cycle than traditional marker-assisted recurrent selection based on QTLs in biparental populations.

For maximizing the quality of genomic predictions, some critical parameters must be taken into account when designing GS procedures. Choices of the statistical model and of the marker density are important. Size of the calibration set [START_REF] Technow | Genomic prediction of Northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups[END_REF]Lehermeier et al. 2014) and choice of the individuals in it (Rincent et al. 2012;[START_REF] Akdemir | Optimization of genomic selection training populations with a genetic algorithm[END_REF], and for instance the genetic distance between the calibration set and the prediction set (Riedelsheimer et al. 2013;Lehermeier et al. 2014) need to be considered.

Some limits of the current GS approaches are under investigation such as the incorporation in the model of GxE interactions [START_REF] Burgueño | Genomic prediction of breeding values when modeling genotype x environment interaction using pedigree and dense molecular markers[END_REF][START_REF] Heslot | Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions[END_REF]. Several recent studies have been published on the prediction of hybrids between two populations and the inclusion of dominance and SCA in the GS models. This question is of high interest for animal genetics [START_REF] Toro | A note on mate allocation for dominance handling in genomic selection[END_REF][START_REF] Amuzu-Aweh | Prediction of heterosis using genome-wide SNP-marker data: application to egg production in white Leghorn crosses[END_REF]Ertl el al. 2014;[START_REF] Sun | Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects[END_REF]) and for plant genetics (see [START_REF] Zhao | Genomic prediction of hybrid wheat performance[END_REF] for an example in wheat; Reif et al. 2013 for an example in sunflower; [START_REF] Xu | Predicting hybrid performance in rice using genomic best linear unbiased prediction[END_REF] for an example in rice). In maize, where heterosis is strong, first exploratory studies based on GBLUP were carried out on small factorial designs (Bernardo 1994) or on hybrids from advanced selection staged of breeding programs (Bernardo 1996a;Bernardo 1996b). More recently, more important datasets were studied using GBLUP and alternative models, based on simulations (Technow et al. 2012) or data from the last steps of maize breeding programs (Maenhout et al. 2007;Maenhout et al. 2010;Massman et al. 2013;Technow et al. 2014). More studies are still needed on hybrid prediction especially for hybrids between inbred lines developed directly from segregating populations available at early selection stages.

Presentation of the phD work

In France, in 2013 silage maize was cultivated over 1.49 million of ha representing around 44% of the total superficies of maize. French silage maize yield was multiplied by two over the last 50 years passing from 150 000 Hg/Ha to 312 175 Hg/Ha (FAO stats). During decades, maize was bred for silage or grain indistinctively and breeding criteria were based on grain yield performances and not on silage performance [START_REF] Surault | Variabilité génétique de la digestibilité in vivo d'hybrides de maïs. Bilan de 34 années de mesures[END_REF]. Since 1986, for the registration in the French Official Catalogue of Species and Varieties, maize varieties are classified into two groups: grain maize and silage maize. Since 1998, feed quality is taken into account for registration [START_REF] Surault | Variabilité génétique de la digestibilité in vivo d'hybrides de maïs. Bilan de 34 années de mesures[END_REF] through the Milk Forage Unit (MFU), which quantified the calorific energy brought to dairy cows by one kilo of forage. This late preoccupation for feed quality and digestibility led to a decrease of the MFU values [START_REF] Surault | Variabilité génétique de la digestibilité in vivo d'hybrides de maïs. Bilan de 34 années de mesures[END_REF] as well as Neutral Detergent Fiber (NDF) digestibility values [START_REF] Barrière | Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates[END_REF] for the hybrids registered in the French catalogue of varieties or in the European catalogue between 1958 and 2002. Understanding of the genetic determinisms below the traits subjected to silage breeding is of main importance.

The main objective of this phD work was to analyze the genetics of the hybrid value of silage maize in multiparental designs, using two different approaches: (i) QTL detection and (ii) genomic selection and two different strategies for hybrid production: (j) single tester approach and (jj) a "no tester" approach with a highly incomplete factorial mating design between two populations of candidate lines. To do so, two multiparental silage maize designs were studied.

The dent and flint heterotic groups, corresponding to the major heterotic groups used for silage breeding in Northern Europe are involved in both designs. The first design is a NAM design, actually composed of two NAM designs, corresponding to the dent and the flint heterotic groups. The dent design consisted of ten biparental dent families and the flint one of 11 biparental families. Inbred lines were evaluated as test-cross value, using for each heterotic group the central line of the other group as tester. This allowed us to analyze these designs separately and also jointly. Five phenotypic traits were studied: dry matter yield (DMY), dry matter content (DMC), female flowering (DtSILK), male flowering (DtTAS) and plant height (PH). For each heterotic group, we detected QTLs using a LA model taking into account connections between populations and three different LDLA models. The second studied design consisted of two multiparental designs, one dent and one flint, derived from two half diallel between four founder lines and crossed according to an incomplete factorial. In this case, phenotypic evaluation was carried out on hybrids between the dent and flint parental lines and not on test-cross hybrids. DMC, DMY, DtSILK and PH were phenotyped. To our knowledge, few studies exist concerning QTL detection or genomic selection directly on hybrids and none were carried out on material directly issued from the cross of segregating families available at early selection stages. Our design allowed us to perform QTL detection using LA and LDLA models and genomic selection on such a material.

The first chapter of this manuscript is dedicated to the QTL detection in the two NAM designs.

It highlights the complementarities of the different QTL detection models which were performed and puts into evidence different multiallelic QTLs in the two heterotic groups. These findings complement the analysis of the same dataset in a genomic selection context (Lehermeier et al. 2014). The second and third chapters are devoted to the analyses carried out in the second design. First, results of QTL detection in this design are presented. We developed models for performing LA and LDLA QTL detection directly on hybrids between unselected lines of two heterotic groups. We found that some of the QTLs for GCA were different in both groups and that a few QTLs had an effect on SCA at an individual risk level of 5%. The third chapter is devoted to the implementation of GS prediction in this design. It also includes some elements of discussion on the interest of such design in selection compared to conventional tester designs. The three main chapters are organized as scientific articles. The first one was published in Genetics in 2014, the second one will be soon submitted to Genetics and the third one is organized in view of submission. Finally, limits and perspective of the present work will be discussed.

Appendix 1: Maize domestication and world diffusion

Archeology [START_REF] Piperno | Starch grain and phytolith evidence for early ninth millennium B. P. maize from the Central Balsas River Valley, Mexico[END_REF]) and genetics [START_REF] Matsuoka | A single domestication for maize shown by multilocus microsatellite genotyping[END_REF][START_REF] Van Heerwaarden | Genetic signals of origin, spread, and introgression in a large sample of maize landraces[END_REF] shown that maize was domesticated in a valley in Southwestern Mexico 9000 years ago from the wild species teosinte Zea mays ssp parviglumis. During its domestication, it went through strong phenotypic transformations due to strong selection of a number of genes [START_REF] Hufford | Comparative population genomics of maize domestication and improvement[END_REF]. From 1493, maize spread all over the world, reaching Europe in 1493 and Africa and Asia since 1496 [START_REF] Mir | Out of America: tracing the genetic footprints of the global diffusion of maize[END_REF]. Maize landraces were present in Europe long time before the broad cultivation of maize hybrids. They present a large range of morphological variation but all of them have flint kernel and white cob color [START_REF] Rebourg | Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation[END_REF]. Maize was introduced in Europe through two main roads (Tenaillon and Charcosset 2011) (Figure A1). The first introduction is due to Christopher Columbus who brought in Spain, in 1493, Caribbean maize from Hispaniola Island (presently the Dominican Republic and Haiti). Due to its climatic needs, its cultivation probably remained confined to Southern Spain [START_REF] Rebourg | Maize introduction into Europe: the history reviewed in the light of molecular data[END_REF]. A second introduction took place before 1539 from official or unofficial expeditions from Europe to the Northern American coast. It is at the origin of the presence of Northern flint maize in Germany and Northern Europe [START_REF] Dubreuil | More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements[END_REF]Tenaillon and Charcosset 2011). A third introduction in Italy probably took place in the XVI th century (Tenaillon and Charcosset 2011).

Consequently to these introductions, maize was widely cultivated in Europe in the late XVI th , early XVII th century, with less variability in Northern and Eastern Europe probably because of selection for tolerance to lower temperatures [START_REF] Rebourg | Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation[END_REF]. After these main introductions, a new maize genetic group was created from hybridization between maize from Southern Spain and maize from France and Germany in the Pyreneans mountains (Tenaillon and Charcosset 2011). Nowadays, European maize diversity represents around 75% of the American diversity (Tenaillon and Charcosset 2011).

Appendix 2: Expression of the phenotype of a hybrid between two unrelated populations

The following developments are based on [START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF]. Other expressions for GCA and SCA, based on the notation of [START_REF] Hayman | The theory and analysis of diallel crosses[END_REF], can be found in Charcosset and Essioux (1994).

Let us consider a biallelic locus presenting the alleles and , for a hybrid individual issued from the cross between two gametes, one issued from population 1 carried the allele and one issued from population 2 that carried allele . The allele is present in the population 1 at frequence and in the population 2 at frequence . The allele is present in the population 1 at frequence and in the population 2 at frequence , with + = 1 and + = 1.

The genotypic value associated to the hybrid can be written as:

= + + +
with the additive effect of the allele from the population 1, the additive effect of the allele from the population 2, the dominance deviation between the allele from the population 1 and the allele from the population 2, with = ; = . + corresponds to the additive genetic value of the considered hybrid.

The additive effect of one allele from one population corresponds to the average of the hybrid genotypes carrying the considered allele coming from the considered population. Additive effects can be expressed in function of a, d, and the frequencies of the alleles in the populations.

Thus, we have for the hybrid population:

! = " + # -: additive effect of the allele from population 1 $ = # -" -: additive effect of the allele from population 1 ! = " + # -: additive effect of the allele from population 2 $ = # -" -: additive effect of the allele from population 2 Substitution effects in each population can be defined as = ! -$ and = ! -$ Thus we have:

! = ; $ = - ; ! = ; $ = -
The dominance deviations for the hybrid individual can be written as following, depending of its genotype:

! ! = -2 # ; $ $ = -2 # ; $ ! = 2 # ; ! $ = 2 #.
We define the GCA of an individual from a population as the average of the value of its descendants when crossed to the other population. Thus, considering one locus, we have for the hybrid from the cross of a plant with genotype & from population 1 and a plant with genotype y from population 2: ' ( ) = + *+, -+ *+, . + /+, -.( ) , with the average of the hybrid population, *+, -the GCA of the genotype x from population 1 respectively to the population 2, *+, . the GCA of the genotype y from population 2 respectively to the population 1, /+, -.( ) the SCA between the two parental genotypes.

The GCA at one locus of an individual with genotype & = from population 1 relatively to population 2 is equal to *+, -= ( + ). For an individual with genotype = from population 2 relatively to population 1, it will be: *+, = ( + ).

Thus, we can write the GCA at the locus level of the individual from population 1 depending of its genotype &: *+,( ) = ! ; *+,( ) = ( ! + $ ) ; *+,( ) = $ . The GCA of an individual from the population 2 can be expressed in a similar way.

The general expression for SCA of the hybrid between the populations 1 and 2 at the gene level

is: /+,& = 0 ( + + + )
Then, SCA can be expressed depending of the genotype of the parental lines of the hybrid:

Individual from population 1 Individual from population 2 ! ! 1 2 ( ! ! + $ ! ) $ ! 1 2 ( ! ! + ! $ ) 1 4 ( ! ! + $ ! + ! $ + $ $ ) 1 2 ( $ $ + $ ! ) ! $ 1 2 ( $ $ + ! $ ) $ $
These expressions at the locus level can be extended at the multilocus level. Thus, GCAs involve biological additive effects (a), biological dominant effects (d) and additive x additive epistatic effects (interaction between two non-homologous genes) (not shown here for the epistatic effects). SCA does not involve biological additive effect but involves biological dominant effect (d) and epistatic effects (not shown here for the epistatic effects). SCA involves the three types of epistasis: additive x additive (between two non-homologous genes), additive

x dominance (between three genes: two homologous genes at one locus and one gene at the other locus) and dominance x dominance (between four genes: two homologous genes at one locus and two homologous genes at the other locus) (not shown here for the epistatic effects).

Allelic frequencies in the two populations have an impact on the GCAs and SCA values.

INTRODUCTION

Most traits of agronomic interest present a continuous variation resulting from the sum of the effects of various quantitative trait loci (QTL). Mapping these QTL is a first step towards elucidating their molecular nature and offers important application perspectives for markerassisted breeding. QTL mapping started in plants with segregating families derived from the cross of two inbred lines (Lander and Botstein 1989). However, such biparental designs address only a small portion of the diversity available (a maximum of two alleles can segregate at a

given QTL) and the accuracy of QTL positions is usually poor. To overcome these limitations, [START_REF] Rebai | Power of tests for QTL detection using replicated progenies derived from a diallel cross[END_REF] and Charcosset et al. (1994) proposed models for joint QTL detection in several biparental families connected to each other by the use of common parental lines. When the number of parents is less than the number of families, connections can be taken into account in the detection model to reduce the number of allelic effects to estimate. This increases power and accuracy of detection when QTL behave additively (see [START_REF] Blanc | Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize[END_REF].

However, such a model makes the assumption that each parental line carries a different allele, which limits its benefit when the number of parental lines is high relative to the number of families, a situation commonly encountered in breeding programs.

Recent advances in sequencing and genotyping technologies make it possible to genotype individuals for a large number of markers at reduced costs, so that one can expect to have markers closely linked to any QTL. This has paved the way towards association mapping, in which marker-trait associations are directly detected in populations composed of diverse inbred lines without the need to develop experimental segregating families. Association mapping, also often referred to as Linkage Disequilibrium (LD) mapping, has been widely used with success in the plant community (see for instance Bouchet et al. 2013 and[START_REF] Romay | Comprehensive genotyping of the USA national maize inbred seed bank[END_REF] for recent results of association mapping in maize). In this approach, it is important to use models accounting for potential underlying population structure and relatedness between individuals to prevent spurious QTL detection due to associations between loci that are not linked physically (Yu et al. 2006). As a consequence, the power to detect associations is low for causal polymorphisms correlated with the underlying population structure or when they are present in the population at a low frequency (Rincent et al. 2014). In addition, associations are generally tested at SNP (Single Nucleotide Polymorphism) markers which leads to the implicit assumption that the QTL are biallelic. These limitations can be alleviated by combining information coming from LD at the level of the parents and linkage within families, as first proposed for animal populations by Meuwissen and Goddard (2001). In this approach, referred to as Linkage Disequilibrium and Linkage Analysis (LDLA), dense genotyping of parents is used to detect identity by descent (IBD) at putative QTL, i.e. the fact that two individuals carry the same allele transmitted by a common ancestor. Different types of LDLA analyses have been proposed to account for the LD component. The simplest is to consider that parents carrying the same allele at a given marker are IBD (Yu et al. 2008;[START_REF] Liu | Comparison of biometrical approaches for QTL detection in multiple segregating families[END_REF] as done in association mapping. Haplotype based approaches also have been proposed to group parental alleles and tested by simulations (for instance [START_REF] Jansen | Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing[END_REF]Bink et al. 2012;Leroux et al. 2014).

Advantages of LDLA have been shown experimentally in maize notably by using the nested association mapping (NAM) design developed in the USA (Yu et al. 2008;McMullen et al. 2009). This design consists of 25 biparental recombinant inbred line (RIL) populations derived from the cross of the inbred B73 with 25 diverse lines representing the diversity of maize (tropical, temperate, sweet corn, and popcorn lines). This design was studied with a linkage analysis model (Buckler et al. 2009;Kump et al. 2011;[START_REF] Tian | Genome-wide association study of leaf architecture in the maize nested association mapping population[END_REF] where QTL effects were nested within each family and each parental line was assumed to carry a different allele, and with LDLA through a genome-wide association mapping model (Kump et al. 2011;[START_REF] Tian | Genome-wide association study of leaf architecture in the maize nested association mapping population[END_REF]) including allelic effects observed at individual SNP of the parents to identify IBD alleles. This design successfully led to the detection of numerous QTL and use of LDLA permitted in some cases to resolve QTL detection up to the gene level (Kump et al. 2011;[START_REF] Poland | Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize[END_REF][START_REF] Tian | Genome-wide association study of leaf architecture in the maize nested association mapping population[END_REF][START_REF] Cook | Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels[END_REF]. Recently, Bardol et al. (2013) applied the haplotype-based approach of Leroux et al. (2014) to detect QTL in two datasets coming from an applied maize (Zea mays L.) breeding program and compared it to models considering each parental allele as different (linkage model) or considering that parents carrying the same allele at a given marker are IBD. Results showed that when parental lines are all issued from the same breeding program and related by pedigree, LDLA models were more powerful than linkage approaches. Bardol et al. (2013) also showed that the different ways of modeling allelic variation (either using haplotypes or single marker information) had variable efficiencies depending on the QTL and trait considered and were therefore complementary. It is thus important to further evaluate the ability of diverse LDLA models to detect QTL in multiparental populations with different diversity levels.

The central line of the US NAM (B73) is too late flowering for evaluation in Northern Europe and founder lines cover a very broad range of geographical origins, including even later tropical materials. This prevents the evaluation of the whole design for productivity traits in Northern European conditions and due to diversity of the lines it is difficult to use a single tester to investigate hybrid values. To overcome these limitations and expand the genetic pool investigated in maize QTL mapping studies, two parallel complementary NAM designs were developed within the European project CornFed. Each was derived from inbred lines representing the main diversity available for breeding in each of the two major heterotic groups (dent and flint) used in Northern Europe. Both designs were genotyped with a 50k SNP array (Ganal et al. 2011) and genotyping information was used to build individual population maps (Bauer et al. 2013). The two NAM designs were crossed with the central line of the opposite group to produce hybrids, that were analyzed for traits related to biomass production as described in Lehermeier et al. (in press). Increasing biomass production is of key interest in Northern Europe where maize has been extensively used for decades for silage and more recently for bioenergy production. To our knowledge no QTL mapping experiment has been carried out so far for traits related to biomass production in multi-parental design assembling such large diversity. Note that both hybrid designs address variation compared to the same hypothetical reference hybrid (the one produced by crossing the two central lines), with each experimental hybrid of each group sharing on average 75% of its genome with the reference hybrid. In this context, effects of all segregating genotypes at a QTL (11 on the dent side and 12 on the flint side) are compared to a same genotype (having received alleles from two central lines). This makes this design particularly adapted for deciphering loci involved in genetic variation on the dent and flint sides for productivity traits.

The present study aimed at comparing different methods of QTL detection in these two

European NAM designs for five traits of agronomical interest for biomass production in maize:

whole plant dry matter yield, whole plant dry matter content at harvest, female flowering, male flowering and plant height. We compared a linkage approach with two LDLA approaches either considering haplotypic IBD or single marker groupings. This allowed us to investigate the performance of the different LDLA approaches in two complementary heterotic groups in a more diverse context than a simple breeding program. A second important objective of this work was to compare the results of QTL detection conducted separately in the two heterotic groups or jointly for the whole design, in order to better understand the contribution of each group to trait variation..

MATERIAL AND METHODS

Plant material and phenotypic analysis

Two maize NAM designs composed of half-sib families from the two major heterotic groups (dent and flint) used for breeding in Europe were analyzed. The two designs are described in Bauer et al. (2013). In short, the dent and flint designs were respectively composed of 10 and 11 doubled haploid (DH) families, derived from the cross of respectively 10 and 11 diverse founder lines with a common central line: F353 for the dent and UH007 for the flint. F353 and UH007 represent very promising European lines created by public institutes in their respective heterotic groups. The parental lines were chosen to cover the diversity available within the two groups with a combination of ancestral and more recent material. From each cross, DH lines were generated resulting in 919 lines for the dent and 1009 for the flint (Bauer et al. 2013) (Table S1). For phenotypic evaluation (see below), the segregating DH lines of a given group

were crossed with the central line of the other group. 841 hybrids were produced for the dent group and 811 for the flint group (Lehermeier et al. in press) (Table S1). The number of dent lines for which test-crossed progenies were phenotyped per family was 84 on average and varied between 53 and 104, depending on the family. For the flint group, the number of DH lines per family that were phenotyped for test-cross values ranged from 17 to 133 with an average of 73. As the hybrids of each group were obtained by crossing DH lines with the central line of the other group, all the hybrids shared a large proportion of their genome and were expected to be heterozygotes F353 / UH007 for 50% of their genome. Hybrids were evaluated in 2011 in four (dent) and six (flint) European locations. Five traits were considered: biomass dry matter yield (DMY, decitons per hectare, dt.ha -1 ) at the whole plant level, whole plant dry matter content (DMC, %) at harvest, days to tasseling (DtTAS, in days, d), and days to silking (DtSILK, in days, d) measured as the number of days from sowing until tasseling and silking, respectively. Field trial design is described in Lehermeier et al. (in press. Individual field plot measures were analyzed (Lehermeier et al. in press) to compute for each hybrid the adjusted means over the different trials that were used in this study.

Genotyping and analysis of genotypic data

The 1,928 DH lines and the 23 parental lines were genotyped with the Illumina® MaizeSNP50

BeadChip containing 56,110 SNPs (Ganal et al. 2011a). Markers with a call frequency < 0.9, a GenTrainScore < 0.7, a minor allele frequency (MAF) < 0.01, or more than 10% missing values were discarded as in Lehermeier et al. (in press).

Consensus maps for the flint and the dent multi-populations were obtained following the same procedure. We considered for each consensus map the list of markers present in at least one of the 10 dent individual maps (respectively 11 flint individual maps) from Bauer et al. (2013).

The flint DH family resulting from the cross of EP44 and UH007 was not used due to small population size. For each marker of this list and for each individual genetic map, we computed the relative genetic position of this marker in this map by starting from its physical coordinate on the B73 genome assembly and converting it into a genetic coordinate with the spline smoothing interpolating procedure described in Bauer et al. (2013). These genetic coordinates were then normalized between zero and one to obtain relative genetic positions. For the present study, each consensus map was built by computing the consensus relative genetic position of each marker as the average of its relative genetic positions in all individual maps involved, weighted by the numbers of individuals in the corresponding populations. Finally, the consensus genetic coordinate of each marker was obtained by multiplying its consensus relative genetic position by the genetic length of the consensus map, taken as the average of the genetic lengths of all maps, weighted by the numbers of individuals in the corresponding populations.

The two consensus maps obtained are available at Maize GDB (MaizeGDB data record). A consensus map for the dent and flint multi-populations was built with the same procedure.

For the QTL detection we only considered in the analysis the PANZEA markers which were mapped on the consensus maps. PANZEA markers result from the alignment of sequences coming from resequencing data of the 27 lines used as parents of the US NAM design (McMullen et al. 2009) and mapped against the B73 genome v2 [START_REF] Gore | A first-generation haplotype map of maize[END_REF]). We discarded the other markers, mainly defined by comparing the sequences of the inbred lines B73 and Mo17, as they are known to create an ascertainment bias in diversity analyses (Ganal et al. 2011;[START_REF] Frascaroli | Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs[END_REF].The dent and flint consensus genetics maps obtained were composed of respectively 21,878 and 20,406 PANZEA markers, corresponding respectively to 6,808 and 7,272 genetic positions on the consensus maps. The dent-flint consensus map was composed of 25,472 PANZEA markers, corresponding to 8,124 genetic positions (Table 1).

Clustering analysis of parental inbred lines

Clustering of the parental inbred lines was carried out with the R package "clusthaplo" (Leroux et al. 2014), separately on the dent and flint parents. This clustering was based on genomic similarities computed between each pair of individuals in a sliding window along the genome.

In order to get insight into the length of the sliding window to use, we evaluated how fast LD between pairs of markers decays with the genetic distance. LD between pairs of markers was estimated for the 11 dent founder lines and for the 12 flint founder lines, according to [START_REF] Hill | Linkage disequilibrium in finite populations[END_REF] and Weir model (1988). The choice of the sliding window size was based on the LD decay observed in the dent and flint material considering the length in genetic distance needed to reach an r² below 0.2. Two values were chosen, 2 cM and 5 cM, each based on the LD decay observed for the flint and dent group, respectively. For facilitating comparisons between results obtained in the two groups, the clustering was carried out in each group using the two window sizes.

For each window size at each genotyped position, the similarity score between two parental lines and at a position 2 (center of the window) was calculated according to the formula described in Leroux et al. (2014) and used in Bardol et al. (2013). This formula is adapted from [START_REF] Li | Haplotype-based linkage disequilibrium mapping via direct data mining[END_REF] and combined the number of alleles alike-in-state between the two lines inside the sliding window and the length of their longest common segment centered on 2. Based on the similarity score curves obtained along each chromosome, a hidden Markov model (HMM) was used to determine at each position t if the two lines were similar and thus carried the same ancestral allele or not. After the clustering process, the number of ancestral alleles per position was plotted along chromosomes. We also computed similarities between inbred lines as the percentage of ancestral alleles shared over the genome and compared them with the similarities obtained from the SNP markers. A graphical representation of these similarities and a classification of the parental lines were carried out using the "heatmap" function in R (R Core Team 2013).

QTL detection

Analyses were first performed separately for each trait on the dent and flint multi-family designs, using their respective consensus map. Four statistical models were tested: one based on linkage analysis and three others combining linkage and LD information. All the models were multi-locus models in which the significance of each QTL was tested conditional on the inclusion of other QTL positions used as cofactors.

The first model corresponded to a conventional multi-family connected model. This model considered the connections between families through the sharing of the central inbred line and relied on the assumptions that each parental inbred line carried a different QTL allele and that each allelic effect was independent of the family: = 3 . + 5 6 . " 6 + 7 5 8 8 96

. " 8 + :

where was the vector (; × 1) of the adjusted phenotypic means of the ; individuals of the dataset, 3 was a (; × =) matrix of 0 and 1 that linked each individual to the family it belonged to with = being the total number of families, was the column vector (= × 1) of family means, 5 6 and 5 8 were (; × >) matrices with > being the number of parents. Each element (ranging from 0 to 2) of these matrices corresponded to the expected number of alleles of the parent ? at QTL and cofactor @ for each individual, according to the genotyping information at the position of q and c when this information was available (i.e. when these positions correspond to markers polymorphic in the population the individual belong to) or at flanking markers otherwise. " 6 and " 8 were the column vectors (> × 1) of the additive intra-family effects associated with QTL and cofactor @, respectively. : was a column vector (; × 1) of the residuals of the model. This model will be further referred to as "connected". Note that this model is close to the "joint inclusive composite interval mapping" (JCIM) model proposed by Buckler et al. (2009) and used on the US NAM design.

The second and third models were LDLA multi-family connected models which used the results of the clustering of parental alleles carried out with "clusthaplo": = 3 . + 5 6 . A 6 . ℎ 6 + 7 5 8 8 96

. A 8 . ℎ 8 + :

where , 3, , 5 6 , 5 8 and : were the same as described as in the previous model. A 6 and A 8

were (> × , 6 ) and (> × , 8 ) matrices with , 6 and , 8 being the number of ancestral alleles at QTL and cofactor @. Each element (0 or 1) of these matrices linked the parental alleles at QTL and cofactor @ to the ancestral alleles identified by the clustering approach. ℎ 6 and ℎ 8

were column vectors (, 6 × 1) and (, 8 × 1) of the additive effects of the ancestral alleles associated with QTL and cofactor @. Two models were considered, one based on the clustering approach using a window size of 2cM and further referred to as "LDLA -2 cM", and one based on the clustering approach using a window size of 5 cM and further referred to as "LDLA -5 cM".

QTL detection using the three models described above were performed using the MCQTL_LD software (Jourjon et al. 2005) using an iterative composite interval QTL mapping method (iQTLm) (Charcosset et al. 2000). For these models, genotypic information of markers located at the same position of the consensus genetic map, was concatenated to indicate which parental allele was transmitted. For missing data, MCQTL_LD software estimated the probability of transmission of each parental allele based on the information of flanking markers. At each tested position, the presence of a QTL was assessed based on the -log10 of the Fisher test p-value (-log10(p-value)). Thresholds for considering a QTL as significant were computed for each trait and each dataset using 5,000 intra-family permutations of the phenotypes for a type I risk of 10% across all families and total genome. In the iQTLm approach, the initial set of cofactors was chosen using a multiple regression with a forward selection of marker positions with a threshold equal to 80% of the QTL significance threshold value. At the end of the detection process, for the conventional connected model, confidence intervals at 95% were estimated on the basis of a 1 LOD unit fall. The confidence intervals were not estimated for the LDLA models as there is no established method proposed for these models.

The fourth model, referred to as single marker LDLA model ("LDLA -1-marker"), considered that two parental lines carrying the same allele at a marker were IBD for this marker:

= 3 . + C 6 . D 6 + 7 C 8 8 96
. D 8 + :

, 3, and : were as described in the previous model. C 6 and C 8 were (; × 2) matrices whose elements (0 or 1) corresponded to the genotyping information at QTL and cofactor @ for each individual. D 6 and D 8 were column vectors (2 × 1) of the additive effects of marker alleles associated with QTL and cofactor @. This model can be viewed as a multi-locus genome-wide association study with population structure controlled by family membership. It is equivalent to the association mapping model used to analyze the US NAM design (Yu et al. 2008;[START_REF] Tian | Genome-wide association study of leaf architecture in the maize nested association mapping population[END_REF]Kump et al. 2011) except that in our model dense marker genotyping information is directly available for the progenies and does not need to be inferred from the parental genotypes.

The analysis with the fourth model was performed in R (R Core Team 2013) using an R-script derived from the one used for the multi-locus mixed model approach presented in Segura et al. (2012). We used a multi-locus forward-backward stepwise linear regression model and selected the most appropriate model using the extended Bayesian information criterion (Segura et al. 2012). Loci of the selected model which had p-values below the Bonferroni threshold for a genome-wide risk of 10% were considered as QTL. For this model, imputation of the genotyping data for marker with missing data was done using the software BEAGLE (Browning and Browning 2009) family by family. Even if we considered the same type I error risk at the genome level than for other models, the threshold used for the LDLA -1-marker model was not obtained by permutations and is possibly more conservative compared to other models.

Analyses were then performed jointly for each trait on the two designs using the dent-flint consensus map. The model used corresponded to a conventional multi-family connected model except that all the dent and flint families were considered jointly. As the central line of the dent is used as tester in the flint design and reciprocally, the F353-UH007 genotype segregates against an alternative genotype in each population. This enabled us to connect allelic effects estimated in the two designs. QTL detection was performed using the MCQTL_LD software (Jourjon et al. 2005) following the same procedure as group specific QTL detection. Thresholds for considering a QTL as significant were computed for the joint dataset for each trait using 5,000 intra-family permutations of the phenotypes for a type I risk of 10% across all families and total genome. To test whether effects were significant in a single group or in both groups, the effects of the QTL detected in the joint analysis were tested in each of the separate datasets.

They were considered as significant if the -log10 of the Fisher test p-value was above the thresholds of the studied trait in the separate dataset (estimated with the dent or flint consensus maps, respectively).

For each analysis, variances explained by each QTL (partial E FGH ) were defined as the ratio between the sum of squares associated with the QTL effect in the model including the other detected QTL, and the residual sums of squares of a linear model considering only the family effects. Total percentage of variance explained by the detected QTL (E IJIKL ) was defined as the ratio between the sum of squares of all the detected QTL, and the residual sums of squares of a linear model considering only the effects of the families. All the E were adjusted by the number of degrees of freedom of the considered models [START_REF] Charcosset | Estimation of the contribution of quantitative trait loci (QTL to the variance of a quantitative trait by means of genetic markers[END_REF].

Differences in effects among pairs of alleles at a given QTL was tested a posteriori using a ttest (α=5%). For facilitating comparisons between models and the interpretation of the QTL results, the allelic effect of the central lines were set to zero and the other allelic effects were estimated accordingly.

Comparison of the positions of the QTL detected separately in the two groups and in the joint analysis was based on the results of the connected model. QTL detected in each separate group and on the joint dataset were projected on the dent-flint consensus map using BioMercator V4.2 [START_REF] Sosnowski | BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms[END_REF]. A QTL was considered common for a trait when the confidence intervals of the QTL after projection were overlapping.

RESULTS

Analysis of parental linkage disequilibrium and parental clustering

The average genetic distance to reach a LD below r 2 =0.2 was 1.2 and 0.65 cM for the dent and flint groups, respectively (Table 1). This distance varied according to the chromosome between 0.45 cM (chromosome 5) and 2.51 cM (chromosome 2) for the dent group, and 0.35 cM (chromosome 5) and 0.76 cM (chromosomes 1, 7, 9, 10) for the flint group. The two different sliding window sizes that we considered for computing the similarity score with "clusthaplo" approximately correspond to two times the distance beyond which LD becomes negligible for all the chromosomes. Note that 2 cM was the minimum window size that we could consider since the HMM based clustering approach did not converge for smaller window sizes.

The 5 cM sliding window size led to a higher number of ancestral alleles than the 2 cM one for the two designs. For dent, the average number of ancestral alleles along the genome was 5.6 per genetic position for the 2 cM sliding window size and 6.5 for the 5 cM window. For flint, the average number of ancestral alleles was 5.9 per genetic position for the 2 cM sliding window size and 7.2 for the 5 cM window. It has to be noted that the number of ancestral alleles varied along the genome. For both window sizes, clustering was more important in telomeric than in centromeric regions, where quite often the number of ancestral alleles equaled the number of parental lines (Figure 1).

For both sliding window sizes, similarities between the parental inbred lines estimated based on ancestral alleles sharing showed a structured pattern (Figure 2). Within the dent group, pairs of lines involving (i) UH250, D09 and D06 and (ii) F353 and UH304 shared the same ancestral alleles for more than 47% of the genetic positions for both sizes of sliding window. In the flint group, with the 5cM window, closest pairs of lines involved UH006, UH007 and UH009. With the 2 cM window size, this expanded to F03802, D152 and F2. The classifications of parental lines based on single markers were globally consistent with those based on ancestral alleles, at least for grouping the most similar lines. Only positions of inbred lines which showed low levels of similarities with the other lines slightly changed in the dendrogram depending on the allele definition considered. In the dent group, three related lines UH250, D09, and D06 are clearly separated from a non structured group among which only F353 (the central line of the dent design) and UH304 were related. In the flint group, similarities separated a sub-group composed of F64, EC49A, EZ5, and EP44 from the other lines that appeared to be more closely related to each other. In this sub-group, UH009 and UH006 are both related to UH007, the central line of the flint design.

Comparison of the thresholds used in the QTL detection models

For the separate datasets analyses, threshold values (-log10(p-value)) were higher for the LDLA models than for the linkage model (Table S2). For LDLA models, the threshold increased as the size of the considered window decreased. This suggests that reducing the size of the window decreases the dependence between tests. For every model, threshold values were lower for DMC and higher for DtSILK and DtTAS (except for the conventional connected model for the flint group). This might be due to heterogeneity of within family variances for some traits.

For instance, for DtSILK, for the dent dataset, genetic variances varied from 0.95 to 4.93 (see Lehermeier et al. in press for an estimation of these variances). Like for the separate datasets thresholds, for the joint dataset, threshold values for the connected model were lower for DMC and higher for DtSILK and DtTAS.

Comparison of the QTL detected with the different models in the dent and flint designs

For a given trait and group, the number of detected QTL varied according to the model (Table 2, Table S3, Table S4, Table S5, Table S6, Table S7, Table S8, Table S9 and Table S10). Between 5 (for DMY with LDLA -5 cM and LDLA -1-marker models) and 16 (for DMC with LDLA -2cM model) QTL were detected in the dent design and between 7 (for DMC with LDLA -1marker model) and 16 QTL (for DtSILK and DtTAS with LDLA -1-marker model) in the flint design.

For the dent group, the LDLA -1-marker model detected fewer QTL over all traits (45 QTL in total) and explained the smaller percentage of variance (33.8% on average). In this group, the LDLA models using "clusthaplo" information detected more QTL (56 in total for the LDLA -5 cM, 55 for the LDLA -2 cM) than the conventional connected model (52 QTL in total). This advantage of the LDLA models in terms of number of QTL detected was found for DMC, DtSILK, and DtTAS. On the contrary, for DMY and PH the connected model detected more QTL. Even if more QTL were detected on average with the LDLA models, the connected model explained a higher percentage of variance (46.9%) than the other models.

For the flint group, the LDLA -1-marker model detected more QTL (59 QTL in total) but explained a smaller percentage of variance (47.3% on average) than the other models. In this group, the conventional connected model detected the smallest number of QTL (55 in total).

The LDLA models using "clusthaplo" information detected an intermediate number of QTL ( 58and 56 for the LDLA -5 cM and LDLA -2 cM models, respectively). The ranking of the models in terms of number of detected QTL varied depending on the trait. For instance, the two LDLA models using "clusthaplo" information detected more QTL than the conventional connected model for DtTAS, PH, DMC (with the LDLA -5 cM model only), and for DMY (with the LDLA -2 cM model only). For the flowering traits, the LDLA -1-marker model detected more QTL than the other models. As for the dent group, the connected model explained a higher percentage of variance (56.3%) compared to the other models even if it did not detect a higher number of QTL.

One can note that the -log10(p-values) curves showed relatively noisy patterns along the genome, especially for the LDLA models (Figure 3, Figure S1, Figure S2, Figure S3, Figure S4). However, curves displaying evolution of -log10(p-values) along the genome were globally highly consistent across models and all models detected the same major QTL (Figure 3, Figure S1, Figure S2, Figure S3, Figure S4). This was true even in cases when they detected a different number of QTL on the same chromosome. For instance, in the flint design, for DMC, all models detected a major QTL at 45 -46 cM on chromosome 10 but two models detected other QTL in the region without challenging the position of the major QTL: the LDLA -2 cM model at 69.9 cM and the LDLA -1-marker model at 68.9 cM (Figure S1, Table S3, Table S4, Table S5, Table S6).

Considering the QTL which were detected by different models, the ranking of the models according to their -log10(p-value) varied with the QTL. For instance, for the QTL detected with all models for DtSILK in the dent group at 70 -74 cM on chromosome 6, the highest -log10(p-value) was found with the LDLA -2 cM model (17.5) and the lowest with the connected model (13) (Figure 3). On the contrary, for the QTL detected with all models for DMY in the dent group on chromosome 6 at 14 -17 cM, the highest -log10(p-value) was found with the connected model (14.9) (Figure S2, Table S7) and the lowest with the LDLA -2 cM model (13.3) (Table S9). which had the earliest allele with the LDLA -5cM model. Note that the family derived from this parent was one of the smallest of the design. The LDLA -1-marker model detected two QTL in this region: one at position 45.9 cM (close to the position of the QTL found with the other models) and one, of smaller effect, 7 cM apart at the position 38.6 cM. For the marker detected at position 45.9 cM, the late allele (2.44d) was shared by F283, DK105 and UH006, which also carried the latest alleles according to the other models. All the other lines shared the same early allele (0d). For the marker detected at position 38.6 cM, the late allele (1.1 d) was shared by DK105, F283 (the lines carrying the latest alleles in the other models), EC49A, and F64 (which carried alleles classified as intermediate). All the other lines shared the early allele (0 d). So, when considered jointly, these two markers account for the allelic series observed for the QTL detected with the other models: DK105 and F283 carrying the late alleles at the two markers; UH006 carrying the late allele for the marker with the strongest effect and the early allele for the other marker; EC49A and F64 carrying the late allele at the marker with the smallest effect and the early allele for the other one, and D152, UH009, F2, UH007, and F03802 carrying at both markers the early alleles. The two QTL detected with the LDLA -1-marker model individually explained 2.2% and 11.1% of the variance for the marker at positions 38.6 and 45.9 cM, respectively, but they jointly explained 26.8% of the variance, only slightly less than the variance explained by the QTL detected with the other models (between 27.5 and 28.2%).

Allelic effect series and comparison

The allelic effects of the DtSILK QTL detected in the dent group, on chromosome 8 at 45 -58 cM also clearly showed an allelic series and the same type of pattern (Figure 5). With the connected model, allelic effects showed a continuous variation and at least two classes of alleles could be identified. Four inbred lines (D06, D09, UH250, and F618) carried early alleles compared to the group consisting of F353 (central line), EC169, and Mo17. The other parental alleles were not clearly classified but had intermediate effects. In this chromosome region, the two LDLA models based on ancestral allele clustering both identified a QTL. With both window sizes D06, D09, and UH250 which carried the earliest alleles in the connected model, were attributed to the same ancestral allele with an early effect (-1.77 with LDLA -5 cM and -1.76 with LDLA -2 cM compared to F353). Mo17, EC169 (the two lines with latest allelic effects in the connected model), UH304, and F353 were attributed to the same or to different ancestral alleles depending on the window size but in both cases their allelic effects were equal or close to zero. With these models, B73 was attributed the latest effect (0.4 or 0.49) but this effect was not significantly different from zero. The other lines had allelic effects consistent with the effects estimated with the connected model. Two QTL were detected in this region with the LDLA -1-marker model: one at 45.5 cM and the other at 57.3 cM, on either side of the QTL detected with the other models. D06, D09 and UH250 which carried the earliest allele of the connected model and were attributed to the same early ancestral allele with LDLA-2cM

and LDLA-5cM models, carried the early allele at both QTL. Mo17, EC169, B73 and F353, the lines with the latest allelic effects with the other models, carried the late allele at both QTL.

The other lines, which had intermediate allelic effects with the other models, carried the late allele at one QTL and the early allele at the other QTL. Thus, marker effects at these two QTL jointly mimic the allelic series identified by the other models. The two QTL detected with the LDLA -1-marker individually explained 1.5 and 2.9% of the variance but they jointly explained 7.9% of the variance, which is only slightly less than the other models (8.9% for the LDLA -5 cM and LDLA -2 cM models, and 9.6% for the connected model).

Comparison of the QTL detected in the two heterotic groups analyzed individually and jointly

In total, for the connected model, 52 QTL were detected in the dent design for all traits and 55 in the flint design (Table 2). More QTL were found in the dent than in the flint design for DMC and PH, whereas the reverse was observed for DtSILK, DtTAS, and DMY.

Based on overlap of their confidence intervals, when comparing results obtained in the two separate datasets only seven QTL were common between the two groups. Two of these QTL were for DMC (chromosomes 8 and 10), three for DtSILK (chromosomes 1, 2 and 3), one for DtTAS (chromosome 3), and one for PH (chromosome 1). No common QTL were found for DMY. In addition, some chromosome regions carried QTL detected in the two groups but not for the same trait (Figure 6).

The distribution of QTL effects (in terms of R²) differed in the two groups (Figure 7). In the dent group, all the QTL had low to medium effect (R²< 10%). The QTL with the biggest effect was detected on chromosome 3 at 63 cM for DtTAS and explained 10.4% of the variance (Table S7). A QTL was also detected at this position for DMC but with a smaller effect. The second biggest QTL was detected on chromosome 8 at position 50 cM for DtSILK and explained 9.4% of the genetic variance. This region was also detected for the other traits but with smaller effects.

On the contrary, in the flint group, one region located on chromosome 10 around position 44 -50 cM showed a major effect on all the traits (Table S3). Depending on the trait considered this region explained between 14% of the variation for DMY and 27.5% for DtSILK. All the other QTL detected in this group showed milder effects with R² <10%. It is interesting to note that the QTL which exhibited a strong effect in one group (the QTL detected on chromosome 10 in the flint group and the QTL detected on chromosome 3 and 8 in the dent group) did not have such a strong effect in the other group for the same traits.

87 QTL were detected in total with the joint analysis, which is less than the sum of the QTL found in the two separate datasets (107) (Table 2, Table S11). For each trait, the number of QTL detected with the joint analysis was equal or superior to that detected in each single dataset analysis. For DMC and PH, QTL detected with the joint analysis explained a larger fraction of variance than the one explained in the separate datasets analysis. On the contrary, for DMY, DTSILK and DtTAS, more variance was explained in the flint dataset analysis than in the joint analysis.

QTL found in the joint analysis were generally found at the same position or close to QTL detected in one or both separate analyses (Figure 6). In some cases, they were detected between two QTL detected in a single dataset analysis (for instance QTL on chromosome 5 for DtSILK), or between one QTL detected in the dent dataset and one detected in the flint dataset (QTL at 130 cM on chromosome 2 for DMC). In some cases, no QTL was detected with the joint analysis although QTL were detected in the separate datasets (for instance flint QTL at 9 cM on chromosome 1 or dent QTL on chromosome 2 for DtTAS). Other QTL were detected only with the joint analysis (and not close to or between two QTL detected with the separate analysis), as the one detected for DMC on chromosome 7.

When testing the effects of these 87 QTL in the separate datasets, 30 were significant in both datasets, 52 in a single dataset only and five in none of the datasets (Table 3). So the number of QTL with effect in both dataset varied between 27% for DtSILK to 41% for DtTAS.

Concerning the seven QTL found common when comparing the dent and flint separate analyses, the joint analysis always found a QTL in the region nearby (not necessarily with overlapping of the confidence regions but really close). Except for the QTL found on chromosome 2 for DtSILK, these QTL were significant in both groups.

DISCUSSION

Our study aimed at comparing genetic determinism of biomass related traits in two et al. (2014) and Bardol et al. (2013). In addition data of the two designs were analyzed jointly with the connected model, considering that the central line of one design was used as tester in the other design and reciprocally.

Linkage disequilibrium and clustering of parental alleles

The haplotype clustering approach of Leroux et al. (2014) requires the definition of a window size according to genetic map units (cM). We defined it based on the estimation of the LD extent at the level of the parental lines. This showed that LD decreased below r 2 =0.2 after approximately 1 cM and 2 cM in the flint and dent parental lines, respectively. Although estimated with only 11 and 12 inbred lines, for the dent and flint group respectively, these values were consistent with the LD extent observed for these groups by van Inghelandt et al.

(2011). Based on this result, we considered two window sizes for the parental clustering, one of 2 cM, more adapted to the flint group and one of 5 cM, more adapted to the dent group. Note that a 1 cM window was also considered but the HMM approach did not converge with the R version we used for this study. These values are smaller than the 10 cM window size used in Bardol et al. (2013) to analyze a multi-parental design derived from highly related founders.

In both flint and dent groups, the clustering process identified on average six and seven ancestral alleles per position for the 2 cM and 5 cM window sizes, respectively. The percentage of genome detected as IBD was in agreement with the marker-based similarities between inbred line pairs and pedigree information. These results showed that among dent lines, there were two groups of related lines: (i) D09, D06, and UH250, which came from the breeding program of the University of Hohenheim, and (ii) UH304 and F353, which share a common Iodent background (Bauer et al., 2013). For the flint, there was a separation between EC49A, EZ5, EP44 (the three lines with Spanish origin), and F64 (Argentinean origin) and all the other lines.

The number of ancestral alleles detected after clustering with "clusthaplo" varied along the genome, first at the local level from one position to the next. This results in a variation in model dimension along the genome that certainly explains the erratic pattern of the -log(p-values) curves of the LDLA models (see below). Beyond this local variation we observed that on average more ancestral alleles were detected in the centromeric than in the telomeric regions.

This result is probably related to the higher number of marker loci per cM in centromeric regions than in telomeric ones. It may be also related to a higher divergence between lines in centromeric regions. The similarity score used in "clusthaplo" is expected to be robust against the difference of marker density inside the sliding windows (Leroux et al. 2014). Our results

suggest however that we reached here limits in this robustness. As most of the lines were not closely related, the size of IBD segments was expected to be limited, which made them difficult to detect. Visual inspection of the graphs of IBD segments (results not shown) indeed revealed that the segments were in general shorter than in Bardol et al. (2013) except for related lines such as D06 and D09. The method implemented in the "clusthaplo" software should therefore be adapted to cope with more diverse sets of lines than the one considered in Leroux et al. (2014), possibly by reducing window sizes in regions of the genome where marker density is high and local LD is low relative to the genetic map.

Adapting the method to cope with populations with limited LD also raises issues regarding the genetic map to be considered for the clustering process. Bauer et al (2013) showed that even if the individual maps of the families of a given group had globally consistent order, putative inversions were found in some areas. This is in agreement with recent studies which showed copy number variations [START_REF] Springer | Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content[END_REF][START_REF] Swanson-Wagner | Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor[END_REF], chromosomal inversions or translocations between the different maize lines. Ganal et al. (2011) also suggested that some regions of the physical map of B73 v2 are not correctly assembled. This may have affected our consensus maps since information from the physical map was used for positioning the markers and this may have affected the clustering process. It appears thus important to further evaluate the properties of the clustering approach when using denser genotyping data and also evaluate its potential interest in the context of the rapid emergence of sequencing data that may enable a more direct identification of conserved haplotypes between inbred lines.

Comparison of the different QTL detection models

The highest total number of QTL was detected by one of the three LDLA models in both designs. We noted however different trends for the two designs. For the dent, LDLA -2 cM and LDLA -5 cM detected very similar numbers of QTL (55 and 56, respectively), more than for both the connected and LDLA -1-marker models (52 and 45, respectively). Note that Bardol et al. (2013) also found that in an elite dent breeding pool, the LDLA method based on ancestral alleles detected on average more QTL than the LDLA -1-marker model. Our results suggest that the genotyping data and window sizes used for "clusthaplo" were well suited for LDLA models for the dent design. For the flint design, the connected model detected fewer QTL (55) than the LDLA -5 cM, the LDLA -2 cM and the 1-marker model (58, 56 and 59 respectively), but differences between models were small on average This suggests that the the available density of genotyping data and/or window size we could use with the HMM approach were not necessarily optimal for this design. Interestingly, although the connected model was globally outperformed by LDLA models in terms of number of QTL detected, it explained a higher percentage of variance than the other models for nearly all the traits. Conversely, the LDLA -1-marker model explained a smaller percentage of variance even when detecting more QTL. As the estimations of the percentages of variation explained were adjusted for the number of parameters, this cannot be due to model over fitting. One can thus hypothesize that a large part of the QTL showed allelic series that are not completely accounted for by local similarities or single marker-information. This is consistent with [START_REF] Würschum | Comparison of biometrical models for joint linkage association mapping[END_REF] who compared by simulation different models for joint linkage association mapping. They concluded that, even if the single SNP model was more powerful in terms of detection, the model considering one allele per parent was better adapted to estimate QTL effects in case of multi-allelic series, corroborating experimental results of [START_REF] Liu | Association mapping in an elite maize breeding population[END_REF].

Globally, LDLA models and linkage analysis detected QTL in the same chromosome regions although fine comparison of QTL positions was complicated by the relatively noisy pattern of the LDLA -log10(p-value) curves. We noted that the number of QTL in a given genomic region could either be the same or vary across models. In cases when a single QTL position is detected by all models, one can assume that variation is most likely due to a single QTL with two alleles well reflected by a single biallelic marker. On the opposite, a variable number of QTL across models suggests a more complex situation with linkage between several QTL or allelic series at a single QTL. This can be exemplified by the DtSILK QTL detected on chromosome 8 in the dent design. In this region, the LDLA -1-marker model detected two QTL 12 cM apart and located on both sides of the single QTL detected with the connected model. This suggests that either the two marker loci were needed to account for the allelic series at a single QTL or conversely that the connected model failed at distinguishing the two underlying QTL due to limited recombination in DH families.

The different models thus showed variable efficiency depending on the trait and region considered, which highlights complementarities of different allele coding methods in deciphering allelic series in genetic studies.

Comparison between the QTL detected in the two heterotic groups and evolutionary interpretation

Similar numbers of QTL were detected in the two groups with the separate dataset analyses,

showing that both can contribute genetic variation useful for breeding in Northern Europe. Less than 15% of the QTL were common between the dent and flint design when comparing the positions of the QTL detected in the separate dataset analyses. This is consistent with the long time divergence between the dent and flint heterotic groups: more than 500 years (Tenaillon and Charcosset 2011). Part of this low value can be due to power issues. Indeed the joint analysis enabled us to detect additional QTL compared to single group analysis and among the detected QTL with the joint analysis, 34% on average were significant in both groups. However, some QTL detected in individual designs disappeared in the joint analysis which suggests that they were really specific of one group and that variation within the other group diminished power at these QTL in the joint analysis. Some of the QTL detected in the joint analysis were found at an intermediate position between the positions of design specific QTL. This may correspond to a gain in precision but one cannot exclude that these QTL might also correspond to an artifact "ghost" QTL between actual QTL.

Note that in addition to the common QTL, some chromosome regions had an effect in both designs but for different traits. These QTL could be pleiotropic QTL for which effects on some traits were not detected in one of the designs, due to a lack of power, diversity, etc.

When comparing the single dataset analyses, QTL common to flint and dent designs were observed for DMC, DTSILK, DtTAS and PH. It is interesting to note that no common QTL was observed for DMY. With the joint analysis, a smaller percentage of QTL significant in both datasets was for DtSILK and DMY (27% and 31%, respectively), than for the other traits (33% for DMC to 41% for DtTAS). For traits subjected to directional selection such as DMY, several alleles must have been fixed over time but there is no reason that the same alleles were fixed in both groups, especially considering that selection for hybrid value certainly favored fixation of complementary alleles in each group (Larièpe et al. 2012;Schön et al. 2010). This may explain why only few common QTL or QTL significant in both groups were detected for DMY. On the contrary, for traits for which a stabilizing selection is performed, the same polymorphisms are more likely to be maintained in both groups. This is the case for PH, DtTAS and also indirectly for DMC since DMC at harvest of a genotype depends on its precocity and its drying speed.

Interestingly, common DMC QTL between groups and most of the DMC QTL detected with the joint analysis and significant in both datasets were detected in regions also carrying QTL for flowering time (DtSILK or DtTAS).

The few common QTL between dent and flint groups that we detected could explain the low predictive abilities of the prediction between dent and flint in genomic selection (Meuwissen et al. 2001;Jannink et al.2010) when dent are in the estimation set and flint in the test set and vice versa (Lehermeier et al. in press). The presence of a major effect QTL in the flint group might also partly explain this result.

Overview of detected QTL and comparison with literature studies

For the single dataset analyses, between 20 QTL for DMY and 28 QTL for DtSILK were detected in total over the two groups when considering the model which detected the highest number of QTL. For the joint analysis, between 15 QTL for DtSILK and 21 QTL for PH were detected.

For DtSILK, although high, the number of detected QTL is less than the one reported for the US NAM design (39 QTL detected with the multiple family joint stepwise model, 52 with JCIM) (Buckler et al 2009; [START_REF] Li | Joint QTL linkage mapping for multiple-cross mating design sharing one common parent[END_REF]. This is also less than the total number of QTL estimated through meta-analysis for flowering time (62 and 59 in [START_REF] Chardon | Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[END_REF]Salvi et al. 2009, respectively). QTL detected in our study explained a smaller proportion of the variance (for the connected model the detected QTL explained 52.3%, for the dent design, 59.7 % for the joint analysis, and 69.3%, for the flint design of the within family variability) than the one detected on the US NAM design (89%) (Buckler et al 2009;[START_REF] Li | Joint QTL linkage mapping for multiple-cross mating design sharing one common parent[END_REF]). Similar trends were observed for male flowering (DtTAS). In our study, all QTL explained 10% or less of variation, with the exception of the main QTL found in the flint design on chromosome 10 (45-50 cM with the connected model). In the joint analysis, this QTL was significant for female flowering when tested in both datasets whereas for male flowering it was significant only in the flint dataset. This QTL was also found by [START_REF] Blanc | Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize[END_REF] and is close to the ZmCCT gene which was fine mapped as a major flowering time QTL by Ducrocq et al. (2009) and validated by Coles et al. (2011). In the flint design, for the connected model, this QTL explained 18.7% and 27.5% of male and female flowering time, respectively. In the joint analysis, it explained 12% and 15.2% of male and female flowering time, respectively. This value is higher than reported for the same region in the US NAM (1.1% for male flowering and 1.3% for female flowering with Joint Linkage Stepwise Model in Buckler et al. 2009) and in [START_REF] Blanc | Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize[END_REF] (18% for female flowering). These differences can be explained by the fact that several lines in our flint design share a late allele and possibly suggest that the expression of the effect of this QTL is amplified in early flowering backgrounds compared to the later US NAM background.

In the dent design analyzed separately, the most significant DtSILK QTL was found on chromosome 8. This QTL does not seem to be located in the region where two major flowering time QTL, vgt1 and vgt2 (ZCN8), have been fine-mapped [START_REF] Salvi | Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[END_REF]Bouchet et al. 2013). It seems to be close to an area where other studies also found QTL for flowering time [START_REF] Ducrocq | Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information[END_REF][START_REF] Salvi | An updated consensus map for flowering time QTLs in maize[END_REF]Bouchet et al. 2013).

For plant height (PH), we detected in total 25 QTL which explained 55.0% and 57.1% of the variation for the flint and dent designs, respectively. With the joint analysis, we detected 21 QTL which explained 61.2% of the variation. A recent study [START_REF] Peiffer | The genetic architecture of maize height[END_REF] based on the US NAM and IBM family [START_REF] Lee | Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population[END_REF] reported 89 family-nested markers detected with an adaptation of JCIM and 277 associations through a joint-linkage-assisted genome wide association study [START_REF] Tian | Genome-wide association study of leaf architecture in the maize nested association mapping population[END_REF]. Except the QTL found on chromosome 10 in the flint design and that likely corresponds to a pleiotropic effect of a major flowering time QTL, no QTL explained more than 10% of the variation, in the separate or joint datasets. As in [START_REF] Peiffer | The genetic architecture of maize height[END_REF], none of the QTL detected in this study seem to be located in the vicinity of known candidate genes for plant height.

For DMY, with the separate analyses, we detected in total 20 QTL which is lower than the number of QTL detected for the other traits. With the joint analysis, we detected 16 QTL which is one of the lowest number of QTL detected. This may be explained by the lower heritability of this trait and the fact that variation for this trait may involve numerous QTL of small effects that are difficult to detect. For DMC, we detected in total 27 QTL with the separate analyses and 18 with the joint analysis. Only few studies address QTL detection for biomass yield and dry matter content, mainly in biparental populations (e.g. [START_REF] Lübberstedt | QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits[END_REF][START_REF] Méchin | Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize[END_REF]Barriere et al. 2010;Barriere et al. 2012). They reported only limited number of QTL and are not easily comparable with our results. Our study, which led to the detection of many QTL in a multi-parental context, therefore represents a large advance towards understanding the genetics of biomass yield.

Thus globally, although high compared to the number of QTL indentified in biparental populations, the number of QTL detected in this study appears lower than those detected in most comprehensive designs and meta-analysis. Several explanations can be given for this result. First, compared with the US NAM design, our experimental designs explore less diversity and included fewer individuals (841 and 811 DH lines for the dent and flint designs, respectively compared to 5,000 RILs for the US NAM design). Moreover, as DH lines were used instead of RILs, the number of recombination events in our designs is expected to be two times lower per family. This certainly impacted the power and resolution of our designs for deciphering trait variation even with LDLA models. One cannot exclude that QTL detected in our study may indeed correspond to clusters of linked QTL that could have been individually

detected using a higher number of individuals, higher number of markers and progenies exhibiting more crossovers (Huang et al. 2010). The main specificity of our study compared to the US NAM design, was that the different families were evaluated through their testcross progeny in order to evaluate traits related to biomass production at usual productivity levels.

Under the hypothesis of additivity, the genetic variance is expected to be four times lower for testcross value than for per se value. In addition, the two central lines of each group that were used as testers for the other group belong to two complementary heterotic pools, so one expects to observe some dominance effects between the flint and the dent alleles at QTL. Such dominance effects may have masked part of the variability in each group. Despite these limitations, as progenies were evaluated based on testcross performance, the QTL detected in this study directly reflect the genetic variation present in each of the two main heterotic groups that is useful for breeding in European conditions. 
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INTRODUCTION

Darwin, in 1876, observed that cross-pollination led to more vigorous plants than selfpollination for numerous species. This observation was later theorized by Shull (1908) and East (1908) who defined the concept of hybrid vigor or heterosis (Shull 1914). In maize, as in other allogamous species, heterosis is important for traits related to yield. In order to exploit this phenomenon, maize diversity was partitioned into heterotic groups and most of the varieties that are sold today correspond to hybrids between inbred lines belonging to complementary heterotic groups. When suitable heterotic groups have been established, the objective of breeders is to select new lines within each group and identify the best hybrid combinations between them. Several heterotic patterns are used in maize breeding depending on the region considered and on the breeding objectives. For instance, in Northern Europe, hybrids selected for silage generally issued from crosses between the dent and the flint groups.

Hybrid value is traditionally decomposed into two parts. The first one is the sum of the General Combining Abilities (GCA) of the two parental inbred lines, defined each as the average value of the hybrids that can be derived from this line when crossed to lines from the other group.

The second one is the Specific Combining Ability (SCA) of the pair of parental lines, which is the difference between the hybrid value and the value predicted based on GCAs (Sprague and Tatum 1942). GCAs are statistically additive and involve additive, dominance and epistatic effects at quantitative trait loci (QTL). SCA only involve dominant and epistatic QTL effects.

In breeding programs, due to practical considerations, all potential inter-group combinations cannot be evaluated phenotypically. Consequently, the selection is carried out in two stages. In the first stage, future potential inbred lines of each group are selected for their cross-value with one or few lines representative of the complementary group, called testers. In the second stage, a limited number of combinations between improved inbred lines of both groups are evaluated to identify the best hybrids. In this scheme, most of the selection is generally performed during the first stage. Due to the small number of testers considered, the selection of lines is based on a combination of their GCA and of the SCA with the tester(s). Understanding the relative magnitude of these components is therefore important to evaluate to which extent the choice of tester(s) may affect the estimation of the potential of new inbred lines. [START_REF] Reif | Impact of interpopulation divergence on additive and dominance variance in hybrid populations[END_REF] theorized that, in absence of epistasis, the ratio of SCA over GCA variance is expected to be low for hybrids between two divergent populations. This is consistent with the empirical expertise of the breeders, who observe that selection with a given tester generally leads to a correlative progress of hybrid performance with other partners. This is also consistent with experimental studies (for instance [START_REF] Schrag | Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL[END_REF][START_REF] Fischer | Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim[END_REF] the testers used were related to the parents of the studied population, leading to hybrids with different levels of inbreeding [START_REF] Lu | Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population[END_REF][START_REF] Frascaroli | Classical genetic and quantitatuve trait loci analyses of heterosis in a maize hybrid between two elite inbred lines[END_REF][START_REF] Frascaroli | QTL detection in maize testcross progenies as affected by related and unrelated testers[END_REF]Larièpe et al. 2012). Several studies also reported poor consistency between the QTLs found with different testers for yield performances even in the cases when the testers were non-related to the studied population [START_REF] Schön | RFLP mapping in maize: quantitative trait loci affecting the testcross performance of elite European flint lines[END_REF][START_REF] Lübberstedt | QTL mapping in test crosses of European flint lines of maize: II. Comparisons of different testers for forage quality traits[END_REF]Melchinger et al. 1998;[START_REF] Austin | Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture[END_REF]. This suggests that even in a context where small SCA is expected, tester choice may affect QTL detection results.

QTL detection in multiparental designs showed their interest for exploring a larger part of the diversity and for increasing power in comparison to biparental designs [START_REF] Blanc | Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize[END_REF]Kump et al. 2011;Bardol et al. 2013;Giraud et al. 2014;[START_REF] Foiada | Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction[END_REF]. Only few studies have investigated their interest for better understanding the genetic architecture of additivitydominance or GCA and SCA. Larièpe et al. (2012) studied an advanced Northern Carolina III design between three connected RIL population and their three parental lines and found QTL with apparent overdominance for heterotic traits such as yield in the centromeric regions. The strong SCA effects were due to the presence in the studied design of hybrids between related lines.

Other QTL studies were conducted directly on hybrids between sets of lines selected in complementary genetic groups. This was carried out first with a limited number of SSR markers by [START_REF] Parisseaux | In silico mapping of quantitative trait loci in maize[END_REF] the potential single-cross (including the untested ones). They would also be useful for optimizing the selection of the future inbred lines by better taking into account GCA, SCA and the diversity of the material.

To evaluate this strategy, we developed one dent and one flint multiparental design. For each heterotic group, six biparental populations of inbred lines were developed from four founder lines and were crossed with the ones of the other group. Hybrids were phenotypically evaluated for silage performances. We first decomposed the genetic variance in its GCA and SCA components. We then performed QTL detection considering three different ways of coding the alleles. Predictive abilities of the different models were then compared based on crossvalidation.

MATERIAL AND METHODS

Genetic material

The experimental material is constituted of 1044 dent -flint hybrids obtained by crossing inbred lines from two multiparental connected designs corresponding each to one heterotic group (Figure 1). To obtain each of these multiparental connected designs, four inbred lines, further referred to as "founders", were chosen: one for its good digestibility ability, the others for their good agronomical potential for yield. They were crossed according to a half diallel design in order to produce six different F1. From these six F1, six populations of on average 155. hybrids that were used as checks.

Genotyping data

The founder lines were genotyped with a 50 K SNPs array (Ganal et al. 2011). The founder lines and the parental lines were genotyped with a 18 480 SNPs Affymetrix® array provided by Limagrain.

For the analyses we considered the Affymetrix® genotyping data for the founder lines, and when possible replaced missing data by the genotypes obtained with the 50 K SNP array. To avoid the ascertainment bias observed with the 50k SNP array, we only considered the PANZEA markers (Ganal et al. 2011) which were polymorphic among the founder lines. We restricted the analysis to loci which had less than 20% of missing values among the dent parental lines, the flint parental lines, and the dent and flint parental lines considered jointly. Markers with more than 5% of heterozygosity among the dent parental lines or in total, or more than 10% of heterozygosity among the flint parental lines were discarded. Markers with a Minor Allele Frequency (MAF) inferior to 5% among the dent parental lines or the flint parental lines or in total were discarded. Thus 9643 markers were considered.

The genotyping failed for nine inbred lines. Two dent inbred lines were discarded as there was doubt on the DNA origin. Given the genotyping data, 8 inbred lines were represented under two different names and were thus renamed. Flint inbred lines with more than 25% of heterozygosity (5 lines) were not considered as well as dent lines with more than 10% of heterozygosity (20 lines) or dent lines with residual heterozygosity concentrated in some chromosome regions (15 lines). Consistency of genotypes between founder lines and parental lines was checked and off-type lines were excluded (18 flint lines and 9 dent lines). Thus only 875 dent lines and 883 flint lines were considered in further analyses.

Using the cleaned genotypic data, these 1758 inbred lines were considered for building the genetics maps: one genetic map for each of the 12 populations and one dent-flint consensus map. We followed for this the approach described in Giraud et al. (2014). The dent-flint consensus map was constituted of 9548 markers that were polymorphic in at least the dent or the flint design. This map had a total length of 1578.6cM and 5216 unique positions.

Field trial design and analysis

The 

Variance component analysis

Genetic variance decomposition was done on the single-plot performances using the ASReml-R package (Butler et al. 2007;R Core Team 2013). The objectives were to estimate the trait heritabilities, evaluate the importance of the GCA and SCA components in the hybrid variance and the proportion of this variation that is due to the structure of the design in populations. The first model does not decompose the genetic value of the hybrid:
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Where ' L O O PP O I-.QR is the phenotypic value of the hybrid evaluated in the environment Y at the plot located at the line &, the column and in the block Z. To distinguish between the checks and the experimental hybrids we used the parameter 2. When the performance corresponds to a check hybrid between founder lines and ′, 2 was set to 1 and when the performance corresponds to an experimental hybrid issued from the cross between the flint parental line ?

(derived from the flint founder lines and ), and the dent parental line ?′ (derived from the dent founder lines ′ and ′), 2 was set to 0. In this model, is the intercept, S L is the fixed effect of the environment Y, T \ is the fixed effect of the check issued from the cross between the dent . The within-population percentage of SCA was calculated from model (4) using a similar formula but considering the within-population variances of the flint GCA, the dent GCA and the SCA effects.

Computation of adjusted means and correlations between traits

QTL detection was based on the least square-means (ls-means) of each experimental hybrid.

To obtain these ls-means, we first corrected the individual single plots performances by the BLUPs of the field effects obtained with model (2). Then for each trait, least square means of hybrids were derived from the fixed effect model, considering jointly the experimental hybrids and the check hybrids between the founders: ' vwL * = + S L + x v + X vwL where ' vwL * is the performance corrected for the field effects of the -repetition of the hybrid ℎ in the environment Y, is the intercept, S L is the fixed effect of the environment Y, x v is the hybrid genetic effect considered as fixed in this model. X vwL is the residual of the model for each environment with X vwL ↪ ;(0, _ cL ) id. Correlations between the different traits were calculated based on these ls-means.

QTL detection

Three models were used for QTL detection depending on the type of allele coding that was considered. In each model, we took into account the structure of the design in populations and included random genetic effects corresponding to the parents of the hybrids to take into account the fact that some of the hybrids derived from the same parental lines.

The "Founder alleles" model makes the assumption that each of the eight founder lines carried a different allele. At each marker, probabilities of the four dent (respectively flint) founder lines were inferred using PlantImpute (Hickey et al. 2015) using 10 iterations for the 9548 mapped markers.

The "SNP within-group" model considered the observed alleles at SNP received from the parental inbred lines, assuming different effects in the two heterotic groups. This model assumes that two inbred lines from the same group that share the same allele at SNP are IBD. = 1. + ,. + . + +. ( ) + 5 "…g_R . x "…g_R + 5 "…g_{ . | "…g_{ + 5 "…g_R "…g_{ . (x|) "…g_R "…g_{ + } R . ~R + } { . ~{ + : (Q2)

Where , , , ,, , , , +, ( ), } R , } { , ~R, ~{ and : are defined as in model (Q1). The QTL effect was decomposed into three terms: x "…g_R , | "…g_{ and (x|) "…g_R "…g_{ .

x "…g_R (respectively | "…g_{ ) is the GCA effect of the dent (respectively flint) minor allele, 5 "…g_R (respectively 5 "…g_{ ) is a (; ×1) vector of marker genotypes for the dent (respectively flint) parent of the hybrid, coded as 0 for homozygotes for the major allele, 1 for homozygotes for the minor allele and 0.5 for heterozygotes. (x|) "…g_R "…g_{ is the SCA effect between the minor SNP marker alleles of each group, 5 "…g_R "…g_{ is a (; ×1) column vector corresponding to the Hadamard product of 5 "…g_R and 5 "…g_{ . This model as one df for the allelic effect of each group and one df for the interaction.

Missing genotypes at the parental level were imputed with Beagle v3.0. (Browning and Browning 2007). Imputations were done within each population after adding the founder lines in the dataset. Phasing of the flint lines and of the founder lines was done at the same time than missing genotypes imputation.

The "Hybrid genotype" model considered that the QTLs effects are the same in both heterotic groups. It decomposed the hybrid effect into terms of additivity and dominance. = 1. + ,. + . + +. ( )

+ 5 K . † + 5 R . ‡ + } R . ~R + } { . ~{ + : (Q3)
Where , , , ,, , , , +, ( ), } R , } { , ~R, ~{ and : are defined as in model (Q1). The QTL effect was decomposed into two terms † and ‡ which are respectively, the additive and dominance effect at the marker. 5 K is a (; ×1) column vector coded in -1, -0.5, 0, 0.5, 1

indicating the genotype of the hybrid at the marker level. 5 K equals -1 when the hybrid is homozygous for the major allele, 1 when the hybrid is homozygous for the minor allele, 0 if its parents are both homozygous but for a different allele, -0.5 (respectively 0.5) when the dent parent is homozygous for the major (respectively minor) allele and the flint parent is heterozygous. 5 R is a (; ×1) column vector coded in 0, 0.5, 1. 5 R equals 0 if both parents of the hybrid are homozygous for the same allele, 0.5 when the dent parent is homozygous and the flint parent is heterozygous or conversely, and 1 when both parents are homozygous but for different alleles. This model has one df for the additive effect and one df for the dominance effect.

For this model, as for the "SNP within-group" model missing marker data were replaced by imputed genotypes.

QTL detection was performed with ASReml-R (Butler et al. 2007). To avoid identifiability problems for the "SNP within-group" and the "Hybrid genotype" models, QTL detection was performed on the 4758 mapped markers which were polymorphic (MAF superior to 5%) in both heterotic groups whereas for "Founder alleles" model it was performed on the 9548 mapped markers. For each model, we considered a 5% genome-wide significance threshold based on the number of efficient markers (Gao et al. 2008).

The total effect at the marker was tested using the "group" function. After the first initial scan along the genome, a multi-marker procedure was implemented using a forward and backward marker selection. In the forward stage, the most significant maker (based on the total locus effect) was added to the model until no-more marker had a significant total locus effect at the 5% genome-wide risk level. Then, markers with a GCA or SCA (or additivity or dominance) effect superior to the threshold were added to the model. Finally, in a backward stage, we removed step by step each effect that was not significant in the joint QTL model until we only kept markers for which the total effect or one of its components (GCA/SCA or additivity/dominance) was superior to the threshold.

The percentage of phenotypic variance explained by the population effects E ˆJˆ was calculated according to [START_REF] Nakagawa | A general and simple method for obtaining R² from generalized linear mixed-effects models[END_REF]. To estimate the percentage of variance explained by the detected QTLs (E FGH ), we used a modified version of the E presented by [START_REF] Nakagawa | A general and simple method for obtaining R² from generalized linear mixed-effects models[END_REF] with marker effects orthogonalized by population structure.

From these two parameters we estimated the percentage of within-population phenotypic variance explained by the QTLs as

E FGH * = ‰ Š‹OE • ‰ rŽr
. We also estimated the individual R² of each QTL after orthogonalyzing its effect by the population structure and the effects of the other QTLs.

To evaluate the quality of prediction of these models, we also performed a cross-validation approach using four fifth of the data for estimating the population and the QTL effects, and predicting the values of the hybrids of the last fifth. Sampling was stratified by the structure in populations and was repeated 100 times. The squared correlation between the predicted and true hybrid values of the fifth fold were estimated. This procedure was conducted (i) without taking into account SCA/dominance at the QTL level and (ii) taking it into account for QTL for which it was significant at a 5% individual risk level. Percentage of variance explained by the population effects were estimated following the same cross-validation approach.

RESULTS

Genetic variance analysis

We observed large and significant hybrid variances for all traits (Table 1). Broad sense heritabilities at the design level were high for all traits: between 0.814 (DMY) and 0.892 (DMC) (Table 2).

For all the traits except DMC, the dent and flint population effects were both significant at a 5% level risk, whereas the interaction was not. For DMC, the effects of the flint population and of the interaction between the dent and flint populations were significant whereas the effect of the dent population was not (result not shown). This is in agreement with the smaller variation of DMC performances among the dent founder lines compared to the flint ones. Even if the population effects were significant, the within-population hybrid genetic variance was large (Table 1). It represented between 63.1% (PH) and 86.7% (DtSILK) of the total hybrid genetic variance (Table 2).

Accordingly, for all traits, within-population heritabilities remained high and varied between 0.767 for grain yield and 0.876 for female flowering (Table 2).

The decomposition of the hybrid variance in GCA and SCA (models 3 and 4) showed that most part of the hybrid variation was due to GCA. When the structure in populations was not included in the model the flint and dent GCA variances were different for DMC, DMY and PH, whereas they were of similar magnitude for DtSILK (Table 1). After taking into account population structure, the within-population flint and dent GCA variances were of the same magnitude for all traits. For the model which did not take into account the structure in populations, SCA represented between 11.7% (DMC) and 17.4% (DMY) of the hybrid genetic variance (Table 2). The proportion of SCA was higher when considering the within-population hybrid variation (Table 2). It represented about 20% of the within-population genetic variance for all traits but PH for which it was lower (Table 2). It has to be noted that standard deviations for SCA variances were large (Table 1) certainly due to the small number of inbred lines that contributed to more than one hybrid in our design. 

Adjusted means and correlations between traits

Adjusted means of the experimental hybrids were on average of 16.0t.ha -1 (min 11.8, max 20.2)

for DMY, of 33.0% (min 25.7 max 41.3) for DMC, 211.5 days for DtSILK (min 206.7 max 217.9) and 247.8cm (min 203.9 max 283.2) for PH (Table 2). The experimental hybrids showed for all traits a variation that exceeded the one found for the hybrids between founder lines (Table 2). Adjusted means of hybrids between founder lines were on average 16.5t.ha -1 for DMY, 33.5% for DMC, 211.6 days for DtSILK and 251.3cm for PH (Table 2). These values were slightly higher than the average values of the experimental hybrids suggesting that recombination events broke some epistatic interactions. However, differences were small, suggesting a limited impact of epistasis. Founder line hybrids involving F98902 had higher yield, whereas those involving F7088 had higher DMC, consistent with known information on these founder lines. DMY was positively correlated to PH (0.64) and DtSILK (0.57) and negatively to DMC (-0.28). DMC was also negatively correlated to PH (-0.28) and DtSILK (-0.55). These correlations are consistent with those usually observed for these traits.

QTL detection

The thresholds at a 5% genome-wide level used for QTL detection were set to a -log(pvalue) equal to 4.53 for the "Hybrid genotype" model, 4.40 for the "SNP within-group" model and 3.84 for the "Founder alleles" model.

We detected QTLs for all trait × model combinations. For a given trait, the number of detected

QTLs varied with the model. Between nine (DtSILK, "Founder alleles" model and DMY, "SNP within-group" model) and 16 QTLs were detected (DtSILK, "Hybrid genotype" model). In total for the four studied traits, the "SNP within-group" model and the "Hybrid genotype" model detected more QTLs, respectively 51 and 54, than the "Founder alleles" model which detected in total only 42 QTLs (Table 3). Nevertheless, the "Founder alleles" model detected more QTLs for DMY. Globally the different models detected QTLs in the same chromosome regions (Figure 2). To compare the QTL detected by the different models (Figure 2, Figure 3, Supplementary Tables S1,S2, S3), we considered arbitrarily that QTLs detected at positions closer than 10cM of each other were identical. With this assumption, 16 QTLs were detected with the three models (for instance at 65 -65.8cM on chromosome 5 for DMY). Some were detected with only two models: 11 with the "Hybrid genotype" and the "SNP within-group" models, (for instance at 113.4cM on chromosome 3 for DMC), 2 with the "Hybrid genotype" and the "Founder alleles" models (for instance at 86 -89.3cM on chromosome 2 for DMY), 7 with the "SNP withingroup" and the "Founder alleles" models (for instance at 25 -29.9cM on chromosome 6 for DMY). The other QTLs were specific to one model for instance the DtSILK QTL detected with the "Founder alleles" model at 7.7cM on chromosome 1, the DMC QTL detected with the "SNP within-group" model at 70cM on chromosome 6, and the DMY QTL detected with the "Hybrid genotype" model at 74.5cM on chromosome 4. For all models, the majority of the QTLs had small effects (they explain less than 5% of the variation, see Supplementary Tables S1,S2, S3). The only exceptions are the PH QTL detected on chromosome 3, which explained 5.3% of the variance for the "SNP within-group" model and a QTL detected on chromosome 10 at 44.5cM that was detected by the three models and explained around 8% of the variance for DMC and 13% of the variance for DtSILK. This QTL region was also involved but with a smaller effect on DMY and PH. Other QTL regions showed pleiotropic effects on different traits, for instance the one around 105.5 -117.8cM on chromosome 1 which had an effect on DMC, DtSILK and PH. Other regions were specific to one trait (141.6 -143.1cM on chromosome 7 for DtSILK, 25 -39.1cM on chromosome 6 for DMY) (Figure 3, Supplementary Tables S1,S2,S3).

For each QTL we tested the level of significance of their GCA/SCA or additive/dominance components (Supplementary Tables S1,S2,S3). For the "Hybrid genotype" model, none of the detected QTL showed significant dominance effect at a 5% genome-wide level. Some QTLs had significant dominant effect in the initial QTL detection scan but their effects were no more significant in the final multilocus model (see Figure 2 for DMY). However, nine QTLs were significant for dominance with an individual risk at 5%: one for DMC, three for DMY and DtSILK (among which one was significant with an individual risk at 1%) and two for PH (Table 3 and Supplementary Table S1). For the "SNP within-group" model, considering the 5% genome-wide threshold, nine QTLs were significant for both GCA effects, 23 only for the dent GCA effect and 15 only for the flint one. No specific QTL for SCA was detected at a 5% genome-wide risk level, but six QTLs had a significant SCA effect at the 5% individual risk level: two for DMC and four for PH (Table 3, Supplementary Table S2). For the "Founder alleles" model, considering the 5% genome-wide threshold, seven QTLs were significant for both GCA effects, 20 only for the dent GCA effect and 12 only for the flint GCA effect. No specific QTL for SCA was detected at a 5% genome-wide risk level, but 13 QTLs had a significant SCA effect at the 5% individual risk level: four for DMC, five for DMY, two for DtSILK and two for PH. Among them three had significant SCA effects at a 1‰ risk level (Table 3, Supplementary Table S3). QTLs showing significant SCA were located all over the genome.

However, one region on chromosome 2, between 82.3cM and 135.8cM stands out for presenting SCA for both DMC and DMY (Supplementary Tables S1, S2, S3). All models detected QTLs in this region, and five over seven of the QTLs detected with the "Founder alleles" and the "SNP within-group" models had a significant effect on SCA at a 5% individual risk level.

For QTLs detected at close position with several models, GCA/additive QTL effects of the founder lines were consistent between models (result not shown). Interestingly, no founder line presented favorable alleles at all detected QTLs. For instance, considering the dent and flint GCA effects for DMY of the QTLs detected with the "Founder alleles" model showed that all founder lines presented positive and negative effects (Figure 4). This is consistent with the transgressions observed in the experimental hybrid populations compared to the founder hybrids. It would be interesting to identify the best hybrid ideotype based on both GCA and SCA effects and to carry out in each group a marker-assisted selection scheme to obtain the parental lines corresponding to this ideotype. Allelic effects are centered on zero for the dent founder lines (F1808, F04401, F7082 and F98902) and for the flint founder lines (F02803, F03802, F373 and F7088). QTLs presenting a dent (respectively flint) GCA effect not significant at a 5% individual risk level had their dent (respectively flint) GCA effects set to zero.

The detected QTLs explained jointly between 19.7% (DMY, "Hybrid genotype" model, without dominance) and 37.6% (DtSILK, "SNP within-group" model, with SCA) of the total phenotypic variance and between 26.8% and 47.1% of the within-population phenotypic variance. The model which explained the largest fraction of the phenotypic variance was the "Founder alleles" model for DMY, DMC and PH and the "SNP within-group" model for DtSILK. The increase in percentage of explained phenotypic variance when taking into account dominance/SCA is low for the "SNP within-group" model (+ 0.2 for DMY to +1.9 for PH) and for the "Hybrid genotype" model (+0.6 for DMC to +1.5 for DtSILK) whereas is it is more important for the "Founder alleles" model (+4.1 for PH to +6.5 for DMY) (Table 3). Cross-validations were performed in order to evaluate the quality of prediction of the QTL models. This was done to eliminate potential bias in the R² values of Table 3 that were computed on the data also used to estimate QTL parameters, potentially advantaging models with high number of parameters. Population effects explained between 10.4% (DtSILK) and 29.2% (PH) (Table 4) of the phenotypic variance. Combination of the population effects and the detected QTLs without dominance/SCA, explained between 36.7% (DtSILK, "SNP within-group" model) and 55.2% (DMC, "Hybrid genotype" model) of the total phenotypic variance. Taking into account the dominance/SCA for the QTLs for which it was significant at a 5% individual risk had a small impact on the quality of prediction of the model: from negative (-0.5 for PH for the "Founder alleles" model) to low (+1.4 for DtSILK for the "Founder alleles" model).

Considering or not dominance/SCA, the best predictions were obtained with the "SNP withingroup" model for DMC and DtSILK, the "Founder alleles" model for DMY and the "Hybrid genotype" model for DMC.

DISCUSSION

The objective of this work was to evaluate the interest of using a factorial design between two multiparental connected designs to detect QTLs for hybrid values. Using this design, we first decomposed the hybrid genetic variance into terms of population effects, GCAs and SCA components and then performed QTL detection using three different models.

Genetic variance components

We observed important variation among hybrids for all the observed traits with transgressions beyond the variation of the hybrids between founder lines. The fact that part of the parental inbred lines contributed to more than one hybrid allowed us to estimate SCA/ GCA variance components. Most of the hybrid variance was due to GCA but about 20% of the withinpopulation genetic variance of our design was due to SCA for all traits except PH for which it was smaller. To our knowledge, few studies estimated SCA variances on European silage maize, so that the number of possible comparisons is limited. [START_REF] Argillier | Inbred line evaluation and breeding for digestibility-related traits in forage maize[END_REF] found small but significant SCA for DMC and DMY between the dent and the flint group but did not estimate variances explained by each component. [START_REF] Grieder | Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance[END_REF] evaluated GCA/SCA variances based on test-cross values of dent lines using flint hybrids as testers. SCA explained less than 10% of the hybrid variance for DMY and DMC but, as explained by the authors, these small values might be due to the use of a small set of related hybrid testers. Our study cannot be compared directly to the estimations of SCA/GCA components obtained for dent-flint hybrids designs evaluated for grain yield [START_REF] Schrag | Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL[END_REF]Fisher et al. 2008;[START_REF] Schrag | Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses[END_REF]Schrag et al. 2010; and more recently Technow et al. 2014). In these studies authors consistently found that SCA usually explained less than 10% of the hybrid variation for grain yield and grain moisture at harvest.

Thus, other studies also clearly showed a predominance of GCA over SCA but they found in general less important SCA variance relatively to GCA variances than in our study. The predominance of GCA over SCA is in agreement with the fact that, in the hypothesis of absence of epistasis, the ratio of dominance (major component of SCA) over additive (major component of GCA) variance is expected to be low for hybrids obtained by crossing two divergent populations [START_REF] Reif | Impact of interpopulation divergence on additive and dominance variance in hybrid populations[END_REF]) such as the two heterotic groups considered in this study which diverged 500 years ago (Tenaillon and Charcosset 2011). Reciprocal selection is expected to lead to the fixation in each group of alternative alleles for loci showing dominance effects that are thus absorbed in the mean value of the hybrids. This results in a decrease of the SCA variance compared to the GCA variance over time and consequently a difficulty for detecting dominance effects that become confounded with additive effects (for instance if one QTL segregates in one group but is fixed in the other one) (Technow et al. 2014). Most already published studies were based on factorials derived from inbred lines that passed through a selection stage based on their test-cross values on testers. This selection might have possibly retained lines with similar SCA pattern which might have contributed to lower SCA variance compared to GCA. In our design, the hybrid parental lines are derived without selection from the founder lines. They thus represent the whole allelic diversity available in each population, giving more opportunity to observe SCA. Even if the proportion of SCA is limited compared to GCA (20% versus 40% for each GCA), it is not negligible and might be sufficient to blur the estimation of GCA using only a small number (one or two) of tester lines from the opposite group as it is usually done in breeding programs.

QTL detection

One of the advantages of our design is that several sources of information can be used for QTL detection. The structure in biparental populations of the hybrid parents allowed us to trace founder alleles down to the hybrids and thus to perform a QTL detection based on linkage information (the "Founder alleles" model). This QTL detection model can be seen as an extension of the model used to detect QTLs in test-crossed connected multiparental designs (as done in Rebaï et al. 1997;[START_REF] Blanc | Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize[END_REF]or Giraud et al. 2014) to the hybrid case. In addition to linkage analysis, we also used directly information provided by SNP markers to perform QTL detection (with the "SNP within-group" and "Hybrid genotype" models) with models close to the ones used for association mapping (LD mapping) except that we used the known structure in populations of the design instead of a kinship matrix to correct for false positives.

The three models used for QTL detection performed differently depending on the trait and on the chromosome region considered. They make different assumptions in terms of allelic effects and are thus expected to perform differently depending on the actual distribution of QTL effects. The "Hybrid genotype" model considers only two degrees of freedom per marker and is thus expected to be more powerful that the other models which have more degrees of freedom to take into account per marker. However it makes strong hypotheses considering that the QTLs effects are biallelic, that they are the same in both heterotic groups and that the marker-QTL phase is also conserved between groups. The other models have more degrees of freedom but make fewer hypotheses: the QTL effect is assumed different in the two heterotic groups for the "SNP within-group" model and each founder lines as a different allele at the QTL for the "Founder alleles" model.

Even if in total more QTLs were detected with the "Hybrid genotype" model than with the other models, this model almost never explained a larger part of the genetic variance (considering direct adjustment to the data or cross-validations). The strong hypotheses that it makes counterbalanced its potential interest in terms of power. This is consistent with the fact that the other models clearly detected QTLs specific to dent or to flint GCA. Thus the "Founder alleles"

and the "SNP within-group" seem better adapted to QTL detection in such a design. This is in agreement with Giraud et al. (2014) who found different QTLs in each heterotic group. This confirms the long-term separation of the two heterotic groups (Tenaillon and Charcosset 2011) and shows that reciprocal selection structured the diversity of these two groups in order to fully benefit from heterosis by complementation of alleles in the hybrids. [START_REF] Van Eeuwijk | Mixed model approaches for the identification of QTLs within a maize hybrid breeding program[END_REF], in a maize factorial obtained by crossing two other heterotic groups, also found different GCA QTLs for ear height in the two groups. Hence, complementarity of GCA effects in heterotic groups seems to be an important component of hybrid performance and an efficient hybrid breeding program should target both common and different QTL in the heterotic groups.

Even if SCA represented around 20% of the within-population genetic variance (except for PH), we did not detect QTLs specific to SCA at a 5% genome-wide risk level. We nevertheless detected dominance and/or SCA effects significant at a 5% individual risk level for some QTLs (at a 1‰ individual risk level for three of them). Cross-validation results showed that adding these SCA QTLs effects to the models only slightly improved in the best cases the quality of prediction of hybrid values, suggesting that these moderate QTLs SCA effects may not be well estimated. These results contrast strongly with those of Schön et al. (2010) and Larièpe et al.

(2012) who found a majority of QTL with large dominance effects for grain yield. An important feature of these studies is that they involve hybrids with a high level of inbreeding, contrary to our present study in which all hybrids evaluated are issued from unrelated parents. This suggests that, in the absence of inbreeding, SCA is likely due too numerous small effects that are hardly detectable in our design and/or that SCA is due to epistatic effects, not included in our detection models.

Also 

Improvement of the QTL detection models

Our results showed the complementarity of the different QTL models depending on the trait considered. This is consistent with Bardol et al. (2013) and Giraud et al. (2014), who also found that the model considering that each founder line carried a different allele (the "Founder alleles" model) was more adapted to complex traits such as yield than to simpler trait such as flowering time. One of the main drawbacks of this QTL detection model is that it requires the estimation of a lot of parameters (25 df for the combinations between the dent and flint populations plus six df for the GCA and nine df for the SCA per QTL). For this reason it might become difficult to apply them to more complex situations, involving a larger number of founder lines and populations. Several alternative approaches could be explored in order to improve the power of the QTL detection models as for instance considering population structure as random. Another possibility would be to adapt a method developed by Rincent et al. (2014) for recovering power in association mapping panels by removing from the model the population effects and instead of considering the residual genetic variance of the parents as being independent, introducing the dent and flint parental lines kinships, estimated on all the chromosomes except the one which is scanned (Rincent et al. 2014). In this model, the random effects would take into account the structure in populations, the fact that some hybrid combinations derived from the same parents and will account for the genetic effects not located on the scanned chromosome.

Another option for more complex cases would be to clusterize the parental alleles (using for instance the "clusthaplo" package, Leroux et al. 2014, as The main interest of our design, is that each hybrid is informative on both heterotic groups, which allowed us to reduce the number of tested hybrids by a factor 2 in comparison to a testcrossed evaluation based on a single tester from the opposite group. By avoiding the use of testers, our design certainly leads to better estimations of GCA QTL effects and gives the possibility to detect QTL involved in SCA (even if in our case only small SCA effects were found).

We hypothesize that with development of double haploidization methods and the decreasing costs of molecular markers, it becomes conceivable to revisit the selection for hybrids by removing the need of using testers in early stages of the breeding scheme. Marker-based predictions of the hybrid performances calibrated on factorial designs could be used to perform selection in large sets of non phenotyped candidates. Such selection would enable to take into account complementarities of favorable alleles of each group (based on GCAs and also on SCA)

and accelerate the development of superior hybrids. Breeders might nevertheless be reluctant to apply this strategy which necessitates a labor intensive step of hybrid production to create the factorial design. So clearly more work is needed to further optimize this design and compare its efficiency with conventional designs based on testers. The QTLs detected in this study open the way to the implementation of a marker-assisted selection of lines in order to produce superior hybrids. Our results are encouraging but the detected QTLs only partly explain the

INTRODUCTION

Maize, as many allogamous species, presents a strong heterosis effect for many traits related to biomass production (Shull, 1914). To benefit from heterosis, maize diversity is partitioned into heterotic groups and most of maize varieties cultivated nowadays consist in F1 hybrids between two inbred parental lines issued from different heterotic groups.

Since the beginning of the XX th century, numerous hybrid maize breeding procedures have This approach allows selecting for both GCA and SCA of the hybrids and shows its superiority over other reciprocal selection methods (Coors 1999). Variations of this selection scheme were proposed later (see Hallauer et al. 2010, Chapter 12). In breeding companies, a modified recurrent reciprocal selection scheme is generally used due to practical considerations.

Breeding procedure is generally divided into two stages. In the first stage, candidate lines of one heterotic group are crossed with one or a few "testers" (often inbred lines) from the complementary heterotic group. Hybrid progeny is then evaluated in a field network and only parents of the best hybrids are selected for the second stage. Tester choice is very important in this process. The testers often correspond to inbred lines of the reciprocal heterotic group presenting good agronomical qualities and which are likely to be used as one parent of the final hybrid. Thus, during early stages, not all potential hybrid combinations between the two heterotic groups are evaluated. It is only in the last stages that a larger set of hybrid combinations between the few inbred lines selected in each heterotic group is evaluated.

Selection based on a few testers facilitates hybrid seed production for early testing trials but limits the variability considered at the second stage.

Genotyping developments in maize and other crops of agronomical interest should soon make it possible to genotype all potential candidates at a reasonable cost. In this context, genotyping based prediction of hybrid value is of major interest for limiting phenotyping effort to the most promising hybrid combinations. Genetic factors involved in heterosis and hybrid value are still poorly known, but it is admitted that underlying mechanisms (dominance or epistasis) involved interactions between different alleles transmitted by the parents of the single-cross. The first attempts of hybrid value prediction consisted in using as predictor the marker-based genetic distance between the two parents of the single-cross [START_REF] Lee | Association of restriction length polymorphism among maize inbreds with agronomic performance of their crosses[END_REF]. Theoretical studies were carried out [START_REF] Charcosset | Relationship between heterosis and heterozygosity at marker loci: a theoretical computation[END_REF][START_REF] Bernardo | Relationship between single-cross performance and molecular marker heterozygosity[END_REF]) as well as numerous empirical studies, mostly based on Restricted Fragment Length Polymorphisms (RFLPs) data [START_REF] Godhsalk | Relationship of restriction fragment length polymorphisms to single-cross hybrid performance in maize[END_REF][START_REF] Melchinger | Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds[END_REF][START_REF] Dudley | Molecular markers and grouping of parents in maize breeding programs[END_REF][START_REF] Burstin | Molecular markers and protein quantities as descriptors in maize. II. Prediction of performance of hybrids for forage traits[END_REF]. Results showed that genetic distance between parents failed at predicting inter-group hybrid value. One explanation is that marker-based distance between unrelated inbred lines only poorly reflects allelic differences at QTLs involved in hybrid value, due to weak and unstable marker-QTL associations over groups [START_REF] Melchinger | Genetic diversity for RFLPs in European maize inbreds: II. Relation to performance of hybrids within versus between heterotic groups for forage traits[END_REF]Charcosset and Essioux 1994). Bernardo

proposed in 1994 to use Best Linear Unbiased Predictor (BLUP) of the performance of singlecrosses using performances of a related set of single crosses and genomic similarities between tested and untested single-crosses. This approach was applied to a factorial design between six lines from the Iowa Stiff Stalk Synthetic group and nine inbreds from another group. It is to our knowledge the first application of genomic prediction model that was later referred to as GBLUP model (Meuwissen et al. 2001). More recently support vector machine regression (Maenhout et al. 2007;Maenhout et al. 2010) or Bayesian approaches (Technow et al. 2014) were proposed as an alternative to the GBLUP model. In addition to studies on maize, exploratory studies on genomic prediction of hybrid value have been performed recently in other plant species such as wheat [START_REF] Zhao | Genomic prediction of hybrid wheat performance[END_REF], sunflower (Reif et al. 2013), triticale [START_REF] Gowda | Best linear unbiased prediction of triticale hybrid performance[END_REF], rye [START_REF] Wang | The accuracy of prediction of genomic selection in elite hybrid rye population surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years[END_REF] and rice [START_REF] Xu | Predicting hybrid performance in rice using genomic best linear unbiased prediction[END_REF].

In maize, first genomic hybrid predictions were carried out in factorial designs between few inbred lines (Bernardo 1994) or by taking advantage of hybrids from advanced selection stages of breeding programs (Bernardo 1996a;Bernardo 1996b;Maenhout et al. 2010;Massman et al. 2013a;Technow et al. 2014). Most of these studies showed that the quality of prediction of a given hybrid mostly depended on the inclusion in the calibration set of hybrids issued from the same parental lines. Until recently, material screened through tester evaluation were unfixed individuals (F2 or F3 plants). In parallel to test-cross evaluation, selected plants were selfpollinated to produce inbred lines. With double haploid technology, it is now possible to obtain directly large segregating populations of inbred lines. This reduces the length of breeding cycles and offers new opportunities to revisit hybrid breeding schemes. Instead of using a few testers from one group for selecting inbred lines of the other one, before exploring larger set of hybrid combinations, one can directly generate large sets of inter-group single-cross hybrids from unselected inbred lines. Then these data can be used to calibrate hybrid value prediction equation and such predictions can be used to identify the most promising hybrid combinations.

The same model can also be used to predict the GCA of all candidate lines and select the most promising for creating breeding populations for the round of selection.

The objectives of this study were to evaluate the feasibility of this approach. We developed a design between the two main heterotic groups used for silage maize breeding in Northern Europe: the dent and the flint groups. In each heterotic group, six biparental populations of inbred lines were developed from four founder lines. These inbred lines were crossed according to an incomplete factorial design in order to obtain hybrids which were phenotypically evaluated for silage performances. QTL detection was performed in this design (cf. Chapter 2).

We first evaluated the efficiency of genomic predictions in this design using GBLUP models considering different allele codings, population structure or not and decomposing hybrid value in GCAs or GCAs and SCA. We investigated the accuracy of our predictions on the different components of hybrid value (GCA / SCA). We then compared genomic prediction to QTLbased predictions. We also investigated the influence of the size and of the composition of the calibration set on the quality of hybrid value predictions to draw some conclusions for further optimization of this approach.

MATERIAL AND METHODS

Plant material

Two multiparental connected designs, each corresponding to one of the major heterotic groups used for silage maize breeding in Europe, the flint or the dent, were crossed in order to obtain 
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, where L is the frequency calculated over the dent lines (respectively flint lines) of the allele coded 1 of marker Y, & L (respectively & L ) is the genotype of the dent inbred line (respectively ) at the marker Y coded in 0, 0.5, 1, and N is the total number of markers. Genomic relationship matrix between the flint parental lines was calculated in a similar way. These kinship matrices are further called SNP kinship matrices.

Different variants of the GBLUP model presented above were considered: without the structure in populations, without the SCA component, without both. For each GBLUP model, we estimated the different variance components, in order to estimate the flint GCA, the dent GCA and the SCA variances captured by the markers as well as the percentage of genetic variance explained by SCA. For GBLUP models presenting the same fixed effects, Restricted Maximum Likelihood (REML) likelihood ratio tests were performed for evaluating the impact of incorporation of SCA considering a risk level of 1%. The variance components captured by the markers were compared with those estimated in Chapter 2 based on the analysis of the raw phenotypic data, without considering genotypic kinship matrices (cf. Chapter 2, Table 1). For each GBLUP model, we evaluated its adjustment to the ls-means (R²) by the square of the correlation between predictions and ls-means.

GBLUP model using kinship matrices based on founder alleles

A second estimation of the genomic relationship matrices was used based on the founder alleles inherited by the parental lines. To do so, we considered the probability that a given dent (flint)

founder line allele was transmitted to each hybrid at positions corresponding to the different markers. These probabilities for the 9548 mapped markers were inferred using PlantImpute (Hickey et al. 2015) using 10 iterations. Relationship matrix between the dent (flint) parental lines was calculated based on these probabilities as the expectation of the percentage of the marker positions at which two lines received the same founder allele. The genomic relationship coefficient of the -•b• • matrix between the dent parental lines and based on the founder alleles probabilities was computed as
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where L{ (respectively L{ ) is the probability that the inbred line (respectively ) received the founder allele ˜ at the marker position Y, and N is the total number of markers. Flint founder allele relationship matrix was computed in a similar way. Compared with the kinships estimated based on SNPs, kinships based on founder alleles considered as unrelated hybrids that did not share any of the founder lines. With this definition of alleles, hybrid value prediction only relied on the performances of hybrids related by pedigree. These IBD coefficients are expected to capture differences between founder line alleles not captured by SNP polymorphisms (such as recent mutations, etc.).

Quality of prediction of the different GBLUP models. Comparison with prediction based on QTL

For comparing quality of prediction of the different GBLUP models, we performed a crossvalidation approach using one fifth of the data (about 190 hybrids) for validation and four fifth for calibration. Sampling of the validation set was stratified by the structure in populations and was repeated 100 times. The calibration set consisted in the others individuals. The same samplings were used for all the GBLUP models to facilitate their comparison. For each replicate and each model we estimated the predictive ability of the model by the correlation between the predictions and the ls-means of the validation set. Results were then averaged over the 100 replications. As the same samplings were used for all models, we also evaluated the number of replications for which a given model led to a better predictive ability than another one.

Predictions based on GBLUP models were also compared with predictions based on the QTL detection results obtained in the Chapter 2, on the same experimental design. In this study, different QTL detection models were used (using different types of allele coding and considering equal or different effects in the two genetic groups). For the comparison with the GBLUP models, we considered for each trait the QTL detection model that gave the best predictive ability. In each replication, we considered a model that included the population structure and the QTL positions detected in the Chapter 2 as fixed effect. All fixed effects were estimated using the calibration set, then used to predict the value of each individual of the validation set. To make things comparable, the same samplings were used for the GBLUP and the QTL models. As for the GBLUP models, we then computed the predictive ability of the predictions by the correlation between predictions and ls-means of the validation set.

For the best GBLUP model considering SCA identified by cross-validation, we evaluated the quality of prediction of the flint and dent GCA components of the hybrid value. To do so, for each replication, we estimated the correlation between the dent (flint) GCA predicted using the GBLUP model and the observed phenotypes (*+, R ™š , =). As this correlation depends on the percentage of the phenotypic variance explained by the GCA component, we divided it by the square root of the proportion of the corresponding GCA variance in the performances (›oe" (*+, R )/oe" (=)) where oe" (*+, R ) is the GCA variance estimated in the Chapter 2 (see Chapter 2, Table 1) and oe" (=) is the variance of the ls-means of the studied trait. This

value ž •b• • = w(•b• • ™š , g) ›ŸKw(•b• • )/ŸKw(g)
corresponds to the observed accuracy of the dent GCA predictions. Similar estimation was done for the observed accuracy of flint GCA predictions, ž •b• ' .

Influence of the calibration set size on the hybrid predictions

For the best GBLUP model based on the result of previous cross validations, we evaluated the impact of the number of hybrids evaluated for each of the 36 dent-flint population combinations, considering or not SCA in the model. To do so, for constituting the calibration set, we sampled two, three, five, six, 10 and 12 hybrids in each of the 36 dent-flint hybrid populations: corresponding respectively to sampling in total of 72, 108, 180, 216, 360 and 432 hybrids. For each calibration set size, sampling was repeated 100 times and the remaining part of the population was used as validation set. For each replicate, the predictive ability was computed. Then, it was averaged over the 100 replications.

Influence of the calibration set composition on the hybrid predictions

Impact of including half-sib hybrids in calibration set

We also investigated the differences in quality of prediction of the hybrids of the validation set, depending if zero, one or both of their parents were also parents of hybrids included in the calibration set (this corresponds to the T0, T1 and T2 hybrid categories defined in Schrag et al. 2010 andTechnow et al. 2012). We used a cross-validation approach using four fifth of the data for calibration and one fifth for validation. In the validation set, we included 30 hybrids that had at least one half-sib hybrid on the dent side and one on the flint side in the calibration set (T2 hybrids), 30 hybrids that had at least one half-sib hybrid on the dent side and no halfsib hybrid on the flint side in the calibration set (T1 Dent hybrids) and 30 hybrids that had at least one half-sib hybrid on the flint side and no half-sib on the dent side in the calibration set (T1 Flint hybrids). 100 T0 hybrids (hybrids with no half-sib in the calibration set) were used to complete the validation set. Sampling was repeated 100 times. For each replicate, the predictive ability of the hybrids of each category was computed and then averaged over the 100 replications.

Impact of including hybrids issued from the same founder lines in calibration set

Further, we evaluated the quality of prediction of a given dent-flint population using individuals from other populations. We did that in order to evaluate what would be the efficiency of genomic selection for a new population of hybrids issued from inbred lines that did not contribute yet to the hybrids of the calibration set. For each dent-flint population to predict (in red on Figure 1), five types of calibration sets were tested (in blue, green, yellow, orange and purple on Figure 1) depending on their level of relatedness with the population to predict. In the first case, the populations of the calibration set had their two dent and one of their flint founders in common with the population to predict (four dent-flint populations in the calibration set, in blue on Figure 1). In this case, the target hybrid population was predicted using hybrids between (i) dent lines that were full-sibs (two dent founders in common) of their dent parents and (ii) flint lines that were half-sibs (one flint founder in common) of their flint parents. In the second case, the populations of the calibration set had their two flint and one of their dent founders in common with the population to predict (four dent-flint populations in the calibration set, in green on Figure 1). In the third case, they had only one dent and one flint founders in common with the population to predict (16 dent-flint populations in the calibration set, in yellow on Figure 1). In the fourth case, populations of the calibration set had only one of their dent founders in common with the population to predict and no flint founder (four dent-flint populations in the calibration set, in orange on Figure 1). In the last case, they had only one of their flint founders in common and no dent founder (four dent-flint populations, in purple on Figure 1). In all cases except the third one, the size of the populations to be included in the calibration set was too small to perform sampling. In the third case, sampling stratified by the structure in populations of a fourth of the hybrids of the calibration populations was done, in order to have a number of individuals equivalent to the ones of the others cases. Sampling was repeated 50 times and the predictive ability was averaged over the 50 replications for each population. For the five different cases, predictive abilities of the different dent-flint populations were averaged. It can be noted that we did not consider the case when calibration is done using populations which only have two dent founder lines or two flint founder lines in common with the target population or the case when calibration is done based on populations with no founder in common with the target population. In our design, considering these cases would have been equivalent to using only one of the 36 hybrid populations to predict another one which would not be feasible considering the size of each hybrid population (about 30 hybrids). 

RESULTS

Estimation of variance components and R² of the GBLUP models

For the different traits and models, a large part of the genetic variation was attributed to the GCAs components (Table 1). Variance estimations for the GCAs did not varied much from one model to the other. Including or not population structure in the model had a low impact on variance component estimation. Dent and flint GCA variances were of the same magnitude for 

Predictive abilities of the GBLUP models. Comparison with predictions based on QTL

Predictive abilities of the validation set were high for all the models and traits and only slightly varied according to the trait. When considering the best model for each trait, they varied between 0.652 for DMY (SNP kinship -no population structure -SCA) and 0.771 for PH (SNP kinship -no population structure -SCA) (Table 2).

For all traits, with the SNP kinship matrices, considering population structure had a negative effect on the prediction accuracy ( Adding SCA in the GBLUP model with the SNP kinship IBD matrices had a really low effect, either positive or negative, on the predictive ability (Table 2). Only, between 44% (PH) and 52% (DMY, DtSILK) of the replications gave better predictive abilities when considering SCA than when not considering it in the GBLUP model without population structure included.

Similar results were observed when considering the founder allele kinship matrices.

For all trait x model combinations, considering the founder allele kinship matrices decreased predictive abilities compared to using the SNP kinship matrices (Table 2). As for the GBLUP model using SNP kinship, we observed that incorporating the population structure in the model had a negative effect and that adding SCA had a small impact on the predictive abilities.

For all traits, best predictive abilities obtained from GBLUP were higher than the ones obtained based on detected QTLs, which varied between 0.626 for DMY and 0.742 for PH (Table 2).

For genomic predictions and QTL based predictions, DMC and PH showed close predictive abilities and were the best predicted traits. DMY was the worst predicted one. The best GBLUP model, gave better predictive abilities than the QTL-based prediction model for around 75% of the replications (between 71% for DtSILK and 76% for PH). 

Quality of prediction of GCA

Quality of prediction of GCA

Based on the result of previous section, we will further only consider results obtained with the GBLUP model based on the SNP kinship and without including the population structure. For the GBLUP model considering SCA, averaged correlations between observed ls-means and predicted dent GCA (respectively flint GCA) of the hybrids of the validation set were calculated over the 100 replications. For the dent GCA, they varied between 0.386 (DMC) and 0.616 (PH).

For the flint GCA, they varied between 0.328 (DMY) and 0.671 (DMC) (Table 3).

These correlations should be put in relation with the percentage of dent GCA variance (respectively flint GCA variance) in the total phenotypic variance, which varied depending on the trait. The dent GCA variance represented between 25.15% (DMC) and 59.97% (DMY) of the total genetic variance. (Table 3). The flint GCA variance represented between 22.63% (DMY) and 63.14% (DMC) of the total genetic variance. For DMY, DtSILK and PH, the proportion of dent GCA variance in the genetic variance was more important than the proportion of flint GCA variance whereas it was the reverse for DMC.

Thus, based on predictive abilities we computed observed accuracies of the GCA predictions.

The observed accuracies were high and varied between 0.739 (DtSILK) and 0.827 (DMC) for the dent GCA and between 0.830 (DMY) and 0.938 (DtSILK) for the flint GCA (Table 3). For all traits, flint GCAs were better predicted than dent GCAs. 

Effect of the size of the calibration set

Predictive ability increased with the size of the calibration set, especially for the small sizes of calibration set (Figure 2). Similar trends were observed for the different traits. Prediction accuracies reached plateau for calibration sets including more than 12 individuals per dent-flint populations (432 hybrids). No difference was observed between the model with SCA and without SCA except for the small sizes of calibration set (72 and 108 hybrids) where the model without SCA performed better than the one with SCA. 

Calibration set composition

Impact of including half-sibs hybrids in calibration set

For all traits, no special trend was observed for the predictive ability of the hybrids whether zero parent (T0), their dent parent (T1 Dent), their flint parent (T1 Flint) or both of their parents (T2) were parents of hybrids of the calibration set (Table 4). Considering SCA in our model did not change this result. Depending on the trait, the best predictive abilities were obtained for the T2 (PH), T1D (DMC, DtSILK) or T1C (DMY) calibrations. T0 hybrids were never the best predicted ones. 

Impact of including hybrids issued from the same founder lines in calibration set

Predictive abilities increased with the level of pedigree relatedness between the validation set and the calibration set (Table 5). They varied between 0.123 (DMC -case4 1D) and 0.539 (DMC -case 1 2D-1F) when not including SCA in the model and between 0.0651 (DMCcase 4 1D) and 0.542 (DMC -case 1 2D-1F) when including SCA. Including SCA in the model only slightly changed the predictive abilities. With and without SCA, calibration with populations which shared only one founder line with the target population always gave the worst predictive abilities. Using in the calibration set populations which shared three founder lines with the target population was better than when using populations which shared only two founder lines, except for DMY (predictive ability with the 1D-2F case was lower than in the 1D-1F case). Standard deviations of the estimations were important, illustrating the differences in the quality of prediction that we observed depending on the target population considered. 

DISCUSSION

GCA/SCA Variance components

The lack of gain in efficiency of our prediction models including SCA effects is consistent with the small proportion of the SCA variance component in our analyses. To our knowledge, no study estimated SCA/GCA components on European silage maize using marker-based genomic relationships whereas several estimations are available for grain maize. Even if silage and grain yield are correlated, they correspond to different traits measured on plants harvested at different biological stages. Keeping this is mind, we found for DMY a percentage of SCA in the total genetic variance of 8.17% close to the one found on grain yield by Schrag et al. (2010) and Technow et al. (2014) but lower than the one found by Massman et al. (2013a). The same authors estimated the proportion of SCA in the genetic variance between 6.2 and 10% for grain moisture content whereas it was null in our design for DMC. Note that these studies involved inbred lines that had been selected before on their combining ability which may have increased the relative importance of SCA in the hybrids.

Proportion of SCA in the genetic variance was much lower when estimated on ls-means using contrasts with the clear advantage of genomic selection over QTL-based marker-assisted selection schemes found by Bernardo and Yu (2007) on simulations and validated experimentally by Massman et al. (2013b) It suggests that including QTLs information in GBLUP models may improve the predictions accuracy by combining the two sources of information, giving more weight in prediction to the most important QTLs than when considering only relatedness matrices. [START_REF] Brøndum | Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction[END_REF], on dairy cows, included in their GBLUP model a second component with its own variance corresponding to markers identified as linked to QTL from association mapping on sequence data. It led to an increase in the predictive abilities, especially for production traits presenting major QTLs. [START_REF] Zhao | Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat[END_REF] on hybrid wheat proposed a weighted best linear unbiased prediction (W-BLUP) model for treating the effects of known functional markers by considering their additive and dominance effects as fixed. This model allowed an improvement of the prediction accuracies in comparison to marker-based predictions and to genomic predictions using RR-BLUP and BayesCπ models. Brard and Ricard (2015), on French trotters, also observed an increase in prediction accuracies when including in the GBLUP model as fixed effect genotype at a SNP strongly associated with the studied traits.

In our case, including the markers associated to QTL with marker effects identified previously in Chapter 2, especially the ones presenting the strongest effects, would probably increase the predictive abilities. We would have much less markers to add in our model than [START_REF] Brøndum | Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction[END_REF] and would add them (or at least the most significant ones) as fixed effects as in [START_REF] Zhao | Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat[END_REF] and Brard and Ricard (2015). Adding the QTL effects estimated with the hypothesis that all the founder lines carry a different allele, would be probably be the best option as it can account for multiallelic QTLs (cf. Chapter 2).

Optimization of the calibration set for hybrid prediction

Increasing the size of the calibration set allowed to increase the prediction ability but a plateau was reached for about 10-12 hybrids per dent-flint hybrid populations that is to say for 360 to 432 hybrids in total. Stagnation of the predictive abilities when reaching a certain size of calibration set was already observed on hybrids from advanced breeding selection stages predicted by GBLUP by Technow et al. (2014) or predicted by support vector machine regression and GBLUP by Maenhout et al. (2010). Same observation was done in studies willing to predict maize test-cross values in connected biparental populations as in Riedelsheimer et al. (2013) and Lehermeier et al. (2014). It is interesting from a practical point of view to note that based on this result it seems possible to consider only 10 hybrids per dent-flint population without decreasing predictive abilities.

Few differences in terms of prediction accuracies were observed between T0, T1 Dent, T1 Flint and T2 hybrids contrary to observations made by Shrag et al. (2010), Massman et al. (2013a) and Technow et al. (2012Technow et al. ( , 2014) ) on simulations and real datasets. This may due to differences in design characteristics between studies. In our case, T1 hybrids in the validation set have generally a single half-sib hybrid in the training set whereas this number can be much more important in other studies (e.g. Figure S1 in Technow et al. 2014). Conversely, for a T0 hybrid, there will be in the calibration set many hybrids whose parents will be half-sibs or full-sibs of its parents. We showed the importance of hybrids issued from half-sib and full-sibs lines when predicting new populations, presenting one, two or three founder lines in common with the hybrids of the calibration set. The worst predictive abilities were obtained when calibration set included hybrids that only had one founder line in common with the population in the validation set. Increasing the number of founders in common between calibration and validation set had a strong positive effect of the predictive abilities. This is consistent with results obtained on testcross hybrids issued from a multi-parental connected design by Riedelsheimer et al. 2013.

Reconsidering hybrid breeding selection schemes?

Usually, at early selection stages, parental lines are selected based on their test-cross value with one or a few testers of the complementary heterotic group. Until recently this screening was made in parallel to self-fecundation for production of homozygous lines. Double haploid technology makes it possible to obtain directly large segregating populations of inbred lines.

This facilitates the production and evaluation of large sets of inter-group single-cross hybrids between new unselected inbred lines. We obtained for such material prediction accuracies close or superior to the ones obtained on test-cross designs. Indeed, Lehermeier et al. (2014) on silage test-cross hybrids obtained on average predictive abilities equal to 0.41 for their dent biparental populations and 0.48 for their flint ones for DMY, to be compared to 0.65 in our study. For DMC, they were equal to 0.58 for the dent and 0.52 for the flint, to be compared to 0.77 in our study. This most likely relates to a higher genetic variance in our design due to the contribution of the two genetic groups to the total variance, instead of a single group when a tester is used.

A next question is therefore to which extent the quality of GCA prediction with our approach can be compared with that of test-cross value. The decomposition we used highlights high accuracies of GCA for both flints and dents (0.83 and 0.79 for DMY, respectively).

Further studies are needed to compare predictions accuracies in our design with those that could be obtained in a tester-based design. If the advantage of our design, or at least its equivalence, in terms of prediction accuracies compared to test-cross design, is confirmed, it opens new perspectives for maize breeding. In test-cross evaluation, the dent lines should be evaluated in cross with at least one tester and similarly for the flint lines. This necessitates at least two times more phenotyping efforts than in our approach, which therefore could lead to a substantial economy in phenotyping. However, hand-made pollination is needed for creating our hybrids contrary to test-cross hybrids, which increases the production costs of a given quantity of hybrid seed. Further studies are needed to evaluate if the diminution of field plots for the hybrid phenotyping compensates this increased hybrid production cost. However, as a first approximation this increase will be about 100%, considering that a single hybrid is produced instead of two. Moreover, the GCA estimates using testers are biased by the SCA with the tester, whose choice is really important. Selection of the lines at early selection stages is conditioned by their specific combining abilities with the tester. This restricts the field of possible combinations at the second stage of hybrid testing. Our design makes it possible to circumvent these limits.

Conclusion

Our design, based on hybrids between two heterotic groups, allowed us to obtain good predictive abilities for the hybrid value and specifically for the dent and flint GCA. It highlights that genomic selection has the potential to uncorrelate the GCAs of the parents of hybrids with very economical designs in which most inbreds are only represented in a single hybrid. Further design optimization is needed as well as comparative studies with tester designs but we already obtained encouraging results for revisiting maize hybrid breeding selection scheme. Hybrids between unselected biparental populations of two reciprocal heterotic groups could be evaluated in the first steps of the selection scheme and used for estimating values of all the potential hybrids that could be derived from the available inbred lines, even if not involved in phenotyped hybrids. It would allow to explore much more combinations and diversity and will not restrain the field of possible parental lines combinations. So, the use of genomic selection expands the possibility of classical recurrent reciprocal selections schemes, which have been shown to be the most efficient among phenotype-based selection schemes (Coors, 1999).

Maize is a crop of major importance in the world presenting strong heterosis for traits related to biomass. Silage maize represents around 44% of the total surface grown with maize in France. To benefit from heterosis, F1 hybrids are cultivated in majority, although, to diminish seed production costs, one observed a significant return to three way hybrids involving a female hybrid between related lines (Lorgeou, Pers. Com.). Maize hybrid selection scheme is mostly based on the reciprocal recurrent selection scheme initially proposed by Comstock et al. (1949) that was adapted in the breeding companies. In the first step, parental lines of each heterotic group are evaluated and selected for their value when crossed to one or several testers of the complementary heterotic group. It is only in the last stages that a larger set of combinations between a few selected lines of each heterotic group are evaluated. Hybrid genetic value can be decomposed in General Combining Abilities (GCA) of the parental lines and Specific

Combining Ability (SCA) (Sprague and Tatum 1942). Understanding the genetic architecture underlying hybrid value for traits of interest for breeding is of main importance from both theoretical and applied points of view. We studied two multiparental designs of hybrids between the dent and flint heterotic groups, mainly used for silage breeding in Northern Europe 

QTL detection in multiparental designs

Multiallelic QTLs heterotic group dependent

Numerous QTLs were detected in the two multiparental studied designs allowing a better understanding of the genetics of hybrid value of silage maize.

QTL detection on the test-cross hybrids of the NAM designs could be performed with MCQTL_LD (Jourjon et al. 2005) whereas for studying the hybrids of the factorial design, we had to use more complex mixed QTL detection models and implement them in ASReml-R (Butler et al.. 2007). Different ways of coding genotypes were used and LA and LDLA models were applied. Some of the QTL detection models used allowed us to detect allelic series in both designs, which showed the importance of not directly considering the observed genotype but a haplotypic or a founder information, especially for complex traits such as yield. Compared to previous studies (Bardol et al. 2013), LDLA models using ancestral haplotypic information (modelled using "clusthaplo", Leroux et al. 2014) yielded closer results to those of the parental allele model, probably because of the limited relatedness between founder lines.

Both the NAMs and the factorial design highlighted different QTLs for dent and flint lines, consistent with the long term divergence between groups (Tenaillon and Charcosset 2011).

Interestingly no QTL showed a major effect for DMY and DMC. A notable exception was a major QTL for flowering time, with pleiotropic effects on the other traits, which appeared on chromosome 10 in both studies in the flint group and most likely corresponds to the ZmCCT gene previously reported by Ducrocq et al. (2009). It would be interesting to compare more carefully in terms of number and position, the QTLs detected in our designs with the ones detected on silage on dent and flint diversity panels using association mapping methods by Rincent et al. (2014) and other results published on silage yield. Comparison of the detection power in the two designs is not straightforward as the diversity addressed in the factorial design and the number of hybrids evaluated were much lower than in the NAMs. It is nevertheless interesting to note the number of QTL where only slightly lower in the factorial.

Finally, it can be noted that only very few QTL were detected for dominance effects with the factorial design. The contrast with the numerous dominance QTL reported by Larièpe et al.

(2012) is most likely due to the presence of strong consanguinity in tested hybrids in her study vs. absence of consanguinity in our factorial design.

Prospects for QTL detection

In the reciprocal multiparental design, one founder out of four in each heterotic group was chosen with the objective to bring favorable alleles for digestibility. Hybrids were phenotyped for various digestibility traits such as DINAG (digestibility of non-starch and insoluble carbohydrate under the hypothesis that starch and soluble sugars are completely digestible, Argillier and Barrière 1996), DINAGZ (extension of the DINAG to nitrogen compounds, [START_REF] Barrière | Le maïs fourrage. III. Évaluation et perspectives de progrès génétique sur les caractères de valeur alimentaire[END_REF], Milk Forage Unit (MFU), digestibility of the Neutral Detergent Fiber (NDF), of the Acid Detergent Fiber (ADF) and of the Acid Detergent Lignin (ADL). Thus, phenotypic data for traits directly related to silage maize performances (DINAG, DINAGZ, MFU, NDF) as well as data concerning cell wall composition (content in lignin, hemicellulose and cellulose derived from NDF, ADF and ADL) are available. Digestibility traits are expected to be mostly additive which was confirmed by the first variance component estimation results.

Except for MFU (7.5%) and NDF (10.9%) the percentage of SCA in the genetic variance was close to zero for all other traits. QTL detection for all these trait is currently in progress. It could be interesting to study in more details these traits and potentially fine-map some interesting QTLs. Fine-mapping of some QTLs detected in the NAM designs could also be considered even though the major detected QTLs seem to correspond to already known and fine-mapped QTLs.

In this thesis, QTL detection was carried out on adjusted means obtained over various environments. It would be interesting to perform QTL detection on data from each single environment or preferably to perform multi-environment QTL mapping. In his association study, Rincent et al. (2014) detected very few QTLs for silage yield when considering ls-means over environments but much more associations when considering separately each field trial.

This suggests that Genotype x Environment (G x E) interactions are important to consider for silage traits. One option for performing multi-environment QTL detection would be to add environmental variables in our QTL detection models (Boer et al. 2007). In this approach, genetic variances for each environment and genetic correlations between environments are first modelled. Then QTL detection is performed decomposing the QTL effect in a main QTL effect and a QTL x Environment interaction effect. In the final step, both genotypic and environmental variables are included in order to model QTL responses on specific environmental variables.

This approach can be extended to multi-trait multi-environment QTL detection models (Malosetti et al. 2008), with or without including environmental variables. It would be interesting to evaluate if this approach could be extended to our QTL detection model decomposing the genetic effect in dent GCA, flint GCA, and SCA. Such study would be interesting to evaluate the stability of SCA effects in different environments.

Genomic prediction in multiparental reciprocal designs

The idea of using genomic selection at the level of factorial designs traces to Bernardo (1994).

To our knowledge it has been applied efficiently to phases of hybrid breeding programs where lines have passed a first selection for hybrid value and are used in mating designs with a number of other lines. We showed in our study that genomic selection on hybrids obtained through a highly incomplete factorial mating design between two multiparental unselected populations gave good predictive abilities even though the majority of the inbred lines were parents of only one hybrid. Prediction accuracies obtained in our reciprocal multiparental design on inter-group single-cross hybrids between unselected lines were superior to the ones obtained on test-cross hybrids for silage maize by Lehermeier et al. (2014). Our higher prediction accuracies may be due to a higher genetic variance due to the contributions of the two genetics groups to the total variance and to the fact that both inter and intra-population variations are considered. To further investigate prediction accuracy, we estimated accuracies of GCA and obtained high values for both flints and dents (0.83 and 0.79 for DMY, respectively). This shows that it was possible to uncorrelate the two GCAs and opens interesting prospects for revisiting inbred line selection in early phases of hybrid selection programs. Further studies are however needed for comparing the quality of GCA prediction of our approach with those based on test-cross hybrids. To do so, it will be necessary to evaluate jointly (i) single-crosses between inbred lines of each multiparental design like in our design and (ii) test-crosses of the same lines using as testers with few inbred lines of the other heterotic group.

Whatever the approach used to evaluate GCA, genomic selection offers very promising application when coupled with double-haploid (DH) production technology. Development of double haploid technology now makes it possible to obtain directly large segregating populations of maize inbred lines without requiring several generations of self-fertilization. All maize populations do not respond in the same way to double haploid technology and for some, more particularly in the flint heterotic group, success rate may be low. Another issue is that DH lines do not always produce enough seeds to produce single-cross hybrids and another selfing generation is necessary. Genomic prediction model can be trained using single-crosses for the DH lines with enough seeds and used to predict GCAs of DH lines which did not have enough seeds available at time t. Best inbred lines from all populations will thus be chosen for entering in the next step of the breeding process. We also showed that on such material, we could predict with relative high accuracy one population which shared founders with populations of the training set. This opens prospects for at least a prescreening of inbred lines in new populations, as providing the relatedness of these with previous populations is high enough to guarantee prediction efficiency.

If our study highlights a good ability to predict GCA, it also shows very strong limits with respect to SCA. These may first relate to intrinsic genetics features. The estimation of SCA variance components that we obtained using the GBLUP model were much lower than estimates given directly by the analysis of field plot data which suggests that epistasis might be a major component of SCA. One however may not preclude that out inability to predict SCA can be due in part to the experimental design that we used. When designing the experiment, choice was made to evaluate a high number of parental lines in a limited number of hybrid combinations (generally one), which may have limited the possibility to calibrate the SCA component of the model.

Applied prospects of the reciprocal multiparental design experiment

Short-term applied applications are started or intended following QTL detection and genomic selection results, based on the genetic material already created.

Some hybrids phenotyped in the reciprocal multiparental design showed good potential to be registered in the French catalogue of varieties. They were included in the 2014 and 2015 trial networks for further evaluation and comparison to known varieties. A few hybrids confirmed their potential and will be incorporated in the evaluation official trials network in view of a potential registration. It has to be noted that more inbred lines were created for the project than the ones phenotyped in hybrid combinations. Genomic prediction of the GCA of these lines was performed for various traits as dry matter yield but also MFU and an index trait used as a criteria for the registration to the French Catalogue of silage varieties. It allowed us to choose the best hybrid combinations considering the whole set of available inbred lines. Hybrid seeds will be produced in winter 2015 and the hybrids will be evaluated in field trials in summer 2016.

In parallel to these promising hybrids, other hybrids will be created and evaluated, chosen at random between all the possible combinations of inbred lines. They will allow us to study the quality of the genomic and QTL-based predictions.

Improving the parental inbred lines through Marker-Assisted Selection using the QTLs detected is also an interesting option. Choice of the crosses between the already existing parental lines for creating new material could be optimized in order to combine at the detected QTLs the maximum of favorable alleles. To do so, software such as OptiMAS (Valente et al. 2013) could be used. Combining information on QTLs detected for dry matter yield and dry matter content with information on QTLs for digestibility traits will be particularly interesting. Indeed, favorable alleles for digestibility traits are mostly bring by one dent and one flint founder lines which do not necessarily present the most favorable alleles for dry matter yield. It would be interesting in this context to also consider the genomic predictions of the lines selected based on their alleles at QTL, to take advantage of the two approaches and capture genetic variation not associated with detected QTL.

Prospects for enhancing genomic prediction efficiency

An alternative to our factorial design, at constant number of field single-plots, would have been to evaluate a more limited number of parental lines but in more hybrid combinations. Increasing the number of contribution of parental lines may help to better estimate the SCA of these lines and by extension of the lines to predict. This may however be at the cost of the number of lines evaluated for their GCA, so that a global optimization considering the different steps of the breeding program is needed. Besides from the number of hybrids evaluated per parental line, another important aspect is the choice, among all possible hybrids of the one to phenotype.

Criteria like CDmean (Rincent et al. 2012) which allowed optimization of the calibration sets in a diversity panel could be used for optimizing the choice of individuals in other types of designs. First studies are currently carried out on the NAM designs for optimizing in each group the calibration set in order to improve predictions made by Lehermeier et al. (2014) (Rincent, Moreau and Charcosset, unpublished). The CDmean approach was initially developed for genomic selection using additive models but it should be possible to extend it to the two GCA components (dent and flint in our design) and the SCA component of the hybrid value.

One option to explore would be to perform prediction models combining genomic and QTL information, for instance adding some of the detected QTLs as fixed effects in a GBLUP model.

Such models proved their efficiency for improving prediction accuracies [START_REF] Zhao | Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat[END_REF]Brard and Ricard 2015). SCA was not well taken into account in our GBLUP model. Other models should be explored which may probably better take into account SCA: reproductive kernel Hilbert (Gianola et al. 2006;Gianola and van Kaam 2008), BayesD (Wellmann and Bennewitz 2012) among others.

Contribution of approaches similar to the Single Step GBLUP models [START_REF] Legarra | Single Step, a general approach for genomic selection[END_REF] should be explored. Indeed, breeding companies carry out multiple breeding programs in which many parental lines are evaluated but not necessarily genotyped. Huge amount of phenotypic data corresponding to different years and types of material is available. If reciprocal multiparental designs such as ours are implemented, using information from other individuals may improve the accuracy of the predictions. Indeed, inbred lines of heterotic groups of private breeding programs are strongly related and lines related to the ones we want to predict may have already been evaluated as single-crosses in former advanced breeding stages or as testcrosses in former early stages of breeding programs. These individuals were phenotyped but not necessarily genotyped. Thus they cannot be included as such in GBLUP models. However, if their pedigree is known they could be included in Single Step GBLUP models. Indeed this method considers an extended relationship matrix H between all individuals, combining pedigree and genomic kinship. Single Step GBLUP showed its interest in animal breeding but it has to be noted that in plant breeding, pedigree are less reliable than in animal breeding. In addition, G x E interactions are much more important making it difficult and possibly inefficient to assemble data from different years, different environments in a single analysis. Information from specific QTLs can be added in Single Step GBLUP models by giving a different weigh to some SNPs [START_REF] Legarra | Use of a reduced set of single nucleotide polymorphisms for genetic evaluation of resistance to Salmonella carrier state in laying hens[END_REF][START_REF] Wang | Genome-wide association mapping including phenotypes from relatives without genotypes[END_REF]. Future mentioned developments of Single

Step GBLUP models are extension to crosses and to fit dominance effects [START_REF] Legarra | Single Step, a general approach for genomic selection[END_REF] and one may hope theses aspects will be derived soon.

Reconsidering early steps of maize hybrid breeding selection programs?

Further studies are needed to evaluate the prediction accuracies on our design compared to those of tester-based designs. If advantage or at least equivalence of our reciprocal multiparental design is confirmed, it opens new prospects for reconsidering maize breeding. Indeed test-cross evaluation could be replaced by single-cross evaluation between the two heterotic groups according to an incomplete factorial design. Test-cross evaluation, by evaluating lines of each heterotic group using one or a few testers of the other one, needs at least two times more phenotyping effort than our design. This may lead to substantial economies. However, for creating our single-cross hybrids, hand-made pollination is necessary, which is not the case for test-cross hybrid production. Thus it increases the cost of hybrid seed production for an individual hybrid. Further studies are needed to evaluate if this increase in production cost is compensated by the diminution of field plots needed for phenotypic evaluation.

For a first evaluation and comparison of the cost of the two methods, we could consider the evaluation of 500 dent lines and 500 flint lines, each one observed in eight environments. For the test-cross evaluation, cost of seed production will be around 22€ per line (including the catch-up costs, considering that 10% of the pollinations failed). Considering that the dent and flint lines are evaluated in combination with only one tester, the seed production cost will be equal to (500 x 22 + 500 x 22) = 22 000€. For simplifying the cost evaluation, we will consider that all lines are observed only once in all environments and that there is no checks. 16 trials are needed for test-cross evaluation of all the lines (eight for the 500 dent lines and eight for the 500 flint lines). Considering a field cost evaluation of one hybrid in one environment of 20€, we have a total cost for the field trials of (8 x 20 x 500 + 8 x 20 x 500) = 160 000€. Thus evaluation of the lines based on their test-cross value will cost 182 000€, considering that each line should be seen in one environment. For direct evaluation of the hybrids between the 500 dent and 500 flint lines, we will consider that each line is parent of only one hybrid and we will thus need to produce 500 hybrids. Hand-made pollination will be needed for seed production and we will consider a cost of 50€ per line (including the catch-up costs, considering that 40% of the pollinations failed). Thus, the total cost for seed production is equal to (500 x 50) = 25 000€. Only 8 trials will be needed for evaluating all hybrids. Considering a field cost evaluation of one hybrid in one environment, (8 x 20 x 500) = 80 000€ will be needed for phenotypic evaluation. Thus, evaluation of the lines based on a reciprocal design as studied Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a reliable estimation. a The threshold value for the LDLA -1-marker corresponded to a Bonferroni threshold for a genome-wide risk of 10 %. The other thresholds were calculated using 5,000 intra-family permutations of the phenotypes for a type I risk of 10 % across all families and the total genome.

Table S3 Results of the QTL detection in the flint design using the connected model. For each detected QTL, we showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S4 Results of the QTL detection in the flint design using the LDLA -5 cM model. For each detected QTL, we showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF].

Trait Table S5 Results of the QTL detection in the flint design using the LDLA -2 cM model. For each detected QTL, we showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S6 Results of the QTL detection in the flint design using the LDLA -1-marker model. For each detected QTL, we showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S7 Results of the QTL detection in the dent design using the connected model. For each detected QTL, we showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S8 Results of the QTL detection in the dent design using the LDLA -5 cM model. For each detected QTL, we showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S9 Results of the QTL detection in the dent design using the LDLA -2 cM model. For each detected QTL, we showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S10 Results of the QTL detection in the dent design using the LDLA -1-marker model. For each detected QTL, we showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. Table S11 Results of the QTL detection in the joint analysis using the connected model. For each detected QTL, we showed its genetic position on the dent-flint consensus map, its confidence interval, its level of significance and the partial percentage of variance explained. We also showed the name of one of the markers located at the detected position and their range of physical position(s) on the B73 v2 genome [START_REF] Gore | A first-generation haplotype map of maize[END_REF]. the "SNP within-group" model, (c) the "Hybrid genotype" model. The chromosome number is indicated on the abscissa. For the "Founder alleles" (a) and the "SNP within-group" (b) models, the graphic at the top corresponds to the global effects at the markers. The other graphics correspond to the different components of the decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the "Hybrid genotype" model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots correspond to those that were above the threshold. The red squares correspond to the -log(p-value) of the QTLs that were included in the final multi-locus model. An upper limit for the -log(pval) was fixed to 16.

Trait

Trait

Table S1 Results of the QTLs detection for the "Hybrid Genotype" model for the four studied traits: Dry Matter Content (DMC), Dry Matter Yield (DMY), Silking Date (DtSILK), Plant Height (PH). For each QTL, the chromosome (Chr), the marker (Mk), the genetic position in cM (Gen pos), the physical position in kbp (Phys pos), the -log(p-value) of the additive part of its effect (-log(Ad)), the -log(p-value) of the dominance part of its effect (-log(Dom)), the -log(p-value) of its global effect (-log(Global)), the explained R² in % (R²) are indicated. ). For each QTL, the chromosome (Chr), the marker (Mk), the genetic position in cM (Gen pos), the physical position in kbp (Phys pos), the -log(p-value) of the flint GCA part of its effect (-log(GCAf)), the -log(p-value) of the dent GCA part of its effect (-log(GCAd) ), the -log(p-value) of the SCA part of its effect (-log(SCA)), the -log(p-value) of its global effect (-log(Global)), the explained R² in % (R²) are indicated. S3 Results of the QTLs detection for the "Founder Alleles" model for the four studied traits: Dry Matter Content (DMC), Dry Matter Yield (DMY), Silking Date (DtSILK), Plant Height (PH). For each QTL, the chromosome (Chr), the marker (Mk), the genetic position in cM (Gen pos), the physical position in kbp (Phys pos), the -log(p-value) of the flint GCA part of its effect (-log(GCAf)), the -log(p-value) of the dent GCA part of its effect (-log(GCAd)), the -log(p-value) of the SCA part of its effect (-log(SCA)), the -log(p-value) of its global effect (-log(Global)), the explained R² in % (R²) are indicated. Table S1 Variance components of the phenotypic data, estimated directly on field plot data, for the four variance decomposition models presented in Giraud et al. (submitted), for the different traits: dry matter content DMC (in % of dry matter), dry matter yield DMY (in tons. per ha), female flowering time DtSILK (in days after 1 st of January), plant height PH (in cm). For each variance, precision corresponding to 1.96 x the standard error of the estimated variance is indicated. We indicated the min and max values of the residual variances in the different trials. Darwin en 1876 conclut après de multiples observations au bénéfice dans de nombreux cas de la pollinisation croisée par rapport à l'autofécondation. Cette observation a été par la suite théorisée parallèlement par Shull (1908) et East (1908) qui en se basant sur des observations sur le maïs (Zea mays L.) ont défini le concept d'hétérosis (Shull 1914). L'hétérosis se manifeste tant au niveau inter que intra-spécifique. On se concentrera dans cette thèse sur La valeur d'un hybride se décompose traditionnellement en deux parties (Sprague and Tatum 1942). La première est la somme des Aptitudes Générales à la Combinaison (AGC) des deux lignées parentales, chacune définies comme la valeur moyenne des hybrides obtenus par croisement de cette lignée avec les lignées du groupe complémentaire. La deuxième partie est l'Aptitude Spécifique à la Combinaison (ASC) de la paire de lignées parents de l'hybride. C'est la différence entre la valeur de l'hybride et sa valeur prédite sur la base des AGCs. Dans un programme de sélection, à cause de considérations pratiques, toutes les combinaisons de lignées inter-groupes hétérotiques ne peuvent être évaluées phénotypiquement. Par conséquent, la sélection est effectuée en deux étapes. Dans un premier temps, les potentielles lignées candidates de chaque groupe sont sélectionnées sur la base de la valeur de leur descendance en croisement avec une ou quelques lignées représentatives du groupe complémentaire, appelées testeurs. Dans un second temps, un nombre limité de combinaisons entre les lignées sélectionnées des deux groupes sont évaluées pour identifier les meilleurs hybrides. Dans ce schéma, la majeure partie de la sélection est effectuée durant la première étape. A cause du faible nombre de testeurs considérés, la sélection des lignées est basée sur une combinaison de leur AGC et de l'ASC avec le(s) testeur(s). La compréhension de la part des AGCs et de l'ASC dans la variation des caractères d'intérêt est par conséquent importante pour évaluer à quel point le choix du (des) testeur(s) peut affecter l'estimation du potentiel de futures lignées.

Model

L'étude des caractères quantitatifs i.e. des caractères présentant une variation continue, ce qui est le cas de la majorité des caractères d'intérêts agronomiques, cherche à comprendre les bases génétiques de ces caractères complexes. Les outils de génotypage développés depuis les années 80 permettent de rechercher des associations entre les variations moléculaires au niveau de l'ADN et celle des phénotypes. On peut distinguer deux intérêts principaux : la compréhension du déterminisme génétique des caractères (détection de QTL) et la sélection basée sur les QTLs détectés (sélection assistée par marqueurs) ou sur une valeur prédite de l'individu impliquant l'ensemble des marqueurs (sélection génomique). Chez les plantes, avec le développement des marqueurs moléculaires (RFLP, AFLP puis SSR notamment), la détection de QTL s'est développée essentiellement au sein de populations biparentales (Paterson et al. 1988). L'essor des SNPs et le développement du marquage moléculaire haut-débit ont entraîné une forte diminution des coûts de génotypage ce qui a permis d'augmenter le nombre d'individus génotypés et le nombre de points de génotypage. Ceci a induit des modifications dans la manière de penser la détection de QTL et les méthodes de sélection. En effet, cela a permis de développer la détection de QTL dans des populations à base génétique large issues de plus de deux parents et de prendre en compte en plus des informations de linkage, l'existence d'haplotypes communs entre parents, définis par la présence de marqueurs proches en déséquilibre de liaison. Des méthodes de type LDLA : « linkage disequilibrium and linkage analysis » ont été développées.

Cette révolution technique a aussi permis le développement d'approches de sélection prenant globalement en compte l'ensemble des marqueurs du génome, ce qui a été défini sous le terme de sélection génomique (Meuwissen et al. 2001).

A notre connaissance, aucune détection de QTL n'a été effectuée dans un dispositif expérimental entre lignées issues directement de populations en ségrégation disponibles aux premiers stades de la sélection dans deux groupes hétérotiques complémentaires. Avec le développement des techniques d'haploïdes doublés, les sélectionneurs peuvent directement générer à chaque cycle de sélection des populations en ségrégation composées de lignées pures. 

Figure 1 :

 1 Figure 1: Illustration of phenotypic heterosis in the F2 x F252 maize hybrid, in the center (Photo: Julie Fiévet).

Figure 2 :

 2 Figure 2: Definition of genotypic value in a biallelic situation for one locus. Genotypic values of the genotypes bb, Bb and BB, are defined by the parameters a and d. a is the biological additive effect of the locus and d is the biological dominance effect of the locus. The genotypic value of the genotype bb is -a, genotypic value of the genotype BB is a. When there is strict additivity, genotypic value of genotype Bb is 0, whereas when there is dominance of allele B over allele b (situation presented here) it is equal to d. If d a = 1, there is complete dominance, if 0 < d a < 1 there is partial dominance and if d a > 1there is overdominance.

Figure 3 :

 3 Figure 3: Genetic mechanisms proposed to explain heterosis. P1 and P2 correspond to the two parental lines. Alleles a and b are recessive and unfavorable, alleles A and B are dominant and favorable.

Figure 4 :

 4 Figure 4: Evolution of U.S. maize yields and kinds of corn from 1860 to 1998; periods dominated by openpollinated, by double cross and single cross hybrids are shown. (From Troyer 1999).

Figure 5 :

 5 Figure 5: Reciprocal recurrent selection for two complementary populations A and B (adapted from Varona and Toro, 2012).

Figure 6 :

 6 Figure 6: Diagram of genomic selection process with a single occurrence of model training, starting from the training population and selection candidates continuing through to genomic estimated breeding value (GEBV)based selection (From Heffner et al. 2009).

  Following two different southwards roads, maize reached the Andeans mountains around 6000 years ago and South Brazil around 6700 years ago (Tenaillon and Charcosset 2011) (Figure A1). It expanded northwards, arriving in the South-West of USA around 4100 years ago and then in Northern USA and Canada 800 years later. Recent hybridization between subtropical Southern dent material (from South of USA) and Northern flint material (from North-West of USA), adapted to short cycles, took place in 1800 AC, creating Corn Belt dent material (Tenaillon and Charcosset 2011). Maize landraces can now be found from 40°S in South of Chile (close to Chiloe Island) to 50°N in Canada (close to Gaspé peninsula) and between + 0 meters above the seal level (Caribbean islands) to +3400meters in the Andean mountains.

Figure A1 :

 A1 Figure A1: Domestication center and hypothetical diffusion of maize through the Americas and Europe (From Tenaillon and Charcosset 2011).

  of the different allelic models for the major QTL detected for female flowering time Visualization of allelic effects of the connected model through heat maps (Figure S5, Figure S6, Figure S7, Figure S8, Figure S9, Figure S10, Figure S11, Figure S12, Figure S13, and Figure S14) illustrated a continuous range of effects for all QTL. The central line had an intermediate value for most of the loci in both designs. Each parental line carried alleles with either positive or negative effects compared to the central line. LDLA models are expected to outperform the connected model if the clustering process correctly identifies underlying allelic series at QTL. To get further insight into this point, we compared allelic effects estimated by the different models for the two major DtSILK QTL found in this study. The allelic effects of the DtSILK major QTL detected in the flint group on chromosome 10 at 38 -50 cM clearly showed an allelic series (Figure 4). The four models detected QTL in this region but at slightly different positions. For the QTL detected with the connected model, at least three classes of effects were identified based on t-tests. F283 and DK105 carried a late allele (3.7 d and 3.5 d compared to UH007), UH006 an intermediate allele (2.07 d), and D152, UH009, F2, UH007, and F03802 an early allele (between -0.29 and 0.4 d), the three other parental lines showing effects between the early and the intermediate classes. For the QTL detected with the LDLA -5 cM and LDLA -2 cM models, allelic effects were globally consistent with those found for the QTL detected with the connected model except for EZ5

  complementary flint and dent genetic pools that are often used to produce commercial hybrids in Northern Europe. To do so, a new NAM DH population was developed for each group. Both NAM populations display intermediate levels of diversity compared to the US NAM design and classical elite breeding programs. Data from each design were analyzed with four models: a connected model where parents are assumed to carry different alleles, an LDLA model based on single marker information close to the one successfully used for the US NAM design, and two LDLA models based on ancestral allele modeling previously used with success by Leroux
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 12345671 Figure 1 Number of ancestral alleles along the genome after clustering with "clusthaplo" using a 2 cM sliding window size and number of markers in the 2 cM sliding window along the genome for the dent design (6,808 unique positions on the genome -1,343.3 cM in total) and the flint design design (7,272 unique positions on the genome -1,586.3 cM in total. The black points correspond to the number of ancestral alleles. The green line corresponds to the number of markers in the 2 cM sliding window alog the genome. Horizontal red lines correspond to the average number of ancestral alleles along the whole genome. The vertical black dotted lines correspond to the limits of each chromosome. ......................................................................... 85

Figure 2

 2 Figure 2 Similarities between the dent (left) and the flint parental lines (right), computed based on direct marker genotyping (top) and on ancestral allele sharing (using "clusthaplo" and a 2cM window size) (bottom). Yellow colors correspond to a low similarity, red colors correspond to a high similarity (color scale on the top-right corner). Lines were ordered according to their position in the dendogram (on the top and on the left of each graph) obtained by a hierarchical clustering based on similarities.A Similarities between the dent parental lines computed based on direct marker genotyping. B Similarities between the flint parental lines computed based on direct marker genotyping. C Similarities between the dent parental lines computed based on ancestral allele sharing (using "clusthaplo" and a 2cM window size). D Similarities between the flint parental lines computed based on ancestral allele sharing (using "clusthaplo" and a 2cM window size).

Figure 3

 3 Figure 3 Results of the QTL detection for with each model for DtSILK for A the dent design and B the flint design. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected models by black dots. The -log10(p-values) of the LDLA -5 cM model are represented by tblue lines and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA -2 cM model are represented by red lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA -1-marker model are represented by green stars. Horizontal lines correspond to the threshold values of the different models.

Figure 4

 4 Figure 4Allelic effects for the different flint lines for the QTL detected on chromosome 10 at 38 -50 cM for DtSILK with all the QTL detection models. Allelic effects are estimated in contrast to the central line allelic effect (UH007), which was set to zero. The same letter was given to allelic effects not significantly different at a 5% risk level. Alleles with intermediate effects may be attributed to more than one letter. The last column corresponds to the joint effect of the two QTL detected in the region with LDLA -1-marker model. Allelic effects estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a reliable estimation. Inbred lines are ranked according to their allelic effects obtained with the connected model.

Figure 5

 5 Figure5Allelic effects for the different dent lines for the QTL detected on chromosome 8 at 45 -58 cM for DtSILK with all the models. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. The same letter was given to allelic effects not significantly different at a 5% risk level. Alleles with intermediate effects may be attributed to more than one letter. The last column corresponds to the joint effect of the two QTL detected in the region with LDLA -1-marker model. Inbred lines are ranked according to their allelic effects obtained with the connected model.

Figure 6

 6 Figure 6 QTL projection on the flint-dent consensus map of the QTL detected in the dent dataset, the flint dataset and in the joint dataset for DMC, DMY, DtSILK, DtTAS and PH. Each QTL is displayed by one horizontal line bound by two vertical lines representing the confidence region and a vertical line proportional to the QTL adjusted R² symbolizing the QTL position. QTL common to dent and flint according to the overlap of their confidence region on the dent-flint consensus map are represented in red. For the QTL detected in the joint analysis, the letters d and f written below the QTL indicate that the QTL was significant when tested in the dent or flint dataset respectively.

Figure 7

 7 Figure 7 Distribution of the percentage of variance (E FGH ) explained by the QTL detected in A the dent design and B the flint design, with the connected model and for the five traits.

  2 lines for the dent design (min 114, max 167) and 152.2 (min 126, max 185) for the flint design were derived. The dent lines were obtained by double haploidization and the flint lines were obtained by selfing independent F2 individuals for five or six generations depending on the population. 931 dent lines and 913 flint lines, were obtained. From these lines, further called the "parental lines", 863 dent lines and 879 flint lines were crossed according to an incomplete factorial design in order to produce 1044 experimental hybrids. Each population of one group was crossed with all the populations of the other group, with the objective to balance the contribution of all populations. The majority of lines (699 in the dent and 732 in the flint) contributed to only one hybrid, but some lines contributed twice (163 in the dent group and 146 in the flint group) or even three times (one dent parental line) or four times (one flint parental line). All founder lines of one group were crossed with the founder lines of the other group to create 16

  hybrids were evaluated in a total of 8 different environments over two years (4 in 2013 and 4 in 2014) in the North of France and in Germany for four traits: silage yield (DMY in tons of dry matter per ha), dry matter content at harvest (DMC in %), plant height (6 environments) (PH in cm) and female flowering (DtSILK in days after January the first). Trials were conducted according to usual agricultural practice of the region.The field experiments were laid out as an augmented p-rep design and were constituted of 1088 elementary plots, consisting each in two rows of 5 meters long. Most hybrids between the parental inbred lines were evaluated only once for a given environment. The founder hybrids and around 17 % of the experimental hybrids were evaluated twice. Trials were laid out in 68 incomplete blocks consisting of 16 elementary plots each with 5 to 6 plots used for repeated genotypes. 1044 hybrids were evaluated in total over the whole experimental design, out of which 951 hybrids were considered for further analyses (950 for PH and DMY), corresponding to hybrids for which both parents had correct genotypic data (821 dent parental lines and 801 flint parental lines). Outlying observations were deleted. For silage yield, data from one environment over eight were excluded as they were not correlated with the other environments.

  founder line and the flint founder line ′. U P( )P O V O O W is the genetic value of the hybrid issued from the cross between the flint parental line ? (issued from the founder lines and ) and the dent parental line ?′ (issued from the founder lines ′ and ′). We assume that U P( )P O V O O W are independent and identically distributed (iid) and follow a normal distribution: U P( )P O V O O W ↪ ;(0, _ ` ), #. To correct for spatial heterogeneities we included in the model either a random block effect or random row column effects, depending on the environment and trait. The choice between the two models was done by analyzing independently each environment and by choosing the best correction model based on the likelihood and the repartition of the hybrid Best Linear Unbiased Predictors (BLUPs) in the field design. In the joint model, # L is a parameter set to 1 if for the environment Y the spatial effects correction chosen is a block correction, 0 else. Q(L) is the random effect associated to the block Z in the environment Y, N -(L) and + .(L) are the random effects associated to the line & and the column in the environment Y, with N -(L) ↪ ;V0, _ H a W which were assumed to be independent (id), + .(L) ↪ ;V0, _ b a W id, andQ(L) ↪ ;V0, _ ! a W id. X L O O PP O I-.QRis the residual effect associated to the model for each environment with X L O O PP O I-.QR ↪ ;(0, _ cL ) id, and N -(L) ⊥ + .(L) ⊥ Q(L) ⊥ X L O O PP O I-.QR where ⊥ stands for independence between the random effects. The second model considers the structure in populations of the design. It corresponds to model (1) except that U P( )P O V O O W is decomposed into: + O O + ( ) O O + U P( )P O V O O W * (2) Where (respectively O O ) is the fixed effect of the flint (respectively dent) population of origin of the flint (respectively dent) parental line ? (respectively ?′), ( ) O O is the fixed effect corresponding to the interaction between the flint and dent populations of origin of the parental lines. U P( )P O V O O W * is the within-population genetic value of the hybrid issued from the cross between the flint parental line ? (issued from the founder lines and ) and the dent parental line ?′ (issued from the founder lines ′ and ′) with U P( )P O V O O W * ↪ ;V0, _ ` * W iid. In the third model, the hybrid value is decomposed into GCA and SCA effects without considering the structure in populations. Thus U P( )P O V O O W is decomposed into: = P( ) + = \ P O V O O W + (== \ ) P( )P O V O O W (3) Where = P( ) (respectively = \ P O V O O W ) is the random effect of the inbred line ? (respectively ?′) issued from the cross between the dent (respectively flint) founder lines and (respectively ′ and ′), with = P( ) ↪ ;(0, _ g ) iid (respectively = \ P O V O O W ↪ ;V0, _ g O W iid). These effects correspond to the dent (respectively flint) GCA of the parental lines. (== \ ) P( )P O V O O W is the random effect of the interaction between the inbred line ? and the inbred line ?′, with (== \ ) P( )P O V O O W ↪ ; h0, _ (gg O ) i iid. This interaction corresponds to the SCA of the two parent lines. In the fourth model, the hybrid value is decomposed into the population structure, the withinpopulation GCA and the within-population SCA. Thus U P( )P O V O O W is decomposed into: + O O + ( ) O O + = P( ) * + = * \ P O V O O W + (== \ ) P( )P O V O O W * (4) Where , O O and ( ) O O are defined as in model (2). = P( ) * , = * \ P O V O O W and (== \ ) P( )P O V O O W * are the within-population equivalents of = P( ) , = \ P O V O O W and (== \ ) P( )P O V O O W of model (3).From model (1) we derived the heritability U at the whole design level as: is the genetic variance of the hybrids, s : U is the average number of times an experimental hybrid was evaluated in the whole design, _ c is the average residual variance of the model over the different environments. The within-population heritability of the design was calculated with a similar formula but considering the genetic variance of model (2) that takes into account the structure in populations. The percentage of within-population variance in the total genetic variance was calculated as %U * = j k * j k with _ ` being the genetic variance of the hybrids in model (1) and _ ` * the within-population genetic variance of the hybrids, in model(2). The percentage of SCA in the genetic variance was calculated from model (3) as %,

  = 1. + ,. + . + +. ( ) + 5 y_R . x y_R + 5 y_{ . | y_{ + 5 y_R y_{ . (x|) y_R y_{ + } R . ~R + } { . ~{ + : (Q1)Where is a (; ×1) vector of the ls-means of the hybrids with ; being the number of experimental hybrids phenotyped for the considered trait; is the intercept, 1 is a (; ×1) vector of 1. (respectively ) is a (6 ×1) vector of the fixed effects of the dent (respectively flint) populations of origin of the dent (flint) parental line, , (respectively ) is the (; ×6) design matrix of 0-1 that linked each hybrid to the dent (respectively flint) population of its dent (respectively flint) parental line, ( ) is a (36 ×1) vector of the fixed interaction effects between the dent and flint populations of parental lines, + is the corresponding design matrix. ~R (respectively ~{) is a (; R ×1) (respectively (; { ×1)) vector of the random effects of the ; R dent (respectively ; { flint) parents, with ~R ↪ ; (0, _ € • ), # (respectively ~{ ↪ ; (0, _ € ' ), #). } R is the (; × ; R ) design matrix that relates the ; hybrids with the ; R different dent parents and } { is a V; × ; { W design matrix that relates the ; hybrids to the ; { different flint parents. : is a (; ×1) column vector of the residuals of the model with : ↪ ; (0, _ ƒ ), #. The QTL effect was decomposed into three terms: x y_R , | y_{ and (x|) y_R y_{ . x y_R (respectively | y_{ ) is the (4 x 1) vector of the allelic effects at the marker associated with each dent (flint) founder line. These effects correspond to the GCA effects of the QTL. For each marker, 5 y_R (respectively 5 y_{ ) is a (; × 4) matrix of the probabilities that the hybrid received its dent (respectively flint) allele from each of the four dent (respectively flint) founder lines. (x|) y_R y_{ is the (16 x 1) line vector of the 16 levels of the interactions or SCA between the founder alleles, 5 y_R y_{ is a (; ×16) matrix corresponding to the Hadamard product of 5 y_R and 5 y_{ . As the sum of probabilities for each allele equals 1, this model has three degrees of freedom (df) for the additive effect of the founder alleles in each group and nine df for the interaction.

Figure 2 :

 2 Figure 2: -log(p-value) curves of QTL detection for Dry Matter Yield (DMY) with (a) the "Founder alleles" model, (b) the "SNP within-group" model, (c) the "Hybrid genotype" model. The chromosome number is indicatedon the abscissa. For the "Founder alleles" (a) and the "SNP within-group" (b) models, the graphic at the top corresponds to the global effects at the markers. The other graphics correspond to the different components of the decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the "Hybrid genotype" model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots correspond to those that were above the threshold. The red squares correspond to the -log(p-value) of the QTLs that were included in the final multi-locus model.

Figure 3 :

 3 Figure 3: Synthesis of the positions of the detected QTLs for the four studied traits (DMC indicates dry matter content, DMC; dry matter yield, DMY; female flowering time DtSILK, and plant height, PH) and the different models. The QTLs detected with the "Founder alleles", "SNP within-group" and "Hybrid genotype" models are indicated respectively with red, blue and green crosses.

Figure 4 :

 4 Figure 4: GCA effects for the founder lines for the QTLs detected with the "Founder alleles" model for DMY.

  been proposed in order to optimize its selection. Sprague and Tatum proposed in 1942 the decomposition of the hybrid genetic value into General Combining Abilities (GCA) and Specific Combining Ability (SCA). The GCA of one parental line corresponds to the average performance of its descendants in hybrid combinations. The SCA corresponds to the difference between the hybrid observed value and its predicted value based on the GCAs of its parents. In 1949, Comstock et al. proposed the recurrent reciprocal selection which consists in improving simultaneously the two parental populations of the hybrids, by evaluating plants of one population for the value of their progeny when crossed to several plants of the other population.

F1

  hybrids. Each of these multiparental designs is constituted of six populations of parental lines derived by haplodiploidization (for the dent) or by five to six generations of selfing (for the flint) from a half diallel mating design between four founder lines. The 863 dent parental lines and the 879 flint parental lines were crossed according to an incomplete factorial design in order to obtain 1044 dent -flint hybrids which were phenotypically evaluated. The majority of lines (699 in the dent and 732 in the flint) contributed to a single hybrid. Some lines contributed to two hybrids (163 in the dent group and 146 in the flint group) and one dent parental line contributed to three hybrids and one flint to four hybrids. The experimental design is described in details in Chapter 2.

Figure 1 :

 1 Figure 1: Repartition of the 951 hybrids in function of the population of origin of their dent and flint parent. Each inbred line population is denoted D1 to D6 for the dent ones and F1 to F6 for the flint ones and we indicated the names of the two founder lines of the population. This figure illustrates the different calibration sets categories considered for the prediction of a given dent-flint hybrid population (here the D1 x F1 population in red) using the other dent-flint populations as calibration set, in function of the number of founder lines in common with the target population.

Figure 2 :

 2 Figure 2: Predictive ability as a function of the calibration set size for the GBLUP models without population structure and with the SNP kinship matrices for the studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH). The green curve corresponds to the model taking into account the SCA, the yellow curve corresponds to the model without SCA.

  . The first design (Chapter 1) consisted in two Nested Association Mapping (NAM) designs. Parental lines of one NAM design were evaluated for their test-cross value with the central line of the complementary design used as a tester. In the second design or multiparental reciprocal design (Chapters 2 and 3), we evaluated hybrids issued from a factorial design between two multiparental connected designs. QTL detection was performed in both cases. The potential of genomic selection was evaluated in the NAM design by Lehermeier et al. (2014) and we performed genomic predictions in the second one. Our study shed new lights on the genetic architecture below hybrid value for silage maize and opened prospects for the use of genomic information in new hybrid selection schemes.

Figure S1

 S1 Figure S1 Results of the QTL detection with each model for DMC for (A) the dent design and (B) the flint design. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected models by black dots. The -log10(p-values) of the LDLA -5 cM model are represented by blue lines and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA -2 cM model are represented by red lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA -1-marker model are represented by green stars. Horizontal lines correspond to the threshold values of the different models.

Figure S2

 S2 Figure S2 Results of the QTL detection with each model for DMY for (A) the dent design and (B) the flint design. The results for the dent design are in the superior part, flint in the inferior part. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected models by black dots. The -log10(p-values) of the LDLA -5 cM model are represented by blue lines and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA -2 cM model are represented by red lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA -1-marker model are represented by green stars. Horizontal lines correspond to the threshold values of the different models.
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 S3 Figure S3 Results of the QTL detection with each model for DtTAS for (A) the dent design and (B) the flint design. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected models by black dots. The -log10(p-values) of the LDLA -5 cM model are represented by blue lines and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA -2 cM model are represented by red lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA -1-marker model are represented by green stars. Horizontal lines correspond to the threshold values of the different models.
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 S4S5 Figure S4 Results of the QTL detection with each model for PH for (A) the dent design and (B) the flint design. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected models by black dots. The -log10(p-values) of the LDLA -5 cM model are represented by blue lines and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA -2 cM model are represented by red lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA -1-marker model are represented by green stars. Horizontal lines correspond to the threshold values of the different models.
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 S6 Figure S6Allelic effects for the different dent lines for the QTL detected for DMY with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.
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 S7 Figure S7 Allelic effects for the different dent lines for the QTL detected for DtSILK with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.
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 S8 Figure S8 Allelic effects for the different dent lines for the QTL detected for DtTAS with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.

Figure S9

 S9 Figure S9Allelic effects for the different dent lines for the QTL detected for PH with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.

Figure S10

 S10 Figure S10Allelic effects for the different flint lines for the QTL detected for DMC with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a reliable estimation.

Figure S11

 S11 Figure S11Allelic effects for the different flint lines for the QTL detected for DMY with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a reliable estimation.
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 S12 Figure S12Allelic effects for the different flint lines for the QTL detected for DtSILK with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a reliable estimation.
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 S13 Figure S13Allelic effects for the different flint lines for the QTL detected for DtTAS with the connected model. Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a reliable estimation.

Figure S14

 S14 Figure S14Allelic effects for the different flint lines for the QTL detected for PH with the connected model.

Figure

  Figure S1-log(p-value) curves of QTL detection for Dry Matter Content (DMC) with (a) the "Founder alleles" model, (b) the "SNP within-group" model, (c) the "Hybrid genotype" model. The chromosome number is indicated on the abscissa. For the "Founder alleles" (a) and the "SNP within-group" (b) models, the graphic at the top corresponds to the global effects at the markers. The other graphics correspond to the different components of the decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the "Hybrid genotype" model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots correspond to those that were above the threshold. The red squares correspond to the -log(p-value) of the QTLs that were included in the final multi-locus model. An upper limit for the -log(pval) was fixed to 16.

Figure

  Figure S2-log(p-value) curves of QTL detection for Female Flowering (DtSILK) with (a) the "Founder alleles" model, (b) the "SNP within-group" model, (c) the "Hybrid genotype" model. The chromosome number is indicated on the abscissa. For the "Founder alleles" (a) and the "SNP within-group" (b) models, the graphic at the top corresponds to the global effects at the markers. The other graphics correspond to the different components of the decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the "Hybrid genotype" model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots correspond to those that were above the threshold. The red squares correspond to the -log(p-value) of the QTLs that were included in the final multi-locus model. An upper limit for the -log(pval) was fixed to 16.

Figure

  Figure S3 -log(p-value) curves of QTL detection for Plant height (PH) with (a) the "Founder alleles" model, (b)the "SNP within-group" model, (c) the "Hybrid genotype" model. The chromosome number is indicated on the abscissa. For the "Founder alleles" (a) and the "SNP within-group" (b) models, the graphic at the top corresponds to the global effects at the markers. The other graphics correspond to the different components of the decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the "Hybrid genotype" model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots correspond to those that were above the threshold. The red squares correspond to the -log(p-value) of the QTLs that were included in the final multi-locus model. An upper limit for the -log(pval) was fixed to 16.

  l'hétérosis intra-spécifique. L'hétérosis du sélectionneur est le fait que l'individu issu du croisement de deux parents d'une certaine nature (lignées, populations, clones individus hétérozygotes) est supérieur au meilleur de ses parents. L'hétérosis du généticien correspond à l'avantage d'un hybride par rapport à la moyenne de ses parents. L'hétérosis est l'opposé conceptuel de la dépression de consanguinité, qui correspond à une réduction graduelle de la vigueur suite à la reproduction sur plusieurs générations d'individus apparentés. Son importance diffère selon le système de reproduction (supérieure chez les espèces allogames) et le caractère étudié. Les bases génétiques de l'hétérosis sont peu connues mais plusieurs hypothèses non-exclusives existent pour l'expliquer : la dominance, la super-dominance, la pseudo-superdominance, la superdominance marginale. Chez le maïs, la théorisation de l'hétérosis par East et Shull a été accompagnée aux USA par le développement d'hybrides. Les hybrides F1 permettaient de produire à grande échelle les meilleures combinaisons de gamètes dérivés de variétés populations. En 1922-1924 les meilleurs hybrides, comme par exemple Cooper Cross, présentaient un avantage répétable d'environ 10% par rapport aux meilleures variétés populations (Charcosset 2002). Des groupes hétérotiques (structurant la diversité génétique) ont été développés à partir des années 50 et les variétés actuelles correspondent généralement à des hybrides issus du croisement entre les lignées appartenant à des groupes hétérotiques complémentaires.

  Au lieu d'utiliser un faible nombre de testeurs du groupe complémentaire pour évaluer les candidats à la sélection, il peut être plus pertinent d'évaluer directement des hybrides entre lignées non sélectionnées des deux groupes. Détecter des QTLs d'AGC et d'ASC permettrait d'identifier les meilleures combinaisons hybrides possibles et d'optimiser l'amélioration de futures lignées parentales au sein de chaque groupe.Dans ce contexte, l'objectif de cette thèse est de comprendre les bases génétiques de la valeur hybride chez le maïs pour la production de biomasse. Pour cela, la première partie du travail a consisté à mettre en oeuvre une approche de détection de QTL dans deux dispositifs multiparentaux, correspondant chacun à un groupe hétérotique (les cornés versus les dentés), évalué pour sa valeur en croisement avec un testeur du groupe complémentaire. Dans un deuxième temps nous avons réalisé une détection de QTL dans un factoriel obtenus en croisant deux dispositifs multiparentaux correspondant chacun à un groupe hétérotique. Ce dispositif nous a permis d'évaluer l'importance relative de l'ASC par rapport à l'AGC et de rechercher les locus impliqués dans chacune de ses composantes. Enfin nous avons estimé quel était son potentiel pour la mise en oeuvre de la sélection génomique. L'analyse de type « Linkage Disequilibrium Linkage analysis » de dispositifs multiparentaux révèle différents QTLs multi-alléliques pour la performance hybride dans les groupes hétérotiques cornés et dentés de maïs Ces travaux ont été publiés dans la revue Genetics de Décembre 2014 (Genetics 198 : 1717-1734). Deux dispositifs de type « Nested Association Mapping » de maïs, adaptés aux conditions européennes, ont été dérivés à partir des groupes hétérotiques complémentaires dentés et cornés, utilisés pour la production d'hybrides en Europe du Nord. Ces dispositifs ont été créés dans le cadre du projet européen « CornFed ». Dix familles biparentales dentées (N=841) et 11 familles biparentales cornées (N=811) ont été génotypées avec 56110 marqueurs SNP (Ganal et al. 2011) et évaluées sur testeur, en utilisant la lignée centrale du dispositif réciproque. Cinq caractères ont été phénotypés : le contenu en matière sèche, le rendement ensilage, la date de floraison mâle, la date de floraison femelle et la hauteur de plante. Des cartes génétiques consensus dentée, cornée et cornée-dentée ont été construites, correspondant respectivement à 21878 marqueurs (6808 positions génétiques), 20406 marqueurs (7272 positions génétiques) et 25472 marqueurs (8124 positions génétiques). Pour chaque dispositif, différents modèles de détection de QTL ont été appliqués correspondant à différents codages au niveau des allèles. Les allèles ont été définis soit par rapport aux lignées parentales, soit comme des allèles haplotypiques basés sur une identité par descendance (IBD) entre lignées parentales, soit comme les allèles observés au niveau des SNPs. Le regroupement des allèles parentaux a été effectué pour chaque dispositif à l'aide du package R « clusthaplo » (Leroux et al. 2014) en choisissant la taille de la fenêtre en se basant sur la décroissance du déséquilibre de liaison. Différents modèles de détection de QTL multilocus ont été testés. Le premier correspond à un modèle connecté multifamille conventionnel. La connexion entre familles est assurée par la lignée centrale et l'hypothèse est faite que chaque parent porte un allèle différent aux QTLs. Les deuxième et troisième modèles testés sont des modèles connectés LDLA multifamilles, utilisant le regroupement effectué à l'aide de « clushaplo » (deux tailles de fenêtre différentes). Ces trois modèles ont été mis en oeuvre à l'aide du logiciel MCQTL_LD (Jourjon et al. 2005) en utilisant une méthode de détection QTL nommée « iterative composite interval QTL mapping » (Charcosset et al. 2000) et un risque de type I de 10% au niveau du génome en considérant toutes les familles ensemble. Le dernier modèle testé est un modèle LDLA simple marqueur, considérant que deux lignées parentales présentant le même allèle au marqueur sont IBD pour ce marqueur. Ce modèle a été mis en oeuvre dans R en utilisant un script R dérivé de l'approche basée sur un modèle mixte multilocus présentée dans Segura et al. (2012) en considérant également un risque de type I de 10% au niveau du génome. Ensuite, les deux dispositifs ont été analysés conjointement en utilisant le modèle connecté conventionnel. Les effets des QTLs détectés avec l'analyse conjointe ont été testés dans chacun des deux dispositifs pris séparément. Sur la base de la décroissance du déséquilibre de liaison deux tailles de fenêtre glissante ont été choisies pour effectuer le regroupement haplotypique : 2 et 5cM. Dans chaque dispositif, la fenêtre glissante de 5 cM a conduit à un nombre d'allèles ancestraux plus important. Ce nombre varie le long du génome. Le regroupement est plus important dans les régions télomériques que centromériques, où le nombre d'allèles ancestraux est souvent proche du nombre de lignées parentales. Entre cinq et 16 QTLs ont été détectés selon le modèle, le caractère et le groupe génétique considéré. Dans le dispositif corné, un QTL majeur (R²=27%) présentant des effets pléiotropiques, a été détecté sur le chromosome 10. Les autres QTLs présentent des effets plus faibles (R²<10%). En moyenne les modèles de type LDLA ont détecté plus de QTLs mais expliquent un plus faible pourcentage de la variance. Le modèle connecté pour quasiment tous les caractères explique un pourcentage de variance plus important, ce qui est en accord avec le fait que la plupart des QTLs présentent des séries alléliques avec des valeurs relativement continues des effets. En comparant les positions des QTLs détectés dans chacun des dispositifs par le modèle connecté conventionnel, seuls 15% des QTLs ont été trouvés comme communs aux deux dispositifs.

L

  'analyse conjointe des deux dispositifs a permis de détecter 87 QTLs soit entre 15 et 21 QTLs selon le caractère. Parmi ces derniers, entre 27% (floraison femelle) et 41% (floraison mâle) étaient significatifs dans les deux groupes hétérotiques. Pour chaque caractère, un nombre supérieur ou égal de QTLs a été détecté avec l'analyse conjointe que dans les analyses par groupe hétérotique. Toutes les lignées présentent des QTLs avec des effets positifs et négatifs sur le rendement. La présence d'allèles favorables dans les deux groupes ouvre des perspectives pour l'amélioration de la production de biomasse du maïs ensilage par sélection assistée par marqueurs. Contrairement aux autres études sur maïs réalisées dans des dispositifs NAM évalué per se, les QTL trouvés dans notre étude correspondent à des caractères mesurés sur hybrides (lignées croisées à un testeur) qui reflètent directement la variation génétique utile en sélection dans les deux groupes hétérotiques. Une efficacité variable des différents modèles de détection de QTL selon les caractères et la région a été observée ce qui montre la complémentarité des différents codages alléliques pour déchiffrer les séries alléliques. Contrairement à des études précédentes (Bardol et al. 2013), un clair avantage des modèles LDLA utilisant l'information haplotypique n'a pas été observé ce qui est cohérent avec le faible apparentement des lignées parentales de nos dispositifs. Le faible nombre de QTLs communs entre les deux groupes confirme l'ancienne divergence des groupes hétérotiques cornés et dentés : plus de 500 ans (Tenaillon and Charcosset 2011). Peu ou pas de QTLs communs ont été détectés pour le rendement ensilage, soit via l'analyse conjointe soit par comparaison directe des QTLs détectés dans les analyses par groupe hétérotique. Ceci peut être dû au fait que le rendement ensilage, contrairement à la floraison (et indirectement au contenu en matière sèche) a été soumis à une sélection directionnelle et non stabilisatrice. Cette sélection directionnelle a pu avoir tendance à fixer des allèles différents entre les deux groupes hétérotiques. La détection de QTL sur des hybrides de maïs (Zea mays L.) dérivés de deux dispositifs multiparentaux a permis la détection simultanée de QTLs d'aptitudes générales et spécifique à la combinaison pour les performances ensilage L'objectif de ce travail était d'évaluer si, grâce au génotypage dense maintenant disponible à moindre coût, il peut être plus pertinent d'évaluer directement des hybrides entre lignées candidates de deux groupes génétiques plutôt que des hybrides avec un faible nombre de testeurs du groupe complémentaire. Par rapport à une évaluation sur testeur, un tel dispositif permet de décomposer les performances hybrides en AGC et ASC (composantes qui sont confondues dans le cas d'une évaluation sur testeur) et de réduire d'un facteur deux le nombre d'hybrides à phénotyper. Détecter des QTLs d'AGC et d'ASC permettrait d'identifier les meilleures combinaisons hybrides possibles et d'optimiser l'amélioration de futures lignées parentales au sein de chaque groupe. L'objectif de cette partie est d'estimer l'importance relative d'ASC et de l'AGC dans un tel dispositif et d'évaluer son intérêt pour la détection de QTL d'AGC et d'ASC. Ce travail s'inscrit dans le cadre du projet SAM-MCR financés par 7 entreprises de sélection privées (Caussade, Euralis, Limagrain, Maïsadour, Pioneer, RAGT et Syngenta) membres de l'association Promaïs. Pour évaluer cette stratégie basée sur un factoriel, un dispositif multiparental corné et un denté ont été crées (Figure 1). Pour chaque groupe hétérotique, six populations biparentales ont été développées à partir de quatre lignées fondatrices et les lignées de ces populations ont été croisées avec celles de l'autre groupe selon un factoriel incomplet. 1044 hybrides cornés-dentés ont été obtenus par croisement de 863
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 1 Figure 1 : Représentation schématique du dispositif expérimental.

  

  Then, new approaches appeared, enabling to detect polymorphism at the DNA level: first Restriction Fragment Length Polymorphisms (RFLP) in the 1980s, then Amplified Fragment Length Polymorphisms (AFLP) and Simple Sequence Repeats (SSR) in the 1990s and finally

	Single Nucleotide Polymorphisms (SNP) and Copy-Number Variations (CNV). Two main
	methods exist for detecting QTLs: QTL detection or Linkage Analysis (LA) mapping and
	association mapping or Linkage Disequilibrium (LD) mapping. These methods use the fact that
	polymorphisms at two loci of the genome are in LD (not randomly associated) depending of a
	certain number of factors as genetic distance, selection, drift etc.. Consequently, allelic
	information on one locus (e.g. a marker) can give information on the allele at another locus (e.g.
	the gene) with which it is in LD.
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Table 1

 1 TABLES Number of mapped markers, length of the genetic map and linkage disequilibrium decay modeled with theHill and Weir model (1988) for a r2 = 0.2 for the two groups dent and flint for each chromosome and for the whole genome.

		Dent (cM)			Flint (cM)		
		Markers	Length (cM) LD decay (cM) Markers Length (cM) LD decay (cM)
	Chrm 1	3287	184.5	0.96	2892	237.2	0.76
	Chrm 2	2402	137.9	2.51	2264	182.7	0.65
	Chrm 3	2480	151.0	1.99	2410	156.4	0.45
	Chrm 4	2528	134.6	1.47	2379	165.5	0.65
	Chrm 5	2405	136.6	0.45	2322	180.6	0.35
	Chrm 6	1695	119.9	1.47	1544	134.9	0.65
	Chrm 7	1820	128.9	1.37	1709	149.7	0.76
	Chrm 8	1992	125.6	1.47	1756	139.7	0.45
	Chrm 9	1699	118.5	0.96	1610	133.5	0.76
	Chrm 10 1570	105.8	1.89	1520	106.1	0.76
	Genome 21878	1343.3	1.2	20406	1586.3	0.65

Table 2

 2 Number of QTL detected (Nb) and adjusted percentage of variance explained by the detected QTL (R²) for the five traits in the two separate datasets for each model and for the joint dataset for the connected model. We also indicated the total number of QTL detected over the traits and the average percentage of variance explained ("Total" column).

		DMC		DMY		DtSILK	DtTAS	PH		Total
		Nb	R²	Nb	R²	Nb	R²	Nb	R²	Nb	R²	Nb	R²
			(%)		(%)		(%)		(%)		(%)		(%)
	Dent											
	Connected	12	51.4	8	32.7	11	52.3	7	41.2	14	57.1		46.9
	LDLA -5cM	15	51.1	5	22.5	12	53.7	11	49.2	13	54.1		46.1
	LDLA -2cM	16	53.6	6	23.4	12	53.2	9	45.1	12	49.5		45.0
	LDLA -1-	12	37.4	5	18.6	11	43.2	7	33.3	10	36.4		33.8
	marker											
	Flint											
	Connected	8	46.0	11	48.6	15	69.3	12	65.3	9	52.3		56.3
	LDLA -5cM	11	49.2 10	41.9	14	67.5	13	61.1	10	51.7		54.3
	LDLA -2cM	8	42.1	12	45.3	11	62.0	14	62.2	11	51.9		52.7
	LDLA -1-	7	36.1	11	39.0	16	61.7	16	58.0	9	41.9		47.3
	marker											
	Joint											
	Connected	18	54.6	16	45.5	15	59.7	17	61.4	21	61.2		56.5

Table 3

 3 Number of QTL detected for the five traits in the joint dataset for the connected model, in the whole dataset, in each separate dataset, in both separate datasets.

		DMC	DMY	DtSILK DtTAS PH	Total
	Significant in the whole dataset	18	16	15	17	21	87
	(nb)						
	Significant in the dent dataset	14	9	11	11	17	62
	(nb)						
	Significant in the flint dataset (nb) 6	12	8	13	11	50
	Significant in both datasets (nb)	6	5	4	7	8	30
	Non significant in both datasets	4	0	0	0	1	5
	(nb)						

QTL detection on maize (Zea mays L.) hybrids derived from two multiparental designs allowed the simultaneous detection of QTLs for general and specific combining abilities for silage performances

  Héloïse Giraud * , Cyril Bauland * , Matthieu Falque * , Delphine Madur * , Valérie Combes * , Philippe Jamin * , Cécile Monteil * , Carine Palaffre † , Antoine Gaillard ‡ , Philippe Blanchard § , Alain Charcosset * , Laurence Moreau *1

  for grain yield,[START_REF] Argillier | Inbred line evaluation and breeding for digestibility-related traits in forage maize[END_REF][START_REF] Grieder | Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance[END_REF] for whole plant biomass yield).Beyond global statistics of the relative magnitude of GCA and SCA, identification of Quantitative Trait Loci (QTL) involved in the genetic architecture of hybrid values and these two components is needed to better understand hybrid variation and improve the efficiency of hybrid breeding. Most of the QTL detection experiments conducted so far on maize yield related traits have been based on biparental populations evaluated with a single tester[START_REF] Manicacci | Quantitative trait loci cartography, metaanalysis and association genetics. Chapter 2 in Advances in Maize[END_REF] Truntzler et al. 2012 for an overview of QTL detected for maize silage) which does not enable the detection of SCA effects. Few studies involved several testers. As expected, strong SCA effects were found for traits showing dominance (such as yield) when

  , then byvan Eeujwick et al. (2010) who analyzed another factorial design genotyped with SNP markers. Both studies identified QTLs for GCA that were specific to each heterotic group. SCA effects were considered as negligible and were not effects on GCA and SCA but they made only little comment on them. Thus, all these studies did not really considered SCA effects in the detection. They also relied on designs which may not be well adapted for QTL detection. Only hybrids between lines selected based on tester values were evaluated. These designs involved in each group a lot of parental lines more of less related to each other and that did not contribute equally to the hybrid population. All this complicated and possibly biased the estimation of SCA/GCA components and the identification of QTLs. To our knowledge, no QTL detection was carried out on hybrid design between inbred lines developed directly from segregating populations available at early selection stages in two complementary heterotic groups. With the development of double haploidization techniques, breeders can directly generate at each breeding cycle segregating populations composed of pure inbred lines. Instead of using a small number of testers from the

included in these analyses. More recently

Technow et al. (2014) 

also analyzed a factorial design corresponding to the last stages of a breeding program. The main objective of their study was to perform genomic predictions. The use of a Bayes B model led to the identification of a few markers with sizable opposite group to select among them the best ones, and evaluate inter-group hybrid combinations in a second stage, it might be relevant to directly evaluate hybrids between nonselected lines of the two groups. Such type of unselected hybrid population with known family structure is a priori ideal for detecting QTLs for GCA and SCA in a multi-allelic context. Once detected, QTL effects could enable the identification of the best hybrid combinations among all

Table 1 :

 1 Variance decomposition of the phenotypic data for the four variance decomposition models, for the different traits: dry matter content DMC, dry matter yield DMY, female flowering time DtSILK, plant height PH.For each genetic variance, precision corresponding to 1.96 x the standard error of the estimated variance is

	indicated				
		Hybrid (1)	Population	Flint GCA +	Population
			structure +	Dent GCA +	structure + Flint
			Hybrid (2)	SCA (3)	GCA + Dent
					GCA + SCA (4)
	DMC				
	Hybrid variance	3.68 ± 0.37	2.46 ± 0.27		
	Flint GCA variance			2.31 ± 0.51	0.98 ± 0.44
	Dent GCA variance			0.92 ± 0.53	0.96 ± 0.44
	SCA variance			0.43 ± 0.54	0.53 ± 0.49
	Residual variances	1.44 ± 0.18 :	1.52 ± 0.19 :	1.45 ± 0.18 :	1.52 ± 0.18 :
	(range)	6.15 ± 0.60	6.05 ± 0.59	6.13 ± 0.59	6.04 ± 0.58
	DMY				
	Hybrid variance	1.24 ± 0.14	0.94 ± 0.11		
	Flint GCA variance			0.28 ± 0.20	0.30 ± 0.19
	Dent GCA variance			0.74 ± 0.19	0.44 ± 0.17
	SCA variance			0.22 ± 0.22	0.20 ± 0.20
	Residual variances	1.01 ± 0.12 :	1.02 ± 0.12 :	1.00 ± 0.11 :	1.02 ± 0.12 :
	(range)	3.53 ± 0.35	3.56 ± 0.34	3.53 ± 0.35	3.56 ± 0.35
	DtSILK				
	Hybrid variance	2.38 ± 0.24	2.06 ± 0.21		
	Flint GCA variance			0.74 ± 0.38	0.51 ± 0.37
	Dent GCA variance			1.26 ± 0.35	1.09 ± 0.33
	SCA variance			0.39 ± 0.37	0.47 ± 0.37
	Residual variances	0.96 ± 0.11 :	0.96 ± 0.11 :	0.96 ± 0.11 :	0.96 ± 0.11 :
	(range)	6.12 ± 0.57	6.11 ± 0.57	6.13 ± 0.57	6.12 ± 0.57
	PH				
	Hybrid variance	154.7 ± 15.7	97.6 ± 10.7		
	Flint GCA variance			42.9 ± 22.9	38.4 ± 17.4
	Dent GCA variance			92.8 ± 21.6	45.1 ± 16.0
	SCA variance			19.3 ± 23.2	13.4 ± 17.3
	Residual variances	49.7 ± 6.5 :	46.4 ± 6.0 :	50.0 ± 6.5 :	46.7 ± 6.0 :
	(range)	244.2 ± 23.7	243.6 ± 23.5	243.6 ± 23.6	243.2 ± 23.5

Table 2 :

 2 Adjusted means of experimental hybrids and founder line hybrids and synthetic parameters on the experimental hybrid variation for the different traits (dry matter content DMC, dry matter yield DMY, female flowering time DtSILK, plant height, PH).

		DMC	DMY	DtSILK	PH
	Adjusted means				
	Experimental hybrids (average, min:max) 33.0	16.0	211.5	247.8
		(25.7 : 41.3)	(11.8 : 20.2)	(206.7 : 217.9)	(203.9 : 283.2)
	Founder line hybrids (average, min:max) 33.5	16.5	211.6	251.3
		(30.2 : 36.1)	(14.8 : 18.4)	(209.0 : 213.6)	(228.8 : 275.1)
	Within-population variance				
	%Within_var	66.9	75.5	86.7	63.1
	Heritabilities				
	H²	0.892	0.814	0.890	0.877
	H²* (within-population)	0.847	0.767	0.876	0.817
	Part of SCA in the hybrid variance				
	%SCA	11.7	17.4	16.3	12.4
	% SCA* (within-population)	21.5	21.0	22.6	13.8

Table 3 :

 3 QTL detection results with the different detection models for the different traits (dry matter content DMC, dry matter yield DMY, female flowering time DtSILK and plant height PH). For each method and trait we indicated the number of QTLs detected and between brackets the number of QTLs showing significant SCA effects

	Trait	Model	Nb	R²pop	Without SCA	With SCA	
					R²QTL	R²*QTL	R²QTL	R²*QTL
	DMC	Founder alleles	10 (4)	32.4	27.6	40.9	32.4	47.9
		SNP within-group	12 (2)	32.4	25.5	37.7	26.1	38.6
		Hybrid genotype	14 (1)	32.4	25.6	37.9	26.2	38.8
	DMY	Founder alleles	12 (5)	21.9	27.7	35.5	34.2	43.9
		SNP within-group	9 (0)	21.9	20.3	26.0	20.5	26.3
		Hybrid genotype	11(3)	21.9	19.7	25.2	20.9	26.8
	DtSILK	Founder alleles	9 (2)	15.0	31.4	36.9	36.7	43.2
		SNP within-group	15(0)	15.0	37.3	43.9	37.6	44.3
		Hybrid genotype	16(3)	15.0	34.1	40.2	35.6	41.9
	PH	Founder alleles	11(2)	33.8	26.6	40.2	30.7	46.4
		SNP within-group	15(4)	33.8	24.7	37.3	26.6	40.2
		Hybrid genotype	13(2)	33.8	20.4	30.8	21.2	32.0
	Total	Founder alleles	42 (13)	25.8	28.3	38.4	33.5	45.3
		SNP within-group	51 (6)	25.8	26.9	36.2	27.7	37.4
		Hybrid genotype	54 (9)	25.8	24.9	33.5	26.0	34.9

at a 5% level risk, the proportion the of phenotypic variance (R²QTL, in %) and of the within-population phenotypic variance (R²*QTL, in %) explained by the detected QTLs (with and without including dominance/SCA effects in the model). The percentage of variance explained by the population effect are also indicated (R²pop). The total number of detected QTLs and the average percentages of variance explained over the different traits are also showed.

Table 4 :

 4 Cross-validation estimates of the quality of prediction of different models (average R² and its standard deviation, sd). For the different traits (dry matter content DMC, dry matter yield DMY, female flowering DtSILK and plant height PH) we considered model only including population effects or models including population effects and the QTL effects. For these later models prediction were based on GCA /additive effects only or on models

	considering also SCA/dominant effects significant at a 5% risk level. The number of QTLs detected with each
	model for each trait is indicated (Nb) as well as the number of QTLs significant for SCA/dominance with a 5%
	individual risk level (between brackets).						
				DMC		DMY		DtSILK	PH
				Nb	R² (%)	Nb	R² (%)	Nb	R² (%)	Nb R² (%)
	Population effects			28.4		17.1		10.4		29.2
					sd 4.18		sd 4.16		sd 2.97		sd 4.35
	Pop + QTLs	GCA		53.4		39.2		37.7		53.2
	"Founder alleles"		10	sd 4.01	12	sd 4.84	9	sd 4.69	11	sd 4.37
	model		GCA+ SCA	(4)	54.0	(5)	39.4	(2)	39.1	(2)	52.7
					sd 3.72		sd 4.83		sd 4.72		sd 4.64
	Pop + QTLs	GCA		54.4		36.7		47.6		54.0
	"SNP	within-		12	sd 4.06	9	sd 4.64	15	sd 4.68	15	sd 4.93
	group" model	GCA+ SCA	(2)	54.7	(0)	-	(0)	-	(4)	55.2
					sd 4.05						sd 4.87
	Pop + QTLs	Additivity		55.2		37.3		45.4		50.6
	"Hybrid			14	sd 3.98	11	sd 4.50	16	sd 4.88	13	sd 4.83
	genotype" model	Additivity+	(1)	55.3	(3)	38.0	(3)	46.4	(2)	51.0
			dominance		sd 4.02		sd 4.52		sd 4.72		sd 4.78

  In our design, the QTLs presenting significant effect for dominance/SCA at a 5% individual risk level were not more specifically mapped in the pericentromeric regions. A similar observation was reported byTechnow et al. (2014) for hybrids between the two heterotic groups. Altogether these observations concur to the hypothesis that reciprocal

	selection of heterotic groups has fixed complementary haplotypes in low recombinant
	centromeric regions involving linked dominant QTL. Such regions appear with large effects in
	populations that recombine different groups (e.g. Schön et al. 2010; Larièpe et al. 2012) and
	not in studies that only evaluate hybrids between groups (Technow et al. 2014; our present
	study).

, Larièpe et al. (2012) and Schön et al. (2010) detected a large proportion of QTLs with (pseudo-)overdominance in the pericentromeric regions, consistent with the observation of McMullen et al. (2009) that these regions show delayed fixation when developing recombinant inbred lines.

  It would be interesting to evaluate this approach on our data set even if we have limited access to the pedigree of our founder lines.

	Conclusions
	Even if there is room for further model improvement, our results clearly showed the interest of
	our design. In the joint analysis of two NAM designs (one flint and one dent) evaluated for
	silage test-cross performances, Giraud et al. (2014) detected equal or slightly higher (up to six
	for PH) numbers of QTL than in our study. These differences are small in regards to the fact
	that these NAM designs involved a much broader diversity (11 and 12 different founder lines
	per group instead of four) and almost two times more hybrids (about 1650 hybrids). The two

done in

Bardol et al. 2013 and Giraud et al. 2014)

.

[START_REF] Van Eeuwijk | Mixed model approaches for the identification of QTLs within a maize hybrid breeding program[END_REF] 

performed QTL detection in a factorial design issued from a private breeding program that was derived by crossing a large number of parental lines (not structured in clear families as in our design). Their analyses were based on a Bayesian model that used both molecular markers and pedigree to trace back ancestral founder alleles and reduce model parameterization. designs involved different founder lines which makes it difficult to directly compare the QTLs found in the two studies. Nevertheless it is interesting to note that both studies identified the same major QTL on chromosome 10 (for DtSILK, DMC, PH and DMY ) close to the ZmCCT gene, which was fine mapped as a major flowering time QTL by

Ducrocq et al. (2009)

, and validated by

Coles et al. (2011)

.

Table 1 :

 1 Variance components estimated using four different GBLUP models (all considering the SNP kinship matrices) and adjustment of the models to the data (measured by R²) for the studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH). _ *+, #

	2	corresponds to the dent General

Table 2

 2 DMC and PH) of the replications gave better predictive abilities without population structure than with population structure. Without SCA in the model, not considering population structure was better for 54% (DMY) to 67% (DtSILK) of the replications. With SCA in the model, not considering population structure was better for 54% (DMY) to 68% (DtSILK) of the replications.

). Without SCA in the model, not considering structure in populations gave better predictive abilities for 74% (DtSILK) to 98% (PH) of the replications. When considering SCA in the model, between 60% (DMY and DtSILK) and 63% (

Table 2 :

 2 Predictive ability for the different GBLUP models using a cross validation procedure with four fifth of the data for calibration and one fifth for the validation for the studied traits (Dry Matter Content DMC, Dry Matter

	Yield DMY, Silking date DtSILK, Plant Height PH). Average values over 100 replications and standard deviations
	(sd) are indicated. Predictive abilities of predictions based on QTL (Pop+ QTL) obtained in Chapter 2 are also
	provided.				
	Model	DMC	DMY	DtSILK	PH
	GBLUP SNP kinship				
	Pop + GCA + SCA	0.757 sd 0.024	0.636 sd 0.036	0.687 sd 0.031	0.755 sd 0.032
	Pop + GCA	0.757 sd 0.025	0.633 sd 0.036	0.689 sd 0.031	0.754 sd 0.032
	GCA + SCA	0.768 sd 0.024	0.652 sd 0.042	0.697 sd 0.035	0.771 sd 0.026
	GCA	0.768 sd 0.024	0.644 sd 0.035	0.700 sd 0.029	0.769 sd 0.031
	GBLUP Founder allele				
	kinship				
	Pop + GCA + SCA	0.755 sd 0.029	0.623 sd 0.037	0.674 sd 0.034	0.751 sd 0.028
	Pop + GCA	0.756 sd 0.029	0.623 sd 0.037	0.676 sd 0.034	0.751 sd 0.028
	GCA + SCA	0.763 sd 0.025	0.631 sd 0.037	0.688 sd 0.031	0.762 sd 0.030
	GCA	0.763 sd 0.025	0.628 sd 0.036	0.688 sd 0.032	0.762 sd 0.030
	Pop + QTL				
		0.743 sd 0.027	0.626 sd 0.039	0.689 sd 0.034	0.742 sd 0.034

Table 3 :

 3 Quality of prediction of dent and flint GCAs for the best GBLUP model considering SCA for the four studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH). For the correlations, the standard deviation is indicated.

	DMC	DMY	DtSILK PH

Table 4 :

 4 Predictive ability in function of the presence of half-sibs in the calibration set for the studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH), for the GBLUP models considering the SNP kinship matrices and no population structure. Standard deviations are indicated.

		DMC	DMY	DtSILK	PH
	GCA model			
	T0 hybrids	0.759 sd 0.034 0.613 sd 0.061 0.704 sd 0.043 0.760 sd 0.042
	T1 Flint hybrids	0.743 sd 0.072 0.720 sd 0.084 0.708 sd 0.090 0.730 sd 0.084
	T1 Dent hybrids	0.821 sd 0.049 0.688 sd 0.082 0.724 sd 0.079 0.784 sd 0.060
	T2 hybrids	0.765 sd 0.066 0.692 sd 0.079 0.660 sd 0.109 0.822 sd 0.052
	GCA + SCA model			
	T0 hybrids	0.758 sd 0.034 0.615 sd 0.059 0.704 sd 0.042 0.760 sd 0.042
	T1 Flint hybrids	0.743 sd 0.072 0.727 sd 0.085 0.713 sd 0.091 0.730 sd 0.083
	T1 Dent hybrids	0.821 sd 0.049 0.685 sd 0.080 0.726 sd 0.079 0.784 sd 0.060
	T2 hybrids	0.764 sd 0.067 0.700 sd 0.080 0.657 sd 0.111 0.821 sd 0.052

Table 5 :

 5 Average of the predictive abilities of a targeted population in function of the composition of the calibration set for the studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH), for the GBLUP models considering the SNP kinship matrices and no population structure

		DMC	DMY	DtSILK	PH
	GCA model			
	Case 1: 2 dent -1 flint 0.539 sd 0.132 0.423 sd 0.167 0.436 sd 0.184 0.426 sd 0.197
	Case 2: 1 dent -2 flint 0.453 sd 0.179 0.341 sd 0.211 0.464 sd 0.139 0.430 sd 0.196
	Case 3: 1 dent -1 flint 0.438 sd 0.186 0.372 sd 0.210 0.407 sd 0.211 0.417 sd 0.202
	Case 4: 1 dent	0.123 sd 0.201 0.201 sd 0.219 0.184 sd 0.211 0.261 sd 0.176
	Case 5: 1 flint	0.309 sd 0.199 0.226 sd 0.164 0.295 sd 0.205 0.240 sd 0.240
	GCA + SCA model			
	Case 1: 2 dent -1 flint 0.542 sd 0.130 0.426 sd 0.169 0.437 sd 0.184 0.427 sd 0.193
	Case 2: 1 dent -2 flint 0.456 sd 0.178 0.338 sd 0.208 0.458 sd 0.138 0.422 sd 0.195
	Case3: 1 dent -1 flint 0.436 sd 0.194 0.376 sd 0.215 0.407 sd 0.217 0.418 sd 0.205
	Case 4: 1 dent	0.0651 sd 0.215 0.143 sd 0.226 0.0882 sd 0.266 0.256 sd 0.175
	Case 5: 1flint	0.306 sd 0.199 0.241 sd 0.168 0.274 sd 0.229 0.238 sd 0.253

Table S2

 S2 Threshold values for the -log(p-value) for all the models and traits for the dent and flint groups and for the joint connected study.

		DMC	DMY	DtSILK	DtTAS	PH	Mean
	Dent						
	Connected	3.71	3.91	3.88	4.11	3.83	3.89
	LDLA -5cM	4.18	4.38	4.62	4.87	4.42	4.49
	LDLA -2cM	4.26	4.46	4.61	4.94	4.50	4.55
	LDLA -1-marker a 5.64	5.64	5.64	5.64	5.64	5.64
	Flint						
	Connected	3.43	3.65	4.15	4.37	3.83	3.89
	LDLA -5cM	4.07	4.20	4.84	5.13	4.53	4.55
	LDLA -2cM	4.30	4.36	5.04	5.23	4.60	4.71
	LDLA -1-marker a 5.61	5.61	5.61	5.61	5.61	5.61
	Joint						
	Connected	3.49	3.94	4.02	4.85	3.74	4.00

Table S2

 S2 Results of the QTLs detection for the "SNP within-group" model for the four studied traits: Dry Matter Content (DMC), Dry Matter Yield (DMY), Silking Date (DtSILK), Plant Height (PH

		13	8 PZE-108077879	71.8 133563	12,5	1,94	12,954 3,10
		14	9 PZE-109098682	95.5 143862	5,2	0,12	4,494 1,09
		15 10 PZE-110046358	42.1	87170	5,6	0,53	5,040 1,24
		16 10 PZE-110049918	44.3	94001	50,6	0,73	49,7 12,01
	Trait PH	Nb Chr Mk	Gen pos Phys pos -log(Ad) -log(Dom) -log(Global) R²
		1	1 PZE-101152239	117.8 195684	12,6	0,30	11,75 2,67
	DMC	2	2 PZE-102037297	43.3	17988	10,1	0,41	9,30 2,11
		1 3	PZE-101023852 2 PZE-102119036	28.7 93.8 160729 14032	5,2 7,2	0,04 0,03	4,46 0,91 6,33 1,41
		2 4	PZE-101107138 2 PZE-102168063	97.9 112147 142.1 211948	5,6 4,4	0,17 1,83	4,83 0,98 4,94 1,08
		3 5	PZE-101141198 3 PZE-103051361	107.1 182293 49.5 56901	14,5 4,7	0,49 0,29	13,68 2,76 4,03 0,92
		4 6	PZE-101210621 3 PZE-103102119	173.7 260145 69.8 162433	6,2 5,0	1,17 0,71	6,10 1,23 4,63 1,02
		5 7	PZE-102080558 3 PZE-103128864	82.3 98.8 185839 64362	8,6 7,7	0,36 0,16	7,83 1,60 6,90 1,54
		6 8	PZE-103142982 4 PZE-104129789	113.4 198521 130.5 210477	6,1 5,8	0,45 0,40	5,47 1,24 5,12 1,16
		7 9	PZE-104129789 5 PZE-105075570	130.5 210477 64.1 83398	10,1 4,4	0,08 1,70	9,17 1,87 4,87 1,04
		8 10	PZE-105100982 8 PZE-108036758	73.2 151631 52.6 57215	6,6 8,5	0,77 1,00	6,19 1,10 8,20 1,86
		9 11	PZE-106068323 9 PZE-109061773	51.9 121253 64 103353	6,0 6,3	0,49 0,59	5,38 1,09 5,79 1,31
		10 12	PZE-108075290 9 PZE-109082918	71 130926 77.1 131575	10,9 5,6	0,60 0,27	10,22 2,09 4,93 1,13
		11 13 10 PZE-110020737 PZE-109038235	58.7 33.7	56424 27318	5,1 12,5	0,59 0,71	4,62 0,93 11,87 2,68
		12 PZE-110007567	10.9	5875	5,1	0,17	4,34 0,87
		13 PZE-110049918	44.3	94001	37,7	1,18	37,2 7,47
		14 PZE-110060381	48.8 114656	12,1	1,71	12,32 2,48
	DMY							
		1	PZE-102096468	86 111010	7,9	1,28	7,860 2,21
		2	PZE-102160945	135.8 207038	5,0	0,04	4,251 1,20
		3	PZE-103108225	76.5 169072	8,4	1,90	8,876 2,48
		4	PZE-103125956	95.8 183577	5,3	0,09	4,522 1,28
		5	PZE-104078143	74.5 152444	7,4	0,16	6,553 1,90
		6	PZE-104129789	130.5 210477	5,6	0,36	4,988 1,44
		7	PZE-105077552	65.2	87115	4,8	1,94	5,430 1,49
		8	PZE-106055176	39.1 105598	5,1	0,19	4,404 1,25
		9	PZE-108088583	77.5 145907	11,9	1,70	12,163 3,46
		10	PZE-109052698	60.5	91043	4,9	0,32	4,252 1,18
		11 PZE-110020953	33.7	27697	10,6	0,02	9,647 2,75
	DtSILK							
		1	PZE-101138117	105.5 179183	4,8	2,90	6,306 1,53
		2	PZE-101199598	164.9 248737	4,8	0,60	4,335 1,05
		3	PZE-102018300	22.3	8782	8,0	1,16	7,881 1,91
		4	PZE-102160945	135.8 207038	8,6	0,27	7,799 1,92
		5	PZE-103109418	77.8 170117	6,0	0,13	5,237 1,27
		6	PZE-104078143	74.5 152444	10,0	1,39	10,009 2,45
		7	PZE-104117192	125.1 193348	5,3	0,30	4,654 1,14
		8	PZE-105012348	12.9	5384	9,0	0,24	8,134 1,98
		9	PZE-105077552	65.2	87115	11,0	0,00	10,042 2,44
		10	PZE-105117653	89.7 174358	6,4	0,14	5,583 1,36
		11	PZE-107132427	141.6 172725	7,8	0,17	6,930 1,67
		12	PZE-108028681	49.8	26352	4,9	1,10	4,784 1,18
								227

Table 1

 1 Nombre de QTLs détectés (Nb) et pourcentage ajusté de variance expliqué par les QTLs détectés (R²) pour les cinq caractères dans les deux dispositifs séparés pour chaque modèle et dans le dispositif conjoint pour le modèle connecté. Le nombre total de QTLs détectés sur l'ensemble des caractères et le pourcentage moyen de variance expliqués (colonne « Total ») sont indiqués.

		DMC		DMY		DtSILK	DtTAS	PH		Total	
		Nb	R²	Nb	R²	Nb	R²	Nb	R²	Nb	R²	Nb	R²
			(%)		(%)		(%)		(%)		(%)		(%)
	Dent												
	Connected	12	51.4	8	32.7	11	52.3	7	41.2	14	57.1	52	46.9
	LDLA -5cM	15	51.1	5	22.5	12	53.7	11	49.2	13	54.1	56	46.1
	LDLA -2cM	16	53.6	6	23.4	12	53.2	9	45.1	12	49.5	55	45.0
	LDLA -1-	12	37.4	5	18.6	11	43.2	7	33.3	10	36.4	45	33.8
	marker												
	Flint												
	Connected	8	46.0	11	48.6	15	69.3	12	65.3	9	52.3	55	56.3
	LDLA -5cM	11	49.2	10	41.9	14	67.5	13	61.1	10	51.7	58	54.3
	LDLA -2cM	8	42.1	12	45.3	11	62.0	14	62.2	11	51.9	56	52.7
	LDLA -1-	7	36.1	11	39.0	16	61.7	16	58.0	9	41.9	59	47.3
	marker												
	Joint												
	Connected	18	54.6	16	45.5	15	59.7	17	61.4	21	61.2	87	56.5

Figure 1: Schematic representation of the experimental design.
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ABSTRACT

Understanding genetic architecture of hybrid performances is of key importance for allogamous species such as maize (Zea mays L.). We developed two multiparental designs corresponding each to one of the main heterotic groups used for maize silage production in Northern Europe (the dent and flint groups). In each group, four founder lines were crossed to produce six connected biparental populations of segregating lines. These lines (821 and 801 for the dent and flint group, respectively) were genotyped for approximately 20k SNPs and were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for silage performances in eight environments. Hybrid genetic variance decomposition showed a predominance of general (GCA) over specific (SCA) combining abilities. SCA explained between 13.8 and 22.6% of the within-population hybrid variance, depending on the trait. QTL detection was carried out for GCA and SCA using different models considering allelic effects transmitted from each founder lines (linkage analysis) or considering directly SNP alleles (linkage disequilibrium mapping) assuming equal or different effects in each group. In total, between 42 and 54 QTLs were detected depending on the model, among which 12 to 31% presented dominance/SCA effect significant at a 5% individual risk level. Only 16 QTLs were detected by all three models illustrating their complementary. Most of the QTLs (about 80%) were specific to one group, consistent with the long term divergence between the dent and the 

Genotyping data

The founder lines were genotyped with a 50 K SNP array (Ganal et al. 2011). The parental lines and the founder lines were genotyped with a 18 480 SNP Affymetrix® array provided by Limagrain. Inbred lines with unexpected high percentage of heterozygote loci as well as those presenting inconsistencies between founder lines and segregating lines were discarded. After quality control, 875 dent and 883 flint lines were considered in the analysis (see Chapter 2 for more details). We used the 9548 markers which were mapped at the parental lines level in the Chapter 2. For the analyses we considered the Affymetrix® genotyping data for the founder lines, and when needed replace missing data by the genotypes obtained with the 50 K chip when it was available.

Missing genotypes at the parental level were imputed with Beagle v3.0. (Browning and Browning 2007) by populations, on genetic maps, putting the founder lines in the dataset.

Phasing of the flint lines and of the founder lines that presented residual heterozygosity was done at the same time than missing genotypes imputation.

Phenotypic evaluation and adjusted means

The hybrids between the parental lines were evaluated in 8 environments in Northern France and Germany over two years for four traits: silage yield (DMY in tons of dry matter per ha), dry matter content at harvest (DMC in %), plant height (6 environments) (PH in cm) and female flowering (DtSILK, days after January the first). The field experiments were conducted as augmented p-rep designs with 1088 two-row plots. They were laid out in 68 incomplete blocks consisting of 16 plots each with five to six plots used for repeated genotypes (hybrids between the founder lines plus around 17 % of the hybrids between the parental lines). Only 951 hybrids for which both parental lines had correct genotypic data were analyzed (950 for plant height and dry matter yield). All the dent and flint populations of parental lines contributed to the 951 hybrids that were considered in the analyses. As far as possible we tried to balance the contribution of each parental population to the hybrids but some populations contributed more than others (Figure 1). The number of analyzed hybrids derived from each flint population varied between 130 (for population F3) and 178 (for population F1) and the number of analyzed hybrids derived from each dent population varied between 126 (for population D6) and 168 (for population D3). For each dent-flint combination of populations between 15 (dent population D6 -flint population F3) and 34 hybrids (dent population D2 -flint population F1) were derived.

Outlying observations were deleted. One environment over eight was excluded for dry matter yield as it was not correlated with the others. For each combination environment -trait, field heterogeneities were corrected using a block or a row-column effect model as described in Chapter 2. Using the Asreml-R package (Butler et al. 2007;R Core Team 2013), individual single-plot performances were corrected by the BLUPs of the field effects and were used to compute for each hybrid adjusted means (ls-means) over the eight environments.

Genomic Best Linear Unbiased Prediction (GBLUP) models and estimation of variance components

Genomic predictions were done using as phenotypes the hybrid ls-means. We compared several GBLUP models that differed by the way population structure was considered, and the inclusion or not of SCA. All these models were implemented in Asreml-R (Butler et al. 2007;R Core Team 2013).

The following GBLUP model considered the structure in populations and the SCA:

Where is the (; × 1) vector of the adjusted means of the ; phenotyped hybrids for the studied trait, is the intercept, 1 is a (; ×1) vector of 1. (respectively ) is a (6 ×1) vector of the fixed effects of the dent (respectively flint) populations of origin of the dent (flint) parental lines, , (respectively ) is the (; ×6) design matrix of 0-1 that linked each hybrid to the dent (respectively flint) population of its dent (flint) parental line, ( ) is a (36 ×1) vector of the fixed interaction effects between the dent and flint populations of origin of the parental lines, + is the corresponding design matrix.

)) of the random effects corresponding to the s R dent GCA (respectively s { flint) of the parental dent (respectively flint) lines, with

genomic relationship matrix between the dent (flint) lines, and The proportion of SCA in the hybrid variance captured by the markers was much less important than the one obtained when using field plot data (Supplementary Table S1). It was more striking for DMC for which there was no SCA when considering genotypic information whereas it represented 11.7% of the genetic variance (21.5% of the within-population genetic variance)

when performing variance component analysis using only filed plot performances. For the other traits, the percentage of SCA in the genetic variance was 2.1 (DMY) to 7.3 (DtSILK) times less important when considering genotypic information.

Adjustment of the model to the data (R²) was high for all the trait x model combinations: between 0.717 (DMY, without SCA, with structure in populations) and 0.905 (PH with SCA, without the structure in populations). For all traits, considering structure in populations had a negative effect on the R². R² was higher when considering SCA than when not considering it except for DMC for which no difference was observed (Table 1).

genotypic information than when estimated directly on field plot data (Supplementary Table S1). One explanation could be that the number of markers was not sufficient for capturing well SCA effects through kinship matrices. However, our design is structured in biparental families, with a large within-family LD extent and one can reasonably assume that the number of markers was a priori high enough to estimate kinship between lines at the within family level. Another explanation could therefore be that an important part of SCA in our design can be due to epistasis and was not reflected through our kinship matrices.

Comparison of the GBLUP models

We compared several GBLUP models. Considering structure in populations as a fixed effect in the GBLUP models decreased the predictive abilities. This suggests that the structure in population is well captured by the markers and that there is no need to add it in the model. It would be interesting to see if it would be the same for more structured traits, such as digestibility traits where the variation in each heterotic group is mainly due to the use of one founder line carrying favorable alleles. Considering founder allele kinship matrices and not SNP kinship matrices also decreased the predictive abilities. Founder allele matrices set the relatedness between two individuals from populations with no founder in common to zero. This shows that it is beneficial to take into account co-ancestry between founder lines. It may also indicate that causal mutations are not recent, and so are well captured by SNP.

Adding SCA in the GBLUP model did not increase the predictive abilities and could even decrease it when using a small training population size. This observation is consistent with the one of [START_REF] Zhao | Genomic prediction of hybrid wheat performance[END_REF] on rice, who observed higher prediction accuracies when ignoring dominance effects than when including them. They related it among other things to the small size of their dataset. Using simulations, BayesB models were shown to slightly outperform GBLUP models when incorporating dominance (Technow et al. 2012) but this result was not consistent with empirical studies (Technow et al. 2014). Reproductive kernel Hilbert space regression may be an option for including non-additive effects such as dominance or epistasis (Gianola et al. 2006;Gianola and van Kaam 2008). Wellmann and Bennewitz (2012) proposed a Bayesian linear regression model called BayesD (D standing for dominance) which allowed on simulated data an improvement of the prediction accuracies compared to GBLUP.

Comparison with QTL -Combining the two approaches

Genomic predictions gave better results than QTL based predictions for all traits, but to a smaller extent for DtSILK. The small differences between the two models is a bit surprising. It during this phD will cost 105 000€. Considering eight environments and two heterotic groups, evaluation of 500 lines in each heterotic groups based on their cross value according to an incomplete factorial allows a decrease of the costs of around 40% in comparison to their evaluation in test-cross. This evaluation does not take into account the differences between the two designs in prediction accuracies for the GCA and SCA of the lines. If prediction accuracies in reciprocal designs are higher than in test-cross designs, it strengthens the advantages of the reciprocal design compared to the test-cross one. However, private breeding companies may be reluctant to apply such designs as they will need to reorganize their breeding selection schemes (currently improvement of both heterotic groups is not completely simultaneous) and as they may find risky to create by hand-made pollination hybrids when both parents are not fully characterized for their flowering date.

To conclude, even if further investigations are needed for comparing accuracies of reciprocal multiparental designs to test-cross designs and emphasize their advantages, our study shown its potential interest for maize hybrid selection. Maize hybrid selection schemes should be reconsidered in the light of the results presented in this phD manuscript.

General appendices Appendix I: Supporting information of Chapter 1

Table S1 Composition of the dent and flint designs with the number of DH lines in each family which were used for obtaining the consensus maps and the one which were phenotyped.

Dent design Flint design

Central 

Discussion générale

La compréhension de l'architecture génétique de la valeur hybride chez le maïs est importante Title : Genetic analysis of hybrid value for silage maize in multiparental designs: QTL detection and genomic selection Keywords : maize, hybrid value, QTL detection, genomic selection, silage

Abstract : Maize (Zea mays L.) is a major crop presenting strong heterosis for traits linked to biomass. To exploit this phenomenon, F1 hybrids are cultivated and breeding programs are organized in heterotic groups. Hybrid value can be decomposed in General Combining Abilities (GCA) of the parental lines and Specific Combining Ability (SCA). The goal of this thesis was to bring new insights to the understanding and the prediction of hybrid value and its components for silage maize. To do so, two multiparental connected designs, involving hybrids between the dent and flint heterotic groups, main heterotic groups used for silage breeding in Northern Europe, were analyzed. The first design consisted in two Nested Association Mapping (NAM) populations involving testcross hybrids. The dent population consisted of ten biparental dent families and the flint one of 11 biparental families. The second design consisted of two multiparental populations of inbred lines, one dent and one flint, derived from two half diallels between four founder lines. Inbred lines from both groups were crossed according to an incomplete factorial to produce experimental hybrids. Hybrids were phenotyped for dry matter yield, dry matter content, female flowering date, plant height, and only for the NAM designs male flowering date. Quantitative Trait Loci (QTL) detection using Linkage Analysis (LA) and Linkage Disequilibrium -Linkage Analysis (LDLA) methods was performed in both designs. QTL detection models were found to be complementary. Some of the QTL detection models allowed us to detect multiallelic series at the QTLs, showing the importance of not directly considering the observed biallelic genotype. Different QTLs were detected in the two heterotic groups, highlighting their long-term divergence. No QTL showed major effect for DMC and DMY except one pleiotropic QTL for flowering time in the flint group. The reciprocal multiparental design allowed the detection of QTLs for dominance/SCA. However, very few QTLs had significant dominance/SCA effects even if SCA represented around 20% of the within-genetic variance, except for PH for which it was lower. Genomic selection was conducted in the second design using different GBLUP models. We obtained good predictive abilities even though predicted hybrids were obtained through a highly incomplete factorial mating where the majority of the inbred lines were parents of only one hybrid. Variation within populations sharing three founders with populations used for calibration could be predicted efficiently. Our models showed a limited ability for predicting SCA but predicted well the GCA of the parental lines. This opens new prospects for reconsidering maize breeding. Indeed test-cross evaluation, usually used in the breeding companies, could be replaced by single-cross evaluation, according to an incomplete factorial design, between the two heterotic groups to improve. Further evaluations are needed for comparing the efficiency of this strategy with the one of tester-based designs, but first obtained results are encouraging.
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