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Résumé 

Le maïs (Zea mays L.) est une culture majeure présentant un hétérosis important pour les 

caractères liés à la biomasse. Pour exploiter ce phénomène, les programmes de sélection ont 

été organisés en groupes hétérotiques et la majorité des surfaces cultivées correspond à des 

hybrides F1. La valeur hybride peut être décomposée en Aptitudes Générales à la 

Combinaison (AGC) des lignées parentales et en Aptitude Spécifique à la Combinaison 

(ASC). 

L’objectif de cette thèse était d’apporter de nouveaux éclairages sur la valeur hybride, 

concernant tant la compréhension de ses déterminismes génétiques sous-jacents que sa 

prédiction. Deux dispositifs multiparentaux connectés ont été analysés, mettant en jeu deux 

des principaux groupes hétérotiques utilisés pour la production de maïs fourrage dans le nord 

de l’Europe : les cornés et les dentés. Le premier dispositif était constitué de deux populations 

de type Nested Association Mapping (NAM). La population dentée comprenait dix familles 

biparentales et la cornée onze. Ces populations ont été évaluées pour leur valeur en 

croisement avec un testeur du groupe complémentaire. Le deuxième dispositif était constitué 

d’un factoriel entre deux populations multiparentales de lignées : une cornée et une denté, 

dérivées de deux demi-diallèles entre quatre lignées fondatrices. Les lignées ont été croisées 

entre elles selon un plan factoriel incomplet afin d’obtenir des hybrides inter-groupes. Pour 

les deux dispositifs, le phénotypage des hybrides a porté sur le rendement ensilage, le contenu 

en matière sèche, la date de floraison femelle et la hauteur de plante. Les hybrides des 

dispositifs NAM ont également été phénotypés pour la date de floraison mâle.  

Une détection des locus impliqués dans la variation des caractères quantitatifs (QTL) a été 

mise en œuvre en utilisant des modèles prenant en compte différents codages alléliques : 

allèles fondateurs haplotypes ou allèle observé au marqueur. Ces codages ont permis de 

mettre en œuvre des modèles de types LA (Linkage Analysis) ou LDLA (Linkage 

Disequilibrium - Linkage Analysis). Une complémentarité des modèles a été observée. 

Certains modèles ont permis la détection de QTLs multi-alléliques. Des QTLs différents ont 

été détectés dans les deux groupes hétérotiques, confirmant leur divergence ancienne. Pour 

le contenu en matière sèche et le rendement, nous n’avons pas détecté de QTL à effet majeur 

dans aucun des dispositifs à l’exception d’un QTL corné de floraison à effet pléiotropique 

dans le groupe corné. Bien que l’ASC représentait 20% de la variance génétique intra-
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population totale pour la plupart des caractères (sauf la hauteur de plante) le dispositif 

factoriel  n’a permis la détection que d’un faible nombre de QTLs ayant un effet sur la 

dominance/ l’ASC.  

Différents modèles de sélection génomique de type GBLUP ont été mis œuvre dans le  

dispositif factoriel. Nous avons obtenu de bonnes qualités de prédictions, bien que la majorité 

des lignées ne fût parentes que d’un seul hybride. Nous avons montré qu’il était important de 

calibrer les prédictions sur des hybrides issus de lignées apparentées aux hybrides à prédire. 

Nos modèles ont montré leurs limites quant à la capacité de prédiction de l’ASC mais ont 

permis d’obtenir de bonnes qualités de prédiction pour les AGC des lignées parentales. Notre 

étude ouvre de nouvelles perspectives pour reconsidérer les schémas de sélection des 

hybrides de maïs. Les évaluations des lignées candidates sur testeur pourraient être 

remplacées par une évaluation d’hybrides obtenus selon un plan de croisement factoriel 

incomplet entre groupes hétérotiques. Des évaluations complémentaires sont nécessaires 

pour comparer plus directement notre stratégie avec celle basée sur l’utilisation de testeurs. 

Cependant des premiers résultats encourageants ont été obtenus. 

 

Mots clés : maïs, valeur hybride, détection de QTL, sélection génomique, ensilage 
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Abstract 

Maize (Zea mays L.) is a major crop presenting strong heterosis for traits linked to biomass. 

To exploit this phenomenon, F1 hybrids are cultivated and breeding programs are organized 

in heterotic groups. Hybrid value can be decomposed in General Combining Abilities (GCA) 

of the parental lines and Specific Combining Ability (SCA).  

The goal of this thesis was to bring new insights to the understanding and the prediction of 

hybrid value and its components for silage maize. To do so, two multiparental connected 

designs, involving hybrids between the dent and flint heterotic groups, main heterotic groups 

used for silage breeding in Northern Europe, were analyzed. The first design consisted in two 

Nested Association Mapping (NAM) populations involving test-cross hybrids. The dent 

population consisted of ten biparental dent families and the flint one of 11 biparental families. 

The second design consisted of two multiparental populations of inbred lines, one dent and 

one flint, derived from two half diallels between four founder lines. Inbred lines from both 

groups were crossed according to an incomplete factorial to produce experimental hybrids. 

Hybrids were phenotyped for dry matter yield, dry matter content, female flowering date, 

plant height, and only for the NAM designs male flowering date.  

Quantitative Trait Loci (QTL) detection using Linkage Analysis (LA) and Linkage 

Disequilibrium – Linkage Analysis (LDLA) methods was performed in both designs. QTL 

detection models were found to be complementary. Some of the QTL detection models 

allowed us to detect multiallelic series at the QTLs, showing the importance of not directly 

considering the observed biallelic genotype. Different QTLs were detected in the two 

heterotic groups, highlighting their long-term divergence. No QTL showed major effect for 

DMC and DMY except one pleiotropic QTL for flowering time in the flint group. The 

reciprocal multiparental design allowed the detection of QTLs for dominance/SCA. 

However, very few QTLs had significant dominance/SCA effects even if SCA represented 

around 20% of the within-genetic variance, except for PH for which it was lower.  

Genomic selection was conducted in the second design using different GBLUP models. We 

obtained good predictive abilities even though predicted hybrids were obtained through a 

highly incomplete factorial mating where the majority of the inbred lines were parents of 

only one hybrid. Variation within populations sharing three founders with populations used 

for calibration could be predicted efficiently. Our models showed a limited ability for 

predicting SCA but predicted well the GCA of the parental lines. This opens new prospects 

for reconsidering maize breeding. Indeed test-cross evaluation, usually used in the breeding 
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companies, could be replaced by single-cross evaluation, according to an incomplete factorial 

design, between the two heterotic groups to improve. Further evaluations are needed for 

comparing the efficiency of this strategy with the one of tester-based designs, but first 

obtained results are encouraging.  

 

Keywords : maize, hybrid value, QTL detection, genomic selection, silage 
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Maize is widely used all over the world for food, grain feed, silage and over the last years also 

for bioethanol. It is grown on 140 million of hectares in the world and is the first cereal in the 

world in terms of volume of grain. It is the species that prompted the definition of the concept 

of heterosis (Shull 1914) and the development of F1 hybrids (Shull 1908), leading to the 

subsequent implementation of advanced breeding methods. In this introduction, we will focus 

on heterosis, presenting its genetic basis and the factors affecting it. Then, we will present maize 

breeding history and selection schemes before giving an insight on the contribution of 

molecular markers to understanding the genetics determinisms of phenotypic traits and 

improving breeding schemes. Finally, we will briefly present the experiments and approaches 

that were conducted during this PhD.  

 

Heterosis 

Heterosis – history and definition 

In 1766, Koelreuter showed that some interspecific crosses in several genus such as Nicotinia 

and Datura could lead to hybrids presenting stronger vigor than their parents. Darwin in 1876, 

observed that for numerous species intraspecific cross-pollination led to better plants than self-

pollination with increased performances for quantitative traits. This observation was later 

theorized by Shull (1908) at Cold Spring Harbor Laboratories in New York and East (1908) at 

Connecticut State College who defined the concept of heterosis (Shull 1914), after maize (Zea 

mays L. or Zea mays ssp mays) observations. There is heterosis when a hybrid offspring from 

genetically diverse individuals or populations shows increased vigor relative to its parents (Fu 

et al. 2014). According to the distance between the parents of the hybrid, three categories of 

heterosis can be defined depending if it is a cross between: (i) two individuals from two different 

species, (ii) two individuals from two different subspecies, (iii) two individuals from the same 

subspecies (Fu et al. 2014). Heterosis is widely used in plant and animal breeding. One of its 

earliest applications was mule breeding, mules being derived from the cross of individuals from 

two species: a female horse (Equus caballus) and a male donkey (Equus asinus) (Springer and 

Stupar 2007). One example in plants of heterosis from wide hybridization is Triticale, a 

polyploid hybrid of both rye (Secale spp.) and wheat (Triticum spp.) which is widely sown (Fu 

et al. 2014). The rice hybrid indica x japonica which presents between 8 to 15% more heterotic 

potential than intraspecific hybrids for many traits is an example of intersubspecies heterosis. 

However, at first, these rice hybrids were not widely adopted due to problems of unstable seed 

setting and poor grain plumpness, problems solved recently (Fu et al. 2014). Intraspecies 

heterosis is certainly the type of heterosis that is the most used in plant breeding and more 
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specifically in maize breeding (Figure 1). We will focus on intraspecific heterosis in the 

following and will refer to it as “heterosis”. 

Heterosis can be defined in two different ways. Geneticist heterosis (or mid-parent heterosis) is 

when one genotype is better than the mean of its two parents. Breeder heterosis (or best parent 

heterosis) is when the hybrid is better than the best of its parents. Note that although not strictly 

academic farmers may also have a third vision of heterosis which is the difference in 

performance between the best hybrid available on the market and the best inbred line variety. 

From a statistical point of view, heterosis is a deviation to additivity. Its conceptual opposite is 

the inbreeding depression, which is a gradual reduction of vigor after reproduction of related 

individuals, over several generations.  

 

 
Figure 1: Illustration of phenotypic heterosis in the F2 x F252 maize hybrid, in the center (Photo: Julie Fiévet). 

 

 

Heterosis – genetics basis 

Even if heterosis is widely used in plant and animal breeding, our knowledge of the mechanisms 

underlying it is partial. Three main non-exclusive hypotheses exist regarding the phenomena 

underlying heterosis for a given trait in a given environment: dominance, overdominance and 

epistasis (Figures 2 and 3).  
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Figure 2: Definition of genotypic value in a biallelic situation for one locus. Genotypic values of the genotypes 

bb, Bb and BB, are defined by the parameters a and d. a is the  biological additive effect of the locus and d is the 

biological dominance effect of the locus. The genotypic value of the genotype bb is −a, genotypic value of the 

genotype BB is a. When there is strict additivity, genotypic value of genotype Bb is 0, whereas when there is 

dominance of allele B over allele b (situation presented here) it is equal to d. If d a� = 1, there is complete 

dominance, if 0 < d a� < 1 there is partial dominance and if d a� > 1there is overdominance. 

 

In the dominance hypothesis, heterosis is explained by the fact that each parental line carries 

recessive unfavorable alleles at different loci so that their effects are masked by their dominant 

counterpart when assembled in the hybrid (Figure 3). The hybrid benefits from the 

complementation of these deleterious alleles (Davenport 1908; Jones 1917). Overdominance is 

an intralocus complementation for which the heterozygote state at one locus is phenotypically 

superior to both homozygote states (Hull 1946) (Figure 3). Few examples of overdominance 

exist and at our knowledge there is only one overdominance action which was fully proved in 

maize. Hollick and Chandler (1998) provided evidence for overdominance at the Pl locus 

(purple plant locus) which controls the leaves anthocyanin synthesis. Strong correlation 

between two locus (or Linkage Disequilibrium LD) can be a problem for distinguishing 

dominance from overdominance gene action on phenotypes (Springer and Stupar 2007) since 

apparent overdominance can be the result of tight linkage between two loci with favorable 

dominant alleles in repulsion. This situation is called pseudo-overdominance (Jones 1917) 

(Figure 3). Note that in situations where the favorable allele at a locus depends on the 

environment and is dominant, one can observe an overdominance effect for the average 

performance, referred to as marginal overdominance (Wallace 1968).  Epistasis which 
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corresponds to the interaction between alleles at two or more loci can also have an impact on 

heterosis (Richey 1942; Powers 1944; Jinks and Jones 1958; Williams 1959). 

 
Figure 3: Genetic mechanisms proposed to explain heterosis. P1 and P2 correspond to the two parental lines. 

Alleles a and b are recessive and unfavorable, alleles A and B are dominant and favorable. 

  

Various molecular mechanisms may explain these genetic mechanisms. In addition to non-

synonymous single base mutations that can cause loss of function, maize presents a lot of 

structural variation as difference in genome organization and presence-absence variations. 

These presence-absence variations can be at the gene level, gene regulating regions level or 

components of gene families level (Springer and Stupar 2007). Combination of inbred lines 

presenting such variations can have an impact on the level of gene expression. One example is 

the expression in the B73 x BSSS53 hybrid of the zein1C gene family controlling the 

development of endosperm tissue. B73 expresses six genes of the family, BSSS53 seven, but 

only three are shared between the two genotypes. The hybrid expresses all 10 zein1C genes 

(Springer and Stupar 2007). 

 

Factors affecting heterosis 

Plant heterosis is highly variable depending on species. In general, heterosis is stronger in 

allogamous species (such as maize, onion and alfalfa) than in autogamous species (such as 

wheat, rice, Arabidopsis, tomato). This is because allogamy allows the development of the 

genetic load as recessive slightly deleterious alleles at low frequency are masked at the 

heterozygote state. In autogamous species, recessive unfavorable alleles cannot be masked and 

are thus counter selected, which explains why genetic burden is much less important (Gallais 

1989; Gallais 2009). For allogamous species, when comparing inbred lines to the F1 generation, 

heterosis for grain yield or biomass is of 100 to 400% whereas for autogamous species it is 

between 0 and 100%. However, this result needs to be nuanced as for allogamous species it 

would be more logical to compare hybrid value with that of populations. Inbred lines are indeed 
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created by forcing allogamous plants to become autogamous. The advantage of hybrids 

compared to populations from which parental lines are extracted is lower, between 10 and 15% 

(Morrow and Gardner 1893). As heterosis is due in part to dominance, it is expected to be 

stronger when “distant” individuals are crossed. However, the relationship between genetic 

distance of the parents and importance of heterosis in the F1 is not straightforward. It has been 

observed that when genetic distance between the parents is too important, heterosis can be lower 

than for crosses between closer individuals (Moll et al. 1965 for an example on maize).  

Heterosis is dependent on the considered trait. Indeed, in maize, heterosis is more important for 

grain yield than for plant height, which itself present more heterosis than leave width. Number 

of seeds presents more heterosis than thousand grain weight. Heterosis has a minor impact on 

number of leaves and number of ranks per kernel, which are mainly additive traits (Gallais 

2009). Thus, heterosis tends to be more important for traits linked to fitness than for other traits. 

It is more important for complex traits as grain yield or silage yield than for traits with simple 

genetic determinism (Gallais 2009). One explanation can be that many complex traits are 

multiplicative and can be decomposed in elementary components. If elementary traits present 

heterosis, the complex trait corresponding to their product will present more heterosis. In 

addition, multiplication of elementary components having complementarity characteristics in 

both parents (as one parent with long and narrow leaves and one parent with short and wide 

leaves), and not necessarily presenting heterosis, can conduct at heterosis at the hybrid level for 

the complex trait (Gallais 2009). Heterosis does not only affect the young or adult plants but is 

manifest already in the early stages, at the beginning of embryogenesis. For instance, size of 

the hybrid embryo six days after fecundation, speed of root development and some embryo 

enzymatic activities present mid-parent heterosis (Gallais 2009).  

 

Maize breeding history 

From open-pollinated maize varieties to maize hybrids 

The theorization by East and Shull of the heterosis phenomenon, has accompanied the transition 

of cultivated maize from landraces and open-pollinated varieties to hybrids in the USA. Open-

pollinated varieties correspond to a population of individuals all different one from each other, 

resulting from random crosses of plants from the previous generation. These populations have 

been created by mass selection and adaptation to environmental conditions from ancestral 

populations originated from Mexico (see Appendix 1 for a brief overview of the history of 

maize). F1 hybrids were seen as a way to produce at a large scale the best combination of 

gametes that could be derived from such populations (Shull 1908). As noted by Shull this idea 
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is an extension of the isolation concept that was applied to autogamous species in order to make 

it applicable in the presence of inbreeding depression. Maize morphology allows an easy 

production of hybrids seeds as male flowers are on the top of the plant which can thus be easily 

castrated which allows a large-scale production of hybrid seeds (Morrow and Gardner 1893). 

However, at the beginning, one main issue was the low rate of seeds produced by the first inbred 

lines derived from populations, due to the inbreeding depression. To circumvent this limitation 

and allow a production in quantity of identical seeds, Jones (1918) proposed the use of triple-

cross hybrids and double-cross hybrids. From 1922-1924, best hybrids, as for example Cooper 

Cross, presented a repeatable advantage of around 10% compared to the best open-pollinated 

varieties (Charcosset 2002). Such practical results led in the 1930s to the domination of triple-

cross and double-cross hybrids over open-pollinated varieties (Troyer 1999). For instance, in 

Iowa in 1935 less of 10% of the surface was sown with hybrids whereas it was over 90% in 

1939 (Reif et al. 2005). Then, in the 1960s, with the improvement of inbred lines per se value, 

simple hybrids could be developed (Troyer 1999) and are now widely used (Figure 4). This 

transition from open-pollinated varieties to double-cross and then single-cross hybrids was 

concomitant to an increase in maize yield (Figure 4). In the 1950s (North Central Regional Corn 

Improvement Conference 1949; Lamkey and Lorenz 2014), heterotic groups, structuring the 

genetic diversity, were created in order to increase heterosis, by avoiding relatedness between 

parental lines used as parents of hybrids. Heterotic groups can be defined “as a group of related 

or unrelated genotypes from the same or different populations, which display similar combining 

ability and heterotic response when crossed with genotypes from other genetically distinct 

germplasm groups” (Melchinger and Gumber 1998).  

 
Figure 4: Evolution of U.S. maize yields and kinds of corn from 1860 to 1998; periods dominated by open-

pollinated, by double cross and single cross hybrids are shown. (From Troyer 1999). 
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First hybrids cultivated in Europe, before the late 1950s, were imported from USA and had only 

a limited success. After World War II, programs were started to develop hybrids adapted to 

Northern European conditions. In France, new lines were developed from the flint French 

Southwestern populations and crossed to dent inbred lines from the Corn Belt dent region in 

USA, as Wisconsin inbreds (Troyer and Hendrickson 2007). The most successful flint inbred 

lines, F2 and F7, were derived from the Lacaune population (Tenaillon and Charcosset 2011). 

In regions at the North of Loire valley, the resulting hybrids over yielded and were better 

adapted than the early flowering hybrids imported from Northern USA (Troyer and 

Hendrickson 2007; Tenaillon and Charcosset 2011). Currently, these dent and flint heterotic 

groups are still the ones mainly used for maize breeding in Northern Europe, for silage as well 

as for grain maize, although there is a growing tendency to introgress the flint pool with dent 

material. In breeding companies, these main heterotic groups are structured in smaller heterotic 

groups derived from the most popular inbred lines of their breeding programs.  

 

Maize hybrid selection schemes – recurrent reciprocal selection 

One main concern of hybrid breeding is to select the parental lines which in combination will 

give the best hybrid. One first option is to select the parental lines based on their per se value 

(Jenkins 1929). However, correlation is low between per se value of an inbred line and the 

values of hybrids that can be derived from it for traits showing heterosis (Richey 1924; Richey 

and Mayer 1925). Per se value selection generally allows the elimination of only the worst 

parents (Gallais 2009). In 1932, Jenkins and Bruson showed that the average value of the 

hybrids derived from an inbred line is better correlated to the value of the progeny of this inbred 

line with another inbred line, an hybrid or a population than to its per se value. Sprague (1939) 

and Jenkins (1940) suggested that combining ability of the tested inbred lines should be taken 

into account at early stages in the inbreeding process. Sprague and Tatum (1942) clearly defined 

the notions of combining abilities and introduced the partitioning of hybrid values in terms of 

General and Specific Combining Abilities (GCA and SCA respectively). The GCA of a line 

corresponds to its average performance in hybrid combinations. The SCA of a pair of parental 

lines is the difference between the hybrid value and its value predicted based on GCAs. It 

corresponds to the cases “in which certain combination do relatively better or worse than would 

be expected on the basis of the average performance of the lines involved” (Sprague and Tatum 

1942).These notions can be extended to the case of hybrids between two heterotic groups (see 

Appendix 2). 

Hayes and Garber (1919) are credited as the first users of recurrent selection for maize breeding 
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(Hallauer et al. 2010, Chapter 6), that is to say methods of selection conducted recurrently, i.e. 

when similar procedures are repeated in successive cycles of selection. Recurrent selection 

methods are designed to increase the frequency of favorable alleles for quantitative traits while 

maintaining genetic variability allowing continuous genetic improvement (Hallauer et al. 2010, 

Chapter 6). Jenkins (1940) suggested a method, modified by Hull in 1945, for improving SCA 

of a heterozygous population thanks to the use of a tester with a narrow genetic base. The used 

tester may be a pure line or a hybrid and is one of the parents of the future commercial hybrid. 

Hull’s method, which did not allow for much improvement on the tester side, would be efficient 

in presence of overdominance but inefficient for dominance when the tester carries favorable 

alleles (Hull 1945; Comstock et al. 1949). Another possibility is to perform recurrent selection 

for GCAs. In this case, plants from one population are evaluated in cross with a ester presenting 

broad genetic base, identical for all populations. The tester used consisted in at least two single 

crosses between pure lines or in a variety. Then, selected plants of each populations are crossed 

and a new cycle can be initiated (Comstock et al. 1949; Lonnquist 1957). These method is more 

efficient than the previous one in presence of dominance but not in presence of overdominance 

(Comstock et al. 1949). Comstock et al. proposed in 1949 a reciprocal recurrent method which 

is efficient regardless of the genetic mechanisms underlying heterosis and which maximize use 

of GCAs and SCA (Figure 5). Their procedure consisted in the simultaneous improvement of 

the two parental populations of the hybrid, testing plants from one population by crossing them 

with plants of the other population. Each plant of one population is crossed with four or five 

plants of the other population and the resulting hybrids are evaluated. In each population, plants 

are selected based on the value of their bulked test-cross progeny. Reciprocal recurrent selection 

proved its efficiency in several selection programs initiated in the 1960s and 1970s (see 

Hallauer et al. 2010, Chapter 7). Variations of the reciprocal recurrent selection procedure 

proposed by Comstock et al. (1949) were proposed as for instance reciprocal recurrent selection 

based on testcrosses of half-sib families (Paterniani 1967) which reduces the effort for making 

testcrosses, reciprocal recurrent selection based on half-sib progenies of prolific plants 

(Hallauer et al. 2010, Chapter 12) and reciprocal full-sib selection on prolific plants (Hallauer 

and Eberhart 1970) or on one-ear plants (Hallauer et al. 2010, Chapter 12). In reciprocal full-

sib selection, contrary to the method proposed by Comstock et al. (1949), full-sib progenies are 

evaluated rather than half-sib progenies (see Hallauer et al. 2010, Chapter 12 for more details 

on the procedure). These selection schemes showed their interest for maize hybrid breeding. 

Coors (1999) synthetized a large number of studies for several breeding method. He showed 

that reciprocal half-sib and full-sib recurrent selection methods were the ones allowing the 
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highest direct responses for interpopulation improvement on a cycle basis and led to the highest 

gains in grain yield on an annual basis.  

 

 
Figure 5: Reciprocal recurrent selection for two complementary populations A and B (adapted from Varona and 

Toro, 2012).  

 

In the breeding companies, generally a modified recurrent reciprocal selection procedure is 

used. Within each heterotic group; breeders cross pairs of inbred lines to generate biparental 

segregating populations that are evaluated for their test-cross values. Generally, a few testers 

(two or three) of the opposite heterotic group are used and correspond to good parental lines, 

which will be one of the future parents of the released hybrids. Selected plants are then selfed 

during several generations to derive new inbred lines. In a second stage, inbred lines selected 

in the different groups are crossed in order to identify the best hybrid combinations.  

 

Understanding of the genetic basis of the phenotypic traits 

QTL detection 

Conventional breeding methods can be considered as “blind” approaches. When they were 

developed little was known on the genes or loci (or Quantitative Trait Loci, QTL) involved in 

the variation of quantitative traits. Detecting these QTLs is important for understanding the 

genetic basis of the traits. Molecular markers, when correlated to the trait, can bring information 

on location and polymorphism of these loci. The first molecular markers used were protein 

variants (isozymes) identified by electrophoresis and developed in the 1960s. They presented 

codominant variations but were not very polymorphic and did not cover the entire genome. 
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Then, new approaches appeared, enabling to detect polymorphism at the DNA level: first 

Restriction Fragment Length Polymorphisms (RFLP) in the 1980s, then Amplified Fragment 

Length Polymorphisms (AFLP) and Simple Sequence Repeats (SSR) in the 1990s and finally 

Single Nucleotide Polymorphisms (SNP) and Copy-Number Variations (CNV). Two main 

methods exist for detecting QTLs: QTL detection or Linkage Analysis (LA) mapping and 

association mapping or Linkage Disequilibrium (LD) mapping. These methods use the fact that 

polymorphisms at two loci of the genome are in LD (not randomly associated) depending of a 

certain number of factors as genetic distance, selection, drift etc.. Consequently, allelic 

information on one locus (e.g. a marker) can give information on the allele at another locus (e.g. 

the gene) with which it is in LD.  

In plants, first QTL detections were carried out in segregating populations derived from crosses 

between two inbred lines (Paterson et al. 1988 on RFLP).This approach relies on the fact that 

in these populations, correlations between markers and QTL is a simple function of the 

recombination rate. It has a limited resolution (Darvasi and Soller 1997) due to the low number 

of recombination events that occurred in such population. Moreover each biparental population 

represents only a small part of the generic diversity available. To circumvent these limitations, 

with the increase of marker density and the development of genotyping chips, it became 

possible to detect QTLs in a more diverse material, with no family relationships. It is the 

association mapping approach. This approach takes advantage of the LD present in panel of 

individuals that has been broken along generations by historical recombinations (Pritchard and 

Przeworski 2001) which allows a better resolution than QTL detection in biparental 

populations. However, in association mapping populations, contrary to linkage mapping 

populations, LD is not only due to genetic linkage but also to the history of the population. It 

can be caused by structure, relatedness, drift and selection. To reduce false-positive associations 

caused by the history of the population, additional random or fixed terms (corresponding to 

structure or relatedness) can be added in the association mapping model (Yu et al. 2006). 

Approaches were developed for improving QTL detection based on LA-mapping. For instance, 

QTL detection can be carried out in highly recombining inbred lines or intermated lines 

(Darvasi and Soller 1995; Huang et al. 2010). The higher number of recombinations in 

comparison to a traditional LA-mapping population allows a better accuracy of estimated QTLs 

positions. Synthesis of the information of several biparental QTL detection studies is also 

possible by performing meta-analysis (Goffinet and Gerber 2000; see Truntzler et al. 2010 for 

an example on silage maize) which can allow to explore more diversity and improve the 

resolution of the QTL mapping. Multiparental designs can also be a solution for improving the 



31 
 

precision of QTL location while exploring more diversity. Among these designs, multiple 

connected biparental families designs can be developed by assembling biparental populations 

that have one parents in common (Rebaï et al. 1997). Nested Association Mapping (NAM) 

designs (Yu et al. 2008) are a specific case of such designs in which all biparental populations 

shred the same parent. Another possibility is the development of multiparental advanced-

generation intercross (MAGIC) populations (Huang et al. 2015) where the initial crosses of the 

various founder lines are followed by several generations of inter-mating. Two types of analyses 

can be performed on multiparental designs: traditional linkage based analyses when looking at 

the parental alleles or LDLA analyses which synthesize both LD and LA approaches by looking 

at ancestral alleles or at the observed marker alleles. 

 

Marker-Assisted Selection 

Knowing position of QTL and of markers physically liked to the QTL is important from a 

fundamental point of view and offers interesting perspectives for Marker-Assisted Selection 

(MAS). Interest of markers in breeding was first discussed by Neimann-Sorensen and 

Robertson in 1961, in an animal breeding context. It is only in the 1980s that MAS became a 

more tangible reality in animal and plant breeding. One application of MAS is for traits 

determined by a major gene and difficult or expensive to phenotype. When the favorable allele 

at the major gene is associated to a specific allele at a marker, it can be cheaper and easier to 

genotype and screen for the marker than to phenotype. For more complex traits, influenced by 

many genes, Lande and Thompson (1990) proposed to estimate the genetic value of the 

individuals based on the sum of the effects of markers significantly associated to QTLs. 

Phenotypic information can also be integrated to the selection scheme and integration of 

phenotype and genotype information lead to different MAS schemes. Hospital et al. (1997) 

shown that one of the main interest of MAS was an increase of genetic grain per unit of time 

when cycles with only marker information and with marker and phenotypic information were 

alternated. MAS is expected to be more interesting than conventional selection based on 

phenotype for traits with low heritability provided that QTLs can be detected (Hospital et al. 

1997; Moreau et al. 1998). One limit of these approaches is that selection on markers only lead 

to the quick fixation of favorable alleles at the biggest QTLs (Hospital et al. 1997; Moreau et 

al. 2004) whereas unfavorable alleles can be fixed at the smallest QTLs. Another limit is that 

effects of the detected QTLs are often overestimated due to the Beavis effect (Beavis 1998) 

which lead to wrong weightings of the QTL effects in predictions based on markers and a 

reduced efficiency of MAS (Moreau et al. 1998; Melchinger et al. 1998). When using detected 
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QTLs, only a limited proportion of genetic variance is taken into account and “missing 

heritability” (Maher 2008) is important. Even if some studies reported a limited efficiency of 

MAS in biparental populations (Moreau et al. 2004) others, notably some issued from the 

private sector, reported its interest (Eathington et al. 2007). MAS appears particularly 

interesting when considering connected multiparental populations to assemble favorable alleles 

issued from several founder lines. Interest of this approach was tested by simulations (Blanc et 

al. 2008) and validated experimentally (Moreau and Charcosset 2011).  

 

Genomic selection 

To circumvent some of QTL detection limitations, when the studied trait is controlled by many 

QTLs, one possibility is to use genomic selection. The basic principle of this method is to 

estimate all marker effects simultaneously, and use these effects for prediction, without 

conducting first a QTL detection step. The idea behind this approach is that if enough markers 

are available, the LD between markers and QTLs will enable markers to capture QTLs effects. 

However, as the number of markers is generally higher than the number of performances, 

conventional fixed-effect models used for QTL detection cannot be used. In 2000, Whittaker et 

al. proposed to use the ridge regression to estimate marker effects and showed its interest 

compared to predictions based on QTL detection. Meuwissen et al. (2001) defined the concept 

of genomic selection and proposed to use additional approaches, based on Bayesian statistics, 

for estimating maker effects. He also proposed one approach of genomic selection (called 

GBLUP) which consists in using markers to estimate kinship relationships between individuals 

and use this matrix in a BLUP model to predict values of non-phenotyped individuals using 

performances of phenotyped ones. This GBLUP model was proved to be statistically equivalent 

to a random ridge regression (RR-BLUP) (Habier et al. 2007). It has to be noted that a very 

similar approach to the GBLUP model was proposed already in 1994 by Bernardo who used 

marker-based distances between parental lines of single-crosses for predicting performances of 

non-phenotyped single-crosses using performances of a related set of single-crosses. 

Development of GS was favored by advances in high-throughput genotyping methods that are 

now available at a reasonable cost for most species of agronomical interest.  
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Figure 6: Diagram of genomic selection process with a single occurrence of model training, starting from the 

training population and selection candidates continuing through to genomic estimated breeding value (GEBV)–

based selection (From Heffner et al. 2009). 

 

In a first step, a statistical model is calibrated on a calibration set consisting in a certain number 

of individuals which are phenotyped and genotyped. In a second step, the calibrated model is 

used to predict the genetic value of individuals which are only genotyped and who belonged to 

what is called the prediction set (Figure 6). To obtain the prediction equation, a lot of methods 

exist (see Heslot et al. 2012 for a review). They can be parametric as GBLUP (equivalent to 

RR-BLUP) or Bayesian methods, or non-parametric as Reproducing Kernel Hilbert Spaces 

methods or neural networks.   

Since 2006, GS showed its practical interest in dairy cows where it is now largely implemented. 

It was facilitated by the pooling between different countries of phenotyping, genotyping and 

pedigree information in order to create a huge reference population used for calibration (through 

for instance the EuroGenomics consortium which groups European private and public actors of 

Holstein breeding). In plant breeding, simulations and fields experiments gave encouraging 

results for implementation of GS in populations with variable levels of diversity. For instance, 

Bernardo and Yu (2007) showed using stimulations that GS provided 18 to 43% more genetic 

gain per cycle than traditional marker-assisted recurrent selection based on QTLs in biparental 

populations.  

For maximizing the quality of genomic predictions, some critical parameters must be taken into 

account when designing GS procedures. Choices of the statistical model and of the marker 

density are important.  Size of the calibration set (Technow et al. 2013; Lehermeier et al. 2014) 

and choice of the individuals in it (Rincent et al. 2012; Akdemir et al. 2015), and for instance 

the genetic distance between the calibration set and the prediction set (Riedelsheimer et al. 

2013; Lehermeier et al. 2014) need to be considered.  

Some limits of the current GS approaches are under investigation such as the incorporation in 
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the model of GxE interactions (Burgueño et al. 2012; Heslot et al. 2014). Several recent studies 

have been published on the prediction of hybrids between two populations and the inclusion of 

dominance and SCA in the GS models. This question is of high interest for animal genetics 

(Toro and Varona, 2010; Amuzu-Aweh et al. 2013; Ertl el al. 2014; Sun et al. 2014) and for 

plant genetics (see Zhao et al. 2013 for an example in wheat; Reif et al. 2013 for an example in 

sunflower; Xu et al. 2014 for an example in rice). In maize, where heterosis is strong, first 

exploratory studies based on  GBLUP were carried out on small factorial designs (Bernardo 

1994) or on hybrids from advanced selection staged of breeding programs (Bernardo 1996a; 

Bernardo 1996b). More recently, more important datasets were studied using GBLUP and 

alternative models, based on simulations (Technow et al. 2012) or data from the last steps of 

maize breeding programs (Maenhout et al. 2007; Maenhout et al. 2010; Massman et al. 2013; 

Technow et al. 2014). More studies are still needed on hybrid prediction especially for hybrids 

between inbred lines developed directly from segregating populations available at early 

selection stages. 

 

Presentation of the phD work 

In France, in 2013 silage maize was cultivated over 1.49 million of ha representing around 44% 

of the total superficies of maize. French silage maize yield was multiplied by two over the last 

50 years passing from 150 000 Hg/Ha to 312 175 Hg/Ha (FAO stats). During decades, maize 

was bred for silage or grain indistinctively and breeding criteria were based on grain yield 

performances and not on silage performance (Surault et al. 2005). Since 1986, for the 

registration in the French Official Catalogue of Species and Varieties, maize varieties are 

classified into two groups: grain maize and silage maize. Since 1998, feed quality is taken into 

account for registration (Surault et al. 2005) through the Milk Forage Unit (MFU), which 

quantified the calorific energy brought to dairy cows by one kilo of forage. This late 

preoccupation for feed quality and digestibility led to a decrease of the MFU values (Surault et 

al. 2005) as well as Neutral Detergent Fiber (NDF) digestibility values (Barrière et al. 2004) 

for the hybrids registered in the French catalogue of varieties or in the European catalogue 

between 1958 and 2002. Understanding of the genetic determinisms below the traits subjected 

to silage breeding is of main importance. 

The main objective of this phD work was to analyze the genetics of the hybrid value of silage 

maize in multiparental designs, using two different approaches: (i) QTL detection and (ii) 

genomic selection and two different strategies for hybrid production: (j) single tester approach 

and (jj) a “no tester” approach with a highly incomplete factorial mating design between two 
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populations of candidate lines. To do so, two multiparental silage maize designs were studied. 

The dent and flint heterotic groups, corresponding to the major heterotic groups used for silage 

breeding in Northern Europe are involved in both designs. The first design is a NAM design, 

actually composed of two NAM designs, corresponding to the dent and the flint heterotic 

groups. The dent design consisted of ten biparental dent families and the flint one of 11 

biparental families. Inbred lines were evaluated as test-cross value, using for each heterotic 

group the central line of the other group as tester. This allowed us to analyze these designs 

separately and also jointly. Five phenotypic traits were studied: dry matter yield (DMY), dry 

matter content (DMC), female flowering (DtSILK), male flowering (DtTAS) and plant height 

(PH). For each heterotic group, we detected QTLs using a LA model taking into account 

connections between populations and three different LDLA models. The second studied design 

consisted of two multiparental designs, one dent and one flint, derived from two half diallel 

between four founder lines and crossed according to an incomplete factorial. In this case, 

phenotypic evaluation was carried out on hybrids between the dent and flint parental lines and 

not on test-cross hybrids. DMC, DMY, DtSILK and PH were phenotyped. To our knowledge, 

few studies exist concerning QTL detection or genomic selection directly on hybrids and none 

were carried out on material directly issued from the cross of segregating families available at 

early selection stages. Our design allowed us to perform QTL detection using LA and LDLA 

models and genomic selection on such a material.  

The first chapter of this manuscript is dedicated to the QTL detection in the two NAM designs. 

It highlights the complementarities of the different QTL detection models which were 

performed and puts into evidence different multiallelic QTLs in the two heterotic groups. These 

findings complement the analysis of the same dataset in a genomic selection context 

(Lehermeier et al. 2014). The second and third chapters are devoted to the analyses carried out 

in the second design. First, results of QTL detection in this design are presented. We developed 

models for performing LA and LDLA QTL detection directly on hybrids between unselected 

lines of two heterotic groups. We found that some of the QTLs for GCA were different in both 

groups and that a few QTLs had an effect on SCA at an individual risk level of 5%. The third 

chapter is devoted to the implementation of GS prediction in this design. It also includes some 

elements of discussion on the interest of such design in selection compared to conventional 

tester designs. The three main chapters are organized as scientific articles. The first one was 

published in Genetics in 2014, the second one will be soon submitted to Genetics and the third 

one is organized in view of submission. Finally, limits and perspective of the present work will 

be discussed.  
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Appendix 1: Maize domestication and world diffusion 

 

Archeology (Piperno et al. 2009) and genetics (Matsuoka et al. 2002; van Heerwaarden et al. 

2011) shown that maize was domesticated in a valley in Southwestern Mexico 9000 years ago 

from the wild species teosinte Zea mays ssp parviglumis. During its domestication, it went 

through strong phenotypic transformations due to strong selection of a number of genes 

(Hufford et al. 2012). Following two different southwards roads, maize reached the Andeans 

mountains around 6000 years ago and South Brazil around 6700 years ago (Tenaillon and 

Charcosset 2011) (Figure A1). It expanded northwards, arriving in the South-West of USA 

around 4100 years ago and then in Northern USA and Canada 800 years later. Recent 

hybridization between subtropical Southern dent material (from South of USA) and Northern 

flint material (from North-West of USA), adapted to short cycles, took place in 1800 AC, 

creating Corn Belt dent material (Tenaillon and Charcosset 2011). Maize landraces can now be 

found from 40°S in South of Chile (close to Chiloe Island) to 50°N in Canada (close to Gaspé 

peninsula) and between + 0 meters above the seal level (Caribbean islands) to +3400meters in 

the Andean mountains. 

 
Figure A1: Domestication center and hypothetical diffusion of maize through the Americas and Europe (From 

Tenaillon and Charcosset 2011). 
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From 1493, maize spread all over the world, reaching Europe in 1493 and Africa and Asia since 

1496 (Mir et al. 2013). Maize landraces were present in Europe long time before the broad 

cultivation of maize hybrids. They present a large range of morphological variation but all of 

them have flint kernel and white cob color (Rebourg et al. 2001). Maize was introduced in 

Europe through two main roads (Tenaillon and Charcosset 2011) (Figure A1). The first 

introduction is due to Christopher Columbus who brought in Spain, in 1493, Caribbean maize 

from Hispaniola Island (presently the Dominican Republic and Haiti). Due to its climatic needs, 

its cultivation probably remained confined to Southern Spain (Rebourg et al. 2003). A second 

introduction took place before 1539 from official or unofficial expeditions from Europe to the 

Northern American coast. It is at the origin of the presence of Northern flint maize in Germany 

and Northern Europe (Dubreuil et al. 2006; Tenaillon and Charcosset 2011). A third 

introduction in Italy probably took place in the XVIth century (Tenaillon and Charcosset 2011). 

Consequently to these introductions, maize was widely cultivated in Europe in the late XVIth, 

early XVIIth century, with less variability in Northern and Eastern Europe probably because of 

selection for tolerance to lower temperatures (Rebourg et al. 2001). After these main 

introductions, a new maize genetic group was created from hybridization between maize from 

Southern Spain and maize from France and Germany in the Pyreneans mountains (Tenaillon 

and Charcosset 2011). Nowadays, European maize diversity represents around 75% of the 

American diversity (Tenaillon and Charcosset 2011).  
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Appendix 2: Expression of the phenotype of a hybrid between two 

unrelated populations 

 

The following developments are based on Gallais (1989). Other expressions for GCA and SCA, 

based on the notation of Hayman (1954), can be found in Charcosset and Essioux (1994).  

Let us consider a biallelic locus presenting the alleles � and 
, for a hybrid individual issued 

from the cross between two gametes, one issued from population 1 carried the allele � and one 

issued from population 2 that carried allele �. The allele � is present in the population 1 at 

frequence �� and in the population 2 at frequence ��. The allele 
 is present in the population 

1 at frequence �� and in the population 2 at frequence ��, with �� +  �� = 1 and �� +  �� = 1. 

The genotypic value associated to the hybrid can be written as: ����� =  � +  ��� +  ��� + ����� 

with ��� the additive effect of the allele � from the population 1, ��� the additive effect of the 

allele � from the population 2, ����� the dominance deviation between the allele � from the 

population 1 and the allele � from the population 2, with � = � �� 
 ; � = � �� 
. ��� +  ���  

corresponds to the additive genetic value of the considered hybrid. 

The additive effect of one allele from one population corresponds to the average of the hybrid 

genotypes carrying the considered allele coming from the considered population. Additive 

effects can be expressed in function of a, d, and the frequencies of the alleles in the populations. 

Thus, we have for the hybrid population: 

�!� =  ��" + ��# −  � : additive effect of the allele � from population 1 

�$� =  ��# −  ��" −  � : additive effect of the allele 
 from population 1 

�!� =  ��" +  ��# −  � : additive effect of the allele � from population 2 

�$� =  ��# −  ��" −  � : additive effect of the allele 
 from population 2 

Substitution effects in each population can be defined as �� =  �!� −  �$� and �� =  �!� −
 �$�  

Thus we have: �!� =  ���� ; �$� =  −���� ; �!� =  ���� ; �$� =  −���� 

The dominance deviations for the hybrid individual can be written as following, depending of 

its genotype: �!�!� =  −2����# ; �$�$� =  −2����# ; �$�!� =  2����# ; �!�$� =  2����#. 

We define the GCA of an individual from a population as the average of the value of its 

descendants when crossed to the other population. Thus, considering one locus, we have for the 

hybrid from the cross of a plant with genotype & from population 1 and a plant with genotype 

y from population 2: '(��) = � + *+,-� +  *+,.� + /+,-.(��), with � the average of the 
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hybrid population, *+,-� the GCA of the genotype x from population 1 respectively to the 

population 2, *+,.� the GCA of the genotype y from population 2 respectively to the 

population 1, /+,-.(��) the SCA between the two parental genotypes.  

The GCA at one locus of an individual with genotype & = ���� from population 1 relatively to 

population 2 is equal to *+,-� =  �
�  (��� + ���). For an individual with genotype � = ���� from 

population 2 relatively to population 1, it will be: *+,�� =  �
�  (��� + ���). 

Thus, we can write the GCA at the locus level of the individual from population 1 depending 

of its genotype &: *+,(��)� =  �!� ; *+,(�
)� =  �
�  (�!� + �$�) ; *+,(

)� =  �$�. The 

GCA of an individual from the population 2 can be expressed in a similar way. 

The general expression for SCA of the hybrid between the populations 1 and 2 at the gene level 

is: /+,&� =  �
0  (����� +  ����� + ����� + ����� ) 

Then, SCA can be expressed depending of the genotype of the parental lines of the hybrid: 

  Individual from population 1 

  �� �
 

 

Individual from 

population 2 

�� �!�!�  1
2 (�!�!�

+ �$�!�) 

�$�!�  

�
 1
2 (�!�!�

+ �!�$�) 

1
4 (�!�!�

+ �$�!� + �!�$�

+ �$�$� ) 

1
2 (�$�$�

+ �$�!�) 



 �!�$�  1
2 (�$�$�

+ �!�$�) 

�$�$�  

 

These expressions at the locus level can be extended at the multilocus level. Thus, GCAs 

involve biological additive effects (a), biological dominant effects (d) and additive x additive 

epistatic effects (interaction between two non-homologous genes) (not shown here for the 

epistatic effects). SCA does not involve biological additive effect but involves biological 

dominant effect (d) and epistatic effects (not shown here for the epistatic effects). SCA involves 

the three types of epistasis: additive x additive (between two non-homologous genes), additive 

x dominance (between three genes: two homologous genes at one locus and one gene at the 

other locus) and dominance x dominance (between four genes: two homologous genes at one 
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locus and two homologous genes at the other locus) (not shown here for the epistatic effects). 

Allelic frequencies in the two populations have an impact on the GCAs and SCA values. 
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ABSTRACT 

 

Multi-parental designs combined with dense genotyping of parents have been proposed as a 

way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, 

using methods combining linkage disequilibrium information with linkage analysis (LDLA). 

Two new Nested Association Mapping designs adapted to European conditions were derived 

from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental 

dent families (N=841) and 11 biparental flint families (N=811) were genotyped with 56,110 

single nucleotide polymorphism markers and evaluated as testcrosses with the central line of 

the reciprocal design for biomass yield, plant height and precocity. Alleles at candidate QTL 

were defined as (i) parental alleles, (ii) haplotypic identity by descent and (iii) single marker 

groupings. Between five and 16 QTL were detected depending on the model, trait and genetic 

group considered. In the flint design, a major QTL (R²=27%) with pleiotropic effects was 

detected on chromosome 10, whereas other QTL displayed milder effects (R²<10%). On 

average, the LDLA models detected more QTL but generally explained lower percentages of 

variance, consistent with the fact that most QTL display complex allelic series. Only 15% of 

the QTL were common to the two designs. A joint analysis of the two designs detected between 

15 and 21 QTL for the five traits. Out of these, between 27 for silking date to 41% for tasseling 

date were significant in both groups. Favorable allelic effects detected in both groups open 

perspectives for improving biomass production.  
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INTRODUCTION 

 

Most traits of agronomic interest present a continuous variation resulting from the sum of the 

effects of various quantitative trait loci (QTL). Mapping these QTL is a first step towards 

elucidating their molecular nature and offers important application perspectives for marker-

assisted breeding. QTL mapping started in plants with segregating families derived from the 

cross of two inbred lines (Lander and Botstein 1989). However, such biparental designs address 

only a small portion of the diversity available (a maximum of two alleles can segregate at a 

given QTL) and the accuracy of QTL positions is usually poor. To overcome these limitations, 

Rebai and Goffinet (1993) and Charcosset et al. (1994) proposed models for joint QTL 

detection in several biparental families connected to each other by the use of common parental 

lines. When the number of parents is less than the number of families, connections can be taken 

into account in the detection model to reduce the number of allelic effects to estimate. This 

increases power and accuracy of detection when QTL behave additively (see Blanc et al. 2006). 

However, such a model makes the assumption that each parental line carries a different allele, 

which limits its benefit when the number of parental lines is high relative to the number of 

families, a situation commonly encountered in breeding programs.  

Recent advances in sequencing and genotyping technologies make it possible to genotype 

individuals for a large number of markers at reduced costs, so that one can expect to have 

markers closely linked to any QTL. This has paved the way towards association mapping, in 

which marker-trait associations are directly detected in populations composed of diverse inbred 

lines without the need to develop experimental segregating families. Association mapping, also 

often referred to as Linkage Disequilibrium (LD) mapping, has been widely used with success 

in the plant community (see for instance Bouchet et al. 2013 and Romay et al. 2013 for recent 

results of association mapping in maize). In this approach, it is important to use models 

accounting for potential underlying population structure and relatedness between individuals to 

prevent spurious QTL detection due to associations between loci that are not linked physically 

(Yu et al. 2006). As a consequence, the power to detect associations is low for causal 

polymorphisms correlated with the underlying population structure or when they are present in 

the population at a low frequency (Rincent et al. 2014). In addition, associations are generally 

tested at SNP (Single Nucleotide Polymorphism) markers which leads to the implicit 

assumption that the QTL are biallelic. These limitations can be alleviated by combining 

information coming from LD at the level of the parents and linkage within families, as first 

proposed for animal populations by Meuwissen and Goddard (2001). In this approach, referred 
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to as Linkage Disequilibrium and Linkage Analysis (LDLA), dense genotyping of parents is 

used to detect identity by descent (IBD) at putative QTL, i.e. the fact that two individuals carry 

the same allele transmitted by a common ancestor. Different types of LDLA analyses have been 

proposed to account for the LD component. The simplest is to consider that parents carrying 

the same allele at a given marker are IBD (Yu et al. 2008; Liu et al. 2012) as done in association 

mapping. Haplotype based approaches also have been proposed to group parental alleles and 

tested by simulations (for instance Jansen et al. 2003; Bink et al. 2012; Leroux et al. 2014). 

Advantages of LDLA have been shown experimentally in maize notably by using the nested 

association mapping (NAM) design developed in the USA (Yu et al. 2008; McMullen et al. 

2009). This design consists of 25 biparental recombinant inbred line (RIL) populations derived 

from the cross of the inbred B73 with 25 diverse lines representing the diversity of maize 

(tropical, temperate, sweet corn, and popcorn lines). This design was studied with a linkage 

analysis model (Buckler et al. 2009; Kump et al. 2011; Tian et al. 2011) where QTL effects 

were nested within each family and each parental line was assumed to carry a different allele, 

and with LDLA through a genome-wide association mapping model (Kump et al. 2011; Tian 

et al. 2011) including allelic effects observed at individual SNP of the parents to identify IBD 

alleles. This design successfully led to the detection of numerous QTL and use of LDLA 

permitted in some cases to resolve QTL detection up to the gene level (Kump et al. 2011; Poland 

et al. 2011; Tian et al. 2011; Cook et al. 2012). Recently, Bardol et al. (2013) applied the 

haplotype-based approach of Leroux et al. (2014) to detect QTL in two datasets coming from 

an applied maize (Zea mays L.) breeding program and compared it to models considering each 

parental allele as different (linkage model) or considering that parents carrying the same allele 

at a given marker are IBD. Results showed that when parental lines are all issued from the same 

breeding program and related by pedigree, LDLA models were more powerful than linkage 

approaches. Bardol et al. (2013) also showed that the different ways of modeling allelic 

variation (either using haplotypes or single marker information) had variable efficiencies 

depending on the QTL and trait considered and were therefore complementary. It is thus 

important to further evaluate the ability of diverse LDLA models to detect QTL in multi-

parental populations with different diversity levels.  

The central line of the US NAM (B73) is too late flowering for evaluation in Northern Europe 

and founder lines cover a very broad range of geographical origins, including even later tropical 

materials. This prevents the evaluation of the whole design for productivity traits in Northern 

European conditions and due to diversity of the lines it is difficult to use a single tester to 

investigate hybrid values. To overcome these limitations and expand the genetic pool 
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investigated in maize QTL mapping studies, two parallel complementary NAM designs were 

developed within the European project CornFed. Each was derived from inbred lines 

representing the main diversity available for breeding in each of the two major heterotic groups 

(dent and flint) used in Northern Europe. Both designs were genotyped with a 50k SNP array 

(Ganal et al. 2011) and genotyping information was used to build individual population maps 

(Bauer et al. 2013). The two NAM designs were crossed with the central line of the opposite 

group to produce hybrids, that were analyzed for traits related to biomass production as 

described in Lehermeier et al. (in press). Increasing biomass production is of key interest in 

Northern Europe where maize has been extensively used for decades for silage and more 

recently for bioenergy production. To our knowledge no QTL mapping experiment has been 

carried out so far for traits related to biomass production in multi-parental design assembling 

such large diversity. Note that both hybrid designs address variation compared to the same 

hypothetical reference hybrid (the one produced by crossing the two central lines), with each 

experimental hybrid of each group sharing on average 75% of its genome with the reference 

hybrid. In this context, effects of all segregating genotypes at a QTL (11 on the dent side and 

12 on the flint side) are compared to a same genotype (having received alleles from two central 

lines). This makes this design particularly adapted for deciphering loci involved in genetic 

variation on the dent and flint sides for productivity traits.  

The present study aimed at comparing different methods of QTL detection in these two 

European NAM designs for five traits of agronomical interest for biomass production in maize: 

whole plant dry matter yield, whole plant dry matter content at harvest, female flowering, male 

flowering and plant height. We compared a linkage approach with two LDLA approaches either 

considering haplotypic IBD or single marker groupings. This allowed us to investigate the 

performance of the different LDLA approaches in two complementary heterotic groups in a 

more diverse context than a simple breeding program. A second important objective of this 

work was to compare the results of QTL detection conducted separately in the two heterotic 

groups or jointly for the whole design, in order to better understand the contribution of each 

group to trait variation.. 
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MATERIAL AND METHODS 

 

Plant material and phenotypic analysis 

Two maize NAM designs composed of half-sib families from the two major heterotic groups 

(dent and flint) used for breeding in Europe were analyzed. The two designs are described in 

Bauer et al. (2013). In short, the dent and flint designs were respectively composed of 10 and 

11 doubled haploid (DH) families, derived from the cross of respectively 10 and 11 diverse 

founder lines with a common central line: F353 for the dent and UH007 for the flint. F353 and 

UH007 represent very promising European lines created by public institutes in their respective 

heterotic groups. The parental lines were chosen to cover the diversity available within the two 

groups with a combination of ancestral and more recent material. From each cross, DH lines 

were generated resulting in 919 lines for the dent and 1009 for the flint (Bauer et al. 2013) 

(Table S1). For phenotypic evaluation (see below), the segregating DH lines of a given group 

were crossed with the central line of the other group. 841 hybrids were produced for the dent 

group and 811 for the flint group (Lehermeier et al. in press) (Table S1). The number of dent 

lines for which test-crossed progenies were phenotyped per family was 84 on average and 

varied between 53 and 104, depending on the family. For the flint group, the number of DH 

lines per family that were phenotyped for test-cross values ranged from 17 to 133 with an 

average of 73. As the hybrids of each group were obtained by crossing DH lines with the central 

line of the other group, all the hybrids shared a large proportion of their genome and were 

expected to be heterozygotes F353 / UH007 for 50% of their genome. Hybrids were evaluated 

in 2011 in four (dent) and six (flint) European locations. Five traits were considered: biomass 

dry matter yield (DMY, decitons per hectare, dt.ha-1) at the whole plant level, whole plant dry 

matter content (DMC, %) at harvest, days to tasseling (DtTAS, in days, d), and days to silking 

(DtSILK, in days, d) measured as the number of days from sowing until tasseling and silking, 

respectively. Field trial design is described in Lehermeier et al. (in press. Individual field plot 

measures were analyzed (Lehermeier et al. in press) to compute for each hybrid the adjusted 

means over the different trials that were used in this study. 

  

Genotyping and analysis of genotypic data 

The 1,928 DH lines and the 23 parental lines were genotyped with the Illumina® MaizeSNP50 

BeadChip containing 56,110 SNPs (Ganal et al. 2011a). Markers with a call frequency < 0.9, a 

GenTrainScore < 0.7, a minor allele frequency (MAF) < 0.01, or more than 10% missing values 

were discarded as in Lehermeier et al. (in press).  
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Consensus maps for the flint and the dent multi-populations were obtained following the same 

procedure. We considered for each consensus map the list of markers present in at least one of 

the 10 dent individual maps (respectively 11 flint individual maps) from Bauer et al. (2013). 

The flint DH family resulting from the cross of EP44 and UH007 was not used due to small 

population size. For each marker of this list and for each individual genetic map, we computed 

the relative genetic position of this marker in this map by starting from its physical coordinate 

on the B73 genome assembly and converting it into a genetic coordinate with the spline 

smoothing interpolating procedure described in Bauer et al. (2013). These genetic coordinates 

were then normalized between zero and one to obtain relative genetic positions. For the present 

study, each consensus map was built by computing the consensus relative genetic position of 

each marker as the average of its relative genetic positions in all individual maps involved, 

weighted by the numbers of individuals in the corresponding populations. Finally, the 

consensus genetic coordinate of each marker was obtained by multiplying its consensus relative 

genetic position by the genetic length of the consensus map, taken as the average of the genetic 

lengths of all maps, weighted by the numbers of individuals in the corresponding populations. 

The two consensus maps obtained are available at Maize GDB (MaizeGDB data record). A 

consensus map for the dent and flint multi-populations was built with the same procedure. 

For the QTL detection we only considered in the analysis the PANZEA markers which were 

mapped on the consensus maps. PANZEA markers result from the alignment of sequences 

coming from resequencing data of the 27 lines used as parents of the US NAM design 

(McMullen et al. 2009) and mapped against the B73 genome v2 (Gore et al. 2009). We 

discarded the other markers, mainly defined by comparing the sequences of the inbred lines 

B73 and Mo17, as they are known to create an ascertainment bias in diversity analyses (Ganal 

et al. 2011; Frascaroli et al. 2013).The dent and flint consensus genetics maps obtained were 

composed of respectively 21,878 and 20,406 PANZEA markers, corresponding respectively to 

6,808 and 7,272 genetic positions on the consensus maps. The dent-flint consensus map was 

composed of 25,472 PANZEA markers, corresponding to 8,124 genetic positions (Table 1). 

 

Clustering analysis of parental inbred lines 

Clustering of the parental inbred lines was carried out with the R package “clusthaplo” (Leroux 

et al. 2014), separately on the dent and flint parents. This clustering was based on genomic 

similarities computed between each pair of individuals in a sliding window along the genome. 

In order to get insight into the length of the sliding window to use, we evaluated how fast LD 

between pairs of markers decays with the genetic distance. LD between pairs of markers was 
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estimated for the 11 dent founder lines and for the 12 flint founder lines, according to Hill and 

Robertson (1968) as 2 2 / ( (1 ) (1 ))AB A A B Br D p p p p= − − , with AB AB A BD p p p= −  where ABp  

denotes the haplotype frequency of AB , Ap  the frequency of allele A  at one marker locus, 

and Bp  the frequency of allele B  at the other locus. The LD decay was estimated using the Hill 

and Weir model (1988). The choice of the sliding window size was based on the LD decay 

observed in the dent and flint material considering the length in genetic distance needed to reach 

an r² below 0.2. Two values were chosen, 2 cM and 5 cM, each based on the LD decay observed 

for the flint and dent group, respectively. For facilitating comparisons between results obtained 

in the two groups, the clustering was carried out in each group using the two window sizes. 

For each window size at each genotyped position, the similarity score between two parental 

lines � and � at a position 2 (center of the window) was calculated according to the formula 

described in Leroux et al. (2014) and used in Bardol et al. (2013). This formula is adapted from 

Li and Jiang (2005) and combined the number of alleles alike-in-state between the two lines 

inside the sliding window and the length of their longest common segment centered on 2. Based 

on the similarity score curves obtained along each chromosome, a hidden Markov model 

(HMM) was used to determine at each position t if the two lines were similar and thus carried 

the same ancestral allele or not. After the clustering process, the number of ancestral alleles per 

position was plotted along chromosomes. We also computed similarities between inbred lines 

as the percentage of ancestral alleles shared over the genome and compared them with the 

similarities obtained from the SNP markers. A graphical representation of these similarities and 

a classification of the parental lines were carried out using the “heatmap” function in R (R Core 

Team 2013). 

 

QTL detection 

Analyses were first performed separately for each trait on the dent and flint multi-family 

designs, using their respective consensus map. Four statistical models were tested: one based 

on linkage analysis and three others combining linkage and LD information. All the models 

were multi-locus models in which the significance of each QTL was tested conditional on the 

inclusion of other QTL positions used as cofactors. 

The first model corresponded to a conventional multi-family connected model. This model 

considered the connections between families through the sharing of the central inbred line and 

relied on the assumptions that each parental inbred line carried a different QTL allele and that 

each allelic effect was independent of the family: 
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� =  3 . � +  56 .  "6 +  7 58
8 96

 . "8 +  : 

where � was the vector (; × 1) of the adjusted phenotypic means of the ; individuals of the 

dataset, 3 was a (; × =) matrix of 0 and 1 that linked each individual to the family it belonged 

to with = being the total number of families, � was the column vector (= × 1) of family means, 

56 and 58 were (; × >) matrices with > being the number of parents. Each element (ranging 

from 0 to 2) of these matrices corresponded to the expected number of alleles of the parent ? at 

QTL � and cofactor @ for each individual, according to the genotyping information at the 

position of q and c when this information was available (i.e. when these positions correspond 

to markers polymorphic in the population the individual belong to) or at flanking markers 

otherwise. "6 and "8 were the column vectors (> × 1) of the additive intra-family effects 

associated with QTL � and cofactor @, respectively. : was a column vector (; × 1) of the 

residuals of the model. This model will be further referred to as “connected”. Note that this 

model is close to the “joint inclusive composite interval mapping” (JCIM) model proposed by 

Buckler et al. (2009) and used on the US NAM design. 

 

The second and third models were LDLA multi-family connected models which used the results 

of the clustering of parental alleles carried out with “clusthaplo”:  

� =  3 . � +   56 .  A6 .  ℎ6 +  7 58
8 96

 . A8 .  ℎ8 +  : 

where �, 3, �, 56, 58 and : were the same as described as in the previous model. A6 and A8 

were (> × ,6) and (> × ,8) matrices with ,6 and  ,8 being the number of ancestral alleles at 

QTL � and cofactor @. Each element (0 or 1) of these matrices linked the parental alleles at 

QTL � and cofactor @ to the ancestral alleles identified by the clustering approach. ℎ6 and ℎ8 

were column vectors (,6 × 1) and (,8 × 1) of the additive effects of the ancestral alleles 

associated with QTL � and cofactor @. Two models were considered, one based on the 

clustering approach using a window size of 2cM and further referred to as “LDLA – 2 cM”, 

and one based on the clustering approach using a window size of 5 cM and further referred to 

as “LDLA – 5 cM”. 

 

QTL detection using the three models described above were performed using the MCQTL_LD 

software (Jourjon et al. 2005) using an iterative composite interval QTL mapping method 

(iQTLm) (Charcosset et al. 2000). For these models, genotypic information of markers located 
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at the same position of the consensus genetic map, was concatenated to indicate which parental 

allele was transmitted. For missing data, MCQTL_LD software estimated the probability of 

transmission of each parental allele based on the information of flanking markers. At each tested 

position, the presence of a QTL was assessed based on the - log10 of the Fisher test p-value (- 

log10(p-value)). Thresholds for considering a QTL as significant were computed for each trait 

and each dataset using 5,000 intra-family permutations of the phenotypes for a type I risk of 

10% across all families and total genome. In the iQTLm approach, the initial set of cofactors 

was chosen using a multiple regression with a forward selection of marker positions with a 

threshold equal to 80% of the QTL significance threshold value. At the end of the detection 

process, for the conventional connected model, confidence intervals at 95% were estimated on 

the basis of a 1 LOD unit fall. The confidence intervals were not estimated for the LDLA models 

as there is no established method proposed for these models. 

 

The fourth model, referred to as single marker LDLA model ("LDLA – 1-marker"), considered 

that two parental lines carrying the same allele at a marker were IBD for this marker:  

� =  3 . � +  C6 .   D6 +  7 C8
8 96

 .  D8 +  : 

�, 3, � and : were as described in the previous model. C6 and C8 were (; × 2) matrices whose 

elements (0 or 1) corresponded to the genotyping information at QTL � and cofactor @ for each 

individual.   D6 and  D8 were column vectors (2 × 1) of the additive effects of marker alleles 

associated with QTL � and cofactor @. This model can be viewed as a multi-locus genome-wide 

association study with population structure controlled by family membership. It is equivalent 

to the association mapping model used to analyze the US NAM design (Yu et al. 2008; Tian et 

al. 2011; Kump et al. 2011) except that in our model dense marker genotyping information is 

directly available for the progenies and does not need to be inferred from the parental genotypes.  

 

The analysis with the fourth model was performed in R (R Core Team 2013) using an R-script 

derived from the one used for the multi-locus mixed model approach presented in Segura et al. 

(2012). We used a multi-locus forward-backward stepwise linear regression model and selected 

the most appropriate model using the extended Bayesian information criterion (Segura et al. 

2012). Loci of the selected model which had p-values below the Bonferroni threshold for a 

genome-wide risk of 10% were considered as QTL. For this model, imputation of the 

genotyping data for marker with missing data was done using the software BEAGLE (Browning 
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and Browning 2009) family by family. Even if we considered the same type I error risk at the 

genome level than for other models, the threshold used for the LDLA – 1-marker model was 

not obtained by permutations and is possibly more conservative compared to other models. 

 

Analyses were then performed jointly for each trait on the two designs using the dent-flint 

consensus map. The model used corresponded to a conventional multi-family connected model 

except that all the dent and flint families were considered jointly. As the central line of the dent 

is used as tester in the flint design and reciprocally, the F353-UH007 genotype segregates 

against an alternative genotype in each population. This enabled us to connect allelic effects 

estimated in the two designs. QTL detection was performed using the MCQTL_LD software 

(Jourjon et al. 2005) following the same procedure as group specific QTL detection. Thresholds 

for considering a QTL as significant were computed for the joint dataset for each trait using 

5,000 intra-family permutations of the phenotypes for a type I risk of 10% across all families 

and total genome. To test whether effects were significant in a single group or in both groups, 

the effects of the QTL detected in the joint analysis were tested in each of the separate datasets. 

They were considered as significant if the - log10 of the Fisher test p-value was above the 

thresholds of the studied trait in the separate dataset (estimated with the dent or flint consensus 

maps, respectively). 

 

For each analysis, variances explained by each QTL (partial EFGH� ) were defined as the ratio 

between the sum of squares associated with the QTL effect in the model including the other 

detected QTL, and the residual sums of squares of a linear model considering only the family 

effects. Total percentage of variance explained by the detected QTL (EIJIKL� ) was defined as the 

ratio between the sum of squares of all the detected QTL, and the residual sums of squares of a 

linear model considering only the effects of the families. All the E� were adjusted by the 

number of degrees of freedom of the considered models (Charcosset and Gallais 1996). 

Differences in effects among pairs of alleles at a given QTL was tested a posteriori using a t-

test (α=5%). For facilitating comparisons between models and the interpretation of the QTL 

results, the allelic effect of the central lines were set to zero and the other allelic effects were 

estimated accordingly.   

 

Comparison of the positions of the QTL detected separately in the two groups and in the joint 

analysis was based on the results of the connected model. QTL detected in each separate group 
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and on the joint dataset were projected on the dent-flint consensus map using BioMercator V4.2 

(Sosnowski et al. 2012). A QTL was considered common for a trait when the confidence 

intervals of the QTL after projection were overlapping.  

 

 

RESULTS 

 

Analysis of parental linkage disequilibrium and parental clustering 

The average genetic distance to reach a LD below r2 =0.2 was 1.2 and 0.65 cM for the dent and 

flint groups, respectively (Table 1). This distance varied according to the chromosome between 

0.45 cM (chromosome 5) and 2.51 cM (chromosome 2) for the dent group, and 0.35 cM 

(chromosome 5) and 0.76 cM (chromosomes 1, 7, 9, 10) for the flint group. The two different 

sliding window sizes that we considered for computing the similarity score with “clusthaplo” 

approximately correspond to two times the distance beyond which LD becomes negligible for 

all the chromosomes. Note that 2 cM was the minimum window size that we could consider 

since the HMM based clustering approach did not converge for smaller window sizes. 

The 5 cM sliding window size led to a higher number of ancestral alleles than the 2 cM one for 

the two designs. For dent, the average number of ancestral alleles along the genome was 5.6 

per genetic position for the 2 cM sliding window size and 6.5 for the 5 cM window. For flint, 

the average number of ancestral alleles was 5.9 per genetic position for the 2 cM sliding window 

size and 7.2 for the 5 cM window. It has to be noted that the number of ancestral alleles varied 

along the genome. For both window sizes, clustering was more important in telomeric than in 

centromeric regions, where quite often the number of ancestral alleles equaled the number of 

parental lines (Figure 1). 

For both sliding window sizes, similarities between the parental inbred lines estimated based 

on ancestral alleles sharing showed a structured pattern (Figure 2). Within the dent group, pairs 

of lines involving (i) UH250, D09 and D06 and (ii) F353 and UH304 shared the same ancestral 

alleles for more than 47% of the genetic positions for both sizes of sliding window. In the flint 

group, with the 5cM window, closest pairs of lines involved UH006, UH007 and UH009. With 

the 2 cM window size, this expanded to F03802, D152 and F2. The classifications of parental 

lines based on single markers were globally consistent with those based on ancestral alleles, at 

least for grouping the most similar lines. Only positions of inbred lines which showed low levels 

of similarities with the other lines slightly changed in the dendrogram depending on the allele 

definition considered. In the dent group, three related lines UH250, D09, and D06 are clearly 
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separated from a non structured group among which only F353 (the central line of the dent 

design) and UH304 were related. In the flint group, similarities separated a sub-group composed 

of F64, EC49A, EZ5, and EP44 from the other lines that appeared to be more closely related to 

each other. In this sub-group, UH009 and UH006 are both related to UH007, the central line of 

the flint design.  

 

Comparison of the thresholds used in the QTL detection models 

For the separate datasets analyses, threshold values (- log10(p-value)) were higher for the 

LDLA models than for the linkage model (Table S2). For LDLA models, the threshold increased 

as the size of the considered window decreased. This suggests that reducing the size of the 

window decreases the dependence between tests. For every model, threshold values were lower 

for DMC and higher for DtSILK and DtTAS (except for the conventional connected model for 

the flint group). This might be due to heterogeneity of within family variances for some traits. 

For instance, for DtSILK, for the dent dataset, genetic variances varied from 0.95 to 4.93 (see 

Lehermeier et al. in press for an estimation of these variances). Like for the separate datasets 

thresholds, for the joint dataset, threshold values for the connected model were lower for DMC 

and higher for DtSILK and DtTAS. 

 

Comparison of the QTL detected with the different models in the dent and flint designs 

For a given trait and group, the number of detected QTL varied according to the model (Table 

2, Table S3, Table S4, Table S5, Table S6, Table S7, Table S8, Table S9 and Table S10). Between 

5 (for DMY with LDLA – 5 cM and LDLA – 1-marker models) and 16 (for DMC with LDLA 

– 2cM model) QTL were detected in the dent design and between 7 (for DMC with LDLA – 1-

marker model) and 16 QTL (for DtSILK and DtTAS with LDLA – 1-marker model) in the flint 

design. 

For the dent group, the LDLA – 1-marker model detected fewer QTL over all traits (45 QTL in 

total) and explained the smaller percentage of variance (33.8% on average). In this group, the 

LDLA models using “clusthaplo” information detected more QTL (56 in total for the LDLA – 

5 cM, 55 for the LDLA – 2 cM) than the conventional connected model (52 QTL in total). This 

advantage of the LDLA models in terms of number of QTL detected was found for DMC, 

DtSILK, and DtTAS. On the contrary, for DMY and PH the connected model detected more 

QTL. Even if more QTL were detected on average with the LDLA models, the connected model 

explained a higher percentage of variance (46.9%) than the other models.  

For the flint group, the LDLA – 1-marker model detected more QTL (59 QTL in total) but 
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explained a smaller percentage of variance (47.3% on average) than the other models. In this 

group, the conventional connected model detected the smallest number of QTL (55 in total). 

The LDLA models using “clusthaplo” information detected an intermediate number of QTL (58 

and 56 for the LDLA – 5 cM and LDLA – 2 cM models, respectively). The ranking of the 

models in terms of number of detected QTL varied depending on the trait. For instance, the two 

LDLA models using “clusthaplo” information detected more QTL than the conventional 

connected model for DtTAS, PH, DMC (with the LDLA – 5 cM model only), and for DMY 

(with the LDLA – 2 cM model only). For the flowering traits, the LDLA – 1-marker model 

detected more QTL than the other models. As for the dent group, the connected model explained 

a higher percentage of variance (56.3%) compared to the other models even if it did not detect 

a higher number of QTL. 

One can note that the – log10(p-values) curves showed relatively noisy patterns along the 

genome, especially for the LDLA models (Figure 3, Figure S1, Figure S2, Figure S3, Figure 

S4). However, curves displaying evolution of –log10(p-values) along the genome were globally 

highly consistent across models and all models detected the same major QTL (Figure 3, Figure 

S1, Figure S2, Figure S3, Figure S4). This was true even in cases when they detected a different 

number of QTL on the same chromosome. For instance, in the flint design, for DMC, all models 

detected a major QTL at 45 – 46 cM on chromosome 10 but two models detected other QTL in 

the region without challenging the position of the major QTL: the LDLA – 2 cM model at 69.9 

cM and the LDLA – 1-marker model at 68.9 cM (Figure S1, Table S3, Table S4, Table S5, 

Table S6).  

Considering the QTL which were detected by different models, the ranking of the models 

according to their – log10(p-value) varied with the QTL. For instance, for the QTL detected 

with all models for DtSILK in the dent group at 70 – 74 cM on chromosome 6, the highest –

log10(p-value) was found with the LDLA – 2 cM model (17.5) and the lowest with the 

connected model (13) (Figure 3). On the contrary, for the QTL detected with all models for 

DMY in the dent group on chromosome 6 at 14 – 17 cM, the highest – log10(p-value) was 

found with the connected model (14.9) (Figure S2, Table S7) and the lowest with the LDLA – 

2 cM model (13.3) (Table S9). 

 

Allelic effect series and comparison of the different allelic models for the major QTL 

detected for female flowering time 

Visualization of allelic effects of the connected model through heat maps (Figure S5, Figure 

S6, Figure S7, Figure S8, Figure S9, Figure S10, Figure S11, Figure S12, Figure S13, and Figure 
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S14) illustrated a continuous range of effects for all QTL. The central line had an intermediate 

value for most of the loci in both designs. Each parental line carried alleles with either positive 

or negative effects compared to the central line. LDLA models are expected to outperform the 

connected model if the clustering process correctly identifies underlying allelic series at QTL. 

To get further insight into this point, we compared allelic effects estimated by the different 

models for the two major DtSILK QTL found in this study. 

The allelic effects of the DtSILK major QTL detected in the flint group on chromosome 10 at 

38 – 50 cM clearly showed an allelic series (Figure 4). The four models detected QTL in this 

region but at slightly different positions. For the QTL detected with the connected model, at 

least three classes of effects were identified based on t-tests. F283 and DK105 carried a late 

allele (3.7 d and 3.5 d compared to UH007), UH006 an intermediate allele (2.07 d), and D152, 

UH009, F2, UH007, and F03802 an early allele (between -0.29 and 0.4 d), the three other 

parental lines showing effects between the early and the intermediate classes. For the QTL 

detected with the LDLA - 5 cM and LDLA – 2 cM models, allelic effects were globally 

consistent with those found for the QTL detected with the connected model except for EZ5 

which had the earliest allele with the LDLA – 5cM model. Note that the family derived from 

this parent was one of the smallest of the design.  The LDLA – 1-marker model detected two 

QTL in this region: one at position 45.9 cM (close to the position of the QTL found with the 

other models) and one, of smaller effect, 7 cM apart at the position 38.6 cM. For the marker 

detected at position 45.9 cM, the late allele (2.44d) was shared by F283, DK105 and UH006, 

which also carried the latest alleles according to the other models. All the other lines shared the 

same early allele (0d). For the marker detected at position 38.6 cM, the late allele (1.1 d) was 

shared by DK105, F283 (the lines carrying the latest alleles in the other models), EC49A, and 

F64 (which carried alleles classified as intermediate). All the other lines shared the early allele 

(0 d). So, when considered jointly, these two markers account for the allelic series observed for 

the QTL detected with the other models: DK105 and F283 carrying the late alleles at the two 

markers; UH006 carrying the late allele for the marker with the strongest effect and the early 

allele for the other marker; EC49A and F64 carrying the late allele at the marker with the 

smallest effect and the early allele for the other one, and D152, UH009, F2, UH007, and F03802 

carrying at both markers the early alleles. The two QTL detected with the LDLA – 1-marker 

model individually explained 2.2% and 11.1% of the variance for the marker at positions 38.6 

and 45.9 cM, respectively, but they jointly explained 26.8% of the variance, only slightly less 

than the variance explained by the QTL detected with the other models (between 27.5 and 

28.2%). 
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The allelic effects of the DtSILK QTL detected in the dent group, on chromosome 8 at 45 – 58 

cM also clearly showed an allelic series and the same type of pattern (Figure 5). With the 

connected model, allelic effects showed a continuous variation and at least two classes of alleles 

could be identified. Four inbred lines (D06, D09, UH250, and F618) carried early alleles 

compared to the group consisting of F353 (central line), EC169, and Mo17. The other parental 

alleles were not clearly classified but had intermediate effects. In this chromosome region, the 

two LDLA models based on ancestral allele clustering both identified a QTL. With both 

window sizes D06, D09, and UH250 which carried the earliest alleles in the connected model, 

were attributed to the same ancestral allele with an early effect (-1.77 with LDLA – 5 cM and 

-1.76 with LDLA – 2 cM compared to F353). Mo17, EC169 (the two lines with latest allelic 

effects in the connected model), UH304, and F353 were attributed to the same or to different 

ancestral alleles depending on the window size but in both cases their allelic effects were equal 

or close to zero. With these models, B73 was attributed the latest effect (0.4 or 0.49) but this 

effect was not significantly different from zero. The other lines had allelic effects consistent 

with the effects estimated with the connected model. Two QTL were detected in this region 

with the LDLA – 1-marker model: one at 45.5 cM and the other at 57.3 cM, on either side of 

the QTL detected with the other models. D06, D09 and UH250 which carried the earliest allele 

of the connected model and were attributed to the same early ancestral allele with LDLA-2cM 

and LDLA-5cM models, carried the early allele at both QTL. Mo17, EC169, B73 and F353, 

the lines with the latest allelic effects with the other models, carried the late allele at both QTL. 

The other lines, which had intermediate allelic effects with the other models, carried the late 

allele at one QTL and the early allele at the other QTL. Thus, marker effects at these two QTL 

jointly mimic the allelic series identified by the other models. The two QTL detected with the 

LDLA – 1-marker individually explained 1.5 and 2.9% of the variance but they jointly 

explained 7.9% of the variance, which is only slightly less than the other models (8.9% for the 

LDLA – 5 cM and LDLA – 2 cM models, and 9.6% for the connected model).  

 

Comparison of the QTL detected in the two heterotic groups analyzed individually and 

jointly  

In total, for the connected model, 52 QTL were detected in the dent design for all traits and 55 

in the flint design (Table 2). More QTL were found in the dent than in the flint design for DMC 

and PH, whereas the reverse was observed for DtSILK, DtTAS, and DMY.  

Based on overlap of their confidence intervals, when comparing results obtained in the two 

separate datasets only seven QTL were common between the two groups. Two of these QTL 
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were for DMC (chromosomes 8 and 10), three for DtSILK (chromosomes 1, 2 and 3), one for 

DtTAS (chromosome 3), and one for PH (chromosome 1). No common QTL were found for 

DMY. In addition, some chromosome regions carried QTL detected in the two groups but not 

for the same trait (Figure 6). 

The distribution of QTL effects (in terms of R²) differed in the two groups (Figure 7). In the 

dent group, all the QTL had low to medium effect (R²< 10%). The QTL with the biggest effect 

was detected on chromosome 3 at 63 cM for DtTAS and explained 10.4% of the variance (Table 

S7). A QTL was also detected at this position for DMC but with a smaller effect. The second 

biggest QTL was detected on chromosome 8 at position 50 cM for DtSILK and explained 9.4% 

of the genetic variance. This region was also detected for the other traits but with smaller effects. 

On the contrary, in the flint group, one region located on chromosome 10 around position 44 – 

50 cM showed a major effect on all the traits (Table S3). Depending on the trait considered this 

region explained between 14% of the variation for DMY and 27.5% for DtSILK. All the other 

QTL detected in this group showed milder effects with R² <10%. It is interesting to note that 

the QTL which exhibited a strong effect in one group (the QTL detected on chromosome 10 in 

the flint group and the QTL detected on chromosome 3 and 8 in the dent group) did not have 

such a strong effect in the other group for the same traits. 

87 QTL were detected in total with the joint analysis, which is less than the sum of the QTL 

found in the two separate datasets (107) (Table 2, Table S11). For each trait, the number of 

QTL detected with the joint analysis was equal or superior to that detected in each single dataset 

analysis. For DMC and PH, QTL detected with the joint analysis explained a larger fraction of 

variance than the one explained in the separate datasets analysis. On the contrary, for DMY, 

DTSILK and DtTAS, more variance was explained in the flint dataset analysis than in the joint 

analysis. 

QTL found in the joint analysis were generally found at the same position or close to QTL 

detected in one or both separate analyses (Figure 6). In some cases, they were detected between 

two QTL detected in a single dataset analysis (for instance QTL on chromosome 5 for DtSILK), 

or between one QTL detected in the dent dataset and one detected in the flint dataset (QTL at 

130 cM on chromosome 2 for DMC). In some cases, no QTL was detected with the joint 

analysis although QTL were detected in the separate datasets (for instance flint QTL at 9 cM 

on chromosome 1 or dent QTL on chromosome 2 for DtTAS). Other QTL were detected only 

with the joint analysis (and not close to or between two QTL detected with the separate 

analysis), as the one detected for DMC on chromosome 7. 

When testing the effects of these 87 QTL in the separate datasets, 30 were significant in both 
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datasets, 52 in a single dataset only and five in none of the datasets (Table 3). So the number of 

QTL with effect in both dataset varied between 27% for DtSILK to 41% for DtTAS. 

Concerning the seven QTL found common when comparing the dent and flint separate analyses, 

the joint analysis always found a QTL in the region nearby (not necessarily with overlapping 

of the confidence regions but really close). Except for the QTL found on chromosome 2 for 

DtSILK, these QTL were significant in both groups. 

 

 

DISCUSSION 

 

Our study aimed at comparing genetic determinism of biomass related traits in two 

complementary flint and dent genetic pools that are often used to produce commercial hybrids 

in Northern Europe. To do so, a new NAM DH population was developed for each group. Both 

NAM populations display intermediate levels of diversity compared to the US NAM design 

and classical elite breeding programs. Data from each design were analyzed with four models: 

a connected model where parents are assumed to carry different alleles, an LDLA model based 

on single marker information close to the one successfully used for the US NAM design, and 

two LDLA models based on ancestral allele modeling previously used with success by Leroux 

et al. (2014) and Bardol et al. (2013). In addition data of the two designs were analyzed jointly 

with the connected model, considering that the central line of one design was used as tester in 

the other design and reciprocally.    

 

Linkage disequilibrium and clustering of parental alleles 

The haplotype clustering approach of Leroux et al. (2014) requires the definition of a window 

size according to genetic map units (cM). We defined it based on the estimation of the LD 

extent at the level of the parental lines. This showed that LD decreased below r2=0.2 after 

approximately 1 cM and 2 cM in the flint and dent parental lines, respectively. Although 

estimated with only 11 and 12 inbred lines, for the dent and flint group respectively, these 

values were consistent with the LD extent observed for these groups by van Inghelandt et al. 

(2011). Based on this result, we considered two window sizes for the parental clustering, one 

of 2 cM, more adapted to the flint group and one of 5 cM, more adapted to the dent group. Note 

that a 1 cM window was also considered but the HMM approach did not converge with the R 

version we used for this study. These values are smaller than the 10 cM window size used in 

Bardol et al. (2013) to analyze a multi-parental design derived from highly related founders. 
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In both flint and dent groups, the clustering process identified on average six and seven ancestral 

alleles per position for the 2 cM and 5 cM window sizes, respectively. The percentage of 

genome detected as IBD was in agreement with the marker-based similarities between inbred 

line pairs and pedigree information. These results showed that among dent lines, there were two 

groups of related lines: (i) D09, D06, and UH250, which came from the breeding program of 

the University of Hohenheim, and (ii) UH304 and F353, which share a common Iodent 

background (Bauer et al., 2013). For the flint, there was a separation between EC49A, EZ5, 

EP44 (the three lines with Spanish origin), and F64 (Argentinean origin) and all the other lines.  

The number of ancestral alleles detected after clustering with “clusthaplo” varied along the 

genome, first at the local level from one position to the next. This results in a variation in model 

dimension along the genome that certainly explains the erratic pattern of the –log(p-values) 

curves of the LDLA models (see below). Beyond this local variation we observed that on 

average more ancestral alleles were detected in the centromeric than in the telomeric regions. 

This result is probably related to the higher number of marker loci per cM in centromeric 

regions than in telomeric ones. It may be also related to a higher divergence between lines in 

centromeric regions. The similarity score used in “clusthaplo” is expected to be robust against 

the difference of marker density inside the sliding windows (Leroux et al. 2014). Our results 

suggest however that we reached here limits in this robustness. As most of the lines were not 

closely related, the size of IBD segments was expected to be limited, which made them difficult 

to detect. Visual inspection of the graphs of IBD segments (results not shown) indeed revealed 

that the segments were in general shorter than in Bardol et al. (2013) except for related lines 

such as D06 and D09. The method implemented in the “clusthaplo” software should therefore 

be adapted to cope with more diverse sets of lines than the one considered in Leroux et al. 

(2014), possibly by reducing window sizes in regions of the genome where marker density is 

high and local LD is low relative to the genetic map. 

Adapting the method to cope with populations with limited LD also raises issues regarding the 

genetic map to be considered for the clustering process. Bauer et al (2013) showed that even if 

the individual maps of the families of a given group had globally consistent order, putative 

inversions were found in some areas. This is in agreement with recent studies which showed 

copy number variations (Springer et al. 2009; Swanson-Wagner et al. 2010), chromosomal 

inversions or translocations between the different maize lines. Ganal et al. (2011) also 

suggested that some regions of the physical map of B73 v2 are not correctly assembled. This 

may have affected our consensus maps since information from the physical map was used for 

positioning the markers and this may have affected the clustering process.  It appears thus 



73 
 

important to further evaluate the properties of the clustering approach when using denser 

genotyping data and also evaluate its potential interest in the context of the rapid emergence of 

sequencing data that may enable a more direct identification of conserved haplotypes between 

inbred lines. 

 

Comparison of the different QTL detection models 

The highest total number of QTL was detected by one of the three LDLA models in both 

designs. We noted however different trends for the two designs. For the dent, LDLA – 2 cM 

and LDLA – 5 cM detected very similar numbers of QTL (55 and 56, respectively), more than 

for both the connected and LDLA – 1-marker models (52 and 45, respectively). Note that 

Bardol et al. (2013) also found that in an elite dent breeding pool, the LDLA method based on 

ancestral alleles detected on average more QTL than the LDLA – 1-marker model. Our results 

suggest that the genotyping data and window sizes used for “clusthaplo” were well suited for 

LDLA models for the dent design. For the flint design, the connected model detected fewer 

QTL (55) than the LDLA – 5 cM, the LDLA – 2 cM and the 1-marker model (58, 56 and 59 

respectively), but differences between models were small on average This suggests that the the 

available density of genotyping data and/or window size we could use with the HMM approach 

were not necessarily optimal for this design. Interestingly, although the connected model was 

globally outperformed by LDLA models in terms of number of QTL detected, it explained a 

higher percentage of variance than the other models for nearly all the traits. Conversely, the 

LDLA – 1-marker model explained a smaller percentage of variance even when detecting more 

QTL. As the estimations of the percentages of variation explained were adjusted for the number 

of parameters, this cannot be due to model over fitting. One can thus hypothesize that a large 

part of the QTL showed allelic series that are not completely accounted for by local similarities 

or single marker-information. This is consistent with Würschum et al. (2012) who compared 

by simulation different models for joint linkage association mapping. They concluded that, even 

if the single SNP model was more powerful in terms of detection, the model considering one 

allele per parent was better adapted to estimate QTL effects in case of multi-allelic series, 

corroborating experimental results of Liu et al. (2011). 

Globally, LDLA models and linkage analysis detected QTL in the same chromosome regions 

although fine comparison of QTL positions was complicated by the relatively noisy pattern of 

the LDLA –log10(p-value) curves. We noted that the number of QTL in a given genomic region 

could either be the same or vary across models. In cases when a single QTL position is detected 

by all models, one can assume that variation is most likely due to a single QTL with two alleles 
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well reflected by a single biallelic marker. On the opposite, a variable number of QTL across 

models suggests a more complex situation with linkage between several QTL or allelic series 

at a single QTL. This can be exemplified by the DtSILK QTL detected on chromosome 8 in the 

dent design. In this region, the LDLA – 1-marker model detected two QTL 12 cM apart and 

located on both sides of the single QTL detected with the connected model. This suggests that 

either the two marker loci were needed to account for the allelic series at a single QTL or 

conversely that the connected model failed at distinguishing the two underlying QTL due to 

limited recombination in DH families.  

The different models thus showed variable efficiency depending on the trait and region 

considered, which highlights complementarities of different allele coding methods in 

deciphering allelic series in genetic studies.  

 

Comparison between the QTL detected in the two heterotic groups and evolutionary 

interpretation 

Similar numbers of QTL were detected in the two groups with the separate dataset analyses, 

showing that both can contribute genetic variation useful for breeding in Northern Europe. Less 

than 15% of the QTL were common between the dent and flint design when comparing the 

positions of the QTL detected in the separate dataset analyses. This is consistent with the long 

time divergence between the dent and flint heterotic groups: more than 500 years (Tenaillon 

and Charcosset 2011). Part of this low value can be due to power issues. Indeed the joint 

analysis enabled us to detect additional QTL compared to single group analysis and among the 

detected QTL with the joint analysis, 34% on average were significant in both groups. However, 

some QTL detected in individual designs disappeared in the joint analysis which suggests that 

they were really specific of one group and that variation within the other group diminished 

power at these QTL in the joint analysis. Some of the QTL detected in the joint analysis were 

found at an intermediate position between the positions of design specific QTL. This may 

correspond to a gain in precision but one cannot exclude that these QTL might also correspond 

to an artifact “ghost” QTL between actual QTL.  

Note that in addition to the common QTL, some chromosome regions had an effect in both 

designs but for different traits. These QTL could be pleiotropic QTL for which effects on some 

traits were not detected in one of the designs, due to a lack of power, diversity, etc.  

When comparing the single dataset analyses, QTL common to flint and dent designs were 

observed for DMC, DTSILK, DtTAS and PH. It is interesting to note that no common QTL 

was observed for DMY. With the joint analysis, a smaller percentage of QTL significant in both 
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datasets was for DtSILK and DMY (27% and 31%, respectively), than for the other traits (33% 

for DMC to 41% for DtTAS). For traits subjected to directional selection such as DMY, several 

alleles must have been fixed over time but there is no reason that the same alleles were fixed in 

both groups, especially considering that selection for hybrid value certainly favored fixation of 

complementary alleles in each group (Larièpe et al. 2012; Schön et al. 2010). This may explain 

why only few common QTL or QTL significant in both groups were detected for DMY. On the 

contrary, for traits for which a stabilizing selection is performed, the same polymorphisms are 

more likely to be maintained in both groups. This is the case for PH, DtTAS and also indirectly 

for DMC since DMC at harvest of a genotype depends on its precocity and its drying speed. 

Interestingly, common DMC QTL between groups and most of the DMC QTL detected with 

the joint analysis and significant in both datasets were detected in regions also carrying QTL 

for flowering time (DtSILK or DtTAS).  

The few common QTL between dent and flint groups that we detected could explain the low 

predictive abilities of the prediction between dent and flint in genomic selection (Meuwissen et 

al. 2001; Jannink et al.2010) when dent are in the estimation set and flint in the test set and vice 

versa (Lehermeier et al. in press). The presence of a major effect QTL in the flint group might 

also partly explain this result.  

 

Overview of detected QTL and comparison with literature studies  

For the single dataset analyses, between 20 QTL for DMY and 28 QTL for DtSILK were 

detected in total over the two groups when considering the model which detected the highest 

number of QTL. For the joint analysis, between 15 QTL for DtSILK and 21 QTL for PH were 

detected. 

For DtSILK, although high, the number of detected QTL is less than the one reported for the 

US NAM design (39 QTL detected with the multiple family joint stepwise model, 52 with 

JCIM) (Buckler et al 2009; Li et al. 2011). This is also less than the total number of QTL 

estimated through meta-analysis for flowering time (62 and 59 in Chardon et al. 2004 and Salvi 

et al. 2009, respectively). QTL detected in our study explained a smaller proportion of the 

variance (for the connected model the detected QTL explained 52.3%, for the dent design, 59.7 

% for the joint analysis, and 69.3%, for the flint design of the within family variability) than 

the one detected on the US NAM design (89%) (Buckler et al 2009; Li et al. 2011). Similar 

trends were observed for male flowering (DtTAS). In our study, all QTL explained 10% or less 

of variation, with the exception of the main QTL found in the flint design on chromosome 10 

(45-50 cM with the connected model). In the joint analysis, this QTL was significant for female 
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flowering when tested in both datasets whereas for male flowering it was significant only in the 

flint dataset. This QTL was also found by Blanc et al. (2006) and is close to the ZmCCT gene 

which was fine mapped as a major flowering time QTL by Ducrocq et al. (2009) and validated 

by Coles et al. (2011). In the flint design, for the connected model, this QTL explained 18.7% 

and 27.5% of male and female flowering time, respectively. In the joint analysis, it explained 

12% and 15.2% of male and female flowering time, respectively. This value is higher than 

reported for the same region in the US NAM (1.1% for male flowering and 1.3% for female 

flowering with Joint Linkage Stepwise Model in Buckler et al. 2009) and in Blanc et al. (2006) 

(18% for female flowering). These differences can be explained by the fact that several lines in 

our flint design share a late allele and possibly suggest that the expression of the effect of this 

QTL is amplified in early flowering backgrounds compared to the later US NAM background. 

In the dent design analyzed separately, the most significant DtSILK QTL was found on 

chromosome 8. This QTL does not seem to be located in the region where two major flowering 

time QTL, vgt1 and vgt2 (ZCN8), have been fine-mapped (Salvi et al. 2007; Bouchet et al. 

2013). It seems to be close to an area where other studies also found QTL for flowering time 

(Ducrocq et al. 2008; Salvi et al. 2009; Bouchet et al. 2013).  

For plant height (PH), we detected in total 25 QTL which explained 55.0% and 57.1% of the 

variation for the flint and dent designs, respectively. With the joint analysis, we detected 21 

QTL which explained 61.2% of the variation. A recent study (Peiffer et al. 2014) based on the 

US NAM and IBM family (Lee et al. 2002) reported 89 family-nested markers detected with 

an adaptation of JCIM and 277 associations through a joint-linkage-assisted genome wide 

association study (Tian et al. 2011). Except the QTL found on chromosome 10 in the flint 

design and that likely corresponds to a pleiotropic effect of a major flowering time QTL, no 

QTL explained more than 10% of the variation, in the separate or joint datasets. As in Peiffer 

et al. (2014), none of the QTL detected in this study seem to be located in the vicinity of known 

candidate genes for plant height. 

For DMY, with the separate analyses, we detected in total 20 QTL which is lower than the 

number of QTL detected for the other traits. With the joint analysis, we detected 16 QTL which 

is one of the lowest number of QTL detected. This may be explained by the lower heritability 

of this trait and the fact that variation for this trait may involve numerous QTL of small effects 

that are difficult to detect. For DMC, we detected in total 27 QTL with the separate analyses 

and 18 with the joint analysis. Only few studies address QTL detection for biomass yield and 

dry matter content, mainly in biparental populations (e.g. Lübberstedt et al. 1998; Méchin et al. 

2001; Barriere et al. 2010; Barriere et al. 2012). They reported only limited number of QTL 



77 
 

and are not easily comparable with our results. Our study, which led to the detection of many 

QTL in a multi-parental context, therefore represents a large advance towards understanding 

the genetics of biomass yield.  

Thus globally, although high compared to the number of QTL indentified in biparental 

populations, the number of QTL detected in this study appears lower than those detected in 

most comprehensive designs and meta-analysis. Several explanations can be given for this 

result. First, compared with the US NAM design, our experimental designs explore less 

diversity and included fewer individuals (841 and 811 DH lines for the dent and flint designs, 

respectively compared to 5,000 RILs for the US NAM design). Moreover, as DH lines were 

used instead of RILs, the number of recombination events in our designs is expected to be two 

times lower per family. This certainly impacted the power and resolution of our designs for 

deciphering trait variation even with LDLA models. One cannot exclude that QTL detected in 

our study may indeed correspond to clusters of linked QTL that could have been individually 

detected using a higher number of individuals, higher number of markers and progenies 

exhibiting more crossovers (Huang et al. 2010). The main specificity of our study compared to 

the US NAM design, was that the different families were evaluated through their testcross 

progeny in order to evaluate traits related to biomass production at usual productivity levels. 

Under the hypothesis of additivity, the genetic variance is expected to be four times lower for 

testcross value than for per se value. In addition, the two central lines of each group that were 

used as testers for the other group belong to two complementary heterotic pools, so one expects 

to observe some dominance effects between the flint and the dent alleles at QTL. Such 

dominance effects may have masked part of the variability in each group. Despite these 

limitations, as progenies were evaluated based on testcross performance, the QTL detected in 

this study directly reflect the genetic variation present in each of the two main heterotic groups 

that is useful for breeding in European conditions.  
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Figure 6   QTL projection on the flint-dent consensus map of the QTL detected in the dent dataset, the flint dataset 

and in the joint dataset for DMC, DMY, DtSILK, DtTAS and PH. Each QTL is displayed by one horizontal line bound 

by two vertical lines representing the confidence region and a vertical line proportional to the QTL adjusted R² 

symbolizing the QTL position. QTL common to dent and flint according to the overlap of their confidence region 

on the dent-flint consensus map are represented in red. For the QTL detected in the joint analysis, the letters d 

and f written below the QTL indicate that the QTL was significant when tested in the dent or flint dataset 

respectively. 
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Figure 7   Distribution of the percentage of variance (EFGH� ) explained by the QTL detected in A the dent design 

and B the flint design, with the connected model and for the five traits.  
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 Dent (cM)  Flint (cM)  

 Markers Length (cM) LD decay (cM) Markers Length (cM) LD decay (cM) 

Chrm 1  3287 184.5  0.96  2892 237.2  0.76  

Chrm 2  2402 137.9  2.51  2264 182.7  0.65  

Chrm 3  2480 151.0  1.99  2410 156.4  0.45  
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 DMC DMY DtSILK DtTAS PH Total  

 Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Dent              

Connected 12 51.4 8 32.7 11 52.3 7 41.2 14 57.1 52 46.9 

LDLA - 5cM 15 51.1 5 22.5 12 53.7 11 49.2 13 54.1 56 46.1 

LDLA - 2cM 16 53.6 6 23.4 12 53.2 9 45.1 12 49.5 55 45.0 

LDLA – 1-

marker 

12 37.4 5 18.6 11 43.2 7 33.3 10 36.4 45 33.8 

Flint              

Connected 8 46.0 11 48.6 15 69.3 12 65.3 9 52.3 55 56.3 

LDLA - 5cM 11  49.2 10 41.9 14 67.5 13 61.1 10 51.7 58 54.3 

LDLA - 2cM 8 42.1 12 45.3 11 62.0 14 62.2 11 51.9 56 52.7 

LDLA – 1-

marker 

7 36.1 11 39.0 16 61.7 16 58.0 9 41.9 59 47.3 

Joint              

Connected 18 54.6 16 45.5 15 59.7 17 61.4 21 61.2 87 56.5 
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 DMC DMY DtSILK DtTAS PH Total  

Significant in the whole dataset 

(nb) 

18 16 15 17 21 87 

Significant in the dent dataset 

(nb) 

14 9 11 11 17 62 

Significant in the flint dataset (nb) 6 12 8 13 11 50 

Significant in both datasets (nb) 6 5 4 7 8 30 

Non significant in both datasets 

(nb) 

4 0 0 0 1 5 
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ABSTRACT 

 

Understanding genetic architecture of hybrid performances is of key importance for allogamous 

species such as maize (Zea mays L.). We developed two multiparental designs corresponding 

each to one of the main heterotic groups used for maize silage production in Northern Europe 

(the dent and flint groups). In each group, four founder lines were crossed to produce six 

connected biparental populations of segregating lines. These lines (821 and 801 for the dent 

and flint group, respectively) were genotyped for approximately 20k SNPs and were crossed 

according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for 

silage performances in eight environments. Hybrid genetic variance decomposition showed a 

predominance of general (GCA) over specific (SCA) combining abilities. SCA explained 

between 13.8 and 22.6% of the within-population hybrid variance, depending on the trait. QTL 

detection was carried out for GCA and SCA using different models considering allelic effects 

transmitted from each founder lines (linkage analysis) or considering directly SNP alleles 

(linkage disequilibrium mapping) assuming equal or different effects in each group. In total, 

between 42 and 54 QTLs were detected depending on the model, among which 12 to 31% 

presented dominance/SCA effect significant at a 5% individual risk level. Only 16 QTLs were 

detected by all three models illustrating their complementary. Most of the QTLs (about 80%) 

were specific to one group, consistent with the long term divergence between the dent and the 

flint group. These results open interesting prospects for revisiting with markers the concept of 

reciprocal recurrent selection. 
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INTRODUCTION 

 

Darwin, in 1876, observed that cross-pollination led to more vigorous plants than self-

pollination for numerous species. This observation was later theorized by Shull (1908) and East 

(1908) who defined the concept of hybrid vigor or heterosis (Shull 1914). In maize, as in other 

allogamous species, heterosis is important for traits related to yield. In order to exploit this 

phenomenon, maize diversity was partitioned into heterotic groups and most of the varieties 

that are sold today correspond to hybrids between inbred lines belonging to complementary 

heterotic groups. When suitable heterotic groups have been established, the objective of 

breeders is to select new lines within each group and identify the best hybrid combinations 

between them. Several heterotic patterns are used in maize breeding depending on the region 

considered and on the breeding objectives. For instance, in Northern Europe, hybrids selected 

for silage generally issued from crosses between the dent and the flint groups. 

Hybrid value is traditionally decomposed into two parts. The first one is the sum of the General 

Combining Abilities (GCA) of the two parental inbred lines, defined each as the average value 

of the hybrids that can be derived from this line when crossed to lines from the other group. 

The second one is the Specific Combining Ability (SCA) of the pair of parental lines, which is 

the difference between the hybrid value and the value predicted based on GCAs (Sprague and 

Tatum 1942). GCAs are statistically additive and involve additive, dominance and epistatic 

effects at quantitative trait loci (QTL). SCA only involve dominant and epistatic QTL effects. 

In breeding programs, due to practical considerations, all potential inter-group combinations 

cannot be evaluated phenotypically. Consequently, the selection is carried out in two stages. In 

the first stage, future potential inbred lines of each group are selected for their cross-value with 

one or few lines representative of the complementary group, called testers. In the second stage, 

a limited number of combinations between improved inbred lines of both groups are evaluated 

to identify the best hybrids. In this scheme, most of the selection is generally performed during 

the first stage. Due to the small number of testers considered, the selection of lines is based on 

a combination of their GCA and of the SCA with the tester(s). Understanding the relative 

magnitude of these components is therefore important to evaluate to which extent the choice of 

tester(s) may affect the estimation of the potential of new inbred lines. Reif et al. (2007) 

theorized that, in absence of epistasis, the ratio of SCA over GCA variance is expected to be 

low for hybrids between two divergent populations. This is consistent with the empirical 

expertise of the breeders, who observe that selection with a given tester generally leads to a 

correlative progress of hybrid performance with other partners. This is also consistent with 
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experimental studies (for instance Schrag et al. 2006 or Fischer et al. 2008 for grain yield, 

Argillier et al. 2000 or Grieder et al. 2012 for whole plant biomass yield).  

Beyond global statistics of the relative magnitude of GCA and SCA, identification of 

Quantitative Trait Loci (QTL) involved in the genetic architecture of hybrid values and these 

two components is needed to better understand hybrid variation and improve the efficiency of 

hybrid breeding. Most of the QTL detection experiments conducted so far on maize yield 

related traits have been based on biparental populations evaluated with a single tester 

(Manicacci et al. 2011; Truntzler et al. 2012 for an overview of QTL detected for maize silage) 

which does not enable the detection of SCA effects. Few studies involved several testers. As 

expected, strong SCA effects were found for traits showing dominance (such as yield) when 

the testers used were related to the parents of the studied population, leading to hybrids with 

different levels of inbreeding (Lu et al. 2003; Frascaroli et al. 2007; Frascaroli et al. 2009; 

Larièpe et al. 2012). Several studies also reported poor consistency between the QTLs found 

with different testers for yield performances even in the cases when the testers were non-related 

to the studied population (Schön et al. 1994; Lübberstedt et al. 1997; Melchinger et al. 1998; 

Austin et al. 2000). This suggests that even in a context where small SCA is expected, tester 

choice may affect QTL detection results. 

QTL detection in multiparental designs showed their interest for exploring a larger part of the 

diversity and for increasing power in comparison to biparental designs (Blanc et al. 2006; Kump 

et al. 2011; Bardol et al. 2013; Giraud et al. 2014; Foiada et al. 2015). Only few studies have 

investigated their interest for better understanding the genetic architecture of additivity – 

dominance or GCA and SCA. Larièpe et al. (2012) studied an advanced Northern Carolina III 

design between three connected RIL population and their three parental lines and found QTL 

with apparent overdominance for heterotic traits such as yield in the centromeric regions. The 

strong SCA effects were due to the presence in the studied design of hybrids between related 

lines.   

Other QTL studies were conducted directly on hybrids between sets of lines selected in 

complementary genetic groups. This was carried out first with a limited number of SSR markers 

by Parisseaux and Bernardo (2004), then by van Eeujwick et al. (2010) who analyzed another 

factorial design genotyped with SNP markers. Both studies identified QTLs for GCA that were 

specific to each heterotic group. SCA effects were considered as negligible and were not 

included in these analyses. More recently Technow et al. (2014) also analyzed a factorial design 

corresponding to the last stages of a breeding program. The main objective of their study was 

to perform genomic predictions. The use of a Bayes B model led to the identification of a few 
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markers with sizable effects on GCA and SCA but they made only little comment on them. 

Thus, all these studies did not really considered SCA effects in the detection. They also relied 

on designs which may not be well adapted for QTL detection. Only hybrids between lines 

selected based on tester values were evaluated. These designs involved in each group a lot of 

parental lines more of less related to each other and that did not contribute equally to the hybrid 

population. All this complicated and possibly biased the estimation of SCA/GCA components 

and the identification of QTLs. To our knowledge, no QTL detection was carried out on hybrid 

design between inbred lines developed directly from segregating populations available at early 

selection stages in two complementary heterotic groups. With the development of double 

haploidization techniques, breeders can directly generate at each breeding cycle segregating 

populations composed of pure inbred lines. Instead of using a small number of testers from the 

opposite group to select among them the best ones, and evaluate inter-group hybrid 

combinations in a second stage, it might be relevant to directly evaluate hybrids between non-

selected lines of the two groups. Such type of unselected hybrid population with known family 

structure is a priori ideal for detecting QTLs for GCA and SCA in a multi-allelic context. Once 

detected, QTL effects could enable the identification of the best hybrid combinations among all 

the potential single-cross (including the untested ones). They would also be useful for 

optimizing the selection of the future inbred lines by better taking into account GCA, SCA and 

the diversity of the material. 

To evaluate this strategy, we developed one dent and one flint multiparental design. For each 

heterotic group, six biparental populations of inbred lines were developed from four founder 

lines and were crossed with the ones of the other group. Hybrids were phenotypically evaluated 

for silage performances. We first decomposed the genetic variance in its GCA and SCA 

components. We then performed QTL detection considering three different ways of coding the 

alleles. Predictive abilities of the different models were then compared based on cross-

validation.  

 

 

MATERIAL AND METHODS 

 

Genetic material 

The experimental material is constituted of 1044 dent – flint hybrids obtained by crossing inbred 

lines from two multiparental connected designs corresponding each to one heterotic group 

(Figure 1). To obtain each of these multiparental connected designs, four inbred lines, further 
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referred to as “founders”, were chosen: one for its good digestibility ability, the others for their 

good agronomical potential for yield. They were crossed according to a half diallel design in 

order to produce six different F1. From these six F1, six populations of on average 155.2 lines 

for the dent design (min 114, max 167) and 152.2 (min 126, max 185) for the flint design were 

derived. The dent lines were obtained by double haploidization and the flint lines were obtained 

by selfing independent F2 individuals for five or six generations depending on the population. 

931 dent lines and 913 flint lines, were obtained. From these lines, further called the “parental 

lines”, 863 dent lines and 879 flint lines were crossed according to an incomplete factorial 

design in order to produce 1044 experimental hybrids. Each population of one group was 

crossed with all the populations of the other group, with the objective to balance the contribution 

of all populations. The majority of lines (699 in the dent and 732 in the flint) contributed to 

only one hybrid, but some lines contributed twice (163 in the dent group and 146 in the flint 

group) or even three times (one dent parental line) or four times (one flint parental line). All 

founder lines of one group were crossed with the founder lines of the other group to create 16 

hybrids that were used as checks. 

 

Genotyping data 

The founder lines were genotyped with a 50 K SNPs array (Ganal et al. 2011). The founder 

lines and the parental lines were genotyped with a 18 480 SNPs Affymetrix® array provided 

by Limagrain.  

For the analyses we considered the Affymetrix® genotyping data for the founder lines, and 

when possible replaced missing data by the genotypes obtained with the 50 K SNP array. To 

avoid the ascertainment bias observed with the 50k SNP array, we only considered the 

PANZEA markers (Ganal et al. 2011) which were polymorphic among the founder lines. We 

restricted the analysis to loci which had less than 20% of missing values among the dent parental 

lines, the flint parental lines, and the dent and flint parental lines considered jointly. Markers 

with more than 5% of heterozygosity among the dent parental lines or in total, or more than 

10% of heterozygosity among the flint parental lines were discarded. Markers with a Minor 

Allele Frequency (MAF) inferior to 5% among the dent parental lines or the flint parental lines 

or in total were discarded. Thus 9643 markers were considered. 
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Figure 1: Schematic representation of the experimental design. 
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The genotyping failed for nine inbred lines. Two dent inbred lines were discarded as there was 

doubt on the DNA origin. Given the genotyping data, 8 inbred lines were represented under 

two different names and were thus renamed. Flint inbred lines with more than 25% of 

heterozygosity (5 lines) were not considered as well as dent lines with more than 10% of 

heterozygosity (20 lines) or dent lines with residual heterozygosity concentrated in some 

chromosome regions (15 lines). Consistency of genotypes between founder lines and parental 

lines was checked and off-type lines were excluded (18 flint lines and 9 dent lines). Thus only 

875 dent lines and 883 flint lines were considered in further analyses. 

Using the cleaned genotypic data, these 1758 inbred lines were considered for building the 

genetics maps: one genetic map for each of the 12 populations and one dent-flint consensus 

map. We followed for this the approach described in Giraud et al. (2014). The dent-flint 

consensus map was constituted of 9548 markers that were polymorphic in at least the dent or 

the flint design. This map had a total length of 1578.6cM and 5216 unique positions. 

 

Field trial design and analysis 

The hybrids were evaluated in a total of 8 different environments over two years (4 in 2013 and 

4 in 2014) in the North of France and in Germany for four traits: silage yield (DMY in tons of 

dry matter per ha), dry matter content at harvest (DMC in %), plant height (6 environments) 

(PH in cm) and female flowering (DtSILK in days after January the first). Trials were conducted 

according to usual agricultural practice of the region. 

The field experiments were laid out as an augmented p-rep design and were constituted of 1088 

elementary plots, consisting each in two rows of 5 meters long. Most hybrids between the 

parental inbred lines were evaluated only once for a given environment. The founder hybrids 

and around 17 % of the experimental hybrids were evaluated twice. Trials were laid out in 68 

incomplete blocks consisting of 16 elementary plots each with 5 to 6 plots used for repeated 

genotypes. 1044 hybrids were evaluated in total over the whole experimental design, out of 

which 951 hybrids were considered for further analyses (950 for PH and DMY), corresponding 

to hybrids for which both parents had correct genotypic data (821 dent parental lines and 801 

flint parental lines). Outlying observations were deleted. For silage yield, data from one 

environment over eight were excluded as they were not correlated with the other environments.  

 

Variance component analysis 

Genetic variance decomposition was done on the single-plot performances using the ASReml-

R package (Butler et al. 2007; R Core Team 2013). The objectives were to estimate the trait 
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heritabilities, evaluate the importance of the GCA and SCA components in the hybrid variance 

and the proportion of this variation that is due to the structure of the design in populations. The 

first model does not decompose the genetic value of the hybrid: 

'L��O��OPPOI-.QR = � + SL + (T��O × 2) + UP(��)POV�O�OW × (1 − 2)
+ VN-(L) + +.(L)W × (1 − #L) + V�Q(L) × #LW
+  XL���O�OPPOI-.QR  (1) 

Where 'L��O��OPPOI-.QR is the phenotypic value of the hybrid evaluated in the environment Y at 

the plot located at the line &, the column � and in the block Z. To distinguish between the checks 

and the experimental hybrids we used the parameter 2. When the performance corresponds to a 

check hybrid between founder lines � and �′, 2 was set to 1 and when the performance 

corresponds to an experimental hybrid issued from the cross between the flint parental line ? 

(derived from the flint founder lines � and �), and the dent parental line ?′ (derived from the 

dent founder lines �′ and �′), 2 was set to 0. In this model, � is the intercept, SL is the fixed effect 

of the environment Y, T��\ is the fixed effect of the check issued from the cross between the dent 

founder line � and the flint founder line �′. UP(��)POV�O�OW is the genetic value of the hybrid issued 

from the cross between the flint parental line ? (issued from the founder lines � and �) and the 

dent parental line ?′ (issued from the founder lines �′ and �′). We assume that UP(��)POV�O�OW are 

independent and identically distributed (iid) and follow a normal distribution: UP(��)POV�O�OW ↪
;(0, _�̀), ��#. To correct for spatial heterogeneities we included in the model either a random 

block effect or random row column effects, depending on the environment and trait. The choice 

between the two models was done by analyzing independently each environment and by 

choosing the best correction model based on the likelihood and the repartition of the hybrid 

Best Linear Unbiased Predictors (BLUPs) in the field design. In the joint model, #L  is a 

parameter set to 1 if for the environment Y the spatial effects correction chosen is a block 

correction, 0 else. �Q(L) is the random effect associated to the block Z in the environment Y, N-(L) 

and +.(L)are the random effects associated to the line & and the column � in the environment Y, 
with N-(L) ↪ ;V0, _Ha

� W  which were assumed to be independent (id), +.(L) ↪ ;V0, _�baW id, and 

�Q(L) ↪ ;V0, _�!aW id. XL��O��OPPOI-.QR  is the residual effect associated to the model for each 

environment with XL��O��OPPOI-.QR  ↪ ;(0, _cL� ) id, and N-(L)  ⊥ +.(L) ⊥   �Q(L)  ⊥
 XL��O��OPPOI-.QR  where ⊥ stands for independence between the random effects.  
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The second model considers the structure in populations of the design. It corresponds to 

model (1) except that UP(��)POV�O�OW is decomposed into: 

��� +  ��O�O +  (��)���O�O +  UP(��)POV�O�OW
∗  (2) 

Where  ��� (respectively ��O�O) is the fixed effect of the flint (respectively dent) population of 

origin of the flint (respectively dent) parental line ? (respectively ?′), (��)���O�O  is the fixed 

effect corresponding to the interaction between the flint and dent populations of origin of the 

parental lines. UP(��)POV�O�OW
∗  is the within-population genetic value of the hybrid issued from the 

cross between the flint parental line ? (issued from the founder lines � and �) and the dent 

parental line ?′ (issued from the founder lines �′ and �′) with UP(��)POV�O�OW
∗ ↪ ;V0, _`∗� W iid.  

In the third model, the hybrid value is decomposed into GCA and SCA effects without 

considering the structure in populations. Thus UP(��)POV�O�OW is decomposed into: 

=P(��) +  =\POV�O�OW +  (==\)P(��)POV�O�OW (3) 

Where =P(��) (respectively =\POV�O�OW) is the random effect of the inbred line ? (respectively ?′) 
issued from the cross between the dent (respectively flint) founder lines � and � (respectively �′ 
and �′), with =P(��)   ↪ ;(0, _g�) iid (respectively =\POV�O�OW  ↪ ;V0, _gO� W iid). These effects 

correspond to the dent (respectively flint) GCA of the parental lines. (==\)P(��)POV�O�OW is the 

random effect of the interaction between the inbred line ? and the inbred line ?′, with 

(==\)P(��)POV�O�OW   ↪ ; h0, _(ggO)
� i iid. This interaction corresponds to the SCA of the two 

parent lines. 

In the fourth model, the hybrid value is decomposed into the population structure, the within-

population GCA and the within-population SCA. Thus UP(��)POV�O�OW is decomposed into: 

��� +  ��O�O +  (��)���O�O + =P(��)∗ +  =∗\POV�O�OW +  (==\)P(��)POV�O�OW
∗  (4)  

Where ���, ��O�O and (��)���O�O are defined as in model (2). =P(�)∗ , =∗\POV�O�OW and 

(==\)P(��)POV�O�OW
∗  are the within-population equivalents of =P(��), =\POV�O�OW and (==\)P(��)POV�O�OW 

of model (3). 

From model (1) we derived the heritability U� at the whole design level as: U� = jk�

jk� l( mn�
opqrk)

 

where _�̀ is the genetic variance of the hybrids, s�:�U is the average number of times an 

experimental hybrid was evaluated in the whole design, _c� is the average residual variance of 

the model over the different environments. The within-population heritability of the design was 



109 
 

calculated with a similar formula but considering the genetic variance of model (2) that takes 

into account the structure in populations. The percentage of within-population variance in the 

total genetic variance was calculated as %U∗ = jk∗�

jk�
 with _�̀ being the genetic variance of the 

hybrids in model (1) and _`∗�  the within-population genetic variance of the hybrids, in model 

(2). The percentage of SCA in the genetic variance was calculated from model (3) as %,/+ =
jVuuOW

�

ju�ljuO� ljVuuOW
�  . The within-population percentage of SCA was calculated from model (4) using 

a similar formula but considering the within-population variances of the flint GCA, the dent 

GCA and the SCA effects. 

 

Computation of adjusted means and correlations between traits 

QTL detection was based on the least square-means (ls-means) of each experimental hybrid. 

To obtain these ls-means, we first corrected the individual single plots performances by the 

BLUPs of the field effects obtained with model (2). Then for each trait, least square means of 

hybrids were derived from the fixed effect model, considering jointly the experimental hybrids 

and the check hybrids between the founders: 'vwL∗ = � + SL + xv + XvwL  where 'vwL∗  is the 

performance corrected for the field effects of the �-repetition of the hybrid ℎ in the environment 

Y, � is the intercept, SL is the fixed effect of the environment Y, xv is the hybrid genetic effect 

considered as fixed in this model. XvwL is the residual of the model for each environment with 

XvwL  ↪ ;(0, _cL� ) id. Correlations between the different traits were calculated based on these 

ls-means. 

 

QTL detection  

Three models were used for QTL detection depending on the type of allele coding that was 

considered. In each model, we took into account the structure of the design in populations and 

included random genetic effects corresponding to the parents of the hybrids to take into account 

the fact that some of the hybrids derived from the same parental lines. 

The “Founder alleles” model makes the assumption that each of the eight founder lines carried 

a different allele.  

� = 1. � + ,. � + �. � + +. ( ��) + 5y_R. xy_R + 5y_{ . |y_{ + 5y_R y_{ . (x|)y_R y_{ + }R . ~R
+ }{ . ~{ + :   (Q1) 

Where � is a (; ×1) vector of the ls-means of the hybrids with ; being the number of 

experimental hybrids phenotyped for the considered trait; � is the intercept, 1 is a (; ×1) vector 
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of 1. � (respectively �) is a (6 ×1) vector of the fixed effects of the dent (respectively flint) 

populations of origin of the dent (flint) parental line, , (respectively �) is the (; ×6) design 

matrix of 0-1 that linked each hybrid to the dent (respectively flint) population of its dent 

(respectively flint) parental line, (��) is a (36 ×1) vector of the fixed interaction effects between 

the dent and flint populations of parental lines, + is the corresponding design matrix. ~R 

(respectively ~{) is a (;R ×1) (respectively (;{ ×1)) vector of the random effects of the ;R dent 

(respectively ;{ flint) parents, with ~R ↪ ; (0, _��
� ), ��# (respectively ~{ ↪ ; (0, _��

� ), ��#). 

}R  is the (; ×  ;R) design matrix that relates the ; hybrids with the ;R different dent parents 

and }{ is a V; ×  ;{W design matrix that relates the ; hybrids to the ;{ different flint parents. 

: is a (; ×1) column vector of the residuals of the model with : ↪ ; (0, _��), ��#. The QTL 

effect was decomposed into three terms: xy_R, |y_{ and (x|)y_R y_{. xy_R (respectively |y_{) is 

the (4 x 1) vector of the allelic effects at the marker associated with each dent (flint) founder 

line. These effects correspond to the GCA effects of the QTL. For each marker,  5y_R 

(respectively 5y_{) is a (; × 4) matrix of the probabilities that the hybrid received its dent 

(respectively flint) allele from  each of the four dent (respectively flint) founder lines. 

(x|)y_R y_{ is the (16 x 1) line vector of the 16 levels of the interactions or SCA between the 

founder alleles, 5y_R y_{ is a (; ×16) matrix corresponding to the Hadamard product of 5y_R  and 

5y_{. As the sum of probabilities for each allele equals 1, this model has three degrees of 

freedom (df) for the additive effect of the founder alleles in each group and nine df for the 

interaction.  

At each marker, probabilities of the four dent (respectively flint) founder lines were inferred 

using PlantImpute (Hickey et al. 2015) using 10 iterations for the 9548 mapped markers. 

The “SNP within-group” model considered the observed alleles at SNP received from the 

parental inbred lines, assuming different effects in the two heterotic groups. This model 

assumes that two inbred lines from the same group that share the same allele at SNP are IBD.  

� = 1. � + ,. � + �. � + +. ( ��) + 5��g_R . x��g_R + 5��g_{ . |��g_{
+ 5��g_R ��g_{ . (x|)��g_R ��g_{ + }R . ~R + }{ . ~{ + :   (Q2) 

Where �, �, , ,, �, �, �, +, ( ��), }R, }{, ~R, ~{ and : are defined as in model (Q1). The QTL 

effect was decomposed into three terms: x��g_R, |��g_{ and (x|)��g_R ��g_{. 

x��g_R(respectively |��g_{) is the GCA effect of the dent (respectively flint) minor allele, 

5��g_R (respectively 5��g_{) is a (; ×1) vector of marker genotypes for the dent (respectively 

flint) parent of the hybrid, coded as 0 for homozygotes for the major allele, 1 for homozygotes 
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for the minor allele and 0.5 for heterozygotes. (x|)��g_R ��g_{ is the SCA effect between the 

minor SNP marker alleles of each group, 5��g_R ��g_{ is a (; ×1) column vector corresponding 

to the Hadamard product of 5��g_R  and 5��g_{. This model as one df for the allelic effect of 

each group and one df for the interaction. 

Missing genotypes at the parental level were imputed with Beagle v3.0. (Browning and 

Browning 2007). Imputations were done within each population after adding the founder lines 

in the dataset. Phasing of the flint lines and of the founder lines was done at the same time than 

missing genotypes imputation.  

The “Hybrid genotype” model considered that the QTLs effects are the same in both heterotic 

groups. It decomposed the hybrid effect into terms of additivity and dominance. 

� = 1. � + ,. � + �. � + +. ( ��) + 5K. � + 5R. � + }R . ~R + }{ . ~{ + :  (Q3)  
Where �, �, , ,, �, �, �, +, ( ��), }R, }{, ~R, ~{ and : are defined as in model (Q1). The QTL 

effect was decomposed into two terms � and � which are respectively, the additive and 

dominance effect at the marker. 5K is a (; ×1) column vector coded in -1, -0.5, 0, 0.5, 1 

indicating the genotype of the hybrid at the marker level. 5K equals -1 when the hybrid is 

homozygous for the major allele, 1 when the hybrid is homozygous for the minor allele, 0 if its 

parents are both homozygous but for a different allele, -0.5 (respectively 0.5) when the dent 

parent is homozygous for the major (respectively minor) allele and the flint parent is 

heterozygous. 5R is a (; ×1) column vector coded in 0, 0.5, 1. 5R equals 0 if both parents of 

the hybrid are homozygous for the same allele, 0.5 when the dent parent is homozygous and 

the flint parent is heterozygous or conversely, and 1 when both parents are homozygous but for 

different alleles. This model has one df for the additive effect and one df for the dominance 

effect. 

For this model, as for the “SNP within-group” model missing marker data were replaced by 

imputed genotypes.  

QTL detection was performed with ASReml-R (Butler et al. 2007). To avoid identifiability 

problems for the “SNP within-group” and the “Hybrid genotype” models, QTL detection was 

performed on the 4758 mapped markers which were polymorphic (MAF superior to 5%) in 

both heterotic groups whereas for “Founder alleles” model it was performed on the 9548 

mapped markers. For each model, we considered a 5% genome-wide significance threshold 

based on the number of efficient markers (Gao et al. 2008). 

The total effect at the marker was tested using the “group” function. After the first initial scan 

along the genome, a multi-marker procedure was implemented using a forward and backward 
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marker selection. In the forward stage, the most significant maker (based on the total locus 

effect) was added to the model until no-more marker had a significant total locus effect at the 

5% genome-wide risk level. Then, markers with a GCA or SCA (or additivity or dominance) 

effect superior to the threshold were added to the model. Finally, in a backward stage, we 

removed step by step each effect that was not significant in the joint QTL model until we only 

kept markers for which the total effect or one of its components (GCA/SCA or 

additivity/dominance) was superior to the threshold.  

The percentage of phenotypic variance explained by the population effects E�J��  was calculated 

according to Nakagawa and Schielzeth (2013). To estimate the percentage of variance 

explained by the detected QTLs (EFGH� ), we used a modified version of the E� presented by 

Nakagawa and Schielzeth (2013) with marker effects orthogonalized by population structure. 

From these two parameters we estimated the percentage of within-population phenotypic 

variance explained by the QTLs as EFGH�∗ =  �����

�� �r�r� . We also estimated the individual R² of each 

QTL after orthogonalyzing its effect by the population structure and the effects of the other 

QTLs.  

To evaluate the quality of prediction of these models, we also performed a cross-validation 

approach using four fifth of the data for estimating the population and the QTL effects, and 

predicting the values of the hybrids of the last fifth. Sampling was stratified by the structure in 

populations and was repeated 100 times. The squared correlation between the predicted and 

true hybrid values of the fifth fold were estimated. This procedure was conducted (i) without 

taking into account SCA/dominance at the QTL level and (ii) taking it into account for QTL for 

which it was significant at a 5% individual risk level. Percentage of variance explained by the 

population effects were estimated following the same cross-validation approach. 

 

 

RESULTS 

 

Genetic variance analysis 

We observed large and significant hybrid variances for all traits (Table 1). Broad sense 

heritabilities at the design level were high for all traits: between 0.814 (DMY) and 0.892 (DMC) 

(Table 2).  

For all the traits except DMC, the dent and flint population effects were both significant at a 

5% level risk, whereas the interaction was not. For DMC, the effects of the flint population and 
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of the interaction between the dent and flint populations were significant whereas the effect of 

the dent population was not (result not shown). This is in agreement with the smaller variation 

of DMC performances among the dent founder lines compared to the flint ones. Even if the 

population effects were significant, the within-population hybrid genetic variance was large 

(Table 1). It represented between 63.1% (PH) and 86.7% (DtSILK) of the total hybrid genetic 

variance (Table 2).  

Accordingly, for all traits, within-population heritabilities remained high and varied between 

0.767 for grain yield and 0.876 for female flowering (Table 2). 

The decomposition of the hybrid variance in GCA and SCA (models 3 and 4) showed that most 

part of the hybrid variation was due to GCA. When the structure in populations was not included 

in the model the flint and dent GCA variances were different for DMC, DMY and PH, whereas 

they were of similar magnitude for DtSILK (Table 1). After taking into account population 

structure, the within-population flint and dent GCA variances were of the same magnitude for 

all traits. For the model which did not take into account the structure in populations, SCA 

represented between 11.7% (DMC) and 17.4% (DMY) of the hybrid genetic variance (Table 

2). The proportion of SCA was higher when considering the within-population hybrid variation 

(Table 2). It represented about 20% of the within-population genetic variance for all traits but 

PH for which it was lower (Table 2). It has to be noted that standard deviations for SCA 

variances were large (Table 1) certainly due to the small number of inbred lines that contributed 

to more than one hybrid in our design.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

Table 1: Variance decomposition of the phenotypic data for the four variance decomposition models, for the 

different traits: dry matter content DMC, dry matter yield DMY, female flowering time DtSILK, plant height PH. 

For each genetic variance, precision corresponding to 1.96 x the standard error of the estimated variance is 

indicated  

 Hybrid (1) Population 

structure + 

Hybrid (2) 

Flint GCA + 

Dent GCA + 

SCA (3) 

Population 

structure + Flint 

GCA + Dent 

GCA + SCA (4) 

DMC     

Hybrid variance 3.68 ± 0.37 2.46 ± 0.27   

Flint GCA variance   2.31 ± 0.51 0.98 ± 0.44 

Dent GCA variance   0.92 ± 0.53 0.96 ± 0.44 

SCA variance   0.43 ± 0.54 0.53 ± 0.49 

Residual variances 

(range) 

1.44 ± 0.18 : 

6.15 ± 0.60 

1.52 ± 0.19 : 

6.05 ± 0.59 

1.45 ± 0.18 : 

6.13 ± 0.59  

1.52  ± 0.18 :  

6.04 ± 0.58 

DMY     

Hybrid variance 1.24 ± 0.14 0.94 ± 0.11   

Flint GCA variance   0.28 ± 0.20 0.30 ± 0.19 

Dent GCA variance   0.74 ± 0.19 0.44 ± 0.17 

SCA variance   0.22 ± 0.22 0.20 ± 0.20 

Residual variances 

(range) 

1.01 ± 0.12 : 

3.53 ± 0.35 

1.02 ± 0.12 : 

3.56 ± 0.34  

1.00 ± 0.11 : 

3.53 ± 0.35  

1.02  ± 0.12 :  

3.56 ± 0.35 

DtSILK     

Hybrid variance 2.38 ± 0.24 2.06 ± 0.21   

Flint GCA variance   0.74 ± 0.38 0.51 ± 0.37 

Dent GCA variance   1.26 ± 0.35 1.09 ± 0.33 

SCA variance   0.39 ± 0.37 0.47 ± 0.37 

Residual variances 

(range) 

0.96 ± 0.11 : 

6.12 ± 0.57 

0.96 ± 0.11 : 

6.11 ± 0.57 

0.96 ± 0.11 : 

6.13 ± 0.57 

0.96 ± 0.11 :  

6.12 ± 0.57 

PH     

Hybrid variance 154.7 ± 15.7 97.6 ± 10.7   

Flint GCA variance   42.9 ± 22.9 38.4 ± 17.4 

Dent GCA variance   92.8 ± 21.6 45.1 ± 16.0 

SCA variance   19.3 ± 23.2 13.4 ± 17.3 

Residual variances 

(range) 

49.7 ± 6.5 : 

244.2 ± 23.7 

46.4 ± 6.0 : 

243.6 ± 23.5 

50.0 ± 6.5 : 

243.6 ± 23.6 

46.7 ± 6.0 :  

243.2 ± 23.5 
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Table 2: Adjusted means of experimental hybrids and founder line hybrids and synthetic parameters on the 

experimental hybrid variation for the different traits (dry matter content DMC, dry matter yield DMY, female 

flowering time DtSILK, plant height, PH). 

 DMC  DMY  DtSILK  PH  

Adjusted means     

Experimental hybrids (average, min:max) 33.0  

(25.7 : 41.3) 

16.0  

(11.8 : 20.2) 

211.5  

(206.7 : 217.9) 

247.8  

(203.9 : 283.2) 

Founder line hybrids (average, min:max) 33.5 

(30.2 : 36.1) 

16.5 

(14.8 : 18.4) 

211.6 

(209.0 : 213.6) 

251.3  

(228.8 : 275.1) 

Within-population variance     

%Within_var  66.9  75.5  86.7  63.1  

Heritabilities      

H²  0.892  0.814  0.890  0.877  

H²* (within-population)  0.847  0.767  0.876  0.817  

Part of SCA in the hybrid variance      

%SCA  11.7  17.4  16.3  12.4  

% SCA* (within-population)  21.5  21.0  22.6  13.8  

 

 

Adjusted means and correlations between traits 

Adjusted means of the experimental hybrids were on average of 16.0t.ha-1 (min 11.8, max 20.2) 

for DMY, of 33.0% (min 25.7 max 41.3) for DMC, 211.5 days for DtSILK (min 206.7 max 

217.9) and 247.8cm (min 203.9 max 283.2) for PH (Table 2). The experimental hybrids showed 

for all traits a variation that exceeded the one found for the hybrids between founder lines (Table 

2). Adjusted means of hybrids between founder lines were on average 16.5t.ha-1 for DMY, 

33.5% for DMC, 211.6 days for DtSILK and 251.3cm for PH (Table 2). These values were 

slightly higher than the average values of the experimental hybrids suggesting that 

recombination events broke some epistatic interactions. However, differences were small, 

suggesting a limited impact of epistasis. Founder line hybrids involving F98902 had higher 

yield, whereas those involving F7088 had higher DMC, consistent with known information on 

these founder lines. DMY was positively correlated to PH (0.64) and DtSILK (0.57) and 

negatively to DMC (-0.28). DMC was also negatively correlated to PH (-0.28) and DtSILK      

(-0.55). These correlations are consistent with those usually observed for these traits. 
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QTL detection 

The thresholds at a 5% genome-wide level used for QTL detection were set to a –log(pvalue) 

equal to 4.53 for the “Hybrid genotype” model, 4.40 for the “SNP within-group” model and 

3.84 for the “Founder alleles” model. 

We detected QTLs for all trait × model combinations. For a given trait, the number of detected 

QTLs varied with the model. Between nine (DtSILK, “Founder alleles” model and DMY, “SNP 

within-group” model) and 16 QTLs were detected (DtSILK, “Hybrid genotype” model). In total 

for the four studied traits, the “SNP within-group” model and the “Hybrid genotype” model 

detected more QTLs, respectively 51 and 54, than the “Founder alleles” model which detected 

in total only 42 QTLs (Table 3). Nevertheless, the “Founder alleles” model detected more QTLs 

for DMY.  

 

Table 3: QTL detection results with the different detection models for the different traits (dry matter content DMC, 

dry matter yield DMY, female flowering time DtSILK and plant height PH). For each method and trait we 

indicated the number of QTLs detected and between brackets the number of QTLs showing significant SCA effects 

at a 5% level risk, the proportion the of phenotypic variance (R²QTL, in %) and of the within-population phenotypic 

variance (R²*QTL, in %) explained by the detected QTLs (with and without including dominance/SCA effects in 

the model). The percentage of variance explained by the population effect are also indicated (R²pop). The total 

number of detected QTLs and the average percentages of variance explained over the different traits are also 

showed. 

Trait Model Nb  R²pop Without SCA  With SCA 

    R²QTL R²*QTL  R²QTL R²*QTL  

DMC Founder alleles 10 (4) 32.4 27.6 40.9 32.4 47.9 

 SNP within-group 12 (2) 32.4 25.5 37.7 26.1 38.6 

 Hybrid genotype 14 (1) 32.4 25.6 37.9 26.2 38.8 

DMY Founder alleles 12 (5) 21.9 27.7 35.5 34.2 43.9 

 SNP within-group 9 (0) 21.9 20.3 26.0 20.5 26.3 

 Hybrid genotype 11(3) 21.9 19.7 25.2 20.9 26.8 

DtSILK Founder alleles 9 (2) 15.0 31.4 36.9 36.7 43.2 

 SNP within-group 15(0) 15.0 37.3 43.9 37.6 44.3 

 Hybrid genotype 16(3) 15.0 34.1 40.2 35.6 41.9 

PH Founder alleles 11(2) 33.8 26.6 40.2 30.7 46.4 

 SNP within-group 15(4) 33.8 24.7 37.3 26.6 40.2 

 Hybrid genotype 13(2) 33.8 20.4 30.8 21.2 32.0 

Total Founder alleles 42 (13) 25.8 28.3 38.4 33.5 45.3 

 SNP within-group 51 (6) 25.8 26.9 36.2 27.7 37.4 

 Hybrid genotype 54 (9) 25.8 24.9 33.5 26.0 34.9 
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Figure 2: -log(p-value) curves of QTL detection for Dry Matter Yield (DMY) with (a) the “Founder alleles” 

model, (b) the “SNP within-group” model, (c) the “Hybrid genotype” model. The chromosome number is indicated 

on the abscissa. For the “Founder alleles” (a) and the “SNP within-group” (b) models, the graphic at the top 

corresponds to the global effects at the markers. The other graphics correspond to the different components of the 

decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the “Hybrid genotype” 

model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect 

of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to 

the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots 

correspond to those that were above the threshold. The red squares correspond to the –log(p-value) of the QTLs 

that were included in the final multi-locus model.  

 

Globally the different models detected QTLs in the same chromosome regions (Figure 2). To 

compare the QTL detected by the different models (Figure 2, Figure 3, Supplementary Tables 

S1, S2, S3), we considered arbitrarily that QTLs detected at positions closer than 10cM of each 
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other were identical. With this assumption, 16 QTLs were detected with the three models (for 

instance at 65 – 65.8cM on chromosome 5 for DMY). Some were detected with only two 

models: 11 with the “Hybrid genotype” and the “SNP within-group” models, (for instance at 

113.4cM on chromosome 3 for DMC), 2 with the “Hybrid genotype” and the “Founder alleles” 

models (for instance at 86 – 89.3cM on chromosome 2 for DMY), 7 with the “SNP within-

group” and the “Founder alleles” models (for instance at 25 – 29.9cM on chromosome 6 for 

DMY). The other QTLs were specific to one model for instance the DtSILK QTL detected with 

the “Founder alleles” model at 7.7cM on chromosome 1, the DMC QTL detected with the “SNP 

within-group” model at 70cM on chromosome 6, and the DMY QTL detected with the “Hybrid 

genotype” model at 74.5cM on chromosome 4. 

 

 

Figure 3: Synthesis of the positions of the detected QTLs for the four studied traits (DMC indicates dry matter 

content, DMC; dry matter yield, DMY; female flowering time DtSILK, and plant height, PH) and the different 

models. The QTLs detected with the “Founder alleles”, “SNP within-group” and “Hybrid genotype” models are 

indicated respectively with red, blue and green crosses. 

 

For all models, the majority of the QTLs had small effects (they explain less than 5% of the 

variation, see Supplementary Tables S1, S2, S3). The only exceptions are the PH QTL detected 

on chromosome 3, which explained 5.3% of the variance for the “SNP within-group” model 

and a QTL detected on chromosome 10 at 44.5cM that was detected by the three models and 

explained around 8% of the variance for DMC and 13% of the variance for DtSILK. This QTL 
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region was also involved but with a smaller effect on DMY and PH. Other QTL regions showed 

pleiotropic effects on different traits, for instance the one around 105.5 - 117.8cM on 

chromosome 1 which had an effect on DMC, DtSILK and PH. Other regions were specific to 

one trait (141.6 – 143.1cM on chromosome 7 for DtSILK, 25 – 39.1cM on chromosome 6 for 

DMY) (Figure 3, Supplementary Tables S1, S2, S3). 

For each QTL we tested the level of significance of their GCA/SCA or additive/dominance 

components (Supplementary Tables S1, S2, S3). For the “Hybrid genotype” model, none of the 

detected QTL showed significant dominance effect at a 5% genome-wide level. Some QTLs 

had significant dominant effect in the initial QTL detection scan but their effects were no more 

significant in the final multilocus model (see Figure 2 for DMY). However, nine QTLs were 

significant for dominance with an individual risk at 5%: one for DMC, three for DMY and 

DtSILK (among which one was significant with an individual risk at 1%) and two for PH (Table 

3 and Supplementary Table S1). For the “SNP within-group” model, considering the 5% 

genome-wide threshold, nine QTLs were significant for both GCA effects, 23 only for the dent 

GCA effect and 15 only for the flint one. No specific QTL for SCA was detected at a 5% 

genome-wide risk level, but six QTLs had a significant SCA effect at the 5% individual risk 

level: two for DMC and four for PH (Table 3, Supplementary Table S2). For the “Founder 

alleles” model, considering the 5% genome-wide threshold, seven QTLs were significant for 

both GCA effects, 20 only for the dent GCA effect and 12 only for the flint GCA effect. No 

specific QTL for SCA was detected at a 5% genome-wide risk level, but 13 QTLs had a 

significant SCA effect at the 5% individual risk level: four for DMC, five for DMY, two for 

DtSILK and two for PH. Among them three had significant SCA effects at a 1‰ risk level 

(Table 3, Supplementary Table S3). QTLs showing significant SCA were located all over the 

genome. 

However, one region on chromosome 2, between 82.3cM and 135.8cM stands out for 

presenting SCA for both DMC and DMY (Supplementary Tables S1, S2, S3). All models 

detected QTLs in this region, and five over seven of the QTLs detected with the “Founder 

alleles” and the “SNP within-group” models had a significant effect on SCA at a 5% individual 

risk level.  

For QTLs detected at close position with several models, GCA/additive QTL effects of the 

founder lines were consistent between models (result not shown). Interestingly, no founder line 

presented favorable alleles at all detected QTLs. For instance, considering the dent and flint 

GCA effects for DMY of the QTLs detected with the “Founder alleles” model showed that all 

founder lines presented positive and negative effects (Figure 4). This is consistent with the 
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transgressions observed in the experimental hybrid populations compared to the founder 

hybrids. It would be interesting to identify the best hybrid ideotype based on both GCA and 

SCA effects and to carry out in each group a marker-assisted selection scheme to obtain the 

parental lines corresponding to this ideotype.  

 

 

 
Figure 4: GCA effects for the founder lines for the QTLs detected with the “Founder alleles” model for DMY. 

Allelic effects are centered on zero for the dent founder lines (F1808, F04401, F7082 and F98902) and for the flint 

founder lines (F02803, F03802, F373 and F7088). QTLs presenting a dent (respectively flint) GCA effect not 

significant at a 5% individual risk level had their dent (respectively flint) GCA effects set to zero. 

 

The detected QTLs explained jointly between 19.7% (DMY, “Hybrid genotype” model, 

without dominance) and 37.6% (DtSILK, “SNP within-group” model, with SCA) of the total 

phenotypic variance and between 26.8% and 47.1% of the within-population phenotypic 

variance. The model which explained the largest fraction of the phenotypic variance was the 

“Founder alleles” model for DMY, DMC and PH and the “SNP within-group” model for 

DtSILK. The increase in percentage of explained phenotypic variance when taking into account 

dominance/SCA is low for the “SNP within-group” model (+ 0.2 for DMY to +1.9 for PH) and 

for the “Hybrid genotype” model (+0.6 for DMC to +1.5 for DtSILK) whereas is it is more 

important for the “Founder alleles” model (+4.1 for PH to +6.5 for DMY) (Table 3).  
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Table 4: Cross-validation estimates of the quality of prediction of different models (average R² and its standard 

deviation, sd). For the different traits (dry matter content DMC, dry matter yield DMY, female flowering DtSILK 

and plant height PH) we considered model only including population effects or models including population effects 

and the QTL effects. For these later models prediction were based on GCA /additive effects only or on models 

considering also SCA/dominant effects significant at a 5% risk level. The number of QTLs detected with each 

model for each trait is indicated (Nb) as well as the number of QTLs significant for SCA/dominance with a 5% 

individual risk level (between brackets).  

 

 DMC  DMY  DtSILK  PH  

Nb R² (%) Nb R² (%) Nb R² (%) Nb R² (%) 

Population effects   28.4 

sd 4.18 

 17.1 

sd 4.16 

 10.4 

sd 2.97 

 29.2 

sd 4.35 

Pop + QTLs  

“Founder alleles” 

model  

GCA 

10 

(4) 

53.4 

sd 4.01 12 

(5) 

39.2  

sd 4.84 9 

(2) 

37.7 

sd 4.69 11 

(2) 

53.2 

sd 4.37 

GCA+ SCA 54.0 

sd 3.72 

39.4 

sd 4.83 

39.1 

sd 4.72 

52.7 

sd 4.64 

Pop + QTLs 

“SNP within-

group” model 

GCA 

12 

(2) 

54.4 

sd 4.06 9 

(0) 

36.7 

sd 4.64 15 

(0) 

47.6 

sd 4.68 15 

(4) 

54.0 

sd 4.93 

GCA+ SCA 54.7 

sd 4.05 

- - 55.2 

sd 4.87 

Pop + QTLs 

“Hybrid 

genotype” model 

Additivity 

14 

(1) 

55.2 

sd 3.98 11 

(3) 

37.3 

sd 4.50 16 

(3) 

45.4 

sd 4.88 13 

(2) 

50.6 

sd 4.83 

Additivity+ 

dominance  

55.3 

sd 4.02 

38.0 

sd 4.52 

46.4 

sd 4.72 

51.0 

sd 4.78 

 

Cross-validations were performed in order to evaluate the quality of prediction of the QTL 

models. This was done to eliminate potential bias in the R² values of Table 3 that were computed 

on the data also used to estimate QTL parameters, potentially advantaging models with high 

number of parameters. Population effects explained between 10.4% (DtSILK) and 29.2% (PH) 

(Table 4) of the phenotypic variance. Combination of the population effects and the detected 

QTLs without dominance/SCA, explained between 36.7% (DtSILK, “SNP within-group” 

model) and 55.2% (DMC, “Hybrid genotype” model) of the total phenotypic variance. Taking 

into account the dominance/SCA for the QTLs for which it was significant at a 5% individual 

risk had a small impact on the quality of prediction of the model: from negative (-0.5 for PH 

for the “Founder alleles” model) to low (+1.4 for DtSILK for the “Founder alleles” model). 

Considering or not dominance/SCA, the best predictions were obtained with the “SNP within-

group” model for DMC and DtSILK, the “Founder alleles” model for DMY and the “Hybrid 
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genotype” model for DMC. 

 

 

DISCUSSION 

 

The objective of this work was to evaluate the interest of using a factorial design between two 

multiparental connected designs to detect QTLs for hybrid values. Using this design, we first 

decomposed the hybrid genetic variance into terms of population effects, GCAs and SCA 

components and then performed QTL detection using three different models.  

 

Genetic variance components 

We observed important variation among hybrids for all the observed traits with transgressions 

beyond the variation of the hybrids between founder lines. The fact that part of the parental 

inbred lines contributed to more than one hybrid allowed us to estimate SCA/ GCA variance 

components. Most of the hybrid variance was due to GCA but about 20% of the within-

population genetic variance of our design was due to SCA for all traits except PH for which it 

was smaller. To our knowledge, few studies estimated SCA variances on European silage 

maize, so that the number of possible comparisons is limited. Argillier et al. (2000) found small 

but significant SCA for DMC and DMY between the dent and the flint group but did not 

estimate variances explained by each component. Grieder et al. (2012) evaluated GCA/SCA 

variances based on test-cross values of dent lines using flint hybrids as testers. SCA explained 

less than 10% of the hybrid variance for DMY and DMC but, as explained by the authors, these 

small values might be due to the use of a small set of related hybrid testers. Our study cannot 

be compared directly to the estimations of SCA/GCA components obtained for dent-flint 

hybrids designs evaluated for grain yield (Schrag et al. 2006; Fisher et al. 2008; Schrag et al. 

2009; Schrag et al. 2010; and more recently Technow et al. 2014). In these studies authors 

consistently found that SCA usually explained less than 10% of the hybrid variation for grain 

yield and grain moisture at harvest.  

Thus, other studies also clearly showed a predominance of GCA over SCA but they found in 

general less important SCA variance relatively to GCA variances than in our study. The 

predominance of GCA over SCA is in agreement with the fact that, in the hypothesis of absence 

of epistasis, the ratio of dominance (major component of SCA) over additive (major component 

of GCA) variance is expected to be low for hybrids obtained by crossing two divergent 

populations (Reif et al. 2007) such as the two heterotic groups considered in this study which 
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diverged 500 years ago (Tenaillon and Charcosset 2011). Reciprocal selection is expected to 

lead to the fixation in each group of alternative alleles for loci showing dominance effects that 

are thus absorbed in the mean value of the hybrids. This results in a decrease of the SCA 

variance compared to the GCA variance over time and consequently a difficulty for detecting 

dominance effects that become confounded with additive effects (for instance if one QTL 

segregates in one group but is fixed in the other one) (Technow et al. 2014). Most already 

published studies were based on factorials derived from inbred lines that passed through a 

selection stage based on their test-cross values on testers. This selection might have possibly 

retained lines with similar SCA pattern which might have contributed to lower SCA variance 

compared to GCA. In our design, the hybrid parental lines are derived without selection from 

the founder lines. They thus represent the whole allelic diversity available in each population, 

giving more opportunity to observe SCA. Even if the proportion of SCA is limited compared 

to GCA (20% versus 40% for each GCA), it is not negligible and might be sufficient to blur the 

estimation of GCA using only a small number (one or two) of tester lines from the opposite 

group as it is usually done in breeding programs. 

 

QTL detection  

One of the advantages of our design is that several sources of information can be used for QTL 

detection. The structure in biparental populations of the hybrid parents allowed us to trace 

founder alleles down to the hybrids and thus to perform a QTL detection based on linkage 

information (the “Founder alleles” model). This QTL detection model can be seen as an 

extension of the model used to detect QTLs in test-crossed connected multiparental designs (as 

done in Rebaï et al. 1997; Blanc et al. 2006 or Giraud et al. 2014) to the hybrid case. In addition 

to linkage analysis, we also used directly information provided by SNP markers to perform 

QTL detection (with the “SNP within-group” and “Hybrid genotype” models) with models 

close to the ones used for association mapping (LD mapping) except that we used the known 

structure in populations of the design instead of a kinship matrix to correct for false positives. 

The three models used for QTL detection performed differently depending on the trait and on 

the chromosome region considered. They make different assumptions in terms of allelic effects 

and are thus expected to perform differently depending on the actual distribution of QTL 

effects. The “Hybrid genotype” model considers only two degrees of freedom per marker and 

is thus expected to be more powerful that the other models which have more degrees of freedom 

to take into account per marker. However it makes strong hypotheses considering that the QTLs 

effects are biallelic, that they are the same in both heterotic groups and that the marker-QTL 
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phase is also conserved between groups. The other models have more degrees of freedom but 

make fewer hypotheses: the QTL effect is assumed different in the two heterotic groups for the 

“SNP within-group” model and each founder lines as a different allele at the QTL for the 

“Founder alleles” model.  

Even if in total more QTLs were detected with the “Hybrid genotype” model than with the other 

models, this model almost never explained a larger part of the genetic variance (considering 

direct adjustment to the data or cross-validations). The strong hypotheses that it makes 

counterbalanced its potential interest in terms of power. This is consistent with the fact that the 

other models clearly detected QTLs specific to dent or to flint GCA. Thus the “Founder alleles” 

and the “SNP within-group” seem better adapted to QTL detection in such a design. This is in 

agreement with Giraud et al. (2014) who found different QTLs in each heterotic group. This 

confirms the long-term separation of the two heterotic groups (Tenaillon and Charcosset 2011) 

and shows that reciprocal selection structured the diversity of these two groups in order to fully 

benefit from heterosis by complementation of alleles in the hybrids. Van Eeuwijk et al. (2010), 

in a maize factorial obtained by crossing two other heterotic groups, also found different GCA 

QTLs for ear height in the two groups. Hence, complementarity of GCA effects in heterotic 

groups seems to be an important component of hybrid performance and an efficient hybrid 

breeding program should target both common and different QTL in the heterotic groups. 

Even if SCA represented around 20% of the within-population genetic variance (except for 

PH), we did not detect QTLs specific to SCA at a 5% genome-wide risk level. We nevertheless 

detected dominance and/or SCA effects significant at a 5% individual risk level for some QTLs 

(at a 1‰ individual risk level for three of them). Cross-validation results showed that adding 

these SCA QTLs effects to the models only slightly improved in the best cases the quality of 

prediction of hybrid values, suggesting that these moderate QTLs SCA effects may not be well 

estimated. These results contrast strongly with those of Schön et al. (2010) and Larièpe et al. 

(2012) who found a majority of QTL with large dominance effects for grain yield. An important 

feature of these studies is that they involve hybrids with a high level of inbreeding, contrary to 

our present study in which all hybrids evaluated are issued from unrelated parents. This suggests 

that, in the absence of inbreeding, SCA is likely due too numerous small effects that are hardly 

detectable in our design and/or that SCA is due to epistatic effects, not included in our detection 

models.  

Also, Larièpe et al. (2012) and Schön et al. (2010) detected a large proportion of QTLs with 

(pseudo-)overdominance in the pericentromeric regions, consistent with the observation of 

McMullen et al. (2009) that these regions show delayed fixation when developing recombinant 
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inbred lines. In our design, the QTLs presenting significant effect for dominance/SCA at a 5% 

individual risk level were not more specifically mapped in the pericentromeric regions. A 

similar observation was reported by Technow et al. (2014) for hybrids between the two 

heterotic groups. Altogether these observations concur to the hypothesis that reciprocal 

selection of heterotic groups has fixed complementary haplotypes in low recombinant 

centromeric regions involving linked dominant QTL. Such regions appear with large effects in 

populations that recombine different groups (e.g. Schön et al. 2010; Larièpe et al. 2012) and 

not in studies that only evaluate hybrids between groups (Technow et al. 2014; our present 

study). 

 

Improvement of the QTL detection models 

Our results showed the complementarity of the different QTL models depending on the trait 

considered. This is consistent with Bardol et al. (2013) and Giraud et al. (2014), who also found 

that the model considering that each founder line carried a different allele (the “Founder alleles” 

model) was more adapted to complex traits such as yield than to simpler trait such as flowering 

time. One of the main drawbacks of this QTL detection model is that it requires the estimation 

of a lot of parameters (25 df for the combinations between the dent and flint populations plus 

six df for the GCA and nine df for the SCA per QTL). For this reason it might become difficult 

to apply them to more complex situations, involving a larger number of founder lines and 

populations. Several alternative approaches could be explored in order to improve the power of 

the QTL detection models as for instance considering population structure as random. Another 

possibility would be to adapt a method developed by Rincent et al. (2014) for recovering power 

in association mapping panels by removing from the model the population effects and instead 

of considering the residual genetic variance of the parents as being independent, introducing 

the dent and flint parental lines kinships, estimated on all the chromosomes except the one 

which is scanned (Rincent et al. 2014). In this model, the random effects would take into 

account the structure in populations, the fact that some hybrid combinations derived from the 

same parents and will account for the genetic effects not located on the scanned chromosome. 

Another option for more complex cases would be to clusterize the parental alleles (using for 

instance the “clusthaplo” package, Leroux et al. 2014, as done in Bardol et al. 2013 and Giraud 

et al. 2014). Van Eeuwijk et al. (2010) performed QTL detection in a factorial design issued 

from a private breeding program that was derived by crossing a large number of parental lines 

(not structured in clear families as in our design). Their analyses were based on a Bayesian 

model that used both molecular markers and pedigree to trace back ancestral founder alleles 
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and reduce model parameterization. It would be interesting to evaluate this approach on our 

data set even if we have limited access to the pedigree of our founder lines.  

 

 

Conclusions  

Even if there is room for further model improvement, our results clearly showed the interest of 

our design. In the joint analysis of two NAM designs (one flint and one dent) evaluated for 

silage test-cross performances, Giraud et al. (2014) detected equal or slightly higher (up to six 

for PH) numbers of QTL than in our study. These differences are small in regards to the fact 

that these NAM designs involved a much broader diversity (11 and 12 different founder lines 

per group instead of four) and almost two times more hybrids (about 1650 hybrids). The two 

designs involved different founder lines which makes it difficult to directly compare the QTLs 

found in the two studies. Nevertheless it is interesting to note that both studies identified the 

same major QTL on chromosome 10 (for DtSILK, DMC, PH and DMY ) close to the ZmCCT 

gene, which was fine mapped as a major flowering time QTL by Ducrocq et al. (2009), and 

validated by Coles et al. (2011).  

The main interest of our design, is that each hybrid is informative on both heterotic groups, 

which allowed us to reduce the number of tested hybrids by a factor 2 in comparison to a test-

crossed evaluation based on a single tester from the opposite group. By avoiding the use of 

testers, our design certainly leads to better estimations of GCA QTL effects and gives the 

possibility to detect QTL involved in SCA (even if in our case only small SCA effects were 

found).  

We hypothesize that with development of double haploidization methods and the decreasing 

costs of molecular markers, it becomes conceivable to revisit the selection for hybrids by 

removing the need of using testers in early stages of the breeding scheme. Marker-based 

predictions of the hybrid performances calibrated on factorial designs could be used to perform 

selection in large sets of non phenotyped candidates. Such selection would enable to take into 

account complementarities of favorable alleles of each group (based on GCAs and also on SCA) 

and accelerate the development of superior hybrids. Breeders might nevertheless be reluctant 

to apply this strategy which necessitates a labor intensive step of hybrid production to create 

the factorial design. So clearly more work is needed to further optimize this design and compare 

its efficiency with conventional designs based on testers. The QTLs detected in this study open 

the way to the implementation of a marker-assisted selection of lines in order to produce 

superior hybrids. Our results are encouraging but the detected QTLs only partly explain the 
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hybrid variability. We are currently investigating the possibility to combine predictions based 

on QTLs with predictions based on genomic predictions.  
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INTRODUCTION 

 

Maize, as many allogamous species, presents a strong heterosis effect for many traits related to 

biomass production (Shull, 1914). To benefit from heterosis, maize diversity is partitioned into 

heterotic groups and most of maize varieties cultivated nowadays consist in F1 hybrids between 

two inbred parental lines issued from different heterotic groups.  

Since the beginning of the XXth century, numerous hybrid maize breeding procedures have 

been proposed in order to optimize its selection. Sprague and Tatum proposed in 1942 the 

decomposition of the hybrid genetic value into General Combining Abilities (GCA) and 

Specific Combining Ability (SCA). The GCA of one parental line corresponds to the average 

performance of its descendants in hybrid combinations. The SCA corresponds to the difference 

between the hybrid observed value and its predicted value based on the GCAs of its parents. In 

1949, Comstock et al. proposed the recurrent reciprocal selection which consists in improving 

simultaneously the two parental populations of the hybrids, by evaluating plants of one 

population for the value of their progeny when crossed to several plants of the other population. 

This approach allows selecting for both GCA and SCA of the hybrids and shows its superiority 

over other reciprocal selection methods (Coors 1999). Variations of this selection scheme were 

proposed later (see Hallauer et al. 2010, Chapter 12). In breeding companies, a modified 

recurrent reciprocal selection scheme is generally used due to practical considerations. 

Breeding procedure is generally divided into two stages. In the first stage, candidate lines of 

one heterotic group are crossed with one or a few “testers” (often inbred lines) from the 

complementary heterotic group. Hybrid progeny is then evaluated in a field network and only 

parents of the best hybrids are selected for the second stage. Tester choice is very important in 

this process. The testers often correspond to inbred lines of the reciprocal heterotic group 

presenting good agronomical qualities and which are likely to be used as one parent of the final 

hybrid. Thus, during early stages, not all potential hybrid combinations between the two 

heterotic groups are evaluated. It is only in the last stages that a larger set of hybrid 

combinations between the few inbred lines selected in each heterotic group is evaluated. 

Selection based on a few testers facilitates hybrid seed production for early testing trials but 

limits the variability considered at the second stage.  

Genotyping developments in maize and other crops of agronomical interest should soon make 

it possible to genotype all potential candidates at a reasonable cost. In this context, genotyping 

based prediction of hybrid value is of major interest for limiting phenotyping effort to the most 
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promising hybrid combinations. Genetic factors involved in heterosis and hybrid value are still 

poorly known, but it is admitted that underlying mechanisms (dominance or epistasis) involved 

interactions between different alleles transmitted by the parents of the single-cross. The first 

attempts of hybrid value prediction consisted in using as predictor the marker-based genetic 

distance between the two parents of the single-cross (Lee et al. 1989). Theoretical studies were 

carried out (Charcosset et al. 1991 and Bernardo 1992) as well as numerous empirical studies, 

mostly based on Restricted Fragment Length Polymorphisms (RFLPs) data (Godhsalk et al. 

1990; Melchinger et al. 1990; Dudley et al. 1991; Burstin et al. 1995). Results showed that 

genetic distance between parents failed at predicting inter-group hybrid value. One explanation 

is that marker-based distance between unrelated inbred lines only poorly reflects allelic 

differences at QTLs involved in hybrid value, due to weak and unstable marker-QTL 

associations over groups (Melchinger et al. 1992; Charcosset and Essioux 1994). Bernardo 

proposed in 1994 to use Best Linear Unbiased Predictor (BLUP) of the performance of single-

crosses using performances of a related set of single crosses and genomic similarities between 

tested and untested single-crosses. This approach was applied to a factorial design between six 

lines from the Iowa Stiff Stalk Synthetic group and nine inbreds from another group. It is to our 

knowledge the first application of genomic prediction model that was later referred to as 

GBLUP model (Meuwissen et al. 2001). More recently support vector machine regression 

(Maenhout et al. 2007; Maenhout et al. 2010) or Bayesian approaches (Technow et al. 2014) 

were proposed as an alternative to the GBLUP model. In addition to studies on maize, 

exploratory studies on genomic prediction of hybrid value have been performed recently in 

other plant species such as wheat (Zhao et al. 2013), sunflower (Reif et al. 2013), triticale 

(Gowda et al. 2013), rye (Wang et al. 2014) and rice (Xu et al. 2014).  

In maize, first genomic hybrid predictions were carried out in factorial designs between few 

inbred lines (Bernardo 1994) or by taking advantage of hybrids from advanced selection stages 

of breeding programs (Bernardo 1996a; Bernardo 1996b; Maenhout et al. 2010; Massman et 

al. 2013a; Technow et al. 2014). Most of these studies showed that the quality of prediction of 

a given hybrid mostly depended on the inclusion in the calibration set of hybrids issued from 

the same parental lines. Until recently, material screened through tester evaluation were unfixed 

individuals (F2 or F3 plants). In parallel to test-cross evaluation, selected plants were self-

pollinated to produce inbred lines. With double haploid technology, it is now possible to obtain 

directly large segregating populations of inbred lines. This reduces the length of breeding cycles 

and offers new opportunities to revisit hybrid breeding schemes. Instead of using a few testers 

from one group for selecting inbred lines of the other one, before exploring larger set of hybrid 
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combinations, one can directly generate large sets of inter-group single-cross hybrids from 

unselected inbred lines. Then these data can be used to calibrate hybrid value prediction 

equation and such predictions can be used to identify the most promising hybrid combinations. 

The same model can also be used to predict the GCA of all candidate lines and select the most 

promising for creating breeding populations for the round of selection. 

The objectives of this study were to evaluate the feasibility of this approach. We developed a 

design between the two main heterotic groups used for silage maize breeding in Northern 

Europe: the dent and the flint groups. In each heterotic group, six biparental populations of 

inbred lines were developed from four founder lines. These inbred lines were crossed according 

to an incomplete factorial design in order to obtain hybrids which were phenotypically 

evaluated for silage performances. QTL detection was performed in this design (cf. Chapter 2). 

We first evaluated the efficiency of genomic predictions in this design using GBLUP models 

considering different allele codings, population structure or not and decomposing hybrid value 

in GCAs or GCAs and SCA. We investigated the accuracy of our predictions on the different 

components of hybrid value (GCA / SCA). We then compared genomic prediction to QTL-

based predictions. We also investigated the influence of the size and of the composition of the 

calibration set on the quality of hybrid value predictions to draw some conclusions for further 

optimization of this approach.  

 

 

MATERIAL AND METHODS 

 

Plant material  

Two multiparental connected designs, each corresponding to one of the major heterotic groups 

used for silage maize breeding in Europe, the flint or the dent, were crossed in order to obtain 

F1 hybrids. Each of these multiparental designs is constituted of six populations of parental lines 

derived by haplodiploidization (for the dent) or by five to six generations of selfing (for the 

flint) from a half diallel mating design between four founder lines. The 863 dent parental lines 

and the 879 flint parental lines were crossed according to an incomplete factorial design in order 

to obtain 1044 dent – flint hybrids which were phenotypically evaluated. The majority of lines 

(699 in the dent and 732 in the flint) contributed to a single hybrid. Some lines contributed to 

two hybrids (163 in the dent group and 146 in the flint group) and one dent parental line 

contributed to three hybrids and one flint to four hybrids. The experimental design is described 

in details in Chapter 2. 
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Genotyping data  

The founder lines were genotyped with a 50 K SNP array (Ganal et al. 2011). The parental lines 

and the founder lines were genotyped with a 18 480 SNP Affymetrix® array provided by 

Limagrain. Inbred lines with unexpected high percentage of heterozygote loci as well as those 

presenting inconsistencies between founder lines and segregating lines were discarded. After 

quality control, 875 dent and 883 flint lines were considered in the analysis (see Chapter 2 for 

more details). We used the 9548 markers which were mapped at the parental lines level in the 

Chapter 2. For the analyses we considered the Affymetrix® genotyping data for the founder 

lines, and when needed replace missing data by the genotypes obtained with the 50 K chip when 

it was available. 

Missing genotypes at the parental level were imputed with Beagle v3.0. (Browning and 

Browning 2007) by populations, on genetic maps, putting the founder lines in the dataset. 

Phasing of the flint lines and of the founder lines that presented residual heterozygosity was 

done at the same time than missing genotypes imputation. 

 

Phenotypic evaluation and adjusted means 

The hybrids between the parental lines were evaluated in 8 environments in Northern France 

and Germany over two years for four traits: silage yield (DMY in tons of dry matter per ha), 

dry matter content at harvest (DMC in %), plant height (6 environments) (PH in cm) and female 

flowering (DtSILK, days after January the first). The field experiments were conducted as 

augmented p-rep designs with 1088 two-row plots. They were laid out in 68 incomplete blocks 

consisting of 16 plots each with five to six plots used for repeated genotypes (hybrids between 

the founder lines plus around 17 % of the hybrids between the parental lines). Only 951 hybrids 

for which both parental lines had correct genotypic data were analyzed (950 for plant height 

and dry matter yield). All the dent and flint populations of parental lines contributed to the 951 

hybrids that were considered in the analyses. As far as possible we tried to balance the 

contribution of each parental population to the hybrids but some populations contributed more 

than others (Figure 1). The number of analyzed hybrids derived from each flint population 

varied between 130 (for population F3) and 178 (for population F1) and the number of analyzed 

hybrids derived from each dent population varied between 126 (for population D6) and 168 (for 

population D3). For each dent-flint combination of populations between 15 (dent population 

D6 - flint population F3) and 34 hybrids (dent population D2 - flint population F1) were derived. 

Outlying observations were deleted. One environment over eight was excluded for dry matter 

yield as it was not correlated with the others. For each combination environment – trait, field 
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heterogeneities were corrected using a block or a row-column effect model as described in 

Chapter 2. Using the Asreml-R package (Butler et al. 2007; R Core Team 2013), individual 

single-plot performances were corrected by the BLUPs of the field effects and were used to 

compute for each hybrid adjusted means (ls-means) over the eight environments. 

 

Genomic Best Linear Unbiased Prediction (GBLUP) models and estimation of variance 

components 

Genomic predictions were done using as phenotypes the hybrid ls-means. We compared several 

GBLUP models that differed by the way population structure was considered, and the inclusion 

or not of SCA. All these models were implemented in Asreml-R (Butler et al. 2007; R Core 

Team 2013).  

The following GBLUP model considered the structure in populations and the SCA: 

� = 1 . � + , .  � + � .  � + + .  (��) +  }�b��  .  D�b�� + }�b��  .  D�b�� + }�b� .  ��b� +  : 

Where � is the (; × 1) vector of the adjusted means of the ; phenotyped hybrids for the 

studied trait, � is the intercept, 1 is a (; ×1) vector of 1. � (respectively �) is a (6 ×1) vector of 

the fixed effects of the dent (respectively flint) populations of origin of the dent (flint) parental 

lines, , (respectively �) is the (; ×6) design matrix of 0-1 that linked each hybrid to the dent 

(respectively flint) population of its dent (flint) parental line, (��) is a (36 ×1) vector of the 

fixed interaction effects between the dent and flint populations of origin of the parental lines, + 

is the corresponding design matrix. D�b�� (respectively D�b��) is the (sR  × 1) vector 

(respectively (s{  × 1)) of the random effects corresponding to the sR dent GCA (respectively 

s{ flint) of the parental dent (respectively flint) lines, with D�b��  ↪ ;V0, *�b�� _�b��
� W and 

D�b��  ↪ ; h0, *�b�� _�b��
� i where *�b�� (*�b��) is the (sR × sR) (respectively (s{ × s{)) 

genomic relationship matrix between the dent (flint) lines, and  _�b��
�  (_�b��

� ) is the flint (dent) 

GCA variance component. ��b� is the (; × 1) vector of the random effects corresponding to 

the SCA with ��b�  ↪ ;(0, /�b�_�b�� ) where /�b� is a (; × ;) matrix equals to the Hadamard 

product between the dent and the flint genomic relationship matrices (/�b� =  *�b�{ × *�b�R) 

and _�b��  is the variance component associated with SCA effects, }�b��, }�b��, }�b� are the 

(; × sR), (; × s{), and (; × ;) incidence matrices that relate � to D�b��, D�b�� and ��b�, : 

is the (; × 1) vector of the residual effects associated to the model with : ↪ ;(0, _c�). 

The genomic relationship coefficient of the *�b��  matrix between the dent parental lines � and 

� based on the observed SNPs was computed according to method 1 of Van Raden (2008) as 
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*�b�R,�,�  = �
H  ∑ ( -�a � �a)V-�a��aW�a��

∑ �a( � � �a)�a��
, where �L is the frequency calculated over the dent lines 

(respectively flint lines) of the allele coded 1 of marker Y, &�L (respectively &�L) is the genotype 

of the dent inbred line � (respectively �) at the marker Y coded in 0, 0.5, 1, and N is the total 

number of markers. Genomic relationship matrix between the flint parental lines was calculated 

in a similar way. These kinship matrices are further called SNP kinship matrices. 

Different variants of the GBLUP model presented above were considered: without the structure 

in populations, without the SCA component, without both. For each GBLUP model, we 

estimated the different variance components, in order to estimate the flint GCA, the dent GCA 

and the SCA variances captured by the markers as well as the percentage of genetic variance 

explained by SCA. For GBLUP models presenting the same fixed effects, Restricted Maximum 

Likelihood (REML) likelihood ratio tests were performed for evaluating the impact of 

incorporation of SCA considering a risk level of 1%. The variance components captured by the 

markers were compared with those estimated in Chapter 2 based on the analysis of the raw 

phenotypic data, without considering genotypic kinship matrices (cf. Chapter 2, Table 1). For 

each GBLUP model, we evaluated its adjustment to the ls-means (R²) by the square of the 

correlation between predictions and ls-means.  

 

GBLUP model using kinship matrices based on founder alleles 

A second estimation of the genomic relationship matrices was used based on the founder alleles 

inherited by the parental lines. To do so, we considered the probability that a given dent (flint) 

founder line allele was transmitted to each hybrid at positions corresponding to the different 

markers. These probabilities for the 9548 mapped markers were inferred using PlantImpute 

(Hickey et al. 2015) using 10 iterations. Relationship matrix between the dent (flint) parental 

lines was calculated based on these probabilities as the expectation of the percentage of the 

marker positions at which two lines received the same founder allele. The genomic relationship 

coefficient of the ��b��  matrix between the dent parental lines � and � based on the founder 

alleles probabilities was computed as ��b�R,�,�  = ∑  ∑ 6�a� ×  6�a� ����  �a��
H  where ��L{ (respectively 

��L{) is the probability that the inbred line � (respectively �) received the founder allele � at the 

marker position Y, and N is the total number of markers. Flint founder allele relationship matrix 

was computed in a similar way. Compared with the kinships estimated based on SNPs, kinships 

based on founder alleles considered as unrelated hybrids that did not share any of the founder 

lines. With this definition of alleles, hybrid value prediction only relied on the performances of 
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hybrids related by pedigree. These IBD coefficients are expected to capture differences between 

founder line alleles not captured by SNP polymorphisms (such as recent mutations, etc.).  

 

Quality of prediction of the different GBLUP models. Comparison with prediction based 

on QTL 

For comparing quality of prediction of the different GBLUP models, we performed a cross-

validation approach using one fifth of the data (about 190 hybrids) for validation and four fifth 

for calibration. Sampling of the validation set was stratified by the structure in populations and 

was repeated 100 times. The calibration set consisted in the others individuals. The same 

samplings were used for all the GBLUP models to facilitate their comparison. For each replicate 

and each model we estimated the predictive ability of the model by the correlation between the 

predictions and the ls-means of the validation set. Results were then averaged over the 100 

replications. As the same samplings were used for all models, we also evaluated the number of 

replications for which a given model led to a better predictive ability than another one. 

Predictions based on GBLUP models were also compared with predictions based on the QTL 

detection results obtained in the Chapter 2, on the same experimental design. In this study, 

different QTL detection models were used (using different types of allele coding and 

considering equal or different effects in the two genetic groups). For the comparison with the 

GBLUP models, we considered for each trait the QTL detection model that gave the best 

predictive ability. In each replication, we considered a model that included the population 

structure and the QTL positions detected in the Chapter 2 as fixed effect. All fixed effects were 

estimated using the calibration set, then used to predict the value of each individual of the 

validation set. To make things comparable, the same samplings were used for the GBLUP and 

the QTL models. As for the GBLUP models, we then computed the predictive ability of the 

predictions by the correlation between predictions and ls-means of the validation set. 

For the best GBLUP model considering SCA identified by cross-validation, we evaluated the 

quality of prediction of the flint and dent GCA components of the hybrid value. To do so, for 

each replication, we estimated the correlation between the dent (flint) GCA predicted using the 

GBLUP model and the observed phenotypes �(*+,R�� , =). As this correlation depends on the 

percentage of the phenotypic variance explained by the GCA component, we divided it by the 

square root of the proportion of the corresponding GCA variance in the performances 

(��"�(*+,R)/�"�(=)) where �"�(*+,R) is the GCA variance estimated in the Chapter 2 

(see Chapter 2, Table 1) and �"�(=) is the variance of the ls-means of the studied trait. This 
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value ��b�� =  w(�b���� ,   g)
��Kw(�b��)/�Kw(g)  corresponds to the observed accuracy of the dent GCA 

predictions. Similar estimation was done for the observed accuracy of flint GCA predictions, 

��b��.  

 

Influence of the calibration set size on the hybrid predictions 

For the best GBLUP model based on the result of previous cross validations, we evaluated the 

impact of the number of hybrids evaluated for each of the 36 dent-flint population 

combinations, considering or not SCA in the model. To do so, for constituting the calibration 

set, we sampled two, three, five, six, 10 and 12 hybrids in each of the 36 dent-flint hybrid 

populations: corresponding respectively to sampling in total of 72, 108, 180, 216, 360 and 432 

hybrids. For each calibration set size, sampling was repeated 100 times and the remaining part 

of the population was used as validation set. For each replicate, the predictive ability was 

computed. Then, it was averaged over the 100 replications. 

 

Influence of the calibration set composition on the hybrid predictions   

Impact of including half-sib hybrids in calibration set 

We also investigated the differences in quality of prediction of the hybrids of the validation set, 

depending if zero, one or both of their parents were also parents of hybrids included in the 

calibration set (this corresponds to the T0, T1 and T2 hybrid categories defined in Schrag et al. 

2010 and Technow et al. 2012). We used a cross-validation approach using four fifth of the 

data for calibration and one fifth for validation. In the validation set, we included 30 hybrids 

that had at least one half-sib hybrid on the dent side and one on the flint side in the calibration 

set (T2 hybrids), 30 hybrids that had at least one half-sib hybrid on the dent side and no half-

sib hybrid on the flint side in the calibration set (T1 Dent hybrids) and 30 hybrids that had at 

least one half-sib hybrid on the flint side and no half-sib on the dent side in the calibration set 

(T1 Flint hybrids). 100 T0 hybrids (hybrids with no half-sib in the calibration set) were used to 

complete the validation set. Sampling was repeated 100 times. For each replicate, the predictive 

ability of the hybrids of each category was computed and then averaged over the 100 

replications. 

 

Impact of including hybrids issued from the same founder lines in calibration set 

Further, we evaluated the quality of prediction of a given dent-flint population using individuals 

from other populations. We did that in order to evaluate what would be the efficiency of 
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genomic selection for a new population of hybrids issued from inbred lines that did not 

contribute yet to the hybrids of the calibration set. For each dent-flint population to predict (in 

red on Figure 1), five types of calibration sets were tested (in blue, green, yellow, orange and 

purple on Figure 1) depending on their level of relatedness with the population to predict. In 

the first case, the populations of the calibration set had their two dent and one of their flint 

founders in common with the population to predict (four dent-flint populations in the calibration 

set, in blue on Figure 1). In this case, the target hybrid population was predicted using hybrids 

between (i) dent lines that were full-sibs (two dent founders in common) of their dent parents 

and (ii) flint lines that were half-sibs (one flint founder in common) of their flint parents. In the 

second case, the populations of the calibration set had their two flint and one of their dent 

founders in common with the population to predict (four dent-flint populations in the calibration 

set, in green on Figure 1). In the third case, they had only one dent and one flint founders in 

common with the population to predict (16 dent-flint populations in the calibration set, in 

yellow on Figure 1). In the fourth case, populations of the calibration set had only one of their 

dent founders in common with the population to predict and no flint founder (four dent-flint 

populations in the calibration set, in orange on Figure 1). In the last case, they had only one of 

their flint founders in common and no dent founder (four dent-flint populations, in purple on 

Figure 1). In all cases except the third one, the size of the populations to be included in the 

calibration set was too small to perform sampling. In the third case, sampling stratified by the 

structure in populations of a fourth of the hybrids of the calibration populations was done, in 

order to have a number of individuals equivalent to the ones of the others cases. Sampling was 

repeated 50 times and the predictive ability was averaged over the 50 replications for each 

population. For the five different cases, predictive abilities of the different dent-flint 

populations were averaged. It can be noted that we did not consider the case when calibration 

is done using populations which only have two dent founder lines or two flint founder lines in 

common with the target population or the case when calibration is done based on populations 

with no founder in common with the target population. In our design, considering these cases 

would have been equivalent to using only one of the 36 hybrid populations to predict another 

one which would not be feasible considering the size of each hybrid population (about 30 

hybrids).  
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 F1  
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F2  
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To predict 
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27 hybrids 
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22 hybrids 
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30 hybrids 
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25 hybrids 

27 hybrids 
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32 hybrids 
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29 hybrids 

1D – 1F 

23 hybrids 

1D – 1F 

30 hybrids 

1D – 1F 

 26 hybrids 

1D – 0F 

27 hybrids 

D4  

F1808 x 
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1D – 2F 

28 hybrids 

1D – 1F 

28 hybrids 

1D – 1F 

25 hybrids 

1D – 1F 

30 hybrids 

1D – 1F 

 27 hybrids 

1D – 0F 

27 hybrids 

D5  

F04401 x 

F7082 

1D – 2F 

33 hybrids 

1D – 1F 

29 hybrids 

1D – 1F 

23 hybrids 

1D – 1F 

28 hybrids 

1D – 1F 

24 hybrids 

1D – 0F 

30 hybrids 

D6  

F98902 x 

F7082 

24 hybrids 0D -1F 

23 hybrids 

0D – 1F 

15 hybrids 

0D – 1F 

25 hybrids 

0D – 1F 

21 hybrids 

18 hybrids 

 

Figure 1: Repartition of the 951 hybrids in function of the population of origin of their dent and flint parent. Each 

inbred line population is denoted D1 to D6 for the dent ones and F1 to F6 for the flint ones and we indicated the 

names of the two founder lines of the population. This figure illustrates the different calibration sets categories 

considered for the prediction of a given dent-flint hybrid population (here the D1 x F1 population in red) using the 

other dent-flint populations as calibration set, in function of the number of founder lines in common with the target 

population. 

 

 

 

RESULTS 

 

Estimation of variance components and R² of the GBLUP models  

For the different traits and models, a large part of the genetic variation was attributed to the 

GCAs components (Table 1). Variance estimations for the GCAs did not varied much from one 

model to the other. Including or not population structure in the model had a low impact on 

variance component estimation. Dent and flint GCA variances were of the same magnitude for 



148 
 

all traits except DtSILK for which flint GCA variance was equal to twice the dent GCA 

variance. Taking into account SCA in the model did not significantly improved the likelihoods 

of the model except for DMY. The SCA variance component was small compared to the GCAs 

variances. It explained between 0.00 (DMC) and 8.17% (DMY) of the total genetic variance 

when population structure was not included in the model and between 0.00 (DMC) and 11.24% 

(DMY) when population structure was included in the model. Based on the standard deviations, 

considering or not population structure, the SCA variance was significantly different from 0 

only for DMY.  

The proportion of SCA in the hybrid variance captured by the markers was much less important 

than the one obtained when using field plot data (Supplementary Table S1). It was more striking 

for DMC for which there was no SCA when considering genotypic information whereas it 

represented 11.7% of the genetic variance (21.5% of the within-population genetic variance) 

when performing variance component analysis using only filed plot performances. For the other 

traits, the percentage of SCA in the genetic variance was 2.1 (DMY) to 7.3 (DtSILK) times less 

important when considering genotypic information.  

Adjustment of the model to the data (R²) was high for all the trait x model combinations: 

between 0.717 (DMY, without SCA, with structure in populations) and 0.905 (PH with SCA, 

without the structure in populations). For all traits, considering structure in populations had a 

negative effect on the R². R² was higher when considering SCA than when not considering it 

except for DMC for which no difference was observed (Table 1). 
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Table 1: Variance components estimated using four different GBLUP models (all considering the SNP kinship 
matrices) and adjustment of the models to the data (measured by R²) for the studied traits (Dry Matter Content 
DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH). _*+,#

2  corresponds to the dent General 

Combining Ability variance, _*+,�
2  to the flint General Combining Ability variance, _/+,2   to the Specific 

Combining Ability variance, and _X2  to the residual variance. Confidence intervals of the variance components are 
indicated. For each trait, heritability is specified. 

 Pop + GCA + SCA Pop + GCA GCA + SCA GCA 
DMC Heritability: 0.892    

_�b��
�  1.368 ± 0.480 1.368 ± 0.480 1.413 ± 0.489 1.413 ± 0.489 

_�b��
�  1.788 ± 0.543 1.788 ± 0.543 1.787 ± 0.542 1.787 ± 0.542 

_�b��  0.000 ± 0.000 - 0.000 ± 0.000 - 
_c� 1.084 ± 0.154 1.084 ± 0.157 1.077 ± 0.156 1.077 ± 0.156 

%SCA 0.00 - 0.00 - 
R² 0.833 0.833 0.848 0.848 
DMY Heritability: 0.814    

_�b��
�  0.618 ± 0.236 0.635 ± 0.244  0.622 ± 0.236 0.636 ± 0.243 

_�b��
�  0.481 ± 0.188 0.442 ± 0.178 0.477 ± 0.186 0.442 ± 0.177 

_�b��  0.139 ± 0.125 - 0.132 ± 0.121 - 
_c� 0.511 ± 0.124 0.643 ± 0.084 0.517 ± 0.122 0.643 ± 0.084 

%SCA 11.24 - 8.17 - 
R² 0.829 0.717 0.834 0.726 
DtSILK  Heritability: 0.890    

_�b��
�  1.180 ± 0.414 1.174 ± 0.413 1.208 ± 0.420 1.207 ± 0.420 

_�b��
�  2.029 ± 0.570 2.007 ± 0.568 2.021 ± 0.567 1.998 ± 0.566 

_�b��  0.089 ± 0.133 - 0.088 ± 0.130 - 
_c� 0.735 ± 0.167 0.823 ± 0.131 0.734 ± 0.166 0.821 ± 0.130 

%SCA 2.70 - 2.23 - 
R² 0.862 0.828 0.882 0.848 
PH Heritability: 0.877    

_�b��
�  70.396 ± 21.813 69.395 ± 22.747 70.635 ± 22.962 70.013 ± 22.878 

_�b��
�  68.642 ± 22.105 66.705 ± 21.814 68.749 ± 22.100 67.157 ± 21.893 

_�b��  6.868 ± 8.904 - 6.576 ± 8.496 - 
_c� 32.923 ± 9.306 39.434 ± 6.169 33.196 ± 9.079 39.381 ± 6.170 

%SCA 4.71 - 3.81 - 
R² 0.884 0.841 0.905 0.862 

 
 
Predictive abilities of the GBLUP models. Comparison with predictions based on QTL 

Predictive abilities of the validation set were high for all the models and traits and only slightly 

varied according to the trait. When considering the best model for each trait, they varied 

between 0.652 for DMY (SNP kinship – no population structure – SCA) and 0.771 for PH (SNP 

kinship – no population structure – SCA) (Table 2).  

For all traits, with the SNP kinship matrices, considering population structure had a negative 

effect on the prediction accuracy (Table 2). Without SCA in the model, not considering 

structure in populations gave better predictive abilities for 74% (DtSILK) to 98% (PH) of the 

replications. When considering SCA in the model, between 60% (DMY and DtSILK) and 63% 
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(DMC and PH) of the replications gave better predictive abilities without population structure 

than with population structure. Without SCA in the model, not considering population structure 

was better for 54% (DMY) to 67% (DtSILK) of the replications. With SCA in the model, not 

considering population structure was better for 54% (DMY) to 68% (DtSILK) of the 

replications. 

Adding SCA in the GBLUP model with the SNP kinship IBD matrices had a really low effect, 

either positive or negative, on the predictive ability (Table 2). Only, between 44% (PH) and 

52% (DMY, DtSILK) of the replications gave better predictive abilities when considering SCA 

than when not considering it in the GBLUP model without population structure included. 

Similar results were observed when considering the founder allele kinship matrices.  

For all trait x model combinations, considering the founder allele kinship matrices decreased 

predictive abilities compared to using the SNP kinship matrices (Table 2). As for the GBLUP 

model using SNP kinship, we observed that incorporating the population structure in the model 

had a negative effect and that adding SCA had a small impact on the predictive abilities.  

For all traits, best predictive abilities obtained from GBLUP were higher than the ones obtained 

based on detected QTLs, which varied between 0.626 for DMY and 0.742 for PH (Table 2). 

For genomic predictions and QTL based predictions, DMC and PH showed close predictive 

abilities and were the best predicted traits. DMY was the worst predicted one. The best GBLUP 

model, gave better predictive abilities than the QTL-based prediction model for around 75% of 

the replications (between 71% for DtSILK and 76% for PH). 

 

Table 2: Predictive ability for the different GBLUP models using a cross validation procedure with four fifth of 

the data for calibration and one fifth for the validation for the studied traits (Dry Matter Content DMC, Dry Matter 

Yield DMY, Silking date DtSILK, Plant Height PH). Average values over 100 replications and standard deviations 

(sd) are indicated. Predictive abilities of predictions based on QTL (Pop+ QTL) obtained in Chapter 2 are also 

provided.   

Model DMC DMY DtSILK PH 
GBLUP SNP kinship     
Pop + GCA + SCA 0.757 sd 0.024 0.636 sd 0.036 0.687 sd 0.031 0.755 sd 0.032 
Pop + GCA 0.757 sd 0.025 0.633 sd 0.036 0.689 sd 0.031 0.754 sd 0.032 
GCA + SCA 0.768 sd 0.024 0.652 sd 0.042 0.697 sd 0.035 0.771 sd 0.026 
GCA 0.768 sd 0.024 0.644 sd 0.035 0.700 sd 0.029 0.769 sd 0.031 
GBLUP Founder allele 
kinship 

    

Pop + GCA + SCA 0.755 sd 0.029 0.623 sd 0.037 0.674 sd 0.034 0.751 sd 0.028 
Pop + GCA 0.756 sd 0.029 0.623 sd 0.037 0.676 sd 0.034 0.751 sd 0.028 
GCA + SCA 0.763 sd 0.025 0.631 sd 0.037 0.688 sd 0.031 0.762 sd 0.030 
GCA 0.763 sd 0.025 0.628 sd 0.036 0.688 sd 0.032 0.762 sd 0.030 
Pop + QTL     
 0.743 sd 0.027 0.626 sd 0.039 0.689 sd 0.034 0.742 sd 0.034 
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Quality of prediction of GCA  

Quality of prediction of GCA 

Based on the result of previous section, we will further only consider results obtained with the 

GBLUP model based on the SNP kinship and without including the population structure. For 

the GBLUP model considering SCA, averaged correlations between observed ls-means and 

predicted dent GCA (respectively flint GCA) of the hybrids of the validation set were calculated 

over the 100 replications. For the dent GCA, they varied between 0.386 (DMC) and 0.616 (PH). 

For the flint GCA, they varied between 0.328 (DMY) and 0.671 (DMC) (Table 3).  

These correlations should be put in relation with the percentage of dent GCA variance 

(respectively flint GCA variance) in the total phenotypic variance, which varied depending on 

the trait. The dent GCA variance represented between 25.15% (DMC) and 59.97% (DMY) of 

the total genetic variance. (Table 3). The flint GCA variance represented between 22.63% 

(DMY) and 63.14% (DMC) of the total genetic variance. For DMY, DtSILK and PH, the 

proportion of dent GCA variance in the genetic variance was more important than the 

proportion of flint GCA variance whereas it was the reverse for DMC.  

Thus, based on predictive abilities we computed observed accuracies of the GCA predictions. 

The observed accuracies were high and varied between 0.739 (DtSILK) and 0.827 (DMC) for 

the dent GCA and between 0.830 (DMY) and 0.938 (DtSILK) for the flint GCA (Table 3). For 

all traits, flint GCAs were better predicted than dent GCAs. 

 

Table 3: Quality of prediction of dent and flint GCAs for the best GBLUP model considering SCA for the four 

studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH). For the 

correlations, the standard deviation is indicated. 

 DMC DMY DtSILK PH 
Average correlation between predicted dent GCA and 
calculated adjusted means   

0.386  
sd 0.060 

0.539  
sd 0.049 

0.490  
sd 0.046 

0.616  
sd 0.039 

Average correlation between predicted flint GCA and 
calculated adjusted means  

0.675  
sd 0.030 

0.350  
sd 0.056 

0.476  
sd 0.047 

0.452  
sd 0.046 

%GCA dent variance in the total genetic variance  25.15 59.97 52.82 59.89 
%GCA flint variance in the total genetic variance  63.14 22.63 30.93 27.67 
Observed accuracy of the dent GCA  0.827 0.786 0.739 0.819 
Observed accuracy of the flint GCA  0.913 0.830 0.938 0.884 

 

Effect of the size of the calibration set 

Predictive ability increased with the size of the calibration set, especially for the small sizes of 

calibration set (Figure 2). Similar trends were observed for the different traits. Prediction 

accuracies reached plateau for calibration sets including more than 12 individuals per dent-flint 

populations (432 hybrids). No difference was observed between the model with SCA and 
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without SCA except for the small sizes of calibration set (72 and 108 hybrids) where the model 

without SCA performed better than the one with SCA.  

 

 
Figure 2: Predictive ability as a function of the calibration set size for the GBLUP models without population 

structure  and with the SNP kinship matrices for the studied traits (Dry Matter Content DMC, Dry Matter Yield 

DMY, Silking date DtSILK, Plant Height PH). The green curve corresponds to the model taking into account the 

SCA, the yellow curve corresponds to the model without SCA.  

 

 

Calibration set composition 

Impact of including half-sibs hybrids in calibration set 

For all traits, no special trend was observed for the predictive ability of the hybrids whether 

zero parent (T0), their dent parent (T1 Dent), their flint parent (T1 Flint) or both of their parents 

(T2) were parents of hybrids of the calibration set (Table 4). Considering SCA in our model did 

not change this result. Depending on the trait, the best predictive abilities were obtained for the 
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T2 (PH), T1D (DMC, DtSILK) or T1C (DMY) calibrations. T0 hybrids were never the best 

predicted ones. 

 

Table 4: Predictive ability in function of the presence of half-sibs in the calibration set for the studied traits (Dry 

Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, Plant Height PH), for the GBLUP models 

considering the SNP kinship matrices and no population structure. Standard deviations are indicated. 

 DMC DMY DtSILK PH 

GCA model     
T0 hybrids 0.759 sd 0.034 0.613 sd 0.061 0.704 sd 0.043 0.760 sd 0.042 
T1 Flint hybrids 0.743 sd 0.072 0.720 sd 0.084 0.708 sd 0.090 0.730 sd 0.084 
T1 Dent hybrids 0.821 sd 0.049 0.688 sd 0.082 0.724 sd 0.079 0.784 sd 0.060 
T2 hybrids 0.765 sd 0.066 0.692 sd 0.079 0.660 sd 0.109 0.822 sd 0.052 

GCA + SCA model     

T0 hybrids 0.758 sd 0.034 0.615 sd 0.059 0.704 sd 0.042 0.760 sd 0.042 
T1 Flint hybrids 0.743 sd 0.072 0.727 sd 0.085  0.713 sd 0.091 0.730 sd 0.083 
T1 Dent hybrids 0.821 sd  0.049 0.685 sd 0.080 0.726 sd 0.079 0.784 sd 0.060 
T2 hybrids 0.764 sd 0.067 0.700 sd 0.080 0.657 sd 0.111 0.821 sd 0.052 

     
 

Impact of including hybrids issued from the same founder lines in calibration set 

Predictive abilities increased with the level of pedigree relatedness between the validation set 

and the calibration set (Table 5). They varied between 0.123 (DMC – case4 1D) and 0.539 

(DMC – case 1 2D-1F) when not including SCA in the model and between 0.0651 (DMC – 

case 4 1D) and 0.542 (DMC – case 1 2D-1F) when including SCA. Including SCA in the model 

only slightly changed the predictive abilities. With and without SCA, calibration with 

populations which shared only one founder line with the target population always gave the 

worst predictive abilities. Using in the calibration set populations which shared three founder 

lines with the target population was better than when using populations which shared only two 

founder lines, except for DMY (predictive ability with the 1D-2F case was lower than in the 

1D-1F case). Standard deviations of the estimations were important, illustrating the differences 

in the quality of prediction that we observed depending on the target population considered. 
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Table 5: Average of the predictive abilities of a targeted population in function of the composition of the 

calibration set for the studied traits (Dry Matter Content DMC, Dry Matter Yield DMY, Silking date DtSILK, 

Plant Height PH), for the GBLUP models considering the SNP kinship matrices and no population structure 

 DMC DMY DtSILK PH 

GCA model     

Case 1: 2 dent – 1 flint 0.539 sd 0.132 0.423 sd 0.167 0.436 sd 0.184 0.426 sd 0.197 

Case 2: 1 dent – 2 flint 0.453 sd 0.179 0.341 sd 0.211 0.464 sd 0.139 0.430 sd 0.196 

Case 3: 1 dent – 1 flint 0.438 sd 0.186 0.372 sd 0.210 0.407 sd 0.211 0.417 sd 0.202 

Case 4: 1 dent 0.123 sd 0.201 0.201 sd 0.219 0.184 sd 0.211 0.261 sd 0.176 

Case 5: 1 flint 0.309 sd 0.199 0.226 sd 0.164 0.295 sd 0.205 0.240 sd 0.240 

GCA + SCA model     

Case 1: 2 dent – 1 flint 0.542 sd 0.130 0.426 sd 0.169 0.437 sd 0.184 0.427 sd 0.193 

Case 2: 1 dent – 2 flint 0.456 sd 0.178 0.338 sd 0.208 0.458 sd 0.138 0.422 sd 0.195 

Case3: 1 dent – 1 flint 0.436 sd 0.194 0.376 sd 0.215 0.407 sd 0.217 0.418 sd 0.205 

Case 4: 1 dent 0.0651 sd 0.215 0.143 sd 0.226 0.0882 sd 0.266 0.256 sd 0.175 

Case 5: 1flint 0.306 sd 0.199 0.241 sd 0.168 0.274 sd 0.229 0.238 sd 0.253 

 

 

 

DISCUSSION 

 

GCA/SCA Variance components  

The lack of gain in efficiency of our prediction models including SCA effects is consistent with 

the small proportion of the SCA variance component in our analyses. To our knowledge, no 

study estimated SCA/GCA components on European silage maize using marker-based genomic 

relationships whereas several estimations are available for grain maize. Even if silage and grain 

yield are correlated, they correspond to different traits measured on plants harvested at different 

biological stages. Keeping this is mind, we found for DMY a percentage of SCA in the total 

genetic variance of 8.17% close to the one found on grain yield by Schrag et al. (2010) and 

Technow et al. (2014) but lower than the one found by Massman et al. (2013a). The same 

authors estimated the proportion of SCA in the genetic variance between 6.2 and 10% for grain 

moisture content whereas it was null in our design for DMC. Note that these studies involved 

inbred lines that had been selected before on their combining ability which may have increased 

the relative importance of SCA in the hybrids.  

Proportion of SCA in the genetic variance was much lower when estimated on ls-means using 
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genotypic information than when estimated directly on field plot data (Supplementary Table 

S1). One explanation could be that the number of markers was not sufficient for capturing well 

SCA effects through kinship matrices. However, our design is structured in biparental families, 

with a large within-family LD extent and one can reasonably assume that the number of markers 

was a priori high enough to estimate kinship between lines at the within family level. Another 

explanation could therefore be that an important part of SCA in our design can be due to 

epistasis and was not reflected through our kinship matrices.  

 

Comparison of the GBLUP models 

We compared several GBLUP models. Considering structure in populations as a fixed effect in 

the GBLUP models decreased the predictive abilities. This suggests that the structure in 

population is well captured by the markers and that there is no need to add it in the model. It 

would be interesting to see if it would be the same for more structured traits, such as digestibility 

traits where the variation in each heterotic group is mainly due to the use of one founder line 

carrying favorable alleles. Considering founder allele kinship matrices and not SNP kinship 

matrices also decreased the predictive abilities. Founder allele matrices set the relatedness 

between two individuals from populations with no founder in common to zero. This shows that 

it is beneficial to take into account co-ancestry between founder lines. It may also indicate that 

causal mutations are not recent, and so are well captured by SNP.  

Adding SCA in the GBLUP model did not increase the predictive abilities and could even 

decrease it when using a small training population size. This observation is consistent with the 

one of Zhao et al. (2013) on rice, who observed higher prediction accuracies when ignoring 

dominance effects than when including them. They related it among other things to the small 

size of their dataset. Using simulations, BayesB models were shown to slightly outperform 

GBLUP models when incorporating dominance (Technow et al. 2012) but this result was not 

consistent with empirical studies (Technow et al. 2014). Reproductive kernel Hilbert space 

regression may be an option for including non-additive effects such as dominance or epistasis 

(Gianola et al. 2006; Gianola and van Kaam 2008). Wellmann and Bennewitz (2012) proposed 

a Bayesian linear regression model called BayesD (D standing for dominance) which allowed 

on simulated data an improvement of the prediction accuracies compared to GBLUP.  

 

Comparison with QTL - Combining the two approaches 

Genomic predictions gave better results than QTL based predictions for all traits, but to a 

smaller extent for DtSILK. The small differences between the two models is a bit surprising. It 
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contrasts with the clear advantage of genomic selection over QTL-based marker-assisted 

selection schemes found by Bernardo and Yu (2007) on simulations and validated 

experimentally by Massman et al. (2013b) It suggests that including QTLs information in 

GBLUP models may improve the predictions accuracy by combining the two sources of 

information, giving more weight in prediction to the most important QTLs than when 

considering only relatedness matrices. Brøndum et al. (2015), on dairy cows, included in their 

GBLUP model a second component with its own variance corresponding to markers identified 

as linked to QTL from association mapping on sequence data. It led to an increase in the 

predictive abilities, especially for production traits presenting major QTLs. Zhao et al. (2014) 

on hybrid wheat proposed a weighted best linear unbiased prediction (W-BLUP) model for 

treating the effects of known functional markers by considering their additive and dominance 

effects as fixed. This model allowed an improvement of the prediction accuracies in comparison 

to marker-based predictions and to genomic predictions using RR-BLUP and BayesCπ models. 

Brard and Ricard (2015), on French trotters, also observed an increase in prediction accuracies 

when including in the GBLUP model as fixed effect genotype at a SNP strongly associated with 

the studied traits. 

In our case, including the markers associated to QTL with marker effects identified previously 

in Chapter 2, especially the ones presenting the strongest effects, would probably increase the 

predictive abilities. We would have much less markers to add in our model than Brøndum et al. 

(2015) and would add them (or at least the most significant ones) as fixed effects as in Zhao et 

al. (2014) and Brard and Ricard (2015). Adding the QTL effects estimated with the hypothesis 

that all the founder lines carry a different allele, would be probably be the best option as it can 

account for multiallelic QTLs (cf. Chapter 2).  

 

Optimization of the calibration set for hybrid prediction 

Increasing the size of the calibration set allowed to increase the prediction ability but a plateau 

was reached for about 10-12 hybrids per dent-flint hybrid populations that is to say for 360 to 

432 hybrids in total. Stagnation of the predictive abilities when reaching a certain size of 

calibration set was already observed on hybrids from advanced breeding selection stages 

predicted by GBLUP by Technow et al. (2014) or predicted by support vector machine 

regression and GBLUP by Maenhout et al. (2010). Same observation was done in studies 

willing to predict maize test-cross values in connected biparental populations as in 

Riedelsheimer et al. (2013) and Lehermeier et al. (2014). It is interesting from a practical point 

of view to note that based on this result it seems possible to consider only 10 hybrids per dent-
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flint population without decreasing  predictive abilities. 

Few differences in terms of prediction accuracies were observed between T0, T1 Dent, T1 Flint 

and T2 hybrids contrary to observations made by Shrag et al. (2010), Massman et al. (2013a) 

and Technow et al. (2012, 2014) on simulations and real datasets. This may due to differences 

in design characteristics between studies. In our case, T1 hybrids in the validation set have 

generally a single half-sib hybrid in the training set whereas this number can be much more 

important in other studies (e.g. Figure S1 in Technow et al. 2014). Conversely, for a T0 hybrid, 

there will be in the calibration set many hybrids whose parents will be half-sibs or full-sibs of 

its parents. We showed the importance of hybrids issued from half-sib and full-sibs lines when 

predicting new populations, presenting one, two or three founder lines in common with the 

hybrids of the calibration set. The worst predictive abilities were obtained when calibration set 

included hybrids that only had one founder line in common with the population in the validation 

set. Increasing the number of founders in common between calibration and validation set had a 

strong positive effect of the predictive abilities. This is consistent with results obtained on test-

cross hybrids issued from a multi-parental connected design by Riedelsheimer et al. 2013. 

 

Reconsidering hybrid breeding selection schemes? 

Usually, at early selection stages, parental lines are selected based on their test-cross value with 

one or a few testers of the complementary heterotic group. Until recently this screening was 

made in parallel to self-fecundation for production of homozygous lines. Double haploid 

technology makes it possible to obtain directly large segregating populations of inbred lines. 

This facilitates the production and evaluation of large sets of inter-group single-cross hybrids 

between new unselected inbred lines. We obtained for such material prediction accuracies close 

or superior to the ones obtained on test-cross designs. Indeed, Lehermeier et al. (2014) on silage 

test-cross hybrids obtained on average predictive abilities equal to 0.41 for their dent biparental 

populations and 0.48 for their flint ones for DMY, to be compared to 0.65 in our study. For 

DMC, they were equal to 0.58 for the dent and 0.52 for the flint, to be compared to 0.77 in our 

study. This most likely relates to a higher genetic variance in our design due to the contribution 

of the two genetic groups to the total variance, instead of a single group when a tester is used. 

A next question is therefore to which extent the quality of GCA prediction with our approach 

can be compared with that of test-cross value. The decomposition we used highlights high 

accuracies of GCA for both flints and dents (0.83 and 0.79 for DMY, respectively).  

Further studies are needed to compare predictions accuracies in our design with those that could 

be obtained in a tester-based design. If the advantage of our design, or at least its equivalence, 
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in terms of prediction accuracies compared to test-cross design, is confirmed, it opens new 

perspectives for maize breeding. In test-cross evaluation, the dent lines should be evaluated in 

cross with at least one tester and similarly for the flint lines. This necessitates at least two times 

more phenotyping efforts than in our approach, which therefore could lead to a substantial 

economy in phenotyping. However, hand-made pollination is needed for creating our hybrids 

contrary to test-cross hybrids, which increases the production costs of a given quantity of hybrid 

seed. Further studies are needed to evaluate if the diminution of field plots for the hybrid 

phenotyping compensates this increased hybrid production cost. However, as a first 

approximation this increase will be about 100%, considering that a single hybrid is produced 

instead of two. Moreover, the GCA estimates using testers are biased by the SCA with the 

tester, whose choice is really important. Selection of the lines at early selection stages is 

conditioned by their specific combining abilities with the tester. This restricts the field of 

possible combinations at the second stage of hybrid testing. Our design makes it possible to 

circumvent these limits. 

 

Conclusion 

Our design, based on hybrids between two heterotic groups, allowed us to obtain good 

predictive abilities for the hybrid value and specifically for the dent and flint GCA. It highlights 

that genomic selection has the potential to uncorrelate the GCAs of the parents of hybrids with 

very economical designs in which most inbreds are only represented in a single hybrid. Further 

design optimization is needed as well as comparative studies with tester designs but we already 

obtained encouraging results for revisiting maize hybrid breeding selection scheme. Hybrids 

between unselected biparental populations of two reciprocal heterotic groups could be 

evaluated in the first steps of the selection scheme and used for estimating values of all the 

potential hybrids that could be derived from the available inbred lines, even if not involved in 

phenotyped hybrids. It would allow to explore much more combinations and diversity and will 

not restrain the field of possible parental lines combinations. So, the use of genomic selection 

expands the possibility of classical recurrent reciprocal selections schemes, which have been 

shown to be the most efficient among phenotype-based selection schemes (Coors, 1999). 
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Maize is a crop of major importance in the world presenting strong heterosis for traits related 

to biomass. Silage maize represents around 44% of the total surface grown with maize in 

France. To benefit from heterosis, F1 hybrids are cultivated in majority, although, to diminish 

seed production costs, one observed a significant return to three way hybrids involving a female 

hybrid between related lines (Lorgeou, Pers. Com.). Maize hybrid selection scheme is mostly 

based on the reciprocal recurrent selection scheme initially proposed by Comstock et al. (1949) 

that was adapted in the breeding companies. In the first step, parental lines of each heterotic 

group are evaluated and selected for their value when crossed to one or several testers of the 

complementary heterotic group. It is only in the last stages that a larger set of combinations 

between a few selected lines of each heterotic group are evaluated. Hybrid genetic value can be 

decomposed in General Combining Abilities (GCA) of the parental lines and Specific 

Combining Ability (SCA) (Sprague and Tatum 1942). Understanding the genetic architecture 

underlying hybrid value for traits of interest for breeding is of main importance from both 

theoretical and applied points of view. We studied two multiparental designs of hybrids between 

the dent and flint heterotic groups, mainly used for silage breeding in Northern Europe. The 

first design (Chapter 1) consisted in two Nested Association Mapping (NAM) designs. Parental 

lines of one NAM design were evaluated for their test-cross value with the central line of the 

complementary design used as a tester. In the second design or multiparental reciprocal design 

(Chapters 2 and 3), we evaluated hybrids issued from a factorial design between two 

multiparental connected designs. QTL detection was performed in both cases. The potential of 

genomic selection was evaluated in the NAM design by Lehermeier et al. (2014) and we 

performed genomic predictions in the second one. Our study shed new lights on the genetic 

architecture below hybrid value for silage maize and opened prospects for the use of genomic 

information in new hybrid selection schemes. 

 

QTL detection in multiparental designs 

Multiallelic QTLs heterotic group dependent 

Numerous QTLs were detected in the two multiparental studied designs allowing a better 

understanding of the genetics of hybrid value of silage maize.  

QTL detection on the test-cross hybrids of the NAM designs could be performed with 

MCQTL_LD (Jourjon et al. 2005) whereas for studying the hybrids of the factorial design, we 

had to use more complex mixed QTL detection models and implement them in ASReml-R 

(Butler et al.. 2007). Different ways of coding genotypes were used and LA and LDLA models 

were applied. Some of the QTL detection models used allowed us to detect allelic series in both 
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designs, which showed the importance of not directly considering the observed genotype but a 

haplotypic or a founder information, especially for complex traits such as yield. Compared to 

previous studies (Bardol et al. 2013), LDLA models using ancestral haplotypic information 

(modelled using “clusthaplo”, Leroux et al. 2014) yielded closer results to those of the parental 

allele model, probably because of the limited relatedness between founder lines.  

Both the NAMs and the factorial design highlighted different QTLs for dent and flint lines, 

consistent with the long term divergence between groups (Tenaillon and Charcosset 2011). 

Interestingly no QTL showed a major effect for DMY and DMC. A notable exception was a 

major QTL for flowering time, with pleiotropic effects on the other traits, which appeared on 

chromosome 10 in both studies in the flint group and most likely corresponds to the ZmCCT 

gene previously reported by Ducrocq et al. (2009). It would be interesting to compare more 

carefully in terms of number and position, the QTLs detected in our designs with the ones 

detected on silage on dent and flint diversity panels using association mapping methods by 

Rincent et al. (2014) and other results published on silage yield. Comparison of the detection 

power in the two designs is not straightforward as the diversity addressed in the factorial design 

and the number of hybrids evaluated were much lower than in the NAMs. It is nevertheless 

interesting to note the number of QTL where only slightly lower in the factorial.  

Finally, it can be noted that only very few QTL were detected for dominance effects with the 

factorial design. The contrast with the numerous dominance QTL reported by Larièpe et al. 

(2012) is most likely due to the presence of strong consanguinity in tested hybrids in her study 

vs. absence of consanguinity in our factorial design.  

 

Prospects for QTL detection 

In the reciprocal multiparental design, one founder out of four in each heterotic group was 

chosen with the objective to bring favorable alleles for digestibility. Hybrids were phenotyped 

for various digestibility traits such as DINAG (digestibility of non-starch and insoluble 

carbohydrate under the hypothesis that starch and soluble sugars are completely digestible, 

Argillier and Barrière 1996), DINAGZ (extension of the DINAG to nitrogen compounds, 

Barrière and Emile 2000), Milk Forage Unit (MFU), digestibility of the Neutral Detergent Fiber 

(NDF), of the Acid Detergent Fiber (ADF) and of the Acid Detergent Lignin (ADL). Thus, 

phenotypic data for traits directly related to silage maize performances (DINAG, DINAGZ, 

MFU, NDF) as well as data concerning cell wall composition (content in lignin, hemicellulose 

and cellulose derived from NDF, ADF and ADL) are available. Digestibility traits are expected 

to be mostly additive which was confirmed by the first variance component estimation results. 
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Except for MFU (7.5%) and NDF (10.9%) the percentage of SCA in the genetic variance was 

close to zero for all other traits. QTL detection for all these trait is currently in progress. It could 

be interesting to study in more details these traits and potentially fine-map some interesting 

QTLs. Fine-mapping of some QTLs detected in the NAM designs could also be considered 

even though the major detected QTLs seem to correspond to already known and fine-mapped 

QTLs.  

In this thesis, QTL detection was carried out on adjusted means obtained over various 

environments. It would be interesting to perform QTL detection on data from each single 

environment or preferably to perform multi-environment QTL mapping. In his association 

study, Rincent et al. (2014) detected very few QTLs for silage yield when considering ls-means 

over environments but much more associations when considering separately each field trial. 

This suggests that Genotype x Environment (G x E) interactions are important to consider for 

silage traits. One option for performing multi-environment QTL detection would be to add 

environmental variables in our QTL detection models (Boer et al. 2007). In this approach, 

genetic variances for each environment and genetic correlations between environments are first 

modelled. Then QTL detection is performed decomposing the QTL effect in a main QTL effect 

and a QTL x Environment interaction effect. In the final step, both genotypic and environmental 

variables are included in order to model QTL responses on specific environmental variables. 

This approach can be extended to multi-trait multi-environment QTL detection models 

(Malosetti et al. 2008), with or without including environmental variables. It would be 

interesting to evaluate if this approach could be extended to our QTL detection model 

decomposing the genetic effect in dent GCA, flint GCA, and SCA. Such study would be 

interesting to evaluate the stability of SCA effects in different environments. 

 

Genomic prediction in multiparental reciprocal designs  

The idea of using genomic selection at the level of factorial designs traces to Bernardo (1994). 

To our knowledge it has been applied efficiently to phases of hybrid breeding programs where 

lines have passed a first selection for hybrid value and are used in mating designs with a number 

of other lines. We showed in our study that genomic selection on hybrids obtained through a 

highly incomplete factorial mating design between two multiparental unselected populations 

gave good predictive abilities even though the majority of the inbred lines were parents of only 

one hybrid. Prediction accuracies obtained in our reciprocal multiparental design on inter-group 

single-cross hybrids between unselected lines were superior to the ones obtained on test-cross 

hybrids for silage maize by Lehermeier et al. (2014). Our higher prediction accuracies may be 
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due to a higher genetic variance due to the contributions of the two genetics groups to the total 

variance and to the fact that both inter and intra-population variations are considered. To further 

investigate prediction accuracy, we estimated accuracies of GCA and obtained high values for 

both flints and dents (0.83 and 0.79 for DMY, respectively). This shows that it was possible to 

uncorrelate the two GCAs and opens interesting prospects for revisiting inbred line selection in 

early phases of hybrid selection programs. Further studies are however needed for comparing 

the quality of GCA prediction of our approach with those based on test-cross hybrids. To do so, 

it will be necessary to evaluate jointly (i) single-crosses between inbred lines of each 

multiparental design like in our design and (ii) test-crosses of the same lines using as testers 

with few inbred lines of the other heterotic group. 

Whatever the approach used to evaluate GCA, genomic selection offers very promising 

application when coupled with double-haploid (DH) production technology. Development of 

double haploid technology now makes it possible to obtain directly large segregating 

populations of maize inbred lines without requiring several generations of self-fertilization. All 

maize populations do not respond in the same way to double haploid technology and for some, 

more particularly in the flint heterotic group, success rate may be low. Another issue is that DH 

lines do not always produce enough seeds to produce single-cross hybrids and another selfing 

generation is necessary. Genomic prediction model can be trained using single-crosses for the 

DH lines with enough seeds and used to predict GCAs of DH lines which did not have enough 

seeds available at time t. Best inbred lines from all populations will thus be chosen for entering 

in the next step of the breeding process. We also showed that on such material, we could predict 

with relative high accuracy one population which shared founders with populations of the 

training set. This opens prospects for at least a prescreening of inbred lines in new populations, 

as providing the relatedness of these with previous populations is high enough to guarantee 

prediction efficiency.  

If our study highlights a good ability to predict GCA, it also shows very strong limits with 

respect to SCA. These may first relate to intrinsic genetics features. The estimation of SCA 

variance components that we obtained using the GBLUP model were much lower than 

estimates given directly by the analysis of field plot data which suggests that epistasis might be 

a major component of SCA. One however may not preclude that out inability to predict SCA 

can be due in part to the experimental design that we used. When designing the experiment, 

choice was made to evaluate a high number of parental lines in a limited number of hybrid 

combinations (generally one), which may have limited the possibility to calibrate the SCA 

component of the model.   
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Applied prospects of the reciprocal multiparental design experiment 

Short-term applied applications are started or intended following QTL detection and genomic 

selection results, based on the genetic material already created.  

Some hybrids phenotyped in the reciprocal multiparental design showed good potential to be 

registered in the French catalogue of varieties. They were included in the 2014 and 2015 trial 

networks for further evaluation and comparison to known varieties. A few hybrids confirmed 

their potential and will be incorporated in the evaluation official trials network in view of a 

potential registration. It has to be noted that more inbred lines were created for the project than 

the ones phenotyped in hybrid combinations. Genomic prediction of the GCA of these lines 

was performed for various traits as dry matter yield but also MFU and an index trait used as a 

criteria for the registration to the French Catalogue of silage varieties. It allowed us to choose 

the best hybrid combinations considering the whole set of available inbred lines. Hybrid seeds 

will be produced in winter 2015 and the hybrids will be evaluated in field trials in summer 2016. 

In parallel to these promising hybrids, other hybrids will be created and evaluated, chosen at 

random between all the possible combinations of inbred lines. They will allow us to study the 

quality of the genomic and QTL-based predictions.  

Improving the parental inbred lines through Marker-Assisted Selection using the QTLs detected 

is also an interesting option. Choice of the crosses between the already existing parental lines 

for creating new material could be optimized in order to combine at the detected QTLs the 

maximum of favorable alleles. To do so, software such as OptiMAS (Valente et al. 2013) could 

be used. Combining information on QTLs detected for dry matter yield and dry matter content 

with information on QTLs for digestibility traits will be particularly interesting. Indeed, 

favorable alleles for digestibility traits are mostly bring by one dent and one flint founder lines 

which do not necessarily present the most favorable alleles for dry matter yield. It would be 

interesting in this context to also consider the genomic predictions of the lines selected based 

on their alleles at QTL, to take advantage of the two approaches and capture genetic variation 

not associated with detected QTL.  

 

Prospects for enhancing genomic prediction efficiency  

An alternative to our factorial design, at constant number of field single-plots, would have been 

to evaluate a more limited number of parental lines but in more hybrid combinations. Increasing 

the number of contribution of parental lines may help to better estimate the SCA of these lines 

and by extension of the lines to predict. This may however be at the cost of the number of lines 

evaluated for their GCA, so that a global optimization considering the different steps of the 
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breeding program is needed. Besides from the number of hybrids evaluated per parental line, 

another important aspect is the choice, among all possible hybrids of the one to phenotype. 

Criteria like CDmean (Rincent et al. 2012) which allowed optimization of the calibration sets 

in a diversity panel could be used for optimizing the choice of individuals in other types of 

designs. First studies are currently carried out on the NAM designs for optimizing in each group 

the calibration set in order to improve predictions made by Lehermeier et al. (2014) (Rincent, 

Moreau and Charcosset, unpublished). The CDmean approach was initially developed for 

genomic selection using additive models but it should be possible to extend it to the two GCA 

components (dent and flint in our design) and the SCA component of the hybrid value. 

One option to explore would be to perform prediction models combining genomic and QTL 

information, for instance adding some of the detected QTLs as fixed effects in a GBLUP model. 

Such models proved their efficiency for improving prediction accuracies (Zhao et al. 2014; 

Brard and Ricard 2015). SCA was not well taken into account in our GBLUP model. Other 

models should be explored which may probably better take into account SCA: reproductive 

kernel Hilbert (Gianola et al. 2006; Gianola and van Kaam 2008), BayesD (Wellmann and 

Bennewitz 2012) among others.  

Contribution of approaches similar to the Single Step GBLUP models (Legarra et al. 2014) 

should be explored. Indeed, breeding companies carry out multiple breeding programs in which 

many parental lines are evaluated but not necessarily genotyped. Huge amount of phenotypic 

data corresponding to different years and types of material is available. If reciprocal 

multiparental designs such as ours are implemented, using information from other individuals 

may improve the accuracy of the predictions. Indeed, inbred lines of heterotic groups of private 

breeding programs are strongly related and lines related to the ones we want to predict may 

have already been evaluated as single-crosses in former advanced breeding stages or as test-

crosses in former early stages of breeding programs. These individuals were phenotyped but 

not necessarily genotyped. Thus they cannot be included as such in GBLUP models. However, 

if their pedigree is known they could be included in Single Step GBLUP models. Indeed this 

method considers an extended relationship matrix H between all individuals, combining 

pedigree and genomic kinship. Single Step GBLUP showed its interest in animal breeding but 

it has to be noted that in plant breeding, pedigree are less reliable than in animal breeding. In 

addition, G x E interactions are much more important making it difficult and possibly inefficient 

to assemble data from different years, different environments in a single analysis. Information 

from specific QTLs can be added in Single Step GBLUP models by giving a different weigh to 

some SNPs (Legarra et al. 2011; Wang et al. 2012). Future mentioned developments of Single 
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Step GBLUP models are extension to crosses and to fit dominance effects (Legarra et al. 2014) 

and one may hope theses aspects will be derived soon.  

 

Reconsidering early steps of maize hybrid breeding selection programs? 

Further studies are needed to evaluate the prediction accuracies on our design compared to those 

of tester-based designs. If advantage or at least equivalence of our reciprocal multiparental 

design is confirmed, it opens new prospects for reconsidering maize breeding. Indeed test-cross 

evaluation could be replaced by single-cross evaluation between the two heterotic groups 

according to an incomplete factorial design. Test-cross evaluation, by evaluating lines of each 

heterotic group using one or a few testers of the other one, needs at least two times more 

phenotyping effort than our design. This may lead to substantial economies. However, for 

creating our single-cross hybrids, hand-made pollination is necessary, which is not the case for 

test-cross hybrid production. Thus it increases the cost of hybrid seed production for an 

individual hybrid. Further studies are needed to evaluate if this increase in production cost is 

compensated by the diminution of field plots needed for phenotypic evaluation. 

For a first evaluation and comparison of the cost of the two methods, we could consider the 

evaluation of 500 dent lines and 500 flint lines, each one observed in eight environments. For 

the test-cross evaluation, cost of seed production will be around 22€ per line (including the 

catch-up costs, considering that 10% of the pollinations failed). Considering that the dent and 

flint lines are evaluated in combination with only one tester, the seed production cost will be 

equal to (500 x 22 + 500 x 22) = 22 000€. For simplifying the cost evaluation, we will consider 

that all lines are observed only once in all environments and that there is no checks. 16 trials 

are needed for test-cross evaluation of all the lines (eight for the 500 dent lines and eight for the 

500 flint lines). Considering a field cost evaluation of one hybrid in one environment of 20€, 

we have a total cost for the field trials of (8 x 20 x 500 + 8 x 20 x 500) = 160 000€. Thus 

evaluation of the lines based on their test-cross value will cost 182 000€, considering that each 

line should be seen in one environment. For direct evaluation of the hybrids between the 500 

dent and 500 flint lines, we will consider that each line is parent of only one hybrid and we will 

thus need to produce 500 hybrids. Hand-made pollination will be needed for seed production 

and we will consider a cost of 50€ per line (including the catch-up costs, considering that 40% 

of the pollinations failed). Thus, the total cost for seed production is equal to (500 x 50) = 

25 000€. Only 8 trials will be needed for evaluating all hybrids. Considering a field cost 

evaluation of one hybrid in one environment, (8 x 20 x 500) = 80 000€ will be needed for 

phenotypic evaluation. Thus, evaluation of the lines based on a reciprocal design as studied 
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during this phD will cost 105 000€. Considering eight environments and two heterotic groups, 

evaluation of 500 lines in each heterotic groups based on their cross value according to an 

incomplete factorial allows a decrease of the costs of around 40% in comparison to their 

evaluation in test-cross. This evaluation does not take into account the differences between the 

two designs in prediction accuracies for the GCA and SCA of the lines. If prediction accuracies 

in reciprocal designs are higher than in test-cross designs, it strengthens the advantages of the 

reciprocal design compared to the test-cross one. However, private breeding companies may be 

reluctant to apply such designs as they will need to reorganize their breeding selection schemes 

(currently improvement of both heterotic groups is not completely simultaneous) and as they 

may find risky to create by hand-made pollination hybrids when both parents are not fully 

characterized for their flowering date. 

To conclude, even if further investigations are needed for comparing accuracies of reciprocal 

multiparental designs to test-cross designs and emphasize their advantages, our study shown its 

potential interest for maize hybrid selection. Maize hybrid selection schemes should be 

reconsidered in the light of the results presented in this phD manuscript.  
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Figure S1   Results of the QTL detection with each model for DMC for (A) the dent design and (B) the flint 
design. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the 
connected models by black dots. The -log10(p-values) of the LDLA – 5 cM model are represented by blue lines 
and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA – 2 cM model are represented by red 
lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA – 1-marker 
model are represented by green stars. Horizontal lines correspond to the threshold values of the different models. 
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Figure S2   Results of the QTL detection with each model for DMY for (A) the dent design and (B) the flint 
design. The results for the dent design are in the superior part, flint in the inferior part. The -log10(p-values) of the 
connected model are represented by black lines, the QTL positions of the connected models by black dots. The - 
log10(p-values) of the LDLA – 5 cM model are represented by blue lines and the QTL positions by blue diamonds. 
The - log10(p-values) of the LDLA – 2 cM model are represented by red lines and the QTL positions by red 
crosses. The - log10(p-values) of the QTL detected by the LDLA – 1-marker model are represented by green stars. 
Horizontal lines correspond to the threshold values of the different models. 
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Figure S3   Results of the QTL detection with each model for DtTAS for (A) the dent design and (B) the flint 
design. The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the 
connected models by black dots. The -log10(p-values) of the LDLA – 5 cM model are represented by blue lines 
and the QTL positions by blue diamonds. The -log10(p-values) of the LDLA – 2 cM model are represented by red 
lines and the QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA – 1-marker 
model are represented by green stars. Horizontal lines correspond to the threshold values of the different models. 
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Figure S4   Results of the QTL detection with each model for PH for (A) the dent design and (B) the flint design. 
The -log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected 
models by black dots. The -log10(p-values) of the LDLA – 5 cM model are represented by blue lines and the QTL 
positions by blue diamonds. The -log10(p-values) of the LDLA – 2 cM model are represented by red lines and the 
QTL positions by red crosses. The -log10(p-values) of the QTL detected by the LDLA – 1-marker model are 
represented by green stars. Horizontal lines correspond to the threshold values of the different models. 
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Figure S5   Allelic effects for the different dent lines for the QTL detected for DMC with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.  
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Figure S6   Allelic effects for the different dent lines for the QTL detected for DMY with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.  
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Figure S7   Allelic effects for the different dent lines for the QTL detected for DtSILK with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.  
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Figure S8   Allelic effects for the different dent lines for the QTL detected for DtTAS with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.  
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Figure S9   Allelic effects for the different dent lines for the QTL detected for PH with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero.  
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Figure S10   Allelic effects for the different flint lines for the QTL detected for DMC with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects 
estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to 
obtain a reliable estimation. 
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Figure S11   Allelic effects for the different flint lines for the QTL detected for DMY with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects 
estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to 
obtain a reliable estimation. 



196 
 

  
 
Figure S12   Allelic effects for the different flint lines for the QTL detected for DtSILK with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects 
estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to 
obtain a reliable estimation. 
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Figure S13   Allelic effects for the different flint lines for the QTL detected for DtTAS with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic effects 
estimated for EP44 were not shown because the population where it segregates was too small (17 individuals) to 
obtain a reliable estimation. 
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Figure S14   Allelic effects for the different flint lines for the QTL detected for PH with the connected model. 
Allelic effects are estimated in contrast to the central line allelic effect (F353), which was set to zero. Allelic 
effects estimated for EP44 were not shown because the population where it segregates was too small 
(17 individuals) to obtain a reliable estimation. 
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Table S1   Composition of the dent and flint designs with the number of DH lines in each family which were used 

for obtaining the consensus maps and the one which were phenotyped. 

Dent design Flint design 

Central line F353 Central line UH007 

Founder Genotyped lines Phenotyped 

lines 

Founder Genotyped lines Phenotyped 

lines 

B73 73 64 D152 112 72 

D06 103 99 EC49A 53 29 

D09 105 100 EP44 34a  17 

EC169 77 66 EZ5 50 26 

F252 105 96 F03802 129 129 

F618 108 104 F2 77 54 

Mo17 63 53 F283 134 133 

UH250 99 94 F64 108 64 

UH304 86 81 UH006 114 94 

W117 100 84 UH009 117 98 

   DK105 115 95 

Total 919 841 Total 1009 811 
a Population not used for mapping as too small 
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Table S2   Threshold values for the –log(p-value) for all the models and traits for the dent and flint groups and for 

the joint connected study. 

 DMC DMY DtSILK DtTAS PH Mean 

Dent       

Connected 3.71  3.91  3.88  4.11  3.83  3.89 

LDLA - 5cM 4.18  4.38  4.62  4.87  4.42  4.49 

LDLA - 2cM 4.26  4.46  4.61  4.94  4.50  4.55 

LDLA – 1-marker a 5.64  5.64  5.64  5.64  5.64  5.64 

Flint       

Connected 3.43  3.65  4.15  4.37  3.83  3.89 

LDLA - 5cM 4.07  4.20 4.84 5.13 4.53 4.55 

LDLA - 2cM 4.30 4.36 5.04 5.23 4.60 4.71 

LDLA – 1-marker a 5.61  5.61  5.61  5.61  5.61 5.61 

Joint       

Connected 3.49 3.94 4.02 4.85 3.74 4.00 
a The threshold value for the LDLA – 1-marker corresponded to a Bonferroni threshold for a genome-wide risk 
of 10 %. The other thresholds were calculated using 5,000 intra-family permutations of the phenotypes for a type 
I risk of 10 % across all families and the total genome. 
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Table S3   Results of the QTL detection in the flint design using the connected model. For each detected QTL, we 

showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the 

partial percentage of variance explained. We also showed the name of one of the markers located at the detected 

position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical position 

(kb) 

Genetic 

position (cM) 

Confidence 

interval -log10(p) 

R² 

 (%) 

DMC 

(%) 1 1 PZE_101172677 216581 148.3 142-149 5.4 3.2 

 2 2 PZE_102191415 234096 177.2 176-181 6.6 3.6 

 3 3 PZE_103033917 26445 - 138643 53.1 53-58 5.1 3 

 4 4 PZE_104021549 18916 - 23142 50.3 49-55 6.7 3.7 

 5 5 PZE_105085637 107137 - 138073 80.4 79-84 9.8 4.9 

 6 5 PZE_105150268 201762 133 129-138 5.3 3.1 

 7 8 PZE_108060399 107884 - 113068 64 50-65 7.4 4 

 8 10 PZE_110049849 93025 - 115573 46 46-49 59.6 26.5 

DMY 

(dt.ha-1) 1 1 PZE_101038989 25879 - 26917 52.5 52-54 7.4 3.8 

 2 1 PZE_101147651 191513 118.9 117-120 14.4 6.4 

 3 2 PZE_102152279 198891 129.6 127-141 8.5 4.2 

 4 3 PZE_103137887 191279 - 196563 100.1 96-101 12.4 5.7 

 5 4 PZE_104021283 22836 54.9 54-57 12.1 5.6 

 6 4 PZE_104152609 237454 - 237702 153.3 127-154 4.5 2.7 

 7 5 PZE_105078335 88752 - 139163 82.1 81-85 8.1 4.1 

 8 6 PZE_106097864 151579 83.5 82-84 9.5 4.6 

 9 7 PZE_107127708 170248 126.7 123-131 5.5 3.1 

 10 8 PZE_108105216 159953 94.1 92-111 6 3.2 

 11 10 PZE_110047350 88553 - 97551 44.6 44-45 34.2 14.2 

DtSILK 

(d) 1 1 PZE_101005818 4452 10.3 9-12 6.9 2.2 

 2 1 PZE_101143233 184616 113.9 101-115 26.3 6.7 

 3 1 PZE_101181658 226175 153.1 148 -198 4.6 1.6 

 4 2 PZE_102129781 178613 - 179981 102.1 101-162 5.4 1.8 

 5 3 PZE_103121610 69965 - 179545 79.5 61-80 6.8 2.1 

 6 4 PZE_104027603 23555 - 38027 55.1 52-57 31.8 8 

 7 5 PZE_105033399 17477 - 18623 59.8 54-60 6.7 2.1 

 8 5 PZE_105093579 135624 - 150088 84.2 80-86 7.3 2.2 

 9 5 PZE_105163109 204822 - 205566 138.6 132-140 5.3 1.8 

 10 6 PZE_106049962 99771 33.4 27-42 8 2.4 

 11 7 PZE_107130719 171824 131.5 125-133 5.6 1.9 
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 12 8 PZE_108067425 119151 68.4 65-91 5.3 1.8 

 13 8 PZE_108135936 175699 - 175734 139.7 117-140 6.1 2 

 14 9 PZE_109009942 11080 - 11080 31.3 31-32 13 3.5 

 15 10 PZE_110049100 91959 - 127347 49.7 49-50 94.6 27.5 

DtTAS 

(d) 1 1 PZE_101005766 4609 10.8 9-13 6.8 2.5 

 2 1 PZE_101108474 115220 - 161708 103 100-103 31.7 9 

 3 1 PZE_101198020 246399 - 250557 173.3 164-175 6.2 2.3 

 4 3 PZE_103098655 158895 67.4 67-68 9 3 

 5 3 PZE_103153521 206703 114.1 110-115 8.5 2.9 

 6 4 PZE_104025625 30431 - 37023 57 52-57 27.6 7.9 

 7 5 PZE_105068746 71898 - 87721 78.6 78-79 21.6 6.3 

 8 6 PZE_106061581 111966 - 112514 47.3 46-49 8.5 2.9 

 9 7 PZE_107127708 170248 126.7 124-130 8.5 2.9 

 10 8 PZE_108066752 118422 - 119082 68.3 68-69 15 4.6 

 11 9 PZE_109007521 8233 23.3 23-38 7.6 2.6 

 12 10 PZE_110048157 90243 - 122268 48.7 46-49 62.7 18.6 

PH (cm) 1 1 PZE_101127891 162428 - 178788 108.7 108-109 12.7 5.4 

 2 2 PZE_102074552 39031 - 55241 78 18-85 9 4.1 

 3 2 PZE_102169535 213168 143.9 140-145 6.9 3.3 

 4 4 PZE_104022475 23556 - 24765 57.2 55-60 12 5.1 

 5 5 PZE_105151348 202416 134.5 132-136 6.4 3.2 

 6 7 PZE_107061937 118305 58.2 53-62 4.9 2.6 

 7 7 PZE_107128331 170536 128.5 121-129 7.2 3.4 

 8 8 PZE_108098736 155052 87.2 87-92 17.8 7.1 

 9 10 PZE_110048157 90243 - 122268 48.7 46-49 55.4 21.7 

 



203 
 

Table S4   Results of the QTL detection in the flint design using the LDLA – 5 cM model. For each detected QTL, 

we showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the 

partial percentage of variance explained. We also showed the name of one of the markers located at the detected 

position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait 

N

b Chr Marker 

Physical position 

(kb) 

Genetic position  

(cM) -log10(p) R² (%) 

DMC (%) 1 1 PZE_101147104 190602  119.4 7.3 2.9 

 2 1 PZE_101250881 295590 225.9 5.6 2.2 

 3 2 PZE_102025627 11947 39.2 7 1.8 

 4 2 PZE_102046822 24366 63.7 7.3 3.4 

 5 2 PZE_102183284 225854 157.9 8 3 

 6 4 PZE_104021283 22836 54.9 11.2 4.8 

 7 5 PZE_105085637  107137 - 138073 80.4 10.2 4.3 

 8 5 PZE_105165365 208891 - 209048 148.7 5.2 1.6 

 9 6 PZE_106076029 131411 - 134098 64.2 4.9 2.3 

 10 8 PZE_108018911 18447 43.1 7.5 2.9 

 11 10 PZE_110049849 93025 - 115573 46 70.2 29.2 

DMY (dt.ha-1) 1 1 PZE_101147651 191513 118.9 13.3 5.7 

 2 1 PZE_101213494 263732 185.2 5.7 2.6 

 3 3 PZE_103098382 158668 - 159808 66.8 7.9 4.1 

 4 4 PZE_104020618 21905 55 13.5 6.3 

 5 4 PZE_104123129 200190 129.8 5.3 2.9 

 6 5 PZE_105068572 71700 - 72614 75.9 6.9 3.7 

 7 6 PZE_106107736 156986 95.6 4.3 1.2 

 8 7 PZE_107128866 170819 127.8 10 3.5 

 9 8 PZE_108029326 27221 - 66473 50.1 6.6 3.4 

 10 10 PZE_110045930 86778 - 109582 46.3 31.3 14.3 

DtSILK (d) 1 1 PZE_101005818 4452 10.3 5.2 1.2 

 2 1 PZE_101146834 190143 119.1 34.3 8.1 

 3 1 PZE_101199192 248322 171.8 15 3.9 

 4 2 PZE_102179704 222468 154.6 10.1 2.4 

 5 3 PZE_103098382 158668 - 159808 66.8 8.2 2.4 

 6 3 PZE_103121610 69965 - 179545 79.5 7.8 2 

 7 4 PZE_104062511 44504 - 124929 62.6 31.7 8.1 

 8 5 PZE_105078445 86146 - 140781 80.7 18.6 4.7 

 9 5 PZE_105153835 204326 - 205504 137.6 10.9 2.4 

 10 7 PZE_107133704 173181 139.3 7.6 1.6 

 11 8 PZE_108066557 118189 68.7 7.4 1.9 

 12 8 PZE_108133033 173617 133.8 6.6 1.1 
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 13 9 PZE_109009936 11079 31.6 11.6 2.8 

 14 10 PZE_110048157 90243 - 122268 48.7 98.7 29.1 

DtTAS (d) 1 1 PZE_101005765 4609 10 6.5 1.8 

 1 1 PZE_101109004 116312 - 158005 105.3 7.3 2.5 

 2 1 PZE_101147104 190602 119.4 6.9 2.2 

 3 1 PZE_101213102 263154 185.3 9 2.7 

 4 3 PZE_103098655 158895 67.4 8.9 2.7 

 5 3 PZE_103158635 210426 116.9 7.7 2.2 

 6 4 PZE_104044703 33362 - 96313 60.7 21.6 6.8 

 7 5 PZE_105066936 69125 - 83278 77.8 21.9 6.5 

 8 7 PZE_107136925 174718 144.3 5.7 1.3 

 9 8 PZE_108019174 18351 42.8 6.8 2 

 10 8 PZE_108073574 128549 - 128753 75.2 13.4 3.9 

 11 9 PZE_109009220 10008 - 10009 28.4 9.5 2.4 

 12 10 PZE_110048157 90243 - 122268 48.7 58.1 18.3 

 13 1 PZE_101005765 4609 10 6.5 1.8 

PH (cm) 1 1 PZE_101146427 189406 118.5 14.7 5.2 

 2 2 PZE_102074552 39031 - 55241 78 9.3 3.8 

 3 2 PZE_102173058 216192 146.8 7.4 2.9 

 4 4 PZE_104045760 68246 - 68323 58.7 10.6 4.4 

 5 4 PZE_104103602 179801 - 180054 102.8 6.6 2.4 

 6 5 PZE_105150122 201632 128.7 8.7 2.7 

 7 7 PZE_107128144 170420 - 170496 126.6 11.2 3.2 

 8 8 PZE_108092331 149305 - 155644 87.8 20.5 7.8 

 9 9 PZE_109008703 9311 25.5 4.8 1.3 

 10 10 PZE_110049849 93025 - 115573 46 56.8 21.7 
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Table S5   Results of the QTL detection in the flint design using the LDLA – 2 cM model. For each detected QTL, 

we showed its genetic position on the flint consensus map, its confidence interval, its level of significance and the 

partial percentage of variance explained. We also showed the name of one of the markers located at the detected 

position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical 

position (kb) 

Genetic 

position (cM) -log10(p) R²  (%) 

DMC (%) 1 1 PZE_101146598 189773 118 6.2 2.5 

 2 2 PZE_102185359 229130 - 229288 165 5 1.7 

 3 4 PZE_104018885 18916 - 23142 50.3 6.9 3.4 

 4 5 PZE_105085637 107137 - 138073 80.4 9.1 4.6 

 5 5 PZE_105163718 208374 149.2 4.5 1.9 

 6 8 PZE_108063241 113068 - 113206 64.1 6.5 3.2 

 7 10 PZE_110049849 93025 - 115573 46 46.5 20.8 

 8 10 PZE_110089009 139036 69.9 5 1.4 

DMY (dt.ha-1) 1 1 PZE_101146427 189406 118.5 14.9 5.3 

 2 2 PZE_102172077 215135 144.9 6.9 2.5 

 3 3 PZE_103097999 157939 65.4 6 1.9 

 4 3 PZE_103142979 198520 - 198581 101.6 4.7 2.5 

 5 4 PZE_104023433 26403 - 26403 52.7 15.8 5.8 

 6 4 PZE_104122410 199546 - 199546 126.5 5.4 2.6 

 7 5 PZE_105092759 133339 - 159961 84.4 7.4 3.7 

 8 6 PZE_106050624 100745 - 103709 35.4 4.6 2.2 

 9 6 PZE_106103665 155178 90.5 7.8 3.4 

 10 7 PZE_107128846 170819 128.9 9 2.9 

 11 8 PZE_108027746 26074 - 29164 49.5 6.7 3.4 

 12 10 PZE_110047350 88553 - 97551 44.6 31.7 13.4 

DtSILK (d) 1 1 PZE_101005818 4452 10.3 5.6 1.4 

 2 1 PZE_101147104 190602 119.4 33.6 9.2 

 3 1 PZE_101199859 248854 - 249092 173.9 14.2 4.1 

 4 2 PZE_102181292 222435 - 223721 156.5 6.3 1.6 

 5 3 PZE_103118006 176570 78.5 10.9 3 

 6 3 PZE_103167997 216529 126.6 9.2 1.9 

 7 4 PZE_104044892 42641 - 134020 62.5 29.6 8.8 

 8 5 PZE_105039522 24542 63.6 18 5.4 

 9 8 PZE_108133033 173617 133.8 9.2 2.1 

 10 9 PZE_109010021 11134 30.1 11.9 2.9 

 11 10 PZE_110060375 114622 - 114653 48.6 89.7 29.6 

DtTAS(d) 1 1 PZE_101005770 4610 10.5 5.3 1.5 

 2 1 PZE_101109004 116312 - 158005 105.3 16 4.7 
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 3 1 PZE_101147248 190703 121.1 6.4 1.7 

 4 1 PZE_101213479 263702 - 265655 186.8 8.9 2.3 

 5 3 PZE_103109418 170117 - 171781 75.9 9.3 2.1 

 6 3 PZE_103157683 209726 116.3 8 2.1 

 7 4 PZE_104044703 33362 - 96313 60.7 24 7.2 

 8 5 PZE_105063310 62822 - 82069 76 24 7.1 

 9 6 PZE_106064975 117082 - 122646 56.3 6.9 2.2 

 10 7 PZE_107128144 170420 - 170496 126.6 6.1 1.4 

 11 8 PZE_108019174 18351  42.8 6.8 1.9 

 12 8 PZE_108073574 128549 - 128753 75.2 16.7 4.5 

 13 9 PZE_109009220 10008 - 10009 28.4 11.2 2.5 

 14 10 PZE_110049001 89438 - 108230 47.2 61.8 18.8 

PH (cm) 1 1 PZE_101144184 187342 - 187381 118.6 14.2 4.6 

 2 2 PZE_102076936 51554 - 59013 83 9.1 3.7 

 3 2 PZE_102175167 217650 147.7 8 2.7 

 4 4 PZE_104028514 34558 - 80248 60.2 11.3 4.8 

 5 4 PZE_104104676 180887 105.6 6.2 1.5 

 6 5 PZE_105144284 198198 130.3 7.5 1.9 

 7 7 PZE_107057864 111123 - 112763 55.4 6 2.2 

 8 7 PZE_107128144 170420 - 170496 126.6 9.7 2.8 

 9 8 PZE_108092331 149305 - 155644 87.8 18.3 6.6 

 10 9 PZE_109008133 8741 25.8 5.2 1.5 

 11 10 PZE_110049849 93025 - 115573 46 56 21.3 
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Table S6   Results of the QTL detection in the flint design using the LDLA – 1-marker model. For each detected 

QTL, we showed its genetic position on the flint consensus map, its confidence interval, its level of significance 

and the partial percentage of variance explained. We also showed the name of one of the markers located at the 

detected position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical 

position (kb) 

Genetic 

position (cM) -log10(p) R²  (%) 

DMC (%) 1 2 PZE_102185353 229130 164.2 5.7 1.7 

 2 4 PZE_104033064 40693 60 6.7 2.1 

 3 5 PZE_105079359 90584 80.6 11.5 3.9 

 4 5 PZE_105143697 197846 126.4 5.7 1.7 

 5 8 PZE_108063319 113212 63.6 7.2 2.3 

 6 10 PZE_110050010 94199 45.9 44.3 18.0 

 7 10 PZE_110086343 137505 68.9 6.3 1.9 

DMY (dt.ha-1) 1 1 PZE_101128881 164375 105.8 6.3 1.8 

 2 1 PZE_101144216 187381 118.6 15.6 5.2 

 3 3 PZE_103097999 157939 65.4 10.3 3.3 

 4 4 PZE_104017088 17150 48.7 11.4 3.7 

 5 4 PZE_104021665 23190 51.4 5.8 1.7 

 6 4 PZE_104122007 198999 124 6.0 1.7 

 7 5 PZE_105094114 137392 81.5 9.7 3.1 

 8 6 PZE_106104239 155466 90.7 7.8 2.4 

 9 7 PZE_107128846 170819 128.9 8.2 2.5 

 10 8 PZE_108028156 29898 51.1 9.1 2.9 

 11 10 PZE_110050010 94199 45.9 33.0 12.2 

DtSILK (d) 1 1 PZE_101004387 3883 8.5 8.2 1.5 

 2 1 PZE_101088198 79735 90.5 10.0 1.9 

 3 1 PZE_101106156 109635 102.4 17.1 3.6 

 4 1 PZE_101151084 194731 125.8 9.4 1.8 

 5 1 PZE_101200614 249700 173.1 11.3 2.2 

 6 3 PZE_103098779 158974 61.9 11.3 2.2 

 7 4 PZE_104021514 23073 51 9.0 1.7 

 8 4 PZE_104079162 153502 69 10.8 2.1 

 9 4 PZE_104152590 237693 155.7 6.4 1.1 

 10 5 PZE_105069912 74335 76.8 21.1 4.6 

 11 5 PZE_105143119 197706 127.6 5.7 1.0 

 12 7 PZE_107128331 170536 128.5 6.5 1.2 

 13 8 PZE_108070056 122950 71 12.0 2.4 

 14 9 PZE_109009591 10597 30.3 7.1 1.3 

 15 10 PZE_110016138 16504 38.6 11.2 2.2 
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 16 10 PZE_110050010 94199 45.9 45.7 11.1 

DtTAS(d) 1 1 PZE_101004387 3883 8.5 6.1 1.2 

 2 1 PZE_101115961 138907 103.5 14.5 3.3 

 3 1 PZE_101144216 187381 118.6 23.2 5.6 

 4 1 PZE_101160171 202307 128 6.7 1.3 

 5 1 PZE_101200614 249700 173.1 8.5 1.8 

 6 3 PZE_103007349 4064 11.7 8.6 1.8 

 7 3 PZE_103098779 158974 61.9 14.0 3.2 

 8 4 PZE_104021514 23073 51 9.7 2.1 

 9 4 PZE_104079162 153502 69 10.0 2.1 

 10 5 PZE_105069912 74335 76.8 24.7 6.0 

 11 6 PZE_106066817 119166 57.4 5.5 1.0 

 12 8 PZE_108067255 118970 68.8 5.8 1.1 

 13 8 PZE_108074213 129415 75.5 10.3 2.2 

 14 9 PZE_109111133 151251 109.1 6.5 1.3 

 15 10 PZE_110018448 22128 38.9 8.9 1.9 

 16 10 PZE_110050010 94199 45.9 57.5 16.1 

PH (cm) 1 1 PZE_101145493 188172 115.6 8.3 2.4 

 2 2 PZE_102074558 55249 79.5 9.8 3.0 

 3 4 PZE_104042538 60023 63.1 11.6 3.6 

 4 5 PZE_105091638 129996 83.4 7.8 2.3 

 5 5 PZE_105134752 195420 117.6 9.9 3.0 

 6 6 PZE_106097959 151785 84.1 6.1 1.7 

 7 7 PZE_107127637 170111 126.3 7.4 2.1 

 8 8 PZE_108105216 159953 94.1 16.6 5.3 

 9 10 PZE_110050010 94199 45.9 53.9 20.6 
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Table S7   Results of the QTL detection in the dent design using the connected model. For each detected QTL, we 

showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the 

partial percentage of variance explained. We also showed the name of one of the markers located at the detected 

position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker Physical position 

(kb) 

Genetic 

position 

(cM) 

Confidence 

interval 

-log10(p) R² 

 (%) 

DMC (%) 1 1 PZE_101031077 19101 35.2 32-39 11.7 4.8 

 2 2 PZE_102011868 5425 17.1 16-18 13.4 5.3 

 3 2 PZE_102149235 195177 - 197936 94.4 88-100 5.4 2.6 

 4 3 PZE_103091082 150173 - 165855 63.5 58-64 16.8 6.5 

 5 4 PZE_104079076 153406 59 57-61 10 4.2 

 6 5 PZE_105026024 13303 - 13313 42.8 42-45 10.6 4.4 

 7 6 PZE_106002839 3588 - 3869 2.9 1-6 10.4 4.3 

 8 6 PZE_106098045 151822 75.1 72-79 9.6 4.1 

 9 8 PZE_108058161 103705 - 103897 51.3 51-58 18 6.9 

 10 9 PZE_109009836 10943 29.3 27-30 6 2.8 

 11 9 PZE_109096235 141951 74.4 70-76 6.8 3.1 

 12 10 PZE_110048796 91481 - 107902 46.4 27-53 5.7 2.7 

DMY 

(dt.ha-1) 1 1 PZE_101071870 54342  59.2 57-62  5.7 3.8 

 2 1 PZE_101215677 266310 - 266369 144.6 123-160 5.5 3.7 

 3 3 PZE_103108908 169730 - 172477 70.8 66-76 5.5 3.7 

 4 3 PZE_103160673 211719 - 212707 116.2 115-129 6.2 4 

 5 3 PZE_103185177 229665 147.3 146-148 6.3 4.1 

 6 6 PZE_106038467 86549 16.8 9-20 14.9 8 

 7 7 PZE_107066645 123598 - 126465 58.2 57-61 11.7 6.6 

 8 8 PZE_108057442 102536 - 108663 52.9 52-53 14.2 7.7 

DtSILK (d) 1 1 PZE_101033622 21685 38.5 32-39 11.6 4.7 

 2 1 PZE_101081841 69289 - 70518 66.2 65-67 4.6 2.3 

 3 1 PZE_101194503 241368 - 244469 129.1 128-133 6.6 3 

 4 2 PZE_102148927 195747 - 196529 93.9 93-96 9.1 3.8 

 5 3 PZE_103110415 170772 - 174828 72 65-72 15.9 6.1 

 6 3 PZE_103147207 201536 - 202769 103.4 101-110 5.5 2.6 

 7 6 PZE_106095147 150309 72.4 70-74 13 5.1 

 8 7 PZE_107072681 129265 63.2 43-67 8.4 3.6 

 9 8 PZE_108057885 103311 50.4 50-54 26.4 9.6 

 10 9 PZE_109020361 18684 - 20598 42.9 38-45 5 2.5 

 11 10 PZE_110057591 110540 - 120784 49.8 49-52 7.2 3.2 
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DtTAS (d) 1 1 PZE_101033622 21685 38.5 36-39 10.8 5.4 

 2 2 PZE_102157405 204235 99.8 99-100 6 3.4 

 3 3 PZE_103101981 162179 - 167076 63.7 61-65 23.2 10.4 

 4 5 PZE_105144068 198031 91.6 91-96 7.3 3.9 

 5 7 PZE_107076807 132075 67.1 48-68 13.7 6.5 

 6 8 PZE_108058411 104281 - 104625 53.7 50-55 19.4 8.8 

 7 9 PZE_109092637 139196 - 140154 71.3 56-74 7.1 3.9 

PH (cm) 1 1 PZE_101018818 10905 23.7 21-24 7.5 3 

 2 1 PZE_101133561 172881 - 172940 81.5 80-84 13.2 4.7 

 3 1 PZE_101196829 245032 - 245219 131 127-133 17.9 6.1 

 4 3 PZE_103110278 170548 71.8 69-73 8.1 3.2 

 5 4 PZE_104073340 138154 - 144727 55.2 53-58 6.9 2.8 

 6 5 PZE_105065019 66038 - 79496 59.4 58-60 7.1 2.9 

 7 6 PZE_106040994 89408 - 91643 19.9 19-20 27.7 9.1 

 8 7 PZE_107005418 3665 - 3667 12.3 2-16 5.1 2.2 

 9 7 PZE_107080996 135892 71.4 71-72 17.6 6 

 10 8 PZE_108056028 100939 - 102711 49.7 49-52 23.3 7.7 

 11 8 PZE_108078317 130737 - 134065 68.8 68-69 14.9 5.2 

 12 9 PZE_109025803 25986 49.1 48-50 4 1.9 

 13 9 PZE_109086708 134570 - 135460 67.8 67-70 7.8 3.1 

 14 10 PZE_110008028 6072  22.6 22-26 12.2 4.4 
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Table S8   Results of the QTL detection in the dent design using the LDLA – 5 cM model. For each detected QTL, 

we showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the 

partial percentage of variance explained. We also showed the name of one of the markers located at the detected 

position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical 

position (kb) 

Genetic 

position (cM) -log10(p) 

R²  

(%) 

DMC (%) 1 1 PZE_101028121 16789 - 17963 31.6 11 3.9 

 2 1 PZE_101150204 193868 - 194764 92 4.9 2 

 3 1 PZE_101202934 249700 - 251159 134.9 7.9 3.1 

 4 2 PZE_102006385 3379 9.6 6.4 1.5 

 5 2 PZE_102150016 196649 94 8.9 2.9 

 6 3 PZE_103038564 33572 - 56014 46 17.6 6.4 

 7 3 PZE_103151042 204999 105 5.4 2.3 

 8 4 PZE_104081311 155805 59.6 10.2 4 

 9 5 PZE_105047074 35783 - 36699 52.3 12.4 4.9 

 10 6 PZE_106007445 18846 - 21466 9.9 11.7 4.3 

 11 6 PZE_106096901 150891 71.7 12.7 4.6 

 12 7 PZE_107040665 154074 66.8 3.6 1.7 

 13 8 PZE_108057885 103311 50.4 19.1 6.1 

 14 9 PZE_109089324 137410 68.6 9 3.5 

 15 10 PZE_110012467 10879 31.8 7.7 2.2 

DMY (dt.ha-1) 1 3 PZE_103116584 175989 78.9 8 3.9 

 2 3 PZE_103162977 213416 117.8 7.8 4.3 

 3 6 PZE_106038467 86549 16.8 13.8 8.1 

 4 7 PZE_107066645 123598 - 126465 58.2 8.8 5.6 

 5 8 PZE_108057442 102536 - 108663 52.9 10.3 5.8 

DtSILK (d) 1 1 PZE_101033622 21685 38.5 22.6 7.2 

 2 1 PZE_101205734 251079 - 254464 136.4 6.7 2.4 

 3 2 PZE_102152020 198672 94.5 15 4.5 

 4 3 PZE_103086165 142732 - 157202 61.7 10 3.6 

 5 3 PZE_103122617 180515 78.6 16.3 4.7 

 6 5 PZE_105049624 41635 - 58706 56.3 4.8 2.2 

 7 6 PZE_106094705 149930 71 16.5 5.4 

 8 7 PZE_107045046 25471 - 104886 43.9 7.4 3 

 9 7 PZE_107107125 158951 - 158952 82.1 5.8 2 

 10 8 PZE_108058411 104281 - 104625 53.7 27.7 8.9 

 11 9 PZE_109098496 143352 77.3 5.5 2 

 12 10 PZE_110057591 110540 - 120784 49.8 8 3.1 

DtTAS(d) 1 1 PZE_101032015 19641 - 21075 35.7 13.2 4.8 
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 2 2 PZE_102159907 206081 - 207151 102.9 7.1 2.8 

 3 3 PZE_103098157 158352 60.8 21 7.6 

 4 3 PZE_103143600 199245 - 201331 102.2 8 3.1 

 5 5 PZE_105143985 197957 - 200116 95.6 5.1 2 

 6 6 PZE_106033981 79499 - 86347 16 6.1 2.7 

 7 6 PZE_106092387 148530 - 150461 72 6 2.5 

 8 7 PZE_107045046 25471 - 104886 43.9 7.6 3.4 

 9 7 PZE_107099124 152685 - 155704 79.9 6.1 2.7 

 10 8 PZE_108062375 111291 54.3 23.6 8.3 

 11 9 PZE_109094832 141175 73.4 11.1 3.9 

PH (cm) 1 1 PZE_101018868 10962 21.4 5.5 2.1 

 2 1 PZE_101133356 172811 81.4 12.9 4.4 

 3 1 PZE_101196829 245032 - 245219 131 17.9 6.1 

 4 3 PZE_103111112 171438 - 175550 75.5 10.8 3.9 

 5 4 PZE_104073340 138154 - 144727 55.2 4.9 2 

 6 4 PZE_104136077 202589 - 227111 109.7 7.4 2.6 

 7 5 PZE_105068432 70082 - 86033 60.4 6.1 2.7 

 8 6 PZE_106040975 89403 - 89404 19.3 28.4 9.3 

 9 7 PZE_107076796 132076 65.4 19 6.3 

 10 8 PZE_108056028 100939 - 102711 49.7 25.7 8.2 

 11 8 PZE_108079422 133563 - 138524 71.4 11.7 4.1 

 12 9 PZE_109085253 133933 68.1 21.3 7.2 

 13 10 PZE_110014332 11179 - 13553 33.8 11 3.3 
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Table S9   Results of the QTL detection in the dent design using the LDLA – 2 cM model. For each detected QTL, 

we showed its genetic position on the dent consensus map, its confidence interval, its level of significance and the 

partial percentage of variance explained. We also showed the name of one of the markers located at the detected 

position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical position 

(kb) 

Genetic 

position (cM) -log10(p) R² (%) 

DMC (%) 1 1 PZE_101036345 23712 38 12.4 4 

 2 1 PZE_101154088 194939 - 197272 93.9 6.2 2.3 

 3 1 PZE_101203104 250888 131.9 7.1 2.8 

 4 2 PZE_102002360 1724 4.7 8.5 2 

 5 2 PZE_102017964 8279 23.4 7.7 2.2 

 6 2 PZE_102152020 198672 94.5 8.5 3 

 7 3 PZE_103093079 154090 - 160936 63.9 16.7 5.4 

 8 3 PZE_103148259 202185 104.1 5.4 2 

 9 4 PZE_104076988 151510 - 151684 56.9 10.3 3.5 

 10 5 PZE_105047074 35783 - 36699 52.3 13.3 4.9 

 11 6 PZE_106020123 14400 - 24611 10 14.3 4.4 

 12 6 PZE_106097959 151785 73.1 14.1 4.3 

 13 7 PZE_107045895 24563 - 103626 43.6 5.8 2.4 

 14 8 PZE_108061901 110744 - 115294 57.2 19.7 6.4 

 15 9 PZE_109091148 138616 - 138617 69.6 12.7 4.2 

 16 10 PZE_110012769 11241 33 8.2 2.2 

DMY (dt.ha-1) 1 1 PZE_101183895 228556 119.6 4.8 2.3 

 2 3 PZE_103113115 172857 - 178134 78.3 8.4 4 

 3 3 PZE_103159262 210755 - 210760 114.6 7.8 3.7 

 4 6 PZE_106032535 75517 - 86627 15.5 13.3 6.9 

 5 7 PZE_107069530 126351 58.1 9.3 5 

 6 8 PZE_108057745 103023 - 103457 53 10.5 5.8 

DtSILK (d) 1 1 PZE_101035008 19696 - 22646 37.8 22 6.9 

 2 1 PZE_101205734 251079 - 254464 136.4 7.4 2.2 

 3 2 PZE_102151348 197954 94.7 12.9 4.1 

 4 3 PZE_103086165 142732 - 157202 61.7 10.2 3.7 

 5 3 PZE_103122617 180515 78.6 16.3 4.7 

 6 5 PZE_105049624 41635 - 58706 56.3 4.9 2.3 

 7 6 PZE_106095370 150525 - 150588 72.6 17.5 5.1 

 8 7 PZE_107045046 25471 - 104886 43.9 8.7 3.3 

 9 7 PZE_107106025 158126 81.1 6.1 2 

 10 8 PZE_108062521 111781 54.6 28.2 8.9 

 11 9 PZE_109098632 143808 78.5 6.1 2.1 
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 12 10 PZE_110057591 110540 - 120784 49.8 7.8 3 

DtTAS(d) 1 1 PZE_101032015 19641 - 21075 35.7 12.9 5 

 2 2 PZE_102161022 207043 102.3 6.5 2.6 

 3 3 PZE_103098157 158352 60.8 21.2 8.3 

 4 3 PZE_103143600 199245 - 201331 102.2 7.8 3.2 

 5 5 PZE_105143697 197846 - 200369 95.5 5 2.2 

 6 7 PZE_107045046 25471 - 104886 43.9 6.1 2.9 

 7 7 PZE_107099124 152685 - 155704 79.9 6 2.9 

 8 8 PZE_108058411 104281 - 104625 53.7 20 7.6 

 9 9 PZE_109090152 137787 - 138020 70.1 9.2 3.7 

PH (cm) 1 1 PZE_101132703 171230 - 178401 82.3 10.6 4.1 

 2 1 PZE_101196829 245032 - 245219 131 15.9 6 

 3 3 PZE_103119393 178152 - 178564 79.1 8.9 2.8 

 4 4 PZE_104073794 145614 55.7 6.4 2.5 

 5 4 PZE_104138654 204861 - 226068 109.4 6.2 2.5 

 6 5 PZE_105070660 74660 - 145496 61.9 5.2 2.5 

 7 6 PZE_106044620 93734 20.4 20.4 6.4 

 8 7 PZE_107077092 132190 66.5 19.9 6.5 

 9 8 PZE_108038271 26346 - 65101 43.6 22.4 8.1 

 10 8 PZE_108081297 133441 - 143002 71.9 8.6 3.3 

 11 9 PZE_109085253 133933 68.1 14.6 5.4 

 12 10 PZE_110013838 12922 35.9 10.4 4.2 
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Table S10   Results of the QTL detection in the dent design using the LDLA – 1-marker model. For each detected 

QTL, we showed its genetic position on the dent consensus map, its confidence interval, its level of significance 

and the partial percentage of variance explained. We also showed the name of one of the markers located at the 

detected position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical 

position (kb) 

Genetic position 

(cM) -log10(p) R² (%) 

DMC (%) 1 1 PZE_101043094 29355 43.3 8.5 2.6 

 2 2 PZE_102015152 6459 20.9 15.3 5.1 

 3 2 PZE_102150016 196649 94 6.9 2.0 

 4 3 PZE_103038375 33073 45.8 14.2 4.7 

 5 4 PZE_104077580 151818 57 8.5 2.6 

 6 5 PZE_105043990 31444 54.4 9.7 3.0 

 7 6 PZE_106020569 16293 9.3 6.4 1.9 

 8 6 PZE_106092387 148530 72 6.3 1.8 

 9 8 PZE_108054499 97030 50.2 9.8 3.1 

 10 8 PZE_108104357 159498 81.9 5.6 1.6 

 11 9 PZE_109098884 143900 78.9 9.8 3.1 

 12 10 PZE_110073412 130077 53.5 8.5 2.6 

DMY (dt.ha-1) 1 3 PZE_103115334 175353 78.1 9.0 3.6 

 2 3 PZE_103162977 213416 117.8 9.0 3.7 

 3 6 PZE_106031833 74460 14.6 14.0 6.0 

 4 7 PZE_107026145 29198 41.6 7.7 3.0 

 5 8 PZE_108054494 97029 50.5 10.4 4.3 

DtSILK (d) 1 1 PZE_101032230 19696 37.8 8.8 2.4 

 2 1 PZE_101076734 60701 61 11.4 3.3 

 3 2 PZE_102150016 196649 94 8.9 2.5 

 4 3 PZE_103104448 165863 71.3 15.7 4.7 

 5 3 PZE_103132614 188530 91.1 8.1 2.2 

 6 5 PZE_105054634 51432 55.4 6.4 1.7 

 7 6 PZE_106092387 148530 72 13.8 4.1 

 8 7 PZE_107023943 25471 43.9 13.0 3.8 

 9 8 PZE_108026961 27634 45.5 5.7 1.5 

 10 8 PZE_108063387 113292 57.3 10.1 2.9 

 11 10 PZE_110062675 117753 50.1 6.9 1.8 

DtTAS(d) 1 1 PZE_101035341 23055 39.2 13.3 4.6 

 2 3 PZE_103104448 165863 71.3 26.8 10.1 

 3 6 PZE_106092387 148530 72 5.8 1.8 

 4 7 PZE_107061937 118305 50.8 6.8 2.1 

 5 7 PZE_107100713 155251 79.6 6.7 2.1 



216 
 

 6 8 PZE_108057325 102454 51.5 22.5 8.3 

 7 9 PZE_109071914 116752 59.8 7.3 2.3 

PH (cm) 1 1 PZE_101132469 170852 80.9 6.5 1.9 

 2 1 PZE_101191970 238427 127.1 8.4 2.6 

 3 2 PZE_102068532 46438 61.8 6.8 2.0 

 4 3 PZE_103104448 165863 71.3 6.0 1.7 

 5 4 PZE_104082879 156995 61.4 6.0 1.7 

 6 6 PZE_106040890 89137 19.4 19.4 6.7 

 7 7 PZE_107084200 139526 76.4 15.9 5.4 

 8 8 PZE_108014288 14088 32 15.9 5.4 

 9 9 PZE_109080822 128851 65.9 18.5 6.4 

 10 10 PZE_110009551 7563 29.4 6.3 1.8 
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Table S11   Results of the QTL detection in the joint analysis using the connected model. For each detected QTL, 

we showed its genetic position on the dent-flint consensus map, its confidence interval, its level of significance 

and the partial percentage of variance explained. We also showed the name of one of the markers located at the 

detected position and their range of physical position(s) on the B73 v2 genome (Gore et al. 2009). 

Trait Nb Chr Marker 

Physical position 

(kb) 

Genetic 

position (cM) -log10(p) 

R² 

(%) 

DMC (%) 1 1 PZE_101032230 19696 - 19975 41.3 8.5 2.3 

 2 1 PZE_101103995 104611 - 113689 93.3 5.2 1.7 

 3 1 PZE_101202934 251103 - 251159 160.4 4.5 1.6 

 4 1 PZE_101247063 292581 200.4 4.3 1.5 

 5 2 PZE_102012595 5556 17.2 21.4 4.5 

 6 2 PZE_102178263 220854 131.3 6.9 2 

 7 3 PZE_103033638 26310 - 30050 45.4 9.3 2.5 

 8 3 PZE_103100449 160755 65.5 7.5 2.1 

 9 4 PZE_104032843 40344 - 65470 54.6 13.8 3.3 

 10 4 PZE_104143137 231732 130.7 4.4 1.6 

 11 5 PZE_105025123 12581  42.6 17.6 3.8 

 12 6 PZE_106005094 6514 6.3 10.1 2.6 

 13 6 PZE_106082658 139918 - 142454 66 11.8 2.9 

 14 7 PZE_107012564 9201 33.9 4.7 1.6 

 15 8 PZE_108063387 112547 - 113298 63.4 21.7 4.5 

 16 9 PZE_109010670 11079 - 11504 30.8 3.9 1.5 

 17 9 PZE_109096248 141983 82.5 5.4 1.7 

 18 10 PZE_110047687 89209 - 111680 47.7 68.5 12.5 

DMY (dt.ha-1) 1 1 PZE_101145302 188026 - 188087 109.4 12.2 3.6 

 2 1 PZE_101215394 266047 170.9 10.4 3.2 

 3 2 PZE_102013856 5997 - 6049 18.5 5.2 2.1 

 4 2 PZE_102066516 44332 67.4 7.2 2.6 

 5 3 PZE_103010658 5853 21.6 7.6 2.6 

 6 3 PZE_103098655 158895 - 161562 65.7 9.5 3.1 

 7 3 PZE_103162977 213416 120.4 5.3 2.1 

 8 4 PZE_104025845 28986 - 32061 51.5 13.5 3.9 

 9 5 PZE_105103128 155811 - 160460 78 8.8 2.9 

 10 6 PZE_106037747 81440 - 86559 18.3 9.9 3.1 

 11 6 PZE_106050075 99944  34 11.4 3.4 

 12 6 PZE_106106971 156749  88.4 9.2 3 

 13 7 PZE_107025551 28013 - 100690 44.8 8.3 2.8 

 14 7 PZE_107127637 170111 - 170248 119.3 5.9 2.3 

 15 8 PZE_108060398 107884 - 111781 62.1 12.1 3.6 
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 16 10 PZE_110043381 82670 - 84599 43.2 38.6 8.9 

DtSILK (d) 1 1 PZE_101005770 4452 - 4610 9.4 6.4 1.8 

 2 1 PZE_101034085 21984 - 21992 42.7 10 2.3 

 3 1 PZE_101105390 102985 - 118116 93.6 19.2 3.7 

 4 1 PZE_101195591 244158 - 244596 155.9 11.2 2.5 

 5 2 PZE_102161485 206123 - 207224 123 13.3 2.8 

 6 3 PZE_103098655 158895 - 161562 65.7 12.7 2.7 

 7 3 PZE_103128597 185274 - 187610 93.2 9.1 2.2 

 8 4 PZE_104025181 29345 - 30933 51.8 22.8 4.2 

 9 5 PZE_105050638 42662 - 51518 61.2 16.8 3.3 

 10 6 PZE_106097991 151792 77.3 11.7 2.6 

 11 7 PZE_107072354 128648 - 128709 68.9 14.8 3.1 

 12 8 PZE_108061059 107884 - 109378 60.7 27.9 5 

 13 9 PZE_109010476 11398 30.3 11.4 2.5 

 14 9 PZE_109094832 141175 82.6 5.1 1.6 

 15 10 PZE_110047800 89438 - 106051 47.4 93 15.2 

DtTAS(d) 1 1 PZE_101033489 21569 - 22464 43 12.1 2.5 

 2 1 PZE_101140981 182104 - 184245 105 41.4 6.6 

 3 1 PZE_101216412 267537 - 267568 171.5 12.3 2.5 

 4 3 PZE_103098655 158895 - 161562 65.7 30.9 5.1 

 5 3 PZE_103152007 205694 109.8 11.3 2.4 

 6 4 PZE_104022348 23525 - 25988 49.6 25.7 4.4 

 7 5 PZE_105059330 58137 - 72409 66 29.1 4.9 

 8 5 PZE_105138874 193728 108.2 7.8 1.9 

 9 6 PZE_106090469 147428 71.3 6.8 1.7 

 10 7 PZE_107040665 66316 – 171898 75.4 13.6 2.7 

 11 7 PZE_107130789 171926 126.3 6.2 1.6 

 12 8 PZE_108018453 18973 42.2 11.8 2.4 

 13 8 PZE_108070788 123843 69.2 20.3 3.6 

 14 9 PZE_109020361 20598 - 20829 47.7 10.7 2.3 

 15 9 PZE_109089874 137784 78 10.3 2.2 

 16 9 PZE_109119196 153947 120.8 6.8 1.7 

 17 10 PZE_110050293 94969 - 106961 47.5 77 12 

PH (cm) 1 1 PZE_101021455 12363 29.3 5.1 1.4 

 2 1 PZE_101106839 111278 - 150672 93.9 20.8 3.7 

 3 1 PZE_101184213 229073  145.9 13.7 2.7 

 4 2 PZE_102011812 5379 17.1 5.9 1.6 

 5 2 PZE_102076989 59015 - 62213 74.2 20.2 3.6 

 6 2 PZE_102169349 212884 128.1 9.6 2.1 

 7 3 PZE_103017768 10455 33.7 8.1 1.9 
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 8 3 PZE_103132826 188571 - 188925 94.8 11.8 2.5 

 9 3 PZE_103175533 221582 - 221583 135.2 7.1 1.8 

 10 4 PZE_104022152 23948 - 24979 49.7 13.8 2.7 

 11 4 PZE_104132688 215436 - 227111 120.7 9 2 

 12 5 PZE_105084182 101590 - 150275 73.1 9.6 2.1 

 13 5 PZE_105152260 203315 120.3 7.4 1.8 

 14 6 PZE_106049618 98629 30.4 21.2 3.8 

 15 7 PZE_107072030 128141 - 128146 66.4 18 3.3 

 16 7 PZE_107126258 168905 115.7 10.4 2.3 

 17 8 PZE_108009237 9875 25.6 7.3 1.8 

 18 8 PZE_108056704 101776 - 102656 57 8.1 1.9 

 19 8 PZE_108096469 152593 - 153140 85.5 17.3 3.2 

 20 9 PZE_109077113 124694 - 130885 70.9 19.7 3.6 

 21 10 PZE_110047799 89438 - 97551 46.6 77.4 12.2 
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Appendix II: Supporting information of Chapter 2 
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Figure S1   -log(p-value) curves of QTL detection for Dry Matter Content (DMC) with (a) the “Founder alleles” 
model, (b) the “SNP within-group” model, (c) the “Hybrid genotype” model. The chromosome number is indicated 
on the abscissa. For the “Founder alleles” (a) and the “SNP within-group” (b) models, the graphic at the top 
corresponds to the global effects at the markers. The other graphics correspond to the different components of the 
decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the “Hybrid genotype” 
model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect 
of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to 
the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots 
correspond to those that were above the threshold. The red squares correspond to the –log(p-value) of the QTLs 
that were included in the final multi-locus model. An upper limit for the –log(pval) was fixed to 16. 
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Figure S2   -log(p-value) curves of QTL detection for Female Flowering (DtSILK) with (a) the “Founder alleles” 
model, (b) the “SNP within-group” model, (c) the “Hybrid genotype” model. The chromosome number is indicated 
on the abscissa. For the “Founder alleles” (a) and the “SNP within-group” (b) models, the graphic at the top 
corresponds to the global effects at the markers. The other graphics correspond to the different components of the 
decomposed effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the “Hybrid genotype” 
model, the graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect 
of the markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to 
the significance levels of tests below the threshold at the first step of the forward procedure, the blue dots 
correspond to those that were above the threshold. The red squares correspond to the –log(p-value) of the QTLs 
that were included in the final multi-locus model. An upper limit for the –log(pval) was fixed to 16. 
 
  



225 
 

 
 
Figure S3   -log(p-value) curves of QTL detection for Plant height (PH) with (a) the “Founder alleles” model, (b) 
the “SNP within-group” model, (c) the “Hybrid genotype” model. The chromosome number is indicated on the 
abscissa. For the “Founder alleles” (a) and the “SNP within-group” (b) models, the graphic at the top corresponds 
to the global effects at the markers. The other graphics correspond to the different components of the decomposed 
effects: from the top to the bottom: the flint GCA, the dent GCA, the SCA. For the “Hybrid genotype” model, the 
graphic at the top corresponds to the global effect at the markers, the middle part to the additive effect of the 
markers and the bottom part to the dominance effect of the markers. The grey and black dots correspond to the 
significance levels of tests below the threshold at the first step of the forward procedure, the blue dots correspond 
to those that were above the threshold. The red squares correspond to the –log(p-value) of the QTLs that were 
included in the final multi-locus model. An upper limit for the –log(pval) was fixed to 16. 
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Table S1   Results of the QTLs detection for the “Hybrid Genotype” model for the four studied traits: Dry Matter 
Content (DMC), Dry Matter Yield (DMY), Silking Date (DtSILK), Plant Height (PH). For each QTL, the 
chromosome (Chr), the marker (Mk), the genetic position in cM (Gen pos), the physical position in kbp (Phys 
pos), the –log(p-value) of the additive part of its effect (-log(Ad)), the –log(p-value) of the dominance part of its 
effect (-log(Dom)), the –log(p-value) of its global effect (-log(Global)), the explained R² in % (R²) are indicated. 
 
Trait Nb Chr Mk Gen pos Phys pos -log(Ad) -log(Dom) -log(Global) R² 

DMC          

 1 1 PZE-101023852 28.7 14032 5,2 0,04 4,46 0,91 

 2 1 PZE-101107138 97.9 112147 5,6 0,17 4,83 0,98 

 3 1 PZE-101141198 107.1 182293 14,5 0,49 13,68 2,76 

 4 1 PZE-101210621 173.7 260145 6,2 1,17 6,10 1,23 

 5 2 PZE-102080558 82.3 64362 8,6 0,36 7,83 1,60 

 6 3 PZE-103142982 113.4 198521 6,1 0,45 5,47 1,24 

 7 4 PZE-104129789 130.5 210477 10,1 0,08 9,17 1,87 

 8 5 PZE-105100982 73.2 151631 6,6 0,77 6,19 1,10 

 9 6 PZE-106068323 51.9 121253 6,0 0,49 5,38 1,09 

 10 8 PZE-108075290 71 130926 10,9 0,60 10,22 2,09 

 11 9 PZE-109038235 58.7 56424 5,1 0,59 4,62 0,93 

 12 10 PZE-110007567 10.9 5875 5,1 0,17 4,34 0,87 

 13 10 PZE-110049918 44.3 94001 37,7 1,18 37,2 7,47 

 14 10 PZE-110060381 48.8 114656 12,1 1,71 12,32 2,48 

DMY          

 1 2 PZE-102096468 86 111010 7,9 1,28 7,860 2,21 

 2 2 PZE-102160945 135.8 207038 5,0 0,04 4,251 1,20 

 3 3 PZE-103108225 76.5 169072 8,4 1,90 8,876 2,48 

 4 3 PZE-103125956 95.8 183577 5,3 0,09 4,522 1,28 

 5 4 PZE-104078143 74.5 152444 7,4 0,16 6,553 1,90 

 6 4 PZE-104129789 130.5 210477 5,6 0,36 4,988 1,44 

 7 5 PZE-105077552 65.2 87115 4,8 1,94 5,430 1,49 

 8 6 PZE-106055176 39.1 105598 5,1 0,19 4,404 1,25 

 9 8 PZE-108088583 77.5 145907 11,9 1,70 12,163 3,46 

 10 9 PZE-109052698 60.5 91043 4,9 0,32 4,252 1,18 

 11 10 PZE-110020953 33.7 27697 10,6 0,02 9,647 2,75 

DtSILK          

 1 1 PZE-101138117 105.5 179183 4,8 2,90 6,306 1,53 

 2 1 PZE-101199598 164.9 248737 4,8 0,60 4,335 1,05 

 3 2 PZE-102018300 22.3 8782 8,0 1,16 7,881 1,91 

 4 2 PZE-102160945 135.8 207038 8,6 0,27 7,799 1,92 

 5 3 PZE-103109418 77.8 170117 6,0 0,13 5,237 1,27 

 6 4 PZE-104078143 74.5 152444 10,0 1,39 10,009 2,45 

 7 4 PZE-104117192 125.1 193348 5,3 0,30 4,654 1,14 

 8 5 PZE-105012348 12.9 5384 9,0 0,24 8,134 1,98 

 9 5 PZE-105077552 65.2 87115 11,0 0,00 10,042 2,44 

 10 5 PZE-105117653 89.7 174358 6,4 0,14 5,583 1,36 

 11 7 PZE-107132427 141.6 172725 7,8 0,17 6,930 1,67 

 12 8 PZE-108028681 49.8 26352 4,9 1,10 4,784 1,18 
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 13 8 PZE-108077879 71.8 133563 12,5 1,94 12,954 3,10 

 14 9 PZE-109098682 95.5 143862 5,2 0,12 4,494 1,09 

 15 10 PZE-110046358 42.1 87170 5,6 0,53 5,040 1,24 

 16 10 PZE-110049918 44.3 94001 50,6 0,73 49,7 12,01 

PH          

 1 1 PZE-101152239 117.8 195684 12,6 0,30 11,75 2,67 

 2 2 PZE-102037297 43.3 17988 10,1 0,41 9,30 2,11 

 3 2 PZE-102119036 93.8 160729 7,2 0,03 6,33 1,41 

 4 2 PZE-102168063 142.1 211948 4,4 1,83 4,94 1,08 

 5 3 PZE-103051361 49.5 56901 4,7 0,29 4,03 0,92 

 6 3 PZE-103102119 69.8 162433 5,0 0,71 4,63 1,02 

 7 3 PZE-103128864 98.8 185839 7,7 0,16 6,90 1,54 

 8 4 PZE-104129789 130.5 210477 5,8 0,40 5,12 1,16 

 9 5 PZE-105075570 64.1 83398 4,4 1,70 4,87 1,04 

 10 8 PZE-108036758 52.6 57215 8,5 1,00 8,20 1,86 

 11 9 PZE-109061773 64 103353 6,3 0,59 5,79 1,31 

 12 9 PZE-109082918 77.1 131575 5,6 0,27 4,93 1,13 

 13 10 PZE-110020737 33.7 27318 12,5 0,71 11,87 2,68 
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Table S2   Results of the QTLs detection for the “SNP within-group” model for the four studied traits: Dry Matter 
Content (DMC), Dry Matter Yield (DMY), Silking Date (DtSILK), Plant Height (PH). For each QTL, the 
chromosome (Chr), the marker (Mk), the genetic position in cM (Gen pos), the physical position in kbp (Phys 
pos), the –log(p-value) of the flint GCA part of its effect (-log(GCAf)), the –log(p-value) of the dent GCA part of 
its effect (-log(GCAd) ), the –log(p-value) of the SCA part of its effect (-log(SCA)),  the –log(p-value) of its global 
effect (-log(Global)), the explained R² in % (R²) are indicated. 
 
Trait Nb Chr Mk Gen 

pos 
Phys pos -log 

(GCAf) 
-log 
(GCAd) 

-log 
(SCA) 

-log 
(Global) 

R² 

DMC           

 1 1 PZE-101107138 97,9 112147 4,01 3,63 0,17 6,31 1,42 

 2 1 PZE-101141198 107,1 182293 6,72 5,61 0,15 9,73 2,15 

 3 2 PZE-102116089 92,1 153797 1,86 6,73 0,91 7,04 1,58 

 4 2 PZE-102159268 134,4 205898 0,11 7,26 2,14 7,29 1,64 

 5 3 PZE-103142982 113,4 198521 4,95 2,35 0,67 5,70 1,30 

 6 4 PZE-104129789 130,5 210477 6,22 4,59 0,35 8,68 1,94 

 7 5 PZE-105096988 70,6 142855 5,26 1,26 0,72 5,10 1,17 

 8 6 PZE-106006210 5,2 7781 0,27 4,84 0,01 3,56 0,84 

 9 6 PZE-106090096 70 147212 7,53 6,71 1,40 12,01 2,62 

 10 8 PZE-108074836 70,8 130409 1,76 8,92 0,36 8,99 1,98 

 11 9 PZE-109057266 62,2 98436 4,64 1,15 0,23 4,07 0,95 

 12 10 PZE-110049918 44,3 94001 38,78 5,18 0,02 41,13 8,64 
DMY           

 1 2 PZE-102120732 95 164884 8,96 3,59 0,10 9,81 2,95 

 2 3 PZE-103008521 9,4 4704 0,82 4,71 0,49 3,83 1,29 

 3 3 PZE-103124449 93,4 181769 0,71 12,18 0,17 10,66 3,33 

 4 4 PZE-104144717 147 233539 2,73 3,59 0,50 4,64 1,50 

 5 5 PZE-105077135 65 86222 5,23 3,42 0,14 6,77 2,10 

 6 6 PZE-106048775 29,9 97805 0,24 5,03 0,40 3,92 1,33 

 7 8 PZE-108073565 70,2 128542 3,69 12,84 0,81 14,40 4,42 

 8 9 PZE-109052698 60,5 91043 4,55 0,60 0,32 3,61 1,16 

 9 10 PZE-110045871 41,9 86698 5,27 7,23 0,02 10,20 3,16 
DtSILK           

 1 1 PZE-101029748 35.2 17832 0,65 6,54 0,80 5,93 1,52 

 2 1 PZE-101138117 105.5 179183 7,02 0,30 0,70 5,99 1,56 

 3 1 PZE-101217474 180.1 268814 5,26 2,41 0,07 5,69 1,50 

 4 2 PZE-102018300 22.3 8782 1,56 8,25 0,63 8,38 2,11 

 5 2 PZE-102160945 135.8 207038 5,20 4,35 0,24 7,80 2,00 

 6 3 PZE-103026244 37.7 19256 1,02 6,71 0,50 5,82 1,50 

 7 4 PZE-104058608 65.7 112760 0,60 8,22 0,22 6,87 1,76 

 8 4 PZE-104126472 129.5 204417 3,38 3,72 0,13 5,02 1,33 

 9 5 PZE-105006205 7.5 3143 3,68 6,81 0,06 8,02 2,01 

 10 5 PZE-105077552 65.2 87115 6,56 5,09 0,21 9,82 2,47 

 11 5 PZE-105117617 89.7 174351 0,34 6,13 0,13 4,85 1,27 

 12 5 PZE-105138874 112.5 193728 0,00 4,94 0,48 3,82 1,01 

 13 7 PZE-107132427 141.6 172725 9,88 0,83 0,53 8,85 2,23 

 14 8 PZE-108077879 71.8 133563 0,29 19,40 0,57 17,84 4,30 

 15 10 PZE-110049918 44.3 94001 47,23 12,82 0,69 57,53 13,72 
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PH           

 1 1 PZE-101091535 90,9 83644 1,94 3,27 2,81 5,50 1,15 

 2 1 PZE-101150835 116,8 194674 7,42 5,91 0,45 11,24 2,39 

 3 2 PZE-102032234 37,1 15025 3,48 5,64 0,71 7,48 1,62 

 4 2 PZE_102084168 84 71896 0,24 4,44 0,65 3,50 0,79 

 5 2 PZE-102115483 91,8 152503 8,42 3,61 0,61 10,02 2,15 

 6 3 PZE-103100427 68,3 160672 0,67 6,75 1,67 6,81 1,44 

 7 3 PZE-103109418 77,8 170117 0,12 27,23 2,48 27,10 5,31 

 8 4 PZE-104019121 39 19433 5,50 1,21 1,20 5,43 1,22 

 9 4 PZE-104126472 129,5 204417 0,28 8,15 0,53 6,89 1,45 

 10 5 PZE-105094920 69,9 139235 8,63 2,20 0,17 8,35 1,83 

 11 8 PZE-108038507 52,7 62847 6,24 1,41 0,60 5,89 1,33 

 12 9 PZE-109061773 64 103353 4,08 8,17 0,33 9,59 2,06 

 13 9 PZE-109121844 131,7 155733 2,41 5,59 1,57 7,10 1,54 

 14 10 PZE_110035195 35 66734 5,40 8,20 0,37 11,07 2,36 

 15 10 PZE-110094832 85,2 142069 4,90 0,83 0,34 4,09 0,94 
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Table S3   Results of the QTLs detection for the “Founder Alleles” model for the four studied traits: Dry Matter 
Content (DMC), Dry Matter Yield (DMY), Silking Date (DtSILK), Plant Height (PH). For each QTL, the 
chromosome (Chr), the marker (Mk), the genetic position in cM (Gen pos), the physical position in kbp (Phys 
pos), the –log(p-value) of the flint GCA part of its effect (-log(GCAf)), the –log(p-value) of the dent GCA part of 
its effect (-log(GCAd)), the –log(p-value) of the SCA part of its effect (-log(SCA)), the –log(p-value) of its global 
effect (-log(Global)), the explained R² in % (R²) are indicated. 
 
Trait Nb Chr Mk Gen 

pos 
Phys pos -log 

(GCAf) 
-log 
(GCAd) 

-log 
(SCA) 

-log 
(Global) 

R² 

DMC 1 1 PZE_101043600 50.6 29682 4,29 2,23 1,38 5,48 2,05 

 2 1 PZE_101139638 106.1 180401 10,32 5,55 0,19 11,37 3,35 

 3 2 PZE_102057464 67.1 36146 1,21 5,28 0,29 3,84 1,67 

 4 2 PZE_102115483 91.8 152503 2,48 4,54 3,26 7,95 2,60 

 5 2 PZE_102139190 113.6 187622 3,23 5,65 1,65 7,53 2,50 

 6 4 PZE_104114190 122 189586 3,42 4,90 0,41 5,49 2,06 

 7 5 PZE_105087042 67.5 111541 4,20 1,32 0,75 3,86 1,67 

 8 6 PZE_106084109 64.5 141285 5,47 5,90 0,56 7,70 2,55 

 9 8 PZE_108090858 79.2 148086 0,36 8,12 2,46 8,17 2,62 

 10 10 PZE_110050269 44.5 94965 33,4 6,98 0,46 34,5 7,91 
DMY           

 1 2 PZE_102109928 89.3 141598 4,34 0,74 1,73 4,56 2,25 

 2 2 PZE_102136109 111.2 185694 5,36 0,22 2,37 5,52 2,55 

 3 3 PZE_103005573 6.2 3433 0,01 5,02 1,97 4,57 2,27 

 4 3 PZE_103108225 76.5 169072 2,36 1,80 2,74 4,93 2,33 

 5 3 PZE_103125892 95.8 183555 1,20 5,65 0,08 3,31 1,92 

 6 4 PZE_104138099 136.3 225269 1,83 4,47 1,95 5,86 2,66 

 7 5 PZE_105020816 23.5 10009 4,59 0,62 0,62 3,47 1,90 

 8 5 PZE_105078900 65.8 89718 5,93 2,61 0,41 5,69 2,57 

 9 6 PZE_106044414 25 93501 0,06 5,80 0,35 3,26 1,90 

 10 8 PZE_108062087 62.4 110990 3,25 12,31 0,96 12,10 4,39 

 11 9 PZE_109061773 64 103353 6,12 0,20 0,96 4,47 2,24 

 12 10 PZE_110051444 44.9 96836 2,86 4,53 0,42 4,93 2,39 
DtSILK           

 1 1 PZE-101004387 7.7 3883 4,37 2,28 0,56 4,37 2,40 

 2 2 PZE-102021400 25.3 9973 1,09 4,05 0,96 3,77 2,22 

 3 3 PZE-103016459 20.4 9311 1,26 5,30 0,10 3,48 2,13 

 4 4 PZE-104034811 58.3 43970 2,02 6,75 0,74 6,02 2,98 

 5 5 PZE-105075954 64.3 83980 10,43 2,84 0,61 10,16 4,16 

 6 5 PZE-105166980 144.8 210286 0,47 3,32 3,68 5,51 2,71 

 7 7 PZE-107133704 143.1 173181 5,53 1,46 2,87 7,32 3,23 

 8 8 PZE-108077879 71.8 133563 0,39 11,26 0,54 8,21 3,63 

 9 10 PZE-110050273 44.5 94968 32,5 11,90 0,83 39,5 11,68 
PH           

 1 1 PZE_101150835 116.8 194674 4,54 6,87 1,01 9,01 2,88 

 2 1 PZE_101233132 192.4 281321 0,13 4,42 0,57 2,79 1,42 

 3 2 PZE_102031753 36.6 14800 2,56 9,27 0,90 9,42 3,03 

 4 2 PZE_102116344 92.2 154273 9,96 5,75 0,20 10,67 3,32 

 5 3 PZE_103108648 77.1 169577 0,19 20,8 1,04 17,1 4,42 
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 6 4 PZE_104134644 132.4 218941 0,24 8,16 0,94 6,05 2,17 

 7 5 PZE_105097751 70.9 144099 4,71 0,61 0,62 3,34 1,57 

 8 8 PZE_108038053 52.7 61790 5,22 0,50 0,41 3,29 1,59 

 9 9 PZE_109061773 64 103353 4,85 8,94 1,74 11,71 3,49 

 10 9 PZE_109115897 122 152795 0,01 4,68 0,50 2,59 1,34 

 11 10 PZE_110045521 41.5 85840 2,52 7,94 1,41 8,74 2,80 
 

  



232 
 

  



233 
 

Appendix III: Supporting information of Chapter 3 

 
 



234 
 

  



235 
 

Table S1   Variance components of the phenotypic data, estimated directly on field plot data, for the four variance 
decomposition models presented in Giraud et al. (submitted), for the different traits: dry matter content DMC (in 
% of dry matter), dry matter yield DMY (in tons. per ha), female flowering time DtSILK (in days after 1st of 
January), plant height PH (in cm). For each variance, precision corresponding to 1.96 x the standard error of the 
estimated variance is indicated. We indicated the min and max values of the residual variances in the different 
trials. 
 
Model Hybrid (1) Population 

structure + 
Hybrid (2) 

Flint GCA + 
Dent GCA + 
SCA (3) 

Population 
structure + Flint 
GCA + Dent 
GCA + SCA (4) 

DMC     

Hybrid variance 3.68 ± 0.37 2.46 ± 0.27   

Flint GCA variance   2.31 ± 0.51 0.98 ± 0.44 

Dent GCA variance   0.92 ± 0.53 0.96 ± 0.44 

SCA variance   0.43 ± 0.54 0.53 ± 0.49 

Residual variances: 
min and max 

1.44 ± 0.18 : 
6.15 ± 0.60 

1.52 ± 0.19 : 
6.05 ± 0.59 

1.45 ± 0.18 : 
6.13 ± 0.59  

1.52 ± 0.18 :  
6.04 ± 0.58 

DMY     

Hybrid variance 1.24 ± 0.14 0.94 ± 0.11   

Flint GCA variance   0.28 ± 0.20 0.30 ± 0.19 

Dent GCA variance   0.74 ± 0.19 0.44 ± 0.17 

SCA variance   0.22 ± 0.22 0.20 ± 0.20 

Residual variances: 
min and max 

1.01 ± 0.12 : 
3.53 ± 0.35 

1.02 ± 0.12 : 
3.56 ± 0.34  

1.00 ± 0.11 : 
3.53 ± 0.35  

1.02 ± 0.12 :  
3.56 ± 0.35 

DtSILK     

Hybrid variance 2.38 ± 0.24 2.06 ± 0.21   

Flint GCA variance   0.74 ± 0.38 0.51 ± 0.37 

Dent GCA variance   1.26 ± 0.35 1.09 ± 0.33 

SCA variance   0.39 ± 0.37 0.47 ± 0.37 

Residual variances: 
min and max 

0.96 ± 0.11 : 
6.12 ± 0.57 

0.96 ± 0.11 : 
6.11 ± 0.57 

0.96 ± 0.11 : 
6.13 ± 0.57 

0.96 ± 0.11 :  
6.12 ± 0.57 

PH     

Hybrid variance 154.7 ± 15.7 97.6 ± 10.7   

Flint GCA variance   42.9 ± 22.9 38.4 ± 17.4 

Dent GCA variance   92.8 ± 21.6 45.1 ± 16.0 

SCA variance   19.3 ± 23.2 13.4 ± 17.3 

Residual variances: 
min and max 

49.7 ± 6.5 : 
244.2 ± 23.7 

46.4 ± 6.0 : 
243.6 ± 23.5 

50.0 ± 6.5 : 
243.6 ± 23.6 

46.7 ± 6.0 :  
243.2 ± 23.5 
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Appendix IV: Résumé substantiel en français 
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Darwin en 1876 conclut après de multiples observations au bénéfice dans de nombreux cas de 

la pollinisation croisée par rapport à l’autofécondation. Cette observation a été par la suite 

théorisée parallèlement par Shull (1908) et East (1908) qui en se basant sur des observations 

sur le maïs (Zea mays L.) ont défini le concept d’hétérosis (Shull 1914). L’hétérosis se 

manifeste tant au niveau inter que intra-spécifique. On se concentrera dans cette thèse sur 

l’hétérosis intra-spécifique. L’hétérosis du sélectionneur est le fait que l’individu issu du 

croisement de deux parents d’une certaine nature (lignées, populations, clones individus 

hétérozygotes) est supérieur au meilleur de ses parents. L’hétérosis du généticien correspond à 

l’avantage d’un hybride par rapport à la moyenne de ses parents. L’hétérosis est l’opposé 

conceptuel de la dépression de consanguinité, qui correspond à une réduction graduelle de la 

vigueur suite à la reproduction sur plusieurs générations d’individus apparentés. Son 

importance diffère selon le système de reproduction (supérieure chez les espèces allogames) et 

le caractère étudié. Les bases génétiques de l’hétérosis sont peu connues mais plusieurs 

hypothèses non-exclusives existent pour l’expliquer : la dominance, la super-dominance, la 

pseudo-superdominance, la superdominance marginale.  

Chez le maïs, la théorisation de l’hétérosis par East et Shull a été accompagnée aux USA par le 

développement d’hybrides. Les hybrides F1 permettaient de produire à grande échelle les 

meilleures combinaisons de gamètes dérivés de variétés populations. En 1922-1924 les 

meilleurs hybrides, comme par exemple Cooper Cross, présentaient un avantage répétable 

d’environ 10% par rapport aux meilleures variétés populations (Charcosset 2002). Des groupes 

hétérotiques (structurant la diversité génétique) ont été développés à partir des années 50 et les 

variétés actuelles correspondent généralement à des hybrides issus du croisement entre les 

lignées appartenant à des groupes hétérotiques complémentaires.  

La valeur d’un hybride se décompose traditionnellement en deux parties (Sprague and Tatum 

1942). La première est la somme des Aptitudes Générales à la Combinaison (AGC) des deux 

lignées parentales, chacune définies comme la valeur moyenne des hybrides obtenus par 

croisement de cette lignée avec les lignées du groupe complémentaire. La deuxième partie est 

l’Aptitude Spécifique à la Combinaison (ASC) de la paire de lignées parents de l’hybride. C’est 

la différence entre la valeur de l’hybride et sa valeur prédite sur la base des AGCs. Dans un 

programme de sélection, à cause de considérations pratiques, toutes les combinaisons de lignées 

inter-groupes hétérotiques ne peuvent être évaluées phénotypiquement. Par conséquent, la 

sélection est effectuée en deux étapes. Dans un premier temps, les potentielles lignées 

candidates de chaque groupe sont sélectionnées sur la base de la valeur de leur descendance en 

croisement avec une ou quelques lignées représentatives du groupe complémentaire, appelées 
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testeurs. Dans un second temps, un nombre limité de combinaisons entre les lignées 

sélectionnées des deux groupes sont évaluées pour identifier les meilleurs hybrides. Dans ce 

schéma, la majeure partie de la sélection est effectuée durant la première étape. A cause du 

faible nombre de testeurs considérés, la sélection des lignées est basée sur une combinaison de 

leur AGC et de l’ASC avec le(s) testeur(s). La compréhension de la part des AGCs et de l’ASC 

dans la variation des caractères d’intérêt est par conséquent importante pour évaluer à quel point 

le choix du (des) testeur(s) peut affecter l’estimation du potentiel de futures lignées. 

 

L’étude des caractères quantitatifs i.e. des caractères présentant une variation continue, ce qui 

est le cas de la majorité des caractères d’intérêts agronomiques, cherche à comprendre les bases 

génétiques de ces caractères complexes. Les outils de génotypage développés depuis les années 

80 permettent de rechercher des associations entre les variations moléculaires au niveau de 

l’ADN et celle des phénotypes. On peut distinguer deux intérêts  principaux : la compréhension 

du déterminisme génétique des caractères (détection de QTL) et la sélection basée sur les QTLs 

détectés (sélection assistée par marqueurs) ou sur une valeur prédite de l’individu impliquant 

l’ensemble des marqueurs (sélection génomique). Chez les plantes, avec le développement des 

marqueurs moléculaires (RFLP, AFLP puis SSR notamment), la détection de QTL s’est 

développée essentiellement au sein de populations biparentales (Paterson et al. 1988). L’essor 

des SNPs et le développement du marquage moléculaire haut-débit ont entraîné une forte 

diminution des coûts de génotypage ce qui a permis d’augmenter le nombre d’individus 

génotypés et le nombre de points de génotypage. Ceci a induit des modifications dans la manière 

de penser la détection de QTL et les méthodes de sélection. En effet, cela a permis de développer 

la détection de QTL dans des populations à base génétique large issues de plus de deux parents 

et de prendre en compte en plus des informations de linkage, l’existence d’haplotypes communs 

entre parents, définis par la présence de marqueurs proches en déséquilibre de liaison. Des 

méthodes de type LDLA : « linkage disequilibrium and linkage analysis » ont été développées. 

Cette révolution technique a aussi permis le développement d’approches de sélection prenant 

globalement en compte l’ensemble des marqueurs du génome, ce qui a été défini sous le terme 

de sélection génomique (Meuwissen et al. 2001).  

A notre connaissance, aucune détection de QTL n’a été effectuée dans un dispositif 

expérimental entre lignées issues directement de populations en ségrégation disponibles aux 

premiers stades de la sélection dans deux groupes hétérotiques complémentaires. Avec le 

développement des techniques d’haploïdes doublés, les sélectionneurs peuvent directement 

générer à chaque cycle de sélection des populations en ségrégation composées de lignées pures. 
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Au lieu d’utiliser un faible nombre de testeurs du groupe complémentaire pour évaluer les 

candidats à la sélection, il peut être plus pertinent d’évaluer directement des hybrides entre 

lignées non sélectionnées des deux groupes. Détecter des QTLs d’AGC et d’ASC permettrait 

d’identifier les meilleures combinaisons hybrides possibles et d’optimiser l’amélioration de 

futures lignées parentales au sein de chaque groupe.  

Dans ce contexte, l’objectif de cette thèse est de comprendre les bases génétiques de la valeur 

hybride chez le maïs pour la production de biomasse. Pour cela, la première partie du travail a 

consisté à mettre en œuvre une approche de détection de QTL dans deux dispositifs 

multiparentaux, correspondant chacun à un groupe hétérotique (les cornés versus les dentés), 

évalué pour sa valeur en croisement avec un testeur du groupe complémentaire. Dans un 

deuxième temps nous avons réalisé une détection de QTL dans un factoriel obtenus en croisant 

deux dispositifs multiparentaux correspondant chacun à un groupe hétérotique. Ce dispositif 

nous a permis d’évaluer l’importance relative de l’ASC par rapport à l’AGC et de rechercher 

les locus impliqués dans chacune de ses composantes. Enfin nous avons estimé quel était son 

potentiel pour la mise en œuvre de la sélection génomique. 

 

L’analyse de type « Linkage Disequilibrium Linkage analysis » de dispositifs 

multiparentaux révèle différents QTLs multi-alléliques pour la performance hybride 

dans les groupes hétérotiques cornés et dentés de maïs 

 

Ces travaux ont été publiés dans la revue Genetics de Décembre 2014 (Genetics 198 : 1717-

1734). Deux dispositifs de type « Nested Association Mapping » de maïs, adaptés aux 

conditions européennes, ont été dérivés à partir des groupes hétérotiques complémentaires 

dentés et cornés, utilisés pour la production d’hybrides en Europe du Nord. Ces dispositifs ont 

été créés dans le cadre du projet européen « CornFed ». Dix familles biparentales dentées 

(N=841) et 11 familles biparentales cornées (N=811) ont été génotypées avec 56110 marqueurs 

SNP (Ganal et al. 2011) et évaluées sur testeur, en utilisant la lignée centrale du dispositif 

réciproque. Cinq caractères ont été phénotypés : le contenu en matière sèche, le rendement 

ensilage, la date de floraison mâle, la date de floraison femelle et la hauteur de plante. Des 

cartes génétiques consensus dentée, cornée et cornée-dentée ont été construites, correspondant 

respectivement à 21878 marqueurs (6808 positions génétiques), 20406 marqueurs (7272 

positions génétiques) et 25472 marqueurs (8124 positions génétiques). Pour chaque dispositif, 

différents modèles de détection de QTL ont été appliqués correspondant à différents codages 

au niveau des allèles. Les allèles ont été définis soit par rapport aux lignées parentales, soit 
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comme des allèles haplotypiques basés sur une identité par descendance (IBD) entre lignées 

parentales, soit comme les allèles observés au niveau des SNPs. Le regroupement des allèles 

parentaux a été effectué pour chaque dispositif à l’aide du package R « clusthaplo » (Leroux et 

al. 2014) en choisissant la taille de la fenêtre en se basant sur la décroissance du déséquilibre 

de liaison. Différents modèles de détection de QTL multilocus ont été testés. Le premier 

correspond à un modèle connecté multifamille conventionnel. La connexion entre familles est 

assurée par la lignée centrale et l’hypothèse est faite que chaque parent porte un allèle différent 

aux QTLs. Les deuxième et troisième modèles testés sont des modèles connectés LDLA 

multifamilles, utilisant le regroupement effectué à l’aide de « clushaplo » (deux tailles de 

fenêtre différentes). Ces trois modèles ont été mis en œuvre à l’aide du logiciel MCQTL_LD 

(Jourjon et al. 2005) en utilisant une méthode de détection QTL nommée « iterative composite 

interval QTL mapping » (Charcosset et al. 2000) et un risque de type I de 10% au niveau du 

génome en considérant toutes les familles ensemble. Le dernier modèle testé est un modèle 

LDLA simple marqueur, considérant que deux lignées parentales présentant le même allèle au 

marqueur sont IBD pour ce marqueur. Ce modèle a été mis en œuvre dans R en utilisant un 

script R dérivé de l’approche basée sur un modèle mixte multilocus présentée dans Segura et 

al. (2012) en considérant également un risque de type I de 10% au niveau du génome. Ensuite, 

les deux dispositifs ont été analysés conjointement en utilisant le modèle connecté 

conventionnel. Les effets des QTLs détectés avec l’analyse conjointe ont été testés dans chacun 

des deux dispositifs pris séparément. 

Sur la base de la décroissance du déséquilibre de liaison deux tailles de fenêtre glissante ont été 

choisies pour effectuer le regroupement haplotypique : 2 et 5cM. Dans chaque dispositif, la 

fenêtre glissante de 5 cM a conduit à un nombre d’allèles ancestraux plus important. Ce nombre 

varie le long du génome. Le regroupement est plus important dans les régions télomériques que 

centromériques, où le nombre d’allèles ancestraux est souvent proche du nombre de lignées 

parentales. 

Entre cinq et 16 QTLs ont été détectés selon le modèle, le caractère et le groupe génétique 

considéré. Dans le dispositif corné, un QTL majeur (R²=27%) présentant des effets 

pléiotropiques, a été détecté sur le chromosome 10. Les autres QTLs présentent des effets plus 

faibles (R²<10%). En moyenne les modèles de type LDLA ont détecté plus de QTLs mais 

expliquent un plus faible pourcentage de la variance. Le modèle connecté pour quasiment tous 

les caractères explique un pourcentage de variance plus important, ce qui est en accord avec le 

fait que la plupart des QTLs présentent des séries alléliques avec des valeurs relativement 

continues des effets. En comparant les positions des QTLs détectés dans chacun des dispositifs 
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par le modèle connecté conventionnel, seuls 15% des QTLs ont été trouvés comme communs 

aux deux dispositifs. 

 

Table 1   Nombre de QTLs détectés (Nb) et pourcentage ajusté de variance expliqué par les QTLs détectés (R²) 
pour les cinq caractères dans les deux dispositifs séparés pour chaque modèle et dans le dispositif conjoint pour le 
modèle connecté. Le nombre total de QTLs détectés sur l’ensemble des caractères et le pourcentage moyen de 
variance expliqués  (colonne « Total ») sont indiqués. 
 
 DMC DMY DtSILK DtTAS PH Total 

 Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Nb R² 

(%) 

Dent             

Connected 12 51.4 8 32.7 11 52.3 7 41.2 14 57.1 52 46.9 

LDLA - 5cM 15 51.1 5 22.5 12 53.7 11 49.2 13 54.1 56 46.1 

LDLA - 2cM 16 53.6 6 23.4 12 53.2 9 45.1 12 49.5 55 45.0 

LDLA – 1-

marker 

12 37.4 5 18.6 11 43.2 7 33.3 10 36.4 45 33.8 

Flint              

Connected 8 46.0 11 48.6 15 69.3 12 65.3 9 52.3 55 56.3 

LDLA - 5cM 11  49.2 10 41.9 14 67.5 13 61.1 10 51.7 58 54.3 

LDLA - 2cM 8 42.1 12 45.3 11 62.0 14 62.2 11 51.9 56 52.7 

LDLA – 1-

marker 

7 36.1 11 39.0 16 61.7 16 58.0 9 41.9 59 47.3 

Joint             

Connected 18 54.6 16 45.5 15 59.7 17 61.4 21 61.2 87 56.5 

 
L’analyse conjointe des deux dispositifs a permis de détecter 87 QTLs soit entre 15 et 21 QTLs 

selon le caractère. Parmi ces derniers, entre 27% (floraison femelle) et 41% (floraison mâle) 

étaient significatifs dans les deux groupes hétérotiques. Pour chaque caractère, un nombre 

supérieur ou égal de QTLs a été détecté avec l’analyse conjointe que dans les analyses par 

groupe hétérotique. Toutes les lignées présentent des QTLs avec des effets positifs et négatifs 

sur le rendement. La présence d’allèles favorables dans les deux groupes ouvre des perspectives 

pour l’amélioration de la production de biomasse du maïs ensilage par sélection assistée par 

marqueurs. Contrairement aux autres études sur maïs réalisées dans des dispositifs NAM évalué  

per se, les QTL trouvés dans notre étude correspondent à des caractères mesurés sur hybrides 

(lignées croisées à un testeur) qui reflètent directement la variation génétique utile en sélection 

dans les deux groupes hétérotiques. 

Une efficacité variable des différents modèles de détection de QTL selon les caractères et la 
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région a été observée ce qui montre la complémentarité des différents codages alléliques pour 

déchiffrer les séries alléliques. Contrairement à des études précédentes (Bardol et al. 2013), un 

clair avantage des modèles LDLA utilisant l’information haplotypique n’a pas été observé ce 

qui est cohérent avec le faible apparentement des lignées parentales de nos dispositifs. Le faible 

nombre de QTLs communs entre les deux groupes confirme l’ancienne divergence des groupes 

hétérotiques cornés et dentés : plus de 500 ans (Tenaillon and Charcosset 2011). Peu ou pas de 

QTLs communs ont été détectés pour le rendement ensilage, soit via l’analyse conjointe soit 

par comparaison directe des QTLs détectés dans les analyses par groupe hétérotique. Ceci peut 

être dû au fait que le rendement ensilage, contrairement à la floraison (et indirectement au 

contenu en matière sèche) a été soumis à une sélection directionnelle et non stabilisatrice. Cette 

sélection directionnelle a pu avoir tendance à fixer des allèles différents entre les deux groupes 

hétérotiques.  

 

La détection de QTL sur des hybrides de maïs (Zea mays L.) dérivés de deux dispositifs 

multiparentaux a permis la détection simultanée de QTLs d’aptitudes générales et 

spécifique à la combinaison pour les performances ensilage 

 

L’objectif de ce travail était d’évaluer si, grâce au génotypage dense maintenant disponible à 

moindre coût, il peut être plus pertinent d’évaluer directement des hybrides entre lignées 

candidates de deux groupes génétiques plutôt que des hybrides avec un faible nombre de 

testeurs du groupe complémentaire. Par rapport à une évaluation sur testeur, un tel dispositif 

permet de décomposer les performances hybrides en AGC et ASC (composantes qui sont 

confondues dans le cas d’une évaluation sur testeur) et de réduire d’un facteur deux le nombre 

d’hybrides à phénotyper. Détecter des QTLs d’AGC et d’ASC permettrait d’identifier les 

meilleures combinaisons hybrides possibles et d’optimiser l’amélioration de futures lignées 

parentales au sein de chaque groupe. L’objectif de cette partie est d’estimer l’importance 

relative d’ASC et de l’AGC dans un tel dispositif et d’évaluer son intérêt pour la  détection de 

QTL d’AGC et d’ASC. Ce travail s’inscrit dans le cadre du projet SAM-MCR financés par 7 

entreprises de sélection privées (Caussade, Euralis, Limagrain, Maïsadour, Pioneer, RAGT et 

Syngenta) membres de l’association Promaïs. Pour évaluer cette stratégie basée sur un factoriel, 

un dispositif  multiparental corné et un denté ont été crées (Figure 1). Pour chaque groupe 

hétérotique, six populations biparentales ont été développées à partir de quatre lignées 

fondatrices et les lignées de ces populations ont été croisées avec celles de l’autre groupe selon 

un factoriel incomplet. 1044 hybrides cornés-dentés ont été obtenus par croisement de 863 
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lignées dentées et 879 lignées cornées. Les huit lignées fondatrices (quatre cornées et quatre 

dentées) ont été génotypées avec une puce Illumina 50 K SNPs (Ganal et al. 2011) et les lignées 

parentales des hybrides avec une puce Affymetrix® de 18480 SNPs. Seuls les marqueurs 

PANZEA communs aux deux puces et polymorphes chez les fondateurs ont été considérés. 

Après filtres sur le taux de données manquantes, l’hétérozygotie et la fréquence de l’allèle 

minoritaire, 9643 marqueurs ont été gardés. Après filtres sur les lignées parentales, 1758 lignées 

(875 dentées et 883 cornées) ont été considérées pour la suite des analyses. Une carte génétique 

consensus cornée-dentée a été construite et est constituée de 9548 marqueurs polymorphes dans 

au moins un des deux groupes hétérotiques. 
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Figure 1 : Représentation schématique du dispositif expérimental.  
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Les hybrides ont été phénotypés pour le rendement ensilage, la matière sèche (% poids frais), 

la floraison femelle (jours après semis), la hauteur de plante (cm) dans 8 environnements (4 en 

2013 et 4 en 2014) dans le nord de la France et en Allemagne. Les essais ont été mis en place 

selon un dispositif de type « augmented p-rep » et comprenaient 1088 parcelles. Dans un 

environnement donné, les hybrides entre les quatre lignées fondatrices et environ 17% des 

hybrides expérimentaux ont été évalués deux fois.  

Différents modèles ont été mis en œuvre pour évaluer la part de l’AGC et l’ASC dans la 

variance génétique. Ils ont été mis en œuvre sur les données parcellaires concomitamment à la 

correction pour les hétérogénéités spatiales. Dans le premier modèle, il n’y a pas de 

décomposition de la valeur hybride. Dans le second, il y a prise en compte de la structure en 

populations (6 populations cornées, 6 populations dentées, 36 interactions). Dans le troisième, 

il y a décomposition de la valeur hybride en AGC cornée, AGC dentée et ASC. Dans le dernier, 

il y a prise en compte de la structure en population et décomposition en AGC cornée intra-

population, AGC dentée intra-population et ASC intra-population. A partir de ces 

décompositions, des paramètres synthétiques sont pu être calculés. Les héritabilités au sens 

large sont fortes : entre 0.814 (rendement) et 0.892 (matière sèche), tout comme les héritabilités 

intra-population : entre 0.767 (rendement) et 0.876 (floraison femelle). La part de la variance 

génétique intrapopulation est élevée : entre 63.1% (hauteur de plante) et 86.7% (floraison 

femelle). L’ASC explique entre 13.8 et 22.6% de la variance hybride intra-population et entre 

11.7% et 17.4% de la variance hybride selon le caractère, 

Trois modèles mixtes de détection de QTL ont été développés dans ASReml-R (Butler et al. 

2007 ; R Core Team 2013), considérant chacun un codage allélique différent, et ont été mis en 

œuvre sur les moyennes ajustées des hybrides. Le premier ou modèle « Allèles fondateurs » 

considère que chacune des huit lignées fondatrices porte un allèle différent au QTL (linkage 

analysis). A chaque marqueur, les probabilités des quatre lignées fondatrices dentées 

(respectivement cornées) ont été inférées à l’aide du logiciel PlantImpute (Hickey et al. 2015) 

pour chacun des 9548 marqueurs cartographiés. Le second modèle ou « SNP intra-groupe » 

considère directement l’allèle au SNP mais des effets des QTLs différents dans chaque groupe 

hétérotique. Le dernier modèle ou « Génotype de l’hybride » considère également directement 

l’allèle au SNP mais suppose de plus que les effets des QTLs sont identiques dans chaque 

groupe hétérotique. Les données de génotypage manquantes pour les deux derniers modèles ont 

été imputées à l’aide Beagle v3.0 (Browning and Browning 2009) et la détection a porté 

uniquement sur les 4758 marqueurs cartographiés et polymorphes dans les deux groupes. Pour 

les trois modèles, on a considéré un seuil de significativité de 5% au niveau de l’ensemble du 
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génome, basé sur le nombre de marqueurs efficaces (Gao et al. 2008). Une procédure multi-

marqueurs a été implémentée composée de deux étapes : une sélection « forward » des 

marqueurs suivie par une sélection « backward ». Au total entre 42 et 54 QTLs ont été détectés 

selon le modèle. Les modèles « SNP intra-groupe » et « Génotype de l’hybride » ont détecté 

plus de QTLs au total et pour tous les caractères sauf le rendement. En considérant 

arbitrairement les QTLs détectés à moins de 10cM l’un de l’autre comme identiques, seuls 16 

QTLs ont été détectés par les trois modèles. Certains ont été détectés avec seulement deux 

modèles, d’autres avec un seul. La plupart des QTLs détectés avec les modèles « Allèles 

fondateurs » et « SNP intra-groupe » sont significatifs au sein d’un seul des groupes 

hétérotiques. Quel que soit le modèle, la plupart des QTLs présentent de petits effets (expliquant 

moins de 5% de la variation à l’exception du QTL pour la hauteur de plante détecté sur le 

chromosome 3 par le modèle « SNP intra-groupe » et du QTL détectés à 44.5 cM sur le 

chromosome 10 par les 3 modèles. Ce QTL explique environ 8% de la variance pour la matière 

sèche et 13% pour la floraison femelle. Il correspond au gène de précocité ZmmCCT. 12 QTLs 

présentent des effets de dominance/ASC significatifs avec un risque individuel de 5% et sont 

localisés tout le long du génome. Les QTLs détectés avec le modèle « Allèles fondateurs » pour 

le rendement, le contenu en matière sèche et la hauteur de plante sont ceux expliquant le plus 

de variance phénotypique. Pour la floraison femelle, ce sont ceux détectés avec le modèle « SNP 

intra-groupe ». Considérant le meilleur modèle pour chaque caractère, les QTLs détectés 

expliquent entre 30.7 % (hauteur de plante, avec ASC) et 37.6 % (floraison femelle, avec ASC) 

de la variance phénotypique. 

Ce dispositif a donc permis de détecter des QTLs conjointement dans les deux groupes 

hétérotiques, sans utiliser de testeur. Chaque hybride apporte donc de l’information sur les deux 

groupes, ce qui à moyens de phénotypage constants permet d’évaluer deux fois plus de lignées. 

Des QTLs ont été détectés pour tous les caractères avec tous les modèles et, comme dans l’étude 

réalisée sur testeur, nous avons mis en évidence des QTLs spécifiques de l’AGC cornée et de 

l’AGC dentée. De l’ASC a été observée pour tous les caractères mais peu de QTLs ayant un 

effet sur l’ASC ont été détectés. On peut faire l’hypothèse que l’ASC est due à de nombreux 

QTLs à faibles effets, à de l’épistasie etc. En évitant l’utilisation de testeurs, on peut supposer 

que notre dispositif conduit à de meilleures estimations des effets d’AGC des QTLs. 
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La sélection génomique peut-elle modifier profondément les premières étapes d’un 

programme de sélection pour la valeur hybride ? Cas des performances ensilage de maïs 

(Zea mays L.) d’hybrides obtenus dans un croisement de deux dispositifs multiparentaux. 

 

Le dispositif étudié est le même que celui présenté dans la partie précédente. L’objectif de cette 

partie était de chercher à prédire dans un tel dispositif les composantes d’AGC et d’ASC de la 

valeur hybride chez le maïs. En effet, avec la technique d’haplo-diploïdisation il est maintenant 

possible d’obtenir directement de larges population de lignées en ségrégation ce qui offre de 

nouvelles possibilités pour revisiter les schémas de sélection pour les hybrides. Au lieu 

d’utiliser des testeurs, on peut directement explorer une large gamme de combinaisons de 

lignées parentales en créant directement les hybrides entre lignées non encore sélectionnées. 

Ces données peuvent être ensuite utilisées pour calibrer des équations de prédiction de la valeur 

hybride et identifier les meilleures combinaisons. Le même modèle peut être utilisé pour prédire 

les AGC de toutes les lignées candidates et sélectionner les plus prometteuses pour un nouveau 

cycle de sélection. 

Les prédictions génomiques ont été effectuées en utilisant des modèles de type GBLUP 

(Genomic Unbiased Linear Prediction) (Massman et al. 2013 ; Technow et al. 2014). Le modèle 

complet considère la structure en populations en effets fixes ainsi que les AGC et  l’ASC. Pour 

la covariance entre les effets d’AGC, nous avons estimé l’apparentement entre lignées de 

chaque groupe à partir des informations de marquage selon la méthode 1 de Van Raden (2008). 

La covariance entre les effets d’ASC de deux hybrides a été calculée à partir du produit des 

apparentements intra-groupe des lignées parentales des deux hybrides (en faisant l’hypothèse 

d’une absence d’apparentement inter-groupe). Des variantes du modèle présentant ou non la 

structure en populations et/ou la composante d’ASC ont été testées ainsi que des modèles 

considérant des matrices d’apparentement basées sur les allèles fondateurs et non sur les SNP 

observés. La qualité de prédiction des différents modèles a été évaluée par validation croisée 

en utilisant quatre cinquième du jeu de données pour la calibration et un cinquième pour la 

validation et en répétant 100 fois l’échantillonnage. La qualité de prédiction a été estimée via 

la corrélation valeurs observées / valeurs prédites sur le jeu de validation. En considérant pour 

chaque caractère le meilleur modèle, la corrélation entre données observées et données prédites 

varie entre 0.652 pour le rendement et 0.771 pour la hauteur de plante. Le modèle permettant 

la meilleure qualité de prédiction est celui ne prenant pas en compte la structure en populations 

et considérant les matrices d’apparentement basées sur les SNPs observés. La prise en compte 

de l’ASC dans le modèle a un très faible impact. Les prédictions génomiques sont meilleures 
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que celles obtenues sur la base des QTLs dans la partie précédente. 

L’effet de la taille du jeu de calibration a également été étudié. Pour tous les caractères la qualité 

des prédictions augmente avec la taille du jeu de calibration jusqu’à atteindre un plateau quand 

le jeu de calibration contient 12 individus par population dentée-cornée (432 hybrides). 

L’impact de la composition du jeu de calibration a également été étudié : impact de la présence 

de demi-frères, impact de la présence d’hybrides issus des mêmes lignées fondatrices. La 

qualité de prédiction des AGCs dentées et cornées a été étudiée. La précision observée sur leurs 

prédictions est élevée et varie entre 0.739 (floraison femelle) et 0.827 (matière sèche) pour les 

AGCs dentées et entre 0.830 (rendement) et 0.938 (floraison femelle) pour les AGCs cornées. 

Les prédictions génomiques appliqués dans notre dispositif ont donc permis de prédire 

précisément les composantes d’AGCs des lignées parents des hybrides malgré le faible nombre 

de contribution de chaque lignée au factoriel. Ceci ouvre d’intéressantes perspectives pour 

revisiter les schémas de sélection hybride. 

 

Discussion générale 

 

La compréhension de l’architecture génétique de la valeur hybride chez le maïs est importante 

tant d’un point de vue théorique que appliqué. Dans cette thèse deux dispositifs ont été étudiés 

mettant en jeu des hybrides : le premier des hybrides sur testeur, le second des hybrides issus 

d’un croisement factoriel entre deux dispositifs connectés multiparentaux. Des QTLs ont été 

détectés dans les deux dispositifs et des modèles de prédiction génomique ont été mis en œuvre 

dans le second. 

Un aspect important non pris en compte dans cette thèse tant pour la détection de QTL que la 

sélection génomique est la prise en compte des interactions GxE. De nombreuses applications 

et perspectives existent, principalement concernant le deuxième dispositif, pour lequel des 

caractères liés à la qualité de l’ensilage ont également été phénotypés. Des hybrides issus de ce 

dispositif font actuellement l’objet d’évaluation pour être inscrits au Catalogue Français des 

Variétés. Une amélioration des lignées parentales par sélection assistée par marqueurs peut 

également être envisagée. D’un point de vue économique, notre dispositif présente des 

avantages par rapport aux dispositifs sur testeur quant à l’évaluation des lignées parentales, 

puisqu’il permet pour un nombre donné de lignées de chaque groupe de diminuer par un facteur 

deux le nombre d’hybrides évalués agronomiquement. Cependant il engendrerait un 

changement des pratiques des sélectionneurs. Des recherches complémentaires sont nécessaires 

pour évaluer l’intérêt de notre dispositif par rapport à un dispositif sur testeur et pour évaluer 
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l’impact de modifications du dispositif expérimental (nombre de lignées par famille, nombre 

d’hybrides évalués par lignées…) sur la précision de prédiction des AGCs et des ASCs.  
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Titre :  Analyse génétique de la valeur hybride chez le maïs fourrage dans des dispositifs multiparentaux : détection de QTL et sélection 
génomique 

Mots clés : maïs, valeur hybride, détection de QTL, sélection génomique, ensilage 

Résumé : Le maïs (Zea mays L.) est une culture majeure présentant un 
hétérosis important pour les caractères liés à la biomasse. Pour exploiter 
ce phénomène, les programmes de sélection ont été organisés en 
groupes hétérotiques et la majorité des surfaces cultivées correspond à 
des hybrides F1. La valeur hybride peut être décomposée en Aptitudes 
Générales à la Combinaison (AGC) des lignées parentales et en 
Aptitude Spécifique à la Combinaison (ASC). 
L’objectif de cette thèse était d’apporter de nouveaux éclairages sur la 
valeur hybride, concernant tant la compréhension de ses déterminismes 
génétiques sous-jacents que sa prédiction. Deux dispositifs 
multiparentaux connectés ont été analysés, mettant en jeu deux des 
principaux groupes hétérotiques utilisés pour la production de maïs 
fourrage dans le nord de l’Europe : les cornés et les dentés. Le premier 
dispositif était constitué de deux populations de type Nested Association 
Mapping (NAM). La population dentée comprenait dix familles 
biparentales et la cornée onze. Ces populations ont été évaluées pour 
leur valeur en croisement avec un testeur du groupe complémentaire. Le 
deuxième dispositif était constitué d’un factoriel entre deux populations 
multiparentales de lignées : une cornée et une denté, dérivées de deux 
demi-diallèles entre quatre lignées fondatrices. Les lignées ont été 
croisées entre elles selon un plan factoriel incomplet afin d’obtenir des 
hybrides inter-groupes. Pour les deux dispositifs, le phénotypage des 
hybrides a porté sur le rendement ensilage, le contenu en matière sèche, 
la date de floraison femelle et la hauteur de plante. Les hybrides des 
dispositifs NAM ont également été phénotypés pour la date de floraison 
mâle. 
Une détection des locus impliqués dans la variation des caractères 
quantitatifs (QTL) a été mise en œuvre en utilisant des modèles prenant 
en compte différents codages alléliques : allèles fondateurs haplotypes  

ou allèle observé au marqueur. Ces codages ont permis de mettre en 
œuvre des modèles de types LA (Linkage Analysis) ou LDLA (Linkage 
Disequilibrium - Linkage Analysis). Une complémentarité des modèles 
a été observée. Certains modèles ont permis la détection de QTLs multi-
alléliques. Des QTLs différents ont été détectés dans les deux groupes 
hétérotiques, confirmant leur divergence ancienne. Pour le contenu en 
matière sèche et le rendement, nous n’avons pas détecté de QTL à effet 
majeur dans aucun des dispositifs à l’exception d’un QTL corné de 
floraison à effet pléiotropique dans le groupe corné. Bien que l’ASC 
représentait 20% de la variance génétique intra-population totale pour 
la plupart des caractères (sauf la hauteur de plante) le dispositif factoriel  
n’a permis la détection que d’un faible nombre de QTLs ayant un effet 
sur la dominance/ l’ASC.  
Différents modèles de sélection génomique de type GBLUP ont été mis 
œuvre dans le  dispositif factoriel. Nous avons obtenu de bonnes qualités 
de prédictions, bien que la majorité des lignées ne fût parentes que d’un 
seul hybride. Nous avons montré qu’il était important de calibrer les 
prédictions sur des hybrides issus de lignées apparentées aux hybrides à 
prédire. Nos modèles ont montré leurs limites quant à la capacité de 
prédiction de l’ASC mais ont permis d’obtenir de bonnes qualités de 
prédiction pour les AGC des lignées parentales. Notre étude ouvre de 
nouvelles perspectives pour reconsidérer les schémas de sélection des 
hybrides de maïs. Les évaluations des lignées candidates sur testeur 
pourraient être remplacées par une évaluation d’hybrides obtenus selon 
un plan de croisement factoriel incomplet entre groupes hétérotiques. 
Des évaluations complémentaires sont nécessaires pour comparer plus 
directement notre stratégie avec celle basée sur l’utilisation de testeurs. 
Cependant des premiers résultats encourageants ont été obtenus.  
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Abstract :  Maize (Zea mays L.) is a major crop presenting strong 
heterosis for traits linked to biomass. To exploit this phenomenon, F1 
hybrids are cultivated and breeding programs are organized in heterotic 
groups. Hybrid value can be decomposed in General Combining Abilities 
(GCA) of the parental lines and Specific Combining Ability (SCA).  
The goal of this thesis was to bring new insights to the understanding and 
the prediction of hybrid value and its components for silage maize. To do 
so, two multiparental connected designs, involving hybrids between the 
dent and flint heterotic groups, main heterotic groups used for silage 
breeding in Northern Europe, were analyzed. The first design consisted 
in two Nested Association Mapping (NAM) populations involving test-
cross hybrids. The dent population consisted of ten biparental dent 
families and the flint one of 11 biparental families. The second design 
consisted of two multiparental populations of inbred lines, one dent and 
one flint, derived from two half diallels between four founder lines. 
Inbred lines from both groups were crossed according to an incomplete 
factorial to produce experimental hybrids. Hybrids were phenotyped for 
dry matter yield, dry matter content, female flowering date, plant height, 
and only for the NAM designs male flowering date.  
Quantitative Trait Loci (QTL) detection using Linkage Analysis (LA) 
and Linkage Disequilibrium – Linkage Analysis (LDLA) methods was 
performed in both designs. QTL detection models were found to be 
complementary. Some of the QTL detection models allowed us to detect  

multiallelic series at the QTLs, showing the importance of not directly 
considering the observed biallelic genotype. Different QTLs were 
detected in the two heterotic groups, highlighting their long-term 
divergence. No QTL showed major effect for DMC and DMY except 
one pleiotropic QTL for flowering time in the flint group. The reciprocal 
multiparental design allowed the detection of QTLs for dominance/SCA. 
However, very few QTLs had significant dominance/SCA effects even 
if SCA represented around 20% of the within-genetic variance, except 
for PH for which it was lower.  
Genomic selection was conducted in the second design using different 
GBLUP models. We obtained good predictive abilities even though 
predicted hybrids were obtained through a highly incomplete factorial 
mating where the majority of the inbred lines were parents of only one 
hybrid. Variation within populations sharing three founders with 
populations used for calibration could be predicted efficiently. Our 
models showed a limited ability for predicting SCA but predicted well 
the GCA of the parental lines. This opens new prospects for 
reconsidering maize breeding. Indeed test-cross evaluation, usually used 
in the breeding companies, could be replaced by single-cross evaluation, 
according to an incomplete factorial design, between the two heterotic 
groups to improve. Further evaluations are needed for comparing the 
efficiency of this strategy with the one of tester-based designs, but first 
obtained results are encouraging.  
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