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Résumé

Le mais Zea mayd..) est une culture majeure présentant un hégiogiortant pour les

caractéres liés a la biomasse. Pour exploiter éaghéne, les programmes de sélection
été organisés en groupes hétérotiques et la néajed surfaces cultivées correspond &

hybrides F1. La valeur hybride peut étre décompoméeAptitudes Générales a

Combinaison (AGC) des lignées parentales et entugwi Spécifique a la Combinaison

(ASC).

L'objectif de cette these était d’apporter de n@uwe éclairages sur la valeur hybride,

concernant tant la compréhension de ses déterngmigg@nétiques sous-jacents que
prédiction. Deux dispositifs multiparentaux conésobnt été analysés, mettant en jeu d

des principaux groupes hétérotiques utilisés pppraduction de mais fourrage dans le n

sa
eux

ord

de I'Europe : les cornés et les dentés. Le predmspositif était constitué de deux populations

de type Nested Association Mapping (NAM). La pogioladentée comprenait dix famillé
biparentales et la cornée onze. Ces populationsétintévaluées pour leur valeur

croisement avec un testeur du groupe complémentargeuxieme dispositif était constitué

d’'un factoriel entre deux populations multipareesatle lignées : une cornée et une de

dérivées de deux demi-dialléles entre quatre ligifiéedatrices. Les lignées ont été crois

D

S

en

nte,

ées

entre elles selon un plan factoriel incomplet afiobtenir des hybrides inter-groupes. Pour

les deux dispositifs, le phénotypage des hybrigests sur le rendement ensilage, le contenu

en matiére séche, la date de floraison femelle diauteur de plante. Les hybrides des

dispositifs NAM ont également été phénotypés pautdte de floraison male.

Une détection des locus impliqués dans la variadies caractéres quantitatifs (QTL) a
mise en ceuvre en utilisant des modeéles prenanbmpte différents codages allélique
alleles fondateurs haplotypes ou alléle observénatgueur. Ces codages ont permis

mettre en ceuvre des modeles de types LA (Linkagalyais) ou LDLA (Linkage

Disequilibrium - Linkage Analysis). Une complémeitta des modeéles a été observé

Certains modéles ont permis la détection de QTLUsiHailéliques. Des QTLs différents ont

de

été détectés dans les deux groupes hétérotiquafantant leur divergence ancienne. Pour

le contenu en matiere seche et le rendement, fnawsns pas détecté de QTL a effet majeur

dans aucun des dispositifs a I'exception d’'un Qodkné de floraison a effet pléiotropique

dans le groupe corné. Bien que I'ASC représentddb 2le la variance génétique int

14
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population totale pour la plupart des caractéresif($a hauteur de plante) le dispos
factoriel n’a permis la détection que d'un failnlembre de QTLs ayant un effet sur
dominance/ I'ASC.

Difféerents modéles de sélection génomique Y& tGBLUP ont été mis ceuvre dans
dispositif factoriel. Nous avons obtenu de bonnesités de prédictions, bien que la majo
des lignées ne fat parentes que d’un seul hybNdas avons montré qu'il était important

calibrer les prédictions sur des hybrides issusgtiées apparentées aux hybrides a pré

Nos modeles ont montré leurs limites quant a laacié de prédiction de 'ASC mais ont

permis d’obtenir de bonnes qualités de prédictimur res AGC des lignées parentales. N¢
étude ouvre de nouvelles perspectives pour recérgsides schémas de sélection
hybrides de mais. Les évaluations des lignées datadi sur testeur pourraient &

remplacées par une évaluation d’hybrides obtenlos sen plan de croisement factor

tif

a

rité
de

dire.

Dtre
des
tre

el

incomplet entre groupes hétérotiques. Des évahmtammplémentaires sont nécessaijres

pour comparer plus directement notre stratégie agle basée sur I'utilisation de testeu

Cependant des premiers résultats encourageanéssoolbtenus.

Mots clés :mais, valeur hybride, détection de QTL, sélecienomique, ensilage

IS.
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Abstract

Maize Zea mayd..) is a major crop presenting strong heterosigrfats linked to biomass
To exploit this phenomenon, F1 hybrids are culedaand breeding programs are organi
in heterotic groups. Hybrid value can be decompas&kneral Combining Abilities (GCA
of the parental lines and Specific Combining ABI[ECA).

The goal of this thesis was to bring new insigbtshie understanding and the prediction
hybrid value and its components for silage maize.dd so, two multiparental connect
designs, involving hybrids between the dent amd fieterotic groups, main heterotic grou
used for silage breeding in Northern Europe, wasdyaed. The first design consisted in t
Nested Association Mapping (NAM) populations invaly test-cross hybrids. The de

population consisted of ten biparental dent famsiéied the flint one of 11 biparental famili¢

D.

zed

N

of
ed
IpS
NO
nt

2S.

The second design consisted of two multiparentplfadions of inbred lines, one dent and

one flint, derived from two half diallels betweawuf founder lines. Inbred lines from ba
groups were crossed according to an incompleteratto produce experimental hybrig
Hybrids were phenotyped for dry matter yield, drgttar content, female flowering daf
plant height, and only for the NAM designs malenéoing date.

Quantitative Trait Loci (QTL) detection using Lirg@a Analysis (LA) and Linkag

Disequilibrium — Linkage Analysis (LDLA) methods sv@erformed in both designs. QT

detection models were found to be complementarmeSof the QTL detection mode
allowed us to detect multiallelic series at the @T&howing the importance of not direc

considering the observed biallelic genotype. Dédfder QTLs were detected in the ty

th
S.

€,

1%}

Is

tly
VO

heterotic groups, highlighting their long-term digence. No QTL showed major effect for

DMC and DMY except one pleiotropic QTL for flowegrtime in the flint group. The
reciprocal multiparental design allowed the detettiof QTLs for dominance/SCA
However, very few QTLs had significant dominanceAS&ifects even if SCA represents
around 20% of the within-genetic variance, exceptH for which it was lower.
Genomic selection was conducted in the second nlesigg different GBLUP models. W
obtained good predictive abilities even though ted hybrids were obtained through
highly incomplete factorial mating where the majpif the inbred lines were parents
only one hybrid. Variation within populations shagyithree founders with populations us
for calibration could be predicted efficiently. Oorodels showed a limited ability fc
predicting SCA but predicted well the GCA of thegrdal lines. This opens new prospe

for reconsidering maize breeding. Indeed test-cevstuation, usually used in the breed

D

5%
o

e

of
ed

cts

ng
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companies, could be replaced by single-cross etralyaccording to an incomplete factor

design, between the two heterotic groups to impréwether evaluations are needed

comparing the efficiency of this strategy with tbee of tester-based designs, but f

obtained results are encouraging.

Keywords : maize, hybrid value, QTL detection, genomic sébectsilage
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General Introduction
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Maize is widely used all over the world for foodam feed, silage and over the last years also
for bioethanol. It is grown on 140 million of herta in the world and is the first cereal in the
world in terms of volume of grain. It is the spexthat prompted the definition of the concept
of heterosis (Shull 1914) and the development ofhigirids (Shull 1908), leading to the
subsequent implementation of advanced breedingadsthn this introduction, we will focus
on heterosis, presenting its genetic basis anfdtters affecting it. Then, we will present maize
breeding history and selection schemes before gian insight on the contribution of
molecular markers to understanding the geneticerahtisms of phenotypic traits and
improving breeding schemes. Finally, we will bryefiresent the experiments and approaches

that were conducted during this PhD.

Heterosis

Heterosis — history and definition

In 1766, Koelreuter showed that some interspecifisses in several genus suchNasotinia
andDatura could lead to hybrids presenting stronger vigonttreeir parents. Darwin in 1876,
observed that for numerous species intraspecifissspollination led to better plants than self-
pollination with increased performances for quatre traits. This observation was later
theorized by Shull (1908) at Cold Spring Harbor duaories in New York and East (1908) at
Connecticut State College who defined the concepeterosis (Shull 1914), after maizée@
maysL. or Zea maysspmay9 observations. There is heterosis when a hybfgpdhg from
genetically diverse individuals or populations sBancreased vigor relative to its parents (Fu
et al. 2014). According to the distance between the parehthe hybrid, three categories of
heterosis can be defined depending if it is a doesseen: (i) two individuals from two different
species, (ii) two individuals from two differenttspecies, (iii) two individuals from the same
subspecies (Fat al. 2014). Heterosis is widely used in plant and ahiomneeding. One of its
earliest applications was mule breeding, mulesgéearived from the cross of individuals from
two species: a female hordeguus caballusand a male donke¥Quus asinus(Springer and
Stupar 2007). One example in plants of heterogim fivide hybridization is Triticale, a
polyploid hybrid of both rye§ecalespp.) and wheaf ¢iticum spp.) which is widely sown (Fu
et al.2014). The rice hybrithdica x japonicawhich presents between 8 to 15% more heterotic
potential than intraspecific hybrids for many tsag an example of intersubspecies heterosis.
However, at first, these rice hybrids were not Wigalopted due to problems of unstable seed
setting and poor grain plumpness, problems soleegntly (Fuet al. 2014). Intraspecies
heterosis is certainly the type of heterosis teahe most used in plant breeding and more

21



specifically in maize breeding (Figure 1). We whiticus on intraspecific heterosis in the
following and will refer to it as “heterosis”.

Heterosis can be defined in two different ways. &ieist heterosis (or mid-parent heterosis) is
when one genotype is better than the mean of tigp@vents. Breeder heterosis (or best parent
heterosis) is when the hybrid is better than tte bkits parents. Note that although not strictly
academic farmers may also have a third vision derbsis which is the difference in
performance between the best hybrid available emthrket and the best inbred line variety.
From a statistical point of view, heterosis is aidion to additivity. Its conceptual opposite is
the inbreeding depression, which is a gradual reoluof vigor after reproduction of related

individuals, over several generations.

Hybrid F1

Figure 1: lllustration of phenotypic heterosis in the F225R maize hybrid, in the center (Photo: Julie Rigve

Heterosis — genetics basis

Even if heterosis is widely used in plant and athioneeding, our knowledge of the mechanisms

underlying it is partial. Three main non-exclustwgpotheses exist regarding the phenomena
underlying heterosis for a given trait in a givewvieonment: dominance, overdominance and

epistasis (Figures 2 and 3).
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Figure 2: Definition of genotypic value in a biallelic sitiian for one locus. Genotypic values of the genesyp
bb, Bb and BB, are defined by the parameseaiadd. a is the biological additive effect of the locugdahis the
biological dominance effect of the locus. The ggpmmt value of the genotypleb is —a, genotypic value of the

genotypeBB is a. When there is strict additivity, genotypic valoegenotypeBb is 0, whereas when there is
dominance of allele B over allele b (situation prged here) it is equal td. If d/a =1, there is complete

dominance, i < d/a < 1 there is partial dominance an(fl}fa > 1there is overdominance.

In the dominance hypothesis, heterosis is explaimethe fact that each parental line carries
recessive unfavorable alleles at different loditsd their effects are masked by their dominant
counterpart when assembled in the hybrid (Figure B)e hybrid benefits from the
complementation of these deleterious alleles (Dpoe908; Jones 1917). Overdominance is
an intralocus complementation for which the hetggore state at one locus is phenotypically
superior to both homozygote states (Hull 1946) Feg3). Few examples of overdominance
exist and at our knowledge there is only one ouwaidance action which was fully proved in
maize. Hollick and Chandler (1998) provided eviderior overdominance at thel locus
(purple plant locus) which controls the leaves aaglanin synthesis. Strong correlation
between two locus (or Linkage Disequilibrium LD)nche a problem for distinguishing
dominance from overdominance gene action on phpeetySpringer and Stupar 2007) since
apparent overdominance can be the result of tigkge between two loci with favorable
dominant alleles in repulsion. This situation idlezh pseudo-overdominance (Jones 1917)
(Figure 3). Note that in situations where the fabbe allele at a locus depends on the
environment and is dominant, one can observe amdowenance effect for the average

performance, referred to as marginal overdominafwallace 1968). Epistasis which
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corresponds to the interaction between alleles/atar more loci can also have an impact on
heterosis (Richey 1942; Powers 1944; Jinks andsJb®g&8; Williams 1959).

A.l.l.AXa__a AIIAXa__a %iiﬁX§==s
b"b B B

| | l
B AI_a @i:
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Dominance Overdominance Pseudo-overdominance

ww

Figure 3: Genetic mechanisms proposed to explain heterBdisand P2 correspond to the two parental lines.

Alleles a and b are recessive and unfavorabldeallke and B are dominant and favorable.

Various molecular mechanisms may explain thesetmenechanisms. In addition to non-
synonymous single base mutations that can causeofofinction, maize presents a lot of
structural variation as difference in genome orgaimdn and presence-absence variations.
These presence-absence variations can be at tleelaeyarl, gene regulating regions level or
components of gene families level (Springer ang&ti2007). Combination of inbred lines
presenting such variations can have an impact@tetrel of gene expression. One example is
the expression in the B73 x BSSS53 hybrid of #enl1C gene family controlling the
development of endosperm tissue. B73 expressegesigs of the family, BSSS53 seven, but
only three are shared between the two genotypes.hyhrid expresses all H&in1Cgenes
(Springer and Stupar 2007).

Factors affecting heterosis

Plant heterosis is highly variable depending orcigse In general, heterosis is stronger in
allogamous species (such as maize, onion and&lfdlan in autogamous species (such as
wheat, rice Arabidopsis tomato). This is because allogamy allows the kbgwveent of the
genetic load as recessive slightly deleteriousleall@t low frequency are masked at the
heterozygote state. In autogamous species, reeassiavorable alleles cannot be masked and
are thus counter selected, which explains why gebetden is much less important (Gallais
1989; Gallais 2009). For allogamous species, wiobemparing inbred lines to the §eneration,
heterosis for grain yield or biomass is of 100 @®% whereas for autogamous species it is
between 0 and 100%. However, this result need® touanced as for allogamous species it

would be more logical to compare hybrid value witht of populations. Inbred lines are indeed
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created by forcing allogamous plants to become gamous. The advantage of hybrids
compared to populations from which parental linesextracted is lower, between 10 and 15%
(Morrow and Gardner 1893). As heterosis is duedrt |p dominance, it is expected to be
stronger when “distant” individuals are crossedwdeer, the relationship between genetic
distance of the parents and importance of hetenosi®e F is not straightforward. It has been
observed that when genetic distance between tleafsas too important, heterosis can be lower
than for crosses between closer individuals (Mokl. 1965 for an example on maize).
Heterosis is dependent on the considered traiedddin maize, heterosis is more important for
grain yield than for plant height, which itself pemt more heterosis than leave width. Number
of seeds presents more heterosis than thousanmdwgeaght. Heterosis has a minor impact on
number of leaves and number of ranks per kernelgtware mainly additive traits (Gallais
2009). Thus, heterosis tends to be more importaritdits linked to fithess than for other traits.
It is more important for complex traits as graielgior silage yield than for traits with simple
genetic determinism (Gallais 2009). One explanatian be that many complex traits are
multiplicative and can be decomposed in elementamponents. If elementary traits present
heterosis, the complex trait corresponding to tipeoduct will present more heterosis. In
addition, multiplication of elementary componenéving complementarity characteristics in
both parents (as one parent with long and narrewele and one parent with short and wide
leaves), and not necessarily presenting hetemisgsonduct at heterosis at the hybrid level for
the complex trait (Gallais 2009). Heterosis dogsomby affect the young or adult plants but is
manifest already in the early stages, at the bagynof embryogenesis. For instance, size of
the hybrid embryo six days after fecundation, spefetbot development and some embryo

enzymatic activities present mid-parent heterdsallis 2009).

Maize breeding history

From open-pollinated maize varieties to maize hydri

The theorization by East and Shull of the hetenolsenomenon, has accompanied the transition
of cultivated maize from landraces and open-pdiidavarieties to hybrids in the USA. Open-
pollinated varieties correspond to a populatiomdividuals all different one from each other,
resulting from random crosses of plants from thevjmus generation. These populations have
been created by mass selection and adaptationvicoemental conditions from ancestral
populations originated from Mexico (see Appendixoll a brief overview of the history of
maize). k hybrids were seen as a way to produce at a largle she best combination of

gametes that could be derived from such popula{ighsll 1908). As noted by Shull this idea

25



is an extension of the isolation concept that vygiiad to autogamous species in order to make
it applicable in the presence of inbreeding depoesdMaize morphology allows an easy
production of hybrids seeds as male flowers artherop of the plant which can thus be easily
castrated which allows a large-scale productiohytfrid seeds (Morrow and Gardner 1893).
However, at the beginning, one main issue wasathedte of seeds produced by the first inbred
lines derived from populations, due to the inbragdiepression. To circumvent this limitation
and allow a production in quantity of identical deeJones (1918) proposed the use of triple-
cross hybrids and double-cross hybrids. From 1924 1best hybrids, as for example Cooper
Cross, presented a repeatable advantage of ar@%ddmpared to the best open-pollinated
varieties (Charcosset 2002). Such practical retedtén the 1930s to the domination of triple-
cross and double-cross hybrids over open-pollinageteties (Troyer 1999). For instance, in
lowa in 1935 less of 10% of the surface was sowth Wybrids whereas it was over 90% in
1939 (Reifet al.2005). Then, in the 1960s, with the improvementbfed lineger sevalue,
simple hybrids could be developed (Troyer 1999) arelnow widely used (Figure 4). This
transition from open-pollinated varieties to doubtess and then single-cross hybrids was
concomitant to an increase in maize yield (Figyrémthe 1950s (North Central Regional Corn
Improvement Conference 1949; Lamkey and Lorenz R(ieterotic groups, structuring the
genetic diversity, were created in order to inceelasterosis, by avoiding relatedness between
parental lines used as parents of hybrids. Hetegotiups can be defined “as a group of related
or unrelated genotypes from the same or differeptifations, which display similar combining
ability and heterotic response when crossed withotyges from other genetically distinct
germplasm groups” (Melchinger and Gumber 1998).
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Figure 4: Evolution of U.S. maize yields and kinds of coranmi 1860 to 1998; periods dominated by open-
pollinated, by double cross and single cross hghai@ shown. (From Troyer 1999).
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First hybrids cultivated in Europe, before the E&0s, were imported from USA and had only
a limited success. After World War I, programs aetarted to develop hybrids adapted to
Northern European conditions. In France, new liwese developed from the flint French
Southwestern populations and crossed to dent irlbred from the Corn Belt dent region in
USA, as Wisconsin inbreds (Troyer and Hendricks@@72. The most successful flint inbred
lines, F2 and F7, were derived from the Lacaunaufadion (Tenaillon and Charcosset 2011).
In regions at the North of Loire valley, the reggt hybrids over yielded and were better
adapted than the early flowering hybrids importedmf Northern USA (Troyer and
Hendrickson 2007; Tenaillon and Charcosset 201@jredtly, these dent and flint heterotic
groups are still the ones mainly used for maizedireg in Northern Europe, for silage as well
as for grain maize, althoughere is a growing tendency to introgress the fiool with dent
material. In breeding companies, these main hetegodups are structured in smaller heterotic

groups derived from the most popular inbred linketheir breeding programs.

Maize hybrid selection schemes — recurrent recigkselection

One main concern of hybrid breeding is to seleetgarental lines which in combination will
give the best hybrid. One first option is to selbet parental lines based on theer sevalue
(Jenkins 1929). However, correlation is low betwgen sevalue of an inbred line and the
values of hybrids that can be derived from it faits showing heterosis (Richey 1924; Richey
and Mayer 1925)Per sevalue selection generally allows the eliminatidnoaly the worst
parents (Gallais 2009). In 1932, Jenkins and Bruswwed that the average value of the
hybrids derived from an inbred line is better ctated to the value of the progeny of this inbred
line with another inbred line, an hybrid or a paign than to itper sevalue. Sprague (1939)
and Jenkins (1940) suggested that combining alufithe tested inbred lines should be taken
into account at early stages in the inbreedinggsecSprague and Tatum (1942) clearly defined
the notions of combining abilities and introduckd partitioning of hybrid values in terms of
General and Specific Combining Abilities (GCA an@Asrespectively). The GCA of a line
corresponds to its average performance in hybnmdbdoations. The SCA of a pair of parental
lines is the difference between the hybrid valud #s value predicted based on GCAs. It
corresponds to the cases “in which certain comhnato relatively better or worse than would
be expected on the basis of the average perforntdnice lines involved” (Sprague and Tatum
1942).These notions can be extended to the casgbatls between two heterotic groups (see
Appendix 2).

Hayes and Garber (1919) are credited as the 8esswof recurrent selection for maize breeding
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(Hallaueret al. 2010, Chapter 6), that is to say methods of deleconducted recurrentlyg.
when similar procedures are repeated in succesgeles of selection. Recurrent selection
methods are designed to increase the frequen@vofdble alleles for quantitative traits while
maintaining genetic variability allowing continuogenetic improvement (Hallauet al.2010,
Chapter 6). Jenkins (1940) suggested a method fieedhy Hull in 1945, for improving SCA

of a heterozygous population thanks to the usete$tar with a narrow genetic base. The used
tester may be a pure line or a hybrid and is orte@parents of the future commercial hybrid.
Hull’'s method, which did not allow for much imprawent on the tester side, would be efficient
in presence of overdominance but inefficient fomittance when the tester carries favorable
alleles (Hull 1945; Comstoa#t al. 1949). Another possibility is to perform recurreptection

for GCAs. In this case, plants from one populatdomevaluated in cross with a ester presenting
broad genetic base, identical for all populatidrise tester used consisted in at least two single
crosses between pure lines or in a variety. Thedacted plants of each populations are crossed
and a new cycle can be initiated (Comstetkl.1949; Lonnquist 1957). These method is more
efficient than the previous one in presence of d@mce but not in presence of overdominance
(Comstocket al. 1949). Comstoclet al. proposed in 1949 a reciprocal recurrent methodhvhi
is efficient regardless of the genetic mechanisngetlying heterosis and which maximize use
of GCAs and SCA (Figure 5). Their procedure comesish the simultaneous improvement of
the two parental populations of the hybrid, tesphants from one population by crossing them
with plants of the other population. Each planboé population is crossed with four or five
plants of the other population and the resultinigriigs are evaluated. In each population, plants
are selected based on the value of their bulkégttess progeny. Reciprocal recurrent selection
proved its efficiency in several selection programsiated in the 1960s and 1970s (see
Hallaueret al. 2010, Chapter 7). Variations of the reciprocalureent selection procedure
proposed by Comstoek al.(1949) were proposed as for instance reciprocakrent selection
based on testcrosses of half-sib families (Paterdi@67) which reduces the effort for making
testcrosses, reciprocal recurrent selection basedalf-sib progenies of prolific plants
(Hallaueret al. 2010, Chapter 12) and reciprocal full-sib selecto prolific plants (Hallauer
and Eberhart 1970) or on one-ear plants (Hallatiat. 2010, Chapter 12). In reciprocal full-
sib selection, contrary to the method proposed eayp§tocket al.(1949), full-sib progenies are
evaluated rather than half-sib progenies (see tialkt al. 2010, Chapter 12 for more details
on the procedure). These selection schemes shdwedriterest for maize hybrid breeding.
Coors (1999) synthetized a large number of stuiieseveral breeding method. He showed

that reciprocal half-sib and full-sib recurrentesstion methods were the ones allowing the
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highest direct responses for interpopulation imprognt on a cycle basis and led to the highest

gains in grain yield on an annual basis.
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Figure 5: Reciprocal recurrent selection for two complemgnppulations A and B (adapted from Varona and
Toro, 2012).

In the breeding companies, generally a modifiediment reciprocal selection procedure is
used. Within each heterotic group; breeders crasgs pf inbred lines to generate biparental
segregating populations that are evaluated for thst-cross values. Generally, a few testers
(two or three) of the opposite heterotic group @sed and correspond to good parental lines,
which will be one of the future parents of the asled hybrids. Selected plants are then selfed
during several generations to derive new inbreeslinn a second stage, inbred lines selected
in the different groups are crossed in order totidiethe best hybrid combinations.

Understanding of the genetic basis of the phenotyptraits

QTL detection

Conventional breeding methods can be considerétlimsl” approaches. When they were
developed little was known on the genes or lociQaantitative Trait Loci, QTL) involved in
the variation of quantitative traits. Detecting4beQTLs is important for understanding the
genetic basis of the traits. Molecular markers,mt@related to the trait, can bring information
on location and polymorphism of these loci. Thetfimolecular markers used were protein
variants (isozymes) identified by electrophoresid developed in the 1960s. They presented

codominant variations but were not very polymorpaia did not cover the entire genome.
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Then, new approaches appeared, enabling to dedbahrphism at the DNA level: first
Restriction Fragment Length Polymorphisms (RFLPdhie 1980s, then Amplified Fragment
Length Polymorphisms (AFLP) and Simple SequenceeBtsp(SSR) in the 1990s and finally
Single Nucleotide Polymorphisms (SNP) and Copy-Nem¥ariations (CNV). Two main
methods exist for detecting QTLs: QTL detectionLorkage Analysis (LA) mapping and
association mapping or Linkage Disequilibrium (LB3pping. These methods use the fact that
polymorphisms at two loci of the genome are in Iddt(randomly associated) depending of a
certain number of factors as genetic distance,csefe drift etc.. Consequently, allelic
information on one locu(g.a marker) can give information on the allele aithar locusé€.g.

the gene) with which it is in LD.

In plants, first QTL detections were carried ous@gregating populations derived from crosses
between two inbred lines (Paterseinal. 1988 on RFLP).This approach relies on the fadt tha
in these populations, correlations between marlagid QTL is a simple function of the
recombination rate. It has a limited resolutionri2&i and Soller 1997) due to the low number
of recombination events that occurred in such patjart. Moreover each biparental population
represents only a small part of the generic dityeesrailable. To circumvent these limitations,
with the increase of marker density and the develayg of genotyping chips, it became
possible to detect QTLs in a more diverse matewdl no family relationships. It is the
association mapping approach. This approach tatkesngage of the LD present in panel of
individuals that has been broken along generatigrtsstorical recombinations (Pritchard and
Przeworski 2001) which allows a better resolution than QTL ed&bn in biparental
populations. However, in association mapping pdpuiga, contrary to linkage mapping
populations, LD is not only due to genetic linkdng also to the history of the population. It
can be caused by structure, relatedness, drift@ledtion. To reduce false-positive associations
caused by the history of the population, additiaa@dom or fixed terms (corresponding to
structure or relatedness) can be added in theiaisocmapping model (Yet al. 2006).
Approaches were developed for improving QTL detecbased on LA-mapping. For instance,
QTL detection can be carried out in highly recontimninbred lines or intermated lines
(Darvasi and Soller 1995; Huargy al. 2010). The higher number of recombinations in
comparison to a traditional LA-mapping populatidiowas a better accuracy of estimated QTLs
positions. Synthesis of the information of sevdrglarental QTL detection studies is also
possible by performing meta-analysis (Goffinet &etber 2000; see Truntzlet al. 2010 for

an example on silage maize) which can allow to @epimore diversity and improve the

resolution of the QTL mapping. Multiparental desigran also be a solution for improving the
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precision of QTL location while exploring more disgy. Among these designs, multiple
connected biparental families designs can be dpedldy assembling biparental populations
that have one parents in common (Redtadl. 1997). Nested Association Mapping (NAM)
designs (Ywet al. 2008) are a specific case of such designs in wddidhiparental populations
shred the same parent. Another possibility is theetbpment of multiparental advanced-
generation intercross (MAGIC) populations (Huat@l.2015) where the initial crosses of the
various founder lines are followed by several gatiens of inter-mating. Two types of analyses
can be performed on multiparental designs: tradkiitinkage based analyses when looking at
the parental alleles or LDLA analyses which syntteeboth LD and LA approaches by looking
at ancestral alleles or at the observed markeealle

Marker-Assisted Selection

Knowing position of QTL and of markers physicallgdd to the QTL is important from a
fundamental point of view and offers interestingspectives for Marker-Assisted Selection
(MAS). Interest of markers in breeding was firssalissed by Neimann-Sorensen and
Robertson in 1961, in an animal breeding contéxs only in the 1980s that MAS became a
more tangible reality in animal and plant breedi@me application of MAS is for traits
determined by a major gene and difficult or expem$d phenotype. When the favorable allele
at the major gene is associated to a specificeadiel marker, it can be cheaper and easier to
genotype and screen for the marker than to pheaofgr more complex traits, influenced by
many genes, Lande and Thompson (1990) proposedtimate the genetic value of the
individuals based on the sum of the effects of marksignificantly associated to QTLs.
Phenotypic information can also be integrated ® $klection scheme and integration of
phenotype and genotype information lead to diffeldAS schemes. Hospitat al. (1997)
shown that one of the main interest of MAS wasramdase of genetic grain per unit of time
when cycles with only marker information and witlanker and phenotypic information were
alternated. MAS is expected to be more interestivan conventional selection based on
phenotype for traits with low heritability providdédat QTLs can be detected (Hospgéalal.
1997; Moreatet al. 1998). One limit of these approaches is that seleon markers only lead
to the quick fixation of favorable alleles at thgdest QTLs (Hospitadkt al. 1997; Moreatet

al. 2004) whereas unfavorable alleles can be fixddleasmallest QTLs. Another limit is that
effects of the detected QTLs are often overestithdige to the Beavis effect (Beavis 1998)
which lead to wrong weightings of the QTL effeatspredictions based on markers and a
reduced efficiency of MAS (Moreaet al. 1998; Melchingeet al. 1998). When using detected
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QTLs, only a limited proportion of genetic varianie taken into account and “missing
heritability” (Maher 2008) is important. Even ifree studies reported a limited efficiency of
MAS in biparental populations (Moreat al. 2004) others, notably some issued from the
private sector, reported its interest (Eathing&tnal. 2007). MAS appears particularly
interesting when considering connected multipatgrdpulations to assemble favorable alleles
issued from several founder lines. Interest of dipisroach was tested by simulations (Blahc
al. 2008) and validated experimentally (Moreau andrGbsset 2011).

Genomic selection

To circumvent some of QTL detection limitations,emithe studied trait is controlled by many
QTLs, one possibility is to use genomic selectidhe basic principle of this method is to
estimate all marker effects simultaneously, and tiese effects for prediction, without
conducting first a QTL detection step. The ideaitelthis approach is that if enough markers
are available, the LD between markers and QTLsemidible markers to capture QTLs effects.
However, as the number of markers is generally érighan the number of performances,
conventional fixed-effect models used for QTL détetcannot be used. In 2000, Whittakeer
al. proposed to use the ridge regression to estimaidean effects and showed its interest
compared to predictions based on QTL detection.Wikesenet al. (2001) defined the concept
of genomic selection and proposed to use additiapptoaches, based on Bayesian statistics,
for estimating maker effects. He also proposed apgroach of genomic selection (called
GBLUP) which consists in using markers to estinkatehip relationships between individuals
and use this matrix in a BLUP model to predict ealwf non-phenotyped individuals using
performances of phenotyped ones. This GBLUP modslproved to be statistically equivalent
to a random ridge regression (RR-BLUP) (Haldeal. 2007). It has to be noted that a very
similar approach to the GBLUP model was proposesadly in 1994 by Bernardo who used
marker-based distances between parental linesgiescrosses for predicting performances of
non-phenotyped single-crosses using performancesa aklated set of single-crosses.
Development of GS was favored by advances in tgbdighput genotyping methods that are

now available at a reasonable cost for most spefiagronomical interest.
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Figure 6: Diagram of genomic selection process with a simgleurrence of model training, starting from the

training population and selection candidates caiiniign through to genomic estimated breeding valueR®&)—
based selection (From Heffnet al. 2009).

In a first step, a statistical model is calibrabeda calibration set consisting in a certain number
of individuals which are phenotyped and genotyped second step, the calibrated model is
used to predict the genetic value of individualsollare only genotyped and who belonged to
what is called the prediction set (Figure 6). Ttaaibthe prediction equation, a lot of methods
exist (see Heslagt al. 2012 for a review). They can be parametric as GBl(Equivalent to
RR-BLUP) or Bayesian methods, or non-parametri®Reproducing Kernel Hilbert Spaces
methods or neural networks.

Since 2006, GS showed its practical interest inydaws where it is now largely implemented.
It was facilitated by the pooling between differeountries of phenotyping, genotyping and
pedigree information in order to create a hugeresfee population used for calibration (through
for instance the EuroGenomics consortium which gsdtiuropean private and public actors of
Holstein breeding). In plant breeding, simulati@msl fields experiments gave encouraging
results for implementation of GS in populationshaitiriable levels of diversity. For instance,
Bernardo and Yu (2007) showed using stimulatioa$ @S provided 18 to 43% more genetic
gain per cycle than traditional marker-assistedment selection based on QTLs in biparental
populations.

For maximizing the quality of genomic predictioeeme critical parameters must be taken into
account when designing GS procedures. Choiceseostditistical model and of the marker
density are important. Size of the calibration($echnowet al.2013; Lehermeieet al.2014)
and choice of the individuals in it (Rincegttal. 2012; Akdemiret al. 2015), and for instance
the genetic distance between the calibration settl@ prediction set (Riedelsheimetral.
2013; Lehermeieet al. 2014) need to be considered.

Some limits of the current GS approaches are uingiestigation such as the incorporation in
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the model of GXE interactions (Burguegioal. 2012; Hesloet al.2014). Several recent studies
have been published on the prediction of hybride/éen two populations and the inclusion of
dominance and SCA in the GS models. This quessianf high interest for animal genetics
(Toro and Varona, 2010; Amuzu-Aweth al. 2013; Ertlel al. 2014; Suret al. 2014) and for
plant genetics (see Zhatal. 2013 for an example in wheat; Retfal. 2013 for an example in
sunflower; Xuet al. 2014 for an example in rice). In maize, where tuetis is strong, first
exploratory studies based on GBLUP were carrigddoousmall factorial designs (Bernardo
1994) or on hybrids from advanced selection stagjdoreeding programs (Bernardo 1996a;
Bernardo 1996b). More recently, more important sktta were studied using GBLUP and
alternative models, based on simulations (Techabal. 2012) or data from the last steps of
maize breeding programs (Maenhetial. 2007; Maenhouét al. 2010; Massmaet al. 2013;
Technowet al.2014). More studies are still needed on hybridljgteon especially for hybrids
between inbred lines developed directly from segfiag populations available at early

selection stages.

Presentation of the phD work

In France, in 2013 silage maize was cultivated 4\49 million of ha representing around 44%
of the total superficies of maize. French silagézengield was multiplied by two over the last
50 years passing from 150 000 Hg/Ha to 312 175 HdAFRAO stats). During decades, maize
was bred for silage or grain indistinctively ancduling criteria were based on grain yield
performances and not on silage performance (Suetull. 2005). Since 1986, for the
registration in the French Official Catalogue ofefigs and Varieties, maize varieties are
classified into two groups: grain maize and silaggze. Since 1998, feed quality is taken into
account for registration (Suraudt al. 2005) through the Milk Forage Unit (MFU), which
quantified the calorific energy brought to dairywso by one kilo of forage. This late
preoccupation for feed quality and digestibility & a decrease of the MFU values (Surault
al. 2005) as well as Neutral Detergent Fiber (NDFedtipility values (Barrieret al. 2004)
for the hybrids registered in the French catalogligarieties or in the European catalogue
between 1958 and 2002. Understanding of the gedeterminisms below the traits subjected
to silage breeding is of main importance.

The main objective of this phD work was to analtfze genetics of the hybrid value of silage
maize in multiparental designs, using two differapproaches: (i) QTL detection and (ii)
genomic selection and two different strategieshigsrid production: (j) single tester approach

and (jj) a “no tester” approach with a highly inqolete factorial mating design between two
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populations of candidate lines. To do so, two rpaltental silage maize designs were studied.
The dent and flint heterotic groups, correspondmtpe major heterotic groups used for silage
breeding in Northern Europe are involved in botkigies. The first design is a NAM design,
actually composed of two NAM designs, correspondimghe dent and the flint heterotic
groups. The dent design consisted of ten bipareddat families and the flint one of 11
biparental families. Inbred lines were evaluatedess$-cross value, using for each heterotic
group the central line of the other group as tedihrs allowed us to analyze these designs
separately and also jointly. Five phenotypic trarere studied: dry matter yield (DMY), dry
matter content (DMC), female flowering (DtSILK), fadlowering (DtTAS) and plant height
(PH). For each heterotic group, we detected QTlisgua LA model taking into account
connections between populations and three diffdrPhtA models. The second studied design
consisted of two multiparental designs, one dent@me flint, derived from two half diallel
between four founder lines and crossed accordingntancomplete factorial. In this case,
phenotypic evaluation was carried out on hybridsvben the dent and flint parental lines and
not on test-cross hybrids. DMC, DMY, DtSILK and Ridre phenotyped. To our knowledge,
few studies exist concerning QTL detection or geiemslection directly on hybrids and none
were carried out on material directly issued frédm tross of segregating families available at
early selection stages. Our design allowed us tiope QTL detection using LA and LDLA
models and genomic selection on such a material.

The first chapter of this manuscript is dedicatethe QTL detection in the two NAM designs.
It highlights the complementarities of the differe@TL detection models which were
performed and puts into evidence different mukiatlQTLs in the two heterotic groups. These
findings complement the analysis of the same datasea genomic selection context
(Lehermeieret al.2014). The second and third chapters are devotttetanalyses carried out
in the second design. First, results of QTL detecin this design are presented. We developed
models for performing LA and LDLA QTL detection datly on hybrids between unselected
lines of two heterotic groups. We found that sorhthe QTLs for GCA were different in both
groups and that a few QTLs had an effect on SCanandividual risk level of 5%. The third
chapter is devoted to the implementation of GSiptiexh in this design. It also includes some
elements of discussion on the interest of suchgdeisi selection compared to conventional
tester designs. The three main chapters are oeghiaig scientific articles. The first one was
published in Genetics in 2014, the second onebegilboon submitted to Genetics and the third
one is organized in view of submission. Finallgits and perspective of the present work will

be discussed.
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Appendix 1: Maize domestication and world diffusion

Archeology (Pipernet al. 2009) and genetics (Matsuoktal. 2002; van Heerwaardest al.
2011) shown that maize was domesticated in a vall8&outhwestern Mexico 9000 years ago
from the wild species teosinigea mayssspparviglumis During its domesticationf went
through strong phenotypic transformations due tongt selection of a number of genes
(Hufford et al. 2012). Following two different southwards roadsize reached the Andeans
mountains around 6000 years ago and South Braaiindr 6700 years ago (Tenaillon and
Charcosset 2011) (Figure Al). It expanded northgjaadriving in the South-West of USA
around 4100 years ago and then in Northern USA @adada 800 years later. Recent
hybridization between subtropical Southern denteniat (from South of USA) and Northern
flint material (from North-West of USA), adapted s$bort cycles, took place in 1800 AC,
creating Corn Belt dent material (Tenaillon and i€baset 2011). Maize landraces can now be
found from 40°S in South of Chile (close to Chilskand) to 50°N in Canada (close to Gaspé
peninsula) and between + 0 meters above the sedl(fearibbean islands) to +3400meters in

the Andean mountains.
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Figure Al: Domestication center and hypothetical diffusionrafize through the Americas and Europe (From

Tenaillon and Charcosset 2011).
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From 1493, maize spread all over the world, reagkiarope in 1493 and Africa and Asia since
1496 (Mir et al. 2013). Maize landraces were present in Europe tong before the broad
cultivation of maize hybrids. They present a largiege of morphological variation but all of
them have flint kernel and white cob color (Reboetal. 2001). Maize was introduced in
Europe through two main roads (Tenaillon and Clemeb 2011) (Figure Al). The first
introduction is due to Christopher Columbus whougittt in Spain, in 1493, Caribbean maize
from Hispaniola Island (presently the Dominican B and Haiti). Due to its climatic needs,
its cultivation probably remained confined to SanthSpain (Rebourgt al. 2003). A second
introduction took place before 1539 from officialunofficial expeditions from Europe to the
Northern American coast. It is at the origin of gfresence of Northern flint maize in Germany
and Northern Europe (Dubreudt al. 2006; Tenaillon and Charcosset 2011). A third
introduction in Italy probably took place in the X¥century (Tenaillon and Charcosset 2011).
Consequently to these introductions, maize was Iwiddtivated in Europe in the late XV)
early XVII™ century, with less variability in Northern and Eas Europe probably because of
selection for tolerance to lower temperatures (Reipcet al. 2001). After these main
introductions, a new maize genetic group was cdefaten hybridization between maize from
Southern Spain and maize from France and GermatheiPyreneans mountains (Tenaillon
and Charcosset 2011). Nowadays, European maizesitiveepresents around 75% of the

American diversity (Tenaillon and Charcosset 2011).
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Appendix 2: Expression of the phenotype of a hybridetween two
unrelated populations

The following developments are based on Gallai89).90ther expressions for GCA and SCA,
based on the notation of Hayman (1954), can bedauiCharcosset and Essioux (1994).

Let us consider a biallelic locus presenting theled B andb, for a hybrid individual issued
from the cross between two gametes, one issuedpgapulation 1 carried the alleleand one
issued from population 2 that carried all¢leThe alleleB is present in the population 1 at
frequencep, and in the population 2 at frequense The alleleb is present in the population
1 at frequence; and in the population 2 at frequenge withp,; + ¢, = 1 andp, + g, = 1.
The genotypic value associated to the hybrid canriien asy; ;, = u+ a;, + a;, + B,
with a;, the additive effect of the alleliefrom the population lg;, the additive effect of the
allele j from the population 25; ;, the dominance deviation between the aliefeom the
population 1 and the allefefrom the population 2, with= B or b;j =B orb. a;, + aj,
corresponds to the additive genetic value of thesiciered hybrid.

The additive effect of one allele from one popwatcorresponds to the average of the hybrid
genotypes carrying the considered allele comingnftbe considered population. Additive
effects can be expressed in function of a, d, hedrequencies of the alleles in the populations.
Thus, we have for the hybrid population:

ag. = p,a+ q,d — u:additive effect of the allelB from population 1

1

ap, = p.d — q,a — u: additive effect of the allele from population 1

ag, = pa+ q.d — u: additive effect of the allelB from population 2

2

ap, = p1d — qia — u : additive effect of the allele from population 2

2

Substitution effects in each population can bergefiase; = ap, — ap, anda, = ap, —

ap,
Thus we haveag, = qia1;ap, = —p1@;1 ;ap, = G202 ;Qp, = —D2a;

The dominance deviations for the hybrid individoah be written as following, depending of
its genotypeBp, s, = —2q192d ; Bu,p, = —2P1P24 ; Bp,B, = 201924 ; Bp,p, = 2q1D24d.

We define the GCA of an individual from a populatias the average of the value of its
descendants when crossed to the other populatiws, Tonsidering one locus, we have for the
hybrid from the cross of a plant with genotyp&om population 1 and a plant with genotype

y from population 2Y,) = u+ GCAx; + GCA,; + SCAyy(12), With u the average of the
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hybrid populationGCA,, the GCA of the genotype x from population 1 respety to the
population 2,GCA,, the GCA of the genotype y from population 2 resipety to the
population 1SCA,, 12y the SCA between the two parental genotypes.

The GCA at one locus of an individual with genotype i,j; from population 1 relatively to
population 2 is equal t6CA,, = % (a;, + ;). For an individual with genotype = i}, from
population 2 relatively to population 1, it will b@CAy, = % (a;, +aj,).

Thus, we can write the GCA at the locus level @f itidividual from population 1 depending
of its genotyper: GCA(BB); = ap, ; GCA(Bb)y = - (ap, + ay,) ; GCA(bb); = ay,. The

GCA of an individual from the population 2 can xpeessed in a similar way.

The general expression for SCA of the hybrid betwtee populations 1 and 2 at the gene level
. 1
is:SCAxy =  (Biyi, + Biyj, + Bji, +Bjij,)

Then, SCA can be expressed depending of the gemofyihe parental lines of the hybrid:

Individual from population 1
BB Bb bb
Individual from BB Bz, B, 1 Bov,B,
_ > (Bs, 5,
population 2
+ Bb,5,)
Bb 1 1 1
> (B, 5, 7 (Pr.5, > (Boyp,
+ Bs,b,) + Bv,B, + Ba,b, + Bb,B,)
+ Bb,b, )
bb 1
ﬁBlbz E (ﬁblbz ﬁblbz
+ BE,b,)

These expressions at the locus level can be exdeadéhe multilocus level. Thus, GCAs
involve biological additive effects (a), biologicdminant effects (d) and additive x additive
epistatic effects (interaction between two non-hlmgous genes) (not shown here for the
epistatic effects). SCA does not involve biologiealditive effect but involves biological
dominant effect (d) and epistatic effects (not shdwre for the epistatic effects). SCA involves
the three types of epistasis: additive x addithet\feen two non-homologous genes), additive
x dominance (between three genes: two homologonssgat one locus and one gene at the

other locus) and dominance x dominance (betweendenes: two homologous genes at one
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locus and two homologous genes at the other Idqoag)shown here for the epistatic effects).
Allelic frequencies in the two populations haveimpact on the GCAs and SCA values.
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ABSTRACT

Multi-parental designs combined with dense genoiymf parents have been proposed as a
way to increase the diversity and resolution ofrgisative trait loci (QTL) mapping studies,
using methods combining linkage disequilibrium mfation with linkage analysis (LDLA).
Two new Nested Association Mapping designs adajatdtliropean conditions were derived
from the complementary dent and flint heteroticugr®of maize4{ea mays..). Ten biparental
dent families (N=841) and 11 biparental flint faiesl (N=811) were genotyped with 56,110
single nucleotide polymorphism markers and evatlatetestcrosses with the central line of
the reciprocal design for biomass yield, plant he@nd precocity. Alleles at candidate QTL
were defined as (i) parental alleles, (ii) haplatyjdentity by descent and (iii) single marker
groupings. Between five and 16 QTL were detectguedding on the model, trait and genetic
group considered. In the flint design, a major QR2=27%) with pleiotropic effects was
detected on chromosome 10, whereas other QTL ¢eglanilder effects (R2<10%). On
average, the LDLA models detected more QTL but gdlyeexplained lower percentages of
variance, consistent with the fact that most QTdptily complex allelic series. Only 15% of
the QTL were common to the two designs. A jointlgsia of the two designs detected between
15 and 21 QTL for the five traits. Out of thesetween 27 for silking date to 41% for tasseling
date were significant in both groups. Favorablelialleffects detected in both groups open

perspectives for improving biomass production.
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INTRODUCTION

Most traits of agronomic interest present a comtirsuvariation resulting from the sum of the
effects of various quantitative trait loci (QTL).addping these QTL is a first step towards
elucidating their molecular nature and offers int@ot application perspectives for marker-
assisted breeding. QTL mapping started in plants segregating families derived from the
cross of two inbred lines (Lander and Botstein J9B®wever, such biparental designs address
only a small portion of the diversity availabler@ximum of two alleles can segregate at a
given QTL) and the accuracy of QTL positions isalgupoor. To overcome these limitations,
Rebai and Goffinet (1993) and Charcossetal. (1994) proposed models for joint QTL
detection in several biparental families connetteglach other by the use of common parental
lines. When the number of parents is less thantinaber of families, connections can be taken
into account in the detection model to reduce thenlver of allelic effects to estimate. This
increases power and accuracy of detection whenléghlave additively (see Blaetal.2006).
However, such a model makes the assumption thatpsarental line carries a different allele,
which limits its benefit when the number of paréritzes is high relative to the number of
families, a situation commonly encountered in breggrograms.

Recent advances in sequencing and genotyping texxiie® make it possible to genotype
individuals for a large number of markers at reducests, so that one can expect to have
markers closely linked to any QTL. This has paves way towards association mapping, in
which marker-trait associations are directly detdah populations composed of diverse inbred
lines without the need to develop experimentalsgaing families. Association mapping, also
often referred to as Linkage Disequilibrium (LD) pping, has been widely used with success
in the plant community (see for instance Boudtedl. 2013 and Romagt al. 2013 for recent
results of association mapping in maize). In thpraach, it is important to use models
accounting for potential underlying population stire and relatedness between individuals to
prevent spurious QTL detection due to associati@taeen loci that are not linked physically
(Yu et al. 2006). As a consequence, the power to detect iatisos is low for causal
polymorphisms correlated with the underlying pofialastructure or when they are present in
the population at a low frequency (Rincebtl. 2014). In addition, associations are generally
tested at SNP (Single Nucleotide Polymorphism) markwhich leads to the implicit
assumption that the QTL are biallelic. These littas can be alleviated by combining
information coming from LD at the level of the pat® and linkage within families, as first

proposed for animal populations by Meuwissen anddaal (2001). In this approach, referred
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to as Linkage Disequilibrium and Linkage AnalydiO(A), dense genotyping of parents is
used to detect identity by descent (IBD) at puaa@TL,i.e. the fact that two individuals carry
the same allele transmitted by a common ancesifierént types of LDLA analyses have been
proposed to account for the LD component. The sstpgk to consider that parents carrying
the same allele at a given marker are IBD €Yal.2008; Liuet al.2012) as done in association
mapping. Haplotype based approaches also havepreposed to group parental alleles and
tested by simulations (for instance Janseal. 2003; Binket al. 2012; Lerouxet al. 2014).
Advantages of LDLA have been shown experimentallynaize notably by using the nested
association mapping (NAM) design developed in ti®&AUYu et al. 2008; McMullenet al.
2009). This design consists of 25 biparental recgoanti inbred line (RIL) populations derived
from the cross of the inbred B73 with 25 diverseedi representing the diversity of maize
(tropical, temperate, sweet corn, and popcorn JinElsis design was studied with a linkage
analysis model (Bucklezt al. 2009; Kumpet al. 2011; Tianet al. 2011) where QTL effects
were nested within each family and each paremalwas assumed to carry a different allele,
and with LDLA through a genome-wide association piag model (Kumget al. 2011; Tian

et al. 2011) including allelic effects observed at indival SNP of the parents to identify IBD
alleles. This design successfully led to the detacof numerous QTL and use of LDLA
permitted in some cases to resolve QTL detectido tipe gene level (Kumgt al.2011; Poland

et al. 2011; Tianet al. 2011; Cooket al. 2012). Recently, Bardadt al. (2013) applied the
haplotype-based approach of Lerabxal. (2014) to detect QTL in two datasets coming from
an applied maizeZea mays l).breeding program and compared it to models censig each
parental allele as different (linkage model) orsidering that parents carrying the same allele
at a given marker are IBD. Results showed that vaeental lines are all issued from the same
breeding program and related by pedigree, LDLA nwdere more powerful than linkage
approaches. Bardadt al. (2013) also showed that the different ways of ntindeallelic
variation (either using haplotypes or single markdormation) had variable efficiencies
depending on the QTL and trait considered and wleeeefore complementary. It is thus
important to further evaluate the ability of diversDLA models to detect QTL in multi-
parental populations with different diversity lesel

The central line of the US NAM (B73) is too latevilering for evaluation in Northern Europe
and founder lines cover a very broad range of ggagcal origins, including even later tropical
materials. This prevents the evaluation of the whddsign for productivity traits in Northern
European conditions and due to diversity of thediit is difficult to use a single tester to

investigate hybrid values. To overcome these litioites and expand the genetic pool
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investigated in maize QTL mapping studies, two igraomplementary NAM designs were
developed within the European project CornFed. Eaels derived from inbred lines
representing the main diversity available for bregdan each of the two major heterotic groups
(dent and flint) used in Northern Europe. Both gesiwere genotyped with a 50k SNP array
(Ganalet al. 2011) and genotyping information was used to butividual population maps
(Baueret al. 2013). The two NAM designs were crossed with thet@l line of the opposite
group to produce hybrids, that were analyzed faitdrrelated to biomass production as
described in Lehermeiat al. (in press). Increasing biomass production is of ikeerest in
Northern Europe where maize has been extensivedy @ decades for silage and more
recently for bioenergy production. To our knowledgeQTL mapping experiment has been
carried out so far for traits related to biomassdpiction in multi-parental design assembling
such large diversity. Note that both hybrid desigdsress variation compared to the same
hypothetical reference hybrid (the one producearogsing the two central lines), with each
experimental hybrid of each group sharing on awer&f6 of its genome with the reference
hybrid. In this context, effects of all segregatggnotypes at a QTL (11 on the dent side and
12 on the flint side) are compared to a same geedtyaving received alleles from two central
lines). This makes this design particularly adagtaddeciphering loci involved in genetic
variation on the dent and flint sides for produityivraits.

The present study aimed at comparing different ousthof QTL detection in these two
European NAM designs for five traits of agronomicdkrest for biomass production in maize:
whole plant dry matter yield, whole plant dry mattentent at harvest, female flowering, male
flowering and plant height. We compared a linkggeraach with two LDLA approaches either
considering haplotypic IBD or single marker growgsn This allowed us to investigate the
performance of the different LDLA approaches in teamplementary heterotic groups in a
more diverse context than a simple breeding prograrsecond important objective of this
work was to compare the results of QTL detectiondcmted separately in the two heterotic
groups or jointly for the whole design, in orderltetter understand the contribution of each

group to trait variation..
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MATERIAL AND METHODS

Plant material and phenotypic analysis

Two maize NAM designs composed of half-sib familiesn the two major heterotic groups
(dent and flint) used for breeding in Europe wamnalgzed. The two designs are described in
Baueret al.(2013). In short, the dent and flint designs wespectively composed of 10 and
11 doubled haploid (DH) families, derived from ttrv@ss of respectively 10 and 11 diverse
founder lines with a common central line: F353tfer dent and UHOO07 for the flint. F353 and
UHOO7 represent very promising European lines ecehy public institutes in their respective
heterotic groups. The parental lines were chosen\er the diversity available within the two
groups with a combination of ancestral and moremematerial. From each cross, DH lines
were generated resulting in 919 lines for the derdt 1009 for the flint (Baueat al. 2013)
(Table S1). For phenotypic evaluation (see beltwg,segregating DH lines of a given group
were crossed with the central line of the otheugrd41 hybrids were produced for the dent
group and 811 for the flint group (Lehermegtral in press) (Table S1). The number of dent
lines for which test-crossed progenies were phegmatyper family was 84 on average and
varied between 53 and 104, depending on the fardy.the flint group, the number of DH
lines per family that were phenotyped for test-srealues ranged from 17 to 133 with an
average of 73. As the hybrids of each group wetainéd by crossing DH lines with the central
line of the other group, all the hybrids sharecy¢ proportion of their genome and were
expected to be heterozygotes F353 / UHO07 for 5Dfteir genome. Hybrids were evaluated
in 2011 in four (dent) and six (flint) European &ons. Five traits were considered: biomass
dry matter yield (DMY, decitons per hectare, dithat the whole plant level, whole plant dry
matter content (DMC, %) at harvest, days to tasgdIDtTAS, in days, d), and days to silking
(DtSILK, in days, d) measured as the number of diayya sowing until tasseling and silking,
respectively. Field trial design is described irhéemeieret al. (in press. Individual field plot
measures were analyzed (Lehermeieal. in press) to compute for each hybrid the adjusted

means over the different trials that were usedhim gtudy.

Genotyping and analysis of genotypic data

The 1,928 DH lines and the 23 parental lines weretyped with the lllumina® MaizeSNP50
BeadChip containing 56,110 SNPs (Gaetadl. 2011a). Markers with a call frequency < 0.9, a
GenTrainScore < 0.7, a minor allele frequency (MAR).01, or more than 10% missing values

were discarded as in Lehermegral. (in press).
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Consensus maps for the flint and the dent multufedpns were obtained following the same
procedure. We considered for each consensus madigttbé markers present in at least one of
the 10 dent individual maps (respectively 11 flmdividual maps) from Bauest al. (2013).
The flint DH family resulting from the cross of EA,4nd UHO07 was not used due to small
population size. For each marker of this list amdefach individual genetic map, we computed
the relative genetic position of this marker irstmap by starting from its physical coordinate
on the B73 genome assembly and converting it ingeretic coordinate with the spline
smoothing interpolating procedure described in Batial. (2013). These genetic coordinates
were then normalized between zero and one to olekitive genetic positions. For the present
study, each consensus map was built by computmgdhsensus relative genetic position of
each marker as the average of its relative gempetsitions in all individual maps involved,
weighted by the numbers of individuals in the cspanding populations. Finally, the
consensus genetic coordinate of each marker waseldtby multiplying its consensus relative
genetic position by the genetic length of the caosse map, taken as the average of the genetic
lengths of all maps, weighted by the numbers oividdals in the corresponding populations.
The two consensus maps obtained are available eieMzDB (MaizeGDB data record). A
consensus map for the dent and flint multi-popafegiwas built with the same procedure.

For the QTL detection we only considered in thelysis the PANZEA markers which were
mapped on the consensus maps. PANZEA markers ifesailtthe alignment of sequences
coming from resequencing data of the 27 lines usedarents of the US NAM design
(McMullen et al. 2009) and mapped against the B73 genome v2 (Garal. 2009). We
discarded the other markers, mainly defined by anng the sequences of the inbred lines
B73 and Mo17, as they are known to create an ascerént bias in diversity analyses (Ganal
et al. 2011; Frascarolket al. 2013).The dent and flint consensus genetics mbfzsned were
composed of respectively 21,878 and 20,406 PANZEBAkers, corresponding respectively to
6,808 and 7,272 genetic positions on the consemsys. The dent-flint consensus map was
composed of 25,472 PANZEA markers, correspondir§y1@4 genetic positions (Table 1).

Clustering analysis of parental inbred lines

Clustering of the parental inbred lines was caraetiwith the R package “clusthaplo” (Leroux
et al. 2014), separately on the dent and flint parenkss €lustering was based on genomic
similarities computed between each pair of indigigun a sliding window along the genome.
In order to get insight into the length of the slglwindow to use, we evaluated how fast LD

between pairs of markers decays with the genesiianice. LD between pairs of markers was
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estimated for the 11 dent founder lines and forlthdint founder lines, according to Hill and

Robertson (1968) as’ = DAZB/(pA(l_ PA) Ps(1~ Pg)). with D = Pae = PaPg where Pas
denotes the haplotype frequency AB, p, the frequency of alleléA at one marker locus,

and p; the frequency of allel® at the other locus. The LD decay was estimateujubie Hill

and Weir model (1988). The choice of the slidingnaaw size was based on the LD decay
observed in the dent and flint material considetirglength in genetic distance needed to reach
an r2 below 0.2. Two values were chosen, 2 cM atid seach based on the LD decay observed
for the flint and dent group, respectively. Forilitating comparisons between results obtained
in the two groups, the clustering was carried owach group using the two window sizes.

For each window size at each genotyped positian stmilarity score between two parental
linesi andj at a positiornt (center of the window) was calculated accordingh® formula
described in Lerougt al. (2014) and used in Bardel al.(2013). This formula is adapted from
Li and Jiang (2005) and combined the number ofeallalike-in-state between the two lines
inside the sliding window and the length of themgest common segment centered.ddased

on the similarity score curves obtained along eelttomosome, a hidden Markov model
(HMM) was used to determine at each positidrthe two lines were similar and thus carried
the same ancestral allele or not. After the clusgigorocess, the number of ancestral alleles per
position was plotted along chromosomes. We alsopcbed similarities between inbred lines
as the percentage of ancestral alleles sharedtbgegenome and compared them with the
similarities obtained from the SNP markers. A giaglrepresentation of these similarities and
a classification of the parental lines were cardatlusing the “heatmap” function in R (R Core
Team 2013).

QTL detection

Analyses were first performed separately for eaelt bn the dent and flint multi-family
designs, using their respective consensus map. dtatistical models were tested: one based
on linkage analysis and three others combiningaljgkand LD information. All the models
were multi-locus models in which the significandeeach QTL was tested conditional on the
inclusion of other QTL positions used as cofactors.

The first model corresponded to a conventional ifiaifhily connected model. This model
considered the connections between families thraliglsharing of the central inbred line and
relied on the assumptions that each parental inbredcarried a different QTL allele and that

each allelic effect was independent of the family:
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y=J.u+ X,. a4+ ZXC.aC+e

c#q
wherey was the vectorN x 1) of the adjusted phenotypic means of Ahéndividuals of the
dataset/ was a ¥ x P) matrix of 0 and 1 that linked each individuakhe family it belonged

to with P being the total number of familiggwas the column vectoP(x 1) of family means,

X, andX. were (V X K) matrices withK being the number of parents. Each element (ranging
from 0O to 2) of these matrices corresponded t@#pected number of alleles of the pareat
QTL g and cofactorc for each individual, according to the genotypimfprmation at the
position of g and ¢ when this information was aalalé {.e. when these positions correspond
to markers polymorphic in the population the indisal belong to) or at flanking markers
otherwise.a, anda, were the column vectors((x 1) of the additive intra-family effects
associated with QTlg and cofactorc, respectivelye was a column vectoN(x 1) of the
residuals of the model. This model will be furtleferred to as “connected”. Note that this
model is close to the “joint inclusive compositéenval mapping” (JCIM) model proposed by
Buckleret al. (2009) and used on the US NAM design.

The second and third models were LDLA multi-fangbnnected models which used the results
of the clustering of parental alleles carried outhwclusthaplo”

y=J.u+ X;.Qq. hgy+ ZXC.QC.hC+ e

c#q
wherey, ], u, X4, X, ande were the same as described as in the previousin@gdandQ,
were(K X A;) and(K x A.) matrices withd, and A, being the number of ancestral alleles at
QTL g and cofactor. Each element (0 or 1) of these matrices linkedgarental alleles at
QTL g and cofactor to the ancestral alleles identified by the clusgeapproachh, andh,
were column vectors4g X 1) and @, x 1) of the additive effects of the ancestral alleles
associated with QTLlg and cofactorc. Two models were considered, one based on the
clustering approach using a window size of 2cM anther referred to as “LDLA — 2 cM”,

and one based on the clustering approach using@owisize of 5 cM and further referred to
as “LDLA -5 cM".

QTL detection using the three models described @mare performed using the MCQTL_LD
software (Jourjoret al. 2005) using an iterative composite interval QTLpmag method

(IQTLm) (Charcossett al.2000). For these models, genotypic informatiomafkers located
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at the same position of the consensus genetic weagp¢concatenated to indicate which parental
allele was transmitted. For missing data, MCQTL_sdftware estimated the probability of
transmission of each parental allele based omfbemation of flanking markers. At each tested
position, the presence of a QTL was assessed loastn - 10g10 of the Fisher test p-value (-
log10(p-value)). Thresholds for considering a QBLsanificant were computed for each trait
and each dataset using 5,000 intra-family permarnatof the phenotypes for a type | risk of
10% across all families and total genome. In th€LIQ approach, the initial set of cofactors
was chosen using a multiple regression with a folveelection of marker positions with a
threshold equal to 80% of the QTL significance shi@d value. At the end of the detection
process, for the conventional connected model,iden€e intervals at 95% were estimated on
the basis of a 1 LOD unit fall. The confidence iagds were not estimated for the LDLA models

as there is no established method proposed foe tineslels.

The fourth model, referred to as single marker LDhAdel ("LDLA — 1-marker"), considered
that two parental lines carrying the same alleleaammarker were IBD for this marker:

y=J.u+ Mq. gq + ZMC.gC+e

c#q
y,J, n ande were as described in the previous modtglandM, were (V X 2) matrices whose
elements (0 or 1) corresponded to the genotypifagrimation at QTLg and cofactor for each
individual. g, and g. were column vectors (& 1) of the additive effects of marker alleles
associated with QTl and cofactor. This model can be viewed as a multi-locus genanae-
association study with population structure cofebby family membership. It is equivalent
to the association mapping model used to analya&®BNAM design (Yiet al.2008; Tiaret
al. 2011; Kumpet al. 2011) except that in our model dense marker g@nugyinformation is

directly available for the progenies and does eetiio be inferred from the parental genotypes.

The analysis with the fourth model was performeRi(R Core Team 2013) using an R-script
derived from the one used for the multi-locus mireatel approach presented in Segiral.
(2012). We used a multi-locus forward-backwardsise linear regression model and selected
the most appropriate model using the extended Bayasformation criterion (Seguret al.
2012). Loci of the selected model which had p-valbelow the Bonferroni threshold for a
genome-wide risk of 10% were considered as QTL. this model, imputation of the

genotyping data for marker with missing data wasedasing the software BEAGLE (Browning
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and Browning 2009) family by family. Even if we dered the same type | error risk at the
genome level than for other models, the threshettidor the LDLA — 1-marker model was

not obtained by permutations and is possibly moreservative compared to other models.

Analyses were then performed jointly for each toatthe two designs using the dent-flint
consensus map. The model used corresponded tovartmmal multi-family connected model
except that all the dent and flint families wer@sidered jointly. As the central line of the dent
is used as tester in the flint design and recighpcthe F353-UHO07 genotype segregates
against an alternative genotype in each populafibis enabled us to connect allelic effects
estimated in the two designs. QTL detection wasopsied using the MCQTL_LD software
(Jourjonet al.2005) following the same procedure as group sipeQif L detection. Thresholds
for considering a QTL as significant were compui@dthe joint dataset for each trait using
5,000 intra-family permutations of the phenotypasd type | risk of 10% across all families
and total genome. To test whether effects werdfgignt in a single group or in both groups,
the effects of the QTL detected in the joint anialygere tested in each of the separate datasets.
They were considered as significant if the - logfGhe Fisher test p-value was above the
thresholds of the studied trait in the separatasgdt(estimated with the dent or flint consensus

maps, respectively).

For each analysis, variances explained by each @attial RéTL) were defined as the ratio
between the sum of squares associated with the €)€ct in the model including the other
detected QTL, and the residual sums of squaredinéar model considering only the family
effects. Total percentage of variance explainethbydetected QTLRZ,,,;) was defined as the
ratio between the sum of squares of all the dade@fEL, and the residual sums of squares of a
linear model considering only the effects of thenifees. All the R? were adjusted by the
number of degrees of freedom of the considered mof&harcosset and Gallais 1996).
Differences in effects among pairs of alleles giveen QTL was tested a posteriori using a t-
test (=5%). For facilitating comparisons between modeld the interpretation of the QTL
results, the allelic effect of the central linesreveet to zero and the other allelic effects were

estimated accordingly.

Comparison of the positions of the QTL detectedassely in the two groups and in the joint
analysis was based on the results of the connewbelel. QTL detected in each separate group
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and on the joint dataset were projected on theflieahtonsensus map using BioMercator V4.2
(Sosnowskiet al. 2012). A QTL was considered common for a trait mhiee confidence

intervals of the QTL after projection were overlaggp

RESULTS

Analysis of parental linkage disequilibrium and parental clustering

The average genetic distance to reach a LD bele®w.2 was 1.2 and 0.65 cM for the dent and
flint groups, respectively (Table 1). This distanegied according to the chromosome between
0.45 cM (chromosome 5) and 2.51 cM (chromosomeoR)ttie dent group, and 0.35 cM
(chromosome 5) and 0.76 cM (chromosomes 1, 7, fot@he flint group. The two different
sliding window sizes that we considered for commyithe similarity score with “clusthaplo”
approximately correspond to two times the distdregnd which LD becomes negligible for
all the chromosomes. Note that 2 cM was the minimundow size that we could consider
since the HMM based clustering approach did noveage for smaller window sizes.

The 5 cM sliding window size led to a higher numbkancestral alleles than the 2 cM one for
the two designs. For dent, the average number acéstral alleles along the genome was 5.6
per genetic position for the 2 cM sliding windowesiand 6.5 for the 5 cM window. For flint,
the average number of ancestral alleles was 5.§gmaatic position for the 2 cM sliding window
size and 7.2 for the 5 cM window. It has to be ddteat the number of ancestral alleles varied
along the genome. For both window sizes, clustesiag more important in telomeric than in
centromeric regions, where quite often the numlbemncestral alleles equaled the number of
parental lines (Figure 1).

For both sliding window sizes, similarities betwedlp parental inbred lines estimated based
on ancestral alleles sharing showed a structurgdrpgFigure 2). Within the dent group, pairs
of lines involving (i) UH250, D09 and D06 and (#3353 and UH304 shared the same ancestral
alleles for more than 47% of the genetic positilmmdoth sizes of sliding window. In the flint
group, with the 5cM window, closest pairs of linegolved UH006, UHO07 and UHO0Q09. With
the 2 cM window size, this expanded to F03802, Dal@ F2. The classifications of parental
lines based on single markers were globally comsistith those based on ancestral alleles, at
least for grouping the most similar lines. Onlyitioss of inbred lines which showed low levels
of similarities with the other lines slightly chadyin the dendrogram depending on the allele

definition considered. In the dent group, threatedl lines UH250, D09, and D06 are clearly
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separated from a non structured group among whity 6353 (the central line of the dent
design) and UH304 were related. In the flint graimilarities separated a sub-group composed
of F64, EC49A, EZ5, and EP44 from the other lireg ppeared to be more closely related to
each other. In this sub-group, UH009 and UHOO®atk related to UHOO07, the central line of
the flint design.

Comparison of the thresholds used in the QTL detein models

For the separate datasets analyses, thresholdsv&luegl0(p-value)) were higher for the
LDLA models than for the linkage model (Table S2)r LDLA models, the threshold increased
as the size of the considered window decreased. Suggests that reducing the size of the
window decreases the dependence between tesesvérgrmodel, threshold values were lower
for DMC and higher for DtSILK and DtTAS (except fitre conventional connected model for
the flint group). This might be due to heteroggneitwithin family variances for some traits.
For instance, for DtSILK, for the dent dataset, ejenvariances varied from 0.95 to 4.93 (see
Lehermeieret al. in press for an estimation of these variance®e for the separate datasets
thresholds, for the joint dataset, threshold vafoeshe connected model were lower for DMC
and higher for DtSILK and DtTAS.

Comparison of the QTL detected with the different nodels in the dent and flint designs

For a given trait and group, the number of deteQ&d varied according to the model (Table
2, Table S3, Table S4, Table S5, Table S6, Tabl@d&¥e S8, Table S9 and Table S10). Between
5 (for DMY with LDLA — 5 cM and LDLA — 1-marker maas) and 16 (for DMC with LDLA

— 2cM model) QTL were detected in the dent desightzetween 7 (for DMC with LDLA — 1-
marker model) and 16 QTL (for DtSILK and DtTAS witBLA — 1-marker model) in the flint
design.

For the dent group, the LDLA — 1-marker model ditddewer QTL over all traits (45 QTL in
total) and explained the smaller percentage ofanae (33.8% on average). In this group, the
LDLA models using “clusthaplo” information detectetbre QTL (56 in total for the LDLA —

5 cM, 55 for the LDLA — 2 cM) than the conventiorainnected model (52 QTL in total). This
advantage of the LDLA models in terms of numbeiQdfL detected was found for DMC,
DtSILK, and DtTAS. On the contrary, for DMY and Rke connected model detected more
QTL. Even if more QTL were detected on average thighLDLA models, the connected model
explained a higher percentage of variance (46.9%) the other models.

For the flint group, the LDLA — 1-marker model deted more QTL (59 QTL in total) but
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explained a smaller percentage of variance (47.8%werage) than the other models. In this
group, the conventional connected model detectedgtimallest number of QTL (55 in total).
The LDLA models using “clusthaplo” information deted an intermediate number of QTL (58
and 56 for the LDLA — 5 cM and LDLA — 2 cM modelgspectively). The ranking of the
models in terms of number of detected QTL varigueaeling on the trait. For instance, the two
LDLA models using “clusthaplo” information detectedore QTL than the conventional
connected model for DtTAS, PH, DMC (with the LDLA5-cM model only), and for DMY
(with the LDLA — 2 cM model only). For the flowegntraits, the LDLA — 1-marker model
detected more QTL than the other models. As fod#r group, the connected model explained
a higher percentage of variance (56.3%) compardoetother models even if it did not detect
a higher number of QTL.

One can note that the — logl0(p-values) curves stowlatively noisy patterns along the
genome, especially for the LDLA models (Figure ByuFe S1, Figure S2, Figure S3, Figure
S4). However, curves displaying evolution of —loft0alues) along the genome were globally
highly consistent across models and all modelsctlddhe same major QTL (Figure 3, Figure
S1, Figure S2, Figure S3, Figure S4). This wasdmen in cases when they detected a different
number of QTL on the same chromosome. For instamtke flint design, for DMC, all models
detected a major QTL at 45 — 46 cM on chromosomieut @vo models detected other QTL in
the region without challenging the position of thajor QTL: the LDLA — 2 cM model at 69.9
cM and the LDLA — 1-marker model at 68.9 cM (Fig@8#&, Table S3, Table S4, Table S5,
Table S6).

Considering the QTL which were detected by differerodels, the ranking of the models
according to their — log10(p-value) varied with ®&L. For instance, for the QTL detected
with all models for DtSILK in the dent group at #074 cM on chromosome 6, the highest —
log10(p-value) was found with the LDLA — 2 cM modgdl7.5) and the lowest with the
connected model (13) (Figure 3). On the contrawy,tiie QTL detected with all models for
DMY in the dent group on chromosome 6 at 14 — 17 tiid highest — log10(p-value) was
found with the connected model (14.9) (Figure S#hl& S7) and the lowest with the LDLA —
2 cM model (13.3) (Table S9).

Allelic effect series and comparison of the diffenat allelic models for the major QTL
detected for female flowering time

Visualization of allelic effects of the connecteade!| through heat maps (Figure S5, Figure
S6, Figure S7, Figure S8, Figure S9, Figure SyreiS11, Figure S12, Figure S13, and Figure
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S14) illustrated a continuous range of effectsafbQTL. The central line had an intermediate
value for most of the loci in both designs. Eacteptal line carried alleles with either positive
or negative effects compared to the central lifre2LA models are expected to outperform the
connected model if the clustering process correddntifies underlying allelic series at QTL.
To get further insight into this point, we compamtelic effects estimated by the different
models for the two major DtSILK QTL found in thisdy.

The allelic effects of the DtSILK major QTL detedtm the flint group on chromosome 10 at
38 — 50 cM clearly showed an allelic series (FiglireThe four models detected QTL in this
region but at slightly different positions. For t@F L detected with the connected model, at
least three classes of effects were identified dbaset-tests. F283 and DK105 carried a late
allele (3.7 d and 3.5 d compared to UH007), UHO®&&ermediate allele (2.07 d), and D152,
UHO009, F2, UH007, and F03802 an early allele (betweD.29 and 0.4 d), the three other
parental lines showing effects between the earty the intermediate classes. For the QTL
detected with the LDLA - 5 cM and LDLA — 2 cM modelallelic effects were globally
consistent with those found for the QTL detectethwine connected model except for EZ5
which had the earliest allele with the LDLA — 5cMdel. Note that the family derived from
this parent was one of the smallest of the desigme LDLA — 1-marker model detected two
QTL in this region: one at position 45.9 cM (cldsethe position of the QTL found with the
other models) and one, of smaller effect, 7 cM phathe position 38.6 cM. For the marker
detected at position 45.9 cM, the late allele (@)44as shared by F283, DK105 and UHOO06,
which also carried the latest alleles accordinpéoother models. All the other lines shared the
same early allele (0d). For the marker detectqubsition 38.6 cM, the late allele (1.1 d) was
shared by DK105, F283 (the lines carrying the taaéisles in the other models), EC49A, and
F64 (which carried alleles classified as intermtgiaAll the other lines shared the early allele
(0 d). So, when considered jointly, these two markecount for the allelic series observed for
the QTL detected with the other models: DK105 a@83Fcarrying the late alleles at the two
markers; UHOO06 carrying the late allele for the keamwith the strongest effect and the early
allele for the other marker; EC49A and F64 carryihg late allele at the marker with the
smallest effect and the early allele for the othrex, and D152, UH009, F2, UH007, and FO3802
carrying at both markers the early alleles. The @d. detected with the LDLA — 1-marker
model individually explained 2.2% and 11.1% of #agiance for the marker at positions 38.6
and 45.9 cM, respectively, but they jointly expkdn26.8% of the variance, only slightly less
than the variance explained by the QTL detecteth wie other models (between 27.5 and
28.2%).
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The allelic effects of the DtSILK QTL detected hetdent group, on chromosome 8 at 45 — 58
cM also clearly showed an allelic series and thaessype of pattern (Figure 5). With the
connected model, allelic effects showed a contiswauiation and at least two classes of alleles
could be identified. Four inbred lines (D06, DO91250, and F618) carried early alleles
compared to the group consisting of F353 (cenitnal) ] EC169, and Mol17. The other parental
alleles were not clearly classified but had intedrate effects. In this chromosome region, the
two LDLA models based on ancestral allele clusteroth identified a QTL. With both
window sizes D06, D09, and UH250 which carriedehdiest alleles in the connected model,
were attributed to the same ancestral allele watkeaxly effect (-1.77 with LDLA — 5 cM and
-1.76 with LDLA — 2 cM compared to F353). Mo17, E91(the two lines with latest allelic
effects in the connected model), UH304, and F35&wadributed to the same or to different
ancestral alleles depending on the window sizerbloibth cases their allelic effects were equal
or close to zero. With these models, B73 was aiieih the latest effect (0.4 or 0.49) but this
effect was not significantly different from zerohd other lines had allelic effects consistent
with the effects estimated with the connected mo@elo QTL were detected in this region
with the LDLA — 1-marker model: one at 45.5 cM ahd other at 57.3 cM, on either side of
the QTL detected with the other models. D06, DO® @RI250 which carried the earliest allele
of the connected model and were attributed to éneesearly ancestral allele with LDLA-2cM
and LDLA-5cM models, carried the early allele attb@TL. Mol17, EC169, B73 and F353,
the lines with the latest allelic effects with tier models, carried the late allele at both QTL.
The other lines, which had intermediate allelicefé with the other models, carried the late
allele at one QTL and the early allele at the o@€&L. Thus, marker effects at these two QTL
jointly mimic the allelic series identified by tlether models. The two QTL detected with the
LDLA — 1-marker individually explained 1.5 and 2.966 the variance but they jointly
explained 7.9% of the variance, which is only dligkess than the other models (8.9% for the
LDLA — 5 cM and LDLA — 2 cM models, and 9.6% forthonnected model).

Comparison of the QTL detected in the two heterotigroups analyzed individually and
jointly

In total, for the connected model, 52 QTL were dieté in the dent design for all traits and 55
in the flint design (Table 2). More QTL were fouimdhe dent than in the flint design for DMC
and PH, whereas the reverse was observed for DiII}KAS, and DMY.

Based on overlap of their confidence intervals, nvhemparing results obtained in the two

separate datasets only seven QTL were common betihegwo groups. Two of these QTL
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were for DMC (chromosomes 8 and 10), three for D&Slchromosomes 1, 2 and 3), one for
DtTAS (chromosome 3), and one for PH (chromosomét)common QTL were found for
DMY. In addition, some chromosome regions carridd-@etected in the two groups but not
for the same trait (Figure 6).

The distribution of QTL effects (in terms of R?ffdred in the two groups (Figure 7). In the
dent group, all the QTL had low to medium effect{R0%). The QTL with the biggest effect
was detected on chromosome 3 at 63 cM for DtTASeaxipthined 10.4% of the variance (Table
S7). A QTL was also detected at this position fd@®but with a smaller effect. The second
biggest QTL was detected on chromosome 8 at pa$iccM for DtSILK and explained 9.4%
of the genetic variance. This region was also detefor the other traits but with smaller effects.
On the contrary, in the flint group, one regiondtax on chromosome 10 around position 44 —
50 cM showed a major effect on all the traits (€a®8B). Depending on the trait considered this
region explained between 14% of the variation fM\Dand 27.5% for DtSILK. All the other
QTL detected in this group showed milder effectthvir? <10%. It is interesting to note that
the QTL which exhibited a strong effect in one gr@the QTL detected on chromosome 10 in
the flint group and the QTL detected on chromos@na@d 8 in the dent group) did not have
such a strong effect in the other group for thees#naats.

87 QTL were detected in total with the joint an&ysvhich is less than the sum of the QTL
found in the two separate datasets (107) (TableaBle S11). For each trait, the number of
QTL detected with the joint analysis was equalupresior to that detected in each single dataset
analysis. For DMC and PH, QTL detected with thatj@inalysis explained a larger fraction of
variance than the one explained in the separatselst analysis. On the contrary, for DMY,
DTSILK and DtTAS, more variance was explained i@ fimt dataset analysis than in the joint
analysis.

QTL found in the joint analysis were generally fduat the same position or close to QTL
detected in one or both separate analyses (Figuhe $ome cases, they were detected between
two QTL detected in a single dataset analysisi(fstance QTL on chromosome 5 for DtSILK),
or between one QTL detected in the dent datasebaedietected in the flint dataset (QTL at
130 cM on chromosome 2 for DMC). In some casesQid was detected with the joint
analysis although QTL were detected in the sepalati@sets (for instance flint QTL at 9 cM
on chromosome 1 or dent QTL on chromosome 2 folAI3)T Other QTL were detected only
with the joint analysis (and not close to or betwé®o QTL detected with the separate
analysis), as the one detected for DMC on chromesbm

When testing the effects of these 87 QTL in theassp datasets, 30 were significant in both
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datasets, 52 in a single dataset only and fiv@rerof the datasets (Table 3). So the number of
QTL with effect in both dataset varied between Zé¥DtSILK to 41% for DtTAS.

Concerning the seven QTL found common when comgdaini@ dent and flint separate analyses,
the joint analysis always found a QTL in the regi@arby (not necessarily with overlapping
of the confidence regions but really close). Exdeptthe QTL found on chromosome 2 for
DtSILK, these QTL were significant in both groups.

DISCUSSION

Our study aimed at comparing genetic determinismbimass related traits in two
complementary flint and dent genetic pools thatadiren used to produce commercial hybrids
in Northern Europe. To do so, a new NAM DH popuatwas developed for each group. Both
NAM populations display intermediate levels of dsiey compared to the US NAM design
and classical elite breeding programs. Data frooh esign were analyzed with four models:
a connected model where parents are assumed yodiféerent alleles, an LDLA model based
on single marker information close to the one sssitdly used for the US NAM design, and
two LDLA models based on ancestral allele modefireyiously used with success by Leroux
et al.(2014) and Bardadt al. (2013). In addition data of the two designs weralyzed jointly
with the connected model, considering that therakfibe of one design was used as tester in

the other design and reciprocally.

Linkage disequilibrium and clustering of parental dleles

The haplotype clustering approach of Leraal. (2014) requires the definition of a window
size according to genetic map units (cM). We defiitebased on the estimation of the LD
extent at the level of the parental lines. Thisvedmb that LD decreased belo#=0.2 after
approximately 1 cM and 2 cM in the flint and derrgntal lines, respectively. Although
estimated with only 11 and 12 inbred lines, for temt and flint group respectively, these
values were consistent with the LD extent obsefeedhese groups by van Inghelaredtal.
(2011). Based on this result, we considered twalainsizes for the parental clustering, one
of 2 cM, more adapted to the flint group and onB oM, more adapted to the dent group. Note
that a 1 cM window was also considered but the Hifroach did not converge with the R
version we used for this study. These values aadlenthan the 10 cM window size used in

Bardolet al.(2013) to analyze a multi-parental design derivech highly related founders.
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In both flint and dent groups, the clustering psscelentified on average six and seven ancestral
alleles per position for the 2 cM and 5 cM windowes, respectively. The percentage of
genome detected as IBD was in agreement with thikerrdased similarities between inbred
line pairs and pedigree information. These reshitsved that among dent lines, there were two
groups of related lines: (i) D09, D06, and UH25®@jckh came from the breeding program of
the University of Hohenheim, and (ii) UH304 and B3%vhich share a common lodent
background (Baueet al, 2013). For the flint, there was a separation betwEC49A, EZ5,
EP44 (the three lines with Spanish origin), and &&4entinean origin) and all the other lines.
The number of ancestral alleles detected aftertarimg with “clusthaplo” varied along the
genome, first at the local level from one positiothe next. This results in a variation in model
dimension along the genome that certainly expléweserratic pattern of the —log(p-values)
curves of the LDLA models (see below). Beyond tloisal variation we observed that on
average more ancestral alleles were detected ioahigomeric than in the telomeric regions.
This result is probably related to the higher numifemarker loci per cM in centromeric
regions than in telomeric ones. It may be alsaedl@ao a higher divergence between lines in
centromeric regions. The similarity score useddiusthaplo” is expected to be robust against
the difference of marker density inside the slidwigdows (Lerouxet al. 2014). Our results
suggest however that we reached here limits inrdbsistness. As most of the lines were not
closely related, the size of IBD segments was egeo be limited, which made them difficult
to detect. Visual inspection of the graphs of IBIgments (results not shown) indeed revealed
that the segments were in general shorter tharamddet al. (2013) except for related lines
such as D06 and D09. The method implemented ificthethaplo” software should therefore
be adapted to cope with more diverse sets of lines the one considered in Leroeial.
(2014), possibly by reducing window sizes in regiah the genome where marker density is
high and local LD is low relative to the geneticpna

Adapting the method to cope with populations withited LD also raises issues regarding the
genetic map to be considered for the clusteringgs®s. Baueet al (2013) showed that even if
the individual maps of the families of a given goduad globally consistent order, putative
inversions were found in some areas. This is ie@gent with recent studies which showed
copy number variations (Springet al. 2009; Swanson-Wagnet al. 2010), chromosomal
inversions or translocations between the differerdize lines. Ganaét al. (2011) also
suggested that some regions of the physical m&¥8fv2 are not correctly assembled. This
may have affected our consensus maps since infammiaom the physical map was used for

positioning the markers and this may have affetiedclustering process. It appears thus
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important to further evaluate the properties of thestering approach when using denser
genotyping data and also evaluate its potentiat@st in the context of the rapid emergence of
sequencing data that may enable a more directiidation of conserved haplotypes between

inbred lines.

Comparison of the different QTL detection models

The highest total number of QTL was detected by oihthe three LDLA models in both
designs. We noted however different trends fortéte designs. For the dent, LDLA — 2 cM
and LDLA — 5 cM detected very similar numbers oflQ(55 and 56, respectively), more than
for both the connected and LDLA — 1-marker modé8 and 45, respectively). Note that
Bardolet al. (2013) also found that in an elite dent breediogl pthe LDLA method based on
ancestral alleles detected on average more QTLthHehDLA — 1-marker model. Our results
suggest that the genotyping data and window siged tor “clusthaplo” were well suited for
LDLA models for the dent design. For the flint dgsithe connected model detected fewer
QTL (55) than the LDLA — 5 cM, the LDLA — 2 cM artde 1-marker model (58, 56 and 59
respectively), but differences between models warall on average This suggests that the the
available density of genotyping data and/or windae we could use with the HMM approach
were not necessarily optimal for this design. leséingly, although the connected model was
globally outperformed by LDLA models in terms ofmier of QTL detected, it explained a
higher percentage of variance than the other mddelsearly all the traits. Conversely, the
LDLA — 1-marker model explained a smaller perceatafyvariance even when detecting more
QTL. As the estimations of the percentages of vianaexplained were adjusted for the number
of parameters, this cannot be due to model ov@nditOne can thus hypothesize that a large
part of the QTL showed allelic series that areaquohpletely accounted for by local similarities
or single marker-information. This is consistenthaVirschumet al. (2012) who compared
by simulation different models for joint linkagesasiation mapping. They concluded that, even
if the single SNP model was more powerful in tewhsletection, the model considering one
allele per parent was better adapted to estimate €fects in case of multi-allelic series,
corroborating experimental results of laual. (2011).

Globally, LDLA models and linkage analysis detec@tlL in the same chromosome regions
although fine comparison of QTL positions was cdogted by the relatively noisy pattern of
the LDLA —log10(p-value) curves. We noted thatrnibenber of QTL in a given genomic region
could either be the same or vary across modetsadas when a single QTL position is detected

by all models, one can assume that variation i tikedy due to a single QTL with two alleles
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well reflected by a single biallelic marker. On th@posite, a variable number of QTL across
models suggests a more complex situation with gekiaetween several QTL or allelic series
at a single QTL. This can be exemplified by the IDKSQTL detected on chromosome 8 in the
dent design. In this region, the LDLA — 1-markerdebdetected two QTL 12 cM apart and
located on both sides of the single QTL detectdt thie connected model. This suggests that
either the two marker loci were needed to accoanttie allelic series at a single QTL or
conversely that the connected model failed atrisishing the two underlying QTL due to
limited recombination in DH families.

The different models thus showed variable efficienlepending on the trait and region
considered, which highlights complementarities offecent allele coding methods in

deciphering allelic series in genetic studies.

Comparison between the QTL detected in the two hetetic groups and evolutionary
interpretation

Similar numbers of QTL were detected in the twougwith the separate dataset analyses,
showing that both can contribute genetic variatiseful for breeding in Northern Europe. Less
than 15% of the QTL were common between the dedtflamt design when comparing the
positions of the QTL detected in the separate datasalyses. This is consistent with the long
time divergence between the dent and flint hetergtoups: more than 500 years (Tenaillon
and Charcosset 2011). Part of this low value camluee to power issues. Indeed the joint
analysis enabled us to detect additional QTL coegbéw single group analysis and among the
detected QTL with the joint analysis, 34% on avenagre significant in both groups. However,
some QTL detected in individual designs disappesrélde joint analysis which suggests that
they were really specific of one group and thaiateon within the other group diminished
power at these QTL in the joint analysis. Somehef@TL detected in the joint analysis were
found at an intermediate position between the postof design specific QTL. This may
correspond to a gain in precision but one cannduee that these QTL might also correspond
to an artifact “ghost” QTL between actual QTL.

Note that in addition to the common QTL, some clwsame regions had an effect in both
designs but for different traits. These QTL couddabeiotropic QTL for which effects on some
traits were not detected in one of the designs tadaelack of power, diversity, etc.

When comparing the single dataset analyses, QTLnammto flint and dent designs were
observed for DMC, DTSILK, DtTAS and PH. It is inésting to note that no common QTL
was observed for DMY. With the joint analysis, aadler percentage of QTL significant in both
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datasets was for DtSILK and DMY (27% and 31%, respely), than for the other traits (33%
for DMC to 41% for DtTAS). For traits subjecteddimectional selection such as DMY, several
alleles must have been fixed over time but thermiseason that the same alleles were fixed in
both groups, especially considering that seledtomybrid value certainly favored fixation of
complementary alleles in each group (Lariepal.2012; Schomt al.2010). This may explain
why only few common QTL or QTL significant in boginoups were detected for DMY. On the
contrary, for traits for which a stabilizing select is performed, the same polymorphisms are
more likely to be maintained in both groups. Thithie case for PH, DtTAS and also indirectly
for DMC since DMC at harvest of a genotype depemtgs precocity and its drying speed.
Interestingly, common DMC QTL between groups andtnad the DMC QTL detected with
the joint analysis and significant in both datase¢se detected in regions also carrying QTL
for flowering time (DtSILK or DtTAS).

The few common QTL between dent and flint grouzd the detected could explain the low
predictive abilities of the prediction between dand flint in genomic selection (Meuwissen

al. 2001; Janninlet al2010) when dent are in the estimation set andifiitite test set andce
versa(Lehermeieet al.in press). The presence of a major effect QTlhanftint group might

also partly explain this result.

Overview of detected QTL and comparison with literaure studies

For the single dataset analyses, between 20 QTIDKY and 28 QTL for DtSILK were
detected in total over the two groups when considehe model which detected the highest
number of QTL. For the joint analysis, between T8 _@or DtSILK and 21 QTL for PH were
detected.

For DtSILK, although high, the number of detectetlL(s less than the one reported for the
US NAM design (39 QTL detected with the multipleniéy joint stepwise model, 52 with
JCIM) (Buckleret al 2009; Liet al. 2011). This is also less than the total numbe@Q®dL
estimated through meta-analysis for flowering ti@2 and 59 in Chardoet al.2004 and Salvi
et al. 2009, respectively). QTL detected in our studylaxgd a smaller proportion of the
variance (for the connected model the detected €Xplained 52.3%, for the dent design, 59.7
% for the joint analysis, and 69.3%, for the flggsign of the within family variability) than
the one detected on the US NAM design (89%) (Buakdeal 2009; Liet al. 2011). Similar
trends were observed for male flowering (DtTAS)oun study, all QTL explained 10% or less
of variation, with the exception of the main QTLufa in the flint design on chromosome 10

(45-50 cM with the connected model). In the joimélysis, this QTL was significant for female
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flowering when tested in both datasets whereamfde flowering it was significant only in the
flint dataset. This QTL was also found by Blatcal. (2006) and is close to tBnCCTgene
which was fine mapped as a major flowering time @¥yLDucroccet al. (2009) and validated
by Coleset al. (2011). In the flint design, for the connected mlpthis QTL explained 18.7%
and 27.5% of male and female flowering time, repely. In the joint analysis, it explained
12% and 15.2% of male and female flowering timspeetively. This value is higher than
reported for the same region in the US NAM (1.1%rfale flowering and 1.3% for female
flowering with Joint Linkage Stepwise Model in Bleket al.2009) and in Blanet al.(2006)
(18% for female flowering). These differences carekplained by the fact that several lines in
our flint design share a late allele and possiblygest that the expression of the effect of this
QTL is amplified in early flowering backgrounds cpaned to the later US NAM background.
In the dent design analyzed separately, the mgsiifsant DtSILK QTL was found on
chromosome 8. This QTL does not seem to be loc¢atée: region where two major flowering
time QTL, vgtl andvgt2 (ZCN8, have been fine-mapped (Saéti al. 2007; Bouchett al.
2013). It seems to be close to an area where ethdres also found QTL for flowering time
(Ducrocget al. 2008; Salviet al.2009; Boucheet al. 2013).

For plant height (PH), we detected in total 25 Qithich explained 55.0% and 57.1% of the
variation for the flint and dent designs, respestivWith the joint analysis, we detected 21
QTL which explained 61.2% of the variation. A recstudy (Peifferet al.2014) based on the
US NAM and IBM family (Leeet al. 2002) reported 89 family-nested markers detectiéldl w
an adaptation of JCIM and 277 associations thraagbint-linkage-assisted genome wide
association study (Tiaat al. 2011). Except the QTL found on chromosome 10 @ ftimt
design and that likely corresponds to a pleiotragffect of a major flowering time QTL, no
QTL explained more than 10% of the variation, ia g#eparate or joint datasets. As in Peiffer
et al.(2014), none of the QTL detected in this studyrséebe located in the vicinity of known
candidate genes for plant height.

For DMY, with the separate analyses, we detectebtad 20 QTL which is lower than the
number of QTL detected for the other traits. Wité foint analysis, we detected 16 QTL which
is one of the lowest number of QTL detected. Thag/oe explained by the lower heritability
of this trait and the fact that variation for thiait may involve numerous QTL of small effects
that are difficult to detect. For DMC, we detectedotal 27 QTL with the separate analyses
and 18 with the joint analysis. Only few studiesli@ds QTL detection for biomass yield and
dry matter content, mainly in biparental populasi¢e.g. Lubberstedit al. 1998; Méchiret al.
2001; Barriereet al. 2010; Barriereet al. 2012). They reported only limited number of QTL
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and are not easily comparable with our results. €hunly, which led to the detection of many
QTL in a multi-parental context, therefore reprdsemlarge advance towards understanding
the genetics of biomass yield.

Thus globally, although high compared to the numbeiQTL indentified in biparental
populations, the number of QTL detected in thiglgtappears lower than those detected in
most comprehensive designs and meta-analysis. @exgulanations can be given for this
result. First, compared with the US NAM design, @xperimental designs explore less
diversity and included fewer individuals (841 arid.®H lines for the dent and flint designs,
respectively compared to 5,000 RILs for the US NAB&ign). Moreover, as DH lines were
used instead of RILs, the number of recombinati@nts in our designs is expected to be two
times lower per family. This certainly impacted th@wer and resolution of our designs for
deciphering trait variation even with LDLA mode@3ne cannot exclude that QTL detected in
our study may indeed correspond to clusters oeh®TL that could have been individually
detected using a higher number of individuals, @ighumber of markers and progenies
exhibiting more crossovers (Huaagal.2010). The main specificity of our study compated
the US NAM design, was that the different familigere evaluated through their testcross
progeny in order to evaluate traits related to l@sesnproduction at usual productivity levels.
Under the hypothesis of additivity, the geneticaace is expected to be four times lower for
testcross value than fper sevalue. In addition, the two central lines of egcbup that were
used as testers for the other group belong to ommptementary heterotic pools, so one expects
to observe some dominance effects between the dingk the dent alleles at QTL. Such
dominance effects may have masked part of the hiityain each group. Despite these
limitations, as progenies were evaluated basedstorbss performance, the QTL detected in
this study directly reflect the genetic variatiaegent in each of the two main heterotic groups

that is useful for breeding in European conditions.
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Figure 1 Number of ancestral alleles along the genome after clustering with “clusthaplo” using a 2 cM sliding
window size and number of markers in the 2 cM sliding window along the genome for the dent design (6,808
unique positions on the genome — 1,343.3 cM in total) and the flint design design (7,272 unique positions on
the genome — 1,586.3 cM in total. The black points correspond to the number of ancestral alleles. The green
line corresponds to the number of markers in the 2 ¢cM sliding window alog the genome. Horizontal red lines
correspond to the average number of ancestral alleles along the whole genome. The vertical black dotted lines
correspond to the limits of each chromosome.
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Figure 2 Similarities between the dent (left) and the flint parental lines (right), computed based on direct marker
genotyping (top) and on ancestral allele sharing (using “clusthaplo” and a 2cM window size) (bottom). Yellow
colors correspond to a low similarity, red colors correspond to a high similarity (color scale on the top-right
corner). Lines were ordered according to their position in the dendogram (on the top and on the left of each
graph) obtained by a hierarchical clustering based on similarities.

A Similarities between the dent parental lines computed based on direct marker genotyping.

B Similarities between the flint parental lines computed based on direct marker genotyping.

C Similarities between the dent parental lines computed based on ancestral allele sharing (using “clusthaplo” and
a 2cM window size).

D Similarities between the flint parental lines computed based on ancestral allele sharing (using “clusthaplo” and
a 2cM window size).
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Figure 3 Results of the QTL detection for with each model for DtSILK for A the dent design and B the flint design.
The - log10(p-values) of the connected model are represented by black lines, the QTL positions of the connected
models by black dots. The - log10(p-values) of the LDLA — 5 cM model are represented by tblue lines and the QTL
positions by blue diamonds. The - log10(p-values) of the LDLA — 2 cM model are represented by red lines and the
QTL positions by red crosses. The - log10(p-values) of the QTL detected by the LDLA — 1-marker model are
represented by green stars. Horizontal lines correspond to the threshold values of the different models.
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Figure 4 Allelic effects for the different flint lines for the QTL detected on chromosome 10 at 38 — 50 cM for
DtSILK with all the QTL detection models. Allelic effects are estimated in contrast to the central line allelic effect
(UHO007), which was set to zero. The same letter was given to allelic effects not significantly different at a 5% risk
level. Alleles with intermediate effects may be attributed to more than one letter. The last column corresponds
to the joint effect of the two QTL detected in the region with LDLA — 1-marker model. Allelic effects estimated for
EP44 were not shown because the population where it segregates was too small (17 individuals) to obtain a
reliable estimation. Inbred lines are ranked according to their allelic effects obtained with the connected model.
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Figure 5 Allelic effects for the different dent lines for the QTL detected on chromosome 8 at 45 — 58 c¢cM for
DtSILK with all the models. Allelic effects are estimated in contrast to the central line allelic effect (F353), which
was set to zero. The same letter was given to allelic effects not significantly different at a 5% risk level. Alleles
with intermediate effects may be attributed to more than one letter. The last column corresponds to the joint
effect of the two QTL detected in the region with LDLA — 1-marker model. Inbred lines are ranked according to
their allelic effects obtained with the connected model.
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Figure 6 QTL projection on the flint-dent consensus map of the QTL detected in the dent dataset, the flint dataset
and in the joint dataset for DMC, DMY, DtSILK, DtTAS and PH. Each QTL is displayed by one horizontal line bound
by two vertical lines representing the confidence region and a vertical line proportional to the QTL adjusted R?

symbolizing the QTL position. QTL common to dent and flint according to the overlap of their confidence region

on the dent-flint consensus map are represented in red. For the QTL detected in the joint analysis, the letters d

and f written below the QTL indicate that the QTL was significant when tested in the dent or flint dataset

respectively.
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TABLES

Table 1 Number of mapped markers, length of the genetic map and linkage disequilibrium decay modeled with
the Hill and Weir model (1988) for a r2 = 0.2 for the two groups dent and flint for each chromosome and for the
whole genome.

Dent (cM) Flint (cM)

Markers Length (cM) LD decay (cM) Markers Length (cM) LD decay (cM)

Chrm1 3287 184.5 0.96 2892 237.2 0.76
Chrm 2 2402 137.9 2,51 2264 182.7 0.65
Chrm 3 2480 151.0 1.99 2410 156.4 0.45
Chrm 4 2528 134.6 1.47 2379 165.5 0.65
Chrm5 2405 136.6 0.45 2322 180.6 0.35
Chrm 6 1695 119.9 1.47 1544 134.9 0.65
Chrm 7 1820 128.9 1.37 1709 149.7 0.76
Chrm 8 1992 125.6 1.47 1756 139.7 0.45
Chrm 9 1699 118.5 0.96 1610 133.5 0.76
Chrm10 1570 105.8 1.89 1520 106.1 0.76
Genome 21878 1343.3 1.2 20406 1586.3 0.65
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Table 2 Number of QTL detected (Nb) and adjusted percentage of variance explained by the detected QTL (R?)
for the five traits in the two separate datasets for each model and for the joint dataset for the connected model.

We also indicated the total number of QTL detected over the traits and the average percentage of variance

explained (“Total” column).

DMC DMY DtSILK DtTAS PH Total
Nb R2? Nb R2? Nb R? Nb R2? Nb R2 Nb R?
(%) (%) (%) (%) (%) (%)

Dent
Connected 12 514 8 327 11 523 7 412 14 571 52 46.9
LDLA - 5cM 15 511 5 225 12 537 11 492 13 541 56 46.1
LDLA - 2cM 16 536 6 234 12 532 9 451 12 495 55 450
LDLA - 1- 12 374 5 186 11 432 7 333 10 364 45 338
marker
Flint
Connected 8 46.0 11 486 15 69.3 12 653 9 523 55 56.3
LDLA - 5cM 11 492 10 419 14 675 13 61.1 10 51.7 58 54.3
LDLA - 2cM 8 421 12 453 11 620 14 622 11 519 56 52.7
LDLA - 1- 7 36.1 11 390 16 617 16 580 9 419 59 473
marker
Joint
Connected 18 546 16 455 15 59.7 17 614 21 61.2 87 56.5
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Table 3 Number of QTL detected for the five traits in the joint dataset for the connected model, in the whole

dataset, in each separate dataset, in both separate datasets.

DMC DMY DtSILK DtTAS PH Total

Significant in the whole dataset 18 16 15 17 21 87
(nb)

Significant in the dent dataset 14 9 11 11 17 62
(nb)

Significant in the flint dataset (nb) 6 12 8 13 11 50
Significant in both datasets (nb) 6 5 4 7 8 30
Non significant in both datasets 4 0 0 0 1 5

(nb)
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ABSTRACT

Understanding genetic architecture of hybrid penfances is of key importance for allogamous
species such as maizée@ mays ). We developed two multiparental designs corredpan
each to one of the main heterotic groups used trzensilage production in Northern Europe
(the dent and flint groups). In each group, founrfder lines were crossed to produce six
connected biparental populations of segregatingslifhese lines (821 and 801 for the dent
and flint group, respectively) were genotyped fppraximately 20k SNPs and were crossed
according to an incomplete factorial design to prmd951 dent-flint hybrids, evaluated for
silage performances in eight environments. Hybgdeagic variance decomposition showed a
predominance of general (GCA) over specific (SCAjnbining abilities. SCA explained
between 13.8 and 22.6% of the within-populationrid/ariance, depending on the trait. QTL
detection was carried out for GCA and SCA usinded&int models considering allelic effects
transmitted from each founder lines (linkage ang)ysr considering directly SNP alleles
(linkage disequilibrium mapping) assuming equatibferent effects in each group. In total,
between 42 and 54 QTLs were detected dependin(pedmbdel, among which 12 to 31%
presented dominance/SCA effect significant at aridividual risk level. Only 16 QTLs were
detected by all three models illustrating their ptementary. Most of the QTLs (about 80%)
were specific to one group, consistent with theylterm divergence between the dent and the
flint group. These results open interesting protptar revisiting with markers the concept of

reciprocal recurrent selection.
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INTRODUCTION

Darwin, in 1876, observed that cross-pollinatiod ® more vigorous plants than self-
pollination for numerous species. This observaivas later theorized by Shull (1908) and East
(1908) who defined the concept of hybrid vigor etdrosis (Shull 1914). In maize, as in other
allogamous species, heterosis is important fotstnalated to yield. In order to exploit this
phenomenon, maize diversity was partitioned intefotic groups and most of the varieties
that are sold today correspond to hybrids betwabred lines belonging to complementary
heterotic groups. When suitable heterotic groupge hlaeen established, the objective of
breeders is to select new lines within each graug identify the best hybrid combinations
between them. Several heterotic patterns are usathize breeding depending on the region
considered and on the breeding objectives. Foamtst, in Northern Europe, hybrids selected
for silage generally issued from crosses betweerémnt and the flint groups.

Hybrid value is traditionally decomposed into twargs. The first one is the sum of the General
Combining Abilities (GCA) of the two parental inldrénes, defined each as the average value
of the hybrids that can be derived from this lineew crossed to lines from the other group.
The second one is the Specific Combining Abilit€£§ of the pair of parental lines, which is
the difference between the hybrid value and thaeevaredicted based on GCAs (Sprague and
Tatum 1942). GCAs are statistically additive andoime additive, dominance and epistatic
effects at quantitative trait loci (QTL). SCA orilyolve dominant and epistatic QTL effects.
In breeding programs, due to practical considenati@ll potential inter-group combinations
cannot be evaluated phenotypically. Consequethtéyselection is carried out in two stages. In
the first stage, future potential inbred lines atke group are selected for their cross-value with
one or few lines representative of the complemgrgesup, called testers. In the second stage,
a limited number of combinations between improveated lines of both groups are evaluated
to identify the best hybrids. In this scheme, nudthe selection is generally performed during
the first stage. Due to the small number of testersidered, the selection of lines is based on
a combination of their GCA and of the SCA with tiester(s). Understanding the relative
magnitude of these components is therefore impbrbegvaluate to which extent the choice of
tester(s) may affect the estimation of the potérmdfanew inbred lines. Reiét al. (2007)
theorized that, in absence of epistasis, the ct®CA over GCA variance is expected to be
low for hybrids between two divergent populatiofi$is is consistent with the empirical
expertise of the breeders, who observe that setegtith a given tester generally leads to a

correlative progress of hybrid performance witheotpartners. This is also consistent with
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experimental studies (for instance Schedagl. 2006 or Fischeet al. 2008 for grain yield,
Argillier et al.2000 or Griedeet al.2012 for whole plant biomass yield).

Beyond global statistics of the relative magnituafe GCA and SCA, identification of
Quantitative Trait Loci (QTL) involved in the geretrchitecture of hybrid values and these
two components is needed to better understanddyhriation and improve the efficiency of
hybrid breeding. Most of the QTL detection expemseconducted so far on maize yield
related traits have been based on biparental pigusaevaluated with a single tester
(Manicacciet al.2011; Truntzleet al. 2012 for an overview of QTL detected for maizegd)
which does not enable the detection of SCA effdétsv studies involved several testers. As
expected, strong SCA effects were found for trsiitswing dominance (such as yield) when
the testers used were related to the parents dfttitged population, leading to hybrids with
different levels of inbreeding (Let al. 2003; Frascarolet al. 2007; Frascarolet al. 2009;
Lariépeet al. 2012). Several studies also reported poor comsigtbetween the QTLs found
with different testers for yield performances euethe cases when the testers were non-related
to the studied population (Schéhal. 1994; Lubberstedtt al. 1997; Melchingeet al. 1998;
Austin et al. 2000). This suggests that even in a context wheral SCA is expected, tester
choice may affect QTL detection results.

QTL detection in multiparental designs showed tirggrest for exploring a larger part of the
diversity and for increasing power in comparisohifmarental designs (Blam®t al.2006; Kump

et al.2011; Bardokt al. 2013; Girauckt al. 2014; Foiadat al. 2015). Only few studies have
investigated their interest for better understagdime genetic architecture of additivity —
dominance or GCA and SCA. Larieptal. (2012) studied an advanced Northern Carolina Il
design between three connected RIL population henl three parental lines and found QTL
with apparent overdominance for heterotic traitshsas yield in the centromeric regions. The
strong SCA effects were due to the presence istindied design of hybrids between related
lines.

Other QTL studies were conducted directly on hybrimktween sets of lines selected in
complementary genetic groups. This was carriedimitvith a limited number of SSR markers
by Parisseaux and Bernardo (2004), then by varmiigugt al. (2010) who analyzed another
factorial design genotyped with SNP markers. Bailigs identified QTLs for GCA that were
specific to each heterotic group. SCA effects wewasidered as negligible and were not
included in these analyses. More recently Techetal. (2014) also analyzed a factorial design
corresponding to the last stages of a breedingranegThe main objective of their study was

to perform genomic predictions. The use of a B&/@sodel led to the identification of a few
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markers with sizable effects on GCA and SCA buy thrade only little comment on them.
Thus, all these studies did not really consider@é &ffects in the detection. They also relied
on designs which may not be well adapted for QTtectieon. Only hybrids between lines
selected based on tester values were evaluatede Tasigns involved in each group a lot of
parental lines more of less related to each othetlzat did not contribute equally to the hybrid
population. All this complicated and possibly bi¢kee estimation of SCA/GCA components
and the identification of QTLs. To our knowledge,@TL detection was carried out on hybrid
design between inbred lines developed directly fs@gregating populations available at early
selection stages in two complementary heterotiamgso With the development of double
haploidization techniques, breeders can directlyegate at each breeding cycle segregating
populations composed of pure inbred lines. Instdacing a small number of testers from the
opposite group to select among them the best oaed, evaluate inter-group hybrid
combinations in a second stage, it might be reletadirectly evaluate hybrids between non-
selected lines of the two groups. Such type of lecssd hybrid population with known family
structure is a priori ideal for detecting QTLs €A and SCA in a multi-allelic context. Once
detected, QTL effects could enable the identifaratf the best hybrid combinations among all
the potential single-cross (including the untesteks). They would also be useful for
optimizing the selection of the future inbred linmsbetter taking into account GCA, SCA and
the diversity of the material.

To evaluate this strategy, we developed one deshbae flint multiparental design. For each
heterotic group, six biparental populations of ebtines were developed from four founder
lines and were crossed with the ones of the otteerg Hybrids were phenotypically evaluated
for silage performances. We first decomposed theetie variance in its GCA and SCA
components. We then performed QTL detection consigé¢hree different ways of coding the
alleles. Predictive abilities of the different m&slevere then compared based on cross-

validation.

MATERIAL AND METHODS

Genetic material
The experimental material is constituted of 1044t édflint hybrids obtained by crossing inbred
lines from two multiparental connected designs esponding each to one heterotic group

(Figure 1). To obtain each of these multiparentainected designs, four inbred lines, further
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referred to as “founders”, were chosen: one fogatsd digestibility ability, the others for their
good agronomical potential for yield. They weress@d according to a half diallel design in
order to produce six different.F-rom these six i six populations of on average 155.2 lines
for the dent design (min 114, max 167) and 152.a (86, max 185) for the flint design were
derived. The dent lines were obtained by doubldédndigation and the flint lines were obtained
by selfing independentkndividuals for five or six generations dependorgthe population.
931 dent lines and 913 flint lines, were obtairfedm these lines, further called the “parental
lines”, 863 dent lines and 879 flint lines weressed according to an incomplete factorial
design in order to produce 1044 experimental hgbrieiach population of one group was
crossed with all the populations of the other gravigh the objective to balance the contribution
of all populations. The majority of lines (699 imetdent and 732 in the flint) contributed to
only one hybrid, but some lines contributed twit63 in the dent group and 146 in the flint
group) or even three times (one dent parental lmdpur times (one flint parental line). All
founder lines of one group were crossed with thedr lines of the other group to create 16

hybrids that were used as checks.

Genotyping data

The founder lines were genotyped with a 50 K SNitsya(Ganalet al. 2011). The founder
lines and the parental lines were genotyped wit8 480 SNPs Affymetrix® array provided
by Limagrain.

For the analyses we considered the Affymetrix® ggpiag data for the founder lines, and
when possible replaced missing data by the genstgptined with the 50 K SNP array. To
avoid the ascertainment bias observed with the SBIP array, we only considered the
PANZEA markers (Ganadt al. 2011) which were polymorphic among the foundeedinwWe
restricted the analysis to loci which had less @@¥ of missing values among the dent parental
lines, the flint parental lines, and the dent dimd parental lines considered jointly. Markers
with more than 5% of heterozygosity among the g¢baméental lines or in total, or more than
10% of heterozygosity among the flint parental dingere discarded. Markers with a Minor
Allele Frequency (MAF) inferior to 5% among the tparental lines or the flint parental lines

or in total were discarded. Thus 9643 markers wersidered.
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The genotyping failed for nine inbred lines. Twatimbred lines were discarded as there was
doubt on the DNA origin. Given the genotyping daanbred lines were represented under
two different names and were thus renamed. Flibteid lines with more than 25% of
heterozygosity (5 lines) were not considered ad a®ldent lines with more than 10% of
heterozygosity (20 lines) or dent lines with residbeterozygosity concentrated in some
chromosome regions (15 lines). Consistency of ggast between founder lines and parental
lines was checked and off-type lines were exclyd8dlint lines and 9 dent lines). Thus only
875 dent lines and 883 flint lines were consideneidirther analyses.

Using the cleaned genotypic data, these 1758 inlmed were considered for building the
genetics maps: one genetic map for each of theop2lations and one dent-flint consensus
map. We followed for this the approach describedsiraud et al. (2014). The dent-flint
consensus map was constituted of 9548 markersvéirat polymorphic in at least the dent or

the flint design. This map had a total length of@%cM and 5216 unique positions.

Field trial design and analysis

The hybrids were evaluated in a total of 8 différemvironments over two years (4 in 2013 and
4 in 2014) in the North of France and in Germamyfdair traits: silage yield (DMY in tons of
dry matter per ha), dry matter content at harve84C in %), plant height (6 environments)
(PH in cm) and female flowering (DtSILK in dayseafflanuary the first). Trials were conducted
according to usual agricultural practice of theiwag

The field experiments were laid out as an augmepresp design and were constituted of 1088
elementary plots, consisting each in two rows ohé&ters long. Most hybrids between the
parental inbred lines were evaluated only onceafgiven environment. The founder hybrids
and around 17 % of the experimental hybrids weeduated twice. Trials were laid out in 68
incomplete blocks consisting of 16 elementary pessh with 5 to 6 plots used for repeated
genotypes. 1044 hybrids were evaluated in totat tve whole experimental design, out of
which 951 hybrids were considered for further asay(950 for PH and DMY), corresponding
to hybrids for which both parents had correct ggpictdata (821 dent parental lines and 801
flint parental lines). Outlying observations werelaled. For silage yield, data from one

environment over eight were excluded as they wetearrelated with the other environments.

Variance component analysis
Genetic variance decomposition was done on thdespigt performances using the ASReml-

R package (Butleet al. 2007; R Core Team 2013). The objectives were timate the trait
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heritabilities, evaluate the importance of the G&& SCA components in the hybrid variance
and the proportion of this variation that is duéht® structure of the design in populations. The
first model does not decompose the genetic valdlbehybrid:
Yii jjtin teyza = B+ A+ (T X O + Hygper ey X (=10

+ (Lyqy + Cyay) X (1 —dy) + (Bgy X dy)

+ Eijit j ki txyza (1)
WhereY ;7 i1k’ exyza 1S the phenotypic value of the hybrid evaluatethis environment at
the plot located at the ling the columry and in the block. To distinguish between the checks
and the experimental hybrids we used the paramet®hen the performance corresponds to a
check hybrid between founder linésandi’, t was set to 1 and when the performance
corresponds to an experimental hybrid issued floenctoss between the flint parental line
(derived from the flint founder linesandj), and the dent parental lirké (derived from the
dent founder lineg and;"), t was set to 0. In this modei,is the intercept), is the fixed effect
of the environment, t;;, is the fixed effect of the check issued from thess between the dent
founder linei and the flint founder lin€. H, ;)7 is the genetic value of the hybrid issued
from the cross between the flint parental linéssued from the founder linésandj) and the
dent parental lin&’ (issued from the founder liné'sand;’). We assume thaHk(l-j)k/(l-/j/) are
independent and identically distributed (iid) antidw a normal distributionH ;i) <
N(0,07),iid. To correct for spatial heterogeneities we inctlitethe model either a random
block effect or random row column effects, depegain the environment and trait. The choice
between the two models was done by analyzing ing@ly each environment and by
choosing the best correction model based on tlediiikod and the repartition of the hybrid
Best Linear Unbiased Predictors (BLUPS) in thedfidesign. In the joint model; is a
parameter set to 1 if for the environménthe spatial effects correction chosen is a block
correction, 0 elseB,(;) is the random effect associated to the bloakthe environment, L,
andc,yare the random effects associated to theadinad the columiy in the environment,
with L,y © N(0,07) which were assumed to be independent (g}, < N(0,0?¢,) id, and
B,y © N(0,0%5,) id. Eyyrjrkr’exyza 1S the residual effect associated to the modekémh
environment  With  Ejriinerexyza © N(0,07) id, and Lyq LCypy L By L

Ejiirj'kr'txyza WhereLl stands for independence between the random effects
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The second model considers the structure in papakabf the design. It corresponds to
model (1) except thaf (7 ;) is decomposed into

aij + Pirjr + @Bijirjr + Hygpyperrjry (2)
Where q;; (respectivelyB;: ;) is the fixed effect of the flint (respectivelyrd§ population of

0. is the fixed

origin of the flint (respectively dent) parentatdik (respectivelyk’), (af);;;’;

effect corresponding to the interaction betweenflineand dent populations of origin of the

*

parental IinesHk(l.j)k,(l.,j,) is the within-population genetic value of the hglissued from the

cross between the flint parental like(issued from the founder linésandj) and the dent
parental linek’ (issued from the founder liné'sand;") with H,:(ij)k,(l.,j,) < N(0,05) iid.
In the third model, the hybrid value is decomposgo GCA and SCA effects without
considering the structure in populations. TW%j)k'(i'j') is decomposed into:
Prajp + Plerrjny + (PP i) 3)

WherePy (respectivel;P’kf(i,jr)) is the random effect of the inbred likgrespectivelyk’)
issued from the cross between the dent (respegfiet) founder linesi andj (respectivelyi’
and '), with P < N(0,03) iid (respectivelyP’,:(;1;y < N(0,a5) iid). These effects
correspond to the dent (respectively flint) GCAtloé parental Iines(PP’)k(l-j)k,(i, i) is the
random effect of the interaction between the inblied k and the inbred lind’, with
(PPDwajpw' (i) N(O, J(ZPP,)) iid. This interaction corresponds to the SCA oé tfwo
parent lines.
In the fourth model, the hybrid value is decompoisgd the population structure, the within-
population GCA and the within-population SCA. Tﬂq.g(ij)k,(i,jf) is decomposed into:

aij+ By + @By + Peap + Py + PPy 4
Where a;;, By and (aB);y are defined as in model (2P, Py and
(PP’)Z(ij)k'(i'j’) are the within-population equivalentsif ), P'yr(y7jry and(PP") i jyi’ (17 7)
of model (3).

2
From model (1) we derived the heritabilit? at the whole design level ag2 = — 25—
UEI+(nreEpH)

where o is the genetic variance of the hybridsepH is the average number of times an
experimental hybrid was evaluated in the wholegitesi? is the average residual variance of

the model over the different environments. The wHbopulation heritability of the design was
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calculated with a similar formula but considerihg genetic variance of model (2) that takes
into account the structure in populations. The @etage of within-population variance in the

2
total genetic variance was calculated/a8™ = % with 63 being the genetic variance of the
H

hybrids in model (1) and}. the within-population genetic variance of the higlsr in model
(2). The percentage of SCA in the genetic variamae calculated from model (3) &4SC =

0'2 /
%. The within-population percentage of SCA was dal@d from model (4) using
O'P+O'P,+O'(PP,)

a similar formula but considering the within-popida variances of the flint GCA, the dent

GCA and the SCA effects.

Computation of adjusted means and correlations beteen traits

QTL detection was based on the least square-mésange@ans) of each experimental hybrid.
To obtain these Is-means, we first corrected tldevidual single plots performances by the
BLUPs of the field effects obtained with model (Zhen for each trait, least square means of
hybrids were derived from the fixed effect modelnsidering jointly the experimental hybrids
and the check hybrids between the found&s; = u + A; + vy, + Epp Where Yy, is the
performance corrected for the field effects ofithrepetition of the hybrid in the environment

[, u is the intercepty, is the fixed effect of the environmehty,, is the hybrid genetic effect
considered as fixed in this modé},,; is the residual of the model for each environnveitt

En © N(0,07) id. Correlations between the different traits weatculated based on these

Is-means.

QTL detection
Three models were used for QTL detection dependmghe type of allele coding that was
considered. In each model, we took into accounstheeture of the design in populations and
included random genetic effects correspondingégtrents of the hybrids to take into account
the fact that some of the hybrids derived fromgame parental lines.
The “Founder alleles” model makes the assumptiahghch of the eight founder lines carried
a different allele.

y=1lu+Aa+B.f+C.(af)+XrpaVra+Xr s O0rr+Xpar - YOrars+Zagug

+Zrur +e (Q1)

Whereyis a (V x1) vector of the Is-means of the hybrids wikhbeing the number of

experimental hybrids phenotyped for the considénaat u is the intercept] is a (V x1) vector

109



of 1. a (respectivelyB) is a (6 x1) vector of the fixed effects of thentigespectively flint)
populations of origin of the dent (flint) parentale, A (respectivelyB) is the (V x6) design
matrix of 0-1 that linked each hybrid to the dergspectively flint) population of its dent
(respectively flint) parental linegf) is a (36 x1) vector of the fixed interaction etfebetween
the dent and flint populations of parental lin€sjs the corresponding design matrix;
(respectivelyuy) is a (V4 x1) (respectivelyNy x1)) vector of the random effects of tNg dent
(respectively; flint) parents, withug; © N (0, o)), iid (respectivelys < N (0, aif), iid).
Z;isthe(N x N,) design matrix that relates ti\ehybrids with thev,; different dent parents
andZ;is a(N x N;) design matrix that relates tiehybrids to theV; different flint parents.
e is a (V x1) column vector of the residuals of the modehwi © N (0, ¢2), iid. The QTL
effect was decomposed into three terms;, 6 f and(y0)r q r ¢- Yr a (respectivel\dy ¢) is
the (4 x 1) vector of the allelic effects at therkes associated with each dent (flint) founder
line. These effects correspond to the GCA effedtdhe QTL. For each markerXy 4
(respectivelyXr ¢) is a (V x 4) matrix of the probabilitiethat the hybrid received its dent
(respectively flint) allele from each of the fodent (respectively flint) founder lines.
(y8)r ar s is the (16 x 1) line vector of the 16 levels of thteractions or SCA between the
founder allelesXr 4 r ¢ is a (V x16) matrix corresponding to the Hadamard prodtist. ; and
Xr r. As the sum of probabilities for each allele equhl this model has three degrees of
freedom (df) for the additive effect of the foundslieles in each group and nine df for the
interaction.
At each marker, probabilities of the four dent fadively flint) founder lines were inferred
using Plantimpute (Hickesgt al. 2015) using 10 iterations for the 9548 mapped erark
The “SNP within-group” model considered the obsdrafieles at SNP received from the
parental inbred lines, assuming different effectsthe two heterotic groups. This model
assumes that two inbred lines from the same gioafpshare the same allele at SNP are IBD.

y=1lpu+Aa+B.+C.(af)+ Xsnp.a-Vsnpa + Xsnp_r-Osnp s

+ Xsnp_asne_g- (YO snpasne s+ Za-ua + Zs.up + e (Q2)

Wherey, u, ,A, a, B, 3, C, (ap), Zy, Zs, ug, ur ande are defined as in model (Q1). The QTL
effect was decomposed into three termgsypq, Osnpr and (¥8)swp asne f-
Ysnp_a(respectivelybsyp ¢) is the GCA effect of the dent (respectively flimdinor allele,
Xsnp a (respectivelyXgyp ¢) is @ (V x1) vector of marker genotypes for the dent (respely

flint) parent of the hybrid, coded as 0 for homoatgs for the major allele, 1 for homozygotes
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for the minor allele and 0.5 for heterozygotg@a?)syp 4 snp 5 IS the SCA effect between the
minor SNP marker alleles of each gro¥pyp 4 snp ¢ is a (V X1) column vector corresponding
to the Hadamard product &%y 4 andXsyp r. This model as one df for the allelic effect of
each group and one df for the interaction.
Missing genotypes at the parental level were ingputéth Beagle v3.0. (Browning and
Browning 2007). Imputations were done within eaopydation after adding the founder lines
in the dataset. Phasing of the flint lines ancheffounder lines was done at the same time than
missing genotypes imputation.
The “Hybrid genotype” model considered that the @Elffects are the same in both heterotic
groups. It decomposed the hybrid effect into teofadditivity and dominance.
y=1lu+Aa+B.+C.(af)+Xqw+X4.6+Zg.ug+Zr.ur +e (Q3)
Wherey, u, ,A, a, B, B,C, (ap), Zq, Zs, ug, ur ande are defined as in model (Q1). The QTL
effect was decomposed into two termasand § which are respectively, the additive and
dominance effect at the markef, is a (V x1) column vector coded in -1, -0.5, 0, 0.5, 1
indicating the genotype of the hybrid at the markesel. X, equals -1 when the hybrid is
homozygous for the major allele, 1 when the hylwidomozygous for the minor allele, O if its
parents are both homozygous but for a differemigl|l-0.5 (respectively 0.5) when the dent
parent is homozygous for the major (respectivelywar)i allele and the flint parent is
heterozygousX, is a (V x1) column vector coded in 0, 0.5,X; equals O if both parents of
the hybrid are homozygous for the same allelehé&n the dent parent is homozygous and
the flint parent is heterozygous or conversely, Améhen both parents are homozygous but for
different alleles. This model has one df for theliade effect and one df for the dominance
effect.
For this model, as for the “SNP within-group” modeissing marker data were replaced by
imputed genotypes.
QTL detection was performed with ASReml|-R (Butétral. 2007). To avoid identifiability
problems for the “SNP within-group” and the “Hybigeénotype” models, QTL detection was
performed on the 4758 mapped markers which wergnmpwiphic (MAF superior to 5%) in
both heterotic groups whereas for “Founder allelesidel it was performed on the 9548
mapped markers. For each model, we considered gesdme-wide significance threshold
based on the number of efficient markers (@ial. 2008).
The total effect at the marker was tested usingdh&up” function. After the first initial scan

along the genome, a multi-marker procedure waseémphted using a forward and backward

111



marker selection. In the forward stage, the mamiscant maker (based on the total locus
effect) was added to the model until no-more mahkegt a significant total locus effect at the
5% genome-wide risk level. Then, markers with a G&ACA (or additivity or dominance)
effect superior to the threshold were added tontloglel. Finally, in a backward stage, we
removed step by step each effect that was notfgignt in the joint QTL model until we only
kept markers for which the total effect or one a@$ icomponents (GCA/SCA or
additivity/dominance) was superior to the threshold
The percentage of phenotypic variance explainetiéyopulation effect®;,,, was calculated
according to Nakagawa and Schielzeth (2013). Tameast the percentage of variance
explained by the detected QTLB%QL), we used a modified version of tlRé presented by
Nakagawa and Schielzeth (2013) with marker effedisogonalized by population structure.
From these two parameters we estimated the pegeerdh within-population phenotypic
RYTL

_ p2
1= Rpop

variance explained by the QTLsR;, = . We also estimated the individual R? of each

QTL after orthogonalyzing its effect by the popidatstructure and the effects of the other
QTLs.

To evaluate the quality of prediction of these niedee also performed a cross-validation
approach using four fifth of the data for estimgtthe population and the QTL effects, and
predicting the values of the hybrids of the lakhfiSampling was stratified by the structure in
populations and was repeated 100 times. The squareelation between the predicted and
true hybrid values of the fifth fold were estimat@dhis procedure was conducted (i) without
taking into account SCA/dominance at the QTL leared (ii) taking it into account for QTL for
which it was significant at a 5% individual riskvéd. Percentage of variance explained by the

population effects were estimated following the sammoss-validation approach.

RESULTS

Genetic variance analysis

We observed large and significant hybrid varianf@sall traits (Table 1). Broad sense
heritabilities at the design level were high fditi@its: between 0.814 (DMY) and 0.892 (DMC)
(Table 2).

For all the traits except DMC, the dent and fliopplation effects were both significant at a
5% level risk, whereas the interaction was not.[HIC, the effects of the flint population and
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of the interaction between the dent and flint papahs were significant whereas the effect of
the dent population was not (result not shown)sThin agreement with the smaller variation
of DMC performances among the dent founder lineapared to the flint ones. Even if the
population effects were significant, the within-ptgdion hybrid genetic variance was large
(Table 1). It represented between 63.1% (PH) an@%8gDtSILK) of the total hybrid genetic
variance (Table 2).

Accordingly, for all traits, within-population hé¢abilities remained high and varied between
0.767 for grain yield and 0.876 for female flowerifTable 2).

The decomposition of the hybrid variance in GCA &@A (models 3 and 4) showed that most
part of the hybrid variation was due to GCA. Whea $tructure in populations was not included
in the model the flint and dent GCA variances wdifierent for DMC, DMY and PH, whereas
they were of similar magnitude for DtSILK (Table. Bfter taking into account population
structure, the within-population flint and dent G@&riances were of the same magnitude for
all traits. For the model which did not take intoceunt the structure in populations, SCA
represented between 11.7% (DMC) and 17.4% (DMYthefhybrid genetic variance (Table
2). The proportion of SCA was higher when consitgthe within-population hybrid variation
(Table 2). It represented about 20% of the withopydation genetic variance for all traits but
PH for which it was lower (Table 2). It has to beted that standard deviations for SCA
variances were large (Table 1) certainly due testhall number of inbred lines that contributed

to more than one hybrid in our design.

113



Table 1: Variance decomposition of the phenotypic datatlfier four variance decomposition models, for the
different traits: dry matter content DMC, dry matygeld DMY, female flowering time DtSILK, plant fght PH.

For each genetic variance, precision correspontbng.96 x the standard error of the estimated wagais

indicated
Hybrid (1) Population Flint GCA + Population
structure + Dent GCA + structure + Flint
Hybrid (2) SCA (3) GCA + Dent
GCA + SCA (4)

DMC
Hybrid variance 3.68 +0.37 2.46 £0.27
Flint GCA variance 231+051 0.98 £0.44
Dent GCA variance 0.92 +0.53 0.96 + 0.44
SCA variance 0.43+0.54 0.53+0.49
Residual variances1.44 + 0.18 : 152 * 0.19 : 145 + 0.18 : 152 +0.18:
(range) 6.15 + 0.60 6.05+0.59 6.13 +0.59 6.04 £ 0.58
DMY
Hybrid variance 1.24+0.14 0.94+0.11
Flint GCA variance 0.28 £0.20 0.30+0.19
Dent GCA variance 0.74 +0.19 0.44 +0.17
SCA variance 0.22+0.22 0.20+0.20
Residual variances1.01 + 0.12 : 1.02 * 0.12 : 1.00 * 0.11 : 1.02 +0.12:
(range) 3.53+0.35 3.56 £0.34 3.53+0.35 3.56 £0.35
DtSILK
Hybrid variance 2.38+£0.24 2.06+0.21
Flint GCA variance 0.74 £0.38 0.51+0.37
Dent GCA variance 1.26 +0.35 1.09 +0.33
SCA variance 0.39+0.37 0.47 £0.37
Residual variances0.96 + 0.11 : 0.96 * 0.11 : 096 + 0.11 : 0.96+0.11:
(range) 6.12 + 0.57 6.11 + 0.57 6.13 + 0.57 6.12 + 0.57
PH
Hybrid variance 154.7 £ 15.7 97.6 +10.7
Flint GCA variance 429229 384+174
Dent GCA variance 92.8+21.6 45.1+16.0
SCA variance 19.3+23.2 13.4+17.3
Residual variances49.7 = 65 : 464 = 6.0 : 500 *+ 65 : 46.7%+6.0:
(range) 244.2 + 23.7 243.6 +23.5 243.6 +23.6 243.2+23.5
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Table 2: Adjusted means of experimental hybrids and fouroter hybrids and synthetic parameters on the
experimental hybrid variation for the differentitsa(dry matter content DMC, dry matter yield DMfémale
flowering time DtSILK, plant height, PH).

DMC DMY DtSILK PH
Adjusted means
Experimental hybrids (average, min:max33.0 16.0 2115 247.8
(25.7:41.3) (11.8:20.2) (206.7 : 217.9) (203.9:283.2)
Founder line hybrids (average, min:max)33.5 16.5 211.6 251.3

(30.2:36.1) (14.8:18.4) (209.0 : 213.6) (228.8 : 275.1)

Within-population variance

%Within_var 66.9 75.5 86.7 63.1
Heritabilities

H2 0.892 0.814 0.890 0.877
H2* (within-population) 0.847 0.767 0.876 0.817
Part of SCA in the hybrid variance

%SCA 11.7 17.4 16.3 12.4
% SCA* (within-population) 215 21.0 22.6 13.8

Adjusted means and correlations between traits

Adjusted means of the experimental hybrids weravarage of 16.0t.hW'a(min 11.8, max 20.2)
for DMY, of 33.0% (min 25.7 max 41.3) for DMC, 2%1days for DtSILK (min 206.7 max
217.9) and 247.8cm (min 203.9 max 283.2) for PHb(@&). The experimental hybrids showed
for all traits a variation that exceeded the onmtbfor the hybrids between founder lines (Table
2). Adjusted means of hybrids between founder liwese on average 16.5t:hdor DMY,
33.5% for DMC, 211.6 days for DtSILK and 251.3cnn RH (Table 2). These values were
slightly higher than the average values of the emrpmtal hybrids suggesting that
recombination events broke some epistatic intevasti However, differences were small,
suggesting a limited impact of epistasis. Founder hybrids involving F98902 had higher
yield, whereas those involving F7088 had higher DM@hsistent with known information on
these founder lines. DMY was positively correlatedPH (0.64) and DtSILK (0.57) and
negatively to DMC (-0.28). DMC was also negativebyrelated to PH (-0.28) and DtSILK

(-0.55). These correlations are consistent witlsehasually observed for these traits.
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QTL detection

The thresholds at a 5% genome-wide level used Tdr detection were set to a —log(pvalue)
equal to 4.53 for the “Hybrid genotype” model, 440 the “SNP within-group” model and
3.84 for the “Founder alleles” model.

We detected QTLs for all trait x model combinatidfsr a given trait, the number of detected
QTLs varied with the model. Between nine (DtSILKptinder alleles” model and DMY, “SNP
within-group” model) and 16 QTLs were detected (RS “Hybrid genotype” model). In total
for the four studied traits, the “SNP within-groupgiodel and the “Hybrid genotype” model
detected more QTLS, respectively 51 and 54, thariRbunder alleles” model which detected
in total only 42 QTLs (Table 3). Nevertheless,theunder alleles” model detected more QTLs
for DMY.

Table 3: QTL detection results with the different detectinadels for the different traits (dry matter conteMC,

dry matter yield DMY, female flowering time DtSILiind plant height PH). For each method and trait we
indicated the number of QTLs detected and betweaeckbts the number of QTLs showing significant S&f&cts

at a 5% level risk, the proportion the of phenatygriance (R#r, in %) and of the within-population phenotypic
variance (R%r., in %) explained by the detected QTLs (with anthait including dominance/SCA effects in
the model). The percentage of variance explainethbypopulation effect are also indicatedy(? The total

number of detected QTLs and the average percent#gesriance explained over the different traite afso

showed.
Trait Model Nb Réop Without SCA With SCA
R R2*qrL R R2*qrL
DMC Founder alleles 10 (4) 324 27.6 40.9 324 47.9
SNP within-group 12 (2) 324 25.5 37.7 26.1 38.6
Hybrid genotype 14 (1) 324 25.6 37.9 26.2 38.8
DMY Founder alleles 12 (5) 21.9 27.7 35.5 34.2 43.9
SNP within-group 9 (0) 21.9 20.3 26.0 20.5 26.3
Hybrid genotype 11(3) 21.9 19.7 25.2 20.9 26.8
DtSILK Founder alleles 9(2) 15.0 31.4 36.9 36.7 .243
SNP within-group ~ 15(0) 15.0 37.3 43.9 37.6 44.3
Hybrid genotype 16(3) 15.0 34.1 40.2 35.6 41.9
PH Founder alleles 11(2) 33.8 26.6 40.2 30.7 46.4
SNP within-group 15(4) 33.8 24.7 37.3 26.6 40.2
Hybrid genotype 13(2) 33.8 20.4 30.8 21.2 32.0
Total Founder alleles 42 (13) 25.8 28.3 38.4 335 534
SNP within-group 51 (6) 25.8 26.9 36.2 27.7 37.4
Hybrid genotype 54 (9) 25.8 24.9 33.5 26.0 34.9
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Figure 2: -log(p-value) curves of QTL detection for Dry MattYield (DMY) with (a) the “Founder alleles”
model, (b) the “SNP within-group” model, (c) theybtid genotype” model. The chromosome number icatéd
on the abscissa. For the “Founder alleles” (a) thed“SNP within-group” (b) models, the graphic hé ttop
corresponds to the global effects at the markdrs.dther graphics correspond to the different campts of the
decomposed effects: from the top to the bottomflieGCA, the dent GCA, the SCA. For the “Hybgdnotype”
model, the graphic at the top corresponds to tbeajleffect at the markers, the middle part toattiditive effect
of the markers and the bottom part to the dominafieet of the markers. The grey and black dotsespond to
the significance levels of tests below the thredhat the first step of the forward procedure, theekdots
correspond to those that were above the threshblelred squares correspond to the —log(p-valu)eofQTLs

that were included in the final multi-locus model.

Globally the different models detected QTLs in sae chromosome regions (Figure 2). To
compare the QTL detected by the different modeigufle 2, Figure 3, Supplementary Tables
S1, S2, S3), we considered arbitrarily that QTLeded at positions closer than 10cM of each
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other were identical. With this assumption, 16 QWeye detected with the three models (for
instance at 65 — 65.8cM on chromosome 5 for DMYOm8 were detected with only two
models: 11 with the “Hybrid genotype” and the “SNRhin-group” models, (for instance at
113.4cM on chromosome 3 for DMC), 2 with the “Hybgenotype” and the “Founder alleles”
models (for instance at 86 — 89.3cM on chromoson@ DMY), 7 with the “SNP within-
group” and the “Founder alleles” models (for insamat 25 — 29.9cM on chromosome 6 for
DMY). The other QTLs were specific to one modelifistance the DtSILK QTL detected with
the “Founder alleles” model at 7.7cM on chromosdnthe DMC QTL detected with the “SNP
within-group” model at 70cM on chromosome 6, arel@liMY QTL detected with the “Hybrid

genotype” model at 74.5¢cM on chromosome 4.

Ch1 Ch2 Ch3 Ch4 Chs Ché Ch7 Chg Chg Ch10

- 4 ” X XX X % x X x

Ch1 Ch2 Ch3 Ch4 Chs Ché Ch7 Ch8 Ch9 Ch10

X
X
X
X
x
X
X

Ch1 Ch2 Ch3 Ch4 Chs Ché Ch7 Chs Chg Ch10

Figure 3: Synthesis of the positions of the detected QTltdtie four studied traits (DMC indicates dry matter
content, DMC; dry matter yield, DMY; female floweg time DtSILK, and plant height, PH) and the diffet
models. The QTLs detected with the “Founder allelé&NP within-group” and “Hybrid genotype” modedse

indicated respectively with red, blue and greersses.

For all models, the majority of the QTLs had snedfects (they explain less than 5% of the
variation, see Supplementary Tables S1, S2, S&) only exceptions are the PH QTL detected
on chromosome 3, which explained 5.3% of the vagdior the “SNP within-group” model
and a QTL detected on chromosome 10 at 44.5cMvibhatdetected by the three models and
explained around 8% of the variance for DMC and I8%he variance for DtSILK. This QTL
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region was also involved but with a smaller eflaeDMY and PH. Other QTL regions showed
pleiotropic effects on different traits, for instanthe one around 105.5 - 117.8cM on
chromosome 1 which had an effect on DMC, DtSILK &tél Other regions were specific to
one trait (141.6 — 143.1cM on chromosome 7 for DkKSR5 — 39.1¢cM on chromosome 6 for
DMY) (Figure 3, Supplementary Tables S1, S2, S3).

For each QTL we tested the level of significanceheiir GCA/SCA or additive/dominance
components (Supplementary Tables S1, S2, S3)hEdHybrid genotype” model, none of the
detected QTL showed significant dominance effea &6 genome-wide level. Some QTLs
had significant dominant effect in the initial Q@etection scan but their effects were no more
significant in the final multilocus model (see Figl2 for DMY). However, nine QTLs were
significant for dominance with an individual risk %: one for DMC, three for DMY and
DtSILK (among which one was significant with aniwidual risk at 1%) and two for PH (Table
3 and Supplementary Table S1). For the “SNP wigtoup” model, considering the 5%
genome-wide threshold, nine QTLs were significantdoth GCA effects, 23 only for the dent
GCA effect and 15 only for the flint one. No speriQTL for SCA was detected at a 5%
genome-wide risk level, but six QTLs had a sigmifit SCA effect at the 5% individual risk
level: two for DMC and four for PH (Table 3, Supplentary Table S2). For the “Founder
alleles” model, considering the 5% genome-wideshodd, seven QTLs were significant for
both GCA effects, 20 only for the dent GCA effentlal2 only for the flint GCA effect. No
specific QTL for SCA was detected at a 5% genonuewisk level, but 13 QTLs had a
significant SCA effect at the 5% individual riskvéd: four for DMC, five for DMY, two for
DtSILK and two for PH. Among them three had sigrafit SCA effects at a 1%o risk level
(Table 3, Supplementary Table S3). QTLs showingiBaant SCA were located all over the
genome.

However, one region on chromosome 2, between 82.3oMl 135.8cM stands out for
presenting SCA for both DMC and DMY (Supplementdables S1, S2, S3). All models
detected QTLs in this region, and five over sevethe QTLs detected with the “Founder
alleles” and the “SNP within-group” models hadgngficant effect on SCA at a 5% individual
risk level.

For QTLs detected at close position with severatel® GCA/additive QTL effects of the
founder lines were consistent between models rastishown). Interestingly, no founder line
presented favorable alleles at all detected QTbs.ifistance, considering the dent and flint
GCA effects for DMY of the QTLs detected with thedunder alleles” model showed that all

founder lines presented positive and negative eff@€igure 4). This is consistent with the
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transgressions observed in the experimental hypoulations compared to the founder
hybrids. It would be interesting to identify thesbéybrid ideotype based on both GCA and
SCA effects and to carry out in each group a maaksisted selection scheme to obtain the

parental lines corresponding to this ideotype.

Color Key

.—:. DMY Founder alleles model

06 04 02 0 02 04 06
Value

0 0 0 0 PZE_102109928 Gh2 89.3cM
0 0 0 0 PZE_102136109 Ch2 111.2cM
0 0 0 0 0.129 -0.258 PZE_103005573 Ch3 6.2¢M

-0.044 -0.027 0.285 -0.214 0171 -0.177 PZE 103108225 Ch3 76.5cM

0 0 0 0 0.068 0.005 PZE 103125892 Ch3 95.8cM
371 -0.239 0.1 PZE_104138099 Ch4 136.3cM

PZE_105020816 GhS 23.5cM

-0.238 -0.126 PZE_105078300 Gh5 65.8¢M

PZE_106044414 Ch6 25cM

0 0 0 0 0.008 -0.003

0.311 -0.088 0.221 -0.086 0.182 PZE_108062087 Ch8 62.4cM

-0.019 -0.162 -0.031 0.212 0 0 PZE_109061773 Ch9 64cM

-0.249 0.076 -0.148 0.321 -0.171 0.248 -0.264 0.187 PZE_110051444 Ch10 44.9ch

F02803
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F373
F7088
F1808
F04401
F7082
Faaa0z

Figure 4: GCA effects for the founder lines for the QTLsaked with the “Founder alleles” model for DMY.
Allelic effects are centered on zero for the dentider lines (F1808, F04401, F7082 and F98902jarttie flint
founder lines (F02803, F03802, F373 and F7088). pilesenting a dent (respectively flint) GCA effaot

significant at a 5% individual risk level had thdent (respectively flint) GCA effects set to zero.

The detected QTLs explained jointly between 19.1MY, “Hybrid genotype” model,
without dominance) and 37.6% (DtSILK, “SNP withimgp” model, with SCA) of the total
phenotypic variance and between 26.8% and 47.1%hefwithin-population phenotypic
variance. The model which explained the largegitiiva of the phenotypic variance was the
“Founder alleles” model for DMY, DMC and PH and ttfeNP within-group” model for
DtSILK. The increase in percentage of explainedplypic variance when taking into account
dominance/SCA is low for the “SNP within-group” ned+ 0.2 for DMY to +1.9 for PH) and
for the “Hybrid genotype” model (+0.6 for DMC to Blfor DtSILK) whereas is it is more
important for the “Founder alleles” model (+4.1 Rid to +6.5 for DMY) (Table 3).
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Table 4: Cross-validation estimates of the quality of pc&idn of different models (average R? and its stadd
deviation, sd). For the different traits (dry mattentent DMC, dry matter yield DMY, female floweg DtSILK

and plant height PH) we considered model only idicig population effects or models including popiolaeffects
and the QTL effects. For these later models priediatvere based on GCA /additive effects only omaodels
considering also SCA/dominant effects significana &% risk level. The number of QTLs detected vetith
model for each trait is indicated (Nb) as well las humber of QTLs significant for SCA/dominancehadt 5%

individual risk level (between brackets).

DMC DMY DtSILK PH
Nb R2(%) Nb R2(%) Nb R2(%) Nb R2(%)
Population effects 28.4 171 10.4 29.2
sd 4.18 sd 4.16 sd 2.97 sd 4.35
Pop + QTLs GCA 53.4 39.2 37.7 53.2
“Founder alleles” 10 sd4.01 12 sd4.84 9 sd4.69 11 sd4.37
model GCA+SCA (¥ 54.0 (5) 394 (2) 391 (2) 52.7
sd 3.72 sd 4.83 sd 4.72 sd 4.64
Pop + QTLs GCA 54.4 36.7 47.6 54.0
“SNP within- 12 sd 4.06 9 sd 4.64 15 sd4.68 15 sd4.93
group” model GCA+ SCA (2) 54.7 o - o - (4) 552
sd 4.05 sd 4.87
Pop + QTLs Additivity 55.2 37.3 45.4 50.6
“Hybrid 14 sd398 11 sd450 16 sd4.88 13 sd4.83
genotype” model Additivity+ (1) 55.3 (3) 38.0 (3) 464 (2) 51.0
dominance sd 4.02 sd 4.52 sd 4.72 sd 4.78

Cross-validations were performed in order to evalube quality of prediction of the QTL
models. This was done to eliminate potential mabe R? values of Table 3 that were computed
on the data also used to estimate QTL parametetsnimally advantaging models with high
number of parameters. Population effects explaiiedeen 10.4% (DtSILK) and 29.2% (PH)
(Table 4) of the phenotypic variance. Combinatibnhe population effects and the detected
QTLs without dominance/SCA, explained between 36.(ISILK, “SNP within-group”
model) and 55.2% (DMC, “Hybrid genotype” model)tbé total phenotypic variance. Taking
into account the dominance/SCA for the QTLs forahkhit was significant at a 5% individual
risk had a small impact on the quality of predictaf the model: from negative (-0.5 for PH
for the “Founder alleles” model) to low (+1.4 fot®LK for the “Founder alleles” model).
Considering or not dominance/SCA, the best praatistwere obtained with the “SNP within-
group” model for DMC and DtSILK, the “Founder allsl model for DMY and the “Hybrid
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genotype” model for DMC.

DISCUSSION

The objective of this work was to evaluate theresge of using a factorial design between two
multiparental connected designs to detect QTLsjdarid values. Using this design, we first
decomposed the hybrid genetic variance into teringopulation effects, GCAs and SCA

components and then performed QTL detection usiregtdifferent models.

Genetic variance components

We observed important variation among hybrids fbth& observed traits with transgressions
beyond the variation of the hybrids between fourloles. The fact that part of the parental
inbred lines contributed to more than one hybrldvatd us to estimate SCA/ GCA variance
components. Most of the hybrid variance was du&@A but about 20% of the within-
population genetic variance of our design was dugQA for all traits except PH for which it
was smaller. To our knowledge, few studies estith&@€A variances on European silage
maize, so that the number of possible comparisolsited. Argillieret al. (2000) found small
but significant SCA for DMC and DMY between the temd the flint group but did not
estimate variances explained by each componened@met al. (2012) evaluated GCA/SCA
variances based on test-cross values of dentlisieg flint hybrids as testers. SCA explained
less than 10% of the hybrid variance for DMY and ©Out, as explained by the authors, these
small values might be due to the use of a smalbketlated hybrid testers. Our study cannot
be compared directly to the estimations of SCA/G&Anponents obtained for dent-flint
hybrids designs evaluated for grain yield (Schetgl. 2006; Fisheet al. 2008; Schragt al.
2009; Schraget al. 2010; and more recently Technaw al. 2014). In these studies authors
consistently found that SCA usually explained ldmss 10% of the hybrid variation for grain
yield and grain moisture at harvest.

Thus, other studies also clearly showed a predam@af GCA over SCA but they found in
general less important SCA variance relatively t6AGvariances than in our study. The
predominance of GCA over SCA is in agreement wighfact that, in the hypothesis of absence
of epistasis, the ratio of dominance (major compboéSCA) over additive (major component
of GCA) variance is expected to be low for hybrmstained by crossing two divergent

populations (Reikt al. 2007) such as the two heterotic groups consideréas study which
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diverged 500 years ago (Tenaillon and CharcossEkl)2®Reciprocal selection is expected to
lead to the fixation in each group of alternatillelas for loci showing dominance effects that
are thus absorbed in the mean value of the hybfids results in a decrease of the SCA
variance compared to the GCA variance over timecams$equently a difficulty for detecting
dominance effects that become confounded with aedeffects (for instance if one QTL
segregates in one group but is fixed in the otlma) gTechnowet al. 2014). Most already
published studies were based on factorials derik@u inbred lines that passed through a
selection stage based on their test-cross valuéssters. This selection might have possibly
retained lines with similar SCA pattern which migdfatve contributed to lower SCA variance
compared to GCA. In our design, the hybrid parelmak are derived without selection from
the founder lines. They thus represent the whaédi@diversity available in each population,
giving more opportunity to observe SCA. Even if ireportion of SCA is limited compared
to GCA (20% versus 40% for each GCA), it is notliggigle and might be sufficient to blur the
estimation of GCA using only a small number (ondvaw) of tester lines from the opposite

group as it is usually done in breeding programs.

QTL detection

One of the advantages of our design is that sesetates of information can be used for QTL
detection. The structure in biparental populatiohshe hybrid parents allowed us to trace
founder alleles down to the hybrids and thus tdgper a QTL detection based on linkage
information (the “Founder alleles” model). This QTetection model can be seen as an
extension of the model used to detect QTLs in¢estsed connected multiparental designs (as
done in Rebaét al. 1997; Blancet al.2006 or Girauekt al.2014) to the hybrid case. In addition
to linkage analysis, we also used directly infolioratprovided by SNP markers to perform
QTL detection (with the “SNP within-group” and “Hyd genotype” models) with models
close to the ones used for association mappingr{iapping) except that we used the known
structure in populations of the design instead kihahip matrix to correct for false positives.
The three models used for QTL detection performédrdntly depending on the trait and on
the chromosome region considered. They make diftesumptions in terms of allelic effects
and are thus expected to perform differently depgndn the actual distribution of QTL
effects. The “Hybrid genotype” model considers omlp degrees of freedom per marker and
is thus expected to be more powerful that the atiedels which have more degrees of freedom
to take into account per marker. However it makemg hypotheses considering that the QTLs

effects are biallelic, that they are the same ith h@terotic groups and that the marker-QTL
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phase is also conserved between groups. The otbdelsnhave more degrees of freedom but
make fewer hypotheses: the QTL effect is assumiéeteint in the two heterotic groups for the
“SNP within-group” model and each founder linesaadifferent allele at the QTL for the
“Founder alleles” model.

Even if in total more QTLs were detected with thiybrid genotype” model than with the other
models, this model almost never explained a lapger of the genetic variance (considering
direct adjustment to the data or cross-validatioi$)e strong hypotheses that it makes
counterbalanced its potential interest in termgafer. This is consistent with the fact that the
other models clearly detected QTLs specific to @end flint GCA. Thus the “Founder alleles”
and the “SNP within-group” seem better adapted Ta Qetection in such a design. This is in
agreement with Giraudt al. (2014) who found different QTLs in each heterafioup. This
confirms the long-term separation of the two hdtergroups (Tenaillon and Charcosset 2011)
and shows that reciprocal selection structuredlthersity of these two groups in order to fully
benefit from heterosis by complementation of alietethe hybrids. Van Eeuwigt al.(2010),

in a maize factorial obtained by crossing two otieterotic groups, also found different GCA
QTLs for ear height in the two groups. Hence, canm@ntarity of GCA effects in heterotic
groups seems to be an important component of hylerbrmance and an efficient hybrid
breeding program should target both common andreifit QTL in the heterotic groups.

Even if SCA represented around 20% of the withiptpation genetic variance (except for
PH), we did not detect QTLs specific to SCA at ag@haome-wide risk level. We nevertheless
detected dominance and/or SCA effects significaatz®46 individual risk level for some QTLs
(at a 1%o0 individual risk level for three of then@ross-validation results showed that adding
these SCA QTLs effects to the models only slightiproved in the best cases the quality of
prediction of hybrid values, suggesting that theselerate QTLs SCA effects may not be well
estimated. These results contrast strongly witlsehaf Schoret al. (2010) and Lariepet al.
(2012) who found a majority of QTL with large dorairce effects for grain yield. An important
feature of these studies is that they involve ldgwith a high level of inbreeding, contrary to
our present study in which all hybrids evaluatedissued from unrelated parents. This suggests
that, in the absence of inbreeding, SCA is likalg doo numerous small effects that are hardly
detectable in our design and/or that SCA is dweptstatic effects, not included in our detection
models.

Also, Lariepeet al. (2012) and Schoat al. (2010) detected a large proportion of QTLs with
(pseudo-)overdominance in the pericentromeric regi@onsistent with the observation of

McMullen et al.(2009) that these regions show delayed fixatioemdheveloping recombinant
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inbred lines. In our design, the QTLs presentigmificant effect for dominance/SCA at a 5%
individual risk level were not more specifically pped in the pericentromeric regions. A
similar observation was reported by Technetval. (2014) for hybrids between the two
heterotic groups. Altogether these observationscworio the hypothesis that reciprocal
selection of heterotic groups has fixed complemgntaaplotypes in low recombinant
centromeric regions involving linked dominant QBuch regions appear with large effects in
populations that recombine different groupgg(Schonet al. 2010; Lariepeet al. 2012) and
not in studies that only evaluate hybrids betwerrugs (Technowvet al. 2014; our present

study).

Improvement of the QTL detection models

Our results showed the complementarity of the dhfie QTL models depending on the trait
considered. This is consistent with Bardbél.(2013) and Giraudt al.(2014), who also found
that the model considering that each founder laréed a different allele (the “Founder alleles”
model) was more adapted to complex traits suchedd than to simpler trait such as flowering
time. One of the main drawbacks of this QTL detettnodel is that it requires the estimation
of a lot of parameters (25 df for the combinatibeswveen the dent and flint populations plus
six df for the GCA and nine df for the SCA per QTEpr this reason it might become difficult
to apply them to more complex situations, involvimdarger number of founder lines and
populations. Several alternative approaches caaileikplored in order to improve the power of
the QTL detection models as for instance considgsopulation structure as random. Another
possibility would be to adapt a method develope®ingentet al.(2014) for recovering power

in association mapping panels by removing fromntioelel the population effects and instead
of considering the residual genetic variance ofgheents as being independent, introducing
the dent and flint parental lines kinships, estedabn all the chromosomes except the one
which is scanned (Rincemt al. 2014). In this model, the random effects wouldetahto
account the structure in populations, the fact swae hybrid combinations derived from the
same parents and will account for the genetic &ffeot located on the scanned chromosome.
Another option for more complex cases would beltsterize the parental alleles (using for
instance the “clusthaplo” package, Lerabxal.2014, as done in Bardet al.2013 and Giraud

et al. 2014). Van Eeuwijlet al. (2010) performed QTL detection in a factorial desigsued
from a private breeding program that was derive@rogsing a large number of parental lines
(not structured in clear families as in our desidgit)eir analyses were based on a Bayesian

model that used both molecular markers and pedigréeace back ancestral founder alleles
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and reduce model parameterization. It would ber@steng to evaluate this approach on our
data set even if we have limited access to thegpeeliof our founder lines.

Conclusions

Even if there is room for further model improvememir results clearly showed the interest of
our design. In the joint analysis of two NAM desgfone flint and one dent) evaluated for
silage test-cross performances, Giratidl. (2014) detected equal or slightly higher (up to si
for PH) numbers of QTL than in our study. Thesdedénces are small in regards to the fact
that these NAM designs involved a much broaderrditye(11 and 12 different founder lines
per group instead of four) and almost two timesertoybrids (about 1650 hybrids). The two
designs involved different founder lines which makalifficult to directly compare the QTLs
found in the two studies. Nevertheless it is irgeng to note that both studies identified the
same major QTL on chromosome 10 (for DtSILK, DME &d DMY ) close to themCCT
gene, which was fine mapped as a major flowering tQTL by Ducroccet al. (2009), and
validated by Colest al. (2011).

The main interest of our design, is that each lylsriinformative on both heterotic groups,
which allowed us to reduce the number of testeditiglby a factor 2 in comparison to a test-
crossed evaluation based on a single tester frenopiposite group. By avoiding the use of
testers, our design certainly leads to better estoims of GCA QTL effects and gives the
possibility to detect QTL involved in SCA (evenirf our case only small SCA effects were
found).

We hypothesize that with development of double didation methods and the decreasing
costs of molecular markers, it becomes conceivableevisit the selection for hybrids by
removing the need of using testers in early stagethe breeding scheme. Marker-based
predictions of the hybrid performances calibratedaztorial designs could be used to perform
selection in large sets of non phenotyped candid&ech selection would enable to take into
account complementarities of favorable allelesaahegroup (based on GCAs and also on SCA)
and accelerate the development of superior hybBdseders might nevertheless be reluctant
to apply this strategy which necessitates a labi@nsive step of hybrid production to create
the factorial design. So clearly more work is neetbefurther optimize this design and compare
its efficiency with conventional designs basedeastdrs. The QTLs detected in this study open
the way to the implementation of a marker-assisteléction of lines in order to produce

superior hybrids. Our results are encouraging betdetected QTLs only partly explain the
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hybrid variability. We are currently investigatitige possibility to combine predictions based
on QTLs with predictions based on genomic predngio
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INTRODUCTION

Maize, as many allogamous species, presents gdtaiarosis effect for many traits related to
biomass production (Shull, 1914). To benefit fromtenosis, maize diversity is partitioned into
heterotic groups and most of maize varieties catéitt nowadays consist in Fybrids between
two inbred parental lines issued from differentenetic groups.

Since the beginning of the XXcentury, numerous hybrid maize breeding procedbsas
been proposed in order to optimize its selectiggra@ue and Tatum proposed in 1942 the
decomposition of the hybrid genetic value into Gah&€ombining Abilities (GCA) and
Specific Combining Ability (SCA). The GCA of onengatal line corresponds to the average
performance of its descendants in hybrid combinatidhe SCA corresponds to the difference
between the hybrid observed value and its predicaice based on the GCAs of its parents. In
1949, Comstoclet al. proposed the recurrent reciprocal selection whantsists in improving
simultaneously the two parental populations of kiybrids, by evaluating plants of one
population for the value of their progeny when seabsto several plants of the other population.
This approach allows selecting for both GCA and S ke hybrids and shows its superiority
over other reciprocal selection methods (Coors L9%&iations of this selection scheme were
proposed later (see Hallauet al. 2010, Chapter 12)in breeding companies, a modified
recurrent reciprocal selection scheme is generafigd due to practical considerations.
Breeding procedure is generally divided into twagsts. In the first stage, candidate lines of
one heterotic group are crossed with one or a festérs” (often inbred lines) from the
complementary heterotic group. Hybrid progeny entlevaluated in a field network and only
parents of the best hybrids are selected for tberskstage. Tester choice is very important in
this process. The testers often correspond to agnbnes of the reciprocal heterotic group
presenting good agronomical qualities and whicHikedy to be used as one parent of the final
hybrid. Thus, during early stages, not all poténitigbrid combinations between the two
heterotic groups are evaluated. It is only in thet Istages that a larger set of hybrid
combinations between the few inbred lines seleatedach heterotic group is evaluated.
Selection based on a few testers facilitates hykered production for early testing trials but
limits the variability considered at the second)sta

Genotyping developments in maize and other crogainomical interest should soon make
it possible to genotype all potential candidates s#asonable cost. In this context, genotyping

based prediction of hybrid value is of major ingr@r limiting phenotyping effort to the most
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promising hybrid combinations. Genetic factors imred in heterosis and hybrid value are still
poorly known, but it is admitted that underlyingehanisms (dominance or epistasis) involved
interactions between different alleles transmitbgdthe parents of the single-cross. The first
attempts of hybrid value prediction consisted imgsas predictor the marker-based genetic
distance between the two parents of the singlesdilaeeet al. 1989). Theoretical studies were
carried out (Charcosset al. 1991 and Bernardo 1992) as well as numerous erapsiudies,
mostly based on Restricted Fragment Length Polyhiemps (RFLPs) data (Godhsatk al.
1990; Melchingeret al. 1990; Dudleyet al. 1991; Burstinet al. 1995). Results showed that
genetic distance between parents failed at prediatiter-group hybrid value. One explanation
is that marker-based distance between unrelategednbnes only poorly reflects allelic
differences at QTLs involved in hybrid value, due weak and unstable marker-QTL
associations over groups (Melchingdral. 1992; Charcosset and Essioux 1994). Bernardo
proposed in 1994 to use Best Linear Unbiased RoediBLUP) of the performance of single-
crosses using performances of a related set oestmgsses and genomic similarities between
tested and untested single-crosses. This approaslapplied to a factorial design between six
lines from the lowa Stiff Stalk Synthetic group amde inbreds from another group. It is to our
knowledge the first application of genomic predintimodel that was later referred to as
GBLUP model (Meuwissert al. 2001). More recently support vector machine resjoes
(Maenhoutet al. 2007; Maenhouet al. 2010) or Bayesian approaches (Techredal. 2014)
were proposed as an alternative to the GBLUP mddekddition to studies on maize,
exploratory studies on genomic prediction of hybradue have been performed recently in
other plant species such as wheat (Zbtal. 2013), sunflower (Reiét al. 2013), triticale
(Gowdaet al. 2013), rye (Wangt al.2014) and rice (Xet al.2014).

In maize, first genomic hybrid predictions wererat out in factorial designs between few
inbred lines (Bernardo 1994) or by taking advantaigeybrids from advanced selection stages
of breeding programs (Bernardo 1996a; Bernardo i9®®&enhoutet al. 2010; Massmaet

al. 2013a; Technowt al. 2014). Most of these studies showed that the tyuafliprediction of

a given hybrid mostly depended on the inclusiotha calibration set of hybrids issued from
the same parental lines. Until recently, mategetened through tester evaluation were unfixed
individuals (R or R plants). In parallel to test-cross evaluationesid plants were self-
pollinated to produce inbred lines. With doublelbaptechnology, it is now possible to obtain
directly large segregating populations of inbreédi. This reduces the length of breeding cycles
and offers new opportunities to revisit hybrid lutieg schemes. Instead of using a few testers

from one group for selecting inbred lines of thieastone, before exploring larger set of hybrid
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combinations, one can directly generate large sketater-group single-cross hybrids from
unselected inbred lines. Then these data can b tasealibrate hybrid value prediction
equation and such predictions can be used to fge¢h& most promising hybrid combinations.
The same model can also be used to predict the @@HA candidate lines and select the most
promising for creating breeding populations for tbend of selection.

The objectives of this study were to evaluate #geesibility of this approach. We developed a
design between the two main heterotic groups ueedifage maize breeding in Northern
Europe: the dent and the flint groups. In eachrb&tegroup, six biparental populations of
inbred lines were developed from four founder linkdwese inbred lines were crossed according
to an incomplete factorial design in order to abtaybrids which were phenotypically
evaluated for silage performances. QTL detectios peaformed in this design (cf. Chapter 2).
We first evaluated the efficiency of genomic préidies in this design using GBLUP models
considering different allele codings, populatiomsture or not and decomposing hybrid value
in GCAs or GCAs and SCA. We investigated the aaoud our predictions on the different
components of hybrid value (GCA / SCA). We then paned genomic prediction to QTL-
based predictions. We also investigated the infieesf the size and of the composition of the
calibration set on the quality of hybrid value potidns to draw some conclusions for further
optimization of this approach.

MATERIAL AND METHODS

Plant material

Two multiparental connected designs, each correfipgrio one of the major heterotic groups
used for silage maize breeding in Europe, the @imihe dent, were crossed in order to obtain
F1 hybrids. Each of these multiparental designs msttuted of six populations of parental lines
derived by haplodiploidization (for the dent) or faye to six generations of selfing (for the
flint) from a half diallel mating design betweenufdounder lines. The 863 dent parental lines
and the 879 flint parental lines were crossed atingrto an incomplete factorial design in order
to obtain 1044 dent — flint hybrids which were pbigpically evaluated. The majority of lines
(699 in the dent and 732 in the flint) contributedh single hybrid. Some lines contributed to
two hybrids (163 in the dent group and 146 in tha group) and one dent parental line
contributed to three hybrids and one flint to faybrids. The experimental design is described

in details in Chapter 2.
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Genotyping data

The founder lines were genotyped with a 50 K SNByaiGanakt al.2011). The parental lines
and the founder lines were genotyped with a 18 8B® Affymetrix® array provided by
Limagrain. Inbred lines with unexpected high petage of heterozygote loci as well as those
presenting inconsistencies between founder lindssagregating lines were discarded. After
quality control, 875 dent and 883 flint lines weamnsidered in the analysis (see Chapter 2 for
more details). We used the 9548 markers which wexgped at the parental lines level in the
Chapter 2. For the analyses we considered the Adifiyr® genotyping data for the founder
lines, and when needed replace missing data lyethetypes obtained with the 50 K chip when
it was available.

Missing genotypes at the parental level were imputéth Beagle v3.0. (Browning and
Browning 2007) by populations, on genetic mapstipgitthe founder lines in the dataset.
Phasing of the flint lines and of the founder lirtleat presented residual heterozygosity was
done at the same time than missing genotypes irtipuoita

Phenotypic evaluation and adjusted means

The hybrids between the parental lines were evadlat 8 environments in Northern France
and Germany over two years for four traits: silgged (DMY in tons of dry matter per ha),
dry matter content at harvest (DMC in %), planghé(6 environments) (PH in cm) and female
flowering (DtSILK, days after January the first)hd field experiments were conducted as
augmented p-rep designs with 1088 two-row plotgyhuere laid out in 68 incomplete blocks
consisting of 16 plots each with five to six plated for repeated genotypes (hybrids between
the founder lines plus around 17 % of the hybrielsvieen the parental lines). Only 951 hybrids
for which both parental lines had correct genotygata were analyzed (950 for plant height
and dry matter yield). All the dent and flint pogatibns of parental lines contributed to the 951
hybrids that were considered in the analyses. Asafapossible we tried to balance the
contribution of each parental population to theriddbut some populations contributed more
than others (Figure 1). The number of analyzed idgbderived from each flint population
varied between 130 (for population F3) and 178 gfgoulation F1) and the number of analyzed
hybrids derived from each dent population variesivieen 126 (for population D6) and 168 (for
population D3). For each dent-flint combinationpapulations between 15 (dent population
D6 - flint population F3) and 34 hybrids (dent ptgtion D2 - flint population F1) were derived.
Outlying observations were deleted. One environrmoget eight was excluded for dry matter

yield as it was not correlated with the others. €ach combination environment — trait, field
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heterogeneities were corrected using a block mwaaolumn effect model as described in
Chapter 2. Using the Asreml-R package (Budeal. 2007; R Core Team 2013), individual
single-plot performances were corrected by the B&dPthe field effects and were used to

compute for each hybrid adjusted means (Is-meares)the eight environments.

Genomic Best Linear Unbiased Prediction (GBLUP) moels and estimation of variance
components
Genomic predictions were done using as phenotyyeesyibrid Is-means. We compared several
GBLUP models that differed by the way populationmisture was considered, and the inclusion
or not of SCA. All these models were implemented\greml-R (Butleret al. 2007; R Core
Team 2013).
The following GBLUP model considered the structimreopulations and the SCA:
y=1l.u+A. a+B.B+C. (aB)+ Zsca, - Gocag T Zocas - 9ocay T Zsca - Ssca t+ €
Wherey is the (V x 1) vector of the adjusted means of tMephenotyped hybrids for the
studied traitu is the intercept] is a (V x1) vector of 1a (respectivelyg) is a (6 x1) vector of
the fixed effects of the dent (respectively flipgpulations of origin of the dent (flint) parental
lines, A (respectivelyB) is the (V x6) design matrix of 0-1 that linked each hybodhe dent
(respectively flint) population of its dent (flinparental line, ¢f) is a (36 x1) vector of the
fixed interaction effects between the dent and fimpulations of origin of the parental linés,

is the corresponding design matrigeca, (respectivelngCAf) is the f; x 1) vector
(respectivelyf, x 1)) of the random effects corresponding tothedent GCA (respectively

ns flint) of the parental dent (respectively flinthés, withgsca, < N(0, Ggea, 0éca,) and

9oca; @ N (0, Goea, UGZCAf) whereGeea, (Goea,) is the g X ng) (respectively g, X ny))
genomic relationship matrix between the dent (flimes, andaéCAf (aéCAd) is the flint (dent)

GCA variance componendg., is the (V x 1) vector of the random effects corresponding to
the SCA withsgcs © N(0,Sgca02:4) WhereSg-, is a (V x N) matrix equals to the Hadamard
product between the dent and the flint genomidiceiahip matricesSsca = Ggear X Geeaa)
andoZ, is the variance component associated with SCAESfEca,, Zgcap Zsca are the
(N X ng), (N Xng), and (V X N) incidence matrices that relateto ggca,,, 9eca, andsgcy, e

is the (V x 1) vector of tke residual effects associated to the model with N (0, 7).

The genomic relationship coefficient of thg.,, matrix between the dent parental linesd

j based on the observed SNPs was computed accdodingthod 1 of Van Raden (2008) as
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Yici (i —p0)(xj1-p1)
sk om(1-p)

Geeaaij =

% , Wherep, is the frequency calculated over the dent lines

(respectively flint lines) of the allele coded 1moérkerl, x;; (respectivelyy;;) is the genotype

of the dent inbred liné (respectively) at the market coded in 0, 0.5, 1, andis the total
number of markers. Genomic relationship matrix leetthe flint parental lines was calculated
in a similar way. These kinship matrices are furttedled SNP kinship matrices.

Different variants of the GBLUP model presentedvawere considered: without the structure
in populations, without the SCA component, withduath. For each GBLUP modelye
estimated the different variance components, iemwtal estimate the flint GCA, the dent GCA
and the SCA variances captured by the markers hsasvéhe percentage of genetic variance
explained by SCA. For GBLUP models presenting #reesfixed effects, Restricted Maximum
Likelihood (REML) likelihood ratio tests were perfoed for evaluating the impact of
incorporation of SCA considering a risk level of 1¥he variance components captured by the
markers were compared with those estimated in @h&pbased on the analysis of the raw
phenotypic data, without considering genotypic Ripsmatrices (cf. Chapter 2, Table 1). For
each GBLUP model, we evaluated its adjustment ¢ol¢hmeans (R?) by the square of the

correlation between predictions and Is-means.

GBLUP model using kinship matrices based on foundealleles

A second estimation of the genomic relationshiprites was used based on the founder alleles
inherited by the parental lineso do so, we considered the probability that amigent (flint)
founder line allele was transmitted to each hylatighositions corresponding to the different
markers. These probabilities for the 9548 mappetkena were inferred using Plantimpute
(Hickey et al. 2015) using 10 iterations. Relationship matrixnwestn the dent (flint) parental
lines was calculated based on these probabilisethe expectation of the percentage of the
marker positions at which two lines received thes&under allele. The genomic relationship

coefficient of theF;c,, matrix between the dent parental lineand; based on the founder

- Y, Z?:l qaiif X qjif
alleles probabilities was computed &g 44, = -

wheregq;;¢ (respectively

qjir) is the probability that the inbred lingrespectively) received the founder allefeat the
marker positiorl, andL is the total number of markers. Flint founderlallelationship matrix
was computed in a similar way. Compared with tmskkips estimated based on SNPs, kinships
based on founder alleles considered as unrelateddsythat did not share any of the founder

lines. With this definition of alleles, hybrid vayprediction only relied on the performances of
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hybrids related by pedigree. These IBD coefficiemesexpected to capture differences between
founder line alleles not captured by SNP polymaspts (such as recent mutations, etc.).

Quality of prediction of the different GBLUP models. Comparison with prediction based

on QTL

For comparing quality of prediction of the diffet€@BLUP models, we performed a cross-
validation approach using one fifth of the datao{athil 90 hybrids) for validation and four fifth
for calibration. Sampling of the validation set veaisatified by the structure in populations and
was repeated 100 times. The calibration set caubist the others individuals. The same
samplings were used for all the GBLUP models tdifate their comparison. For each replicate
and each model we estimated the predictive alafithe model by the correlation between the
predictions and the Is-means of the validation Results were then averaged over the 100
replications. As the same samplings were usedlifaraels, we also evaluated the number of
replications for which a given model led to a befieedictive ability than another one.
Predictions based on GBLUP models were also cordpaith predictions based on the QTL
detection results obtained in the Chapter 2, onsdree experimental design. In this study,
different QTL detection models were used (usingedént types of allele coding and
considering equal or different effects in the twemgtic groups). For the comparison with the
GBLUP models, we considered for each trait the QiEtection model that gave the best
predictive ability. In each replication, we consil® a model that included the population
structure and the QTL positions detected in thep@ha as fixed effect. All fixed effects were
estimated using the calibration set, then usedrédigt the value of each individual of the
validation set. To make things comparable, the ssemgplings were used for the GBLUP and
the QTL models. As for the GBLUP models, we thempated the predictive ability of the
predictions by the correlation between predictiand Is-means of the validation set.

For the best GBLUP model considering SCA identitigdcross-validation, we evaluated the
guality of prediction of the flint and dent GCA cponents of the hybrid value. To do so, for
each replication, we estimated the correlation betwthe dent (flint) GCA predicted using the
GBLUP model and the observed phenotyp@sCA, ., P). As this correlation depends on the

percentage of the phenotypic variance explaineth&®yGCA component, we divided it by the

square root of the proportion of the corresponddGA variance in the performances

(yvar(GCAy)/var(P)) wherevar(GCA,) is the GCA variance estimated in the Chapter 2

(see Chapter 2, Table 1) andr(P) is the variance of the Is-means of the studiedl fFfais
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r(GCAq,,, P)
Jvar(GCAg)/var(P)

value pgca, = corresponds to the observed accuracy of the d&€h G

predictions. Similar estimation was done for theeaslied accuracy of flint GCA predictions,

Pecag-

Influence of the calibration set size on the hybrigredictions

For the best GBLUP model based on the result ofipue cross validations, we evaluated the
impact of the number of hybrids evaluated for eadhthe 36 dent-flint population
combinations, considering or not SCA in the model.do so, for constituting the calibration
set, we sampled two, three, five, six, 10 and 1Bridg in each of the 36 dent-flint hybrid
populations: corresponding respectively to samgliniptal of 72, 108, 180, 216, 360 and 432
hybrids. For each calibration set size, sampling repeated 100 times and the remaining part
of the population was used as validation set. Rmheeplicate, the predictive ability was
computed. Then, it was averaged over the 100 @jits.

Influence of the calibration set composition on thdaybrid predictions

Impact of including half-sib hybrids in calibraticet

We also investigated the differences in qualitpr@diction of the hybrids of the validation set,
depending if zero, one or both of their parentsenadso parents of hybrids included in the
calibration set (this corresponds to the TO, T1 Badhybrid categories defined in Schetcal.
2010 and Technowt al. 2012). We used a cross-validation approach usng fifth of the
data for calibration and one fifth for validatidn. the validation set, we included 30 hybrids
that had at least one half-sib hybrid on the detg and one on the flint side in the calibration
set (T2 hybrids), 30 hybrids that had at least lvadésib hybrid on the dent side and no half-
sib hybrid on the flint side in the calibration $&t. Dent hybrids) and 30 hybrids that had at
least one half-sib hybrid on the flint side andhadi-sib on the dent side in the calibration set
(T1 Flint hybrids). 100 TO hybrids (hybrids with half-sib in the calibration set) were used to
complete the validation set. Sampling was repeb@@dimes. For each replicate, the predictive
ability of the hybrids of each category was comgusad then averaged over the 100
replications.

Impact of including hybrids issued from the samméer lines in calibration set
Further, we evaluated the quality of predictiom @gfiven dent-flint population using individuals
from other populations. We did that in order to laage what would be the efficiency of

145



genomic selection for a new population of hybridsued from inbred lines that did not
contribute yet to the hybrids of the calibratioh $®r each dent-flint population to predict (in
red on Figure 1), five types of calibration setsevested (in blue, green, yellow, orange and
purple on Figure 1) depending on their level oatetiness with the population to predict. In
the first case, the populations of the calibratseh had their two dent and one of their flint
founders in common with the population to predicti{ dent-flint populations in the calibration
set, in blue on Figure 1). In this case, the tahgbrid population was predicted using hybrids
between (i) dent lines that were full-sibs (two tEunders in common) of their dent parents
and (ii) flint lines that were half-sibs (one fliftunder in common) of their flint parents. In the
second case, the populations of the calibratiorhadttheir two flint and one of their dent
founders in common with the population to predict( dent-flint populations in the calibration
set, in green on Figure 1). In the third case, th@y only one dent and one flint founders in
common with the population to predict (16 denttflpopulations in the calibration set, in
yellow on Figure 1). In the fourth case, populasiah the calibration set had only one of their
dent founders in common with the population to prtednd no flint founder (four dent-flint
populations in the calibration set, in orange ayuFe 1). In the last case, they had only one of
their flint founders in common and no dent founffeur dent-flint populations, in purple on
Figure 1). In all cases except the third one, the of the populations to be included in the
calibration set was too small to perform samplingthe third case, sampling stratified by the
structure in populations of a fourth of the hybrafshe calibration populations was done, in
order to have a number of individuals equivalerth®mones of the others cases. Sampling was
repeated 50 times and the predictive ability wasrayed over the 50 replications for each
population. For the five different cases, predietiabilities of the different dent-flint
populations were averaged. It can be noted thadid/@ot consider the case when calibration
is done using populations which only have two deanhder lines or two flint founder lines in
common with the target population or the case wdaitration is done based on populations
with no founder in common with the target populatih our design, considering these cases
would have been equivalent to using only one of3@daybrid populations to predict another
one which would not be feasible considering the iz each hybrid population (about 30
hybrids).
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F1 F2 F3 F5 F6
F373 F373 F02803 F02803 F03802 X
F02803 F03802 F03802 F7088 F7088
D1 27 hybrids
F1808
F04401
D2 1D - 2F 1D - 1F 1D - 1F 1D - 1F 1D - 1F 1D - OF
F1808 x| 34 hybrids | 27 hybrids | 22 hybrids 30 hybrids | 23 hybrids 32 hybrids
F98902
D3 1D - 2F 1D - 1F 1D - 1F 1D - 1F 1D - 1F 1D - OF
F04401 x| 28 hybrids | 29 hybrids | 23 hybrids 30 hybrids | 26 hybrids | 27 hybrids
F98902
D4 1D - 2F 1D - 1F 1D - 1F 1D - 1F 1D - 1F 1D - OF
F1808 x| 28 hybrids | 28 hybrids | 25 hybrids 30 hybrids | 27 hybrids | 27 hybrids
F7082
D5 1D - 2F 1D - 1F 1D - 1F 1D - 1F 1D - 1F 1D - OF
F04401 x| 33 hybrids | 29 hybrids | 23 hybrids 28 hybrids | 24 hybrids 30 hybrids
F7082
D6 24 hybrids 18 hybrids
F98902 X
F7082

Figure 1: Repartition of the 951 hybrids in functiof the population of origin of their dent anchflparent. Each
inbred line population is denoted D1 to D6 for tlemt ones and F1 to F6 for the flint ones and wieated the
names of the two founder lines of the populationisTigure illustrates the different calibrationseategories
considered for the prediction of a given dent-fligbrid population (here the D1 x F1 populatiomad) using the
other dent-flint populations as calibration seffunction of the number of founder lines in comnvath the target

population.

RESULTS

Estimation of variance components and R? of the GBUP models

For the different traits and models, a large paithe genetic variation was attributed to the

GCAs components (Table 1). Variance estimationfh®IGCAs did not varied much from one

model to the other. Including or not populatiorusture in the model had a low impact on

variance component estimation. Dent and flint G@#Aances were of the same magnitude for
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all traits except DtSILK for which flint GCA vari@e was equal to twice the dent GCA
variance. Taking into account SCA in the modelmbtl significantly improved the likelihoods
of the model except for DMY. The SCA variance comgrat was small compared to the GCAs
variances. It explained between 0.00 (DMC) and & 1DMY) of the total genetic variance
when population structure was not included in tloeleh and between 0.00 (DMC) and 11.24%
(DMY) when population structure was included in thedel. Based on the standard deviations,
considering or not population structure, the SCAarece was significantly different from 0
only for DMY.

The proportion of SCA in the hybrid variance captliby the markers was much less important
than the one obtained when using field plot datgpBmentary Table S1). It was more striking
for DMC for which there was no SCA when considergenotypic information whereas it
represented 11.7% of the genetic variance (21.5%eofvithin-population genetic variance)
when performing variance component analysis usnhgfded plot performances. For the other
traits, the percentage of SCA in the genetic vaeamas 2.1 (DMY) to 7.3 (DtSILK) times less
important when considering genotypic information.

Adjustment of the model to the data (R?) was highdll the trait x model combinations:
between 0.717 (DMY, without SCA, with structurepapulations) and 0.905 (PH with SCA,
without the structure in populations). For all tsaiconsidering structure in populations had a
negative effect on the R2. R2 was higher when damgig SCA than when not considering it

except for DMC for which no difference was obser¢€dble 1).

148



Table 1: Variance components estimated using four diffe@Bt UP models (all considering the SNP kinship
matrices) and adjustment of the models to the @fatmsured by R?) for the studied traits (Dry Ma@entent
DMC, Dry Matter Yield DMY, Silking date DtSILK, P& Height PH).af;CAd corresponds to the dent General

Combining Ability variance,a%CAf to the flint General Combining Ability variance?., to the Specific

Combining Ability variance, and? to the residual varianc€onfidence intervals of the variance componerds a
indicated. For each trait, heritability is spedifie

Pop + GCA + SCA Pop + GCA GCA + SCA GCA
DMC Heritability: 0.892
aéCAd 1.368 £ 0.480 1.368 £ 0.480 1.413 £0.489 1.413%89
aéCAf 1.788 £ 0.543 1.788 £ 0.543 1.787 £ 0.542 1.78754D
g2,  0.000 +0.000 - 0.000 + 0.000 -
of 1.084 £ 0.154 1.084 £ 0.157 1.077 £ 0.156 1.077166
%SCA 0.00 - 0.00 -
R2 0.833 0.833 0.848 0.848
DMY Heritability: 0.814
agmd 0.618 + 0.236 0.635 +0.244 0.622 + 0.236 0.686243
aéCAf 0.481 +0.188 0.442 +0.178 0.477 +0.186 0.4421%D
%, 0.139%0.125 - 0.132+0.121 -
o2 0.511+0.124 0.643 + 0.084 0.517 £ 0.122 0.6430840
%SCA 11.24 - 8.17 -
R2 0.829 0.717 0.834 0.726
DtSILK  Heritability: 0.890
aéCAd 1.180+£0.414 1.174 £ 0.413 1.208 £ 0.420 1.207420
aéCAf 2.029 £ 0.570 2.007 £ 0.568 2.021 + 0.567 1.99866
s, 0.089+0.133 - 0.088+0.130 -
o? 0.735+0.167 0.823+0.131 0.734 + 0.166 0.821180
%SCA 2.70 - 2.23 -
R2 0.862 0.828 0.882 0.848
PH Heritability: 0.877
agmd 70.396 + 21.813 69.395 + 22.747 70.635 £ 22.980.013 + 22.878
ch,cxf 68.642 + 22.105 66.705 £ 21.814 68.749 £ 22.160.157 + 21.893
%, 6.868+8.904 - 6.576 £8.496 -
of 32.923 +9.306 39.434 £6.169 33.196 +9.079 3988170
%SCA 471 - 3.81 -
R2 0.884 0.841 0.905 0.862

Predictive abilities of the GBLUP models. Compariso with predictions based on QTL
Predictive abilities of the validation set werelhigr all the models and traits and only slightly
varied according to the trait. When considering biest model for each trait, they varied
between 0.652 for DMY (SNP kinship — no populastmicture — SCA) and 0.771 for PH (SNP
Kinship — no population structure — SCA) (Table 2).

For all traits, with the SNP kinship matrices, ddesing population structure had a negative
effect on the prediction accuracy (Table 2). With@CA in the model, not considering
structure in populations gave better predictivditgds for 74% (DtSILK) to 98% (PH) of the
replications. When considering SCA in the modeinieen 60% (DMY and DtSILK) and 63%
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(DMC and PH) of the replications gave better priaggcabilities without population structure
than with population structure. Without SCA in thedel, not considering population structure
was better for 54% (DMY) to 67% (DtSILK) of the tmations. With SCA in the model, not
considering population structure was better for 50MY) to 68% (DtSILK) of the
replications.

Adding SCA in the GBLUP model with the SNP kinstHj®D matrices had a really low effect,
either positive or negative, on the predictive iab{Table 2). Only, between 44% (PH) and
52% (DMY, DtSILK) of the replications gave betteegdictive abilities when considering SCA
than when not considering it in the GBLUP modelheiit population structure included.
Similar results were observed when consideringabader allele kinship matrices.

For all trait x model combinations, considering fbhander allele kinship matrices decreased
predictive abilities compared to using the SNP kipsnatrices (Table 2). As for the GBLUP
model using SNP kinship, we observed that incotpagahe population structure in the model
had a negative effect and that adding SCA had #l sm@zact on the predictive abilities.

For all traits, best predictive abilities obtairfeaim GBLUP were higher than the ones obtained
based on detected QTLs, which varied between 0&@2BMY and 0.742 for PH (Table 2).
For genomic predictions and QTL based predicti@dC and PH showed close predictive
abilities and were the best predicted traits. DM&swhe worst predicted one. The best GBLUP
model, gave better predictive abilities than thd_pased prediction model for around 75% of
the replications (between 71% for DtSILK and 76%Rl).

Table 2: Predictive ability for the different GBLUP modaising a cross validation procedure with four fifith
the data for calibration and one fifth for the daliion for the studied traits (Dry Matter Contem1O, Dry Matter
Yield DMY, Silking date DtSILK, Plant Height PH).\v&erage values over 100 replications and standasiatitens
(sd) are indicated. Predictive abilities of preidics based on QTL (Pop+ QTL) obtained in Chaptarealso

provided.
Model DMC DMY DtSILK PH
GBLUP SNP kinship
Pop + GCA + SCA 0.757 sd 0.024 0.636 sd 0.036 0s6i87.031 0.755 sd 0.032
Pop + GCA 0.757 sd 0.025 0.633 sd 0.036 0.689G210. 0.754 sd 0.032
GCA + SCA 0.768 sd 0.024 0.652 sd 0.042 0.6973850. 0.771 sd 0.026
GCA 0.768 sd 0.024 0.644 sd 0.035 0.700 sd 0.029 7690sd 0.031
GBLUP Founder allele
kinship
Pop + GCA + SCA 0.755 sd 0.029 0.623 sd 0.037 Os6i7/.034 0.751 sd 0.028
Pop + GCA 0.756 sd 0.029 0.623 sd 0.037 0.676G2340. 0.751 sd 0.028
GCA + SCA 0.763 sd 0.025 0.631 sd 0.037 0.688@810. 0.762 sd 0.030
GCA 0.763 sd 0.025 0.628 sd 0.036 0.688 sd 0.032 7620sd 0.030
Pop + QTL

0.743sd 0.027  0.626 sd 0.039 0.689sd 0.034  (d4r034
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Quiality of prediction of GCA

Quiality of prediction of GCA

Based on the result of previous section, we witihfer only consider results obtained with the
GBLUP model based on the SNP kinship and withociugting the population structure. For
the GBLUP model considering SCA, averaged cor@tatibetween observed Is-means and
predicted dent GCA (respectively flint GCA) of thngbrids of the validation set were calculated
over the 100 replications. For the dent GCA, thayed between 0.386 (DMC) and 0.616 (PH).
For the flint GCA, they varied between 0.328 (DMaf)d 0.671 (DMC) (Table 3).

These correlations should be put in relation witle percentage of dent GCA variance
(respectively flint GCA variance) in the total plog¢ypic variance, which varied depending on
the trait. The dent GCA variance represented bet#ee15% (DMC) and 59.97% (DMY) of
the total genetic variance. (Table 3). The flint &S€ariance represented between 22.63%
(DMY) and 63.14% (DMC) of the total genetic variandor DMY, DtSILK and PH, the
proportion of dent GCA variance in the genetic aace was more important than the
proportion of flint GCA variance whereas it was tegerse for DMC.

Thus, based on predictive abilities we computedoiesl accuracies of the GCA predictions.
The observed accuracies were high and varied bat@&89 (DtSILK) and 0.827 (DMC) for
the dent GCA and between 0.830 (DMY) and 0.938 ([IXfor the flint GCA (Table 3). For

all traits, flint GCAs were better predicted theantd GCAs.

Table 3: Quality of prediction of dent and flint GCAs fdret best GBLUP model considering SCA for the four
studied traits (Dry Matter Content DMC, Dry Mat¥eld DMY, Silking date DtSILK, Plant Height PH) o the
correlations, the standard deviation is indicated.

DMC DMY DtSILK PH
Average correlation between predicted dent GCA ab®86 0.539 0.490 0.616

calculated adjusted means sd 0.060 sd 0.049 sd 0.046 sd 0.039
Average correlation between predicted flint GCA arfd675 0.350 0.476 0.452
calculated adjusted means sd 0.030 sd 0.056 sd 0.047 sd 0.046
%GCA dent variance in the total genetic variance 25.15 59.97 52.82 59.89
%GCA flint variance in the total genetic variance 63.14 22.63 30.93 27.67
Observed accuracy of the dent GCA 0.827 0.786 0.73 0.819
Observed accuracy of the flint GCA 0.913 0.830 36.9 0.884

Effect of the size of the calibration set

Predictive ability increased with the size of tladilration set, especially for the small sizes of
calibration set (Figure 2). Similar trends were eskied for the different traits. Prediction

accuracies reached plateau for calibration selsdimg more than 12 individuals per dent-flint

populations (432 hybrids). No difference was obsdrbetween the model with SCA and
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without SCA except for the small sizes of calibvatset (72 and 108 hybrids) where the model
without SCA performed better than the one with SCA.
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Figure 2: Predictive ability as a function of the calibratiset size for the GBLUP models without population
structure and with the SNP kinship matrices far ¢skudied traits (Dry Matter Content DMC, Dry Mat¥eld
DMY, Silking date DtSILK, Plant Height PH). The grecurve corresponds to the model taking into aucthe

SCA, the yellow curve corresponds to the model ovittSCA.

Calibration set composition

Impact of including half-sibs hybrids in calibraticet

For all traits, no special trend was observed Hier predictive ability of the hybrids whether
zero parent (T0), their dent parent (T1 Dent),rtfigit parent (T1 Flint) or both of their parents
(T2) were parents of hybrids of the calibration(3eible 4). Considering SCA in our model did

not change this result. Depending on the traitpbée predictive abilities were obtained for the
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T2 (PH), T1D (DMC, DtSILK) or T1C (DMY) calibratian TO hybrids were never the best

predicted ones.

Table 4: Predictive ability in function of the presencehaiif-sibs in the calibration set for the studiealts (Dry
Matter Content DMC, Dry Matter Yield DMY, Silkingade DtSILK, Plant Height PH), for the GBLUP models

considering the SNP kinship matrices and no pojoulatructure. Standard deviations are indicated.

DMC DMY DtSILK PH

GCA model

TO hybrids 0.759 sd 0.034 0.613 sd 0.081704 sd 0.0430.760 sd 0.042
T1 Flint hybrids 0.743 sd 0.072 0.720 sd 0.08408 sd 0.0900.730 sd 0.084
T1 Dent hybrids 0.821 sd 0.049 0.688 sd 0.(BZ224 sd 0.0790.784 sd 0.060

T2 hybrids 0.765 sd 0.066 0.692 sd 0.00%60 sd 0.1090.822 sd 0.052
GCA + SCA model
TO hybrids 0.758 sd 0.034 0.615 sd 0.08904 sd 0.0420.760 sd 0.042

T1 Flint hybrids 0.743 sd 0.072 0.727 sd 0.08513 sd 0.0910.730 sd 0.083
T1 Dent hybrids 0.821 sd 0.040.685 sd 0.0800.726 sd 0.0790.784 sd 0.060
T2 hybrids 0.764 sd 0.067 0.700 sd 0.08®57 sd 0.1110.821 sd 0.052

Impact of including hybrids issued from the sammér lines in calibration set

Predictive abilities increased with the level otljggee relatedness between the validation set
and the calibration set (Table 5). They varied leetw0.123 (DMC — case4 1D) and 0.539
(DMC - case 1 2D-1F) when not including SCA in thedel and between 0.0651 (DMC —
case 4 1D) and 0.542 (DMC — case 1 2D-1F) whendiey SCA. Including SCA in the model
only slightly changed the predictive abilities. Wiand without SCA, calibration with
populations which shared only one founder line viith target population always gave the
worst predictive abilities. Using in the calibratiset populations which shared three founder
lines with the target population was better thaemvbsing populations which shared only two
founder lines, except for DMY (predictive abilityitty the 1D-2F case was lower than in the
1D-1F case). Standard deviations of the estimativare important, illustrating the differences

in the quality of prediction that we observed dapeg on the target population considered.
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Table 5: Average of the predictive abilities of a targefgopulation in function of the composition of the
calibration set for the studied traits (Dry Mat@ontent DMC, Dry Matter Yield DMY, Silking date DK,
Plant Height PH), for the GBLUP models considetimg SNP kinship matrices and no population strectur

DMC DMY DtSILK PH

GCA model

Case 1: 2 dent—1flint 0.539sd 0.132 0.423 sd 0.160.436 sd 0.184 0.426 sd 0.197
Case 2: 1 dent— 2 flint 0.453 sd 0.179  0.341 sd 0.210.464 sd 0.139  0.430 sd 0.196
Case 3: 1 dent—1flint 0.438sd 0.186 0.372 sd 0.210.407 sd 0.211  0.417 sd 0.202
Case 4: 1 dent 0.123sd 0.201 0.201 sd 0.219.184 sd 0.211 0.261 sd 0.176
Case 5: 1 flint 0.309sd 0.199 0.226 sd 0.168.295 sd 0.205 0.240 sd 0.240
GCA + SCA model

Case 1: 2 dent—1flint 0.542sd 0.130 0.426 sd 0.169.437 sd 0.184  0.427 sd 0.193
Case 2: 1 dent — 2 flint 0.456 sd 0.178 0.338 sd 0.208.458 sd 0.138 0.422 sd 0.195
Case3: 1dent—1flint 0.436 sd 0.194 0.376 sd 0.218.407 sd 0.217 0.418 sd 0.205

Case 4: 1 dent 0.0651 sd 0.2150.143 sd 0.226 0.0882 sd 0.266 0.256 sd 0.175
Case 5: 1flint 0.306 sd 0.199 0.241 sd 0.168.274 sd 0.229 0.238 sd 0.253
DISCUSSION

GCA/SCA Variance components

The lack of gain in efficiency of our prediction gelds including SCA effects is consistent with
the small proportion of the SCA variance componerdur analyses. To our knowledge, no
study estimated SCA/GCA components on Europeagesiteaize using marker-based genomic
relationships whereas several estimations areablaifor grain maize. Even if silage and grain
yield are correlated, they correspond to diffeteaits measured on plants harvested at different
biological stages. Keeping this is mind, we found DMY a percentage of SCA in the total
genetic variance of 8.17% close to the one foungram yield by Schragt al. (2010) and
Technowet al. (2014) but lower than the one found by Massraaal. (2013a). The same
authors estimated the proportion of SCA in the gemariance between 6.2 and 10% for grain
moisture content whereas it was null in our desagrDMC. Note that these studies involved
inbred lines that had been selected before on ¢henbining ability which may have increased
the relative importance of SCA in the hybrids.

Proportion of SCA in the genetic variance was miogrer when estimated on Is-means using
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genotypic information than when estimated diredityfield plot data (Supplementary Table
S1). One explanation could be that the number okena was not sufficient for capturing well
SCA effects through kinship matrices. However, @esign is structured in biparental families,
with a large within-family LD extent and one caasenably assume that the number of markers
wasa priori high enough to estimate kinship between linekatithin family level. Another
explanation could therefore be that an importamt pa SCA in our design can be due to

epistasis and was not reflected through our kinstafrices.

Comparison of the GBLUP models

We compared several GBLUP models. Considering tstreen populations as a fixed effect in
the GBLUP models decreased the predictive abilitigdss suggests that the structure in
population is well captured by the markers and thate is no need to add it in the model. It
would be interesting to see if it would be the s&onenore structured traits, such as digestibility
traits where the variation in each heterotic graumainly due to the use of one founder line
carrying favorable alleles. Considering foundeelallkinship matrices and not SNP kinship
matrices also decreased the predictive abiliti@ainBer allele matrices set the relatedness
between two individuals from populations with narfider in common to zero. This shows that
it is beneficial to take into account co-anceseyween founder lines. It may also indicate that
causal mutations are not recent, and so are waliliced by SNP.

Adding SCA in the GBLUP model did not increase fredictive abilities and could even
decrease it when using a small training populagiaa. This observation is consistent with the
one of Zhacet al. (2013) on rice, who observed higher predictionuagcies when ignoring
dominance effects than when including them. Thégted it among other things to the small
size of their dataset. Using simulations, BayesRlet® were shown to slightly outperform
GBLUP models when incorporating dominance (Techebwal. 2012) but this result was not
consistent with empirical studies (Technetval. 2014). Reproductive kernel Hilbert space
regression may be an option for including non-agelieffects such as dominance or epistasis
(Gianolaet al.2006; Gianola and van Kaam 2008). Wellmann anchBettz (2012) proposed

a Bayesian linear regression model called BayesBtébding for dominance) which allowed

on simulated data an improvement of the prediciccuracies compared to GBLUP.

Comparison with QTL - Combining the two approaches
Genomic predictions gave better results than QTéelagoredictions for all traits, but to a

smaller extent for DtSILK. The small differencesvaeen the two models is a bit surprising. It
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contrasts with the clear advantage of genomic sefe®ver QTL-based marker-assisted
selection schemes found by Bernardo and Yu (2007) sonulations and validated
experimentally by Massmaet al. (2013b) It suggests that including QTLs informatimo
GBLUP models may improve the predictions accuragycbmbining the two sources of
information, giving more weight in prediction toethmost important QTLs than when
considering only relatedness matrices. Brgnaum . (2015), on dairy cows, included in their
GBLUP model a second component with its own vaeatarresponding to markers identified
as linked to QTL from association mapping on seqaetiata. It led to an increase in the
predictive abilities, especially for productionitsapresenting major QTLs. Zha al. (2014)

on hybrid wheat proposed a weighted best linearaseld prediction (W-BLUP) model for
treating the effects of known functional markerscoysidering their additive and dominance
effects as fixed. This model allowed an improvenwérihe prediction accuracies in comparison
to marker-based predictions and to genomic prextistusing RR-BLUP and Bayes@odels.
Brard and Ricard (2015), on French trotters, alsseosed an increase in prediction accuracies
when including in the GBLUP model as fixed effeehgtype at a SNP strongly associated with
the studied traits.

In our case, including the markers associated tb ®ith marker effects identified previously
in Chapter 2, especially the ones presenting tloagest effects, would probably increase the
predictive abilities. We would have much less meske add in our model than Brgndetral.
(2015) and would add them (or at least the mosiifsignt ones) as fixed effects as in Zleto
al. (2014) and Brard and Ricard (2015). Adding the @ffiects estimated with the hypothesis
that all the founder lines carry a different alleleuld be probably be the best option as it can

account for multiallelic QTLs (cf. Chapter 2).

Optimization of the calibration set for hybrid prediction

Increasing the size of the calibration set allowethcrease the prediction ability but a plateau
was reached for about 10-12 hybrids per dent-fiyidrid populations that is to say for 360 to
432 hybrids in total. Stagnation of the predictaalities when reaching a certain size of
calibration set was already observed on hybridefaxdvanced breeding selection stages
predicted by GBLUP by Technowt al. (2014) or predicted by support vector machine
regression and GBLUP by Maenheeit al. (2010). Same observation was done in studies
willing to predict maize test-cross values in carted biparental populations as in
Riedelsheimeet al.(2013) and Lehermeiet al.(2014). It is interesting from a practical point

of view to note that based on this result it sepossible to consider only 10 hybrids per dent-
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flint population without decreasing predictive ldlas.

Few differences in terms of prediction accuraciesambserved between TO, T1 Dent, T1 Flint
and T2 hybrids contrary to observations made byaéiral. (2010), Massmaet al. (2013a)
and Technowvet al. (2012, 2014) on simulations and real datasets. Mg due to differences
in design characteristics between studies. In asecT1 hybrids in the validation set have
generally a single half-sib hybrid in the trainisgt whereas this number can be much more
important in other studieg g.Figure S1 in Technowt al.2014). Conversely, for a TO hybrid,
there will be in the calibration set many hybridsose parents will be half-sibs or full-sibs of
its parents. We showed the importance of hybrisisad from half-sib and full-sibs lines when
predicting new populations, presenting one, twdhoee founder lines in common with the
hybrids of the calibration set. The worst predietabilities were obtained when calibration set
included hybrids that only had one founder lineammon with the population in the validation
set. Increasing the number of founders in commawdsn calibration and validation set had a
strong positive effect of the predictive abilitidsis is consistent with results obtained on test-

cross hybrids issued from a multi-parental conriedesign by Riedelsheimet al. 2013.

Reconsidering hybrid breeding selection schemes?

Usually, at early selection stages, parental laresselected based on their test-cross value with
one or a few testers of the complementary hetegvbap. Until recently this screening was
made in parallel to self-fecundation for productiohhomozygous lines. Double haploid
technology makes it possible to obtain directlygéasegregating populations of inbred lines.
This facilitates the production and evaluationafyk sets of inter-group single-cross hybrids
between new unselected inbred lines. We obtaineslith material prediction accuracies close
or superior to the ones obtained on test-crosgdesindeed, Lehermeiet al.(2014) on silage
test-cross hybrids obtained on average predichigiaes equal to 0.41 for their dent biparental
populations and 0.48 for their flint ones for DMt6, be compared to 0.65 in our study. For
DMC, they were equal to 0.58 for the dent and @d52he flint, to be compared to 0.77 in our
study. This most likely relates to a higher geneéidance in our design due to the contribution
of the two genetic groups to the total variancetdad of a single group when a tester is used.
A next question is therefore to which extent thaliy of GCA prediction with our approach
can be compared with that of test-cross value. ddmmposition we used highlights high
accuracies of GCA for both flints and dents (0.88 8.79 for DMY, respectively).

Further studies are needed to compare predictmnsacies in our design with those that could

be obtained in a tester-based design. If the adganf our design, or at least its equivalence,

157



in terms of prediction accuracies compared to ¢ests design, is confirmed, it opens new
perspectives for maize breeding. In test-crossuen@in, the dent lines should be evaluated in
cross with at least one tester and similarly ferftimt lines. This necessitates at least two times
more phenotyping efforts than in our approach, Wwhtwerefore could lead to a substantial
economy in phenotyping. However, hand-made pollmais needed for creating our hybrids
contrary to test-cross hybrids, which increaseptbduction costs of a given quantity of hybrid
seed. Further studies are needed to evaluate iflitheution of field plots for the hybrid
phenotyping compensates this increased hybrid ptmdu cost. However, as a first
approximation this increase will be about 100%,stdering that a single hybrid is produced
instead of two. Moreover, the GCA estimates usasiers are biased by the SCA with the
tester, whose choice is really important. Selectibrihe lines at early selection stages is
conditioned by their specific combining abilitiesthvthe tester. This restricts the field of
possible combinations at the second stage of hybsting. Our design makes it possible to

circumvent these limits.

Conclusion

Our design, based on hybrids between two hetegrcips, allowed us to obtain good
predictive abilities for the hybrid value and sfieaily for the dent and flint GCA. It highlights
that genomic selection has the potential to untatgehe GCAs of the parents of hybrids with
very economical designs in which most inbreds atg epresented in a single hybrid. Further
design optimization is needed as well as compa ativdies with tester designs but we already
obtained encouraging results for revisiting maigbrid breeding selection scheme. Hybrids
between unselected biparental populations of twaprecal heterotic groups could be
evaluated in the first steps of the selection se&hamd used for estimating values of all the
potential hybrids that could be derived from thaikble inbred lines, even if not involved in
phenotyped hybrids. It would allow to explore mubre combinations and diversity and will
not restrain the field of possible parental linembinations. So, the use of genomic selection
expands the possibility of classical recurrentpeaal selections schemes, which have been

shown to be the most efficient among phenotype¢baskection schemes (Coors, 1999).
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Maize is a crop of major importance in the worléggnting strong heterosis for traits related
to biomass. Silage maize represents around 44%eofatal surface grown with maize in
France. To benefit from heterosig, liybrids are cultivated in majority, although, tonghish
seed production costs, one observed a signifieantrr to three way hybrids involving a female
hybrid between related lines (Lorgeou, Pers. Coliaize hybrid selection scheme is mostly
based on the reciprocal recurrent selection schieitredly proposed by Comstoadt al. (1949)
that was adapted in the breeding companies. Ifitstestep, parental lines of each heterotic
group are evaluated and selected for their valuenwdnossed to one or several testers of the
complementary heterotic group. It is only in thstlatages that a larger set of combinations
between a few selected lines of each heteroticgane evaluated. Hybrid genetic value can be
decomposed in General Combining Abilities (GCA) tbe parental lines and Specific
Combining Ability (SCA) (Sprague and Tatum 1942hddrstanding the genetic architecture
underlying hybrid value for traits of interest foreeding is of main importance from both
theoretical and applied points of view. We studved multiparental designs of hybrids between
the dent and flint heterotic groups, mainly usedditage breeding in Northern Europe. The
first design (Chapter 1) consisted in two Nesteslo&gtion Mapping (NAM) designs. Parental
lines of one NAM design were evaluated for thest4eross value with the central line of the
complementary design used as a tester. In the detesign or multiparental reciprocal design
(Chapters 2 and 3), we evaluated hybrids issuerh feo factorial design between two
multiparental connected designs. QTL detection peaformed in both cases. The potential of
genomic selection was evaluated in the NAM design_ehermeieret al. (2014) and we
performed genomic predictions in the second one. Sudy shed new lights on the genetic
architecture below hybrid value for silage maizd apened prospects for the use of genomic

information in new hybrid selection schemes.

QTL detection in multiparental designs

Multiallelic QTLs heterotic group dependent

Numerous QTLs were detected in the two multipatestiadied designs allowing a better
understanding of the genetics of hybrid value laigg maize.

QTL detection on the test-cross hybrids of the NAMsigns could be performed with
MCQTL_LD (Jourjon ¢al. 2005) whereas for studying the hybrids of thedaat design, we
had to use more complex mixed QTL detection modats implement them in ASRemI-R
(Butleret al. 2007). Different ways of coding genotypes weredusnd LA and LDLA models

were applied. Some of the QTL detection models afledied us to detect allelic series in both
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designs, which showed the importance of not diyemthsidering the observed genotype but a
haplotypic or a founder information, especially émmplex traits such as yield. Compared to
previous studies (Bardat al. 2013), LDLA models using ancestral haplotypic miation
(modelled using “clusthaplo”, Lerowet al.2014) yielded closer results to those of the pgaten
allele model, probably because of the limited eglakss between founder lines.

Both the NAMs and the factorial design highlightditferent QTLs for dent and flint lines,
consistent with the long term divergence betweenugs (Tenaillon and Charcosset 2011).
Interestingly no QTL showed a major effect for DNaYid DMC. A notable exception was a
major QTL for flowering time, with pleiotropic effés on the other traits, which appeared on
chromosome 10 in both studies in the flint groud arost likely corresponds to tzanCCT
gene previously reported by Ducroegal. (2009). It would be interesting to compare more
carefully in terms of number and position, the QTetected in our designs with the ones
detected on silage on dent and flint diversity pamsing association mapping methods by
Rincentet al. (2014) and other results published on silage yi€lmmparison of the detection
power in the two designs is not straightforwardhasdiversity addressed in the factorial design
and the number of hybrids evaluated were much Idhen in the NAMs. It is nevertheless
interesting to note the number of QTL where onighdly lower in the factorial.

Finally, it can be noted that only very few QTL watetected for dominance effects with the
factorial design. The contrast with the numerousiidance QTL reported by Lariep al.
(2012) is most likely due to the presence of stromgsanguinity in tested hybrids in her study

vs.absence of consanguinity in our factorial design.

Prospects for QTL detection

In the reciprocal multiparental design, one foundet of four in each heterotic group was
chosen with the objective to bring favorable abdier digestibility. Hybrids were phenotyped
for various digestibility traits such as DINAG (ésfibility of non-starch and insoluble
carbohydrate under the hypothesis that starch ahdble sugars are completely digestible,
Argillier and Barriere 1996), DINAGZ (extension tiie DINAG to nitrogen compounds,
Barriere and Emile 2000), Milk Forage Unit (MFUigéstibility of the Neutral Detergent Fiber
(NDF), of the Acid Detergent Fiber (ADF) and of tAeid Detergent Lignin (ADL). Thus,
phenotypic data for traits directly related to gdamaize performances (DINAG, DINAGZ,
MFU, NDF) as well as data concerning cell wall casigon (content in lignin, hemicellulose
and cellulose derived from NDF, ADF and ADL) araiable. Digestibility traits are expected

to be mostly additive which was confirmed by thretfivariance component estimation results.
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Except for MFU (7.5%) and NDF (10.9%) the perceata§ SCA in the genetic variance was
close to zero for all other traits. QTL detectiondll these trait is currently in progress. It kcbu
be interesting to study in more details thesedrard potentially fine-map some interesting
QTLs. Fine-mapping of some QTLs detected in the NAdsigns could also be considered
even though the major detected QTLs seem to camnesip already known and fine-mapped
QTLs.

In this thesis, QTL detection was carried out ofustéd means obtained over various
environments. It would be interesting to performLQdetection on data from each single
environment or preferably to perform multi-enviroemh QTL mapping. In his association
study, Rincenet al.(2014) detected very few QTLs for silage yield wizensidering Is-means
over environments but much more associations whesidering separately each field trial.
This suggests that Genotype x Environment (G xnEractions are important to consider for
silage traits. One option for performing multi-eronment QTL detection would be to add
environmental variables in our QTL detection mod@ser et al. 2007). In this approach,
genetic variances for each environment and geoetrelations between environments are first
modelled. Then QTL detection is performed decommptie QTL effect in a main QTL effect
and a QTL x Environment interaction effect. In fimal step, both genotypic and environmental
variables are included in order to model QTL resgsnon specific environmental variables.
This approach can be extended to multi-trait mefwronment QTL detection models
(Malosetti et al. 2008), with or without including environmental \ables. It would be
interesting to evaluate if this approach could béemded to our QTL detection model
decomposing the genetic effect in dent GCA, flil€A; and SCA. Such study would be

interesting to evaluate the stability of SCA efgeirt different environments.

Genomic prediction in multiparental reciprocal desgns

The idea of using genomic selection at the levéaoforial designs traces to Bernardo (1994).
To our knowledge it has been applied efficientlpbases of hybrid breeding programs where
lines have passed a first selection for hybrid @@nd are used in mating designs with a number
of other lines. We showed in our study that genoselection on hybrids obtained through a
highly incomplete factorial mating design betwee tmultiparental unselected populations
gave good predictive abilities even though the migjof the inbred lines were parents of only
one hybrid. Prediction accuracies obtained in eaiprocal multiparental design on inter-group
single-cross hybrids between unselected lines agperior to the ones obtained on test-cross

hybrids for silage maize by Lehermeedral. (2014). Our higher prediction accuracies may be
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due to a higher genetic variance due to the carttabs of the two genetics groups to the total
variance and to the fact that both inter and iptpulation variations are considered. To further
investigate prediction accuracy, we estimated aes of GCA and obtained high values for
both flints and dents (0.83 and 0.79 for DMY, regpely). This shows that it was possible to
uncorrelate the two GCAs and opens interestinggaats for revisiting inbred line selection in
early phases of hybrid selection programs. Furthadies are however needed for comparing
the quality of GCA prediction of our approach willose based on test-cross hybrids. To do so,
it will be necessary to evaluate jointly (i) singlmsses between inbred lines of each
multiparental design like in our design and (iijtterosses of the same lines using as testers
with few inbred lines of the other heterotic group.

Whatever the approach used to evaluate GCA, gensel&ction offers very promising
application when coupled with double-haploid (DHdguction technology. Development of
double haploid technology now makes it possibleotwiain directly large segregating
populations of maize inbred lines without requirsayeral generations of self-fertilization. All
maize populations do not respond in the same wdguble haploid technology and for some,
more particularly in the flint heterotic group, sess rate may be low. Another issue is that DH
lines do not always produce enough seeds to proslngée-cross hybrids and another selfing
generation is necessary. Genomic prediction maatelbe trained using single-crosses for the
DH lines with enough seeds and used to predict G&&AXH lines which did not have enough
seeds available at time t. Best inbred lines frimpapulations will thus be chosen for entering
in the next step of the breeding process. We &lswed that on such material, we could predict
with relative high accuracy one population whiclargld founders with populations of the
training set. This opens prospects for at leaseagoeening of inbred lines in new populations,
as providing the relatedness of these with previaysulations is high enough to guarantee
prediction efficiency.

If our study highlights a good ability to predicC@&, it also shows very strong limits with
respect to SCA. These may first relate to intrirggoetics features. The estimation of SCA
variance components that we obtained using the GBlrhbdel were much lower than
estimates given directly by the analysis of fidlok plata which suggests that epistasis might be
a major component of SCA. One however may not pdecthat out inability to predict SCA
can be due in part to the experimental designwieatised. When designing the experiment,
choice was made to evaluate a high number of parénées in a limited number of hybrid
combinations (generally one), which may have lichitee possibility to calibrate the SCA

component of the model.
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Applied prospects of the reciprocal multiparental cesign experiment

Short-term applied applications are started omitéel following QTL detection and genomic
selection results, based on the genetic materigh@dy created.

Some hybrids phenotyped in the reciprocal multipiiedesign showed good potential to be
registered in the French catalogue of varietiegyMiere included in the 2014 and 2015 trial
networks for further evaluation and comparisonnown varieties. A few hybrids confirmed
their potential and will be incorporated in the lexaion official trials network in view of a
potential registration. It has to be noted thateriabred lines were created for the project than
the ones phenotyped in hybrid combinations. Gengrediction of the GCA of these lines
was performed for various traits as dry matterdylalit also MFU and an index trait used as a
criteria for the registration to the French Catale@f silage varieties. It allowed us to choose
the best hybrid combinations considering the wiseteof available inbred lines. Hybrid seeds
will be produced in winter 2015 and the hybridd Wwé evaluated in field trials in summer 2016.
In parallel to these promising hybrids, other hglbrwill be created and evaluated, chosen at
random between all the possible combinations afeidlines. They will allow us to study the
quality of the genomic and QTL-based predictions.

Improving the parental inbred lines through MarRassisted Selection using the QTLs detected
Is also an interesting option. Choice of the credsstween the already existing parental lines
for creating new material could be optimized inertb combine at the detected QTLs the
maximum of favorable alleles. To do so, softwarehsas OptiMAS (Valentet al.2013) could

be used. Combining information on QTLs detecteddfgrmatter yield and dry matter content
with information on QTLs for digestibility traits ilv be particularly interesting. Indeed,
favorable alleles for digestibility traits are migdtring by one dent and one flint founder lines
which do not necessarily present the most favoralbdes for dry matter yield. It would be
interesting in this context to also consider theayeic predictions of the lines selected based
on their alleles at QTL, to take advantage of the approaches and capture genetic variation
not associated with detected QTL.

Prospects for enhancing genomic prediction efficiery

An alternative to our factorial design, at constaniber of field single-plots, would have been
to evaluate a more limited number of parental limetsin more hybrid combinations. Increasing
the number of contribution of parental lines malptie better estimate the SCA of these lines
and by extension of the lines to predict. This mayever be at the cost of the number of lines

evaluated for their GCA, so that a global optim@matconsidering the different steps of the
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breeding program is needed. Besides from the nuwibieybrids evaluated per parental line,
another important aspect is the choice, amongadstiple hybrids of the one to phenotype.
Criteria like CDmean (Rincert al. 2012) which allowed optimization of the calibratisets

in a diversity panel could be used for optimizihg tthoice of individuals in other types of
designs. First studies are currently carried ouherNAM designs for optimizing in each group
the calibration set in order to improve predictionade by Lehermeieat al. (2014) (Rincent,
Moreau and Charcosset, unpublished). The CDmearoaqp was initially developed for
genomic selection using additive models but it $thdwe possible to extend it to the two GCA
components (dent and flint in our design) and t8& $omponent of the hybrid value.

One option to explore would be to perform predittrnodels combining genomic and QTL
information, for instance adding some of the det@QTLs as fixed effects in a GBLUP model.
Such models proved their efficiency for improvingegiction accuracies (Zhagt al. 2014;
Brard and Ricard 2015). SCA was not well taken &toount in our GBLUP model. Other
models should be explored which may probably betke into account SCA: reproductive
kernel Hilbert (Gianolaet al. 2006; Gianola and van Kaam 2008), BayesD (Wellmameh
Bennewitz 2012) among others.

Contribution of approaches similar to the SinglegSGBLUP models (Legarrat al. 2014)
should be explored. Indeed, breeding companieg oatmultiple breeding programs in which
many parental lines are evaluated but not necégsggmotyped. Huge amount of phenotypic
data corresponding to different years and typesmaterial is available. If reciprocal
multiparental designs such as ours are implementadg information from other individuals
may improve the accuracy of the predictions. Indedzted lines of heterotic groups of private
breeding programs are strongly related and linkde to the ones we want to predict may
have already been evaluated as single-crossesnrefadvanced breeding stages or as test-
crosses in former early stages of breeding progrdimsse individuals were phenotyped but
not necessarily genotyped. Thus they cannot baded as such in GBLUP models. However,
if their pedigree is known they could be includadSingle Step GBLUP models. Indeed this
method considers an extended relationship matriketiveen all individuals, combining
pedigree and genomic kinship. Single Step GBLURw&lthits interest in animal breeding but
it has to be noted that in plant breeding, pedigreeless reliable than in animal breeding. In
addition, G x E interactions are much more impdmaaking it difficult and possibly inefficient
to assemble data from different years, differemiremments in a single analysis. Information
from specific QTLs can be added in Single Step GBlrhodels by giving a different weigh to
some SNPs (Legaret al.2011; Wanget al. 2012). Future mentioned developments of Single
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Step GBLUP models are extension to crosses antddorhinance effects (Legared al.2014)

and one may hope theses aspects will be derived soo

Reconsidering early steps of maize hybrid breedingelection programs?

Further studies are needed to evaluate the prediaticuracies on our design compared to those
of tester-based designs. If advantage or at lepsvaence of our reciprocal multiparental
design is confirmed, it opens new prospects fasmsitlering maize breeding. Indeed test-cross
evaluation could be replaced by single-cross evialngbetween the two heterotic groups
according to an incomplete factorial design. Teets evaluation, by evaluating lines of each
heterotic group using one or a few testers of ttieeroone, needs at least two times more
phenotyping effort than our design. This may leadsuibstantial economies. However, for
creating our single-cross hybrids, hand-made patitom is necessary, which is not the case for
test-cross hybrid production. Thus it increases dbst of hybrid seed production for an
individual hybrid. Further studies are needed tal@ate if this increase in production cost is
compensated by the diminution of field plots neefdeghenotypic evaluation.

For a first evaluation and comparison of the cdghe two methods, we could consider the
evaluation of 500 dent lines and 500 flint lines¢le one observed in eight environments. For
the test-cross evaluation, cost of seed produdtitinbe around 22€ per line (including the
catch-up costs, considering that 10% of the pdilomes failed). Considering that the dent and
flint lines are evaluated in combination with omige tester, the seed production cost will be
equal to (500 x 22 + 500 x 22) = 22 000€. For sifyiplg the cost evaluation, we will consider
that all lines are observed only once in all envinents and that there is no checks. 16 trials
are needed for test-cross evaluation of all theslifgight for the 500 dent lines and eight for the
500 flint lines). Considering a field cost evaloatiof one hybrid in one environment of 20€,
we have a total cost for the field trials of (8 @ 2 500 + 8 x 20 x 500) = 160 000€. Thus
evaluation of the lines based on their test-crasseswill cost 182 000€, considering that each
line should be seen in one environment. For diegetuation of the hybrids between the 500
dent and 500 flint lines, we will consider that leéioe is parent of only one hybrid and we will
thus need to produce 500 hybrids. Hand-made ptbimavill be needed for seed production
and we will consider a cost of 50€ per line (inahgdthe catch-up costs, considering that 40%
of the pollinations failed). Thus, the total cost seed production is equal to (500 x 50) =
25 000€. Only 8 trials will be needed for evalugtiall hybrids. Considering a field cost
evaluation of one hybrid in one environment, (8(xx2500) = 80 000€ will be needed for

phenotypic evaluation. Thus, evaluation of theditr@sed on a reciprocal design as studied
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during this phD will cost 105 000€. Consideringrgignvironments and two heterotic groups,
evaluation of 500 lines in each heterotic groupseldaon their cross value according to an
incomplete factorial allows a decrease of the co$taround 40% in comparison to their
evaluation in test-cross. This evaluation doedaa into account the differences between the
two designs in prediction accuracies for the GCA 8€A of the lines. If prediction accuracies
in reciprocal designs are higher than in test-cdessgns, it strengthens the advantages of the
reciprocal design compared to the test-cross oaeeder, private breeding companies may be
reluctant to apply such designs as they will nee@bdrganize their breeding selection schemes
(currently improvement of both heterotic groupsied completely simultaneous) and as they
may find risky to create by hand-made pollinatiosiptiids when both parents are not fully
characterized for their flowering date.

To conclude, even if further investigations aredeekfor comparing accuracies of reciprocal
multiparental designs to test-cross designs andasige their advantages, our study shown its
potential interest for maize hybrid selection. Maikaybrid selection schemes should be

reconsidered in the light of the results presenmteatis phD manuscript.
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Figure S1 Results of the QTL detection with each modelBdiC for (A) the dent design an@) the flint
design. The -log10(p-values) of the connected madelrepresented by black lines, the QTL positiointhe
connected models by black dots. The -log10(p-valoéthe LDLA — 5 cM model are represented by Hines
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Figure S2 Results of the QTL detection with each model@ddY for (A) the dent design an@) the flint
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log10(p-values) of the LDLA — 5 cM model are renated by blue lines and the QTL positions by bliaendnds.
The - log10(p-values) of the LDLA — 2 cM model aspresented by red lines and the QTL positionséaly r
crosses. The - log10(p-values) of the QTL detebtetthe LDLA — 1-marker model are represented bggisars.
Horizontal lines correspond to the threshold vahfethe different models.
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Figure S3 Results of the QTL detection with each model fof 86 for (A) the dent design an@) the flint
design. The -logl0(p-values) of the connected madelrepresented by black lines, the QTL positiohthe
connected models by black dots. The -log10(p-valoéthe LDLA — 5 cM model are represented by Hines
and the QTL positions by blue diamonds. The -logp2@lues) of the LDLA — 2 cM model are represerigded
lines and the QTL positions by red crosses. Thgldgp-values) of the QTL detected by the LDLA — arker
model are represented by green stars. Horizonid Icorrespond to the threshold values of therdiffemodels.
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Figure S4 Results of the QTL detection with each modelRbt for (A) the dent design an@) the flint design.
The -log10(p-values) of the connected model areeemted by black lines, the QTL positions of thenected
models by black dots. The -log10(p-values) of tbd A — 5 cM model are represented by blue linestaedQTL
positions by blue diamonds. The -log10(p-valuedhefLDLA — 2 cM model are represented by red lized the
QTL positions by red crosses. The -log10(p-valudsthe QTL detected by the LDLA — 1-marker modet ar
represented by green stars. Horizontal lines cpored to the threshold values of the different medel
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Figure S5 Allelic effects for the different dent lines fire QTL detected for DMC with the connected model.
Allelic effects are estimated in contrast to thatca line allelic effect (F353), which was setziro.
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Figure S6 Allelic effects for the different dent lines ftre QTL detected for DMY with the connected model.
Allelic effects are estimated in contrast to thatca line allelic effect (F353), which was setziro.
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Figure S7 Allelic effects for the different dent lines fire QTL detected for DtSILK with the connected relod
Allelic effects are estimated in contrast to thatca line allelic effect (F353), which was setziro.
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Figure S8 Allelic effects for the different dent lines fire QTL detected for DtTAS with the connected niode
Allelic effects are estimated in contrast to thatca line allelic effect (F353), which was setziro.
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Figure S9 Allelic effects for the different dent lines ftine QTL detected for PH with the connected model.
Allelic effects are estimated in contrast to thatca line allelic effect (F353), which was setziro.
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Figure S10 Allelic effects for the different flint lines fahe QTL detected for DMC with the connected model
Allelic effects are estimated in contrast to thetca line allelic effect (F353), which was setz&ro. Allelic effects
estimated for EP44 were not shown because the giigruiwhere it segregates was too small (17 indifs) to
obtain a reliable estimation.
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Figure S11 Allelic effects for the different flint lines fahe QTL detected for DMY with the connected model
Allelic effects are estimated in contrast to thetca line allelic effect (F353), which was setz&ro. Allelic effects
estimated for EP44 were not shown because the gibguiwhere it segregates was too small (17 indiafis) to
obtain a reliable estimation.
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Figure S12 Allelic effects for the different flint lines fahe QTL detected for DtSILK with the connecteddab
Allelic effects are estimated in contrast to thetca line allelic effect (F353), which was setz&ro. Allelic effects
estimated for EP44 were not shown because the giigruiwhere it segregates was too small (17 indifs) to
obtain a reliable estimation.
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Figure S13 Allelic effects for the different flint lines fahe QTL detected for DtTAS with the connected elod
Allelic effects are estimated in contrast to thetca line allelic effect (F353), which was setz&ro. Allelic effects
estimated for EP44 were not shown because the giiguiwhere it segregates was too small (17 indifis) to
obtain a reliable estimation.
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Figure S14 Allelic effects for the different flint lines fahe QTL detected for PH with the connected model.
Allelic effects are estimated in contrast to thatca line allelic effect (F353), which was setzero.Allelic
effects estimated for EP44 were not shown becdwes@dpulation where it segregates was too small
(17 individuals) to obtain a reliable estimation.
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Table S1 Composition of the dent and flint designs with thienber of DH lines in each family which were used

for obtaining the consensus maps and the one wirch phenotyped.

Dent design Flint design
Central line F353 Central line UHOO7
Founder Genotyped lines Phenotyped | Founder Genotyped lines  Phenotyped
lines lines
B73 73 64 D152 112 72
D06 103 99 EC49A 53 29
D09 105 100 EP44 34 17
EC169 77 66 EZ5 50 26
F252 105 96 F03802 129 129
F618 108 104 F2 77 54
Mo17 63 53 F283 134 133
UH250 99 94 F64 108 64
UH304 86 81 UHO006 114 94
w117 100 84 UHO009 117 98
DK105 115 95
Total 919 841 Total 1009 811

a Population not used for mapping as too small
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Table S2 Threshold values for the —log(p-value) for all thedels and traits for the dent and flint groups fmd

the joint connected study.

DMC DMY DtSILK DtTAS PH Mean

Dent

Connected 3.71 3.91 3.88 4.11 3.83 3.89
LDLA - 5cM 4.18 4.38 4.62 4.87 4.42 4.49
LDLA - 2cM 4.26 4.46 4.61 4.94 4.50 4.55
LDLA —1-marker 5.64 5.64 5.64 5.64 5.64 5.64
Flint

Connected 3.43 3.65 4.15 4.37 3.83 3.89
LDLA - 5cM 4.07 4.20 4.84 5.13 4.53 4.55
LDLA - 2cM 4.30 4.36 5.04 5.23 4.60 471
LDLA —1-markerr 5.61 5.61 5.61 5.61 5.61 5.61
Joint

Connected 3.49 3.94 4.02 4.85 3.74 4.00

aThe threshold value for the LDLA — 1-marker cor@sged to a Bonferroni threshold for a genome-wisle r
of 10 %. The other thresholds were calculated uSj080 intra-family permutations of the phenotyfrsa type
| risk of 10 % across all families and the totahgme.
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Table S3 Results of the QTL detection in the flint desigimgsthe connected model. For each detected QTL, we

showed its genetic position on the flint consenm®ap, its confidence interval, its level of signdice and the

partial percentage of variance explained. We aisaved the name of one of the markers located adé¢kected

position and their range of physical position(s)}tloe B73 v2 genome (Gost al. 2009).

Physical position Genetic Confidence R2

Trait Nb Chr Marker (kb) position (cM) interval -log10(p) (%)

DMC

(%) 1 1 PZE_101172677216581 148.3 142-149 54 3.2
2 2 PZE_102191415234096 177.2 176-181 6.6 3.6
3 3 PZE_10303391726445 - 138643 53.1 53-58 5.1 3
4 4 PZE_10402154918916 - 23142 50.3 49-55 6.7 3.7
5 5 PZE_105085637107137 - 138073  80.4 79-84 9.8 4.9
6 5 PZE_10515026801762 133 129-138 5.3 3.1
7 8 PZE_108060399107884 - 113068 64 50-65 7.4 4
8 10 PZE_11004984%3025 - 115573 46 46-49 59.6 26.5

DMY

(dtha-1) 1 1 PZE_1010389895879 - 26917 52.5 52-54 7.4 3.8
2 1 PZE_101147651191513 118.9 117-120 14.4 6.4
3 2 PZE_10215227998891 129.6 127-141 8.5 4.2
4 3 PZE_103137887191279 - 196563 100.1 96-101 12.4 5.7
5 4 PZE_1040212832836 54.9 54-57 12.1 5.6
6 4 PZE_10415260937454 - 237702 153.3 127-154 4.5 2.7
7 5 PZE_1050783388752 - 139163 82.1 81-85 8.1 4.1
8 6 PZE_106097864151579 835 82-84 9.5 4.6
9 7 PZE_107127708L70248 126.7 123-131 5.5 3.1
10 8 PZE_10810521659953 94.1 92-111 6 3.2
11 10 PZE_11004735@8553 -97551 44.6 44-45 34.2 14.2

DtSILK

(d) 1 1 PZE_1010058181452 10.3 9-12 6.9 2.2
2 1 PZE_101143233184616 113.9 101-115 26.3 6.7
3 1 PZE_10118165826175 153.1 148 -198 4.6 1.6
4 2 PZE_102129781178613 - 179981 102.1 101-162 5.4 1.8
5 3 PZE_1031216109965 - 179545 79.5 61-80 6.8 21
6 4 PZE_1040276033555 - 38027 551 52-57 31.8 8
7 5 PZE_1050333997477 - 18623 59.8 54-60 6.7 2.1
8 5 PZE_10509357935624 - 150088  84.2 80-86 7.3 2.2
9 5 PZE_10516310204822 - 205566  138.6 132-140 5.3 1.8
10 6 PZE_10604996289771 334 27-42 8 24
11 7 PZE_107130719.71824 131.5 125-133 5.6 19
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12 PZE_108067425.19151 68.4 65-91 5.3 1.8
13 PZE_108135936.75699 - 175734  139.7 117-140 6.1 2
14 PZE_10900994211080 - 11080 31.3 31-32 13 3.5
15 10 PZE_11004910®1959 - 127347  49.7 49-50 94.6 275
DtTAS
(d) 1 1 PZE_1010057661609 10.8 9-13 6.8 2.5
2 1 PZE_101108474115220 - 161708 103 100-103 317 9
3 1 PZE_10119802R46399 - 250557  173.3 164-175 6.2 2.3
4 3 PZE_103098655158895 67.4 67-68 9 3
5 3 PZE_103153521206703 114.1 110-115 85 2.9
6 4 PZE 1040256250431 - 37023 57 52-57 27.6 7.9
7 5 PZE_10506874671898 - 87721 78.6 78-79 21.6 6.3
8 6 PZE_106061581111966 - 112514  47.3 46-49 8.5 2.9
9 7 PZE_107127708170248 126.7 124-130 85 2.9
10 8 PZE_10806675218422 - 119082  68.3 68-69 15 4.6
11 9 PZE_109007528233 23.3 23-38 7.6 2.6
12 10 PZE_11004815B0243 - 122268  48.7 46-49 62.7 18.6
PH(cm) 1 1 PZE _10112789162428 - 178788  108.7 108-109  12.7 5.4
2 2 PZE_1020745529031 - 55241 78 18-85 9 4.1
3 2 PZE_10216953313168 143.9 140-145 6.9 3.3
4 4  PZE_1040224733556 - 24765 57.2 55-60 12 5.1
5 5 PZE_10515134802416 1345 132-136 6.4 3.2
6 7 PZE_107061937118305 58.2 53-62 4.9 2.6
7 7 PZE_107128331170536 128.5 121-129 7.2 3.4
8 8 PZE_108098736155052 87.2 87-92 17.8 7.1
9 10 PZE_1100481500243 - 122268  48.7 46-49 55.4 21.7
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Table S4 Results of the QTL detection in the flint desigingshe LDLA — 5 cM model. For each detected QTL,
we showed its genetic position on the flint conssnmeap, its confidence interval, its level of sfigpaince and the
partial percentage of variance explained. We aisaved the name of one of the markers located adé¢kected

position and their range of physical position(s)}tloe B73 v2 genome (Gost al. 2009).

N Physical position Genetic position
Trait b Chr Marker (kb) (cM) -log10(p) R2 (%)
DMC (%) 1 1 PZE_ 101147104 190602 1194 7.3 2.9
2 1 PZE_ 101250881 295590 225.9 5.6 2.2
3 2 PZE_ 102025627 11947 39.2 7 1.8
4 2 PZE_102046822 24366 63.7 7.3 3.4
5 2 PZE_102183284 225854 157.9 8 3
6 4 PZE_104021283 22836 54.9 11.2 4.8
7 5 PZE_105085637 107137 - 138073 80.4 10.2 4.3
8 5 PZE_105165365 208891 - 209048 148.7 5.2 1.6
9 6 PZE_106076029 131411 -134098 64.2 4.9 2.3
10 8 PZE_108018911 18447 43.1 7.5 2.9
11 10 PZE_110049849 93025 - 115573 46 70.2 29.2
DMY (dt.hay) 1 1 PZE_101147651 191513 118.9 13.3 5.7
2 1 PZE_101213494 263732 185.2 5.7 2.6
3 3 PZE_103098382 158668 - 159808 66.8 7.9 4.1
4 4 PZE_ 104020618 21905 55 135 6.3
5 4 PZE_ 104123129 200190 129.8 5.3 2.9
6 5 PZE_ 105068572 71700 - 72614 75.9 6.9 3.7
7 6 PZE_ 106107736 156986 95.6 4.3 1.2
8 7 PZE_107128866 170819 127.8 10 3.5
9 8 PZE_108029326 27221 - 66473 50.1 6.6 3.4
10 10 PZE_110045930 86778 -109582 46.3 31.3 14.3
DtSILK (d) 1 1 PZE_101005818 4452 10.3 5.2 1.2
2 1 PZE_ 101146834 190143 119.1 34.3 8.1
3 1 PZE_ 101199192 248322 171.8 15 3.9
4 2 PZE_ 102179704 222468 154.6 10.1 2.4
5 3 PZE_ 103098382 158668 - 159808 66.8 8.2 2.4
6 3 PZE_103121610 69965 -179545 79.5 7.8 2
7 4 PZE_104062511 44504 - 124929 62.6 31.7 8.1
8 5 PZE_105078445 86146 - 140781  80.7 18.6 4.7
9 5 PZE_105153835 204326 - 205504 137.6 10.9 2.4
10 7 PZE_107133704 173181 139.3 7.6 1.6
11 8 PZE_108066557 118189 68.7 7.4 1.9
12 8 PZE_108133033 173617 133.8 6.6 1.1
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13 9  PZE_109009936 11079 31.6 11.6 2.8

14 10 PZE_110048157 90243 - 122268  48.7 98.7 29.1
DtTAS (d) 1 1  PZE_101005765 4609 10 6.5 1.8

1 1  PZE_101109004 116312 - 158005 105.3 7.3 2.5

2 1  PZE_101147104 190602 119.4 6.9 2.2

3 1  PZE_101213102 263154 185.3 9 2.7

4 3  PZE_103098655 158895 67.4 8.9 2.7

5 3  PZE_103158635 210426 116.9 7.7 2.2

6 4  PZE_104044703 33362-96313  60.7 21.6 6.8

7 5  PZE_105066936 69125-83278  77.8 21.9 6.5

8 7  PZE_107136925 174718 144.3 5.7 1.3

9 8  PZE_108019174 18351 42.8 6.8 2

10 8  PZE_108073574 128549 - 128753 75.2 13.4 3.9

11 9  PZE_109009220 10008 - 10009  28.4 9.5 2.4

12 10 PZE_110048157 90243 - 122268  48.7 58.1 18.3

13 1  PZE_101005765 4609 10 6.5 1.8
PH (cm) 1 1  PZE_101146427 189406 1185 14.7 5.2

2 2 PZE_102074552  39031-55241 78 9.3 3.8

3 2  PZE_102173058 216192 146.8 7.4 2.9

4 4  PZE_104045760 68246 - 68323  58.7 10.6 4.4

5 4  PZE_104103602 179801 - 180054 102.8 6.6 2.4

6 5  PZE_105150122 201632 128.7 8.7 2.7

7 7  PZE_107128144 170420 - 170496 126.6 11.2 3.2

8 8  PZE_108092331 149305 - 155644 87.8 20.5 7.8

9 9  PZE_109008703 9311 25.5 4.8 1.3

10 10 PZE_110049849 93025 - 115573 46 56.8 21.7
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Table S5 Results of the QTL detection in the flint desigring the LDLA — 2 ¢cM model. For each detected QTL

we showed its genetic position on the flint conssnmeap, its confidence interval, its level of sfigpaince and the

partial percentage of variance explained. We aisaved the name of one of the markers located adé¢kected

position and their range of physical position(s)tloe B73 v2 genome (Gost al. 2009).

Physical Genetic
Trait Nb Chr  Marker position (kb) position (cM) -log10(p) R2 (%)
DMC (%) 1 1 PZE_101146598 189773 118 6.2 25
2 2 PZE_102185359  229130-229288 165 5 1.7
3 4 PZE_104018885 18916 - 23142 50.3 6.9 3.4
4 5 PZE_105085637 107137 -138073 80.4 9.1 4.6
5 5 PZE_105163718 208374 149.2 4.5 1.9
6 8 PZE_108063241  113068-113206 64.1 6.5 3.2
7 10 PZE_110049849 93025 - 115573 46 46.5 20.8
8 10 PZE_110089009 139036 69.9 5 1.4
DMY (dt.ha?) 1 1 PZE_101146427 189406 118.5 14.9 5.3
2 2 PZE_102172077 215135 144.9 6.9 25
3 3 PZE_103097999 157939 65.4 6 1.9
4 3 PZE_103142979  198520-198581 101.6 4.7 25
5 4 PZE_104023433 26403 - 26403 52.7 15.8 5.8
6 4 PZE_104122410 199546 - 199546 126.5 5.4 2.6
7 5 PZE_105092759  133339-159961 84.4 7.4 3.7
8 6 PZE_106050624  100745-103709 35.4 4.6 2.2
9 6 PZE_106103665 155178 90.5 7.8 34
10 7 PZE_107128846 170819 128.9 9 2.9
11 8 PZE_108027746 26074 - 29164 49.5 6.7 3.4
12 10 PZE_110047350 88553 - 97551 44.6 31.7 13.4
DtSILK (d) 1 1 PZE_101005818 4452 10.3 5.6 14
2 1 PZE_101147104 190602 119.4 33.6 9.2
3 1 PZE_101199859 248854 -249092 173.9 14.2 4.1
4 2 PZE_102181292  222435-223721 156.5 6.3 1.6
5 3 PZE_103118006 176570 78.5 10.9 3
6 3 PZE_103167997 216529 126.6 9.2 1.9
7 4 PZE_104044892 42641 - 134020 62.5 29.6 8.8
8 5 PZE_105039522 24542 63.6 18 5.4
9 8 PZE_108133033 173617 133.8 9.2 2.1
10 9 PZE_109010021 11134 30.1 11.9 2.9
11 10 PZE_110060375  114622-114653 48.6 89.7 29.6
DtTAS(d) 1 1 PZE_101005770 4610 10.5 5.3 15
2 1 PZE_101109004 116312-158005 105.3 16 4.7
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3 1 PZE_101147248 190703 1211 6.4 1.7
4 1 PZE_101213479 263702 - 265655 186.8 8.9 2.3
5 3 PZE_103109418 170117-171781 75.9 9.3 2.1
6 3 PZE_103157683 209726 116.3 8 21
7 4 PZE_104044703 33362 - 96313 60.7 24 7.2
8 5 PZE_105063310 62822 - 82069 76 24 7.1
9 6 PZE_106064975  117082-122646 56.3 6.9 2.2
10 7 PZE_107128144  170420-170496 126.6 6.1 1.4
11 8 PZE_108019174 18351 42.8 6.8 1.9
12 8 PZE_108073574  128549-128753 75.2 16.7 4.5
13 9 PZE_109009220 10008 - 10009 28.4 11.2 2.5
14 10 PZE_110049001 89438 -108230 47.2 61.8 18.8
PH (cm) 1 1 PZE_101144184  187342-187381 118.6 214. 46

2 2 PZE_102076936 51554 - 59013 83 9.1 3.7
3 2 PZE_102175167 217650 147.7 8 2.7
4 4 PZE_104028514 34558 - 80248 60.2 11.3 4.8
5 4 PZE_104104676 180887 105.6 6.2 15
6 5 PZE_105144284 198198 130.3 7.5 1.9
7 7 PZE_107057864  111123-112763 55.4 6 2.2
8 7 PZE_107128144  170420-170496 126.6 9.7 2.8
9 8 PZE_108092331  149305-155644 87.8 18.3 6.6
10 9 PZE_109008133 8741 25.8 5.2 15
11 10 PZE_110049849 93025 - 115573 46 56 21.3
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Table S6 Results of the QTL detection in the flint desigging the LDLA — 1-marker model. For each detected
QTL, we showed its genetic position on the flinhsensus map, its confidence interval, its levedighificance
and the partial percentage of variance explaineel.al§o showed the name of one of the markers ld@tthe

detected position and their range of physical po¥i$) on the B73 v2 genome (Gaeal. 2009).

Physical Genetic
Trait Nb  Chr Marker position (kb)  position (cM) -logl0(p) R2 (%)
DMC (%) 1 2 PZE_102185353 229130 164.2 5.7 1.7
2 4 PZE_104033064 40693 60 6.7 2.1
3 5 PZE_105079359 90584 80.6 11.5 3.9
4 5 PZE_105143697 197846 126.4 5.7 1.7
5 8 PZE_108063319 113212 63.6 7.2 2.3
6 10 PZE_110050010 94199 45.9 44.3 18.0
7 10 PZE_110086343 137505 68.9 6.3 1.9
DMY (dt.hat) 1 1 PZE_101128881 164375 105.8 6.3 1.8
2 1 PZE_101144216 187381 118.6 15.6 5.2
3 3 PZE_103097999 157939 65.4 10.3 3.3
4 4 PZE_104017088 17150 48.7 11.4 3.7
5 4 PZE_104021665 23190 51.4 5.8 1.7
6 4 PZE_104122007 198999 124 6.0 1.7
7 5 PZE_105094114 137392 815 9.7 3.1
8 6 PZE_106104239 155466 90.7 7.8 24
9 7 PZE_107128846 170819 128.9 8.2 25
10 8 PZE_108028156 29898 51.1 9.1 2.9
11 10 PZE_110050010 94199 45.9 33.0 12.2
DtSILK (d) 1 1 PZE_101004387 3883 8.5 8.2 15
2 1 PZE_101088198 79735 90.5 10.0 1.9
3 1 PZE_101106156 109635 102.4 17.1 3.6
4 1 PZE_101151084 194731 125.8 9.4 1.8
5 1 PZE_101200614 249700 173.1 11.3 2.2
6 3 PZE_103098779 158974 61.9 11.3 2.2
7 4 PZE_104021514 23073 51 9.0 1.7
8 4 PZE_104079162 153502 69 10.8 2.1
9 4 PZE_104152590 237693 155.7 6.4 11
10 5 PZE_105069912 74335 76.8 21.1 4.6
11 5 PZE_105143119 197706 127.6 5.7 1.0
12 7 PZE_107128331 170536 128.5 6.5 1.2
13 8 PZE_108070056 122950 71 12.0 2.4
14 9 PZE_109009591 10597 30.3 7.1 1.3
15 10 PZE_110016138 16504 38.6 11.2 2.2
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16 10 PZE_110050010 94199 45.9 45.7 111
DtTAS(d) 1 1 PZE_101004387 3883 8.5 6.1 1.2
2 1 PZE_101115961 138907 103.5 14.5 3.3
3 1 PZE_101144216 187381 118.6 23.2 5.6
4 1 PZE_101160171 202307 128 6.7 13
5 1 PZE_101200614 249700 173.1 8.5 1.8
6 3 PZE_103007349 4064 11.7 8.6 1.8
7 3 PZE_103098779 158974 61.9 14.0 3.2
8 4 PZE_104021514 23073 51 9.7 2.1
9 4 PZE_104079162 153502 69 10.0 2.1
10 5 PZE_105069912 74335 76.8 24.7 6.0
11 6 PZE_106066817 119166 57.4 5.5 1.0
12 8 PZE_108067255 118970 68.8 5.8 11
13 8 PZE_108074213 129415 75.5 10.3 2.2
14 9 PZE_109111133 151251 109.1 6.5 1.3
15 10 PZE_110018448 22128 38.9 8.9 1.9
16 10 PZE_110050010 94199 45.9 57.5 16.1
PH (cm) 1 1 PZE_101145493 188172 115.6 8.3 2.4
2 2 PZE_102074558 55249 79.5 9.8 3.0
3 4 PZE_104042538 60023 63.1 11.6 3.6
4 5 PZE_105091638 129996 83.4 7.8 2.3
5 5 PZE_105134752 195420 117.6 9.9 3.0
6 6 PZE_106097959 151785 84.1 6.1 1.7
7 7 PZE_107127637 170111 126.3 7.4 21
8 8 PZE_108105216 159953 94.1 16.6 5.3
9 10 PZE_110050010 94199 45.9 53.9 20.6
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Table S7 Results of the QTL detection in the dent designgithe connected model. For each detected QTL, we

showed its genetic position on the dent consensays its confidence interval, its level of significae and the

partial percentage of variance explained. We aisaved the name of one of the markers located adé¢kected

position and their range of physical position(s)tloe B73 v2 genome (Gost al. 2009).

Trait Nb Chr Marker Physical positionGenetic  Confidence -log10(p) R2
(kb) position interval (%)
(cM)
DMC (%) 1 1 PZE_101031077 19101 35.2 32-39 11.7 4.8
2 2 PZE_102011868 5425 17.1 16-18 134 5.3
3 2 PZE_102149235 195177 -197936 94.4 88-100 5.4 2.6
4 3 PZE_103091082 150173-165855 63.5 58-64 16.8 6.5
5 4 PZE_104079076 153406 59 57-61 10 4.2
6 5 PZE_105026024 13303 - 13313 42.8 42-45 10.6 4 4
7 6 PZE_106002839 3588 - 3869 2.9 1-6 104 4.3
8 6 PZE_106098045 151822 75.1 72-79 9.6 4.1
9 8 PZE_108058161 103705 -103897 51.3 51-58 18 9 6.
10 9 PZE_109009836 10943 29.3 27-30 6 2.8
11 9 PZE_109096235 141951 74.4 70-76 6.8 3.1
12 10 PZE_110048796 91481 -107902 46.4 27-53 5.7 2.7
DMY
(dt.ha-1) 1 1 PZE_101071870 54342 59.2 57-62 5.7 3.8
2 1 PZE_101215677 266310 - 266369 144.6 123-160 5 5. 3.7
3 3 PZE_103108908 169730 -172477 70.8 66-76 5.5 7 3
4 3 PZE_103160673 211719 - 212707 116.2 115-129 2 6. 4
5 3 PZE_103185177 229665 147.3 146-148 6.3 4.1
6 6 PZE_106038467 86549 16.8 9-20 14.9
7 7 PZE_107066645 123598 - 126465 58.2 57-61 11.7 6.6
8 8 PZE_108057442 102536 - 108663 52.9 52-53 142 7.7
DtSILK(d) 1 1 PZE_101033622 21685 38.5 32-39 116 4.7
2 1 PZE_101081841 69289 - 70518 66.2 65-67 4.6 2.3
3 1 PZE_101194503 241368 - 244469 129.1 128-133 6 6. 3
4 2 PZE_102148927 195747 - 196529  93.9 93-96 9.1 8 3
5 3 PZE_103110415 170772-174828 72 65-72 15.9
6 3 PZE_103147207 201536 - 202769 103.4 101-110 5 5. 2.6
7 6 PZE_106095147 150309 72.4 70-74 13 51
8 7 PZE_107072681 129265 63.2 43-67 8.4 3.6
9 8 PZE_108057885 103311 50.4 50-54 26.4 9.6
10 9 PZE_109020361 18684 - 20598 42.9 38-45 5 25
11 10 PZE_110057591 110540-120784  49.8 49-52 7.2 3.2
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DtTAS (d) 1 1 PZE_101033622 21685 38.5 36-39 10.8 45
2 2 PZE_102157405 204235 99.8 99-100 6 3.4
3 3 PZE_103101981 162179 -167076  63.7 61-65 232 104
4 5 PZE_105144068 198031 91.6 91-96 7.3 3.9
5 7 PZE_107076807 132075 67.1 48-68 13.7 6.5
6 8 PZE_108058411 104281 -104625 53.7 50-55 194 8.8
7 9 PZE_109092637 139196 - 140154 71.3 56-74 7.1 9 3
PH (cm) 1 1 PZE_101018818 10905 23.7 21-24 7.5 3
2 1 PZE_101133561 172881-172940 81.5 80-84 13.2 4.7
3 1 PZE_101196829 245032 - 245219 131 127-133 179 6.1
4 3 PZE_103110278 170548 71.8 69-73 8.1 3.2
5 4 PZE_104073340 138154 - 144727 55.2 53-58 6.9 8 2
6 5 PZE_105065019 66038 - 79496 59.4 58-60 7.1 2.9
7 6 PZE_106040994 89408 - 91643 19.9 19-20 27.7 1 9.
8 7 PZE_107005418 3665 - 3667 12.3 2-16 51 2.2
9 7 PZE_107080996 135892 71.4 71-72 17.6 6
10 8 PZE_108056028 100939 -102711 49.7 49-52 233 7.7
11 8 PZE_108078317 130737 -134065 68.8 68-69 149 5.2
12 9 PZE_109025803 25986 49.1 48-50 4 1.9
13 9 PZE_109086708 134570-135460 67.8 67-70 7.8 3.1
14 10 PZE_110008028 6072 22.6 22-26 12.2 4.4
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Table S8 Results of the QTL detection in the dent desiging the LDLA — 5 cM model. For each detected QTL,
we showed its genetic position on the dent consemap, its confidence interval, its level of sigzahce and the
partial percentage of variance explained. We aisaved the name of one of the markers located adé¢kected

position and their range of physical position(s)tloe B73 v2 genome (Gost al. 2009).

Physical Genetic R2
Trait Nb Chr  Marker position (kb) position (cM)  -log10(p) (%)
DMC (%) 1 1 PZE_101028121 16789 - 17963 31.6 11 3.9
2 1 PZE_101150204 193868 -194764 92 4.9 2
3 1 PZE_101202934 249700 - 251159 134.9 7.9 3.1
4 2 PZE_102006385 3379 9.6 6.4 15
5 2 PZE_102150016 196649 94 8.9 2.9
6 3 PZE_103038564 33572 - 56014 46 17.6 6.4
7 3 PZE_103151042 204999 105 5.4 23
8 4 PZE_104081311 155805 59.6 10.2 4
9 5 PZE_105047074 35783 - 36699 52.3 12.4 4.9
10 6 PZE_106007445 18846 - 21466 9.9 11.7 4.3
11 6 PZE_106096901 150891 71.7 12.7 4.6
12 7 PZE_107040665 154074 66.8 3.6 1.7
13 8 PZE_108057885 103311 50.4 19.1 6.1
14 9 PZE_109089324 137410 68.6 9 35
15 10 PZE_110012467 10879 31.8 7.7 2.2
DMY (dt.ha?) 1 3 PZE_103116584 175989 78.9 8 3.9
2 3 PZE_103162977 213416 117.8 7.8 4.3
3 6 PZE_106038467 86549 16.8 13.8 8.1
4 7 PZE_107066645 123598 - 126465 58.2 8.8 5.6
5 8 PZE_108057442 102536 - 108663 52.9 10.3 5.8
DtSILK (d) 1 1 PZE_101033622 21685 38.5 22.6 7.2
2 1 PZE_101205734 251079 - 254464 136.4 6.7 24
3 2 PZE_102152020 198672 94.5 15 4.5
4 3 PZE_103086165 142732 -157202 61.7 10 3.6
5 3 PZE_103122617 180515 78.6 16.3 4.7
6 5 PZE_105049624 41635 - 58706 56.3 4.8 2.2
7 6 PZE_106094705 149930 71 16.5 5.4
8 7 PZE_107045046 25471 -104886 43.9 7.4
9 7 PZE_107107125 158951 -158952 82.1 5.8
10 8 PZE_108058411 104281 -104625 53.7 27.7 8.9
11 9 PZE_109098496 143352 77.3 55 2
12 10 PZE_110057591  110540-120784 49.8 8 3.1
DtTAS(d) 1 1 PZE_101032015 19641 - 21075 35.7 13.2 4.8
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2 2 PZE_102159907 206081-207151 102.9 7.1 2.8
3 3 PZE_103098157 158352 60.8 21 7.6
4 3 PZE_103143600  199245-201331 102.2 8 3.1
5 5  PZE_105143985 197957 -200116 95.6 5.1 2
6 6  PZE_106033981 79499 - 86347 16 6.1 2.7
7 6  PZE_106092387 148530 - 150461 72 6 2.5
8 7 PZE_107045046 25471 - 104886 43.9 7.6 3.4
9 7 PZE_107099124  152685-155704 79.9 6.1 2.7
10 8  PZE_108062375 111291 54.3 23.6 8.3
11 9  PZE_109094832 141175 73.4 11.1 3.9

PH (cm) 1 1 PZE_101018868 10962 21.4 55 2.1
2 1 PZE_101133356 172811 81.4 12.9 4.4
3 1  PZE_101196829 245032 -245219 131 17.9 6.1
4 3  PZE_103111112 171438-175550 75.5 10.8 3.9
5 4  PZE_104073340 138154 - 144727 55.2 4.9 2
6 4  PZE_104136077 202589-227111 109.7 7.4 2.6
7 5  PZE_105068432 70082 -86033  60.4 6.1 2.7
8 6  PZE_106040975 89403 - 89404  19.3 28.4 9.3
9 7  PZE_107076796 132076 65.4 19 6.3
10 8  PZE_108056028 100939 - 102711 49.7 25.7 8.2
11 8  PZE_108079422  133563-138524 71.4 11.7 4.1
12 9  PZE_109085253 133933 68.1 21.3 7.2
13 10 PZE_110014332 11179-13553  33.8 11 3.3
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Table S9 Results of the QTL detection in the dent desiging the LDLA — 2 cM model. For each detected QTL,
we showed its genetic position on the dent consemap, its confidence interval, its level of sigzahce and the
partial percentage of variance explained. We aisaved the name of one of the markers located ad¢kected

position and their range of physical position(s)tloe B73 v2 genome (Gost al. 2009).

Physical position Genetic

Trait Nb  Chr Marker (kb) position (cM)  -logl0(p) R2 (%)
DMC (%) 1 1 PZE_101036345 23712 38 12.4 4
2 1 PZE_101154088 194939 - 197272 93.9 6.2 2.3
3 1 PZE_101203104 250888 131.9 7.1 2.8
4 2 PZE_102002360 1724 4.7 8.5 2
5 2 PZE_102017964 8279 234 7.7 2.2
6 2 PZE_102152020 198672 94.5 8.5 3
7 3 PZE_103093079 154090 - 160936 63.9 16.7 5.4
8 3 PZE_103148259 202185 104.1 5.4 2
9 4 PZE_104076988 151510 - 151684 56.9 10.3 35
10 5 PZE_105047074 35783 - 36699 52.3 13.3 4.9
11 6 PZE_106020123 14400 - 24611 10 14.3 4.4
12 6 PZE_106097959 151785 73.1 14.1 4.3
13 7 PZE_107045895 24563 - 103626  43.6 5.8 2.4
14 8 PZE_108061901 110744 -115294 57.2 19.7 6.4
15 9 PZE_109091148 138616 - 138617 69.6 12.7 4.2
16 10 PZE_110012769 11241 33 8.2 2.2
DMY (dt.hat) 1 1 PZE_101183895 228556 119.6 4.8 2.3
2 3 PZE_103113115 172857 -178134 78.3 8.4 4
3 3 PZE_103159262 210755 -210760 114.6 7.8 3.7
4 6 PZE_106032535 75517 - 86627 15.5 13.3 6.9
5 7 PZE_107069530 126351 58.1 9.3 5
6 8 PZE_108057745 103023 - 103457 53 10.5 5.8
DtSILK (d) 1 1 PZE_101035008 19696 - 22646 37.8 22 6.9
2 1 PZE_101205734 251079 - 254464 136.4 7.4 2.2
3 2 PZE_102151348 197954 94.7 12.9 4.1
4 3 PZE_103086165 142732 -157202 61.7 10.2 3.7
5 3 PZE_103122617 180515 78.6 16.3 4.7
6 5 PZE_105049624 41635 - 58706 56.3 4.9 2.3
7 6 PZE_106095370 150525 - 150588 72.6 17.5 5.1
8 7 PZE_107045046 25471 -104886 43.9 8.7 33
9 7 PZE_107106025 158126 81.1 6.1 2
10 8 PZE_108062521 111781 54.6 28.2 8.9
11 9 PZE_109098632 143808 78.5 6.1 2.1
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12 10 PZE_110057591 110540 - 120784 49.8 7.8 3
DtTAS(d) 1 1 PZE_101032015 19641 - 21075 35.7 129 5
2 2 PZE_102161022 207043 102.3 6.5 2.6
3 3 PZE_103098157 158352 60.8 21.2 8.3
4 3 PZE_103143600 199245 -201331 102.2 7.8 3.2
5 5 PZE_105143697 197846 - 200369 95.5 5 2.2
6 7 PZE_107045046 25471 -104886 43.9 6.1 2.9
7 7 PZE_107099124 152685 - 155704 79.9 6 2.9
8 8 PZE_108058411 104281 - 104625 53.7 20 7.6
9 9 PZE_109090152 137787 - 138020 70.1 9.2 3.7
PH (cm) 1 1 PZE_101132703 171230-178401 82.3 10.6 4.1

2 1 PZE_101196829 245032 - 245219 131 15.9 6
3 3 PZE_103119393 178152 -178564 79.1 8.9 2.8
4 4 PZE_104073794 145614 55.7 6.4 2.5
5 4 PZE_104138654 204861 - 226068 109.4 6.2 2.5
6 5 PZE_105070660 74660 - 145496  61.9 5.2 2.5
7 6 PZE_106044620 93734 20.4 20.4 6.4
8 7 PZE_107077092 132190 66.5 19.9 6.5
9 8 PZE_108038271 26346 - 65101 43.6 22.4 8.1
10 8 PZE_108081297 133441 -143002 71.9 8.6 3.3
11 9 PZE_109085253 133933 68.1 14.6 54
12 10 PZE_110013838 12922 35.9 10.4 4.2
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Table S10 Results of the QTL detection in the dent desiging the LDLA — 1-marker model. For each detected
QTL, we showed its genetic position on the dentsemisus map, its confidence interval, its leveligificance
and the partial percentage of variance explainee.al§o showed the name of one of the markers ld@tthe

detected position and their range of physical p¥i$) on the B73 v2 genome (Gaeal. 2009).

Physical Genetic positic
Trait Nb  Chr Marker position (kb)  (cM) -log10(p) R2 (%)
DMC (%) 1 1 PZE_101043094 29355 43.3 8.5 2.6
2 2 PZE_102015152 6459 20.9 15.3 5.1
3 2 PZE_102150016 196649 94 6.9 2.0
4 3 PZE_103038375 33073 45.8 14.2 4.7
5 4 PZE_104077580 151818 57 8.5 2.6
6 5 PZE_105043990 31444 54.4 9.7 3.0
7 6 PZE_106020569 16293 9.3 6.4 1.9
8 6 PZE_106092387 148530 72 6.3 1.8
9 8 PZE_108054499 97030 50.2 9.8 3.1
10 8 PZE_108104357 159498 81.9 5.6 1.6
11 9 PZE_109098884 143900 78.9 9.8 3.1
12 10 PZE_110073412 130077 53.5 8.5 2.6
DMY (dt.hal) 1 3 PZE_103115334 175353 78.1 9.0 3.6
2 3 PZE_103162977 213416 117.8 9.0 3.7
3 6 PZE_106031833 74460 14.6 14.0 6.0
4 7 PZE_107026145 29198 41.6 7.7 3.0
5 8 PZE_108054494 97029 50.5 10.4 4.3
DtSILK (d) 1 1 PZE_101032230 19696 37.8 8.8 2.4
2 1 PZE_101076734 60701 61 11.4 3.3
3 2 PZE_102150016 196649 94 8.9 25
4 3 PZE_103104448 165863 71.3 15.7 4.7
5 3 PZE_103132614 188530 91.1 8.1 2.2
6 5 PZE_105054634 51432 55.4 6.4 1.7
7 6 PZE_106092387 148530 72 13.8 4.1
8 7 PZE_107023943 25471 43.9 13.0 3.8
9 8 PZE_108026961 27634 455 5.7 15
10 8 PZE_108063387 113292 57.3 10.1 2.9
11 10 PZE_110062675 117753 50.1 6.9 1.8
DtTAS(d) 1 1 PZE_101035341 23055 39.2 13.3 4.6
2 3 PZE_103104448 165863 71.3 26.8 10.1
3 6 PZE_106092387 148530 72 5.8 1.8
4 7 PZE_107061937 118305 50.8 6.8 2.1
5 7 PZE_107100713 155251 79.6 6.7 2.1

215



6 8  PZE_108057325 102454 51.5 22.5 8.3
7 9  PZE_109071914 116752 59.8 7.3 2.3
PH (cm) 1 1  PZE_101132469 170852 80.9 6.5 1.9
2 1  PZE_101191970 238427 127.1 8.4 2.6
3 2 PZE_102068532 46438 61.8 6.8 2.0
4 3  PZE_103104448 165863 71.3 6.0 1.7
5 4  PZE_104082879 156995 61.4 6.0 1.7
6 6  PZE_106040890 89137 19.4 19.4 6.7
7 7  PZE_107084200 139526 76.4 15.9 5.4
8 8  PZE_108014288 14088 32 15.9 5.4
9 9  PZE_109080822 128851 65.9 18.5 6.4
10 10 PZE_110009551 7563 29.4 6.3 1.8

216



Table S11 Results of the QTL detection in the joint an&yssing the connected model. For each detected QTL

we showed its genetic position on the dent-flimsEnsus map, its confidence interval, its levedighificance

and the partial percentage of variance explainee.al§o showed the name of one of the markers ld@tthe

detected position and their range of physical p¥i$) on the B73 v2 genome (Gaeal. 2009).

Physical  position Genetic R2

Trait Nb  Chr Marker (kb) position (cM) -log10(p) (%)

DMC (%) 1 1 PZE_101032230 19696 - 19975 41.3 8.5 3 2
2 1 PZE_101103995 104611 - 113689 93.3 5.2 1.7
3 1 PZE_101202934 251103 - 251159 160.4 4.5 1.6
4 1 PZE_101247063 292581 200.4 4.3 15
5 2 PZE_102012595 5556 17.2 214 4.5
6 2 PZE_102178263 220854 131.3 6.9 2
7 3 PZE_103033638 26310 - 30050 45.4 9.3 25
8 3 PZE_103100449 160755 65.5 7.5 2.1
9 4 PZE_104032843 40344 - 65470 54.6 13.8 3.3
10 4 PZE_104143137 231732 130.7 4.4 1.6
11 5 PZE_105025123 12581 42.6 17.6 3.8
12 6 PZE_106005094 6514 6.3 10.1 2.6
13 6 PZE_106082658 139918 - 142454 66 11.8 2.9
14 7 PZE_107012564 9201 33.9 4.7 1.6
15 8 PZE_108063387 112547 - 113298 63.4 21.7 4.5
16 9 PZE_109010670 11079 - 11504 30.8 3.9 15
17 9 PZE_109096248 141983 82.5 5.4 1.7
18 10 PZE_110047687 89209 - 111680 47.7 68.5 12.5

DMY (dt.ha-1) 1 1 PZE_101145302 188026 - 188087 409 12.2 3.6
2 1 PZE_101215394 266047 170.9 10.4 3.2
3 2 PZE_102013856 5997 - 6049 18.5 5.2 2.1
4 2 PZE_102066516 44332 67.4 7.2 2.6
5 3 PZE_103010658 5853 21.6 7.6 2.6
6 3 PZE_103098655 158895 - 161562 65.7 9.5 3.1
7 3 PZE_103162977 213416 120.4 5.3 2.1
8 4 PZE_104025845 28986 - 32061 51.5 13.5 3.9
9 5 PZE_105103128 155811 - 160460 78 8.8 29
10 6 PZE_106037747 81440 - 86559 18.3 9.9 3.1
11 6 PZE_106050075 99944 34 11.4 3.4
12 6 PZE_106106971 156749 88.4 9.2 3
13 7 PZE_107025551 28013 - 100690 44.8 8.3 2.8
14 7 PZE_107127637 170111 - 170248 119.3 5.9 2.3
15 8 PZE_108060398 107884 - 111781 62.1 12.1 3.6
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16 10 PZE_110043381 82670 - 84599 43.2 38.6 8.9
DtSILK (d) 1 1  PZE_101005770 4452 - 4610 9.4 6.4 8 1.
2 1  PZE_101034085 21984 - 21992 42.7 10 2.3
3 1  PZE_101105390 102985-118116  93.6 19.2 3.7
4 1  PZE_101195591 244158 - 244596 155.9 11.2 2.5
5 2 PZE_102161485 206123 - 207224 123 13.3 2.8
6 3  PZE_103098655 158895 - 161562  65.7 12.7 2.7
7 3 PZE_103128597 185274-187610  93.2 9.1 2.2
8 4  PZE_104025181 29345 - 30933 51.8 22.8 4.2
9 5  PZE_105050638 42662 - 51518 61.2 16.8 3.3
10 6  PZE_106097991 151792 77.3 11.7 2.6
11 7  PZE_107072354 128648 -128709  68.9 14.8 3.1
12 8  PZE_108061059 107884 -109378  60.7 27.9
13 9  PZE_109010476 11398 30.3 11.4 2.5
14 9  PZE_109094832 141175 82.6 5.1 1.6
15 10 PZE_110047800 89438 - 106051 47.4 93 15.2
DtTAS(d) 1 1  PZE_101033489 21569 - 22464 43 121 5 2.
2 1  PZE_101140981 182104 - 184245 105 41.4 6.6
3 1  PZE_101216412 267537 - 267568 171.5 12.3 2.5
4 3  PZE_103098655 158895 - 161562  65.7 30.9 5.1
5 3  PZE_103152007 205694 109.8 11.3 2.4
6 4  PZE_104022348 23525 - 25088 49.6 25.7 4.4
7 5  PZE_105059330 58137 - 72409 66 29.1 4.9
8 5  PZE_105138874 193728 108.2 7.8 1.9
9 6  PZE_106090469 147428 71.3 6.8 1.7
10 7  PZE_107040665 66316 — 171898 75.4 13.6 2.7
11 7  PZE_107130789 171926 126.3 6.2 1.6
12 8  PZE_108018453 18973 42.2 11.8 2.4
13 8  PZE_108070788 123843 69.2 20.3 3.6
14 9  PZE_109020361 20598 - 20829 47.7 10.7 2.3
15 9  PZE_109089874 137784 78 10.3 2.2
16 9  PZE_109119196 153947 120.8 6.8 1.7
17 10 PZE_110050293 94969 - 106961 47.5 77 12
PH (cm) 1 1  PZE_101021455 12363 29.3 5.1 1.4
2 1  PZE_101106839 111278-150672  93.9 20.8 3.7
3 1  PZE_101184213 229073 145.9 13.7 2.7
4 2 PZE_102011812 5379 17.1 5.9 1.6
5 2  PZE_102076989 59015 - 62213 74.2 20.2 3.6
6 2  PZE_102169349 212884 128.1 9.6 2.1
7 3 PZE_103017768 10455 33.7 8.1 1.9
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PZE_103132826
PZE_103175533
PZE_104022152
PZE_104132688
PZE_105084182
PZE_105152260
PZE_106049618
PZE_107072030
PZE_107126258
PZE_108009237
PZE_108056704
PZE_108096469
PZE_109077113
PZE_110047799

188571 - 188925
221582 - 221583
23948 - 24979
215436 - 227111
101590 - 150275
203315

98629

128141 - 128146
168905

9875

101776 - 102656
152593 - 153140
124694 - 130885
89438 - 97551

94.8
135.2
49.7
120.7
73.1
120.3
30.4
66.4
115.7
25.6
57
85.5
70.9
46.6

11.8
7.1
13.8

9.6
7.4
21.2

18
10.4
7.3

8.1

17.3

19.7

77.4

2.5
1.8
2.7

21
1.8
3.8

3.3
2.3
1.8

1.9

3.2

3.6

12.2
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Figure S1 -log(p-value) curves of QTL detection for Dry MatiContent (DMC) with (a) the “Founder alleles”
model, (b) the “SNP within-group” model, (c) theybtid genotype” model. The chromosome number igated
on the abscissa. For the “Founder alleles” (a) thied“SNP within-group” (b) models, the graphic heé ttop
corresponds to the global effects at the markdrs.dther graphics correspond to the different campts of the
decomposed effects: from the top to the bottomfltheGCA, the dent GCA, the SCA. For the “Hybgénotype”
model, the graphic at the top corresponds to tbkeajleffect at the markers, the middle part toatiditive effect
of the markers and the bottom part to the dominafieet of the markers. The grey and black dotsespond to
the significance levels of tests below the thredhat the first step of the forward procedure, theebdots
correspond to those that were above the threshblg red squares correspond to the —log(p-valué)eoQTLs
that were included in the final multi-locus modé&h upper limit for the —log(pval) was fixed to 16.
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Figure S2 -log(p-value) curves of QTL detection for FemBlewering (DtSILK) with (a) the “Founder alleles”
model, (b) the “SNP within-group” model, (c) theybtid genotype” model. The chromosome number icatéd
on the abscissa. For the “Founder alleles” (a) thed“SNP within-group” (b) models, the graphic hé ttop
corresponds to the global effects at the markdrs.dther graphics correspond to the different camapts of the
decomposed effects: from the top to the bottomfltheGCA, the dent GCA, the SCA. For the “Hybgénotype”
model, the graphic at the top corresponds to tbkeajleffect at the markers, the middle part toattiditive effect
of the markers and the bottom part to the dominafieet of the markers. The grey and black dotsespond to
the significance levels of tests below the threghai the first step of the forward procedure, theelkdots
correspond to those that were above the threshblel red squares correspond to the —log(p-valué)efTLs
that were included in the final multi-locus modéh upper limit for the —log(pval) was fixed to 16.
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Figure S3 -log(p-value) curves of QTL detection for Plaweight (PH) with (a) the “Founder alleles” modéi) (
the “SNP within-group” model, (c) the “Hybrid gegpe” model. The chromosome number is indicatedhen t
abscissa. For the “Founder alleles” (a) and thePS#thin-group” (b) models, the graphic at the tapresponds
to the global effects at the markers. The otheplyjs correspond to the different components ofitfmmposed
effects: from the top to the bottom: the flint GQAe dent GCA, the SCA. For the “Hybrid genotypeidal, the
graphic at the top corresponds to the global efi¢¢he markers, the middle part to the additiieatfof the
markers and the bottom part to the dominance effetite markers. The grey and black dots corresporitie
significance levels of tests below the thresholthatfirst step of the forward procedure, the loés correspond
to those that were above the threshold. The redregqucorrespond to the —log(p-value) of the QTlad there
included in the final multi-locus model. An uppanit for the —log(pval) was fixed to 16.
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Table S1 Results of the QTLs detection for the “Hybridrdgype” model for the four studied traits: Dry Matt
Content (DMC), Dry Matter Yield (DMY), Silking DatéDtSILK), Plant Height (PH). For each QTL, the
chromosome (Chr), the marker (Mk), the genetic msiin cM (Gen pos), the physical position in kfighys
pos), the —log(p-value) of the additive part ofaffect (-log(Ad)), the —log(p-value) of the dominta part of its
effect (-log(Dom)), the —log(p-value) of its glokeffect (-log(Global)), the explained Rz in % (R#E indicated.

Trait Nb Chr Mk Gen pos Phys pos -log(Ad) -log(Dom) -log(Global) R2
DMC
1 1 PZE-101023852 28.7 14032 5,2 0,04 4,46 0,91
2 1 PZE-101107138 97.9 112147 5,6 0,17 4,83 0,98
3 1 PZE-101141198 107.1 182293 14,5 0,49 13,68 2,76
4 1 PZE-101210621 173.7 260145 6,2 1,17 6,10 1,23
5 2 PZE-102080558 82.3 64362 8,6 0,36 7,83 1,60
6 3 PZE-103142982 113.4 198521 6,1 0,45 547 1,24
7 4 PZE-104129789 130.5 210477 10,1 0,08 9,17 1,87
8 5 PZE-105100982 73.2 151631 6,6 0,77 6,19 1,10
9 6 PZE-106068323 51.9 121253 6,0 0,49 5,38 1,09
10 8 PZE-108075290 71 130926 10,9 0,60 10,22 2,09
11 9 PZE-109038235 58.7 56424 51 0,59 4,62 0,93
12 10 PZE-110007567 10.9 5875 51 0,17 4,34 0,87
13 10 PZE-110049918 44.3 94001 37,7 1,18 37,2 7,47
14 10 PZE-110060381 48.8 114656 12,1 1,71 12,32 2,48
DMY
1 2 PZE-102096468 86 111010 7,9 1,28 7,860 2,21
2 2 PZE-102160945 135.8 207038 5,0 0,04 4,251 1,20
3 3 PZE-103108225 76.5 169072 8.4 1,90 8,876 2,48
4 3 PZE-103125956 95.8 183577 53 0,09 4,522 1,28
5 4 PZE-104078143 74.5 152444 7.4 0,16 6,553 1,90
6 4 PZE-104129789 130.5 210477 5,6 0,36 4,988 1,44
7 5 PZE-105077552 65.2 87115 4,8 1,94 5,430 1,49
8 6 PZE-106055176 39.1 105598 51 0,19 4,404 1,25
9 8 PZE-108088583 77.5 145907 11,9 1,70 12,163 3,46
10 9 PZE-109052698 60.5 91043 4,9 0,32 4,252 1,18
11 10 PZE-110020953 33.7 27697 10,6 0,02 9,647 2,75
DtSILK
1 1 PZE-101138117 105.5 179183 4,8 2,90 6,306 1,53
2 1 PZE-101199598 164.9 248737 4,8 0,60 4,335 1,05
3 2 PZE-102018300 22.3 8782 8,0 1,16 7,881 1,91
4 2 PZE-102160945 135.8 207038 8,6 0,27 7,799 1,92
5 3 PZE-103109418 77.8 170117 6,0 0,13 5,237 1,27
6 4 PZE-104078143 74.5 152444 10,0 1,39 10,009 2,45
7 4 PZE-104117192 125.1 193348 53 0,30 4,654 1,14
8 5 PZE-105012348 12.9 5384 9,0 0,24 8,134 1,98
9 5 PZE-105077552 65.2 87115 11,0 0,00 10,042 2,44
10 5 PZE-105117653 89.7 174358 6,4 0,14 5,583 1,36
11 7 PZE-107132427 141.6 172725 7.8 0,17 6,930 1,67
12 8 PZE-108028681 49.8 26352 4,9 1,10 4,784 1,18
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13 8 PZE-108077879 71.8 133563 12,5 1,94 12,954 3,10
14 9 PZE-109098682 955 143862 52 0,12 4,494 1,09
15 10 PZE-110046358 421 87170 5,6 0,53 5040 1,24
16 10 PZE-110049918 44.3 94001 50,6 0,73 49,7 12,01
PH
1 1 PZE-101152239 117.8 195684 12,6 0,30 11,75 2,67
2 2 PZE-102037297 43.3 17988 10,1 0,41 9,30 2,11
3 2 PZE-102119036 93.8 160729 7,2 0,03 6,33 1,41
4 2 PZE-102168063 142.1 211948 4,4 1,83 4,94 1,08
5 3 PZE-103051361 495 56901 4,7 0,29 4,03 0,92
6 3 PZE-103102119 69.8 162433 50 0,71 4,63 1,02
7 3 PZE-103128864 98.8 185839 7,7 0,16 6,90 1,54
8 4 PZE-104129789 130.5 210477 5,8 0,40 512 1,16
9 5 PZE-105075570 64.1 83398 4,4 1,70 4,87 1,04
10 8 PZE-108036758 52.6 57215 8,5 1,00 8,20 1,86
11 9 PZE-109061773 64 103353 6,3 0,59 579 1,31
12 9 PZE-109082918 77.1 131575 5,6 0,27 4,93 1,13
13 10 PZE-110020737 33.7 27318 12,5 0,71 11,87 2,68
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Table S2 Results of the QTLs detection for the “SNP witgroup” model for the four studied traits: Dry Nat
Content (DMC), Dry Matter Yield (DMY), Silking DatéDtSILK), Plant Height (PH). For each QTL, the
chromosome (Chr), the marker (Mk), the genetic msiin cM (Gen pos), the physical position in kfighys
pos), the —log(p-value) of the flint GCA part of éffect (-log(GCAf)), the —log(p-value) of the d&ICA part of
its effect (-log(GCAd) ), the —log(p-value) of tBEA part of its effect (-log(SCA)), the —log(p-ue) of its global
effect (-log(Global)), the explained R2 in % (R& éndicated.

Trait Nb Chr Mk Gen Physpos -log -log -log -log R2
pos (GCAf) (GCAd) (SCA) (Global)

DMC
1 1 PZE-101107138 97,9 112147 4,01 3,63 0,17 6,31 1,42
2 1 PZE-101141198 107,1 182293 6,72 561 0,15 9,73 2,15
3 2 PZE-102116089 92,1 153797 1,86 6,73 0,91 7,04 1,58
4 2 PZE-102159268 134,4 205898 0,11 726 2,14 7,29 1,64
5 3 PZE-103142982 113,4 198521 4,95 2,35 0,67 570 1,30
6 4 PZE-104129789 130,5 210477 6,22 459 0,35 8,68 1,94
7 5 PZE-105096988 70,6 142855 5,26 1,26 0,72 510 1,17
8 6 PZE-106006210 5,2 7781 0,27 4,84 0,01 3,56 0,84
9 6 PZE-106090096 70 147212 7,53 6,71 1,40 12,01 2,62
10 8 PZE-108074836 70,8 130409 1,76 8,92 0,36 8,99 1,98
11 9 PZE-109057266 62,2 98436 4,64 1,15 0,23 4,07 0,95
12 10 PZE-110049918 44,3 94001 38,78 518 0,02 41,13 8,64

DMY
1 2 PZE-102120732 95 164884 8,96 3,59 0,10 9,81 2,95
2 3 PZE-103008521 9,4 4704 0,82 4,71 0,49 3,83 1,29
3 3 PZE-103124449 93,4 181769 0,71 12,18 0,17 10,66 3,33
4 4 PZE-104144717 147 233539 2,73 3,59 0,50 4,64 1,50
5 5 PZE-105077135 65 86222 5,23 342 0,14 6,77 2,10
6 6 PZE-106048775 29,9 97805 0,24 5,03 0,40 3,92 1,33
7 8 PZE-108073565 70,2 128542 3,69 12,84 0,81 14,40 4,42
8 9 PZE-109052698 60,5 91043 4,55 0,60 0,32 3,61 1,16
9 10 PZE-110045871 419 86698 5,27 7,23 0,02 10,20 3,16

DtSILK
1 1 PZE-101029748 35.2 17832 0,65 6,54 0,80 593 1,52
2 1 PZE-101138117 105.5 179183 7,02 0,30 0,70 599 1,56
3 1 PZE-101217474 180.1 268814 5,26 2,41 0,07 569 1,50
4 2 PZE-102018300 22.3 8782 1,56 8,25 0,63 8,38 2,11
5 2 PZE-102160945 135.8 207038 5,20 435 0,24 7,80 2,00
6 3 PZE-103026244 37.7 19256 1,02 6,71 0,50 582 1,50
7 4  PZE-104058608 65.7 112760 0,60 8,22 0,22 6,87 1,76
8 4  PZE-104126472 129.5 204417 3,38 3,72 0,13 502 1,33
9 5 PZE-105006205 7.5 3143 3,68 6,81 0,06 8,02 2,01
10 5 PZE-105077552 65.2 87115 6,56 509 0,21 9,82 2,47
11 5 PZE-105117617 89.7 174351 0,34 6,13 0,13 485 1,27
12 5 PZE-105138874 1125 193728 0,00 494 0,48 3,82 1,01
13 7 PZE-107132427 141.6 172725 9,88 0,83 0,53 8,85 2,23
14 8 PZE-108077879 71.8 133563 0,29 19,40 0,57 17,84 4,30

[y
(&)}
[y
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PZE-110049918 44.3 94001 47,23 12,82 0,69 57,53 13,72
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PZE-101091535
PZE-101150835
PZE-102032234
PZE_102084168
PZE-102115483
PZE-103100427
PZE-103109418
PZE-104019121
PZE-104126472
PZE-105094920
PZE-108038507
PZE-109061773
PZE-109121844
PZE_110035195
PZE-110094832

90,9
116,8
37,1
84
91,8
68,3
77,8
39
129,5
69,9
52,7
64
131,7
35
85,2

83644
194674
15025
71896
152503
160672
170117
19433
204417
139235
62847
103353
155733
66734
142069

1,94
7,42
3,48
0,24
8,42
0,67
0,12
5,50
0,28
8,63
6,24
4,08
2,41
5,40
4,90

3,27
5,91
5,64
4,44
3,61
6,75
27,23
1,21
8,15
2,20
1,41
8,17
5,59
8,20
0,83

2,81
0,45
0,71
0,65
0,61
1,67
2,48
1,20
0,53
0,17
0,60
0,33
1,57
0,37
0,34

5,50
11,24
7,48
3,50
10,02
6,81
27,10
5,43
6,89
8,35
5,89
9,59
7,10
11,07
4,09

1,15
2,39
1,62
0,79
2,15
1,44
5,31
1,22
1,45
1,83
1,33
2,06
1,54
2,36
0,94
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Table S3 Results of the QTLs detection for the “Founddel&s” model for the four studied traits: Dry Matt
Content (DMC), Dry Matter Yield (DMY), Silking DatéDtSILK), Plant Height (PH). For each QTL, the
chromosome (Chr), the marker (Mk), the genetic msiin cM (Gen pos), the physical position in kfighys
pos), the —log(p-value) of the flint GCA part of éffect (-log(GCAf)), the —log(p-value) of the d&ICA part of
its effect (-log(GCAd)), the —log(p-value) of th€A part of its effect (-log(SCA)), the —log(p-va)uef its global
effect (-log(Global)), the explained R2 in % (R& andicated.

Trait Nb Chr Mk Gen Physpos -log -log -log -log R2
pos (GCAf) (GCAd) (SCA) (Global)

bMC 1 1 PZE_101043600 50.6 29682 4,29 223 138 548 205
2 1 PZE 101139638 106.1 180401 10,32 555 0,19 11,37 3,35
3 2 PZE_102057464 67.1 36146 1,21 5,28 0,29 3,84 1,67
4 2 PZE 102115483 91.8 152503 2,48 454 3,26 7,95 2,60
5 2 PZE_102139190 113.6 187622 3,23 5,65 1,65 7,53 2,50
6 4 PZE_104114190 122 189586 3,42 490 041 549 2,06
7 5 PZE_105087042 67.5 111541 4,20 1,32 0,75 3,86 1,67
8 6 PZE 106084109 64.5 141285 5,47 590 0,56 7,70 2,55
9 8 PZE_108090858 79.2 148086 0,36 8,12 2,46 8,17 2,62
10 10 PZE 110050269 44.5 94965 33,4 6,98 0,46 345 791

DMY
1 2 PZE_102109928 89.3 141598 4,34 0,74 1,73 456 2,25
2 2 PZE 102136109 111.2 185694 5,36 0,22 2,37 552 2,55
3 3 PZE_103005573 6.2 3433 0,01 5,02 1,97 457 2,27
4 3 PZE_103108225 76.5 169072 2,36 1,80 2,74 493 2,33
5 3 PZE_103125892 95.8 183555 1,20 5,65 0,08 3,31 1,92
6 4 PZE_104138099 136.3 225269 1,83 4,47 1,95 586 2,66
7 5 PZE_105020816 23.5 10009 4,59 0,62 0,62 3,47 1,90
8 5 PZE_105078900 65.8 89718 5,93 2,61 041 569 2,57
9 6 PZE_106044414 25 93501 0,06 580 0,35 3,26 1,90
10 8 PZE_ 108062087 62.4 110990 3,25 12,31 0,96 12,10 4,39
11 9 PZE_109061773 64 103353 6,12 0,20 0,96 4,47 2,24
12 10 PZE 110051444 449 96836 2,86 453 042 493 2,39

DtSILK
1 1 PZE-101004387 7.7 3883 4,37 2,28 0,56 4,37 2,40
2 2 PZE-102021400 25.3 9973 1,09 4,05 0,96 3,77 2,22
3 3 PZE-103016459 20.4 9311 1,26 530 0,10 3,48 2,13
4 4 PZE-104034811 58.3 43970 2,02 6,75 0,74 6,02 2,98
5 5 PZE-105075954 64.3 83980 10,43 2,84 0,61 10,16 4,16
6 5 PZE-105166980 144.8 210286 0,47 3,32 3,68 561 2,71
7 7 PZE-107133704 143.1 173181 5,53 1,46 2,87 7,32 3,23
8 8 PZE-108077879 71.8 133563 0,39 11,26 0,54 8,21 3,63
9 10 PZE-110050273 44.5 94968 32,5 11,90 0,83 39,5 11,68

PH

PZE_101150835 116.8 194674 4,54 6,87 1,01 9,01 2,88
PZE_101233132 192.4 281321 0,13 4,42 0,57 279 1,42
PZE_102031753 36.6 14800 2,56 9,27 0,90 9,42 3,03
PZE_102116344 92.2 154273 9,96 575 0,20 10,67 3,32
PZE_103108648 77.1 169577 0,19 20,8 1,04 17,1 4,42
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PZE_104134644 132.4

PZE_105097751
PZE_108038053
PZE_109061773
PZE_109115897
PZE_110045521

70.9
52.7
64
122
41.5

218941
144099
61790
103353
152795
85840

0,24
4,71
5,22
4,85
0,01
2,52

8,16
0,61
0,50
8,94
4,68
7,94

0,94
0,62
0,41
1,74
0,50
1,41

6,05
3,34
3,29
11,71
2,59
8,74

2,17
1,57
1,59
3,49
1,34
2,80

231



232



Appendix Ill: Supporting information of Chapter 3
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Table S1 Variance components of the phenotypic data, egtigndirectly on field plot data, for the four varée
decomposition models presented in Giratidl. (submitted), for the different traits: dry mateemtent DMC (in
% of dry matter), dry matter yield DMY (in tons.rpea), female flowering time DtSILK (in days aft#i of
January), plant height PH (in cm). For each vagampeecision corresponding to 1.96 x the standenat ef the
estimated variance is indicated. We indicated tive and max values of the residual variances indifferent

trials.

Model Hybrid (1) Population Flint GCA + Population
structure + Dent GCA + structure + Flint
Hybrid (2) SCA (3) GCA + Dent

GCA + SCA (4)

DMC

Hybrid variance 3.68 £ 0.37 2.46 £0.27

Flint GCA variance 2.31+051 0.98 +0.44

Dent GCA variance 0.92 £0.53 0.96 £0.44

SCA variance 0.43+£0.54 0.53+£0.49

Residual variances:1.44 + 0.18 : 152 + 0.19 : 145 + 0.18 : 1.52+0.18:

min and max 6.15 + 0.60 6.05 + 0.59 6.13 + 0.59 6.04 + 0.58

DMY

Hybrid variance 1.24+0.14 0.94+0.11

Flint GCA variance 0.28 +0.20 0.30+0.19

Dent GCA variance 0.74+0.19 0.44 +0.17

SCA variance 0.22 +0.22 0.20+0.20

Residual variances:1.01 + 0.12 : 1.02 + 0.12 : 1.00 + 0.11 : 1.02+0.12:

min and max 3.53+0.35 3.56 + 0.34 3.53+0.35 3.56 + 0.35

DtSILK

Hybrid variance 2.38+0.24 2.06+0.21

Flint GCA variance 0.74 +0.38 0.51+0.37

Dent GCA variance 1.26 £+ 0.35 1.09 +0.33

SCA variance 0.39+0.37 0.47 £0.37

Residual variances:0.96 + 0.11 : 0.96 + 0.11 : 096 + 0.11 : 0.96+0.11:

min and max 6.12 + 0.57 6.11 + 0.57 6.13 +0.57 6.12 + 0.57

PH

Hybrid variance 154.7 £ 15.7 97.6 +10.7

Flint GCA variance 42.9+22.9 384174

Dent GCA variance 92.8+21.6 45.1+16.0

SCA variance 19.3+23.2 13.4+£17.3

Residual variances:49.7 + 65 : 464 = 6.0 : 500 = 65 : 46.7%x6.0:

min and max 244.2 + 23.7 243.6 + 23.5 243.6 + 23.6 243.2 +23.5
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Appendix 1V: Résumé substantiel en francais
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Darwin en 1876 conclut apres de multiples obsemmatau bénéfice dans de nombreux cas de
la pollinisation croisée par rapport a l'autofécation. Cette observation a été par la suite
théorisée parallélement par Shull (1908) et E€@&) qui en se basant sur des observations
sur le mais 4ea maysL.) ont défini le concept d’hétérosis (Shull 1914)hétérosis se
manifeste tant au niveau inter que intra-spécifiqgDe se concentrera dans cette these sur
I'hétérosis intra-spécifique. L'’hétérosis du sélmmeur est le fait que lindividu issu du
croisement de deux parents d’une certaine natiugeé@s, populations, clones individus
hétérozygotes) est supérieur au meilleur de sehfgL’hétérosis du généticien correspond a
'avantage d’'un hybride par rapport a la moyenneseg parents. L’hétérosis est I'opposé
conceptuel de la dépression de consanguinité,aruespond a une réduction graduelle de la
vigueur suite a la reproduction sur plusieurs gatems d’individus apparentés. Son
importance differe selon le systéme de reprodugBapérieure chez les especes allogames) et
le caractére étudié. Les bases génétiques de rbisé&tésont peu connues mais plusieurs
hypothéses non-exclusives existent pour I'expliquier dominance, la super-dominance, la
pseudo-superdominance, la superdominance marginale.

Chez le mais, la théorisation de I'hétérosis pat EaShull a été accompagnée aux USA par le
développement d’hybrides. Les hybrides F1 pernwitaile produire a grande échelle les
meilleures combinaisons de gametes dérivés de téarigopulations. En 1922-1924 les
meilleurs hybrides, comme par exemple Cooper Cnosssentaient un avantage répétable
d’environ 10% par rapport aux meilleures variét@syations (Charcosset 2002). Des groupes
hétérotiques (structurant la diversité génétiquet)édé développés a partir des années 50 et les
variétés actuelles correspondent généralement aydwegles issus du croisement entre les
lignées appartenant a des groupes hétérotiques@mmptaires.

La valeur d’'un hybride se décompose traditionne#lietren deux parties (Sprague and Tatum
1942). La premiere est la somme des Aptitudes Géea la Combinaison (AGC) des deux
lignées parentales, chacune définies comme la walmyenne des hybrides obtenus par
croisement de cette lignée avec les lignées dupgrcamplémentaire. La deuxieme partie est
I'Aptitude Spécifique a la Combinaison (ASC) deé&are de lignées parents de I'hybride. C’est
la différence entre la valeur de I'hybride et séeuaprédite sur la base des AGCs. Dans un
programme de sélection, a cause de considératiatigues, toutes les combinaisons de lignées
inter-groupes hétérotiques ne peuvent étre évalpkénotypiqguement. Par conséquent, la
sélection est effectuée en deux étapes. Dans umigrdemps, les potentielles lignées
candidates de chaque groupe sont sélectionné&sisase de la valeur de leur descendance en

croisement avec une ou quelques lignées représestaiu groupe complémentaire, appelées
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testeurs. Dans un second temps, un nombre limitécamebinaisons entre les lignées
sélectionnées des deux groupes sont évaluées gemtifier les meilleurs hybrides. Dans ce
schéma, la majeure partie de la sélection esttafecdurant la premiére étape. A cause du
faible nombre de testeurs considérés, la sélediegrignées est basée sur une combinaison de
leur AGC et de I'ASC avec le(s) testeur(s). La cashgnsion de la part des AGCs et de 'ASC
dans la variation des caracteres d’intérét est@aséquent importante pour évaluer a quel point

le choix du (des) testeur(s) peut affecter I'estioradu potentiel de futures lignées.

L’étude des caracteres quantitatits des caractéres présentant une variation contireuguli

est le cas de la majorité des caracteres d’'intaggtmomiques, cherche a comprendre les bases
génétiques de ces caracteres complexes. Les @eitijénotypage développés depuis les années
80 permettent de rechercher des associations kestreariations moléculaires au niveau de
I’ADN et celle des phénotypes. On peut distingumndintéréts principaux : la compréhension
du déterminisme génétique des caracteres (détetdiQTL) et la sélection basée sur les QTLs
détectés (sélection assistée par marqueurs) aunguvaleur prédite de I'individu impliquant
I'ensemble des marqueurs (sélection génomique)z @seplantes, avec le développement des
marqueurs moléculaires (RFLP, AFLP puis SSR notamiméa détection de QTL s’est
développée essentiellement au sein de populatipasentales (Patersat al. 1988). L'essor
des SNPs et le développement du marquage molécuiauit-débit ont entrainé une forte
diminution des colts de génotypage ce qui a pediasgmenter le nombre d’individus
génotypés et le nombre de points de génotypagéea@wtuit des modifications dans la maniéere
de penser la détection de QTL et les méthodedeletisd. En effet, cela a permis de développer
la détection de QTL dans des populations a basgtigée large issues de plus de deux parents
et de prendre en compte en plus des informatiofiskBge, I'existence d’haplotypes communs
entre parents, définis par la présence de marqueaches en déséquilibre de liaison. Des
méthodes de type LDLA : « linkage disequilibriunddimkage analysis » ont été développées.
Cette révolution technique a aussi permis le déEment d’approches de sélection prenant
globalement en compte I'ensemble des marqueurgonge, ce qui a été défini sous le terme
de sélection génomique (Meuwisssral. 2001).

A notre connaissance, aucune détection de QTL iéa effectuée dans un dispositif
expérimental entre lignées issues directement gealations en ségrégation disponibles aux
premiers stades de la sélection dans deux grougiésoliques complémentaires. Avec le
développement des techniques d’haploides douldéssdlectionneurs peuvent directement

générer a chaque cycle de sélection des populaioadgrégation composées de lignées pures.
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Au lieu d'utiliser un faible nombre de testeurs ghoupe complémentaire pour évaluer les
candidats a la sélection, il peut étre plus pentitBévaluer directement des hybrides entre
lignées non sélectionnées des deux groupes. DetlteQTLs d’AGC et d’ASC permettrait
d’identifier les meilleures combinaisons hybridessgibles et d’optimiser I'amélioration de
futures lignées parentales au sein de chaque groupe

Dans ce contexte, I'objectif de cette thése estameprendre les bases génétiques de la valeur
hybride chez le mais pour la production de biomaBsar cela, la premiere partie du travail a
consisté a mettre en ceuvre une approche de détedtoQTL dans deux dispositifs
multiparentaux, correspondant chacun a un groupEdiigue (les cornés versus les dentés),
évalué pour sa valeur en croisement avec un teslielgroupe complémentaire. Dans un
deuxieme temps nous avons réalisé une détectiQTdedans un factoriel obtenus en croisant
deux dispositifs multiparentaux correspondant chazwn groupe hétérotique. Ce dispositif
nous a permis d’évaluer I'importance relative deSIC par rapport & 'AGC et de rechercher
les locus impliqués dans chacune de ses compos&mi@s nous avons estimeé quel était son

potentiel pour la mise en ceuvre de la sélectionméyue.

L'analyse de type « Linkage Disequilibrium Linkage analysis » de dispositifs
multiparentaux révele différents QTLs multi-alléliques pour la performance hybride

dans les groupes hétérotiques cornés et dentés daim

Ces travaux ont été publiés dans la revue Gengdéidd3écembre 2014 (Genetics 198 : 1717-
1734). Deux dispositifs de type « Nested AssoamatMapping » de mais, adaptés aux
conditions européennes, ont été dériveés a parirgieupes hétérotiques complémentaires
dentés et cornés, utilisés pour la production d'iads en Europe du Nord. Ces dispositifs ont
été créés dans le cadre du projet européen « GbmFBix familles biparentales dentées
(N=841) et 11 familles biparentales cornées (N=&iht gté génotypées avec 56110 marqueurs
SNP (Ganakt al. 2011) et évaluées sur testeur, en utilisant laékgcentrale du dispositif
réciproque. Cing caracteres ont été phénotypésonéenu en matiere séche, le rendement
ensilage, la date de floraison male, la date daiflon femelle et la hauteur de plante. Des
cartes génétiques consensus dentée, cornée et-amntee ont été construites, correspondant
respectivement a 21878 marqueurs (6808 positiometiggies), 20406 marqueurs (7272
positions génétiques) et 25472 marqueurs (8124iposigénétiques). Pour chaque dispositif,
différents modéles de détection de QTL ont étéigpes correspondant a différents codages

au niveau des alléles. Les alléles ont été défiaispar rapport aux lignées parentales, soit
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comme des alleles haplotypiques basés sur unaté@ear descendance (IBD) entre lignées
parentales, soit comme les alleéles observés aaumiges SNPs. Le regroupement des alléles
parentaux a été effectué pour chaque dispositiidel du package R « clusthaplo » (Leraix

al. 2014) en choisissant la taille de la fenétre ebasant sur la décroissance du déséquilibre
de liaison. Différents modeles de détection de Qilltilocus ont été testés. Le premier
correspond a un modéle connecté multifamille cotivenel. La connexion entre familles est
assurée par la lignée centrale et I'hypothéseaéstdue chaque parent porte un alléle différent
aux QTLs. Les deuxiéme et troisieme modéles testé$ des modeles connectés LDLA
multifamilles, utilisant le regroupement effectud’'ade de « clushaplo » (deux tailles de
fenétre différentes). Ces trois modeéles ont étéamiseuvre a 'aide du logiciel MCQTL_LD
(Jourjonet al.2005) en utilisant une méthode de détection QThmeée « iterative composite
interval QTL mapping » (Charcossatal. 2000) et un risque de type | de 10% au niveau du
génome en considérant toutes les familles enserhbléernier modele testé est un modele
LDLA simple marqueur, considérant que deux lignge®ntales présentant le méme alléle au
marqueur sont IBD pour ce marqueur. Ce modele anédéen ceuvre dans R en utilisant un
script R dérivé de I'approche basée sur un modeleermultilocus présentée dans Segeta
al. (2012) en considérant également un risque deltgpel 0% au niveau du génome. Ensuite,
les deux dispositifs ont été analysés conjointement utilisant le modéle connecté
conventionnel. Les effets des QTLs détectés aamalyse conjointe ont été testés dans chacun
des deux dispositifs pris séparément.

Sur la base de la décroissance du déséquilibiiaideri deux tailles de fenétre glissante ont été
choisies pour effectuer le regroupement haplotypig@ et 5cM. Dans chaque dispositif, la
fenétre glissante de 5 cM a conduit a un nombriéetka ancestraux plus important. Ce nombre
varie le long du génome. Le regroupement est pip®itant dans les régions télomériques que
centromeériques, ou le nombre d’alléles ancestrats@uvent proche du nombre de lignées
parentales.

Entre cing et 16 QTLs ont été détectés selon leatepde caractére et le groupe génétique
considérée. Dans le dispositif corne, un QTL majéRP=27%) présentant des effets
pléiotropiques, a été détecté sur le chromosomeeautres QTLs présentent des effets plus
faibles (R2<10%). En moyenne les modeles de typeA.Dnt détecté plus de QTLs mais
expliqguent un plus faible pourcentage de la vagahe modele connecté pour quasiment tous
les caracteres explique un pourcentage de varf@osemportant, ce qui est en accord avec le
fait que la plupart des QTLs présentent des sa@liéiques avec des valeurs relativement

continues des effets. En comparant les positioagdd.s détectés dans chacun des dispositifs
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par le modéle connecté conventionnel, seuls 15%dés ont été trouvés comme communs

aux deux dispositifs.

Table 1 Nombre de QTLs détectés (Nb) et pourcentagaéafles variance expliqué par les QTLs détectés (R2)
pour les cing caractéres dans les deux disposéjarés pour chaque modele et dans le disposiiibicd pour le
modéle connecté. Le nombre total de QTLs détectésensemble des caractéres et le pourcentage madge
variance expliqués (colonne « Total ») sont ind&ju

DMC DMY DtSILK DtTAS PH Total
Nb R2? Nb R2? Nb R2? Nb R2? Nb R2? Nb R2
(%) (%) (%) (%) (%) (%)

Dent
Connected 12 514 8 32.7 11 523 7 41.2 14  57.%2 46.9
LDLA - 5cM 15 51.1 5 22.5 12 53.7 11 49.2 13 54.156  46.1
LDLA - 2cM 16 536 6 234 12 532 9 451 12 49555 45.0
LDLA - 1- 12 374 5 18.6 11 432 7 33.3 10 36.445 33.8
marker
Flint
Connected 8 46.0 11 486 15 69.3 12 653 9 52.35 56.3
LDLA - 5cM 11 49.2 10 419 14 675 13 61.1 10 51.758 54.3
LDLA - 2cM 8 42.1 12 453 11 62.0 14 62.2 11 51.956 52.7
LDLA —1- 7 36.1 11 39.0 16 61.7 16 580 9 41.959 47.3
marker
Joint
Connected 18 54.6 16 455 15 59.7 17 614 21 61.27 56.5

L’analyse conjointe des deux dispositifs a perneisiétecter 87 QTLs soit entre 15 et 21 QTLs
selon le caractere. Parmi ces derniers, entre 2iotaison femelle) et 41% (floraison male)
étaient significatifs dans les deux groupes hétgues. Pour chaque caractere, un nombre
supérieur ou égal de QTLs a été détecté avec Ys@alonjointe que dans les analyses par
groupe hétérotique. Toutes les lignées présenesnQd Ls avec des effets positifs et négatifs
sur le rendement. La présence d’alleles favoratdes les deux groupes ouvre des perspectives
pour I'amélioration de la production de biomassenthis ensilage par sélection assistée par
marqueurs. Contrairement aux autres études suréadisees dans des dispositifs NAM évalué
per se les QTL trouvés dans notre étude corresponddesaaractéres mesurés sur hybrides
(lignées croisées a un testeur) qui refletent thraent la variation génétique utile en sélection
dans les deux groupes hétérotiques.

Une efficacité variable des différents modeéles é@ation de QTL selon les caracteres et la
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région a été observée ce qui montre la complémgntes différents codages alléliques pour
déchiffrer les séries alléliques. Contrairemenea €tudes précédentes (Baretohl. 2013), un
clair avantage des modeles LDLA utilisant I'infortioa haplotypique n’a pas été observe ce
qui est cohérent avec le faible apparentemenigiesds parentales de nos dispositifs. Le faible
nombre de QTLs communs entre les deux groupesromnfiancienne divergence des groupes
hétérotiques cornés et dentés : plus de 500 amgi{lom and Charcosset 2011). Peu ou pas de
QTLs communs ont été détectés pour le rendemeilag@assoit via I'analyse conjointe soit
par comparaison directe des QTLs détectés dammsdgses par groupe hétérotique. Ceci peut
étre di au fait que le rendement ensilage, costrant a la floraison (et indirectement au
contenu en matiére seche) a été soumis a uneisgldoectionnelle et non stabilisatrice. Cette
sélection directionnelle a pu avoir tendance a files alleles différents entre les deux groupes

hétérotiques.

La détection de QTL sur des hybrides de maisZga mays L.) dérivés de deux dispositifs
multiparentaux a permis la détection simultanée deQTLs d’aptitudes générales et

spécifique a la combinaison pour les performancessilage

L’objectif de ce travail était d’évaluer si, graae génotypage dense maintenant disponible a
moindre codt, il peut étre plus pertinent d’évalaiectement des hybrides entre lignées
candidates de deux groupes génétiques plutdt gsienglerides avec un faible nombre de
testeurs du groupe complémentaire. Par rapporeaéualuation sur testeur, un tel dispositif
permet de décomposer les performances hybrides@n & ASC (composantes qui sont
confondues dans le cas d’'une évaluation sur tgstéde réduire d’'un facteur deux le nombre
d’hybrides a phénotyper. Détecter des QTLs d’AGQI'ASC permettrait d’identifier les
meilleures combinaisons hybrides possibles et dioper 'amélioration de futures lignées
parentales au sein de chaque groupe. L'objectitatte partie est d’estimer I'importance
relative d’ASC et de I'AGC dans un tel dispositifdéévaluer son intérét pour la détection de
QTL d’AGC et d’ASC. Ce travail s’inscrit dans ledra du projet SAM-MCR financés par 7
entreprises de sélection privées (Caussade, Eucahsagrain, Maisadour, Pioneer, RAGT et
Syngenta) membres de I'association Promais. P@uéncette stratégie basée sur un factoriel,
un dispositif multiparental corné et un denté érdt crées (Figure 1). Pour chaque groupe
hétérotique, six populations biparentales ont étgelbppées a partir de quatre lignées
fondatrices et les lignées de ces populationsténtréisées avec celles de I'autre groupe selon

un factoriel incomplet. 1044 hybrides cornés-demésété obtenus par croisement de 863
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lignées dentées et 879 lignées cornées. Les hnids fondatrices (quatre cornées et quatre
dentées) ont été génotypées avec une puce llIBBIKaSNPs (Ganal et al. 2011) et les lignées
parentales des hybrides avec une puce Affymetrig®18480 SNPs. Seuls les marqueurs
PANZEA communs aux deux puces et polymorphes obeZdndateurs ont été considéres.

Apres filtres sur le taux de données manquantkétdiozygotie et la fréquence de l'alléle

minoritaire, 9643 marqueurs ont été gardés. Apltess sur les lignées parentales, 1758 lignées
(875 dentées et 883 cornées) ont été considéréesapmuite des analyses. Une carte génétique
consensus cornée-dentée a été construite et etiteéa de 9548 marqueurs polymorphes dans

au moins un des deux groupes hétérotiques.
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Les hybrides ont été phénotypés pour le rendenmesilage, la matiere séche (% poids frais),
la floraison femelle (jours aprés semis), la hautluplante (cm) dans 8 environnements (4 en
2013 et 4 en 2014) dans le nord de la France Atlemagne. Les essais ont été mis en place
selon un dispositif de type « augmented p-rep soetprenaient 1088 parcelles. Dans un
environnement donné, les hybrides entre les guiginées fondatrices et environ 17% des
hybrides expérimentaux ont été évalués deux fois.

Différents modeles ont été mis en ceuvre pour éevadtu@art de 'AGC et I'ASC dans la
variance génétique. lls ont été mis en ceuvre sutdanées parcellaires concomitamment a la
correction pour les hétérogénéités spatiales. Danpremier modéle, il n'y a pas de
décomposition de la valeur hybride. Dans le secinda prise en compte de la structure en
populations (6 populations cornées, 6 populatiaméaks, 36 interactions). Dans le troisieme,
il y a décomposition de la valeur hybride en AG@née, AGC dentée et ASC. Dans le dernier,
il y a prise en compte de la structure en populadibdécomposition en AGC cornée intra-
population, AGC dentée intra-population et ASC darpopulation. A partir de ces
décompositions, des parametres synthétiques sogétrpicalculés. Les héritabilités au sens
large sont fortes : entre 0.814 (rendement) etX)(Bftiere séche), tout comme les héritabilités
intra-population : entre 0.767 (rendement) et 0.@ltBaison femelle). La part de la variance
génétique intrapopulation est élevée : entre 63(h&iteur de plante) et 86.7% (floraison
femelle). L’ASC explique entre 13.8 et 22.6% dedaiance hybride intra-population et entre
11.7% et 17.4% de la variance hybride selon lectara,

Trois modeles mixtes de détection de QTL ont ételd@pés dans ASReml-R (Butlet al.
2007 ; R Core Team 2013), considérant chacun uageodllélique différent, et ont été mis en
ceuvre sur les moyennes ajustées des hybrides.eb@girou modéle « Alleles fondateurs »
considere que chacune des huit lignées fondatpods un alléle différent au QTL (linkage
analysis). A chaque marqueur, les probabilités deatre lignées fondatrices dentées
(respectivement cornées) ont été inférées a ldidiegiciel Plantimpute (Hickegt al. 2015)
pour chacun des 9548 marqueurs cartographiés.dandemodéle ou « SNP intra-groupe »
considere directement I'allele au SNP mais degsstfes QTLs différents dans chaque groupe
hétérotique. Le dernier modeéle ou « Génotype déddtide » considere également directement
I'alléle au SNP mais suppose de plus que les effessQTLs sont identigues dans chaque
groupe hétérotique. Les données de génotypage mategupour les deux derniers modeles ont
été imputées a l'aide Beagle v3.0 (Browning andwBriaog 2009) et la détection a porté
uniquement sur les 4758 marqueurs cartographigsiahorphes dans les deux groupes. Pour

les trois modeles, on a considéré un seuil defgigtivité de 5% au niveau de I'ensemble du
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génome, basé sur le nombre de marqueurs effic&aasef al. 2008). Une procédure multi-
marqueurs a été implémentée composée de deux étapes sélection « forward » des
marqueurs suivie par une sélection « backward >tofal entre 42 et 54 QTLs ont été détectés
selon le modele. Les modeles « SNP intra-groupe«@2énotype de I'hybride » ont détecté
plus de QTLs au total et pour tous les caractemd & rendement. En considérant
arbitrairement les QTLs détectés a moins de 10cM dle I'autre comme identiques, seuls 16
QTLs ont été detectés par les trois modeles. @artant été détectés avec seulement deux
modeles, d’autres avec un seul. La plupart des Qddiectés avec les modéles « Alléles
fondateurs » et « SNP intra-groupe » sont sigrifgcaau sein d’'un seul des groupes
hétérotiques. Quel que soit le modéle, la plupest@TLs présentent de petits effets (expliquant
moins de 5% de la variation a I'exception du QTlup& hauteur de plante détecté sur le
chromosome 3 par le modéle « SNP intra-groupe due@TL détectés a 44.5 cM sur le
chromosome 10 par les 3 modeéles. Ce QTL expliqguean8% de la variance pour la matiére
séche et 13% pour la floraison femelle. Il corregpau géne de précocenmCCT12 QTLs
présentent des effets de dominance/ASC signifgcatrec un risque individuel de 5% et sont
localisés tout le long du génome. Les QTLs détemtés le modele « Alléles fondateurs » pour
le rendement, le contenu en matiere seche et keimade plante sont ceux expliquant le plus
de variance phénotypique. Pour la floraison feme#iesont ceux détectés avec le modéle « SNP
intra-groupe ». Considérant le meilleur modele polbague caractere, les QTLs détectés
expliquent entre 30.7 % (hauteur de plante, aveC)A$ 37.6 % (floraison femelle, avec ASC)
de la variance phénotypique.

Ce dispositif a donc permis de détecter des QTlgoautement dans les deux groupes
hétérotiques, sans utiliser de testeur. Chaquede/bpporte donc de I'information sur les deux
groupes, ce qui a moyens de phénotypage constamepd’ évaluer deux fois plus de lignées.
Des QTLs ont été détectés pour tous les cara@geestous les modeles et, comme dans I'étude
réalisée sur testeur, nous avons mis en éviderc®dks spécifiques de 'AGC cornée et de
I'AGC dentée. De 'ASC a été observée pour touschractéres mais peu de QTLs ayant un
effet sur ’ASC ont été détectés. On peut fairgpdthese que 'ASC est due a de nombreux
QTLs a faibles effets, a de I'épistasie etc. Enaitil’ utilisation de testeurs, on peut supposer

gue notre dispositif conduit a de meilleures edtiong des effets d’AGC des QTLs.
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La sélection génomique peut-elle modifier profondéemt les premiéres étapes d'un
programme de sélection pour la valeur hybride ? Cades performances ensilage de mais

(ZeamaysL.) d’hybrides obtenus dans un croisement de deuxigpositifs multiparentaux.

Le dispositif étudié est le méme que celui présdatss |la partie précédente. L'objectif de cette
partie était de chercher a prédire dans un tebgitples composantes d’AGC et d’ASC de la
valeur hybride chez le mais. En effet, avec laniegre d’haplo-diploidisation il est maintenant
possible d’obtenir directement de larges populatiedignées en ségrégation ce qui offre de
nouvelles possibilités pour revisiter les schémassélection pour les hybrides. Au lieu
d'utiliser des testeurs, on peut directement explame large gamme de combinaisons de
lignées parentales en créant directement les hgdbrdtre lignées non encore sélectionnées.
Ces données peuvent étre ensuite utilisées pahbraralles équations de prédiction de la valeur
hybride et identifier les meilleures combinaisdresméme modéle peut étre utilisé pour prédire
les AGC de toutes les lignées candidates et séfewtr les plus prometteuses pour un nouveau
cycle de sélection.

Les prédictions génomiques ont été effectuées gisant des modeles de type GBLUP
(Genomic Unbiased Linear Prediction) (Massragal.2013 ; Technowet al.2014). Le modéle
complet considére la structure en populations fisefixes ainsi que les AGC et 'ASC. Pour
la covariance entre les effets d’AGC, nous avorisnésl’apparentement entre lignées de
chaque groupe a partir des informations de margselga la méthode 1 de Van Raden (2008).
La covariance entre les effets d’ASC de deux hgsrid été calculée a partir du produit des
apparentements intra-groupe des lignées parermtatedeux hybrides (en faisant I'hypothése
d’'une absence d’apparentement inter-groupe). Deantas du modele présentant ou non la
structure en populations et/ou la composante d’ABCéte testées ainsi que des modeles
considérant des matrices d’apparentement baséésssalieles fondateurs et non sur les SNP
observés. La qualité de prédiction des différentsl@éles a été évaluée par validation croisée
en utilisant quatre cinquiéme du jeu de données |gonalibration et un cinquiéme pour la
validation et en répétant 100 fois I'échantilloneaba qualité de prédiction a été estimée via
la corrélation valeurs observées / valeurs préditese jeu de validation. En considérant pour
chaque caractére le meilleur modele, la corrélaidre données observées et données prédites
varie entre 0.652 pour le rendement et 0.771 pphalteur de plante. Le modele permettant
la meilleure qualité de prédiction est celui nenprg pas en compte la structure en populations
et considérant les matrices d’apparentement basgédes SNPs observés. La prise en compte

de 'ASC dans le modéle a un trés faible impacs peédictions génomiques sont meilleures
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que celles obtenues sur la base des QTLs danstie pacédente.

L’effet de la taille du jeu de calibration a égatrhété étudié. Pour tous les caracteres la qualité
des prédictions augmente avec la taille du jeuatibration jusqu’a atteindre un plateau quand
le jeu de calibration contient 12 individus par pigpion dentée-cornée (432 hybrides).
L'impact de la composition du jeu de calibratiodgalement été étudié : impact de la présence
de demi-fréres, impact de la présence d’hybridsasisles mémes lignées fondatrices. La
qualité de prédiction des AGCs dentées et cornées&tudiée. La précision observée sur leurs
prédictions est élevée et varie entre 0.739 (faraifemelle) et 0.827 (matiére seche) pour les
AGCs dentées et entre 0.830 (rendement) et 0.83@&idon femelle) pour les AGCs cornées.
Les prédictions génomiques appliqués dans notrposisf ont donc permis de prédire
précisément les composantes d’AGCs des lignéesatgates hybrides malgré le faible nombre
de contribution de chaque lignée au factoriel. Groire d’intéressantes perspectives pour

revisiter les schémas de sélection hybride.

Discussion générale

La compréhension de l'architecture génétique dalaur hybride chez le mais est importante
tant d’'un point de vue théorique que appliqué. D=atte these deux dispositifs ont été étudiés
mettant en jeu des hybrides : le premier des hgbralir testeur, le second des hybrides issus
d’'un croisement factoriel entre deux dispositifeimectés multiparentaux. Des QTLs ont été
détectés dans les deux dispositifs et des modélpgdiction génomique ont été mis en ceuvre
dans le second.

Un aspect important non pris en compte dans dedtgettant pour la détection de QTL que la
sélection génomique est la prise en compte desastiens GXE. De nombreuses applications
et perspectives existent, principalement concerteamteuxieme dispositif, pour lequel des
caractéres liés a la qualité de I'ensilage ontargeht été phénotypés. Des hybrides issus de ce
dispositif font actuellement I'objet d’évaluatiomyr étre inscrits au Catalogue Francais des
Variétés. Une amélioration des lignées parentadgssplection assistée par marqueurs peut
également étre envisagée. D’'un point de vue écaqpgminotre dispositif présente des
avantages par rapport aux dispositifs sur testaantga I'évaluation des lignées parentales,
puisqu’il permet pour un nombre donné de lignéeshdgue groupe de diminuer par un facteur
deux le nombre dhybrides évalués agronomiquemeégpendant il engendrerait un
changement des pratiques des sélectionneurs. Cresrcbes complémentaires sont nécessaires

pour évaluer I'intérét de notre dispositif par rapgpa un dispositif sur testeur et pour évaluer
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I'impact de modifications du dispositif expérimenfaombre de lignées par famille, nombre
d’hybrides évalués par lignées...) sur la précisiempgdiction des AGCs et des ASCs.
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Résume: Le mais Zea may4..) est une culture majeure présentant uou alléle observé au marqueur. Ces codages ontigpedemmettre en
hétérosis important pour les caractéres liés @ladsse. Pour exploiter ceuvre des modéles de types LA (Linkage Analysid)®UA (Linkage
ce phénomene, les programmes de sélection ont rgnisés en Disequilibrium - Linkage Analysis). Une complémaeitiéades modeéles
groupes hétérotiques et la majorité des surfackiséms correspond a a été observée. Certains modeles ont permis latd#tele QTLs multi-
des hybrides F1. La valeur hybride peut étre déosép en Aptitudes alléliques. Des QTLs différents ont été détectésdas deux groupes
Générales a la Combinaison (AGC) des lignées palemntet en hétérotiques, confirmant leur divergence ancieRmir le contenu en
Aptitude Spécifique a la Combinaison (ASC). matiere séche et le rendement, nous n'avons pestééte QTL a effet
L'objectif de cette these était d'apporter de n@weéclairages sur la majeur dans aucun des dispositifs a I'exceptiom dQTL corné de
valeur hybride, concernant tant la compréhensiosedadéterminismes floraison a effet pléiotropique dans le groupe éorBien que I'ASC
génétiques sous-jacents que sa prédiction. Deuxposiifs représentait 20% de la variance génétique intradiatipn totale pour
multiparentaux connectés ont été analysés, mestarjeu deux des la plupart des caractéres (sauf la hauteur deg)lentispositif factoriel
principaux groupes hétérotiques utilisés pour ladpction de mais n'a permis la détection que d'un faible nombre dd Qayant un effet
fourrage dans le nord de I'Europe : les cornéssetlentés. Le premier sur la dominance/ 'ASC.

dispositif était constitué de deux populationsygetNested Association Différents modeles de sélection génomique de tyBelW® ont été mis
Mapping (NAM). La population dentée comprenait damilles ceuvre dansle dispositif factoriel. Nous avongobtde bonnes qualités
biparentales et la cornée onze. Ces populationgténévaluées pour de prédictions, bien que la majorité des lignéeffinparentes que d’un
leur valeur en croisement avec un testeur du groapglémentaire. Le seul hybride. Nous avons montré qu'il était impottee calibrer les
deuxiéme dispositif était constitué d'un factogatre deux populations prédictions sur des hybrides issus de lignées apf#es aux hybrides a
multiparentales de lignées : une cornée et uneéddgitivées de deux prédire. Nos modéles ont montré leurs limites quafd capacité de
demi-dialléles entre quatre lignées fondatricess lignées ont été prédiction de '’ASC mais ont permis d’obtenir denhes qualités de
croisées entre elles selon un plan factoriel indetrgdin d’obtenir des prédiction pour les AGC des lignées parentalesreNétude ouvre de
hybrides inter-groupes. Pour les deux dispositifsphénotypage des nouvelles perspectives pour reconsidérer les schéimaélection des
hybrides a porté sur le rendement ensilage, leecoreén matiére séche,hybrides de mais. Les évaluations des lignées datedi sur testeur
la date de floraison femelle et la hauteur de plabes hybrides des pourraient étre remplacées par une évaluation dithgb obtenus selon
dispositifs NAM ont également été phénotypés pauldte de floraison un plan de croisement factoriel incomplet entreuges hétérotiques.
méle. Des évaluations complémentaires sont nécessaitescpmparer plus
Une détection des locus impliqués dans la variatles caractéres directement notre stratégie avec celle basée wtilidation de testeurs.
quantitatifs (QTL) a été mise en ceuvre en utilisiast modeles prenantCependant des premiers résultats encourageanéséonibtenus.

en compte différents codages alléliques : alldesldteurs haplotypes

Title : Genetic analysis of hybrid value for silage maizenultiparental designs: QTL detection and genoseiection
Keywords : maize, hybrid value, QTL detection, genomic sébegtsilage

Abstract : Maize ¢Zea maysL.) is a major crop presenting strongmultiallelic series at the QTLs, showing the impoxte of not directly
heterosis for traits linked to biomass. To expthis phenomenon, F1 considering the observed biallelic genotype. Dédfer QTLs were
hybrids are cultivated and breeding programs agarozed in heterotic detected in the two heterotic groups, highlightithgir long-term
groups. Hybrid value can be decomposed in Genemalb@ing Abilities  divergence. No QTL showed major effect for DMC ddilY except
(GCA) of the parental lines and Specific Combiniglity (SCA). one pleiotropic QTL for flowering time in the fligroup. The reciprocal
The goal of this thesis was to bring new insigbthe understanding andmultiparental design allowed the detection of Qidrsdominance/SCA.
the prediction of hybrid value and its componentssflage maize. To do However, very few QTLs had significant dominanceAS&Ifects even
so, two multiparental connected designs, involNiggrids between the if SCA represented around 20% of the within-genetidance, except
dent and flint heterotic groups, main heteroticug® used for silage for PH for which it was lower.

breeding in Northern Europe, were analyzed. Thst élesign consisted Genomic selection was conducted in the second mlesiong different
in two Nested Association Mapping (NAM) populatiansolving test- GBLUP models. We obtained good predictive abilitegen though
cross hybrids. The dent population consisted of lgrarental dent predicted hybrids were obtained through a highomplete factorial
families and the flint one of 11 biparental fansliefThe second designmating where the majority of the inbred lines wpeaeents of only one
consisted of two multiparental populations of inbli@es, one dent and hybrid. Variation within populations sharing thrdeunders with
one flint, derived from two half diallels betweeauf founder lines. populations used for calibration could be predicedficiently. Our
Inbred lines from both groups were crossed accgrtbran incomplete models showed a limited ability for predicting S®At predicted well
factorial to produce experimental hybrids. Hybndsre phenotyped for the GCA of the parental lines. This opens new peotsp for
dry matter yield, dry matter content, female floingrdate, plant height, reconsidering maize breeding. Indeed test-crodsi@ian, usually used
and only for the NAM designs male flowering date. in the breeding companies, could be replaced lglesicross evaluation,
Quantitative Trait Loci (QTL) detection using Lirdg& Analysis (LA) according to an incomplete factorial design, betwhe two heterotic
and Linkage Disequilibrium — Linkage Analysis (LD)Anethods was groups to improve. Further evaluations are neededdmparing the
performed in both designs. QTL detection modelsewfeund to be efficiency of this strategy with the one of tesbased designs, but first
complementary. Some of the QTL detection modetsaadtl us to detect obtained results are encouraging.
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