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2D superconductors perturbed by local magnetism: from Yu-Shiba-Rusinov bound states to Majorana quasiparticles

One of the present days goals of condensed matter physics is to create new systems with topological properties, especially in the field of superconductivity. One of the ways envisioned to create topological superconductors is to locally induce a magnetic interaction in the form of chains of magnetic impurities, vortices or magnetic clusters of ordered magnetic impurities. In this thesis we studied a set of effects from individual impurities to organized clusters interacting with two-dimensional superconductors. Using scanning tunneling microscopy and spectroscopy we considered two systems, monocrystals of 2H-NbSe 2 and monolayers of Pb/Si(111). Thanks to the two-dimensional electronic behavior of these two systems we show how the spatial extent of the bound states induced by magnetic impurities is considerably enhanced compared to the case of a three-dimensional superconductor. By combining these magnetic atoms using a self-assembly method we were able to create ferromagnetic clusters that lead to a topological superconductivity in Pb monolayers. In particular we present here measurement of topological edge states at the interface Pb/Si(111) and Pb/Co/Si(111). We also present the measurement of zero bias peaks in the center of larger magnetic clusters that sign the presence of Majorana fermions in these systems. Our results show that an adequate patterning of surfaces could realize topological patches and call for a pursuit of the efforts in the subject in order to be able to control Majorana fermions that could eventually lead to breakthrough in quantum computation.

Introduction xiii

L'un des buts de la physique de la matière condensée est à l'heure actuelle de fournir de nouveaux systèmes topologiques en particulier dans le domaine de la supraconductivité. L'une des manières envisagée pour générer des supraconducteurs topologiques est d'utiliser une interaction magnétique locale sous la forme de chaînes d'impuretés magnétiques, de vortex ou de clusters d'impuretés magnétiques ordonnées. Dans cette thèse nous avons étudié un ensemble d'effets en partant de l'étude d'impuretés individuelles en allant jusqu'aux clusters organisés en interaction avec un supraconducteur bidimensionnel. En utilisant la microscopie et la spectroscopie tunnel nous avons étudié des monocrystaux de 2H-NbSe 2 ainsi que les monocouches de Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. En raison du caractère électronique bi-dimensionnel de ces deux systèmes nous avons pu montrer que l'étendue spatiale des états liés induits par des impuretés magnétiques était considérablement augmentée en comparaison avec les supraconducteurs tridimensionnels. En combinant ces atomes magnétiques par auto-assemblage nous sommes parvenus à réaliser des clusters ferromagnétiques qui génèrent une supraconductivité topologique dans la monocouche de Pb. Nous présentons en particulier ici la mesure d'états de bords topologiques à l'interface entre Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] et Pb/Co/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. Nous présentons également la mesure d'états liés à zéro énergie au centre de clusters magnétiques signant la présence de fermions de Majorana dans ces systèmes. Nos résultats montrent qu'une structuration adéquate des surfaces permet de réaliser des patchs topologiques et appellent à une continuation des efforts de recherche sur ce sujet afin de pouvoir contrôler les fermions de Majorana observés qui sont susceptibles de conduire à des percées futures dans le domaine de l'informatique quantique.
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RÉSUMÉ

Introduction

Despite the century long history of superconductivity and the many works in the field, this phenomenon stills raises many fundamental questions, the question of the interaction between superconductors and localized magnetic disorder in particular. Recently, in relation with the emergence of the field of topological insulators, superconductivity was regarded as a potential new and powerful platform in which to create, observe and control topological excitations that could eventually lead to real-life applications in the field of quantum electronics. Due to their build-in electron-hole symmetry, superconductors are expected under certain conditions to enter a topological phase that have been predicted to host zero-bias Majorana bound states.

The question remains to know how to prepare such topological systems and ultimately manipulate the Majorana quasiparticles in braiding operations. The path we follow consists in studying the individual ingredients of topological superconductivity before ultimately combining them and produce robust zerobias modes. These ingredients are local magnetism, that is controlled by combining magnetic atoms and Rashba spin-orbit interaction that emerges at surfaces. We will thus study both aspects and spend a large part of this thesis discussing individual impurities before presenting results on ferromagnetic clusters.

This thesis aims at answering some of the fundamental questions of topological superconductivity by first understanding the role of systems dimensionality in the coupling between superconductivity and localized magnetic disorder. In order to understand how impurities couple we must first start by studying individual magnetic atoms in a superconducting condensate. We will demonstrate the dramatic expansion of Yu-Shiba-Rusinov (YSR) bound states by dimensionality effects in both 2D-like monocrystals and pure atomically 2D superconductors.

Because Rashba spin-orbit interaction arises at surfaces, the Pb monolayers are ideal systems in which to study topological superconductivity. By assembling local magnetic moments in ferromagnetic clusters we will show that we can obtain topological superconductivity in the helical regime that exhibits two nonequivalent edge states. In particular we will show that the behavior of these states is drastically different from the one of individual impurities as they are not affected by crystalline disorder at the atomic scale. Once we prove that we obtain topological superconductivity we can then study how vortices behave in these structures and induce zero-bias peaks that can be switched on and off using the STM tip.

This thesis is organized in 7 chapters as described below. The first two chapters are general discussion about the theoretical and experimental tools that will be used in the rest of the manuscript. Chapters 3 to 5 present experimental results observed by means of scanning tunneling microscopy and spectroscopy on two different systems which are 2H-NbSe 2 and monolayers of Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. The last chapter covers some of the others results that were obtained during this thesis about the Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayer system not related with local magnetism.

INTRODUCTION

technique of scanning tunneling microscopy and spectroscopy with which we probe superconductivity at the atomic scale. In this part we explain the measurements principle and detail particularly the case of a superconducting tip. We end by describing the experimental setup that we used at the INSP and the procedures used for data analysis.

Chapter 2: Magnetic impurities in a superconductor

The theme of this thesis is the interaction between localized magnetic moments and superconductivity. We discuss in this chapter the variety of theoretical approaches that were developed over time to describe this type of interaction.

We start chronologically by discussing the Abrikosov-Gor'kov theory that describes assemblies of randomly distributed classical magnetic moments in a bulk superconductor. We briefly present the theory and its main physical consequences. Before studying in more details the physics of Yu-Shiba-Rusinov bound states. In this part we go in depth inside the theory as we explain the role of dimensionality on the spatial extension of the wave function associated to individual localized magnetic moments. This part will be used in Chapter 3 and 4 to interpret our experimental results. We pursue this part on Yu-Shiba-Rusinov bound states by presenting a review of the literature on the STM measurement of these states. Finally we briefly mention the quantum limit of the Kondo physics as well as the spectroscopic signatures of the Fano lineshapes.

Chapter 3: Magnetic and non-magnetic impurities in 2H-NbSe 2 monocrystals

The third chapter presents the experimental results obtained on monocrystals of 2H-NbSe 2 in which were inserted magnetic impurities of Fe, Cr and Mn. We show in this chapter that the 2D-like electronic structure of this material leads to an increase by a factor 10 of the spatial extension of the Yu-Shiba-Rusinov bound states compared to bulk systems. We present tight binding calculations done by S. Guissart and P. Simon supporting our experimental data as well as joint-DOS calculation that helps us understand the contribution of the different parts of the Fermi surface to the electronic scattering. We discuss the relation between the positive and negative bias states and the phase of the associated wave function in the framework of the Rusinov theory and compare different types of impurities. We also present the results obtained when trying to deposit Co impurities on the crystal surface and the characteristic signature of non-magnetic Ta impurities in relation with the two gaps structure of 2H-NbSe 2 .

Chapter 4: Magnetic and non-magnetic impurities in Pb/Si(111) monolayers

This chapter presents the summary of our study of individual and disordered clusters of magnetic impurities in monolayers of Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. We discuss the effects of the atomic structure of the monolayers on the spatial structure of the Yu-Shiba-Rusinov bound states. We show that the link between the system dimension and the spatial extent of the states confirms the results obtained in the case of 2H-NbSe 2 . For the specific case of the √ 7 × √ 3 reconstruction we discuss the periodicity of the oscillations of the wave-function of the Yu-Shiba-Rusinov bound states in relation with the structure of the Fermi surface measured by ARPES. In the last part of the chapter we present the case of randomly distributed magnetic impurities in clusters. We show that the combined effect of individual Yu-Shiba-Rusinov bound states leads to a gap reduction over the clusters as well as a gap filling. These results are well reproduced by a simple calculation that uses the analytical formula derived for magnetic impurities in 2D systems.

Chapter 5: Magnetic clusters and topological systems

This chapter is dedicated to the study of topological superconductivity. We first discuss the effects of different ingredients needed to obtain topological superconductivity: Rashba spin-orbit interaction, triplet superconductivity and magnetism. We then present the results obtained by growing ferromagnetic Co clusters embedded in a Si substrate covered by a Pb monolayer and measured by using a superconducting tip. We show that we obtain edge states expected in the case of a topological superconductor put in close contact with a trivial superconductor. We detail the energy and spatial dispersion of those edge states and present the theoretical analysis performed in order to explain our results. We conclude the chapter by showing how the inclusion of vortices in topological domains leads to the emergence of Majorana xv bound states that can be controlled by switching of the magnetization of the Co clusters. The theoretical calculation presented in this chapter were also done in collaboration with S. Guissart, M. Triff and P. Simon who developed the necessary theory.

Chapter 6: The Pb/Si(111) monolayer: A playground for 2D physics

In this chapter we gather the results obtained for the Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayer without magnetic perturbation. This chapter first presents results covering the different phases existing in the Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayer (3 × 3, √ 3 × √ 3, SIC, HIC, √ 7 × √ 3) and the measurement of their electronic structure by scanning tunneling spectroscopy beyond the characteristic superconducting gap energy. The second half of the chapter is devoted to proximity effect. There we present the measurement of the proximity effect between a superconductor and a quasi-Mott system.

Chapter 7: Superconducting proximity effect

In this last chapter we discuss the superconducting proximity effect between monolayers of Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] and bulk-like Pb islands. We present measurement of superconducting correlations from the islands to the monolayer below and above the critical temperature of the HIC phase. We compare those results with calculations performed by J. C. Cuevas using the Usadel equations describing a superconductor in the diffusive limit. We show how the theory accounts well for our experimental results when calculating the superconducting order parameter self-consistently.

The conclusion summarizes the results obtained and presented in this thesis and give an outlook to the things yet to come in the domain of topological superconductivity and 2D superconductors and the possibilities offered by the results presented here. 

Superconductivity and scanning tunneling microscopy 1.1 Introduction

In this chapter we will present the main concepts and tools that will be used in the following of the manuscript. We will first briefly present an history of superconductivity before discussing the Bardeen-Cooper-Schrieffer (BCS) theory in more details. Building on the BCS theory of superconductivity we will present the Bogoliubov de Gennes approach and introduce the mathematical spinor formalism that was used for numerical calculations in this thesis. In the second part of the chapter we will discuss the experimental techniques of scanning tunneling microscopy and spectroscopy which will be used for the experimental probing of the local properties of superconductivity. We present as well the basic principles of the data analysis and sample preparation.

Superconductivity

Historical overview of superconductivity

Superconductivity is a phenomenon discovered in 1911 by Heike Kamerlingh Onnes in Leiden [START_REF] Onnes | The resistance of pure mercury at helium temperatures[END_REF]. In his laboratory he measured the resistivity of Hg as a function of temperature and observed a sudden drop of resistivity under 4.2 K. While the first response to this observation was disbelief he was able to prove that is was not caused by any error in the measurement process and that the zero resistivity measurement was real. The same experiment was repeated with many other elements and it was shown that superconductivity was more the rule than the exception in nature as only a few elements, such as Cu, Ag or Fe for instance, didn't experience this transition. Onnes received the Nobel Prize in 1913, not for the discovery of superconductivity but [START_REF]The nobel prize in physics[END_REF] For his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium.

Another important aspect of superconductivity was discovered by Walther Meissner et Robert Ochsenfeld in 1933 [START_REF] Meissner | Ein neuer effekt bei eintritt der supraleitfähigkeit[END_REF]. Meissner and Ochsenfeld discovered that a superconductor would expel any applied magnetic field and is therefore a perfect diamagnet. The most impressive consequence of this diamagnetism is the possibility to levitate a superconductor in a magnetic field strong enough. These two properties (zero electric resistance and perfect diamagnetism) are the two basic requirements for a material to be a superconductor.

The first piece of understanding in the field of superconductivity was provided by the brothers Fritz and Heinz London in 1935 [START_REF] London | The electromagnetic equations of the supraconductor[END_REF]. In their work they proposed the following relation between the current 2 CHAPTER 1. SUPERCONDUCTIVITY AND SCANNING TUNNELING MICROSCOPY density and the vector potential in the London gauge (∇ • A = 0) j s (r) = -n s e 2 m A(r), (1.1) where e is the elementary electric charge 1 , m the mass of the electron and n s is the density of electrons taking part to the superconductivity. This equations allows for the determination of the magnetic field inside a superconductor and leads to the introduction of the penetration length λ L defined as

λ L = c e mε 0 n s . (1.2)
This length describes the characteristic size over which an external magnetic field penetrates a superconductor and therefore the London theory serves as a theoretical framework to explain the Meissner effect. However the quantity n S introduced in the London equation is a phenomenological one and does not provide any deep understanding of the underlying phenomena. This theory nevertheless has the merit to envision superconductivity as a macroscopic manifestation of quantum mechanics.

London theory is still unsatisfactory as the equation describing this macroscopic effect is local in nature. In 1953, Pippard [START_REF] Pippard | An experimental and theoretical study of the relation between magnetic field and current in a superconductor[END_REF] built upon the previous theory by analogy with the non-local generalization of Ohm's law J (r) = σE(r) written in a metal [START_REF] Tinkham | Introduction to Superconductivity[END_REF] 

J (r) = 3σ 4πl R(R • E(r )) R 4 e -R/l dr (1.3)
with R = rr . The length l is related to the range over which an electric field E(r ) affects the current at a point r.

Pippard's theory leads to the definition of another characteristic length scale in superconductivity namely the coherence length ξ. This length is obtained by taking advantage of the Heisenberg uncertainty principle. Pippard considers that the electrons with an energy of the order of k B T c play the main role in superconductivity. These electrons thus have have a momentum in the range ∆p k B T c /v F with v F the Fermi velocity. Pippard considers that the electrons with an energy of the order of k B T c play the main role in superconductivity. These electrons thus have have a momentum in the range ∆p k B T c /v F with v F the Fermi velocity. From the Heisenberg relation ∆x∆p ≥ (we forget the 1/2 term as we only look for orders of magnitude here) we can obtain

∆x v F kT c . ( 1.4) 
We thus obtained a characteristic length and we define

ξ 0 = a v F kT c (1.5)
with a a dimensionless constant of the order of unity. This length scale can be interpreted as the smallest scale on which superconductivity can appear and the coherence of electrons is maintained. This constant plays more or less the same role in superconductivity in reaction to a vector potential as the mean free path in normal metals in reaction to an electric field. Pippard then proposes the following generalized form for the current density in a superconductor

J s (r) = 3n s e 2 4πmξ 0 R(R • A(r )) R 4 e -R/ξ dr (1.6)
where ξ is called the coherence length and in presence of scattering is defined by a combination of ξ 0 and l as

1 ξ = 1 ξ 0 + 1 l .
(1.7)

1 e > 0 and equal to 1,6.10 -19 C in the following.

SUPERCONDUCTIVITY

This expression is only true for l ξ while in all generality and one should write the correct form ξ = ξ 0 l. (1.8) Writing eq. 1.6 in this form allows (for a slowly varying A(r )) to find once again the London equation (eq. 1.1). Superconductivity is now equipped with a set of two characteristic length-scales, the penetration length λ L and the coherence length ξ. Depending on a relation between these two lengths we thus expect differences in the behavior of superconductors.

The next theory of superconductivity was proposed by Ginzburg and Landau in 1950 [START_REF] Ginzburg | Contribution to the theory of superconductivity[END_REF]. This theory is based on the previous work of Landau on phase transitions. The idea is here to find a free energy describing the state of the system as a function of temperature and magnetic field. Ginzburg and Landau proposed the following form for the free energy difference between the superconducting (F s ) and normal (F n ) state

F s (T, B)-F n (T, B = 0) = d 3 r α|∆(r)| 2 + β 2 |∆(r)| 4 + 2 4m ∇ i - 2e A(r) ∆(r) 2 + |B(r) -µ 0 H 0 | 2 2µ 0 .
(1.9) In this equation the parameters α and β are such that α(T ) = α 0 (T -T c ) with α 0 < 0 and β > 0. The form of the free energy is only valid close to the transition which justifies the form of α(T ). ∆(r) is the order parameter of the theory that will be different from 0 in the superconducting phase and equal to 0 in the normal phase. This term will play the same role as the superconducting gap when interpreted in the framework of the BCS theory. The mass term 1/4m multiplies a kinetic energy term which was originally postulated by Landau as an analog to the Schrödinger equation. Originally the form of this mass term was 1/2m * with m * the reduced mass of the electrons which is exactly equal to 2m due to the underlying electronic pairing. In the same way, the original writing of the charge term 4e/ was 2e * / where once again the pairing of electrons in the form of Cooper pairs leads to an effective charge equal to twice the electron charge. By minimizing the free energy of the system, Ginzburg and Landau found two equations The first equation describes the spatial evolution of the order parameter while the second one gives the current density in a superconductor. The superconducting coherence length is obtained in the framework of the Ginzburg-Landau theory as

ξ = 2 2m|α|
.

(1.12)

Interestingly enough, equation 1.10 served as an inspiration to the Gross-Pitaevskii equation describing the dynamic of an ultra-cold bosonic gas [START_REF] Gross | Structure of a quantized vortex in boson systems[END_REF][START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF]. The proximity between these two equations helps to understand the bosonic behavior in superconductivity, in accordance with the BCS theory. The Ginzburg-Landau theory was successful in the prediction of vortex lattices by Abrikosov in 1957 [START_REF] Abrikosov | The magnetic properties of superconducting alloys[END_REF] and is still very much used in the calculation of vortex configurations [START_REF] Roditchev | Direct observation of Josephson vortex cores[END_REF]. These equations also give a good understanding of the difference between superconductors of type I and II via the introduction of the quantity κ = λ/ξ.

• For κ > 1/ √ 2 superconductors will be called type I superconductors and will follow the Pippard equation.

• For κ < 1/ √ 2 superconductors will be called type II superconductors and will follow the London equation. This type of superconductors will present a magnetic field transition called the vortex phase.

BCS theory

In 1957 John Bardeen, Leon Neil Cooper and John Robert Schrieffer published their work [START_REF] Bardeen | Theory of superconductivity[END_REF] in which they propose their microscopic scenario for superconductivity. Their theory stems from the electron phonon interaction described by Frölich [START_REF] Frölich | Theory of the superconducting state. I. the ground state at the absolute zero temperature[END_REF] and suggested by the isotope effect [START_REF] Maxwell | Isotope effect in the superconductivity of mercury[END_REF][START_REF] Reynolds | Superconductivity of isotopes of mercury[END_REF]. A first step was provided by Cooper [START_REF] Cooper | Bound electron pairs in a degenerate Fermi gas[END_REF] who studied the problem of adding two electrons to the Fermi sea with a small attracting interaction between those electrons. He showed that the Fermi surface is unstable under such perturbation which tends to diminish the energy of the system.

Based on the Cooper problem that shows that the minimum of energy is obtained in the center of frame of two electrons, Bardeen, Cooper and Schrieffer considered the following reduced Hamiltonian

ĤBCS = k,α ε k ĉ † kα ĉkα -V k,k ĉ † k ↑ ĉ † -k ↓ ĉ-k↓ ĉk↑ . (1.13)
An energy cut-off is imposed on V such that it is non zero only for -ω D < E k < ω D (with ω D the Debye energy).

A few things can be said about this equation. First we place ourselves in the center of mass frame. This assumption is justified by the Cooper problem. The second thing that can be said is that the spin is conserved during the interaction and that the concerned spins come with opposite directions. This form comes from the assumption made that the fundamental interaction is of the form V δ(r) which only authorizes electrons of angular momentum l = 0 as the Fourier transform of the contact interaction leaves only the s-wave channel to be non-zero while other channels p, d and f give no contribution. This imposes, due to the Pauli principle, that the final state is globally antisymmetric. In all generality for an interaction that conserves the spin we could consider the following Hamiltonian

Ĥ = k,α ε k ĉ † k,α ĉk,α - k 1 ,k 2 ,k 3 ,k 4 ,α,β V k 1 ,k 2 ,k 3 ,k 4 ĉ † k 1 α ĉ † k 2 β ĉk 3 β ĉk 4 α . ( 1.14) 
This more general form is the one that should be used in the case of p-wave superconductivity as can be obtained when spin-orbit interaction is present in the problem. Here again a cut off at the Debye frequency has to be introduced in the precise form of the interaction V k 1 ,k 2 ,k 3 ,k 4 .

Starting from the less general Hamiltonian 1.13 and following the idea that the ground state of the system must be written in the form of a coherent state, Bardeen, Cooper and Schrieffer finally found the following wave function

|ψ BCS = k u k + v k ĉ † k↑ ĉ † -k↓ |0 , ( 1.15) 
to which is added the normalization condition

|u k | 2 + |v k | 2 = 1. (1.16)
The form of the wave function 1.15 allows for a physical interpretation of the BCS ground state. It is possible to see this ground state as a superposition of combinations of the Fermi sea (|0 ) and Cooper pairs (ĉ † k↑ ĉ † -k↓ |0 ). A given state |k ↑ (or its time reversed |-k ↓ ) is filled with a probability v k and empty with a probability u k .

In order to obtain the expression of the terms u k and v k , it is necessary to perform a variational calculation to minimize the mean value of the energy of the ground state.

E = ψ BCS | ĤBCS |ψ BCS .
(1.17)

This approach leads to the introduction of the quantity ∆ defined as

∆ = V ω D k u k v k . (1.18)
The final result for the terms u k and v k is the following

u k = 1 2 1 + ξ k E k , v k = 1 2 1 - ξ k E k ,
where

E k = ξ 2 k + ∆ 2 , ξ k = ε k -µ and ε k = 2 k 2
2m . The quasiparticle states of this system are then obtained by performing a Bogoliubov transformation introducing the fermionic excitation operators γk defined as a linear combination of the electronic operators ĉ and ĉ † such as

ĉk↓ = u k γk -v * k γ † -k , (1.19) ĉ † -k↑ = v k γk + u * k γ † -k . (1.20)
The γ and γ † operators will then diagonalize the BCS Hamiltonian with energies ±E k . The final result is that the density of states of a superconductor is given by

ρ(E) = ν 0 |E| √ E 2 -∆ 2 . (1.21)
This density of states is represented on Fig. 1.1.b. The term ∆ is an energy gap in the excitation spectrum of the superconductor and can be interpreted as the quantity of energy one has to provide in order to break a Cooper pair. Rigorously speaking excitations are always of positive energy, however in the semiconductor model, adding an electron to the system will be written as a positive energy excitations while adding a hole (or removing an electron) will be written as a negative energy excitation. Within the BCS framework the gap temperature dependence can be calculated and in particular we can find the following equation for the self-consistent calculation of the superconducting gap [START_REF] Tinkham | Introduction to Superconductivity[END_REF] 

ξ k E/Δ E k /Δ ρ(E)/ν 0 a b
∆ k = - l V kl ∆ l 2E l tanh βE l 2 . (1.22)
CHAPTER 1. SUPERCONDUCTIVITY AND SCANNING TUNNELING MICROSCOPY with V kl the strength of the contact interaction defined in eq.1.13.

Bogoliubov-de Gennes approach

A mean field approach of superconductivity is provided by the Bogoliubov-de Gennes approach [START_REF] De Gennes | Superconductivity of metals and alloys[END_REF] that was first introduced in order to describe the effect of inhomogeneities in superconductors. The principle is to consider the following Hamiltonian

ĤBdG = k,σ ε k ĉ † k,σ ĉk,σ + ∆ k ĉ † k↑ ĉ † -k↓ + h.c. (1.23)
where ε k is defined for a chemical potential µ = 0. This Hamiltonian is the Hartree-Fock development of the full BCS Hamiltonian. By applying a Fourier transform to the Hamiltonian 1.23 and introducing the following Bogoliubov transformation

ψr↑ = n γn↑ u n (r) -γ † n↓ v * n (r) (1.24) ψr↓ = n γn↓ u n (r) + γ † n↑ v * n (r) (1.25)
we obtain (see appendix .4) a set of equations for the terms u n and v n in real space

u n ε n = H e u n + ∆v n , (1.26) 
v n ε n = -H e v n + ∆ * u n , (1.27) 
With H e the free electronic Hamiltonian. Another interesting quantity one can compute within the Bogoliubov-de Gennes framework is the value of the gap in an auto-coherent manner. When looking at the problem of an inhomogeneous superconducting gap that can therefore be written ∆(r), one can show [START_REF] De Gennes | Superconductivity of metals and alloys[END_REF] that it obeys the following equation derived from eq. 1.22

∆(r) = V n v * n (r)u n (r)(1 -2f n ), (1.28) 
whith V the contact interaction and f n the Fermi-Dirac distribution at energy E n .

The main advantage of writing the Hamiltonian in the form of eq. 1.23 is the possibility to introduce the spinors Ψ † (k) = ĉ † k,↑ ĉ-k,↓ that result in a representation called the Nambu representation [START_REF] Nambu | Quasi-particles and gauge invariance in the theory of superconductivity[END_REF]. Using these spinors we can rewrite the Hamiltonian 1.23 as (see appendix .4)

ĤBdG = Ψ † (k)HΨ(k), (1.29) 
with H a matrix written as (for µ = 0)

H = ε k ∆ ∆ * -ε k . (1.30)
Diagonalizing the Hamiltonian is now only a matter of diagonalizing the matrix H, a task that can be easily performed analytically or numerically. The advantage of this method that we will use later is that when we start to include interactions such as spin-orbit or magnetism and a spatial dependence, the numerical diagonalization can still be easily implemented. Using Fourier transformation it is easily shown that the BCS term in the Bogoliubov-de Gennes Hamiltonian can be rewritten in real space as

H BdG-BCS = ∆ i ĉ † i↑ ĉ † i↓ + h.c. (1.31) 1.2. SUPERCONDUCTIVITY 7 
while the kinetic part is written using hopping terms t ij as

H kin = i,j t ij c † i c j . (1.32)
It is then still possible to define a Nambu spinor to diagonalize the Hamiltonian in real space. It is worth noting that such formalism introduces a degeneracy of the eigenvalues of the Hamiltonian due to the electron-hole symmetry introduced in the equations. Another remark can be made when studying a case with Rashba spin-orbit interaction. Because this interaction couples terms of different spins but same k vectors we need to expand our Nambu formalism to a Nambu-Gorkov basis that can be for instance written in the form of the spinors

Ψ † k = ĉ † k↑ ĉ †
k↓ ĉ-k↓ ĉ-k↑ [START_REF] Abrivosov | Methods of quantum field theory in statistical physics[END_REF]. In chapter 4 we will make use of Rashba interaction to explain and study topological superconductivity. This interaction is written in its first quantization form as

ĤRashba = α(k × S) • u n , (1.33)
where S refers to the electronic spin and u n the axis of the Rashba field that describes the direction along which the spatial inversion symmetry is broken. In the following we will take u n = u z . Let us then consider the same term in its second quantization form

ĤRashba = α k,µ,ν ĉ † k,ν k × σ ν µ • u n ĉµ k = α k,µ,ν ĉ † k,ν (k x σ ν y,µ -k y σ ν x,µ )ĉ µ k , (1.34) 
with α the strength of the interaction and σ the 2×2 Pauli matrices. The index µ and ν refer to the spin degree of freedom and in the matrix form of this equation to the row and column of the σ Pauli matrices. Using the Nambu-Gorkov spinors, a Hamiltonian resulting from the addition of a BCS Hamiltonian and a Rashba interaction will be written in its matrix form as .35) In this matrix, the angle θ describes the orientation of the vector k such that k x + ik y = |k|e iθ . From this matrix one can directly obtain the eigenvalues of the system in the form of the dispersion relation

H Rashba =      ξ k -iα|k|e iθ ∆ 0 iα|k|e -iθ ξ k 0 -∆ ∆ * 0 -ξ k -iα|k|e iθ 0 -∆ * iα|k|e -iθ -ξ k      . ( 1 
E k,λ,µ = λ ∆ 2 + µ(ξ k + kα) 2 , ( 1.36) 
where λ and µ are equal to ±1. This gives 4 different branches : two for the electrons and two for the conjugated solutions of opposite energy (that in both cases will be a mixture of electrons and holes one would consider in the simple semiconductor view).

It is useful to make some remarks concerning the construction of the matrices in the Nambu and Nambu-Gorkov formalism. First, due to the structure of the Hamiltonian and the necessity for it to be hermitian, the matrix describing the Hamiltonian must also be hermitian. When implementing this Hamiltonian numerically, this hermiticity is an easy thing to check by looking at the symmetry of the real and imaginary part of the resulting Hamiltonian (see Fig. for the diagonal terms. In this context the real part of the Hamiltonian is therefore fully anti-symmetrical inside each 4×4 blocs along the anti-diagonal direction. The message is that the commutation rules of the operators describing the system are fully encoded inside the matrix form of the Bogoliubov-de Gennes Hamiltonian. It is therefore often a good idea to start every calculation by checking that those symmetries are present before engaging in any more complex calculation.

On Fig. 1.2.c we show the density of states obtained from an s-wave superconductor in a two dimensionnal Rashba ground state. This figure is actually an histogram of the eigenvalues obtained from the diagonalization of the matrices written in the Nambu Gorkov representation. The two dashed lines on this figure represent the value of the energy gap ∆. Such implementation of superconductivity in a Rashba system is not correct. This is simply due to the fact that in the case of Rashba interaction, we witness the appearance of p-wave superconductivity. This p-wave superconductivity emerges from a modification of the ground state of the system for a phonon mediated electronic interaction in presence of Rashba spin-orbit. The correct term to include inside the Hamiltonian must possess a phase factor dependent on the orientation of the k vector [START_REF] Gor | Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state[END_REF]. We will discuss this point more in detail in Chapter 4.

Scanning tunneling microscopy and spectroscopy

The question we now have to ask is now how we will be able to experimentally probe the superconducting properties of the systems we are interested in. The experimental technique used throughout this thesis is 1.3. SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY scanning tunneling microscopy (STM) and spectroscopy (STS). This technique was invented in 1986 by Gerd Binnig and Heinrich Rohrer [START_REF] Binnig | Scanning tunneling microscopy[END_REF] and is based on the tunnel effect. The main idea behind STM is to consider a fixed sample and a tip moving over the sample without touching it. In this configuration a bias voltage is applied between the tip and the sample that induces a shift between the Fermi levels of the tip and the sample. The conduction electrons from the tip can then tunnel to the sample or the conduction electrons from the sample can tunnel to the tip, depending on the sign of the bias. The tip is controlled in the three spatial directions by different piezoelectrics that allow for a fine control of the position (see Fig. In spectroscopy mode, the electrons from the side with the higher chemical potential travel to the other side with a probability linked to the number of states available at the same energy. This mode is called elastic tunneling. Because the tunneling rate will be dependent on the density of states of both the sample and the tip, STS will be able to probe the electronic properties of the system under study. As we will discuss later, for superconductors the spectroscopy mode will provide information on the local electronic structure of the samples as it was done by Hess et al. [START_REF] Hess | Scanning-tunnelingmicroscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid[END_REF] for the vortices in NbSe 2 . The basic principle is to obtain conductance maps color-coded with the intensity of the derivative of the tunneling current (see fig. 1.4). Because the derivative of the tunneling current is directly related to the local density of states, the contrast of the conductance maps provides information on the local electronic structure and in particular is used to image the states (vortex cores, gap fluctuations, bound states...) that might exist inside the superconducting gap.

nm Low

Topographic measurements

The first and most commonly used mode of scanning tunneling is the microscopy mode. In this mode there are two possibilities when scanning the surface. The first possibility is to position the tip at constant current using a feedback loop. By measuring continuously the tunneling current the electronic behind the system regulates the extension of the z piezoelectrics in order to recover the current setpoint. The electronic current being exponentially dependent on the distance between the two electrodes, in first approximation the tip stays at a constant height of the surface. When simultaneously measuring the extension z(x, y) of the piezoelectric we obtain the topography of the sample. This mode is called constant current mode microscopy which is the one we will use all along this thesis.

The second mode is called the constant height mode in which the tip stays at the same position along z and is then moved laterally while recording the current. The inconvenient of this technique is that the absence of feedback in the z direction leaves the tip vulnerable to potential obstacles on the surface such as steps or any other types of defects. It is thus only used for flat small areas.

Spectroscopy

Normal tip

The microscopy mode can be combined with a spectroscopy mode that allows to obtain the dependence of the tunneling current as a function of the voltage bias between the tip and the sample. By making the assumption that the density of states of the tip is constant one can show that the derivative of the current with respect to the bias can be written as [START_REF] Bruus | Many-Body quantum theory in condensed matter physics[END_REF] .37) with f F D (E) the Fermi-Dirac distribution and ρ(x, E) the local density of states of the sample at the point x in real space. From this expression we observe that at absolute zero the derivative of the current is directly proportional to the density of states (DOS) and does not include any thermal broadening. A direct consequence of this fact is that we will try to work as much as possible at the lowest temperature accessible in order to avoid the broadening of the spectral features in the system we want to probe. Obviously we cannot work at absolute zero and for the case of our STM, working at 300 mK limits the spectral resolution to approximately 100 µeV ( 3.5k B T ). The term ρ(x, E) in equation 1.37 contains matrix elements that tend to privilege certain tunneling channels between the two electrodes. In particular these matrix elements induce a selectivity for k close to 0 that corresponds to slowly decreasing wave-functions in the vacuum.

dI dV ∝ - ∞ -∞ dEρ(x, E) ∂f F D (E -eV ) ∂E . ( 1 
It was shown by J. R. Schrieffer [START_REF] Schrieffer | Theory of Superconductivity[END_REF][START_REF] Bardeen | Tunneling into superconductors[END_REF] that in the case of tunneling between a superconductor with a gap ∆ and a normal metal one would obtain at zero temperature the following conductance

dI S /dV ∝ Re V √ V 2 -∆ 2 , (1.38)
namely the BCS density of states. At 0 K the derivative of the Fermi-Dirac distribution is simply a distribution δ(E) and thus only leaves in eq. 1.37 the density of states.

Superconducting tip

Another possibility for scanning tunneling spectroscopy is to use a superconducting tip. In this case, the tip S 1 possesses a gap ∆ 1 and in the case that we will study later, this gap is larger than the gap ∆ 2

2∆ 1 2∆ 2 ∆ 1 -∆ 2 a ∆ 1 ∆ 2 +∆ 1 d ∆ 1 +∆ 2 b ∆ 1 c Tip DOS Sample DOS Energy e f T«T c T≈T c2
Figure 1.5: Scanning tunneling spectroscopy using a superconducting tip at T = 0: a. We consider a superconducting tip with a gap ∆ 1 and a superconducting sample with a gap ∆ 2 < ∆ 1 . b. In the absence of in-gap states the tunneling is only possible for E bias = ∆ 1 + ∆ 2 . c. For an in-gap state at E = 0 the tunneling is allowed at E bias = ∆ 1 . d. For a continuum of states around the Fermi level, for a given bias sign, the electrons can only tunnel to half of the continuum for

E bias ∈ [∆ 1 , ∆ 1 + ∆ 2 ].
e. At temperatures small compared to the critical temperature of the sample no electronic current can occur at 0 bias. f. However for T smaller and of the order of T c the thermal broadening caused by the Fermi-Dirac distribution leads to the occupation of states on the other side of the superconducting gap and thus to the possibility for electrons to tunnel from sample to tip even at 0 bias.

of the sample2 . This configuration is presented on fig. 1.5.a. In order for electrons to tunnel from one electrode to the other, the Fermi level from one electrode has to be shifted at the minimum by the sum of both gaps ∆ 1 + ∆ 2 (fig. 1.5.b). At this point electrons will tunnel from the quasiparticle peak energy of one electrode to the quasiparticle peak energy of the other electrode. At sufficiently low temperature, the Fermi-Dirac distribution does not leak from negative energies to positive energies an thus the resolution of the spectroscopic measurements is not limited by the thermal broadening and is even enhanced by the sharp decrease at the coherence peaks of the superconducting gaps. As shown on fig. 1.5.f, for T ≈ T c 2 but still below T c2 , thermal broadening fills states at positive energy above the gap. In this case the convolution of the density of states of the two electrodes produces states at zero bias.

If we now consider a zero-bias in-gap state in our sample (like expected for a Majorana bound state for instance), as shown on fig. 1.5.c, the minimal bias at which electrons will be able to tunnel for S 1 to S 2 will correspond to the gap of the tip ∆ 1 . If this state is perfectly isolated we will obtain a sharp peak in the DOS at exactly ∆ 1 with a width relative to the intrinsic width of the tip quasiparticle peaks at T = 0 K. However if we are looking at a continuum of states or a dispersion of in-gap states (fig. 1.5.d) things are slightly different. The lowest energy at which the electrons will be able to tunnel will also be ∆ 1 due to the fact that states at lowest energy are filled and electrons cannot tunnel into them. However for any larger bias electrons will freely tunnel. In the case of an in-gap distribution of states (see fig. 1.5.d) a superconducting tip will thus allow to visualize half the states (below the Fermi level) at positive bias and half the states (above the Fermi level) at negative bias. The states of the continuum will be observed in the intervals

[∆ 1 , ∆ 1 + ∆ 2 ] and [-(∆ 1 + ∆ 2 ), -∆ 1 ]
. This is only valid at T = 0 K as temperature effects would affect the electronic distribution around the Fermi level and allow a partial filling of the states leading to a spectroscopic signal in between these two intervals.

Let us be more precise and consider the general expression for the tunneling current between the tip (T ) and the sample (S)

I(V ) ∝ dE [f (E -eV ) -f (E)] N T (r 0 , E -eV )N S (r 0 , E)T (r 0 , eV ).
(1.39)

In this equation, the function f (E) refers to the Fermi-Dirac distribution, N S,T to the density of states of the sample and tip respectively and T to the matrix elements. We consider a tip with a superconducting gap ∆ T and a sample with a gap ∆ S as presented on fig. 1.6.a. The development of this expression shows that (if ignoring the tunneling matrix elements) one can rewrite this expression in the form of the difference of two convolution products.

I(V ) ∝ (f N T ⊗ N S )(eV ) -(N T ⊗ f N S )(-eV ). (1.40) 
In fig. 1.6 we present the results of such calculation for a tip with a gap ∆ T such that the gap of the sample ∆ S < ∆ T . On figs. 1.6.a and b. we first treat the case of tunneling at two different temperatures (respectively 25% and 50% of the superconducting gap of the sample). The first effect that one witnesses is the appearance of peaks in the conductance inside the gap at energies equal to ±(∆ T -∆ S ). The presence of these peaks is explained by a temperature effect and they are absent when the temperature is low enough. Because of the Fermi-Dirac distribution, at finite temperature there exists some occupied states at E > ∆ S from which electrons are able to tunnel to the empty states of the tip for a bias that would bring the quasiparticle peaks of the sample to the level of the quasiparticles peaks of the tip, thus exactly ∆ T -∆ S . The same thing appears at negative bias when the situation is reversed. The main gap originates from the case discussed in fig. 1.6.b where, without taking into account any thermal effect, the empty states of the tip are brought in front of the filled state of the sample for a bias eV = ∆ S + ∆ T . This ) for both a superconducting tip (in blue) and a normal one (in green). The thermally induced broadening of the conductance does not exist when using a superconducting tip as the only width a peak might possess arises from the intrinsic width of the quasiparticle peaks of the tip. As we will discuss in-gap states in the next chapter, we computed on fig. 1.6.d the expected conductance at a temperature equivalent to 25% of the sample gap, of a sample possessing a pair of in-gap states at energies ±E S . The in-gap thermal peaks discussed in the previous paragraph are still present and on top of these we observe two pairs of peaks at energies ±(∆ T + E S ). The larger peaks at ±(∆ T + E S ) correspond to a configuration in which the bias is adjusted in order to make coincide the filled (emptied) in-gap state with the empty (filled) quasiparticle peak of the tip. Due to thermal effects the empty (occupied) states at zero temperature get occupied accordingly to the Fermi-Dirac distribution and are themselves able to create a current that produces peaks in the conductance at energies ±(∆ T -E S ). The amplitude of these secondary peaks is much smaller than the principal ones as their filling is only ensured by the tail of the Fermi-Dirac distribution. One should note that unlike what is to expect with a normal tip, in this configuration in-gap states are seen in the conductance curve in the form of peaks coming hand in hand with a dip of negative conductance. This negative conductance comes from the divergence in the BCS density of states at the energy of quasiparticle peaks from which electrons will tunnel to in-gap states. Tunneling between in-gap states and quasiparticle peaks does indeed lead to a current larger than the one obtained by tunneling from in-gap states to the continuum of the tip for |V | > ∆ T . At one point a decrease in the tunneling current is thus to be expected. This decrease will translate as a negative conductance in the dI/dV curves.
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Finally, on fig. 1.6. e. and f. we present the case of an in-gap state at zero-energy (such as a Majorana peak for instance). In this last configuration, the two pairs of peaks discussed in the previous paragraph merge together and only leave a single pair of states at energies ∆ T . This case corresponds to the one schematically described in fig. 1.6.c. All the measurements presented in this thesis were performed on the M3 STM at the INSP (Fig. 1.8). This STM is a home-built STM working at a minimum temperature of 300 mK at a base pressure of 10 -11 mbar with the possibility to apply a magnetic field up to 7 T.

M3 microscope

The system is constituted of two main parts: the STM chamber and the preparation chamber. The sample is introduced via a load lock at a minimal pressure of around 2.10 -8 mbar. The Pb monolayers used in this thesis were prepared into the preparation chamber under high vacuum by means of molecular beam epitaxy (MBE). The evaporator possesses three cells and in addition to Pb we can also deposit Co and Cr. The quantity of material deposited by MBE is calibrated using a quartz microbalance (see fig.

1.9).

The samples are then directly transferred into the STM chamber for measurement without encountering a pressure over 10 -10 mbar. The Si samples used for the preparation of the Pb monolayers were also prepared prior to the Pb deposition inside the preparation chamber by direct current heating as we will describe more precisely in chap. 4. This possibility to prepare our samples in such conditions allows for a very small contamination of the surface and therefore very clean samples.

The cryogenic part of the microscope is accessed from the STM chamber by lowering the STM inside the cryostat. The temperature of 300 mK is then obtained by means of 3 He condensation. The condensation process is limited in time by the quantity of 3 He available. The characteristic time one can expect from this apparatus is around 40 hours. As a consequence the maximum experimental time possible for one measurement without thermal variation is of the order of 37 hours when taking into account the time needed to stabilize the tip and to check the scan area beforehand. For all the STM/STS experiments presented here we used tips made from Pt/Ir wire soldered into tip-holders before being mechanically sheared by hand. The tips were then placed inside the preparation chamber in order to be outgassed at 300 • C before using them.

The scanning area on the sample is controlled by two sets of piezoelectric tubes controlling the rough and fine motion of the tip respectively. The rough motion allows for a XY movement around the whole surface of the sample and a Z movement allowing for a rough approach of the surface by eye. The fine motion is then able to scan a maximum size of around 6 µm in X and Y direction and 1 µm in the Z direction at room temperature. The approach of the tip to the surface is controlled by using both rough and fine movement along the Z direction.

Temperature modifies the response of piezoelectric tubes to an applied electrical potential. The X, Y and Z calibration of the STM must therefore be modified with the temperature. The consequence of this is a reduction of the available measurement area. For instance, when scanning at 300 mK the correction factor compared to room temperature is of 0.415 that limits the area accessible by the tip to 1200×1200 nm 2 . The whole system is controlled by the Matrix electronic from Omicron which allows for a simultaneous topographic and spectroscopic acquisition. The measurement is performed by alternatively measuring a topographic point and a spectrum. The two sets of data are obtained with different voltages and current setpoints. This difference in parameters introduces an additional measurement time needed to guarantee a good stabilization of the tip after the different voltage ramps.

The topographic measurements performed here were all obtained in constant current mode with a typical voltage gap of 50 mV and a current setpoint of 40 pA. The spectroscopic measurements were performed with a typical voltage gap of 5 mV and a current setpoint of 120 pA.

Data analysis

The data obtained on the M3 microscope are processed via a simple program I wrote using the Python language.

Topographic data

The raw topographic data often comes with a slope that has to be corrected in order to correctly interpret our results. The slope is subtracted on every topographic line by means of a linear fit.

SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY

Some artifacts can appear from such procedure. For instance a defect in the surface of an ill-placed step can give rise to discontinuity along the y-axis but these effects can be suppressed easily by either restricting ourselves to some part of the image for a reference slope or calculating the global slope of the scanned area in 2D.

Spectroscopic data

Figure 1.10: Smoothing and derivation procedure: On the left panel we present the superposition of a single raw spectrum (blue) with a spectrum smoothed using the Savitzky-Golay procedure (green). These spectra contain 1200 points and were obtained at 300 mK. On the right panel we present the derivative of the same spectrum using once again the Savitzky-Golay procedure. The dashed spectrum corresponds to the spectrum averaged over 500 spectra.

The main kind of spectroscopic data we acquire in our experiments is the signal I(V ). By taking the derivative of this signal we can obtain the local density of states (LDOS). The procedure by which we obtain the derivative dI(V )/dV must be carried out in a clean way due to presence of noise in the raw signal. The presence of noise is due to the experimental constraint of the 3 He condensation time. Because we have 37 hours for a measurement, we must divide this time between the topography measurement and the spectroscopy measurement. A topography lasts typically between 3 and 8 hours that leave about 30 hours of spectroscopy measurement. For a well spatially resolved map of 256× 256 points we are only allowed to a spectrum every 1 or 2 seconds. This would leave an irreducible noise even with a very stable tip.

We proceed by first smoothing the data using a Savitzky-Golay filter [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF]. The principle of this procedure is to perform the derivation by using a convolution of our data with a list of well known coefficients. This type of derivation has the effect of averaging over the noise by acting as a quadratic or cubic polynomial filter. The only parameter of this type of procedure is the size of the list used for the convolution that corresponds to an effective convolution over a discrete number of points in the spectra CHAPTER 1. SUPERCONDUCTIVITY AND SCANNING TUNNELING MICROSCOPY equal to this list size. This size depends on the noise present on the data and we typically use a size that stays smaller than the thermal broadening of the density of states of 3.5k B T . We give an example of a single spectrum mesured in 1.3 s before and after performing the smoothing procedure on Fig. 1.10 with 1000 points between -0.7 and 0.7 mV. In order to correctly normalize the set of spectra we measure in a conductance map we need to be able to have an energy window large enough in order to include not only the superconducting gap but also the side part of the spectra on which the density of states is approximately constant. This allows us to compare the spectra between themselves and correctly evaluate the density of states without being bothered by the local features induced by superconductivity.

While one individual spectrum may stay quite noisy, by averaging over a few spectra the non-coherent noise can be easily suppressed and we thus obtain clean spectra (i.e. representative of the probed area).

The origin of the noise can be diverse. The most common origin is the environment and the mechanical vibrations from talking in the room, loudly closing the doors in the corridor, the different construction works on the campus or the nearby subterranean train. The second type of noise we have on our signal comes from electromagnetic perturbations. The main frequency we have in our system is a frequency around 38 Hz induced by the 1K pot.

Once the derivative of the data has been collected into a single object we can play with it and perform different operations depending on what we want to show. For instance our program allows us to perform cuts through the data in order to extract a position and energy dependent LDOS map. It is also possible to average the spectra over a chosen area of our data set. Combining these tools and the different image processing methods (such as gaussian or median filters) allows for a large variety of possibilities and ways to represent the relevant information extracted from our measurements.

Chapter 2

Magnetic impurities in a superconductor

Introduction

As we have seen in the introductory chapter, the BCS theory describes superconductivity by means of couples of electrons forming Cooper pairs. The nature of the electrons forming these pairs is highly dependent on the considered system but the simplest and best understood case one can obtain is an s-wave superconductor in which the electrons forming the Cooper pairs possess opposite spins (↑, ↓). The Anderson theorem [START_REF] Parks | Superconductivity[END_REF][START_REF] Anderson | Localized magnetic states in metals[END_REF] states that in the case of such s-wave superconductor, only time reversal symmetry breaking interactions can induce in-gap states. Thus non magnetic impurities will not give any spectroscopic signature within the superconducting gap while magnetic ones will. Because the electrons inside a Cooper pair are of opposite spins, the interaction they experience leads to a Zeeman effect that tends to destroy the pair.

In this chapter we will discuss the theoretical aspects of the interaction of superconductors with magnetism. First we will look at how a random assembly of magnetic impurities affects the superconducting condensates in the framework of the Abrikosov Gor'kov theory [START_REF] Abrikosov | Contribution to the theory of superconducting alloys with paramagnetic impurities[END_REF]. After that we will study in details the Yu-Shiba-Rusinov (YSR) states [START_REF] Shiba | Classical spins in superconductors[END_REF][START_REF] Rusinov | Superconductivity near a paramagnetic impurity[END_REF][START_REF] Yu | Bound state in superconductors with paramagnetic impurities[END_REF] which are created by localized single impurities in a superconductor. We will review the different assumptions of the model and solve exactly the eigen-energy equation and study the form of the associated wave-function depending on the dimensionality of the system. Finally in the last part of this chapter we will briefly discuss the so-called 'impurity problem' in a normal metal in relation to the Kondo effect [START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF]. From this we will extract the necessary information to understand the difference between a classical and a quantum impurity. A review of the effect of impurities in superconductors can be found in [START_REF] Balatsky | Impurity-induced states in conventional and unconventional superconductors[END_REF].

Abrikosov Gor'kov theory of dilute magnetic impurities in a superconductor

The study of the interaction of magnetic impurities with superconductors was first introduced in the seminal work of Abrikosov and Gor'kov in 1961 [START_REF] Abrikosov | Contribution to the theory of superconducting alloys with paramagnetic impurities[END_REF] and later continued in many other papers both theoretically [START_REF] Skalski | Properties of superconducting alloys containing paramagnetic impurities[END_REF][START_REF] Shiba | A Hartree-Fock theory of transition-metal impurities in a superconductor[END_REF][START_REF] Zittartz | Impurity bands in superconductors with magnetic impurities[END_REF][START_REF] Schachinger | Paramagnetic impuritites in strong coupling superconductors[END_REF][START_REF] Sun | Comparison between d-wave superconductor with nonmagnetic impurities and s-wave superconductor with magnetic impurities[END_REF] and experimentally [START_REF] Woolf | Effect of magnetic impurities on the density of states of superconductors[END_REF][START_REF] Sugawara | Paramagnetic impurity effect in dilute superconducting La-alloys[END_REF][START_REF] Edelstein | Anomalous gapless superconductivity due to scattering from localized noninteracting spins[END_REF][START_REF] Ginsberg | Tunneling conductance for superconducting alloys with 3d magnetic impurities[END_REF]. The goal of this research is to study the mean effect of a given density of impurities over the density of states of the materials in which they are embedded. The Hamiltonian to add to the BCS Hamiltonian can be written as

H imp = i {v 1 (r -R i ) + v 2 (r -R i )S i • ŝ}, (2.1) 
where the sum is performed over all impurities with spin Ŝi in the system. The first term is a simple non magnetic diffusion potential with no effect on the spin of electrons and simply depends on the distance from the impurity i. This terms diffuses spins ↑ and spins ↓ in the same way. The second term is a b the spin diffusion term and in all generality the spin of the impurities S i must be considered in its operator form. However in the case of a large spin we can use the classical spin approximation in which the impurity moment can be considered fixed with no internal degrees of freedom. This term causes a Zeeman splitting of the paired electrons. The main assumptions of the Abrikosov-Gor'kov theory are the absence of correlation between the impurities and the classical nature of their spins. This can be translated mathematically as S = 0 (covering the random orientation of the spins of the impurities) and S i S k = 1 3 S(S + 1)δ ik (covering the absence of correlation between two impurities i and k). The second approximation of this theory consists to place the calculation in the framework of the lower order Born approximation. This approximation means that the impurity density is small enough to avoid coherent diffusion of electrons by multiple impurities. In this approximation, the self-energy can be written for the diffusive part as

Σ = n i d 3 k (2π) 3 v 1 (k, k )τ 3 G(k )τ 3 v 1 (k, k ),
with n i the impurities density. The magnetic part is similar to the diffusive part except for the term S • ŝ that should be taken into account.

From this self-energy it becomes possible to compute the density of states as well as the superconducting order parameter. The result obtained by Abrikosov and Gorkov is that the critical temperature of the superconductor evolves with the concentration of magnetic impurities. For a low concentration of impurities, they obtain a linear evolution of the critical temperature

T c = T c0 - π 4τ s , ( 2.2) 
2.3. YU-SHIBA-RUSINOV STATES 21 while at higher concentration, they obtain the following expression

T 2 c = 1 πτ 2 s ln πT c0 τ s 2γ . (2.3)
In these expressions, τ s is the characteristic diffusion time which is inversely proportional to the concentration of impurities and is directly related to the characteristic non magnetic and magnetic diffusion times (resp. τ 1 and τ 2 ). From these asymptotic behaviors one can deduce a critical concentration ρ cr for which the critical temperature of the material is 0 and therefore when superconductivity is destroyed (see appendix 7.5). Before completely closing the gap at the critical concentration, the density of states of an Abrikosov-Gorkov system is strongly modified, as shown on fig. 2.1.a. For low concentration of impurities, the first effect of magnetic disorder is to weaken the quasiparticle peaks. This diminution of the amplitude of quasiparticle peaks reveals the loss of coherence of the macroscopic superconducting wave function due to the random scattering and pair-breaking induced by the magnetic disorder. The second effect induced by magnetic disorder is a gap filling effect that will ultimately lead to gapless superconductivity (at which the gap in the excitation energy spectrum zero despite maintaining pair correlations and non zero transition temperature) before reaching the critical concentration described above. The qualitative growth of the impurity band inside the gap is shown on fig. 2.1.b.

In the case of magnetic impurities coupled between themselves with a variable magnetic strength (1/τ s = Cte), the Abrikosov Gor'kov is slightly modified [START_REF] Shiba | A Hartree-Fock theory of transition-metal impurities in a superconductor[END_REF]. In this case an impurity band appears inside the gap at the energy corresponding to the magnetic coupling between electrons and impurities. The spectral weight associated to this band grows in intensity with the strength of the interaction as shown on fig. 2.1.b. This case is the limiting case of a distribution of Shiba bound states that will be discussed in the next section.

Yu-Shiba-Rusinov states

Assumptions

Instead of an assembly of randomly dispersed magnetic impurities we now go and look at an isolated impurity. In the Abrikosov-Gorkov configuration, an ensemble of individual and non correlated spins lead to the destruction of superconductivity after a critical concentration (Fig 2 .2 top). We will now look at the case where impurities are sufficiently spatially separated to avoid the superposition of the perturbations they are associated to (Fig 2 .2 bottom).

We still consider a classical spin for the impurity and in addition to the magnetic coupling J, we allow the possibility to include a non magnetic interaction of strength K. The interaction Hamiltonian H Imp can therefore be written as

ĤImp = - JS 2 (ĉ † 0↑ ĉ0↑ -ĉ † 0↓ ĉ0↓ ) + K(ĉ † 0↑ ĉ0↑ + ĉ † 0↓ ĉ0↓ ) (2.4)
Because we will consider that the interaction with the impurity is mostly localized at the impurity center, the diffusion potential V (r) is approximated as δ(r) and this leads to the use of the electronic operators ĉ0 and ĉ † 0 where the index 0 refers to the site of the impurity. This interaction is superimposed to the mean-field BCS Hamiltonian written as

ĤBCS = k ξ k (ĉ † k↑ ĉk↑ + ĉ † k↓ ĉk↓ ) + ∆ĉ k↑ ĉ-k↓ + ∆ * ĉ † -k↓ ĉ † k↑ .
(2.5)

A discrepancy appears when it comes to the spaces in which we treat the problem. The magnetic and diffusive potentials are indeed better expressed in real space while the BCS Hamiltonian is more naturally written in reciprocal space. As we will later use a tight binding calculation to compute the density of states associated to the magnetic atoms in 2H-NbSe 2 we will homogenize the spaces in which we are working and transform the BCS Hamiltonian in the r representation. The first part of the Hamiltonian will be obtained in the form of a tight binding Hamiltonian where the t i,j coefficients will be derived from ab-initio DFT calculations fitting the ARPES data. The BCS interaction will be simply rewritten by noting that the Fourier transform of c k↓ c -k↑ is simply c i↓ c i↑ and finally we can write for the full Hamiltonian containing both superconductivity and magnetic and non-magnetic interaction

H BCS = i,j t ij ĉ † i ĉj + i ∆ĉ † i↑ ĉ † i↓ + ∆ * ĉi↓ ĉi↑ - JS 2 (ĉ † 0↑ ĉ0↑ -ĉ † 0↓ ĉ0↓ ) + K(ĉ † 0↑ ĉ0↑ + ĉ † 0↓ ĉ0↓ ). (2.6) 
In order to simplify this expression ∆ will often be chosen real.

Eigenstates

The energies of the YSR states are found using a Bogoliubov transformation (see Appendix .4). The principle of this transformation is to find a diagonalization of the full Hamiltonian in the form

H = E g + n,σ ε n γ † nσ γnσ , ( 2.7) 
where the operators γ are defined as follows Starting from the impurity interaction including both the magnetic and non magnetic potentials, we can write the following equations for the Bogoliubov coefficients u α (r) and v α (r) [START_REF] Rusinov | Superconductivity near a paramagnetic impurity[END_REF] 

ψr,↑ = n γn,↑ u n (r) -γ † n,↓ v * n (r) , (2.8) ψr,↓ = n γn,↓ u n (r) + γ † n,↑ v * n (r) . ( 2 
ωu α (r) = ξ(k)u α (r) + H imp αβ u β (r) + i∆(r)σ y αβ v β (r) (2.11) ωv α (r) = -ξ(k)v α (r) -H imp αβ v β (r) -i∆(r)σ y αβ u β (r) (2.12)
where we have explicitly written the indexes of the spinors v and u as well as those of the matrices H and σ. These equations are simply the Bogoliubov-de Gennes equations derived in the previous chapter to which were added the impurity terms. This system can be separated between the solutions for (u ↑ , v ↓ ) and (u ↓ , v ↑ ). The solutions of each system of equation can be obtained from the other by simply changing the sign of J. Writing the previous set of equations in the restricted space (u k↑ , v k↓ ) we now obtain the system

u k↑ = ν 0 (K + JS 2 )(ω + ξ k )u k↑ -∆(K -JS 2 )v k↓ ω 2 -∆ 2 -ξ 2 k (2.13) v k↓ = ν 0 -(K -JS 2 )(ω + ξ k )v k↓ + ∆(K -JS 2 )u k↑ ω 2 -∆ 2 -ξ 2 k , (2.14)
where ν 0 is the density of states at the Fermi energy. The solutions of this linear system of equations give us the energy of the Shiba bound states as a function of the magnetic and non magnetic diffusion potential. For convenience we introduce the parameters α = πν 0 JS/2 and β = πν 0 K and write the Shiba energies as

E Shiba = ±∆ 1 -α 2 + β 2 4α 2 + (1 -α 2 + β 2 ) 2 .
(2.15)

The ± values correspond to the electron and hole-like states. These energies are located inside the superconducting gap and are not dependent on the sign of J. The expression of the Shiba energies can CHAPTER 2. MAGNETIC IMPURITIES IN A SUPERCONDUCTOR be substantially simplified by the introduction of a scattering phase δ ± defined as tan δ ± = Kν 0 ± JS 2 ν 0 . We then have

E Shiba = ±∆ cos (δ + -δ -). (2.16)
We plot the evolution of the Shiba energy as a function of the magnetic coupling (and for K = 0) in Fig.

2.3

For J → 0 we tend to a limit where the impurity has a minimal effect on the condensate. Therefore the YSR bound states will be located at E S = ±∆. By increasing the coupling the states will then find their energy moving toward the Fermi level.

From fig. 2.3 we can observe that at one value of the magnetic coupling the energy of the Shiba bound state is exactly at zero. The point where this happens corresponds to the point where the energy associated to the coupling J becomes comparable to the strength of the superconducting interaction. This transition also corresponds to a different ground state for the system where it goes from a singlet spin state to a doublet spin state. The classical interpretation of this second ground state is that the electrons from the Cooper pairs get separated and one of the two stays linked to the impurity while the other one is left to evolve unpaired. The doublet ground state is similar to what is expected from a quantum impurity forming a Kondo doublet [START_REF] Hatter | Magnetic anisotropy in Shiba bound states across a quantum phase transition[END_REF]. After this point the classical spin approximation starts to fall apart and the ground state is different and calculations should be handled with care [START_REF] Bauer | Spectral properties of locally correlated electrons in a Bardeen-Cooper-Schrieffer superconcuctor[END_REF]. for which E Shiba = 0 as a function of the non magnetic coupling K

The YSR bound states are fully spin-polarized. This polarization arises from the fact that equations 2.11 and 2.12 are unchanged if one performs the exchange

(u ↑ , v ↓ ) → (v ↑ , u ↓ ).
By analyzing the crossover point for the Shiba energies as a function of the non magnetic coupling we obtain the relation πν 0

JS 2 = 1 + (πν 0 K) 2 (see Fig. 2.4).
This can be interpreted as follows: when increasing the non magnetic coupling, the diffusion of the electrons by the magnetic potential gets weaker in proportion. Therefore the bonding of the pair is less affected in the limit of large non magnetic potentials and the strength of the magnetic coupling needed to enter the Kondo singlet regime, and completely break the Cooper pairs, increases.

Writing the wave function of YSR states

We have explained above how a local magnetic interaction induces states inside the superconducting gap and discussed the physical interpretation of such states. Let us now compute the associated wave-function and study the effect of dimensionality on their spatial extent.

Formalism

We define the spinor in momentum space as:

Ψ(k nm ) = 1 N M jl e 2iπjn/M +2iπlm/N ψ(r jl ), (2.17) 
where the k nm are the allowed values for the k vector. N and M denote the number of atomic sites of lattice in a and b directions. If we apply the Hamiltonian to this spinor, we find:

[E -ξ nm τ z -∆ 0 τ x ]ψ nm = 1 N M (- JS 2 + Kτ z )ψ(r imp ). (2.18) 2.3. YU-SHIBA-RUSINOV STATES 25 
We can then infer this equation :

ψ(r jl ) = nm 1 N M e i2π(nj/N +ml/M ) [E 0 + ξ nm τ z + ∆τ x ] E 2 0 -ξ 2 nm -∆ 2 (- JS 2 + Kτ z )ψ(r imp ). (2.19)
From this equation by taking r jl = r imp , we can compute the amplitude of the wave function at the impurity site, and then the full spatial dependence of the Shiba wave function. The only two adjustable parameters are JS/2 and K when considering a given band structure.

2D vs. 3D

We can show easily with the relation ψ + (0)

ψ -(0) cos(δ -)
cos(δ + ) = 1 that the asymptotic forms (for r λ F = 2π/k F )of the eigenstates are given for a 3D system (as found by Rusinov [START_REF] Rusinov | Superconductivity near a paramagnetic impurity[END_REF])

ψ ± (r) = 1 √ N sin (k F r + δ ± ) k F r e -∆ sin(δ + -δ -)r/ v F , (2.20)
and for a 2D system [START_REF] Ménard | Coherent long-range magnetic bound states in a superconductor[END_REF] (see appendix .2):

ψ ± (r) = 1 √ N π sin (k F r -π 4 + δ ± ) √ k F r e -∆ sin(δ + -δ -)r/ v F . (2.21) N is a normalization factor defined in dimension n by 1 = d n k (2π) n |ψ + (k)| 2 + |ψ -(k)| 2 .
The comparison between the 2D case and 3D case is presented on Figs. 

Decay of the wave function

The main difference between the 3D and 2D cases concerns the decrease behavior of the wave function.

While in both cases we obtain a combined power law and exponential decay, the power law is different.

Due to what can be simply be seen as a Jacobian constrain in the calculations, the 2D case behaves as 1/ √ r therefore decaying much slower than in the 3D case.

From an experimental point of view this power law is the key ingredient when it comes to probing the fine structure of the wave function. In the case of a small amplitude YSR state the 1/r decay from the 3D case would dominate the LDOS and make more difficult to measure the oscillatory behavior at larger scales. The coupling of impurity by means of YSR bound states is also much more complicated in this case. However in 2D, for a same amplitude of the state on top of the magnetic impurity one can hope to extract more information from a spatially resolved STS experiment.

Phase of the wave function

The parametrization of the wave function by the terms δ ± shows us that these terms only depend on the energy of the in-gap states as E S = ±∆ cos (δ + -δ -). The spatially oscillating wave function is also solely determined by this energy. Because STS measures the density of states which is actually the proportional to |ψ(r)| 2 , the oscillatory behavior one is expected to observe on the conductance maps is related to twice the phase difference of the wave function between the electron and hole like parts.

State of the art experiments on YSR states

The first experimental probing of YSR states is due to Bauriedl et al. [START_REF] Bauriedl | Electron-tunneling observation of impurity bands in superconducting manganese-implanted lead[END_REF] in 1981 where the authors measured impurity bands of Mn atoms in Pb. The first STM measurement however can be found in the work of Yazdani et al. [START_REF] Yazdani | Probing the local effects of magnetic impurities on superconductivity[END_REF] dating back to 1997. This experiment was concomitant with new theoretical works such as [START_REF] Flatté | Local spectrum of a superconductor as a probe of interactions between magnetic impurities[END_REF][START_REF] Flatté | Local electronic structure of defects in superconductors[END_REF][START_REF] Salkola | Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors[END_REF] focused on the precise spatial behavior of the wave function. In the work of Yazdani et al. (see fig. 2.6.A and B.) the authors studied Mn and Gd atoms on a Nb crystal in order to reveal the in-gap states associated to the magnetic impurities interaction with the superconducting condensate. One of their important result was that the signal associated to the YSR states was almost non retrievable at distances of the order of 1 nm. This limited spatial extent did not allow for a precise measurement of the inner structure of the wave function close to the impurity. However they were able to show the existence of an asymmetry of the electron and hole-like peaks in the DOS over the magnetic atoms.

Yazdani work was done at 3.8 K, intrinsically limiting the resolution of the measurement. The first measurements at 300 mK are due to Shuai et al. in 2008 [START_REF] Ji | High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of Pb thin films[END_REF]. In this case the system used was a Pb thin film on Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] covered with impurities of Mn and Cr. Using a superconducting tip the authors were able to have a much more precise look into the structure of the in-gap states (see fig. 2.6.a to f.). What they observed was the existence of more than one Shiba peak as predicted for impurities with a larger range of the magnetic interaction. In this work the authors also studied the structure of Mn dimers spaced out by a few Å in order to probe the bonding and anti-bonding states expected to appear between two magnetic impurities. Just like Yazdani the spatial extent of the YSR bound state was limited to a distance of the order of the nanometer. The consequence of this fact was the extreme difficulty to draw any definitive conclusion concerning the spatial evolution of the wave function associated to the YSR bound states as it would be hidden by its power law decay.

A lot of work was later put into the understanding of the interplay between Shiba and Kondo physics especially using phtalocyanines molecules [START_REF] Franke | Competition of superconducting phenomena and Kondo screening at the nanoscale[END_REF][START_REF] Hatter | Magnetic anisotropy in Shiba bound states across a quantum phase transition[END_REF]. 

The impurity problem (Kondo physics)

The YSR bound states and the Abrikosov-Gorkov theory are only a minor part of a larger problem in physics known as the impurity problem and more specifically the Kondo physics. The Kondo effect [START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF] refers to an anomaly in the resistivity of metals containing magnetic impurities. Kondo showed that this effect arises from the quantum nature of magnetic defect which leads to a logarithmic divergence in the perturbative development of the resistivity. Experimentally this is materialized by a minimum in the resistivity at a temperature T K called the Kondo temperature. The Hamiltonian Kondo studied was very close to the Abrikosov-Gorkov Hamiltonian (eq. 2.1) with the difference that the impurity spins were treated as quantum spins. The Hamiltonian associated to such interaction reads as

ĤKondo = k,σ ε k ĉ † k,σ ĉk,σ + i J Ŝi • ĉ † k σĉ k , (2.22)
with i the index of a given impurity in a random position in the system. In Kondo's calculation, impurities are treated not as a constant magnetic field with no degrees of freedom but as a multilevels quantum spin.

It was later shown that the Kondo effect can be linked to the Anderson problem via a canonical transformation called the Schrieffer-Wolff transformation [START_REF] Schrieffer | Relation between the Anderson and Kondo hamiltonian[END_REF]. Essentially this transformation states that the case considered in the Kondo problem is equivalent to the coupling of an isolated quantum level with an energy continuum. This energy level posses an on-site electron-electron repulsive interaction. The
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Anderson impurity Hamiltonian is written Due to the proximity of the interaction with the Shiba case many work is put into the understanding of the interplay between the Kondo effect and superconductivity [START_REF] Müller-Hartmann | Kondo effect in superconductors[END_REF][START_REF] Matsuura | The effect of impurities on superconductors with Kondo effect[END_REF][START_REF] Franke | Competition of superconducting phenomena and Kondo screening at the nanoscale[END_REF][START_REF] Shuai-Hua | Kondo effect in self-assembled manganese phtalocyanine monolayer on Pb islands[END_REF]. Because a Kondo resonance can be mapped to a discrete energy level one could intuitively expect it to manifest as a sharp resonance in an STS spectrum. However in the framework of the Anderson model this state is hybridized with the energy continuum of the substrate. This hybridization gives a Lorentzian line shape for the resonance.

Ĥ = ε d ĉ † d ĉd + k ξ k ĉ † k ĉk + k V kd ĉ † kd ĉd + h.c. + U nd↑ nd↓ , ( 2 
There is actually a second effect that must be taken into account. When performing STM measurements there can exist an interference of the path of electrons during tunneling (see appendix .4 and fig.

2.7) giving rise to a Fano resonance [START_REF] Wahl | Exchange interaction between single magnetic adatoms[END_REF][START_REF] Wahl | Kondo temperature of magnetic impurities at surfaces[END_REF]. This interference occurs between a direct tunneling of electrons to the surface and an indirect one through the impurity. For a discrete level of energy ε d if we define x = eV -ε d Γ , the expected density of states is given by the following formula for the Fano line shape [START_REF] Fano | Effects of configuration interaction on intensities and phase shifts[END_REF] G

(x) = ρ 0 (q + x) 2 x 2 + 1 (2.24)
where q is the ratio of the real and imaginary part of the free Green function of the continuum. The form of this line shape is represented on Fig. 2.8 for different values of the factor q.

A key difference between the YSR bound states and Kondo effect is that the later does not need a superconductor to be present. This difference gives us a way to know in which case we are. By destroying Conductance (a. u.)

Bias voltage (a. u.) superconductivity, the YSR bound states must disappear in the normal state while a Kondo resonance will remain and split by Zeeman effect [START_REF] Choi | Spin-current induced Kondo-resonance splitting of a single cobalt atom[END_REF]. As destroying superconductivity with temperature is detrimental to the spectroscopic precision of the STS measurements we will prefer to destroy superconductivity by applying an external magnetic field. Doing so, in the case of a Kondo impurity we should be able to observe some signal while in the case of a classical impurity there should not have any trace of bound states in the normal regime.

Conclusion

In this chapter we have discussed the different phenomena associated to the presence of local magnetism in superconductors starting from the Abrikosov-Gor'kov theory finishing by the Kondo effect. We mostly focused on the YSR bound states for which we expect to observe pairs of peaks inside the superconducting gap around magnetic impurities. These induced states originate from the time reversal breaking interaction that tend to break the Cooper pairs made of electrons of opposite spins. We discussed the role of the dimensionality on the YSR wave function and showed how 2D superconductors were better systems to study the YSR bound states compared to 3D systems due to a different power law dependence.

We also discussed the way states at positive and negative bias are expected to be spatially dephased in relation with their energy positions inside the superconducting gap.

In the next chapter we will use this information to discuss the in-gap states measured by STM in 2H-NbSe 2 .

Chapter 3

Impurities in 2H -N bSe 2 monocrystals

Introduction

As we mentioned in the previous chapter, the spatial extent of YSR bound states in previous STM experiment was limited to a few angströms. Here we will show that by choosing a material with two dimensional properties, the YSR bound states will present spatial extents order of magnitudes larger. Finding such systems with long-range YSR bound states will allow for a measurement of finer effects such as oscillations of the LDOS at the scale of the Fermi wave-length and dephasing between the electron and hole component.

The discussion taking place in this chapter mostly covers the contents of our article [START_REF] Ménard | Coherent long-range magnetic bound states in a superconductor[END_REF] about the experimental study of single magnetic impurities in a monocrystal of 2H-NbSe 2 . The case of 2H-NbSe 2 is particularly interesting as its band structure is two-dimensionnal while from the point of view of superconductivity it is an anisotropic three dimensional material whose coherence length along c exceeds the periodicity along the c-axis. We will show that the large spatial extent of the YSR bound states in this system is due to the fact that we are in presence of a quasi-2D Fermi surface.

We will end this chapter by briefly discussing the effect of non magnetic impurities.

Crystallographic and band structure of the material

2H-NbSe 2 is a three dimensional bulk system. It is constituted of Se prisms surrounding Nb atoms (see Fig. A topographic STM measurement at 320 mK of the surface of 2H-NbSe 2 cleaved under UHV is presented on Fig. 3.2.b. On this image we can witness a 3×3 nearly commensurate charge density wave characteristic of this system [START_REF] Straub | Charge-density-wave mechanism in 2H-NbSe 2 : Photoemission results[END_REF] that appears under the temperature of 33.5 K [START_REF] Tsang | Raman spectroscopy of soft modes at the charge-density-wave phase transition in 2H-NbSe 2[END_REF].

NbSe 2 undergoes a superconducting transition at a critical temperature of 7 K. One of the specificity of this system is that it is a two bands superconductors in the sense that it has two distinct gapped band at the Fermi level [START_REF] Noat | Signatures of multigap superconductivity in tunneling spectroscopy[END_REF][START_REF] Noat | Quasiparticle spectra of 2H-NbSe 2 : Two-band superconductivity and the role of tunneling selectivity[END_REF]. This two-band originated superconductivity has been described in the framework of the modified BCS theory [START_REF] Suhl | Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands[END_REF][START_REF] Schopohl | Tunneling density of states for the two-band model of superconductivity[END_REF] or an anisotropic superconductor [START_REF] Kiss | Fermi surface and superconducting gap of 2H-NbSe 2 using low-temperature ultrahigh-resolution angle-resolved photoemission spectroscopy[END_REF]. Independently of the precise nature of the BCS interaction, the final result is a coupling of the same nature as for usual BCS superconductors in which the electrons are paired in a singlet state. NbSe 2 being an s-wave superconductor, as stated by the Anderson theorem only magnetic impurities induce in-gap states. Thus any observed in-gap signatures will be associated to time-reversal symmetry breaking interaction, i.e. vortices or YSR bound states.

When applying a magnetic field to the system vortices appear and order in the form of an Abrikosov lattice with hexagonal symmetry. These vortices are seen in the form of characteristic six pointed stars (see Fig. 3.2.c) and present Caroli-Matricon-de Gennes states at the vortex core. We will see in the following that the same six-fold symmetries is also observed around individual magnetic impurities and arises from the structure of the Fermi surface.

Sample preparation

Sample growth

The 2H-NbSe 2 crystals used in our experiments were grown at the Institut Jean Rouxel in Nantes by E. Janod and L. Cario, using an iodine vapor transport technique. Stoichiometric amounts of the elements (Nb 99.8% Alfa Aesar, Se 99.99 % Aldrich) were sealed under vacuum in a silica tube with a small amount of Iodine (4 mg/cm 3 , 99.9985% Puratronic). The tube was then heated up for a period of 170 h in a gradient furnace. The mixture was located in the high temperature zone of the furnace at 700 • C while the cold end part of the tube was around 660 This synthesis yielded large shiny black layered crystals (of a few mm in size) along with some black powder. X-Ray diffraction pattern of the powder ascertained that it is composed of a majority of the 2H-NbSe 2 phase (90%). Five single crystals were then tested for crystallographic quality using a four circles FR 590 Nonius CAD-4F Kappa-CCD diffractometer at 300 K. All of them revealed an hexagonal cell with parameters a = b 3.44 Åand c 12.56 Å, in very good agreement with parameters reported for the 2H-NbSe 2 phase [START_REF] Selte | On the structural properties of the Nb 1+x Sse 2 phase[END_REF]. Finally the composition of several crystals was tested by Energy Dispersive X-ray Spectroscopy using an electronic microscope JEOL JSM 5800LV. A ratio Nb/Se close to 1:2 was measured in agreement with the stoichiometry. No impurity traces could be detected using this technique as the threshold of detection is larger than 1000 ppm. However the certificate of analysis delivered by the company Alfa Aesar for the Niobium powder used as precursor (Lot number K08Q025) revealed as main magnetic impurity 175 ppm of Fe, 54 ppm of Cr and 22 ppm of Mn. This synthesis yielded therefore to 2H-NbSe 2 crystals unintentionally doped by a few hundreds of ppm of magnetic species with a dominance of Fe impurities that as we will see in the following give the dominant spectroscopic signal (see Tab. 

• C (gradient 3 • C/cm).

Preparation for STM Measurement

The samples were glued on molybdenum sample holders using epoxy glue. These samples were cleaved under ultra high vacuum (10 -11 mbar) in order to get the cleanest surface possible. Large scale topographic measurements performed on the samples (see Fig. 3.2) revealed a relatively small concentration of defects.

Observation of single magnetic impurities

Increase of the spatial extent by dimensionality

Simple topographic measurement on the surface of 2H-NbSe 2 show different types of defects appearing either bright or dark on fig. 3.2.b. The issue is that topography is not sufficient to determine whether the defects we see are associated to magnetic or non magnetic impurities. Only spectroscopy can distinguish between the two kinds thanks to the presence or absence of YSR bound states. Moreover we observed that the YSR spectroscopic signatures do not necessary come along with topographic defects as the magnetic atoms are present from the beginning of the synthesis of the crystal and are completely embedded inside the crystal. Finding impurities thus needs to be accomplished by scanning large areas of the sample and performing dense I(V ) grids centered around the superconducting gap in order to distinguish spatially localized in-gap bound states. This constrain adds to the complexity of the task and to the characteristic time scale of the experiment. Being limited by the quantity of 3 He at our disposal (a maximum condensation time of 40 hours) we looked for signatures of the YSR in areas of 300×300 nm 2 with a resolution of approximately one spectrum per nanometer. Then we are able to witness about a dozen of impurities in each image and consequently we can choose from these the one to look more closely at.

By performing STS experiments at the temperature of 320 mK we observed YSR bound states around The black dots are the experimental points and the red dashed lines are the power law fits calculated ignoring the first points directly on top of the magnetic impurities in order to match the asymptotic assumption made in the calculation.

Fe impurities randomly dispersed as presented on Fig. 3.2.d. These states do not present themselves as circular waves localized around the magnetic defects as they would in the case of an isotropic material. Due to the hexagonal structure of the atomic lattice, the YSR bound states are characterized by a sixpointed star shaped electronic signature in 2H-NbSe 2 . The scale on which these states can be observed extends as far as 10 nm from their origin. When compared to previously observed YSR bound states [START_REF] Yazdani | Probing the local effects of magnetic impurities on superconductivity[END_REF][START_REF] Ji | High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of Pb thin films[END_REF][START_REF] Franke | Competition of superconducting phenomena and Kondo screening at the nanoscale[END_REF], this corresponds to an increase of the spatial extent by a factor 10. As we explained previously, the dimensionality of the electron gas plays a decisive role on the power law decay of the wave function associated to the YSR bound states. In the case of 2H-NbSe 2 inter-plan Van der Waals interaction is such that the electronic structure presents 2D characteristics with a Fermi surface that almost does not experience any dispersion along the z direction. Another aspect that could possibly play a role on the difference with other experiments is the fact that here the impurities are embedded in the atomic lattice while in previous experiments, the YSR bound states were due to adatoms on the surface. The electronic coupling experienced by the impurities to the superconducting condensate may be increased in our case.

Because the star shaped structure of the YSR states originates from the symmetries of the 2H-NbSe 2 hexagonal lattice, it is of interest to compare the orientation of the branches of the stars with the crystallographic axes. We observed that the direct lattice vectors and the arms of the stars were angularly shifted by an angle of 30 • (Fig. 3.2.a). This direction for the arms of the stars corresponds to the direction of the reciprocal lattice vectors (a * and b * ). Such an angular shift is also found in the vortex lattice of 2H-NbSe 2 in which the vortices also exhibit a six-pointed star shape (Fig. 3.2.c). This similarity calls for a common origin of the six-fold symmetry that would reflect the anisotropy of the Fermi surface [START_REF] Rossnagel | Fermi surface of 2H-NbSe 2 and its implications on the charge-density-wave mechanism[END_REF], as supported by our simulations.

As expected theoretically [START_REF] Yu | Bound state in superconductors with paramagnetic impurities[END_REF][START_REF] Shiba | Classical spins in superconductors[END_REF][START_REF] Rusinov | Superconductivity near a paramagnetic impurity[END_REF], the tunneling spectra acquired over a given Fe impurity (see spectroscopic map in Fig. 3.3.a) show two peaks inside the superconducting gap (red curve in Fig. 3.3.b), one at positive bias and one at negative bias with symmetric positions with respect to the Fermi level (E Shiba ± 0.2 ∆). The peak at negative bias is much stronger than the one at positive bias. This difference highlights a very strong local particle-hole asymmetry as can be seen in Fig. 2.5.h. Having a single pair of YSR conductance peaks in the gap is interpreted as the possibility to only access the s-wave diffusion channel (for which the angular momentum is l = 0 1 ) for the electronic diffusion by the impurity. The authorized values of the angular momentum do indeed depend on the extent and form of the diffusion potential and observing solely the l = 0 channel suggest that one can consider the iron impurities as punctual defects. The same kind of behavior was observed in the case of Gd/Nb, Mn/Nb [START_REF] Yazdani | Probing the local effects of magnetic impurities on superconductivity[END_REF] or Mn-Phtalocyanine on Pb [START_REF] Franke | Competition of superconducting phenomena and Kondo screening at the nanoscale[END_REF] where the l = 0 diffusion channel was the only one to be activated. On the contrary in [START_REF] Ji | High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of Pb thin films[END_REF] where the authors observed Mn atoms on Pb, the YSR states were observed for momenta l = 0 and l = 1 while for Cr impurities they observed angular momenta up to l = 2. In all these studies the spectroscopic signatures were strongly localized over the magnetic atoms and they disappeared a few Å from their center. A long range effect of magnetic defects on the density of states is thus totally decoupled from the local nature of the interaction from which they arise.

We also present on Fig. 3.4 the fit with the 2D power law of the radial dependance of the YSR bound state. On this figure the slight spatial phase shift between the different branches completely mask the oscillatory behavior and only leaves the power law decay of the YSR wave function. This result highlights the dimensionality dependence as the decay of the local density of states goes as 1/r in 2D and 1/r 2 in 3D.

Interference effects and phase conditions for YSR bound states

Witnessing long range effects of the magnetic impurities on the density of states allows a finer analysis of the inner structure of the wave function associated to YSR states. On Fig. 3.3.a we present the LDOS taken at the energy of the strongest YSR peak -0.13 mV. The center of the star corresponds to a very strong peak in the tunneling spectra (red curve on Fig. 3.3.b) localized on the impurity [START_REF] Ruby | Tunneling processes into localized subgap states in superconductors[END_REF]. The green conductance curve on Fig. 3.3.b was acquired 4 nm from the impurity site. The decrease of the LDOS between these two points both localized on one branch of the star is oscillatory with a periodicity of 0.8 nm as evidenced by the interference fringes clearly visible on the conductance map. Fig. 3.3.c shows the evolution of the LDOS as a function of the voltage bias as well as a function of the distance from the center of the impurity. On this figure we can see that the interference fringes for the electron-like and hole-like excitations are in almost perfect spatial antiphase. Let us go back to the expression of the YSR wave function 2.21

ψ ± (r) = 1 √ N π sin (k F r -π 4 + δ ± ) √ k F r e -∆ sin(δ + -δ -)r/ v F .
From this equation we observe that the dephasing between positive and negative energy wave-functions will be determined by the quantity δ + -δ -. Because we experimentally probe the DOS which corresponds to |ψ pm (r)| 2 , the dephasing that will be observed in our conductance maps will be 2(δ + -δ -). As discussed in section 2.16, the phase difference between the positive and negative bias YSR states is determined by the ratio E s /∆ = cos (δ + -δ -). In the case of 2H-NbSe 2 the value E s /∆ is difficult to obtain precisely due to the two band gap with different values for ∆. However by comparing qualitatively the mean gap value and the energy of the YSR state (E S ∆) they fall into the domain in which the phase difference of the wave function is close to π/2 and thus the phase difference observed in the DOS is close to π.

Because all the physical quantities that characterize YSR bound states are defined from the values of the magnetic and non-magnetic diffusion potentials J and K, a different type of impurity will lead to a different spectroscopic signature.

As mentioned previously, Fe is not the only contaminant of the Nb used for the crystal synthesis. There is no direct way to unequivocally determine the nature of an atom by STM. The claim that the impurities observed in the previous section were Fe atoms is solely based on the number of signatures of a given type we can observe compared to the known concentration of said atomic species from the chemical analysis of the Nb. This chemical analysis reveals that Co and Mn are the two other main magnetic contaminants of our Nb. While the precise magnetic moment of these elements is not really known in kF R lmax. Figure 3.5: Spectroscopic maps integrated over the width of the overlapping Shiba peaks. The respective lateral size of the spectroscopic pictures are 17 nm, 21 nm, 14 nm and 17 nm. In the lowest row, the green spectra refer to the superconducting spectra of NbSe 2 taken far from the impurity and the blue ones to the spectra taken on top of the magnetic impurities. In each case the impurity and reference spectra are taken from the same data set. the context of them being embedded in 2H-NbSe 2 one can safely argue that they can keep their magnetic properties.

We have observed signatures of magnetic impurities that present different shapes and characteristic energies from the one presented in the previous section (Fig. 3.3). A sample of them are presented on Fig. 3.5. While the global six-branch star shape is preserved in each and every case as well as the orientation of this pattern, the precise details of the spectroscopy can vary quite a lot. This is no surprise as the band structure is responsible for the star shape while the nature of impurity will have an effect on the magnetic and non-magnetic diffusion potentials J and K and thus on the energy of the bound states E S .

In Fig. 3.6 we show the case of an impurity whose YSR bound states are located at an energy of ±0.8 meV. The first observation that can be made on these data is that no matter the energy of the YSR bound states, the spatial extent is conserved as we still have a clear spectroscopic signal 7 nm from the center of the impurity.

A second observation one can make is that contrary to what was observed on fig. 3.3.c the phase difference between the positive and negative energy states is in this case almost equal to 0. If we go back to the expression of the dephasing δ + -δ -(eq. 2.16) we see that we obtain δ + -δ -0 for E Shiba ∆. Therefore we expect no phase difference between the positive and negative bias states for energies close to the value of the superconducting gap. The observation of this difference between the case of fig. 3.3.c and fig. 3.6 confirms the link between the phase shift δ + -δ -and the energy of the YSR bound states.

Because the energy of the YSR bound states in fig. 3.6 corresponds to the limits of the gap edge, the contrast one can hope for in a cut of the conductance map is not optimal. Therefore we subtracted to fig.

3.6 the mean superconducting spectrum taken in the same scanning area and we represent it in white in order to help locate the bound states in the full DOS landscape. We now take a closer look to what really happens in the center of the observed stars. In Fig. 3.7 we present a conductance map obtained over a 5.5×5.5 nm 2 area centered around the origin of one of the stars presented in Fig. 3.5. What we observe in this figure is that what could from a distance look like a single impurity is actually a cluster of 3 magnetic atoms giving rise to their own YSR bound states. On the spectra of Fig. 3.7.d we observe that the YSR bound states do come by pair but that we have 3 different characteristic energies in this case : 0 meV (green curve), ±0.1 meV (red curve) and ±0.3 meV (blue curve). An interesting feature of these spectra is that one impurity does not seem to be any real effect on its neighbor as the spectra look as if they are simply a superposition of different YSR bound states. This is best seen on the blue spectra in Fig. 3.7.d.

Theoretical modeling

The results we presented before were well understood in the framework of the Rusinov theory for what concerns the spatial extent, the oscillations and the phase shift of YSR bound states. However, this model can be analytically solved only for a parabolic dispersion. The band structure and symmetry of 2H-NbSe 2 thus is not included and cannot be reproduced. We present here the tight binding model we used to take into account the specific electronic dispersion of 2H-NbSe 2 . The work performed in this section (as well as in appendix .2), both on the analytical and numerical side in the BdG formalism, was performed by S. Guissart and P. Simon.

Tight binding parameters and model

In order to perform the numerical calculation, we project our tight binding model on a triangular lattice. We have considered hopping terms up to the fifth nearest neighbour. The hopping amplitudes have been chosen in order to reproduce the band structure obtained from DFT and in good agreement with ARPES Figure 3.7: Cluster of impurities in 2H-NbSe 2 : Zoom over a 5.5×5.5 nm 2 area corresponding to a cluster of 3 magnetic impurities. The three conductance maps (a to c) show the center of these impurities and the spectra (d) correspond to the conductance curves obtained over each impurity. The colors refer to the colors of the dots on the conductance maps while the black spectrum is the averaged spectrum over the whole area. measurements. We refer to Refs [START_REF] Rahn | Gaps and kinks in the electronic structure of the superconductor 2H-NbSe 2 from angle-resolved photoemission at 1 K[END_REF][START_REF] Smith | Band structures of the layer compounds 1T-TaS 2 and 2H-TaSe 2 in the presence of commensurate charge-density waves[END_REF][START_REF] Rossnagel | Fermi surface, charge-density-wave gap, and kinks in 2H-TaSe 2[END_REF][START_REF] Inosov | Fermi surface nesting in several transition metal dichalcogenides[END_REF][START_REF] Inosov | Temperature-dependent Fermi surface of 2H-TaSe 2 driven by competing density wave order fluctuations[END_REF] for the NbSe 2 band structure. The diagonalization of the tight-binding model results in the following 2-band dispersion relation (See Fig. 3.1): To describe the 2H-NbSe 2 monocrystal in presence of one magnetic impurity, we assume the impurity spin to behave classically and use for the superconducting part the following Bogoliubov de Gennes Hamiltonian

ξ(k) = ξ 0 + t 1 (2 cos ξ cos η + cos 2ξ) + t 2 (
H BdG = i,j (c † i↑ c j↑ + c † i↓ c j↓ ) + i ∆(c † i↑ c † i↓ + c i↓ c i↑ ), (3.2) 
where c † iσ and c iσ denote the creation and annihilation operators of electron at site i with spin σ. The hexagonal symmetry observed experimentally in Figs. 3.2.d and 3.3.a is well reproduced in the framework of the Bogoliubov-de Gennes formalism [START_REF] Flatté | Local spectrum of a superconductor as a probe of interactions between magnetic impurities[END_REF]. This is done by numerically solving the Schrödinger equation with the almost exact tight-binding description of the band structure of 2H-NbSe 2 . As we only observe l = 0 states we assume a strictly on-site interaction while we treat the magnetic impurity classically, i.e. assuming a large spin number S treated as a constant scalar. The interaction potential contains both a magnetic and non-magnetic part and reads

H Imp = - JS 2 (c † 0↑ c 0↑ -c † 0↓ c 0↓ ) + K(c † 0↑ c 0↑ + c † 0↓ c 0↓ ), (3.3) 
where the c 0 and c † 0 operators are respectively the annihilation and creation operators for electrons with spin σ on the magnetic atom site. The first term corresponds to the Zeeman splitting between spin up and spin down electrons for a coupling strength J/2 between the superconducting electrons and the individual atom. The second term is the non-magnetic diffusion potential of amplitude K. Using this approach, we calculate the LDOS for both the electron-like and hole-like YSR state. Since our experimental data are obtained in the large tip-sample distance regime, according to [START_REF] Ruby | Tunneling processes into localized subgap states in superconductors[END_REF] the measured current is carried by single-electron tunneling rather than by Andreev processes. Therefore we can directly compare the calculated LDOS with the experimental data and we recover the typical star shaped structure as presented on Figs. 

Numerical calculation

A magnetic impurity embedded in NbSe 2 hybridizes with the two bands and can potentially give rise to two Shiba in-gap states. Let us consider both bands separately. For most values of parameters characterizing the magnetic impurity, we find that band 2 gives a more isotropic Shiba state with a much smaller spatial extension. This is due to the fact that the tow bands do not have the same anisotropy. Band 1 has a deeper saddle point than band 2 and is therefore more isotropic. Therefore, band 1 will provide more states near saddle point to the Shiba wave function. These states will be responsible of the longer spatial extension of the Shiba state associated with band 1 and also of its spatial anisotropy. Since we are interested in long-ranged Shiba states to reproduce the experimental data, we thus focus on band 1. Fig. 3.8 presents the results obtained on a lattice of size N × M = 500 × 500 with a superconducting gap ∆ = 1meV for different values of JS/2 and K using band 1. Fig. 3.9 shows the same calculation but using band 2. We see on these two figures that the best fit of our experimental data is obtained with band 1 that clearly shows a well defined 6 fold symmetry that is hard to see for band 2. We also observe that when varying the non magnetic diffusion parameter K the fine structure of the LDOS is modified but keeps the same symmetry and orientation. This is in accordance with the variation observed experimentally in the spatial pattern surrounding impurities of different types and thus different typical YSR eigen-energies.

Joint-DOS approach

The observed oscillations being of the order of the Fermi wave-length, they cannot be captured by a discrete tight binding model such as the one shown on figs. 3.8 and 3.9.

It is of interest to study what parts of the Fermi surface can give rise to the observed effects of magnetic impurities in 2H-NbSe 2 . To do so we start by taking the tight binding parametrization of the band structure of 2H-NbSe 2 (using the coefficients defined in Tab. 3.2) for band 1. We do not include We then performed a joint-DOS calculation on the Fermi surface of 2H-NbSe 2 . The principle of this method, widely used in cuprates [START_REF] Mcelroy | Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi 2 Sr 2 CaCu 2 O 8+δ[END_REF][START_REF] Lee | Heavy d-electron quasiparticle interference and real-space electronic structure of Sr 3 Ru 2 O 7[END_REF], is to couple parts of the Fermi surface weighted by the Fermi velocity v F (k) in order to reproduce the interference pattern around impurities or defects. Formally the joint DOS at the Fermi level is written simply as a convolution product2 

j(k) = F S d 2 k δ(k -k )v F (k -k ) × δ(k )v F (k ). (3.4)
We are interested in the real space wave function associated to magnetic impurities and therefore to the Fourier transform of j(k). As the Fourier transform of a convolution product is the product of the Fourier transforms of each term taken separately we have for the local density of states 

ρ(r) = |F T (j(k))| 2 = |F T (δ(k)v F (k)) × F T (δ(k)v F (k))| 2 = |F T (δ(k)v F (k)| 4 , ( 3 
ρ K (r) = |F T (δ K (k)v F (k))| 4 . (3.7)
We can also include a selectivity of electrons undergoing a scattering from the Γ pocket to the K pockets and we would have in that case

ρ Γ↔K (r) = |F T (δ Γ (k)v F (k)) × F T (δ K (k)v F (k))| 2 . (3.8)
These different configurations are represented on Figs. 3.10.c. to e. On this figure we observe that the pattern most compatible with the experimentally observed interference fringes arise from the auto-convolution of the central part of the Fermi-surface (3.10.e). We also observe that the fine branches observed experimentally on the stars on the conductance maps fit better with this same configuration. The conclusions one can draw from this is that either our STM measurements are highly sensible to what happens in the center of the Brillouin zone or that there exists a real physical effects that would tend to privilege a scattering of the Cooper pairs and its constituting electrons inside the central pocket of the Fermi surface.

A major issue with STM is the problem of correctly taking into account the matrix element for the tunneling current [START_REF] Tersoff | Theory of the scanning tunneling microscope[END_REF] as it has been shown in the specific case of 2H-NbSe 2 [START_REF] Noat | Quasiparticle spectra of 2H-NbSe 2 : Two-band superconductivity and the role of tunneling selectivity[END_REF]. These matrix elements can lead to an important selectivity over the Fermi surface and can help explain the difference between the joint-DOS results and the experimental measurement. These types of calculations do not claim to reproduce the fine characteristic of the YSR bound states as they do not include superconductivity at all. However they allow us to get a better intuition in relation to the mechanisms underlying the scattering of electrons in this specific context.

Deposited magnetic and non magnetic impurities

Magnetic Co impurities

We also performed experiments by depositing Co impurities over the 2H-NbSe 2 crystals. The main difference with the case of embedded impurities is that Co atoms are only present at the surface. On Fig. 3.11.a we show a topography of such sample with 10 -3 ML of Co. We observe different types of configurations: single atoms and trimers. Like in the case of embedded impurities we observe a large variety of in-gap states (see Fig. 3.11.b).

Scanning over deposited Co impurities is much more difficult as they have a strong interaction with the STM tip that moves the atoms during spectroscopy measurements. This interaction causes the discontinuities in the conductance maps in figs 3.11.d-f at some impurity sites. We do not observe the same kind of long range effects of the magnetic atoms and this is detrimental to the observation of the spatial oscillations of the YSR bound states. On fig. 3.11.c we show a cut (from which was subtracted the bare NbSe 2 spectrum) in the conductance map following the white arrow drawn on fig. 3.11.a. As this cut passes through different magnetic atoms we observe different peaks at various energies inside the gap. There is also a difference in the amplitude of the measured peaks with embedded impurities. For instance the green spectrum in fig. 3.11 reaches to a value of 16 nS at its maximum that is higher than the background value of 10 nS. An hypothesis we have is that indeed, there could be some hydrogen atoms attached to the tip or to Co atoms enhancing the response in STS [START_REF] Hofer | Role of hydrogen in giant spin polarization observed on magnetic nanostructures[END_REF]. This effect was observed for a 2H-NbSe 2 sample that was kept for a long time in UHV at T < 4K (about a month) before performing the Co evaporation. Because H is the first contaminant of UHV it is therefore the most probable contaminant one could think of. In comparison for a fresh new sample on which we deposited Co before directly transferring it to low temperature this effect was not observed as much.

To support the claim that H is responsible for the increased spectroscopic response one should perform controlled experiments in which a small hydrogen flux is send on the sample after the Co deposition. From such samples by performing a statistical analysis on the amplitude of the in-gap states observed it should be possible to establish a correlation between the quantity of H and the mean value of the amplitude of the in-gap states. Due to time constrains we were not able to perform this kind of experiment but we did observe a qualitative increase of the number of high amplitude in-gap states after moving the sample from the cryostat to the preparation chamber for a long time and back to the cryostat. Such manipulation usually results in an increase of the pressure in the STM chamber and a pollution of the sample. Hydrogen is also known to modify the magnetic properties of Co [START_REF] Dubout | Controlling the spin of Co atoms on Pt(111) by hydrogen adsorption[END_REF].

We also observe on some impurities several in-gap states. This behavior is close to what was observed by Shuai et al. [START_REF] Ji | High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of Pb thin films[END_REF] in the case of bulk Pb and can be explained by a larger value of the magnetic potential associated to such defects. The shape of the dI/dV spectra obtained on 2H-NbSe 2 is strongly dependent on the orbitals involved in the tunneling of electrons. For instance the spectra obtained when tunneling in the ab plane of 2H-NbSe 2 significantly differs from what can be observed along the c-axis as the weight of the large gap dominates in the first case and the small gap weight dominates in the second [START_REF] Noat | Quasiparticle spectra of 2H-NbSe 2 : Two-band superconductivity and the role of tunneling selectivity[END_REF]. We will discuss in this section the effect of non magnetic impurities that locally modify the tunneling conditions and reveal a spatial dependence of the respective weight of the large and small gap. We will show that the difference observed on the fine structure of the gap edge manifests in spectroscopic signatures of the defects present in the system.

Non magnetic impurities signature

On Fig. 3.12.a we present a spectroscopic map over area of 50×50 nm 2 on 2H-NbSe 2 . This map was taken at 0.61 meV on the gap edge. On this figure we observe approximately 15 defects appearing in red corresponding to a high conductance value. The spectra associated to these defects are all exactly the same and three of them are displayed on Fig 3 .12.b. Unlike the magnetic impurities discussed before or the vortex lattice we do not see appearing any star-shaped pattern in the LDOS. The star shape we observed in the magnetic case was attributed to a coupling of the defect to the superconducting electrons and was shown to directly arise from the shape of the Fermi surface. The absence of such characteristic shape in Fig. 3.12 indicates that the spectroscopic signatures does not arise from a coupling of the defects to the superconducting electrons but rather to a matrix elements effects highlighting, in the two-gap pictures of 2H-NbSe 2 , the contribution of one part of the gap rather than the other.

STM experiments on 2H-NbSe 2 [START_REF] Noat | Quasiparticle spectra of 2H-NbSe 2 : Two-band superconductivity and the role of tunneling selectivity[END_REF] have shown that spectroscopy with the tip perpendicular to the xy plane was more sensitive to the large gap of 2H-NbSe 2 while tunneling with the tip parallel to the xy
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plan was more sensitive to the smaller gap. The only case where the matrix element effect is suppressed is in the point contact regime. Because local defects break the translational invariance of the system, they modify the tunnel selectivity and because this selectivity is directly linked to the relative amplitude of the small and large gap probed in a dI/dV spectrum, non-magnetic impurities can modify the relative weight between the large and small gap. We observe here that it leads to the appearance of a contrast in the conductance maps at the energy of the small-gap.

Another aspect to mention is the density of impurities compared to what we observed in Fig. 3.2.d. Inside roughly the same area we were able to observe 5 impurities giving rise to a star-shaped pattern while in fig. 3.12 there are about 17 of them. The 1/3-4 ratio between magnetic and non magnetic impurities roughly corresponds to the ratio between Ta and Fe presented in table 3.2. Therefore we tend to attribute the defects appearing in Fig. 3.12 to the most present impurities i.e. tantalum. Ta is isoelectronic with Nb and thus do not modify the electronic structure and act as a weak scatterer in the crystals.

Conclusion

In this chapter we discussed the effect of various impurities embedded and absorbed on 2H-NbSe 2 . We showed in the case of embedded magnetic impurities how the induced YSR states couple to the 2D Nb band in order to present a long range bound state in agreement with the theoretical calculations. Our measurements revealed that we were able to measure YSR bound states over distances ten time larger than for three dimensional systems. This long range behavior of the YSR bound states enabled us to probe the fine structure of the LDOS and to link the phase of the measured oscillations to the energy of the in-gap states. We discussed how the different parts of the Fermi surface influence the diffraction pattern and showed that the saddle points between the Γ pocket and the K pockets strongly increases the anisotropy of the system leading to six-fold symmetry states.

We then briefly discussed the case of embedded clusters of impurities and showed that we did not measure any sign of an additional in-gap state that would have signed a coupling between impurities.

In a third step we presented the results obtained when depositing Co atoms on top of 2H-NbSe 2 samples. We did not observe any long range effect of the YSR bound states in this configuration and interpret this as a weak coupling to bands 1 and 2 that completely suppresses the long range effect observed for embedded impurities.

Finally we briefly showed that due to the multi-gap structure of 2H-NbSe 2 , non-magnetic impurities also produce spectroscopic signatures at the gap edge because of tunnel selectivity effects.

In the next chapter we will start from these results and compare them with what happens for Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayers that are pure two-dimensional superconductors. We will first study individual impurities before moving to disordered magnetic clusters .

Chapter 4

Impurities in Pb/Si(111) monolayers

Introduction

The study of superconducting monolayers is a rich yet rather new field that started with the work of Zhang et al. [START_REF] Zhang | Superconductivity in one-atomic-layer metal films grown on Si(111)[END_REF] that proved that superconductivity could occur in the systems Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] and In/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. Because such systems are made of a purely two-dimensional layer of Pb or In, they are the ultimate limitation in the reduction of the dimensionality from 3D to 2D. Numerical calculations seem to point toward a localization of the superconducting electrons between the Pb atoms (>90%) and the 3 first Si atomic layers [START_REF] Noffsinger | Superconductivity in monolayer Pb on Si(111) from first principles[END_REF][START_REF] Linscheid | Ab initio calculation of a Pb single layer on a Si substrate: two-dimensionnality and superconductivity[END_REF]. In these calculations superconductivity is attributed to phonon mediated interaction modified by the mismatch between the Si and Pb lattice parameter which leads to a softening of the phonon modes [START_REF] Noffsinger | First-principles calculation of the electron-phonon coupling in ultrathin pb superconductors: Suppression of the transition temperature by surface phonons[END_REF][START_REF] Noffsinger | Superconductivity in monolayer Pb on Si(111) from first principles[END_REF].

In this chapter we will study how such superconducting 2D electron gases react to the presence of localized magnetic disorder. We will focus on two phases of the system Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] namely the √ 7 × √ 3 and the stripped incommensurate (SIC) phases. After a brief presentation of the system under study, we will present the results obtained on single magnetic impurities before moving to cluster of magnetic atoms.

Structural properties of Pb/Si(111) monolayers

The Pb/Si(111) system is extremely rich in monolayer structures as the phase diagram of this systems contains more than 4 well distinct phases and 15 intermediate phases for Pb coverages ranging from 1/3 monlayer (ML) to 4/3 monolayers [START_REF] Chan | Firstprinciples studies of structures and stabilities of Pb/Si(111)[END_REF][START_REF] Yeh | Low temperature formation of numerous phases in Pb/Si(111)[END_REF][START_REF] Stepanovsky | The dense α -√ 3 × √ 3[END_REF].

The most studied phase is the √ 7 × √ 3 phase where the √ 7 and √ 3 values refer to the lattice parameters of the 1×1 surface of the Si(111) (see fig. 4.1.a). This phase appears below 270 K [START_REF] Stepanovsky | The dense α -√ 3 × √ 3[END_REF] and corresponds to a nominal coverage of 1.2 ML. This phase exhibits a strong 1D behavior and is seen on STM images as thin lines composed of a dense arrangement of Pb atoms (see Fig. 4.1). As the 1×1 substrate possesses an threefold symmetry, we will find on the same sample three different orientations of the √ 7 × √ 3 phase turned by 120 • between each other. A second phase of the Pb/Si(111) system is the hexagonal incommensurate phase (HIC) (see fig. 4.1.b). This phase is formed by combinations of triangular domains in two different orientations [START_REF] Hupalo | Atomic models, domainwall arrangement, and electronic structure of the dense Pb/Si(111)-√ 3 × √ 3 phase[END_REF].

A third phase we will talk about in the next chapter is the 3 × 3 phase (see fig. We also mention the existence of the SIC phase (see fig. 4.1.d) which is close to the HIC structure but with meandering walls not hexagonaly ordered and appears for higher coverages (of the order of 1.30 ML). In this phase, due to the high density of Pb on the surface we will often obtain a coexistence of the Pb monolayer with small islands with a maximum height of a few atomic layers. 1.f for an example). We call it a pseudo-phase as its atomic structure can highly vary depending on which extremity of the coverage spectrum we are. We will see later that it is possible in this configuration to obtain a 1D-like phase (the 2 √ 7 × √ 3 close to the √ 7 × √ 3 phase) appearing as an alternation of two close rows of Pb atoms and one isolated row. There has been about 15 phases reported so far in the devil staircase regime [START_REF] Yakes | Self-organization at finite temperatures of the devil's staricase in Pb/Si(111)[END_REF][START_REF] Yeh | Low temperature formation of numerous phases in Pb/Si(111)[END_REF].

Superconductivity in monolayers

Superconductivity in Pb and In monolayers was first discovered in 2010 by Zhang et al [START_REF] Zhang | Superconductivity in one-atomic-layer metal films grown on Si(111)[END_REF]. In this paper they studied three different systems, two of Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] and one of In/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. The two phases of Pb they studied are the SIC and √ 7 × √ 3 phases. They showed that these phases open a gap that disappears around 1.8 K and 1.6 K respectively. The temperature dependance of these gaps follows nicely the BCS theory and they were also able to measure the LDOS associated to vortices at different fields in the SIC phase.

On fig. 4.2 we present how vortices appear on a Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] sample in the SIC phase. This structure was obtained for a coverage of 1.4 ML instead of the nominal 1.3 ML for the perfect structure. The Pb in excess forms 1 ML high Pb nano-islands. These nano-island do not play any significant role in the behavior of superconductivity in the system and only slightly increase the disorder thus leading to a slightly smaller gap compared to the case of Zhang et al. [START_REF] Zhang | Superconductivity in one-atomic-layer metal films grown on Si(111)[END_REF]. Fig. 4.2.a shows the topography of a 690×690 nm 2 area that we studied at different magnetic fields.

Figs. 4.2.d.-g. show the zero bias conductance of the same area with applied magnetic fields between 0 and 40 mT. For B = 0 the conductance maps clearly show the appearance of vortices and the increase of their density with the amplitude of the magnetic field.

By studying dependence of the LDOS around an individual vortex we can obtain the value of the coherence length of the superconductor through the heuristic formula [START_REF] Eskildsen | Vortex imaging in the π band of magnesium diboride[END_REF][START_REF] Bergeal | Scanning tunneling spectroscopy on the novel superconductor CaC 6[END_REF][START_REF] Ning | Vortex properties of two-dimensional superconducting Pb films[END_REF] 

ρ(x, 0) = ν 0 + (1 -ν 0 ) 1 -tanh x 2ξ . (4.1)
We thus take a cut through the isolated vortex of fig. 4.2.e and fit the obtained LDOS with the above formula. We obtain from this fit a coherence length equal to 55 nm in accordance with previous determinations using the critical field H The first observation that can be made on the behavior of vortices in this system is the fact that vortices are rather round and do not seem to "see" the atomic steps. We see that by increasing the magnetic field vortices appear without any pinning effect. This suggest that superconductivity is very homogeneous contrary to what has been observed for the √ 7 × √ 3 that tends to form Josephson junctions on the step edges [START_REF] Brun | Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon[END_REF].

For monolayer systems we are in the diffusive limit for superconductivity1 . As a consequence, the vortex cores do not exhibit Caroli-Matricon-de Gennes states and we simply observed a normal state as shown by the constant conductance in fig. 4.2.b for d = 0 nm.

Because the superconducting properties of the Pb/Si(111) system originate from the interaction over 3 atomic layers with the Si substrate, the structural differences of the surface Pb layer do not modify 50 CHAPTER 4. IMPURITIES IN PB/SI(111) MONOLAYERS unduly the coherence length, critical temperature and superconducting gap. This can be verified on the coherence length for the √ 7 × √ 3 (T c = 1.52 K) and SIC (T C = 1.83 K) phases for instance. Starting from the √ 7 × √ 3 phase, every other phase with a higher Pb coverage (SIC, HIC, devil's staircase) will present a superconducting transition at temperatures low enough (see tab. 4.1). While the coverage of these phases can have some overlap, the main difference to obtain one phase rather than the other comes from the preparation conditions. By modifying the deposition temperature and time as well as the annealing temperature we will go through the different phases and obtaining the right phase in an homogeneous way can be very difficult. We will start our discussion of magnetic impurities in Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayers by focusing on the well ordered √ 7 × √ 3. The impurities we will discuss are not chemically identified as they are natural contaminants of our Pb source and are evaporated conjointly. On fig. 4.3 we present the results obtained for an isolated impurity embedded in the Pb layer in the √ 7 × √ 3 phase. In this figure the considered magnetic atom is located in a single domain and we do not have any domain wall close to it. The spatial extension of the impurity is even larger than it was in 2H-NbSe 2 as we obtain a spectroscopy signal through the whole scanning area of a 51 nm width. This extent can be explained by the large coherence length of the √ 7 × √ 3 phase that is around 50 nm [START_REF] Brun | Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon[END_REF]. It can also be explained by the extremely strong amplitude of the two peaks at ±0.058 ± 0.002 meV (see fig. 4.3.c) that go as high as 220 nS for the 4.4. INDIVIDUAL IMPURITIES 51 negative bias one in the same fashion as in the case of the disordered HIC phase discussed previously. In the perpendicular direction the extent of the YSR bound states is much smaller and most of the signal has vanished 10 nm away from the impurity center.

Coverage

Due to the close proximity in energy and the limitations imposed by the thermal broadening of the peaks at 300 mK we cannot distinguish clearly the positive bias states from the negative ones. It is thus not possible to study in this specific case the phase of the YSR states as we did for 2H-NbSe 2 . As we did for 2H-NbSe 2 we will discuss the pattern of the YSR bound states observed experimentally in relation with the shape of the Fermi surface of the system. In this part we will base our discussion on the ARPES measurements found in [START_REF] Kim | Nearly massless electrons in the silicon interface with a metal film[END_REF]. In this paper the authors compared the signal averaged over the three orientations of the domains obtained by ARPES to Fermi surfaces calculated from DFT. Kim Another team [START_REF] Jung | Triple-domain effects on the electronic structure of Pb/Si(111)-( √ 7 × √ 3): density-functional calculations[END_REF] has proposed another DFT based model for the √ 3 × √ 7 phase. They obtained slightly different results but the best agreement with ARPES is given by the interpretation of Kim et al.

[97] that we described above.

Perpendicular to the Pb lines direction a clear periodicity is observed in the conductance map of fig. 4.3.b that corresponds to twice the lattice parameter ( 3 nm) of the system along the same direction. This double periodicity is better seen on the Fourier transform of the conductance map presented on fig. Unlike 2H-NbSe 2 there is no tight binding model describing the full band structure of the Pb/Si(111) √ 7 × √ 3 system yet. It is therefore not possible to obtain an accurate Fermi surface from which to perform joint-DOS calculation. Our team at the INSP is currently working in collaboration with J. A. Silva-Guillén and L. Chiroli from Madrid university to obtain a DFT model of the √ 7 × √ 3 phase and perform quasi-particle interference calculations. However, based on the ARPES measurements performed on this system we can try to obtain a qualitative agreement by finding an approximation of the Fermi surface from which we could extract the main features of the YSR pattern.

To simplify the discussion of the different combinations we will use bellow we start by labeling (following [START_REF] Kim | Nearly massless electrons in the silicon interface with a metal film[END_REF]) the parts of the Fermi surface as follows (see fig. 4.6):

• The center pocket will be referred to as the Γ pocket

• The four pockets at the limits of the first Brillouin zone will be referred to as S 1 pockets

• The two crossing lines will be referred to as S 2 lines

From ARPES data we observe that the spectral weight is mostly located on the S 1 pockets. The S 2 lines present a larger spectral weight at the points where the lines abruptly change their direction. Finally the weight at the Γ pocket is rather small compared to the previously discussed parts of the Fermi surface. Obviously ARPES is subject to matrix elements effects and our simulations do not claim to be a perfect description of the system. Our "model" Fermi surface is presented on fig. 4 Using this Fermi surface we can now try several combinations of the different parts of the Fermi surface to compute the joint DOS. We present the result of this calculation on fig. 4.7.a.-f. The analysis of the Fourier transform of the joint DOS makes clear the doubling of the periodicity we observe as we obtain weight at the top and bottom edges of the first Brillouin zone (I), half distance between the Γ point and the vertical Bragg peaks. This periodicity originates from the diffusion of electrons between the different S 1 pockets of the Fermi surface and to a smaller extent from the warped warped part of the S 2 bands. We also recover the periodicity along the x axis coming from the same type of transitions.

We reiterate that such calculation does not claim to perfectly reproduce the complex physics of the YSR bound states. For instance the spatial extent of said states directly depends on the coherence length of the system, a parameter that joint-DOS calculations do not account for. In the same way we are not capable to produce any deduction about the phase difference between the positive and negative bias states as such parameter is governed by the amplitudes of the magnetic and non magnetic diffusion potentials. However the good agreement between our phenomenological calculations and the experimental results in both 2H-NbSe 2 and Pb/Si(111) √ 7 × √ 3 phase show that independently of the restrictions we mentioned, joint DOS calculations are a good way to predict the patterns that the YSR bound states will present around magnetic impurities. This is no real surprise as this technique has been widely used before in cuprates [START_REF] Mcelroy | Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi 2 Sr 2 CaCu 2 O 8+δ[END_REF][START_REF] Lee | Heavy d-electron quasiparticle interference and real-space electronic structure of Sr 3 Ru 2 O 7[END_REF] but our results indicate its robustness.

Studying the geometry of the Fermi surface is thus strongly indicative of the final structure of the YSR bound states. Performing such study helps identify what system would be of interest when trying to obtain chains of magnetic impurities for instance as a strongly 1D behavior of the joint DOS would indicate a strong preferential direction for the YSR bound states. We would therefore have a possibility to obtain a larger extent of the YSR bound states along said direction that could then be used in order to obtain a wider range of parameters with which to play to couple magnetic impurities.

Non magnetic impurities in

√ 7 × √ 3 phase
We have seen previously that non-magnetic disorder do not induce in-gap states in s-wave superconductor. However, Rashba spin orbit interaction at surfaces is expected to lead to triplet correlations and p-wave superconductivity that becomes sensible to non-magnetic disorder. In this section we discuss the results obtained in the literature concerning metallic monolayers and present results on the √ 7 × √ 3 phase in relation to the effect of non-magnetic disorder. Transport measurements in parallel magnetic field show that the monolayer of Pb grown on GaAs [START_REF] Sato | Majorana fermions and topology in superconductors[END_REF] shows no difference in a field of 14 T [START_REF] Sekihara | Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field[END_REF] which is one of the effect predicted of Rashba spin-orbit coupling [START_REF] Barzykin | Inhomogeneous stripe phase revisited for surface superconductivity[END_REF]. This effect strongly advocates for a very high spin orbit coupling in the Pb monolayer. Another similar system Tl-Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] was also shown to possess a strong spin-orbit interaction [START_REF] Matetskiy | Two-dimensional superconductor with a giant Rashba effect: One-atom-layer Tl-Pb compound on Si(111)[END_REF].

Authorized

Another possibility to probe the spin-orbit interaction in the Pb monolayer is to look at the effect of non magnetic disorder. Due to the Anderson theorem, in-gap states are not expected in the case of an s-wave superconductor. However for a p-wave superconductor there is no such fundamental limitation.

We have measured in our team that for the √ 7 × √ 3 phase we had a gap filling as well as a fluctuation of the height of quasiparticle peaks [START_REF] Brun | Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon[END_REF]. These fluctuations are directly related to the existence of a strong spin-orbit coupling in this material and to p-wave superconductivity as only non-magnetic disorder was By measuring conductance maps of the √ 7 × √ 3 phase far from any YSR bound states we observed fluctuations of the quasiparticle peaks amplitude as well a gap filling at the gap edge. We were able to perform a Fourier transform analysis of these maps and the results are presented on fig. 4.8. On these FFT maps we observe that inside the superconducting gap of the Pb monolayer (i.e. |V | < 0.3 meV) we observe a signal associated to electron scattering. We can compare these Fourier transform to what we had obtained for YSR bound states in the case of a single magnetic defect (see fig. 4.5.a). The only spots we observe that also appears on fig. 4.5 are the ones located exactly at the limit of the first Brillouin zone (labeled I) responsible for the doubling of the periodicity in the direction perpendicular to the atomic lines. The two other external points (labelled II) that we expected to appear on the line joining the Bragg spots are not present in the case of states induced by a non magnetic interaction.

The absence of these diffusion spots indicate that the lateral diffusion of electrons (∆k y = 0) are only permitted if the spin is included in the interaction. Such link between space and spin is another strong indicator of the presence and the importance of spin-orbit coupling in the Pb/Si(111) monolayer. Calculations are ongoing in order to derive a tight-binding model of the √ 7 × √ 3 phase from DFT.

Disordered phases

Now that we have seen what happens to the YSR bound states for the ordered √ 7 × √ 3 phase, we will now study the effect of disorder by looking at the devil's staircase and SIC phases that do not present a long range crystalline order.

On fig. 4.9 we present the topography (a) and spectroscopy (b) of a highlyt anisotropic phase in the devil's staircase domain. Like for the √ 7 × √ 3 case it appears in the form of chains with an atomic lattice parameter much longer in one direction than the other. As a consequence we will observe three different orientations of these lines rotated from each other by 60 • . The in-gap peaks are well visible and separated inside the superconducting gap as they were before (see fig. 4.9.c). However by looking at the conductance map we see that the YSR bound states manifest themselves in the form of elongated shapes.

We see that the elongation of the YSR bound states follows the orientation of the characteristic lines observed in topography. This anisotropy follows the form of the structure of the lattice in the reciprocal space [START_REF] Choi | Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission[END_REF][START_REF] Kim | Nearly massless electrons in the silicon interface with a metal film[END_REF][START_REF] Jung | Triple-domain effects on the electronic structure of Pb/Si(111)-( √ 7 × √ 3): density-functional calculations[END_REF] as we have discussed more in details in the case of the √ 7 × √ 3 phase. The SIC phase is more disordered and does not possess a well defined crystalline symmetry. As it can be seen on fig. 4.10.a it is made of small patches arranged in a somewhat triangular pattern but with no long range order. Because the shape of the spectroscopic signature of the YSR bound states observable by STM depends mostly on the shape of the Fermi surface, in order to obtain a clear pattern it is necessary to have a well defined structure in reciprocal space. The absence of a well-defined long-range crystalline order in the case of SIC prevents the establishment of a clear pattern for the Fermi surface and the resulting YSR bound states appear as speckle-like patterns.

However if the disorder only appears at scales larger than the typical extension of the YSR bound states, it becomes once again possible to define locally a clean reciprocal space structure for the Fermi surface. In the case of the devil's staircase phases it is possible to obtain domains large enough to satisfy this condition. In particular when these phases are highly anisotropic (in the form of 1D chains for instance) we can once again observe a specific dispersion of the YSR bound states.

Towards the Abrikosov-Gorkov limit

We have seen in the previous section how the disorder of the Pb monolayer influenced the YSR bound states. We will now study arrays of randomly distributed impurities with random spin orientation in the same disordered SIC phase. The effect of a disordered array of magnetic impurities in a superconductor was first studied theoretically by Abrikosov and Gor'kov [START_REF] Abrikosov | Contribution to the theory of superconducting alloys with paramagnetic impurities[END_REF]. They showed that two main features were to be observed in this condition. First the superconducting coherence peaks are expected to disappear due to the lost of coherence in the system. Then a gap filling is expected in relation to the appearance of a band of Shiba states. This model is usually well accepted and was very successful in the interpretation of experimental data. We will show here that this is not always the case and that the quasiparticle peaks can be conserved in the presence of magnetic disorder.

Growth conditions

We studied clusters of Co atoms buried below a monolayer of Pb in the SIC phase. We first deposit 10 -2 ML overthe 7×7 reconstructed Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] This migration is stopped by step edges and defects in the Si substrate which are mainly the 7 × 7 twins. On fig. 4.11.b we present a zoom on one of the accumulation area. Those twins appear at places where the steps are in form of wedges and facilitates the accumulation of Co atoms. The disorder we observe seems to indicate that the individual Co atoms do not form any coherent magnetic domain and will behave as individual magnetic scatterers. On the zoomed topography we observe that the Co atoms do not form dimers or trimers as they did in the case of 2H-NbSe 2 . They rather stay in the form of individual atoms arranged in a very disordered way.

The second step of the preparation is to cover the sample with Pb in the usual proportions before annealing the sample at 375 • C during 4 min 30 sec. We obtain a sample in the SIC phase with a few In a first approximation we thus expect that once the sample is covered by a monolayer of Pb each impurity will lead to its own YSR bound states. We can then expect these states to overlap due to the lack of phase coherence for the YSR bound states in the SIC phase. Due to the Co clusterisation our sample will still present unaffected superconducting areas with the same properties as in the clean case. In the middle of this unmodified superconductor we will observe areas in which we will have some gap filling induced by these states. This limit can be seen as a pseudo Abrikosov Gorkov regime where we have non interacting classical impurities that form localized clusters rather than a continuous magnetic disorder.

Spectroscopic features

As shown on fig. 4.12.b, when performing spectroscopic measurements we observed a very strong signal on the gap edges presenting a spatial pattern highly similar to the Co clusters visible in topography before the Pb deposition (shown on fig. 4.11). On fig. 4.12.c we show 3 spectra measured over the most visible clusters from the conductance map (in red, orange and green) as well as a reference spectrum measured where we observe the smallest concentration of defects.

The first thing to observe on the spectra of fig. 4.12 is the gap filling effect that originates from the YSR states induced by the buried magnetic impurities. On the perturbed spectra we observe that while we still recognize the characteristic BCS shape, the width of the gap is modulated by the Co. This effect is better seen when one performs a cut through the LDOS as shown on fig. Due to the gap filling caused by the YSR bound states we cannot fit the spectra with a BCS line shape. Another way to follow spatially the superconducting properties over this type of area is to extract the position of the superconducting coherence peaks. Such analysis is shown on fig. 4.13.b. When compared to the conductance map we observe a clear correlation between the density of states inside the superconducting gap and the energy of the coherence peaks. Therefore a large density of states at the Fermi level will be associated to a lower energy of the quasiparticle peaks. This indicates that unlike what was observed in the case of individual impurities, here the gap undergoes a reduction due to a large density of magnetic clusters. 

Theoretical analysis and link to Abrikosov-Gorkov theory

In order to interpret the data presented above we will describe our sample by a superposition of Shiba states assuming no interaction between them. This superposition of states will have as a first effect to fill the gap. This gap filling will in return modify the self-consistency equation that will ultimately reduce the superconducting gap ∆.

As we explained in the discussion about the Bogoliubov-de Gennes theory, there exists a self-consistency equation of the superconducting gap (eq. 1.28). This correction to the superconducting gap was previously ignored in the treatment of individual impurities as it was not observed experimentally and only played a secondary role on the phenomenon we were interested in. This simplification does not hold anymore in the case of large clusters. The combined effect of each impurity has a strong effect on the gap as we discussed about fig. 4.12.c.

To describe this system we consider a disc of radius R in which we randomly dispose magnetic scattering centers. As the disorder observed experimentally does not indicate any long range arrangement for the magnetization of the clusters we choose to attribute a random value of the magnetic coupling J comprised between ±J max . The non magnetic diffusion potential has however no reason to change from one impurity to the other and we therefore choose to take a fixed value for the non magnetic diffusion potential K.

As we consider that each impurity behaves independently from its neighbor we compute for each impurity the associated YSR bound state. In first approximation the YSR wave function is given by the asymptotic formula 2.21 where the terms δ ± are determined from the values of J and K. To avoid the divergence at the impurity center we replace the 1/ √ r divergence by a thresholded value 1/ √ r 2 + a 2 that behaves as 1/ √ r far from the center and takes a finite value at r = 0. For the threshold a we took a small value (0.02 nm) to avoid any normalization issue later on. We take for ∆ 0 (the unperturbed gap) a value of 0.35 meV that corresponds to the experimental gap measured at 300 mK The individual YSR bound states are normalized to 1. We numerically integrate the square modulus of the individual wave functions over the whole area of interest. Because the self-consistent equation of the gap makes use of the terms u n (r) and v n (r) obtained from the Bogoliubov-de Gennes equations we see that we can directly use the YSR wave functions calculated before. We thus perform a self-consistent calculation of the gap reduction induced by YSR bound states using eq. 1.28.

The calculation of the gap involves the constant λ linked to the superconducting coupling. We estimate it using the relation [START_REF] Tinkham | Introduction to Superconductivity[END_REF] k

B T c = 1, 13 ω D e -1 λ (4.2)
and we obtain a value of 0.24 (we take ω D = 10 meV ). We checked the convergence of the gap with the iteration and observed that the calculation gives a satisfactory value after 3 to 4 iterations (see fig. 4.16.c and d.). The full Python code written for this calculation is reported in appendix . [START_REF] London | The electromagnetic equations of the supraconductor[END_REF].

In order to check the validity of our calculation we first tried to compute the simple case of a single impurity. The gap reduction we obtained is plotted on fig. 4.14.a and the corresponding YSR bound states LDOS on 4.14.b. We then compared to what was obtained by Meng et al. in [START_REF] Meng | Superconducting gap renormalization around two magnetic impurities: From Shiba to Andreev bound states[END_REF]. In this article the author performed the analytical calculation of the gap variation around a single impurity and found that for 3D systems the leading order terms give

δ∆(r) ≈ ∆ 0 e -r/ξ (k F r) 2 . ( 4.3) 
The power law present in the decay is the same as the one found for the LDOS when performing the Rusinov calculation in 3D. Therefore it seems natural to extend this expression in 2D using the expression

δ∆(r) 2D ≈ ∆ 0 e -r/ξ k F r . (4.4)
We then fit the results from our own calculation using this expression and we present the result in fig.

4.14.a. We performed this calculation by using a non realistic value of the coherence length ξ = 5.3 nm for numerical reasons linked to the discretization of the space. If we want to include the typical scale of the oscillations ( k F ) as well as the typical scale of the coherence length (one order of magnitude larger for the Pb monolayer) we need an extremely large amount of numerical points that drastically increase the calculation time.

Once again, in order to avoid some problematic divergence at the origin we perform the substitution r → √ r 2 + a 2 . The fitting procedure gives us for ξ a value of 5.74 nm and for the maximum gap difference a value of -1.14 µeV. These values are to be compared with what we obtain in our model. Concerning the coherence length we used a value of 5.3 nm and we therefore have a very good agreement with the other model. For the gap difference the final value we obtain is -1.165 µeV on the impurity site and we
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Figure 4.14: Fit of gap reduction for a single magnetic impurity: a. Gap profile as a function of the distance from the impurity distance. The dots corresponds to the gap calculated using our semianalytical method while the dashed lines corresponds to the fit obtained by using the formula from [START_REF] Meng | Superconducting gap renormalization around two magnetic impurities: From Shiba to Andreev bound states[END_REF] adapted to a 2D case. b. LDOS map of the negative bias YSR bound state for the same impurity. therefore fall once again very close from the other model. These results seem to confirm the validity of our model in first approximation and allow us to push our investigation forward.

On fig. 4.15 we present in a. the gap map calculated over 500 impurities in a disc of radius 10 nm (2 impurities per nm 2 ) and in b. the corresponding LDOS map at -0.37 ∆. The positions of individual impurities is represented in fig. 4.15.a by white dots. We see that the gap is strongly modified by the impurity and undergoes in some places a diminution of 30% of its original value. This result is in good agreement with what we obtained by comparing the local value of the energy of the coherence peaks of the superconductor in fig. 4.13.b. Unsurprisingly the larger value of LDOS for in the in-gap states is directly correlated to the smaller value of the gap just as we observed experimentally.

The individual conductance spectra we obtain from this simulation are presented in fig. 4.16.a. The blue spectrum on this figure corresponds to the homogeneous gap from which we started the calculation using the value ∆ 0 = 0.28 meV. This spectrum is calculated from the BCS equation for the density of states and in order to reproduce the experiments is convoluted with the derivative of the Fermi-Dirac distribution at 300 mK. The red spectrum on this figure was taken in the center of the cluster and shows the combination of two effects. The first effect we observe here is the gap filling effect that was observed experimentally on fig. 4.12.c, indicating a gapless regime for superconductivity. This gap filling originates from the in-gap YSR bound states. Instead of creating a single peak as we saw in the case of individual impurities, the cluster of randomly oriented impurities leads to a distribution of states inside the gap. This distribution is added to the reduced ∆ and increases the zero-bias conductance. The second effect is the gap reduction on the red spectrum: the position of the coherence peaks that are around 0.2 meV. Fig. 4.16.b. shows a cut through the magnetic cluster. This figure combines both figs. 4.15 as it lets us follow the smooth variation of the superconducting gap as well as the gap filling. When taking a cut through the cluster we also see more defined peaks that correspond to the points where the cut passes right over an impurity. In this case the spectral weight associated to the impurity is strong enough to dominate the other ones and as we did experimentally, we see the in gap pair of YSR bound states.

This whole calculation and observations make the link between the Shiba and the Abrikosov-Gorkov regime. We already discussed the difference with the Shiba case and we will now discuss the link with the Abrikosov-Gorkov theory. In the case described by Abrikosov and Gorkov the impurities are supposed to a b be distributed randomly over the full sample while here they are localized in the form of clusters. However inside the clusters the impurity are indeed randomly distributed. The observed and calculated clusters can thus be seen as small 2D Abrikosov-Gorkov superconductors. This comparison can be further extended as we do consider perfectly independent impurities and associated YSR bound states in our model. The same condition is used in the Abrikosov Gorkov theory when the scattering of electrons on different impurities is neglected. This condition corresponds to the lowest order Born approximation.

The main difference between the Abrikosov-Gorkov theory and our results resides in the gap filling effect. As we show on fig. 4.16.d, for increasing values of the effective spin-flip rate the gap filling is only provided from the diminution of the spectral weight of the quasiparticle peaks and leaks from the gap edges continuously toward the Fermi level. Because of this effective spin-flip rate Γ, the role of specific individual impurities is totally neglected in order to favor a statistical approach of the system. Our phenomenological model does not claim to be a perfectly accurate representation of the physical reality as many second order effects have been neglected. It is however a fast way to perform calculations on magnetic clusters without diagonalizing an Hamiltonian at each iteration loop. Moreover due to its intrinsically continuous nature we are not limited to an on-site calculation as tight-binding is. We think that our model gives a good intuition on the underlying physical phenomena happening and provide a satisfactory explanation for our experimental results.

Our results on this system clearly show the role of magnetic defects in the filling and the reduction of the superconducting gap. Compared to Abrikosov-Gor'kov theory we have shown that the coherence peaks do not necessary disappear before entering a gapless regime for superconductivity. Our results may help interpret some experiments where gap filling was observed without a diminution of the quasiparticle peaks [START_REF] Coumou | Electrodynamic response and local tunneling spectroscopy of strongly disordered superconducting TiN films[END_REF][START_REF] Chand | Phase diagram of the strongly disordered s-wave superconductor NbN close to the metal-insulator transition[END_REF]. On a structural point of view our recipe may be used for the patterning of macroscopic samples and the locally weakened order parameter may be useful in the engineering of pinning centers for vortices. The structure of the vortex lattice at low field would be in this case fully determined by the position of the magnetic clusters on the sample. gap size that are well reproduced by considering the gap reduction under the influence of the superposition of independent YSR bound states.

In the next chapter we will discuss the intermediate case of ordered Co clusters giving rise to a topological transition and the appearance of topological edge states. We will discuss the role of the different ingredients needed to enter a domain of topological superconductivity and show how we can obtain Majorana bound states by stabilizing a vortex inside of a topological domain.

Chapter 5

Magnetic clusters and topological systems 5.1 Introduction

In this chapter we will present the results obtained in the study of topological superconductivity induced by magnetic Co clusters embedded below Pb/Si(111) monolayers. We will first introduce the theoretical tools needed to discuss topological superconductivity and Majorana quasi-particles. We will then show how one can obtain nanometer sized clusters of Co/Si acting as small ferromagnets on the superconducting Pb overlayer. By analyzing this configuration in terms of field-induced topological transition we will show how the emergence of edge states can be expected. Finally we will see how by increasing the size of the Co clusters it becomes possible to create a vortex state that will exhibit a zero-bias state that shows strong similarities with Majorana bound states.

Topology and Majorana quasi-particles

In an attempt to include special relativity into quantum mechanics Dirac proposed the equation that now bears his name [START_REF] Dirac | The quantum theory of the electron[END_REF][START_REF] Dirac | A theory of electrons and protons[END_REF]. Dirac's theory first proposed the idea that particles like electrons could be associated to an antiparticle. In 1937 E. Majorana, mostly motivated by esthetic, showed that another equation could be written that would be compatible with both quantum mechanics and special relativity [START_REF] Majorana | Teoria simmetrica dell'elettrone e del positrone[END_REF]. In his theory, Majorana proposes that there could exist some fermions which are their own antiparticle. While Dirac antiparticles such as positrons were discovered soon after their theoretical prediction, the status of Majorana particles is more uncertain. There are some suspicions that neutrinos might be Majorana particles but no definitive proof has been found yet.

However in the field of condensed matter physics there has been a lot of recent proposals of systems that could exhibit Majorana-like excitations. Superconductivity is involved in most of these proposals due to its build-in electron-hole symmetry which is an essential ingredient for Majorana-Weyl physics. The idea is that from a system described in terms of electronic operators ĉkσ it is possible to diagonalize the superconducting Hamiltonian by introducing Majorana operators γ defined as a combination of electronic operators

γ1 = 1 √ 2 (ĉ † + ĉ) γ2 = i √ 2 (ĉ † -ĉ).
These operators have the particularity to be their own adjoined operator as γ † i = γi . Because in the framework of superconductivity the Hamiltonian describing the system can be diagonalized using a Bo-68 CHAPTER 5. MAGNETIC CLUSTERS AND TOPOLOGICAL SYSTEMS goliubov transformation in which the u k and v k factor are respectively the electron and hole weight of the eigenvectors it is natural to expect that under certain conditions these factors will take the same value and we would thus obtain a Bogoliubov operator in the form of a Majorana operator.

Such operators are interesting in condensed matter physics as they are associated to anyonic quasiparticles that obey non-Abelian statistics. When exchanging two fermions the global phase function acquires asign, while the exchange of bosons leads to a + sign. Anyons are quasi-particles that acquire a Berry phase θ = ±1 when exchanging two of them [START_REF] Leinaas | On the theory of identical particles[END_REF]. The non-Abelian statistics on the other hand refers to the fact that the exchange of quasiparticles keeps the trace of the exchange path that was followed through the global phase of the wave-function. This type of statistics allows to perform quantum calculations [START_REF] Sato | Majorana fermions and topology in superconductors[END_REF] by braiding of Majorana fermions [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. These type of calculation are expected to be fault-proof as the topological properties of Majorana bound states should prevent decoherence to occur in the system.

The proposed systems expected to exhibit Majorana fermions are diverse and include vortex cores in topological superconductors [START_REF] Stern | Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics[END_REF][START_REF] Björnson | Vortex states and Majorana fermions in spin-orbit coupled semiconductor-superconductor hybrid structures[END_REF][START_REF] Björnson | Probing vortex Majorana fermions and topology in semiconductor/superconductor heterostructures[END_REF], superconductor-semiconductor heterostructures [START_REF] Björnson | Spin-polarized edge currents and majorana fermions in one-and two-dimensional topological superconductors[END_REF][START_REF] Chung | Dislocation majorana zero modes in perovskite oxide 2DEG[END_REF] as well as chains of magnetic atoms on top of superconductors [START_REF] Nadj-Perge | Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor[END_REF][START_REF] Vazifeh | Self-organized topological state with Majorana fermions[END_REF][START_REF] Braunecker | Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase[END_REF]. In every case one of the key ingredients involved in the emergence of Majorana bound states is spin-orbit coupling [START_REF] Manchon | New perspectives for Rashba spin-orbit coupling[END_REF] and we will discuss this effect more in details below. By combining spin-orbit coupling and magnetism it is expected that one would create a topological superconductor in which a topological index could be defined [START_REF] Bernevig | Topological insulators and topological superconductors[END_REF]. The Majorana states would then appear at the interface between a topological and a trivial superconductor.

Signatures of Majorana excitations were claimed to have been observed in two types of experiments. The first type of experiment [START_REF] Mourik | Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[END_REF] uses a nanowire made of semi-conducting InAs in contact with an s-wave superconductor (niobium titanium nitride). When applying an external magnetic field in the direction of the nanowire, the authors observed a region of magnetic field in which appeared a zero-energy mode they attributed to Majorana quasiparticles.

The second type of experiment takes the route of magnetic chains on superconductors [START_REF] Nadj-Perge | Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor[END_REF]. In this experiment the authors use a superconducting Pb monocrystal on which they deposit Fe atoms that spontaneously organize in the form of ferromagnetic chains. By using STM they observed zero energy bound states at the end of the ferromagnetic chains. The spin-orbit interaction in this configuration is provided by Pb which is an heavy element.

Rashba spin-orbit interaction

Origin and effect of the interaction

The Rashba interaction is an effect created by spatial inversion symmetry breaking at surfaces. The coupling of the spin and momentum of electrons is derived from the relativistic Dirac equation (Darwin terms) where the movement of electrons in an electric field creates an artificial magnetic field that will couple to their spin. In crystals this effect is seen when the electrical field experiences a strong spatial variation as it is the case at surfaces. In particular 2D electron gases present a strong variation of the electric field due to the symmetry breaking along the z axis. When expanding the Dirac equation in the low energy limit at the second order in e 2 /hc we obtain a term of the form [START_REF] Berestetskii | Quantum electrodynamics[END_REF] H SO = 4m 2 c 2 σ • (∇V × p).

(5.1)

For a symmetry breaking along the axis u r , the Rashba spin-orbit interaction reads as

ĤSO = α(k × σ) • u r , ( 5.2) 
that can be rewritten in two dimensions under the form (for u r along the z axis)

Ĥ2D SO = α(k x σ y -k y σ x ).
(5.3)
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The parameter α is therefore mostly a reflect of the asymmetry around the atomic nuclei at which the potential V (r) is localized. For a simple parabolic dispersion the Rashba spin-orbit interaction leads to a splitting of the bands and the new dispersion is written as [START_REF] Bychkov | Properties of a 2D electron gas with lifted spectral degeneracy[END_REF] E

± (k) = h 2 k 2 2m ± αk. (5.4)
We plot this dispersion on figs. The projection of the spin along the quantization axis is not a good quantum number in the case of Rashba spin orbit and the eigenbasis of the system will be a chiral basis in which the spin of the electrons is turning with the orientation of the k vector in the reciprocal space (i.e. S • k = 0 and S • z = 0). The spin thus behaves in Rashba systems in the same fashion as it does in topological insulators around Dirac cones.

Because the eigenstates of a system exhibiting Rashba spin-orbit are a mixture of spins ↑ and ↓, a more convenient way to write the eigenbasis of the system will be by introducing an index λ = ± which will correspond to the chirality of the system. The eigenvectors |± can be easily written from the original states |↑ and |↓ as

|k, λ = |k, ↑ + iλe iθ k |k, ↓ √ 2 .
(5.5)

with θ k the orientation of the k vector. An interesting observation that can be made on the form of this ground state is that it is totally independent of the parameter α that describes the strength of the spin-orbit interaction. This behavior indicates that the interaction deeply modifies the ground state of the system. As we will discuss later, the form of the superconducting interaction is modified in the presence of spin orbit interaction. This will lead to triplet and spinless superconductivity from which topological superconductivity will emerge.

Case of Rashba effect with magnetic field

We now add to the Rashba interaction an external magnetic field whose effect is described by a Zeeman Hamiltonian H Zeeman = B • σ.

(5.6)

If we parametrize the orientation of the magnetic field by the angles θ and φ (see fig. 

H Rashba+Zeeman = ξ k + V cos φ iαke -iθ k + V e -iθ sin φ -iαke iθ k + V e iθ sin φ ξ k -V cos φ, (5.7)
where V is the amplitude of the magnetic field (|B| = V ). It now becomes trivial to obtain the eigenvalues of the system in the form

E ± = ξ(k) ± V 2 + k 2 α 2 -2kV α sin φ sin (θ -θ k ). (5.8)
By analyzing this dispersion we observe that for an in-plane field (i.e. φ = π/2) the bands possess a degeneracy point at k = -V α cos θ sin θ that is lifted for any finite out-plane magnetic field. For a perfectly normal magnetic field the splitting at the Γ point is exactly of 2V . We show on fig. 5.2 the effect of an external magnetic field on the electronic dispersion for both in-and out-plane field.

The opening of a gap by means of a magnetic field perpendicular to the surface of the sample will deeply modify the ground state of the superconducting ground state of a Rashba superconductor. The ground state is modified in such a way that if one wants to continuously transform the system to a superconductor with an in-plane magnetic field it would have to be done through a step that would close the gap. This intermediate gap closing will sign a topological transition between a topological superconductor (out of plane field) to a trivial one (in plane field) in the following. When we will include superconductivity inside the problem later on, we will have defined two superconductors with different topological indexes depending on whether superconductivity appears on a system where the bands are already split or not. These topological indexes will also depend on the value of the chemical potential and whether or not the Fermi level falls inside the gap opened by the perpendicular magnetic field.

In the same way as edge states appear at the interface between a trivial and a topological insulator we will see the appearance of states at the edges of the trivial superconductor (with no Zeeman degeneracy lifting) and the topological one (with lifted degeneracy). Here these edge states will be called chiral as they arise from a time-reversal symmetry breaking.

Rashba spin-orbit and form of the superconducting interaction

In 1989 [START_REF] Édel'shtein | Characteristics of the Cooper pairing in two-dimensional noncentrosymmetric electron systems[END_REF] Édel'shtein and in 2001 Gor'kov and Rashba [START_REF] Gor | Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state[END_REF] investigated the way spin-orbit interaction influences the superconducting ground state derived from the general Hamiltonian (equivalent to 1.13)

H int = 1 2 λµνρ kk q U λµνρ (k, k , q)â † λ,k â † µ,-k-q âν,-k -q âρ,k . (5.9)
where the λ, µ, ν, ρ indexes relate to the spin degrees of freedom. In this case the operators Ŝ2 and Ŝz do not commute with the Hamiltonian. S and S z are thus not good quantum numbers anymore. As a consequence, the isotropic s-wave gap used in the absence of spin-orbit interaction does not minimize the energy of the ground state and should therefore be replaced by a momentum dependent gap. Furthermore, the states on which the coupling now applies are the eigenstates of the system in presence of Rashba spin-orbit coupling. Under such circumstances the Bogoliubov-de Gennes equations become the Gor'kov equations

(iω n -ε λ (k))g λ (k, ω n ) + ∆(k)f † λ (-k, ω n ) = 1, ∆ * (k)g λ (k, ω n ) + (iω n -ε λ (k))f † λ (-k, ω n ) = 0
where ω n are the Matsubara frequencies [START_REF] Abrivosov | Methods of quantum field theory in statistical physics[END_REF] and g λ and f λ are the normal and abnormal Green functions respectively. The index λ refers in these equation to the eigenstate ± of the system without superconductivity but Rashba spin-orbit coupling (see eq. 5.5).

In the absence of spin-orbit the order parameter ∆ is fully described from the abnormal green function f (k) as we have for singlet pairing (the α and β indexes refer to the spin degrees of freedom) [START_REF] Gor'kov | Surface and superconductivity[END_REF] 

∆ αβ ∝ ψα (k) ψβ (-k) = f (k)(iσ y ) αβ .
(5.10)

Where the proportionality symbol includes the amplitude of the superconducting coupling. The lack of CHAPTER 5. MAGNETIC CLUSTERS AND TOPOLOGICAL SYSTEMS inversion symmetry redefines the order parameter as a mixture of singlet and triplet pairing in the form

∆ αβ ∝ ψα (k) ψβ (-k) = {if (k)σ y + (d(k) • σ)iσ y } αβ . (5.11)
In all generality the type of coupling that one should include inside the Bogoliubov-de Gennes formalism will depend on how the spin-orbit interaction favors either the singlet configuration (corresponding to the term f (k)) or the triplet configuration (corresponding to the term d(k) • σ). As we will discuss later, in order to preserve the time reversal symmetry of the system we have to add some constraint on the two terms. The singlet term must be an even function of k while the d vector must be an odd function of the wave vector k. The simplest case one can consider is to write for the singlet term as a constant (as in the usual BCS case) ∆ ↑↓ (k) = ∆ S .

(5.12)

On the other side, the simplest way to write the triplet term is to consider a function of the angle θ k as

∆ ↑↑ (k) = ∆ ↓↓ (k) = ∆ T |k|e iθ k .
(5.13)

Rashba spin-orbit, Zeeman and superconductivity

Let us now consider a simple singlet superconductor with Rashba spin-orbit coupling on which is applied an external magnetic described by a Zeeman Hamiltonian

H = H 0 + H Singlet + H Rashba + H Zeeman . (5.14)
This is a crude approximation that neglects the triplet pairing terms discussed previously and will be different from the helical case we will discuss below. For a magnetic field oriented along the z direction we can obtain the analytical expression for the dispersion of the system.

E = ± V 2 + k 2 α 2 + ∆ 2 + ξ 2 ± 2 k 2 α 2 ξ 2 (k) + V 2 (∆ 2 + ξ 2 (k)).
(5.15)

By analyzing the dispersion we observe a critical field V crit for which we obtain a gap closure at the Γ point in the reciprocal space

V crit = ∆ 2 + µ 2 .
(5.16)

The dispersion 5.15 is represented on fig. 5.3 for three different values of V, respectively at zero field (V = 0), at the topological transition induced by the Zeeman field (V = V crit = ∆ 2 + µ 2 ) and beyond the topological transition (V = 2V crit ). For fields larger than V crit the gap reopens as shown on fig. 5.3.c. The reopening of the gap only occurs for a finite Rashba coupling α = 0. For α = 0 the gap still closes at V crit but stays closed at higher field, the superconductor is then in the paramagnetic limit. The topological transition that exists in presence of spin-orbit coupling is thus absent when α is turned down to zero as shown on fig. 5.4.

Symmetries of the Hamiltonian

We have previously discussed the effect of a magnetic field that breaks time reversal symmetry and leads to chiral superconductivity. We will now address triplet superconductivity that preserves time reversal symmetry and leads to helical superconductivity.

A general BCS Hamiltonian respecting the time reversal invariance can be written as

H BCS-T R = k,k ,σ 1 ,σ 2 V σ 1 ,σ 2 (k, k )ĉ † k ,σ 1 ĉ † -k ,σ 2 ĉ-k,σ 2 ĉk,σ 1 .
(5.17) This form leads to three different possibilities for the spin configuration in the mean field case. The first possibility is to have a coupling between opposite spin (↑, ↓) leading to a singlet state .18) In this configuration, the spin antisymmetry does not force any symmetry on the order parameter with respect to the spatial inversion (k → -k) and thus the minimal way to write the s-wave order parameter is to take a constant ∆ S .

H S BCS = k ∆ S ĉ † k,↑ ĉ † -k,↓ + h.c. . ( 5 
The second possibility for the spins to couple in the time-reversal invariant BCS Hamiltonian is the triplet case where the coupling occurs between spins of same orientation (↑, ↑) and (↓, ↓). The symmetry analysis of this Hamiltonian shows that it is not possible anymore to consider a k invariant order parameter in the mean field limit as ∆ T (k) must transform into -∆ T (-k) by spatial inversion. The simplest way to do so without introducing any node in the order parameter is to include an angular dependance in the p-wave term such as .19) where θ k refers to the direction of the wave vector k where we write p x + ip y = |k|e iθ k . While the triplet component of superconductivity ∆ T is a priori authorized in every circumstances, for a system that respects time-reversal invariance it is not necessarily present. The work of Rashba and Gor'kov [START_REF] Gor | Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state[END_REF] showed that the presence of Rashba spin-orbit coupling is responsible for the appearance of the triplet correlations. Because the Hamiltonian and the spin operators Ŝ2 and Ŝz do not commute anymore we will need to take into account both triplet and singlet terms. If we try to compute the dispersions one should expect in a system with coexisting triplet and singlet order parameters we would obtain the following matrix form for the Hamiltonian 1

H T BCS = k ∆ T |k|e iθ k ĉ † k↑ ĉ † -k↑ -∆ T |k|e iθ k ĉ † k↓ ĉ † -k↓ + h.c. ( 5 
H =        V -µ + ξ k ∆ S |k|α -∆ T |k| k F ∆ S V + µ -ξ k ∆ T |k| k F |k|α |k|α ∆ T |k| k F -V -µ + ξ k -∆ S -∆ T |k| k F |k|α -∆ S -V + µ -ξ k        (5.20)
With a magnetic field oriented along the z direction and with the inclusion of spin-orbit interaction. This Hamiltonian is written in the basis Ψ = ĉk↑ ĉ † -k↓ ĉk↓ ĉ † -k↑ . The positive eigen energies of this Hamiltonian are given by

E ± = V 2 + k 2 α 2 + ∆ 2 S + |k| 2 k 2 F ∆ 2 T + (ξ k -µ) 2 ± 2 V 2 (∆ 2 S + (ξ k -µ) 2 ) + ∆ S ∆ T |k| k F + |k|α(ξ k -µ) 2 .
(5.21) Because spin-orbit is already included in the symmetries of the Hamiltonian via the triplet superconductivity term, we can in first approximation ignore the Rashba kα terms in the Hamiltonian. We will also forget about the Zeeman terms as we will only consider a time-reversal invariant system. Then we can show that one can perform a phase transition and change the topology of the ground state by tuning 1 In order to simplify the notations, the Hamiltonian is written at θ k = 0. However, the supposed rotational invariance guaranties the independence of the solutions with θ k and thus diagonalizing the Hamiltonian for this single case is enough to infer the main properties of the dispersion. In order to study the spectrum we redefine the triplet order parameter ∆T so that it can be expressed in the same unit system as ∆S. We do so by introducing a term 1/kF = 1/ √ 2mµ in the expression given in eq. 5.19.
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the ratio ∆ T /∆ S at zero magnetic field. For ∆ T /∆ S = 1, the gap closes and for higher values it reopens entering a topological phase. It is thus possible to operate a time-reversal invariant topological transition by playing on the values of the triplet and singlet order parameters. The topological phase obtained in this configuration is called helical as it does not break time-reversal symmetry and leads to a set of two bound states with opposite chiralities.

In the previous section we broke time reversal symmetry by means of a magnetic field normal to the surface. This configuration was called chiral and exhibited one edge state. In the present case of a mixture of triplet and singlet order parameters we preserve time reversal symmetry and instead of one edge state we will obtain a pair of states with opposite chiralities. This configuration is called helical.

This discussion is summarized on fig. 5.5. The top part describes the chiral case (with ∆ T = 0) and the bottom part the helical case (with V = 0). Figs. 5.5.a present the band structure of a system with s-wave superconductivity and Rashba spin-orbit interaction for different values of the Zeeman coupling V Z . One can see that for a critical field V Z = ∆ 2 + µ 2 , the gap closes at k = 0 and then reopens, entering the topological chiral phase. The corresponding µ vs. V z phase diagram is represented on fig. 5.5.b and the disk in the topological part of the diagram represents the superconducting sample with a single edge state propagating at the interface with the vacuum.

We procede similarly for the helical case where we present on fig. 5.5.b. the evolution of the band structure with ∆ T for a system in which spin-orbit was omitted (α = 0) as well as magnetic field (V z = 0) in order to only leave an s-wave superconductivity term ∆ S . Contrary to fig. 5.5.a, the axes here are ∆ S and ∆ T . The topological transition occurs for ∆ S = ∆ T and when ∆ T > ∆ S the system is in the helical topological phase. The gap closing associated to this transition is presented on fig. 5.5.d with the trivial and topological phases delimited by a black dashed line. When in the helical topological state, there exists two counter-propagating states at the edges of the sample. These edge states are represented by a clock wise and an anti-clockwise arrow of different colors.

What this shows is that there exists many different ways to obtain a topological transition by playing with the different ingredients at our disposal. An analysis of the dispersion 5.21 actually shows that the phase transitions between trivial and helical as well as between chiral and helical respectively appear for the following conditions

∆ 2 T + V 2 z = ∆ 2 S , (5.22) 
∆ 2 S + µ 2 = V z (5.23)
We present on fig. 5.6 a summary of the discussion on both helical and chiral cases where we display the ∆ T vs. ∆ S phase diagram of topological superconductivity. On this figure are represented the three possible phases a superconductor can enter by controlling the amplitude of the Zeeman term V z and the triplet order parameter ∆ T . In all these phases we obtain a fully opened gap that only closes at the transition lines (black dashed lines). The Rashba term is neglected for simplicity as it does not fundamentally modifies the phase diagram. In particular, the transition at V z = ∆ 2 S + µ 2 happens at k = 0 and is left unchanged whatever the amplitude of the Rashba term might be.

Experiment principle

We will now present an experimental realization of topological edge states in Pb/Si. In order to do so we will consider a system in which a small ferromagnet will locally (over the size of a few nanometers) create an area of topological superconductivity by means of a time reversal symmetry breaking interaction (see fig. 5.7). This will define two areas of different topologies (outside and inside the ferromagnet) that will lead to the formation of edge states at the interface between the two areas. In order to realize such system experimentally we need to first obtain the superconductor that will exhibit the necessary triplet correlations and then be able to control the growth of ferromagnets sufficiently coupled to the superconductor in order to trigger the topological transition. As we explained before in order to observe topological superconductivity and Majorana fermions spinorbit coupling is an essential component. It thus becomes necessary to determine what kind of system is the most favorable. Because Rashba spin-orbit coupling arises at surfaces, thin films and monolayer superconductors seem to be good candidates. Strong spin-orbit splitting was indeed reported at the surface of semiconductors covered by a metal layer [START_REF] Gierz | Silicon surface with giant spin splitting[END_REF][START_REF] Yaji | Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface[END_REF][START_REF] Ast | Giant spin splitting through surface alloying[END_REF][START_REF] Frantzeskakis | Giant spin-orbit splitting in a surface alloy grown on a Si substrate: BiAg 2 /Ag/Si(111)[END_REF][START_REF] Frantzeskakis | New mechanism for spin-orbit splitting of conduction states in surface alloys[END_REF].
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The next step is to find a metal with a strong spin-orbit interaction. Because the strength of the interactions varies as Z 3 with Z the atomic number of the element we will privilege heavy elements. The system Pb/Si(111) thus seems to be an interesting one as Pb is known to present strong spin-orbit coupling [START_REF] Dil | Rashba-type spin-orbit splitting of quantum well states in ultrathin Pb films[END_REF][START_REF] Slomski | Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier[END_REF]. Furthermore, as we have shown before (section 4.4.2), the electronic diffusion by non magnetic disorders induces peak height fluctuations as well as a gap filling effect. We showed when discussing fig. 4.8 that the selection rules for the diffusion spots in the Fourier transform were linked to a spin-orbit coupling in the Pb/Si(111) monolayers.

The results we will show in the next session were obtained by combining the Pb monolayer with nanoclusters of Co. We found that the Co arranges in the form of clusters of sizes varying from 5 to a few tenths of nanometers and act as small ferromagnets. We have thus gathered the ingredients necessary to the obtention of topological superconductivity and the observation of edge states.

Sample preparation

Our samples were prepared under UHV at a maximal pressure of 3.10 -10 mbar. The first step of the preparation consists into cleaning the Si that will be used for the Pb and Co deposition later on. We used wafers of Si cut along the (111) orientation and doped with phosphorus. We first submitted the Si to a series of "flashes" at 1200 • C by direct current heating.

We usually perform about 20 flashes to make sure that we get rid of the biggest defects such as silicon carbides. The Si substrate is then prepared by rapidly changing the temperature from 1200 • C to 900 • C directly after a flash. If the pressure inside the preparation chamber during this step stays in the range 10 -10 mbar we then slowly decrease the temperature down to 500 reconstruction (see Fig. 5.9). If the pressure criterion is not satisfied we go back to the previous steps of flashing the sample until we can operate under good conditions of pressure. During all the different preparation stages we cool the cryopot with nitrogen of the preparation chamber allowing for a lower pressure thanks to a cryo-pumping phenomenon on the walls of the chamber.

We then wait for the sample to reach room temperature before proceeding to the Co and Pb deposition. These two depositions were performed one after the other from sources previously calibrated with a quartz microbalance. We evaporate Co onto the sample for 6 sec with a flux of 10 -2 ML.min -1 for a final quantity of 10 -3 ML. In order to obtain an homogeneous Pb mono-layer we start by depositing 4 ML and then anneal the whole sample in the structure Pb/Co/Si at 375 • C during a time that will depend on the precised structure one wants to obtain (see Fig. 5.9) and can range between 90 sec and 5 min. Using such recipe leaves us with an homogeneous sample with only a few Pb islands as shown on Fig. 5.8.a and the Co is not seen in the topography, leaving a seemingly unperturbed Pb monolayer. We will discuss in the following the Co clusters and the way we can image them. The steps originating from the Si substrate are mono-atomic for the large majority and only a few are double. On the level of the atomic structure we obtain a mixture between a linear and an hexagonal phase (HIC). Both those phases coexist homogeneously in the sample and domain walls are accomodated by √ 7 × √ 3 boundaries (see Fig. 5.8.b). As usual we observe a few single atomic defects on our samples due to the impurity already present in the Pb source or adsorbed during the sample preparation. As we observed in the case of the individual YSR states, the impurities from the Pb source can give rise to magnetic signatures in the gap. However those impurities are extremely dispersed throughout the sample and their signatures in the LDOS rarely overlap.

Imaging of the Co clusters

One of the question that remains is: why is Co not visible in topography measurements? Our strategy was to anneal a sample containing those clusters up to a point where most of the Pb had evaporated.

We performed an annealing of the sample during 2 hours at 400 • C and obtained the structure presented on fig. 5.10.a. The phase we obtained is a mosaic phase and we have only a few island remaining that appear as bright spots on this figure separated by 50 nm in average (some of them are indicated by white arrows on the figure). The step edges have been strongly modified during the annealing and appear shredded indicating that the Si is also moving during this procedure.

The islands left on the sample are actually Co islands capped with Pb that enables for a semi-direct observation of the Co clusters. On fig. 5.10.b we present a close-up of such island where we adapted the color code in order to see both the surface of the sample and the island. While we still have a truncated triangular global shape characteristic of Pb islands we also see on the top of the island a quasi-circular contour that is not seen in the case of Pb islands without Co. The characteristic size of the Co associated features is around 5 nm of lateral size and the measured height is about 4 Å. While the tip tends to induce an artificial broadening the fact that we observe such sharp contour around the Co makes us confident that we do measure the real size of the cluster. However we must be careful with the measurement along z as some electronic effects can play a role. We also performed, with the help of D. Demaille, transmission electron microscopy (TEM) measurements on our sample and those results are shown on fig. 5.11. These images clearly reveal the existence of nanometer-sized objects in our sample. It was not possible however to obtain a chemical analysis of these objects as they tend to disappear under the electron beam during long exposure measurements.

Experimental results

Topological edge states

The data presented in this section were obtained by using a superconducting tip in order to increase the resolution. This tip was prepared from Pt-Ir wire that was covered with Pb by crashing the tip into the Pb 3D islands grown over SiC clusters that are sometimes found on the surface. The tip thus exhibits a superconducting gap of 1.3 meV similar to bulk Pb. The samples discussed here were obtained by first depositing 0.8.10 -3 ML of Co before Pb deposition and annealing the sample at 365 • C for 90 sec. The atomic structure of the Pb monolayer obtained using this set of parameter corresponds to the SIC phase. We show our area of interest on fig. 5.12.a. This part of the sample corresponds to an area where a cluster of Co is buried below the Pb monolayer. This cluster has a radius of approximately 5 nm and is only seen in conductance maps in the gap energy range. The corresponding in-gap spectroscopy is shown on figs. 5.12.b.-d.

At the Fermi level (b.) we observe a perfect circle in the conductance map. This ring corresponds to the edge states at the interface between a trivial superconductor (away from the Co cluster) and a topological one (above the Co cluster). The ring separates for larger biases into an inner and an outer ring (c. and d.). The separation of the zero-bias ring at E = E F thus reveals the helical behavior of ). The question is here to know whether we are in the helical configuration or in the chiral configuration. The separation of the two rings can better be visualized by taking a line cut through the spectroscopic data that crosses the center of the disc. This cut is showed on fig. 5.12.e. On this cut we clearly see the X-shaped crossing of the state at the Fermi level at ±3 nm from the disk center. It should also be noted that the states connect continuously (up to the energy resolution of our measurement) across the full gap thus giving a real dispersion of the states. The existence of a dispersion is clearly in opposition with what we had observed for YSR bound states that only admit a pair of states inside the gap (or a few pairs depending on the potential size) at a given energy.

Because we reach the topological regime by means of a Zeeman field, time-reversal symmetry is broken in our system. Theoretical tight-binding calculation of a spatially variable magnetic field2 let us think that we are in the chiral configuration. We present in fig. 5.13 the result of the calculation for a topological chiral cluster with a smooth interface with a trivial superconductor. This calculation was performed by projecting the 2D model of our system on a 1D space by supposing a cylindrical symmetry. We were thus able to separate the radial and angular part of our wave-function as

Ψ(r) = m J ψ n,m J (r)e i Ĵzθ (5.24)
where m J refer to the eigenvalues of the rotation operator Ĵz commuting with the Hamiltonian describing our system. From the separation of the radial and angular part we are able to only plot the radial part of the LDOS |ψ(r)| 2 . In that LDOS map (subtracted from the trivial DOS) we recover the typical X In this configuration the central part of the system is in the chiral phase will the external part not affected by the Zeeman interaction is in the trivial phase. On this figure we subtracted the superconducting spectrum of the trivial phase in order to better show the appearance of the in-gap states.

shaped crossing of the edge states that we observe experimentally. Calculations performed with other set of parameters show that the crossing of the states can only be obtained if the maximal value of V z is taken so it satisfies the chiral criterion V z > ∆ 2 S + µ 2 . In our experiment the presence of two gap-crossing states is a reminiscence of the helical phase that is crossed when evolving from chiral to trivial. Our helical edge states are equivalent to those observed for quantum spin Hall effect (which presents two edge states) with an applied magnetic field (that splits the edge states). The spatial splitting of the opposite chiralities is caused by the Zeeman interaction that breaks the time reversal symmetry. The splitting vanishes at the Fermi level as the electron-hole symmetry restores the time reversal equivalence of the two chiralities.

A remark one can make concerning these experimental in-gap signatures is that they do not correlate to any topographic feature. Contrary to what we had previously observed for YSR bound states observed around single magnetic impurities, the in-gap states do not seem to be sensitive to the local disorganization of the Pb monolayer. At 0 bias in particular the width of the ring is approximately 0.7 nm which is comparable to the typical atomic dimensions and Fermi wavelength of the system. This behavior is in direct opposition with the long range extension we observed in the case of YSR bound states where the spatial extent is mostly driven by the coherence length ξ of the superconductor. Here ξ does not seem to play a role and only atomic dimensions are relevant for the zero bias features. However at different biases the spatial extension of the states increase. In particular a nearby defect that is absolutely absent from the zero-bias conductance map starts to become visible at the bottom right corner of the images on figs. 5.12.d and fuses with the previously clean topological edge states. Our explanation for this behavior is that the defect in the bottom is actually a YSR bound state or a small cluster leading to a YSR band that gets included into the edge state at its own characteristic energy. The inclusion of this state to the more global topological edge state is better seen on fig. 5.12.d where we can really follow the outer crown of the helical states that totally surround the YSR state with no discontinuity. Surprisingly the extension of this additional feature is determined by the characteristic length scales of the cluster and not the characteristic length scales of the YSR bound states as one would expect. We do not have an explanation for this fact. Because these data were acquired using a superconducting tip, there exists a whole area of the spectrum (for |V | < ∆ T ip ) that does not contain any worthwhile information. Thus in the cut 5.12.e we simply suppressed this area in order to only show the spectroscopic features linked to the sample. This allows us to see the continuation of negative bias states into the positive bias ones and follow the dispersion of the states in the system. On this figure we also subtracted the mean Pb spectrum in order to obtain a better contrast on the in-gap states 3 . In order to compare these results with the original data set, we present on fig. 5.14 the data without the cut. On this figure, as expected, we clearly see that we do not have any spectroscopic signal in the range |V | < ∆ P b .

Majorana bound states in vortex cores

Now that our toolbox contains the necessary ingredients for topological superconductivity, the next challenge is to successfully obtain a zero bias Majorana excitation that can then be manipulated in braiding operations.

Theoretical calculations show us that from the dispersion of chiral edge states we observe at the frontier between a topological and a trivial superconductor, the only way to stabilize a well defined zero bias mode is to introduce a vortex inside the cluster. In cylindrical symmetry we can separate the wave-function in a radial (ψ n,m j (r)) and an angular (e iθ Ĵz ) component. For a p-wave superconductor, the vortex allows us to write a rotation operator J z that commutes with the Hamiltonian of the form

Ĵz = Lz + 1 2 σz + nσ z , (5.25) 
with L z the angular momentum and n the vortex winding number. As we look for single solutions at E = 0 we want it to be defined by a single quantum number n. For an odd value of n the eigenvalues m j of J z will take integer values. On the other hand, the electron-hole symmetry we look for implies that for every positive energy solution ψ m j ,E we have the corresponding negative energy solution ψ -m j ,-E . We would thus have for an even value of n a coupling between the positive and negative energies solutions of the states that will prevent the appearance of an isolated zero-bias mode. The only solution is then to have m j = 0 for which n ∈ N and the phase of the wave-vector has an even number of winding around the vortex. We observed experimentally that for larger topological domains with size of the order of 20 nm, a vortex forms in the center of the domain and drastically modifies the structure of the edge states. We reached those experimental conditions by slightly increasing both the amount of Co deposited on the surface (1.10 -3 ML instead of 0, 8.10 -3 ML in the previous case) as well as the annealing time (4 min 30 sec instead of 1 min 30 sec in the previous case). The objects we obtained in these conditions have a characteristic size of around 20 nm and present drastically different spectral signatures from what was observed and described in the previous section.

We present on Figs. 5.15 and 5.16 the results obtained on a vortex observed inside of a topological area 4 . Despite the different preparation conditions, the Pb phase of the monolayer is the one we had achieved in the previous case and no significant difference can be observed as it can be seen on fig. the Fermi level. First we obtain a crown surrounding the topological domain as we had in the previous case, but it is here accompanied with another state localized in the very center of the topological domain characteristic of the presence of a vortex. The spectra taken at these two positions (in the center of the cluster and in the outer crown) show clear zero-bias peaks with the center one exhibiting a very strong amplitude as seen in fig. 5.15.c in red. On the outside of the topological domain we observe that the dI/dV peaks collapse at E F for r → ∞. This evolution of the states is better seen by taking a line cut across the magnetic cluster passing through the center peak. This cut is shown on fig. 5.15.d where the bare superconducting spectrum has been subtracted in order to only leave the contrast of the in-gap states in the LDOS plot. The behavior of the in-gap states is much different from what we had observed in the case of the continuum of interface states. Here, due of the presence of the vortex, a zero energy level is pinned at the high symmetry point of the system which corresponds to the center of the magnetic cluster. This central state is connected with the interface states by a continuum of states that move towards the gap edges before converging back to the Fermi level.

The question arises to explain why such topological effects were not observed in the last chapter for 5.6. EXPERIMENTAL RESULTS 87 large clusters. The simplest explanation consists in saying that due to the size of the clusters and the growth method used to obtain them we cannot get a well ordered magnetic structure. Ordering is a necessary condition as the Co may form Co silicide having non-ferromagnetic structures, that may not fulfill the necessary condition to enter the topological regime by creating a magnetic field larger than the critical field V > ∆ 2 S + µ 2 (for the chiral case) or ∆ 2 S + µ 2 > V > ∆ 2 S + ∆ 2 T (for the helical case).

Magnetization switches

On Fig. What these spectra reveal is that the sudden disappearance of the zero bias Majorana bound states (on the center and edge of the magnetic cluster) leaves some states at the gap edges (indicated by the two orange arrows on fig. 5.17.d). We attribute the gap edge states to a YSR impurity band due to a domain with in plane magnetization. The crown of the Majoranas is not observed anymore once the shift has occured and the disorder sensitivity typical of YSR bound states is recovered for the gap edges states. We interpret such drastic differences as a switching of the cluster magnetization from an out of plane field (which leads to the formation of Majorana excitations) to an in plane field which does not satisfy the conditions to enter the topological regime for reasons we evoked when discussing fig. 5.2. The sudden shift of magnetization occurring at the exact point in time when the STM tip passes at the center of the magnetic cluster leads us to attribute this effect to the tip electrical field or inelastic excitation reversing the magnetization. Our explanation is supported by multiple observations of this effect on similar clusters of comparable sizes. The spatial extension of the cluster can easily explain how, compared to the small clusters of the previous section, the anisotropy of the system could make the in and out of plane magnetic configurations almost equivalent. The tip disturbance (by its electric field or a current induced excitation of the magnetization) would become sufficient to overcome the energy barrier between the in and out of plane configuration and induce the switching.

Conclusion

In this chapter we addressed topological superconductivity by first detailing the ingredients necessary to obtain it. We explained the way Rashba spin-orbit interaction modifies the superconducting ground states by introducing triplet correlations. This discussion allowed us to plot the phase diagram of superconductivity as a function of the weight of the triplet order parameter ∆ S and the Zeeman field amplitude V z . We then presented and discussed the results we obtained by growing magnetic clusters of Co covered by a monolayer of Pb. We showed how the self-organizing Co clusters buried under the Pb monolayer act as small local ferromagnets that induce edge states at the frontier between a topological superconductor and a trivial one. Surprisingly, while we expected a single chiral state due to time reversal symmetry breaking we obtained a pair of chiral states that we interpreted as a signature of the helical phase that is crossed during the transition between the chiral and trivial phases.

When increasing the size of the clusters we showed that we can trap vortices inside the topological and induce zero bias Majorana bound states. The existence of these bound states is determined by the orientation of the Zeeman field that can be switched by using the tip of a STM. We hope to be able in future studies to better understand the shift mechanism in order to achieve a total control over the state of the system and a full control of the Majorana excitations that could lead to braiding possibilities of said Majoranas. under 86 K [START_REF] Brihuega | Intrinsic character of the (3 × 3) to ( √ 3 × √ 3) phase transition in Pb/Si(111)[END_REF]. In these two phases the atomic arrangement is the same in the xy plane and the difference between the two structures comes from a difference in the vertical atomic arrangement. There has been several mechanism proposed to explain this transition [START_REF] Avila | Dynamical fluctuations as the origin of a surface phase transition in Sn/Ge(111)[END_REF][START_REF] Ortega | Dynamical fluctuations and the √ 3 × √ 3 ↔ 3 × 3 transition in α-Sn/Ge(111) and Sn/Si(111)[END_REF][START_REF] Brihuega | Intrinsic character of the (3 × 3) to ( √ 3 × √ 3) phase transition in Pb/Si(111)[END_REF][START_REF] Melechko | Role of defects in two-dimensional phase transitions: an STM study of the Sn/Ge(111) system[END_REF][START_REF] Melechko | Two-dimensional phase transition mediated by extrinsic defects[END_REF][START_REF] Shi | Surface phase transitions induced by electron mediated adatom-adatom interaction[END_REF] that has also been observed in similar systems such as Pb/Ge [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] and Sn/Ge(111) [START_REF] Carpinelli | Direct observation of a surface charge density wave[END_REF]. Recent unpublished calculations by M. Calandra and C. Tresca have shown that this effect is purely structural and also affects the first three top Si layers. They calculated a transition temperature of 90 K, very close to the experimental value of 86 K.

This continuous shift in phases is not observed between the 3 × 3 and √ 7 × √ 3 because in this case the primitive cells of both lattices deeply changes its symmetry from hexagonal to rectangular. This difference leads to the appearance of domain walls between the two structures that can be clearly seen in fig. 6.1.a (blue arrows). Domain walls can also be seen when looking at the connection between two √ 7 × √ 3 domains with different orientations (green arrows). On the same figure we can clearly observe the specific pattern at the interface of two lines connecting to the interface followed by one seemingly disconnected line (green arrow). The same kind of behavior appears at the connection with the 3 × 3 at the bottom of the image (blue arrow). We see that depending on the orientation of the √ 7 × √ 3 lattice the connection of the chains is either continuous (on the vertical interface) or discontinuous (at the horizontal interface). These boundaries have a direct impact on the electronic properties of the system. We present on figs. 6.1.c. d. and e. three conductance maps at -319 meV and -95 meV and 37 meV. These maps allow us to correlate the topography with the electronic distribution. On the conductance map 6.1.e we can clearly see the boundary state appear in blue at the interface between 3 × 3 and √ 7 × √ 3 (purple arrows).

On top of that we also clearly see some defects that are difficult to spot on the topography alone. The most striking one is the fork shaped boundary crossing the 3 × 3 area signaled by a dashed contour on fig. 6.1.a. This defect is visible in the topography obviously but is extremely contrasted in the conductance map 6.1.c. and d. This defect actually corresponds to a √ 3 × √ 3 antiphase domain boundary between two 3 × 3 domains and we can see how it connects to the disordered phase on the left side of the area. This antiphase domain boundary corresponds to an area where two mismatched lattices encounter. A closer look at the 3 × 3 lattice below and above the antiphase boundary reveals a shift of the dark areas seen in topography by one atomic lattice constant.

If we now look at the disordered √ 3 × √ 3 part of the scanning area (another example is shown on 6.1.b) on the left side we can observe how the topographic disorder directly influences the electronic distribution. Obviously the disorder on the topography seems to be fixed as dark spots and bright spots are well defined spatially. However this is not the case when looking at the conductance maps. At strong negative bias on fig. 6.1.c. (-320 meV) the topographic defects almost perfectly match the spectroscopy when referring to the position of said defects. By moving towards positive bias we see that the disorder does extend to the well ordered 3 × 3 part of the scanning area with a clear tendency to be favored inside the twinning "fork". As we will see in the following this behavior corresponds to an induced gap inside the 3 × 3 phase.

A direct consequence of this phase between the √ 3 × √ 7 and 3 × 3 is that a bad connection of the different patches might suppress conductivity on the whole sample. For instance while the √ 7 × √ 3 becomes superconducting under 1.52 K [START_REF] Zhang | Superconductivity in one-atomic-layer metal films grown on Si(111)[END_REF], in the case where a large part of the sample is in the 3 × 3 phase, the STS signal may not present any gap. It is not clear if this effect is caused by an inverse proximity effect of the normal parts (3×3) on the superconducting parts or if the impossibility to measure a superconducting gap originates from more subtle effects as Coulombic effects induced by the other phases. In this section we are in a case where we were not able to observe any low energy features such as superconducting gaps and we thus focused only on the large energy scale behavior of the coexistence of the different Pb/Si phases. 

High energy spectroscopy of the Pb/Si(111) phases

A remark that we can make on the data from fig. 6.1 concerns the √ 7 × √ 3 domains on the right and bottom side of the scanning area. On the conductance map taken at -320 meV we see appear areas about a dozen nanometers of size over which we observe an increase of the conductance, one of them is indicated by a red arrow. The density of these areas and the fact that we can identify very localized defects inside leads us to link them to dopants from the Si substrate. The associated spectral signature would thus be associated to the phosphorus rather than the Si or the Pb monolayer. This kind of defects can be seen on a larger scale on fig. The spectra associated to the P dopants are shown on fig. 6.2.b. On this figure we took a sample of six spectra, three taken on top of the buried defects (in red) and three taken away from these defects (in blue). The main spectroscopic difference between those two sets of spectra is that while without defects a small peaks appears in the conductance around -400 meV, in the presence of defects this peak is shifted towards the Fermi level around -270 meV. As a consequence the P can be seen in the conductance maps at all energies between -478 meV and -95 meV. We do not observe any spectroscopic difference at positive biases and therefore the clusters are not seen at any positive energy (see fig. The spectra associated to the atoms and the hollows are shown on fig. 6.3.b together with a conductance map identical to 6.1.b. These spectra show that even if the two configurations share the same global shape, the spectral weight of atoms is larger than the one of hollows above -117 meV. For any other bias within the investigated range the ratio is inverted.

If we enlarge the spectroscopic window and look at the 3 × 3 phase globally, we observe that around ±300 meV the spectra exhibit two peaks (see blue curve on fig. 6.4.c). These two peaks are also present in the disordered √ 3× √ 3 phase but are shifted around ±400 meV and surround a 300 meV gap symmetrical around the Fermi level (yellow curve). Such a gap opening in the presence of disorder hints toward an Anderson localization effect [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] in the √ 3 × √ 3 phase. On the other hand, the sharp localization of the electronic states of the 3 × 3 phases as well as the energy symmetrical peaks (potentially Hubbard bands according to DFT + U calculations) are strong indicator that this phase is actually close to be a Mott insulator [START_REF] Mott | Metal-insulator transition[END_REF] or that it at least exhibits strong electronic correlations. The Mott picture is consistent with what was observed for the analogous system Sn/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] in the ( √ 3 × √ 3) phase [START_REF] Modesti | Insulating ground state of Sn/Si(111)-( √ 3 × √ 3)r30 •[END_REF] which is closely related to Pb/Si. case (green curve) as we observe that a full gap (red curve), of the same size as the one of the disordered √ 3 × √ 3 phase, is induced.

Around -300 meV, at the energy where we were previously able to image the underlying dopants, we observe a strong diminution of the density of states that is counterbalanced by the appearance of a large "bump" at 600 meV. This bump hides a small features around 320 meV that corresponds to the states observed in the green and black spectra of the homogeneous √ 7 × √ 3 phase and that are an intrinsic feature of this phase. We have seen in this section that the 3 × 3 phase possesses a well reconstructed structure and is quasi-Mott insulator as our spectroscopic measurements and DFT calculations show. On the other hand, the √ 3 × √ 3 behaves as a fully gapped Anderson insulator. Complementary measurements and DFT+U calculations are being performed in order to model our experimental results. In the following section we will discuss the precise way these two structure 3 × 3 and disordered √ 3 × √ 3 coexist and study the spatial evolution of the localization gap. Because the 3 × 3 is not insulating on its own, the continuity with the fully gapped √ 3 × √ 3 can be seen as a crossover from low to high disorder for Anderson localization [START_REF] Kramer | Localization: theory and experiment[END_REF][START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF][START_REF] Lee | Disordered electronic systems[END_REF]] in a Mott system. The coexistence of the two phases can also be seen on fig. 6.5 which corresponds to the same sample as the one presented on fig. 6.1, where we can recognize the characteristic fork in the bottom of the topography and spectroscopy that can be seen in both images. As we showed on fig. 6.4, we observe the ±300 meV bands of the 3 × 3 structure as well as the gapped √ 3 × √ 3 phase surrounded by its own two sidebands at larger energies. The superconducting proximity effect describes how the properties of a superconductor can be induced to either another superconductor with different characteristic parameters, a normal metal or an insulator. If a normal metal (that we will call N ) is in good electrical contact with a superconductor (that we will call S), the Cooper pairs from the superconductor can "leak" to the normal metal and as a consequence modify the electronic properties of the normal metal. This effect has been widely studied during the 1960's [START_REF] De Gennes | Boundary effects in superconductors[END_REF][START_REF] Deutscher | Superconductivity: Proximity effects[END_REF] and was recently revitalized by the possibilities to study this effect at much smaller length and energy scales [START_REF] Pannetier | Andreev reflection and proximity effect[END_REF]. This physical effect originates from the fact that only Cooper pairs can penetrate a superconductor below the gap energy |E| < ∆. It is however possible for an incoming electron from the normal part to create an electron-hole pair with opposite spins, where the hole is reflected and a second electron is transmitted and forms with the original incoming electron a Cooper pair. This process thus conserves the spin and charge of the system. Another way to see this process is to have a Cooper pair that passes from the superconducting part to the normal part and progressively looses its coherence due to the absence of a "glue" for the electrons. This pair becomes a pair of time-reversed electron states that propagate coherently over a distance L C that is given in diffusive metals by L C = min{ D/E, L φ } with D the diffusion constant of the system, E the electron state energy and L φ the phase-coherence length in N . This diffusive case is the one we are working in as we have ξ 50 nm for the superconducting coherence length and e 4 nm for the elastic mean free path in the monolayer systems.

Such Cooper pair leakage modifies the local density of states of the normal metal over a distance L C from the S -N interface. This modification has been spatially resolved in recent years by means of tunneling probes [START_REF] Guéron | Superconducting proximity effect probed on a mesoscopic length scale[END_REF][START_REF] Meschke | Tunnel spectroscopy of a proximity Josephson junction[END_REF] as well as STM/STS techniques applied to mesoscopic systems [START_REF] Vinet | Spatially resolved spectroscopy on superconducting proximity nanostructures[END_REF][START_REF] Moussy | Local spectroscopy of a proximity superconductor at very low temperature[END_REF][START_REF] Escoffier | Anomalous proximity effect in an inhomogeneous disordered superconductor[END_REF][START_REF] Sueur | Phase controlled superconducting proximity effect probed by tunneling spectroscopy[END_REF][START_REF] Wolz | Evidence for attractive pair interaction in diffusive gold films deduced from studies of the superconducting proximity effect with aluminum[END_REF]. Very recently, the considerable progress in the controlled growth of atomically clean materials under ultrahigh vacuum conditions has made it possible to probe the proximity effect with high spatial and energy resolution in in situ STM/STS experiments [START_REF] Kim | Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films[END_REF][START_REF] Serrier-Garcia | Scanning tunneling spectroscopy study of the proximity effect in a disorderd two-dimensional metal[END_REF].

We will describe here the coexistence between with small non-superconducting quasi-Hubbard 3 × 3 patches the superconducting and the The sample was prepared by depositing 1.7 ML of Pb at ambient temperature before being annealed at 375 • C for 3 minutes (plus two minutes during which we slowly increased the temperature from 0 • C to 375 • C. Compared to the recipe used to obtain a full superconducting system in a dense phase like SIC or HIC), the Pb covering from which we start is very low, thus the annealing will lead to a large depletion of Pb at the step edges of the substrate and the appearance of many 3 × 3 flakes along them. More rarely we also observe these flakes appearing in the middle of the terraces. The typical size of the flakes can vary between 10 nm and more than 100 nm1 . Despite the appearance of these 3 × 3 flakes, the system is globally superconducting and in the √ 7 × √ 3 phase with domains of a typical size of about 500 nm. On fig. 6.7.a we show the topography of a 102×89 nm 2 area in such configuration. We see on this By performing STS on this system, we observe the appearance of an induced gap in the 3 × 3 flake of the same size as the superconducting gap (see fig. 6.7.c). Inside this gap, two spatially fluctuating peaks are measured as presented on the conductance map acquired at 0.1 meV on fig. 6.7.b. These in-gap states appear in the form of rings centered around the bottom left corner of the 3 × 3 flake, with a pseudo periodicity depending on the direction and the distance from the flake edges.

On the conductance map at the Fermi level we observe that these states are also present in the √ 7× √ 3 phase very close from the interface with the 3 × 3 flake.

Due to the size of the superconducting gap and therefore the size of the induced gap, the in-gap states we observe are very close from each other. Because of the thermal broadening of the spectra they seem at first to overlap in one single band. On fig. 6.8 we show a line cut through the oscillating pattern starting from the center of the oscillations (left) and going on the other atomic terrace (right). On this figure we subtracted the bare superconducting √ 7 × √ 3 mean spectrum in order to have a better contrast on the in-gap states. Doing so seem to show that there are two separated in-gap states that overlap due to thermal broadening. However we cannot exclude that these states correspond to a continuum of in-gap states.

We tried many different approaches to interpret these in-gap states but unfortunately none of them was able to reproduce the observed pattern. We will describe below these different approaches and the results obtained.

The first model we tried to implement in order to reproduce the spectroscopic features was to consider Andreev states in ballistic regime (in a quantum billiard configuration) induced by the inclusion of a normal metal between superconducting electrodes. Andreev states have been widely studied in the context of nanowires for SN [START_REF] Lee | Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures[END_REF] or SNS junctions [START_REF] Pillet | Andreev bound states in supercurrent-carrying carbon nanotubes revealed[END_REF][START_REF] Dirks | transport through andreev bound states in a graphene quantum dot[END_REF][START_REF] Bretheau | Supercurrent spectroscopy of andreev states[END_REF][START_REF] Bretheau | Exciting andreev pairs in a superconducting atomic contact[END_REF]. The principle of these Andreev states stems from the fact that electrons at energies below the superconducting gap, incoming from a normal electrode cannot penetrate a superconductor without reflecting a hole inside the normal electrode in order to create a Cooper pair that is allowed to enter the superconductor at energies below the energy of the superconducting gap. Then, when multiple reflections occur from both superconducting electrodes in an SNS system, a gap appears inside the normal part accompanied with in-gap states whose energy will depend on the size of the N part and the phase difference between the two superconducting electrodes.

In the context of our enclosed 3 × 3 patch, we expect a superconducting gap to be induced by the √ 7 × √ 3 and to observe these in-gap Andreev bound states. These states can easily be obtained in 1D by using a Bogoliubov de Gennes tight binding calculation. We tried to perform the same calculation in 2D by considering diverse simple geometrical shapes for the normal zone (square, circle, triangle) in order to understand how the form of the flake would modify the shape of the Andreev eigen-modes. Unsurprisingly these type of calculations did not reproduce the circular shape of the experimentally observed in-gap states. Instead we found the eigen-modes of the shape of the normal area (see figs. 6.9.a). Another issue of this type of calculation is that it relies on the diagonalization of the full band and thus necessitates very large arrays in order to obtain the sufficient energetic resolution. Indeed generally the superconducting gap is much smaller than the band energy. For instance for a gap of the order of 1/100 of the band size, if we want about a hundred points in the gap we would need a total of 10.000 points for the full band and thus the same number of atoms. In a 4×4 formalism we would have to diagonalize matrices of size 40.000×40.000. This kind of calculation thus rapidly becomes unmanageable as the size of the matrix we wish to diagonalize increases.

The second approach we followed was based on an optical analogy. We imagined that inside a triangular area a particle would reflect on the edges multiple times. Because in our system the three sides of the flake are not equivalent2 , we can consider that the reflectivity of the three sides of the triangle could have different physical properties. For instance the electronic connection at the edges is far less efficient than it is on the terrace and particles arriving at the top side of the flake would be more reflected than the ones arriving at the sides. By summing the contribution for different initial angles and positions over the whole system we should be able to reproduce the interference pattern produced by the multiple reflections Finally the last model we tried to apply to this system is a resistance model. By considering the STM tip as one electrode and the √ 7 × √ 3 as another one we tried to calculate what would be the resistance seen by an electron injected inside the 3 × 3 flake. The idea behind this model is that the observed spectroscopic signature might come not from real electronic states inherent to our system but rather to an electric field induced by our STM tip. When injecting an electron at a point M of the 3 × 3 flake it would try to return to the electrodes by finding the closest path to the √ 7 × √ 3 reservoir. By calculating the equivalent resistance at each point of a triangle we did observe a smooth evolution from the center of the triangle to the edges with a rapid divergence at the edges as expected. However in this case we did not reproduce the oscillating pattern we observe. A step we did not have the time to execute would consist into solving the Schrödinger equation for an electric potential following the equivalent resistance map calculated by this model. One could expect to observe eigenmodes that might eventually give both the oscillating pattern and the circular shape we observe experimentally.

The conclusion we draw from these theoretical failures is that the correlations in this system should probably be incorporated in the model and not neglected. The main issue with this conclusion is that the easy to use of Bogoliubov de Gennes formalism cannot be applied anymore as Hubbard term in the Hamiltonian make use of 4 different operators and therefore the spinors and the matrix form of the Hamiltonian cannot be used.

Conclusion

In this chapter we discussed the versatility of the Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayer in the way the different phases could be combined in order to study interesting proximity effects based on their own spectral characteristics. We first presented these spectral characteristics and showed that the 3 × 3 and √ 3 × 3 phases present strong electronic correlation effects (Mottness) and that the disorder of the √ 3 × √ 3 opens an Anderson localization gap. We showed how contacting these two phases modifies continuously the localization gap by proximity.

Finally we discussed the case of the superconducting proximity between a superconductor and a 6.4. CONCLUSION 101 correlated metal where we have observed an induced superconducting gap as well as in-gap Andreev bound states appearing spatially in the form of rings. The calculation we did were not able to reproduce the experimental data and more theoretical work will be needed in the future in order to understand the geometry of these states probably caused by the Coulombic interaction in the 3 × 3 phase. The first spectrum measured on the SIC monolayer is denoted by +0 nm. The distance between the +0 nm and -0 nm spectra is about 1 nm. (e) Color-coded computed dI/dV (V, x) across the interface. (f) Spatial evolution of the energy of the peak maximum E peak (x) across the interface. The experimental results (symbols) are nicely reproduced by self-consistent calculation of the order parameter (red solid line), while the red dashed line corresponds to the non-self-consistent results. The evolution of the order parameter is shown by black lines: self-consistent (solid) and non-self-consistent (dashed).

Pb but much larger than the monolayer SIC phase as we have T C1 6.2 K and ∆ 1 1.2 meV. On the other hand, the monolayer characteristic superconducting parameters are T C2 1.8 K and ∆ 2 0.3 meV [START_REF] Zhang | Superconductivity in one-atomic-layer metal films grown on Si(111)[END_REF][START_REF] Yamada | Magnetoresistance measurements of a superconducting surface state of In-induced and Pb-induced structures on Si(111)[END_REF].

Results at 300 mK

The results obtained at 300 mK (for T < T c2 < T c1 )on this system are summarized on fig. 7.1 (a) to (f). At this temperature the two electrodes S 1 and S 2 are superconducting and the "stronger" superconductor S 1 will inject Cooper pairs into the "weaker" S 2 . On fig. 7.1.a the superimposed color code is the conductance map obtained at -0.3 meV. This bias value corresponds to the small gap S 2 . On this figure the non perturbed S 2 appears in blue (outside the small gap) while S 1 appears in red (inside the gap). The yellow color allows to visualize in real space the proximity effect. Another way to visualize this effect is by averaging the different spectra at a given distance from the interface as shown on fig. A striking feature observed on this data is the sharp discontinuity at the interface (occurring over less than 1 nm) that is followed by a smooth spatial evolution in both S 1 and S 2 toward their bulk form. In S 2 the evolution from the interface spectrum (B) to the reservoir spectrum (D, far from the interface) is soft and can be followed over more than 100 nm.

Because S 1 acts as the "stronger" superconductor, the inverse proximity effect where a superconductor with a smaller gap tends to diminish the superconducting correlation in the larger gap system, is extremely small. This inverse proximity effect is better seen on fig. 7.2.c. at -1.06 meV. For the inverse proximity effect in S 1 this evolution can be seen over approximately 60 nm.

Before describing how the proximity effect is modified at 2 K where S 2 is in its normal states we will discuss the theoretical framework of the Usadel equations to better understand our observations. Most theoretical studies of the proximity effect between two superconducting systems have focused on the analysis of the critical temperature using either the Ginzburg-Landau theory or the linearized Gorkov equations [START_REF] Deutscher | Superconductivity: Proximity effects[END_REF] which are only valid close to the critical temperature of the whole system. Here we want to be able to describe the local spectra at arbitrary temperatures and we will use the Usadel approach [START_REF] Usadel | Generalized diffusion equation for superconducting alloys[END_REF]. This approach summarize the quasiclassical theory of superconductivity in the diffusive limit, where the mean free path is smaller that the superconducting coherence length ξ = D/∆. The quasiclassical theory describes all the equilibrium properties in terms of a momentum-averaged retarded Green's function Ĝ(R, E) which depends on position R and energy E (see appendix .1 for a discussion of the Green's function formalism). This Green's function is a 2 × 2 matrix in the electron-hole (Nambu) from whose components we will be able to extract the values of the LDOS and the superconducting order parameter.

Ĝ

= g f f g . ( 7.1) 
In the case where the inelastic and phase-breaking interactions are neglected, the propagator Ĝ(R, E) satisfies the following equation

[167] D π ∇( Ĝ∇ Ĝ) + [Eτ z + ∆, Ĝ] = 0, (7.2) 
where τ z is the Pauli matrix in electron-hole space and

∆ = 0 ∆(R) ∆ * (R) 0 , ( 7.3) 
where ∆(R) is the space dependent order parameter that needs to be determined self-consistently via the following equation (equivalent to eq.1.28)

∆(R) = V εc -εc dE 2π {f (R, E)} tanh βE 2 . ( 7.4) 
In this equation β = 1/k B T , V is the superconducting coupling constant and ε c is the cutoff energy. These two parameters can be eliminated in favor of the critical temperature of the system (in absence of proximity effect) in the usual manner. In our case, as the two reservoirs S 1 and S 2 will not present any phase difference, the order parameter ∆ can be chosen to be real, as it was implicitly done in 7.4.

To solve the Usadel equations we will model our system as two superconducting reservoirs R 1 and R 2 connected by a proximity zone in 1D. Due to the thickness difference between S 1 and S 2 , we will consider that S 1 is a perfect reservoir R 1 in which the order parameter ∆ 1 remains constant and unmodified at the interface. The inverse proximity effect will thus not be taken into account. S 2 on the other side will be approximated as a semi-infinite wire with a constant pairing interaction λ(R) = λ 2 with a critical temperature T C2 .

The 1D Usadel equations were solved by J. C. Cuevas following [START_REF] Hammer | Density of states and supercurrent in diffusive SNS junctions: role of nonideal interfaces and spin-flip scattering[END_REF] using the Ricatti parametrization [START_REF] Eschrig | Singlet-triplet mixing in superconductor-ferromagnet hybrid devices[END_REF] by describing the junction interface using Nazarov's boundary conditions, valid for arbitrary 106 CHAPTER 7. SUPERCONDUCTING PROXIMITY EFFECT [START_REF] Nazarov | Novel circuit theory of Andreev reflection[END_REF]. In order to well describe the boundary conditions, a key parameter is the effective transparency coefficient r that can be roughly defined as the ratio between the resistances of the S 1 -S 2 barrier and of the monolayer1 . Within this model, the LDOS ρ(x, E) can be computed as a function of the distance from the interface x as ρ(x, E) = -{g(x, E)}/π, while the normalized tunneling spectrum is obtained by making use of eq. 1.37.

In order to obtain the parameters of this model we first fixed the bulk gaps in S 1 and S 2 by performing a BCS fit of their local tunneling spectra obtained far from the interface. The best fits we obtained were for ∆ 1 = 1.20 meV and ∆ 2 = 0.23 meV for an effective electron temperature of 0.55 K (slightly higher than the base temperature of our STM). Then, we determined the value of the reflectivity coefficient r by adjusting the discontinuity in the spectra observed at the interface leading to a value r = 0.02 corresponding to a highly transparent yet non perfect interface. Finally, the value of the diffusion constant D 2 is fixed in order to reproduce the spatial dependence of the energy of the spectral maximum E peak (x > 0) (see fig. 7.1. f). We obtained a value of D 2 7.3 cm 2 .s -1 , which corresponds to a coherence length ξ 2 45.7 nm, in good agreement with the ξ 2 value extracted from the analysis of the vortex core profile in the SIC phase ([83] and in our own analysis in fig. 4.2.c). Moreover, the value of D 2 suggests that the mean free path in the monolayer is of the order of 4 nm and is therefore much smaller than ξ 2 , which justifies the Usadel approach in this problem 2 . Fig. 7.1.f shows the spatial evolution of the peak height both as experimentally measured (blue dots) and numerically calculated with (solid red line) and without (dashed red line) self-consistency on the order parameter, i.e. ∆ = cte or ∆(r) as given from equation 7.4. In the case where self-consistency is not implemented, the calculated spatial dependence E peak (x) does not follow the experimental data. The jump at the interface is also well captured and fits the experimental data nicely. On the same figure we show the self-consistent order parameter ∆(x) (in black) in the monolayer. This parameter exhibits a jump at the island edge and decays gradually to the S 2 bulk value within 80 -100 nm. These results underline the importance of fully self-consistent calculations which is in any case required based on fundamental principles. In fig. 7.1.e we show the full dI/dV (V, x) spectra obtained from the solution of the Usadel equations using the parameter values determined above. The theory clearly reproduces all the salient features of the experimental results shown on figs. 

Results at 2 K

We now turn to the 2 K case. At such temperature, the monolayer is not in the superconducting state anymore. The experimental results are presented on fig. 7.3. The spectra acquired on the monolayer do not show a supeconducting gap anymore far from the Pb island. Only close to the interface is present a smooth induced gap that gradually disappears over a typical distance of 60 nm away from the island edge. The behavior of the spatial evolution of the spectra closely resembles the case described in [START_REF] Serrier-Garcia | Scanning tunneling spectroscopy study of the proximity effect in a disorderd two-dimensional metal[END_REF] for a S-N system where instead of a crystalline Pb monolayer, an amorphous Pb wetting layer plays the role of the normal metal. There are some differences however: (i) here, the Atshuler-Aronov reduction of the low bias tunneling density of states, characteristic of electronic correlations, is absent and (ii) the crystalline monolayer is superconducting at low temperatures which is not the case of the disordered Pb wetting layer.

We can now compare the experimental proximity spectra with the results given by our model, using the values determined at 0.3 K. The temperature used for the calculation is the one measured experimentally from the thermometer placed close to the sample. The results of this calculations are presented on fig. 7.3.e. In this case also, the theoretical results qualitatively reproduce the experimental spectra on fig. 

distance from the edge (nm)

.3: Proximity effect between two superconductors at 2 K: The same as in Fig. 3, but for T=2.05 K. At this temperature, the striped incommensurate Pb monolayer S 2 is in its normal state. Notice that the order parameter determined self-consistently exhibits a finite value close to the S 1 -S 2 interface.

without any adjustable parameter. More importantly, as we show in fig. 7.3.f, the Pb monolayer locally develops, in the vicinity of the interface, a finite order parameter that survives over a distance larger than 100 nm. The impact of this proximity-induced order parameter can be appreciated by comparing these results with a non-self-consistent calculation where the order parameter is assumed to vanish at this temperature, which would correspond to the case where S 2 is a non superconducting metal. Such calculations show that the induced gap extends over a much shorter distance inside the Pb monolayer as compared to the experimental dependence. This fact is illustrated on fig. 7.3.f where we show that the experimental data for E peak (x) are much better fitted by the self-consistent calculation. Our results thus provide clear evidence for the existence of the proximity-induced superconductivity in the interface region.

We present on fig. 7.4 four different conductance maps showing the energy dependence of the proximity effect. These maps can be compared to what was measured at 300 mK (fig. 7.2) where we could observe the inverse proximity effect. This effect is not seen at 2 K on the conductance maps but due to the nature of the calculations we performed, we cannot provide any theoretical calculation to support this observation.

The inverse proximity effect observed at 300 mK is much weaker that the direct proximity effect. This difference is due to the difference in electron densities of the two systems as the density of electrons in much larger in the three dimensional islands than it is in the two-dimensional monolayer. In principle, the inverse proximity effect can be described within a natural extension of our 1D model. However, such a description is not quite satisfactory and this limitation calls for an extension of our model that is presently in progress.

Shortly after the publication of our work, similar experiments were performed by Kim et al. [START_REF] Kim | Enhancement and termination of the superconducting proximity effect due to atomic-scale defects visualized by scanning tunneling microscopy[END_REF] confirming our observations.

Conclusion

To summarize, in this chapter we have presented our results on proximity effect at 300 mK when both Pb islands and the SIC monolayer are superconducting and at 2 K when Pb islands are superconducting and the monolayer is metallic. We explained our results by using a 1D Usadel model based on solving the self-consistent gap equation. Our results show the appearance of proximity-induced interface superconductivity in S 2 in the vicinity of the S 1 -S 2 interface for temperatures above T c2 thus confirming the theoretical prediction by de Gennes and co-workers [START_REF] De Gennes | Boundary effects in superconductors[END_REF]. 

Conclusion

In this thesis we have discussed and presented results related to the interaction between superconductivity and local magnetism. We particularly explored three limiting case :

• Individual impurities • Ferromagnetic clusters
• Disordered clusters of magnetic impurities From the first case we identified a direct connection between the dimensionality of the superconductor and the spatial extent of the YSR bound states induced by the local magnetic moments. The increase of the spatial extent of YSR bound states in two dimensional systems allowed us to further explore the role of the Fermi surface of the superconductor in the spatial pattern seen around magnetic impurities in conductance maps. We showed in two systems, 2H-NbSe 2 and Pb/Si(111) that the structure and symmetry of the Fermi surface is directly responsible for the diffraction patterns of the YSR bound states. In particular we evidenced the 2k F periodic oscillations in those patterns and linked them to the relevant parts of the Fermi surface. By comparing the Fourier transform of these conductance maps we were able to show the disappearance of some electronic transition in the absence of magnetic interaction thus highlighting the spin-orbit coupling present in the Pb/Si(111) monolayer. The work on NbSe 2 in relation to individual magnetic impurities was done with the assistance of M. Leclerc who was working on his M2 internship at the time while the work on the Pb/Si(111) system was done partially during the internship of R. Leriche.

By studying ferromagnetic clusters of Co buried below the Pb/Si(111) monolayer we showed that we could locally induce a topological transition. The transition between trivial and topological is triggered by the magnetic moments of the Co clusters and we explored the phase diagram of such system. We measured the dispersion associated to edge states at the interface between a topological and trivial superconductor and discussed them in terms of chiral and helical edge states. We then showed that by increasing the size of the magnetic clusters we were able to trap vortices in the topological patches leading to zero bias anomalies characteristic of Majorana bound states. We finally demonstrated that due to size effects and magnetic anisotropy we were able to shift the magnetization of the Co clusters from an out of plane configuration to an in-plane configuration. This shifting was associated to a transition from topological to trivial for the clusters and a disappearance of the zero bias Majorana bound states. We would like to mention here the participation of D. Demaille and L. Largeau who performed TEM measurements on our samples at the INSP and LPN. This work will be continued by R. Leriche who will start his PhD in 2016 and will aim at reproduce and extend the results we obtained on the Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] monolayer for other systems.

The last configuration studied for the interaction between magnetic moments and superconductivity corresponds to clusters of randomly arranged impurities. At this point we showed the limitations of the Abrikosov-Gor'kov theory as the predicted attenuation of the quasiparticle peaks was not observed. We showed however that the gap gets locally reduced by the magnetic clusters and we were able to reproduce these results by considering the combination of YSR bound states with the gap auto-coherence equation.

The results we presented hint at exciting future developments in the use of superconductors in the elaboration of nano-patterned quantum electronic systems. In particular the possibility to manipulate the magnetization of magnetic clusters by using the STM tip and thus the topological state of a system is very promising. Future work could consist in the elaboration of full magnetic layers below a two dimensional superconductor that could be made locally topological by electrical stimulation from the tip. Then for large enough topological regions it should be theoretically possible to continuously move those trapped vortices by designing the adequate topological regions. Such proposition would thus allow the braiding of vortices and could lead to applications in the field of quantum nano-electronics.

Abrikosov Gor'kov theory .1 Self-energy

In the following, we will base our calculations on a BCS Hamiltonian submitted to the perturbation Ĥimp as written section 2.2. In a fully general way, the self-energy for a superconducting material can be written in Nambu space as

M (k) = ωτ 0 -∆τ 1 = ω -∆ -∆ ω ,
where τ 1,2,3 refers to the Pauli matrices and τ 0 to identity. When put in presence of an impurity, a supplementary contribution M i must be added to the self-energy leading to the Green function to read as

G -1 = ε k τ 3 -ωτ 0 -M i + ∆τ 1 .
This Green function can be written by introducing ∆ and ω without any lost of generality and we then obtain G -1 = ε k τ 3 + ∆τ 1 -ωτ 0 .

This function can be easily inverted leading to the following expression for the Green function

G = 1 ω2 -ε 2 k -∆2 -ε k -ω ∆ ∆ ε k -ω
We suppose an isotropic dispersion relation ε k for simplicity and we can then write

M i dif f = n i d 2 Ω 4π v 1 ( k, k )v 1 ( k , k) dk 2π 2 τ 3 G(k )τ 3 = n i d 2 Ω 4π |v 1 ( k, k )| 2 dk 2π 2 1 ω2 -ε 2 k -∆2 -ε k -ω - ∆ -∆ ε k -ω = n i |v 1 ( k, k )| 2 dk 2π 2 1 ω2 -ε 2 k -∆2 -ε k -ω - ∆ -∆ ε k -ω = n i |v 1 ( k, k )| 2 dε k 2π 2 N (ε k ) ω2 -ε 2 k -∆2 -ε k -ω - ∆ -∆ ε k -ω
We now make the hypothesis that over the considered integration domain, the density of states can be considered to be constant and we thus have N (ε k ) = N 0 . Then, if we observe that the integrals containing ε k on the numerator are integrations of odd functions in a symmetrical way around 0, we can then forget about these contributions and we only have to consider

M i dif f = n i 2 N 0 |v i ( k, k )| 2 dε π 2 1 ω2 -ε 2 -∆2 -ω ∆ ∆ -ω .
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dε π 2 1 ω2 -ε 2 -∆2 -ω ∆ ∆ -ω = 1 ω2 -∆2 dε π 2 1 1 + ε 2 ∆2 -ω 2 -ω ∆ ∆ -ω = 1 ω2 -∆2 dε π 2 1 1 + ε 2 ∆2 -ω2 -ω ∆ ∆ -ω = - 1 ω2 -∆2 -ω ∆ ∆ -ω dx π 2 1 1 + x 2 = - 1 π 1 -ω 2 + ∆2 ω ∆ ∆ -ω = - i π 1 ω2 -∆2 -ω ∆ ∆ -ω
Finally the self-energy is given by

M i dif f (1) = -i n i 2π N 0 |v 1 | 2 1 ω2 -∆2 -ω ∆ ∆ -ω ,
that we can rewrite in the more convenient form

M i dif f = 1 2 i(Γ 1 + Γ 2 ) ωτ 0 -∆τ 1 ω2 -∆2 where 1 2 (Γ 1 + Γ 2 ) = n i πN 0 |v 1 | 2 .
Now that we are done with the diffusive part of the self-energy we are left with the calculation of the part containing the spin interaction. The lowest order term will make the following term appear

k|v 2 ˆ S i • ˆ s|k k |v 2 ˆ S i • ˆ s|k
for the diagonal part of the self-energy and

T k|v 2 ˆ S i • ˆ s|T k k |v 2 ˆ S i • ˆ s|k = -k|v 2 ˆ S i • ˆ s|k k |v 2 ˆ S i • ˆ s|k
for the non diagonal part. By averaging over the impurity spin we simply obtain a factor 1 3 S(S + 1) due to the work hypothesis concerning the absence of correlation of individual impurity spins. Finally the rest of the calculation is identical to the purely diffusive case and we obtain The auto-coherence equation for ∆ can then be written as

M i spin = i n i 2π N 0 |v 2 |
1 = N 0 V ω D 0 1 ∆ √ u 2 -1 tanh 1 2 βωdω N 0 V ω D 0 1 ∆u tanh 1 2 β c ωdω = N 0 V ω D 0 { 1 ω + iΓ } tanh 1 2 β c ωdω.
This equation can be simply written as (one should note that ω D has became ω D due to the fact that ∆ → 0)

1 = N 0 V ω D 0 dω ω ω 2 + Γ 2 tanh 1 2 β c ω.
This result is identical to the one in the absence of spin diffusion for Γ → 0. The presence of the impurity thus induces a broadening of the function ω ω 2 +Γ 2 linked to a finite life time effect. We can now calculate the critical concentration for which the critical temperature falls to zero. For β c → +∞, the hyperbolic tangent behaves as 2 θ(x) -1 2 (where θ(x) refers to the Heaviside function) and in the considered integration interval we are in the case where tanh 1 2 β c ω 1. The consequence of this is that

1 = N 0 V ω D 0 ω ω 2 + Γ 2 dω = N 0 V ω D Γ 0 x x 2 + 1 dx,
where we used the variable change x = ω Γ . The previous integration gives us the following result 

Computation of the Shiba wave function in 2D and 3D

In the continuum limit, eq. 2.19 transforms into

ψ(r) = dk d (2π) d e ik•r -JS/2 + Kτ z E 2 -ξ 2 k -∆ 2 [E + ξ k τ z + ∆τ x ]ψ(r imp ), ( 5 
)
where d is the dimensionality of the system. Assuming a constant density of states on the range of the superconducting gap, we can solve [START_REF] Pientka | Topological superconducting phase in helical Shiba chain[END_REF][START_REF] Rusinov | Superconductivity near a paramagnetic impurity[END_REF] Eq. ( 5) with r = r imp as :

{1 1 - α + βτ z √ ∆ 2 -E 2 [E + ∆τ x ]}ψ(r imp ) = 0 (6) 
where α = πν 0 JS 2 and β = πν 0 K and ν 0 is the density of states at the Fermi energy. The Shiba energy and the amplitude ratio of the wavefunctions on the impurity site therefore read as :

E = ∆ 1 -α 2 + β 2 4α 2 + (1 -α 2 + β 2 ) 2 ; ψ + (0) ψ -(0) = 1 + (α -β) 2 4α 2 + (1 -α 2 + β 2 ) 2 (7) 
To solve completely Eq. ( 5) we follow Ref. [START_REF] Pientka | Topological superconducting phase in helical Shiba chain[END_REF][START_REF] Rusinov | Superconductivity near a paramagnetic impurity[END_REF]. We need to compute these two integrals:

f 0 (r) = dk d (2π) d e ik•r E 2 -ξ 2 k -∆ 2 , (8) 
and

f 1 (r) = dk d (2π) d ξ k e ik•r E 2 -ξ 2 k -∆ 2 . ( 9 
)
In order to obtain an analytical expression for the spatial evolution of the Shiba states, we make the assumption of an isotropic energy dispersion ξ k = k 2 /2m + µ where µ is the chemical potential. The result depends of the dimensionality d. Let us detail both the 3D and 2D cases for completeness.

.

Shiba state in a 3D system

We change the integration variable to ξ k and x = cos θ k with the polar angle θ measured relative to r.

f 0 (r) = ν 0 2 dξ k 1 -1 dx e ikrx E 2 -ξ 2 k -∆ 2 , ( 10 
)
We first perform the integral on ξ k by linearizing k with k(ξ)

= k F + ξ/ v F , f 0 (r) = - ν 0 π 2 √ ∆ 2 -E 2 1 -1 dxe ik F rx e -k S r|x| , ( 11 
)
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where k S = √ ∆ 2 -E 2 / v F . This gives

f 0 (r) = - ν 0 π √ ∆ 2 -E 2 e -k S r (k F r sin k F r -k S r cos k S r) -k S r (k F r) 2 + (k S r) 2 . ( 12 
)
Finally by the assumption k F >> k S we find:

f 0 (r) = - ν 0 π √ ∆ 2 -E 2 e -k S r sin k F r k F r . ( 13 
)
The second integral reads:

f 1 (r) = ν 0 2 dξ k 1 -1 dx ξ k e ikrx E 2 -ξ 2 k -∆ 2 ω 2 D ω 2 D + ξ 2 k . ( 14 
)
We have incorporated the Debye frequency ω D as a UV cut-off, to ensure the convergence of the integral [START_REF] Pientka | Topological superconducting phase in helical Shiba chain[END_REF]. In the same way we first perform the integral on ξ k ,

f 1 (r) = i πν 0 2 ω 2 D ∆ 2 -E 2 -ω 2 D 1 -1 dx x |x| e ik F rx (e -k S r|x| -e r|x|ω D / v F ), (15) 
and then on x f 1 (r) = πν 0 [ e ik F r e -k S r (-ik F r + ω D r v F ) + ie ik F r e -ω D r/ v F (k F r + ik S r)

+ (k S -ω D r v F ) (k F r + i ω D r v F )(-ik F r + k S r) ]. ( 16 
)
Now we compute the asymptotic limit and suppose k F r >> ω D r v F >> 1 and k F >> k S . This gives:

f 1 (r) ≈ πν 0 e -k S r cos k F r k F r . ( 17 
)
.

Shiba state in a 2D system

We proceed in the same way for the 2D case:

f 0 (r) = ν 0 2π dξ k 2π 0 dθ e ikr cos θ E 2 -ξ 2 k -∆ 2 , ( 18 
)
f 1 (r) = ν 0 2π dξ k 2π 0 dθ ξ k e ikr cos θ E 2 -ξ 2 k -∆ 2 , ( 19 
)
We first perform the integral on ξ k and then on θ:

f 0 (r) = - πν 0 √ ∆ 2 -E 2 [J 0 (k F r + ik S r) + iH 0 (k F r + ik S r)], ( 20 
)
f 1 (r) = πν 0 [J 0 (k F r + ik S r) + iH 0 (k F r + ik S r)], ( 21 
)
where J 0 (r) and H 0 (r) are the Bessel and the Struve function of order 0. These results are in agrement with [START_REF] Brydon | Topological Yu-Shiba-Rusinov chain from spin-orbit coupling[END_REF]. Here again we compute the asymptotic limit assuming k F >> k S , which provides

f 0 (r) ≈ - πν 0 √ ∆ 2 -E 2 2 πk F r cos(k F r - π 4 )e -k S r , ( 22 
)
f 1 (r) ≈ πν 0 2 πk F r sin(k F r - π 4 )e -k S r + 2ν 0 k F r . ( 23 
)
In the regime where we can neglect the last term of f 1 (r), f 1 (r) ≈ 2 πk F r sin(k F r -π 4 )e -k S r .

Derivation of the Bogoliubov-de Gennes equations

Let us consider the following Hamiltonian

H = k,σ ε k ĉ † k,σ ĉk,σ + k ∆ĉ † k↑ ĉ † -k↓ + ∆ * ĉ-k↓ ĉk↑ . ( 24 
)
We will look for a way to diagonalize this Hamiltonian under the form [START_REF] De Gennes | Superconductivity of metals and alloys[END_REF] 

H = E g + n,σ ε n γ † n γn . ( 25 
)
The simplest way to do so is to rewrite the creation operators as a linear combination of the γ operators in real space. We then define ψr,↑ = The eigenvalues equation can also be rewritten in the form of commutation relations [H, γn,σ ] = -ε n γn,σ

H, γ † n,σ = ε n γ † n,σ
Obtaining the eigenstates of our systems is achieved through the equations for v n and u n . This equation is obtained by computing the commutation relations between Ĥ and ψ. 

FANO RESONANCE

If we now want to perform an STM experiment in which the tip of our microscope exchanges electrons with the surface of our sample a new coupling must be introduced and will lead to a further modification of density of states of the discrete level via the possibility of new virtual electronic transitions contributing to the self-energy. The lowest order corrections to the continuum density of states is given by

δG c (ω) = |V | 2 G 0 c G d G 0 c . ( 43 
)
As we want the associated density of states we must take the imaginary value of this quantity. Given that for two complex numbers z and z we have {z × z } = z z + z z , the correction to the density of states can be written

δρ c = |V | 2 π {Gd} G 0 c G 0 c + {G d } G 0 c G 0 c . ( 44 
)
By writing q c = -{G 0 c } {G 0 c } , the real and imaginary parts of G 0 c can be written as

G 0 c G 0 c = ( {G 0 c }) 2 (q 2 c -1), G 0 c G 0 c = -2q c ( {G 0 c }) 2 .
The correction to the density of states now becomes

δρ c (ω) = - |V | 2 π {G 0 c (ω)} 2 [(q 2 c -1) G d (ω) -2q c G d (ω)] = - |V | 2 π π 2 ρ 2 0 [(q 2 c -1) G d (ω) -2q c G d (ω)] = -Γρ 0 [(q 2 c -1) G d (ω) -2q c G d (ω)].
If we now suppose that our discrete level is already hybridized by the electronic bath, the Green function G d (ω) to use is the one obtained previously in eq.41. Defining x = ω-ε d Γ we have for δρ c (ω)

δρ c (ω) = ρ 0 x 2 + 1 [(q 2 c -1) -2q c x] ( 45 
)
and for the total density of states obtained from the summation ρ c (ω) = ρ 0 + δρ c (ω)

ρ c (ω) = ρ 0 (q c + x) 2 x 2 + 1 . ( 46 
)
This expression for the density of states leads to the resonance called the Fano form (Cf. Figure 2.8). e va lu at i on _g ap s = zeros ( len ( energy_range )* lat_size **2). reshape ( lat_size **2 , len ( energy_range ))

Gap reduction calculation

# Array of 0 that will contain the # modified spectra after having taken into account the r en or ma l iz at io n by the impurities for i in range ( len ( gap_vals )):

# Calculation of the final BCS spectra ( without the impurities ) e va lu at i on _g ap s [ i ] = spectre ( energy_range , gap_vals [ i ] , temperature ) # -s p e c t r e _ r e n o r m a l i z a t i o n [ i ] 

2 ∆

 2 (r) + α∆(r) + β|∆(r)| 2 ∆(r) (r)∇∆(r) -∆(r)∇∆ * (r)) -4e A(r)|∆(r)| 2 .(1.11)
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 11 Figure 1.1: BCS density of states: a. Relation between E k and ξ k . b. BCS quasiparticle excitations density of states as a function of the energy normalized to the value of ν 0 , density of states of the normal metal at the Fermi energy. In both figures the dashed lines refer to the case of a normal metal that is effectively recovered in a superconductor for E ∆.

Figure 1 . 2 :

 12 Figure 1.2: Bogoliubov de Gennes Hamiltonian: Representation of the real (a) and imaginary (b) part of a Bogoliubov-de Gennes Hamiltonian in the Nambu-Gorkov formalism. Visualizing the Hamiltonian is such forms allows to check its Hermiticity. The color code refers to the numerical value of each term. (In this case we took a real value for the order parameter ∆). c. Density of states obtained by taking a 2D lattice containing 25×25 sites. The dashed lines refers to the value of the superconducting gap ∆.
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 13 Figure 1.3: Principle of scanning tunneling: a.In microscopy mode we measure the electronic current between the sample and the tip from which the distance between these two elements can be obtained. b. In spectroscopy mode, the electrons from the side with the higher chemical potential travel to the other side with a probability linked to the number of states available at the same energy. This mode is called elastic tunneling.
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 14 Figure 1.4: Vortex lattice in 2H-NbSe 2 : Abrikosov lattice at 1 T in 2H-NbSe 2 . Original figure from [22]. The conductance is color-coded in grey scale from low conductance in white (for the superconducting gap) to high conductance in black (for the normal vortex cores).
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 16 Figure 1.6: In-gap states and temperature effects on a superconducting tip: a. We consider a tip with a BCS DOS and a gap ∆ T and a sample with a BCS DOS and a gap ∆ S whose spectra are represented respectively in black and green. The red and blue dashed lines corresponds to two thermal configurations for the Fermi-Dirac distribution. b. Spectra resulting from the tunneling between a tip and a sample in the configuration presented in a. where the blue and red colors refer to the colors of the Fermi-Dirac distributions. c. Case of two in-gap states at energies ±E S . d. Resulting conductance spectra at low temperature (blue Fermi-Dirac distribution from a.). e. Case of one in-gap state at the Fermi-level. d. corresponding spectra at low temperature (blue Fermi-Dirac distribution from a.).

Figure 1 . 7 :

 17 Figure 1.7: Temperature dependence for SIS and SIN configurations: a. Comparison of the conductance obtained by tunneling from a superconducting tip (blue) or a normal one (green) for a temperature T = 5%∆ S . Same for T = 50%∆ S . The gap values ∆ S and ∆ T used in this calculation are the same as the one used for fig. 1.6
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 18 Figure 1.8: The M3 microscope on which were performed all the STM and STS measurement presented in this thesis: a. Picture of the experimental setup. b. Top-view scheme of the setup.
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 119 Figure 1.9: Calibration of sources for evaporation: a. Calibration curve of the Co source showing the stability in time of the flux. b. Same curve for the Pb evaporator.
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 21 Figure 2.1: Density of states in the Abrikosov-Gor'kov theory: a. Density of states of a superconductor with a finite density of random magnetic impurities as the function of energy. The parameter α controls the density and strength of the magnetic impurities (original figure from [44]) b. Qualitative density of states of a superconductor with random magnetic impurities showing the growth of an in-gap impurity band (original figure from [30])
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 22 Figure 2.2: Abrikosov Gorkov to Shiba : Conceptual view of the transition between the Abrikosov-Gorkov (top) and Shiba (bottom) limits.
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 9223 Figure 2.3: Energy of the electron-like (blue) and hole-like Shiba bound states as a function of the magnetic coupling strength J for K = 0.
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 24 Figure 2.4: Value of the magnetic coupling JS/2 for which E Shiba = 0 as a function of the non magnetic coupling K
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 2525 Figure 2.5: Comparison between 3D and 2D for the spatial extent of Yu-Shiba-Rusinov states a to d (e to h) Calculated behavior of a Yu-Shiba-Rusinov bound state in an isotropic s-wave superconductor with three-dimensional (two-dimensional) electronic band structure. a and e are schematic views of the interaction of Cooper pairs with a classical magnetic impurity. b and f are calculated scanning tunneling spectra at various distances from the impurity showing the fully polarized YSR states inside the superconducting gap. c and g are simulated conductance maps around the impurity showing the spatial extent of one peak of the YSR state presented in Figs. b. and f. respectively. d and h are simulated conductance between -0.6 and 0.6 mV along the dotted line out of the impurity in Figs. c and g respectively. A cut-off has been applied in order to get rid of the divergence at r = 0.
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 26 Figure 2.6: State of the art of YSR bound states: Left, dI/dV curves obtained by STM for Mn atoms on Nb. Fig. b. shows the difference between the bare Nb spectra (dashed line) and the Shiba bound state measured on top of a magnetic atom (full line). Original figure from [49]. Right, STS of Mn and Cr atoms on Pb thin films using a superconducting Nb tip. Figs. c. and d. show the conductance map and spectra obtained over a Mn atom while figs. e. and f. are obtained over a Cr atom. Original figure from [53].
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 2327 Figure 2.7: Process by which to obtain a Fano form: An electron from the tip is interfering with itself due to the possibility to tunnel either through the states on the impurity (with an hybridization factor Γ 1 ) or directly into the Fermi sea of the substrate (with an hybridization factor Γ 2 ). a. Energy diagram representation. b. Real space representation.
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 28 Figure 2.8: Fano line shapes for different values of the parameter q

  3.2.a). The Se prisms are turned by 30 • in each alternating slabs giving to the system a global hexagonal symmetry. This structure creates a Fermi surface in the normal state constituted of two sheets as shown on figs. 3.1.a and b. The sheets originate from the Nb d z 2 and d xy /d x 2 -y 2 orbitals and form close contours in the a-b plan but do not close along the c-axis. In this aspect, the band structure of the system is two-dimensional. It then becomes possible to model the Fermi surface of the system as presented on fig. 3.1.d: the surfaces associated to band 1 and 2 obtained by DFT are in good agreement with ARPES data. It should be noted that the full three dimensional system exhibits a small pocket surrounding the Γ point. This pocket is associated to a hole band originating from the Se atoms taking part to the inter-plan coupling (not represented on Fig. 3.1).

32 CHAPTER 3 .Figure 3 . 1 :

 32331 Figure 3.1: Electrons in 2H-NbSe 2 : a.-b. Structure of the Fermi surface for the two bands in the reciprocal space (original figures from [63]). c. Superconducting spectrum of a 2H-NbSe2 sample at 300 mK obtained using a Pt/Ir tip. b. Fermi surfaces of band 1 and band 2 of 2H-NbSe 2 in a twodimensional double layer model in which was only considered one unit cell along the c axis.
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 32 Figure 3.2: Structural and superconducting properties of 2H-NbSe 2 a. Atomic structure of a 2H-NbSe 2 crystal. b 19×17 nm 2 topographic image of a 2H-NbSe 2 sample with the atomic lattice modulated by a charge density wave. The image is taken at V=-200 meV and I=80 pA. c. Abrikosov lattice in 2H-NbSe 2 showing the star shaped structure of vortices in a magnetic field of 0.1 T. d. Conductance map taken at V=-0.05 meV integrated over ± 0.02 meV showing a few star-shaped structures created by localized magnetic impurities at zero magnetic field. Measurements were performed at 320 mK.
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 3133 Figure 3.3: Spectral and spatial properties of an extended Yu-Shiba-Rusinov bound state in 2H-NbSe 2 a. Experimental conductance map measured at -0.13 meV. The two a and b lines indicate the crystallographic axes of 2H-NbSe 2 while the a * and b * indicate the directions in the reciprocal space. b. Characteristic experimental spectra taken on top of the impurity (red), on the right branch, 4 nm from the center of the impurity (green) and far from the impurity (blue). c. Spatial and energy evolution of the experimental tunneling conductance spectra, dI/dV (x, V ) along one branch of the star. The left side of the figure corresponds to the center of the star and the right side to the top-right corner of the scanning area. The color conductance scale is the same as the one used in a. d. Conductance profiles of the electron and hole like YSR states as a function of the distance to the impurity along the same line as for c.

Figure 3 . 4 :

 34 Figure 3.4: a. Hole like states spatial dependance angularly integrated. b. Same for electron like states.The black dots are the experimental points and the red dashed lines are the power law fits calculated ignoring the first points directly on top of the magnetic impurities in order to match the asymptotic assumption made in the calculation.

Figure 3 . 6 :

 36 Figure 3.6: Gap edge YSR bound states: Spatial evolution of the Shiba bound states for an impurity with Shiba energy close to the gap edges. The white spectra represents the bare NbSe 2 that has been subtracted to the radial cut in order to increase the contrast on the YSR states.
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 403 IMPURITIES IN 2H -N BSE 2 MONOCRYSTALS K=-180meV E=0.59 JS/2=120meV K=0 E=0.42 JS/2=120meV K=180meV E=0.86

Figure 3 . 8 :

 38 Figure 3.8: LDOS computed by solving exactly the Shiba equation. Figs a and b are the Shiba states with energy E = 0.59 meV and E = -0.59 meV respectively. Figs c and d are the Shiba states with energy E = 0.42 meV and E = -0.42 meV respectively and finally Figs e and f) are the Shiba states with energy E = 0.86 meV and E = -0.86 meV respectively. Colorbars give the density of states on each sites ψ(r jl )ψ * (r jl ) normalised at jl |ψ + (r jl )| 2 + |ψ -(r jl )| 2 =1.

2 - → e y + 1 2 -Figure 3 . 9 :

 2239 Figure 3.9: Same calculation as in Fig. 3.8, performed using band 2 instead of band 1.

CHAPTER 3 .Figure 3 . 10 :

 3310 Figure 3.10: Joint DOS calculation on the Fermi surface of 2H-NbSe 2 : a. and b. Principle in reciprocal space of the calculation. The two different sheets of the Fermi surface are represented in two different colors. On a. we represent the transition authorized in order to simulate electronic scattering from the inner Γ pocket (blue) onto itself while on b.we do the same for the K pockets (red). c. to d. 4 different calculations in real space obtained by calculating the auto-convolution of the Fermi surface by selecting some part of the Fermi surface of the band 1 (see Fig. 3.1). K ↔ Γ refers to the convolution of the outer pockets with the inner pocket. Γ ↔ Γ refers to the convolution of the inner pocket with itself. K ↔ K refers to the convolution of the outer pocket with itself. "Total contribution" refers to the auto-convolution of the full Fermi-surface.

  .5) when considering the full Fermi surface. Now one has to consider what happens in the case of tunnel selectivity and selective electron diffusion. A natural separation of the Fermi surface in the case of 2H-NbSe 2 is between the surface around Γ (referred to as F S Γ in the following and shown in blue on figs. 3.10.a and b.) and the surfaces surrounding the K points (referred to as F S K in the following and shown in red on figs. 3.10.a and b.). When considering a tunnel selectivity that would favor the center of the Brillouin zone (as represented on fig. 3.10.a) we would write ρ Γ (r) = |F T (δ Γ (k)v F (k))| 4 (3.6) while a tunnel selectivity favoring the outside of the Brillouin zone (as represented on fig. 3.10.b) would be written as

Figure 3 . 11 :

 311 Figure 3.11: Effect of adsorbed Co adatoms on 2H-NbSe 2 : a. Topography of a 20×20 nm 2 area of a 2H-NbSe 2 sample on which were deposited a total amount of 10 -3 ML of Co. b. Selection of spectra over the area presented in a where the colors of the spectra refer to the colors of the markers on the topography. c. Diagonal cut in the spectroscopy from the top-left corner (0 nm) to the bottom right corner (25 nm). The color code corresponds to the obtained dI/dV from which was subtracted the bare NbSe 2 spectrum. d.-f. Conductance maps at 3 different energies inside the superconducting gap showing the typical spatial extent of the spectroscopic signatures of Co adatoms on 2H-NbSe 2 .

Figure 3 . 12 :

 312 Figure 3.12: Effect of non magnetic impurities in 2H-NbSe2: a. Conductance map measured at the gap edge (0.61 meV) showing the signatures of non magnetic Ta impurities in 2H-NbSe 2 . b. Spectra taken over individual defects (black, green and red curves) compared with the bare spectra of 2H-NbSe 2 (blue curve). The black arrows indicate the position of the small gap of 2H-NbSe 2 .

  fig. 4.1.c) possess the same coverage and the transition from one the √ 3 × √ 3 to the 3 × 3 structure is obtained under the structural critical temperature of 86 K [91].
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 417 Figure 4.1: Phases of the Pb/Si(111) system: The name of each phase is indicated over each picture.

Figure 4 . 2 :

 42 Figure 4.2: Vortices in SIC phase of Pb/Si(111): a. Topography of a 690×690 nm 2 area of a Pb/Si(111) sample in the SIC phase. b. Energy and space dependence of the LDOS measured through a vortex core. c. Fit of the zero bias conductance using eq. 4.1 leading to a coherence length ξ = 55 nm. d.-g. Conductance maps at zero bias for 4 different magnetic fields (0 mT, 10 mT, 20 mT and 40 mT). The white dashed lines represent the single atomic steps present on the sample visible in the topography a.

Figure 4 . 3 :

 43 Figure 4.3: Shiba states in √ 7 × √ 3 structure: a. Topography of a 51×51 nm 2 area with atomic resolution. b. Spectroscopy of the same area around the Fermi level averaged over 20 energy pixels (0.15 meV). c. Selected spectra at the maximum intensity site (red), 3 nm (green) and 15 nm (blue) away from the impurity center.

Figure 4 . 4 :

 44 Figure 4.4: Fermi surface of the √ 7 × √ 3 phase: Fermi surfaces in each of the three different isolated domains (left) and combined (right) (adapted from [97]). The Fermi surface associated to the domain presented on fig. 4.3 would correspond to the blue one on the left.

× √ 3

 3 et al. found a good agreement between theory and experiment and proposed a Fermi surface with the form presented on fig. 4.4. This Fermi surface is first characterized by two wavy lines crossing the √ 7 Brillouin zone with little dispersion along the transverse direction. This open Fermi sheet is accompanied by 3 pockets, one at the Γ point and the two others at the frontier with the second Brillouin zones 2 .
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 4552445 Figure 4.5: Fourier transform of the LDOS around an impurity in √ 7 × √ 3 phase: a. Fourier transform of the signal presented on fig. 4.3.b. b. Fourier transform of the corresponding topography. The white lines represent the different Brillouin zone in the reciprocal space and the red ellipses indicate the position of the scattering wave vectors in reciprocal space.

Figure 4 . 6 :

 46 Figure 4.6: Transitions and Fermi surface for the √ 7 × √ 3 phase: a. Schematic representation of high DOS scattering from S 2 pockets onto themselves. b. Schematic representation of transitions from S 1α pockets to S 1β pockets c. Schematic representation of transitions from S 1 pockets of the same type. d. Diffraction spots in reciprocal space related to the transitions described in a., b. and c. The dark dashed line represent the lines joining the first Bragg points. We kept the First Brillouin zone as a guide for the eye in light grey. e. Model Fermi surface based on ARPES data on this system extrapolated for a single domain. The color code refers to the density of states for each point of the F.S.
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 47 Figure 4.7: Joint DOS calculation in the √ 7 × √ 3 structure: Reciprocal space calculation of the joint DOS for the different possible transitions. The notations refer to those used in fig. 4.6.

Figure 4 . 8 :

 48 Figure 4.8: Non-magnetic disorder induced states: a.-d. Fourier transform of conductance maps obtained from quasiparticle interferences at 4 different in-gap energies. The red dashed lines indicates the first Brillouin zone and the white dashed line its autoconvolution. The red arrows on b. indicate the position of the diffusion spots in the Fourier transform. d. Schematic representation of the authorized and forbidden transition from the different part of the Fermi surface. e. Schematic representation of the expected joint-DOS pattern in the reciprocal space.
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Figure 4 . 9 :

 49 Figure 4.9: Magnetic impurities in a 1D phase of the devil's staircase phase : a. Topography of a 413×363 nm 2 area in one of the devil's staircase phase of Pb/Si(111). This 2D phase is highly anisotropic and we can distinguish the three orientations of the domains. The white arrows indicate the orientation of the linear domains delimited by the white dashed lines. b. Conductance map integrated over the superconducting gap showing the YSR bound states in this system. c. Selection of spectra from the spectroscopy shown on fig. b. The blue spectrum is the average spectrum over the whole area.

  at room temperature. By annealing the Si sample covered with Co atoms by direct current at 375 • C, we observe a migration of the magnetic atoms toward the step edges as shown on fig. 4.11.a.

Figure 4 . 10 :

 410 Figure 4.10: Magnetic impurities in the SIC phase : a. Topography of a 21×21 nm 2 area in the SIC phase. b. Conductance map integrated over the superconducting gap showing the YSR bound states in this system. c. Spectrum over the impurity (red) far from the impurity (blue) and in between.

  4.13.c. The direction of the cut is indicated on fig. 4.13.a by a white dashed line.

Figure 4 . 11 :

 411 Figure 4.11: Co on Si annealed at 375 • C: a. Topography of a 622×622 nm 2 area on which were evaporated 10 -2 ML of Co and then annealed at 375 • for 4 min. b. Zoom showing the aggregation of Co atoms along the step edges.

Figure 4 . 12 :

 412 Figure 4.12: Spectroscopy of the pseudo Abrikosov Gorkov regime: a. Topography of a 622×622 nm 2 area of Pb/Si(111) in the SIC phase. b. Conductance map of the same area at the gap edge (E = -0.1 meV) revealing the spectroscopic effect of the underlying Co atoms. c. Selected spectra from different impurity patches (red, orange and green from the brightest to the smallest) compared to a spectrum acquired far from any impurity (blue).

Figure 4 . 13 :

 413 Figure 4.13: Spectral features of the pseudo Abrikosov-Gorkov regime: a. Same conductance map as the one of fig. 4.12. b. Map of the coherence peaks energy over the area presented on a. The red area in the middle of the image is due to noise during the spectroscopic measurement. c. Cut through the line indicated on the two top figures showing the spatial variation of the superconducting gap when crossing patches of impurities. 0 nm corresponds to the top left of the conductance map and 700 nm to the bottom right.

Figure 4 . 15 :

 415 Figure 4.15: Calculation of the gap and density of states associated to magnetic clusters : a. Gap map computed in a self-consistent way for 500 impurities in a disc of radius 10 nm for ∆ 0 = 0.35 meV. The white dots indicate the random positions of Co atoms. b. LDOS for the in-gap YSR bound states.
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 51 Figure 5.1: Rashba dispersion: a. Dispersion relation obtained for a Rashba spin-orbit interaction in 1D. b. Dispersion relation obtained for a Rashba spin-orbit interaction in 2D for a fixed value of k y .

  5.2.c) and the direction of the in-plane k vector by θ k it becomes possible to write the Hamiltonian in the Nambu spinor basis ψ † = ĉ † k↑ ĉ † k↓ as

Figure 5 . 2 :

 52 Figure 5.2: Zeeman effect on Rashba system: a.-b. Effect of the magnetic field outside of the plane on a Rashba superconductor. Real space configuration versus band dispersion. c.-d. Same thing for a magnetic field inside the plane.

Figure 5 . 3 :

 53 Figure 5.3: Topological transition in magnetic field of a Rashba superconductor: Band structure of a Rashba superconductor respectively at zero magnetic field, at the topological critical field and over the topological critical field.

Figure 5 . 4 :

 54 Figure 5.4: BCS superconductor in magnetic field: Same figures as in 5.3 in the case where the Rashba interaction has been suppressed (α = 0).
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 5556 Figure 5.5: Helical vs. chiral superconductivity: a. Band structure of a system with Rashba spinorbit and singlet superconductivity for different values of the magnetic field perpendicular to the surface (∆ T = 0 here). b. Phase diagram for topological state in this system as a function of the chemical potential µ and the Zeeman coupling V z . The blacked dashed line represents the topological transition where the gap closes. c. Band structure of a system with a mix of singlet and triplet superconductivity for increasing triplet value. d. Phase diagram for topological state in this system as a function of the amplitude of the singlet pairing ∆ S and the triplet pairing ∆ T (α = 0 here).

Figure 5 . 7 :

 57 Figure 5.7: Structure of the sample Pb/Co/Si(111): a. Side view of the system showing the inclusion of the Co inside the Si substrate. Over this the Pb monolayer remains unmodified but still feels the effect of the magnetic field B created by the underlying Co atoms. b. When in the superconducting state, the superconductivity from the Pb monolayer enters the topological phase under the action of the magnetic field while the rest of the sample remains in the trivial phase.

Figure 5 . 8 :

 58 Figure 5.8: Topography of Pb/Co/Si system: a. Large scale (181×181 nm 2 ) topography showing the monoatomic steps from the Si substrate as well as the small islands created by the Pb. b. Zoom of a small area (42×42 nm 2 ) of the sample showing the atomic structure of the system.

Figure 5 . 9 :

 59 Figure 5.9: Steps of sample preparation: The sample is prepared in three separate operations, the Si cleaning, the Pb and Co deposition and the final annealing of the sample.
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 5510 Figure 5.10: Topography of a Co cluster: a. 900×900 nm 2 area topography of a Pb/Si sample containing 10 -3 ML of Co after a 2 hours annealing at 400 • C. b. 11×9 nm 2 close-up on a Co cluster capped with bilayer Pb. The white dashed lines delimits the contour of the Pb capping.
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 511 Figure 5.11: TEM planar view of Pb/Co/Si(111) samples: a. 213×213 nm 2 area observed by TEM from a planar view of one of our sample revealing the Co clusters as dark spots. b. 105×105 nm 2 zoom of the yellow area.

Figure 5 . 12 :

 512 Figure 5.12: Edge states of a buried ferromagnetic cluster of Co: a. Topography of a 16×13 nm 2 area of a Pb/Si(111) sample in the devil's staircase phase. b.-d. Conductance maps at 0 meV, 0.1 meV and 0.2 meV respectively showing the edge states induced by the underlying Co cluster. e. 10 nm wide cut passing through the center of the circle showed on b.showing the spatial dispersion of the gap crossing states. On the cut, we suppressed the gap of the tip from the raw data and subtracted the average spectrum measured on the surface far from any defect in order to better adapt the color scale.

Figure 5 . 13 :

 513 Figure 5.13: Tight binding calculation of the edge states between an helical and a trivial superconductor: In this calculation we used the values ∆ S = 4 and ∆ T = 1.4 and the Zeeman energy V z = 12 at r = 0.In this configuration the central part of the system is in the chiral phase will the external part not affected by the Zeeman interaction is in the trivial phase. On this figure we subtracted the superconducting spectrum of the trivial phase in order to better show the appearance of the in-gap states.

Figure 5 . 14 :

 514 Figure 5.14: Un-shortened spectrum line cut: a. Spectra taken on the ring seen at 0 bias in fig. 5.12.b (red) and far from any magnetic perturbation or interface effect (blue). b. Cut through the ring where the removal of the states between ±∆ T ip was not performed. The black dashed lines indicate the position of the tip gap and the reference value used to obtain fig. 5.12.e.

Figure 5 . 15 :

 515 Figure 5.15: Spectral signature of a disorder proof zero bias spectral signature: a. Topography of a 100×100 nm 2 area on a Pb/Si(111) sample in a mixture between linear and hexagonal devil staircase phases. b. Zero bias conductance map of the same area. c. Spectra taken at the maximum of the conductance map b. (red), on the ring surrounding this maximum (green) and on the bare monolayer (blue). d. 65 nm long spatial and energy cut through the defect visible on b. along the white line of the same figure.

  5.15.a. When performing spectroscopy of the area presented on fig. 5.15.a we observe two different features at

Figure 5 . 16 :

 516 Figure 5.16: Conductance maps of a Majorana bound state: Conductance maps at 4 different ingap energies (0 meV, 0.5 meV, 1 meV and 1.5 meV) showing the energy evolution of the spatial dispersion of Majorana bound states.

Figure 5 . 17 :

 517 Figure 5.17: Bi-stability of the system and Majorana switching: a. Conductance map taken at 0 meV showing the abrupt transition while scanning between the presence and absence of the zero bias peak. b. Spectra taken on the center spot (red) and outer crown (green) on the top part of the conductance map. The arrow shows the position of the Majorana peak at the Fermi level. The blue spectrum is included as a reference for the usual superconducting spectrum of the Pb monolayer c. Conductance map taken at 0.14 meV of the same area showing the Shiba contribution to the Majorana modes (on the top) and the fully Shiba-like states (on the bottom). d. Spectra taken over the disordered YSR states in the bottom part of the scanning area (green) and on the superconducting monolayer far from any magnetic defect (blue). The two arrows indicate the position of the Shiba bound states at the gap edge. The conductance maps were acquired by scanning from the top to the bottom of the scanning area.
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 617 Figure 6.1: Topography and spectroscopy of Pb/Si(111) phases mixture: a. Topography of a 62×62 nm 2 area showing the coexistence on the same terrace of √ 7 × √ 3, 3 × 3 and disordered √ 3 × √ 3 phases. b. Topography of a 15× 33 nm 2 area showing the structure of the disordered √ 3 × √ 3 phase. The red diamond and blue hexagon indicate the primitive cells of the √ 3 × √ 3 and 3 × 3 structures respectively. c.-e. Spectroscopic data on the same area for two energies (-319 meV for c., -95 meV for d. and 37 meV for e.) showing the different electronic behaviors in the various phases. f. Typical spectra measured for the √ 7 × √ 3, 3 × 3 and disordered 3 × 3 case.

Figure 6 . 2 :

 62 Figure 6.2: Spectroscopy of defects in metallic Pb/Si monolayer: a. Conductance map of a 500×500 nm 2 of the system Pb/Si(111) showing a coexistence of phases taken at an energy of -209 meV. b. Spectra taken on the √ 7 × √ 3 phase either on top of the P defects (red) or on a defect free region (blue) between ±900 meV . The cyan curve is the mean spectrum of the √ 7 × √ 3 phase averaged over a disc of 40 nm radius. The red and blue arrows indicate the position of the states associated to the dopants. c.-f. Conductance maps of the same area 500×500 nm 2 taken at 4 different energies.
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 63 Figure 6.3: LDOS localization on 3×3 structure: a. Conductance map at -320 meV (identical to 6.1.c). b. Spectra taken either on the "hollows" on a. (in red) or on the "atoms" (in blue) showing the variation of the atomic distribution at the atomic scale. The two thickest curves correspond to the mean value of the regular size curves of the same color. The inset show the sites corresponding to atoms and hollows on a topography of the 3 × 3 phase.

  6.2). Strangely enough the P is seen only on the √ 7 × √ 3 and does not seem to leave any kind of signature on the 3×3 phase. In the 3 × 3 phase we observe a strong localization effect that can be seen on fig.6.1.c., d. and e. On these figures we observe a strong localization of the electronic states. For convenience we will refer to the high conductance sites on fig.6.1.c as atoms and the lower conductance sites as hollows as they respectively relate to the bright and dark spots seen on the topographic map 6.1.a.

Figure 6 . 4 :× √ 3 by proximity with disordered √ 3 × √ 3 regions 7 3 .

 643373 Figure 6.4: Effect of the interaction between different phases: a. Topography of an area 500×500 nm 2 showing the usual appearance of a sample with coexistence of phases 3 × 3, √ 7 × √ 3 and disordered √ 3 × √ 3. b. Conductance map of the same area at the energy of 71 meV. c. Spectra selected over the different phases seen on a. and b. The spectra are measured at the positions indicated on figures a. and .b by the points of the same color.

7 3 .

 73 On fig.6.5 we observe a similar situation where we have a triangular island of √ In this configuration, the LDOS measured inside the island more closely resembles the usual √ 7 × √ 3 density of states. However, we do observe a diminution of the LDOS around the Fermi level that in this case is closer to the behavior of the 3 × 3 phase. Unlike the case of a fully insulating disordered √ 3 × √ 3 surrounding neighborhood we do not measure any dramatic variation around -300 meV.

Figure 6 . 5 : 7

 657 Figure 6.5: Effect of the interaction between different phases: a. Topography of an area 80×80 nm 2 showing the coexistence of the phases √ 7 × √ 3, 3 × 3 and disordered √ 3 × √ 3. b. Conductance map of the same area selected at the energy of 94 meV. c. Spectra selected over the different phases seen on b. and c. The spectra are taken from the positions indicated on figures a. and .b by the points of the same color.

and 3 × 3

 33 ordered regionsBecause the two phases ordered 3×3 and disordered √ 3× √ 3 derive from one another, this kind of system in which we observe the coexistence of both phases might be an interesting playground for studying the interplay between Mott and Anderson localization. We present on fig.6.6 the measurements performed over a 50×46 nm 2 area in which we go continuously from a disordered √ 3 × √ 3 region to a well ordered 3 × 3 phase. On fig.6.6.e we show the individual spectra measured continuously from the √ 3 × √ 3 part of the system (blue spectra) to the 3 × 3 crystalline part (red spectra). On this figure we can follow the localization gap ( 200 meV) that we already discussed above as it induced a smaller gap ( 100 meV) in the 3 × 3. This small gap of the 3 × 3 is not present in cases where the √ 3 × √ 3 is not in close contact.
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 66 Figure 6.6: Proximity effect between a metal and an insulator: a. Topography of a 50×46 nm 2 area showing the coexistence of the 3 × 3 phase (on the right) and the disordered √ 3 × √ 3 phase (on the left). b.-d. Conductance maps taken at -5 meV, 169 meV and 370 meV of the same area. e. Cut along the line indicated on a. showing the spatial evolution of the insulating gap transmitted by proximity into the 3 × 3 area.

7

 7 We discussed in the previous sections how the 3 × 3 phase presented a quasi-Hubbard behavior and the disordered √ 3 × √ 3 an Anderson localization effect. In such configuration of the sample we were not able to probe the superconducting gap of the adjacent √ 7 × √ 3 phase due to a transport gap induced by the disordered √ 3 × √ 3 phase in the whole sample. It thus became necessary to slightly change our recipe in order to decrease the disorder and get rid of the transport gap by being closer to the clean √

  figure a triangular patch of 3 × 3 surrounded by √ 7 × √ 3 domains (lower left of the image) and a step edge (top right of the image). Even if the 3 × 3 part is well reconstructed, it still contains local defects like missing or adatoms clearly visible on the topography. In this configuration, the √ 7 × √ 3 reconstruction is superconducting and the 3 × 3 is a strongly correlated metal and presents two side bands centered around ±300 meV (see fig. 6.4.c) due to the proximity to a Mott transition.
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 67 Figure 6.7: Proximity effect between √ 7 × √ 3 and 3 × 3 phases: a. Topography of an area 102×89 nm 2 showing the coexistence between a √ 7 × √ 3 domain and a 3 × 3 domain. b. Conductance map of the corresponding area at 0.1 meV. c. Selected spectra over the √ 7 × √ 3 phase (green), at the center of the ring in the 3 × 3 phase (blue) and at a point of maximum intensity of the ring (red). The color dots on the conductance map refer to the color of the spectra on c.
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 6867 Figure 6.8: Cut through the oscillation pattern of Fig. 6.7: Spectral line cut over a distance of 70 nm through the 3 × 3 proximity area subtracted from the mean spectrum of the √ 7 × √ 3 phase. The direction of the cut is indicated by a white dashed arrow on the topography 6.7.a. The dashed white line represents the position of the step seen in topography in the top right corner.
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 69 Figure 6.9: Attempts to reproduce the effect of the proximity effect between a superconductor and a quasi-Hubbard system: a. Bogoliubov-de Gennes calculation for a billiard shaped normal area surrounded by a superconducting area showing some of the eigenmodes of the system. b. Reflexions model in a triangular domain.

104 CHAPTER 7

 1047 

Figure 7 . 1 :

 71 Figure 7.1: Proximity effect between two superconductors at 0.3 K: (a) Topographic STM image of the sample showing the Pb nano-island S 1 connected to the striped incommensurate Pb monolayer S 2 . The superposed color-coded spectroscopy map at E = -0.3 meV allows to visualize the proximity effect. 256 × 256 spectra were measured in the STS map. (b) Spatial and energy evolution of the experimental tunneling conductance spectra dI/dV (V, x) across the junction (3D view). One spectrum is plotted every 1 nm and highlighted by a black line every 10 nm. (c) Color-coded experimental dI/dV (V, x) spectra across the interface. One spectrum is plotted every nanometer. (d) Selected local tunneling spectra (dots). The last spectrum measured on the top flat part of the island before the edge is denoted by -0 nm.The first spectrum measured on the SIC monolayer is denoted by +0 nm. The distance between the +0 nm and -0 nm spectra is about 1 nm. (e) Color-coded computed dI/dV (V, x) across the interface. (f) Spatial evolution of the energy of the peak maximum E peak (x) across the interface. The experimental results (symbols) are nicely reproduced by self-consistent calculation of the order parameter (red solid line), while the red dashed line corresponds to the non-self-consistent results. The evolution of the order parameter is shown by black lines: self-consistent (solid) and non-self-consistent (dashed).

  7.1.(b), (c) 7.3. RESULTS AT 300 MK 105 and (d).
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 72 Figure 7.2: Conductance maps of a 311×311 nm 2 area at 300 mK: a.-d. Conductance maps taken at the energies of -1.06 meV, -0.77 meV, -0.34 meV and 0 meV respectively.

  7.1.(c) and7.1.(d).
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 74 Figure 7.4: Conductance maps of a 311×311 nm 2 area at 2 K: a.-d. Conductance maps taken at the energies of -1.06 meV, -0.77 meV, -0.34 meV and 0 meV respectively.
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 1 Γ 2 ) = n i πN 0 |v 2 | 2 1 4 S(S + 1),the full self-energy can be written asM i = i ω2 -∆2 (Γ 1 ωτ 0 -Γ 2 ∆τ 1 ).
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 2 CRITICAL TEMPERATURE AND CONCENTRATION ABRIKOSOV GOR'KOV THEORY The term u √ u 2 -1 approaches 1 and in u∆, the final result is lim T →Tc u∆ = ω + iΓ.

2 + 1 -ln 1 , 2 D 2 ,

 21122 where ∆ P (0) is the value of the gap at T = 0 for a pure material, we obtain ω which allows us to determine the critical concentration from which superconductivity is destroyed in the material.

n

  γn,↑ u n (r) -γ † n↓ v * n u n (r) + γ † n↑ v * n (r)(27)where the operators ψ are linked to the operators ĉk in the reciprocal space by ψ(r, σ) = k e ik•r ĉk,σ .[START_REF] Anderson | Localized magnetic states in metals[END_REF] 

[

  r ,σ ψr ,σ , ψr ,σ ] + σ , ψr,σ ] + ∆ * [ ψr ,-σ ψr ,σ , ψr,σ ] (29)The last of these terms is equal to zero and we are simply left with the first two. The first term gives the following commutator[ ψ † σ ψσ , ψσ ] = ψ † σ ψσ ψσψσ ψ † σ ψσ = -ψ † σ ψσ ψσψσ ψ † σ ψσ = ( ψσ ψ † σ -δ σ,σ ) ψσψσ ψ † σ ψσ = -ψσ δ σ,σ , 119 122

  from matplotlib import * def psip ( kF , r , deltplus , deltminus , vF , Delta ): # Computes the wavefunction Psi + taking as arguments the fermi wave vector , # the distance from the center , delta + , delta -, the fermi velocity and the SC Gap a = 0.02 return 1/ sqrt ( pi * kF * sqrt ( r **2+ a **2))* sin ( kF * r -pi /4 + deltminus )* exp ( -Delta * abs ( sin ( deltplus -deltminus ))* r / vF ) def psim ( kF , r , deltplus , deltminus , vF , Delta ): # Computes the wavefunction Psi -taking as arguments the fermi wave vector , # the distance from the center , delta + , delta -, the fermi velocity and the SC Gap a = 0.02 return 1/ sqrt ( pi * kF * sqrt ( r **2+ a **2)) * sin ( kF * r -pi /4 + deltplus )* exp ( -Delta * abs ( sin ( deltplus -deltminus ))* r / vF ) def spectre ( energies , Delta , temp ): energies = energies . astype ( ' complex ') # Converting the energy values to complex format bcs = real ( abs ( energies )/ sqrt (( energies )**2 + 1 j *0.002 -Delta **2)) # 0 Temperature BCS density of states computed over the values of energies const_list = zeros ( len ( energies )) + 1. # Const list to suppress the edge effects due to the convolution procedure t e m p e r a t u re _l i s t = thermal_broad ( energies , 0 , temp ) # Convolution function output = convolve ( bcs , temperature_list , ' same ' )/ convolve ( const_list , temperature_list , ' same ') # Normalized convolution return output . astype ( ' float ') def wavefunc ( dist_max , Delta , J , K ): # Function computing and normalizing correctly the Shiba wave function kF = 1.5 N0 = 1. vF = 5. S = 1. deltplus = atan ( K * N0 + N0 * J * S /2.) deltminus = atan ( K * N0 -N0 * J * S /2.) amp = [] # empty list that will contain the normalization values of each wave function gap_history . append ( gap_map [ j ]. flatten ()) # coupl = linspace (0 , 50 , n um_impur ities ) gap_list = gap_map . flatten () for i in range ( n um_impur ities ): # Calculating the DOS associated to each impurity index_x = int ( pos [ i ][1]/ pixel_size + area_size /2.) # !! ! !! !! !! ! !! !! ! index_y = int ( pos [ i ][0]/ pixel_size + area_size /2.) # ! !!!!!!!! !!!!! gap_imp = gap_map [ j ][ index_y ][ index_x ] r = sqrt (( x -pos [ i ][0])**2 + (y -pos [ i ][1])**2) # Array of the distance from the center of impurity i r = r . flatten () interp_wf1 , interp_wf2 , Shiba_energy , amplitude = wavefunc ( max ( r ) , gap_imp , cos ( pos [ i ][2])* Mag_coupl , Diff_coupl ) # Computation of the radial wave function # of impurity i as a function of r , returns psi + , psi -, Es and normalization of the state shiba_ener . append ( Shiba_energy ) amp . append ( amplitude ) wf1 = ( interp_wf1 ( r )). reshape ( lat_size , lat_size ) # Calculation of the Psi + over the values of r wf2 = ( interp_wf2 ( r )). reshape ( lat_size , lat_size ) # Calculation of the Psi -over the values of r # Fermi Dirac broadening of the wave functions for wf1 and wf2 broad1 = ( const * thermal_broad ( energy_range , Shiba_energy , temperature )) . transpose (). reshape ( num_ener , lat_size , lat_size ) broad2 = ( const * thermal_broad ( energy_range , -Shiba_energy , temperature )) . transpose (). reshape ( num_ener , lat_size , lat_size ) if j == num_i teration s -1: DOS += wf1 **2* broad1 + wf2 **2* broad2 # Adding the convoluted wave function to the global DOS gap_map [ j +1] += -SC_coupling * abs ( wf1 * wf2 )*(1 -thermal_broad ( Shiba_energy , 0 , temperature )) # Gap difference induced by impurity i gap_map [ j +1] += -SC_coupling * abs ( wf2 * wf1 )*(1 -thermal_broad ( -Shiba_energy , 0 , temperature )) # Gap difference induced by impurity i if i %10 == 0: # Indicator for the impurity index print ' impurity # ' , i gap_map [ j +1] = g au s si an _f i lt er ( abs ( gap_map [ j +1]) , xi , mode = ' wrap ') # Eliminating the effect of the SBS divergence print min ( gap_map [ j +1]. flatten ()) DOS = array ( map ( partial ( median_filter , size = 1) , DOS )) # Median filter to suppress divergences in the DOS gap_vals = gap_map [ j +1]. flatten () # s p e c t r e _ r e n o r m a l i z a t i o n = array ( map ( mean , DOS . transpose (). reshape ( lat_size * lat_size , num_ener )))

Table 3 . 2 :

 32 Parameters for the 2 bands of 2H-NbSe 2 obtained by ab initio calculations. The numerical values are given in meV.

	2 cos 3ξ cos η + cos 2η) + t 3 (2 cos 2ξ cos 2η + cos 4ξ)

Table 4 .

 4 1: Phases of Pb/Si[START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] and their superconducting (SC) critical temperatures and Pb coverages

		√	7 ×	√	3	SIC	HIC	Devil's staircase
	Critical temperature (SC)	1.52 K		1.83 K	
	Coverage	<1.2 ML >1.3 ML 1.22 ML -1.3 ML 1.2 ML -1.33 ML

We will present STS measurements using a superconducting tip on a Pb monolayer. In this configuration the tip will have almost the same gap as bulk Pb ( 1.3 meV) while the monolayer only has a gap of a few tenth of meV. At

mK, no electron can be promoted to positive energy states by thermal activation and thus we will not observe zero bias conductance at this temperature.

The maximum value for the quantized angular momentum is constrained by the extent of the diffusion potential as

As the tight binding calculation is obtained for a 2D lattice we ignore the kz direction. This omission is also justified by the 2D power law decrease of the YSR bound states measured experimentally.

The coherence length ξ ∝ √ ξ0l is much larger than the mean free path

These last two pockets are seen as 4 pockets on fig. 4.4 because of their position between two different Brillouin zones but there are actually only two independent ones.

We take a Zeeman potential Vz(r) of a gaussian form Vz(r) = Vmaxe -r 2 /σ 2 .

We applied the same gap subtraction procedure on fig.3.6.

All of the results of this section were obtained with a normal tip and thus the data manipulations that were used in the previous subsection in order to suppress the tip gap are not necessary here and the data analysis was done using the same procedure as in all the others chapters of this thesis.

The 3 × 3 flakes tend to be elongated along the steps edges and in this direction we have observed continuous domains of more than 500 nm while in the perpendicular direction the typical extension of these flakes is about 50 nm

As two are directly connected to the √ 7 × √

and one consists of the step edge.

We have r = GN /GB where GN is equal to σ2S/L with σ2 the normal state conductivity of the monolayer, S the section of the barrier and L its length. GB on the other side is equal to G0M τ with G0 the quantum of conductance

2e 2 /h, τ the transmission coefficient of the interface and M the number of interface open channels.[START_REF]The nobel prize in physics[END_REF] The diffusion coefficient is given by D = 1 2 vF l in two dimensions. For vF 10 6 m.s -1 we obtain a mean free path 4 nm.
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Conclusion

In this chapter we have discussed the influence of nano-magnetism on the Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] system in two different configurations:

• Isolated classical impurities

• Randomly arranged clusters of classical magnetic impurities

We first showed that the results obtained on 2H-NbSe 2 about two dimensional superconductors could be extended to the Pb/Si(111) monolayers as we measured the YSR bound states over more that 20 nm from the impurity origin. Due to that enhancement of the bound states range by dimensionality effect we were able to study the Fourier transform of conductance maps for a single impurity. We discussed the role of the atomic structure on the spatial pattern of the highly anisotropic YSR bound states and in the case of the √ 7 × √ 3 phase how the Fermi surface influences this pattern. We also showed that the disordered monolayer leads to speckle patterns for the YSR bound states. We were able to compared the case of magnetic impurities and non-magnetic impurities and deduce that spin-orbit interaction plays a role in the electronic scattering and thus implies the existence of a triplet component for superconductivity.

We then showed how a large Co concentration could form local accumulations of magnetic impurities and produce a continuum of YSR bound states. These clusters have an effect on the gap-filling and the

Chapter 6

The Pb/Si(111) monolayer: A playground for 2D physics

Introduction

As we have seen in the previous chapter the system Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] presents a large variety of structural phases that depend on the nominal Pb coverage. In this chapter we will discussed results obtained by STM/STS in the system Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF] for non superconducting phases not discussed before. Unlike the results presented in the two previous chapters about the √ 7 × √ 3, HIC and SIC superconducting phases, the results presented here are not yet fully understood or do not benefit from a full and complete theoretical interpretation. Therefore this chapter more than the others will be mostly oriented towards experiments and will be lighter on the theory side.

The first part of this chapter will deal with diluted phases of Pb/Si(111) (namely the 3×3 and √ 3× √ 3 phases). We will present the signatures of a quasi-Mott insulator phase and its behavior when placed in proximity to metallic phases. We will conclude by presenting results still not fully understood covering our work on the proximity effect between the √ 7 × √ 3 and 3 × 3 phases where one phase is superconducting and the second one is nearly Mott-insulating.

The part concerning the low density monolayer phases in the normal state was performed in collaboration with V. Cherkez and R. Federicci.

Induced metallicity

Phase coexistence in Pb/Si(111) systems

In this section we focus on the metallic and insulating phases of Pb/Si [START_REF] Ivanov | Non-Abelian statistics of half-quantum vortices in p-wave superconductors[END_REF]. We will mostly focus on the metallic √ 7 × √ 3 and 3 × 3 phases and insulating disordered √ 3 × √ 3 phase. When growing monolayer samples it is difficult to obtain homogeneous phases over the whole sample. The most common case is the one where we obtain a mixture of phases over different areas of the sample. This configuration leads to a system globally in the √ 7 × √ 3 phase with patches of 3 × 3 at the step edges. We present on fig. Superconducting proximity effect

Introduction

The proximity effect is obviously not exclusive to S -N systems. For instance if a superconductor S 1 described by its critical temperature T c1 and its energy gap ∆ 1 is brought into contact with another superconductor S 2 with its own critical temperature T c2 < T c1 and energy gap ∆ 2 < ∆ 1 , the LDOS of both superconductors near the interface will feel the effect of the other side and be modified accordingly. At low enough temperatures (T < T c2 ) the modification of the LDOS will be significant within the energy interval |E| ∈ [∆ 1 , ∆ 2 ] and may be observable over a distance L C i from the interface. In the intermediate case where T c2 < T < T c1 one expects the proximity effect to induce a finite local order parameter in a formally non-superconducting S 2 by means of a nonzero attractive pairing interaction λ 2 existing in S 2 . Such mechanism should result in a proximity-induced interface superconductivity. A subtlety emerges as we should make clear that order parameter and superconducting correlations are two different things. On one side the order parameter ∆(r) emerges from the pairing interaction V (r) that is strictly equal to 0 in a normal metal. On the other side the superconducting correlations F (r) are related to ψ↑ (r) ψ↓ (r) . Both quantities are related by ∆(r) = V (r)F (r). Therefore for a normal metal with V = 0 we would obtain ∆ = 0 but in no case forces F to get suppressed. The superconducting correlations stay finite close to the interface between a superconductor and a normal metal due to the propagation of Cooper pairs in the normal area.

To our best knowledge, except from the theoretical and qualitative discussion from the 1960's [START_REF] De Gennes | Boundary effects in superconductors[END_REF][START_REF] Deutscher | Superconductivity: Proximity effects[END_REF], no experiment has ever been reported in which this effect has been spatially resolved before our work.

System

We study the case of two superconductors S 1 and S 2 in close contact, a study that was published in [START_REF] Cherkez | Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy[END_REF]. The two superconductors are respectively the SIC monolayer that covers most of our sample and a 7 ML high Pb nano-island. This sample was obtained following the same basic recipe as previously discussed; only vary the initial quantity of Pb deposited on the surface and the time and temperature of the annealing. In this case, after preparing the Si by heating it at 1200 • C in order to obtain the 7 × 7 reconstruction, we deposited 1.65 ML of Pb at room temperature before annealing the sample at 230 • C [START_REF] Kumpf | Structural study of the commensurate-incommensurate low-temperature phase transition of Pb on Si(111)[END_REF]. This procedure leads to a √ 7 × √ 3 that can be continuously transformed into a denser SIC phase by adding 0.2 ML at room temperature onto the sample. As a result of a Stransky Krastanow growth [START_REF] Stranski | Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander[END_REF] once the SIC monolayer is completed, the system grows islands from the excess of Pb. The Pb islands are mostly nanometer sized 1 ML high and a few are 5 to 7 ML high with size typically larger than 100 nm with a distribution of one every µm 2 . The 3D topography of the system is presented in false colors spectroscopy on fig. 7.1.a. The superconducting characteristics of these islands are slightly under the bulk Another equation must be taken into account for our study to be coherent. This equation is the autocoherence equation for the superconducting order parameter. This equation must be modified compared to its usual form in the following way

where the cutoff energy ω D for the superconducting interaction has been introduced. The link between this cutoff and the BCS cutoff is given by ω D = ω 2 D + ∆ 2 . The structure of the Green function calculated previously allows us to write

.

If we define Γ as Γ = Γ 1 -Γ 2 and u as u = ω/ ∆, the previous equations can be simplified as

We do indeed have

as well as

If we introduce inside this relation the expression of ∆, we obtain

At non-zero temperature, the auto-coherence equation integrates a temperature dependance for ∆ in the form of a factor tanh 1 2 βω (where β = 1 k B T ) leading to the following equation

One should note here the modification of the integration limits that leads to the disappearance of the 1/2 factor. This new form must therefore be introduced inside the equation for u∆ where ∆(0, Γ) now becomes ∆(T, Γ).

.

Critical temperature and concentration

The value of the critical temperature is obtained by the cancellation of the order parameter as a function of the tempereature, i.e. for ∆(T c , Γ) = 0. An equivalent way is to look at the limit ∆ → 0 in which we have u = ω ∆ 1.

DERIVATION OF THE BOGOLIUBOV-DE GENNES EQUATIONS

while the superconducting coupling gives the commutator

The general commutator from which we started can therefore be rewritten under the following form

Finally we only have to do the same with the commutator [H, ψ † σ ] and we obtain

Note that the difficulty of the commutation with the kinetic term H e has been left aside as this terms trivially commutes with the field operators that form its eigenvectors by a simple Fourier transform.

We can now rewrite the previous commutators with the help of the γ operators by replacing the ψ by the corresponding expressions. We then obtain

while the counterpart of this previously computed commutator reads

By doing the same for the conjugated terms of the field operators we finally obtain the two equations

By identifying the left and right terms of the equations the terms multiplied by γ σ and γ † -σ we obtain the Bogoliubov-de Gennes equations for the terms u n and v n

This equation can then be written in a matrix form using the spinor Ψ n = u n v n and we obtain

where the matrix M is written

Fano resonance

We consider the general problem of the coupling of a single electronic state to an electron gas. The form of the obtained peak is called Fano form from U. Fano who first found this expression in the context of an He resonance probed by mean of inelastic electron scattering [START_REF] Fano | Effects of configuration interaction on intensities and phase shifts[END_REF].

We take the following Hamiltonian

describing two non-interacting systems. The first system is described by the operators ĉk and ĉ † k and corresponds to a continuum of states |k following the energy dispersion ε k . The second system is a single electronic level |d described by the operators d and d † . This isolated level is at the energy ε d .

We now add an Anderson like coupling between these two states described by the following Hamiltonian

The discrete level |d without the interaction from eq. 37 is described by the Green function

When taking into account the interaction Hamiltonian, one creates an hybridization of the discrete level to the continuum via the introduction of a self-energy of the type |V | 2 G 0 c . The Green function now reads as G

(1)

The |k state being a continuum of states we can go from a discrete sum to a continuous integral over band of width D. We then obtain

where N 0 is the density of states at the Fermi level of our electronic bath. By taking D to infinity, we only keep the second term of eq.40 and the Green function fro eq.39 can be written as

We are interested in the density of states which given by the imaginary part (up to a term 1/π) of the Green function and therefore

with Γ = πN 0 |V | 2 . The effect of coupling a discrete level to a continuum of states is thus shown to be a Lorentzian broadening of the density of states of this level and equivalently the introduction of finite life time of the quasi-particles excitations. 

GAP REDUCTION CALCULATION