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Ce mémoire présente l'ensemble des travaux que j'ai effectués pendant ma thèse. Au cours de celle-ci, j'ai élaboré des modèles mathématiques pour la biologie et j'ai étudié des méthodes numériques pour des systèmes de la mécanique des fluides. Plus précisément, je me suis intéressé à des systèmes d'équations aux dérivées partielles (EDP) avec contraintes, qui permettent de décrire de manière continue, en temps et en espace, des quantités physiques telles que la densité ou la vitesse.

Dans le cadre de la théorie des mélanges, nous avons élaboré d'une part, un modèle pour la croissance d'un biofilm de micro-algues et d'autre part, un modèle pour la rhéologie du gros intestin. Ce dernier a ensuite permis de développer un modèle décrivant les interactions entre le microbiote intestinal, le bouillon gastrique et l'hôte. Cette thèse est complétée par une étude numérique du modèle d'Aw-Rascle pour le trafic routier, tenant compte des effets de limitation de la densité de véhicules.

Bien que les applications visées soient très différentes, ces modèles présentent plusieurs similitudes et nécessitent la mise en oeuvre de méthodes numériques originales. Tous les modèles considérés sont basés sur des systèmes d'équations aux dérivées partielles. Plus précisément, le modèle de croissance de biofilm et le modèle d'Aw-Rascle pour le trafic routier sont des modèles hyperboliques. De plus, ces deux modèles, ainsi que le modèle pour la rhéologie du gros intestin, sont des modèles avec contraintes. En effet, les modèles de mélange appliqués à la biologie font apparaître une contrainte d'incompressibilité liée à la conservation du volume. Dans le modèle d'Aw-Rascle un seuil est imposé sur la densité de véhicules, exprimé par l'intermédiaire d'une singularité dans le terme de pression. Enfin, dans tous ces modèles, des zones de vides peuvent apparaître (densité nulle pour le trafic routier ou absence de certaines phases pour les modèles de mélange) et nécessitent une attention particulière. Ces spécificités ont conduit à l'élaboration d'approches numériques explicites-implicites, spécifiquement conçues afin de traiter les zones de vide, de préserver la positivité de certaines variables et de satisfaire les contraintes.

Les modèles mathématiques pour la biologie, développés et étudiés au cours de cette thèse, sont le fruit de collaborations étroites avec des biologistes. D'une part, le modèle pour les biofilms photosynthétiques est issu d'une collaboration avec des membres du Laboratoire Océanographique de Villefranche-sur-Mer (LOV), en particulier O. Bernard. D'autre part, les modèles pour le gros intestin, sont le résultat d'un travail commun avec B. Laroche et S. Labarthe, de l'équipe MaIAGE de l'Institut National de la Recherche Agronomique (INRA). Les travaux effectués au cours de cette thèse ont donné lieu aux articles suivants :

-"A time-space model for the growth of micro-algae biofilms producing lipids" qui a été écrit en collaboration avec O. Bernard et M. Ribot et qui va être soumis prochainement. -"A mixture model for the dynamic of the gut mucus layer" qui fait suite aux travaux entrepris au CEMRACS 2015 en collaboration avec T. El Bouti, T. Goudon, S. Labarthe, B. Laroche, A. Rachah, M. Ribot et R. Tesson et qui est en révision. -"Modelling fibres degradation by the human large intestine microbiota : a structured population model" qui est le résultat d'une collaboration avec T. Goswami, T. Goudon, S. Labarthe, B. Laroche, M. Ribot et qui est en cours de rédaction. -"Numerical schemes for trafic flows with unilateral constraints describing the formation of jams" en collaboration avec F. Berthelin, T. Goudon et M. Ribot qui va également être soumis prochainement.

Ce premier chapitre a pour but de donner une vue d'ensemble des travaux effectués au cours de cette thèse. Pour cela, nous commencerons par une introduction à la théorie des mélanges. Puis, en s'appuyant sur ce cadre mathématique nous présenterons les modèles élaborés pour décrire la croissance d'un biofilm de micro-algues photosynthétiques ainsi que les enjeux scientifiques ayant motivé cette étude. Nous en profiterons également pour expliquer les méthodes numériques

INTRODUCTION

mises en oeuvre et donner les principaux résultats obtenus dans ce contexte, soit la simulation de la croissance et l'estimation de la productivité. Puis, après avoir décrit le fonctionnement du gros intestin et le rôle du mucus qui le recouvre, nous présenterons le modèle de mélange construit pour décrire son fonctionnement. Nous nous attacherons ensuite à décrire le schéma numérique élaboré spécifiquement pour ce modèle. Enfin, nous commenterons les résultats de certaines simulations numériques et nous expliquerons dans quelles mesures celles-ci permettent de valider le modèle mathématique considéré. Nous poursuivrons avec la présentation du modèle décrivant les interactions entre le microbiote intestinal, le bouillon gastrique et l'hôte. Nous décrirons les mécanismes pris en compte et nous commenterons les résultats numériques obtenus. La dernière partie de cette introduction sera consacrée à la présentation des méthodes numériques élaborées pour le modèle de trafic routier d'Aw-Rascle. Nous commencerons par décrire le modèle et ses spécificités. Puis, nous présenterons un modèle avec trois pressions permettant d'approcher le sytème d'Aw-Rascle avec contrainte. Enfin, nous finirons par discuter des avantages et inconvénients de chacune de ces approches.

Introduction à la théorie des mélanges

La théorie des mélanges donne un cadre mathématique adapté pour l'étude de systèmes de fluides complexes. Elle permet une description mésoscopique (i.e. : échelle intermédiaire entre l'échelle macroscopique et l'échelle microscopique) précise du comportement en temps et en espace d'un système où au moins deux composés différents avec des propriétés hétérogènes sont mélangés. Ceux-ci doivent être en proportion suffisante pour qu'aucun d'entre eux ne puisse être négligé. Les échanges entre les composés sont possibles mais ils ne doivent pas être combinés chimiquement. D'après cette définition, une multitude de systèmes physiques et/ou biologiques peuvent être vus comme un mélange. Par exemple, l'atmosphère avec les différents gaz qui la constituent, les tumeurs ou encore les biofilms. La théorie des mélanges a été introduite dans les années 1960 par une série d'articles de Trusdell [START_REF] Truesdell | Sulle basi della termomeccanica. I, II. Atti[END_REF][START_REF] Truesdell | The classical field theories[END_REF][START_REF] Truesdell | Rational thermodynamics[END_REF]. Il en établit les fondements en proposant un modèle continu basé sur des EDPs pour un fluide composé de plusieurs constituants. Pour une présentation exhaustive de la théorie des mélanges on peut consulter les livres [43,[START_REF] Rajagopal | Mechanics of mixtures[END_REF][START_REF] Truesdell | An Introduction to the Mechanics of Fluids[END_REF]. Étant donné qu'elle permet de construire des modèles rigoureux pour des systèmes où les constituants sont mélangés et ont des propriétés physiques différentes, cette théorie est particulièrement bien adaptée pour décrire des systèmes biologiques. Ainsi, elle a été utilisée avec succès pour la modélisation par exemple : du cartilage et des milieux poroélastiques par Van C. Mow [START_REF] Kwan | A finite deformation theory for cartilage and other soft hydrated connective tissues -i. equilibrium results[END_REF]8,[START_REF] Setton | The biphasic poroviscoelastic behavior of articular cartilage : Role of the surface zone in governing the compressive behavior[END_REF][START_REF] Lu | A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis[END_REF][START_REF] Mow | Fluid transport and mechanical properties of articular cartilage : A review[END_REF], des tumeurs par Preziosi et ses collaborateurs [4,18,[START_REF] Preziosi | Multiphase modelling of tumour growth and extracellular matrix interaction : mathematical tools and applications[END_REF]43,17] ou encore des biofilms [26,27,29,31,[START_REF] Zhang | Phase field models for biofilms. i. theory and onedimensional simulations[END_REF][START_REF] Zhang | Phase-field models for biofilms ii. 2-d numerical simulations of biofilm-flow interaction[END_REF]. Le but de la théorie des mélanges est de donner une description mésoscopique d'un fluide constitué de plusieurs composants ayant des propriétés physiques hétérogènes. L'hypothèse fondamentale de cette théorie est qu'en tous points, tous les constituants peuvent être présents simultanément dans différentes proportions. Nous supposerons également que tous les constituants qui composent le mélange sont suffisamment denses pour être considérés comme localement homogènes. Cette théorie est particulièrement adaptée lorsque les propriétés physiques des constituants sont hétérogènes. Par conséquent, la quantité de matière, le déplacement et éventuellement l'énergie de chacun des constituants du mélange sont décrits individuellement par une loi de conservation. Après avoir introduit quelques notations, nous établirons la forme générale des lois de conservation de la masse qui décrivent l'évolution en temps et en espace de la quantité de matière de chacun des composants. Puis, nous introduirons les équations de conservation du moment, dans lesquelles les propriétés physiques de chacune des phases sont décrites. Enfin, nous déduirons de ce qui précède certaines relations caractéristiques de la théorie des mélanges. Dans la suite nous considérons un mélange composé de K constituants : C Nous noterons ∂V la frontière de V et n son vecteur unitaire normal extérieur.

Équations de conservation de la masse

Pour chaque constituant la conservation de la masse est une EDP qui traduit l'évolution en temps et en espace de la quantité de matière. Pour un constituant donné C k , la masse contenue dans l'élément de volume élémentaire V est donnée par V φ k ρ k dΣ. Cette quantité évolue au cours du temps en fonction de deux contributions : les flux de matière au travers de la frontière de V et les transferts de masse entre les différents constituants présents dans V. Les transferts de masse pour un composant C k sont donnés par V Γ k dΣ où Γ k est la masse échangée par unité de temps et de volume. Les flux de matière à travers la frontière de V viennent, d'une part de l'advection, et d'autre part de la diffusion. En notant v k la vitesse à laquelle le composé C k est transporté le flux dû à l'advection est donné par

∂V (-ρ k φ k v k ) • n dσ .
La diffusion est un processus physique induit par l'agitation thermique qui conduit à l'homogénéisation du milieu, c'est-à-dire à l'annulation du gradient de la quantité de matière. Par conséquent dans la théorie des mélanges ce mécanisme est modélisé par un terme de transport proportionnel au gradient de la quantité de matière, à savoir

∂V (δ k ∇ X (ρ k φ k )) • n dσ .
où δ k est le coefficient de diffusion, celui-ci pouvant éventuellement dépendre de la composition du milieu. Ainsi, l'évolution au cours du temps de la masse du constituant C k dans le volume élémentaire V, est donnée par

d dt V φ k ρ k dΣ = ∂V (-ρ k φ k v k + δ k ∇ X (ρ k φ k )) • n dσ + V Γ k dΣ.
Puis, si nous supposons que φ k ρ k est suffisamment régulière pour que nous puissions permuter l'intégrale et la dérivée en temps, et en utilisant le théorème de Stokes pour l'intégrale sur ∂V, nous obtenons

V ∂ t (ρ k φ k ) + ∇ X • (ρ k φ k v k -δ k ∇ X (ρ k φ k )) -Γ k dΣ = 0.
Enfin, cette relation étant vraie pour tout V si l'intégrande est suffisamment régulière, par des arguments standards nous en déduisons la formulation locale :

∂ t (ρ k φ k ) + ∇ X • (ρ k φ k v k ) -∇ X • (δ k ∇ X (φ k ρ k )) = Γ k .
(1.1.2)
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Équations de conservation du moment

Les équations de conservation du moment permettent de faire le bilan des forces physiques qui s'appliquent à chacun des constituants. Considérons le constituant C k , l'évolution du moment au cours du temps est donnée par

d dt V ρ k φ k v k dΣ = F surf + F vol ,
où F surf et F vol représentent respectivement les forces surfaciques et volumiques. Les forces surfaciques sont les forces externes qui agissent au travers de la frontière de V et proviennent d'une part du flux de moment : -∂V ρ k φ k v k (v k • n) dσ et d'autre part des forces de contact :

∂V Tk • n dσ , où Tk est le tenseur partiel des contraintes pour le constituant C k . Donc, sous réserve que les fonctions soient suffisamment régulières, nous avons

F surf = - ∂V ρ k φ k v k (v k • n) dσ + ∂V Tk • n.dσ = V -∇ X • (ρ k φ k v k ⊗ v k ) + ∇ X • Tk dΣ,
d'après le théorème de Stokes. Les forces volumiques résultent des interactions internes et sont données par

F vol = V ρ k B k dΣ + V mk dσ + V Γ k v k dΣ,
avec de gauche à droite :

-les forces internes qui font intervenir des mécanismes propres à la phase considérée, -les forces de contact qui quantifient les interactions et les frictions entre les constituants présents dans V, -la variation du moment induite par l'échange de masse avec les autres constituants du mélange. Donc en supposant que ρ k φ k v k soit suffisamment régulière pour que nous puissions permuter l'intégrale et la dérivée, nous obtenons que

V ∂ t (ρ k φ k v k ) + ∇ X • (ρ k φ k v k ⊗ v k ) -∇ X • Tk -ρ k B k -mk -Γ k v k dΣ = 0.
Comme pour la conservation de la masse, cette équation est valable pour tout V. Ainsi, si l'intégrande est suffisamment régulière, nous en déduisons alors par des arguments standards la formulation locale

∂ t (ρ k φ k v k ) + ∇ X • (ρ k φ k v k ⊗ v k ) = ∇ X • Tk + ρ k B k + mk + Γ k v k .
(1.1.3)

Simplification dans le cas d'un mélange saturé composé de fluides élastiques

Dans le cas d'un mélange saturé (i.e. : absence de zones de vide), le tenseur partiel des contraintes et les forces de contact sont donnés par Tk = -φ k P I + φ k T k et mk = P ∇ X φ k + m k , où P est la pression hydrostatique commune à toutes les phases, T k le tenseur des contraintes externes et m k le tenseur des frictions. En utilisant ces expressions l'équation (1.1.3) devient

∂ t (ρ k φ k v k ) + ∇ X • (ρ k φ k v k ⊗ v k ) = -φ k ∇ X P + ∇ X • (φ k T k ) + ρ k B k + m k + Γ k v k .
et fait alors apparaître le terme de pression sous forme non conservative. Dans le cas d'un fluide élastique, le tenseur des contraintes externes satisfait (voir [43,Chapitre 7])

φ k T k = -(Σ k (φ k ) -φ k κ k (φ k )∇ X • v k ) I + φ k µ k (φ k ) ∇ X v k + (∇ X v k ) T
avec Σ k (φ k ) le coefficient d'interaction élastique et µ k (φ k ) le coefficient de viscosité.

Contrainte d'incompressibilité et condition de compatibilité

Dans cette section nous présentons la démarche à suivre pour obtenir à partir du système d'équations (1.1.1) 

K k=1 φ k = 1 (1.1.4a) ∂ t (φ k ) + ∇ X • (φ k v k ) -∇ X • (δ k ∇ X (φ k ρ k )) = Γ k ρ k , 1 k K, (1.1.4b) ∂ t (φ k v k ) + ∇ X • (φ k v k ⊗ v k ) = 1 ρ k ∇ X • Tk + ρ k B k + mk + Γ k v k , 1 k K. (1.1.4c)
En sommant sur k les équations de conservation de la masse (i.e : (1.1.4b)) et en utilisant la condition (1.1.4a) nous obtenons la contrainte d'incompressibilité

∇ X •        K k=1 φ k v k + δ k ∇ X φ k        = K k=1 Γ k ρ k . (1.1.5)
Enfin, en intégrant cette équation sur l'ensemble du domaine Ω, puis en utilisant la formule de Stokes nous obtenons la condition de compatibilité suivante

∂Ω        K k=1 φ k v k + δ k ∇ X φ k        • n dω = Ω K k=1 Γ k ρ k dω. (1.1.6)
Par conséquent, les conditions aux bords doivent être consciencieusement choisies pour être compatibles avec cette relation. En pratique, dans certains cas, on peut se servir directement de cette relation pour établir les conditions aux bords.

En plus d'être à l'origine de la condition de compatibilité, la condition d'incompressibilité permet une reformulation du système donné par les équations (1.1.4a),(1.1.4b) et (1.1.4c). En effet, nous pouvons substituer l'une des équations de conservation de la masse (i.e. : l'équation (1.1.4b) pour un k 0 donné) par la contrainte d'incompressibilité. Le système ainsi obtenu est équivalent mais possède certains avantages, notamment du point de vue de la résolution numérique. En effet, construire un schéma numérique pour le système donné par les équations (1.1.4a), (1.1.4b) et (1.1.4c) s'avère très complexe. La principale difficulté est d'établir un schéma numérique pour les équations de conservation de la masse (1.1.4a) capable également de satisfaire la condition (1.1.4a). Un exemple de schéma satisfaisant cette contrainte est donné dans [11].
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Aussi, dans la pratique on considère généralement pour la partie numérique le système

K k=1 φ k = 1 ∂ t (φ k ) + ∇ X • (φ k v k ) -∇ X • (δ k ∇ X (φ k ρ k )) = Γ k ρ k , 1 k K, k k 0 ∇ X •        K k=1 φ k v k + δ k ∇ X φ k        = K k=1 Γ k ρ k ∂ t (φ k v k ) + ∇ X • (φ k v k ⊗ v k ) = 1 ρ k ∇ X • Tk + ρ k B k + mk + Γ k v k , 1 k K.
Le schéma numérique est alors construit de la manière suivante :

-On fait évoluer la fraction volumique des constituants C k pour k k 0 à l'aide d'un schéma d'advection-reaction-diffusion, -On estime la fraction volumique de C k 0 par l'intermédiaire de la contrainte (1.1.4a) ce qui permet évidemment qu'elle soit vérifiée. -On estime les vitesses (v k ) ou les moments (v k φ k ) et la pression par le biais des équations de conservation des moments et de la contrainte d'incompressibilité. Dans les deux applications que nous considérons dans la suite (biofilms photosynthétiques et mucus intestinal) la contrainte d'incompressibilité apparaît et impose une réflexion sur le choix des conditions aux bords pour que la condition de compatibilité soit vérifiée. Nous allons maintenant utiliser ce cadre théorique afin de construire des modèles pour la biologie. Nous commencerons par présenter une application à la description de la croissance d'un biofilm de micro-algues. Puis dans un second temps nous utiliserons ce cadre théorique pour décrire la rhéologie du gros intestin et de la couche de mucus qui le recouvre.

Modèle de mélange pour la croissance des biofilms de micro-algues

Le chapitre 2 est consacré à l'élaboration d'un modèle mathématique basé sur la théorie des mélanges (cf. section 1.1) pour la croissance de biofilms de micro-algues photosynthétiques. Ce modèle a été construit en collaboration avec l'équipe BIOCORE et en particulier avec O. Bernard. Succinctement, BIOCORE est un projet commun entre le Laboratoire Océanographique de Villefranche-sur-Mer (LOV), l'Institut National de la Recherche Agronomique (INRA) et l'Institut National de Recherche en Informatique et en Automatique (INRIA), dont le but global est de contribuer à préserver l'environnement, en développant de nouvelles sources d'énergie et en évitant la pollution des eaux ou l'utilisation de produits chimiques pour les cultures. Ce travail s'inscrit également dans le cadre du projet Algae in silico dont l'un des objectifs est d'optimiser la production de micro-algues notamment grace à l'utilisation d'un dispositif rotatif tel que celui représenté sur la figure 1.2. La collaboration avec O. Bernard a permis le développement d'un modèle mathématique tenant compte des principaux mécanismes biologiques et permettant de décrire la formation d'un biofilm. Un schéma numérique adapté au modèle ainsi qu'un code MatLab ont également été développés au cours de cette collaboration, ce qui a permis une première validation du modèle. Dans cette section, nous commencerons par décrire le contexte général. Puis nous ferons l'état de l'art des modèles mathématiques pour les biofilms. Ensuite, nous présenterons brièvement les principaux résultats obtenus. Enfin, nous finirons en donnant les perspectives d'améliorations envisagées.

Définition et présentation des biofilms

Le terme biofilm a été proposé en 1978 par Costerton [33] pour décrire une communauté généralement hétérogène de micro-organismes (micro-algues ou bactéries) qui vivent attachés à une surface et qui sont enchevêtrés dans une matrice extra-cellulaire (ECM). Cette matrice est habituellement produite pas les micro-organismes qui peuplent le biofilm et est principalement composée de polymères regroupés sous l'acronyme EPS (Extra-Polymeric-Substance). Le tout forme un gel visqueux, qui est généralement en contact permanent avec l'eau, dans laquelle les nutriments essentiels au développement du biofilm sont apportés par advection et diffusion. Il est actuellement communément admis que c'est le mode de vie naturel de la plupart des micro-organismes. L'étude et la compréhension des mécanismes de formation et de développement des biofilms est un sujet de recherche important. En effet, les biofilms peuvent apparaître dans de nombreux environnements industriels et médicaux et si certains sont bénéfiques, une grande partie des biofilms sont nuisibles et à l'origine de problèmes sanitaires et/ou économiques. Par exemple, certains biofilms peuvent aider à la décontamination ou former des barrières de protection contre la pollution dans certains milieux comme les aquifères [24]. Plus récemment, des études [START_REF] Schnurr | Factors affecting algae biofilm growth and lipid production : A review[END_REF]47] ont mis en évidence l'intérêt des biofilms de micro-algues dans le cadre de la production de biocarburants. Cependant, les biofilms sont aussi à l'origine de nombreux problèmes industriels, agroalimentaires et sanitaires. Ils sont entre autre capables de côloniser des conduites dans lesquelles ils accélèrent la corrosion [START_REF] Liu | Elimination of the formation of biofilm in industrial pipes using enzyme cleaning technique[END_REF][START_REF] Zhang | Study of biofilm influenced corrosion on cast iron pipes in reclaimed water[END_REF]. Dans les environnements agroalimentaires [START_REF] Yang | Biofilm formation of salmonella enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment[END_REF], des biofilms de salmonelles ont été observés. Ils sont également à l'origine d'infections nosocomiales ou de maladies graves telles que la mucoviscidose, et peuvent se développer sur de nombreux supports comme les lentilles de contact, les implants, les simulateurs cardiaques ou encore sur les dents, où ils sont responsables de la formation de la plaque dentaire. La compréhension des mécanismes de développement des biofilms est aussi essentielle dans certains contextes industriels. D'une part, les micro-algues sont une source croissante de produits biochimiques à forte valeur ajoutée. Elles permettent de produire une grande variété de biomolécules, dont des colorants et des compléments alimentaires, et elles interviennent aussi dans la fabrication de produits cosmétiques [13]. D'autre part, les micro-algues sont également envisagées comme une alternative écologique pour les besoins énergétiques de demain. En effet, elles se nourrissent principalement de dioxyde de carbone ce qui peut permettre une revalorisation d'une partie des rejets industriels. De plus, elles contiennent de fortes proportions de lipides qui peuvent être convertis en biocarburant. Néanmoins, l'industrialisation de ces procédés nécessité encore un certain nombre d'innovations et de ruptures technologiques. La culture de ces micro-algues sous forme de biofilms est une première étape. En effet, elle permet de diminuer considérablement la consommation en eau, et facilite grandement la récolte, ce qui conduit à une réduction du temps de post-traitement tout en abaissant les coûts. Un biofilm est généralement constitué d'une communauté hétérogène de micro-organismes qui communiquent au travers de mécanismes biochimiques tels que le chimiotactisme ou le quorum sensing. À l'aide de ces mécanismes, les biofilms sont capables de développer des résistances aux antibiotiques ou au système immunitaire de l'hôte, notamment par l'expression simultanée d'un même phénotype. Certains spécialistes estiment que la configuration du biofilm, qui impose une proximité entre les micro-organismes, permet même un transfert horizontal de certains gènes contribuant à augmenter leur résistance. De plus, la matrice extra-cellulaire se comporte comme une barrière biologique qui protège les micro-organismes des attaques extérieures, et empêche les molécules de principe actif d'atteindre les bactéries, la production d'EPS pouvant être activée par des mécanismes de défense. C'est pourquoi la compréhension de l'ensemble de ces processus, et des mécanismes de développement des biofilms est essentielle afin de pouvoir proposer des traitements efficaces. Le développement d'un biofilm se décompose en plusieurs étapes. La première étape est l'adhésion, qui se déclenche après la phase d'approche lorsque les micro-organismes arrivent à proxi-1. INTRODUCTION mité (∼ 30 nm) d'une surface. Durant cette étape, les micro-organismes sous forme planctonique perdent leur flagelle, et sécrètent des ligands qui leurs permettent de s'ancrer sur la surface. Puis, le biofilm entre dans une phase de croissance. Au cours de celle-ci, les micro-organismes se multiplient et produisent des EPS. Comme nous pouvons le voir sur la figure 1.1, dans cette étape certaines structures apparaissent. Elles sont notamment dues aux conditions environnementales comme la disponibilité des nutriments et à certaines forces internes aux biofilms telles que la tension de surface. Une fois le biofilm mature, certaines parties peuvent activement se détacher ou être entraînées par un flux conduisant à la libération des micro-organismes qu'elles contiennent. Ceux-ci retournent alors à l'état dit planctonique et peuvent aller côloniser de nouveaux espaces.

Approche Adhésion

Croissance Détachement 

Panorama des modèles mathématiques pour les biofilms

Comme nous l'avons montré ci-dessus la compréhension des mécanismes de développement des biofilms est un sujet de recherche important et plusieurs modèles mathématiques ont déjà été proposés. Dans ce qui suit, nous les présentons ainsi que leurs avantages et inconvénients. Pour avoir un panorama complet de l'état de l'art sur ce sujet, on peut consulter [52,[START_REF] Wang | Review of mathematical models for biofilms[END_REF] ainsi que [30] qui exposent les difficultés liées à la modélisation d'un système aussi complexe que peut l'être un biofilm. Les modèles mathématiques pour les biofilms peuvent être classés en fonction des phénomènes étudiés ou en fonction du cadre mathématique utilisé, qui est la présentation que nous adoptons. Globalement nous distinguons trois grandes classes de modèles : les modèles basés sur des systèmes d'équations différentielles ordinaires (EDO), les modèles individus centrés et les modèles continus multi-dimensionnels basés sur des systèmes d'équations aux dérivées partielles (EDP).

Les premiers modèles se sont principalement intéressés à décrire les transferts de masse à l'origine de la croissance des biofilms. Basés sur des EDO [START_REF] Wolf | Kinetic modeling of phototrophic biofilms : The phobia model[END_REF][START_REF] Li | Investigating dynamic processes in a porous substrate biofilm photobioreactor -a modeling approach[END_REF] ou des équations de réaction diffusion, parfois avec une frontière libre [23,[START_REF] Wanner | Competition in biofilms[END_REF][START_REF] Wanner | A multispecies biofilm model[END_REF][START_REF] Wanner | Mathematical modeling of mixed-culture biofilms[END_REF] ces modèles permettent de prendre en compte une multitude de composés différents et de décrire avec précision par des lois cinétiques les transferts de masse entre les constituants considérés. Néanmoins, ces modèles ne tiennent pas compte des structures tridimensionnelles qui apparaissent dans les biofilms et qui jouent un rôle important dans leur développement. Afin de décrire les structures qui se forment dans les biofilms, des modèles individus centrés ont été proposés. Ceux-ci sont basés sur des modèles d'automates cellulaires [START_REF] Van Loosdrecht | Mathematical modelling of biofilm structures[END_REF]50] et ont l'avantage de pouvoir reproduire des comportements complexes malgré leur relative simplicité. Dans ces modèles, les micro-organismes qui constituent le biofilm sont suivis individuellement et leur comportement peut être précisément décrit par un ensemble de règles. Cependant, malgré les récents progrès dans le domaine du calcul parallèle qui permettent de simuler l'évolution de quelques centaines de milliers de cellules, cette approche reste très coûteuse numériquement. De plus elle ne permet pas de prendre en compte de manière satisfaisante la description du liquide environnant. Aussi une partie de la communauté s'est tournée vers les modèles hybrides : individus centrés couplés avec des EDPs pour la partie mécanique des fluides. Nous pouvons notamment citer les travaux de Picioreanu et ses collaborateurs [START_REF] Picioreanu | Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach[END_REF]2]. Parallèlement, des modèles entièrement continus basés sur des systèmes d'équations aux dérivées partielles ont été développés. Dans ce cadre le biofilm est décrit comme un fluide viscoélastique qui se déforme sous l'effet de la pression induite par les transferts de masse entre les différents constituants du système. Des expériences en biophysique [START_REF] Wilking | Biofilms as complex fluids[END_REF] ont permis de confirmer que les biofilms sont des fluides complexes et justifient l'approche hydrodynamique. Parmi les modèles continus, certains introduisent une frontière libre qui délimite l'interface entre le liquide et le biofilm [3,24,29,32,38]. L'évolution du biofilm est alors décrite par le mouvement de l'interface pour laquelle il faut trouver une loi physique qui représente son évolution. Cependant, établir la loi de comportement de l'interface peut s'avérer extrêmement complexe. Numériquement des méthodes de level set sont généralement employées pour suivre l'évolution de la frontière.

Une autre approche, qui évite d'avoir à décrire une frontière, consiste à considérer des modèles où plusieurs phases peuvent cohabiter ensembles comme dans [5], néanmoins la fermeture du système ne permet pas de considérer des modèles en dimension supérieure à un. Aussi des modèles multiphasiques basés sur la théorie des mélanges ont été développés. Plusieurs modèles ont déjà été élaborés ; nous pouvons en particulier citer les travaux de I. Klapper et al. [3,[START_REF] Klapper | Mathematical description of microbial biofilms[END_REF]38], N. Cogan et al. [29,31,[START_REF] Zhang | Phase field models for biofilms. i. theory and onedimensional simulations[END_REF][START_REF] Zhang | Phase-field models for biofilms ii. 2-d numerical simulations of biofilm-flow interaction[END_REF] ou encore de C. Di Russo et al. [26,27]. Dans ces modèles, le système est décrit par des lois de conservation sur la quantité de matière et sur la quantité de mouvement. L'analyse de ces modèles est très difficile et les premiers travaux se sont concentrés sur la recherche de solutions stationnaires, et à l'étude de leur stabilité [27,32]. Néanmoins pour des modèles simplifiés, l'existence de solutions a été démontrée [12]. Par conséquent, ces différents modèles sont généralement implémentés à l'aide de méthodes telles que les différences finies ou les volumes finis, ce qui permet alors de confronter les résultats numériques aux expérimentations biophysiques.

Pour toutes les raisons évoquées ci-dessus, l'utilisation des modèles continus est un choix très pertinent pour décrire le développement des biofilms. Cependant, à notre connaissance, aucun modèle continu n'intègre actuellement une description précise des mécanismes de croissance du biofilm et en particulier des transferts de masse entre les différentes phases qui le constituent. Pour clore ce panorama, notons que les applications visées par ces modèles diffèrent. Certains modèles tels que [32,[START_REF] Mizan | Microbial biofilms in seafood : A food-hygiene challenge[END_REF][START_REF] Yang | Biofilm formation of salmonella enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment[END_REF][START_REF] Zhang | Study of biofilm influenced corrosion on cast iron pipes in reclaimed water[END_REF] s'attachent à décrire le développement du biofilm en vue d'optimiser les méthodes d'élimination et ainsi réduire les risques sanitaires ou les dégradations dans les milieux industriels que les biofilms induisent. D'autres [47,46,[START_REF] Li | Investigating dynamic processes in a porous substrate biofilm photobioreactor -a modeling approach[END_REF][START_REF] Ozkan | Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor[END_REF], au contraire cherchent à optimiser leur croissance en vue de les récolter afin de produire des biocarburants ou des composés biochimiques à fortes valeurs ajoutées.

Étude d'un nouveau modèle pour les biofilms de micro-algues

Nous allons maintenant présenter la contribution apportée par cette thèse à la modélisation des biofilms de micro-algues. Avant d'entrer dans les détails situons ce travail par rapport aux approches déjà existantes dans ce domaine. Afin de décrire la croissance et l'évolution en temps et en espace d'un biofilm plusieurs modèles ont déjà été élaborés notamment des modèles individus centrés et des modèles EDP. Mais actuellement aucune de ces deux approches n'est pleinement satisfaisante. Les modèles individus centrés ne sont pas capables de décrire l'évolution de plus de quelques centaines de milliers de cellules et la modélisation du fluide environnant n'est pas pleinement satisfaisante (même pour les modèles hybrides). Les modèles EDP quant-à eux décrivent correctement la partie mécanique des fluides mais sont actuellement à notre connaissance extrêmement simplifiés du point de vue

INTRODUCTION

des mécanismes biologiques ; typiquement les réactions biologiques sont généralement décrites par des lois linéaires même si des modèles un peu plus complexes existent. Le modèle que nous avons développé a l'ambition de corriger ce défaut pour les biofilms photosynthétiques. L'enjeu étant d'établir un modèle EDP évolutif capable de décrire avec précision les réactions biochimiques à l'origine de la croissance du biofilm. À terme le modèle doit également aider les biologistes à optimiser la production de lipides par des micro-algues cultivées sur des dispositifs rotatifs tels que celui représenté sur la figure 1.2. Actuellement des expériences sont en cours au Laboratoire Océanographique de Villefranche-sur-Mer afin de comparer le modèle à des données expérimentales.

Figure 1.2 -Exemple de système rotatif de culture de biofilm de micro-algues -Source : [START_REF]Rotating algal biofilm reactors[END_REF] Pour l'élaboration du modèle, nous nous sommes inspirés des travaux déjà existant et basés sur la théorie des mélanges [27,26,29,[START_REF] Zhang | Phase-field models for biofilms ii. 2-d numerical simulations of biofilm-flow interaction[END_REF][START_REF] Zhang | Phase field models for biofilms. i. theory and onedimensional simulations[END_REF]32,31,30]. Plus particulièrement ce nouveau modèle se place dans la continuité des travaux effectués par F. Clarelli, C. Di Russo, R. Natalini, et M. Ribot, dans [26,27] sur les biofilms dans les fontaines. Concrètement, comme dans ce modèle nous conservons les termes inertiels dans les équations des moments ce qui garantit une vitesse finie de propagation du front du biofilm et nous adaptons certaines des méthodes numériques utilisées dans [26]. Cependant plusieurs modifications et améliorations importantes ont été ajoutées ce qui entraine aussi de nouvelles difficultés numériques. Présentons maintenant ces changements et les difficultés numériques qu'elles engendrent. Tout d'abord, contrairement à [26,27] qui modélise la croissance des biofilms dans les fontaines en vue de la protection de celles-ci, l'objectif envisagé ici est l'optimisation de la croissance du biofilm, dans le but de maximiser la production de certains composés biochimiques tels que les lipides.

Ce modèle tient compte d'un plus grand nombre de mécanismes biologiques. Succinctement nous considérons les cinq mécanismes suivants :

-la photosynthèse, qui est la production des lipides par les protéines à partir du dioxyde de carbone, -la respiration, qui est la dégradation des lipides en dioxyde de carbone, -l'assimilation du substrat, qui conduit à la production des protéines à partir des lipides et d'azote, -l'excretion d'EPS, à savoir la libération de polymères à partir des lipides, -la mortalité, qui conduit au transfert du contenu de la micro-algue dans la matrice extracellulaire. La prise en compte de ces différents mécanismes nécessite de décrire l'évolution en temps et en espace de chacun des composants qui y interviennent. C'est pourquoi dans ce modèle, nous considérons quatre composants principaux décrits par leur fraction volumique au travers d'une équation d'advection-réaction et trois composants dissouts dans la phase liquide vérifiant une équation d'advection-réaction-diffusion. Parmi, les quatre principaux composants, deux méritent d'être décrits plus en détails. En effet, afin de mieux décrire la croissance des micro-algues nous les scindons en deux composants : la réserve de carbone majoritairement composée de lipides et la biomasse fonctionnelle, à savoir les protéines, l'ADN et l'ARN. Ce choix est justifié par le fait que nous cherchons à décrire la production de lipides par les micro-algues et par le rôle central que jouent les protéines dans la synthèse des lipides et l'excretion d'EPS. Ainsi, contrairement à [26,27] qui décrit le système avec seulement quatre composants, nous en avons ici sept au total et surtout pour les trois composants dissouts nous considérons en plus le phénomène de diffusion. Cela entraine plusieurs difficultés. Premièrement, la modélisation de la diffusion doit être intégrée de manière adéquate et son traitement numérique nécessite l'utilisation d'une approche semi-implicite en temps. Deuxièmement, étant donné que les termes de réactions font intervenir plusieurs composants la conservation de la masse conduit à la résolution d'un système couplé de sept EDPs au lieu de quatre. Ce travail se distingue également des précédents car la modélisation des termes d'échanges de masse a été entièrement repensée ce qui est certainement la contribution majeure de cette étude. La formalisation mathématique des termes d'échanges de masse est le fruit d'une collaboration étroite avec O. Bernard. Pour cela, les vitesses des réactions biochimiques listées ci-dessus sont décrites à l'aide de combinaisons de lois cinétiques élémentaires, telles que la loi de Michaëlis-Menten, de Droop ou encore d'Haldane, à la place des lois linéaires. Celles-ci sont détaillées dans la section suivante. Avant de continuer soulignons que ce choix de modélisation pour les termes sources conduit à un couplage fortement non linéaire entre les sept EDPs de conservation de la masse, à la place d'un éventuel couplage linéaire dans les précédents modèles. Ces lois traduisent les différents effets de limitation ou de saturation induits par la disponibilité des composants considérés. Ainsi, par construction les termes d'échange de masse présentent des parties raides qui entrainent des instabilités numériques. Pour résoudre cette difficulté nous avons mis en place une discrétisation semi-implicite. La prise en compte d'un plus grand nombre de composants nous a également conduit à tenir compte de trois vitesses, une pour les micro-algues, une pour la matrice extra-cellulaire et une pour le liquide environnant. Celles-ci sont décrites par trois lois de conservation du moment ayant été établies en adaptant l'approche utilisée dans [26,27] qui tient compte uniquement de la vitesse du biofilm dans son ensemble (micro-algues et matrice-extra-cellulaire) et de la vitesse du liquide. Comme dans [26,27] certaines des phases peuvent être nulles ce qui nécessite une approche numérique spécifique. Aussi nous avons également adapté la méthode numérique employée pour la résolution des équations des moments. Enfin dans ce travail nous ajoutons la prise en compte de la densité de chacun des composants du mélange. Cela entraine plusieurs conséquences. Premièrement en sommant les équations de conservation de la masse pour les principaux composants nous obtenons une équation d'incompressibilité qui est non homogène, celle-ci conduisant alors à des conditions de compatibilité sur les vitesses. Deuxièmement, l'approximation numérique de la pression hydrostatique (qui intervient dans les équations des moments) est alors donnée par une équation elliptique à coefficients variables et non homogènes ce qui augmente considérablement le coût des calculs.

Nous allons maintenant présenter la construction des termes d'échange de masse.

Description des mécanismes biologiques au travers des lois cinétiques

L'un des apports fondamentaux de ce travail, comparé à [26,27], est l'utilisation d'une description détaillée des réactions biochimiques ce qui nous permet de modéliser précisément les termes de transferts de masse entre les différents composants, c'est-à-dire des termes Γ k dans l'équation (1.1.2). Ceux-ci sont établis en quatre grandes étapes. Premièrement il faut identifier les réactions biochimiques qui se produisent et décrire quelles molécules sont échangées et dans quelles proportions. Ensuite, il faut identifier le composant auquel chacune des molé-
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cules impliquées dans la réaction appartient et représenter schématiquement la réaction à l'aide des composants considérés dans le modèle. Puis il faut intégrer l'information dans les termes d'échange de masse à l'aide des vitesses de réaction. Enfin à l'aide de lois cinétiques élémentaires la vitesse de réaction est construite pour chacune des réactions biochimiques. Prenons l'exemple de la photosynthèse qui est la réaction fondamentale à l'origine de la croissance du biofilm. Au cours de cette réaction le carbone inorganique CO 

η C P C + η L P L ϕ P ----------→ A + η O P O (1.2.2)
où η φ P pour φ = C, L, A, O sont les coefficients pseudo-stoechiométriques associés à chacun de ces composés, et ϕ P la vitesse de réaction de la photosynthèse, c'est-à-dire la vitesse à laquelle A est produit. Les coefficients pseudo-stoechiométriques traduisent dans quelles proportions chacun des constituants est consommé ou produit. En particulier, les coefficients pseudostoechiométriques tiennent compte du fait que A est composé à 90% d'eau. Autrement dit, lorsque les micro-algues assimilent du carbone, elles emmagasinent en même temps de l'eau. Détaillons brièvement comment ceux-ci sont estimés. A est composé en masse à 90% d'eau, en sachant que la masse molaire du glucose est de 180 g mol -1 , et que celle l'eau est de 18 g mol -1 , nous en déduisons que une mole de A est composée de 90 moles d'eau et de 1 mole de glucose. Ainsi le terme de droite de la réaction (1.2.2) est équivalent à C 6 H 12 O 6 + 90H 2 O + 6O 2 . Si nous revenons maintenant à la réaction (1.2.1) en ajoutant 90 moles d'eau de chaque côté afin de maintenir l'équilibre chimique nous avons

6 CO 2 C +96 H 2 O L ϕ P ----------→ C 6 H 12 O 6 + 90H 2 O A +6 O 2 O
Finalement en utilisant les masses molaires des composés qui apparaissent dans cette réaction nous pouvons estimer la masse m Φ pour φ = C, L, A, O et déduire une estimation des coefficients pseudo-stoechiométriques par la formule

η φ P = m φ m A .
Maintenant il s'agit de prendre en compte cette information dans les termes de transfert de masse. Pour cela nous regardons les mécanismes écrits sous la forme de (1.2.2) et pour chacun des composés φ qui y apparaissent, nous introduisons dans le terme de transfert de masse Γ φ :

-η φ P ϕ P si φ est un réactif et +η L'étape finale consiste à donner l'expression mathématique de chacune des vitesses de réaction, par exemple φ P pour la photosynthèse. Celles-ci s'écrivent comme le produit de la vitesse maximale de réaction, et de fonctions à valeurs dans l'intervalle [0, 1], qui modulent la vitesse en fonction de la composition du milieu. La liste ci-dessous donne l'expression et les effets induits par ces différentes lois. Loi de Michaëlis-Menten : Sa loi est donnée par la formule f (x) = x K+x où K est la constante de demi-activation (i.e. : f (K) = 1/2) et est représentée sur la figure 1.3a. Elle traduit une activation linéaire du mécanisme lorsque la quantité du constituant augmente, puis un effet de seuil apparaît : même une forte augmentation de la disponibilité du constituant implique seulement une légère accélération du processus. Loi de Droop La loi de Pour conclure la présentation de la modélisation des termes sources, rappelons qu'ils sont non linéaires. De plus, comme ils dépendent des autres composés présents dans le système ils couplent
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les équations de conservation de la masse. Afin de fixer les idées nous donnons l'exemple du terme source pour la réserve de glucose

Γ A = ϕ P -ϕ R -η A N ϕ N -ϕ A E -ϕ A D .
où les paramètres η sont des coefficients pseudo-stoechiométriques et les ϕ sont les vitesses associées à certaines des réactions considérées. En particulier la vitesse de réaction pour la photosynthèse est donnée par la formule

ϕ P = µ P ρ M Q max -Q min N C K C + C L K L + L max        0, 1 - Q min min N N +A , Q max        1 1 + O K O α 2 (1 + K I ) Î Î2 + 2K I Î + 1 où A, N , C, L et O sont
les fractions volumiques ou les fractions massiques des composants considérés dans le modèle et Î l'intensité lumineuse. Les autres termes sont des paramètres du modèle.

Conservation de la masse pour les espèces dissoutes

Dans ce modèle nous considérons des composés dissouts dans la phase liquide comme le dioxyde de carbone. Pour ces composés la notion de fraction volumique n'a pas de sens. Par conséquent nous considérons pour les décrire leur fraction massique, à savoir la masse du composant par rapport à la masse de liquide dans un élément de volume élémentaire. Enfin la conservation de la masse pour un composé dissout dont la fraction massique est notée θ s'écrit

∂ t (Lθρ L ) + ∇ x • (Lθρ L v L ) = ∇ x • (δ θ Lρ L ∇ x θ) + Γ θ (1.2.3)
avec δ θ le coefficient de diffusion. Notons que le terme de diffusion fait intervenir ∇ x θ et non pas ∇ x Lθ. En effet, la diffusion suit une loi de Fick, c'est-à-dire qu'elle est proportionnelle au gradient de la concentration (à savoir à θ à une constante près) et non pas à la quantité de matière. 

Description de l'approche numérique

Présentation des schémas de relaxation

Dans cette section, nous allons décrire le schéma de relaxation utilisé pour la discrétisation des termes de transports qui apparaissent dans les équations de conservation de la masse et des moments. Le schéma présenté ici s'inspire en particulier de l'article [6] de Driollet et Natalini. Les avantages majeurs sont le traitement efficace des zones de vide (absence d'une ou plusieurs phases) et la possibilité de modifier facilement le nombre et la géométrie des vitesses dans lesquelles les variables du système sont transportées, ce qui permet d'augmenter la précision numérique du schéma. L'approche des schémas de relaxation est d'utiliser les modèles microscopiques sous jacents afin de construire des schémas numériques efficaces pour des systèmes d'équations aux dérivées partielles même complexes. Avant d'entrer dans le vif du sujet nous pouvons citer les articles suivants [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF][START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF]15,6,6] qui ont contribué à l'élaboration de ces schémas. Considérons une équation générique hyperbolique de la forme

∂ t U + ∇ X • F(U ) = 0 (1.2.4) avec U ∈ R n et X = (x 1 , . . . , x d ) ∈ R d et F une application de R n dans R d .
Pour construire le schéma de relaxation nous réécrivons cette EDP comme la limite formelle lorsque le paramètre ε > 0 tend vers 0 du système

∂ t f ε k + ν k • ∇ X f ε k = 1 ε M ε k [U ε ] -f ε k (1.2.5)
constitué de K ∈ N, K 2d + 1 équations non homogènes de transport aux vitesses constantes ν k et avec la condition de compatibilité

U ε = K k=0 f ε k . (1.2.6) Dans les équations (1.2.5) les applications M k : U -→ M k [U ] sont les Maxwelliennes associées aux vitesses discrètes ν k = ν k,1 , . . . , ν k,d .
Celles-ci vérifient les relations de compatibilité :

K k=0 M ε k (U ) = U , (1.2.7a) K k=0 ν k, M ε k (U ) = F (U ), = 1, . . . , d. (1.2.7b)
Dans les équations (1.2.5) les ν k décrivent la vitesse à laquelle les f ε k sont transportées. Celles-ci sont généralement choisies pour coïncider avec les vitesses de transport caractéristiques de U dans (1.2.4). Une manière naturelle est alors d'imposer que max ν k = λ où λ est la plus grande en valeur absolue des valeurs propres des Jacobiennes de F. Pour plus de détails sur l'importance de cette normalisation, on peut consulter les travaux de Bouchut [14,15].
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Pour résoudre cette équation nous allons considérer une méthode de splitting. Dans la première étape nous résolvons sur l'intervalle de temps [t, t + ∆t] l'équation homogène associée

∂ t g + ν k • ∇ X g = 0, (1.2.8a) ayant pour donnée initiale f ε k n et nous noterons f ε k *
l'approximation numérique de la solution au temps t + ∆t. Puis dans la seconde étape, nous calculons sur l'intervalle de temps [t, t + ∆t] la solution de l'équation différentielle raide

∂ t f ε k = 1 ε M k [U ε ] -f ε k , (1.2.8b) avec la donnée initiale f ε k * . Le résultat au temps t + ∆ sera noté f ε k n+1
. Pour résoudre l'équation de transport à vitesse constante (1.2.8a) utilisons un schéma UpWindmais des schémas d'ordre plus élevé peuvent également être considérés -ce qui donne 

f ε k * α = f ε k n α - d =1 ∆t ∆x ν k, + f ε k n α -f ε k n α -1 + ν k, -f ε k n α +1 -f ε k n α , avec α = (α 1 , .
f ε k * α = f ε k n α - d =1 ∆t 2∆x ν k, f ε k n α +1 -f ε k n α -1 -ν k, f ε k n α +1 -2 f ε k n α + f ε k n α -1
∂ t K k=0 f ε k = 1 ε        K k=0 M k [U ε ] - K k=0 f ε k        ce qui équivaut à ∂ t U ε = 0 d'après les relations (1.2.7a) et (1.2.6). Par conséquent, dans cette étape U n'est pas changé, c'est-à-dire qu'on a (U ε ) * = (U ε ) n+1 et donc M k [U ε ] est connue.
Nous en déduisons alors de l'équation (1.2.8b)

f ε k n+1 α = f ε k * α e -∆t ε + M ε k [U * ] 1 -e -∆t ε . (1.2.10)
Prenons maintenant la limite formelle des relations (1.2.9) et (1.2.10) lorsque ε tend vers 0, nous obtenons alors

(f k ) * α = (f k ) n α - d =1 ∆t 2∆x ν k, (f k ) n α +1 -(f k ) n α -1 -ν k, (f k ) n α +1 -2 (f k ) n α + (f k ) n α -1 , (f k ) n+1 α = M k [U * ] .
En utilisant que dans la seconde étape U n'est pas changé (i.e. : 

U * = U n+1
(f k ) * α = M k [U n α ] - d =1 ∆t 2∆x ν k, M k U n α +1 -M k U n α -1 + d =1 ∆t 2∆x ν k, M k U n α +1 -2M k [U n α ] + M k U n α -1 .
Afin de revenir aux variables macroscopiques nous sommons cette relation sur k en utilisant la définition (1.2.6) et les relations de compatibilité (1.2.7a) et (1.2.7b) et que U n+1 = U * ce qui donne :

U n+1 α = U n α - d =1 ∆t 2∆x F U n α +1 -F U n α -1 + d =1 ∆t 2∆x K k=0 ν k, M k U n α +1 -2M k [U n α ] + M k U n α -1 .
Exemple concret de schéma de relaxation en dimension deux Dans ce qui suit nous supposerons que d = 2 et nous considèrerons les cinq vitesses suivantes :

ν 0 = λ 0 0 , ν 1 = λ 1 0 , ν 2 = λ 0 1 , ν 3 = λ -1 0 , ν 4 = λ 0 -1 , de norme λ.
Une manière de construire des Maxwelliennes vérifiant les conditions de compatibilité (1.2.7a) et (1.2.7b) consiste à les chercher sous la forme

M k (U ) = a k W + b k,1 F 1 (U ) + b k,2 F 2 (U ), k ∈ [[0, 4]] ,
avec (a k ) 0 k 4 et b k, 0 k 4 pour = 1, 2 des constantes. Plusieurs choix sont possibles, notamment nous pouvons prendre

a 0 = 1 -4a, ∀ k ∈ [[1, 4]] , a k = a ∈ R b 1,1 = b 2,2 = -b 3,1 = -b 4,2 = 1 2λ , b k, = 0 sinon, ce qui implique alors que M 0 (U ) = (1 -4a)U , (1.2.11a) M 1 (U ) = aU + 1 2λ F 1 (U ), M 2 (U ) = aU + 1 2λ F 2 (U ), (1.2.11b) M 3 (U ) = aU - 1 2λ F 1 (U ), M 4 (U ) = aU - 1 2λ F 2 (U ). (1.2.11c)
Le paramètre a doit être raisonnablement choisi pour garantir la consistance et le caractère diffusif du schéma numérique, pour plus de détails sur la manière de choisir a on peut consulter [19]. En pratique, par exemple si nous prenons a = 1 2 nous retrouvons alors le schéma de Lax-Friedrich.

Discrétisation des termes de diffusion

Pour les espèces dissoutes l'équation de conservation de la masse fait intervenir un terme de diffusion. Afin de simplifier la présentation de la méthode semi-implicite utilisée pour approcher la diffusion nous négligerons ici le transport et la réaction dans l'équation (1.2.3) ce qui donne

∂ t (Lθρ L ) = ∇ x • (δ θ Lρ L ∇ x θ) 1. INTRODUCTION
Afin de réduire la contrainte de stabilité (CFL) entre le pas de temps et le pas d'espace pour le terme de diffusion nous voulons utiliser une discrétisation implicite en temps. Dans ce but nous réécrivons l'équation sous la forme

∂ t (Lθρ L ) = ∇ x • δ θ Lρ L ∇ x Lθ L .
(1.2.12)

Notons que cette formulation est valable tant que la fraction volumique du liquide ne s'annule pas ; en pratique l'eau est toujours en excès. Pour garantir la stabilité nous discrétisons le terme de diffusion par

(θL) n+1 -(θL) n ∆t = ∇ x • δ θ L n ∇ x (θL) n+1 L n ,
où ∆t est le pas de temps. Cependant ce choix conduit à la résolution d'une équation elliptique à coefficient variable ce qui est relativement coûteux en terme de calcul.

À l'aide du schéma numérique élaboré nous avons réalisé plusieurs simulations que nous allons présenter dans la section suivante.

Présentation des principaux résultats

Dans cette section nous présentons quelques uns des résultats numériques en 1D puis en 2D. Ceux-ci seront également commentés notamment au travers de comparaisons avec des données expérimentales issues de la littérature.

Simulations en 1D

Les simulations numériques en 1D comme celle qui est représentée sur la figure [46,[START_REF] Schnurr | Factors affecting algae biofilm growth and lipid production : A review[END_REF][START_REF] Schnurr | The effect of light direction and suspended cell concentrations on algal biofilm growth rates[END_REF]. L'estimation de ces paramètres à partir des simulations numériques coïncide avec les données expérimentales, ce qui permet une première validation du modèle. Troisièmement, afin de mieux comprendre l'influence sur la productivité du biofilm de l'intensité lumineuse et des paramètres liés plusieurs simulations numériques ont été réalisées. Elles ont permis de mettre en évidence que dans une certaine mesure l'augmentation de l'intensité lumineuse n'a qu'une influence minime sur sa productivité ; cependant, la connaissance du taux d'absorption lumineuse du biofilm est fondamentale et nécessite une calibration précise. Enfin, la modulation dans des proportions raisonnables de l'apport en substrat permet de modifier la composition du biofilm sans modifier la vitesse de déplacement de son front ni sa productivité. Par exemple une diminution de deux tiers de l'apport en substrat S par rapport à la simulation présentée dans la figure 1.4 conduit à une diminution de la quantité de micro-algues A + N et à une augmentation d'environ 10% de la quantité de matrice extra cellulaire E.

Simulations en 2D

Les simulations numériques en 2D ont permis de conforter les observations et les conclusions obtenues à partir des simulations en 1D mais aussi de mettre en évidence l'apparition de structures au sein du biofilm. En effet, comme nous pouvons le constater sur les figues 1.5a à 1.5d une structure en forme de champignon apparait. Cette structure est également observée expérimentalement. Afin de les faire apparaître certains modèles [START_REF] Zhang | Phase field models for biofilms. i. theory and onedimensional simulations[END_REF][START_REF] Zhang | Phase-field models for biofilms ii. 2-d numerical simulations of biofilm-flow interaction[END_REF]29] ajoutent la prise en compte des forces de pression osmotique. Les résultats présentés ici mettent en évidence, que l'accès au nutriment et les mécanismes biologiques de croissances sont également à l'origine de ces structures.

Améliorations et perspectives

Le modèle pour les biofilms présenté dans cette thèse est basé sur la théorie des mélanges décrite dans la section 1.1. Sa contribution majeure concerne la modélisation des mécanismes biologiques à l'origine de la croissance des micro-algues qui constituent le biofilm. Pour cela, un certains nombre de paramètres physiques et biologiques ont été introduits. Si certains sont connus, d'autres en revanche sont beaucoup plus empiriques. C'est pourquoi il serait intéressant de réaliser une étude de sensibilité, éventuellement sur le modèle 1D afin de réduire le coût des calculs. Celle-ci permettrait de hiérarchiser l'importance des paramètres ce qui peut permettre de mieux cibler les expérimentations biologiques à réaliser pour calibrer plus finement le modèle. 

(e) A + N + E à t = 10 j (f) A + N + E à t = 20 j (g) A + N + E à t = 30 j (h) A + N + E à t = 40 j
∂ t M + ∇ X • (MV -D M ∇ X M) = 0 (1.3.1a) ∂ t L + ∇ X • (LV -D L ∇ X L) = 0. (1.3.1b)
Le modèle considéré étant basé sur la théorie des mélanges, nous avons également la relation

M(t, X) + L(t, X) = 1 (1.3.1c)
pour tout temps t > 0 et en tout point X du domaine qui doit être vérifiée ainsi que la contrainte d'incompressibilité 

∇ X • (V -D M ∇ X M -D L ∇ X L) = 0 (1.3.1d)
-∇ X • µ(M) ∇ X V + ∇ X V T + ∇ X P = 0 (1.
v 0 (r) = C R 2 -r 2 µ max 1 (R,R M ) (r) + R 2 -R 2 M µ max + R 2 M -r 2 µ min 1 (0,R M ) (r) . ( 1 
v : C i,j-1 2 centrée en X i,j-1 2
. Puis, en utilisant la formule de Stokes les intégrales de surface faisant intervenir les vitesses sont transformées en intégrales sur les arêtes. Par exemple, considérons la première composante de l'équation de Stokes (1.3.1e), en l'intégrant sur la cellule Ω i- 1 2 ,j nous obtenons

- Ω i-1 2 ,j ∇ X • µ(M) 2∂ x u ∂ x v + ∂ y u dω + Ω i-1 2 ,j ∂ x P dω = 0.
En utilisant le théorème de Stokes nous pouvons réécrire cette équation sous la forme

- ∂Ω i-1 2 ,j µ(M) 2∂ x u ∂ x v + ∂ y u • n d ω + Ω i-1 2 ,j ∂ x P dω = 0 1. INTRODUCTION
avec n la normale externe à Ω i-1 2 ,j . Enfin nous déduisons la formulation discrète :

∆x µ i-1 2 ,j-1 2 u i-1/2,j -u i-1/2,j-1 ∆y + v i,j-1/2 -v i-1,j-1/2 ∆x -∆y µ i,j 2 u i+1/2,j -u i-1/2,j ∆x -∆x µ i-1 2 ,j+ 1 2 u i-1/2,j+1 -u i-1/2,j ∆y + v i,j+1/2 -v i-1,j+1/2 ∆x + ∆y µ i-1,j 2 u i-1/2,j -u i-3/2,j ∆x + ∆x∆y P i,j -P i-1,j ∆x = 0.
Dans cette formulation discrète la viscosité intervient entre autre pour des points situés sur les arêtes de la grille de P . Or M est localisé sur les mailles en pression. Donc pour évaluer la viscosité en ces points, nous interpolons M à ces endroits puis nous en déduisons la viscosité. donnée initiale perturbée. Dans le cas où l'on ajoute la prise en compte des bactéries, en l'état le modèle n'est pas pleinement satisfaisant une hypothèse est qu'il faudrait tenir compte de l'influence de la quantité de bactérie sur la viscosité.

P i-1,j-1 P i,j-1 P i+1,j-1 P i-1,j P i,j P i+1,j P i-1,j+1 P i,j+1 P i+1,j+1 u i-3 2 ,j-1 u i-1 2 ,j-1 u i+ 1 2 ,j-1 u i+ 3 2 ,j-1 u i-3 2 ,j u i-1 2 ,j u i+ 1 2 ,j u i+ 3 2 ,j u i-3 2 ,j+1 u i-1 2 ,j+1 u i+ 1 2 ,j+1 u i+ 3 2 ,j+1 v i-1,j-3 2 v i-1,j-1 2 v i-1,j+ 1 2 v i-1,j+ 3 2 v i,j-3 2 v i,j-1 2 v i,j+ 1 2 v i,j+ 3 2 v i+1,j-3 2 v i+1,j-1 2 v i+1,j+ 1 2 v i+1,j+
Cette étude nous a permis de mieux comprendre la rhéologie du gros intestin. Ainsi, nous pouvons maintenant définir de manière plus réaliste la vitesse du flux intestinal. Dans la section suivante, nous allons introduire un autre modèle en temps et en espace pour le gros intestin. Contrairement au modèle précédent, nous cherchons maintenant à décrire précisément les interactions entre le microbiote intestinal et le contenu luminal du gros intestin. -le transport induit par les flux post prandiaux qui seront exprimés à l'aide d'un terme d'advection, -la diffusion des composants qui prend la forme d'un flux proportionnel au gradient de la concentration du composé, -les échanges de masse entre les différents constituants et les communautés bactériennes qui s'écrivent sous la forme d'un terme source, -l'absorption ou la production d'un composant par l'hôte qui est traitée grâce à des conditions aux bords de Robin. Par conséquent, la conservation de la masse de chacun des composants, prend la forme d'une équation d'advection-réaction-diffusion de la forme générique.

∂ t c + ∇ X • (cV ) = ∇ X • (D∇ X c) + Γ . (1.4.1)
Dans cette équation c est la concentration du composant considéré, V la vitesse du flux intestinal, D le coefficient de diffusion et Γ le terme d'échange de masse. Attardons nous un instant sur les termes de transfert de masse. Ces transferts de masse sont dus aux réactions biochimiques qui font intervenir les constituants et les bactéries présentes dans le côlon. Les réactions considérées ici résument un réseau métabolique complexe : une cascade de réactions biochimiques élémentaires sont agrégées et décrites par une seule réaction. Cette réaction est écrite pour assurer une conservation de la masse des composants d'intérêt. Toutefois, certains produits secondaires de la voie métabolique peuvent être mis de côté. Afin de prendre en compte tous ces paramètres, nous utiliserons comme pour les biofilms des pseudo-coefficients stoechiométriques pour pondérer les transferts de masse ayant lieu au cours de ces réactions. Nous considérons les réactions suivantes :

-la dégradation des polysaccarides en oligo-et mono-saccharides, -l'acétogénése qui est la réduction des monosaccharides en acétate, -la méthanogénése, à savoir la synthèse de méthane à partir d'hydrogène. Puis, la cinétique de chacune de ces réactions est modélisée à l'aide de lois élémentaires, qui dépendent de la concentration des différents constituants du modèle, comme par exemple la loi élémentaire de Michaëlis-Menten (voir figure 1.3a). Et enfin, les termes d'échanges de masse sont construits en ajoutant, pour chaque réaction dans laquelle le composé intervient, le produit entre le coefficient stoechiométrique et la vitesse de reaction, avec un signe plus s'il est synthétisé et un signe moins si c'est un réactif. Nous allons maintenant décrire la modélisation des communautés bactériennes. Dans ce modèle, cinq communautés bactériennes serons représentées. Comme pour les composants du bouillon gastrique, elles sont individuellement décrites grâce à une équation d'advection-réactiondiffusion. Cependant, en plus du transport, dû au flux intestinal, les bactéries sont également capables de se déplacer par chimiotactisme. Du point de vue mathématique, cela se traduit par un terme de transport proportionnel au gradient potentiel chimiotaectique de l'attractant. Concrètement, pour une communauté bactérienne, l'équation de conservation de la masse s'écrit sous la forme générique

∂ t b + ∇ X •        bV -b k λ k ∇ X φ k        = ∇ X • (D∇ X b) + Γ ,
où b est la concentration de la communauté bactérienne, V la vitesse du flux intestinal, D le coefficient de diffusion et Γ le terme d'échange de masse. Dans cette équation, la vitesse du transport dû au chimiotactisme, est donnée par k λ k ∇ X φ k où les φ k sont les potentiels des différents attractants et les λ k des paramètres qui régulent la force de l'attraction de chacun des potentiels.

Pour finir la présentation du modèle mathématique, nous allons définir la formulation mathématique de la vitesse associée au flux intestinal, à savoir V dans les équations (1.4.1) et (1.4.1). Étant donné que le contenu du gros intestin est au repos en dehors des périodes post-prandiales, nous définissons V comme la vitesse maximale, pendant une période post-prandiale Ṽ (X) qui dépend uniquement de la position multipliée par la fonction P(t), qui vaut 1 après les repas et 0 le reste du temps. Cependant, comme nous l'avons déjà mentionné, définir de manière adéquate la vitesse, est essentiel. C'est pourquoi Ṽ est définie à partir du modèle réduit obtenu lors de l'étude du modèle de mélange pour la rhéologie du gros intestin, voir section 1.3.2.

Approche numérique et analyse des résultats

Dans cette section, nous allons décrire l'approche numérique utilisée. Puis, nous présenterons les résultats numériques obtenus.

Schéma numérique utilisé

Pour ce modèle, nous avons cherché à développer un schéma numérique, simple à implémenter et efficace. En effet, nous avons voulu vérifier si l'ensemble des modifications apportées au modèle, permet d'éviter le lessivage de la couche de mucus et des communautés bactériennes. Ainsi, nous pourrons également vérifier la capacité du modèle à décrire les interactions entre les composants du bouillon gastrique, le microbiote et l'hôte. Avant d'entrer dans les détails, faisons quelques remarques au sujet des propriétés du modèles et de leurs conséquences pour la mise en oeuvre d'un schéma. Les termes d'échange de masse sont raides et nécessitent donc un traitement spécifique afin de garantir la positivité des densités. Pour cela, une discrétisation implicite en temps, est généralement utilisée. Cependant, à cause de la non linéarité des termes sources, ce procédé est coûteux. Il nécessite par exemple, l'utilisation d'un algorithme de Newton et dans le cas présent, la jacobienne de la fonction à inverser, est presque nulle dans certaines zones, ce qui ralentit nettement la vitesse de convergence de l'algorithme. Par conséquent, nous avons opté pour une méthode semi-implicite permettant d'une part, de garantir la stabilité et d'autre part, de se ramener à la résolution d'une équation simple. Pour cela, chaque terme de transfert de masse est traité individuellement et seule une partie des termes de perte, est traitée implicitement. Afin de réduire la contrainte de stabilité, qui lie le pas de temps et le pas d'espace (CFL), nous traitons les termes de diffusion implicitement et à l'aide d'un splitting directionnel. Pour finir, les termes de transport dû au flux intestinal ou au chimiotactisme, dans le cas des communautés bactériennes, sont simplement calculés à l'aide du schéma d'upwind.

Analyse des résultats

Nous allons maintenant présenter et commenter les résultats numériques obtenus. Avant d'entrer dans les détails, précisons le contenu des figures 1.13 et 1.14. Dans les graphiques de la figure 1.13, nous représentons l'évolution au cours du temps de la masse totale de chacun des constituants du système, contenue dans le domaine de calcul. La figure 1.14, quant à elle, représente la concentration en fonction de la position de chacun des constituants.

Sur la figure 1.13, nous pouvons constater que pour chaque constituant, un pseudo état stationnaire apparaît. Cet état est caractérisé par l'apparition d'un motif périodique en temps. Ce motif, d'une période d'un jour, est dû au fait que le transit intestinal se produit après chaque repas. Lors du transit, certains constituants, comme les fibres, sont apportés et d'autres, comme le mucus, sont en partie évacués.

INTRODUCTION

L'apparition de ce pseudo état stationnaire, nous permet de constater que le modèle est cacable, après une période de transition, de préserver chacun des constituants. Cependant, pour certains des constituants, comme le mucus ou les communautés bactériennes B 1 et B 2 , le modèle a tendance à sous-estimer leur quantité. Pour d'autres constituants, comme le méthane ou B 3 , c'est le contraire. Cela est dû au fait que certains paramètres du modèle, sont mal connus et doivent être estimés plus précisément. À présent, commentons la figure 1.14 qui représente la concentration en fonction de la position de chacun des constituants à t=41 jours. Premièrement, nous pouvons constater sur la figure 1.14a que la couche de mucus reste localisée sur la paroi du côlon, ce qui est le cas physiologiquement. Nous pouvons également constater sur les figures 1.14g, 1.14h et 1.14i que les bactéries ont tendance à se positionner à l'interface entre le mucus et les nutriments. À présent, nous allons faire la synthèse des travaux réalisés au cours de cette thèse pour la modélisation du côlon et donner quelques perspectives.

Perspectives pour la modélisation du côlon

A cours de cette thèse, nous avons étudié d'une part la rhéologie du gros intestin. Ce travail a mis en évidence l'importance d'avoir une description précise, du champ de vitesse induit par le flux intestinal, afin de décrire correctement la persistance de la couche de mucus. Fort de cette 

Modèle d'Aw-Rascle avec contrainte pour le trafic routier

Dans le chapitre 5 nous nous intéressons aux modèles mathématiques pour le trafic routier et plus particulièrement à l'élaboration d'un schéma numérique "asymptotic preserving" pour le modèle d'Aw-Rascle avec contrainte. Ce modèle qui a été proposé par Aw et Rascle dans [7] en 2000 et dont l'existence de solutions faibles a été prouvée dans [10] en 2008 a marqué un tournant dans la modélisation du trafic routier. Nous proposons dans un premier temps de dresser un panorama des modèles mathématiques pour le trafic routier, puis nous présenterons plus en détail le modèle d'Aw-Rascle avec contrainte. Notamment nous décrirons les solutions du problème de Riemann associé et nous énoncerons le théorème d'existence de solution faible établi dans [10]. Enfin nous décrirons l'approche numérique élaborée dans ce cadre ce qui nous permettra ensuite de présenter les résultats numériques obtenus sur ce sujet au cours de cette thèse.

Panorama des modèles de trafic routier

Pour un panorama complet de l'historique des modèles de trafic routier on peut consulter [START_REF] Van Wageningen-Kessels | Genealogy of traffic flow models[END_REF] ou également l'introduction de la thèse de M. L. Delle Monache [36].

Les modèles de trafic routier se répartissent essentiellement en trois grandes familles : les modèles particulaires, les modèles cinétiques [1,53] dans lesquels les quantités que l'on suit sont décrites de manière continue par des densités de probabilité et les modèles macroscopiques. Notons également qu'il existe des modèles hybrides qui couplent plusieurs approches. Les modèles particulaires, aussi appelés microscopiques, s'attachent à décrire le comportement individuel de chacun des véhicules. L'idée centrale de ces modèles est que le comportement d'un véhicule dépend uniquement du véhicule qui se trouve devant lui. Nous pouvons en particulier citer les modèles du type follow-the-leader [22,37,49] qui s'inscrivent dans cette catégorie.

Les modèles macroscopiques qui décrivent le trafic routier comme un fluide, ont été introduits indépendamment par Lighthill-Whitham [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF] et Richards [START_REF] Richards | Shock waves on the highway[END_REF] dans les années 1950. Dans ces modèles, la densité de véhicules est décrite par une loi de conservation de la forme

∂ t ρ + ∂ x f (ρ) = 0
où ρ est la densité de véhicules et f le flux. Dans ces modèles, dits du premier ordre (une seule loi de conservation), le flux est une fonction de la densité de véhicules. Cette relation entre le flux et la densité de véhicules est habituellement appelée diagramme fondamental. Par exemple, le flux peut s'écrire sous la forme ρv(ρ) où v(ρ) représente la vitesse des véhicules qui est définie comme une fonction positive et décroissante de ρ : plus le trafic est dense plus les conducteurs réduisent leur vitesse. Ces modèles ont été largement étudiés. Récemment ils ont également été étendus pour tenir compte des intersections ou des rampes d'accès [25,28,44,51]. Cependant, considérer le flux uniquement comme une fonction de la densité, implique de faire un certain nombre d'hypothèses sur la forme de f . De plus ces modèles sont incapables de décrire certains comportements existants comme des véhicules roulant à faible allure sur une voie peu encombrée. Aussi, des modèles du second ordre, où la vitesse est une inconnue ont été élaborés. Dans ces modèles une seconde loi de conservation est ajoutée, afin de décrire l'évolution du flux. Le modèle est alors décrit par deux lois de conservation :

∂ t ρ + ∂ x (ρv) = 0 ∂ t (ρv) + ∂ x ρv 2 = 0
Notons que le système obtenu est celui de la dynamique des gaz sans pression. Les premiers modèles du second ordre ont été élaborés par H. J. Payne [START_REF] Payne | Freflo : A macroscopic simulation model of freeway traffic[END_REF][START_REF] Payne | Models of Freeway Traffic and Control[END_REF] dans les années 1970.

Après avoir été délaissés dans un premier temps, car ils induisaient des comportements irréalistes, comme des véhicules qui reculent [34], ils ont été réhabilités par Aw et Rascle [7] dans un modèle, que nous allons décrire plus en détail dans la sous section suivante.

Les modèles d'Aw-Rascle

Le modèle d'Aw-Rascle sans contrainte

Utiliser les lois de la dynamique des gaz pour construire un modèle pour le trafic routier implique que les véhicules sont assimilés à des particules qui interagissent dans toutes les directions, or sur une voie de circulation le comportement d'un véhicule dépend essentiellement du comportement du véhicule qui le précède. Par conséquent Aw et Rascle proposent de modifier les équations de la dynamiques des gaz afin de prendre en compte cette spécificité. Pour cela ils décrivent l'évolution de la vitesse et de la densité de véhicules par le sytème

       ∂ t ρ + ∂ x (ρv) = 0 (∂ t + v∂ x ) (v + p(ρ)) = 0
qui peut être réécrit sous la forme conservative 

∂ t ρ + ∂ x (ρv) = 0 (1.5.1a) ∂ t (ρ(v + p(ρ))) + ∂ x (ρv(v + p(ρ))) = 0, ( 1 
p(ρ) = 1 ρ - 1 ρ -γ = ρ ρ ρ -ρ γ (1.
p ε (ρ) = εp(ρ) = ε 1 ρ - 1 ρ -γ (VO1)
où ε est un paramètre strictement positif qui tend vers 0. En utilisant cette définition pour la réserve de vitesse nous obtenons la famille de système d'Aw-Rascle modifié avec changement d'échelle (soit en Anglais "Rescaled Modified Aw-Rascle system" : RMAR),

∂ t ρ ε + ∂ x (ρ ε v ε ) = 0 (1.5.3a) ∂ t (ρ ε (v ε + p ε (ρ ε ))) + ∂ x (ρ ε v ε (v ε + p ε (ρ ε ))) = 0. (1.5.3b)
En prenant la limite formelle lorsque ε → 0 + de ce système nous obtenons le système de la dynamique des gaz sans pression lorsque 

ρ ε ----→ ε→0 ρ < ρ car εp (ρ ε ) ----→ ε→0 0. Cependant,
           ∂ t ρ + ∂ x (ρv) = 0 ∂ t (ρ(v + p)) + ∂ x (ρv(v + p)) = 0 0 ρ ρ , p 0, (ρ -ρ ) p = 0 . ( 1.5.4) 
L'existence de solutions faibles pour le système (1.5.4) a été démontrée dans [10].

L'objectif de ce travail est de proposer une approche numérique efficace pour le système (1.5. 

Singularité de la réserve de vitesse

Le premier constat que nous pouvons faire au sujet du système (1.5.3) est qu'il a été construit afin que la densité des véhicules reste bornée : 0 ρ ρ par l'introduction d'une singularité en ρ . Par conséquent si à cause d'une quelconque erreur numérique la densité dépasse ρ alors nous ne pourrons plus calculer p(ρ) et donc mettre à jour les variables du système. Pour faire face à cette difficulté nous proposons de modifier la définition de la réserve de vitesse. Deux formules ont été étudiées. La première consiste à redéfinir p ε au dessus d'une densité de transition ρ ε tr = ρε par son développement limité à l'ordre 2 ; la réserve de vitesse est alors donnée par

pε (ρ) =        ε 1 ρ -1 ρ -γ , si ρ ≤ ρ ε tr , p ε (ρ ε tr ) + (p ε ) (ρ ε tr ) (ρ -ρ ε tr ) + (p ε ) (ρ ε tr ) (ρ-ρ ε tr ) 2 2 , si ρ > ρ ε tr . (VO2) Ainsi, puisque (p ε ) (ρ ε tr ) ----→ ε→0
+∞, pε explose lorsque ε → 0 pour ρ ρ . La seconde formule donnée par

p γ (ρ) = ρ ρ γ , γ > 1 (VO3)
avec γ → +∞, est inspirée de la mécanique des fluides (voir [START_REF] Lions | On a free boundary barotropic model[END_REF]). Ici aussi p γ explose lorsque γ → +∞ pour ρ ρ .

Problème de stabilité

Nous allons présenter ici les difficultés liées à une approche par un schéma numérique de type volume fini du système (1.5.1).

Pour commencer, supposons que la densité et la vitesse sont suffisamment régulières pour que nous puissions réécrire le système (1.5.1) sous la forme non conservative

∂ t ρ v + A(ρ, v)∂ x ρ v = 0, A(ρ, v) = v ρ 0 v -ρp (ρ)
.

(1.5.5)

Un rapide calcul montre alors que les valeurs propres et les vecteurs propres associés à la matrice

A (ρ, v) sont λ 1 = v -ρp (ρ) ≤ λ 2 = v r 1 = 1 -εp (ρ) , r 2 = 1 0 . ( 1.5.6) 
Réécrivons maintenant le système (1.5.1) sous la forme conservative

         ∂ t ρ + ∂ x (y -ρp(ρ)) = 0, ∂ t y + ∂ x y 2 ρ -yp(ρ) = 0.
(1.5.7) avec y = ρ (v + p(ρ)). Dans la suite nous noterons ∆t le pas de temps et pour tout n ∈ N nous le temps t n est définit part t n = n∆t. La discrétisation en espace est donnée par les cellules

C i = x i-1 2 , x i+ 1 2
, i ∈ Z (en négligeant pour l'instant les bords) avec x i+ 1 2 = i + 1 2 ∆x. Considérons maintenant un schéma numérique de type volume fini et notons U n i = ρ n i , y n i la solution approchée au temps t n et sur la cellule C i . Le schéma s'écrit alors sous la forme générique

U n+1 i = U n i - ∆t ∆x F n i+1/2 -F n i-1/2
qui imite sous forme discrète ce que nous obtiendrions en intégrant (1.5.7) sur t n , t n+1 × C i . Pour les schémas classiques, le flux numérique à l'interface x i+ 1 2 est une fonction qui dépend uniquement des cellules voisines :

F n i+1/2 = F(U n i+1 , U n i ).
La stabilité de ce type de schémas numériques, voir par exemple [16,Sect. 2.3.3] ou [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF], repose sur une condition dite CFL, (nommée en l'honneur des mathématiciens Richard Courant, Kurt Friedrichs, et Hans Lewy) de la forme , t n+1 ) sur l'interface x i+ 1 2 au temps t n+1 = (n + 1) ∆t dépende uniquement de l'état sur les cellules C i et C i+1 au temps t n et peut être obtenu par la résolution du problème de Riemann associé ayant pour donnée initiale U n i et U n i+1 .

∆t 1 2 ∆x max (|λ 1 | , |λ 2 |) , ( 1 

INTRODUCTION

Dans le cas où nous considérons la réserve de vitesse donnée par la formule (VO1) lors d'une congestion ρ ε → ρ , mais nous nous attendons à ce que p ε (ρ ε ) reste borné et admette une limite lorsque ε → 0. Nous en déduisons alors l'ansatz

ρ ε = ρ -O ε→0 ε 1/γ .
Par conséquent, étant donné que v ε doit rester borné lorsque ε tend vers 0, le comportement des vitesses caractéristiques du système est donné par 

max (|λ 1 | , |λ 2 |) = O ε→0 ε -1/γ .

Régions invariantes

Les invariants de Riemann pour le système (1.5.1) (voir [7]) sont

z 1 = v + p(ρ), z 2 = v.
(1.5.9)

Par conséquent le domaine

(z 1 , z 2 ) ∈ R 2 , avec z 1 ∈ [v m + p (ρ m ) , v M + p (ρ M )] , z 2 ∈ [v m , v M ]
est une zone d'invariance pour le système (1.5.1) c'est-à-dire que si les données initiales sont dans un tel domaine alors les solutions doivent également être contenues dans ce même domaine. Ces domaines n'étant pas convexes pour les variables conservatives ρ et y = ρ (v + p(ρ)) cela entraine des difficultés numériques. En effet, considérons que l'on définisse les flux à l'aide du schéma de Godunov par exemple. Celui-ci se décompose en deux étapes. En omettant la condition CFL, la première étape consiste à résoudre les problèmes de Riemann associés aux données initiales

U n i , U n i+1 aux interfaces x i+ 1 2
. Puis, la solution au temps t n+1 est obtenue en projetant sur les cellules C i . Or comme les zones d'invariance sont non convexes elles ne sont pas préservées par l'étape de projection (pour plus de détails sur le rôle de la convexité dans cette étape consulter [START_REF] Roux | Stability for some equations of gas dynamics[END_REF] pour la dynamique des gaz, et plus généralement le livre [16,Prop. 2.11]). En particulier, un exemple est donné dans C. Chalons et P. Goatin dans [20] pour expliquer que le schéma de Godunov est incapable de satisfaire le principe du maximum pour la vitesse dans cas du système d'Aw-Rascle (1.5.1). Pour résoudre cette difficulté, il est proposé dans [20] d'utiliser un schéma hybride, dans lequel les ondes de shock et de raréfaction sont calculées à l'aide de Godunov et les discontinuités de contact à l'aide du schéma de Glimm. L'idée est d'utiliser un échantillonnage aléatoire pour la reconstruction de la solution et ainsi préserver les zones d'invariance malgré le défaut de convexité (au lieu de la moyenne des solutions au problème de Riemann dans le cas du schéma de Godunov). Cette approche hybride est bien adaptée dans le cas de la réserve de vitesse utilisée dans [21,20] mais qui diffère de celle considérée ici. Dans notre cas, nous utiliserons le schéma de Glimm complet, c'est à dire que toutes ondes seront calculées puis échantillonnées afin de préserver les zones d'invariance.

Présentation du schéma de Glimm

Considérons une loi de conservation de la forme ∂ t u+∂ x f (u) = 0 dont nous cherchons à approcher numériquement la solution. Soit 

C i = x i-1 2 , x i+ 1 2 , i ∈ Z une discrétisation
a n = m k=0 i k 2 -(k+1) où n = m k=0 i k 2 k avec i k ∈ {0, 1}
désigne le développement binaire de l'entier n. Les atouts majeurs de cette approche numérique sont d'une part, la préservation des zones d'invariance et d'autre part le calcul précis des chocs qui ne sont pas lissés car la solution est échantillonnée et non pas moyénnée comme dans la plupart des schémas. Par ailleurs, pour le modèle d'Aw-Rascle (1.5.1), les variables conservatives sont la densité ρ et le produit entre la réserve de vitesse et la densité y = ρ (v + p(ρ)). Or en pratique les variables qui nous intéressent sont la densité ρ et la vitesse v. Avec un schéma classique de type volumes finis ou différences finies, le calcul de la vitesse à partir des variables conservatives entraine des instabilités, en particulier à proximité des zones où la densité s'annule. Au contraire, le schéma de Glimm permet un calcul direct de la vitesse, ce qui est un avantage indéniable dans ce contexte. Notons que ce schéma est difficilement extensible pour des problèmes en 2 ou 3 dimensions. De plus, pour pouvoir appliquer l'algorithme, il faut connaître les solutions aux problèmes de Riemann associés au système considéré qui peuvent être compliquées à calculer dans certains cas.

Comparaison entre les différentes approches numériques

À présent, nous allons résumer les différentes approches testées puis nous les commenterons. Enfin, nous donnerons des perspectives. Dans le système d'Aw-Rascle avec contrainte (1.5.4) le multiplicateur de Lagrange p associé à la contrainte ρ ρ est une inconnue. Par conséquent, numériquement il n'est pas possible d'approcher directement la solution de ce système. Néanmoins, nous pouvons construire des schémas pour le système d'Aw-Rascle modifié avec changement d'échelle (1.5.3) puis, réaliser des simulations numériques pour des petites valeurs de du paramètre ε afin d'approcher certaines des solutions du système limite (il n'y a pas forcément unicité de la solution). Nous avons utilisé cette approche avec trois modèles pour la réserve de vitesse, à savoir (VO1), (VO2) et (VO3). Cependant pour de petites valeurs de ε pour (VO1) et (VO2) ou de grandes valeurs de γ pour (VO3), la contrainte de stabilité (CFL) devient très contraignante et ce qui rallonge le temps de calcul. Pour pallier à ce problème nous avons élaboré une approche semi-implicite qui permet d'alléger la contrainte de stabilité.

INTRODUCTION

Pour les trois modèles de réserve de vitesse nous avons testé l'approche explicite (schéma de Glimm) et l'approche semi-implicite dans plusieurs situations représentatives, telles que la décongestion (formation d'une zone de vide) et la congestion (formation d'un bouchon). Conformément à nos attentes, l'approche semi-implicite permet un gain sur le pas de temps. Les résultats obtenus ont également mis en évidence des différences entre les modèles. C'est à dire pour les valeurs intermédiaires de ε lorsque ε tend vers 0 pour (VO1) et (VO2) ou de γ lorsque γ tend vers l'infini pour (VO3).

Exemple de décongestion pour la pression (VO2)

La décongestion correspond à la situation où les véhicules de devant se déplacent plus vite conduisant alors à la formation d'une zone à densité nulle. Pour cela nous considérerons la donnée initiale suivante :

v 0 (x) = 1, si x ∈ [0, 0.5[, 2, si x ∈ [0.5, 1], ρ 0 (x) = 0.95. (1.5.10)
La solution attendue pour le système (1.5.4) à T = 0.2 est donnée par

ρ(x, T ) =          0.95, si x ∈ [0, 0.7[, 0, si x ∈ [0.7, 0.9[, 0.95, si x ∈ [0.9, 1] v(x, T ) = 1, si x ∈ [0, 0.7[, 2, si x ∈ [0.9, 1] .
Sur la figure 1.15, nous représentons la décongestion pour le modèle avec la réserve de vitesse (VO2) et différentes valeurs des paramètres γ et ε. Lorsque ε → 0 nous constatons que la solution approchée converge vers la solution attendue. Cependant pour obtenir une solution satisfaisante il faut utiliser de très petites valeurs de ε, à savoir ε de l'ordre de 10 -5 pour γ = 2 ou de l'ordre de 10 -7 pour γ = 3. 

Exemple de congestion pour la pression (VO3)

La congestion correspond à la situation inverse à la décongestion, c'est-à-dire lorsque les véhicules de derrière se déplacent plus vite ce qui entraine la formation d'un bouchon. Une congestion est caractérisée par une zone à densité maximale ρ ∼ ρ . Pour illustrer les résultats obtenus dans cette situation nous prenons ρ = 1 et nous considérons la donnée initiale

v 0 (x) = 2, si x ∈ [0, 0.5[, 1, si x ∈ [0.5, 1], ρ 0 (x) = 0.95 (1.5.11)
dont une solution possible pour le système (1.5.4) est donnée par, 

ρ(x, T ) =          0.95, si x ∈ [0, 0.5 -18t[, 1, si x ∈ [0.5 -18t, 0.5 + t[, 0.95, si x ∈ [0.5 + t, 1] v(x, T ) = 2, si x ∈ [0, 0.5 -18t[, 1, si x ∈ [0.5 -18t, 1] . (1.

Perspectives

La continuité de ce travail consisterait à étudier au niveau numérique le modèle d'Aw-Rascle multi-voies avec contrainte. En effet dans [9] F. Berthelin et D. Broizat ont proposé un modèle qui permet de prendre en compte une modification du nombre de voie de circulations et le changement de vitesse qu'il induit. Afin d'adapter l'approche mise en oeuvre pour le modèle d'Aw-Rascle avec contrainte il faudrait déterminer les solutions aux problèmes de Riemann puis adapter la méthode numérique semi-implicite.

Organisation du manuscrit

Ce manuscrit se découpe en deux grandes parties. Dans la première, nous traitons des modèles mathématiques pour la biologie. Nous étudierons en premier des modèles issus de la théorie des 1. INTRODUCTION mélanges. Plus précisément, le premier chapitre est consacré au modèle pour les biofilms de microalgues. Dans cette section, après avoir présenté le modèle nous décrivons précisément comment sont construits les termes d'échanges de masse à partir des lois cinétiques présentées dans la section 1.2.3, puis nous présentons les résultats numériques et leurs interprétations biologiques. Le second chapitre chapitre est une version étendue de l'article sur le mucus intestinal. Nous y présentons en détail le modèle ainsi que les méthodes numériques mises en oeuvre, complétés par les résultats des simulations numériques. Le troisième chapitre est dédié à l'élaboration et à l'étude d'un modèle d'équations aux dérivées partielles décrivant les interactions entre le microbiote intestinal, le bouillon gastrique et l'hôte. Une fois le modèle établi, il est testé numériquement puis les résultats sont commentés. La seconde partie de ce manuscrit est dédiée à l'élaboration de schémas numériques "asymptotic preserving" pour le modèle d'Aw-Rascle avec contrainte pour le trafic routier. Nous y présentons une approche basée sur un splitting avec deux lois de pression différentes. A time-space model for the growth of micro-algae biofilms producing lipids
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TIME-SPACE MODEL OF MICRO-ALGAE BIOFILMS

Abstract: We present in this paper a spacial model describing the growth of a photosynthetic microalgae biofilm . In this model we consider the photosynthesis, the extracellular matrix excretion, and the mortality. These mechanisms are described precisely using kinetic laws that take into account some saturation effects which limit the reaction rates and involve different components that we treat individually. In particular, to obtain a more detailed description of the growth of microalgae, we consider separately the lipids they contain and the functional part of microalgae (proteins, RNA, etc ...), the latter playing a leading role in photosynthesis. We also consider the components dissolved in the liquid phase as the CO 2 . The model is based on the mixture theory and the behaviour of each component is described on the one hand by the mass conservation, which takes into account the biological features of the system and on the other hand by the conservation of momentum which describes the physical properties of the components. We show that the model allows to estimate the productivity of the biofilm and that the consideration of dissolved components as nutrients leads to the formation of characteristic mushrooms shaped structures. 

Introduction

The term "biofilm" was introduced by Costerton et al. [21] in 1978 to design a mixture of organisms, embedded in an extra-cellular matrix and attached to a surface in contact with water. People agree now that most of the microbial life develops as a biofilm. The formation of a biofilm follows well-identified steps : at the beginning, organisms colonise the surface, then the colony grows and organises within an extra-cellular matrix and finally some of the organisms are dispersed in order to colonise another location of the surface. The extra-cellular matrix has a particular role in this organisation, since it acts as a barrier and provides a protection for the whole colony. However, the physical structure of a biofilm, which has a gel-like structure, is still unclear : in the same biofilm, some parts have a viscous behaviour, whereas other parts have a visco-elastic structure [27]. Moreover, even if the biofilm contains liquid inside, it is mainly in a solid phase. During the last decades, the study of biofilm has become an important field of research, since they appear commonly in various domains, such as medical infections, reprocessing of waste or production of clean energy. Although biofilms are almost always detrimental in the medical or industrial fields [33], it is a credible alternative for the production of clean energy, which is one of the biggest challenge of our century. Indeed, there exist a wide variety of micro-algae species that are able to develop as a biofilm and to produce chemical components for green oil production. The main interest of a biofilm culture, in comparison with usual cultures of micro-algae in suspension, is the reduction of the harvesting cost. Indeed, it is estimated that the biomass obtained from biofilm contains between 80% and 90% of water instead of more than 99% for cultures in suspension [30]. Moreover, for a classical micro-algae culture in suspension, several steps are needed to remove the water and to concentrate the products, which is both time consuming and expensive, see [28]. On the opposite, for a biofilm system, micro-algae are stuck on a surface and are harvested by scraping. Since the comprehension of the development of biofilms is an important topic of research, several types of mathematical models have already been proposed. A first kind of models are based on ordinary differential equations (ODE) [49,35] and take into account the kinetic reactions involved in the biofilm growth. In these models, the biological mechanisms are well detailed by considering many components and using a detailed modelling of the mass transfers between components. However, there is no description of the spatial behavior of the biofilm. Another type of models are multidimensional and multi-species cell centered models [48]. The solutions of these discrete models are obtained by individual based approaches or cellular automata, as in [31]. In cell centered models also, the biology is precisely described with numerous well detailed mechanisms. However, despite the recent advances in parallel computing that enable to simulate the evolution of a few hundreds of cells, this approach remains quite expensive from a computational perspective. Moreover, the description of the physical mechanics is not completely satisfying. Thus, hybrid models, coupling some cell-centred approaches with partial differential equations, have been proposed to improve this point [40,2]. At the same time, fully continuous models have also been developed. In such a model, the biofilm is described as a viscoelastic material that expands in response to the pressure induced by mass exchanges between the biofilm and the surrounding liquid. Two classes of partial differential equations (PDE) models can be distinguished : in the first kind of PDE models, the biofilm and the liquid are separated by a physical interface, the evolution of which is computed by moving front techniques [3]. On the opposite, other models are based on the mixture theory and do not treat the evolution of an interface. Mixture models have been successfully used for the description of several biological systems and, in particular, for modelling biofilms [3,34,22,18,51,52,19,16,17]. In this article, we focus on the mathematical modelling of micro-algae biofilms with a special attention to the biological mechanisms involved in its growth. To do so, we improve and adapt the previous mixture model for biofilms of cyanobacteria in a fountain, proposed by C. Di Russo et al in [16,17]. Note that, from the analytical perspective, the existence of solutions for such mixture models has been established very recently and only for some simplified models [12].

Following [16], the model is based on the mixture theory that takes into account the fact that several components may be present locally. In our model, the components under consideration are the micro-algae, the extra-cellular matrix and the liquid, on the one side, and some dissolved components, such as carbon dioxide, oxygen and substrate, on the other side. In addition, to get a more accurate description of the micro-algae behaviour, we consider separately the pool of carbon storage, mainly made of sugars and lipids, and the functional part of the micro-algae, composed of proteins, RNA, etc... Therefore, the behaviour of each of the seven components considered in the model is described by two conservation laws : the mass balance equation, accounting for the mass transfers between the different components, which gives the evolution of the density of the component and the force balance equation, which gives the evolution of the momentum and which contains the physical properties of the phase. The model is supplemented by an incompressibility constraint, obtained from the total mass conservation. This constraint is expressed on the mean hydrodynamic velocity and leads to an hydrostatic pressure term in the force balance equations of the model. As in [16,17], we keep the inertial terms in the momentum equations to guarantee the hyperbolicity of the system and the finite speed of propagation of the front.

However, the adaptation of the model in [16] to the present context imposes several improvements : first, we consider a larger number of components in this article and therefore we need to work with more velocities. Moreover, we take into account in this article some components dissolved in the water, for which we add a diffusion term in the mass balance equations, leading to reaction-advection-diffusion equations. However, the main improvement is the fine description of the mass transfers between components, focusing on the biological mechanisms that drive the development of the biofilm, namely photosynthesis, respiration , functional biomass synthesis, extra-cellular matrix excretion and micro-algae death. To do so, all these mechanisms are expressed under the form of chemical reactions and the kinetic of these reactions is carefully studied. Therefore, to express the reaction rates, we need to identify clearly the influence of each of the components of the model on the reaction under consideration. Some inhibiting factors or some threshold effects are consequently described with kinetic laws, such as Monod [37] law or Haldane law [5]. In particular, we use Droop model [23] in order to take into account, the activation threshold and the saturation effect of an internal ratio, for the photosynthesis reaction rate.

Finally, combining all this information, we are able to define in an appropriate way the source terms of the mass balance equations. Note that this fine description brings us to consider an incompressibility constraint with a non zero right-hand side, unlike in [16].

Once the model is established, we propose a numerical scheme in order to perform some accurate numerical simulations, using some finite differences scheme. The basis of the scheme relies on what has been done in [16], that is to say we compute the hyperbolic part of the problem with a robust Riemann solver based on a relaxation scheme. The same difficulties as in [16] have to be faced : first, in some regions, some phases may vanish. Unlike in the gas theory, where we can work in absence of vacuum, the situation when one phase or several phases vanish is relevant in a biological context. In such a case, the computation of the velocities has to be done carefully, using an implicit discretisation in time for the momentum equations. Another common difficulty between the two works is the computation of the pressure, linked to the treatment of the incompressibility constraint. As in [16], we use a fractional step approach, based on Chorin-Temam projection method [46,15], adapted to the particular incompressibility constraint we deal with. However, another difficulty arises in our case : the source terms appearing in the mass balance equations, built from the kinetic laws, may be stiff and lead to numerical instabilities. We therefore use a partially implicit time discretisation for some of the components in the source terms, which ensures that all the densities remain positive. The paper is organised as follows : in the first section, we present the components considered in the mathematical model and we detail the biological mechanisms, expressing them under the form of chemical reactions involving the components of the model. In a second section, we describe the equations that compose the model, namely the mass balance equations and the force balance equations. A subsection is devoted to the expression of the source terms for the mass balances equations, based on the previously mentioned chemical reactions. To do so, we need to define precisely in a third subsection the reaction rates, taking into account all the factors that may favour or inhibit the reactions. Finally, in a last subsection, we give an estimate of all the parameters included in the equations of the model. Then, the third section is dedicated to the description of the numerical scheme that we use to obtain the numerical simulations presented in the following section. We display some numerical results in the one-dimensional case and the two-dimensional case, investigating the influence of several parameters on the model. A quick conclusion and perspectives are given in the last section.

Description of the biological system under consideration

Since the scope of the model is to describe precisely the production of lipids by the micro-algae within the framework of biofilms, we need to consider several mechanisms. In particular, we will study in details the reactions that drive the growth of the biofilm and the production of extra-cellular matrix (ECM). This section is dedicated first to the presentation of the components that are described in our model. Then, we will detail the mechanisms that we consider to build the model and finally we will explain how these mechanisms are taken into account under the form of chemical reactions.

Considered components in the mathematical model

In this subsection, we aim at giving the list of the components, the volume fraction of which will be quantified by the mathematical model, that is to say mainly . the micro-algae, the extra-cellular matrix, the liquid and the constituents dissolved in the liquid phase. In a biofilm, the micro algae are embedded within a self produced extra-cellular matrix. The micro-algae and the extra-cellular matrix are both organic compounds but they have some very different roles in the biofilm formation : the micro-algae are the living part of the biofilm whereas the extra-cellular matrix is an inert component. Indeed, the extra-cellular matrix is made of dead cells and extra-polymeric substance released by micro-algae such as polysaccharides and small quantities of proteins. The leading mechanism for micro-algae growth is the photosynthesis, which takes place in organelles called chloroplasts, a part of the functional biomass. In order to have a better description of the photosynthesis, we track the evolution of the functional biomass present in micro-algae. Therefore, instead of considering micro-algae as a whole, we will consider separately the functional biomass and the pool of carbon storage, following [10,36,11]. On the one hand, the functional biomass gathers the biosynthetic apparatus such as organelles, proteins, nucleic acids and structural material. The organic components can be identified by the presence of nitrogen atoms in the molecules. For example, proteins are made of amino-acids that are basically a long carbon chain with two functional groups: an amine group (-N H 2 ) and a carboxylic acid group (-COOH). On the other hand, the pool of carbon storage is defined as the micro-algae without the functional part and is mainly made of sugar, lipids and carbohydrates. Consequently, the mathematical model under consideration contains four main constituents, that is to say : the pool of carbon storage denoted by A, the functional biomass denoted by N, the extra-cellular matrix denoted by E and the liquid phase denoted by L. Note that the two elements A and N form the micro-algae, that may be denoted by M when necessary. We also consider three main components dissolved in the liquid phase which play an active role in the biofilm growth an the extra-cellular matrix production : the carbon dioxide denoted by C, the oxygen denoted by O and the substrate (mainly nitrogen) denoted by S. Before going further, let us detail the definition of A, N and E. Micro-algae are mostly made of water : we consider that 90% of their mass is water. So the components A and N represent the pool of carbon storage and the functional biomass within the associated liquid present inside the cellular membrane of the micro-algae. For exemple the pool of carbon storage gathers sugars, lipids and carbohydrates with a part of the internal water of the micro-algae. It is assumed that water inside micro-algae is proportionally divided into A and N according to their mass. Similarly the extra-cellular matrix is a tangle of polymers soaked in water so E denotes the ECM with internal water. Observe that liquid phase L represents the water outside of the biofilm and should not be confused with the water trapped into the biofilm. Finally, let us notice that the effect of the light intensity is of course of great importance in order to model photosynthesis; in the following, the light intensity is denoted by I.

Preponderant biological mechanisms

Micro-algae growth Now, let us describe what are the main mechanisms that occur during the formation of microalgae biofilms. The leading mechanism responsible for the biofilm development is the photosynthesis, that is to say the absorption of the carbon dioxide dissolved in water using the energy of light. More precisely, during the photosynthesis process, the micro-algae consume carbon dioxide and water, release oxygen and produce glucose in order to gain energy. From the chemical point of view, this reaction can be summarised under the following form :

6CO 2 + 6H 2 O +Light ----------→ C 6 H 12 O 6 + 6O 2 .
(2.2.1)

The inorganic carbon uptake depends on many factors and we summarise in what follows the overriding phenomena that occur during the photosynthesis. First, the photosynthesis rate increases with the amount of reactants (carbon dioxide and water), although several studies, see [32] for example, highlight that this rate saturates when the carbon dioxide concentration exceeds a certain value. Then, the photosynthesis rate also grows with the light intensity up to a threshold, above which it decreases due to photo-inhibition [25,39,9]; since the biofilm develops during several days, it also benefits from a periodical enlightment, following the day and night cycle. Another inhibiting factor for the photosynthesis is the oxygen concentration [20,1]. Finally, as explained in the previous subsection, photosynthesis happens within the functional biomass and, therefore, the quota of functional biomass present in the micro-algae will affect the photosynthesis rate. Moreover, when the micro-algae are not illuminated, they use another source of energy provided by the respiration. Basically, it is the reverse of the photosynthesis : the cells use the oxygen dissolved in water to oxidise the glucose contained in the pool of carbon storage of micro-algae. During this process, carbon dioxide and water are released. From the chemical point of view, this mechanism is the reverse reaction of equation (2.2.1) :

C 6 H 12 O 6 + 6O 2 ----------→ 6CO 2 + 6H 2 O. (2.2.2)
Finally, since we quantify the production of functional biomass, we consider that this process consumes the glucose contained inside micro-algae and the nitrate dissolved in the water.

Extra cellular matrix formation

Let us describe the different mechanisms that lead to the formation of extra-cellular matrix, which is composed both of dead cells and extra-polymeric substance (EPS) released by micro-algae.

First, part of the extra-cellular matrix is composed of EPS excreted by the micro-algae. During the photosynthesis process, when micro-algae are illuminated in the presence of carbon dioxide, they store carbon under the form of glucose. Then, in the presence of nitrogen, they produce functional biomass and divide. However, if no nitrogen is available and the pool of carbon storage is full, micro-algae start to release polysaccharides, but also some parts of the functional biomass, composed of proteins.

The other mechanism which produces extra-cellular matrix is the death of micro-algae which occurs in absence of light and nutrients. Without any experimental knowledge of factors inducing micro-algae death, we assume that it depends exclusively on the dissolved oxygen concentration, that is to say the micro-algae die when the oxygen concentration decreases. On the opposite, the dissolved oxygen concentration can exceed more than three times the oxygen saturation in liquid at equilibrium, due to photosynthesis. In such a case, the medium is unbalanced which also causes the death of micro-algae. In practice, when the micro-algae die, the functional biomass and the pool of carbon storage contained in the cells are released and become entangled within the surrounding extra-cellular matrix.

Representations of the biological mechanisms under the form of chemical reactions

The aim of this subsection is to give a schematic representation of five of the the mechanisms considered in sections 2.2.2 and 2.2.2 under the form of chemical reactions, involving the components evocated in section 2.2.1. More precisely, we restrict ourselves to the description of photosyntesis, respiration, functional biomass synthesis, EPS excretion and micro-algae death.

All these chemical reactions depend on the stoichiometry and the reaction rates, also called speeds of reaction.

The stoichiometric coefficient of a chemical reaction reflects that the synthesis of one unit of product may consume several units of reactants. However, some components of the model stand for several chemical elements and some reactions are not perfectly balanced. As a consequence, we would rather use pseudo-stoichiometric coefficients to take into account losses that may occur during the reactions. In the following, the pseudo-stoichiometric coefficients will be denoted by

η φ P (resp. η φ R , η φ N , η φ E and η φ D
) for the Photosynthesis (resp. Respiration, functional biomass synthesis, EPS excretion and micro-algae Death) with φ ∈ {A, N , E, L, S, C, O} . Note that the values of all these parameters will be estimated later on in table 2.1. Moreover, the reaction rate describes the number of units of the main product synthetised by unit of time. This function depends on several parameters, in particular the concentrations of reactants. In the following, we denote by ϕ P (resp. ϕ R , ϕ N , ϕ E , ϕ D ) the reaction rate for the photosynthesis (resp. respiration, functional biomass synthesis, EPS excretion and micro-algae death) and, in the following subsections, we will make precise for each reaction with which component we normalise the reaction rate. All these reaction rates will be modeled in details as source terms of the mass balance equations later on in section 2.3.2.

Photosynthesis

As described in section 2.2.2, during the photosynthesis, the micro-algae assimilate the carbon dioxide contained in the liquid phase thanks to the light. More precisely, according to equation (2.2.1), in the presence of light, micro-algae consume carbon dioxide and liquid to produce sugar and reject oxygen. In terms of the components of section 2.2.1, photosynthesis consumes C and L to produce A and O. Therefore, the schematic representation of photosynthesis is

η C P C + η L P L ϕ P ----------→ A + η O P O, (2.2.3)
where ϕ P is the reaction rate of photosynthesis normalised with respect to the pool of carbon storage A and η φ P for φ = C, L, O are the pseudo-stoichiometric coefficients of photosynthesis.

Respiration

In absence of light, respiration provides energy to the micro-algae cells by breaking large molecules, such as glucose, contained in the pool of carbon storage into smaller ones. Respiration is the reverse of photosynthesis, that is to say the micro-algae consume sugar and oxygen dissolved in the liquid and release carbon dioxide and water in order to produce energy. It can therefore be written under the following form :

A + η O R O ϕ R ----------→ η C R C + η L R L, (2.2.4)
where ϕ R is the reaction rate of respiration normalised with respect to A and η φ R for φ = C, L, O are the pseudo-stoichiometric coefficients of respiration.

Functional biomass synthesis

The functional biomass is composed of nitrogen embedded into long carbon chains. Carbon chains are provided by the pool of carbon storage A, whereas nitrogen comes from the substrate S. Therefore, the reaction is represented by

η A N A + η S N S ϕ N ----------→ N, (2.2.5)
where ϕ N is the reaction rate, normalised by the functional biomass N and η A N and η S N are the pseudo-stoichiometric coefficients for A and S of the synthesis of functional biomass.

Extra-polymeric substance (EPS) excretion

As explained in section 2.2.1, the extra-cellular matrix E constitutes a fundamental component of the biofilm and is mainly made of polysaccharides, that is to say monosaccharides bound together, and of a few proteins. The polysaccharides released by micro-algae come from the pool of carbon storage A, whereas the proteins are produced by the functional biomass N. Therefore the EPS (extra-polymeric substrate) excretion is divided into two reactions :

A ϕ A E ----------→ E, (2.2.6a) N ϕ N E ----------→ E, (2.2 

.6b)

where ϕ A E (resp. ϕ N E ) is the reaction rate for the excretion of polysaccharides (resp. of functional biomass).

Micro-algae death

Due to environmental factors, micro-algae may die and the content of the cells goes into the extra-cellular matrix. Consequently, the death can be represented by two reactions, one for the pool of carbon storage and the other one for the functional biomass, namely :

A ϕ A D ----------→ E, (2.2.7a) N ϕ N D ----------→ E, (2.2.7b)
where ϕ A D and ϕ N D are the two reaction rates.

Description of the mathematical model

In this section, we introduce a mathematical model to describe the formation and the growth of a biofilm of micro-algae producing lipids. We aim at taking into account all the phenomena mentioned in the previous section. To do so and to avoid describing with a physical interface, we use the mixture theory framework to build our model, following what is done in [16]. This model is composed of a mass balance equation for each component coupled with force balance equations in order to compute the velocities contained in the mass balance equations. Since the mass balance equations are written in terms of volume fractions, the model includes a volume constaint, which can be expressed equivalently as an incompressibility constraint, in the spirit of Navier-Stokes incompressibility constraint. Notice that, since we are dealing with many chemical reactions, the expression of the source terms for the mass balance equations are complex; some details on these source terms will be given at section 2.3.2.

Mass balance equations

As mentioned in section 2.2.1, we split the components considered in this model in two parts : the ones that constitute the biofilm and the liquid from one side, an the ones dissolved in the liquid from the other side.

In the following, we denote by t 0 the time variable and X ∈ Ω the position with Ω the spatial domain under consideration which may be a subset of R, R 2 or R 3 .

Mass balance equations for the biofilm and the liquid

Let us introduce some notations : for a component, we denote by φ its volume fraction, by ρ φ the volumetric mass density, by v φ its velocity and by Γ φ the source term of the mass balance equation describing the evolution of its volume fraction. In particular, we will denote by A (resp.

N , E, L) the volume fraction of the pool of carbon storage A (resp. of the functional biomass N, the extra-cellular matrix E and the liquid L), namely the volume occupied by the component in an elementary volume V divided by the volume of V.

Remark that the pool of carbon storage A and the functional biomass N are both parts of microalgae; therefore, we will use for these two elements the same density, denoted by ρ M and the same velocity called v M , where M stands for the whole micro-algae. By a balance of mass in the elementary volume V, we find that the evolution with respect to time of the mass of one of the components verifies

d dt V ρ φ φ dV = - ∂V ρ φ φv φ • ndσ + V Γ φ dV ,
where ∂V is the boundary of V and n its unitary external normal. We can thus deduce the following mass balance equation :

∂ t ρ φ φ + ∇ X • ρ φ φv φ = Γ φ .
Assuming that this component is incompressible, that is to say that ρ φ is constant in time and space, we finally obtain the following equality :

∂ t φ + ∇ X • φv φ = Γ φ ρ φ .
Thus, for φ = A, N , E and L, the corresponding mass balance equations write as follows :

∂ t A + ∇ X • (Av M ) = Γ A ρ M (2.3.1a) ∂ t N + ∇ X • (N v M ) = Γ N ρ M (2.3.1b) ∂ t E + ∇ X • (Ev E ) = Γ E ρ E (2.3.1c) ∂ t L + ∇ X • (Lv L ) = Γ L ρ L . (2.3.1d)

Incompressibility constraint

Since the other components of the system possess a negligible volume, for any time t 0 and position X ∈ Ω, the volume fractions A, N , E and L satisfy the volume condition :

A(t, X) + N (t, X) + E(t, X) + L(t, X) = 1. (2.3.2)
Consequently, by summing the four equations equation (2.3.1) and using condition (2.3.2), we obtain an incompressibility constraint :

∇ X • ((A + N )v M + Ev E + Lv L ) = Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L . ( 2.3.3) 
Let us notice that we can work with the two equations (2.3.2) and (2.3.3) in the following, omitting therefore the mass balance equation for the liquid (2.3.1d).

Mass balance equations for the components dissolved in the liquid

Let us now consider the components dissolved in the liquid phase, that is to say the substrate S, the carbon dioxide C and the oxygen O . Since their volume fraction is negligible, we consider their mass fraction, that is to say the mass contained in the liquid divided by the mass of liquid. Their volumetric mass density is the same as the liquid density ρ L and their velocity is driven by the velocity of the liquid phase v L . Moreover, in addition to the convection phenomenon, we take into account the diffusion and we add a diffusive term in the mass balance equations. Following [8,7] we assume that the diffusion fallows the Fick's law, namely the diffusive flux is assumed to be proportional to the concentration gradient of dissolved component in the liquid. The concentration of dissolved components in the liquid phase contained in the elementary volume V is φρ L for φ = S, C and O. So the integral form of the diffusion terms write as

∂V Lδ φ ∇ X (φρ L ) dσ = V ∇ X • Lδ φ ∇ X (φρ L ) dV
where δ φ are the diffusion coefficients. Therefore the local formulation of the mass balance equation for the components dissolved in the liquid phase write as

∂ t (SL) + ∇ X • (SLv L ) -∇ X • (δ S L∇ X (S)) = Γ S ρ L (2.3.4a) ∂ t (CL) + ∇ X • (CLv L ) -∇ X • (δ C L∇ X (C)) = Γ C ρ L (2.3.4b) ∂ t (OL) + ∇ X • (OLv L ) -∇ X • (δ O L∇ X (O)) = Γ O ρ L . (2.3.4c)

Source terms and reaction rates

In this section, we will make precise the form of the source terms that appear on the right-hand side of equations (2.3.1) and (2.3.4) on behalf of the schematic representations of the mechanisms presented in section 2.2.3. More precisely, for each component, we make the list of the reactions where this element is involved and we add the product of the pseudo-stoichiometric coefficient and of the reaction rate in the source term as a positive term (resp. negative term) if it is a product (resp. reactant) of the reaction. We will detail this expression for each component in the following subsection and then we will give the expressions of the reaction rates that may depend on several factors.

Source terms

The pool of carbon storage A is a product of the photosynthesis, see section 2.2. . By combining all these terms, we obtain that the source term for A can be written as : 

Γ A = ϕ P -ϕ R -η A N ϕ N -ϕ A E -ϕ A D . ( 2 
Γ N = ϕ N -ϕ N E -ϕ N D . (2.3.5b)
The extra-cellular matrix E is only produced and comes from two mechanisms : the EPS excretion and the mortality, which both can use either the pool of carbon storage or the functional biomass as a reactant. In all cases, according to equations (2.2.6a), (2.2.6b), (2.2.7a) and (2.2.7b), the pseudo stoichiometric coefficients are equal to 1 and we obtain the following source term :

Γ E = ϕ A E + ϕ N E + ϕ A D + ϕ N D . (2.3.5c)
As for the water, which is the main component of the liquid phase L, it is a reactant in the photosynthesis with rate η L P ϕ P and a product in the respiration with rate rate η L R ϕ R , see equation (2.2.3) and equation (2.2.4), which gives :

Γ L = η L R ϕ R -η L P ϕ P . (2.3.5d)
Now, the substrate S is only consumed by the functional biomass synthesis, see equation (2.2.5), with rate η S N ϕ N ; thus, we define the source term for S as :

Γ S = -η S N ϕ N . (2.3.5e)
The carbon dioxide C can be treated similarly to the liquid and we obtain therefore :

Γ C = η C R ϕ R -η C P ϕ P . (2.3.5f)
Finally, the oxygen O is released by the photosynthesis mechanism (2.2.3) with rate η O P ϕ P and consumed by the respiration mechanism with rate η O R ϕ R . Therefore, the source term for C can be written as :

Γ O = η O P ϕ P -η O R ϕ R . (2.3.5g)
Expressions of the reaction rates Now, in this section, let us give the expressions of the reaction rates presented in section 2.2.3 and used in the previous subsection to model mass exchanges between species. To do so, we will use classical laws, like Michaëlis-Menten law or Haldane law in the case of inhibition phenomena. These laws are defined as dimensionless elementary functions with values in the interval [0, 1] and each reaction rate is built as a product of elementary functions multiplied by the maximal rate per unit of time. In what follows, this maximal rate is called µ α where α represents the considered mechanism; the estimated values of these rates are given in table 2.1, as well as the other constants of the model. Note that some mechanisms may depend on the intra-cellular quota Q defined by

Q = N N + A ,
which represents the amount of functional biomass per biomass unit of micro algae. In particular, this quota will be used to express the photosynthesis rate. Photosynthesis rate. Let us begin with the photosynthesis 2.2.3, which is the most complex mechanism since its reaction rate is influenced by all components except substrate. The photosynthesis is also obviously influenced by the light and our model will take into account the effect of the variations of light on the photosynthesis rate. In the following, the light intensity is denoted by I. For the reader's convenience, we consider separately the effects of each component and we denote by f φ , with φ = Q, N , L, C, O, I, the corresponding elementary function which depends only on φ. The expression for the photosynthesis rate will finally be the product

ϕ P = µ P f Q f N f L f C f O f I ,
where µ P is the maximal photosynthesis rate. First, we assume that the growth of the pool of carbon storage depends linearly on the functional biomass amount, so f N is proportional to ρ M N . However, in order to have µ P the maximal photosynthesis rate by unit of micro-algae and time, namely µ P = 1 N +A × max ϕ P , we set

f N = ρ M N Q max (2.3.6a)
with Q max a threshold above which the functional biomass production is stopped and the quota Q does not have any more impact on the photosynthesis rate. Moreover, as mentioned in section 2.2.2, the photosynthesis is performed by chloroplasts, contained in the functional biomass. Their quantity increases with the intra-cellular quota and the photosynthesis occurs when Q exceeds a given threshold Q min , which can be described by Droop model [11,23]. We obtain therefore :

f Q = Q max Q max -Q min max 0, 1 - Q min min {Q, Q max } , (2.3.6b)
where Q max is a second threshold, above which the functional biomass production is stopped and the quota Q does not have any more a limitation effect on photosynthesis. So we have

f Q = 0 for Q < Q min and f Q = 1 when Q > Q max .
Now, to take into account the impact of the reactants, namely the carbon dioxide and the liquid, we use Michaëlis-Menten's law which reflects an almost linear increase for low amount of reactant and a threshold effect when it is in excess. The photosynthesis rate depends consequently on

f C = C K C + C , f L = L K L + L , (2.3.6c)
with K C and K L the half saturation constants of carbon dioxide and liquid. So we have

f φ ∼ φ K φ
when φ goes to 0 and f φ ∼ 1 when φ goes to infinity for φ = C and L.

Moreover, according to [20], the photosynthesis is inhibited when the oxygen concentration is too high. We model this effect with the following sigmoid function :

f O = 1 1 + O K O α (2.3.6d)
with K O the half saturation constant and α > 0 a strictly positive parameter that determine the stiffness of the sigmoid. Finally, we need to consider a last effect, which is the impact of the light intensity. Since the reaction is inhibited when the light intensity is too high, we model the effect of light on the photosynthesis rate by Haldane's law [25,39,47], that is to say :

f I = 2 (1 + K I ) Î Î2 + 2K I Î + 1 , Î = I I opt , (2.3.6e)
with I the received light intensity, I opt the optimal light intensity and K I a parameter. This function behaves almost like a linear function of Î for Î < 1 and 1 Î for Î greater than 1. Notice that I is the received light intensity, that can be expressed as the product of the light intensity on the upper surface of water I 0 (t, x, y) and the attenuation coefficient. The attenuation coefficient at position X = (x, y, z) depends on the depth and on the solid part of the medium composition at points (x, y, ξ) for z ≤ ξ ≤ H, with H the height of the domain. Following [45], we can describe the received light intensity by :

I(t, X) = I 0 (t, x, y) exp - H z τ L L (t, x, y, ξ) + τ M (A (t, x, y, ξ) + N (t, x, y, ξ) + E (t, x, y, ξ)) dξ , (2.3.7)
where τ L and τ M are the absorption coefficients of the liquid and the biofilm, estimated in table 2.1 Finally, by combining equations (2.3.6a) to (2.3.6e), we deduce the form of the photosynthesis rate, that is to say :

ϕ P = µ P ρ M Q max -Q min N C K C + C L K L + L max 0, 1 - Q min min {Q, Q max } 1 1 + O K O α 2 (1 + K I ) Î Î2 + 2K I Î + 1 . (2.3.8a)
Respiration rate. For the respiration, we only take into account the effects of the reactants, namely the oxygen and the pool of carbon storage, see section 2.2.3. We assume that ϕ R depends linearly on the quantity of the pool of carbon storage ρ M A and that the Michaëlis-Menten's law applies for the dependence on oxygen; we denote by K R the half saturation constant for the oxygen and by µ R the maximal respiration rate. Thus, we obtain the following form for the photosynthesis rate :

ϕ R = µ R ρ M A O K R + O (2.3.8b)
which induces a quasi linear increase for small values of O and a threshold effect for O K R .

Functional biomass synthesis rate. The functional biomass synthesis 2.2.3 is performed by organelles contained in the functional biomass, thus ϕ N depends linearly on the quantity of functional biomass ρ M N . It also depends on the availability of the two reactants, that is to say the substrate and the pool of carbon storage and the need for functional biomass. The influence of the substrate S can be modelled by Michaëlis-Menten's kinetic law with the half saturation constant K S . The availability in glucose contained in the pool of carbon storage is related to the intra-cellular quota : a low value of Q means high disposability whereas large values of Q indicate a low availability of A. Similarly, since low values for the intra-cellular quota indicate a lack of functional biomass, the production of functional biomass decreases with the intra-cellular quota. As a consequence the availability in glucose and the need for functional biomass are modelled together by a linear decreasing function of the intra-cellular quota which vanishes for Q Q max . Therefore, we set

ϕ N = µ N ρ M N S K S + S max 0, Q max -max {Q, Q min } Q max -Q min , (2.3.8c)
with µ N the maximal rate of functional biomass synthesis. Note that ϕ N = 1 for Q smaller than Q min and ϕ N = 0 when Q is greater than Q max . EPS excretion rates. The EPS is mainly excreted from the pool of carbon storage and, in smaller amounts, from the functional biomass. Therefore, the EPS excretion rate ϕ A E (resp. ϕ N E ) is proportional to the quantity of the pool of carbon storage (resp. functional biomass) contained in micro-algae. In both cases, the mechanism is the same but the kinetic of excretion is slower for the EPS coming from functional biomass. So, the maximal excretion rate µ N E for the EPS coming from N in the reaction (2.2.6b) is smaller than the maximal excretion rate µ A E for EPS coming from A in reaction (2.2.6a) -their values are estimated in table 2.1. Moreover, we assume that the EPS excretion rate depends on the intra-cellular quota Q similarly as for the functional biomass synthesis rate. Combining all these effects, we obtain :

ϕ A E = µ A E ρ M A max 0, Q max -max {Q, Q min } Q max -Q min , (2.3.8d) ϕ N E = µ N E ρ M N max 0, Q max -max {Q, Q min } Q max -Q min . (2.3.8e)
Micro-algae death rates. Finally, the micro-algae death rates ϕ A D and ϕ N D introduced in section 2.2.3 are two parts of the same mechanism. Therefore, their expressions are identical except that ϕ A D is proportional to the quantity of the pool of carbon storage and ϕ N D to the quantity of functional biomass. The variations of the death rates are driven essentially by the dissolved oxygen concentration : if the oxygen concentration is below the reference concentration K D , the mortality of micro-algae increases. On the opposite, due to photosynthesis, the oxygen concentration can exceed the reference concentration , which also increases the death rate. Consequently the death rate depends on the ratio between the oxygen concentration and the optimal oxygen concentration : Ô = O K D

. In order to model this a quasi linear decrease of the death for O < K D we use a modified Michaëlis-Menten law :

f D Ô = 1 - β Ô Ôβ + β -1 (2.3.8f)
with β > 1 a parameter estimated in table 2.1, that settles the stiffness of the increase of the death rate for O > K D . Observe that we put 1β in the denominator in order that f D remains in [0, 1] for Ô 0 and f D (1) = 0. Finally we set :

ϕ A D = µ D ρ M A 1 - β Ô Ôβ + β -1 , (2.3.8g) ϕ N D = µ D ρ M N 1 - β Ô Ôβ + β -1 , (2.3.8h)
where µ D is the maximal mortality rate.

Force balance equations

In this section, we establish some equations to compute the velocities used in the mass balance equations. To do so, we write some evolution equations for the momentum thanks to some force balance considerations. Following what we have done in section 2.3.1, we consider the three following velocities : the velocity of micro-algae v M , the velocity of the extra-cellular matrix v E and the liquid velocity v L . Keeping the notations of section 2.3.1, for φ = M, E or L, the evolution of the momentum over time in an elementary volume V satisfies

∂ t V ρ φ φv φ dV = F vol + F surf , (2.3.9)
where F vol are the forces inside the volume V and F surf are the forces acting through the surface of V. The forces inside the volume can be decomposed as the body forces, the contact forces between species and the source of momentum resulting from mass exchanges, leading to the following expression :

F vol = V ρ φ b φ dV + V mφ dV + V Γ φ v φ dV (2.3.10)
Moreover, the forces acting through the boundary come from the flux of momentum and from the contact forces within the component, that is to say :

F surf = - ∂V ρ φ φv φ v φ • n dσ + ∂V Tφ • ndσ (2.3.11)
Finally, we obtain the following formulation for the force balance equation :

∂ t ρ φ φv φ + ∇ X • ρ φ φv φ ⊗ v φ = ∇ X • Tφ + ρ φ b φ + mφ + Γ φ v φ .
(2.3.12)

Since the mixture is saturated, i.e. without vacuum, following [4,7,16], we can decompose Tφ = -φP I + φT φ and mφ = P ∇ x φ + m φ , where P is the hydrostatic pressure, T φ is the excess stress tensor, m φ is the excess interaction force and I is the identity matrix. Moreover, without any experimental knowledge, we assume that the body forces are negligible. So, equation (2.3.12) can be written as :

∂ t ρ φ φv φ + ∇ X • ρ φ φv φ ⊗ v φ = m φ -φ∇ x P + ∇ X • φT φ + Γ φ v φ . (2.3.13)
In a close mixture system, the sum of the momentum supply due to the interaction forces and of the momentum transfers caused by the mass exchanges is equal to zero, that is to say φ=A,N ,E,L mφ + Γ φ v φ = 0. Then, using the definition of mφ and condition (2.3.2), we deduce that we have the following relation for the liquid phase :

m L + Γ L v L = -(m M + (Γ A + Γ N )v M + m E + Γ E v E ) . (2.3.14)
Moreover, following [26,13,16], for an elastic fluid the general form of the excess stress tensor is given by

φT φ = -Σ φ (φ) -φκ φ (φ)∇ X • v φ I + φµ φ (φ) ∇ x v φ + ∇ x v φ T ,
with Σ φ (φ) the elastic interaction and µ φ (φ) the viscosity coefficient. Without any experimental knowledge, we assume a constant stress and we neglect all the shear stress effects for the biofilm components A, N and E, namely κ φ (φ) = µ φ (φ) = 0 for φ = A, N , E. Furthermore, we consider that Σ φ depends linearly on φ : Σ φ (φ) = γ φ φ with γ φ > 0 such that for φ = A, N , E, equation (2.3.13) becomes

∂ t ρ φ φv φ + ∇ X • ρ φ φv φ ⊗ v φ = -φ∇ x P -∇ X • γ φ φ + m φ + Γ φ v φ . (2.3.15)
Regarding the liquid phase, we make the classical assumption that T L = 0 meaning that the excess stress tensor is present only in solid components [41]). Thus, in the liquid phase, the only external force is the hydrostatic pressure in order to have the liquid at rest in absence of biofilm. Consequently, using equation (2.3.14) to simplify equation (2.3.13) for φ = L, we deduce that the force balance equation for the liquid phase can be written as :

∂ t (ρ L Lv L ) + ∇ X • (ρ L Lv L ⊗ v L ) = -L∇ x P -m M -m E -Γ M v M -Γ E v E . (2.3.16)
Finally, let us make precise the form of the interaction forces. Following [16], we assume that the contact forces obey Darcy law and are proportional to the relative difference between the velocities of the components. Thus, we set

m M = -m ML (v M -v L ) -m ME (v M -v E ) and m E = -m EL (v E -v L ) -m EM (v E -v M ) ,
where the friction coefficients m ML , m ME , m EL and m EM are experimental parameters. In addition, we assume that the friction force of the extra-cellular matrix on the biofilm and the friction force of the biofilm on the extra-cellular matrix have the same magnitude, which leads to m EM = m ME . These parameters are estimated in table 2.1.

To sum up, from equations (2.3.15) and (2.3.16), we deduce that the force balance equations are equal to :

∂ t ((A + N )v M ) + ∇ X • ((A + N )v M ⊗ v M ) = 1 ρ M -(A + N )∇ x P -∇ X • γ M (A + N ) (2.3.17a) -m ML (v M -v L ) -m ME (v M -v E ) + Γ M v M ∂ t (Ev E ) + ∇ X • (Ev E ⊗ v E ) = 1 ρ E (-E∇ x P -∇ X • (γ E E) -m EL (v E -v L ) + m ME (v M -v E ) + Γ E v E ) (2.3.17b) ∂ t (Lv L ) + ∇ X • (Lv L ⊗ v L ) = 1 ρ L (-L∇ x P + m ML (v M -v L ) + m EL (v E -v L ) -Γ M v M -Γ E v E ) . (2.3.17c)

Complete system of PDEs

In this subsection, let us just summarise the full set of equations we derived in the previous subsections, which consists in the mass balance equations (2. 

ϕ P = µ P ρ M Q max -Q min N C K C + C L K L + L max 0, 1 - Q min min {Q, Q max } 1 1 + O K O α 2 (1 + K I ) Î Î2 + 2K I Î + 1 1 1 + O K O α , ϕ R = µ R ρ M A O K R + O , ϕ N = µ N ρ M N S K S + S max 0, Q max -max {Q, Q min } Q max -Q min , ϕ A E = µ A E ρ M A max 0, Q max -max {Q, Q min } Q max -Q min , ϕ N E = µ N E ρ M N max 0, Q max -max {Q, Q min } Q max -Q min , ϕ A D = µ D ρ M A 1 - β Ô Ôβ + β -1 , ϕ N D = µ D ρ M N 1 - β Ô Ôβ + β -1 , Γ A = ϕ P -ϕ R -η A N ϕ N -ϕ A E -ϕ A D , Γ N = ϕ N -ϕ N E -ϕ N D , Γ E = ϕ A E + ϕ N E + ϕ A D + ϕ N D , Γ L = η L R ϕ R -η L P ϕ P , Γ S = -η S N ϕ N , Γ C = η C R ϕ R -η C P ϕ P , Γ O = η O P ϕ P -η O R ϕ R , ∂ t A + ∇ X • (Av M ) = Γ A ρ M , ∂ t N + ∇ X • (N v M ) = Γ N ρ M , ∂ t E + ∇ X • (Ev E ) = Γ E ρ E , A + N + E + L = 1 ∇ X • ((A + N )v M + Ev E + Lv L ) = Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L , ∂ t (SL) + ∇ X • (SLv L ) -∇ X • (δ S L∇ X (S)) = Γ S ρ L , ∂ t (CL) + ∇ X • (CLv L ) -∇ X • (δ C L∇ X (C)) = Γ C ρ L , ∂ t (OL) + ∇ X • (OLv L ) -∇ X • (δ O L∇ X (O)) = Γ O ρ L , ∂ t ((A + N )v M ) + ∇ X • ((A + N )v M ⊗ v M ) = 1 ρ M -(A + N )∇ x P -∇ X • γ M (A + N ) -m ML (v M -v L ) -m ME (v M -v E ) + (Γ A + Γ N )v M , ∂ t (Ev E ) + ∇ X • (Ev E ⊗ v E ) = 1 ρ E (-E∇ x P -∇ X • (γ E E) -m EL (v E -v L ) + m ME (v M -v E ) + Γ E v E ) , ∂ t (Lv L ) + ∇ X • (Lv L ⊗ v L ) = 1 ρ L (-L∇ x P + m ML (v M -v L ) + m EL (v E -v L ) -(Γ A + Γ N )v M -Γ E v E ) .
We complement this system with some boundary conditions on the boundary, as follows : we impose Neumann boundary conditions for the components constituting the biofilm, for the liquid and for the pressure. For the components dissolved in the liquid phase, we also impose Neumann boundary conditions on all the boundaries except on the boundary on top, where we impose some non homogeneous Dirichlet boundary conditions. These boundary conditions stand for an intake of substrate coming from the top of the domain. The definition of the boundary conditions for the velocities requires more attention. Indeed by integrating the incompressibility constraint (2.3.3) on the whole domain Ω and using Stokes theorem, we get the following compatibility condition

∂Ω ((A + N )v M + Ev E + Lv L ) • n dν = Ω Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L dω.
In order to satisfy this compatibility condition we impose for all the velocities some no flux boundary conditions on each boundary except on the top of the domain where we impose the flux so that the compatibility condition holds. Namely, in the one dimensional case for Ω = [0, L x ] we set

v φ • n | x=L x = Ω Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L dω
for φ = M, E, L and

v φ • n | y=L y = L y 0 Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L dω in two dimension for the domain Ω = [0, L x ] × 0, L y .
In summary in the two-dimensional case, these boundary conditions read as :

∇ X A • n | ∂Ω = 0, ∇ X N • n | ∂Ω = 0, ∇ X E • n | ∂Ω = 0, ∇ X L • n | ∂Ω = 0, v M • n | ∂Ω L y = 0, v E • n | ∂Ω L y = 0, v L • n | ∂Ω L y = 0, v M • n | y=L y = v T , v E • n | y=L y = v T , v L • n | y=L y = v T , ∇ X (SL) • n | ∂Ω L y = 0, ∇ X (CL) • n | ∂Ω L y = 0, ∇ X (OL) • n | ∂Ω L y = 0, (SL) t, L y = θ S , (CL) t, L y = θ C , (OL) t, L y = θ O ,
where θ S , θ C , θ O are the intakes of substrate, carbon and oxygen and with

v T (x) = L y 0 Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L dω.

Parameters estimates

All the values of the parameters appearing in the system of previous subsection 2.3.4 are estimated in table 2.1. Most of the parameters presented here come from the literature. The half saturation constants used in the reaction rates are generally expressed in terms of concentration in kg L -1 or in mol L -1 . However, in our case, the amount of each component is dimension free and the values given in table 2.1 are therefore converted, using the volumetric mass density or the molar mass.

For the photosynthesis and the respiration processes, the pseudo-stoechiometric coefficients are estimated using the molar mass of the components involved in the reactions and considering that, during the reaction, around 90% of the matter exchanged is water.

Moreover, the values of K O and α are chosen to fit the curve proposed in [20] as a sigmoid function. Finally, the values of Q min and Q max are deduced from Mairet's article [36], where the range of N A is estimated. 

m ML 4.32 • 10 -3 d -1 Friction coefficient of M over L [16, 17] m EL 4.32 • 10 -3 d -1 Friction coefficient of E over L [16, 17] m ME 4.32 • 10 -3 d -1 Friction coefficient of M over E [16, 17] γ M 3 • 10 -9 m 2 d -1
Tensor coefficient for micro-algae M [16,17]

γ E 3 • 10 -9 m 2 d -1
Tensor coefficient for extra-cellular matrix E [16,17] Table 2.1 -Estimated values of the biological and physical parameters used in the system described in subsection 2.3.4

Numerical scheme

The aim of this section is to present the numerical scheme we use to discretize the full set of equations described in Subsection 2.3.4. This scheme follows, for the spatial discretization, the strategy of [16] in the case of a similar model, that is to say some finite-differences scheme derived from relaxation techniques. In this first article, the authors dealt with the two following issues : the computation of the velocities in the case of a vanishing phase and the computation of the pressure term. However, we have to face another difficulty here : the mass exchanges between components are non linear and stiff and we use some explicit-implicit treatment of the source terms of the mass balance equations in order to preserve the non-negativity of the solutions.

We consider the two-dimensional rectangular domain Ω = [0, L x ] × [0, L y ] of width L x and length L y . The extension of the following scheme to the 1D and 3D cases is straightforward. We denote by ∆x and ∆y the space steps in the x and y directions and we use a cartesian grid on Ω, namely the discretization points X i,j = (i∆x, j∆y) , We begin with rewriting the full system of Subsection 2.3.4 under the following form :

1 ≤ i ≤ N x , 0 ≤ j ≤ N y .
∂ t U + ∂ x F x (U , W ) + ∂ y F y (U , W ) = Γ(U ) + ∇ X • M δ L∇ X U L , (2.4.1a) ∂ t W + ∂ x G x (U , W ) + ∂ y G y (U , W ) = G I (U , W ) + G T (U , W ) + G P (U ), (2.4.1b 
)

L = 1 -A -N -E, (2.4.1c) 
∇ X • ((A + N )v M + Ev E + Lv L ) = Γ A + Γ N ρ M + Γ E ρ E + Γ L ρ L , ( 2.4.1d) 
that is to say one equation for the mass balances, one equation for the force balances, the volume condition and the incompressibility constraint. Here, U is a vector containing the mass fractions, W contains the two components of each velocity, F x (resp. F y , G x , G y ) is the flux of vector U in the x-direction (resp. of vector U in the y-direction, of vector W in the x-direction and of vector W in the y-direction), F D is the diffusion term for U , Γ(U ) is the mass exchanges source term in the mass balance equations and the source terms in the force balance equations are split into three parts : the pressure part G P (U ), the interactions term G I (U , W ) and the mass exchanges term G T (U , W ), that is to say :

U =                       A N E SL CL OL                       , W =                       (A + N )v M,x Ev E,x Lv L,x (A + N )v M,y Ev E,y Lv L,y                       , F x (U , W ) =                       Av M,x N v M,x Ev E,x SLv L,x CLv L,x OLv L,x                       , F y (U , W ) =                        Av M,y N v M,y Ev E,y SLv L,y CLv L,y OLv L,y                        , Γ (U ) =                       Γ A • ρ -1 M Γ N • ρ -1 M Γ E • ρ -1 E Γ S • ρ -1 L Γ C • ρ -1 L Γ O • ρ -1 L                       M δ =                           0 0 0 0 δ S δ C δ O G x (U , W ) =                         (A + N ) v M,x 2 + γ M E v E,x 2 + γ E Lv L,x 2 (A + N )v M,x v M,y Ev E,x v E,y Lv L,x v M,y                         , G y (U , W ) =                          (A + N )v M,x v M,y Ev E,x v E,y Lv L,x v M,y (A + N ) v M,y 2 + γ M E v E,y 2 + γ E Lv L,y 2                          , G I (U , W ) =                             -m ML ρ M v M,x -v L,x -m ME ρ M v M,x -v E,x -m EL ρ E v E,x -v L,x + m ME ρ E v M,x -v E,x m ML ρ L v M,x -v L,x + m EL ρ L v E,x -v L,x -m ML ρ M v M,y -v L,y -m ME ρ M v M,y -v E,y -m EL ρ E v E,y -v L,y + m ME ρ E v M,y -v E,y m ML ρ L v M,y -v L,y + m EL ρ L v E,y -v L,y                             , G T (U , W ) =                              Γ A +Γ N ρ M v M,x Γ E ρ E v E,x -1 ρ L (Γ A + Γ N )v M,x + Γ E v E,x Γ A +Γ N ρ M v M,y Γ E ρ E v E,y -1 ρ L (Γ A + Γ N )v M,y + Γ E v E,y                              .
We denote by U n i,j and W n i,j the discrete approximations of U t n , X i,j and W t n , X i,j .

Numerical approximation of the mass balance equations

The first step consists in solving equation (2.4.1a), using an explicit discretization based on a relaxation technique presented in [6] and used in [16] for the flux term and a mixed strategy for the diffusion term and the source term. More precisely for the diffusion, U is treated implicitly to reduce the CFL condition whereas L is taken explicitly. The spacial discretization is done with classical finite difference method which involves numerical approximations of L on the edges of the mesh cells, they are interpolated as the mean value of L on the cells sharing this edge. For example in the x direction we use the approximation L i+ 1 2 ,j = 1 2 L i+1,j + L i,j . The strategy for the source term is explained a little further. We obtain therefore a scheme of the form :

U n+1 i,j -∆tΓ U n i,j , U n+1 i,j - ∆t ∆x 2        L n i+ 1 2 ,j        U n+1 i+1,j L n i+1,j - U n+1 i,j L n i,j        -L n i-1 2 ,j        U n+1 i,j L n i,j - U n+1 i-1,j L n i-1,j               - ∆t ∆y 2        L n i,j+ 1 2        U n+1 i,j+1 L n i,j+1 - U n+1 i,j L n i,j        -L n i,j-1 2        U n+1 i,j L n i,j - U n+1 i,j-1 L n i,j-1               = U n i,j - ∆t 2∆x F x W n i+1,j -F x W n i-1,j + λ ∆t 4∆x U n i+1,j -2U n i,j + U n i-1,j - ∆t 2∆y F y W n i,j+1 -F y W n i,j-1 + λ ∆t 4∆y U n i,j+1 -2U n i,j + U n i,j-1 , (2.4.2) 
where the numerical velocity λ is common to the mass balance equations and to the force balance equations and is equal to the maximum of the eigenvalues of the Jacobian matrix of the fluxes

F x G x and F y G y
, that is to say :

λ = max 2v L,x , v M,x + √ γ M , v E,x + √ γ E , 2v L,y , v M,y + √ γ M , v E,y + √ γ E .
For stability reasons, the time step ∆t is computed at each time step such that the stability conditions λ ∆t ∆x ≤ 1 and λ ∆t ∆y ≤ 1 are satisfied. Now, let us explain how to compute the source terms with the explicit -implicit strategy, in order to guarantee that each component of U remains in [0, 1]. From now on in this subsection, we will drop the spatial indices, since no confusion is possible. We therefore discretise, at each point of the domain, the photosynthesis rate, the respiration rate and the functional biomass synthesis rate using implicit expressions for SL, CL and OL at the numerator and explicit expressions for all the other terms, which leads to the following discretizations :

ϕ P (U n , U n+1 ) = µ A ρ M N n 1 - Q min Q n (CL) n+1 (K L + L n ) (K C + C n ) , ϕ R (U n , U n+1 ) = µ R ρ M A n (OL) n+1 L n K R + (OL) n , ϕ N (U n , U n+1 ) = µ N ρ M N n (SL) n+1 L n K S + (SL) n Q max -Q n Q max -Q min .
Note that the two other reaction rates, namely the EPS excretion rate and the micro-algae death rate, are treated explicitly. The source terms are consequently approximated at each point of the domain by :

Γ A U n , U n+1 = 1 ρ M ϕ P (U n , U n+1 ) -ϕ R (U n , U n+1 ) -η A N ϕ N (U n , U n+1 ) -ϕ A E (U n ) -ϕ A D (U n ) , Γ N U n , U n+1 = 1 ρ M ϕ N (U n , U n+1 ) -ϕ N E (U n ) -ϕ N D (U n ) , Γ E (U n ) = 1 ρ E ϕ A E (U n ) + ϕ N E (U n ) + ϕ A D (U n ) + ϕ N D (U n ) , Γ S U n , U n+1 = - η S N ρ L ϕ N (U n , U n+1 ), Γ C U n , U n+1 = 1 ρ L -η C P ϕ P (U n , U n+1 ) + η C R ϕ R (U n , U n+1 ) , Γ O U n , U n+1 = 1 ρ L η O P ϕ P (U n , U n+1 ) -η O R ϕ R (U n , U n+1 ) .
In practice, since we do not treat implicitly any variable in the denominator of the source terms, each component of U n+1 can be easily computed through the resolution of linear systems. The overall strategy at time step t n+1 is the following : we first obtain the volume fractions (SL) n+1 , (CL) n+1 and (OL) n+1 as the solutions of linear systems, which allows to compute the reaction rates ϕ P (U n , U n+1 ), ϕ R (U n , U n+1 ) and ϕ N (U n , U n+1 ). It is then straightforward to compute the remaining components of U n+1 , that is to say A n+1 , N n+1 and E n+1 . Finally, an approximation of the volume fraction of liquid is given thanks to condition (2.4.1c).

Numerical approximation of the force balance equations

Dealing with the computation of the force balance equations, we face two difficulties : the vanishing phases and the computation of the pressure term. Firstly, the force balance equations give the evolution of the momentum of each component, whereas the friction forces depend on the velocities. As a consequence, when one of the phase is vanishing, it is not clear how to define its velocity, that is needed to approximate the friction forces at the following time step. Note that, in a biological context, situations where for example L = 1 and A = N = E = 0 are relevant and we cannot claim to be far from vacuum, as can be done in a physical context. Therefore, in order to compute the velocities, we use an implicit-explicit time discretization strategy for the momentum equations, where the interaction forces term G I (U , W ) is treated implicitly, see [16]. Secondly, to compute the velocities, we need to know the gradient of the hydrostatic pressure, which is another unknown of the system. A natural approach consists in finding an equation verified by P , by taking the divergence of the sum of the momentum equations and by using equation (2.4.1d). However, this method, which is known to be inefficient, leads to an elliptic equation for P with a non-unique solution. To overcome this difficulty we use a splitting approach which is basically an adaptation of the Chorin-Temam projection method [46,15] instead, see again [16]. This method uses a projection-correction approach : first, we compute an approximation of the velocities using the force balance equations without the pressure terms; then, using the predicted velocities and the average incompressibility constraint, we compute the pressure as the solution of an elliptic equation. Finally, the velocities are corrected thanks to the value of ∇ X P . Let us recall that the vector U n+1 is computed at a previous step. We now give some details on the scheme for the force balance equations computation. First, the projection step enables us to estimate some predicted values V n+ 1 2 for the velocities and this first step of the scheme writes as :

M 0 0 M n+1 i,j V n+ 1 2 i,j = W n i,j - ∆t 2∆x G x (U , W ) n i+1,j -G x (U , W ) n i-1,j + λ ∆t 4∆x W n i+1,j -2W n i,j + W n i-1,j +∆tG T U n+1 i,j , W n i,j - ∆t 2∆y G y (U , W ) n i,j+1 -G y (U , W ) n i,j-1 + λ ∆t 4∆y W n i,j+1 -2W n i,j + W n i,j-1 , (2.4.3)       Γ M n+1 ρ M v M,x n Γ E n+1 ρ E v E,x n - 1 ρ L Γ M n+1 v M,x n + Γ E n+1 v E,x n Γ M n+1 ρ M v M,y n Γ E n+1 ρ E v E,y n - 1 ρ L Γ M n+1 v M,y n + Γ E n+1 v E,y n                                                  , M n+1 i,j =                      A n+1 i,j + N n+1 i,j + ∆t ρ M (m ML + m ME ) - ∆t ρ M m ME - ∆t ρ M m ML - ∆t ρ E m ME E n+1 i,j + ∆t ρ E (m EL + m ME ) - ∆t ρ E m EL - ∆t ρ L m ML - ∆t ρ L m EL L n+1 i,j + ∆t ρ L (m ML + m EL )                     
.

Note that the matrix M contains also the coefficients of the interaction terms, which are treated implicitly, and that this matrix can be computed thanks to the knowledge of U n+1 . Moreover, we can compute the determinant of M, namely

det M = (A + N )EL + ∆t m ML ρ L (A + N )E + m EL ρ L (A + N )E + m EL ρ E (A + N )L + m ME ρ E (A + N )L + m ML ρ M EL + m ME ρ M EL + ∆t 2 (m EL m ML + m ME m ML + m ME m EL ) A + N ρ E ρ L + E ρ M ρ L + L ρ M ρ E ,
which is a polynomial of degree 2 in ∆t with positive coefficients. Since all the friction coefficients are strictly positive and since the constraint A + N + E + L = 1, with A, N , E, L positive, is satisfied, the leading coefficient of det M is non zero. So, for all ∆t strictly positive, det M does not vanish and the linear system (2.4.3) has a unique solution.

Then in the second step of the splitting we have to solve

∂ t φv φ = - φ ρ φ ∇ X P (2.4.4)
for φ = M, E, L in the interval [t, t + ∆t n ] with the initial datas φ n+1 v n+ 1 2 φ . The discrete approximation of these equation for φ = M, E, L is given by

φ n+1 v n+1 φ -φ n+1 v n+ 1 2 φ = -∆t φ n+1 ρ φ ∇ X P n+1 .
Then taking the divergence of the sum of these equations over φ we get

∇ X A n+1 + N n+1 v n+1 M + E n+1 v n+1 E + L n+1 v n+1 L -∇ X A n+1 + N n+1 v n+ 1 2 M + E n+1 v n+ 1 2 E + L n+1 v n+ 1 2 L = -∆t∇ X • A n+1 + N n+1 ρ M + E n+1 ρ E + L n+1 ρ L ∇ X P n+1 .
Now using the discrete approximation of the incompressibility constraint (2.4.1d) we deduce that P is solution of an elliptic equation with non constant coefficients : Finally in order to get a symmetric system we rather solve the minimisation problem

∆t∇ X •                 A n+1 + N n+1 ρ M + E n+1 ρ E + L n+1 ρ L         ∇ X P n+1         = ∇ X A n+1 + N n+1 v n+ 1 2 M + E n+1 v n+ 1 2 E + L n+1 v n+ 1 2 L - Γ n+1 A + Γ n+1 N ρ M - Γ n+1 E ρ E - Γ n+1 L ρ L (2.
∆t∇ X • A n+1 + N n+1 ρ M + E n+1 ρ E + L n+1 ρ L ∇ X P n+1 + λ = ∇ X A n+1 + N n+1 v n+ 1 2 M + E n+1 v n+ 1 2 E + L n+1 v n+ 1 2 L - Γ n+1 A + Γ n+1 N ρ M - Γ n+1 E ρ E - Γ n+1 L ρ L , Ω P n+1 dω = 0, ∇ X P n+1 • n = 0,
with λ the Lagrange multiplier associated to the constraint Ω P n+1 dω = 0. This system is discretized using classical centred finite differences method and leads to the resolution of a linear symmetric system.

Finally since the volume fractions do not change in this step, we update the velocities as follows :

v n+1 M = v n+ 1 2 M - ∆t ρ M (∇ X P ) n+1 , v n+1 E = v n+ 1 2 E - ∆t ρ E (∇ X P ) n+1 , v n+1 L = v n+ 1 2 L - ∆t ρ L (∇ X P ) n+1 .

Numerical simulations

In this section, we present some numerical results in the one dimensional and the two dimensional cases. Although the one dimensional case is not realistic, it is very useful to make preliminary tests and analyse the model under consideration. For example, in our case, it helps to understand the effects of the limiting processes present in the expression of the reaction rates. The outline of the section is the following : first, we present some numerical results in the one dimensional case and we illustrate the role of some key parameters of the model. Then, we turn to the two dimensional case, where we investigate the formation of structures in the biofilm in response to the availability of components dissolved in the liquid phase.

The one dimensional case

The one dimensional case has to be interpreted as a biofilm with a uniform horizontal distribution and for which we are only looking to the development in height. In all the simulations in the one dimensional case presented here, we take the following values : the length of the domain is L x = 5mm, the number of points is equal to N x = 400 and the initial data are taken as :

A 0 = 5 • 10 -2 χ x 10 -4 , N 0 = 8.38 • 10 -3 χ x 10 -4 , E 0 = 0, L 0 = 1 -A 0 -N 0 -E 0 , S 0 = θ S , C 0 = θ C , O 0 = θ O , with θ S = 5 • 10 -5 θ C = 7.5 • 10 -5 θ O = 7.2 • 10 -6 .
The boundary conditions are described in section 2.3.4; they are all homogeneous, except for the components dissolved in the liquid on top of the domain (i.e. : x = L x ), where we take the same values θ S , θ C and θ O as above. The values of all the other parameters of the system can be found in Table 2.1.

Finally, the light intensity on the upper surface of water x = L x is taken independent of time, corresponding to the optimal value for the light intensity, namely I 0 (t, L x ) = I opt .

First tests

In figure 2.1, we represent the volume fractions of the biofilm components, that is to say A, N , E and A + N + E, and the mass fractions of the components dissolved in the liquid, that is to say S, C and O, for t = 10, 45 and 90 days. Note that the left boundary of the domain corresponds to the bottom of the tank and the right boundary to the top of the tank, from where the nutrients are brought to the domain. We can observe the evolution of a front, corresponding to the development of the biofilm within water. The total volume fraction of biofilm increases with time at the location of the front (see the purple curve of A + N + E on figures 2.1a, 2.1c and 2.1e). Moreover we observe that the composition of the biofilm is not homogeneous in space : in the region of the front, the amount of micro-algae A (in green in figure 2.1) and N (in red) is particularly high, whereas, the region of the bottom, is almost made of extra-cellular matrix (in brown). Now, looking at the figures displaying the mass fractions of the components dissolved in the liquid. We distinguish three regions, whose interpretation is tightly linked limiting factors involved in the reaction rates and displayed in figure 2.4, starting from the right side of the domain :

-On the top of the tank, corresponding to x ∈ [2.4; 5] in figure 2.1f, the mass fractions of S and C are smaller than their values on the top boundary, which are fixed by the boundary conditions, owing to their consumption by the biofilm, whereas the mass fraction of O is higher due to the significant release of oxygen by photosynthesis. -In the area directly behind the front, corresponding to x ∈ [1.8; 2.4] in figure 2.1f, the mass fraction of C slowly increases due to the release induced respiration (see the red curve of f R in figure 2.4d) and the absence of consumption because the photosynthesis rate is zero (see the orange curve of f P in figure 2.4c). For the oxygen it is the opposite : since the is not longer active it mass fraction decreases due the respiration. In this area the substrate is still slightly consumed so it mass fraction slowly decreases. -Finally in the bottom of the tank, where the biofilm is almost made of extracellular matrix, corresponding to x ∈ [0; 1.8] in figure 2.1f the mass fraction ractions are nearly constant in space. Assuming that the biofilm is uniform in the two other directions, the daily production rate is estimated to 0.962 g m -2 d -1 at t = 10 days, 1.074 g m -2 d -1 at t = 45 days and 1.369 g m -2 d -1 at t = 90 days of dry mater (considering that the biofilm contains about 90% of water). On average, the daily production rate is 1.123 g m -2 d -1 , which is comparable to the daily production observed by Schnurr et al. in [44,43] or M. Gross et al. in [29]. The mass fractions of the components dissolved in the liquid phase are interesting, because they influence the reaction terms through the reactions rates. However, the amount of matter is given by SL, CL and OL that are represented on figure 2.2. As for figues representing the mass fractions of S, C and O, theses plots also read from right to left. For convenience we only describe the plot of the right but the tow others read similarly. In the top of the tank (i.e. : x ∈ [2.4; 5]) the volume fraction of liquid equal to 1 so SL, CL and OL follow the behaviour of their mass fraction; meaning the amount of S, C decrease whereas the mass fraction of O increases. In the area of the front of the biofilm (i.e. : x ∈ [1.8; 2.4]) the liquid volume fraction decreases suddenly leading to a decrease the SL, CL and OL. Then in the bottom of the tank, their amount slowly increases along with the volume fraction of liquid. The figure 2.3 represent the velocities of the different components at t=90 days. We observe that the micro-algae and the extra-cellular matrix velocities are similar, that is to say they are positive in the biofilm region, as expected from the evolution of the front of the biofilm. Indeed, the localisation of the front, defined as the point where the gradient of A + N + E is the largest, moves with a speed equal to 28.2 µm d -1 , which is the same order of magnitude as the values measured in [44]. On the opposite, the liquid velocity is negative, which can be explained by the fact that the liquid is consumed by the biofilm through the photosynthesis. Now, let us illustrate in figure 2.4 the limiting factors of the mechanisms involved in the biofilm development. Since all the considered mechanisms cannot take place in absence of micro-algae we concentrate in these figures on the biofilm region, namely for x ∈ 0; 1.2 • 10 -3 in figures 2.4a and 2.4b and x ∈ 0; 2.6 • 10 -3 in figures 2.4c and 2.4d. We plot in figures 2.4a and 2.4c the functions f Q , f L , f C , f O and f I described at equations (2.3.6b) to (2.3.6e) and involved in the expression of the photosynthesis reaction rate (2.3.8a), evaluated at t=45 and 90 days, respectively. A t=45 days we can observe that the elementary functions f C and f L have values greater than 0.83 meaning that they do not limit the photosynthesis. On the opposite, the functions f I , f O and f Q take smaller values, meaning that the photosynthesis is limited, by the lack of light and functional biomass and, inhibited by the high concentration of oxygen. More precisely, ninety percent of the light is absorbed in the first 200 µm after the front of the biofilm (i.e. : x ∈ 0.9 • 10 -3 ; 1.1 • 10 -3 ) leading to f I (in yellow) equal to zero for x ∈ 0; 0.7 • 10 -3 . The function f Q (in red) is equal to 1 in the interval 0; 0.8 • 10 -3 and rapidly decreases to around 0.65 at x = 1.4 mm to finally stabilise around 0.6 in the last part of the plot. So the quota of functional biomass is not limiting inside the biofilm but is it partially limiting on the front of the biofilm. On the interval 0; 1.6 • 10 -3 where the oxygen concentration is high, see figure 2.1d, the function f O (in cyan) has values under 0.7, meaning that oxygen inhibits the photosynthesis process. Finally, the product

f P = f Q f L f C f O f I ,
which is nearly equal to the photosynthesis rate is also plotted on the same figure (in orange) and it confirms that the photosynthesis takes place on the top of the biofilm, meaning in the interval 1 • 10 -3 ; 1.2 • 10 -3 . At t=90 days we observe in figure 2.4c that f O is now above 0.9 meaning that the oxygen concentration is not any more limiting. Indeed, according to figures 2.1d and 2.1f, between 45 and 90 days the mass fraction of oxygen in the biofilm area has decreased. In the same time the total volume fraction of biofilm has increased (see figures 2.1c and 2.1e) leading the volume fraction of water to increase and so f L takes values around 0.79 in the area of the biofilm front.

For the light intensity and the effect of the quota of the functional biomass we observe the same effects as at t=45 days : ninety percent of the light is absorbed in the first 200 µm after the front of the biofilm (see f I in yellow) and Q is not limiting inside the biofilm but it is partially limiting in the front of the biofim. Finally we plot also f P and it confirms that the photosynthesis takes place on the top of the biofilm (in the interval 2.4 • 10 -3 ; 2.6 • 10 -3 ) as at t=45 days even if the order of influence of the elementary functions has changed. Now, in figures 2.4b and 2.4d, we show the other functions used to compute the reactions rates (2.3.8). First, we notice that figure 2.4d is basically a shift of figure 2.4b meaning that the influence of f R , f S , f N and f D , unlike the elementary functions that compose ϕ P , does not change inside the biofilm over time. We can also observe that the graph of f R (in red), defined by f R (O) = O K O +O and used in the respiration rate (2.3.8b), remains close to 0.8 in the biofilm area, so the oxygen is almost not limiting for the respiration. Then, concerning the functional biomass synthesis rate (2.3.8c), the function f S (S) = S K S +S (in green) is nearly equal to 1, whereas 

f N (Q) = max Q max -max{Q,Q min } Q max -Q min
f Q f C f L f I f O f P (a)
f Q f C f L f I f O f P (c)

Influence of the values of the elastic interaction tensor coefficients : γ M and γ E

According to [16], the value of the elastic tensor coefficient γ drives the speed of the biofilm front. In our model, unlike in [16], we consider two distinct elastic tensor coefficients : γ M for the micro-algae and γ E for the extra-cellular matrix. In section 2.5.1, the simulations were performed with γ M = γ E ; however, in figure 2.5 and figure 2.6, we show the volume and mass fractions and the velocities obtained for γ M = 3 • 10 -9 m 2 d -2 and 3 • 10 -10 m 2 d -2 . The values for the volume fractions and the composition of the biofilm are the same as in section 2.5.1; however, the velocity of extra-cellular matrix is lower than the velocity of micro-algae in this case. Note that when γ E ≥ γ M , the conclusion is similar : the composition of the biofilm does not change and the velocity of the extra-cellular matrix is greater than the velocity of micro-algae. In practice the influence of γ E appears to be low unlike γ M that drives the velocity of the front of the biofilm. As in [16], we can observe in figure 2.7a that the velocity of the front depends linearly on √ γ M .

Indeed the velocity of the front determined with numerical experiments (red marks) fits the linear regression (in blue) given by y = 0.33103x + 1.003 • 10 -5 with correlation coefficient of 0.9994. In figure 2.7b we represent the average daily production rate (defined as difference of dry biomass between two consecutive days) of dry biomass over 90 days. Again we observe that numerical experiment (red marks) fit the linear regression (in blue) given by y = 3509.1169x + 0.92968 with correlation coefficient of 0.9993. 

√ γ M = √ γ E .
Influence of the light intensity on the upper surface of water :

I 0 (t, L x )
In this subsection we investigate the influence of the light intensity on the average daily production rate. Thus, in figure 2.8, we represent the average daily production rate (estimated on 90 days) of dry biomass for the different constituents of the biofilm with respect to the light intensity on the upper surface I 0 (t, L x ). Firstly we can observe that the average production rate of A (in green) and N (in red) is constant meaning that the light intensity on the upper surface of water : I 0 (t, L x ) does not change the productivity of these compounds. However, the average production rate of extra-cellular matrix (in brown) increases until I 0 (t, L x ) = 1.8I opt , where I opt is the light intensity for which f I in the photosynthesis rate is maximal. Then the average production rate of extra-cellular matrix starts to decrease. The productivity of the whole biofilm (in purple) has the same behaviour : it is maximal for I 0 (t, L x ) 1.8I opt and is about 1.157 g m -2 d -1 .

However the increase of daily productivity for I 0 (t, L x ) = 1.8I opt compared to I 0 (t, L x ) = I opt is very low : ∼ 3%. As it can be observed in figure 2.8, for a light intensity on the upper surface of I 0 (t, L x ) = 1.8I opt , the shape of the biofilm components (A, N, E) and the mass fraction of the substrate (S) are comparable to the case when I 0 (t, L x ) = I opt represented in figures 2.1e and 2.1f. But in the biofilm region, for a higher light intensity the mass fraction of inorganic carbon (C in green) is lower whereas the mass fraction of oxygen (O in cyan) is upper. The curves that represent the elementary functions used in the reaction rates differ also partly, especially the f I (in yellow) in figure 2.10b. Outside of the biofilm region, namely for x ∈ 2.4 • 10 -3 ; 5 • 10 -3 f I is about 0.86 meaning that if micro-algae were present in this area the photosynthesis would be inhibited due to a too high light intensity. Then gradually as the light penetrates into the biofilm and is absorbed, its intensity decreases until it reaches the optimal light intensity, here for x = 2.1 mm. Finally, as the light intensity continues to be absorbed and thus decreases, f I decreases until it reaches 0 for x ∼ 1.8 mm. We can also observe that f O (in cyan) takes smaller values in the area of the front of the biofilm when the light intensity on the upper surface is higher. 

Influence of the value of the substrate supply θ S

We study in this subsection the influence of the value of the substrate intake θ S . We perform some numerical simulations with θ S = 1.65 • 10 -5 , which is equal to a third of the previous value; the other parameters remain unchanged. In figure 2.11, we plot the corresponding volumes and mass fractions at t = 90 days and in figure 2.12, we plot the elementary functions that compose the reaction rates. We remark that these parameters lead to a situation of substrate deficiency, since the mass fraction S (in red in figure 2.11b) is equal to zero in the biofilm region. Substrate deficiency promotes the extra-cellular matrix excretion : the volume fraction of the whole biofilm is the same as previously, with a difference of less than 0.5%, but the shape and the composition changes significantly. The pool of carbon storage and the functional biomass volume fractions are 34.4% and 51.3% smaller, while the ECM volume fraction is 10.2% larger, see figures 2.1e and 2.11a. Moreover the peak on the front of the biofilm is smaller. Regarding the elementary functions that compose the reaction rates, we notice that the photosynthesis rate is the same as in the previous simulations, see figure 2.12a. However, the functional 

f Q f C f L f I f O f P (a)
f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q max -max{Q,Q min } Q max -Q min present in
(Q) = max Q lim -max{Q,Q min } Q lim -Q min
, which is non zero from 2.1mm instead of 2.2 in figure 2.4d. 12 -Plots at t = 90 days of the elementary functions used to compute the reactions rates with respect to space, in the case of substrate deficiency θ S = 1.65 • 10 -5 . On the left, we display the functions (2.3.6) used for the photosynthesis rate and their product f P ; on the right, we plot

f Q f C f L f I f O f P (a)
f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q lim -max{Q,Q min } Q lim -Q min present in the functional biomass synthesis rate (2.3.8c) and f D (O) = 1 - β Ô Ôβ +β-1 , with Ô = O O ref
, present in the death rates (2.3.8g) and (2.3.8h).

Influence of the light absorption coefficient for the biofilm τ M

In this subsection we investigate the influence of the light absorption coefficient for the microalgae τ M (see equation (2.3.7)) which accounts directly for the light penetration in the biofilm. In figure 2.13 we represent the volume and mass fractions for the constituents considered in the model with the light absorption parameter of micro-algae set to τ M = 1.25 • 10 4 m -1 meaning twice smaller compared to the simulations of section 2.5.1. First of all, although the biofilm shape (in purple) remains consistent with the results presented in the first test case, see figure 2.1e, we can observe that the biofilm composition differs. Indeed after 90 days, the volume fraction of A (in green) is 23.7% larger and the volume fraction of ECM (in brown) is 4.6% larger, whereas the volume fraction of functional biomass (in red) is 4.3% smaller. These discrepancies lead to an increase of 7.4% for the total mass of the biofilm. On figure 2.13a we can also notice that the front of the biofilm has only reach x = 2.2 mm whereas in the first test case (see figure 2.1e) it reached x = 2.5 mm meaning that the velocity of the front of the biofilm is smaller. Indeed the velocity of the front is estimated to 24.6 µm d -1 (instead of 28.2 µm d -1 in section 2.5.1), so the light absorption parameter has an indirect impact on the velocity of the front. As regards the components dissolved in the liquid represented in figure 2.13b, in the biofilm area, we can observe that the mass fractions for the carbon dioxyde and the substrate are lower while the oxygen mass fraction is higher compared to figure 2.1f. In order to explain these differences let us take a look to the elementary functions used to build the reaction rates and represented on figure 2.14. Although the light intensity through the function f I remains the main limitant parameter the decrease as it penetrates into the biofilm is slower. Moreover we can observe that f O (in cyan) takes values below 0.6 in the area of the front of the biofilm so the photosynthesis is here inhibited by the the excess of oxygen. We can also notice that the f P function (in orange) which is nearly the photosynthesis rate decrease is less stiff, so the photosynthesis occurs depeer into the biofilm. Regarding the other elementary functions used to build the reaction rates and represented on figure 2.14b, only f N has a different shape : like the photosynthesis, the assimilation of substrate continues to occur depeer into the biofilm.

Influence of the variation of light

Finally, we consider that the light intensity on top of the domain depends on time as follows :

I 0 (t, L x ) = 3I opt max {0, sin (2πt)} ,
such that the biofilm is periodically enlightened with an intensity between 0 and 3I opt . The results can be observed in figure 2.15 for the volume fractions and in figures 2.16 and 2.17 for the mass fractions and the elementary functions that compose the reaction rates. The average daily production rate over the first 150 days is equal to 0.532 g m -2 d -1 and the front of the biofilm 

f Q f C f L f I f O f P (a)
f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q lim -max{Q,Q min } Q lim -Q min present in the functional biomass synthesis rate (2.3.8c) and f D (O) = 1 - β Ô Ôβ +β-1 , with Ô = O O ref
, present in the death rates (2.3.8g) and

(2.3.8h). moves at the speed of 20.45 µm d -1 . The volumes fraction and the composition of the biofilm are unchanged. However the mass fractions of the components dissolved into the liquid phase (substrate, inorganic carbon and oxygen) represented in figures 2.16 and 2.17 evolve all day long with the enlightenment of the biofilm. Indeed the assimilation of the inorganic carbon and the release of oxygen are tightly linked to the photosynthesis and so to the light intensity. Regarding the elementary functions that compose the photosynthesis rate and displayed in the middle column in figures 2.16 and 2.17, we can observe that the limiting factors are the light intensity f I and the oxygen excess f O defined in equations (2.3.6d) and (2.3.6e) respectively. As long as the light intensity increases and remains smaller than I opt the photosynthesis rate on the front of the biofilm increases then when the light intensity becomes greater than I opt it starts to inhibit the photosynthesis on the front but enables micro-algae behind the front (i.e. : x ∈ [2.6, 3]) to make photosynthesis. At the same time the oxygen saturation increases due to the released induced photosynthesis and leads to an inhibition of the photosynthesis; this phenomenon is confirmed by the curve of f O in figures 2.17b and 2.17f that takes small values in the area of the front of the biofilm. On the last column of figures 2.16 and 2.17 we represent the other elementary functions :

f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q max -max{Q,Q min } Q max -Q min present in the functional biomass synthesis rate (2.3.8c) and f D (O) = 1 - β Ô Ôβ +β-1 , with Ô = O O ref ,
present in the death rates (2.3.8g) and (2.3.8h). In this simulation the substrat supply is in excess which is confirmed by the values of f S that remain close to 1. During night (first row in figures 2.16 and 2.17) in the biofilm area f D takes values around 0.2 meaning there is death induced by the lack of oxygen. The deficiency of oxygen is caused by the respiration process which is represented by f R which is equal to about 0.2 in the biofilm area. Moreover, the oxygen concentration increases with the light intensity which induces f R to increase : in the biofilm area f R goes from 0.2 for I 0 (t, L x ) = 0 to 0.8 when I 0 (t, L x ) = 3I opt . Finally let us take a look to the death process (see the curve of f D ) which increases with the oxygen concentration, so it is minimal for I 0 (t, L x ) = I opt /2 and and increases up to 0.2 for I 0 (t, L x ) = 3I opt . 

The two dimensional case

In this section, we consider a square domain of width L x = 5mm and height L y = 5 mm, that we discretize with the same number of points in both directions : N x = N y = 150. Let us denote by χ M the micro-algae initial distribution, where χ M designs the characteristic function of domain M. In the following, we consider three different initial distributions of micro-algae, represented in figure 2.18. The initial datum is then given by

A 0 = 5 • 10 -2 χ D M , N 0 = 8.38 • 10 -3 χ D M , E 0 = 0, L 0 = 1 -A 0 -N 0 -E 0 S 0 = θ S , C 0 = θ C , O 0 = θ O , with θ S = 50 • 120 -6 θ C = 75 • 120 -6 θ O = 7.2 • 120 -6 .
As in the 1D case, the boundary conditions are described in section 2.3.4 and we take the same values θ S , θ C and θ O as above for the components dissolved in the liquid on top of the domain.

The light intensity at the top of the domain is set equal to I opt such that I 0 (t, L x ) = I opt . The other parameters are given in Table 2.1.

Uniform corrugated strip

For this simulation, the micro-algae initial distribution is equal to the characteristic function of the following domain :

D M = (x, y) , 0 x L y , 0 y L y 0.02 + 0.01 sin 5πx L x
and is represented in figure 2.18a. The evolution over time of the volume fractions of the biofilm components and of the mass fraction of the components dissolved in the liquid are represented on figures 2.19 and 2.20. First, we can observe that the initial shape of the biofilm front is preserved until t = 90 days. Moreover, if we consider that the one dimensional case exhibited in section 2.5.1 represents a vertical slice of the current two dimensional simulations, we can notice that the results are consistent. Indeed, for all the components under consideration, the ranges of values and the shapes obtained in the one dimensional case are similar to the results obtained in this case. As in the one dimensional case, the biofilm splits into three parts : the bottom of the tank is mainly composed of extra-cellular matrix, in the middle the region consists in a mixture of extra-cellular matrix and micro-algae and the front is made of micro-algae, that assimilate the inorganic carbon and the substrate. The front of the biofilm, which is still defined by the region where the gradient of A + N + E is the largest, moves at the average speed of 28.7 µm d -1 , which is very close to the values measured in [44]. Moreover, assuming that the biofilm is uniform in the third direction, the daily production rate is estimated to be equal to 1.032g m -2 d -1 at t = 30 days, to 1.144g m -2 d -1 at t = 60 days and to 1.396g m -2 d -1 at t = 90 days. In average, the daily production rate is 0.893g m -2 d -1 . These rates belong to the interval of the daily production rates observed by Schnurr et al. in [44,43] or M. Gross et al. in [29].

Single rounded bump

In this subsection, the initial micro-algae distribution, displayed in figure 2.18b, is defined by the domain

D M = (x, y) , 0.45L x x 0.55L x , 0 y L y 10 sin π (x -0.45L x ) 0.1L x ,
that it to say with one single bump.

In this case, we can observe some interesting features of the model : the micro-algae distributions A and N take a crescent-moon shape located on the front while the extra-cellular matrix E is mainly located behind the front, see figure 2.21. Indeed the growth of the biofilm is induced by photosynthesis that mainly depends on the enlightenment which is higher on the top of the biofilm and decreases very quickly within the biofilm. Moreover, micro-algae on top have a better access to the substrate and to inorganic carbon, see figure 2.22, their development results to be faster. Consequently the volume fraction of micro-algae on the front is increasing and leads the biofilm to take the characteristic form of a mushroom, already described in the literature. We can remark that this structure begins to appear after 15 days and is already established at t = 30 days, see figures 2.21a and 2.21b

Three bumps

Finally, in this last test, we consider that the micro-algae initial distribution, shown in figure 2.18c, is a 3 bumps configuration and is given by χ M with

D M = (x, y) , L x 6 x L x 6 , 0 y ψ(x) , ψ(x) = L y e -x-L x /2 0.35L x 2 -0.1 + 0.3 sin π (x -L x /6) 2L x /3
The volume fractions of the biofilm components and the mass fractions of the components dissolved in the liquid are represented for different times on figures 2.23 and 2.24. Until t = 15 days, each of the three bumps, mostly made of micro-algae, grows separately. As in the previous subsection, micro-algae on the front have a better access to the substrate and inorganic carbon and light so their growth is faster. Consequently the biofilm volume fraction is greater on the front than inside the biofilm which leads to a mushroom shape for each bump at time t = 20 days. Then the three bumps merge and a front made of micro-algae, similar to the previous mentioned fronts, develops.

Conclusion

In this paper, we have proposed a new mixture model for micro-algae biofilm producing lipids.

The main originality of this model is the precise description of the biological mechanisms involved in its formation and development, combined with the use of partial differential equations to take into account the spatial variations of the biofilm. In particular, we use the Droop theory to describe the assimilation of carbon through photosynthesis and we model finely the functional biomass growth, the extra-cellular matrix excretion process and the variation of the light intensity.

The general form of our model is the same as the model in [16], but it differs on several points, among which the source terms of the mass balance equations and therefore the incompressibility constraint, the consideration of a third velocity in the force balance equations and the addition of a diffusion term for the components dissolved in the liquid.

In addition, we have proposed a well adapted numerical scheme, able to deal with the stiffness of the reaction terms. This numerical scheme can be straightforwardly extended in the three dimensional case. However, the model contains a great number of parameters : the values of many of them are given in the literature, but some of them remain unknow and have to be calibrated. Consequently, in a further work, a sensibility analysis, as well as biological experiments, are scheduled in order to set up more precisely the parameters. Some first tests are performed in the one-dimensional case. This cas is not realistic, but it remains relevant for a uniform horizontal biofilm, the remaining spatial variable being the height. Moreover, it enables to obtain some first results on the model. The comparison of the numerical simulations with the experimental results that can be found in the literature shows that our model predicts realistic daily production rates and front speeds, which gives a first validation. Then, other numerical tests are presented in the two-dimensional case and we can observe, with these simulations, that the biofilm is composed of three disctinct regions : the front, made of micro-algae performing photosynthesis, the middle of the biofilm composed of extra-cellular matrix and micro-algae and finally the bottom of the tank where only extra-cellular matrix remains. Moreover, we also find that the biofilm has a mushroom shape, as explained by Cogan et al. in [18,19,51,52]. This first model can be extended to more complicated domain than a simple tank : several biological teams experiment the idea of cultivate micro-algae biofilms on rotative systems, where the biofilm is periodically immersed and enlightened. It would be of great interest to adapt the present model to this case and to study the dependence of such a model on factors, such as the light frequency, the light intensity or the rotating frequency. Chapter 3
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A mixture model for the dynamic of the gut mucus layer

MIXTURE MODEL FOR THE GUT MUCUS LAYER

Abstract: We present in this paper a mixture model describing the dynamic of the mucus layer that wraps the gut mucosa. This model takes into account the mechanics of the main fluids that compose the gut content, described with the Stokes model, the inhomogeneous rheology that depends on the fluid composition, and the main physiological mechanisms that ensure the homoeostasis of the mucus layer. We detail the mathematical expression of the model and we present numerical results, based on a finite volume resolution of the problem on a MAC grid. This proves the ability of the model to produce a stable steady-state mucus layer. We also introduce a simplification of the model based on a formal derivation of the limit model under the assumption of vanishing aspect ratio of the gut. We perform a sensitivity analysis of this simplified model by using a meta-model based on polynomial chaos in order to identify the parameters that have the main impact on the mucus layer shape. Finally, we show how to couple this fluid mechanics model with a population dynamics model by adding an additional phase to the mixture model that describes a chemotactic bacterial population. We present numerical results that reproduce physiological bacteria-mucus interactions.

This study is the result of a joint work with T. El Bouti, T. 

Introduction

The gut microbiota and the host-microbiota symbiotic relationship

The main physiological function of the gut is top pump water in the digestive residuals that reach the colon in order to maintain the hydration of the whole body. However, other important functions where identified, often mediated by the complex microbial community hosted by the gut, called the gut microbiota. The host develops with its microbiota a symbiotic relationship : the host tolerates those bacterial species that in turn provide several benefits, such as metabolites -the microbiota finalizes the digestive process and provides up to 10 % of the daily energetic needs of the host [29]-or immune functions -e.g., they avoid the colonization of pathogens and they are directly involved in the stimulation and maturation of the immune function during the first stages of life, and consequently in immune disorders such as allergic diseases [30]. The number of bacteria in the gut is about 10 times higher than the amount of human cells in the whole body, leading some biologists to consider it as an organ in its own right. The fast development of DNA sequencing techniques have permitted a huge improvement of the knowledge of microbial community structure and function. The research now focus on the direct or indirect implication of the microbiota in several diseases such as Crohn's disease, nosocomial diseases, allergic disorders, metabolic disorders -obesity, cholesterol...-or mental disordersmood disorders or autistic disorders. That societal challenges makes the gut microbiota study a scientific hot-spot in microbiology.

A "first order" immune defence against the microbiota : a mucus layer

Despite their benefits, all the bacterial communities represent a potential infection danger for the host which has to develop several defensive strategies. If the host immune system develops complex active mechanisms to manage with its microbiota, a more simpler and passive protective tool also protects the host : an insulating layer of mucus physically separates the microbial populations from the host tissues. The mucus layer is actually composed of two distinct layers with different rheological characteristics. A first viscous layer, wraps the epithelial cells. An external, thicker, more fluid layer covers the first one [2,19]. The rheological discrepancies between mucus layers can be promoted by structural differences in the mucus composition -e.g. due to folding discrepancies of the proteins that compose the mucus-or by hydration/dehydration effects -The active water pumping of the intestinal mucosa dries out the inner layer of mucus, whereas the liquid luminal contents keeps hydrated the outer layer. Finally, while the luminal flux erodes the external layer of mucus, the inner layer is continuously renewed by the mucosa, allowing mucus turn over [33]. Unlike the inner layer, the outer layer can be penetrated by bacteria, allowing them to resist the luminal flow and increasing their residence time in the gut. Furthermore, some bacterial species are able to metabolize the mucus. The outer layer of mucus then represents an ecological niche that influences the global ecological equilibrium of the gut microbiota. A good model of its dynamics is then a key issue in the perspective of constructing accurate models of the gut microbiota ecology.

Mixture model applied to biology and mathematical model of mucus and gut ecology

As we want to model a multiphasic fluid flox, several options exist. Due to the evanescence of the interface between the mucus and the luminal liquid, mixture models appeared to be particularly relevant for their capacity of describing complex flows without accurately tracking interfaces. The mixture theory was developed in the sixties in a series of articles by Truesdell [35,36,34]. In his work, he established the foundation of the mixture theory by proposing a continuum model of a multi component fluid system. More details about the mixture theory can be found in [28]. This approach allows us to build mathematical models for system composed of a mixture of several components with different physical properties, which is well adapted to the modelling of biological systems. We can cite in particular the works of Van C. Mow and his co-workers on cartilage and poro-elastic materials -see [20,3,31,22,23]. This approach has also been successfully used for the modelling of tumour growth in particular by Byrne and his collaborators in [18,26,21,7] or the team of Preziosi in [27,1]. More recently, C. Di Russo with F. Clarelli, R. Natalini and M. Ribot in [10,9] used the mixture theory to model the growth of phototrophic biofilms community. Different mathematical models were already designed to study biological mucus or microbial ecology. A molecule-scale model of mucus, based on a stochastic description of the displacements of the different proteins that structure the mucus, has been proposed to study the formation of the multilayer structure of mucus from microscopic mechanisms [16]. Other publications focused on the effective diffusion rates of macroparticule flowing through the mucus [11]. A fluid mechanic model of pulmonary mucus was also introduced [8]. This model took into account the complex flow of the mucus with inhomogeneous viscosity and focused on the mucus flow subject to pulmonary cilia vibrations. But it did not investigate the dynamics of the mucus layer constitution. A compartmental ODE model of gut microbial populations was proposed [24]. This 0D model accurately considered complex metabolic interactions among bacteria during carbohydrate degradation, including the mucus as a separated compartment to take into account its ecological importance. But it aggregated all the spatial mechanisms -transport, diffusion...in flux coefficients between compartments representing the main structures of the gut and discarded the underlying fluid mechanics.

To our knowledge, the present work is the first attempt of a fluid mechanics model specially designed to describe the intestinal fluids flows involved in the constitution of the ecological environment of the gut microbiota. Together with adapted population dynamics and host response models, it constitutes a key component of a global ecological model of intestinal microbial communities. We organize the article as follows. We first present the mixture model of intestinal fluid flow in Section 3.2. Section 3.3 then focuses on the boundary conditions of our model and Section 3.4 introduces a formal derivation of an approximated model. Next, Section 3.5 presents the numerical method used for the computation of the numerical tests that are presented in Section 3.6. Then, we analyse the sensitivity of the simplified model in Section 3.7. Finally, we extend the model by including a chemotactic bacterial population in the mixture model in Section 3.8.

3.2 A mixture model for the fluid dynamics in the human gut

Mathematical modelling of the gut content

We introduce a 2D open rectangle domain denoted by Ω D , delimited by two lateral boundaries Γ l , Γ r that represent the gut mucosa, the superior boundary Γ in and the inferior boundary Γ out which stand respectively for the inflow and outflow boundaries -see Figure 3.1 where the mucus layer which measures about four millimeters is represented in green. In this first proof of concept model, we discarded the curvature effects and used Cartesian coordinates instead of cylindrical coordinates.

We assume in this model that the gut content is a mixture of two components: the mucus and the luminal content. According to the mixture theory, we will consider the volume fractions M(t, X) occupied by the mucus and L(t, x) occupied by the liquid luminal phase at time t > 0 and point X ∈ Ω D . We then have, for all t and X

(M + L) (X, t) = 1. (3.2.1) x y L y = 0.12m u v L x = 0.02m L M 0.004m Mucus Γ l Γ in Γ r Γ out Γ c Ω D Figure 3.

-Representative view of the gut

The main idea of this fluid flow model is to consider that both components of the mixture are transported with the same speed. This speed is denoted by V (t, X) = (u, v)(t, X) and represents the mean velocity of the mixture. The unknown u refers to the horizontal component of the speed whereas v is its vertical one. In order to take into account the discrepancies between the mixture average speed and the effective speed of each component, we add a first order corrective term, which is small where the mixture is monophasic, but of order one in the mixed areas. It takes the form of a diffusive term in the mass conservation equations. The associated diffusion coefficient for M and L are denoted by D M and D L , respectively. Therefore, the mass conservation equations are given by the following convection-diffusion equations

∂ t M + ∇ X • (MV -D M ∇ X M) = 0 (3.2.2) ∂ t L + ∇ X • (LV -D L ∇ X L) = 0. (3.2.3)
The velocity is determined using fluid mechanics equations. Since the Reynolds number is low, we can use the Stokes equations instead of the Navier-Stokes equations. So the velocity is solution of

-∇ X • µ (M) ∇ X V + ∇ X V T + ∇ X P = 0 (3.2.4)
where µ (M) is the viscosity and P the hydrostatic pressure. Since the viscosity of the mucus is much more larger than the viscosity of the liquid, we define µ as a function of the mucus volume fraction. We close the system with an incompressibility constraint that we obtain by summing equations (3.2.2) and (3.2.3), while using equation (3.2.1). We obtain

∇ X • V = ∇ X • ((D M -D L )∇ X M) . (3.2.5)
We note that this incompressibility constraint stands for necessary condition to ensure the volume conservation (3.2.1) of the whole mixture. Due to equation (3.2.1), we only keep the mass conservation equation on M and get ride of (3.2.3). The complete system of equations is then given by the equation for the volume fraction of mucus (3.2.2), the mixture theory constraint (3.2.1), the stationary Stokes equation (3.2.4) and the pseudo incompressibility constraint (3.2.5). We complete the system by an initial condition M 0 for the mucus volume fraction at t = 0, and by boundary conditions that we detail in the next section.

Parameter settings

Our model involves several quantities having typical front-like behaviour, that we model with sigmoidal functions. We set

Σ + P (x) = (p max -p min ) x 2α p x 2α p + χ 2α p p + p min (3.2.6a)
and

Σ - P (x) = (p max -p min )         1 - x 2α p x 2α p + χ 2α p p         + p min (3.2.6b)
which depend on a set of 4 parameters embodied into the shorthand notation P = (p max , p min , α p , χ p ). We see that Σ + (resp. Σ -) is an increasing (resp. decreasing) sigmoidal function with limit values p min < p max , χ p is the inflexion point and α p modulates the transition slope. Firstly, let us discuss the form of the diffusion coefficients D M and D L . We suppose that the mucus layer is confined near the mucosa. Consequently, the correction tuned by D M should be small near Γ l ∪ Γ r and high at the center of the domain, and reversely for D L . We also suppose that D M and D L are uniform with respect to y. Denoting P K = (D K,max , D K,min , α K , χ K ) with K ∈ {L, M}, we set

D L (x, y) = Σ + P L (x) and D M (x, y) = Σ - P M (x).
Secondly, how the viscosity depends on the mucus is also described phenomenologically. We suppose that the mucus is more viscous than the luminal content and that there exists a concentration threshold that completely changes the rheological properties of the fluid. We then model the function µ with the parameters P µ = (µ max , µ min , α µ , χ µ ) and the sigmoidal function

µ(M)(x, y) = Σ + P µ (M(x, y)).
Thirdly, we assume that the mucus is initially essentially located near the mucosa with a sharp transition; given P M 0 = (M 0,max , M 0,min , α M 0 , χ M 0 ), it leads to define

M 0 (x, y) = Σ + P M 0 (x). (3.2.7)

Discussion on the boundary conditions

We face different modelling issues concerning boundary conditions. We recall that the different boundaries of the domain describe completely different physiological functions. On one hand, the lateral boundaries Γ l ∪ Γ r represent the intestinal mucosa which produces mucus and pumps luminal liquid, influencing both mass conservation and flow speeds. On the other hand, the horizontal boundary conditions on Γ in and Γ out have to model free inflow and outflow of matter.

Boundary conditions for Γ l ∪ Γ r

On the lateral boundaries, the flux is driven by mucus production and liquid pumping according to

(MV -D M ∇ X M) • n = -f M (M) and (LV -D L ∇ X L) • n = -f L (L), (3.3.1)
Mucus production and water pumping depend on certain thresholds: we set

f M (M) = θ M [M -M * ] -, f L (L) = -θ L [L -L * ] + . (3.3.2)
The former means that the mucosa produces at rate θ M when the mucus concentration is below the threshold M * , while the latter tells us that the mucosa pumps liquid at rate θ L only when the liquid concentration is above the threshold L * . A linear combination of (3.3.1), together with (3.2.1), yields

M + D M D L L V • n = -f M - D M D L f L .
It implies a Dirichlet boundary condition for the transverse velocity u. We can freely define v on Γ l ∪ Γ r without influencing the normal flow of M and L. Keeping in mind compatibility conditions at the corners of the domain, we impose that the tangential velocity vanishes. We arrive at

V • n = u = - f M + D M D L f L M + D M D L L and V • τ = v = 0. (3.3.3)

Boundary conditions for Γ in and Γ out

The definition of relevant boundary conditions on Γ in and Γ out is more challenging. We first choose to assume that the matter can not go through the inflow and outflow boundaries by diffusion. We then set

D M ∇ X M • n = 0 and D L ∇ X L • n = 0. (3.3.4)
The boundary conditions of the velocity have a crucial role on the behaviour of the model: by constraining the velocity, they drive the mucus displacement and its equilibrium with the liquid inside the domain. We aim at finding boundary conditions on the velocity that insure the production of a stable mucus layer without over constraining the system in a non physiological way.

Choosing Dirichlet boundary conditions for Γ in is relevant since the average fluid intake into the gut is a known biological parameter. Furthermore, the constraint that we impose on that boundary will strongly impact the downhill fluid dynamics: Dirichlet boundary conditions will help us to test several profiles able to produce a mucus layer. As the intestinal flow is mainly longitudinal, we assume the transverse velocity to be null on this boundary. On the contrary, relaxing the constraint on Γ out is meaningfull because we want to investigate the model response to the inflow only. For that reason, we choose a no-strain boundary condition. We then get

u = 0 and v = v in on Γ in and µ(M) ∇ X V + ∇ X V T -P Id n = 0 on Γ out (3.3.5)

Remark 1 The mucus distribution that we aim to obtain at steady-state, i.e. mucus layers near the boundary, implies a sharp viscosity distribution near the mucus layer, due to the mucus dependence of the viscosity. In that region, strong variations of the speed field can be expected. If the boundary conditions on Γ in do not reflect in some way this profile, boundary-layer-type corrections can occur near

Γ in to insure a continuous speed distribution in coherence with the boundary condition on Γ in and the mucus distribution. For that reason, obtaining an inflow speed profile v in that ensures a stationary mucus layer is not trivial. We present in Section 3.4 the computation of a candidate profile and in Section 3.6 the method that we finally used to get such an input speed.

Remark 2

The no-strain condition on Γ out actually perturbs the outgoing flow at the outlet of the gut. As we can see in the numerical simulation (cf Section 3.6), a biologically meaningless velocity profile and mucus distribution appear near Γ out . To avoid this boundary effect, one can impose a strain condition on Γ out of the type:

µ(M) ∇ X V + ∇ X V T -P Id n = F(X) on Γ out , (3.3.6)
where F is a fonction to determine. Different ways to compute this fonction F are given in [5,6,4]. However, designing an accurate approximation of the outgoing flow is only mandatory when the flow can be reversed during the simulation, which can happen for example when the flow at the outlet becomes turbulent. In that case, when F is not suitable, some ingoing information is lost, which perturbs the overall simulation. But, in our case, we know that the flow remains outgoing. So choosing F = 0 is relevant and will perturb the flow only locally around the boundary Γ out .

Remark 3 One could also consider Dirichlet conditions on Γ in and Γ out that can be set

u = 0 and v = v in on Γ in and u = 0 and v = v out on Γ out . (3.3.7)
For the Stokes problem to be well posed, the boundary conditions are linked by a compatibility condition obtained by integrating the compressibility condition (3.2.5) on Ω D . That reads

Γ in v in - Γ out v out + Γ M f M + D M D L f L M + D M D L L = ∂Ω (D M -D L )∇ X M • n. (3.3.8)
This condition means that the choice of v out is dependent on the choice of v in and time varying. Furthermore, an equivalent numerical compatibility condition has to be imposed for a correct inversion of the underlaying linear system during the numerical computations. Because we do not a priori know the outflow profile and in order to avoid over-constraints on the model and additional numerical issues due to compatibility conditions, we discarded Dirichlet boundary conditions.

Remark 4 As we can observe on figure 3.1 the domain Ω D is symmetric relatively to the axis y.

So in order to reduce the computational time we could consider the half domain Ω R delimited by

Γ l ∪ Γ in ∪ Γ c ∪ Γ out instead of Ω.

However in order to consider this reduced domain we have to fix boundary conditions on Γ c . A reasonable choice is to impose Neumann boundary conditions for M and

L and u = 0 but it is not clear how to set v on Γ c . In practice we have run a few test setting ∇ X v • n = 0 on Γ c but the results were not conclusive. This is why we rather considered the whole domain Ω D . However, this choice double the number of discrete unknowns for each variables of the system which increases strongly the computational time. Thus the consideration of others boundary conditions such as for exemple u = 0 and ∂ x v = 0 on Γ c should be considered in future works.

Model simplification

We now introduce a simplified model obtained after a formal derivation of a limit model when the aspect ratio of the gut vanishes.

Axisymmetric assumption

We first rewrite the model in cylindrical coordinates. We suppose that the computational domain Ω is a cylinder of radius R and length L and that the solutions of the problem are axisymmetric. By abuse of notation we keep u(r, z) and v(r, z) for the radial and vertical velocity of the mixture, respectively. Then we have

V =          u(r, z) 0 v(r, z)          and ∇ X V + ∇ X V T =          2∂ r u 0 ∂ r v + ∂ z u 0 0 0 ∂ r v + ∂ z u 0 2∂ z v          . Equations (3.2.2), (3.2.
3), (3.2.4) and (3.2.5) become:

∂ t M + 1 r ∂ r (r (Mu -D M ∂ r M)) + ∂ z (Mv -D M ∂ z M) = 0, (3.4.1a) 2 r ∂ r (rµ∂ r u) + ∂ z (µ (∂ r v + ∂ z u)) + ∂ r P = 0, (3.4.1b) 1 r ∂ r (rµ (∂ r v + ∂ z u)) + 2∂ z (µ∂ z v) + ∂ z P = 0, (3.4.1c) 1 r ∂ r (ru) + ∂ z v = 1 r ∂ r (r (D M -D L ) ∂ r M) + ∂ z ((D M -D L ) ∂ z M) . (3.4.1d)
The system is supplemented by the following boundary conditions 

uM -D M ∂ r M = -f M (M), for r = R (3.4.2a) u -(D M -D L ) ∂ r M = -(f M (M) + f L (1 -M)) , v = 0 for r = R (3.4.2b) v = v in , u = 0, ∂ z M = 0 for z = 0 (3.

Simplifications of the Stokes equation

The gut radius (R) is very small compare to its length (L): so the aspect ratio ε = R L 1 is small. In that regime, further simplifications of the velocity and pressure fields can be taken in consideration. To do so we introduce dimensionless variables

r = R r, z = Lz and t = T t (3.4.3) which defins a dimensionless domain Ω × [0, T ] = [0, 1] 2 × [0, 1]. Likewise we introduce the dimensionless functions u = W ū, v = W v, P = Π P , µ = M μ, f φ = F fφ , D φ = D Dφ , φ ∈ {M, L} .
By definition M and L are dimensionless quantities (as volume fractions). We then recast equations (3.4.1a) to (3.4.1d) in the new set of variables; namely, dropping out the .:

1 T ∂ t M + 1 r ∂ r r V R Mu -D M D R 2 ∂ r M + ∂ z V L Mv -D M D L 2 ∂ z M = 0, 2 rR 2 ∂ r (rµ∂ r u) + ∂ z µ 1 LR ∂ r v + 1 L 2 ∂ z u + Π MV R ∂ r P = 0, 1 r ∂ r rµ 1 R 2 ∂ r v + 1 LR ∂ z u + 2 L 2 ∂ z (µ∂ z v) + Π MV L ∂ z P = 0, 1 rR ∂ r (ru) + 1 L ∂ z v = D rR 2 V ∂ r (r (D M -D L ) ∂ r M) + D L 2 V ∂ z (r (D M -D L ) ∂ z M) .
The dimensionless version of the boundary conditions equations (3.4.2a) to (3.4.2e) now reads

uM - D V R D M ∂ r M = - F V f M (M), for r = R u - D V R (D M -D L ) ∂ r M = - F V (f M (M) + f L (1 -M)) , v = 0 for r = R v = v in V , u = 0, ∂ z M = 0 for z = 0 2µ∂ z v + ΠL MV P = 0, µ ∂ r v + R L ∂ z u + ΠR MV P = 0, ∂ z M = 0 for z = L ∂ r M = 0 for r = 0.
We introduce the aspect ratio ε = R L , and we suppose that the pressure is scaled as ΠR MV = 1 ε , that the diffusion is scaled as D RV = ε, that the boundary flux is scaled as F V = ε and that the time is scaled as R T V = ε. Then the system now depends on the single parameter ; it reads

ε∂ t M + 1 r ∂ r (r (Mu -D M ε∂ r M)) + ∂ z εMv -D M ε 3 ∂ z M = 0, (3.4.4a) 2 r ∂ r (rµ∂ r u) + ∂ z µ ε∂ r v + ε 2 ∂ z u + 1 ε ∂ r P = 0, (3.4.4b) 1 r ∂ r (rµ (∂ r v + ε∂ z u)) + 2ε∂ z (µ∂ z v) + ∂ z P = 0, (3.4.4c) 1 r ∂ r (ru) + ε∂ z v = ε r ∂ r (r (D M -D L ) ∂ r M) + ε 3 ∂ z (r (D M -D L ) ∂ z M) . (3.4.4d)
with the boundary conditions

uM -εD M ∂ r M = -εf M (M), for r = 1 (3.4.5a) u -ε (D M -D L ) ∂ r M = -ε (f M (M) + f L (1 -M)) , v = 0 for r = 1 (3.4.5b) v = v in V , u = 0, ∂ z M = 0 for z = 0 (3.4.5c) 2ε 2 µ∂ z v + P = 0, µ ε∂ r v + ε 2 ∂ z u + P = 0, ∂ z M = 0 for z = 1 (3.4.5d) ∂ r M = 0 for r = 0. (3.4.5e)
We then introduce a formal expension of the solutions for each unknown of the problem: g = g 0 + εg 1 + ε 2 g 2 + . . . for g ∈ {M, u, v, P }. We plug it in each equation of the system equations (3.4.4a) to (3.4.4d) and (3.4.5a) to (3.4.5d) and identify the coefficients of the same power of ε.

In equation (3.4.4d), we first get 1 r ∂ r (u 0 r) = 0 which means that for all z ∈ (0, 1), r → u 0 r is constant. As we suppose that u 0 is bounded near Γ c , that constant is zero and u 0 = 0. Consequently, the boundary condition on the radial component of the speed must be of order ε. The next order gives

r∂ z v 0 = ∂ r r D M,0 -D L,0 ∂ r M 0 -u 1 (3.4.6)
We can integrate on (0, 1) along r to get the relation

∂ z 1 0 rv 0 (t, r, z) dr = [r ((D M -D L ) ∂ r M 0 -u 1 )] 1 0 = h(t, z) (3.4.7)
where h(t, z) = f M (M(t, 1, z))+f L (1-M(t, 1, z)) comes from the boundary condition equation (3.4.5b). We now focus on the leading term of equation (3.4.4b) to get ∂ r P 0 = 0. Consequently, at order 0 the pressure does not depend on the radial coordinate so from now we simply denote it by P 0 (t, z). Focusing now on equation (3.4.4b), the leading term gives 1 r ∂ r (rµ∂ r v 0 ) + ∂ z P 0 (t, z) = 0, so that 2rµ∂ r v 0 (r, z) = -∂ z P 0 (t, z)r 2 . Then by taking the integral over (1, r), for the radial coordinate r and using v 0 (t, 1, z) = 0, we get

v 0 (t, r, z) = ∂ z P 0 (t, z) 1 r s 2µ(t, s, z)
ds. (3.4.8) This expression shows that for all z ∈ (0, 1), the radial profile of v 0 is proportional, with a ∂ z P 0 (t, z) ratio, to the radial profile of 1 r s 2µ(t,s,z) ds, which is directly dependent of the viscosity µ(t, s, z) and so on the mucus volume fraction as long as µ is a function of M. We plug that expression in equation (3.4.6) to get the following non homogenous Poisson's equation

∂ z (γ(t, z)∂ z P 0 (t, z)) = h(t, z).
(3.4.9)

where γ(t, z) = µ(t,s,z) ds. Accounting for the boundary conditions for P 0 in z = 0 and z = 1, we then can compute P 0 by solving that 1D elliptic problem. As we have a quite good biological knowledge of the average gut influx speed we set ṽin = 1 0 rv 0 (r, 0)dr and assume that it is known. Thus using equation (3.4.8) and the definition of γ we know that γ(t, 0)∂ z P 0 (t, 0) = ṽin . Furthermore, equation (3.4.5d) shows that P 0 (t, 1) = 0. The pressure P 0 (t, z) is thus given by the explicit formula

P 0 (t, z) = z 1 1 γ(t, s) s 0 h(t, θ) dθ + ṽin ds (3.4.10)
We then use P 0 (t, z) in equation (3.4.8) to compute (r, z) → v 0 (t, r, z). We deduce the first order approximation of u by integrating equation (3.4.6) over (1, r):

u 1 (t, r, z) = (D M -D L ) ∂ r M 0 + 1 r 1 r s∂ z v 0 (t, s, z) ds - 1 r h(t, z) = (D M -D L ) ∂ r M 0 - 1 r r 0 s∂ z v 0 (t, s, z) ds.
The leading terms of equation (3.4.4a) finally shows that M 0 satisfies

∂ t M 0 + 1 r ∂ r (r (M 0 u 1 -D M ∂ r M 0 )) + ∂ z (M 0 v 0 ) = 0 (3.4.11)
supplemented by the boundary conditions 1 is given by : -The reduced mass conservation law for the mucus volume fraction -The first order estimation of the pressure :

∂ r M 0 = 0 for r = 0 (3.4.12a) u 1 -(D M -D L ) ∂ r M 0 = -(f M (M 0 ) + f L (1 -M 0 )) for r = 1 (3.
∂ t M 0 + 1 r ∂ r (r (M 0 u 1 -D M ∂ r M 0 )) + ∂ z (M 0 v 0 ) = 0, (3.4.13a) ∂ r M 0 = 0 for r = 0, (3.4.13b) u 1 -(D M -D L ) ∂ r M 0 = -(f M (M 0 ) + f L (1 -M 0 )) for r = R, ( 3 
P 0 (t, z) = z L R γ(t, s) s 0 h(t, θ) dθ + ṽin ds (3.4.14) with γ(t, z) = 1 4 R 0 s 3 µ(t,s,z) ds and h(t, z) = f M (M(t, 1, z)) + f L (1 -M(t, 1, z)). -The horizontal velocity u 1 (t, r, z) = (D M -D L ) ∂ r M 0 - 1 r r 0 s∂ z v 0 (t, s, z) ds (3.4.15)
-The vertical velocity

v 0 (t, r, z) = R γ(t, z) z 0 h(t, θ) dθ + ṽin R r s 2µ(t, s, z) ds (3.4.16)
This reduce model is easier to implement and its numerical resolution is much more faster while maintaining the mains characteristic of complete model. Theses assets, make this reduce model particularly suitable for the sensitivity analysis.

Velocity field for a simplified mucus map

We suppose that the steady state of the previous system is such that the mucus distribution does not depend on z -which is the case in the experiments. Then the functions γ, h and µ no longer depend on z. So the hydrostatic pressure can be explicitly computed from equation (3.4.14) as follows :

P 0 (t) = R γ(t) h(t) 2 z 2 -L + (z -L) ṽin
Then from equations (3.4.15) and (3.4.16) we get

u 1 (t, r, z) = (D M -D L ) ∂ r M 0 - Rh(t) rγ(t) r 0 s R s θ 2µ(t, θ) dθ ds v 0 (t, r, z) = R γ(t) (zh(t) + ṽin ) R r s 2µ(t, s) ds
Finally assuming that the mucus distribution is piecewise constant in the radial direction, the viscosity µ(r) simply writes as

µ(r) = µ min 1 (0,R M ) + µ max 1 (R M ,R)
with 1 -R M the length of the mucus layer and then

v 0 (r, z) = R 4γ (h(t)z + ṽin ) R 2 -r 2 µ max 1 (R,R M ) (r) + R 2 -R 2 M µ max + R 2 M -r 2 µ min 1 (0,R M ) (r) (3.4.17) with γ = 1 16 1 µ min R 4 M + 1 µ max R -R 4
M . This result will be used to settle the input velocity profile on the boundary Γ in .

Numerical scheme

We update the mucus volume fraction with equation (3.2.2), the velocity-pressure pair is determined by the system equation (3.2.4)-equation (3.2.5) while the luminal liquid volume fraction L is simply defined by equation (3.2.1). We choose a semi-implicit scheme so that the computation of the volume fractions and the velocity-pressure fields are decoupled. We work with Cartesian grids and we use well-established schemes for both equations. In particular we use the Finite Volume framework which mimics the formulae obtained by integrating the equations over the grid cells. The diffusion term in equation (3.2.2) is treated by the VF4 method, which is known to converge on meshes satisfying the orthogonality condition, such as Cartesian grids [14,Sect. 3.1.1]. The transport term is approached according to UpWind principles. The Stokes system is dealt with by using the MAC scheme, which dates back to [17]. Accordingly, pressure, horizontal, and vertical velocities are evaluated on staggered grids; the volume fraction M is stored on the same grid as the pressure, see figure 3.2a. We refer to the grid cells and the corresponding unknowns with the notations Ω i,j (for P , M grid), Ω i- 1 2 ,j (for u) and Ω i,j-1 2 (for v).

P i-1,j-1 P i,j-1 P i+1,j-1 is obtained by integrating it on the mesh cell Ω i,j of the hydrostatic pressure grid and using Stokes formula which lead to

P i-1,j M i,j P i+1,j P i-1,j+1 P i,j+1 P i+1,j+1 ,j-1 u i-1 2 ,j-1 u i+ 1 2 ,j-1 u i+ 3 2 ,j-1 i-3 2 ,j u i-1 2 ,j u i+ 1 2 ,j u i+ 3 2 ,j ,j+1 u i-1 2 ,j+1 u i+ 1 2 ,j+1 u i+ 3 2 ,j+1 v i-1,j-3 2 v i-1,j-1 2 v i-1,j+ 1 2 v i-1,j+ 3 2 v i,j-3 2 v i,j-1 2 v i,j+ 1 2 v i,j+ 3 2 v i+1,j-3 2 v i+1,j-1 2 v i+1,j+ 1 2 v i+1,j+
M i,j u i-1 2 ,j u i+ 1 2 ,j u i-1 2 ,j-1 2 u i+ 1 2 ,j-1 2 v i,j-1 2 v i,j+
∂ t Ω i,j M dΩ + ∂Ω i,j (MV -D M ∇ X M) • n dω = 0
Then according to UpWind principals and the VF4 method we get

M n+1 i,j =M n i,j + ∆t ∆x F n i-1 2 ,j -F n i+ 1 2 ,j + ∆t ∆y F n i,j-1 2 -F n i,j+ 1 2 + ∆t ∆x 2 D M i+ 1 2 ,j M n+1 i+1,j -D M i+ 1 2 ,j + D M i-1 2 ,j M n+1 i,j + D M i-1 2 ,j M n+1 i-1,j + ∆t ∆y 2 D M i,j+ 1 2 M n+1 i,j+1 -D M i,j+ 1 2 + D M i,j-1 2 M n+1 i,j + D M i,j-1 2 M n+1 i,j-1 (3.5.1)
where

F i-1 2 ,j = M i-1,j u i-1 2 ,j + + M i,j u i-1 2 ,j - and F i,j-1 2 = M i,j-1 u i,j-1 2 + + M i,j u i,j-1 2 - .
The discrete formulation of the first component of the Stokes equation equation (3.2.4) is obtained by integrating it on the mesh cell Ω i-1 2 ,j of the u grid and using Stokes formula. For instance, for the horizontal velocity we get

∂Ω i-1 2 ,j µ(M) ∇ X V + ∇ X V T • n dω - Ω i-1 2 ,j ∂ x P dΩ = 0 (3.5.2)
where n is a outward normal vector to the boundary of Ω i-1 2 ,j . The boundary integral splits as a sum over the edges. The staggered grids allow us to evaluate the derivatives by mere finite differential quotients. We are led to the following discrete equivalent to equation (3.5.2)

-∆x μi-1 2 ,j-1 2 - u i-1/2,j -u i-1/2,j-1 ∆y - v i,j-1/2 -v i-1,j-1/2 ∆x -∆y µ(M i,j ) 2 u i+1/2,j -u i-1/2,j ∆x -∆x μi-1 2 ,j+ 1 2 u i-1/2,j+1 -u i-1/2,j ∆y + v i,j+1/2 -v i-1,j+1/2 ∆x + ∆y µ(M i-1,j ) 2 u i-1/2,j -u i-3/2,j ∆x + ∆x∆y P i,j -P i-1,j ∆x = 0. (3.5.3) 
The quantities μ are not directly defined since M, and thus µ, is not stored at the interfaces i + 1 2 , j + 1 2 , where it needs to be reconstructed. For instance we can use the mean value Mi+ 1 2 ,j+

1 2 = 1 4 (M i,j + M i,j+1 + M i+1,j + M i+1,j+1
). When the viscosity has a sharp profile, it can be more efficient to reconstruct μi+ 1 2 ,j+ 1 2 by the harmonic mean [14, Sect. 2.3]. We proceed similarly with the vertical velocity, integrating the second component of equation (3.2.4) . Finally integrating equation (3.2.5) over Ω i,j leads to

∆x (v i,j+1/2 -v i,j-1/2 ) + ∆y (u i+1/2,j -u i-1/2,j ) = D i,j (3.5.4) 
where D i,j is the approximation of the diffusion flux ∂Ω i,j (D M -D L )∇ X M • n dω defined by the VF4 formalism (see [14]) :

D i,j = ∆x (D M -D L ) i-1 2 ,j M i,j-1 -M i,j ∆y + ∆y (D M -D L ) i,j+ 1 2 M i+1,j -M i,j ∆x +∆x (D M -D L ) i+ 1 2 ,j M i,j+1 -M i,j ∆y + ∆y (D M -D L ) i,j-1 2 M i-1,j -M i,j ∆x (3.5.5) 
The same numerical flux is used to update M through the discretization of equation (3.2.2) where the convection term is obtained with explicit upwind fluxes, while the diffusion term is treated implicitly.

The boundary conditions are discretized differently according to the boundary and the equation under consideration. The convection-diffusion equation for M is complemented either by the Robin condition equation (3.3.1), with a convection flux given on Γ r , Γ l by equation (3.3.3), so for exemple on Γ l in equation (3.5.1) we replace For the velocities, the implementation of the null strain boundary condition equation (3.3.5) is a bit more technical especially for the vertical velocity. The null strain boundary condition rewrites as

F -1 2 ,j -D M -1 2 ,j M n+1 1,j -M n+1 0,j /∆x by f M M n 0,j . On Γ in
∂ y u + ∂ x v = 0 and -2µ (M) ∂ y v + P = 0. (3.5.6) 
So we easily deduce that for grid cells having their lower edge on Γ out , equation (3.5.2) simplifies by removing the first term namely the term with µ i-1 2 ,j-

. In order to define the boundary condition for the vertical component of the velocity we rewrite the Stokes equation (3.2.4) as

∇ X • -µ (M) ∇ X V + ∇ X V T + P Id = 0
with Id the identity matrix. Thus using Stokes theorem on the half cell Ω i,j-1 2 represented on figure 3.2b we get

∂Ω i,j-1 2 -µ (M) ∇ X V + ∇ X V T + P Id n dω = 0 ∂Ω i,j-1 2 -µ (M) 2∂ x u ∂ y u + ∂ x v ∂ y u + ∂ x v 2∂ y v + P Id • n dω = 0
of which we deduce that

∂Ω i,j-1 2 -µ (M) ∂ y u + ∂ x v 2∂ y v + 0 P • n dω = 0
for the vertical component of the velocity field. So using the first equality of equation (3.5.6) we deduce that the contribution on the vertical edges of Ω i,j-1 2 are zero. According to the second equality of equation (3.5.6) the contribution of the edge

x i-1 2 ,j-1 2 , x i+ 1 2 ,j-1 2
is also zero. So it only remains the relation

-∆x2µ M i,j v i,j+ 1 2 -v i,j-1 2 ∆y + ∆xP i,j = 0.

Numerical results

We present in this section numerical results that show the ability of our model to produce a stable mucus layer. The speed boundary condition v in and u in on Γ in are key parameters to obtain a steady-state mucus layer. We first present the method that we used to construct suitable v in and u in to obtain a stationary mucus layer. We then illustrate the impact of the choice of the speed boundary condition on Γ in on the downhill flow. We finally present two test cases that provide arguments for the resilience of the mucus layer. For the numerical experiments, the computational domain is

Ω D = [-L x , L x ] × [-L y , 0], with L x = 2
, L y = 12 (in cm) and we work with 100 × 300 grid points that define square cells. The parameters of the model are given in table 3.1. We shall comment the role of the conditions on Γ in and Γ out and discuss numerical experiments where a stable mucus layer establishes.

Comments on the boundary conditions

As explained in remark 1, it is likely that the velocity imposed on Γ in plays a crucial role in the formation of the mucus layer, and a certain compatibility should be satisfied between the expected steady state and the incoming field (u in , v in ). If no measurements are available, we can start with the profile (3.4.17) (and u in = 0) which is based on an asymptotic argument. According to the intuition, the velocity field is quite uniform in the vertical direction, see figure 3.4a for an overview of the horizontal speed over the whole domain. It suggests that the condition on Γ in can be improved with the following iterative procedure: a) Define (u, v) by solving the system (3.2.4)

-(3.2.5), b) set (u in , v in )(x) = (u, v)(x, - L y
2 ) and go back to step a). This approach can also be justified by the fact that we are only considering a relatively short portion of the gut. Note ). The parameters p max and p min are the maximal and minimal bounds of the sigmoid, α p its slope and χ p its inflexion point.

that we have two choices for u in thereafter, namely we can set u in = 0 as before or we can use the function u in given as a result of the iterative procedure. where boundary-layer effects can be sensitive. We pay a specific attention to the role of u in . As far as we consider the vertical component v of the velocity, the resulting profiles are quite similar between two consecutive iterations of the iterative procedure, and quite close to the formal approximation given by Eq. (3.4.17) (the maximal relative difference is 5%) including next to Γ in , see Fig. 3.3a. Conversely, if we use an alternative iteration procedure to define v in only, but keeping u in = 0, very slight discrepancies are observed on u at -L y /2, but boundary-layer effects are clearly sensitive next to Γ in , see Fig. 3.3b and 3.3d : we observe oscillations with high amplitude which might create instabilities. Those oscillations are two orders of magnitude higher during the iteration 0 than the iteration 1. This discussion reveals that the choice of (u in , v in ) is certainly far from harmless. As said in Section 3.3.2, the condition (3.3.5) on Γ out is questionable. We see the effect of the boundary condition on Fig. 3.4: significantly larger horizontal velocities appear in the vicinity of Γ out . The spurious velocities are oriented from the lumen of the gut to the wall. Consequently, a part of the mucus near Γ out will be washed-out, as it can be observed on the mucus profile on Fig. 3.4c after five days: close to Γ out the layer of mucus is smaller than inside the domain. Nevertheless, the flow is mostly oriented outward and, as confirmed by these results, the effects of the null strain boundary condition remain confined close to the boundary.

Stable steady-state mucus layer

In order to evaluate the robustness of the model, we compare the large-time state of the flow when we start from the sigmoidal state (3.2.7), here denoted M 0,s , or from a Gaussian distribution 2 and y = -∆y 2 for the first iterations of the iterative procedure defined in Sec. 3.6.1. The formal speed designates the boundary conditions (3.4.17) used for the initialization of the iterative procedure. The notation u in = 0 stands for the result of the alternative iterative procedure keeping u in = 0. We displayed the horizontal velocity profiles at y = -∆y 2 for iter.0 and iter.1 on different plots, due to their different order of magnitude.

M 0,g (x, y) = M max          exp          - (x -L x ) 2 2 L x 6 2          + exp          - (x + L x ) 2 2 L x 6 2                   . -2 -1 0 1 2 -80 -60 -40 - 
For both initial conditions, we perform the same simulations, with the boundary condition (3.4.17) for v in . After 60 days the two mucus profiles coincide, see Fig. 3.5b (in the area where the mucus volume fraction is larger than 10 -2 the relative difference on the profiles is about 2%). The mucus layer and its shape are thus not strongly determined by the initial condition, at least in these configurations. However, if we use the iterative procedure to compute v in , the profile v in depends on the initial data for M and some discrepancies on the mucus profile at larger times appear; see Fig. 3.6 for a comparison between the sigmoidal and the Gaussian profiles. We also investigate the ability of the model to recover its steady states when the mucus layer is strongly perturbed at t = 0. We start from the sigmoidal shape M 0,s , and we compute the condition on Γ in with the iterative procedure. Once the boundary condition is determined, we reset the initial condition by eroding the mucus layer between y = -4cm and y = -9cm. Namely, in this domain we modify the parameter of the sigmoid, changing only the inflexion point. Fig. 2 for initial data M 0,g and M 0,s at t = 0 and t = 60 days with v in given by Eq. (3.4.17).

3.7 displays several snapshots of the evolution of the volume fraction M. The mucus layer disruption is neatly visible at t = 0: we note M 0,p that initial perturbed distribution. After one day, a tongue of mucus is transported from uphill and starts to overlay the eroded mucus layer area. The initial disruption is also transported and its downhill part is abraded by the liquid flow. At t = 2 days, half of the initial disrupted zone has been already transported outside the domain and the mucus tongue increases until re-covering a mucosa portion equivalent to the initial disruption. At t = 3 days, the mucus tongue reaches Γ out and at t = 5 days, the recovering is quasi-completed. During the whole simulation, the mucus layer located upstream is stable. The final mucus layer is visually equivalent to the layer of the unperturbed data. The first plot of Fig. 3.8 represents the mucus profile at y = -8cm at the same days than in Fig. 3.7. At t = 5, we also plot the mucus profile at y = -3cm for comparison issues. At t = 1, we can see that the mucus layer is still disrupted. Then, at t = 2 and t = 3, the mucus tongue appears, exhibiting a few mucus peaks. The peaks grow to fill up the mucus layer until reaching the steady state at t = 5 days. The luminal part of the mucus tongue is superimposed with the steady state mucus profile at t = 5 and y = -3cm. The second plot of Fig. 3.8 displays the time evolution of the 2 for initial data M 0,g and M 0,s at t = 0, 10 and t = 20 days with v in given by the iterative procedure.

L 2 norm of the difference between the current volume fraction of mucus and the volume fraction at the previous day. This quantity rapidly drops down until reaching a steady-state at about t = 10 days, indicating that the mucus volume fraction is in a stationary regime. This numerical experiment shows the recovering dynamics of the mucus layer after degradation and proves the ability of the model to preserve and restore a stable mucus layer.

Sensitivity analysis

In order to better interpret the mechanisms involved in the formation of a stable mucus layer, we perform a sensitivity analysis of the model to identify the parameters that most impact the shape of the mucus layer at steady-state. The sensitivity analysis starts by choosing uncertain model parameters; they are modelled as random variables with suitable probability distributions. We then sample these random parameters and run the deterministic model for each realization. Finally, we quantify with appropriate statistics the induced variability of relevant descriptors of the mucus layer shape. In order to reduce the computational load, we use the reduced model presented in Section 3.4 and more precisely system (3.4.13) to (3.4.16). This model has 21 parameters: for computational reasons, all the parameters cannot be tested all together. We choose to focus on the threshold effects related to the sigmoidal shape of the coefficients and initial condition: we select the initial mucus front location χ M0 , the diffusion coefficient transition location χ M , the mucus production rate θ M , the liquid pumping rate θ L , the viscosity transition χ µ and the input speed w in . As we have no prior physiological knowledge on the variability of the parameters, we use uniform random variables. The mean values are given by Table 3.1; the standard deviation is chosen as 25 % of the mean value. We ran the deterministic code until steady-state, with maximal simulation time of 20 days, which is enough to stabilize the mucus layer. Assuming that the mucus layer is uniform in y, we look for suitable descriptors of its shape. This is done by computing the parameters of the sigmoidal function f obs (x, y) = (max obsmin obs ) x 2α obs x 2α obs +χ 2α obs obs +min obs that best fits the steady-state mucus profile in the least-square sense. These parameters are used as observables in our sensitivity analysis. As we want to minimize the number of runs of the deterministic code, we choose the non-intrusive pseudo-spectral method of generalized Polynomial Chaos (gPC), an extension of the method developed in [12]. The numerical output Υ = (max obs , α obs , χ obs , min obs ) is decomposed on a basis of orthogonal Polynomial Chaos depending on the spatial variable X and on the uncertain input ξ(ω) = (χ M0 , χ M , θ M , θ L , χ µ , w in ), where ω is the corresponding vectorial probability density. Namely, we compute the deterministic coefficients (a j ) with orthogonal projections, in order to get

Υ (x, ω) = M j=1 a j (x)ψ j (ξ(ω)), with a j (x) = E Υ , ψ j (ξ(.)) , ∀ j ∈ {1, ..., M} (3.7.1) 
where {ψ j } j are the Polynomial Chaos basis of order at most p. For uniform distributions, a suitable ω-orthonormal basis is the Legendre polynomials. For our purpose, a degree p = 3 is sufficient for the convergence of statistical results. The bottle-neck of the method relies in the estimation of the multidimensional integrals with probability support ω needed to compute the coefficients a j . When the number of uncertain parameters N is low (N < 4), efficient highorder numerical quadratures of full-tensor products [13] represent an appropriate alternative to Monte-Carlo type sampling which are computationally expensive. For higher dimensions, full quadrature grids have also a prohibitive computational load. We then use sparse grid quadrature [15] which takes advantages of sound partial tensorizations, avoiding the combinatorial explosion of the sample size while keeping a high level of accuracy. Consequently, the expansion coefficients have been estimated based on a Clenshaw-Curtis (CC) sparse cubatures of level 5 [25]. With this choice, we made 389 runs of the deterministic code in total for N = 6. To quantify the sensitivity of the outputs to the input uncertainty, we compute two statistical indicators. We first determine the output coefficients of variation Υ i,CV = Υ i,std /Υ i,mean . Next, we compute the Sobol's indices [32] which estimate the contribution of each parameter, or groups of parameters, to the total variability of Υ . They are based on a normalization of the values

V i = V ar(E[Υ |ξ i ]), resp. V ij = V ar(E[Υ |ξ i , ξ j ]) -V i -V j ,
which evaluates the magnitude of the variability of the output subject to variations of the parameter i, resp. of the parameters i and j. The first and second order Sobol's indices then read

S i = V i /V ar(Υ ) and S ij = V ij /V ar(Υ ).
We start by checking the first order Sobol's indices. The results are presented in Fig. 3.9a and Table 3.9b. The coefficients of variation first indicate that the maximal value of the sigmoidal output has very small variations, unlike the other parameters. This variability is partially explained by the occurrence of extremal cases such as filling up of the entire domain by the mucus. The Sobol's indices show that the parameter χ M0 is strongly predominant on the variability of all the observables except max obs . It suggests that our model is strongly determined by its initial value. We then perform another analysis by fixing the parameter χ M0 to its mean value, in order to analyse the influence of the remaining parameters. see Fig. 3.10a and Table 3.10b. The coefficients of variation of the observables are low, except for the slope of the sigmoid, indicating that the parameter variations modify the magnitude of the mucus gradient rather than radially transporting a sharp mucus front. It also suggests that the extremal cases are much less frequent when χ M 0 is fixed. The Sobol's indices inspection shows that χ M is the most influential parameter on the whole set of observables, followed by the input speed w in and the crossed contribution of w in and χ M . At the other side of the spectrum, θ M is the weakest contributor to the output variability. These values reflect the diffusion and convection interplays during the determination of the large time solution. We note that the parameters that drive the boundary conditions or the threshold of the viscosity function have less impact on the outcomes of that model.

Extension to a model including a chemotaxis phenomenon for the bacteria

We now propose an extension of the model by taking into account the presence of the bacterial community. Our modelling is definitely rough and questionable, but it already allows us to bring out interesting features. We gather all the bacterial community in a single population considered as an additional phase in the mixture model with volume fraction B(t, X). It obeys a 

t B + ∇ X • (BV -B∇ X φ) = ∇ X • (D B ∇ X B) (3.8.1)
and the volume conservation condition becomes B + L + M = 1. The space-dependent diffusion coefficient D B is intended to model both the own bacterial diffusion and interphases interactions. Additionally, the displacement of the bacteria is driven by a chemotactic potential φ. Velocity and pressure are defined by Stokes equation (3.2.4) with the appropriate boundary conditions. The incompressibility constraint equation (3.2.5) becomes

∇ X • V = ∇ X • ((D B -D L ) ∇ X B + (D M -D L ) ∇ X M + B∇ X φ) . (3.8.2)
and is obtained by taking the sum of equations (3.2.2), (3.2.3) and (3.8.1). Two different biological phenomena are embodied into the potential φ:

1. the bacteria are supposed to be attracted by the mucus, they are "attached" to this viscous fluid to resist against the luminal liquid wash out and to take advantage of this nutrient source;

2. conversely, bacteria cannot penetrate too deeply into the mucus, since they are attacked by the immune system of the host.

We phenomenologically account for these phenomena by introducing an attracting rate f (M) which is optimal when the volume fraction of mucus reaches the threshold M ref . The chemotactic potential is then defined through the Poisson equation This equation is supplemented by homogeneous Neumann boundary conditions and we select the solution verifying Ω φ dX = 0. We close the system with an initial condition B 0 and the following boundary conditions on B

∆ X φ = f (M) - 1 |Ω| Ω f (M).dX, with f (M) = 1 - 1 η M -M ref 2 + 1 (η > 0). ( 3 
(BV -B∇ X φ -D B ∇B) • n = 0 on Γ l ∪ Γ r and ∇B • n = 0 on Γ in ∪ Γ out .
It means that bacteria cannot cross the mucosa and flow through Γ in ∪ Γ out by transport. We suppose that the volume fraction of bacteria is small compared to the amount of mucus or liquid, which leads us to assume the interface diffusion to be constant. We also suppose that the diffusion of bacteria grows with the amount of liquid. We set P D B = (D B,max , D B,min , α B , χ B ) and take

Sigmoid distribution

D B (x, y) = Σ - P D B (x).
For the sake of simplicity, we assume that B 0 depends only on the horizontal coordinate with a profile defined by Gaussian functions centered on the interfaces liquid/mucus (see Fig. 3.11a)

B 0 (x, y) = B max exp - (x + χ B ) 2 2 (L x /σ B ) 2 + B max exp - (x -χ B ) 2 2 (L x /σ B ) 2 . ( 3.8.4) 
The parameters are collected in table 3.2. Eq. (3.8.1) is treated like the conservation equation for M. The Poisson equation (3.8.3) is discretized with the VF4 scheme on pressure cells. The mean value in the right hand side, as well as the constraint on φ dX, are approached by a suitable quadrature rule. We are led to solve an invertible linear system by introducing a Lagrange multiplier.

As in Section 3.6, we discuss the influence of the boundary data on Γ in , depending whether or not u in vanishes, and we check the behavior of the system when the mucus layer is perturbed. On Fig. 3.11b, the initial data for the mucus is a sigmoidal function M 0,s and u in = 0. We observe a neat concentration of the bacteria community around the abscissa x = ±1.4 where the mucus volume fraction is close to M ref until t = 12 days. Then, the amount of bacteria starts to decrease and after 50 days, see Fig. 3.11c the volume fraction of bacteria is almost zero: the model is not able to conserve a bacterial population in the gut. Surprisingly enough, the behavior is different when we keep u in = 0 and we change the initial data for the mucus to M 0,g , see Fig. 3.12a. A steady state, represented in Fig. 3.12b, is reached after 10 days: the profiles are indeed the same after 100 days, see Fig. 3.12c. Moreover representation of the difference of mucus and bacteria volume fraction in the L 2 norm between two consecutive days on figure 3.13 show that it converges to a stationary state. In this state the bacterial community concentrates at the interface mucus/liquid, where the mucus volume fraction takes the value M ref = 0.4. The mucus profile is slightly sharper than initially.

It is interesting to study the influence of the horizontal velocity at Γ in . Instead of imposing u in = 0 as above, we now set u in 0 as given by the iteration procedure at section 3.6.1. Mucus and bacteria profiles at t = 50 and t = 140 days are displayed on Fig. 3.14 for the sigmoidal initial .)-M(t -1; .) 2 on the left and of log B(t; .)-B(t -1; .) 2 on the right; for initial mucus profile M 0,g and u in = 0. data M 0,s . Changing the boundary condition for u in has completely changed the large time profiles: instead of a bacteria wash out, we observe an overgrowth of the bacterial population and a persistence in the domain. During the first 50 days, the total amount of bacteria is multiplied by eight and the maximal volume fraction of bacteria goes from 0.1 to 0.6, see figure 3.14a and 3.14b. Then the amount of bacteria decreases during a few days and stabilises with a maximal volume fraction around 0.5, see Fig. 3.14c. The mucus profile becomes also very specific: the luminal part is completely deformed around the bacterial aggregate. Some mucosal matter seems to be pushed laterally towards the lumen by the bacterial population, which occupies more and more volume. This fact can be related to a physiological observation: the soft layer of mucus has a greater volume than the hard layer due to the bacteria and the eukaryotic residuals that it contains. Note that, due to the high bacterial volume fraction at their distribution peak, the bacterial aggregate cannot be located where M = M ref .

The coupling with a bacterial population, which is furthermore driven by chemotactic mechanisms, makes the model more sensitive, in particular with respect to uncertainties on the horizontal velocities, and its behavior is more intricate. This preliminary attempt provides interesting and relevant avenues for reflection, that will be further investigated elsewhere. We finally investigate the recovery of the mucus layer when the initial condition is perturbed and the bacterial population is present. We take the same protocol as in Section 3.6. We start with M = M 0,p at t = 0 and take the result of the iterative process as boundary condition on the boundary. The bacteria population initial distribution is sigmoidal until y = -4 and uniformly zero for -4 ≥ y ≥ -L y . Several snapshots of the simulation are displayed in Fig. 3.15. We can see that the mucus layer reconstruction dynamics is visually unchanged: a mucus layer is recovered after a few days through the overlapping of the disrupted zone by a uphill tongue of mucus. We can see the complex interaction of the bacterial population with the mucus layer near the tongue of mucus. At t = 2 and t = 3 days, we can observe that some bacteria are transported uphill and get into the interstitial space between the mucus tongue and the mucus layer near the mucosa. At t = 50, we observe some mucus in the lumen of the gut, reflecting the deformation of the mucus front by the bacterial population.

Conclusion

Discussion

The goal of this study was to propose a proof of concept of a fluid mechanic model, based on a biologically relevant framework, able to produce a stable mucus layer as steady state. We showed in this work that, based on a short list of simple biological mechanisms -mucus production, liquid pumping, viscosity discrepancies between liquid and mucus, relevant inflow-a physiological mucus distribution is obtained as steady state. Furthermore, after a perturbation, a homogeneous mucus layer was recovered, which shows the robustness of the model that we propose.

We aimed to choose a good trade-off between the diversity of the biological mechanisms that the model takes into account and the complexity of the mathematical model. The main biological mechanisms involved in the mucus layer homoeostasis are the mucus production, the hydratation/deshydratation of the mucus mediated by the water pumping through the mucosa and the viscosity discrepancies between the mucus and the liquid. Modelling this biphasic fluid while considering the water exchange from the luminal liquid to the mucus is challenging. We then choose a mixture model because it is able to describe this multiphasic flow and the phase-tophase exchange without tracking any interface, while giving a relevant behaviour regarding fluid mechanics.

The simplified model that we introduce makes a step ahead in the biophysical interpretation of the model. The explicit formula of the longitudinal and the radial speeds make us able to link the model parameter to the speed profiles: e.g., we can see how the inflow average speed, the viscosity radial distribution and the mucosa activity define the longitudinal speed. Furthermore, the computational gain made the model sensitivity analysis possible.

We have introduced bacterial populations in the model to show the ability of our approach to couple fluid mechanics models with population dynamics ones. We point that the microbial populations are considered as a fluid: we then take into account the volume occupied by the bacteria and their mechanical interactions with the intestinal fluids. This is important because the microbiota is a non negligible part of the total amount of the luminal biomass (about 40 %): bacteria are then an important actor of the fluid mechanics in the gut. Furthermore, our model reproduces well known mechanisms such as the mucus layer flattening due to the penetration of the bacteria into the luminal part of the mucus layer.

The model is able to take into account several pathological disorders of the mucus. By changing the parameters of the µ function that links the mucus distribution to the viscosity map of the mixture, we can model a range of rheological disorders due to mucin composition or conformation. With the functions f M and f L , we drive the ability of the mucosa to produce mucus or pump liquid.

We then are able to use our mucus model to numerically explore multi factorial mechanisms that lead to mucus layer disruption in several bowel diseases, such as the inflammatory bowel disease (IBD).

Limitations and future improvements

Several limitations can be pointed out. Firstly, several biological simplifications have been made in this first attempt. We work with a simplified the geometry by taking into account an idealised plane domain. Furthermore, we did not consider cylindrical coordinates in this first implementation: the impact of the curvature is neglected. Finally, important mechanisms regarding fluid mechanics are discarded: e.g. we did not consider the fluid/structure interactions that occur during peristaltism -the periodic contraction of the mucosa that produces longitudinal traveling waves trains in both direction, in order to facilitate the intestinal transit-, nor the bacterial gas production that can influence the intestinal fluids flows. Taking into account those mechanisms could be an important improvement of our model. Secondly, we make several phenomenological modelling choices. We decide to consider an average velocity for the whole mixture and take into account the discrepancy between the fluid and the mucus velocity through the diffusion terms. The latter supposed to be large in mixed areas and small outside of the interfaces. Furthermore we choose to fix arbitrarily a sigmoidal profile for the diffusion. This profile can be collocated with the mucus-liquid interface at t = 0 but discrepancies can arise during the simulation between the mucus front location and the diffusion profile. In future works, we want to test a mucus dependant diffusion coefficient or even consider that on each component have with it own velocity.

Another limitation of the model lies in the choice of the viscosity profile. One of the goal of the model was to capture the mucus layer stratification between the inner tough layer and the outer soft layer. We actually expected to be able to observe this stratification through variations of the mucus radial profile : an inner layer of mucus and an outer layer mixed with water and bacteria. This repartition would be the result of a trade-off between mucus production, liquid pumping, transport and diffusion. But the observed mucus profiles are quasi-parabolic functions, and there is no stratification between mucus layers. In a future work, we want to modify the viscosity profile in order to reflect the rheological discrepancies between the two mucus layers and to check the impact of this modification on the mucus profile. We hope that the mucus stratification will be more readable in that case. We proved in that work that the fluid mechanics model that we develop can be coupled with a population dynamics model -see section 3.8. The bacterial population that we modelled has a chemotactic function that helps them to move towards the mucosa. If this function was experimentally observed, the way we modelled it was phenomenological. In future works, we aim at improving this chemotactic term in order to more closely reflect biological mechanisms.

Conclusion

The model that we present in this work sheds some light on the relative importance of the different biophysical phenomena involved in the mucus layer production (production, pumping, transport, diffusion, viscosity...). The impact these parameters has been studied through a sensitivity analysis. The model is able to produce a stable steady-state mucus layer as in physiological situations, together with recovering it after pathological perturbations. Together with its approximate model, it is an important step towards a light and accurate model of the gut ecosystem and of the microbial populations that live in it. It can help to integrate different biological knowledge to better understand the microbial population dynamics and the host-microbiota interactions, especially through the mucus layer.

Introduction

The distal human gut, also known as colon, is inhabited by a complex microbial ecosystem, the gut microbiota. Recent progresses in the knowledge of the microbiota structure and function have demonstrated its direct or indirect implication in various affections, among which Crohn's disease, allergic and metabolic disorders, obesity, cholesterol or possibly autistic disorders. Understanding the gut microbiota ecology is one of the current scientific hot-spot in microbiology.

The gut microbiota provides to his human host several benefits, such as water pumping [2,14], energy harvesting [11], barrier function against pathogens and immune system maturation [12]. However, even these commensal bacteria represent an infection threat for the host. Alongside with complex active immune mechanisms, a first simple and passive protection is an insulating layer of mucus that physically separates the microbial populations from the host tissues. This mucus barrier is actually composed of two distinct layers with different rheological characteristics. A first viscous layer wraps the epithelial cells. An external, thicker and more fluid, layer covers the first one [1]. These rheological discrepancies are attributed to structural differences in the mucus protein folding and to hydration/dehydration effects. The active water pumping of the intestinal mucosa dries out the inner layer of mucus, whereas the liquid luminal content keeps the outer layer hydrated. Mucus turn over results from the erosion of the external layer by the luminal flux and the continuous renewal of the inner layer by the mucosa [15]. Unlike the inner layer, the outer layer can be penetrated by bacteria, for which it can be a food source and a mean to resist the luminal flow and increase their residence time in the gut. It represents an ecological niche that influences the global equilibrium of the gut microbiota.

A model describing the fluid dynamics in the colon has been proposed in [5]. This model was based on mixture theory, considering two distinct phases in the gut : the luminal liquid and the mucus layer. A first attempt has also been made to include the effect of bacteria on the mucus formation. The first results of the model show the preservation of a mucus layer near the boundaries of the domain, as expected. The next step would be to improve the fluid dynamics description by integrating the host-microbiota interactions. For that purpose, we are dealing in this article with a spatial description of the microbiota behaviour as a population dynamics model.

We concentrate here on the role of the gut in the digestion process. Dietary proteins are mainly digested in the small intestine (from 80 to 95 %), as well as lipids but the inflow from the small to the large intestine is roughly composed of 80% of indigestible fibres (dietary polysaccharides). The intestinal microbiota is able to metabolize those residual products through complex metabolic pathways, resulting in assimilable by-products. The microbial degradation of the polysaccharides provides up to 10 % of the daily energetic needs of the host [11]. The whole polyssaccharides degradation pathway can be decomposed in three main functions. First dietary polysaccharides are broken down by bacteria into oligo or monosaccharides (see [13,3,4]), releasing at the same time acetate and hydrogen. Other bacteria are then dedicated to the transformation of monosaccharides into acetate and hydrogen; this process is called "homoacetogenesis".

Hydrogen is ultimately processed in methane during the methanogenesis process. Note that the mucus is also composed of polysaccharides and a similar reaction occurs to transform it into monosaccharides, acetate and hydrogen. A compartmental model, written in terms of a large system of Ordinary Differential Equations describing fibre degradation by gut microbial populations, has been proposed in [10]. This model takes into account the previously described chemical reactions that happen during the digestion of the fibres in the gut. In this 0D model, the whole intestine is described by 6 discrete compartments that communicate together. The mucus is a separate compartment but spatial mechanisms are loosely described and the underlying fluid mechanics is discarded. Our aim is to add a continuous spatial dependency in the model presented in [10], reproducing the movement of the biochemical components and of the bacteria together with the mass transferts due to the digestion reactions. Since our aim is to design a macroscopic model in the large intestine, it is natural to consider for the spatial domain a cylinder and to work with cylindrical coordinates. The motion of the constituents, biochemical components and bacteria, is mainly due to the intestinal flow which occurs in postprandial periods, which can be seen as pulses.

The postprandial period is the period which follows a meal and during which the velocity of the flow in the gut becomes non zero during a few minutes and then goes back to zero. In addition to the intestinal flow, the bacteria can move due to chemotactic attraction. Biologically, it means that bacteria are attracted by some specific elements, for example the biochemical components that they are able to assimilate. For instance, the bacteria that are able to decompose the polysaccharides are attracted by the dietary fibres and by the mucus. To do so, we assume that the component produces a chemotactic potential and that the velocity of the bacteria are affected by the gradient of this potential. The model we consider in this article takes therefore the form of a system of advection-diffusion-reaction equations, where the reaction terms reproduce what has been done in [10] and the advection terms consists in chemotactic terms and a fixed velocity.

Let us now give the outline of this paper. We first recall in Section 4.2 the construction of the ODE model in [10] based on the description of the chemical reactions that occur during the digestion and that involve chemical components and bacteria. In Section 4.3, we extend this model to a system of PDE, paying special attention to the definition of the intestine flow velocity and to the chemotactic velocity. The numerical approximation of the system is detailed in Section 4.4 with some explicit-implicit strategy. Finally, some numerical results are presented in Section 4.5.

4.2 A simplified version of the model in [10] In this section, we consider a simplified version of the mathematical model of carbohydrate degradation by human microbiota proposed in [10].

In [10], they consider a model of 17 variables present in 6 compartments, that is to say 3 regions (proximal colon, transverse colon and distal colon), each of them being split between a luminal part and a mucosal part. The compartments were considered as spatially homogeneous and no spatial dependency was considered and the model therefore reduced to a system of ordinary differential equations. We consider the following 6 biochemical components : Let us now give some details on the 4 reactions we consider and which involve the previous mentioned components and bacteria.

C 1 : mucus (polysacccharids),
In each of the 4 reactions, components exchange mass and one unit of reactant may leads to several units of product, which is described through pseudo-stoichiometric coefficients. Indeed each reaction summarises a complex metabolic network : a cascade of elementary biochemical reactions are aggregated and described by a single reaction. This reaction is written to ensure the mass conservation of components under consideration. However, some of the metabolic pathways of secondary products can be put aside. The pseudo-stoichiometric coefficients are denoted by α r k where the subscripts r ∈ [ [1,4]] and k ∈ [ [1,6]] stand respectively for the reaction and the component under consideration. Similarly, β m k is the pseudo-stoichiometric coefficient of bacteria k ∈ [ [1,3]] induced by reaction r ∈ [ [1,4]].

Reaction 1 : Degradation of dietary fibres. Roughly speaking, two types of components enter the gut, the dietary fibres and the dietary oligo-or monosaccharides. The fibres C 2 , made of polysaccharides, are not directly assimilable by the host, but can be broken into oligo-or monosaccharides C 3 by specialised bacteria of the microbiota [13,3,4]). This reaction produces acetate C 4 and hydrogen C 5 and also contributes to the growth of the bacteria community B 1 , able to metabolize polysaccharides. Therefore, the schematic representation of the reaction is :

C 2 ϕ 1 -------→ α 1 3 C 3 + α 1 4 C 4 + α 1 5 C 5 (+β 1 1 B 1 ). (4.2.1)
Reaction 2 : Homoacetogenesis. Once the polysaccharides have been broken into oligo-and mono saccharides, the acetogenesis process occurs and monosaccharides C 3 are decomposed into acetate C 4 . This reaction is catalysed by the bacteria B 2 , which grows during this phase, and produces hydrogen C 5 , as well as acetate. The process is summarised by

C 3 ϕ 2 -------→ α 2 4 C 4 + α 2 5 C 5 + β 2 2 B 2 . (4.2.2)
Reaction 3 : Methanogenesis. Methanogenesis it the transformation of hydrogen C 5 into methane C 6 by the third microbial community B 3 :

C 5 ϕ 3 -------→ α 3 6 C 6 + β 3 3 B 3 . (4.2.3)
Reaction 4 : Degradation of mucus. The mucus C 1 plays an important role in the gut digestion process. The polysaccharides that compose the mucus are also broken down into monosaccharides, in a process similar to Reaction 1. We distinguish however the two reactions :

C 1 ϕ 4 -------→ α 4 3 C 3 + α 4 4 C 4 + α 4 5 C 5 (+β 4 1 B 1 ). ( 4 

.2.4)

In addition to these four reactions, we also consider the death of bacteria B 1 , B 2 and B 3 . When bacteria die, their membrane is destroyed and their content, mainly polysaccharides C 2 , is released in the system. Finally we also consider the equilibrium between the dissolved hydrogen C 5 and the gaseous hydrogen present in excess in the gut. This reaction is a balance, which means that depending on the concentration of dissolved hydrogen the reaction may lead to the augmentation of the concentration of C 5 or a decrease.

A model based on ordinary differential equations

On the basis of the reactions previously described, we are now able to give some equations for the evolutions of the densities of the components and of the bacteria. The densities c k (t) (resp. b k (t)) of the components C k , 1 ≤ k ≤ 6 (resp. of the bacteria B k , 1 ≤ k ≤ 3 ) depend on time t ∈ R + and are described by the following ordinary differential equations :

∂ t c k = Γ c,k , ∂ t b k = Γ b,k ,
where Γ c,k (resp. Γ b,k ) are the corresponding reaction terms.

In order to determine the reaction term associated to a component (resp. a bacteria), we list the reactions where this element is involved; then Γ c,k (resp. Γ b,k ) is the sum of the products of the We add also one term for the death of the bacteria and another term for the equilibrium between the dissolved and the gaseous hydrogen. The death rate of bacteria is τ 5 and a proportion of η turns to polysaccharides C 2 . For the equilibrium between the dissolved and the gaseous hydrogen we use the Henry's law with the reaction rate τ 6 and the concentration of C 5 at equilibrium denoted by K eq . We obtain therefore the following expressions for the biochemical components, where ϕ k , 1 k 4 denotes the reaction rate of reaction k :

Reaction 1 2 3 4 C 1 0 0 0 -1 C 2 -1 0 0 0 C 3 0.45 -1 0 2.
                                 ∂ t c 1 = Γ c,1 = -ϕ 4 , ∂ t c 2 = Γ c,2 = -ϕ 1 + ητ 5 (b 1 + b 2 + b 3 ), ∂ t c 3 = Γ c,3 = α 1 3 ϕ 1 -ϕ 2 + α 4 3 ϕ 4 , ∂ t c 4 = Γ c,4 = α 1 4 ϕ 1 + α 2 4 ϕ 2 + α 4 4 ϕ 4 , ∂ t c 5 = Γ c,5 = α 1 5 ϕ 1 + α 2 5 ϕ 2 -ϕ 3 + α 4 5 ϕ 4 + τ 6 c 5 -K eq , ∂ t c 6 = Γ c,6 = α 3 6 ϕ 3 , (4.2.5)
and for the bacteria :

             ∂ t b 1 = Γ b,1 = β 1 1 ϕ 1 + β 4 1 ϕ 4 -τ 5 b 1 , ∂ t b 2 = Γ b,2 = β 2 2 ϕ 2 -τ 5 b 2 , ∂ t b 3 = Γ b,3 = β 3 3 ϕ 3 -τ 5 b 3 . (4.2.6)
All the pseudo-stoichiometric coefficients appearing in the formal description of the reactions are estimated from [10] and resumed in table 4.1. Coefficient β j i (resp. α j i ) can be found in the j-th colomn (corresponding to the reaction) and on the i-th row (corresponding to the component).

Expressions of the reaction rates

Following [10], we now make precise the expressions of the reaction rates used in the definitions of the reaction terms (4.2.6) and (4.2.5). To begin with, reaction rates are linear functions of the bacteria that catalyze the reaction. But we have to pay attention to some other effects, like saturation or inhibiting effects. To do so, we will use two classical kinetic laws, namely Monod law and inhibition law.

Monod law models a saturation effect when a particular element is in excess. Mathematically, it can be described by the function g(x) = x K + x with K the half saturation parameter. We notice that this function grows linearly when x is small and tend to 1 when x tends to infinity, mimicking a saturation phenomenon. In what follows, we assume that the quantity of reactants has an influence on the reaction, namely the reaction rate increases with the quantity of reactant up to a saturation. On the opposite, the inhibition law describes the decay of the reaction rate when an element is in excess. The corresponding mathematical function is h(x) = K K + x with K the half inhibition constant. Function h is equal to 1 when x = 0 and decreases towards 0 when x → +∞.

Let us now describe the reaction rates ϕ 1 , ϕ 2 , ϕ 3 and ϕ 4 Reaction 4.2.1 is catalysed by the bacteria B 1 and consumes the fibres C 2 . We also assume that the reaction is negatively regulated by the pH and so an excess of C 5 slowdown the reaction. So the reaction rate ϕ 1 is defined by the product

ϕ 1 = τ 1 c 2 K 2 + c 2 × K pH K pH + c 5 b 1 ,
with τ 1 the maximal reaction rate by unit of B 1 , K 2 the half saturation parameter associated to c 2 and K pH the half inhibition parameter associated to c 5 .

The second reaction 4.2.2 decomposes the oligo or monosaccharides C 3 and is catalysed by the bacterial community B 2 . Thus the reaction rate writes as

ϕ 2 = τ 2 c 3 K 3 + c 3 b 2 ,
with τ 2 the maximal reaction rate by unit of B 2 and K 3 the half saturation parameters associated to c 3 . The methanogenesis 4.2.3 is the production of methane by the third bacterial community B 3 using hydrogen C 5 , which leads to the reaction rate :

ϕ 3 = τ 3 c 5 K 5 + c 5 b 3
with τ 3 the maximal reaction rate by unit of B 3 and K 5 the half saturation parameter associated to c 5 . The reaction 4.2.4 is similar to reaction 4.2.1. Replacing the fibers C 2 by mucus C 1 , we obtain

ϕ 4 = τ 4 c 1 K 1 + c 1 × K pH K pH + c 5 b 1
with τ 4 the maximal reaction rate by unit of B 1 , K 1 the half saturation parameter associated to c 2 and K pH the half inhibition parameter associated to c 5 .

Description of the mathematical model

This section is dedicated to the presentation of the mathematical model based on partial differential equations, as an extension of the model (4.2.6)-(4.2.5) detailed in previous section. The large intestine is represented by a cylindrical domain of radius R and length L, denoted by Ω, see Figure 4.1. In the sequel, we will use the cylindrical coordinates X = (r, z). Unlike [10] we consider the gut as a whole and do not distinguish the proximal colon, the transverse colon and distal colon. We denote by c k (t, X), 1 ≤ k ≤ 6, the density of the biochemical component C k in g L -1 , which depends now on time t ∈ R + and on point X ∈ Ω ⊂ R 2 . Similarly, b k (t, X), 1 ≤ k ≤ 3, stands for the density of bacteria B k at time t and at point X ∈ Ω. The evolution of these densities is driven by three different factors leading to three different terms. First, all the constituents are transported at the same velocity V which is the velocity of the intestinal flow; then, they all diffuse within the domain. Finally, they react together as seen in previous section 4.2. Therefore, we describe the evolution of the concentrations of the biochemical components and of the bacteria through advection-reaction-diffusion equations, see [8] for some examples of modeling by advection-diffusion-reaction equations. Note that the reaction terms have already been detailed in Section 4.2.

Equation for the density of the biochemical components

For the components C k , 1 ≤ k ≤ 6, the evolution of their densities c k is given by the following equations :

∂ t c k + ∇ X • (c k V ) = ∇ X • D c,k ∇ X c k + Γ c,k , k ∈ [[1, 6]] , (4.3.1)
where D c,k are the diffusion coefficients and Γ c,k are the source terms defined at equations (4.2.5).

The values of the diffusion coefficients are given in table 4.2.

Velocity of the intestinal flow

Now let us explain how to define the velocity field V appearing in the advection term of equation (4.3.1). An accurate definition of the velocity field V (t, X) is crucial for the persistance into the large intestine of the biochemical constituents, the mucus and the bacterial communities. Moreover, the velocity field V (t, X) has to reflect the form of postprandial pulses of the intestine flow. So we define V (t, X) as the product of the stationary velocity field during a pulse, denoted by Ṽ , with the function P(t) which is nearly 1 during the postprandial period and zero otherwise :

V (t, r, z) = P(t) Ṽ (r, z) = P(t) ( ũ(r, z), ṽ(r, z)) , (

with ũ and ṽ the horizontal and vertical components of the velocity field.

The expression for Ṽ is given in [5] and is derived from scaling considerations, using the fact that the radius of the large intestine is small with respect to its length : R L 1. We set

Ṽ =          ũ(r, z) = 0, ṽ(r, z) = R ψ (zη + v in ) R r s 2µ(s) ds,
where µ is the viscosity, v in is the mean input velocity, η is the relative difference between the volumic inflow and outflow on the lateral boundary and ψ is a scaling factor. More precisely, ψ depends on the viscosity and is equal to ψ = 1 4 R 0 s 3 µ(s) ds. Denoting by γ 1 the production rate for mucus and by γ 3 the absorption rate for oligo-and mono-saccharides on the boundary r = R (see the definition of boundary conditions further on), the parameter η is equal to η = γ 1γ 3 .

Finally, we assume that the viscosity depends only on the radius and we define it as a sigmoidal function given by

µ(r) = (µ max -µ min ) r 2σ µ χ 2σ µ µ + r 2σ µ + µ min
where µ max and µ min are the maximal and minimal viscosity, χ µ is the inflection point of the sigmoid and σ µ controls the stiffness of the sigmoid function. Finally, the function P which takes into account the postprandial velocity pulses is defined as the sum of N P functions, where N P is the number of pulses per day :

P(t) = N P k=1 1 1 + t-[t]-χ k δ k /2 σ k , (4.3.3) 
where [t] is the floor of t, χ k the times during the day where the k th pulse is maximal, δ k the duration of the k th pulse and σ k the stiffness of the k th pulse.

Equation for the density of the bacteria

The evolution of the bacteria B k , 1 ≤ k ≤ 3 density is described by the same kind of equation as for the biochemical components, i.e. equation (4.3.1). However, the bacteria are transported by the velocity V , but also through a chemotactic effect induced by some of the biochemical components C , 1 ≤ ≤ 6, more precisely by the components that can be assimilated by the bacteria B k . Following [9,6,7], we model the chemotactic behaviour by an advection term

∇ X • (b k ∇ X φ )
where φ is the chemotactic potential created by the component C . The equation for b k can be recast as :

∂ t b k + ∇ X •        b k        V + 6 =1 λ k, ∇ X φ               = ∇ X • D b,k ∇ X b k + Γ b,k , k ∈ [[1, 3]] , (4.3.4)
where D b,k are the diffusion coefficients, λ k, are the chemosensitivity coefficients related to the chemotactic potentials φ and Γ b,k the reaction terms given at eq. (4.2.6).

The chemotactic potentials are defined through the Poisson equations

-∆ X φ k = c k , k ∈ [[1, 6]] ,
supplemented by homogeneous Neumann boundary conditions. We enforce the existenceuniqueness of the solution of the Poisson equation by the introduction of a global condition and an augmented variable θ k ∈ R:

Ω φ k dx = 0 and Ω θ k dx = Ω c k dx.
Equations for the potentials φ k and the Lagrange multiplier θ k are then modified as follows

         -∆ X φ k + θ k = c k Ω φ k dx = 0 (4.3.5)
with Neumann boundary conditions.

Boundary conditions

We now discuss the boundary conditions for the densities of the components and bacteria. Note that the four boundaries Γ c , Γ R , Γ in and Γ out , see Figure 4.1, play different roles in this study.

We begin with the definition of the boundary conditions in the center boundary r = 0, namely on Γ c , where, according to the the use of cylindrical coordinates, we impose homogeneous Neumann boundary conditions for all the components and the bacteria. On the outer boundary z = L which is represented by Γ out , we also impose homogeneous Neumann boundary conditions for the different components considered in the model and for the bacterial communities.

We turn now to the boundary conditions on the gut wall r = R which is represented by Γ R in figure 4.1. Since the bacteria cannot cross the gut wall, we also impose homogeneous Neumann boundary conditions for the bacteria. Now, except for the fibres C 2 , the density of all the others components is affected from the boundary r = R. The mucus C 1 is produced by the epithelial cells of the gut wall, whereas components C 3 , C 4 , C 5 and C 6 are absorbed. We assume that the production and absorption rates are constant and we denote them by γ k for each component C k . So, on the boundary r = R, we impose some Robin boundary conditions defined as follows :

c k V -D c,k ∇ X c k • n | r=R = γ k , k ∈ [[1, 6]] .
Finally let us discuss the boundary conditions on the entrance boundary Γ in defined by z = 0. On this boundary, our aim is to model the intakes of the different components and of the bacteria during the postprandial period. During the rest of the time, we expect to find a no flux boundary condition. To do so, we impose some Robin boundary conditions given by :

c k V -D c,k ∇ X c k • n | z=0 = c k,0 P(t)v • n, k ∈ [[1, 6]] , b k V -D b,k ∇ X b k • n | z=0 = b k,0 P(t)v • n, k ∈ [[1, 3]] ,
with c k,0 for k ∈ [ [1,6]] and b k,0 for k ∈ [ [1,3]] the mass density of the components and of the bacteria on the boundary z = 0 during postprandial periods. Note that all the parameters introduced in section 4. 

D c,1 10 -1 cm 2 d -1 Mucus diffusion coefficient D c,2 10 -1 cm 2 d -1 Fibres diffusion coefficient D c,3 10 -1 cm 2 d -1
Oligo or monosaccharides diffusion coefficient

D c,4 1 cm 2 d -1 Acetate diffusion coefficient D c,5 4 cm 2 d -1
Hydrogen diffusion coefficient 

D c,6 1 cm 2 d -1 Methane diffusion coefficient D b,1 10 -1 cm 2 d -1 Diffusion coefficient of B 1 D b,2 10 -1 cm 2 d -1 Diffusion coefficient of B 2 D b,3 10 -1 cm 2 d -1 Diffusion coefficient of B 3 λ 1,1

Numerical approach

This section is dedicated to the presentation of the numerical scheme used to approximate the solutions of system (4. The numerical scheme we propose is based on splitting techniques within the finite differences setting. Details on the splitting techniques and on the differents schemes used here can be found in [8].

To begin with, let us introduce some notations. In what follows, ∆t denotes the time step and ∆r, ∆z the space steps in the r and z directions. We define by t n = n∆t, n ∈ N the discrete times and by X i,j = i + 1 2 ∆r, j + 1 2 ∆z , 1 ≤ i ≤ N r , 1 ≤ j ≤ N z , the spatial discretization of the domain Ω. For the sake of simplicity, we will omit the indices of the unknowns b, c and φ, except when necessary, and we will denote by b n i,j , c n i,j and φ n i,j respectively, their approximations at time t n and point X i,j . Now let us deal with a slightly simplified version of the equation (4.3.4) for the bacteria b, that is to say :

∂ t b + ∇ X • (b(V + λ∇ X φ)) = ∇ X • (D∇ X b) + Γ b . (4.4.1)
The numerical method that will be explained thereafter can be easily extended to any equation (4.3.4) (resp. (4.3.1)) describing the evolution of b k ,

1 ≤ k ≤ 3 (resp. c k , 1 ≤ k ≤ 6)t.
Using the definitions of the gradient and divergence operators in cylindrical coordinates and considering that V is a radial velocity, equation (4.4.1) becomes :

∂ t b + 1 r ∂ r rb (v + λ∂ r φ) + λ∂ z b∂ z φ = 1 r ∂ r rD∂ r b + ∂ z D∂ z b + Γ b . (4.4.2)
The splitting technique consists in treating separately the different terms of the equation, according to their specificity. Indeed, an explicit time discretisation of the diffusion term would require the use of a constrained stability condition on the time step ∆t as a function of min(∆r 2 , ∆z 2 ); to avoid such a constraint, we may use an implicit time discretisation of the full system, leading to the resolution of a N r N z × N r N z linear system. Here, we choose to split the diffusion term into two parts : the radial part and the horizontal part and to use an implicit scheme in both cases. We will therefore solve N r linear systems of size N z × N z for the horizontal diffusion and N z linear systems of size N r × N r , with coefficients that depend on the points r i,j , for the radial diffusion.

Regarding the advection term of the equation, we may use an explicit time discretisation and a standard upwind space discretisation that takes into account the sign of the velocity. To enforce the stability condition, the value of the time step ∆t should be lower than max v + λ∂ r φ × min(∆r, ∆z).

Finally, the reaction term requires also a careful treatment of the time discretisation because of the stiffness of those terms. Another issue is the preservation of the positivity of the solutions that is valid under the condition that ∆t is small enough. We may think of a full implicit time discretisation of the reaction terms, but it leads to the resolution of a large number of non-linear systems, i.e. to a 9 × 9 non-linear system at each point (r i , z j ). It is costly to handle such non-linear systems and we remark here that the preservation of the positivity may be guaranteed by using simply some explicit-implicit strategy. We propose therefore to split the reaction terms into a positive part (gain) and a negative part (loss) : 

Γ b = f (U ) -g(U )b, ( 4 
i,j = b n i,j + ∆tf U n i,j -∆tg U n i,j b n+ 1 4
i,j , or equivalently with the following direct expression :

b n+ 1 4 i,j = b n i,j + ∆tf U n i,j 1 + ∆tg U n i,j
.

From this expression, it is clear that if b n i,j , f (U n i,j ), g(U n i,j ) ≥ 0, then b n+ 1 4 i,j remains positive.

Step 2 : We solve the advection part of equation (4.4.2) :

∂ t b + 1 r ∂ r rb (v + λ∂ r φ) + λ∂ z b∂ z φ = 0
for the initial data b n+ 1 4 i,j thanks to a standard explicit upwind scheme,

b n+ 2 4 i,j -b n+ 1 4 i,j + ∆t ∆r • r i F n+ 1 4 i+ 1 2 ,j -F n+ 1 4 i-1 2 ,j + ∆t ∆z G n+ 1 4 i,j+ 1 2 -G n+ 1 4 i,j-1 2 = 0 (4.4.4)
where the radial flux F i+ 1 2 ,j and the horizontal flux G i,j+ 1 2 are defined by :

F n+ 1 4 i+ 1 2 ,j =            r i b n+ 1 4 i,j v n i+ 1 2 ,j + λ ∆r φ n i+1,j -φ n i,j , if v n i+ 1 2 ,j + λ ∆r φ n i+1,j -φ n i,j > 0, r i+1 b n+ 1 4 i+1,j v n i+ 1 2 ,j + λ ∆r φ n i+1,j -φ n i,j , if v n i+ 1 2 ,j + λ ∆r φ n i+1,j -φ n i,j 0, G n+ 1 4 i,j+ 1 2 =          b n+ 1 4 i,j λ ∆z φ n i,j+1 -φ n i,j , if λ ∆z φ n i,j+1 -φ n i,j > 0, b n+ 1 4 i,j+1 λ ∆z φ n i,j+1 -φ n i,j , if λ ∆z φ n i,j+1 -φ n i,j 0.
Observe that equation (4.4.4) is well defined since r i = i + 1 2 ∆r with i ∈ N so we never divide by 0 and that the velocities are estimated on a staggered grids.

Step 3 : We discretise the radial component of the diffusion : and we solve the corresponding linear systems thanks to standard decomposition methods. As in the second step, this equation is well defined because r i = i + 1 2 ∆r with i ∈ N so we never divide by 0.

∂ t b = 1 r ∂ r rD∂
Step 4 : Finally, the approximation of the horizontal part of the diffusion :

∂ t b = ∂ z D∂ z b .
with the initial data b n+ 3 4 i,j leads to the resolution of linear systems composed of equations of the form :

b n+1 i,j = b n+ 3 4 i,j + D∆t ∆z 2 b n+1 i,j+1 -2b n+1 i,j + b n+1 i,j-1 .
To complete the description of the numerical scheme, we approximate the chemotactic potentials φ k , k = 1, 2, 3, 5 which are solutions of the modified Poisson equations (4.3.5) with the augmented variable, using finite differences method, and we obtain a symmetric linear system to solve. Endowed with this numerical scheme, we are now able to perform some simulations which are presented in the following section.

Numerical results

In the following, we consider the same initial data for all the simulations, that is to say some piecewise constant functions, composed of two distinct values : one for the lumen, described by the region r ∈ [0, 2] and one near the boundary r ∈ [2, 2.5].

Using [10], we take the following values for the initial concentrations (in g cm -3 ) : 

Numerical simulations without bacteria

In this section we consider numerical simulations without bacteria. So we set to zero the initial conditions b (0, X) = 0 for all X ∈ Ω and 1 ≤ ≤ 3. We also cancel the intakes of bacteria through the boundary conditions. The aim of these simulations is to perform a comparison between two different situations : the case of initial data (4.5.1) and the case where initially all the concentrations c k , for 1 ≤ k ≤ 6, vanish.

In Figure 4.2, we plot the evolution with respect to time of the total mass of the components C k , 1 ≤ k ≤ 6. We display in red the result for the initial data (4.5.1) and in blue the case where all the concentrations c k are initially null. It can be observed for all components that, after a transition, the two curves coincide and a steady state or a limit cycle with a period of one day is reached. The transition time depends strongly on the component under consideration. The periodic behaviour, represented by periodic oscillations for example for the mucus in Figure 4.2a, is induced by the velocity pulses which occur during postprandial periods. However, other components do not show the same periodic behaviour : for example, the concentration of fibres in Figure 4.2b stabillise towards a stationary state given by the boundary condition at z = 0. In Figure 4.3, we represent the concentrations of four of the components (mucus, fibres, oligo or monosaccharides and hydrogen) at t = 31 days with respect to space. We do not plot the concentrations of acetate C 4 and methane C 6 , since their amounts go to zero, according to figures 4.2f and 4.2f. We can observe very different spatial configurations : the fibres are almost uniformly distributed due to the diffusion (see Figure 4.3b), whereas the oligo or monosaccharides C 3 and the hydrogen C 5 concentrations decrease when approaching the gut wall x = 2.5mm (see Figures 4.3c and 4.3d). These differences may be explained by the fact that oligo or monosaccharides and hydrogen are assimilated by the host, unlike fibres. Finally, the mucus layer is preserved and the mucus concentration increases close to the gut wall, as expected by physiological considerations. Indeed as it can be observed in figure 4.3a the mucus layer thickness is between 0.5 cm at z = 0 cm and 1 cm at z = 20 cm with a maximal concentration of 2.8 • 10 -2 g cm -3 . The thickness variation of the mucus layer along the gut seems to be induced by the definition used for velocity field of the intestinal flux.

Numerical simulations with bacteria

We study now the influence of the presence of bacteria on the gut microbiota. The initial data are given by (4.5.1) and in this simulation all the biochemical components and the bacteria are present. First of all, the simulations exhibit a well-determined asymptotic behaviour, similarly to the case without bacteria of Subsection 4.5.1. This asymptotic behaviour may be a stationary state, see for example the mucus concentration or the bacteria B 2 concentration, or a periodic limit cycle of period 1 day. The amplitude of the cycle varies according to the component. However, we can remark some notable differences between the results here and in the previous subsection. Generally speaking, the ranges of oscillations of the mass of the components are larger than in the case without bacteria, see Figures 4.2. For example, the mass of oligo or monosaccharides C 3 varies between 1.2 • 10 -3 g and 1.3 • 10 -3 g in Figure 4.4c and between 1.82 • 10 -3 g and 1.84 • 10 -3 g in Figure 4.2c. Moreover, the mean values of the biochemical components mass is afffected by the presence of bacteria. Indeed, the asymptotic mass of mucus is equal to nearly 0.75 • 10 -3 g vs nearly 4.7 • 10 -3 g in the absence of bacteria. We observe a similar phenomenon for the fibres C 2 , the oligo or monosaccharides C 3 and the hydrogen C 5 .

In Figure 4.5, we display the concentration with respect to space of the biochemical components and bacteria; it enables to highlight some spatial features of the model. Firstly we can observe that the mucus layer is preserved even if it is thinner and less dense than in the case without bacteria, compare with Figure 4.3a. Secondly, some biochemical components and bacteria are located at the same place; this is the case for example for the mono or oligosaccharides C It is interesting to remark also that the bacteria settle in different regions : bacteria B 1 and B 2 are located in the middle of the lumen, whereas bacteria B 3 can be found near the lateral boundaries. This is not totally satisfying, since natural mechanisms do not permit the presence of bacteria in the neighborhood of the intestine wall. It would therefore be interesting to add such a repulsive mechanism in the construction of the model. Finally, we investigate the stability of the asymptotic behaviour observed in Figure 4.4, by starting from null initial data for the biochemical components and the bacteria with the same parameters. In Figure 4.6, we plot in blue the evolution of the total mass of the six biochemical components and the three bacteria and we compare it with the case when the initial concentrations of biochemical components and bacteria are null. The same conclusion as in the previous subsection holds, namely for all the components the asymptotic behaviour is the same after a transition period that depends on the considered component.

Conclusion

We present in this article a first attempt of a spatial model for the evolution of biochemical populations involved in the digestion process in the human gut. We have also added a chemotactic effect induced by the biochemical components in the terms describing the motion of bacteria. The numerical results show that the masses of the components reach an asymptotic behaviour under the form of a steady state or of a limit cycle with a daily period. However, several improvements can be made in order to obtain a more realistic model : for example, it would be interesting to have a better description of the velocity of the biochemical components and of the bacteria through hydrodynamics equations. We may also think of adding a repulsive effect localised in the region of the gut wall to drive away the bacteria. Finally, it would be necessary to compare the results of the model with experimental data, which is foreseen for the following of the study. Chapter 5
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Asymptotic problems and numerical schemes for traffic flows with unilateral constraints describing the formation of jams

NUMERICAL SCHEMES FOR AW-RACLE MODEL WITH CONSTRAINT

Abstract: We discuss PDE systems describing traffic flows, taking into account a density threshold, which restricts the vehicles density in the situation of congestion. In this model the velocity offset is model by a pressure-like term and several pressure are considered. Hence, we are interested in the simulation of these models that contain stiff terms and large speeds of propagation. We design a numerical scheme based on an explicit-implicit splitting, designed in order to relax the CFL stability condition.

This study is the result of a joint work with F. Berthelin, T. Goudon and M. Ribot.

Résumé: Nous étudions un système d'EDP décrivant le trafic routier, prenant en compte un seuil pour la densité ce qui limite la densité des véhicules en situation de congestion. Dans ce modèle, la réserve de vitesse est modélisée par un terme de type pression et différentes pression sont considérées. Par conséquent, nous nous intéressons à la simulation de ces modèles qui contiennent des termes raids et de grandes vitesses de propagation. Nous proposons ainsi un schéma numérique basé sur un splitting explicite-implicite, conçu pour relaxer la condition de stabilité CFL.

Ce travail est le fruit d'une collaboration avec F. Berthelin, T. Goudon et M. Ribot.

NUMERICAL SCHEMES FOR AW-RACLE MODEL WITH CONSTRAINT

In order to describe traffic flows and to reproduce the formation of congestions, several models based either on Ordinary Differential Equations (ODE) or Partial Differential Equations (PDE) have been proposed. Starting from individual-based "Follow-the-Leader" models [19], a very active stream in the traffic community considers now PDE models. A first example dates back to Lighthill and Whitham in the 50's [24]: the evolution of the density of cars is described by means of a mass conservation equation, where the flux is defined by a prescribed function of the density. In these so-called first-order models, the relation between flux and density is referred to as the fundamental diagram in the traffic flows community. A more accurate description can be expected by considering second-order models where a system of PDE governs the evolution of the density and the speed of cars. A first attempt in this direction is due to Payne [29], strongly inspired by the principles of fluid mechanics. However, Daganzo [15] pointed out the drawbacks of this approach: the Payne-Whitham model may lead to inconsistent behaviors for the flow, such as vehicles going backwards. The model introduced by Aw and Rascle [2], which still has a form of 2 × 2 system of conservation laws, is intended to correct these inconsistencies. In [1], a derivation of the system is proposed from a Follow-the-Leader model. We can also mention that some kinetic models [3,27,28,31,34] are also under consideration, after the pioneering work [30]. Further details and references can be found in the survey [4].

This work is concerned with the numerical simulation of certain variants of the Aw-Rascle model. Let ρ(x, t) and v(x, t) be the density and the velocity of cars at position x ∈ R and time t > 0, respectively. The Aw-Rascle model writes

∂ t ρ + ∂ x (ρv) = 0, ∂ t v + p(ρ) + v∂ x v + p(ρ) = 0, (5.0.1) 
where ρ → p(ρ) plays the role of the pressure in the gas dynamic equations. In fact, the quantity w = v + p(ρ) describes the desired velocity of the drivers, whereas v corresponds to the actual velocity of the cars. Therefore, the term p(ρ), the velocity offset, stands for the difference between these two velocities, reflecting the fact that the drivers slow down because of the density of cars.

It is convenient to rewrite the equations in the more convenient form of a conservative system; namely (5.0.1) is, at least formally, equivalent to

∂ t ρ + ∂ x (ρv) = 0, ∂ t ρ(v + p(ρ)) + ∂ x ρv(v + p(ρ)) = 0. (5.0.2)
Of course, a crucial modeling issue relies on the expression of the velocity offset p(ρ). At first glance, again inspired from gas dynamics, we can set p(ρ) = ρ γ for some γ > 1. However, such a model does not permit to impose a priori a limitation to the cars density. Consequently, Berthelin, Degond, Delitala and Rascle proposed in [7] to define the velocity offset as follows:

given 0 < ρ < ∞, ρ ∈ [0, ρ ) -→ p(ρ) = 1 ρ - 1 ρ -γ = ρ ρ ρ -ρ γ , γ > 1,
where ρ denotes a maximal value for the density. The velocity offset tends to infinity when ρ → ρ while we get the classical expression p(ρ) ∼ ρ γ when ρ → 0. Such a pressure law also arises in gas dynamics, where it is referred to as the Bethe-Weyl law [5]; for instance it is used to model close-packing effects in multifluid flows, see [8] and the references therein. This expression for p has the role of enforcing that ρ satisfies the constraint 0 ≤ ρ(x, t) ≤ ρ for all x ∈ R and t > 0, as it can be seen from the bounds on the Riemann invariants of the system [7]. Moreover, [7] points out that drivers do not reduce significantly their speed unless they reach a congested region. Accordingly the velocity offset is appropriately rescaled with a small parameter 0 < ε 1, and we use

p ε (ρ) = ε 1 ρ - 1 ρ -γ , (VO1)
in the Aw-Rascle model. We are thus led to the Rescaled Modified Aw-Rascle (RMAR) system

       ∂ t ρ ε + ∂ x (ρ ε v ε ) = 0, ∂ t v ε + p ε (ρ ε ) + v ε ∂ x v ε + p ε (ρ ε ) = 0. (5.0.3)
In this model, the velocity offset is small unless the density is getting close to the threshold ρ . Finally, [7] studies the limit when ε → 0 in (5.0.3). In this regime we obtain (at least formally) the constrained system

         ∂ t ρ + ∂ x (ρv) = 0, ∂ t (v + π) + v∂ x (v + π) = 0, 0 ≤ ρ ≤ ρ , π ≥ 0, (ρ -ρ)π = 0.
(5.0.4)

In (5.0.4), the limit "pressure" π = lim ε→0 p ε (ρ ε ) appears as the Lagrange multiplier associated to the unilateral constraint 0 ≤ ρ ≤ ρ . In particular, π becomes active only in the congested regions, where the density reaches the threshold ρ . Otherwise, in absence of congestion, the system is reduced to the pressureless gas dynamic model [11,21] 

∂ t ρ + ∂ x (ρv) = 0, ∂ t v + v∂ x v = 0. (5.0.5)
The asymptotic model is further investigated in [7], exhibiting the formation of clusters, and proving the existence of weak solutions to the system (5.0.4) through the stability analysis of "sticky blocks" dynamics.

The asymptotic system (5.0.4) is thus specifically intended to describe the formation and the dynamics of jams. In this paper, we are interested in the numerical simulations of the system (5.0.4), and in the asymptotic regime ε → 0 in (5.0.3). The difficulty is two-fold. On the one hand, in the free flow case, it is well-known that the pressureless gas dynamics system (5.0.5) can lead to delta-shocks formation, which makes it difficult to treat numerically [10]. On the other hand, with the formation of a congestion, there is no direct access to the limit velocity offset π which is defined in a quite abstract way. Therefore, in order to go beyond the simple particulate approach in [7], we wish to develop numerical simulations of the RMAR model (5.0.3) with the velocity offset (VO1) for small values of ε. We are still facing several numerical challenges. Firstly, the model prohibits that the density exceeds the threshold ρ . Secondly, (one of) the characteristic speeds of the system become very large in congested region, which makes the time step shrink: the smaller ε, the more severe the stability constraint. Therefore, we need to design a scheme which can preserve the natural estimates of the problem, in particular the density limitation. As already observed in [12,13] standard schemes may fail this objective due to the very specific structure of the PDE system. We also refer the reader to [22] for further examples related to fluid mixtures. Moreover, we would like to relax the stability constraints on the time step. To this end, we will design specific splitting strategies, partly inspired from [18]. Eventually, we will also discuss different asymptotic approaches of the constrained problem (5.0.4), introducing other scaled offset velocities. It is interesting to study how the shape of the pseudo-pressure affects the intermediate states (for not so extreme values of the scaling parameter), and the numerical costs. The outline of this article is the following. In Section 5.1, we go back to some properties of the Aw-Rascle system and we detail the numerical difficulties we face. Additionally, we propose different velocity offsets and scaling that can be used to recover asymptotically the constrained system (5.0.4). Then, in Section 5.2, we propose a new explicit-implicit scheme based on a splitting strategy. The splitting is constructed to reduce the characteristic speeds in the explicit part so that we can expect to use larger time steps. Finally, in Section 5.3, we display some numerical simulations in order to prove the efficiency of the scheme and to compare the behavior of the system when using different velocity offsets.

Properties of the Aw-Rascle model and numerical difficulties

We will describe in this Section the main numerical difficulties we have to deal with, when computing solutions of system (5.0.3).

Different velocity offsets

With the velocity offset (VO1), it is forbidden to produce numerical densities larger than the threshold ρ : if, due to any numerical error, the code returns a density larger than ρ , we cannot update further the system and the simulation breakdowns. To cope with this difficulty, we propose to slightly modify the law, replacing (VO1) by a function ρ → pε (ρ) which is defined for any positive entry, which behaves like p ε for ρ < ρ , and which blows up as ε → 0 for ρ ≥ ρ . For instance, we set

pε (ρ) =              ε 1 ρ - 1 ρ -γ , if ρ ≤ ρ ε tr , c 0 ε + c 1 ε (ρ -ρ ε tr ) + c 2 ε (ρ -ρ ε tr ) 2 2 , if ρ > ρ ε tr . (VO2)
In this formula, ρ ε tr is a transition density, which has a modeling nature; it should satisfy ρ ε tr → ρ as ε tends to 0. Beyond the transition, pε is a second order polynomial, computed so that pε remains a C 2 function. We thus set

ρ ε tr = ρ -h(ε), c 0 ε = p ε (ρ ε tr ) = ε ρ (ρ -h(ε)) h(ε) γ , c 1 ε = (p ε ) (ρ ε tr ), c 2 ε = (p ε ) (ρ ε tr ).
The expected behavior holds for instance with h(ε) = ε, since it satisfies the two following properties when ε → 0 : h(ε) → 0 and c 0 ε → +∞. We point out that ρ ε tr is purely a modeling parameter and the model (VO2) leads us to the same difficulty as (VO1) in terms of stability issues, as we will see in the next Section.

Another option is to use the following velocity offset

p γ (ρ) = V ref ρ ρ γ , γ > 1, (VO3) 
for large values of the exponent γ. This approach is used in fluid mechanics, for modeling certain free boundary problems where bubbles are immersed in a gas [25]. This function is defined on [0, ∞), it behaves like ρ γ for ρ → 0 and it blows up as γ → +∞ for ρ ≥ ρ . Using (VO3) and the regime of large γ's in traffic flows modeling is quite new; we shall see that this simple law has certain advantages in the numerical simulation of congested situations.

In what follows, p refers to (VO1), (VO2) or (VO3). We will see that similar behaviors, corresponding to what can be expected for (5.0.4), are captured asymptotically (namely as ε → 0 or γ → ∞) by these velocity offsets. However, the intermediate behaviors can significantly differ and the definition of the velocity offset seriously impacts the numerical costs.

Stability issues

As long as the functions ρ and v are smooth enough, we can rewrite system (5.0.1) in the fully non-conservative form

∂ t ρ v + A(ρ, v)∂ x ρ v = 0, A(ρ, v) = v ρ 0 v -ρp (ρ)
.

The two eigenvalues related to the system are therefore equal to

λ 1 = v -ρp (ρ) ≤ λ 2 = v (5.1.1)
with related eigenvectors

r 1 = 1 -p (ρ) , r 2 = 1 0 .
The system is strictly hyperbolic, away from the regions where ρ = 0. Let us just note that the second eigenvalue λ 2 is always linearly degenerate, leading to contact discontinuities and that λ 1 is genuinely non-linear, except for certain forms of the velocity offset we are not considering here. Therefore, the first eigenvalue will admit shocks or rarefaction waves. One of the difficulties of the computations is that vacuum regions may appear. Observe that the information does not travel faster than the actual cars speed v, and that the system preserves the natural properties ρ ≥ 0, v ≥ 0. We are considering here some Finite Volume (FV) numerical schemes in order to compute the solutions of system (5.0.1). Let us denote by ∆t and ∆x the time step and the space step of the method, respectively. We consider the discrete times t n = n∆t, for n ∈ N and the discretization cells C j = [x j-1/2 , x j+1/2 ], j ∈ Z (neglecting for the time being the issue of the boundary conditions) where x j+1/2 = (j + 1/2)∆x. We go back to the conservative form (5.0.2) and we denote

U (x, t) = ρ(x, t) y(x, t) = ρ(v + p(ρ))(x, t)
the conservative variables. In terms of the conservative variables ρ and y, we simply have

∂ t ρ + ∂ x (ρv) = 0, ∂ t y + ∂ x (yv) = 0,
which recasts as follows, using only the variables ρ and y,

         ∂ t ρ + ∂ x (y -ρp(ρ)) = 0, ∂ t y + ∂ x y 2 ρ -yp(ρ) = 0. (5.1.2)
The numerical unknown U n j = (ρ n j , y n j ) is thought of as an approximation of the mean value of U (x, t) on the cell C j at time t n . The FV scheme has the following general form

U n+1 j = U n j - ∆t ∆x F n j+1/2 -F n j-1/2
which mimics what we obtain by integrating the continuous equation (5.1.2) over t n , t n+1 × C j .

For the simple schemes we wish to deal with, the numerical flux at the interface x j+1/2 is a function of the neighbouring cells F n j+1/2 = F U n j+1 , U n j . Without entering into the details of the schemes, the numerical stability of such a method relies (at least) on the following inequality, see for example [9,Sect. 2.3.3] or [33],

∆t ≤ 1 2 ∆x max(|λ 1 |, |λ 2 |) , ( 5.1.3) 
where λ 1 and λ 2 are the two eigenvalues given by (5.1.1). It imposes that the state U x j+1/2 , t n+1 on the interface x j+1/2 at time t n+1 = t n + ∆t only depends on the states of the unknown at time t n on the neighbouring cells C j and C j+1 . It can thus be obtained by solving the corresponding Riemann problem with data U n j and U n j+1 . Let us first consider the case of the pressure (VO1). In case of a congestion formation, ρ ε → ρ but we expect that p ε (ρ ε ) remains bounded and admits the limit π as ε → 0; it leads to the ansatz

ρ = ρ -O ε 1/γ , when ε → 0.
Accordingly the behavior of the characteristic speeds is given by max λ

(ε) 1 , λ (ε) 2 = O ε -1/γ , when ε → 0,
since v ε should remain bounded when ε → 0. Hence, as ε goes to zero, the time step ∆t shrinks due to the condition (5.1.3). The same remarks apply to the velocity offset (VO2), which essentially behaves like (VO1) when ε → 0. For the velocity offset (VO3), we find max λ

(γ) 1 , λ (γ) 2 = O (γ) , when γ → +∞,
which again imposes tiny time steps. This observation motivates the design of scheme based on splitting strategies so that the fast waves can be treated implicitely.

Invariant regions

Let us detail another difficulty which is very specific to the traffic flow system (5.0.1). The Riemann invariants for the system (5.0.1) are given by, see [2],

z 1 = v + p(ρ), z 2 = v.
Therefore, the domain

(z 1 , z 2 ) ∈ R 2 with z 1 ∈ [w m , w M ], z 2 ∈ [v m , v M ]
is an invariant region for (5.0.1): if the initial datum lies in such a region, the solution would still be contained in the same region for all times. However, numerical difficulties arise due to the fact that such domains are non-convex for the conserved quantities ρ, y. This point has been observed in [12] for the traffic flows model, see also [13,22] for similar problems. At first sight, it would be tempting to define the numerical fluxes by using the Godunov scheme, which is a standard for systems of conservation laws. It works into two steps. Owing to the stability condition (5.1.3), we solve a set of uncoupled Riemann problems, centered at the interfaces x j+1/2 with data U n j , U n j+1 . Then, we project the obtained piecewise constant solution to obtain the updated numerical unknown, constant on the cells C j . This projection step does not preserve the invariant region, since it is non-convex (for the role of the convexity of the invariant domain we refer the reader to [23] for gas dynamics equations, and more generally to the textbook [9, Prop. 2.11]). A counter-example is detailed in [12] to explain why the Godunov scheme fails to satisfy the maximum principle for the Riemann invariants of (5.0.1), and especially for v. To solve this difficulty, [12] proposes a hybrid scheme which mixes the Glimm scheme to compute the contact discontinuities, and the Godunov procedure to compute 1-shock or 1-rarefaction wave. This hybrid method is well-adapted to handle the specific velocity offsets dealt with in [12,13], which differ from the models we wish to consider here. We bear in mind that, instead of using the mean of the solutions of the Riemann problems over the cells, the Glimm scheme uses a random sampling strategy in the reconstruction procedure. Hence, by construction, the Glimm scheme preserves the invariant regions, despite the defect of convexity. It is thus well adapted to the simulation of the system (5.0.1). Note however the final scheme is non conservative.

Remark 1 Note that, depending on the definition of the numerical fluxes, the stability condition can be even more constrained than (5.1.3), for instance in order to fulfill the bound from above on the density with the "close-packing-like" velocity offset (VO1), see e.g. [8].

Remark 2 In [12,13], the discussion focuses on the velocity offset

p(ρ) = V ref ln ρ ρ , (5.1.4)
which has some very specific features:

-First of all, ρ → p(ρ) is defined on (0, ∞) and non decreasing. The model cannot treat vacuum regions since the velocity offset is not defined for ρ = 0. With this model, the velocity offset is well-defined beyond ρ , and we note that p(ρ) < 0 for 0 < ρ < ρ , which might be physically questionable.

-Second of all, we have ρp (ρ) = V ref .

In particular, we get λ 1 = v -V ref so that the CFL condition depends only on v and it does not shrink.

Description of the scheme

Let us now explain in more details the construction of the scheme that we wish to use for the simulation of (5.0.1), with a velocity offset ρ → p(ρ) that introduces some stiffness in order to reproduce the expected behavior of the constrained system (5.0.4). In what follows, p thus refers to p ε in (VO1), to pε in (VO2) or to p γ in (VO3).

In order to get rid of the large characteristic speeds, the idea consists in splitting the velocity offset into two parts p = p exp + p imp , so that the system with p exp has a stability CFL condition (5.1.3) of order 1 with respect to the scaling parameters. Namely, the eigenvalue λ

(ε) 1 (resp. λ (γ)
1 ) is bounded with respect to 0 < ε 1 (resp. γ 1). The corresponding system can thus be treated explicitly by means of the Glimm scheme, which preserves the invariant domains. Next, only the stiff part that involves p imp is treated implicitly. We expect also that the implicit part has a simple structure that can be handled with a not too complicated scheme. Such splitting approach appeared in [16,17,18] for more standard fluid mechanics systems, for instance as an efficient strategy to handle low Mach number regimes. However, as explained above, the structure of the PDE system (5.0.1) significantly differs from the Euler equations, in particular with the lack of convexity of the invariant domains.

Definition of the explicit velocity offset

In the first step of the splitting, we consider the system

∂ t ρ + ∂ x (ρv) = 0, ∂ t ρ(v + p exp (ρ)) + ∂ x ρv(v + p exp (ρ)) = 0.
(5.2.1)

It has the same structure as the Aw-Rascle system (5.0.2), just replacing the full velocity offset p, that can be (VO1), (VO2) or (VO3), by p exp . The characteristic speeds are

λ 1 = v -ρp exp (ρ), λ 2 = v.
In order to relax the stability constraint, we define p exp so that the characteristic speed does not blow up as the scaling parameters ε goes to 0 or γ goes to ∞. It leads to require that p exp (ρ) is bounded uniformly with respect to ε (resp. γ for the law (VO3)), when ρ lies in a compact set of (0, ∞). The definition depends on a truncation parameter 0 < ρ num < ρ . Following an idea of [16,17], we set

p exp (ρ) =          p(ρ), if 0 ≤ ρ ≤ ρ num , p(ρ num ) + p (ρ num )(ρ -ρ num ) + p (ρ num ) (ρ -ρ num ) 2 2 , if ρ > ρ num . (5.2.2)
We use a second order polynomial for ρ > ρ num to ensure that p exp is a C 2 function. We will see below that it is important to ensure such a regularity. The transition density ρ num is chosen so that p exp (ρ num ) is bounded when ε → 0 (resp. γ → +∞). If such a condition is satisfied, then the two eigenvalues are bounded with respect to ε (resp. γ) and therefore the stability condition (5.1.3) is independent of ε (resp. γ). Let us now explain how to choose ρ num for the velocity offsets under consideration. a) For the laws (VO1) and (VO2), when ε → 0 and ρ ε → ρ , we expect that ρ ε = ρ -O(ε 1/γ ), since p ε (ρ ε ) remains finite. We set ρ num = ρ (1δρ) with δρ > 0. A simple computation shows that

p exp (ρ ) = p (ρ num ) + p (ρ num )(ρ -ρ num ) = O ε(δρ) -(γ+1) ,
which leads us to set δρ = ε 1/(γ+1) and ρ num = ρ 1ε 1/(γ+1) .

For the velocity offset (VO2), we point out that ρ num is a truncation parameter of numerical nature, designed to ensure a certain stability property of the scheme, while ρ trans relies on modeling consideration and does not prevent the blow up of the velocity offset. In any case, we have 0 < ρ num < ρ trans < ρ . b) For the law (VO3), we require that p exp (ρ num ) remains bounded when γ → +∞. Denoting again ρ num = ρ (1δρ), a simple computation leads to

p exp (ρ num ) = γ ρ (1 -δρ) γ-1 + γ(γ -1) ρ 2 δρ (1 -δρ) γ-2 .
So, we are looking for δρ such that δρ → 0 and both terms in this sum are O(1) when γ → +∞. A simple study of the two sequences of functions (γ exp (-γx)) γ∈N and γ 2 x exp (-γx) γ∈N shows that we should have δρ = O(γ -α ) with α ∈ (0, 1) in order to satisfy the required properties. In [18] the pressure term is split as p = p exp + p imp with p exp = αp and p imp = (1α)p. Here, due to the singularity of p at ρ , this approche does not permit to keep p exp bounded and we have to define p exp and p imp as explained above.

A time-splitting scheme

As said above, it is convenient to work on the conservative form (5.1.2) of the system (5.0.1), dealing with the unknowns U = ρ, y = ρ(v + p(ρ)) . With p = p exp + p imp , we arrive at We use now a time-splitting scheme. Knowing some approximate values U n = (ρ n , y n ) at time t n , we proceed as follows -Step 1: Solve with an explicit scheme the system of conservation laws

          
           ∂ t ρ + ∂ x y -ρp exp (ρ) = 0, ∂ t y + ∂ x y 2 ρ -yp exp (ρ) = 0.
As said above, this system has the same structure as the original problem (5.1.2). In particular the invariant domains are non-convex. It can be solved with the Glimm scheme adapted for the pressure p exp . More details will be given in Section 5. (5.2.3) Note that the system has a simple structure and the two equations decouple. The first equation is a non linear scalar conservation law for the density ρ, the second is a linear transport equation for y where the velocity -p imp (ρ) can be considered as given. The numerical method to solve the system (5.2.3) is thus not that complicated. More details will be given in Section 5.2.4.

5.2.3

A few words about the Glimm scheme for (5.0.1)

In order to use a Glimm scheme, we need to know the Riemann solutions of the problem. This computation has already been done in [2] and in [7,Section 6] where all the details can be found. We refer the reader to some classical books [32,33] for general discussions about the role of Riemann problems in the theory of conservation laws and to [2,7] for the specific case of the traffic flow system. We recap here only the Riemann solutions, omitting the details on the elementary waves and on the admissibility of solutions.

A brief overview on the Riemann problem for (5.0.1)

Let us just recall that the second eigenvalue λ 2 given by (5.1.1) of system (5.0.1) is always linearly degenerate, leading to contact discontinuities and that λ 1 is genuinely non-linear, leading to shocks or rarefaction waves. One of the difficulties of the computations is that vacuum regions may appear. Therefore, the Riemann solution of system (5.0.1), with an initial datum

(ρ, v)(x, 0) =       
ρ L , v L , for x < 0, ρ R , v R , for x > 0, can be computed according to the five following cases :

-if ρ L > 0, ρ R > 0 and 0 ≤ v R ≤ v L , the solution consists of a 1-shock that connects ρ L , v L to the intermediate state (ρ * , v * ) and a contact discontinuity between (ρ * , v * ) and ρ R , v R ; -if ρ L > 0, ρ R > 0 and v L < v R ≤ v L + p(ρ L ), the solution consists of a 1-rarefaction wave that connects ρ L , v L to (ρ * , v * ) and a contact discontinuity between (ρ * , v * ) and ρ R , v R ; -if ρ L > 0, ρ R > 0 and v L + p ρ L < v R , a vacuum region appears; the solution consists of a 1-rarefaction wave that connects ρ L , v L to (0, v * ), then a vacuum region between (0, v * ) and (0, v R ) and a contact discontinuity between 0, v R and ρ R , v R ; -if ρ L > 0, ρ R = 0, the solution is only a 1-rarefaction wave connecting ρ L , v L and 0, v R ; -if ρ L = 0, ρ R > 0, the solution is only a 2-contact discontinuity connecting 0, v L and ρ R , v R .

The intermediate state (ρ * , v * ) of the Riemann solution is computed with the Riemann invariants, that is to say

       v * = v R , ρ * = p -1 v L -v R + p ρ L .
In the case of a shock, the speed of the shock between (ρ * , v * ) and ρ L , v L is given by

s = ρ * u * -ρ L u L ρ * -ρ L .
In the case of a rarefaction wave, the self-similar solution (ρ, v)(ξ) with ξ = x/t is given by the following formulas

       p(ρ(ξ)) + ρ(ξ)p (ρ(ξ)) = p ρ L + v L -ξ, v(ξ) = v L + p ρ L -p(ρ(ξ)), for ξ ∈ λ 1 ρ L , v L , λ 1 ρ R , v R .
(5.2.4)

Remark 3
In practice, we compute the self-similar solutions of equation (5.2.4), by using the Newton algorithm. The method requires that p has the C 2 regularity. This remark explains the construction of the explicit part of the velocity offset (5.2.2) (we have observed bad behaviors of the scheme when p has jumps).

Glimm scheme

Hence, we have at hand formula to compute the solution of the Riemann problems, which are the elementary brick of the Glimm's scheme (like for Godunov's scheme). This scheme has been introduced for theoretical purposes [20], and its implementation for hyperbolic systems is further discussed in [12,14,26]. Let U n j = ρ n j , y n j be the approximated mean value on the cell C j of U = (ρ, y) at time t n . We proceed as follows to update the numerical unknown:

-We solve the associated Riemann problem at each interface x j+1/2 , namely all the Riemann problems with U L = U n j , U R = U n j+1 . -Let a n be a number picked randomly in [0, 1]. We define the value U n+1 j of the numerical unknown in the cell C j at time t n+1 as to be the solution of the Riemann problem evaluated at the point x j-1 2 + a n ∆x ∈ C j . The scheme does not use any averaging or projection procedure and the obtained solution, by construction, remains in the invariant region of the PDE system. In practice, we use the Van Der Corput quasi random sequence (a n ) n∈N (see [14]) defined by

a n = m k=0 i k 2 -(k+1)
where n = m k=0 i k 2 k , with i k ∈ {0, 1}, denotes the binary expansion of the integer n.

Treatment of the implicit part

Let us now discuss how we handle the system (5. It forms a triangular system of non linear scalar equations. If J stands for the number of grid points, we have to solve J non linear scalar equations, which means J executions of the scalar Newton algorithm to update the density. Then a mere linear system defines the updated y. Indeed, once ρ n+1 is determined, we solve the transport equation for updating y. To this end, we use the standard implicit upwind scheme 

Simulations

As indicated in the Introduction, there is no "natural" way for a direct simulation of the constrained model (5.0.4). Nevertheless, there are a few situations for which we know the solution of this intricate system. Our aim is two-fold. On the one hand we wish to discuss the asymptotic behavior of the different models (VO1), (VO2) and (VO3) for the velocity offset, which are all expected to capture asymptotically (for ε → 0 or γ → ∞) the features of the limit system (5.0.4).

On the other hand, we shall discuss the numerical difficulties and the ability of the time-splitting strategy, which will be compared to the standard Glimm scheme with a small enough time step, in handling the asymptotic behavior. The simulations presented below are thought of as Riemann problems and we impose boundary conditions that maintain constant the inflow conditions. Of course, the method can be adapted to treat further boundary conditions. In particular imposing zero-influx produces vacuum regions that our method is able to handle, as shown with the decongestion case below. Les travaux présentés dans ce manuscrit de thèse sont consacrés à l'étude de modèles mathématiques basés sur des systèmes d'équations aux dérivées partielles (EDP). Plus précisément, nous considérons des systèmes issus de la mécaniques des fluides avec contraintes, qui permettent de décrire de manière continue en temps et en espace des quantités physiques telles que la densité ou la vitesse. Du point de vue mathématique, le modèle est basé sur la théorie des mélanges [6] qui permet de décrire formellement une mixture composée de différentes phases ayant des propriétés hétérogènes. Ainsi, les deux phases qui composent les micro-algues, la matrice extra-cellulaire et le liquide sont décrits par leur fraction volumique à l'aide d'une loi de convection-réaction. Les composés dissous quant à eux sont décrits par leur fraction massique à l'aide de lois de convection-réaction-diffusion. Enfin, nous proposons un schéma numérique basé sur une méthode explicite-implicite qui permet notamment de préserver la positivité des fractions volumiques ou massiques. L'analyse des résultats numériques a permis une première validation du modèle. En particulier, le modèle prédit une productivité de 1.12 g m -2 j -1 et une vitesse du front de 28.2 µm j -1 comparables aux 1, 6 g m -2 j -1 et 27 µm j -1 mesurés dans [7].

Passons maintenant aux modèles mathématiques pour le gros intestin.

Modélisation de la rhéologie et de l'assimilation des fibres par le gros intestin

Le gros intestin constitue le maillon final du processus de digestion. Son rôle est de maintenir l'hydratation de l'hôte en absorbant l'eau du bouillon gastrique et de fournir jusqu'à 10% des besoins énergétiques journaliers en digérant les fibres. La digestion des fibres s'effectue en deux temps. Premièrement elles sont dégradées en sous-produits par les bactéries qui composent le microbiote intestinal (ou flore intestinale), puis ces sous-produits sont assimilés par l'hôte. Afin de permettre cette relation symbiotique entre l'hôte et le microbiote les parois du gros intestin sont recouvertes d'un mucus sécrété par les cellules épithéliales du gros intestin. En effet, le mucus est un gel visqueux impénétrable qui protège les parois du gros intestin des bactéries composant le microbiote ; celles-ci pouvant entraîner des inflammations si elles entrent en contact avec les parois. Le mucus permet également au microbiote intestinal de s'ancrer durablement dans le gros intestin et de résister au lessivage induit par le flux gastrique. Afin de mieux comprendre ces mécanismes biologiques, en collaboration avec B. Laroche et S. Labarthe, nous avons entrepris de proposer une description mathématique spatio-temporelle du fonctionnement du gros intestin. Cependant, le système considéré est très complexe. C'est pourquoi, dans un premier temps, à l'occasion du CEMRACS 2015, nous avons étudié un modèle d'équations aux dérivées partielles simplifié pour la rhéologie du gros intestin et la persistance de la couche de mucus. Puis dans un deuxième temps, en tenant compte des précédents résultats obtenus, nous avons élaboré un modèle dans lequel nous intégrons la modélisation de la dégradation des fibres par le microbiote et l'assimilation des sous-produits par l'hôte. Dans ce qui suit nous allons présenter successivement ces deux modèles.

Modèle de mélange pour le mucus intestinal

Pour décrire la persistance du mucus intestinal nous avons élaboré un modèle d'équations aux dérivées partielles basé sur la théorie des mélanges [6] où p, qui est une inconnue, est le multiplicateur de Lagrange associé à la contrainte ρ ρ . Une preuve rigoureuse de l'existence de solutions pour ce système est donnée dans [2]. L'objectif de ce travail est de proposer une approche numérique efficace pour approcher le système (5.4.3). Pour cela, nous proposons un schéma numérique, capable de préserver l'asymptotique lorsque ε tends vers 0 pour le système (5.4.1) muni de la loi (5.4.2) pour la réserve de vitesse. Cependant deux difficultés majeures se posent. D'une part, des ondes dont la vitesse de propagation est infinie peuvent apparaître et d'autre part le système (5.4.1) admet des zones d'invariance non convexes. Pour outrepasser ces difficultés nous introduisons un schéma numérique basé sur un spliting de la pression de la forme p ε = p ε exp + p ε imp et en partie inspiré de [4]. Le système associé à p ε exp est traité avec le schéma de Glimm qui permet de préserver les zones d'invariance et la partie avec p ε imp est évaluée avec un schéma implicite et permet de traiter les ondes rapides. Enfin différents cas tests sont réalisés afin de mettre en évidence les avantages de cette approche numérique.
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Résumé :

Les travaux présentés dans cette thèse sont consacrés à l'étude de systèmes d'équations aux dérivées partielles (EDP). En particulier, nous nous intéressons à des systèmes issus de la mécanique des fluides avec contraintes, qui permettent de décrire de manière continue, en temps et en espace, des quantités physiques telles que la densité ou la vitesse. Dans ce cadre, nous construisons des modèles pour la biologie, qu'ensuite nous testons numériquement. Nous proposons également avec des méthodes similaires une approche numérique originale pour un système de trafic routier. Dans une première partie, à l'aide de la théorie des mélanges, nous modélisons le développement d'un biofilm de micro-algues photosynthétiques. La croissance des micro-algues y est précisément décrite, en tenant compte de leur composition et de l'accès aux nutriments dissouts, contenus dans le liquide environnant ainsi que de la lumière. Puis, à l'aide de simulations numériques, nous estimons la productivité du biofilm. Dans la seconde partie, en utilisant la théorie des mélanges, nous proposons un modèle permettant de décrire la rhéologie du gros intestin et de sa couche de mucus. Mots-clefs : Équations aux dérivées partielles (EDP), théorie des mélange, méthodes numériques pour les EDP, méthodes de splitting, schéma implicite, modèle d'Aw-Rascle, trafic routier, modèles de biofilms de micro-algues, modèles de mucus intestinal, modèles de microbiote intestinal.

Abstract:

The works presented in this thesis are devoted to the study of partial differential equations systems (PDE). In particular, we are interested in constrained systems coming from the fluid mechanics field which allow to described, in time and space, physical quantities such as density or speed. In this context, we build models for biology which are then numerically tested. We also present an original numerical method for a road traffic model. In the first part, using the theory of mixtures, we model the development of a photosynthetic micro-algae biofilm. The growth of micro-algae is precisely described by taking into account their composition and their access to nutrients dissolved in the surrounding liquid and light. Then, using numerical simulations, we estimate the biofilm productivity.

In the second part, using the mixture theory we propose a model describing the rheology of the large intestine and its mucus layer. Thanks to this model we can give an accurate description of the velocity field induced by intestinal flow. This velocity field will then be used to build a model describing precisely interactions between the intestinal microbiota, the gastric broth and the host. For these two models numerical schemes are proposed and allow a first validation of the models. The last part is devoted to developing an asymptotic preserving scheme for the constraint Aw-Rascle system for road traffic. We present an explicit-implicit method based on a splitting technique in order to approximate the solutions of Aw-Rascle system with constraint, while relaxing the stability condition (CFL).
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  Volume de C k dans V Volume de V où V est un élément de volume élémentaire centré en X. Ainsi, par définition, pour tout k ∈[[1, K]] , φ k ∈ [0, 1] et

Figure 1 . 1 -

 11 Figure 1.1 -Représentation des différentes étapes du cycle de développement d'un biofilm
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 13 Figure 1.3 -Représentation des différentes lois cinétiques utilisées pour décrire les vitesses de réaction des mécanismes considérés dans le modèle pour les biofilms de micro-algues.
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 14 Figure 1.4 -Sur la gauche, la fraction volumique des différents composants qui constituent le biofilm, à savoir la réserve de glucose A (en vert), la biomasse fonctionnelle N (i.e. : protéines, ADN et ARN en rouge), la matrice extra-cellulaire E (en marron), et le biofilm entier A + N + E (en violet) et, sur la droite la fraction massique des espèces dissoutes, le substrat S (en rouge), le dioxyde de carbone C (en vert) et le dioxygéne O (en bleu) à t=90 jours.

  A + N + E à t = 15 j (b) A + N + E à t = 30 j (c) A + N + E à t = 50 j (d) A + N + E à t = 70 j
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 15 Figure 1.5 -Evolution de la fraction volumique totale du biofilm (A + N + E) au cours du temps pour deux distributions initiales différentes de biofilm.

  Représentation de la muqueuse et des deux couches de mucus qui la recouvrent
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 16 Figure 1.6 -Représentation du gros intestin et de la muqueuse avec le mucus par-dessus
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 19110 Figure 1.9 -Évolution en temps d'une couche de mucus initialement perturbée. Ces graphiques représentent la fraction volumique de mucus pour différents temps et illustrent la reconstruction de couche de mucus jusqu'à l'état stationnaire.
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 111112 Figure 1.11 -Vue en coupe des fractions volumiques de mucus (en vert) et de bactéries (ligne discontinue rouge) pour différents temps lorsque la donnée initiale en mucus est donnée par un profil gaussien.
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 3113 Figure 1.13 -Évolution pendant les 41 premiers jours de la masse totale en g de chacun des constituants du modèle.
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 3114 Figure 1.14 -Concentration en g cm -3 en fonction de la position des composants du bouillon gastrique et des communautés bactériennes à t = 41 jours.

  .5.1b) où p(ρ) peut être vu comme l'analogue de la pression en dynamique des gaz. Ce terme décrit la manière dont les véhicules adaptent leurs vitesses en fonction de la densité du trafic. En effet p(ρ) peut être interprétée comme une réserve de vitesse, autrement dit v + p(ρ) est la vitesse préférée des véhicules. Notons que la fonction p(ρ) doit notamment se comporter comme ρ γ , γ > 0 au voisinage de 0 et la ρp(ρ) doit être strictement convexe. Cependant bien que ce modèle permette d'éviter que les véhicules reculent sur une voie de circulation il ne permet pas de prendre en compte un seuil pour la densité de véhicules, c'est-àdire d'imposer ρ < ρ où ρ > 0 désigne la densité maximale de véhicules. Dans ce qui suit nous allons présenter le modèle d'Aw-Rascle avec contrainte qui permet d'intégrer cette propriété dans le modèle.Le modèle d'Aw-Rascle modifié avec contrainteLe modèle d'Aw-Rascle avec contrainte élaboré par F. Berthelin, P. Degond, M. Delitala et M. Rascle dans[10], du point de vue de la modélisation est basé sur les deux idées suivantes : l'introduction d'une singularité dans le terme de réserve de vitesse p(ρ) et un changement d'échelle. Dans ce qui suit nous résumons les idées de la construction du modèle puis nous citons le théorème d'existence de solutions. Lorsque le trafic est dense les conducteurs doivent ajuster instantanément la vitesse de leur véhicule pour éviter les collisions. Afin d'introduire cette propriété dans le modèle il faut modifier la vitesse à laquelle se propage l'information lors d'une perturbation du trafic. Pour cela une singularité en ρ est introduite dans la réserve de vitesse de sorte que lim ρ→ρ p(ρ) = +∞, en utilisant la formule

  4). Pour cela nous avons cherché à développer un schéma numérique pour le système d'Aw-Rascle modifié avec changement d'échelle (1.5.3) et dont la solution converge vers le système (1.5.4) lorsque ε → 0. Pour cela nous allons maintenant présenter les propriétés fondamentales associées au système (1.5.3) et mettre en évidence les difficultés numériques liées.1.5.3 Propriétés du modèle d'Aw-Rascle modifié et difficultés numériquesDans cette section nous décrivons les propriétés fondamentales du modèle d'Aw-Rascle modifié avec changement d'échelle, à savoir le système (1.5.3). Certaines de ces propriétés sont à l'origine de difficultés numériques importantes que nous allons présenter puis nous décrirons les méthodes mises en oeuvre afin d'établir un schéma numérique efficace et adapté à ce problème.

.5. 8 )

 8 où λ 1 et λ 2 données par (1.5.6) sont les valeurs propres associées au système (1.5.1). Cette condition impose que l'état U (x i+1 2 
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 115 Figure 1.15 -Décongestion pour la réserve de vitesse (VO2) pour différentes valeurs de γ et de ε. À gauche la densité et à droite la vitesse au temps T = 0.2, pour γ = 2, ε = 10 -3 (en bleu), γ = 2, ε = 10 -5 (en rouge), γ = 3, ε = 10 -5 (en vert) and γ = 3, ε = 10 -7 (en noir). Les simulations sont réalisées avec le schéma implicite-explicite et la condition initiale (1.5.10) représentée en cyan.
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 116 Figure 1.16 -Résultats numériques dans le cas d'une congestion pour avec la réserve de vitesse (VO3), pour différentes valeurs de γ. Sur la gauche la densité et sur la droite la vitesse au temps T = 0.01. Les paramètres pour la réserve de vitesse (VO3) sont γ = 20 (rouge), γ = 50 (bleu) et γ = 100 (vert). Les simulations sont réalisées avec le schéma implicite-explicite et la donnée initiale est représentée en cyan et donnée par l'équation (1.5.11).
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 1 E. Alberti, G. Belli, and C. Morosi. Contributions to the boltzmann-like model for traffic flow. numerical studies and experimental validations for concentration-dependent programs. Meccanica, 13(1) :3-15. [2] E. Alpkvist, C. Picioreanu, M. C. van Loosdrecht, and A. Heyden. Three-dimensional biofilm model with individual cells and continuum eps matrix. Biotechnology and Bioengineering, 94(5) :961-979, 2006.

  The kth-time step is denoted by ∆t k and the time discretizations are therefore equal to t n = n k=1 ∆t k .

4 . 5 )

 45 This equation equation is completed with Neumann boundary conditions on p. This boundary condition can be directly deduced from the boundary conditions on the velocities and equation (2.4.4) on the borders ∂Ω L y . For y = L y we need to notice in this step v T do not change since none of the volume or mass fractions are modified, so using equation (2.4.4) we also get Neumann boundary condition for the pressure on y = L y . Moreover with Neumann boundary conditions on p, the equation (2.4.5) does not have a unique solution. In practice we choose the solution for which the average value of P is null, meaning the solution satisfying Ω P dω = 0.
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 212223 Figure 2.1 -On the left, volume fractions of A (in green), N (in red), E (in brown) and A + N + E (in purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with respect to space at t = 10 days (on top), t = 45 days (in the middle) and t = 90 days (on bottom).

(

  in blue) vanishes in the biofilms region. Therefore, the functional biomass synthesis happens mostly in the region of front of the biofilm. Finally, f D (O) = 1-), present in the death rates (2.3.8g), takes higher values in the biofilm, since the oxygen increases the death rates.

  Other elementary functions that compose the other reaction rates (2.3.8) at t=45 days.
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 24 Figure 2.4 -Plots at t = 45 and 90 days of the elementary functions used to compute the reactions rates with respect to space. On the left, we display the functions (2.3.6) used for the photosynthesis rate and their product f P ; on the right, we plot f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N(Q) = max Q max -max{Q,Q min } Q max -Q min
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 25 Figure 2.5 -On the left, volume fractions of A (in green), N (in red), E (in brown) and A + N + E (in purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with respect to space at t = 90 days, when γ E = 3 • 10 -10 m 2 d -2 and γ M = 3 • 10 -9 m 2 d -2 .
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 26 Figure 2.6 -Velocities of the micro-algae, the extra-cellular matrix and the liquid at t=90 when γ E = 3 • 10 -10 m 2 d -2 and γ M = 3 • 10 -9 m 2 d -2 .
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 27 Figure 2.7 -Velocity of the front in m d -1 (on the left) and average production rate of dry biomass in g m -2 d -1 with respect to the elastic tensor coefficient √ γ M = √ γ E .
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 28 Figure 2.8 -Average production rate of dry constituent in g m -2 d -1 for 90 days with respect to light intensity on the upper surface of water.

  Biofilm components at t = 90 days, when I 0 (t, L x ) Disolved components at t = 90 days, when I 0 (t, L x ) = 1.8I opt
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 29 Figure 2.9 -On the left, volume fractions of A (in green), N (in red), E (in brown) and A + N + E (in purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with respect to space at t = 90 days, when I 0 (t, L x ) = 1.8I opt .

  Other elementary functions that compose the other reaction rates (2.3.8) at t=90 days.
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 210 Figure 2.10 -Plots at t = 45 and 90 days of the elementary functions used to compute the reactions rates with respect to space. On the left, we display the functions (2.3.6) used for the photosynthesis rate and their product f P ; on the right, we plotf R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q max -max{Q,Q min }

  Figure 2.11 -On the left, volume fractions of A (in green), N (in red), E (in brown) and A + N + E (in purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with respect to space at t = 60 days in the case of substrate deficiency, i.e. θ S = 1.65 • 10 -5 .

  Other elementary functions that compose the other reaction rates (2.3.8) at t=90 days.

Figure 2 .

 2 Figure2.12 -Plots at t = 90 days of the elementary functions used to compute the reactions rates with respect to space, in the case of substrate deficiency θ S = 1.65 • 10 -5 . On the left, we display the functions (2.3.6) used for the photosynthesis rate and their product f P ; on the right, we plotf R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q lim -max{Q,Q min }
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 213 Figure 2.13 -On the left, volume fractions of A (in green), N (in red), E (in brown) and A + N + E (in purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with respect to space at t = 60 days in the case of a smaller light absorption coefficient for the biofilm, i.e. τ M = 1.25 • 10 4 m -1 .
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 214 Figure 2.14 -Plots at t = 90 days of the elementary functions used to compute the reactions rates with respect to space, in the case a smaller light absorption coefficient for the biofilm, i.e. τ M = 1.25 • 10 4 m -1 . On the left, we display the functions (2.3.6) used for the photosynthesis rate and their product f P ; on the right, we plot f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N (Q) = max Q lim -max{Q,Q min }
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 215 Figure 2.15 -Volume fractions of A (in green), N (in red), E (in brown) and A + N + E (in purple) and, on the right, with respect to space at t = 150 days, when the biofilm is periodically enlightened.
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 222 Elementary functions (2.3.6) that compose the photosynthesis rate (2.3.8a) for I 0 (t, L x ) Disolved components for I 0 (t, L x ) = I opt /Elementary functions (2.3.6) that compose the photosynthesis rate (2.3.8a) for I 0 (t, L x ) = I opt /Other elementary functions that compose the other reaction rates (2.3.8) for I 0 (t, L x ) = I opt /Elementary functions (2.3.6) that compose the photosynthesis rate (2.3.8a) for I 0 (t, L x ) = I opt Other elementary functions that compose the other reaction rates (2.3.8) for I 0 (t, L x ) = I opt
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 216 Figure 2.16 -Plots of the mass fraction on the components dissolved in the liquid (in the left column) with respect to space for different time of the 150 th day : night (first row), I 0 (150.027, L x ) = I opt /2 (second row), I 0 (150.0545, L x ) = I opt (third row). In the middle and the right columns the elementary functions used to compute the reactions rates with respect to space; more precisely : in the middle the elementary functions (2.3.6) used for the photosynthesis rate and their product f P and on the right we plot f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S and f N(Q) = max Q max -max{Q,Q min } Q max -Q min

  Elementary functions (2.3.6) that compose the photosynthesis rate (2.3.8a) for I 0 (t, L x ) = 3I opt Other elementary functions that compose the other reaction rates (2.3.8) for I 0 (t, L x ) = 3I opt
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 217 Figure 2.17 -Plots of the mass fraction on the components dissolved in the liquid (in the left column) with respect to space for different time of the 150 th day : I 0 (1.501165, L x ) = 2I opt (first row) and I 0 (150.25, L x ) = 3I opt (second row). In the middle and the right columns the elementary functions used to compute the reactions rates with respect to space; more precisely : in the middle the elementary functions (2.3.6) used for the photosynthesis rate and their product f P and on the right we plot f R (O) = O K O +O present in the respiration rate (2.3.8b), f S (S) = S K S +S
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 218219 Figure 2.18 -Initial biofilm distributions χ M for the three 2D test cases

  S at t = 30d (b) S at t = 60d (c) S at t = 90d C at t = 30d (e) C at t = 60d (f) C at t = 90d O at t = 30d (h) O at t = 60d (i) O at t = 90d
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 220 Figure 2.20 -Mass fractions of the components dissolved in the liquid : S (on top), C (in the middle) and O (on bottom) at different times : t = 30 days on the left, t = 60 days in the middle and t = 90 days on the right for the initial distribution of biofilm displayed in figure 2.18a. .
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 221 Figure 2.21 -Volume fractions of A + N + E, i.e. the whole biofilm (first row), A (second row), N (third row) and E (last row) at different times : t = 15 days, t = 30 days, t = 50 days and t = 70 days from left to right for the initial distribution of biofilm displayed in figure 2.18b.
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 222 Figure 2.22 -Mass fractions of the components dissolved in the liquid : S (on top), C (in the middle) and O (on bottom) at different times : t = 15 days (first column), t = 30 days (second column), t = 50 days (third column) and t = 70 (fourth column) for the initial distribution of biofilm displayed in figure 2.18b.
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 223 Figure 2.23 -Volume fractions of A + N + E, i.e. the whole biofilm (first row), A (second row), N (third row) and E (last row) at different times : t = 10 days, t = 20 days, t = 30 days and t = 40 days from left to right for the initial distribution of biofilm displayed in figure 2.18c.
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 224 Figure 2.24 -Mass fractions of the components dissolved in the liquid : S (on top), C (in the middle) and O (on bottom) at different times : t = 10 days (first column), t = 20 days (second column), t = 30 days (third column) and t = 40 days (fourth column) for the initial distribution of biofilm displayed in figure 2.18c.

  4.2c) 2µ∂ z v + P = 0, µ (∂ r v + ∂ z u) + P = 0, ∂ z M = 0 for z = L (3.4.2d) ∂ r M = 0 for r = 0. (3.4.2e)

  4.12b) ∂ z M 0 = 0 for z = 0 and z = 1. (3.4.12c) According to the above results, the first order approximation of the system of equations (3.4.1a) to (3.4.1d) and (3.4.2a) to (3.4.2e) in physical dimensions and under the hypothesis of the aspect ration R L

  .4.13c) ∂ z M 0 = 0 for z = 0 and z = L, (3.4.13d) -The estimation of ṽin = R 0 r R v 0 (r, 0)dr,

3 2(

 3 a) MAC grid with Stokes unknowns.

1 2 Γ

 2 out (b) Half cell for the speed boundary condition. In gray, the ghost points.

Figure 3 . 2 -

 32 Figure 3.2 -Overview of the MAC grid and the half cell on the boundary Thus the discrete formulation of the mass balance conservation law of the mucus equation (3.2.2)is obtained by integrating it on the mesh cell Ω i,j of the hydrostatic pressure grid and using Stokes formula which lead to

  and Γ out we set the Neumann condition equation (3.3.4) with a convection flux given by equation (3.3.5). On the boundaries Γ l , Γ r (resp. Γ in ), the treatment of the equations involving non-interior values for u, v and M is rather standard. The velocities are determined by using the Dirichlet boundary condition equation (3.3.3), while for the volume fraction we use the Robin-like (resp. Neumann) condition in equation (3.3.1) (resp. equation (3.3.4)) to define the missing M's. On Γ out , for the mucus volume fraction M, the diffusion fluxes are set to 0 due to equation (3.3.4).

Fig. 3 .

 3 3 compares the velocity profiles with 0 or 1 iteration of the iterative procedure at y = -L y 2 , far away from Γ in so that the influence of the Dirichlet condition may be moderate, and at y = -∆y 2

2 Figure 3 . 3 -

 233 Figure 3.3 -Speed profiles at y = -L y
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 3435 Figure 3.4 -Horizontal speed u and mucus M distributions at t = 0 or t = 5.
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 36 Figure 3.6 -Mucus profiles at y = -L y

tFigure 3 . 7 - 2 Figure 3 . 8 -

 37238 Figure 3.7 -Evolution in time of the disrupted mucus layer. We present the mucus volume fraction at different times in order to illustrate the reconstitution of the steady-state mucus layer. The plot t = 0 displays M 0,p , the initial perturbed distribution. The dashed and continuous lines represent respectively the lines y = -3cm and y = -8cm.
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 310 Figure 3.10 -Bar plot and table of the Sobol indices for each observable. The notation χ M and χ M * θ M correspond respectively to S i and S ij where i and j are the respective indices of χ M and θ M in ξ.

Figure 3 . 11 -Figure 3 . 12 -Figure 3 . 13 -

 311312313 Figure 3.11 -Cut view of mucus (green continuous line) and bacteria (red dashed line) volume fractions at different times at y = -L y 2 for initial mucus profile M 0,s and u in = 0.
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 314 Figure 3.14 -Cut view of mucus (green continuous line) and bacteria (red dashed line) volume fractions at different times at y = -L y 2 for M 0,s and u in 0 in the iterative procedure of Sec. 3.6.1.

C 2 :C 3 :

 23 fibres (dietary polysaccharides), oligo and mono saccharides, C 4 : acetate, C 5 : hydrogen, C 6 : methane, and the 3 microbial communities (called bacteria in the following) :

B 1 :B 2 :B 3 :

 123 able to digest fibres and mucus, able to perform homoacetogenesis, able to perform methanogenesis,
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 41 Figure 4.1 -Schematic representation of the gut with the computational domain Ω in red.

  3.4)-(4.3.1) on the computational domain represented in red in Figure 4.1.

.4. 3 )Step 1 : 1 4

 311 where U stands for the full set of unknowns U = (c 1 , . . . , c 6 , b 1 , . . . , b 3 ) and f (U ), g(U ) ≥ 0 when c 1 , . . . , c 6 , b 1 , . . . , b 3 ≥ 0. We may consequently discretise implicitly only the b term in eq. (4.4.3) and explicitly the terms f (U ) and g(U ). With such a strategy, the positivity of solutions is preserved for any time step and the non linear equation can be solved by a direct expression at each point. Assuming that an approximation of φ at time t n has already been computed, let us now describe in details the four steps of the scheme, where b n+ 1 4 , b n+ 2 4 , b n+ 3 4 stand for the intermediate approximated values of b after each step : We compute the reaction part of equation (4.4.2), namely we solve ∂ t b = Γ b = f (U )g(U )b at point (r i , z j ) for the initial data b n i,j by an explicit-implicit method, as b n+

r b by an implicit standard centered approximation for the initial data b n+ 2 4 i

 4 

c 1 (

 1 0, r, z) = 0 c 2 (0, r, z) = 1.1072 • 10 -3 c 3 (0, r, z) = 8.1070155 • 10 -4 (4.5.1a) c 4 (0, r, z) = 3.930887 • 10 -2 c 5 (0, r, z) = 3.024 • 10 -7 c 6 (0, r, z) = 1.172524 • 10 -9 (4.5.1b) b 1 (0, r, z) = 4.2488 • 10 -3 b 2 (0, r, z) = 1.0622 • 10 -3 b 3 (0, r, z) = 5.65 • 10 -5 (4.5.1c) for r ∈ [0, 2] and c 1 (0, r, z) = 1.7836 • 10 -3 c 2 (0, r, z) = 0 c 3 (0, r, z) = 5.404677 • 10 -5 (4.5.1d) c 4 (0, r, z) = 2.499536 • 10 -2 c 5 (0, r, z) = 3.423168 • 10 -9 c 6 (0, r, z) = 4.126932 • 10 -12 (4.5.1e) b 1 (0, r, z) = 7.352232 • 10 -2 b 2 (0, r, z) = 1.838058 • 10 -2 b 3 (0, r, z) = 1.535557 • 10 -7 (4.5.1f) for r ∈ [2, 2.5]. The boundary conditions c k,0 and b k,0 at the entrance boundary z = 0 are chosen in order to be consistant with the previous initial data (4.5.1) with two distinct values : one for r ∈ [0, 2] and one for r ∈ [2, 2.5].

  (a) C 1 : Mucus (b) C 2 : Fibres (c) C 3 : Oligo or monosaccharides (d) C 4 : Acetate (e) C 5 : Hydrogen (f) C 6 : Methane

Figure 4 . 2 -

 42 Figure 4.2 -Numerical simulation without bacteria -Evolution during 31 days of the total mass (in g) of the six biochemical components (mucus, fibres, oligo or monosaccharides, acetate, hydrogen, methane) in absence of bacteria. In red, the evolution when the initial data are given by (4.5.1) and in blue when the concentrations are null initially.

(a) C 1

 1 : Mucus (b) C 2 : Fibres (c) C 3 : Oligo or monosaccharides (d) C 5 : Hydrogen
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 43 Figure 4.3 -Numerical simulation without bacteria -We represent the concentrations in g cm -3 of four of the components at t = 31 days. From left to right, mucus C 1 , fibres C 2 , oligo or monosaccharides C 3 and hydrogen C 5 .

  3 and the bacteria B 1 , see Figures 4.5b

  and 4.5g, since bacteria B 1 is responsible for the synthesis of C 3 .

3 Figure 4 . 4 -

 344 Figure 4.4 -Numerical simulation with bacteria -Evolution of the total mass (in g) with respect to time of the six biochemical components and the three bacteria until t = 41 days.

(a) C 1 3 Figure 4 . 5 -

 1345 Figure 4.5 -Numerical simulation with bacteria -Spatial distributions of the concentrations (in g cm -3 ) of the six biochemical components and of the three bacteria at t = 41 days.
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 346 Figure 4.6 -Evolution during 31 days of the total mass (in g) of biochemical components and bacteria. In red the evolution when the initial data are given by (4.5.1) and in blue when the initial concentrations of biochemical components and bacteria are null.

  ∂ t ρ + ∂ x yρp exp (ρ)ρp imp (ρ) = 0, ∂ t y + ∂ x y 2 ρ yp exp (ρ)yp imp (ρ) = 0.

2 . 3 .

 23 It defines some intermediate values (ρ n+1/2 , y n+1/2 ). -Step 2: Solve implicitly the system -∂ x ρ p imp (ρ) = 0, ∂ t y -∂ x y p imp (ρ) = 0.

2 . 3 ) 2 j

 232 where we remind the reader that p imp contains the stiff part of the velocity offset. As said above, the system decouples and it has a very simple structure. Let us set Φ : ρ ∈ [0, ∞) → -ρp imp (ρ) ∈ (-∞, 0]. We solve the scalar conservation law for ρ with the classical Engquist-Osher scheme. The Engquist-Osher flux is defined byF ρ j+1 , ρ j = R [Φ ] + (ξ)1 0≤ξ≤ρ j dξ + R [Φ ] -(ξ)1 0≤ξ≤ρ j+1 dξ,where [X] + = max(X, 0) and [X] -= min(X, 0). The implicit scheme takes the following form is the result from the first (explicit) step of the scheme.Here, the velocity field Φ (ρ) = -d dρ ρp imp (ρ) = -p imp (ρ)ρp imp (ρ) of this scalar equation is always non positive. Accordingly, the numerical flux reduces to a mere function of the right densityF(ρ j+1 , ρ j ) = R Φ (ξ)1 0≤ξ≤ρ j+1 dξ = Φ(ρ j+1 ).Consequently, the non-linear equation (5.2.

.

  It forms a triangular linear system of equations that can be solved by backward substitution, leading to the straightforward formula

Figure 5 . 1 -

 51 Figure 5.1 -Numerical results in the case of transport (5.3.1)-(5.3.2). Density (left) and velocity (right) with the Glimm scheme (top) and the explicit-implicit scheme (bottom). The results are given for the three different pressures under consideration: pressure (VO1) in blue, pressure (VO2) in red and pressure (VO3) in green. The initial conditions are plotted in cyan.
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 5354 Figure 5.3 -Numerical results in the case of decongestion (5.3.3)-(5.3.4). Comparison of the velocity offsets. Density (left) and velocity (right) at final time T = 0.2: (VO1) (blue), (VO2) (red) and (VO3) (green). The simulations are performed with the implicit-explicit scheme.
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 5556 Figure 5.5 -Numerical results in the case of decongestion (5.3.3)-(5.3.4). Pressure (VO2) for different values of ε and γ. Density (left) and velocity (right) at final time T = 0.2: (VO2) for γ = 2, ε = 10 -3 (blue), γ = 2, ε = 10 -5 (red), γ = 3, ε = 10 -5 (green) and γ = 3, ε = 10 -7 (black). The simulations are performed with the implicit-explicit scheme and the initial condition is plotted in cyan.
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 57 Figure 5.7 -Numerical results in the case of congestion -Comparison of the two schemes. Density (left) and velocity(right) at final time T = 0.01. Glimm scheme (top) and implicitexplicit scheme (bottom), with pressure (VO1) (blue), (VO2) (red) and (VO3) (green). The initial conditions are plotted in cyan.
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 5859510 Figure 5.8 -Numerical results in the case of congestion -Comparison of the two schemes -Different parameters. For (VO1) and (VO2), we use γ = 2 and ε = 10 -5 ; for (VO3), we take γ = 50.

2 )

 2 Avec cette définition de p nous obtenons une famille de systèmes indexés par ε. Enfin, en prenant la limite formelle de ces systèmes, lorsque ε tend vers 0, nous obtenons le système + ∂ x (ρv) = 0 ∂ t (ρ(v + p)) + ∂ x (ρv(v + p)) = 0 0 ρ ρ , p 0, (ρρ ) p = 0(5.4.3) 

[ 2 ]

 2 F. Berthelin, P. Degond, M. Delitala, and M. Rascle. A model for the formation and evolution of traffic jams. Arch. Rational Mech. Anal., 187 :185-220, 2008.

  au temps t et au point X ∈ Ω ⊂ R d (d = 1, 2, 3) sera notée M k (t, X). Pour tout k ∈ [[1, K]], nous noterons v k (t, X) ∈ R d la vitesse du composé k.La vitesse peut être perçue comme la dérivée par rapport au temps de la position d'une particule élémentaire fictive de fluide centrée en X. Pour le constituant C k nous noterons ρ k (t, X) sa masse volumique. Pour finir, nous notons φ k (t, X) la fraction volumique du constituant C k . Celle-ci est formellement définie comme φ

1 , C 2 , . . . , C K . La masse du composé C k k (t, X) = lim

  , (1.1.2) et (1.1.3) la contrainte d'incompressibilité puis une condition de compatibilité. Une fois ces relations établies nous expliquerons leur intérêt. La contrainte d'incompressibilité du mélange résulte d'une part de l'incompressibilité de chacun des constituants qui composent le mélange et d'autre part de l'utilisation de la relation (1.1.1) dans la somme des équations de conservation de la masse. Aussi, dans ce qui suit nous considèrerons que chacun des composants du mélange est incompressible dans le sens où sa masse volumique est constante. En d'autres termes nous supposons que pour tout k ∈ [[1, K]] , ρ k ne dépend pas de t et de X. Du point de vue physique, tous les composés sont compressibles. Cependant dans certaines conditions les gaz peuvent être considérés comme incompressibles et c'est une hypothèse naturelle pour les liquides qui sont généralement très faiblement compressibles. Sous cette hypothèse le système d'équations (1.1.1), (1.1.2) et (1.1.3) se simplifie sous la forme

  2 et l'eau H 2 O sont consommés afin de produire du glucose : C 6 H 12 O 6 et du dioxygène O 2 , est rejeté. En chimie cette réaction se synthétise sous la forme 6CO 2 + 6H 2 O ----------→ C 6 H 12 O 6 + 6O 2 , (1.2.1) ce qui constitue la première étape. Dans la seconde étape, il faut traduire cette équation en terme d'échange de masse entre les différents composés considérés dans le modèle. Nous utiliserons les mêmes notations que dans le chapitre 2 c'est-à-dire que nous noterons : -C le carbone inorganique dissout dans l'eau, Les micro-algues -comme beaucoup d'organismes vivants -sont composées majoritairement d'eau (environ 90%) et le glucose contenu dans la cellule est entouré d'eau. Ainsi A représente la réserve de glucose de la micro-algue c'est-à-dire un mélange composé environ à 90% d'eau et 10% de glucose. En utilisant ces notations la réaction chimique (1.2.1) peut être réécrite sous la forme

-L le liquide c'est-à-dire l'eau avec les espèces dissoutes, -A la réserve de glucose avec l'eau qui l'entoure dans la micro-algue, -O l'oxygène dissout dans l'eau. Détaillons la définition de A.

  Typiquement avec cette méthode il faut prendre un pas de temps environ 10 5 fois plus petit que celui donné par la CFL, ce qui induit des temps de calculs prohibitifs. Nous avons également essayé les méthodes de Runge-Kutta 2 et 4 en temps mais bien que d'ordre plus élevé elles ne permettent pas de garder la positivité pour des pas de temps raisonnables. Notons au passage qu'avec ces méthodes explicites, rien ne garantit que la positivité des quantités de matière soit conservée. Afin de résoudre cette difficulté nous pouvons considérer implicite qui consiste à discrétiser implicitement seulement certains termes. Dans le cas présent, nous avons ainsi obtenu un schéma stable c'est-à-dire qui préserve la positivité de la quantité de matière des constituants et dont la mise à jour implique seulement la résolution d'un système linéaire très simple et peu coûteux numériquement. Présentons brièvement l'idée générale de la méthode. Pour cela, nous considérons une EDO de la forme u = f (u)g(u)u où f et g sont des fonctions à valeurs positives. La méthode consiste à approcher cette EDO par u n+1 -u n

	u n +∆tf (u n ) 1+∆tg(u n ) et donc si u n est positif
	alors u n+1 l'est également.

Discrétisation semi-implicite des termes d'échange de masse

La discrétisation en temps des termes d'échange de masse nécessite une attention particulière. Ceux-ci sont construits à partir des lois cinétiques présentées dans la section 1.2.3 et certains termes sont raides, et/ou peuvent avoir une dérivée discontinue. Par conséquent, sans traitement adéquat, le schéma numérique peut devenir instable. En effet, avec une discrétisation explicite en temps, et un pas de temps uniquement déterminé par la contrainte de stabilité (CFL) induit par le terme d'advection, la quantité de matière des constituants dissouts dans la phase liquide peut devenir négative. Pour pallier ce problème nous avons considéré plusieurs approches. La première, consiste à utiliser un pas de temps plus petit que celui imposé par la CFL. Bien que cette méthode empirique fonctionne, elle n'est pas envisageable. des méthodes implicites qui sont en général inconditionnellement stables. Ce choix implique alors d'inverser un système non linéaire, ce que nous faisons à l'aide d'un algorithme de Newton. Cependant, la fonction à inverser est continue mais pas C 1 et sa Jacobienne est presque nulle dans certaines zones, ce qui augmente drastiquement le nombre d'itérations de l'algorithme et donc son coût en terme de temps de calcul. Cette solution a donc été abandonnée au profit d'une méthode semi-∆t = f (u n )g (u n ) u n+1 où ∆t est le pas de temps et u n l'approximation de u au temps t n . Ainsi nous avons u n+1 =

  1.3 Modèle de mélange pour le mucus intestinalNous allons maintenant nous intéresser à la modélisation de la couche de mucus qui recouvre le gros intestin. Si le contexte biologique est fondamentalement différent, les outils mathématiques que nous employons sont en partie comparables. En particulier le cadre mathématique considéré pour construire ces deux modèles, à savoir la théorie des mélanges, est commun et par conséquent induit un certain nombre de similitudes. Le chapitre 3 est consacré à l'élaboration et à l'étude d'un modèle basé sur la théorie des mélanges pour le mucus intestinal. Avant de présenter le modèle, situons le contexte scientifique dans lequel ce travail a été entrepris. Dans[START_REF] Muñoz-Tamayo | Mathematical modelling of carbohydrate degradation by human colonic microbiota[END_REF], Muñoz-Tamayo et al. ont proposé un modèle basé sur un sytème d'EDO pour décrire l'évolution au cours du temps du contenu du gros intestin et du microbiote intestinal qui l'habite. Dans ce modèle les différentes zones du gros intestin sont traitées séparément et couplées par l'intermédiaire de termes sources dans les EDOs. Afin d'affiner le modèle il a été envisagé de passer à un modèle continu en espace. Pour cela un modèle basé sur des EDPs tenant compte des mécanismes fondamentaux de[START_REF] Muñoz-Tamayo | Mathematical modelling of carbohydrate degradation by human colonic microbiota[END_REF] a été élaboré. Afin de tester la pertinence du modèle une étude numérique a été envisagée.
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	ments ou au travers de processus actifs tels que l'excrétion d'antibiotiques. Ces bactéries jouent
	aussi un rôle important dans le développement et la maturation du système immunitaire durant
	les premières années qui suivent la naissance. En particulier de récentes études ont permis
	de mettre à jour des liens entre le microbiote intestinal et les troubles immunitaires comme
	par exemple les allergies. Les bactéries qui composent le microbiote sont également capables
	d'interagir directement avec le système immunitaire de l'hôte, pour moduler sa réponse dans le
	cas d'inflammations [77].
	Cependant malgré tous les avantages que confère la relation symbiotique entre l'hôte et son
	microbiote, si les bactéries entrent en contact avec les parois du côlon elles risquent d'engendrer
	des inflammations ce qui nous amène à parler du mucus intestinal et de son rôle physiologique.
	Le double rôle du mucus intestinal
	Le mucus est un gel visqueux sécrété par la muqueuse intestinale, à savoir les cellules qui
	constituent la paroi de l'intestin. Dans le gros intestin nous distinguons deux couches de mucus
	différentes : la couche interne qui recouvre les cellules de la muqueuse et par-dessus la couche
	externe. Elles sont représentées sur la figure 1.6b. Bien que constituées des mêmes polymères,
	ces deux couches de mucus diffèrent de part leur structure et leur rôle.
	La couche interne de mucus qui mesure environ 50µm d'épaisseur est très visqueuse, et adhère
	aux cellules épithéliales [55] (cellules externes de la muqueuse constituant les parois du gros
	intestin). Cette couche interne de mucus est un obstacle physique quasiment impénétrable du contenu du gros intestin. pour les bactéries [39], ce qui fait d'elle une première barrière immunitaire. En effet, malgré les C'est dans ce contexte qu'un projet d'étude de la rhéologie du gros intestin a été proposé pour bénéfices issus de la relation symbiotique entre l'hôte et les bactéries, celles-ci représentent un l'école d'été du CEMRACS 2015. Ce projet a donné lieu à une collaboration étroite entre des danger d'infection en cas de contact avec les cellules épithéliales. chercheurs de milieux scientifiques variés, avec d'une part des biologistes de l'équipe MaIAGE La couche externe de mucus qui mesure approximativement 100 µm d'épaisseur est moins affiliés à l'Institut National de Recherche en Agronomie (INRA) : S. Labarthe et B. Laroche et dense et moins visqueuse. Cette couche de mucus fournit une structure adaptée à l'ensemble des d'autre part des mathématiciens spécialisés dans les schémas de volumes finis, la mécanique des bactéries qui la peuplent. Ainsi, situées à l'interface entre le mucus et le fluide luminal, elles ont fluides et l'analyse de sensibilité. un accès facile aux nutriments [39, 56]. L'augmentation de viscosité due à la présence du mucus, Dans un premier temps nous présenterons le contexte biologique à savoir la structure et les propriétés biologiques du gros intestin que nous cherchons à décrire. Nous aborderons ensuite la leur permet de résister au lessivage induit par le flux gastrique.
	modélisation qui est basée sur la théorie des mélanges et nous présenterons comment certaines propriétés biologiques sont prises en compte au travers des conditions aux bords. Enfin après 1.3.2 Objectifs de modélisation
	avoir décrit l'approche numérique employée nous présenterons les principaux résultats. L'enjeu de ce travail consiste à établir un modèle mathématique simple capable de décrire la
	persistance de la couche de mucus qui recouvre le gros intestin tout en tenant compte des
	principaux mécanismes biologiques : la production du mucus, l'absorption d'eau et le flux 1.3.1 Contexte biologique intestinal. Pour cela nous élaborons un modèle de mélange composé de deux phases : le liquide
	Le rôle du gros intestin et de son microbiote et le mucus notés respectivement L et M. Chacune de ces phases est décrite par une loi de
	conservation de la forme de (1.1.2). Pour simplifier le modèle, nous considérons une unique Le gros intestin représenté schématiquement sur la figure 1.6a est le maillon final du processus vitesse commune aux deux phases et les différences de vitesse sont prises en compte au travers de digestion. Considéré comme un simple tube pendant longtemps, des études ont montré que sa d'un terme de correction d'ordre un qui prend la forme d'un terme de diffusion. Les coefficients fonction physiologique principale consiste à absorber l'eau contenue dans le bouillon gastrique associés aux termes de diffusion seront notés D M pour le mucus et D L pour le liquide. Finalement afin de maintenir l'hydratation du corps. Il est estimé [35, 79] que le côlon absorbe environ 90% des 1, 5 à 2 litres d'eau contenus dans le bouillon gastrique. Par ailleurs, il intervient aussi dans le les équations de conservation de la masse sont
	processus de digestion par l'intermédiaire d'une relation symbiotique avec la flore microbienne :
	l'ensemble des bactéries qui colonisent le gros intestin. Également appelée flore intestinale ou
	microbiote intestinal, les bactéries (environ 10 14 soit 10 fois le nombre de cellules qui composent
	le corps humain) sont tolérées en échange de certains services. Le microbiote intestinal finalise le
	processus de digestion, notamment des fibres que l'hôte est incapable d'assimiler directement.
	Celles-ci sont dégradées en sous produits, finalement assimilables, lesquels fournissent environ
	10% des besoins énergétiques journaliers [75].
	Les bactéries qui composent le microbiote intestinal ont aussi un rôle immunitaire. En effet, le
	développement de ces bactéries empêche les pathogènes de pouvoir s'installer. Ceux-ci sont
	éliminés grâce à leur domination par le microbiote dans la compétition pour l'accès aux nutri-

C'est dans ce contexte que T. Goswami a réalisé au sein de l'équipe COFFEE de l'INRIA son stage de fin d'étude, à l'encadrement duquel j'ai participé. Au cours du stage T. Goswami a élaboré un schéma basé sur les différences finies pour le modèle EDP. L'analyse des résultats numériques a en particulier souligné que la définition du flux intestinal considéré n'était pas satisfaisante donnant lieu à un lessivage

  compréhension accrue, nous avons pu proposer un modèle en temps et en espace pour décrire les interactions entre le bouillon gastrique, le mucus et le microbiote intestinal.
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	éviter des temps de calculs prohibitifs.
	Cependant, cette description peut encore être améliorée. Pour cela, un certain nombre de para-
	mètres du modèle nécessitent d'être calibrés précisément, soit grâce à la littérature déjà existante,
	soit par le biais de discussions avec des biologistes pouvant éventuellement conduire à des
	expérimentations.
	En l'état actuel, rien n'empêche les bactéries d'enter en contact avec la paroi du côlon et à terme,
	il faudrait intégrer cette propriété physiologique importante aux modèles. Pour cela, plusieurs
	approches sont envisageables. Par exemple, nous pourrions modifier la forme des termes de
	chimiotactisme afin de limiter le déplacement des bactéries en direction de la paroi. Une autre
	approche serait de considérer un taux de mortalité qui augmente lorsque l'on se rapproche de la
	paroi et ainsi, représenter en partie, la réponse immunitaire de l'hôte.
	À terme, il serait également très intéressant de coupler le modèle fluide avec le modèle microbiote.
	Pour cela, plusieurs difficultés doivent être résolues. Entre autres, le modèle final, relativement
	complexe, nécessiterait l'utilisation et la mise au point de méthodes numériques efficaces, pour

  Rascle sont bien conservées. Le système (1.5.1) muni de la loi (1.5.2) pour p est appelé modèle d'Aw-Rascle modifié. Cependant ce comportement doit être observé uniquement lorsque le trafic est saturé. Pour limiter l'effet de la singularité à l'approche de la densité maximale, la reserve de vitesse est changée en

5.2) avec γ > 1 un paramètre. Notons que p(ρ) se comporte encore comme ρ γ au voisinage de 0 et que ρp(ρ) est bien strictement convexe ce qui permet d'assurer que les propriétés du modèle 1. INTRODUCTION d'Aw-

  Donc d'après la condition CFL (1.5.8) le pas de temps devient très petit et conduit à des temps de calcul prohibitifs. Dans les cas où nous considérons les réserves les vitesses (VO2) ou (VO3) la conclusion est analogue. Cette observation motive l'élaboration d'un schéma numérique basé sur un splitting afin que les ondes rapides puissent être calculées implicitement et ainsi alléger la contrainte sur le pas de temps. Pour cela la réserve de vitesse est découpée en deux parties

p = p exp + p imp de sorte que p exp se comporte comme p pour ρ petit et induise une contrainte de stabilité de l'ordre de 1 pour la condition

(1.5.8)

. Le système est ensuite scindé en deux sous systèmes l'un faisant intervenir p exp et l'autre uniquement p imp . Chacun de ces sous systèmes est ensuite résolu avec une méthode spécifiquement adaptée. Nous utiliserons le schéma de Glimm qui est une méthode explicite pour le système avec p exp . Ce choix est justifié puis la méthode présentée dans ce qui suit. La partie avec p imp sera quant à elle traitée avec une méthode implicite. Ainsi la condition de stabilité du schéma est indépendante de ε.

  uniforme de la droite x et u n i l'approximation de u au temps t n et au point x i . Pour déterminer une approximation de la solution au temps t n+1 nous résolvons sur chaque interface x i+ 1 2 le problème de Riemann, ayant pour donnée initiale u i pour x < x i+ 1 2 et x i+1 pour x x i+ 1 2 . Enfin la solution au temps t n+1 dans la cellule C i est définie comme la solution au problème de Riemann au point x i+ 1 2 + ∆xa n où ∆x est le pas en espace et a n un nombre aléatoire dans l'intervalle [0, 1]. En pratique a n est calculé avec la suite quasi-aléatoire de Van Der Corput définie par

  5.12) Sur la figure1.16, nous représentons la solution obtenue au temps T = 0.01 pour le modèle avec la réserve de vitesse (VO2) et différentes valeurs du paramètre γ. Lorsque γ tend vers l'infini, la solution approchée converge vers la solution asymptotique donnée par la formule (1.5.12). Cependant, comme ρ n'est pas une valeurs singulière pour la réserve de vitesse 1.16, la densité peut éventuellement dépasser ρ dans la zone de congestion. En pratique, nous observons que dans la congestion ρ ρ mais aussi que ρ tend vers ρ lorsque γ tend vers l'infini.
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  3, with the reaction rate ϕ P . Moreover, according to sections 2.2.3 to 2.2.3, it is a reactant for all the other mechanisms : A is consumed by the respiration with rate ϕ R (see equation (2.2.4)), by the synthesis of functional biomass with rate η A N ϕ N (see equation (2.2.5)), by the EPS excretion with rate ϕ A

E (see equation (2.2.6a)) and by the micro-algae death with rate ϕ A D (see equation (2.2.7a))
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Table 3 .

 3 1 -Biophysical constants of the model. Sigmoidal distribution is defined with equation (3.2.6

	Sigmoidal distribution	Other

Table 3 .

 3 2 -Biophysical constants of the extended model

	Other

Table 4 .

 4 1 -Estimated values of the pseudo-stoichiometric coefficients pseudo-stoichiometric coefficient with the reaction rate as a positive term (resp. negative term) if it is a product (resp. reactant) of the reaction.

	25 • 10 -2

  3 are summarised in table 4.1 and table 4.2.

	Name	Value	Interpretation	Ref.

Table 4 .

 4 10 2 Chemosensitivity for the attraction of B 1 by potential φ 1 2 -Estimated values of the biological and physical parameters

	λ 1,2	10 2	Chemosensitivity for the attraction of B 1 by potential φ 2	
	λ 2,3	10 2	Chemosensitivity for the attraction of B 2 by potential φ 3	
	λ 3,5	10 2	Chemosensitivity for the attraction of B 3 by potential φ 5	
	τ 1	40 d -1	Maximal reaction rate for reaction 4.2.1	[10]
	τ 2	12.627 d -1	Maximal reaction rate for reaction 4.2.2	[10]
	τ 3	0.971 d -1	Maximal reaction rate for reaction 4.2.3	[10]
	τ 4	40 d -1	Maximal reaction rate for reaction 4.2.4	[10]
	τ 6	200 d -1	Death rate of bacteria	[10]
	η	0.1	Proportion of polysaccharides from dead bacteria	[10]
	K 1	0.468 g L -1	Half saturation constant for mucus in reaction 4.2.4	[10]
	K 2	0.468 g L -1	Half saturation constant for fibres in reaction 4.2.1	[10]
	K 3	0.468 g L -1	Half saturation constant for oligo or monosaccharides in	[10]
			reaction 4.2.3	
	K 5	1.576 • 10 -6 g L -1 Half saturation constant for mucus in reaction 4.2.4	[10]
	K pH	3 • 10 -6 g L -1	Half inhibition constant for hydrogen in reaction 4.2.1 and	[10]
			4.2.4	
	K eq	6.5 • 10 -7 g L -1	Hydrogen saturation at equilibrium	[10]
	γ 1	-2 • 10 -3 cm d -1 Production rate of mucus	[10]
	γ 2	0 cm d -1	Absorption rate of fibres	[10]
	γ 3	8 • 10 -2 cm d -1	Absorption rate of oligo-and mono-saccharides	[10]
	γ 4	8 • 10 -2 cm d -1	Absorption rate of acetate	[10]
	γ 5	8 • 10 -2 cm d -1	Absorption rate of hydrogen	[10]
	γ 6	8 • 10 -2 cm d -1	Absorption rate of methane	[10]
	v in	75 cm d -1	Mean flow in entrance in a pulse	
	µ min	1	Minimal viscosity	
	µ max	10 2	Maximal viscosity	
	σ µ	30	Stiffness of the sigmoid for the viscosity	
	χ µ	2.45 cm	Inflexion point of the sigmoid for the viscosity	
	σ k	[10, 14, 12]	Stiffness of the step function in P (see equation (4.3.3))	
	χ k	8 24 , 12 24 , 19 24 d	Day times where the k th pulse is maximal	
	δ k	1 48 , 1 48 , 1 48 d	Duration of the k th pulse	

  5. NUMERICAL SCHEMES FOR AW-RACLE MODEL WITH CONSTRAINT
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  Les modèles auxquels nous nous intéressons peuvent être scindés en deux parties. D'une part les modèles mathématiques pour la biologie : description de la croissance des biofilms de micro-algues et modèle pour la rhéologie ou la digestion des fibres par le gros intestin, et d'autre part les modèles pour le trafic routier. Ces deux thématiques dont les applications sont fondamentalement différentes présentent plusieurs similitudes du point de vue mathématique. Notamment, les modèles étudiés sont basés sur des systèmes d'EDP hyperboliques avec contrainte, celle-ci s'exprimant au travers de la conservation du volume dans le cadre des modèles pour la biologie et au moyen d'un seuil sur la densité dans le cas du trafic routier. Enfin, dans ces modèles, des zones de vide, caractérisées par une phase avec une fraction de volume nulle, pour les modèles appliqués à la biologie, ou par une densité nulle, dans le cas du trafic routier, peuvent apparaître. Ces propriétés nous ont conduits à l'élaboration d'approches numériques explicites-implicites spécifiquement conçues afin de traiter les zones de vide, satisfaire les contraintes et préserver la positivité de certaines variables. Dans ce résumé nous présentons successivement les quatre modèles étudiés au cours de cette thèse. Pour chacun, nous citons les principaux enjeux scientifiques ayant motivé ce travail, puis nous réalisons la synthèse des principaux résultats obtenus. La première partie est consacrée à un modèle décrivant la croissance d'un biofilm de micro-algues autotrophes. Nous parlons ensuite d'un modèle mathématique décrivant la rhéologie du gros intestin et de la couche de mucus qui recouvre ses parois. Puis, nous poursuivons avec la présentation d'un modèle pour digestion des fibres par le gros intestin tenant compte des interactions entre l'hôte et la flore intestinale. Enfin, pour terminer nous présenterons les approches numériques élaborées pour le modèle de trafic routier d'Aw-Rascle avec contrainte.Modèle de croissance pour les biofilms de micro-alguesCe travail est le fruit d'une étroite collaboration avec O. Bernard de l'équipe BIOCORE (équipe commune entre le Laboratoire Océanographique de Villefranche-sur-Mer (LOV) et l'Institut National de la Recherche Agronomique (INRA)). Cette étude s'inscrit dans le cadre du projet Algae in silico. L'objectif est d'optimiser la production de carbohydrate par les micro-algues en vue de leur transformation en biocarburant. Un biofilm est une communauté généralement hétérogène de micro-organismes qui vivent enchevêtrés dans une matrice extra-cellulaire (ECM). Cette matrice extra-cellulaire, caractéristique des biofilms, est composée de polymères habituellement produits par les micro-organismes. Le tout est attaché à une surface et est en contact permanent avec de l'eau. La culture de micro-algues sous forme de biofilm permet d'une part, de réduire considérablement la consommation d'eau et d'autre part, de faciliter la récolte et le post traitement. Le modèle proposé est une généralisation de[3] auquel il emprunte la modélisation des équa-tions de conservation du moment et une partie des méthodes numériques. Cependant, il s'en distingue par la prise en compte d'un plus grand nombre de mécanismes biologiques. Ceux-ci sont précisément décrits par des lois cinétiques qui tiennent compte des nombreux phénomènes de limitation. Les mécanismes considérés sont les suivants : la photosynthèse, la respiration, l'assimilation du substrat, l'excrétion de la matrice extra-cellulaire et la mortalité. Ces mécanismes font intervenir les micro-algues, la matrice extra-cellulaire et le liquide que nous traitons individuellement. De plus, la phase liquide contient des composés dissous tels que le dioxyde de carbone, le substrat et l'oxygène. Afin d'obtenir une description précise de la croissance des micro-algues, nous considérons séparément la biomasse fonctionnelle (protéines, ARN, ADN, ect.) et la réserve de carbone (carbohydrates : sucres, lipides). Ce choix est justifié par le fait que ce sont les carbohydrates présents dans la réserve de carbone qui permettent la production de biocarburant et par le fait que la biomasse fonctionnelle joue un rôle central dans la croissance et l'excrétion d'ECM. Plus précisément, la croissance des micro-algues est rigoureusement décrite à l'aide du modèle de Droop[5].

  . Le système étudié est composé de deux phases : le mucus et le bouillon gastrique. Chacune de ces phases vérifie une loi d'advectiondiffusion et les échanges entre l'hôte et ces deux phases, sont pris en compte à l'aide de conditions de Robin sur les parois. Afin de simplifier le modèle, nous considérons que les deux phases sont transportées à une même vitesse, qui est la vitesse moyenne du flux intestinal. Enfin, le champ de vitesse vérifie une équation de Stokes. À partir de ce modèle, sous l'hypothèse que le diamètre du gros intestin est petit par rapport à sa longueur, nous pouvons déduire un modèle réduit. Ce modèle réduit peut être partiellement résolu et certaines des inconnues du système, telle que la vitesse, s'expriment explicitement en fonction des paramètres du modèle. Ce modèle réduit a permis de définir plus rigoureusement la condition au bord pour la vitesse d'entrée qui joue un rôle essentiel dans la persistance de la couche de mucus. Il a également servi à réaliser une étude de sensibilité des paramètres du modèle. De plus, afin d'approcher la solution du modèle nous avons élaboré un schéma de type volumes finis sur grilles décalées (VF4). Puis l'analyse des simulations numériques a permis une première validation du modèle. Enfin, nous avons cherché à généraliser ce modèle en introduisant une troisième phase : le micobiote intestinal. Comme pour le mucus, nous cherchons à comprendre les mécanismes permettant au microbiote de résister au lessivage, induit par le flux intestinal. Pour cela, nous proposons d'ajouter la prise en compte d'un mécanisme d'attraction-répulsion pour les bactéries. Une fois le modèle établi, des simulations numériques sont réalisées et commentées.Nous allons maintenant présenter le modèle élaboré pour décrire la digestion des fibres.5.4.2 Modélisation de l'assimilation des fibres par le microbiote intestinalDans cette étude, nous voulons décrire précisément les interactions entre les composants dissous dans le bouillon gastrique, le mucus, l'hôte et le microbiote intestinal. Pour cela nous considérons séparément le mucus, les fibres, les oligo-et mono-saccharides, l'acétate, l'hydrogène et le méthane ; chacun de ces constituants étant décrit au travers d'une loi de conservation d'advectionréaction-diffusion. L'ensemble des échanges entre l'hôte et les composants du bouillon gastrique sont pris en compte au travers des conditions aux bords. Nous considérons également trois communautés bactériennes, chacune étant capable de dégrader et d'assimiler certains composants. Chacune des communautés bactériennes est décrite par une loi de conservation d'advectionréaction-diffusion à laquelle un terme de transport de chimiotactisme est ajouté. Le terme de chimiotactisme permet de prendre en compte l'attraction des bactéries par les composants qu'elles sont capables d'assimiler. Notons enfin que les termes de réaction sont précisément modélisés à l'aide de lois cinétiques élémentaires. Comme dans le modèle décrivant la persistance du mucus intestinal nous considérons que le transport induit par le flux gastrique est commun à tous les composants et à toutes les espèces. Cependant au lieu de considérer une vitesse moyenne en temps, nous tenons compte du fait que le flux intestinal a lieu lors des périodes post-prandiales. Ainsi le transport dû au flux intestinal se fait par pulses. Afin d'étudier ce modèle, un schéma numérique a été élaboré. Pour alléger la contrainte CFL nous traitons la diffusion implicitement à l'aide d'un splitting directionnel. De plus, les termes d'échange de masse sont raides et nécessitent un traitement semi-implicite qui permet de garantir la positivité tout en limitant le coût numérique. L'analyse des résultats a permis de mettre en évidence l'apparition d'états pseudo-stationnaires après une période de transition. Les états pseudo-stationnaires sont caractérisés par l'apparition de motifs périodiques en temps. La forme spécifique de ces états pseudo-stationnaires est une conséquence du fait que le flux intestinal prend la forme de pulses de vitesse lors des périodes post-prandiales.Nous allons maintenant passer à la présentation de l'étude numérique pour modèle d'Aw-Rascle avec contrainte. Modèle d'Aw-Rascle avec contrainte pour le trafic routier Le modèle d'Aw-Rascle pour le trafic routier est un modèle inspiré de la dynamique des gaz. Cependant contrairement aux particules dans un gaz, le comportement d'un véhicule est anisotrope et dépend essentiellement du véhicule qui le précède. Dans [1] Aw et Rascle ont proposé un modèle afin de prendre en compte cette spécificité. Le modèle d'Aw-Rascle décrit la densité ρ, et la vitesse v des véhicules sur une route au travers du système + ∂ x (ρv) = 0 ∂ t ρ (v + p(ρ)) + ∂ x ρv (v + p(ρ)) = 0, (5.4.1)où la réserve de vitesse p est une fonction de la densité (qui est l'analogue de la pression en dynamique des gaz). Afin de garantir que la densité reste bornée et que les véhicules ajustent leurs vitesses lorsque l'on se rapproche de la densité maximale ρ une singularité est introduite dans p. Cependant la modification de la vitesse doit intervenir uniquement à l'approche de ρ , pour cela un changement d'échelle est appliqué à p. Ainsi la réserve de vitesse est définie par

	   	∂ t ρ
	  	

  Grâce à ce modèle, nous donnerons une description précise du champ de vitesse, induit par le flux intestinal. Puis, ce champ de vitesse sera utilisé pour construire un modèle décrivant les interactions entre le microbiote intestinal, le bouillon gastrique et l'hôte. Pour ces deux modèles, un schéma numérique est proposé et permet une première validation. Enfin, la dernière partie est consacrée à l'élaboration d'un schéma asymptotic preserving pour le système de trafic routier d'Aw-Rascle avec contrainte. Nous y présentons une méthode expliciteimplicite basée sur une technique de splitting permettant d'approcher les solutions du système d'Aw-Rascle avec contrainte, tout en réduisant la contrainte de stabilité (CFL).

Le chapitre 4 est consacré à l'élaboration d'un modèle mathématique pour le gros intestin. En particulier, nous voulons décrire précisément les interactions entre l'hôte, le microbiote intestinal et le bouillon gastrique. Nous allons, dans un premier temps, préciser les motivations à l'origine de ce travail et le contexte dans lequel il a été réalisé. L'importance et le rôle du microbiote ainsi que de la couche de mucus ayant déjà été présentés en détail dans la section 1.3.1, nous nous contenterons ici de les rappeler. Enfin, nous donnerons le plan de cette partie.En 2014, nous avons accueilli T. Goswami dans l'équipe INRIA COFFEE où il a y effectué son stage de fin d'étude et à l'encadrement duquel j'ai participé. Ce stage a également été réalisé en partenariat avec des biologistes de l'équipe MaIAGE de l'Institut National de Recherche en Agronomie. Au cours de son stage, T. Goswami a élaboré un schéma numérique pour un système simplifié d'équations aux dérivées partielles, décrivant les interactions entre les différents constituents contenus dans le gros intestin. L'analyse des résultats numériques obtenus à montré qu'en l'état actuel, le modèle était incapable, d'une part, de préserver la couche de mucus, et d'autre part, entrainait un lessivage des composants contenus dans le côlon. Suite à ces constats, un projet d'étude de la rhéologie du gros intestin, a été déposé pour l'école d'été du CEMRACS 2015. Au cours de celui-ci, nous avons étudié un modèle décrivant l'écoulement du bouillon

This study is the result of a joint work with O. Bernard and M. Ribot.Résumé: Nous présentons dans cet article un modèle spatial qui décrit la croissance d'un biofilm de micro-algues photosynthétiques. Ce modèle tient compte de la photosynthèse, de l'excrétion de matrice extra-cellulaire ou encore de la mortalité. Ces mécanismes sont précisément décrits à l'aide de lois cinétiques qui tiennent compte des effets de saturation qui limitent les vitesses des réactions et qui font intervenir différents composants que nous traiterons individuellement. En particulier, afin d'obtenir une description plus fine de la croissance des micro-algues, nous considérons séparément les lipides contenus dans les micro-algues de la partie fonctionnelle des micro-algues (protéines, ARN, etc...), cette dernière partie jouant un rôle prépondérant lors de la photosynthèse. Nous considérons également les espèces dissoutes dans la phase liquide telles que le CO 2 . Le modèle est basé sur la théorie des mélanges et le comportement de chacune des phases considérées est décrit d'une part par la conservation de la masse qui tient compte des propriétés biologiques du système et d'autre part, par la conservation du moment grâce à laquelle les propriétés physiques de la phase sont décrites. Nous montrons que le modèle permet d'estimer la productivité du biofilm et que la prise en compte des composants dissouts comme nutriments, permet de faire apparaître des structures caractéristiques en forme de champignons.Ce travail est le fruit d'une collaboration avec O. Bernard et M. Ribot.

TIME-SPACE MODEL OF MICRO-ALGAE BIOFILMS

Résumé: Nous présentons dans cet article un modèle de mélange qui décrit l'évolution de la couche de mucus qui recouvre la muqueuse du gros intestin. Ce modèle prend en compte la mécanique des principaux fluides qui composent le contenu intestinal, décrite avec le modèle de Stokes, la rhéologie inhomogène dépendant de la composition du fluide, et les principaux mécanismes physiologiques qui assurent l'homéostasie de la couche de mucus. Nous détaillons l'expression mathématique du modèle, et nous présentons des résultats numériques issus de la résolution du problème par une méthode de volumes finis sur grille MAC. Nous démontrons ainsi la capacité du modèle à reproduire une couche de mucus stationnaire stable. Nous introduisons également une simplification du modèle basée sur une dérivation formelle du modèle limite sous l'hypothèse d'un petit ratio d'aspect du côlon. Nous analysons la sensibilité de ce modèle simplifié en construisant un métamodèle basé sur des polynômes de chaos afin d'identifier les paramètres impactant le plus la forme de la couche de mucus. Finalement, nous montrons comment ce modèle de mécanique des fluides peut être couplé avec un modèle de dynamique de population en ajoutant une phase supplémentaire au modèle de mélange qui décrit une population bactériennes chimiotactique. Nous présentons des résultats numériques qui reproduisent des interactions physiologiques entre bactéries et mucus. Ce travail est le fruit d'une collaboration avec T. El Bouti, T. Goudon, S. Labarthe, B. Laroche, A. Rachah, M. Ribot et R. Tesson. Cet article est actuellement en cours de révision.

MIXTURE MODEL FOR THE GUT MUCUS LAYER
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Abstract: We propose in this work a model of partial differential equations in order to describe the interactions between the intestinal microbiota, the gastric broth and the host. To this end, we consider separately the different components of gastric broth and the three main microbial communities that constitute the microbiota. Each of these constituents is modeled by an advection-diffusion-reaction equation in which the mass exchange terms are specifically designed using kinetic laws. The model takes into account the intestinal postprandial flow and the movement of bacteria induced by chemotaxis. We propose a numerical scheme based on finite differences, with which we perform numerical simulations. The analysis of these simulations validates the model and shows the emerging of an asymptotic steady state.
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Case of simple transport

To begin with, we test the case of a simple transport: the computational domain is the slab [0, 1] and for the initial data we set v 0 (x) = 1, ρ 0 (x) = 0.4, if x ∈ [0, 0.5[, 0.95, if x ∈ [0.5, 1],

(5.3.1) see Figure 5.1 (cyan curves). We compare the six following situations :

-system (5.0.1) with pressure (VO1), using the Glimm scheme, -system (5.0.1) with pressure (VO1), using the scheme presented in Section 5.2, -system (5.0.1) with pressure (VO2), using the Glimm scheme, -system (5.0.1) with pressure (VO2), using the scheme presented in Section 5.2, -system (5.0.1) with pressure (VO3), using the Glimm scheme, -system (5.0.1) with pressure (VO3), using the scheme presented in Section 5.2. The solution at T = 0.4 should be

The space step is equal to ∆x = 10 -3 and the time step is computed in order to satisfy the stability condition (evaluated with the full p for the Glimm scheme, and with p exp for the implicit-explicit method). The parameters are taken as follows :

-Pressure (VO1) with γ = 2, ε = 10 -3 , ρ = 1. For the explicit-implicit scheme, the numerical threshold is chosen as

For the explicit-implicit scheme, the numerical threshold is chosen as ρ num = ρ 1 -1 5 ε 1/(γ+1) . -Pressure (VO3) with γ = 4. For the explicit-implicit scheme, the numerical threshold is chosen as ρ num = ρ 1 -10 -2 . The results of the numerical simulations for the three different pressures performed with the Glimm scheme are displayed at Figure 5.1a-5.1b, whereas the same simulations using the scheme constructed in Section 5.2 are exhibited at Figures 5.1c-5.1d. All the results are equivalent and agree with the exact solution, except the explicit-implicit scheme which fails in this configuration for the original pressure (VO1).

Case of decongestion

Next, we study the case of a decongestion in the traffic. The data are defined by

The initial density is close to the threshold. Since the vehicles ahead are going faster, a decongestion occurs. The expected solution at T = 0.2 should be equal to

(5.3.4) (note that v does not make sense in vacuum regions). What is interesting is to check the ability of the models and of the numerical methods to handle the formation of vacuum regions, where the density vanishes. The velocity offsets are defined as in the previous Section and we work with the same numerical parameters. The results can be found in Figure 5.2. Glimm scheme and explicit-implicit schemes give the same results for pressures (VO1), (VO2) and (VO3). However, Glimm scheme (blue). On the top, the simulations are performed implicit-explicit scheme (red) and pressure (VO2) with implicit-explicit scheme (green). Bottom: pressure (VO3) with Glimm scheme (blue) and with the explicit-implicit scheme (red). The initial conditions are plotted in cyan.

NUMERICAL SCHEMES FOR AW-RACLE MODEL WITH CONSTRAINT

the time step for the Glimm scheme is drastically smaller than with the explicit-implicit scheme : the order of magnitude is ∆t = 10 -4 for the explicit-implicit scheme vs ∆t = 10 -7 for the Glimm scheme. Therefore, we further discuss the results obtained with the explicit-implit scheme, see Figure 5.3. We observe that the three pressures give different results, especially in the vacuum region, none of them being totally in agreement with the expected result. This can be explained by the moderate value of the parameters ε or γ. Indeed, the constrained behavior (5.3.4) can be obtained by changing the parameters, see Figure 5.4, where we test (VO3) for different values of γ → +∞ and Figure 5.5, we make ε → 0 vary for (VO2). In the former case, the limit behavior is captured with γ = 100 and for the latter, we get a satisfactory result with ε = 10 -5 if γ = 2, and ε = 10 -7 if γ = 3. We notice also at Figure 5.5 that if we take γ = 3 for pressure (VO2) instead of γ = 2, we need to take a smaller value of ε, namely ε = 10 -7 instead of ε = 10 -5 . In Figure 5.6, we compare the original model (VO1) and the modified model (VO2). Although the results are totally equivalent when γ = 2, ε = 10 -5 , we notice that the modified pressure (VO2) behaves better than pressure (VO1) in the computation of the velocity.

Case of congestion

Finally, we turn to the simulation of a congestion in the traffic. The initial conditions are given by

The density is initially close to the threshold; since the cars ahead are slower, a congestion might occur and the Lagrange multiplier becomes active to prevent an excess of vehicles density. Indeed, discontinuous solutions are characterized by the Rankine-Hugoniot conditions: with t → s(t) the speed of the discontinuity curve, we have ṡ ρ = ρv ,

We can check that

and a Lagrange multiplier active only in the congestion domains π 1 (t, x) = 1 0.5-18t≤x≤0.5+t , is solution of (5.0.4). The presence of slow vehicles ahead of the fast ones instantaneously creates a congestion behind the velocity jump: the slow vehicles ahead make the faster ones behind brake. This is typical of the Follow-the-Leader approach, which has led to a derivation of the Aw-Rascle system [1,19]. However, it is likely that solutions of the constrained model (5.0.4) are not uniquely defined for such data; we refer the reader to [6] for such considerations. The parameters are defined as in Section 5.3.1 and we show the solutions obtained at the final time T = 0.01. Like for the transport case, we observe significant discrepancies between the Glimm scheme and the implicit-explicit scheme with (VO1). We observe that with these parameters, the three models do not find the solution (5.3.4). The time steps for the Glimm scheme are smaller than with the explicit-implicit scheme, but, quite surprisinglsly, by a factor 3 or 4 only. Regarding the velocity offsets, (VO3) overshoots the maximal value of the density, equal to 1, whereas the two other pressures (VO1) and (VO2) underestimate it. This is not surprising since (VO3) allows values larger than the threshold, but it contrasts with the behavior of the model (VO2) which has the same feature. In Figure 5.8, we make the parameters vary as follows:

-Pressure (VO1) with γ = 2, ε = 10 -5 , -Pressure (VO2) with γ = 2, ε = 10 -5 , -Pressure (VO3) with γ = 50. The explicit-implicit scheme does not work with (VO1) and these parameters: the Newton procedure does not converge. It is likely that the splitting, which is intended to address the stability issue, does not solve the difficulty which prohibits to overtake the threshold. This motivates the use of models having the same asymptotic behavior, but that remain defined for any value of the density. We observe that these parameters provide a result closer to the explicit solution (ρ 1 , v 1 ). The results for (VO3) with different values of γ are given at Figure 5.9 and for (VO2) with different values of γ and ε at Figure 5.10. The two schemes behave equivalently in that case, with some advantage in terms of time step for the implicit-explicit method, see Table 5.1 (the smaller ε, resp. the larger γ, the more important the gain). Note that in the case when γ = 3, the results are exactly the same because the density is below the numerical threshold. Consequently, the implicit part of the scheme is not used and the final result is the same as the one given by the explicit step, that is to say the final result is the same as the one given by the Glimm scheme. As expected, making ε → 0 for (VO2) or γ → +∞ for (VO3) allows us to obtain a result compatible with (ρ 1 , v 1 ). In particular, we point out that the approach of (5.0.4) as an asymptotic model from (5.0.3) provides the solution where the fastest cars should brake behind the slow vehicles, independently of the density of slow vehicles ahead. This behavior corresponds to the derivation originally introduced in [ Table 5.1 -Time steps -comparison between Glimm scheme and the explicit-implicit scheme for the congestion case . Pressure (VO3) for different values of γ and pressure (VO2) for γ = 2 and different values of ε. The time step is the largest time step used during the simulation and the factor is the ratio of the time step for the explicit-implicit scheme over the time step for the Glimm scheme.

Conclusion

The model (5.0.4) is intended to describe the formation and the dynamics of traffic jams, through a Lagrange multiplier that accounts for a density threshold. This model can be motivated, at least formally, through asymptotic arguments from the Aw-Rascle system with a rescaled velocity-offset. Since there is no obvious way to simulate directly the constrained model (5.0.4), it is tempting to deal numerically with the rescaled models. However the scaling induces fast propagation waves and, in turn, severe stability conditions. In this paper, we propose several approaches to obtain asymptotically (5.0.4) and we introduce an implicit-explicit method in order to cope with the large characteristic speeds of the system.

This study exhibits numerical difficulties, related to both the lack of convexity of the invariant domains of (5.0.1) and the large characteristic speeds. We have proposed a time-splitting method, which is not conclusive in all situations, based on a decomposition of the velocity-offset and the use of the Glimm scheme which avoids the non admissible solutions produced by schemes based on a projection step. Our findings bring out that, indeed, the behavior of the system (5.0.4) can be obtained asymptotically, but the shape of the solution for intermediate values of the scaling parameters highly depends on the expression of the penalized velocity offset. It means that a serious modeling work should decide what is the most appropriate model.