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Résume

ONTROLER les personnages virtuels, c¢’est I'art de leur donner vie. La ca-
pacité & les doter de la possibilité de se mouvoir et de réaliser différentes
actions de motricité, similaires aux humains. L'un des éléments essentiels

a cette performance est le controleur de mouvement, capable de transformer les
actions souhaitées en mouvements synthétisés chez le personnage. La conceptuali-
sation de ces controleurs a profondément évolué grace & 'apport des connaissances
en biomécanique et qui a conduit a I'utilisation de modéles de personnages encore
plus détaillés, en s’inspirant de 'appareil squelettique et surtout musculaire de 1'étre

humain.

Ce fut un cap pour les applications de controle basées sur les lois de la physique,
marquant la transition entre les personnages actionnés par des servomoteurs et les
personnages & modéle musculaire et ce, dans différents champs d’activité, allant de
la rééducation fonctionnelle 4 'animation. En rééducation par exemple, les person-
nages & modéle musculaire sont utilisés pour exercer les patients sur des prothéses
virtuelles avant de pouvoir passer a leurs prothéses réelles | |. En bioméca-
nique, ils permettent de simuler et d’analyser des scénarios de marche pathologiques
[ |. Et pour ce qui est du domaine de 'animation, ils permettent la synthése
de mouvements correspondant au plus prés aux mouvements humains sur un plan

cinématique et également dynamique | |-

Le modéle musculaire dynamique a de nombreux avantages dus aux propriétés
non linéaires des muscles et son utilisation permet : une meilleure stabilité, des
dynamiques passives réalistes | , |, des mouvements physiolo-
giquement réalisables, une meilleure estimation de I'énergie requise et de la fatigue
encourue | |, un systéme mécanique capable de réaliser des fonctionnalités
de controle par lui-méme | | ainsi qu'une plus grande facilité de simulation
des anomalies musculo-squelettiques, des pathologies possibles ou fatigue physique

[ |. Néanmoins, des modéles de personnage plus perfectionnés impliquent



forcément de nouveaux défis en termes de controle, comme la redondance d’action-

nement, véritable défi qui sera traité dans cette thése.

La redondance est un phénomeéne qui se produit lorsqu’un personnage posséde
plus d’actionneurs que nécessaire a 'exécution d’une tache spécifique. Cela signifie
donc, qu’il existe plusieurs fagons d’actionner et de commander le personnage pour
I'accomplissement d’un méme mouvement, ce qui évidemment complique considé-
rablement la tdche au contréleur qui se voit contraint de choisir entre plusieurs
solutions et coordonner tous les actionneurs afin d’achever la tache avec succeés.
Dans le cas des personnages & modéle musculaire, la problématique est décuplée
par le fait qu’en plus d’étre non linéaires, les muscles contrairement aux servos sont
également des actionneurs unidirectionnels et donc, par conséquent, il en faut au

moins deux pour permettre la rotation de chaque degré de liberté (DOF).

Le challenge que représente la redondance d’actionnement souléve alors d’im-
portantes questions : Comment controler efficacement les personnages de type mus-
culaire 7 Est-ce possible d’éviter un contrdle redondant malgré la redondance d’ac-
tionnement 7 Ou en d’autres termes, est-ce possible d’utiliser un nombre réduit de
variables de commande malgré un grand nombre d’actionneurs ? Les humains sont
de loin le meilleur exemple de complexité de systémes musculo-squelettiques et de
leur capacité & étre rapidement maitrisés, intuitivement et efficacement que ce soit
pour des mouvements simples ou complexes. Ainsi, la réponse aux questions citées
ci-dessus pourrait résider dans la compréhension et la réplication des stratégies de

contrdle moteur humain.

L’une de ses stratégies, bien répandue maintenant et largement utilisée en neu-
rosciences, est celle de la théorie des synergies musculaires. Cette théorie fait I’hypo-
thése que pour réaliser une tache, le systéme nerveux central (SNC) transforme dans
un premier temps les objectifs & atteindre en une multitude de modules, appelés
aussi synergies, encodant I'information d’activation transmise aux muscles. En com-
binant ces modules en fonction de la tache & réaliser, le SNC est capable d’envoyer
un nombre conséquent de signaux d’activation pour ’exécution de différentes taches
motrices | |. En d’autres termes et si I'on tient compte de cette théorie, les
synergies sont les variables en quantité moindre que le SNC utilise pour controler
les nombreux muscles du systéme musculo-squelettique humain. L’existence de ces
variables de controle élémentaire et de leur modulation en fonction des différents
objectifs & réaliser ainsi que de leurs spécificités cinématiques (ou variables définis-
sant le mouvement) a déja été mise en évidence par de nombreuses études. Certains
de ces auteurs ont démontré que pour un mouvement, des synergies sont modulées
selon la direction de celui-ci | , , |. D’autres ont découvert
que les réponses posturales pouvaient étre encodées en synergies modulées en fonc-

tion des directions prises par la perturbation | | et les cinématiques du centre

ii



de masse du sujet | |- D’autres encore ont trouvé que la locomotion pouvait étre

définie A travers les synergies reliées aux cinématiques des pieds | , |.

Nous verrons ici, que les synergies sont utilisées comme un nombre réduit de
variables de contréle nécessaires & la commande d’un nombre important de muscles
chez un personnage virtuel et que deux étapes sont nécessaires : une analyse de
mouvement et la génération de ce mouvement. La phase d’analyse consiste & identi-
fier les caractéristiques cinématiques et les synergies chez les humains, alors que la
phase de génération consiste en un systéme de dynamique directe visant 1'adapta-
tion de ces synergies & un ensemble d’objectifs et & un personnage virtuel (modéle
musculaire). Afin de tester a la fois ce systéme et la théorie de la synergie muscu-
laire, cette approche a été appliquée et testée sur des mouvements de jet (lancers
avant). C’est une tache qui n’a pas encore été étudiée selon la théorie de la synergie
musculaire et connu pour son haut caractére redondant, non linéaire et ultra dyna-
mique (vélocités élevées et avec élan) | | nécessitant coordination, précision

et maftrise.

En présentant, ici, une solution basée sur les synergies s’appuyant sur une analyse
de mouvement et en testant cette approche sur un mouvement aussi dynamique,
cette thése apporte deux contributions principales. Premiérement la validation de la
théorie de la synergie musculaire en I'utilisant pour ’étude d’un nouveau mouvement
et pour tenter de controler un personnage virtuel. Deuxiémement, une contribution
& I'ensemble des domaines impliquant des simulations corporelles et ayant recours
aux personnages 4 modéle musculaire (comme par exemple, la réhabilitation ou
lanimation) en leur proposant une solution de controle permettant de réduire la

redondance.

Tout d’abord, sont revus dans le Chapitre 2, les modéles de controle musculaire
pour les personnages virtuels et 'un de leur grands défis : la redondance (Section
2.1), complétée par une vue d’ensemble des synergies musculaires, mécanisme de
réduction de la redondance chez les humains, mettant en évidence leur potentiel
concernant le controle de personnages virtuels (Section 2.2). La premiére contribu-
tion de cette thése est ainsi présentée au Chapitre 3, avec ’analyse de mouvements
de lancer et extraction des synergies d’aprés les séquences EMG, en utilisant un
algorithme de factorisation en matrice non négative (NMF). Les résultats mettent
en évidence le fait que pour les sujets et mouvements analysés, seules deux syner-
gies sont nécessaires i 'encodage des modes d’activation, importante, d’un collectif
de 6 4 14 muscles, et que ces synergies sont modulées en fonction de la distance
de lancer. Plus spécifiquement, une synergie agoniste et une synergie antagoniste
ont été extraites, chacune faite d’une composante spatiale (tache indépendante) et
temporelle (tache dépendante), et dont Uintensité du déclenchement augmenterait

en fonction de la distance de lancer, la vitesse et la hauteur de la main au moment
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du tir.

La seconde contribution de cette thése est présentée au Chapitre 4, dans lequel
les synergies précédemment extraites ont été utilisées comme signaux de controle
d’entrée & une simulation de dynamique directe d’un personnage virtuel. Celui-
ci adapte les synergies & la dynamique du personnage & modéle musculaire et &
I’ensemble des objectifs cinématiques. Cette adaptation a été réalisée grace a une
optimisation statique, modulant I’aspect temporel des synergies selon les objectifs
en cinématique. Preuve par les résultats : 1) La faisabilité de cette solution dans
le cadre de la réduction de la redondance, en démontrant que le mouvement peut
étre reproduit en utilisant moins de variables de contrdle que d’actionneurs (deux
synergies ont été utilisées pour contrdler 6 muscles du bras du personnage), et 2)
Les synergies initiales encodent I'essentiel de I'information d’activation musculaire
puisqu’elles représentent d’importants changements d’orientation des liaisons ciné-

matiques (articulations), partiellement préservées apres la procédure d’adaptation.

Enfin, le Chapitre 5 conclut sur I’ensemble des contributions apportées par cette
thése et les futures perspectives (discussions) de ces travaux, comme : 'extrapola-
tion de ce systéme & la synthése de nouveaux mouvements de lancer, en exploitant
les relations observées entre les synergies et les caractéristiques cinématiques de la
tache & exécuter, son exploitation pour une variété de morphologies de personnage
en utilisant des modeéles génériques de synergie et enfin en 'appliquant & d’autres
mouvements grace au catalogue de classification des données recueillies sur les sy-
nergies.

Le terme “synergie” signifie littéralement “travailler ensemble”. On sait déja que
nos muscles travaillent ensemble pour réaliser toutes sortes de tidches motrices, en re-
vanche la fagon dont nos muscles sont contrélés reste une énigme qui nécessite d’étre
minutieusement élucidée. Toutefois, la supposition que cette collaboration ait une
origine neuronale, est intéressante car cela expliquerait pourquoi les humains sont ca-
pables de controler si rapidement et efficacement leur systéme musculo-squelettique
A trés haute redondance. Si 'objectif de réaliser des simulations basées sur les lois
de la physique avec des personnages virtuels est de mimer la fagon dont les humains
bougent, alors il parait naturellement logique de mimer et reproduire le controle
des mécanismes qui créent le mouvement et qui commandent ce systéme complexe
d’actionneurs. Cette thése avait pour but d’accomplir cette démarche en identifiant
les synergies comme mécanismes de contrdle chez les humains, et en les utilisant
pour construire des solutions simples, modulables et & faible dimension, dans le but

de commander un personnage “musculaire” virtuel.
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Abstract

Using virtual characters in physics-based simulations is interesting for a variety of
applications seeking to analyze or generate motion, which range from rehabilita-
tion to animation. However, new challenges have emerged in this subject due to an
increase in the level of detail of character modeling. Servo-based characters have
evolved into muscle-based characters. Mainly, due to advantages in terms of final
motion quality and control, that stem from the use of muscles as actuators ins-
tead of ideal servo motors (e.g., physiologically feasible motions, ease to simulate

musculoskeletal defects, control via the mechanical system itself).

Nevertheless, in spite of these advantages a challenge which prevents a wider
adoption of muscle-based characters for forward dynamics simulations is actuation
redundancy. Actuation redundancy results when the character has more actuators
than needed to perform a specific task. This poses an important control challenge
due to the fact that the character’s motion controller must be able to select an appro-
priate actuation solution among numerous possibilities to achieve the desired task.
This thesis aims at addressing this challenge through a practical use of knowledge
from neuroscience. Low-dimensional controllers will be designed for muscle-based
characters inspired by the theory of muscle synergies. A theory which argues that
the human central nervous system manages redundancy intuitively and efficiently

by controlling muscles in groups through fewer control variables than actuators.

Thus, synergies are proposed and tested as control functions in forward dynamics
simulations with a muscle-based character. This was achieved through two main
stages : a motion analysis and a motion generation stage. The motion analysis stage
consisted in the extraction of synergies and kinematic features from human motions,
while the motion generation stage consisted in the design and testing of a synergy-
driven forward dynamics pipeline which adapted the extracted synergies in order
to reproduce motions with a muscle-based character. This approach was tested on

overhead throwing motions. An unconstrained and redundant motion which would



challenge the control of any overactuated character and the muscle synergy theory.

The results evidence the existence of low-dimensional control representations
across subjects and throwing distances, given the degrees of freedom and muscles
analyzed. Such representations allow the reproduction of motion through less control
variables than actuators, while also allowing a partial preservation of the original
synergies or control signals. These findings contribute to the variety of domains
involving physics-based simulations with muscle-based characters, by evidencing
the potential of synergies for reducing redundancy. Moreover, their use within a
motion generation context contributes to the validation of the synergy theory, by

challenging it on a new motion and testing it on a virtual character.

Keywords : Control, redundancy, muscle synergies, physics-based simulation, vir-

tual characters
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CHAPTER ].

Introduction

ONTROLLING virtual characters is the art of bringing them to life. The
art of granting them with the ability to move and perform a variety of
motor tasks, similarly to humans. An essential component behind this is

the character’s motion controller, which transforms desired tasks into synthesized
motions. The way these controllers are designed is being profoundly transformed
through the integration of knowledge from biomechanics, which motivates the idea
of using more detailed character models, inspired by the human musculoskeletal
system. This has triggered a transition from classical servo-based characters to
muscle-based characters in physics-based control applications within domains that
range from rehabilitation to animation. For instance, muscle-based characters are
used in rehabilitation applications to teach patients how to use virtual prosthetics
before using real ones | |, in biomechanics to simulate and examine patho-
logical gait patterns | |, and finally, in animation to synthesize motions that

are closer to human motions at a kinematic and dynamic level | |-

The advantages of using these character models derive from the non-linear prop-
erties of muscles, which result in: better stability and realistic passive dynamics

[ , |, physiologically feasible motions, better estimates of en-

ergy or fatigue | |, a mechanical system able to perform control functions
by itself | |, and an ease to simulate musculoskeletal defects, pathologies and
physical fatigue | |. Nevertheless, more detailed character models also imply

new control challenges, such as actuation redundancy. A challenge that is addressed

in this thesis.

Redundancy occurs when a character possess more actuators than needed to
perform a specific task. This means that there exist numerous ways to actuate
and control the character which achieve the same motion. This complicates the
task of the motion controller because it needs to choose one of these solutions to

coordinate all actuators and achieve the task successfully. In the case of muscle-
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based characters, this problem escalates due the fact that muscles unlike servos,
are not only non-linear, but also unidirectional actuators, and thus, at least two of

them are needed to rotate each degree of freedom (DoF).

Therefore, the challenge of actuation redundancy raises some important ques-
tions: How to control muscle-based characters efficiently? Is it possible to avoid
control redundancy in spite of actuation redundancy? Or in other words, is it pos-
sible to use a reduced number of control variables, in spite of a large number of
actuators? Humans are by far the best example of how complex musculoskeletal
systems are managed fast, intuitively, and efficiently in simple and complex motions.
Thus, the answer to the above questions could lie in understanding and replicating

human motor control strategies.

A popular motor control strategy, which is widely investigated in the domain of
neuroscience, is the theory of muscle synergies. This theory assumes that to perform
a task, the central nervous system (CNS) first transforms task goals into a few mod-
ules or synergies, which encode the activation information of groups of muscles. By
combining these modules in a task-dependent fashion, the CNS is able to generate
a large number of activation signals for different motor tasks | |. In other
words, according to this theory, synergies are the reduced number of variables, that
the CNS uses to control the numerous muscles of the human musculoskeletal sys-
tem. The existence of this elementary control variables, and their modulation with
respect to different task goals and kinematic features (or variables characterizing the
motion) has been evidenced by a variety of studies. Some authors have shown that
in reaching motions, synergies are modulated according to the movement direction
| ) ) |. Others have discovered that postural responses can
be encoded in synergies that are modulated according to the perturbation direction
| | and the kinematics of the subject’s center of mass | |. While others
have found that locomotion can be characterized through synergies that are linked

to foot kinematics | , |.

In this work synergies are used as the reduced number of control variables needed
to command the numerous muscles of a virtual character. This is achieved through
two stages: a motion analysis and a motion generation stage. The motion analysis
stage consists in identifying kinematic features and synergies from humans, while
the motion generation stage consists of a synergy-driven forward dynamics pipeline
to adapt these synergies to a set of kinematic goals and a muscle-based character.
To challenge both the pipeline and the muscle synergy theory, this approach was be
applied and tested on overhead throwing motions. A task that has not been studied
through the synergy theory, and is known for being highly redundant, nonlinear, and
hyper dynamic (high velocities and momentum) | |, requiring coordination,

accuracy, and skill.



1. Introduction

By presenting a synergy-based solution from a motion analysis and motion gen-
eration point of view, and testing it on a such a dynamic motion, this thesis has two
main contributions : 1) a contribution to the validation of the muscle synergy theory
by using it to study a new motion, and challenging it with the control of a virtual
character, and 2) a contribution to the variety of domains involving physical simu-
lations with muscle-based characters (e.g, rehabilitation, animation) by proposing

a control solution that reduces redundancy.

First, Chapter 2 begins with a review of muscle-based control frameworks and
one of their main challenges: redundancy (Section 2.1). This review is then comple-
mented with an overview of muscle synergies as a redundancy reduction mechanism
in humans, evidencing their potential for the control of virtual characters (Section
2.2). The first contribution of this thesis is then presented in Chapter 3, where
overhead throwing motions are analyzed, and low-dimensional control strategies
are extracted. These results evidence that only two synergies are necessary to
encode the important activation trends of different muscle sets during the execu-
tion of this motion, and that these control variables are modulated according to
the throwing distance. Next, the second contribution is presented in Chapter 4,
where the previously extracted synergies are used as input control functions in a
synergy-driven forward dynamics pipeline. This pipeline adapts the synergies to
the distinct dynamics of a muscle-based character and a set of kinematic goals. The
results evidence the feasibility of this solution for reducing redundancy, by showing
that motion can be reproduced using only two synergies as control variables, while
preserving important characteristics in the original synergies. Finally, in Chapter
5 the previous contributions are summarized and future perspectives are discussed,
such as the extension of the pipeline to a variety of character morphologies by using
generic synergy models, and to other motions through the construction of synergy

databases.






CHAPTER 2

Muscle-based control: virtual
characters and humans

USCLE-BASED control is related to the study of how muscles are con-
trolled to generate motion. One of its uses is the reproduction or syn-
thesis of motions using muscle-based virtual characters in physically-

simulated environments. This encompasses a variety of applications, such as reha-
bilitation through virtual prosthetics, simulation and examination of pathological

motions, and animation.

The interest in using muscle-based characters in these applications is due to the
advantages, in terms of control and quality of the resulting motion, that stem from
the non-linear properties of muscles, such as: better stability and realistic passive
dynamics, physiologically feasible motions, better estimates of energy or fatigue,
a mechanical system able to perform control functions by itself, and an ease to
simulate musculoskeletal defects, pathologies and physical fatigue. However, despite
these advantages, one of the major challenges of using these characters is handling
actuation redundancy, or choosing how to coordinate a high number of non-linear

actuators to generate the desired motion.

Humans are by far the best example of how this redundancy is managed fast
and efficiently. Thanks to a powerful CNS, humans are capable of planning motions
fast, intuitively, an efficiently, regardless of having to coordinate numerous muscles
simultaneously. Thus, the answer to handling actuation redundancy efficiently in
virtual characters, may lie in a study of human motor control. In this context, this
chapter presents an overview of muscle-based control for virtual characters (Section
2.1), and a human motor control theory with a great potential to address one of its

main challenges, actuation redundancy (Section 2.2).
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2.1 Control of virtual characters actuated by muscles

The control of virtual characters actuated by muscles or muscle-based characters,
can be essentially described as the control of a dynamical system. In general, such

systems can be represented as:

% = Fx(t), 1) + g(x(t), hu(t) (2.1)

y(t) = h(x(t)) (2.2)

Where t is the time variable, x(¢) is the system’s state variable, u(¢) is the
system’s control input, and y(¢) is the system’s output or controlled variable at
time t. The controlled variable is function of the system’s state. It can consist of
attaining a desired value at a specific instant (y(t) = y? where ¢ 7 1s the desired
reaching time) or tracking a desired trajectory (y(t) = y%(t) V t, where y%(t) is
the trajectory to be tracked). In the case of a muscle-based control framework the
system is a virtual character which is commanded by muscle-based controller, as

shown in Figure 2.1.

Kinematic goals Initial muscle signal External force data

ya(t) Winit (1) fe(t)

Forward dynamics

fm(t) X(t)
e %

u(t)

Muscle control

Muscle-based
controller

Muscle
forces

Figure 2.1 — A muscle-based control framework in a physics-based simulation.

The character’s state (x(t)) usually includes kinematic variables (e.g., joint posi-
tions q(t), velocities q(t)) but muscle variables (lengths and velocities of shortening
or lengthening) may also be included. This state is updated according to the exter-
nal forces (f.(¢)) in the environment (e.g., gravity, force perturbations) and internal
forces (f,,,(t)) in the character (muscle forces) in a forward dynamics simulation, as
shown in Equation 2.6, Section 2.1.1.3. The internal forces or muscle forces are gen-
erated by a muscle-based controller, which produces muscle control signals (u(t))
according to kinematic goals (y%(t)). The control signals can consist of excitations,

activations, or forces, while the kinematic goals can consist of a single value (e.g., a



2. Muscle-based control: virtual characters and humans

locomotion speed, joint configuration), or an entire trajectory (e.g., hand trajectory,

joint trajectory).

Using these frameworks is interesting for motion generation due to the advan-
tages (at the kinematic and control level) that come with the use of muscle-based
characters. The non-linear properties present within the muscles, such as the force-

length and force-velocity relationships (Section 2.1.1) imply:

e Stability and realistic passive dynamics: The musculoskeletal system is
able of achieving passive adjustments and these adjustments are robust across
certain changes in the environment and perturbations | |. This is
due to the fact that the non-linear properties of muscles grant the body with
a first defense to counteract mechanical perturbations | |. Their presence
gives place to adjustments such as preflexes, which are mechanical responses

that precede stretch reflexes when a muscle is activated.

The authors of | |, investigated to what extent these properties
contributed to the recovery from perturbations during locomotion by using
different models with different actuators: servos, muscle models, and models
without force-length and force-velocity relationships. They concluded that
the character actuated by muscle models (with both properties) had substan-
tially better resistance to both static and dynamic perturbations (gravity and
impulsive forces). The role of these properties has also been investigated in
the control of explosive movements, such as vertical jumping | |. The
authors concluded that the force-length-velocity properties of muscles were re-
sponsible for a reasonable performance when small perturbations were applied

to the initial position of the skeletal system (segment angle perturbations).

e Physiological feasible motions and better energy estimates: The in-
clusion of muscles motivates physiologically feasible motions. An example of
this can be found in | |, where the physiological infeasibility of interpo-
lating user-input postures was shown, and it was later reduced based on muscle
dynamics. Muscles also provide better estimates of energy expenditure, which
is a popular quantity used to synthesize motions in physics-based animation
in general. In | |, visual, kinematic, and dynamic comparisons evi-
denced that walking motions synthesized via energy estimates using muscles
were closer to real human data than the estimates based on torques. Recently,
comparisons have also been made between servo-based and muscle-based sim-
ulations of human swimming [Si13]. The former yielded plausible results but

high control gains and a smaller numerical time step were necessary.
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e Control via motion mechanics: Thanks to the presence of muscles, the
mechanical system of the character is granted with the ability to accomplish
control functions, not only for counteracting perturbations, but also for tasks
such as human walking. For instance, instead of trying to create control
models that mimic complex neural circuits (for either servo or muscle-based
characters), biomechanisists have discovered that locomotion requires little
control if certain principles of legged mechanics are used. In | |, these
principles were encoded as muscle reflexes, which were used to reproduce hu-
man walking without any higher level controller. These reflexes were inspired
in spinal reflexes, which link sensory information directly into muscle activa-
tions, bypassing the inputs from the central nervous system (such reflexes will
be further described in Section 2.1.2). Other authors have demonstrated that
specific mechanical behaviors observed during walking can be encoded in a
single, simple muscle reflex | , |. Nevertheless, more evidence of
the performance of such legged mechanics principles, in terms of walking on
uneven terrain and in various directions, is still needed. This evidence is im-
portant to show the extent to which reflexes can deal with such tasks without

a higher level controller.

e Ease to simulate musculoskeletal defects, pathologies, and physical
fatigue: Another advantage of muscle-based control is the fact that muscles
provide a natural solution to simulate musculoskeletal defects, pathologies,
and physical fatigue. By taking into account an anatomical structure (mus-
culoskeletal system), it is easier to simulate phenomena that derive from this
structure. For instance, fatigue and recovery muscle models can be used to
simulate a motion where a human gradually gets tired | | by limiting
the maximal force that the muscle can produce with respect to the history of
muscle force | , |. Cost functions that minimize the force of a
specific muscle can be used to synthesize motions with pain avoidance behav-
iors | |. Changing muscle parameters and properties such as maximal
strength, can be used to weaken muscles, and generate well known pathologies
and defects | |. Finally, injuries can also be simulated by displacing

muscles | |.

These advantages highlight the potential of muscle-based control frameworks
for motion generation. However, using these frameworks also implies solving an
important challenge: actuation redundancy. Redundancy occurs when a character
possess more actuators than needed to perform a specific task. As will be seen in
Section 2.1.1, muscle-actuated virtual characters are actuated by numerous muscles

per DoF, which results in over-actuation or the fact that there may exist several
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muscles with the same actions per DoF. This means that there exist numerous
actuation solutions or control signals u(¢) which achieve the same motion. It is
the task of the motion controller to choose one of these solutions to achieve the

kinematic goals y?(t) successfully.

To better understand these advantages and challenges, the following sections
describe the different components in muscle-based control frameworks (Figure 2.1)
in detail. Section 2.1.1 explains how to model and simulate muscle-based characters,
and Section 2.1.2 presents a review of muscle-based control methods in the domain

of animation, previously presented in [CRPPDI16].

2.1.1 Modeling and simulating muscle-based characters

Muscle-based characters are composed of a skeletal system and an actuation system
(muscular system), as shown in Figure 2.2. Describing the skeletal system involves
specifying the joints and segments, along with their respective masses and inertias.
Describing the actuation system involves specifying the muscles, their properties,

and interactions with the different joints.

Figure 2.2 — Examples of muscle-based characters in animation. Muscle-based char-
acters in (A) [GvdPvdS13], (B) [WHDI12], and in (C) [SLST14].

2.1.1.1 Skeletal modeling

Describing the skeletal system involves specifying the kinematical chains in the
character’s body. In biomechanics, skeletal models are often anatomically based
[WSAT02, WydHV705] and exhibit a high level of detail as they have to be accu-
rate enough to provide clinically relevant biomechanical quantities [CMD16]. Thus,

in many cases, kinematical closed chains are used, which make both kinematics and
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dynamics studies more complex | , |. In other fields, such as anima-
tion, simple chains with functional degrees of freedom (e.g., the resulting motion
of the anatomical ones) and segments that directly link their articular centers are

implemented.

A complete description of these kinematical chains, also implies specifying the
lengths, masses, and inertias of all of their segments. In biomechanics, as motion
is generally recorded to be analyzed (using tracking or motion capture systems
that allow the estimation of joint kinematics | , ]), the lengths of the
segments are computed from marker positions | , |. If this infor-
mation is not available, regression laws based on cadaver measurements | |
are used. Cadavers measurements can also be used to scale the masses and inertias
of the model | , |. However, advances in medical imaging, (e.g., scan-
ner or MRI scanners) opened the door to subject-specific scaling of musculoskele-
tal models and showed interesting perspectives for clinical applications | |
Moreover, other approaches have emerged which rely only on exterior measure-
ments of the body, such as 3D point clouds, to determine subject-specific bone
geometry and motion | |. However, in spite of these advances, in animation

applications these parameters are determined manually or through optimizations

[ ) I

2.1.1.2 Muscle modeling

Specifying the actuation system of muscle-based characters implies choosing a mus-
cle model, its properties, and describing its interactions with the skeletal system.

Historically, virtual characters have been actuated by servos Figure 2.3 (left).

Servo j Muscle
actuated | actuated

Figure 2.3 — A biomechanical upper limb model | ]. On the left, the elbow
is actuated by a virtual servo. On the right, the elbow is actuated by muscles.

However, progressively, muscles have been incorporated as non-direct actuators
of the joints. Early implementations consisted of mass-spring systems. Contrary
to the usual angular-spring dampers and PD-controllers, these systems (like mus-
cles) are non-direct actuators of the joints. Meaning, they produce first forces, not
torques, which interact with the skeletal system to produce motion. Like muscles,

these systems use force action lines, determined by their insertion or attachment

10
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site to the skeletal structure. Nevertheless, nowadays, more faithful muscle rep-
resentations, such as biomechanical muscle models, are actively incorporated into

virtual characters.

A popular choice is the Hill muscle model | |. Although this model was de-
veloped decades ago, its current usefulness is evidenced by its various adaptations
and implementations within the biomechanics and animation community. These
adaptations have come to be known as Hill-type models, such as the Hill-Stroeve
model | |, and the widely used adaptation made by | | for numerical sim-
ulations. As shown in Figure 2.4, the model consists of a contractile element CE
(non-linear visco-elastic relationship) in parallel with a passive element PE (non-
linear spring). The contractile element represents the active tension, or forces, cre-
ated by the contractile proteins in the muscle, while the passive element represents
the passive tension or the force that results from the elongation of the connective
tissue components in the musculotendon unit. The tendon is represented by a serial
non-linear spring SFE of length l;, a represents the pennation angle or the orienta-
tion of the fibers with regard to the tendon, [,, represents the muscle length, and
Imt the length of musculotendon unit. The length [,,; is computed by adding the
muscle [,,, and tendon [; lengths. This model has been widely used even if the nu-
merous parameters necessary to completely define its behavior are difficult to obtain

in vivo | ]

Figure 2.4 — Commonly used musculotendon model for musculoskeletal simula-
tions | ]- Inspired from | , I

The muscle force f,, generated by a musculotendon unit j can be summarized

as the sum of the contractile and passive forces:

Fng = Up@m) + a5+ fi(Tng) - Fullmg)] - fo; (2.3)

where f), is the passive force relationship, a; is the muscle activation, f; is

the force-length relationship, f, the force-velocity relationship, fo; the maximum

11
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isometric force, and l,,; the normalized length of the muscle unit (normalization
is usually made using the resting length of the muscle). Several models have been
proposed to approximate the f; and f, relationships with regard to experimental
data | |. Example models are presented in Figure 2.5. The force-length
relationship documents how muscle force varies at different muscle lengths, and it is
related to the "Sliding Filament Theory": at a microscopic level, muscle fibers are
composed of smaller structures called actin and myosin filaments that make bindings
to form muscle contractions. Peak muscle force can be generated when most of these
bindings or cross-bridges are created. This event corresponds to the resting length
of the muscle (usually near the middle of the range of motion) | |. The force-
velocity relationship explains how the force of fully activated muscle varies with
velocity. It states that the force the muscle can create decreases with increasing
velocity of shortening (concentric actions), while the force the muscle can resist

increases with increasing velocity of lengthening (eccentric actions) | |-

Contractile element CE

0 1

b
Force-Length relationship f; Force-Velocity relationship f,,
Passive element PE
0 5 >
1 [
Passive force relationship f,,
Figure 2.5 — Force generation capacity of muscles | ]- Inspired by | ,

|

The tendon force f;;, or output of the musculotendon unit, is obtained by taking

into account the pennation angle:

ftj = fmj - cos (2.4)

However, in many studies the pennation angle is neglected. Complete dynamics of
the musculotendon unit also includes the activation dynamics, which describes the
non-linear temporal relationship between the neural excitation e; and the effective
activation a; of the muscle | | In many works | , , |,
this non-linear relationship is approximated by a differential equation, exhibiting

different time constants for activation and deactivation:

12
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Vi = (€5 = %)/ Tne

(v —aj)/Tact , €>a (2.5)
a; =
(v — aj)/Tdeact > €<a
Where e; is the neural excitation, a; the muscle activation, v; an intermediate
variable, T, the neural excitation constant time (often neglected), and 74, and
Tdeact the activation and deactivation time constants respectively. In animation,
activation dynamics is sometimes modeled using equal activation and deactivation

time constants | , |

Once the functional model is chosen, its interactions with the skeletal system
are given by the chosen muscle geometry. This geometry involves specifying the
attachment sites of the muscles to the skeleton (origin and insertion points), and
their shapes (or routing). The muscle routing can consist of straight lines between
attachment points, or more complex paths specified using via points | |. This
routing allows to compute the direction of the muscle forces, their moment arms in

different kinematic positions, and finally the torques they exert on a given DoF.

Finally, other muscle models exist which describe specific functional character-
istics (such as fatigue | , |), visual characteristics (such as muscle
deformation) or both functional and visual characteristics | |. The latter
models offer a next level of fidelity. However to this date they are not usually used
for the control of virtual characters due to the fact that they would render the

control computationally expensive.

2.1.1.3 Simulating the dynamics of muscle-based characters

To simulate a muscle-based virtual character as in the framework in Figure 2.1,
a dynamic simulation needs to constructed describing the relationship between the
different variables in Equation 2.1. That is, the relationship between the character’s
state (x), the control variables (u), and the external forces in the environment (£).
The character’s state consist of joint positions and velocities (x = (q,q)), while the

control variables include muscle forces or activations (u = f,,, or u = a).

For a character with nDoF degrees of freedom and D muscles, this relationship

is given by Newton’s second law of motion, that can be expressed as | |:

M(a)g + C(a,9)q + g(a) + R(@)fn(a, fo, 1, Ln) + e =0 (2.6)

The variables in the above equation are time dependent, however for simplicity

this time dependency was omitted. Furthermore, in Equation 2.6, M(q) is the

13
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mass matrix of the system that gathers masses and inertias of all the segments
(nDoF x nDoF), q is the vector containing the joint accelerations (nDoF x 1),
C(q, q)q represents the coriolis and centrifugal effects (nDoF x 1), g(q) represents
the vector of gravity torques (nDoF x 1), and f. represents the external forces.
Finally, R(q)f,, represents the action of the muscles on the joints (muscular joint
torques, nDoF x 1) , where R(q) is the matrix containing the muscular moment
arms (nDoF x D) and f,,, are the muscle forces (D x 1), which are function of the
muscle activations (a), maximal forces (f,), lengths (1,,,), and velocities of shortening

or lengthening (1,,). In a dynamics simulation, such quantities can be automatically

constructed by using algorithms such as the ones developed in | |-

From equation 2.6, two different problems can be derived: the forward dynamics
problem and the inverse dynamics problem. The muscle-based control framework
in Figure 2.1 is based on a forward dynamics simulation. This kind of dynamic
simulation involves generating control variables, muscle forces (f,,) or activations
(a), to synthesize (or reproduce) a desired motion. The equation to solve in this

case, issued from equation 2.6, can be written as follows:

d=M""(q)(—C(a,4)dq — gla) — R(@)fm(a,fs,1n,1n) — £) (2.7)

The forward dynamics problem is usually incorporated in a physics simulation
involving collision detection algorithms (that provide external forces to apply to
the system) and a numerical integration (e.g., Runge-Kutta methods) to obtain the

current system state (q,q) from the computed accelerations (q).

On the other hand, inverse dynamics simulations involve computing control vari-

ables, muscle forces or activations, from a recorded or specified motion, as follows:

R(q)fm(a, fo,1m, 1) = —(M(q)q + C(q,q)q + g(q) + fe) (2.8)

In this approach a specified motion and external forces are applied to a muscu-
loskeletal model and then the forces or activations that generate the recorded motion
are computed. This equation is usually solved thanks to the Newton-Euler algo-
rithm | , , |, which considers each segment separately from dis-
tal to proximal, or more robust methods considering closed loops | , |.
Such simulations are used mainly for motion analysis, however they can also be used
to generate new motions (e.g., fatigued or injured motions) by replaying the com-

puted muscle forces while altering muscle parameters | , , |

14
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2.1.2 Muscle-based control in animation and the challenge of

redundancy

An important component of muscle-based control frameworks (Figure 2.1) is the
muscle-based controller. The main task of this controller is choosing an optimal
actuation solution that allows the character to achieve a desired task. Determin-
ing this is especially difficult due to the fact that musculoskeletal models exhibit
actuation redundancy that leads to numerous actuation solutions, as there are less
equations (dynamics equations) than unknowns (muscle signals). These models
may also exhibit underactuation, which stems from the fact that a single muscle

can actuate several joints simultaneously, such as bi-articular muscles.

The next sections detail how these challenges are solved in a domain known for
its interest and contributions in the control of virtual characters: animation. First,
important tools to construct muscle-based controllers will be presented in Sections
2.1.2.1 and 2.1.2.2, and finally a classification and description of state of the art

controllers will be given in Sections 2.1.2.3 and 2.1.2.4.

2.1.2.1 Optimization

The optimization can either directly compute the muscle actuation signals or opti-
mize a motor control law that produces such signals. In any case, the optimization
consists in minimizing a cost function (f(X)) encoding motion goals, and/or bio-
inspired objectives that motivate natural motion. It is usually formulated through

a non-linear constrained optimization problem:
Find X which minimizes f(X) (2.9)

subject to,
a;(X)<0,i=1,2,....m
Br(X)=0,k=1,2,...,p

Where the constraints enforce that:

e the actuation signals (i.e muscle forces, activations, or excitations) achieve the

kinematic goals;

e the muscles are only pulling and they have physiological-based force limits

(positive muscle forces);

e the actuation signals may respect any additional set of unilateral («) or bilat-

eral constraints (/3), such as nonnegative muscle activations.
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The constraints a;(X) and 5, (X) may be specified as hard constraints (as in the for-
mulation above), or as soft constraints (as additional cost functions). The optimiza-
tion can be a static or dynamic one (often an optimal control problem | D
A static optimization refers to the process of minimizing or maximizing an objective
function at a time instant, while a dynamic optimization refers to the process of
minimizing or maximizing an objective function over an interval of time of non-zero

duration.

This optimization may contain different cost functions f(X), which can be cat-
egorized according to the criterion proposed by | |. In this categorization a
generalized performance criterion was proposed which could contain 3 types of cost
functions: task specific objectives (tracking a given trajectory, minimizing jerk),
neuromuscular objectives (minimizing muscle stress, neural effort), and bone joint
objectives (minimizing contact forces, avoiding certain ranges of motion). Appendix
A.2 contains a detailed description and listing of neuromuscular cost functions,
which represent one of the novelties of muscle-based control frameworks with re-

gard to servo-based control frameworks.

The neuromuscular and bone joint objectives are usually the same for different
tasks. However, the task specific objective is the means by which the user can
describe the motion that the character is supposed to perform. This objective can

consist in a desired walking speed and direction, or task space and joint trajectories.

The optimization problem is usually solved via popular algorithms such as se-

quential quadratic programming (SQP) | , , , | and sim-
plex methods | , |. However, recently evolutionary algorithms, such
as the covariance matrix adaptation (CMA) | | have also been implemented

[ : : I

2.1.2.2 Motor control laws

The previously described optimization can either directly compute the muscle ac-
tuation signals or be used to optimize a motor control law. These laws are based on
motor control findings and theories such as: hierarchical systems, central pattern
generators, equilibrium point theory, muscle reflexes, and muscle synergies. The fol-
lowing paragraphs briefly present these theories and their applications in controlling
virtual characters for animation.

Hierarchical control systems have been used in animation thanks to studies that
outline how the motor system’s components or neural organs work together to gen-

erate muscle excitations for voluntary and reflexive actions. This hierarchy has

inspired multiple level controllers in animation to synthesize breathing motions

[ J
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Another well known motor control model are central pattern generators (CPGs).

CPGs are biological neural networks that produce rhythmic patterns without re-

lying on sensory feedback or higher control centers | ]. The CPG models
created by | , | for bipedal locomotion are popular in the robotics do-
main | , , , | and are also beginning to be present in the
world of animation, specifically for the synthesis of swimming [5i13] and walking
motions | ]

Control laws based on the equilibrium point theory | | have also been used
for controlling virtual characters | |- This theory argues that the nervous system

controls movement through the specification of final equilibrium positions of the
limb. The equilibrium trajectory is specified by virtual positions corresponding to
variations in muscular activations. These muscle activations move the limb from

each real position to the virtual ones in order to generate motion.

Finally, lower level control laws, such as muscle reflex models | | have re-
cently been incorporated for muscle-based control | , |. These
models suggest that reflex inputs (which serve as mediators between the CNS and
mechanical environment) dominate in contributions to muscle activations during
locomotion. Such reflexes are modeled as positive or negative feedbacks of muscle
fiber length and force | | that modulate muscle activation. Figure 2.6 fea-

tures an example of how these reflex models can be used for generating locomotion

patterns.
stance stance
reflexes reflexes
yes e e yes
[conacrf—1 2 z 5 fcontact?]
? ?
contact? < B > contact
A no Min Min no *
I I
I . . I
I swing swing I
: reflexes reflexes :
1 1
I I
I 1
I 1
R S ot 1
ball & heel ball & heel
sensors sensors
Figure 2.6 — Muscle reflex models for locomotion generation | ] An example of

muscle reflexes for generating walking motions. A series of reflexes are modeled as positive
or negative feedbacks of muscle length and force. These reflexes produce excitations (e)
the activate the muscles in the left (L) and right legs (R), and move the skeletal system
according to the foot contact state. The resulting mechanical inputs M, (e.g., muscle
forces, lengths, joint angles) are then re-used by the reflexes to produce new excitations.
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2.1.2.3 Controller optimization methods

As seen in the previous section, the main role of a muscle-based controller is to com-
pute a set of muscle signals (excitations, activations, or muscle forces) that allows
the character to achieve a desired task. These controllers are usually optimization-
based, and when this procedure is used to optimize a bio-inspired control law to
produce muscle signals, they can be referred to as controller optimization methods
[ I

Controller optimization methods seek to determine a set of control parameters
(p) that will achieve the desired motion goals (y%(t)) throughout an entire period of
time. These parameters depend on the specific control law, but in general they can
be summarized as: feedback control law gains (such as PD controller gains, force

feedback gains and spring gains) and CPG unit weights.

An overview of such methods is featured in Figure 2.7. The user specifies the
kinematic goals (y?(t)), external forces (f.(t)), initial control (W, (t)), and also an
initial guess of the control parameters (p) and joint trajectories (x%(t)) that fulfill
the task. An optimization procedure continually updates p and x%(¢) until the cost

function is minimized.

Initial desired  Initial
. . Kinematic control
Kinematic goals state parameters Initial muscle signal External force data

yi(t) x(t) p Winit (t) £.(t)

Forward dynamics

\1, Muscle-based controller l

min f (1) = flu,\‘k O+ fnuunlnm.\‘t‘H/t/l'(r) + fb"”é'u/'“i"‘ ® x4 (f)

<t< —S5( )
Wh?reO_l Sl Garitial u(t) x(t)
Subjectto 0<u<1 | Muscles Skeleton —
p aw
,x) <0

L, x)=0
1

Xa(t) p
Optimal kinematic state Optimal control parameters

Offline optimization tuning loop

Forward dynamics
LA 7

t (L x(t
1 e el

[

Figure 2.7 — Controller optimization methods | ]. The tuning process, which
is usually made over a group of time steps [ |, is iterated until the cost function
is minimized or the desired motion is obtained (the tunning process may also consist of
a locally weighted regression [Si13] or manual parameter and target specification | D-
The optimal parameters and joint trajectories are then used in an online closed control loop.
(Note: instead of joint trajectories | | desired muscle lengths [Si13] might also be
used.)

Online control loop

Once the control parameters and joint trajectories have been determined, the
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control law executes online and directly generates the actuation signals that accom-
plish natural looking motions while satisfying task related objectives. Examples
of control laws include, antagonistic control, PD-controllers, muscle reflexes, and
neural networks. These laws have been used for generating a variety of motions,
that range from locomotion (walking, running, hopping) | , |

to postural adjustments | |-

PD controllers and muscle reflexes have been recently used for synthesizing lo-
comotion with humanoids and/or imaginary bipeds | ) |. In
these approaches, PD controller gains, and force and length feedback gains were
optimized to achieve kinematic goals, such as desired walking speeds. The opti-
mization was based on a muscle effort term, called the rate of metabolic energy
expenditure | |, and soft constraints to track kinematic objectives, and ensure
stable gaits. The reflexes | | encoded principles of legged mechanics, such as
natural joint compliance in stance phase and dorsiflexion during the swing phase.
The PD controllers could either be employed in the task space for different body
segments | | (inspired in the jacobian transpose control) | |, or

for each muscle in the character | |-

PD controllers have also been used with neural networks for synthesizing peri-
odic swimming motions | , |. This approach consisted of a high level
controller, CPGs, and PD controllers. In this case, the control gains were fixed, and
the parameters in the optimization were the weights in the CPG model. The CPGs
were assigned to specific muscle groups, and encoded desirable properties such as
trajectory reproduction and external perturbation compensation. They produced
desired time-varying muscle lengths for specific swimming modes, which were later
converted into muscle activations by PD controllers. An interesting contribution of
this approach was that it reduced actuation redundancy by allowing muscles to be
controlled in groups. For instance, turns were induced by decreasing the activation
amplitudes of the muscles on one side of the body relative to muscles on the opposite

side.

Another interesting controller optimization method, was the antagonistic con-
troller of | |, which is based on the equilibrium point hypothesis proposed
in | | (Section 2.1.2). In this approach, each degree of freedom of a human
skeleton was actuated by two angular springs representing the antagonistic group-
ing of muscles around joints. Movement was achieved by varying the equilibrium
point of each joint (the point where the sum of the forces acting on the joint equaled
to zero). The variation of the equilibrium point was made by adjusting the spring
parameters according to desired angles specified by the user, and a method that

took samples of external forces and recalculated the spring parameters.
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Controller optimization methods have allowed the implementation of well known
biomechanical mechanisms and motor control theories through simple control laws.
Some of which rely on the character’s mechanical structure itself, without the need
of a higher level controller | |. One of the main drawbacks of these methods
is computational efficiency. Computation times still need to be improved, since
to synthesize 10 seconds of animation, the controllers yielding the most impressive

results require approximately 10 hours of tuning [ |-

A challenge common to most of the controllers discussed in this section is the
task of balancing. Ensuring balance is a complicated task with muscle-driven sim-

ulations, as it is with torque-driven simulations. Most of the controllers used a

SIMBICON-style balance correction | | to determine leg orientation |
| or to adjust hip target angles | |. While, others used automatic
balance controllers | | based on the balancing simulations of | |. Finally,

actuation redundancy is another important challenge for these controllers, however
except for | |, none of the controllers address this explicitly. The usual so-
lution is to compute an activation per muscle individually, which does not simplify

control complexity or redundancy.

2.1.2.4 Trajectory optimization methods

Another type of muscle-based control method are trajectory optimization methods
| |. In this methods the optimization itself is used to compute the mus-
cle signals. Control variable trajectories (u(t)) are generated which minimize or
maximize a measure of performance while also respecting a set of constraints. Such
methods are for now mostly used in robotics. In the domain of character animation,
these methods remain mostly a static optimization, solving a given set of equations
at each discrete step. Alternatively, they can also be referred to as "model-predictive

control methods" when they are used online and with a finite time horizon.

A schematic overview of these methods is featured in Figure 2.8. Generally,
the user specifies a set of kinematic goals (y¢(t)), external forces (f.(t)), and initial
muscle signals (w;,;:(t)). The optimization iterates until the cost function is mini-
mized, producing the optimal muscle signals that fulfill the task. Among the variety

of motions that have been synthesized through this approach are locomotion pat-

terns | , , , , , |, and human upper body
movements such as breathing | , |, arm flexion | |, and hand
movements | , |-

Two types of trajectory optimization methods have been distinguished: those
that rely on the assumption of a specific function (periodic or polynomial functions)

as a control trajectory and use it to control muscles in groups, and those that don’t.
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Kinematic goals Initial muscle signal External force data
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Figure 2.8 — Trajectory-optimization methods | ]. The optimization pro-
cess directly computes the muscle control signals according to the motion goals, and the
minimization of a cost function. These signals can be computed at each time step (static
optimization) or in a defined simulation period (dynamic optimization or optimal control).
Some approaches include additional components, such as neural networks to generate the
desired joint stimuli [ , ]

The following paragraphs explain each type and provide further insight into how

these controllers are used in animation.

Methods based on function primitives and muscle groups

One of the simplest motion control strategies consists in synthesizing motions through
the generation and tuning of periodic signals. These controllers are mainly used for
the generation of oscillatory motions, such as those seen in the locomotion of fishes,
worms, snakes, and in human chest motions. The signals generally drive spring-like
muscles, which are gathered into muscle groups to reduce the number of controlled

variables.

Early implementations manually tuned periodic functions to generate the desired
motions | ) , . | | controlled artificial fishes by converting
a desired swim speed into a spring contraction amplitude and frequency. This
mechanism was based on the observation that the speed of most fishes can be

proportional to the amplitude and frequency of the tail’s lateral oscillation.

The authors of | | used controllers that produced sine waves to generate
waves of compression, which replicated the elastic deformation present in the lo-
comotion of snakes and worms. Sine waves have also been used jointly with step
functions to generate human motions. | | used these functions as varying
parameters to synthesize human breathing. The first parameter was a contraction
ratio, which was determined according to modeled and measured human muscle

contraction ratios during breathing. The second parameter was a binary timing,
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which was defined by the desired breathing frequency. Finally, polynomial function
primitives, such as spline curves, have also served as a means for human motion
synthesis. | | synthesized hand motions in real-time by specifying muscle con-

traction values at keyframes and interpolating them via spline functions.

Recent implementations have automated the generation of periodic functions
by using optimization procedures. An example is the torso controller of | |
for synthesizing human breathing and laughing. In this approach, an optimization
attempted to minimize the tracking error between a desired lung pressure, computed
from an audio soundtrack, and the current pressure of the model. This process
generated the parameters of a set of sine waves that were used directly as muscle

activation signals.

More complex motions have also been synthesized via function primitives. An
example is the approach of | |, where control trajectories were encoded as
splines, and trajectory optimization and spacetime constraints | | were used
for humanoid motion synthesis. One of the novelties of this approach was the use
of a Contact Invariant Optimization (CIO) | |. This framework smoothed
out the discontinuities in the objective function by allowing foot contact points to

gradually invoke ground reaction forces at a distance until a real contact was made.

Methods without function primitives and muscle groups

The majority of trajectory optimization methods discussed in this review do not
make assumptions on the trajectory of the control signal and rely more heavily on
biomechanical and motor control concepts, such as the minimization of effort or
fatigue. Moreover, most of them control muscles individually and not in groups.
First, the controllers whose sole purpose is synthesizing rigid body motions are
introduced; next, the controllers that also model the effect of this motion on soft
tissues are discussed; and finally, the controllers designed for purely soft bodies (no

skeleton) are presented.

Trajectory optimization methods have been used to synthesize a variety of rigid
body motions. For instance, | | developed an open-loop feedforward con-
troller to synthesize leg motion. This controller interpolated input postures and
computed muscle forces via the inverse dynamics and prediction algorithm intro-
duced by | |. The same authors extended this approach in | |, by con-
verting input physiologically infeasible postures into feasible ones, and simulating
fatigued and injured characters. To do this, an evaluation took place to determine
if the muscle forces corresponding to the input motion respected force limits. Infea-
sible motions were then converted into feasible ones through an optimization based

on: the minimization of the total supplementary torques needed if the motion is
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infeasible, stability control | |, and additional muscle-related objectives which
are explained in appendix A.2. Additionally, these motions could also be easily
re-targeted by changing muscle parameters, such as maximum force limits, or even

removing muscles.

Feedback controllers have also been developed with an adaptability to different
physiological and environmental conditions. For instance, the authors of | |
synthesized biped gaits, which were adaptable to conditions such as, external forces,
maximization of efficiency, and pain reduction. The approach consisted of a muscle
optimization and a trajectory optimization. The purpose of the trajectory opti-
mization was to modulate the reference motion and its step locations | | to
guarantee motion robustness and adaptability. Using this reference motion, the
muscle optimization (which minimized muscle effort) computed the optimal activa-

tions to control the character in a per frame basis.

Other approaches couple trajectory optimization methods (as muscle-based con-
trollers) and neuronal networks (as joint controllers). An example is the locomotion
controller developed by | |, which employed a neuronal model and an op-
timization procedure. The neuronal model contained a central pattern generator
(Section 2.1.2) that computed the required joint stimuli. This joint stimuli was
later distributed as individual muscle forces through an online static optimization
procedure that minimized muscle fatigue | |. The neural parameters were de-
termined through a genetic algorithm and criteria that enforced motion smoothness

and muscle energy efficiency.

Similarly, | | synthesized neck motions by using neural networks to generate
musculoskeletal stimuli and adjusting this stimuli through a static optimization.
The networks generated neck poses and stiffness signals according to desired head
orientations. While the optimization generated desired muscle strain (deformation)
and strain rates that ensured that the head converged to the desired orientations via
minimal joint displacements. The outputs of the networks were combined into one
feedforward signal, which was converted into muscle activations by a PD controller

that was constantly monitoring the error in muscle strain and strain rate.

In addition to rigid body motion, some control methods also focus on synthe-
sizing the movement of soft bodies (such as tendons and skin) and the interactions
of these with rigid bodies. For instance, | | synthesized hand motions and
muscle bulging through a controller which generated muscle activations for a set
of desired joint orientations. The authors employed an optimization which mini-
mized joint tracking error and muscle effort. Furthermore, a variety of hand motions
were generated by using clinically motivated heuristics for Repetitive Strain Injuries

diagnosis.
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[ | also synthesized hand motions and the movement of tendons and mus-
cles under the skin thanks to a novel biomechanical simulator that used target rigid
body velocities. The simulator involved an optimization procedure to compute
muscle activations and a skin deformation algorithm. The optimization computed
muscle activations, and was led by a muscle effort term and task related objectives
which ensured a good tracking of the desired rigid body velocities. The transfor-
mation from activations to rigid body motion was enhanced by complex muscle
routings or strands. These strands were modeled as cubic B-splines that were al-
lowed to slide along predefined surfaces. Allowing this motion is important, because
more realistic changes in muscle length and velocity are achieved, and these changes

are known to affect the force generation properties of muscles.

The work of | | is closely related to that of [ ]. It consisted in a
hierarchical control framework for hands and tendinous systems, which performed
tasks such as writing, and could simulate clinical deformities of the hand by altering
tendon parameters. At the highest level, kinematic controls were computed to track
a fingertip reference trajectory, and at the lowest level, an activation controller
transformed these controls into muscle activations, using the formulation of | |
However, a difference with the latter approach is the fact that the optimization
parameters could be determined through a general-purpose learning-based approach

requiring no previous system knowledge.

Another interesting example is the work of | , |, who presented one
of the most detailed biomechanical models of the human upper body and a con-
troller to track a set of poses while achieving a desired level of muscle co-activation.
The activations that satisfied these requirements were computed thanks to a static
optimization procedure that minimized muscle effort, and was constrained by joint
torques computed from input poses | |. The optimization was solved twice
(once for each muscle in an antagonistic pair), with the difference that the antago-
nist activation was constrained by a torque of opposite sign. Once the agonist and
antagonist activations were defined, they were modified proportionally to the target
co-activation. Secondary skin motion was also synthesized through the simulation

technique in | |.

Muscle-based control frameworks have also been used to synthesize motions
with purely soft bodied characters. One of the first examples is the controller cre-
ated by | , | for the locomotion of highly flexible animals. The control
granted the characters with the ability to synthesize basic locomotion skills, re-
member them, and combine them efficiently to perform more complex tasks. The
basic locomotion skills were learned through an optimization procedure containing
task achievement objectives, such as the shortest distance to a goal, and a muscle

effort objective. Next, the learned signals were converted into more compact rep-
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resentations and used within a second optimization procedure with the objective
of finding a proper combination of skills to achieve more complex behaviors. Once
the compact representations were created, the method could be made to work in

real-time.

More recently, the authors of | | also developed a trajectory-optimization
based controller for soft bodied characters. This approach aimed at controlling the
shape of soft bodied characters (and therefore the shape of their muscles) to achieve
specific locomotion tasks. The procedure used an optimization at each time step to
determine muscle lengths, and a contact planner, which predicted how the desired
changes in muscle contraction affected contact points, allowing the characters to

slide and break contacts with the ground.

Trajectory optimization methods are until now the most common solution for
muscle-based control. One of their advantages is that they are more easily adaptable
to different character morphologies. The reason for this is their centralized nature.
Local controllers, which can be subject dependent (due to the fact that they are
usually assigned to specific muscles or body sections), are not used. Examples of
this flexibility are the works of | |, who implemented a controller for a variety
of virtual fishes, and | |, who used a variety of alphabet letters with diverse

muscle arrangements.

One of the main drawbacks of these methods is their implementation. A consid-
erable amount of knowledge is needed in optimization techniques and constrained
dynamics. Another drawback is the fact that modeling biomechanical mechanisms
(such as muscle reflexes), which would certainly aid in synthesizing motions, is not
straightforward. The effect of such mechanisms could be encoded within a cost
function, but implementing a model of the mechanisms (as is done by controller

optimization approaches) is a more natural and efficient alternative.

The computational requirements and efficiency of these methods depend on
many factors, such as the number of objectives and complexity of the character.
However, as with controller optimization methods, computational efficiency still

needs to be improved since the controllers have not reached real-time performance.

Several of the frameworks presented in this section needed to solve the difficult
task of maintaining balance. Different strategies for balance were used, such as
regulating linear and angular momentum | , |, using the ZMP (zero
moment point) | , |, or balance recovery techniques based on an esti-

mated pendulum state | , |-

Finally, as in the previous section, the problem of actuation redundancy was
not explicitly addressed by most trajectory optimization controllers. Aside from

the simulation of periodic motions (such as breathing) where spring-like muscles
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are controlled as a group | , , |, usually, numerous muscles are
controlled individually. The redundancy of actuation is kept, which also induces a

redundancy of control.

2.1.3 Conclusion

Controlling virtual characters with muscles is interesting for reproducing and syn-
thesizing motions. The non-linear properties within muscles (such as the force-
length and force-velocity relationships) provide characters with control and motion
quality advantages with regard to servo-actuated characters, such as: better stabil-
ity and realistic passive dynamics, physiologically feasible motions, better estimates
of energy cost or fatigue, a mechanical system with the ability to perform control
functions by itself, and an ease to simulate musculoskeletal defects, pathologies, and

physical fatigue.

Great advances have been made to control them in simple and complex motions,
as shown by the variety of controller optimization methods presented in Section
2.1.2.3 and the trajectory optimization methods presented in Section 2.1.2.4 (also
summarized in Appendix A.1 and A.2). However, a weakness of state of the art
approaches is the fact that control complexity and computation times are high
partly due to actuation redundancy. For now, most methods do not seek to reduce
this redundancy. The usual solution is to compute a high number of control signals
(one per muscle) independently, without questioning or exploiting the relationships
between them. Determining such relationships could simplify the control of these
characters and motivate a wider adoption of muscle-based control frameworks in a

variety of domains, by reducing the number of control variables.

Some authors have already exploited this idea at a kinematic or torque level,
either to identify low-dimensional control representations for virtual characters
| | and robots | , |, to identify the DoF that have higher con-
tributions to the motion and that need be controlled via a primary control strategy
| , |, or to learn low-dimensional feedback strategies | |. Sim-
ilarly, early implementations of trajectory optimization methods (Section 2.1.2.4)
also address this redundancy explicitly by using function primitives to control groups
of spring-like muscles. However, this is no longer the case, and although more so-
phisticated controllers are used, muscle activation signals tend to be computed
individually.

In this work, a trajectory optimization method will be proposed to generate
motions with a virtual character by controlling hill-type (Section 2.1.1.2) muscle
models in groups. The next section presents the theory that will allow such a

method to control muscles in groups and reduce actuation redundancy efficiently.
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For now, this theory is popular in neuroscience as a means of decoding how the
human CNS is able to perform muscle-based control fast and efficiently, in spite of
a complex musculoskeletal system. However, it is an attractive solution that could
simplify the control of muscle-based characters and promote their adoption in a

variety of domains.

2.2 Muscle synergies as low-dimensional

representations of human motion control

In humans, muscles are controlled by the central nervous system (CNS). This con-
trol system is able to plan complex motions fast and efficiently, in spite of having to
coordinate numerous muscles at the same time | |, and handling a high actua-
tion redundancy. Several theories have been proposed which aim at unveiling how
the CNS is able to choose from numerous solutions to a given motor task. One of
this theories is the theory of muscle synergies. This theory suggests that the mech-
anisms that control motion are organized in a modular fashion. It states that the
CNS translates task level commands into a reduced number of modules or synergies,
which are later mapped into a larger set of individual muscle activations [ -
A modular organization based on synergies is interesting because it would imply
that the CNS uses and adapts a low-dimensional control representation, consisting

of less control variables than muscles, to generate and learn new motions efficiently.

The following sections detail: the concept of synergies (Section 2.2.1), the meth-
ods to extract them (Section 2.2.2), and examples of studies evidencing their exis-

tence in a variety of motions (Section 2.2.3).

2.2.1 Synergy models

Muscle synergies are modules generated by the CNS, which encode the temporal
and spatial activation of groups of muscles and are linearly combined to produce
individual muscle activations. There are two popular models used by neuroscien-
tists to represent synergies: the time-invariant synergy model and the time-varying

synergy model.

In the time-invariant synergy model | , , |, a synergy w;
is defined as a D x 1 vector of coefficients, specifying the relative activation level
of D-muscles. Each synergy is paired with a time-varying combination coefficient
¢i(t), which determines its temporal evolution, as shown in Figure 2.9. A set of N-
synergies can be linearly combined to generate distinct muscle activation patterns

as follows:
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N
a(t) = Z wici(t) (2.10)

Where, a(t) is the D x 1 time-varying vector containing the activations of all

muscles at time t.
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Figure 2.9 — Concept of time-invariant synergies. Three different synergies (w;) are
presented. The vertical bars in each synergy represent the mean activation level of each
muscle throughout the motion. By linearly combining the synergies (w;) and their com-
bination coefficients (c;(t)) a larger set of muscle activations (a(t)) are generated. Each
component in (a(t) represents the activation of an individual muscle j, and is denoted as

aj (t)

In the time-varying synergy model | |, a muscle synergy w;(t) is defined as
a D x 1 time-varying vector describing a collection of muscle waveforms, as shown
in Figure 2.10. The synergies w;(t) capture the time dependence of the muscle
activations, and each synergy is paired with a single coefficient ¢; and a single onset
time t; that scale them in amplitude and time. With this model a set of N-synergies

can also be linearly combined to generate distinct muscle patterns:

N
a(t)=>_ ciwi(t—t;) (2.11)
=1

The components in these models can be denoted as task-independent or task-
dependent | |. The task-independent part, are the components of the syn-
ergy model that are predefined by the CNS, while the task-dependent are the com-
ponents that are modulated by the CNS to achieve a specific task or to adapt to new
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Figure 2.10 — Concept of time-varying muscle synergies. Three time-varying muscle
synergies (w;(t)) composed by a collection of muscle activation waveforms are presented.
By multiplying all waveforms of each synergy by a single scaling coefficient (c;), shifting
them in time by a single delay (¢;), and summing them together, a larger set of muscle
activations (a(t)) can be generated. Each component in (a(t) represents the activation of
an individual muscle j, and is denoted as a;(t).

task conditions. In the time-invariant synergy model, when the synergies w; are
task-independent and the coefficients ¢;(t) are task-dependent, the model is called
synchronous synergy model. Otherwise, when the synergies w; are task-dependent
and the coefficients ¢;(t) are task-independent, the model is called temporal synergy
model. Regarding the time-variant synergy model, the task-independent part are
always the time varying synergy vectors w;(t), while the single coefficients ¢; and

onset times ¢; are task-dependent.

The way the dimensionality reduction is done depends on which of the above
models is used to represent the control done by the CNS. Specifically, it depends
on which components are task-dependent or modulated in the model. For instance,
given a muscle activation space of D x T" dimensions (where T is the total number of
time samples), the synchronous synergy model provides a dimensionality reduction
to a N x T space containing the combination coefficients ¢;(¢), only when N < D.
On the other hand, the temporal synergy model always provides a reduction from
the muscle space to a D x N space containing the synergy vectors w;. Lastly, the
time-varying synergy model always provides a dimension reduction to a 2 x N space

containing the amplitude and time scaling coefficients of each synergy.
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2.2.2 Synergy extraction process

Several algorithms have been used to identify or extract muscle synergies. Syner-
gies are usually extracted from electromyographic (EMG) signals recorded during
the execution of a task. EMG signals are formed by changes in potential of muscle
fiber membranes when innervated by motor units. In other words, they are signals
encoding the electrical activity produced by skeletal muscles when excited by the
CNS. These signals can be collected using an electromyograph which is an instru-
ment that detects the electrical potential that is generated within the muscles, when
they are neurologically activated . Pairs of surface or intramuscular electrodes are
used to detect this activity. Surface electrodes | | detect this activity on the

skin above the muscle, while intramuscular electrodes detect it within the muscle.

Once the EMG signals are recorded, a pre-processing stage | | is needed to
remove signal contaminations, due to the movement of electrodes on the skin, ground
noise from the power net, muscle cross talk, and heartbeats (ECG contamination).
Furthermore, the shape of raw EMG bursts cannot be precisely reproduced due to
the fact that the set of recruited motor units constantly changes. Therefore, to
overcome this problem, smoothing techniques (such as low-pass filters) are applied
to extract the reproducible part of the signal. These smooth envelopes are then fed

to the synergy extraction algorithms to identify muscle synergies.

Standard matrix factorization algorithms can be used to identify time-invariant
and time varying synergies (without delays). Two primary techniques for the de-
composition of EMG signals into synergies are principal component analysis (PCA)
| |, and nonnegative matrix factorization (NMF) | |. Other examples
include, independent component analysis (ICA) | |, ICA applied to a subspace
defined by PCA (ICAPCA), probablisic ICA with nonnegativity constraints (pICA)
| | and factor analysis (FA) | |. For the case of time-varying synergies
(with delays), iterative optimization algorithms such as | , , | have

been developed to identify them.

Although a variety of matrix factorization algorithms are available, studies have
shown that different algorithms can yield similar synergies | |. This consis-
tency suggests that the muscle synergies found by a particular algorithm are not an
artifact of that algorithm, but reflect the organization of muscle activation patterns
behind the studied motions. Therefore, these algorithms can be profitably used to

study the production of movements.

The choice of the algorithm depends on the assumption made on the nature
of the synergies, such as non-negativity, orthogonality or statistical independence
[ |. Non-negativity, that is positive synergy vectors, is assumed when physiolog-

ically meaningful synergies are sought (as explained later in this section). Orthog-
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onality, that is perpendicular or linearly independent synergy vectors, is assumed
when searching for a unique set of synergies which account for as much of variabil-
ity in the data as possible. Finally, statistical independence, that is uncorrelated
synergy vectors, is assumed when searching for synergies representing independent
information sources. If orthogonality is assumed, PCA | | can be used to
determine a set of orthogonal synergies that account for the largest amount of vari-
ablity in the data. FA | | can be used when searching for the smallest set
of synergies that can account for the common variance or correlation of a set of
muscles. If statistical independence is assumed, ICA | | can be implemented to
extract a set of synergies that represent independent sources of information. Finally,
if non-negativity is assumed, NMF | | can be used to extract a set of synergies

and activation coefficients that are nonnegative but not necessarily independent.

The non-negativity constraints imposed by NMF are interesting, because they
yield physiologically meaningful results: nonnegative synergies, which yield non-
negative muscle activations and forces. This is consistent with the nature of neural
and muscle output: neurons are either firing (positive signal) or at rest (zero signal)
[ |, and muscles can only actively pull and not push. Furthermore, this algo-
rithm does not assume that the synergies are independent, which is consistent with

the observation that activations of multiple synergies are correlated | |

The quality of the extracted synergies is assessed by quantifying the similarity
between the recorded activations and the activations reconstructed using the syner-
gies. This assessment can be made through different indicators. The most popular
being the Variance Accounted For (VAF) metric and the coeflicient of determination
(r?) | , ]. A high VAF or r? value indicate a good reconstruction of the
muscle activations, which evidences the quality of the extracted synergies. Both in-
dicators quantify the percentage of variability in the muscle activation dataset that

is accounted for by the extracted synergies, and they are computed as follows:

SSerr

1—
SStot

(2.12)

Where, 5S¢, is the sum of squared errors (between the recorded and recon-
structed activations), and SS;, is the total sum of squares (of the recorded activa-

tions).

The difference between both indicators is that when computing 72 the sum of
squares is taken with respect to the mean, whereas for VAF it is taken with respect
to zero. In other words, 72 is based on a linear regression with an offset, and
therefore it only compares shapes, while VAF is based on a linear regression that
must pass through the origin, and therefore it compares actual values | |. Thus,

the r2 indicator can be used to assess how well the shapes of the muscle signals are
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reconstructed, while VAF can be used to assess how the actual muscle activation

values are reconstructed.

These indicators can also be used to determine the dimension of the synergy
space or number of synergies to extract. They are used within criteria that as-
sume the most of the EMG variability is due to task-dependent muscle activations,
whereas a small portion is due to sources of noise. Thus, in the case of VAF, the
number of synergies is defined either by the point where the VAF-graph (a curve
describing the trend of the VAF as function of the number of synergies) reaches a
threshold (for example 90%) | |, or by its flattening point (the point cor-
responding to a significant decrease of slope). In the case of r2, the number of
synergies is chosen as the point corresponding to the sharpest change in slope of
the 72 curve (a curve describing the trend of 72 as a function of the number of
synergies) | , |. This change in slope is interpreted as the point sep-
arating "structured" from noise-dependent variability. After this point, additional
synergies start to capture only the small residual noise-dependent variability, there-
fore, this can be used to define the minimum number of synergies that capture the

task-related features | , , |

2.2.3 Evidence of muscle synergies

The existence of muscle synergies can be shown through two different mediums:
either by examining EMG recorded signals (indirect EMG-based evidence) or exam-
ining the CNS (direct neural evidence). This section focuses on indirect EMG-based

evidence, which is the more popular for studying the control of human motions.

Many studies have been conducted to evidence the existence of muscle synergies
from recorded EMG signals, in both animals and humans. These studies have
evolved from the analysis of reflexive frog motions, to grasping in primates, postural
responses in cats, and finally to human motions. In humans, muscle synergies have
been found as early as in the neonatal phase. | | identified two time-invariant
synergies in stepping neonates. These synergies were kept through development
and augmented by two new synergies in toddlers. Such patterns were similar to
synergies in other animal species, suggesting that locomotion stems from common

time-invariant synergies despite morphological differences.

Studies have also shown the existence of synergies in more complex behaviors,
their robustness across task conditions, and their modulation according to task goals
and/or features. In the context of human motion analysis task goals are variables
encoding the objective of the motion, while the features characterize the motion.
For instance, the authors of | | studied walking at different speeds and gravita-

tional loads, and identified 5 synergies that accounted for a considerable fraction of
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the EMG variance in a large number of muscles with important contributions to lo-
comotion. These synergies were almost invariant across speeds and loads, and were
timed according to the lift-off event in locomotion. In a later study, the authors of
[ |, studied the locomotion of patients with spinal cord injury and healthy
subjects, and found that 5 basic temporal components could be flexibly combined
to reconstruct the muscle patterns in both control and patients. Furthermore, two
of these components were linked to foot kinematics across different stepping speeds

and loading conditions.

Another complex behavior that has been analyzed through synergies is human
postural control. | | studied the postural responses of a variety of subjects
to multidirectional support surface translations in 16 muscles of the lower back and
leg. Their results revealed that 6 or less time-invariant synergies were required
to reproduce the responses of each subject. These synergies were similar across
subjects, and corresponded to well known balance strategies, such as the "hip"
strategy, in which proximal muscles have larger activations than those of the ankle,
causing a fast movement of the center of mass (CoM)| |. Another interesting
finding was that the synergies were directionally tuned, in other words, they were

activated for a specific range of perturbation directions, as shown in Figure 2.11.

The link between synergies and task features during postural responses has also
been evidenced in | |- In their experiments, subjects stood on a platform that
was displaced on a horizontal place. They analyzed the ability of time-invariant
versus time-varying synergies to reconstruct muscle activity, and concluded that
time-invariant synergies produced more consistent and physiologically meaningful
results. Their results also showed that the combination coefficients of these synergies
could be well reconstructed using delayed feedback of CoM kinematics. These find-
ings suggest that the CNS may used the CoM kinematics to recruit time-invariant
synergies for controlling balance. Similarly, | , | analyzed several
postural response tasks to identify control mechanisms. In one of their experiments
the action of releasing a load from extended arms was analyzed. This resulted in
the identification of 3 modes, a push-back mode, a push-forward mode, and mixed-
mode. Forward and backward shifts of the CoP (center of pressure) were associated

to different combinations these 3 modes.

Synergies and their relationships with task goals have also been evidenced in
upper-body tasks. An example is the work of | |. In this study fast-reaching
motions were analyzed for a variety of subjects. The motion consisted in point-to-
point movements between a central location and 8 peripheral targets in 2 vertical
planes. For each subject, 4 — 5 synergies were identified whose combinations ex-
plained more than 70% of the EMG data variation. The general nature of these

synergies, was also evidenced by the fact that they could accurately reconstruct
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Figure 2.11 — Evidence of muscle synergies in postural control tasks | I

Subjects stood on a support surface that was displaced in 12 different directions. Four
time periods were analyzed: a background period (BK), and three consecutive automatic
postural response periods (APR) after the perturbation. Synergies were then extracted
from a matrix containing the muscle activity during these time periods, for all trials and
directions. A) The muscle synergy vectors. B) The synergy coefficients during each time
period against multiple perturbation directions. Each dot represents the activity of the
muscle synergy in a single trial. Directional tuning of muscle synergies over the 3 APR
periods can be observed. For example w; is mainly active during APR1 in backward
perturbation directions (180° — 270°), while wy is active in APR3 in forward perturbation
directions (0° — 90°).

the EMG activity during point-to-point movements with different loads, reversal
movements, and movements with via-points. As in the postural responses, it is
interesting to see that for these kinds of motions, the computed synergies were also
directionally tuned. Each synergy had a "preferred direction", which was robust

across changes of load, posture and endpoint.

The same authors | |, also investigated if synergies existed in more nat-
ural reaching motions, involving different speeds and requiring the control of both
movement and posture. Their results evidenced that 3 time-invariant synergies en-
coded the variations of postural muscle patterns at the end of the motions, and

that during the motion 3 phasic and 3 tonic time-varying synergies encoded the
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activity of all patterns. The phasic synergies were modulated in amplitude and
time by movement direction and speed, while tonic synergies were modulated in
amplitude by motion direction only. Furthermore the directional tuning of both

synergies could be described through cosine functions.

Another study showed that it is possible to identify a set of synergies to rep-
resent reaching motions in different directions | |. In this study subjects
performed multidirectional reaching motions in the horizontal plane, and synergies
were extracted from concatenated EMG signals of reaching in different directions.
The analysis showed that multijoint reaching could be accurately reconstructed in
all directions by linearly combining either 4 synergies extracted from individual
DoF or 3 synergies extracted from multijoint movements in at least 3 reaching di-
rections. This suggests that common synergies can be used to represent a same
motion type and different task conditions, provided that the synergies are extracted

from a representative number of task conditions.

Reaching motions with perturbations have also been analyzed to show the ro-
bustness of muscle synergies across changes in target locations. In | | point-
to-point movements in the frontal place with a change in target location were an-
alyzed. The results revealed that a common mechanism existed for the perturbed
and unperturbed motions, since the muscle patterns for perturbed reaching could be
reconstructed by using 3 time-varying synergies extracted from unperturbed move-
ments. Interestingly, these 3 modules could reconstruct perturbed motions better
than the combination of the muscle patterns of the corresponding point-to-point

movements.

The robustness of synergies across unperturbed and perturbed motions has also
been studied in | |. This study investigated the changes in muscle activity
during a virtual reaching task, requiring isometric force generation. The task con-
sisted in applying horizontal forces on a handle instrument to move a virtual sphere
to different target positions. The task was done with no perturbations, and with
a perturbation of 45 degrees clockwise rotation applied to the planar force. The
analysis showed that the synergies extracted from unperturbed trials could be used
to reconstruct the patterns in the perturbed trials, evidencing the robustness of the

extracted synergies.

In addition to the previous examples, other motion tasks were evidence of mus-
cle synergies has been found include hand postures | |, hand shape transi-
tions (fingerspelling) | |, running | |, and pedaling | |. Finally,
aside motion tasks, another scenario that provides evidence of muscle synergies are
force generation tasks. These tasks have been less explored, however a recent study

[ | has shown the existence of synergies in the generation of three-dimensional
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(3-D) isometric forces at the hand. In this study the activity of key elbow and shoul-
der muscles was analyzed during a variety of task conditions, such as load level and
hand position. This resulted in 4 synergies that explained 95% of the variance in the
recorded EMG signals. These synergies were preserved across task conditions and
subjects, contradicting emerging evidence stating that the CNS employs different

strategies for motion and force generation tasks.

2.2.4 Conclusion

Muscle synergies provide a low-dimensional control representation of motion. This
representation reduces actuation redundancy significantly through the use of less
control variables than muscles. Two popular muscle synergy models were presented:
the time-invariant and the time-varying synergy model (Section 2.2.1). Both models
provide a low-dimensional control representation through a few spatial and temporal
components which describe how muscles should be activated to achieve a specific
task. However, in the time-invariant model synergies are denoted as fixed activation
levels which are modulated in time, while in the time-varying model synergies are
denoted as time-varying activation curves that are scaled and shifted in time to
generate motion. To identify these control strategies, analysis are conducted on
human subjects where muscle activity is recorded from key muscles simultaneously.
This data is then decomposed into synergies through either matrix factorization or

iterative optimization algorithms (Section 2.2.2).

A variety of studies (Section 2.2.3) have provided evidence of the existence of
both types of synergies, their robustness across task conditions, and their adapt-
ability to certain task goals and features. For instance, synergies have been associ-
ated with balance strategies [ , | and foot kinematics | | during
walking motions and postural responses. They have also been linked to reaching
directions | | during point-to-point motions, and with perturbation direc-
tions | | during postural responses. However, most of these tasks involved
constrained motions that do not require high skill or accuracy, and include a lim-
ited motion variability. It would be interesting to challenge this theory through
unconstrained and more dynamic motor tasks, requiring accuracy and skill, such as
overhead throwing to different distances. Overhead throwing is a motor task with
well defined task goals, but it is also unconstrained (highly redundant) and hyper
dynamic | |. It is highly redundant because there exist numerous solutions
or movements that achieve the same target hit, and it is also hyper dynamic because

of the high velocities and momentum needed at certain motion phases.

The ability of synergies to encode rich actuation information in a few control

variables, makes them a good candidate solution for controlling muscle-based vir-
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tual characters in physics-based simulations. Thus, inspired by the muscle synergy
theory and the previous challenges, this thesis will include the extraction of time-
invariant synergies from humans to simplify the control of a muscle-based character
during overhead throwing motions. An approach that will contribute in the valida-
tion of muscle synergies as low-dimensional representation of human motion control,

and show their usability in a motion generation context.

2.3 Conclusion

The study of how muscles are controlled to generate motion is relevant for virtual
character motion synthesis and human motion analysis. This chapter presented
muscle-based control from the point of view of both of these domains in order to
identify tools, challenges, and solutions that could be used to simplify the control

of muscle-based virtual characters in physics-based simulations.

First, an overview of muscle-based control for virtual characters was presented
in Section 2.1. The advantages, challenges, and tools for constructing muscle-based
simulations were detailed, along with a state of the art of muscle-based control
frameworks in animation. This overview demonstrated that using muscles as ac-
tuators brings several advantages in terms of control and quality of the resulting
motion, and that by merging knowledge from biomechanics, robotics, and neuro-
science a variety of control solutions have been developed allowing characters to
accomplish simple and complex motions, which range from periodic motions, such
as breathing, to explosive motions, such as jumping and kicking. However, in spite
of these great advances, one drawback that prevents a wider adoption of muscle-
based control frameworks is actuation redundancy, or the fact that the characters
possess more actuators than needed to achieve motion tasks. This poses a great
control challenge, due to the fact that the actuators in the character can be coordi-
nated in numerous ways to achieve the same task. In more specific terms, numerous
actuators translates to numerous control variables that can be combined in a variety
of ways to achieve the same motion. However, can control redundancy be avoided

in spite of actuation redundancy?

To answer to this question, Section 2.2 presented a popular motor control the-
ory that aims at explaining how humans are able to deal with redundancy fast
and efficiently, although possessing complex musculoskeletal systems. This theory
is called the theory of muscle synergies, and it states that the CNS adapts in a
task-dependent fashion, a low-dimensional control representation consisting of less
control variables than muscles to generate motion. Such low-dimensional control
representations have been evidenced in a variety of motions which range from walk-

ing to reaching motions. Thus, a low-dimensional control representation through
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synergies could help solve the control redundancy of muscle-based characters in

physics-based simulations.

In this thesis, a synergy-based solution will be proposed for simplifying the
control of muscle-based characters. The following chapters detail how this solution
was constructed through two main stages: An analysis stage, with the purpose of
identifying synergies and kinematic features from human overhead throwing motions
(Chapter 3), and a motion generation stage, to re-use and adapt the results of this
analysis in a synergy-driven forward dynamics pipeline (Chapter 4). The results will
evidence that a synergy-based solution can significantly reduce redundancy while

generating motion with a muscle-based virtual character.
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CHAPTER 3

Identification of kinematic
features and synergies in overhead
throwing

HIS chapter presents an analysis of overhead throwing motions (Section 3.1)
with the purpose of identifying low-dimensional control representations
that simplify the control of muscle-based virtual characters in physics-

based simulations. This analysis began by a series of experiments where subjects
performed overhead throws to different ranges (Section 3.2). Kinematic and muscle
data were recorded and processed, and then a series of algorithms were used to
extract synergies and kinematic features (Sections 3.3, 3.4, and 3.5). In the context
of human motion analysis, features are variable that characterize the motion (such
as release speed), while task goals are variables encoding the objective of the motion
(such as hitting a target at a certain distance). The results show the existence of a
low-dimensional control representation that is modulated in amplitude according to
kinematic features and changes in the throwing distance, and that is robust across

subjects with different morphologies and physical conditions.

3.1 Biomechanics of overhead throwing

An overhead throwing motion consists in launching an object forward and above
the shoulder by using one arm. It is the motion with which humans can throw the
fastest and with the best accuracy, and it requires a high coordination and skill
[ |. The main use of this motion is in competitive sports, such as: american
football, baseball, water polo, and dodgeball, where it is used with certain variation
and different levels of difficulty. This work focuses on overhead throws such as

those performed during football passing. This motion was chosen due the fact that
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unlike the majority of motions that have been studied through muscle synergies, this
task is unconstrained and hyper-dynamic [[XXY " 10], requiring high coordination
and accuracy. Moreover, it is generic enough and more easily reproduced by non-
professionals, as it is a throw characterized by lower speeds and rotational arm
velocities than for instance, baseball throws [FEA T 96].

In general, this motion consists of a sequence of coordinated movements [[K<nu07],
in which potential energy is transferred through the linked system of the body. This
energy is then transformed into kinetic energy as the projectile is released. The qual-
ity of the throw depends on the efficiency of this kinetic chain, and control variables
such as, speed, height, and angle of release. The entire motion can be described
through four main stages, as shown in Figure 3.1: starting position, cocking, accel-
eration, and finally, release and follow-through [[XBWW02]. In the starting position
the thrower positions his body sideways with respect to the intended target. The
cocking phase consists of the motion between the starting position until maximum
external rotation is reached, before the ball starts to move forward. The accelera-
tion begins as the ball is moved forward and finishes when the ball is released. This
phase is known as the most explosive phase during the motion since the velocity
of the ball changes from zero to its maximum in a short time period. Finally, the
release and follow-through phase consists in a deceleration of the throwing arm once
the ball is released.

Release &
Cocking Acceleration Follow-through

Starting
position

Figure 3.1 — An overhead throwing motion and its main stages [CRPLD15,
CRPD16]. Example of an overhead football throw to a 4m target (bone graphics issued
from [Any] and motion stages are based on [ILBWW02]).
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3.2 Experimental setup and data processing

3.2.1 Subjects

A series of experiments were conducted in order to extract kinematic features and
muscle synergies from overhead throwing motions. Ten healthy men (age 29.8 +5.6
yr ; weight 72.4 £ 9.9 kg; height 1.7690 £ 0.0656 m) volunteered for these exper-
iments. The subjects were all right handed, and all except one (subject 3) had
never suffered injuries in the right arm. Furthermore, none of the participants were
professional athletes, and they all had different physical conditions (with a mean
number of hours of sport activity per week of 3.8500 + 3.0736). Each subject pro-
vided written informed consent before participation and written approval of public

data availability.

3.2.2 Task

In these experiments the task goal consisted of a right-hand overhead throw to
a movable target placed at different distances from a fixed throwing site. The
target was placed at 2m, 4m, and 7m along a straight line from the throwing
site. Before beginning the experiments subjects underwent a short training where
they practiced long distance throws for 5 to 10 minutes. Once the training was
finished the experiments began. During these experiments, the throwing order
was randomized (to reduce learning effects), and for each distance 10 throws were
performed resulting in a total of 30 throws. A description of the motion and the

experimental setup are featured in Figure 3.1 and Figure 3.2.

Figure 3.2 — Experimental setup. Throwing site and the different target positions.
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3.2.3 Data acquisition and processing

During the throwing task the activity of several muscles of the right arm and body
kinematics were recorded. A set of 16 muscles was recorded during the experi-
ments. These muscles were chosen due to their important contributions during
throwing [DJPP92, HKS02] and their accessibility through surface EMG elec-
trodes [HEM99]. The recorded set included muscles located in the back, arm, and
chest as shown in Figure 3.3 A and B and in Table 3.1. Detailed descriptions on
their functions can be found in the Appendix B (Table B.1).

EMG . Reflective
electrodes ’ marker

marker

Figure 3.3 — EMG electrodes and reflective marker placement. (A) Back view:
EMG electrodes and markers on the subject’s body. (B) Frontal view. (C) The football
used during the experiments and its reflective markers.

Table 3.1 — Recorded muscles. List of muscles recorded during the experiments and
featured in Figure 3.3 A and B.

Recorded muscles
Number Name Short name
1 Erector spinae longissimus EreLL
2 Erector spinae iliocostalis Erllio
3 Lastissimus dorsi Lasti
4 Upper trapezius TrapU
5 Middle trapezius TrapM
6 Lower trapezius TrapL
7 Posterior deltoid DeltP
8 Anterior deltoid DeltA
9 Middle deltoid DeltM
10 Pectoralis major (Clavicular head) PecC
11 Pectoralis major (Sternocostal head) PecS
12 Biceps Bic
13 Triceps (long head) TrpLg
14 Triceps (lateral head) Trplt
15 Forearm extensor bundle WrstE
16 Forearm flexor bundle WrstF
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The muscle activity was collected using wireless surface EMG electrodes (Cometa
Waveplus EMG system) and well known electrode placement protocols | ,
|. This activity was then processed using a standard protocol | ]: The
signals were amplified (gain 1000), digitized (1kHz), band-pass filtered (10-450Hz),
rectified, and low-pass filtered (6Hz). Additionally, ECG artifacts were removed
using an ICA-based filtering procedure | |

Furthermore, the subject’s motion was captured using a Vicon system (15 cam-
eras, 100Hz sampling rate) and reflective markers. The markers were placed on bony
landmarks (49 markers, as shown in Appendix B, Table B.2), around the target (6
markers), and on the ball (9 markers) (Figure 3.3 A and C). Each of the marker

trajectories was low pass filtered.

3.2.4 Data selection

After the data acquisition and processing procedures, only a subset of trials and
muscles were selected for the analysis part of this work. Only 6 throws were selected
per throwing distance, yielding a total of 18 throws per subject. Trials affected by
signal loss due to our EMG wireless system were dismissed, and a maximal but equal
number of trials for all subjects was chosen. Furthermore, only 14 muscles were
selected, the pectoralis major (clavicular and sternocostal head) were not included.
Their activation signals could not always be cleaned from the ECG artifacts due to

the need of additional ECG information for the algorithm in | |

The 14 muscles were then used to construct different muscle sets for the synergy
analysis (Table 3.2). These sets were constructed through a reduction process to
gradually isolate the muscles of the arm, the body section with the most significant
contribution (or rotation) during overhead football throws | |- The first set
(Set14) contained all 14 muscles, the next set was constructed by excluding back
muscles (Set;;), the following set by excluding muscles with actions on the scapula
(Setg), and the final set (Setg) was constructed with antagonistic muscle pairs that
actuate the DoF of the arm with highest contribution to throwing per segment

(starting at the glenohumeral joint).

These DoF were: shoulder internal(+)/external(—) rotation (¢i(¢)), and shoul-
der, elbow and wrist flexion(+)/extension(—) (g2(t), ¢3(¢) and qa(t)). The shoulder
internal/external rotation and elbow flexion/extension were especially selected due
to the fact that they are the major upper limb actions during throwing | |
(mainly during the acceleration phase | |). The construction of Sets was also
motivated by the idea of selecting muscles with matching actions to the virtual

character (Section 4.2) that will be controlled via synergies in the next chapter.
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Table 3.2 — Muscle sets for synergy extraction.

Mouscle sets

Set name Muscles (Blue - muscles excluded to construct the next set)

Setis Erector spinae longissimus, erector spinae iliocostalis, lastis-
simus dorsi, upper trapezius, middle trapezius, lower trapez-
ius, posterior deltoid, anterior deltoid, middle deltoid, bi-
ceps, triceps (long head), triceps (lateral head), forearm ex-

tensor bundle, forearm flexor bundle.

Setqq Upper trapezius, middle trapezius, lower trapezius, poste-
rior deltoid, anterior deltoid, middle deltoid, biceps, triceps
(long head), triceps (lateral head), forearm extensor bundle,

forearm flexor bundle.

Setg Posterior deltoid, anterior deltoid, middle deltoid, biceps,
triceps (long head), triceps (lateral head), forearm extensor

bundle, forearm flexor bundle.

Setg Posterior deltoid, anterior deltoid, biceps, triceps (long

head), forearm extensor bundle, forearm flexor bundle.

3.3 Kinematic features identification

3.3.1 Definition

A set of kinematic features were selected to parametrize the kinematics strategy
during overhead throwing. These variables not only characterize the motion, but
also have an important impact on the outcome of the throw. Thus, they are the
controlled variables during the motion, which allow to achieve the final motion goal

(a target hit to a certain distance).

The selected features were defined in the task or operational space. The task
space is the space where the kinematics of the subject’s hand is defined. In this
space, overhead throwing motions are determined by three factors: velocity of re-
lease, height of release, and angle of release | |. Based on this observation,
the hand velocity (v) and height (h) of release were selected as task space kinematic
features (Figure 3.4). The angle of release was not considered due to its difficult esti-
mation caused by marker occlusion. Nevertheless, studies have shown that the most
important parameter influencing throwing range is the release speed | , |.
Furthermore as shown in | |, the square of the release speed is proportional
to the throwing range, thus, it is more efficient to adjust this parameter rather than

an angle during throwing.
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Figure 3.4 — Kinematic features in the task space. Two task space features were
selected: velocity (v) and height (h) of release (which was normalized by the subject’s
height (hy)).

These two task space features were used to construct a task feature vector per

subject s, which describes the motion at different throwing distances d:

fT,s: 62m,s 54m,s 67m,s h2m,s h4m,s h7m,s] (31)

Where s = 1...10, and 74, and Ed,s are the mean release velocity and height at
the distance d. Means were chosen in order to include representative values of all of
the subject’s throws at each distance. By generalizing Equation 3.1 to all subjects,
a single task space feature vector can be obtained describing the representative

kinematic strategy to multiple target distances:

fran = |Vom,au Vamau Urmaun homau  Pam,an Prm,an (3.2)

3.3.2 Extraction

To extract these motion features from the experimental data, the time of release
(trer) was first computed. This moment was determined as the instant at which the
maximum hand velocity was reached, since it is known that this event occurs almost
in parallel to ball release in the acceleration phase. For this purpose, a reflective
marker was placed on the outer side of the hand (third metacarpal bone), as shown
in Fig.3.3 A, and its position was recorded. After the derivation of this marker’s
trajectory, the maximum hand velocity or velocity at release (v) was determined as

follows:
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v:nmx<¢wuﬁ+vﬂw?+wgf> (3.3)

Where v,(t), vy(t), and v.(t) are the velocity components of the hand marker.

Next, the hand height at release (h) was determined as follows for each subject s:

(3.4)

Where h, is the hand marker’s position component along the z-axis (an axis per-

pendicular to the ground plane), and hy is the height of the subject.

3.4 Synergy models identification

3.4.1 Definition

The synchronous time-invariant synergy model was selected to parametrize the con-
trol strategy during overhead throwing. These synergies describe how the subjects
coordinated their muscles to achieve a set of kinematic features and task goals.

Thus, they are the control variables during the motion.

To define these synergies, the time-invariant synergy model presented in Section
2.2.1 (Equation 2.10) was used. This model consists of a set of N-synergies that can
be linearly combined to generate D-muscle activation signals. Such a model can be

written in matrix form as:

A=WwWC (3.5)
w11 w12 ... WIN 01(1) 01(2) Cl(T)

A _ w1 (1)) WaN 02(1) 02(2) CQ(T) (3.6)
wp1 wpz ... wpn| |en(l) en(2) ... en(T)

Where, T is the total number of time samples, A is the D x T samples matrix
containing the recorded muscle activations patterns or control signals, W is the
D x N muscle synergy matrix, and C' is the N x T samples combination coefficient
matrix. The matrix A may contain the muscle signals of one or several trials. For
instance, it can be constructed by concatenating the recorded signals of all throws
of a particular subject s (matrix Ag), or all throws of all subjects (matrix A4;).
In such cases the resulting combination coefficient matrix contains the temporal

evolution of the synergies during all the concatenated throws.

46



3. Identification of kinematic features and synergies in overhead throwing

Based on the previously described model, two control features were defined
for each subject s: a time-invariant control feature (W) describing the relative
activation level of muscles throughout a set of throws, and a time-variant control
feature (Cs = [ Cs2m Csam Cs;mm |) describing the temporal evolution of each synergy
during each throw. Each sub-matrix C 4 is of dimensions N x Ty, T; being the

total number of samples contained in the throws to distance d.

Finally, by generalizing these features (W and Cj) to all subjects, a single set
of control features can be obtained describing the representative control strategy
to multiple target distances: Way and Cay = [Cau2m Cauam Cawm - Where Wy
encodes the relative muscle activation levels for all subjects and throws, Cy; are
trial and subject specific coefficients, and C 4; encodes the average way in which
W 4y was triggered for all subjects and throws. This averaging is needed due to the
fact as per Equation 3.6 the time-invariant synergy model yields a single synergy
matrix, but individual coefficients characterizing the time evolution of such synergies

for each time sample.

In the results section (Section 3.6), the coefficients in this model will be described
in terms of: 1) their shapes, 2) their triggering order, and 3) how their energy

changes with throwing distance.

3.4.2 Extraction

Time-invariant synergies can be identified via matrix factorization algorithms, such
as the NMF (Nonnegative Matrix Factorization) algorithm | |. NMF was cho-
sen due to the fact that it constraints the synergies to be nonnegative, but not neces-
sarily independent. The non-negativity constraints yield physiologically meaningful
results (as discussed in Section 2.2.2), and not imposing independence is consistent

with the observed correlation among the activation of synergies | |

Essentially, the algorithm decomposes a non-negative matrix A into a non-
negative linear combination of basis vectors contained in matrices W and C, by

solving the following optimization problem:

minimize 1HA —-WC|%
w,C 2 (3.7)
subject to W >0,C >0

Where ||.||F is the Frobenius norm. Before applying this algorithm the number
of synergies to extract should be defined. To do this two criteria were used. The
first, was choosing synergy models containing less synergies /N than muscle signals
in matrix A, and also less than the number of muscles in the virtual character in the

next chapter (Section 4.2). This last constraint is important, since in a broader scope
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the identified synergy models will be used to reduce the redundancy in the control of
this character. The second criterion is based on the coefficient, of determination (r?)
presented in Section 2.2.2. This coeflicient was chosen due to the fact that it assess
how well the shapes of the original muscle signals are reconstructed by the synergy
model. The criterion states that the chosen number of synergies should correspond
to the sharpest change in the slope of the r? curve. A curve that portrays the

quality of activation signal reconstruction versus the number of synergies.

Once the synergy model was chosen, a metric was selected to describe the in-
tensity with which the synergies were triggered per throwing distance. This metric
was the synergy’s energy. In signal processing terms, the energy in a signal is a
measure of its size or strength, and it is quantified as the area under the square of
the function. Thus, the average energy Eci’d of each combination coefficient c;(t)

at each throwing distance d, was computed as follows:

T, 2
— < et
Ec- — anl ’ AZ( n)‘ (38)
° Ntrials
Where T} is the total number of samples contained in the throws to distance d,
Ntrials is the number of trials per throwing distance, and ¢, is the current time

sample.

3.5 Identifying representative kinematic and control

features

The previous extraction methods can be used to identify kinematic and control
features (hand velocity and height at release, and synergies) for individual subjects.
This section extends such methods to identify a common set of kinematic and control
features (or synergies) representative of all subjects. Different algorithms were used
to either identify common features after an individual subject analysis, or directly
from the experimental data. For the first case, clustering algorithms were used. For
the second case, a matrix-factorization based solution | | and cross-correlation

were employed.

Clustering is a technique that consists in grouping features based on a simi-
larity criteria. The number and separation between these groups can indicate the
existence or not of a common feature, and therefore strategy (as will be later ex-
plained in Sections 3.5.1 and 3.5.2). To apply this technique, first, the features were
standardized or normalized to the same scale, then two different types of cluster-
ing algorithms were implemented: a centroid-based clustering algorithm (k-means

clustering) and a connectivity-based clustering algorithm (hierarchical clustering).
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Different algorithms were used in order to verify if different techniques yielded simi-
lar strategies. Furthermore, the specific interest in using hierarchical clustering was
to verify if the number of clusters of the k-means algorithm matched the natural

divisions in the data.

K-means clustering is an iterative algorithm for data partitioning that assigns
or classifies features into one of k clusters defined by centroids | ]. The main
steps of the algorithm are the following, given k: 1) select k initial cluster centroids,
2) compute the distances between each feature to each cluster centroid 3) assign
the features to the cluster with the closest centroid all at once (phase 1), and
individually reassign points if it reduces the sum of distances (phase 2), 4) obtain
new centroids by averaging the features in each cluster, and 5) repeat steps 2-4
until the assignments do not change or the iterations reach their maximum. The
k-means+ 4 algorithm in MATLAB® was used with a squared euclidean norm to
compute the distances. The advantage of this algorithm is that it uses the heuristic
in | | to find centroid seeds for k-means clustering. This results in a faster
convergence to higher quality solutions, in other words, a lower sum-of-squares,
point-to-cluster centroid distances (within each cluster). Finally, in order to assess
the k-means clustering quality an indicator called cluster silhouette was computed
[ , |. This indicator allows distinguishing clear-cut clusters from weak
ones, or how well clusters are separated. It measures how similar the features are
to features in their own cluster, when compared to features in other clusters, and is

computed as follows:

i = s =05) (3.9)
max(1s, 0s)

Where, o, is the average distance from the feature s to the other features in the
same cluster, and 7, is the minimum average distance from the feature s to features
in a different cluster, minimized over clusters. The silhouette value can range from
—1 to 1. By averaging the silhouette values of each feature and cluster, an average

silhouette (Sil) can be obtained for all clusters. Clustering quality is then assessed

based on this value and by using the interpretation proposed by | | in Table
3.3.
Table 3.3 — Assessment of k-means clustering quality | ]- Subjective interpre-

tation of the average silhouette value.

Sil Proposed interpretation

0.71-1.00 | A strong structure has been found

0.51-0.70 | A reasonable structure has been found
0.25-0.50 | The structure is weak and could be artificial;
try additional methods on data set

<0.25 No substantial structure has been found
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Therefore if Sil > 0.71, the k clusters were said to be well separated, otherwise

no clear separations could be made and only a single cluster existed.

Hierarchical clustering was then used to validate this assessment. Hierarchical
clustering is an algorithm that aims at grouping features at different levels using
a cluster tree or dendrogram. In agglomerative hierarchical clustering each feature
starts in its own cluster | |, these clusters are then combined via a metric and
a linkage criterion. The metric defines a distance between pairs of features, and
the linkage criterion defines the distance between sets by computing the pairwise
distances between features. An advantage of this algorithm over k-means is that
it does not need an initial indication of the number of clusters, and therefore, it
reveals the natural divisions in the data. For its implementation, the hierarchical
algorithm tools in MATLAB® were used with the euclidean distance as metric, and

an unweighted average distance (euclidean) for the linkage.

Finally, the clustering quality of this algorithm was assessed via dendrograms.
Dendrograms are tree diagrams that illustrate the arrangement of clusters, the
distance between them, and among their components (Figure 3.5). By making
visual comparisons of these distances, the natural divisions in the data can be
found. Such divisions exist when the distance between clusters is higher that the
distance between their components. In other words, when the link joining a group

of branches has a significantly different height from that of the links below it.
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Figure 3.5 — Example of a dendrogram. A dendrogram composed of two well defined
clusters. The height of each link indicates the distance between the connected components.

Section 3.5.1 describes how the above clustering techniques were used to identify
common kinematic features. Then, Section 3.5.2 details how the synergy identifi-
cation procedure in | | and clustering were used to extract common control

features.
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3.5.1 Kinematic feature identification (fr ;)

To determine if a common kinematic feature vector, and thus strategy, existed
across subjects in task space, the feature vectors fr ; in Equation 3.1 were given as
inputs to the clustering algorithms. Since each subject is characterized by a 1 x 6
task vector, a unique strategy exists if £ = 1. In other words if the features are so
similar, that well separated clusters cannot be formed. When applying k-means this
is evidenced by low silhouette values or a high number of clusters containing few or
single features. On the other hand, when applying hierarchical clustering a unique
strategy is evidenced when the heights of the top links in the dendrogram do not
differ significantly from the links below them. In other words, when the distance
between clusters is similar or shorter than the distance between their components.
If this was the case, then the common task space feature vector f7 4, was computed

by averaging the task feature vectors (fr ) across subjects.

3.5.2 Control feature identification (W, C )

The common control features (W4, C a;1), and thus strategy, were extracted through
the identification procedure in | | which allows a direct extraction from exper-
imental data. In this method a matrix Ay was constructed by concatenating the
activation signals for all trials of all subjects. NMF was then applied on this pool
of signals, yielding: 1) one single synergy matrix (W) for all subjects, and 2)
a set of subject and trial specific coefficients C4;;. The next step was to identify
a representative set of coefficients (Cay). To do this, first, representative coeffi-
cients per subject and throwing distance were computed. Then, cross-correlation,
which measures the similarity of two signals as a function of the lag of one relative
to the other, was used to compare the coeflicients. If the coeflicients were similar
among subjects (high cross-correlation at short lags), then a second averaging was
performed across subjects at each throwing distance, yielding the final coefficients
(Can)-

Next, a second method was implemented in order to compare and validate the
representative synergy matrix (W) with synergies extracted from individual sub-
jects. This comparison was not made for the coefficients (C4y) due to the fact
that both methods are similar in the way they compute the coefficients: both first
compute coefficients describing each subject and throw individually. However, the
methods differ in the way the representative synergy matrix is computed, as will be
evidenced shortly. This second method is based on grouping synergies via k-means
(similarly to | |), and hierarchical clustering. It consists of 3 stages: 1)
extraction of individual subject synergy models, 2) standardization of w; vectors,

and 3) application of k-means and hierarchical clustering algorithms. In the first
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stage, a matrix As was constructed per subject, by concatenating the activation
signals of each of his repetitions. Next, NMF was applied on each matrix A to
obtain a single N-synergy model (W, C) per subject. Once a model was obtained
for each subject, the synergy matrices W, were standardized and each of its vectors
w,; were used to create a feature pool for the clustering algorithms. Each of these
vectors was treated individually, without specifying its correspondence to a specific

subject.

The k-means algorithm was applied first while varying the number of clusters k.
Since each subject is characterized N-synergies, a unique strategy exists if k = N, in
other words if the number of clusters is equal to the number of synergies extracted
for each subject. If this was the case, then the centroids of these clusters were taken
as the representative control strategy (Wkmeans), and it was later compared with

the synergy matrix of the first method (Wyy).

Finally, hierarchical clustering was applied to determine if the natural divisions
in the data matched the results provided by k-means. With this algorithm a unique
strategy exists if N well separated branches are seen in the dendrogram. In other
words, if the number of branches is equal to the number of synergies extracted for

each subject.

3.6 Results

The previous methods were applied to identify a representative kinematic and con-
trol strategy for overhead throwing motions. First, a validation stage was made
using a single subject (Section 3.6.1) with the purpose of: 1) selecting an appro-
priate muscle set for extraction, and 2) determining if the methods allowed the
identification of a low-dimensional control strategy with links to task space features
and goals. After this validation, the chosen muscle set was used in the procedures
in Section 3.5. The results show the existence of a common low-dimensional control
strategy across subjects, which is modulated according to the throwing distance
(Section 3.6.2).

3.6.1 Methodology and muscle set validation

To identify a representative control strategy, it is first important to choose an ap-
propriate set of muscles to analyze. The main reason for this, is that the choice
and number of muscles may affect the structure of the identified synergies. The au-
thors in | | proposed that an appropriate muscle set should contain dominant
muscles during the motion, as synergies extracted from such muscles reflect well

the synergies extracted from significantly larger muscle sets, and thus encode repre-
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sentative control strategies. In other words, the synergies extracted from dominant
muscle sets are preserved in those extracted from larger sets. This preservation can

be evidenced by high linear dependency among matching synergies in each set.

The purpose of this section is to identify and validate an appropriate muscle set
from which to extract a representative control strategy for overhead throwing. To
do this, a synergy analysis was made on a single subject using different muscle sets.
As described in Section 3.2.4, these sets were constructed by gradually isolating
muscles of the arm until arriving to a hypothetical dominant muscle set (Setg),
encoding important actions during throwing and with matching muscle actions to
those of the virtual character in the next chapter. The results show that the synergy
model extracted from this set is preserved in models extracted from higher order
sets, evidencing that it encodes dominant muscle actions during throwing. The
analysis also revealed the existence of a low-dimensional control strategy consisting
of 2-synergies, an agonist and an antagonist synergy, whose triggering intensity

increased with the kinematic features’ magnitude as throwing distance increases.

Synergy models were extracted for the different muscle sets in Table 3.2, using
the extraction procedure in Section 3.4.2. First, a muscle activation matrix (A) was
constructed for each muscle set. Each matrix contained the concatenated muscle
activations of all throws (18 throws in total), beginning with the 2m throws, then
4m throws, and finally 7m throws. Then, the NMF algorithm (Section 3.4.2) was
applied while varying the number of synergies to extract to determine the synergy

model order.

As explained in Section 3.4.2, the synergy model order should allow a recon-
struction of the most important trends in the activation signals, and be less than
the number of muscles in matrix A and in the virtual character (6 muscles) in Sec-

tion 4.2. First, the muscle activation reconstruction quality was assessed through

the coefficient of determination r2, as shown in Figure 3.6.
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Figure 3.6 — Activation reconstruction quality across synergy models per muscle
set. The NMF algorithm was applied on each muscle set while varying the number of
synergies (V). The resulting curve depicts the 72-values for each model. The sharpest
changes in slope are denoted by the red dots.

For all muscle sets, the quality of reconstruction increases with the number of
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synergies. For Sets, Setg, and Set4 the sharpest change in slope of the r2-curve
occurs at N = 2 synergies, while for the Set;; the sharpest change occurs at N = 3.
The quality of reconstruction seems to depend on the muscle but in all cases a
low-dimensional strategy exists which is less than the number of muscle in the A
matrices, and in the virtual character. Therefore, since N = 2 for the majority of
muscle sets, including the hypothetical dominant muscle set (Sets), the following

analysis will focus on 2-synergy models.

The 2-synergy models extracted for each set allow a reconstruction quality of
7?2 = 0.61 to 0.66 (depending on the muscle set). To evaluate this reconstruction
accuracy, several factors, besides the number of synergies, which are linked to the
experiment itself should be considered, such as: the type of motion, how constrained
or repeatable the task is, the number of repetitions used for extraction, number
of muscles and subjects. Thus, a comparison was made to the closest motion to
overhead throwing in the synergy analysis literature, the study of fast reaching
motions in | |. In this study an activation reconstruction accuracy between
0.7 — 0.8 was achieved with 4 — 5 synergies. However, the synergies were extracted
from fairly constrained or repeatable motions (that used via points to guide the
motion), and the EMG patterns used for extraction were averaged for several trials.
In the present study the synergies are extracted from an unconstrained motion and a
concatenation of trials, and thus, the 72 criterion evaluates the reconstruction of each
individual trial, and not of an average. Consequently, a quality of reconstruction >

0.6 was taken as an acceptable reconstruction accuracy for the current experiments.

Next, each of the 2-synergy model was analyzed. Each model is composed by a
synergy matrix W (Figure 3.7), containing the time-invariant synergy vectors, and a
combination coefficient matrix containing the time evolution of each synergy (Figure
3.8). The resulting synergy matrices contain two synergies: an agonist (wy) and
an antagonist synergy (ws) to the motion. The terms agonist and antagonist refer
to muscles that provoke or inhibit movement. Agonist muscles cause movement
by contracting, while antagonist muscles oppose this movement to control it or
slow it down. These are not properties of muscles, but roles that depend on the
specific motion. Such roles were used to refer to the synergies in this study since
they grouped most muscles into agonists and antagonists to the motion. Thus, the
agonist synergy contains a high activation of muscles that provoke the motion, or
muscles corresponding to biomechanical actions such as: trunk extension (erector
muscles), upward scapular rotation (upper and lower trapezius), shoulder internal
rotation and flexion (lastissimus dorsi and deltoid anterior), and elbow extension
(triceps). The antagonist synergy contains a high activation of muscles that oppose
the motion, or muscles corresponding to scapular retraction and depression (middle

and lower trapezius), elbow flexion (biceps), and a low activation of the deltoids.
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Figure 3.7 — Synergy vectors w; per muscle set. A 2-synergy model was extracted

for each muscle set. The resulting vectors (w; and ws) contain the activation levels of

each muscle throughout the concatenated motions. The synergies of Setg are preserved in

those of higher order sets. This preservation is quantified in Table 3.5. Thus, Sets contains
dominant muscle actions [ ]

It is interesting to see how these agonist and antagonist organization is preserved
across models, and that the synergies extracted from a lower number of muscles,
are well preserved as the number of muscles increases. For instance, through visual
inspection, it can be seen that the synergies of Setg are preserved in those of Setg,
the synergies of Setg are preserved in those of Setq;, and finally, the synergies of
Set11 are preserved in those of Set;4. This preservation can also be shown by
comparing the activation levels of muscles common to every two sets. To do this,
the synergies from each set were compared to the same subset of muscles from
the subsequent higher order sets. This comparison was made through the sample
pearson linear correlation coefficient (p) between the best matching pairs of synergies

for every two sets. The results of these comparisons are shown in Table 3.4.

In all comparisons the correlation coefficient p is high (0.86 —0.99), indicating a
high linear dependency among synergies, and thus their preservation across muscle
sets. Furthermore, the synergies extracted from the smallest set of muscles (Setg)
are preserved in models extracted from higher order sets, as shown in Table 3.5.

These preservation evidences the existence of a low-dimensional control strategy for
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overhead throwing, and that Sets contains dominant and relevant muscles | |

Table 3.4 — Similarity between the synergies extracted from different muscle
sets. The pearson linear correlation coefficient (p) between the best matching pairs of
synergies for every two sets was computed. A total positive correlation corresponds to
p = 1. Correlations near this value indicate a high linear dependence, and thus a high
similarity among synergies.

Correlation coefficient p between synergies
Sets Pw Pwo
Setg and Setg 0.9835 0.9947
Setg and Setq; 0.9544 0.9922
Set11 and S€t14 0.8634 0.9418

Table 3.5 — Similarity between the synergies in Sets and higher order sets. The
pearson linear correlation coefficient (p) between the best matching pairs of synergies of Setg
with the rest of the sets. A total positive correlation corresponds to p = 1. Correlation near
this value indicate a high linear dependence, and thus a high similarity among synergies.

Correlation coefficient p between synergies
Sets Py Py
Setg and Setg 0.9835 0.9947
Setg and Setq; 0.9849 0.9987
Setg and Setiy4 0.9220 0.9685

The previous extractions not only revealed a low-dimensional control strategy,
but also that this strategy was triggered similarly across throws, and modulated
according to the kinematic features and throwing distance. Furthermore, this be-
havior was preserved across muscle sets. The resulting combination coefficients per
trial were averaged at each distance d, resulting in the average coefficients (¢;(t)
and ¢2(t)) in Figure 3.8. In this figure, the first coefficient (¢;(t)) approaches a bell
shaped profile (as the velocity profile in ballistic movements), while the second co-
efficient (¢2(¢)) is more irregular, it has a lower amplitude, and it tends to decrease

as the throw is performed.

These average profiles and their standard deviation curves show visually repeat-
able trends among throws to the same distance and also across distances. This
repeatability can be quantified by computing the cross-correlation scores among av-
erages across throwing distances, as shown in Table 3.6. Such scores measure how
similar the coefficients are as a function of the lag between them, allowing to com-
pare their shapes. For all coefficients and muscle sets, high cross-correlation scores
at lags (delay/signal length) near zero can be seen, evidencing that the synergies

are triggered similarly across throwing distances.

Besides a repeatability in terms of shape, the coefficients also share temporal

similarities. As seen in Figure 3.8, in general, in the beginning of the throw ¢y(t)
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Figure 3.8 — Average synergy combination coefficients ¢;(¢) per muscle set. A 2-
synergy model was extracted for each muscle set. The resulting coefficients were averaged
per throwing distance d. Thus, ¢ (¢) and ¢2(t), encode the general manner in which each
synergy is triggered to perform a throw to distance d.

Table 3.6 — ¢;(t) repeatibility across throwing distances.

Cross-correlation and lags (delay/signal length)

Set | @i(t) || corramam| corromm| corram,mm| lagamam | lagam,mm | lagam,m
Setg | c1(t) || 0.9657 0.9711 0.9689 0.0340 0.0437 0.0250
ca(t) || 0.9640 0.9197 0.9618 0 0.0017 0
Setg | ¢1(t) || 0.9648 0.9730 0.9670 0.0694 0.0833 0.0344
Ca(t) || 0.9668 0.9261 0.9660 0 0.0007 0
Sety1 | ¢1(t) || 0.9345 0.9467 0.9613 0.0621 0.0805 0.0375
ca(t) || 0.9662 0.9200 0.9630 0 0.0014 0
Setyq | ¢1(t) || 0.9552 0.9685 0.9675 0.0659 0.0725 0.0337

ca(t) || 0.9310 0.8961 0.9545 0.0056 0.0552 0.0028

(antagonist synergy) is activated, then its amplitude is diminished, until ¢ (t) (ag-
onist synergy) is activated. At this moment ¢2(t) is activated again, and the most
significant co-activation occurs among the synergies. This is consistent with the
fact that ballistic movements exhibit concurrent agonist and antagonist muscle ac-
tivation | |. During these motions, a first activation is needed to accelerate
the limb towards the target (¢1(t)), followed by a second activation to decelerate
and stop the movement (¢2(t)). This sequence of bursts (from antagonist to agonist,
and from agonist to antagonist) are characteristic of the antagonist activity in the

upper extremity while throwing. Such “triad” burst sequences have been previously
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identified in EMG analysis of throwing (at the wrist and elbow muscles) | |,

and in badminton smash strokes | |.

Another characteristic of the coefficients that was analyzed was the changes in
energy across throwing distances. Fig.3.9 shows the average energy of each coef-
ficient at each throwing distance, as described in Equation 3.8. The results show
that the energy changes in the coefficients are linked to changes in the task space

features: Like the task space features, mean release velocity (v) and height (h) in

Figure 3.10, the energy in the coefficients increases with the throwing distance.
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Figure 3.9 — Average energy of combination coefficients ¢;(t) per throwing dis-
tance. The average energy of each synergy increases with throwing distance. These incre-
ments are always statistically relevant from 2m to 4m and from 2m to 7m.
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Figure 3.10 — Task space features per throwing distance. Mean hand velocity v and
height h at each throwing distance. Statistically relevant increments are denoted by the
symbol *.

The energy increments (from 2m-4m and 2m-7m) are always statistically rele-
vant for both synergies. This increment in the actuation signals (or synergies), is

consistent with the increment in torque magnitudes observed during the synthesis of
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3. Identification of kinematic features and synergies in overhead throwing

throwing motions to different ranges | |. Furthermore it is interesting to see
that the average energy of the agonist synergy (c;(t)) significantly increases as the
number of muscle in the set increases. This can be due to the fact that this synergy
recruits muscles with significant activations during the motion, such as back and

shoulder muscles.

Finally, the synergies (w;) and coefficients (¢;(¢)) in each model can be linearly
combined (Equation 3.5) to reconstruct the recorded muscle activation patterns (A).
These synergies are expected to encode important temporal and spatial information,
that allow a reconstruction of the most important trends of the recorded muscle
activations. The four synergy models that were analyzed allowed a reconstruction
quality of 2 = 0.61 to 0.66 for the 18 concatenated muscle activations, which as
explained in the beginning of this section is an acceptable reconstruction quality
considering the redundancy of the task, and the fact that each individual trial
is being reconstructed and not an average of trials. Figures 3.11 and 3.12 show
examples of the activation reconstruction of a single 7m throw using these synergy

models.

Due to the fact that a minimal number of synergies were used, small oscillations,
amplitudes, and delays are lost in some of the muscles. Part of this information loss
will correspond to important trends in the activations, but as of the 2 criterion,
a majority of this information will be due to noise-dependent variability and most
of the important activation trends will be preserved. An example of this can be
seen in Figure 3.11 (Setg), where the reconstructed muscle activation of the deltoid
posterior is delayed and of lesser amplitude but its general activation profile and
timing are similar to the recorded one. Another example can be seen in Figure 3.11
(Setg), where the general activation profiles and timings are preserved for most
muscles: the activation of the deltoids and triceps peak in the second half of the
motion, while the biceps, wrist extensors and flexors are activated in the first and
second halves. Finally, a similar behavior can be seen in Figure 3.12 for Set;; and
Set14. However, as more muscles are added, the quality of reconstruction decreases
as seen by the loss of amplitude of the upper and medial trapezius. This decrease is
expected, since the matrix factorization algorithm attempts to encode the activation

information of a higher number of muscles in only 2 synergies.

The previous results evidence the existence of a low-dimensional control strat-
egy during overhead throws in a single subject, consisting of an agonist and an
antagonist synergy, which are linked to task space features and goals through their
triggering intensity. Furthermore, an appropriate muscle set was identified contain-
ing dominant muscles during this motion. This set will serve as a basis for the
analysis presented in the next section: the extraction of a representative control

strategy for overhead throwing across subjects.

59



LOW-DIMENSIONAL CONTROL REPRESENTATIONS FOR MUSCLE-BASED
CHARACTERS: APPLICATION TO OVERHEAD THROWING

—— Recorded
Setg —— Reconstructed
DeltP DeltA Bic
1 1 1
05 A 05 M\ 05 /\ A
0 0 AT 0
0 50 100 0 50 100 0 50 100
TrpLg WrstE WrstF
1 1 1
” ) ” OW’ AE - mﬁp\/ﬁ\< j
T o 0 0
& 0 50 100 0 50 100 0 50 100
£ s
5 DeitP DeitA ets DeltM Bic
2 1 1 1 1

0

ﬂ 05 [\A 05 05
o, i swer: iv [l v, Al

0 50 100 0 5 00 0 50 100 0 50 100
Trplg Tplt WrstE WrstF
1 1 1 1
" ) " wﬂ A&.t " M\ﬂ: A& " M&J&\_
0 0 o 0

0
0 50 100 0 50 100 0 50 100 0 50 100

Time normalized (%)

Figure 3.11 — Activation reconstruction of the muscles in Setg and Setg (7m throw).

The 2-synergy models extracted from each set were used to reconstruct the recorded muscle
activations.
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Figure 3.12 — Activation reconstruction of the muscles in Set;; and Set;y (Tm

throw). The 2-synergy models extracted from each set were used to reconstruct the
recorded muscle activations.
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3.6.2 Representative kinematic and control strategy for overhead
throwing

After validating an appropriate muscle set and the methodology for synergy extrac-
tion, the next step consisted in identifying if a representative kinematic and control
strategy exists for overhead throwing. In other words, if similar strategies are em-
ployed across subjects in spite of differences in morphology and physical conditions.
To identify such a strategy the muscle Setg and the methods in Sections 3.3, 3.4,
and 3.5 will be used. The results corroborate this hypothesis and show the exis-
tence of a common control strategy across subjects, consisting of an agonist and an
antagonist synergy whose triggering intensity increases with the throwing distance,

similar to the strategy found for a single subject in Section 3.6.1.

3.6.2.1 Representative kinematic strategy

To identify if a representative kinematic strategy existed, first, a task feature vector
(frs) was extracted containing the mean hand velocity (v) and height at ball release

(h) for each subject s. Figure 3.13 shows all task feature vectors.
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Figure 3.13 — Task space features per subject and throwing distance. Mean hand
velocity v and height h at each throwing distance per subject. Statistically relevant incre-
ments are denoted by the symbol *.

A gradual increase in hand release velocity and height can be seen across sub-
jects as the throwing distance increases. The statistical relevance, or the assertion
that these increments are large enough and unlikely to have occurred solely by
chance, was then quantified via the Wilcoxon rank sum test. These increment were
statistically relevant in 9/10 subjects for the hand velocity, and in 7/10 subjects for
the hand height.

Next, k-means and hierarchical clustering were applied on the ensemble of fea-
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ture vectors (f75) in order to determine if one sole task space strategy existed. A
single strategy is expected if k& = 1, that is, if a group of well separated clusters
cannot be found. K-means was applied first while varying the number of clusters
k. Figure 3.14 shows each cluster’s silhouette as k increases. The average silhou-
ette value Sil remains below the 0.71 threshold (Table 3.1) until £ = 5. However,
although the threshold is surpassed, clusters containing 1-2 subject vectors begin to
be formed. Therefore, from the k-means analysis we can conclude that the subjects
do not employ significantly different task space strategies, and that only one task

space strategy exists with the chosen set of features.

Cluster number
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Silhouette value

Figure 3.14 — Task space cluster separation quality using k-means. Strongly sep-
arated clusters (Sil > 0.71) cannot be found. A single cluster or a common kinematic
strategy in the task space exists across subjects.

Hierarchical clustering was then applied in order to verify if there was indeed
only one strategy, and if there were any natural and significant divisions in the data.

Figure 3.15 features the resulting cluster tree or dendrogram.

4

3.5

25

Distance between clusters

8 10 1 9 2 6 3 5 4 7

Individual subject task space features

Figure 3.15 — Task space cluster separation using hierarchical clustering. Strongly
separated clusters are not found. The heights of the links at the top of the hierarchy do not
differ significantly from the heights of the links below them, indicating a shorter distance
between clusters than between the features they contain.
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3. Identification of kinematic features and synergies in overhead throwing

In this tree no significant divisions are found. This is shown by the fact that
heights of the links at the top of the hierarchy are not significantly different from
the heights of the links below them, indicating similar and even shorter distances
between clusters than between the features they contain. Furthermore, with this
procedure we can also see that as the number of clusters increases, groups containing

very few subject vectors begin to be formed.

Both clustering algorithms indicate that, given the analyzed set of features, there
exists one kinematic strategy in the task space (fr 4;) for all subjects. A strategy
which consists in increasing the hand release velocity and height as the throwing

distance increases (Figure 3.16).
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Figure 3.16 - Representative task space strategy for all subjects (fr 4;). By aver-
aging the task features across subjects, a representative hand velocity and height at release
was obtained for all subjects.

In average, as this distance increased 2-3 m, the hand velocity (v) increased by
1.3 m/s , and the hand-height /subject-height (h) by a factor of 0.05. The distance
or range, was also roughly proportional to the square of the release velocity, as can
be evidenced through the equations of projectile motion. Both of these observations
are consistent with other studies that indicate an increase in height and speed with
throwing distance, and the existence of a proportionality relationship between speed

and range | |-

3.6.2.2 Representative control strategy

The next step was to determine if a representative control strategy existed. First,
the synergy identification strategy described in section 3.4 was applied on each of
the subject’s EMG dataset (using the muscles in Setg) while varying the number
of synergies. The objective of this was to identify for each subject, a model (W,
Cs) with less synergies than muscles (V < 6) that would also guarantee a good
reconstruction of the original EMG signals. Figure 3.17 shows the quality of recon-

struction (r2) for each subject and synergy model. The sharpest change in slope of
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this curve occurred at N = 2 for 8 subjects, and at N = 3 for 2 subjects. Thus, as

in the individual subject analysis, 2-synergy models were chosen.
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Figure 3.17 — Activation reconstruction quality across synergy models per subject.
The NMF algorithm was applied on each subject’s EMG data set while varying the number
of synergies (N). The resulting curve depicts the r? values for each model. The sharpest
changes in slope are denoted by the red dots.

The accuracy of activation reconstruction varied among subjects, possibly due
to the different abilities to perform repeatable throwing motions at each distance.
However, in average, these models allowed a reconstruction quality of 0.7382. An
accuracy, which is again comparable to those found in studies on fast reaching
motions (r2 = 0.7 — 0.8) | |.

The consistent existence of a 2-synergy model across subjects, further motivated
the identification of a common control strategy. To do this, the synergy identifica-
tion procedure of | | (Section 3.5.2) was used. Therefore, a large EMG matrix
(Aan) was constructed with 6 signals (one per muscle). Each of these signals was
composed of 180 concatenated activations, corresponding to each of the subject’s
trials (10 subjects, 3 throwing distances, 6 trials per distance). Next, the NMF
algorithm was applied on this matrix, and the synergy model corresponding to the
sharpest change in the r? curve was selected. This change occurred again at N = 2
synergies, where the reconstruction quality was of 0.6526. This slight decrease in
reconstruction quality with respect to the individual extractions was expected since
this method attempts to reconstruct a higher number of trials simultaneously (180
trials instead of 18), which are performed by a variety of subjects. However, the
reconstruction quality is comparable to other studies extracting synergies from the
concatenated muscle signals of multiple trials and subjects, such as | |, where
the activation patterns of over 200 frog kicks were reconstructed with an r? of about
0.6.

The resulting representative synergy matrix Wy is depicted in Figure 3.18.
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3. Identification of kinematic features and synergies in overhead throwing

Each synergy contains the relative activation levels of a group of muscles throughout
the motions. As in the single subject analysis (Figure 3.7, Sets), the first synergy
(w1) can be seen as the agonist synergy, and the second synergy (w2) can be seen as
the antagonist synergy to the motion. Therefore, w; contains a high activation of
muscles corresponding to shoulder flexion and internal rotation (deltoid anterior),
elbow extension (t¢riceps longs), and wrist flexion (forearm flexor bundle). While
wo contains a high activation of muscles corresponding to elbow flexion (biceps),
wrist extension (forearm extensor bundle), and a very lower activation of the deltoid

muscles.
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Figure 3.18 — Representative control strategy (synergies) Wy, and Wipeans for
all subjects. A common control strategy was identified for the time-invariant part of
the synergies through two different methods: the method described in [ | and k-means
clustering.

An interesting difference between this model and the single subject model (Fig-
ure 3.7, Setg), is that the muscle actions on the wrist are also separated into agonist
and antagonist actions, with a high activation of the forearm flexor bundle in w;
and a high activation of the forearm extensor bundle in wy. This is due to fact that
the majority of subjects did not consistently co-activated these two muscle groups
with similar intensities, but allowed the extensor group to play a more important

role before the acceleration phase, and the flexor group in the acceleration phase.

A second method based on clustering was then applied in order to validate
the representative synergy W, against the individual synergy models (W5, Cj).
Therefore, a pool containing the synergy vectors w; of all subjects was constructed
without specifying if the synergies belonged to the same subject. Thus, the pool
contained 20 synergies (2 synergies per subject). First, k-means clustering was
applied on the pool while varying the number of clusters k. A single control strategy
is expected to exist when kK = N, or when the number of clusters is equal to the

number of synergies extracted per each subject, 2 in this case. Figure 3.19 shows
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that indeed, the best cluster separation is achieved at k = 2, where the average
silhouette value for both clusters is equal to 0.7181. If a higher number of clusters or
separations are made, the average silhouette values decrease and clusters containing

very few synergies are formed.
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Figure 3.19 — Synergy cluster separation quality using k-means. Strongly separated
clusters (Sil > 0.71) are found at k = 2. Therefore, a common control strategy exists across
subjects.

To further verify if the natural divisions of the data corresponded to 2 groups
of distinctive synergies, hierarchical clustering was applied. This resulted in the
cluster tree (dendrogram) in Figure 3.20. The tree shows how the 20 synergies in

the pool are partitioned into 2 clusters as well.
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Figure 3.20 — Synergy clusters using hierarchical clustering. Two strongly separated
clusters are found. The height of the link dividing the data into two branches differs
significantly from the heights of the links below it, indicating a larger distance between
clusters than between the features they contain.

This is evidenced by the fact that the link separating the synergy data into two
branches is inconsistent with the links below it. In other words, its height is signifi-
cantly different from that of the links below it, indicating a larger distance between

clusters than between the synergies they contain. Interestingly, the individual syn-
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ergies within each cluster in the tree matched those in the clusters computed via
k-means. Thus, the clustering algorithms also support the existence of a 2-synergy
model across subjects. Therefore, a mean activation strategy (Wimeans) was ex-

tracted from the centroids of the 2-cluster model obtained via k-means (Figure
3.18).

Finally, the synergy matrices computed via both methods (W4, and Wimeans)
were compared by computing their normalized dot products. This resulted in a
normalized dot product of 0.9248 for w; and 0.9524 for wg, indicating a high simi-
larity between the synergy matrices. These results partly evidence the existence of
common control strategy for different subjects and throwing distances. However, in
order to conclude on this, it is also necessary to analyze the time-varying part of

the synergies (combination coefficients).

The first method | |, also resulted in a set of time-varying coefficients (C 4;;)
which encoded when and with how much intensity the representative synergy (Way)
was triggered per subject and trial. These coefficients were averaged per subject at

each throwing distance and are featured in Figures 3.21 and 3.22.
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Figure 3.21 — Average combination coefficient c;(t) € Cy; per subject at each
throwing distance.

Repeatable trends can be seen among and across subjects. In general, as in
the single subject analysis (Figure 3.8), the first coefficient c¢;(¢) is characterized
by a bell shaped profile, while the second one ca(t) is characterized by a more
irregular profile, with a lower amplitude that decreases as the throw is performed.
The repeatability of these coefficients across subjects at each throwing distance is
also demonstrated by high cross-correlation coefficients at lags (delay/signal length)
between 0.0320 and 0.2232, as featured in Table 3.7.

The previous results outline the existence of a common strategy for triggering
each synergy across subjects and throwing distances. Therefore, a common strat-

egy C 4y was computed by performing averages across subjects at each throwing
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Figure 3.22 — Average combination coefficient c3(t) € Cga; per subject at each
throwing distance.

Table 3.7 — ¢;(t) inter-subject comparison at each throwing distance.

Mean cross-correlation and lags (delay/signal length)
ci(t) || corram CorTam, COTT7m lagom, lagam lagrm
c1(t) || 0.9129 0.9390 0.9264 0 0 0

+0.0534 | £0.0320 | +£0.0382 | £0.1787 | £0.1999 | £0.2163
co(t) || 0.8761 | 0.8615 | 0.8702 | O 0 0
+0.0727 | £0.0769 | £0.0650 | £0.1524 | £0.2232 | £0.1797

distance. The representative coefficients per distance are depicted in Figure 3.23.
These coefficients not only preserve the main trends in each of the subjects’ averages
but also the similarities in terms of shape across throwing distances, as evidenced
in Table 3.8.
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Figure 3.23 — Representative control strategy (combination coefficients) C 4; for
all subjects. A common control strategy was identified for the time-variant part of the
synergies through the method described in | |, and by averaging the coefficients across
subjects.
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Table 3.8 — ¢;(t) inter-subject and inter-distance comparison.

Mean cross-correlation and lags (delay/signal length)
C; (t) COTT2m, 4m,Tm lameAm,?m

c1(t) 0.9895 £ 0.0035 0 £+ 0.0091

ca(t) 0.9833 £ 0.0089 0+0

After analyzing the shape of the coefficients, the second characteristic that was
studied was their timing. To facilitate this, the coefficient c¢;(¢) (agonist synergy)
and ca(t) (antagonist synergy) from Figures 3.21 and 3.22 were plotted in one the
same figure (Figure 3.24). This figure shows in which order the coefficients were

triggered for each subject and throwing distance.

As in the single subject analysis (Figure 3.8), a “triad” burst sequence (from
antagonist to agonist, and from agonist to antagonist) is observed. Also, the most
significant co-activation among the synergies occurs as the agonist synergy c;(t) is
triggered before ball release. These observations are consistent with the antagonist
activity in the upper extremity while throwing | | and performing ballistic
movements | |. The same behavior is seen in the common control strategy

in Figure 3.23.
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Figure 3.24 — ¢;(t) triggering order and co-activation per subject and throwing
distance. A repeatable triggering tendency is seen across subjects and throwing distances:
First co(t) is triggered, followed by ¢;(t), and the co(t) again. This sequence is consistent
with the expected triggering in ballistic motions.
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The last characteristic that was analyzed was the changes in energy of the co-
efficients across throwing distances. Figure 3.25 shows the average energy at each
throwing distance per subject as described in Equation 3.8. Similarly to the single
subject analysis, the changes in energy of the coefficients are linked to changes in
the kinematic features (Figure 3.13). As the throwing distance increases the energy
of the coefficients and the magnitude of the task space features increases. For ¢ (t)
(agonist synergy), this increment is always gradually incrementing, and it is statis-
tically relevant for 6/10 subjects. These results are consistent with other studies

showing an increase in actuation signal amplitude as the throwing range increases

[ |-
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Figure 3.25 — ¢;(t) energy per subject and throwing distance. The energy in ¢;(¢) (ag-
onist synergy) gradually increases with throwing distance. Statistically relevant increments
are denoted by the symbol *.

Finally, the representative synergy matrix Wy, and the subject-trial specific
matrix C 4y were used to reconstruct the original EMG signals. An overall re-
construction quality of 72 = 0.6526 was obtained for the 180 concatenated muscle
activations. Figure 3.26 and Figure 3.27 show examples of the activation reconstruc-
tion of a 7m trial for different subjects. In the first case, the triggering order and
shape of the reconstructed activations follow closely the recorded ones. In the sec-
ond example, the original activations contain many small oscillations, which are not
well reconstructed. Considering the number of trials that are being reconstructed

simultaneously, such differences in reconstruction accuracy were expected.

Furthermore, as of the r? criterion most of the information lost corresponds to

noise-dependent variability, and the most important trends in the activation signals
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Figure 3.26 — Example 1: Activation reconstruction using Wy4; and Cj4;. The
triggering order and shape of the activations are well reconstructed by the synergies.
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Figure 3.27 — Example 2: Activation reconstruction using Wy4; and Cj4;. The

original activations contain many small oscillations, which are not well reconstructed by the
synergies.

are preserved in the majority of muscles and trials. Thus, the previously presented
synergies encode important temporal and spatial information regarding the muscle

activations, for a variety of subjects and throwing distances.

3.7 Conclusion

In this analysis overhead throwing motions were performed to different throwing
distances by untrained subjects with different physical conditions. The fact that
such motions could be decomposed into a few spatial and temporal components,
promotes the idea that synergies could be the redundancy reduction mechanism
employed by the CNS.

Low-dimensional strategies were identified for a single and multiple subjects.
In both cases 2 synergies explained more than 60% of the EMG-variability during
throwing. In other words, given the chosen DoF and muscle set, only 2 control vari-

ables were necessary to encode important temporal and spatial muscle activation
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trends during a variety of throwing motions. This reduced the number of control
variables from 6 muscle activations to 2 synergies, a third of the original control rep-
resentation. Each of these synergies was composed of a spatial (task-independent)
and a temporal (task-dependent) component, which are featured in Figures 3.18
and 3.23. The spatial component or synergy (w;) encoded the relative activation
of muscles throughout all the analyzed throws, while the temporal component or
combination coefficient (¢;(t)) encoded when and with what intensity each synergy

was triggered at each throwing distance

Such synergies contained groups of muscles with predominantly opposing ac-
tions, suggesting that muscles are controlled jointly according to their function.
For instance, the function of initiating motion and moving the different segments
of the arm forward corresponded to an agonist synergy wi, while the function of
decelerating the limb corresponded to an antagonist synergy wo. Furthermore,
these synergies were triggered in a manner which is consistent with the antagonistic
activity observed in the upper extremity while throwing and performing ballistic
motions | , |: a first activation is needed to accelerate the limb
forward and a second decelerate it. It was also observed that the synergies were
linked to changes in the kinematic features and throwing distance. As the throwing
distance increased, so did the magnitudes of the release speed, height, and the am-
plitudes of the coefficients. This is an indication that to adapt to changes within
the same task, the CNS might modulate the same low-dimensional control repre-

sentation, as suggested in other studies on upper | | and lower-body motions

[ : |-

From this analysis two important observations can be extracted for the motion
generation application in the next chapter. The first is that synergies can provide
a means to encode motions in significantly less control variables than actuators,
and secondly, that they are modulated by kinematic features and task goals. Thus,
by mimicking this control mechanism, a synergy-based control solution could be
designed to generate motions with muscle-based characters, while reducing redun-
dancy. However, it remains to be shown if synergies extracted from a complex
human morphology can be used as a initial control representation for virtual char-
acters whose morphology may differ to different levels with regard to that of a real
human. Furthermore, the synergies presented in this chapter were shown to be able
to reconstruct muscle activations, but their effect at a kinematic level has not been

validated yet, as is the case with most synergy studies.

The next chapter will answer both of these questions by using synergies as input
control functions in forward dynamics simulations, and evidencing that synergies
can be used to control a character with a simple muscle topology while reconstruct-

ing the kinematics of an overhead throwing motion.
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CHAPTER 4

Muscle synergies as control
functions for virtual characters

USCLE synergies are low-dimensional control representations that are
modulated according to task gols, and are present in a variety of hu-
man motions, including overhead throws (as shown in Chapter 3). The

objective of this chapter is to evidence if such representations are good candidate
solutions to simplify the control of muscle-based virtual characters by significantly

reducing actuation redundancy, while successfully performing a task.

As seen in Chapter 2 (Equation 2.1), some of the usual command signals (u(t))
to control muscle-based characters are muscle activations. However, for a character
with D-muscles, this representation results in a high dimensional space containing
D control signals, one for each muscle. The size of this space can be reduced
by redefining the control input through a muscle synergy model (Section 2.2.1).
Specifically, by defining (u(t)) as the task-dependent part of the synergies.

This chapter focuses on redefining this control input through N-synchronous
time-invariant synergies (Equation 2.10). Specifically, by defining u(t) as the task-
dependent part of the synergies, the coefficients ¢;(t):

By replacing this new control input in Equation 2.10, D-muscle activation pat-

terns can be expressed in terms of N-control variables, where N < D:
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N
a(t)=> wui(t) (4.2)
=1

A synergy-driven forward dynamics simulation can be finally constructed, by

replacing Equation 4.2 in in Equation 2.7 (Section 2.1.1.3), as shown in Figure 4.1.
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Figure 4.1 — A general synergy-driven forward dynamics pipeline using syn-
chronous time-invariant synergies. A pipeline for reproducing or synthesizing new
motions with a muscle-based character. The pipeline is composed of two parts: 1) an offline
adaptation to determine the character’s muscle parameters, 2) an online control loop to
adapt the task-dependent part of the synergy (c;(t)) to reproduce or synthesize motions.

The pipeline is divided into two parts: an offline and online part. The offline
part consists of an adaptation to scale the character’s muscle parameters P to fit the
experimental data (skeletal parameters should have been previously determined).
This procedure is necessary in order to make the muscle models reflect the capacities
of real muscles. On the other hand, the online part consists of a muscle-based
controller that adapts the task-dependent part of the synergy (u(t)), containing
the coefficients ¢;(t), according to a set of kinematic goals (y?(t)) and the current
state of the character (x(t)). If the objective is motion reproduction, the controller
adapts the synergies according to the same motion goals as in the experimental
data, and to the distinct dynamics of the character with respect to the real subject.
For motion synthesis, the same approach is followed except that the adaptation is
made according to a new set of motion goals. Once this adaptation is made, a new
control input (W, (t)) is obtained. This input and the original synergies (w;) are
then given to the synergy mapping module, which converts the synergies into muscle
activations (a(t)) through the time-invariant synergy model. Finally, the activations

are used to drive the character in the forward dynamics module, resulting in skeletal
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motion. Such a scheme could be used, for instance, to synthesize new throwing
motions from recorded ones by modulating the combination coeflicients according

to the desired angle, speed, and height of the ball at release.

It is worth noting that the muscle-based controller could be constructed using
a variety of solutions, such as the control methods presented in Chapter 2. The
adaptation of the ¢;(t) coeflicients could be made through a control law, as in Section
2.1.2.3, or directly through a trajectory optimization (static or dynamic), as shown
in Section 2.1.2.4. In the next sections, the previous synergy-driven pipeline will
be implemented using a trajectory optimization method for reproducing overhead
throwing motions with a muscle-based character. The results show that motion can
be reproduced while preserving important characteristics in the original synergies

or control signals.

4.1 A synergy-driven forward dynamics pipeline for

overhead throwing

The previous section presented time-invariant synergies as potential low-dimensional
representations for controlling virtual characters. This section shows an implemen-
tation of the general pipeline in Figure 4.1 for reproducing throwing motions with a
muscle-based character | , |. For simplicity, the pipeline was first
used for controlling a subset of DoF (B) of the throwing arm which were actuated
by muscles. The rest of the character was driven with recorded kinematics. Figure

4.2 shows this implementation.

The inputs to the pipeline are: 1) a set of time-invariant synergies (w;, ¢;(t)) and
desired joint trajectories (y¢(t) = [qd(t) ql(t) ... ¢&(t)]) extracted from the throwing
experiments in Chapter 3, and 2) the external force of gravity (f.(¢)). The desired
joint trajectories are kinematic features describing the motion in the joint space,
unlike the kinematic features in the previous chapter which describe motion in the
task space. They were selected as kinematic goals for the pipeline, due to the fact
that they allow the specification of motion goals for each DoF in the character,

which facilitates the control task.

The offline muscle parameter adaptation consists of an optimization to determine
the muscle parameters that fit with the desired joint trajectories and the initial
synergies. Furthermore, the online control loop counsists of a trajectory optimization
and a filter, which adjusts the combination coefficients (c;(t)) according to the
desired joint trajectories, and the current joint positions of the character (x(t) =

[a1(t) a(t) - an(®)]).

The following sections detail the main components in this pipeline. First, the

75



LOW-DIMENSIONAL CONTROL REPRESENTATIONS FOR MUSCLE-BASED
CHARACTERS: APPLICATION TO OVERHEAD THROWING

External
Synergies [Wx W.V} Forward dynamics force data
Synergy f«(”)
o(t) Mapping a(t) ‘
Initial ) = . x(T) -
synergy B P Muscles Skeleton
coefficients en(t) — it s P [ql(f) @(t) .. qu(ﬁ)}
Initial muscle Muscle X
parameters parameter
Kinematic imizati
goals yiO)= [41‘(” qg(l) . qg(l)] optimization
Offline muscle parameter adaptation

Optimized
muscle parameters

Forward dynamics

fult) [ x(t) =
Muscles Skeleton
LJ [0®) a®) - w0)

Online control loop

) tnew

Synergy
Mapping

ci(t) Optimization
& filtering

Figure 4.2 — A synergy-driven forward dynamics pipeline for overhead throwing.
An implementation of the pipeline in Figure 4.1 for reproducing overhead throws.

character used in the forward dynamics simulation is introduced (Section 4.2). Next,
the muscle parameter adaptation, and the optimization and filtering of the coeffi-
cients are detailed (Sections 4.3 and 4.4). Finally, the resulting synergy-driven
motions and the limitations of the pipeline are presented in Sections 4.5 and 4.6.
The results show that the framework is able to reproduce throwing motions with
a simple muscle-based character, while reducing redundancy and preserving impor-

tant temporal and spatial characteristics in the original synergies or control signals.

4.2 Character modeling

The character used in the previous pipeline was developed in MATLAB® SimMe-
chanics. It consists of a full body skeletal model with a musculoskeletal arm (Figure
4.3). The skeletal model consists of 21 rigid bodies linked by 17 joints, and exhibits
32 degrees of freedom (Appendix C). Furthermore, to make a first proof of con-
cept, only key DoF of the right arm with important contributions during throwing

(Section 3.2.4) were actuated by muscles.

The arm exhibits 3 DoF at the shoulder, 2 at the elbow and 2 at the wrist.
The muscle-actuated DoF are the shoulder, elbow, and wrist flexion (positive joint
positions) and extension (negative joint positions). The remaining DoF of the arm
and body are kinematically driven. For simplicity, pairs of antagonistic muscle
models were used in order to reflect the action of real muscles on the segments
| |. Figure 4.3 features a view of the musculoskeletal arm from the sagittal
plane. The first antagonistic pair (m; and msz) produces flexion/extension at the
shoulder. The contraction of muscle m; generates shoulder flexion, while the con-
traction of muscle mo generates shoulder extension. The second pair (mg and my)

produces elbow flexion/extension. And finally the third pair (ms and mg) produces
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wrist flexion/extension. The muscles is each pair can be described geometrically,
through their routing and changes in length, and functionally, through their force
generation capabilities. Figure 4.4 features the geometry of a single musculotendon

unit j, and an example of a changes in length during an elbow extension.

Figure 4.3 — Full body skeletal model and musculoskeletal arm model [CRPLD15,
CRPD16] (bone graphics issued from [Any]).

Figure 4.4 — Musculotendon geometric model [CRPLD15, CRPD16] (bone graphics
issued from [Any]).

Each musculotendon unit is composed of a muscle and an infinitely rigid tendon
of constant length. The muscle routing is pulley-like. In other words each unit

is wrapped around a circumference of constant radius r;;, centered at the axis of
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rotation of its corresponding degree of freedom ¢;. The changes in length of these
units are given with respect to a joint rest position ¢rp and a musculotendon rest
length 4 ; (which is simply the sum of the muscle rest length [,,, ; and constant
tendon length I; ;). The total length of the musculotendon unit can be expressed

as:

Imt,j = bmtrj — Ti0(q — qrp) (4.3)

or as the sum of the muscle length /,, ; and the constant tendon length I ;

(infinitely rigid tendon):

lntj = lmj + 1t (4.4)

Finally, by solving Equation 4.4 for l,, ; and replacing l,,; ; from Equation 4.3,
the changes in muscle length [,, ; and shortening velocity im,j can be described as

follows:

lnj = lntrg — (a6 — qre) — lt,j (4.5)

Iij = —7i b (4.6)

Each musculotendon unit can apply a force f,,, ; on a specific DoF, generating
a torque that moves the skeletal system. Therefore, the total torque of a set Dy of

muscles on the degree of freedom k, can be expressed as:

Ly = fmaj, fojilmjrlmj) - Tip, € Dy (4.7)

Where f,, ; is generated via the Hill muscle model (Equation 2.3), and is a
function of the muscle’s activation signal a;, maximum isometric force f, ;, length

lm,j, and shortening velocity l.m,j-

4.3 Muscle parameter adaptation (Offline)

The estimation of the character’s muscle parameters is important since they affect
the mapping from synergies to motion. Thus, the simplified muscular topology
should reflect as much as possible the real muscular topology to better evaluate
the effect of the synergies. Therefore, an optimization was designed in order to
determine a set of parameters that enhanced this mapping. These parameters were:
the maximal forces f, ;, moment arms 7, rest lengths [,,,,. j, and joint rest positions

qry- The following optimization was repeated for each muscle-actuated degree of
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freedom ¢, with the purpose of finding the parameters P, of the muscles acting

directly on it:

Nsamples
e . d 2
minimize qp(tn) — qp (2
jmie 3 (@lte) ~ di(t) )

Pb: [fO,j?lm’l‘,j7Tj,b7qrb]7 jEDba PbGP

f07j > 0

rip > 0or rj, <0 (action dependent)
lm'r,'

0.8 < b < 12

—180° < gry < 180°

subject to =

Where, Nsamples is the total number of samples, t,, is the current time sample,
Dy is a set containing the muscles acting on joint ¢, and P is the set containing
the parameters for all joints. The constraints on f,; ensure that the muscle are
only pulling (positive muscle forces). The constraints on r;; are action dependent.
In other words the moment arms are positive or negative depending on the sign
of their expected actions on the joints. Average initial values for f,; and r;; were
based on the biomechanical study in | |, and each muscle was assigned values
based on real muscles with similar actions. For instance m; and mgy were assigned
the parameters of the deltoid anterior and posterior, ms and my4 were assigned the
parameters of the biceps and triceps long, and finally ms and mg were assigned the

parameters of the flexor carpi radialis and extensor carpi ulnaris.

The parameters gry, and [,,, ; are specific to the muscle routing used in this study.
The joint rest angle corresponds to the position where passive torque is equal to
zero, and [, ; to the length at that angle. Thus, a rough initial guess was made on
these parameters as follows. The initial ,,,, ; were equal to the optimal fiber lengths
lojin | | (the length at which muscles have greatest ability to produce force)
and they were constrained with regard to these values. While the initial qr, were
chosen by testing different angles, within a wide range of motion (—180° to 180°),

and selecting those which improved motion reconstruction after optimization.

In each optimization, only the DoF of interest was populated with muscles,
while the rest of the skeleton was driven kinematically. At each iteration, the entire
throw was simulated by driving the arm with the extracted synergies. Then, the
global error in joint position was computed, and new muscle parameters were pro-
posed until the error was minimized. The algorithm to solve this and the following
problems was MATLAB fmincon’s default optimization algorithm: interior-point
[ |. An algorithm for non-linear constrained optimization that consists in

transforming the original problem and its inequality constraints, into a sequence of
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equality constrained problems which are solved using newton and gradient conjugate

steps.

4.4 ¢;(t) optimization and filtering (Online)

After determining the muscle parameters, the next stage was the optimization of
the coefficients ¢;(¢). In this stage, the original synergies are adapted to distinct
dynamics of the character with respect to the real human (due to different muscle
routing, muscle parameters etc.), in order to achieve the desired kinematic goals

(qg(t)). Thus, the synergy coefficients were adapted at each time step as follows:

B
minimize > las(tn) — gl (t))]
Ci(ln—1 -
b=t (4.9)
subject to 0 < ¢;(tp—1) < 1,

Ci(tn_l) S C, i=1..N

Where B is the total number of muscle actuated DoF in the model (3 in this

case), and N is the number of synergies.

Essentially, by adapting the coefficients, the optimization changes when and
how much each synergy is triggered. However, these changes are made without
taking into consideration the activation dynamics, or the delay between the neural
stimulation and the actual activation of each muscle, as described in Equation 2.5
(Section 2.1.1). This results in apparently noisy signals that are more comparable to
neural excitations than to a real muscle activations. Thus, to circumvent this issue,
a second order numerical filter representing the activation dynamics was applied to

the optimized signals.

Assuming that the activation and deactivation constant times in Equation 2.5
are equal, and that the relation between the coefficient ¢;(t) and the activations is

straightforward, such a filter can be written in the Laplace domain as:

Cinew (P) _ 1 (4.10)

Ci (p) (1 + Tactp) (1 + Tnep)

Where ¢;(p) represents the optimized coefficients before filtering and ¢;, ., (p)
represents the coefficients after filtering. The time delays, 74+ and 7., were set to

50 ms and 1 ms respectively.

A discrete version of this filter can be obtained through the z-transform as

follows:

Cinew(2) _ 012400
ci(z) EQZQ + R12 + Ko

(4.11)
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With
o = Tne(lfe_Te/Tne)7Tact(176—T€/7act)
Tne —Tact
— _ —Te/™e _¢—Te/Tact
op=e Te/Tnee Te/Tact __ € Tact:zﬂ_nE
R = 1
K1 = _(e—Te/Tne + e_TE/Tact)

Ko = e_Te/Tne e_Te/Ta(:t

Next, by multiplying Equation 4.11 by z=2 to be only dependent of negative
powers of z, and using the delay theorem, the following recursive equation is ob-

tained:

Cinew(MTe) = —kic,,.,((n —1)T,) — koci,,.,, ((n — 2)T¢) (4.12)
+oici((n — 1)Te) 4+ opci((n — 2)Te)

Where T, is the sampling time, 0.01s in this case, as the time sampling used for
kinematic data acquisition during the experiments in Chapter 3. Finally, the sam-
pling resulted in a static gain equal to A = %, therefore by diving Equation
4.13 by this gain, normalized combination coefficients are obtained :

Cinew (nTe)

Cinew (nTe) = A

(4.13)

4.5 Results

The pipeline described in Section 4.1 was tested using different synergy models as
control functions. This was done in order to: 1) show the impact of using different
muscle sets for synergy extraction, and 2) demonstrate that redundancy can be
reduced to different levels while accurately reconstructing a desired motion. The
results show that the choice of muscle set impacts the number of adaptations on
¢i(t), and that redundancy can be reduced to different levels while conserving a

similar motion reconstruction accuracy.

Choosing an appropriate synergy model involves considering three important
criteria: 1) The model should contain significantly less synergies (N) than muscles
on the character (D), 2) the synergies should be extracted from muscles with match-
ing actions to the character’s muscles, and 3) the synergies should be extracted from
clean EMG signals. The two synergy models used for testing the pipeline respect
these criteria at different levels, and they were extracted from different muscle sets,
as featured in Table 4.1. The first model (Figure 4.5) consists of a 5-synergy model,
extracted from a set of 10 muscles, and trials containing ECG-artifacts in the pec-

toralis muscle signals. The second model (Figure 4.6) was previously presented

81



LOW-DIMENSIONAL CONTROL REPRESENTATIONS FOR MUSCLE-BASED
CHARACTERS: APPLICATION TO OVERHEAD THROWING

Table 4.1 — Synergy models used as input control functions for the pipeline in
Figure 4.2.

Synergy models
Synergy model | Muscle set used for extraction
5-synergy model Set1g: Posterior deltoid, anterior deltoid, middle deltoid,
pectoralis major (clavicular head), pectoralis major (ster-
nocostal head) biceps, triceps (long head), triceps (lateral
head), forearm extensor bundle, forearm flexor bundle.

2-synergy model Setg: Posterior deltoid, anterior deltoid, biceps, triceps (long
head), forearm extensor bundle, forearm flexor bundle.
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Figure 4.5 — 5-synergy model | ]. A synergy model composed of 5-synergies,

extracted from a set of 10 muscles.
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Figure 4.6 — 2-synergy model | ]- A synergy model composed of 2 synergies,

extracted from a set of 6 muscles.

and analyzed in Chapter 3 (Figure 3.7 (Setg)). It consists of a 2-synergy model,

extracted from a set of 6 muscles, and clean EMG signals.

As shown in Figure 4.5 and 4.6, both models were extracted from a set of throws,

and therefore, the coefficients (¢;(t)) encode the temporal evolution of the synergies
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for all throws. However, in the next sections only the part of these coefficients
corresponding to the same 2m throw will be used. This segment of the coefficients
(ci(t)) was linearly combined with the synergy vectors (w;) to generate the muscle
activations to drive the character model. Specifically, the muscles m; and mo were
driven with the resulting muscle activation of the deltoid anterior and posterior, ms
and my4 were driven with the activation of the biceps and triceps long, and finally ms

and mg were driven with the activation of the forearm flexor and extensor bundle.

4.5.1 5-synergy driven motion

To begin, the 5-synergy model in Figure 4.5 was used as an initial control repre-
sentation for the pipeline. That is, the synergies w; and ¢;(¢) of this model were
linearly combined to generate an activation signal for each muscle in the model. The
following results feature the resulting joint trajectories as the different stages in the
pipeline are executed. After each stage, motion reproduction accuracy increases.
This is reflected by joint trajectories that follow closely the desired ones and by

computing the coefficient of determination between them.

First, the synergies were used to drive the model without adapting the muscle
parameters or the combination coefficients. Figure 4.7 shows the resulting angular

trajectories versus the trajectories obtained from the motion capture data.
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Figure 4.7 — 5-synergy model: Synergy-driven motion without muscle parameter
adaptation | I

The resulting motion diverges from the desired joint trajectories. Without
adapting the muscle parameters this behavior was expected since the mapping
made from synergies to motion was especially hindered by the rough choice of rest-
ing angles (gry) and lengths (. ;), which determine the equilibrium position of
the joint. Furthermore, the synergies also encode unnecessary information, such

as ECG-artifacts and additional muscle actions that are not actuated or controlled
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by muscles in the pipeline. For instance, the synergies contain the actions of the
pectoralis muscles, which include shoulder adduction and internal rotation. These

actions were not actuated with muscles, but kinematically driven.

To improve these results, the offline parameter adaption stage (Section 4.3) was
executed. This resulted in the motion featured in Figure 4.8. As seen in this figure,
the resulting joint trajectories follow more closely the recorded ones, with coefficient
of determinations of r?houlder = 0.8971, r?lbow = 0.8904 and negative for the wrist.
This improvement, evidences that the original synergies are able to capture and
roughly reproduce general trends in the joint positions on a character with a simple

muscle structure.
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Figure 4.8 — 5-synergy model: Synergy-driven motion with adapted muscle pa-
rameters | ]-

For instance, shoulder flexion gradually increases and then decreases towards
the end of the motion, and elbow extension is made halfway through the motion
(during the acceleration phase) as the highest wrist extended position is reached.
Nevertheless, small variations still remain, and a huge off-hook is visible for the
wrist trajectory. This behavior can be a consequence of the fact that all muscle

parameters were not optimized in one sole procedure.

To enhance these results further, the online adaptation of the coefficients (¢;(t))
(Section 4.4) was performed, which resulted in the motion in Figure 4.9. By modu-
lating when and how much each synergy (w;) was triggered according to the charac-
ter model and the desired motion, the resulting motion follows even more closely the
desired joint positions. Thus, the coefficient of determination for all DoF increases,
especially for the wrist (r%, 5., = 0.9268, r%, = 0.9420, and r2 ., = 0.8136).
These results validate synergies as a relevant control strategy to reduce redundancy
while accurately reconstructing a motion. Only 5 synergies were used as control

functions for the 6 muscles in the character. These control functions allowed an
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Figure 4.9 — 5-synergy model: Synergy-driven motion after muscle parameter
adaptation and ¢;(t) optimization and filtering | I-

accurate reconstruction of the desired joint trajectories. However, in spite of these
results, attaining the desired kinematics resulted in high modifications on the com-
bination coefficients. As shown in Figure 4.10, the original or initial coefficients

(ci(t)) are significantly different than the optimized and filtered ones (c;,,.,, (t)).
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Figure 4.10 — 5-synergy model: Initial coefficients (¢;(t)) and coeflicients after
optimization and filtering (¢; . (¢)) | I-

The next section shows that by using a synergy model that adheres better to
the criteria presented in the beginning of Section 4.5, redundancy can be further

reduced while better preserving the original combination coefficients.
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4.5.2 2-synergy driven motion

The 2-synergy model in Figure 4.6 was then used as an initial control represen-
tation for the pipeline in Figure 4.2. As in the previous section, a simulation was
done to demonstrate the effect of each stage in the pipeline on the reconstructed mo-
tion. Thus, three simulations were done: 1) synergy driven motion without adapted
muscles parameters and synergies, 2) synergy driven motion with adapted muscle
parameters, and 3) synergy driven motion with adapted muscle parameters and
synergies. The results show that the quality of motion reconstruction at each stage
of the pipeline is maintained with significantly less synergies, and that important

characteristics in original or initial combination coefficients are preserved.

Similarly to Section 4.5.1, without adapting the muscle parameters or combi-
nation coefficients the motion does not follow the general trends of the desired
trajectories (Figure 4.11). Again, this behavior was expected due to the rough
choice of muscle parameters, and the fact that although less muscles were used in
the extraction, the set still encodes supplementary actions, such as the deltoid’s

internal/external rotation.
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Figure 4.11 — 2-synergy model: Synergy-driven motion without muscle parameter
adaptation | ]-

The previous results were subsequently enhanced by applying the offline muscle
parameter adaptation followed by the online adaptation of the coefficients ¢;(t). As
shown in Figures 4.12 and 4.13, as each adaptation is applied, the resulting joint

trajectories follow more closely the desired ones.

However, unlike the 5-synergy model, after these adaptations the resulting co-
efficients were better preserved. As shown in Figure 4.14, although the antagonist
synergy (ca,., (t)) was significantly modified, the triggering times and intensity of

the agonist synergy (c,,.,,(t)) were better preserved.
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Figure 4.12 — 2-synergy model: Synergy-driven motion with adapted muscle pa-
rameters [CRPD16].

= Recorded
Gshoulder (t) e Syniergy-driven
100 T T
il ﬁ
0 —— . .
0 0.5 1 1.5
Gelbow (t)
200 T T T
wv
14} ——
I 100 \&;
o0
)
=] 0 L T 1
0 05 1 15
Gurist (t)
U T
_—
50 V/ E
L i I
0 0.5 " 1 1.5
Time (s)

Figure 4.13 — 2-synergy model: Synergy-driven motion after muscle parameter
adaptation and ¢;(t) optimization and filtering [CRPLD15].
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Figure 4.14 — 2-synergy model: Initial coefficients (c¢;(t)) and coeflicients after
optimization and filtering (¢; . () [CRPDI16].
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In the next section, the 5 and 2-synergy models will be compared in terms of
their ability to reconstruct the desired kinematics and how well they are preserved

after the synergy adaptation procedure.

4.5.3 5-synergy versus 2-synergy driven motion

The previous results showed that the pipeline allows to reproduce an overhead
throwing motion with different synergy models. This section focuses on comparing
these models in terms of how well they reconstructed the motion, and how they are
preserved after adapting the synergies. The results show that the 2-synergy model,
which adheres better to criteria for choosing synergy models in Section 4.5, is a

more feasible control representation.

Both models resulted in similar motion reconstruction qualities, as shown by
the coefficients of determination of the resulting synergy-driven motions. Table 4.2
shows that, except for a slight decrease in the wrist motion quality, the coefficients
were maintained in spite of changing the number of synergies. The fact that similar
motions can be obtained with a 2-synergy model, evidences that this model encodes

essential muscle activation information.

Table 4.2 — Quality of motion reconstruction.

Coefficient of determination (r?)
Stage Synergy model | Shoulder | Elbow | Wrist
Muscle param. adaptation 2-synergies 0.8939 0.8843 | 0.2732
5-synergies 0.8971 0.8904 | negative
¢i(t) optimization & filtering || 2-synergies 0.8859 0.9489 | 0.6746
9-synergies 0.9268 0.9420 | 0.8136

The preservation of the combination coefficients after the synergy adaptation
can be quantified by computing the cross-correlation between their initial and final
shapes, and plotting these values against the time delays (Figure 4.15). In the
case of the 5-synergy model, all coefficient comparisons are characterized by high
and low correlation peaks, sometimes at considerable lags. This indicates that the
initial and final coefficients in this model are very different from each other. On
the other hand, in the 2-synergy model, the agonist synergy (c;i(t)) comparison is
characterized by a bell-shaped curve with a maximum correlation at almost zero
lag, indicating a similarity between the initial and final coefficients. Nevertheless,
in spite of the fact that the 2-synergy model adheres better to the criteria presented
in the beginning of Section 4.5, clear differences remain between the initial and final
coefficients. The causes of these differences stem from a set of limitations that will

be discussed in Section 4.6.
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Figure 4.15 — Cross-correlation between the initial coefficients ¢;(t), and the opti-
mized and filtered coefficients c; () for both synergy models | B

The previous comparisons evidenced that the 2-synergy model, which adheres
better to the criteria presented in Section 4.5, is a more feasible control represen-
tation. It allows to reconstruct the throwing motion with an average r? of 0.8365,
using less synergies and less coefficient adaptations than the 5-synergy model. Fur-
thermore, with this model, only 2 synergies were used to control 6 muscles and 3
DoF of the character’s throwing arm. This validates the extracted synergies as a
control representation and a means to store meaningful muscle information. More-
over, it also shows their feasibility for reducing redundancy in forward dynamics,

while achieving a set of kinematic goals.

4.6 Limitations

The previous results demonstrated that the synergy-driven pipeline can be used
to reproduce a throwing motion, while significantly reducing actuation redundancy
and partially preserving the original synergies. However, there are two limitations
regarding the optimizations which should be addressed to improve the quality of

the final results and reduce computation times.

The first limitation is the implementation of the muscle parameter adaptation.
This adaptation consisted in finding a set of parameters that minimized a nonlinear
objective function through a local gradient-based search method. Thus, the adap-
tation was very sensitive to the initial conditions and multiple starting points had
to be tested. A global search method, such as scatter search using a local solver
| |, could be used instead to guarantee the discovery of the best set of muscle

parameters in a shorter period of time.

The second limitation lies in the formulation and implementation of the ¢;(t)
optimization. A static optimization was used, consisting of optimizing the coetfi-
cients at each time step. This resulted in high computations times which should be

reduced. For the 5-synergy model, 12 hours were needed, while for the 2-synergy
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model 8h were needed on an HP Intel(R) Core(TM) i7-3740QM CPU 2.70GHz
| |. To overcome this, other nonlinear programming methods such as se-
quential quadratic programming (SQP) could be used. Ultimately, this problem
could also be addressed by parameterizing the synergy coefficients through a more
efficient representation (e.g., polynomial, B-splines representation) which would al-
low the adaptation of a few control points instead of an entire trajectory, for instance
through a dynamic optimization. Such an adaptation is also expected to enhance

the preservation the shapes of the initial coeflicients.

Finally, the pipeline should be extended to more characters and throwing mo-
tions to evidence its usability. To do this, generic synergy models could be extracted
and optimized with respect to task space goals (instead of joint trajectories) and

energy-based criterions. Such open issues are further discussed in Section 5.2.

The last two limitations are due to the character modeling and not the pipeline.
Firstly, the muscle models used did not have the ability to vary their capacity to
exert torque against the joint positions, as real muscles do. Their simple mus-
cle routing, which consisted in constant moment arms to each DoF, distorted the
motion and provoked unnecessary adaptations on ¢;(¢). This limitation could be
assessed by using a more realistic muscle routing with position-varying moment
arms. Secondly, the activation dynamics (Equation 2.5) was not included in the
muscle model, but considered a posteriori after the synergy adaptation. This re-
lationship between excitations and activations has a natural filtering effect, which
would lead to smoother motions. Considering this relationship a priori would also
lead to a time-dependent optimization which could be solved through an optimal

control problem.

4.7 Conclusion

Muscle synergies were used to track a throwing motion, while simplifying the control
of a muscle-based virtual character by significantly reducing redundancy. This was
achieved through the proposal, formulation, and testing of a synergy-driven forward
dynamics pipeline based on time-invariant synergies extracted from experimental
data. This pipeline consisted of two main components: an offline adaptation to
determine the character’s muscle parameters, and an online control loop to adapt
the task-dependent part of the synergies (c;(¢) coefficients) according to a set of
kinematic goals, and to the distinct dynamics of the character with respect to the
real subject. This synergy-driven solution was then tested for the reproduction of a
throwing motion using a character with a simple musculoskeletal arm. The results
showed that: 1) Only 2 synergies (an agonist and an antagonist) are necessary to

control 3-DoF and 6 muscles of a virtual arm, 2) the original synergies are able
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to reproduce important kinematic trends after muscle parameter adaptation, in
spite of the simplicity of the arm model, 3) by adapting the synergy coefficients
motion reproduction is enhanced, and 4) important characteristics in the agonist
synergy shape, such as triggering times and intensity are preserved after the synergy

adaptation.

These results evidence the potential of synergies as a low-dimensional control
representation in forward dynamics, and the relevance of the extracted synergy
models. A reduced set of control signals, which are less than the number of ac-
tuators, and in this case, also less than the number of DoF, where used to track
a throwing motion with an overactuated model. Moreover, the synergies encode
essential information that can be used to control a character with a simple mor-
phology, as demonstrated by the reproduction of important kinematic trends using
the original synergies, and the partial preservation of the coefficients c;(t) after the
synergy adaptation procedure. The pipeline has limitations linked to the optimiza-
tions (Section 4.6) that need to be addressed to enhance its usability, accuracy,
and extend it to motion synthesis applications. Future developments would also be
needed to generalize it to other morphologies and motions (as discussed in Section
5.2). Nevertheless, this first implementation has evidenced the potential of synergies
as a solution to reduce the redundancy of overactuated characters in phyiscs-based

simulations.
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CHAPTER 5

Conclusions and perspectives

5.1 Summary and contributions

HIS thesis addressed one of the main challenges of controlling muscle-based
characters in physics-based simulations: actuation redundancy. A chal-
lenge that has not been efficiently addressed by most state of the art solu-

tions (Section 2.1), which continue to compute a large number of actuation signals
for each muscle in the character. Humans are by far the best example of how ac-
tuation redundancy is managed fast and efficiently (Section 2.2). Humans possess
a motor control system that is able to plan complex motions intuitively in spite
of having to coordinate numerous muscles at the same time. Inspired by this, a
popular motor control theory, called the theory of muscle synergies, was hypothe-
sized as a potential solution to solve actuation redundancy in muscle-based virtual
characters. This theory assumes the existence of a reduced number of elementary
control variables, called synergies, that are modulated in a task-dependent fashion

to generate a larger number of muscle activations.

Based on this idea, a control solution for muscle-based characters was proposed
consisting of identifying and adapting low-dimensional control representations (or
synergies) according to a set of kinematic goals. Such a solution was built in two
stages: a motion analysis and a motion generation stage. The motion analysis stage
(Chapter 3) consisted in extracting kinematic features and time-invariant synergies
from overhead throwing motions. The results evidenced that for the analyzed sub-
jects, only 2 synergies or control variables were necessary to encode the important
activation trends of sets containing 6-14 muscles. These synergies consisted of an ag-
onist and an antagonist synergy, each composed of a spatial (task-independent) and
a temporal (task-dependent) component. The temporal aspect of these synergies
was modulated according to the throwing distance. As throwing distance increased,

so did the kinematic features’ magnitude and the triggering intensity of the tem-
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poral aspect of the synergies. These low-dimensional control representations were
then used as input control functions to a synergy-driven forward dynamics pipeline
(Chapter 4). The aim of this pipeline was to scale the character’s muscle parameters
and adapt the initial synergies according to a set of kinematic goals and the distinct
dynamics of the character with respect to the real subject. The results show that
motion can be reproduced by modulating the temporal components of the synergies,
while preserving important characteristics in their shapes. Using only 2 synergies, 6
muscles were controlled to reproduce the motion of 3 DoF of the character’s throw-
ing arm. Furthermore, the results also revealed that the original or initial synergies
(before adaption) were able to reproduce important kinematic trends, in spite of

the simplicity of the arm model.

Thus, the initial hypothesis was confirmed by evidencing the potential of syner-
gies as a solution to solve actuation redundancy in muscle-based virtual characters.
Solving this challenge and simplifying control tasks, is essential to ease the adoption
of muscle-based characters and exploit the benefits of using muscles as actuators
(Section 2.1). This concerns a variety of domains performing physical simulations
with muscle-based characters, which range from rehabilitation to animation. More-
over, the use of muscle synergies within a motion generation context challenges and
contributes to the validation of the muscle synergy theory as the modular mecha-

nism behind human motion generation.

5.2 Open issues and perspectives

This thesis showed that a synergy-based solution is feasible for simplifying the con-
trol of a muscle-based character during overhead throwing. However some open
questions remain, such as: Can this solution be used to synthesize new throwing
motions?, and would a synergy-based solution be feasible for controlling other mor-

phologies and motions?

To answer to the first question, a formal mathematical formulation would have
to be defined for the observed relationship between the synergies and the task space
features during throwing (Chapter 3). That is, the increase in the energy of the
synergies, and the increase in release speed and height magnitude with throwing
distance. For instance, the synergies’ temporal components could be parametrized
as polynomials whose coefficients would be expressed in terms of the release speed
and height, and if necessary, also in terms of hand positions and velocities at key
instants during each throwing motion phase. The synergy adaptation would then
consist, for example, in a dynamic optimization to modulate these coefficients such
that the desired kinematic goals are achieved in a given time. Such an optimization

could consist in minimizing: a neuromuscular objective encoding muscle effort or
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fatigue (Table A.2), and a task objective encoding the desired release speed and

height, or the velocity and position of the hand at specific points in time.

To make a first assessment of the ability of a synergy-based solution to control
different morphologies, the generic synergy model presented in Chapter 3 could be
used to drive different characters, scaled to the different subjects that participated
in the experiments. Afterwards, an evaluation could take place comparing desired
versus real joint trajectories, release heights, and speeds, to assess how well this
generic model is able to reproduce or synthesize motions with different characters.
At the same time, it would also be interesting to quantify the modifications in
the initial synergies before and after the adaptation, to determine their robustness

across characters.

Ultimately, it remains to be shown if a synergy-based solution can be used to
synthesize a rich variety of motions. This idea is encouraged by the multiple studies
in neuroscience that have also described a variety of motions through a few set of
synergies and well defined kinematic goals and features. It would be interesting to
test these results in forward dynamics simulations and at the same time validate
synergies as a feasible solution for generating motions with virtual characters. To
do this, a database could be constructed containing time-invariant synergies and
their relationship with kinematic goals and features. To start, other arm motions
such as reaching, writing on a board, and other arm gestures could be analyzed.
Eventually, motions involving whole body control, such as walking, could also be
analyzed. However, the adaptation of the synergies would involve a more complex
synergy adaptation than the one proposed in this work, for instance, to ensure

balance.

The term "synergy" literally means "working together". The fact that our mus-
cles work together when performing all sorts of motor tasks is well known. However,
how they are controlled is still an enigma that needs to be thoroughly deciphered.
Nevertheless, the assumption that this cooperation has a neural origin is interesting
because it would explain why humans are able to control highly redundant muscu-
loskeletal systems fast and efficiently. If the objective of performing physics-based
simulations with virtual characters is to mimic the way humans move, it is only
natural to do this by mimicking or replicating the control mechanisms that orig-
inate motion and manage a complex system of actuators. This thesis aimed at
accomplishing this by identifying synergies as control mechanisms in humans and
using them to construct simple, modular, and low-dimensional solutions to control

a muscle-based virtual character.
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APPENDIX A

Synopsis of muscle-based control
in animation

A.1 Muscle-based controllers

synopsis of the controller classification and key characteristics of each con-
trol approach are featured in Table A.1. The controllers were classified
according to control type, following the classification made in Chapter 2.1:
controller optimization (Section 2.1.2.3), or trajectory optimization (Section 2.1.2.4)
methods. An additional "hybrid method" category was added, since the approach

by [Si13] used both a controller optimization and a trajectory optimization.

The control methods are also classified by their control space, or the space in
which their output signal is generated. This category is an indicator of the degree of
detail with which the muscles are modeled. Motor space control methods generate
excitations or activations to control characters with detailed muscle representations.
Force space control methods generate forces to control characters with less detailed
muscle representations (such as spring muscle models). Hybrid space control meth-
ods generate both motor signals and servo signals (torques) for characters that are

actuated by muscles and servos.

The table also features the main tasks for which the controllers were employed.
These can be: locomotion (L), kicking (K), jumping (J), balancing (B), gestures
(G), posture adjustment (P), torso motion (T), neck motion (N), arm motion (A),

hand motion (H), target tracking (Tr), and character interaction (CI).

The models commanded by these controllers are described by their degrees of
freedom (DoF), number of muscles (Ms), and muscle groups (MGs). The muscle
actuators are classified by the force generation model employed as either spring

elements, Hill-type models, or other. The references from which the muscle models
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were extracted or based are specified in parenthesis.

The most important characteristic is the control strategy, which indicates the
muscle control method as seen in Section 2.1.2.3 and 2.1.2.4. Next, we find the
Main User Input. The objective of this characteristic is to denote what are the main
user input commands to the control frameworks. For instance, the required user
input can be a compact goal (such as a desired walking speed or direction), it can
also consist of more detailed motion data (recorded or specified by the animator), or
sometimes less intuitive variables such as controller parameters directly. Finally, the
cost function column contains the objective functions used, if the strategy involved
an optimization procedure. In the case that no cost function was used the field

reads NA (not applicable).
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Table A.1 — Main muscle-based controllers for animation

Control | Controller Actuation Main User .
Control Type Task Character Model Control Strategy Cost Function
Space Reference Type Input
Controller Force Human, Human
Optimization S [ ] B,G,P Human 47 DoF Springs Antagonistic control Joint positions NA
ace
Methods P Torso 94 Ms
. Pose tracking
Humanoids, . PD controllers Locomotion speed . .
Motor . 40 DoF Hill-type . Velocity tracking
S [ B,L Imaginary 57 M ( D Muscle reflexes Locomotion Stabilit
ace S abili
P creatures Constant excitations direction Y
Muscle effort
Hill-type Pose tracking
Hybrid 30 DoF (q D PD controllers Velocity tracking
[ ] B,L Humanoid 16 Ms (Lower-body) Muscle reflexes Locomotion speed | g piit
Space (legs) Servos Constant itati APy
egs onstant excitations
g (Upper-body) Muscle effort
[ | L Snakes, B Springs Function primitives Function primitive NA
Worms Muscle groups parameters
Trajectory . .
. . Force . . Function primitives .
Optimization [ ] CLL Fishes 91 Ms Springs Pre-defined habits | NA
Method Space Muscle groups
ethods
Ex. Pose tracking
[ | BL Alphabet Letter I Soori No function primitives Task positions Velocity tracking
rings
’ Letters 104 DoF pring No muscle groups Task velocities Momentum tracking
4 Ms Base contact tracking
Snakes, Snake . o . Velocity tracking
. . No function primitives | Locomotion speed . .
[ ] L, Tr Marine 126 DoF Springs . Distance to goal tracking
. No muscle groups Distance to goal
animals 40 Ms Muscle effort

Continued on next page
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Table A.1 - Continued from previous page

Control | Controller Actuation Main User .
Control Type Task Character Model Control Strategy Cost Function
Space Reference Type Input
. - . Velocity tracking
Motor . . No function primitives | Locomotion speed . .
[ ] L Dolphin 12 Ms Springs . Distance to goal tracking
Space No muscle groups Distance to goal
Muscle effort
. Stability
Hill-type . o .
86 Ms No function primitives . . Muscle fatigue
[ ] B,K,L Human ( ] Joint positions . o
(legs) [ D No muscle groups Motion feasibility
Joint limit accordance
Human . .. .
Other Function primitives Contraction values
[ ] H hand & - NA
{l ) Muscle groups at keyframes
Forearm
Offline:
Criterion based
. locomotion speed and
Locomotion speed tio of i0d of
19 DoF Other No function primitives | Ratio of period of ratio of period o
[ ] B,L Human foot-ground contact
60 Ms (l D No muscle groups foot-ground .
Energy efficiency
contact .
and motion smoothness
Online:
Muscle fatigue
Human . . L. Joint positions .
Hill-type No function primitives . . Pose tracking
[ ] H hand & 41 Ms Joint velocities
{l D No muscle groups L Muscle effort
forearm 16 DoF Muscle activations
Human Hill-type Function primitives Function primitive
[ ] T 5 MGs P P P NA
Torso {l D Muscle groups parameters

Continued on next page
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Table A.1 — Continued from previous page

Control | Controller Actuation Main User .
Control Type Task | Character Model Control Strategy Cost Function
Space Reference Type Input
Offtine:
Linearized fftine
Human . . o o Muscle effort
Hill-Type No function primitives Initial and final .
[ ] CIN neck & 72 Ms . Online:
{l | No muscle groups head positions o o .
head [ D Minimal joint displace-
ment
Hill-Type
Human No FV No functio imitives Velocity tracki
o FV- unction primitiv ity trackin
[ ] AH hand & . . P Task velocities Y &
54 Ms relationship No muscle groups Muscle effort
forearm
( )
Linearized . Lo . "
Human 147 DoF . No function primitives Joint positions
[ | AT Hill-type L. Muscle effort
upper body 814 Ms ( D No muscle groups target coactivation
Pose tracking
Velocity trackin
2539 Accel yt' t gk‘
i it cceleration trackin
DoF Hill-type No function primitives JO}nt pos1t}o.ns . 8
[ ] B,L Human Joint velocities Stability
62-120 ( ) No muscle groups Task positions
A Muscle effort
S
Energy efficiency
Pain avoidance
Hill-Type . .
[ , Human arm 3 DoF Function primitives . . .
AH ( ] Joint positions Pose tracking
] & hand 6 Ms Muscle groups

Continued on next page
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Table A.1 - Continued from previous page

Control | Controller Actuation Main User .
Control Type Task Character Model Control Strategy Cost Function
Space Reference Type Input
Piece-wise
linear . N . .
Human No function primitives . Velocity tracking
[ | H - muscle Task positions
hand No muscle groups Muscle effort
model
( )
Hill-type
( |
Hybrid Human [ | Function primitives . .
[ ] T 3 MGs [ D Audio track Pressure tracking
Space Torso Muscle groups
Servos
(Spine)
. Pose tracking
Hill-type . .
( | Velocity tracking
[ D Virtual force reduction
36 DoF . Lo Locomotion speed | Dynamical consistency
. (Lower- Function primitives . .
[ | | B,J,JK,Il Humanoid 28 Ms Jumping height Muscle effort
body) Muscle groups o . .
(legs) Kicking foot speed | Muscle force physiologi-
cal consistenc
Servos (Up- " 1 . ey .
Self-collision avoidance
perbody)

Joint limit accordance

Continued on next page
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Table A.1 — Continued from previous page

Control | Controller Actuation Main User .
Control Type Task | Character Model Control Strategy Cost Function
Space Reference Type Input
Locomotion tasks: Locomotion tasks:
. Controller Joint positions Locomotion tasks:
Hybrid o . . .
optimization: High level CPG Time-varying muscle
Method . . ,
. Linearized Neural networks parameters length tracking
(Using: Motor 163 DoF . i .
[ | L Human Hill-Type PD controllers Non-locomotion Non-locomotion tasks:
Controller and Space 823 Ms ) R
i {l D Non-locomotion tasks: tasks: Pose tracking
Trajectory . . . .
U Trajectory Trunk orientation | Motion naturalness
optimization)

optimization: No

function primitives

Motion capture
data

Self collision avoidance
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A.2 Cost functions

ABLE A.2 features a list of neuromuscular objective terms which correspond
to the categorization introduced in section 2.1.2.1, inspired by | ]
This categorization is based on a generalized performance criterion which
includes three components: task specific (tracking a giving trajectory, minimizing
jerk), neuromuscular (minimizing muscle stress, neural effort) and bone joint (min-
imizing contact forces, avoiding certain ranges of motion) objectives. Task specific
kinematics and bone joint objectives are already popular in animation. There-
fore, a focus is given to the neuromuscular objectives, the novelty of muscle-based
controllers. These neuromuscular objectives were divided into those that describe
muscle fatigue and those that describe muscle effort (following the distinction made
by | ). Thus, cost functions presenting muscle volume weighting and lower
exponents were classified as effort-like, while cost functions without muscle vol-
ume weighting and higher exponents were classified as fatigue-like. An additional
category was added for the functions that did not fit these two categories (Alterna-
tive muscle-based terms). The final classification and details of these functions are
featured in Table A.2.

Fatigue-like functions Muscle fatigue occurs when there is a failure to maintain
a required or expected force | |, and it is related to the amount of synergy
between the muscles. A high synergy implies that all muscles contribute during the
motion in a way that the maximum relative load of any muscle remains as small as
possible. In other words they work well together by helping each other and ensuring

that no muscle works more than the rest.

Effort-like functions Muscle effort is a substitute for muscle energy expenditure.
It is related to the volume of activated muscle tissue | |. These functions have

been more popular than fatigue-like functions, among animators.
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Table A.2 — Neuromuscular objectives used in animation

Type Controller Cost Function Formula Terms
Ju, Jr, Jr = Average rate of metabolic energy expenditure, sum of
torques squared, sum of squared soft joint limit torques
Effort-like [ ] Muscle-effort waJu + wWrJR + wir L A, M, S, W = Muscle activation, muscle maintenance, muscle shorten-

Ju=A+M+S+W

ing heat rates, positive mechanical work rate

w = Scalar weights

Muscle effort

Ju=A+M+S+W

Same terminology as above

2 = Control signal
[[ ]] Muscle effort % (wa |% ‘2 T+ wy % ) u ntrol sign.
[ ] Muscle effort % Ha||2 a = Muscle activation
W = Weights matri
[ | Muscle effort [w=r? ights matrix

fe = Muscle forces

Muscle effort

wa [lal|* + wala — a®||?

a = Muscle activation
a® = Activation previous timestep

wq,wq = Regularization and damping scalar weights

Muscle effort

32 (wiai)®

w; = Variable weight

(regularizes muscle activation levels)

Muscle effort

JM + Juppe'r
Ju = A+M+S+W
i 2 ..
Jupper' = Wm Z (fmotor) + qTWaq

Jupper = Upper-body effort, f% ... = Active motor torques

W, = Diagonal weight matrix, ¢ =Articular positions

Muscle effort llal? a = Muscle activation
Jur = Average rate of metabolic energy expenditure
Energy | Nlatl . . .
) -5 > (Um) D = Total moving distance before falling
efficiency 1

N fall = Number simulation time slots before falling

Fatigue-like

Muscle fatigue

¢ = ith-muscle , f; = Muscle force

fiee = Maximum muscle force, to, t; = Initial and final time

Continued on next page
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Table A.2 — Continued from previous page

Type Controller Cost Function Formula Terms
Ener
Alternative . &y .
efficiency and 1 S = Specific power
muscle-based [ ] . oD .
L motion Two D = Rate of change of muscular tensions
objectives
smoothness

Muscle force

Fép, Fép, Fpp = Serial-elastic, contractile, passive forces

hysiological ) (FZ — Fip — Fhp —mer [ ) ] :
| | o i : 2 (e “r e or mcr = Pointmass between contractile element and tendon
consistency ; .
le g = Length contractile element
Pain Nfall A
[ ] . ( é) (f)e = ith-muscle force
avoidance

DONIMOYH T, AVIHYIA( OL NOILLVDITddY SUHLOVUVH))

AISVI-HTOSN]A HOd SNOILLVLNHSHYdHAY TOYULNO{) TVNOISNHNIA-MO'T



APPENDIX B

Data acquisition details

URING the experiments whole body kinematics and the muscle activity of

16 muscles of the back and right arm were recorded. The electrodes were

placed according to the surface electrode placement protocols in | ,

|. Table B.1 lists and details the function of each of these muscles. The

reflective markers were placed according to the M2S laboratory protocol and are
featured in Table B.2 and Figure B.1.

Table B.1 — Recorded muscles and their function

Recorded muscles and their function

Mouscle name Function

1. Erector spinae longissimus | Assists in the motion of backward and sidewards
(Thoracic) bending, keeping the spine erect and pulling the
ribs downward to help with breathing.

2. Erector spinae iliocostalis Assisting extension and laterally flex of the ver-
tebral column, maintaining erect posture as well
as bending the vertebral column to the same

side.

3. Lastissimus dorsi Adducts, medially rotates and extends the arm

at the shoulder (glenohumeral) joint.

4. Upper trapezius Elevates and upwardly rotates the scalpula; ex-
tends the neck

5. Middle trapezius Adducts (retracts) scalpula.

6. Lower trapezius Depresses and helps upper trapezius upwardly

rotate the scalpula.

7. Posterior deltoid Laterally rotates and extends the arm at the

shoulder (glenohumeral) joint.
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8. Anterior deltoid

Flexes and medially rotates the arm at the

shoulder.

9. Middle deltoid

Abducts the arm at the shoulder.

10. Pectoralis major (Clavic-
ular head)

Flexes the arm at the shoulder (glenohumeral)

joint.

11.  Pectoralis major (Ster-

nocostal head)

Extends the arm at the shoulder (glenohumeral)
joint from a flexed position. (Note: as a
whole, both pectoralis adduct, medially rotate the
humerus, and drow the scalpula anteriorly and

inferiorly.)

12. Biceps

Flexes and supinates forearm at elbow (also

weakly flexes the arm at shoulder).

13. Triceps (long head)

Extends the forearm at the elbow (also extends

the arm at the shoulder (glenohumeral) joint ).

14. Triceps (lateral head)

Extends the forearm at the elbow.

15. Forearm extensor bundle

Extends the wrist. The bundle encompasses
the extensor digitorium, brachioradialis, exten-

sor carpi radialis, and pronator teres.

16. Forearm flexor bundle

Flexes the wrist. The bundle encompasses the
flexor digitorium, flexor carpi radialis and ul-

naris, and flexor pollicis longus.

Table B.2 — Recorded markers and their placement

Recorded markers and their placement

Marker name Body landmark

1. RFHD Frontal bone right side

2. LFHD Frontal bone left side

3. RBHD Occipital bone right side

4. LBHD Occipital bone left side

5. CLAV Jugular incision of the sternum (junction of the clavicles)
6. STRN Xiphoid process

7. C7 Spinous process of the 7Tth cervical vertebrae
8. T10 Spinous process of the 10th dorsal vertebrae
9. RSHO Right acromion

10. LSHO Left acromion

11. RBAC Asymmetrical marker over right scalpula

12. RUPA Asymmetrical marker over right arm
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13. LUPA Asymmetrical marker over left arm

14. RHUM Medial epicondyle of right humerus

15. LHUM Medial epicondyle of left humerus

16. RRAD Head or right radius

17. LRAD Head or left radius

18. RWRA Styloid process of right radius

19. LWRA Styloid process of left radius

20. RWRB Styloid process of right ulna

21. LWRB Styloid process of left ulna

22. RCAR Third metacarpal process of the right hand

23. LCAR Third metacarpal process of the left hand

24. RFWT Right anterior superior iliac spine

25. LFWT Left anterior superior iliac spine

26. RBWT (Right) posterior superior iliac spine

27. LBWT (Left) posterior superior iliac spine

28. RTHI Asymmetrical marker on right thigh

29. LTHI Asymmetrical marker on left thigh

30. RKNE Lateral condyle of right femur

31. LKNE Lateral condyle of left femur

32. RKNI Medial condyle of right tibia

33. LKNI Medial condyle of left tibia

34. RANE (Right) external malleolus

35. LANE (Left) external malleolus

36. RANI (Right) medial malleolus

37. LANI (Left) medial malleolus

38. RHEE (Right) posterior tuberosity of calcaneus

39. LHEE (Left) posterior tuberosity of calcaneus

40. RTOE (Right) head of big/innermost toe

41. LTOE (Left) head of big/innermost toe

42. RTAR Outer edge of right foot, tip of 5th metatarsal

43. LTAR Outer edge of left foot, tip of 5th metatarsal
Not featured in Figure

44. RTARI Inner edge of right foot, tip of 1st metatarsal

45. LTARI Inner edge of left foot, tip of 1st metatarsal

46. RFIN Right index finger

47. LFIN Left index finger

48. RFRI Right ring finger
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49. LFRI Left ring finger

RSHO

RUPA
RHUM LHUM
RRAD (
y RFWT Y {
° | LBWT
\
RWRA ,4} * RWRB 5 LWRB
- E kRCAR y. LCAR
\ \L / ) 7}
© LTHI ! \
' ‘ ‘ |
J
RKNE | o LKNE
RKNI ;
LKN ‘
|
' LANI! I\ A
RANE @@ RANI v LANE r &J
4 D 4
RTAR O " “@LTAR
“7é B LHEE RHEE
RTOE LTOE

Figure B.1 — Reflective marker placement. (A) Frontal view (B) Back view. (Green

markers: asymmetrical markers. Orange markers: necessary markers for the computation
of anthropometric data.)
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APPENDIX C

Character modeling details

HE full body skeletal model consists of 21 rigid bodies linked by 17 joints,
and exhibits 32 degrees of freedom. The method used to describe the
skeletal model is based on a systematic structural representation. Except

for the root (pelvis), each segment integrates a joint and its adjoined body. Thus,
the segment representation does not depend on the other segments connected to it.
This structural representation is described according to a hierarchical tree. From

the root, each solid owns one child and one sister.

A library containing several body part models issued from the literature, which
can correspond to a segment or a set of segments, was used to build the model
[ ]. The model used in the current study consists of well known and vali-
dated biomechanical models of the spine | |, the lower limbs | |
and the upper limbs | |. The complete skeletal model has been kinemati-
cally validated | |. Furthermore, the bone graphics were adapted from the

AnyBody Managed Repository | , ]

Standard Body Segment Inertial Parameters (BSIP) were estimated using an an-

thropometric scaling rule to adapt the model to the subject’s morphology | |-
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Abstract

The use of virtual characters in physics-based
simulations has applications that range from
biomechanics to animation. An essential component
behind such applications is the character’'s motion
controller, which transforms desired tasks into
synthesized motions. The way these controllers are
designed is being profoundly transformed through the
integration of knowledge from biomechanics, which
motivates the idea of using more detailed character
models, inspired by the human musculoskeletal system
(or muscle-based characters). Controlling these
characters implies solving an important challenge:
control redundancy, or the fact that numerous muscles
or actuators need to be coordinated simultaneously to
achieve the desired motion task.

The goal of this thesis is to address this challenge by
taking inspiration from how the human motor control
system manages this redundancy. A control solution for
virtual characters is proposed based on the theory of
muscle synergies, and applied on the control of throwing
motions. Muscle synergies are low-dimensional control
representations that allow muscles to be controlled in
groups, thus reducing significantly the number of control
variables.

Through this solution this thesis has the following
contributions: 1) A contribution to the validation of the
muscle synergy theory by using it to study a new
motion, and challenging it with the control of a virtual
character, and 2) a contribution to the variety of
domains involving physical simulation with muscle-
based characters (e.g, biomechanics, animation) by
proposing a control solution that reduces redundancy.

Keywords
Control, redundancy, muscle synergies, physics-based
simulation, virtual characters

Ecole normale supérieure de Rennes

Résumé

L'utilisation de personnages virtuels dans le cadre de
simulations basées sur les lois de la physique trouve
maintenant des applications allant de la biomécanique a
animation. L’un des éléments incontournables de cette
performance est le contrdleur de mouvement, capable de
transformer les actions souhaitées en mouvements
synthétisés. La conceptualisation de ces contrbleurs a
profondément évolué grace a I'apport des connaissances
en biomécanique qui a conduit a Il'utilisation de modéles
de personnages encore plus détaillés car s'inspirant de
l'appareil squelettique et surtout musculaire de [I'étre
humain (ou personnages a modéle musculaire). Contréler
les personnages virtuels implique un défi de taille :
contréler la redondance, ou le fait méme qu’'un nombre
important de muscles ou d’actionneurs aient besoin d’étre
contr6lés simultanément pour exécuter la tache de
motricité demandée.

L’'objectif de cette thése est d’y répondre en s’inspirant du
systeme de contr6le moteur humain permettant de gérer
cette redondance. Une solution de contr6le, pour les
personnages virtuels, est proposée d’apres la théorie des
synergies musculaires et appliquée a des mouvements
de contréle du lancer. Les synergies musculaires sont
des représentations de contréle a faible dimension et qui
permettent aux muscles d’étre contrdlés en groupe,
réduisant ainsi de maniére significative le nombre de
variables.

Grace a cette stratégie, cette thése permet les
contributions suivantes : en premier lieu, la validation de
la théorie des synergies musculaires, utilisée ici pour
étudier un nouveau mouvement et pour tenter de
contrbler un personnage virtuel. Et elle contribue
également a I'ensemble des domaines impliquant des
simulations corporelles, ayant recours aux personnages a
modéle  musculaire (comme par exemple, la
biomécanique ou l'animation) en leur proposant une
solution de contrble permettant de réduire la redondance.

Mots-clés

Redondance, synergies musculaires, simulations
basées sur les lois de la physique, personnages
virtuels
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