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Abstract

Several years ago the detection of micro-embolic signatures through Transcranial Doppler sig-
nal monitoring has become a great interest due to the increasing number of Cerebrovascular
Accidents they cause.

However, TCD clinical use has been limited by several hindering points such as the consid-
erably long time needed for probe positioning, the decreased confidence in automatic detection,
and the very short effective examination duration not sufficient to allow the detection of sev-
eral micro-embolisms. The Holter system is a new generation of TCD systems developed in a
way to overcome these drawbacks. Proposed solutions involve new enhancements such as the
automatic positioning of the ultrasonic probe and the possibility of long-term recordings with
the micro-emboli detection process being performed offline through a computer.

Moreover, although the algorithms implemented in Transcranial Doppler systems are well
adapted for embolus detection, these algorithms do not allow a robust detection of the weak
micro-embolus.

In this work, through offline detection, we have developed several signal processing tools
and methods able to accurately detect weak micro-embolic signals. These methods were tested
on real Doppler signals. Statistical measures, comprising the detection rate, the false alarm
rate, and the relative intensity increase, were principally employed to evaluate the performance
of the different detectors.

Keywords : Cerebrovascular Accidents; Micro-Embolus; Transcranial Doppler; Hol-
ter TCD; Signal Processing
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General Introduction

Motivation

More than twenty years ago, monitoring cerebrovascular pathologies has aroused as a great
interest in the medical society. In particular, monitoring of patients with embolic complica-
tions has become an ongoing permanent preoccupation in various hospital and clinical settings,
mainly because the presence of cerebral emboli is responsible for various cerebrovascular acci-
dents (strokes). Cerebral emboli could be one of many substances foreign to the bloodstream,
such as an inappropriately formed blood clot, an aggregation of red blood cells, gas bubble, etc.
which is able to block cerebral blood vessels or vessels supplying the brain with blood.

While the presence of large cerebral emboli leads to immediate stroke, the presence of
small migrating micro-emboli is a precursor of the coming large embolus with high stroke
effects. Therefore, detection of these small micro-emboli has gained a worldwide importance,
particularly due to the advances of transcranial Doppler ultrasound conducted during the last
20 years. Early micro-embolic detection is believed to reduce stroke risks and help increase
patient safety (Ringelstein et al., 1998).

Many research activities have been lead in perspective of finding methods of detecting
micro-emboli through the transcranial Doppler (TCD) signal. Although remarkable achieve-
ments have been made, several hindering points remain. First, the TCD systems of measure-
ment still pose various limitations including the considerably long time needed for probe pos-
itioning, the decreased confidence in automatic detection and the very short effective examin-
ation duration, not sufficient to allow the detection of several asymptomatic micro-embolisms.
Second, the algorithms implemented in the TCD systems, although are very well adapted for
the detection of large emboli, they do not allow the correct and robust detection of the small
weak micro-emboli.

This Ph.D. deals with the problems of detecting weak micro-emboli and presents different
offline signal processing algorithms for robustly detecting them from Doppler signals obtained
using a new TCD system which overcomes the limitations of traditional TCDs.

Organization of the Manuscript

This dissertation presents both theoretical and numerical investigations of embolus and micro-
embolus detection. It is divided into three major parts as follows:

• Part I: This part introduces basic conceptions concerning cerebrovascular accidents,
cerebral embolism and the micro-embolus detection process. A brief introduction is
provided including an overview of the background (chapter 1), and the instrument of de-
tection used as well as the different detection considerations (chapter 2). Chapter 2 also
introduces the standard methods of detection.

• Part II: This part contains the different proposed methods of embolus detection. In
chapter 3 we present a new detection method based on energy fluctuations. The main idea
is to remove the cardiac rhythm trend from the Doppler energy and obtain energy fluc-
tuations where the micro-embolus can be detected from the positive energy fluctuations.
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After proving that micro-embolic signatures occur only in the positive fluctuations, an
instantaneous time-varying threshold is constructed from the negative fluctuations. This
threshold, would next be applied on the positive energy fluctuations. Micro-embolic sig-
nals, in the positive fluctuations, would appear as signatures exceeding this threshold.
In chapter 4 detection based on sub-band decomposition is introduced. The whole Dop-
pler spectral band is decomposed into several bands. Through this decomposition, the
bandwidth in which detection is applied is reduced. This in turn allows reducing the
background red blood cells in the inspected bandwidth. Consequently, decomposing the
whole Doppler frequency band will amplify the contrast between the micro-embolic sig-
nature and the background signal in each decomposed channel. The detectability of the
micro-embolus signature in the background signal is increased. In chapter 5 detection
based on high order statistics is presented. Knowing that the occurrence of a microem-
bolus superimposed on the Doppler energy signal imposes changes in the distribution of
this signal, we propose to use the skewness and kurtosis as new tools for micro-embolus
detection. During embolus-free periods, the Doppler energy signals distribution is fixed
and its skewness and kurtosis are never altered. They do not show any variations. How-
ever, in the presence of a microembolus superimposed on the energy signal, the skewness
and kurtosis signals are altered and the embolus is attributed with a peak whose peaked-
ness level is higher than all the other points of the signal. Chapter 6 deals with the
different artefact rejection techniques. Artefacts are divided into unidirectional ones and
other bidirectional. Both types are canceled from the energy signal verifying that the
latter signal is artefact-free before application of detection techniques. Finally, chapter 7
provides a general summary of all techniques, as well as the conclusion and perspectives
in order to sum up the whole dissertation and open the space for further contributions and
works.

Main Contributions

• Chapter 3: The contribution of this chapter is proposing an innovative idea of apply-
ing the micro-embolus detection process on the energy signal fluctuations. The origin-
ality comes out when compared to standard techniques where detection is always per-
formed on the energy signal. Moreover, the negative energy fluctuations were proven to
be embolus-free and a time varying threshold was constructed from these fluctuations.
Therefore, the detection was based on time varying thresholds rather than traditionally
using constant thresholds.

• Chapter 4: In this chapter, the contribution is proposing an authentic approach based on
the joint use of several separate hypotheses that were considered alone up till now. Whole
band detection is replaced by sub-band detection either through decomposing the short
time Fourier transform spectrum into equally spaced frequency sub-bands or through
wavelet packet decomposition. Furthermore, this sub-band detection was coupled with
constant thresholds of detection and innovatively with the time-varying threshold con-
structed in chapter 3.

• Chapter 5: To our best knowledge, we have presented in this chapter the first signal
processing micro-embolus detection system based on high order statistics.
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• Chapter 6: In this chapter we have proposed signal processing algorithms for artefact
rejection. This alone is indeed a noticeable point since in many detection systems artefact
rejection is never taken into consideration. We have also dealt with both types of artefact,
bidirectional and unidirectional artefacts where the latter were in many previous studies
considered as non-existing.
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Chapter 1

The study of embolism

1.1 Introduction

In 1982, Rune Aaslid introduced the Transcranial Doppler ultrasound technique (Aaslid et al.,
1982). The technique has since found huge acceptance as an indispensable tool for the evalu-
ation of cerebral hemodynamics in a wide variety of clinical settings.

In 1987 and later in 1990, Padayachee et al. (1987) and Spencer et al. (1990) reported an in-
novative use of the Transcranial Doppler. In their work, Padayachee and Spencer described the
application of TCD for the detection of middle cerebral artery emboli during cardiopulmonary
bypass and carotid endarterectomy, respectively. Consequent investigations of this new ap-
proach proved the ability of TCD in accurately detecting emboli and threw the doors wide open
for numerous researches and studies on the embolus.

Early studies on the embolus were dedicated to monitor the embolus and estimate its inter-
actions with the Transcranial Doppler waves. As embolus monitoring proved to have a potential
role for the identification of patients with an increased stroke risk, the detection of embolus be-
came the major concern and it has superseded all other studies that were introduced to explore
the embolus’ physical nature, characterize them, estimate their size, etc.

The methodology for detection of embolus has made considerable progress over the past
twenty years. One of the earliest works were those of Hennerici (1994). Other significant
studies were those proposed in Moehring et al. (1995), Aydin and Markus (1999), Cullinane
et al. (2000), Girault et al. (2000), Fan et al. (2001a), Evans (2003), Aydin et al. (2004), Markus
et al. (2010), and Serbes et al. (2014).

In the sections to come, we will give a complete description of embolic strokes and the
embolus. We will also introduce the problematic and objectives of this dissertation.

1.2 CerebroVascular Accidents and the Embolus

A CerebroVascular Accident (CVA), also known by the medical term of stroke, occurs when
blood supply to the brain or part of it is reduced or interrupted in any manner. This deprives the
brain of oxygen and nutrients which leads to the damage or death of the brain cells deprived of
oxygen and nourishment. Death of these cells, and thus the brain, will in turn lead to dysfunc-
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tion of the brain tissues and then loss of body functions controlled by the brain or the affected
part of the brain.

Stroke is a medical emergency, which needs immediate medical attention and an untreated
stroke for long-enough, will cause permanent brain damage and death. Strokes are the second
cause of mortality and morbidity worldwide after Cancer [(Organization, 2000) up till (WHO,
2010) and (WHO, 2014)]. Some stroke facts include:

• Stroke are responsible for almost 130,000 deaths per year in the United States that’s one
out of every 20 deaths, 32,000 in France and 2199 in Lebanon, that’s 10 % of all deaths.

• Every year more than 795,000 people in the United States and more than 100,000 people
in France have a stroke.

Strokes are considered of two categories, either those caused by a breakage or bursting of
a blood vessel known as hemorrhagic strokes or those caused by blockage of a cerebral artery
known as ischemic strokes. In a hemorrhagic stroke (or cerebral hemorrhage) a torn or ruptured
artery in the brain will cause blood to spill out. This in turn will lead to part of the brain being
deprived of blood and oxygen. The cells of this brain part will die. Hemorrhagic strokes
represent 20 % of all strokes and often result from high blood pressure and over-treatment
with anticoagulants. Intracerebral and subarachnoid are the two types of hemorrhagic strokes.
Around 80 % of strokes are ischemic. Ischemic strokes are those occurring when the arteries
to the brain become narrowed or blocked, causing severe interruption in blood flow. Two types
of ischemic strokes can be distinguished:

• Thrombotic stroke. Thrombotic stroke occurs when a blood clot known as a thrombus
forms locally in one of the arteries that supply blood to the brain. Two types of thrombosis
can cause stroke; thrombi forming in large vessels including the internal carotid artery,
vertebral artery and Circle of Willis, and thrombi forming in small vessels including the
smaller arteries inside the brain such as the middle cerebral artery, the branches of the
Circle of Willis, etc.

• Embolic stroke. Embolic stroke occurs when one of the arteries supplying blood to the
brain is blocked by an embolus.

Embolic strokes constitute up to 14 % of all strokes (Murtagh and Smalling, 2006). Em-
bolic strokes are the result of cerebral embolism, an arterial embolism occurring in the brain.
Cerebral embolism is the blockage of major blood flow in a cerebral artery.

Other types of embolism include air, pulmonary, arterial and venous embolisms, and thrombo-
embolisms. In general, embolism is a blocking of a blood vessel by a material foreign to the
bloodstream constituents. These materials or particles are the emboli (Patterson Jr et al., 1972).
Emboli move away from the place where they are formed through the bloodstream to other parts
of the body. During their movement through the blood vessels, the emboli are likely to come to
a passage they cannot fit through. They lodge there, backing up and stopping the flow of blood
behind them. Emboli can travel in veins, which carry blood deprived of oxygen back to the
heart and lungs to get re-oxygenated, as well as arteries, which carry blood rich in oxygen from
the heart to the various tissue cells in the body. Emboli can block large or medium sized arteries
and veins as well as small sections or branches of arteries and veins. The embolus could be one
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1.2. CEREBROVASCULAR ACCIDENTS AND THE EMBOLUS

Figure 1.1: An illustration of an embolus in the carotid arteries blocking blood flow to a part of
the brain and thus causing damage to brain tissues (National Heart, Lung and Blood Institute).

of many substances foreign to the bloodstream and traveling within it, including aggregation
of red blood cells, blood clot formed inappropriately by platelets and fibrin in the blood, gas
bubble, fat globule or bone marrow globule, cholesterol crystals, atheromatous plaque or any
other strange body carried by blood flow. The most common cause of embolus formation is the
malfunctioning of the heart including conditions as atrial fibrillation, atrial flutter, mitral valve
disease and cardiac tumors. Blood abnormalities, developed before birth or acquired from cer-
tain diseases and medications, are also a frequent cause of embolus formation. Immobilization
is also an important factor in embolus formation. Insufficient mobility puts a strain on the cir-
culatory system and the circulation of blood, and long inactivity increases the risk for blood
clot formation. In addition, emboli are very frequently seen during and after surgical opera-
tions such as cardiac surgeries carotid artery dissection, and carotid endarterectomy. Gaseous
emboli are also formed in patients with mechanical artificial heart valves. Other less common
causes include Human Immunodeficiency Virus (HIV), trauma to the legs, severe aortic arch
atheromateous changes, obesity, pregnancy and some types of cancer.

Turning back to cerebral embolism, a large percentage of these embolisms happen due to
emboli traveling through the carotid arteries or even building up in them. The carotid artery
is the artery responsible for supplying the brain with oxygen-rich blood. Its pulse can be felt
on both sides of the neck directly under the jaw. Embolism in the carotid arteries hugely
limits blood passage to the brain arteries and can even totally block the carotid arteries thus
suppressing all blood flow. The presence of emboli in carotid arteries were verified many years
ago such as by Siebler et al. (1993), Markus et al. (1995) and van Zuilen et al. (1995). A
demonstration of an embolus passing through the carotid arteries thus limiting blood flow and
causing damage to a part of the brain cells is shown in Figure 1.1.
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1.3 Statement of the problem and objectives

CVA is a life-threatening condition. Taking into consideration that cerebral embolism presents
a serious risk leading to CVAs, the diagnosis of cerebral embolism becomes a must and a
worldwide health and safety concern.1

Practically, diagnosing embolism involves three main phases: detection and counting of
emboli, describing embolus composition and estimating embolus size. Ideally, researchers
in the embolus domain would like to be able to detect all emboli and to characterize their
size and composition (particularly solid or gaseous). While considerable progress has been
achieved in understanding the physical and clinical nature of emboli, even the superficially
simple task of detecting emboli still poses great challenges. Also, the detection and counting of
emboli remains the fundamental step after which all applications would take place. Logically,
characterization of emboli and estimating their size would never be possible without detecting
the embolus first.

Up till now, numerous research works and projects have been lead in perspective of detect-
ing emboli in the most accurate and robust manner. The detection has passed by several ups
and downs. Some methods proved to be suitable for embolus detection in certain conditions,
others were accepted to be suitable in various circumstances and others were accepted and then
proven to be inefficient or even wrong.

Indeed, while embolus detection has reached a highly acceptable level of performance and
a sufficient level of understanding among the scientific and medical societies a critical point
remains debatable! It concerns the detection of small weak micro-emboli which up till now has
not been completely sorted out.

In fact, micro-emboli cannot stop the blood flow in the main arteries of an organ but can
hinder micro-flow around these arteries which could later lead to the same complications caused
by large emboli. Indeed, physicians and clinicians worldwide are now firmly convinced that
the detection of small micro-emboli is a precursor of the coming large embolus with hazard-
ous stroke risks and that the migration of small micro-emboli heralds the arrival of the bigger
dangerous emboli.

Therefore, the detection of small micro-emboli would equip the medical and clinical team
with an important instrument for selecting patients who could undergo therapy. It would
provide better treatment plans, more effective targeting of therapy and patient management
and follow up. Thus as a result early detection of micro-emboli would allow avoiding the
occurrence of CVAs and reducing the risk on patients.

However the detection of small micro-emboli remains a very common hindering draw-
back in many research works based for embolus detection. Moehring and Klepper (1994)
introduced one of the earliest fundamental concepts concerning the Doppler ultrasound signals
backscaterred by emboli flowing in the blood and established several parameters for the de-
tection of emboli. Four years later, the consensus on micro-embolus detection by TCD took
place (Ringelstein et al., 1998), during which the technical background and physics of em-
bolus detection were clearly defined. In both of these studies the particular characteristics of
weak micro-emboli was not discussed. A considerable improvement in the detection of weak

1We should note that in the sections to follow, we will be using the term embolus alone rather than cerebral
embolus for simplicity while keeping in mind that the whole dissertation concerns cerebral embolism.

30



1.3. STATEMENT OF THE PROBLEM AND OBJECTIVES

micro-embolic signals was achieved by Markus et al. (1999) and Markus and Reid (1999). As
the micro-embolic event is of narrow band nature, Markus et al. (1999) and Markus and Reid
(1999) proposed to detect this event by using a band pass filter encompassing the spectral sig-
nature of the micro-embolic event. By using such a band pass filter on the energy or power, the
intensity of the micro-embolic event increased thus improving the detection capability of the
detector. However the price to pay was that the frequency of the micro-embolic signal had to
be known before the filtering step in an automated detection paradigm. This was rarely pos-
sible. Moreover, when applied online by Cullinane et al. (2000) and Cullinane et al. (2002),
respectively the latter frequency filtering methods showed poor performance in the detection
of low energy micro-embolic signals although great performances in terms of sensitivity and
specificity were obtained for high embolic signals. Another achievement in the detection of
micro-emboli was proposed by Girault et al. (2000). Methods based on detection of sudden
changes were introduced. Non-parametric detection methods mainly the Fourier, Wigner Ville
and wavelet approaches were compared to parametric auto-regressive methods. The new para-
metric methods were proven to be highly performant and efficient in the detection of small
micro-emboli. However, the methods were tested on synthetic simulated Doppler signals. The
offline detection presented by Fan et al. (2001b) had excellent detection results for emboli hav-
ing intensities higher than the background blood flow. However, the detection of weak embolic
signals below the background level was never taken into consideration. The same can be said
for the online detection proposed by Marvasti et al. (2004) where the detection rates for low
energy micro-embolic signals were arguably inadequate. A study based on the discrete wavelet
transform (DWT) was introduced by Aydin et al. (2004). In this study the authors analysed
some threshold-based parameters useful for describing and detecting micro-embolic signals.
The DWT increased detection system sensitivity and specificity specially for the detection of
small micro-emboli. Nonetheless, a major defiency of the DWT-based technique was the re-
duced frequency resolution at low frequency scales, in which micro-embolic signals are mostly
found. Chung et al. (2005) investigated the effect of the choice of the decibel threshold on the
detection of embolic and micro-embolic signals. A threshold providing reliable detection of
micro-emboli should be as low as 2 dB. Two robust micro-embolic detectors were established
in Girault et al. (2010) and Girault and Zhao (2014). In the first a new detector based on con-
ditional variance (GARCH model) was introduced. The detector outperformed conventional
energy detectors in detecting weak micro-emboli. However, this technique depended on only
one statistical tool which was the false alarm rate and did not take into account the detection
rates correlated with the achieved false alarm rates, and also it was tested on few micro-embolic
signals. In the second study Girault and Zhao (2014), an original synchronous detector, syn-
chronized with the cardiac cycle, was introduced. It uses the pseudo-cyclostationarity prop-
erties of the blood Doppler signal. Compared to standard energy detectors, the synchronous
detector improved the detection rate of weak micro-emboli. However, the difficulty related to
this technique was that it might sometimes fail for certain patients with high cardiac rhythm
variations. The study done by Gençer et al. (2013) applied embolic detection via Fractional
Fourier Transform. The results showed that discriminating features generated by Fractional
Fourier Transform help easier analysis and detection of embolic signals. Despite of its sim-
plicity, this method was not proven as reliable for the detection of the smallest micro-emboli.
Several experimental methods were put into application, such as in (Markus et al., 2010), (Sil-
bert et al., 2014) and (Piorkowski et al., 2015). They revealed interesting results but were
not coupled with processing techniques in order to prove the reliability of the micro-embolic
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detection systems applied.
On another hand, commercially used detection systems have been based on automatic short

time Fourier transform techniques employing constant thresholds of detection, which we will
discuss later in the next chapter. Such detectors’ performance in the detection of low intensity
micro-emboli is hugely unsatisfactory, although they perform well for relatively large emboli.
Truly, in many cases, the clinicians detect, in an audible or visual manner, the passage of
micro-emboli in the blood sample volume while the system detector remains mute and detects
nothing. The inability of these detectors to detect smallest micro-emboli have raised numerous
questions on using this kind of systems in clinical routine.

Therefore, the ultimate objective of this dissertation is the implementation of a new sig-
nal processing micro-embolus detection system that could detect the smallest possible micro-
emboli2 in a robust manner. The dissertation, alongside newly proposed methods, contains an
implementation of the standard detection methods that are present in most of the commercially-
used detection systems.

1.4 Conclusion

In this chapter, we have given a detailed description of CVAs and cerebral embolism. In this
context, we shed light on the importance of detecting cerebral emboli, specially small micro-
emboli, as a preventive step to reduce the risk of CVAs. We also provided the problematic of
our work as well as the objectives we aim to complete.

In the upcoming chapter, we will invade the technical background behind micro-embolus
detection.

2The minimum size below which an embolus would be considered as a small micro-emboli does not have a
worldwide employed definition. Based on information from the literature background (Moehring et al., 1995),
(Russell, 1995), (Evans, 2003), (Martin et al., 2009) and on calculations we have done and presented in appendix
A of this dissertation, a solid micro-emboli would have a diameter below 100 µm.
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Chapter 2

The Detection of Embolism

2.1 Introduction

Sudden intensity increases occurring in the Transcranial Doppler (TCD) signal are interpreted
as cerebral micro-embolic signals. Practically, these increases can be described as sudden
’chirps’, or ’moans’ (Ackerstaff et al., 1995). Strong evidence has been given that these in-
tensity increases are produced by small embolic particles passing through the blood sample
volume.

The Transcranial Doppler is now the most used system for detecting cerebral emboli. When
detecting embolic signatures, various technical factors must be considered in terms of adjusting
TCD settings and signal analysis. The basic principle of the TCD technique is that when an
embolus is radiated by an ultrasound it backscatters more power than the volume of the blood it
occupies. Therefore, careful monitoring of the Doppler signal power backscattered by the blood
constituents and occupants present in the sample volume provides a strong mean of detection.

Although the characteristics of embolic signals in the TCD signal have been well defined,
the task of detecting embolic and specifically weak micro-embolic signals still poses a chal-
lenge. Numerous worldwide used commercial TCD systems posses many restrictions for the
accurate detection of emoblic signals in different conditions. Therefore, new systems are being
introduced nowadays compensating for many disadvantages of standard TCDs. These systems
pave the way for complex detection methods to be proposed. A system that has been recently
developed and implemented in this dissertation work is the Holter system by Atys Medical,
France.

Another challenging issue before a complete accurate detection, is the differentiation of
true embolic signals from similar artefact signals appearing in the TCD signal and which may
negatively mislead the detection system. Therefore, artefact rejection is a decisive step in any
detection technique.

In the next sections, we will be discussing the TCD ultrasound system and we will intro-
duce the new TCD Holter system. Moreover, we discuss the TCD detection of embolic signals
and we introduce the relative intensity increase of micro-embolic signals, a main parameter in
micro-embolus detection. We also present the pre-settings used in the different implementa-
tions of this dissertation. This chapter also includes a detailed description of the implementation
of the standard detection methods.
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2.2 The Transcranial Doppler ultrasound system

First introduced in 1982 by Aaslid et al. (1982), the TCD is the leading system in the detec-
tion of embolic signals. The TCD measures the velocity of blood flow in the brain’s blood
vessels and also the relative changes in the flow. Transcranial Doppler diagnoses are based on
the detection of altered blood flow velocity, absence of blood flow, or changes in the spectral
waveform. The Doppler effect forms a basis in the TCD system. The TCD has been the most
commonly used system. It is non-invasive, non-ionizing, easy to use, inexpensive, portable and
safe technique, which renders it as a convenient equipment for detection of circulating emboli.

The TCD is a pulsed wave Doppler system, where a single transducer alternates wave trans-
mission and reception1. A train of ultrasound pulses of duration T and frequency f0 usually
between 2 and 4 MHz is emitted towards the sample volume which is operator-controlled. The
ultrasound pulses propagate through the tissues and blood for a time d0 until it is backscattered
by the the different moving particles and returns back to the transducer over the same time
interval d0 but with a time shift τ (due to the movement of the particles) at a shifted frequency
f0 + fd , where fd is the Doppler frequency given as:

fd = 2 f0
vcosθ

c
(2.1)

where c is the speed of sound, and v is the speed of the moving particle in the directions θ and
relative to the propagation of the ultrasound wave.

The total transit time to and from the sample volume is 2d0. This process is alternately
repeated through many transmit-receive cycles each second. The signal received at the trans-
ducer is demodulated. It is multiplied by the carrier frequency before being low-pass filtered
to eliminate the high frequency components and high-pass filtered to eliminate the effect of the
movement of the vessel walls.

2.3 The Holter TCD system

The TCD system used in this study is the Transcranial Holter manufactured by a French firm,
ATYS MEDICAL, in Soucieu en Jarrest, France. The Holter is shown in Figure 2.1.

1Specific TCD considerations:
Basically, the TCD technique consists of insonating the basal portions of the cerebral arteries through different
’windows’ found at different locations in the skull. Since the bones of the skull block the transmission of ultra-
sound, an important step is to localize a cranial ’window’ for the ultrasound beam to penetrate without getting
excessively dampened. There are three main windows for accessing the intracranial arteries:

• The Transcranial or Transtemporal window located between the angle of the eye and the pinna of the ear.
This window is the main route for insonating the middle, anterior and posterior cerebral arteries and the
terminal internal carotid artery.

• The Transorbital window allows insonating, through the eye, the ophthalmic artery and the siphon of the
internal carotid artery.

• Transforaminal or Sub-Occipital window found between the atlas and the base of the skull and allows the
insonation of the basilar artery and the intracranial segment of the vertebral arteries.
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The Holter version holds solutions to traditional TCD limitations. The proposed solutions
involve new enhancements such as the automatic positioning of the ultrasonic probe and the
possibility of long-term recordings with the micro-emboli detection process being performed
offline through a computer. In fact the various advantages include:

• Allows prolonged patient monitoring (higher than 5 hours) and thus offers more legitim-
acy for micro-embolus detection.

• Equipped with a robotized probe.

• The patient is no longer attached to a TCD and does not need to be laying on a bed,
but rather can be monitored under naturalistic conditions and can even move, talk, etc.
thanks to the lightweight and comfortable probe.

• The automatic probe helps find the best TCD signal and tracks it automatically during
the whole recording.

• An auto-search algorithm restores vessel insonation should the signal quality fall.

Figure 2.1: Holter Transcranial Doppler System (TCD-X, Atys Medical, Soucieu en Jarrest,
France)

It has been pointed out that the Holter generation allows offline embolus detection. The
offline detection refers to the fact that the detection is not performed directly on the patients.
Unlike online detection where the patients are monitored and the signals are directly saved
and analyzed, in offline detection procedure a large set of recordings (a database) is collected
from different patients and then the detection is performed on a separate machine. This offline
detection allows developing more complex systems of detection. However, this offline de-
tection is applicable under preferable circumstances that the micro-embolus is asymptomatic.
Indeed, two types of carotid artery stenosis patients can be discriminated; those with sympto-
matic emboli and those with asymptomatic emboli. In the case of symptomatic emboli, emboli
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detection provides the necessary information required to make a clinical decision. For symp-
tomatic patients with severe carotid artery embolism, the best treatment is operation. In the
case of asymptomatic patients or patients with lesser degrees of carotid artery embolism, the
asymptomatic emboli are markers of increased stroke risk. The asymptomatic micro-embolus
makes the offline detection possible while in turn the offline detection allows follow up of these
asymptomatic micro-emboli. Therefore, the possibility of long term recordings by the Hol-
ter is important since the prevalence of asymptomatic micro-emboli is relatively low and thus
detecting their signatures requires a sufficiently long examination duration.

2.4 Micro-embolus detection by TCD

Embolic signatures are detected in the TCD as High Intensity Transient Signals (HITS) su-
perimposed on the blood Doppler signal. They are characterized in the TCD by several as-
pects [(Ackerstaff et al., 1995), (Spencer, 1992), (Georgiadis et al., 1994), (Evans et al., 1997),
(Ringelstein et al., 1998)] as follows:

• Their amplitude exceeds the background blood signal by at least 3 dB although micro-
embolic signals could have amplitudes largely below 3 dB. This means that the amplitude
of micro-emboli is less than 3 dB.

• The embolic signal duration lasts less than 300 ms.

• They are unidirectional within the Doppler velocity spectrum.

• They occur randomly in the cardiac cycle.

• They produce a sound like a ’moan’ or ’chirp’ on the audio signal.

2.5 The micro-embolus intensity increase relative to the mov-
ing blood

A very important indicator in the detection and characterization of emboli stated in the previous
section, is the relative intensity increase of the embolus which defines the relationship between
the backscattered power from emboli and that from the blood. It indicates how strong an
embolic signal is, relative to the background Doppler signal. It is calculated as the ratio of the
energy backscattered from the embolus to that of the moving blood surrounding it.

The first definition of the embolus relative intensity increase was given by Moehring and
Klepper (1994) and Moehring et al. (1995) as the Embolus to Blood Ratio (EBR). Since then,
the EBR has been extensively used to assess embolus detectability. Later, during the meeting
of the international consensus group on microembolus Detection (Ringelstein et al., 1998),
the embolus relative intensity increase was set as a basic parameter affecting the detection of
micro-embolic signals.

The amount of blood in the Doppler sample volume, the velocity of the traveling embolus,
as well as its size and composition all affect its relative intensity increase. The embolus relative
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intensity increase (RII) can be measured in different ways. A very common way of measure-
ment is given by the following equation:

RII = 10log10

(
PE+B

PB

)
. (2.2)

PE+B is the backscattered power or energy measured when an embolus and the blood are present
in the Doppler sample volume. PB is the backscattered power or energy measured from blood
alone in the sample volume (embolus-free periods). The measured quantity is in decibels (dB).

It is important to realize that different settings can be used to measure the relative intens-
ity increase of an embolus. Mainly, these settings are related to the manner of defining and
estimating the background Doppler signal with which the embolus is compared. For instance,
the background signal can be measured by the mean value over variable time periods and fre-
quency ranges [(Droste and Ringelstein, 1998) and (Mess and Hennerici, 2001)]. It can be also
calculated as the intensity at the location similar to that of the detected embolus in the preced-
ing cardiac cycle or the mean intensity through a defined number of embolus-free frames. The
background could also be simply estimated as the mean of the power or energy of the part of
the signal without embolus [(Darbellay et al., 2004)].

For this reason, when calculating the embolus relative intensity increase, the definitions
of the embolus intensity and the background intensity estimation should be clearly stated and
the different specifications should be reported before the results are given. In our study, the
backscattered energy in the presence of an embolus is calculated as the peak energy of the em-
bolus detected in the Doppler signal [(Droste and Ringelstein, 1998) , (Ringelstein et al., 1998),
(Mess and Hennerici, 2001), and (Darbellay et al., 2004)]. As for the background signal intens-
ity measurement, we choose to estimate it using the trend of the Doppler signal. This trend,
representing the blood flow signal, is considered to be embolus-free. In order to estimate the
trend of the Doppler signal we calculated a smoothed version representing the low frequency
component of the Doppler signal related to the cardiac rhythm (of 1 Hz). This smooth curve
can be depicted in Figure 2.2.
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Figure 2.2: The background Doppler signal is estimated to be the trend represented by the
smoothed version (in red) of the Doppler signal (in blue).

2.6 The Reference Off-line standard detection signal processing
unit

The different implementations we will be proposing in this dissertation are based on 25 clinical
recordings. The recordings were carried out at the ’Centre Hospitalier Régional Universitaire’
(CHRU) de Lille (2 Avenue Oscar Lambret, 59000 Lille, France). Written informed consent
was obtained from all patients before their enrollment in the monitoring process. The written
consent forms were investigated and approved by the Hospital of Lille.

By means of a transducer, an ultrasonic wave with a frequency of 1.5 MHz is transmitted
to the middle cerebral artery of patients with asymptomatic carotid stenosis. A pulse repetition
frequency (PRF) of 6.4 kHz is used with an ultrasound power of 50 mW/cm−2.

During post-treatment, the TCD recordings were converted into audio-wave files (quanti-
fication over 16 bits and sampling frequency of 4 kHz). These recordings are then analyzed
and treated with our algorithms which are developed using the numerical calculation software
Matlab (Mathworks, Natick, MA, USA).

From a signal processing detection point of view, the most common commercial automatic
micro-embolic detection systems are based on the energy calculated from the classical short
time Fourier transform. Constant thresholds, fixed empirically by the user, are widely used.
We will introduce this standard detection. Alongside, we will also propose a statistical constant
threshold.

The typical standard off-line signal processing unit is decomposed into 4 units as shown in
Figure 2.3:

• Unit A, allocated for loading the wave file, 5 second signal segmentation, Short Time
Fourier Transform (STFT) calculation and instantaneous energy calculation from the
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STFT;

• Unit B, allocated for establishing the audible and visual Gold standard of detection;

• Unit C, allocated for artefact rejection;

• Unit D, allocated for standard energy detection using constant thresholds of detection;

2.6.1 Unit A: Doppler signal extraction, STFT and instantaneous energy
calculation

The different systems that we want to test, depicted in Figure 2.3, share a common structure.
From the SD card plugged out from the Holter system and plugged into the personal computer,
the Doppler signal is picked up and put in memory. From this Doppler digital signal, the
STFT is calculated, first to display the spectrogram and second to estimate instantaneously
the Doppler energy. Calculations of the STFT and the instantaneous energy are carried out
repetitively on 5 second segments extracted from the Doppler signal. This value is fixed to 5
seconds because it corresponds to the time duration on the spectrogram plotted on commercial
devices. It allows a good visualization of different events that may occur.

The most familiar of methods employed by commercial TCD ultrasound systems are based
on the STFT. The STFT is an adapted form of the Fourier transform that analyzes only a small
segment of the signal at a time; a technique called windowing of the signal or also Windowed
Fourier Transform (WFT). Transforming data into the frequency domain results in loss of time
information. By applying the Fourier transform of a signal, it is impossible to identify when a
particular event takes place. For stationary signals this drawback is not important. However,
Doppler signals contain numerous non-stationary characteristics specially when an embolic
signature characterized by an abrupt change is present. Fourier analysis is not suited to detect
these characteristics. The STFT was thus proposed to correct this deficiency. The STFT maps
a signal into a two-dimensional function of time and frequency. This representation is known
as the spectrogram. A spectrogram is shown in Figure 2.4.

39



CHAPTER 2. THE DETECTION OF EMBOLISM

Figure 2.3: A typical embolus detection system including standard detection with constant
thresholds. Unit A includes extracting 5s digital Doppler signal sequences from the SD card
extracted from the Holter system, then calculating the STFT and the instantaneous energy from
STFT estimators. Unit B includes establishing the gold standard of detection. Unit C includes
the artefact rejection phase. Unit D represents the detection achieved using standard methods.
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The STFT frequency estimator with a sliding window can be written as:

S(t, f ) =
∣∣∣∣∫ x(τ)w∗(t− τ)exp− j2π f t dτ

∣∣∣∣2 (2.3)

where x(t) is the analyzed Doppler signal, w(t) is a sliding window and * stands for complex
conjugation.

When using the STFT to process embolic signals, it is of great importance that the STFT
parameters are optimized. The three processing parameters are:

• Window size or length of the analysis window: the most influential parameter that de-
termines the trade-off between frequency resolution and time resolution and has a direct
effect on the time-frequency limitation.

• Window type: an important parameter in optimizing the frequency resolution and redu-
cing spectral leakage.

• Overlap ratio: in the STFT technique the data segments are processed sequentially by
sliding the window less than the size of the data segment. This leads to an overlap
between the windows. Moreover, the windowing function applied is very liable to elimin-
ating events at the edges of the data segment being processed. Therefore, a short embolic
signal happening at the edges of the processed segment may be eliminated or missed.
The solution is to adequately set the overlap ratio in a way to overcome the latter issue.

Despite the fact that setting the parameters significantly affects the embolus detection sys-
tem based on STFT calculations, little work on the effect of the different parameters has been
reported.

A fundamental study was reported by Aydin and Markus (2000). They evaluated the effect
of varying the three parameters on embolic signal temporal and frequency resolutions, time of
embolic signal onset and on the power of the embolus at the frequency with maximum power
relative to the average power of the background intensity. The window types studied were
the Boxcar, Bartlet, Hamming, Hanning, Blackman and Gaussian. The window sizes varied
between 16-point and 512-point windows. The overlaps evaluated were 0 %, 25 %, 50 %, 75
%, 80 % and 98.4 %. The results reported that the best time and frequency resolution and the
highest embolic power were achieved with a Hamming or Hanning windows. A medium sized
window (64-point or 128-point) is the most appropriate, since a short window results in a good
time resolution and a poor frequency resolution while a long window gives the best frequency
resolution but poor time resolution. Moreover, the embolic signal power is low for windows
shorter than 64 points, however it increases as the window size increases but only to a window
size of 128 points and then decreases for higher windows. Finally, the most suitable overlaps
were 65 % for a 64-point window and 80 % for a 128-point window, which prevents missing
embolic signals occurring at the edges.

Based on the the study of Aydin and Markus (2000) and after a preliminary stage of exper-
imental optimization of the STFT parameters, the STFT in this study is performed using a 64
point Hamming window equivalent in time to 0.015 seconds with an overlap of 65 %.

Three sets of parameters are tested, a 64-point Hamming window equivalent in time to
0.015 seconds with an overlap of 65 %, a 128-point Hamming window equivalent in time
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to 0.03 seconds with a 80 % overlap, and another 128-point Hamming window with a 98
% overlap. Two measurments to evaluate the three sets are used. The first is the number
of embolic detections recorded on the spectrogram based on what was stated by Aydin and
Markus (2000) that an inadequate degree of optimal parameter setting may result in embolic
signals being missed on the spectral display. Therefore we counted the number of embolic
signals visually detected on the spectrogram as an indication for the best set of parameters. The
second evaluation is a measure of the difference between the energy amplitude of the embolus
and the energy amplitude of the corresponding peak systole as an indication of embolic signal
power. If the difference is low this indicates that the embolus peak is closer to the systolic
peak and this refers that the set of parameters to which this difference corresponds enables high
embolic power. The results are obtained from 15 signals extracted from the 25 dataset signals.
The results are presented in Table 2.1.

Table 2.1: A comparison between three sets of STFT parameters tested on 15 signals, a 64-point
Hamming window equivalent in time to 0.015 seconds with an overlap of 65 %, a 128-point
Hamming window equivalent in time to 0.03 seconds with a 80 % overlap, and a 128-point
Hamming window equivalent in time to 0.03 seconds with a 98 % overlap. The evaluated
parameters are the number of embolic detections recorded on the spectrogram and the energy
of the detected embolus relative to the energy at the peak systole. The best results are obtaining
by a 0.015 seconds Hamming window and a 65 % overlap.

Set of parameters tested Number of embolic detec-
tions on the spectrogram

Mean embolus energy relat-
ive to peak systole energy
(dB)

Hamming window, 0.015
seconds, 65 % overlap

86 5.8

Hamming window, 0.03
seconds, 80 % overlap

68 7.27

Hamming window, 0.03
seconds, 98 % overlap

72 6.56

Next comes the instantaneous energy calculation. Indeed, two kinds of energy estimators
can be used to assess the instantaneous energy of Doppler signals: those based on time es-
timators and those based on spectral or frequency estimators. The two types are short-term
estimators and the calculation is carried out using a sliding window w(t).
The temporal energy estimator with a sliding window can be formally written as:

E(t) =
∫
|x(τ)w∗(t− τ)|2 dτ (2.4)

However, in this chapter we focus on spectral estimators included in commercial TCD
systems which include methods based on STFT.

The instantaneous energy at a fixed time t0 can be obtained from frequency estimators in
equation (2.3) by:

E(t0) =
∫ +∞

−∞

S(t0, f )d f . (2.5)
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2.6.2 Unit B: The gold standard of detection

After the clinical exam, an analogous conversion is performed on the Doppler digital signal
and then the Doppler signal is sent to a loudspeaker. From the audible Doppler signal and from
the spectrogram displayed on a screen, we detect and count manually the number of micro-
embolic events in order to constitute our gold standard of detection. Micro-embolic signals are
identified on the basis of their characteristic sound and from accurate visual inspection of the
spectrogram by three blinded expert observers of our laboratory. Then the identified micro-
emboli are subject to inter agreement between the three experts. Finally, the positions in time
of agreed-on micro-emboli are noted. This gold standard is used to asses the results of the
different detectors used and evaluate their performances. As an example, an embolic signature
at the time position 1.05 seconds can be visually detected in Figure 2.4.

Genuinely, listening to the audio files by the three experts is made at both the normal speed
and a second time at half the normal speed, and even at slower speeds in demanding cases
where emboli occurring are hard to distinguish. The latter processes allow detecting several
micro-emboli that were previously inaudible at normal speeds. In fact, this particular listening
mode allows to overcome the well-known temporal and frequency masking effects in audio
files.

Figure 2.4: Spectrogram: A time-frequency representation obtained from Short Time Fourier
Transform calculation. An embolic signature appears at the t0=1.05 seconds.

2.6.3 Unit C: Artefact Rejection

Since embolic particles, during their passage in the blood, evoke a transient intensity increase of
the Doppler signal they are popularly referred to as ’High Intensity Transient Signals’ (HITS).
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At a certain point, some clinicians and researchers had opposed the intensity increases appear-
ing in the Doppler signal to be termed as ’embolic signals’ before the true nature of these
intensity increases is identified. Otherwise, the ’embolic signal’ terminology would be mis-
leading. This can be justified by the presence of signals that are similar to embolic signals and
also have the characteristics of being HITS. These are artefact signals.

Artefacts are majorly caused by Doppler probe tapping or displacement. They are also
caused by tissue movement imposed by head movement, speech, snoring, sniffing, yawning,
coughing, talking, etc.

A main distinctive feature between artefacts and emboli is that artefacts are bidirectional
within the Doppler flow spectrum, they exhibit a forward and reverse flow, while emboli are
unidirectional exhibiting a forward flow only. This assumption has been widely used [ (Spencer
et al., 1990), (Markus et al., 1993), (Ringelstein et al., 1998), (Aydin et al., 2004), (Choi et al.,
2010), (Serbes et al., 2014)]. However, a study done by Biard et al. (2003), proved that artefacts
in some conditions could be exclusively unidirectional in the forward flow.

Moreover, another discrimination factor is that artefacts often have lower Doppler frequen-
cies (< 250 Hz) than emboli (> 600 Hz).

Since probe displacement is a common source of artefacts, the automatic probe used in the
Holter TCD system results in an increase in the number of signal artefacts. Moreover, due to
the long recording time, the patient is more likely to cause artefacts due to movements and
normal actions that are difficult to control. Therefore, by using the Holter, artefact rejection
becomes a critical and fundamental step.

The artefact rejection phase included in this unit will be separately described in details in
chapter 6.

2.6.4 Unit D: Standard micro-embolic detection

Based on the energy, micro-embolic signals are detected by a binary test used in various
methods of detection.

E(t)
H1
≷
H0

λ . (2.6)

If the instantaneous energy E(t) is greater than the detection threshold, then the detector is
triggered and an embolus is detected (hypothesis H1) , otherwise no embolus is detected (hy-
pothesis H0) and the detector remains mute. The choice of the detection threshold, in equation
2.6, is a very crucial step for the identification of embolic signals and in the whole detection
process. In standard methods, λ is constant. Two constant thresholds in this study have been
used denoted as Threshold 1a and Threshold 1b in Figure 2.3. The first threshold, Threshold
1a, is commonly used in commercial systems. This constant threshold is empirical; i.e. it is
fixed empirically by the user for the entire examination. It is patient-, operator-, and device-
dependent. This threshold is set above the maximal background energy of the Doppler signal
when no embolus is present (Ringelstein et al., 1998). Generally, for manual detection, the
threshold is set 3 dB above this energy. For automatic detection, it is usually set between 3 to
9 dB above the background energy and depends on the TCD system calibration (Ringelstein
et al., 1998). Since the setting of this threshold is not the same for different examinations,
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comparisons between various applied methods are hard to achieve.
Another strategy for applying constant thresholds for embolus detection have been made

possible by our research group (Girault, 2013). The team searched for a constant threshold that
could be calculated from the energy data. Therefore, unlike empirical thresholds, the operator
would avoid making a choice of the threshold value which might often lead to either an overly
high threshold that makes the detection of small events impossible or an overly low threshold
that detects unnecessary false events.

After proving that the energetic information follows Gaussian law (Girault, 2013), a con-
stant statistical threshold (Threshold 1b in Figure 2.3) was established from the instantaneous
energy in the following manner:

λ = µ +mσ (2.7)

µ is the mean of the instantaneous energy, σ is the standard deviation and m is a forgetting
factor that ensures adaptability of the threshold throughout the examination. This threshold
depends on a pre-setting preparation phase. Since the energy is made up of a great number of
sample points, a threshold λ = µ +3σ corresponding to 99.97 % of the values in the Gaussian
function, is not well adapted. The threshold λ must be at least higher than µ + 3σ . Mainly,
optimal values of m range between 3 and 5.

2.7 Conclusion

In this chapter, we have introduced the instrument of micro-embolus detection along with the
new enhanced Holter modality we will be using. We have also presented the main specifications
of embolus detection by TCD. Moreover, we presented the reference off-line standard detection
procedure. In the next part of this dissertation we will introduce the different micro-embolic
detectors we have developed.
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Part II

High Intensity Transient Signals Detection
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Chapter 3

A Micro-embolic Energy Detector based
on Energy Fluctuations

3.1 Introduction

The standard detection presented in the previous part is not sufficiently accurate and robust for
the detection of small weak micro-emboli. In this chapter, we propose an original paradigm
of detectors based on energy fluctuations rather than on the energy signal, and we develop a
time-varying threshold rather than using constant thresholds. The latter proposed detection will
be compared to the standard detections discussed in part I.

We will show in the course of the chapter several hypothesis that render the new proposed
detector as a strong tool for the detection of the smallest micro-emboli. The results will also
prove that the performance of the new proposed detector is superior to existing standard de-
tectors. This work was published as a proceeding at the IEEE ’Third International Conference
on Advances in Biomedical Engineering’. It is also currently submitted to the ’Journal of Bio-
medical and Health Informatics’.

3.2 Micro-embolic detection based on energy fluctuations

Although the instantaneous energy is time-varying as shown in Figure 3.1, in standard methods
this energy is compared to a constant threshold. This is a main reason behind the poor per-
formances of energy based detectors with constant thresholds. This has stimulated our team
to achieve the detection process with a novel approach. The procedure detection diagram is
represented in Figure 3.2 (We note that the processing steps from the Doppler signal extraction
to the energy calculation are repeated similarly to the standard detection of part I).

The new method we propose, is based on the fact that emboli appear in the energy signal’s
positive fluctuations (Figure 3.1 b)) part only. Thus by constructing a time-varying threshold
from the negative energy fluctuations (Figure 3.1 c)) and then applying it on the positive fluc-
tuations, the technique would be perfect in displaying the smallest suspicious embolic events
occurring in the positive fluctuations.

First of all, lets consider the blood energy Doppler signal and suppose it is composed of
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two time-varying components:

EBlood(t) = ELF(t)+EHF(t) (3.1)

The low frequency time-varying component ELF(t), of 1st order statistics, is related to the
cardiac rhythm which is a pulse component of about 1 Hz. The high frequency time-varying
component EHF(t), of 2nd order statistics, is related to the random fluctuations due to the ran-
dom positions of billions of red blood cells travelling into the blood flow. This component is
heteroskedastic (Girault et al., 2010) since the variance is not constant. In a previous work
(Girault, 2013), it was shown that this random component is governed by a Gaussian law of
symmetric probability density. Note the similarity of this model reporter in (3.1) and the one
based on the non-stationary Wold’s theorem (Bierens, 2012) where it decomposes in two com-
ponents:

EBlood(t) = Ed(t)+Es(t) (3.2)

where Ed(t) is a time varying deterministic component and Es(t) is a time-varying stochastic
component.

Subsequently, lets consider the total Doppler energy signal and suppose that it is composed
of two components:

Etotal(t) = EBlood(t)+EHIT S(t) (3.3)

where EBlood(t) is defined in (3.1) and where EHIT S(t) is a high intensity transient signal (HITS)
describing the micro-embolic Doppler signature. The micro-embolic Doppler signal is an ener-
getic component that is strictly positive. HITS are unknown deterministic signals whose shape
is related to the instrumentation and the geometry of the probe. Their amplitude and position
are unknown.

The new method that we propose consists primarily in removing the cyclic cardiac low
frequency component from the blood energy signal. In most approaches this is done by using
a narrow band filter or a high pass filter. In the present study, it is done first by evaluating
the trend ELF(t) through a smoothing step and then by subtracting it from Eblood(t). This is
represented in Figure 3.1 a). The Doppler energy signal is represented as sum of two parts;
one superior (in cyan) and one inferior (in green) to the smooth curve (in red). In other words
one representing the upper variations in the distribution of the energy signal from its trend over
time and one representing the lower variations.

When the smooth curve is subtracted from the energy, the remaining fluctuation γ(t) can be
decomposed into a positive fluctuation γpos(t) and a negative fluctuation γneg(t):

γ(t) = γ pos(t)+ γneg(t) (3.4)

where γneg(t) = γ(t)< 0 (represented in Figure 3.1 b) in green) and γ pos(t) = γ(t)> 0 (repres-
ented in Figure 3.1 c) in cyan)

Moreover, the probability density of this energy, following a Gaussian distribution (Girault,
2013) is also a summation of the probability densities from the positive and negative parts of
the energy.

Pγ(t) = Ppos(t)+Pneg(t) (3.5)
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As the Gaussian probability density is even, it comes:

Pγpos = Pγneg (3.6)

Pγpos = Pγ ·θ(γ) where θ(γ) is the Heaviside function and where Pγneg = Pγ−Pγpos = Pγ ·θ(−γ)

Hence, the positive part of the energy represents the same fluctuations as the negative part
but corrupted with High Intensity Transient Signals (HITS), that are outside the Gaussian
statistics. In other words, the positive part of the energy is symmetric to the negative one
except when HITS occur. Thus, by using the symmetrical property of the probability density
of the Gaussian fluctuation, it is possible to calculate a time varying threshold based only from
the negative amplitude of the fluctuation and then apply it on the positive part to eliminate the
high frequency information and detect the strictly positive micro-embolic HITS.

Consequently, the micro-embolic signals can be detected by the binary test in equation 2.6
where it is now written as:

γ(t)
H1
≷
H0

λ (t) (3.7)

If the instantaneous energy fluctuation γ(t) is greater than the detection threshold, then an
embolus is detected (hypothesis H1), otherwise no embolus is detected (hypothesis H0).

Knowing that the Doppler signal is quasi-cyclostationary, the quasi-periodically time vary-
ing threshold λ (t) is proposed as an envelope calculated from the negative energy fluctuations
(Fig. 3.1 b)):

λ (t) = µ(t)+mσ(t). (3.8)

where µ(t) is the "instantaneous" mean and and σ(t) the "instantaneous" standard deviation
given by equation 3.9. The parameter m results from an optimization training process that
increases the detection rate and reduces the false alarm rate (see section 3.3).

σ(t) = k |− γneg(t)+ jHT [γneg(t)] |. (3.9)

with HT [.] the Hilbert transform.
This envelope is then transferred and applied onto the positive energy fluctuations (Fig. 3.1

c)) where the detection process in equation (3.7) is performed. When the signal in the positive
energy fluctuation is higher than the time-varying threshold, the automatic detector is triggered
and the peak is recorded.
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Figure 3.1: Application of our detection technique based on negative energy fluctuations. a)
The energy signal is represented as sum of two parts; one superior (cyan) and one inferior
(green) to the smoothing curve (red). b) The smoothing curve is subtracted from the energy
part inferior to it resulting in negative energy fluctuations (green). A negative time-varying
envelope Eneg(t) is then constructed (dark green). c) The smoothing curve is subtracted from
the energy part superior to it resulting in positive energy fluctuations (cyan). The negative time
varying envelope is opposed and applied as -(Eneg(t)) (blue).

52



3.2. MICRO-EMBOLIC DETECTION BASED ON ENERGY FLUCTUATIONS

Figure 3.2: The procedure of the new detection system proposed. After STFT and energy
calculation, the energy signal is de-trended, and energy fluctuations are obtained. The micro-
embolic energy detector is based on the negative part of the energy fluctuations, from which a
time-varying threshold is constructed.
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3.3 Results

Our database, composed of 25 signals, is divided into two categories. The first category in-
cludes 10 signals dedicated to achieve the training phase. The training phase allows adjusting
the best values through maximizing the detection rate and minimizing the false alarm rate. The
second category comprised 15 signals on which the experimentation methods are tested and
results are obtained.

In this part, we present the results obtained during the training and the testing phases for the
standard detectors presented in part I and the new proposed detector. First, we determine the
optimal training phase settings. Second, we prove the homogeneity of our dataset. Finally, we
compare the optimal testing phase results of the standard and new detectors and we evaluate
the performance of the new detector.

To evaluate the results of the different detectors, we compare these results to the gold stand-
ard of detection established initially. The basic statistical tools calculated for our evaluation are:

1. Detection Rate (DR) or Sensitivity calculated as the number of true positive detections /
the number of gold standard detections. True positive detection refers to the detection of
an embolus recorded in the gold standard.

2. False Alarm Rate (FAR) calculated as the number of false positive detections / the total
number of detections. False positive detection refers to the detection of an embolus not
recorded in the gold standard or in other words an embolus which has not crossed the
sample volume. The false alarm rate is also written as (1 - specificity).

3.3.1 Training phase for the different thresholds

Since setting the empirical threshold is achieved by an operator, micro-embolic detection could
vary between one operator and another. In this study, and to overcome this drawback, an
automatic threshold-searching is proposed based on the training phase. Values ranging between
3 dB and 9 dB are tested. The results for the different threshold values applied are shown in
Figure 3.3. The best threshold setting is obtained for a value of 5 dB which best maximizes the
percentage detection and minimizes the false alarm rate.

We also propose to find the optimal value of m for the statistical constant threshold λ =
µ +mσ through the training phase. Values of m ranging between 3 and 6 are tested. The
results for the different threshold values applied are shown in Figure 3.4. The best threshold
setting is obtained for a value of m = 4.5 which best maximizes the percentage detection and
minimizes the false alarm rate. Thus, λ = µ +4.5σ must be used.

We also propose to find the optimal value of m for the time-varying threshold λ (t) = µ(t)+
mσ(t) through the training phase. Values of m ranging between 3 and 7 are tested. The results
for the different threshold values applied are shown in Figure 3.5. The best threshold setting is
obtained for a value of m = 6.5 which best maximizes the percentage detection and minimizes
the false alarm rate. Thus, λ (t) = µ(t)+6.5σ(t) must be applied.
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Figure 3.3: Detection and False Alarm rates obtained when constant empirical thresholds with
values ranging between 3 dB and 9 dB, above the maximal background energy (defined in
section 2.5) of the Doppler signal when no embolus is present (Ringelstein et al., 1998), are
applied in the training phase. The best results are obtained with threshold setting of 5 dB with
67 % detection rate and 42 % false alarm rate.

Figure 3.4: Detection and False Alarm rates obtained when statistical constant thresholds λ =
µ +mσ are applied with m values ranging between 3 and 6 in the training phase. The best
training phase setting is obtained for λ = µ + 4.5σ with 70 % detection rate and 39 % false
alarm rate.

Figure 3.5: Detection and False Alarm rates obtained when time-varying thresholds λ (t) =
µ(t)+mσ(t) are applied in the training phase with m values ranging between 3 and 7. The best
training phase setting is obtained for λ (t) = µ(t)+6.5σ(t) with 90 % detection rate and 16 %
false alarm rate.
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3.3.2 Demonstrating the homogeneity of our database

Homogeneity is a solid indicator that the statistical properties of one part of an overall database
are the same as any other part. Proving the homogeneity of our database is an important step
which verifies the feasibility of using the different threshold settings established in the training
phase onto the testing phase.

To prove the homogeneity of our database, we apply the same empirical, statistical and
time-varying thresholds values that were applied on the training phase onto the set of signals
compromising our testing phase. Figures 3.6, 3.7, and 3.8 show the results obtained when the
same thresholds are applied in the training and testing phases.

By comparing the results in Figure 3.6a) to Figure 3.6b), in Figure 3.7a) to Figure 3.7b),
and Figure 3.8a) to Figure 3.8b), it is clear that the results in both training and testing phases
are very similar. This proves the homogeneity of our chosen dataset.

Figure 3.6: Detection and False Alarm rates obtained when constant empirical thresholds with
values ranging between 3 dB and 9 dB, are applied in the a) Training and b) Testing phases
respectively. a) The best threshold setting is obtained with 5 dB. b) The best testing results are
obtained with threshold of 5 dB with 66 % detection rate and 43 % false alarm rate. The results
in a) and b) reflect the homogeneity of our database.

3.3.3 Comparison of the best testing phase results for the three detectors

Finally, in order to assess the performance of our new detector, we shall compare the best
testing phase results obtained with those of the constant threshold detection methods. Figure
3.9 summarizes the best testing phase results for the three energy detectors. For the standard
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Figure 3.7: Detection and False Alarm rates obtained when statistical thresholds λ = µ +mσ

are applied with m values ranging between 3 and 6 in the a) Training and b) Testing phases
respectively. a) The best training phase setting is obtained with λ = µ + 4.5σ . b) The best
testing results are obtained with λ = µ +4.5σ with 69 % detection rate and 41 % false alarm
rate. The results in a) and b) reflect the homogeneity of our database.

energy detector with empirical threshold, the FAR is 43 %, and the DR is 66 %. For the energy
detector with statistical threshold, the FAR is 41 %, and the DR is 69 %. For the energy detector
based on negative energy fluctuations with a time varying threshold, the FAR is 14 % and the
DR is 89 %.

The results presented, show that our new detector is able to reduce the FAR by more than
half of the standard value and the values obtained with statistical thresholds. The detection
rate achieved by our new detection system is increased by 20 % compared to that achieved
by standard detection and detection based on statistical thresholds. Thus, the superiority of
the new negative energy fluctuations-based detector compared to standard detectors based on
constant thresholds is conspicuous.
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Figure 3.8: Detection and False Alarm rates obtained when time-varying thresholds λ (t) =
µ(t) +mσ(t) are applied with m values ranging between 3 and 7 in the a) Training and b)
Testing phases respectively. a) The best training phase setting is obtained for λ (t) = µ(t)+
6.5σ(t). b) The best testing results are obtained for λ (t) = µ(t)+6.5σ(t) with 89 % detection
rate and 14 % false alarm rate. The results in a) and b) reflect the homogeneity of our database.
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Figure 3.9: Comparison of the percentage detection and false alarm rate results for the energy
detector based on negative energy fluctuations, standard detector with empirical threshold and
detector with statistical threshold. The negative energy fluctuations-based detector reduces the
FAR compared to the standard values and the values obtained with statistical thresholds. The
detection rate achieved by the new detection system is increased compared to that achieved by
standard detection and detection based on statistical thresholds.
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3.4 The relative intensity increase of the smallest detectable
micro-embolus

In an aim to discover the characteristic embolus relative intensity increase that the different
detectors are capable of detecting we choose a sample of 175 embolic events having intensity
increases below 15 dB. For each detector we evaluate the embolic events that it is capable
of detecting and we discover out of these detections the embolus with the smallest relative
intensity increase. The results are presented in Figures 3.10.

As can be depicted in Figure 3.10, the detection using constant empirical thresholds is
able to detect all emboli having intensity increases above 5.8 dB. However, embolic events
whose intensity increase is below 5.8 dB are never detected. The detection based on statistical
constant thresholds is able to detect all emboli having intensity increases above 4.1 dB. The
negative energy fluctuations-based energy detector is able to detect micro-embolic signatures
with relative intensity increases as low as 0.8 dB.

We can deduce from the latter results that the negative energy fluctuations based detector is
able to detect the smallest embolic signatures.

To be noted that the micro-embolic size corresponding to these relative intensity increase
values are provided in the appendix.
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Figure 3.10: Embolus Intensity Increases relative to background blood energy for a sample
of 175 chosen embolic events. The smallest detectable embolus by detection with constant
empirical threshold is as low as 5.8 dB. The smallest detectable embolus by detection with
constant statistical threshold is as low as 4.1 dB. The smallest detectable embolus by the energy
detector based on negative energy fluctuations is as low as 0.8 dB

3.5 Conclusion

In this chapter, a micro-embolic energy detector built from energy fluctuations, is proposed
as a method to overcome major limitations of standard energy detectors. The performance of
standard energy detectors in detecting weak micro-embolisms is poor. This problem is effect-
ively eliminated by the detection procedure we propose which mainly consists in constructing
an instantaneous time varying envelope from the negative energy fluctuations. Based on en-
ergy fluctuation properties of the Doppler signal, the new method is able to detect the smallest
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micro-emboli that may occur during the cardiac cycle.
By stating that micro-embolic signatures occur only in the positive part of the energy signal

fluctuations, the innovative idea is to construct an instantaneous threshold from the negative part
of these fluctuations while hypothesizing that the instantaneous energy follows Gaussian stat-
istical distribution. This threshold, would next be applied on the positive energy fluctuations.
Micro-embolic signals, in the positive fluctuations, would appear as signatures exceeding this
threshold.

Results upon application on real signals show that it can offer significant improvements
compared to standard methods using empirical thresholds, the most popular methods commer-
cially available, and standard detection methods using Gaussian statistical constant thresholds.
The results are based on adjusted settings that tend to minimize the false alarm rate while max-
imizing the detection rate. Improvements include increasing the percentage of detection from
66 % and 69 % for standard detectors using empirical and statistical thresholds, respectively, to
around 89 %. Also, the false alarm rate is reduced from 43 % and 41 % for standard detectors
using empirical and statistical thresholds, respectively, to around 14 %. Moreover, the new
detection technique allows the detection of micro-emboli having relative intensity increase as
low as 0.8 dB compared to as low as 5.8 dB and 4.1 dB for the detectors with empirical and
statistical threshold, respectively . Consequently, we affirm that a detector based from negat-
ive energy fluctuations would be more reliable and vigorous than standard techniques and well
adapted for the precise detection of the smallest micro-emboli.

In the next chapter, we will couple this new detection method with sub-band decomposition
which is another strong tool for significantly improving the detection of micro-emboli.
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Chapter 4

Coupling of a Negative Energy
Fluctuations-Based Detector with
Sub-band Decomposition: A Highly
Performing Embolus Detection Technique

4.1 Introduction

In the artery, the micro-embolus particularly travels on a single speed line as shown in Figure
4.1. Compared to the wide band Doppler blood flow signal, the Doppler micro-embolic signal
can be considered as narrow band. The energy in this narrow band reflects the energy backs-
cattered by the traveling micro-embolus as well as the energy backscattered by all Red Blood
Cells (RBC) traveling on the same velocity line as the micro-embolus.

Figure 4.1: An illustration of an embolus traveling in a blood vessel. The trajectory of blood
flow is defined by a parabolic curve. The embolus travels on a single speed line in the vessel.

Indeed, reducing the frequency band, definitely leads to reducing the number of RBC con-
tributing in the background Doppler signal. Only RBCs traveling at the same speed as the
micro-embolus will be considered instead of considering all RBCs present in the region of
interest. This is shown in Figure 4.2.
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Figure 4.2: Reducing the sample volume where the embolus is present to sample areas. Only
RBCs traveling at the same speed line as the micro-embolus (same sample area) will be con-
sidered instead of considering all RBCs present in the whole sample volume.

The latter process can be achieved through sub-band decomposition which allows decom-
posing the whole Doppler spectral band into several bands. Through this decomposition, we
reduce the bandwidth in which detection is applied. This in turn allows reducing the back-
ground Red Blood Cells in the inspected bandwidth. Consequently, decomposing the whole
Doppler frequency band will amplify the contrast between the micro-embolic signature and the
background signal in each decomposed channel.

Based on this hypothesis, several studies introduced the use of sub-band decomposition to
improve micro-embolus detectability. The first of these methods was that introduced by Markus
et al. (1999) where a bank of narrow band filters with the same width were used. Later, Aydin
et al. (2004) introduced sub-band decomposition through the discrete wavelet transform, before
the wavelet packet decomposition was used for sub-band division by Girault (2013). By using
these different kinds of filters, the difficulty mainly lies in the choice of the constant threshold in
each sub-band and on the merging of the detection since a micro-emboli can appear in several
consecutive sub-bands.

Therefore, we tend to introduce in this chapter sub-band decomposition as a strong tool for
enhancing micro-embolus detection while enhancing the detection in each sub-band through
optimizing the constant thresholds used and later by using the time-varying threshold intro-
duced in chapter 3. We also propose a novel algorithm that ensures robust merging between the
detections from the different sub-bands. This work was published as a proceeding at the IEEE
’Third Middle East Conference on Biomedical Engineering’.

4.2 The Micro-Embolic Short Time Fourier Transform Sub-
band Detection Unit

The sub-band detection unit is made up of the same phases presented in chapter 3, but the
detection process is simultaneously carried out in each sub-band. The spectral band is divided
into several narrow sub-bands and the detection is operated independently in each sub-band.
The overall sub-band detection unit can be viewed in Figure 4.4. Initially, after loading the
wave-file, STFT calculation (by equation 2.3) is performed on repetitive 5 second segments of
the extracted Doppler signal. This is shown in the first 3 blocks in Figure 4.4.
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Sub-band decomposition is then applied to decompose the STFT whole band into n ideal
sub-bands through a bank of n ideal rectangular frequency filters. This decomposition is depic-
ted in Figure 4.3 and represents Part 1 of Figure 4.4. The decomposition through rectangular
filters is defined by the following equation:

S f × rectB

(
f − kB/2

B

)
(4.1)

with B=fs/8 and k is odd

Figure 4.3: Decomposition of the whole Doppler frequency spectrum into n ideal sub-bands
through n ideal rectangular filters.

Then energy calculation (by equation 2.5) is performed in each sub-band. The new energy
detector is composed of n detectors associated to n Doppler frequency sub-bands. The process
can be viewed in Part 2 of the detection unit in Figure 4.4. Also, in Figure 4.5 we display a
signal (5 second extracted segment) that has been decomposed into four sub-bands.

In the next step, presented in Part 3 of the detection unit in Figure 4.4, the micro-embolic
signal detection is achieved by comparing the sub-band energy to a threshold. The binary test
is presented in equation 4.2. En is the instantaneous energy calculated in the nth sub-band. λ n
is the threshold of sub-band n. The subscript n denotes that the binary test is carried out in the
sub-band n. In the first hypothesis (H0), the energy is lower than the detection threshold and
thus no detection is reported. In the other case (H1), the energy exceeds the threshold and thus
an embolic event is recorded.

En(t)

{
< λ n, Hypothesis H0,

> λ n, Hypothesis H1.
(4.2)

The threshold λ could be any of the thresholds we already presented in the previous chapter,
the constant empirical threshold, the constant statistical threshold and the negative energy
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fluctuations-based time-varying threshold. In Figure 4.6 we show how the negative energy
fluctuations-based time-varying threshold (previously presented in chapter 3 in Figure 3.1) is
applied in sub-band detection. Although this process is repeatedly applied in each sub-band,
due to space complications we are not able to show it for each of the 4 sub-bands in one figure.
It is only shown for sub-band 2 as an example.

After sub-band decomposition, the Doppler signal x(t) can be expressed as follows:

x(t) =
Nsb

∑
n=1

xn(t) (4.3)

where Nsb is the total number of channels (sub-bands) and xn(t) is the signal in the nth sub-
band.
Also, the total instantaneous energy over the whole spectral band can be obtained by summing
the contribution of all channels:

E(t) =
Nsb

∑
n=1

En(t). (4.4)

66



4.2. THE MICRO-EMBOLIC SHORT TIME FOURIER TRANSFORM SUB-BAND
DETECTION UNIT

Figure 4.4: Sub-band Decomposition-based embolus detection system. After acquiring the
Doppler signal, Short Time Fourier Transform is calculated for 5 second digital sequences. In
Part 1, sub-band decomposition through a bank of n ideal frequency filters is applied. In Part 2,
the instantaneous energy is estimated in each sub-band. Next in Part 3, the detection binary test
is performed where the energy is compared to a detection threshold and the counter is triggered
at energies exceeding the threshold. Lastly, in Part 4, all detections from each sub-band are
merged and automatically counted.
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Figure 4.5: An illustration of a 5 second extracted signal segment decomposed into 4 sub-
bands. The decomposition is performed through a bank of four identical-width rectangular
functions.
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Figure 4.6: Sub-band detection process with negative energy fluctuations-based detector. Due
to space complications we represent the detection process in sub-band 2 only. However, the
same embolus detection process is applied in each sub-band.
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The final stage (Part 4 in Fig. 4.4) in the sub-band detection process before counting the
final detections, is merging of all detections achieved in each sub-band. An important point
here is to accompany the merging with a test that continuously verifies that the micro-embolic
signature detected in sub-band n is not detected at the same instant or at the same time interval
in all the preceding and following sub-bands. In other terms, the latter test assures that the
same embolus detected in more than one sub-band is counted only once in the final detection.
The time interval we apply ranges ±0.025s around the detected micro-embolus peak. This is
because the positions of micro-emboli detected in different sub-bands are not always exactly
the same and may slightly vary from one sub-band to another as can be seen in Figure 4.7. After
an experimental procedure we applied on same emboli detected in more than one sub-band the
maximum difference in sub-band positions is 0.025 s. Figure 4.7 shows three cases. In the first
two cases presented in Figure 4.7 a) 2 micro-emboli appear in two different sub-bands at the
exact same position and in the second case in Figure 4.7 b) the same micro-embolus appears
in three different sub-bands in a time difference of 0.01 s between the micro-embolus detected
in the second and third sub-band and 0.02 s between that detected in the second and fourth
sub-band. The time interval we apply assures the micro-embolus is recorded only once in the
final detection.
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Figure 4.7: a) An illustration of 2 micro-emboli that appear in two different sub-bands. The
first micro-embolus appears in sub-bands one and three at the exact same position (1.217 s) and
the second micro-embolus appears in the first and second sub-band at the same exact position
(7.046 s). In both cases, when the micro-embolus is first detected in a sub-band, the time
interval ±0.025 s around the peak is applied on the following sub-bands to prevent the micro-
embolus from being recorded again. This assures that the same micro-embolus is recorded
only once in the final decision. b) An illustration of a micro-embolus that appears three times
in three different sub-bands but at slightly different time positions. When the micro-embolus
is first detected in the second sub-band, a time interval ±0.025 s around the peak is applied on
the following sub-bands to prevent the micro-embolus from being recorded again. This assures
that the same micro-embolus is recorded only once in the final decision.

4.3 Results

As in the previous chapter, the database, composed of 25 signals, is divided into two categories.
The first category includes 10 signals dedicated to achieve the training phase. The training
phase allows adjusting the best threshold values in each sub-band as well as the optimal number
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of sub-bands to be used through maximizing the detection rate and minimizing the false alarm
rate. The second category comprised 15 signals on which the experimentation methods are
tested and results are obtained.

The results are divided into five parts. In the first three parts we present the results of the
training phase for sub-band detection with constant empirical thresholds, sub-band detection
with constant statistical thresholds and sub-band detection with the use of the negative energy
fluctuations-based time-varying threshold. In the fourth part, we present the testing phase res-
ults for the three sub-band detectors. In the last part, we compare sub-band detection to whole
band detection.

4.3.1 Sub-band detection with constant empirical thresholds

In this section, we present the results when sub-band detection is performed with constant
empirical thresholds employed in each sub-band.

First, we apply a training phase to determine the optimal thresholds to be used in each
sub-band. 2, 4 and 8 sub-bands are tested. Thresholds ranging between 3 dB and 9 dB are
simultaneously tested in each sub-band and the best set of thresholds is determined according to
the detection rates and false alarm rates achieved. Due to the large number of decibel thresholds
tested we will present only the best results obtained.

For 2 sub-bands used the best results obtained are those when a 4 dB empirical threshold is
used in each sub-band. The results are presented in Table 4.1. The detection rate achieved is
65 % and the false alarm rate is 43 %.

Table 4.1: Results (Detection Rate and False Alarm Rate) for 2 sub-band decomposition with
a 4 dB constant empirical threshold used in each sub-band.

2 Sub-band Decomposition Best Empirical Threshold
(dB)

Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band 4 dB - -
Second Sub-band 4 dB - -
Final Detection - 65 % 43 %

For 4 sub-bands used the best results obtained are those when a 4 dB empirical threshold is
used in each sub-band. The results are presented in Table 4.2. The detection rate achieved is
79 % and the false alarm rate is 41 %.
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Table 4.2: Results (Detection Rate and False Alarm Rate) for 4 sub-band decomposition with
a 4 dB constant empirical threshold used in each sub-band.

4 Sub-band Decomposition Best Empirical Threshold
(dB)

Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band 4 dB - -
Second Sub-band 4 dB - -
Third Sub-band 4 dB - -
Fourth Sub-band 4 dB - -
Final Detection - 79 % 41 %

For 8 sub-bands used the best results obtained are those when a 3 dB empirical threshold is
used in each sub-band. The results are presented in Table 4.3. The detection rate achieved is
80 % and the false alarm rate is 45 %.

Finally, by comparing the detection rates and false alarm rates obtained by testing 2,4 and 8
sub-bands in the training phase, we can state that 4 sub-bands provide the best trade-off between
the different rates. By looking at the results in Table 4.1, 4.2, and 4.3, compared to 2 sub-bands,
4 sub-bands allow a better DR and a lower FAR. Compared to 8 sub-bands, 4 sub-bands allow
a close DR and a lower FAR with a logically less computational time (or processing speed).

Therefore, after the training phase result we tend to use in the testing phase a 4 sub-band
detector with a 4 dB constant empirical threshold in each sub-band. The results of this testing
phase are presented in Figure 4.8 in section 4.3.4.

Table 4.3: Results (Detection Rate and False Alarm Rate) for 8 sub-band decomposition with
a 3 dB constant empirical threshold used in each sub-band.

8 Sub-band Decomposition Best Empirical Threshold
(dB)

Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band 3 dB - -
Second Sub-band 3 dB - -
Third Sub-band 3 dB - -
Fourth Sub-band 3 dB - -
Fifth Sub-band 3 dB - -
Sixth Sub-band 3 dB - -
Seventh Sub-band 3 dB - -
Eighth Sub-band 3 dB - -
Final Detection - 80 % 45 %
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4.3.2 Sub-band detection with constant statistical thresholds

In this section, we present the results when sub-band detection is performed with constant
statistical thresholds λ = µ +mσ used in each sub-band.

First, we apply a training phase to determine the optimal thresholds to be used in each
sub-band. 2, 4 and 8 sub-bands are tested. Thresholds ranging between λ = µ +3σ and λ =
µ +6σ are simultaneously tested in each sub-band and the best set of thresholds is determined
according to the detection rates and false alarm rates achieved. Due to the large number of m
values tested we will present only the best results obtained.

For 2 sub-bands used the best results obtained are those when a λ = µ + 5σ statistical
threshold is used in each sub-band. The results are presented in Table 4.4. The detection rate
achieved is 72 % and the false alarm rate is 32 %.

Table 4.4: Results (Detection Rate and False Alarm Rate) for 2 sub-band decomposition with
a λ = µ +5σ constant statistical threshold used in each sub-band.

2 Sub-band Decomposition Best Statistical Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ = µ +5σ - -
Second Sub-band λ = µ +5σ - -
Final Detection - 72 % 32 %

For 4 sub-bands used the best results obtained are those when a λ = µ + 4.5σ statistical
threshold is used in each sub-band. The results are presented in Table 4.5. The detection rate
achieved is 82 % and the false alarm rate is 28 %.

Table 4.5: Results (Detection Rate and False Alarm Rate) for 4 sub-band decomposition with
a λ = µ +4.5σ constant statistical threshold used in each sub-band.

4 Sub-band Decomposition Best Statistical Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ = µ +4.5σ - -
Second Sub-band λ = µ +4.5σ - -
Third Sub-band λ = µ +4.5σ - -
Fourth Sub-band λ = µ +4.5σ - -
Final Detection - 82 % 28 %

For 8 sub-bands used the best results obtained are those when a λ = µ + 4σ statistical
threshold is used in each sub-band. The results are presented in Table 4.6. The detection rate
achieved is 84 % and the false alarm rate is 30 %.

Finally, by comparing the detection rates and false alarm rates obtained by testing 2,4 and 8
sub-bands in the training phase, we can state that 4 sub-bands provide the best trade-off between
the different rates. By looking at the results in Table 4.4, 4.5, and 4.6, compared to 2 sub-bands,
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4 sub-bands allow a better DR and a lower FAR. Compared to 8 sub-bands, 4 sub-bands allow
a close DR and a lower FAR with a logically less computational time (or processing speed).

Table 4.6: Results (Detection Rate and False Alarm Rate) for 8 sub-band decomposition with
a λ = µ +4σ constant statistical threshold used in each sub-band.

8 Sub-band Decomposition Best Statistical Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ = µ +4σ - -
Second Sub-band λ = µ +4σ - -
Third Sub-band λ = µ +4σ - -
Fourth Sub-band λ = µ +4σ - -
Fifth Sub-band λ = µ +4σ - -
Sixth Sub-band λ = µ +4σ - -
Seventh Sub-band λ = µ +4σ - -
Eighth Sub-band λ = µ +4σ - -
Final Detection - 84 % 30 %

Therefore, after the training phase result we tend to use in the testing phase a 4 sub-band
detector with a λ = µ +4.5σ constant statistical threshold in each sub-band. The results of this
testing phase are presented later in Figure 4.8.

4.3.3 Sub-band detection with negative energy fluctuations-based time-
varying threshold

In this section, we present the results when sub-band detection is performed under the negat-
ive energy fluctuations-based detection technique with a time-varying threshold λ (t) = µ(t)+
mσ(t) used in each sub-band.

First, we apply a training phase to determine the optimal thresholds to be used in each sub-
band. 2, 4 and 8 sub-bands are tested. Thresholds ranging between λ (t) = µ(t)+ 3σ(t) and
λ (t) = µ(t)+7σ(t) are simultaneously tested in each sub-band and the best set of thresholds
is determined according to the detection rates and false alarm rates achieved. Due to the large
number of m values tested we will present only the best results obtained.

For 2 sub-bands used the best results obtained are those when a λ (t) = µ(t) + 6σ(t)
threshold is used in each sub-band. The results are presented in Table 4.7. The detection
rate achieved is 75 % and the false alarm rate is 24 %.
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Table 4.7: Results (Detection Rate and False Alarm Rate) for 2 sub-band decomposition with
a λ (t) = µ(t)+6σ(t) time-varying threshold used in each sub-band.

2 Sub-band Decomposition Best Time-Varying Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ (t) = µ(t)+6σ(t) - -
Second Sub-band λ (t) = µ(t)+6σ(t) - -
Final Detection - 75 % 24 %

For 4 sub-bands used the best results obtained are those when a λ (t) = µ(t) + 5.5σ(t)
threshold is used in each sub-band. The results are presented in Table 4.8. The detection rate
achieved is 96 % and the false alarm rate is 10 %.

Table 4.8: Results (Detection Rate and False Alarm Rate) for 4 sub-band decomposition with
λ (t) = µ(t)+5.5σ(t) time-varying threshold used in each sub-band.

4 Sub-band Decomposition Best Time-Varying Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ (t) = µ(t)+5.5σ(t) - -
Second Sub-band λ (t) = µ(t)+5.5σ(t) - -
Third Sub-band λ (t) = µ(t)+5.5σ(t) - -
Fourth Sub-band λ (t) = µ(t)+5.5σ(t) - -
Final Detection - 96 % 10 %

For 8 sub-bands used the best results obtained are those when a λ (t) = µ(t) + 3σ(t)
threshold is used in each sub-band. The results are presented in Table 4.9. The detection
rate achieved is 98 % and the false alarm rate is 15 %.

Finally, by comparing the detection rates and false alarm rates obtained by testing 2,4 and
8 sub-bands in the training phase, we can state that 4 sub-bands provide the best trade-off
between the different rates. By looking at the results in Table 4.7, 4.8, and 4.9, compared to
2 sub-bands, 4 sub-bands allow a better DR and a lower FAR. Compared to 8 sub-bands, 4
sub-bands allow a close DR and a much lower FAR with a logically less computational time
(or processing speed).
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Table 4.9: Results (Detection Rate and False Alarm Rate) for 8 sub-band decomposition with
a λ (t) = µ(t)+3σ(t) time-varying threshold used in each sub-band.

8 Sub-band Decomposition Best Time-Varying Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ (t) = µ(t)+3σ(t) - -
Second Sub-band λ (t) = µ(t)+3σ(t) - -
Third Sub-band λ (t) = µ(t)+3σ(t) - -
Fourth Sub-band λ (t) = µ(t)+3σ(t) - -
Fifth Sub-band λ (t) = µ(t)+3σ(t) - -
Sixth Sub-band λ (t) = µ(t)+3σ(t) - -
Seventh Sub-band λ (t) = µ(t)+3σ(t) - -
Eighth Sub-band λ (t) = µ(t)+3σ(t) - -
Final Detection - 98 % 15 %

Therefore, after the training phase result we tend to use in the testing phase a 4 sub-band de-
tector with a λ (t) = µ(t)+5.5σ(t) negative energy fluctuations-based time-varying threshold
in each sub-band. The results of this testing phase are presented in Figure 4.8.

4.3.4 Results of the testing phase for the different sub-band detectors

In Figure 4.8 we present the results of the testing phase of the 4 sub-band detector with a 4 dB
constant empirical threshold, the 4 sub-band detector with λ = µ + 4.5σ constant statistical
threshold and the 4 sub-band detector with negative energy fluctuations-based time-varying
threshold λ (t) = µ(t)+5.5σ(t).

For the 4 sub-band detector with constant empirical thresholds, the FAR is 37 %, and the
detection rate is 79 %. For the 4 sub-band detector with constant statistical thresholds, the
FAR is 24 %, and the detection rate is 81 %. For the 4 sub-band detector with negative energy
fluctuations-based time-varying threshold the FAR is 4 % and the detection rate is 97 %.
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Figure 4.8: A comparison of the testing phase result of the 3 different sub-band detectors; those
coupled with constant empirical thresholds, those with constant statistical thresholds and those
with time-varying thresholds.

The results presented, show that the 4 sub-band detector with negative energy fluctuations-
based time-varying threshold is the most performing among all sub-band detectors. It is able
to reduce the FAR by more than half of the values obtained with 4 sub-band detectors with
constant thresholds. Moreover, The detection rate achieved is increased by around 20 %. Thus,
the superiority of the 4 sub-band detector with negative energy fluctuations-based time-varying
threshold compared to the other 4 sub-band detectors is conspicuous.

4.4 The relative intensity increase of the smallest detectable
micro-embolus

In an aim to discover the characteristic embolus relative intensity increase that latter presented
detectors are capable of detecting we choose a sample of 175 embolic events having intensity
increases below 15 dB. For each detector we evaluate the embolic events that it is capable
of detecting and we discover out of these detections the embolus with the smallest relative
intensity increase. The results are presented in Figure 4.9.

As can be depicted in the figure, the detection using constant empirical thresholds com-
bined with sub-band decomposition stops at embolic signals having intensity increases below
2.6 dB. The detection based on statistical constant thresholds combined with sub-band decom-
position stops at embolic signals having intensity increases below 2.3 dB. The negative energy
fluctuations-based energy detector coupled with sub-band decomposition is capable of detect-
ing micro-embolic signatures with relative intensity increases as low as 0.55 dB.
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Figure 4.9: Embolus Intensity Increases relative to background blood energy for a sample of
175 chosen embolic events. The smallest detectable embolus by the sub-band detector coupled
with empirical threshold is as low as 2.6 dB. The smallest detectable embolus by the sub-band
detector coupled with statistical threshold is as low as 2.3 dB. The smallest detectable embolus
by the sub-band detector coupled with the negative energy fluctuations based time-varying
threshold is as low as 0.55 dB.

We can deduce from the latter results that the negative energy fluctuations based detector
coupled with sub-band decomposition is able to detect the smallest embolic signatures with
a size of 55.18 µm calculated from the 0.55 dB relative intensity increase as presented in
appendix A.

Furthermore, by analyzing the results between Figures 3.10 and 4.9 we can realize that sub-
band detection, compared to whole band detection, offers the possibility of detecting smaller

79



CHAPTER 4. COUPLING OF A NEGATIVE ENERGY FLUCTUATIONS-BASED
DETECTOR WITH SUB-BAND DECOMPOSITION: A HIGHLY PERFORMING

EMBOLUS DETECTION TECHNIQUE

embolic signatures when used with any method.
To be noted that the micro-embolic size corresponding to these relative intensity increase

values are provided in the appendix.

4.4.1 Sub-band detection compared to whole band detection

Although in the results above we focused on the performances of the various sub-band detect-
ors, we have to recall that a main aim in this study is to propose sub-band decomposition as a
strong tool to ameliorate micro-embolus detection compared to the detection performed in the
whole Doppler frequency band.

To shed light on this point, we shall compare the results obtained with sub-band detection
to that of whole band detection when the different thresholds are used.

First we compare the performance of both whole band and sub-band detectors with constant
empirical thresholds used. We note that the whole band detection results were presented in the
previous chapter. For simplicity and direct comparison, both results are represented in Figure
4.10. Compared to the whole band detector, the 4 sub-band detector allows increasing the
detection rate by more than 13 % and reducing the FAR by more than 6 %.

Figure 4.10: Comparison of the Detection Rate and False Alarm Rate for whole band detector
and 4 sub-band detector with constant empirical thresholds.

Second we compare the performance of both whole band and sub-band detectors with con-
stant statistical thresholds used. We note that the whole band detection results were presented
in the previous chapter. For simplicity and direct comparison, both results are represented in
Figure 4.11. Compared to the whole band detector, the 4 sub-band detector allows increasing
the detection rate by more than 12 % and reducing the FAR by more than 17 %.
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Third we compare the performance of both whole band and sub-band detectors with neg-
ative energy fluctuations-based time-varying threshold detection used. We note that the whole
band detection results were presented in the previous chapter. For simplicity and direct com-
parison, both results are represented in Figure 4.12. Compared to the whole band detector, the
4 sub-band detector allows increasing the detection rate by more than 8 % and reducing the
FAR by more than 10 %.

As expected, in all cases, sub-band detection produces better results than whole band de-
tection.

Figure 4.11: Comparison of the Detection Rate and False Alarm Rate for whole band detector
and 4 sub-band detector with constant statistical thresholds.
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Figure 4.12: Comparison of the Detection Rate and False Alarm Rate for whole band detector
and 4 sub-band detector with negative energy fluctuations-based time-varying threshold.

On another hand, as stated in the introduction of this chapter, a main purpose behind intro-
ducing sub-band decomposition is reducing the number of red blood cells contributing in the
background Doppler signal and thus amplifying the contrast between the micro-embolic signa-
ture and the background Doppler signal. One parameter to measure this contrast amplification
and prove the latter hypothesis is the embolus relative intensity increase presented in chapter 2.

In the survey we present here, we have chosen a set of 50 embolic events recorded in the
gold standard. For each embolic event we calculate the corresponding intensity increase relative
to the background signal in both the whole Doppler band and in the 4 sub-band decomposition.
The mean relative intensity increase for the 50 embolic events achieved in both types of bands
are presented in Figure 4.13. Through this figure, we can verify that by using sub-band decom-
position the relative intensity increase of emboli is hugely augmented compared to whole band
detection. The increase is more than 6 dB.
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Figure 4.13: Comparison of the mean relative intensity increase for the 50 embolic signals
calculated in both the whole band and the 4-sub-band.

As a result of this augmentation induced by sub-band decomposition, the detectability of
micro-embolus is boosted. For instance, even when using constant empirical thresholds of
detection that were proven unreliable for micro-embolus detection the sub-band decomposition
makes detecting some of these micro-emboli possible. An illustration is given in Figure 4.14.
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Figure 4.14: a) A micro-embolus signature cannot be detected in the whole band Doppler
signal upon setting a suitable constant empirical threshold. b) By applying sub-band decom-
position and setting the suitable empirical threshold in each sub-band, the same micro-embolus
signature is well detected in the first sub-band.
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4.5 Sub-band Decomposition achieved through Wavelet Packet
Decomposition

In the previous sections, we have introduced the detection process and the results of the Short
Time Fourier Transform sub-band decomposition. In the current section, we will present an-
other method we have tested to apply sub-band decomposition which is the Wavelet Packet
Decomposition (WPD).

Long time ago the wavelet transform (WT) was introduced as an alternative for the Fourier
transform-based detection methods. A number of researchers reported that the WT performs
better than the Fourier transform for analysis and detection of embolic signals (Aydin and
Markus, 1999), (Aydin et al., 1999), and (Krongold et al., 1999).

Generally, and not to open a wide discussion of the two techniques, the wavelet transform
of a signal is the decomposition of this signal over a set of functions obtained after dilatation
and translation of an analyzing wavelet. Unlike Fourier analysis, wavelet analysis does not use
a time-frequency region, but rather a time-scale region (scale is 1/frequency). While Fourier
analysis consists of breaking up a signal into sine waves of various frequencies, wavelet analysis
is the breaking up of a signal into shifted and scaled versions of the original or mother wavelet.
This mother wavelet belongs to a certain family of wavelets such as the Daubechies, Haar,
Meyer and Morlet families.

The wavelet transform is supposed to be very suitable for the detection of emboli because
wavelets are similar to the unpredictable embolic signals. They are irregular, asymmetric and
not periodic. Moreover, WT produces a variable time-frequency resolution over the time-
frequency plane by providing good time resolution at high frequencies and good frequency
resolution at low frequencies. In contrast to the STFT which uses a single analysis window,
WT allows a windowing technique with variable-sized regions. It allows the use of long time
intervals (long windows) where more precise low-frequency information is needed and short
windows where high-frequency information is needed.

Continuous wavelet transform [(Krongold et al., 1999), (Aydin and Markus, 1999), (Aydin
et al., 1999), (Ng et al., 2008), (Gonçalves et al., 2011), (Ferroudji et al., 2012), (Gonçalves
et al., 2013)] discrete wavelet transform [(Aydin et al., 2001), (Aydin et al., 2004), (Aydin,
2007)] the dual tree complex wavelet transform [Serbes et al. (2014), (Serbes et al., 2015)]
and the wavelet packet decomposition [(Girault et al., 2007), (Chen and Wang, 2008), (Girault,
2013), (Lueang-on et al., 2013)] were all used for micro-embolus detection. All different types
of wavelets proposed in the different studies were proven to be powerful in micro-embolus
detection.

In our study here, we proposed the wavelet packet decomposition (WPD) as another signi-
ficant sub-band decomposition tool to improve micro-embolus detection. The aim behind this
is to assess the effect of using wavelets on our set of signals and detectors and also to compare
the results of the WPD to the STFT sub-band decomposition for the different detectors.

4.5.1 The wavelet packet decomposition calculation

The wavelet packet decomposition detection procedure is similar to that achieved by STFT
sub-band decomposition given in Figure 4.4 with the only difference being the absence of
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FFT calculation. Rather, the wavelet packet decomposition decomposes the extracted Doppler
sequence into a number of n ideal equal-width sub-bands denoted as nodes in the wavelet
packet decomposition tree shown in Figure 4.15. j denotes the decomposition level. At each
decomposition level j, the frequency axis is divided into 2j sub-bands.

To detail the process in Figure 4.15, the WPD decomposes the signal into approximation
(W1,0) and details (W1,1). The approximations are the high-scale, low-frequency components of
the signal. The details are the low-scale, high-frequency components. To get the approximation
and detail signals, the Doppler signal, x(t) passes through two filters, low pass and high pass,
and emerges as two signals. Then down sampling is applied to get from the latter 2 signals, 2
sequences called approximation and detail coefficients having each half the number of samples
as x(t). Next, reconstruction is performed (by up sampling and then filtering) on the coefficients
in order to gain reconstructed approximations (W1,0) and details (W1,1). This decomposition can
be iterated to obtain a multi-level decomposition (each level denoted by j). Detection of emboli
is majorly based on the reconstructed signals.

Figure 4.15: A 3rd order Wavelet Packet Tree. j denotes the decomposition level. At the
3rd decomposition, 8 different sub-band signals are obtained each denoted by a node and is
correlated with an index (3,0 for example). LP denotes low pass filtering and HP high pass
filtering. The third level signal W3,0 to W3,7 represent the frequency content of the original
signal x(t) within the band 0− fs/16, fs/16− fs/8, fs/8−3 fs/16, 3 fs/16− fs/4, 5 fs/16−
3 fs/8, 3 fs/8−7 fs/16, and 7 fs/16− fs/2 respectively, where f s is the sampling frequency of
the signal x(t).
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Figure 4.16: An illustration of a 5 second extracted signal segment decomposed into 4 sub-
bands by the wavelet packet decomposition.

After wavelet packet decomposition, the energy in each sub-band is calculated through the
following equation:

E j,k(t) =
∣∣∣∣∫ Wj,k(τ) dτ

∣∣∣∣2 ∀ j and k ∈ [0,2 j−1] (4.5)

where k is the position index and j is the decomposition level.
In Figure 4.16, we display the same signal used in Figure 4.5 but decomposed into 4 sub-

bands by the wavelet packet decomposition. The energies in each sub-band are denoted by
energy in nodes [2 0], [2 1], [2 2] and [2 3].

We note that the wavelet family used is Daubechies 5. In fact, there is no universal wavelet
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function that suits all types of signals. One wavelet function giving a good performance for
a database may not give the same performance for another database. Therefore, choosing the
wavelet function type depends on the degree of knowledge of the signal of interest. On our set
of signals, we tested the wavelets that are most extensively used in the literature which are the
Daubechies 5 and 8 and also the morlet wavelet. The final choice was to use the Daubechies 5
which yielded good performances.

4.5.2 Results

In order not to repeat the same illustration as in section 4.3 the main results of the WPD detec-
tion process will be briefly and directly represented.

Training phase

A study similar to that recorded in sections 4.3.1, 4.3.2 and 4.3.3 was developed to determine
the optimal number of sub-bands and optimal threshold settings for the different threshold types
used. The optimal results are directly presented below.

For the wavelet packet sub-band detection with constant empirical threshold the best results
are those obtained with a 4 sub-band decomposition (j = 2) and the threshold is set to 6dB. The
detection rate is 85 % and the false alarm rate is 23 %. The results are presented in Table 4.10.

Table 4.10: Results (Detection Rate and False Alarm Rate) for 4 sub-band wavelet packet
decomposition with a 6 dB constant empirical threshold used in each sub-band.

4 Sub-band Decomposition Best Empirical Threshold
(dB)

Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band 6 dB - -
Second Sub-band 6 dB - -
Third Sub-band 6 dB - -
Fourth Sub-band 6 dB - -
Final Detection - 85 % 23 %

For the wavelet packet sub-band detection with constant statistical threshold the best results
are those obtained with a 4 sub-band decomposition and the threshold is set to λ = µ + 5σ .
The detection rate is 85 % and the false alarm rate is 23 %. The results are presented in Table
4.11.
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Table 4.11: Results (Detection Rate and False Alarm Rate) for 4 sub-band wavelet packet
decomposition with a λ = µ +5σ constant statistical threshold used in each sub-band.

4 Sub-band Decomposition Best Statistical Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ = µ +5σ - -
Second Sub-band λ = µ +5σ - -
Third Sub-band λ = µ +5σ - -
Fourth Sub-band λ = µ +5σ - -
Final Detection - 85 % 23 %

For the wavelet packet sub-band detection with negative energy fluctuations-based time-
varying threshold the best results are those obtained with a 4 sub-band decomposition and the
threshold is set to λ (t) = µ(t)+ 6σ(t). The detection rate is 99 % and the false alarm rate is
11 %. The results are presented in Table 4.12.

Table 4.12: Results (Detection Rate and False Alarm Rate) for 4 sub-band wavelet packet
decomposition with λ (t) = µ(t)+6σ(t) time-varying threshold used in each sub-band.

4 Sub-band Decomposition Best Time-Varying Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

First Sub-band λ (t) = µ(t)+6σ(t) - -
Second Sub-band λ (t) = µ(t)+6σ(t) - -
Third Sub-band λ (t) = µ(t)+6σ(t) - -
Fourth Sub-band λ (t) = µ(t)+6σ(t) - -
Final Detection - 99 % 11 %

Testing Phase

In Figure 4.17 we present the results of the testing phase of the wavelet packet 4 sub-band
detector with constant empirical threshold, the wavelet packet 4 sub-band detector with con-
stant statistical threshold, the the wavelet packet 4 sub-band detector with negative energy
fluctuations-based time-varying threshold.

For the 4 sub-band detector with constant empirical thresholds, the FAR is 22 %, and the
detection rate is 88 %. For the 4 sub-band detector with constant statistical thresholds, the
FAR is 22 %, and the detection rate is 88 %. For the 4 sub-band detector with negative energy
fluctuations-based time-varying threshold the FAR is 6 % and the detection rate is 99 %.
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Figure 4.17: A comparison of the testing phase result of the 3 different wavelet packet sub-
band detectors; those coupled with constant empirical thresholds, those with constant statistical
thresholds and those with time-varying thresholds.

The results presented, show that the wavelet packet 4 sub-band detector with negative en-
ergy fluctuations-based time-varying threshold is the most performing between all wavelet
packet sub-band detectors. It is able to reduce the FAR by more than half of the values obtained
with 4 sub-band detectors with constant thresholds. Moreover, The detection rate achieved is
increased by around 10 %. This verifies that our new negative energy fluctuations based method
works best in different environments and under different techniques where the performance of
constant thresholds could be boosted.

Moreover, by comparing Figure 4.17 to Figure 4.8 we conclude that using wavelet packet
decomposition allows the constant thresholds to perform better. The detection rates associated
with the latter detectors are increased and the false alarm rates are decreased specially that of
the detector with empirical threshold. However, the results for the negative energy fluctuations-
based detector were nearly the same when STFT sub-band decomposition is performed where
the detection rate is increased by 1 % while the false alarm rate is 2 % higher. This verifies the
stability of this detection under different conditions.

4.6 Conclusion

In this chapter, we have first introduced sub-band decomposition, through a bank of n ideal
Short Time Fourier Transform frequency filters, as a powerful mechanism for micro-embolus
detection. In a number of cases in which the micro-embolic signal can not be clearly distin-
guished from the background energy by whole band detection, it can be distinguished through

90



4.6. CONCLUSION

sub-band filtering. By applying decomposition of the whole Doppler spectral band into a bank
of n ideal frequency bands, the concept is to reduce the number of Red Blood Cells contributing
in the background Doppler signal. Hence, this allows amplification of the contrast between the
micro-embolus Doppler energy and the background Doppler energy.

The sub-band detector is composed of n detectors associated to n Doppler frequency sub-
bands where the detection procedure is repeated in each and every sub-band simultaneously.
The final step in the sub-band detection process is merging the results from each sub-band and
assuring that the same embolus detected in more than one sub-band is counted only once in the
final detection.

The detection decision in each sub-band depends on the events detected above a threshold
in a sub-band. Therefore, sub-band decomposition is coupled with constant and time-varying
thresholds to complete the embolus detection. By coupling sub-band detection with a time-
varying threshold constructed from negative energy fluctuations we introduced in the previous
chapter, an extremely high performing detection system is obtained. This coupling outperforms
sub-band coupling with constant thresholds and is able to detect nearly all micro-emboli with
a very high detection rate reaching up to 97 % and an extremely low false alarm rate of around
only 4 %.

Furthermore, we prove that sub-band decomposition offers significant improvements over
whole band detection, when all different types of thresholds are used.

Consequently, we confirm that sub-band detection is a strong tool for enhancing micro-
embolus detection and that a detection based on the coupling of sub-band with a time-varying
threshold constructed from negative energy fluctuations, would be highly reliable and robust
than all detectors specially standard commercial techniques in which detection is performed on
the whole Doppler frequency band and empirical constant detection thresholds are employed.

On another term, we also introduced the same procedures but with the sub-band decom-
position performed using wavelet packet decomposition. The main aim behind introducing
another procedure to apply sub-band decomposition is to verify that the negative-energy based
method operates in different environments and under different techniques and can work better
that standard methods in different cases. We concluded that using wavelet packet decomposed
sub-bands the negative-energy fluctuations based detector is able to outperform the detectors
with constant thresholds, eventhough they showed highly improved detection and false alarm
rates compared to STFT sub-band decomposition, by providing high detection rate up to 99 %
and a false alarm rate of about 6 %. These results are very similar to those obtained with STFT
sub-band decomposition (97 % and 4 %) which verifies the stability of this detector under
different conditions.

In the upcoming chapter we will introduce new tools for micro-embolus detection based on
high order statistics.
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Chapter 5

Detection of Doppler Micro-Embolic
Signals using High Order Statistics

5.1 Introduction

In chapter 3, we pointed out that the probability density function was even for Doppler signal
free of embolic signature (refer to equation 3.6). This also means that the probability density
function is no more symmetric when micro-emboli are present in the artery. Quantifying the
symmetry properties could be an interesting information to improve the detection rate of micro-
embolic signatures. One interesting tool to measure the symmetrical property of a probability
density function is the skewness derived of high order statistics.

In the past few years, high order statistics (HOS) have been an extensive field of research
as they represent descriptive statistics that can be used to detect signal outliers and measure
different signal features.

High order statistics mainly the third moment skewness and fourth moment kurtosis have
been extensively used in various bio-medical signal processing fields to define, estimate and
detect several signal features. In (Colantonio and Salvetti, 2007), the kurtosis was selected as
one feature among many for HITS detection. In (Mühlbacher-Karrer et al., 2008), the skew-
ness and kurtosis were used as measures of the distribution of the signal magnitude in order to
estimate the severity of carotid stenosis. In (Altunkaya et al., 2010), the skewness and kurtosis
were used to differentiate between normally functioning mechanical heart valve from malfunc-
tioning heart valves due to thrombosis. In (Chua et al., 2010), the skewness and kurtosis were
used for the detection of non-stationary bio-acoustic signals and as indications for detecting
regions with microcalcifications. In (Gholinezhadasnefestani et al., 2015), the skewness and
kurtosis were used in the analysis of neonatal ECG signals.

In this chapter we propose new types of micro-embolic detectors based on the windowed
calculation of the third moment skewness and fourth moment kurtosis of the energy signal. We
will show that high order statistics detection can be considered another serious candidate for
micro-embolus robust detection. This work is currently submitted to the ’Computational and
Mathematical Methods in Medicine’ journal.
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5.2 The reference offline skewness and kurtosis-based micro-
embolic detection

The skewness and kurtosis based detections are represented in Figure 5.1. The steps from the
SD card extraction to the instantaneous energy calculation are all described in chapter 3.

Figure 5.1: A skewness and kurtosis based embolus detection system.

The detection methods we propose are based on calculating the skewness and kurtosis from
the energy signal presented in equation 2.5. The calculations are performed using a sliding
window g(t) where the optimal window length and overlap ratio are set during a training phase
(see Results section).

The skewness is the third order standardized moment. When calculated instantaneously (by
the sliding window) on the energy it is given by the following equation:

S(t) =
ME[E(t)−µE(t)]

3

σE(t)3 . (5.1)

The kurtosis is the fourth order standardized moment. When calculated instantaneously on
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the energy it is given by the following equation:

K(t) =
ME[E(t)−µE(t)]

4

σE(t)4 (5.2)

where µE(t) and σE(t) are the instantaneous mean and standard deviation of the energy while
ME denotes the mathematical expectation value.

A micro-embolic detection based on the skewness and kurtosis signals is represented in
Figure 5.2 b) and c). In Figure 5.2 a) we represent the detection through empirical constant
thresholds discussed in chapter 3.

To prove that high order statistics, the skewness and the kurtosis, are suitable candid-
ates for micro-embolus detection, consider a Doppler signal free of micro-embolic events
and assume that the statistical distribution remains unchanged whatever the time position is
even if the mean µi(t) and the variance σi

2(t) vary with time. Suppose there exists two
Gaussian random variables X(t2) = N[µ1(t2),σ1(t2)] and X(t3) = N[µ2(t3),σ2(t3)]. It can be
shown for the skewness S that S(t2) = S[X(t2)] = S[X(t3)] = 0 and for the kurtosis K that
K(t2) = K[X(t2)] = K[X(t3)] = 3. In this example the skewness and the kurtosis are stationary
since S(t) = 0 and K(t) = 3 for all t. This outcome can be verified whatever the distribution
form while it remains unchanged over all time values. The only change occurs in the value
of the skewness and the kurtosis but not in their stationarity. Consequently, when a micro-
embolic event occurs at a time position t1, the distribution changes. The direct consequence is
S(t1) 6= S(t2) and K(t1) 6= K(t2).

In order to complete the detection on the skewness and kurtosis signals, a threshold has
to be set in order to pick up the peak signals. We decided to establish a statistical threshold
for the skewness and kurtosis signals from their respective means µs and µk and respective
standard deviations σs and σk. This threshold is defined as λs = µs+mσs for skewness and λk =
µk +mσk for kurtosis, where m is a parameter whose value is adjusted using an optimization
training phase in a manner that increases the system’s detection rate and minimizes the false
alarm rate (refer to Results section). The thresholds are represented in Figure 5.2 b) and c).
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Figure 5.2: a) The Doppler energy signal. An empirical threshold is applied to obtain the
micro-embolic standard detection discussed in chapter 3. b) Skewness signal calculated from
the windowed energy signal. A statistical threshold is applied to complete the micro-embolic
detection. The mean value of the skewness signal is 0.7 c) Kurtosis signal calculated from
the windowed energy signal. A statistical threshold is applied to complete the micro-embolic
detection. The mean value of the kurtosis signal is 3.2. Moreover, we choose in b) and c) three
time positions: t1 = 0.72 s during which an embolus is present, and t2 = 4.7 s and t3 = 8.8 s
when no embolus is present. We detect in the case of absence of embolus: S(t2)≈ S(t3)≈ 0.7
and K(t2) ≈ K(t3) ≈ 3.2 while in the presence of embolus: S(t1) = 2.8 6= S(t3) ≈ 0.7 and
K(t1) = 11 6= K(t3)≈ 3.2

5.3 Results

5.3.1 Training phase results

Since the skewness and kurtosis calculations are performed using a sliding window g(t) on the
energy signal, an experimental test on the training phase signals is initialized to determine the
optimal length of the window g(t) and the optimal overlap ratio. The optimal temporal window
length is 0.0073 seconds and the optimal overlap used is 95 %.

Also, using these settings we test in the training phase the best statistical thresholds λs =
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µs +mσs and λk = µk +mσk for the skewness and kurtosis signals respectively. Values of m
ranging between 3 and 7 are tested. Table 5.1 shows the statistical threshold for the skewness
and kurtosis signals that best maximizes the detection rate and minimizes the false alarm rate.

Table 5.1: Training phase results of the optimal thresholds that best maximize the detection
rate and minimize the false alarm rate for the skewness and kurtosis based detectors.

Optimal Threshold Detection
Rate ( %)

False
Alarm Rate
( %)

Skewness Detector λs = µs +4σs 76 % 9 %

Kurtosis Detector λk = µk +5σk 77 % 9 %

5.3.2 Testing phase results

Figure 5.3 represents the testing phase results for the two different energy detectors. For the
energy detector based on skewness calculation the detection rate is 78 % and the false alarm
rate is 9 %. For the energy detector based on kurtosis calculation the detection rate is 80 % and
the false alarm rate is 10 %.1

Figure 5.3: Detection and false alarm rate results for the skewness and kurtosis based detection.
The results of the standard detection proposed in chapter 3 is also presented as a reference.

If compared to the standard detection using empirical constant thresholds presented in
chapter 3 in Figure 3.9, the above results show that the new detectors are able to reduce the

1Please recall here that the training and testing phases are derived from the same database used in the previous
chapters.
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false alarm rate by more than 30 %. Moreover, the detection rate of the new detectors is in-
creased by 12 % for the skewness detector and 14 % for the kurtosis detector compared to that
achieved by standard detectors. These results assert the accuracy and superiority of the detec-
tion based on skewness and kurtosis calculation of the Doppler energy signal over the standard
detection.

In view of the fact that we have proposed 2 detectors, one based on skewness detection
and the other on kurtosis detection, it is convenient to give note that the two detectors per-
form very similarly and yield very close results. The only difference that could be observed is
that the kurtosis signal displays small fluctuations around the embolic peak detected while the
skewness signal fluctuates more strongly around the embolic peaks. This provides the kurtosis
detection with a small advantage in terms of the detection threshold which can be more easily
and robustly set. This also means that the distortion observed in the probability density function
seems to affect more the curvature than the symmetry.

5.4 Particular H-shaped peaks

We should point out that in some cases, the signals corresponding to the micro-embolic de-
tections in the skewness and kurtosis signals appeared as H-shaped and thus are composed of
2 alternative peaks that are distanced apart by a certain distance. To determine this distance
and thus count the two H-shaped parallel detections as one detection, we initialized an ex-
perimental study to calculate this distance over the different signals we used. The distance is
constant showing a value of 170 milliseconds. The H-shaped peaks are shown in Fig. 5.4

Figure 5.4: A demonstration of H-shaped peaks corresponding to micro-embolic detections.
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5.5 The relative intensity increase of the smallest detectable
micro-embolus

In an aim to discover the characteristic embolus relative intensity increase that the skewness
and kurtosis-based detectors are capable of detecting we choose a sample of 175 embolic events
having intensity increases below 15 dB. For each detector we evaluate the embolic events that
it is capable of detecting and we discover out of these detections the embolus with the smallest
relative intensity increase. The results are presented in Figures 5.5.

As depicted in Figure 5.5, the detector based on skewness calculations is able to detect
micro-embolic signatures with relative intensity increases as low as 1.6 dB. The same results
were obtained with the detector based on kurtosis calculations.

To be noted that the micro-embolic size corresponding to these relative intensity increase
values is around 67.33 µm. The calculations are provided in the appendix.
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Figure 5.5: Embolus Intensity Increases relative to background blood energy for a sample of
175 chosen embolic events. The smallest detectable embolus by the detector based on skewness
calculations is as low as 1.6 dB and that detected by the detector based on kurtosis calculations
is also 1.6 dB.

5.6 Conclusion

In this chapter, we proposed two detectors based on the calculation of the skewness and kurtosis
of the Doppler energy signal, as a tool for an enhanced micro-embolus detection.

The results obtained were clear. The methods based on HOS gave high detection rates with
very low false alarm rates. They were superior to standard detection using empirical thresholds
dicussed in chapter 3. The reason explaining such superiority lies in the HOS sensitivity in
modifying the distribution form. Based on the fact that the occurrence of a micro-embolus su-
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perimposed on the Doppler energy signal imposes changes in the distribution of this signal, the
skewness and kurtosis provided a new tool to detect this distribution change. During embolus-
free periods the Doppler energy signals’ distribution is fixed and its skewness and kurtosis are
never altered. They do not show any variations. However, in the presence of a micro-embolus
superimposed on the energy signal, the skewness and kurtosis signals are altered and the em-
bolus is attributed with a peak whose peakedness level is higher than all the other points of the
signal.

Consequently, we can affirm that skewness and kurtosis can be considered as new tech-
niques for enhancing micro-embolic detection systems.

We should point out that after having implemented the HOS as a detection tool, we planned
to introduce and test the use of time-varying thresholds and also sub-band decomposition into
the HOS detection process. However, due to time constraints the latter steps were initialized
but not completed. This will construct a future work.
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Chapter 6

A Signal Processing Hierarchical Method
for Artefact Rejection

6.1 Introduction

As stated previously in chapter 2, artefacts are High Intensity Transient Signals that appear
in the Doppler signal due to probe tapping, probe displacement, patient movement and other
external factors during TCD recording.

Although artefact rejection is not taken into account in many embolus detection systems,
nevertheless it remains a fundamental step in any complete and robust detection system. Indeed,
misinterpreting artefacts as embolic detections has the potential to mislead researchers and also
readers into thinking the embolus detection may be more clinically valuable than it actually is.
Moreover, applying embolus detection on intentionally selected artefact free signal segments
could also raise questions on the reliability and feasibility of the detection system. These facts
could lead to many dangerous consequences ranging from unreliable embolus detection reports
to causing risks on patient safety.

6.2 Pre-considerations

At our end, we have included in the complete embolus detection systems we proposed an
artefact rejection phase that ensures eliminating artefacts present in our database signals and
thus applying the embolus detection process on artefact-free ’clean’ signals. In order to remind
you of the placement of the artefact phase in our complete embolus detection systems, we
represent Figure 6.1 extracted from Figure 2.3.

A widely known fundamental method to separate artefacts from emboli is the dual-gate or
multi-gate TCD [ (Georgiadis et al., 1996), (Smith et al., 1996), (Molloy and Markus, 1996)
(Evans, 2001), (Brucher and Russell, 2002) ]. The technique is based on tracking and tracing
the movement of the embolus at 2 separate depths in the insonated artery. Therefore, more than
one Doppler sample volume is used. The technique usually includes two sample volumes at
different positions and the signal from each volume or gate is monitored for transient increases
in power. If an embolus is passing, then it will enter the first sample volume before the second
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Figure 6.1: Extracted part form Figure 2.3 in chapter 3 to show the artefact rejection phase
position in our complete detection system.

sample volume in the direction of embolus movement. Therefore, the resulting
transient increase from the first sample volume will occur before that in the second sample
volume with a time delay. In a second case, where transient increases is not due to an embolus,
it is likely that either the increase in power will occur only in one sample volume or in both
samples simultaneously.

However when a single-gated system is to be used, other artefact features should be con-
sidered to perform rejection. The latter case resembles the situation of this dissertation, where
the Holter system used allows only single gated emission. Therefore, we represent Doppler
signal-gated based artefact rejection procedures.

When using single-gated TCDs, the leading method for artefact rejection depends on a
strong hypothesis stating that in the Doppler blood flow velocity spectrum artefacts are bidirec-
tional while emboli are unidirectional. This method has been extensively proved and stated by
Spencer et al. (1990), Markus et al. (1993), Ringelstein et al. (1998), Aydin et al. (2004), Choi
et al. (2010) and Serbes et al. (2014). This means that artefacts exhibit velocity components
both in the forward and reverse flows while emboli exhibit velocity components in the forward
flow only. The forward flow denotes the channel that contains the main flow of blood while in
the reverse no blood flow is present (noise signal).

However, a study performed by a former laboratory colleague (Biard et al., 2003) showed
that artefact signals, even if rarely occurring, could be exclusively unidirectional in the forward
flow. In one case of artefacts caused by probe displacement, it was shown that when this probe
displacement happens in the same forward sense as the blood flow, tissue and wall motion
artefacts will always show in the forward Doppler spectrum.

Based on this, and in order to discover the directionality properties of the artefacts we have
in our database, we tested 218 artefacts using spectrogram visualization of the forward and
reverse flows. 95 % of the artefacts are bidirectional and 5 % are unidirectional.
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Figure 6.2: A representation of the forward flow and reverse flow spectrograms of a 5 second
signal segment containing 5 artefacts. Note that in many cases artefacts show a straight line
running through all the vertical spectrum.

6.3 Rejecting Bidirectional Artefacts

Since the majority of artefacts turned out to have a bidirectional behavior, we will first present
the method we proceeded with to reject this type of artefacts. To better understand the proced-
ure, we present in Figure 6.2 the forward and reverse spectrograms of a certain signal segment
containing 5 artefact signatures. The calculated energies from these spectrograms are presented
in Figure 6.3. As can be seen from the two figures, the artefact signals can be clearly depicted
in the reverse flow spectrogram and in the calculated reverse energy signal.

The first step in this artefact rejection procedure is to identify and detect the artefacts in
the reverse flow energy signal. The artefacts in this blood flow-free energy signal are always
associated with higher peaks than the background noise. Thus, they can be easily and straight-
forwardly detected by a peak detection algorithm or by a threshold set above the maximum
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Figure 6.3: A representation of the forward flow and reverse flow energy signals calculated
from the spectrograms in Figure 6.2.

background level as shown in Figure 6.3. Once the artefacts in the reverse flow are detected,
the next step is to cancel these artefacts at their same positions in the forward flow. For clari-
fication, we note that the artefact rejection is achieved on the forward flow signal since it is the
signal where embolus detection is performed. Rejecting artefacts in the reverse flow is of no
value.

Therefore, in order to reject the artefacts in the forward flow in a robust manner, we tend to
cancel their associated forward signature. In a technical manner, canceling the artefact signa-
ture in the forward flow resembles setting it to zero. However, since the energy is not centered
(mean of the energy is not zero), technically setting the value of the forward artefact to zero
results in a misshaped or malformed signature directed in a descending form in the forward
signal. So in order, to overcome this problem, we propose to set the value of the artefact sig-
nature in the forward flow equal to the value of the smooth signal presented in chapter 3. The
smooth signal, being a description of the trend of the energy signal, contains only blood flow
and is free of embolic or artefact signatures. Its value at artefact signatures is approximately
zero. Therefore, setting the artefact signature to the value of the smooth will cancel it out in the
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Figure 6.4: A representation of the forward flow energy signal of Figure 6.3 after the artefact
rejection procedure.

energy signal. In a mathematical representation we can say that:

Energyarte f act position( f orward f low) = Smootharte f act position( f orward f low). (6.1)

In Figure 6.4, we show the artefact signatures of the energy signal of Figure 6.3 after being set
to the smoothed value at their position. The artefacts are well canceled.

To be noted that a primary rejection was first based on subtracting the energy amplitudes of
the detected artefacts in the reverse flow from their amplitudes in the forward flow. However,
the method was disturbed by the fact that the artefact energies in the forward and reverse flow
are never the same. Indeed the energy in the forward flow is usually greater. This is because
in the forward flow the energy of the blood flow adds up to the signal. While in the reverse
flow, no blood flow is conducted thus only negligible noise adds up to the energy. After this
achieved study, we would like to address the fact that the energy of the artefact reverse and
forward components is never identical.

6.3.1 Showers of Artefacts

In particular cases, artefacts produce very large signals of long duration and high amplitude.
They induce intense burden on the energy signal to a level that the energy signal disappears
and can no longer be seen or detected. For these types of artefacts it is nearly impossible to
cancel them by the previous method we introduced. In this case, the whole reverse flow energy
is subtracted from the forward flow energy in order to completely remove the large artefacts. In
the case of showers, and as stated before, the forward flow energy of artefacts is always greater
than the reverse energy of artefacts but the particularity here is that the energy amplitudes
are approximately equal. Therefore, subtracting the two energy signals would yield perfect
elimination of the artefacts. An example of a shower of artefacts is presented in Figure 6.5.
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In Figure 6.6, the energies of the forward and reverse flows are represented. It can be noticed
that the latter energies are approximately equal. Also in Figure 6.6, the subtraction of the
forward and reverse flow energies is shown. It can be clearly seen how the subtraction allows
perfect elimination of the artefact showers and also allows retrieving the forward energy signal
(background) that had been embedded in the artefact showers. However, on another hand, at
the positions where the artefacts were removed, the background flow was also removed. This
is the price to pay with such techniques for rejecting artefact showers. No other solutions have
been envisaged to overcome this at the moment, but the removed background flow will not
greatly influence the application of detection techniques.

Figure 6.5: A representation of a shower of artefacts.
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Figure 6.6: A representation of the forward and reverse flow energy signals of the spectrograms
in Figure 6.5. By subtracting the reverse signal from the forward signal, the artefact showers
are eliminated and the forward signal that had been embedded in the artefacts is retrieved.

6.3.2 Automatic Holter probe displacement Artefacts

Due to the automatic nature of the robotized Holter probe, this probe automatically displaces
from one position to another at some instants during the recording time. During such rapid
short movements, the signal recording is halted until the probe displaces and restarts again.
After this restart of the probe insonification, an artefact associated to the probe displacement is
directly recorded within an interval of 100 to 200 milliseconds. These occuring artefacts are
eliminated by the method proposed in section 6.3. An example of this type of artefacts is given
in Figure 6.7 and Figure 6.8.
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Figure 6.7: A representation of an artefacts resulting from the automatic Holter probe displace-
ment .

Figure 6.8: A representation of the signature of an artefact resulting from probe displacement
in the reverse and forward flow energy signals. Both flow signals are halted when the probe is
in displacement. This artefact is rejected using the method of section 6.3.
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6.4 Rejecting Unidirectional Artefacts

While the bidirectional artefacts in the database were identified by using the reverse flow, the
unidirectional artefacts were identified based on their frequency component in the forward flow
spectrogram. The forward flow was used since the study of Biard et al. (2003) had demon-
strated that artefacts could be unidirectional particularly in the forward flow. An example of
a unidirectional artefact is presented in the spectrogram in Figure 6.9. The identification of
the unidirectional artefacts in our database was primarly based on frequency since it has been
widely mentioned that artefacts have lower frequencies than emboli [(Markus et al., 1993),
(Devuyst et al., 2001), (Biard et al., 2003), (Darbellay et al., 2004)]. Therefore, we determined
the embolic and artefact frequency range. The embolic frequency ranges from 631 Hz to 2005
Hz. The artefact frequency ranges from 125 Hz to 550 Hz. Then a search was initialized in
the forward spectrogram for signatures with frequencies between 125 Hz to 550 Hz that would
correspond to artefacts. If no corresponding signature is found in the reverse flow, then the for-
ward signature is recoreded as a unidirectional artefact. Moreover, in order to perfectly confirm
that these signatures are artefacts, we searched for artefact-embolus discriminative parameters
based on the energy signal rather than on the spectrogram. Two discriminative parameters were
found, the rise rates and fall rates. These two parameters could assure the signature found in
the forward flow spectrogram is an artefact. The results of the rise rates and false rates for
both embolic and artefact signals are presented in Figure 6.10. Embolic signal rise rates range
between 0.015 s and 0.05 s while the fall rates range between 0.02 and 0.03 s. Artefact signal
rise rates range between 0.002 and 0.01 s while the fall rates range between 0.002 s and 0.015
s. At the end, 11 unidirectional artefacts were depicted and confirmed and then rejected by the
same method in section 6.3 by setting them to the smooth value.

6.5 Results

218 artefact signals are included in our database constituted of 25 signals. As stated in the intro-
duction section 207 are bidirectional artefacts (95 %). By applying the bidirectional procedure
for removing artefacts we succeeded in removing 202 out of these 207 artefacts. Moreover, 11
artefacts (5 %) were identified as unidirectional forward artefacts and were rejected. Therefore
in total, out of the 218 artefacts, 213 were successfully removed.
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Figure 6.9: A spectrogram representation showing a unidirectional forward artefact pointed out
in red in the upper spectrogram.
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Figure 6.10: A box plot showing the rise rates and fall rates of embolic and artefact signals.
Embolic signal rise rates range between 0.015 s and 0.05 s while the fall rates range between
0.02 s and 0.03 s. Artefact signal rise rates range between 0.002 s and 0.01 s while the fall rates
range between 0.002 s and 0.015 s.

6.6 Conclusion

High intensity transient signals produced due to artefacts generated during the TCD recording
could highly affect the performance and reliability of any embolus detection process. For this
reason, we have included an artefact rejection phase applied before initialization of the embolus
detection procedures in order to ensure that the signals are artefact-free clean signals. This arte-
fact rejection phase provides more reliability and precision to the different embolus detection
systems proposed.

We have covered the rejection and elimination of different bidirectional and unidirectional
artefacts we might encounter in the database we use. The methods are founded on the fact that
the Holter system is single-gated. Thus we prove that it is possible to robustly reject artefacts
without necessarily using standard rejection procedures based on dual-gated or multi-gated
TCDs.
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Chapter 7

Conclusions, limitations and outlook

7.1 Conclusions

In order to understand the nature of micro-emboli and the importance of achieving a robust
micro-embolic detection system, we have explained in this dissertation different biological
and physical aspects of micro-emboli before discussing cerebral embolism and its relation to
Cerebrovascular Accidents, the second cause of mortality worldwide. After introducing a liter-
ature review of the different detection methods previously introduced, we presented a technical
demonstration of the TCD instrument of detection along with the new Holter TCD we use.

As a purpose to ameliorate the detection of micro-embolic signals, we have proposed sev-
eral offline signal processing detection systems. The systems are original and based on several
hypotheses that were not considered until now. Major improvements were achieved ranging
from increasing micro-embolic detection rates, decreasing the false alarm rates, and detecting
very small micro-emboli that could constitute in later stages precursors of coming large emboli
with high stroke risks.

In the detection phase, first we implemented standard detection methods on the set of real
signals constituting our database which was also proved to be homogeneous. From a con-
ceptual point of view, the standard detection is defined by the detection applied on the whole
Doppler energy signal with constant empirical thresholds used for the decision of detecting
micro-embolic signals. We also re-implemented a detection similar to the standard but with the
use of constant thresholds determined from the statistics of the energy signal. Both constant
threshold-based detections were used as comparison tools with the new proposed detectors.

A novel technique we first introduced in chapter 3 is based on the detection of emboli
from energy fluctuations rather than from the energy signal. We also developed a time-varying
threshold rather than using traditional constant thresholds. The technique proved to be a very
solid mean for detecting the smallest micro-emboli in a robust manner.

A second idea, presented in chapter 4, was to introduce sub-band decomposition as an addi-
tional tool that would boost the detection performances. Indeed, when the energy fluctuations-
based detector was coupled with sub-band decomposition extremely powerful results were ob-
tained. The detection rate was hugely increased and the false alarm rate severely decreased with
the ability of detecting very small-sized micro-emboli. The sub-band decomposition method
also proved to be effective when used with the standard detection where it helped increase the
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performances of these detectors. Sub-band decomposition was introduced in two methods, first
through decomposing the short time Fourier transform spectrum into n ideal frequency bands
and second using the wavelet packet decomposition to obtain n ideal frequency bands.

On another hand, in chapter 5, we proposed yet two other detectors based on windowed
calculation of the skewness and kurtosis of the energy signal. The implementation was original
and carried effective solutions particularly in terms of decreasing the false alarm rates while
preserving high detection rates.

Moreover, in order to ensure the reliability and well-functioning of the different detection
systems, we included an artefact rejection procedure, in chapter 6, so that both bi-directional
and unidirectional artefacts are eliminated. This in turn ensures that the presence of artefacts
would not mislead the detection systems.

There are a number of implications for clinical strategies and patient outcome based on
the highly-performing techniques we achieved. Due to low relative intensity increase-detected
micro-emboli, detection of small micro-embolic events would be more achievable. High micro-
embolic detection rates, would boost prevention of Cerebrovascular Accidents and enhance
patient safety. Moreover, owing to the low false alarm rates achieved, more reliable and factual
reports could be handed to medical doctors. Thus more truthful diagnosis and treatment would
be offered to the patients by these medical doctors. Together, these factors should enhance the
capabilities of medical diagnosis ranging from micro-embolic detection to patient treatment.

7.2 Limitations

• The different detectors were applied to artefact and embolic Doppler signals solely. The
database lacked healthy signals (embolus and artefact free).

• Inability to consider an in vitro model where the presence of an embolus could be con-
firmed under controlled conditions.

7.3 Outlook

In this dissertation, we have contributed in clarifying and classifying the problematic of detec-
tion of micro-emboli and we brought along quantifiable solutions in terms of performance of
detection.

Furthermore, the following points should be considered in the terms to come:

• Implementing time varying thresholds in the high order statistics based detection and also
coupling this detection with sub-band decomposition. The latter steps were not achieved
due to lack of time.

• Testing the performance of the different proposed detectors on a set of healthy signals.

• Testing the performance of the different proposed detectors on a set of signals acquired
using a TCD system other than the Holter TCD.

• Applying the developed algorithms in an online Holter system.
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• Build and test other signal processing techniques for the detection of micro-emboli such
as using the Hidden Markov Model.

• Transform the built detection algorithms to commercial versions (C++ for instance) that
could be used automatically on PCs, tablets, i-phones, etc.
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Appendix A
Size estimation of the smallest detected
micro-emboli

In an original step, we desire to calculate the actual size of the smallest micro-embolic signa-
ture that we have detected. For this purpose, we perform size calculations based on the relation
stated by Moehring and Klepper (1994) and Evans (2003), in which the relative intensity in-
crease of an embolus is given as a function of the backsacttering cross section of the blood red
blood cells and the backscattering cross section of the embolus itself.

RelativeIntensityIncrease =
σbloodEmb

σblood
. (A-1)

with σbloodEmb = the backscattering cross section from the blood when an embolus is present in
the sample volume
and σblood = the backscattering cross section from the blood alone in the sample volume. It is
calculated as:

σblood = NRBC×σRBC (A-2)

where NRBC is the number of RBCs and σRBC the backscaterring cross section of one RBC
given by:

σRBC = 4π
V 2

RBCπ2

λ 4
0

[
κRBC−κ0

κ0
+

ρRBC−ρ0

ρRBC
cos(180◦)

]2

(A-3)

where VRBC is the volume of one red blood cell calculated as:

VRBC =
4
3

πR3 (A-4)

with the red blood cell assumed to be a sphere of radius R approximately around 3.5 µm
(Jensen, 1996). λ0 = 385 µm is the wavelength calculated from a frequency f0 = 4MHz. κRBC
and ρRBC are respectively the adiabatic compressibility and density of the red blood cell. They
show small perturbation from the mean values κ0 and ρ0 of the medium (plasma) surrounding
them. The values of the mass density and adiabatic compressibility for the red blood cells
are 1.092 (g/cm3) and 34.1 (10−12 cm/dyn) respectively. The values of the mass density and
adiabatic compressibility for plasma are 1.021 (g/cm3) and 40.9 (10−12 cm/dyn) respectively
(Jensen, 1996).

127



Since VRBC is the volume of one red blood cell and hematocrit, H, is the ratio of the red
blood cells’ volume to the total blood volume, the number of red blood cells NRBC can be
written as:

NRBC =
H

VRBC
. (A-5)

Hence, the backscattering from the whole blood can be calculated as:

σblood =
H

VRBC
×σRBC. (A-6)

On another hand, the backscattering cross section from the blood when an embolus is
present in the sample volume σbloodEmb can be given as the sum of the backscattering from
the blood and the backsacterring from the embolus:

σbloodEmb = σbloodE +σEmb (A-7)

Without loss of generality, by considering the embolus as a large RBC, the backscattering
cross section of an embolus is given as:

σEmb = 4π
V 2

Embπ2

λ 4
0

[
κEmb−κ0

κ0
+

ρEmb−ρ0

ρEmb
cos(180◦)

]2

(A-8)

where VEmb is the quantity to be inferred, and from which we can calculate the radius of the
embolus by

VEmb =
4
3

πR3
Emb (A-9)

κEmb and ρEmb are respectively the adiabatic compressibility and density of the embolus. The
two quantities are given as ρEmb = 928 kg/m3 and

κEmb =
1

ρEmb.c2 . (A-10)

σbloodE is the backscattering cross section backscattered by the rest of the blood that is not
occupied by the embolus. In other words, it is that backscatterred by the RBC that are not
replaced by an embolus. It can be modeled as follows:

σbloodE = NRBC×σRBC−n×σRBC (A-11)

where n is the number of RBCs that the present embolus replaces.
However, in most cases n� NRBC and thus n can be neglected and σbloodE is the same as

σblood .
The upper calculations, performed on the smallest detected emboli we presented in the

chapters of part II, supplied the following diameters:
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Table 1: The calculated diameters for the smallest detected micro-emboli

Detection Method Relative Intensity Increase of
the smallest detected embolus
(dB)

Diameter
(µm)

Whole band detection with
constant empirical thresholds

5.8 dB 91.47 µm

Sub-band detection with con-
stant empirical thresholds

2.6 dB 74.53 µm

Whole band detection with
constant statistical thresholds

4.1 dB 83.06 µm

Sub-band detection with con-
stant statistical thresholds

2.3 dB 72.56 µm

Whole band detection based
on negative energy fluctu-
ations

0.8 dB 59.02 µm

Sub-band detection based on
negative energy fluctuations

0.55 dB 55.18 µm

Detection based on skewness
calculations

1.6 dB 67.33 µm

Detection based on kurtosis
calculations

1.6 dB 67.33 µm
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