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Abstract

Spectral unmixing has been an active field of research since the earliest days of hyper-

spectral remote sensing. It is concerned with the case where various materials are found in

the spatial extent of a pixel, resulting in a spectrum that is a mixture of the signatures of

those materials. Unmixing then reduces to estimating the pure spectral signatures and their

corresponding proportions in every pixel. In the hyperspectral unmixing jargon, the pure

signatures are known as the endmembers and their proportions as the abundances. This

thesis focuses on spectral unmixing of remotely sensed hyperspectral data. In particular,

it is aimed at improving the accuracy of the extraction of compositional information from

hyperspectral data. This is done through the development of new unmixing techniques in

two main contexts, namely in the unsupervised and nonlinear case. In particular, we propose

a new technique for blind unmixing, we incorporate spatial information in (linear and non-

linear) unmixing, and we finally propose a new nonlinear mixing model. More precisely, first,

an unsupervised unmixing approach based on collaborative sparse regularization is proposed

where the library of endmembers candidates is built from the observations themselves. This

approach is then extended in order to take into account the presence of noise among the

endmembers candidates. Second, within the unsupervised unmixing framework, two graph-

based regularizations are used in order to incorporate prior local and nonlocal contextual

information. Next, within a supervised nonlinear unmixing framework, a new nonlinear

mixing model based on vector-valued functions in reproducing kernel Hilbert space (RKHS)

is proposed. The aforementioned model allows to consider different nonlinear functions at

different bands, regularize the discrepancies between these functions, and account for neigh-

boring nonlinear contributions. Finally, the vector-valued kernel framework is used in order

to promote spatial smoothness of the nonlinear part in a kernel-based nonlinear mixing

model. Simulations on synthetic and real data show the effectiveness of all the proposed

techniques.

Keywords: Hyperspectral data, unsupervised unmixing, nonlinear unmixing, alternating

direction method of multipliers (ADMM), group lasso regularization, Laplacian regulariza-

tion, vector valued reproducing kernel Hilbert space (RKHS).
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Résumé

Le démélange spectral est l’un des problèmes centraux pour l’exploitation des images

hyperspectrales. En raison de la faible résolution spatiale des imageurs hyperspectraux en

télédetection, la surface représentée par un pixel peut contenir plusieurs matériaux. Dans

ce contexte, le démélange consiste à estimer les spectres purs (les endmembers) ainsi que

leurs fractions (les abondances) pour chaque pixel de l’image. Le but de cette thèse est

de proposer de nouveaux algorithmes de démélange qui visent à améliorer l’estimation des

spectres purs et des abondances. En particulier, les algorithmes de démélange proposés

s’inscrivent dans le cadre du démélange non-supervisé et non-linéaire. Dans un premier

temps, on propose un algorithme de démelange non-supervisé dans lequel une régularisation

favorisant la parcimonie des groupes est utilisée pour identifier les spectres purs parmi les

observations. Une extension de ce premier algorithme permet de prendre en compte la

présence du bruit parmi les observations choisies comme étant les plus pures. Dans un

second temps, les connaissances a priori des ressemblances entre les spectres à l’échelle locale

et non-locale ainsi que leurs positions dans l’image sont exploitées pour construire un graphe

adapté à l’image. Ce graphe est ensuite incorporé dans le problème de démélange non-

supervisé par le biais d’une régularisation basée sur le Laplacian du graphe. Enfin, deux

algorithmes de démélange non-linéaires sont proposés dans le cas supervisé. Les modèles

de mélanges non-linéaires correspondants incorporent des fonctions à valeurs vectorielles

appartenant à un espace de Hilbert à noyaux reproduisants. L’intérêt de ces fonctions par

rapport aux fonctions à valeurs scalaires est qu’elles permettent d’incorporer un a priori sur

la ressemblance entre les différentes fonctions. En particulier, un a priori spectral, dans un

premier temps, et un a priori spatial, dans un second temps, sont incorporés pour améliorer

la caractérisation du mélange non-linéaire. La validation expérimentale des modèles et des

algorithmes proposés sur des données synthétiques et réelles montre une amélioration des

performances par rapport aux méthodes de l’état de l’art. Cette amélioration se traduit par

une meilleure erreur de reconstruction des données.

Mots clés: Données hyperspectrales, démélange non-supervisé, démélange non-linéaire, al-

gorithme des directions altérnées (ADMM), régularisation de type group lasso, régularisation

avec le Laplacian, espace de Hilbert à noyau reproduisant (RKHS).
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Chapter 1

Motivations and organisation

1.1 Motivations

Hyperspectral imaging, also known as imaging spectroscopy, has emerged as one of the most

important technologies in the realm of remote sensing. The premise behind hyperspectral imag-

ing is that it provides images with thorough spectral information for each pixel, enabling the

identification of various materials and the extraction of various physical parameters in remotely

sensed scenes. It is therefore not surprising that hyperspectral imaging has vastly contributed

to increasing our understanding of the world.

The earliest successes of hyperspectral imaging began due to its potential and unprecedented

applications in remote sensing. Naturally, the development of hyperspectral sensors with hun-

dreds of contiguous spectral channels was a significant step beyond multispectral sensors with

only tens of broad spectral channels. Originally, hyperspectral images were valued due to their

ability to identify a wide range of surface cover materials that could not be identified using

images with lower spectral resolution such as multispectral images. For example, hyperspectral

images have been successfully used to identify mineral components and map vegetation species

[Goetz et al., 1985, Pieters and Mustard, 1988]. Furthermore, they have been used to study plant

canopy [Peterson et al., 1988], measure water vapor in the atmosphere [Gao and Goetz, 1990], es-

timate chlorophyl content in water [Hamilton et al., 1993], analyze vegetation species [Clark and

Swayze, 1995], and perform geologic mapping [Kruse, 1998]. The utility of hyperspectral imaging

has been also proven for target detection in the military field, and for studying the composition

of stars and planets in astronomy. Although hyperspectral imaging was originally developed

for remote sensing applications, it has also spread into non-remote sensing applications such as

food quality monitoring, forensic inspections, and disease diagnosis to cite a few. Nowadays,

1
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the amount of hyperspectral data is continually increasing and becoming more available to the

public. As a result, it can be expected that its applications to new fields will be soon explored.

Nevertheless, effective applications and future advancements in the hyperspectral imaging

domain heavily rely on the development of appropriate signal processing techniques. Indeed, the

various hyperspectral imaging applications require the development and adaptation of new or

existing signal processing techniques to fully exploit the specificities of this data. Some of the

well-known and established signal processing techniques in the area of hyperspectral imaging are

dimensionality reduction, feature extraction, target detection, anomaly detection, classification,

and unmixing to cite a few [Bioucas-Dias et al., 2012]. Among the previously cited techniques,

unmixing has particularly witnessed growing attention and contributions over the past years.

This is mainly due to the fact that unmixing allows to analyze the hyperspectral data with very

high accuracy. Research dedicated to the unmixing topic has led to the development of blind

unmixing techniques, and to the development of new paradigms for jointly exploiting the spatial

and spectral dimensions of the data. Moreover, recent research trends in this topic have proposed

nonlinear unmixing schemes in order to increase the interpretation and analysis accuracy.

This thesis focuses on unmixing and contributes to the aforementioned research trends in

this topic. In particular, we propose a new technique for blind unmixing, we incorporate spatial

information in (linear and nonlinear) unmixing, and we finally propose a new nonlinear mixing

model. The thesis organization is detailed in the following section.

1.2 Thesis organisation

The thesis is composed of seven chapters as shown in Figure 1.1. The present chapter, chapter

1, gives an overview of the overall work presented in the thesis and its organization. Chapter 2

introduces the hyperspectral unmixing framework. The following four chapters, namely chapters

3 to 6, are the core of the thesis in the sense that they explain the proposed unmixing techniques.

The organization of these chapters is detailed in what follows:

In the third Chapter, we introduce an original approach for unsupervised unmixing based

on collaborative sparse regularization. This chapter addresses the problem of blind and fully

constrained unmixing of hyperspectral images. Unmixing is performed without the use of any

dictionary, and assumes that the number of constituent materials in the scene and their spectral

signatures are unknown. Two models with increasing complexity are developed to achieve this

challenging task, depending on how noise interacts with hyperspectral data. The first one leads
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to a convex optimization problem, and is solved with the Alternating Direction Method of Mul-

tipliers (ADMM). The second one accounts for signal-dependent noise, and is addressed with a

Reweighted Least Squares algorithm.

In the fourth chapter, we propose to incorporate spatial regularization within the unmixing

formulation using a graph-based framework. More precisely, this chapter introduces two graph

based regularizations in the linear and unsupervised unmixing framework. The proposed regular-

izations rely upon the construction of a graph representation of the hyperspectral image. In the

first case, a quadratic Laplacian regularization is used to promote smoothness in the estimated

abundance maps and collaborative estimation between homogeneous areas of the image. In the

second case, a graph-based Total Variation regularization is used to promote piece-wise constant

reconstructed spectra with respect to the graph structure. The resulting optimization problems

are convex and solved using the Alternating Direction Method of Multipliers (ADMM). The per-

formance of the proposed algorithms is demonstrated by comparing them to other well-known

algorithms using both simulated and real hyperspectral data.

In the fifth chapter, we propose a new nonlinear mixing model that allows to incorporate

spectral prior regarding the nonlinearities at different bands. This chapter presents a kernel

based nonlinear mixing model for hyperspectral data where the nonlinear function belongs to a

Hilbert space of vector valued functions and the endmembers are assumed to be known. The

proposed model extends existing ones by accounting for band dependent and neighboring non-

linear contributions. The key idea is to work under the assumption that nonlinear contributions

are dominant in some parts of the spectrum while they are less pronounced in other parts. In

addition to this, we motivate the need for taking into account nonlinear contributions origi-

nating from the ground covers of neighboring pixels by practical considerations, precisely the

adjacency effect. The proposed nonlinear function is associated to a matrix valued kernel that

allows to jointly model a wide range of nonlinearities and include prior information regarding

band dependencies. Furthermore, the choice of the nonlinear function input allows to incorporate

neighboring effects. A particular class of kernels is investigated where the kernel’s design relies

upon the construction of a graph where each band represents a pixel. The optimization problem

is strictly convex and the corresponding iterative algorithm is based on the alternating direction

method of multipliers (ADMM). Finally, experiments conducted using synthetic and real data

demonstrate the effectiveness of the proposed approach.

In the sixth chapter, we propose to incorporate a spatial regularization within the supervised

kernel-based nonlinear unmixing formulation. Using tools from vector-valued functions in a
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RKHS, we incorporate a regularization that promotes smooth spatial variations of the nonlinear

part. The spatial regularizer and the nonlinear contributions are jointly modelled by a vector-

valued function that lies in a reproducing kernel Hilbert space (RKHS). The design of the kernel

relies upon the construction of a graph representation of the hyperspectral image where each

node represents a pixel. The unmixing problem is strictly convex and reduces to a quadratic

programming (QP) problem. Simulations on synthetic data illustrate the effectiveness of the

proposed approach.

Finally, the seventh chapter concludes the thesis by summarizing the advantages and main

contributions of the methods developed in the previous chapters. It also provides concluding

remarks and an outlook on future research directions.

Chapter 1
Motivations and objec-
tives of research work

Chapter 2
Introduction on

hyperspectral unmixing

Chapter 4
Spatially regularized

linear unmixing

Chapter 3
Unsupervised lin-

ear unmixing

Chapter 5
Vector-valued non-
linear unmixing

Chapter 6
Spatially regularized
nonlinear unmixing

Chapter 7
Conclusions and

perspectives

Figure 1.1: Thesis organisation



Chapter 2

Introduction on hyperspectral imaging

In this chapter, we begin with an introduction on hyperspectral imaging. Afterwards, the

concept of mixed and pure spectra often encountered in remote sensing applications is explained.

Linear and nonlinear spectral mixing models and unmixing techniques are reviewed. Finally,

the importance of exploiting spatial and spectral prior information in the unmixing procedure is

discussed.

2.1 Hyperspectral imaging concept

Hyperspectral imaging is defined as the simultaneous acquisition of images in hundreds of narrow

and adjacent wavelength bands such that for each pixel in the image a reflectance spectrum can

be derived [Goetz et al., 1985]. Hyperspectral images are produced using airborne or spaceborne

hyperspectral sensors also known as imaging spectrometers.

2.1.1 Hyperspectral sensors

Hyperspectral sensors measure the solar radiation scattered from the surface with relatively high

spectral and spatial resolutions. To provide perspective on the spectral and spatial characteristics

of these sensors, consider the following sensor examples. The airborne visible/infrared imaging

spectrometer (AVIRIS)1 delivers hyperspectral images in 224 contiguous wavelength bands in

the wavelength range 400 − 2500 nm, and a spatial resolution of 20 m when flown onboard an

airborne at approximately 20 km above ground level. Other examples of hyperspectral sensors

1http://aviris.jpl.nasa.gov/aviris

5
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Table 2.1: Spatial and spectral characteristics of AVIRIS, CHRIS, and Hyperion.

AVIRIS CHRIS Hyperion
wavelength range (nm) 400− 2450 415− 1050 400− 2500
number of bands 224 63 220
spectral resolution (nm) 9.6 12 10
spatial resolution (m) 20 36 30
altitude (km) 20 600 705

are Hyperion2 and compact high resolution imaging spectrometer (CHRIS)3. In contrast with

AVIRIS, these sensors are flown onboard spacebornes. Table 2.1 gives the spectral and spatial

characteristics of the three previously cited sensors. It can be noted that CHRIS covers the

visible (VIS) and near infrared (NIR) portions of the electromagnetic spectrum, whereas AVIRIS

and Hyperion also cover the shortwave infrared (SWIR) portion of the electromagnetic spectrum.

The spectral resolution for the three sensors is around 10 nm, and the spatial resolution is between

20 and 36 m. In addition to these three currently operational sensors, several sensors are under

construction and will be part of planned missions. The reader is referred to [Staenz et al., 2012]

for a summary of current and future spaceborne hyperspectral sensors and missions initiatives

planned in different countries around the world.

Historically, a great part of the developments that helped establish and demonstrate the hy-

perspectral technology emerged at the national aeronautics and space administration (NASA) jet

propulsion laboratory (JPL) [Wendisch and Brenguier, 2013, chap. 2]. This was mainly due to the

pioneering work of Alexander Goetz and his colleagues who developed imaging spectrometers as

well as important image processing software and atmospheric correction algorithms [MacDonald

et al., 2009]. In 1983, the driving force for this technology was the deployment of the Airborne

imaging spectrometer (AIS) which provided the first hyperspectral images in 128 spectral bands

covering the spectral range from 1200 to 2400 nm with a spectral resolution of 9.6 nm. The

development and deployment of AIS mainly served as a technology demonstrator and a starting

point for hyperspectral sensors design. Soon thereafter, in 1987, AIS was followed by the well-

known hyperspectral sensor AVIRIS [Goetz, 1991, Kruse et al., 1999]. The considerations that

influenced the design of AVIRIS with the characteristics as described in table 2.1 are reported

in [Porter and Enmark, 1987]. As mentioned previously, AVIRIS is currently providing data

for scientific use. Nevertheless, AVIRIS will be soon replaced by an AVIRIS - Next Generation

(AVIRIS-NG)4 providing data with higher quality compared to the classic AVIRIS.

2http://eo1.usgs.gov/sensors/hyperion
3https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba
4http://aviris-ng.jpl.nasa.gov

http://eo1.usgs.gov/sensors/hyperion
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba
http://aviris-ng.jpl.nasa.gov
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2.1.2 Hyperspectral reflectance data

Hyperspectral imaging is sometimes referred to as “imaging spectroscopy”, or “imaging spec-

trometry” as in [Goetz et al., 1985], and described as “spatial spectroscopy from afar” as in

[Wendisch and Brenguier, 2013, chap. 2]. These nomenclatures highlight the fact that hyper-

spectral imaging endows optical imaging with spectroscopic measurements. Spectroscopy is the

science concerned with the identification of materials based on their scattering properties [Hapke,

2012]. This science exploits the fact that light is scattered differently by materials depending on

their molecular composition, scale and shape. Examining the reflectance values at sufficiently

sampled portions of the electromagnetic spectrum or equivalently the overall shape of the re-

flectance spectrum allows to identify the composition of the object and infer various properties

[Shaw and Burke, 2003]. Spectroscopy is concerned with field or laboratory measurements esti-

mated using a spectrometer on a single pixel basis, whereas hyperspectral imaging is concerned

with spectral measurements from afar and on an image basis. To sum up, hyperspectral imaging

provides the possibility to combine the potential of spectroscopic analysis along with a spatial

and contextual analysis in a single system.

The fundamental quantity used to describe hyperspectral images is the spectral reflectance

corresponding to the viewed surface. The information related to the composition of the surface

being viewed is revealed by analyzing this quantity across the covered spectral range [see Chang,

2007, chap. 2]. By definition, the reflectance is the ratio of incident light reflected by a surface

at a specific wavelength band after a part of that light has been absorbed or emitted by the

surface [Hapke, 2012]. Being a ratio, the reflectance is a number with no unit ranging from 0 to

1, i.e. when there is no reflection and when there is perfect reflection respectively. In hyperspec-

tral imaging, the reflectance is simultaneously estimated for each pixel at hundreds of narrow

and adjacent wavelength bands. The ordered set of reflectance values across the wavelength

range is referred to as the reflectance spectrum or simply spectrum. The estimated reflectance

values depend on the corresponding wavelength band and usually have smooth variations for a

sufficiently small spectral resolution. As a result, the overall hyperspectral image reduces to a

stack of spectrally contiguous images often represented as a cube. Figure 2.1 gives a schematic

example of such a cube having two spatial dimensions and one spectral dimension. On the left

is the hyperspectral data cube which consists of a stack of images at different wavelength bands,

in the middle is the spectrum from one pixel in the image providing the reflectance values across

the range of wavelength bands, and on the right is a plot of the pixel’s spectrum showing the

variation of the reflectance values as a function of the wavelength bands.
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Figure 2.1: Hyperspectral imaging concept showing from left to right the hyperspectral image
cube, the reflectance spectrum of a pixel, and the plot of the reflectance values as a function of
wavelength.

Finally, note that the estimation of the surface reflectance from remotely sensed measure-

ments is more challenging compared to field and laboratory measurements due to sensor noise,

atmospheric effects, imaging artifacts, and illumination geometry [Liang et al., 2001, Richter and

Schlapfer, 2005]. The estimation of the reflectance requires accurately removing all these effects.

See for example [Gao et al., 2009] for a review of various atmospheric correction and calibration

techniques. In this manuscript, all data sets used are in reflectance values and when the term

spectrum is used it is meant the reflectance spectrum.

2.2 Spectral mixing models

Rather than assigning to each pixel a specific material or class, spectral unmixing acknowledges

the fact that a pixel can have a mixed composition, hence a mixed spectrum. The mixing

framework systematically distinguishes between pure and mixed spectra. A pure spectrum,

usually referred to as an endmember, is associated with a specific material or class. It is ideally

a unique spectral signature representative of the corresponding material. A pure spectrum is

estimated for a pixel when light beams reaching the sensor have interacted with only one material.

In contrast, a mixed spectrum is estimated for a pixel when light beams reaching the sensor have

interacted with more than one material. As the name implies, a mixed spectrum is a mixture
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of the pure spectra of the materials within the corresponding pixel. In general, there are two

directions for approaching the spectral mixture problem: the linear and nonlinear models.

2.2.1 Linear mixing model

The simultaneous presence of distinct materials in one pixel is due to the fact that the sensor

spatial resolution is not high enough to resolve each material in a distinct pixel. In general,

the spatial resolution of an hyperspectral image in remote sensing can vary from a few meters

up to a hundreds of meters. No matter the spatial resolution in this range, the spatial extent

of a pixel is large enough to simultaneously contain different types of materials. According to

the linear mixing model, a mixed spectrum is expressed as a weighted sum of the endmembers

spectra. This assumption holds provided that the mixing scale is macroscopic, the pixel’s surface

consists of distinct materials spatially distributed side by side in the pixel’s surface, and there

is negligible interaction between them. Furthermore, the linear mixing assumption holds when

incident light light beams are subject to only one reflection, i.e. each photon interacts with only

one material before reaching the sensor. More formally, assume that the hyperspectral image is

estimated at L wavelength bands, and contains in total N pixels indexed by n = 1, . . . , N as

shown in Figure 2.1. According to the linear mixing model we have that:

sn =
∑M

i=1 ainri + en, ∀n = 1, . . . N, (2.1)

where sn ∈ R
L is the L-dimensional spectrum for the n-th pixel, M denotes the number of end-

members, ai,n is the abundance of the i-th endmember in the n-th pixel, ri is the L-dimensional

spectrum of the i-th endmember, en is a vector of Gaussian white noise accounting for sensor

noise and error of the model. In all our notations, vectors are column vectors. The abundances,

represent the contribution of each endmember in the mixed spectrum. More precisely, the abun-

dance of an endmember is the surface fraction occupied by the endmember with respect to the

pixel surface. Being surface fractions, further constraints are imposed on the abundances. They

must be positive and sum to one:




ain ≥ 0,
∑M

i=1 ain = 1.
(2.2)

The LMM is a simple yet very representative model, which was extensively studied in the liter-

ature, see for example the surveys [Bioucas-Dias et al., 2012, Keshava and Mustard, 2002]. This

model was used since the earliest days of remote sensing for analysing multispectral images before

its use naturally extended to hyperspectral images, see for example [Singer and McCord, 1979,



10 Chapter 2. Introduction on hyperspectral imaging

Adams et al., 1986, Shimabukuro and Smith, 1991]. Nevertheless, some scenes such as containing

particulate materials, vegetated and urban areas exhibit strong nonlinear effects [Bioucas-Dias

et al., 2012]. This has led to the refinement of the LMM through the development of nonlinear

mixing models.

2.2.2 Nonlinear mixing models

The linear mixing model accurately describes the spectral mixture for the situations where the

materials are in distinct patches within the pixel, light beams reaching the sensor undergo only

one reflection, and hence each light beam interacts with a single material. When this is not the

case, and either one of the two assumptions does not hold, the spectral mixture is nonlinear.

More precisely, this corresponds to the situations where the materials are intimately mixed, or

when light beams undergo multiple reflections before reaching the sensor. In both cases, the same

photons interact with more than one material and the mixture is nonlinear. For example, intimate

mixtures occur in sandy or particulate mixtures containing different materials, whereas multiple

reflections occur in multi-layered scenes where multiple reflections are due to the 3 dimensionality

of objects. Naturally, nonlinear models have a complex mathematical relationship between the

endmembers and the abundances when compared with the linear mixing model.

In the case of intimate mixtures, the mixing model is derived by Hapke based on radiative

transfer theory [Hapke, 2012]. It can be shown that the mixture is nonlinear when expressed

in terms of reflectance values, but when expressed in terms of scattering albedo, the mixture

becomes linear. However, it is relatively challenging and complex to unmix intimate mixtures

based on Hapke’s model. This is due to the fact that it is a nonlinear function of various parame-

ters related to the scene that are usually not available or hard to obtain. Another alternative for

modeling intimate mixtures is through the use of kernel functions. The authors of [Broadwater

and Banerjee, 2009] and [Broadwater and Banerjee, 2010] proposed a model able to take into

account intimate mixtures through the use of specifically designed kernels. The kernel based

model is a generalization of the linear mixing model in the sense that when the kernel is set to

a linear one the underlying model becomes linear.

In the case of multilayered scenes, multiple reflections lead to a different class of nonlinear

mixing models known as bilinear models. The mathematical expression established for multiple

reflections is the term by term product of two reflectance vectors in the case of two reflections

(bilinear model), and more than two reflectance vectors in the case of multiple reflections (mul-

tilinear model) [Heylen and Scheunders, 2016]. In particular, bilinear models have received a lot
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of attention and various models were developed in this context such as [Nascimento and Bioucas-

Dias, 2009, Fan et al., 2009, Halimi et al., 2011, Altmann et al., 2012, Meganem et al., 2014] to

cite a few. These models usually adopt the following generic formulation:

sn =
M∑
i=1

ainri + βijn
M∑
i=1

M∑
j=1

ainajnri ⊙ rj + en, (2.3)

where βijn, the nonlinearity parameter, is in the range [0 1] and ⊙ denotes the Hadamard (element

wise) product. The constraints imposed on the abundances and the parameters βijn differ from

one model to the other. On the right hand side of equation (2.3), the first term corresponds to

the linear mixture and the second term corresponds to the nonlinear (bilinear) one.

Another way for modelling the nonlinear mixtures of the endmembers is through the use

of nonlinear functions in reproducing kernel Hilbert spaces [Aronszajn, 1950, Shawe-Taylor and

Cristianini, 2004]. For example, the authors of [Chen et al., 2013] propose the following model:

sn =
∑M

i=1 ainri + gn(R) + en, (2.4)

where gn(R) = [gn(rλ1) . . . gn(rλL
)]⊤, gn(·) is a nonlinear function in a reproducing kernel

Hilbert space (RKHS), and rλi
denotes the i-th row in the endmembers matrix R = [r1, . . . , rM ].

The advantage of kernel-based models over models similar to (2.3) is that they are non parametric

which means that they do not impose a predetermined form for the nonlinear term. In fact,

depending on the kernel choice, the nonlinear function is associated with a nonlinear feature

map that determines the nonlinear mapping of the endmembers. For instance, the authors of

[Chen et al., 2013] show that model (5.3) is able to incorporate bilinear, multilinear as well as

more complex nonlinear interactions between the endmembers for certain choices of the kernel,

namely the second order polynomial and Gaussian kernels respectively.

In contrast with all the previously cited models, the authors of [Yokoya et al., 2014, Févotte

and Dobigeon, 2015] do not impose any analytical form for the nonlinear term which is merely

treated as a positive residual term. Nevertheless, this model-free approach can be limiting since

it does not control the nonlinear expression, and it does lead to any physical interpretation. As

a result, it can prevent accurate estimations of the nonlinear contribution.

2.3 Spectral unmixing

While mixing models provide the leverage for expressing the composition of mixed spectra in

terms of endmembers and the abundances. Hyperspectral unmixing, or more generally spectral
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unmixing, is a source separation problem aimed at estimating the abundances and the endmem-

bers spectra given the mixed spectra and eventually the corresponding mixing model. Note that

when the abundances and endmembers are jointly estimated, the unmixing is known as unsu-

pervised. Whereas, when the abundances are estimated given that the endmembers have been

previously determined, the unmixing is known as supervised. Several approaches and algorithms

were proposed for supervised and unsupervised unmixing hyperspectral images in both, the lin-

ear and nonlinear case. These methods have been extensively reviewed in the literature, see for

example the surveys [Keshava and Mustard, 2002, Bioucas-Dias et al., 2012] on linear unmixing,

and the surveys [Heylen et al., 2014a, Dobigeon et al., 2014b] on nonlinear unmixing. Here-

after, we review some of the various approaches adopted in linear unmixing, then in nonlinear

unmixing.

2.3.1 Linear unmixing

In general, supervised linear unmixing involves the following consecutive steps: determining the

number of endmembers, extracting the spectral signature of the endmembers, and estimating

their abundances for every pixel in the scene. Several algorithms have been proposed to per-

form each stage separately. For example, virtual dimensionality (VD) [Chang and Du, 2004],

followed by N-FINDR [Winter, 1999] or VCA [Nascimento and Bioucas-Dias, 2005], followed by

fully constrained least squares (FCLS) [Heinz and Chang, 2001] is among the most widely used

processing chain for linear unmixing. Alternatively, unsupervised methods jointly perform the

endmembers and abundances estimation. Some of the unsupervised methods assume that the

number of endmembers is known, whereas some methods perform the joint endmembers and

abundances estimation without even knowing a priori the endmembers number. Hereafter, we

focus on unsupervised linear unmixing. In particular, we review geometrical, non negative matrix

factorization (NMF), and sparse based techniques dedicated for this task.

A geometrical approach for joint estimation of the endmembers and the abundances was

proposed in [Honeine and Richard, 2012]. The authors express the abundances in terms of

a volume or distance ratio and propose to use these expressions within existing geometrical

endmember extraction algorithms that already compute distances and volumes in their iterative

procedure. For example, NFINDR [Winter, 1999] and VCA [Nascimento and Bioucas-Dias, 2005]

compute volumes and distances respectively while searching for the endmembers. As a result,

the abundance estimation can be easily applied and does not require additional cost. However,

the geometrical approach proposed in [Honeine and Richard, 2012] does not take into account
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the positivity constraint. More precisely, the algorithm can result in negative abundances when

a mixed pixel is outside the simplex whose vertices are the selected endmembers.

While geometrical approaches require the presence of the endmembers among the observa-

tions, unsupervised algorithms using NMF [Lee and Seung, 2001] overcome this constraint by

estimating the endmembers spectra rather than identifying them among the observations. The

NMF decomposes the observations matrix into a product of two non negative matrices, the end-

members and the abundances matrix. The corresponding algorithm consists of iterating two

update rules that alternately estimate the abundances and the endmembers. Most of the NMF

based unmixing algorithms impose additional contraints. For example, the authors of [Yang

et al., 2011] incorporate a sparseness measure into the optimization problem to promote sparse

abundances. The authors of [Liu et al., 2011] incorporate two additional constraints aimed at pro-

moting abundance separation, and smooth spectral variations throughout the image. Whereas,

the authors of [Miao and Qi, 2007] impose a minimum volume constraint on the simplex whose

vertices are the endmembers. The NMF is a nonconvex optimization problem, hence adding

the constraints introduces prior information that can guide the convergence to a relatively more

appropriate local minima. However, a concern when dealing with NMF is that the estimated

endmembers may not correspond to real material signatures.

Another class of algorithms for unsupervised unmixing exploits sparse regression regular-

ization. This approach usually requires having a large set of endmember candidates, such as

a spectral library of known endmembers, and unmixing is performed by expressing the obser-

vations using a small number of the candidates. For instance, one of the well known sparse

based unsupervised techniques is SUnSAL [Iordache et al., 2011] which consists of a constrained

least squares optimization problem using the ℓ1-norm regularization, to promote sparse abun-

dances. A collaborative approach was developed in [Iordache et al., 2013] where the ℓ2,1-norm,

also known as the Group lasso [Yuan and Lin, 2006], is used rather than the ℓ1-norm in order

to simultaneously set to zero all the abundances corresponding to the candidates that are not

present in the scene. Nevertheless, a disadvantage of using spectral libraries is that there may

calibration mismatches since the candidate endmembers spectra and the available observations

are acquired in different conditions and using different sensors. To overcome this problem, the

same concept can be used while assuming that the endmembers are present in the scene, thus the

observations themselves are used in the spectral library. Following this idea, the collaborative

sparse regression strategy in [Iordache et al., 2013] was used in [Iordache et al., 2014b] to extract

the endmembers from the observations themselves. Similarly, the authors of [Esser et al., 2012]
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use an ℓ1,∞-norm instead of the ℓ2,1-norm regularization in order to extract the endmembers

from the observations.

Finally, note that using a constrained least squares optimization problem with sparse regu-

larization with the same purpose, namely finding among the observations (not specifically hy-

perspectral data) those few observations that can best approximate the other observations by

linear combinations, have been investigated in other similar problems. For example, this is the

case in column subset selection (CSS) [Boutsidis et al., 2009, Tropp, 2006] and sparse subspace

clustering [Elhamifar and Vidal, 2009].

2.3.2 Nonlinear unmixing

In section 2.2.2, various nonlinear mixing models have been reviewed, namely, intimate mixtures,

bilinear models, and some model-free models. Hereafter, we review nonlinear unmixing algorithm

developed in the literature and dedicated for these models. Depending on wether the endmembers

are known or not, the proposed unmixing algorithm is supervised or unsupervised respectively.

When dealing with intimate mixtures, Hapke’s model can be used to perform linear unmixing

after converting reflectance values to single scattering albedo (SSA) of the composing particles.

This approach was adopted in [Mustard and Pieters, 1989] and [Nascimento and Bioucas-Dias,

2010]. In particular, the work in [Nascimento and Bioucas-Dias, 2010] proposed a two step

unsupervised nonlinear mixing algorithm. The first step consists of converting reflectance data

to SSA, afterwards an unsupervised linear unmixing algorithm is used, namely the simplex

identification via split augmented Lagrangian (SISAL) [Bioucas-Dias, 2009]. Another alternative

for unmixing intimate mixtures is based on kernel models. In this framework, the authors

[Broadwater and Banerjee, 2009, 2010] simply propose to replace the product of endmembers

in the cost function of the FCLS problem [Heinz and Chang, 2001] by a kernel function acting

on the corresponding spectra. Nevertheless, unlike the previous algorithm, the endmembers are

assumed to be known a priori.

In the case of bilinear models, several unmixing approaches were developed in the supervised

case. For example, in [Nascimento and Bioucas-Dias, 2009], the endmembers matrix is augmented

with virtual endmembers consisting of pairwise products of the actual endmembers and unmixing

is performed using the FCLS algorithm [Heinz and Chang, 2001]. In [Fan et al., 2009] and [Halimi

et al., 2011] a first order taylor approximation is used to transform the problem into a linear one

and unmixing is also performed using FCLS. In contrast with the previously cited algorithms,

the algorithm proposed in [Altmann et al., 2014] performs unsupervised unmixing in a Bayesian



2.4. Incorporating spatial information into unmixing 15

framework.

In the case of the model-free mixing approaches several unmixing algorithms have been in-

troduced in the literature. For the kernel based model developed in [Chen et al., 2013], the

optimization problem reduces to solving a positively constrained quadratic programming prob-

lem. The authors of [Heylen et al., 2011b] and [Heylen et al., 2014b] propose a fully geometrical

approach for unsupervised and nonlinear unmixing using non-euclidean distances. In [Heylen

et al., 2011b], the authors rewrite NFINDR in terms of distance geometry and use geodesic dis-

tances rather than Euclidean distances. Whereas in Heylen et al. [2014b], the authors rewrite

DMaxD Schott et al. [2003] in terms of distances rather than NFINDR, and various non Eu-

clidean distances are proposed. Subsequently, the abundances are estimated using the distances

computed in the previous step and the simplex projection algorithm developed in Heylen et al.

[2011a]. Finally, the unsupervised nonlinear models developed in [Févotte and Dobigeon, 2015,

Yokoya et al., 2014, Eches and Guillaume, 2014] are unmixed using NMF.

2.4 Incorporating spatial information into unmixing

Several spectral unmixing algorithms have been exposed in the previous section. However, all

these algorithms do not exploit the contextual and spatial information present in hyperspectral

images. Recently, several algorithms showed that incorporating spatial information and exploit-

ing the complementarity between the spectral and spatial dimensions can improve the unmixing

results. However, a drawback of this framework is that pixels are no longer treated individually

and the whole image is processed simultaneously which results in an increased computational

complexity. Hereafter, we give particular attention to some of the algorithms that incorporate

spatial information in order to improve the abundances estimation step. See Shi and Wang [2014]

for a review of algorithms that incorporate spatial information in the abundance estimation step

in addition to the endmember extraction and selection of endmember combinations steps.

One of the most widely used tools for incorporating spatial information in image processing

is the total variation (TV) regularization [Rudin et al., 1992]. TV is well known for recovering

piecewise constant signals and for preserving discontinuities. Following this idea, the authors

in [Iordache et al., 2012a] use a Total Variation (TV) regularization for the abundances on top

of sparse ℓ1-norm regularized linear unmixing. Similarly, the authors of [Chen et al., 2014]

incorporate a TV regularization for the abundances in a nonlinear unmixing algorithm. In both

works, the TV regularization promotes piece wise constant abundances estimates. This effect is



16 Chapter 2. Introduction on hyperspectral imaging

particularly interesting when the image contains large blocks of structured objects such as roads

and buildings where it can be assumed that the pixels belonging to those structures have the same

abundances (i.e. the abundances are constant). However, there are images where this not the

case, i.e. the abundances have smooth variations rather than being constant such as in vegetation

or soil areas. As a result, it is more appropriate to use the ℓ2-norm rather than the ℓ1-norm used

in TV. Furthermore, TV regularization is based on a local spatial graph Strong and Chan [1996]

in the sense that each pixel is only connected to its four spatial neighbors. As a result, TV does

not directly capture long range similarities between pixels in distant structures in the image,

and the graph structure is not adapted to the image itself. Following these ideas, several graph

regularizations were introduced as a generalization of TV to random and nonlocal graphs. For

example, the authors of [Lu et al., 2013] and [Tong et al., 2014] build nonlocal graphs adapted to

the image and incorporate a quadratic graph Laplacian regularization within sparse unmixing.

The corresponding optimization problems are solved using Non negative Matrix Factorization

(NMF).

There are other approaches for incorporating spatial information within the unmixing pro-

cedure. For example, the authors of [Zare, 2011] use a regularization term based on Fuzzy local

information that encourages the abundances in a pixel to be similar in value to a weighted sum

of the abundances in neighboring pixels. In their work [Zare and Gader, 2011] also based on

Fuzzy local information, they incorporate within the optimization problem a regularization term

that measures the spatial complexity in the image. The aim of this regularization is to promote

smooth abundance variations from one pixel to its neighbors. The authors of [Castrodad et al.,

2011] incorporate a quadratic regularization term in the unmixing problem accounting for group-

ing and spectral coherence. Finally, the authors of [Eches et al., 2011] exploit Markov Random

fields in order to incorporate spatial information in the unmixing procedure, then an hierarchical

Bayesian model is adopted in order to solve the resulting unmixing problem.



Chapter 3

Blind & fully constrained linear

unmixing

This chapter has been adapted from the journal paper [Ammanouil et al., 2014].

In this chapter we address the problem of blind and fully constrained unmixing. Unmixing is

performed without the use of a spectral library of known materials, and assumes that the number

of constituent materials in the scene and their spectral signatures are unknown. The estimated

abundances are fully constrained, they satisfy the desired sum-to-one and non negativity con-

straints. Two models with increasing complexity are developed to achieve this challenging task,

depending on how noise interacts with hyperspectral data. The first one leads to a convex opti-

mization problem, and is solved with the alternating direction method of multipliers (ADMM).

The second one accounts for signal-dependent noise, and is addressed with a Reweighted Least

Squares algorithm. Experiments on synthetic and real data demonstrate the effectiveness of the

proposed approach.

3.1 Introduction

Three consecutive tasks are usually required for unmixing: determining the number of endmem-

bers, extracting the spectral signature of the endmembers, and estimating their abundances for

every pixel in the scene. Several algorithms have been proposed to perform each stage separately.

The pipeline virtual dimensionality (VD) [Chang and Du, 2004], followed by N-FINDR [Winter,

1999] and fully constrained least squares (FCLS) [Heinz and Chang, 2001] is among the most

17
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Table 3.1: Notations for chapter 3

L 1× 1 Number of spectral bands

N 1× 1 Number of observations

M 1× 1 Number of endmembers

N ′ 1× 1 Number of candidate endmembers

S L×N Matrix of observed spectra

R L×M Endmembers matrix

A M ×N Abundances (w.r.t. endmembers in R)

E L×N Noise matrix

ω N ′ × 1 Subset of N ′ indexes in {1, . . . , N}
S̃ L×N Noiseless matrix of observed spectra

S̃ω L×N ′ Matrix of candidate endmembers from S̃

Sω L×N ′ Matrix of candidate endmembers from S

X N ′ ×N Abundances (w.r.t. to candidate endmembers in S̃ω)

widely used processing pipelines. Alternative methods jointly perform (part of) these tasks in

order to solve the blind source separation problem [Eches et al., 2010, Honeine and Richard, 2012,

Miao et al., 2007]. We propose a blind and fully constrained approach which jointly estimates the

abundances and the endmembers spectra without prior knowledge of the endmembers number.

In order to introduce our approach, we shall start by describing the noise-free spectral mixing

case first. Consider the noise-free linear spectral mixing model where a mixed pixel is expressed

as a linear combination of the endmembers weighted by their fractional abundances

s̃n =

M∑

i=1

riain , ∀ n = 1, . . . , N, (3.1)

in matrix form, we simply have

S̃ = RA, (3.2)

where S̃ = [s̃1, . . . , s̃N ], R = [r1, . . . , rM ], A = [a1, . . . ,aN ], and s̃n is the L-dimensional

(noise-free) spectrum of the n-th pixel, L is the number of frequency bands, N is the number of

pixels in the image, ri is L-dimensional spectrum of the i-th endmember, M is the number of

endmembers, an is the M -dimensional abundance vector of the n-th pixel, and ain (the (i, n)-th

entry of matrix A) represents the abundance of the endmember ri in pixel s̃n. The tilde over

symbols in this chapter refers to noise-free data. All vectors are column vectors. The main
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notations used in this chapter are summarized in table 3.1. Furthermore, the abundances obey

the non-negativity and sum-to-one constraints




ain ≥ 0, ∀ i and n,
∑M

i=1 ai = 1, ∀ n.
(3.3)

In this study, we shall assume that the endmembers are unknown but present in the scene.

Let ω be a subset of N ′ indexes in {1, . . . , N} that contains at least the column index of each

endmember. Under these assumptions, and without loss of generality, we observe that the mixing

model (3.2) can be reformulated as follows

S̃ = S̃ωX, (3.4)

where S̃ω = [s̃ω1 , . . . , s̃ωN′
] denotes the restriction of S̃ to its columns indexed by ω, and X =

[x1, . . . ,xN ] is the N ′ × N abundance matrix with respect to S̃ω. Similarly as above, xij is

the abundance of s̃ωi
in s̃j . Let xλi

= [xi1, . . . , xiN ]⊤ be the i-th row of X, i.e. xλi
contains

the abundances of the i-th endmember in all the pixels, which is also known as the abundance

map of the i-th endmember. On the one hand, if s̃ωi
is an endmember, xλi

has non-zero entries

and represents the corresponding abundance map. On the other hand, if s̃ωi
is a mixed pixel,

xλi
has all its elements equal to zero. As a consequence, X admits N ′ −M rows of zeros, the

other rows being equal to rows of A. This means that X allows to identify the endmembers in

S̃ through its non-zero rows, which is an interesting property to be exploited in the case where

the endmembers are unknown. Let us now turn to the more realistic situation where some noise

corrupts the observations. In this case, model (3.4) becomes

S = S̃ +E = S̃ωX +E, (3.5)

where S denotes the available data, and E is the noise supposed to be additive.

The aim of this chapter is to derive two unmixing approaches with increasing complexity,

depending on how noise is to be handled. These methods are blind in the sense that the end-

members and their cardinality are unknown. The first one considers the approximate model

S ≈ SωX +E, (3.6)

compared to (3.5), we thus assume that noise does not dramatically affect the factorization of

the mixing process, which is valid for very high signal-to-noise ratio (SNR). With this approach,

we shall look for a few columns of Sω that can effectively represent the whole scene. In order to

estimate the abundance matrix X, we use prior information. First, we impose that the estimated
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abundances obey the non-negativity and sum-to-one constraints, namely, xij ≥ 0 for all i and

j, and
∑N ′

i=1 xij = 1 for all j. In addition, as discussed above, the algorithm has to force rows

of X to be zero vectors in order to identify the endmembers. Because the locations and the

cardinality of the endmembers are unknown, the set of candidates has to be sufficiently large,

that is, N ′ ≫ M . We thus expect many rows in X to be equal to zero. To promote this

effect, the so-called Group Lasso ℓ2,1-norm regularization can be employed [Yuan and Lin, 2006].

Because model (3.6) is a poor approximation of model (3.5) as the noise power increases, we shall

also propose an alternative strategy to solve the unmixing problem based on the exact model

(3.5). The first approach leads to a convex optimization problem that can be solved with the

ADMM [Boyd et al., 2011]. The second one takes the noise in Sω into account, which results

in a non-convex and heteroscedastic optimization problem. The latter will be solved with an

iteratively reweighted least squares algorithm.

In both cases, the proposed sparse-based regression strategy subserves a blind and self-

dependent framework. This is due to the fact that the endmembers and the abundances are

jointly estimated using a spectral library derived from the observations themselves. Hence, the

resulting image endmembers are derived from the purest pixels in the scene. The advantage of

this approach compared to the use of a spectral library built from field campaigns or laboratory

measurements is that the endmembers and the available image spectra are estimated using the

same sensors and under the same conditions. However, the proposed approach relies on the pres-

ence of the endmembers among the observations, which is conditioned by the spatial resolution

of the sensor and the spatial distribution organization of the image.

To the best of our knowledge, this work is the first that proposes to solve the noisy problem

(3.5). Few models similar to the approximate model (3.6) have been studied in the literature

[Esser et al., 2012, Fu et al., 2013, Iordache et al., 2013, 2014b]. These last four works assume

that Sω is noise-free. Moreover, in [Esser et al., 2012], the authors use an ℓ1,∞-norm instead

of the ℓ2,1-norm regularization, and incorporate an additional ℓ1-norm instead of the unit-sum

constraint considered here. In [Fu et al., 2013], the authors derive a Matching Pursuit approach

[S. G. Mallat, 1993] in order to estimate the endmembers. With this greedy approach, neither

the positivity, nor the sum-to-one constraints, are taken into account. A similar technique is

considered in [Iordache et al., 2013], but the authors do not assume that the endmembers are

present in the scene and use a predefined dictionary. In their recent work [Iordache et al., 2014b],

the authors of [Iordache et al., 2013] apply model (3.6) in order to extract the endmembers from

the observations.
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The rest of this chapter is organized as follows. Sections 3.2 and 3.3 respectively describe

the unmixing models (3.6) and (3.5), and the corresponding estimation methods. Section 3.4

provides experimental results on synthetic and real data. Finally, Section 3.5 concludes this

chapter.

3.2 Group lasso, unit sum, and positivity (GLUP)

3.2.1 Optimization problem

The aim of this section is to derive the estimation method for model (3.6). We assume that

the noise E is Gaussian independent and identically distributed, with zero mean and possibly

unknown variance σ2, that is, eki ∼ N (0, σ2). The negative log-likelihood for model (3.6) is

given by

L(X) =
NL

2
log(2π) +

NL

2
log(σ2) +

1

2σ2
‖S − SωX‖2F. (3.7)

The maximum likelihood (ML) estimate, namely, the minimizer of L(X), is the solution of the

Least Squares (LS) approximation problem

minimizeX‖S − SωX‖2F. (3.8)

Since model (3.6) follows from an approximation of model (3.5), the relevance of this LS fidelity

term is essentially to ensure that SωX matches S. The unmixing problem under investigation,

however, requires that X only has a few rows different from zero, in addition to the non-negativity

and sum-to-one constraints. This leads to following convex optimization problem

minimizeX
1
2‖S − SωX‖2F + µ

∑N ′

k=1 ‖xλk
‖2

subject to xij ≥ 0 ∀ i, j
∑N ′

i=1 xij = 1 ∀ j,

(3.9)

with µ ≥ 0 a regularization parameter and xλk
the k-th row of X. The Group Lasso regulariza-

tion term induces sparsity in the estimated abundance matrix at the group level [Yuan and Lin,

2006], by possibly driving several rows of X to zero. It is worth noting that when µ = 0 and

Sω = S, the identity matrix is a solution of problem (3.9). This solution may not be unique de-

pending on S. It follows that the efficiency of our approach relies on the ℓ2,1-norm regularization

function.



22 Chapter 3. Blind & fully constrained linear unmixing

3.2.2 ADMM algorithm

The solution of problem (3.9) can be obtained in a simple and flexible manner using the ADMM

algorithm [Boyd et al., 2011]. We consider the canonical form

minimizeX,Z
1
2‖S − SωX‖2F + µ

∑N ′

k=1 ‖zλk
‖2 + I

R
N′×N
+

(Z)

subject to AX +BZ = C

(3.10)

with

A =


 IN ′

1
⊤
N ′


 , B =


 −IN ′

0
⊤
N ′


 , C =


 0N ′×N

1
⊤
N


 ,

where I
R
N′×N
+

(Z) is the indicator of the positive orthant guarantying the positivity constraint,

that is, I
R
N′×N
+

(Z) = 0 if Z � 0 and +∞ otherwise, IN ′ is the N ′ ×N ′ identity matrix, 0N ′×N

is an N ′ × N matrix of zeros, 1N ′ and 0N ′ are N ′ × 1 vectors of ones and zeros respectively.

The equality constraint AX + BZ = C imposes the consensus X = Z and the sum-to-one

constraint. Note that defining the constraint matrices differently, in particular setting A = IN ′

, B = −IN ′ , and C = 0N ′×N allows to drop the sum-to-one constraint. In matrix form, the

augmented Lagrangian associated with problem (3.10) is given by [Eckstein and Bertsekas, 1992]

Lρ(X,Z,Λ) = 1
2‖S − SωX‖2F + µ

∑N ′

k=1 ‖zλk
‖2 + I

R
N′×N
+

(Z) + ρ
2 ‖AX +BZ − C‖2F

+trace(Λ⊤(AX +BZ − C)),

(3.11)

where Λ is the matrix of Lagrange multipliers, µ and ρ are positive regularization and penalty

parameters, respectively. The flexibility of the ADMM lies in the fact that it splits the initial

variable X into two variables, X and Z, and equivalently the initial problem into two subprob-

lems. At iteration k + 1, the ADMM algorithm is outlined by three sequential steps. First,

the augmented Lagrangian is minimized with respect to the unknown variable X and then with

respect to Z while in each minimization keeping the other variables fixed to their previous es-

timate. Finally, the matrix of Lagrange multipliers is updated. To summarize, the ADMM at

iteration k + 1 consists of the following steps:

Xk+1 = minimizeX Lρ(X,Zk,Λk),

Zk+1 = minimizeZ Lρ(X
k+1,Z,Λk),

Λ
k+1 = Λ

k + ρ(AXk+1 +BZk+1 − C).

(3.12)

The ADMM steps are developed hereafter. To keep the notations simple, we drop the iteration

index in the development of the first two steps.
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X minimization step

This step consists of minimizing the augmented Lagrangian with respect to X while fixing Z

and Λ to their previous estimates. The augmented Lagrangian is quadratic in terms of X. As

a result, the solution has an analytical expression that is obtained by setting the gradient with

respect to X of the augmented Lagrangian to zero:

X = (Sω
⊤Sω + ρA⊤A)−1(S⊤

ωS −A⊤[Λ+ ρ (BZ − C)]). (3.13)

Z minimization step

After discarding the terms that are independent of Z, the minimization of the augmented La-

grangian with respect to Z reduces to solving the following problem:

minimizeZ µ
∑N ′

k=1 ‖zλk
‖2 + trace(Λ⊤BZ) + ρ

2‖AX +BZ − C‖2F
subject to Z � 0.

(3.14)

This minimization step can be split into N problems given the structure of matrices A and B,

one for each row of Z, that is,

minimizez
1
2‖z − v‖22 + α‖z‖2 + I

R
N
+
(z), (3.15)

where v = x + ρ−1λ and α = ρ−1µ. Vectors λ, x and z correspond to a given row of Λ, X

and Z, respectively. The minimization problem (3.15) admits a unique solution given by the

proximity operator [Combettes and Pesquet, 2009] of F1(z) = α‖z‖2 + I
R
N
+
(z):





z∗ = 0N if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise,

(3.16)

where (·)+ = max(0, ·). On the one hand, the proximity operator of F1(z) = α‖z‖2 is the

multidimensional shrinkage thresholding operator (MiSTO) [Puig et al., 2011]. On the other

hand, the proximity operator of the indicator function F2(z) = I
R
N
+
(z) is the projection onto

the positive orthant. The proximity operator of F(z) in (3.16), that we refer to as Positively

constrained MiSTO, is an extension of both previous operators. The solution is of the form

proxF = proxF1
◦ proxF2

,

that is, the thresholding of the projection. Operator (3.16) was recently used in [Thiebaut et al.,

2013]. The derivation of this operator can be found in Appendix A.
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Update of the Lagrange multipliers

The update of the Lagrange multipliers is carried out at the end of each ADMM iteration, i.e.

after the X and Z updates. Note that the Lagrange multipliers represent the running sum of

residuals. It gives an insight on the convergence of the algorithm. More precisely, as the number

of iterations tends to infinity, the primal residual tends to zero and the Lagrange multipliers

converge to the dual optimal point. The update of the Lagrange multipliers is given by:

Λ
k+1 = Λ

k + ρ(AXk+1 +BZk+1 − C). (3.17)

Stopping criteria

As suggested in [Boyd et al., 2011], a reasonable stopping criteria is that the primal and dual

residuals must be smaller than some tolerance thresholds, namely,

‖AXk+1 +BZk+1 − C‖F ≤ ǫpri,

‖ρA⊤B(Zk+1 −Zk)‖F ≤ ǫdual.
(3.18)

The pseudocode for the so-called group lasso, unit sum, and positivity (GLUP) method is

provided by Algorithm 1. It is worth emphasizing that the main difference between the ADMM

steps developed in GLUP and those in [Iordache et al., 2013] arises in the ADMM variable

splitting. The global problem in [Iordache et al., 2013] is decomposed into three subproblems:

the least squares minimization, the Group Lasso regularization, and projection on the positive

orthant. A consequence is that three ADMM variables are used instead of two, leading to

additional steps. Furthermore, the sum-to-one constraint is not considered in [Iordache et al.,

2013].

3.3 Reduced noise GLUP (NGLUP)

3.3.1 Optimization problem

We now turn to the more realistic model (3.5). Let Eω and Iω be the L × N ′ and N × N ′

restrictions of E and IN to the columns indexed by ω, respectively. The mixing model given by

(3.5) can be rewritten as:

S = (Sω −Eω)X +E = SωX +E(IN − IωX). (3.19)



3.3. Reduced noise GLUP (NGLUP) 25

Algorithm 1 : X = GLUP(S,Sω, ρ, µ)

1: Precompute A, B, and C

2: Initialize Z = 0 and Λ = 0

3: Q = (Sω
⊤Sω + ρA⊤A)−1

4: while respri ≥ ǫpri or resdual ≥ ǫdual do
5: X = Q(S⊤

ωS −A⊤(Λ+ ρ [BZ − C]))
6: Zold = Z

7: for i = 1 · · ·N ′ do
8: vi = ((xi)

⊤ + ρ−1λi)+
9: if ‖vi‖2 < ρ−1µ then

10: zi = 0

11: else
12: zi =

(
1− µ

ρ‖vi‖2

)
vi

13: end if
14: end for
15: respri = ‖AX +BZ −C‖F

16: resdual = ‖ρAB(Z −Zold)‖F

17: Λ = Λ+ ρ(AX +BZ − C)
18: end while

Let us define the matrix C(X) as

C(X) = (IN − IωX)⊤(IN − IωX). (3.20)

It follows that

vec(E(IN − IωX)) ∼ N (0, σ2C(X)⊗ IN ), (3.21)

where ⊗ represents the Kronecker product of matrices, and vec(·) is the operator that stacks the

columns of a matrix on top of each other. The derivation of (3.21) is in Appendix B. Model

(3.19) belongs to the family of heteroscedastic models [Hooper, 1993], where the variance of the

additive noise depends on the unknown variable X. The presence of X in the expression of the

noise variance expression has consequences on the negative log-likelihood of model (3.19), which

no longer leads to the LS approximation problem. The negative log-likelihood associated with

model (3.19) is given by

L(X, σ2) =
1

2
vec(S − SωX)⊤(σ2C(X)⊗ IN )−1vec(S − SωX) +

1

2
log |σ2C(X)⊗ IN |

=
L

2
log |σ2C(X)|+ 1

2
trace((S − SωX)(σ2C(X))−1(S − SωX)⊤)

=
L

2
log |σ2C(X)|+ 1

2
‖S − SωX‖2(σ2C(X))−1 ,

(3.22)

where | · | denotes the determinant of the corresponding matrix. The ML estimate for problem

(3.22) with the Group Lasso regularization, non-negativity and sum-to-one constraints yields the
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following constrained optimization problem

minimizeX,σ2
L
2 log |σ2C(X)|+ 1

2‖S − SωX‖2(σ2C(X))−1 + µ
∑N ′

k=1 ‖xλk
‖2

subject to xij ≥ 0 ∀ i, j
∑N ′

i=1 xij = 1 ∀ j,

(3.23)

Compared to problem (3.9), the objective function in (3.23) has an additional logarithmic term

due to the fact that the noise variance depends on X, hence it cannot be dropped. Furthermore,

the second term of the objective function in (3.23), namely the Frobenius norm of the difference

between the observations and the reconstructed spectra, is weighted by the noise variance and a

function of X.

3.3.2 ADMM algorithm

Problem (3.23) is not convex and requires the estimation of σ2. Note that, minimizing the

second term in the objective, namely the weighted Frobenius norm, is closely related to the

Iteratively Reweighted Least Squares (IRLS) problem that arise in the case of heteroscedastic

models [Daubechies et al., 2010]. A difference with IRLS algorithms is that (S−SωX) in equation

(3.22) is usually substituted by (S − SωX)⊤. In IRLS, the estimation process is carried out in

two steps. The first step consists of updating the entries of the weights matrix, which are usually

set to be inversely proportional to the noise variances. The second step is the calculation of a

LS estimator using the updated weights. Many strategies can be used to estimate the variances

for the weight matrix, see for example [Fuller and Rao, 1978, Carroll and Cline, 1988, Hooper,

1993]. In our case, the resolution of problem (3.23) with respect to σ2 for fixed X gives a closed

form expression for the variance as a function of X:

σ2(X) =
1

NL
trace((S − SωX)C(X)−1(S − SωX)⊤). (3.24)

Let W (X) = σ2(X)C(X) denote the weight matrix of the least squares term in (3.23). To

solve problem (3.23) with respect to σ2 and X, we propose to proceed iteratively. Let Xk be the

solution of the previous iteration. The first step consists of calculating W (Xk) using equations

(3.20) and (3.24). In the second step, this updated weight matrix is used to estimate Xk+1 as

follows

minimizeX
1
2‖S − SωX‖2

(W k)−1 + µ
∑N ′

k=1 ‖xk‖2
subject to xij ≥ 0 ∀ i, j

∑N ′

i=1 xij = 1 ∀ j,

(3.25)
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where W k = W (Xk). Given W k, problem (3.25) reduces to a weighted version of GLUP (3.9)

due to the weighted norm in the first term. The ADMM solution developed in section 3.2 can be

adapted to solve the optimization problem (3.25). Minimizing the augmented Lagrangian with

respect to Z, and updating the Lagrange multipliers, can by carried out exactly as in Section 3.2.

For concision, only the X minimization step is described hereafter.

X minimization step

Omitting the terms that do not depend on X, the minimization of the augmented Lagrangian

with respect to X leads to

minimizeX
1

2
‖S − SωX‖2

(W k)−1 + trace(Λ⊤(AX)) +
ρ

2
‖AX +BZ − C‖2F. (3.26)

Similarly to the previous ADMM algorithm, Z and Λ are set to their previous estimates namely

Zk and Λ
k. However, we drop the iteration index to keep the notations simple. Problem (3.26) is

quadratic in X and admits an analytical solution obtained by setting the gradient to zero. This

amounts to solving the Sylvester equation [Bartels and Stewart, 1972], which has the following

form

S⊤
ωSωX(W k)−1 + ρA⊤AX = S⊤

ωS(W
k)−1 − ρA⊤

(
BZ − C +

Λ

ρ

)
. (3.27)

In the experiments, we use the Matlab’s dlyap function to solve this Sylvester equation. Finally,

given that problem (3.23) is not convex, an alternating optimization algorithm is more likely

to converge to local minima with worse accuracy than the convex version. For this reason, we

suggest, as a warm start, to initialize the so-called reduced noise GLUP (NGLUP) algorithm with

GLUP’s estimate. Algorithm 2 provides the pseudocode for NGLUP. The algorithm contains

two main loops. The inner loop aims at finding the solution of problem (3.25), whereas the outer

loop updates the weight matrix.

3.4 Experimental results

3.4.1 Synthetic Data

Data generation

The performances of GLUP and NGLUP were evaluated using synthetic data. We used eight

endmembers with 420 spectral bands extracted from the USGS spectral library of minerals. These

endmembers were previously used in Chen et al. [2012]. Figure 3.1 shows the reflectance spectra of
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Algorithm 2 : X = NGLUP(S,Sω, ρ
◦, µ◦, ρ, µ)

1: Precompute A, B, and C

2: Initialize X = GLUP(S,Sω, ρ
◦, µ◦), Z = X, Λ = 0

3: while ‖X −Xold‖2 ≥ ǫtol do
4: C(X) = (I − IωX)⊤(I − IωX)
5: σ2(X) = 1

NLtrace((S − SωX)C(X)−1(S − SωX)⊤)
6: W (X) = σ2(X)C(X)
7: Xold = X, J = 1
8: while (‖R‖2 ≥ ǫpri or ‖P ‖2 ≥ ǫdual) and (J ≤ Jmax) do
9: X = solution of Sylvester equation (3.27)

10: Zold = Z

11: for i = 1 · · ·N ′ do
12: vi = ((xi)

⊤ + ρ−1λi)+
13: if ‖vi‖2 < ρ−1µ then
14: zi = 0

15: else
16: zi =

(
1− µ

ρ‖vi‖2

)
vi

17: end if
18: end for
19: R = AX +BZ − C

20: P = ρAB(Z −Zold)
21: Λ = Λ+ ρ(AX +BZ − C)
22: J = J + 1
23: end while
24: end while

the endmembers which correspond to the following materials: epidote, kaolinite, buddingtonite,

alunite, calcite, almandine, jarosite and lepidolite. The maximum spectral mutual coherence

of the eight endmembers was Θmax = 0.9940, the mutual coherence between two spectra, for

example si and sj , being the absolute value of the inner product between the two vectors divided

by the product of their norms:

Θij =
|s⊤i sj |

‖si‖2‖sj‖2
. (3.28)

The abundances were generated based on a Dirichlet distribution with unit parameter, as a

consequence of which the resulting abundances obeyed the non-negativity and sum-to-one con-

straints, and were uniformly distributed over the simplex whose vertices are the endmembers.

This model is widely used to generate the abundances in simulated data sets, see for example

[Nascimento and Bioucas-Dias, 2005, Altmann et al., 2013, Iordache et al., 2014a].

Simulation results

First, we used three endmembers to generate an hyperspectral data set containing N = 100 (resp.

500) pixels with a SNR of 50 dB. The pure pixels were indexed by integers 1–3 for simplicity, the
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Figure 3.1: Reflectance spectra of the endmembers selected from the USGS spectral library of
minerals .

Table 3.2: Probability of detecting M̂ endmembers, using synthetic data generated with M = 7
endmembers.

M 2 3 6 7 8 9

GLUP (30 dB) 0 0 0 1 0 0

NGLUP (30 dB) 0 0 0 0.98 0.02 0

VD (30 dB) 0.79 0.21 0 0 0 0

GLUP (20 dB) 0 0 0 0.71 0.02 0.27

NGLUP ( 20 dB) 0 0 0.01 0.96 0.03 0

VD (20 dB) 1 0 0 0 0 0

mixed pixels being indexed by integers 4–100 (resp. 4–500). We ran GLUP algorithm using all

the observations (Sω = S) with µ = 10 and ρ = 100. The primal and dual tolerances, namely

ǫpri and ǫdual, were set to 10−5. The first row of Figure 3.2 shows the mean of each row of the

estimated abundance matrices X̂. We observe that the first three pixels in Figures 3.2 (a) and

(b) can be identified as the endmembers since the mean values of the first three rows are clearly

different from zero. The second row of Figure 3.2 shows the projection of the data onto the

space spanned by the first two principal component analysis (PCA) axes. Blue stars indicate the

data points, and red squares indicate the points that had a non-zero row in X̂, namely, those

that were identified as the endmembers. We can see from Figures 3.2 (c) and (d) that the red

squares correspond to the vertices of the simplex enclosing all the data points. We evaluate the
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estimation accuracy using the root mean square error (RMSE) between X and its estimate X̂:

RMSEX =

√
1

NN ′
‖X − X̂‖2F. (3.29)

In fact, GLUP provided the results in 4.73 (resp. 138.59) seconds1 with a RMSE equal to 0.0049

(resp., 0.0097) for N = 100 (resp., N = 500).

We tested NGLUP in less favorable conditions by increasing the number of endmembers

and decreasing the SNR. To this end, 7 endmembers were used to generate 93 (resp. 493)

mixed pixels. The pure pixels were indexed by integers 1–7. Data points were corrupted with

an additive Gaussian noise, corresponding to a SNR of 20 dB. We tested the algorithm for a

maximum number of inner iterations Jmax = 1, 10 and 100. We found that NGLUP converged

to the same solution even when the number of inner iterations J was equal to 1. For this

reason, only one inner iteration per outer iteration was used for the rest of the experiments.

The running time of the algorithm was 77 seconds (resp. 45 min). The first row of Figure

3.3 shows the mean value of each row of the abundance matrix X̂ estimated by GLUP for (a)

N = 100 and (b) N = 500 pixels. The second row of Figure 3.3 shows the mean value of each

row of the abundance matrix X̂ estimated by NGLUP for (a) N = 100 and (b) N = 500 pixels.

The 7 largest mean values correspond to the 7 endmembers. As expected, NGLUP converged

to a sparser and more accurate solution than GLUP. We observed that similar results can be

obtained with approximately sparse mixtures of the endmembers. This scenario can be simulated

by setting the Dirichlet distribution’s scale parameter to some positive value smaller than one.

We repeated the previous simulation with M = 7, and N = 100 pixels 100 times. For each

realization, we examined the number of mean values of the rows of X̂ that were larger than

a predefined threshold empirically set to 0.01. We considered this value, denoted as M̂ , as the

estimated number of endmembers in the scene. Table 3.2 provides the probability of detecting M̂

endmembers with GLUP and NGLUP, given that the synthetic data was generated with M = 7

endmembers. The same task was performed using VD [Chang and Du, 2004]. We compared

the results of NGLUP with those of VD, the probability of false alarm of VD being set to 10−3.

Table 3.2 shows that NGLUP was able to identify the presence of 7 endmembers in 98% (resp.,

96%) of the cases with an SNR of 30 dB (resp. 20 dB). VD only identified 2 endmembers in

most cases. Even with higher values of the SNR, VD did not identify the correct number of

endmembers. Note that VD has asymptotic convergence, and thus requires a very large number

of observations in order to converge. This explains the poor performance of VD compared to

GLUP and NGLUP.
1Machine specifications: 2.2 GHz Intel Core i7 processor and 8 GB RAM
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Figure 3.2: First row: Mean value of each row of X̂ estimated with GLUP, obtained with (a)
N = 100 and (b) N = 500 pixels with SNR = 50 dB. Second row: 2D data projection and GLUP
estimated endmembers obtained with (c) N = 100 and (d) N = 500 pixels.

Finally, we compared the performance of the proposed approach with 3 endmember extraction

algorithms, namely, N-FINDR [Winter, 1999], VCA [Nascimento and Bioucas-Dias, 2005], and

SDSOMP [Fu et al., 2013]. In particular, we considered the case where an outlier is present among

the observations. In real data, an outlier usually corresponds to bad sensor measurements. To

this end, 3 endmembers were used to generate 500 mixed pixels. The 3 endmembers as well

as an additional spectra, the outlier, were inserted among the observations. Figure 3.4 shows

the 2D data projection after performing 2-dimensional PCA. The outlier can be determined

by visual inspection as it is the only point outside the simplex. GLUP found 3 endmembers

denoted by green stars. We can see that they correspond to the 3 vertices of the simplex,

thus to the true endmembers. On the other hand, with VCA, N-FINDR and SDSOMP, the

number of endmembers to find was explicitly set to 3. The three algorithms correctly identified

2 endmembers out of 3, and the outlier instead of the third one. This advantage over geometrical

and greedy approaches is related to the formulation of endmember extraction as a penalized

optimization problem.
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Figure 3.3: First row: Mean value of each row of X̂ estimated with GLUP, obtained with (a)

N = 100 and (b) N = 500 pixels with SNR = 20 dB. Second row: Mean value of each row of X̂
estimated with NGLUP, obtained with (a) N = 100 and (b) N = 500 pixels with SNR = 20 dB.
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Figure 3.4: Endmembers estimated by GLUP, VCA, N-FINDR, and SDSOMP when the data
contains an outlier.
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3.4.2 Real data: Cuprite

Data set description

In this section, we shall evaluate the performance of NGLUP using real hyperspectral data.

The tests were performed on the so-called Cuprite hyperspectral data provided by NASA’s

sensor AVIRIS2. The hyperspectral data set was captured over a mining district in southern

Nevada. Originally, the images were collected with 224 spectral bands over the wavelength

interval 400− 2500 nm. After removing the water absorption bands (1− 2, 105− 115, 150− 170,

and 223− 224), 188 bands were left for the analysis. The spatial resolution is about 17 meters.

The relatively low spatial resolution of the measurements makes this data particularly interesting

to test unmixing algorithms. The image we use for the experiments is a subset of 250×191 pixels,

that is, a total of 47750 pixels.

Unmixing results

Typically, S should contain all the available observations, that is, N = 47750. In order to

alleviate the computational burden, we selected a subset of samples from the original scene. The

sampling strategy must guarantee the presence of the endmembers among the selected candidates.

To perform this task, we initialized S with the whole observations. Next, we computed the mutual

coherence between pairs of candidates. Then, the pair with the largest mutual coherence was

identified, and one of the two spectra was randomly discarded. The process was repeated until

300 spectra with the lowest mutual coherences were left in S. As shown by the experimental

results provided hereafter, this led to a subset of samples sufficiently representative of the original

data to identify the endmembers. Following this strategy, the mutual coherence in the case of

Cuprite was reduced from 1 (with N = 47750) to 0.9996 (with N = 300). In addition to

alleviating the computational load, an advantage of this strategy is that reducing the coherence

of the dictionary, which is the set of available data in our case, improves the performance of the

algorithm [Bruckstein et al., 2009, Candes et al., 2006]. Other algorithms can be used to perform

this task, for example K-means clustering with an angle constraint as in [Esser et al., 2012], or

pruning by subspace projections as in [Iordache et al., 2012b]. However, we found this sampling

strategy efficient in our experiments.

We applied GLUP and NGLUP (with S = Sω) successively using the subset of pixels, the

penalty parameter µ being set to 1 and 10000 respectively. With this setting, we obtained 11

2available online: http://aviris.jpl.nasa.gov/data/free_data.html

http://aviris.jpl.nasa.gov/data/free_data.html
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non-zero means in the estimated abundance matrix, that is, 11 endmembers. We also extracted

the endmembers using N-FINDR and VCA, the number of endmembers being set to 11. Given

that VCA and N-FINDR have lower computational complexity, we applied them on the subset

of pixels and on the whole image. Figure 3.5 shows the identified endmembers in each case. It

is worth noting that NGLUP was able to identify the endmembers without any prior knowledge

on their number. In Figure 3.6, we compare 6 of the spectra estimated by NGLUP with those

estimated by N-FINDR when the latter is applied on the whole scene. It can be observed that

the 6 spectra correspond to some of the major minerals present in the scene: Sphene, Kaolinite,

Muscovite, Alunite, Dumortierite [Nascimento and Bioucas-Dias, 2005]. Figure 3.7 shows the

corresponding abundance maps estimated by FCLS, the endmembers being those estimated by

NGLUP.

Finally, in table 3.3, we report the root mean square error between the available observations

spectra S and the estimated spectra Ŝ defined as:

RMSES =

√
1

LN
‖S − Ŝ‖2F. (3.30)

Furthermore, we report the average and maximum spectral angles. Let θi be the spectral angle

between the i-th original spectrum si and its reconstructed version ŝi defined as

θi = acos(
s⊤i ŝi

‖si‖2‖ŝi‖2
). (3.31)

The maximum spectral angle (MSA) and average spectral angle (ASA) are defined as

θmax = max
i=1···N

(θi), (3.32)

and

θavg =
1

N

N∑

i=1

θi, (3.33)

respectively. When the three algorithms were applied with the sampled subset, NGLUP always

had better scores. When VCA and N-FINDR were applied over the whole scene, NGLUP slightly

outperformed N-FINDR and had comparable performance to VCA.

3.5 Conclusion

In this chapter, we presented two approaches for blind and fully constrained unmixing. The

two methods are based on mixing models with increasing complexity, and allow to simultane-

ously determine the endmembers and estimate their abundances in the scene. Compared to the
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Table 3.3: Reconstruction quality of Cuprite using NGLUP, N-FINDR, and VCA with FCLS.

Algorithm RMSES ASA MSA

NGLUP (N=300) 0.0075 1.115◦ 4.679◦

N-FINDR (N=300) 0.0115 1.583◦ 9.286◦

N-FINDR (N=47750) 0.0095 1.400◦ 7.626◦

VCA (N=300) 0.0120 1.289◦ 7.450◦

VCA (N=47750) 0.0062 0.855◦ 8.020◦

first model called GLUP, the second model called NGLUP explicitly considers that endmembers

present in the scene are corrupted by noise. The main advantage of the both models was that the

endmembers used to characterize the observations were obtained in the same atmospheric condi-

tions as the observations and underwent the same atmospheric corrections as well. Furthermore,

since the observations and equivalently the estimated endmembers were corrupted with noise the

second model takes into consideration the presence of noise in the endmembers. Experiments

on synthetic and real data demonstrated the performance of both approaches. Nevertheless,

the limiting factor in NGLUP, is that it is computationally more expensive than GLUP due to

the solution of the Sylvester equation. This required sampling the data in order to reduce the

computational complexity of this step. Finally, note that both models do not exploit the spatial

information inherently present in hyperspectral data. The next chapter studies two graph-based

regularizations for unsupervised unmixing that allow to incorporate spatial information in order

to improve the unmixing accuracy.



36 Chapter 3. Blind & fully constrained linear unmixing

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

(a) NGLUP (300)
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(b) N-FINDR (300)
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(c) N-FINDR (47750)
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(d) VCA (300)
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(e) VCA (47750)

Figure 3.5: Estimated endmembers obtained with (a) NGLUP with 300 samples (b) N-FINDR
with 300 samples (c) N-FINDR with all samples (d) VCA with 300 samples (e) VCA with all
samples.
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(a) Sphene
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(b) Kaolinite 1
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(c) Muscovite
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(d) Alunite

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

 

 

NGLUP
NFINDR

(e) Kaolinite 2
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Figure 3.6: Comparison between six endmembers’ spectra estimated by NGLUP and by N-
FINDR when applied on the whole AVIRIS scene of Cuprite.
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Figure 3.7: Abundance maps estimated by FCLS for some of NGLUP endmembers: Sphene,
Kaolinite, Muscovite, Alunite, Kaolinite 2, and Dumortierite.



Chapter 4

Graph-based regularized linear

unmixing

This chapter has been adapted from the conference papers [Ammanouil et al., 2015a,b].

This chapter introduces two graph-based regularizations in the unsupervised linear unmixing

formulation. The proposed regularizations rely upon the construction of a graph representation of

the hyperspectral image such that each node in the graph represents a pixel’s spectrum, and edges

connect similar nodes. The first regularization is the quadratic Laplacian regularization imposed

on the abundances, and the second regularization is the nonlocal Total variation imposed on the

reconstructed spectra. The former regularization is used to promote smooth abundance maps,

while the second one is used to promote piece-wise constant reconstructed spectra. The resulting

constrained optimization problems are convex and solved using the Alternating Direction Method

of Multipliers (ADMM). Finally, simulations conducted on synthetic and real data illustrate the

effectiveness of incorporating the proposed regularizations.

4.1 Introduction

In this chapter, we propose to incorporate spatial/spectral prior information regarding the sim-

ilarities between the different pixels in the unsupervised linear unmixing framework through an

additional regularization term. Incorporating this prior information allows to improve the unmix-

ing accuracy. Furthermore, it acknowledges the importance of contextual information inherently

present in hyperspectral images. In particular, we perform this task by incorporating a regular-

39
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ization term based on a graph representation of the image. In fact, representing by edges the

pairwise spatial and/or spectral similarities between the spectra at different pixels in the image

gives rise to a graph, where each node represents a pixel. The resulting graph structure pro-

vides additional relational information which can be used to improve the abundance estimation

accuracy and complement existing unmixing techniques wether in the supervised or unsuper-

vised case. As we shall see further ahead, the graph-based regularization framework provides

an elegant and flexible way to incorporate different types of prior information in the unmixing

problem. Graph-based regularizations have been widely used in many fields, and their potential

has been demonstrated for many applications including digit recognition and text classification

[Zhou et al., 2004], web-page categorization [Zhang et al., 2006], hyperspectral data classification

[Camps-Valls et al., 2007], manifold learning [Belkin et al., 2006], and non-local image denoising

[Kovac and Smith, 2011, Peyré et al., 2008, Couprie et al., 2013, Zhang and Hancock, 2008] to

cite a few.

Similarly to chapter 3, we perform unsupervised unmixing using the group Lasso regulariza-

tion. Furthermore, a graph-based regularization is incorporated within the optimization problem.

More precisely, we consider two different settings. In the first setting, the hyperspectral image is

mapped to a complete weighted graph, where the weight of each edge is proportional to a mea-

sure of the similarity between the spectra associated with the edge. If two pixels are connected

by an edge with a high weight, then it is assumed that their abundances should be smooth.

The relevance of using a complete graph representation is that pixels in distant regions of the

image can collaborate to improve the abundance estimation. Using tools of discrete calculus on

graphs [Shuman et al., 2013], we penalize the squared norm of the discrepancies between the

estimated abundances of connected pixels through the use of the graph Laplacian matrix. The

corresponding optimization problem is given by:

(P1)
minimizeX

1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖xλk
‖2 + λJG1(X),

subject to xij ≥ 0 ∀ i, j
∑N ′

i=1 xij = 1 ∀ j,

(4.1)

where the first term mainly ensures that the reconstructed spectra matches the observations, the

second term is the group Lasso regularization [Yuan and Lin, 2006] that forces all the observations

to have the same set of endmembers by promoting zero rows in the estimated abundance matrix

(similarly to chapter 3), and the constraints ensure the positivity and the sum-to-one. Note

that we have used D to denote an L × N ′ dictionary of spectral materials rather than Sω

that corresponds to a subset of candidate endmembers chosen from the observations. From
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a mathematical point of view, this does not affect the optimization problem. Nevertheless,

we use this notation given that a library of spectral materials was used in the experiments.

Most importantly, the third term in the objective, namely JG1(X) is the quadratic Laplacian

regularization. The so called quadratic Laplacian regularization aims at promoting smooth

abundances estimates with respect to the graph structure. The expression as well as more

details regarding this regularization are given in section 4.3. In the second setting, we opt for a

sparse graph by constructing the edge set from the four neighbours of each node and the k nearest

neighbours rather than considering a complete graph. Similarly to the first case, the weight of

each edge is proportional to a measure of the similarity between the spectra associated with the

edge. However, if two pixels are connected by an edge, we assume that their reconstructed spectra

rather than their abundances should be piece wise constant. To perform this task, the ℓ1-norm

of the discrepancies between the estimated spectra of connected pixels is penalized through the

use of the adjacency matrix of the graph. We refer to this regularization as the nonlocal TV.

The corresponding optimization problem is given by:

(P2)
minimizeX

1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖xλk
‖2 + λJG2(DX).

subject to xij ≥ 0 ∀ i, j
∑N ′

i=1 xij = 1 ∀ j,

(4.2)

where, compared to (4.1), JG2(DX) is the nonlocal TV imposed on the reconstructed spectra.

The expression of JG2(DX) is developed in section 4.3. In both cases, the optimization problem

is convex and solved using an ADMM algorithm.

Several works in the literature incorporate spatial regularization within the unmixing pro-

cedure. For example, in [Iordache et al., 2012a] the authors use a TV regularization for sparse

ℓ1-norm regularized unmixing. The TV regularization promotes piece wise constant abundances

estimates while preserving discontinuities. However, the underlying graph in TV is restricted to

local connections, and only relates a pixel to its four neighbors. In addition to this, the efficiency

of TV in preserving discontinuities depends on the corresponding tuning parameter, i.e., for rel-

atively large values of the tuning parameter much of the detail is lost. In contrast with TV, we

use nonlocal graphs which makes it possible for distant but similar pixels to collaborate in order

in order to improve the unmixing accuracy. The fact that the graph is weighted proportionally

to the similarity between the pixels spectra allows to spatially adapt the corresponding tuning

parameter in order to do more effective regularization [Strong and Chan, 1996]. Very recently,

the authors of [Lu et al., 2013] and [Tong et al., 2014] used a graph-based regularization, namely

the quadratic Laplacian regularization, for sparse ℓ1/2-norm regularized Non negative Matrix
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Factorization (NMF) within the context of blind unmixing. Their algorithm performs alternate

minimization in order to simultaneously estimate the endmembers and the abundances. In this

work, we use the ADMM algorithm [Boyd et al., 2011] which allows to take into account the

sum-to-one and positivity constraints for the abundances, and the Group lasso regularizer which

allows the use of large endmember candidates. Several methods in the literature incorporate

other spatial or spectral-spatial information in the unmixing problem such as [Jia and Qian,

2007, Castrodad et al., 2011, Eches et al., 2011, Zare, 2011]. Finally, in contrast with all the

previous works where the prior is directly imposed on the abundances, the second regularization,

namely the nonlocal TV in (4.2) is imposed on the reconstructed spectra rather than the abun-

dances. This choice seemed natural since the weighted graph is built according to the observed

spectra themselves. For a detailed review of unmixing methods with spatial information, the

reader is referred to [Shi and Wang, 2014].

The rest of this chapter is organized as follows. Section 4.2 describes how to map the hy-

perspectral image to a weighted graph, section 4.3 introduces the quadratic Laplacian and the

nonlocal TV regularizations, section 4.4 develops the ADMM algorithms for solving the graph

regularized unmixing problems, section 4.5 discusses the complexity of each algorithm, section

4.6 tests the proposed algorithms on synthetic and real data. Finally, Section 4.7 concludes the

chapter.

Table 4.1: Notations for chapter 4

D L×N ′ Spectral library of known materials

V − Set of vertices

E − Set of edges

W N ×N Affinity matrix

LG N ×N Laplacian matrix of the graph

Γ
⊤ N × |Γ| Incidence matrix (Γ: edge node matrix of the graph)

D N ×N Degree matrix of the graph

4.2 Image to graph mapping

Before introducing the graph-based regularizations used in (4.1) and (4.2), we first give some

notations and describe the strategies used for generating meaningful graphs from the hyperspec-

tral image as done for example in Figure 4.1. Let G = (V, E ,W) be the image graph where

V = {v1, · · · , vN} is the set of vertices, W ∈ R
N×N is the affinity or adjacency matrix, and



4.2. Image to graph mapping 43

Hyperspectral cube
Graph

Figure 4.1: Mapping the hyperspectral image to a weighted graph G.

E = {eij |i ∼ j} is the set of (undirected) edges where i ∼ j means that vertices vi and vj are

connected. Every vertex or node in V represents a pixel in the image, and it is associated with

the corresponding pixel’s spectrum. There exists different techniques for generating a meaningful

set of edges, and assigning a weight to each edge. Hereafter, we briefly describe how to perform

these two tasks, for a detailed and comprehensive review see chapter 4 in [Grady and Polimeni,

2010].

4.2.1 Defining the edge set

Two straightforward options for defining the edge set, hence the topology of the graph, are either

building a four neighbourhood regular graph, or a fully connected graph. These two cases are

respectively depicted in the first and second subfigures of Figure 4.2. The four neighbourhood

graph used in classical TV seems like a natural possibility in the case of an image. However,

it is not adapted to the underlying image. The fully connected or complete graph is the most

thorough choice since it represents all pairwise relationships. However, the number of edges,

equal to 1
2N(N − 1), can become prohibitive for large N . Another alternative is to connect each

pixel to its first order spatial neighbours in addition to its k nearest neighbours among the other

pixels in the image w.r.t. some spectral distance. This alternative can be seen as a compromise

between the four neighbourhood and the complete graph structures. Compared to the four

neighbourhood structure, it keeps the connections with the spatially closest neighbour while

also adding nonlocal connections with the most spectrally similar pixels. As a result, instead of

only having connections with the local spatial neighbourhood of a pixel, spectrally similar pixels

provided by a k nearest neighbour are also added. This enhances the topology by allowing the

collaboration between pixels located in distant regions across the image [Couprie et al., 2013].

Compared to the complete graph, this alternative allows to remove irrelevant connections and it

drastically reduces the number of edges.



44 Chapter 4. Graph-based regularized linear unmixing

4N
Complete graph

4N+KNN

Figure 4.2: Graph representation of the HSI with different edge sets.

4.2.2 Defining the weights

Given the edge set, the weights can be assigned as follows. If two vertices vi and vj are not

connected by an edge, then the corresponding weight is set to zero (Wij = 0). If two vertices

vi and vj are connected by an edge eij , then Wij is set to some positive value that represents

a measure of the similarity between the spectra associated with vi and vj . We consider non-

oriented graphs, hence Wij is equal to Wji. Note that assigning a zero weight to an edge is

equivalent to removing the corresponding edge.

The entries Wij of W satisfy the following conditions. If pixels i and j are similar then

Wi,j is set to some positive value proportional to their degree of similarity. If pixels i and j are

dissimilar then Wij tends to zero. There are different heuristics for choosing Wij . In general,

a monotonically decreasing function of the spectral distance is used to assign a weight to each

edge. For example, this can be done by using a Gaussian kernel:

Wij = exp

(
−‖si − sj‖2

2σ2

)
, (4.3)

where σ is the kernel’s bandwidth [Gillis and Bowles, 2012, Zhang et al., 2014]. Or by simply

using binary weights and thresholding:




Wij = 1 if ‖si − sj‖22 < d2min

Wij = 0 otherwise,
(4.4)

where d2min represents the maximum squared spectral distance allowed between connected pixels.

In addition to the pixel’s spectrum, each pixel can be defined by a vector of spatial features, for

instance, the average of its surrounding area, its coordinates in the image. This spatial informa-

tion leads to a second spatial affinity matrix which can be easily combined with the spectral one

[Camps-Valls et al., 2007]. Finally, k-nearest neighbours and thresholding are commonly used in
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order to set to zero small weights in W [Argyriou et al., 2005]. The authors of [Zhang et al.,

2014, Gillis and Bowles, 2012, Camps-Valls et al., 2007] propose different strategies for defining

an affinity matrix that takes into account both the spatial and the spectral information of a

pixel.

4.2.3 Graph operators

In addition to the adjacency matrix, the graph can be characterized by the incidence and Lapla-

cian matrices. In fact the two graph-based regularizations that we introduce in the next section

are expressed in terms of these two operators.

• The incidence matrix or the edge-node matrix encodes the incidence relationships between

the nodes in V and the edges in E . Let us denote by Γ
⊤ ∈ R

N×|E| the graph incidence

matrix [Grady and Polimeni, 2010], where |E| represents the cardinality of E i.e. the number

of edges. Each row of Γ is indexed by an edge and has two nonzero elements:





Γeij ,i = Wij

Γeij ,j = −Wij ,
(4.5)

encoding which vertices are incident at the edge and its corresponding weight.

• Let us denote by LG The Laplacian matrix of the graph. The Laplacian is an N×N matrix

which can be directly defined as:





(LG)ij = −Wij , if i 6= j

(LG)ij =
∑N

i=1Wij otherwise.
(4.6)

Alternatively, the Laplacian matrix can be defined as LG = D−W , where D is the N ×N

diagonal matrix degree matrix such as Dii =
∑N

j=1Wij and zero otherwise.

The notations are summarized in Figures (4.4) using the illustrative example in Figure 4.3 of

a random Graph G. The graph in Figure 4.3 is characterized by the following node and edge sets

V = {v1, v2, v3, v4}, and E = {e12, e13, e23, e24} respectively. The adjacency, degree, Laplacian

and incidence matrices are given by Figure 4.4. Note that, in the example of the degree matrix,

we have used the shorthand notations W21+23+24 and W31+32 for W21+W23+W24 and W31+W32

respectively.
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v1 v2

v3 v4

e13

e12

e23
e24

Figure 4.3: Illustrative example of a random graph.




v1 v2 v3 v4

v1 0 W12 W13 0
v2 W21 0 W23 W24

v3 W31 W32 0 0
v4 0 W42 0 0




Adjacency matrix W




v1 v2 v3 v4

v1 W12+13 0 0 0
v2 0 W21+23+24 0 0
v3 0 W31+32 0
v4 0 0 0 W42




Degree matrix D




e12 e12 e23 e24

v1 W12 W12 0 0
v2 −W12 −W12 W23 0
v3 0 0 −W24 W24

v4 0 0 0 −W24




Incidence matrix Γ
⊤




v1 v2 v3 v4

v1 d11 −W12 −W13 0
v2 −W21 d22 −W23 −W24

v3 −W31 −W32 d33 0
v4 0 −W42 0 d44




Laplacian matrix LG

Figure 4.4: Adjacency, degree, incidence, and Laplacian matrices of the graph in the illustrative
example.

4.3 Graph based regularization

As mentioned previously, we consider two interpretations of the graph. In the first one, we

consider that if two nodes are connected by an edge with a relatively high weight, then they

are likely to have similar abundances. Whereas in the second one, we consider that if this is

the case, then they are likely to have similar reconstructed spectra. We shall now introduce two

graph-based regularizations that allow to incorporate this information in the unmixing problem,

the quadratic Laplacian regularization and the nonlocal TV.
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4.3.1 Quadratic Laplacian regularization

The quadratic Laplacian regularization used in (4.1) is defined as:

JG1(X) = trace(XLGX
⊤), (4.7)

where LG is the graph Laplacian matrix. As a result, (4.1) becomes:

(P1)
minimizeX

1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖xλk
‖2 + λtrace(XLGX

⊤),

subject to xij ≥ 0 ∀ i, j
∑N ′

i=1 xij = 1 ∀ j.

(4.8)

To see the relevance of this regularization term in (4.8), we rewrite it as follows [Mohar and

Alavi, 1991]:

trace(XLGX
⊤) =

∑N
i=1

∑N
j=1Wij‖xi − xj‖2. (4.9)

The quantity in (4.9) can be seen as a measure of the discrepancies between all pairs of abundance

estimates weighted by their degree of similarity. In the unmixing framework of (4.8), for every

row in X, the quadratic Laplacian regularization (4.9) penalizes the square of the difference

between the abundances of similar pixels proportionally to their degree of similarity. As a result,

it promotes smooth abundance estimates with respect to the graph structure. Note that the

regularization parameter λ in (4.8) controls the extent at which similar pixels estimate similar

abundances, hence it controls the degree of smoothness of the abundance estimates.

4.3.2 Nonlocal TV regularization

The second regularization that we introduce in the unmixing formulation in (4.2) is the nonlocal

TV regularization imposed on the reconstructed spectra rather than directly on the abundances.

In fact, the graph is intended to capture the features of the image. Thus, it seems appropriate

to impose the graph based regularization on the reconstructed image at each spectral band. The

nonlocal TV regularization is given by:

JG2(DX) = ‖Γ(DX)⊤‖1, (4.10)

where Γ
⊤ ∈ R

N×|E| is graph incidence matrix defined in section 4.2.3. As a result, problem (4.2)

becomes:

(P2)
minimizeX

1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖xλk
‖2 + λ‖Γ(DX)⊤‖1.

subject to xij ≥ 0 ∀ i, j
∑N ′

i=1 xij = 1 ∀ j.

(4.11)
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To see the relevance of the nonlocal TV regularizer in (4.11), we rewrite it as follows:

JG2(DX) =
N∑

i=1

N∑

j=1

Wij‖Dxi −Dxj‖1. (4.12)

This quantity measures the discrepancies between the estimated spectra at all pairs of nodes

weighted by their degree of similarity, where the discrepancies are measured in the ℓ1-norm

sense. The classical TV regularization is well known for promoting piecewise constant estimates

while preserving discontinuities in the image. Nevertheless, the efficiency of TV depends upon

the regularization parameter, i.e. for large values of the regularization parameter much of the

detail can be removed. In contrast with classical TV, the advantage of nonlocal TV (4.10) is that

the weights, which are proportional to the similarity between the two corresponding nodes, allow

to strengthen the penalization over similar data and weaken it over dissimilar data. Finally, note

that problem (4.2) can be interpreted as the combination of unmixing with the image filtering

problem:

minimize
Ŝ

1
2‖S − Ŝ‖2F + λJG2(Ŝ), (4.13)

which aims at finding a piecewise constant version Ŝ of S.

4.4 ADMM algorithm

The ADMM is used in order to solve the two graph regularized optimization problems, namely

problems (4.8) and (4.11).

4.4.1 Quadratic Laplacian regularization

For the first optimization problem (4.8), we consider the following variable splitting:

minimizeX,Y ,Z
1
2‖S −DX‖2F + λtrace(Y LGY

⊤) + µ
∑N ′

k=1 ‖zλk
‖2 + I

R
N′×N
+

(Z)

subject to AX +BZ = C

X = Y

(4.14)

with

A =


 IN ′

1
⊤
N ′


 , B =


 −IN ′

0
⊤
N ′


 , C =


 0N ′×N

1
⊤
N


 ,

where I
R
N′×N
+

(Z) is the indicator of the positive orthant guarantying the positivity constraint,

that is, I
R
N′×N
+

(Z) = 0 if Z � 0 and +∞ otherwise. The constraints impose the consensus X =
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Y , X = Z, and the sum-to-one. In matrix form, the augmented Lagrangian for problem (4.14)

is given by

Lρ(X,Y ,Z,V ,Λ) = 1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖zλk
‖2 + I(Z) + λtrace(Y LGY

⊤)

+trace(V ⊤(X − Y )) + ρ
2 ‖X − Y ‖2F

+ρ
2 ‖AX +BZ − C‖2F + trace(Λ⊤(AX +BZ − C))

(4.15)

where Λ and V are the matrices of the Lagrange multipliers, and ρ is the penalty parameter.

The flexibility of the ADMM lies in the fact that it splits the initial optimization problem into

three subproblems. At iteration k + 1, the ADMM algorithm is outlined by the following five

sequential steps:

Xk+1 = minimizeX Lρ(X,Y k,Zk,V k,Λk),

Y k+1 = minimizeY Lρ(X
k+1,Y ,Zk,V k,Λk),

Zk+1 = minimizeZ Lρ(X
k+1,Y k+1,Z,V k,Λk),

V k+1 = V k + ρ(Xk+1 − Y k+1),

Λ
k+1 = Λ

k + ρ(AXk+1 +BZk+1 − C).

(4.16)

The ADMM steps are developed hereafter. Similarly to all the chapters, we drop the iteration

index in the development of the minimization steps in order to keep the notations simple.

X minimization step

The augmented Lagrangian is quadratic with respect to X. The minimizer has an analytical

expression that is obtained by setting the gradient of the augmented Lagrangian with respect to

X to zero:

X = (D⊤D + ρA⊤A+ ρIN ′)−1(D⊤S −A⊤[Λ+ ρ (BZ − C)]− V + ρY ). (4.17)

Y minimization step

Similarly to the first step, the solution is obtained by setting the gradient of the augmented

Lagrangian with respect to Y to zero, which yields:

Y = (V + ρX)(2λLG + ρIN )−1. (4.18)

Assume that we did not use Y , and assigned the same ADMM variable X for both the fidelity

term and the graph Laplacian regularization. In this case, the X minimization reduces to solving

a Sylvester equation [Bartels and Stewart, 1972]. The exact solution of this problem can not

be computed efficiently due to the high dimensionality of the problem. In fact it requires the
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inversion of a NN ′ × NN ′ matrix where N and N ′ can be both very large. Iterative methods

have been proposed to perform this task [Ding and Chen, 2005]. These iterative methods are

similar to the first two steps of our ADMM solution in the sense that the initial variable is split

into two variables and alternating updates of these variables are performed.

Z minimization step

After discarding the terms that are independent of Z, the minimization of the augmented La-

grangian with respect to Z reduces to solving the following problem:

minimizeZ µ
∑N ′

k=1 ‖zλk
‖2 + trace(Λ⊤CZ) + ρ

2‖AX +BZ − C‖2F
subject to Z � 0.

(4.19)

This minimization step can be split into N ′ problems given the structure of matrices A, B and

C, one for each row of Z, that is,

minimizez
1
2‖z − v‖22 + α‖z‖2 + I(z) (4.20)

where v = x+ ρ−1λ, α = ρ−1µ. Vectors λ, x and z correspond to a given row of Λ, X and Z,

respectively. The minimization problem (4.20) admits a unique solution given by the proximity

operator of function f(z) = α‖z‖2 + I(z):




z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise,

(4.21)

where (·)+ = max(0, ·). Operator (4.27) was recently used in [Thiebaut et al., 2013, Ammanouil

et al., 2014]. The derivation of this operator can be found in Appendix A.

Update of the Lagrange multipliers Λ and V

The last step consists of updating the Lagrange multipliers Λ and V using the following expres-

sions

Λ
k+1 = Λ

k + ρ(AXk+1 +BZk+1 − C),

V k+1 = V k + ρ(Xk+1 − Y k+1).
(4.22)

As suggested in [Boyd et al., 2011], a reasonable stopping criterion for this iterative algorithm is

that the primal and dual residuals must be smaller than some tolerance thresholds.
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4.4.2 Nonlocal TV regularization

In the case of the nonlocal TV regularized unmixing problem, in order to find the solution using

an ADMM algorithm, we adopt the following variable splitting scheme:

minimizeX,Y 1→2,Z
1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖zλk
‖2 + I(Z) + λ‖Y 2‖1

subject to AX +BZ = C

Y 1 = (DX)⊤

Y 2 = ΓY 1

(4.23)

where

A =


 IN ′

1
⊤
N ′


 , B =


 −IN ′

0
⊤
N ′


 , C =


 0N ′×N

1
⊤
N


 .

X,Y 1,Y 2,Z are the ADMM variables. The constraints are imposed to ensure that problem

(4.23) is equivalent to problem (4.11). The augmented Lagrangian for problem (4.23) is given

by

Lρ(X,Y 1→2,Z,Λ,V 1→2) =
1
2‖S −DX‖2F + µ

∑N ′

k=1 ‖zλk
‖2 + I(Z) + λ‖Y 2‖1

+trace(Λ⊤(AX +BZ − C)) + trace(V ⊤
1 (Y 1 − (DX)⊤))

+trace(V ⊤
2 (Y 2 − ΓY 1)) +

ρ
2‖AX +BZ − C‖2F

+ρ
2‖Y 1 − (DX)⊤‖2F + ρ

2‖Y 2 − ΓY 1‖2F
(4.24)

where Λ,V 1,V 2 are the Lagrange multipliers and ρ is the penalty parameter. The ADMM steps

are developed hereafter:

X minimization step

After discarding the terms independent of X in the augmented Lagrangian, minimizing the

augmented Lagrangian w.r.t. X reduces to a Least squares problem. The solution is obtained

by solving a set of linear equations:

((1 + ρ)D⊤D + ρA⊤A)X = D⊤S − A⊤
Λ + D⊤V ⊤

1 − ρA⊤(BZ − C) + ρD⊤Y ⊤
1 .

Note that the X minimization step is separable column wise, i.e. a linear system of equations

is solved for every column of X. However, other variable splitting choices could lead to a more

complex Sylvester equation such as for example using one additional variable Y 1 and letting

Y 1 = Γ(DX)⊤.
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Y 1 minimization step

Similarly to the first step, the Y 1 minimization amounts to solving the following set of linear

equations:

(IN + Γ
⊤
Γ)Y 1 = −1

ρ
V 1 +

1

ρ
Γ
⊤V 2 +X⊤D⊤ + Γ

⊤Y 2. (4.25)

Y 2 minimization step

Minimizing the augmented Lagrangian w.r.t. Y 2 reduces to the well known lasso problem. The

solution is obtained using soft thresholding:

Y 2 = softλ
ρ
(ΓY 1 −

1

ρ
V 2) (4.26)

where softα(·) = sign(·)(| · | − α)+ is applied element wise and (·)+ = max(0, ·).

Z minimization step

Minimizing the augmented Lagrangian w.r.t. Z reduces to solving the positively constrained

group lasso problem:





z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise

(4.27)

where v = x+ ρ−1λ, α = ρ−1µ, λ, x and z correspond to a row in Λ, X and Z respectively.

Update the Lagrange multipliers

The last step at each ADMM iteration consists of updating the Lagrange multipliers

Λ
k+1 = Λ

k + ρ(AXk+1 +BZk+1 − C)

V k+1
1 = V k

1 + ρ(Y k+1
1 − (Xk+1)⊤)

V k+1
2 = V k

2 + ρ(Y k+1
2 − ΓY k+1

1 ).

(4.28)

4.5 A note on complexity

Finally, we pay particular attention to the computational complexity of the resulting ADMM

algorithms. In both algorithms, the most expensive step requires solving a linear system with

N variables, N being very large in real images. More precisely, in the first ADMM algorithm

(section 4.4.1), the most expensive step corresponds to the Y minimization step (4.18) where

the linear system of equations depends on the Laplacian matrix. Whereas in the second ADMM
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algorithm (section 4.4.2), this corresponds to the Y 1 minimization step (4.25) where the linear

system of equations depends on the incidence matrix. In fact, it is computationally expensive to

solve the corresponding linear systems which have a computational complexity of O(N3), and it

is memory intensive to store the Laplacian and the incidence matrices themselves. In the first

case, our approach for reducing both the storage and computational complexity is mostly related

to the graph formulation of the problem. Whereas in the second case, it simply exploits the

sparse structure of graph.

In the first case, recall that we have proposed to build a fully connected weighted graph,

hence the Laplacian matrix is an N × N matrix which can easily outstrip the storage capacity

of a computer. A solution is to partition the initial graph into kc clusters while avoiding to

computation and storage of the whole Laplacian matrix. This allows to deal with smaller matrices

and solve smaller linear systems of equations with respect to each sub-graph. Following this idea,

we propose to use the algorithm of [Ng et al., 2002] in order to partition the N nodes of the

graph into kc clusters of smaller size. This allows to approximately solve the Y minimization

step (4.18) by solving kc smaller linear systems, where the number of variables is now smaller

than N . For more details regarding the clustering step see Appendix C. Note that the overall

optimization problem (4.8) can not be similarly separated into kc distinct problems due to the

group lasso regularization. The purpose of this step is to reduce the computational complexity of

(4.18) while preserving the global knowledge captured by the graph structure. For this reason,

the segmentation must be conservative, in the sense that kc should not be very large. In fact, a

segmentation into too many clusters with strong connections between inter-cluster pixels could

create undesirable cluster-like artifacts in the abundance maps.

In the second ADMM algorithm, we have proposed to build the graph based on the four

neighbors and k nearest spectral neighbors. The same clustering strategy described in the pre-

vious section can be used in order to partition the graph into smaller clusters and hence reduce

the computational complexity of the Y 1 minimization step (4.25). Nevertheless, in this case

one can exploit the fact that the graph structure is sparse in order to alleviate the storage and

computational complexity especially for relatively small values of k. Being sparse, storing the

incidence matrix allows to save memory. Furthermore it is computationally tractable to handle

the resulting sparse linear system of equations using iterative methods. In the experiments, we

use Matlab which internally solves the sparse linear system using a conjugate gradient based

algorithm.
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4.6 Experiments

In what follows, we present two sets of experiments in order to show the relevance of the proposed

regularizations and the corresponding algorithms. The first set of experiments, in section 4.6.1,

is dedicated to the quadratic Laplacian regularization. Whereas the second set of experiments,

in section 4.6.2, is dedicated to the nonlocal TV regularization.

4.6.1 Experiments with the Quadratic Laplacian regularization

Simulations with synthetic data sets

The performance of the proposed approach was first evaluated using two simulated data sets,

namely, Data1 and Data2 designed with different levels of homogeneity. Data1 is the same data

set used in the experiments of [Iordache et al., 2012a, Chen et al., 2014]. The image consists

of 75 × 75 pixels generated using 5 endmembers [r1, r2, · · · r5]. The library D used in all the

experiments for this chapter contains in total 230 endmembers with 224 spectral bands extracted

from the USGS spectral library of minerals. The background is a mixture of the 5 endmembers

with the following abundance values [0.1149 0.0741 0.2003 0.2055 0.4051]⊤. There are 25 squares

in the image disposed in a 5 × 5 grid fashion (see Figure 4.5). Each square is an homogeneous

surface where its pixels have the same abundances. Most of the abundances in Data1 verify the

assumption of local consistency. Data2 is generated similarly to Data1, except that it is created

using 15 distinct endmembers, and the squares in each row are identical in the sense that they

have the same abundances. In addition to local consistency, there exists distant homogeneous

surfaces in Data2 that are identical. As a result a pixel has local similar neighbors and distant

ones too.

The first step in the proposed approach consists of defining the graph. We test the quadratic

Laplacian regularization with a complete graph, i.e. there is an edge between all pairs of pixels.

As for the weights in the affinity matrix, we simply threshold the square of the spectral distance

and set the weights according to:




Wij = 1 if ‖si − sj‖22 < d2min

Wij = 0 otherwise,
(4.29)

where d2min represents the maximum squared spectral distance required in order to consider that

two pixels are similar. Note that having a zero weight (Wij = 0) is equivalent to removing the

corresponding edge. As previously explained in Section 4.2, there are different heuristics for

choosing the weights. Setting the weights according to (4.29) was sufficient in our experiments
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Figure 4.5: First and second rows: Abundance maps for endmember 2 in Data1 obtained with
SNR = 30 dB. Third and fourth rows: Abundance maps for endmember 7 in Data2 obtained
with SNR = 30 dB. The parameters are the reported in Table 1.
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Figure 4.6: Clustering map used for Cuprite obtained with 10 clusters.
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Figure 4.7: Abundance maps for Alunite obtained using from left to right SUnSAL-TV and the
proposed GLUP-Lap algorithms.

to demonstrate the effectiveness of the method. The algorithm described in Appendix C is then

used to cut the graph into 10 disjoint subgraphs in order to reduce the computational complexity

of the Y -minimization step as explained in section 4.5.

We compared the performances of FCLS [Heinz and Chang, 2001] and SUnSAL-TV [Iordache

et al., 2012a] with the proposed approach denoted by GLUP-Lap (Group Lasso with Unit sum,

Positivity constraints and graph Laplacian regularization). We used the Root Mean Square Error

RMSEX =
√

1
NN ′ × ‖X̂ −X‖2F as the evaluation metric. We tested SUnSAL-TV and GLUP-

Lap for different combinations of the sparsity and the spatial tuning parameters µ and λ. Table

4.2 reports the best performance of each algorithm for a given data set and a given SNR with the

corresponding optimal pair of regularization parameters. GLUP-Lap requires the tuning of an

additional parameter d2min which is also reported in the table. Both, SUnSAL-TV and GLUP-

Lap, outperformed FCLS. GLUP-Lap had the lowest RMSE for all cases. As the SNR increases

the rate at which GLUP-Lap improves with respect to FCLS increases. This is due to the fact
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that the observations contain less noise, thus the adjacency matrix becomes more reliable. The

simulations performed with Data2 show that this data set is more difficult than the previous since

it contains a large number of endmembers: 15 compared to 5 in Data1. As before, GLUP-Lap

outperformed FCLS and SUnSAL-TV. It is important to note that GLUP-Lap and SUnSAL-TV

were run under the same ADMM conditions. The penalty parameter was set to 0.05, and the

maximum number of iterations to 200 in both algorithms. The first fours abundance maps in

Figure 4.5 show the true abundance map of the second endmember in Data1, and the estimated

maps obtained with FCLS, SUnSAL-TV and GLUP-Lap with SNR=30dB. It can be seen from

these maps that both SUnSAL-TV and GLUP-Lap estimated smooth abundance maps compared

to FCLS, with SUnSAL-TV having the smoothest map. However, the squares that were not

correctly estimated by SUnSAL-TV were better estimated with GLUP-Lap. This is possibly due

to the fact that the pixels in these squares were encouraged by the nonlocal graph to have similar

estimates and thus appeared as consistent blocks in the GLUP-Lap result. The same observation

can be made for the abundance map of r7 in Data2. This endmember is only present in squares

of the fourth row. The last four abundance maps in Figure 4.8 (third and fourth row) show

that FCLS was not able to correctly estimate the abundance of this endmember. SUnSAL-TV,

possibly due to the links a pixel has with its surrounding pixels, also failed to correctly estimate

its abundances. Despite the difficulty of this abundance map, GLUP-Lap perfectly recovered

the abundances. Even if the 5 squares are separated, their pixels are possibly connected in the

graph and collaboratively estimate their abundances.

Simulations real data set

We also tested the proposed approach on a subset of the Cuprite scene 1 provided by the AVIRIS

spectrometer. This scene was captured over a mining district in Nevada, the subset we use has

191× 250 pixels and 188 spectral bands over the wavelength interval 400− 2500 nm. Figure 4.6

shows the clustering map that was used to partition the image into smaller sub-graphs. Figure 4.7

shows the abundance maps of Alunite obtained using SUnSAL-TV and GLUP-Lap respectively.

In the former case, µ and η were both set to 10−3 and the execution time was 1281 seconds.

In the latter case, µ and η were set to 10−3 and 0.1 respectively, d2min was set to 0.005, and

the execution time was 5275 seconds. It can be seen from Figure 4.7 that the abundance maps

estimated by GLUP-Lap are less smooth than SUnSAL-TV. However, they conserved relatively

more details.

1available at http://www.ehu.eus/ccwintco
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Table 4.2: RMSE obtained with different values of the SNR, with the optimal values of the
couple (µ; λ) for SUnSAL-TV and GLUP-Lap, the penalty parameter was set to ρ = 0.05 for
both algorithms.

SNR 20 dB SNR 30 dB SNR 40 dB

Data1

FCLS 0.0262 0.0173 0.0101

SUnSAL-TV
0.0156 0.0075 0.0034

(0.05; 0.05) (5 10−3; 0.01) (10−3; 5 10−3)

GLUP-Lap

0.0152 0.0049 0.0012

(0.01; 0.5) (5 10−4; 0.5) (5 10−5; 0.5)

d2min = 2.5 d2min = 0.3 d2min = 0.05

Data2

FCLS 0.0307 0.0240 0.0151

SUnSAL-TV
0.0250 0.0132 0.0073

(0.05; 0.3) (10−4; 0.005) (5 10−5; 10−3)

GLUP-Lap

0.0174 0.0078 0.0023

(0.01; 1) (10−4; 1) (5 10−5; 1)

d2min = 1.8 d2min = 0.5 d2min = 0.5

4.6.2 Experiments with nonlocal TV regularization

Simulations with synthetic data sets

Similarly to the first set of experiments, the performance of the proposed approach was first

evaluated using Data1. However, this time, as explained in section 4.2, we define the edge set of

the graph by connecting a pixel to its four neighbors and to its 10 nearest neighbors (kc = 10)

where the spectral distance is measured with the ℓ2-norm. We then use binary weights according

to (4.29). The proposed approach with the nonlocal TV regularization is denoted by GLUP

TVG in the experiments. Its performance is compared with FCLS, SUnSAL TV [Iordache et al.,

2012a] and a TV regularized Collaborative unmixing [Iordache et al., 2013]. The TV regularized

Collaborative unmixing is obtained by setting Y 1 = X⊤ in the second constraint of (4.23), kc = 0

i.e. no nonlocal neighbors, and d2min = ∞ in (4.29) which finally amounts to using a regular 4

neighborhood graph. Furthermore, we tested the same graph structure used in GLUP TVG

directly on the abundances rather than on the reconstructed spectra, i.e. using JG2(X) rather

than JG2(DX). This approach is denoted as GLUP TVG (∗) in the table. The ADMM penalty

parameter was set to 0.05, and the maximum number of iterations to 200 in all ADMM based

algorithms. Table 4.3 reports the best scores for the RMSE between the true and the estimated
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abundance matrix (RMSEX) with the corresponding optimal pairs of regularization parameters.

Nonlocal TV requires tuning an additional parameter d2min which is also reported in the table.

All TV approaches outperformed FCLS. Nonlocal TV had the lowest RMSE for all cases. Figure

4.8 shows the true abundance map of endmember e1, and the estimated maps obtained with

Collaborative TV, SUnSAL TV and GLUP TVG with an SNR equal to 30 dB. It can be seen

from these maps that both TV approaches and the proposed nonlocal TV estimated smooth

abundance maps. However, the proposed approach was able to better recover the abundances of

the squares in the second column. This is possibly due to the fact that the pixels in a square are

connected to each other and disconnected from the background. This has prevented smoothing

over the squares and making them disappear.

Finally Figure 4.9 shows the RMSE as a function of λ for the optimal µ in the case of the

synthetic data set for a SNR of 30 dB. This figure shows that both Graph TVG and Graph

TVG (∗) had the best results compared to the other methods showing the advantage of having

a nonlocal graph adapted to the image rather than a 4 neighborhood graph as in classical TV.

Furthermore, it shows that when the tuning parameter increased, Graph TVG (∗) maintained a

lower RMSE compared to Graph TVG . In other words, it shows that with high values of the

tuning parameter, imposing the TV on the abundances gave better results than in the case where

it is imposed on the reconstructed spectra.

Simulations with real data set

We also tested the proposed approach using real hyperspectral data, namely the Cuprite scene

provided by NASA AVIRIS imaging spectrometer. Figure 4.10 shows the abundances estimated

using SUnSAL TV and the proposed approach for two endmembers. The tuning parameters λ

and µ were both set to 10−3 for SUnSAL TV [Iordache et al., 2012a] and to 5 × 10−3 for the

proposed algorithm, d2min was set to 2.5. From the two endmember abundance maps, it can be

seen that TV provided smoother results. However, the proposed approach was able to preserve

relatively more details.

4.7 Conclusion

In this chapter, we incorporated two Graph based regularizations within the unmixing prob-

lem. The proposed regularizations take into account the spatial information and the spectral

correlation inherently present in hyperspectral images. This prior was expressed through the con-
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Table 4.3: RMSE obtained with different values of SNR, with the optimal couples of tuning
parameters (µ; λ), ρ being set to 0.05.

SNR 20 dB SNR 30 dB SNR 40 dB

FCLS 0.0262 0.0173 0.0101

SUnSAL TV
0.0156 0.0075 0.0034

(0.05; 0.05) (5× 10−3; 0.01) (10−3; 5× 10−3)

Collaborative TV
0.0151 0.0071 0.0028

(0.5; 0.05) (0.1; 0.01) (0.1; 5 10−3)

GLUP TVG

0.0101 0.0028 0.0010
(0.3; 0.01) (0.1; 0.005) (0.05; 10−3)
d2min = 2.5 d2min = 0.3 d2min = 0.05

GLUP TVG (∗)
0.0128 0.0037 0.0014

(0.3; 0.05) (0.1; 0.05) (0.05; 5× 10−3)
d2min = 2.5 d2min = 0.3 d2min = 0.05

struction of a weighted graph adapted to the image under investigation. We tested two graphs, a

complete graph and a sparse graph which only considers the 4 neighbors and kc nearest neighbors

in for each pixel. We also tested two regularizations, namely the quadratic Laplacian regulariza-

tion and the nonlocal TV regularization, that impose smooth and piece wise constant estimates

respectively. Furthermore, the regularizations were applied on the abundances and on the recon-

structed spectra. The resulting optimization problems were solved using the ADMM algorithm

which allowed to split the original problem into smaller problems, and most importantly avoid

solving more complex sylvester equations. A special attention was given to the computational

complexity of the proposed algorithms. In the experiments, both regularizations provided better

estimates for the abundance maps and preserved much of the details due to the adapted struc-

ture of the graph which modulates the strength of the regularization. Furthermore, we showed

in the experiments that the nonlocal graph structure creates more consistent areas at the local

and global level. In the next chapter, we shift to the case of supervised nonlinear unmixing. In

particular, we exploit tools from vector-valued reproducing kernel Hilbert spaces (RKHS). We

will see that the kernel design also allow to impose structured regularization on the nonlinear

contributions at different bands based on a graph representations where each node represents a

certain band.
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Figure 4.8: Abundance maps for endmember 1 in the synthetic data set obtained with SNR = 30
dB. The optimal parameters are reported in Table 1
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Figure 4.10: Abundance maps for two endmembers in Cuprite obtained using SUnSAL TV and
GLUP TVG .



Chapter 5

Supervised nonlinear unmixing with

vector-valued kernel functions

This chapter has been adapted from the journal paper [Ammanouil et al., 2016a] (under revision).

This chapter presents a kernel based nonlinear mixing model for hyperspectral data where the

nonlinear function belongs to a Hilbert space of vector valued functions. The proposed model

extends existing ones by accounting for band dependent and neighboring nonlinear contributions.

The key idea is to work under the assumption that nonlinear contributions are dominant in some

parts of the spectrum while they are less pronounced in other parts. In addition to this, we moti-

vate the need for taking into account nonlinear contributions originating from the ground covers

of neighboring pixels by practical considerations, precisely the adjacency effect. The relevance

of the proposed model is that the nonlinear function is associated to a matrix valued kernel that

allows to jointly model a wide range of nonlinearities and include prior information regarding

band dependencies. Furthermore, the choice of the nonlinear function input allows to incorporate

neighboring effects. The optimization problem is strictly convex and the corresponding iterative

algorithm is based on the alternating direction method of multipliers (ADMM). Finally, exper-

iments conducted using synthetic and real data demonstrate the effectiveness of the proposed

approach.

63
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5.1 Introduction

The work presented in chapter 3 was devoted to unsupervised linear unmixing. In this chapter, we

shift our attention to supervised nonlinear unmixing. For self containment, we first briefly recall

the LMM and the corresponding notations. According to the LMM, the spectrum associated with

a mixed pixel is a linear combination of the endmembers spectra [Adams et al., 1986, Keshava

and Mustard, 2002, Bioucas-Dias et al., 2012]. More formally, we have:

sn =
∑M

i=1 ai,nri + en, ∀n = 1, . . . N, (5.1)

where sn is the L-dimensional spectrum of the n-th pixel, L is the number of frequency bands, M

denotes the number of endmembers, ai,n is the abundance of the i-th endmember in the n-th pixel,

ri is the L-dimensional spectrum of the i-th endmember, en is a vector of Gaussian white noise,

and N is the number of observations. All vectors are column vectors. The abundances, which

represent the relative contributions of the endmembers [Heinz and Chang, 2001], are positive

and usually sum to one: ai,n ≥ 0 and
∑M

i=1 ai,n = 1 respectively. The LMM (5.1) is a simplified

spectral mixing model. It only considers light reaching the sensor that has interacted once

with the imaged surface, and neglects complex interactions between light, the imaged surface,

neighboring surfaces and the atmosphere.

More recently, there has been a considerable amount of studies devoted to nonlinear mixing

models [Dobigeon et al., 2014b, Heylen et al., 2014a]. In particular, bilinear models are among

the most widely known to account for nonlinear effects [Nascimento and Bioucas-Dias, 2009, Fan

et al., 2009, Halimi et al., 2011, Altmann et al., 2014]. The physical assumption underlying these

models is that light beams go through multiple reflections before reaching the sensor, mainly due

to the three dimensionality of real scenes and scattering in the atmosphere [Altmann et al., 2012,

Dobigeon et al., 2014a, Meganem et al., 2014]. The mathematical expression established for

multiple reflections is the term by term product of two reflectance vectors in the case of bilinear

models, and more than two reflectance vectors in the case of multilinear models [Heylen and Sche-

unders, 2016]. For example, the polynomial post nonlinear mixing model (PPNM) introduced in

[Altmann et al., 2012] considers bilinear contributions through the following formulation:

sn =
M∑
i=1

ai,nri + un(
M∑
i=1

ai,nri)⊙ (
M∑
i=1

ai,nri) + en, (5.2)

where un is the nonlinearity parameter, and ⊙ denotes the Hadamard (element wise) product.

On the right hand side of equation (5.2), the first term corresponds to the linear mixture and

the second term corresponds to the nonlinear (bilinear) one. Another way for modeling the
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nonlinear mixtures of the endmembers is through the use of nonlinear (scalar-valued) functions

in reproducing kernel Hilbert spaces [Aronszajn, 1950, Shawe-Taylor and Cristianini, 2004]. The

advantage of kernel-based models over models similar to (5.2) is that they are non parametric

which means that they do not impose a predetermined form for the nonlinearity. For example,

the authors of [Chen et al., 2013] propose the following model known as the Khype model:

sn =
∑M

i=1 ai,nri + gn(R) + en, (5.3)

where gn(R) = [gn(rλ1) . . . gn(rλL
)]⊤, gn(·) is a nonlinear function in a reproducing kernel

Hilbert space (RKHS), and rλi
denotes the i-th row in R. The authors of [Chen et al., 2013] show

that model (5.3) is able to incorporate bilinear, multilinear as well as more complex nonlinear

interactions between the endmembers depending on the kernel choice. The main drawback of

both, bilinear and (scalar-valued) kernel based models, is that they impose the same function

at all bands, which can be restrictive in practice. More precisely, bilinear models consider the

same amount of bilinear contributions at all bands. In the case of the PPNM (5.2), the same

weight unai,naj,n is used to scale the bilinear contribution of ri ⊙ rj at all bands. Similarly,

the kernel-based model (5.3) considers the same scalar-valued nonlinear function gn(·) at all

bands. In contrast with the aforementioned models, the authors of [Yokoya et al., 2014, Févotte

and Dobigeon, 2015] do not impose any analytical form for the nonlinear term. The nonlinear

contribution is merely treated as a positive residual term that is sparsely (rarely) present among

the observations [Févotte and Dobigeon, 2015]. Nevertheless, this model-free approach can be

limiting itself since it does not control the nonlinear expression, hence it can prevent accurate

estimations of the nonlinear contribution.

The nonlinear mixing model proposed in this chapter circumvents the drawbacks of the

previously cited models by assuming that the nonlinear function belongs to a reproducing kernel

Hilbert space (RKHS) of vector-valued functions. This approach improves upon the case of RKHS

of scalar-valued functions by allowing for variable nonlinear contributions at different bands. The

key idea is to work under the assumption that nonlinear contributions can be dominant in some

parts of the spectrum and less significant in other parts [Somers et al., 2009, Richter et al., 2006,

Tanre et al., 1987]. Unlike the scalar valued case where the same function is considered at each

band, the proposed model relaxes this constraint, and allows to take into account wavelength

dependent nonlinear contributions. In particular, we focus on RKHS associated with a special

type of kernels, namely separable kernels. This type of kernels jointly defines the form of the

nonlinear contribution, and allows to include prior information regarding the similarity between

the nonlinear contributions at different wavelength bands. Similarly to the PPNM model, the
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input of the nonlinear vector-valued function includes the linear mixture spectra present in the

pixel. We go one step further by also including the spectra of the linear mixtures in neighboring

pixels. This choice is motivated by the adjacency effect [Richter et al., 2006] which states that

solar radiation reflected off adjacent surfaces can be scattered into the sensor’s instantaneous field

of view. Figure 5.1 shows two forms of the adjacency effect, and depicts how neighboring surfaces

can nonlinearly contribute to the reflectance vector estimated for a pixel. The adjacency effects

are usually removed in a pre-processing step known as atmospheric correction. There exists

different empirical methods for atmospheric correction [Burazerovic et al., 2013, Tanre et al.,

1987, Richter et al., 2006]. Nevertheless, the validity of some of these methods to correct the

adjacency effect is still questionnable [Liang et al., 2001], and errors occurred by these methods

can damage the quality of information extracted from remote sensing data [Hadjimitsis et al.,

2010]. As a result, accounting for potential adjacency effects through the input of the nonlinear

function increases the mixing model accuracy.

The chapter is organized as follows. Section 5.2 describes the nonlinear mixing model, and

discusses approaches for constructing the matrix valued kernel, section 5.3 develops the opti-

mization problem and the corresponding estimation algorithm. Finally, section 5.4 validates the

proposed mixing model using synthetic and real data.

Sensor

IFOV

(a)

Sensor

IFOV

(b)

Figure 5.1: Illustration of two forms of the adjacency effect resulting from: (a) multiple reflections
involving the targeted surface and an adjacent surface, (b) reflection off an adjacent surface that
is then scattered in the atmosphere into the sensor’s instantaneous field of view (IFOV).
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Table 5.1: Notations for chapter 5

Cn c× 1 Indexes of the n-th pixel’s neighbours including n

slin
n L× 1 Spectra of the linear part in sn

ṽn cL× 1 Spectra of the linear part in the n-th pixel’s neighbours

vn cL× 1 Observed spectra of the n-th pixel’s neighbours

gn(rλℓ
) 1× 1 Nonlinear contribution in n-th pixel, ℓ-th band (used in Khype)

f(vn) L× 1 Nonlinear contribution in n-th pixel, all bands (used in prop. model)

fℓ(vn) 1× 1 ℓ-th component of f(vn)

k̃(vn,vn′) L× L Matrix-valued Kernel

k(vn,vn′) 1× 1 Scalar kernel (used in separable kernel design)

K̃ LN × LN Gram matrix associated with k̃(vn,vn′)

K N ×N Gram matrix associated with k(vn,vn′)

H̃k − RKHS associated with k̃ (f ∈ H̃k)

Hk − RKHS associated with k (fℓ ∈ Hk)

T ℓ cL× cL Operator that extracts the c reflectance values at the ℓ-th band in vn

Ẽ L× L Positive semi-definite matrix (used in separable kernel design)

W̃ L× L Adjacency matrix of the graph (representing the spectral bands)

5.2 Nonlinear mixing model

5.2.1 Model Description

First, we assume that the image is partitioned into patches or groups of pixels, and that the

pixels in each patch are associated with a vector-valued nonlinear function. For ease of notations,

assume that the available observations S = [s1, . . . , sN ] belong to the same patch and that they

are associated with the function f . The proposed nonlinear model decomposes the spectrum of

a pixel into the sum of a linear and nonlinear part:

sn = slin
n + f(ṽn) + en, (5.4)

where slin
n =

∑M
i=1 ai,nri, ṽn = col({slin

i }i∈Cn), col(·) is an operator that stacks its arguments

on top of each other, and Cn is a set of c pixels indices including n and c− 1 of its neighboring

pixels indices (for example Cn = {n, n − 1, n + 1}). The nonlinear contribution in (5.4) is

expressed in terms of the pixel and its neighbors linear mixtures. This is in accordance with

several bilinear models such as the post polynomial nonlinear mixing (PPNM) model [Altmann
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et al., 2014] which expresses the nonlinear contribution solely in terms of slin
n . The inconvenience

of model (5.4) is that ṽn depends on the unknown abundances. As a result, the corresponding

optimization problem is not convex since the function f is unknown itself. In order to have

a convex optimization problem, we propose to approximate slin
i by si, hence equation (5.4)

becomes:

sn = slin
n + f(vn) + en, (5.5)

where vn = col({si}i∈Cn), and it is assumed that f(vn) and en are small compared to slin
n .

The latter assumption holds provided that the signal to noise ratio (SNR) is relatively high

and that the linear part dominates the nonlinear one. The vector-valued approach offers an

elegant and flexible way to jointly estimate multiple nonlinear functions at all bands since

f(vn) implicitly corresponds to having different scalar-valued functions per band, i.e. f(vn) =

[f1(vn) . . . fL(vn)]
⊤. As mentioned previously, the same nonlinear function is associated with

all the pixels in the corresponding patch. It is important to note that the patch should contain

enough pixels in order to have a good estimation of the nonlinear function. Moreover, it should

be small enough to reflect the variability of the nonlinear function in the different regions of the

image.

5.2.2 RKHS of vector-valued functions

The nonlinear function f used in (5.5) is a vector-valued function, its evaluation is a vector with

L components representing the nonlinear contributions present in sn at each band:

f : R
L c → R

L

vn → f(vn).
(5.6)

As mentioned previously, we assume that f belongs to H̃k, a RKHS of vector-valued functions

associated with the following kernel function:

k̃ : R
L c × R

L c → R
L×L

(vn,vn′) → k̃(vn,vn′).
(5.7)

Unlike the scalar-valued case, the kernel is a positive semi-definite matrix in R
L×L rather than a

positive scalar value. The overall Gram matrix K̃ associated with the function f is the matrix

obtained from the evaluation of the kernel function (5.7) at all observation couples. It is a block

matrix, such that the block indexed by (n, n′) is given by:

k̃n,n′ = k̃(vn,vn′). (5.8)
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The Gram matrix consists of N × N blocks, where each block is an L × L matrix as defined

in (5.8). As a result, K̃ is an LN × LN matrix. The representer theorem for vector-valued

functions parallels the theorem in the scalar valued case. According to [Micchelli and Pontil,

2005], f(vn) can be expressed as an expansion of the kernel function over all training points:

f(vn) =
∑N

n′=1 k̃(vn,vn′)αn′ , (5.9)

where αn′ ∈ R
L. As a result, estimating the nonlinear function reduces to estimating the

coefficients {αn′}Nn′=1. Finally, the norm of the function f in the RKHS H̃k can be written as:

‖f‖2
H̃k

=
N∑

n=1

N∑

n′=1

α⊤
n k̃(vn,vn′)αn′ , (5.10)

which gives a natural measure of the complexity of the function [Evgeniou et al., 2000, Micchelli

and Pontil, 2005].

5.2.3 Kernel design

The kernel function k̃(vn,vn′), as defined in equation (5.7), is an L × L matrix. The design

of the kernel allows to jointly define the nonlinearity and include prior information regarding

the similarity between the outputs of the nonlinear function at different bands. The authors of

[Micchelli and Pontil, 2005, Alvarez et al., 2012] describe two possible kernel classes known as

the transformable and the separable kernels. In what follows we describe these two classes of

kernels, and explain their relevance in the nonlinear unmixing context.

Transformable and separable kernels

The first class of matrix valued kernels is known as transformable kernels. In the transformable

case, the kernel k̃(vn,vn′) is defined in a component-wise fashion through a scalar valued kernel.

Each component of the kernel is defined as:

[
k̃(vn,vn′)

]
ℓ,ℓ′

= k(T ℓvn,T ℓ′vn′), (5.11)

where k is a scalar valued kernel, and T ℓ is an operator that extracts the c reflectance values

in vn corresponding to the ℓ-th band. More precisely, T ℓvn = col({sℓ,i}i∈Cn) is a vector with

c components. The scalar valued kernel acts jointly on pixels and bands indices, (n, n′) and

(ℓ, ℓ′) respectively. The relevance of the transformable kernel is that the Gram matrix encodes

the similarity between all pairs of pixels at all bands. Hence, it exploits all these correlations in

order to jointly estimate the L components of the nonlinear function.
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The second class of matrix valued kernels is known as the separable kernels. This class of

kernels allows to incorporate prior information regarding the similarities between the different

components of the vector valued function. The separable kernel is defined as the product between

a scalar kernel acting on the input and an L × L positive semi-definite matrix encoding the

similarities between the nonlinear contributions at different bands, i.e. between the different

components of f . For this class, the kernel is defined as follows:

k̃(vn,vn′) = k(vn,vn′)Ẽ , (5.12)

where Ẽ is an L × L positive semi-definite matrix. The norm of f gives further insight on how

Ẽ encodes the similarities between the nonlinear contributions at different bands. In fact, the

norm of f in H̃k [Evgeniou et al., 2005, Baldassarre, 2010] is given by:

‖f‖2
H̃k

=
N∑

ℓ=1

N∑

ℓ′=1

Ẽ†
ℓ,ℓ′〈fℓ, fℓ′〉Hk

, (5.13)

where Ẽ
†
is the pseudo inverse of Ẽ , the scalar valued nonlinear functions f1, . . . , fL belong to the

RKHS Hk associated with k, such that f = [f1, . . . , fL]
⊤. Note that in the case of the separable

kernel, given (5.8) and (5.12), the overall Gram matrix can be written in the following form:

K̃ = K ⊗ Ẽ , (5.14)

where ⊗ is the kronecker product, and K is the N ×N Gram matrix associated with the scalar

valued kernel, namely kn,n′ = k(vn,vn′). Hereafter, we investigate a special structure for the

matrix Ẽ . First, we assume that there exits prior information about the closeness between

nonlinear contributions at different bands, i.e. between the functions f1, . . . , fL. This prior

can be modeled by a graph. We denote by W̃ ∈ R
L×L the adjacency matrix of this graph

[Grady and Polimeni, 2010]. More precisely, when two bands are likely to have similar nonlinear

contributions, the corresponding nodes are connected by an edge and associated with a positive

similarity weight W̃ℓ,ℓ′ > 0, otherwise W̃ℓ,ℓ′ is set to zero. The authors of [Evgeniou et al., 2005]

show that when Ẽ
†

is related to W̃ as follows:





Ẽ†
ℓ,ℓ′ = −W̃ℓ,ℓ′ , if ℓ 6= ℓ′,

Ẽ†
ℓ,ℓ =

∑N
ℓ′=1 W̃ℓ,ℓ′ , otherwise,

(5.15)

using (5.13), the norm of f in H̃k can be rewritten as:

‖f‖2
H̃k

=
L∑

ℓ=1

‖fℓ‖2Hk
W̃ℓ,ℓ +

1

2

L∑

ℓ=1

L∑

ℓ′=1

‖fℓ − fℓ′‖2Hk
W̃ℓ,ℓ′ . (5.16)
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Observed spectrum (7 bands)

(a) Linear graph (7 nodes)

(b) Clustered graph (7 nodes)

Figure 5.2: Two examples of the possible graph representations of the connections between the
spectral bands (with L = 7) in the case of a : (a) Linear graph and (b) Clustered graph.

From a regularization point of view, the norm of f as given by equation (5.16) is known as

the graph regularizer. It penalizes the norms of the individual functions in addition to the

differences between each pair of functions, hence forcing them to be similar. Moreover, the

strength of the similarity between each pair of functions is determined by the corresponding

weight. More precisely, a high value of W̃ℓ,ℓ′ promotes a strong similarity between fℓ and fℓ′ ,

and conversely, a low value of W̃ℓ,ℓ′ promotes a weak similarity between the two functions. In

other words, the norm of f as given by equation (5.16) promotes similarity between the estimated

nonlinearities at different bands in accordance with the prior information reflected through the

graph. Finally, note that when Ẽ = IL, the norm of f reduces to the sum of the individual

norms of its components fℓ′ . This corresponds to the case where there is no prior information

between the nonlinearities at different bands.

In general, it is very likely that the nonlinear contributions at consecutive bands have smooth

spectral variations. This prior information can be represented by a linear graph as shown in

Figure 5.2 (a), where each node is connected to nodes at adjacent bands with unit weight.

Nevertheless, more complex similarities can be incorporated using the graph structure. For

example, in certain scenes nonlinear contributions can be dominant in certain spectral domains

and less dominant in other spectral domains [Somers et al., 2009, Asner and Lobell, 2000]. This

prior information can be represented by a clustered graph as shown in Figure 5.2 (b), where only

nodes in spectral domains with similar nonlinear behavior are connected to each other.

Scalar kernel choice

The transformable and the separable kernels are both defined respectively in equations (5.11)

and (5.12) using a scalar valued kernel k. Similarly to the case of functions in a scalar valued

RKHS, the choice of the kernel corresponds to a certain representation of the input data in

a higher dimensional space known as the feature space [Shawe-Taylor and Cristianini, 2004].



72 Chapter 5. Supervised nonlinear unmixing with vector-valued kernel functions

Hence, looking at the feature space can provide guidelines for choosing an appropriate kernel.

We focus on the polynomial and Gaussian kernels due to their successful application to

nonlinear unmixing in the scalar valued case [Chen et al., 2013, 2014]. In particular, the second

order homogeneous polynomial kernel:

k(vn,vn′) = (vn
⊤vn′)2, (5.17)

can be written as the inner product of the feature maps of vn and vn′ , where the feature map is

defined as follows:

φ(vn) = [(vn,1)
2, . . . (vn,Lc)

2,
√
2(vn,1vn,2)

2, . . .
√
2(vn,1vn,Lc)

2,

√
2(vn,2vn,3)

2,
√
2(vn,2vn,Lc)

2, . . .
√
2(vn,Lc−1vn,Lc)

2].
(5.18)

The feature map of the second order homogeneous polynomial kernel maps its input vector to

all the possible pairwise products between its components. This can be seen as a representation

of all possible second order interactions between the spectral values in the input vector. On the

other hand, the Gaussian kernel:

k(vn,vn′) = exp(−‖vn − vn′‖2
2σ2

), (5.19)

can be expressed as an infinite series of higher order polynomial kernels:

k(vn,vn′) =
∞∑

j=0

(vn
⊤
vn′)j

σ2jj!
exp(−‖vn‖2

2σ2
)exp(−‖vn′‖2

2σ2
). (5.20)

Theoretically, the Gaussian kernel represents the case where an endless number of reflections

occurs in the scene since it incorporates all higher order interactions between the input spectra.

The drawback of the Gaussian kernel is that its feature map also contains a constant and a

linear contribution (for j = 0 and j = 1 in equation (5.20) respectively) which can hinder the

estimation accuracy. Nevertheless, the Gaussian kernel shows satisfying results in practice as

will be seen in the experiments.

5.3 Estimation algorithm

5.3.1 Optimization problem

In this section we derive the optimization problem aimed at estimating the abundances and the

nonlinear function based on model (5.5). We assume that the endmembers present in the scene

are known. Assuming that the noise is white, Gaussian, with zero mean, and a possibly unknown
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variance, the maximum likelihood estimation leads to the least square (LS) optimization problem:

minimize
A,f∈H̃k

1
2

∑N
n=1 ‖sn −Ran − f(vn)‖2, (5.21)

where R = [r1, . . . , rM ], and an = [a1,n, . . . , aM,n]
⊤. Problem (5.21) mainly ensures that the

estimated model matches the observations. Nevertheless, the estimation of the abundances and

the nonlinear function based on (5.21) is an underdetermined problem. As a result, it requires

regularization and taking into account additional constraints on the abundances. For these

reasons, we shall consider the following optimization problem:

minimize
A,f∈H̃k

1
2

∑N
n=1 ‖sn −Ran − f(vn)‖2 + λ

2‖f‖2H̃k

+ µJ (A)

subject to ai,n � 0 ∀ i = 1, · · ·M ,n = 1, · · ·N,

∑M
i=1 ai,n = 1 ∀n = 1, · · · , N,

(5.22)

where A = [a1, . . . ,aN ], λ and µ are tuning parameters that control the tradeoff between the

LS term and the two regularization terms. The first regularization, namely the ℓ2-norm of f in

H̃k, constrains the complexity of the estimated function [Evgeniou et al., 2000]. Furthermore, in

the case of the separable kernel, it corresponds to the graph regularizer (5.16) which promotes

certain similarities between the outputs of f . The second regularizer, namely J (A), aims at

incorporating prior information about the abundances. For example, in the experiments we use

the Frobenius norm of the abundances:

J (A) =
1

2
‖A‖2F, (5.23)

known for promoting smoothness. As shown in the next section 5.3.2, using another expression

for J (A) is not cumbersome and affects one step in the iterative algorithm. Nevertheless, an ad-

vantage of using the ℓ2 norm of the nonlinear function and the Frobenius norm of the abundances

is that each regularization is strictly convex with respect to the corresponding unknown variable.

Hence, the overall optimization problem is strictly convex with respect to all the unknown vari-

ables. Finally, the proposed optimization problem (5.22) imposes the positivity and sum-to-one

constraints on the estimated abundances. Some of the nonlinear mixing models in the literature

keep the sum-to-one constraint, as for example [Altmann et al., 2014, Chen et al., 2014]. It can

be argued that this constraint should be relaxed to
∑M

i=1 ai,n ≤ 1 especially when dealing with

real hyperspectral data. Even if this constraint is strictly enforced in the proposed optimization

problem (5.22), it can be relaxed by introducing a shade endmember in the endmember matrix

[Heylen et al., 2011a]. Furthermore, we show in the next section that dropping this constraint

requires a simple modification of the iterative algorithm.
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5.3.2 Iterative algorithm

In this section, we use the alternating direction method of multipliers (ADMM) [Boyd et al., 2011]

to solve the proposed optimization problem (5.22). The ADMM is a primal dual splitting method

based on the augmented Lagrangian [Esser, 2010, Eckstein and Bertsekas, 1992]. Following the

ADMM strategy, new variables and the corresponding consensus constraints are introduced in

(5.22) in order to decouple the various terms in the objective function. We reformulate the

optimization problem (5.22) in the following equivalent manner:

minimize
X,Z,f∈H̃k

1
2

∑N
n=1 ‖sn −Rxn − f(vn)‖2 + λ

2‖f‖2H̃k

+ µJ (Z) + I
R
M×N
+

(Z)

subject to AX +BZ = C,
(5.24)

with

A =


 IM

1
⊤
M


 , B =


 −IM

0
⊤
M


 , C =


 0M×N

1
⊤
N


 (5.25)

where X and Z are the ADMM variables, and I
R
M×N
+

(Z) is the indicator of R
M×N
+ (i.e.,

I
R
M×N
+

(Z) = 0 if Z ∈ R
M×N
+ and I

R
M×N
+

(Z) = ∞ if Z /∈ R
M×N
+ ). Compared to problem

(5.22), A was substituted by X and Z, and a consensus constraint between the new variables

was introduced. The positivity constraint was moved to the objective function through the

indicator function, and the sum-to-one was incorporated within the equality constraint. As

mentioned in the previous section, the sum-to-one constraint can be relaxed by adding a shade

endmember to R. Another alternative for relaxing the sum-to-one is by changing the definition

of the matrices in (5.25) to:

A = IM , B = −IM , C = 0M×N . (5.26)

The augmented Lagrangian associated with problem (5.24) is given by:

Lρ(X,Z,f ,Λρ) =
1
2

∑N
n=1 ‖sn −Rxn − f(vn)‖2 + λ

2‖f‖2H̃k

+ µJ (Z) + I
R
M×N
+

(Z)

+trace(Λ⊤
ρ (AX +BZ − C)) + ρ

2 ‖AX +BZ − C‖2F,
(5.27)

where Λρ is the matrix of Lagrange multipliers associated with the linear constraints in (5.24),

and ρ is the penalty parameter. At each iteration, the ADMM algorithm consists of minimizing

the augmented Lagrangian (5.27) sequentially. First, it is minimized with respect to the unknown

variables {X,f} and then with respect to Z while in each minimization keeping the other

variables fixed to their previous estimate. Finally, it consists of updating the Lagrange multipliers

matrix Λρ associated with the linear constraints. This approach allows to break the optimization
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problem into a sequence of smaller and simpler sub-problems. To summarize, the ADMM at

iteration k + 1 consists of the following steps:

{Xk+1,fk+1} = minimize
X,f∈H̃k

Lρ(X,Zk,f ,Λk
ρ),

Zk+1 = minimizeZ Lρ(X
k+1,Z,fk+1,Λrho

k),

Λ
k+1
ρ = Λ

k
ρ + ρ(AXk+1 +BZk+1 − C).

(5.28)

The ADMM steps, namely the {X,f} minimization step, the Z minimization step, and the

update of the Lagrange multipliers, are developed hereafter. To keep the notations simple, we

drop the iteration index in the development of the first two steps.

{X,f} minimization step

This step consists of minimizing the augmented Lagrangian with respect to {X,f}. After dis-

carding the terms independent of {X,f} in (5.27), this step reduces to the following optimization

problem:

minimize
X,f∈H̃k

1
2

N∑
n=1

‖sn −Rxn − f(vn)‖2 + λ
2‖f‖2H̃k

+ trace(Λ⊤
ρ AX) + ρ

2 ‖AX +BZ − C‖2F.

(5.29)

We rewrite (5.29) in the following equivalent form:

minimize
X,f∈H̃k,E

1
2

N∑
n=1

‖en‖2 + λ
2‖f‖2H̃k

+ trace(Λ⊤
ρ AX) + ρ

2 ‖AX +BZ − C‖2F

subject to en = sn −Rxn − f(vn),

∀n = 1, · · · , N,

(5.30)

where E = [e1, . . . , eN ], and solve its dual problem. The Lagrangian associated with problem

(5.30) is given by:

L(X,f ,E,Λ) = 1
2

N∑
n=1

‖en‖2 + λ
2‖f‖2H̃k

+
∑N

n=1

v⊤
n (sn −Rxn − f(vn)− en)

+trace(Λ⊤
ρ AX) + ρ

2 ‖AX +BZ − C‖2F,
(5.31)

where Λ = [ v

1, · · · , v

N ] is the matrix of Lagrange multipliers associated with the linear con-

straints in (5.30). The partial derivatives of the Lagrangian with respect to the primal variables,

namely X,f and E, are:





∂L
∂X = ρA⊤AX −R⊤

Λ+A⊤
Λρ + ρA⊤(BZ − C),

∂L
∂f = λf(·)− 1

λ

∑N
j=1 k̃(·,vj)

v

j ,

∂L
∂E = E −Λ.

(5.32)
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Setting the gradient of the partial derivatives in (5.32) to zero gives the primal variables as a

function of the Lagrange multipliers:





X = (A⊤A)−1

ρ (R⊤
Λ−A⊤

Λρ − ρA⊤(BZ − C)),

f(·) = 1
λ

∑N
j=1 k̃(·,vj)

v

j ,

E = Λ.

(5.33)

To derive the Lagrange dual problem, the primal variables are substituted in (5.31) by their

expressions from (5.33). This results in a quadratic form with respect to the Lagrange multipliers,

and yields the following dual problem:

maximizeΛ −1
2vec(Λ)⊤Qvec(Λ) + vec(Λ)⊤p, (5.34)

with 



Q = ILN + 1
λK̃ + 1

ρIN ⊗D,

p = vec(S + 1
ρR(A⊤A)−1A⊤(Λρ + ρ(BZ − C))),

(5.35)

where D = R(A⊤A)−1R⊤, vec(·) is an operator that stacks the columns of a matrix on top

of each other. As a result, the {X,f} minimization step reduces to solving the following linear

equation system:

Q vec(Λ) = p, (5.36)

with LN unknown variables. Once Λ is determined, it is substituted in (5.33) in order to evaluate

the updated abundances. Note that the nonlinear function does not need to be evaluated at each

iteration. It can be evaluated once the ADMM algorithm has converged.

Z minimization step

This step consists of minimizing the augmented Lagrangian with respect to Z. After discarding

the terms independent of Z in (5.27) and accounting for the special structure of the matrices

A, B, and C given in (5.25), problem (5.37) reduces to the following optimization problem:

minimizeZ
ρ
2 ‖Z −X‖2F − trace(Λ⊤

ρ Z) + µJ (Z) + I
R
M×N
+

(Z). (5.37)

In particular, when J (Z) is the Frobenius norm (5.23), problem (5.37) reduces to the following

positively constrained least squares problem:

minimizeZ
1
2 ‖Z − ρ

ρ+µ (X + 1
ρΛρ)‖2F + I

R
M×N
+

(Z). (5.38)
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The solution of problem (5.38) is obtained by a projection onto the positive orthant:

Z = ρ
ρ+µ (X + 1

ρΛρ)+ , (5.39)

where (·)+ = max (0, ·) is applied component wise. As mentioned previously, J (Z) can be set

to a regularization other than the Frobenius norm. For example, we demonstrate the case of the

ℓ1 norm known for promoting sparse abundances. In this case, problem (5.37) reduces to the

following optimization problem:

minimizeZ
1
2 ‖Z − (X + 1

ρΛρ)‖2F + µ
ρ‖Z‖1 + I

R
M×N
+

(Z). (5.40)

The solution of (5.40) is the well-known soft thresholding [Chen et al., 2001] applied to the

projection onto the positive orthant:

Z = softµ
ρ
((X +

1

ρ
Λρ)+), (5.41)

where softµ
ρ
(·) = sgn(·)(| · |− µ

ρ )+, and the soft thresholding operator is applied component wise.

The solution in equation (5.41) can be simplified to:

Z = (X +
1

ρ
Λρ −

µ

ρ
)+ . (5.42)

It is important to note that the sum to one constraint should be relaxed in (5.24) when the ℓ1

norm is considered. Otherwise, J (Z) would be a constant in the feasible set, i.e. when the

abundances are positive and sum to one [Bioucas-Dias and Figueiredo, 2010].

Update of the Lagrange multipliers

The last step consists of updating the Lagrange multipliers according to the following rule,

Λ
k+1
ρ = Λ

k
ρ + ρ(AXk+1 +BZk+1 − C), (5.43)

This step can be seen as a gradient ascent of the augmented Lagrangian with respect to the

Lagrange multiplier. Furthermore, it evaluates the running sum of the constraint residuals.

5.3.3 Implementation details

The ADMM steps described in the previous section are repeated until convergence. As suggested

in [Boyd et al., 2011], a reasonable stopping criteria is that the primal and dual residuals must

be smaller than some tolerance thresholds, namely,

‖AXk+1 +BZk+1 − C‖F ≤ ǫpri, (5.44)
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‖ρA⊤B(Zk+1 −Zk)‖F ≤ ǫdual, (5.45)

We refer to the proposed algorithm as nonlinear neighbor and band dependent unmixing (NDU).

The pseudocode of the proposed algorithm is given in Algorithm 3. The most computationally

expensive step in the iterative algorithm is the X minimization step which requires solving an

LN ×LN system of linear equations (5.36). Solving the system of linear equations would have a

memory complexity O(L2N2) and a runtime complexity O(L3N3). In practice, we do not need

to compute the exact solution. The ADMM algorithm will converge even if the X minimization

step is carried out only approximately [Boyd et al., 2011, Eckstein and Bertsekas, 1992]. This

allows us to solve (5.36) using an iterative algorithm which can reduce the runtime complexity.

In the case of the separable kernel, both the memory and the runtime complexity can be reduced

furthermore by exploiting the fact that Q is the sum of kronecker products.

The conjugate gradient (CG) [Saad, 2003] is one of the most widely used iterative techniques

for solving a large linear system of equations where Q is a positive definite matrix as in (5.36).

The CG can yield the exact solution after LN iterations, but in practice a good initialization

yields faster convergence [Shewchuk, 1994]. At each iteration of the CG, the dominating operation

is a matrix vector multiplication involving Q. In general, the number of operations required for

multiplying Q by a vector is O(L2N2). However, in the case of the separable kernel, Q is a

sparse matrix and can be written as the sum of kronecker products:

Q = IL ⊗ IN +
1

λ
K ⊗ Ẽ +

1

ρ
IN ⊗D, (5.46)

where we have replaced K̃ by its expression from (5.14). For an efficient implementation of

the product between Q and some vector vec(J ) where J is an L × N matrix, the following

relationships can be used:




(K ⊗ Ẽ)vec(J ) = vec(ẼJK),

(IN ⊗D)vec(J ) = vec(DJ )
(5.47)

Given (5.46) and (5.47), the overall product between Q and some vector vec(J ) is given by:

Qvec(J ) = vec(J ) +
1

λ
vec(ẼJK) +

1

ρ
vec(DJ ). (5.48)

Equation (5.48) is expressed in terms of ordinary matrix products, which means that we do not

have to compute any kronecker products. Compared to the case where the kronecker product is

evaluated, the memory complexity is reduced from O(L2N2) to O(L2 +N2) and the number of

operations at each iteration is reduced from O(L2N2) to O(max(L2N,LN2)).
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Algorithm 3 : [X,F ] = NDU(S,R, λ, µ, ρ)

1: Precompute A,B,C, K̃,Q
2: Initialize Z,Λρ

3: while respri > ǫpri or resdual > ǫdual do
4: p = vec(S + 1

ρR(A⊤A)−1A⊤(Λρ + ρ(BZ − C)))

5: vec(Λ) = Q−1p % See section 5.3.3
6: X = 1

ρ(A
⊤A)−1(R⊤

Λ−A⊤
Λρ − ρA⊤(BZ − C))

7: Zold = Z

8: if J (Z) = ‖Z‖2F then
9: Z = ρ

ρ+µ (X + 1
ρΛρ)+

10: else if J (Z) = ‖Z‖1 then
11: Z = (X + 1

ρΛρ − µ
ρ )+

12: end if
13: Λρ = Λρ + ρ(AX +BZ − C)
14: respri = ‖AX +BZ − C‖F

15: resdual = ‖ρA⊤B(Z −Zold)‖F

16: end while
17: F = 1

λK̃vec(Λ)
18: F = reshape(F , L,N)

5.4 Experiments

5.4.1 Synthetic data

Data generation

The proposed approach is first illustrated using synthetic data. Several patches were generated

according to three mixing models that incorporate the main assumptions underlying the proposed

nonlinear mixing model, i.e., bilinear contributions, adjacency effects, and band selectivity. The

bilinear contributions are created by adding pairwise products of spectra, the adjacency effect is

created by adding bilinear contributions from neighboring pixels, and band selectivity is created

by assigning a different weight to the nonlinear contributions at different bands. The three

mixing models (MM) are denoted as MM 1, MM 2, and MM 3, and they are defined as follows:

• MM 1 (bilinear contributions):

sn = slin
n + u slin

n ⊙ slin
n + en (5.49)

• MM 2 (bilinear contributions + adjacency effects):

sn = slin
n + u

∑n+2
i=n−2 γn,i s

lin
i ⊙ slin

i + en (5.50)
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• MM 3 (bilinear contributions + adjacency effects + band selectivity):

sn = slin
n + u

∑n+2
i=n−2 γn,i s

lin
i ⊙ slin

i ⊙ h+ en (5.51)

where u in equation (5.49) is an attenuation parameter set to 0.2 in all the simulations, the

coefficients γn,i in equation (5.50) assign a different weight to the bilinear contributions coming

from neighbors, the coeficients were set to γn,n−2 = γn,n+2 = 0.05, γn,n−1 = γn,n+1 = 0.3 and

γn,n = 0.4, and h in equation (5.51) is an L dimensional vector where each component assigns a

different weight to the nonlinear contribution at the corresponding band. Figure 5.3 (a) shows

the entries of h that were used for the experiments. In fact, h was chosen such that it favors

nonlinear contributions at the center of the spectrum and attenuates nonlinear contributions at

the extremities of the spectrum. Note that h is unknown by all the unmixing methods used in

the experiments. Several patches were created with N = 100 pixels using different numbers of

endmembers and different values of the SNR. The endmembers were selected from the USGS

spectral library of minerals. Their frequency bands are in the range 400 − 2560 nm, and were

decimated such as to have L = 20 bands. Figure 5.3 (b) shows five endmembers spectra used

in the simulations. The abundances were generated using a beta distribution with a unit shape

parameter.

Unmixing methods

We tested three nonlinear unmixing algorithms. The first algorithm is the extended endmember

matrix method. It considers the linear mixing model where the endmember matrix is extended

by adding the pairwise products of the endmembers [Raksuntorn and Du, 2010]. This algorithm

is denoted as Ext in the experiments, it consists of solving a positively constrained least squares

problem and has no tuning parameters. The second algorithm is the one proposed in [Chen

et al., 2013], it is denoted as Khype and based on scalar valued RKHS. Khype was tested with

a Gaussian (G) and a second order homogeneous polynomial (P) kernel. The third algorithm is

the one proposed in this chapter, it is denoted in what follows as NDU (Nonlinear neighbor and

band Dependent Unmixing). Similarly to Khype, NDU was tested with a Gaussian (G) and a

second order homogeneous polynomial (P) kernel. Furthermore, given that the kernel in NDU

is matrix valued, it was tested using a transformable (Tr.) and a separable (Sp.) structure. In

the case of the separable kernel, the graph that represents the similarities between the different

bands is linear, i.e. each band is connected to the previous and next band, with unit weights. In

order to determine vn, the neighborhood was set to Cn = {n, n− 1, n+ 1}.
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Note that NDU requires tuning two parameters λ and µ, whereas Khype [Chen et al., 2013]

uses the same parameter to penalize the norm of the abundances and the nonlinear function

(λ = µ). In order to have a fair comparison between the two algorithms, we modified Khype

such as to have two distinct parameters λ and µ. For both algorithms, the tuning parameters

were tested in the range [10−4 10−3 10−2 10−1 1 10]. The standard deviations of the Gaussian

kernels used with Khype and NDU were chosen such that the resulting Gram matrices have their

values in the same range. The polynomial Gram matrices were scaled in order to have their

values in the range [0 1]. Figure 5.4 shows the Gram matrices used with Khype, and NDU in

different settings and obtained with M = 3 and SNR = 40 dB. The first column in Figure 5.4

shows the L × L Gram matrices used by Khype. The second and third columns in Figure 5.4

show the Gram matrices used by NDU obtained with a transformable and separable structure

respectively. Recall that the NDU Gram matrices are N ×N block matrices, where each block

is an L × L matrix. In the case of the transformable kernel, each block is an L × L Gram

matrix itself. Figure 5.4 shows that a block or sub-Gram matrix in the transformable kernel is

similar the corresponding Khype Gram matrix even though it is calculated using the observations

themselves rather than the endmember matrix as in Khype. Whereas for the separable kernel,

each block is equal to Ẽ
†

multiplied by the corresponding scalar valued kernel.

Performance measures

The abundance estimation accuracy was evaluated using the RMSE between the actual abun-

dances and their estimates:

RMSEA =

√
1

MN
‖A− Â‖2F, (5.52)

where A represents the true abundances matrix and Â represents the abundances estimated by

the unmixing algorithm. In addition to the abundances, each one of the unmixing algorithms

estimates the nonlinear contributions. Let F and F̂ denote the true and estimated L × N

matrices of nonlinear contributions. The estimation accuracy of the nonlinear part was also

evaluated using the RMSE between F and its estimate F̂ :

RMSEF =

√
1

LN
‖F − F̂ ‖2F. (5.53)

Simulation results

Tables 5.2, 5.3 and 5.4 report the results obtained using MM 1, MM 2, and MM 3 respectively.

For each case, we report the root mean square errors of the estimated abundances (first term in
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Figure 5.3: From left to right: (a) The components of vector h corresponding to the weight of the
nonlinear contribution at each band, (b) Endmembers spectra used to generate the illustrative
examples.

brackets) and the estimated nonlinear contributions (second term in brackets). Khype and NDU

require tuning two parameters, namely λ and µ, the best parameters are reported in brackets

below the RMSE results. More precisely, the first term and second term in brackets correspond

to the best values of λ and µ respectively. The estimation accuracy of the three methods became

worse when the noise level increased. The same performance was observed for different values of

M . In general, Khype outperformed Ext, and NDU outperformed both methods. Note that Ext

gave results worse than NDU and Khype even when MM 1 was used. This is most probably due

to the fact that the sum to one constraint was not incorporated in the implementation of Ext,

unlike the case of Khype and NDU. In the majority of the cases, NDU gave the best RMSE of

the abundances and the nonlinear part when used with the separable and polynomial kernel (Sp.

+ P). The polynomial and the Gaussian kernels usually had comparable results in all scenarios.

The transformable kernel and the separable kernel had comparable results only when MM 1

and 2 were used, i.e. in tables 5.2 and 5.3. However, the separable kernel outperformed the

transformable kernel when MM 3 was used, i.e. in table 5.4.

Figure 5.5 shows the true and estimated nonlinear contributions for all pixels at all bands

obtained with P = 3 and SNR=40 dB. The first row in Figure 5.5 shows the true nonlinear

contributions. Whereas the following rows show the nonlinear contributions estimated with Ext,

Khype, NDU with a transformable kernel, and NDU with a separable kernel. For conciseness,

we show the results with either the Gaussian or the polynomial kernel for Khype and NDU. In

particular, the kernel that gave the best RMSE was chosen. Figure 5.5 mainly allows to visually

compare the estimation of the nonlinear contribution obtained with the various methods and
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mixing models. The first column in Figure 5.5 corresponds to the results obtained with MM

1, i.e. with bilinear contributions. It can be seen that Khype and NDU slightly outperformed

Ext. The second column in Figure 5.5 corresponds to the results obtained with MM 2, i.e. with

bilinear contributions and adjacency effects. The first figure in column 2 shows that the true

nonlinear contributions at adjacent pixels (i.e. at adjacent columns in the image) have smooth

variations. In this case, NDU with both the transformable and the separable kernel gave the

smoothest results compared to Ext and Khype. Recall that the kernels used by NDU account

for adjacency effects through their input vector vn. The third column in Figure 5.5 corresponds

to the results obtained with MM 3, i.e. with bilinear contributions, adjacency effects, and band

selectivity. In accordance with MM 3, the first figure in column 3 shows that the true nonlinear

contributions are smooth, they are the most pronounced at the center of the spectrum and

they are attenuated (almost zero) at the extremities of the spectrum. In this case, NDU with

the separable kernel gave the best results. All the methods estimated the highest nonlinear

contributions at the center of the spectrum. However, NDU with the separable kernel handled

the attenuation of the bilinear contributions at the extremities of the spectrum better than the

other methods. This is probably due to the fact that the prior information on the similarities

between the nonlinear contributions at different bands is better in the case of the separable

kernel than in the transformable kernel. More precisely, the separable kernel exploits the linear

graph structure which promotes smooth variations at adjacent bands (i.e. adjacent rows in the

image). Whereas, the transformable kernel exploits the correlations between all bands in order

to estimate the nonlinear contributions.

5.4.2 Real data: Gulf of Lion

Data set description and ground truth

The second set of experiments considers real data estimated by the Meris spectrometer and

captured over the gulf of Lion in the south east of France. The image has 280 × 330 pixels, 13

spectral bands in the range 400−800 nm, and a spatial resolution of 300 m. This data set will be

referred to as the “Meris” image in the following and is depicted in Figure 5.6 (a). Furthermore,

Figure 5.6 (b) shows the corresponding classification map provided by corine land cover (CLC)

database1. Note that the two images were coregistered, and the classification map was chosen as

close as possible to the date of the Meris image in order to have a consistent comparison. The

1www.statistiques.developpement-durable.gouv.fr/clc/carte/metropole

www.statistiques.developpement-durable.gouv.fr/clc/carte/metropole
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Figure 5.4: Gram matrices obtained with M = 3 and SNR = 40 dB. First column: Gram matrices
used by Khype, second column: left corners of the Gram matrices obtained using a transformable
kernel, and third column: left corners of the Gram matrices obtained using a separable kernel.
The first and the second row correspond to the Gaussian and polynomial kernels respectively.

classification map will be used for visual evaluation, in order to better evaluate and interpret the

unmixing results provided by the various algorithms.

The CLC classification map has a spatial resolution approximately 10 times greater than

the Meris data set’s spatial resolution. Therefore, it was downscaled in order to obtain spatial

abundance maps for the Meris image [Zhukov et al., 1999]. The spatial abundance of a certain

class/endmember in a pixel in the estimated low resolution image is the average of the corre-

sponding class occurrences in the corresponding window in the high resolution image. These

maps are regarded as a potential visual ground truth that allow to better evaluate and interpret

the unmixing results. The first row in Figure 5.8 shows the ground truth obtained from the CLC

classification map, which corresponds to the proportions of three classes: water, agricultural

areas, and forests and semi natural areas.

Unmixing results

We extracted 3 and 4 endmembers using virtual component analysis (VCA) [Nascimento and

Bioucas-Dias, 2005]. We noticed that each time one of the endmembers extracted by VCA was

not meaningful in the sense that the corresponding abundance map was not spatially coherent.

Nevertheless, in the case with 4 extracted endmembers the three abundance maps corresponding

to the meaningful endmembers were relatively in accordance with the estimated ground truth.
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Figure 5.5: True and estimated nonlinear contributions in all pixels at all bands obtained with
M = 3 and SNR=40 dB, the vertical and horizontal axis in each figure represent the frequency
band and the pixel number respectively.
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In what follows we only show the results obtained with four endmembers. Figure 5.7 shows

the estimated endmembers spectra, note that endmember 4 corresponds to the outlier. The

abundance maps for each endmember were estimated using the fully constrained least squares

approach (FCLS), Ext, Khype and NDU. The separable kernel was used with NDU with a linear

graph as in the experiments with synthetic data. Both Khype and NDU were tested using a

Gaussian and a second order homogeneous polynomial kernel. As in the previous section, vn

was defined using the pixels and its neighboring pixels spectra in particular the left and right

neighbors were chosen. The tuning parameters λ and µ were set to 10 and 10−3 respectively for

both Khype and NDU. Unlike Khype and Ext that were applied on each pixel separately, the

image was divided into 10× 10 patches and NDU was applied on each patch.

Table 5.5 reports the root mean square error and the average spectral angle between the

available observations and the reconstructed spectra denoted as RMSES and ASA respectively.

These two evaluation metrics were previously defined in (3.30) and (3.33) respectively in chapter

3. Table 5.5 shows that NDU scored the best results in terms of both the RMSE and the

ASA. The results obtained with Ext slightly improved the ones obtained with FCLS. Khype

outperformed both methods, Ext and FCLS, and had results very close to the ones obtained

with NDU. Figure 5.8 shows that the abundance maps estimated by the various algorithms are

rather similar. As mentioned previously, the fourth endmember corresponds to noise hence its

abundance maps are not shown in Figure 5.8. Figure 5.9 shows the nonlinear part estimated by

NDU and Khype at band 10. In fact, most of the areas where nonlinear contributions appear are

mainly located on the boundaries of agricultural areas (endmember 2) surrounded by forests and

semi-natural areas (endmember 3). Note that the nonlinear contributions estimated by NDU are

relatively spatially smoother than the ones estimated by Khype. However, NDU results exhibit

some artifacts due to the fact that the image was partitioned into square patches.

Finally, Figure 5.10 compares the nonlinear contribution estimated by NDU and Khype at all

bands for the pixels delimited by rows 171 and 180 and columns 231 and 240. Both algorithms

estimated the highest nonlinear contributions for this particular region. However, the nonlinear

contributions have different variations throughout the spectral bands. NDU estimated the highest

nonlinear contributions at the higher frequency bands whereas Khype estimated almost the same

level of nonlinearity at all frequency bands. Furthermore, NDU estimated smooth nonlinear

contributions at adjacent pixels compared to Khype. It can be concluded that NDU captures

more spectral variability throughout the spectral bands and that it provides smooth nonlinear

contributions at adjacent pixels.
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Figure 5.7: Endmembers spectra estimated by VCA for the Meris data set.

5.5 Conclusion

This chapter proposed a new kernel based nonlinear mixing model for hyperspectral data. The

proposed vector-valued function is able to account for band dependent and neighboring nonlinear

contributions. The proposed framework has several characteristics. It allows to handle in a

unified framework several types of nonlinearities depending on the choice of the kernel function.

Unlike nonlinear models proposed in the literature, it considers a different nonlinear function

for each spectral band. The fact that the nonlinear function acts on the reflectance vectors

observed in the corresponding pixel and its neighbors is intended to account for nonlinearities

originating from the ground cover of the pixel and its neighbors. Furthermore, the separable

kernel design can be used to incorporate prior information regarding the similarities between

nonlinear contributions at different bands. In particular, a linear graph was proposed to promote
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Table 5.5: Root mean square error RMSES (×10−2) and average spectral angle (ASA) in radian
of the reconstructed spectra obtained with the Meris data set.

FCLS Ext Khype (G) Khype (P) Sep. (G) Sep. (P)

RMSES 1.14 1.13 0.66 1.04 0.41 0.46

ASA 0.0393 0.0343 0.0338 0.0381 0.0153 0.0204

smooth nonlinear variations between adjacent bands. The performance of the proposed approach

was validated on synthetic and real data estimated by the Meris spectrometer and captured over

the gulf of Lion in the south east of France. Finally, note that the proposed approach requires

partitioning the image into patches which can result in artifacts in the estimated nonlinear part.

Future work should aim at attenuating those artifacts through an extension of the vector-valued

approach. More precisely, the vector-valued framework can be adapted such as to promote

smoothness between the estimated nonlinear contributions at adjacent bands and between the

nonlinear functions at adjacent patches simultaneously. In the next chapter, we will see how

the vector-valued RKHS framework can be used to promote smooth variations of the nonlinear

component in a kernel-based nonlinear mixing model.
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Figure 5.8: Abundance maps of the first three endmembers obtained with VCA and correspond-
ing to the Meris real data set. The abundance maps of End. 1, 2, and 3 correspond to water,
agricultural areas, and forests and semi natural areas respectively.



5.5. Conclusion 93

 

 

100 200 300

50

100

150

200

250
0

0.05

0.1

(a) Khype (G)

 

 

100 200 300

50

100

150

200

250

0

0.05

0.1

(b) NDU (Sp.+P)

Figure 5.9: Nonlinear contributions at all pixels at band 10 obtained with: (a) Khype used with
a Gaussian kernel (G) and (b) NDU used with a separable and polynomial kernel (Sp.+P).
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Figure 5.10: Nonlinear contributions at all bands in some of the pixels in the Meris data set.
The horizontal and vertical axis correspond to the frequency and pixel index respectively.
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Table 5.6: Classes in classification map of Meris data set.

Code Color description

1 Artificial surfaces

1.1 Urban fabric
1.1.1 Continuous urban fabric
1.1.2 Discontinuous urban fabric
1.2 Industrial, commercial and transport units
1.2.1 Industrial or commercial units
1.2.2 Road and rail networks and associated land
1.2.4 Airports
1.3 Mine, dump and construction sites
1.3.1 Mineral extraction sites
1.4 Artificial, non-agricultural vegetated areas
1.4.2 Sport and leisure facilities Not translated

2 Agricultural areas

2.1 Arable land
2.1.1 Non-irrigated arable land
2.2 Permanent crops
2.2.1 Vineyards
2.2.2 Fruit trees and berry plantations
2.3 Pastures
2.3.1 Pastures
2.4 Heterogeneous agricultural areas
2.4.2 Complex cultivation patterns
2.4.3 Land principally occupied by agriculture
2.4.4 Agro-forestry areas

3 Forest and seminatural areas

3.1 Forests
3.1.1 Broad-leaved forest
3.1.2 Coniferous forest
3.1.3 Mixed forest
3.2 and/or herbaceous vegetation associations
3.2.1 Natural grasslands
3.2.2 Moors and heathland
3.2.3 Sclerophyllous vegetation
3.2.4 Transitional woodland-shrub
3.3 Open spaces with little or no vegetation
3.3.1 Beaches, dunes, sands
3.3.2 Bare rocks
3.3.3 Sparsely vegetated areas
3.3.5 Glaciers and perpetual snow

5 Water bodies

5.1 Inland waters
5.1.1 Water courses
5.1.2 Water bodies



Chapter 6

Spatial regularization for nonlinear

unmixing

This chapter has been adapted from the conference paper [Ammanouil et al., 2016b].

This chapter introduces a new framework for incorporating spatial regularization into a non-

linear unmixing procedure dedicated to hyperspectral data. The proposed model promotes

smooth spatial variations of the nonlinear component in the mixing model. The spatial reg-

ularizer and the nonlinear contributions are jointly modelled by a vector-valued function that

lies in a reproducing kernel Hilbert space (RKHS). The unmixing problem is strictly convex and

reduces to a quadratic programming (QP) problem. Simulations on synthetic data illustrate the

effectiveness of the proposed approach.

6.1 Introduction

In chapter 5, we proposed a nonlinear mixing model that takes into account band dependent and

neighboring nonlinear contributions. This was done using tools from the theory of vector-valued

functions in reproducing kernel Hilbert spaces (RKHS). Roughly speaking, we regularized the

nonlinear contributions at different spectral bands. In this chapter, we propose to use the same

tool used in chapter 5, namely vector-valued functions in RKHS, in order to spatially regularize

the nonlinear contribution in a kernel based nonlinear mixing model. This is done by introducing

a new spatial regularizer acting on the nonlinear contributions at different pixels. Similarly to

chapter 5, we depart from the kernel-based nonlinear model proposed in [Chen et al., 2013]

95



96 Chapter 6. Spatial regularization for nonlinear unmixing

known as Khype. Compared to [Chen et al., 2013], we go one step further by using an RKHS

of vector-valued functions rather than scalar-valued functions [Evgeniou et al., 2005, Alvarez

et al., 2012]. More precisely, each output of the vector-valued function represents the nonlinear

contribution of the mixing model at a given pixel. We consider a special class of kernels, known

as separable kernels [Alvarez et al., 2012] that we have introduced in chapter 5. In particular,

these kernels are defined as the product of two terms, a scalar-valued kernel acting on the input,

and a matrix-valued kernel encoding the closeness between the outputs. The first and the second

term play a central role in defining the nonlinearity and the spatial regularization, respectively.

The closeness between the outputs of the function, i.e. the nonlinear contributions at different

pixels, is defined using a graph. In particular, the proposed spatial regularization consists of

penalizing the ℓ2-norm of the difference between the outputs that appear as connected in the

graph and hence promotes smoothness. Being solely defined by an appropriate design of the

kernel, the spatial regularization is relatively transparent from the optimization problem point

of view, which is then shown to reduce to a quadratic problem.

To the best of our knowledge, there is no nonlinear model in the literature that promotes

smooth nonlinear contributions. Nevertheless, several works considered other types of prior

information for nonlinear unmixing. The authors of [Chen et al., 2014] incorporated a total

variation over the abundances, which promotes piecewise smooth abundances in the scene. The

authors of [Févotte and Dobigeon, 2015] introduced a robust nonlinear matrix factorization

unmixing algorithm that promotes sparse nonlinear contributions. In contrast with the previously

cited models, we promote smooth nonlinear contributions over the scene. This prior is justified

by the spatial smoothness inherently present in natural scenes.

This chapter is organized as follows. Section 6.2 introduces the nonlinear mixing model. Sec-

tion 6.3 details the kernel design and the underlying spatial regularization. Section 6.4 presents

the proposed unmixing algorithm. Finally, experimental results investigated in section 6.5 show

the effectiveness of the proposed approach.

6.2 Vector-valued formulation

Consider an hyperspectral image with N pixels, estimated over L spectral bands. For self

containment of this chapter, we recall the LMM [Heinz and Chang, 2001] where the spectrum of

the n-th pixel is modeled as:

sn =
∑M

i=1 ai,nri + en, ∀n = 1, . . . N, (6.1)
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Table 6.1: Notations for chapter 6

gn(rλℓ
) 1× 1 Nonlinear contribution in n-th pixel, ℓ-th band (used in Khype)

g(rλℓ
) N × 1 Nonlinear contribution in all pixels, ℓ-th band (used in prop. model)

k(rλℓ
, rλℓ′

) N ×N Matrix-valued kernel

k(rλℓ
, rλℓ′

) 1× 1 Scalar kernel (used in separable kernel design)

K NL×NL Gram matrix associated with k(rλℓ
, rλℓ′

)

K L× L Gram matrix associated with k(rλℓ
, rλℓ′

)

Hk − RKHS associated with k (g ∈ Hk)

Hk − RKHS associated with k (gn ∈ Hk)

E N ×N Positive semi-definite matrix (used in separable kernel design)

W N ×N Adjacency matrix of the graph (representing the pixels)

where sn = [s1,n, . . . , sL,n]
⊤ is the L-dimensional spectrum of the n-th pixel, M is the number

of endmembers, ai,n is the abundance of the i-th endmember in the n-th pixel, ri is the L-

dimensional spectrum of the i-th endmember, and en is a vector of white Gaussian noise. All

vectors are column vectors. The abundances, being the relative contributions of the endmembers,

are positive and usually sum to one [Heinz and Chang, 2001], namely: ai,n ≥ 0 and
∑M

i=1 ai,n = 1.

As mentioned previously, most nonlinear mixing models incorporate an additional term within

the LMM (6.1). We depart from the nonlinear mixing model, known as Khype, that was proposed

in [Chen et al., 2013]:

sℓ,n = r⊤λℓ
an + gn(rλℓ

) + eℓ,n, (6.2)

where R = [r1, . . . , rM ] is the L×M matrix of endmembers, rλℓ
is an M ×1 vector formed with

the elements of the ℓ-th row of R, an = [a1,n, . . . , aM,n]
⊤ is the abundance vector of the n-th

pixel, and gn is a scalar-valued function in an RKHS modeling the nonlinearity at any band. Let

g = [g1, . . . , gN ]⊤ be a vector-valued function. Equation (6.2) can be rewritten as follows:

sλℓ
= A⊤rλℓ

+ g(rλℓ
) + eλℓ

, (6.3)

where sλℓ
and eλℓ

denote the ℓ-th rows of S = [s1, . . . , sN ] and E = [e1, . . . , eN ] respectively.

The aim of the next section is to show the relevance of the vector-valued formulation (6.3). In

particular, we demonstrate the ability of vector-valued functions to incorporate prior information

about the similarities between g1, . . . , gN , the outputs of g, through an appropriate kernel design.
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6.3 Kernel design and regularization

We will assume that the nonlinear function g in (6.3) lies in an RKHS of vector-valued functions,

denoted by Hk, associated with the following separable kernel function [Alvarez et al., 2012,

Evgeniou et al., 2005]:

k̄ : R
M × R

M → R
N×N

(rλℓ
, rλℓ′

) → k̄(rλℓ
, rλℓ′

),

(6.4)

with

k(rλℓ
, rλℓ′

) = k(rλℓ
, rλℓ′

)E . (6.5)

The function k(·, ·) is a scalar-valued kernel such as the polynomial or Gaussian kernel, and E

is an N ×N symmetric nonnegative matrix. Let K be the L× L Gram matrix associated with

the scalar-valued kernel k, namely, kℓ,ℓ′ = k(rλℓ
, rλℓ′

), and let K be the NL×NL Gram matrix

associated with the matrix-valued kernel k, namely, kℓ,ℓ′ = k(rλℓ
, rλℓ′

). Given equation (6.5),

we have:

K = K ⊗ E . (6.6)

Moreover, the norm of g in Hk [Evgeniou et al., 2005] is given by:

‖g‖2
Hk

=

N∑

n,n′=1

E†
n,n′〈gn, gn′〉Hk

, (6.7)

where E
†

is the pseudo inverse of E . The above expression shows that the norm of g is equal

to the weighted sum of the pairwise inner products between the individual functions. From

a regularization point of view, equation (6.7) can be used to promote structured similarities

between the different functions through the design of E . Hereafter, we investigate the so-called

“graph regularizer” [Evgeniou et al., 2005] and provide the corresponding structure for the matrix

E . Note that the authors of [Evgeniou et al., 2005] provided other examples of regularizers with

the corresponding design of E .

Due to the inherent spatial correlation present in real images, spatially neighboring pixels

usually have similar spectra. We assume that they are also characterized by similar nonlinear

contributions. This prior about the closeness between adjacent pixels can be modeled by a graph.

We denote by W ∈ R
N×N the adjacency matrix of this graph [Grady and Polimeni, 2010]. When

two pixels are adjacent, the corresponding nodes are connected by an edge and associated with

a positive similarity weight Wn,n′ > 0, otherwise Wn,n′ is set to zero. In accordance with the

prior, the graph regularizer promotes similarity between the estimated nonlinearities at adjacent
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Hyperspectral cube
Graph

Figure 6.1: Mapping the hyperspectral image to a regular 4N graph G.

pixels in the image, hence connected nodes in the graph. It is defined as:

‖g‖2
Hk

=

N∑

n=1

‖gn‖2Hk
Wn,n +

1

2

N∑

n=1

N∑

n′=1

‖gn − gn′‖2Hk
Wn,n′ . (6.8)

Note that, (6.8) penalizes the norms of the individual functions in addition to the differences

between each pair of functions, hence forcing them to be similar. Moreover, the strength of

the similarity between each pair of functions is determined by the corresponding weight. More

precisely, a high value of Wn,n′ promotes a strong similarity between gn and gn′ , and conversely,

a low value of Wn,n′ promotes a weak similarity between the two functions. Using (6.7) and

(6.8), some calculations show that E
†

is related to W as follows:





E†
n,n′ = −Wn,n′ , if n 6= n′,

E†
n,n =

∑N
n′=1Wn,n′ , otherwise.

(6.9)

Finally, note that when E = IN , the norm of g reduces to the sum of the individual norms

of its components gn. This corresponds to processing all the functions independently without

exploiting any regularization between them as in the Khype model [Chen et al., 2013].

6.4 Estimation algorithm

In order to estimate the abundances and the nonlinear function, we propose to consider the

following optimization problem:

minimize{eλℓ}
L
ℓ=1,g∈Hk,A

1
2

∑L
ℓ=1 ‖eλℓ

‖2 + λ
2‖g‖2Hk

+ µ
2‖A‖2F

subject to eλℓ
= sλℓ

−A⊤rλℓ
− g(rλℓ

)

ai,n � 0 ∀ i = 1, · · ·M ,n = 1, · · ·N,

∑M
i=1 ai,n = 1 ∀n = 1, · · · , N,

(6.10)
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G(v̂, Λ̂,u) =

− 1

2




v̂

Λ̂

u




⊤



K
v̂

1

µ
R⊗ IN

1

µ
(R1M )⊗ IN

1

µ
R⊤ ⊗ IN

1

µ
IMN

1

µ
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1

µ
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ŝ

0MN

1N


 ,

(6.13)
where

K
v̂
= (ILN +

1

λ
K +

1

µ
(RR⊤)⊗ IN ). (6.14)

where A = [a1, . . . ,aN ], and λ, µ are tuning parameters. The first term in the objective function

(6.10) measures the square error between the observations and the estimated model. The second

term in the objective function (6.10) is the ℓ2-norm of g in Hk. This term incorporates the norms

of its individual outputs in addition to their weighted differences (6.8). As a result, it constrains

the regularity of the estimated functions and their pairwise differences depending on the kernel

design. The third term in (6.10) is the Frobenius norm of A which constrains the norm of the

estimated abundances. The relevance of having simultaneously two strictly convex regularizers

is that it ensures the strict convexity of the objective function. The Lagrangian associated with

problem (6.10) is:

L(E, g,A,V ,Λ,u) = 1
2

∑L
ℓ=1 ‖eλℓ

‖2 + λ
2‖g‖2Hk

+ µ
2‖A‖2F − u⊤(A⊤

1M − 1N )

+
∑L

ℓ=1 v
⊤
λℓ
(sλℓ

−A⊤rλℓ
− g(rλℓ

)− eλℓ
)− trace(Λ⊤A)

(6.11)

where V = [vλ1 , . . . ,vλL
]⊤, Λ, and u are the Lagrange multipliers associated with the constraints

in (6.10). Given that problem (6.10) is strictly convex, its solution can be found by solving the

Lagrange dual problem [Boyd and Vandenberghe, 2008]. Setting the derivatives of the Lagrangian

w.r.t. the primal variables to zero yields:




E = V

g(·) =
∑L

ℓ=1 k(·, rλℓ
)
vλℓ

λ

A = 1
µ(R

⊤V +Λ+ 1Mu⊤)

(6.12)

Replacing the optimal variables in (6.11) by their expressions in (6.12), gives the Lagrangian

dual function. Some calculations show that the Lagrange dual function can be written as a

quadratic form (see equation (6.13)). The vectors v̂, Λ̂ in (6.13) are shorthand notations for

vec(V ⊤) and vec(Λ⊤), where vec(·) is an operator that stacks the columns of its input matrix

on top of each other. The Lagrange dual problem consists of maximizing the Lagrange dual

function (6.13), with the additional constraint Λ ≥ 0 where the inequality is applied element
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Figure 6.2: True and estimated nonlinear parts in s1 and s2 obtained using the various settings
for the bilinear coefficients and for E .

wise. In other words, the dual problem reduces to solving a positively constrained quadratic

problem. In the experiments, problem (6.13) is solved using a quadratic solver. When E = IN ,

i.e. no proximity between the functions is assumed, problem (6.13) is separable and reduces to

N quadratic subproblems.

6.5 Experiments on synthetic data

6.5.1 Illustrative example

The proposed approach is first illustrated using an illustrative example. Eight endmembers were

randomly selected from the ENVI software library. The endmembers spectra consist of L = 210

spectral bands uniformly sampled in the range from 395 to 2560 nm. Two nonlinearly mixed

spectra, namely, s1 and s2, were generated such that:





s1 = Ra1 + u (α1,1Ra1 ⊙Ra1 + α1,2Ra2 ⊙Ra2) + e1,

s2 = Ra2 + u (α2,1Ra1 ⊙Ra1 + α2,2Ra2 ⊙Ra2) + e2,
(6.15)
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where “⊙” is the element wise product between two vectors, u is an attenuation coefficient set to

0.5 in the experiments, and αi,j ∈ [0 1] is the contribution of the bilinear term depending on aj

in si. Note that the second term on the right hand side of the first equation in (6.15) corresponds

to the nonlinear contribution [g1(rλ1) . . . g1(rλL
)]⊤, and similarly for the second equation. Two

cases are considered:

• MM 1: α1,1 = α2,2 = 1 and α1,2 = α2,1 = 0

• MM 2: α1,1 = α2,2 = 0.5 and α1,2 = α2,1 = 0.5

MM1 corresponds to the well-known polynomial post nonlinear mixing model (PPNM) [Altmann

et al., 2012]. MM2 corresponds to a bilinear model where the bilinear contributions simultane-

ously depend on both abundance vectors. In particular, setting all bilinear coefficients to 0.5

yields the same nonlinear contribution for s1 and s2. Finally, the two following cases were

considered for the matrix E
†
:

• E
†
1: W1,1 = W2,2 = 1, W1,2 = W2,1 = 0,

• E
†
2: W1,1 = W2,2 = 1, W1,2 = W2,1 = 10.

The first case (E
†
= E

†
1) does not promote any a priori similarity. The resulting norm of g given

by (6.8) reduces in this case to the sum of the norms of the individual functions. The second

case (E
†
= E

†
2) promotes similarity between g1 and g2. In addition to the sum of norms of

the individual functions g1 and g2, the norm of g incorporates the difference between g1 and g2

weighted by W2,1. As for the scalar kernel, a second order polynomial kernel is used:

k(rλℓ
, rλℓ′

) = (r⊤λℓ
rλℓ′

)2. (6.16)

The feature map of the kernel as defined by (6.16) incorporates the pairwise products between

the endmembers, which motivates its use with the bilinear model. Gaussian noise was added in

order to reach the desired signal to noise ratio (SNR). For each case, 100 Monte Carlo runs were

performed. The performance of the proposed approach is evaluated using the root mean square

error (RMSE) between the true and the estimated abundances (RMSEA =
√

1
MN ‖A− Â‖2F).

The parameters λ and µ were tested among the values [10−3, 5× 10−3, 10−2, 10−1, 1, 10 ]. The

endmembers are assumed to be known in the experiments. Table 6.2 reports the RMSEs

of the estimated abundances and the nonlinear parts obtained in each scenario with several

values of the SNR and M. Table 6.3 reports the optimal tuning parameters for each case. As

expected, penalizing the discrepancy between g1 and g2, that is, using E
†
2, gives better results
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Table 6.2: RMSEs (×10−2) for the abundances and the nonlinear part (left and right term in
brackets respectively) obtained with the illustrative example.

E
†
1

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (1.28, 0.78) (2.07, 1.05) (4.55, 1.97)
MM 2 (2.16, 0.78) (2.54, 1.09) (5.33, 2.17)

M=5
MM 1 (3.07, 1.46) (2.60, 1.74) (5.30, 3.34)
MM 2 (2.32, 0.91) (2.84, 1.25) (4.72, 1.93)

M=8
MM 1 (2.12, 1.51) (2.73, 1.81) (5.59, 3.34)
MM 2 (2.09, 0.80) (3.21, 1.56) (6.82, 3.43)

E
†
2

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (2.36, 0.85) (4.24, 1.97) (5.42, 2.40)
MM 2 (1.12, 0.63) (1.68, 0.81) (4.27, 1.65)

M=5
MM 1 (3.07, 1.46) (2.60, 1.74) (5.30, 3.34)
MM 2 (1.53,0.67) (2.10, 1.00) (4.48, 1.73)

M=8
MM 1 (4.74, 2.33) (3.67, 2.11) (5.97, 3.10)
MM 2 (1.37, 0.77) (2.86, 1.21) (5.99, 2.85)

when the nonlinear parts are equal. On the other hand, using E
†
2 for different functions g1 and g2

deteriorates the results. More importantly, improving the estimation of the nonlinear part also

yields an improved estimation of the abundances. This shows the importance of the estimation

of g, and the use of a correct prior. Figure 6.2 shows the true and estimated functions g1 and g2

for each case. Figures 6.2 (a) and (b) correspond to the case where g1 and g2 are different, they

are represented by two solid lines. Whereas Figures 6.2 (c) and (d) correspond to the case where

g1 and g2 are equal, hence they are both represented by one solid line. The estimated nonlinear

contributions are represented using blue and green dashed lines respectively. Figures 6.2 (b) and

(d) show how penalizing the difference between g1 and g2 yields closer estimations compared to

Figures 6.2 (a) and (c).

6.5.2 Spatial data set

The proposed approach was tested on a synthetic image known as the spatial image [Chen et al.,

2014]. The abundance maps for this image are the same as those used for the image IM2 in

[Chen et al., 2014]. The image has 100 × 100 pixels, and is composed of 8 endmembers. As in

the previous experiment, a bilinear mixing model was used where the bilinear coefficients depend

on neighboring abundances. The attenuation parameter was set to u = 0.5. The endmembers

spectra used in the previous experiment were used in this experiment. A white Gaussian noise
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Table 6.3: Optimal parameters (λ, µ) used with each algorithm in the ilustrative example.

E
†
1

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (1, 0.1) (1, 0.1) (1, 0.1)
MM 2 (0.1, 0.01) (1, 0.1) (1, 0.1)

M=5
MM 1 (1, 0.1) (1, 0.1) (10, 1)
MM 2 (0.1, 0.01) (1, 0.1) (10, 1)

M=8
MM 1 (1, 0.1) (1, 0.1) (1, 0.1)
MM 2 (1, 0.01) (1, 0.01) (1, 0.1)

E
†
2

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (0.005, 0.005) (1, 0.1) (1, 0.1)
MM 2 (1, 0.1) (1, 0.1) (1, 0.1)

M=5
MM 1 (0.01, 0.001) (1, 0.1) (10, 1)
MM 2 (0.1, 0.01) (1, 0.1) (10, 1)

M=8
MM 1 (0.1, 0.01) (1, 0.1) (1, 0.1)
MM 2 (0.1, 0.01) (1, 0.01) (1, 0.1)

was added to the observations in order to get an SNR of 30 dB. The image was unmixed using

three methods. The first method is the extended endmember matrix method (ExtM) [Raksuntorn

and Du, 2010]. It consists of extending the endmember matrix artificially with cross-spectra of

pure materials. The second method is Khype [Chen et al., 2013]. It was obtained by simply

setting E to the identity matrix in our algorithm. The third method is the proposed approach

used with E 6= I, i.e., with prior information regarding the similarity between the nonlinearities.

For the latter method, the image was decomposed into 3× 3 disjoint patches in order to reduce

the computational complexity. In each patch, nonlinear parts at adjacent pixels are assumed to

be similar. The similarity weights were tested among the values [10, 50, 100]. After preliminary

tests, they were set to 50 in all experiments. Table 6.4 reports the RMSEs of the abundances

and the nonlinear contributions for the three methods. The best scores in terms of the RMSEs

are obtained with the proposed approach. Figure 6.3 shows the true and estimated nonlinear

contributions at band #100 obtained with each method. Figure 6.3 (d) shows that incorporating

the spatial prior resulted in visually smoother variations.

6.6 Conclusion

This chapter proposed a new framework for incorporating spatial regularization in nonlinear

unmixing. The proposed model promotes smooth spatial variations of the nonlinear components

in the mixing model. The optimization problem reduces to a QP problem. In particular, the
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Table 6.4: Unmixing performance and optimal tuning parameters obtained with the spatial data
set.

Ext Khype Prop.

RMSE(A,A⋆) 0.0507 0.0380 0.0276

RMSE(F, F ⋆) 0.0507 0.0213 0.0138

(λ, µ) − (1, 0.01) (1, 0.01)
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Figure 6.3: True and estimated nonlinear contributions at band #100 obtained with the spatial
data set using the extended endmember method (Ext), Khype , and the proposed approach.

proposed model exploits the separable kernel design and the resulting graph regularization which

allows to incorporate the prior about the similarities between the nonlinear part at different pixels

using a graph. Finally, the performance of the proposed approach was validated on synthetic

data.





Chapter 7

Concluding remarks

This manuscript addressed several problems in hyperspectral unmixing. First, an unsupervised

unmixing approach based on collaborative sparse regularization was proposed where the library

of endmembers candidates was built from the observations themselves. This approach was then

extended in order to take into account the presence of noise among the endmembers candidates.

Second, within the unsupervised unmixing framework, two graph-based regularizations were used

in order to incorporate prior local and nonlocal contextual information. Next, within a supervised

nonlinear unmixing framework, a new nonlinear mixing model based on vector-valued functions

in RKHS was proposed. The aforementioned model allowed us to consider different nonlinear

functions at different bands and to account for neighboring nonlinear contributions. Finally, in

the last chapter of this thesis, the vector-valued kernel framework was used in order to promote

spatial smoothness of the nonlinear part in a kernel-based nonlinear mixing model. In this

concluding chapter, the methods proposed in each chapter are briefly recalled and some future

research directions are discussed.

7.1 Summary of objectives and contributions

This thesis focused on the problem of mixed spectra through the development of new unmixing

techniques in various interrelated contexts throughout its four core chapters, namely chapters 3

to 7. In particular, the objectives and contributions are described in what follows:

1. The first objective was to perform linear unmixing given that the number of endmembers

and their spectral signatures are not known, i.e. in a blind and unsupervised setting. It

was assumed that the endmembers are present among the observations, and they were

sought as the purest pixels in the scene. To perform this task, the observations were
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modelled as a linear combination of a few spectra from the observations themselves. The

unmixing problem was formulated using sparse regularization, namely the Group Lasso

regularization. The main advantage of the proposed model was that the endmembers used

to characterize the observations were obtained in the same atmospheric conditions as the

observations and underwent the same atmospheric corrections as well. Nevertheless, since

the observations and equivalently the estimated endmembers were corrupted with noise

two models were considered depending on how the presence of noise in the endmembers

was handled.

2. The second objective was to improve the unmixing accuracy by taking into account the

spatial information and the spectral correlation inherently present in hyperspectral im-

ages. To perform this task, we proposed to construct a weighted graph, such that each

pixel corresponds to a node in the graph and the weights represent to the degree of sim-

ilarity between the corresponding pixels. The graph structure was able to easily combine

the spatial and spectral prior information through its edge set and weights. The prior in-

formation was then incorporated in the optimization problem through the definition of an

appropriate regularization term depending on the graph structure. We considered two dif-

ferent similarity priors, hence two regularizations, that we incorporated in an unsupervised

linear mixing model. The first prior assumed that the abundances have smooth variations

at similar pixels, whereas the second prior assumed that the reconstructed spectra have

piece-wise smooth variations at similar pixels. Furthermore, we proposed two strategies for

building a meaningful graph from the observations.

3. The third objective was to improve the unmixing accuracy in the case of a nonlinear mixing

model. Roughly speaking, we performed this task by spectrally (chapter 5) and spatially

(chapter 6) regularizing the nonlinear component in a kernel-based nonlinear mixing model.

To perform these two tasks, we proposed a new framework based on vector-valued RKHS.

In particular, the proposed models exploit a special type of kernels known as the separable

kernels which allows to incorporate the prior about the similarities between the pixels

(chapter 5) and the bands (chapter 6) using a graph representation.

4. Finally, the last objective was to solve the various proposed models using a relatively uni-

fied and flexible framework. In fact, the majority of the proposed optimization problems

are convex, constrained, and usually involve a non-smooth regularization term in the ob-

jective function. In order to solve these optimization problems, the proposed algorithms
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were based on the ADMM. This choice allowed to effectively handle the various convex,

constrained, and non-smooth optimization problems by decomposing the original problem

into a sequence of smaller ones. In particular, we exploited the ADMM framework to avoid

solving sylvester equations in chapter 4, and to handle an optimization problem which

includes an unknown function in a RKHS.

7.2 Future research directions

This thesis provided several contributions in unsupervised and nonlinear unmixing of hyperspec-

tral data. As for future research, it would be interesting to investigate the following ideas which

are aimed at improving and exploring extensions of the proposed models.

Short term perspectives

• Graph lasso and group lasso with overlap: In chapter 3, the proposed unsupervised

unmixing model is based on the group lasso regularization which enables the selection

of the endmembers present in the scene. The group lasso regularization imposes that

the same group of endmembers explains the observed spectra. Interestingly, the work in

[Jacob et al., 2009] proposes two new collaborative sparse penalties, namely, the graph

lasso and the group lasso with overlap. If used within the unmixing framework, these

regularizations would allow to incorporate prior information about the relations between

the endmembers. For example, in the case of the group lasso with overlap, it would be

possible to select the endmembers such that they are a union of groups of endmembers

defined a priori with possible overlaps. Whereas in the case of the graph lasso, it would be

possible to select the endmembers such that the selected endmembers tend to be connected

to each other in a given graph where each candidate endmember is represented by a node.

Both penalizations are interesting to examine in the unmixing framework where one can

incorporate additional information about the coexistence of endmembers, i.e. if a specific

endmember is present in the scene then the other endmembers in the corresponding group

are present too. Nevertheless, the application of these two regularizations in the case of

libraries of known spectral signatures or image-based candidate endmembers needs further

investigation with regards to how the group partitions or graph topology should be chosen.

• Distributed optimization over graphs: In chapter 4, we have introduced two graph

based regularizations in the unmixing framework for incorporating contextual information.
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The resulting optimization problems do not scale well due to the fact that the abundances

are no longer estimated in a pixel-by-pixel manner. Instead, all the abundances in the

image have to be simultaneously estimated. To reduce the computational complexity of

the resulting algorithms, we performed clustering and imposed a sparse graph structure. It

would be interesting to investigate the potential computational gain, memory wise and time

wise, if distributed optimization techniques over graphs are used. For example, extending

the work in [Nassif et al., 2016] to the graph regularized unmixing framework would allow

for each node (pixel) to estimate its own abundance and share its current estimate with its

neighbors in order to solve the overall problem iteratively.

Long term perspectives

• Learning the graph structure for the graph-based regularizations: Another fu-

ture research direction includes the influence of the graph topology configuration. The

efficiency of the two regularizations proposed in chapter 4 relies on the construction of a

meaningful graph representation. We have tested two simple strategies mainly based on

the pairwise correlation between the available observations and their spatial configuration.

Nevertheless, the observations can be corrupted with noise which hinders the accuracy of

the correlation metric derived from the observations when the SNR increases. Further-

more, the assumption that the similarities between the observations reflect the similarities

between the estimated abundances may not be sufficient or accurate in practice. An alter-

native for defining the graph is to learn it simultaneously while unmixing. For example,

this problem has been studied in [Dong et al., 2015] where the authors jointly estimate

the unknown variables and the corresponding Laplacian matrix. It would be interesting to

investigate the extension of the aforementioned work to the framework adopted in chapter

4. Furthermore, learning the Laplacian matrix hence the topology of the graph would

provide new insights on the interactions between the pixels in the image and would allow

to analyze the relative importance of local and nonlocal connections.

• Learning the graph structure for the separable kernel : Similarly to the previous

point, the graph structure required for the design of the separable kernel in chapters 5

and 6 can be simultaneously learned while estimating the unknown variables. The work

in [Sindhwani et al., 2012] attempts to perform this task in a scalable way. In the un-

mixing framework, this would imply a simultaneous estimation of the graph structure,

the nonlinear function, and the abundances. Furthermore, research in this direction can
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benefit the proposed approaches in chapters 5 and 6 computationally since the authors

of [Sindhwani et al., 2012] propose a scalable method based. Finally, in parallel to what

was mentioned in the previous point, learning the graph structure allows us to analyze the

nonlinear interactions between the bands (chapter 5) or the pixels (chapter 6).





Appendix A

Proof of positively constrained MiSTO

Proof. Since problem (3.16) is convex, we simply have to check the validity of the solution in the

two cases ‖(v)+‖2 > α and ‖(v)+‖2 < α. Let f0(z) =
1
2‖z− v‖22 +α‖z‖2. For ‖(v)+‖2 > α, the

gradient of f0 is given by

∇f0(z
∗) =

(
1 +

α

‖z∗‖2

)
z∗ − v. (A.1)

Replacing by the appropriate expression from (3.16) yields

∇f0(z
∗) = (v)+ − v ≥ 0 (A.2)

z∗
i · ∇f0(z

∗)i ∝ ((v)+)i · ((v)+ − v)i = 0. (A.3)

These two conditions correspond the optimality conditions, which means that z � 0 is a solution

for the constrained problem. For more details, refer to section 4.2.3 in [Boyd and Vandenberghe,

2008].

For the second case, note that for every z � 0, we have

∑

i

zivi ≤
∑

i

zi(vi)+ ≤ ‖z‖2 · ‖(v)+‖2. (A.4)

It follows that

f0(z)− f0(0) =
1

2

∑

i

z2
i −

∑

i

zivi + α‖z‖2

≥ 1

2
‖z‖22 − ‖z‖2 · ‖(v)+‖2 + α‖z‖2

≥ 1

2
‖z‖22 + ‖z‖2(α− ‖(v)+‖2).

(A.5)

This proves that for ‖(v)+‖2 ≤ α, the minimum is reached for z∗ = 0.
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Appendix B

Probability distribution of observations

(NGLUP)

We return to model (3.5) that was considered in chapter 3, section 3.3, which expresses the

mixing model as:

S = SωX +E(IN − IωX). (B.1)

The aim of this section is to determine the probability distribution of the observations {s1, . . . , sN}
based on model (B.1) needed in order to derive the corresponding negative log likelihood. To

lighten the notations, we consider that ω = {1, . . . , N}. In this case equation (B.1) becomes:

S = SX +E(IN −X). (B.2)

For each column in S we have

sk = Sxk + bk, (B.3)

where xk denotes the k-th column of X and

bk = ek −Exk. (B.4)

We rewrite bk in the following equivalent form:

bk =
N∑

ℓ=1

(iℓk − xℓk)eℓ, (B.5)

where iℓk is the (ℓk)-th entry of I, i.e. iℓk = 0 if k 6= ℓ and iℓk = 1 if k = ℓ. Recall that the

noise is assumed to be Gaussian independent and identically distributed, with zero mean and a

possibly unknown variance σ2, that is,

eki ∼ N (0, σ2), (B.6)
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and equivalently, for each column ek, we have

ek ∼ N (0L, σ
2IL). (B.7)

Based on (B.5) and (B.7), bk follows a Gaussian distribution with the following mean and

variance, and the covariance between bk and bm is derived as follows:

E[bk] = E
[∑N

ℓ=1(iℓk − xℓk)eℓ

]

=
∑N

ℓ=1(iℓk − xℓk)E [eℓ]

= 0L,

Var(bk) = Var
(∑N

ℓ=1(iℓk − xℓk)eℓ

)

= Var
(∑N

ℓ=1(iℓk − xℓk)eℓ

)

=
∑N

ℓ=1(iℓk − xℓk)
2Var (eℓ)

+2
∑

1≤ℓ<m≤N (iℓk − xℓk)(ik,m − xm,k)Cov (eℓ, em)

=
∑N

ℓ=1(iℓk − xℓk)
2σ2IL

= σ2‖ik − xk‖2IL,

Cov(bk, bm) = Cov
(∑N

ℓ=1(iℓk − xℓk)eℓ,
∑N

ℓ′=1(iℓ′m − xℓ′m)eℓ

)

=
∑N

ℓ=1

∑N
ℓ′=1(iℓk − xℓk)(iℓ′m − xℓ′m)Cov (eℓ, e

′
ℓ)

=
∑N

ℓ=1(iℓk − xℓk)(iℓ,m − xℓ,m)Cov (eℓ, eℓ)

= (ik − xk)
⊤(im − xm)Var (eℓ)

= σ2(ik − xk)
⊤(im − xm)IL.

(B.8)

Let B = [b1, . . . , bN ], it can be concluded from (B.8) that we have the following mean and

variance for the vector vec(B) = [b⊤1 , . . . , b
⊤
N ]⊤:

E([b⊤1 , . . . , b
⊤
N ]⊤) = 0LN , (B.9)

Var([b⊤1 , . . . , b
⊤
N ]⊤) = σ2

[
(IN −X)⊤(IN −X)

]
⊗ IL, (B.10)

where we have used that:

Var([b⊤1 , . . . , b
⊤
N ]⊤) =




Var(b1) Cov(b1, b2) · · · Cov(b1, bN )

Cov(b2, b1) Var(b2) · · · Cov(b2, bN )
...

...
. . .

...

Cov(bN , b1) Cov(bN , b2) · · · Var(bN )



. (B.11)
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Given the relationship between bk and sk in (B.3), the vector [s⊤1 , . . . , s
⊤
N ]⊤ follows the

Gaussian distribution with the following mean and variance:

E([s⊤1 , . . . , s
⊤
N ]⊤) = [(Sx1)

⊤, . . . , (SxN )⊤]⊤, (B.12)

Var([s⊤1 , . . . , s
⊤
N ]⊤) = σ2

[
(IN −X)⊤(IN −X)

]
⊗ IL. (B.13)





Appendix C

Graph clustering

The purpose of the graph clustering is to reduce the computational complexity of the (C.1)

Y k+1 = (V k + ρXk+1)(2λLG + ρIN )−1, (C.1)

using spectral clustering. Assume that the pixels can be grouped into k disjoint clusters or

subgraphs of size N1, N2, · · · , Nk denoted by G1,G2, · · · ,Gk such that N = N1 +N2 + · · ·+Nk.

Without any loss of generality, assume that the pixels’ spectra in G are ordered such that the

first N1 are in G1, the next N2 are in G2, and so on. This yields the following new block diagonal

affinity matrix

Ŵ =




W(11)
0 · · · 0

0 W(22) . . .
...

...
. . .

. . . 0

0 · · · 0 W(kk)




(C.2)

where parenthesized superscripts are used to index a sub block in the corresponding matrix.

The diagonal blocks in Ŵ , namely, W(ii) are the Ni × Ni matrices of inter-cluster affinities.

Compared to the affinity matrix W of the original graph G, Ŵ is equal to W with the difference

that the intra-cluster affinities are set to zero. This corresponds to zeroing Wij in W if si and

sj belong to different clusters, thus moving the clusters “infinitly” far apart [Ng et al., 2002].

The advantage of approximating W by Ŵ is two fold. First, storing Ŵ requires less memory

compared to W . It is no longer necessary to store the intra-cluster affinities. Second, using Ŵ

instead of W in (C.1) allows to reduce the Y minimization step to k separate problems, one for
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each cluster, which yields

minimize
Y (i)

ρ
2 ‖X(i) − Y (i)‖2F − trace(V (i)⊤(Y (i))) + λtrace(Y (i)L̂(ii)

G Y (i)⊤) (C.3)

where L̂(ii)
G corresponds to the i-th diagonal block of the Laplacian matrix derived from Ŵ . The

solution for each sub-problem,

Y (i)k+1
= (V (i)k + ρX(i)k+1

)(2λL̂(ii)
G + ρI)−1, (C.4)

requires solving a smaller linear system with only Ni unknown variables, Ni being smaller than

N . The storage and computational complexity of the overall Y minimization step depend on

the size of the largest sub-graph

Nmax = max(Ni)
k
i=1. (C.5)

To summarize, partitioning the graph into k clusters allows to approximate the affinity matrix

W by a sparse and block-diagonal affinity matrix Ŵ . Furthermore, it allows to solve k smaller

linear systems instead of solving one linear system of size N resulting in memory and speed

gains.

In order to estimate the optimal Ŵ , the graph G needs to be partitioned into k disjoint

clusters. To perform this task, we use normalized cuts as described in [Fowlkes et al., 2004]. The

authors of [Fowlkes et al., 2004] propose an approximation technique for evaluating the first ne

eigenvectors of the Laplacian matrix. The eigenvectors are then used to find the optimal partition

of the graph into two clusters. This approach to clustering is known as spectral clustering, some

of the most used spectral clustering algorithms are described in [Weiss, 1999]. We use the strategy

proposed in [Ng et al., 2002] to simultaneously find the k clusters rather than two clusters. In

fact the leading eigenvectors of the normalized affinity matrix induce an embedding of the pixels

in a low dimensional subspace. The approach in [Ng et al., 2002] consists of using a simple

clustering method such as k-means in order to cluster the rows of the leading eigenvectors. The

resulting clustering algorithm is described in algorithm 4.
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Algorithm 4 Spectral clustering into k clusters

1: Compute W(11) and W(12)

2: d1 = sum([W(11),W(12)], 2)
3: d2 = sum(W(21), 2) + sum(W(21) × pinv(W(11))×W(12), 2)
4: d1 = 1./

√
d1

5: d2 = 1./
√
d2

6: W(11) = W(11) × d1 × d⊤
1

7: W(12) = W(12) × d2 × d⊤
2

8: [U ,L] = eigs(W(11), k)
9: V = [U ;W(21) ×U ×L−1]

10: Normalize each row in V to have unity norm
11: Treating each row in V as a point, use k-means to cluster points into k groups
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Résumé

Le démélange spectral est l’un des problèmes centraux pour l’exploitation des images

hyperspectrales. En raison de la faible résolution spatiale des imageurs hyperspectraux en

télédetection, la surface représentée par un pixel peut contenir plusieurs matériaux. Dans

ce contexte, le démélange consiste à estimer les spectres purs (les endmembers) ainsi que

leurs fractions (les abondances) pour chaque pixel de l’image. Le but de cette thèse est

de proposer de nouveaux algorithmes de démélange qui visent à améliorer l’estimation des

spectres purs et des abondances. En particulier, les algorithmes de démélange proposés

s’inscrivent dans le cadre du démélange non-supervisé et non-linéaire. Dans un premier

temps, on propose un algorithme de démelange non-supervisé dans lequel une régularisation

favorisant la parcimonie des groupes est utilisée pour identifier les spectres purs parmi les

observations. Une extension de ce premier algorithme permet de prendre en compte la

présence du bruit parmi les observations choisies comme étant les plus pures. Dans un

second temps, les connaissances a priori des ressemblances entre les spectres à l’échelle locale

et non-locale ainsi que leurs positions dans l’image sont exploitées pour construire un graphe

adapté à l’image. Ce graphe est ensuite incorporé dans le problème de démélange non-

supervisé par le biais d’une régularisation basée sur le Laplacian du graphe. Enfin, deux

algorithmes de démélange non-linéaires sont proposés dans le cas supervisé. Les modèles

de mélanges non-linéaires correspondants incorporent des fonctions à valeurs vectorielles

appartenant à un espace de Hilbert à noyaux reproduisants. L’intérêt de ces fonctions par

rapport aux fonctions à valeurs scalaires est qu’elles permettent d’incorporer un a priori sur

la ressemblance entre les différentes fonctions. En particulier, un a priori spectral, dans un

premier temps, et un a priori spatial, dans un second temps, sont incorporés pour améliorer

la caractérisation du mélange non-linéaire. La validation expérimentale des modèles et des

algorithmes proposés sur des données synthétiques et réelles montre une amélioration des

performances par rapport aux méthodes de l’état de l’art. Cette amélioration se traduit par

une meilleure erreur de reconstruction des données.

Mots clés: Données hyperspectrales, démélange non-supervisé, démélange non-linéaire, al-

gorithme des directions altérnées (ADMM), régularisation de type group lasso, régularisation

avec le Laplacian, espace de Hilbert à noyau reproduisant (RKHS).
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E.1 Introduction

L’analyse des images hyperspectrales, également connue comme la spectroscopie, est l’une des

technologies les plus importantes et les plus connues dans le domaine de la télédétection. L’avantage

principale des images hyperspectrales est qu’elles fournissent la représentation d’une scène suivant

un très grand nombre de bandes spectrales avec une grande résolution. Cela permet l’identification

des matériaux présents dans la scènes et l’extraction de plusieurs paramètres physiques.

Le démélange spectral est l’un des outils les plus importants pour analyser les données hyper-

spectrales. Au lieu d’attribuer un matériau ou une classe spécifique à chaque pixel, comme dans

le cas de la classification, le démélange spectral suppose qu’un pixel peut avoir une composition

mixte, et par la suite un spectre mixte. Dans ce contexte, on distingue systématiquement entre

les spectres purs et les spectres mixtes. Un spectre pur, aussi connu comme un endmember, est

un spectre associé à un matériau ou à une classe spécifique. Idéalement, il s’agit d’une signature

spectrale qui représente la matière correspondante. En revanche, un spectre mixte est estimé

dans le cas où plusieurs faisceaux lumineux ayant interagis avec plus qu’un matériau atteignent

le capteur: un spectre mixte est un mélange des spectres purs des matériaux présents dans le

pixel correspondant. Dans le cas non-supervisé, le démélange consiste à estimer les spectres

purs (les endmembers) et leurs fractions (les abondances) pour tous les pixels de l’image. Dans

le cas non-supervisé, les spectres purs sont connus a priori, et le démélange consiste à estimer

les abondances. Deux approches existent pour décrire le mécanisme de mélange spectral: les

modèles linéaires et les modèles non-linéaires. D’après le modèle de mélange linéaire, un spec-

tre mixte est exprimé comme une somme pondérée des spectres purs. Cette modélisation est

relativement précise dans le cas où les matériaux sont repartis sur des zones distinctes dans le

pixel, les faisceaux lumineux arrivant au capteur subissent une seule réflexion, et par la suite

chaque faisceau lumineux a interagi avec un seul matériau. Si cela n’est pas le cas, c.a.d. si

l’une des conditions précédentes n’est pas vérifiée, le mélange spectral devient non-linéaire. Plus

précisément, cela correspond au cas où les matériaux sont mélangés de façon intime (intimate

mixture), ou lorsque les faisceaux lumineux subissent des réflexions multiples avant d’atteindre

le capteur. Dans ces deux cas, les photons interagissent avec plus qu’un matériau et le mélange

est non-linéaire. L’estimation des endmembers et des abondances est évidemment plus complexe

dans le cas non-linéaire.
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E.2 Résumé de la thèse

Cette thèse s’inscrit dans le cadre du démélange des données hyperspectrales, en particulier le

démélange non-supervisé et non-linéaires. Les trois contributions principales de cette thèse sont:

le développement d’une nouvelle approche pour le démélange non-supervisé, la modélisation de

l’information spatiale par un graphe pour le démélange (linéaire et non-linéaire), et l’introduction

d’un nouveau modèle de démélange non-linéaire. La thèse se compose de sept chapitres. Le

premier chapitre commence avec un aperçu des travaux présentés dans la thèse et présente son

organisation. Chapitre 2 explique le contexte du démélange hyperspectral. Les quatre chapitres

suivants, c.a.d. les chapitres 3 à 6 , présentent les contribution de la thèse, en particulier ils

expliquent les techniques de démélange proposées. L’organisation de ces chapitres est présentée

dans ce qui suit.

Dans le troisième chapitre, nous introduisons une approche originale pour le démélange non-

supervisé utilisant une régularisation favorisant la parcimonie des groupes. Le démélange est

effectué sans un dictionnaire de spectres purs, et suppose que le nombre de matériaux présents

dans la scène et que leurs signatures spectrales sont inconnues. Deux modèles sont développés

pour réaliser cette tâche, selon la façon dont le bruit interagit avec les données hyperspectrales.

Le premier modèle conduit à un problème d’optimisation convexe, et le problème d’optimization

correspondant est résolu avec la méthode des directions alternées (ADMM). Alors que le second

modèle prend en compte la présence du bruit dans les observations, et le problème d’optimisation

correspondant est résolu avec un algorithme de moindres carrés pondérés.

Dans le quatrième chapitre, nous proposons d’intégrer une régularisation spatiale dans la

formulation du démélange en utilisant des graphes. Plus précisément, ce chapitre présente deux

régularisations basées sur les graphes qui sont utilisées dans un problème de démélange linéaire et

non-supervisé. Les régularisations proposées reposent sur la construction d’une correspondance

entre l’image hyperspectrale et un graphe. Dans le premier cas, une régularisation quadratique

basée sur le Laplacian du graphe est proposée pour promouvoir des variations douces dans

les cartes d’abondances et une collaboration entre les zones homogènes de l’image. Dans le

second cas, une régularisation de type variation totale basée sur un graphe est utilisée pour

promouvoir l’estimation de spectres constants par morceau par rapport à la structure du graphe.

Les problèmes d’optimisation résultants sont convexes et résolus en utilisant la méthode des

directions alternées (ADMM). La performance des algorithmes proposés est démontrée en les

comparant à d’autres algorithmes de l’état de l’art avec des données hyperspectrales réelles et
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simulées.

Le cinquième chapitre propose un nouveau modèle de mélange non-linéaire qui permet de

incorporer un a priori sur la variation spectrale de la contribution non-linéaire. Pour cela il mod-

élise la partie non-linéaire en utilisant une fonction non-linéaire à valeur vectorielle appartenant

à un espace de Hilbert à noyau reproduisant. En comparaison avec les modèles non-linéaires

existants, le modèle proposé permet de prendre en compte des fonctions non-linéaires différentes

par bande. La motivation principale de ce modèle est que les contributions non-linéaires peu-

vent être dominantes dans certaines parties du spectre alors qu’elles sont moins prononcées dans

d’autres parties. En plus la fonction non-linéaire agit sur les spectres voisins. Cela est motivé

par le fait que les contributions non-linéaires peuvent être issues des pixels voisins, par exem-

ple à cause de l’effet d’adjacence. La fonction non-linéaire proposée est associée à un noyau

à valeur matricielle permettant de modéliser conjointement plusieurs types de non-linéarités et

d’introduire des informations a priori concernant les dépendances entre les différentes bandes

spectrales. En outre, le fait que la fonction agisse sur les spectres voisins permet d’incorporer

des effets d’adjacence. Un type particulier de noyaux dont la conception repose sur la construc-

tion d’un graphe où chaque bande est représentée par un noeud dans le graphe est étudié. Le

problème d’optimisation est strictement convexe et l’algorithme itératif correspondant est basé

sur la méthode des directions alternées (ADMM). Enfin, des expériences menées sur des données

synthétiques et réelles montrent l’efficacité de l’approche proposée.

Dans le sixième chapitre, nous proposons d’intégrer une régularisation spatiale dans un mod-

èle de mélange non-linéaire aussi basé sur les noyaux. De façon similaire au chapitre précédent,

le modèle proposé utilise les fonctions à valeur vectorielle appartenant à un espace de Hilbert à

noyau reproduisant (RKHS). Cette fonction est utilisée pour introduire une régularisation sur

la partie non-linéaire promouvant des variations lisses spatialement de la partie non-linéaire. La

régularisation spatiale et les contributions non-linéaires sont modélisées conjointement par la

fonction à valeur vectorielle. La conception du noyau repose sur la construction d’un graphe

correspondant à l’image hyperspectrale où chaque noeud représente un pixel. Le problème

d’optimisation correspondant est un problème quadratique strictement convexe. Des simula-

tions sur des données synthétiques illustrent l’efficacité de l’approche proposée.

Le septième et dernier chapitre conclut la thèse et donne un résumé des avantages et les

principales contributions des méthodes développées dans les chapitres précédents. Il fournit

également des perspectives pour des futures travaux.
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E.3 Conclusion

Cette thèse a abordé plusieurs problèmes liés au démélange des données hyperspectrales. Dans

cette section, nous résumons les contributions principales de ce travail et nous proposons quelques

perspectives pour des futurs travaux.

1. Le premier objectif de la thèse était de résoudre le problème de démélange dans un cadre

non-supervisé, i.e. lorsque le nombre de endmembers et leurs spectres sont inconnus. Pour

résoudre ce problème, nous avons supposé que les spectres purs sont présents parmi les

observations, et que chaque spectre mesuré est une combinaison linéaire de ces spectres

purs. Le problème d’optimisation correspondant est alors basé sur une régularisation parci-

monieuse qui favorise la parcimonie des groupes. Un des intérêts de ce modèle est que les

corps purs ainsi estimés ont subis les mêmes corrections atmosphériques que les observa-

tions. Toutefois, en choisissant les spectres purs parmi les observations, il ne tient pas

compte du bruit additif dont celles-ci sont entachées. Afin d’améliorer la performance de

la méthode proposée, un deuxième modèle qui prend en compte la présence du bruit parmi

les observations est considéré.

2. Le deuxième objectif de la thèse était d’améliorer la performance du démélange dans le

cas non-supervisé en prenant en compte l’information spatiale présente dans les images

hyperspectrales. Pour cela, nous avons proposé de construire un graphe pondéré où chaque

noeud correspond à un pixel et où les poids attribués aux liens entre les noeuds représentent

le degré de similarité entre les pixels correspondants. La structure du graphe a permis de

représenter l’a priori spatial et spectral à travers l’ensemble des liens et des poids associés.

Dans un premier temps, cet a priori a été incorporé dans le problème d’optimisation grace

à une régularisation définie par le Laplacian du graphe. Dans un second temps, il a été

incorporé dans le problème d’optimisation grace à une régularisation définie par la matrice

d’adjacence du graphe. Dans le premier problème d’optimisation nous avons considéré

que les abondances ont des variations lisses sur le graphe. Dans le deuxième problème

d’optimisation, nous avons considéré que les spectres reconstruits ont des variations lisses

sur le graphe.

3. Le troisième objectif était d’améliorer la performance dans le cas d’un mélange non-linéaire.

Pour cela, nous avons utilisé des fonctions non-linéaires à valeur vectorielle dans un espace

de Hilbert à noyau reproduisant. Nous proposons pour cela deux modèles de démélange
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dans lesquels la contribution non-linéaire est régularisée spectralement (dans le chapitre

5), et spatialement (dans le chapitre 6). En particulier, la fonction noyau utilisée dans

les deux modèles proposés permet d’incorporer un a priori sur les ressemblances entre les

différentes sorties de la fonction grace à un graphe.

La majorité des problèmes d’optimization rencontrés dans ce travail sont convexes, con-

traints, et contiennent un terme non differentiable dans la fonction objective. Pour résoudre

ces problèmes, nous avons utilisé la méthode des directions alternées. Cette méthode permet de

décomposer le problème initial en une séquence de sous-problèmes relativement plus simples. Par

exemple, cette approche nous a permis de contourner la résolution d’une équation de Sylvester

dans le chapitre 4, et de résoudre des problèmes d’optimisation avec des fonctions dans un espace

de Hilbert à noyau reproduisant.

Concernant les futurs travaux de recherche, il serait intéressant d’examiner les pistes suiv-

antes qui permettront d’améliorer et d’étendre les méthodes déjà proposées. A court terme, nous

envisageons d’utiliser les régularisations de type Graph lasso et group lasso avec chevauchement

[Jacob et al., 2009] pour améliorer l’extraction des corps purs parmi les observations. Ces deux

types de régularisations permettront d’incorporer un a priori sur les relations entre les endmem-

bers. En plus, il pourrait être intéressant de rendre l’estimation des abondances proposée dans

le chapitre 4 distribuée comme par exemple dans [Nassif et al., 2016]. A plus long terme, une des

directions de recherche serait d’apprendre la structure du graphe simultanément avec le problème

d’estimation. Cela est en contrast avec l’approche adoptée dans le chapitre 4 et 5 où le graphe

est fixé a priori.
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