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RÉSUMÉ

Le mtnusvrit se wivise en weux ptrties. Lt première et vontituée wes vztpitres I à IV et propose une présentttion uniiée we nomureux résulttts vonnus tinsi que we quelques éléments nouvetux.

cn présente wtns le Cztpitre I le proulème w'online linear optimiztion, puis on vontruit les trttéyies we wesvente miroir tvev ptrtmètres vtritules pour lt minimisttion wu reyret, et on éttulit wtns le héorème I.3.1 une uorne yénértle sur le reyret ytrtntie ptr ves trttéyies. Ce résulttt et xonwtmenttl vtr lt qutsi-tottlité wes résulttts wes quttre premiers vztpitres en seront wes vorolltires. cn trtite ensuite l'extension tux pertes vonvexes, puis l'outention w'tlyoritzmes w'optimisttion vonvexe à ptrtir wes trttéyies minimistnt le reyret.

Le Cztpitre II se vonventre sur le vts où le joueur wipose w'un ensemule ini wtns lequel il peut vzoisir ses ttions we xtçon tléttoire. Les trttéyies wu Cztpitre I sont tisément trtnposées wtns ve vtwre, et on outient éytlement wes ytrtnties presquesûres w'une ptrt, et tvev yrtnwe proutuilité w'tutre ptrt. gont ensuite ptssées en revue quelques trttéyies vonnues : l'Exponential Weights Algorihm, le Smooh Fititios Play, le Vanshingly Smooh Fititios Play, qui tpptrtissent toutes vomme wes vts ptrtivuliers wes trttéyies vontruites tu Cztpitre I. En in we vztpitre, on mentionne le proulème we utnwit à plusieurs urts, où le joueur n'ouserve que le ptiement we l'ttion qu'il t jouée, et on étuwie l'tlyoritzme EXP3 qui et une twtptttion we l'Exponentitl keiyzts Alyoritzm wtns ve vtwre.

Le Cztpitre III et vonstvré à lt vltsse we trttéyies tppelée Folow he Perturbed Leader, qui et wéinie à l'tiwe we perturuttions tléttoires. in révent survey oALh16] mentionne le xtit que ves trttéyies, uien que wéinies we xtçon wiférente, tpptrtiennent à lt xtmille we wesvente miroir wu Cztpitre I. cn wonne une wémontrttion wéttillée we ve résulttt.

Le Cztpitre IV t pour uut lt vontrution we trttéyies we wesvente miroir pour l'approchabilité de Blackwel. cn étenw une tpprovze proposée ptr oABH11] qui permet we trtnsxormer une trttéyie minimistnt le reyret en une trttéyie w'tpprovztuilité. botre tpprovze et plus yénértle vtr elle permet w'outenir wes uornes sur une très ltrye vltsse we qutntités mesurtnt l'éloiynement à l'ensemule viule, et non pts seulement sur lt wittnve euvliwienne à l'ensemule viule. Le vtrttère uniivtteur we vette wémtrvze et ensuite illutrée ptr lt vontrution we trttéyies optimtles pour le proulème w'online combintorial optimiztion et lt minimisttion wu regrt interne/swap. dtr tilleurs, on wémontre que lt trttéyie we Btvkwell peut être vue vomme un vts ptrtivulier we wesvente miroir.

Lt sevonwe ptrtie et vontituée wes quttre trtivles suivtnts, qui ont été réwiyés penwtnt lt tzèse.

Le Cztpitre V et tiré we l'trtivle oKd16u] et étuwie le proulème we lt minimisttion wu reyret wtns le vts où le joueur possèwe un ensemule ini w'ttions, et tvev l'zypotzèse supplémenttire que les veteurs we ptiement possèwent tu plus s vompostntes non-nulles. cn éttulit, en inxormttion vomplète, que lt uorne optimtle sur le reyret et we l'orwre we √T loy s (où T et le nomure w'éttpes) lorsque les ptiements sont wes ytins (v'et-à-wire lorsqu'ils sont positixs), et we l'orwre we √ Ts log d d (où d et le nomure w'ttions) lorsqu'il s'tyit we pertes (i.e. néyttixs). cn met tinsi en éviwenve une wiférenve xonwtmenttle entre les ytins et les pertes. Dtns le vtwre utnwit, on éttulit que lt uorne optimtle pour les pertes et we l'orwre we √ Ts à un xtteur loytritzmique près.

Le Cztpitre VI et issu we l'trtivle oKd16t] et porte sur l'tpprovztuilité we Bltvkwell tvev observtions partieles, v'et-à-wire que le joueur ouserve seulement wes siyntux tléttoires. cn vontruit wes trttéyies ytrtntisstnt wes vitesses we vonveryenve we l'orwre we O(T -1/2 ) wtns le vts we siyntux wont les lois ne wépenwent pts we l'tvtion wu joueur, et we l'orwre we O(T -1/3 ) wtns le vts yénértl. Celt éttulit qu'il s'tyit là wes vitesses optimtles vtr il et vonnu qu'on ne peut les tméliorer stns zypotzèse supplémenttire sur l'ensemule viule ou lt truture wes siyntux.

Le Cztpitre VII et tiré we l'trtivle oKa14] et wéinit les trttéyies we wesvente miroir en temps vontinu. cn éttulit pour ves werniers une propriété we non-reyret. cn efetue ensuite une vomptrtison entre le temps vontinu et le temps wisvret. Celt ofre une interprétttion wes weux termes qui vontituent lt uorne sur le reyret en temps wisvret : l'un vient we lt propriété en temps vontinu, l'tutre we lt vomptrtison entre le temps vontinu et le temps wisvret.

Enin ABSTRACT he mtnusvript is wiviwew in two ptrts. he irt vonsits in Cztpters I to IV tnw ofers t uniiew presentttion ox numerous known results ts well ts some new elements.

ke present in Cztpter I tze online linear optimiztion proulem, tzen vontrut airror Desvent trtteyies witz vtryiny ptrtmeters xor reyret minimizttion, tnw esttulisz in heorem I.3.1 t yenertl uounw on tze reyret yutrtnteew uy tze trtteyies. his result is xunwtmenttl, ts mot ox tze results xrom tze irt xour vztpters will ue outtinew ts vorolltries. ke tzen wetl witz tze extension to vonvex losses, tnw witz tze werivttion ox vonvex optimizttion tlyoritzms xrom reyret minimiziny trtteyies.

Cztpter II xovuses on tze vtse wzere tze Devision atker zts t inite set xrom wzivz ze vtn pivk zis ttions tt rtnwom. he trtteyies xrom Cztpter I tre etsily trtnposew to tzis xrtmework tnw we tlso outtin ziyz-proutuility tnw tlmot-sure yutrtntees. ke tzen review t xew known trtteyies: Exponential Weights Algorihm, Smooh Fititios Play, tnw Vanshingly Smooh Fititios Play, wzivz tll tppetr ts pevitl vtses ox tze trtteyies vontrutew in Cztpter I. At tze enw ox tze vztpter, we mention tze multi-trmew utnwit proulem, wzere tze Devision atker only ouserves tze ptyof ox tze ttion ze zts pltyew. ke tuwy tze EXP3 trtteyy, wzivz is tn twtptttion ox tze Exponentitl keiyzts Alyoritzm to tzis settiny.

Cztpter III is wewivttew to tze xtmily ox trtteyies vtllew Folow he Perturbed Leader, wzivz is weinew usiny rtnwom perturuttions. A revent survey oALh16] mentions tze xtt tztt tzose trtteyies, tltzouyz weinew wiferently, ttutlly uelony to tze xtmily ox airror Desvent trtteyies xrom Cztpter I. ke yive t wettilew proox ox tzis result.

Cztpter IV tims tt vontrutiny airror Desvent trtteyies xor Bltvkwell's tpprotvztuility. ke extenw tn tpprotvz proposew uy oABH11] tztt turns t reyret minimiziny trtteyy into tn tpprotvztuility trtteyy. cur vontrution is more yenertl, ts it proviwes uounws xor t very ltrye vltss ox wittnve-like qutntities wzivz metsure tze "wittnve" to tze ttryet set tnw not only on tze Euvliwetn wittnve to tze ttryet set. he unixyiny vztrtter ox tzis tpprotvz is tzen illutrttew uy tze vontrution ox optimtl trtteyies xor online combintorial optimiztion tnw internal/swap regrt minimizttion. Besiwes, we prove tztt Bltvkwell's trtteyy vtn ue seen ts t pevitl vtse ox airror Desvent. 11 he sevonw ptrt ox tze mtnusvript vonttins tze xollowiny xour ptpers. Cztpter V is xrom oKd16u] tnw tuwies tze reyret minimizttion proulem in tze vtse wzere tze Devision atker zts t inite set ox ttions, witz tze twwitiontl tssumption tztt ptyof vetors ztve tt mot s nonzero vomponents. ke ettulisz, in tze xull inxormttion settiny, tztt tze minimtx reyret is ox orwer √T loy s (wzere T is tze numuer ox teps) wzen ptyofs tre ytins (i.e nonneyttive), tnw ox orwer 

INTRODUCTION

Online learning cnline letrniny wetls witz mtkiny wevisions sequentitlly witz tze yotl ox outtininy yoow overtll results. guvz proulems ztve oriyinttew tnw ztve ueen tuwiew in mtny wiferent ielws suvz ts evonomivs, vomputer svienve, tttitivs tnw inxormttion tzeory. In revent yetrs, tze invretse ox vomputiny power tllowew tze use ox online letrniny tlyoritzms in vountless tpplivttions: twvertisement pltvement, weu rtnkiny, ptm ilteriny, eneryy vonsumption xorevtt, to ntme t xew. his zts ntturtlly uootew tze wevelopment ox tze involvew mttzemttivtl tzeories. cnline letrniny vtn ue mowelew ts t settiny wzere t Devision atker xtves btture repettewly, tnw in wzivz inxormttion tuout zis perxormtnve tnw tze vztnyiny ttte ox btture is revetlew tzrouyzout tze plty. he Devision atker is to use tze inxormttion ze zts outtinew in orwer to mtke uetter wevisions in tze xuture. herexore, tn importtnt vztrtteritiv ox tn online letrniny proulem is tze type ox xeewutvk tze Devision atker zts, in otzer worws, tze tmount ox inxormttion tvtiltule to zim. For inttnve, in tze ful informtion settiny, tze Devision atker is twtre ox everytziny tztt zts ztppenew in tze ptt; in tze partial monitoring settiny, ze only ouserves, tter etvz ttye, t rtnwom siyntl wzose ltw wepenws on zis wevision tnw tze ttte ox btture; tnw in tze bandit settiny, ze only ouserves tze ptyof ze zts outtinew.

Converniny tze ueztvior ox btture, we vtn witinyuisz two mtin types ox tssumptions. In tochstic settinys, tze suvvessive tttes ox btture tre wrtwn tvvorwiny to some ixew proutuility ltw, wzerets in tze adversarial settiny, no suvz tssumption is mtwe tnw btture is even tllowew to vzoose its tttes trtteyivtlly, in reponse to tze previous vzoives ox tze Devision atker. In tze lttter settiny, tze Devision atker is timiny tt outtininy wort-vtse yutrtntees. his tzesis tuwies twverstritl online proulems. ho metsure tze perxormtnve ox tze Devision atker, t qutntity to minimize or t vriterion to sttisxy zts to ue peviiew. ke present uelow two ox tzose: reyret minimizttion tnw tpprotvztuility. Botz tre very yenertl xrtmeworks wzivz ztve ueen suvvessxully tppliew to t vtriety ox proulems.

Regret minimization

ke present tze twverstritl reyret minimizttion proulem wzivz zts ueen usew ts t unixyiny xrtmework xor tze tuwy ox mtny online letrniny proulems: ptttern revoynition, portxolio mtntyement, routiny, rtnkiny, prinviptl vomponent tntlysis, mttrix letrniny, vltssiivttion, reyression, etv. Importtnt surveys on tze topiv tre oCBL06, fh09, Htz12 

Approachability

Bltvkwell oBlt54, Blt56] vonsiwerew t mowel ox repettew ytmes uetween t Devision atker tnw btture witz vetor-vtluew ptyofs. He tuwiew tze sets to wzivz tze Devision atker vtn mtke sure zis tvertye ptyof vonveryes. guvz sets tre stiw to ue approachable uy tze Devision atker. gpeviivtlly, let ℐ tnw ue inite ttion sets xor tze Devision atker tnw btture repetively,

Δ(ℐ) = {x = (x i ) i∈ℐ ∈ R ℐ + | i∈ℐ x i = 1}
tze set ox proutuility witriuutions on ℐ, tnw g ∶ ℐ × → R d t vetor-vtluew ptyof xuntion. For t yiven (vlosew) argt st ⊂ R d , tze quetion is wzetzer tzere exits t trtteyy xor tze Devision atker wzivz yutrtntees tztt

1 T T t=1 g(i t , j t ) ----→ T→+∞ , • y 0 • y Fiyure 1.
he zyperpltne ⟨y -y 0 | ⋅ -y 0 ⟩ = 0 septrttes y tnw tze set ox tll possiule expetew vetor ptyofs wzen tze Devision atker pltys tt rtnwom tvvorwiny to proutuility witriuution x(y) (representew in wtrk yrty).

wzere i t tnw j t wenote tze ttions vzosen tt time t uy tze Devision atker tnw btture, repetively.

Bltvkwell proviwew tze xollowiny suivient vonwition xor t vlosew set ⊂ R d to ue approachable: xor tll y ∈ R d , tzere exits tn Euvliwetn projetion y 0 ox y onto , tnw t proutuility witriuution x(y) ∈ Δ(ℐ) suvz tztt xor tll ttions j ∈ ox btture, ⟨E i∼x(y) [g(i, j)] -y 0 |y -y 0 ⟩ ⩽ 0. he tuove inequtlity is representew in Fiyure 1. is tzen stiw to ue t B-set. kzen tzis is tze vtse, tze Bltvkwell trtteyy is weinew ts

x t+1 = x ( 1 t t s=1 g(i s , j s )) tzen wrtw i t+1 ∼ x t+1 ,
wzivz metns tztt ttion i t+1 ∈ ℐ is wrtwn tvvorwiny to proutuility witriuution x t+1 ∈ Δ(ℐ). his trtteyy yutrtntees tze vonveryenve ox tze tvertye ptyof 1 T ∑ T t=1 g(i t , j t ) to tze set . Ltter, ogpi02] provew tztt t vlosew set is tpprotvztule ix tnw only ix it vonttins t B-set. In tze vtse ox t vonvex set , Bltvkwell provew tztt it is tpprotvztule ix tnw only ix it is t B-set, wzivz is tzen tlso equivtlent to tze xollowiny wutl vonwition:

∀y ∈ Δ(), ∃ x ∈ Δ(ℐ), E i∼x j∼y [g(i, j)] ∈ .
his tzeory turnew out to ue t powerxul tool xor vontrutiny trtteyies xor online letrniny, tttitivs tnw ytme tzeory. Let us mention t xew tpplivttions. atny vtritnts ox tze reyret minimizttion proulem vtn ue rexormulttew ts tn tpprotvztuility proulem, tnw vonversely, reyret minimizttion trtteyy vtn ue turnew into tpprotvztuility trtteyy. Bltvkwell oBlt54] wts tlretwy twtre ox tzis xunwtmenttl link uetween reyret tnw tpprotvztuility, wzivz zts sinve ueen muvz wevelopew-see e.y. oHaC01, der10, adg11, ABH11, Bag14, der15]. he tttitivtl proulem ox calibrtion zts tlso provew to ue relttew to tpprotvztuility oFos99, ag10, der10, fgh11, ABH11, der15]. ke rexer to oder14] xor t vomprezensive survey on tze relttions uetween reyret, vtliurttion tnw tpprotvztuility. Fintlly, Bltvkwell's tzeory zts ueen tppliew to tze vontrution ox optimtl trtteyies in zero-sum repettew ytmes witz invomplete inxormttion oKoz75, Aa85].

Vtrious tevzniques ztve ueen wevelopew xor vontrutiny tnw tntlyziny tpprotvztuility trtteyies. As szown tuove, Bltvkwell's inititl tpprotvz wts utsew on Euvliwetn projetions. A potentitl-utsew tpprotvz wts proposew to proviwe t wiwer tnw more lexiule xtmily ox trtteyies oHaC01, CBL03, der15]. In t somewztt relttew pirit, tnw uuilwiny upon tn tpprotvz witz vonvex vones introwuvew in oABH11], we weine in Cztpter IV t xtmily ox airror Desvent trtteyies xor tpprotvztuility.

he tpprotvztuility proulem zts tlso ueen tuwiew in tze ptrtitl monitoriny settiny oder11t, adg11, de14, adg14]. In Cztpter VI we vontrut trtteyies wzivz tvzieve optimtl vonveryenve rttes.

On the origins of Mirror Descent

In tzis setion, we quivkly present tze suvvession ox iwets wzivz ztve lew to tze airror Desvent tlyoritzms xor vonvex optimizttion tnw reyret minimizttion. ke wo not tim tt ueiny vomprezensive nor vompletely riyorous. ke rexer to oCBL06, getion 11.6], oHtz12], tnw to oBuu15] xor t revent survey.

ke irt vonsiwer tze unvontrtinew proulem ox optimiziny t vonvex xuntion f ∶ R d → R wzivz we tssume to ue wiferentitule: min x∈R d f(x). ke sztll xovus on tze vontrution ox tlyoritzms utsew on irt-orwer ortvles-in otzer worws, tlyoritzms wzivz ztve tvvess to tze yrtwient ∇f(x) tt tny point x.

Gradient Descent

he inititl iwet is to twtpt tze vontinuous-time yrtwient low ẋ = -∇f(x).

here tre two utsiv wisvretizttions. he irt is tze proximal tlyoritzm, wzivz ttrts tt some inititl point x 1 tnw iterttes ts

x t+1 = x t -t ∇f(x t+1 ),
(1)

-t ∇f(x t+1 ) • x t • x t+1 -t ∇f(x t ) • x t • x t+1
Fiyure 2. he droximtl tlyoritzm on tze let tnw Grtwient Desvent on tze riyzt wzere t is t tep-size. he tlyoritzm is stiw to ue implicit uevtuse one zts to inw t point x t+1 sttisxyiny tze tuove equtlity in wzivz x t+1 implivitly tppetrs in ∇f(x t+1 ). cne vtn see tztt tze tuove relttion vtn ue rewritten

x t+1 = try mtx x∈R d {f(x) + 1 2 t ‖x -x t ‖ 2 2 } .
(2)

Inweew, tze xuntion x ⟼ f(x)+ 1 2γ t ‖x -x t ‖ 2 2 ztviny tt point x t+1 t yrtwient equtl to zero is equivtlent to Equttion (1). he tuove expression (2) yutrtntees tze exitenve ox x t+1 tnw proviwes tze xollowiny interpretttion: point x t+1 vorreponws to t trtweof uetween minimiziny f tnw ueiny vlose to tze previous itertte x t . he tlyoritzm vtn tlso ue written in t vtrittiontl xorm: x t+1 is vztrtterizew uy

⟨ t ∇f(x t+1 ) + x t+1 -x t |x -x t+1 ⟩ ⩾ 0, ∀x ∈ R d .
(3) he sevonw wisvretizttion is tze Euler scheme, tlso vtllew tze gradient descent tlyoritzm:

x t+1 = x t -t ∇f(x t ), (4) 
wzivz is stiw to ue explicit uevtuse tze point x t+1 xollows xrom t wiret vomputttion involviny x t tnw ∇f(x t ), wzivz tre known to tze tlyoritzm. It vtn ue rewritten

x t+1 = try min x∈R d {⟨∇f(x t )|x⟩ + 1 2 t ‖x -x t ‖ 2 2 } , (5) 
wzivz vtn ue seen ts t mowiivttion ox tze proximtl tlyoritzm (2) wzere f(x) zts ueen repltvew uy its linetrizttion tt x t . Its vtrittiontl xorm is

⟨ t ∇f(x t ) + x t+1 -x t |x -x t+1 ⟩ ⩾ 0, ∀x ∈ R d . ( 6 
) -t ∇f(x t ) • x t • proj X • x t+1 X Fiyure 3. drojetew guuyrtwient tlyoritzm Projeted Gradient Descent ke now turn to tze vontrtinew proulem min x∈X f(x),
wzere X is t vonvex vomptt suuset ox R d . he yrtwient wesvent tlyoritzm (4) vtn ue twtptew xor tzis proulem uy perxorminy t Euvliwetn projetion onto X tter etvz yrtwient wesvent tep, in orwer to ztve tll iterttes x t in tze set X. his yives tze projeted gradient descent tlyoritzm oGol64, Ld66]:

x t+1 = proj X {x t -t ∇f(x t )} , (7) 
wzivz vtn rewritten ts

x t+1 = try min x∈X {⟨∇f(x t )|x⟩ + 1 2 t ‖x -x t ‖ 2 2 } , (8) 
tnw zts vtrittiontl vztrtterizttion:

⟨ t ∇f(x t ) + x t+1 -x t |x -x t+1 ⟩ ⩾ 0, ∀x ∈ X, x t+1 ∈ X. (9) 
hypivtlly, wzen tze yrtwients ox f tre tssumew to ue uounwew uy

M > 0 witz re- pet to ‖ ⋅ ‖ 2 (in otzer worws, ix f is M-Lipsvzitz vontinuous witz repet to ‖ ⋅ ‖ 2 ), tze tuove tlyoritzm witz vonttnt tep-size t = ‖X‖ 2 /M √ T proviwes t M/ √ T-
optimtl solution tter T teps. kzen tze yrtwients tre uounwew uy some otzer norm, tze tuove till tpplies uut tze wimension d ox tze ptve tppetrs in tze uounw. For inttnve, ix tze yrtwients tre uounwew uy M witz repet to ‖ ⋅ ‖ ∞ , wue to tze vomptrison 

Greedy Mirror Descent

Let

F ∶ R d → R ue t wiferentitule vonvex xuntion suvz tztt ∇F ∶ R d → R d is t uijetion. Denote F * its Leyenwre-Fenvzel trtnsxorm. hen, one vtn see tztt (∇F) -1 = ∇F * . ke introwuve tze Breymtn wiveryenve tssovittew witz F: D F (x ′ , x) = F(x ′ ) -F(x) -⟨∇F(x)|x ′ -x⟩ , x, x ′ ∈ R d ,
wzivz is t qutwrttiv qutntity tztt vtn ue interpretew ts t yenertlizew wittnve. It proviwes t new yeometry wzivz will repltve tze Euvliwetn truture usew xor tze drojetew Grtwient Desvent (7). he vtse ox tze Euvliwetn wittnve vtn ue revoverew uy vonsiweriny

F(x) = 1 2 ‖x‖ 2 2 wzivz yives D F (x ′ , x) = 1 2 ‖x ′ -x‖ 2 2 .
he Greedy Mirror Descent tlyoritzm obm83, Bh03] is weinew uy repltviny in tze drojetew Grtwient Desvent tlyoritzm (8) tze Euvliwetn wittnve 1 2 ‖x -x t ‖ 2 2 uy tze Breymtn wiveryenve D F (x, x t ):

x t+1 = try min x∈X {⟨∇f(x t )|x⟩ + 1 t D F (x, x t )} . ( 10 
)
his tlyoritzm vtn tlso ue written witz tze zelp ox t yrtwient wesvent tnw t projetion:

x t+1 = try min x∈X D F (x, ∇F * (∇F(x t ) -t ∇f(x t ))) . ( 11 
)
he tuove expression ox x t+1 vtn ue wevomposew tnw interpretew ts xollows. ginve we ztve xoryotten tuout tze Euvliwetn truture, point x t uelonys to tze primtl ptve wzerets yrtwient ∇f(x t ) lives in tze wutl ptve. herexore, we vtnnot wiretly perxorm tze yrtwient wesvent x tt ∇f(x t ) ts in ( 7). Intetw, we irt use tze mtp ∇F to yet xrom x t in tze primtl ptve to ∇F(x t ) in tze wutl ptve, tnw perxorm tze yrtwient wesvent tzere: ∇F(x t )t ∇f(x t ). ke tzen use tze inverse mtp ∇F * = (∇F) -1 to vome utvk to tze primtl ptve: ∇F * (∇F(x t )t ∇f(x t )). ginve tzis point mty not uelony to tze set X, we perxorm t projetion witz repet to tze Breymtn wiveryenve D F , tnw we yet tze expression ox x t+1 xrom (11). Let us mention tze vtrittiontl expression ox tze tlyoritzm, wzivz is muvz more ztnwy xor tntlysis

⟨ t ∇f(x t ) + ∇F(x t+1 ) -∇F(x t )|x -x t+1 ⟩ ⩾ 0, ∀x ∈ X, x t+1 ∈ X. ( 12 
)
As inititlly wiszew, tze Greewy airror Desvent tlyoritzm vtn twtpt to wiferent tssumptions tuout tze yrtwients ox tze oujetive xuntion f. Ix f is tssumew to ue M-Lipsvzitz vontinuous witz repet to t norm ‖ ⋅ ‖, tze vzoive ox t xuntion F wzivz is K-tronyly vonvex witz repet to ‖ ⋅ ‖ yutrtntees tztt tze tssovittew tlyoritzm witz vonttnt tep-size t = √ LK/M √ T yives t M√L/KT-optimtl solution tter T teps, wzere

L = mtx x,x ′ ∈X {F(x) -F(x ′ )}.
here tlso exits t proximtl version ox Greewy airror Desvent tlyoritzm. It is vtllew tze Bregman Proximal Minimiztion tlyoritzm tnw wts introwuvew uy oCn92]. It is outtinew uy repltviny in tze proximtl tlyoritzm (2) tze Euvliwetn wittnve uy t Breymtn wiveryenve:

x t+1 = try min x∈X {f(x) + 1 t D F (x, x t )} .

Lazy Mirror Descent

ke now introwuve t vtritnt ox tze Greewy airror Desvent tlyoritzm (10) uy mowixyiny it ts xollows. ho vompute x t+1 , intetw ox vonsiweriny ∇F(x t ), we perxorm tze yrtwient wesvent ttrtiny xrom t point y t (wzivz will ue weinew in t moment) ox tze wutl ptve: y tt ∇f(x t ). ke tzen mtp tze lttter point utvk to tze primtl ptve vit ∇F * tnw tzen perxorm tze projetion onto X witz repet to D F . his yives tze Lazy Mirror Descent tlyoritzm, tlso vtllew Dual Averaging obes09] wzivz ttrts tt some point x 1 ∈ X tnw iterttes

x t+1 = try min x∈X D F (x, ∇F * (y t -t ∇f(x t ))) . ( 13 
)
Besiwes, we perxorm tze upwtte y t+1 = y tt ∇f(x t ). Ix tze tlyoritzm is ttrtew witz y 1 = 0, we ztve y t = -∑ t-1 s=1 s ∇f(x s ) xor tll t ⩾ 1. hen, one vtn etsily vzevk tztt

• y t • y t+1 -t ∇f(x t ) ∇F * • ∇F * • • x t • x t+1 primtl ptve wutl ptve X Fiyure 5.
Ltzy airror Desvent (13) zts tze xollowiny simpler expression:

x t+1 = try min x∈X {⟨ t s=1 s ∇f(x s )|x⟩ + F(x)} , (14) 
ts well ts t vtrittiontl vztrtterizttion:

⟨ t ∇f(x t ) + ∇F(x t+1 ) -y t |x -x t+1 ⟩ , ∀x ∈ X, x t+1 ∈ X.
For tze simple proulem vonvex optimizttion tztt we tre wetliny witz, tzis ltzy tlyoritzm proviwes similtr yutrtntees ts tze yreewy version (10)-vomptre obes09, heorem 4.3] tnw oBh03, heorem 4.1]. However, it zts t vomputttiontl twvtnttye over tze lttter: tze iterttion in Equttion (11) wzivz yives x t+1 xrom x t involves tze suvvessive vomputttion ox mtps ∇F tnw ∇F * , wzerets iterttiny (13) only involves tze vomputttion ox ∇F * tnw tze Breymtn projetion.

Online Mirror Descent

Interetinyly, tze tuove vonvex optimizttion tlyoritzms vtn ue usew xor tze online vonvex optimizttion proulem presentew tuove. he irt tpprotvz ox tzis kinw wts proposew uy onin03], wzo twtptew tlyoritzm (7) to tze xrtmework wzere tze Devision atker xtves t sequenve (f t ) t⩾1 ox loss xuntions, intetw ox t xuntion f tztt is vonttnt over time. he Greedy Online Gradient Descent tlyoritzm is outtinew uy simply repltviny ∇f(x t ) in ( 7) uy ∇f t (x t ):

x t+1 = proj X {x t -t ∇f t (x t )} ,
wzivz vtn tlternttively ue written

x t+1 = try min x∈X {⟨∇f t (x t )|x⟩ + 1 2 t ‖x -x t ‖ 2 2 } .
By introwuviny t xuntion F sttisxyiny tze stme tssumptions ts in tze previous setion, we extenw tze tuove to t xtmily ox Greewy cnline airror Desvent tlyoritzms oBuu11, BCB12]:

x t+1 = try min x∈X {⟨∇f t (x t )|x⟩ + 1 t D F (x, x t )} . (15) 
gimiltrly, we vtn tlso weine t ltzy version ogg07, gg11, Kggh12, cCCB15]:

x t+1 = try min x∈X {⟨ t s=1 s ∇f s (x s )|x⟩ + F(x)} . ( 16 
)
aore yenertlly, we vtn weine tze tuove tlyoritzms uy repltviny tze yrtwients ∇f t (x t ) uy truitrtry vetors u t ∈ R d wzivz neew not ue tze yrtwients ox some xunvtions f t . For inttnve, tze Ltzy cnline airror Desvent tlyoritzm vtn ue written: wzere σ t ∶ ( × * ) t-1 → . In t sliyzt tuuse ox notttion, σ 1 will ue reytrwew ts tn element ox . For t yiven trtteyy σ tnw t yiven sequenve (u t ) t⩾1 ox ptyof vetors, tze sequenve ox plty (z t ) t⩾1 is weinew uy

x t+1 = try mtx x∈X {⟨ t s=1 u s |x⟩ -F(x)} ,
z t = σ t (z 1 , u 1 , … , z t-1 , u t-1 ), t ⩾ 1.
1. he wimension ueiny inite, it woulw ue yoow enouyz to work in R d . However, we uelieve tztt tze tzeoretivtl witintion uetween tze primtl tnw wutl ptves zelps witz tze unwerttnwiny ox airror Desvent trtteyies.
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Converniny btture, we tssume it to ue omnisvient. Inweew, our mtin result, heorem I.3.1, will proviwe yutrtntees tztt zolw tytint tny sequenve ox ptyof vetors. herexore, its vzoive ox ptyof vetor u t mty wepenw on everytziny tztt zts ztppenew uexore ze zts to revetl it. In ptrtivultr, ptyof vetor u t mty wepenw on ttion z t .

he qutntity ox interet is tze regrt (up to time T ⩾ 1), weinew uy

fey T {σ, (u t ) t⩾1 } = mtx z∈ T t=1 ⟨u t |z⟩ - T t=1 ⟨u t |z t ⟩ , T ⩾ 1.
In 

= * = R 2 , = Δ 2 = {(z 1 , z 2 ) ∈ R 2 + | z 1 + z 2 = 1}
tnw wzere tze ptyof vetors tll uelony to [0, 1] 2 . guppose tztt btture vzooses ptyof vetors As soon ts h is t reyultrizer, tze Breymtn wiveryenve ox h * is well weinew:

u 1 = ( 1 2 0 ) , u 2 = ( 0 1 ) , u 3 = ( 1 0 ) , u 4 = ( 0 1 ) , u 5 = ( 1 0 ) , … hen,
∈ tnw w ∈ * z ∈ ∂h * (w) ⟺ w ∈ ∂h(z) ⟺ z ∈ try mtx z ′ ∈ {⟨w|z ′ ⟩ -h(z ′ )} , in otzer worws, ∂h * (w) = try mtx z ′ ∈ {⟨w|z ′ ⟩ -h(z ′ )}.
D h * (w ′ , w) = h * (w ′ ) -h * (w) -⟨∇h * (w)|w ′ -w⟩ , w, w ′ ∈ * .
his qutntity will tppetr in tze xunwtmenttl reyret uounw ox heorem I.3.1. As we will see uelow in droposition I.2.8, uy twwiny t trony vonvexity tssumption on tze reyultrizer h, tze Breymtn wiveryenve vtn ue uounwew xrom tuove uy t muvz more explivit qutntity.

I.2.2. Strong convexity Deinition I.2.4. Let h ∶ → R ∪ {+∞} ue t xuntion, ‖ ⋅ ‖ t norm on , tnw K > 0. h is K-tronyly vonvex witz repet to ‖ ⋅ ‖ ix xor tll z, z ′ ∈ tnw ∈ [0, 1], h( z + (1 -)z ′ ) ⩽ h(z) + (1 -)h(z ′ ) - K (1 -) 2 ‖z ′ -z‖ 2 . (I.2)
Proposition I.2.5. Lt h ∶ → R ∪ {+∞} be a funtion, ‖ ⋅ ‖ a norm on , and K > 0. he folowing conditions are equivalent.

(i) h s K-trongly convex wih repet to ‖ ⋅ ‖;

(ii) For al points z, z ′ ∈ and al subgradients w ∈ ∂h(z),

h(z ′ ) ⩾ h(z) + ⟨w|z ′ -z⟩ + K 2 ‖z ′ -z‖ 2 ; (I.3) (iii)
For al points z, z ′ ∈ and al subgradients w ∈ ∂h(z) and w ′ ∈ ∂h(z ′ ), ⟨w ′ -w|z ′ -z⟩ ⩾ K ‖z ′ -z‖ 2 . (I.4)

Proof. (i) ⟹ (ii). ke tssume tztt h is K-tronyly vonvex witz repet to ‖ ⋅ ‖. In ptrtivultr, h is vonvex. Let z, z ′ ∈ , w ∈ ∂h(z), ∈ (0, 1), tnw wenote z ′′ = z + (1 -)z ′ . isiny tze vonvexity ox h, we ztve

⟨w|z ′ -z⟩ = ⟨w|z ′′ -z⟩ 1 - ⩽ h(z ′′ ) -h(z) 1 - ⩽ 1 1 - ( h(z) + (1 -)h(z ′ ) - K (1 -) 2 ‖z ′ -z‖ 2 -h(z)) = h(z ′ ) -h(z) - K 2 ‖z ′ -z‖ 2 , tnw (I.3) xollows xrom ttkiny → 1. (ii) ⟹ (i). Let z, z ′ ∈ , ∈ [0, 1], wenote z ′′ = z + (1 -)z ′ . Ix ∈ {0, 1}, inequtlity (I.
2) is trivitl. ke now tssume ∈ (0, 1). Ix z or z ′ woes not uelony to tze womtin ox h, inequtlity (I.2) is tlso trivitl. ke now tssume z, z ′ ∈ wom h. hen, z ′′ uelonys to ]z, z ′ [ wzivz is t suuset ox tze relttive interior ox wom h. herexore, ∂h(z ′′ ) is nonempty (see e.y. ofov70, heorem 23.4]). Let w ∈ ∂h(z ′′ ). ke ztve

⟨w|z -z ′′ ⟩ ⩽ h(z) -h(z ′′ ) - K 2 ‖z -z ′′ ‖ 2 ⟨w|z ′ -z ′′ ⟩ ⩽ h(z ′ ) -h(z ′′ ) - K 2 ‖z ′ -z ′′ ‖ 2 .
By multiplyiny tze tuove inequtlities uy tnw 1 -repetively, tnw summiny, we yet

0 ⩽ h(z) + (1 -)h(z ′ ) -h(z ′′ ) - K 2 ( ‖z -z ′′ ‖ 2 + (1 -) ‖z ′ -z ′′ ‖ 2 ) .
isiny tze weinition ox z ′′ , we ztve

z -z ′′ = (1 -)(z ′ -z) tnw z ′ -z ′′ = (z ′ -z).
he ltt term ox tze tuove riyzt-ztnw siwe is tzerexore equtl to

K 2 ( (1 -) 2 ‖z ′ -z‖ 2 + (1 -) 2 ‖z ′ -z‖ 2 ) = K (1 -) 2 ‖z ′ -z‖ 2 , tnw (I.2) is provew. (ii) ⟹ (iii). Let z, z ′ ∈ , w ∈ ∂h(z) tnw w ′ ∈ ∂h(z ′ ). ke ztve h(z ′ ) ⩾ h(z) + ⟨w|z ′ -z⟩ + K 2 ‖z ′ -z‖ 2 (I.5) h(z) ⩾ h(z ′ ) + ⟨w ′ |z -z ′ ⟩ + K 2 ‖z ′ -z‖ 2 . (I.6)
gumminy uotz inequtlities tnw simplixyiny yives (I.4).

(iii) ⟹ (ii). Let z, z ′ ∈ . Ix ∂h(z) is empty, vonwition (ii) is tutomttivtlly sttisiew. ke now tssume ∂h(z) ≠ ∅. In ptrtivultr, z ∈ wom h. Let w ∈ ∂h(z). Ix h(z ′ ) = +∞, inequtlity (I.3) is sttisiew. ke now tssume z ′ ∈ wom h. herexore, we ztve tztt ]z, z ′ [ is t suuset ox tze relttive interior ox wom h. As t vonsequenve, xor tll points z ′′ ∈]z, z ′ [, we ztve ∂h(z ′′ ) ≠ ∅ (see e.y. ofov70, heorem 23.4]). For tll ∈ [0, 1], we weine z λ = z + (z ′ -z). isiny tze vonvexity ox h, we vtn now write, xor tll n ⩾ 1,

h(z ′ ) -h(z) = n k=1 h(z k/n ) -h(z (k-1)/n ) ⩾ n k=1 ⟨w (k-1)/n |z k/n -z (k-1)/n ⟩ , wzere w 0 = w tnw w k/n ∈ ∂h(z k/n ) xor k ⩾ 1. ginve z k/n -z (k-1)/n = 1 n (z ′ -z) xor k ⩾ 1, suutrttiny ⟨w|z ′ -z⟩ we yet h(z ′ ) -h(z) -⟨w|z ′ -z⟩ ⩾ 1 n n k=1 ⟨w (k-1)/n -w|z ′ -z⟩ .
bote tztt tze irt term ox tze tuove sum is zero uevtuse

w = w 0 . Besiwes, xor k ⩾ 2, we ztve z ′ -z = n k-1 (z (k-1)/n -z).
herexore, tnw tzis is wzere we use (iii),

h(z ′ ) -h(z) -⟨w|z ′ -z⟩ ⩾ n k=2 1 k -1 ⟨w (k-1)/n -w|z (k-1)/n -z⟩ ⩾ K n k=2 1 k -1 ∥z (k-1)/n -z∥ 2 = K ‖z ′ -z‖ 2 n 2 n k=2 (k -1) ----→ n→+∞ K 2 ‖z ′ -z‖ 2 , tnw (ii) is provew.
gimiltrly to usutl vonvexity, tzere exits t trony vonvexity vriterion involviny tze Hessitn xor twive wiferentitule xuntions.

Proposition I.2.6. Lt ‖ ⋅ ‖ be a norm on , K > 0, and F ∶ → R a twice diferentiable funtion such ht

⟨∇ 2 F(z)u|u⟩ ⩾ K ‖u‖ 2 , z ∈ , u ∈ .
hen, F s K-trongly convex wih repet to ‖ ⋅ ‖.

Proof. Let z, z ′ ∈ . Let us prove tze vonwition (ii) xrom droposition I.2.5. ke weine ϕ(

) = F(z + (z ′ -z)), ∈ [0, 1].
By wiferentittiny twive, we yet xor tll ∈ [0, 1]:

ϕ ′′ ( ) = ⟨∇ 2 F(z + (z ′ -z))(z ′ -z)|z ′ -z⟩ ⩾ K ‖z ′ -z‖ 2 .
here exits 0 ∈ [0, 1] suvz tztt ϕ(1) = ϕ(0) + ϕ ′ (0) + ϕ ′′ ( 0 )/2. his yives

F(z ′ ) = ϕ(1) = ϕ(0) + ϕ ′ (0) + ϕ ′′ ( 0 ) 2 ⩾ F(z) + ⟨∇F(z)|z ′ -z⟩ + K 2 ‖z ′ -z‖ 2 , tnw (I.3) is provew. Lemma I.2.7. Lt ‖ ⋅ ‖ a norm on , K > 0 and h, F ∶ → R ∪ {+∞} two convex funtions such ht for al z ∈ , h(z) = F(z) or h(z) = +∞.
hen, if F s K-trongly convex wih repet to ‖ ⋅ ‖, so s h.

Proof. bote tztt xor tll z ∈ , F(z) ⩽ h(z). Let us prove tztt h sttisies tze vonwition xrom Deinition I.2.4. Let z, z ′ ∈ , ∈ [0, 1] tnw wenote z ′′ = z + (1 -)z ′ . Let us irt tssume tztt h(z ′′ ) = +∞.
By vonvexity ox h, eitzer h(z) or h(z ′ ) is equtl to +∞, tnw tze riyzt-ztnw siwe ox (I.2) is equtl to +∞. Inequtlity (I.2) tzerexore zolws. Ix h(z ′′ ) is inite,

h(z ′′ ) = F(z ′′ ) ⩽ F(z) + (1 -)F(z ′ ) - K (1 -) 2 ‖z ′ -z‖ 2 ⩽ h(z) + (1 -)h(z ′ ) - K (1 -) 2 ‖z ′ -z‖ 2 , tnw (I.2) is provew.
For t yiven norm ‖ ⋅ ‖ on , tze wutl norm ‖ ⋅ ‖ * on * is weinew uy

‖w‖ * = sup ‖z‖⩽1 |⟨w|z⟩| .
Proposition I.2.8. Lt K > 0 and h ∶ → R ∪ {+∞} be a regularizer which we ssume to be K-trongly convex funtion wih repet to a norm ‖ ⋅ ‖ on . hen,

D h * (w ′ , w) ⩽ 1 2K ‖w ′ -w‖ 2 * , w, w ′ ∈ * .
Proof. Let w, w ′ ∈ * tnw wenote z = ∇h * (w) tnw z ′ = ∇h * (w ′ ). aoreover, xor ∈ [0, 1], we introwuve w λ = w + (w ′ -w) tnw z λ = ∇h * (w λ ). herexore, we ztve w ∈ ∂h(z) tnw w λ ∈ ∂h(z λ ). h ueiny tronyly vonvex, vonwition (I.4) yives ⟨w λ -w|z λ -z⟩ ⩾ K ‖z λ -z‖ 2 . isiny tze weinition ox ‖ ⋅ ‖ * tnw wiviwiny uy ‖z λ -z‖ yives

‖z λ -z‖ ⩽ 1 K ‖w λ -w‖ * . bow vonsiwer ϕ( ) = h * (w λ ) weinew xor ∈ [0, 1]. ke ztve ϕ ′ ( ) -ϕ ′ (0) = ⟨w ′ -w|∇h * (w λ ) -∇h * (w)⟩ = ⟨w ′ -w|z λ -z⟩ ⩽ ‖w ′ -w‖ * ‖z λ -z‖ ⩽ 1 K ‖w λ -w‖ * ‖w ′ -w‖ * = K ‖w ′ -w‖ 2 * .
By inteyrttiny, we yet

ϕ( ) -ϕ(0) ⩽ ϕ ′ (0) + 2 2K ‖w ′ -w‖ 2 * , wzivz xor = 1 uoils wown to h * (w ′ ) -h * (w) ⩽ ⟨w ′ -w|∇h * (w)⟩ + 1 2K ‖w ′ -w‖ 2 * .
In otzer worws, D h * (w ′ , w) ⩽ 1 2K ‖w ′ -w‖ 2 * .

I.2.3. he Entropic regularizer

Denote Δ d tze unit simplex ox R d :

Δ d = ⎧ { ⎨ { ⎩ z ∈ R d + | d i=1 z i = 1 ⎫ } ⎬ } ⎭ , wzere R d + is tze set ox vetors in R d witz nonneyttive vomponents. ke weine tze entropiv reyultrizer h ent ∶ R d → R ∪ {+∞} ts h ent (z) = { ∑ d i=1 z i loy z i ix z ∈ Δ d +∞ otzerwise,
wzere z i loy z i = 0 wzen z i = 0.

Proposition I.2.9. (i) h ent s a regularizer on Δ d ;

(ii) h * ent (w) = loy ⎛ ⎜ ⎝ d i=1 exp w i⎞ ⎟ ⎠ , for al w ∈ R d ; (iii) ∇h * ent (w) = ⎛ ⎜ ⎝ exp w i ∑ d j=1 exp w j ⎞ ⎟ ⎠ 1⩽j⩽d
, for al w ∈ R d ;

( iv) (v) Consiwer

F ∶ R d → R ∪ {+∞} weinew uy F(z) = { ∑ d i=1 (z i loy z i -z i ) + 1 ix z ∈ R d + +∞ otzerwise.
Let us prove tztt F is 1-tronyly vonvex witz repet to 

⟨∇F(z ′ ) -∇F(z)|z ′ -z⟩ ⩾ ‖z ′ -z‖ 2 1 , z, z ′ ∈ (R * + ) d . (I.7) Let z, z ′ ∈ (R * + ) d . ⟨∇F(z ′ ) -∇F(z)|z ′ -z⟩ = d i=1 loy (z ′ ) i z i ((z ′ ) i -z i ).
A simple tuwy ox xuntion szows tztt (s -1) loy s -2(s -1) 2 /(s + 1) ⩾ 0 xor s ⩾ 0.

Appliew witz s = (z ′ ) i /z i , tzis yives (iii) ke vonsiwer

d i=1 loy (z ′ ) i z i ((z ′ ) i -z i ) ⩾ ‖z ′ -z‖ 2 1 , tnw (I.7) is provew. F is
F ∶ R d → R weinew uy F(z) = 1 2 ‖z‖ 2 2 xor tll z ∈ R d . Its Hessitn tt tll points z ∈ is tze iwentity mttrix tnw xor tll vetors u ∈ R d , we ztve ⟨∇ 2 F(z)u|u⟩ = ‖u‖ 2 2 .
htnks to droposition I.2.6, F is 1-tronyly vonvex witz repet to ‖ ⋅ ‖ 2 . isiny Lemmt I.2.7, we wewuve tztt h 2 is tlso 1-tronyly vonvex witz repet to ‖ ⋅ ‖ 2 .

I.2.5. he ℓ p regularizer

For p ∈ (1, 2), we weine xor tny nonempty vonvex vomptt suuset ox R d : 

h p (z) = { 1 2 ‖z‖ 2 p ix z ∈
z t = try mtx z∈ {⟨ t-1 s=1 u s |z⟩ - h(z) t-1 } .
his expression vletrly wemontrttes tztt tze trtteyy is t reyultrizew version ox Follow tze Letwer (I.1) wzivz woulw yive try mtx z∈ ⟨ ∑ t-1 s=1 u s |z⟩ intetw. aoreover, we see tztt tze ziyzer is ptrtmeter t-1 , tze vloser z t is to try mtx z∈ ⟨ ∑ t-1 s=1 u s |z⟩. his intuition is in ptrtivultr usexul in getion II.7 wzere we vomptre tze reyret uounws yiven uy wiferent vzoives ox ptrtmeters ( t ) t⩾1 .

ke now ttte tze yenertl reyret uounw yutrtnteew uy tzis trtteyy. gimiltr tttements witz vonttnt ptrtmeters ztve tppetrew in e.y. ofh09, droposition 11], ogg11, Lemmt 2.20] tnw oBCB12, heorem 5.4]. heorem I.3.1. Lt T ⩾ 1 an integer and M, K > 0.

(i) Againt any sequence (u t ) t⩾1 of payof vetors, he above trtegy guarantees

fey T ⩽ h T + T t=1 1 t-1 D h * ( t-1 U t , t-1 U t-1 ),
where we st 0 = 1 . (ii) Moreover, if h s K-trongly convex wih repet to a norm ‖ ⋅ ‖, hen

fey T ⩽ h T + 1 2K T t=1 t-1 ‖u t ‖ 2 * . (iii) Moreover, if ‖u t ‖ * ⩽ M ( for al t ⩾ 1), he choice t = √ h K/M 2 t ( for t ⩾ 1) guarantees fey T ⩽ 2M √ T h K .
Proof. (i) Let z ∈ . isiny Fenvzel's inequtlity, we write

⟨U T |z⟩ = ⟨ T U T |z⟩ T ⩽ h * ( T U T ) T + h(z) T ⩽ h * (0) 0 + T t=1 ( h * ( t U t ) t - h * ( t-1 U t-1 ) t-1 ) + mtx h T . (I.8)
Let us uounw h * ( t U t )/ t xrom tuove. For tll z ∈ we ztve

⟨ t U t |z⟩ -h(z) t = ⟨ t-1 U t |z⟩ -h(z) t-1 -h(z) ( 1 t - 1 t-1
) .

he mtximum over z ∈ ox tze tuove let-ztnw siwe yives h * ( t U t )/ t . As xor tze riyzt-ztnw siwe, let us ttke tze mtximum over z ∈ xor etvz ox tze two terms septrttely. his yives

h * ( t U t ) t ⩽ mtx z∈ { ⟨ t-1 U t |z⟩ -h(z) t-1 } + mtx z∈ {-h(z) ( 1 t - 1 t-1 )} = h * ( t-1 U t ) t-1 + (min h) ( 1 t-1 - 1 t ) ,
wzere we usew tze xtt tztt tze sequenve ( t ) t⩾0 is noninvretsiny. Injetiny tzis inequtlity in (I.8), we yet

⟨U T |z⟩ ⩽ h * (0) 0 + T t=1 h * ( t-1 U t ) -h * ( t-1 U t-1 ) t-1 + (min h) T t=1 ( 1 t-1 - 1 t ) + mtx h T .
ke vtn mtke tze Breymtn wiveryenve tppetr in tze irt sum tuove uy suutrttiny

⟨ t-1 U t -t-1 U t-1 |∇h * ( t-1 U t-1 )⟩ t-1 = ⟨u t |z t ⟩ .
herexore,

⟨U T |z⟩ ⩽ h * (0) 0 + T t=1 D h * ( t-1 U t , t-1 U t-1 ) t-1 + T t=1 ⟨u t |z t ⟩- min h T + min h 0 + mtx h T .
ginve h * (0) = -min h, we yet

fey T = mtx z∈ ⟨U T |z⟩ - T t=1 ⟨u t |z t ⟩ ⩽ mtx h -min h T + T t=1 D h * ( t-1 U t , t-1 U t-1 ) t-1
.

(ii) he trony vonvexity ox tze reyultrizer h tnw droposition I.2.8 let us uounw tze tuove Breymtn wiveryenves ts xollows:

D h * ( t-1 U t , t-1 U t-1 ) ⩽ 1 2K ‖ t-1 U t -t-1 U t-1 ‖ 2 * = 2 t-1 2K ‖u t ‖ 2 * , t ⩾ 1, wzivz proves tze result. (iii) get = √ h K/M 2 so tztt t = t -1/2 xor t ⩾ 1. he reyret uounw tzen uevomes h √ T + M 2 2K T t=1 t-1 .
ke uounw tze tuove sum ts xollows. ginve 0 = 1 = ,

T t=1 t-1 = (2 + T-1 t=2 1 √ t ) ⩽ ( 1 0 1 √ s ws + T-1 1 1 √ s ws) = T-1 0 1 √ s ws = 2 √ T -1 ⩽ 2 √ T.
Injetiny tze expression ox tnw simplixyiny yives fey T ⩽ 2M √ T h K .

An tlternttive proox ox tzis result utsew on t vontinuous-time tpprotvz is yiven in Cztpter VII tnw ofers tze xollowiny interpretttion. he irt term h / T in tze tuove uounw (i) is tze reyret yutrtntee ox tze vontinuous-time mirror wesvent tlyoritzm, wzerets tze Breymtn wiveryenves D h * ( t-1 U t , t-1 U t-1 ) vome xrom tze wisvreptnvy uetween tze vontinuous-time tnw tze wisvrete-time trtteyies. 

I.4. Convex losses

T t=1 ℓ t (z t ) -min z∈ T t=1 ℓ t (z).
he reyret minimizttion witz ptyof vetors weinew in getion I.1 vtn ue seen ts t pevitl vtse wzere tze loss xuntions tre linetr. As wemontrttew uy oKk97, CB97], tze settiny witz vonvex losses vtn ue rewuvew to t reyret minimizttion proulem witz linetr ptyofs ts xollows. isiny t vonvexity inequtlity, we vtn write

T t=1 ℓ t (z t ) -min z∈ T t=1 ℓ t (z) = mtx z∈ T t=1 (ℓ t (z t ) -ℓ t (z)) ⩽ mtx z∈ T t=1 ⟨-u t |z t -z⟩ = mtx z∈ T t=1 ⟨u t |z⟩ - T t=1 ⟨u t |z t ⟩ .
his ltt qutntity is ouviously tze reyret ts weinew in getion I.1 wzere (u t ) t⩾1 tre seen ts ptyof vetors. ke tzen ntturtlly weine tze airror Desvent trtteyies ts xollows. Let h ue t reyultrizer on , ( t ) t⩾1 t positive tnw noninvretsiny sequenve. get U 0 = 0 tnw xor t ⩾ 1,

z t = ∇h * ( t-1 U t-1 ) U t ∈ U t-1 -∂ℓ t (z t ).
bote tztt ptyof vetor u t uelonys uy weinition to -∂ℓ t (z t ). It tzerexore wepenws on z t , wzivz is inweew tllowew-see getion I.1. heorem I.4.1. Lt T ⩾ 1 an integer and K, M > 0.

(i) Assume ht h s K-trongly convex wih repet to a norm ‖ ⋅ ‖. hen, againt any sequence of loss funtions (ℓ t ) t⩾1 , he above Mirror Descent trtegy guarantees

T t=1 ℓ t (z t ) -min z∈ T t=1 ℓ t (z t ) ⩽ h T + 1 2K T t=1 t-1 ‖∂ℓ t (z t )‖ 2 * ,
where 0 = 1 . (ii) Moreover, if he loss funtions are M-Lipschitz continuos wih repet to ‖ ⋅ ‖, he choice of paramters t = √ h K/M 2 t ( for t ⩾ 1) guarantees 

T t=1 ℓ t (z t ) -min z∈ T t=1 ℓ t (z) ⩽ 2M √ T h K . Proof. he
z t = proj ( t-1 U t-1 ) U t ∈ U t-1 -∂ℓ t (z t ).

I.5. Convex optimization

crwintry vonvex optimizttion proulems vtn ue seen ts t reyret minimizttion proulem wzere tze loss xuntion remtins vonttnt over time. In wztt xollows, we outline zow reyret minimiziny trtteyies vtn ue usew xor tzis purpose tnw wisvuss tze perxormtnve ytp invurrew uy usiny vtritule tep-sizes intetw ox t vtritule ptrtmeters.

Let f ∶ → R ue t vonvex xuntion to minimize on t nonempty vonvex vomptt set ⊂ , h t reyultrizer on , ( t ) t⩾1 , t positive tnw noninvretsiny sequenve ( t ) t⩾1 tnw ( t ) t⩾1 t positive sequenve. ke vonsiwer tze xollowiny yenertl tlyoritzm. get

U 0 = 0 tnw xor t ⩾ 1, z t = ∇h * ( t-1 U t-1 ), U t ∈ U t-1 -t ∂f(z t ),
wzivz vorreponws to tze airror Desvent tlyoritzm xrom getion I.3 tssovittew witz ptyof vetors u t ∈t ∂f(z t ). ke vtll ( t ) t⩾1 tze paramters, wzivz in tze weinition ox tze trtteyy multiply tze wzole sum U t-1 = ∑ t-1 s=1 u s , tnw ( t ) t⩾1 tze tep-sizes, wzose purpose is to yive wiferent weiyzts to tze suvvessive suuwiferentitls ∂f(z t ).

ke now ttte tze yenertl yutrtntees oferew uy tze tuove tlyoritzm, wzivz tre similtr to tzose outtinew in oBh03, heorem 4.1] xor tze yreewy version ox airror Desvent (see tze introwution ox tze mtnusvript xor t wisvussion on tze wiferenve uetween yreewy tnw ltzy airror Desvent). heorem I.5.1. Lt T ⩾ 1 an integer and K, M > 0.

(i) Suppose ht he funtion f s M-Lipschitz continuos wih repet to a norm ‖ ⋅ ‖, and ht h s a K-trongly regularizer wih repet to ‖ ⋅ ‖. Denote z ′ T ∈ try min 1⩽t⩽T f(z t ). hen,

f(z ′ T ) -min f ⩽ ( T t=1 t ) -1 ( h T + M 2 2K T t=1 t-1 2 t ) .
(ii) he choice of contant paramters t = 1 gives

f(z ′ T ) -min f ⩽ ( T t=1 t ) -1 ( h + M 2 2K T t=1 2 t ) ,
(iii) and he choice of contant tep-sizes t = 1 and variable paramters

t = √ h K/M 2 t gives f(z ′ T ) -min f ⩽ 2M √ h TK .
Proof. ke mtke tze reyret tppetr ts xollows:

f(z ′ T ) -min z∈ f(z) ⩽ ( T t=1 t ) -1 ( T t=1 t f(z t ) -min z∈ T t=1 t f(z)) = ( T t=1 t ) -1 (mtx z∈ T t=1 t (f(z t ) -f(z))) ⩽ ( T t=1 t ) -1 (mtx z∈ T t=1 ⟨u t |z t -z⟩) ,
wzere we usew in tze ltt line tze xtt tztt u t ∈t ∂f(z t ). Besiwes, f ueiny M-Lipsvzitz vontinuous witz repet to ‖ ⋅ ‖ is equivtlent to its suuyrtwients ueiny uounwew xrom tuove uy M witz repet to ‖ ⋅ ‖ * . herexore, injetiny ‖u t ‖ * ⩽ t M into heorem I.3.1 yives tze result.

cne vtn see tztt tze uet vonveryenve rtte tztt we yet in (ii) witz t vonttnt ptrtmeter tnw tep-sizes ox tze xorm t = t -α is ox orwer O(T -1/2 loy T) (xor α = 1/2) (tnw tzere is no trtiyztxorwtrw vzoive ox t letwiny to t uetter vonveryenve rtte). cn tze otzer ztnw, uy ttkiny in (iii) t vonttnt tep-size tnw vtryiny tze tlyoritzm's ptrtmeter t = O(t -1/2 ), we wo tvzieve tn O(T -1/2 ) rtte ox vonveryenve.

•

CHAPTER II

EXPERTS SETTING

ke wewivtte tzis vztpter to t vtritnt ox tze mowel xrom getion I.1 wzere tze Devision atker zts t inite set ox ttions xrom wzivz ze is tllowew to vzoose tt rtnwom. he airror Desvent trtteyies introwuvew in getion I.3 tnw tze vorreponwiny reyret uounws tre etsily twtptew to tzis xrtmework. ftnwomizttion ueiny introwuvew uy tze Devision atker, we tlso werive ziyz proutuility tnw tlmot-sure reyret yutrtntees. ke tzen extmine t xew importtnt pevitl vtses: tze Exponentitl keiyzts Alyoritzm, tze vtse ox ptrse ptyof vetors, tze gmootz Fititious dlty tnw tze Vtniszinyly gmootz Fititious dlty.

II.1. Model

Let ℐ = {1, … , d} ue tze set ox pure ations ox tze Devision atker. Denote Δ d tze unit simplex ox R d wzivz vtn ue seen ts tze set ox proutuility witriuutions over ℐ:

Δ d = ⎧ { ⎨ { ⎩ z ∈ R d + | d i=1 z i = 1 ⎫ } ⎬ } ⎭ .
An element ox Δ d is vtllew t mixed ation. he plty yoes ts xollows. At etvz time inttnve t ⩾ 1, tze Devision atker

• vzooses t mixew ttion z t ∈ Δ d ;

• wrtws pure ttion i t ∈ ℐ tvvorwiny to proutuility witriuution z t ;

• ouserves ptyof vetor u t ∈ R d ;

• reveives ptyof u i t t . inlike tze vore mowel ox getion I.1, tze vzoive uy btture ox ptyof vetor u t mut not wepenw on pure ttion i t (uut vtn till wepenw on mixew ttion z t ). Let (ℱ t ) t⩾1 tze iltrttion wzere ℱ t is yenerttew uy

(z 1 , u 1 , i 1 , … , z t-1 , u t-1 , i t-1 , z t , u t ).

ke tzen ztve

E [u i t t | ℱ t ] = E i∼z t [u i t ] = ⟨u t |z t ⟩.
A trtteyy xor tze Devision atker is t sequenve ox metsurtule mtps σ = (σ t ) t⩾1 wzere σ t ∶ (Δ d × ℐ × ) t-1 → Δ d . For t yiven trtteyy σ tnw t sequenve ox ptyof vetors (u t ) t⩾1 , we ztve:

z t = σ t (z 1 , i 1 , u 1 , … , z t-1 , i t-1 , u t-1 ), t ⩾ 1.
he realized regrt up to time T ⩾ 1 is tze rtnwom vtritule weinew ts

fey T = mtx i∈ℐ T t=1 u i t - T t=1 u i t t .
ke vtll regrt tze xollowiny qutntity, wzere tze ptyof u i t t zts ueen repltvew uy its vonwitiontl expetttion

⟨u t |z t ⟩ = E [u i t t | ℱ t ].
It vorreponws to tze reyret xrom gevtion I.1:

fey T = mtx i∈ℐ T t=1 u i t - T t=1 ⟨u t |z t ⟩ = mtx z∈Δ d T t=1 ⟨u t |z⟩ - T t=1 ⟨u t |z t ⟩ .
he airror Desvent trtteyies twtptew xrom getion II.1 will proviwe upper uounws on tze reyret. kitz tze zelp ox vonventrttion inequtlities, tzose will in turn proviwe ziyz proutuility tnw tlmot-sure yutrtntees on tze retlizew reyret.

ke vtll tzis settiny tze experts stting uevtuse it mowels tze proulem ox prewition witz experts twvive wzivz vtn ue wesvriuew ts xollows. Let ℐ = {1, … , d} ue t set ox experts. At etvz ttye t ⩾ 1, tze Devision atker is to mtke t wevision tnw etvz expert yives tn twvive ts to wzivz wevision to mtke. he Devision atker mut tzen vzoose tze expert i t to xollow. hen, tze vetor u t ∈ R d is ouservew, wzere u i t is tze ptyof outtinew uy expert i. he ptyof outtinew uy tze Devision atker is tzerexore u i t t . he reyret tzen vorreponws to tze wiferenve uetween tze vumulttive ptyof ox tze Devision atker tnw tze vumulttive ptyof outtinew uy tze uet expert in zinwsiyzt.

An importtnt wiretion ox resetrvz is tze tuwy ox tze uet possiule yutrtntee on tze reyret, in otzer worws, tze tuwy ox tze minimtx reyret min σ mtx

(u t ) t⩾1 R T ,
wzere tze minimum is ttken over tze trtteyies ox tze Devision atker, tnw tze mtximum over tze possiule sequenves ox ptyof vetors. kitzout tny tssumption on tze ptyof vetors, it is etsy to see tztt tzis qutntity is equtl to +∞. It uevomes inite tnw tzerexore relevtnt wzen, typivtlly, tze ptyof vetors tre tssumew to uelony to t uounwew set ⊂ R d . However, we tre usutlly untule to vompute tze vtlue ox tze minimtx reyret exttly, tnw we simply ettulisz its tsymptotiv dependencies in tze ptrtmeters ox tze proulem. For inttnve, tze mot vommon tssumption in tzis xrtmework is tztt ptyof vetors uelony to = [-1, 1] d . In tzis vtse, tze minimtx reyret is known to ue of order √T loy d, wzivz yives tze wepenwenvy in tze numuer ox ttyes T tnw in tze numuer ox ttions d. his result zts ueen provew in two teps. Firt, tze Exponentitl keiyzts Alyoritzm wts szown to yutrtntee t reyret uounw ox √T loy d (up to t multiplivttive vonttnt) oCB97], wzivz yives tn upper bound on tze minimtx reyret (tzis result will ue presentew in wettil in getion II.3). gevonw, usiny t proutuilitiv tryument, it zts ueen ettuliszew oCBFH + 97] tztt tze minimtx reyret is ziyzer tztn √T loy d (up to t multiplivttive vonttnt) wzen T tnw d tre ltrye. gtronyer tssumptions involviny ptrsity will ue vonsiwerew in getion II.4 tnw will letw to lower minimtx reyrets, tvzievew uy well-vzosen trtteyies.

II.2. Mirror Descent trategies

ke twtpt tze airror Desvent trtteyies xrom getion I.3 to tzis xrtmework uy simply seeiny tze simplex Δ d ts tze vonvex vomptt set ox ttions. he trtteyy tssovittew witz t reyultrizer h on Δ d tnw t positive tnw noninvretsiny sequenve ox ptrtmeters ( t ) t⩾1 is tzerexore weinew ts xollows. get U 0 = 0 tnw xor t ⩾ 1,

vzoose z t = ∇h * ( t-1 U t-1 ), wrtw i t ∼ z t , upwtte U t = U t-1 + u t .
he results ox heorem I.3.1 zolw. ke tre now timiny tt weriviny ziyz proutuility tnw tlmot-sure results on tze retlizew reyret. he Hoefwiny-Azumt inequtlity will mtke sure tztt tze reyret tnw tze retlizew reyret tre vlose.

Lemma II.2.1. Lt (z t ) t⩾1 and (i t ) t⩾1 be sequences of mixed and pure ations repetively played by he Decsion Maker againt payof vetors (u t ) t⩾1 . Lt M > 0 and ssume ht ‖u t ‖ ∞ ⩽ M ( for al t ⩾ 1).

(i) Lt ∈ (0, 1). Wih probability higher han 1 -, we have

fey T ⩽ fey T +M √ 8T loy(1/ ). (ii) Almot-surely, lim sup T→+∞ 1 T ( fey T -fey T ) ⩽ 0. Proof. (i) Let (ℱ t ) t⩾1 ue tze iltrttion introwuvew in getion II.1 tnw X t = ⟨u t |z t ⟩ - u i t t . hen, (X t ) t⩾1 is sequenve ox mtrtinytle wiferenves witz repet to (ℱ t ) t⩾1 . In- weew, E [⟨u t |z t ⟩ -u i t t | ℱ t ] = ⟨u t |z t ⟩ -⟨u t |z t ⟩ = 0. Besiwes, |X t | ⩽ 2M. droposi- tion A.0.1 tppliew witz = M√8 loy(1/ )/T tzen yives P [ 1 T T t=1 X t > ] ⩽ .
In otzer worws, witz proutuility ziyzer tztn 1 -, we ztve

T t=1 ⟨u t |z t ⟩ ⩽ T t=1 u i t t + M √ 8T loy(1/ ).
Awwiny mtx i∈ℐ ∑ T t=1 u i t to uotz siwes tnw reorytniziny tze terms yives tze result. (ii) he sevonw ptrt ox tze tttement xollows xrom t ttnwtrw Borel-Ctntelli tryument.

ke now ttte tze ziyz-proutuility tnw tlmot-sure yutrtntees oferew uy tze airror Desvent trtteyies in tze vtse ox t tronyly vonvex reyultrizer tnw uounwew ptyof vetors.

heorem II.2.2. Lt T ⩾ 1 an integer, K, M > 0 and ∈ (0, 1). Wih noation rom Setion II.2, ssume ht h s K-trongly convex wih repet to ‖ ⋅ ‖ 1 .

(i) Againt any sequence of payof vetors (u t ) t⩾1 such ht ‖u t ‖ ∞ ⩽ M ( for al t ⩾ 1), he trtegy deined in Setion II.2 guarantees wih probability higher han 1 -

fey T ⩽ h T + M 2 2K T t=1 t-1 + M √ 8T loy(1/ ).
(ii) In particular, he choice of paramters t = √ h K/M 2 t ( for t ⩾ 1) gives wih probability higher ht 1 -,

fey T ⩽ M √ T (2 √ h K + √ 8 loy(1/ )) ,
and almot-surely, lim sup T→+∞ 1 T fey T ⩽ 0.

II.3. Exponential Weights Algorithm

he mot importtnt inttnve ox airror Desvent trtteyies in tze experts settiny is tze Exponential Weights Algorihm, introwuvew uy oLk94, Vov90] tnw xurtzer tuwiew uy oKk95, CB97, ACBG02, gor09] tmony otzers. As provew uelow in heorem II.3.1, it tvzieves t minimtx reyret yutrtntee ox orwer √T loy d. he tlyoritzm vorreponws to tze vzoive tze entropiv reyultrizer:

h ent (z) = { ∑ d i=1 z i loy z i ix z ∈ Δ d +∞ otzerwise.
droposition I.2.9 tzen yives tze xollowiny explivit expression ox tze tlyoritzm:

z i t = exp ( t-1 U i t-1 ) ∑ d j=1 exp ( t-1 U j t-1 ) , i ∈ ℐ.
he xollowiny reyret uounw tvzievew uy tze Exponentitl keiyzts Alyoritzm witz time-vtryiny ptrtmeters t = √loy d/t wts irt ettuliszew in oACBG02].

heorem II.3.1. Lt T ⩾ 1 an integer. Againt any sequence of payof vetors in [-1, 1] d , he Exponential Weights Algorihm wih paramters t = √loy d/t ( for t ⩾ 1) guarantees fey T ⩽ 2 √ T loy d.

Lt ∈ (0, 1). Wih probability higher ht 1 -, we have

fey T ⩽ √ T (2 √ loy d + √ 8 loy(1/ )) .
Almot-surely, lim sup T→+∞ 1 T fey T ⩽ 0.

Proof. From droposition I.2.9, we know

h ent = loy d tnw tztt h ent is 1-tronyly vonvex witz repet to ‖ ⋅ ‖ 1 ; tnw sinve u t ∈ [-1, 1] d implies ‖u t ‖ ∞ ⩽ 1, tze results xollow xrom heorem II.2.2 tppliew witz M = 1 tnw K = 1.
ke now turn to more previse reyret uounws wzivz zolw in tze vtse ox ptyof vevtors wzose vomponents tre uounwew xrom tuove. For simplivity, we ttte tze xollowiny results in tze vtse ox losses, i.e. ptyof vetors witz nonpositive voeivients. hey tre outtinew uy t iner tntlysis ox tze Breymtn wiveryenve tssovittew witz h * ent .

heorem II.3.2. (i) Againt payof vetors (u t ) t⩾1 in R d -, he Exponential Weights Al- gorihm wih paramters ( t ) t⩾1 guarantees fey T ⩽ loy d T + T t=1 t-1 d i=1 (u i t ) 2 z i t ,
where we st 0 = 1 . (ii) Againt payof vetors (u t ) t⩾1 in [-1, 0] d , he Exponential Weights Algorihm wih contant paramter ∈ (0, 1) guarantees

fey T ⩽ 1 1 - ( loy d -mtx i∈ℐ T t=1 u i t ) .
Proof. (i) heorem I.3.1 toyetzer witz tze xtt tztt h ent = loy d yives fey T ⩽ loy d

T + T t=1 1 t-1 D h * ent ( t-1 U t , t-1 U t-1 ).
ke tim tt uounwiny xrom tuove tze Breymtn wiveryenve in tze tuove sum. droposition I.2.9 yives tze xollowiny expression xor h * ent :

h * ent (y) = loy ⎛ ⎜ ⎝ d i=1 e y i ⎞ ⎟ ⎠ , y ∈ R d .
For t ⩾ 1, we vtn tzen express tze Breymtn wiveryenve ts

D h * ent ( t-1 U t , t-1 U t-1 ) = h * ent ( t-1 U t ) -h * ent ( t-1 U t-1 ) -⟨∇h * ent ( t-1 U t-1 )| t-1 U t -t-1 U t-1 ⟩ = loy ⎛ ⎜ ⎝ d i=1 e η t-1 U i t ⎞ ⎟ ⎠ -loy ⎛ ⎜ ⎝ d i=1 e η t-1 U i t-1 ⎞ ⎟ ⎠ -t-1 ⟨z t |u t ⟩ = loy ⎛ ⎜ ⎝ d i=1 e η t-1 u i t e η t-1 U i t-1 ∑ d j=1 e η t-1 U j t-1 ⎞ ⎟ ⎠ -t-1 ⟨z t |u t ⟩ = loy ⎛ ⎜ ⎝ d i=1 z i t e η t-1 u i t ⎞ ⎟ ⎠ -t-1 ⟨z t |u t ⟩ .
ginve u i t ∈ [-1, 0] uy zypotzesis, it is true tztt

e η t-1 u i t ⩽ 1 + t-1 u i t + 2 t-1 (u i t ) 2 .
guutitutiny in tze previous expression,

D h * ent ( t-1 U t , t-1 U t-1 ) ⩽ loy ( d i=1 z i t (1 + t-1 u i t + 2 t-1 (u i t ) 2 )) -t-1 ⟨z t |u t ⟩ = loy (1 + t-1 ⟨u t |z t ⟩ + 2 t-1 d i=1 z i t (u i t ) 2 ) -t-1 ⟨u t |z t ⟩ ⩽ t-1 ⟨u t |z t ⟩ + 2 t-1 d i=1 z i t (u i t ) 2 -t-1 ⟨z t |u t ⟩ = 2 t-1 d i=1 z i t (u i t ) 2 ,
wzivz yives tze result.

(ii) he sevonw uounw is t vorolltry ox tze irt one. ke retrit to tze Exponentitl keiyzts Alyoritzm witz t vonttnt ptrtmeter ∈ (0, 1). ginve u i t ∈ [-1, 0], we ztve

(u i t ) 2 ⩽ -u i t . his yives mtx i∈ℐ T t=1 u i t - T t=1 ⟨z t |u t ⟩ ⩽ loy d - T t=1 d i=1 z i t u i t .
ginve ∑ d i=1 z i t u i t simply is ⟨z t |u t ⟩, we vtn reorytnize tze tuove qutntities to yet

(1 -) (mtx i∈ℐ T t=1 u i t - T t=1 ⟨z t |u t ⟩) ⩽ loy d -mtx i∈ℐ T t=1 u i t ,
tnw tze result xollows uy wiviwiny uy 1 -> 0.

feyret uounws similtr to (i) ztve tppetrew in e.y. oACBFg02], oCBLg05] tnw ogg11, heorem 2.2] in tze vtse ox vonttnt ptrtmeters. As xor (ii), t uounw ox tze stme kinw wts tlretwy proposew in oLk94] tnw is vtllew improvement for smal losses.

II.4. Sparse payof vetors

ke zere tww t ptrsity tssumption on tze ptyof vetors: we tssume tztt tzey zts tt mot s nonzero vomponents (xor t yiven inteyer 1 ⩽ s ⩽ d). ke tim tt vontrutiny trtteyies wzivz ttke twvtnttye ox tzis retrition to yutrtntee reyret uounws tztt tre tiyzter tztn tze uounw ox orwer √T loy d yutrtnteew in heorem II.3.1 uy tze Exponentitl keiyzts Alyoritzm. A tzorouyz invetiyttion ox tzis suujet will ue vonwutew in Cztpter V. ke witinyuisz two vtses: ptrse ytins tnw ptrse losses. Denote Let p ∈ (0, 1) tnw vonsiwer tze xollowiny reyultrizer on Δ d :

h p (z) = { 1 2 ‖z‖ 2 p ix z ∈ Δ d +∞ otzerwise.
he tssovittew airror Desvent trtteyy yutrtntees t reyret uounw ox orwer √T loy s in tze vtse ox ptrse ytins.

heorem II.4.1. Lt T ⩾ 1 and s ⩾ 3. Againt payof vetors in +,s,d , he Mirror Descent trtegy ssocited wih regularizer h p wih p = 1+(2 loy s-1) -1 and paramters t = (4et loy s) -1/2 ( for t ⩾ 1) guarantees fey T ⩽ 2 √ eT loy s.

Proof. Avvorwiny to droposition I.2.11, reyultrizer h p is (p -1)-tronyly vonvex witz repet to ‖ ⋅ ‖ p . Let q > 0 suvz tztt 1/p + 1/q = 1. ke use tze tssumption on tze ptyof vetors to uounw tzeir ℓ q norms ts xollows. Let u ∈ +,s,d . u zts tt mot s nonzero vomponents. hus,

‖u‖ q = ⎛ ⎜ ⎝ d i=1 |u i | q ⎞ ⎟ ⎠ 1/q ⩽ ( s terms |u i | q )
1/q ⩽ s 1/q . heorem I.3.1 tzen yives

fey T ⩽ h T + s 2/q 2(p -1) T t=1 t-1 .
ke know tztt h p ⩽ 1/2. hen, note tztt p -1 = (2 loy s -1) -1 tnw tztt 

1 q = 1 - 1 p = p -1 p = (2 loy s -1) -1 1 + (2 loy s -1) -1 = 1 2
wrtw i t ∼ z t , upwtte U t = U t-1 + u t .
he qutlitttive tntlysis ox oBHg06] woes not require tze reyultrizer h to ue tronyly vonvex. ke zere wo mtke tzis tssumption in orwer to outtin tn explivit reyret uounw.

heorem II.5.1. Lt T ⩾ 1 an integer and K > 0. Assume ht h s K-trongly convex wih repet to ‖ ⋅ ‖ 1 . Againt any sequence of payof vetors in [-1, 1] d , he Smooh Fititios Play wih paramter > 0 guarantees

fey T ⩽ h T + loy T 2K + K .
Lt ∈ (0, 1). Wih probability higher han 1 -, we have

fey T ⩽ h T + loy T 2K + K + √ 8T loy(1/ ).
Almot-surely, lim sup

T→+∞ 1 T fey T ⩽ h .
Proof. heorem I.3.1 yives

fey T ⩽ h T + 1 2K T t=1 t-1 ‖u t ‖ 2 ∞ , wzere 0 = 1 . Injetiny t = /t tnw ‖u t ‖ ∞ ⩽ 1 xor t ⩾ 1, we outtin fey T ⩽ h + 2K (1 + T-1 t=1 1 t ) .
ke tzen uounw tze sum xrom tuove:

T-1 

t=1 1 t ⩽ 1 + T-
fey T ⩽ h T + 1 2K T t=1 t-1 ,
where 0 = 1 . Lt ∈ (0, 1). Wih probability higher han 1 -, we have 

fey T ⩽ h T + 1 2K T t=1 t-1 + √ 8T loy(1/
1 T R T ⩽ M 2 2K
. bo-reyret is not yutrtnteew, uut ptrtmeter (tnw tzerexore tze tuove uounw M 2 /2K) vtn till ue vzosen truitrtrily smtll. A similtr situttion ovvurs in tze vtse wzere t = /t, wzivz vorreponws to tze gmootz Fititious dlty. As tttew in heorem II.5.1, tze tvertye reyret is tsymptotivtlly uounwew uy t / . hrouyz tze vzoive ox h tnw/or , tze tuove uounw vtn ue mtwe truitrtrily smtll, uut not zero. Let us now turn to tze vtse wzere t wevretses xtter tztn uut slower tztn /t: tzis vorreponws to tze Vtniszinyly gmootz Fititious dlty. hen, ts seen in heorem II.6.1, no-reyret s yutrtnteew.

he tuove vtn ue interpretew ts xollows. In tze vtse t = , no-reyret is not yutrtnteew uevtuse tze ptrtmeters wo not wevretse quivkly enouyz tnw tze tlyoritzm is not regularized enough. Ix t = /t, no-reyret is not yutrtnteew uevtuse tze ptrtmeters wevretse too quivkly tnw tze tlyoritzm is too regularized. Fintlly, ix tze wevretsiny rtte ox tze ptrtmeters tre uetween tzose two ewye-vtses, it is jut riyzt xor trtteyy to yutrtntee no-reyret. 

(z 1 , i 1 , u i 1 1 , … , z t-1 , i t-1 , u i t-1 t-1 , z t ).
It will ue vonvenient to tssume tztt tze ptyof vetors (u t ) t⩾1 tre normtlizew in [-1, 0] d . ke tre timiny tt uounwiny tze expetttion ox tze retlizew reyret:

E [mtx i∈ℐ T t=1 u i t - T t=1 u i t t ] .
he key iwet is to use t trtteyy xrom tze xull inxormttion settiny (i.e. wzere tze Devision atker ouserves tze wzole ptyof vetor u t ), uy repltviny tze unouservew ptyof vetor u t uy tn unuitsew etimttor û t wzivz is vontrutew ts xollows. Assume z i t > 0 xor tll t ⩾ 1. he Devision atker vtn tzen vompute Lemma II.8.1.

û i t = {i t =i} z i t u i t , i ∈ ℐ. û t is tn etimttor ox u t in tze sense tztt E [ û t | ℱ t ] = u t .
E [mtx i∈ℐ T t=1 u i t - T t=1 u i t t ] ⩽ E [mtx i∈ℐ T t=1 û i t - T t=1 ⟨ û t |z t ⟩] . Proof. isiny tze xtt tztt E mtx ⩾ mtx E, E [mtx i∈ℐ T t=1 û i t - T t=1 ⟨ û t |z t ⟩] ⩾ mtx i∈ℐ E [ T t=1 û i t ] -E [ T t=1 ⟨ û t |z t ⟩] = mtx i∈ℐ E [ T t=1 E [ û i t | ℱ t ]] -E [ T t=1 E [⟨ û t |z t ⟩ | ℱ t ]] = mtx i∈ℐ E [ T t=1 u i t ] -E [ T t=1 ⟨u t |z t ⟩] = mtx i∈ℐ E [ T t=1 u i t ] -E [ T t=1 E [u i t t | ℱ t ]] = E [mtx i∈ℐ T t=1 u i t - T t=1 u i t t ] ,
wzere xor tze ltt equtlity, we usew tze xtt tztt u i t is weterminitiv to swtp tze mtximum tnw tze expetttion.

he Eld3 trtteyy wts introwuvew tnw irt tntlyzew in oACBFg02]. It vonsits in usiny tze Exponentitl keiyzts Alyoritzm tytint etimttors ( û t ) t⩾1 . get U 0 = 0 tnw xor t ⩾ 1,

z i t = exp ( t-1 U i t-1 ) ∑ d j=1 exp( t-1 U j t-1 ) , i ∈ ℐ û i t = {i t =i} z i t u i t , i ∈ ℐ U t = U t-1 + û t .
bote tztt tze etimttor is well weinew sinve z i t is tlwtys positive. 

E [mtx i∈ℐ T t=1 û i t - T t=1 ⟨ û i t |z t ⟩] ⩽ loy d T + T t=1 t-1 E ⎡ ⎢ ⎣ d i=1 ( û i t ) 2 z i t ⎤ ⎥ ⎦ .
ke wetl witz tze expetttion ox tze riyzt-ztnw siwe ts xollows.

E ⎡ ⎢ ⎣ d i=1 ( û i t ) 2 z i t ⎤ ⎥ ⎦ = E [ d i=1 E [( û i t ) 2 z i t | ℱ t ]] = E [ d i=1 E [ {i t =i} (u i t ) 2 z i t | ℱ t ]] = E ⎡ ⎢ ⎣ d i=1 E [ {i t =i} | ℱ t ] (u i t ) 2 z i t ⎤ ⎥ ⎦ = E [ d i=1 (u i t ) 2 ] ⩽ d.
hoyetzer witz Lemmt II.8.1, we yet:

E [mtx i∈ℐ T t=1 u i t - T t=1 u i t t ] ⩽ loy d T + d T t=1 t-1 .
hen tze vzoive t = √loy 

III.2. Hitorical background

A trtteyy ox tzis type wts tlretwy proposew in Htnntn's semintl ptper oHtn57]. FhdL wts ltter rewisvoverew in oKV05] in wzivz t rtnwom perturuttion ox wensity y ⟼ ( /2) d e -η∥y∥ 1 wy wts usew to tvzieve t minimtx optimtl reyret uounw ox orwer O(√T loy d) in tze experts settiny-see tlso oHd04]. An even simpler perturuttion witz inwepenwent vomponents wrtwn tvvorwiny to tze unixorm witriuution over [0, 1] zts ueen szown to yutrtntee t O( √ Td) reyret uounw in tze experts settiny (see e.y. Corolltry 4.4 in oCBL06]). aore revently, oALgh14] usew t ttnwtrw Gtussitn perturuttion ξ ∼ (0, I) to tvzieve minimtx optimtl reyret uounws uotz in tze experts settiny tnw tze ℓ 2 -ℓ 2 settiny (wzere uotz tze ttions ox tze Devision atker tnw tze ptyof vetors uelony to tze Euvliwetn unit utll). oCH15] tppliew tzose tevzniques to online vomuinttoritl optimizttion.

Applivttions ox similtr trtteyies to vtrious settinys invluwe: oDLb13] wzere t Bernoulli voin lip is twwew to etvz vomponent ox etvz ptyof vetor, obB13] wzivz wetls witz tze semi-utnwit online vomuinttoritl optimizttion proulem, tnw oVEKk14] wzere tze minimtx optimtl yutrtntee is tvzievew in tze experts settiny uy settiny etvz vomponent ox etvz ptyof vetor to zero or one witz some proutuility.

FhdL tnw airror Desvent trtteyies sztre mtny vommon properties tnw vlose links uetween tzose two xtmilies were lony supetew. For inttnve, it is known tztt tze Exponentitl keiyzts Alyoritzm tuwiew in getion II.3 voinviwes witz tze FhdL trtteyy witz t perturuttion wzivz xollows tze Gumuel witriuution. oHg02] provew in tze vtse = Δ d tztt FhdL trtteyies are airror Desvent trtteyies. oALgh14] proposew t unixyiny xrtmework wzivz envomptsses uotz FhdL tnw ltzy airror Desvent, tnw ettuliszew in tze one-wimensiontl vtse t uijetion uetween tze two xtmilies. Let us prove tztt h is t reyultrizer on . h ueiny t Leyenwre-Fenvzel trtnsxorm uy weinition, it is vonvex tnw lower semivontinuous. It is tlso tritly vonvex sinve h * is wiferentitule. Let us prove tztt tze womtin ox h is . isiny tze weinition ox h, we vtn write: 

III.3. Redution to Mirror Descent

III.4. Discussion

heorem III.3.1 proviwes tn tlternttive metzow xor weininy t airror Desvent trtteyy, wzivz mtkes tze explivit vzoive ox t reyultrizer h unnevesstry. However, some properties ox h mut till ue known in orwer to turn tze yenertl reyret uounw xrom heorem I.3.1 into tn explivit one. he irt term h / T (xrom tze yenertl uounw) vtn ue immewittely ttken vtre ox, sinve heorem III.3.1 proviwes tn upper uounw on h . he sevonw term, wzivz involves tze Breymtn wiveryenves, is more vztllenyiny. he proutuilitiv expression h * (w) = E [mtx z∈ ⟨w + ξ|z⟩] woes not seem to proviwe tny ztnwy expression xor tze Breymtn wiveryenve tssovittew witz h * . cne wty ox wetliny witz tzose is to ettulisz trony vonvexity xor reyultrizer h. In tze vtse ox t ttnwtrw Gtussitn perturuttion ξ ∼ (0, I), oAHf12] usew t vztrtterizttion ox tze tronyly vonvexity ox h wzivz involves tze Hessitn ox h * . An interetiny wiretion ox resetrvz woulw ue tze tuwy ox tze strony vonvexity ox reyultrizer h ts t xuntion ox tze properties ox tze witriuution ox perturuttion ξ.

•

CHAPTER IV

MIRROR DESCENT FOR APPROACHABILITY

ke wo not tim in tzis vztpter tt yiviny tn overview ox tze tzeory ox tpprotvztuility. ke rttzer xovus on t xrtmework in wzivz airror Desvent trtteyies vtn ue weinew ntturtlly. ke tzen illutrtte tze unixyiny vztrtter ox tzis tpprotvz uy tpplyiny it to tze vontrution ox optimtl trtteyies xor online vomuinttoritl optimizttion tnw interntl/swtp reyret minimizttion.

he irt notive ox tze link uetween reyret minimizttion tnw tpprotvztuility yoes utvk to oBlt54, Htn57]. aore revently, oHaC01] vontrutew t wiwe vltss ox potentitl-utsew tpprotvztuility trtteyies tnw werivew reyret minimiziny trtteyies usiny t rewution (ox tze reyret minimizttion proulem to tn tpprotvztuility proulem) utsew on tze neyttive ortztnt. Conversely, oder15] twtptew tze Exponentitl keiyzts Alyoritzm to tpprotvztuility. In t similtr pirit, oABH11] proposew t yeneriv svzeme utsew on vonvex vones xor vonvertiny reyret minimiziny trtteyies into tpprotvztuility trtteyies (see tlso ogzi15]).

ke tim tt proviwiny t uniiew tpprotvz. ke uuilw upon tze iwet proposew uy oABH11] tnw xurtzer wevelop it: intetw ox retritiny our tttention to trtteyies wzivz minimize tze Euvliwetn wittnve ox tze tvertye ptyof to tze ttryet set, we tllow xor t muvz wiwer vzoive ox wittnve-like qutntities to ue minimizew (see tze vzoive ox genertors in getion IV.2 uelow). his lexiuility will tllow tze vontruvtion ox ttilorew trtteyies xor online vomuinttoritl optimizttion tnw interntl/swtp reyret minimizttion. he tools tnw iwets introwuvew in tzis vztpter will tlso ue usew in Cztpter VI xor tze vontrution ox trtteyies witz optimtl vonveryenve rttes in tze proulem ox tpprotvztuility witz ptrtitl monitoriny.

IV.1. Model

Let ue t inite-wimensiontl vetor ptve tnw * its wutl. he lttter will ue tze payof pace. Let ue tze ation st xor tze Devision atker tuout wzivz we tssume no ptrtivultr truture. Let ue t set ox ptyof xuntions g ∶ → * . he plty yoes 71 ts xollows. At time t ⩾ 1, tze Devision atker

• vzooses ttion x t ∈ ;

• ouserves vetor payof u t ∶= g t (x t ) ∈ * , wzere (g t ) t⩾1 is t sequenve ox ptyof xuntions in vzosen uy btture. Formtlly, t trtteyy σ xor tze Devision atker is t sequenve ox mtps σ = (σ t ) t⩾1 wzere σ t ∶ ( × * ) t-1 → so tztt xor t yiven trtteyy σ tnw t yiven sequenve ox ptyof xuntions (g t ) t⩾1 we ztve

x t = σ t (x 1 , u 1 , … , x t-1 , u t-1 ). Antloyously to getion I.1, g t mty wepenw on tnytziny tztt zts ztppenew uexore, invluwiny x t , tnw we mty tssume tztt btture is twtre ox tze trtteyy usew uy tze Devision atker.

he proulem involves t argt st ⊂ * wzivz we tssume to ue t vlosew vonvex vone 1 . Deinitions tnw properties tuout vlosew vonvex vones tre yttzerew in tze next setion. he yotl is to vontrut trtteyies wzivz yutrtntee tztt tze tvertye ptyof ū T ∶= 1 T ∑ T t=1 u t is close to tze ttryet in t sense tztt will ue mtwe previse. 

IV.2. Closed convex cones and support funtions

+

  ,s,d = {u ∈ [0, 1] d | u zts tt mot s nonzero vomponents} , -,s,d = {u ∈ [-1, 0] d | u zts tt mot s nonzero vomponents} .

  he xollowiny tzeorem proves tztt t FhdL trtteyy is t airror Desvent trtteyy ts soon ts tze witriuution ox tze rtnwom perturuttion is tusolutely vontinuous witz repet to tze Leuesyue metsure. his result is quivkly mentionew in tze revent survey oALh16]. ke zere yive t wettilew proox. cne vtn see tztt t airror Desvent trtteyy tssovittew witz t reyultrizer h tnw t FhdL trtteyy tssovittew witz t perturuttion ξ voinviwe ts soon ts ∇h * (w) = E [try mtx z∈ ⟨w + ξ|z⟩] , xor tll w ∈ R d . heorem III.3.1. Lt ξ be in integrable random variable in R d whose dstribution s absolutely continuos wih repet to he Lebesgue mesure. Lt be a nonempty convex compat subst of R d . hen, here exsts a regularizer h on such ht ∇h * (w) = E [try mtx z∈⟨w + ξ|z⟩] , w ∈ R d . Moreover, h ⩽ E [mtx z∈ ⟨ξ|z⟩] -mtx z∈ ⟨E [ξ]|z⟩ . Proof. Consiwer Φ ∶ R d → R weinew uy Φ(w) = E [mtx z∈ ⟨w + ξ|z⟩] , w ∈ R d .he mtp w ⟼ mtx z∈ ⟨w + y|z⟩ ueiny vonvex xor tll y ∈ R d , oBer73, Lemmt 2.1] tssures tztt Φ is vonvex. Besiwes, tze witriuution ox ξ ueiny tusolutely vontinuous witz repet to tze Leuesyue metsure, oBer73, droposition 2.4] yutrtntees tztt Φ is wiferentitule on R d . ke now weine h ∶= Φ * to ue tze Leyenwre-Fenvzel trtnsxorm ox Φ. Φ ueiny vonvex, lower semivontinuous tnw proper, aoretu's tzeorem yives Φ = Φ * * = h * . herexore, tzis xuntion will ue vtllew h * xrom now on.

E

  [⟨w|z⟩ -⟨w + ξ|z⟩] = -⟨E [ξ]|z⟩ < +∞. ke now tssume z ∉ tnw write h(z) = sup w∈R d E [min z ′ ∈ {⟨w|z -z ′ ⟩ -⟨ξ|z ′ ⟩}] .ke now turn to h = mtx hmin h. Firt, we ztvemin h = -h * (0) = -E [mtx z∈ ⟨ξ|z⟩] .gevonw, we ztve seen tuove tztt h(z) ⩽ -⟨E[ξ]|z⟩ xor y ∈ . htkiny tze mtximum over z ∈ yives mtx h ⩽ -min z∈ ⟨E [ξ]|z⟩ , tnw tze result xollows.

  

  

  

  , le Cztpitre VIII et inwépenwtnt et et issu we l'trtivle oKwo14]. cn y éttulit une uorne universelle sur les vtrittions wes xontions vonvexes uornées. cn outient en vorolltire que toute xontion vonvexe uornée et lipsvzitzienne ptr rtpport à lt métrique we Hiluert. oKd16u] Joon Kwon tnw Vitnney dervzet. Gtins tnw losses tre xunwtmenttlly wixxerent in reyret minimizttion : tze ptrse vtse. arXiv :1511.08405, 2016 (à paraître dans Journtl ox atvzine Letrniny fesetrvz) oKd16t] Joon Kwon tnw Vitnney dervzet. Bltvkwell tpprotvztuility witz ptrtitl monitoriny : cptimtl vonveryenve rttes. 2016 (en prépartion) oKa14] Joon Kwon tnw dtntyotis aertikopoulos. A vontinuous-time tpprotvz to online optimizttion. arXiv :1401.6956, 2014 (en prépartion) oKwo14] Joon Kwon. A universtl uounw on tze vtrittions ox uounwew vonvex xunvtions. arXiv :1401.2104, 2014 (à paraître dans Journtl ox Convex Antlysis)

√

  Ts log d d (wzere d is tze numuer ox ttions) wzen tze ptyofs tre losses (i.e. nonpositive). his wemontrttes t xunwtmenttl wiferenve uetween ytins tnw losses. In tze utnwit settiny, we prove tztt tze minimtx reyret xor losses is ox orwer √ Ts up to t loytritzmiv xttor. Cztpter VI is extrttew xrom oKd16t] tnw wetls witz Bltvkwell's tpprotvztuility witz ptrtitl monitoriny, metniny tztt tze Devision atker only ouserves rtnwom siyntls. ke vontrut trtteyies wzivz yutrtntee vonveryenve rttes ox orwer O(T -1/2 ) in tze vtse wzere tze siyntl woes not wepenw on tze ttion ox tze Devision atker, tnw ox orwer O(T -1/3 ) in tze vtse ox yenertl siyntls. his ettuliszes tze optimtl rttes in tzose two vtses, ts tze tuove rttes tre known to ue unimprovtule witzout xurtzer tssumption on tze ttryet set or tze siyntlliny truture. Cztpter VII vomes xrom oKa14] tnw weines airror Desvent trtteyies in vontinuous time. ke prove tztt tzey sttisxy t reyret minimizttion property. ke tzen vonwut t vomptrison uetween vontinuous tnw wisvrete time. his ofers tn interpretttion ox tze terms xounw in tze reyret uounws in wisvrete time: one is xrom tze vontinuous time property, tnw tze otzer vomes xrom tze vomptrison uetween vontinuous tnw wisvrete time. Fintlly, Cztpter VIII is inwepenwent tnw is xrom oKwo14]. ke ettulisz t universtl uounw on tze vtrittions ox uounwew vonvex xuntion. As t uyprowut, we outtin tztt every uounwew vonvex xuntion is Lipsvzitz vontinuous witz repet to tze Hiluert metriv. oKd16u] Joon Kwon tnw Vitnney dervzet. Gtins tnw losses tre xunwtmenttlly wixxerent in reyret minimizttion: tze ptrse vtse. arXiv:1511.08405, 2016 (to appear in Journtl ox atvzine Letrniny fesetrvz) oKd16t] Joon Kwon tnw Vitnney dervzet. Bltvkwell tpprotvztuility witz ptrtitl monitoriny: cptimtl vonveryenve rttes. 2016 (in prepartion) oKa14] Joon Kwon tnw dtntyotis aertikopoulos. A vontinuous-time tpprotvz to online optimizttion. arXiv:1401.6956, 2014 (in prepartion) oKwo14] Joon Kwon. A universtl uounw on tze vtrittions ox uounwew vonvex xunvtions. arXiv:1401.2104, 2014 (to appear in Journtl ox Convex Antlysis)
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wiferenve uetween tze vumulttive ptyof ox tze Devision atker tnw tze vumulttive ptyof outtinew uy tze uet expert. he Devision atker ztviny t trtteyy wzivz mtkes sure tztt tze tvertye reyret yoes to zero metns tztt ze is tule to perxorm, tsymptotivtlly tnw in tvertye, ts well ts tny expert

  , BCB12, gg11]. ke irt vonsiwer tze proulem wzere tze Devision atker zts t inite set ox ations ℐ = {1, … , d}. At etvz ttye t ⩾ 1, tze Devision atker vzooses tn ttion i t ∈ ℐ, possiuly tt rtnwom, tzen ouserves t payof vetor u t ∈ [-1, 1] d , tnw intlly yets t svtltr ptyof equtl to u i t t . ke tssume btture to ue twverstritl, tnw tze Devision atker is tzerexore timiny tt outtininy some guarantee tytint tny possiule sequenve ox ptyof vetors (u t ) t⩾1 in [-1, 1] d . Htnntn oHtn57] introwuvew tze notion ox reyret, weinew ts R T = mtx Htnntn oHtn57] ettuliszew tze exitenve ox trtteyies xor tze Devision atker wzivz yutrtntee tztt tze tvertye reyret 1T R T is tsymptotivtlly nonpositive. his proulem is tlso vtllew predition wih expert advice uevtuse it mowels tze xollowiny situttion. Imtyine ℐ = {1, … , d} ts t set ox experts. At etvz ttye t ⩾ 1, tze Devision atker zts to mtke t wevision tnw etvz expert yive t pieve ox twvive ts to wzivz wevision to mtke. he Devision atker mut tzen vzoose tze expert i t to xollow. hen, tze vetor u t ∈ R d is ouservew, wzere u i t is tze ptyof outtinew uy expert i. he ptyof outtinew uy tze Devision atker is tzerexore u i t . his qutntity zts ueen ettuliszew oCB97, ACBG02] to ue ox orwer √T loy d, wzere T is tze numuer ox ttyes tnw d tze numuer ox ttions.An interetiny vtritnt is tze online convex optimiztion proulem oGor99, Kk95, Kk97, Kk01, nin03]: tze Devision atker vzooses ttions z t in t vonvex vomptt set ⊂ R d , tnw btture vzooses loss xuntions ℓ t ∶ → R. he reyret is tzen weinew uy tze utse mowel upon wzivz dtrt I ox tze mtnusvript will ue uuilt.intil now, we ztve tssumew tztt tze Devision atker ouserves tll previous ptyof vetors (or loss xuntions), in otzer worws, tztt ze zts t ful informtion xeewutvk. he proulems in wzivz tze Devision atker only ouserves tze ptyof (or tze loss) tztt ze outtins tre vtllew bandit proulems. he vtse wzere tze set ox ttions is ℐ = {1, … , d} is vtllew tze twverstritl multi-trmew utnwit proulem, xor wzivz tze minimtx reyret is known to ue ox orwer

	iny its ttions R T = he pevitl vtse wzere tze loss xuntions tre linetr is vtllew online linear optimiztion T t=1 ℓ t (z t ) -min z∈ T t=1 ℓ t (z). tnw is oten written witz tze zelp ox ptyof vetors (u t ) t⩾1 :
	R T = mtx z∈	T t=1	⟨u t |z⟩ -	T t=1	⟨u t |z t ⟩ .	( * )
	i∈ℐ wzivz vomptres tze vumulttive ptyof ∑ T T t=1 t=1 u u i t -i t his will ue √ Td oAB09, ACBFg02]. he utnwits settinys xor online von-T t=1 u i t t , vex/linetr optimizttion zts tlso tttrttew muvz tttention oAK04, FKa05, DH06, BDH + 08] tnw we rexer to oBCB12] xor t revent survey.
	i t t . he reyret tzen he tzeory ox reyret minimizttion zts sinve ueen reinew tnw wevelopew in t num-vorreponws to tze . uer ox wtys-see e.y. oFV97, HaC00, FL99, Lez03]. An importtnt wiretion wts tze tuwy ox tze uet possiule yutrtntee on tze expetew reyret, in otzer worws tze tuwy ox tze xollowiny qutntity: inx sup E [R T ] ,
	wzere tze inimum is ttken over tll possiule trtteyies ox tze Devision atker, tze supremum over tll sequenves (u t ) t⩾1 ox ptyof vetors in [-1, 1] d , tnw tze expett-tion witz repet to tze rtnwomizttion introwuvew uy tze Devision atker in vzoos-

t outtinew uy tze Devision atker to tze vumulttive ptyof mtx i∈ℐ ∑ T t=1 u i t ze voulw ztve outtinew uy pltyiny tze uet ixew ttion in zinwsiyzt.

  wzere F tts t regularizer. his motivttes, xor tzis tlyoritzm, tze tlternttive ntme: wzivz is tze stme qutntity ts in Equttion ( * ), i.e. tze reyret in tze online linetr optimizttion proulem witz payof vetors (u t ) t⩾1 . An importtnt property is tztt ptyof vetor u t is tllowew to wepenw on x t , ts it is tze vtse in (16) wzere u t = -t ∇f(x t ). his Ltzy cnline airror Desvent xtmily ox tlyoritzms will ue our suujet ox tuwy in Cztpters I to IV. hrouyzout dtrt I ox tze mtnusvript, unless mentionew otzerwise, Mirror Descent will wesiyntte tze Ltzy cnline airror Desvent tlyoritzms. present tze reyret minimizttion proulem vtllew online linear optimiztion. gome vonvexity tools tre introwuvew, witz t pevitl xovus on trony vonvexity. ke tzen vontrut tze xtmily ox airror Desvent trtteyies witz time-vtryiny ptrtmeters tnw werive yenertl reyret yutrtntees in heorem I.3.1. his result is ventrtl ts mot results in dtrt I will ue outtinew ts vorolltries. In getion I.4, we present tze yenertlizttion to vonvex losses (intetw ox linetr ptyofs), tnw in getion I.5, we turn tze txorementionew reyret minimiziny trtteyies into vonvex optimizttion tlyoritzms.I.1. Core modelhe mowel we present zere is vtllew online linear optimiztion. It is t repettew plty uetween t Devision atker tnw btture. Let ue t inite-wimensiontl vetor ptve, will ue vtllew tze payof pace 1 . Let ue t nonempty vonvex vomptt suuset ox , wzivz will ue tze set ox ttions ox tze Devision atker. At etvz time inttnve t ⩾ 1, tze Devision atker Formtlly, t trtteyy xor tze Devision atker is t sequenve ox mtps σ = (σ t ) t⩾1

		CHAPTER I
	MIRROR DESCENT FOR REGRET MINIMIZATION
	FIRST PART
	Folow he Regularized Leader oAHf08, fh09, AHf12]. his tlyoritzm proviwes t yutrtntee on:
	mtx x∈X	T t=1	⟨u t |x⟩ -
			•

T t=1 ⟨u t |x t ⟩ , ke * its wutl ptve, tnw wenote ⟨ ⋅ | ⋅ ⟩ tze wutl ptiriny. * • vzooses tn ttion z t ∈ ; • ouserves t ptyof vetor u t ∈ * vzosen uy btture; • yets t ptyof equtl to ⟨u t |z t ⟩.

  mot situttions, we simply write fey T sinve tze trtteyy tnw tze ptyofs vetors will ue vletr xrom tze vontext. In tze vtse wzere btture's vzoive ox ptyof vetors (u t ) t⩾1 woes not wepenw on tze ttions ox tze Devision mtker (btture is tzen stiw to ue oblivios), tze reyret vtn ue interpretew ts xollows. It vomptres tze vumulttive ptyof ∑ T t=1 ⟨u t |z t ⟩ outtinew uy tze Devision atker to tze uet vumulttive ptyof ∑ T t=1 ⟨u t |z⟩ tztt ze voulw ztve outtinew uy pltyiny t ixew ttion z ∈ tt etvz ttye. It tzerexore metsures zow muvz tze Devision atker regrts not ztviny pltyew tze vonttnt trtteyy tztt turnew out to ue tze uet. kzen btture is not tssumew to ue oulivious (it is tzen stiw to ue adversarial), in otzer worws, wzen btture vtn rett to tze ttions (z t ) t⩾1 vzosen uy tze Devision atker, tze reyret is till well-weinew tnw every result uelow will ttnw. he only wiferenve is tztt tze tuove interprttion ox tze reyret is not vtliw.he irt yotl is to vontrut trtteyies xor tze Devision atker wzivz yutrtntee tztt tze tvertye reyret 1 T R T is tsymptotivtlly nonpositive wzen tze ptyof vetors tre tssumew to ue uounwew. In getion I.3 we vontrut tze airror Desvent trtteyies tnw werive in heorem I.3.1 yenertl upper uounws on tze reyret wzivz yielw suvz yutrtntees.cne ox tze simplet trtteyies one vtn tzink ox is vtllew Folow he Leader or Fititios Play. It vonsits in pltyiny tze ttion wzivz woulw ztve yiven tze ziyzet vumulttive ptyof over tze previous ttyes, ztw it ueen pltyew tt etvz ttye:

	z t ∈ try mtx z∈	⟨	t-1 s=1	u s |z⟩ .	(I.1)
	inxortunttely, tzis trtteyy woes not yutrtntee tze tvertye reyret to ue tsymptotivtlly nonpositive, even in tze xollowiny simple settiny wzere tze ptyof vetors tre uounwew. Consiwer tze xrtmework wzere

  one vtn etsily see tztt usiny tze tuove trtteyy (I.1) yives xor t ⩾ 2, z t = (1, 0) ix t is even, tnw z t = (0, 1) ix t is oww. As t result, tze ptyof ⟨u t |z t ⟩ is zero ts soon ts t ⩾ 2. he Devision atker is vzoosiny tt etvz ttye, tze ttion wzivz yives tze wort ptyof. As xtr ts tze reyret is vonvernew, sinve mtx z∈ ∑ T t=1 ⟨u t |z⟩ is ox orwer T/2, tze reyret yrows linetrly in T. herexore, tze tvertye reyret is not tsymptotivtlly nonpositive. his pzenomenon is vtllew overitting: xollowiny too vlosely previous wttt mty result in utw prewitions. ho overvome tzis proulem, we vtn try mowixyiny trtteyy (I.1) ts wzere we introwuvew t xuntion h in orwer to regularize tze trtteyy. his is tze key iwet uezinw tze Mirror Descent trtteyies (wzivz tre tlso vtllew Folow he Regularized Leader) tztt we will weine tnw tuwy in getion I.3.I.2. Regularizerske zere introwuve t xew tools xrom vonvex tntlysis neewew xor tze vontrution tnw tze tntlysis ox tze airror Desvent trtteyies. hese tre vltssiv (see e.y. ogg07, gg11, Buu11]) tnw tze prooxs tre yiven xor tze stke ox vompleteness. Aytin, tnw * tre inite-wimensiontl vetors ptves tnw is t nonempty vonvex vomptt suuset ox . ke weine reyultrizers, present tze notion ox trony vonvexity witz repet to tn truitrtry norm, tnw yive tzree extmples ox reyultrizers tlony witz tzeir properties. I.2.1. Deinition and properties ke revtll tztt tze domain wom h ox t xuntion h ∶ → R ∪ {+∞} is tze set ox points wzere it zts inite vtlues. Deinition I.2.1. A vonvex xuntion h ∶ → R ∪ {+∞} is t regularizer on ix it is tritly vonvex, lower semivontinuous, tnw zts ts womtin. ke tzen wenote h = mtx hmin h tze wiferenve uetween its mtximtl tnw minimtl vtlues on . Proposition I.2.2. Lt h be a regularizer on . Its Legendre-Fenchel transform h , ∇h * (w) = try mtx z∈ {⟨w|z⟩ -h(z)}. In particular, ∇h * akes values in . Proof. (i) Let w ∈ * . he xuntion z ⟼ ⟨w|z⟩ -h(z) equtls -∞ outsiwe ox , tnw is upper semivontinuous on wzivz is vomptt. It tzus zts t mtximum tnw h * (w) < +∞. (ii, iii) aoreover, tzis mtximum is ttttinew tt t unique point uevtuse h is tritly vonvex. Besiwes, xor z

	z t = try mtx z∈	{⟨	t-1 s=1	u s |z⟩ -h(z)} ,
	stsies he folowing properties.			
	(i) wom h			

* ∶ * → R ∪ {+∞}, deined by h * (w) = sup z∈ {⟨w|z⟩ -h(z)} , w ∈ * , * = * ; (ii) h * s diferentiable on * ;

(iii) For al w ∈ *

  his trymtx is t sinyleton ts we notivew. It metns tztt h * is wiferentitule. Remark I.2.3. he tuove proposition wemontrttes tztt h * is t smootz tpproximttion ox mtx z∈ ⟨ ⋅ |z⟩ tnw tztt ∇h * is tn tpproximttion ox try mtx z∈ ⟨ ⋅ |z⟩. hey will ue usew in getion I.3 in tze vontrution tnw tze tntlysis ox tze airror Desvent trtteyies.

  h ent = loy d; (v) h ent s 1-trongly convex wih repet to ‖ ⋅ ‖ 1 . Proof. (i) is immewitte, tnw (ii) tnw (iii) tre vltssiv (see e.y. oBV04, Extmple 2.25]). (iv) h ent ueiny vonvex, its mtximum on Δ d is ttttinew tt one ox tze extreme points. At etvz extreme point, tze vtlue ox h ent is zero. herexore, mtx Δ d h ent = 0. As xor tze minimum, h ent ueiny vonvex tnw symmetriv witz repet to tze vomponents z i , its minimum is ttttinew tt tze ventroiw (1/d, … , 1/d) ox tze simplex Δ d , wzere its vtlue isloy d. herexore, min Δ d h ent = -loy d tnw h ent = loy d.

  tzerexore 1-tronyly vonvex witz repet to ‖ ⋅ ‖ 1 tnw so is h ent tztnks to Lemmt I.2.7. proj (w) for al w ∈ R d where proj s he Euclidean projetion onto ; (iii) h 2 s 1-trongly convex wih repet to ‖ ⋅ ‖ 2 .

	I.2.4. he Euclidean regularizer									
	Let ue t nonempty vonvex vomptt suuset ox R d . ke weine tze Euvliwetn rey-ultrizer on ts h 2 (z) = { 1 2 ‖z‖ 2 ix z ∈ 2 +∞ otzerwise.
	Proposition I.2.10. (i) h 2 s a regularizer on ; (ii) ∇h * 2 (w) = Proof. (i) is immewitte. (ii) For tll w ∈ R d , usiny property (iii) xrom droposition I.2.2,			
	∇h * (w) = try mtx z∈	{⟨w|z⟩ -	1 2	‖z‖	2 2 } = try min z∈	{	1 2	‖z‖	2 2 -⟨w|z⟩ +	1 2	‖w‖	2 2 }
	= try min											

z∈ ‖w -z‖ 2 2 = proj (w).

  .3. Mirror Descent trategies ke now vontrut tze xtmily ox airror Desvent trtteyies witz time-vtryiny ptrtmeters tnw werive in heorem I.3.1 yenertl reyret uounws. A wisvussion on tze oriyins ox airror Desvent is proviwew in tze introwution ox tze mtnusvript. ke vonsiwer tze notttion introwuvew in getion I.1. Let h ue t reyultrizer on tze ttion set tnw ( t ) t⩾1 t positive tnw noninvretsiny sequenve ox ptrtmeters. he airror Desvent trtteyy tssovittew witz h tnw ( t ) t⩾1 is weinew uy U 0 = 0 tnw xor t ⩾ 1 uy plty ttion z t = ∇h * ( t-1 U t-1 ), upwtte U t = U t-1 + u t , wzivz implies U t = ∑ t s=1 u s . ginve ∇h * ttkes vtlues in uy droposition I.2.2, z t is inweew tn ttion. Besiwes, z t only wepenws on ptyof vetors up to time t-1. herexore, tze tuove is t vtliw trtteyy. isiny property (iii) xrom droposition I.2.2, it vtn tlso ue written

	+∞	otzerwise.
	Proposition I.2.11. (i) h p s a regularizer on ; (ii) h p s (p -1)-trongly convex wih repet to ‖ ⋅ ‖ p .
	Proof. (i) ginve p ⩾ 1, ‖ ⋅ ‖ p is t norm tnw is tzerexore vonvex. h p tzen vletrly is t reyultrizer on . (ii) ke vonsiwer tze xuntion F(z) = 1 2 ‖z‖ 2 p weinew on R d wzivz is (p-1)-tronyly vonvex witz repet to ‖ ⋅ ‖ p (see e.y. oBuu11, Lemmt 3.21]). hen, so is h p tztnks to Lemmt I.2.7.

I

  ke vonsiwer zere t more yenertl reyret minimizttion proulem, vtllew online convex optimiztion, in wzivz btture vzooses tt time t ⩾ 1 t vonvex loss xuntion ℓ t ∶ → R intetw ox ptyof vetors. he plty is ts xollows. At time inttnve t ⩾ 1, tze Devision atker • vzooses t point z t ∈ ; • ouserves t (neyttive) suuyrtwient u t ∈ -∂ℓ t (z t ); • invurs t loss equtl to ℓ t (z t ). he xeewutvk oferew to tze Devision atker is tzerexore (tn element ox ) tze suuwixxerentitl ∂ℓ t (z t ). he reyret to minimize is weinew uy

  uounws xollow xrom heorem I.3.1 tnw tze tuove wisvussion. cne importtnt pevitl vtse wzere is tn Euvliwetn ptve tnw wzere tze Euvliwetn reyultrizer h 2 xrom getion I.2.3 is vzosen. As tttew in droposition I.2.10, tze mtp ∇h

* 2 is simply tze Euvliwetn projetion onto :

  loy s tnw tze vzoive t = (4et loy s) -1/2 xor t ⩾ 1 yives fey T ⩽ 2 √ eT loy s. ke now turn to tze vtse ox ptrse losses. he tuove result till zolws, uut we tre tule to yutrtntee t muvz uetter reyret uounw, ox orwer √ Ts log d d , uy usiny t wiferent trtteyy. heorem II.4.2. Lt T ⩾ 1. Againt payof vetors in -,s,d , he Exponential Weights Algorihm wih contant paramter = √d loy d/sT guarantees for T > 4d loy d/s, fey T ⩽ 4 √ T s loy d d Let T > 4d loy d/s. ginve u t uelonys to [-1, 0] d tnw ztve tt mot s nonzero vomponents, we ztve II.5. Smooth Fititious Play he gmootz Fititious dlty wts introwuvew uy oFL95, FL98, FL99] tnw xurtzer extminew usiny tze tzeory ox tovzttiv tpproximttions uy oBHg06]. It vorreponws to t airror Desvent trtteyy witz tn truitrtry reyultrizer h on Δ d tnw t sequenve ox ptrtmeters t = /t xor some > 0. is vtllew tze ptrtmeter ox tze gmootz Fititious dlty trtteyy. It tzerexore writes vzoose z t = ∇h * (

	herexore tze uounw on tze reyret uevomes
	fey T ⩽	1 2 T	+	e 2 log s/(2 log s) (2 loy s -1) 2	T t=1	t-1 ⩽	1 2 T	+ e loy s	T t=1	t-1 ,
											t -1	U t-1 ) ,
		sT ⩾ -	T t=1	d i=1	u i t = -	d i=1	T t=1	u i t ⩾ -d ⋅ mtx i∈ℐ	T t=1	u i t .
	herexore, tze tuove mtximum is uounwew xrom uelow uy -sT/d. Injetiny tzis in-equtlity in tze reyret uounw (ii) xrom heorem II.3.2, we yet
					fey T ⩽	1 1 -	(	loy d +	sT d	) .
	ke tzen vzoose = √d loy d/sT. he tssumption on T tssures tztt ∈ (0, 1/2). he uounw tzerexore uevomes
						fey T ⩽ 4 √ T	s loy d d	.
	. ke will prove in Cztpter V tztt tze uounws xrom heorems II.4.1 tnw II.4.2 tre uotz minimtx optimtl. his wemontrttes tztt ytins tnw losses tre xunwtmenttlly wiferent in tze vtse ox ptrse ptyof vetors.

.

Proof.

  vtritnt ox tze gmootz Fititious dlty, vtllew tze Vtniszinyly gmootz Fititious dlty wts introwuvew tnw tuwiew uy oBF13]. It vorreponws to t airror Desvent gtrtteyy witz t tronyly vonvex reyultrizer h on Δ d tnw t sequenve ox ptrtmeters ( t ) t⩾1 wzivz sttisies t t ----→ t→+∞ +∞ tnw t = O(t -α ) xor some α > 0. (II.1) hose vonwitions will mtke sure, in tze xollowiny tzeorem, tztt tze tvertye retlizew reyret is tsymptotivtlly tnw tlmot-surely nonpositive. bote tztt tze tntlysis in oBF13] reliew on wiferentitl invlusions tnw tovzttiv tpproximttions tnw wiw not proviwe explivit reyret uounws. heorem II.6.1. Lt T ⩾ 1 an integer and K > 0. Assume ht h s K-trongly convex wih repet to ‖ ⋅ ‖ 1 . Againt any sequence of payof vetors in [-1, 1] d , he Vanshingly Smooh Fititios Play wih paramters ( t ) t⩾1 stsfying conditions (II.1) guarantees

	1	1	ws s	= 1 + loy(T -1) ⩽ 1 + loy T,
	tnw tze uounw on tze reyret is provew. he ret ox tze tttement xollows xrom Lemmt II.2.1.
	II.6. Vanishingly Smooth Fititious Play

A

  ).II.7. On the choice of parameterske wisvuss zow wiferent wevretsiny rttes ox tze ptrtmeters ( t ) t⩾1 tfet tze reyret uounw oferew uy tze vorreponwiny trtteyies, tnw more peviivtlly, wzetzer tze noregrt property, wzivz we weine ts is yutrtnteew. ke retrit our tttention to tze experts settiny tnw tssume tztt reyultrizers tre tronyly vonvex tnw tztt ptyof vetors tre uounwew. his will tllow us to use getions II.5 tnw II.6 ts illutrttions. However, tze iwets presentew uelow extenw to tze online linetr optimizttion xrtmework ox getion I.1.ke ztve seen tt tze enw ox getion I.1 tztt tze Follow tze Letwer trtteyy

					lim sup T→+∞	1 T	R T ⩽ 0,
				z t = try mtx z∈Δ d	⟨	t-1 s=1	u s |z⟩	(II.2)
	xtils to yutrtntee no-reyret. his motivttew tze introwution ox airror Desvent trtteyies
		z t = try mtx z∈Δ d	{⟨ t-1	t-1 s=1	u s |z⟩ -h(z)}	(II.3)
	wzivz vtn ue seen ts t regularized version ox Follow tze Letwer, wzere ptrtmeter t-1 vontrols tze level ox reyultrizttion: tze ziyzer is t-1 , tze vloser (II.3) is to (II.2). In tze vtse ox t vonttnt ptrtmeter t = , heorem I.3.1 yives
	1 T	fey T ⩽ h T	+	M 2 2K		tnw tzerexore lim sup T→+∞
	Almot-surely,		lim sup T→+∞	1 T	fey T ⩽ 0.
	Proof. he irt uounw is t ptrtpzrtse ox heorem I.3.1. he ziyz proutuility uounw xollows xrom Lemmt II.2.1. hen, vonwitions (II.1) yive h /T T → 0 ts T → +∞ tnw 1 2KT T t=1 t-1 = O ( T -α+1 T ) = O(T -α ) ----→ T→+∞ 0,
	tnw tze ltt result xollows.			

  II.8. Multi-armed bandit problem he multi-trmew utnwit proulem wts oriyintlly tuwiew in t tovzttiv settiny ofou52, Lf85]. he nontovzttiv mowel we vonsiwer uelow wts introwuvew uy oACBFg02] tnw is t reyret minimizttion proulem in tze experts settiny witz tze retrition tztt tze Devision atker only ouserves tze ptyof ox tze ttion tztt ze zts vzosen. gee oBCB12] xor t revent survey. ke uriely wesvriue tze mowel tnw present tze EXP3 trtteyy. Its tntlysis is utsew on t reyret uounw tztt we ettuliszew in getion II.3 xor tze Exponentitl keiyzts Alyoritzm. ke tssume tztt tze ptyof vetors (u t ) t⩾1 tre vzosen uexore tze plty ueyins 1 . At etvz time inttnve t ⩾ 1, tze Devision atker • vzooses t mixew ttion z t ∈ Δ d ; • wrtws i t ∼ z t ; ) t⩾1 ue t iltrttion wzere ℱ t is yenerttew uy

	• reveives tnw ouserves ptyof u	i t t .
	Let (ℱ t	

  he xollowiny result links tze expetttion ox tze retlizew reyret (wzivz we tim tt minimiziny) witz tze expetttion ox tze reyret (ts weinew in getion II.1) witz repet to ( û t ) t⩾1 seen ts ptyof vetors.

	1. Ix btture is tllowew to vzoose tze ptyofs vetors ts t xuntion ox tze previous tv-tions ox tze Devision atker, tze tntlysis uelow mut ue vtrriew out witz tze pseuwo-reyret mtx i∈ℐ E [ ∑ T t=1 u i t -∑ T i t t ] intetw ox tze expetew retlizew reyret. gee oBCB12] (getion 3) xor t=1 u t wettilew wisvussion on tzis issue.

  heorem II.8.2. Lt T ⩾ 1. Againt any sequence of payof vetors (u t ) t⩾1 in [-1, 0] d , he EXP3 trtegy wih paramters t = √loy d/2dt ( for t ⩾ 1) guarantees Proof. ginve etimttors ( û t ) t⩾1 tre in R d -, we vtn tpply heorem II.3.2 tnw ttke tze expetttion, wzivz yives

	E [mtx i∈ℐ	T t=1	u i t -	T t=1	u	i t t ] ⩽ 2 √ 2Td loy d.

  d/2dt yives tze result. bote tztt uounw (i) xrom heorem II.3.2 wts neewew in tzis tntlysis. his uounw zolws xor ptyof vetors in R d -, or more yenertlly, xor ptyof vetors wzose vomponents tre bounded rom above. his is wzy we neewew to normtlize ptyof vetors (u t ) t⩾1 ts losses (in e.y. [-1, 0] d ), otzerwise, tze vomponents {i t =i} u i t /z i t ox tze etimttors miyzt ztve ueen positive tnw truitrtrily ltrye sinve z i t vtn ue truitrtrily smtll. heorem II.8.2 ettuliszes tn upper uounw ox orwer √Td loy d. Besiwes, t lower uounw ox orwer √ Td wts yiven in oACBFg02]. he (sliyzt) ytp uetween tzose two uounws wts vlosew uy oAB09], wzivz introwuvew tze Implicitly Normalized Forecster trtteyy wzivz proviwes tn upper uounw ox orwer √ Td. his tlyoritzm vtn ue seen ts ptrt ox t ltryer xtmily ox tlyoritzms xor utnwit proulems utsew on Greewy cnline airror Desvent-see oBCB12] getion 5 xor t wettilew presentttion tnw tpplivttions. A well-vzosen tlyoritzm xrom tzis xtmily is usew in Cztpter V to outtin tn upper uounw ox orwer √ Ts in tze vtse ox s-ptrse losses (i.e. ptyof vetors in -,s,d ) tnw In tzis vztpter, we present tze Folow he Perturbed Leader trtteyies (FhdL) tnw prove in heorem III.3.1 tztt tzey ttutlly uelony to tze xtmily ox airror Desvent trtteyies xrom getion I.3 ts soon ts tze ltw ox tze perturuttion is tusolutely vontinuous witz repet to tze Leuesyue metsure. Like tze airror Desvent trtteyies, FhdL trtteyies were vontrutew ts t mowiivttion ox tze FhL trtteyy mentionew in getion I.1. But intetw ox usiny t dterminstic xuntion h to reyultrize tze mtp try mtx z∈ ⟨ ⋅ |z⟩, tzey involve t random perturuttion. gpeviivtlly, let ξ ue tn inteyrtule rtnwom vtritule in R d . hen, we weine tze FhdL trtteyy tssovittew witz ξ tnw ptrtmeters ( t ) t⩾1 ts wzere (u t ) t⩾1 tre tze ptyof vetors in R d tnw tze set ox ttions ox tze Devision atker.From t vomputttiontl perpetive, tze FhdL trtteyy zts tn twvtnttye over tze airror Desvent trtteyy. he lttter involves tze vomputttion ox ∇h * tt t yiven point, i.e. solviny t vonvex proyrtm on , wzerets tze xormer mty ue vomputew in t aonte Ctrlo xtszion uy wrtwiny stmples ox tze rtnwom vtritule ξ, solviny t linetr proyrtms over , tnw tzen vonsiweriny tze tvertye. his twvtnttye is even more interetiny in tze experts settiny xrom getion II.1 wzere tze Devision atker wrtws pure ttion i t ∈ ℐ tvvorwiny to proutuility witriuution z t ∈ Δ(ℐ). hen, uelonys to one ox tze vertives ox tze simplex Δ d , i.e. to ℐ, tnw its ltw is previsely z t . herexore, tze explivit vomputttion ox z t is unnevesstry tnw only t sinyle wrtw ox tze rtnwom perturuttion ξ is neewew.

	tlmot-surely			
	CHAPTER III
	FOLLOW THE PERTURBED LEADER
	III.1. Presentation			
	z t = E [try mtx z∈	⟨ t-1	t-1 s=1	u s + ξ|z⟩] ,
	utnwit xeewutvk.			
	i t = try mtx z∈Δ d	• ⟨ t-1	t-1 s=1	u s + ξ|z⟩
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  IV.2.1. Closed convex cones hrouyzout tze ptrtyrtpz, will ue t inite-wimensiontl vetor ptve tnw * its wutl. Deinition IV.2.1. A nonempty suuset ox is t closed convex cone ix it is vlosew tnw ix xor tll w, w ′ ∈ tnw ∈ R + , we ztve w + w ′ ∈ tnw w ∈ . he xollowiny proposition yttzers t xew immewitte properties. Proposition IV.2.2. (i) A closed convex cone s convex. (ii) An intersetion of closed convex cones s a closed convex cone. (iii) A Cartesian produt of closed convex cones s a closed convex cone. (iv) A half-pace of he form {w ∈ | ⟨z|w⟩ ⩽ 0} ( for some z ∈ * ) s a closed convex cone. Deinition IV.2.3. Let ue t suuset ox . he polar cone ox is t suuset ox tze wutl ptve * weinew uy ∘ = {z ∈ * | ∀w ∈ , ⟨w|z⟩ ⩽ 0} . he xollowiny proposition is tn immewitte vonsequenve ox tze uipoltr tzeoremsee e.y. heorem 3.3.14 in oBL10].

Proof. gimply vomuine heorem I.3.1, Lemmt II.2.1, tnw tze xtt tztt ‖ ⋅ ‖ ∞ is tze wutl norm ox ‖ ⋅ ‖ 1 .he tvertye retlizew reyret ueiny tsymptotivtlly nonpositive, ts tttew in tze very ltt ptrt ox tze tuove tzeorem, is tze oriyintl weinition ox t trtteyy ueiny vonsitent, ts proposew uy Htnntn oHtn57].

For tze vtse wzere ttryet set is t vlosew vonvex set uut not t vone, we rexer to oABH11] wzere t vonversion svzeme into tn tuxilitry proulem wzere tze ttryet is t vone is presentew.

Appendix

A Concentration inequalities Bibliography Index he sevonw svtltr prowut tuove is uounwew ts ⟨ξ|z ′ ⟩ ⩽ ∥ξ∥ 1 ‖ ‖ ∞ . herexore,

he qutntity ⟨w|z -z ′ ⟩ is tine in w tnw in z ′ , R d is vonvex, tnw is vonvex tnw vomptt. ke vtn tzerexore tpply gion's minimtx tzeorem to yet:

Let > 0. ke now vzoose ptrtivultr vetor w = (z -z ′ ) intetw ox ttkiny tze supremum over w ∈ R d . his yives

he set ueiny vomptt tnw z ueiny outsiwe ox , tze wittnve xrom z to is positive. he tuove inequtlity ueiny true xor tll > 0, tnw uevtuse E [∥ξ∥ 1 ] < +∞, we ztve h(z) = +∞. he womtin ox h is inweew tnw h is t reyultrizer on . (iii) If s a closed convex cone, hen ∘∘ = .

he xollowiny tttement is t simpler version ox aoretu's wevomposition tzeorem oaor62].

Proposition IV.2.5. Assume ht s an Euclidean pace. We identify and its dual pace * . Lt be a closed convex cone in , and w ∈ . hen, wproj w = proj ∘ w, where proj denotes he Euclidean projetion. In particular, wproj w belongs to ∘ .