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CHAPTER

1

Introduction

1.1 General background and motivation

Fisheries and aquaculture remain important sources of food and income for hun-
dreds of millions of people around the world (FAO, 2016). However, despite all
the progress in reducing overfishing in the last years, several species are still being
caught at unsustainable levels: 31.4 % of fish stocks in 2013 were estimated as fished
at a biologically unsustainable level and therefore overfished (FAO, 2016).

Thus, to ensure high long-term fishing yields for all stocks and reduce unwanted
catches, it is necessary to manage fishing fleets and conserve fish stocks. For this
purpose, the Common Fisheries Policy (CFP) introduced a fisheries manage-
ment policy (The European Parliament and the European Council, 11th December
2013). Fisheries management includes technical measures to regulate gear usage
and where and when fishermen can fish. According to the CFP (The European
Parliament and the European Council, 11th December 2013), technical measures
can largely be grouped into measures which aim at: limiting catches of small fish
(intra-species selectivity), limiting catches of unwanted fish species (inter-species
selectivity), limiting catches of protected species (inter-species selectivity), and lim-
iting or preventing damage to parts of the ecosystems. The selectivity of fishing
gear is its ability to catch only the targeted fishes. To reduce the catch of juvenile
fish or unwanted species, the CFP regulates the design and other technical charac-
teristics of the gear (Weissenberger, 2 June 2014). Particularly, the CFP regulates
the mesh size to allow smaller fish to escape. However, the mesh size is not the only
parameter which determines the catch of one gear. Indeed, the mesh opening varies
during a fishing operation, it depends on forces applied on the net (catch, currents,
speed of the vessel, towing regularity) and on the twine material: the mesh opening
depends on the mesh resistance to opening.

The mesh resistance to opening is defined as the relation between the opening
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of the mesh and the forces applied on it. Currently, there is no simple methodology
for the evaluation of this parameter that could be the basis of regulations for fishing.
Indeed, the mesh resistance to opening, that depends on several parameters, is quite
difficult to evaluate.

Existing methods for the evaluation of the mesh resistance to opening of nets
are based on the solution of the inverse identification problem. The inverse
identification method consists in finding the inputs of the numerical model, based on
the experimental force-displacement responses and the boundary conditions (Uhl,
2007). In case of this study, the searched inputs have to be related to the mesh
resistance to opening.

The mechanical structure of twines constituting netting is complex. A netting
sample can be described as an assembly of meshes, and the meshes can be considered
as assemblies of mesh sides and possibly knots (Fig. 8.1). Several model approaches
are possible, depending on the studied basic element: the netting sample, the mesh
or the mesh side.

one braided twine

two knots
one mesh linked by
one mesh side

netting

Figure 1.1 — Netting is an assembly of meshes, made up of mesh sides and knots.

Priour (2013), O’Neill (2002) and De la Prada and Gonzales (2013) proposed
to model the force-displacement response of one mesh side. By considering that a
mesh side behaves like a beam (O’Neill (2002), Sala et al. (2007), De la Prada and
Gonzales (2014), Priour (2013)), the bending stiffness of the mesh sides appeared
to well represent the mesh resistance to opening. Indeed, it was shown that an
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increase in twine bending stiffness increased the mechanical resistance of meshes to
opening (Sala et al., 2007). Moreover, the influence of the netting bending stiffness
on trawl selectivity was demonstrated (Boerema, 1956).

Then, the strong influence of the codend on the trawl selectivity was demon-
strated (Robertson and Stewart, 1988), even though selectivity in other parts of
trawls is increasingly taken into account (Broadhurst et al., 2015). Previous studies
showed how the bending stiffness of mesh sides affects the mechanical behaviour,
thus the selectivity of codends (Herrmann et al., 2006; Sala et al., 2007). Likewise,
Moderhak (2007) theoretically demonstrated how changes in the mesh size and the
bending stiffness of mesh sides can impact the shape of a codend and its selectiv-
ity. From a theoretical investigation, O'Neill (2003) demonstrated how an increase
in twine bending stiffness reduces the diameter of the codend and thus the lateral
mesh opening. Bending stiffness may be of significant effects on fish farms: during
aquaculture pens towing, the netting sheets parallel and near parallel to the flow
experience significant vibration, which in parts is determined by the netting bend-
ing stiffness (Johnson and Balash, 2015). Furthermore, bending stiffness is a critical

factor to ensure accurate model-test drag measurements on trawl nets (Balash et al.,
2016).

Considering these points, and the fact that codends are made from stiffer ma-
terials (Herrmann et al., 2006, 2013), it is worthwhile to be able to measure the
bending stiffness of mesh sides in fishing nets and in particular in trawl codend nets.

Models and methods were already proposed for the evaluation of the bending
stiffness in fishing nets. The best established methods were based on the beam
theory (Sala et al., 2007; De la Prada and Gonzales, 2013; Priour and Cognard,
2011). Nevertheless, the existing methods did not allow the identification of the
mesh resistance to opening with a simple method or did not take sufficient account
of the complexity of the mechanical behaviour. The method presented in Sala et al.
(2007) required a complex and expensive device. De la Prada and Gonzales (2013)
proposed a method based on suspending tests, but strong assumptions were made.
Moreover, the identification strategies of Sala and De la Prada were questionable be-
cause of correlations between geometrical parameters. Balash (2012) used the beam
model of O’Neill (2002) with its limits. Finally, the method proposed by Priour and
Cognard (2011) required closed mesh netting and did not take into account the size
of the knots.

1.2 Objectives

The objective of this thesis is to develop and assess a methodology for the eval-
uation of the mesh resistance to opening in fishing nets, and more broadly,
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in netting structures. This thesis aims at proposing a simple experimental test that
does not require expensive devices to be easily spread in laboratories and in the
fishing industry, a simple test combined with a numerical model able to represent
the non-linear mechanical behaviour of a tested netting panel. As in the existing
methodologies, the inverse identification should be used: the bending stiffness of
the model should be adjusted so that the results of the numerical simulations fit the
results of the experiments.

1.3 Outline of the thesis

This manuscript is divided into five chapters. In the the first chapter, we present
the existing methods for the assessment of twine bending stiffness. First, three
numerical models for the deformation of a mesh side are presented: the analyti-
cal model of O’Neill (2002), the fitting model of De la Prada and Gonzales (2013)
and the finite triangular element model of Priour (2013). Then, four experimental
methods to evaluate the bending stiffness are presented: the method based on the
ROD-m prototype of Sala et al. (2007), the suspension of a cylindrical sample of
Balash (2012), the simple suspension of a netting sample of De la Prada and Gon-
zales (2014), and the cantilever netting of Priour and Cognard (2011). Finally, the
presented models and experimental methods are discussed.

The second chapter deals with the experimental method, used and devel-
oped by this thesis, and the netting samples. Three types of experiments were
performed to evaluate the bending stiffness of twines: a uniaxial tensile test on a
classical testing machine, a suspending test of the same type as De la Prada and
Gonzales (2014), and a biaxial test close to the one of Sala et al. (2007). A large
range of fishing nets commonly used in trawl codends were tested: four materials
(three types of polyethylene, polyamide), single and double mesh sides, three sizes
of panel (3x3-, 4x10- and 5x25-mesh panels), and a range of mesh side lengths (30,
40, 50 and 60 mm). Finally, the axial stiffness of a polyethylene twine was assessed.

With the third chapter, the experimental results are given. The objectives
of this chapter are to present the mechanical behaviour of netting samples and to
compare the results obtained with the three types of experiments. Moreover, the
deformation in netting samples and the variation in the results are shown.

The fourth chapter describes the numerical methods developed during this
thesis. First, four models based on the beam theory are presented: a quasi-analytical
model for mesh sides, the Timoshenko beam model in the Abaqus Standard Soft-
ware tool, a finite element model based on corotational 2D beams and a bar element
model. Then the inverse identification methods are explained. Regarding the ex-
isting methods for the assessment of the bending stiffness of mesh sides in netting
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panels, the possible advantages of finite element methods are shown in the following
chapter, particularly using the proposed bar element model.

In the fifth chapter, the numerical results are presented and discussed. First,
the bending stiffnesses identified by assuming a diamond shape for the meshes are
presented. The influence of parameters on the numerical bending stiffness is studied:
the viscosity of the material, the force applied on meshes, the opening of meshes, the
size of samples, and the boundary conditions. Regarding the results, it was decided
to model the size of the knots using hexagonal meshes. The results with hexagonal
meshes are presented and discussed.

Finally, the manuscript finishes with a conclusion aiming at presenting an as-
sessment of the results presented in the manuscript, a discussion about the validity
of the proposed method and suggestions for further work.

A part of this thesis was submitted and accepted for publication by the "Ocean
Engineering" journal (Morvan et al., 2016).

1.4 Major contributions of this thesis

» Uniaxial tensile tests, suspending tests and biaxial tensile tests were performed
on a large range of netting samples: two materials (polyethylene or polyamide),
two kinds of mesh sides (single or double twine), three sizes of panels (3x3-,
4x10- and 5x25-mesh panels).

e The mechanical behaviour of netting samples was revealed by experimental
results and taken into account for the evaluation of the bending stiffness in
netting panels.

o A finite element model using bar elements and based on the beam theory was
developed. A tool was developed to simulate, using this finite element model,
the tests on netting samples and to identify, using inverse identification and
the experimental results, the bending stiffness in netting panels. The model
captured the heterogeneous deformation field of the netting samples during
the suspending tests.

o A methodology for the evaluation of the mesh resistance to opening was pro-
posed and assessed. It was based on a free of rights finite element model
and a simple non-expensive experimental setup. Measurement methods were
proposed to avoid inconsistencies in the identification results coming from
correlations between some parameters.
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2

Existing methods for the
assessment of twine bending
stiffness

2.1 Models for the netting mesh

Priour (2013), O’Neill (2002) and De la Prada and Gonzales (2013) proposed to
model the mechanical behaviour of mesh sides.

2.1.1 Model of Priour

Priour (2013) modelled a mesh by 4 elastic articulated bar elements, linked with
springs in the T-direction (Fig. 2.1). In one mesh, the four bar elements modelled
the tensile elasticity of the four mesh sides and the springs modelled the bending of
the mesh sides.

Priour assumed that the couple between two consecutive mesh sides in the T-
direction varies linearly with the angle o in the netting:

C=H(a— ) (2.1)

with a the angle between two consecutive mesh sides in the T-direction in the
deformed mesh, oy the angle between two consecutive mesh sides in the mesh at
rest, and H a constant representing the mesh resistance to opening (N.m/Rad).

2.1.2 Analytical solution of O’Neill

O’Neill (2002) assumed that the mechanical behaviour of a mesh side during the
mesh opening was identical to the one of a beam subjected to bending.
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knot

mesh side

/
o

Figure 2.1 — Model of Priour. A mesh modelled by 4 elastic articulated bars linked
with springs. H is a constant factor, characteristic of the spring and leading to
a couple proportional to the difference (o — o), with a the angle between two
consecutive mesh sides in the T-direction.

Assumptions

First, O’Neill assumed that the bending moment M, at each point along a mesh
side, is proportional to the curvature x of the twine at this point. The proportional
coefficient is the bending stiffness E1:

M =EI &k (2.2)

Then, the slope angle of the mesh side near the knot was assumed fixed during
the deformation (Fig. 2.2).

—===Initial mesh side
——— Deformed mesh side

—|— Knot

Lo

Figure 2.2 — Analytical solution of O’Neill. The slope angle 6, of one mesh side near
the knot was assumed fixed during the deformation.
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Finally, the twine was assumed inextensible. Whatever the axial force in mesh
sides, the mesh side length stays the same.

Equation
In the case of a beam subjected to bending, O’Neill had:
EI00 —-C

s = T—I—ufy—vfx (2.3)
gz = cos(0) (2.4)
(;Z = sin(O) (2.5)

with:

« EI the bending stiffness [N.m?]

o [ the length of the twine [m]

« s the scaled arc length along the twine (s € [0, 1])

« O(s) the slope angle of the twine at the scaled arc length s [—]

u(s),v(s) the normalized spatial coordinates ([x,y] = [lu, (v])

fz, fy the forces components at each end of the twine [NV]

+ C the couple at each end of the twine [N.m)]

Concerning the boundary conditions, one end of the twine was fixed and the slope
angle 0 near the ends of the twine was fixed and was equal to 6, (0(0) = 0(1) = 6y).
Analytical solution: method of matched asymptotic expansions

To approximate the analytical solution of Equation 2.3, O’Neill used an asymptotic
method, the "MAE" method (method of Matched Asymptotic Expansions). This
method is particularly used to solve singular problems for which the solutions change
rapidly in a narrow region.

First, O’Neill modified the equation of the problem to solve.

He substituted some variables in Equation 2.3:

. &= EBI/(°f)

d f: \/f:v2+fy2
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Figure 2.3 — Forces and couple applied on a twine. Reprinted from O’Neill (2002).

« c=C/(lf)
» B=tan"'(f,/f.)
e I'=0-p

o X =wcos(f)+ vsin(pf)
e Y = —usin(f) + vcos(f)
We will see later that e is quite important in the solution proposed by O’Neill.

¢ is large when the bending stiffness ET is large relatively to (*f (square of twine
length multiplied by the force value).

Equations (2.3, 2.4, 2.5) became:

,0r

€y = c+Y (2.6)
0X
Hs = cos(I") (2.7)
ay
v sin(I) (2.8)

10
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Equation (2.6) gave, after derivations:

or 0 or 0 0T )4
201 9 [20t) _ 9 2071 dF
Eas C+Y§88 (6 6’5) 85(C+Y):>6852 0s
Thus:
0°T _
eQw = sin(I) (2.9)

Some analytical solutions to this system were derived by O’Neill in terms of
elliptical integrals of the first and second kind. According to the author, these solu-
tions were not convenient and the resulting relationship between the deformation,
the bending stiffness and the boundary conditions were not very informative.

Thus, O’Neill used the MAE method to approximate the solution when the value
of € is small. Different asymptotic solutions were constructed, outside ("outer" so-
lution) and inside ("inner" solution) the region of rapid change of I', and "matched"
to establish a solution valid on the whole domain (mesh side).

Outer solution

The outer solution is used in the region of slow change, that means far from the
ends of the twine.
In this case, O’Neill assumed that € = 0, and it was solved by neglecting the bending
stiffness.

Equation 2.9 became 0 = sin(I"), and:

Tin(s) = 0 (2.10)
Din(s) = s (2.11)
Win(s) = 0 (2.12)

Iin, ®;n, and ¥;, were respectively the outer solutions of v, X and Y.

I';, = 0 was obtained, which was equivalent to ©® — § =0, or © = 3. In other
words, the twine was straight in this region. But the boundary conditions at the
ends were not taken into account (6 = ©(0) = O(1) # Oy).

11
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Inner solution

The inner solution was used in the region of rapid change, that means close to
the ends of the twine.

First, the boundary condition on the left was considered, that means when s
was close to 0. For that, a new gauge (boundary-layer coordinate) was introduced:
A = s/e. A was also called fast variable (by opposition to s, the slow variable). By
fixing A, the region near s = 0 was stretched as ¢ became small.

O’Neill also made the following changes:

e & =X/e

e U, =Y/e

o 1 = I with n;(\) negligible near s = 1, so n;(c0) = 0.

And the boundary conditions limits were: ®;(0) = 0, ¥;(0) = 0, n,(0) = I'(0)
and 7;,(c0) = 0.
By using substitutions, integrations and derivations, O’Neill obtained:

O(N) = A— QCOS(%) + 2003(F<20>) (2.13)
T, (\) = -QQHC§>+2“”H¥f5 (2.14)

The same method was used for the inner region on the right (s close to 1), by
defining a new gauge: 0 = (1 — s)/e. The values of u(1) and v(1) were not known,
so a constant parameter was used, and O’Neill found:

n-(0) = 4arctan(tan FEE) exp(—o)) (2.15)
&,(0) = —a+2cos(%) (2.16)
V(o) = zsm(%’“) (2.17)

Matching inner and outer solutions

The two previous solutions were validated in two different domains. To get a
solution for the whole twine, O’Neill superimposed the inner and the outer solutions:

 I'(s) = m(s) +nr(s) + Tin(s)

12
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o X(5) = eDy(s) + €Pr(s) + Pin(s)
o Y(s)=eV(s)+ eW,(s) + V;n(s)

Finally, by making the following inverse changes of parameters z(s) = X (s)cos(f)—
Y (s)sin(B), y(s) = X(s)sin(B) + Y (s)cos(8) and © = I' + 3, O'Neill found the
asymptotic solution of Equations (2.3), (2.4) and (2.5).

O’Neill obtained:

2(s) = s cos(f) +2e{cos 9(0);6 — cos (”’(S) +6> + cos (Ms) +5> - COSB} (2.19)

y(s) = s sin(B) + 2e {sin @(0); b _gin <’”(S) + 6) + sin (”"(S) + B) - sin,B} (2.20)

2 2
With: o(0
m(s) = 4 arctan(tan (zl_ﬁ exp(%s)) (2.21)
n-(s) = 4arctan(tan @(11_ b exp(s ; 1)) (2.22)

The author showed that the solution was very accurate when e < 0.2.

2.1.3 Timoshenko beams of De la Prada

In order to propose a method which should not depend on a commercial software
tool, De la Prada developed three force models based on interpolation of force-
displacement responses obtained with a commercial finite element model (De la
Prada and Gonzales (2013)).

Method

The twine was modelled as a two-dimensional beam clamped between two knots.

The force-displacement response of the beam was obtained using the finite ele-
ment method. The beam was discretized with 20 quadratic three-dimensional beam
elements based on the Timoshenko beam theory (Fig. 2.4).

To obtain the force-displacement response, De la Prada performed a series of
simulations. For each simulation, one end of the twine was subjected to a displace-
ment, and the force response was calculated.

De la Prada introduced the dimensionless force component f and the dimension-
less radial coordinate 7: 12

f= FE[ (2.23)

13
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o

Po

Figure 2.4 — Finite element model of a twine, deformed and not deformed. Reprinted
from De la Prada and Gonzales (2013).

_R
L

r (2.24)

with F' the force applied at P1 (Fig. 2.4), L the length of the unstretched twine,
ET the bending stiffness, and R the distance between the two ends of the deformed
twine (Fig. 2.4). The dimensionless force components f, and fp were defined as f
with the force components F,. and Fg respectively.

She also used dimensionless cartesian coordinates z and y:

z = (2.25)

Y= (2.26)

with X and Y the cartesian coordinates of P1 (Fig. 2.4) and L the length of
the unstretched twine.

S ]

Model 1: polynomial surface fitting

In case of polynomial surface fitting, De la Prada proposed to obtain two polynomial
surfaces of the force-displacement response previously calculated using a finite ele-
ment model. The first surface represented the radial component f, of the calculated
force as a function of the position of the displaced end of the twine (r, cos(®)); and
the second surface represented the tangential component fe as a function of the
position of the displaced end of the twine (7, cos(®)) (figure 2.5).

14
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F e Yeos(0) T e aw T eos(o)
Figure 2.5 — Dimensionless force-displacement responses of a twine with axial rigidity
EA = 500N, as a function of the position of its end point (r,cos(®)). r is the
dimensionless radial coordinate. (a) dimensionless radial component f, and (b)
dimensionless tangential component fs. Reprinted from De la Prada and Gonzales
(2013).

De la Prada used a least squares regression to calculate the surface.
This method is, according to De la Prada, accurate and easy to implement.

Model 2: spline surface fitting

The beam model described in Fig. 2.4 being a conservative system, De la Prada
proposed to fit the potential energy of the system, and to evaluate the forces using
the obtained gradient force field.

To get a more accurate force field, De la Prada used a spline interpolation pro-
viding much better fitting than polynomials.

The dimensionless potential elastic energy v was defined as a function of the
potential elastic energy V', the length of the twine at rest L and the bending stiffness
Elr:

L
=V— 2.27
v=V_r (2.27)
The method used to obtain the force-displacement response also allowed De la
Prada to obtain the dimensionless potential elastic energy v, represented by Fig.
2.6 for a twine with an axial stiffness EA = 500N. According to De la Prada, in the
case of a bigger value of the axial stiffness, the shape of the surface did not change,

but its gradient value increased.

15
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Figure 2.6 — Dimensionless potential elastic energy v of a twine with an axial stiffness
EA = 500N, as a function of the position of its end. r is the dimensionless radial
coordinate. Reprinted from De la Prada and Gonzales (2013).

The surface representing the dimensionless elastic energy v of a twine as a func-
tion of the position of its end (r, cos(®)) was approximated by a double 2D-spline
interpolation.

Model 3: spring-based model for vertical forces

De la Prada proposed a twine force model based on linear spring and allowing the
simulation of twines subjected to large axial strain.

The finite element model allowed De la Prada to calculate the force-displacement
response of a twine when its end (P1 on Figure 2.4) was subjected to a vertical
force.

The proposed force model approximated the radial force f, as a linear spring
with variable-length r.,:

L2
fr(r,cos(®)) = EAE(T — Teq(cos(P))) (2.28)

The length function 7.,(cos(®)) was calculated so that the obtained radial force
was equal to the radial force calcultated with the finite element model.

16
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De la Prada concluded that when ® < 60°, the fitting was exact and nearly
independant of the axial stiffness.

2.1.4 Discussion

Three models for the netting mesh were presented: the model of Priour (2013),
the analytical model of O’Neill (2002) and the fitting model of De la Prada and Gon-
zales (2013).

The three presented models were simple and offered shorter computational time
than in case of finite element model. Thus, there were well-fitted for the simulation
of netting (illustrated in the following section with the model of Priour). Moreover,
the interpolation method proposed by De la Prada could be used to develop a model
of mechanical behaviour for netting implemented in membrane elements. Thus it
would not be necessary to model each mesh of a netting for a finite element model
of a fishing net.

Nevertheless, the interpolation method of De la Prada could introduce errors
in the simulations. Then, the approximated solution of O’Neill was accurate only
when € < 0.2, that means only when E [ was relatively small. Due to the hypothesis
of non elongation, the tension in the twine had to be moderated relatively to its
elasticity. O’Neill also proposed analytical solutions of the model based on elliptical
integrals that did not required an approximation method, but the solutions were not
convenient according to the author, and needed more computational time. Finally,
Priour (2013) modelled the bending stiffness of mesh sides by linear springs linking
consecutive mesh sides in the studied direction. Experiments would be necessary to
propose a nonlinear and more precise behaviour law for the springs.

2.2 Priour’s model for netting

Priour (2013) proposed a finite element method to model the mechanical behaviour
of netting.

2.2.1 Triangular elements of Priour

Priour (2013) modelled nets with 3-node membrane triangular elements (Fig. 2.7) by
assuming that: a mesh side has an elastic mechanical behaviour, and the mesh sides
are parallel and therefore have the same deformation within a triangular element.

17
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Figure 2.7 — The diamond mesh (left) was decomposed into triangular elements
(right). Reprinted from Priour (2013).

2.2.2 Mesh resistance to opening

Priour modelled a mesh with elastic elements and springs as described in Section
2.1.1. The angle between mesh sides in a triangular element was defined as the angle
between the twine vectors U and V (Fig. 2.8). The stiffness of springs represented
the bending stiffness of mesh sides, thus the mesh resistance to opening.

2.2.3 Flexion outside the netting plane

The bending between two neighbour triangular elements led to a couple between
twines crossing the side shared by the two triangular elements (Fig. 2.9).
According to Priour (2013), no numerical model took into account the flexion of
the twines outside the netting plane.
The angle between the mesh side vectors U, and U, of two triangular elements

18



2.2. Priour’s model for netting

Figure 2.8 — A triangular element. The angle between the twine vectors U and V/
leads to a couple. Adapted from Priour (2013).

M\
A?f\

-

\
i
(i
W

A
e
L
O
i

"
\
Q&

\

4"!‘
W

3

Figure 2.9 — Two triangular elements (134 and 243). The angle between the mesh
side vectors U, and U, leads to a bending couple between the two triangular elements
around the side 34. Reprinted from Priour (2013).

134 and 243 respectively, and the angle between the mesh side vectors V, and V}, of
the two triangular elements 134 and 243 respectively, were assumed to be constant
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along the side common to the two elements (Fig. 2.9).
Priour (2013) calculated C, and C,, the bending couples on the U mesh side
and on the V' mesh side respectively, using the equation:

El
C === 2.29
: (2:29)
with C' the bending couple on the mesh side (N.m), EI the bending stiffness

(N.m?) and R the radius of curvature of the twine (m).

3 4

S nb Ub

Figure 2.10 — Profile view of the two triangular elements. The radius of curvature
R is estimated from the average length of twine vector U in each triangle: n,U, and
nyUp. Reprinted from Priour (2013).

To calculate the couple C,, Priour estimated the radius of curvature of the U
twines from the average lengths of the U twines n,U, and nyU, in the triangular
elements A and B respectively (Fig. 2.10). The radius of curvature was calculated
from the circumscribed circle in the triangle of sides n,U,, nyU, and n,U, + n,U,.

Finally, the model proposed by Priour (2013) could be used for diamond or
hexagonal meshes.

2.2.4 Discussion

This finite element model was well-fitted for the simulation of netting. It could
model trawl made of thousands of meshes with a computational and a numerical
efficiency.

Priour modelled the bending stiffness in mesh sides, inside the netting plane,

with linear springs between consecutive mesh sides. As discussed in Section 2.1,
experiments would be necessary to propose a nonlinear and more precise behaviour
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law for the springs.

Outside the netting plane, Priour assumed that the mesh sides behaved like
beams. Thus, the couple between two consecutive triangular elements was assumed
proportional to the curvature between these elements. We can note that the pro-
posed method is quite easy to implement.

The model could be used to show the effect of the mesh resistance to opening
on the shape, and so on the selectivity of a trawl codend for example. Works are
necessary on the springs which model the bending stiffness of the mesh sides and on
the estimation of the couple between two triangular elements to accurately simulate
the effect of the bending stiffness.

2.3 Methods to evaluate the bending stiffness

All methods used inverse identification and required a model of mesh mechanical
behaviour.

2.3.1 Sala et al.

To evaluate the mesh resistance to opening, Sala et al. (2007) proposed a method
based on the model of O'Neill (2002), previously described. To directly and simply
use the analytical model of O’Neill, Sala used a prototype experimental device al-
lowing to obtain a uniform deformation in the tested netting sample.

Experimental method

The prototype (Fig. 2.11), named Resistance to Opening and Deflection Meter
(ROD-m), incorporated four tension load cells and four stepping motors and was
designed so that all the mesh sides of the netting panel would undergo the same
deformation. Three-by-three mesh netting panels could be mounted on the experi-
mental device, using steel hooks on linear guideways. The two outer hooks on each
guideway were free to move along its length in response to the deformation of the
netting.

The resulting positions and measurements of the four load cells were recorded.

Each netting sample was subjected to a series of pretension cycles to remove the
irreversible part of the elongation and to safeguard against knot slippage.

Sala et al. (2007) performed a complete set of measurements on a netting sample
in these steps:
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Figure 2.11 — General view of the ROD-m equipment and a North Sea PE double-
twine netting panel specimen during the test. This device allows to obtain a uniform
deformation in the tested netting sample. Reprinted from Sala et al. (2007).

1. A netting panel was mounted on the ROD-m in a predetermined initial posi-
tion.

2. The netting panel was stretched until the load forces reach 29.4 N in the T-
direction (and subsequently 58.9, 88.3, 117.7 and 147.2 N) for single-twine
mesh, and 58.9 N (and subsequently 117.7, 176.6, 235.4 and 294.3 N) for
double twine mesh.

3. The sample was submitted to a relaxation step of 5 minutes (the displacement
was blocked during 5 minutes).

4. Steps 2 and 3 were repeated until the maximum value (147.2 or 294.3 N) of
the load in the N-direction was reached.

5. The load cells in the N-direction were moved back to the initial position and
the position of the load cells in the T-direction was increased.

6. Steps 2 to 5 were repeated four times, at which point the positions of the load
cells in the T-direction were such that the mesh opening was approximately
square.

Numerical method

The asymptotic solution proposed by O’Neill (2002) to model the mechanical be-
haviour of meshes under tension was used by Sala et al. (2007) in the regression
analysis.
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2.3. Methods to evaluate the bending stiffness

Thus Sala et al. (2007) assumed that the bending moment of the twine was
proportional to the curvature, that there was no twine extension and that the slope
angle where the mesh sides emerge from the knots was fixed.

Figure 2.12 — Netting material and definition of the geometrical parameters of the
mesh model. On this scheme, 6, the slope angle at either end of the mesh sides is
shown to be zero. Reprinted from Sala et al. (2007).

Sala defined an idealized panel of netting (Fig. 2.12). The knots were represented
by rectangles from the corners of which the mesh sides emerge. The mechanical
(twine bending stiffness) and geometrical (mesh side length, knot dimensions, angle
at which a mesh side emerges from a knot) parameters of the netting panel were
estimated by minimizing the difference between the experimental measures and the
numerical results.

Results

On table 2.1, results of the inverse identifications of Sala et al. (2007) for North
Sea netting materials are presented. In some cases, a knot dimension was estimated
negative. The slope angle 6, at the knot was assumed to be zero, otherwise the
fitted solutions were not consistent.

Discussion

The proposed method was useful. The identified parameters were, according to the
authors, consistent between different panels of the same netting material (Table
2.1). Thus, the method seemed robust. Then, the estimates of the bending stiffness
provided quantitative means to compare the mesh resistance to opening of different
netting panels. Moreover, the identified bending stiffness could be used in codend
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Netting Panel a [mm] b [mm] m [mm] EI [N.mm?|
PE single 4997 Rtex 1 -1.2 0.9 47.5 288
2 0.8 1.8 45.4 234
3 0.5 1.7 45.7 244
4 -0.1 1.6 46.6 286
PE double 16520 Rtex 1 9.5 4.9 50.7 544
2 8.3 4.2 52.3 661
3 9.6 4.7 51.8 602
4 9.9 5.0 50.8 502
PE double 18772 Rtex 1 10.3 5.9 48.2 909
2 11.2 6.9 48.5 716
3 7.6 5.4 52.5 889
4 10.3 6.1 49.4 942
PE double 16214 Rtex 1 13.9 4.9 61.3 691
2 134 4.7 59.9 625
3 13.0 4.2 61.3 703
4 144 4.7 60.5 719
PE double 19934 Rtex 1 9.0 5.6 60.7 960
2 8.2 5.0 62.3 1232
3 9.8 6.0 60.5 942
4 9.4 5.7 61.2 1013

Table 2.1 — Summary of the results of Sala et al. (2007) for North Sea netting
materials. (a, b) represents the knot size, m the mesh side length, EI the bending
stiffness. The slope angle 6y near the knot is assumed to be zero. For each netting
material, Sala presents the between-panel variation. Reprinted from Sala et al.

(2007).

models to take into account the mechanical behaviour of meshes.

However, the biaxial experimental set-up presented in Sala et al. (2007) required
a complex and expensive device (not commercially available yet). Because of the
correlations between the parameters (a, b, m, EI and 6;), particularly between 6,
and EI, Sala assumed 6y = 0. The other parameters remained unconstrained. As a
result, the estimated parameters were sometimes out of physical limits.

2.3.2 Balash
Balash (2012) also used the model proposed in O’Neill (2002).

Experimental method

Balash (2012) proposed to attach a net to hoops in transverse mesh orientation (Fig.
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2.3. Methods to evaluate the bending stiffness

Figure 2.13 — A net is attached in transverse mesh orientation: (a) with no load
applied (the weight of the net and the bottom hoop only); (b, ¢) the net acquires a
hourglass shape as the load gradually increases. Reprinted from Balash (2012).

Retail name Construction properties
24ply Polyethylene twisted 24 ply, single twine, knotted
Hampidjan Dynex 1.0 mm braided, single twine, knotless

Euroline Premium Plus 1.0 mm braided, single twine, knotted

Table 2.2 — List of netting samples tested in Balash (2012).

2.13). The mesh opening in the middle section of the netting sample was measured
in the two directions.

Netting samples

Balash tested three prawn nets that were commonly used by the trawl operators in
Australia (Table 2.2).

Numerical method

Balash rearranged the solution proposed by O’Neill (2002):

r—a— Lms COS(ﬁ) } (230)

El =
d {4 {cos(#) - cos(ﬁ)}
With:

o EI the bending stiffness [N.m?]
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f[N] 0o [-] B[] EI[N.mm’

9.8 -2.19 0.4 99
147 8.12 0.4 61
19.6  1.66 0.4 o8
245  1.99 0.4 59
294 1.52 0.4 o6
49.0 1.42 0.4 o6
68.7  1.37 0.4 54
88.3  1.33 0.4 49
107.9  1.32 0.4 52

Table 2.3 — Bending stiffness EI of 24ply polyethylene netting for several loading
values (f). Results obtained by Balash (2012).

« 0 the slope angle of the twine near the knot (Fig. 2.2) [—]

 [3 the angle between the direction of the force and the N-direction [—|, defined
by 8 = tan"'(f,/f.), with f, and f, the forces components at each end of the
mesh side.

o L5 the mesh side length at rest [m]. By using the model for twines of O’Neill,
the mesh side length was assumed constant.

1z the length of the mesh side in the N-direction [m|. The parameter is repre-
sented in Figure 2.12.

a the length of the knot in the N-direction [m]. The parameter is represented
in Figure 2.12.

Using equation 2.30 and the experimental openings of the meshes in the middle
of attached nets, Balash (2012) could evaluate the bending stiffness E1 of the twines.
Indeed, the measurement of the opening allowed the calculation of the parameter x
in the equation.

Results

The bending stiffnesses identified for one of the samples (24ply PE) are presented in
Table 2.3. Fig. 2.14 shows the comparison of bending stiffnesses identified by Sala
et al. (2007) and Balash (2012).

Discussion

With the experimental setup proposed by Balash, the meshes in the middle of the
sample (cylinder) were submitted to forces close to the ones applied on meshes in
trawl codend. However, the author chose to use the model proposed by O’Neill
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Figure 2.14 — Bending stiffness as a function of twine linear density: data from Sala
et al. (2007) (blue dots) and Balash (2012) (red dots). The netting samples tested
by Balash are described in Table 2.2. The netting samples tested by Sala et al.
(2007) are made of polyamide. Reprinted from Balash (2012).

(2002) that makes, as discussed previously, strong assumptions. According to Bal-
ash, the linear relationship between bending stiffness and linear twine density pre-
sented by Sala et al. (2007) was not applicable for cases of low twine linear density.
But the tests of Balash and Sala were of two different types, and the tested netting
samples were made of different materials and structures.

Finally, further experimentation is required to robustly evaluate the bending stiff-
ness with this method.

2.3.3 De la Prada

De la Prada and Gonzales (2014) offered a simple uniaxial experimental set-up,
which stretches a netting sample in the T-direction of the meshes while leaving free
its deformation in the N-direction. De la Prada used the model proposed by O’Neill
(Section 2.1.2) and her model of twine deformation previously described (Section
2.1.3). De la Prada assumed a uniform deformation in suspended netting samples.

Experimental method

A rectangular netting sample was attached between an upper fixed bar and a bottom
free bar (Fig. 2.15). The free bar was parallel to the fixed bar and could move in the
T-direction. The knots attached to the bars could freely move in the N-direction of
the netting when the sample was stretched. The sample was stretched by applying
a force Fjane to the free bar. The length Ly, of the panel in the T-direction was
calculated as Lygnes = Do — (Dr+ Dpr)/2 — Dy — Dy. The distances Dy, Dy and D,
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N

Figure 2.15 — Design of the experimental set-up and general view of a netting sample
during a test. Reprinted from De la Prada and Gonzales (2014).

were measured at the beginning of the experiment and distances Di and Dy were
measured for each value of Fjpe.

De la Prada and Gonzales (2014) tested 7 different, new and unused netting
samples, commonly used in commercial North Sea trawls.
The steps of one test were:

1. A netting panel was mounted on the experimental device and the distances
D,y and D, were measured. Fj,,. was equal to the weight of the bottom free
bar and hooks (0.7 N).

2. Fpaner was increased and ranged from 0.7 N to 10.5 N.

3. Dy and Dy, were measured at every minute. When the values were stabilized,
they were recorded.

4. Steps 2 and 3 were repeated until Ly, reached 80 % of my.L,,s, where myp
was the number of meshes of the sample in the T-direction and L, the length
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at rest of one mesh side. According to De la Prada and Gonzales (2013), above
this value, the mesh sides were submitted more to traction than to bending.

According to De la Prada and Gonzales (2014), in fishing gear, high tensile
forces could generate plastic deformations in twines and knots. To simulate such
a situation, the author applied the maximum value Fjq,e, reached in step 4, for 1
hour to the netting. Then, the applied force was decreased. Thus, De la Prada and
Gonzales (2014) obtained data from a loading and an unloading cycle.

Numerical method

Figure 2.16 — Idealized netting where mesh sides are modelled as beams emerging
from the corners of rectangular knots. a and b are the dimensions of idealized
knots, estimated by fitting theoretical models for mesh resistance to opening to
experimental data, a..; and b..; are the measured dimensions of knots. Reprinted
from De la Prada and Gonzales (2014).

Concerning the geometry of netting samples, De la Prada and Gonzales (2014)
made the same assumptions as Sala et al. (2007): the deformation field applied to
the panel, represented in Figure 2.16, was assumed to be homogeneous, so all the
meshes experienced the same deformation; knots were rectangles of size (a,b); twines
emerged from the knots at the corners of the rectangles.

The variables used for the inverse identifications were: the distance ygpos be-
tween the two knots at the ends of a mesh side in the T-direction; the force applied
on twines in the T-direction. Four parameters were evaluated: the bending stiffness
EI, the mesh side length at rest L,,s, the height of knots b and the slope angle of
mesh sides near the knots #y. The uni- axial experimental set-up of De la Prada
did not provide measurements of transverse data that could be used to estimate the
knot width a. Note that De la Prada suggested that the knot width a could also be
estimated as a = (Lmesh — 2Lpwine) /2, With Ly,esp, the nominal mesh size and Lyyine
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Constraint applied on parameter
Estimation strategy | L, b fo
1 _ _ _
2 min/max min/max min/max
3 fixed fixed min/max
4 - - fixed

Table 2.4 — Description of the parameter estimation strategies used by De la Prada
and Gonzales (2014) in the regression analysis.

the twine length.

De la Prada and Gonzales (2014) used and compared 4 models: the exact and the
asymptotic solutions proposed by O’Neill (2002) (Section 2.1.2), and the polynomial
and the spline models developed by De la Prada and Gonzales (2013) (Section 2.1.3).

To avoid estimations out of physical limits and reduce the computational cost,
De la Prada and Gonzales (2014) applied constraints to the parameters. The author
found a relationship between the dimensions a..; and bey.

By fixing or constraining the values of parameters between minimum and max-
imum physical limits, De la Prada used 4 parameters estimation strategies summa-
rized in Table 2.4.

Results

Table 2.5 summarizes the results of the analysis of De la Prada and Gonzales (2014)
with four different parameter estimation strategies, for netting samples made of
polyethylene with nominal stretched mesh size of 80 mm and mesh side diameter
of 4 mm. R? is the coefficient of variation that represents the accuracy of the fit.
Results show the importance in the choice of the parameter estimation strategy.

Concerning the asymptotic solution of O’Neill, the author was cautious since
the value of the parameter € usually ranged from 0.3 and 0.6 in most part of the
performed experiments. Indeed, the asymptotic solution of O’Neill is very close to
the exact solution when e < 0.2 (O’Neill, 2002).

Discussion

The uniaxial experimental set-up proposed by De la Prada and Gonzales (2014)
does not require an expensive and complex experimental device as the ROD-m used
by Sala et al. (2007) (Section 2.3.1).

However, De la Prada assumed that all meshes experience the same deformation.
The meshes in the top of the suspended panel are submitted to more weight than
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Strategy Model EI [N.mm™?] [%] Lms [mm] b [mm] 6y [°] R?
1 Exact 92 £ 66 32 3 19 0.9995
Polynomial 107 £ 31 43 -10 25 0.9994
Spline 50 £ 86 25 9.7 9 0.9996
2 Exact 119 + 2 32 3.8 19 0.9949
Polynomial 66 £+ 8 33.4 0.0 17 0.9987
Spline 67 £ 98 27.9 6.3 15 0.9996
3 Exact 126 £ 3 32 4 19 0.9920
Polynomial 99 £+ 12 32 4 15 0.9780
Spline 126 £ 11 32 4 19  0.9904
4 Exact 35 £4 20.6 13.9 - 0.9995
Polynomial 28 £ 12 21.1 12.2 - 0.9929
Spline 33+4 20.3 13.8 - 0.9996

Table 2.5 — Result of the analysis of De la Prada and Gonzales (2014) with four
different parameter estimation strategies, for netting samples made of polyethylene
with nominal stretched mesh size of 80 mm and mesh side diameter of 4 mm. The
results were obtained with the exact ("Exact") solution proposed by O’Neill (2002),
and the polynomial ("Polynomial") and the spline ("Spline") models developed by
De la Prada and Gonzales (2013).

those in the bottom due to the self-weight of the sample. Thus, this assumption
can be acceptable only when the sample is submitted to large forces.

Then, De la Prada applied manual pretensions on the new and unused samples.
Thus, the value of the applied load are not known and the samples are probably sub-
mitted to different pretensions. Otherwise, according to the results of De la Prada
and Gonzales (2014), a netting sample had a different behaviour during the unload-
ing after the loading with creep steps (the duration of these steps is not known),
so the results showed the importance to characterize the visco-plastic mechanical
behaviour of netting.

Finally, De la Prada tested only one sample of each material and could not offer
an average estimation of the mesh resistance to opening. The shown results could
be affected by scattering coming from the sample manufacturing process.

2.3.4 Cognard and Priour

Priour and Cognard (2011) proposed a different experimental method to evaluate
the bending stiffness of mesh sides of netting panels.
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Experimental method

One end of the netting panel was horizontally anchored and the other end was free
(Fig. 2.17). The sample was submitted to its own weight.

Figure 2.17 — Cantilever netting. A netting sample is anchored at one end and free
at the other end. Reprinted from Priour and Cognard (2011).

Numerical method

Assuming that one netting sample behaves as one beam, and using the measured
deflection and length of the netting sample (Fig. 2.17), Priour and Cognard (2011)
identified a bending stiffness E'I of a tested sample out of the netting plan. The
bending stiffness was adjusted to obtain the same deflection as experimentally (Fig.
2.18).

Results

The results of the identifications are presented in Figure 2.19.

Discussion

The method proposed in Priour and Cognard (2011) is simple and does not require
an expensive and complex experimental device.

Nevertheless, more tests and numerical identifications are necessary to evaluate
the consistency of the method. It was noted that the identified bending stiffness
was different depending on the orientation of the netting panel, that it was probably
due to the asymmetry of the structure, particularly of the knot asymmetry.
Moreover, we can wonder if the identified bending stiffness in the plane will be the
same as out of the plane since the asymmetry of the structure. The effect of the
mechanical behaviour of the knots (not taken into account in the model) on the
identified bending stiffness was probably different in and out of the netting plane.
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Figure 2.18 — Numerical simulation of a cantilever netting panel. The bending stiff-
ness is adjusted to obtain the same deflection as experimentally. As expected,
a higher value of bending stiffness is identified when the deflection is smaller.
Reprinted from Priour and Cognard (2011).
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Figure 2.19 — Bending stiffnesses identified for netting samples made of polyamide,
Green polyethylene and Brezline polyethylene. The identified bending stiffness is
different depending on the face of the sample that is above. Note that a base-10
log scale was used for the Y-axis. The length is described in Figure 2.17. Reprinted
from Priour and Cognard (2011).

This out-of-plane stiffness could be a useful parameter for the simulation of fish-
ing trawls.
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2.4 Discussion

Three models for the netting mesh that are used for the modelling of the mesh
resistance to opening were presented: the model of Priour (2013), the analytical
model of O'Neill (2002) and the fitting model of De la Prada and Gonzales (2013).
The three models are simple and offer shorter computational time than in case of
a finite element model. The three models are well-fitted for the simulation of netting.

Priour (2013) proposed a finite element method to model the mechanical be-
haviour of netting. It could model trawl made of thousands of meshes with a
computational and a numerical efficiency. Nevertheless, works are necessary on the
springs which model the bending stiffness of the mesh sides and on the estimation
of the couple between two triangular elements to accurately simulate the effect of
the bending stiffness.

Four experimental methods to evaluate the bending stiffness were presented:
the method based on the ROD-m prototype of Sala et al. (2007), the suspension of
a cylindrical sample of Balash (2012), the simple suspension of a netting sample of
De la Prada and Gonzales (2014), and the cantilever netting of Priour and Cognard
(2011).

First, the analytical model proposed in O’Neill (2002) was used in the methods
presented in Sala et al. (2007), Balash (2012) and De la Prada and Gonzales (2014).
Nevertheless, O’Neill assumed that there is no elongation in mesh sides, and the
proposed approximation is valid only in case of a relatively low value of bending
stiffness or high loading forces.

The biaxial experimental set-up presented in Sala et al. (2007) required a com-
plex and expensive device (not commercially available yet) whereas De la Prada
and Gonzales (2014) proposed to suspend netting samples. In spite of the low cost
of the experiment proposed by De la Prada, she expected uniform deformation in
suspended netting samples, which is probably a strong assumption.

Sala et al. (2007) and De la Prada and Gonzales (2014) took into account the
size of the knots: the size of the knots was evaluated by inverse identification,
the structure of the knot and the variation in the results making the experimental
measurement of the dimensions of knots difficult. Nevertheless, the results of the
identifications were not always consistent because of the strong correlations between
the geometrical parameters.

Priour and Cognard (2011) did not take into account the knots, contrary to Sala
and De la Prada. It would be necessary to study the effect of the size of the knots
on the results of the identifications. Moreover, the method proposed in Priour and
Cognard (2011) required closed mesh netting.

The method presented in Balash (2012) is interesting because of the cylindrical
shape of the tested netting sample, similar to the shape of a trawl codend. Never-
theless, by choosing to use the asymptotic model proposed by O’Neill, the author
made strong assumptions: no twine elongation, accuracy only when € < 0.2. The
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method could be studied in-depth (more experimental tests, descriptions of the re-
sults and identifications).

The existing studies give information for setting up a methodology in order to
evaluate the bending stiffness in mesh sides.

First, elongation, shear and torsion in mesh sides could be taken into account in
the numerical model.

Next, the non-expensive experimental set-up proposed in De la Prada and Gon-
zales (2014) could be used with a numerical model simulating the non uniform
deformation in suspended netting samples. Moreover, this type of test does not
require closed meshes.

Then, the effect of the size of knots in the numerical model on the identified mesh
resistance to opening could be studied. A method could be proposed to measure
the experimental knot size.

Finally, the proposed method could be validated by tests on a large range of
netting samples with different materials, mesh side lengths, sample sizes, loading
levels.
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CHAPTER

3

Experimental method and
netting samples

3.1 Experiments

Three types of experiments were performed in order to evaluate the bending stiffness
of mesh sides: a uniaxial tensile test on a classical testing machine, a suspending
test of the same type as De la Prada and Gonzales (2014), and a biaxial test of the
same type as Sala et al. (2007).

During uniaxial tensile tests, the size of netting samples in one direction was
controlled and the evolution of the opening of one mesh was accurately measured.
In case of suspending tests, that were designed to be simple and non-expensive to
carry out, the openings of all the meshes were known. Finally, in case of biaxial
tensile tests, the application of forces is similar to the one in a dragged trawl codend.

3.1.1 Uniaxial tensile tests

In this first type, measurements were performed on a LR5Kplus tensile testing ma-
chine, with a 250 N load cell, of the company Lloyd instruments. The uniaxial tensile
tests were controlled by the jaw displacement. Relaxation stages were performed
by blocking the jaw movement. A LASERSCAN 200 non-contacting extensometer
(Lloyd instruments) allowed the measurement of the height of the central mesh in
the middle of the sample (Lesn, on Fig 3.1).

Concerning the load, we measured the sum of the effects of the jaw displacement
(mechanical response of the netting sample), the weight of the netting panel and the
weight of the device which allowed the fixation of the sample. We defined the loads
Fmy (horizontal on Fig. 3.1) and Fmy (vertical on Fig. 3.1) as the loads applied
on one mesh in the N-direction and the T-direction respectively. So, knowing the
load F' measured by the force sensor, the weight P, of the sample and the weight
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Pjevice of the device, we calculated the force by mesh F'my applied on the mesh
in the middle of the netting sample:

F— M - P, evice
2 a (3.1)

4

FmT:

The tested netting samples had 10 meshes in the T-direction and 4 meshes in
the N-direction.

g_- e vertical translation joint
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Figure 3.1 — Plan (left) and photograph (right) of the experimental set up of the
uniaxial tensile test. The height L,,.s, of the mesh in the middle of the netting
sample is measured.

3.1.2 Suspending tests

Each rectangular panel of netting was suspended by its top boundary so that the
T-direction of the netting was vertical. The panel was subjected to its own weight
and to forces per mesh Fmt applied in the T-direction on the knots at the bottom
(Fig. 3.2).
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Figure 3.2 — Plan (left) and photograph (right) of the experimental setup of the
suspending test. The panel is suspended from one of its ends and is subjected to its
own weight and to forces F'mr applied on bottom knots. Fmr is called the force
per mesh.

When a panel was suspended, the positions of all the nodes of the netting panel
were measured. The use of a camera with a software designed and implemented in
the laboratory allowed the recording of pictures with a chosen frequency. Note that
the software allowed the application of optical corrections. Then, targets defined by
the user on the first picture were identified in all the pictures. So the displacements
of all these targets were measured during the recording.

In the case of a netting panel which had 10 meshes in the T-direction, the posi-
tions of 5 knots allowed the calculation of the heights of the four quarters H1, H2,
H3 and H4 (Fig. 3.3 left), and the total height of the netting panel Hr (Fig. 3.2).
In the case of a netting panel which had 25 meshes in the T-direction, the positions
of 6 knots allowed the calculation of the heights of the five fifths H1, H2, H3, H4
and H5 (Fig. 3.3 right), and the total height of the netting panel Hr. These heights
(H1 to H5) will be used later in the manuscript to study the non uniform strain
in suspended netting panels and to validate the ability to simulate the deformed
sample with the proposed model.
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Figure 3.3 — Definition of heights for a 4x10-mesh netting panel (left) and a 5x25-
mesh netting panel (right). The heights are measured vertically. The total height
Hyp of the panel is the sum of H1, H2, H3 and H4 for a 4x10-mesh netting panel,
and the sum of H1, H2, H3, H4 and H5 for a 5x25-mesh netting panel.

3.1.3 Biaxial tensile tests

The netting was mounted on a device and submitted to forces on a netting sample
in the T- and N-directions simultaneously.

The device is symmetric along the two directions T and N. The boundary con-
ditions are described in Figure 3.4. The knots are free to move in the direction
perpendicular to the frame plan but the weight of a tested sample is low, con-
sidering the applied forces per mesh Fmgy and Fmy in the T and N directions
respectively. Thus the displacements of the knots out of the plane are low. Anyway,
the proposed numerical model, presented in section 5.2.3, was able to cope with this
out-of-plane deformation.

To apply the forces on the samples, we suspended bags filled with iron dust to
the extremities of the sample (Fig. 3.5, at the top). The ropes linking the knots to
the bags are fixed to the knots with hooks (Fig. 3.5, bottom left). We used linear
motion ball bearings to convert the weights of the filled bags into planar tensile
forces (Fig. 3.5, bottom right).

When a panel was tested on the biaxial tensile device, the positions of all the
nodes of the sample were measured using a camera, in the same way as in case of
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Figure 3.4 — Experimental setup plan of the biaxial tensile test. The panel of size
3x3-meshes, mounted on the device, is subjected to forces per mesh Fmp and Fmy
in the T and N directions respectively. Ly and L,y are the length of the sample in
the T and N directions respectively.

suspending tests (Section 3.1.2). The camera was fixed over the frame plane. As-
suming that the deformation is homogeneous in the tested sample, we could work
with the total lenghts Ly and Lyy of the sample in the T- and N- directions re-
spectively (Fig. 3.4).

The biaxial tensile tests with the machine, we made and presented here, are
probably less efficient for the force and displacement measure acquisitions than
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Chapter 3. Experimental method and netting samples

Figure 3.5 — At the top: general view of the experimental biaxial-tension device
allowing to apply forces on a netting sample in the T- and N-directions simultane-
ously. At the bottom: ropes are connected to knots with hooks (left) and to the
sides of the device frame with linear motion ball bearings (right).

those with the ROD-m protype of Sala et al. (2007). But, the dispersion in the
results could be observed by testing some similar netting samples in the same con-
ditions and could show the consistence of the accuracy (Chapter 4). Finally, this
experimental device is less expensive than the one designed by Sala et al. (2007).

3.2 Netting samples for experiments

The tested netting samples were produced by the Le Drezen company (F-29730 Le
Guilvinec, France). The netting types were those commonly used in trawl codends.
The netting samples were made of two materials: polyethylene (PE) or polyamide
(PA); two kinds of mesh sides were used: single twine or double twine; three sizes
of panel were used: 3x3-mesh for biaxial tensile tests, 4x10-mesh and 5x25-mesh
panels for tensile or suspending tests.
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3.2. Netting samples for experiments

Eight types of samples were used:

» Single twine green PE netting, mesh side length of 40 mm, 4x10-mesh sample
(Section 3.2.4)

o Double twine green PE netting, mesh side length of 49 mm, 3x3-mesh sample
(Section 3.2.4)

o Double twine green PE netting, mesh side length of 49 mm, 4x10-mesh sample
(Section 3.2.4)

o Double twine green PE netting, mesh side length of 49 mm, 5x25-mesh sample
(Section 3.2.4)

o Double twine green PE netting, mesh side length of 60 mm, 4x10-mesh sample
(Section 3.2.4)

o Single twine Breztop PE netting, mesh side length of 40 mm, 4x10-mesh sam-
ple (Section 3.2.5)

o Single twine Brezline PE netting, mesh side length of 60 mm, 4x10-mesh
sample (Section 3.2.6)

o Single twine PA netting, mesh side length of 29.5 mm, 4x10-mesh sample
(Section 3.2.7)

The chosen number of meshes in the netting samples was a compromise: the
number of meshes had to be large enough to reduce the measurement errors (dif-
ficulty to define the center of a knot coming from the knot shape) and to reduce
the possible variations in the results coming from the heterogeneity in the netting
structure (initially the mesh opening was not uniform in a netting sample), and
the number of meshes had to be not too large to take into account the available
amount of netting. In case of suspending tests, there were two sizes of netting
samples, 4x10- and 5x25- mesh samples, to study the influence of the number of
meshes on the results of the identifications (Chapter 6). In case of biaxial tensile
tests, 3x3-mesh samples were used regarding the experimental testing machine size
and in order to reduce the effect of gravity on the off-plane vertical displacements.
In case of uniaxial tensile tests, the displacement of the jaw of the tensile testing
machine being limited, 4x10-mesh netting samples were used. Finally, for each type
of netting panel, several samples were tested to measure the possible variation in
the experimental results.

The netting samples were initially submitted to a pre-tension step to safeguard
against knot slippage (Klust, 1983) and to remove the irreversible part of the elon-
gation (Sala et al., 2004). This step was performed by suspending 400 N to each
4x10- or Hx25-mesh netting sample during 1 hour. The 3x3-mesh netting samples
were submitted to 150 N. During the pre-tension step, the netting samples were
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Chapter 3. Experimental method and netting samples

suspended either in the N-direction (usually) or in the T-direction. After the sus-
pension step, the netting samples were let at rest on a horizontal plane during 2
hours.

Please note that all the samples of the same type (same material, same mesh
side length, same mesh structure) come from an unique panel. Thus, they were
submitted to the same process (temperature during the stretching step, duration,
tensile forces).

3.2.1 Netting definitions

According to the International Organization for Standardization (ISO, 2003), a net-
ting is a meshed structure of indefinite shape and size composed of one yarn or of
one or more systems of yarns interlaced or joined, or obtained by other means, for
example by stamping or cutting from sheet material or by extrusion.

A mesh is a design formed opening, surrounded by netting material. They are
three types of mesh shapes: diamond mesh that is a mesh composed of four sides
of the same length, square mesh that is a mesh in which adjacent sides are at right
angles, and hexagonal mesh that is a mesh composed of six sides, out of which
the length of one pair of opposite sides can be different from that of the other four
sides, in case of an irreqular hexagon. During my works, only netting with diamond
meshes have been used. We will see later that, due to the knot size, it coud be rel-
evant from a modelling point of view to consider an hexagonal shape for the meshes.

The length of mesh side L,,, is the distance between two sequential knots or
joints, measured from centre to centre when the yarn between those points is fully
extended.

In ISO (2003), general directions of a netting yarns are given:

o The N-direction is the direction at right angles (Normal) to the general course
of the netting yarn (when the netting is stretched in this direction, the knots
tend to tighten).

o The T-direction is the direction parallel to the general course of the netting
yarn (when the netting is stretched in this direction, the knots tend to open).

o The AB-directions are the directions parallel to a rectilinear sequence of
mesh bars.

The directions N and T, in the case of knotted netting, can be also defined rel-
atively to the knot orientation (Fig. 3.6).
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3.2. Netting samples for experiments

We defined, with these directions, the distances Ly and L7 between the centres
of opposite knots, in the N-direction and the T-direction respectively.

T-direction

A

1 4 N-direction

Lms

Figure 3.6 — Definition of the N-direction and of the T-direction, and definition of
the parameters Ly , Ly and L,,s in a diamond netting mesh. The directions are
related to the orientation of knots.

The International Organization for Standardization also defined the opening of
mesh: it is, for knotted netting, the longest distance between two opposite knots in
the same mesh when fully extended in the N-direction, and for knotless netting, the
inside distance between two opposite joints in the same mesh when fully extended
along its longest possible axis.

To work with dimensionless parameters which do not depend on the mesh side
length, the dimensionless openings oy and or in the N-direction and the T-
direction respectively were introduced. The opening o; , in the direction i, is the
ratio of the distance L; (Fig. 3.6) by the mesh side length L,,s (Eq. 3.2).

L;
Lms

0; =

3.2.2 Initial measurements

In order to evaluate the input parameters required by the numerical models pre-
sented in chapter 5, the following sample characteristics were measured:

o The mass m of the netting panel.
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Chapter 3. Experimental method and netting samples

o The initial width Hyo and height Hry of the netting panel (at rest) in the
N-direction and the T-direction respectively. The panel position at rest was
obtained by laying the netting panel free of load on a vibrating horizontal
plane, where it remained free of load, until a stable position was reached.

e The characteristic length of the netting mesh sides L,,; and the mesh angle
ap (angle between two consecutive mesh sides in the T-direction) at rest were
derived from a simple cosinus equation and the initial dimensions of the panel
(Fig. 3.7).

Ho

Hno

Figure 3.7 — Dimensions Hpyo and Hpy of a netting panel allow the characteristic
length of the mesh sides L,,s and the mesh angle ag at rest to be calculated.

The area density py of each netting panel at rest was calculated using the mass
m and the initial lengths Hyo and height Hrpg:

m

= - 3.3
Po Hyo Hro ( )

3.2.3 Knots

The knots in all the tested samples were of the same type, represented in Figure
3.8.

3.2.4 Green polyethylene braided netting

We investigated single and double twine netting made of green polyethylene. The
green polyethylene-fibre braided twine is the basic polyethylene product of Le Drezen
company.
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3.2. Netting samples for experiments

T-direction

N-direction

Figure 3.8 — Left: knot in a double twine netting made up of polyethylene braided
twines. Right: scheme of the knot.

This twine is made up of a core and a sheath (Fig. 3.9). The core and the sheath
are composed of 20 and 64 fibres respectively. In the core, fibres are twisted, whereas
in the sheath 16 threads made up of 4 fibres are braided. The linear density of the
twine is 5590.4 107% £ 10.6 107° kg.m ™", that is 5590.4 + 10.6 tex. The diameter of
the fibres, measured with a digital microscope, is 290 pm (Fig. 3.9). The diameter
of the twine is 3.14 + 0.01 mm. The pitch of the braided sheath, which is the
longitudinal distance required for one revolution of a thread around the twine, is
26.12 £+ 0.62 mm.

Figure 3.9 — Left: Green PE braided twine. Right: Green PE fibre.

The mesh sides of the single twine netting were composed of only one polyethylene-
fibre braided twine. While the mesh sides of the double twine netting were composed
of two polyethylene-fibre braided twines.

Single twine green PE netting, mesh side length of 40 mm, 4x10-mesh
sample

In the case of single twine netting, the length of mesh sides was 40.44 4+ 0.3 mm.
The samples had 4 and 10 meshes in the N-direction and T-direction respectively
(Fig. 3.7). Ten samples were used in suspension tests and one in the uniaxial tensile
test. The mass and the dimensions at rest Hyo and Hpg are given by Table 3.1 and
3.2.
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sample number
mass [kg]

|
s
S
=~

o
QU

[m] (Fmr = 0.324 N)

T

H

[m] (Fmr = 0.814 N)

T

H

[m] (Fmy = 1.795 N)

T

H

[m] (Fmy = 2.776 N)

T

H

0.0614

0.320

0.097

1.978

0.201

0.294

0.436

0.505

0.0612

0.318

0.095

2.026

0.193

0.289

0.427

0.495

0.0624

0.323

0.095

2.034

0.200

0.300

0.427

0.507

0.0622

0.320

0.100

1.944

0.197

0.289

0.430

0.501

0.0618

0.318

0.097

2.004

0.195

0.291

0.429

0.503

0.0626

0.325

0.102

1.888

0.205

0.303

0.440

0.507

0.0618

0.323

0.103

1.857

0.212

0.304

0.433

0.498

0.0611

0.320

0.100

1.909

0.192

0.286

0.423

0.491

O 00| | O U = W[ DO —

0.0617

0.324

0.098

1.943

0.195

0.293

0.433

0.497

—_
()

0.0614

0.320

0.098

1.958

0.197

0.288

0.435

0.513

Table 3.1 — Mass and dimensions of the 4x10-mesh single twine netting samples
of green polyethylene type. The length of mesh sides is 40.44 + 0.3 mm. Hrp is
the total length of the suspended panel in the T-direction after a creep step of 30
minutes. Each sample was submitted to a pre-tension step in the N-direction. m
is the mass of the netting sample, Hyo and Hpy are the width and the heigth of
the netting sample at rest respectively, pg is the area density at rest, and Hy is the

height of the suspended netting sample.

Double twine green PE netting, mesh side length of 49 mm, 3x3-mesh

sample

In the case of double twine netting, samples with two different mesh side lengths
and three different sizes were tested.

Tables 3.3, 3.4, 3.5 give the characteristics of samples with 3 meshes in the
N-direction and the T-direction. These samples have been used for biaxial tests.
Samples have been tested with Fmy = 0 N in Table 3.3, with Fmy = Fmr in

Table 3.4 and with FFmy = 2F'my in Table 3.5.
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0.0619 | 0.319 | 0.100 | 1.940

Table 3.2 — Mass and dimensions of one 4x10-mesh single twine netting sample of
green polyethylene type. The length of mesh sides is 40.44 + 0.3 mm. The sample
was submitted to a pre-tension step in the N-direction and was used in uniaxial
tensile test. m is the mass of the netting sample, Hyg and Hpq are the width and
the heigth of the netting sample at rest respectively, and py is the area density at
rest.
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0.041 | 0.29 | 0.048 | 2.945 | 0.099 | 0.122 | 0.168
0.041 | 0.286 | 0.051 | 2.811 | 0.101 | 0.126 | 0.178
0.040 | 0.288 | 0.052 | 2.671 | 0.10 | 0.12 | 0.172
0.041 | 0.287 | 0.052 | 2.747 | 0.098 | 0.124 | 0.177
0.040 | 0.286 | 0.052 | 2.690 | 0.102 | 0.131 | 0.183

| | ol po| —| sample number

Table 3.3 — Mass and dimensions of the 3x3-mesh double twine netting samples of
green polyethylene type. The length of mesh sides is 49 £ 0.2 mm. The samples
were tested in biaxial tests with Fmy = 0 N. Each sample was submitted to a
pre-tension step in the N-direction. m is the mass of the netting sample, Hy and
Hrp are the width and the heigth of the netting sample at rest respectively, pg is
the area density at rest, and Hrp is the height of the suspended netting sample.

Double twine green PE netting, mesh side length of 49 mm, 4x10- and
5x25-mesh samples

Table 3.6 give the characteristics for samples with 4 and 10 meshes in the N-direction
and T-direction respectively, and Table 3.7 for samples with 5 and 25 meshes in the
N-direction and T-direction respectively. These samples were tested in suspending

49



Chapter 3. Experimental method and netting samples

Z 2

— [\

0 Ne

D D

o —

I [l

& &

. g g

ié = =

= . R E E)

qg) 2 =) g g 2 B

s | 2 2| £ = =

< Z = _ Z,

3 g T T St T T
1 0.041 0.29 | 0.045 | 3.142 O.277|0.092 0.27|0.105
2 1 0.041 | 0.288 | 0.045 | 3.164 0.28|0.09 0.278|O.102
3 1 0.0395 | 0.285 | 0.050 | 2.772 0.280]0.09 0.274(0.101
4 10.0394 | 0.284 | 0.046 | 3.016 | 0.278]0.088 | 0.273|0.097
5 1 0.0398 | 0.287 | 0.052 | 2.667 | 0.278|0.091 | 0.271]0.106

Table 3.4 — Mass and dimensions of the 3x3-mesh double twine netting samples of
green polyethylene type. The length of mesh sides is 49 4+ 0.2 mm. The samples
were tested in biaxial tests with Fmy = Fmy. Each sample was submitted to a
pre-tension step in the N-direction. m is the mass of the netting sample, Hy( and
Hrpy are the width and the heigth of the netting sample at rest respectively, pg is the
area density at rest, and Hy and Hp are the width and the heigth of the suspended
netting sample respectively.

tests.

Double twine green PE netting, mesh side length of 60 mm, 4x10-mesh
sample

Tables 3.8 and 3.9 give the characteristics for samples with 4 and 10 meshes in the
N-direction and T-direction respectively, and a mesh side length of 60 + 0.3 mm.
The samples, described in Table 3.8, were tested in suspending tests while the net-
ting panels presented in Table 3.9 were tested in uniaxial tensile tests.

3.2.5 Breztop polyethylene braided netting

We tested single twine netting made of Breztop polyethylene. The Breztop
polyethylene-fibre braided twine is a product of Le Drezen company.

This twine is made up of a core and a sheath (Fig. 3.10). The core and the
sheath are composed of 30 and 32 fibres respectively. In the core, fibres are twisted,
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2 1 0.0393 | 0.285 | 0.055 | 2.507 | 0.283]0.08 | 0.281]0.085 | 0.283]0.090
3| 0.041 | 0.289 | 0.047 | 3.018 | 0.284|0.077 | 0.285]0.083 | 0.284|0.085
4 10.0396 | 0.287 | 0.048 | 2.874 | 0.285/0.077 | 0.283|0.085 | 0.283]0.086
5 1 0.0408 | 0.289 | 0.0475 | 2.972 | 0.285/0.077 | 0.283]0.083 | 0.282]0.085

Table 3.5 — Mass and dimensions of the 3x3-mesh double twine netting samples of
green polyethylene type. The length of mesh sides is 49 4+ 0.2 mm. The samples
were tested in biaxial tests with F'my = 2Fmy. Each sample was submitted to a
pre-tension step in the N-direction. m is the mass of the netting sample, Hy( and
Hrpy are the width and the heigth of the netting sample at rest respectively, pg is the
area density at rest, and Hy and Hp are the width and the heigth of the suspended
netting sample respectively.

whereas in the sheath 16 threads made up of 2 fibres are braided. The linear density
of the twine is 2080.8 107% + 82.4 107° kg.m™*!, that is 2080.8 + 82.4 tex. The
diameter of the fibres, measured with a digital microscope, is 200 pm (Fig. 3.10).
The diameter of the twine is 2.5 £ 0.01 mm. The pitch of the braided sheath, which
is the longitudinal distance required for one revolution of a thread around the twine,
is 13.75 4+ 0.25 mm.

Figure 3.10 — Left: Breztop braided twine. Right: Breztop fibre.
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1 10.164 | 0.358 | 0.400 | 1.145 | 0.425 | 0.495 | 0.540 | 0.620 | 0.685
2 10.164 | 0.351 | 0.435 | 1.074 | 0.455 | 0.510 | 0.545 | 0.625 | 0.685
3 10163 ] 0.360 | 0.390 | 1.161 | 0.430 | 0.485 | 0.530 | 0.620 | 0.680
4 10.163 | 0.353 | 0.425 | 1.086 | 0.450 | 0.510 | 0.545 | 0.620 | 0.685
5 10.164 | 0.364 | 0.365 | 1.234 | 0.400 | 0.460 | 0.505 | 0.600 | 0.670

Table 3.6 — Mass and dimensions of the 4x10-mesh double twine netting samples of
green polyethylene type. The length of mesh sides is 49 + 0.2 mm. Hry is the total
length of the suspended panel in the T-direction after a creep step of 30 minutes.
Each sample was submitted to a pre-tension step in the T-direction. m is the mass
of the netting sample, Hyo and Hpg are the width and the heigth of the netting
sample at rest respectively, py is the area density at rest, and Hrp is the height of
the suspended netting sample.

The length of mesh sides was 40 £ 0.2 mm. The samples had 4 and 10 meshes
in the N-direction and T-direction respectively. Ten samples were tested. The mass
and the dimensions at rest Hyo and Hrpg are given by Table 3.10.

3.2.6 Brezline polyethylene braided netting

We investigated single twine netting made of Brezline polyethylene. The Brezline
polyethylene-fibre braided twine is a product of Le Drezen company.

This twine is made up of a core and a sheath (Fig. 3.11). The core and the
sheath are composed of 24 and 64 fibres respectively. In the core, fibres are twisted,
whereas in the sheath 16 threads made up of 4 fibres are braided. The linear density
of the twine is 8009.7 107% + 229.4 107 kg.m ™, that is 8009.7 & 229.4 tex. The
diameter of the fibres, measured with a digital microscope, is 340 pm (Fig. 3.11).
The diameter of the twine is 4 4= 0.01 mm. The pitch of the braided sheath, which
is the longitudinal distance required for one revolution of a thread around the twine,
is 21.2 + 0.2 mm.

The length of mesh sides was 59.84 4+ 0.6 mm. The samples had 4 and 10 meshes
in the N-direction and T-direction respectively. Ten samples were tested. The mass
and the dimensions at rest Hyo and Hrpg are given by Table 3.11.
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0.482 | 0.493 | 0.405 | 3.334 | 0.605 | 0.870 | 1.075 | 1.240 | 1.360 | 1.475
0.493 | 0.504 | 0.400 | 3.443 | 0.585 | 0.855 | 1.060 | 1.230 | 1.340 | 1.450
0.490 | 0.489 | 0.387 | 3.517 | 0.590 | 0.855 | 1.040 | 1.230 | 1.340 | 1.470
0.481 | 0.494 | 0.375 | 3.543 | 0.590 | 0.850 | 1.030 | 1.210 | 1.330 | 1.450
0.485 | 0.494 | 0.380 | 3.536 | 0.595 | 0.850 | 1.040 | 1.215 | 1.340 | 1.460

| | || —| sample number

Table 3.7 — Mass and dimensions of the 5x25-mesh double twine netting samples of
green polyethylene type. The length of mesh sides is 49 + 0.2 mm. Hr is the total
length of the suspended panel in the T-direction after a creep step of 30 minutes.
Each sample was submitted to a pre-tension step in the N-direction. m is the mass
of the netting sample, Hyo and Hpy are the width and the heigth of the netting
sample at rest respectively, py is the area density at rest, and Hrp is the height of
the suspended netting sample.

Lt

Figure 3.11 — Left: Brezline braided twine. Right: Brezline fibre.

3.2.7 Polyamide braided netting

We investigated single twine netting made of polyamide braided twines.

This twine is made up of a braided sheath composed of 16 threads. The linear
density of the twine is 2766.5 107% + 69.7 107% kg.m ™!, that is 2766.5 4+ 69.7 tex.
The diameter of the twine is 2.32 4+ 0.1 mm. The pitch of the braided sheath, which
is the longitudinal distance required for one revolution of a thread around the twine,
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1 [0.178 | 0.466 | 0.143 | 2.671 | 0.245 | 0.433 | 0.545 | 0.738 | 0.829
2 1 0.177 | 0.455 | 0.180 | 2.161 | 0.285 | 0.458 | 0.560 | 0.737 | 0.830
3 1 0.179 | 0.465 | 0.135 | 2.851 | 0.237 | 0.423 | 0.540 | 0.725 | 0.815
4 10.179 | 0.465 | 0.140 | 2.750 | 0.233 | 0.425 | 0.530 | 0.730 | 0.830
5 |1 0.180 | 0.458 | 0.167 | 2.353 | 0.275 | 0.470 | 0.575 | 0.745 | 0.820

Table 3.8 — Mass and dimensions of the 4x10-mesh double twine netting samples of
green polyethylene type. The length of mesh sides is 60 + 0.3 mm. Hry is the total
length of the suspended panel in the T-direction after a creep step of 30 minutes.
Each sample was submitted to a pre-tension step in the N-direction. m is the mass
of the netting sample, Hyo and Hpy are the width and the heigth of the netting
sample at rest respectively, pg is the area density at rest, and Hp is the height of
the suspended netting sample.

0.179 | 0.464 | 0.145 | 2.661
0.181 | 0.465 | 0.142 | 2.741
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Table 3.9 — Mass and dimensions of two 4x10-mesh double twine netting samples
of green polyethylene type. The length of mesh sides is 60 4+ 0.3 mm. The samples
were tested in uniaxial tensile tests. Each sample was submitted to a pre-tension
step in the N-direction. m is the mass of the netting sample, Hyg and Hpy are the
width and the heigth of the netting sample at rest respectively, and p, is the area
density at rest.

is 7 £+ 0.5 mm.

The length of mesh sides was 29.5 + 0.6 mm. The samples had 4 and 10 meshes
in the N-direction and T-direction respectively. Ten samples were tested. The mass
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0.0184 | 0.318 | 0.080 | 0.723 | 0.407 | 0.558 | 0.624 | 0.648
0.0184 | 0.318 | 0.087 | 0.665 | 0.398 | 0.552 | 0.626 | 0.650
0.0184 | 0.318 | 0.085 | 0.681 | 0.417 | 0.563 | 0.634 | 0.655
0.0183 | 0.317 | 0.087 | 0.664 | 0.423 | 0.568 | 0.629 | 0.653
0.0183 | 0.318 | 0.082 | 0.702 | 0.419 | 0.560 | 0.628 | 0.651
0.0186 | 0.317 | 0.084 | 0.698 | 0.428 | 0.571 | 0.633 | 0.656
0.0184 | 0.317 | 0.090 | 0.645 | 0.414 | 0.563 | 0.629 | 0.651
0.0184 | 0.317 | 0.087 | 0.667 | 0.430 | 0.569 | 0.629 | 0.650
0.0183 | 0.318 | 0.086 | 0.669 | 0.434 | 0.574 | 0.631 | 0.653
0.0184 | 0.318 | 0.085 | 0.681 | 0.424 | 0.567 | 0.626 | 0.650

S| ©| o] ~1| o[ | | wo| no| —=| sample number

Table 3.10 — Mass and dimensions of the 4x10-mesh single twine netting samples
of Breztop polyethylene type. Hrp is the total length of the suspended panel in the
T-direction after a creep step of 30 minutes. Each sample was submitted to a pre-
tension step in the N-direction. m is the mass of the netting sample, Hyo and Hrpg
are the width and the heigth of the netting sample at rest respectively, pg is the
area density at rest, and Hrp is the height of the suspended netting sample.

and the dimensions at rest Hyo and Hpg are given by Table 3.12.
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1 | 0.1165 | 0.470 | 0.138 | 1.796 | 0.370 | 0.509 | 0.702 | 0.802
2 10.1165 | 0.467 | 0.128 | 1.949 | 0.361 | 0.510 | 0.711 | 0.814
3 101158 | 0.474 | 0.128 | 1.909 | 0.343 | 0.494 | 0.697 | 0.807
4 10.1189 | 0.479 | 0.125 | 1.986 | 0.343 | 0.501 | 0.707 | 0.816
5 1 0.1182 10478 | 0.132 | 1.873 | 0.358 | 0.514 | 0.714 | 0.818
6 | 0.1186 | 0.475 | 0.135 | 1.849 | 0.361 | 0.512 | 0.710 | 0.810
7 101154 | 0.472 | 0.126 | 1.940 | 0.346 | 0.495 | 0.691 | 0.797
8 10.1196 | 0.480 | 0.144 | 1.730 | 0.399 | 0.547 | 0.746 | 0.848
9 1 0.1175 | 0.483 | 0.128 | 1.901 | 0.392 | 0.547 | 0.749 | 0.854
10 | 0.1187 | 0.480 | 0.133 | 1.859 | 0.379 | 0.532 | 0.737 | 0.849

Table 3.11 — Mass and dimensions of the 4x10-mesh single twine netting samples
of Brezline polyethylene type. Hyp is the total length of the suspended panel in
the T-direction after a creep step of 30 minutes. Each sample was submitted to a
pre-tension step in the N-direction. m is the mass of the netting sample, Hy( and
Hrp are the width and the heigth of the netting sample at rest respectively, pg is
the area density at rest, and Hr is the height of the suspended netting sample.
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3.2. Netting samples for experiments
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0.0209 | 0.222 | 0.125 | 0.753 | 0.264 | 0.427
0.0211 | 0.235 | 0.128 | 0.701 | 0.242 | 0.441
0.0212 | 0.235 | 0.113 | 0.798 | 0.223 | 0.448
0.0208 | 0.227 | 0.115 | 0.797 | 0.205 | 0.429
0.0212 | 0.235 | 0.112 | 0.805 | 0.196 | 0.446
0.0211 | 0.232 | 0.110 | 0.827 | 0.198 | 0.436
0.0207 | 0.225 | 0.105 | 0.876 | 0.250 | 0.428
0.0212 | 0.235 | 0.130 | 0.694 | 0.265 | 0.442
0.0210 | 0.232 | 0.113 | 0.801 | 0.242 | 0.435
0.0209 | 0.235 | 0.125 | 0.711 | 0.235 | 0.447

Sl o| 0|~ | | | wof ro| =| sample number

Table 3.12 — Mass and dimensions of the 4x10-mesh single twine netting samples
of polyamide type. Hr is the total length of the suspended panel in the T-direction
after a creep step of 30 minutes. Each sample was submitted to a pre-tension step
in the N-direction. m is the mass of the netting sample, Hyo and Hpy are the width
and the heigth of the netting sample at rest respectively, py is the area density at
rest, and Hrp is the height of the suspended netting sample.
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Chapter 3. Experimental method and netting samples

3.3 Evaluation of the axial stiffness of twine

Tensile tests have been performed on the LR5Kplus tensile testing machine to evalu-
ate the axial stiffness of twines constituting the studied fishing nets. Because of the
complex visco-elasto-plastic behaviour of the polyethylene, it is not straightforward
to evaluate the axial stiffness. We proposed to assess this stiffness by measuring the
moduli of short-time behaviour according to Bles et al. (2009) and the moduli of
long-time behaviour.

3.3.1 Experimental method

A tensile test has been performed on a twine constituting the green polyethylene
braided netting presented in Section 3.2.4.

We measured the applied force and the elongation of the twine. We mea-
sured the distance between two points along the twine using a LASERSCAN 200
non-contacting extensometer (Lloyd instruments). In order to increase the strain-
measure precision of the Laserscan extensometer, we made a special measurement
device (Fig. 3.12).

The loading path was a monotonic loading interrupted by 8 relaxation stages
when the jaw displacement was blocked. The strain rate was 2.107* s and the
load at the beginning of the relaxation stages increased from 100 to 900 N, by 100
N steps. The duration of the eight relaxation stages was 15 minutes.

A result of this test is given by Figures 3.13 left and 3.14.

3.3.2 Short-time modulus of elasticity

Bles et al. (2009) noted that the measurements after relaxations and creeps of the
initial modulus were in agreement and provided a characteristic evolution of a short-
time modulus.

We calculated the moduli of short-time behaviour by calculating the slope at the
beginning of each load step, just after a relaxation stage (Fig. 3.13). The evolution
of the moduli with the logarithmic strain in the case of the studied braided twine
is shown in Figure 3.13. For a small logarithmic strain (< 0.055), we will suppose
that the short-time modulus of elasticity is inferior to 14000 N.

3.3.3 Long-time modulus of elasticity

The stress relaxations during relaxation stages show that the twine presents a visco-
elastic behaviour. If we assume that the effect of the viscosity is relaxed at the end
of each relaxation stage, we can evaluate the long-time elastic behaviour of the
twine. Indeed, with these assumptions, the elastic component of the Force-Strain
behaviour links the points at the ends of each relaxation step. We calculated a linear
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3.3. Evaluation of the axial stiffness of twine

hanging point on the twine

__two light rigid tubes
laser extensometer

_laser reflective tapes

fixing point on the twine
twine

Y

F

Figure 3.12 — Measurement device allowing to accurately measure the distance be-
tween two points on the twine using a non-contacting extensometer in spite of the
torsion in the twine during the test.

regression on the points at the ends of each relaxation step (red line in Fig. 3.14).
The slope of the line is 2444 N, and the coefficient of determination R?* = 0.992.

Thus, for the chosen logarithmic strain, we can assume that the axial tensile
stiffness is equal to 2444 N.

29



Chapter 3. Experimental method and netting samples

F [N]

1000 60000 X
50000 - *
800
— 40000 [~ n
600 = «
g *
S L % _
§ 30000 »:
400 L
© 20000 X -
X
200 10000 [~ ]
0 0 \ [ \ \
0 0.05 0.1 0.15 0.2 0.25 0 0.05 01 015 0.2 0.25
logarithmic strain (eqq) [-] logarithmic strain (eoq) [-]

Figure 3.13 — Left: the black line presents the load as a function of the logarithmic
strain e;,,, and the red segments indicate the slope (short-time modulus) just after
each relaxation stage. Right: evolution of the short-time modulus, obtained with
the slopes in the figure on the left.
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Figure 3.14 — The black line presents the experimental result of the load as a function
of the logarithmic strain, and the red line was obtained with a linear regression.

3.3.4 Discussion

A tensile test performed on a twine constituting the green polyethylene braided net-
ting allowed us to evaluate the short-time and long-time Young’s moduli of elasticity.
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3.3. Evaluation of the axial stiffness of twine

The short-time modulus increases when the axial strain increases. We can assume
that, for a small logarithmic strain (< 0.055), the short-time modulus of elasticity
is inferior to 14000 N. However, it was necessary to evaluate the long-time axial
stiffness of the twine. For that, the twine presenting a visco-elastic behaviour, it was
assumed that the viscosity effect was removed at the end of each relaxation step.
We found an axial tensile stiffness equal to 2444 N for the chosen logarithmic strain.

These results will be used in the numerical models to evaluate the effect of the
axial stiffness during suspending, uniaxial and biaxial tensile tests.
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CHAPTER

4

Experimental results

4.1 Uniaxial tensile tests

4.1.1 Experimental results

Results of two tests on two netting samples are presented: Figures 4.1 and 4.2 show
the result in case of a 4x10-mesh double twine Green PE netting sample with a
mesh side length of 60 mm (described in Table 3.9), and Figure 4.3 shows the result
in case of a 4x10-mesh single twine Green PE netting sample with a mesh side
length of 40 mm (described in Table 3.2). A load and unload cycle interrupted by
several relaxation stages was imposed. The controlled jaw displacement rate was
100 mm.min~". The duration of the relaxation stages was 15 minutes.

Figures 4.4 and 4.5 present the result of a cyclic tensile test on a double twine
Green PE netting sample.

4.1.2 Uniaxial stress state

Regarding the structure of netting, we could wonder if the force applied on the cen-
tre mesh was uniaxial.

First, the shape of the deformed netting sample (Fig. 4.6) showed boundary ef-
fects. The boundary effects did not seem to apply a transverse force on the central
mesh. Indeed, the width along the height of the sample appeared to be constant
around the centre of the sample.

Then, the simulation of a netting sample tested in a uniaxial tensile test us-
ing the finite element method (Abaqus Standard tool) revealed a compression force
in the N-direction in the meshes along the longitudinal plane of symmetry of the
sample (Tables D.1 and D.2). By simulating a uniaxial tensile test on a netting
sample submitted to a force by mesh F'my in the T-direction of 1 N, a compression
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Figure 4.1 — Result of a tensile test including relaxation stages of 15 minutes on a
4x10-mesh double twine Green PE netting sample (Table 3.8). At the top,
evolution of the opening in the T-direction of the mesh in the middle of the netting
panel. At the bottom, evolution of the force by mesh F'my in the T-direction applied
on the mesh in the middle of the netting panel. The length of the mesh sides is 60
mm. The evolution of the force by mesh F'my during the relaxation steps reveals
the viscosity of the material.

force F'my in the mesh in the middle of the netting sample equal to —0.32 N was
revealed (Fmy/Fmr = —0.32, Table D.1). If the force by mesh Fmy applied in
the T-direction was 12.5 N, the force by mesh F'my in the N-direction in the mesh
in the middle of the netting panel was —0.52 N (Fmy/Fmp = —0.04, Table D.2).
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4.1. Uniaxial tensile tests
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Figure 4.2 — Result of a tensile test including relaxation stages of 15 minutes on a
4x10-mesh double twine Green PE netting sample (Table 3.8). Evolution of
the force by mesh Fmy in the T-direction applied on the mesh in the middle of the
netting panel as a function of the opening or in the T-direction. The length of the
mesh sides is 60 mm.

The mesh in the middle of a netting sample tested on the tensile testing machine
is not in a perfect uniaxial stress state.

By increasing the distance between the boundaries and the centre of the tested
samples, thus by using longer samples in the T-direction, we could reach a uniax-
ial stress state. However, because of the limited displacement course of the tensile
testing machine, a special tensile machine should be necessary.
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Figure 4.3 — Results of tensile tests including relaxation stages of 15 minutes on a
4x10-mesh single twine Green PE netting sample with a mesh side length of
40 mm (red, Table 3.2) and on a 4x10-mesh double twine Green PE netting
sample with a mesh side length of 60 mm (black, Figure 4.2). Evolution of the
force by mesh Fmq in the T-direction applied on the mesh in the middle of the
netting panel as a function of the opening or in the T-direction.
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Figure 4.4 — Result of a cyclic test on a 4x10-mesh double twine Green PE
netting sample (Table 3.8). At the top, evolution of the opening in the T-direction
of the mesh in the middle of the netting panel. At the bottom, evolution of the force
by mesh F'my in the T-direction applied on the mesh in the middle of the netting
panel. The length of the mesh sides is 60 mm.
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Figure 4.5 — Result of a cyclic test on a 4x10-mesh double twine Green PE
netting sample (Table 3.8). Evolution of the force by mesh Fmy in the T-direction
applied on the mesh in the middle of the netting panel as a function of the opening
or in the T-direction. The length of the mesh sides is 60 mm.

N

<< Central mesh

)\

Netting sample

Figure 4.6 — Shape of a netting sample tested in a uniaxial tensile test.
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4.2. Suspending tests

4.2 Suspending tests

4.2.1 Evolution of the heights

Figures 4.7 to 4.9 present the evolution of the total height in the T-direction Hrp
of 4x10-mesh single twine samples made of Green PE (Fig. 4.7), Breztop PE (Fig.
4.8) and Brezline PE (Fig. 4.9) during suspending tests. Each netting sample was
subjected to a force by mesh F'myp successively equal to 0.324 N, 0.814 N, 1.795 N
and 2.776 N.

0.6 T

0.5

04 [ -
E .l |
- 03
T

0.2 %;;:-————_——‘; _

0.1 Stepl Step 2 Step 3 Step 4 .

| | | | | | \

0 1000 2000 3000 4000 5000 6000 7000 8000
t [s]

Figure 4.7 — Results of experimental suspending tests on 10 4x10-mesh single
twine Green PE netting samples (Table 3.1). Evolution of the total height in
the T-direction of each sample subjected to a force by mesh F'mp successively equal
to 0.324 N (Step 1), 0.814 N (Step 2), 1.795 N (Step 3) and 2.776 N (Step 4). The
black line represents the evolution of one representative netting panel. The evolution
of the height Hr during the creep steps reveals the viscosity of the material.

4.2.2 Heights in the panels

Figures 4.10 to 4.15 show the experimental (and numerical) heights for a range of
suspended netting samples. The heights were measured at the end of the creep steps
of 30 minutes.

The numerical results are presented in details in Section 6.1.2.
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Figure 4.8 — Results of experimental suspending tests on 10 4x10-mesh single
twine Breztop PE netting samples (Table 3.10). Same comments as Fig. 4.7.
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Figure 4.9 — Results of experimental suspending tests on 10 4x10-mesh single
twine Brezline PE netting samples (Table 3.11). Same comments as Fig. 4.7.

4.2.3 Force by mesh versus opening

Figure 4.16 shows the evolution of the force by mesh F'my as a function of the mean
value of the mesh opening in the T-direction or. We compared 3 types of double
twine Green PE netting samples: 4x10-mesh samples with a mesh side length of
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Figure 4.10 — Left: Results of experimental suspending tests and their numerical
simulations on 10 4x10-mesh single twine Green PE netting samples. Heights
of the quarters H1 to H4 (defined in Fig. 3.3) after 30 minutes of the creep stages
at 4 loading levels F'mp. Right: Picture of one suspended 4x10-mesh single twine
Green PE netting sample subjected to a force by mesh in the T-direction Fmy of
2.8 N.

50 mm and pre-tensioned in the T-direction (Table 3.6), 4x10-mesh samples with a
mesh side length of 60 mm and pre-tensioned in the N-direction (Table 3.8), 5x25-
mesh samples with a mesh side length of 50 mm and pre-tensioned in the N-direction
(Table 3.7). Measurements were taken on 5 samples of each netting panel type and
of the end of the creep stages of 30 minutes.

We calculated the mean values and the standard deviation of the opening or by
considering, for each netting type, the openings of the meshes on the vertical centre
line of the 5 samples. That means the meshes 2, 9, 16, ..., 65 in case of a 4x10-mesh
sample (Fig. A.1) and the meshes 3, 12, 21, ..., 219 in case of a 5x25-mesh sample
(Fig. A.2).

The force by mesh Fmy was described in Section 3.1.2 (Fig. 3.2).

71



Chapter 4. Experimental results

0.18+

. . FmT = 5.070 N
6 ¥ 8 % ¥ Byt —
0.16
0147 F i | o ¥ . FmT = 1.146 N
0 x s . e X——
0129 5 ° o
X g X g x
= ° X 2 2 x 3 X _ FmT=0ON
E 01 X ° x ol
£ g -
()}
© 0.08-
o
0.06-
0.04
0.02+ o experimental
X numerical
0 r r r T
H1 H2 H3 H4

quarter

Figure 4.11 — Left: Results of experimental suspending tests and their numerical
simulations on 5 4x10-mesh double twine Green PE netting samples. Heights
of the quarters H1 to H4 after 30 minutes of the creep stages at 3 loading levels
F'mr. Right: Picture of one suspended 4x10-mesh double twine Green PE netting
sample subjected to a force by mesh in the T-direction F'my of 2.6 N.

4.2.4 Openings and curvature

Figure 4.17 represents the opening in the T-direction o7 as a function of the opening
in the N-direction oy in case of 4x10-mesh double twine Green PE netting samples
with a mesh side length of 60 mm during suspending tests. The suspending tests on
5 samples allowed to calculate the mean openings (mean on the 5 samples) of the
10 meshes along the vertical line passing through the centre of the sample (meshes
2,9,16, ..., 65 1in Fig. A.1) for 5 different loading levels.

In Figure 4.17, the red circle arc represents the relation between the opening or
and oy modelling a mesh side by one bar element articulated at its ends (Fig. 4.18).
This mesh could represent an ideal mesh without twine bending stiffness.

By assuming that a half mesh side could be modelled by a circle arc with a radius

1
R, the curvature = is a function of o7, on and L, (Eqs. B.3, B.6 and B.9). Thus we

1
could represent this approximation of — as a function of the experimental opening

in the T-direction or (Fig. 4.19). The result was fitted with a polynomial regression.
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Figure 4.12 — Left: Results of experimental suspending tests and their numerical
simulations on 5 5x25-mesh double twine Green PE netting samples. Heights
of the fifths H1 to H5 (defined in Fig. 3.3) after 30 minutes of the creep stages at
6 loading levels F'mp. Right: Picture of one suspended 5x25-mesh double twine
Green PE netting sample subjected to a force by mesh in the T-direction F'my of
2.1 N.

By assuming that a half mesh side could be modelled by a circle arc and that
there is no stretching in the mesh side, we can express the openings ox and or in the
N- and T-direction respectively (Eqs. B.14 to B.16). The obtained relation between
oy and or, represented in Figure 4.17 (blue solid line), is close to the experimental
relation between oy and or (blue '+7).
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Figure 4.13 — Left: Results of experimental suspending tests and their numeri-
cal simulations on 10 4x10-mesh single twine Breztop PE netting samples.
Heights of the quarters H1 to H4 after 30 minutes of the creep stages at 4 loading
levels Fmyp. Right: Picture of one suspended 4x10-mesh single twine Breztop PE
netting sample subjected to a force by mesh in the T-direction Fm¢y of 0.8 N.
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Figure 4.14 — Left: Results of experimental suspending tests and their numerical
simulations on 10 4x10-mesh single twine Brezline PE netting samples.
Heights of the quarters H1 to H4 after 30 minutes of the creep stages at 4 loading
levels F'my. Right: Picture of one suspended 4x10-mesh single twine Brezline PE
netting sample subjected to a force by mesh in the T-direction F'my of 2.8 N.
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Figure 4.15 — Left: Results of experimental suspending tests and their numerical
simulations on 10 4x10-mesh single twine PA netting samples. Heights of
the quarters H1 to H4 for 2 loading levels Fmy. Right: Picture of a suspended
4x10-mesh single twine Green PE netting sample.
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Figure 4.16 — Results of experimental suspending tests on double twine Green
PE netting samples. Force by mesh applied in the T-direction F'my as a function
of the mean value (£ standard deviation) of the mesh opening in the T-direction
or. Measurements were taken on 5 samples of each netting panel type and at the
end of the creep stages of 30 minutes.
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Figure 4.17 — Suspending tests on 5 double twine Green PE netting samples
with a mesh side length of 60 mm. Mean experimental openings of the meshes in
the centre horizontally and from the top to the bottom (blue '+’) and openings of
an ideal netting in which a mesh side is modelled by one bar and without mesh
resistance to opening (red solid line, scheme of one mesh in Fig. 4.18). The blue
solid line represents the relation between oy and or by modelling the half mesh side
by a circle arc and by assuming that there is no twine stretching.
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Figure 4.18 — Ideal mesh without mesh resistance to opening: each mesh side is
modelled by one bar articulated at its ends.
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Figure 4.19 — Suspending tests on 5 double twine Green PE netting samples
with a mesh side length of 60 mm. The curvature (1/R) is approximated by assuming
that the half mesh side can be modelled by a circular arc. The equation of the fitted
curve is 1/R = 13.69570% + 21.607607 — 5.8163, and the coefficient of determination
of the polynomial regression is 0.996938.
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4.3 Biaxial tensile tests

Figure 4.20 shows the evolution of the force by mesh F'mr as a function of the open-
ing o7 in the T-direction in case of biaxial tensile tests. For each type of loading
(Fmy =0 N, Fmy = Fmy and Fmy = 2Fmy), 5 samples of double twine Green
PE netting with a mesh side length of 50 mm were tested.

The deformation of the netting samples is assumed to be uniform. The measure-
ments were performed after creep steps of 30 minutes. Nevertheless, the visco-
elastic behaviour was observable on the displacement time-evolution only when
Fm N — 0N.

6 | \
5 - 3| P —— —
4 ! |
Z
l_ — —
= 3
LL
= B M —— |
e FmN=0 N —+—
1 FmN=FmT F>— —
FmN=2FmT %
0 \ \ | \ \ \
0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Figure 4.20 — Results of biaxial tensile tests on double twine Green PE netting
samples. Force by mesh applied in the T-direction F'my as a function of the mean
value (£ standard deviation) of the mesh opening in the T-direction o. For each
of the 3 loading types, 5 samples were tested. The mesh side length at rest of the
samples is 50 mm.

4.4 Comparisons between results obtained with
uniaxial, biaxial and suspending tests

In Figures 4.21 and 4.22, results of a uniaxial tensile test and suspending tests on
4x10-mesh double twine Green PE netting samples are compared. Figure 4.23 shows
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tests

the evolution of the force by mesh applied in the T-direction Fmqs as a function of
the mean value of the mesh opening in the T-direction oy in cases of suspending
tests and biaxial tensile tests.

14 \ \ \ \
Suspending tests F>¢—

Uniaxial tensile test

10 [~

FmT [N]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
oT [-]

Figure 4.21 — Results of a uniaxial tensile test (black) and suspending tests (red)
on 4x10-mesh double twine Green PE netting samples (Tables 3.9 and 3.8).
Force by mesh applied in the T-direction F'my as a function of the mean value
(£ standard deviation) (for suspending tests only) of the mesh opening in the T-
direction or. In case of the suspending tests, measurements were taken on 5 samples
and at the end of each creep stage of 30 minutes. The mesh side length at rest of
the samples is 60 mm. The results of the uniaxial tensile test are close to the results
of the suspending tests.
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Figure 4.22 — Results of a uniaxial tensile test and suspending tests on 4x10-mesh
double twine Green PE netting samples. The results at the beginning and the
end of each creep or relaxation step are represented. For convenience, a constant
value A, depending on the studied mesh, was added to the represented opening.
The meshes are numbered from the left to the right and from the top to the bottom
(Fig. A.1). The mesh side length at rest of the samples is 60 mm. The distance
between the results at the beginning and at the end of each creep or relaxation step
provides a quantitative evaluation of the effect of the viscosity on the mechanical
behaviour of netting.
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FmT [N]
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5x25-mesh samples, suspending tests
3x3-mesh samples, biaxial tensile tests, FMN=0 N F—+—1

Figure 4.23 — Results of suspending tests (red) and biaxial tensile tests (black)
on double twine Green PE netting samples (Tables 3.7 and 3.3). Force by
mesh applied in the T-direction F'my as a function of the mean value (% standard
deviation) of the mesh opening in the T-direction oy. In case of the suspending
tests, measurements were taken at the end of each creep stage of 30 minutes. The
mesh side length at rest of the samples is 50 mm. Similar results are obtained with
the suspending tests and the biaxial tensile tests.
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4.5 Visco-elasto-plastic mechanical behaviour
scheme

Regarding the experimental results, the mechanical behaviour of meshes in a net-
ting made of polymer material can be assumed visco-elasto-plastic. This behaviour
was well described in Bles et al. (2009) in case of the study of a polyamide-fiber strap.

The force applied on one mesh of netting F'm can be assumed to be the super-
imposition of three forces components F'm., F'm, and F'm, (Eq. 4.1).

Fm(o,o, 1) = Fm.(o) + Fmy(o,0) + Fmy(o, p) (4.1)

The force component F'm, is non-linear elastic. The force component F'm,, is
viscoelastic and related to the opening rate 0, and eventually to the opening o. The
force component F'm,, is elastoplastic and irreversible and related to the opening o
and to a cycle-history parameter pu.

Figure 4.24 qualitatively illustrates its mechanical behaviour modelled by a visco-
elasto-hysteresis model. This figure shows the typical shape of the stress-strain
cycles often observed with materials woven in polymer fibers. It represents well,
in case of netting, the shape of force-opening cycles obtained with uniaxial ten-
sile tests. The viscoelastic behaviour is represented in Fig. 4.24a, the non-linear
elastic behaviour in Fig. 4.24b, the elastoplastic behaviour in Fig. 4.24c and the
superimposition of all these components is represented in Fig. 4.24d.
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Figure 4.24 — Cyclic mechanical behaviour of the three force components of the
visco-elasto-hysteresis model from Bles et al. (2009). The viscoelastic behaviour
(a), the non-linear elastic behaviour (b), the elastoplastic behaviour (c), and the
superimposition of all these components (c) are represented.

4.6 Discussion

The uniaxial tensile tests and the suspending tests provide results which reveal the
visco-elasto-plastic mechanical behaviour of the netting samples.

The viscosity is revealed with the evolution of the forces during relaxation steps
(Fig. 4.1), the force response during cyclic tests and the evolution of the height Hrp
during the creep steps (Figs. 4.7 to 4.9). Non-linear elasticity is seen on Figures
4.2, 4.3 and 4.5.

Figure 4.1 shows that the opening op was still high during the unload (with
relaxation stages of 15 minutes). Thus, the mesh did not come back to its initial
state. The structure presented a permanent deformation (or a long-term viscosity).

Regarding the evolution of the height Hp during the creep stages (Figs. 4.7 to

4.9), we can assume that in case of the suspending tests of netting made of Green
PE, Breztop PE or Brezline PE, the contribution of the viscous component of the
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strain is cancelled after 30 minutes of creep. In case of netting made of PA, we
observed viscosity that vanishes in a very short time.

Figures 4.7 to 4.15 show small variation in the results provided by suspending
tests: the results obtained with several samples of the same type of netting are
very close. In Figures 4.10 to 4.15, it can be seen that the heights (H; to Hj)
increase when the applied load increases, as expected. It can also be seen that, for
each loading level F'my, the height at the top quarter H; (or fifth) is higher than
at the bottom quarter Hy (or fifth Hs). Thus, the deformation of the netting is
not uniform, which is due to gravity. This point is important: suspending tests are
simple to carry out but the deformation in suspended netting samples is not uniform.

Figure 4.16 shows that the pre-tension step in the T-direction caused a perma-
nent deformation in this direction. The applied force by mesh F'mr increases faster
when the opening or increases in case of a mesh side length of 50 mm than in case
of a mesh side length of 60 mm. Thus the resistance to opening of netting in case of
a mesh side length of 50 mm is higher than in the case of a mesh side length of 60
mm. This difference could be explained by the different geometry of the structure,
the influence of knots on the mechanical behaviour of netting, and/or the different
interactions between the two twines constituting the mesh side. Indeed, in case of a
double twine netting, the interactions between the twines can be assumed stronger
when the mesh side is shorter.

In Figure 4.17, the difference between experimental data and the articulated-bar
model reveals the bending in the mesh sides that reduces the distance between knots.
By modelling the shape of a half mesh side with a circle arc, a polynomial relation

1
was found between the curvature — and the mesh opening in the T-direction or

(Fig. 4.19). By assuming that a half mesh side could be modelled by a circle arc
and that there is no axial stretching in the mesh side, the obtained relation between
the openings oy and or, in the N- and T-direction respectively, was close to the
experimentally obtained relation (Fig. 4.17). The curvature being directly linked to
the bending stiffness in the beam theory, the study of some parameters as functions
of the opening or (or oy) appears consistent.

The biaxial tensile tests show that the larger the force in the N-direction F'my
is, the smaller the mesh opening in the T-direction is, as expected (Fig. 4.20).

The use and consistency of the three types of experiments are validated by the
comparisons of the results. First, Figure 4.21 shows that the result of the uniaxial
tensile test is close to the ones of the suspending tests in case of a 4x10-mesh dou-
ble twine Green PE netting in spite of the different boundary conditions. Despite
the difference in the loading (speed, boundary conditions) and in the duration of
the creep and relaxation steps, Figure 4.22 reveals a visco-elastic behaviour qual-
itatively similar in the two types of experiments. Then, the comparison of the
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responses force-opening, obtained with suspending and uniaxial tensile tests on the
biaxial tensile device (Fig. 4.23), allows us to validate the biaxial tensile machine.
Indeed, it validates the realization of the boundary conditions with linear motion
ball bearings (Section 3.1.3).

Finally, the visco-elasto-plastic behaviour observed in the experimental results
gives us information to set up the experimental design. First, the measurements
would have to be made after, at least, 30 minutes of creep in case of suspending
tests and 15 minutes of relaxation in case of uniaxial tensile tests. In case of bi-
axial tensile tests, a measure of the effect of the viscosity was out of reach of our
experimental device. Thus, the viscosity effect was assumed negligible. Then, the
cyclic behaviour shows that, during the loading step, the loading needs to be only
increasing, optionally interrupted by creep or relaxation steps. These elements for
the experimental design could be confirmed with the numerical results.
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5)

Numerical methods

5.1 Quasi-analytical approach

A quasi-analytical model based on the beam theory and allowing large rotations
is proposed to simulate the tensile test, assuming that the load applied on the
mesh in the middle of the netting panel is supposed to be uniaxial, only in the
T-direction. Contrary to the model proposed in O’Neill (2002), no approximation

is made (e < 0.2) and the ratio e = \/E1/(I?f) could be lower and higher than 0.2.

We developed the model with the programing language C++. The notations
used are defined in Figure 5.1.

'y FmT/z
? horizontal .
mr translation joint l
Vi
/ e
AT u y(x) I{)
................ l
ym e 0
e N 190
e - =1

deformed

Figure 5.1 — Left: application of a load F'my on a mesh. Right: kinematic of the
twine between points £ and I.

First, the bending moment M is related to the curvature as follows:
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df
M=FEI—
ds

(5.1)

where FI is the bending stiffness, s is the curvilinear abscissa, 6 is the mesh

do
angle, and — is the curvature.

s
The bending moment is given by:

FmT
2

M:

(zr — )

along the center line of the beam.
The curvature is a function of y(z) as follows:

do 1 y" ()

) = cos’(0)y"(x) =

@ L+ [y(@)2 [+ @PP?

By using relations 5.1, 5.2 and 5.3, the following expression is obtained:

Vo € [0; 2]

The boundary conditions are:

O(x=0)=06y < y'(xr=0)=tan(b)

The length of the mesh side is assumed to be constant:

Vit c R+ Lms = LmsO

I I L
/ ds = ’ ds = =m0
E Eo 2

90

(5.2)



5.1. Quasi-analytical approach

To work with dimensionless parameters, x and y are defined by:

_ 2z _ 2y
= = 1
v LmsO Y LmsO (5 O)
And u is defined by:
Va € [0; 2] u(z) =y'(x) (5.11)

Using equations 5.10 and 5.11, relations 5.4, 5.6 and 5.9 become 5.12, 5.13 and
5.14 respectively.

vz € [0; ;] F?T(Lgso)%xl ) = El[l " [ZEQP]W (5.12)
u(z = 0) = tan(fy) (5.13)
/OII 1+ [w(@)2dz = 1 (5.14)

The solutions of the differential equation 5.12 are:

Fmr Lns® T, u(z)
5Bl 4 Ti;— =] = ————+K (5.15)

Vz € [0, Zf]]

where K € R.
Using relation 5.13 with relation 5.15, we obtain:

Fmp Liso® . x u(T tan(f
vz € [0; 7] 2E; 40 iz - 5] = ( )_ — (02) (5.16)
VI+ @2 /1+ tan®(0)
To simplify the equation, we defined v by:
Vz € [0; 2] v(Z) = __u@ (5.17)
1+ [u(z)]?
So u can also be defined by:
vz € [0; 2] uw(z) = L)_ (5.18)
1—[o(@)]?
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where v €] — 1;1].
Then relation 5.16 leads to:

Fmg Lns® T,
Vz € [0; 7] v(z) = QE; 40 T[T — 5] + sin(6o) (5.19)

By using relations 5.18, 5.19 and 5.14, the value of x; can be evaluated by an
iterative algorithm (e.g. dichotomy algorithm).
Using the relations 5.10 and 5.11, y becomes:

Viel0;3]  §(3) = / u(z) d7 (5.20)
0
So y; can be calculated by:

= /0 V(7)) dz (5.21)

Finally, the displacement of the half mesh side, and so the opening of the mesh
in the middle of the netting panel during the tensile test, submitted to a tensile
force F'mr, can be calculated by relations 5.18, 5.19 and 5.21.

5.2 Finite element model

5.2.1 Abaqus Standard Software tool
Description

The mechanical behaviour of netting used in case of uniaxial tensile tests was mod-
elled using the Abaqus Standard finite element code.

A mesh side was assumed to behave like a Timoshenko beam. In Abaqus, we model
a mesh side with a planar beam that uses linear interpolation and a 2D hybrid
formulation (B21H type in Abaqus).

Timoshenko beams allow for transverse shear deformation and can be subject to
large axial strains. Hybrid beam element types are used for geometrically nonlinear
analysis when the beam undergoes large rotations.

In this study, we modelled a mesh side with 20 B21H elements. The shear modulus
was supposed to be very high so that its value has negligible effect on the results
of mesh resistance to opening. The axial stiffness F A of the beam elements was
determined using the results presented in Section 3.3.
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5.2. Finite element model

Pre- and post-processing program

To simulate the experimental tests, post-process the results and perform an in-
verse identification iteration loop (Section 5.2.5), a software has been designed and
implemented. The pre-post-processing program has been implemented with the pro-
gramming language Python. The steps of the program are described in Figure 5.2.

postProcess.dat

A
7 | writes
6
postProcess.py
reads
A
5| runs
1 v
calcAbaqus.py - »| job.inp job.odb
writes
A A
2| runs
v 3 | reads 4 | writes
Abaqus

Figure 5.2 — Diagram representing the steps of the pre- and post-processing program.
The program allows the simulation of netting samples, suspended or tested on the
uniaxial tensile machine, and the data post-processing.

The input geometrical parameters are: the number of meshes of the samples np
and ny in the T and N directions respectively, the length at rest [,,, of a mesh side,
the slope angle at rest 6y near the knot, the section area A and the area moment of
inertia I of a twine, and the boundary conditions.

The input material parameters are: the volumetric mass density p, the Poisson’s
ratio v, the Young’s modulus £ and the shear modulus G.

We also chose the number of elements per mesh sides.
The parameters E, A and [ are calculated regarding the chosen values for the

bending stiffness E'1 and the axial stiffness EA. We chose a Poisson’s ratio v equal
to 0.5.
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Influence of some parameters

Figure 5.3 shows the influence of the bending stiffness E'I and the applied force per
mesh F'm7 on the height of a suspended netting panel.
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Figure 5.3 — Total height Hy of a suspended 4x10-mesh netting panel in the T-
direction as a function of the applied force per mesh Fmy and the bending stiffness
of the mesh sides FI. The mass of the sample equals to 0.154 kg, the length of
the mesh sides equal to 0.049 m, the angle at rest 8y between mesh sides and the
N-direction is 7.5 °. The axial stiffness £A and the shear modulus G were chosen so
that their values had negligible effect on the results of mesh resistance to opening.
A mesh side was meshed with 20 Timoshenko beam elements.

5.2.2 Corotational formulation

We developed a finite element model using corotational 2D beams.

The problem is not linear. First we assume that the non-linearities come from
the geometry. Thus, we assume that the large transformations of the twines are
linked to large rotations, large displacements and small strains of the constituent
elements. To work with large rotations and small strain, we chose the corotational
approach presented by Le et al. (2011).
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The main idea of this approach is to decompose the motion of the element into
rigid body and pure deformational parts. Strain is measured in a local coordinates
system fixed to the elements and that moves and rotates with it. This approach
allows the use of an existing material model for small strain.

We developed this model using the programming language Python. The model
showed mechanical and computational results in agreement with the Abaqus soft-
ware tool. This model is a first step toward the development of a 3D finite element
model.

Moreover, it offered the possibility to take into account the transverse shear in
twines and to use optionally a non-linear material law.

5.2.3 Bar Element model

The bar element model presented in this section is a new and simple model for
netting implemented using the programming language C. It was based on Priour
(2013) and on the model for bending in twines described in this section. The model
was presented in Morvan et al. (2016).

A netting structure is discretized into bar elements, the extremities of which
are denoted nodes and are subject to forces. When the geometry of the netting
structure, the external forces acting on it and the rigidity of the structure are known,
the equilibrium position is obtained with the following steps:

o Step 1. First, an initial position of the structure (i.e. an initial position of
the nodes) is determined.

o Step 2. Then, the forces on those nodes are calculated depending on the
nodal positions.

o Step 3. Finally, the equilibrium position of the structure is obtained using
an incremental iterative method such as the Newton-Raphson scheme (Ortega
and Rheinboldt, 2000).

The numerical model proposes specific modelling, respectively for the aligned
elements and for the non-aligned elements of the structure at rest.

A mesh side connects two knots and is modelled as a beam. And more precisely,
with this original model, a mesh side is modelled as an assembly of aligned elements
(Section 5.2.3). In this document, the mesh is generally assumed to be diamond,
and the knot is represented as a node and can be modelled with only non-aligned
elements (Section 5.2.3). This model can also be used for square meshes. In this
case the square is considered as a diamond with a hanging ratio of 0.707 and the
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same modelling is used: an assembly of aligned elements for the mesh sides and non-
aligned elements for the knots. When the knots are large-sized, it could be worth
considering the mesh as hexagonal. In this case aligned and non-aligned elements
are used to model the knots.

Two non-aligned
elements at rest

Two aligned
elements at rest

A half mesh

A mesh side

Figure 5.4 — Netting model. A knot is modelled with, at least, two non-aligned
elements at rest (diamond meshes), and mesh sides are modelled with aligned ele-
ments.

Aligned elements to model mesh sides

The numerical model of a mesh side is based on Priour (2013). In this model, a
mesh side is assumed to behave like a beam and is discretized into bar elements
(Fig. 5.4 and Fig. 5.5). These elements are aligned and of equal length at rest.
In order to represent the beam behaviour, bending stiffness is introduced between
two consecutive elements: the couple between the two elements increases when the
angle between them increases. The expression of the couple is obtained from the
basic equation giving the curvature of an elastic beam subject to a specific moment:

EIl
C= 7 (5.22)
where F is the Young’s modulus, I is the moment of inertia and R is the radius
of curvature of the beam centreline at the node under consideration. The product
EI stands for the bending stiffness of the beam.
However, Equation 5.22 is valid under the strong assumptions of a symmetrical
beam, the transverse sections of which remain plane and normal to the centreline
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Figure 5.5 — Mesh side discretized into bar elements. A bar element connects two
nodes.

after bending. Even if these assumptions are not generally fulfilled in the case of a
netting, Eq. 5.22 is still used for the sake of simplicity.

------ position at rest

position under load
X

Figure 5.6 — Two consecutive bar elements in a mesh side. When the angle ¢ between
elements increases, the couple C' increases.

The radius of curvature R is given by the radius of the circumcircle of the triangle
defined by two consecutive bar elements (Fig. 5.6). The radius R of the circumcircle
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of triangle 123 is given by the formula :

| Xia| [ Xos| | X1

(5.23)
4\/29 — | Xa2|)(p — [Xas])(p — [Xa1])
where p is the semiperimeter of the circumcircle:
_ | X1o| + | Xos| 4 | X (5.24)

2

X1 dxl x1

Figure 5.7 — Virtual work principle. dz; generates an external work F, ; dz; and an
internal work C€.

Once the couple C' is calculated, the forces on the nodes are expressed using the
virtual work principle. Let us consider a virtual displacement dx; of the node 1
along the z-axis (Fig. 5.7). That displacement produces an external virtual work
OWe = F,10x1. It causes a variation 6 of the angle £ between the two consecutive
bar elements and generates an internal virtual work 0W; = Cd¢. From the basic
virtual work equation, which is 0W, = 6W;, one obtains:

0 _ 06

F . =0-— >
ol Cé.fl le

)

(5.25)

Doing the same for all the nodes 1, 2 and 3 and along the z, y and z-axis, one
obtains the equations:
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The partial derivatives of the angle £ in terms of the nodal coordinates are
obtained from the identity:

< X9, Xog >

cosé = 5.27
: | X12] | Xos] 527
and the forces on the nodes are given in vectorial form by:
= EI | < X12,X232> X2 ngl
|X12| |X23| RSll’lg L |X12|
F, = El ‘ __< X2, X232> X1z < X, X232> Xag + Xz — Xio
| X 12| [Xo3| Rsin§ | | X12| | X
EI [ < X9, Xo3 > X
B = . B 12, 232 23 +X121
|X12| |X23| RSIDS L |X23|
(5.28)

Non-aligned elements to model knots

Let us now consider a node corresponding to a knot of the netting (node 2 in Fig.
5.8). From the netting structure, one can see that the angle at rest between the two
consecutive elements on either side of this node is non-zero (Fig. 5.4 and Fig. 5.8).
Thus, Equation 5.22 does not work for this kind of node.

To express the couple on such a node (node 2 in Fig. 5.8), one builds a virtual
bar element 23’ To obtain the virtual node 3’, node 3 is rotated by the angle &
around node 2, where &, is the angle at rest between the two bar elements (Fig.
5.8):

Xy =Xo+ R (X3 — X5) (5.29)

where R is the rotation matrix by the angle &, around the axis normal to the plan
(X2, Xo3) around the node X, and it reads:

n2+(1—-n2c  ngny,(l—c)+n.s ngn,(l—c)—nys

R=|nny(1—c)+n.s ni+(1—nl)c nyn.(1—c)+ngs (5.30)

nen.(1—c)—nys nn(1—c)+ns n+(1-nl)c
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------ position at rest

position under load

Figure 5.8 — Couple acting on the node 2. The angle at rest & is not null.

where,

¢ = cos &,
s = sin &,
(5.31)
Zx _ Xo1 N X3
ny | X1 A Xog]

Moreover, the couple at node 2 is assumed to be completely carried by the bar
elements 12 and 23’ while node 3 is rigidly connected to node 3’ Therefore, the
couple at node 2 can be expressed by Equation 5.22 on the bar elements 12 and 23".
One only has to replace point X3 by point X3 in Equation 5.23 of the curvature
radius.

Then, the expression of nodal forces in this case is obtained by replacing the
curvature radius in Equation 5.28:
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2ET -< X12,X23 > X9
F = . 5 — X3
| X12| | Xog/| Rsiné | | X2
F 261 [ < X X > Xz | <X Xm>Xm | oy,
| X12| | Xog/| Rsin§ | | X1 | Xos|
2FT [ X9, X X
B = ' < X, 232> 23 +X12]
\Xlz\ \X23" Rsin ¢ L |X23|
(5.32)

The vector Xog is easily calculated using Equation 5.29.

Equilibrium position of the netting

Once the equations of all the nodal forces in terms of nodal positions are formulated,
one can solve them using an iterative procedure such as the Newton-Raphson scheme
for instance. Thus, from a defined initial position X°, position X is iteratively
adapted until equilibrium is reached. In fact, one can only find an approximate
solution by this method, therefore the equilibrium position is considered to have
been reached when the total nodal force F/(X) is close enough to zero within an
acceptable tolerance.

The iterative incrementation of X is given by the following recurrence relation
formula:

X0 = X0
XD — x &) L A X *) (5.33)
The iterative increment reads:
OF -
AX® = laX(X(k))] F(X®) (5.34)

0X

— [] is the tangent stiffness matrix

Applicability to hexagonal meshes

Modelling diamond meshes is possible using the models of aligned elements and non-
aligned elements previously described. Modelling hexagonal meshes is also possible.
In the case of diamond meshes, 2, 3 or 4 non-aligned elements connected to one
node are used to model a knot (Fig. 5.4). To model the knots of hexagonal meshes,
non-aligned and possibly aligned elements are used. In fact, in this case, a knot can
be modelled as a beam (aligned elements at rest) connected to 4 mesh sides with
non-aligned elements. In Fig. 5.9, non-aligned elements are used 3 times to connect
the half knots to the two mesh sides: between the first mesh side and the knot,
between the second mesh side and the knot and between the two mesh sides.
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Half-knot
ofa
hexagonal mesh netting

Figure 5.9 — A half knot and two mesh sides in the case of hexagonal meshes. The
model of non-aligned elements is used up to 3 times to connect a knot to 2 mesh
sides: between the first mesh side and the knot, between the second mesh side and
the knot and finally between the two mesh sides.

In Fig. 5.10, there is a modelling of netting made up of 8 by 10 hexagonal
meshes which is not equilibrated at the top and equilibrated at the bottom. The
netting sample is loaded by gravitational forces only, and the top boundary is fixed
vertically and free horizontally.

The hexagonal sides made up of twines are 0.05 m long, a diameter of 0.004 m,
a density of 1100 Kg.m™>, and a bending stiffness EI of 107> N.m? which is an
acceptable value for twines made of polyethylene. They are modelled with 7 bar
elements. The horizontal sides that represent the knots are 0.025 m long, a diameter
of 0.009 m, a density of 1100 Kg.m >, and a bending stiffness EI of 10™* N.m?.
They are modelled with 5 bar elements.

Comparison of the proposed model with an analytical solution
(continuum mechanics) and the finite element code Abaqus

In a trawl, the bending moments have an effect on the deformations of the mesh
sides, and more generally on the shape of the fishing gear. Thus, a simple example
permitting the loading of two twines with bending moments, in two directions, is
used to compare the proposed numerical model for netting with validated models.

Description of the example

Let us consider a frame made up of two cylindrical bars of the same length and
which are at an angle of 90 degrees at rest. The frame is built in at one extremity
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Figure 5.10 — Netting made of hexagonal meshes, not equilibrated at the top and
equilibrated at the bottom. The top boundary is fixed vertically and can slide
horizontally. The netting sample is loaded by its own weight.

and free at the other end, on which a vertical load is applied (Fig. 5.11). Two
different load values are applied : firstly, a low load of 0.1V as in the case of small
deflections (affording an easy analytical solution), and secondly, a larger load of 1N
for large deflections.

The length [y and the section diameter of bars are arbitrarily and respectively
Im and 0.02m so that their size meets the beam assumption. An elasticity modulus
of 300M Pa, in the range of rigid polymers generally used for nets, is considered.
From these values, the moment of inertia, and the tensile stiffness are deduced. All
these data are displayed in Table 5.1.

name | description value
lo bar length 1m
D | beam section diameter 0.02 m
E | material Young’s modulus | 3 10° N/m?
ES | tensile stiffness 9.42 10* N
EI | bending stiffness 2.36 N.m?

Table 5.1 — Numerical data for the simple example displayed in Figure 5.11.

Modelling
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Figure 5.11 — Simple example. The two bars are modelled with aligned elements,
and the fixation (in B) is modelled with non-aligned elements.

X

The frame is discretized with elements of the same length. The displacement of
the nodes on bars AB and BC, except for node B, are expressed using the set of
equations of the aligned elements model (Eq. 5.28). Concerning the displacement
of node B and the nodes on either side of it, they are expressed using the set of
equations of the non-aligned elements model (Eq. 5.32). The number of bar elements
of the mesh is set at 20, which was found to be enough to achieve convergence.

The results provided by our numerical model are compared, on one hand, with
the solution given by the theory of the strength of materials when small deflection
behaviors can be assumed; on the other hand, when large deflection behaviors are
considered, by the finite element software Abaqus. The closed-form solution Popov
and Balan (1998) assumes elongation and deflection of the beams and yields the
following formula for the displacement of any node along the bar AB:

U= (5.35)
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5.2. Finite element model

and for the displacement of any node along the bar BC, one has:

FLy®
2FT
U= (5.36)
FL, FLy’x FLyx®> Fa?
“ES T EBEI  2EI @ 6EI

where z, y are the coordinates of a given point along the frame.

Concerning the Abaqus model of the frame, it uses a regular mesh of 3-node
quadratic plane beam elements (i.e. B22 beam element type) and takes geometric
non-linearity into account. The number of beam elements is 20, which was found
to achieve convergence.

Results and Discussion

The nodal displacements, respectively when the load equals 0.1N and 1N, are
plotted in Figure 5.12. The couple along the frame with the applied load 0.1N
and 1N is displayed respectively in Figure 5.13. One can see that the curves of
displacement and couple obtained by the different methods are superimperposed.
The discrepancies between the proposed method and the references (i.e. the closed-
form solution under small deflection assumption and Abaqus) are extremely low
in the example. It shows that the proposed modelling can be used to accurately
describe the displacement of a netting modelled as beams, the traverse sections of
which are symmetric and remain plane and perpendicular to the mean fiber after
bending.

5.2.4 Comparison of twine models

We compared models by simulating a mesh side, clamped at one end and subject to
a vertical force F' at the other end. The material properties of the simulated mesh
side were chosen close to properties measured in netting commonly used in trawl
codends: the mesh side length [,,,s was 0.049 m, the mesh angle at rest ay was 15 °,
the Young’s modulus was 16.554 10® N.m ™2 and the bending stiffness EI was 6.0
107" N.m?®.

We compared three models: the analytical model of O’Neill, the proposed bar
element model and the Timoshenko beam model of the Abaqus software tool.

The model proposed by O’Neill (2002) was described in Section 2.1.2. We used
the approximated solutions that was accurate, according to O’Neill (2002), when
€oneir < 0.2. €onein is defined by Equation 5.37.

620Neill = EI/(ZQf) (5.37)
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Figure 5.12 — Deformation along the frame when it is subjected to vertical forces
of 0.1 N (left) and 1 N (right). Comparison of nodal positions of the bar element
model with the analytical solution and the Abaqus solution. The concordance is
pretty good.
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Figure 5.13 — Couple along the frame when it is subjected to vertical forces of 0.1
N (left) and 1 N (right). Comparison of couples along the frame of the bar element
model with the analytical solution and the Abaqus solution. The concordance is
pretty good.

106



5.2. Finite element model

The proposed bar element model was described in Section 5.2.3. A mesh side
was meshed into 20 bar elements.

The used of the Timoshenko beam elements of the Abaqus Standard software
tool was presented in Section 5.2.1. Since the model of De la Prada and Gonzales
(2013) is based on an existing finite element model and interpolation methods, we
could assume that the obtained results would be close to the ones obtained with the
Abaqus Standard software tool. A mesh side was meshed into 20 B21H elements
(2-node linear beam in a plane, hybrid formulation).

The comparisons were based on the shape of the simulated mesh side and on the
curvature radius R along the twine. The results are shown in Figures 5.14, 5.15,
5.16 and 5.17 for an applied vertical force value equalled to 2 N, 5 N, 10 N and 20
N respectively.
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4.5e-02 x x xBar element model 2.8e-01
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e 2e-01
3e-02 / « 1.8e-01
=
®
s = = 1.6e-01
F=2 N E 25602 /a E |
> . ® x 1.4e-01 \
€=0.35 2e-02 % 1.2e-01
®
S le-01 J
1.5e-02
8e-02 /
4
le-02 f/ 6e-02 /
4e-02 n\\\
5e-03
,/f( 2€-02{ &= e
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0e00 k=" 0e00
0e00 le-02 2e-02 3e-02 4e-02 5e-02 0e00 le-02 2e-02 3e-02 4e-02 5e-02
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Figure 5.14 — Results of simulations of a mesh side subject to a vertical force value of
2 N with several models: the analytical model of O’Neill, the proposed bar element
model and the Timoshenko beam model of the Abaqus software tool. Comparisons
of the models for the shape of the twine (left) and the curvature radius R along the
twine (right). s is the curvilinear abscissa along the mesh side (0 < s < ly). The
accuracy parameter eone equals to 0.35.

The comparisons show that the bar element model provides results close to the
results obtained with the Abaqus Standard software tool, whatever the applied force.
As expected, the O’Neill’s model gives different results when epneiy > 0.2 (Figures
5.14 and 5.15). When the force value is higher, eoner < 0.2, and the shape of the
twine simulated with the O’Neill’s model is closer to the one obtained with finite
element models (Figures 5.16 and 5.17). Nevertheless, for higher force value, one
sees a difference that can be explained by the fact that O'Neill (2002) assumed that
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Figure 5.15 — As in Figure 5.14 with a vertical force value of 5 N. The accuracy

parameter €pnen equals to 0.22.
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Figure 5.16 — As in Figure 5.14 with a vertical force value of 10 N. The accuracy

parameter €pnen equals to 0.16.

there was no elongation in the mesh side.

Thus, the finite element models were more accurate for the simulation of a mesh
side subject to a vertical force at one of its ends than the analytical model of O’Neill
(2002). Moreover, the bar element model showed good results regarding these ones
obtained with the Abaqus Standard software tool.
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Figure 5.17 — As in Figure 5.14 with a vertical force value of 20 N. The accuracy
parameter €pnen equals to 0.11.

5.2.5 Inverse identification method

Three different tests were performed: uniaxial tensile tests on a tensile machine,
suspension tests and biaxial tensile tests on an own designed and made device.

The three mesh side models used for the study were presented previously: the
Timoshenko beam model of the Abaqus Standard software tool (Section 5.2.1), our
quasi-analytical beam model (Section 5.1), and our bar element model (Section
5.2.3).

Whatever the model, we knew the applied forces and the positions of all the
knots. These known positions were used to calculate objective functions and
identify, by minimizing or searching the zero of this function, the value of the bend-
ing stiffness E1.

Uniaxial tensile tests

In case of the uniaxial tensile tests, the objective function was the difference between
the experimental and the numerical height of the mesh in the middle of the netting
panel.

The zero of the function was searched using the dichotomy method (or bisection
method). This method was quick enough for our problem, simple and robust.
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Suspending tests

In case of the suspending tests, the objective function was calculated by using two
different methods: firstly, the objective function was the mean distance between the
coordinates of the experimental and the numerical knots; secondly, the objective
function was the difference between the experimental and the simulated suspended
sample height.

Firstly the objective function was the mean distance between the coordinates
of the experimental and the numerical knots, it was minimized using the Nelder-
Mead (or downhill simplex) algorithm proposed by Nelder and Mead (1965). The
objective function s is defined by Equation 5.38.

5= 3 (@™ — apm)2 g (ym — ypum )2 (5.38)
=1

With (2™, ;") the experimental cartesian coordinates of the knot 4, (xI™™,
y*™) the numerical cartesian coordinates of the knot ¢ and n the number of knots.
Secondly the objective function was the difference between the experimental
and the simulated suspended sample height, it was minimized using the dichotomy

method.

Fmry [N] 0.324 0.814 1.795 2.776
EL, [N.m?] 2.013 107" | 2.097 107" [ 2.038 107" | 2.163 10~*
El, [N.m?] 2.066 107" [ 2.168 107" | 2.146 107" | 2.270 10~*
Relative 2.6 3.4 5.3 4.9
%if_fere?ﬁe:

h — xy
—gr

Table 5.2 — Single twine green PE netting, 4x10-mesh sample. Bending stiffnesses
El,, and EI} evaluated by inverse identification using the coordinates of all the
knots and the total height H; of the suspended samples respectively, at the end
of creep stages of 30 minutes. The mean relative difference between the bending
stiffnesses identified using the two methods equals to 4.04 %.

For example, we identified the bending stiffness of 10 4x10-mesh samples of sin-
gle twine green PE netting using these two methods (Table 5.2). We calculated
a mean relative difference of 4.04 % between the bending stiffness identified using
the measured coordinates of all the knots and the bending stiffness evaluated using
the height of the netting panel. Thus, for convenience, we decided to identify the
parameter with only the height of the netting sample that needs a more simple and
non-expensive experimental method.
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Biaxial tensile tests

In case of the biaxial tensile tests, the objective function was the difference between
the result of the division Lyr/Lgy obtained with experimental and numerical data.
Lyr and Lgy are the total lengths of the netting sample in the T- and N-directions
respectively. The zero of the function was reached using the dichotomy method.
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Numerical results

6.1 Diamond meshes

In this section, the bending stiffness values were evaluated assuming a diamond
shape for the meshes and using the inverse identification method previously de-
scribed in Section 5.2.5. This means that the knots in netting were modelled by
points.

The results of the identifications for netting samples subject to uniaxial tensile
tests (Section 6.1.1), suspending tests (Section 6.1.2) and biaxial tensile tests (Sec-
tion 6.1.3) are presented.

The bending stiffness is identified using the quasi-analytical model and the
Abaqus Standard software tool in case of uniaxial tensile tests, and the bar ele-
ment model in cases of suspending tests and biaxial tensile tests.

6.1.1 Uniaxial tensile tests

Using the experimental results of the uniaxial tensile tests (Fig. 3.1) and the iden-
tification method presented in Section 5.2.5, we identified the bending stiffness I
of braided twines constituting the netting sample. The evolution of the bending
stiffness 1 is presented on Figure 6.1. The evolutions of this parameter during the
whole test, including relaxation stages, identified using the quasi-analytical model
and the Abaqus Standard software tool, are presented.

Figures 6.2 and 6.3 show, respectively, the influence of the force by mesh in the
T-direction and the influence of the opening or on the bending stiffness. For these
two figures, the bending stiffness was identified using the finite element model of
Abaqus at the beginning (0 min) and at the end (15 min) of the relaxation stages.
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Figure 6.1 — Single twine Green PE netting with a mesh side length of 40 mm.
Evolution of the identified bending stiffness EI. Experimental results were presented
in Figures 4.1 and 4.2.
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Figure 6.2 — Single twine Green PE netting with a mesh side length of 40 mm.
Evolution of the bending stiffness EI, identified using the Abaqus Standard software
tool at 0 minute ("+’, black line) and at 15 minutes ('x’, red line) of each relaxation
stage, as a function of the applied load Fmy. Experimental results were presented
in Figures 4.1 and 4.2.
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Figure 6.3 — Single twine Green PE netting with a mesh side length of 40 mm.
Evolution of the bending stiffness EI, identified using the Abaqus Standard software
tool at 0 minute ("+’, black line) and at 15 minutes (’x’, red line) of each relaxation
stage, as a function of the opening in the T-direction o7. Experimental results were
presented in Figures 4.1 and 4.2.

6.1.2 Suspending tests

Influence of the viscosity of the material on the identified bending
stiffness

The identified evolution of the bending stiffness, in case of suspending tests on single
twine Green PE netting, is presented on Figure 6.4.

Comparisons of the experimental and the numerical heights

For a range of suspended netting samples, the bending stiffness EI was identified by
the inverse identification algorithm minimizing the difference between the numeri-
cal and experimental total heights Hp of the netting panel at the end of the creep
stages (Section 5.2.5). We used the bar element model to simulate the suspended
samples. The measurement of the total heights Hr of the netting panel, subject to
different levels of force per mesh F'my, are given in Tables 3.1, 3.6, 3.7, 3.10 and 3.11.

Once the bending stiffness was identified, we compared the experimental and

numerical heights H1, H2, H3 and H4 for a 4x10-mesh netting sample and H1,
H2, H3, H4 and H5 for a 5x25-mesh netting sample.
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Figure 6.4 — Suspending tests on 10 4x10-mesh single twine Green PE netting
samples with a mesh side length of 40 mm. Medians of the bending stiffness EI
with first and third quartiles (above) and standard deviation (below) of EI at the
beginning (20 s) and at the end (30 min) of each creep stage. The bending stiffness
was identified using the Abaqus software tool.

Figures 4.10 to 4.15 show the numerical and experimental heights for each sam-
ple and each loading level. The numerical results fit, quite well, the experimental
measures.
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Bending stiffness

Figures 6.5 to 6.10 present the evolution of the bending stiffness E'I, identified as
explained in Section 5.2.5, as a function of the applied load F'my. These figures also
present the coefficient of variation (ratio of the standard deviation to the mean) of
the bending stiffness E'1 as a function of the applied load F'mr.
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Figure 6.5 — Single twine Green PE netting, 4x10-mesh sample. The length
of mesh sides at rest is 40 mm. Results of the numerical model identified on the
experimental suspending tests; evolutions of the bending stiffness E1 and its coeffi-
cient of variation (ratio of the standard deviation to the mean) as a function of the
applied load F'mp, for ten netting samples.

Influence of the size of the samples on the identified bending stiffness

Figure 6.11 shows the evolution of the bending stiffness EI as a function of the
applied load Fmy in the cases of 4x10-mesh and 5x25-mesh double twine Green
PE netting samples (I,,s = 50 mm). In Figure 6.12, the bending stiffness E1 is
represented as a function of the opening or.

6.1.3 Biaxial tensile tests

The results of the identifications of the bending stiffness EI of double twine Green
PE netting samples subject to biaxial tensile tests are presented in Figures 6.13 and
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Figure 6.6 —- Double twine Green PE netting, 4x10-mesh sample. The length
of mesh sides at rest is 50 mm. Results of the numerical model identified on the
experimental suspending tests; evolutions of the bending stiffness E'I and its coeffi-
cient of variation (ratio of the standard deviation to the mean) as a function of the
applied load Fmy, for five netting samples.

6.14. The bending stiffness is represented as a function of the applied Fmy (Fig.
6.13) and as a function of the opening or (Fig. 6.14).

6.1.4 Discussion

Figure 6.1 shows the importance of taking into account the viscosity of the material,
which influences greatly the identified bending stiffness. Thus, with the assumption
of a visco-elasto-plastic behaviour, the relaxation stages permit to reduce the ef-
fect of viscosity and to improve the evaluation of the bending stiffness; indeed, the
higher the relaxation duration is, the less the rate dE'1/dt is, then the less the effect
of the time on the value of ET is. Figure 6.3 shows that the opening or was still
high during the unload (with relaxation stages of 15 minutes). So the mesh did not
come back to its initial state. The structure presented a permanent deformation or
a long-term viscosity.

Figure 6.1 shows that the bending stiffness identified with the analytical model is
lower than the one evaluated with the Abaqus Standard software tool. The relative
difference between the two curves ranges from 4.40 % for a force by mesh value of
1.59 N to 12.77 % for a force by mesh value of 12.38 N. According to the finite ele-
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Figure 6.7 — Double twine Green PE netting, 5x25-mesh sample. The length
of mesh sides at rest is 50 mm. Results of the numerical model identified on the
experimental suspending tests; evolutions of the bending stiffness E T and its coeffi-
cient of variation (ratio of the standard deviation to the mean) as a function of the
applied load Fmy, for five netting samples.

ment model of tensile test, the mesh in the middle is submitted to a tensile force in
the T-direction and a compression force in the N-direction. However, the analytical
model only takes into account the tensile force. We can assume that to obtain the
same mesh opening in the T-direction without compression force in the N-direction,
a lower bending stiffness is necessary. We can note that for a low force level, in case
of a tensile test, the bending stiffness identified with the analytical model is close
to the one evaluated with the beam element model.

Figures 6.2 and 6.3 show the evolution of the identified bending stiffness as a
function of the force applied on the mesh Fms and as a function of the opening or
respectively. We can note that the variation of the parameter EI during the test
is smaller when it has been calculated at the end of each relaxation step in spite
of the fact that the contribution of the viscosity is not completely relaxed after a
relaxation step of 15 minutes (Fig. 4.1).

During the tensile test on single twine Green PE netting, the force by mesh at
the beginning of relaxation stages ranged from 2.40 N to 12.38 N (Fig. 6.2). Dur-
ing suspending tests on the same type of netting, netting panels were submitted to
forces by mesh added at the bottom ranging from 0.3235 N to 2.775 N (Fig. 6.4).
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Figure 6.8 — Single twine Breztop PE netting, 4x10-mesh sample. The
length of mesh sides at rest is 40 mm. Results of the numerical model identified
on the experimental suspending tests; evolutions of the bending stiffness E T and its
coefficient of variation (ratio of the standard deviation to the mean) as a function
of the applied load F'my, for ten netting samples.

The force by mesh applied on the uppermost meshes was higher and ranged from
0.46 N to 2.91 N due to the effect of gravity. The load applied on meshes during
suspending tests on single twine Green PE netting were only around a quarter of
the load applied during the tensile test. With this loading level, a smaller open-
ing or of the mesh is observed during the suspending test than during the tensile
test, therefore a smaller variation of the identified bending as presented on Figure
6.4. We can note that the bending stiffness identified for the smallest value of force
by mesh with the tensile test is close to the ones identified with the suspending tests.

When the force F'm7 and thus the mesh opening increases, the tensile forces in
the mesh sides increase so we may expect the twine diameter to decrease. A smaller
diameter means a smaller moment of inertia I. Thus, we may expect a decrease in
ET when the loading level increases. However, the results do not show any decrease
in E1 when Fmy increases. In cases of single twine Green PE netting (Fig. 6.3),
double twine green PE netting (Fig. 6.6), single twine Breztop PE netting (Fig.
6.8) and single twine PA netting (Fig. 6.10), we note an increase in the bending
stiffness. It could be due to the complexity of the twine braided structure: when the
loading level increases, the shear force and the bending moment through the twine
section increase, so the shape of the section may change drastically and this could
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Figure 6.9 — Single twine Brezline PE netting, 4x10-mesh sample. The
length of mesh sides at rest is 60 mm. Results of the numerical model identified
on the experimental suspending tests; evolutions of the bending stiffness F'I and its
coefficient of variation (ratio of the standard deviation to the mean) as a function
of the applied load F'my, for ten netting samples.

affect the bending stiffness E1.

The comparison of the experimental and numerical heights Hy, Hy, H3 and H,
for a 4x10-mesh netting and Hy, Hs, H3, Hy and Hjy for a 5x25-mesh netting (Figs.
4.10 to 4.15), shows that the bar element model captures the heterogeneous defor-
mation field of the netting samples during the suspending tests. Indeed, despite a
noticeably decrease of the height from the top quarter H; (or fifth) to the bottom
quarter Hy (or fifth Hs) (Figs. 4.12, 4.14 and 4.15), the numerical model gives
height values similar to experiments for all tested types of fishing nets.

Moreover, Fig. 6.11 shows that in case of double twine green PE netting, the
bending stiffness EI does not depend on the size of the sample: for 4x10- and 5x25-
mesh netting samples, the evaluated bending stiffnesses are similar, whatever the
loading level. However, the mesh opening values are higher in case of 4x10-mesh
netting (Fig. 6.12). This difference can be explained by the difference in the direc-
tion of application of the loading during the pre-tension step (N-direction in case
of 5x25-mesh netting and T-direction in case of 4x10-mesh netting). Thus, despite
a different size and a different pre-tension, the evolution of the identified bending
stiffness as a function of the applied force F'my is identical. Moreover, we observed
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Figure 6.10 — Single twine PA netting, 4x10-mesh sample. The length of mesh
sides at rest is 30 mm. Results of the numerical model identified on the experimen-
tal suspending tests; evolutions of the bending stiffness EI and its coefficient of
variation (ratio of the standard deviation to the mean) as a function of the applied
load F'm7, for ten netting samples.

an identical evolution as a function of the opening or with an opening shift due to
a plastic deformation of the 4x10-mesh netting in the T-direction during the pre-
tension step.

Figs. 6.5 to 6.10 show that the coefficient of variation of EI is the highest when
the value of F'mr is close to zero. In case of higher loading level, the coefficient of
variation is below 10%.

The biaxial tensile tests allow the study of the influence of a loading F'my in the
N-direction on the evaluated bending stiffness EI. First, whatever the loading level
in the N-direction, a significant increase of the identified bending stiffness with the
force in the T-direction is observed (Fig. 6.13). The bending stiffness as a function
of the force by mesh Fmry is slightly higher in case of Fmy = Fmy than in the case
of Fmy = 2Fmyp. Figure 6.14 shows different bending stiffness values as a function
of the opening or for the two loading types. The mesh opening in the T-direction
or is reduced when the loading level in the N-direction is increased, as expected.
The identified bending stiffness in case of biaxial tensile tests is revealed higher than
in case of suspending tests for a same opening value oy (Fig. 6.12 and 6.14). We
expected to evaluate identical bending stiffness values in cases of suspending tests
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Figure 6.11 — Double twine green PE netting with a mesh side length of 50 mm
at rest. Results of the numerical model identified on the experimental suspending
tests; evolutions of the bending stiffness I as a function of the applied load F'mr,
for five 4x10-mesh netting samples and five 5x25-mesh netting samples. This shows
that the bending stiffness is independent of the size of the panels (4x10- and 5x25-

mesh netting samples). The size of the netting samples does not affect the evaluation
of F1.

and biaxial tensile tests since the bending stiffness should not depend on the loading
type.

The increase in the identified bending stiffness when the force by mesh Fmyp
increases, and the different results between the identifications from biaxial tensile
tests and suspending tests, could be explained by the fact that the knot sizes were
not taken into account. It was decided to model the knot sizes for the identification
of the bending stiffness. The results are presented in the following section.
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Figure 6.12 — Double twine green PE netting. Results of the numerical model
identified on the experimental suspending tests; evolutions of the mean of the bend-
ing stiffness E'I as a function of the opening or, for five 4x10-mesh netting samples
and five 5x25-mesh netting samples. The vertical and horizontal solid lines represent
the standard deviations. The 4x10-mesh samples were submitted to a pre-tension
step in the T-direction whereas the 5x25-mesh samples were submitted to a pre-
tension step in the N-direction.

124



6.1. Diamond meshes

1.4e-03 \
1.2e-03 i I
1.0e-03 [ { I

T 8.0e-04 [ % -

Z,

i 6.0e-04 - 7
4.0e-04 | N
2.0e-04 FmN=FmT 1 _]

FmN=2FmT o
0.0e+00 | | | | |
0 1 2 3 4 5 6

FmT [N]

Figure 6.13 — Double twine Green PE netting samples. Results of the nu-
merical model identified on the experimental biaxial tensile tests; evolutions of the
mean of the bending stiffness E'I as a function of the applied load F'my. For each
of the 2 loading types, 5 samples were tested. The vertical solid lines represent the
standard deviations. The mesh side length at rest of the samples is 50 mm.
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Figure 6.14 — Double twine Green PE netting samples. Results of the numeri-
cal model identified on the experimental biaxial tensile tests; evolutions of the mean
of the bending stiffness E'I as a function of the opening or. For each of the 2 loading
types, 5 samples were tested. The vertical and horizontal solid lines represent the
standard deviations. The mesh side length at rest of the samples is 50 mm.
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6.2 Hexagonal meshes

By modelling the knots by points, thus by assuming a diamond shape, an increase in
the identified bending stiffness when the force by mesh F'mr increased, and different
results between the identifications from biaxial tensile tests and suspending tests,
were observed (Section 6.1).

This section presents the results of the identifications of the bending stiffness by
taking into account the knot sizes in the modelling.

We evaluated the bending stiffness of 4x10- and 5x25-mesh double twine Green
PE netting samples with mesh side lengths ly of 50 mm or 60 mm. All the simu-
lations were made with our bar element model and the experimental heights were
measured after creep stages during 30 minutes.

6.2.1 Evaluation of the size of the knots

Sala et al. (2007) and De la Prada and Gonzales (2014) modelled a knot as a rect-
angle of size (a,b) from the corners of which the mesh sides emerged (Sections 2.3.1
and 2.3.3). These authors identified the two geometrical parameters a and b with
other parameters by inverse identification. Nevertheless, because of the correlations
between the parameters, despite different parameter estimation strategies, the es-
timates were sometimes out of physical limits. Moreover, the estimation of these
parameters made the identification program more complex.

We decided to measure experimentally the size of the knot. Because of the
complex structure of the knot, and the possible variation in the results, the mea-
surements of the dimensions could be difficult.

It was decided to model only the dimension of the knot in the N-direction. In-
deed, the knot is not symmetrical, and the distance in the T-direction between
the points from where the mesh sides emerge is different at each side of the knot
(Fig.6.15). And, although the possibility to model this asymmetry with the bar
element model, it would make it more complex.

In order to measure the dimension of the knot Ly, in the N-direction, a sample
was widely stretched in the T-direction, and the distance between the points from

where the mesh sides emerge was measured (Fig. 6.16).

For the double twine Green PE netting, we measured a knot length equalled to
10 mm.
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Figure 6.15 — Knots in a double twine Green PE netting. The shape of the knot is
not symmetrical.

Lknot

direction T

direction N

Figure 6.16 — Measurement of the knot length Lj,.; on a netting sample widely
stretched in the T-direction.

Regarding the shape and the size of the knot compared to the diameter of the
mesh twines, the knot was assumed to be rigid, thus to maintain its shape during
the tests (infinite axial and bending stiffnesses).

To validate the measured value, suspended double twine Green PE netting were
simulated by identifying the bending stiffness with the bar element model. And the

experimental and numerical widths Hpyy,, (Fig. 6.17) were compared.

The difference between the experimental and numerical values of H ey, for two
lengths of simulated knots, is presented in Figure 6.18.

We see that the dimensions of the simulated suspended netting samples are closer
to the experimental ones in case of a knot length of 10 mm.
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Figure 6.17 — Dimension Hyy,, in a suspended netting sample.
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Figure 6.18 — Difference between the experimental and numerical values of Hpyyp
for two lengths of simulated knots. The relative error is calculated as: error =
(Htop = Higop) | Hytop with High and Hiyol the experimental and numerical values
of Hop respectively.

6.2.2 Suspending tests
Bending stiffness

The identified bending stiffness in cases of the supending tests on double twine
Green PE netting as a function of the force by mesh Fmy and the opening or in
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the T-direction is shown in Figures 6.19 and 6.20 respectively. In these figures, the
influence of the knot length Lj,,, is revealed. As a reminder, the 4x10-mesh netting
sample was pre-tensed in the T-direction whereas the 5x25-mesh netting sample was
pre-tensed in the N-direction.
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Figure 6.19 — Double twine Green PE netting, [, = 50 mm. Evolution of the
identified bending stiffness as a function of the force by mesh in the T-direction
F'my. The means and the standard deviations are represented. When the knot size
is taken into account, the bending stiffness EI is much more constant.

Influence of the experimental mesh side length

Figures 6.21 and 6.22 show the evolution of the identified bending stiffness as a
function of the force by mesh F'ms and the opening or in the T-direction respec-
tively in cases of supending tests and two different mesh side lengths. Samples with
mesh side length values of 50 mm and 60 mm were simulated. As a reminder, all
the samples were pre-tensed in the N-direction, except the 4x10-mesh double twine
Green PE netting sample with a mesh side length of 50 mm. The length of the
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Figure 6.20 — Double twine Green PE netting, [, = 50 mm. Evolution of the
identified bending stiffness as a function of the opening in the T-direction oy. The
means and the standard deviations are represented.

numerical knots was 10 mm.

6.2.3 Biaxial tensile tests

Bending stiffness

The identified bending stiffness in cases of the biaxial tensile tests on double twine
Green PE netting as a function of the force by mesh F'my and the opening o in
the T-direction is shown in Figures 6.23 and 6.24 respectively. In these figures, the
influence of the knot length Ly, is revealed. The netting samples were submitted
to 3 loading types: F'my =0 N, Fmy = Fmy and Fmy = 2Fmr.
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Figure 6.21 — Double twine Green PE netting, comparison of nettings with
two different mesh side lengths. Evolution of the identified bending stiffness
as a function of the force by mesh in the T-direction Fmy. The means and the
standard deviations are represented. The modelled knot length value is 10 mm.

Comparison with the identifications on suspended netting samples.

The results of the identifications using experimental data of suspending tests and
biaxial tensile tests on double twine Green PE netting are compared. The identified
bending stiffness is represented as a function of the force by mesh F'mT and the
opening or in the T-direction in Figures 6.25 and 6.26 respectively. The length of
the numerical knots was 10 mm.

As seen previously (Section 4.2.4), the curvature k = 1/R can be approximated
by assuming that a half mesh side can be modelled by a circle arc with a radius
R. The identified bending stiffness, in cases of biaxial tensile tests and suspending
tests, is represented as a function of the curvature s in Figure 6.27.
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Figure 6.22 — Double twine Green PE netting, comparison of nettings with
two different mesh side lengths. Evolution of the identified bending stiffness
as a function of the opening in the T-direction or. The means and the standard
deviations are represented. The modelled knot length value is 10 mm.

133



Chapter 6. Numerical results

1.6e-03 \ \ \
FmN=FmT, Lknot=0 mm FH—+—
1.4e-03  FMN=2FmT, Lknot=0 mm —— —
FmN=0 N, Lknot=10 mm FH—2—
1 2e-03 |- FMN=FmT, Lknot=10 mm F—e— ]
FmN=2FmT, Lknot=10 mm —&—
1.0e-03 { -
o
E
Z 8.0e04 % :
w
6.0e-04 [ i
4.0e-04 [0} § % —
¢ [0)
20e-04 2 :
0.0e+00 | | | | |
0 1 2 3 4 5 6

FmT [N]

Figure 6.23 — Results of biaxial tensile tests on double twine Green PE netting
samples. Results obtained with the numerical model and the experimental biaxial
tensile tests; evolutions of the bending stiffness FI as a function of the applied load
Fmyp. For each of the 3 loading types, 5 samples were tested. The mesh side length
at rest of the samples is 50 mm. The identified bending stiffness is more constant
by taking into account the knot size.
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Figure 6.24 — Results of biaxial tensile tests on double twine Green PE netting
samples. Results obtained with the numerical model and the experimental biaxial
tensile tests; evolutions of the bending stiffness I as a function of the opening or.
For each of the 3 loading types, 5 samples were tested. The mesh side length at rest
of the samples is 50 mm.
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Figure 6.25 — Results of biaxial tensile and suspending tests on double twine
Green PE netting samples. Results obtained with the numerical model and
the experimental tests; evolutions of the bending stiffness E1 as a function of the
applied load F'mp. For each of the 3 loading types, 5 samples were tested. The
mesh side length at rest of the samples is 50 mm. The modelled knot length value

is 10 mm.
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Figure 6.26 — Results of biaxial tensile and suspending tests on double twine
Green PE netting samples. Results obtained with the numerical model and
the experimental tests; evolutions of the bending stiffness EI as a function of the
opening or. For each of the 3 loading types, 5 samples were tested. The mesh side
length at rest of the samples is 50 mm. The modelled knot length value is 10 mm.
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Figure 6.27 — Results of biaxial tensile and suspending tests on double twine
Green PE netting samples. Results obtained with the numerical model and
the experimental tests; evolutions of the bending stiffness E1 as a function of the
curvature k. In case of suspending tests, 5 4x10-mesh samples and 5 5x25-mesh
samples were tested. In case of biaxial tensile tests, for each of the 3 loading types,
5 samples were tested. The mesh side length at rest of the samples is 50 mm. The
modelled knot length value is 10 mm.
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6.3 Discussion

Using the bar element model and taking into account the knot size, we identify the
bending stiffness of 4x10- and 5x25-mesh double twine Green PE netting samples
with mesh side lengths [,,; of 50 mm or 60 mm.

As expected, the identified bending stiffness is lower when we took into account
the length of the knots (Figs. 6.19, 6.20, 6.23 and 6.24). Indeed, the longer the knot
in the N-direction is, the shorter the mesh side is and the higher the angle between
the mesh side and the N-direction is.

By modelling the knot with a length of 10 mm, we do not observe the same evo-
lution of the identified bending stiffness as by modelling knots by points (diamond
mesh). First, the bending stiffness does not increase with the force by mesh F'mp
yet (Figs. 6.19 and 6.23). Moreover, we could assume a constant bending stiffness
as a function of the applied force by mesh Fmy. Then, the evolution as a func-
tion of the opening o7 is more consistent. Indeed, Figure 6.20 reveals a continuity
between the evolutions of the bending stiffness of the 4x10-mesh samples and the
5x25-mesh samples, in spite of the difference in the pre-tension direction and the
sample number of meshes. And the identifications with biaxial tensile tests reveal
a continuity between the evolutions of the bending stiffnesses as a function of the
opening or (Fig. 6.24) of netting samples subjected to 3 different types of biaxial
loading. Thus, we could assume that the bending stiffness does not depend on the
direction of the pre-tension, on the number of meshes in the suspended sample or
on the applied force F'my in the N-direction in case of biaxial tensile tests, but the
bending stiffness depends on the opening in the T-direction.

Although we expected to identify the same bending stiffness, Figure 6.22 reveals
that the bending stiffness of a double twine Green PE netting is lower when the
mesh side is 60 mm than when the mesh side is 50 mm. This difference may be
explained by the effect of the knot on the behaviour of the mesh side and by the
interactions, between the two twines constituting the mesh side, which partly de-
pend on the mesh side length. Moreover, although the netting samples have the
same structure and are constituted of the same twines, they were submitted to a
stretching manufacturing process stage to prevent from knot slides and changes in
mesh size after immersion that can be different (temperature, time, tensile forces).
Such differences in the process applied to netting panels can provide differences in
the mechanical behaviour. We also note that in spite of this bending stiffness level
difference, the shape of the evolution of the identified parameter as a function of
the opening or is very similar for the two types of netting: when the opening in the
T-direction increases from 0.46 to 0.8, the bending stiffness increases by up to 19.4
and 26.2 % in cases of a mesh side length of 60 and 50 mm respectively; when the
opening in the T-direction increases from 0.8 to 1.37, the bending stiffness decreases
by 28.8 and 26.2 % in cases of a mesh side length of 60 and 50 mm respectively.
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The results from suspending tests and biaxial tensile tests are close: the evolu-
tions of the bending stiffness FI as a function of the opening or are qualitatively
and quantitatively close (Fig. 6.26). The value of the bending stiffness identified
with measurements coming from the biaxial tensile tests is slightly superior to the
one identified with measurements coming from the suspending tests. We could ex-
plained this difference by the effect of the biaxial tensile testing machine since the
cylindric joints are not perfect, by the biaxial tensile testing setup since the results
depend on the application of the load (visco-elasto-plastic mechanical behaviour)
and by measurement errors since the knots have not a perfect geometrical shape
and the samples in case of biaxial tensile tests have a small number of meshes (3x3-
mesh samples).

The curvature in mesh twines was approximated by assuming that a half mesh
side can be modelled by a circle arc with a radius R. The evolution of the identified
bending stiffness FT as a function of the curvature x (Fig. 6.27) is consistent with
the evolution of the identified bending stiffness E'I as a function of the opening or
(Fig. 6.26). The evolutions of the bending stiffness as a function of the curvature
in cases of samples pre-tensed in the T-direction and samples pre-tensed in the N-
direction are different.

By assuming that the bending stiffness depends on the opening in the T-direction
or (related to the opening in the N-direction oy and to the curvature), and not on
the applied force, as shown previously, we could write that tests with larger loading
levels should not be useful to evaluate the bending stiffness, that is to say, indirectly,
the mesh resistance to opening. Moreover, the measurements on suspending tests
allowed us to evaluate a bending stiffness close to the one identified from results
of biaxial tensile tests, which validates the identification method using suspending
tests.
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CHAPTER

7

Conclusions

7.1 Implications of research

The thesis offers scientific advance for the evaluation of the mesh resistance to
opening:

Despite the complex structure and mechanical behaviour of netting, a simple
bar element model allowing the simulation of netting submitted to large
deformations is proposed. The bar element model captured the heterogeneous
deformation field of netting whereas the models from the literature do not. It
is a compromise between simplicity and accuracy.

The thesis offers experimental data from uniaxial tensile tests, suspending
tests and biaxial tensile tests performed on a large range of netting samples:
two materials (polyethylene or polyamide), two kinds of mesh sides (single or
double twine), three sizes of panel (3x3-, 4x10- and 5x25-mesh panels).

The visco-elasto-plastic mechanical behaviour of netting samples was
revealed by experimental results.

Development of a more accurate and simpler method to evaluate the
mesh resistance to opening: the method is based on experimental suspension
tests as proposed in De la Prada and Gonzales (2013) and requiring a simpler
setup than the biaxial setup developed by Sala et al. (2007), and on the bar
element numerical model allowing the simulation of non-uniform deformation
in suspended panels. This method was submitted and accepted for publication
by the "Ocean Engineering" journal (Morvan et al., 2016). Moreover, the
method took into account the visco-elasto-plastic mechanical behaviour of
netting material: first the measurements were made after creep steps of 30
minutes to reduce the effect of the viscosity; then the applied load was only
increased to avoid the hysteresis effect of cyclic loading. The netting samples
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were initially submitted to a pre-tension step, introducing a plastic strain
but not influencing the identified bending stiffness, to safeguard against knot
slippage. We also proposed a method to measure the knot size.

The relationship between the identified bending stiffness and the mesh opening
in the T-direction was shown. Moreover, it was revealed that in case of dou-
ble twine Green PE netting the bending stiffness was identical when it was
identified using results of experimental suspending tests or biaxial tensile
tests. This result validated the method in case of double twine Green PE
netting.

The influence of the numerical-model knot size on the evolution of the iden-
tified bending stiffness as a function of the applied force or the mesh opening
in the T-direction was shown.

7.2 Suggestions for future work

The possible future works are numerous:

o The revealed evolution of the evaluated bending stiffness as a function of
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the mesh opening and the influence of the mesh side length on the identified
bending stiffness showed that the numerical model could be improved by tak-
ing into account phenomena influencing the mechanical behaviour of netting.
The numerical model could take into account shear and torsion of the twines.
The contact-friction interactions in twines could be modelled to provide more
accurate numerical results and more elements for the understanding of the
mechanical behaviour of netting samples. The experimental data provided by
this thesis should be the bases for the improvements of the model.

Comparisons of the bending stiffnesses identified with measures from suspend-
ing tests and biaxial tensile tests on other types of netting could bring a strong
validation of the methodology for the identification of the bending stiffness us-
ing suspending tests. In the case of results invalidating this assumption, for
the sake of simplicity, we would recommend the definition of the bending stiff-
nesses identified using the method based on suspending tests as a reference
in the implementation of a regulation for the mesh resistance to opening in
fishing gear.

The influence of the mesh side length on the identified bending stiffness could
be widely studied by testing netting samples with a large range of mesh side
length. Tested netting panels with different mesh side lengths should be made
of the same twine, and should be made in same conditions (temperature during
the stretching step, duration, tensile forces).

A more accurate model for knots could be proposed. The model could take
into account the sizes of the knots in the T- and N-directions, the interactions
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between the twines and the knots, the possible change in the section of the
twine near the knot, and the asymmetry of the knots.

Because of the necessity to regulate the selectivity of fishing gear and to be able
to identify the mesh resistance to opening with a simple and non-expensive
device, we could make the identification software tool, developed in this thesis
and based on the bar element model, portable and free. That is to say, to
develop a software tool usable from a smartphone for example. In this case,
we could expect a wide use of the method presented in this thesis.

The influence of ageing on netting materials under marine environment on
the mesh resistance to opening in fishing gear should be studied. We could
imagine a collaboration with fishermen: testing netting before use and after
few months of use. Such a work could offer a model to simulate the evolution
of the mesh resistance to opening in a fishing gear as a function of its usage.
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CHAPITRE

Abrégé en francais

8.1 Introduction

8.1.1 Contexte général et motivations

La péche et l'aquaculture constituent d’importantes sources de nourriture et de
revenu pour des centaines de millions de personnes dans le monde (FAO, 2016).
Néanmoins, nonobstant les progres dans la réduction de la surpéche ces dernieres
années, plusieurs espéces sont encore actuellement péchées a des niveaux insoute-
nables : on estime que 31.4 % des stocks de péche en 2013 ont été péchés a un niveau
biologique insoutenable et par conséquent surpéchés (FAO, 2016).

Ainsi, pour assurer une péche durable a long terme et pour réduire les prises non
désirées, il est nécessaire de gérer les flottes de péche et de conserver les stocks de
poissons. Dans ce but, la Politique Commune de la Péche (PCP) a introduit
une politique de gestion de la péche (The European Parliament and the European
Council, 11th December 2013). La gestion de la péche comprend des mesures tech-
niques pour réglementer 1'utilisation des engins de péche et définir ou et quand
pécher. D’apres la PCP (The European Parliament and the European Council, 11th
December 2013), les mesures techniques peuvent étre groupées en mesures qui visent
a : limiter les prises de petits poissons (sélectivité intra-espeéces), limiter les prises
de poissons non désirés (sélectivité inter-especes), limiter les prises d’especes proté-
gées (sélectivité inter-especes), et limiter ou prévenir les dégats partiels causés aux
écosystemes. La sélectivité d’un engin de péche est sa capacité a n’attraper que les
poissons ciblés. Pour réduire les prises de jeunes poissons ou d’especes non désirées,
la PCP réglemente la conception et d’autres caractéristiques techniques de I'équipe-
ment (Weissenberger, 2 June 2014). En particulier, la PCP réglemente la taille des
mailles pour permettre aux plus petits poissons de s’échapper. Néanmoins, la taille
des mailles n’est pas le seul parametre a déterminer la prise d’'un engin de péche.
En effet, 'ouverture des mailles varie durant une opération de péche, elle dépend
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des forces qui s’appliquent sur le filet (taille de la prise, courants, vitesse du bateau,
régularité de la traction) et du matériau des fils : 'ouverture des mailles dépend de
la résistance a 'ouverture des mailles.

La résistance a I'ouverture des mailles est définie par la relation entre I'ou-
verture de la maille et les forces qui s’y appliquent. Présentement, il n’existe pas
de méthodologie simple pour I’évaluation de ce parametre qui pourrait étre la base
d’une législation sur la péche. En effet, la résistance a 'ouverture des mailles, qui
dépend de plusieurs parametres, est assez difficile a évaluer.

Les méthodes existantes pour I’évaluation de la résistance a l'ouverture des
mailles de filets sont basées sur la résolution de problemes d’identification in-
verse. La méthode d’identification inverse consiste a trouver les entrées du modele
numérique, en se basant sur les réponses expérimentales force-déplacement et sur les
conditions limites (Uhl, 2007). Dans le cadre de cette étude, les entrées recherchées
doivent étre liées a la résistance des mailles a I'ouverture.

La structure mécanique des fils constituant le filet est complexe. Un échantillon
de filet peut étre décrit comme un assemblage de mailles, et les mailles peuvent étre
considérées comme un assemblage de cotés de maille et, possiblement, de noeuds
(Fig. 8.1). Plusieurs approches par modeles sont possibles, selon 1'élément de base
étudié : I'échantillon de filet, la maille ou le c6té de maille.

un fil tressé

deux noeuds
une maille reliés par
un coté de maille

FIGURE 8.1 — Un filet est un assemblage de mailles, constitué de cotés de maille et
de noeuds.
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Priour (2013), O’Neill (2002) et De la Prada and Gonzales (2013) ont proposé de
modéliser la réponse force-déplacement d’'un co6té de maille. En considérant qu’un
coté de maille se comporte comme une poutre (O’Neill (2002), Sala et al. (2007),
De la Prada and Gonzales (2014), Priour (2013)), la raideur en flexion des cotés
de maille est apparue comme une bonne représentation de la résistance a 'ouverture
des mailles. En effet, il a été montré qu’une augmentation de la raideur en flexion
d’un fil se traduisait par une augmentation de la résistance mécanique a ’ouverture
des mailles (Sala et al., 2007). De plus, l'influence de la raideur en flexion du filet
sur la sélectivité du chalut a été démontrée (Boerema, 1956).

Ensuite, la forte influence du cul de chalut sur la sélectivité du chalut a été
démontrée (Robertson and Stewart, 1988), méme si la sélectivité des autres parties
du chalut est de plus en plus prise en compte (Broadhurst et al., 2015). Des études
antérieures ont expliqué l'influence de la raideur en flexion des cotés de maille sur
le comportement mécanique, et donc sur la sélectivité des culs de chalut (Herrmann
et al., 2006; Sala et al., 2007). De la méme maniere, Moderhak (2007) a démontré
théoriquement l'influence de la taille de maille et de la raideur en flexion des cotés
de maille sur la forme d’un cul de chalut et sur sa sélectivité. A partir d’une étude
théorique, O’Neill (2003) a montré que "augmentation de la raideur en flexion dans
le fil réduit le diametre du cul de chalut, et donc l'ouverture latérale des mailles.
Dans le cas des fermes piscicoles, la raideur en flexion aurait des effets significatifs :
durant la traction des cages aquacoles, les panneaux de filets paralleles ou quasiment
paralleles a ’écoulement de 1’eau subissent des vibrations significatives, ce qui est
en partie déterminé par la raideur en flexion du filet (Johnson and Balash, 2015).
En outre, la raideur en flexion est un facteur critique pour assurer des évaluations
de trainées de chaluts précises par simulation (Balash et al., 2016).

En considérant ces éléments, et le fait que les culs de chalut sont fabriqués a
partir de matériaux plus rigides (Herrmann et al., 2006, 2013), il est intéressant de
pouvoir mesurer la raideur en flexion des cotés de maille dans les filets de péche et
en particulier dans les filets de culs de chalut.

Des modeles et des méthodes ont déja été proposés pour évaluer la raideur en
flexion dans les filets de péche. Les méthodes les mieux établies se basent sur la
théorie des poutres (Sala et al., 2007; De la Prada and Gonzales, 2013; Priour and
Cognard, 2011). Néanmoins, les méthodes existantes ne permettent pas l'identi-
fication de la résistance a l'ouverture des mailles avec une méthode simple ou ne
prennent pas suffisamment en compte la complexité du comportement mécanique du
filet. La méthode présentée dans Sala et al. (2007) nécessite un dispositif complexe
et coliteux. De la Prada and Gonzales (2013) proposent une méthode basée sur des
essais de suspension, mais des hypothéeses fortes sont faites. De plus, les stratégies
d’identification de Sala et de De la Prada sont discutables du fait des corrélations
entre les parametres géométriques. Balash (2012) utilise le modele poutre de O’Neill
(2002) avec ses limites. Pour terminer, la méthode proposée par Priour and Cognard
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(2011) nécessite un filet avec des mailles fermées et ne prend pas en compte la taille
des noeuds.

8.1.2 Objectifs

Les objectifs de cette these sont de développer et d’évaluer une méthodologie
pour I’évaluation de la résistance a 'ouverture des mailles dans les filets
de péche, et plus largement, dans les structures en filet. Cette theése a pour objectif
de proposer une méthode expérimentale simple qui ne nécessiterait pas d’équipe-
ments coliteux pour pouvoir étre déployée facilement dans les laboratoires et dans
I'industrie de la péche, combinée avec un modele numérique capable de représenter
le comportement mécanique non-linéaire d'un panneau de filet testé. Comme dans
les méthodologies existantes, la méthode d’identification inverse devrait étre utili-
sée : la raideur en flexion du modele devrait étre ajustée pour que les résultats des
simulations numériques concordent avec les résultats expérimentaux.

8.1.3 Apercu de la these

Ce manuscrit est divisé en cing chapitres. Dans le premier chapitre, nous pré-
sentons les méthodes existantes pour 1’évaluation de la raideur en flexion d’un
fil. Tout d’abord, trois modeles numériques de déformation d’un c6té de maille sont
présentés : le modele analytique d’O’Neill (2002), le modele ajusté de De la Prada
and Gonzales (2013) et le modele éléments finis triangulaires de Priour (2013). En-
suite, quatre méthodes expérimentales pour I’évaluation de la raideur en flexion
sont présentées : la méthode basée sur le prototype ROD-m de Sala et al. (2007), la
suspension d’un échantillon cylindrique de Balash (2012), la suspension simple d’'un
échantillon de filet de De la Prada and Gonzales (2014), et le filet en porte-a-faux de
Priour and Cognard (2011). Finalement, les méthodes expérimentales et les modeéles
présentés sont discutés.

Le second chapitre traite de la méthode expérimentale utilisée et dévelop-
pée par cette these, et des échantillons de filets. Trois types d’expériences ont été
réalisés pour évaluer la raideur en flexion des fils : un essai de traction uniaxiale
sur une machine de traction classique, un essai de suspension du méme type que
De la Prada and Gonzales (2014), et un essai de traction biaxiale proche de celui de
Sala et al. (2007). Un large éventail de filets de péche communément utilisés dans
les culs de chalut ont été testés : quatre matériaux (trois types de polyéthylene,
un polyamide), des cotés de maille simples et doubles, trois tailles d’échantillons
(échantillons 3x3, 4x10 et 5x25 mailles), et plusieurs longueurs de cotés de maille
(30, 40, 50 et 60 mm). Finalement, la raideur axiale d’un fil en polyéthyléne a été
évaluée.
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Dans le troisieme chapitre, les résultats expérimentaux sont donnés. Les
objectifs de ce chapitre sont de présenter le comportement mécanique d’échantillons
de filets et de comparer les résultats obtenus avec les trois types d’expériences. De
plus, la déformation dans les échantillons de filets et la variation dans les résultats
sont montrées.

Le quatriéme chapitre décrit les méthodes numériques développées durant
cette these. Tout d’abord, quatre modeles basés sur la théorie des poutres sont pré-
sentés : un modele quasi-analytique pour les cotés de maille, le modele poutre de
Timoshenko du logiciel Abaqus, un modele éléments finis basé sur des poutres 2D
en formulation corotationnelle et un modele éléments barres. Les méthodes d’iden-
tification inverse sont ensuite expliquées. Au regard des méthodes existantes pour
I’évaluation de la raideur en flexion des cotés de maille dans les panneaux de filets,
les avantages possibles des méthodes éléments finis sont montrés dans le chapitre
suivant, particulierement en utilisant le modele éléments barres proposé.

Dans le cinquieme chapitre, les résultats numériques sont présentés et dis-
cutés. Tout d’abord, les raideurs en flexion identifiées en supposant que les mailles
ont une forme de losange sont présentées. L’influence des parametres sur la raideur
en flexion numérique est étudiée : la viscosité du matériau, la force appliquée sur les
mailles, 'ouverture des mailles, la taille des échantillons, et les conditions limites.
En ce qui concerne les résultats, il a été décidé de modéliser la taille des noeuds
en utilisant des mailles hexagonales. Les résultats avec des mailles hexagonales sont
présentés et discutés.

Enfin, le manuscrit se termine par une conclusion qui vise a présenter une ana-
lyse des résultats exposés dans le manuscrit, une discussion a propos de la validité
de la méthode proposée et des suggestions pour des travaux futurs.

Une partie de cette these a été soumise et acceptée pour publication par le jour-
nal "Ocean Engineering" (Morvan et al., 2016).

8.1.4 Contributions principales de cette these

e Des essais de tractions uniaxiales, des essais de suspension et des essais de
tractions biaxiales ont été réalisés sur un large éventail d’échantillons de filets :
deux matériaux (polyéthylene ou polyamide), deux types de cotés de maille
(simple ou double fil), trois tailles d’échantillon (3x3, 4x10 and 5x25 mailles).

o Le comportement mécanique des échantillons de filets a été révélé par les
résultats expérimentaux et pris en compte pour I’évaluation de la raideur en
flexion dans les échantillons de filets.
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o Un modele éléments finis, utilisant des éléments barres et basé sur la théorie
des poutres, a été développé. Un outil a été développé pour simuler, en utili-
sant ce modele éléments finis, les essais sur les échantillons de filets, et pour
identifier, en utilisant l'identification inverse et les résultats expérimentaux,
la raideur en flexion dans les échantillons de filets. Le modele reproduit le
champ de déformation hétérogene des échantillons de filets durant les essais
de suspension.

« Une méthodologie pour 1’évaluation de la résistance a 'ouverture des mailles
a été proposée et évaluée. Elle se base sur un modele éléments finis libre de
droits et sur un dispositif expérimental simple et peu cotiteux. Des méthodes
de mesures ont été proposées pour éviter des incohérences dans les résultats
d’identification qui proviendraient des corrélations entre certains parametres.

8.2 Méthodes existantes pour I’évaluation de la
raideur en flexion des fils

Trois modéles de maille de filet sont présentés (partie 2.1) : le modele de Priour
(2013), le modele analytique d’O’Neill (2002) (avec sa solution asymptotique) et le
modele basée sur les interpolations de De la Prada and Gonzales (2013). Les trois
modeles sont simples et offrent des temps de calcul numérique plus courts que dans
le cas de modeles éléments finis. Ce sont trois modeles facilement utilisables pour la
simulation de filets.

Priour (2013) a proposé une méthode éléments finis, basée sur des éléments tri-
angulaires, pour modéliser le comportement mécanique des filets (partie 2.2). Son
outil est capable de modéliser des culs de chalut avec des temps de calcul intéres-
sants. Néanmoins, des travaux sur la modélisation de la raideur en flexion des cotés
de maille et sur ’estimation du couple entre deux éléments triangulaires sont néces-
saires pour simuler avec précision 'effet de la raideur en flexion.

Quatre méthodes expérimentales existantes pour ’évaluation de la raideur
en flexion sont présentées (partie 2.3) : la méthode basée sur le prototype de machine
de traction biaxiale ROD-m de Sala et al. (2007), la suspension d’un échantillon en
forme de cul de chalut (cylindre) de Balash (2012), la suspension d’'un panneau de
filet de De la Prada and Gonzales (2014) et I’échantillon en porte-a-faux de Priour
and Cognard (2011).

Le modele analytique présenté par O’Neill (2002) est utilisé dans les méthodes
proposées par Sala et al. (2007), Balash (2012) et De la Prada and Gonzales (2014).
Néanmoins, O’Neill suppose que les cotés de maille ne sont pas extensibles, et ’ap-
proximation qu’il propose n’est valide que dans le cas d’une raideur a la flexion
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relativement faible ou d’un chargement élevé.

Les essais de traction biaxiale présentés par Sala et al. (2007) nécessitent un équi-
pement complexe et cotliteux (pas encore commercialisable) alors que De la Prada
and Gonzales (2014) proposent de suspendre des échantillons de filets. Malgré le
colit peu élevé de la méthode proposée par De la Prada, elle suppose que la défor-
mation dans les panneaux de filets suspendus est homogene, ce qui représente une
hypothese forte.

Sala et al. (2007) et De la Prada and Gonzales (2014) considerent la taille des
noeuds dans les filets : la taille est identifiée par identification inverse, la structure
des noeuds et la dispersion dans les résultats rendant la mesure expérimentale des
dimensions difficile. Cependant, les résultats des identifications ne sont pas toujours
cohérents en raison des corrélations fortes entre les parametres géométriques.

Priour and Cognard (2011) ne prennent pas en compte la taille des noeuds,
contrairement a Sala et De la Prada. Il serait nécessaire d’étudier l'effet des di-
mensions des noeuds sur les résultats d’identification. Notons, de plus, la nécessité
d’utiliser des filets a mailles fermées dans la méthode proposée par Priour and Co-
gnard (2011).

La méthode présentée par Balash (2012) est intéressante car elle utilise des es-
sais d’échantillons de filets cylindriques, similaires en forme aux culs de chalut.
Néanmoins, en choisissant d’utiliser la solution asymptotique proposée par O’Neill,
Iauteur fait des hypotheses fortes : pas d’extension des fils, précision seulement
lorsque la flexion est relativement faible ou que le chargement est élevé. La méthode
pourrait étre étudiée plus en profondeur (plus d’essais expérimentaux, de descrip-
tions des résultats et des identifications).

Les études existantes donnent des informations pour la mise en place d’une mé-
thodologie permettant 1’évaluation de la raideur en flexion des c6tés de maille. Tout
d’abord, I’élongation, la flexion et la torsion des c6tés de maille pourraient étre
modélisés. Ensuite, la méthode expérimentale peu chere proposée par De la Prada
and Gonzales (2014) pourrait étre utilisée avec un modele numérique simulant la
déformation non uniforme dans les échantillons suspendus. Puis 'effet de la taille
des noeuds dans le modele numérique sur la résistance a l'ouverture des mailles
identifiée pourrait étre étudiée. Une méthode permettant la mesure expérimentale
de la taille des noeuds pourrait étre proposée. Enfin, la méthode proposée devrait
étre validée par des essais sur un large éventail de filets de différents matériaux, de
différentes tailles, avec des c6tés de maille de différentes longueurs, et a différents
niveaux de chargement.
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8.3 Meéthode expérimentale et échantillons de
filets

Dans cette partie, la méthode expérimentale et les échantillons de filets utilisés sont
présentés. Une méthode d’évaluation de la raideur axiale d'un fil tressé est présentée.

8.3.1 Expériences

Trois types d’essais ont été effectués pour évaluer la raideur en flexion des cotés de
maille : des essais de traction uniaxiale sur machine de traction classique (partie
3.1.1), des essais de suspension (partie 3.1.2) du méme type que ceux proposés par
De la Prada and Gonzales (2014), et des essais de traction biaxiale (partie 3.1.3) du
méme type que ceux proposés par Sala et al. (2007).

Dans le cas d'un essai de traction uniaxiale, I’échantillon est monté sur une
machine de traction classique, équipée d'un capteur de force. L’essai est controlé
par déplacement de la traverse de la machine et les étapes de relaxation sont ef-
fectuées par blocage du déplacement de la traverse. Un extensometre laser permet
de mesurer la hauteur de la maille au centre de I’échantillon (L,,.s, sur la figure 8.2).

Dans le cas d’un essai de suspension, I’échantillon rectangulaire est suspendu par
une extrémité de telle maniere que la direction T du filet est verticale. Le filet est
soumis a son poids propre et a des forces par maille Fms appliquées dans la direc-
tion T sur les noeuds les plus bas de I’échantillon (Figure 8.3). Quand un panneau
est suspendu, les positions de tous ses noeuds sont mesurées en utilisant une caméra
et un logiciel congu et développé au laboratoire et permettant I’enregistrement des
images a une fréquence choisie.

Dans le cas d’un essai de traction biaxiale, le filet de taille 3x3 mailles est monté
sur une machine et soumis a des forces dans les directions T et N simultanément.
La machine est symétrique dans les directions T et N. Les conditions limites sont
décrites sur la figure 8.4. De la méme maniere que lors des essais de suspension, les
positions de tous les noeuds sont mesurées. Le dispositif expérimental mis en place
et utilisé ne permet probablement pas des mesures d’efforts et de déplacements aussi
précis qu'avec le protype ROD-m de Sala et al. (2007). Cependant, cette machine
colite, tres certainement, moins cher et la dispersion dans les résultats obtenus avec
des échantillons et des conditions expérimentales similaires permet de montrer une
précision cohérente (chapitre 4).
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FIGURE 8.2 — Schéma (a gauche) et photographie (& droite) de l'essai de traction
uniaxiale. La hauteur L,,.,, de la maille au milieu de ’échantillon de filet est me-
surée.

8.3.2 Echantillons de filet pour les expériences

Un large éventail de filets de péche communément utilisés dans les culs de chalut
ont été testés : quatre matériaux (trois types de polyéthylene, polyamide), cotés
de maille simples et doubles, trois tailles d’échantillons (échantillons 3x3 mailles
pour les essais de traction biaxiale, 4x10 et 5x25 mailles pour les essais de traction
uniaxiale et les essais de suspension), et plusieurs longueurs de cotés de maille (30,
40, 50 et 60 mm).

Huit types d’échantillons ont été utilisés :

o Filets a mailles simples, en PE vert, avec une longueur de c6té de maille de 40
mm, de taille 4x10 mailles (partie 3.2.4)

o Filets a mailles doubles, en PE vert, avec une longueur de coté de maille de
49 mm, de taille 3x3 mailles (partie 3.2.4)

o Filets a mailles doubles, en PE wvert, avec une longueur de coté de maille de
49 mm, de taille 4x10 mailles (partie 3.2.4)
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FIGURE 8.3 — Schéma (& gauche) et photographie (& droite) de I’essai de suspension.
Le panneau de filet est suspendu par 'une de ses extrémités et soumis a son poids
propre et aux forces F'mr appliquées aux noeuds les plus bas. Fmy est appelé effort

par maille dans la direction T.

o Filets a mailles doubles, en PE vert, avec une longueur de coté de maille de

liaison rotule
(libre en rotations)

Hr

49 mm, de taille 5x25 mailles (partie 3.2.4)

o Filets a mailles doubles, en PE vert, avec une longueur de co6té de maille de

60 mm, de taille 4x10 mailles (partie 3.2.4)

» Filets a mailles simples, en PE Breztop, avec une longueur de c6té de maille

de 40 mm, de taille 4x10 mailles (partie 3.2.5)

o Filets a mailles simples, en PE Brezline, avec une longueur de coté de maille

de 60 mm, de taille 4x10 mailles (partie 3.2.6)

o Filets a mailles simples, en PA, avec une longueur de coté de maille de 30 mm,

de taille 4x10 mailles (partie 3.2.7)

8.3.3 Evaluation de la raideur axiale d’un fil tréssé

Des essais de traction ont été effectués pour évaluer la raideur en traction des fils
constituant les filets étudiés. En raison du comportement mécanique visco-elasto-
plastique du polyéthylene, ’évaluation de la raideur axiale n’est pas évidente. L’éva-
luation de la raideur axiale par mesure des modules de comportement axial a court-
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FIGURE 8.4 — Schéma de l'essai de traction biaxiale. L’échantillon de filet de taille
3x3 mailles, monté sur la machine, est soumis a des forces par maille Fmy et Fmy
dans les directions T et N respectivement. L,y et Lgy sont les longueurs de I’échan-
tillon dans les directions T et N respectivement.

terme (Bles et al., 2009) et a long-terme est présentée.

Le module de raideur axial a court-terme augmente lorsque la déformation axiale
augmente. On peut supposer que, dans le cas des fils tressés en polyéthylene, pour
une déformation logarithmique faible (<0.055), le module de raideur axial a court-
terme est inférieur a 14000 N.
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Pour évaluer le module de raideur axial a long-terme, nous supposons que l'effet
de la viscosité est annulé a la fin des étapes de relaxation. Une raideur axiale de
2444 N est obtenue.

Les résultats obtenus (a long terme) sont utilisés dans les modeéles numériques
pour évaluer l'effet de la viscosité durant les essais de suspension, de traction uni-
axiale ou de traction biaxiale.

8.4 Résultats expérimentaux

Les essais de traction uniaxiale et de suspension fournissent des résultats révélant
le comportement visco-elasto-plastique des filets.

La viscosité est révélée par I’évolution des forces durant les étapes de relaxation
(Fig. 4.1), la réponse en force durant I'essai de traction cyclique et I’évolution de
la hauteur totale de I’échantillon Hr durant les étapes de fluage (Figs. 4.7 a 4.9).
L’¢élasticité non-linéaire est montrée sur les figures 4.2, 4.3 et 4.5.

La figure 4.1 montre que 'ouverture oy reste élevée a la décharge (avec des étapes
de relaxation de 15 minutes). Ainsi, la maille ne revient pas a son état initial. La
structure présente une déformation permanente (ou viscosité a long-terme).

Au regard de I'évolution de la hauteur totale Hp des échantillons durant les
étapes de fluage (Figs. 4.7 & 4.9), nous pouvons supposer que dans le cas des essais
de suspension sur filets en PE vert, PE Breztop ou PE Brezline, la contribution de
la composante mécanique visqueuse de la déformation est annulée apres 30 minutes
de fluage. Dans le cas de filets en PA, 'effet de la viscosité n’est rapidement plus
observable.

Les figure 4.7 a 4.15 montrent une faible dispersion dans les résultats fournis
par les essais de suspension : les résultats obtenus avec différents échantillons prove-
nant du méme type de filet sont tres proches. De plus, la déformation dans les filets
est clairement non uniforme. Ce point est important : les essais de suspension sont
simples & mettre en oeuvre mais la déformation dans un échantillon suspendu n’est
pas uniforme.

La figure 4.16 montre que ’étape de prétension dans la direction T cause une
déformation permanente dans cette direction. Lorsque les résultats des essais sur des
filets avec des cotés de maille de 50 mm et des essais sur des filets avec des cotés de
maille de 60 mm, constitués de fils identiques, sont comparés, il apparait que dans le
cas des cOtés de maille de 50 mm, la force par maille F'mr appliquée augmente plus
vite lorsque 'ouverture or augmente. Donc la résistance a 'ouverture des mailles
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dans le cas de c6tés de maille de 50 mm est plus grande que dans le cas de cotés de
maille de 60 mm. Cette différence peut étre expliquée par la différence géométrique
de la structure, 'influence des noeuds sur le comportement mécanique des filets,
et/ou les intéractions différentes entre les fils constituant le c6té de maille. En effet,
dans le cas d’un filet & mailles doubles, les intéractions entre les fils peuvent étre
supposées plus fortes lorsque le coté de maille est plus court.

En modélisant la forme d’un demi-c6té de maille par un arc de cercle, une re-
1
lation polynomiale est révélée entre la courbure — et 'ouverture de maille o7 dans

la direction T (Fig. 4.19). En modélisant la forme d’un demi-c6té de maille par
un arc de cercle et en supposant qu’il n’y a pas de déformation axiale des fils, la
relation entre les ouvertures calculées oy et or, dans les directions N et T respective-
ment, est proche de la relation obtenue expérimentalement (Fig. 4.17). La courbure
étant directement liée a la raideur en flexion avec I’hypothese d’'un comportement
mécanique de poutre, I’étude de parametres en fonction de 'ouverture or (ou oy)
apparait cohérente.

Les essais de traction biaxiale montrent que plus l'effort F'my dans la direction
N est grand, moins 'ouverture de maille oy dans la direction T est grande, comme
attendu (Fig. 4.20).

L’utilisation et la cohérence des trois types d’expériences sont validées par la
comparaison des résultats (figures 4.21, 4.22, 4.23).

Enfin, le comportement mécanique visco-elasto-plastique observé dans les résul-
tats expérimentaux apporte des informations pour la mise en place d’un protocole
expérimental. Les mesures devraient étre effectuées apres, au moins, 30 minutes de
fluage dans le cas d’essais de suspension et 15 minutes de relaxation dans le cas
d’essais de traction uniaxiale. Dans le cas d’essais de traction biaxiale, la mesure de
leffet de la viscosité n’est pas possible avec ’équipement utilisé. Ainsi, I'effet de la
viscosité est supposé négligeable. Ensuite, le comportement cyclique montre que le
chargement doit étre croissant, éventuellement interrompu par des étapes de fluage
ou de relaxation.

8.5 Meéthodes numériques

Pour commencer, un modele quasi-analytique est présenté. Celui-ci est basé sur la
théorie des poutres et autorise de large rotations. Il est proposé pour simuler les
essais de traction uniaxiale, en supposant que la maille au centre de I’échantillon est
soumise a un effort uniaxial pur dans la direction T.
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Ensuite, trois modeles éléments finis sont présentés :

o Le code de calcul Abaqus Standard. Les cotés de maille sont modélisés par
des poutres de Timoshenko. Un programme numérique implémenté en lan-
gage Python permet de simuler les essais sur filet et d’identifier la raideur a
I'ouverture par identification inverse.

o Un modele éléments finis 2D, basé sur la théorie des poutres, et utilisant une
formulation corotationnelle. La formulation corotationnelle, présentée dans Le
et al. (2011), permet de traiter le cas des grandes rotations et des petites dé-
formations. Ce modele est implémenté en langage Python et montre de bonnes
performances de calcul et des résultats mécaniques en accord avec le logiciel
commercial Abaqus Standard. Il est une premiere étape vers le développe-
ment d’'un modele 3D. De plus, il offre la possibilité de prendre en compte
le cisaillement transverse dans les fils et d’utiliser, éventuellement, une loi de
comportement non-linéaire.

o Un modele éléments finis basé sur des éléments barres. C’est un modele simple
implémenté en langage C. Le modele est présenté dans Morvan et al. (2016).
Il permet de modéliser aussi bien des filets a mailles losanges que des filets a
mailles hexagonales. Sur un probleme mécanique simple de potence, les résul-
tats obtenus avec le modele éléments barres sont comparés a ceux obtenus avec
une solution analytique de mécanique des milieux continus et le code de calcul
Abaqus Standard. La comparaison montre que le modele développé dans cette
these peut décrire avec précision les déformations des cotés de maille dans un
filet. Enfin, la simulation d’une poutre modélisant un co6té de maille permet de
vérifier que le modeéle numérique éléments barres est plus précis que la solution
asymptotique proposé par O’Neill.

Quelque soit le modele utilisé, on connait les forces dans le filet simulé, et les
positions de ses noeuds. Ces positions permettent de calculer une fonction-objectif
et d’identifier, en minimisant ou en cherchant le zéro de cette fonction, la valeur de
la raideur a la flexion E1.

Dans le cas des essais de traction uniaxiale, la fonction-objectif est la différence
entre la hauteur expérimentale et la hauteur numérique de la maille au milieu de
I’échantillon testé. Le zéro de la fonction-objectif est recherché en utilisant la mé-
thode de dichotomie.

Dans le cas des essais de suspension, la fonction-objectif est calculée avec deux
méthodes : premierement, la fonction-objectif est la distance entre les coordonnées
des noeuds expérimentaux et numériques, et est minimisée en utilisant 1’algorithme
proposé par Nelder and Mead (1965); deuxiémement, la fonction-objectif est la
différence entre la hauteur expérimentale et la hauteur numérique de 1’échantillon
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suspendu, et son zéro est recherché en utilisant la méthode de dichotomie. Apres
comparaison des deux méthodes, la deuxieme méthode est plus simple et suffisam-
ment précise.

Dans le cas des essais de traction biaxiale, la fonction-objectif est la différence
entre les résultats de la division Lgr/Lsy obtenus expérimentalement et numéri-
quement. Ly et Lgy sont les longueurs totales de I’échantillon dans les directions
T et N respectivement. Le zéro de la fonction-objectif est recherché en utilisant la
méthode de dichotomie.

8.6 Résultats numériques

8.6.1 Mailles losanges

Dans cette partie, la raideur a la flexion est identifiée en supposant que les mailles
ont une forme losange et en utilisant la méthode d’identification inverse présentée
précédemment. Cela signifie que les noeuds sont modélisés par des points.

Les résultats des identifications & partir des essais de traction uniaxiale (partie
6.1.1), de suspension (partie 6.1.2), et de traction biaxiale (partie 6.1.3) sont pré-
sentés.

La figure 6.1 montre I'importance de prendre en compte la viscosité du matériau
qui influence grandement la raideur a la flexion identifiée. Donc, avec I’hypothese
d’un comportement visco-elasto-plastique, les étapes de relaxation permettent de
réduire leffet de la viscosité et d’améliorer 1’évaluation de la raideur a la flexion ; en
effet, plus la durée de relaxation est grande, moins le temps a d’effet sur la valeur de
EI. La figure 6.3 montre que I'ouverture or reste élevée durant la décharge (avec des
étapes de relaxation de 15 minutes). Donc la maille ne revient pas a son état initial.
La structure présente une déformation permanente ou une viscosité a long-terme.

La figure 6.1 montre que la raideur a la flexion identifiée avec le modéle analytique
est inférieure a celle identifiée avec le code de calcul Abaqus Standard. La différence
relative entre les deux courbes va de 4.40 % pour une force par maille de 1.59 N
a 12.77 % pour une force par maille de 12.38 N. D’aprés le modele éléments finis
Abaqus Standard de I’essai de traction uniaxiale, la maille au milieu de ’échantillon
est soumise a une force de traction dans la direction T et a une force de compres-
sion dans la direction N. Cependant, le modele analytique ne prend en compte que
I'effort de traction. Nous pouvons supposer que, pour obtenir la méme ouverture de
maille dans la direction T sans effort de compression, une raideur en flexion plus
faible est nécessaire. Nous pouvons noter que pour un niveau de chargement faible,
dans le cas d'un essai de traction uniaxiale, la raideur en flexion identifiée avec le
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modele analytique est proche de celle évaluée avec le modele éléments poutres.

Les figures 6.2 et 6.3 montrent ’évolution de la raideur en flexion identifiée en
fonction de la force F'my appliquée sur la maille et en fonction de 'ouverture or
respectivement. Nous pouvons noter que la variation du parametre E'I durant I'essai
est plus petite lorsque EI a été calculé a la fin de chaque étape de relaxation.

Durant D'effort de traction uniaxiale sur filets a mailles simples en PE wvert, la
force par maille au début des étapes de relaxation va de 2.40 N a 12.38 N (Fig.
6.2). Durant les essais de suspension sur le méme type de filet, les échantillons sont
soumis a des forces par maille appliquées dans le bas des filets allant de 0.3235 N a
2.775 N (Fig. 6.4). La force par maille appliquée sur les mailles les plus en haut va
de 0.46 N a 2.91 N a cause du poids du filet. Le chargement appliqué sur les mailles
durant les essais de suspension sur filets a mailles simples en PE vert représente en-
viron le quart de l'effort appliqué durant ’essai de traction uniaxiale. Il faut noter
que la raideur en flexion identifiée pour la valeur la plus petite de force par maille
appliquée lors de ’essai de traction uniaxiale est proche des valeurs identifiées pour
les essais de suspension.

Lorsque la force Fmy augmente, et donc lorsque I'ouverture de maille augmente,
les efforts de traction dans les cotés de maille augmentent, et nous pouvons nous
attendre a une réduction du diametre des fils. Un plus petit diametre signifie un
plus petit moment d’inertie I. Ainsi, nous pouvons supposer une réduction de ET
lorsque 'effort augmente. Néanmoins, les résultats ne montrent aucune décroissance
de ET lorsque Fmy augmente. Dans les cas des filets a mailles simples en PE vert
(Fig. 6.3), des filets & mailles doubles en PE wert (Fig. 6.6), des filets a mailles
simples en PE Breztop (Fig. 6.8) et des filets a mailles simples en PA (Fig. 6.10),
une augmentation de la raideur en flexion identifiée est observée. Cela peut étre
di a la complexité de la structure tressée du fil : lorsque le niveau de chargement
augmente, 'effort de cisaillement et le moment de flexion dans le fil augmentent,
donc la forme de la section du fil peut changer grandement et affecter la raideur en
flexion E1.

La comparaison des hauteurs numériques et expérimentales (Figs. 4.10 a 4.15)
montre que le modele éléments barres simule le champ de déformation hétérogene
dans les échantillons de filet suspendus.

De plus, la figure 6.11 montre que dans le cas de filets a mailles doubles en PE
vert, la raideur en flexion ET ne dépend pas du nombre de mailles dans 1’échantillon :
les raideurs a la flexion ET identifiées sur des filets de tailles 4x10 et 5x25 mailles
sont similaires.

Les figures 6.5 a 6.10 montrent que le coefficient de variation de EI est plus
grand lorsque la valeur de F'mr est proche de zéro. Dans le cas de forces plus éle-

160



8.6. Résultats numériques

vées, le coefficient de variation est inférieur a 10%.

Les essais de traction biaxiale permettent 1’étude de I'influence du chargement
Fmy dans la direction N sur la raideur a la flexion EI évaluée. La raideur a la
flexion identifiée dans le cas des essais de traction biaxiale est révélée plus grande
que dans le cas des essais de suspension pour une méme ouverture de maille op
(figures 6.12 et 6.14).

L’augmentation de la raideur en flexion identifiée lorsque la force par maille Fmy
augmente, et les différences entre les résultats des identifications a partir des essais
de traction biaxiale et des essais de suspension pourraient étre expliquées par le fait
que la taille des noeuds n’est pas prise en compte.

8.6.2 Mailles hexagonales

En utilisant le modele éléments barres et en prenant en compte la taille des noeuds,
la raideur a la flexion des filets a mailles doubles en PE vert de tailles 4x10 et 5x25
mailles, avec des cotés de maille de longueurs 50 mm et 60 mm, est identifiée.

Comme attendu, la raideur en flexion identifiée E'I est plus faible lorsque nous
prenons en compte la longueur des noeuds dans la direction N (figures 6.19, 6.20,
6.23 et 6.24). En effet, plus le noeud est long dans la direction N, plus le coté de
maille est court et plus 'angle entre le c6té de maille et la direction N est grand.

En modélisant le noeud avec une longueur de 10 mm, nous n’observons pas la
méme évolution de la raideur en flexion identifiée que dans le cas d'un noeud modé-
lisé par un point (maille losange). Premiérement, la raideur a la flexion n’augmente
plus avec la force Fmy (figures 6.19 et 6.23). De plus, nous pouvons supposer une
raideur a la flexion constante en fonction de la force par maille Fmq. Puis, 1’évolu-
tion en fonction de I'ouverture or est plus cohérente. En effet, la figure 6.20 révele
une continuité entre les évolutions des raideurs a l'ouverture des échantillons de
tailles 4x10 et 5x25 mailles, malgré une prétension dans une direction différente et
une taille en nombre de mailles différente. Et les identifications a partir des essais de
traction biaxiale révelent une continuité avec les évolutions des raideurs en flexion
en fonction de l'ouverture or (Fig. 6.24) d’échantillons soumis a 3 types différents
de chargement biaxiale. Ainsi, nous pouvons supposer que la raideur en flexion ne
dépend pas de la direction de prétension, du nombre de mailles dans les échantillons
suspendus ou de l'effort Fmy appliqué dans la direction N dans le cas d’essais de
traction biaxiale, mais la raideur en flexion dépend de I'ouverture dans la direction T.

Alors que nous nous attendions a obtenir une raideur en flexion identique, la

figure 6.22 montre une raideur en flexion plus faible avec un c6té de maille de lon-
gueur 60 mm qu’avec un c6té de maille de longueur 50 mm, dans le cas de filets
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a mailles doubles en PE wvert. Cette différence peut s’expliquer par I'effet du noeud
sur le comportement mécanique du c6té de maille et par les intéractions, entre les
deux fils constituant le c6té de mailles, qui dépendent en partie de la longueur du
cOté de maille. De plus, bien que les échantillons de filet aient la méme structure
et soient constitués des mémes fils, ils sont soumis a des conditions de fabrication
différentes (température, durée, efforts de traction). Des conditions de fabrication
différentes peuvent expliquer des comportements mécaniques différents. Nous notons
aussi que, malgré le niveau de chargement différent, la forme de ’évolution de la rai-
deur en flexion en fonction de 'ouverture est tres similaire dans les deux cas de filets.

Les résultats d’identification a partir des essais de suspension et de traction
biaxiale sont proches : les évolutions des raideurs en flexion E T identifiées en fonc-
tion de 'ouverture or sont quantitativement et qualitativement proches (Fig. 6.26).

La courbure dans les fils est approximée en modélisant un demi-coté de maille
par un arc de cercle de rayon R. L’évolution de la raideur a la flexion identifiée en
fonction de la courbure x (Fig. 6.27) est cohérente avec I’évolution de la raideur en
flexion ET identifiée en fonction de 'ouverture or (Fig. 6.26).

En supposant que la raideur en flexion EI dépende de 'ouverture or dans la
direction T (liée a I'ouverture oy de la maille dans la direction N et & la courbure
du fil), et non du niveau d’effort appliqué, nous pouvons écrire que les essais avec
un chargement plus élevé ne sont pas utiles pour évaluer E'1, c’est-a-dire, indirecte-
ment, pour évaluer la résistance a I’ouverture d’'une maille. De plus, les mesures lors
des essais de suspension nous permettent d’évaluer un £ proche de celui identifié a
partir d’essais de traction biaxiale, ce qui valide la méthode d’identification utilisant
des essais de suspension.

8.7 Conclusions

8.7.1 Implications pour la recherche

La these offre une avancée scientifique pour I’évaluation de la résistance a I’ouverture
des mailles :

o Malgré la complexité de la structure et du comportement mécanique d’un fi-
let, un simple modele élément barre permettant la simulation d’un filet
soumis a de larges déformations est proposé. Contrairement aux modeles exis-
tants dans la littérature, le modele élément barre a reproduit le champ de
déformation hétérogene du filet. Un compromis est fait entre la simplicité et
la précision.
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o La these offre des données expérimentales provenant d’essais de traction
uniaxiale, d’essais de suspension et d’essais de traction biaxiale réalisés sur
un large éventail d’échantillons de filets : deux matériaux (polyéthyléne ou
polyamide), deux types de cotés de maille (simple ou double fil), trois tailles
d’échantillon (3x3, 4x10 et 5x25 mailles).

e Le comportement mécanique visco-elasto-plastique des échantillons de
filet a été révélé par des résultats expérimentaux.

e Le développement d’'une méthode plus précise et plus simple pour éva-
luer la résistance a 'ouverture des mailles : la méthode est basée sur des essais
expérimentaux de suspension, comme proposé par De la Prada and Gonzales
(2013), nécessitant un dispositif expérimental plus simple que la machine de
traction biaxiale développée par Sala et al. (2007), et sur un modele numérique
éléments barres permettant la simulation d’'une déformation non uniforme
dans les panneaux de filet suspendus. Un article décrivant cette méthode a
été soumis et accepté pour publication par le journal "Ocean Engineering'
(Morvan et al., 2016). De plus, la méthode prend en compte le comportement
mécanique visco-elasto-plastique des filets : tout d’abord les mesures étaient
effectuées apres des étapes de fluage de 30 minutes pour réduire U'effet de la
viscosité ; ensuite le chargement appliqué était monotone croissant pour éviter
I'effet d’hystérésis d'un chargement cyclique. Les échantillons de filet étaient
initiallement soumis a une étape de prétension, introduisant une déformation
plastique mais n’influant pas sur la raideur en flexion identifiée, pour éviter
tout effet de glissement des noeuds.

e Nous avons montré la relation entre la raideur en flexion identifiée et ’ouver-
ture de maille dans la direction T. De plus, il a été révélé, dans le cas de filet
en PE vert a doubles mailles, que la raideur en flexion était identique qu’elle
soit identifiée a partir des résultats expérimentaux des essais de suspension
ou des essais de traction biaxiale. Ce résultat a validé la méthode pour le
cas de filet en PE vert a mailles doubles.

o L’influence de la taille du noeud modélisé numériquement sur 1’évolution de
la raideur en flexion identifiée en fonction du chargement appliqué ou de I'ou-
verture de maille dans la direction T a été montrée.

8.7.2 Suggestions pour les travaux futurs
Les travaux possibles sont nombreux :

o L’évolution révélée de la raideur a I'ouverture identifiée en fonction de ’ouver-
ture de maille et I'influence de la longueur des c6tés de maille sur la raideur en
flexion identifiée ont montré que le modeéle numérique pourrait étre amélioré
en prenant en compte des phénomenes influant sur le comportement méca-
nique des filets. Le cisaillement et la torsion des fils pourraient étre modélisés.
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Les intéractions de contact-frottement des fils pourraient aussi étre modélisés
pour apporter de la précision aux résultats numériques et apporter de nou-
veaux éléments pour la compréhension du comportement mécanique des filets.
Le modele pourrait étre amélioré en se basant sur les données expérimentales
fournies par cette these.

Les comparaisons des raideurs a la flexion identifiées a partir des mesures
lors des essais de suspension et des essais de traction biaxiale sur d’autres
types de filets pourrait apporter une validation solide de la méthodologie pour
I'identification de la raideur en flexion utilisant des essais de suspension. Dans
le cas de résultats ne validant pas cette hypothese, et par souci de simplicité,
nous recommanderions la définition des raideurs en flexion identifiées par la
méthode utilisant les essais de suspension comme référence pour la mise en
place d’une réglementation sur la résistance a l'ouverture des mailles dans les
engins de péche.

L’influence de la longueur des cotés de maille sur les raideurs en la flexion
identifiées pourrait étre étudiée plus largement en testant des échantillons de
filet avec un large évantail de longueurs de cotés de maille différentes. Ces
échantillons aux c6tés de maille de longueurs différentes devraient étre consti-
tués du méme fil, et devraient avoir été fabriqués dans les mémes conditions
(température, chargement et durée de 1'étirage a chaud).

Les noeuds pourraient étre modélisés avec plus de précision. Le modele pour-
rait prendre en compte la taille des noeuds dans les directions T et N, les
intéractions entre les fils des cotés de maille et les noeuds, le possible change-
ment de section du fil (en particulier prés du noeud), et 'asymétrie dans la
forme des noeuds.

Parce qu’il est nécessaire de réglementer la sélectivité des engins de péche
et d’étre capable d’identifier la résistance a 'ouverture des mailles avec une
méthode simple et un équipement peu cher, I'outil numérique d’identification
développé dans cette theése et basé sur un modele éléments barres pourrait
étre rendu portable. Nous pourrions imaginer, par exemple, un outil numé-
rique gratuit utilisable avec un smartphone. Dans ce cas, nous pourrions nous
attendre a une grande utilisation de la méthode présentée dans cette these.

L’influence du vieillissement des filets soumis a un environnement marin sur
la résistance a 'ouverture des mailles dans les engins de péche devrait étre
étudiée. Nous pourrions imaginer une collaboration avec des pécheurs profes-
sionnels : en testant des filets avant et apres plusieurs mois d’utilisation. Un
tel travail pourrait permettre la construction d’'un modele pouvant simuler
I’évolution de la raideur a 'ouverture des mailles dans les engins de péche en
fonction de leur utilisation.



APPENDIX

A

Numbering of the meshes in a
netting sample

The meshes are numbered from the left to the right and from the top to the bottom
in a netting sample.

Figure A.1 — Numbering of the meshes in a 4x10-mesh netting sample.
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Figure A.2 — Numbering of the meshes in a 5x25-mesh netting sample.
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APPENDIX

The half mesh side shape
modelled by a circle arc.

Figure B.1 defines some geometrical parameters in a deformed mesh side O105: 1is
the centre of the mesh side, 0, is the angle between the N-direction and the mesh
side initially, 6, is the angle between the N-direction and the deformed mesh side.

0,

Oo|

!
\e-eo o TLN

Figure B.1 — Deformed mesh side.

0,

B.1 Expressions of the curvature

The half mesh side is assumed to be a circle arc with a radius R (Fig. B.2). With
this assumption, we can write:

. B 0,1
Slll(@ — 00) = ﬁ (B].)
Then:
0,1
~ 2sin(0 — 6p) (B-2)
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Appendix B. The half mesh side shape modelled by a circle arc.

o5
1 \‘“/O:I /2

Figure B.2 — The half mesh side is assumed to be a circle arc with a radius R.

Hence:

1 2sin(0 — 6)
— = 7Y B.
R O11 (B3)

B.2 Expression of O;/ and 6

Ly/ 4

Figure B.3 — Lengths Ly /4 and Ly /4 of a half mesh side in the N- and T- direction
respectively.

First, we calculate the length O, as a function of the openings oy and or in
the N- and T- direction respectively.
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B.3. Expressions of oy and or

We have:
Ly Lt
I =4/(—)2 —)2 B4
0, J( 224 () (B.4)
That means:
Lms Lms
R (B5)

Thus:

Lms /
01[ = 1 ON2 + OT2 (B6)

Finally, 0 is calculated. From Figure B.3, we write:

Lr/4
§ = arctan Lj\;éél (B.7)
L
0 = arctan — (B.8)
Ly
Thus, with the definition of the openings:
or
§ = arctan — (B.9)
ON
B.3 Expressions of oy and or
By assuming that there is no stretching in the twine, we write:
Lyns = 4R(0 — b)) (B.10)
with L,,s the length of the mesh side.
Thus, we have:
L
R=_—_"" B.11
4(0 — o) (B11)
Equation B.3 gives:
O, = 2Rsin(0 — 6y) (B.12)

Let r be the distance between the two extremities Oy and O, (Fig. B.1). Using
Equation B.12, we have:

r=4Rsin(f — b)) (B.13)
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Appendix B. The half mesh side shape modelled by a circle arc.

By replacing R with Equation B.11, we obtain:

sin(f — 0p)
= Lps———> B.14
And oy and o7 are expressed:
2
on = 2rcos(?) (B.15)
L’)’TLS
or = 2500 .10
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APPENDIX

C

Forces in a codend.

A dragged 100x100-mesh codend was simulated with the model proposed by Priour
(2013) and presented in Section 2.2. The mesh shape was assumed to be diamond

and the speed value was 1 m.s™!.

catch: 184 kg

(m]

direction T

catch: 2735 kg

direction N

L
0.0 05 10 15 2.0 25 3.0 35 [m]

Figure C.1 — Shapes of a 100x100-mesh codend subject to two different catches. The
codend was simulated with the model proposed by Priour (2013).

Figure C.1 shows the shape of a codend subject to two different catches. In Figure
C.2, the forces by mesh F'my and Fmyp in the N- and the T-direction respectively
are represented as a function of the catch. The force values were calculated using
the tensile forces in the mesh sides of each simulated codend near the limit shaped
by the catch, that means where the fishes could escape.
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Appendix C. Forces in a codend.

35 +
30 [ + N
X
25 + i
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Figure C.2 — Forces by mesh F'my and Fmy in the N- and the T-direction respec-
tively in a dragged 100x100-mesh codend as a function of the catch. The codend
was simulated with the model proposed by Priour (2013).
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APPENDIX

Compression transverse force
in a netting sample subject to
uniaxial tension.

D.1 4x10-mesh netting sample

Vertical uniaxial tensile tests of a 4x10-mesh netting sample were simulated with
the Abaqus Standard tool to study the forces applied on the mesh in the middle
of the netting panel, that is to say the studied mesh during experimental uniaxial
tensile tests.

Tables D.1 and D.2 show the force by mesh Fmy in the N-direction in the

meshes along the plane of symmetry of the half sample (Fig. D.1) in cases of a force
by mesh in the T-direction of 1.0 N and 12.5 N respectively.
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Appendix D. Compression transverse force in a netting sample subject to uniaxial
tension.

Mesh number  Fmy [N]  Fmy/Fmp [

6 3.62 3.62
13 2.20 2.20
20 -0.05 -0.05
27 -0.26 -0.26
34 -0.32 -0.32
41 -0.26 -0.26
48 -0.05 -0.05
95 2.20 2.20
62 3.62 3.62

Table D.1 — Simulation of the vertical uniaxial tensile test of a 4x10-mesh netting
sample with the Abaqus Standard software tool: force by mesh Fmy in the N-
direction in the meshes along the plane of symmetry of the half sample (Fig. D.1).
The netting sample was subjected to a force by mesh of 1.0 N in the T-direction.
The strain of the simulated netting was 99 %. The bending stiffness EI of the
netting was 4.11 107* N. The length of the mesh sides was 0.06 m and the mesh
angle at rest ap was 14 °. The mesh numbers are defined in Figure A.1.

Mesh number F'my [N]  Fmy/Fmp []

6 26.52 2.12
13 14.41 1.15
20 0.62 0.05
27 -0.37 -0.03
34 -0.52 -0.04
41 -0.37 -0.03
48 0.62 0.05
55 14.41 1.15
62 26.52 2.12

Table D.2 — Simulation of the vertical uniaxial tensile test of a 4x10-mesh netting
sample with the Abaqus Standard software tool: force by mesh Fmy in the N-
direction in the meshes along the plane of symmetry of the half sample (Fig. D.1).
The netting sample was subjected to a force by mesh of 12.5 N in the T-direction.
The strain of the simulated netting was 423 %. The bending stiffness FT of the
netting was 4.11 107* N. The length of the mesh sides was 0.06 m and the mesh
angle at rest ag was 14 °. The mesh numbers are defined in Figure A.1.
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D.1. 4x10-mesh netting sample

Y

7 x Step: Step-1 x Step: Step-1
Increment 10: Step Time = 1.000 Increment 13 Step Time = 1.000

Figure D.1 — Simulated 4x10-mesh netting sample with the Abaqus Standard soft-
ware tool. The rotations in the netting were assumed to be large. The netting
sample was subjected to a force by mesh in the T-direction of 1.0 N (left) and 12.5
N (right). The bending stiffness ET of the netting was 4.11 10~* N. The length of
the mesh sides was 0.06 m and the mesh angle at rest ay was 14 °.
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Méthodologie pour I’évaluation de la résistance a ’ouverture d’une maille
de filet

Résumé : L’évaluation de la résistance a I'ouverture des mailles dans les filets de
péche est un enjeu important pour I'évaluation de la sélectivité des chaluts, et plus large-
ment des engins de péche. Les objectifs de cette these sont de développer et d’évaluer une
méthodologie pour I'évaluation de la résistance a l'ouverture des mailles dans les filets.
Différentes méthodes existent déja (Sala et al., 2007; Priour and Cognard, 2011; Balash,
2012; De la Prada and Gonzales, 2014). Notre objectif est de proposer une méthode expé-
rimentale simple et ne nécessitant pas d’équipements cotiteux pour pouvoir étre déployée
facilement dans les laboratoires et dans l'industrie de la péche, combinée avec un mo-
dele numérique capable de représenter le comportement mécanique non-linéaire d’un filet.
Le filet, constitué de fils tressés ou toronnés, en Polyéthylene ou Polyamide, présente une
structure complexe. De plus, les filets peuvent étre soumis a de grandes déformations. Afin
d’étudier la réponse mécanique des filets a différents types de sollicitations et de créer une
base de données expérimentale, de nombreux essais ont été effectués sur un large éven-
tail de filets de péche. Plusieurs méthodes numériques pour ’évaluation de la résistance
a louverture des mailles a partir de données expérimentales ont été développées. Ces
travaux offrent une avancée scientifique pour 1’évaluation de la résistance a ’ouverture
des mailles : malgré le comportement mécanique visco-élasto-plastique des échantillons
de filet, une méthodologie plus simple et plus précise que celles existantes, basée sur un
dispositif expérimental simple et un modele éléments finis libre de droits, est présentée.

Mots-clés : filet, maille, résistance a 'ouverture, fil tressé, raideur en flexion, expé-
rience, modele numérique, grande déformation, comportement mécanique, identification
inverse, polyéthyléne, polyamide.






Methodology for the evaluation of the resistance to opening of a netting
mesh

Abstract: The evaluation of the mesh resistance to opening in fishing nets is an
important issue to assess the selectivity of trawls, and more broadly of fishing gear. The
objectives of this thesis are to develop and to assess a methodology for the evaluation
of the mesh resistance to opening in netting structures. Several methods are already
proposed (Sala et al., 2007; Priour and Cognard, 2011; Balash, 2012; De la Prada and
Gonzales, 2014). This thesis aims at proposing a simple experimental method that does
not require expensive devices to be easily spread in laboratories and in the fishing in-
dustry, a simple test combined with a numerical model able to represent the non-linear
mechanical behaviour of a tested netting panel. The netting structure, constituted of
braided or stranded twines, made of Polyethylene or Polyamide, is complex. Moreover,
the fishing nets can be subjected to large deformation. In order to study the mechanical
response of netting samples to different types of solicitations and to obtain experimental
data, numerous experimental tests were performed on a large range of netting samples.
Several numerical methods for the evaluation of the mesh resistance to opening using
experimental data were developed. This work offers scientific advance for the evaluation
of the mesh resistance to opening: despite the visco-elasto-plastic mechanical behaviour
of netting samples, one more accurate and simpler methodology than the existing ones,
based on a simple experimental set up and on a free of rights finite element model, is
presented.

Keywords: netting, mesh, resistance to opening, braided twine, bending stiffness,
experiment, numerical model, large deformation, mechanical behaviour, inverse identifi-
cation, polyethylene, polyamide.
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