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Résumé

Répondre efficacement aux requêtes Big Data en présence de
contraintes

Les contraintes sont les artéfacts fondamentaux permettant de donner un sens aux
données. Elles garantissent que les données sont conformes aux besoins des applica-
tions. L’objet de cette thèse est d’étudier deux problématiques liées à la gestion efficace
des données en présence de contraintes.

Nous abordons le problème de répondre efficacement à des requêtes portant sur des
données, en présence de contraintes déductives. Cela mène à des données implicites
dérivant de données explicites et de contraintes. Les données implicites requièrent une
étape de raisonnement afin de calculer les réponses aux requêtes. Le raisonnement
par reformulation des requêtes compile les contraintes dans une requête modifiée qui,
évaluée à partir des données explicites uniquement, génère toutes les réponses fondées
sur les données explicites et implicites. Comme les requêtes reformulées peuvent être
complexes, leur évaluation est souvent difficile et coûteuse.

Nous étudions l’optimisation de la technique de réponse aux requêtes par reformu-
lation dans le cadre de l’accès aux données à travers une ontologie, où des requêtes
conjonctives SPARQL sont posées sur un ensemble de faits RDF sur lesquels des con-
traintes RDF Schema (RDFS) sont exprimées. La thèse apporte les contributions suiv-
antes. (i) Nous généralisons les langages de reformulation de requêtes précédemment
étudieés, afin d’obtenir un espace de reformulations d’une requête posée plutôt qu’une
unique reformulation. (ii) Nous présentons des algorithmes effectifs et efficaces, fondés
sur un modèle de coût, permettant de sélectionner une requête reformulée ayant le plus
faible coût d’évaluation. (iii) Nous montrons expérimentalement que notre technique
améliore significativement la performance de la technique de réponse aux requêtes par
reformulation.

Au-delà de RDFS, nous nous intéressons aux langages d’ontologie pour lesquels
répondre à une requête peut se réduire à l’évaluation d’une certaine formule de la Logique
du Premier Ordre (obtenue à partir de la requête et de l’ontologie), sur les faits explicites
uniquement. (iv) Nous généralisons la technique de reformulation optimisée pour RDF,
mentionnée ci-dessus, aux formalismes pour répondre à une requête LPO-réductible.
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(v) Nous appliquons cette technique à la Logique de Description DL-LiteR sous-jacente
au langage OWL2 QL du W3C, et montrons expérimentalement ses avantages dans ce
contexte.

Nous présentons également, brièvement, un travail en cours sur le problème consis-
tant à fournir des chemins d’accès efficaces aux données dans les systèmes Big Data.
Nous proposons d’utiliser un ensemble de systèmes de stockages hétérogènes afin de
fournir une meilleure performance que n’importe lequel d’entre eux, utilisé individu-
ellement. Les données stockées dans chaque système peuvent être décrites comme des
vues matérialisées sur les données applicatives. Répondre à une requête revient alors
à réécrire la requête à l’aide des vues disponibles, puis à décoder la réécriture produite
comme un ensemble de requêtes à exécuter sur les systèmes stockant les vues, ainsi
qu’une requête les combinant de façon appropriée.

Mots clés— Web sémantique, Optimisation des requêtes, Répondre à des requêtes
en présence de contraintes, Reformulation des requêtes, Polystores



Abstract

Efficient Big Data query answering in the presence of constraints

Constraints are the essential artefact for giving meaning to data, ensuring that it fits real-
life application needs, and that its meaning is correctly conveyed to the users. This thesis
investigates two fundamental problems related to the efficient management of data in the
presence of constraints.

We address the problem of efficiently answering queries over data in the presence of
deductive constraints, which lead to implicit data that is entailed (derived) from the
explicit data and the constraints. Implicit data requires a reasoning step in order to com-
pute complete query answers, and two main query answering techniques exist. Data
saturation compiles the constraints into the database by making all implicit data ex-
plicit, while query reformulation compiles the constraints into a modified query, which,
evaluated over the explicit data only, computes all the answer due to explicit and/or im-
plicit data. So far, reformulation-based query answering has received significantly less
attention than saturation. In particular, reformulated queries may be complex, thus their
evaluation may be very challenging.

We study optimizing reformulation-based query answering in the setting of
ontology-based data access, where SPARQL conjunctive queries are answered against
a set of RDF facts on which constraints hold. When RDF Schema is used to express the
constraints, the thesis makes the following contributions. (i) We generalize prior query
reformulation languages, leading to a space of reformulated queries we call JUCQs (joins
of unions of conjunctive queries), instead of a single fixed reformulation. (ii) We present
effective and efficient cost-based algorithms for selecting from this space, a reformu-
lated query with the lowest estimated cost. (iii) We demonstrate through experiments
that our technique drastically improves the performance of reformulation-based query
answering while always avoiding “worst-case” performance.

Moving beyond RDFS, we consider the large and useful set of ontology languages en-
joying FOL reducibility of query answering: answering a query can be reduced to eval-
uating a certain first-order logic (FOL) formula (obtained from the query and ontology)
against only the explicit facts. (iv) We generalize the above-mentioned JUCQ-based op-
timized reformulation technique to improve performance in any FOL-reducible setting,
and (v) we instantiate this framework to the DL-LiteR Description Logic underpinning
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the W3C’s OWL2 QL ontology language, demonstrating significant performance advan-
tages in this setting also.

We also report on current work regarding the problem of providing efficient data access
paths in Big Data stores. We consider a setting where a set of different, heterogeneous
storage systems can be used side by side to provide better performance than any of them
used individually. In such a setting, the data stored in each system can be described as
views over the application data. Answering a query thus amounts to rewrite the query
using the available views, and then to decode the rewriting into a set of queries to be
executed on the systems holding the views, and a query combining them appropriately.

Keywords— Semantic Web, Query optimization, Query answering under constraints,
Query reformulation, Hybrid stores
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Chapter 1

Introduction

1.1 Big Data

The Web 2.0, as it is popularly called, refers to a second stage of World Wide Web
whose main ingredients are: (i) the apparition of dynamic content pages, services and
applications providing the users a richer experience, (ii) the wide acceptance and (huge)
growth of Software as a Service (SaaS), through lightweight integration protocols, web
APIs, etc., (iii) massive participation, with a penetration of more than 46% of the world
population, and (iv) a change in the user involvement and consumption paradigme, not
being simple consumers but also content producers (e.g., Wikipedia, an online encyclo-
pedia on which anyone can write or edit articles; Blogger, a blog-publishing service that
allows users to create blogs entries as well as comment on them; Twitter, an online so-
cial networking service that enables users to share 140-character messages; Youtube, a
video sharing plataform where users can also comment and rate the videos; WhatsApp
Messenger, an instant message client to exchange text messages, audio messages, doc-
uments, images, video, etc. between two or more users; Facebook, a social networking
service with more than 1.65 billion monthly active users as of March 31, 20161 etc.).

From a data management perspective, the Web 2.0 was disruptive in terms of data vol-
ume. We create 2.5 exabytes of data every day! In other words, 90% of the world’s data
was created in just the past 24 months2. At the same time, hardware evolution brought
cheaper and a continuous increase in the memory capacity, the emergence of a variety
of computation and storage technologies, such as GPUs, FPGAs, etc. [94], high-speed
networks (e.g., Infinibad), and finally but not less important cloud computing emerged.

These events did not go unnoticed by the machine learning branch of the artificial intel-
ligence community, nor by the the data management and distributed systems communi-
ties, which provided the systems and solutions (e.g., Hadoop, Spark, Flink, Kafka, etc.)

1https://newsroom.fb.com/company-info/
2https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
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1.2. SEMANTIC WEB

needed to support this new generation of Big Data (centric) applications.

1.2 Semantic Web

We live in times of the Third Generation Web: Web 3.0, also known as Semantic Web.
Unlike traditional knowledge-representation systems, typically centralized [18], the Se-
mantic Web is meant to be a world-wide distributed architecture; a step closer to Tim
Berners-Lee dream back in 2000 [17]: where computers become capable of analyzing
all the data on the Web.

The Semantic Web is an extension of the World Wide Web, in which the content is given
structure, thus enabling a reliable way for the computers to process the semantics and
therefore manipulate the data in a meaningful way. However, to accomplish such vision
a set of data models and formats for specifying semantic descriptions of Web resources
is needed. For such purpose the World Wide Web Consortium (W3C) presented the
Resource Description Framework (RDF), on top of which the Semantic Web stack is
built. RDF is a flexible data model that allows to express statements about resources
(uniquely identified by their URI) in the form of subject-predicate-object expressions.
To enhance the descriptive power of RDF datasets, the W3C proposed the RDF Schema
(RDFS) [105] and Web Ontology Language (OWL) [102], facilitating the representa-
tion of semantic constraints (a.k.a. ontological constraints) between the classes and the
properties used. The set of facts together with the logical statements on memberships of
individuals and in classes or relationships between individuals form a knowledge base.

In a nutshell, current popularity and usage of ontologies in the Web is due to four major
reasons [4]:

• Their flexible and natural way of structuring documents in multidimensional ways,
allowing to find relevant information through very large documents collections.

• The logical formal semantics of ontologies provide means of inference, enabling
reasoning. Therefore, it is possible for an ontology to be interpreted and processed
by machines.

• Ontologies allow making concepts precise, improving Web search. For example,
when searching for the word “aleph”, we could specialize the concept in an on-
tology, book:aleph, resulting in the book written by J. L. Borges, the one from
P. Coelho, etc., and avoiding unwanted answers where the term is used with an-
other connotation (like those referring to the letter with the same name or to the
sequence of numbers used to represent the cardinality of infinite sets that can be
well-ordered).

• Ontologies serve as local join between heterogeneous information sources. More-
over, their inference potential helps to automatically integrate different data sources.
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1.2. SEMANTIC WEB

For instance, if the famous argentinian writer J. L. Borges appears in a document, then he
has an associated URI, through which all the other resources (books, articles, prizes, etc.)
refer to him. Then, the RDF version of the British National Bibliography3 developed by
British Library, and expressing relevant information about books, authors, publishers,
etc., will contain the books written by Borges, the publishers of such books, publication
place and year. At the same time, GeoNames4 provides further information regarding
the publication places, and DBPedia 5 (the semantic counterpart of Wikipedia 6) will
add more information about Borges, like his political opinion, family, etc. All the above-
mentioned interlinked datasets are part of Linked Open Data7
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Figure 1.1: The Linked Open Data cloud as of April 2014.

Figure 1.1 [90] illustrates some of the most well known (RDF) datasets in the Linked
Open Data cloud as of April 2014. Each node in the graph corresponds to one RDF
dataset, while the node diameter reflects the size of the respective dataset. In addition,
there is an edge between two nodes if the two datasets have some URIs in common
(i.e., the datasets are interlinked). As reported in [90], the size of the Semantic Web is
growing, almost doubling its size every year.

3http://www.bl.uk/bibliographic/datafree.html
4www.geonames.org/
5http://wiki.dbpedia.org/
6https://en.wikipedia.org/wiki/Main_Page
7http://lod-cloud.net/
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1.3. MOTIVATIONS AND STUDIED PROBLEM

To exploit this wealth of data, the SPARQL query language has been defined [106];
subsequently, novel techniques and algorithms have been proposed for the processing
of SPARQL queries, based on vertical partitioning [1], indexing [107], efficient join
processing [82], view selection [49], RDF management systems and optimized triple
stores [108, 110, 113, 83], to name a few.

1.3 Motivations and studied problem

In this thesis, we consider the setting of ontology-based data access (OBDA) [72], which
aims at exploiting a database, i.e., facts, on which hold ontological constraints, i.e., de-
ductive constraints modeling the application domain under consideration. For instance,
an ontology may specify that any author is a human, has a name, and must have authored
some papers. Ontological constraints may greatly increase the usefulness of a database:
for instance, a query asking for all the humans must return all the authors, just because
of a constraint stating they are human; one does not need to store a human tuple in the
database for each author. The data interpretations enabled by the presence of constraints
has made OBDA a technique of choice when modeling complex real-life applications.
For instance, in the medical domain, Snomed Clinical Terms is a biomedical ontology
providing a comprehensive clinical terminology; the British Department of Health has a
roadmap for standardizing medical records across the country, using this ontology etc..

While query answering under constraints is a classical database topic [3], research
on OBDA has bloomed recently through many ontological constraints languages, e.g.,
Datalog± [31], Description Logics [13] and Existential Rules [14], or RDF Schema for
RDF graphs. OBDA query answering is the task of computing the answer to the given
query, by taking into account both the facts and the constraints holding on them. In
contrast, query evaluation as performed by database servers leads to computing only the
answers derived from the data (facts), while ignoring the constraints.

Two main methods exist for OBDA query answering, both of which consists of a rea-
soning step, either on data or on queries, followed by a query evaluation step. A first
reasoning method is data saturation (a.k.a. closure). This consists of pre-computing and
adding to the data all its implicit information, to make it explicit. Answering queries
through saturation, then, amounts to evaluating the queries on the saturated data. While
saturation leads to efficient query processing, it requires time to be computed, space to
be stored, and must be recomputed upon updates. Moreover, data saturation may not
always be an option as it is infinite in many OBDA settings. The alternative reasoning
step is query reformulation. This consists in turning a query into a reformulated query,
which, evaluated against non-saturated data, yields the exact answers to the original
query. Since reformulation takes place at query time, it is intrinsically robust to updates;
the query reformulation process in itself is also typically very fast, since it only operates
on the query, not on the data. However, reformulated queries are often much more com-
plex than the original ones, thus their evaluation may be costly or even unfeasible.
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1.4. CONTRIBUTIONS AND OUTLINE

This thesis addresses the problem of efficient OBDA query answering in RDF, the promi-
nent W3C standard for the Semantic Web, and in the DL-LiteR description logic which
underpins OWL2 QL, the W3C standard for semantic-rich data management.

Saturation-based query answering has received much attention in RDF, compared to
reformulation-based query answering. In contrast, in DL-LiteR, since data saturation
may be infinite, the focus is on reformulation-based query answering. In both data
models, all the existing reformulation-based query answering techniques amounts to re-
formulating an incoming query with ontological constraints, so as to obtain a single
reformulated query whose evaluation yields the correct answers. Importantly, the fact
that there exists a single reformulated query results from the adopted query reformula-
tion language.

The idea developed in this thesis to generalize the query reformulation languages used
in the literature, in order to (i) encompass all the current reformulation-based query
answering settings in RDF and DL-LiteR, and (ii) to allow a space of equivalent yet
different reformulated queries, among which we can pick one with lowest (estimated)
evaluation cost.

1.4 Contributions and outline

The report and the contributions to the above OBDA query answering problem are or-
ganized as follows:

Chapter 2 provides background about two well-known W3C’s Semantic Web stan-
dards, the popular RDF data model and its associated SPARQL query languages, as well
as the DL-LiteR description logic and conjunctive queries that underpins OWL2 QL for
semantic-rich data management.

Chapter 3 considers optimizing reformulation-based query answering in a setting
where SPARQL conjunctive queries are posed against RDF facts on which constraints
expressed by an RDF Schema hold. The contributions of this chapter are the following:

• To generalize prior query reformulation languages, leading to investigating a space
of reformulated queries, instead of a single reformulation.

• To introduce an effective and efficient cost-based algorithm for selecting from this
space, the reformulated query with the lowest estimated cost.

• To present extensive experiments showing that our technique enables reformulation-
based query answering where the state-of-the-art approaches are simply unfeasi-
ble, while it may decrease its cost by orders of magnitude in other cases.
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1.4. CONTRIBUTIONS AND OUTLINE

Chapter 4 generalizes the idea developed in the preceding chapter to devise a novel
optimization framework for reformulation-based query answering in First Order Logic
(FOL) ontology-based data access settings. The contributions of this chapter are the
following:

• To extend the language of FOL query reformulations beyond those considered so
far in the literature, and investigate several (equivalent) FOL query reformulations
of a given query, out of which we pick one likely to lead to the best evaluation
performance.

• To apply the above mentioned framework to the DL-LiteR Description Logic un-
derpinning the W3C’s OWL2 QL ontology language.

• To demonstrate through experiments the framework performance benefits when
two leading SQL systems, one open-source and one commercial, are used for
evaluating the query reformulations.

Chapter 5 concludes this thesis and presents ongoing work as well as perspectives for
future work.
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Chapter 2

Preliminaries

This chapter presents the background needed by the presentation of the research work
performed in the thesis. First, in Section 2.1 we introduce RDF, the graph-based data
model promoted by the W3C standard for Semantic Web applications. Then, in Sec-
tion 2.2 we revisit the DL-LiteR description logic underpinning the W3C’s OWL 2 QL
standard for semantic-rich data management.

2.1 RDF

The Resource Description Framework (RDF) is a graph-based data model promoted by
the W3C as the standard for Semantic Web applications. Its associated query language
is SPARQL. RDF graphs are often large and heterogeneous, i.e., resources described in
an RDF graph may have very different sets of properties.

An RDF graph (or graph, in short) is a set of triples of the form s p o. A triple states that
its subject s has the property p, and the value of that property is the object o. We consider
only well-formed triples, as per the RDF specification [104], using uniform resource
identifiers (URIs), typed or un-typed literals (constants) and blank nodes (unknown URIs
or literals).

Blank nodes are essential features of RDF allowing to support unknown URI/literal
tokens. These are conceptually similar to the variables used in incomplete relational
databases based on V-tables [3, 58], as shown in [48].

Notations. We use s, p, o and :b in triples as placeholders. Literals are shown as strings
between quotes, e.g., “string”. Finally, the set of values – URIs (U ), blank nodes (B),
and literals (L) – of an RDF graph G is denoted Val(G).

Figure 2.1 (top) shows how to use triples to describe resources, that is, to express class
(unary relation) and property (binary relation) assertions. The RDF standard [104] pro-
vides a set of built-in classes and properties, as part of the rdf: and rdfs: pre-defined
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2.1. RDF

Assertion Triple Relational notation
Class s rdf:type o o(s)
Property s p o p(s, o)

Constraint Triple OWA interpretation
Subclass s rdfs:subClassOf o s ⊆ o

Subproperty s rdfs:subPropertyOf o s ⊆ o

Domain typing s rdfs:domain o Πdomain(s) ⊆ o

Range typing s rdfs:range o Πrange(s) ⊆ o

Figure 2.1: RDF (top) & RDFS (bottom) statements.

namespaces. We use these namespaces exactly for these classes and properties, e.g.,
rdf:type specifies the class(es) to which a resource belongs.

Example 1 (RDF graph). The RDF graph G below comprises information about a book,
identified by doi1: its author (a blank node :b1 related to the author name, which is a
literal), title and date of publication.

G =

{doi1 rdf:type Book,
doi1 writtenBy :b1,
doi1 hasTitle “El Aleph”,
:b1 hasName “J. L. Borges”,

doi1 publishedIn “1949”}

An alternative, and sometimes more intuitive, way to visualize and represent all the
triples information is using a graph, where there is a node for each (distinct) subject
or object, labeled with its value; a triple is represented as a directed edge, labeled with
the property value, between the subject node and the object node. Figure 2.2 presents
an equivalent representation of G. Resources (URIs) are represented by blue rounded-
nodes, blank nodes are illustrated with black rounded-nodes while literals are depicted
with black square-nodes; black directed edges are use to exhibit the properties.

2.1.1 RDF Schema and entailment

A valuable feature of RDF is RDF Schema (RDFS) that allows enhancing the descrip-
tions in RDF graphs. RDFS triples declare semantic constraints between the classes and
the properties used in those graphs.

Figure 2.1 (bottom) shows the allowed constraints and how to express them; domain and
range denote respectively the first and second attribute of every property. The RDFS
constraints (Figure 2.1) are interpreted under the open-world assumption (OWA) [3].

8



2.1. RDF

doi1

Book

“El Aleph”

:b1

“J. L. Borges”

“1949”

publishedIn

hasTitle

writtenBy

hasName

rdf:type

Figure 2.2: Sample RDF graph.

More specifically, when working with the RDF data model, if the triples hasFriend rdfs:domain Person
and Anne hasFriend Marie hold in the graph, then so does the triple Anne rdf:type Person.
The latter is due to the rdfs:domain constraint in Figure 2.1.

RDF entailment. Implicit triples are an important RDF feature, considered part of the
RDF graph even though they are not explicitly present in it, e.g., Anne rdf:type Person
above. W3C names RDF entailment the mechanism through which, based on a set of
explicit triples and some entailment rules, implicit RDF triples are derived. We denote
by `iRDF immediate entailment, i.e., the process of deriving new triples through a single
application of an entailment rule. More generally, a triple s p o is entailed by a graph
G, denoted G `RDF s p o, if and only if there is a sequence of applications of immediate
entailment rules that leads from G to s p o (where at each step of the entailment sequence,
the triples previously entailed are also taken into account).

Example 2 (RDFS). Assume that the RDF graph G in Example 1 is extended with the
following constraints.

• books are publications:
Book rdfs:subClassOf Publication

• writing something means being an author:
writtenBy rdfs:subPropertyOf hasAuthor

• books are written by people:
writtenBy rdfs:domain Book
writtenBy rdfs:range Person

The resulting graph is depicted in Figure 2.3. Constraints are represented by blue edges
while its implicit triples are those depicted by gray dashed-line edges.

Saturation. The immediate entailment rules allow defining the finite saturation (a.k.a. clo-
sure) of an RDF graph G, which is the RDF graph G∞ defined as the fixed-point obtained
by repeatedly applying `iRDF rules on G.

9



2.1. RDF

doi1

Book

Publication

“El Aleph”

:b1

“J. L. Borges”

“1949”

Person

writtenBy

hasAuthor

publishedIn

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subPropertyOf

hasTitle

writtenBy

hasName

rdf:type

rdf:type

hasAuthor rdf:type

rdfs:domain

Figure 2.3: Sample RDF graph with RDFS constraints.

The saturation of an RDF graph is unique (up to blank node renaming), and does not
contain implicit triples (they have all been made explicit by saturation). An obvious
connection holds between the triples entailed by a graph G and its saturation: G `RDF

s p o if and only if s p o ∈ G∞.

RDF entailment is part of the RDF standard itself; in particular, the answers to a query
posed on G must take into account all triples in G∞, since the semantics of an RDF graph
is its saturation [106].

2.1.2 BGP Queries

We consider the well-known subset of SPARQL consisting of (unions of) basic graph
pattern (BGP) queries, modeling the SPARQL conjunctive queries. Subject of several
recent works [48, 93, 49, 87], BGP queries are the most widely used subset of SPARQL
queries in real-world applications [87]. A BGP is a set of triple patterns, or triples/atoms
in short. Each triple has a subject, property and object, some of which can be variables.

Notations. In the following we use the conjunctive query notation q(x̄):- t1, . . . , tα,
where {t1, . . . , tα} is a BGP; the query head variables x̄ are called distinguished vari-
ables, and are a subset of the variables occurring in t1, . . . , tα; for boolean queries x̄ is
empty. The head of q is q(x̄), and the body of q is t1, . . . , tα. We use x, y, z, etc. to
denote variables in queries. We denote by VarBl(q) the set of variables and blank nodes
occurring in the query q.

Query evaluation. Given a query q and an RDF graph G, the evaluation of q against G
is:

q(G) = {x̄µ | µ : VarBl(q)→ Val(G) is a total assignment such that
tµ1 ∈ G, tµ2 ∈ G, . . . , tµα ∈ G}

10



2.1. RDF

where we denote by tµ the result of replacing every occurrence of a variable or blank
node e ∈ VarBl(q) in the triple t, by the value µ(e) ∈ Val(G).

Note that evaluation treats the blank nodes in a query exactly as it treats non-distinguished
variables [4]. Thus, in the sequel, without loss of generality, we consider queries where
all blank nodes have been replaced by (new) distinct non-distinguished variables.

Query answering. The evaluation of q against G uses only G’s explicit triples, thus may
lead to an incomplete answer set. The (complete) answer set of q against G is obtained
by the evaluation of q against G∞, denoted by q(G∞).

Example 3 (Query answering). The following query asks for the names of authors of
books somehow connected to the literal 1949:

q(x3):- x1 hasAuthor x2, x2 hasName x3, x1 x4 “1949”

Its answer against the graph in Figure 2.3 is q(G∞) =
{〈“J L. Borges”〉}. The answer results from G `RDF doi1 hasAuthor :b1 and the as-
signment µ = {x1 ← doi1, x2 ← :b1, x3 ← “J L. Borges”, x4 ← publishedIn}. Ob-
serve that evaluating q directly against G leads to the empty answer, which is obviously
incomplete.

2.1.3 Query answering techniques

Answering queries over data in the presence of deductive constraints requires a rea-
soning step in order to compute complete query answers. Two main query answering
techniques exist:

Saturation-based query answering. Compiles the constraints into the database by
making all implicit data explicit. This method is straightforward and easy to implement.
Its disadvantages are that dataset saturation requires computation time and storage space
for all the entailed triples; moreover, the saturation must be recomputed upon every up-
date. Incremental algorithms for saturation maintenance had been proposed in previous
work [48]. However, the recursive nature of entailment makes this process costly (in
time and space) and this method not suitable for datasets with a high rate of updates.
Further, for some ontology languages saturation may be infinite (see 2.2).

Table 2.1, extracted from the cited work [48], presents the characteristics of well-known
datasets and shows that saturation adds between 10% and 41% to the dataset size, while
multiset-based saturation (required for the incrementally maintaining the saturation tech-
nique presented by the authors) increase the size between 116% and 227%.

Reformulation-based query answering. Compiles the constraints into a modified
query, which, evaluated over the explicit data only, computes all the answer due to ex-
plicit and/or implicit data. The main advantage of this method is that its robust to update,
there is no need to (re)compute the closure of the dataset. On the other hand, in gen-
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Data

Constraints

Data∞

Query

Answer

Figure 2.4: Saturation-based query answering overview.

Graph #Schema #Instance #Saturation Saturation increase (%) #Multiset Multiset increase (%)
Barton [15] 101 33, 912, 142 38, 969, 023 14.91 73, 551, 358 116.89
DBpedia [39] 5666 26, 988, 098 29, 861, 597 10.65 66, 029, 147 227.37
DBLP [38] 41 8, 424, 216 11, 882, 409 41.05 18, 699, 232 121.97

Table 2.1: Datasets and saturation characteristics [48].

eral, reformulated queries are complex, hence inefficiently handled by modern query
processing engines.

Constraints
Data

Query Query’

Answer

Figure 2.5: Reformulation-based query answering overview.
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2.1. RDF

2.1.4 The database fragment of RDF

The database (DB) fragment of RDF [48] is, to the best of our knowledge, the most ex-
pressive RDF fragment for which both saturation- and reformulation-based RDF query
answering has been defined and practically experimented. This DB fragment is defined
by:

• Restricting RDF entailment to the RDF Schema constraints only (Figure 2.1),
a.k.a. RDFS entailment. Consequently, the DB fragment focuses only on the ap-
plication domain knowledge, a.k.a. ontological knowledge, and not on the RDF
meta-model knowledge which mainly begets high-level typing of subject, property
and object values found in triples with abstract RDF built-in classes,
e.g., rdf:Resource, rdfs:Class, etc.

• Not restricting RDF graphs in any way. In other words, any triple allowed by the
RDF specification is also allowed in the DB fragment.

In this DB fragment of RDF, Saturation-based query answering amounts to precom-
puting the saturation of a database db using its RDFS constraints in a forward-chaining
fashion, so that the evaluation of every incoming query q against the saturation yields the
correct answer set [48]: q(db∞) = q(Saturate(db)). This technique follows directly
from the definitions in Section 2.1 and Section 2.1.2, and the W3C’s RDF and SPARQL
recommendations.

Reformulation-based query answering, in contrast, leaves the database db untouched
and reformulates every incoming query q using the RDFS constraints in a backward-
chaining fashion, Reformulate(q, db) = qref , so that the relational evaluation of this
reformulation against the (non-saturated) database yields the correct answer set [48]:
q(db∞) = qref(db). The Reformulate algorithm, introduced in [49] and extended
in [48], exhaustively applies a set of 13 reformulation rules. Starting from the incoming
BGP query q to answer against db, the algorithm produces a union of BGP queries
retrieving the correct answer set from the database, even if the latter is not saturated.

Example 4 (Query reformulation). The reformulation of q(x, y):- x rdf:type y w.r.t.
the database db (obtained from the RDF graph G depicted in Figure 2.3), asking for all
resources and the classes to which they belong, is:
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2.2. DL-LITER

(0) q(x, y):- x rdf:type y ∪
(1) q(x,Book):- x rdf:type Book ∪
(2) q(x,Book):- x writtenBy z ∪
(3) q(x,Book):- x hasAuthor z ∪
(4) q(x,Publication):- x rdf:type Publication ∪
(5) q(x,Publication):- x rdf:type Book ∪
(6) q(x,Publication):- x writtenBy z ∪
(7) q(x,Publication):- x hasAuthor z ∪
(8) q(x,Person):- x rdf:type Person ∪
(9) q(x,Person):- z writtenBy x ∪
(10) q(x,Person):- z hasAuthor x

The terms (1), (4) and (8) result from (0) by instantiating the variable y with classes
from db, namely {Book,Publication,Person}. Item (5) results from (4) by using the
subclass constraint between books and publications. (2), (6) and (9) result from their
direct predecessors in the list, and are due to the domain and range constraints. Finally,
(3), (7) and (10) result from their direct predecessors and the sub-property constraint
present in the database.

Evaluating this reformulation against db returns the same answer as q(G∞), i.e., the
answer set of q.

2.2 DL-LiteR

As commonly known, a Description Logic knowledge base (KB) K consists of a TBox
T (ontology, or axiom set) and an ABox A (database, or fact set), denoted K = 〈T ,A〉,
with T expressing constraints on A.

Most popular Description Logic dialects [13], and in particular DL-LiteR [32], build
T and A from a set NC of concept names (unary predicates), a set NR of role names
(binary predicates), and a setNI of individuals (constants). The ABox consists of a finite
number of concept assertions of the form A(a) with A ∈ NC and a ∈ NI , and of role
assertions of the form R(a, b) with R ∈ NR and a, b ∈ NI . The TBox is a set of axioms,
whose expressive power is defined by the ontology language. DL-LiteR description
logic [32], which is the first order logic foundation of the W3C’s OWL2 QL standard
for managing semantic-rich Web data, is a significant extension of the subset of RDF
(comprising RDF Schema) which can be translated into description logics, a.k.a. the DL
fragment of RDF; DL-LiteR is also a fragment of Datalog± [30].

Given a role R, its inverse, denoted R−, is the set: {(b, a) |
R(a, b) ∈ A}. We denote N±R the set of roles made of all role names, together with
their inverses: N±R = NR ∪ {r− | r ∈ NR}. For instance, supervisedBy and
supervisedBy−, whose meaning is supervises, are in N±R . A DL-LiteR TBox con-
straint is either:
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2.2. DL-LITER

(T1) PhDStudent v Researcher

(T2) ∃worksWith v Researcher

(T3) ∃worksWith− v Researcher

(T4) worksWith v worksWith−

(T5) supervisedBy v worksWith

(T6) ∃supervisedBy v PhDStudent

(T7) PhDStudent v ¬∃supervisedBy−

Table 2.2: Sample TBox T .

(i) a concept inclusion of the form C1 v C2 or C1 v ¬C2, where each of C1, C2

is either a concept from NC , or ∃R for some R ∈ N±R , and ¬C2 is the complement
of C2. Here, ∃R denotes the set of constants occurring in the first position in role R
(i.e., the projection on the first attribute of R). For instance, ∃supervisedBy is the set
of those supervised by somebody, while ∃supervisedBy− is the set of all supervisors
(i.e., the projection on the first attribute of supervisedBy−, hence on the second of
supervisedBy);

(ii) a role inclusion of the form R1 v R2 or R1 v ¬R2, with R1, R2 ∈ N±R .

Observe that the left-hand side of the constraints are negation-free; in DL-LiteR, nega-
tion can only appear in the right-hand side of a constraint. Constraints featuring negation
allow expressing a particular form of integrity constraints: disjointness or exclusion con-
straints. The next example illustrates DL-LiteR KBs.

Example 5 (DL-LiteR KB). Consider the DL-LiteR TBox T in Table 2.2 expressing
contraints on the Researcher and PhDStudent concepts, and the worksWith and
supervisedBy roles. It states that PhD students are researchers (T1), researchers
work with researchers (T2)(T3), working with someone is a symmetric relation (T4),
being supervised by someone implies working with her/him (T5), only PhD students are
supervised (T6) and they cannot supervise someone (T7).

Now consider the ABox A below, for the same concepts and roles:

(A1) worksWith(Ioana,Francois)
(A2) supervisedBy(Damian, Ioana)
(A3) supervisedBy(Damian,Francois)

It states that Ioana works with François (A1), Damian is supervised by both Ioana (A2)
and François (A3).

The semantics of inclusion constraints is defined, as customary, in terms of their FOL
interpretations. Tables 2.3 and 2.4 provide the FOL and relational notations expressing
these constraints equivalently.

A KB K = 〈T ,A〉 is consistent if the corresponding FOL theory, consisting of the A
facts and of the FOL constraints corresponding to T , has a model. In this case, we
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2.2. DL-LITER

DL constraint FOL constraint Relational constraint
(under Open World
Assumption)

A v A′ ∀x[A(x)⇒ A′(x)] A ⊆ A′

A v ∃R ∀x[A(x)⇒ ∃yR(x, y)] A ⊆ Π1(R)
A v ∃R− ∀x[A(x)⇒ ∃yR(y, x)] A ⊆ Π2(R)
∃R v A ∀x[∃yR(x, y)⇒ A(x)] Π1(R) ⊆ A
∃R− v A ∀x[∃yR(y, x)⇒ A(x)] Π2(R) ⊆ A
∃R′ v ∃R ∀x[∃yR′(x, y)⇒ ∃zR(x, z)] Π1(R

′) ⊆ Π1(R)
∃R′ v ∃R− ∀x[∃yR′(x, y)⇒ ∃zR(z, x)] Π1(R

′) ⊆ Π2(R)
∃R′− v ∃R ∀x[∃yR′(y, x)⇒ ∃zR(x, z)] Π2(R

′) ⊆ Π1(R)
∃R′− v ∃R− ∀x[∃yR′(y, x)⇒ ∃zR(z, x)] Π2(R

′) ⊆ Π2(R)
R v R′− or R− v R′ ∀x, y[R(x, y)⇒ R′(y, x)] R ⊆ Π2,1(R

′) or
Π2,1(R) ⊆ R′

R v R′ or R− v R′− ∀x, y[R(x, y)⇒ R′(x, y)] R ⊆ R′ or Π2,1(R) ⊆
Π2,1(R

′)

Table 2.3: DL-LiteR inclusion constraints without negation in FOL, and in relational no-
tation; A,A′ are concept names while R,R′ are role names. For the relational notation,
we use 1 to designate the first attribute of any atomic role, and 2 for the second.

DL constraint FOL constraint Relational constraint
(under Open World
Assumption)

A v ¬A′ ∀x[A(x)⇒ ¬A′(x)] A ∩ A′ ⊆ ⊥
A v ¬∃R ∀x[A(x)⇒ ¬∃yR(x, y)] A ∩ Π1(R) ⊆ ⊥
A v ¬∃R− ∀x[A(x)⇒ ¬∃yR(y, x)] A ∩ Π2(R) ⊆ ⊥
∃R v ¬A ∀x[∃yR(x, y)⇒ ¬A(x)] A ∩ Π1(R) ⊆ ⊥
∃R− v ¬A ∀x[∃yR(y, x)⇒ ¬A(x)] A ∩ Π2(R) ⊆ ⊥
∃R′ v ¬∃R ∀x[∃yR′(x, y)⇒ ¬∃zR(x, z)] Π1(R

′) ∩ Π1(R) ⊆ ⊥
∃R′ v ¬∃R− ∀x[∃yR′(x, y)⇒ ¬∃zR(z, x)] Π1(R

′) ∩ Π2(R) ⊆ ⊥
∃R′− v ¬∃R ∀x[∃yR′(y, x)⇒ ¬∃zR(x, z)] Π2(R

′) ∩ Π1(R) ⊆ ⊥
∃R′− v ¬∃R− ∀x[R′(y, x)⇒ ¬∃zR(z, x)] Π2(R

′) ∩ Π2(R) ⊆ ⊥
R v ¬R′− or
R− v ¬R′

∀x, y[R(x, y)⇒ ¬R′(y, x)] R ∩ Π2,1(R
′) ⊆ ⊥ or

Π2,1(R) ∩R′ ⊆ ⊥
R v ¬R′ or
R− v ¬R′−

∀x, y[R(x, y)⇒ ¬R′(x, y)] R ∩ R′ ⊆ ⊥ or Π2,1(R) ∩
Π2,1(R

′) ⊆ ⊥

Table 2.4: DL-LiteR inclusion constraints with negation, i.e., disjointness constraints, in
FOL and relational notation. ⊥ denotes the empty relation.
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say also that A is T -consistent. In the absence of negation, any KB is consistent, as
negation-free constraints merely lead to infering more facts. If some constraints feature
negation,K is consistent iff none of its (explicit or inferred) facts contradicts a constraint
with negation. An inclusion or assertion α is entailed by a KB K, written K |= α, if α
is satisfied in all the models of the FOL theory corresponding to K.

Example 6 (DL-LiteR entailment). The KB K = 〈T ,A〉 from Example 5 entails many
constraints and assertions. For instance:

• K |= ∃supervisedBy v ¬∃supervisedBy−, i.e., the two attributes of
supervisedBy are disjoint, due to (T6) + (T7);

• K |= worksWith(Francois , Ioana), i.e., François works with Ioana, due to (T4)+
(A1);

• K |= PhDStudent(Damian), i.e., Damian is a PhD student, due to (A2) + (T6);

• K |= worksWith(Francois ,Damian), i.e., François works with Damian, due to
(A3) + (T5) + (T4).

Finally remark that A is T -consistent, i.e., there is no violation of its only constraint
using negation (T7), since the KB K does not entail that some PhD student supervises
another.

2.2.1 Queries

DL-LiteR knowledge bases are queried with FOL queries. A FOL query is of the form
q(x̄):- φ(x̄) where φ(x̄) is a FOL formula whose free variables are x̄; the query name is q,
its head is q(x̄), while its body is φ(x̄). The answer set of a query q against a knowledge
base K is: ans(q,K) = {t̄ ∈ (NI)

n | K |= φ(t̄)}, where K |= φ(t̄) means that every
model of K is a model of φ(t̄). If q is Boolean, ans(q,K) = {〈〉} encodes true, with 〈〉
the empty tuple, while ans(q,K) = ∅ encodes false. In keeping with the literature on
query answering under ontological constraints, our queries have set semantics.

Example 7 (Query answering). Consider the FOL query q asking for the PhD students
with whom someone works:

q(x):- ∃y PhDStudent(x) ∧ worksWith(y, x)

Given the KB K of Example 5, the answer set of this query is {Damian}, since K |=
PhDStudent(Damian) and K |= worksWith(Francois ,Damian) hold. Observe that
evaluating q against K’s ABox only yields no answer.
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CQ q(x̄):- a1 ∧ · · · ∧ an
SCQ q(x̄):- (a11 ∨ · · · ∨ a

k1
1 ) ∧ · · · ∧ (a1n ∨ · · · ∨ aknn )

UCQ q(x̄):- CQ1(x̄) ∨ · · · ∨ CQn(x̄)
USCQ q(x̄):- SCQ1(x̄) ∨ · · · ∨ SCQn(x̄)
JUCQ q(x̄):- UCQ1(x̄1) ∧ · · · ∧ UCQn(x̄n)
JUSCQ q(x̄):- USCQ1(x̄1) ∧ · · · ∧ USCQn(x̄n)

Table 2.5: FOL query dialects.

To simplify the reading, in what follows, we omit the quantifiers of existential variables,
and simply write the above query as q(x):- PhDStudent(x) ∧ worksWith(y, x).

Query dialects. We will need to refer to several FOL query dialects, whose general
forms are schematized in Table 2.5. Conjunctive Queries (CQs), a.k.a. select-project-
join queries, are conjunctions of atoms, where an atom is either A(t) or R(t, t′), for
some t, t′ variables or constants. Semi-Conjunctive Queries (SCQs) are joins of unions
of single-atom CQs with the same arity, where the atom is either of the form A(t) or of
the form R(t, t′) as above; the bound variables of SCQs are also existentially quantified.
Unions of CQs (UCQs) are disjunctions of CQs with same arity. Unions of SCQs (USCQs),
Joins of UCQs (JUCQs), and finally Joins of USCQs (JUSCQs) are built on top of simpler
languages by adding unions, respectively joins. All the above dialects directly translate
into SQL, and thus can be evaluated by an RDBMS.

Notations. Unless otherwise specified, we systematically use q to refer to a CQ query,
a1, . . . , an to designate the atoms in the body of q, T to designate a DL-LiteR TBox,
and A for an ABox.

2.2.2 Query answering techniques

In constrast to the RDF case, data saturation is not an option in DL-LiteR, as the satura-
tion of a KB may be infinite. Indeed, think of a KB with TBox T = {∃R− v ∃R,A v
∃R} and ABox A = {A(a)}. Clearly, the saturation of A w.r.t. the constraints in T is
infinite: {A(a), R(a, w0)}∪

⋃∞
i=0{R(wi, wi+1)} where the wi’s are existential variables.

Settings in which query answering is said FOL-reducible have therefore been investi-
gated, i.e., settings in which query reformulation is possible.

FOL-reducible query answering. In a setting where query answering is FOL-reducible,
there exists a FOL query qFOL (computable from q and T ) such that:

ans(q, 〈T ,A〉) = ans(qFOL, 〈∅,A〉)

for any T -consistent ABox A. Thus, query answering reduces to: a first reasoning step
to produce the FOL query from q and T (this is also known as reformulating the query
using the constraints), and a second step which evaluates the reformulated query qFOL in
the standard fashion, only on the ABox (i.e., disregarding the TBox constraints). This
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q1(x):- PhDStudent(x) ∧ worksWith(y, x)
q2(x):- PhDStudent(x) ∧ worksWith(x, y)
q3(x):- PhDStudent(x) ∧ supervisedBy(y, x)
q4(x):- PhDStudent(x) ∧ supervisedBy(x, y)
q5(x):- supervisedBy(x, z) ∧ worksWith(y, x)
q6(x):- supervisedBy(x, z) ∧ worksWith(x, y)
q7(x):- supervisedBy(x, z) ∧ supervisedBy(y, x)
q8(x):- supervisedBy(x, z) ∧ supervisedBy(x, y)
q9(x):- supervisedBy(x, x)
q10(x):- supervisedBy(x, y)

Table 2.6: Union terms in CQ-to-UCQ reformulation (Example 8).

can be done for instance by translating it into SQL and delegating the evaluation to an
RDBMS. From a knowledge base perspective, this allows to take advantage of highly
optimized data stores and query evaluation engines to answer queries. From the database
perspective, this two-step approach enhances the power of RDBMSs, as it allows to
compute answers based only on data stored in the ABox (i.e., the database), but also
taking into account the deductive constraints and all their consequences (entailed facts
and constraints).

As DL-LiteR query answering is FOL reducible [32], the literature provides techniques
for computing FOL reformulations of a CQ in settings related to DL-LiteR. These tech-
niques produce (i) a UCQ w.r.t. a DL-LiteR TBox, e.g., [32, 2, 86, 36, 100], or extensions
thereof using existential rules [67] or Datalog± [101, 51], (ii) a USCQ [96] w.r.t. a set of
existential rules generalizing a DL-LiteR TBox, and (iii) a set of alternative equivalent
JUCQs w.r.t. an RDF database [48], whose RDF Schema constraints are the following
four, out of the twenty-two, DL-LiteR ones: (1) A v A′, (4) ∃R v A, (5) ∃R− v A and
(11) R v R′.

CQ-to-UCQ reformulation for DL-LiteR [32]. We present the pioneering CQ-to-UCQ
technique on which we rely to establish our results. These results extend to any other
FOL reformulation techniques for DL-LiteR, e.g., the above-mentioned ones, since they
produce equivalent FOL queries.

The technique of [32] relies on two operations: specializing a query atom into another
by applying a negation-free constraint (recall Table 2.3) in the backward direction, and
specializing two atoms into their most general unifier (mgu, in short). These operations
are exhaustively applied to the input CQ; each operation generates a new CQ contained
in the input CQ w.r.t. the TBox, because the new CQ was obtained by specializing one or
two atoms of the previous CQ. The same process is then applied on the new CQs, and so
on recursively until the set of generated CQs reaches a fixpoint. The finite union of the
input CQ and of the generated ones forms the UCQ reformulation of the input CQ w.r.t. the
TBox.
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Example 8 (CQ-to-UCQ reformulation). Consider the query q(x):- PhDStudent(x) ∧
worksWith(y, x) and KB K of the preceding examples. The UCQ reformulation of q is:
qUCQ(x):-

∨10
i=1 q

i(x) where q1-q10 appear in Table 2.6. In the table, q1(x) has exactly
the body of q. q2(x) is obtained from q1 by applying the constraint (T4): worksWith v
worksWith−, which is of the form (10) listed in Table 2.3. (T4) is applied backward,
in the following sense: the query asks for worksWith(y, x), and (T4) tells us that one
of the possible reasons why this may hold, is if worksWith(x, y) holds. Thus, q2 is
contained within q1, in the sense that if q2 holds, q1 is also sure to hold, but the opposite
is not true; intuitively, “q1 may hold for other reasons (thanks to other specializations
of its atoms)” - and it is exactly the set of such other specializations which the technique
explores.

Similarly, q3 is obtained from q1 by applying the constraint (T5) backward on the atom
worksWith(y, x), and q4 from q2 by applying (T5) on worksWith(x, y). To obtain q5

to q8, we apply (T6) backward on the atom PhDStudent(x) in q1 to q4. Finally, q9 is
obtained from q7 through the mgu of its two atoms, namely supervisedBy(x, z) and
supervisedBy(y, x); q10 is similarly obtained from q8.

Beyond FOL-reducible query answering. The so-called combined approach of [68]
computes a finite approximation of a (possibly infinite) KB’ saturation, and then refor-
mulates queries so that erroneous answers introduced by approximating the saturation
are not returned.
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Chapter 3

Efficient query answering in the
presence of RDFS constraints

Answering queries over data in the presence of deductive constraints, which lead to im-
plicit data that is entailed (derived) from the explicit data and the constraints, requires a
reasoning step in order to compute complete query answers. Two main query answering
techniques exist: data saturation compiles the constraints into the database by making
all implicit data explicit, while query reformulation compiles the constraints into a mod-
ified query, which, evaluated over the explicit data only, computes all the answers due to
explicit and/or implicit data. So far, reformulation-based query answering has received
significantly less attention than saturation. In particular, reformulated queries may be
complex, thus their evaluation may be very challenging.

In this chapter we focus on optimizing reformulation-based query answering in the set-
ting of ontology-based data access, where SPARQL conjunctive queries are answered
against a set of RDF facts on which RDFS constraints hold.

We consider the setting in which conjunctive queries (CQ), once reformulated into unions
of conjunctive queries (UCQ) or semi-conjunctive queries (SCQ), are handled for evalu-
ation to a query evaluation engine, which can be an RDBMS, a dedicated RDF stor-
age and query processing engine, or more generally any system capable of evaluating
selections, projections, joins and unions. As our experiments show, the evaluation of
reformulated queries may be very challenging even for well-established relational or na-
tive RDF processors, which may handle them inefficiently or simply fail to handle them,
even on moderate-size datasets.

The approach we take is the following: given a SPARQL conjunctive query q and a query
reformulation algorithm A which turns a CQ into a UCQ, we explore a novel, large space
of alternative reformulations of q that we term JUCQ (for joins of unions of conjunctive
queries, which captures the UCQ and SCQ reformulations, and from which we pick a JUCQ
reformulation with lowest estimated cost. Each JUCQ reformulation is obtained based on
a carefully chosen set of invocations of the algorithm A, guided by our cost model.
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Figure 3.1: Outline of our approach for efficiently evaluating reformulated SPARQL
conjunctive queries.

Contributions. The contributions we bring to the problem of efficiently answering
SPARQL queries, through reformulation, can be outlined as follows (see Figure 3.1):

1. We generalize the query reformulation approach, by considering a large space
of alternative (equivalent) JUCQ reformulations. This space corresponds to the
yellow-background box in Figure 3.1; it includes and significantly generalizes the
prior works based on UCQ or SCQ reformulation. We characterize the size of our
space of alternatives, and show that it is oftentimes too large to be completely
explored.

2. We define a cost model for estimating the evaluation performance of our reformu-
lated queries through a relational engine; other functions can be used instead, and
we show that an RDBMSs’ internal cost model can easily be used, too.

3. We devise a novel algorithm which selects one alternative reformulated query,
namely qbest in Figure 3.1, which (i) computes the same result as the UCQ or SCQ
reformulated query qref , and (ii) reduces significantly the query evaluation cost
(or simply makes it possible when evaluating qref fails!)

4. We implemented this algorithm and deployed it on top of three well-established
RDBMSs, which we show differ significantly in their ability to handle UCQ and
SCQ reformulations. Our experiments confirm that our algorithm makes the most
out of each of these engines by leveraging their strengths and avoiding their weak-
nesses thanks to the usage of our cost model, which we calibrate separately for
each system. This makes reformulation feasible when UCQ and/or SCQ fail, and
brings performance improvements of several orders of magnitude w.r.t. UCQ .

5. Finally, we put our efficient reformulation-based query answering technique in
perspective by comparing it against saturation-based query answering, both based
on PostgreSQL and through the dedicated Semantic Web data management plat-
form Virtuoso. These experiments confirm the robustness and performance of
our technique, showing in particular that in some cases its performance approaches
that of saturation-based query answering.
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Triple #answers #reformulations #answers after
reformulation

(t1) 18, 999, 082 188 33, 328, 108
(t2) 0 4 3, 223
(t3) 396 3 683

Table 3.1: Characteristics of the sample query q1.

In the sequel, we characterize our solution search space and formalize our problem in
statementSection 3.1. Section 3.2 introduces our cost model and solution search space
exploration technique, which we evaluate through experiments in Section 3.3. We dis-
cuss related work in Section 3.4, then we conclude.

The work reported here is based on the EDBT paper [25], the VLDB demonstration [26]
and ICDE tutorial [29].

3.1 Motivation

We first introduce, by examples, the performance issues raised by the evaluation of state-
of-the-art reformulated queries. We then introduce our novel reformulation search space
and formalize our optimization problem.
Motivating Example 1. Consider the three triples query q1 shown below:

q1(x, y) :- x rdf:type y, (t1)
x ub:degreeFrom “http : //www.Univ532.edu”, (t2)
x ub:memberOf “http : //www.Dept1.Univ7.edu” (t3)

Table 3.1 gives some intuition on the difficulty of answering q1 over an 108 triples
LUBM [52] benchmark dataset.

The state-of-the-art CQ to UCQ reformulation-based query answering needs to evaluate
a reformulated query q′1, which is a union of 2, 256 conjunctive queries, each of which
consists of three triples (one for the reformulation of each triple in the original q1).
This query appears in Table 3.2, where all the triples t1, t2, t3 are reformulated together
by a CQ to UCQ reformulation algorithm denoted (.)ref . Observe that in q′1, many sub-
expressions are repeated; for instance, the join over the single triples resulting from the
reformulation of triples (t2) and (t3) will appear for each of the 188 reformulations of
triple (t1). Evaluating q′1 on the 100 million triples LUBM dataset takes more than 6
seconds.

Alternatively, one could consider the equivalent query q′′1 = (t1)
ref ./ (t2)

ref ./ (t3)
ref ,

which joins the CQ to UCQ reformulation of each query’s triple. In other terms, q′′1 first
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Joins of UCQs #reformulations exec.time (ms)
q′1 (t1, t2, t3)

ref 2, 256 6, 387
q′′1 (t1)

ref 1 (t2)
ref 1 (t3)

ref 195 1, 074, 026
(t1, t2)

ref 1 (t3)
ref 755 1, 968

(t1)
ref 1 (t2, t3)

ref 200 846, 710
q′′′1 (t1, t3)

ref 1 (t2)
ref 568 554

(t1, t2)
ref 1 (t1, t3)

ref 1, 316 2, 734
(t1, t2)

ref 1 (t2, t3)
ref 764 2, 289

(t1, t3)
ref 1 (t2, t3)

ref 576 588

Table 3.2: Sample reformulations of q1.

reformulates each triple (into, respectively, a union of 188, 4, and 3 queries), and then
joins these unions. This query corresponds to the simple semi-conjunctive queries (SCQ)
alternative proposed in [96]. While this avoids the repeated work, its performance is
much worse: in the same experimental setting, it takes about 1074 seconds to evaluate.

Let us now consider the following equivalent query q′′′1 = (t1, t3)
ref ./ (t2)

ref where
t1, t2, t3 are the triples of the query q1. Evaluating q′′′1 in the same experimental setting
takes 554 ms, more than 10 times faster than the initial reformulation. The performance
improvement of q′′′1 over q′′1 is due to the intelligent grouping of the triples t1 and t3
together. Such grouping of triples reduce the cardinality of the respective reformulated
queries. Thus, (t1, t3)

ref has 2, 045 answers and 564 reformulations. Table 3.2 shows
the number of reformulations and execution time for all the eight possible combinations
of triples.

Motivating Example 2. Consider now the six triples query q2 shown below:

q2(x, u, y, v, z) :- x rdf:type u, (t1)
y rdf:type v, (t2)
x ub:mastersDegreeFrom “http : //www.Univ532.edu”,(t3)
y ub:doctoralDegreeFrom “http : //www.Univ532.edu”,(t4)
x ub:memberOf z (t5)
y ub:memberOf z (t6)

Statistics on the query triples, when evaluated over a 100 million triples LUBM dataset,
appear in Table 3.3. The CQ to UCQ reformulation of q2, on the other hand, leads to a
query q′2 corresponding to a union of 318, 096 six triples queries. Due to its complexity,
q′2 could not be evaluated in the same experimental setting1.

1Concretely, a stack depth limit exceeded error was thrown by the DBMS. Further, other queries
presented I/O exceptions thrown by the DBMS, in connection with a failed attempt to materialize an
intermediary result. While it may be possible to tune some parameters to make the evaluation of such
queries possible, the same error was raised by many large-reformulation queries, a signal that their peculiar
shape is problematic.
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Triple #answers #reformulations #answers after
reformulation

(t1) 18, 999, 082 188 33, 328, 108
(t2) 18, 999, 082 188 33, 328, 108
(t3) 476 1 476
(t4) 509 1 509
(t5) 7, 299, 701 3 7, 803, 096
(t6) 7, 299, 701 3 7, 803, 096

Table 3.3: Characteristics of the sample query q2.

Now consider the query q′′2 = (t1)
ref ./ (t2)

ref ./ (t3)
ref ./ (t4)

ref ./ (t5)
ref ./ (t6)

ref ,
where t1, . . . , t6 are the triples of q2; again, this corresponds to the SCQ reformulation
proposed in [96]. q′′2 is equivalent to qref2 , and in the same experimental setting, it is
evaluated in 229 seconds. This is due to the large results of the (syntactically small)
subqueries (t1)

ref , . . . , (t6)
ref (especially the first two, each with 33, 328, 108 results),

which required some time to join.

Finally, consider the query q′′′2 = (t1, t3)
ref ./ (t3, t5)

ref ./ (t2, t4)
ref ./ (t4, t6)

ref ,
also equivalent to q′2. Evaluating q′′′2 takes 524 ms, more than 430 times faster than
SCQ reformulation. As in the previous example, q′′′2 gains over q′′2 by first, reducing re-
peated work, and second, intelligently grouping triples so that the query corresponding
to each triple group can be efficiently evaluated and returns a result of manageable size.
In particular, the biggest-size triples (t1) and (t2) had been grouped with (t3) and (t4)
respectively, resulting in smaller intermediate results of 2, 296 and 2, 475 rows respec-
tively, and improving the perfomance. Grouping triples (t3) and (t4) with the (t5) and
(t6) respectively, yields analogous performance improvements.

As the above examples illustrate, generalizing the state-of-the-art query reformulation
language of UCQs [48, 98, 62, 99, 46, 5, 49, 32, 50] or of SCQs [96], to that of joins of
UCQs, offers a great potential for improving the performance of reformulated queries.
We introduce:

Definition 3.1.1 (JUCQ). A Join of Unions of Conjunctive Queries (JUCQ) is defined as
follows:

• any conjunctive query (CQ) is a JUCQ;

• any union of CQs (UCQ) is a JUCQ;

• any join of UCQs is JUCQ.

Next, we address the challenge of finding a best-performing JUCQ reformulation of a
BGP query against an RDF database, among those that can be derived from a query
cover. We define these notions as follows:

25



3.1. MOTIVATION

Definition 3.1.2 (JUCQ reformulation). A JUCQ reformulation qJUCQ of a BGP query q
w.r.t. a database db1 is a JUCQ such that qJUCQ(db2) = q(db∞2 ), for any RDF database
db2 having the same schema as db1.

Recall that two RDF databases have the same schema iff their saturations have the same
RDFS statements.

BGP query covering is a technique we introduce for exploring a space of JUCQ refor-
mulations of a given query. The idea is to cover a query q with (possibly overlapping)
subqueries, so as to produce a JUCQ reformulation of q by joining the (state-of-the-art)
CQ to UCQ reformulations of these subqueries, obtained through any reformulation algo-
rithm in the literature (e.g., [48]). Formally:

Definition 3.1.3 (BGP query cover). A cover of a BGP query q(x̄):- t1, . . . , tn is a
set C = {f1, . . . , fm} of non-empty subsets of q’s triples, called fragments, such that⋃m
i=1 fi = {t1, . . . , tn}, no fragment is included into another, i.e., fi 6⊆ fj for 1 ≤ i, j ≤

m and i 6= j, and: if C consists of more than 1 fragment, then any fragment joins at
least with another, i.e., they share a variable.

For example, a cover of our query q1 is {{t1, t2}, {t2, t3}}.

Definition 3.1.4 (Non-redundant BGP query cover). A non-redundant cover is a cover
C such that there is no fragment fk ∈ C such that

⋃m
i=1 fi =

⋃m
i=1,i 6=k fi.

It can be easily shown that the reformulation based on a redundant cover Cr performs
at least as much work as the reformulation based on a non-redundant cover C derived
from Cr by removing one or more fragments until C is non-redundant. Therefore, in the
sequel, we will only work with non-redundant covers; accordingly, we will explain how
to ensure covers are and stay non-redudant, when presenting cover search algorithms.

Definition 3.1.5 (Cover queries of a BGP query). Let q(x̄):- t1, . . . , tn be a BGP query
and C = {f1, . . . , fm} one of its covers. A cover query q|fi,1≤i≤m of q w.r.t. C is the
subquery whose body consists of the triples in fi and whose head variables are the
distinguished variables x̄ of q appearing in the triples of fi, plus the variables appearing
in a triple of fi that are shared with some triple of another fragment fj,1≤j≤m,j 6=i, i.e., on
which the two fragments join.

For example, the cover {{t1}, {t2, t3}} of our query q1 leads to the cover queries:

q|f1(x, y):- x rdf:type y,

and

q|f2(x):- x ub:degreeFrom “http : //www.Univ532.edu”, x ub:memberOf “http :
//www.Dept1.Univ7.edu”.

Query evaluation through an RDBMS is typically much more efficient when all the
atoms of the query are connected through joins (in which case, properly optimized
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queries oftentimes run in linear time in the size of the data), than when the query com-
prises a cartesian product (which leads to unavoidable quadratic or higher complexity in
the size of the data). Therefore, in this work, we only consider fragments which do not
feature a cartesian product.

The theorem below states that evaluating a query q as the join of the cover queries
resulting from one of its covers, yields the answer set of q:

Theorem 3.1.1 (Cover-based reformulation). Let q(x̄):- t1, . . . , tn be a BGP query and
C = {f1, . . . , fm} be any of its covers,

qJUCQ(x̄):- qUCQ|f1 1 · · · 1 qUCQ|fm

is a JUCQ reformulation of q w.r.t. any database db, where every qUCQ|fi is a UCQ reformu-
lation of the cover query q|fi , for 1 ≤ i ≤ m.

Proof. The proof of Theorem 3.1.1 follows directly from the fact that any cover query
q|fi , which is a CQ, can be equivalently reformulated w.r.t. db into a UCQ qUCQ|fi , e.g., using
any state-of-the-art CQ to UCQ reformulation algorithm.

For any RDF graph G, the answer set to a BGP query q(x̄):- t1, . . . , tn is q(G∞), where
q(G∞) is the relational evaluation of q against G∞ [48].

Let C = {f1, . . . , fm} be a cover for q, q′(x̄):- q|f1 1 · · · 1 q|fm is by definition a join
decomposition of q. Therefore q(G∞) = q′(G∞), hence q and q′ are equivalent.

We now want to show that q′ and qJUCQ are equivalent, and therefore q and qJUCQ also.
Observe that for each fragment query q|fi in q′ we have q|fi(G

∞) = qUCQ|fi (G), thus q|fi and
qUCQ|fi are equivalent, by the correctness of UCQ reformulation algorithms. Thus, replacing
the fragment queries in q′ by their corresponding equivalent reformulations we obtain
qJUCQ:

qJUCQ(x̄):- qUCQ|f1 1 · · · 1 qUCQ|fm

Threrefore, qJUCQ is equivalent to q.

An upper bound on the size of the cover-based reformulation space for a given query of
n triples is given by the number of minimal covers of a set S of n elements [55], i.e., a
set of non-empty subsets of S whose union is S , and whose union of all these subsets
but one is not S . This bound grows rapidly as the number n of triples in a query’s body
increases, e.g., 1 for n = 1, 49 for n = 4, 462 for n = 5, 6424 for n = 6 (http:
//oeis.org/A046165). In practice, however, we require each fragment to share a
variable with another (if any), so that cover queries, hence cover-based reformulations
do not feature cartesian products. Therefore, the number of cover-based reformulations
is smaller than the number of minimal covers.

In order to select the best performing cover-based reformulation within the above space,
we assume given a cost function c which, for a JUCQ q, returns the cost c(q(db)) of
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evaluating it through an RDBMS storing the database db. Function c may reflect any
(combination of) query evaluation costs, such as I/O, CPU etc. As customary, we rely on
a cost estimation function cε, which statically provides an approximate value of c. For
simplicity, in the sequel we will use c to denote the estimated cost.

The problem we study can now be stated as follows:

Definition 3.1.6 (Optimization problem). Let db be an RDF database and q be a BGP
query against it. The optimization problem we consider is to find a JUCQ reformulation
qJUCQ of q w.r.t. db, among the cover-based reformulations of q with lowest (estimated)
cost.

Optimized queries vs. optimized plans. As stated above and illustrated in Figure 3.1,
we seek a best query that is an optimized reformulation of q against db; we do not seek
to optimize its plan, instead, we take advantage of existing query evaluation engines for
optimizing and executing it. Alternatively, one could have placed this study within an
evaluation engine and investigate optimized plans. We comment more the two alterna-
tives in Section 3.4.

3.2 Efficient query answering

We present now the ingredients for setting up our cost-based query answering technique.
Section 3.2.1 introduces our cost model for JUCQ reformulation evaluation through an
RDBMS. We then provide, in Section 3.2.2, an exhaustive algorithm that traverses the
search space of reformulated queries, looking for a cover-based reformulation with lower
cost. Finally, in Section 3.2.3, we introduce a greedy, anytime algorithm that outputs a
best query cover of the input BGP query, found so far. These algorithms are then used
to evaluate the query as stated by Theorem 3.1.1.

3.2.1 Cost model

In this section we detail the cost of evaluating a JUCQ (reformulation) sent to an RDBMS.
Such a query is a join of UCQs subqueries of the form: qJUCQ(x̄):- qUCQ1 ./ · · · ./ qUCQm .

The evaluation cost of qJUCQ is

c(qJUCQ) = cdb +
∑

qUCQi ∈qJUCQ
(ceval(q

UCQ
i ) + cjoin(qUCQi,1≤i≤m) +

cmat(q
UCQ
i,1≤i≤m,i 6=k)) + cunique(q

JUCQ) (3.1)

reflecting:
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(i) the fixed overhead of connecting to the RDBMS cdb;

(ii) the cost to evaluate each of its UCQ sub-queries qUCQi ;

(iii) the cost of eliminating duplicate rows from each of its UCQ sub-query results;

(iv) the cost to join these sub-query results;

(v) the materialization costs: the SQL query corresponding to a JUCQ may have many
sub-queries. At execution time, some of these subqueries will have their results
materialized (i.e., stored in memory or on disk) while at most one sub-query will
be executed in pipeline mode. We assume without loss of generality, that the
largest-result sub-query, denoted qUCQk , is the one pipelined (this assumption has
been validated by our experiments so far); and

(vi) the cost of eliminating duplicate rows from the result.

In the above, duplicates are eliminated because existing reformulation algorithms (and
accordingly, our work) operate under set semantics.

Notations. For a given query q over a database db, we denote by |q|t the estimated
number of tuples in q’s answer set. Recall that q|{ti} stands for the restriction of q to its
i-th triple. Using the notations above, the number of tuples in the answer set of q|{ti} is
denoted |q|{ti}|t.

Duplicate elimination costs. Assuming duplicate elimination is implemented by hash-
ing, we estimate the cost of eliminating duplicate rows from qJUCQ (and qUCQ) as:

cunique(q
JUCQ) = cl × |qJUCQ|t

where cl is the CPU and I/O effort involved in sorting the results.

When the results are large enough that disk merge sort is needed, we estimate the cost
of eliminating duplicate rows from qJUCQ (and qUCQ as a particular case) result as:

cunique(q
JUCQ) = ck × |qJUCQ|t × log |qJUCQ|t

where ck is the CPU and I/O effort involved in (disk-based) sorting the results.

UCQ evaluation costs are estimated by summing up the estimated costs of the CQs:

ceval(q
UCQ
i ) = cunique(q

UCQ
i ) +

∑
qCQ∈qUCQi

ceval(q
CQ)

The cost of evaluating one conjunctive query ceval(qCQ), where qCQ(x̄):- t1, . . . , tn, through
the RDBMS is made of the scan cost for retrieving the tuples for each of its triples, and
the cost of joining these tuples:
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ceval(q
CQ) = cscan(qCQ) + cjoin(qCQ)

We estimate the scan cost of qCQ to:

cscan(qCQ) = ct ×
∑
ti∈qCQ

|qCQ|{ti}|t

where ct is the fixed cost of retrieving one tuple.

The join cost of qCQ represents the respective CPU and I/O effort; assuming efficient join
algorithms such as hash- or merge-based etc. are available [88], this cost is linear in the
total size of its inputs:

cjoin(qCQ) = cj ×
∑
ti∈qCQ

|qCQ|{ti}|t

Therefore, we have:

ceval(q
UCQ
i ) = (ct + cj)×

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (3.2)

UCQ join cost. As before, we consider the join cost to be linear in the total size of its
inputs:

cjoin(qUCQi,1≤i≤m) = cj ×
∑
qUCQi

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (3.3)

UCQ materialization cost. Finally, we consider the materialization cost associated to a
query q is cm × |q|t for some constant cm:

cmat(q
UCQ
i,1≤i≤m,i 6=k) = cm ×

∑
qUCQi ,i 6=k

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (3.4)

where qUCQk is the largest-result sub-query, and the one which is picked for pipelining
(and thus not materialized).

Injecting the equations 3.2, 3.3 and 3.4 into the global cost formula 3.1 leads to the
estimated cost of a given JUCQ. This formula relies on estimated cardinalities of various
subqueries of the JUCQ, as well as on the system-dependent constants cdb, cscan, cjoin and
cmat, which we determine by running a set of simple calibration queries on the RDBMS
being used. The details are straightforward and we omit them here.
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3.2.2 Exhaustive query cover algorithm (ECov)

As a yardstick for the quality of the query covers we find, we developed an exhaustive
query cover finding algorithm, called ECov, that traverses the search space of refor-
mulated queries and outputs a query cover leading to a cover-based reformulation with
lowest cost.

Given a BGP query q and a database db, ECov enumerates all the possible query covers,
estimates the cost of the corresponding cover-based reformulations, and returns a query
cover with the lowest estimated cost.

Possible moves based on the initial cover C0 are developed and added to the list moves.
Next (line 7), ECov starts exploring possible moves. It picks one from the moves list
and applies it, leading to a new query cover C ′, and possible moves based on C ′ are
developed and added to the sorted moves list (lines 10–12). If its estimated cost is
smaller than the best (least) cost encountered so far, the best solution is updated to reflect
this C ′ (lines 13– 14). Note that when the application of a move to a cover (line 9) leads
to a redundant cover, all non-redundant covers that can be extracted from it, should be
enumerated.

We use this cover as “golden standard”, i.e., the best solutions based on our cost esti-
mation function.

3.2.3 Greedy query cover algorithm (GCov)

We now present our optimized query cover finding algorithm, named GCov. Intuitively,
GCov attempts to identify query covers such that the estimated evaluation cost of each
cover fragment (once reformulated), together with the estimated cost of joining the re-
sults of these reformulated fragments, is minimized. Performance benefits in this context
are attained from two sources: (i) avoiding the explosion in the size of the reformulated
queries that results when many triples, each having many reformulations, are in the
same fragment, and (ii) avoiding reformulated fragments with very large results, since
materialising and joining them is costly. The key intuition for reaching these goals is to
include highly selective, few-reformulations triples in several cover fragments. Observe
that this is different from (and orthogonal to) join ordering, which the underlying query
evaluation engine (RDBMS in this study) applies independently to each reformulated
subquery.

GCov (Algorithm 2) starts with a simple cover C0 consisting of one triple fragments
(i.e., the SCQ reformulation), and explores possible moves starting from this state. A
move consists of adding to one fragment, an extra triple connected to it by at least one
join variable, such that the estimated cost associated to the cover-based reformulation
thus obtained is smaller than that before the addition. Whenever apply (lines 6 and 9)
leads to a redundant cover, a non-redundant cover is extracted out of the redundant one,
in particular, the one with the least estimated cost. A move may reduce the cost in two
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Algorithm 1: Naı̈ve cover algorithm (ECov)
Input : BGP query q(x̄:- t1, . . . , tn), database db
Output: Cover C for the BGP query q

1 C0 ← C = {{t1}, {t2}, . . . , {tn}};
2 T ← C = {t1, t2, . . . , tn};
3 Cbest ← C0; moves← ∅; analysed← ∅;
4 foreach f ∈ C0, t ∈ T s.t. t 6∈ f ∧ connected(f, t)
∧ C0.add(f, t) 6∈ analysed do

5 analysed← analysed ∪ C0.add(f, t);
6 moves← moves ∪ (C0, f, t);

7 while moves 6= ∅ do
8 (C, f, t)← moves.head();
9 C ′ ← C.add(f, t);

10 foreach f ∈ C ′, t ∈ T s.t. t 6∈ f ∧
connected(f, t) ∧ C ′.add(f, t) 6∈ analysed do

11 analysed← analysed ∪ C ′.add(f, t);
12 moves← moves ∪ (C ′, f, t);

13 if C ′ estimated cost < Cbest estimated cost then
14 Cbest ← C ′;

15 return Cbest;

ways: (i) by making a fragment more selective, and/or (ii) by leading to the removal
of some fragments from the cover. For instance, let {{t1, t2}, {t1, t3}, {t3, t4}} be a
cover of a four-triples query. The move which adds t4 to the first fragment, also renders
{t3, t4} redundant. Thus, the cover resulting from the move is: {{t1, t2, t4}, {t1, t3}}.
Concretely, all the fragments of a cover are kept sorted in the decreasing order of their
cost. Whenever the cover is updated, we check the fragments from the first to the last;
when a fragment is found redundant (with respect to the other fragments in the cover),
the fragment is removed.

Possible moves based on the initial cover C0 are developed (i.e., all possible covers
that result from the possible moves are created, and the estimate cost of executing its
associated cover-based reformulation on top of an RDBMS is computed) and the one
leading to the cover with lower estimated cost is assigned to move. Next (line 8), GCov
starts examining possible moves. It applies move, if any, leading to a new query cover
Cbest, updates the best solution to reflect this, and explores possible moves based on
Cbest; if a move resulting in a cover whose estimated cost is smaller than the best (least)
cost encountered so far is found, then move is set with it.

GCov explores query covers in breadth-first and greedy fashion, adding to the moves
list the possible moves starting from the current best cover, and selecting the next move
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Algorithm 2: Greedy query cover algorithm (GCov)
Input : BGP query q(x̄:- t1, . . . , tn), database db
Output: Cover Cbest for the BGP query q

1 C0 ← {{t1}, {t2}, . . . , {tn}};
2 T ← {t1, t2, . . . , tn};
3 Cbest ← C0; move← ∅; analysed← ∅;
4 foreach f ∈ C0, t ∈ T s.t. t 6∈ f ∧ connected(f, {t})
∧ C0.add(f, t) 6∈ analysed do

5 analysed← analysed ∪ C0.add(f, t);
6 if (move is empty and C0.add(f, t) estimated cost ≤ Cbest estimated cost) or

(C0.add(f, t) estimated cost < apply(move) estimated cost) then
7 move← (C0, f, t);

8 while move 6= ∅ do
9 Cbest ← apply(move);

10 move← ∅;
11 foreach f ∈ Cbest, t ∈ T s.t. t 6∈ f ∧

connected(f, {t}) ∧ Cbest.add(f, t) 6∈ analysed do
12 analysed← analysed ∪ Cbest.add(f, t);
13 if (move is empty and Cbest.add(f, t) estimated cost < Cbest estimated

cost) or (Cbest.add(f, t) estimated cost < apply(move) estimated cost)
then

14 move← (Cbest, f, t);

15 return Cbest;

with smallest cost. In practice, one could easily change the stop condition, for instance
to return the best found cover as soon as its cost has diminished by a certain ratio, or
after a time-out period has elapsed etc.

3.3 Experimental evaluation

We now present an experimental assessment of our approach. Section 3.3.1 describes
the experimental settings. Section 3.3.2 studies the effectiveness and efficiency of our
optimized reformulation-based query answering technique. Section 3.3.3 widens our
comparison to saturation-based query answering, then we conclude.
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LUBM q Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15

|qref | 136 136 34 564 2 188 156 12 8, 496 13 1 1 2 376 3, 384
|q(db)| (1M) 123 123 41 26, 048 982 5, 537 0 269 0 47, 268 1, 530 88 4, 041 20, 205 0
|q(db)| (100M) 123 123 41 2, 432, 964 92, 026 523, 319 0 269 0 4, 409, 039 142, 337 7, 773 376, 792 1, 883, 960 0

LUBM q Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

|qref | 2 1 940 2, 444 4 1 1 752 52 156 2, 256 156 318, 096
|q(db)| (1M) 5, 364 5, 388 47, 348 60, 342 228, 086 60, 342 16, 134 100 12 19 5 1 0
|q(db)| (100M) 501, 063 503, 395 4, 425, 553 5, 632, 454 2, 128, 9440 5, 632, 454 1, 510, 695 11, 820 1, 508 1, 463 5 1 495

DBLP q Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10

|qref | 684 292 1, 387 1, 387 4 19 19 1, 721 361 1, 923, 349
|q(db)| 4, 898 16, 424 5, 259, 462 60, 900 19, 576 9, 562 9, 562 203, 462 20 80

Table 3.4: Characteristics of the queries used in our study.

3.3.1 Settings

Software. We implemented our reformulation-based query answering framework in
Java 7, on top of three well-known RDBMSs, namely: PostgreSQL v9.3.2, IBM DB2
Express-C v10.5, and MySQL Community Server v5.6.20. For each RDBMS, we
instantiated the cost formulas introduced in Section 3.2.1 with the proper coefficients,
learned by running our calibration queries on that system.

Hardware. All the RDMBSs run on 8-core Intel Xeon (E5506) 2.13 GHz machines
with 16GB RAM, using Mandriva Linux release 2010.0 (Official).

Datasets. We conducted experiments using DBLP (8 million triples) [38] and LUBM [52]
with 1 and 100 millions triples.

In our experiments, RDFS constraints are kept in memory, while RDF facts are stored
in a Triples(s, p, o) table, indexed by all permutations of the s, p, o columns, leading
a total of 6 indexes. Our indexing choice is inspired by [83, 107], to give the RDBMS
efficient query evaluation opportunities. Further, as in [48, 83, 107, 49], for efficiency,
the Triples(s, p, o) table’s data are dictionary-encoded, using a unique integer for each
distinct value (URIs and literals). The dictionary is stored as a separate table, indexed
both by the code and by the encoded value.

Queries. We used 28 and 10 BGP queries for our evaluation on LUBM and DBLP
datasets, respectively. The LUBM queries appear in Section A.1, Tables A.1– A.3 and
the DBLP queries in Table A.4, while their main characteristics (number of union terms
in their UCQ reformulation, denoted |qref |, as well as the number of results when evalu-
ated on our datasets) are shown in Table 3.4.

Some queries are modified versions of LUBM benchmark queries, in order to remove
redundant triples2. We designed the others so that (i) they have an intuitive meaning,
(ii) they exhibit a variety of result cardinalities, (iii) they exhibit a variety of reformu-

2A query triple is redundant when it can be inferred from the others based on the RDFS constraints.
For instance, when looking for x such that x is a person and x has a social security number, if we know
that only people have such numbers, the triple “x is a person” is redundant.
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Figure 3.2: LUBM 1 million triples query answering through UCQ, SCQ, ECov and GCov
JUCQ reformulations, against DB2, Postgres and MySQL.

lations, some of which are syntactically complex, to allow a study of the performance
issues involved and (iv) none of their triples is redundant.

All measured times are averaged over 3 (warm) executions. Moreover, queries whose
evaluation requires more than 2 hours were interrupted; we point them out when com-
menting on the experiments’ results.

3.3.2 Optimized reformulation

In this section, we compare our reformulation-based query answering technique with
those from the literature based on UCQs and SCQs.

Effectiveness: is an optimizer needed? The first question we ask is whether exploring
the space of JUCQ alternatives is actually needed, or could one just rely on a simple
(fixed) query cover?

The UCQ reformulation used in many prior works is a particular case of the JUCQ refor-
mulations we introduced in this work; it corresponds to a cover of a single fragment
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Figure 3.3: LUBM 100 million triples query answering through UCQ, SCQ, ECov and
GCov JUCQ reformulations, against DB2, Postgres and MySQL.

made of all the query triples (recall q′1 in Motivating Example 1, Section 3.1). From
a database perspective, it corresponds to pushing the joins below a single (potentially
large) union. At the other extreme, the SCQ reformulation proposed in [96] is a particu-
lar case of JUCQ reformulation obtained from a cover where each query triple is alone in
a fragment (recall q′′1 in the same example). The SCQ reformulation can thus be thought
of as pushing all unions below a the joins. Both the UCQ and SCQ reformulations corre-
spond to a cover where each triple appears in exactly one fragment, whereas our JUCQs
do not have this constraint; further, the UCQ and SCQ reformulations do not take into
account quantitative information about the data and query.

We compared the performance of query answering through: (i) UCQ reformulation;
(ii) SCQ reformulation; (iii) the JUCQ recommended by the exhaustive ECov algorithm;
(iv) the JUCQ recommended by our greedy GCov algorithm.

Figures 3.2 and 3.3 shows the evaluation times for LUBM queries on the 1 million triples
and 100 million triples datasets respectively, on the three RDBMSs we tested; observe
the logarithmic time axis. Missing bars correspond to executions which timed out or
were infeasible. Figures 3.2 and 3.3 shows that neither UCQ nor SCQ reformulation are re-
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Figure 3.4: DBLP query answering through UCQ, SCQ, ECov and GCov JUCQ reformu-
lations, against DB2, Postgres and MySQL.

liable options. Indeed, UCQ is the slowest for many queries on DB2 and Postgres, some-
times by more than an order of magnitude, and it fails forQ9, Q15, Q18(forLUBM100M), Q19

and Q28 on DB2, to which we add Q6, Q14 and Q16 on Postgres (for LUBM 100M). SCQ
is very inefficient on MySQL, and also on Postgres for Q1, Q2, Q3, Q8 etc.; it is almost
always the worst choice for MySQL. In contrast, the GCov-chosen JUCQ always com-
pletes and is the fastest overall in all but Q24, Q25 and Q27 on Postgres. Figures 3.2
and 3.3 also shows that the GCov JUCQ performs as well as the ECov one, thus the
greedy is making smart choices. In Figure 3.3, the GCov JUCQ is up to 4 orders of
magnitude faster than the SCQ reformulation and two orders of magnitude faster than
UCQ (on LUBM 1M, it wins by 3 orders of magnitude w.r.t. UCQ). We end by noting
that the Q16 cover chosen by ECov for Postgres has failed to execute due to insufficient
memory in our runtime environment; we believe this could be avoided by further tuning
the server execution parameters etc.

Figure 3.4 further highlights that no fixed reformulation technique is always the best. On
DB2, SCQ performs very well for Q5, Q6 and Q7, and very poorly for Q8 and Q9; on the
latter, UCQ times out. In contrast, JUCQ performance is robust, the best in all cases butQ6
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Figure 3.5: Number of query covers explored by the algorithms (top) and algorithm
running times (bottom) for the LUBM queries.

and Q7, and for those it is not very far from the optimum. On Postgres and MySQL the
GCov JUCQ performance is the best in all cases, and more than two orders of magnitude
faster than the SCQ and UCQ reformulation. These experiments highlight the interest of
the JUCQ reformulation space, and the usefulness of our cost model in guiding ECov and
GCov search.

GCov performance We now turn to considering the number of covers: overall (as ex-
plored by the exhaustive ECov), and the subset traversed by our greedy GCov; these
are depicted in Figure 3.5 and 3.6, also in logarithmic scale. (Recall that UCQ and SCQ

each correspond to one fixed cover.) While the search space can be very large (e.g., for
LUBM Q2, Q9 or Q12), GCov only explores a reduced subset of this space. The same
figures also show the running time of GCov and ECov, and the time to build the UCQ,
respectively the SCQ reformulations (again, observe the logarithmic time axis). The time
is spent to: obtain the statistics necessary for estimating the number of results of various
fragments; reformulate each fragment, estimate its cost, and all other steps shown in
Algorithms 1 and 2. We see that GCov’s running time may be one order of magnitude
less than the one of ECov; as expected, building the (cost-ignorant) UCQ and SCQ is quite
faster, at the expense of their evaluation time and their unfeasibility to evaluate some
queries. The highest running time is recorded for queries having a huge UCQ reformu-
lation (LUBM Q28, respectively DBLP Q10, detailed in Table 3.4); the time is taken to
build and estimate statistics for such very large UCQs. In particular, for DBLP Q10, the
exhaustive ECov also runs out of memory building the very numerous reformulations.

Alternative: using the RDBMS cost estimation The second question we study is the
quality of our cost estimation, that is crucial in guiding GCov decisions. The golden
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Figure 3.6: Number of query covers explored by the algorithms (top) and algorithm
running time (bottom) for DBLP queries.

Figure 3.7: Cost model comparison.

standard one can compare against is the RDBMS’s internal cost estimation function:
this is because any cover we chose is evaluated by sending it (as a SQL statement) to the
system which optimizes it according to its internal cost model. Thus, the cost function
used by GCov should be as close as possible to the RDBMS one.

For this comparison, whenever we needed to estimate the cost of a cover, we sent to
Postgres an explain statement for the corresponding cover-based reformulation, and
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extracted from its result Postgres’ cost estimation3

Figure 3.7 shows the evaluation time of the JUCQ reformulations chosen by ECov and
GCov, based on one hand on our cost function, and on the other hand on the Postgres
one. Most of the time, the results are similar, demonstrating that our cost model is indeed
close to the one of Postgres. In a few cases (LUBM Q12 and Q16), using Postgres’ cost
model helped avoid bad ECov decisions; however, for the LUBM queries Q9, Q15, Q18,
Q19, Q26 and Q28, as well as the DBLP queries Q8 and Q10, the ECov JUCQ chosen
based on Postgres’ cost estimation timed out before completing.

Figure 3.7 demonstrates that our cost model (Section 3.2.1) has lead our algorithm to
evaluation choices very similar to the ones that Postgres made, validating its accuracy.

3.3.3 Comparison with saturation

Figure 3.8: Query answering through Virtuoso and Postgres (via saturation, respectively,
optimized reformulation).

As explained in the Preliminaries, graph saturation and query reformulation are the two
main techniques for answering queries under constraints. Saturation-based query an-
swering can be very efficient, once the data is saturated; however, if the RDF graph
is updated, the cost of maintaining the saturation may be very high [48]. In contrast,
query reformulation is performed directly at query time, and so it naturally adapts to
the current state of the database. The performance trade-off between saturation- and
reformulation-based query answering depends on the schema, on the nature of updates,
and on the data statistics [48].

In this section, we show how our optimized JUCQ reformulation-based query answer-
ing technique impacts the performance comparison with saturation-based query answer-
ing. Figure 3.8 compares on the LUBM 1 million triples dataset: (i) UCQ reformu-
lation; (ii) saturation-based query answering based on Postgres; (iii) saturation-based
query answering based on Virtuoso v6.1.6 (open-source, multithreaded edition); and

3Doing this for every examined cover slowed down our search significantly, thus we do not recommend
actually running GCov out of a RDBMS based on the RDBMS’s internal cost model.

40



3.4. RELATED WORK

(iv) our GCov-chosen JUCQ. As expected, UCQ reformulation performs much worse
than saturation-based query answering, and worse than the GCov JUCQ by up to three
orders of magnitude. On some queries, such as Q15 or Q23 − Q28, saturation keeps its
advantage even compared to our optimized JUCQ reformulation. However, on queries
such as Q3 −Q14 and Q16 −Q22, the JUCQ reformulation is close to (competitive with)
saturation-based query answering, which is remarkable given that reformulation rea-
sons at query time, and considering the performance gap observed between the two in
previous works, e.g., [48].

3.3.4 Experiment conclusion

Our experiments lead to the following conclusions.

(1). Confirming the intuition given by our example in Section 3.1, the space of JUCQ re-
formulation comprises alternative reformulations of a given BGP query w.r.t. the RDFS
constraints, whose evaluation is (i) feasible when UCQ reformulation fails, and (ii) up to
4 orders of magnitude more efficient than a fixed reformulation strategy, such as UCQ or
SCQ. (2). While ECov is slow for large-reformulation queries, GCov identifies covers
leading to efficient reformulations quite fast, confirming the feasibility of our optimized
reformulation technique at query time. (3). The cost model on which our search is based
performs globally well; in particular, when calibrated for Postgres, we have shown it
leads to chosing covers very close to the ones obtained when relying on Postgres’ in-
ternal cost model. (4). While saturation-based query answering has reasons to be much
more efficient than reformulation techniques (if one is willing to disregard the initial
cost of saturating the database, as well as any cost related to saturation maintenance!),
our efficient reformulation technique is in many cases competitive with saturation-based
query answering, both through a relational server and through the native-RDF Virtuoso
server. This confirms the important performance improvement brought by our work to
reformulation-based query answering in RDF; recall that any CQ to UCQ reformulation
algorithm could be used with our cost-based GCov optimization technique.

3.4 Related work

The context of our work is the problem of answering conjunctive queries against RDF
facts, in the presence of RDFS constraints. As mentioned in the Preliminaries, solu-
tions from the literature rely on RDF graph saturation, on query reformulation, or by
mixing both [99]; our work focused on making query answering based on reformulation
performant. Below, we position our work w.r.t. these two techniques.

Saturation-based query answering. When using graph saturation, all the implicit
triples are computed and explicitly added to the database; query answering then reduces
to query evaluation on the saturated database. Well-known SPARQL compliant RDF
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platforms such as 3store [108], Jena [110], OWLIM [112], Sesame [113], Oracle Se-
mantic Graph [111] support saturation-based query answering, based on (a subset of)
RDF entailment rules.

RDF platforms originating in the data management community, such as Hexastore [107]
or RDF-3X [83], ignore entailed triples and only provide query evaluation on top of the
RDF graph, which is assumed to be already saturated.

The drawbacks of saturation w.r.t. updates have been pointed out in [22], which pro-
poses a truth maintenance technique implemented in Sesame. It relies on the storage
and management of the justifications of entailed triples (which triples beget them). This
technique incurs a high overhead of handling justifications when their number and size
grow. Therefore, [20] proposes to compute only the relevant justifications w.r.t. an up-
date, at maintenance time. This technique is implemented in OWLIM, however [112]
points out that updates upon RDFS constraint deletions can lead to poor performance.
More efficient saturation maintenance techniques are provided in [48, 98] based on the
number of times triples are entailed.

Reformulation-based query answering. When using query reformulation, a given
BGP query is reformulated based on the RDFS constraints into a target language, such
that evaluating the reformulated query through an appropriate engine yields the query
answer.

UCQ reformulation [48, 98, 62, 99, 46, 5, 49, 32, 50] applies to various fragments of
RDF, ranging from the Description Logics (DL) one up to the Database one, the largest
for which this technique have been considered so far. UCQ reformulation corresponds in
this work to a JUCQ reformulation obtained from a single fragment query cover. SCQ re-
formulation [96] was defined for the DL fragment of RDF. In our setting, it corresponds
to a JUCQ reformulation obtained from a query cover in which each triple is alone in a
fragment. Our experiments have shown that the evaluation performance for both UCQ or
SCQ reformulation can be very poor.

Among popular RDF data management systems, the only ones supporting
reformulation-based query answering are Stardog, Virtuoso (which supports only the
rdfs:subClassOf and rdfs:subPropertyOf RDFS rules) and AllegroGraph [109] (which
supports the four RDFS rules but whose reasoning implementation is incomplete4). Vir-
tuoso is based on SCQ reformulation, while Stardog uses UCQ reformulation; we found
no information about AllegroGraph’s query reformulation language. Nested SPARQL is
the target reformulation language in [11]; in contrast, we focus on translating into a com-
monly supported language such as JUCQs which in turn can be efficiently evaluated by
an SQL engine. In [99], the schema is maintained saturated and reformulation is applied
at runtime. Our approach could apply in that setting, to improve their reformulation
performance.

4As stated at http://franz.com/agraph/support/ documentation/v4/reasoner-tutorial.html#fnr0-2014-
09-16
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Datalog has also been used as a target reformulation language. For instance,
Presto [46, 89] reformulates queries in a DL-Lite setting into non-recursive Datalog
programs. These DL-Lite formalisms are strictly more expressive from a semantic con-
straint viewpoint than the RDFS constraints we consider. Thus, their method could be
easily transferred (restricted) to the DL fragment of RDF which, as previously men-
tioned, is a subset of the database fragment of RDF that we consider. However, these
works did not consider cost-driven performance optimization based on data statistics
and a query evaluation cost model as in our work.

From a database optimization perspective, the performance advantage we gain by adding
selective triples next to very large ones within query covers’ fragments is akin to the
semi-join reducers technique, well-known from the distributed database context [85]. It
has been shown e.g., in [92] that semi-join reducers can also be beneficial in a central-
ized context by reducing the overall join effort. In this work, we use a technique remi-
niscent of semi-joins in order to pick the best query-level formulation of a reformulated
query, to make its evaluation possible and efficient; this contrasts with the traditional
usage of semi-joins at the level of algebraic plans.

On one hand, working at the plan level enables one to intelligently combine traditional
joins and semi-joins to obtain the best performance. On the other hand, producing (as
we do) an output at the query (syntax) level (recall Figure 3.1) enables us to take ad-
vantage of any existing system, and of its optimizer which will figure out the best way
to evaluate such queries, a task at which many systems are good once the query has a
”reasonable” shape and size. As shown in [71], providing the relational database sys-
tems queries of ”manageable” size is key, as that RDBMSs’ estimation errors grows fast
with the increase of the number of joins, usually leading to bad plans and therefore poor
performance. Further, expressing optimized reformulations as queries allows us not to
(re-)explore the search space of join orders etc. together with the (already large) space
of possible reformulated queries.

3.5 Conclusion

Our work is placed in the setting of query answering against RDF graphs in the presence
of RDF Schema constraints. In particular, we focus on improving the performance of
reformulation-based RDF query answering.

We have identified a space of alternative JUCQ reformulations, whose evaluation (based
on a standard, semantics-unaware query processor) may be (i) feasible even when the
prominent UCQ reformulation is not, and (ii) more efficient by up to three orders of
magnitude. Further, we have presented a cost model for such JUCQ alternatives, and
proposed an anytime greedy cost-based algorithm capable of identifying such efficient
alternatives. Our technique may be used with any CQ-to-UCQ query reformulation al-
gorithm (recall Figure 3.1) and thus we consider it a big step forward toward making
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reformulation-based query answering efficient. This is particularly useful in contexts
when the data and/or constraints are updated, and saturation-based techniques incur
high maintenance costs as illustrated e.g., in [48]; in contrast, applying at query time,
reformulation-based query answering is naturally robust to updates, and (through cost-
based techniques such as the one described in our work) close to saturation-based per-
formance but without its drawbacks.
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Chapter 4

Efficient FOL reducible query
answering

In this chapter we transfer the idea developed in the preceding chapter to the general
setting of data model and query language pairs enjoying FOL reducibility of query an-
swering (i.e., data model and query language pairs for which query answering can be
reduced to evaluating a certain first-order logic formula, obtained from the query and
ontology, against only the explicit facts), encompassing many knowledge base and de-
ductive database settings, e.g., some Description Logics, Datalog± and Existential Rules
fragments.

We propose a query optimization framework for any logical OBDA setting enjoying FOL

reducibility of query answering. We extend the language of FOL reformulations beyond
those considered so far in the literature, and investigate several (equivalent) FOL refor-
mulations of a given query, out of which we pick one likely to lead to the best evaluation
performance. This contrasts with existing works from the semantic query answering
literature (cf. Section 4.6), which use reformulation languages allowing single FOL re-
formulation (modulo minimization). Considering a set of reformulations and relying on
a cost model to pick a most efficient one has a very visible impact on the efficiency and
feasibility of query answering: indeed, picking the wrong reformulation may cause the
RDBMS simply to fail evaluating it (typically due to very lengthy queries), while in
other cases it leads to bad performance.

We apply this general framework to the DL-LiteR Description Logic [32] underpinning
the popular W3C’s OWL2 QL standard for rich Semantic Web applications, demonstrat-
ing significant performance advantages in this setting. Query answering in DL-LiteR
has received significant attention in the literature, notably techniques based on FOL re-
ducibility, e.g., [32, 2, 86, 89, 36, 100].

Contributions. We bring the following contributions to the problem of optimizing FOL

reducible query answering (see Figure 4.1):
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Figure 4.1: Optimized FOL reformulation approach.

1. For logical formalisms enjoying FOL reducibility of query answering, we provide
a general optimization framework that reduces query answering to searching among a
set of alternative equivalent FOL reformulations, one with minimal evaluation cost in an
RDBMS (Section 4.2). In Figure 4.1, from the query q and the set of ontological con-
straints T , we derive first, a space of query covers, shown in the top white-background
box, and denoted C with some subscripts; from each such cover we show how to derive
a FOL query that may be a FOL reformulation of q w.r.t. T .

2. We characterize interesting spaces of such alternative equivalent FOL queries for DL-
LiteR (Section 4.3).
First, we identify a sufficient safety condition to pick covers that for sure lead to FOL

reformulations of the query. This condition is met by the covers in the top yellow box in
Figure 4.1, and is not met by C 6≡ above them. Our safe cover space allows considering
FOL reformulations encompassing those previously studied in the literature. Second, we
introduce a set of generalized covers (bottom yellow box in Figure 4.1) and a generalized
cover-based reformulation technique, which always yields FOL query reformulations,
oftentimes more efficient than those based on simple covers.
Our approach can be combined with, and helps optimizing, any existing reformulation
technique for DL-LiteR.

3. We then optimize query answering in the setting of DL-LiteR by enumerating sim-
ple and generalized covers, and picking a cover-derived FOL reformulation with lowest
estimated evaluation cost w.r.t. an RDBMS cost model estimation ε (denoted by the
bidirectional ε-labeled arrows in the figure). We provide two algorithms, an exhaustive
and a greedy, for this task (Section 4.4).
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4. Evaluating any of our FOL reformulations through an RDBMS leads (thick arrows at
the right of Figure 4.1) to the query answer reflecting both the data and the constraints.
We demonstrate experimentally the effectiveness and the efficiency of our query an-
swering technique for DL-LiteR, by deploying our query answering technique on top of
Postgres and DB2, using several alternative data layouts (Section 4.5).

From a query processing and optimization perspective, our approach can be seen as
belonging to the so-called strategic optimization stage introduced in [77] (where appli-
cation semantics is injected into the query); it is also similar in spirit to the syntax-level
rewrites performed by optimizers such as Oracle 10g’s [7]. We share with [77] the idea
of injecting semantics first, and like [7], we use cost estimation to guide our rewrites; a
common theme is to rewrite before ordering joins, selecting physical operators etc.From
this angle, our contribution can be seen as a set of alternatives (rewritings) with correct-
ness guarantees and algorithms to guide such rewritings, for the special class of queries
obtained from FOL reformulations of CQ against ontologies.

In the sequel, we detail the above contributions and discuss related work and conclude
in Section 4.6.

The work reported here is based on the VLDB paper [28] and the ISWC demo [27].

4.1 Evaluating reformulated subqueries can be (very)
hard

It is worth noting that the (naı̈ve) exhaustive application of specialization steps leads, in
general, to highly redundant reformulations w.r.t. the containment of their disjuncts. For
instance, minimizing qUCQ introduced in Example 8 by eliminating disjuncts contained in
another leads to: qUCQmin(x):-

∨3
i=1 q

i(x) ∨ q10(x) where the disjuncts appear in Table 2.6;
they are all contained in q10.

q1(x):- PhDStudent(x) ∧ worksWith(y, x)
q2(x):- PhDStudent(x) ∧ worksWith(x, y)
q3(x):- PhDStudent(x) ∧ supervisedBy(y, x)
q10(x):- supervisedBy(x, y)

Table 4.1: Union terms in minimized CQ-to-UCQ reformulation.

Minimal UCQ reformulations can be obviously processed more efficiently. However, they
still repeat some computations, e.g., in the above minimized CQ-to-UCQ reformulation
example, PhDStudent is read three times, worksWith twice etc.; in general, subqueries
appearing in different union terms are repeatedly evaluated.

Common subexpression elimination (CSE) techniques aim at identifying repeated subex-
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pressions in queries or plans, and reformulating them so that the expression is evaluated
only once and its results are shared to increase performance; CSE is often used in a
Multi-Query Optimization context (MQO). However, MQO is poorly supported in to-
day’s main RDBMS engines1 As we will see, our approach, which starts with the TBox
and data statistics, and ends by handing over a chosen reformulation to the RDBMS,
never requires work to detect common (repeated) sub-expressions.

Another source of difficulty is the sheer size of reformulated queries; we exhibit some
whose size (i.e., length of the SQL formulation) is above 2.000.000 characters. For in-
stance, the minimal UCQ corresponding to query Q9 in our experiments (Section 4.5) is
a union of 145 CQs, and runs in 5665 ms on DB2 and a database of 100 million facts.
In contrast, the SQL translation of the best FOL reformulation identified by our approach
reduces this to 156 ms (36 times faster), just by giving the engine a different (yet equiv-
alent) SQLized FOL reformulation.

From an optimization viewpoint, the problem we are facing can be seen as follows.
We aim at answering queries through RDBMSs in the presence of constraints, for FOL-
reducible settings.

The standard UCQ reformulation (and other cost-ignorant ones) perform quite badly. The
question is, then: is there an equivalent reformulation which would be evaluated more
efficiently?

To answer this, one is faced with a set of FOL (or, alternatively, SQL) reformulations
whose size is potentially very high: exponential in the query size for non-redundant
queries, larger yet if one considers, for instance, queries featuring semijoins [19]; each
query therein may be (very) large, have many unions etc.. From these, one would need
to find the one(s) best optimized and executed by the RDBMS; their very high number
makes this utterly impractical.

The following sections present our alternative approach.

4.2 Optimization framework

The performance of evaluating (the SQL translation of) a given FOL reformulation of
a query through an RDBMS depends on several factors: (i) data properties (size, car-
dinalities, value distributions etc.); (ii) the storage model, i.e., the concrete relations
storing the ABox, possible indexes etc.; (iii) the optimizer’s algorithm. Among these,
(i) is completely determined by the dataset (the given ABox). On the storage model
(ii), for generality, we make no assumption, other than requiring that FOL query refor-
mulations can be translated into SQL on the underlying store. (We study several such
concrete models experimentally, in Section 4.5). For what concerns optimizers (iii),

1We checked this on Postgres, DB2, and MySQL plans; according to Paul Larson (among the authors
of [114]), no major RDBMS engine as of April 2016 has a comprehensive MQO approach.
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we note that off-the-shelf they perform very poorly on previously proposed FOL query
reformulations, yet we would like to exploit their strengths when possible.

Approach: cover-based query answering. We identify and exploit a novel space of
alternative FOL reformulations of the given input CQ. We estimate the cost of evaluating
each such reformulation through the RDBMS using standard database cost formulas,
and hand to the RDBMS one with the best estimation.

More specifically, a query cover defines a way to split the query into subqueries, that may
overlap, called fragment queries, such that substituting each subquery with its FOL refor-
mulation (obtained from any state-of-the-art technique) and joining the corresponding
(reformulated) subqueries, may yield a FOL reformulation of the original query (recall
also Figure 4.1).

We begin by recasting the specific query covers from the RDFS setting of the preceding
chapter into the very general framework of FOL reducible query answering.

Definition 4.2.1 (CQ cover). A cover of a query q, whose atoms are {a1, . . . , an}, is a
set C = {f1, . . . , fm} of non-empty subsets of atoms of q, called fragments, such that (i)⋃m
i=1 fi = {a1, . . . , an}, (ii) no fragment is included into another, and (iii) the atoms of

each fragment are connected through joins (common variables).

Example 9 (CQ cover). Consider the query

q(x, y):- teachesTo(v, x) ∧ teachesTo(v, y),
supervisedBy(x,w) ∧ supervisedBy(y, w)

C, below, is a query cover for q:

C = {{teachesTo(v, x) ∧ supervisedBy(x,w)},
{teachesTo(v, y) ∧ supervisedBy(y, w)}}

Definition 4.2.2 (Fragment queries of a CQ). Let C = {f1, . . . , fm} be a cover of q. A
fragment query q|fi,1≤i≤m of q w.r.t. C is the subquery whose body consists of the atoms
in fi and whose free variables are the free variables x̄ of q appearing in the atoms of fi,
plus the existential variables in fi that are shared with another fragment fj,1≤j≤m,j 6=i,
i.e., on which the two fragments join.

Example 10 (Fragment queries of a CQ). The fragment queries of the query q(x, y)
w.r.t. the cover C (Example 9) are:

q|f1(x, v, w):- teachesTo(v, x) ∧ supervisedBy(x,w)

q|f2(y, v, w):- teachesTo(v, y) ∧ supervisedBy(y, w)
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As we shall see in the next Section, not every cover of a query leads to a FOL reformula-
tion. Specifically, we define:

Definition 4.2.3 (Cover-based reformulation). Let C = {f1, . . . , fm} be a cover of q,
and qFOL(x̄):-

∧m
i=1 q

FOL
|fi a FOL query, where qFOL|fi , for 1 ≤ i ≤ m, is a FOL reformulation

w.r.t. T of the fragment query q|fi of q.

qFOL is a cover-based reformulation of q w.r.t. T and C if it is a FOL reformulation of q
w.r.t. T .

To exemplify cover-based FOL reformulations, one needs to chose a specific KB dialect,
among all those enjoying FOL reducibility; we present examples in the next Section,
when instantiating our framework to the DL-LiteR setting.

For now, it helps to see how we derive the SQL query corresponding to the cover-based
reformulation. Each reformulated fragment query qFOL|fi is translated into an SQL query
SQLi; then, for those RDBMSs enjoying Common Table Expressions (CTEs) the overall
query is of the form:

WITH SQL1 AS qFOL|f1 , SQL2 AS qFOL|f2 , . . . , SQLn AS qFOL|fn
SELECT DISTINCT x̄ FROM SQL1, SQL2, . . . , SQLn
WHERE cond(1, 2, . . . , n)

where cond(1, 2, . . . , n) is the conjunction of the join predicates between all the sub-
queries. This leads to all the WITH-introduced subqueries being evaluated and materi-
alized into intermediary tables2, while the one with the largest number of results is run
in pipeline fashion. The way in which each subquery is evaluated, then their results are
joined, is left to the DBMS to determine. The SELECT DISTINCT ensures set semantics
for the query answers.

We picked this syntax after experimenting with other variants, which in our experience
lead to similar or worse performance. In particular, we tried:

• using one subquery for each fragment query SQLi, and joining them. Our ex-
periments showed no improvement in general,however it’s a good variant for
RDBMSs that do not support CTEs.

• defining each reformulated fragment query SQLi as a (virtual) view, and joining
these views in the global reformulation. This gives the query processor more free-
dom as it does no longer force the materialization of SQLi but instead allows its
evaluation to be blended with the evaluation of the joins across reformulated frag-
ment queries. We noticed, however, that this did not overall improve performance.

• turning SQLi subqueries into nested ones introduced with EXISTS as soon as the
subquery did not contribute variables to the head of reformulated query. We tried

2These SQL subqueries are of the form SELECTDISTINCT in order to reduce the size of the intermediate
materialized results; this choice lead to the fastest execution in our experiments.
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this both on the WITH version and on the view-based versions; we did not notice
significant improvements.

Problem statement. We assume given a query cost estimation function ε which, for
any FOL query q, returns the cost of evaluating it through an RDBMS storing the ABox.
Thus, ε reflects the operations (data access, joins, unions etc.) applied on the ABox to
compute the answers of a qFOL reformulation. The cost estimation ε also accounts for the
effort needed to join the reformulated fragment query answers, in the most efficient way.

Problem 1 (Optimization problem). Given a CQ q and a KB K, the cost-driven cover-
based query answering problem consists of finding a cover-based reformulation of q
based on K with lowest (estimated) evaluation cost.

A cost estimation function is provided by most RDBMSs storing the ABox for instance,
in the case of Postgres, through the SQL explain directive. One can also estimate
costs outside the engine using well-known textbook formulas, as in e.g., Chapter 3 (Sec-
tion 3.2.1) and [71]. We use both options in our experiments.

4.3 Cover-based query answering in DL-LiteR

We now instantiate our cover-based query answering technique to the popular setting of
DL-LiteR. For establishing our results as well as for our examples we rely on the simple
CQ-to-UCQ reformulation technique of [32]. However, our approach applies to any other
FOL reformulation techniques for DL-LiteR, e.g., optimized CQ-to-UCQ or CQ-to-USCQ
reformulation techniques, since these produce equivalent (though possibly syntactically
different) FOL queries.

Example 11 (Running example). Let K be the KB with TBox T = {Graduate v
∃supervisedBy, supervisedBy v worksWith} and ABox

A = {PhDStudent(Damian), Graduate(Damian)}

Consider the query q(x):- PhDStudent(x) ∧ worksWith(x, y)
∧ supervisedBy(z, y), whose answer against K is {Damian}.
The UCQ reformulation of q is qUCQ(x):-

∨4
i=1 q

i(x) with:

q1(x):- PhDStudent(x) ∧ worksWith(x, y)
∧ supervisedBy(z, y)

q2(x):- PhDStudent(x) ∧ supervisedBy(x, y)
∧ supervisedBy(z, y)

q3(x):- PhDStudent(x) ∧ supervisedBy(x, y)
q4(x):- PhDStudent(x) ∧ Graduate(x)
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Above, q1 has the body of q; q2 is obtained from q1 by specializing the atom worksWith(x, y)
through a backward application of supervisedBy v worksWith. q3 (highlighted in
blue) results from q2 by replacing supervisedBy(x, y) and supervisedBy(z, y) with
their most general unifier3. Finally, q4 is obtained from q3, by specializing supervisedBy(x, y)
through the backward application of Graduate v ∃supervisedBy; we also show q4 in
blue to highlight its connection with q3.

Now letC1 = {{PhDStudent(x), worksWith(x, y)}, {supervisedBy(z, y)}} be a cover
of q. From Definition 4.2.2, the corresponding fragment queries are:

q1(x, y):- PhDStudent(x) ∧ worksWith(x, y)
q2(y):- supervisedBy(z, y)

The reformulation of q1 using T is qUCQ1 (x, y):-
∨2
i=1 q

i
1(x, y), where

q11(x, y):- PhDStudent(x) ∧ worksWith(x, y)
q21(x, y):- PhDStudent(x) ∧ supervisedBy(x, y)

q21 is obtained from q11 by the backward application of the constraint supervisedBy v
worksWith.

The reformulation of q2 using T is simply:

qUCQ2 (y):- supervisedBy(z, y)

By Definition 4.2.3, the reformulation of q usingC1 is the conjunction qJUCQC1
(x):- qUCQ1 (x, y)∧

qUCQ2 (y), which is clearly equivalent to the following UCQ obtained by distributing ∧ over
∨:

qUCQC1
(x):- (q11(x, y) ∧ qUCQ2 (y)) ∨ (q21(x, y) ∧ qUCQ2 (y))

where the first and second disjuncts correspond to the CQs:

q1C1
(x):- PhDStudent(x) ∧ worksWith(x, y)

∧ supervisedBy(z, y)
q2C1

(x):- PhDStudent(x) ∧ supervisedBy(x, y)
∧ supervisedBy(z, y)

Above, q1C1
(x) and q2C1

(x) are exactly q1 and q2 from the UCQ reformulation of q; how-
ever, q3 and q4 are missing from qJUCQC1

(x). Since q4 derives from q3, the absence of
both can be traced to the absence of q3. The reason C1 does not lead to q3 is that
supervisedBy(x, y)∧supervisedBy(z, y) is not obtained while reformulating q1(x, y),
thus the unification of these two atoms (which could have lead to q3) is missed. In the
CQ-to-UCQ reformulation of q, supervisedBy(x, y)∧supervisedBy(z, y) appears in q2

3In this case, the mgu is supervisedBy(x, y) because x is the head variable. Also, q3 is equivalent to
(and a minimal form of) q2, but in general, q3 is only guaranteed to be contained in (or equivalent to) q2.
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because worksWith(x, y) ∧ supervisedBy(z, y) appears in q1. However, C1 separates
the worksWith and supervisedBy atoms in different fragments. Reformulating them
independently misses exactly the opportunity to produce q3 and q4.

Due to these absent subqueries, qJUCQC1
is not a FOL reformulation of q w.r.t. T , i.e., it

fails to compute q’s answer: ans(qJUCQC1
, 〈∅,A〉) = ∅ while the answer of q against K is

{Damian}.

More generally, given an input CQ and a TBox, each pair of query atoms begetting uni-
fications during the CQ-to-UCQ reformulation of the whole query must not be separated
by (must not be in different fragments of) a cover, in order for the corresponding cover-
based reformulation to be a FOL reformulation. When this is the case, we say the cover
is safe for query answering.

Thus, we are interested in a sufficient condition for a cover to be safe; intuitively, we
must approximate (by some supersets) those sets of atoms which (directly or after some
specializations) are pairwise unified by the CQ-to-UCQ algorithm, and ensure that each
such atom set is in the same cover fragment.

Only atoms with the same predicate may unify. Thus, we identify for each predicate
(i.e., concept or role name) occurring in a query, the set of all TBox predicates in which
this predicate may turn through some sequence of atom specializations, i.e., backward
constraint application and/or unification (the two operations applied by the technique
of [32] which we consider here). This is captured by the classical notion of dependencies
between predicates within knowledge bases, Datalog programs, etc. In DL-LiteR, this
notion translates into the following recursive definition.

Definition 4.3.1 (Concept and role dependencies w.r.t. a TBox).
Given a TBox T , a concept or role name N depends w.r.t. T on the set of concept
and role names denoted dep(N) and defined as the fixpoint of:

dep0(N)= {N}
depn(N)= depn−1(N)

∪{cr(Y ) | Y v X ∈ T and cr(X) ∈ depn−1(N)}

where cr(Y ) returns, for any input Y of the form Z,Z− or ∃Z (for some concept or role
Z), the concept or role name Z itself.

Example 12 (Predicate dependencies). In the TBox of Example 11:

dep(PhDStudent)={PhDStudent}
dep(Graduate)={Graduate}
dep(worksWith)={worksWith, supervisedBy, Graduate}

dep(supervisedBy)={supervisedBy, Graduate}

Above, worksWith depends on supervisedBy because of the constraint
supervisedBy v worksWith; similarly, supervisedBy depends on Graduate due
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to the constraint Graduate v ∃supervisedBy, thus worksWith in turn depends on
Graduate, too.

Definition 4.3.2 (Safe cover for query answering). A cover C of q is safe for query
answering w.r.t. T (or safe in short) iff it is a partition of q’s atoms such that two atoms
whose predicates depend on a common concept or role name w.r.t. T are in a same
fragment.

Note that while Definition 4.3.2 requires covers to be partitions, we will relax this re-
striction in Section 4.4.2.

Theorem 4.3.1 (Cover-based query answering). Let C be a safe cover for q w.r.t. T .
The cover-based reformulation (Definition 4.2.3) of q based on C, using any CQ-to-UCQ
(resp. CQ-to-USCQ) reformulation technique, yields a cover-based reformulation qFOL of
q w.r.t. T .

Proof. The proof follows from that of correctness of the CQ-to-UCQ reformulation tech-
nique in [32] for query answering. It directly extends to the use of any CQ-to-UCQ or
CQ-to-USCQ reformulation technique for DL-LiteR, as, for any CQ and TBox, the FOL

queries they compute are equivalent to the query produced by the technique described
in [32].

Soundness: for any T -consistent Abox A, ans(qFOL, 〈∅,A〉) ⊆ ans(q, 〈T ,A〉) holds.

Let t be a tuple in ans(qFOL, 〈∅,A〉). From Definition 4.2.3, qFOL is qFOL(x̄):-
∧m
i=1 q

FOL
|fi ,

thus t results from ti ∈ ans(qFOL|fi , 〈∅,A〉), for 1 ≤ i ≤ m. Therefore, for 1 ≤ i ≤ m,
ti ∈ ans(q|fi , 〈T ,A〉) holds, because of the soundness of the CQ-to-UCQ reformulation
technique. Hence, from Definition 4.2.3, t ∈ ans(q, 〈T ,A〉) holds.

Completeness: for any T -consistent AboxA, ans(q, 〈T ,A〉) ⊆ ans(qFOL, 〈∅,A〉) holds.

Let t be a tuple in ans(q, 〈T ,A〉). Let qUCQ be its reformulation using the CQ-to-UCQ
technique. From the completeness of this technique, t ∈ ans(qUCQ, 〈∅,A〉) holds. Let
qUCQ be

∨α
l=1 cql, then necessarily for some l: t ∈ ans(cql, 〈∅,A〉) holds [32].

Let qFOL be
∧m
i=1 q

FOL
|fi =

∧m
i=1

∨βi
j=1 cqi,j . Since Definition 4.3.2 makes the reformulation

of each fragment independent from another w.r.t. the CQ-to-UCQ technique, for any cql in
qUCQ: cql =

∧m
i=1 cqi,k∈[1,βi] holds. Hence, t ∈ ans(qFOL, 〈∅,A〉) holds.

If a CQ-to-UCQ reformulation algorithm is used on fragment queries, the cover-based
reformulation will be a JUCQ; otherwise, a CQ-to-USCQ reformulation of the fragment
queries lead to a JUSCQ reformulation.

Note that the trivial one-fragment cover (comprising all query atoms) is always safe; in
this case, our query answering technique reduces to just one reformulation, the CQ-to-
UCQ one identified by previous reformulation algorithms from the literature.
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Example 13 (JUCQ reformulation with a safe cover). We now consider the safe cover
C2 = {{PhDStudent(x)}, {worksWith(x, y), supervisedBy(z, y)}}. The cover-based
reformulation based on C2 is the JUCQ query qJUCQ(x):- qUCQ1 (x) ∧ qUCQ2 (x), where:

qUCQ1 (x):- PhDStudent(x)
qUCQ2 (x):- (worksWith(x, y) ∧ supervisedBy(z, y))

∨ (supervisedBy(x, y) ∧ supervisedBy(z, y))
∨ supervisedBy(x, y) ∨ Graduate(x)

Observe that ans(qJUCQ, 〈∅,A〉) = {Damian} = ans(q, 〈T ,A〉).

4.4 Cover-based query optimization in DL-LiteR

We study now the query answering optimization problem of Section 4.2 for DL-LiteR.
We analyze a first optimization space in Section 4.4.1, before extending our discussion
to a larger space in Section 4.4.2. Finally, we describe our search algorithms in Sec-
tion 4.4.3.

4.4.1 Safe covers optimization space

Below, we study the space of safe covers for a given query and TBox. We start by
identifying a particularly interesting one:

Definition 4.4.1 (Root cover). We term root cover for a query q and TBox T the cover
Croot obtained as follows. Start with a cover C1 where each atom is alone in a fragment.
Then, for any pair of fragments f1, f2 ∈ C1 and atoms a1 ∈ f1, a2 ∈ f2 such that
there exists a predicate on which those of a1 and a2 depend w.r.t. T , create a fragment
f ′ = f1 ∪ f2 and a new cover C2 = (C1 \ {f1, f2}) ∪ {f ′}. Repeat the above until the
cover is stationary; this is the root cover, denoted Croot.

It is easy to see that Croot does not depend on the order in which the fragments are
considered (due to the inflationary method building it). Further, Croot is safe, given that
it keeps in a single fragment any two atoms whose predicates may be unified.

The following important lemma characterizes the structure of Croot fragments:

Lemma 1 (Croot fragment structure). A fragment f in the root cover Croot is of one of
the following two forms:

1. a singleton, i.e., f = {ai} for some query atom ai;

2. f = {ai1 , . . . , ain}, for n ≥ 2, and for every atom ai1 ∈ f , there exists one atom
ai2 ∈ f , and a predicate bj in the TBox, such that both the predicates of ai1 and of
ai2 depend on bj .
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Proof. The lemma follows directly from the definition of Croot. Those atoms that do not
share a dependency with any other atom appear in singleton fragments (case 1 above,
as the construction of the root cover never groups them together). Atoms which share
some dependencies (i.e., atoms whose predicates depend on one another) get unioned in
fragments of the form 2 above.

Example 14 (Root cover). On the query and TBox from Example 11, the root cover
is C2 from Example 13; worksWith(x, y) and supervisedBy(z, y) are in the same C2

fragment because worksWith depends on supervisedBy (cf. Example 12).

a1/b1 a4/b4

a3/b3

a2/b2

a5/b5

a6/b6

a7/b7

bx

a8/b8 a9/b9

a10/b10

f1 f2

f3

Figure 4.2: Sample Croot cover.

Example 15 (Complex root cover). Figure 4.2 depicts a possible Croot cover of a 10-
atoms query; the cover has 3 fragments, each shown in a rectangle. Every ai/bi denotes
a query atom ai whose predicate is bi; a plain arrow from a node to another denotes
that the predicate of the first depends on the predicate of the second. The predicate bx
appears in the TBox but does not appear in the query. In this example, b1, b2, b4 and b5
depend on b3; b5 and b7 depend on b6; b7 and b8 on bx etc.. Fragment f1 corresponds to
case 2 of Lemma 1, while fragments f2 and f3 correspond to its first case.

Proposition 4.4.1 states that Croot has the maximal number of fragments (equivalently,
it has the smallest fragments) among all the safe covers for q and T ; its proof is based
on Lemma 1.

Proposition 4.4.1 (Minimality of Croot fragments). Let Croot be the root cover for q and
T , and C be another safe cover. For any fragment f ∈ Croot, and atoms ai, aj ∈ f ,
there exists a fragment f ′ ∈ C such that ai, aj ∈ f ′, in other words: any pair of atoms
together in Croot are also together in C.

Proof. For ease of explanation, in the proof, we rely on the graphical directed graph
representation used in Figure 4.2 for dependencies between the predicates appearing in
the atoms of a cover and/or other predicates from the KB.

Because f holds at least ai and aj , it must be a fragment of form 2, as stated in Lemma 1.
It follows, thus, that in f there exists what we call an extended path e, going from ai to aj
following the dependency edges either from source to target, or in the opposite direction;
in other words, e alternately moves “up (or down) then down (or up)” a certain number
of times in the fragment.
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If e only contains edges in the same direction (either all are→ or all are←), it follows
immediately that ai and aj are in the same fragment of C.

In the contrary case, there must exist some predicates in the TBox b1, . . . , bm, m ≥ 1,
and some f atoms a1, . . . , am−1 defining an extended path e from ai to aj in f , as
follows:

1. ai → . . .→ b1 (a→ path segment), or b1 is the predicate used in ai;

2. bk (1 ≤ k < m−1), is the predicate used in al (k ≤ l < m−1), or bk ← . . .← al
(a← path segment);

3. bk ← . . .← al (a← path segment), with 1 ≤ k < m− 1 and k ≤ l < m− 1, and
al → . . .→ bk+1. :

4. bm−1 is the predicate used in am−1 or bm−1 ← . . . ← am−1, then am−1 → . . . →
bm;

5. bm is the predicate used in aj or bm ← . . .← aj

Observe that items (2) and (3) can repeat (alternately) until bm−1 is reached.

Since C is safe, ai and a1 must appear in the same fragment in C (and only in that
fragment), because they both depend on b1.

For 1 ≤ i ≤ m− 2, ai must appear in the same fragment as ai+1 (and only there), given
that they both depend on bi.

Since C is safe, aj and am−1 must appear in the same fragment of C (and only there).

From the above follows that {ai, a1, . . . , am−1, aj} are all in the same fragment of C,
which contradicts our hypothesis.

From Proposition 4.4.1, we obtain:

Theorem 4.4.2 (Safe cover space). Let C be a safe cover and f one of its fragments.
Then, f is the union of some fragments from Croot.

Proof. Suppose that f is not a union of some fragments from Croot, and let us show
a contradiction. In this case, f necessarily contains a strict, non-empty subset of a
fragment of Croot. It follows that there are two atoms whose predicates depend on a
common concept or role name w.r.t. T (as they were together in the fragment of Croot)
that are not in a same fragment ofC. ThereforeC is not a safe cover, a contradiction.

Safe cover lattice. Theorem 4.4.2 entails that the safe covers of a query q form a
lattice, denoted Lq, whose precedence relationship is denoted ≺, where C1 ≺ C2 iff
each fragment of C2 is a union of some fragments of C1. The lattice has as lower bound
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the single-fragment cover, and as upper bound the root cover. For convenience, we also
use Lq to denote the set of all safe covers.

The size of the safe cover lattice is bounded by the number of partitions of the fragments
in Croot, i.e., by the number of partitions of the query atoms4, a.k.a. the Bell number Bn

for a query of n atoms; the bound occurs when there is no dependency between the atom
predicates.

4.4.2 Generalized covers optimization space

A dependency-rich TBox leads to few, large fragments in Croot, thus to a relatively small
number of alternative cover-based reformulations. In this section, we explore a notion of
generalized covers, and propose a method for deriving FOL query reformulations from
such covers. This enlarges our space of alternatives and thus potentially leads to a better
cost-based choice of reformulation.

We call generalized fragment of a query q and denote f‖g a pair of q atom sets such that
g ⊆ f . A generalized cover is a set of generalized fragments C = {f1‖g1, . . . , fm‖gm}
of a query q such that ∪1≤i≤mfi is the set of atoms of the query, and no fi is included in
fj for 1 ≤ i 6= j ≤ m.

To a generalized fragment f‖g of a generalized cover C, we associate:

Definition 4.4.2 (Generalized fragment query of a CQ). The generalized fragment query
q|f‖g of q w.r.t. C is the subquery whose body consists of the atoms in f , and whose free
variables are the free variables of q appearing in the atoms of g, plus the variables ap-
pearing in an atom of g that are shared with some atom in g′, for some other generalized
fragment f ′‖g′ of C.

In a generalized fragment query, atoms from f \ g only reduce (filter) the answers,
without adding variables to the head. In particular, if f = g, q|f‖g coincides with the
regular fragment query (Definition 4.2.2).

Given a generalized cover, the generalized cover-based reformulation of a query q is the
FOL query

qg(x̄):-
m∧
i=1

qFOL|fi‖gi

if qg is a FOL reformulation.

If fi = gi for all the fragments fi‖gi, the generalized cover-based reformulation coin-
cides with the regular cover-based one (Definition 4.2.3). As for simple cover-based
reformulations, if fragments are reformulated into UCQs, the reformulated query is a
JUCQ, whereas if they are reformulated into USCQs, the reformulated query is a JUSCQ.

4See https://oeis.org/A000110.
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The introduction of extra atoms in generalized fragments is reminiscent of the classical
semijoin reducers [19], whereas one computes R(x, y) ./y S(y, z) by

(R(x, y) ny πy(S(y, z))) ./y S(y, z)

where ny denotes the left semijoin, returning every tuple from the left-hand side input
that joins with the right-hand input. The semijoin filters (“reduces”) the R relation
to only those tuples having a match in S. If there are few distinct values of y in S,
πy(S(y, z)) is small, thus the ny operator can be evaluated very efficiently. Further, if
only few R tuples survive the ny, the cost of the ./y operator likely decreases with the
size of its input.

While the benefits of semijoins are well-known, there are many ways to introduce them
in a given query, increasing the space of alternative plans to be considered by an opti-
mizer. While some heuristics have been proposed to explore only some carefully chosen
semijoin plans [92], we noted that RDBMS optimizers do not explore semijoin options,
in particular for the very large queries resulting from the FOL reformulations of CQs.
Generalized fragments mitigate this problem by intelligently using semijoin reducers to
fasten the evaluation of the FOL reformulation by the RDBMS.

Generalized search space. We now define the space Gq of generalized covers for a
given query q, based on the safe cover set Lq. A generalized cover C = {f1‖g1, . . . ,
fm‖gm} is part of Gq iff:

• The cover Cs = {g1, . . . , gm} is safe, i.e., Cs ∈ Lq;

• For each 1 ≤ i ≤ m, the atoms in fi form a connected graph.

Note that an atom a ∈ f , for f‖g ∈ C, has no impact on the head of the corresponding
generalized fragment query; only the body of this query changes.

The size of Gq obviously admits that of Lq as a lower bound. For a query q of n atoms,
a upper bound is Bn ∗ n ∗ 2n−1, where Bn is the n-th Bell number: for each safe cover
C (of which there are at most Bn, see the previous section), each of the n atoms may, in
the worst case, be added or not to all the fragments to which it does not belong. In the
worst case, there are n− 1 such fragments.

The core result allowing us to benefit of the performance savings of generalized covers
in order to efficiently answer queries is:

Theorem 4.4.3 (Gq cover-based query answering). The reformulation of a query q based
on T and a generalized cover C ∈ Gq is a FOL reformulation of q w.r.t. T .

Proof. The proof follows from that of Theorem 4.3.1. It relies on the fact that, given a
safe cover C = {g1, . . . , gm} of q and a generalized cover C ′ = {f1||g1, . . . , fm||gm}
of q, the queries q(x̄):-

∧m
i=1 q|gi and q′(x̄):-

∧m
i=1 q|fi||gi are equivalent, though each q|gi

subsumes q|fi||gi . Indeed, q′ is obtained from q by duplicating atoms already present in
q, thus qe only adds redundancy w.r.t. q, hence remains equivalent to it.
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Example 16 (Generalized cover-based reformulation). Recall the query and KB from
Example 11. Let f0 = {PhDStudent(x)} and f1 = {worksWith(x, y), supervisedBy(z, y)}
be the two fragments of the root cover Croot. Consider also the generalized cover
C3 = {f1‖f1, f2‖f0}, where f2 = {PhDStudent(x), worksWith(x, y)}.
The generalized fragment query q|f1‖f1 of q w.r.t. C3 is the subquery
q|f1‖f1(x):- worksWith(x, y) ∧ supervisedBy(z, y). Observe that y is not a free vari-
able of q|f1‖f1 , as it is neither a free variable of q nor a variable in f0, whereas f2‖f0 is
the only other fragment in the cover C3.

The generalized fragment query q|f2‖f0 of q w.r.t. C3 is the subquery
q|f2‖f0(x):- PhDStudent(x) ∧ worksWith(x, y). Again, note that y is not a (free) vari-
able of f0, and therefore it is not a free variable of q|f2‖f0 .

Then, the generalized cover-based reformulation corresponding to C3 is the FOL query:

qg(x):- qFOL|f1‖f1(x) ∧ qFOL|f2‖f0(x)

where:
qFOL|f1‖f1(x):- (worksWith(x, y) ∧ supervisedBy(z, y))

∨ supervisedBy(x, y) ∨ Graduate(x)

qFOL|f2‖f0(x):- (PhDStudent(x) ∧ worksWith(x, y))

∨ (PhDStudent(x) ∧ supervisedBy(x, y))
∨ (PhDStudent(x) ∧ Graduate(x))

Applying supervisedBy v worksWith to q|f1‖f1 leads to:

(worksWith(x, y) ∧ supervisedBy(z, y))
∨ (supervisedBy(x, y) ∧ supervisedBy(x, y))

≡ (worksWith(x, y) ∧ supervisedBy(z, y))
∨ supervisedBy(x, y)

Then, applying Graduate v ∃supervisedBy, we obtain the reformulation of q|f1‖f1
w.r.t. TBox T , i.e., qFOL|f1‖f1 . Similarly, applying to q|f2‖f0 the constraint supervisedBy v
worksWith and subsequently Graduate v ∃supervisedBy leads to qFOL|f2‖f0 .

Note that ans(qg, 〈∅,A〉) = {Damian} = ans(q, 〈T ,A〉).
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4.4.3 Cost-based cover search algorithms

Our first algorithm, EDL (Exhaustive Covers for DL), starts from Croot and builds all
Lq covers by unioning fragments, and all Gq covers by adding atoms (Algorithm 3).

Algorithm 3: Exhaustive Cover Search for DL-LiteR (EDL)
Input : CQ q(x̄):- a1 ∧ · · · ∧ an, KB K
Output: Best cover for reformulating for q

1 Lq ← ∅;Gq ← ∅ ;
2 F ← Croot; Cbest ← Croot;
3 foreach P = {s1, . . . , s|P |} distinct partition of F s.t. the atoms of all the

fragments in each set si, for 1 ≤ i ≤ |P |, are connected do
4 CP ← ∅;
5 foreach fragment set si = {f 1

i , . . . , f
ni
i } ∈ P do

6 CP ← CP ∪ {f 1
i ∪ · · · ∪ f

ni
i };

7 Lq ← Lq ∪ {CP};
8 if CP estimated cost < Cbest estimated cost then
9 Cbest ← CP ;

10 foreach safe cover C = {f1, f2, . . . , fn} ∈ Lq do
11 C ′ ← {f1||f1, f2||f2, . . . , fn||fn};
12 foreach f ||g ∈ C ′, ai 6∈ f such that ai shares a variable with an f atom do
13 C ′′ ← C ′ \ {f ||g} ∪ {f ∪ {ai}||g};
14 Gq ← Gq ∪ {C”};
15 if C ′′ estimated cost < Cbest estimated cost then
16 Cbest ← C ′′;

17 return Cbest;

The second one, GDL (Greedy Covers for DL) (Algorithm 4) works in a greedy fash-
ion. It is based on exploring, from a given cover C, the set of possible next moves
(lines 2-4 and 5-7); these are all the covers that may be created from C by unioning two
of its fragments or by enlarging one of its fragments, i.e., turning a fragment f‖g into
f ∪ {a}‖g for some query atom a sharing a variable with f . The best one seen at a
given point (w.r.t. the estimated evaluation cost) is kept as the selected next move in the
move variable. Lines 2 and 5, respectively, assign to move the move where the union of
fragments f1 and f2 is performed on cover C, and the move enlarging fragment f with
atom a on cover C.

At the end of this exploration step (line 9), the best move is applied, leading to the new
best cover C from which the next exploration step starts. The exploration stops when no
possible next move improves the cost of the currently selected best cover C.

When unioning two fragments, ε decreases if the resulting fragment is more selective
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Algorithm 4: Greedy Cover Search for DL-LiteR (GDL)
Input : CQ q(x̄):- a1 ∧ · · · ∧ an, KB K
Output: Best cover for reformulating q

1 C ← Croot; move← ∅;
2 foreach f1, f2 ∈ C do
3 if (move is empty and C.union(f1, f2) est. cost ≤ C est. cost) or

(C.union(f1, f2) est. cost < apply(move) est. cost) then
4 move← (C, f1, f2);

5 foreach f ∈ C, a ∈ q s.t. a is connected to f do
6 if (move is empty and C.enlarge(f, a) est. cost ≤ C est. cost) or

(C.enlarge(f, a) est. cost < apply(move) est. cost) then
7 move← (C, f, {a});

8 while move 6= ∅ do
9 C ← apply(move); // the cover obtained from that move

10 move← ∅;
11 // Gather move starting from C as was done at lines 2–7 above

12 return C;

than the two fragments it replaces. Therefore, the RDBMS may find a more efficient way
to evaluate the query reformulation of this fragment, and/or its result may be smaller,
making the evaluation of qFOL based on the new cover C faster. When adding an atom
to an extended fragment, ε decreases if the conditions are met for the semijoin reducer
to be effective (Section 4.4.2). In our context, many such opportunities exist, as our
experiments show.

4.5 Experimental evaluation

We implemented our cover-based query answering approach in Java 8; the source code
has about 10.000 lines, including the statistics and cost estimation (see below).

4.5.1 Experimental settings

RDBMSs and data layout. First, we used PostgreSQL v9.3.2 to store the data and
evaluate FOL query reformulations. Our first data layout within Postgres stored all the
assertions into a single triple table (where each C(x) ∈ A leads to a triple x type C
and each R(a, b) ∈ A leads to a triple a R b), and built all six three-attribute indexes on
this triple table [83]. Our second data layout stored a unary table for each concept and
a binary table for each role, and built all one- and two-attribute indexes, respectively,
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on those tables. Our tests showed that the second layout significantly outperformed the
first; this is not surprising, as smaller tables lead to better performance, at the same time
it reduces the number of query conditions (as some of them are encoded by accessing a
certain table). Thus, for Postgres, we only report results based on the layout featuring
role and concept tables.

Second, we used the IBM DB2 Express-C 10.5. We chose it because (i) we previously
(Chapter 3) found out (and confirm below) that it evaluates large FOL reformulations
better than Postgres, and (ii) it provides a relatively recent, smart storage layout for RDF
graphs [21], intelligently bundling assertions into a small set of tables with potentially
many attributes, so that the roles to which an individual participates are stored, to the
extent possible, in the same tuple. This reduces the number of joins needed for query
evaluation, and has been shown [21] to improve query performance. However, DB2
does not support reasoning, i.e., it only provides query evaluation. For DB2, we report
results based on the concept and role tables (denoted simple layout) and on the RDF
layout of [21].

In the simple layout, as customary in efficient Semantic Web data management sys-
tems, e.g., [83], facts are dictionary-encoded into integers, prior to storing them in the
RDBMS. The TBox and predicates dependencies are stored in memory.

Hardware. The database servers ran on an 8-core Intel Xeon E5506 2.13 GHz machine
with 16GB RAM, using Mandriva Linux r2010.0.

Datasets, queries, and reformulation engine. We used two LUBM∃20 benchmark KBs,
comprising a DL-LiteR TBox and two ABoxes of 15 million, respectively, 100 million
facts, obtained using the EUDG data generator [76]. The TBox consists of 34 roles, 128
concepts and 212 constraints.

We devised a set of 13 CQs against this knowledge base, shown in the Section A.2,
Tables A.5 and A.6. The queries have between 2 and 10 atoms, with an average of 5.77
atoms. Their UCQ reformulations are unions of 35 to 667 CQs, 290.2 on average. This
parameter characterizing the query can be seen as a (rough) measure of the complexity
of its reformulation; it is shown in Table A.5 in the column |qUCQ|.
We relied on the RAPID [36] CQ-to-UCQ reformulation tool to reformulate (simple or
generalized) fragment queries (Definitions 4.2.2 and 4.4.2); any other CQ-to-UCQ or CQ-
to-USCQ reformulation technique could have been used instead.

Cost estimation function. For the cost function estimation ε, we first used the RDBMS
cost estimation for the SQL translation of each candidate FOL reformulation produced by
our algorithms. For Postgres, we obtained this using explain5, while for DB2 we used
db2expln6.

5See http://www.postgresql.org/docs/9.1/static/sql-explain.html.
6See http://www-01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/

com.ibm.db2.luw.admin.cmd.doc/doc/r0005736.html.
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Further, for the simple layout, we implemented our own Java-based cost estimation,
based on statistics on the stored data (cardinality and number of distinct values in each
stored table attribute), and on the uniform distribution and independent distributions
assumptions. Better RDF cardinality estimation techniques such as [81] may be used to
improve the accuracy of our cost model.

For the sake of completeness, the next Section details how we compute the cost of eval-
uating a JUCQ (reformulation) sent to an RDBMS; this presentation is borrowed and
adapted from Section 3.2.1.

4.5.2 Our cost estimation function

A JUCQ is a join of UCQs subqueries of the form: qJUCQ(x̄):- qUCQ1 ./ · · · ./ qUCQm .

The evaluation cost of qJUCQ is

c(qJUCQ) = cdb +
∑

1≤i≤m

(
ceval(q

UCQ
i )

)
+

∑
i,1≤i≤m,i 6=k

(
cmat(q

UCQ
i )

)
+ cjoin(qUCQi,1≤i≤m)

+ cunique(q
JUCQ)

(4.1)

reflecting:

(i) the fixed overhead of connecting to the RDBMS cdb;

(ii) the cost to evaluate each of its UCQ sub-queries qUCQi ;

(iii) the materialization costs: the SQL query corresponding to a JUCQ may have many
sub-queries. At execution time, some of these subqueries will have their results
materialized (i.e., stored in memory or on disk) while at most one sub-query will
be executed in pipeline mode. We assume without loss of generality, that the
largest-result sub-query, denoted qUCQk , is the one pipelined (this assumption has
been validated by our experiments so far);

(iv) the cost to join these sub-query results; and

(v) the cost of eliminating duplicates, in order to enforce our desired set semantics:
from the results of each qUCQi , and from the final results, by means of DISTINCT
clauses. We found that this two-level elimination of duplicates lead to the best
performance overall. Note that removing duplicates in the results of qUCQi does not
break an evaluation pipeline, as those results were materialized anyway.
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In the above, duplicates are eliminated because existing reformulation algorithms (and
accordingly, our work) operate under set semantics.

Notations. For a given query q over a database db, we denote by |q|t the estimated
number of tuples in q’s answer set. Also, q|{ai} stands for the restriction of q to its i-
th atom. Using the notations above, the number of tuples in the answer set of q|{ai} is
denoted |q|{ai}|t.

Duplicate elimination costs. Assuming duplicate elimination is implemented by hash-
ing, we estimate the cost of eliminating duplicate rows from an SQL query qJUCQ and/or
qUCQi ) as:

cunique(q
JUCQ) = cl × |qJUCQ|t

where cl is the CPU and I/O effort involved in sorting the results.

When the results are large enough to require disk merge sort, we estimate the cost of
eliminating duplicate rows from qJUCQ (and qUCQi as a particular case) result as:

cunique(q
JUCQ) = ck × |qJUCQ|t × log |qJUCQ|t

where ck is the CPU and I/O effort involved in (disk-based) sorting the results.

UCQ evaluation costs are estimated by summing up the estimated costs of the CQs:

ceval(q
UCQ
i ) =

∑
qCQ∈qUCQi

ceval(q
CQ)

The cost of evaluating one conjunctive query ceval(qCQ), where qCQ(x̄):- a1 ∧ · · · ∧ an,
through the RDBMS is estimated by analyzing the selections (known attribute values)
in each atom of qCQ, estimating (exactly – see below) how many triples match these
atoms, and estimating the data access costs and the join costs together. The data layouts
we consider feature indexes on the relations storing class and role instances; as soon
as the query selections and joins allow it, the RDBMS heavily relies on the indexes to
simultaneously join and access the data i.e., the plan chains index-based accesses and
index-based joins. Assuming efficient join algorithms such as hash- or merge-based etc.
are available [88], the join-only cost of qCQ is linear in the total size of its inputs:

cjoin(qCQ) = cj ×
∑
ai∈qCQ

|qCQ|{ai}|t

where cj is a constant factor representing per-tuple join effort. Therefore, we have:

ceval(q
UCQ
i ) = (ct + cj)×

∑
qCQ∈qUCQi

∑
ai∈qCQ

|qCQ|{ai}|t (4.2)
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where ct is a constant representing the per-tuple I/O (access) effort.

UCQ join cost. As before, we consider the join cost to be linear in the total size of its
inputs:

cjoin(qUCQi,1≤i≤m) = cj ×
m∑
i=1

∑
qCQ∈qUCQi

∑
ai∈qCQ

|qCQ|{ai}|t (4.3)

UCQ materialization cost. Finally, we consider the materialization cost associated to a
query q is cm × |q|t for some constant cm:

cmat(q
UCQ
i,1≤i≤m,i 6=k) = cm ×

m∑
i=1,i 6=k

∑
qCQ∈qUCQi

∑
ai∈qCQ

|qCQ|{ai}|t (4.4)

where qUCQk is the largest-result sub-query, and the one which is picked for pipelining
(and thus not materialized).

Injecting the equations 4.2, 4.3 and 4.4 into the global cost formula 4.1 leads to the
estimated cost of a given JUCQ. This formula relies on estimated cardinalities of various
subqueries of the JUCQ, as well as on the system-dependent constants cdb, cl, ck, cj , ct
and cm, which we determine by running a set of simple calibration queries (inspired by
the approach of [45]) on the RDBMS being used; calibration details are straightforward
and we omit them here.

For what concerns cardinality estimations, as in [83], RDBMS statistics provide, for
each query atom, the exact number of triples matching it. Subsequently, textbook for-
mulas are used to estimate the cardinality of more complex subqueries, based on statis-
tics on the minimum and maximum value, and the number of distinct values in each
attribute. We make the simple assumptions of uniform distribution of each attribute, and
independent distributions among attributes. Any more refined RDF cardinality estima-
tion technique, e.g., [81], could be used to improve the estimation accuracy.

4.5.3 Search space and EDL running time

We first studied the number of covers in Lq and Gq (recall Section 4.4). Our workload
features some queries of 2 atoms, and the immediately larger ones have 6; we quickly
realized that the number of generalized covers is prohibitively high for 6 or more atoms.
To study this more closely, we derived from Q1 a set of queries Ai, 3 ≤ i ≤ 6, each
of which is a star-join of i atoms on a common subject; in particular, A6 is Q1. Star
queries are frequent over Semantic Web Data, as noted e.g., in [107, 21]. The sizes of
the resulting search spaces are reported in Table 4.2; for A6 we stopped the search at
20.003 generalized covers (there were more). This demonstrates that exploring the full
Gq space is in general not feasible, as the overhead of examining so many options is

66



4.5. EXPERIMENTAL EVALUATION

prohibitive. Thus, in the sequel, we do not use EDL for our tests, as it is impractical
beyond (very) small queries. Table 4.2 also shows the number of covers explored by the
greedy GDL: these grow very moderately with the query size.

Finally, for A3-A6, the running times of the best reformulation found by EDL and GDL
(limited at 20.000 covers for A6) coincided. In general this is not guaranteed, but it is
still an encouraging indicator of the good options found by GDL.

4.5.4 Evaluation time of reformulated queries

Figure 4.3 depicts the evaluation time, using Postgres with the simple layout, of four
FOL reformulations:

1. the UCQ produced by the RAPID [36] reformulation engine;

2. the JUCQ reformulation based on Croot;

3. a JUCQ reformulation corresponding to a best-performing (safe or generalized)
cover, found by our algorithm GDL, using Postgres’ cost estimation (RDBMS);

4. a JUCQ reformulation corresponding to a best-performing (safe or generalized)
cover, found by our algorithm GDL, using our cost estimation (ext).

GDL running time is not reported in these graphs (see Section 4.5.5). We first analyze
the top graph corresponding to LUBM∃20 15 million triples. It shows, first, that the UCQ

reformulation is inefficient (one order of magnitude slower than the best reformulation
found, e.g., for Q5 and Q9). Second, the cover derived from Croot may also be very
inefficient, in some cases (Q6-Q8, Q13) much worse than the UCQ. These are both very
large and complex queries; Figure 4.3 demonstrates that Postgres’ optimizer called di-
rectly on the fixed-form reformulation may performed quite poorly. The GDL-selected
covers, in contrast, lead to the best-performing reformulations for all queries (often by
an order of magnitude). Thus, our cost-based approach helps ask the RDBMS the opti-
mization question it can best answer, among its equivalent formulations from the search
space Gq. Striking exceptions are Q9, Q10 which have both many atoms and complex
reformulations, and Q11 which has 2 atoms but the maximum number (667) of reformu-
lations. Here, the GDL reformulations selected using the RDBMS cost model perform
very poorly, whereas the ones based on our own cost estimation are much faster. This
may be because Postgres takes drastic shortcuts when estimating the cost of an extremely
large query; in contrast, our cost estimation treats uniformly queries of all sizes. Recall
that Postgres’ optimizer always has the last word in chosing how to evaluate the refor-
mulation we select, using its own cost model. Thus, the difference can only be attributed
to the cost estimation.

The bottom graph in Figure 4.3 corresponds to LUBM∃20 100 million triples; note the
logarithmic y axis. Overall, the findings are the same: the UCQ and (especially in this
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Figure 4.3: Evaluation time (ms) on Postgres on LUBM∃20 15 million (top) and 100
million (bottom) triples.

case) the Croot reformulation perform poorly, while those picked by GDL are faster than
the standard UCQ by a factor of up to 6.6 (Q3).
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Query A3 A4 A5 A6

|Lq| 2 7 71 93

|Gq| 4 67 5674 > 20000

Lq covers explored by
GDL

2 5 11 18

Gq covers explored by
GDL

4 12 27 59

Table 4.2: Search space sizes for queries A3 to A6.

Evaluation on DB2. The graph at the top of Figure 4.5 shows the evaluation time
for DB2, on LUBM∃20 15 million triples, of seven reformulations: the same four which
we ran on Postgres, to which we add, on the RDF layout [21]: the UCQ reformulation,
the one based on Croot, and the ones selected by GDL with the help of the RDBMS cost
model. We did not code a cost estimation corresponding to this RDF-specific store, since
(i) an accurate model of data access costs under such a complex layout (determined by
running a linear programming solver etc..) seemed very hard to attain outside the server
and (ii) DB2’s cost model performed similarly to (or better than) ours for all the GDL-
selected covers, on the simple layout. Thus, replacing it with our own seemed unlikely
to improve the performance. Note the logarithmic y axis of the graph.

First, note that five bars are missing (replaced by the vertical lines), one for Q9 and
four for Q10. They all correspond to reformulations against the RDF layout. The server
error was “The statement is too long or too complex. Current SQL statement size is
2,247,118” for the UCQ of Q9, and the same error (with similar query sizes) in the other
cases. This shows that the cummulated impact of, first, the DB2RDF storage layout
(which leads to IF... THEN... ELSE and nesting in the SQL query corresponding
to a simple CQ), and second, of ontology-based reformulation, yields queries too large
for evaluation. For illustration, the SQL versions of Q1 before and after UCQ reformu-
lation on DB2’s RDF store appear at http://bit.ly/1TqeVMA. In cases where DB2 handled
them, the reformulations corresponding to the UCQ, Croot and GDL on the RDF layout
performed very poorly, up to 1 (UCQ) or even 4 (Croot) orders of magnitude worse than
the best reformulations identified. Thus, our (somehow unexpected) conclusion is that
the RDF-specific layout, while interesting for CQ evaluation, is not the best alternative
when evaluating queries issued from reformulation against an ontology.

Focusing only on the simple layout, we see that the cost-unaware UCQ and Croot-derived
reformulations perform again poorly, while the GDL ones perform best and in many
cases coincide. The two cost estimations behaved mostly the same, except that our
estimation worked better for Q8 and worse for Q9. Overall, our chosen reformulations
lead to performance gains of up to a factor of 9 w.r.t. the UCQ and/or Croot on the simple
layout, for which we found DB2’s cost estimation quite reliable.

At the bottom of Figure 4.5 we show the evaluation times on
LUBM∃20 100 million triples for the first eight among the ten reformulations shown in
the top graph (we gave up GDL on the RDF layout, given our experience on the smaller
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dataset). The four execution errors (grey vertical lines) on the UCQ and Croot reformu-
lations on the RDF layout are again due to overly large SQL queries. The first four
alternatives are overall the worse, with Croot and at a lesser extent UCQ on the RDF lay-
out performing very poorly. When focusing on the simple layout only, we notice that
the cost-based reformulations improve over the simple UCQ performance by a factor of
up to 36 (4.85 on average). There is an exception for Q8, where the UCQ was best; in this
case, both DB2’s and our cost estimations were inaccurate, which we believe cannot be
avoided in all cases. DB2’s estimation lead to significantly better reformulations than
ours for the queries Q2, Q8, Q9 and Q12, while our cost model was clearly better for
Q13. Overall, we found DB2’s cost estimation more accurate than our own (while the
opposite holds for Postgres). By inspecting query plans, we confirmed that DB2 and
Postgres do not apply any CSE across union terms. The better performance of DB2 is
likely due to efficient runtime support for repeated scans [69].

In all experiments presented in this section, GDL ran between 1 ms (for 2-atom queries)
to 207 ms (for the larger Q1); we discuss the running time of our optimization approach
in more detail in Section 4.5.5.

Finally, always (when using our cost model) and about half of the time (with the RDBMS
cost model), GDL picked a generalized cover. This confirms the interest of searching in
the Gq space.

4.5.5 Time-limited GDL

Figure 4.6 shows the running time of algorithm GDL on the LUBM datasets of 15 mil-
lion and 100 million triples, in four configurations: using no cost estimation (this artifi-
cial case where all costs are estimated to 0 was built to measure our algorithm’s running
time independently of the cost estimation time); using our own cost estimation (de-
scribed in Section 4.5.2); using the cost estimation of Postgres; and finally, using the
estimation of DB2. Note that the vertical axis is in logarithmic scale. The two graphs
are similar, which is to be expected given that we measure optimization time, which is
not (strongly) impacted by the data sizes. The times using Postgres’ and DB2’s cost
estimations are not identical: internal heuristics in the Postgres and DB2 systems may
have led to different plans shapes being explored for the different database sizes.

We make the following observations.

1. The running time of GDL without any cost estimation is very small, bounded by
23 ms.

2. Using our cost model has a discernible yet still small overhead, bringing the total
running time of our optimization technique to about 207 ms.

3. Using Postgres’ cost estimation time incurs a significant overhead, going up to 10,
100 and even (in the pathological case of Q5) 1000 seconds, which is prohibitive
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Figure 4.6: GDL running time (ms) on LUBM∃ 15 million (top) and 100 million (bot-
tom) triples.

for an optimization step.
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4. Using DB2’s cost estimation is for many queries even more expensive. This is be-
cause the db2expln utility requires large queries to be written into an OS file given
as parameter to the cost estimation, whose output must then be extracted from
the detailed information db2expln returns. This is more expensive than Postgres’
provided explainer functionality, which is accessible through the JDBC driver,
without the need to make a runtime call from our Java optimizer code etc..

5. GDL including DBMS cost estimation is visibly correlated with the size of the
query; note the peaks for Q5, Q9 and Q10, which are the most complex (as shown
in Table A.5).

The graphs show that it is clearly preferrable to run GDL in a context where the cost
estimation function is accessible without a high overhead. This was the case when using
our own estimation, while the estimations of Postgres and especially DB2 were harder
for us to access.

Time-limited GDL. Therefore, we investigated a time-limited version of GDL, which
was allowed to explore only during 20 ms. Figure 4.7 compares the running time of the
cover found by GDL after only 20 ms, with that of the cover found by GDL allowed to
run to completion. We see that the running times are very close for Postgres, and also
generally close for DB2, demonstrating that interesting covers are quickly found. This is
because on our queries, the strongest reduction (mostly through reducing intermediary
result sizes) are identified early during the greedy search, thus most of the performance
benefits can be reaped early on. More generally, this corresponds to the good behavior
of greedy algorithms when there are very advantageous moves to be made. Thus, we
find time-limited GDL performs well in practice, for a modest overhead.

Against the expectation, in some cases, the limited GDL performed better than the un-
limited one (for instance, onQ5 andQ7 on DB2 in Figure 4.7). This is an accident due to
our cost model; it turns out that in these cases, the longer search ended up recommending
a state whose cost was slightly worse.

4.5.6 Experiment conclusions

Our experiments show that plain UCQ reformulation is evaluated poorly by both Postgres
and DB2, even more so (or even fails) on DB2’s RDF-specific data layout. On the
simple layout, the fixed cover-based reformulation corresponding to the root cover Croot

also performs very poorly. In contrast, GDL-selected reformulation improve over the
UCQ in all 13 queries×2 systems×2 datasets but one, and they do so by up to a factor of
36. Our cost estimation helped w.r.t. Postgres’ explain, but when using DB2, we find
db2explain’s estimation more accurate overall.

The generalized cover space has prohibitive size, thus EDL is impractical. In contrast,
our greedy GDL is efficient when used with a low-overhead cost estimation (such as

73



4.5. EXPERIMENTAL EVALUATION

1.E+00	
  

1.E+01	
  

1.E+02	
  

1.E+03	
  

1.E+04	
  

1.E+05	
  

Q1	
   Q2	
   Q3	
   Q4	
   Q5	
   Q6	
   Q7	
   Q8	
   Q9	
   Q10	
   Q11	
   Q12	
   Q13	
  

15M,	
  GDL	
  unlimited	
  

15M,	
  GDL	
  =me-­‐limited	
  

100M,	
  GDL	
  unlimited	
  

100M,	
  GDL	
  =me-­‐limited	
  

1.E+00	
  

1.E+01	
  

1.E+02	
  

1.E+03	
  

1.E+04	
  

1.E+05	
  

Q1	
   Q2	
   Q3	
   Q4	
   Q5	
   Q6	
   Q7	
   Q8	
   Q9	
   Q10	
  Q11	
  Q12	
  Q13	
  

15M,	
  GDL	
  unlimited	
  

15M,	
  GDL	
  =me-­‐limited	
  

100M,	
  GDL	
  unlimited	
  

100M,	
  GDL	
  =me-­‐
limited	
  

Figure 4.7: Query evaluation time of GDL-selected covers, without time limits, and
limited to 20 ms for Postgres (top) and DB2 (bottom).
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the one we implemented), and effective in optimizing reformulated queries. GDL at-
tains most of its cost reductions early on during the search, making it a robust tool for
improving reformulated query answering performance.

4.6 Related work and conclusion

We proposed a novel framework for any OBDA setting enjoying FOL reducibility of
query answering, for which we studied a space of alternative FOL reformulations to
evaluate through an RDBMS. We applied this framework to the DL-LiteR description
logic, and experimentally demonstrated its performance benefits.

4.6.1 Relationship with prior work on reformulation-based query
answering

Our approach departs from the literature focused on a single FOL query reformulation,
where optimization mainly reduces to producing fast a UCQ reformulation as minimized
as possible: [36, 46, 100, 67, 101, 84, 51] consider DL-LiteR, existential rules and
Datalog±. [96] studies CQ-to-USCQ reformulation for existential rules encompassing DL-
LiteR; USCQ reformulations are shown to perform overall better than UCQ ones in an
RDBMS. We build on these works to devise CQ-to-JUCQ and CQ-to-JUSCQ reformulation
techniques, and used cost estimations to speed up reformulated query evaluation. In
particular, our generalized covers can be seen as adapting semijoin-based reducers to
the query answering setting. [89] proposes a cost-unaware CQ-to-Datalog reformulation
technique; it produces a non-recursive Datalog program, which amounts to a JUCQ.

One contribution of this work is an optimization framework (Section 4.2) for any for-
malism for which query answering is FOL-reducible, e.g., some Description Logics,
Datalog± and Existential Rules fragments. The work presented in Chapter 3 is a partic-
ular case of this framework for the RDFS ontology language, which corresponds only
to the constraints 1, 4, 5 and 11 from Table 2.3, while the DL-LiteR language we use
comprises 22 such constraints. When reformulating under this rich language, some cov-
ers are unsafe (recall Example 11), while in the work presented in the previous chapter
any cover leads to a correct query reformulation for the 4 constraints considered there.
DL-LiteR is important as it is provides the foundations for W3C’s standard for very
large Semantic Web data management OWL2 QL. Thus, the other contributions of our
work are: to identify and characterize safe covers, guaranteed to lead to reformulations,
and a carefully chosen extra space of generalized covers which lead to equivalent FOL
reformulations and often improve query performance. Our EDL and GDL optimization
algoritms (Section 4.4.3) respectively explore exhaustively and greedily this DL-LiteR-
specific space to speed up reformulation-based query answering under DL-LiteR con-
straints. Another difference w.r.t. the work introduced in the preceding chapter is that
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this work explores the usage of DB2’s RDF store, and find it unsuitable to the complex
queries resulting from reformulation.

In the database and Semantic Web communities, there have been intense efforts invested
in developing scalable RDF data management platforms, including distributed ones; see
e.g., the survey [61]. However, these platforms do not take constraints into account, and
thus only support query evaluation, not query answering. Our work is the first to con-
sider optimized algorithms for answering queries under DL-LiteR constraints through
relational databases.

4.6.2 Relationship with prior work on multi-query optimization

Generally speaking, the relationship can be stated as follows. Multi-query optimization
(MQO) is interesting as soon as the query to be evaluated has redundant (repeated)
subexpressions. In our setting, we distinguish:

Reformulation-induced redundancy refers to the repeated subexpressions appearing
in a reformulated query due to the reformulation itself. The UCQ has most such
redundancies, as illustrated e.g., in Table 3 in the paper.

Reformulation-independent redundancy designates the redundancy that a query may
have regardless of the impact of reformulation; for instance, a query may feature
repeated subexpressions prior to reformulation, even if the TBox is empty etc.

MQO vs. reformulation-independent redundancy. Any SQL processor capable of
MQO can be profitably used to evaluate the cover-based reformulations we chose, in
order to diminish or eliminate reformulation-independent redundancy. As mentioned
in Section 4.1, there was no algebra-level MQO available in the free and commercial
engine used in our study, thus our estimation for a cover-based reformulation cost does
not take it into account (although some partial support is provided e.g., in Oracle [16]).

One reason why MQO performed during query optimization is complex is the difficulty
of deciding equivalence between two logical expressions; under the set semantics used
in our work, this is NP-hard even for CQ. Works such as [77, 16] use syntactic equality
of plans, as a criterium for deciding semantic equivalence; this is sufficient in [77] be-
cause of the focus restricted on select-group by queries over a single table, and in [16]
because under bag semantics, equivalent conjunctive queries are isomorphic [34]. Un-
der set semantics, both approaches would lead to missing many equivalences, and thus
many sharing opportunities. In [80], a similar syntactic condition is used for efficiency,
knowing that it may miss sharing opportunities.

If MQO-enabled systems became available, the cost estimation should also reflect its
presence; this would be immediately the case for the system’s own cost estimation, and
would require a revision of our cost estimation function.
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We view the possible usage of an MQO-capable SQL engine to handle reformulation-
independent redundancy in the query as orthogonal to our work. To avoid unwanted
impact on our study, none of the queries used in our study featured reformulation-
independent redundancy.

MQO vs. reformulation-induced redundancy. Reformulating a CQ against a TBox
may introduce many repeated subexpressions. The UCQ has most such redundancies, as
illustrated e.g., in Table 3 in the paper.

However, our technique applies before the common subexpression factorization stage; in
the terms of [77], our work belongs to the strategical optimization stage, which injects
application knowledge and constraints into the optimization problem. Unlike the setting
envisioned in [77], however, we do not use such knowledge to create one plan, but
several reformulations, each of which can be seen mid-way between a plan and a query.
Indeed, while a cover-based reformulation is still a query, it does make some ordering
decisions, in particular each reformulated fragment query is evaluated, and all but one
are materialized, before the cover-based reformulation evaluation is finalized by a join.

Thus, our approach, which starts with the TBox and data statistics, and ends by hand-
ing over a chosen reformulation to the RDBMS, never requires work to detect common
(repeated) sub-expressions. Instead:

1. In the simpler setting of an RDFS TBox (Chapter 3), the so-called SCQ reformu-
lation (which pushes all unions immediately above the scans [96]) has the least
possible repeated sub-expressions. For instance, on a query of two atoms a1, a2,
such that a1 reformulates into a11 and a2 reformulates into a12 and a22, the SCQ re-
formulation is:

(a1 ∨ a11) ∧ (a2 ∨ a12 ∨ a22)

while the UCQ (featuring many repeated scans) is:

(a1 ∧ a2) ∨ (a1 ∧ a12) ∨ (a1 ∧ a22) ∨ (a11 ∧ a2) ∨ (a11 ∧ a12) ∨ (a11 ∧ a22)

(For larger queries, the UCQ also features repeated joins.)

2. In the context of the present work, the SCQ may not be a FOL reformulation. When
redundancy conflicts with correctness, we should clearly favor correctness first.
The safe cover Croot is the closest approximation of the SCQ in our context, as it
applies the least amount of atom merging within fragments.

Fortunately, Croot is very efficient to build from the TBox and the query: the
complexity is O(|q|2), since we need to compare all the pairs of atoms to see
whether they depend on a same TBox predicate. This contrasts with the very high
complexity of the abovementioned algebraic MQO techniques [114, 80].
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Interestingly, an Oracle 10g [7] reference mentions MQO rewritings which factorize
common join expressions across union terms. This would apply to the UCQ setting, how-
ever, as mentioned above, based on the TBox, we can much more efficiently minimize
redundancy by chosing the Croot cover. Also, according to [7], MQO exploration would
have to be drastically cut for queries with hundreds of union terms. Thus, our approach
is more practical as it exploits information about the source of redundancy (namely the
reformulation process using the ontology). In contrast, an optimizer has to deal with the
consequences (detect redundant subexpressions).

The abovementioned Oracle work [7] also mentions query transformations (rewrites)
applied at the level of the syntax, in a bottom-up fashion; to learn if a certain subplan
rewriting is profitable, the optimizer’s cost estimation is used. This strategy of pre-
processing of the query guided by the DBMS cost estimator is similar in spirit to our
approach (Figure 4.1), and also comparable to the “strategical optimization” stage [77]
which applies first in the query optimization process, and injects data and application
semantics into the plan.

Our approach could be profitably integrated as a rewrite specific to ontology-based re-
formulation, within a strong cost-based optimizer such as the one of Oracle [7]. In
particular, this would give us access to more sophisticated query cost estimations, while
eliminating the overhead we currently pay to get them through a connection to the server.

Currently, we lack access to strong industrial optimizers such as the ones of DB2, SQL
Server or Oracle; Postgres’ optimizer is easier to extend, but our experiments have
shown it is weaker than DB2’s.

Other well-known MQO/CSE algorithms have been described e.g., in [47, 77, 80, 114].
Oracle includes several query rewrites to improve nested query performance, among
which subquery coalesce reduces some redundancy and thus can be seen as related to
CSE [16]. A different class of techniques [69, 115] improve the performance of multiple
concurrent reads of a table; this can be seen as a physical-level MQO only applying
to one-table plans. Such techniques are implemented in DB2, and they indeed help
evaluating our reformulations. However, as stated in Section 4.1, our approach does not
require detecting repeated subexpressions.
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Chapter 5

Conclusion and perspectives

In this chapter, we summarize the contributions previously presented (Section 5.1) and
present perspectives for future work, divided in two main parts: ongoing work in a hy-
brid store project (Section 5.2), and perspectives connected to the main part of this thesis,
namely efficient query answering in an ontology-based data access setting (Section 5.3).

5.1 Summary

This thesis provides solutions for efficient ontology-based data access query answer-
ing in RDF, the prominent W3C standard for the Semantic Web, and in the DL-LiteR
description logic underpinning W3C’s OWL2 QL standard for semantic-rich data man-
agement. We summarize the problems below.

Efficient query answering in the presence of RDFS constraints. We consider opti-
mizing reformulation-based query answering in the setting of OBDA, where SPARQL
conjunctive queries are posed against RDF facts on which constraints expressed by an
RDF Schema hold. The literature provides query reformulation algorithms for many
fragments of RDF. However, reformulated queries may be complex, thus may not be
efficiently processed by a query engine; well established query engines even fail pro-
cessing them in some cases.

1. We generalize the query reformulation approach, by considering a large space of
alternative (equivalent) reformulations. We characterize the size of our space of
alternatives, and show that it is oftentimes too large to be completely explored.

2. We define a cost model for estimating the evaluation performance of our reformu-
lated queries through a relational engine; other functions can be used instead, and
we show that an RDBMSs’ internal cost model can easily be used, too.

3. We devise a novel algorithm which selects one alternative reformulated query
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which (i) computes the same result as the reformulated query, qref , produced by
state-of-the-art reformulation algorithms, and (ii) reduces significantly the query
evaluation cost (or simply makes it possible when evaluating qref fails!)

4. We implemented this algorithm and deployed it on top of three well-established
RDBMSs. Our experiments show that our technique enables reformulation-based
query answering where the state-of-the-art approaches are simply unfeasible, while
it may decrease its cost by orders of magnitude in other cases.

5. Finally, we compare our reformulation-based query answering technique against
saturation-based query answering, both through an RDBMS and the native RDF
platform Virtuoso. These experiments confirm the robustness and performance of
our technique, showing in particular that in some cases its performance approaches
that of saturation-based query answering.

Efficient FOL reducible query answering. We consider ontology languages enjoying
FOL reducibility of query answering: answering a query can be reduced to evaluating a
certain first-order logic (FOL) formula (obtained from the query and ontology) against
only the explicit facts. We extend the language of FOL reformulations beyond those
considered so far in the literature, and investigate several (equivalent) FOL reformula-
tions of a given query, out of which we pick one likely to lead to the best evaluation
performance. This contrasts with existing works from the semantic query answering lit-
erature, which use reformulation languages allowing single FOL reformulation (modulo
minimization). Considering a set of reformulations and relying on a cost model to pick
a most efficient one has a very visible impact on the efficiency and feasibility of query
answering: indeed, picking the wrong reformulation may cause the RDBMS simply to
fail evaluating it (typically due to very lengthy queries), while in other cases it leads to
bad performance.

1. For logical formalisms enjoying FOL reducibility of query answering, we provide a
general optimization framework that reduces query answering to searching among
a set of alternative equivalent FOL reformulations, one with minimal evaluation
cost in an RDBMS

2. We apply the above mentioned framework to the DL-LiteR Description Logic
underpinning the W3C’s OWL2 QL ontology language. We characterize interest-
ing spaces of such alternative equivalent FOL queries for DL-LiteR reformulations,
and then optimize query answering in such setting by picking an alternative equiv-
alent FOL reformulation with lowest estimated evaluation cost w.r.t. an RDBMS
cost model estimation. We provide two algorithms, an exhaustive and a greedy,
for this task.

3. Evaluating any of our FOL reformulations through an RDBMS leads to the query
answer reflecting both the data and the constraints. We demonstrate experimen-
tally the effectiveness and the efficiency of our query answering technique for
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DL-LiteR, by deploying our query answering technique on top of Postgres and
DB2, using several alternative data layouts.

5.2 Ongoing Work: Towards Scalable Hybrid Stores

Data management goes through interesting times1, as the number of currently avail-
able data management systems (DMSs) is probably higher than ever before. This leads
to unique opportunities for data-intensive applications often involving diverse datasets,
some very large while others may be of moderate size, some highly structured (e.g., re-
lations) while others may have more complex structure (e.g., graphs) or little structure
(e.g., text or log data), as some systems provide excellent performance on certain data
processing operations. Yet, it also raises great challenges, as a system efficient on some
tasks may perform poorly or not support other tasks, making it impossible to use a single
DMS for a given application.

As part of my thesis, I have started to study the possibility to use different DMSs side
by side in order to take advantage of their best performance, as advocated under terms
such as hybrid or poly-stores. Observe that even once such a combination of stores is
chosen, it may need to be changed over time, as the data or application needs change, as
new more efficients system may become available, or on the contrary their usage needs
to be discontinued (for instance due to changes in the application owner’s IT policy, or
in the pricing of a certain commercial system). In such cases, one should not have to
modify (rewrite) the applications, but rather have it run and adapt seamlessly to the new
context.

The work on ESTOCADA has lead to so far to a CIDR 2015 vision paper [23] and the
ICDE demonstration in 2016 [24]. Below, we motivate it through an example (Sec-
tion 5.2.1), outline the core scientific problems and describe our architecture and state
of advancement (Section 5.2.2). Finally, Section 5.2.3 places our work in the area of
similar research projects.

5.2.1 Motivating Example and Challenges

We illustrate this through an example. Consider a traditional customer relationship man-
agement (CRM) application. While typically CRM needed to deal only with a relational
data warehouse, now the application needs to incorporate new data sources in order to
build a better knowledge of its customers: (i) information gleaned from social network
graphs about clients’ activity and interests, and (ii) log file from multiple e-commerce
stores, characterizing the clients’ purchase activity in those stores.

1Alludes to the so-called Chinese curse “may you live in interesting times” (see
e.g., https://en.wikipedia.org/wiki/May you live in interesting times).
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The in-house RDBMS performs well on the relational data. However, the social graph
data fits badly in that system, and the company attempts to store it in a dedicated graph
store, until an engineer argues that it should be decomposed and stored into a highly-
efficient NoSQL key-value store system she has just experimented with. The storage
and processing of log files is delegated to a Hive installation (over Hadoop), until the
summer research intern observes that recent work [70] has shown that some data from
Hive should be lifted at runtime in the relational data warehouse to gain a few orders of
magnitude of performance!

Deploying and exploiting the CRM application for best performance is set to be a night-
mare now. There is little consensus on what systems to use, if any; three successive
engineers have recommended (and moved the social data into and out of) three differ-
ent stores, one for graphs, one for key-value pairs, and the last an in-memory column
database. Part of the log data has been moved in the in-memory column store, too, when
the social data was stored there; this made their joint exploitation faster. But the whole
log dataset could not fit in the single-node column store installation, and data migration
fatigue had settled in before a suggestion was made (and rejected) to move everything to
yet another cluster installation of the column store. The team working on the application
feels battered and confused. The application is sometimes very slow. Migrating data is
painful at every change of system; they are not sure the complete data set survived at
each step, and data keeps accumulating. Yet, a new system may be touted as the most
efficient for graph (or for log) data next week. The possibility that the next efficient store
would drastically improve performance further confuses the situation as the teem sees
it. Would it be faster? How to know?

My thesis research has contributed to designing and implementing ESTOCADA, a novel
architecture for efficiently handling highly heterogeneous datasets based on a dynamic
set of potentially very different data stores. While heterogeneous data integration is an
old topic [73, 54, 40, 78], the remark “one-size does not fit all” [95] has been revisited
for instance in the last CIDR [75, 59, 41], and the performance advantages brought by
multi-stores have been recently noted e.g., in [70]. The set of features which, together,
make ESTOCADA novel are:

Natively multi-model ESTOCADA supports a variety of data models, including flat and
nested relations, trees and graphs, including important classes of semantic con-
straints such as primary and foreign keys, inclusion constraints, redundancy of
information within and across distinct storage formats, etc. which are needed to
enforce application semantics.

Application-invisible ESTOCADA provides to client applications access to each dataset
in its native format. This does not preclude other mapping / translation logic above
ESTOCADA’ client API but we do not discuss them in this paper. Instead, our focus
is on efficiently storing the data, even if in a very different format from its original
one, as discussed below.
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Fragment-based store Each data set is stored as a set of fragments, whose content
may overlap. The fragmentation is completely transparent to ESTOCADA’ clients,
i.e., it is the system’s task to answer queries based on the available fragments.

Mixed store Each fragment may be stored in any of the stores underlying a ESTOCADA

installation, be it relational, tree- or graph-structured, based on key-value pairs
etc., centralized or distributed, disk- or memory-based etc. Thus, potentially any
piece of any dataset may reside in any of the available systems; each query may
be answered by combining data from any set of systems. Query answering must
be aware of the constraints introduced implicitly when storing fragments in non-
native models. For instance, when tree-structured data are stored in a relational
store, the resulting edge relation satisfies the constraint that each node has at most
one parent, the descendant and ancestor relations are inverses of each other and
are related non-trivially to the edge relation, etc.

View-based rewriting and view selection The invisible glue holding all the pieces to-
gether is view-based rewriting with constraints. Specifically, each data fragment
is internally described as a materialized view over one or several datasets; query
answering amounts to view-based query rewriting, and storage tuning relies on
view selection. Describing the stored fragments as views over the data allows
changing the set of stores with no impact on ESTOCADA’ applications [54]; this
simplifies the migration nightmare outlined above. Finally, our reliance on views
gives sound foundation to efficiency, as it guarantees the complete storage of data,
and the correctness of the fragmentation and query answering, among others.

Technical challenges The ESTOCADA scenario involves the coexistence of a large num-
ber of materialized views mixing data formats (modeling the native sources) with sig-
nificant redundancy between them (due to repeated migration and view selection arising
organically over the history of the system, as opposed to clean-slate planning). While
the problem of rewriting using views is classical, it has typically been addressed and
practically implemented only in limited scenarios that do not apply here. These sce-
narios feature (i) only relatively small numbers of views; (ii) minimal overlap between
views as their selection is planned ahead of time; (iii) views expressed over the same
data model; (iv) rewriting that exploits only limited integrity constraints (typically only
key/foreign key in existing systems). The large number of views and their redundancy
notoriously contribute (at least) exponentially to the explosion in the search space for
rewritings, even when working within a single data model.

5.2.2 Achitecture and state of advancement

We briefly recall the fundamental definitions of query equivalence and query contain-
ment [33, 8, 9, 60, 34, 74, 35]. We denote a database instance by D and use q(D) to
denote the result of evaluating a query q over database D.
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Definition 5.2.1 (Query equivalence). Two queries q1, q2 are equivalent, denoted q1 ≡
q2, iff q1(D) ≡ q2(D) for any database D.

Definition 5.2.2 (Query containment). A query q1 is say to be contained in another query
q2, denoted q1 ⊆ q2, iif we have q1(D) ⊆ q2(D) for any database D.

Observe that if q1 ⊆ q2 and q2 ⊆ q1, then q1 ≡ q2. Based on the above:

Definition 5.2.3 (Equivalent query rewriting). Given a query q and a set of views V , an
equivalent rewriting of q using V is an expression e(v1, v2, . . . , vk), vi ∈ V , 1 ≤ i ≤ k,
over the views in V , which is equivalent to q. In other words, for any database D,
e(v1, v2, . . . , vk)(D) = q(D).

Definition 5.2.3 covers full (complete) rewritings, which rely only on the materialized
views. Partial rewritings, combining V views and the database D itself are also inter-
esting. However, the rewritings that interest us in ESTOCADA are those considering the
base data available and modeled by a set of views, i.e., complete rewritings.

Query rewriting using (materialized) views (a.k.a. view-based query rewriting, view-
based query reformulation) algorithms sought to find all the possible (equivalent) rewrit-
ings of a given query q using an specified set of views V [54].

We now explain how ESTOCADA aims at automating the solution to scenarios such as
the one previously described.

Fragments described as materialized views. To adapt to changes in the datasets,
workload, and set of DMSs being used, we chose to internally represent each data frag-
ment as a materialized view over one or several datasets; thus, query answering amounts
to view-based query rewriting. As is well-known from prior work in data integration,
this local-as-view approach allows the application to remain unchanged as the underly-
ing data collections are modified. Further, our reliance on views gives sound foundation
to efficiency, as it guarantees the complete storage of data, and the correctness of the
fragmentation and query answering.

To further simplify the development of applications, each dataset is accessed through
a language specific to its native data model, be it SQL for relational stores, key-based
search API for key-value data, etc. However, for efficiency, a fragment F of a dataset
D (whose data model isMD) may be stored in a data modelMF different fromMD;
similarly, a fragment F ′ may store combined results from different datasets of possibly
different data models, leading to more cross-model transformation of the data between
the application dataset and the stored fragments.

Relational pivot model with constraints. To enable query rewriting over and across
different data models, we translate into an internal pivot model the declarative specifi-
cation of the data stored in each fragment, as well as the incoming query, formulated in
the application dataset model; specifically, our pivot model is based on relational con-
junctive queries. Further, to correctly account for the characteristics of each application
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data modelMa and storage data modelMs, we describe their specific features in the
same pivot model, by means of powerful constraints.

For instance, we describe the organization of a document data model (whether this con-
cernsMa orMs) using a small set of relations such as Node(nID, name), Child(pID,
cID), Descendant(aID, dID), etc. together with the constraints specifying that every node
has just one parent and one tag, that every child is also a descendant. Such modeling had
first been introduced in local-as-view data integration XML integration works [78, 40].

More generally, constraints allow a faithful internal modeling of datasets, since they
can express functional dependencies and keys (for instance, node or tuple IDs) naturally
present in many settings, be it relations, documents or graph stores. Also, importantly
for the usage of key-value stores, we rely on an original encoding of access pattern
restrictions such as “the value of the key must be specified in order to access the values
associated to this key” into relations with constraints. This enables building only feasible
rewritings, i.e., such that the information needed to access a given data source is either
provided by the query, or has been obtained from data sources previously accessed while
evaluating the rewriting.

Rewriting under constraints: optimized Chase & Backchase. To rewrite queries
in the presence of constraints, the method of choice is known as Chase & Backchase
(C&B, in short), a classical powerful tool long considered too inefficient to be of practi-
cal relevance. ESTOCADA exploits the very significant performance savings brought by
the recent provenance-aware C&B algorithm (PACB, in short) [57]. PACB drastically
reduces the back-chase effort by keeping track of the results of the various chase steps
applied during the algorithms, to avoid repeated and fruitless work; this results in rewrit-
ing speedups that can even outperform a commercial relational optimizer by 1-2 orders
of magnitude (in terms of combined optimization and execution time).

Rewriting decoding. From the above, it follows that query rewriting takes place, first,
at the level of our pivot relational conjunctive model endowed with constraints, and it
leads to a rewriting which is a conjunctive query over the relations corresponding to the
stored fragments.

Depending on the data model of these fragments, the relational atoms used in the rewrit-
ings may either correspond to actual relations, or to key-value collections which can be
seen as relations with binding patterns, or to the virtual relations used to encode more
complex data models, such as the Node, Child and Descendant relations mentioned
above (the encoding of nested relations such as supported e.g., in Pig and HBase is
very similar). From this relational, conjunctive rewriting, a rewriting translation step is
performed to:

1. Group the rewriting atoms referring to each distinct fragment involved in the
rewriting; for instance, it can be inferred that the three atoms Document(dID,
“file.json”), Root(dID, rID), Child(rID, cID), Node(cID, book) found in a rewrit-
ing refer to a single document, by following the connections among nodes and
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knowledge of the JSON data model;

2. Reformulate each such rewriting snippet into a query which can be completely
evaluated over a single fragment;

3. If several fragments are stored in the same underlying DMS, identify the largest
subquery that can be delegated to that DMS, along the lines of query evaluation
in wrapper-mediator systems [97]. Observe that if the DMS has a distributed
architecture, e.g., Spark deployed on a cluster, the delegated subquery will be
evaluated in parallel fashion, allowing ESTOCADA to leverage its efficiency.

Evaluation of non-delegated operations. A decoded rewriting may be unable to push
(delegate) some query operations to the DMS storing a fragment if the DMS does not
support them; for instance, most key-value and document stores do not support joins.
Similarly, if a query on structured data requests the construction of new nested results
(such as JSON or XML documents, or nested tuples), and if the inputs to this operation
are not stored in a DMS supporting such result construction natively, it will have to
be executed outside of the underlying DMSs. To evaluate such “last-step” operations,
ESTOCADA comprises its own lightweight execution engine, based on a nested relational
model, whose atomic types include constants, node IDs, and document types; it provides
in particular implementations of the BindJoin operator needed to access data sources
with access restrictions. The engine is a close variant of the one previously developed in
the ViP2P project and used e.g., in [79, 64, 63].

Choice of the most efficient rewriting to use. For a given query and set of fragments,
there may be several rewritings, each of which may lead to several evaluation plans of
different performance. The problem of chosing the best rewriting and best evaluation
plan in this setting is quite close to the one previously considered in distributed mediator
systems [85], with the extra difficulty that one needs to compare the performance of
execution across a variety of stores. At the time of this writing, this part of the project
is not complete, and thus will not delve upon it further; we expect it to be addressed in
future work.

Architecture. Figure 5.1 outlines the architecture of our prototype based on the above
discussion. We assume the typical application uses many data setsD1, D2, . . . , Dn, even
though our smart storage method may be helpful even for a single data set, distributing
it for efficient access across many stores, potentially based on different data models.

The Storage Descriptor Manager stores information about the available data fragments
D1/F1, D1/F2, . . ., D1/Fn, D2/F1, . . . etc., and where they are stored in the underlying
DMSs, illustrated by a NoSQL store, a key-value store, a document store, one for nested
relations, and finally a relational one. For each data fragmentDi/Fj residing in the store
Sk, a storage descriptor sd(Sk, Di/Fj) is produced. The descriptor specifies what data
(the fragmentDi/Fj) is stored where within Sk. The what part of the descriptor is speci-
fied by a query over the data set Di, following the native model of Di. The fragment can
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Figure 5.1: ESTOCADA architecture.

thus be seen as a materialized view over Di. The where part of the descriptor is struc-
tured according to the organization of data within Sk. For instance, if Sk is a relational
store, the where information consists of the schema and table name, whereas if Sk is a
key-value store, it could hold the name of the collection, attribute name, etc. Finally, the
descriptor sd(Sk, Di/Fj) also specifies the data access operation supported by Sk which
allows retrieving the Di/Fj data (such as: a table scan, a look-up based on a collection
name, column group name, and column name in a key-value store, etc.), as well as the
access credentials required in order to connect to the system and access it.

The Storage Advisor recommends dropping redundant fragments that are rarely used or
under-performing, and adding new fragments that fit recently heavy-hitting queries. To
solve this problem across data models, we once again exploit our pivot model to reduce
to the novel setting of relational view selection under constraints.

The Query Evaluator receives application queries. If a query carries over a single source
Di, the query will likely be in the native language of Di. If the query carries over multi-
ple sources having different data models, this assumes the existence of a global-as-view
integration layer on top of the (application-transparent) local-as-view approach inter-
nally followed by ESTOCADA. While we do not focus on this (optional) global-as-view
integration layer, in such a case we assume the query is specified by combining alge-
braic operations (such as filter, join, union, etc.) on top of individual queries carrying
over each dataset. It is rather straightforward then to translate such a query in the pivot
model, by focusing first on the queries confined to a data source, and then on the combi-
nation operators. The evaluator looks up the storage descriptors corresponding to frag-
ments of the queried datasets, calls the PACB engine to obtain rewritings. The Runtime

87



5.2. ONGOING WORK: TOWARDS SCALABLE HYBRID STORES

Execution Engine then translates such rewritings into excutable ones as described above
and evaluates them.

5.2.3 Related Work on Hybrid Stores

Heterogeneous data integration is an old topic [73, 54, 40, 78] but the remark “one-size
does not fit all” [95] has been recently revisited [75, 59]. The performance benefits
of using multiple stores together (a Hadoop one and a relational database) have been
demonstrated in [70]; they select relational views to be materialized based on cost in-
formation, but do not handle multiple data models through a unified approach as we
do. Polystores [43, 42] allow querying heterogeneous stores by grouping similar-model
platform into “islands” and explicitly sending queries to one store or another; data sets
can also be migrated by the users. This contrasts with our LAV approach where the data
store variety is hidden to the application layer. The integration of “NoSQL” stores has
been considered e.g., in [12] again in a top-down GAV approach without considering
materialized views.

Adaptive stores for a single data model have been studied e.g., in [56, 10, 37, 66, 65];
views have been also used in [91, 6] to improve the performance of a large-scale dis-
tributed relational store. The novelty of ESTOCADA here is to support multiple data
models, by relying on powerful query reformulation techniques under constraints.

Data exchange tools such as Clio [44, 53] allow migrating data between two different
schemas. We aim at providing to the applications transparent data access to heteroge-
neous systems, relying on fundamentally different rewriting techniques.

View-based rewriting and view selection are grounded in the seminal works [54, 73]; the
latter focuses on maximally contained rewritings, while we target exact query rewriting,
which leads to very different algorithms. Further setting our work apart is the scale and
usage of integrity constraints. Our pivot model recalls the ones described in [40, 78]
but ESTOCADA generalizes these works by allowing multiple data models both at the
application and storage level.

To conclude, we believe hybrid (multi-store) architectures have the potential to bring
huge performance improvements, since (redundant) views storing query results can in-
crease the efficiency of query evaluation by many orders of magnitude. ESTOCADA

supports this by a local-as-view approach whose immediate benefit is flexibility since it
requires no work when the underlying data storage changes; we demonstrate its perfor-
mance benefits and the interest of simple storage recommendation heuristics. Our work
is ongoing toward a cost-based recommendation of optimal fragmentation.
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5.3 Perspectives

Semantic Web data management as well as hybrid stores open numerous avenues for
future research; we outline some of them below.

DAG plans for query answering in the presence of RDFS constraints. To improve
the performance of reformulated query evaluation performance even further, a natural
extension of the work presented in Chapter 3 is to consider not only joins of unions of
conjunctive queries but all plans built using selections, projections, joins, semi-joins,
unions and materialization operators (SPJUM), allowing DAG plans.

Materialization allows to save extra work in case of worth reuse opportunities for inter-
mediate results, while join and union operators can appear in the computed plans at any
level, differently from all the previous proposals in literature.

The sweet spot between Saturation- and Reformulation-based query answering. In
Chapter 3, we consider the problem of efficient query answering in the presence of RDF
Schema constraints. Two main query answering techniques exist, namely saturation
and reformulation. In the saturation-based query answring approach the constraints are
compiled into the database by making all implicit data explicit, while the reformulation-
based query answering technique compiles the constraints into a modified query, which,
evaluated over the explicit data only, computes all the answer due to explicit and/or
implicit data. In this thesis we focus on optimizing reformulation-based query answering
in the setting of ontology-based data access. However, a better study of the performance
trade-offs between saturation-, reformulation- and mixed query answering approaches
such as [99], in order to automatically recommend the best technique to use, and/or how
to combine them to achieve better performance in a given application setting, could lead
to even more efficient systems for query answering in the presence of constraints.

Efficient query answering for DL-LiteR in the presence of mappings. In Chap-
ter 4, we have introduced a novel query optimization framework for ontology-based
data access settings enjoying FOL reducibility and applied it to the DL-LiteR. However,
OBDA setting also allows declarative specifications, known as mappings, connecting
each concept and role in the ontology with a view over the data, materialized in re-
lational databases. For such purpose the W3C introduced R2RML [103], a language
expressing customized mappings from relational databases to RDF datasets. Early ex-
periments shown the potential of extending our framework, to support mappings, thus
providing efficient query answering for the wider OBDA setting.

Semantic constraints aware query rewriting. Among the RDF data management
systems, some support reformulation-based query answering, e.g., Stardog, while others
support reformulation-based query answering for a subset of the RDFS rules, e.g., Vir-
tuoso (rdfs:subClassOf and rdfs:subPropertyOf). RDF platforms such as 3store [108],
OWLIM [112], Oracle Semantic Graph [111] support saturation-based query answer-
ing, based on (a subset of) RDF entailment rules, and others such as Hexastore [107]
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or RDF-3X [83], ignore entailed triples and only provide query evaluation on top of the
RDF graph. Thus, query answering in the presence of semantic constraints requires hy-
brid store solutions, such as ESTOCADA, to be aware of the semantic capabilities of the
underlying systems. In the case of ESTOCADA, this amounts to take into account the on-
tology, as well as the stores capabilities, while performing the query rewriting. In other
words, it requires to encode the ontology into constraints, enabling efficient query an-
swering using materialized conjunctive query views, which may partially or completely
rewrite the conjunctive queries appearing in the reformulated fragments.

Storage advisor. In ESTOCADA, once the view-based rewriting part of the project is
completed and complemented by a cost model to allow chosing the most efficient rewrit-
ing, the next step is to devise the automated storage tuning (storage advisor) which will
recommend the views to materialize within each underlying data management system,
so as to obtain the best performance for a given query workload.
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Appendix A

Detailed queries

A.1 Queries used in the efficient query answering in the
presence of RDFS constraints experiments

This section lists the SPARQL queries used in the experimental section of Chapter 3. For
readability and without loss of information, the URIs starting with ”http://www.lehigh.edu”
were slightly shortened by eliminating a few /-separated steps.

Q01(?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Employee”,
?X “http://www.lehigh.edu/univ-bench.owl#worksFor” “http://www.Department0.University0.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?Y
Q02(?X ?Y ?U ?V ?W ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Employee”,
?X “http://www.lehigh.edu/univ-bench.owl#worksFor” “http://www.Department0.University0.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#name” ?U,
?X “http://www.lehigh.edu/univ-bench.owl#emailAddress” ?V,
?X “http://www.lehigh.edu/univ-bench.owl#telephone” ?W
Q03(?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Employee”,
?X “http://www.lehigh.edu/univ-bench.owl#worksFor” “http://www.Department0.University0.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?Y
Q04(?X ?Y ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?U,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” ?Z
Q05(?X ?Y ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Student”,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Y,
?Y “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Z,
?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z
Q06(?X ?W ?Y ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?W,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Y,
?Y “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Z,
?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z

Table A.1: LUBM queries Q1-Q6.
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Q07(?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” ?Y
Q08(?X ?Y ) :-
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” “http://www.Department0.University0.edu”
Q09(?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Professor”,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Professor”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?U,
?Y “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?V,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” ?V,
?Y “http://www.lehigh.edu/univ-bench.owl#memberOf” ?U
Q10(?W ?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?X,
?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?Y
Q11(?W ?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Y,
?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?X,
?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?Y
Q12(?W ?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Y,
?Y “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Z,
?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z,
?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?X,
?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?Y
Q13(?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Student”,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z,
?Y “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z
Q14(?Z ?W ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/˜zhp2/univ-bench.owl#Student”,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?W,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z,
?Y “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z
Q15(?X ?U ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#University”,
?U “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Z,
?Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?U,
?U “http://www.lehigh.edu/univ-bench.owl#memberOf” ?X
Q16(?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Student”,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?Z “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?U,
?Z “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?V,
?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?U,
?Y “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?V
Q17(?X ) :-
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateCourse”,
?X “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Z
Q18(?X ?W ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?W,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateCourse”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,
?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z

Table A.2: LUBM queries Q7-Q18.
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Q19(?X ?Z ?W ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?W,
?Z “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?X
Q20(?X ?Y ?Z ) :-
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?Z,
?Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?X
Q21(?X ?Y ?Z ) :-
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?Z,
?Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?X
Q22(?X ?Y ) :-
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?Z,
?X “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Y
Q23(?X ?Y ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University0.edu”
Q24(?X) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University0.edu”
Q25(?X ?Y) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University532.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” ?Y
Q26(?X ?Y) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Y,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University532.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” “http://www.Department1.University7.edu”
Q27(?X) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University532.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” “http://www.Department1.University7.edu”
Q28(?X ?U ?Y ?V ?Z) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?U,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?V,
?X “http://www.lehigh.edu/univ-bench.owl#mastersDegreeFrom” “http://www.University532.edu”,
?Y “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” “http://www.University532.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf” ?Z,
?Y “http://www.lehigh.edu/univ-bench.owl#memberOf” ?Z

Table A.3: LUBM queries Q19-28.
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Q01(?X ?Y ) :-
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#Document”,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?Y,
Q02(?X ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Z,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#objectField” “http://www.example.org/dblp/”,
Q03(?X ?Y ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Z,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?Y,
Q04(?X ?Y ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Z,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?Y,
?X “http://purl.org/dc/elements/1.1/publisher” “Springer”
Q05(?Y ?U ?V ) :-
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#objectField” “http://www.example.org/dblp/”,
?X “http://purl.org/dc/elements/1.1/title” ?Y,
?X “http://purl.org/dc/elements/1.1/creator” ?U,
?X “http://purl.org/dc/elements/1.1/date” ?V
Q06(?Y ?U ?Z ) :-
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#editor” ?Y,
?Y “http://xmlns.com/foaf/0.1/name” ?Z,
?X “http://purl.org/dc/elements/1.1/title” ?U,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?V
?X “http://purl.org/dc/elements/1.1/publisher” “Springer”
Q07(?X ?Y ?U ?Z ) :-
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#editor” ?Y,
?Y “http://xmlns.com/foaf/0.1/name” ?Z,
?X “http://purl.org/dc/elements/1.1/title” ?U,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?V
?X “http://purl.org/dc/elements/1.1/publisher” “Springer”
Q08(?X ?Y ?Z ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Z,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?Z,
?X “http://purl.org/dc/elements/1.1/publisher” “Springer”
?Y “http://purl.org/dc/elements/1.1/publisher” “Morgan Kaufmann”
Q09(?Z ?U ?T ) :-
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?U,
?Y “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?T,
?X “http://purl.org/dc/elements/1.1/creator” ?Z,
?Y “http://purl.org/dc/elements/1.1/creator” ?Z,
?X “http://purl.org/dc/elements/1.1/publisher” “Springer”
?Y “http://purl.org/dc/elements/1.1/publisher” “Morgan Kaufmann”
Q10(?Z ?V ?U ?W ?T ) :-
?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?V,
?Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” ?W,
?X “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?U,
?Y “http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#datatypeField” ?T,
?X “http://purl.org/dc/elements/1.1/creator” ?Z,
?Y “http://purl.org/dc/elements/1.1/creator” ?Z,
?X “http://purl.org/dc/elements/1.1/title” ?R,
?Y “http://purl.org/dc/elements/1.1/title” ?S,
?X “http://purl.org/dc/elements/1.1/publisher” “Springer”
?Y “http://purl.org/dc/elements/1.1/publisher” “Morgan Kaufmann”

Table A.4: DBLP queries Q1-Q10.
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A.2 Queries used in the Efficient query answering in set-
tings where reformulation is FOL reducible experi-
ments

This section lists the SPARQL queries used in the experimental section of Chapter 4.
We have shortened for presentation purposes some of the strings, e.g., AssociateProfes-
sor2@Department1.University0.edu becomes AssocProf2@Dept1.Univ0.edu.

Query q |qUCQ|
q1(u, i, n, e, t):- ub:Professor(x) ∧ ub:degreeFrom(x, u) ∧

ub:researchInterest(x, i)∧
145

ub:name(x, n) ∧ ub:emailAddress(x, e) ∧
ub:telephone(x, t)

q2(x, e, t):- ub:Professor(x)∧ 145
ub:degreeFrom(x,“http://www.University870.edu”)∧
ub:researchInterest(x,“Research21”) ∧
ub:name(x,“AssociateProfessor2”)∧
ub:emailAddress(x, e) ∧ ub:telephone(x, t)

q3(x):- ub:Professor(x)∧ 145
ub:degreeFrom(x,“http://www.University870.edu”)∧
ub:researchInterest(x,“Research21”) ∧
ub:name(x,“AssociateProfessor2”)∧
ub:emailAddress(x,“AssocProf2@Dept1.Univ0.edu”)∧
ub:telephone(x,“xxx-xxx-xxxx”)∧

q4(x, y):- ub:Professor(x) ∧ ub:teacherOf(x, y)∧ 145
ub:degreeFrom(x,“http://www.University870.edu”) ∧
ub:researchInterest(x,“Research21”)∧
ub:name(x,“AssociateProfessor2”)∧ub:telephone(x,“xxx-
xxx-xxxx”)∧
ub:emailAddress(x,“AssocProf2@Dept1.Univ0.edu”)

q5(x, y, z):- ub:Professor(x) ∧ ub:teacherOf(x, y)∧ 290
ub:worksFor(x, z)∧
ub:degreeFrom(x,“http://www.University870.edu”)∧
ub:researchInterest(x,“Research21”) ∧
ub:name(x,“AssociateProfessor2”)∧
ub:emailAddress(x,“AssocProf2@Dept1.Univ0.edu”)∧
ub:telephone(x,“xxx-xxx-xxxx”)

q6(x, n):- ub:Faculty(x) ∧ ub:publicationAuthor(y, x)∧ 35
ub:researchInterest(x,“Research16”)∧
ub:name(y, n)∧
ub:emailAddress(x,“AssocProf0@Dept0.Univ0.edu”)

q7(n):- ub:Professor(x) ∧ ub:teacherOf(x, c)∧ 116
ub:memberOf(x,“http://www.Dep0.Univ0.edu”) ∧
ub:name(x, n)∧
ub:emailAddress(x,“FullProf8@Dept0.Univ0.edu”)∧
ub:telephone(x,“xxx-xxx-xxxx”)

Table A.5: LUBM∃20 queries Q1-Q7.
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Query q |qUCQ|
q8(x, n):- ub:Faculty(x) ∧ ub:publicationAuthor(y, x)∧ 35

ub:researchInterest(x,“Research16”) ∧ ub:name(y, n)
q9(n, e):- ub:Student(x) ∧ ub:takesCourse(x, c) ∧

ub:advisor(x, a)∧
368

ub:memberOf(x,“http://www.Dept0.University0.edu”) ∧
ub:telephone(x,“xxx-xxx-xxxx”)∧
ub:teacherOf(p, c) ∧ ub:emailAddress(p, e) ∧
ub:researchInterest(a,“Research7”)∧
ub:memberOf(a,“http://www.Dept0.University0.edu”) ∧
ub:name(c, n)

q10(n, e):- ub:Professor(x) ∧ ub:takesCourse(x, c) ∧
ub:advisor(x, a)∧

464

ub:memberOf(x,“http://www.Dept0.University0.edu”) ∧
ub:telephone(x,“xxx-xxx-xxxx”)∧
ub:teacherOf(p, c) ∧ ub:emailAddress(p, e) ∧
ub:researchInterest(a,“Research7”)∧
ub:memberOf(a,“http://www.Dept0.University0.edu”) ∧
ub:name(c, n)

q11(x):- ub:Professor(x) ∧ ub:Student(x) 667
q12(x):- ub:Professor(x) ∧ ub:Department(x) 609
q13(x):- ub:Publication(x) ∧ ub:Department(x) 357

Table A.6: LUBM∃20 queries Q8-Q13.
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Condensé de la thèse en français

B.1 Introduction

B.1.1 Big Data

Le Web 2.0, comme il y est souvent fait référence, représente la deuxième étape du
World Wide Web dont les principales caractéristiques sont: (i) l’apparition de pages au
contenu dynamique, de services et d’applications offrant aux utilisateurs une expérience
plus riche, (ii) la large acceptation et importante croissance de logiciels en services
(SaaS) grâce à des protocoles d’intégration légers, des API, etc..., (iii) la participation
massive de 46% de la population mondiale, et (iv) un changement dans le paradigme de
participation et de consommation des utilisateurs qui, de consommateurs sont devenus
producteurs de contenu (Wikipédia est une encyclopédie en ligne sur laquelle n’importe
qui peut écrire ou éditer des articles; Blogger est un service de publication de blogs per-
mettant aux utilisateurs de rédiger des posts et de les commenter; Twitter est un réseau
social permettant aux utilisateurs de partager des messages de 140 caractères; Youtube
est une plateforme de partage vidéo sur laquelle les utilisateurs peuvent commenter et
noter les vidéos; WhatsApp Messenger est un service de messagerie instantanée pour
échanger des messages texte et audio, des documents, des images, des vidéos, etc...entre
deux utilisateurs ou plus; Facebook est un réseau social ayant plus de 1,65 milliards
d’utilisateurs actifs chaque mois au 31 mars 20161 etc...).

Du point de vue de la gestion des données, le Web 2.0 a été perturbateur en termes de
volume de données. Nous créons 2,5 exabytes de données chaque jour! En d’autres
termes, 90% des données mondiales ont été créées au cours des 24 derniers mois2. En
parallèle sont intervenus la baisse du coût du matériel et l’augmentation continue de la
capacité de mémoire, l’émergence d’une variété de technologies de calcul et de stockage,
telles que GPU, FPGA, etc... [94], les réseaux à haute vitesse (par exemple Infiniband),

1https://newsroom.fb.com/company-info/
2https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
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et l’émergence du cloud computing. Ces événements ne sont pas passés inaperçus dans
le domaine de l’apprentissage automatique ni dans ceux de la gestions de données et
de systèmes distribués, qui avaient fourni les systèmes et les solutions nécessaires (par
exemple, Hadoop, Spark, Flink, Kafka, etc...) pour soutenir cette nouvelle génération
d’applications Big Data.

B.1.2 Semantic Web

Dans le cadre de la troisième génération Web, le Web 3.0 est également appelé Web
sémantique. Contrairement aux systèmes traditionnels de représentation des connais-
sances généralement centralisés [18], le Web sémantique est conçu pour être une archi-
tecture distribuée mondialement. C’est une avancée supplémentaire dans la direction du
rêve de Tim Berners-Lee en 2000 [17]: le moment où les ordinateurs deviennent capa-
bles d’analyser toutes les données du Web. Le Web sémantique est une extension du
World Wide Web dans lequel le contenu a une structure permettant aux ordinateurs de
traiter avec fiabilité la sémantique et donc de manipuler les données de manière sensée.
Toutefois, afin qu’une telle vision se réalise, un ensemble de modèles de données et de
formats pour spécifier les descriptions sémantiques des ressources Web est nécessaire.
Dans cette optique, le World Wide Web Consortium (W3C) a présenté le Resource De-
scription Framework (RDF) servant de base au Web sémantique. Le RDF est un modèle
de données flexible, permettant d’exprimer des déclarations portant sur des ressources
(uniquement identifiées par leur URI) sous la forme d’expressions sujet-prédicat-objet.
Pour améliorer la puissance descriptive des ensembles de données RDF, le W3C a pro-
posé le schéma RDF (RDFS) [105] et le Web Ontology Language (OWL) [102], facili-
tant la représentation de contraintes sémantiques (i.e. contraintes ontologiques) entre les
classes et les propriétés utilisées. L’ensemble des faits ainsi que les règles logiques sur
l’appartenance d’individus en classes ou en relations formées entre eux, constituent une
base de connaissances. Finalement, la popularité actuelle et l’utilisation d’ontologies
dans le Web est due à quatre raisons majeures [4]:

• La façon souple et naturelle de structurer les documents de manière multidimen-
sionnelle permet de trouver des informations pertinentes à travers des collections
de documents très volumineux.

• La sémantique formelle logique des ontologies fournit des moyens d’inférence
menant à un raisonnement. Ainsi, une ontologie peut être interprétée et traitée par
des machines.

• Les ontologies permettent de préciser les concepts et d’améliorer la recherche
sur le Web. Par exemple, lors de la recherche du mot “aleph”, nous pourrions
spécialiser le concept dans l’ontologie livre: aleph, ce qui aboutirait aux livres
écrits par JL Borges, P. Coelho, etc..., et éviter les réponses indésirables où le
terme est utilisé avec une autre connotation (comme ceux se rapportant à la lettre
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portant le même nom ou à la séquence des nombres utilisés pour représenter la
cardinalité des ensembles infinis qui peuvent être bien ordonnés).

• Les ontologies servent de lien local entre des sources d’information hétérogènes.
De plus, leur potentiel d’inférence permet d’intégrer automatiquement différentes
sources de données.

Par exemple, si le célèbre écrivain argentin J.L. Borges apparaı̂t dans un document, alors
il a un URI associé, auquel toutes les autres ressources (livres, articles, Prix, etc...) se
réfèrent. La version RDF de la British National Bibliography développée par British
Library 3 exprime des informations pertinentes sur les livres, auteurs, éditeurs, etc...,
et contiendra les livres écrits par Borges, les éditeurs de ces livres, leur lieu de pub-
lication et année. En parallèle, GeoNames 4 fournit des informations sur les lieux de
publication, et DBPedia 5 (la contrepartie sémantique de Wikipédia 6) donnera davan-
tage d’informations sur Borges, comme son opinion politique, sa famille, etc...Tous les
ensembles de données interconnectés susmentionnés font partie de Linked Open Data 7.
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Schéma B.1: Le Linked Open Data cloud en Avril 2014.

Le schéma B.1 [90] illustre certains des ensembles de données les plus connus (RDF)
dans le Open Data cloud en avril 2014. Chaque nœud du graphe correspond à un ensem-

3http://www.bl.uk/bibliographic/datafree.html
4www.geonames.org/
5http://wiki.dbpedia.org/
6https://en.wikipedia.org/wiki/Main_Page
7http://lod-cloud.net/
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B.2. RÉPONDRE EFFICACEMENT AUX REQUÊTES EN PRÉSENCE DE
CONTRAINTES

ble de données en RDF, alors que le diamètre du nœud reflète la taille de l’ensemble des
données. En outre, il y a un espace commun entre deux nœuds si les deux ensembles
de données ont des URI en commun. Les ensembles de données sont alors intercon-
nectés. Comme indiqué dans [90], la taille du Web sémantique est en pleine croissance,
doublant de taille presque chaque année.

Pour exploiter cette richesse de données, le langage de requête SPARQL a été défini [106].
Par la suite, de nouvelles techniques et algorithmes ont été proposés pour le traitement
des requêtes SPARQL, fondés sur le partitionnement vertical [1], l’indexation [107], le
traitement de jointure efficace [82], la technique de view-selection [49], les systèmes de
gestion RDF [108, 110, 113, 83], pour n’en citer que quelques-uns.

B.2 Répondre efficacement aux requêtes en présence de
contraintes

Répondre à des requêtes portant sur des données en présence de contraintes déductives,
ce qui mène à des données implicites dérivant de données explicites et de contraintes,
implique une étape de raisonnement afin de calculer les réponses aux requêtes. Deux
techniques de réponse existent : la saturation des données compile les contraintes dans
la base de données en rendant explicites toutes les données implicites, tandis que la re-
formulation de requêtes compile les contraintes dans une requête modifiée, qui, évaluée
uniquement sur les données explicites, calcule toutes les réponses que les données soient
explicites ou implicites. Jusqu’à présent, répondre aux requêtes fondées sur la reformu-
lation a reçu beaucoup moins d’attention que la saturation. En particulier, les requêtes
reformulées peuvent être complexes et leur évaluation peut donc être très difficile.

Dans ce chapitre, nous nous concentrons sur l’optimisation de la réponse aux requêtes
fondées sur la reformulation dans le paramétrage des accès aux données fondées sur
l’ontologie, lorsqu’il est répondu aux requêtes conjonctives SPARQL via un ensemble
de données RDF sur lesquelles les contraintes RDFS ont un impact.

Nous considérons le contexte dans lequel les requêtes conjonctives (CQ), une fois re-
formulées en unions de requêtes conjonctives (UCQ) ou semi-conjonctives (SCQ), sont
traitées pour évaluation d’une requête par un RDBMS, un dépôt de données RDF dédié
et un module de traitement des requêtes, ou plus généralement par tout système capa-
ble d’évaluer les sélections, projections, jointures et unions. Comme le montrent nos
expériences, l’évaluation de requêtes reformulées peut être très difficile, même pour des
processeurs RDF relationnels ou natifs, qui peuvent les gérer de manière inefficace ou
échouer à les gérer, même sur des ensembles de données de taille modérée.

L’approche sélectionnée est la suivante: étant donné une requête conjonctive SPARQL
q et un algorithme de reformulation de requête A qui transforme un CQ en UCQ, nous
explorons un grand espace de reformulations alternatives de q que nous appelons JUCQ
(pour des unions jointes de requêtes conjonctives), qui reprennent les reformulations UCQ
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CONTRAINTES

qref
c(qref)Query q, RDF data and constraints,

CQ to UCQ reformulation algorithm qref
State of the art
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. . .
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. . .
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optimizer
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Schéma B.2: Notre approche d’évaluation efficace des requêtes conjonctives SPARQL
reformulées.

et SCQ, et dont nous choisissons une reformulation JUCQ avec le coût estimé le plus bas.
Chaque reformulation JUCQ est obtenue à partir d’un ensemble soigneusement choisi
d’invocations de l’algorithme A guidé par notre modèle de coût.

Contributions. Les contributions que nous apportons au problème de répondre de
manière efficace aux requêtes SPARQL, via la reformulation, peuvent être décrites comme
suit (voir Schéma B.2):

1. Nous généralisons l’approche de reformulation des requêtes, en considérant un
espace étendu des reformulations alternatives (équivalentes) JUCQ. Cet espace
correspond au carré jaune du Schéma B.2. Elle inclut et généralise de façon sig-
nificative les travaux antérieurs fondés sur la reformulation UCQ ou SCQ. Nous
caractérisons la taille de notre espace d’alternatives, et montrons qu’il est souvent
trop grand pour être complètement exploré.

2. Nous définissons un modèle de coût pour estimer la performance d’évaluation de
nos requêtes reformulées par un moteur relationnel. D’autres fonctions peuvent
être utilisées à la place, et nous montrons qu’un modèle de coût interne RDBMS
peut être facilement utilisé.

3. Nous concevons un nouvel algorithme qui sélectionne une requête reformulée al-
ternative, appelée qbest dans le Schéma B.2, qui (i) calcule le même résultat que
la requête reformulée qref UCQ ou SCQ, et (ii) réduit significativement le coût
d’évaluation de la requête (ou simplement le rend possible lorsque l’évaluation
qref échoue!)

4. Nous avons mis en œuvre cet algorithme et l’avons déployé en plus de trois
RDBMS qui diffèrent significativement dans leur capacité à gérer les reformu-
lations UCQ et SCQ. Nos expériences confirment que notre algorithme est celui
permettant de tirer le maximum de chacun de ces modules, en tirant parti de leurs
forces et en évitant leurs faiblesses via l’utilisation de notre modèle de coût, que
nous calibrons séparément pour chaque système. Cela rend la reformulation pos-
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sible lorsque UCQ et/ou SCQ échouent, et apporte des améliorations de performance
de plusieurs ordres de grandeur en relation avec UCQ.

5. Enfin, nous avons mis en perspective notre technique efficace de réponse aux
requêtes fondées sur la reformulation en la comparant à la réponse aux requêtes
fondées sur la saturation en se fondant sur PostgreSQL et via la plate-forme Virtu-
oso dédiée à la gestion de données Web sémantique. Ces expériences confirment la
robustesse et la performance de notre technique, montrant en particulier que dans
certains cas sa performance approche celle de la réponse aux requêtes fondées sur
la saturation.

B.3 Répondre efficacement à une Requête réductible FOL

Dans ce chapitre, nous transférons l’idée développée dans le chapitre précédent au
paramétrage du modèle de données et des paires de langages de requête bénéficiant de
la réductibilité FOL dans le cadre de la réponse aux requête (i.e. le modèle de données et
les paires de langages de requête peuvent être réduits à l’évaluation d’une formulation
logique de premier ordre, obtenue à partir de la requête et ontologie, contre les faits ex-
plicites seulement), englobant de nombreuses bases de connaissances et des paramètres
de la base de données, tels que Description Logics, Datalog± et des fragments Existen-
tial Rules.

Nous proposons un cadre d’optimisation des requêtes pour tout paramètre logique OBDA
en profitant de la réductibilité FOL de réponse aux requêtes. Nous étendons le lan-
gage des reformulations FOL au-delà des reformulations précédemment envisagées et
cherchons plusieurs reformulations FOL d’une requête donnée. Celle susceptible de
mener au meilleur résultat sera choisie. Ceci contraste avec les travaux existants à
partir de la requête sémantique Littérature (voir la section 4.6), qui utilise des lan-
gages de reformulation permettant une seule reformulation FOL (minimisation mod-
ulo). Considérer un ensemble de reformulations et s’appuyer sur un modèle de coût
pour en choisir un plus efficace a un impact très visible sur l’efficacité et la faisabilité
des réponses aux requêtes. En effet, choisir la mauvaise reformulation peut provoquer
l’échec d’évaluation du RDBMS (généralement en raison de requêtes très longues) ou
de mauvaises performances.

Nous appliquons ce cadre général à la DL-LiteR Description Logic [32] sous-jacent
à la célèbre norme W3C OWL2 QL pour les applications Web sémantiques riches ce
qui a démontré des avantages significatifs de performance dans ce contexte. Répondre
aux requêtes en DL-LiteR a fait l’objet d’une attention significative dans la littérature,
notamment sur la réductibilité FOL, par exemple, [32, 2, 86, 89, 36, 100].

Contributions. Nous apportons les contributions suivantes au problème de l’optimisation
des requêtes FOL (voir Schéma B.3):
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Schéma B.3: Approche de reformulation optimisée des FOL.

1. Pour les formalismes logiques bénéficiant de la réductibilité FOL dans la réponse
aux requêtes, nous fournissons un cadre général d’optimisation qui réduit la réponse
aux requêtes à la recherche d’autres reformulations équivalentes aux reformulations
FOL, l’une d’entre elles avec un coût d’évaluation minimal dans un RDBMS. Dans le
schéma B.3, à partir de la requête q et de l’ensemble des contraintes ontologiques T ,
on déduit d’abord un espace de recouvrements de requêtes, représenté dans le rectan-
gle horizontal blanc, et noté C avec quelques indices. Nous montrons alors comment
dériver une requête FOL pouvant être une reformulation FOL de q liée à T .

2.. Nous caractérisons des espaces intéressants pour les requêtes alternatives à la re-
formulation FOL, soit pour DL-LiteR. Tout d’abord, nous identifions une condition de
sécurité suffisante pour choisir des couvertures qui conduisent à une reformulation FOL

de la requête. Cette condition est remplie par les couvertures dans le rectangle jaune
du haut dans le Schéma B.3, mais n’est pas satisfaite par C 6≡ au-dessus. Notre espace
de couverture sécuritaire englobe toutes les reformulations FOL, y compris celles déjà
étudiées dans la littérature. Ensuite, nous introduisons un ensemble de couvertures
généralisées (rectangle jaune en bas dans le SchémaB.3) et une technique généralisée
de reformulation donnant toujours une reformulation aux requêtes FOL. Cela est souvent
plus efficace que les couvertures simples. Notre approche peut être combinée et permet
d’optimiser toute reformulation technique existante pour DL-LiteR.

3. Nous optimisons alors la réponse aux requêtes dans le cadre de DL-LiteR en énumérant
des couvertures simples et généralisées, et en choisissant une couverture dérivée de la
reformulation FOL au plus bas coût estimé d’évaluation en relation à une estimation du
modèle de coût RDBMS ε (désigné par les flèches bidirectionnelles ε dans le Schéma).
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Nous fournissons deux algorithmes, un exhaustif et un gourmand, pour cette tâche.

4. L’évaluation de nos reformulations FOL à travers le RDBMS (flèches épaisses à droite
du Schéma B.3) conduit à une réponse reflétant les données et les contraintes. Nous
démontrons expérimentalement l’efficacité et l’efficience de notre technique de réponse
aux requêtes pour DL-LiteR en déployant notre technique de réponse aux requêtes au-
dessus de Postgres et DB2, et en utilisant des configurations alternatives de données.

Du point de vue du traitement des requêtes et de l’optimisation, notre approche peut
être considérée comme appartenant à l’étape dite d’optimisation stratégique introduite
dans [77] (où l’application sémantique est injectée dans la requête). Cela est similaire
dans l’esprit à la réécriture du niveau de syntaxe effectué par des optimiseurs tels que
Oracle 10g’s [7]. Nous partageons avec [77] l’idée d’injecter la sémantique d’abord, et
comme [7], nous utilisons l’estimation des coûts pour guider nos réécritures. Un thème
commun est de réécrire avant de commander des unions, de sélectionner des opérateurs
physiques, etc...

De ce point de vue, notre contribution peut être considérée comme un ensemble
d’alternatives (réécritures) avec des garanties d’exactitude et des algorithmes guidant
ces réécritures pour une classe spéciale de requêtes obtenues à partir de reformulations
FOL de CQ contre des ontologies.

B.4 Conclusion

Cette thèse fournit des solutions pour répondre efficacement aux requêtes portant sur des
données fondées sur l’ontologie en RDF, la norme W3C de premier plan pour le Web
sémantique, et dans la logique de description DL-LiteR qui sous-tend la norme OWL2
QL du W3C pour la gestion des données à la sémantique riche. Résumons les problèmes
ci-dessous.

Répondre efficacement aux requêtes en présence de contraintes RDFS. Nous en-
visageons d’optimiser la réponse aux requêtes fondées sur la formulation dans le cadre
de l’OBDA où les requêtes conjonctives SPARQL sont posées contre des faits RDF sur
lesquels pèsent des contraintes exprimées par un Schéma RDF.

La littérature fournit des algorithmes de reformulation pour beaucoup de Fragments
RDF. Toutefois, les requêtes reformulées peuvent être complexes, mais ne pas être effi-
cacement traitées par un moteur de requête. Même les moteurs de requêtes bien établis
échouent parfois dans leur traitement.

1. Nous généralisons l’approche de reformulation de requêtes en considérant un
grand espace de reformulations alternatives (équivalentes). Nous caractérisons
la taille de notre espace d’alternatives et montrons qu’il est souvent trop grand
pour être complètement exploré.
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2. Nous définissons un modèle de coût pour estimer la performance d’évaluation
de nos requêtes reformulées via un moteur de recherche relationnel. D’autres
fonctions peuvent être utilisées à la place et nous montrons qu’un modèle de coût
interne RDBMS peut également être facilement utilisé.

3. Nous concevons un nouvel algorithme qui sélectionne une autre requête alterna-
tive reformulée qui (i) calcule le même résultat que la requête reformulée, qref ,
produit par des algorithmes de reformulation, et (ii) réduit de façon significative
le coût d’évaluation de la requête (ou tout simplement le rend possible lorsque
l’évaluation qref échoue!)

4. Nous avons implémenté cet algorithme et l’avons déployé en sus de trois SGBDR
déjà bien établis. Nos expériences montrent que notre technique permet de répondre
à des requêtes fondées sur la reformulation lorsque des approches classiques sont
irréalisables, tout en diminuant le coût dans certains cas.

5. Enfin, nous comparons notre technique de réponse aux requêtes fondées sur la
reformulation avec les réponses aux requêtes fondées sur la saturation via un
RDBMS et la plateforme RDF Virtuoso. Ces expériences confirment la robustesse
et la performance de notre technique, montrant en particulier que dans certains cas
sa performance approche celle de la réponse aux requêtes fondées sur la satura-
tion.

Répondre efficacement aux requêtes FOL réductibles. Nous considérons les langages
d’ontologie jouissant de réductibilité FOL dans la réponse à une requête: répondre à une
requête peut être réduit à évaluer une certaine formule logique de premier ordre (FOL)
(obtenue à partir de la requête et de l’ontologie) et des faits explicites.

Nous étendons le langage des reformulations FOL au-delà de celles considérées jusqu’à
présent dans la littérature, et étudions plusieurs reformulations FOL (équivalentes) d’une
requête donnée dont nous choisissons celle susceptible de conduire à la meilleure per-
formance. Cela contraste avec les travaux existants de la littérature sur la réponse aux
requêtes sémantiques qui utilisent des langages de reformulation permettant une refor-
mulation FOL unique (module minimisation). En considérant un ensemble de reformu-
lations et en s’appuyant sur un modèle de coût pour choisir la plus efficace a un impact
très visible sur l’efficacité et la faisabilité de la réponse à une requête. En effet, choisir
la reformulation erronée peut mener le RDBMS à échouer à l’évaluer (généralement en
raison de requêtes très longues), ou conduire à une mauvaise performance.

1. Pour les formalismes logiques bénéficiant de la réductibilité FOL dans la réponse
aux requêtes, nous fournissons un cadre d’optimisation général qui réduit la réponse
aux requêtes à la recherche parmi un ensemble de reformulations FOL équivalentes,
l’une avec une évaluation minimale dans un RDBMS.
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2. Nous appliquons le cadre mentionné ci-dessus à la logique de description DL-
LiteR sous-tendant le langage d’ontologie OWL2 QL du W3C. Nous caractérisons
des espaces étant une alternative équivalente aux requêtes FOL pour les reformu-
lations DL-LiteR, puis optimisons la réponse aux requêtes via un paramétrage
sélectionnant une alternative équivalente à la reformulation FOL avec le coût d’évaluation
estimé dans le plus faible et une estimation de coût RDBMS. Nous fournissons
deux algorithmes, un exhaustif et un gourmand pour cette tâche.

3. L’évaluation de nos reformulations FOL à travers le RDBMS conduit à une réponse
reflétant les données et les contraintes. Nous démontrons expérimentalement
l’efficacité et l’efficience de notre technique de réponse aux requêtes pour DL-
LiteR en déployant notre technique de réponse aux requêtes au-dessus de Postgres
et DB2, et en utilisant des configurations alternatives de données.
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[85] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third
Edition. Springer, 2011.

[86] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient query answering
for OWL 2. In ISWC, 2009.

[87] François Picalausa, Yongming Luo, George H.L. Fletcher, Jan Hidders, and Stijn
Vansummeren. A structural approach to indexing triples. In ESWC, 2012.

[88] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, Inc., NY, USA, 3 edition, 2003.

[89] Riccardo Rosati and Alessandro Almatelli. Improving query answering over DL-
Lite ontologies. In KR, 2010.

[90] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of the
linked data best practices in different topical domains. In Peter Mika, Tania Tu-
dorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vrandecic,
Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, editors,
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, volume 8796 of
Lecture Notes in Computer Science, pages 245–260. Springer, 2014.

[91] J. Shute, R. Vingralek, B. Samwel, and al. F1: A Distributed SQL Database That
Scales. In PVLDB, 2013.

[92] Konrad Stocker, Reinhard Braumandl, Alfons Kemper, and Donald Kossmann.
Integrating semi-join-reducers into state-of-the-art query processors. In ICDE,
2001.

[93] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave
Reynolds. SPARQL basic graph pattern optimization using selectivity estimation.
In WWW, 2008.

[94] Ion Stoica. Trends and challenges in big data processing. PVLDB, 9(13):1619,
2016.

[95] M. Stonebraker and U. Cetintemel. ”One Size Fits All”: An Idea Whose Time
Has Come and Gone. In ICDE, 2005.
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Titre : Répondre efficacement aux requêtes Big Data en présence de contraintes

Mots clés : Web sémantique, Optimisation des requêtes, Répondre à des requêtes en présence de 
contraintes, Reformulation des requêtes, Polystores

Résumé  :  Les  contraintes  sont  les  artéfacts
fondamentaux permettant de donner un sens aux
données. Elles garantissent que les données sont
conformes aux besoins des applications. L’objet
de cette thèse est d’étudier deux problématiques
liées  à  la  gestion  efficace  des  données  en
présence de contraintes. 

Nous  abordons  le  problème  de  répondre
efficacement  à  des  requêtes  portant  sur  des
données, en présence de contraintes déductives.
Cela mène à des données implicites dérivant de
données  explicites  et  de  contraintes.  Les
données  implicites  requièrent  une  étape  de
raisonnement afin de calculer les réponses aux
requêtes. Le raisonnement par reformulation des
requêtes  compile  les  contraintes  dans  une
requête  modifiée  qui,  évaluée  à  partir  des
données  explicites  uniquement,  génère  toutes
les réponses fondées sur les données explicites
et implicites.  Comme les requêtes reformulées
peuvent  être  complexes,  leur  évaluation  est
souvent difficile et coûteuse.

Nous étudions l’optimisation de la technique de
réponse aux requêtes par reformulation dans le
cadre  de  l’accès  aux  données  à  travers  une
ontologie,  où  des  requêtes  conjonctives
SPARQL sont posées sur un ensemble de faits
RDF sur lesquels des contraintes RDF Schema
(RDFS)  sont  exprimées.  La  thèse  apporte  les
contributions  suivantes.  (i)  Nous  généralisons
les  langages  de  reformulation  de  requêtes
précédemment  étudieés,  afin  d’obtenir  un
espace  de  reformulations  d’une  requête  posée
plutôt  qu’une  unique  reformulation.  (ii)  Nous
présentons des algorithmes effectifs et efficaces,
fondés  sur  un  modèle  de  coût,  permettant  de
sélectionner  une  requête  reformulée  ayant  le
plus  faible  coût  d’évaluation.  (iii)  Nous
montrons  expérimentalement  que  notre
technique  améliore  significativement  la
performance  de  la  technique  de  réponse  aux
requêtes par reformulation. 

Au-delà  de  RDFS,  nous  nous intéressons  aux
langages d’ontologie pour  lesquels répondre à
une requête peut se réduire à l’évaluation d’une
certaine  formule  de  la  Logique  du  Premier
Ordre  (obtenue  à  partir  de  la  requête  et  de
l’ontologie), sur les faits explicites uniquement.
(iv)  Nous  généralisons  la  technique  de
reformulation optimisée pour RDF, mentionnée
ci-dessus, aux formalismes pour répondre à une
requête  LPO-réductible.  (v)  Nous  appliquons
cette technique à la Logique de Description DL-
LiteR  sous-jacente  au  langage  OWL2  QL du
W3C,  et  montrons  expérimentalement  ses
avantages dans ce contexte.

Nous  présentons  également,  brièvement,  un
travail  en  cours  sur  le  problème  consistant  à
fournir  des  chemins  d’accès  efficaces  aux
données  dans  les  systèmes  Big  Data.  Nous
proposons  d’utiliser  un  ensemble  de  systèmes
de  stockages  hétérogènes  afin  de  fournir  une
meilleure  performance  que  n’importe  lequel
d’entre  eux,  utilisé  individuellement.  Les
données stockées dans chaque système peuvent
être décrites comme des vues matérialisées sur
les  données  applicatives.  Répondre  à  une
requête  revient  alors  à  réécrire  la  requête  à
l’aide des  vues  disponibles,  puis à  décoder  la
réécriture  produite  comme  un  ensemble  de
requêtes à exécuter sur les systèmes stockant les
vues,  ainsi  qu’une  requête  les  combinant  de
façon appropriée.



Title : Efficient Big Data query answering in the presence of constraints

Keywords : Semantic Web, Query optimization, Query answering under constraints, Query 
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Abstract : Constraints are the essential artefact
for giving meaning to data, ensuring that it fits
real-life application needs, and that its meaning
is correctly conveyed to the users.  This thesis
investigates two fundamental problems related
to  the  efficient  management  of  data  in  the
presence of constraints.

We address the problem of efficiently answering
queries over data in the presence of deductive
constraints,  which lead to implicit  data that  is
entailed (derived) from the explicit data and the
constraints.  Implicit  data  requires  a  reasoning
step  in  order  to  compute  complete  query
answers,  and  two  main  query  answering
techniques  exist.  Data  saturation  compiles  the
constraints  into  the  database  by  making  all
implicit data explicit, while query reformulation
compiles the constraints into a modified query,
which,  evaluated  over  the  explicit  data  only,
computes all the answer due to explicit and/or
implicit data. So far, reformulation-based query
answering  has  received  significantly  less
attention  than  saturation.  In  particular,
reformulated queries may be complex, thus their
evaluation may be very challenging.

We study optimizing reformulation-based query
answering in the setting of ontology-based data
access, where SPARQL conjunctive queries are
answered against a set of RDF facts on which
constraints hold. When RDF Schema is used to
express  the  constraints,  the  thesis  makes  the
following contributions. (i) We generalize prior
query  reformulation  languages,  leading  to  a
space  of  reformulated  queries  we  call  JUCQs
(joins of unions of conjunctive queries), instead
of a single fixed reformulation.  

(ii) We present effective and efficient cost-based
algorithms  for  selecting  from  this  space,  a
reformulated  query  with  the  lowest  estimated
cost. (iii) We demonstrate through experiments
that  our  technique  drastically  improves  the
performance  of  reformulation-based  query
answering while always avoiding “worst-case”
performance.

Moving beyond RDFS,  we consider  the large
and useful set of ontology languages enjoying
FOL reducibility of query answering: answering
a query can be reduced to evaluating a certain
first-order logic (FOL) formula (obtained from
the query and ontology) against only the explicit
facts.  (iv)  We generalize  the  above-mentioned
JUCQ-based optimized reformulation technique
to improve performance in any FOL-reducible
setting, and (v) we instantiate this framework to
the  DL-LiteR Description  Logic  underpinning
the  W3C’s  OWL2  QL  ontology  language,
demonstrating  significant  performance
advantages in this setting also.

We also report  on current  work  regarding the
problem of providing efficient data access paths
in Big Data stores. We consider a setting where
a set of different, heterogeneous storage systems
can  be  used  side  by  side  to  provide  better
performance than any of them used individually.
In such a setting, the data stored in each system
can be described as views over the application
data. Answering a query thus amounts to rewrite
the query using the available views, and then to
decode the rewriting into a set of queries to be
executed on the systems holding the views, and
a query combining them appropriately.
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