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Abstract

Computer assisted medical intervention has become an integral part of
present day’s medicine where medical image analysis plays an indispens-
able role. With the advancements of the modern day computing resources,
machine learning techniques have emerged as a vital component in this field.
The use of the supervised machine learning technique called random forests
has shown very encouraging results in medical image analysis. More specifi-
cally, Random Regression Forests (RRFs), a specialization of random forests
for regression, have produced the state of the art results for fully automatic
multi–organ localization. Despite the very encouraging results, the relative
novelty of the method in this field still raises numerous questions about how
to optimize its parameters for consistent and efficient usage. Additionally,
the RRF method has many parameters that require heuristic tuning which
reduces its ability to be used in a more general setting.

In this context, the goal of this dissertation is to carry out a detailed
study on the use of the Random Regression Forest methodology for multi–
organ localization. First, we perform a thorough analysis of decision trees
and of RRFs in the context of multi–organ localization in order to present
and understand the inner workings of RRFs. From this, three directions are
explored. The first direction investigates whether the localization perfor-
mance of RRFs can be further improved by adding more spatially consistent
information. We then propose to use the random model variables to approx-
imate the random process. This results in a newer type of RRF, faster and
more efficient in terms of memory usage: the Light Random Regression For-
est. Finally, we propose an automatic and consistent approach to find the
forest leaf nodes that participate in the final localization prediction. Further-
more, this proposal leads to the elimination of two other arbitrarily tuned
parameters increasing the generality of RRFs for multi–organ localization,
without reducing their localization performances.
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Résumé

Les Gestes Médico-Chirurgicaux Assistés par Ordinateur sont devenus une
partie intégrante de la médecine d’aujourd’hui où l’analyse d’images médi-
cales joue un rôle indispensable. Avec les progrès des ressources informa-
tiques, les techniques de l’apprentissage automatique ont émergé comme
un élément essentiel dans ce domaine. L’utilisation de la technique de
l’apprentissage supervisé appelée “forêts aléatoires” a montré des résultats
très encourageants dans l’analyse de l’imagerie médicale. Plus précisément,
les “Random Regression Forests” (RRFs), une spécialisation des forêts aléa-
toires pour la régression, ont produit d’excellents résultats pour la locali-
sation automatique multi-organes. Malgré ces résultats impressionnants, la
relative nouveauté de cette méthode soulève encore de nombreuses questions
d’optimisation pour une utilisation cohérente et efficace. En outre, les RRFs
ont de nombreux paramètres qui nécessitent une optimisation heuristique,
réduisant ainsi leur capacité à être utilisés dans un contexte plus général.

L’objectif de cette thèse est de réaliser une étude détaillée sur l’utilisation
de la méthodologie des RRFs dans la localisation automatique de plusieurs
organes. Tout d’abord, nous procédons à une analyse approfondie des arbres
de décision et des RRFs dans le contexte de localisation de plusieurs organes
afin de présenter et de comprendre leurs fonctionnements internes. De là,
trois axes sont explorés. Le premier axe examine si les performances de lo-
calisation des RRFs peut encore être améliorées en ajoutant de l’information
spatiale plus cohérente. Nous proposons ensuite d’utiliser les variables du
modèle aléatoires pour approcher le processus aléatoire. Cela se traduit par
un nouveau type de RRFs, plus rapide et plus efficace en termes d’utilisation
de la mémoire : les Light Random Regression Forests. Enfin, nous proposons
une approche automatique et cohérente pour trouver les nœuds feuilles qui
participent à la prédiction finale de la localisation. En outre, cette proposi-
tion conduit à l’élimination de deux autres paramètres arbitrairement ajustés
augmentant la généralité de RRF sans réduire leurs performances de locali-
sation.
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Every new beginning comes from some other beginning’s end.

- Seneca

1
Introduction

1.1 Context

Medicine1 is defined as the science or practice of the diagnosis, treatment,
and prevention of disease. The pioneering work carried out by Ledley and
Lusted [1959] in late 1950’s on reasoning foundations of medical diagnosis
laid the stepping stones in harnessing the power of computers in medicine.
Soon after, the theoretical advances of Ledley and Lusted were put to
good use not only for diagnosis but also for treatment by many researchers
[Warner et al., 1964; Gorry and Barnett, 1968; Weiss et al., 1978].

Surgery2, the treatment of injuries or disorders of the body by inci-
sion or manipulation, especially with instruments is often a combination of
complex procedures. With the rapid advancements in the semiconductor
industry the computers shrank in size but grew drastically in capabilities
and performance enabling the computers to be used in surgery. Computer
assisted medical intervention was the inevitability [Lavallee and Cinquin,
1990; Cinquin et al., 1995].

1"Medicine, n.1." OED Online. Oxford University Press. Retrieved March 17, 2016.
2"Surgery, n.1." OED Online. Oxford University Press. Retrieved March 17, 2016.

1
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Computer Assisted Medical Intervention (CAMI) is defined as the dis-
cipline that aims at providing tools allowing the clinician to use multi-
modal data in a rational and quantitative manner in order to plan, simulate,
and execute minimum invasive medical interventions accurately and safely
[Troccaz, 2009]. Presently, CAMI plays a major role in all main phases of
medicine, namely, prevention, diagnosis, treatment, and treatment follow-
up.

The general methodology of CAMI can be summarized as a three-fold
loop of perception, decision/simulation, and action [Cinquin et al., 1995] as
illustrated in Fig. 1.1. The perception phase consists of multi-modal data
acquisition and processing through standard medical imaging techniques
such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
ultra sound, photon emission tomography, endoscopy, etc. The perception
phase is only complete when the data acquired by various sensors are taken
into consideration as well. The decision phase is two fold. First, a digital
patient is created by correctly modeling the acquired patient data. Then, a
plan of action is derived based upon the information obtained through the
digital patient while maximizing the efficiency and minimizing the risk of
the therapeutic procedure. In the action phase, the planned intervention is
carried out by the clinician, for instance, with the assistance of a navigational
medical robot.

Figure 1.1: General methodology of CAMI consists of a three–fold loop.
Perception: data acquisition through medical imaging techniques coupled
with other sensory input. Decision: creation of a digital patient and devising
a plan of action. Action: carrying out the planned intervention with the
probable use of a navigational medical robot.
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As an illustration, in this setting, the laboratory of TIMC-IMAG (Tech-
niques for biomedical engineering and complexity management – informat-
ics, mathematics and applications – Grenoble) has developed a navigational
robot called the Light Puncture Robot (LPR)3 [Taillant et al., 2004; Bricault
et al., 2008; Zemiti et al., 2008]. LPR is an active (i.e., the robot carries
out certain tasks autonomously with the supervision of the clinician) percu-
taneous4 robot which is both CT and MRI compatible. It is used to enable
complex needle trajectories that require high accuracy and would otherwise
be very challenging to do manually.

An indispensable step of the decision phase in building the digital patient
is the extraction of high level information of the patient data through means
of segmentation. Segmentation is the process of partitioning the image into
some non-intersecting regions in such a way that each region is homogeneous
with respect to the intended application [Pal and Pal, 1993]. In CAMI,
segmentation is the process of partitioning the image pixels/voxels5 into
biologically meaningful non-overlapping regions. The stage of segmentation
is of utmost importance as the decisions and actions taken are dependent
upon the segmented output.

When organ segmentation is the goal of medical image segmentation,
the aim is to partition the image voxels into non-overlapping anatomical
structures. A tremendous number of research work has been carried out
on segmentation of medical images. The various proposed segmentation
methods can be broadly summarized into four major categories although
different researchers have proposed different categories [Sharma et al., 2010;
Yan and Wang, 2010; Gu and Peters, 2006]. They are:

1. methods based on gray level features,
2. methods based on geometric models,
3. methods based on statistical atlases, and
4. knowledge based methods.

One method from one category is seldom sufficient to carry out any prac-
tical organ segmentation. A collection of methods belonging to different
categories are often required depending on the intended segmentation pur-
pose.

3This work was funded by the French ANR within the TecSan project Robacus (ANR-
11-TECS-020-01)

4Needle insertion through the skin
5Here after the term ’voxel’ will be employed in place of the term ’pixel/voxel’.



CHAPTER 1. INTRODUCTION 4

Organ localization is the antecedent step of organ segmentation. Locat-
ing an organ in a medical image by bounding that particular organ with
respect to an entity such as a bounding box or sphere is termed organ lo-
calization. Multi-organ localization takes place when multiple organs are
localized simultaneously.

The Random Forest (RF) [Breiman, 2001] method is a famous knowledge
based method that is utilized in many fields. A known variant of random
forests, called Random Regression Forests (RRFs) was first used to solve the
multi-organ localization problem in CT images by Criminisi et al. in 2010
[Criminisi et al., 2010]. The studies carried out by Criminisi et al. showed a
lot of promise by outperforming the state of the art results reported at the
time [Criminisi et al., 2010, 2013].

1.2 Motivation

An important step of the usage of LPR in an actual percutaneous opera-
tion is segmenting the target organ and the other organs to avoid during
the procedure. Currently, the organ segmentation step is carried out manu-
ally by the clinician. Ultimately, our goal is to make LPR as autonomous as
possible in order to provide the clinician with seamless assistance in perform-
ing percutaneous procedures. One axis towards the above mentioned goal
is the fully automatic segmentation of the relevant organs. As fully au-
tomatic multi–organ segmentation is a very challenging scientific
task, as an initial step, we first concentrated on fully automatic
multi–organ localization.

We opted to use the RRF method for automatic multi–organ localization
as the state of the art results were produced using the same method. De-
spite the very encouraging results, the RRF method has many parameters
that require heuristic tuning that inhibit its ability to be used in a more
general setting. According to Louppe [2014], “. . . the theoretical properties
and statistical mechanisms that drive the algorithm are still not clearly and
entirely understood. Random forests indeed evolved from empirical successes
rather than from a sound theory . . . ”. Louppe also states that although the
construction of a basic building block of RFs, i.e., a single decision tree, can
be easily described, proper and efficient implementation of the algorithm
remains a challenging task. Consequently, scientific literature often omits
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the implementation details.
The same inhibitions identified by Louppe hold true for the more special-

ized form of RFs, i.e., the Random Regression Forests. Despite its superior
performance over the state of the art, we assume that the slow rate of adapt-
ability of the RRF algorithm for multi-organ localization among the medical
image processing community should be due to these inhibitions.

1.3 Objective and Scope

In this backdrop, the objective of this dissertation is to provide a
detailed study of using Random Regression Forest methodology
for multi-organ localization, emphasizing on the understanding of
the influence of various parameters and making the RRF method
as generic as possible by eliminating the heuristic tuning of certain
parameters.

The dissertation evolves exclusively around the problem of multi-organ
localization. Among the many medical imaging modalities present, such
as magnetic resonance, ultra-sound, x-ray, etc., we limit our study to com-
puted tomography as it is the first image modality used in the final LPR
application.

1.4 Significance

The main intended outcome of the study, on a theoretical level, is to advance
knowledge in the use of Random Regression Forest method for multi-organ
localization in CT images that promotes more generic usage across different
organ localization applications thanks to the reduction of ad hoc parameters
and the development of a rigorous methodology.

On a more practically applicable level, another intention of the study, is
to make certain implementation details available that would either enhance
localization or result in more generalization or lead to more computational
and resource efficient solutions.

Though our main focus is on random regression forests, the theoretical
and practical advancements discussed during the study is generic enough so
that we hope that they will be applied in other forms of random forests too.
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1.5 Overview

The remainder of this dissertation contains 7 chapters.
In Chap. 2, we present decision trees, the fundamental building block

of RRF. It includes a concise introduction to machine learning, a short
bibliographical review and a detailed analysis of the key concepts of decision
trees. Then, the Random Regression Forests are presented in Chap. 3. This
chapter constitutes a thorough study of the related literature, an in–depth
analysis of the key concepts, and a digest of the multi–organ localization
process using RRFs. We tried to present both Chap. 2 and Chap. 3 in a
didactic manner providing simple and easy to understand examples where
possible.

The scientific approach adopted to carry out the various studies of the
dissertation are described in Chap. 4 along with the information on our CT
image database and the benchmarking technique. In Chap. 5, we study the
effect on the RRF algorithm when some spatial consistent information are
incorporated. We present Light Random Regression Forests in Chap. 6, a
new type of RRF that is faster, uses much less memory than classic RRFs
while maintaining the same localization capabilities. We take the first steps
towards a more generalized RRF framework in Chap. 7 by proposing a con-
sistent and automatic method to choose the number of forest leaf nodes that
participate in the final organ localization prediction.

Finally, Chap. 8 presents a discussion on organ detection using RRFs
followed by general concluding remarks and future perspectives.



A good decision is based on knowledge and not on numbers.

- Plato

2
Decision Trees and Their

Analysis

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Objective and Scope . . . . . . . . . . . . . . . . . . . . . 5
1.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

In this chapter we describe decision trees, the fundamental building
block of random forests. The introductory section (Sect.2.1) comprises a
concise description pertaining to machine learning along with a handful
of core definitions. Then, the decision trees are presented in a more
detailed manner in Sect. 2.2. The main components of a decision tree
are introduced in Sect. 2.2.1 before concisely presenting its evolution in
Sect.2.2.2. Details on the node split function and related parameters are
introduced in Sect. 2.2.3 whereas Sect. 2.2.4 introduces how to evaluate

7
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the peformance of a split. In Sect. 2.2.5, we present how to make a
prediction using the leaf nodes.

Our analysis of various aspects of the decision tree concept is pre-
sented in Sect. 2.3. First, the main components of supervised learning
are analyzed in Sect. 2.3.1 before the main steps of decision tree induc-
tion are analyzed in Sect. 2.3.2. Finally, Sect. 2.3.3 presents how the
best split can be chosen among many splits.

Throughout the chapter, whenever possible, we have used a simple
example to illustrate the concept being described. The same example
is developed as the chapter progresses in order to enhance the didactic
nature of the dissertation.

2.1 Introduction to Machine Learning

Machine learning can generally be described as the science concerned with
creating computer systems and algorithms that enables machines to "learn"
from previous experience [Izenman, 2008].

Definition: Machine Learning
In Murphy [2012], machine learning is defined as "a set of methods that
can automatically detect patterns in data, and then use the uncovered
patterns to predict future data, or to perform other kinds of decision
making under uncertainty".

According to Murphy, machine learning tasks can be broadly categorized
into three main categories.

1. Predictive or supervised learning: given a labeled set of input-output
pairs (called the training set), learning a mapping from inputs to out-
puts in such a manner that when a previously unseen input is given,
the learned mapping is capable of "predicting" the correct output. De-
pending on the characteristics of the output, the supervised learning is
described differently. When the output is categorical or nominal, it is
termed as classification. When the output is real-valued, it is termed
as regression.

An email spam filter is a real-life classification example. The goal of
the filter is to classify the incoming email as spam or not depending on
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its training set. Predicting how long a patient would be hospitalized
using the previous data collected such as type of disease, age, gender,
income, etc., is an example of regression.

2. Descriptive or unsupervised learning: given a set of inputs, the ul-
timate goal is to find "interesting patterns" or to describe the input.
Learning is unsupervised as no training set containing the input-output
relationship is provided similar to the supervised learning. Thus the
problem is not well defined compared to supervised learning.

Finding clusters in a group when no prior information is available
about how many clusters are actually present, is an example of unsu-
pervised learning. By analyzing the purchasing and web-surfing be-
havior, clustering buyers into groups in order to carry out targeted pro-
motional campaigns is a common practice in present day e-commerce.

3. Reinforcement learning: is situated between supervised and unsuper-
vised learning. Learning by interacting with the environment and
measuring the effects of these interactions through reward or punish-
ment is the core of reinforcement learning. This reflects one of the
fundamental ways that humans learn.

Reinforcement learning is extensively employed in game playing. As
each move of a game depends on many factors, covering all the possi-
bilities exclusively is impossible even for a simple board game. Hence,
the best way to learn is by playing, i.e., by applying reinforcement
learning.

The following section introduces the common terminology used in the
field of machine learning in order to move onto more in-depth discussions
pertaining to decision trees.

2.1.1 A Spoonful of Machine Learning Jargon

Similar to all fields, the field of machine learning has its own terminology.
It is important to have a clear understanding of this jargon in order to
submerge in the world of machine learning. An effort is made to familiarize
a few of the main terms and the mathematical notation used, through one of
the introductory classification examples retrieved from the pioneering work
of Breiman et al. in 1984.
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The study consisted of 215 heart attack patients who survived at least 24
hours after being hospitalized due to a heart attack. The goal of the study
was to identify the patients who would survive more than 30 days (termed
"low risk") and the patients who would not (termed "high risk"). More
technically, the goal was to come up with a classification algorithm using
the data provided by the 215 patients. 19 variables, including age, blood
pressure, previous heart pathology, etc., were used for the study.

Definition: Features
Any property or measurement of an entity or any calculation that can
be performed on it are called a feature of that entity.

Hence, each patient of the study can be described using 19 features. Features
are two fold.

1. Numerical: the quantitative variables (features) whose values are in-
tegers of real numbers. (e.g., age, blood pressure, heart rate, etc.)

2. Categorical: the qualitative variables (features) whose values are sym-
bolic. (e.g., previous myocardial infraction, presence of an elevated
rate of impulse, etc.)

Mathematically, each patient is described as a vector having 19 dimensions
(19D).

Note: Mathematical Notation
Throughout the dissertation, boldface lowercase symbols (e.g., x), type-
writer uppercase symbols (e.g., M), and calligraphic uppercase symbols
(e.g., S) are employed to denote vectors, matrices, and sets respec-
tively. A conscious effort is made to adhere to the above mentioned
mathematical notation in order to maintain the consistency throughout
the text.

Then, the ith patient (also termed the ith instance or sample or data point)
is described as:

xi = (xi1 , xi2 , . . . , xi19) .

The set of input instances makes up the input X , where

X = {(xi)}215
i=1 .
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Similarly, the output Y is comprised of one/multi dimensional numerical/
categorical variables. In this particular example, the output consists of one
dimensional (1D) categorical variables:

Y = {(yi)}215
i=1 ,

where yi = {low risk or high risk}. The 215 patients in this study consisted
of the training set.

Definition: Training Set

A labeled set of input–output pairs D = {(xi,yi)}Ni=1 is defined as the
training set where N is the number of training instances.

Although all available patient data were used as the training set in this
study, later studies divided them into two groups called the training set and
testing set.

Definition: Testing Set
Another labeled set of input–output pairs that is used to fine tune
the parameters and assess the strength and utility of the predictive
relationship found by the training process. The testing set does not
include the data pairs used in the training set.

While the training set is used to build the learning algorithm, the testing
set is used to fine tune the parameters and estimate the performance of the
algorithm. When the amount of training data available is limited, often,
cross validation is performed.

Definition: Cross Validation
First, the available training data is split into certain number of groups
(say K). Then the algorithm will be trained K times, using all groups
but the kth group where k ∈ {1, 2, . . . ,K}. Each time, the left out
portion of the data is used as the testing set. This is defined as the K
cross validation strategy.

To answer the initial problem, Breiman et al. [1984] proposed the follow-
ing tree–like structure (see Fig. 2.1) as their classification algorithm which
only used 3 features out of available 19 features. The process of building
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such a structure is explained in Sect. 2.3.2. This simple and easily under-
stood proposal had a correct classification rate of 89% and 75% for low risk
and high risk patients respectively.

Figure 2.1: Tree like structure proposed by Breiman et al. in order to classify
the 215 patients as low risk and high risk.

Enough terminology is presented in order to define the concept of su-
pervised learning mathematically. Following is the Murphy’s definition of
supervised learning [Murphy, 2012].

Definition: Supervised Learning
Given a training set D, learning a mapping F from the input X to
output Y (F : X → Y) is the goal of supervised learning. When a
previously unseen input x is present, the learned mapping (F (x)) is



13 2.2. DECISION TREES

used to estimate (predict) the corresponding output ŷ. (ŷ is used to
denote the prediction as this is an estimation of the real output y.)

Using the mapping proposed through the tree like structure of the example,
the risk of a new patient who suffered a heart attack can easily be classified
as high or low. Three ordered questions; namely,

1. minimum systolic blood pressure over 24 hours following admission,
2. age of the patient, and
3. whether the patient has elevated rate of impulse (sinus tachycardia)

lead to the final classification.
The next section introduces the concept of a decision tree and its main

components without going into deeper discussions about its inner workings.

2.2 Decision Trees

The fundamental building block of random forests is the concept of decision
trees. We introduce the main components of a decision tree in Sect. 2.2.1
before concisely addressing the humble beginning and the rapid evolution of
the concept in Sect.2.2.2. We present the split nodes and leaf nodes in more
detail in the final three sub sections. In Sect. 2.2.3, we introduce the node
split function and various parameters involved with it. Details on how to
evaluate the strength of a split are presented in Sect. 2.2.4 before presenting
how to make a prediction using the leaf nodes in Sect. 2.2.5.

2.2.1 Introduction

This section provides a simple portrait of the main components of a decision
tree.

Definition: Decision Trees
In Chikalov [2013], a decision tree is defined as a well structured hierar-
chical entity that recursively partitions a set of objects into subgroups
of objects that are more similar within the subgroups, using some fea-
tures of the objects.

The above definition highlights three main characteristics of decision trees.

1. A decision tree is hierarchical. A decision tree is composed of two
types of nodes. Namely, split (internal) nodes, and leaf (terminal)
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nodes (see Fig.2.2). Each split node has 2 or more children depending
on whether the tree is binary or n-ary. The first split node is called
the root. Except for the root node, all the nodes have only one parent.
Leaf nodes do not have any children. Decision trees are hierarchical
as they adhere to the strict hierarchy mentioned above. Additionally,
every path that starts from the root is always terminated at a leaf
node without forming any cycles. During this path traversal, it may
traverse through one of more split nodes but only always terminated
at a unique leaf node.

2. A decision tree recursively partitions the input space into groups of
objects that are more similar. Attached with every split node, is a
decision function who’s sole responsibility is to partition the incoming
objects into 2 or more splits depending on the n-arity of the decision
tree. These decision functions try to maximize the node purity with
respect to some measurement or statistic. As every path that starts
from the root to a leaf possesses one or more split nodes, the incoming
objects (hence, the input space) will be recursively partitioned.

The most suitable decision function for each split node will be found
at the training phase in such a manner that the similarity between the
partitioned groups of objects is higher than the similarity of all objects
that come into the split node. Finally, the objects accumulated at a
leaf node will have the highest similarity of the input features so that
this information will be used to do the prediction at the testing phase.

3. A decision tree uses some features to do the partitioning. The similar-
ity of objects are measured using some of the features of the objects
(i.e., any property or measurement of the object or any calculation
that can be performed on it). Although an object may possess ex-
tremely large number of features (e.g., for a voxel of an image, one
can use its position, intensity, result of any image filter, etc.) only
a handful of those are usually used for the partitioning. The feature
responses will be compared against one or more thresholds in order to
decide to which partition an object belongs to.
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Definition: Feature Response
Given a data point and a specific feature, the value of that feature at
that data point is called the feature response.

Figure 2.2: Main components of a decision tree. A decision tree consists
of split nodes and leaf nodes. Each split node has a decision function that
splits the incoming objects into two or more groups depending on the n-arity
of the tree. As each split node results in a binary split in this example, it
represents a binary tree. The objects of the new splits are more similar
within the child node than the objects that arrived at the parent split node.
Finally, leaf nodes store the similarity information that are later used for
prediction.

In the next section, we concisely describe the evolution of decision trees
in order to demonstrate the rapid growth of the concept within a time period
of half a century.

2.2.2 Evolution of Decision Trees

To the best of our knowledge, the earliest documented instance resembling
decision trees was found in a journal article by Belson in 1959 [Belson, 1959].
Until then, correlation procedures were used for classification, which were
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complex and tedious to carry out by hand as the use of computers was
not common during that era. The Wherry-Doolittle technique is a prime
example for such a procedure [Garrett, 1947].

Belson termed his proposal "biological classification" where the aim of
the study was to match two groups using certain characteristics as controls
in order to compare the original two groups. Selecting a consumer panel to
be representative of the public is an example of such a classification. The
input objects were non-symmetrically divided using binary questions posed
on the relevance of the control characteristics leading to a binary tree.

Belson’s proposal was so much simpler to carry out without complex
or tedious mathematical calculations, that it would be fitting to quote his
concluding remarks: "The method as I have described it is, it is true, a
movement towards a more empirical way of doing things; but it is just as
much a movement away from a sophistication which is too often either baf-
fling or misleading". Even to date, the simplicity and understandability of
decision trees are unmatched to the machine learning "black box" models
such as neural networks.

The idea proposed by Belson was first introduced as a tree based com-
puter program called Automatic Interaction Detector (AID) by Morgan and
Sonquist in 1963 [Morgan and Sonquist, 1963]. AID was proposed to handle
predictions in survey data and the proposal resulted in a binary decision
tree that was used exclusively for regression. During the years that fol-
lowed, many improvements, adjustments, and changes were proposed to the
existing decision tree algorithms [Morgan and Messenger, 1973; Friedman,
1977, 1979; Quinlan, 1979, 1986, 1993; Kass, 1980; Breiman and Stone, 1978;
Breiman et al., 1984; Loh and Vanichsetakul, 1988; De Ville, 1990; Buntine,
1992; Clarke, 1992; Loh and Shih, 1997; Geurts et al., 2006; Özuysal et al.,
2007]. However, the current norms of decision trees largely take shape from
the contributions made by Breiman et al. [1984] and Quinlan [1986].

Many informative and thorough reviews have been published on various
aspects of decision trees over the years, undoubtedly, owing to their pop-
ularity and usefulness [Safavian and Landgrebe, 1991; Murthy, 1998; Lim
et al., 1998, 2000; Kothari and Dong, 2000; Loh, 2011; Kotsiantis, 2013].
Although we do not attempt to convey all the details covered in those re-
views, we make a conscious effort to present the most important details in
a concise manner. For further details, please refer to the reviews mentioned
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above.

2.2.3 Node: Split Function

The sole responsibility of a split node (j) of an n-ary tree is to split the set
of incoming objects (Xj) into n disjoint subsets:

Xj = {Xj,1 ∪ Xj,2 ∪ · · · ∪ Xj,n} , (2.1)

where Xj,i ∩Xj,k = ø, ∀ i 6= k. If the split is made into two disjoint subsets,
then it is termed binary splitting (see Fig. 2.3a). It results in left and right
child nodes. If the split results in more than two disjoint subsets, then it is
a n-ary split (see Fig. 2.3b) which creates n child nodes.

(a) (b)

Figure 2.3: Types of splits. (a) A binary split. This results in two child
nodes, named left and right child. (b) An n-ary split. This results in n child
nodes.

As mentioned previously, an input object x (also termed data point) is
described using its features in the following manner:

x = (x1, x2, . . . , xD) ∈ RD . (2.2)

Although the dimensionality of the feature space (D) can be extremely large,
practically, only a small number of features (d) are used for the tree induction
process (d� D). Let the feature selection per node be denoted by:

φ(x) = (xφ1 , . . . , xφd) ∈ Rd . (2.3)
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Then, depending on the feature selection per node φ(x), two types of split
functions exist:

1. Univariate split functions: for a given split node, only a single feature is
selected by φ(x) to participate in the split function (see Sect. 2.2.3.1).

2. Multivariate split functions: for a given split node, more than one
feature is selected by φ(x) to participate in the split function (see
Sect. 2.2.3.2).

The split function at the split node j with an incoming data point x (see
Fig. 2.4) can be formulated in the following manner:

f (x,θj) : Rd × T → split , (2.4)

where θj denotes the split parameters associated with split node j, θj =
(φj ,ψj , τj), and θj ∈ T . T is the space of all split parameters. φj(x) se-
lects which features are used for the split function. The geometric primitive
ψj is used to separate the data points in the feature space. Furthermore
ψ is defined as a geometric surface in the feature space (see Fig. 2.5). The
interaction between φj(x) and ψj produces a scalar value s

(
s ∈ R1). Fi-

nally, s is compared to the threshold values given in the threshold vector
τj to find the corresponding partition of the data point. The n-arity of the
decision tree determines how many threshold values (|τj |) are compared to
s (see Fig. 2.6).

Figure 2.4: The split function at the split node j is responsible for sending
an incoming data point x down the correct branch of the node.
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(a) (b)

(c)

Figure 2.5: Different split functions. Different colors of the points indicate
different classes. The distribution of the data points are given in the 2D fea-
ture space. (a) An axis–parallel univariate split function. (b) A multivariate
split function that defines an oblique hyperplane in the feature space. (c)
Another multivariate split function that defines a non–linear hyper surface.
(The figure is inspired by Criminisi and Shotton [2013].)
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In order to illustrate the split function of a decision tree, here is a simple
1D example:

Assume the following 1D feature distribution X = x and its correspond-
ing output Y = y in Fig.Ex. 2.1.

Figure Ex. 2.1: The feature distribution and its corresponding output.
.

Next, assume that the above illustrated distribution is estimated by the
following partitioning of the input feature space as given by Fig.Ex. 2.2.

Figure Ex. 2.2: The piecewise continuous distribution estimation.



21 2.2. DECISION TREES

.

This is equivalent to the regression tree provided below in Fig.Ex. 2.3.

Figure Ex. 2.3: The corresponding regression tree that partitions the
whole input feature space.
.

For demonstration purposes, let us evaluate the split function by using
an unseen data point x = 52. At the root node, the comparison x < 40
is false. Hence, the data point goes to the right child node. Then, at
the new split node, the comparison x < 60 is true. Consequently, the
data point moves to the left child node (i.e., the 3rd leaf node). The
path taken by the data point x = 52 is presented in Fig.Ex. 2.4.

Figure Ex. 2.4: The path taken by the unseen data point x = 52.
.

2.2.3.1 Univariate Split Functions

The most popular splitting mechanism found in the literature is univariate
splitting. Using only one feature for the split function out of all available
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features, i.e., only one non–zero component of φj(x), results in a univariate
split function. In this scenario, the interaction between φj(x) and ψj can
be described by the dot product

(
φj (x) ·ψj

)
where ψj = (0 0 . . . 1 . . . 0 λ)

using the homogeneous coordinates. The non–zero component of ψj corre-
sponds to the non–zero feature and λ is the scaling factor of the homogeneous
coordinates. Univariate split functions produce axis–parallel splitting of the
multi–dimensional feature space (see Fig. 2.5a).

Univariate axis–parallel splitting leads to a binary split if the feature
response s of φj (x) · ψj is compared in such a manner that produces a
true or false result (see Fig. 2.6a). This is achieved by comparing s to one
threshold value (s < τ or s > τ) or one range of values (τ1 < s < τ2).
Univariate axis–parallel splitting may also result in an n–ary split if s is
compared to many threshold values (see Fig. 2.6b) in the following manner:

split of j =



j1, if s < τ1

j2, if τ1 ≤ s < τ2

. . .

jn, if s ≥ τn

. (2.5)

A few of the examples for univariate binary splits can be found in [Mor-
gan and Sonquist, 1963; Breiman et al., 1984; Buntine, 1992; Loh and Shih,
1997] whereas examples for univariate multi splits can be found in [Quinlan,
1979, 1986; Loh and Vanichsetakul, 1988; De Ville, 1990].

Univariate split functions are the most popular due to their ease of im-
plementation and interpretability. Since only one feature is used at a time
for splitting, univariate split functions result in deep decision trees which
may not be efficient. It may also lead to weaker classifications than trees
where multivariate split functions were employed for the same tree depths.

2.2.3.2 Multivariate Split Functions

Using more than one feature for the split function out of all available fea-
tures, i.e., multiple non–zero components of φj(x) results in a multivariate
split function. Multivariate split functions may result in a linear combi-
nation of features or non–linear combination of features. Similarly to the
univariate split functions, the multivariate split functions may result in bi-



23 2.2. DECISION TREES

(a) (b)

Figure 2.6: The relationship between the number of thresholds and the
number of splits. (a) A binary split is generated by a single true or false
comparison. s < τ or s > τ can also be used instead of τ1 < s < τ2. (b)
An n–ary split is generated by a range of comparisons. s is the result of the
interaction between φj(x) and ψj .

nary or n–ary splits depending on the number of thresholds used.
When a linear combination of features is used for splitting, the resulting

decision trees are termed oblique trees as they result in oblique (slanted)
hyperplanes of the feature space (see Fig. 2.5b). The interaction between
φj(x) and ψj can be described by φj (x)·ψj in this scenario too, where ψj =
(0 0 . . . ψj,i . . . ψj,k 0 λ) using the homogeneous coordinates and the non–
zero components of ψj correspond to the features selected for the splitting
by φj(x). A few examples of oblique trees are present in the studies of
Breiman et al. [1984]; Loh and Vanichsetakul [1988]; Utgoff and Brodley
[1991]; Murthy et al. [1993, 1994].

When a non–linear combination of features is used for splitting, the
interaction between φj(x) and ψj is modeled in the following manner:

(φj (x))T ψj φj (x) = s , (2.6)

where ψj denotes a R(d+1)×(d+1) matrix in homogeneous coordinates. A
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hyper surface in the feature space is the result of the split (see Fig. 2.5c).
New features were generated using the original primitive ones by Ittner

and Schlosser in their work on Non-linear Decision Trees (NDTs) [Ittner and
Schlosser, 1996]. The authors argued that using not only linear combinations
of features (as oblique trees would), but also products of certain features
could increase the discrimination capabilities of the newly augmented fea-
tures. As an example, they argued and provided empirical evidence that the
augmented feature Petal Area generated from the product of two features
(Petal Length and Petal Width) of the famous Iris dataset1 was better at
classification than a linear combination of those features. Many other mech-
anisms such as Polynomial-Fuzzy Decision Trees (PFDTs) [Mugambi et al.,
2004], model ensemble-based nodes [Altınçay, 2007], and Rough Set-based
Multivariate Decision Trees (RSMDTs) [Wang et al., 2012] were based on
generating multivariate splits.

In the next section, we discuss how the strength of a split can be evalu-
ated.

2.2.4 Split Node Evaluation

At the training phase, at the split node j, depending on the selected split
parameters

(
θj = (φj ,ψj , τj)

)
many split configurations are generated. Se-

lecting the best split among the possible splits is a key characteristic of the
decision tree algorithms. Mathematically, this can be interpreted as the
maximization of an objective function I at the split node j in the following
manner:

θj = arg max
θ∈T

I(Xj ,θ) , (2.7)

or as the minimization of an energy W at the split node j in the following
manner:

θj = arg min
θ∈T

W (Xj ,θ) . (2.8)

In classification, the child nodes are expected to reduce the impurity
of the parent node. In the same manner, the child nodes are expected to
reduce the divergence of the parent node in regression. Consequently, any
metric of impurity (or divergence) can generally be used to measure the

1The Iris dataset is a famous classification dataset of three different types of iris plants.
It possessess four features. Namely, sepal length, sepal width, petal length, and petal
width. The dataset can be accessed at https://archive.ics.uci.edu/ml/datasets/Iris

https://archive.ics.uci.edu/ml/datasets/Iris
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goodness of a split. Ultimately, the split that has the maximum impurity
(or maximum divergence) reduction should be selected in classification (or
regression). More generally the selection of best split can also be interpreted
as a cost reduction scenario:

∆cost = cost(parent)− cost(children) ,

θj = arg max
θ∈T

∆cost .
(2.9)

The outputs (yi’s) of the training set are used in the calculation of these
objective or energy or cost functions.

2.2.5 Leaf Node Decision

The final step in inducing a single decision tree, is to come up with the
estimation or prediction model for the whole tree. Reducing the global gen-
eralization error of the entire decision tree is strictly equivalent to reducing
the local generalization error of each leaf node [Louppe, 2014]. Consequently,
the emphasis is on finding the best possible prediction models for the leaf
nodes.

The leaf prediction models are built using the outputs (categorical or
numerical) of the data points accumulated at the training phase. More
precisely, this is done by employing conditional distributions. Given a data
point v the conditional distribution for classification is given by:

p(y | v) , (2.10)

where y is the categorical output. Similarly, given a data point v the con-
ditional distribution for regression is given by:

p(y | v) , (2.11)

where y is the continuous output.

The most common prediction model is the MaximumA–Posteriori (MAP)
model. For classification, MAP is defined in the following manner:

ŷ = arg max
y

p (y | v) . (2.12)
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For regression, MAP is defined as:

ŷ = arg max
y

p (y | v) . (2.13)

2.3 Analysis of Decision Trees

The following sections present our analysis of various aspects of decision
trees. First, main components of supervised learning are analyzed in Sect.2.3.1.
The Sect. 2.3.2 presents the main steps of decision tree induction. Finally,
Sect. 2.3.3 analyzes how the best split can be chosen among many splits.

2.3.1 Main Components of Supervised Learning

Irrespective of the algorithms used for the learning process and irrespective
of the type of the output (classification or regression), a general supervised
learning method consists of a workflow of 5 main components (see Fig. 2.7).
They are as follows:

1. Training set: the labeled dataset used for training.

2. Dataset preprocessor: often, the data in the training set is not used as
is. Certain processing steps are carried out on the training set in order
to make the data suitable for the inducer to perform the estimation
induction. Normalizing or resizing images are two examples of such
manipulations.

3. Dataset: the output of the dataset manipulator is the exact data that is
fed into the inducer. Hence, this is the real data used by the supervised
learning algorithm.

4. Inducer: the algorithmic procedure that produces an estimation from
the provided dataset. Consequently, decision trees are induction algo-
rithms and the process of building a decision tree is called tree induc-
tion.

5. Estimator: the learned generalized relationship between the input and
output. Given an unseen data point, the estimator is able to predict
the output. An estimator can either be a classifier or a regressor.

The following section presents the main steps related to building decision
trees.
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Figure 2.7: Main components of supervised learning. Data components are
shown in yellow whereas algorithmic components are shown in blue. (The
figure is inspired by Rokach [2010].)

2.3.2 Main Steps of Decision Tree Induction

The process of building a decision tree is called tree induction as mentioned
in Sec. 2.3.1. Following are the major choices that should be made in order
to build a decision tree structure using the provided training data:

• The n–arity of the decision tree.
The n–arity of the decision tree is decided by how many threshold
ranges are compared to the feature response of a data point. The
choice of the n–arity is generally made for the whole decision tree
although it is possible to decide the n–arity at each split node.

• Which split function to be used for the node splitting?
For a given node, split functions may involve either only one feature, a
linear combination of features or a non–linear combination of features.
Although each object may possess a large number of features, only a
handful of features are used to build a decision tree as the use of all
features may not be necessary.

In a linear or a non–linear combination of multiple features there are
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a myriad of possibilities. Though many wise schemes have been pro-
posed, finding the best possible combinations of features is still a hard
task. Additionally, once some combinations are found, finding the cor-
responding thresholds adds to the difficulty of the multivariate split
functions. However, if the correct feature combinations (linear or non-
linear) and threshold values are found, it leads to shallower trees com-
pared to univariate trees. For the same depth, multivariate trees result
in better classification or regression comparatively to univariate trees.

Hence, the usual practice is to select a few pertaining features and
use a limited number of predefined values per each selected feature as
thresholds to generate split configurations.

• How to select the best splitting configuration among many configura-
tions?
As mentioned previously, the selected metric should be able to measure
the decrease of the impurity (or the increase of the purity) resulting
from the splitting of the node. Functions based on Shanon’s entropy
[Shannon and Weaver, 1949], Gini index [Lerman and Yitzhaki, 1984],
and squared error loss [Barbieri and Berger, 2004] are some of the
measures used to select the split configuration that maximizes the de-
crease of the impurity among the available split configurations. This
will be analyzed in more detail in Sect. 2.3.3.

• When to stop the node splitting?
While tree structures grow exponentially, computer resources such as
memory are not unlimited. This often leads to a compulsory stopping
criterion by limiting the maximum depth of the tree depending on the
physical limitations and capabilities of the hardware used. If splitting
a node does not substantially decrease the impurity (or increase the
purity) of the splits, it may also indicate that further splitting is not
necessary. Additionally, leaf nodes are often expected to accumulate
a collection of training objects rather than a single object. Hence, a
limitation on a minimum number of objects accumulated at a node
may also serve as a stopping criterion.

• How to model the similarity of the objects collected at a leaf node?
If the decision tree is used for classification, a leaf node often has a
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representation of all possible classes and percentage of votes per each
class. In the case of regression, leaf node may simply have a real valued
vector or a collection of vectors depending on whether the regression
operation is univariate or multivariate. Additionally, some notion of
the confidence of the proposed similarity is expected to be saved along
with the similarity measures.

• Should the tree be pruned?
Once a decision tree is built, a post processing step called pruning can
be carried out to improve the strength of the tree.

Definition: Overfitting
Overfitting occurs when the prediction model models the training
data too well. It models the noise of the training data and fails
to generalize to unseen data.

Definition: Tree Pruning
Tree pruning is a mechanism that reduces the size and complexity
of a decision tree by removing certain nodes that provide weak
classification/regression outputs or that result in overfitting the
training data.

2.3.3 Selecting The Best Split

Best split selection measures are considered separately for classification and
regression since classification is concerned with categorical outputs whereas
regression is concerned with real valued outputs.

2.3.3.1 Best Split Selection in Classification

Details of a few of the famous best split selection criteria for classification are
presented in this section. We make use of the Fig. 2.8 depicting a splitting
scenario of a split node j for the rest of this section. Let us assume the
following for a given split node j:

• the total number of categories denoted by C = {1, 2, . . . , c}.
• The total training data points at node j is N .
• The number of data points that belong to class i is Ni such that∑c

i=1Ni = N .
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• The number of partitions at node j is s.
• The number of data points that each partition k possesses is Nk such

that ∑c
i=1N

k
i = Nk.

• And finally, the following ∑s
k=1N

k
i = Ni and ∑s

k=1
∑c
i=1N

k
i = N

hold.

Figure 2.8: Best split selection in classification.

Using the Eq. (2.9) page 25, the impurity reduction at split node j with
s resulting splits can be described as a weighted cost of child nodes:

∆cost = cost(Xj)−
s∑

k=1
pk cost(Xj,k) , (2.14)

where pk = Nk

N and Xj,k is the dataset that accumulates at the partition k
(see Fig. 2.8).

In the next sections we present a few of the main measures used to select
the best split configuration in classification, namely, the misclassification
rate, Gini index, information gain, and information gain ratio. Finally, we
carry out a comparison study of these methods.

Misclassification rate: given a split k, the class label of the split can be
defined as the most probable label inside it in the following manner:

ŷk = arg max
i∈C

pi,k , (2.15)
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where pi,k = Nk
i

Nk . Then, the misclassification rate (MR) or the error rate for
the split k is defined as mentioned below:

MRk = (1− pŷk) . (2.16)

Then, the split configuration that minimizes the misclassification rate across
all the splits can be selected as the best split. That is:

θj = arg min
θ∈T

(
(1− pŷj )−

s∑
k=1

(1− pŷk)
)

. (2.17)

Gini index: misclassification error rate had the shortcoming of not choos-
ing the pure splits over the impure splits. Gini index was proposed by
Breiman et al. in the famous Classification And Regression Tree (CART)
induction algorithm to overcome the above mentioned weakness [Breiman
et al., 1984]. Given a split k, the Gini index (or the expected error rate)
(GI ) is written in the following manner.

GI k =
c∑
i=1

pi,k (1− pi,k) =
c∑
i=1

pi,k −
c∑
i=1

p2
i,k = 1−

c∑
i=1

p2
i,k . (2.18)

The split configuration that produces the smallest Gini index reduction will
be selected as the best split. That is:

θj = arg min
θ∈T

(
1−

c∑
i=1

p2
j −

s∑
k=1

(
1−

c∑
i=1

p2
i,k

))
. (2.19)

Information gain: it is one of the most common measure employed in
finding the best split [Bolón-Canedo et al., 2013]. Shanon’s entropy is often
used to measure the information gain. The reduction in entropy (or the gain
of information - IG) due to the reduction of impurity caused by the splitting
is measured in the following manner:

IG = H (Xj)−
s∑

k=1

(
Nk

N

)
H (Xj,k) , (2.20)

where H (Xj) is the Shanon’s entropy. And Shanon’s entropy is defined as
follows:

H (Xj) = −
c∑
i=1

p (Xi) log
(
p (Xi)

)
, (2.21)
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where p (Xi) = Ni
N . Then, Eq. (2.20) can be written in the following manner:

IG =−
[

c∑
i=1

(
Ni

N

)
log

(
Ni

N

)]

−
[

s∑
k=1

(
Nk

N

)(
−

c∑
i=1

(
Nk
i

Nk

)
log

(
Nk
i

Nk

))] (2.22)

Shanon’s entropy based information gain criterion was first used in the
Iterative Dichotomiser 3 (ID3) algorithm by Quinlan [1986].

Information gain ratio: Quinlan demonstrated that information gain
criterion had a strong bias in favor of tests that resulted in many splits. In
order to reduce this tendency, a normalizing factor (g) based on entropy was
proposed in Quinlan [1993]. That is:

g = −
s∑

k=1

(
Nk

N

)
log

(
Nk

N

)
(2.23)

Then, he defined the information gain ration as the normalized information
gain:

IG ratio = IG

g
(2.24)

Behavior of Impurity Measures

In order to study the different behavior of the above mentioned impurity
measures let us consider the following example. Assume a two object class
(c1 and c2) classification example with equal number of data points of each
class at the parent node (Nc1 = Nc2). At one leaf node caused by the split,
if pc1 = p then pc2 = 1− p. Then, the misclassification rate, Gini index, and
entropy for that leaf node (l) can be written in the following manner:

MR (l) = 1−max (p, 1− p) ,

GI (l) = 2p(1− p) , and

H (l) = −p log (p)− (1− p) log (1− p) .

(2.25)

The corresponding graph of the three impurity measures is presented in
Fig. 2.9. All three impurity measures are maximum when the a posteriori
probabilities of the classes are the same (i.e., p = (1− p) = 0.5). And they
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are minimum when the nodes are pure (i.e. only when one type of objects
gets accumulated at the node or when p = 0 or p = 1).

Figure 2.9: Node impurity measure variation for two class binary classi-
fication. Horizontal axis corresponds to the posteriori probability of class
c1 = p. All three measures are minimum when the node is pure (i.e., when
p = 0 or p = 1). Maximum measure values are obtained when the class
probabilities are equal (i.e., when p = (1− p) = 0.5). (The figure is inspired
by [Murphy, 2012].)

2.3.3.2 Best Split Selection in Regression

In regression, since the output variable is quantitative, the available impurity
measures change accordingly.

Squared error loss: the simplest of impurity measure in regression is
the squared error loss. At a split k, the squared error loss is defined in the
following manner:

costk = 1
Nk

∑
x∈Xj,k

(yx − ȳ)2 , (2.26)
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where ȳ = 1
Nk

∑
x∈Xj,k yx. Then, the best split can be selected as the

maximum squared error loss reduction split:

θj = arg max
θ∈T

 1
N

∑
x∈Xj

(yx − ȳ)2 −
s∑

k=1

pk 1
Nk

∑
x∈Xj,k

(yx − ȳ)2

 ,

(2.27)
where pk = Nk

N .

Information gain: the information gain criterion is defined in the same
manner as in Eq. (2.20) but instead of Shanon entropy, the differential en-
tropy is used owing to the fact that the output variable is continuous. The
differential entropy is defined as follows:

H (Xj) = −
∫

y∈Y
p (y) log

(
p (y)

)
dy , (2.28)

where p(·) is the probability density function. It needs to be estimated
from the available data points of Xj . Generally, p(·) is approximated by
Gaussian–based models in the following manner:

H (Xj) = 1
2 log

(
(2πe)d |Λ (Xj)|

)
, (2.29)

where Λ (Xj) is the d× d dimensional covariance matrix.
The best split selection using the squared error loss is illustrated using

the same example presented in Sect. 2.2.3.
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Assume that we want to choose the best split for the root node. Two pos-
sible splits (S1 and S2) are presented in Fig.Ex. 2.5a. and Fig.Ex. 2.5b.
respectively.

(a)

(b)
Figure Ex. 2.5: Best split selection between S1 (a) and S2 (b) using the
squared error loss as presented in Eq. (2.27). The squared error losses
are S1 = 0.11 and S2 = 3.86. Consequently, S2 is chosen as the best
split as it produces the maximum squared error loss reduction.
.
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The information required to calculate the best split between S1 and
S2 are presented in Table Ex. 2.1. The squared error loss reduction (Er)
is calculated below for both S1 and S2 using Eq. (2.27):

ErS1 = 7.79− (0.75× 10.10 + 0.25× 0.40) = 0.11 ,

and
ErS2 = 7.79− (0.50× 5.65 + 0.50× 2.21) = 3.86 .

S2 is selected as the best split since it results in a greater reduction of
the squared error than S1 does.

.

S S1 S2

S1,L S1,R S2,L S2,R

N 80 60 20 40 40
ȳ 11.46 11.65 10.88 13.42 9.50

cost 7.79 10.10 0.40 5.65 2.21
p 1.00 0.75 0.25 0.50 0.50

.

Table Ex. 2.1: Information required to calculate the squared error
loss using Eq. (2.27). L and R denote the left split and the right
split respectively, S is the root node without any splits, N is the
number of data points, ȳ is the mean of all the data points of the
partition, p is the fraction of data points of the partition and cost
is the squared error loss calculated using Eq. (2.26).
.

Although a lot of literature can be found on best split selection measures
[Ben-Bassat, 1982; Shih, 1999; Kothari and Dong, 2000; Arauzo-Azofra et al.,
2011; Bolón-Canedo et al., 2013], they generally agree that none of the
methods are superior than the others in all situations. According to those
studies the optimal suitability of a split selection measure depends on the
problem at hand. For a more detailed description refer the studies mentioned
above.

.
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In this chapter we first introduced the fundamental concepts of machine
learning before introducing decision trees. Then, we gave a detailed
description of the main components of a decision tree along with a
concise description of the relevant literature. The node split function,
split node evaluation, and prediction using leaf nodes were detailed.
Then, we carried out an in–depth analysis of the main steps of the
decision tree induction process as well as how to select the best split
among many splits.

In the next chapter, we will follow the same approach where the
Random Regression Forest concept and the related literature will be
presented first. Then, the key areas of RRF concept will be analyzed
in detail. Finally, we will conclude the chapter with a summary of the
algorithms used for training a Random Regression Forest (RRF) and
the algorithms used to predict the localization of multiple organs in
Computed Tomography (CT) images using an already trained RRF.
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An approximate answer to the right problem is worth a good deal
more than an exact answer to an approximate problem.

- John Tukey

3
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This chapter is dedicated to the analysis of the Random Regression
Forest methodology in the context of multi–organ localization.

First, we present the two main types of ensemble frameworks and a
number of ensemble combination methods in Sect.3.1. Then, in Sect.3.2,
we give a concise description of the evolution of Random Forests (RFs),
different types of RFs and their various applications in the field of med-
ical image analysis. Decision jungles and random ferns are described in
Sect. 3.3.

In Sect. 3.4, we present an in–depth analysis of Random Regression
Forests (RRFs). As we are interested in multi–organ localization using
RRFs, in Sect. 3.4.1, we introduce the concept of multi–organ localiza-
tion. The intrinsic parameters of a RRF are presented in Sect. 3.4.2.
Then, we detail the training set preparation and image preprocessing
steps in Sect. 3.4.3 and Sect. 3.4.5 respectively. The training phase and
the concepts related to the training phase are described in detail in
Sect. 3.4.6. Similarly, we present the prediction phase and the related
concepts in Sect. 3.4.7. Finally, in Sect. 3.5.1 and Sect. 3.5.2, we sum-
marize the algorithmic steps of forest training and prediction with the
use of a few illustrations.

A random forest is an ensemble (collection) of random decision trees.
A Random Regression Forest (RRF) is a special type of random forest.
Ensemble methods are a very powerful concept in machine learning. We
present an overview of ensemble methods in the next section.

3.1 Ensemble Methods

The main purpose of an ensemble method is to combine multiple base esti-
mators (classifiers or regressors) in order to arrive at a combined estimator
which improves the prediction than any single base estimator alone would
have performed [Rokach, 2010]. Rokach identifies two families of ensemble
methods:

• dependent ensemble frameworks, and
• independent ensemble frameworks.
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3.1.1 Dependent Ensemble Frameworks

In a dependent ensemble framework, the base estimators are built in cascade
and each new estimator is built using the output of the previous estimator
(see Fig.3.1). Hence, the knowledge from the previous iteration is employed
to guide the learning of the current iteration. Finally, the output of all
iterations are combined in some manner.

A few examples on this family of ensemble methods are AdaBoost [Fre-
und and Schapire, 1996], variations of AdaBoost such as Real AdaBoost
[Friedman et al., 2000] or Ivoting [Breiman, 1999], and gradient tree boost-
ing [Friedman, 2001]. For further details please refer the corresponding
articles.

Figure 3.1: A dependent ensemble framework. The output of the previous
estimator is input to the next where the process of estimation is further
refined. Finally, at the estimator composer, a combined output is generated
from the output of each estimator. The data components are shown in yellow
and the algorithmic components are shown in blue. (The figure is inspired
by Rokach [2010])

For most of the above mentioned algorithms, the entire training set
should be loaded to the main memory. In addition to that, if the first base
estimator is of poor quality, then, the remaining cascade of estimators pro-
duce a low quality ensemble too. Since the output of the first base estimator
is propagated throughout the following cascade of estimators, overfitting can
easily occur [Quinlan, 1993]. These are the main criticisms of the dependent
ensemble frameworks.
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3.1.2 Independent Ensemble Frameworks

The main feature of an independent ensemble framework is to build several
estimators independently and combine the output of each estimator in some
manner to obtain the final estimation. The entire training set is divided
into disjoint or overlapping datasets which are in turn used to learn separate
estimators (see Fig. 3.2).

One advantage of this process is the ability to use independent induc-
tion algorithms if desired. Since each estimator is learned independently, the
learning process can easily be parallelized too. Additionally, the indepen-
dent ensemble frameworks do not possess the weaknesses of the dependent
ensemble frameworks that were due to the dependency among the estima-
tors.

Figure 3.2: An independent ensemble framework. Estimators are learned
independently of each other either by using disjoint or overlapping datasets
from the training set. Finally, a combined output is produced at the estima-
tor composer. The data components are shown in yellow and the algorithmic
components are shown in blue. (The figure is inspired by Rokach [2010])

Breiman proposed the concept of bagging (bootstrap aggregating) which
is one of the most famous independent ensemble frameworks. Each estimator
is trained using a sub sample of some size, taken from the training set with
replacement. Bagging methods are suitable for unstable inducers as bagging
reduces this instability and improves the estimator accuracy [Breiman, 1996].

Another famous sibling of the family of independent ensemble frame-
work is the random forest ensemble. Instead of training each split node of
a decision tree with all available features, a relatively small subsamples of
features are chosen randomly for the training. This helps in reducing the
correlation among the individual trees which in turn leads to better estima-
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tors as a composed ensemble [Breiman, 2001]. Since the entire feature space
is divided into small subsamples, it is relatively easy to work with a very
high dimensional feature spaces.

Although the concept of random ensembles were originated with deci-
sion trees, it can be applied to any supervised learning technique. A more
detailed overview of the concept of random forests is presented in Sect. 3.2.

3.1.3 Ensemble Combination Methods

Irrespective of whether the ensemble method is dependent or independent,
combining the outcome of each estimator is a very important step. Rokach
[2009] identifies two main families of combination methods. Namely, weight-
ing combination methods, and meta-learning combination methods. We de-
scribe the weighting combination methods and provide a concise analysis of
them in Sect. 3.1.3.1 and Sect. 3.1.3.2 respectively.

3.1.3.1 Weighting Combination Methods

As the name suggests, each learned estimator is given a fixed or dynamic
weight that contributes to the final ensemble estimation. Some of the most
popular weighting combination methods are presented below.

Simple averaging: This is the simplest combination method available.
Each estimation is given a similar weight as all the estimations from each
inducer is simply averaged in the following manner:

p(y|v) = 1
T

T∑
t=1

pt(y|v) , (3.1)

where pt(y|v) is the posterior distribution estimated by the tth inducer and
T is the number of inducers.

Simple multiplication: If independence can be assumed among the dif-
ferent inducers, then instead of averaging all the estimations from each in-
ducer, one can multiply each estimation to arrive at the final estimation:

p(y|v) = 1
Z

T∏
t=1

pt(y|v) , (3.2)
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where pt(y|v) is the posterior distribution estimated by the tth inducer, T
is the number of inducers and Z is the normalizing constant ensuring unit
probability.

Performance weighting: The idea behind performance weighting is to
give more weight to the estimators that are more accurate. The accuracy
is measured using a validation dataset and the weights are calculated in the
following manner:

ωt = 1− Et∑T
t=1 (1− Et)

, (3.3)

where Et is the error of the tth inducer and accuracy is defined as 1 − Et.
Then, the combined estimation is simply:

p(y|v) =
T∑
t=1

ωtpt(y|v) , (3.4)

where pt(y|v) is the posterior distribution estimated by the tth inducer and
T is the number of inducers.

In meta-learning combination methods, the already learned estimators
and their estimation of the training data are used to learn new estimators
and combined at a higher level. Presenting more information on meta-
learning combination methods is beyond the scope of this dissertation. For
further information, refer to Rokach [2009, 2010].

3.1.3.2 Weighting Combination Methods – Analysis

The effect of the ensemble combination method on the final estimation is
illustrated in Fig. 3.3. Each inducer produces a posterior estimation pt(y|v)
modeled as a Gaussian. More confident estimations result in taller and
thinner Gaussian distributions whereas shorter and wider curves correspond
to less confident estimations. When individual estimations are combined
using simple averaging, the influence of less confident estimations can be
observed too (see Fig. 3.3a). On the contrary, when simple multiplication
is used, the influence of less confident estimations becomes almost invisible
(see Fig. 3.3b). But in both cases, the final estimation is highly influenced
by the most confident estimation.

We present random forests and different types of random forests in the



45 3.2. RANDOM FORESTS

(a) (b)

Figure 3.3: The effect of the ensemble combination method on the final esti-
mation. The posterior distributions given by the three inducers are shown in
color (p1(y|v), p2(y|v), and p3(y|v)). The combined esimation is presented
by a thick black curve (p(y|v)). (a) Estimations are combined using simple
averaging. Final distribution displays evidence of the underlying individ-
ual distributions. (b) Estimations are combined as products of individual
estimations (Z = 4.7 × 10−7). Final distribution loses any evidence of the
underlying distributions. In both scenarios, the final distribution is highly
influenced by the most confident individual estimation.

next section.

3.2 Random Forests

In this section, first, we provide a concise description of the evolution of
random forests. Then, descriptions of types of random forests and their
uses in the context of medical image analysis are presented.

As previously mentioned in Sect. 3.1.2, the concept of random forest is
an independent ensemble method. The fundamental idea is to train each
split node of a decision tree with a relatively small subsample of features
chosen randomly instead of using all available features.

3.2.1 Evolution of Random Forests

The first reported use of randomization in literature is found in the work
of Amit and Geman on hand written digit recognition using decision trees
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[Amit and Geman, 1994]. They stated that using random sub-sampling
of features reduces the dependence among the trees and that this led to
powerful ensembles only using simple averaging as the combination method.
Ho in a parallel study proposed a similar strategy of building multiple trees
using randomly selected subspaces of the entire feature space also on hand
written digit recognition [Ho, 1995]. Both Amit and Geman and Ho built
a single decision tree using the entire feature space and compared it with
an ensemble of decision trees built using random sub-samples of features to
empirically prove the superiority of the random ensemble. This idea is the
foundation of this dissertation.

As previously shown in the Sect.3.1.2, bagging was proposed by Breiman
as another concept to reduce the correlation between the decision trees in
order to increase the estimation capacity. The concepts of bagging and ran-
domized sub-samples of features were first employed together by Ho [1998]
who proposed the random subspace method.

In 2001, Breiman proposed the famous study titled Random Forests
where the concepts of bagging [Breiman, 1996] and randomization [Amit
and Geman, 1994; Ho, 1995] were employed in combination to carry out
classification and regression tasks using decision trees.

Since the establishment of random forests in 2001 by Breiman many
improvements and/or variations have been proposed by various researchers
[Robnik-Šikonja, 2004; Rodriguez et al., 2006; Geurts et al., 2006; Bernard
et al., 2009; Baumann et al., 2014].

In the proposal of Robnik-Šikonja [2004], the author employed five split
selection measures to build different trees that reduced the correlation be-
tween the trees. They also proposed a voting weight mechanism where they
discarded certain trees entirely for certain classes.

The idea of rotation forest was proposed by Rodriguez et al. [2006] where
they generated new features from the original features. They split the fea-
ture space into a number of subsets and carried out principal component
analysis to obtain the new features. This is interpreted as a rotation over
the number of axis similar to the number of feature space splits, hence the
name rotation forest.

Extra trees proposed by Geurts et al. [2006] randomly chooses not only
the feature sub-space but also the thresholds of the split function at each
split node. In contrast to other methods described so far, the algorithm does
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not use bagging, instead, it uses the whole training set for each tree. In the
most extreme case, only one feature and one threshold is selected resulting
in extremely randomized trees. They are extremely fast to build as no split
node optimization needs to be carried out. The authors provided empirical
results that showed that extremely randomized trees performed as well as
random forest algorithms.

Bernard et al. provided empirical evidence of the existence of a subset of
random trees that lead to reduced generalization error compared to using the
full set of random trees built by the classical induction algorithms [Bernard
et al., 2009]. Hence they proposed to do a selection of the induced random
trees that are added to the final ensemble using techniques such as sequential
forward selection or sequential backward selection [Hao et al., 2003] instead
of adding all the induced trees arbitrarily.

Inspired by the AdaBoost technique, Baumann et al. [2014] advocated
assigning a class specific vote to each leaf node of the forest. Votes were
based on the depth of the tree rather than on an error measure. A linear
combination of weighted leaf nodes were used to obtain the final estimation
rather than using a majority voting technique.

Although different categorizations exist in the literature, we find there
are four main types of random forests. They are:

• classification forests,
• Hough forests,
• clustering forests and
• regression forests.
The following sections present brief introductions about these four dif-

ferent types of random forests. Additionally, a concise summary of their
applications in the field of medical image analysis is also included for each
type of random forest.

3.2.2 Classification Forests

Undoubtedly, Random Classification Forests are the most famous members
of the family of random forests. A Random Classification Forest (RCF) is a
pure ensemble of randomly trained classification trees. The output of each
classification tree would be purely categorical.

RCFs have been employed to solve classification problems in numerous
application fields. In medical image analysis, RCFs have been used to detect
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and localize multiple organs in Computed Tomography (CT) images [Cri-
minisi et al., 2009], delineate the myocardium in echocardiographic images
[Lempitsky et al., 2009], segment multiple sclerosis lesion in Magnetic Res-
onance (MR) images [Geremia et al., 2011] among many other applications.

Although Criminisi et al. [2009] have used RCFs to detect and localize
multiple organs in CT images, the same authors claimed that the local-
ization results using RRFs were twice as better than the results obtained
using RCFs on identical training and prediction sets [Criminisi et al., 2010].
Consequently, we also used RRFs for multi–organ localization.

3.2.3 Hough Forests

Duda and Hart [1972] demonstrated how to use the Hough transform not
only to detect straight lines in images but curves as well. The image points
were transformed into its quantized parameter space. Each potential line
in the image space would then cast a vote in the parameter space. The
maximum votes in the parameter space would correspond to lines in the im-
age space. A generalization of the Hough transform was proposed to detect
generic parametric shapes by Ballard [1981]. Presently, Hough transform
generally describes any detection procedure that is based on aggregation of
Hough votes originated from an image or image sequences [Gall et al., 2011].

According to [Gall and Lempitsky, 2009], a Hough forest can be described
as a classification forest augmented with spatial consistent information about
the centroid of the bounding box of the object1. Similarly to a classification
forest, the split nodes try to minimize the impurity of the categorical labels
(classes). Additionally, they also try to minimize the variance of the spatial
information regarding the centroid of the bounding boxes of the respective
classes. Generally, only one of these two uncertainty measures is considered
during the selection of the best split. Finally, the leaf nodes contain not
only the proportions of training objects that belong to each class but also
the spatial information about the centroids.

At the testing phase, the testing data points that get accumulated at
leaf nodes cast a probabilistic vote (generally, a Gaussian vote) about the

1 In that sense, it is quite counter intuitive to call them Hough forests as in this scenario,
spatial information are added in the image space but not in a parametric space as the
original Hough transform proposes to. The casting of votes by the forest leaves is similar
to the original Hough transform and it is the only link with the original method.
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centroid of the detected object weighted by the class proportion saved during
the training phase. Although each vote casted by a leaf may not be coherent
and point to the same location, all votes casted by the the leaves of the forest
taken together usually lead to the correct location.

Hough forests have been used in general machine learning contexts of
object detection [Gall and Lempitsky, 2009], object detection and tracking
[Gall et al., 2011], and pose estimation [Tejani et al., 2014]. In the context
of medical image analysis, Hough forests have been employed to segment
the left ventricle [Milletari et al., 2014], prostate [Zettinig et al., 2015], and
multiple organs (left ventricle, prostate, and mid brain) [Milletari et al.,
2015] in ultra sound images.

3.2.4 Clustering Forests

Decision forests recursively partition the input feature space. Even if no
supervision is provided (i.e., no output labels for classification or no output
vectors for regression, hence, no training data), a decision forest still parti-
tions the input feature space. Blockeel et al. [1998] describes this behavior
as the inherent behavior of clustering. Hence, a collection of decision trees
without any supervision can be interpreted as a clustering forest where every
clustering tree of the forest yields a clustering of the input feature space.

Since no training data is provided, the objective function has to be dif-
ferent from the known classification or regression counter parts. If the data
points in the node are assumed to be distributed according to a Gaussian
distribution, the information gain criteria of the input features can be used
as the objective function similar to Eq. (2.20) in page 31. The entropy (H)
of a node (j) is described in the following manner.

H (Xj) = 1
2 log

(
(2πe)d|Λ(Xj)|

)
, (3.5)

where Xj is the input data points at the node, d is the dimension of the input
features, and Λ(Xj) is the covariance matrix. Similarly, each leaf node would
be described using a Gaussian distribution which describes the cluster.

During the testing phase, one would be interested to know to which
cluster a previously unseen data point belongs to. The data point would be
collected at a leaf per tree of the forest. And finally the ensemble model will
average the estimation from each tree to define the final cluster of the data
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point.
The idea of clustering forests have been used in generating codebooks2

that were eventually used for image classification tasks [Moosmann et al.,
2007, 2008] including object classification in CT images [Mouton et al., 2014].

3.2.5 Regression Forests

The second most famous type of random forests is Random Regression
Forests (RRFs). They differ from their famous sibling, RCFs as the output
of RRFs is continuous whereas the output of RCFs is categorical. They have
been used to analyze medical images (from Sect. 3.2.5.1 to Sect. 3.2.5.3) and
other types of images (Sect. 3.2.5.4).

3.2.5.1 Medical Images Related Uses

The pioneering work of Criminisi et al. in 2010 lead to the first application of
RRFs for multi-organ localization in medical images (CT images) [Criminisi
et al., 2010]. The ingenuity of the proposal was the manner in which the
multi-organ localization problem was transformed into a multivariate regres-
sion problem. It comprised the regression of a 6D displacement vector from
the bounding box walls of the organs to any given voxel. In this pioneering
work, displaced appearance features (mean intensities of displaced cuboids)
were employed to describe the given CT images. In 2013, the same team
of researchers proposed a modified implementation of RRFs that enhanced
the previously achieved results by modifying the split node optimization
method, the description of the random process, and the eventual usage of
this description for prediction [Criminisi et al., 2013].

Pauly et al. proposed a similar solution containing RRFs to detect and
localize multiple organs in MR images [Pauly et al., 2011]. In contrast to
the CT images, the appearance values (gray level values) of MR images are
not directly related to the measured physical entity3. Consequently, they
proposed a new feature set called local binary pattern descriptors in order to
describe the MR images. These descriptors result is a binary feature vector
that is built using the water and fat channels of the MR image sequence.

2A codebook is essentially a collection of visual words where a visual word is a vector
of dense or sparse local image descriptors.

3 The graylevel values of CT images are directly related to the Hounsfield Unit (HU).
HU scale is the quantitative scale of radiodensity and is obtained from a linear transfor-
mation of the measured attenuation coefficients.
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The above mentioned studies of RRFs in the process of organ localization
in CT and MR images have paved way to many interesting solutions to nu-
merous pertinent problems in medical image analysis. These contributions
can mainly be described in two categories: 1.) localization and/or seg-
mentation of bone structures (see Sect. 3.2.5.2) and 2.) localization and/or
segmentation of soft-tissue organs (see Sect. 3.2.5.3).

3.2.5.2 Bone Structure Localization and/or Segmentation

RRFs have been used for the following research studies related to shoulders
[Tschannen et al., 2016], vertebrae [Glocker et al., 2012; Roberts et al., 2012;
Bromiley et al., 2015], hand [Donner et al., 2013; Ebner et al., 2014], and
pelvis [Chen and Zheng, 2013, 2014; Chu et al., 2014, 2015; Lindner et al.,
2012].

Recently, Tschannen et al. [2016] used RRFs to find the articular margin
plane in shoulder arthroplasty4 in CT images. First, the parameters of the
articular margin plane (the center of the plane and the two angles of the
normal of the plane relative to the CT image plane) were roughly estimated
by a RRF using the displaced mean intensity cuboid features. The first
coarse estimation was then refined using a cascade of 2 RRFs using a new
feature type introduced in the study called sheetness-based ray features.

RRFs have been used for the automatic identification and localization
of vertebrae in medical images. Glocker et al. [2012] used RRFs to roughly
detect and localize all vertebrae visible within a given CT image as the first
step of the two step procedure. They used displaced cuboid appearance
features. In a 3 phase procedure to localize vertebrae in DXA5 images,
Roberts et al. [2012] employed RRFs with Haar features in the first phase
to locate vertebral endplates. Bromiley et al. [2015] exploited RRFs to define
a constrained local model to localize vertebrae in DXA images.

In localizing landmarks in hand X-ray and full body CT images, Donner
et al. [2013] used a RCF first to get a rough localization before refining the
localization with a RRF. In the final stage the authors used a graph theory
technique to obtain the final predictions. Ebner et al. [2014] proposed a

4Shoulder arthroplasty is the orthopedic surgical procedure that replaces the shoulder
joint by an artificial prosthesis.

5Dual-energy X-ray Absorptiometry (DXA) is an enhanced X-ray technology that mea-
sures bone mineral density and bone loss.
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two step landmark localization in hand CTs images which involved RRFs in
both steps. First coarse landmark localization took into consideration bigger
and long range displaced cuboid appearance features. The second cascade
localization step used smaller and short range features with training and
testing voxels used only around the vicinity of the first estimations.

The femur and pelvis bones of 2D anteroposterior pelvis X-ray images
were fully automatically segmented by Chen and Zheng [2013] in a two step
procedure. In the first step, an image normalization was carried out by local-
izing 22 global landmarks involving left pelvis, right pelvis, left femur, and
right femur bones using a RRF per landmark. Estimated landmarks were
then fitted to the global statistical shape model learned using the 22 land-
marks from the training phase. In the second step, a shape optimization was
carried out similarly. The local landmarks of left pelvis and left femur con-
sisting of 59 and 97 points respectively were estimated using another set of
RRFs, one per landmark, before fitting the learned local shape models. For
this study, image patches generated by multi-level histogram of oriented gra-
dients were used as features. The same authors proposed a novel version of
the method where they used features generated by flexible-level histograms
of oriented gradients [Chen and Zheng, 2014]. The other improvement of
the novel proposal was the pre-selection of the efficient features for training
based on the trace ratio optimization mechanism.

RRFs were employed as the first landmark localization step of fully au-
tomatic hip joint segmentation in CT images [Chu et al., 2014, 2015]. The
next steps of the procedure involved registering atlases over the first local-
ization result before finally fitting an articulated statistical shape model to
obtain the final segmentation. Mean and variance of voxel intensities of a
displaced cuboid were used as the features for the study.

To segment the femur bones in anteroposterior pelvis X-ray images, Lind-
ner et al. [2012] proposed a two step procedure using RRFs. First, a RRF
was used to find the center of a reference frame, relative to which, the con-
tours of the femur were segmented using another RRF.

3.2.5.3 Soft–Tissue Organ Localization and/or Segmentation

The following studies have employed RRFs in soft–tissue organ localization
and/or segmentation. They include organs such as the brain [Kim et al.,
2015; Han et al., 2014], heart [Zhen et al., 2014, 2016; Kelm et al., 2011], left
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and right kidneys [Cuingnet et al., 2012], liver [Gauriau et al., 2013], and
multiple abdominal organs comprising the stomach, liver, spleen, kidneys,
and gallbladder [Gauriau et al., 2014].

Deep brain simulation treatments are crucial part of neuro-degenerative
diseases such as Parkinson’s disease. Only MR machines that produce very
high magnetics fields, such as 7 T fields6 are capable of direct visualization
of these deep brain simulation structures. But 7 T MR machines are not
commonly available whereas 1.5 T MR machines are. Kim et al. [2015]
successfully proposed a method that learned a mapping of shape and pose
parameters from 7 T MR machines to 1.5 T MR machines using RRFs.

Random Regression Forests were used to estimate the volume of left and
right ventricles of the heart in MR images [Zhen et al., 2014, 2016]. The
regression forest was used to map multivariate input (the feature vector)
directly to bi-ventricular areas through which they calculated the volumes.
Multi-scale 2D image patches were used as features. In the former study
[Zhen et al., 2014], features were generated using pyramidal Gabor features
and histogram of oriented gradients in addition to the appearance features.
In the latter study [Zhen et al., 2016], an unsupervised 3 layer deep learning
network was used to learn the features automatically. In a different study,
Han et al. [2014] used RRFs to detect some landmarks in brain MR images
that are used for registration.

In a study that was aimed at detecting, grading, and classifying coronary
stenoses7 in CT angiography, RRFs were used to estimate the lumen8 of the
coronary [Kelm et al., 2011].

Cuingnet et al. used a RRF to localize the left and right kidneys as
the first step in their automatic kidney segmentation proposal [Cuingnet
et al., 2012]. Then, they used the first localization estimations and their
neighborhoods to train another RRFs to refine the location of the centroid
of each kidney separately. The centroid prediction step was constrained to
small displacements and was carried out multiple times until convergence.

In the generic and automatic work flow proposed for liver segmentation
in CT images by Gauriau et al. [2013], RRFs were employed for the first
step of liver localization. The same team of researchers proposed a modified

6Tesla (T) is the SI unit for measuring the strength of a magnetic field.
7The coronary stenosis is the abnormal narrowing of the coronary blood vessel.
8The lumen is the aperture within a tubular structure, in this case, the inside space of

the coronary blood vessel.
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approach where they used RRFs in a two step procedure to localize multiple
organs in the abdomen cavity [Gauriau et al., 2014]. In the first step, a
RRF was used to localize all organs simultaneously. In the second step,
another RRF per organ was used to refine the localization using a pre–built
probabilistic atlas and confidence maps.

3.2.5.4 Non–Medical Image Related Uses

There are a vast number of application domains that have acquired the
services of RRFs to propose novel and ingenious solutions. We make an
attempt to provide a few examples that are related to the domain of image
analysis as it is the enclosing domain of the medical image analysis.

RRFs have been extensively used in articulated pose estimation, i.e.,
recovering configurations (poses) of people from images and/or image se-
quences. The 2D human poses are estimated from the color images. Among
the many studies that have addressed the above mentioned problem, the
studies by [Dantone et al., 2013, 2014] have proposed solutions using RRFs.
Depth images are used to estimate the 3D human poses. Although a very
famous algorithm on 3D human pose estimation by Shotton et al. [2011] em-
ploys only a RCF, the extension proposed by Girshick et al. [2011] instead
employs a RRF. A very interesting proposal from Kostrikov and Gall [2014]
details how to estimate the 3D humans poses from simple 2D color images
using RRFs.

A special case of pose estimation is the case of head pose estimation. The
pose of the head is generally expressed with respect to the 3D position of
the nose and the angles of rotation of the head. Li et al. [2010]; Fanelli et al.
[2011]; Tang et al. [2011] have proposed head pose estimation procedures
incorporating RRFs.

Estimation of age from the 2D color images is another challenging prob-
lem to which solutions have been proposed with the application of RRFs
[Montillo and Ling, 2009].

Though we have introduced 4 different types of random forests in this
section 3.2, other types of categorizations exist in the literature. For a
different and more informative categorization of random forests, please see
Criminisi and Shotton [2013].
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3.3 Beyond Random Forests

As mentioned previously, a random forest is an ensemble method where
its base predictors are randomly trained decision trees. When the base
predictor type diverges away from a tree (e.g., by a directed acyclic graph),
the resulting ensemble is an entity that resembles a forest though not exactly
a forest. In the sections that follow, we introduce two types of such ensemble
methods. More precisely, decision jungles and random ferns.

3.3.1 Decision Jungles

The growth of a decision tree is exponential. Hence given enough data, in
order to obtain acceptable estimation capabilities, the trees in a forest would
need to be grown extremely large. Shotton et al. [2013] claimed that it may
become impossible to grow or use random forests having decision trees with
desired depths in a memory intensive environments such mobile or embedded
applications. In order to address this shortcoming, they proposed decision
jungles.

A decision jungle consists of directional acyclic graphs instead of binary
trees. The memory consumption is decreased by reducing the number of
nodes of a tree by introducing a node merging technique. Consequently, in
decision jungles the path to a leaf node from the root is not unique (see
Fig. 3.4).

The only difference in training a decision jungle from a decision forest
are found in the best split selection and node merging steps. For further
information, refer to Shotton et al. [2013].

3.3.2 Random Ferns

Random ferns were first proposed by Özuysal et al. [2007] in order to cater
for the requirements of fast learning, fast estimation and reduced memory
consumptions [Pauly, 2012]. Özuysal et al. assumed independence between
features in order to propose this naive Bayesian method of random ferns.

Instead of hierarchically partitioning the input feature space like a de-
cision tree (see Fig. 3.5a), a random fern partitions the whole feature space
with each level of the fern, called a decision stump (see Fig. 3.5b). This is
identical to building a decision tree with the same split function across the
split nodes of the same level [Özuysal et al., 2010] (see Fig. 3.6). Each final
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Figure 3.4: A directional acyclic graph. Each split node has two children
whereas each node except the root node may have one or more parent nodes.
The two colored levels are the parent level (Np) and child level (Nc). The
merge criterion in this scenario is Nc = d1.5Npe. This merging behavior
reduces the exponential growth of the decision tree.

partition represents a multinomial distribution for different classes learned
at the training phase. At the testing phase, the output of each fern was
combined in a semi-naive Bayesian fashion to obtain the final estimation.
For a more detailed description on random ferns, refer to Özuysal et al.
[2007, 2010].

Pauly et al. [2011] have used random ferns to automatically localize
multiple organs in MR Dixon sequences. Random ferns have been used in
key point recognition Özuysal et al. [2007, 2010], image classification [Bosch
et al., 2007], action recognition [Oshin et al., 2009], and capsule endoscopy9

image classification [Li et al., 2014] among other applications.

9Capsule endoscopy is a mechanism that enables capturing the digestive tract through
images, specially the small intestines. The system comprises a pill shaped miniature
camera that the patient swallows, which in turn takes images of the digestive system until
it passes with the fecal matter.
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(a) (b)

Figure 3.5: The 2D feature space consists of data points belonging to four
classes each presented in a different color. The resulting partitions are shown
by lines having the same color as the corresponding nodes. (a) A tree parti-
tions the input feature space hierarchically. (b) A fern partitions the entire
input feature space by each decision stump. Consequently, ferns are not
hierarchichal.

Figure 3.6: Each split node of a decision tree possesses a different split
function (Left). A random fern (Right) can be built if all the decision
functions in one level of the tree are the same (Middle). Hence, a fern is a
specialization of a tree.
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3.4 Analysis of Random Regression Forests

In the context of this dissertation, the ultimate goal of using a RRF is to fully
automatically localize multiple organs in CT images. Hence, an in–depth
analysis of RRFs in the context of multi–organ localization is presented in
the following sections.

First and foremost, a concise analysis is carried out on the multi–organ
localization in medical images in Sect. 3.4.1. The details on the intrinsic
parameters of a RRF are presented in Sect. 3.4.2. In Sect. 3.4.3, we present
the Random Regression Forest ensemble model. Then, we carry out a short
analysis on the training set preparation and on the image preprocessing steps
in Sect. 3.4.4 and Sect. 3.4.5 respectively. In Sect. 3.4.6 and Sect. 3.4.7, we
thoroughly analyze the training phase and the prediction phase respectively.

To the best of our knowledge there are 6 studies that use random regres-
sion forests to automatically predict the localization of bounding boxes of
multiple organs in medical images [Criminisi et al., 2010; Pauly et al., 2011;
Cuingnet et al., 2012; Criminisi et al., 2013; Gauriau et al., 2013, 2014].
Among them, 3 of the studies focus solely on multi–organ localization only
using Random Regression Forest without any other concept [Criminisi et al.,
2010; Pauly et al., 2011; Criminisi et al., 2013]. The other three use RRFs
either as a first localization step in a broader segmentation approach [Cu-
ingnet et al., 2012] or use additional concepts to complement the use of
RRF [Gauriau et al., 2013, 2014]. Although there are numerous other stud-
ies that use RRFs for many medical image analysis tasks (see Sect. 3.2.5.1),
not much information is available on the RRFs. This may be due to the fact
that RRFs are only used as a tool in a single step of multi step procedure
where the main focus is not on RRFs or localization. Hence, our analysis of
RRFs for multi–organ localization revolves around the 6 studies mentioned
above. These studies are presented in Table 3.1.

All the random regression forests mentioned in Table 3.1 are composed of
binary Random Regression Trees (RRTs). Hence our analysis only focuses
on binary random regression trees. The analysis of n-ary RRTs is out of the
scope of this dissertation. We often refer to or do comparisons with these 6
studies in Chap. 5, Chap. 6, and Chap. 7.
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Study
Num.

Study Title Pure
RRF

(1) Criminisi
et al. [2010]

Regression forests for efficient anatomy
detection and localization in CT studies

Yes

(2) Pauly et al.
[2011]

Fast multiple organ detection and localiza-
tion in whole–body MR dixon sequences

Yes

(3) Cuingnet
et al. [2012]

Automatic detection and segmentation of
kidneys in 3D CT images using random
forests

No

(4) Criminisi
et al. [2013]

Regression forests for efficient anatomy
detection and localization in computed to-
mography scans

Yes

(5) Gauriau
et al. [2013]

A generic, robust and fully automatic
workflow for 3D CT liver segmentation

No

(6) Gauriau
et al. [2014]

Multi–organ localization combining
global–to–local regression and confidence
maps

No

Table 3.1: Main studies found in the literature that focus on multi–organ
localization using RRFs. The studies are presented in the chronological
order. The final column of the table signifies whether any additional concept
is used. These studies are often referred or compared in Chap. 5, Chap. 6,
and Chap. 7.

3.4.1 Multi–Organ Localization

Human brain–eye combination is extremely good at guiding the attention
and eyes to the regions of interest in natural scenes [Oliva and Torralba,
2007]. Although localization of objects of interest in a scene is a natural
process that often occurs involuntary for humans, it is very difficult for com-
puters to have the same vision capabilities [Mibulumukini et al., 2013]. The
innate ability of humans to model and understand context, and the inability
of computers to do so have made the context modeling in computer vision a
very pertinent research topic [Oliva and Torralba, 2007; Mibulumukini et al.,
2013].

Analyzing a medical image in order to localize an organ can be accom-
plished by two contrasting approaches.

1. By looking at the organ itself. First, the organ is described in a
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manner that a computer can interpret. The appearance of the organ
(how its gray values are spatially spread), the contours of the organ,
or the discriminating features of any image filter can be used for this
description. Then, given an image, one can search which parts of the
image is most similar to the description of the organ.

When multiple organs need to be localized simultaneously, this ap-
proach translates into repeating the process as many times as the
numbers of organs. Consequently, this may not be the best way for-
ward in multi–organ localization.

2. By looking at the context of the organ. Instead of describing
the organ itself, in this approach an attempt is made to describe the
context of the organ. One way of achieving this is by defining how
the organ is spatially situated with respect to some land marks. An
example of this would be describing the localization of the right kidney
as below the liver, right to the spine, and above the right pelvis, etc.
(see Fig. 3.7).

Explicitly describing these contexts would mean localizing each organ
explicitly (accordingly to the previous example, in order to localize
the right kidney, the localization of the liver, spine, and right pelvis
should be known in advance). Implicit description of these contexts
would make it possible to use these context information without having
to localize any of the organs explicitly. If one can recursively divide
the input space into more coherent clusters, the end result would be an
implicit description of the context of the whole image. This is exactly
what a random regression forest does.

Unlike the previous instance, a single pass of the image is sufficient
in order to localize multiple organs simultaneously. One may argue
that humans localize (or detect) objects in a manner similar to this.
But if humans use the context information, they also make use of the
information related to the object to obtain their conclusions with a
higher confidence.

10Unless otherwise specified all the CT images are presented with the same view setting
(window width = 350HU and window level = 40HU) throughout the dissertation.
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Figure 3.7: The right kidney is found below the liver, right to the spine and
above the right pelvis. Hence, if one looks at below the liver, right of the
spine and above the right pelvis, one should be able to localize the right
kidney. The contrast of the image is adjusted for the best viewing purposes
of the abdominal soft tissue organs (window width = 350HU and window
level = 40HU [Johnson et al., 2007])10.

3.4.2 Intrinsic Parameters

The number of regression trees and the maximum depth of a regression tree
are the intrinsic parameters of a random regression forest. The extensive
empirical study carried out by Oshiro et al. [2012] stated that there is no
mechanism in figuring out the number of trees in a random forest. They also
provided empirical evidence to demonstrate that adding more trees would
not necessarily result in a forest with higher performance.

The standard practice is to fix a number of trees a priori at the start
of the induction process. Bernard et al. [2009] proposed a method where
they argued about the existence of a subset of tree from a bigger ensemble.
After creating a random forest with a large number of decision trees, they
proposed to add or subtract a tree from a set initially selected after an
a posteriori evaluation of the performance of the forest. However, all the
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studies mentioned in the Table 3.1 follow the standard procedure of setting
the number of regression trees a priori. Concerning the maximum number
of decision levels of a tree, the standard practice is to tune it depending on
the application. The values of the intrinsic parameters of the main studies
are presented in Table 3.2.

Study Num. Num. of Trees Max Decision Levels
(1) 12 7
(2) 6 8
(3) 7 15
(4) 4 12
(5) 7 12
(6) 3 14

Table 3.2: Intrinsic parameters of the studies presented in the Table 3.1.

Analyzing the values presented in Table 3.2 and considering that the
studies are ordered from the oldest to the newest, the reduction of the num-
ber of trees and the increase of the maximum decision levels are clearly
observed. It may suggest that the use of 3 to 5 random regression trees with
maximum decision levels around 12 to 14 is the most popular choice for
the multi–organ localization problem. This is probably due to the physical
constraints imposed by the availability of Random Access Memory (RAM).

3.4.3 Random Regression Forest Ensemble

As described in Sect.3.1.2, a RRF is an independent ensemble method. The
ensemble method can be divided into four main parts (see Fig.3.8). Namely,
training set preparation phase, image preprocessing phase, training phase,
and prediction phase.

In Sect.3.4.4, we present how to localize organs manually and discuss the
differences between localization and segmentation. Next, the image prepro-
cessing steps commonly used in organ localization and their importance are
briefly presented in Sect.3.4.5. We describe the regression problem formula-
tion using offset vectors, the features that capture the spatial context, how
split nodes and leaf nodes are trained in Sect. 3.4.6. Finally, in Sect. 3.4.7,
another analysis is carried out on the prediction phase of a RRF.
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Figure 3.8: The RRF ensemble can be divided into the training set prepara-
tion phase, image preprocessing phase, training phase and prediction phase.
Data components and algorithmic components are shown in yellow and blue
respectively.

3.4.4 Training Set Preparation Phase

Although training set preparation phase is not to be found in the literature
as a main phase of RRF ensemble method, we believe in its inclusion as a
main step of the process.

Given a medical image, the localization of an organ can be achieved,
for instance, by defining a bounding box tightly around that organ. In order
to delineate a bounding box around an organ, one has only to find the two
extreme points containing the organ. In our implementation of bounding
box delineation using CamiTK, the user only has to click 6 points (the two
extreme points in each direction) in order to mark the bounding box of an
organ.

In order to manually segment an organ, the user has to label the regions
belonging to the organ, usually by drawing all its boundaries (or contours).
Even if semi–automatic guidance can be provided (e.g., snakes or active
contours), this is generally a very tedious and long process compared to
delineating a bounding box and should be done by a trained expert. Unfor-
tunately, expert time is rare and expensive. Hence, the ability to provide
training data relatively easily and quickly for localization is a big advantage.
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3.4.4.1 Bounding Box Vector Definition

The bounding box is denoted by an axis aligned 6 Dimensional (6D) dis-
placement vector (in mm) to the 6 walls of the bounding box (right, left,
anterior, posterior, inferior, and superior) of the organ (c) from the origin
of the image (see Fig. 3.9). This vector is called the bounding box vector
(b(c)):

b(c) =
(
brc, blc, bac , bpc , bic, bsc

)
, (3.6)

where c is the organ, r = right, l = left, a = anterior, p = posterior, i =
inferior, and s = superior. These directions (r, l, a, p, i, and s) correspond to
how a radiologist interprets the image directions in synchronization with the
human body (see Fig. 3.10).

Figure 3.9: A coronal slice of a CT image and the 4 visible components of
the bounding box vector of the right kidney. The bounding box vector is
composed of 6 displacements from the origin of the image to each bounding
box wall. (Since only one bounding box of an organ is shown in the figure
the organ identifier (c) is omitted in the bounding box vector components
for visibility. e.g., blc is shortened as bl.)11
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Figure 3.10: A radiologist observes the patient from the patient’s feet to
head. The image direction interpretation is based on this observation. The
X, Y , and Z image axises progress from the right to left (r → l), anterior
to posterior (a → p), and inferior to superior (i → s) directions of the pa-
tient respectively. (Image retrieved from http://www.vtk.org/Wiki/File:
DICOM-OrientationDiagram-LPS.png.)

3.4.5 Image Preprocessing Phase

Selection of image voxels that participate in the forest training phase as well
as the prediction phase is the main responsibility of this phase. The use of
a too small number of voxels will decrease the localization capabilities of
the RRF algorithm as overfitting will occur. Although the use of too many
voxels may not decrease the localization capabilities it will also affect the
training and prediction times. In addition to that, when the offset vector
distributions of leaf nodes (see Sect. 3.4.6) are saved to the disk, it would
require a very large amount of disk space. Consequently, using too many
voxels in RRFs impacts the usability aspects of the program. Hence, the
choice of a correct number of voxels is an important criterion for the balance
between the localization capabilities and usability measures of the method.
The literature reports different ways of choosing the number of voxels: all
voxels, a random subset of voxels, voxels on a regular grid, voxels belonging
to a particular region, and voxels on a regular grid of a particular region
(see Table 3.3).

11Unless otherwise specified, we have adopted the same notation in all the figures that
follow.

http://www.vtk.org/Wiki/File:DICOM-OrientationDiagram-LPS.png
http://www.vtk.org/Wiki/File:DICOM-OrientationDiagram-LPS.png
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In some studies, image preprocessing steps are carried out in order to
reduce the noise of the images or carry out some normalization procedures.
In the general context of multi–organ localization, the use of noise reduction
methodologies may reduce the generality of the RRF capabilities. But in
certain specific tasks (e.g., the full segmentation of a specific organ) it may
be advisable. The literature reports two main ways of preprocessing: down–
sampling to reduce the number of voxels used and Gaussian filtering to
smoothen the image (see Table 3.3).

Study Voxels used in Image Processing
Training Prediction

(1) all all none
(2) all all none
(3) n/a n/a n/a
(4) in a regular grid of

±10 cm from center
of each axial slice

in a regular grid of
±10 cm from center
of each axial slice

down–sampling to
3 mm spacing per
voxel

(5) random subset of
40000 voxels

random subset none

(6) random subset of
30000 voxels

random subset of
30000 voxels

Gaussian smooth-
ing

Table 3.3: Information on various voxel selection criteria and image prepro-
cessing techniques used by the main studies. The studies are identified with
the number assigned in the Table 3.1. (n/a: information not available)

3.4.6 Training Phase

As mentioned in Sect. 3.4.1, the solution proposed by random regression
forests to the problem of multi–organ localization is based on the compre-
hension of the context. This context has to be independent of the size of the
image as well as the origin of the image. Additionally, the problem should
be formed as a regression problem.

If one considers a voxel of an image and the displacement from each
bounding wall of the bounding box to the voxel, then, not only these dis-
placements are independent of the size and origin of the image but also
inherently possess a regression formation as a displacement is a continuous
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entity. These displacements are only dependent on the position of the voxel
and the bounding box of the organ.

3.4.6.1 Offset Vector Definition

The ingenious proposal of offset vectors (d) first introduced by Criminisi
et al. [2010] satisfied all these criteria and paved way for the utilization
of random regression forests for multi–organ localization. Given a training
voxel (v) and an organ (c), the 6D displacement offset vector (d(v, c)) from
the walls of the bounding box to the voxel is defined in the following manner
(see Fig. 3.11).

d(v, c) = v̂− b(c) , (3.7)

where v̂ = (vx, vx, vy, vy, vz, vz) made from the voxel position (vx,vy,vz)
and b(c) as defined in Eq. (3.6) in page 64.

Figure 3.11: The offset vector is composed of 6 displacements from each
bounding box wall to the voxel (v). A coronal slice of a CT image and
the 4 visible components of the offset vector (in red) of the right kidney
of the voxel v and its bounding box vector (in green). The relationship of
d(v, c) = v̂− b(c) (or v̂ = b(c) + d(v, c)) can clearly be observed.
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.
Then, the multi–organ localization problem can be formulated as a multi-
variate regression problem that regresses the location of the bounding box
walls of each organ given some set of image voxels.

As random regression forest is an ensemble of random regression trees, the
next task is to induce the regression trees as mentioned in Sect. 2.3.2. This
is done by:

• defining the features (Sect. 3.4.6.2),
• training the split nodes (Sect. 3.4.6.3),
• determining the best split among the many split configurations (Sect.3.4.6.4),

and
• training the leaf nodes (Sect. 3.4.6.5).

3.4.6.2 Feature Definition

The features used for the induction is of utmost importance as the selected
features should be able to describe the context of the content but not the
content per se.

An image patch is a local portion of an image defined by either a small
volume of a volumetric image or a small area of a 2D image. These patches
can be used to describe the local portions of an image as is (i.e., using the
intensity values of the patch), or by transforming the patch into another
entity (i.e., contours of the patch or any other image processing filter re-
sponse). This is called a patch response. If the patches are of different sizes,
the patch response is normalized with respect to the volume (or the area)
of the patch. This facilitates the unbiased comparison of patch responses.

These patches can be used as features. But they would not capture
the spatial context of the image but only capture the characteristics of the
overlapping regions. Figure 3.12 provides a 2D example of using an image
patch as a feature for regression tree induction. The 2D image patch used is
presented in Fig. 3.12a. The feature response

(
h (v, θ)

)
is calculated as the

mean intensity of the voxels overlapped by the patch (see 3.12b):

h (v, θ) = 1
|V|

∑
q∈V

I(q) , (3.8)

where v is the voxel, V is the volume of the patch, and I(q) is the intensity
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at the voxel q12. Then, the feature response is subjected to the split function
in order to find out whether the voxel goes to the left child or the right child
(see Sect. 2.2.3.1 and the example in page 20). Figure 3.12c illustrates the
binary separation of regions of the whole image when a high threshold value
is used for the split function. The voxels that satisfy the test are shown in
red.

(a)

(b) (c)

Figure 3.12: A 2D example where an image patch is used as a feature. (a)
The image patch. (b) Calculating the feature response at three voxels. (c)
The binary separation using the a high threshold. The voxels that satisfy
the test are shown in red. Since a high threshold is chosen, the high intensity
regions that overlap the patch are separated from the rest.

Depending on the selected threshold, in this example we observe that
regions belonging to bone structures are separated from the rest. This pro-
vides evidence that patches alone is useful at capturing the characteristics
of image regions but not any information on the spatial context of those
regions.

The use of displaced 2D patch differences as features (called Haar fea-
12The equations are presented in a 3D setting although the examples are in a 2D setting.



CHAPTER 3. RANDOM REGRESSION FORESTS AND THEIR ANALYSIS 70

tures) for object detection has been reported in many studies [Oren et al.,
1997; Papageorgiou et al., 1998; Viola and Jones, 2001]. But the displace-
ment of one feature with respect to another was restricted as all features
constructed a bigger enclosing rectangle. The innate ability of such features
to describe the spatial context information was quickly understood by the
scientific community. Consequently, the displacement restrictions that were
present in the Haar features were dropped in the following studies [Gall
and Lempitsky, 2009; Criminisi et al., 2009; Shotton et al., 2009; Criminisi
et al., 2010, 2013]. And they defined the displaced binary patch features in
the following manner:

h (v, θ) = 1
|V1|

∑
q∈V1

I(q)− 1
|V2|

∑
q∈V2

I(q) , (3.9)

where v is the voxel, V is the volume of the patch, and I(q) is the intensity
at the voxel q.

A 2D example is provided in Fig. 3.13 demonstrating the power of dis-
placed binary patches in describing the spatial context. The used displaced
binary image patches are presented in Fig. 3.13a. The feature response is
calculated as mentioned in Eq. (3.9) by replacing the volume (V) by the area
(A). Finally, Fig. 3.13c illustrates the binary separation of regions when a
high threshold value is used for the split function.

The feature selects the voxels when the first patch overlaps a high inten-
sity region while the second patch overlaps a low intensity region for a high
threshold value of the split function. Considering the anatomy of the body
and the given 2D example, this means the feature isolates the structure of
the bottom of the spine as shown by the red voxels in Fig. 3.13c. Further-
more, we observe that the selected spine region is a good landmark to predict
the location of the right femur head. The advantage of the displaced image
patch differences in capturing spatial context over simple image patches is
clearly visible.

Displaced unary image patches too are capable of retaining spatial con-
text information. A displaced unary image patch is defined in the following
manner:

h (v, θ) = 1
|V|

∑
q∈V

I(q) , (3.10)

where v is the voxel, V is the volume of the displaced patch, and I(q) is the
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(a)

(b) (c)

Figure 3.13: A 2D example where displaced binary image patches are used
as a feature. (a) The two image patches displaced with respect to some
origin. (b) Calculating the feature response at three voxels. (c) Resulting
binary separation using a high threshold. The voxels that satisfy the test are
shown in red. Due to the spatial arrangement of the feature, it selects the
voxels when the first patch overlaps a high intensity region while the second
patch overlaps a low intensity region. Considering the anatomy of the body
and the given 2D example, this means the feature isolates the structure of
the bottom of the spine as shown by the red voxels in (c).

intensity at the voxel q. Although Eq. (3.8) and Eq. (3.10) appear the same,
the concepts are different as the patch is displaced in Eq. (3.10) whereas it
is not in Eq. (3.8).

An example is given in Fig. 3.14 demonstrating the ability of displaced
unary patches to describe the spatial context. The displaced unary image
patch used is shown in Fig. 3.14a. The binary separation of regions depend-
ing on the selected threshold value is presented in Fig. 3.14c.

Analyzing Fig. 3.14c, we observe that certain parts of the spine, fatty
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(a)

(b) (c)

Figure 3.14: A 2D example of a displaced unary image patch used as a
feature. (a) A displaced image patch with respect to some origin. (b) Cal-
culating the feature response at three voxels. (c) Resulting binary separation
using a high threshold. The voxels that satisfy the test are shown in red.

region left to the left hip, as well as some regions near the left kidney are
categorized to one region. The region near the spine is capable of localizing
the right femur head region whereas the region near the left kidney locates
the spine. Although not very pertinent, the region left to the left hip is
capable of locating the left femur head. Although not as precise as the
displaced binary image patch features, the displaced unary image patches
are also capable of retaining spatial context information.

All the studies presented in Table 3.1 employ displaced unary image
patches, more specifically they used the mean intensity of cuboidal volumes
as the features except for the study of Pauly et al. [2011]. Pauly et al.
employed local binary pattern features [Ojala et al., 1996]. The local binary
patterns are intensity and scale invariant type of features that capture the
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textural information. The features used for the main studies are presented
in column 2 of the Table 3.4 in page 76.

.
The split node training consists of the creation of many split configura-
tions and subjecting all the incoming voxels to the split function to de-
termine whether the voxels should go to the left child or the right child
(see Sect. 3.4.6.3). Finally, the best split configuration is selected (see
Sect. 3.4.6.4).

3.4.6.3 Split Node Training: Generating Split Configurations

In order to train a split node, first many split configurations are made (see
Fig. 3.18). Each split configuration consists of a randomly selected feature
(θ) and one or two threshold values. If it comprises only one threshold value
(τ), then the feature response at the voxel v is compared to the threshold
in the following manner:

h (v, θ) < τ . (3.11)

If the split configuration comprises two threshold values (τ1 and τ2), then
the feature response is tested against a value range as shown below:

τ1 < h (v, θ) < τ2 . (3.12)

All voxels that arrive at the split node will be forwarded to all split
configurations and the voxels will either be sent to the left child (if within
thresholds) or the right child (if not within thresholds) of the configurations
depending on the result of feature response comparison to the thresholds.
Once, all voxels of all training data that arrive at the split node are treated,
the best split configuration with the highest impurity reduction of the data
has to be selected. This process is explained next.

3.4.6.4 Split Node Training: Best Split Selection

Another important decision of regression tree induction is the criterion used
for the selection of the best split among all split configurations. The criteria
based on information gain or squared error loss have been used in the liter-
ature (see Table 3.4). Except for one study [Cuingnet et al., 2012], all other
5 studies have used maximum information gain criterion to select the best
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split among the candidates. Cuingnet et al. [2012] have used the squared
error loss as their best split selection criterion.

Since the discussion is focused on binary random regression forests as
mentioned at the beginning of this section, the information gain calculation
is only presented for binary splits. Let us consider a split node where the
set of incoming voxels to the node (X ) are divided into the left child (XL)
and the right child (XR) (see Fig. 3.15). And the regression is formulated
on the joint distribution of offset vectors

(
p(d, c;X )

)
given an organ class c.

Then, the information gain (IG) is defined in the following manner:

IG = H
(
d, c;X

)
−

∑
i∈{L,R}

ωiH
(
d, c;Xi

)
, (3.13)

where H(·) is the entropy and ωi = |Xi|
|X | where |X | is the number of voxels.

Figure 3.15: Binary split at some split node. Number of voxels at the node,
left child, and right child are |X |, |XL|, and |XR| respectively.

The joint distribution
(
p(d, c;X )

)
of offset vectors

(
d(v, c)

)
for a given

organ class c is defined in the following manner:

p(d, c;X ) = p(d | c;X )p(c;X ) , (3.14)

where p(d | c;X ) is the conditional distribution of d(v, c) and p(c;X ) is the
organ class prior probability distribution. The conditional distribution of
offset vectors is defined as a multivariate Gaussian:

p(d | c;X ) = 1
(2π)

N
2 |Λc(X )|

1
2

exp−
1
2 (dc−d̄c)ᵀΛc(X )−1(dc−d̄c) , (3.15)
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where N = 6 is the dimensionality of the offset vector, d̄c and Λc(X ) are
respectively the mean vector and covariance matrix of offset vectors of or-
gan class c, and dc is the shorten form of d(v, c) to avoid clutter. And∫
R6 p(d, c;X ) dd = 1 holds. Voxels from many training images may arrive
at the given split node. In certain images, certain organs may not be fully
present. In such cases, the offset vectors can not be calculated for the voxels
coming from those images. Hence, the discrete organ class prior is calculated
using the number of voxels for which the offset vector of the organ can be
calculated at the split node. That is:

p(c;X ) = nc(X )
Z

, (3.16)

where nc(X ) is the number of voxels for which the offset vectors can be calcu-
lated, Z = ∑

c∈C nc(X ) is a normalizing constant such that∑c∈C p(c;X ) = 1,
and C is the set of all organs to be localized. Given a generic Gaussian dis-
tribution of a random variable x ∈ RN with a covariance matrix Λ, the
differential entropy can be defined in the following manner [Ahmed and
Gokhale, 1989]:

H(x) = 1
2 ln

(
(2πe)N |Λ (x)|

)
. (3.17)

Then using Eq. (3.14), Eq. (3.17) for the joint distribution can be rewritten
in the following manner:

H
(
d, c;X

)
= H

(
c;X

)
+
∑
c∈C

p(c;X )
(1

2 ln (2πe)6|Λc(X )|
)
. (3.18)

Then substituting Eq. (3.18) in Eq. (3.13) we arrive at the final information
gain formulation:

IG =H
(
c;X

)
−

∑
i∈{L,R}

ωiH
(
c;Xi

)
+ 1

2
∑
c∈C

p(c;X )
(
ln (2πe)6|Λc(X )|

)
− 1

2
∑

i∈{L,R}
ωi
∑
c∈C

p(c;Xi)
(
ln (2πe)6|Λc(Xi)|

)
.

(3.19)

Once the best split configuration that produces the maximum informa-
tion gain is selected among all available split configurations, the training
of the split node comes to an end. The feature and the threshold values
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attached with the selected best split configuration are saved as the feature
and threshold values of the trained split node. Once split nodes are trained,
the next step is to train the leaf nodes.

The best split selection criteria used by the main studies are presented
in column 3 of the Table 3.4.

Study Features Used Best Split Selection
(1) Mean intensity of displaced cuboids Max information gain
(2) Local Binary Patterns Max information gain
(3) Mean intensity of displaced cuboids Min squared loss error
(4) Mean intensity of displaced cuboids Max information gain
(5) Mean intensity of displaced cuboids Max information gain
(6) Mean intensity of displaced cuboids Max information gain

Table 3.4: The features and the best split selection criteria used by the
studies mentioned in the Table 3.1.

3.4.6.5 Leaf Node Training

When all the split nodes are trained, the leaf nodes contain all the accu-
mulated voxels. Training of a given leaf node consists of summarizing the
offset vectors of these accumulated voxels. First, the mean vector (d̄c) and
covariance matrix (Λc) of the accumulated voxels’ offset vectors are saved.

The studies mentioned in the TableTable 3.1 make the simplifying as-
sumption that bounding box wall positions are uncorrelated. Consequently,
that would make all the non-diagonal entries of the covariance matrix equal
to zero and only the pure variance values would be non-zero. With this spa-
tial independence assumption, the distribution of the accumulated offset vec-
tors along each wall direction is saved for all organs as normalized histograms(
p
(
ddir | c;X

)
where dir ∈ {r, l, a, p, i, s}) and ddir ∈ {dr,dl,da,dp,di,ds}

)
.

3.4.7 Prediction Phase

This is the phase where a trained random regression forest is used to predict
the localization of multiple organs in a CT image. Though this phase is
commonly known as the testing phase in the machine learning community,
it is our belief that prediction or estimation phase is a better suited term as
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the ultimate motive of the procedure is to predict or estimate the localization
of multiple organs.

The general flow of the prediction phase is as follows. First and fore-
most, any image preprocessing steps required (as discussed in Sect. 3.4.5)
are performed. The ultimate goal of these preprocessing steps is to find the
final set of voxels (data points) that would be used for prediction. Once
the final set of voxels is found, each voxel is pushed through each regression
tree of the forest. Each voxel will be subjected to many split functions until
accumulated at a leaf node ultimately. The path to the leaf node is deter-
mined by the outcome of the split functions. Once, all the selected voxels
are accumulated at the leaf nodes, the number of leaf nodes that partici-
pate in prediction is determined. Then, the leaf nodes belonging to each
regression tree makes a prediction of the localization of each organ using
some estimation model. Finally, each prediction from each regression tree
is composed in some manner to get the final ensemble prediction.

3.4.7.1 Number of Leaf Nodes Used For Prediction

Usually, the voxels of the unseen image (i.e., the images that were not used
during the training phase) that were pushed through a random regression
forest do not all participate in the actual prediction (see column 3 of Ta-
ble 3.5 in page 80). Hence, determining how many leaf nodes participate in
the actual prediction (L) is an important decision of the prediction phase.

The argument for such a selection is the fact that the displaced cuboid
features have limitation of their spatial range. For example, the good latent
landmarks selected automatically (the greater trochanter) by the RRF algo-
rithm for the left femur head might not be a good landmark for the liver as
the two organs are quite far apart (see Fig. 3.16). Consequently, leaf nodes
that correspond to good landmarks for a given organ have to be selected.

To select the leaf nodes used for prediction, one such a way adopted by
the researchers is to look at the determinant of the covariance matrix of the
offset vectors saved at the training phase since a higher determinant would
imply bigger variation of the offset vectors accumulated at the leaf node.
And bigger variation of offset vectors would in turn imply dispersed voxel
distribution suggesting that the set of voxels that belongs to that leaf node
may not correspond to a good landmark. In contrast, a leaf node with a low
determinant would indicate more confident prediction.
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Figure 3.16: The region around the greater trochanter (the red patch) is a
good landmark for the left femur head. But the same region as a landmark
for the liver may not result in a good prediction as the organ and the land-
mark are far apart. The displaced cuboid features used for the forest may
not be able to catpure such long range context information.

Hence, in order to choose the best leaf nodes for predicting the location
of an organ, many studies sort the leaf nodes according to the determinant
of the covariance matrix of the offset vectors. Then, they use the leaf nodes
with the highest confidence that contain a cumulated percentage of voxels
that were pushed through the forest (vs%). This voxel percentage is set a
priori. The different values used by different studies are found in column 3
of Table 3.5 in page 80.

Analyzing the percentage values used in different studies, we observe that
the tendency is to use a small number of leaf nodes for the final prediction.
Consequently, this implies using a small number of leaf nodes having the
highest confidence for the organ localization prediction. Additionally, the
use of a fewer number of voxels may result in faster prediction run times.

3.4.7.2 Estimation and Estimation Composer Models

All the main studies mentioned previously in Table 3.1 use the same estima-
tion model of conditional posterior distribution of offset vectors to obtain
the localization prediction of each regression tree.
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Each voxel v of all the voxels of the unseen image that were pushed
through the forest reaches one leaf node per regression tree (l(v)). The leaf
nodes already have the conditional offset vector distribution

(
p (d | c;X )

)
information stored in them from the training phase as the mean offset vec-
tor

(
d̄c
)
, covariance matrix of offset vectors (Λc) and 1D distribution of

the accumulated offset vectors along each wall direction
(
p
(
ddir | c;X

))
(see Sect. 3.4.6.5). From the mean offset vector, we could obtain the mean
bounding box vector in the following manner:

b̄c(v) = v̂− d̄(v; c) . (3.20)

Hence, the conditional distribution of bounding box vector
(
p(bc | l)

)
can be

known. If the set of leaf nodes that participate in the localization prediction
of organ c is L (selected in the manner described in Sect. 3.4.7.1), then the
posterior probability for p(bc) can be obtained in the following fashion:

p(bc) =
∑
l∈L

p(bc | l)p(l) , (3.21)

where p(l(v)) = |l(v)|/∑l∈L |l(v)| and |l(v)| is the number of voxels accu-
mulated at the leaf node l(v). And each organ would have a different L
selected.

In order to compose the ensemble estimation of the random regression
forest out of the individual estimations of random regression trees, all the
studies mentioned in the Table 3.1 use averaging. Hence, the composed
ensemble estimation is:

p(bc) = 1
T

T∑
t=1

∑
l∈L

p(bc | l)p(l) , (3.22)

where T is the number of trees in the forest. If the bounding box walls are
assumed to be uncorrelated, then, this posterior distribution can be repre-
sented using 1D histogram per bounding wall direction per organ. Hence, a
single organ would possess 6 1D histograms.

Now that the posterior distribution of bounding box vectors per organ
is available, all that is left to do is to select the final prediction values.
Most retained concept appears to be the Maximum A–Posteriori (MAP)
strategy. With MAP, the absolute position of a bounding box of an organ
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(
b̂c
)
is defined in the following manner.

b̂c = arg max
bc

p(bc) . (3.23)

If predictions are represented using 1D histograms per bounding wall direc-
tion, then simply finding the mode of the histogram is equivalent to finding
the MAP.

The early studies used the mathematical expectation to find the absolute
position of the bounding walls in the following manner [Criminisi et al., 2010;
Cuingnet et al., 2012]:

b̂c = −
∫

bc
bcp (bc) dbc . (3.24)

The concepts and parameter settings of the prediction phase of the main
studies are presented in column 4 and 5 of Table 3.5.

Study Voxels pushed
through forest

vs% Estimation
composition

Final prediction

(1) all 1% Average Mathematical ex-
pectation

(2) all n/a Average Arg Max
(3) n/a n/a Average Mathematical ex-

pectation
(4) in a regular grid

of ±10 cm from
center of each ax-
ial slice

75% Average Arg Max

(5) random subset n/a Average Arg Max
(6) random subset of

30000 voxels
3% Average Arg Max

Table 3.5: The amount of voxels pushed through the forest at the prediction
phase, the final percentage of voxels used for prediction (vs%), the estima-
tion composition, and the final prediction strategy employed by the studies
mentioned in the Table 3.1.

.
In the next section, we present a digest of the main algorithms involved in
the multi–organ localization process using RRFs.
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3.5 A Digest of The Random Regression Forest
Process

This final section represents a quick digest of the process of multi–organ
localization using Random Regression Forest. We emphasize on the steps
of the process rather than any analysis or mathematical modeling. The
idea of this section is to summarize the algorithms used for training a RRF
(Sect. 3.5.1) and the algorithms used for prediction (Sect. 3.5.2).

3.5.1 Process of Forest Training

The process of the RRF training is presented as an enumerated set of steps
in order to be easily referred in the incoming chapters. Additionally, a set
of figures are provided that take a 2D toy example and walk through the
steps (see Fig. 3.17 to Fig. 3.19). There are 6 main steps:

Step 1–Image preprocessing: first, the voxels of each training image
that will be used in the training phase are selected (see Fig. 3.17a).
The use of all voxels of the image or a random subsample of voxels
or voxels belonging to some Region of Interest (ROI) are the available
options in the literature. For further details see Sect. 3.4.5.

Step 2–Forest creation: then, a Random Regression Forest is created
with the intrinsic parameters. The number of Random Regression
Trees (RRTs) and the maximum decision levels of a RRT are the in-
trinsic parameters (see Fig. 3.17b). For further details see Sect. 3.4.2.

Step 3–Split configuration generation: next, starting from the root node,
each split node is trained in the following manner. Many split configu-
rations (see Fig.3.18c) are made for each split node using the randomly
chosen features (see Fig. 3.18a) and thresholds (see Fig. 3.18b). The
features used in the study are the mean intensity of displaced cuboids.
The feature response of each voxel is compared to the thresholds of
each split configuration and depending on the comparison output, the
voxels are sent to either the left or the right child of the split configu-
ration. For further details see Sect. 3.4.6.2 and Sect. 3.4.6.3.

Step 4–Best split selection: once all the training voxels have accumu-
lated at a particular split node, the best split configuration is selected
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from all available split configurations using an information gain based
measure calculated using the offset vectors. The feature and thresholds
belonging to the selected split configuration are saved as the feature
and thresholds of the trained split node (see Fig. 3.19). For further
details see Sect. 3.4.6.4.

Step 5–Split node training termination: the split node training is stopped
when one of the following conditions are met. 1.) When the maximum
decision levels of a RRT is reached. 2.) When the number of voxels
accumulated at a node is less than some threshold (nmin). 3.) When
no information gain is achieved for all split configurations. For further
details see Sect. 2.3.2 page 27.

Step 6–Leaf node training: Leaf node training consists of storing the
mean vector

(
d̄c(v)

)
and covariance matrix (Λc) of offset vectors of

accumulated voxels (v) at the leaf node (l(v)) for each organ c (see
Fig. 3.19). Additionally, the distribution of the accumulated offset
vectors along each wall direction is saved for all organs as normal-
ized histograms

(
p
(
ddir
c | l(v)

))
where dir ∈ {r, l, a, p, i, s} and ddir

c ∈
{drc,dlc,dac ,dpc ,dic,dsc}. The abbreviations r, l, a, p, i, and s stand for
right, left, anterior, posterior, inferior, and superior directions respec-
tively. For further details see Sect. 3.4.6.5.
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Figure 3.17: The training steps 1 and 2. (a) Training image voxel selection.
(b) Forest creation.
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(a) (b)

(c)

Figure 3.18: The training step 3. (a) Two features used to build the split
configurations. (b) Two lower thresholds and two upper thresholds used
to build the split configurations. (c) The 8 different split configurations
created.
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Figure 3.19: The end result of training step 4, 5, and 6. A trained RRF
comprises split nodes with selected features and thresholds and leaf nodes
with mean vector, covariance matrix of offset vectors, and 1D histograms of
offset vector distribution along each direction. Notice that some of the split
nodes from Fig. 3.17b have become leaf nodes.

3.5.2 Process of Forest Prediction

Similarly to the training phase, we present the process of the RRF prediction
as an enumerated set of steps in order to be easily referred in the incoming
chapters. The same 2D example that was used in the previous section is
used to highlight the main steps mentioned below (see Fig. 3.20).

Step 1–Image preprocessing: similarly to the first step of the training
phase, the voxels of the testing image that will be used in the prediction
phase are selected. The same selection criterion used in the training
phase is used in the prediction phase too. For instance, the algorithms
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can use all voxels of the image or a random subsample of voxels or
voxels belonging to some ROI (see Fig. 3.17a). For further details see
Sect. 3.4.5.

Step 2–Pushing voxels through the forest: then each selected voxel is
pushed through each RRT of the RRF starting at the root node of each
RRT. At every split node, the feature response is calculated using each
voxel and the feature of the split node. Depending on the comparison
of the feature response to the thresholds of the split node, the voxel is
either sent to the left child or the right child as illustrated in Fig.3.20.
This process is repeated until the voxel is accumulated at some leaf
node per RRT. For further details see the example in page 20.

Step 3–Leaf node selection for prediction: once all the selected voxels
are accumulated at the leaf nodes across the whole forest, a fraction
of these leaf nodes are selected to participate in the final localiza-
tion prediction. Per organ, the leaf nodes are sorted according to the
covariance matrix (Λc) of offset vectors saved at the training phase.
Some of the leaf nodes at the head of sorted queue (L) are selected
to participate in the final localization prediction (see Fig. 3.21b). For
further details see Sect. 3.4.7.1.

Step 4–Localization prediction by a single RRT: each leaf node that
belongs to L makes a contribution to the conditional distribution of a
bounding wall of an organ. The distribution of offset vectors that are
available for each leaf node from the training phase are used for this
(see Fig. 3.21b). These contributions are accumulated in a histogram
per bounding wall direction per organ (see Fig. 3.21c). For further
details see Sect. 3.4.7.2.

Step 5–Ensemble prediction combination: the bounding wall location
distribution of each RRT is added to the same corresponding histogram
to make the ensemble estimator composer. For further details see
Sect. 3.4.7.2.

Step 6–Absolute localization derivation: ultimately, the absolute po-
sition of each bounding wall is obtained by finding the mode of the cor-
responding histogram (see Fig.3.21c). For further details see Sect.3.4.7.2.
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(a) The voxel (in green) starts the descent at the root node. The
saved feature at the root (θ0) is super imposed on the voxel to cal-
culate the feature response. The voxels shown in red have already
reached the corresponding leaf nodes.
.

(b) The feature response is calculated by averaging the intensity
values of voxels within the displaced cuboid (voxels shown in yel-
low). Depending on the feature response, the voxel is sent to the
right split node.

Figure 3.20: Pushing a voxel through a trained forest.
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(c) At the new split node, the saved feature (θ2) is used to calculate
the feature response at the voxel.
.

(d) The feature response is calculated by averaging the intensity values of voxels
within the displaced cuboid (voxels shown in yellow). Depending on the feature
response, the voxel is sent to the left node. Since it is a leaf node, the voxel has
reached its final destination.

Figure 3.20: Pushing a voxel through a trained forest (cont.).
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(a)
.

(b)
.

(c)

Figure 3.21: Bounding wall prediction using the offset vector distributions.
(a) The voxels that participate in the final prediction belong to two leaf
nodes and these voxels are shown in the medical image in cyan and ma-
genta. (b) The corresponding two leaf nodes (7 and 14) from Fig. 3.19 and
their stored offset vector distributions for one direction (l–left) are presented
next to them. (c) The prediction distribution of p(bc,l) from each voxel is
accumulated in a single histogram per bounding wall direction. The sum-
mation of all distributions are presented in the thick black curve. Final
predicted position b̂c,l is the arg max of the distribution summation (shown
in red dashed line). It is also shown in (a) using a red dashed line.
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In this chapter, we introduced, analyzed, and discussed the core of this
dissertation; the concept of Random Regression Forest and multi–organ
localization.

First, we presented the concept of ensemble methods in Sect. 3.1.
Then, in Sect.3.2, we introduced different types of Random Forests and
reported their various applications in the field of medical image analysis.
A special prominence was given to the literature related to RRFs in this
section. Next, we introduced the decision jungles and random ferns and
the differences between Random Forests (RFs) and them in Sect. 3.3.

In Sect. 3.4, we analyzed the inner workings of Random Regres-
sion Forests and their parameters in detail. The analysis was carried
out in the context of multi–organ localization and it was discussed in
Sect.3.4.1. The intrinsic parameters of a RRF, the training set prepara-
tion, and image preprocessing were presented and analyzed in Sect.3.4.2,
Sect. 3.4.3, and Sect. 3.4.5 respectively. We carried out an extensive
analysis of the training and prediction phases of RRFs in Sect. 3.4.6
and Sect.3.4.7. Finally, the algorithmic steps of forest training and pre-
diction were summarized respectively in Sect. 3.5.1 and Sect. 3.5.2 with
a few illustrations.

In the next chapter, we will detail the scientific approach adopted
to carry out the various studies of the dissertation along with the infor-
mation on our CT image database and the benchmarking technique.
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Now that the inner workings of a Random Regression Forest and its
parameters have been analyzed in Chap. 3, we have laid the foundation
to move forward in exploring the impact of certain parameters and the
robustness of the algorithm under various conditions. The scientific
approach adopted for this exploration is presented in Sect. 4.1. Next,
the database used for the various studies and its diversity are discussed
in Sect. 4.2. Finally, the chapter concludes with Sect. 4.3, where we
present the general evaluation criteria employed along with the relevant
implementation details.

4.1 Scientific Approach

In realizing and furthering the objective of this dissertation mentioned in
Sect. 1.3, we wish to carry out a rigorous analysis of the robustness of the
Random Regression Forest (RRF) method in the context of multi-organ
localization. The robustness of the RRF method is examined with respect
to a selected set of parameters and concepts which will be explained in the
remaining chapters of this dissertation. In order to reach this goal we have
opted for the following scientific approach.

First, we asked ourselves a question regarding a pertinent concept (e.g.,
does the spatial independency hypothesis hold?) or a parameter (e.g., how
many leaf nodes should participate in the localization prediction?) related to
the RRF method. Then we analyzed the theoretical and/or mathematical
implications of the question. Once the theoretical and/or mathematical
implications were clear, we verified whether the practical implementations
corroborated the theory using empirical studies.
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In designing these empirical studies, we always adhered to the following
guidelines. We only verified one concept or one parameter influence at a time
using a single empirical study. The same database of Computed Tomography
(CT) images was used throughout these studies with the exact same training
and prediction image sets. The set of organs used in each study was identical.
We used the same base software implementation for all studies to perform
the localizations. The results were generated using the same machine. The
localization evaluation was carried out with respect to the same evaluation
measures against the same benchmark.

By adhering to the above mentioned guidelines, we were able to assess
the impact of each criterion on the final localization. The following sections
expand on each of the guidelines presented above.

4.2 Database

Throughout the course of this dissertation we have used the same database
of CT images. The database is composed of 100 anonymized CT images
belonging to 100 different patients which were directly obtained from the
teaching hospital of Grenoble Alpes1. Since the images are those of real
patients, obtained directly from the hospital, it is an excellent representation
of the real world.

4.2.1 Diversity of The Database

First and foremost, the database comprised both male and female adult
patients whose ages ranged from 21 years to 90 years (mean = 61.9 years and
standard deviation = 18.7 years). Certain pathological symptoms (cysts,
enlarged organs, etc.) were clearly observed in some of the images (see
Fig. 4.1a, 4.1b, 4.1c, 4.1d, 4.1e and 4.1f). The images also showed a high
variability in size. More precisely, the sizes ranged from 263×263×366 mm3

to 466× 466× 568 mm3 or from 512× 512× 183 voxels to 512× 512× 284
voxels.

Since irradiation is harmful to the patients, only the sections of the body
that needed scrutinizing had been scanned. As a consequence:

1We are extremely grateful to Prof. Ivan Bricault of the teaching hospital of Greno-
ble Alpes for providing us with the database in addition to the numerous advices and
suggestions.
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• whole-body CT images were not present in our database and
• the imaged region varied considerably depending on the image.

As a result, all the chosen images roughly cover the abdominal and pelvic
regions.

Certain patients had biomedical implants that introduced artifacts in
the CT images (see Fig. 4.1g and Fig. 4.1h). In certain images, parts of
the surgical instruments used by the surgeons were also visible increasing
the heterogeneity of the database. The presence of these objects can be
considered as a disturbance of the expected natural context of a CT image
that may perturb automatic organ localization procedures.

Certain patients were imaged after introducing contrast agents (generally
iodine or barium based contrast mediums) to their bodies for better visu-
alization of targeted organs whereas other patients were not (see Fig. 4.1b,
4.1c, 4.1e, 4.1f, 4.1g and 4.1h). The existence or non-existence of contrast
agents also change the CT image properties increasing the diversity of the
database. Additionally, the amount of noise present in the images were
different from one to another.

Three CT scanners; namely, Philips Brilliance 64, Philips Brilliance 16,
and Siemens Sensation 16 were used to acquire these images. As the ma-
chines are not the same, the parts of the machines that are captured in the
images (i.e., part of the machine bed) also differ2, adding to the diversity of
the dataset.

A few coronal slices of some of the images of the database are presented in
Fig.4.1. The contrast of the images are adjusted for the enhanced viewing of
the abdominal soft tissue organs (window width = 350Hounsfield Unit (HU)
and window level = 40HU [Johnson et al., 2007]).

2Since the random regression forest method discovers salient landmarks, it would be
interesting to see whether the imaged parts of the CT machines are discovered as pertinent
landmarks for certain organs.
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(a) (b)

(c) (d)

Figure 4.1: A few coronal slices of the database. (a) Hepatomegaly: ab-
normally enlarged liver. (b) Splenomegaly: abnormally enlarged spleen. (c)
Left sided empyema: pus within pleural space with pleural calcification. (d)
Ascites: free fluid in the abdomen and pleural effusions: free fluid around
the lungs.
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(e) (f)

(g) (h)

Figure 4.1: A few coronal slices of the database (cont.). (e) Renal pelvis di-
latation and pelvi–ureteric junction obstruction: development of a blockage
near the kidney in the ureter. (f) Renal cysts. (g) Pelvic internal fixator
and renal cysts. (h) Left hip joint prosthesis. Right femoral neck fixation
with cannulated screws. Collapsed left lower lobe of lung.
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4.2.2 Organs Used in The Study

Since our database consisted of abdominal-pelvic CT images as mentioned
in Sect. 4.2.1, we chose 9 anatomical structures (called organs here after)
from the abdominal-pelvic regions. The selected organs are a mix of soft
tissue organs and bone structures. The left kidney, right kidney, liver, and
spleen are the 4 selected soft tissue organs whereas the left femur head,
right femur head, left pelvis, right pelvis, and L5 vertebra are the selected
bone structures. Across the main studies carried out during this dissertation,
always the same organs were used, in accordance with the unifying approach
mentioned in the Sect. 4.1.

4.2.3 Gold Standard Creation

In order to train a random regression forest, the ground truth of the training
set needs to be known a priori (see Sect. 3.4.4). Additionally, the ground
truth of the testing set also needs to be known in order to evaluate the
localization estimation given by a trained random regression forest using
some error measures (see Sect.4.3.2). In the case of multi-organ localization,
the ground truth is the localization of each selected organ with respect to
the origin of the image (regardless of the image size and voxel dimensions).
As we are defining the localization using bounding boxes, the ground truth
should also be the tightest bounding box containing the respective organ.
But unfortunately, this ground truth can not be known.

Instead, users with expertise on localizing these organs can manually
delineate tight bounding boxes containing the respective organs. Although
this may be highly subjective and dependent on the user, this is the best
approximation of the ground truth. Hence, human users3 with substantial
training defined the gold standard of our dataset by manually delineating
all fully inclusive organs with respect to 3D bounding boxes (see Fig. 4.2).

4.2.4 Training and Testing Set Separation

The database was randomly divided into a training set (Ωtr) and testing
(or prediction) set (Ωte) consisting of 55 and 45 images respectively similar

3We are grateful to Anthony Agustinos, Ahmad Bijar, Cecilia Hughes, Vincent Léal,
Paul Mignon, and Sonia Selmi for manually delineating bounding boxes of all CT images
of the database.
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Figure 4.2: A sample image of the gold standard obtained by manual delin-
eation. Only the left kidney and the right kidney are shown for clarity.

to [Criminisi et al., 2010]. Additionally, this separation was kept intact
throughout the three main studies conducted during this dissertation in
order to compare results across studies.

4.3 Benchmarking Random Regression Forests

To the best of our knowledge, the study of Criminisi et al. [2013] is the state
of the art method for multi-organ localization in CT images. Naturally, their
study was selected as the benchmark for our studies that followed. Unless
otherwise specified, the benchmark forest comprises 4 random regression
trees each having 12 maximum decision levels.

In Sect.4.3.1, we present the details common to all implementations. The
evaluation criteria, along with the statistical tests are presented in Sect.4.3.2.
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4.3.1 Implementation

Following the scientific approach defined in Sect. 4.1, random regression for-
est algorithm was implemented in–house as a C++ software library module
using the software framework Computer assisted medical intervention Tool
Kit (CamiTK) [Fouard et al., 2012]. The implementation of the module was
carried out in a generic and modular manner so that it is only dependent
on two other software libraries: the Insight Segmentation and Registration
Toolkit (ITK) [Johnson et al., 2013] for image processing operations and
the Visualization Tool Kit (VTK) [Schroeder et al., 2006] for visualization
operations.

The studies were carried out on a quad-core Intel® Xeon® E5–1607,
3 GHz machine with 32 GB of RAM.

4.3.2 Localization Evaluation

Classically, in image segmentation each voxel of an image is classified whether
belonging to the object or not. Consequently, many spatial overlap indexes
can be employed to measure the goodness of the segmentation procedure
[Zou et al., 2004; Taha and Hanbury, 2015]. Among them, Dice similarity
coefficient [Dice, 1945] and Jaccard similarity coefficient [Jaccard, 1912] are
two of the famous measures widely used in the literature. Both measures
take into account the intersection and union of the estimated volume and
gold standard. Both Dice and Jaccard similarity coefficients range from 0 to
1, where 0 and 1 mean total segmentation failure and perfect segmentation
respectively.

But in the literature on multi-organ localization using random forests
where further segmentation is not performed, these measures have not been
used [Criminisi et al., 2010; Pathak et al., 2011; Pauly et al., 2011; Criminisi
et al., 2013; Criminisi and Shotton, 2013]. One of the main reasons for not
using those measures may be due to the fact that these methods do not
localize the organ as one entity, but localize each wall of its bounding box
separately (see Sect. 3.4.6.1). Hence, a different set of goodness measures
are required to evaluate the multi-organ localization procedures. In the
following sections a number of such evaluation measures are presented.
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4.3.2.1 Bounding Wall Prediction Error

Bounding Wall Prediction Error (BWPE) seems to be the most widely used
quantitative measure among the multi-organ localization community [Cri-
minisi et al., 2010; Pathak et al., 2011; Criminisi et al., 2013; Criminisi and
Shotton, 2013]. Since the organ localization strategy using random regres-
sion forests considers each bounding wall of an organ separately, the BWPE
considers each wall estimation separately as well.

BWPE is defined as the absolute difference between the estimated bound-
ing wall (b̂i) and bounding wall of the gold standard (bi) (see Fig. 4.3). As
there are six walls per bounding box, BWPE is given for the right, left,
anterior, posterior, inferior, and superior walls. That is:

BWPEi = |bi − b̂i| , (4.1)

where i ∈ {r, l, a, p, i, s}, r = right, l = left, a = anterior, p = posterior, i =
inferior, and s = superior directions respectively. Since, the prediction is
done per bounding box wall, the bounding wall prediction error appears to
be a more justified error measure than spatial overlap measures.

When a compound error measure is required per organ, the mean BWPE
is calculated taking the mean of the six BWPEs:

mean BWPE = 1
6

∑
i∈{r,l,a,p,i,s}

BWPEi . (4.2)

Finally, BWPEs are calculated only for the organs that are fully enclosed in
the images.

4.3.2.2 Centroid–Hit Measure

Centroid–Hit Measure (CHM) is a qualitative measure that verifies whether
the centroid of the predicted bounding box lies within the bounding box of
the gold standard. Similarly to the bounding wall prediction error, centroid–
hit measure is also not a compound measure. Centroid–hit measure is cal-
culated along the right to left, anterior to posterior, and inferior to superior
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Figure 4.3: Bounding wall prediction errors between left, right, anterior,
posterior, inferior, and superior walls of the predicted bounding box (in red)
and gold standard (in green).

directions in the following manner.

CHM =

1 if bi < b̂i+b̂j(i)

2 < bj(i)

0 otherwise
, (4.3)

where i ∈ {r, a, i} and j ∈ {l,p, s}. The studies Pathak et al. [2011]; Crim-
inisi et al. [2013]; Criminisi and Shotton [2013] have used the centroid–hit
measure to evaluate the localization predictions.

4.3.2.3 Centroid Error

In order to obtain a compound evaluation criterion, we defined the Centroid
Error (CE). The centroid error is the euclidean distance between the cen-
troid of the prediction and the gold standard (see Fig. 4.5).

CE =
√
4x2 +4y2 +4z2 , (4.4)

where the distances 4x =
(

b̂r+b̂l
2 − br+bl

2

)
, 4y =

(
b̂a+b̂p

2 − ba+bp
2

)
, and

4z =
(

b̂i+b̂s
2 − bi+bs

2

)
. The centroid error measure can be thought of as a

quantitative version of the centroid–hit measure described previously.
Throughout the main studies carried out during this dissertation, the

localization prediction evaluation was carried out using these three measures
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(a) (b)

Figure 4.4: Centroid hit measure for coronal slices. (a) Centroid of the
predicted bounding box (in red) lies within the gold standard bounding box
(in green). (b) Centroid of the predicted bounding box falls outside the gold
standard bounding box. In this case this is what is called a centroid miss
along the right to left direction.

in accordance with the unifying approach mentioned in the Sect. 4.1.

4.3.2.4 Statistical Tests

To check the robustness of a method against a change of a parameter (or
to compare two methods), we have to verify that the new results are sig-
nificantly different than before. Hence, to compare a proposed modification
to the benchmark, we used the Wilcoxon–Mann–Whitney test [Mann and
Whitney, 1947] to check whether the two result sets were statistically sig-
nificant or not. In this manner, we were able to assess whether one method
(the benchmark or the proposition) was statistically better than the other.

.

In this chapter, we presented the scientific approach that we followed
in conducting the studies presented in the next 3 chapters in Sect. 4.1.
Then, the diversity of the database used and the creation of the gold
standard were presented in Sect. 4.2. Finally, we concluded the chapter
by providing implementation specific details along with how the local-
ization performance can be benchmarked.
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Figure 4.5: Centroid error is the euclidean distance between the predicted
bounding box (in red) and the bounding box of the gold standard (in green).

In the next three chapters we are going to present the main studies
conducted during this dissertation. First, in Chap. 5 we verify whether
the localization prediction can be further improved by adding more
spatially consistent information. Then, in Chap. 6 we propose Light
Random Regression Forests, an approximation to find the localization
prediction using random variables rather than describing the random
process. Finally, in Chap. 7, we propose an automatic and consistent
approach in order to increase the generality of RRFs.
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In theory, there is no difference between theory and practice. But in
practice, there is.

- Lawrence Peter “Yogi” Berra
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During the analysis of random regression forests that was carried out in
Chap. 3, we observed the spatial independent nature of the algorithm
in the forest training phase (see Sect. 3.4.6) as well as in the prediction
phase (see Sec. 3.4.7). During this chapter, we wish to find out the effect
on the algorithm if spatial consistent information were to be added to
ita.

In Sect. 5.1, we pin point both the conceptual and implementation
oriented spatial independent traits of the classic random regression for-
est formulation. The steps taken to verify the effect of spatial consistent
information introduction into the classic RRF algorithm are presented
in Sect. 5.2. The numerous performance as well as usability analysis
that are carried out in Sect. 5.3 are followed by a concise discussion on
the findings in Sect. 5.4. Finally, we conclude the chapter by Sect. 5.5
with a few concluding remarks and some perspectives.

aThis chapter is based on an article submitted to the 7th International Workshop
on Machine Learning in Medical Imaging (MLMI 2016)

5.1 Introduction

The Random Regression Forest (RRF) method is a very capable tool for
multi–organ localization. Criminisi et al. have provided evidence that RRFs
perform better than popular registration methods such as Elastix [Klein
et al., 2010]. However, not only the formation of the regression problem but
also certain implementation choices of the RRF algorithm do not preserve
the spatial consistency.

5.1.1 Spatial Independency Traits of RRF

First, let us consider the regression problem formulation. As mentioned
in the Sect. 3.4.6, the multi–organ localization problem is addressed by re-
gressing the relative displacements of voxels from the bounding box walls of
organs (see Sect. 3.4.6.1). This is achieved via offset vectors (see Fig. 5.1).
An offset vector

(
d(v, c)

)
, as seen in Sect. 3.4.6.1, is defined as the 6 inde-

pendent displacements from each bounding box wall (namely, the right (r),
left (l), anterior (a), posterior (p), inferior (i), and superior (s) walls) to a
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given voxel. And it is defined in the following manner:

d(v, c) = v̂− b(c) , (5.1)

where v is the voxel position, c is the organ, b(c) is the bounding box vector,
and v̂ = (vx, vx, vy, vy, vz, vz) made from the voxel position (vx,vy,vz).
Since each bounding wall direction is considered as an independent entity,
the spatial consistency is not preserved.

Figure 5.1: The offset vector is composed of 6 independent displacements
from each bounding box wall to the voxel (v). A coronal slice of a CT
image and the 4 visible components of the offset vector (in red) of the right
kidney of the voxel v and its bounding box vector (in green). As each
displacement component is considered independently, the spatial consistency
is not preserved.

Let us consider the current RRF implementation decisions where the
spatial consistency is not preserved. In the training phase when the leaf
nodes are trained, the offset vectors that accumulate at a leaf node are
saved as 6 1D histograms per organ assuming wall location independence (see
Sect. 3.4.6.5). Again, when the absolute location of each bounding box wall
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is calculated in the prediction phase, each bounding box wall distribution is
modeled using a 1D histogram (see Sect. 3.4.7.2). Consequently, the classic
RRF setting hypothesizes that independent directional components are a
good approximation of spatial consistency of offset vectors Criminisi et al.
[2010, 2013].

.
Not only it is intuitive, but it is also generally admitted that the accuracy
and precision of a segmentation method is improved when spatial consistent
information is taken into account [Pham et al., 2000]. As the human body
adheres to a generic anatomy, it is rich with spatially consistent information.
The current setting of RRF uses this spatial consistent information up to
some extent by considering each bounding wall as an independent entity.
But the spatial consistency can be improved by reducing the independent
nature of the bounding walls. Therefore, adding more spatial consistent
information in RRF should lead to more accurate and precise localizations.

5.1.2 Spatial Consistency Example

Let us elaborate our claim with the use of a simple example (see Fig. 5.2).
Assume 10 instances of 2D offset vectors1. There are 7 offset vectors (x1, y2),
(x2, y1), (x2, y2), (x2, y4), (x2, y5), (x4, y2), (x5, y2) with a single instance
and 3 instances of the same offset vector (x3, y4). And we are interested
in finding the mode of the offset vector distribution (similar to finding the
Maximum A–Posteriori (MAP) of the offset vector distribution in the real
organ localization scenario using a RRF). Clearly, the correct answer that
we are searching for is the offset vector (x3, y3) with 3 occurrences.

In a setting where the spatial consistency is preserved, we arrive at the
correct conclusion without any confusion (see Fig. 5.2). Yet, in a setting
where the spatial consistency is not preserved, for instance, when the offset
vectors are modeled as 2 1D histograms, the conclusion is not the same (see
Fig. 5.2b). The modes of the 2 histograms in x and y direction are x2 and y2

respectively. This leads to the incorrect conclusion that (x2, y2) is the mode
of the distribution where in fact only one instance of (x2, y2) is present. This
simple observation implies that it may be possible to improve classic RRF
by adding more spatial consistent information.

1Any entity with a spatial interpretation can be used instead of offset vetors.
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(a) (b)

Figure 5.2: Distribution of 10 offset vectors ((x1, y2), (x2, y1), (x2, y2),
(x2, y4), (x2, y5), (x3, y3), (x3, y3), (x3, y3), (x4, y2), and (x5, y2)) where the
goal is to find the mode of the distribution. (a) In a setting that preserves
the spatial consistency, (x3, y3) can clearly be seen as the mode. (b) The
use of two spatially independent histograms leads to the incorrect conclusion
that (x2, y2) is the mode of the distribution.

The goal of this study, it to verify whether such an improvement actually
occurs if spatial consistent information is added to the classic RRF.

5.2 Materials and Method

In order to verify whether such an improvement is possible, we extended the
classic RRF algorithm to a so called Hough–based Random Regression For-
est (HbRRF) that preserves the spatial consistency. The following sections
describe the main changes of HbRRF compared to the classic RRF.

5.2.1 Hough–based Random Regression Forest

A Hough–based Random Regression Forest is similar to classic a RRF but
has two interpretation differences, described in Sect. 5.2.2, and a few imple-
mentation differences, described in Sect. 5.2.3 and Sect. 5.2.4.
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5.2.2 Offset Vector Interpretation

The first difference between classic RRFs and HbRRFs concerns the inter-
pretation of the offset vectors

(
d (v, c)

)
. A bounding box of an organ can

be defined using its two extreme diagonal points in space. Therefore, in
HbRRFs, we choose to interpret the offset vectors as the displacement of
a given voxel from these two points (see Fig. 5.3) contrary to the classic
interpretation of offset vectors presented in Sect. 5.1.1. Therefore:

d(v, c) = {d1(v, c),d2(v, c)}

dx(v, c) = v− bx(c) ,
(5.2)

where x ∈ {1, 2}, v = (vx, vy, vz), c is the organ, and bx(c) is the corre-
sponding bounding box extreme point. The only difference provided by this
interpretation is that it preserves the spatial consistency.

Figure 5.4 shows a schematic representation of the two different interpre-
tations. Further analysis of the diagram emphasizes that the only difference
among the two representation is purely interpretational.

The second interpretation difference is regarding the formulation of the
regression problem. Instead of regressing the relative displacements of voxels
from each bounding box wall of an organ independently as classic RRFs do,
a HbRRF regresses the displacement of voxels from two extreme points of
each bounding box of an organ. As HbRRFs consider each extreme point of
a bounding box as one entity, the spatial consistency is preserved unlike in
classic RRF.

5.2.3 Training Phase Differences

The first implementation difference between classic RRF and HbRRF con-
cerns the forest training phase. More precisely, it occurs during the leaf
node training (see Sect. 3.4.6.5 and step 6 of Sect. 3.5.1) and is described
below. The other steps of the forest training phase do not change.

The manner in which the spatial distribution of the accumulated offset
vectors are stored differ between RRF and HbRRF. In HbRRF for each
extreme point of each bounding box, the exact positions given by the accu-
mulated offset vectors as opposed to 1D directional components are saved.
In this manner, the spatial consistent information is preserved and can be
used in the prediction phase. Since the space requirement of saving all the
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Figure 5.3: The offset vector of HbRRF is interpreted as the displacement
of a given voxel from the two extreme points of an organ bounding box.
This interpretation preserves the spatial consistency. A coronal slice of a
CT image and the offset vector (in red) of the right kidney of the voxel v
and its bounding box vector (in green). As each displacement component is
considered as one entity, the spatial consistency is preserved.

positions is very large, only the a limited number of positions (nsaved) with
the highest frequency are saved at each leaf.

5.2.4 Prediction Phase Differences

At the prediction phase, all selected voxels of the unseen image are pushed
through the forest and are ultimately accumulated at some leaf nodes across
the forest similar to the classic RRFs (i.e., the first two steps of the predic-
tion process presented in Sect. 3.5.2 are the same for both the forests).

The other four prediction process steps mentioned in Sect. 3.5.2 are dif-
ferent for HbRRFs. In order to determine the number of leaf nodes that
participate in the prediction of each organ, the following actions are per-
formed. First, for each extreme point of an organ bounding box, all leaf
nodes of the RRF are sorted with respect to the covariance of the offset
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(a) (b)

Figure 5.4: Schematic 2D representation of bounding box vectors and offset
vectors in an coronal slice of a CT image. (a) In classic RRF, offset vectors
are interpreted as independent displacements in four directions ddirc . (b) In
HbRRF, they are interpreted as the two displacements dx(v, c), one from
each extreme point of the bounding box.

vectors found at the training phase (smaller covariances imply more precise
predictions). The leaf nodes with the smallest covariances that accumu-
late at least a pre-determined percentage of image voxels pv are selected for
prediction.

Then, given an accumulated voxel at a leaf node (v), this voxel votes for
the spatial location of the bounding box extreme point

(
bx(c | v)

)
using the

saved offset vector positions where c denotes the organ. Each offset vector
position votes for a possible bounding box extreme point in the following
manner:

bx(c | v) = v− dx(c | v) , (5.3)

where x ∈ {1, 2}. These votes are accumulated in a spatial volume and the
position of the highest vote of the volume corresponds to the final localiza-
tion of each extreme point of an organ bounding box.

5.2.5 Materials and Implementation Details

In order to verify whether the introduction of spatial consistency leads to
any improvement in classic RRF, we followed the methodological details
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mentioned in Chap. 4.
The dataset described in Sect. 4.2 was used for the study and was ran-

domly divided into a training set and a prediction set of 55 and 45 images
respectively, similarly to [Criminisi et al., 2010]. The set of organs described
in Sect. 4.2.2 were used in this study. Prediction evaluation was carried out
using mean Bounding Wall Prediction Error (BWPE), Centroid–Hit Mea-
sure (CHM), and Centroid Error (CE) as mentioned in Sect. 4.3.2. The
statistical test mentioned in Sect. 4.3.2.4 was used to verify the difference
between the results obtained by the two algorithms. The tests were carried
out under the hardware configuration as described in Sect. 4.3.1.

The classic RRF method was implemented as described in Criminisi et al.
[2013]. This implementation was modified to build a Hough–based Random
Regression Forest as described in section 5.2.1 in order to compare the two
methods in the exact same conditions. Each random forest (classic RRF
and HbRRF) comprised 4 regression trees and each tree had 12 maximum
decision levels (D) following the benchmark protocol selection mentioned in
Sect. 4.3. The split node training was terminated if the number of voxels
accumulated at a node was less than 25 (nmin). Finally, two localization
result sets were generated using the classic RRF (RC) and the HbRRF
(RH) with pv = 0.05 for both, and with nsaved = 2, 500 for RH .

5.3 Results

The mean Bounding Wall Prediction Error was used as the first performance
evaluation metric (Er1) and was calculated only for the organs that were
fully present in the CT volumes.

Table 5.1 presents the summary of mean BWPEs (mean, standard devi-
ation, median, and maximum of all 45 prediction results) obtained for RC
and RH . The numbers alone do not reveal much difference between the two
result sets.

In order to access the mean BWPE of individual prediction localization,
the mean BWPEs for RC and RH obtained for each prediction image are
presented as 1.5 Inter Quartile Range (IQR) box plots in Fig. 5.5. With
an alpha level of 0.05 for the statistical tests, Er1 between RC and RH

demonstrated no statistical significance, p−value ∈ [0.34− 0.90]. The p–
values obtained for each organ is presented in Table 5.2.
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Figure 5.5: 1.5 Inter Quartile Range (IQR) box plots of mean BWPE of the
45 prediction images for RC and RH .

Table 5.2: Obtained p–values for the mean BWPEs

Organ p–value
Left Kidney 0.90
Right Kidney 0.87
Liver 0.73
Spleen 0.62
Left Femur Head 0.73
Right Femur Head 0.66
Left Pelvis 0.71
Right Pelvis 0.34
L5 0.75

As the final performance evaluation metric we used the Centroid Error
(CE) of each bounding box prediction (Er2). Similarly to Er1, Er2 was also
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calculated only for the organs that were fully present in the CT volumes. The
summary of all CEs are given in the Table 5.3. Similarly to the summary of
mean BWPEs, not much difference can be observed between two Er2 value
sets belonging to RC and RH respectively.

In order to further evaluate the centroid errors of individual prediction
localizations, 1.5 IQR box plots were generated (see Fig. 5.6). Subjecting
the Er2 values to the statistical test with an alpha level of 0.05, we observed
that there was no statistical significance between RC and RH , p−value ∈
[0.34− 0.96]. All p−values obtained are presented in Table 5.4.
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Figure 5.6: 1.5 IQR box plots of centroid errors for RC and RH .

The usability was evaluated using the time taken to localize all organs in
a CT volume (t), the amount of Random Access Memory (RAM) required
during the prediction phase to localize all organs in a given CT volume (Mp)
and the amount of disk space used to store a RRF (Ms).

The results of usability evaluation are presented in Table 5.5. Time spent
on localizing one CT volume using RH is about 140 times slower compared
to RC . On average, RH also uses about 3.6 times more RAM than RC does.
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Table 5.4: Obtained p–values for the centroid errors

Organ p–value
Left Kidney 0.92
Right Kidney 0.70
Liver 0.96
Spleen 0.34
Left Femur Head 0.64
Right Femur Head 0.70
Left Pelvis 0.75
Right Pelvis 0.62
L5 0.83

Table 5.5: Usability evaluation measures.

t (s) Mp (MB) Ms (GB)
-+-RC -+-RH -+-RC -+-RH -+-RC -+-RH

Mean 4.3 613.7 806.2 2900.3 0.9 6.1
Std. dev 0.6 109.6 42.8 247.0 - -

In addition to that, RH uses about 6.8 times more storage capacity to store
the RRF compared to RC . All the provided evidence suggests that RC have
much better usability criteria than RH .

5.4 Discussion

As the amount of disk space needed to store all the distributions was ex-
tremely large (17.2 GB for a HbRRF with 4 RRT), only 2, 500 distinct po-
sitions of offset vectors were saved for each extreme point of each bounding
box during the training phase (see Sect. 5.2.3). The value nsaved = 2, 500
was selected as we observed that many positions were unique when a large
number of positions were accumulated. Consequently, those positions with
reduced number of frequencies had little to no effect on the final outcome.
In addition to that, allowing 100 times more positions than nmin ensured
that the leaf nodes gathering more voxels had a higher impact on the final
prediction.
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The notion of spatial independence is inherently present in the BWPE
as error measurements are obtained per direction. The authors of Pathak
et al. [2011] introduced the centroid-hit error. The centroid-hit error is a
qualitative error measure that verifies whether the centroid of the predicted
bounding box is found within the gold standard bounding box. Using cen-
troid error, we introduced a quantitative error metric that also preserved
the spatial consistency by considering the centroid of a bounding box as one
entity and not as independent directional components.

When split node optimization was carried out (see Sect. 5.2.3) for the
HbRRF, instead of optimizing two separate extreme points, we optimized
both extreme points together. This was done because the extreme points
did not correspond to unique landmarks while the organs as a whole did.

5.5 Conclusion

Preserving spatial consistency of offset vectors that accumulate at the leaf
nodes of a RRF, as it is done in the proposed Hough-based RRF, should have
intuitively lead to better localization results as theory suggests and as it can
be observed in other methods. Counter–intuitively, this study provides em-
pirical evidence that the classic RRF method produces comparable results.
In addition to that, the introduction of spatial consistency brings about a
drastic reduction of the usability of the algorithm. Hence, we advocate using
classic RRF over spatial consistency preserved RRF.

As presented in Table 5.5, although classic RRF performed better than
the Hough-based RRF in terms of RAM and storage requirements, it still
seems to be not that well suited for mobile applications. This aspect is going
to be explored in the next chapter.

.

In this chapter, we analyzed the effect of adding more spatial consistent
information in to a classic RRF method.

In Sect.5.1, we analyzed the spatial independent nature of the classic
RRF problem formulation for multi–organ localization. With a simple
toy example, we demonstrated the possible improvements that may oc-
cur by the addition of spatial consistent information in Sect. 5.1.2. The
Sect. 5.2 presented how we added spatial consistent information by ex-
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tending the classic RRF method. We analyzed the performance and
usability of the extension and the classic RRF in Sect. 5.3. Finally, we
analyzed the obtained empirical results to conclude that even though
adding more spatial consistent information to the classic RRF should
have improved its performance, it did not in practice. We also observed
that the classic RRFs use less RAM, require less storage space and
that they produce results very quickly compared to the extension that
preserved the spatial consistent information.

In the next chapter, we introduce Light Random Regression Forests
(LRRFs), a variation of the classic RRF that describes the random
process by describing the random variables rather than the process itself.



Science is not, despite how it is often portrayed, about absolute
truths. It is about developing an understanding of the world, making
predictions, and then testing these predictions.

- Brian Schmidt
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Classic Random Regression Forests (RRFs) used for multi–organ local-
ization describe the random process of multivariate regression by storing
the histograms of offset vectors along each bounding wall direction of
each leaf node. We propose to eliminate the need to describe the ran-
dom process by formulating the localization prediction based on the
random variables that describe the random processa. This results in
the introduction of Light Random Regression Forests (LRRFs).

In Sect. 6.1, a simple analysis shows that much of the storage re-
quirement of a RRF is due to the storing of the offset vector histograms.
Then, we make an interesting observation about finding the arg max of
a distribution that consists of the addition of many 1D Gaussians in
Sect. 6.2. How this observation is exploited in order to carry out multi–
organ localization is explained in Sect. 6.3. The results of the study are
presented with respect to the hypothesis validation, performance evalu-
ation, and usability evaluation in Sect. 6.4.1, Sect. 6.4.2, and Sect. 6.4.3
respectively. A discussion is carried out about the obtained results in
Sect.6.5 before concluding the chapter by Sect.6.6 with a few concluding
remarks.

a This chapter is based on an article submitted to the 7th International Workshop
on Machine Learning in Medical Imaging (MLMI 2016).

6.1 Introduction

In the previous chapter we observed the robustness of the classic Random
Regression Forest (RRF) algorithm even though it does not preserve the
spatial consistency. In Chap. 5, it was also demonstrated that the multi–
organ localization capabilities of the classic RRFs are comparable to the so–
called Hough–based Random Regression Forests (HbRRFs) that preserved
the spatial consistency. Although the usability aspects of classic RRFs were
many folds better than those of the HbRRF, classic RRFs still describe the
random process of the multivariate regression by storing the 1D histograms
of offset vectors along each bounding box wall direction per leaf node per
organ (see Sect. 3.4.6.5 and step 6 Sect. 3.5.1).

On the one hand, the Random Access Memory (RAM) and storage re-
quirements of classic RRFs may become exorbitantly high when such a RRF
consists of many leaf nodes, but on the other hand, a large number of leaf
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nodes are required for better localization. Considering certain current stud-
ies that employ RRFs for multi–organ localization, we observe that the
number of leaves are in the order of magnitude of 10, 000s (see Table 6.1).
In addition to storing the 1D histograms of offset vectors, the mean vector
and covariance matrix of offset vectors are also stored at the leaf nodes dur-
ing the training phase (see Sect. 3.4.6.5 and step 6 Sect. 3.5.1). Hence, one
possible option for reducing the RAM and storage requirements of RRFs is
to reduce the number of leaf nodes of the forest.

Study Trees Max Levels Leaf Count
Criminisi et al. [2010] 12 7 1,536
Pauly et al. [2011] 6 8 1,536
Cuingnet et al. [2012] 7 15 229,376
Criminisi et al. [2013] 4 12 16,384
Gauriau et al. [2013] 7 12 28,672
Gauriau et al. [2014] 3 14 49,152

Table 6.1: The maximum number of leaf nodes possible in the RRFs used
in the multi–organ localization literature. The studies are presented in the
chronological order. We observe the current leaf node count falls in the
order of magnitude of 10, 000s. (Maximum number of leaf nodes = nTrees ×
2Max Levels.)

In order to address this high storage and RAM requirements, decision
jungles were proposed [Shotton et al., 2013] (see Sect. 3.3.1). A decision
jungle consists of directional acyclic graphs instead of binary trees. The
memory consumption is decreased by reducing the number of nodes of the
jungle by introducing a node merging technique.

If we assume there are C number of organs to be localized and 64 Bytes
of storage per entry (the size required to store a double float type), to store
the mean vector (C×6×64) and covariance matrix (C×6×6×64) of offset
vector, a leaf node requires 2, 688× C Bytes. Let us also assume that each
histogram of offset vectors comprises 100 bins, although, the real number of
bins may be greater than this amount. Then it requires 38, 400 × C Bytes
(C× 6× 100× 64) to store the histograms per leaf node. It is apparent that
most of the storage is consumed by the histograms (roughly 14 times with
the above mentioned simplifying assumptions). Decision jungles may not be
the ideal solution as each individual leaf node of a decision jungle still stores
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the 1D histograms of offset vectors [Shotton et al., 2013]. They therefore
require the same amount of memory per leaf node.

As we have established, describing the random process results in a sig-
nificant storage space requirement. In addition to that, these saved 1D his-
tograms are loaded into the RAM during the prediction phase (also called
the testing phase) in order to carry out the localization of an unseen im-
age. This too, also translates into a substantial RAM requirement at the
prediction phase.

In this chapter we present Light Random Regression Forests (LRRFs)
which describe the random variables inherent to the random processes that
were previously described in classic RRFs. By describing the random vari-
ables, the storage and RAM requirements are drastically reduced compared
to the classic RRFs.

6.2 On Gaussian Distribution Summation

The foundation of LRRFs is based on the following observation on sum-
mation of 1D Gaussian distributions. A 1D Gaussian distribution (G) is
described by its mean (µ) and variance (σ2) in the following manner:

G ∼ N
(
µ, σ2

)
= 1
σ
√

2π
e−

(x−µ)2

2σ2 . (6.1)

A new distribution is made by summing many 1D Gaussian distributions
together. The ultimate goal is to find the arg max of the final distribu-
tion. This is similar to adding many prediction distributions described by
histograms together and finding the arg max of the final summed distribu-
tion in order to obtain the absolute bounding wall location in the case of
multi–organ localization using RRFs (see Sect. 3.4.7.2).

Although the addition of two 1D Gaussians does not result in another
1D Gaussian, when the means of the distributions are very close, weighted
means of the distributions are a good estimator of the arg max of the sum-
mation (see Fig. 6.1a). But when the means of the distributions are quite
apart from each other, the weighted means are not a good estimator of the
arg max (see Fig. 6.1b).
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(a)

(b)

Figure 6.1: N1 and N2 are two 1D Gaussian distributions (shown in blue).
N1 +N2 is the distribution generated by adding N1 and N2 together (shown
in green). N1,2 is another Gaussian distribution constructed from µ1,2: the
weighted means (equal weights in this case) of N1 and N2 (shown in red).
The goal is to check whether µ1,2 is a good approximation of the arg max of
N1 +N2 (am1+2).
(a) The arg max can be closely estimated by the weighted means when the
means of the original distributions are closer. (b) When the means of the
original distributions are far apart, taking the arg max privileges one distri-
bution over the other.
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We propose to explore the suitability of approximating the arg max of the
final bounding wall prediction histograms made up of multiple distributions
as a weighted sum of the means of each individual distribution. As the
theoretical soundness of the approximation may be questionable due to the
assumption that the individual distributions roughly have the same mean
irrespective of their variances, we validate our hypothesis before using it
practically.

6.3 Materials and Method

Based on the observation presented in Sect.6.2, we revamped the RRF algo-
rithm to propose Light Random Regression Forests (LRRFs). The following
sections describe the main changes of LRRFs compared to the classic RRFs.

6.3.1 Light Random Regression Forests

Similarly to the classic RRFs, the LRRFs are also an ensemble of Random
Regression Trees (RRTs). A LRRF describes the random variables that
define the random process instead of describing the random process as a
classic RRF does.

Both classic RRFs and LRRFs regress the continuous conditional distri-
bution of offset vectors

(
d(v; c)

)
as a 6D multivariate Gaussian where v and

c denote a voxel and an organ respectively. Consequently, the 6D multivari-
ate Gaussian results in 6 1D univariate Gaussians. The empirical evidence
gathered in Chap.5 shows that the directional independency hypothesis does
not degrade the final localization results compared to a setting in which the
spatial consistency of offset vectors is preserved.

The training phase of LRRFs is identical to the training phase of classic
RRFs [Criminisi et al., 2013; Criminisi and Shotton, 2013] except for one
simplification described in Sect. 6.3.2. The details of the prediction phase of
LRRFs are presented in Sect. 6.3.3.

6.3.2 Training Phase Differences

The split node training is carried out in the usual manner by maximizing
an information gain measure as mentioned in Sect. 3.4.6.3. The split node
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training is stopped either when maximum tree depth (D) is reached or when
the number of voxels reaching a node is lesser than a threshold (nmin = 25).

When all the split nodes are trained, the leaf nodes contain all the ac-
cumulated voxels. Training of a given leaf node consists of summarizing the
offset vectors of these accumulated voxels. The classic RRFs train the leaf
node by storing the random process using histograms of the offset vectors
[Criminisi et al., 2013; Criminisi and Shotton, 2013]. Going a step further,
we propose to train the leaf nodes by only storing the mean (d̄dir) and the
variance (σ2

dir) of these 1D distributions; i.e., the random variables that
define the distribution D:

D ∼ N
(
d̄dir, σ

2
dir
)
, (6.2)

where dir ∈ {r, l, a, p, i, s} (r = right, l = left, a = anterior, p = posterior, i =
inferior, and s = superior), d̄dir ∈ {d̄r, d̄l, d̄a, d̄p, d̄i, d̄s} and σ2

dir ∈ {σ2
r , σ

2
l ,

σ2
a, σ

2
p, σ

2
i , σ

2
s}. Consequently, LRRFs do not have to store the 1D histograms

of each wall direction of each organ. This saves a lot of storage space. Hence
storing of the offset vector distributions is omitted in LRRFs compared to
the classic RRFs. This means that we model the random variables instead
of the random process.

6.3.3 Prediction Phase Differences

During the prediction phase, all selected voxels (v) of a previously unseen
image (V) are pushed through each RRT until they are all accumulated
at some leaf nodes per RRT of the LRRF (l(v)). The set of leaf nodes
that accumulates at least 75% of voxels (Lt) and that displays the lowest
variability per each organ are used for the localization prediction per each
RRT. Then, each bounding wall distribution

(
p (bc)

)
can be defined as:

p(bc) =
T∑
t=1

∑
l∈L

p(bc | l)p(l) , (6.3)

where p(l) = |l(v)| / ∑l(v)∈Lt |l(v)|, T is the number of trees, |l(v)| is the
number of voxels in the leaf node l, c is the organ and p(bc | l) can be derived
from the saved mean offset vectors

(
d̄(v; c)

)
as:

b̄c(v) = v̂− d̄(v; c) , (6.4)
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where v̂ = (vx, vx, vy, vy, vz, vz) made from the voxel position (vx,vy,vz).
From Eq. (6.2), this translates into an addition of weighted 1DGaussians.

The final prediction of the absolute position of each bounding wall direction(
b̂c
)
is the arg max of p(bc), i.e.:

b̂c = arg max
bc

p(bc) . (6.5)

In classic RRFs, p(bc) is modeled by histograms per each bounding wall
direction (i.e., by mimicking the random process). Then, b̂c is obtained
by finding the mode of the histogram [Criminisi et al., 2013; Criminisi and
Shotton, 2013].

Since each selected leaf node should predict approximately the correct
position, means of each leaf node bounding box vectors p(bc | l) should be
relatively close to one another along each bounding wall direction. The
likelihood of the above assumption being true is higher as only the high
confident leaf nodes are chosen for the final prediction as mentioned above.
The mean leaf node bounding box vector

(
b̄c,l

)
is defined as:

b̄c,l = ˆ̄v− d̄(v; c) , (6.6)

where ˆ̄v = (v̄x, v̄x, v̄y, v̄y, v̄z, v̄z) made from the mean voxel position
(v̄x, v̄y, v̄z) of the voxels accumulated at the leaf node l. As a direct conse-
quence of the observation made in Sect. 6.2, we approximate the arg max of
p(bc) by calculating the sum of the means of p(bc | l) weighted by p(l) as:

b̂c =
T∑
t=1

∑
l∈Lt

b̄c,l p(l) , (6.7)

without describing p(bc) using histograms. We replace Eq. (6.5) by Eq. (6.7).
As no random process is mimicked by the use of histograms but a model
of b̂c is directly built using the random variables, LRRFs lead to faster
computational times.

6.3.4 Materials and Implementation Details

The dataset described in Sect. 4.2 was used for the study and was randomly
divided into a training set and a prediction set of 55 and 45 images re-
spectively, similarly to [Criminisi et al., 2010]. The same set of 9 organs
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described in Sect. 4.2.2 were used in this study too. The same statistical
test mentioned in Sect. 4.3.2.4 was used to verify the difference between the
results obtained by the two algorithms. For all statistical tests carried out,
α was set to 0.01. The tests were carried out under the same hardware
configuration as described in Sect. 4.3.1.

A classic RRF was trained and used for prediction as described in Sect.
3.5.2. Then, the classic RRF was transformed into a LRRF by removing the
stored 1D histograms of offset vectors per each wall direction as mentioned
in Sect. 6.3. This enabled us to compare the two methods under the exact
same conditions.

We generated three results sets from classic RRFs (RCi) and from LRRFs
(RLi); namely:

• RC1 and RL1 with 4 RRTs and D = 12 similar to Criminisi et al.
[2013]; Criminisi and Shotton [2013],

• RC2 and RL2 with 4 RRTs and D ∈ [1, 2, . . . , 17],
• RC3 and RL3 with [1, 2, . . . , 20] RRTs and D = 12,

to evaluate the performance and usability of both methods.

6.3.4.1 Validation of Our Hypothesis

In order to evaluate the hypothesis of estimating the arg max of summation
of 1D Gaussians by the weighted summation of their means as presented in
Sect. 6.2, the following steps were carried out. First, the distribution pairs
of arg max of p(bc) and weighted means of p(bc | l) denoted respectively by
Da and Dµ were created for each wall direction per organ (6×9 distribution
sets) using all 45 prediction images. Finally, each pair of Da and Dµ were
subjected to Wilcoxon–Mann–Whitney test.

6.3.4.2 Prediction Precision

Prediction precision evaluation was carried out using mean Bounding Wall
Prediction Error (BWPE), Centroid–Hit Measure (CHM), and Centroid Er-
ror (CE) as mentioned in Sect. 4.3.2. Errors were calculated only for the
organs that were fully present in the CT volumes.
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6.3.4.3 Usability

The usability was evaluated using the mean time (t) and the mean amount
of RAM (M) required to perform a single multi–organ localization in a CT
image. The amount of disk space used to store the forest (S) was also
compared.

6.4 Results

The results obtained by classic RRF and LRRF were evaluated under the
three categories mentioned above (hypothesis, precision, and usability).

6.4.1 Hypothesis Verification

Wilcoxon–Mann–Whitney test failed to reject the null hypothesis of Da
and Dµ coming from the same underlying distribution with p−value ∈
[0.04− 0.98] for all 54 verification distribution pairs of Da and Dµ. This
provides strong empirical evidence that the arg max of summation of 1D
Gaussians can be readily estimated by the weighted summation of their
means in the context of multi–organ localization using RRFs. The total 54
p−values obtained are presented in Table 6.2.

Organ Left Right Ante-
rior

Pos-
terior

Infe-
rior

Supe-
rior

Left Kidney 0.47 0.98 0.73 0.22 0.15 0.56
Right Kidney 0.78 0.60 0.94 0.94 0.18 0.83
Liver 0.24 0.63 0.95 0.83 0.21 0.51
Spleen 0.62 0.39 0.75 0.39 0.12 0.18
Left Femur Head 0.75 0.92 0.94 0.98 0.11 0.56
Right Femur Head 0.82 0.94 0.97 0.96 0.04 0.23
Left Pelvis 0.59 0.75 0.85 0.88 0.56 0.63
Right Pelvis 0.88 0.51 0.78 0.78 0.41 0.60
L5 0.80 0.97 0.97 0.91 0.70 0.27

Table 6.2: The p–values obtained for Wilcoxon–Mann–Whitney test for the
distributions of real arg max (Da) and estimated arg max using weighted
means of 1D Guassians (Dµ).
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Observing the table we note that the p−values obtained take high values
for all directions apart for the inferior direction.

6.4.2 Prediction Precision Evaluation

Results for RC1 and RL1

A summary of the mean BWPEs (Er1,1) of all 45 predictions obtained for
RC1 and RL1 are presented in Table 6.3. Analyzing the values themselves
do not lead to a clear conclusion as in some cases RC1 appear to have better
localization results while in some cases RL1 appear to do better.

In order to access the mean BWPEs of individual localization predic-
tions, the mean BWPE obtained for RC1 and RL1 for each prediction image
are presented in 1.5 Inter Quartile Range (IQR) box plots in Fig. 6.2. The
obtained Er1,1 failed to reject the null hypothesis that both error measures of
RC1 and RL1 for all organs originated from the same underlying distribution
with p−value ∈ [0.03− 0.78]. The p−values obtained for all 9 organs are
presented in Table 6.4. These values indicate that the error is statistically
the same for the two methods.

The centroid–hit measures obtained for the localization predictions are
presented in Table 6.5. The centroid–hit measure is presented as a fraction
between the centroid–hits and all predictions since some predictions were
not considered for the error measure calculation as the organs were not
fully present in the prediction image. Both RC1 and RL1 appear to produce
similar centroid–hit measures. Additionally, we observed that centroid–hit
measure was the highest in right to left direction whereas it was the lowest
in inferior to superior direction.

The centroid errors (Er1,2) of individual localization predictions are pre-
sented in 1.5 IQR box plots in Fig. 6.3. We observed that the inter quartile
ranges of RL1 are smaller than those of RC1 for all organs except the right
pelvis.

The obtained Er1,2 failed to reject the null hypothesis that both error
measures of RC1 and RL1 for all organs originated from the same underlying
distribution with p−value ∈ [0.03− 0.96]. All the p−values of the statistical
significance test of the two result sets are shown in Table 6.6. We observed
that the liver produced the smallest p−value for Er1,1 (0.03) and the largest
p−value for Er1,2 (0.96).
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Figure 6.2: 1.5 IQR box plots of mean BWPE of each prediction image for
RC1 and RL1.

Organ p−value
Left Kidney 0.46
Right Kidney 0.35
Liver 0.03
Spleen 0.38
Left Femur Head 0.41
Right Femur Head 0.14
Left Pelvis 0.17
Right Pelvis 0.78
L5 0.13

Table 6.4: Obtained p−values for the mean BWPEs for RC1 and RL1. Note
the very small p−value for the liver.

Results for RC2 and RL2

The mean BWPEs (Er2) of all organs obtained were in the range of [9.85
−16.53] for RC2 and in the range of [9.99− 16.23] for RL2. The standard
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Organ Right to Left Anterior to
Posterior

Inferior to Su-
perior

RC1 RL1 RC1 RL1 RC1 RL1

Left Kidney 1.00 1.00 1.00 1.00 0.89 0.93
Right Kidney 1.00 1.00 1.00 1.00 0.98 0.98
Liver 1.00 1.00 1.00 1.00 1.00 1.00
Spleen 1.00 1.00 1.00 1.00 1.00 1.00
Left Femur Head 1.00 1.00 0.96 0.98 0.91 0.91
Right Femur Head 1.00 1.00 0.98 1.00 0.98 0.98
Left Pelvis 1.00 1.00 1.00 1.00 1.00 1.00
Right Pelvis 0.98 0.98 0.93 0.96 0.96 0.98
L5 1.00 1.00 1.00 1.00 0.93 0.91

Table 6.5: Centroid–hit measure values for RC1 and RL1. The measures
are given as a fraction between centroid–hits and all predictions. The bold
values indicate when centroid–hit measure was better for one method than
for the other.

Organ p−value
Left Kidney 0.58
Right Kidney 0.53
Liver 0.96
Spleen 0.89
Left Femur Head 0.60
Right Femur Head 0.38
Left Pelvis 0.20
Right Pelvis 0.57
L5 0.03

Table 6.6: Obtained p−values for the centroid errors for RC1 and RL1. Note
the very high p−value for the liver.

deviations of RC2 and RL2 were between [10.21− 15.17] and [9.59− 14.23]
respectively. Er2 decreased with the number of decision levels for both RC2

and RL2. Er2 are presented in Fig. 6.4. We observe Er2 decreasing with
the number of decision levels for both RC2 and RL2. The two error curves
appear to be converging at 17 decision levels.
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Figure 6.3: 1.5 IQR box plots of centroid errors of each prediction image for
RC1 and RL1.

Results for RC3 and RL3

Similarly, the mean BWPEs (Er3) of all organs obtained were in the range of
[10.25 −10.39] for RC3 and in the range of [10.89− 10.98] for RL3. The stan-
dard deviations ofRC3 andRL3 were between [10.21− 10.73] and [10.08− 10.19]
respectively. Er3 did not decrease a lot with the number of trees.

6.4.3 Usability Evaluation

The metrics t2, M2, and S2 for RC2 and RL2 are presented in Fig. 6.6. Both
t2 and S2 for RC2 grow exponentially compared to the same values of RL2.
For 17 decision levels, t2, M2, and S2 are (2.2 s, 19.5 s), (117 MB, 1147 MB),
and (171 MB, 5221 MB) for RL2 and RC2 respectively. Hence for 17 decision
levels, LRRF is approximately 9 times faster, takes about 10 times less
RAM, and uses about 30 times less storage space compared to the classic
RRF.
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Figure 6.4: Mean BWPEs of all organs obtained for RC2 and RL2.

Similar to the previous case, t3, M3, and S3 for RC3 and RL3 are pre-
sented in Fig.6.7. All three metrics increase proportionally with the number
of trees. However, the rate of increase is much slower for RL3 compared to
RC3. For 20 trees, t3, M3, and S3 are (6.2 s, 29.3 s), (164 MB, 2226 MB), and
(34 MB, 4440 MB) for RL3 and RC3 respectively. This implies that for 20
RRTs the localization using LRRFs is roughly about 5 times faster, takes
about 14 times less RAM, and uses about 130 times less storage space com-
pared to using classic RRFs.

6.5 Discussion

As demonstrated in Sect.6.4.2, for all 9 organs, the LRRFs and classic RRFs
provide similar prediction results. As calculation of a mean position of a set
of voxels is much faster than the accumulation of histograms per each voxel,
LRRFs produce results very quickly compared to classic RRFs. All the
above provided evidence suggest that LRRFs have much better usability
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Figure 6.5: Mean BWPEs of all organs obtained for RC3 and RL3.

criteria than classic RRFs with similar prediction capabilities.
It is interesting to notice the difference between the mean BWPE and the

centroid error. The mean BWPE averages the absolute differences between
the 6 bounding walls of the predicted bounding box and the gold standard
(see Sect. 4.3.2.1) whereas the centroid error reports the euclidean distance
between the centroid of the predicted bounding box and the gold standard
(see Sect. 4.3.2.3). The two error measures calculated for the liver using the
same prediction results sets RC1 and RL1 provide an excellent example. The
distribution of mean BWPE between RC1 and RL1 for the liver was the least
similar among the 9 organs (with a p− value of 0.03) while the distribution
of centroid error between RC1 and RL1 for the liver was the most similar
among the 9 organs (with a p− value of 0.96).

The number of significant outliers of RL1 is greater than that of RC1 for
relatively small bone structures (left femur head, right femur head, and L5
vertebra) for Er1,1 (see Fig. 6.2). The same observation is made concerning
Er1,2 as well (see Fig. 6.3). This may suggest that LRRFs are less powerful
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Figure 6.6: Evolution of t2, M2, and S2 with number of decision levels for
RC2 and RL2.

at localizing smaller organs. But interestingly, the centroid–hits measures
for left femur head and right femur head of RL1 are slightly better than
those obtained for RC1 (see Table 6.5). This may imply that LRRFs may
be more robust (for example it can be better in determining the best place
for the seeds in region growing methods).

Increasing the number of trees did not have a big impact on the local-
ization results (see Fig. 6.5). In contrast, increasing the number of decision
levels did (see Fig. 6.4); which emphasizes the importance of having deeper
RRTs. However, from RC2 and RL2, it is apparent that, as the number
of decision levels increases, the feasibility of classic RRFs for multi–organ
localization becomes questionable.
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Figure 6.7: Evolution of t3, M3, and S3 with number of trees for RC3 and
RL3.

6.6 Conclusion

We propose LRRFs as an alternative to classic RRFs that only describes
the random variables that are inherent to the random process which results
in a huge RAM and storage requirement reduction enabling the growth of
random forests having deeper trees.

Although estimating the arg max of summation of 1D Gaussians by
weighted individual means might be questionable (as the sum of 1D Gaus-
sians is not a Gaussian distribution), the empirical results we obtained indi-
cate that they are statistically alike with respect to the mean bounding wall
prediction error and centroid error. Additionally, this estimation results in
huge gains in speed and memory, opening opportunities for newer kind of
RRF.
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In this chapter, we proposed a variation of classic Random Regression
Forests (RRFs) termed Light Random Regression Forests (LRRFs). In
order to produce multi–organ localization predictions, LRRFs use the
random variables that define the random process instead of describing
the random process as classic RRFs do.

We observed that the arg max of a distribution made out by sum-
ming many 1D Gaussians can be readily estimated by the weighted
means of individual 1D Gaussians if the means are relatively close to
one another.

During the prediction phase of the RRF algorithm, the leaf nodes
that participate in the final prediction localization are the ones that
are most confident about their predictions. This is ensured by sorting
the leaf nodes per organ according to the determinant of the covariance
matrix of the offset vectors stored from the training phase. Hence, we
assumed that the prediction of the selected leaf nodes point roughly
to the same location enabling us to employ the observation mentioned
previously.

The empirical evidence gathered during the study on the precision
of the LRRF provided comparable results to the classic RRF while the
usability criteria of LRRFs outperformed the classic RRFs by many
folds. The reduction in the execution time may open the possibility
of LRRFs for more time critical applications. The large reductions
in storage and RAM of LRRFs enable the growth of random forests
comprising deeper trees and allows a wider spread of devices where it
can be integrated (e.g., smart phones or other mobile devices).

In the next chapter, we are going to propose a consistent and au-
tomatic selection criteria for three important parameters of the RRF
induction process depending on the perceived useful information that
each image voxel may possess.
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How relevant voxels are selected from the images for the training and
prediction phases and how many forest leaf nodes are picked for the
final organ localization prediction are important parameters that affect
the final localization capabilities and usability measures of the method.

The Sect.7.1 introduces a variety of voxel selection choices available
in the literature, ranging from using random voxels or selecting a region
of interest whereas an arbitrary fixed amount of leaf nodes are picked for
final prediction. The approach followed in order to reduce the depen-
dency on arbitrary parameters in selecting the amount of voxels used in
training and prediction phases as well as the number of leaf nodes used
for final localization prediction in presented in Sect. 7.2. The results
of the study are presented in Sect. 7.3. The obtained results will be
discussed in Sect. 7.4 before concluding the chapter by Sect. 7.5 with a
few concluding remarks and perspectives.

7.1 Introduction

During the analysis of Random Regression Forests (RRFs) that was carried
out in Chap.3, we observed that the number of image voxels that participates
in three steps of the algorithm was decided a priori by the user: 1) the
number of voxels that is used in training, 2) the number of voxels that is
pushed through the whole forest at the prediction phase, and 3) the number
of voxels that is used for the final prediction calculation (see Sect. 3.4.5 and
Sect. 3.4.7.1). The values employed by various studies are presented in the
Table 7.1.

As mentioned in the Sect.3.4.5, the use of too fewer number of voxels may
decrease the localization capabilities of the RRF algorithm as overfitting may
occur. Although the use of too many voxels may not decrease the localization
capabilities it may affect the training and prediction times. Hence, the choice
of the correct number of voxels is an important criterion for the balance
between the localization capabilities and usability measures of the method.

To the best of our knowledge, no information is found in the literature
describing how to choose these arbitrary values selected a priori by the
user other than stating that the values are application specific. This may
suggest the use of trial and error methods or the use of range of values per
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Study Used in training Pushed through the
forest

Final % in
prediction
(pv)

Criminisi et al.
[2010]

all all 1%

Pauly et al.
[2011]

all all n/a

Cuingnet et al.
[2012]

n/a n/a n/a

Criminisi et al.
[2013]

in a regular grid of
±10 cm from center
of each axial slice

in a regular grid of
±10 cm from center
of each axial slice

75%

Gauriau et al.
[2013]

random subset of
40000 voxels

random subset n/a

Gauriau et al.
[2014]

random subset of
30000 voxels

random subset of
30000 voxels

3%

Table 7.1: The number of voxels used for training, pushed through the
forest at the prediction phase, and used for the final prediction calculation.
These values that were previously presented in Table 3.3 and Table 3.5 are
reproduced here for convenience. (n/a: information not available)

each variable and selecting the value combination that produces the best
results on the training or the prediction set. Consequently, the use of such
arbitrary “tuned” values may discourage the wider acceptance of RRFs as
a general tool for automatic multi–organ localization. Therefore, it may
be interesting to look for a mechanism to replace these arbitrary values by
automatic selection procedures.

In this chapter we aim at reducing the dependency on these arbitrary
parameters and propose two consistent alternatives in order to obtain a
better generalization and encourage the usage of RRFs in the field of medical
image analysis. The two proposals comprise:

1. a generic method to reduce the influence of the background noise and
2. an automatic method for picking the leaf nodes used for the final organ

localization prediction based on the first proposal.
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7.2 Materials and Method

The next sections describe the approach followed in order to reduce the
dependency on arbitrary parameters in selecting the number of leaf nodes
used for final localization prediction. First, we look at how the influence
of the background noise can be reduced using a simple automatic image
processing operation without using any ad hoc parameters. Then, the final
leaf node selection criterion is developed based on the same image processing
operation.

7.2.1 Reducing The Influence of The Background Noise

Given a Computed Tomography (CT) image, most of the background con-
sists of air whereas the foreground mainly consists of the patient’s body and
part of the examination table. As a RRF is searching for good landmarks in
order to localize anatomical structures, it is unlikely that those landmarks
are located in the background [Criminisi and Shotton, 2013]. Consequently,
choosing the voxels that belong to the body of the patient can be considered
as a logical selection.

On the other hand, using a predefined constant region may prove too
restrictive as patient morphological differences are extremely large. An ex-
ample is provided in Fig. 7.1b where voxels belonging to the grid of ±10
cm from the center of each axial slice are used in training and prediction
similar to Criminisi et al. [2013]. In such a scenario the voxels are originated
from a very restrictive region. Randomly selecting a fixed amount of voxels
as employed in Gauriau et al. [2013, 2014] would include voxels from the
background that may contain irrelevant information due to the noise (see
Fig. 7.2a).

We made the observation that the background was not uniform (i.e.,
there is noise in the background too). We could observe the noise present
in the background at a very low Hounsfield Units (HUs) (see Fig. 7.2a). At
the training phase, a region purely consisting of the background voxels may
be further split into two more regions due to this noise. On the contrary, if
the region is uniform, it may not be split further (see Fig. 7.2b).

Due to the above mentioned observations, instead of either using a fixed
ROI of a given arbitrary dimension for all images similar to [Criminisi et al.,
2013] or randomly selecting an arbitrary number of voxels per image sim-
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(a) (b)

(c) (d)

Figure 7.1: Different Region of Interests (ROIs) of an axial slice of a CT
image (Original images without any contrast adjustments). (a) Original
image slice. (b) The centered unmasked square depicts the ROI (±10 cm
grid from the center of the slice) that was used in Criminisi et al. [2013].
The masked area shown in red (which is not considered in the training and
prediction phases) contains a big portion of the patient’s body. (c) Image
slice after applying the Otsu thresholding. White roughly represents the
foreground whereas black roughly represents the air-like regions of the slice.
(d) Image slice after unifying the air-like regions using the mask created
by Otsu thresholding (shown in yellow). The masked area represents the
unified regions.

ilar to [Gauriau et al., 2013, 2014], we decided to choose all the voxels of
the image after removing the effect of the noise of the background voxels.
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(a) (b)

Figure 7.2: The effects of the background noise on the axial slice used in
Fig. 7.1. Red rectangle represent the background area to be split. (a) At
a very low HUs, the background noise could be observed. Consequently, a
pure background region may be further split due to the noise present. (b)
When the background is transformed into a uniform region by setting all
the voxels belonging to the background to the same HU value, then, a pure
background region can not be further split.

Attention, we do not remove the background itself as it may be
relevant, only its noise.

Every training and testing image was subjected to an Otsu threshold
Otsu [1975] which resulted in a binary image (see Fig. 7.1c). The Otsu
thresholding method is based on statistics that separates the image into 2
voxel clusters (one with information and the other with background) and
automatically chooses the optimal thresholding value. This optimal thresh-
olding value is image dependent. The resulting binary image was then used
as a mask to the original image to generate a new image where the zero
valued voxels were set to an arbitrary zero (origin) value (see Fig. 7.1d). In
the case of CT, we chose the value to be −1000 Hounsfield Unit (HU) which
corresponds to air [Mah et al., 2010]. Values of the rest of the voxels were
not modified. By unifying all the air–like regions to have the same value,
the eventual effect of the noise of these regions may have on the localization
is minimized.

Although all voxels of the training and testing images were used in the
training and prediction phases respectively, the influence of the air–like re-
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gions was expected to be minimal. In addition to that, this voxel discrimi-
nation is used to select the voxel percentage that participate in the ultimate
bounding box prediction (pv) in the prediction phase as described below.

Then the usual steps of the training phase are carried out in order to
train a RRF (see Sect. 3.4.6).

7.2.2 Picking The Leaf Nodes Used for Organ Localization
Prediction

During the prediction phase, once the unseen CT image is preprocessed to
unify the air–like regions as mentioned in the previous section, all the voxels
of the image are pushed through the forest. Once all selected voxels have
been pushed through the forest, the leaf nodes that accumulated these voxels
are sorted with respect to the covariance of the offset vectors accumulated
during the training phase for each organ. This sorting step is intuitive
as smaller covariance implies higher confidence in localization. Then the
number of leaf nodes (np) that participate in the prediction among the
selected voxels should be determined for each anatomical structure. To
the best of our knowledge, selecting an arbitrary percentage of the selected
voxels (pv), i.e., an arbitrary number of leaf nodes, is the only method
proposed in the literature [Criminisi et al., 2013; Gauriau et al., 2013, 2014]
(see column 4 Table 7.1). As it will be demonstrated in Sect. 7.3.1 there is
no single pv (hence, np) that would always produce optimal localization.

Following our previous assumption that the voxels belonging to the non–
air–like regions carry most of the useful information, our aim was to select
the percentage of voxels that corresponds to these regions. This percentage
(pv) was calculated by estimating the separative power of the Otsu threshold:

pv =
nVf
nV
× 100 % , (7.1)

where, nVf is the number of voxels that belong to the foreground found after
the Otsu threshold operation and nV is the total number of voxels in the
image. Finally, np is the number of leaf nodes at the head of the sorted
queue that accumulates at least pv percentage of voxels.

The rest of the prediction details are identical to the steps described in
Sect. 3.4.7.
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7.2.3 Materials and Implementation Details

In order to verify the influence of background noise unification and automatic
selection of pv on the RRF performance, we followed the methodological
procedure described in Chap. 4.

The dataset described in Sect. 4.2 was used for the study and was ran-
domly divided into a training set and a prediction set of 55 and 45 images
respectively, similarly to [Criminisi et al., 2010]. The same set of organs
described in Sect. 4.2.2 were used in this study too. Prediction evaluation
was carried out using mean Bounding Wall Prediction Error (BWPE) as
mentioned in Sect.4.3.2. The same statistical test mentioned in Sect.4.3.2.4
was used to verify the difference between the results obtained by the two
algorithms. For all statistical test carried out, α was set to 0.01. The tests
were carried out under the same hardware configuration as described in
Sect. 4.3.1.

The classic RRF method was implemented as described in Criminisi
et al. [2013] and is denoted by I1. The second implementation incorporated
the two changes proposed in this study and is denoted by I2. Both I1 and
I2 comprised 4 regression trees and 12 maximum decision levels following
the benchmark protocol mentioned in Sect. 4.3 and the study presented in
Chap.6 that showed the convergence is nearly obtained for these values. As
proposed in Criminisi et al. [2013], a subset of voxels of each image volume
was used for training and prediction phases in I1. This subset was chosen
by sampling on a regular grid within ±10 cm of the center of each axial slice
of each image volume (see Fig. 7.1b). In contrast, all voxels belonging to an
image volume (see Sect. 7.2.1) were used in I2 for training and prediction
phases.

7.3 Results

The goal of this section is two fold. First, we wish to prove that there is no
optimal arbitrary number of leaf nodes that produce the best localization
results. The second goal is to provide empirical evidence that the automatic
selection of the number of leaf nodes produces as good results as the state
of the art method does.



149 7.3. RESULTS

7.3.1 No Optimal Number of Leaf Nodes for Prediction

First, the 55 images used in the training phase (the training set ΩT ) were
again applied to the trained RRF obtained using I1 to predict the localiza-
tion of the 9 anatomical structures (R1

T ). Through R1
T we wanted to figure

out whether an optimal pv value could be determined a priori (i.e., before
the prediction phase).

For each image used for training and for each organ 100 different predic-
tions were made using 100 different image voxel percentages pv ∈ [1 − 100]
following the procedure described in Sect. 3.4.7 and Sect. 3.5.2. When an
anatomical structure of interest was fully present in an image, BWPEs were
calculated for all 6 walls for all 100 different voxel percentages using the
corresponding predictions and gold standard.

The mean BWPEs for all voxel percentage configurations are presented
in Fig. 7.3. Er increased with pv and the best predictions were obtained
with the smallest voxel percentage (pv = 1), i.e., the smallest number of
leaf nodes. This is the expected behavior as the training error is minimized
by the RRF. Thus the smallest pv should produce the smallest BWPE. In
addition to that, the localization prediction of bone structures (left femur
head, right femur head, left pelvis, right pelvis, and L5 vertebra) appears to
be better than the prediction of soft tissue organs (left kidney, right kidney,
liver, and spleen).

The remaining 45 testing images (ΩP ) were used to generate the result
set R1

P using I1. Resulting BWPEs (Er) of R1
P are presented in Fig. 7.4.

For 7 organs, Er obtained for pv = 1 in R1
P was not the lowest among the

observed Er for the different voxel percentages. But pv = 1 resulted in the
best prediction for the spleen and right femur head. The worst prediction
for the spleen can be observed in the range 35 < pv < 50. The localization
prediction for the right pelvis appears to be stable across all pv. For the
other seven anatomical structures, Er appears to increase continuously for
pv > 10. As there is no single constant value for pv that results in the best
localization prediction, using an arbitrary value of pv may not be optimal.
Hence we can state that there does not exist an optimal number of leaf nodes
that produce the best localization results.

Among the 100 values that were used, pv = 75 used in Criminisi et al.
[2013] did not produce the best predictions for any anatomical structure.
Similarly to R1

T , the localization prediction in R1
P appears to be better for
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Figure 7.3: Mean BWPEs (Er) for I1 using ΩT (the image set used for
training) (R1

T ). The blue vertical line represents pv = 75 as used in [Criminisi
et al., 2013]. All 9 organs produce the smallest BWPE for pv = 1. And this
is the expected behaviour as the images used for training were used for
generating the localization predictions.

bone structures than for soft tissue organs.
Er obtained for ΩP were greater than Er obtained for ΩT but the ranges

of Er obtained for ΩP were less than those obtained for ΩT for all 9 organs.

7.3.2 Use of The New Voxel Percentage Selection Criterion

In I2, pv was chosen as the percentage of voxels that was classified as the
foreground by the Otsu threshold operation (see Sect. 7.2.2). Hence, this
value was unique for each image used at the prediction phase. These values
ranged from 29.8% to 72.3% for the 45 images of ΩP with a mean and
standard deviation of 51.5% and 9.0% respectively. These values were very
different from pv found in the literature (1%, 3%, 75%).

Two result sets (R2
T and R2

P ) were generated using I2 and the above
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Figure 7.4: Mean BWPEs (Er) for I1 using ΩP as the prediction image set
(R1

P ). The blue vertical line represents pv = 75 as used in [Criminisi et al.,
2013]. No single pv can be picked for all 9 organs that produces the smallest
mean BWPE.

found voxel percentages. The predictions were made following the proce-
dure described in Sect. 3.4.7 and Er were calculated in the same manner as
described above.

Table 7.2 summarizes the mean, standard deviation, median, and max
BWPEs obtained for each organ for the images of ΩT . R2

T appears to
behave in the same manner as R1

T where Er for bone structures are less
than those for soft tissue organs. Another interesting observation is that
the median BWPE values for all anatomical structures are less than Er.
Also, the difference between Er and median BWPE is always greater than
the difference between Er and standard deviation values for each anatomical
structure.

Similarly to the Table 7.2, the Table 7.3 summarizes the mean, standard
deviation, median, and max BWPEs obtained for each organ for the images
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-+-+Mean Std. Dev -+Median -+-+-Max
Left Kidney 12.2 10.6 9.6 60.0
Right Kidney 12.0 10.2 9.2 49.0
Liver 13.5 12.2 10.3 97.0
Spleen 13.9 12.5 10.6 72.0
Left Femur Head 6.9 7.4 4.9 58.0
Right Femur Head 6.8 6.7 5.3 54.7
Left Pelvis 7.2 7.2 5.4 57.3
Right Pelvis 7.4 6.5 6.0 38.0

Table 7.2: Mean BWPEs (R2
T ) generated using I2 and ΩT . All measure-

ments are in mm.

of ΩP . Er for soft tissue organs are greater than those for bone struc-
tures similar to the previous result sets. Same behavioral comparisons as in
R2
T can be observed regarding Er, median BWPE and standard deviation

values. Localization prediction of R2
P resulted in greater errors than R2

T .

-+-+Mean Std. Dev -+Median -+-+-Max
Left Kidney 12.8 11.9 9.9 89.0
Right Kidney 13.3 10.9 11.5 75.0
Liver 15.1 13.7 10.6 75.0
Spleen 14.5 13.5 11.0 85.0
Left Femur Head 8.9 7.7 7.0 41.0
Right Femur Head 8.7 7.6 5.0 36.0
Left Pelvis 8.4 6.1 6.1 23.0
Right Pelvis 9.4 7.6 7.9 37.0

Table 7.3: Mean BWPEs (R2
P ) generated using I2 and ΩP . All measure-

ments are in mm.

As mentioned above, I2 uses a unique voxel percentage for each image
used for prediction that results in a unique prediction. Consequently, a
direct comparison between R1

P and R2
P is not possible. Hence, similarly

to Criminisi et al. [2013], the localization predictions obtained by R1
P for

pv = 75 (R1
P,75) were compared to R2

P . The resulting Inter Quartile Range
(IQR) box plots are given in Fig. 7.5.
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Figure 7.5: 1.5 Inter Quartile Range (IQR) box plots of mean BWPEs for
each prediction image of R1

P,75 and R2
P .

Er for the liver and spleen of R2
P were slightly less than that of R1

P,75.
For the other 7 organs, Er of R2

P were marginally greater than those of
R1
P,75. The Inter Quartile Ranges (IQRs) of Er follow the same behavior.

For all organs Er were greater than median BWPE for both R1
P,75 and R2

P .
The number of outliers and their range appear to be quite similar for both
R1
P,75 and R2

P . Finally and more importantly regarding our hypothesis, no
statistical significance was observed between R1

P,75 and R2
P for any organ

with p–value ∈ [0.03− 0.86].
A comparison of maximum BWPE (max Er) between I1 and I2 pro-

vides a good indication about the suitability of the methods for localization
prediction. Fig. 7.6 represents max Er of R1

T .
For all the organs apart from the spleen, maxEr increased with pv and

the smallest max Er were obtained with pv = 1, i.e., the smallest np. In
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addition to that, the greatest ranges for max Er can be observed for the
liver, left pelvis, and L5 vertebra. Furthermore, there is no clear distinction
between the bone structures and soft tissue organs as previously observed
for Er values.

In the same figure, max Er generated by R2
T are indicated by bigger

symbols. The maximum BWPE generated by R2
T for the left kidney, left

femur head, right femur head, and right pelvis were always greater than
max Er values generated by R1

T for all values of pv. Interestingly, max Er
for the right femur head, left pelvis, and right pelvis were obtained for the
same image of ΩT .
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Figure 7.6: max Er along any direction for I1 using ΩT as the prediction
image set. The values indicated by bigger symbols correspond to the values
obtained using I2 and ΩT . The blue vertical line represents pv = 75.

Similarly, Fig. 7.7 represents maxEr of R1
P . Similar to the observations

made for Fig. 7.4, for 8 organs, max Er obtained for pv = 1 was not the
smallest among all the different voxel percentages. But pv = 1 resulted
in the smallest max Er only for the left femur head. Very large range of
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max Er values can be observed for the left femur head, right femur head,
and L5 vertebra. Interestingly, max Er seems to decrease with pv for the
liver.

As in the previous figure, max Ers generated by R2
P are indicated by

bigger symbols in the same figure. Unlike in R2
T , there is no max Er value

generated by R2
P that is greater than max Er values generated by R1

P for
all pv for any organ. Contrary to R2

T , the distinction between the bone
structures and soft tissue organs can clearly be seen in R2

P . The maximum
BWPE for the right kidney, and liver were obtained for the same image of
ΩP .
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Figure 7.7: max Er along any direction for I1 using ΩP as the prediction
image set. The values indicated by bigger symbols correspond to the values
obtained using I2 and ΩP . The blue vertical line represents pv = 75.

Although, Er obtained for R1
P and R2

P were greater than Er obtained
for R1

T and R2
T respectively, the same does not hold true with respect to

max Er.
In all R1

T , R1
P , R2

T , and R2
P , Er were representative of all the images.
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Fig. 7.8 was generated in order to look at the variation of Er of a single
image with different pv values. It illustrates Er of the left kidney for 5
testing images for 100 different pv values (from 1 to 100). The minimum Er

of image 1 to image 5 are observed at pv = 100, 95, 4, 1, and 11 respectively.
On the other hand, the maximum Er of image 1 to image 5 are observed
at pv = 1, 2, 96, 100, and 100 respectively. This clearly illustrates that no
single arbitrary value is capable of producing better results for all images.
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Figure 7.8: Mean BWPEs (Er) of the left kidney for 5 prediction images
using I1. Bigger symbols illustrate Er obtained by I2. The blue vertical
line represents pv = 75.

7.4 Discussion

Using voxels inside a regular grid within ±10 cm of the center of each axial
slice of the image volume as in I1 may lead to scenarios (see Fig.7.1b) where
much of the patient body is not considered as possible landmarks for training
of the RRF. This may lead to sub-optimal RRFs.
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A regular CT image generally consists of patient’s body, bed of the CT
scanner, and background. The background mostly consists of air. But air is
also present in patient’s lungs and intestines. As CT images are represented
using HU, the gray levels of the CT image can be directly mapped to the
imaged physical matter in medical grade CT scans as well as cone beam
computed tomography [Mah et al., 2010].

We proposed the image preprocessing steps performed in I2 (see Sect.
7.2.1) in order to distinguish between air–like regions and the rest. After
the Otsu threshold operation, the air–like regions are automatically clustered
into one class and the rest into the other. Setting the graylevel of voxels
belonging to air–like regions to−1000 signifies assigning them with the HU of
air. Since RRF training process is not expected to use the subtle differences
of the air–like regions which mostly consist of noise but rather discriminate
the body regions, we suggest that unifying the air–like regions is advisable.
In addition to that, this method of reducing the influence of the background
noise can be directly applied to other image modalities such as MRI where
only the representative zero value needs to be adjusted depending on the
modality.

In I2, as all the voxels in an image were used for training, the air-like
regions inside the body were also considered. Since the size of an image
slice in the dataset ranged from 26.3 × 26.3 cm2 to 46.6 × 46.6 cm2 and
since I1 only used ±10 cm grid area from the center of each axial slice, it
may have missed a number of landmarks that lie outside that range. If the
voxels belonging to the non–air–like regions were solely used for training in
I2, the landmarks that may exist near the skin may not have been captured
by the training process in addition to loosing the probable landmark regions
inside or near the lungs and intestines. These possible land marks were
likely already lost in I1 as it did not consider any voxel out of the ±10 cm
grid from the center of each axial slice.

R1
T provides compelling evidence for the correctness of RRF. When pre-

dicting the localization of a single organ, the leaf nodes having the highest
confidence in prediction are found at the head of the selection queue due to
the sorting step carried out (see Sect. 3.4.7.1). Thus, choosing the smallest
percentage of voxels for prediction, results in selecting these highest confi-
dent leaf nodes. For all images in ΩT , the best predictions are obviously
expected with the smallest pv (i.e., using the smallest np). In addition to
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that, the accuracy of prediction for all images in ΩT is expected to con-
tinuously decrease when the used percentage of voxels increases. It is the
expected behavior as the predictions were made using the same images which
were used for training (ΩT ) the RRF. This was exactly what was observed
in R1

T (see Fig. 7.3). Obtaining the smallest max Er of R1
T for pv = 1 for

all 9 organs provides further evidence to this claim.
Er obtained for pv = 1 in R1

P did not provide the smallest Er for all
organs except for the spleen and right femur head. It may be due to the fact
that the best leaf nodes chosen from the training phase (the ones with the
least variation of the covariance matrix of the stored offset vectors) may have
collected a small number of voxels or no voxels at all during the prediction
phase. It may also hint that I1 is more specific to the provided training
images since the voxels are extracted from a very restrictive ROI.

7.5 Conclusion

Even after analyzing the localization predictions generated using the same
images used for training, a single pv (hence, np) value that gives better re-
sults with previously unseen images can not be found. Instead, providing
RRF method with the highest amount of relevant information both in train-
ing and prediction phases while reducing the influence of the background
appears to produce comparable results as the state of the art results.

In addition to that, using the proposed fully automatic consistent method
for picking the forest leaves (np) for organ localization prediction may boost
the usability of RRF not only in medical image processing but also in other
fields as well.

In extending the present work, it would be interesting to see whether
further automatic parametrization is possible. Comparing the impact of
randomly selecting voxels of an image volume for training and prediction
against randomly selecting voxels from ROI where useful information is be-
lieved to exist may lead to interesting results as well. Finally, devising a
mechanism to assess the quality and confidence of the localization predic-
tion without having to use manual localization results will be essential to
the wide usage and adaptability of RRF method.

.
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In this chapter, we looked at three important steps of RRF induction
process. Namely, 1) how voxels are chosen for training, 2) how voxels are
chosen to be pushed through a trained forest in the prediction phase, and
3) how many leaf nodes are picked for the final localization prediction.

We observed in the literature that a variety of voxel selection choices
are available for step 1 and 2, ranging from using a random sub sample
of voxels or selecting the voxels belonging to a region of interest. The
number of leaf nodes that are picked for the final prediction was seen
to be an arbitrary fixed amount depending on the study, suggesting a
trial and error approach.

We hypothesized that the contribution of background voxels to the
organ localization is minimal. Then, we observed that the noise present
in the background voxels is not desirable to the localization procedure.
Consequently, we proposed to make the noise present in the background
voxels uniform by applying an Ostu threshold to the CT images and
setting all background voxels to the same HU value of air (−1000 HU)
which nullified the effect of the background noise.

With the set of new images whose background noise is nullified we
used all voxels belonging to an image to train the RRF. Similarly,
all voxels of a prediction image whose background noise was nullified
were pushed through the forest at the prediction phase. Finally, the
number of leaf nodes selected for final prediction was calculated as the
percentage of voxels that belong to the foreground.

The empirical evidence gathered during the study provided com-
parable results to the state of the art results while the elimination of
arbitrary values enhanced the general usability and adaptability of the
RRF method.

Next, we are going to conclude the dissertation by providing a gen-
eral discussion, a few concluding remarks, and finally a few perspectives.
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Reasoning draws a conclusion, but does not make the conclusion
certain, unless the mind discovers it by the path of experience.

- Roger Bacon

8
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The final chapter of this dissertation first presents an extensive dis-
cussion on the organ detection capabilities of the Random Regression
Forest (RRF) method in Sect. 8.1. Then, the general conclusions of
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the whole study are presented in Sect. 8.2 before presenting the future
perspectives that stemmed from it in Sect. 8.3.

8.1 A Discussion on Organ Detection

This section discusses the organ detection capabilities of the Random Re-
gression Forest (RRF) method. Up to now we have used RRFs for multi–
organ localization making the simple assumption that the organs we were
looking for were present in the images. An interesting question is what hap-
pens when an organ we are trying to localize is absent? Certain pathologies
may require the ablation of organs that may lead to such scenarios. Organ
detection is the ability of RRFs to detect the absence of an organ in such a
situation.

First, we present what is mentioned in the literature on organ detection
using RRFs in Sect. 8.1.1. Then, with the use of a simple toy example, in
Sect. 8.1.2, we demonstrate the weaknesses of the existing detection criteria
and call for the improvement of the RRF methodology in order to be more
effective at organ detection.

8.1.1 Literature on Organ Detection Using RRFs

To the best of our knowledge, among the several studies that focus on multi–
organ localization using RRFs, only two studies have presented specific de-
tails related to organ detection [Criminisi et al., 2010, 2013]. The ideas
presented in the two studies are described below.

At the time of the localization prediction, we know that the posterior
distribution of the bounding box vector p(bc) for the organ (c) is found in
the following manner:

p(bc) =
T∑
t=1

∑
l∈L

p(bc | l)p(l) , (8.1)

where T is the number of trees in the forest, l is a leaf node, L is the set of leaf
nodes selected for prediction of the localization of the organ c, p(bc | l) is the
conditional distribution of bounding box vector, and p(l) is the probability
distribution prior (see Sect. 3.4.7.2). Then the absolute position

(
b̂c
)
of the

bounding box of the organ c is determined by finding the arg max of the
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above distribution:
b̂c = arg max

bc
p(bc) , (8.2)

or as we demonstrated in Chap. 6 by the weighted summation of the mean
bounding box vectors

(
b̄c,l

)
:

b̂c =
T∑
t=1

∑
l∈Lt

b̄c,l p(l) , (8.3)

where b̄c,l = ˆ̄v − d̄(v; c), d̄(v; c) is the mean offset vectors saved from the
training phase, and ˆ̄v = (v̄x, v̄x, v̄y, v̄y, v̄z, v̄z) made from the mean voxel
position (v̄x, v̄y, v̄z) of the voxels accumulated at the leaf node l during the
prediction phase.

Criminisi et al. [2010] stated that an organ is declared present if the
probability of the absolute position b̂c is greater than a threshold β in the
following manner:

p
(
bc = b̂c

)
> β . (8.4)

Although they stated that β = 0.5 was selected for their study, there was no
mention on how to select β, the authors probably meant application specific
heuristic tuning.

In Criminisi et al. [2013], the authors proposed a different method for the
organ detection that was based on the prediction confidence. They proposed
to measure the confidence by fitting a 6D Gaussian with diagonal covariance
matrix Λ̂ using the 1D histograms in the vicinity of b̂c. Then, they used
|Λ̂|−1/2 as the measure of confidence of the final prediction. They suggested
to use a threshold β depending on this confidence value and this parameter
was proposed to be tuned depending on the application.

We believe that the latter proposal may be more appropriate than the
former as a measure of detection. If the localization prediction points to
a region in a medical image where an organ is not present, then it is only
natural to expect the confidence of the prediction to be low. But is it really
what happens in the real world?

We agree that the RRF method automatically selects the latent land-
marks to localize a given organ [Criminisi et al., 2010, 2013]. What happens
when all supposed landmarks are in place but not the organ? Then, is the
confidence of the localization prediction low? Since the spatial context of
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the vicinity of the organ is not affected by the presence of the organ itself,
we believed that further investigation on the matter may provide interesting
results.

8.1.2 A Toy Example of Organ Detection

Since we did not possess any Computed Tomography (CT) images where the
organs were totally absent, we decided to create a synthetic set of 2D images.
The images were used in a toy example that further investigated organ
detection using RRFs. The images were made to mimic a coronal slice of a
CT image that comprised cross sections of the liver, spleen, left kidney, right
kidney, spine, and upper part of the hip bone. We used 4 coronal slices of
real CT images belonging to 4 different patients to extract the shapes of the
liver, spleen, left kidney, right kidney, and the body. These extracted organs
were given the same uniform gray level value. The extracted body shapes
were given a darker gray level value. The visible part of the lungs, spine, and
upper hip bone were cropped from those 4 images without any gray level
modification operation. The background was set to uniform 0 Hounsfield
Unit (HU). Finally, the shapes were subjected to different deformations to
form the synthetic dataset.

Our synthetic 2D images consisted of 12 training images and 4 testing
images. Two training images and two testing images are presented in Fig.8.1.
The first testing image (I1) has its lower region cropped (see Fig. 8.1c)
whereas the second testing image (I2) was generated without the left kidney
(see Fig. 8.1d).

A RRF comprising 4 Random Regression Trees (RRTs) each having
7 maximum decision levels was trained to predict the localization of the
liver, spleen, left kidney, and right kidney according to the normal training
procedure described in Sect. 3.4.6. Mean intensity of displaced rectangles
(since images are 2D) were used as the set of features of the forest.

The trained RRF was used to localize the 4 organs in each testing image
in the prediction phase using the general procedure presented in Sect. 3.4.7.
The resulting predictions for the left kidney of I1 and I2 are presented in
Fig. 8.2. We observe that the left kidney localization prediction of I1 is
acceptable although not very accurate (see Fig. 8.2a). On the other hand,
a non-existent left kidney is localized in I2 (see Fig. 8.2b). Yet, as the
landmarks that surround the left kidney are all in their correct places in
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(a) (b)

(c) (d)

Figure 8.1: A few sample images of the synthetic database. (a,b) Two
training images. (c) A testing image (I1) which has its lower part cropped.
(d) Another testing image (I2) where the left kidney is missing.
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I2, this prediction is in total agreement with the concept of multi–organ
localization using RRFs.

(a) (b)

Figure 8.2: Sample predictions of the left kidney. (a) The localization pre-
diction is roughly correct although not very accurate in I1. (b) Although
the organ is not present in I2, the RRF algorithm localizes the region where
the organ would have been present. Since the landmarks of the left kidney
are correctly positioned, this prediction is coherent. The predicted bounding
box of I2 appears to be elongated than the bounding box of I1 following the
general morphology of the two images.

The above presented scenario in Fig. 8.2 is an ideal opportunity to mea-
sure the strength of the organ detection proposals that were discussed in
Sect. 8.1.1. The distributions of p(bc) along the right and left directions for
I1 are presented as a red curve in Fig. 8.3. The corresponding distributions
for I2 are presented in the same figure using the blue dashed curves. Both
curves are very similar in shape and in placement for both directions. The
probability of the final predicted localization p

(
bc = b̂c

)
lie very close to

each other. As their shapes are similar, the variance of the curves are also
similar. Hence, the organ detection using either of the criteria presented in
Sect. 8.1.1 will fail to distinguish I2 from I1.

The distributions of p(bc) along the inferior and superior directions for
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Figure 8.3: p(bc) along the right (top figure) and left (bottom figure) di-
rections. Both p

(
bc = b̂c

)
and variance of each distribution of I1 (in red)

appears to be very similar to the corresponding distribution of I2 (in blue).
Consequently, organ non-existance can not be determined using either of
the criteria described in Criminisi et al. [2010, 2013] in this scenario.

I1 are presented as a red curve in Fig. 8.4. The same distributions of I2

are presented in the same figure using the blue dashed curves. Unlike the
previous case, the shape of the curves are very different from one another.
The distributions of I1 produce two local maximas whereas the distributions
of I2 produce a single maxima. If we consider the variance of the two set of
curves, the variance of the curves corresponding to I1 are much larger than
those corresponding to I2. Additionally, if we consider p

(
bc = b̂c

)
, the value

for the curves corresponding to I1 are smaller than those corresponding to
I2. Interestingly, according to the two criteria mentioned in Sect. 8.1.1, I1

will be selected as the image where the organ is non–existent whereas in
reality, the left kidney is not present in the other image, I2.

This simple example illustrates the tricky nature of organ detection using
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Figure 8.4: p(bc) along the inferior (top figure) and superior directions
(bottom figure). The variance of both curves of I1 is much larger than
corresponding values for I2. Furthermore, p

(
bc = b̂c

)
of I1 is smaller than

that of I2. Hence, according to the detection criteria mentioned in Sect.8.1.1,
I1 might be selected as the organ non–exitent image. But the left kidney is
non–exitent in I2.

RRFs. It also suggests that much work needs to be carried out in order for
RRFs to have strong organ detection capabilities.

It is our belief that organ detection should not only consider the final
prediction distribution, but consider other possibilities too. This is based
on the fact that the surroundings alone can not determine whether an organ
is present or not in a given medical image. Incorporating classical intensity
based segmentation methods or augmenting the current RRF method with
organ specific information may be interesting ideas to pursue in making the
current RRF method more powerful at organ detection.

The general conclusions of the dissertation are provided in the next sec-
tion.
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8.2 General Conclusion

The main aim of the dissertation was to carry out a detailed study of the
use of the RRF method for multi–organ localization in CT images.

One of the most important outcomes of the study, on a theoretical level,
was the advancement of the knowledge of using RRFs for multi–organ lo-
calization in CT images through a thorough understanding of the inner
workings of the methodology. To this extent, we analyzed the basic building
block of the RRF methodology, the decision tree, in Chap. 2, and the RRF
methodology itself in Chap. 3 along with a thorough bibliographical review.
The main steps of the decision tree induction and the best split selection
process were analyzed in Chap.2. The analysis of the RRF methodology was
carried out with respect to the multi–organ localization problem in Chap.3.
This chapter presented and analyzed how multi–organ localization problem
was reformulated as a relative displacement regression problem along with
an analysis of the main phases of the RRF method.

Chapter 4 presented the scientific approach followed in conducting the
subsequent studies. This unified approach laid the foundations for the
achievement of the more practically oriented expectations of the disserta-
tion. The first study presented in Chap.5 augmented the classic RRFs with
spatial consistent information contrary to the classic RRFs which rely on
direction independent hypothesis. The empirical evidence gathered during
the study lead to the conclusion that the augmented RRF method was not
significantly different from the classic RRF method. In Chap. 6, we pro-
posed Light Random Regression Forests (LRRFs) that were more memory
efficient and faster than classic RRFs while maintaining the same localiza-
tion capabilities as the classic RRFs. Our proposal for selecting the number
of forest leaf nodes for the final prediction instead of using arbitrary values
as done in the literature presented in Chap.7 was a first step towards a more
generalized RRF framework. While our proposal was more systematic and
consistent, eliminating the need to tune more parameters, it did not reduce
the localization capabilities.

The proposals put forward in Chap. 5, Chap. 6, and Chap. 7 are not
restricted to random regression forest by any means. They are most certainly
applicable in the context of random forests and can be made to suit in the
more general context of machine learning. This satisfies the final expectation
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laid down for the dissertation that our proposals may be applied in other
forms of random forests.

Although our proposals stemmed from either a theoretical hypothesis or
an observation, the fact that no statistical significant results were obtained
between the classic RRF method and any of the proposals may be potentially
attributed to two factors. First, it may suggest that the classic RRF method
is highly robust and that the proposed extensions did not modify the core
statistical process of the classic RRF method. Secondly, it may be due
to the fact that the wide variation within our image database is canceling
out the eventual differences in the localization performances of the different
proposals. As our aim was to provide a tool for the clinicians for the eventual
practical use, having such a diverse database was not only unavoidable but
mandatory as well.

Finally, we have taken the first steps of making the Light Puncture Robot
(LPR) autonomous by enabling fully automatic multi–organ localization
using RRFs.

Next, we present the general perspectives that stemmed from this dis-
sertation.

8.3 General Perspectives

The studies conducted during the course of this dissertation unveiled nu-
merous theoretical and practical perspectives. The short term perspectives
and long term perspectives are addressed respectively in Sect. 8.3.1 and
Sect. 8.3.2.

8.3.1 Short Term Perspectives

An immediately feasible task would be to study the influence of various other
parameters of the RRF algorithm on the multi–organ localization that were
not studied during this dissertation. It will also be interesting to combine
the LRRF proposed in Chap.6 with the automatic parametrization proposed
in Chap. 7.

Now that a robust multi–organ localization method is at our disposal,
one of the next steps would be to link the localization to classical segmen-
tation methods in order to segment organs fully. As obtaining multi–organ
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segmentation may appear too ambitious, as an initial step, segmenting one
organ at a time may be the way forward.

Throughout the studies carried out during the dissertation, we observed
that the localization of bone structures (the left femur head, right femur
head, left pelvis, right pelvis, and L5 vertebra) using RRFs produced rel-
atively smaller errors than the localization of soft tissue organs (the liver,
spleen, left kidney, and right kidney). This may be due to the fact that
the bone structures are fairly similar across different patients whereas the
soft tissue organs may be subjected to large variations in size, shape and
spatial localization. In addition to that, bone structures have very high HU
values compared to soft tissue organs which may make them relatively easily
locatable too. In contrast, all the soft tissue organs used for the disserta-
tion possess very similar HU values making them harder to distinguish. It
may be interesting to carry out separate localization of soft tissue organs
and bone structures. Analyzing the outcomes of such an experiment may
provide insight to using different intrinsic parameters of RRF for the two
scenarios.

In order to share the strength and heterogeneity of our dataset, propos-
ing a fully automatic multi–organ localization challenge as a satellite event
in a relevant conference such as the Medical Image Computing & Computer
Assisted Intervention (MICCAI) conference might be very interesting. This
will provide an opportunity for the numerous algorithms specialized in lo-
calization to compete and measure their strengths and weaknesses against
one another ultimately contributing to the betterment of the field.

8.3.2 Long Term Perspectives

It is our belief that much work needs to be done in order to make the RRF
method a powerful organ detection tool (see Sect. 8.1). If organ specific
information incorporation is selected as the way forward, then, how organ
specific information is going to be inserted into the current RRF setting
without many changes, and how to couple this information with the pre-
diction distribution confidence in order to decide on organ detection will be
very interesting questions to answer.

Porting the RRF algorithm for multi–organ localization in other image
modalities other than CT images would be another path to explore. The
first step taken in that direction would be to devise image modality specific
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features that capture the naturally present contextual information of medical
images. Once the suitable features are discovered, the application of the
RRF method would follow the same principles.

Supervised machine learning techniques specialized in organ segmenta-
tion require segmented organs as their training set. Segmenting an organ
manually or semi-automatically takes a long time. Hence finding experts
willing to segment organs is not a trivial task. In this setting, our long term
dream goal is to perform multi–organ segmentation using random regres-
sion forests as the base tool without providing a segmented training set but
only a localized training set. The tackling of this conundrum would present
ample theoretical and practical opportunities for research. Our team wishes
to explore these paths in the quest to make the Light Puncture Robot an
autonomous robot.

Finally, we hope that the generalization advancements of the RRFmethod
made during this dissertation will follow more research work that pursue the
same generalization notion in order to make the wonderful tool of RRFs be
used across different medical applications in years to come.

.

We would like to conclude the dissertation with a quotation fromWilliam
Belson, the founding father of decision trees: "The method as I have de-
scribed it is, it is true, a movement towards a more empirical way of
doing things; but it is just as much a movement away from a sophisti-
cation which is too often either baffling or misleading" [Belson, 1959].
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