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Abstract

Layered compounds present a variety of electronic phases, whose origin can be often
traced back to the presence of strong Coulomb interactions. This is particularly the
case in layered transition metal compounds, which present narrow electronic bands
constructed from d-orbitals, a key ingredient to understand their electronic properties.
We will focus in this dissertation on systems where the crystal-field splits orbitals into
two degenerate subsets, t2g and eg, and where conduction electrons are on eg-orbitals.
It is the case for 2H-AgNiO2, known to exhibit charge orders, a periodic arrangement of
electrons on the lattice and also true in layered transition-metal dichalcogenides, which
exhibit various charge ordering patterns whose physical origin is not fully understood.

In order to investigate charge ordering phenomena in this important class of
materials, we derive a generic multiorbital extended Hubbard model and we refine
our interest to eg-orbital with strong local Coulomb interactions. Within an atomistic
tight binding approach and using both electrostatic considerations and the unrestricted
Hartree-Fock method, we build the phase diagrams as a function of the strength of the
Coulomb interactions, both local and non-local, as well as the band structure of the
eg-orbitals manifold. We unravel a rich phase diagram with more than ten phases where
some transitions can be controlled by the band structure parameters themselves. In
particular, we find that pinball liquid phases can be stabilized in these systems. These
are metallic threefold charge orders where localized charges (pins) are surrounded by
itinerant charges (balls) on a honeycomb lattice, as experimentally observed in AgNiO2

and to which we provide a solid theoretical explanation. Phases with large unit-cells
are also stabilized, such as incommensurate charge and orbital orders and a

√
12 ×

√
12

charge order, reminiscent of the charge order observed in the dichalcogenide materials.
These electronic states are generic for the half-filled triangular lattice could therefore
be found in other compounds of interest.

To capture the properties of phases with strong band structure anisotropy in the
Mott state, that the unrestricted Hartree-Fock method fails to capture, we derive a
Heisenberg-like Hamiltonian from perturbation theory. Then, we build the phase dia-
gram of this new effective Hamiltonian using three complementary methods: a classical



iv

approach, exact diagonalization with a symmetry analysis and Lanczos algorithm to
attain a larger cluster size. In addition to the known phases of the Heisenberg model
in presence of an external field, namely the Y and V configuration, the 1/3 plateau
and the ferro-orbital phase, the anisotropy of the band structure of eg-orbitals leads
to other orderings with finite τ y or τx and τ z components, different stripe orders and
orbital density waves. We build a rich phase diagram from this new Hamiltonian.
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Chapter 1

Geometrical charge frustration on
triangular lattices

The physical properties of electrons in solids can often be understood by assuming
weakly or noninteracting particles. In such cases, electrons are delocalized meaning
that the time that they spend on a specific site is very short (itinerant electrons). The
insulating or metallic character of such compounds can be explained according to the
electronic band structure, which results from the wavelike properties of individual
electrons in the periodic potential of the underlying ions.

There are however many classes of materials which exhibit insulating states that
cannot be described by the band structure alone. In such materials, electrons interact
with each other and the independent particle approximation does not hold anymore:
interaction effects cause the electrons to be localized, i.e. spending a larger time on
individual atomic sites. In this case, a “real-space” particle picture becomes more
appropriate than the “momentum-space” picture at the origin of the electronic bands.

Strongly interacting electron systems are often characterized by complex phase
diagrams, reflecting an intricate interplay between magnetic, charge and orbital degrees
of freedom. Phenomena such as the Mott metal–insulator transition [1, 2], charge orders
close to high temperature superconductivity [3–7] and colossal magnetoresistance [8]
are among the many interesting phenomena found. These compounds have narrow
electronic bands resulting in a reduced kinetic energy, which is more easily overcome by
the Coulomb interactions. When this happens, electrons will tend to be localized and
the solid becomes an insulator. Many materials with partially filled d- or f -orbitals at
Fermi level are characterized by strong interactions. Known examples are the cuprates,
the manganites, the nickelates, the ruthenates, the iron pnictides and the chalcogenides.



2 Geometrical charge frustration on triangular lattices

Theoretically, the most interesting situation, also the most difficult to handle, is
when both itinerant and localized behaviors compete. Transition-metal oxides with
conduction electrons residing in d-orbitals are good examples of such competition.
Indeed, the shape of these orbitals is more localized than s- or p-orbitals, which makes
them subject to strong Coulomb interactions, but they have a long tail in the radial
part with respect to the core electrons making them delocalized even though the direct
overlap is weak.

In this class of materials, where the interplay between the different interactions
is coupled to the conduction electrons, the metallic state expected in the absence
of interactions has to compete with several ordered phases, in addition to the Mott
phenomenon. Different degree of freedom can order: the spins, the electrons and
the orbitals. These orders are called magnetic, charge and orbital orders, respec-
tively. We can distinguish two families of orders: commensurate, when the unit cell
formed by the pattern is periodically repeated over the lattice, and incommensurate
otherwise. For example, commensurate charge and magnetic orders are observed in
2H-AgNiO2 [9–11] and both commensurate and incommensurate charge orders are
observed in dichalcogenides [12–23]. We will present these two examples in more details
in this chapter.

Historically, most studies of these compounds have concentrated either on low
energy single band models, with the interaction effects properly included, or on more
realistic ab-initio descriptions which however do not fully take into account interaction
effects. Multiband effects in model Hamiltonians have been much less studied as, in
many materials, they are not needed to understand the main physical phenomena;
for example cuprates are most often reduced to a single effective band. One of the
most salient examples where this is not true is the iron pnictides, a class of compounds
discovered in 2008 [24], which are iron-based superconductors with a highest critical
temperature of 55K [25]. In order to explain the superconductivity in these materials,
theoretical studies of pnictides involve multiband models. One can mention, for
example, the 5 bands model in Ref. [26]. Other systems of interest require a multiband
approach to capture their properties. For example, a multiband Hubbard model has
been studied to understand the unusual transport properties in perovskite ruthenates,
of generic formula An+1RunO3n+1, with A either Ca or Sr, which has four electrons on
the t2g-orbitals [27]. Finally, orbital-selective Mott phase in iron chalcogenides requires
multiorbital models [28].

Another example where the role of multiple bands is necessary to understand the
electronic properties is the Kondo effect. The resistivity of metals is expected to decrease
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with temperature, possibly drop to 0 if there is a transition to a superconducting state.
In heavy fermion compounds, however, an increasing resistivity is measured at low
temperature [29, 30]. Localized f -electrons are coupled to conduction electrons which
creates enhanced scattering at low temperatures, leading to a logarithmic increase of
the resistivity.

As we shall see in the next paragraphs, in the triangular lattice, the competition
between different ordered states is increased by geometrical frustration. Frustration is
an effect that appears when the classical ground state of the system is degenerate. It
will typically stabilize unconventional phases, e.g. the pinball liquid [31–35], as we will
describe in details below (Section 1.2).

In this chapter, we will give a brief introduction on triangular layered compounds
and focus on certain classes that pose challenging problems to theory, due to the
obsserved electronic orderings. Then, we will present the geometrical frustration and
the pinball liquid. Finally, we will present the specificities introduced by the d-orbitals.

1.1 Triangular layered compounds

The triangular lattice appears often in nature, as it is the most compact arrangement
of disks on a plane (mathematically defined by the kissing number); the same way face-
centered cubic is in three dimension. Know examples are in crystals, helium adsorbed
on graphite [36], Wigner crystal of electrons or of classical charged objects [37, 38],
vertically shaken granular monolayers [39], etc.,

In condensed matter, one can find triangular lattice in layered compounds. They
are solids made of layers where the sites, atoms or molecules, within a layer have the
covalent bonds and layers are bonded with either smaller covalent bond or van der
Waals’ interactions [40] with small transfer integrals.

In this thesis, we focus on materials with layered triangular lattices and sizable
electronic interactions because they present interesting charge-ordered phases whose
origin is not fully understood. These include transition-metal oxides such as the
layered cobaltates NaxCoO2, which exhibit complex electronic patterns which can be
tuned by electron doping [41–44], and the triangular nickelates 2H-AgNiO2 [9–11] and
Ag2NiO2 [45], which show a threefold ordered metallic phase with anomalous metallic
properties. Another interesting class is that of transition-metal dichalcogenides. In
1T -TaS2, for example, the ordered state displays a marked Mott character induced
by charge modulations with a large periodicity of

√
13 ×

√
13 [15, 20], and various

other periodicities are found in other compounds (see Section 1.1.2). What all these
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V ′
V

V

Fig. 1.1 (left) Arrangement of BEDT-TTF molecules in the conducting layers of θ-type
ET crystals, with the corresponding nearest-neighbor Coulomb interactions, extracted
from [33], and (right) its phase diagram as a function of a transfer integral (t) and a
dihedral angle, extracted from [46].

materials have in common is that electrons live in bands constructed from d-atomic
orbitals in an octahedral environment (see Section 1.3).

In the following, we present compounds with two-dimensional character and focus
on those with triangular lattice and peculiar charge orders.

1.1.1 Quasi two-dimensional organic conductors

The class of quasi two-dimensional triangular lattice organic conductors ET2X (ET=BEDT-
TTF, bisethylenedithio-tetrafulvalene), where the X represents a monovalent closed-
shell unit, are charge transfer compounds composed of alternating layers of conducting
(donor) molecules ET and insulating (acceptor) units X. They exhibit a large variety
of molecular arrangements corresponding to different polytypes classified by Greek
characters (see Refs. [47–49] for an exhaustive list).

The materials of the θ-ET2X class have a triangular lattice structure, shown in
Fig. 1.1, with an average of n = 3/2 electrons per molecule, fixed by complete charge
transfer between ET and X units. Since this corresponds to a three-quarter filled
electronic band, these materials should be normal metals in the absence of interactions.
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They exhibit a narrow conduction band due to the relatively weak inter-molecular
overlaps t ∼ 0.1eV , implying strong electron-electron correlations. Looking at the
phase diagram in Figure 1.1, extracted from [46], we can divide them into three groups:
(i) compounds that undergo a metal insulator transition with a structural transition
and charge order (θ > 110°), (ii) compounds without phase transition (θ < 110°), and
(iii) θ-ET2I3 which is the only superconductor of the series. It is understood that
Coulomb interactions between electrons are the principal origin of the ordered phases
observed in these compounds.

1.1.2 Layered transition-metal dichalcogenide

Fig. 1.2 Structure of layered 1T -TaS2. The center of octahedra (larger spheres) form a
triangular lattice.

Layered transition-metal dichalcogenides, with generic formula MX2 where M is a
transition metal and X a chalcogen, are a class of two-dimensional compounds that
exhibit various charge-ordered phases. One can cite for example NbSe2, TaS2, TaSe2,
NbTe2, TiSe2, TiTe2, TaTe2, NbTe2, where the three chalcogen elements, S, Se and Te,
have a s2p4 electronic configuration. When bonding with metal transition atoms, the
two chalcogen atoms will take two electrons each from the transition metal depleting
the latter of four electrons. We distinguish two major structures in these compounds:
the 2H polytype which consists of a unit cell of two layers in a trigonal prismatic
environment and the 1T polytype structure formed of a unit cell of only one layer in an
octahedral environment [50]. The structure of layered 1T-TaS2 is drawn in Figure 1.2,
where the layers are formed of edge-shared octahedra (sulfur atoms at the corners).
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The octahedra are connected such as their centers, here the transition-metal (tantalum
atom), form a triangular lattice.

(a) (3 × 1) (b)
(√

19 ×
√

19
)

(c) (2 × 2) (d)
(√

13 ×
√

13
)

Fig. 1.3 Snapshots in real-space of charge density waves in layered transition-metal
dichalcogenides. (a) (3 × 1), (b)

(√
19 ×

√
19
)

(c) (2 × 2), and (d)
(√

13 ×
√

13
)
,

superlattices of a single layer of (a) and (b) NbTe2, (c) 1T -TiSe2, and (d) 1T -TaS2.
In (a), the vectors represent the original and new unit cell. The arrows in (c) and
(d) indicate in-plane displacements of the atoms from their original positions. For
NbTe2 and 1T -TaS2, only the Nb, Ta atoms, respectively, are shown; there are three
inequivalent a, b and c Ta atomic sites in the distortion patterns. Snapshots are
reproduced from other works: (a) is from [17], (b) is from [16], and (c) and (d) are
from [22].

Such structures often present charge-ordered phases at low temperature. For
example, 1T -TaS2 undergoes various transitions while being cooled down, from a
metallic incommensurate charge-ordered phase above 350K to a commensurate charge-
ordered phase below 180K [23]: a

(√
13 ×

√
13
)

charge density wave (see right panel in
Figure 1.3), is also present in TaSe2 [21, 51]. This large unit cell charge-ordered phase
has a peculiar star of David modulation [16, 18]. Transition from this charge-ordered
phase to a superconducting state can be driven by doping, substituting the sulfur atoms
S by selenium Se 1T -TaS2−xSex [21]. Other charge orders are depicted in Figure 1.3.
One can cite the (3 × 1) for 1T type TaTe2 and NbTe2 [12, 17] or large unit cell(√

19 ×
√

19
)

charge density wave in TaTe2 and NbTe2 [16].
Another layered transition metal dichalcogenide is 1T -TiSe2. The titanium atoms

are also in an octahedral environment created by the surrounding selenium [52]. Below
200K a transition between a semimetal to a semimetal charge density wave occurs [53]
associated with a (2 × 2 × 2) superlattice [13, 14, 19].

Theoretically, these modulations of the charge can be in principle described by
considering the interaction between electrons and the lattice through the electron-
phonon coupling [22] because it is expected to be strong. However, the insulating
behavior of gapped charge-ordered phases is not captured and a pseudo-gap is found
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instead with DFT calculations [51]. This motivates the study of electron-electron
interactions in layered transition-metal dichalcogenide, where their role has been chown
to be important [20].

1.1.3 2H-AgNiO2

Fig. 1.4 Structure of 2H-AgNiO2. The oxygens at the top (purple) or the bottom (red)
of a NiO2 layer are represented in two different colors to distinguish them. The center
of octahedra (larger spheres) form a triangular lattice.

Fig. 1.5 (left) Partial density of states (DOS) and integrated density of states (IDOS)
of the Ag-5s and -5p, Ni-3d and O-2p states in 2H-AgNiO2 and (right) evolution of
resistivity as a function of temperature normalized by the resistivity at 310K, from
Sörgel [54, 55].
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2H-AgNiO2 is a delafossite, of generic formula ABO2, with A a cation stacked
between edge-shared octahedral layers of BO2, which presents a peculiar threefold
charge order up to above room temperature (TCO = 365K), and magnetic ordering
setting in at a much lower temperature (TN = 19.7K) [10, 9, 11, 56]. Layers of NiO2

are separated by Ag layers perpendicular to the z axis [57] as depicted in Figure 1.4.
Nickel atoms form a triangular lattice. The d-electrons of nickel are strongly hybridized
with the p-electrons of the oxygen as shown in Figure 1.5.

Fig. 1.6 Top view of a layer of NiO2 in 2H-AgNiO2 before and after structural transition
at 365K. The larger spheres represent nickel atoms while top (purple) and bottom (red)
smaller spheres represent oxygen atoms. We increased the lattice distortions on Ni-O
bonds to highlight structural change.

A structural transition with a metallic charge order happens below 365K [9]. There,
a charge modulation appears with a three-site unit cell, where Ni3+ (3d7) changes its
valence state and ideally becomes Ni2+ on charge-rich and Ni3.5+ on charge-poor sites
(these are the saturating values assuming no quantum fluctuations), with a partial
lift of orbital degeneracy (see Section 1.3), and oxygen atoms are moved away from
charge-rich sites, as depicted in Figure 1.6. The Ni sites with two electrons undergo a
magnetic stripe order at a lower temperature TN = 19.5K [9, 10, 58].

A mean-field study has been performed already to address triangular lattices with
eg-orbitals by taking into account the local Coulomb interaction and the electron-lattice
interaction by Uchigaito and collaborators [59]. They found a metallic state with a
threefold charge order in a realistic, though narrow, range of parameters with a small
amplitude of the modulation. In this phase, all sites, charge-rich and charge-poor, are
conducting.
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Another work attempted to describe the charge order of this compound through
electron-electron interactions for eg-orbitals with Hund’s coupling and reveals the
pinball liquid phase [35] which is a good candidate for 2H-AgNiO2 because it has a
threefold charge order with insulating charge-rich sites and metallic charge-poor sites
forming an honeycomb lattice. However, the precise role of the orbital degeneracy in
these systems remains unexplained to date. Study the influence of the specific band
structures with multiple orbitals is the main goal of this thesis with 2H-AgNiO2 as a
base for the following theoretical studies.

1.1.4 Adsorbates

An adsorbate is a material that absorbs atoms on its surface. These adsorbed atoms,
called adatoms, can come from either another compound with which it shares the
interface or from a gas.

Mott- 3 - 5Kmetallic-(3x3) - 78K

1e1e1e2e1/2e2e1/2e 0e 1e

COI-(3x3) - 60K

Fig. 1.7 Structure of Sn/Ge(111) from left to right by decreasing temperature: metallic
1U2D(3 × 3) structure, insulating charge order (3 × 3) with 2-1-0 electronic pattern
and the Mott insulator

(√
3 ×

√
3
)
R30°. Large (small) spheres correspond to Sn (Ge)

atoms and the unit cells are highlighted. These figures are extracted from [60]

In Sn/Ge(111), for example, Sn atoms are deposited on the Ge layer. These Sn
adatoms form a triangular lattice as depicted in Figure 1.7 [60]. In the 1U2D(3 × 3)
phase at room temperature, where one Sn atom out of three is farther from the Ge
layer (up atom), there is a metallic charge order where the up atom receives one
electron from the two down Sn atoms making the up Sn doubly occupied and the two
down atoms share the remaining electron. Below 30K, all Sn atoms become equivalent
and the system goes to a Mott phase called

(√
3 ×

√
3
)
R30°, with an intermediate

insulating charge order in the 1U2D(3 × 3) structure with a 2-1-0 pattern.
Another example of such structure with charge order is Pb/Si(111) where STM

reveals (3 × 3) charge order [61].
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−J

−J
+J

−V/4

−V/4 +V/4

Fig. 1.8 Two examples of frustration on the triangular lattice: (left) magnetic and
(right) charge frustration. The gain (blue) and the cost (red) in energy are given for
each bond with respect to Equations 1.1 and 1.2.

1.2 Geometrical frustration

1.2.1 Magnetic frustration

Geometrical frustration appears when the local constraint cannot be extended univocally
to the whole system, leading to a ground state that is macroscopically degenerate and
involving a finite entropy at zero-temperature. For example, in a lattice of spins 1/2
with antiferromagnetic interactions between nearest neighbors, the system alternates
spin up and down along each bond direction. For bipartite lattices, such as square
or honeycomb, the ground state is a classical Néel state which corresponds to two
ferromagnetic sublattices with an antiferromagnetic coupling between each other. In
contrast, there is frustration when the system cannot satisfied all links at the same
time classically. This happens, for example, when the system is a closed loop with
an odd number of bonds. Magnetic frustration is an important example where the
antiferromagnetic coupling of spins does not allow an arrangement on the pattern of
the lattice, the simple examples are a triangle (one loop of three bonds), the triangular
lattice and the Kagome lattice, which cannot satisfy all links at the same time [62–64].

The simplest illustration of the phenomenon can be given on an individual triangle
where the spins are coupled anti-ferromagnetically

HAF = J
∑
⟨i,j⟩

S⃗i.S⃗j. (1.1)

If a spin up is on the first site, the nearest neighbor spins should be pointing down
in order to minimize the energy. The first two bonds are satisfied and therefore the
energy is lowered by −J . However, there is a cost in energy for the third bond of +J ,
as depicted in Figure 1.8. Extending these considerations to the triangular lattice, two
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of the three electrons in each triangle must share the same spin orientation The system
has to find a compromise.

With the inclusion of quantum fluctuation, frustration will favor quantum phases,
usually without long-range order. This is what happens in systems such as the
Heisenberg chain with nearest (coupling J1) and next nearest neighbors (coupling
J2 = J1/2), called the Majumdar-Ghosh model [65, 66], and the J1 – J2 model on the
square lattice [67] where ground states does not have magnetic order as the correlation
decreases exponentially opening a gap between the ground state (singlet) and the first
magnetic excitation. They have unusual properties for the susceptibility and specific
heat. At zero-temperature, a class of frustrated antiferromagnetic model exhibit a
peculiar behavior called “spin liquid,” a disordered quantum state with no discernible
pattern and no long-range spin-spin correlations but which restores spacial symmetries.

Due to the frustration, many states are close in energy to the ground state. From
the mean-field approach that we will use in the third chapter, because it is difficult for
the method to give the global minima, unrestricted Hartree-Fock often converges to
one of these states that will appears to be reasonable solution because they minimize
the electrostatic energy. Ensure to have the global minima will be an issue to tackle.

1.2.2 Charge frustration

In analogy with frustrated spin systems, inter-site Coulomb interactions between nearest
neighbors induce a frustration of charge, which can be understood as follows. If one
considers a system of spinless electrons at an average density of one electron per two
sites, inter-site Coulomb interactions can be written

Hn.n. = V
∑
⟨i,j⟩

(ni − 1/2) (nj − 1/2) . (1.2)

This form of Coulomb interaction clearly reveals that alternating between charge rich
and charge poor site lowers the energy, as sketched in Figure 1.8. Indeed two electrons
nearest neighbors, ni = 1 and nj = 1, or two holes, ni = 0 and nj = 0, will cost
an energy V/4 whereas alternating electron and hole, ni = 1 and nj = 0, lowers the
energy by −V/4. So the off-site Coulomb interaction V acts on electrons like the
antiferromagnetic coupling for spins.

In total analogy with magnetic frustration, charge frustration constitutes a favorable
playground for the emergence of novel phases where the classical degeneracy of the
ground state involves a competition between these states. The system explores the
different degenerate states and remains dynamic when plugging quantum fluctuations,
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which leads to exotic phases such as spin liquid with magnetic frustration and a peculiar
state for the charge frustration, the pinball liquid.

1.2.3 Pinball liquid

Fig. 1.9 Sketches of phases that can occur for the half-filled spinless single-band
extended Hubbard model on the triangular lattice: (left) vertical stripes, (middle)
disordered stripes and (right) pinball liquid.

Let us consider a simple system, a spinless single-band triangular lattice at half
filling, i.e. with one electron every two sites. Electrons interact with the short-range
Coulomb interaction in Equation 1.2. The classical ground state of this system is any
charge order with a stripe pattern such as the energy per site is V/2 (two examples
are sketched in Figure 1.9). The ground state is infinitely degenerate. Adding the
quantum fluctuations lifts the classical degeneracy, leading to novel phases. A peculiar
electronic state without classical equivalent induced by frustration is the pinball liquid
(PL) phase, that we describe in the following paragraphs.

The pinball liquid is a metallic charge ordered state where localized (pins) and
itinerant electrons (balls) coexist, as sketched on the right panel of Figure 1.9. The
insulating threefold charge order formed by the pins (charge-rich sites) is surrounded
by balls (charge-poor sites) free to move on the metallic honeycomb lattice.

The existence of the pinball liquid as a robust phase of the extended Hubbard
model on the triangular lattice is now a consolidated fact It has been demonstrated by
several complementary techniques and approximations, such as mean field theory [68],
Dynamical Mean Field Theory (DMFT) [38], variational Monte Carlo [32], Exact
diagonalization [33, 69], Variational Monte Carlo [70]. A typical phase diagram for the
case of both isotropic Coulomb interactions and hopping integrals is plotted using data
from Ref. [33] in Figure1.101. The pinball liquid is stabilized by strong local Coulomb

1This work has been performed at a filling of three-quarter where the role of electrons and holes
are switched.
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Fig. 1.10 (left) Phase diagram in the (U, V ) plane for the three-quarter-filled extended
Hubbard model. Three phases are found, homogeneous metal (HM), pinball liquid
(PL) and threefold charge order (3CO). (b) Evolution of the local densities on the
sublattices of the pins (nC) and balls (nA and nB) at U = 40t as a function of V/t. We
extracted data from Ref. [33] to draw the case of isotropic Coulomb interaction and
hopping integrals.

interaction as we will discuss below, and the evolution of the local electronic density
on the sublattice of the pins (nC) and the balls (nA and nB) for comparison with our
results in the next chapter.

Let us focus on the original work from Hotta and Furukawa [31]. They considered
θ-type organic compounds with a large local Coulomb interaction U ≫ Vij, t, and
anisotropy on the short range Coulomb interaction Vij , with V ′ in the vertical direction
whereas V corresponds to the two other directions, as represented in Figure 1.1, and
isotropic hopping integrals. The results that they found with exact diagonalization
as a function of the anisotropy are reported in Figure 1.11. The pinball liquid is
stabilized around the isotropic case while anisotropy stabilizes stripe orders. The
vertical stripes in the area III have a unique classical solution of energy EC = V/2,
whereas the disordered stripes in area I are classically degenerate, as there exists a
macroscopic number of classical configurations that correspond to the electrostatic
energy EC = V ′/2. The threefold charge order of the pinball liquid, whose energy is
EC = (2V + V ′)/6, becomes degenerate with the stripe orders at the point V = V ′. To
explain the lifting of degeneracy by quantum fluctuations, the kinetic term is treated
perturbatively Vij ≫ t. The perturbation theory lowers the energy by E1 ∝ t at the first
order for the pinball liquid and E2, E

′
2 ∝ t2 for the disordered and vertical stripes at the

second order, reflecting the dominant role of the kinetic effects to stabilize the pinball
liquid. The energy of the ground state behaves almost linearly as a function of the
Coulomb anisotropy, following the electrostatic energy (the energy of the unperturbed
Hamiltonian) and is in good agreement with the perturbation theory.
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Fig. 1.11 Phase diagram from exact diagonalization for the quarter-filled extended
Hubbard model applied to θ-type organic compounds as a function of the Coulomb
anisotropy, extracted from [31]. V ′ is the short range Coulomb interaction in the
vertical direction whereas V corresponds to the Coulomb interaction in the two other
directions. EC is the classical electrostatic energy at the fixed value of V + V ′ = 20 as
a function of V . The vertical (green) and disordered (blue) striped states are classically
realized at V < V ′ and V > V ′, with EC = V/2 and EC = V ′/2, respectively, while
in case of isotropic interactions, at V = V ′, all states become classically degenerate,
including the three sublattice states with EC = (2V + V ′)/6 becomes degenerate with
these stripes. EQ, the energy of the ground state behaves almost linear with respect to
EC , with the first (E1 ∝ t) and second (E2, E

′
2 ∝ t2) order energy corrections as offset.
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This phase was first devised in the context of quarter-filled organic conductors
θ-(BEDT-TTF)2X a decade ago [31] as an original Coulomb-induced charge-ordered
metallic phase in the framework of the extended Hubbard model.

Although all these theoretical studies support the existence of such an electronic
phase, it has not been observed experimentally in the θ-(BEDT-TTF)2X materials
for which it was originally predicted. This can be attributed to the presence of other
competing effects not considered in the idealized theoretical descriptions, most notably
deviations from a perfectly isotropic triangular lattice, the interaction with the lattice
degrees of freedom [71] and the presence of long-range tails of the Coulomb repulsion
beyond nearest neighbors [72, 73], which all favor insulating stripe-ordered states.

We saw in this example how the classical degeneracy of the ground state can be
lifted by quantum fluctuations. We mention here that finding a unique ground state is
also possible if one considers long-range Coulomb interactions as it has been shown for
quarter-filled systems where a global stripe order is stabilized [73].

We can anticipate that a pinball liquid and its dual, the inverse pinball liquid, will
be obtained in this dissertation in a more general context, stabilized by multiband
effects.

1.3 d-electrons in an octahedral environment

Fig. 1.12 Shapes of the five d-orbitals. The color represents the phase or sign of the
wave function. From left to right: xy, yz, xz, x2 − y2 and 3z2 − r2.

As mentioned previously, our focus is on the class of two-dimensional compounds
with transition metal ions in an octahedral environment. d-orbitals are split into
two sets because of the symmetry Oh of this environment which has two irreductible
representations for these orbitals t2g (xz, yz, xy) and eg (2z2 − x2 − y2, x2 − y2)2. The
shape of d-obitals is represented in Figure 1.12.

These two sets are not degenerate because of the crystal-field ∆, i.e. the Coulomb
interaction of the other atoms of the crystal. In octahedral environment, t2g-orbitals

2In an equivalent way, the orbital 2z2 − x2 − y2 is sometimes written 3z2 − r2
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are lower in energy than eg-orbitals because the latter face the ligands hence raise their
energy due to Coulomb repulsion, whereas eg-orbitals are lower than the t2g-orbitals in
cubic and tetrahedral environments. If the crystal-field is large enough, as we shall
assume in the following, the two sets of orbitals can be considered as independent. It
is the case for atoms which belong to the first row of transition metals. One can cite
two important examples: Nickel and Cobalt.

Each of these sets can be again split into two subsets by the Jahn-Teller effect: a
deformation of the octahedra [74], splits the t2g-orbitals into a1g (xy) and e′

g (yz, zx)
and the eg-orbitals into (2z2 − x2 − y2) and (x2 − y2) [75]. This deformation can have
two modes, each of them corresponding to a different orbital ordering. However, we
shall neglect this effect in this work as our focus is on purely electronic interactions
and as it seems not relevant experimentally for 2H-AgNiO2 [10]

∆

(a)

d3

t2g

eg

∆

(b)

d7

t2g

eg

Fig. 1.13 Effect of crystal-field on spin configuration of d-orbitals. (a) The crystal-field
does not change the spin configuration for three electrons. (b) For four electrons, the
system initially in the high-spin configuration, is in the low-spin configuration for a
high crystal-field.

Finally, the crystal field has also an effect on Hund’s rule, which is the parallel
alignment of spins on an orbital shell, meaning that when a shell is populated, such
has d-orbitals, electron will first fill individually different orbitals with the same spin
orientation in order to maximize the local magnetization before adding the second
electron on the same orbital. However, Hund’s rule can be violated for certain fillings
due to the crystal field. Let us explain this effect with an example. For three electrons
on the d-shell, all of them have the same spin (Hund’s rule). When considering the
splitting of d-orbitals, the three electrons are on the t2g-orbitals with the same spin
and Hund’s rule is still valid [See Fig. 1.13 (a)]. Now, if we consider seven electrons,
the total spin is 3/2, referred to as a high-spin configuration. However, after the
crystal-field splitting, six electrons fill the t2g-orbitals and one electron is on eg-orbitals.
The total spin is now 1/2, which is called a low-spin configuration [See Fig. 1.13 (b)].

Later, we will consider only systems with a filled t2g-shell and a remaining electron
on eg-orbitals. In 2H-AgNiO2 (t62ge

1
g configuration, formal valence Ni3+), for example,
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the two sets of orbitals are split by a large crystal-field gap of ∼ 2 eV [76, 77, 54] with
one electron on the eg-orbital so that the completely filled t2g triplet can be neglected
to a first approximation.





Chapter 2

Multiorbital Hubbard model

2.1 Introduction

Charge-ordered phases realized in a variety of materials can be ascribed to the promi-
nent role of electron-electron interactions. Several theoretical studies have aimed at
reproducing the different charge-ordered patterns observed in actual compounds as
well as the physical phenomena associated with it (such as quantum criticality, the
emergence of superconductivity mediated by charge fluctuations, or the bad metal
behavior of the normal phases, to cite a few) within the framework of the extended
Hubbard model or its generalizations (see Section 2.2), including longer ranged elec-
tronic interactions and various types of electron-lattice interactions. In purely electronic
model descriptions, i.e. where one does not consider the interaction of electrons with
the lattice degrees of freedom, the observation of electronic ordering implies that
the magnitude of electron-electron interactions is comparable with the widths of the
relevant electronic bands constructed from the molecular orbitals.

Since our main focus is the exploration of novel charge-ordered phases, such as the
pinball liquid introduced in the preceding chapter, and the description of experimental
compounds such as AgNiO2, we will first derive a general multiorbital extended Hubbard
model for d-electrons, where the band structure can be tuned as a function of the
microscopic transfer parameters, to resort to a spinless electron description. We shall
then introduce a spinless multiorbital extended Hubbard model, as we will justify in
Section 2.3, for d-electrons in an octahedral environment. Finally, we will review some
previous studies for the single band model for the isotropic spinful Hubbard model
then its extension with short-range Coulomb interactions.
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2.2 Derivation of an effective electronic model

We derive the multiband extended Hubbard model [78] from a generic electronic
Hamiltonian H. We provide the derivation in full details, which allows us to identify
the key terms introduced by multiple orbitals, and that will be important in the
following. The energy of the system is the sum of the kinetic and potential energies,
here related to one- and two-body interactions

H =
∑

σ

∫
d3r⃗ψ† (r⃗, σ)

(
−1

2∇⃗2 + vR (r⃗)
)
ψ (r⃗, σ)︸ ︷︷ ︸

K, Kinetic

+
∑

σ

∫
d3r⃗ψ† (r⃗, σ)V1 (r⃗)ψ (r⃗, σ)︸ ︷︷ ︸

H1, One-body

+
∑

σ1,σ2

∫
d3r⃗1d

3r⃗2ψ
† (r⃗1, σ1)ψ† (r⃗2, σ2)V2 (r⃗1 − r⃗2)ψ (r⃗2, σ2)ψ (r⃗1, σ1)︸ ︷︷ ︸

H2, Two-body

. (2.1)

where σ =↑, ↓ denotes the spin, r⃗ is the space degree of freedom and ψ (r⃗, σ) is the
wavefunction.

In order to introduce second quantization in the Hamiltonian, we use atomic orbitals
to expand field operators [79], as they form a set of orthogonal functions making the
derivation easier. They have the following form

ψ (r⃗, σ) =
∑
i,m

cimσϕim (r⃗) , (2.2)

with ϕim (r⃗) the spacial extension of the orbital m center on site i and cimσ is the
annihilation fermionic operator of an electron on site i at the m-th orbital with a spin
σ. Hence this operator, and its adjoint c†

imσ the creator fermionic operator, has the
following algebra

{cimσ, cjm′σ′} = 0,

{c†
imσ, c

†
jm′σ′} = 0,

{cimσ, c
†
jm′σ′} = δi,jδm,m′δσ,σ′ ,

δi,j is the Kronecker delta, equal to 1 if variables are equal and 0 otherwise. These
fermion anticommutation relations contain Pauli exclusion principle and fermionic
statistics.
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2.2.1 Kinetic energy

Let us just substitute the atomic orbitals, Equation 2.2, for the kinetic part in Equa-
tion 2.1

K = −
∑
i,j

∑
m,m′

∑
σ

tmm′

ij c†
imσcjm′σ, (2.3)

which constitute the tight-binding approximation, where i and j denote sites, and

tmm′

ij =
∫
d3r⃗ϕ∗

im (r⃗)
(1

2∇⃗2 + vR (r⃗)
)
ϕjm′ (r⃗) (2.4)

are the hopping integrals. vR (r⃗) describes non-interacting electrons in an external
potential. K describes electrons moving with transfer integrals tττ ′

ij which depend on
both the orbital type and on the orientation of the bond (i, j) on the lattice.

If one considers, for example, the approximation of Gaussian orbitals, hopping
integrals can be computed analytically in Equation 2.4 and they become proportional
to the overlap between orbitals. In pratice, we will consider only the sum over nearest
neighbors in Equation 2.3 because of the exponential decrease with the distance of the
overlaps.

2.2.2 One-body interaction

The one-body interaction H1 in the Hamiltonian Equation 2.1 is an approximation that
includes the interaction of electrons with the cations, here the nuclei are considered
static, and the crystal potential.

Substituting the atomic orbitals, Equation 2.2, in H1 and taking into account that
these orbitals are orthogonal, one obtains

H1 =
∑
i,m

∑
σ

µmnimσ (2.5)

with c†
imσcimσ = nimσ the number operator and

µm =
(∫

d3r⃗ϕ∗
im (r⃗)V1 (r⃗)ϕim (r⃗)

)
(2.6)

the chemical potential.
Notice that in a non-orthogonal basis of orbitals, off-diagonal terms renormalize

the hopping integrals.
We consider that the chemical potential does not depend on the orbital and because

we will work at fixed number of particles, H1 can be explicitly omitted in the following.
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2.2.3 Two-body interactions

On-site electron-electron interaction

Charged particles are subject to Coulomb interactions. Because we will describe the
properties of conduction electrons, we shall consider that the Coulomb interaction is
screened by core electrons as well as the crystal environment

V2 (r⃗1 − r⃗2) ∝ 1
ϵ

e2

|r⃗1 − r⃗2|
,

with e the elementary charge and ϵ the dielectric permittivity that takes into account
the screening.

It is customary to consider only the on-site Coulomb interaction when we substitute
the atomic orbitals into H2 from Equation 2.1, non-local interactions will be introduced
below. The Coulomb interaction at site i is

H2,local = 1
2
∑

i

∑
m1,m2,m′

1,m′
2

∑
σ1,σ2

c†
im1σ1c

†
im2σ2cim′

2σ2cim′
1σ1I (m1,m2,m

′
2,m

′
1) , (2.7)

with

I (m1,m2,m
′
2,m

′
1) =

∫
d3r⃗1d

3r⃗2ϕ
∗
im1 (r⃗1)ϕ∗

im2 (r⃗2)V2 (r⃗1 − r⃗2)ϕim′
2
(r⃗2)ϕim′

1
(r⃗1) .

Hereafter, we will focus specifically on d-orbitals. One can show that in this case,
atomic orbital overlaps have only three nonzero terms due to their axial symmetry [80].
The first nonzero term is I (m,m′,m′,m) = Umm′ , when m1 = m′

1

m2 = m′
2.

The second nonzero term is the Hund’s coupling I (m,m′,m,m′) = Jmm′ for

m1 = m′

2

m2 = m′
1

m1 ̸= m2.
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Finally, I (m,m,m′,m′) = J ′
mm′ with


m1 = m2

m′
1 = m′

2

m1 ̸= m′
1.

Umm

(a)

Umm′

(b)

Umm′ − Jmm′

(c)

Jmm′

(d)

J ′
mm′

(e)

Fig. 2.1 List of all local Coulomb interactions with two orbitals m (lower) and m′

(upper) and two electrons. Boxes (a) to (c): Potential energy associated to the state.
Boxes (d) and (e): Energy associated to the exchange between the left hand and the
right hand of the arrows. Labels from (a) to (e) correspond to the terms from left
to right in the right side of Equation 2.8; (a) intraorbital interaction, (b) interorbital
interaction with opposite spins, (c) interorbital interaction with same spins, (d) double
spin-flip exchange, (e) pair exchange.

Let us now use these conditions in Equation 2.7.

H2,local = 1
2
∑

i

∑
m1,m2,m′

1,m′
2

∑
σ1,σ2

c†
im1σ1c

†
im2σ2cim′

2σ2cim′
1σ1

(
Um1m2δm1,m′

1
δm2,m′

2

+Jm1m2δm1,m′
2
δm2,m′

1
(1 − δm1,m2) + J ′

m1m′
1
δm1,m2δm′

1,m′
2

(
1 − δm1,m′

1

))
=
∑
i,m

Ummnim↑nim↓︸ ︷︷ ︸
(a)

+
∑

i,m<m′,σ

Umm′nimσnim′σ̄︸ ︷︷ ︸
(b)

+
∑

i,m<m′,σ

(Umm′ − Jmm′)nimσnim′σ︸ ︷︷ ︸
(c)

+
∑

i,m ̸=m′
Jmm′c†

im↑c
†
im′↓cim↓cim′↑︸ ︷︷ ︸

(d)

+
∑

i,m ̸=m′
J ′

mm′c
†
im↑c

†
im↓cim′↓cim′↑︸ ︷︷ ︸

(e)

,

(2.8)

where σ̄ denotes the opposite spin of σ. These different terms of Equation 2.8 are
illustrated in Figure 2.1. There are three potential terms: it costs an energy (a) Umm to
have two electrons on the same orbital m, (b) Umm′ to have two electrons on different
orbitals m and m′ with opposite spins and (c) Umm′ − Jmm′ to have two electrons on
different orbitals m and m′ with the same spin. There are also two exchange terms: it
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takes an energy (d) Jmm′ to exchange electrons from two orbitals m and m′ (notice
that they necessarily have opposite spin because the virtual state is forbidden by Pauli
principle) and (e) J ′

mm′ to exchange two electrons from orbital m to m′.

Off-site electron-electron interaction

Our next step is to take into account off-site Coulomb interactions in the term H2.
Essentially, we should perform the same procedure as above but without assuming
only local interactions

H2,non-local = 1
2
∑
i ̸=j

∑
m1,m2,m′

1,m′
2

∑
σ1,σ2

c†
im1σ1c

†
jm2σ2cjm′

2σ2cim′
1σ1I (m1,m2,m

′
2,m

′
1) , (2.9)

and compute the resulting integrals of the form

I (m1,m2,m
′
2,m

′
1) =

∫
d3r⃗1d

3r⃗2ϕ
∗
im1 (r⃗1)ϕ∗

jm2 (r⃗2)V2 (r⃗1 − r⃗2)ϕjm′
2
(r⃗2)ϕim′

1
(r⃗1) .

In metals, these integrals are rapidly suppressed with the distance so we will neglect
everything beyond the nearest-neighbors. By considering the Coulomb interaction to
be isotropic, we obtain

H2,non-local = V
∑
⟨i,j⟩

∑
m1,m2

∑
σ1,σ2

nim1σ1njm2σ2 , (2.10)

where V is the Coulomb repulsion between electrons on neighboring sites. As will be
shown, H2,non-local constitutes the main driving force for charge ordering.

When gathering Equation 2.3, Equation 2.5, Equation 2.8 and Equation 2.9, we
obtain the general multiorbital extended Hubbard model

H = K +H1 +H2,local +H2,non-local.

2.3 Spinless multiorbital extended Hubbard model
for d-orbitals

In the preceding section, we have derived a generic multiorbital extended Hubbard
model by introducing the second quantization to a general electronic Hamiltonian.
This Hamiltonian contains many terms and we will now refine our interest on d-orbitals
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Table 2.1 On-site Coulomb interaction inter and intraorbital Umm′ . The t2g and eg sets
of parameters are highlighted.

m′
m

xy yz zx x2 − y2 3z2 − r2

xy U1 U2 U2 4U2 − 3U3 U3
yz U2 U1 U2 U2 3U2 − 2U3
zx U2 U2 U1 U2 3U2 − 2U3

x2 − y2 4U2 − 3U3 U2 U2 U1 U3
3z2 − r2 U3 3U2 − 2U3 3U2 − 2U3 U3 U1

t2g

eg

in octahedral environment and make reasonable approximations to reduce the number
of free parameters.

The terms Umm′ from Equation 2.8 can only acquire three different values for
d-orbitals: U1, U2 and U3. They are summarized in Table 2.1. The term Jmm′ , from
the same equation, can be deduced from Umm and Umm′

U1 − U2 = 2J (2.11)

for t2g-orbitals and
U1 − U3 = 3J (2.12)

for eg-orbitals.
Let us refine our focus on 2H-AgNiO2 that we introduced in the previous chapter

to try to capture the electronic state. As we mentioned before, nickel atoms have
seven d-electrons in an octahedral environment with a strong crystal-field ∆ hence the
t2g-level is filled with six electrons and only one electron remains on the eg-orbitals.
This separation of energy scales implies that we can restrict to a two-orbital model
with one electron per site in average. Let us make an assumption

Umm ≫ Umm′ ,

with m ̸= m′. In this case, the configurations (a) and (e) in Figure 2.1 are forbidden.
In addition, we can see that configuration (c) is lower in energy than configuration
(b) because of Hund’s coupling. This will be the only configuration that we will
retain because if we add a second electron to a site, it will be on the other orbital
with the same spin. By this simplification, we obtain an effective spinless model.
This approach has been shown to capture the correct ordering patterns realized in
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single-band models [31, 33] in the limit of strong local Coulomb repulsion, where the
magnetic energy scales are typically much smaller than the ones controlling charge
ordering. It has also been successfully used to study charge ordering in the context of
multiband models for correlated oxides [81] in the ferromagnetic state.

To summarize, we will consider a spinless model with one electron per site in
average on the triangular lattice with eg-orbitals which are pseudo-spins because they
have two states so can be labelled τ =↑, ↓. These assumptions imply that we remove
the sum over the spin and the index on operators, and the index m becomes τ in
Equation 2.3 and Equation 2.9. Equation 2.8 becomes

H2,local ≃ Ũ
∑ ∑

τ<τ ′
niτniτ ′ , (2.13)

following standard notations [82]with Ũ = U3. When this term is dominant, it stabilizes
Mott states.

In conclusion, we shall study in the rest of this work the following spinless multior-
bital extended Hubbard Model

H = −
∑

⟨ij⟩,ττ ′

tττ ′

ij d
†
iτdjτ ′ + h.c. + Ũ

Ns∑
i=1

∑
τ<τ ′

niτniτ ′ + V
∑

⟨ij⟩,ττ ′

niτnjτ ′ , (2.14)

where h.c. stands for hermitian conjugate, Ns is the number of sites, which corresponds
also to the number of electrons, in the considered case of half-filling. In the first term,
we write the annihilation and creation operator d and d† instead of c and c† because
we consider explicitly d-electrons.

Before proceeding further, some remarks are in order. First, considering the effective
on-site Hubbard repulsion term in Equation 2.14, which describes the interaction
between electrons on different orbitals as we derived in preceding paragraphs, has direct
relevance to the study of ferromagnetically ordered states [81], in which case only one
spin species is present and two electrons necessarily occupy two different orbitals. In a
more general context, the present spinless model can be viewed as an approximation to
tackle the strongly interacting limit, i.e. strong Hubbard repulsion and strong Hund
coupling, of the full two-band spinful model introduced above in Section 2.2.3 and in
Ref. [35].

Second, we mention here that although related multiband models with eg-orbitals
for charge and orbital ordering on the triangular lattice have been studied in recent
years, how multiorbital kinetic terms affect frustrated charge ordering, in particular
the pinball liquid introduced in Section 1.2.3, remains an open question. Vernay, et



2.4 State of the art 27

al. [76], for example, studied the evolution of orbital ordering as a function of t′/t (See
Section 3.2) in a spinful model via both mean-field and exact diagonalization, but they
did not consider the charge ordering induced by the intersite repulsion V . Uchigaito, et
al. [59] performed a mean-field analysis of the effects of both the Hund and Jahn-Teller
couplings on the electron ordering as a function of t′/t; however, because the repulsion
V was not included in the model, no pinball-liquid phase was found at realistic values
of the Hubbard repulsion U , which is at odds with the experimental observations in
2H-AgNiO2 presented in Section 1.1.3. The question has also been addressed from
an ab initio point of view [83], including both local and nonlocal interaction effects,
but without providing systematic studies as a function of the microscopic Hamiltonian
parameters. Finally, multiband effects on charge ordering on the triangular lattice
have been studied via both unrestricted Hartree-Fock and dynamical mean-field theory
in Ref. [35], but only the fully isotropic limit t′ = t was explored. From the point of
view of the present work, this is a special case where the model becomes equivalent
the isotropic spinful extended Hubbard model at half filling with the substitution Ũ by
U . We shall come back to this analogy at length in Section 3.2 and Section 3.4.3.

We end this chapter by reviewing some known theoretical results on the standard
isotropic spinful Hubbard model on the triangular lattice, and then for the extended
Hubbard model.

2.4 State of the art

2.4.1 Single-band Hubbard model at half filling on the trian-
gular lattice

HM IC (±π, 0) Mott
U

Fig. 2.2 Schematic phase diagram of the Hubbard model at half filling for the trian-
gular lattice. Upon increasing the strength of the on-site Coulomb interactions, the
homogeneous metal (HM) goes through an incommensurate phase (IC) then zigzag
(modulation of (±π, 0)) and finally to a Mott state.

In this section, we briefly review some results of spinful Hubbard model applied
to the isotropic triangular lattice at half filling. The goal is not to be exhaustive but
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rather to give an idea of the phases that one can expect in this model, which is one
the most studied models of condensed matter.

We start this brief review by two articles [84] and [85], both by Krishnamurthy,
Jayaprakash and collaborators. They performed Hartree-Fock calculations and found
four phases: a homogeneous metal for U ∈ [0, 3.98], then an incommensurate phase up
to U = 4.45, followed by a zig-zag phase (wave vectors Q⃗ = (±π, 0)) with a critical
U = 6.2, finally, the so-called 120° phase (wave vector Q⃗ = (4π/3)) for higher values of
U . This is a broken symmetry phase where spins are ordered with an angle of 120° in
the plane.

The slave-boson technique has also been used to study the Hubbard model [86–
88]. The system goes from the homogeneous metal to the antiferromagnetic order
through the zig-zag phase (Linear Spin Density Wave in these articles) in the range
U ∈ [6.9, 7.8]. So no incommensurate phase is found within the slave-boson treatment.
Exact diagonalization has also been performed in [88] in addition to the slave boson
approach within a finite-size cluster of 12 sites. Only one transition occurs, from the
homogeneous metal to the 120° phase at Uc = 12.07 using the Drude weight as an
order parameter.

A similar behavior as the one predicted by exact diagonalization is found with
Dynamical mean-field theory but with a different critical parameter Uc = 18.2 [89].

A Variational Monte Carlo study is again consistent with exact diagonalization for
a 12-sites cluster and dynamical mean-field theory, i.e. a direct transition from the
homogeneous metal to the 120° phase is obtained at a critical parameter Uc ≃ 8 [90].

Finally, the Variational Cluster Approach of Ref [91] finds a nonmagnetic insulator
between the homogeneous metal and the 120° phase.

To summarize, the accepted view resulting from the existing studies is that the
Hubbard model goes from homogeneous metal to an insulating Mott state. Some
methods found intermediate phases magnetically ordered, either metallic or insulating,
but without finite magnetization. These transitions are summarized in Figure 2.2.
Among the methods that we presented, the mean-field approach gives the richest phase
diagram as it is usually the case. While it clearly neglects electronic correlations, the
mean-field approximation is interesting in that it does not suffer from finite size effects,
as very large systems can be accessed with reasonable numerical effort. We shall come
back to this point in the next chapter.
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2.4.2 Single-band Extended Hubbard model at half filling on
the triangular lattice

We now increase the complexity by adding nonlocal Coulomb interactions.
We start this quick review with the extended two-particle self-consistent ap-

proach [92]. In this work which presents results at different band filling, we are
interested by the half-filled case, n = 1. There are only two results, for a value of the
local Coulomb interaction of U = 5 and U = 10 as a function of short range Coulomb
interaction V . In the first case, Davoudi et al. find a small area of incommensurate
charge-density wave between the homogeneous metal (paramagnetic) and a charge-
ordered phase with finite charge correlation on K-points. In the second case, they
found an incommensurate spin-density wave with a transition to a threefold charge
order when increasing the short range Coulomb interaction V .

Fig. 2.3 Block renormalization group (BRG) (left) and Hartree-Fock (right) phase
diagrams in the (U/t, V/t)-plane extracted from [93]. On the right panel, we added
the two straight lines according to our analytical estimates (see text).

A phase diagram for the metal insulator transition has been obtained with block
renormalization group (BRG) [93]. This phase diagram is reproduced on the left panel
in Figure 2.3. When the short-range Coulomb interaction V increases, the transition to
a Mott state with a threefold order is pushed to higher values of the local interaction
U . In the same work, one can find a restricted Hartree-Fock study. The corresponding
phase diagram is reproduced on the right of Figure 2.3. We will see in the next chapter
that our results are quantitatively in good agreement with this picture; we recover the
same transition to a Mott state with the magnetic structure factor S (K) > 0 and to a
charge-ordered phase with a charge structure factor C (K) > 0. One can notice that
for both methods the transition to the threefold Mott state happens at higher value of
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local interactions U/t when the short-range Coulomb interaction increases. In addition,
we extracted the following transition lines to the charge order from the Hartree-Fock
phase diagram that we reported in Figure 2.3

Vc (U) =
 Vc ≃ U/6 + 1 , 0 ⩽ U ≲ 4
Vc ≃ U/3 , U ≳ 4.

We will see later, in Section 3.3, that the first line is an evidence of a transition to the
pinball liquid phase that we introduced in the previous chapter.

Fig. 2.4 Slave spins Mean-Field phase diagram in the (U/t, V/t)-plane extracted
from [94]. We added the two straight lines.

One can also cite the slave-spins Mean-Field theory approach [94]. The corre-
sponding phase diagram, reproduced in Figure 2.4, looks consistent with the block
renormalization group approach. The stabilization of the metallic state when increasing
the short-range Coulomb interaction V is again present with the two different behaviors
for the transition to the charge-ordered phase, but with different slopes.

The final work that we review here is done in the context of adsorbates but might be
the most interesting for us in the sense that it is the closest model, method and results
to our work. Indeed, the authors studied an isotropic spinful extended Hubbard model
at half filling on the triangular lattice within mean-field theory [95]. Besides focusing
on spinful electrons instead of effective pseudo-spins as we do here, the considered band
structure is specific to the adsorbate systems under study, and it includes longer range
hopping beyond nearest neighbors (see different noninteracting band structures in
Section C.2). Yet, the behavior is expected to be alike, especially at strong interaction
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Fig. 2.5 Hartree-Fock phase diagram for the corresponding hopping integrals in the
(U/t, V/t)-plane. Both figures are reproduced from [95]. We swapped the axes to match
the convention for U and V that we will use in this dissertation and we added the two
colored straight lines.
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Fig. 2.6 Band structures for the 120° phase (left) and the pinball liquid phase (right)
labelled A and D in Figure 2.5 with the hopping integrals in the caption. They are
reproduced from [95]. We replotted these band structure on the ΓMKΓ path and
we swapped the sign to match our explicit sign convention in the Hamiltonian for
comparison with our results.
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where the role of kinetic effects is reduced. Santoro, et al. revealed a rich phase
diagram, which is reproduced in Figure 2.5 extracted from [95].

First, let us describe the line at V = 0. For weak interactions, the system is a
homogeneous paramagnetic metal. At large value of the local interaction U , the 120°

broken symmetry phase is stabilized (see the corresponding band structure on the left
of Figure 2.6). For intermediate values, two other orders appear: incommensurate (IM)
and threefold (C) spin order metallic phases.

Now, let us describe the phase diagram for finite V . At strong interactions, they
found a threefold charge order with local densities on the three sublattices of respectively
2, 1 and 0 electrons (2-1-0 configuration), with a straight line for the transition from the
Mott state (red line), but with an extra 120° spin order on the singly occupied sites. At
low on-site interaction but strong nearest neighbor interaction, they found a threefold
metallic charge order [F asymmetric CDW (MET)]. We will see below that this phase
is an artefact of the method. Indeed, they constrain the system to have at most a
nine-site unit-cell. With this constraint, the minimum of the energy is found for a
threefold charge order. The band structure is just a folding of the Brillouin zone of the
noninteracting case into the reduced Brillouin zone corresponding to the new Bravais
lattice. Within this folding, the band structure can not have a gap at the Fermi energy
and the system remains metallic even at infinite nearest-neighbor interaction V . To
overcome this problem, the constraint on the unit-cell must be removed, i.e. one needs
to use an unrestricted version of the Hartree-Fock method. Finally, for intermediate
values of nearest-neighbor interaction, and for low on-site interaction, the authors
found a metallic phase with threefold charge order, that we identify with the pinball
liquid state introduced in Section 1.2.3, where the transition from the paramagnetic
metal is a straight line. The local densities of this phase, which are reported in the
inset of the band structure plotted on the right panel of Figure 2.6, have the expected
pattern for the pinball liquid phase as there is one charge-rich site and two equivalent
charge-poor sites. We have highlighted in blue and red the transitions lines to a pinball
liquid phase and an insulating threefold charge order 2-1-0.

2.4.3 Multiorbital Hubbard model

As was mentioned earlier, the multiorbital Hubbard model for eg-orbitals has been
studied with one electron per site with Hund’s coupling but without considering off-site
Coulomb interactions.

We described in Section 1.1.3 the work at mean-field level in the context of 2H-
AgNiO2 from Uchigaito and collaborators [59] where they added the lattice interaction
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through the phonons but did not consider the nearest neighbor interactions. Let us recall
the results of interest to us: around U/t = 4 and Jh/t ≃ 0.25, even without considering
the coupling to phonon, a metallic charge order appears with a small amplitude of the
modulation. In addition, this work shows the richness of the multiband model as five
phases have been found either metallic or insulating, with different charge patterns, such
as homogeneous, threefold and sixfold, magnetic and orbital orders. It is interesting
to notice that the only orbital order found for the choice of parameters (t′ = −t) is
ferro-orbital along the y direction in a ferromagnetic state without charge-order.
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Fig. 2.7 Phase diagrams of the multiorbital extended Hubbard model for eg-electrons
on the triangular lattice obtained from DMFT (black points) and UHF (gray points) in
(left) the (U/t, V/t) plane for JH/U = 0.2 and (right) the (JH/U, U/t) plane V/t = 2.
These values are highlighted with the thick black dashed line. Both figures are extracted
from [35].

The effect of the nearest neighbor interaction with Hund’s coupling and eg-orbitals
at a filling of one electron per site (quarter-filled system) has been reported during
this thesis in Ref. [35] by Ralko, Merino and Fratini, where they studied the model
for isotropic hopping integrals (t′ = t) using unrestricted Hartree-Fock and dynamical
mean-field theory. The effect of the nearest neighbor interactions reveals an even richer
phase diagrams (see Figure 2.7) with different charge, magnetic and orbital orders.
Among these phases, the pinball liquid is stabilized.

None of these two studies analyzed the influence of the free parameters t and t′

related to the electronic structure of the eg-orbitals. The study of the kinetic effects
will be one of the themes of the next chapter. We will study large systems, in contrast
to small clusters where discretization does not allow to capture the details of the band
structure, and we will use the unrestricted Hartree-Fock method, reliable at weak to
moderate values of the interactions where kinetic effects matter.
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2.5 Conclusion
In this chapter, we derived a multiorbital Hubbard model from the general Hamiltonian
with Coulomb interaction and took the specific case of d-orbitals for large on-site
intraorbital Coulomb interaction U . It leads us to a spinless electronic model which
describes the interplay between frustrated electron-electron interactions and multiorbital
effects on the half-filled triangular lattice.

We have then provided a brief summary of previous work on (i) the single-band
Hubbard model, that is of relevance for small values of the nearest neighbor interactions,
(ii) the single-band Extended Hubbard model, in cases where non-local interactions are
relevant, and (iii) the multiorbital Hubbard model, in the specific case of eg-orbitals
relevant to AgNiO2. Notice that the spinful single-band studies that we presented
correspond exactly to our model in the isotropic case t = t′.

The next chapter presents a complete study of the model that we derived. The
results that will be presented are part of the work published in [34].



Chapter 3

Coulomb-driven charge-ordered
phases

3.1 Introduction
The role of the multiorbital effects on the emergence of frustrated electronic orders on
the triangular lattice at half filling is investigated through the extended spinless fermion
Hubbard model that we derived in the previous chapter. By using complementary
approaches, unrestricted Hartree-Fock and exact diagonalizations, we unravel a very rich
phase diagram controlled by the strength of both local and off-site Coulomb interactions
and by the interorbital hopping anisotropy ratio t′/t. Three robust unconventional
electronic phases, the pinball liquid, the inverse pinball liquid, and a large-unit-cell√

12 ×
√

12 droplet phase, are found to be generic in the triangular geometry, being
controlled by the band structure parameters. The latter are also stabilized in the
isotropic limit of our microscopic model, which recovers the standard SU(2) spinful
extended single-band Hubbard model.

In the first chapter, we introduced various classes of materials with layered triangular
lattices and sizable electronic interactions which do present interesting charge-ordered
phases whose origin is not fully understood. These include transition-metal oxides such
as the triangular nickelates AgNiO2 [9, 11] and Ag2NiO2 [45], which show a threefold
ordered metallic phase with anomalous metallic properties. Another interesting class
is that of transition-metal dichalcogenides. In 1T -TaS2, for example, the ordered
state displays a marked Mott character induced by charge modulations with a large
periodicity of

√
13 ×

√
13 [15, 20], and various other periodicities are found in other

compounds (as seen above in Section 1.1.2). What all these materials have in common
is that electrons live in bands constructed from d atomic orbitals. Bridging the
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ideas of frustrated charge order from their initial domain of application (single-band,
layered organic conductors) to such d-electron compounds requires us to account for
the presence of multiple bands and to move to electron densities not restricted to
one-quarter filling.

Multiband effects come in two different kinds. The first is related to interactions
that are present within the d-electron manifold already at the atomic level, most
notably the on-site Hund interactions acting on the magnetic degrees of freedom [82]
(see previous chapter). These are known to favor the emergence of high-spin states and
have been shown to strongly enhance the effects of electronic correlations [96, 97, 2].
Their ability to stabilize a pinball liquid phase with unconventional metallic properties
at a filling of one electron per site has been explored very recently [35]. The second
type of multiband effect, which can also lead to novel and original properties, is of
kinetic origin and has to do with the microscopic form and symmetry of the interatomic
electron transfers. One can cite for example the hidden kagome symmetry and flat
bands which have been pointed out in the layered cobaltates [98], and which could be
related with the experimentally observed Kagome order in these compounds [99, 44].

The purpose of this chapter is to study how such multiorbital kinetic effects influence
the frustrated charge order on the triangular lattice. To this aim we employ an
atomistic tight-binding description [100] and set up the two-orbital extended Hubbard
model introduced in the previous chapter where the band structure can be tuned
systematically as a function of the microscopic transfer parameters. Since our main
focus is the exploration of novel charge ordered phases, it is a good starting point to
resort to a spinless electron description. This approach has been shown to capture the
correct ordering patterns realized in single-band models [31, 33] in the limit of strong
local Coulomb repulsion, where the magnetic energy scales are typically much smaller
than the ones controlling charge ordering. It has also been successfully used to study
charge ordering in the context of multiband models for correlated oxides [81] in the
ferromagnetic state.

Our results, obtained here at half filling via electrostatic considerations, unrestricted
Hartree-Fock (UHF) mean-field theory and exact diagonalization (ED) on small clusters,
show the emergence of a rich panel of charge and orbitally ordered phases. Most notably,
we find three robust unconventional charge-ordered phases, whose occurrence can be
tuned by varying the multiorbital band structure parameters. Two of these phases
have peculiar properties since a fraction of the electrons forms a charge order with a
threefold symmetry breaking, while the other fraction is free to move on the remaining
sites of the lattice, forming a honeycomb structure. These phases are called respectively
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the pinball liquid, originally found in quarter-filled lattices and obtained here at half
filling, and the inverse pinball liquid, which can be viewed as the dual to the pinball
liquid. The third unexpected phase found in this work is the large-unit-cell

√
12 ×

√
12

droplet phase, also found in the isotropic limit where our model reduces to the spinful
extended Hubbard model on the triangular lattice, where it was overlooked in previous
studies. Such phases could be of relevance to a variety of triangular d-band electron
systems such as the cobaltates, nickelates and dichalcogenides.

In this chapter, we will study the model for eg-orbitals that we derived in the previ-
ous chapter using complementary approaches. First, we focus on the noninteracting
part of the Hamiltonian to study eg-orbitals. It will be followed by tight-binding and
electrostatic arguments to build a preliminary phase diagram based on the noninteract-
ing limit and the strongly interacting limit. To go beyond classical considerations, we
will present the unrestricted Hartree-Fock method before giving a detailed description
of the results. Finally, the phase diagrams obtained by the unrestricted Hartree-Fock
method will be compare with exact diagonalization studies on small clusters.

3.2 Noninteracting system: Tight Binding studies

In this section, we solve the Hamiltonian Equation 2.14 in absence of interactions. We
mentioned before the d-orbitals split into two sets, the t2g and the eg. From now on,
our main interest will be the two eg orbitals. For a brief discussion of t2g-orbitals, see
Appendix B.

The transfer integrals along the lattice vectors u⃗1 = (1, 0), u⃗2 =
(
1/2,

√
3/2

)
,

and u⃗3 = u⃗2 − u⃗1 can be expressed in terms of two independent parameters t and t′

as [100, 76, 59]:

tu⃗1 =
 t 0

0 t′

 , tu⃗2 =
 t2 t3

t3 t4

 , tu⃗3 =
 t2 -t3

-t3 t4


with t2 = (t + 3t′)/4, t3 =

√
3(t − t′)/4 and t4 = (3t + t′)/4. We take t′/t in the

interval [−1, 1] as values outside this interval are found by interchanging orbitals ↑
and ↓, and set t as the energy unit. Note that for t′ = t the kinetic term reduces to
two independent instances of the triangular isotropic lattice, and the model becomes
analogous to the single-band spinful extended Hubbard model.

Figure 3.1 reports the evolution of the noninteracting density of states (DOS) as
a function of t′/t. As soon as t′ ̸= t, the electronic dispersion separates into two
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Fig. 3.1 (left) Evolution of the density of states of the noninteracting system with
respect to the t′/t ratio, reproduced from [34]. Four specific values are highlighted in
bold red, t′/t = −1,−1/3, 1/2, 1. Fermi surface, dashed line, at (middle) t′ = 0.5 and
(right) t′ = 0 with the Brillouin zone, solid line. The two shades of red distinguishes
the two bands.

nondegenerate bands. Correspondingly, the logarithmic singularity in the density of
states of the triangular lattice splits into two peaks, and Dirac cones appear in the
band structure at the K points. The density of states never vanishes at the Dirac
points, due to the simultaneous presence of other bands at the same energy; these can
be identified in the right plot of Figure 3.1 by the kinks located between the two Van
Hove singularities. A Lifshitz transition occurs for t′ ≃ 0.43t where the lowest of the
two peaks in the density of states crosses the Fermi energy, and one of the two bands
changes character from electronlike, with Fermi surface that circles Γ point (see for
example the Fermi surface at t′ = 0.5t in middle panel of Figure 3.1), to holelike, where
the K points are circled in addition to the Γ point (see for example the Fermi surface
at t′ = 0 in right panel of Figure 3.1).

At t′/t = −1/3, where t4 cancels, a flat band is found which gives a strong Van
Hove singularity. However, no phase specific to this ratio has been found because this
effect is immediately screened by the interactions.

The band structure becomes particle-hole symmetric for t′ = −t, in which case the
Dirac point falls at the band center. In this case, the system is a semimetal with two
parabolic bands touching at the Γ point and Dirac cones at the K points.

Further details about the band structure and the Fermi surfaces are given with
the description of the spectral function in Section C.2 and the corresponding band
structures are plotted with the unrestricted Hartree-Fock results in Section 3.4.2.
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Table 3.1 Local mean densities for sites A, B and C of the three sublattices on orbitals
σi, σ

′
i =↑, ↓ for the different phases considered for reference: homogeneous metal (HM),

Mott state, pinball liquid (PL), inverse PL (IPL), orbital-ordered pinball charge order
(PCOI and PCOII), the pinball charge order (PCOIII) and the

√
12 ×

√
12 droplet

phase averaged on a three sublattice (see Appendix A). There is no correlation between
the filling of the orbitals in one site (i) from one phase to another and (ii) from one
sublattice to another, as it does not change the electrostatic energy.

HM Mott PL IPL PCOI/PCOII PCOIII/
√

12 ×
√

12
AσA 1/2 1 1 3/4 1 1
Aσ′

A 1/2 0 1 3/4 1 1
BσB 1/2 1 1/4 3/4 1 1/2
Bσ′

B 1/2 0 1/4 3/4 0 1/2
CσC 1/2 1 1/4 0 0 0
Cσ′

C 1/2 0 1/4 0 0 0

3.3 Electrostatic considerations

In this section, we want to capture the main feature of the phase diagrams with simple
physical ideas. To this aim, we evaluate the energy of the system starting from the
mean-field value of the Coulomb interactions, and include kinetic energy corrections to
the lowest order in the band parameters. Several phases, that will actually be found in
our unrestrcited Hartree-Fock calculations, are considered here: (i) the homogeneous
metal, composed by a kinetic energy calculated in the tight binding approximation and
Coulomb interactions calculated at mean-field level, (ii) the Mott insulator calculated
for saturated density patterns corresponding to the classical limit, (iii) the pinball
charge order, and the

√
12×

√
12 droplet phase which are insulators with only Coulomb

interactions, and finally (iv) the inverse pinball liquid, which exhibits both a metallic
behavior on the honeycomb lattice for a third of the electrons, with the associated
kinetic energy, and the rest forming an insulating charge order.

The considerations presented here will serve as guidance for unrestricted Hartree-
Fock and most notably to predict transition lines to charge-ordered phases.

3.3.1 Local electronic densities on a three sublattice

Table 3.1 summarizes the values of local electronic densities in the electrostatic limit
for the reference phases considered on a three sublattice (see Appendix A), where we
conventionally label the sublattice densities in descending order, nA > nB > nC .
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• The homogeneous metal (HM) has same filling on every state.

• The Mott state has one electron per site exactly on one orbital only. In this limit,
any orbital order has the same energy.

• The pinball liquid (PL) has two electrons on the pins and the balls are filled as a
homogeneous metal with the remaining electrons.

• The inverse pinball liquid (IPL) is the dual to the latter as the role of charge-rich
and -poor sites are swapped. The pins are filled with two holes (zero electron)
while the ball sublattice equally shares the remaining hole (three electrons).

• The orbital-ordered pinball charge order (PCO), corresponding to PCOI and
PCOII in the unrestricted Hartree-Fock results (see Section 3.4.2 below), has a
threefold 2-1-0 charge pattern.

• The pinball charge order, PCOIII, and the
√

12×
√

12 droplet phase are considered
because they are found in unrestricted Hartree-Fock. The former is similar to the
orbital-ordered pinball charge order excepted the absence of orbital order on site
B and the latter has a larger unit cell of twelve sites. To allow a direct comparison
with the other phases, we averaged densities on the three main sublattices.
Remarkably, the average densities on the three sublattice of

√
12 ×

√
12 droplet

phase are equal to PCOIII, the phase found in previous studies. Nevertheless,
these two phases are not equivalent in our effective model because the PCOIII is
metallic (see mean-field results in Section 3.4.2).

Finally, we note that at this level of approximation, orbitals σi, σ
′
i =↑, ↓ on a row

in Table 3.1 are not correlated from on column to another. For example Bσi can be on
↑ for the Mott state and ↓ for the PCO. Moreover, these are not correlated from one
sublattice to another in the electrostatic limit.

3.3.2 Energies

In order to build the phase diagram, we shall compute the energy of the different
phases as a function of the different parameters (V, Ũ , t′, t). Then we compare the
energy of each phase to compute the transition lines.

The energies of the different phases are the sum of their kinetic energy computed
from the tight binding model, in other words the sum of the Ne

1 first eigenstates of the
1Ne is the number of electrons
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kinetic term, and the electrostatic energy, also referred as mean-field classical energy,
which is equal to the cross term in the Hartree approximation except for the sign (see
Section 3.4.1)

Es = Ũ

3
∑

i=A,B,C

ni↑ni↓ + V
∑

i ̸=j∈{A,B,C}
(ni↑ + ni↓) (nj↑ + nj↓) . (3.1)

In Equation 3.1, we substitute the niσ terms by their value in Table 3.1 for each phases.

As mentioned above, the homogeneous metal has a constant kinetic energy KHM

which is easily computed in the tight binding approach. Its energy using Equation 3.1
and Table 3.1 is

EHM = KHM + 1
4 Ũ + 3V,

with KHM = −1.581t for t′ = 0.5t.

The effective model to describe the pinball liquid is an insulating threefold charge
order with two electrons per pin, so two electrons per three sublattices (see Appendix A),
and a tight binding model on the honeycomb lattice at quarter filling, i.e. the remaining
electron on the two sites with two orbitals of the three sublattices. Equivalently for
the inverse pinball liquid, no electrons on pins and three electrons on the two other
sites making a three-quarter-filled honeycomb lattice.

One can check if other fillings of charge-rich and charge-poor sites are electrostaticaly
lower in energy by introducing a charge disproportionation δ on balls of the honeycomb
lattice (nA = nB) and pins of charge order (nC)

nA = nB = 1 + δ, (3.2)
nC = 1 − 2δ (3.3)

which recovers both pinball liquid and inverse pinball liquid. The mean-field electrostatic
energy Es

IPL = Es
PL = ũ

5 (1 + 2δ2)+3V (1 − δ2), the same in both case, has two minima:
δ = 1/2 (inverse pinball liquid) and δ = −1/2 (pinball liquid).
The two phases have both the same Coulomb repulsion, and kinetic energy Khoneycomb

within this approach

EPL = EIPL = Khoneycomb + 3
8 Ũ + 9

4V,

with Khoneycomb = −1.140t for t′ = 0.5t.
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The Mott state, which can have various orbital orders such as incommensurate
orders or the 120° phase, is assumed to be an insulator; its energy is

EMott = 3V.

The orbital-ordered pinball charge-ordered phases, PCOI and PCOII, referred as
PCO later, are insulating as well because of the orbital order, as can be seen from the
gap proportional to Ũ in the band structures in Figure 3.9 and Figure 3.10. Their
energy is therefore purely electrostatic and equals

EPCO = 1
3 Ũ + 2V.

The band structure of the
√

12 ×
√

12 droplet phase, also displayed in Figure 3.12,
shows the insulating gap proportional to the short range Coulomb interaction V . Its
energy is

E√
12×

√
12 = 5

12 Ũ + 2V.

Finally, we do not consider the PCOIII because of its absence in the phase diagram
both with unrestricted Hartree-Fock and exact diagonalization approach.

3.3.3 Qualitative phase diagram

Within the present treatment, a first order phase transition happens when two phases
have the same energy. Let us start with the metal insulator transition (MIT) from
homogeneous metal to Mott state

EHM = EMott ⇒ Ũc = −4KHM.

The transition between the Mott state and the pinball charge order follows the line

Vc = 1
3 Ũ .

The transition line between the homogeneous metal and the inverse pinball liquid is
predicted as follows

Vc = Ũ

6 + 3
4 (Khoneycomb −KHM) .
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From the pinball charge order to the
√

12×
√

12 droplet charge order, we find a straight
vertical line at the origin

Ũc = 0.

So the
√

12 ×
√

12 droplet charge order will exist only for Ũc = 0 and the transition to
the inverse pinball liquid will happen for

Vc = −4Khoneycomb.

Let us finish with the transition from inverse pinball liquid to the pinball charge order

Vc = −4Khoneycomb − 1
6 Ũ .

0 2 4 6 8 10 12 14
0

2

4

6

8

10

Ũ

V
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PCOI

√
12 ×

√
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Fig. 3.2 Static phase diagram derived from the effective model.

We now gather these lines to draw the phase diagram in the
(
Ũ , V

)
plane displayed

in Figure 3.2. We found with such simple considerations many features such as (i)
a metal insulator transition, (ii) while V increases, a transition from inverse pinball
liquid to either the

√
12 ×

√
12 droplet phase (Ũ = 0) or the orbital-ordered pinball

charge order (Ũ > 0) (iii) a vertical transition between the two latter (iv) transitions
from the homogeneous metal and Mott state to the charge-ordered phases, the inverse
pinball liquid and the PCOI. Notice that we choose the phases, inverse pinball liquid,√

12 ×
√

12 droplet phase and PCOI, rather than other equivalent states in this model
according to the unrestricted Hartree-Fock results.

So far, we studied two limits, noninteracting and strong interactions, which can
lead to original phases if in competition. To study this interplay for intermediate values
of interaction, we need approaches that properly include both the kinetic energy and
the Coulomb interactions.



44 Coulomb-driven charge-ordered phases

3.4 Unrestricted Hartree-Fock

The Hubbard model for an infinite system can not be solved exactly in general, even
though it is possible in some special case such as using the Bethe ansatz in one-
dimension [101] or without interaction as we did previously in Section 3.2. Apart from
these two cases, one can either diagonalize the Hamiltonian for a finite system, in
practice the size of the cluster is small (see Section 3.5), derive an effective model we
can solve exactly (see a brief introduction in Section 3.3) or make approximations.

One of these approximations is the mean-field theory, a self-consistent equation
of a one-body problem which is a fixed point problem. The Hubbard model for the
half-filled triangular lattice has been already studied using mean-field theory. However,
these previous works were assuming a given unit cell for the ordered states in order
to work in reciprocal space and diagonalize the mean-field Hamiltonian. As this
construction is not simple, because it depends on the chosen unit cell and larger unit
cells involve more complicated construction, only three- and nine-site unit cell have
been considered [93, 95]. These guesses were actually relatively accurate because
most phases respect these symmetries. However, in this work, we chose to explore all
possibilities and, without making any assumption, to work directly in real space. This
allows us to study the different kinetic terms seen in Section 3.2 that can break any
symmetry. This is called unrestricted Hartree-Fock.

3.4.1 Method

We will now introduce the method. The main idea is to decouple the mean value of
the product of the number operator

⟨niτnjτ ′⟩ ≃ ⟨niτ ⟩⟨njτ ′⟩. (3.4)

There are two different ways to do this that we present below.

Hartree approximation

One can first neglect the product of the local density fluctuations. Let us rewrite the
density operator niτ as the sum of its mean value n̄iτ = ⟨niτ ⟩ and the deviation to the
latter, i.e. the fluctuation δiτ = niτ − n̄iτ ,

niτ = n̄iτ + δiτ .
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Now, product of density operators is

niτnjτ ′ = n̄iτ n̄jτ ′ + n̄iτδjτ ′ + δiτ n̄jτ ′ + δiτδjτ ′︸ ︷︷ ︸
≃0

,

where the last term is neglected. We just have to write explicitly the mean value and
the fluctuation in term of operator niτ which leads to the following transformation in
the Hamiltonian

niτnjτ ′ → niτ ⟨njτ ′⟩ + ⟨niτ ⟩njτ ′ − ⟨niτ ⟩⟨njτ ′⟩. (3.5)

It is the Hartree term and it directly satisfies the condition in Equation 3.4.

The Coulomb interaction has two types of terms: ⟨niτ ⟩⟨njτ ′⟩ and niτ ⟨njτ ′⟩. The
first term, that we shall denote as “crossed term”, is just a shift of the energy which
will be omitted in the self-consistent procedure described below because the energy
is defined with respect to an arbitrary constant. So, only the second term is relevant
to address the problem. A simple view of the new problem with two orbitals τ and
τ ′ is the following: if we have an electron on the orbital τ of the site i, it will see
the electrostatic mean-field ⟨niτ ′⟩. So it will cost an energy Ũ⟨niτ ′⟩, the mean-field
produced by the other electrons, to the system to have an electron on this orbital.
Otherwise, i.e. if there is no electron on this orbital, the local electrostatic mean-field
will not cost any energy to the system. This electrostatic mean-field, which is the
classical Coulomb interaction, will overcome the kinetic term, thus, this approximation
gives the electrostatic limit for strong interactions. One shall find for instance a Mott
state at strong Ũ (Ũ ≫ t′, t and Ũ > 3V ) and a charge-ordered state with an energy
E/Ns = Ũ/3 + 2V at strong V (Ṽ ≫ t′, t and V > Ũ/3), see Section 3.3.3.

Fock approximation

We want to make a better approximation, the Hartree-Fock approximation. We keep
the condition on the product of density operators (see Equation 3.4) but we improve
the transformation in Equation 3.5 with the unrestricted Hartree-Fock, The idea of
this improvement is to add an exchange term to the uncoupled density operators

niτnjτ ′ → niτ ⟨njτ ′⟩ + ⟨niτ ⟩njτ ′ − ⟨niτ ⟩⟨njτ ′⟩
−
(
⟨d†

iτdjτ ′⟩d†
jτ ′diτ + d†

iτdjτ ′⟨d†
jτ ′diτ ⟩ − ⟨d†

iτdjτ ′⟩⟨d†
jτ ′diτ ⟩

)
.

(3.6)
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One can cite the first derivation in 1951 by Roothaan [102] and one of the earliest
studies in 1965 for a cubic lattice [103]. The Fock term has two main effects. First, it
allows non-classical electrostatic solutions at strong, even infinite, interactions. The
best known example is the 120° phase of the Hubbard model because the mean-field
parameters in this case for the Hartree term are the polarization along z and the Fock
term adds the x and y components of the magnetization required to find this specific
phase. The second effect appears with the short-range Coulomb interaction. The Fock
terms have the same form than the kinetic operators so that they actually renormalize
the kinetic energy of the system; formally tττ ′

ij (V ) = tττ ′
ij +V ⟨d†

jτ ′diτ ⟩. Let us now write
the multiorbital extended Hubbard model in the mean-field approximation

HHF = −
∑

⟨ij⟩,ττ ′

tττ ′

ij d
†
iτdjτ ′ + h.c.

+Ũ
Ns∑
i=1

∑
τ<τ ′

(niτ ⟨niτ ′⟩ + ⟨niτ ⟩niτ ′ − ⟨niτ ⟩⟨niτ ′⟩

−
(
⟨d†

iτdiτ ′⟩d†
iτ ′diτ + d†

iτdiτ ′⟨d†
iτ ′diτ ⟩ − ⟨d†

iτdiτ ′⟩⟨d†
iτ ′diτ ⟩

))
+V

∑
⟨ij⟩,ττ ′

(niτ ⟨njτ ′⟩ + ⟨niτ ⟩njτ ′ − ⟨niτ ⟩⟨njτ ′⟩

−
(
⟨d†

iτdjτ ′⟩d†
jτ ′diτ + d†

iτdjτ ′⟨d†
jτ ′diτ ⟩ − ⟨d†

iτdjτ ′⟩⟨d†
jτ ′diτ ⟩

))
(3.7)

= −
∑

⟨ij⟩,ττ ′

tττ ′

ij (V ) d†
iτdjτ ′ + h.c. + Ũ

Ns∑
i=1

∑
ττ ′

(
niτ ⟨niτ ′⟩ − ⟨d†

iτdiτ ′⟩d†
iτ ′diτ

)
+V

∑
⟨ij⟩,ττ ′

(niτ ⟨njτ ′⟩ + ⟨niτ ⟩njτ ′) + CT (3.8)

where CT stands for cross terms and all products of mean values, implicitly multiplied
by the identity matrix.

One can see that there is no approximation on the kinetic term, which will be a
key point to find new physics.

Self-consistent algorithm

Let us briefly introduce the self-consistent algorithm, its flowchart is given Figure 3.3.
The first step is to initialize the mean-field parameters which are ⟨d†

i,τdj,τ ′⟩, i, j ∈
[1, Ns] and τ, τ ′ are the orbitals, in our case of eg-orbitals we label them ↑, ↓ but the
formula is easy to generalize for multiorbital spinless systems. In order to optimize the
convergence of the method, we consider two types of initial values of the mean-field
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Initialization of mean-field parameters.

Building the matrix representation of the Hamiltonian.

Diagonalization of the Hamiltonian.

Computation of the chemical potential.

Building of the wavefunction and the new mean-field parameters.

(optional) Symmetrization.

Convergence?

Potential ground state.

Infinite loop?

Fail to find a ground state.

yes

no no

yes

Fig. 3.3 Flowchart of unrestricted Hartree-Fock algorithm.
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parameters, either random nonzero complex numbers2 or ordered state by setting
manually their value with an initial guess that one can expect from the considerations
of Section 3.3.

The second step is to build the matrix representation of the Hartree-Fock Hamilto-
nian HHF with these parameters in the basis of one particle states d†

iτ |0⟩.
The third step is to diagonalize this matrix. For this purpose, we can use efficient

libraries as described below. These routines provide all we need, i.e. the eigenvalues
ϵκ and their associated eigenvectors d̃†

κ|0⟩ = ∑
κ′ ακκ′d†

κ′|0⟩. The index κ denotes an
eigenstate of the Hartree-Fock Hamiltonian in the range [1, NsNo], with No the number
of orbitals, and κ′ denotes the pair of indices i, τ . The wavefunction of a mean-field
Hamiltonian is a single Slater determinant

|ψ⟩ =
NoNs∑
κ=1

fF D (ϵκ, µ, T ) d̃†
κ|0⟩. (3.9)

fF D (ϵκ, µ, T ) is the Fermi-Dirac distribution, where T is the temperature and µ the
chemical potential which must be computed accurately at each iteration.

To compute the chemical potential µ, one should satisfy the following condition

Ns∑
i=1

∑
τ

⟨niτ ⟩ = Ne.

Notice that computing the chemical potential is required to work with a fixed number of
particles. One can also fix directly the chemical potential to compute the compressibility
(see discussion Appendix C.1).

At zero temperature, the Fermi-Dirac distribution becomes a Heaviside step function
and the chemical potential is equal to the Fermi energy. In this case, building the new
mean-field wavefunction is easier as, first, the chemical potential step is skipped and,
second, the sum in Equation 3.9 is truncated and becomes the sum on the Ne first
eigenstate d̃†

κ|0⟩.
Using the wavefunction we compute the new mean-field parameters ⟨ψ|d†

i,τdj,τ ′ |ψ⟩.
The last step is to check the convergence of the self-consistent algorithm, that will

be discussed below in Section 3.4.1. If it did not converge, we start the algorithm at the
second step by building the new mean-field Hamiltonian with the updated mean-field
parameters. We repeat the loop until convergence.

2real numbers for the density operators which are diagonal.
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In the code we developed, we included fast linear algebra libraries that contain
eigensolvers. Especially, we used LAPACK (Linear Algebra PACKage)3 [104] convenient
for very large matrices of dimension more than 105 that can be coupled with ATLAS [105–
110] or OpenBLAS [111, 112]. For smaller systems, e.g. 72 × 72 cluster which makes
a 10368 × 10368 matrix, faster libraries exist, such as Eigen [113] and, even faster,
Armadillo [114] but the container can not handle very large matrices as LAPACK does.

The method is free from local constraints and ad hoc symmetrizations of the solution;
that is, no particular form of the ground state is assumed. This allows us to obtain
the most general ordered states of the model in an unbiased way and has been proved
very successful in predicting novel phases in related models [115, 35].

However, the algorithm can be trapped in an infinite loop where the mean-field
parameters oscillate between two, or more, excited states. To avoid this effect, one can
use symmetrizations, an average of mean-field parameters on a subcluster that can
help the convergence by adding constrains. These symmetrizations are explained in
Appendix D. Another approach consist on mixing wavefunctions of previous iterations
with different weights. For example, the wavefunction at iteration m when mixing
the M previous states with exponential decay of characteristic length λ is |ψ⟩ =

1∑M

x=1 e−m/λ

∑M
x=1 |e−m/λψm−x⟩.

A summary of the algorithm is depicted in Figure 3.3. In cases where we performed
symmetrizations; it was typically on 1, 3, 6, 9, 12, 24, 36, 48 sites. In practice, we
launched many runs for each set of parameters. Each of these runs are initiated with
different mean-field parameters. They can be either random, the results from a close
set of parameters (typically used when scanning) or corresponding to an ordered state,
guess or state found previously. The order is only initialized in the local electronic
densities, the off-diagonal parameters are always random. In any case, a randomness is
added to these parameters at the first iteration, see Figure 3.4.

Because unrestricted Hartree-Fock is a fixed point problem, we also used the
Broyden’s method during iterations, a quasi-Newton method [116]. The idea is to
iteratively compute the Jacobian of the system. It can also suffer of oscillation effect
and does not necessarily converge but works efficiently in some cases where the previous
algorithm does not.

Although our focus here is on zero temperature properties, each run is performed
at zero and finite temperature. The temperature will typically melt the orders to favor
metallic states, making the transition lines pushed to higher values of the Coulomb

3One can cite especially the functions zheev, zheevd (Divide and conquer) and zheevr (Relatively
Robust Representations)
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interactions. Some exceptions exist where increasing the temperature will stabilize
charge orders, e.g. in quarter-filled compounds [117]. In our case, we took temperatures
low enough to have a negligible effect on the physics, both qualitatively and quantitavely,
typically, up to an inverse temperature of β = 100. This small temperature is mandatory
in case of an open shell, i.e. when the Fermi level, of energy Ef , is degenerate and not
all degenerate states are filled, because it will mix properly the ensemble of states of
energy ϵκ = Ef . The runs are also performed for the different symmetrizations. We do
this because the unrestricted runs sometimes fail to find a solution and to avoid as
much as we can the spurious solutions, i.e. local minima. Among all converged states,
we choose the one with the lowest energy.

Convergence criteria
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Fig. 3.4 Typical behavior of the convergence criterion ∆E, defined in Equation 3.11,
during the self-consistent procedure. In this example, we launch two runs, one with
ordered local densities and the other one with the same starting point but with
randomness added at the first iteration. The behavior in both cases looks very similar.
Due to the (almost) symmetric starting point, the routine converges to a local minimum.
Without randomness, the routine is trapped whereas the other run leaves the local
minimum, then searches for other ones before finding the global minimum.

The criterion used to characterize the convergence is an important parameter of
the algorithm often overlooked. In the literature, this criterion is not necessarily
defined [84, 85, 95, 93, 33, 34] and if it is, the cut-off used is rarely given. A criterion
often used to check the convergence of the self-consistent field is based on the difference
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in the mean-field parameters between two iterations [118]. It has the same form than
the variance

1
N

∑
i

∣∣∣nm
i − nm+1

i

∣∣∣ < C, (3.10)

with nm
i a mean-field parameter at the m-th iteration and C the cut-off, which varies

from one work to another. Typical values are of the order 10−4 [118]. This criterion
has three major weaknesses. First, the cut-off is usually restrictive enough and an
ordered starting point has a good chance to be considered has a fixed point because the
convergence might be exponential at first. As shown in Figure 3.4, any cut-off higher
than 10−8 will be trapped and this behavior can happen even below 10−12. Setting
C to 10−14 seems safe and will avoid many of the spurious fixed points4. The second
issue is that it does not take into account that the computed Hartree-Fock energy EHF

at a given iteration can be much lower than the ground state. It is possible because
even though the Hartree-Fock energy for a converged state is necessarily greater or
equal than the ground state, it is a variational energy, no constraint exists on the
Hartree-Fock energy during the iteration process. Technically, it is because the states at
iteration m+ 1 are calculated based on the mean-field Hamiltonian defined at iteration
m. The last problem is that it does not constrain the Hartree-Fock energy EHF to be
equal to the energy of the system E = ⟨HF|HHF|HF⟩. The latter is a proper definition
of the variational energy, which is correct even for an unconverged state. To ensure
the two energies are equal, we choose the following criterion

∆E =
∣∣∣∣∣EHF − E

E

∣∣∣∣∣ < 10−14. (3.11)

The Hartree-Fock energy is the sum of the eigenvalues of the mean-field Hamiltonian
weighted by the Fermi-Dirac distribution

EHF =
NoNs∑
i=1

fF D (ϵm
i , µ, T ) ϵm

i .

The energy of the system is computed with the mean-field parameters at the m+ 1-th
iteration while the Hartree-Fock energy is computed with the mean-field parameters at
the m-th iteration.

Notice that we do not set an upper cut-off on the number of iterations. For
intermediate values of interaction, the number of iterations required until convergence

4Notice that the convergence parameter is limited by the numerical precision; in our system, we
reach the numerical noise for double precision in C++ around 10−28.
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can be large, typically more than 105 iterations even with a good starting point. The
evolution of the convergence criterion ∆E, defined in Equation 3.11, using the self-
consistent procedure is plotted in Figure 3.4. In this example, we launch two runs, one
with ordered local densities and the other one with the same starting point but with
randomness added at the first iteration. Due to the (almost) symmetric starting point,
the routine converges to a local minimum where the behavior in both cases looks very
similar. Without randomness, the routine is trapped whereas the other run leaves the
local minimum then searches for other ones before finding the global minimum.

Finally, we have performed a systematic size-scaling analysis for clusters up to
72×72 sites in order to identify transition lines in the thermodynamic limit.

As we briefly discussed previously, mean-field studies assume a unit-cell, generally
3 or 9 for the triangular lattice and then treat the Hamiltonian in reciprocal space.
The benefit is that there are no constraints on the size of the reciprocal space, in
other words it is easier to reach the thermodynamic limit. However, the solution
that is found necessarily respects the symmetries of the assumed unit-cell. The
unrestricted Hartree-Fock does not have any assumption on the solution. It means
that all symmetries can be broken which implies the solution can have any unit-cell
compatible with the cluster. The drawbacks are first that it is very difficult to identify
an incommensurate phase: the solution will be different for each cluster, defined by its
periodic bondary condition vectors (see Appendix A.1.2), but the vector associated
to the incommensurate modulation should convergence when the size of the cluster
increases. The second drawback is that the convergence is more difficult and might not
be reached. Finally, if two phases are degenerate in the limit of infinite interactions,
i.e. if they have the same electrostatic energy and so are distinguished only by kinetic
effects, it means the relative energy difference between these two states becomes smaller
while Coulomb interactions increase and thus the Hartree-Fock method will reach
its numerical limit when the numerical uncertainty is the order of magnitude of the
difference between two electrostaticaly degenerate states. In this case, it will be difficult
for unrestricted Hartree-Fock method to distinguish a local minima from the mean-field
ground state.

3.4.2 Unrestricted Hartree-Fock phase diagrams

In this section, we will present the unrestricted Hartree-Fock results.
As we are looking for the pinball liquid phase, with a particular attention to the

metallic threefold charge order observed experimentally below the structural transition
in 2H-AgNiO2 at 365K, we will try to find a realistic ratio t′/t that is representative to
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the band structure of this compound. The density of states calculated by DFT-LDA
of 2H-AgNiO2 compound in the normal state, above the structural transition, is
reproduced from Sörgel [54] in Figure 1.5. Because this density of states is calculated
in the homogeneous metallic phase, we compare it with the density of states in the
noninteracting case of our model. We tune the ratio t′/t for the tight binding model to
reproduce the main qualitative features of this density of states. Close to the Fermi
energy, i.e. in the range [-1,1]eV which is the part that actually contributes to the
conduction properties, this density of states has a peak close to the Fermi energy and
two close peaks at higher energy. In the range 0.5 ≲ t′/t ≲ 0.75 as shown on the right
panel of Figure 3.1, the noninteracting density of states qualitatively reproduces the
main features for 2H-AgNiO2. For t′/t = 0.5, the peak lower in energy is the closest
to the Fermi energy, which appears to be the case in DFT-LDA calculations. So, this
ratio of t′ = 0.5t will be our choice to describe the physics of this compound. We shall
see below how robust are the properties to changes in this ratio. We want to mention
here that although we can tune the system through a phase transition just by changing
this ratio, the phases found in the specific case t′/t = 0.5 exist in a broad range of this
parameter.

The phase diagram obtained in the
(
Ũ , V

)
plane for t′/t = 0.5 from unrestricted

Hartree-Fock is reported in Figure 3.5. To explore all the possible regimes of the model,
we also display the phase diagram in the (t′, V ) plane at a fixed value of Ũ = 1 in
Figure 3.6.

Such a moderate Ũ , which is an effective parameter related to the microscopic
interaction in the eg-electron via the equality U = Ũ + 3JH (Ũ = U3 in Equation 2.12
in Section 2.2), actually stands for a local Hubbard repulsion U which is considerably
larger than this value. For a choice of the Hund coupling JH = 0.25U , for example,
the value Ũ = 1 corresponds to U = 4, a value appropriate to moderately correlated
materials [119]. As we show below, a rich variety of phases is found and can be classified
into charge ordered (at large V ) and charge homogeneous (at low V ).

The right panel of Figure 3.5 conveniently reports the evolution of the local
charge densities as a function of V along the vertical line shown in the phase diagram
corresponding to Ũ = 1. An analogous scan is presented on the right panel in Figure 3.6
for the t′ dependence at fixed V = 1.1.

The different phases have been identified using order parameters introduced in the
Appendix C.1 which is summarized in a truth table (Table 3.2) where nonzero order
parameters have check mark a ✓ or a question mark ? in case of undefined order for
incommensurate phases.
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Fig. 3.5 (left) Phase diagram at zero-temperature for the multiorbital extended Hubbard
model in the unrestricted Hartree-Fock approximation at fixed t′/t = 0.5 in the(
Ũ , V

)
plane. The white disks with black edges correspond to the transition found in

unrestricted Hartree-Fock. Notice that we did not display all dots corresponding to
the scans performed to determined the transitions. The black lines are bezier curves
using the disks as control points, except the transition lines on the left phase diagram
between the charge-homogeneous and charge-ordered phases which are the predicted
transition from the effective model (see Section 3.3). (right) Evolution of the three
sublattice densities nA, nB, nC and charge correlations C (M) along the constant Ũ
line shown in the left panel [the scale of C (M) has been multiplied by 10]. For the√

12 ×
√

12 phase, nA, nB, nC are defined as the averages over the four nonequivalent
sublattices in the new unit cell. The phases denoted by HM and IPL are metallic, and
all the other phases are insulating. IPL is charge ordered, PCOI and

√
12 ×

√
12 are

charge and orbitally ordered, and ODW and 120° are orbitally ordered. Both phase
diagrams are reproduced from [34].
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Fig. 3.6 (left) Phase diagam at zero-temperature for the multiorbital extended Hubbard
model in the unrestricted Hartree-Fock approximation at fixed Ũ = 1 in the (t′, V ) plane.
The white disks with black edges correspond to the transition found in unrestricted
Hartree-Fock. Notice that we did not display all dots corresponding to the scans
performed to determined the transitions. The black lines are bezier curves using the
disks as control points. (right) Evolution of the three sublattice densities nA, nB, nC

as a function of t′/t for fixed Ũ = 1 and V = 1.1. The phases denoted by HM, PL, IPL
and PCOIII are metallic, and all the other phases are insulating. PL, IPL and PCOIII
are charge ordered, PCOI, PCOII,
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√
12 and C/ODOW are charge and orbitally

ordered. Both phase diagrams are reproduced from [34].

Table 3.2 Truth table for the different phases found in unrestricted Hartree-Fock as
input and order parameters as output. Check marks ✓means the order parameter is
nonzero. A question mark ? is put when the order parameter is not defined.

C (K) C (M) T (K) ⟨τ z⟩ nA − nB nB − nC
∑Ns

i=1 |ni↑ − ni↓|

HM 0 0 0 0 0 0 0
ODW 0 ? ? 0 0 0 ✓
120° 0 0 ✓ 0 0 0 ✓
IPL ✓ 0 0 0 0 ✓ 0
PL ✓ 0 0 0 ✓ 0 0
PCOI ✓ 0 0 0 ✓ ✓ ✓
PCOII ✓ 0 0 ✓ ✓ ✓ ✓
PCOIII ✓ 0 0 0 ✓ ✓ 0√

12 ×
√

12 ✓ ✓ ✓ 0 0 ✓ ✓
C/ODW ? ? ? 0 ? ? ✓
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For all phases we present real space snapshots where the radius of disks is pro-
portional to the charge density on the site (ni↑ + ni↓) and the light and dark filling
corresponds to the partial orbital densities (ni↑/ni↓).

We also display snapshots of the orbital order, if one, using Equations C.1. Their
vectorial representations are found to belong to the same plane as any triple product is
null. This plane is arbitrary and rotated to coincide with the plane of the lattice to
make convenient snapshots.

The total spectral function5 A (k, ω) is computed whenever the considered phase
exhibits a commensurate charge order. The path ΓMKΓ displayed beside the snapshots
for the original Brillouin zone correspond to a path Γ′K ′M ′Γ′M ′Γ′ in the reduced
Brillouin zone of the three sublattice structure corresponding to threefold charge orders.
The Fermi surface of conducting phases is also displayed. It is interesting to notice that
the folding into the reduced Brillouin zone makes the former K-points correspond to
the new Γ′ points. On the spectral function figures, dashed lines are the noninteracting
solutions.

The two straight lines that separate charge-homogeneous to charge-ordered phases
in Figure 3.5 qualitatively match the highlighted straight lines in phase diagrams of
Hartree-Fock (right panel of Figure 2.3), slave spins mean-field (Figure 2.4) and Hartree-
Fock with slightly different hopping integrals (Figure 2.5). The latter is remarkably
consistent with our results; indeed, one can make the following correspondence: PM
→ HM, IM and C → ODW, A to 120°, D → IPL and B → PCOI. It can be explained
by similar band structures (left panel in Figure 2.5 to be compared for example with
dashed lines in Figure 3.7). The F phase, which corresponds to PCOIII is found instead
of the

√
12 ×

√
12 droplet phase because of their constraint (nine sites per unit cell)

and the E phase that we did not find can be attributed to the difference between the
noninteracting band structures.

3.4.3 Charge-ordered phases

Inverse pinball liquid

The inverse pinball liquid order, metallic threefold charge order displayed in Figure 3.7,
develops in the whole region t′/t > 0.1 upon increasing the intersite repulsion V from
the homogeneous metal phase for sufficiently low values of Ũ (Figs. 3.5).

The charge density separates into charge-rich sites forming a honeycomb lattice
(balls) and charge-poor sites (pins) located on the remaining triangular sublattice. The

5We summed the contribution of the orbitals A (k, ω) = A↑ (k, ω) + A↓ (k, ω).
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Fig. 3.7 (left) Typical charge- and orbital-density snapshot for inverse pinball liquid
(V = 0.9, Ũ = 1, t′ = 0.5). The radius of the disks is proportional to the charge density
on the sites, and the light and dark fillings correspond to the partial orbital densities.
(middle) Spectral function and (right) Fermi surface obtained from Equation (C.5)
with a Lorentzian broadening η = 0.02 on 72×72 site lattices. The solid lines in the
Fermi surface plots show the original and reduced Brillouin zone, whose symmetry
points are labeled in Figure A.2. The dashed lines are the Fermi surfaces and band
structures in the noninteracting limit. These figures are reproduced from [34].

charge disproportionation δ in Equation 3.2 and Equation 3.3 progressively increases
with V towards the maximum allowed value δ = 1/2 corresponding to a fully depleted
charge-poor sublattice (nC = 0 and, correspondingly, nA = nB = 3/2). There is no
orbital polarization in either the charge-rich or charge-poor sublattices.

The inverse pinball liquid is metallic due to the presence of itinerant carriers (balls)
on the charge-rich honeycomb network as we have seen with simple considerations in
Section 3.3. The right panel in Figure 3.7 illustrates the Fermi surface (FS) obtained
in this phase (V = 0.9, Ũ = 1, t′ = 0.5), which clearly shows the existence of holelike
carriers around the K points of the original Brillouin zone (large hexagon), resulting
from the folding of one of the noninteracting bands (shown as dashed lines). Small
pockets can also be seen around the corners of the reduced Brillouin zone (small
hexagons). These are remnants of the second band of the noninteracting system, which
at this value of t′ crosses the reduced Brillouin zone very close to its corners (denoted
as K ′ points) and therefore folds into closed pockets of trigonal shape. The origin of
the large hole Fermi surface and the small trigonal pockets can also be clearly seen by
comparing the spectral function A (k, ω) illustrated in middle panel of Figure 3.7 with
the dispersion of the two noninteracting bands (dashed lines).

We can compare this band structure with the Hartree-Fock results in the model for
an adsorbate layer presented in Figure 2.6. In our calculations, one can see splitting of
the bands due to the anisotropy of the hopping integrals, we must focus on the general
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trend to make the comparison. Along the path Γ′K ′M ′Γ′M ′Γ′ 6, a lower band increases
along Γ′K ′, remains almost flat on along K ′M ′, decreases along M ′Γ′, increases along
Γ′M ′ and finally decreases along the remaining M ′Γ′. The two upper bands have
opposite behavior on Γ′K ′ until they cross on K ′. The middle band follows the lowest
band for the rest of the represented path (almost indiscernible in our case), whereas
the upper band has an almost opposite behavior than the two lower ones. The most
notable quantitative difference, i.e. the gap between the two lower bands in Figure 2.6,
comes from the higher values of the effective Coulomb energies Ũ and V , in an area
where the pinball liquid is not stabilized for this ratio of t′/t. Other differences come
from the form of the hopping integrales. Nevertheless, the good agreement between
the two band structures shows that the electronic phase found in the adsorbate work
in Ref. [95] is actually an inverse pinball liquid, although pinball liquid states had not
been identified at the time of that work.

Inverse pinball liquid exhibits characteristics of the phase in 2H-AgNiO2, metallic
and threefold charge order, but the real-space snapshot corresponds to the dual of this
phase where the charge rich and charge poor sites are swapped which looks like the
original pinball liquid. The reason can be because our initial guess of t′/t is based on a
fit of the noninteracting band structure. However, we can tune this ratio in order to
reach the pinball liquid as observed in the experiment.

Pinball liquid

When t′/t < 0.1, the inverse pinball liquid 3
2 -3

2 -0 charge pattern (δ = 1/2) shown
in Figure 3.7 is replaced by the pinball liquid, with a 2-1

2 -1
2 pattern (δ = −1/2) as

illustrated in Figure 3.8. This phase is dual to the inverse pinball liquid in the sense
that the roles of the charge-rich and charge-poor sublattices are interchanged. We
identify this phase with the original pinball liquid of Hotta and coworkers [31] (see
Section 1.2.3) because, from the point of view of the electronic densities (nA = 2,
nB = nC = 1/2), it can be viewed as two realizations of the pinball liquid phase found
at quarter filling, one per each orbital character (the pinball liquid at quarter filling
has nA = 1, nB = nC = 1/4). Because of orbital-orbital interactions, however, the
two realizations are not independent, and the present pinball liquid can occur for only
small or moderate values of Ũ ≲ 5. This can be contrasted with the quarter-filled case,
where a strong Hubbard term is required to stabilize the pinball liquid [69, 33, 38] as
shown in Figure 1.10.

6The ′ in our notation are 3×3 in Figure2.6
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Fig. 3.8 (left) Typical charge- and orbital-density snapshot for pinball liquid (V =
1.1, Ũ = 1, t′ = 0). The radius of the disks is proportional to the charge density on
the sites, and the light and dark fillings correspond to the partial orbital densities.
(middle) Spectral function and (right) Fermi surface obtained from Equation (C.5)
with a Lorentzian broadening η = 0.02 on 72×72 site lattices. The solid lines in the
Fermi surface plots show the original and reduced Brillouin zone, whose symmetry
points are labeled in Figure A.2. The dashed lines are the Fermi surfaces and band
structures in the noninteracting limit. These figures are reproduced from [34].

The phase diagram in Figure 3.6 shows that the selection between the pinball liquid
order and its dual inverse pinball liquid is entirely governed by kinetic effects, as it is
independent of Coulomb interactions and transition is controlled through t′/t. This
can be understood by observing that the electrostatic energies of the pinball liquid and
inverse pinball liquid are formally equal and do not depend on the sign of the charge
disproportionation δ (see Section 3.3). Notice that the stabilization of the inverse
pinball liquid is also influenced by the number available states. If the spin degree of
freedom is included for the same number of electrons, see the work of Ralko, Merino
and Fratini in Ref. [35], then the number of available states is doubled and the inverse
pinball liquid phase is transformed into the pinball liquid phase on this quarter-filled
system.

Similar to the inverse pinball liquid, metallic behavior arises in the pinball liquid
from the motion of electrons living on the honeycomb network. At this value of t′, the
noninteracting Fermi surface (dashed line) is composed of a large electronlike surface
around the Γ point and smaller holelike pockets around the K points. Contrary to the
inverse pinball liquid shown previously, however, the overall shape of the Fermi surface
is only weakly affected by charge ordering of the PL type because the original Fermi
pockets do not cross the boundaries of the reduced Brillouin zone (Fig. 3.8).
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Pinball charge order

Fig. 3.9 (left) Typical charge- and orbital-density snapshot for PCOI (t′/t = 0.5, Ũ = 1,
V = 2.6). The radius of the disks is proportional to the charge density on the sites, and
the light and dark fillings correspond to the partial orbital densities. (right) Spectral
function obtained from Equation (C.5) with a Lorentzian broadening η = 0.02 on
72×72 site lattices. The dashed lines are band structures in the noninteracting limit.
These figures are reproduced from [34]. (right) Vectorial representation of orbital order.
Orbital vectors on singly occupied sites exhibit the 120° order with the same norm
than in the 120° phase (see Figure 3.16).

At large V , the system undergoes further charge ordering, stabilizing a 2-1-0 charge
pattern termed pinball charge order (Fig. 3.9). Simple electrostatic arguments predict
that the pinball charge order is stabilized for V > Ũ/3, as discussed in Section 3.3
above, which nicely agrees with the numerical results at large Ũ and V (see left panel
of Fig. 3.5).

The threefold disproportionation splits the electronic dispersion into three separate
bands per orbital state. Counting the occupied states leaves us with a central half-filled
band, which should lead, in principle, to a metallic behavior. We find instead that
the pinball charge order phase found in the whole region t′/t ≳ 0.1, denoted PCOI

in Figures 3.5 and Figure 3.6, is insulating (see the spectral function in Fig. 3.9).
This is ascribed to the presence of a spiral 120° orbital order on the singly occupied
B sites, identical to the order of the local electronic densities of the 120° phase (see
Section 3.4.4), caused by the local interaction Ũ , as seen in orbital order of the right
snapshot in Figure 3.9. The order of the Hartree terms within 120° changes with the
ratio t′/t following the threefold orbital order of the 120° phase.

Other orbital orderings on the B sublattice are possible within the present 2-1-0
charge arrangement upon varying t′/t (Fig. 3.6). These are PCOII for t′/t ≲ 0.1 and
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Fig. 3.10 (left) Typical charge- and orbital-density snapshot for PCOII (t′/t = 0, Ũ = 1,
V = 2). The radius of the disks is proportional to the charge density on the sites, and
the light and dark fillings correspond to the partial orbital densities. (right) Spectral
function obtained from Equation (C.5) with a Lorentzian broadening η = 0.02 on
72×72 site lattices. The dashed lines are band structures in the noninteracting limit.
These figures are reproduced from [34].

Fig. 3.11 (left) Typical charge- and orbital-density snapshot for PCOIII (V = 2, Ũ =
1, t′ = −1). The radius of the disks is proportional to the charge density on the sites,
and the light and dark fillings correspond to the partial orbital densities. (middle)
Spectral function and (right) Fermi surface obtained from Equation (C.5) with a
Lorentzian broadening η = 0.02 on 72×72 site lattices. The solid lines in the Fermi
surface plots show the original and reduced Brillouin zone, whose symmetry points are
labeled in Figure A.2. The dashed lines are the Fermi surfaces and band structures in
the noninteracting limit. These figures are reproduced from [34].
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large V (uniformly polarized B sites, Fig. 3.10) and PCOIII for t′/t ≲ 0.1 and low V

(unpolarized B sites, Fig. 3.11).
PCOII is also an insulator because the ferro-orbital polarization is sufficient to

split the narrow half-filled band at the Fermi energy into two separate components
(Fig. 3.10). Note that this is the only phase in the whole phase diagram which supports
a nonzero ⟨τ z⟩.

PCOIII instead has a metallic character. It is the phase originally found in some
mean-field studies at low V , including the region where we find that the

√
12 ×

√
12

droplet phase is stabilized instead (see the paragraph below), that we presented in
Section 2.4.2 such has the F asymmetric CDW in Figure 2.5. In the limit t′ = −t,
shown in Figure 3.11, it is a semimetal with bands touching at the Γ and K points
with an electron hole symmetry preserved from the noninteracting limit.

The transition from inverse pinball liquid to the PCOI upon increasing V can be
seen as a charge order transition within the metallic honeycomb lattice. Although
this argument, seen in Section 3.3, does not explain the exact locus of the transition
reported in Figure 3.5, the shape of this transition is almost a straight line with the
predicted slope − Ũ

6 .
We conclude the description of this phase by giving an intuitive understanding of

the band structures. We can identify three sets of bands in Figure 3.9, Figure 3.10 and
Figure 3.11. These sets are independent in the sense that a gap ∝ V exists between
them and each site of the three sublattices can be associated directly to nA for the
lower bands, nB for the middle bands, around the Fermi energy, and nC for the upper
bands. Focusing on the middle bands means looking at the singly occupied site nB

and then metallic or insulating properties will be driven by their orbital order. The
shape of middle bands in the metallic PCOIII is similar to the noninteracting case and
therefore form a homogeneous metal on singly occupied sites nB, whereas PCOI and
PCOII, orbitally ordered, are insulators with a gap ∝ Ũ .

√
12 ×

√
12 droplet phase

In addition to the broken symmetry phases already reported in the literature, our
unrestricted Hartree-Fock study has revealed, for t′/t > 0.1, an additional phase in
the small-Ũ regime, located between the two charge-ordered phases found at small
and large V . This phase has a large periodicity with 12 sites in the unit cell (see
Figure 3.12).

The
√

12 ×
√

12 droplet phase is characterized by the coexistence of peaks in the
charge-charge correlation function at the K points (characterizing threefold order) plus
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Fig. 3.12 (left) Typical charge- and orbital-density snapshot for
√

12 ×
√

12 droplet
phase (t′/t = 0.5, Ũ = 1, V = 2.5). The radius of the disks is proportional to the
charge density on the sites, and the light and dark fillings correspond to the partial
orbital densities. (middle) Spectral function obtained from Equation (C.5) with a
Lorentzian broadening η = 0.02 on 72×72 site lattices. The dashed lines are band
structures in the noninteracting limit. These figures are reproduced from [34]. (right)
Vectorial representation of orbital order. We displayed vectors only on filled hexagons
because the norm on the other sites is at least six times smaller. To reveal the order,
the scale of vectors is ten times bigger than in Figure 3.9 and Figure 3.16.

all the M (whose combination describes a phase with fourfold symmetry [92]) and
K/2 points (see Table 3.2). The latter are absent in the phases with pure threefold
symmetry. The evolution of M -point charge-charge correlation is shown on the right
panel in Figure 3.5. This charge-charge correlation is proportional to the K/2-point
correlation.

The real-space snapshot in Figure 3.12 shows that the charges form disconnected
hexagonal droplets, composed of essentially doubly occupied sites. These are surrounded
by sites which are either empty or almost empty. The latter are responsible of an
additional orbital ordering, nonzero orbital correlations at points M and K/2, by
taking uniformly charges from hexagons. On right panel of Figure 3.12, we displayed
the vectorial representation in real space on the lattice for the hexagons, which is
already small [norm about ten times smaller than PCOI (Fig. 3.9) and 120° phase
(Fig. 3.16)], but we did not display the even smaller order on the almost empty sites
because their norm is almost an order of magnitude smaller than on the hexagons.

The
√

12×
√

12 droplet phase is stabilized with respect to the PCO phase by purely
kinetic effects. It can be shown straightforwardly that the potential energies of the
droplet and PCO phases coincide when Ũ = 0 (the cost due to V being exactly equal),
while the droplet phase is rapidly destabilized by Ũ due to the larger double occupation
(see Section 3.3).
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Unlike PCOI and PCOII, this phase has a strongly insulating character due to the
charge order, opening of a gap ∝ V at the Fermi energy (Fig. 3.12).

We note that the emergence of a charge pattern with a high-order periodicity such
as the one found here is not at all trivial given that the electron-electron repulsion is
restricted to only nearest-neighbor sites and is not present in a purely Hartree approach;
the additional Fock approximation renormalizes the kinetic energy needed to stabilize
this phase.

The region in parameter space where the
√

12 ×
√

12 droplet phase is stabilized
actually includes the limit t′ = t where Equation 2.14 becomes equivalent to the spinful
extended Hubbard model, but it was overlooked in previous studies [95, 92, 93, 70, 94,
120]. Interestingly, the present 12-site period is very close to the 13-site star of David
modulation found in the triangular dichalcogenide compound 1T -TaS2 [20] presented
in Chapter 1. The hexagonal droplets in Figure 3.12 are also similar to those recently
predicted theoretically in the kagome lattice at n = 1/3 filling [115, 121], but in that
case they are a natural consequence of the larger unit cell of the underlying lattice (see
also Refs. [98, 122] ).

Fig. 3.13 Charge (left) and orbital (right) correlation on 36 × 36 lattice for the C/ODW
phase (V = 1.5, Ũ = 1, t′ = 0). The black hexagon is the first Brillouin zone. The
radius of the disks corresponds to the weight of the corresponding k⃗-point in arbitrary
unit. In the charge correlation, we did not display the large disks on points Γ and K.

Finally, we mention that the
√

12 ×
√

12 phase obtained in the interval −1/3 <
t′/t ≲ −0.1 (see left panel of Fig. 3.6) has the doubly occupied hexagons replaced by
empty sites and vice versa and can therefore be considered as the dual to the droplet
phase described above, just as the inverse pinball liquid is the dual to the pinball liquid.
The two are separated by a phase with coexisting incommensurate charge and orbital
order, denoted C/ODW (see snapshots Figure 3.13 and Figure 3.14). Because our real
space approach is not optimized for the description of incommensurate order, the latter
is identified as incommensurate by the presence of clouds of peaks in both the charge
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Fig. 3.14 Charge (left) and orbital (right) correlation on 36 × 36 lattice for the C/ODW
phase (V = 1.8, Ũ = 1, t′ = 0). The black hexagon is the first Brillouin zone. The
radius of the disks corresponds to the weight of the corresponding k⃗-point in arbitrary
unit. They are the same than Figure 3.13 for the orbital correlation and ten times
smaller for the charge correlation. In the charge correlation, we did not display the
large disks on points Γ and K.

and orbital correlation as displayed in Figure 3.13 or coexistence of different orders,
shown in Figure 3.14, in analogy with some areas in the ODW region of the phase
diagram (see below). From one run to another, unrestricted Hartree-Fock gives similar
clouds of correlations peaks.

3.4.4 Charge-homogeneous phases

Fig. 3.15 Typical charge- and orbital-density snapshots in the different phases realized
in the model: (left) HM and (right) ODW. The radius of the disks is proportional to
the charge density on the sites, and the light and dark fillings correspond to the partial
orbital densities.

Several phase transitions are also found within the charge homogeneous region
at low V . The system evolves upon increasing the effective local interaction from a
paraorbital metal at small Ũ , the equivalent of the paramagnetic metal by making the
correspondance between spins and orbitals, denoted as homogeneous metal (HM), to a
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Fig. 3.16 (left) Typical charge- and orbital-density snapshot of the 120° phase. The
radius of the disks is proportional to the charge density on the sites, and the light and
dark fillings correspond to the partial orbital densities. (right) Vectorial representation
of the orbital order. Notice that although two sites have the same orbital filling (Hartree
parameters), their vectorial representation that takes into account the Fock parameters
is different (see Appendix C.1).

spiral 120° orbitally ordered insulating phase at large Ũ . Snapshots of this two phases
are displayed in left panels of Figure 3.15 and Figure 3.16.

Homogeneous metal

The homogeneous metal corresponds to the solution of the tight-binding Hamiltonian
and presents no order, neither for the charges nor the orbitals with a null charge gap,
Equation C.4, consistent with the prediction of a metallic state. Notice that the kinetic
energy of this phase remains constant upon varying the interactions and the total
energy of this phase is directly the sum of its kinetic energy and potential energy which
agrees with our arguments in Section 3.3 and is confirmed by the agreement between
the static model and unrestricted Hartree-Fock for the transition line to the inverse
pinball liquid.

120° phase

For strong local Coulomb interaction Ũ , a Mott state is expected with one electron per
site exactly on only one orbital which, at the present mean-field level, is represented by
an orbital broken symmetry. For example, if one considers only Hartree approximation,
z component of orbitals, stripe order is stabilized, but taking into account the Fock
approximation allows orbital to form a threefold order by adding x and y orbital
component. For t′ = t, the local electronic densities are arranged as follows orbital
↑ on site A (nA↑ = 1, nA↓ = 0), orbital ↓ on site B (nB↑ = 0, nB↓ = 1) and equally
filled on site C (nC↑ = 1/2, nC↓ = 1/2) of the three sublattice. This orbital order is
surprising because of the strong cost in Ũ , however this cost is exactly counterbalance
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by the orbital flip, a local current that allows the electron to change orbital on the same
site. It is a good example where corrections to the electrostatic limit are introduced
by the Fock term. Due to the degeneracy of the model at the isotropic point t′ = t,
the solution on the Fock term changed at each run of the unrestricted Hartree-Fock
algorithm. Nevertheless, the correlation is always, and only, on the K-point. On the
three sublattice corresponding to this order, the sum of orbital vectors is null, i.e.
⟨τ⃗A + τ⃗B + τ⃗C⟩ = 07, moreover, |τ⃗i| = |τ⃗j| ∀i, j which implied that there exists a plane
containing all the orbital vectors. The orbital moments of the 120° phase are arranged
in planes perpendicular to the lattice as soon as t′ ̸= t.

Orbital density wave

In the intermediate local Coulomb interaction area, the system goes through an
intermediate region with more complex orderings, denoted as ODW in the left phase
diagram of Figure 3.5. A precise study of this intermediate region is beyond the scope
of this thesis because the unrestricted Hartree-Fock method in real space is not suited
to address incommensurate orders (see Section 3.4.1). No symmetrization can be
used and each run must be launched for a large system and last a large number of
iterations (typically more than 105), which involves a non-reasonable computation
time to check the accuracy and detect spurious solutions. However, we would like to
stress the following points: (i) Within our real-space unrestricted approach, we have
recovered the two intermediate mean-field phases of the spinful Hubbard model [84, 85],
namely an incommensurate orbital (spin) ordered phase whose wave vector evolves
with Ũ and a zigzag stripe compatible with the points k = (±π, 0). (ii) While previous
studies have looked for solutions breaking the symmetry at a single wave vector, we
find solutions compatible with two or more coexisting k vectors, typically on K- and
M -points close to the transition to the 120° phase, possibly a mean-field indication
of a tendency to a structureless orbital liquid state. (iii) Away from the case of the
isotropic Hubbard model, i.e., as soon as t′ ̸= t , the zigzag stripe phase seems to
disappear, and only the incommensurate regions with coexisting order survive. (iv) At
t′ = 0.5, the critical parameter Ũc is decreased by 25% with respect to the isotropic
case t′ = t, in agreement with the corresponding reduction of the bandwidth. (v) The
orbital density wave phases exhibit a finite charge gap meaning they are insulating in
contradiction with previous studies [84–86, 95].

7Notice that this is not possible with only Hartree approximation
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3.4.5 Discussion on accuracy of electrostatic arguments

Unrestricted Hartree-Fock presented here and classical approach of Section 3.3 are in
perfect agreement for the metal to inverse pinball liquid transition as well as for the
Mott state to the pinball charge order. It is also matching the exact diagonalization
results in the asymptotic limit (see next Section). These predicted lines are drawn on
the unrestricted Hartree-Fock phase diagram in Figure 3.5.

Two surprising effects arise about the transition between the 120° phase and PCOI

with the unrestricted Hartree-Fock method. First, this prediction works even when
the half-filled sites are not completely polarized, in other words the ideal case of
electrostatic limit is not reached yet. The unrestricted Hartree-Fock method lowers the
on-site Coulomb cost with the Fock terms. Second, in the completely frustrated case,
i.e. when t = t′ = 1, the specific patterns of these two phases remain in the strong
interaction limit with the sites not polarized in 120° order. As mentioned before, the
Fock term enforces a solution which lowers the energy with local current, the orbital
flip, in order to compensate exactly the static cost.

Nevertheless, the qualitative description of Section 3.3 suffers of few limitations.
(i) It does not capture the correlation between the pins and the balls which increases
the screening of the band structure of the honeycomb lattice. This is the reason why
we find the inverse pinball liquid in a larger area in the classical model and thus why
we do not have a quantitative agreement for the transition to the

√
12 ×

√
12 droplet

charge order nor the pinball charge order which are predicted for larger V . (ii) The
stabilization of the

√
12 ×

√
12 droplet charge order away from the predicted V = 0

is an evidence of the purely kinetic origin of this phase. (iii) The transition from the
metal to the Mott insulator found in unrestricted Hartree-Fock is not exactly vertical,
as it is with static arguments, because of the coupling between the short range Coulomb
interaction and the hopping integrals. (iv) We can not predict with the electrostatic
model a transition to different orbital-ordered phases as they are all electrostatically
equivalent nor distinguish between different charge orders, such as pinball liquid and
its dual or polarized pinball charge order, stripe and

√
12 ×

√
12 droplet charge order.

In order to confirm the unrestricted Hartree-Fock results, which does not take into
account correlations by construction (decoupling of product of niσ operators), we shall
now make a comparison with another numerical approach, the exact diagonalization.
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Fig. 3.17 (left) 12-site cluster used for exact diagonalization and (right) its Brillouin
zone where high symmetry points are labelled. The non-labelled k⃗-points are K/2.
Colors show points connected by C2 point group symmetry. Only Γ and M (solid line
edges) remain invariant while K and K/2 (dashed line edges) are connected to non
equivalent points.
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Fig. 3.18 Phase diagrams obtained from exact diagonalization on a 12-site cluster
at fixed t′ = 0.5t. Panels (a) to (c) are reproduced from [34]. (a) Charge-charge
correlation C (K). (b) Orbital-orbital correlation T (K). (c) Expectation value of the
double occupation D. (d) Comparison with UHF pahse diagram (gray lines). The
color maps are in arbitrary scale, increasing from dark to bright. On each panel are
shown the ground-state symmetry sectors (translation and point group) and first-order
transition lines (thick lines) reflecting symmetry breaking driven either by the charges,
the orbitals or both. The symmetry sectors in the small dome at low V is respectively
K/2 and MAp as Ũ increases.
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3.5 Comparison with Exact diagonalization
In this section, we shall briefly compare our results with exact diagonalization results.
Whereas I performed exact diagonalization computations on this model, in order to
focus on the problem of the next chapter, the final results presented here are obtained
by Arnaud Ralko. A detailed presentation of this method will be done in the next
chapter, in Section 4.4, when presenting the results I myself obtained on the effective
model for the Mott regime.

To ascertain if the variety of phases found at mean-field level in phase diagram of
Figure 3.5 is robust against quantum fluctuations, we have performed a systematic
study of the model Equation 2.14 via Lanczos diagonalization on a 12-site cluster.
Such a cluster is compatible with all the symmetries of the expected charge-ordered
phases except for PCOI, which has a nine-site unit cell due to the presence of additional
120° orbital order. It is also compatible with the orbital order found by unrestricted
Hartree-Fock in the low-V region, 120° phase, but not with the (±π, 0) zigzag stripes
and the incommensurate stripes characteristic of intermediate Ũ , denotes by ODW in
unrestricted Hartree-Fock phase diagram.

For these calculations, we have taken the largest available cluster fulfilling all the
symmetry requirements mentioned above, namely, the 12-site tilted cluster, as depicted
in the left panel of Figure 3.17, with L = 2 in definition given in Section A.1.2.

Since the Hamiltonian does not preserve the orbital flavor, ⟨τ z⟩ ≠ 0 a priori, one
has to consider, for a fixed number of particles, all the orbital sectors.

In addition, due to the structure of the hopping matrix, as soon as t′ ̸= t, the
three directions of the lattice become inequivalent hence breaking the C6v point-group
symmetry. The system can thus be block-diagonalized simultaneously for k⃗-points,
representation of translations, compatible with the remaining C2 symmetries, which
contain only two generators, I and Rπ, the identity matrix and the rotation of an angle
of π around the z axis. This is true for only points Γ and M ; K and K/2 are not
compatible with such symmetries. It is shown on the Brillouin zone Figure 3.17 where
k⃗-points connected by Rπ have the same color and solid edge points are invariant by
this symmetry.

In a given k⃗-sector, the ground state (GS) can then be either symmetric (referred
to as A) or antisymmetric (Ap) against the C2 symmetries. This will be used in the in-
terpretation of the exact diagonalization phase diagram. In the next chapter, especially
in Section 4.4, we shall give a more exhaustive description of exact diagonalization
and an introduction to the symmetry for the bosonic effective model derived from
perturbation theory. The noteworthy difference is the fermionic sign.



3.5 Comparison with Exact diagonalization 71

Table 3.3 Comparison of the charge-charge correlation C
(
k⃗
)
/Ns for the high symmetry

points K and M in the different charge-ordered phases, computed analytically on the
ideal patterns, via unrestricted Hartree-Fock and exact diagonalization. The values for
PCO, IPL/PL, and

√
12 ×

√
12 correspond to t′/t = 0.5 and (Ũ , V ) of (6,4), (1,1.2),

and (0,3), respectively.

PCO IPL/PL
√

12 ×
√

12
Analytical K 1/3 1/4 1/4

M 0 0 1/9
UHF K 0.302 0.121 0.227

M 0 0 0.065
ED K 0.308 0.157 0.262

M 0.006 0.055 0.063

Figure 3.18 shows the phase diagram obtained in the
(
Ũ , V

)
plane for t′ = 0.5t

by combining the symmetry character of the ground state for the charge-charge
[Fig. 3.18(a)] and the orbital-orbital [Fig. 3.18(b)] correlations at the corner of the
Brillouin zone (K) and the average double occupation [Fig. 3.18(c)]. The transition lines
for both the unrestricted Hartree-Fock calculations (gray) and exact diagonalization
(black) are drawn in panel (d). Our exact diagonalization results for small clusters
confirm that the very rich physical picture created by the interplay between charge and
orbital degrees of freedom persists even beyond the mean-field level. A large number
of domains with different symmetries are obtained, separated by first-order transitions,
as displayed in three right panels of Figure 3.18; these domains can be associated with
all of the different phases found in phase diagram of Figure 3.5 as explained below.

3.5.1 Charge-ordered phases

The buildup of K-point charge correlations in Figure 3.18(a), which is expected in all
the charge-ordered phases described in Section 3.4.2, shows remarkable agreement with
the unrestricted Hartree-Fock charge-ordering transition lines reported in the left phase
diagram of Figure 3.5 and asymptotically follows the analytical prediction Vc = Ũ/3
(see Section 3.3). We provide in Table 3.3 some representative values of C

(
k⃗
)

at
points K and M for the different charge-ordered phases, as computed numerically by
both unrestricted Hartree-Fock and exact diagonalization and analytically on ideal
electrostatic patterns (see more details about the electrostatic case in Section 3.3 above).
As one can see, a quantitative agreement is found between the two numerical methods,
which allows for direct identification of mean-field phases in exact diagonalization
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results. From Figure 3.18 and Table 3.3, we associate the different charge-ordered
phases as follows: K/2 and K → PCO, MAp → PL, and ΓA →

√
12 ×

√
12.

First, we identify both K/2 and K ground states with the broad PCO region
of Figure 3.5. The additional transition seen here, which is absent in unrestricted
Hartree-Fock, may have origin either the exact treatment of the correlations or the
size of the lattice. Indeed, the ninefold orbital order present in the PCOI phase found
in unrestricted Hartree-Fock is not compatible with the 12-site cluster used for exact
diagonalizrion, so that different orderings are stabilized instead. Accordingly, this
change of symmetry is not observable in C (K), but it is clearly seen in T (K) in
Figure 3.18(b).

Second, by looking at the charge correlations in real space ⟨ψ′|n0ni|ψ′⟩ (not shown),
with |ψ′⟩ the vector of the subspace having an electron on site labelled 0, it is possible
to associate the MAp ground state with pinball liquid order. The latter is found here
instead of the inverse pinball liquid expected from unrestricted Hartree-Fock because
the considered cluster is too small to capture the subtle kinetic effects which distinguish
between these two phases. This is confirmed by the fact that the pinball liquid is also
selected in the unrestricted Hartree-Fock solution when a 12-site cluster is considered,
as we have checked. Due to the continuous evolution of the local electronic densities
as a function of the strenth of the interactions for the pinball liquid phases, for a
set of

(
Ũ , V

)
at the center of a pinball liquid area, the correlations have a larger

mismatch with the expected ideal value. As this evolution is different between exact
diagonalizations and unrestricted Hartree-Fock approach, there is also a difference in
the value of the correlations between the two methods. Notice that the charge-charge
correlation is equal for the pinball liquid and its dual, the inverse pinball liquid.

Third, the
√

12 ×
√

12 droplet phase found in the mean field can be associated
with the ΓA ground state at low Ũ in Figure 3.18. This phase has a charge signature
corresponding to a mixture of the high-symmetry k⃗ vectors K, M , and K/2 on the
charge-charge correlation, with dominant weight on the first two, which agrees with
unrestricted Hartree-Fock and analytical results (see Table 3.3), involving a charge
modulation on 12 sites. Also, it is in this phase that we find the strongest double
occupancy [Fig. 3.18(c)], which corresponds to the doubly occupied sites on the
hexagons in Figure 3.12. Our exact diagonalization results confirm the finding that
the

√
12 ×

√
12 droplet phase remains stable in the spinful extended Hubbard model

(t′ = t).
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3.5.2 Orbitally ordered phases

The different phases found in unrectricted Hartree-Fock upon increasing Ũ at low V

also have their direct analogs in exact diagonalization. We associate the spiral 120°

phase obtained in unrectricted Hartree-Fock with the ΓA phase at large Ũ and small V :
here the double occupation is strongly suppressed, indicating a Mott insulating state
with large threefold orbital correlations compatible with such an order [88, 123]. We
note that the critical value for the Mott transition, Uc ≈ 9t, is smaller than the value
Uc ≈ 12t reported from analogous exact diagonalization calculations in the isotropic
case [88], which can be understood by observing that the bandwidth is reduced by
roughly 25% for the considered t′ = 0.5t (right panel of Fig. 3.1). We also observe a
small dome in the middle of the MA phase, which we tentatively associate with the
orbital density wave orders obtained by unrestricted Hartree-Fock on larger systems
as suggested by the signatures in T (K). In this dome, two distinct symmetry sectors
corresponding to two different phases are encountered as Ũ increases, K/2 and MAp ,
respectively.

3.6 Conclusion and perspectives
In this chapter, we studied the interplay between frustrated electron-electron inter-
actions and multiorbital effects on the spinless multiorbital Hubbard model that we
derived in the previous chapter for the specific case of eg-orbitals that corresponds to
the physical situation in AgNiO2.

After considering the noninteracting case, we obtained a sketch of the phase
diagram with simple tight-binding and electrostatic considerations, corresponding to
the weak and strong interaction limits of the Hartree approximation, respectively.
Then, we introduced the unrestricted Hartree-Fock method, which provides an accurate
description of the multiband kinetic properties. The results based on such technique
reveal a very rich phase diagram. A number of original charge-ordered and orbitally
ordered phases are displayed, whose occurrence can be tuned by varying the band
structure parameters and which could be relevant to a variety of d-electron systems
on the triangular lattice. These include threefold metallic charge-ordered phases such
as the pinball liquid, which was originally predicted to occur in quarter-filled lattices
and is shown here to be stable at half filling, as well as its dual, the inverse pinball
liquid. These metallic charge orders are directly relevant to AgNiO2. In this material,
a robust threefold charge-ordered metal has been experimentally observed [9, 11], with
oxygen atoms moving away from nickel at the center of hexagons due to the Coulomb
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interaction that matches the pinball liquid pattern, which we therefore associate with
a pinball state (see also Ref. [35]). An original insulating droplet phase with a large√

12 ×
√

12 periodicity is also obtained here, which was overlooked in previous studies
of the extended Hubbard model and which could be closely related to the star of David
charge-ordered phase of the triangular dichalcogenide compound 1T -TaS2 [20]. The
insulating threefold pinball charge order phase obtained here could also find a possible
experimental realization, as suggested in triangular adsorbate layers [124]. All these
possible connections with the experiments emphasize the general nature of our study
and should motivate further investigations in stabilizing original charge orders driven
by frustrated electronic interactions and kinetic effects.

The unrestricted Hartree-Fock results are generally confirmed by exact diagonaliza-
tion approach where the main features of the phase diagram are recovered.

Finally, we note that we have restricted our study to a perfectly stoichiometric case
where the eg doublet is initially quarter filled, corresponding to an average valence Ni3+

in AgNiO2. It has been proposed, however, that the filling of the eg levels in nickelates
might actually differ from this value [125, 126], as extra electrons could be transferred
from the oxygen 2p-orbitals provided that the electrostatic cost Ũ = U − 3JH on the
Ni sites is sufficiently low [83, 122]. The very observation of a pinball state in AgNiO2

indicates that the effective interaction Ũ is low in this material (see Fig. 3.5), and the
existence of a “negative charge transfer” from the oxygen atoms is indeed compatible
with the estimates of Ref. [11], which indicate a reduced average valence of 2.85+ per
Ni. Studying the present model away from the perfectly quarter-filled configuration
will certainly be of interest in view of these considerations.

Some results remain not fully understood, e.g. the mechanism of the transition from
the metallic inverse pinball liquid phase to the insulating

√
12 ×

√
12 droplet charge

order, as well for the three transitions from orbital ordered state to the non-ordered
ones. Also, the special case t′ = −t, with the electron hole symmetry, can have
interesting properties because the mean-field approach failed to give consistent results
where conducting phases can be stabilized even for large values of Ũ instead of a Mott
state. In order to study this special case, we chose to perform a perturbation theory
with the Mott state as a starting point and derive a new effective Hamiltonian. This
will be the purpose of the next Chapter.



Chapter 4

Orbital order in the Mott regime

4.1 Introduction

In the previous chapter, we have focused on the charge degree of fredom. We will now
refine our interest on the orbital degree of freedom to explore more specifically the
properties of the Mott state. In the strong Coulomb interaction regime, the charges are
frozen in an insulating state, either a charge order, such as the Pinned Charge Order
or the

√
12 ×

√
12 Charge Order, or a Mott state. In the latter, there is one electron

per site exactly. To explore the orbital degree of freedom, we apply a perturbation
theory on the spinless multiorbital extended Hubbard model in the Mott state, a target
space where all sites are singly occupied. In the following, we will consider the two
eg orbitals that can be seen as pseudo-spins 1/2. It is well known that the standard
(extended) Hubbard model gives us a Heisenberg model in this limit [127]. Thus, in
our derivation, we must recover the SU(2) Heisenberg Model at t′ = t.

In this chapter, we will first derive the effective Heisenberg-like model from per-
turbation theory. Then, we will solve this new model with two methods, classical
approach followed by Exact Diagonalization.

4.2 Derivation of the effective Hamiltonian

Let us recall the multiorbital extended Hubbard model seen in the previous chapter

H = −
∑

⟨ij⟩,ττ ′

(
tττ ′

ij d
†
iτdjτ ′ + h.c.

)
︸ ︷︷ ︸

K

+ Ũ
Ns∑
i=1

ni↑ni↓ + V
∑
⟨ij⟩

(ni↑ + ni↓) (nj↑ + nj↓)︸ ︷︷ ︸
H0

, (4.1)
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where K is the kinetic part of the Hamiltonian and H0 the Coulomb interactions. We
rewrite the variables t = ρc and t′ = ρs with c = cos θ and s = sin θ. The hopping
integrals become

tu⃗1 = ρ

 c 0
0 s

 , tu⃗2 = ρ

4

 c+ 3s
√

3(c− s)√
3(c− s) 3c+ s


and

tu⃗3 = ρ

4

 c+ 3s −
√

3(c− s)
−

√
3(c− s) 3c+ s

 ,
where u⃗l=1,2,3 are the three directions of the lattice u⃗1 = (1, 0) , u⃗2 =

(
1/2,

√
3/2

)
, and

u⃗3 =
(
−1/2,

√
3/2

)
. For θ = π/4, which corresponds to the isotropic case (t = t′), the

off-diagonal terms cancel and we recover the SU(2) point where the model reduces to
the standard hopping integrals for the single-band spinful Hubbard model.

4.2.1 Population imbalance chemical potential

In real systems, the orbitals are not necessarily degenerate. Indeed, even though
we considered the crystal-field splitting, other effects that we neglected can split the
orbitals, such as the Jahn-Teller effect [74, 75]. The motivation here is to add the
energy gap between orbitals in case they are not strictly degenerate. This energy gap
between orbitals has the form of a magnetic field, which is convenient because it will
allow us to compare our results with previous study on the Heisenberg model in a
magnetic field. So the field is the analog for the orbitals to the magnetic field

H1 = −h
Ns∑
i=1

τ z
i . (4.2)

This term is analogous to a chemical potential which splits the orbitals, formally,

H1 = −
ns∑

i=1
µ↑ni↑ + µ↓ni↓

with µ↑ = −µ↓ = µ.
This term is added to the Hamiltonian H and we will now apply a perturbation

theory to address the large Ũ region of the phase diagram. We take the Coulomb
interaction terms H0 as the unperturbed Hamiltonian and we will treat the rest (K+H1)
perturbatively.
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4.2.2 Ground state of the unperturbed Hamiltonian

We refine our study on the Mott state. As seen in the previous chapter, it is necessary,
in order to avoid charge order, to have the local Coulomb interaction three times
greater than the nearest neighbor Coulomb interaction (V < Ũ/3). Then, we need the
local Coulomb interaction to be much greater than the kinetic energy, which is the
case when Ũ ≫ t, t′.

The ground state of the unperturbed Hamiltonian H0 in this limit, referred to
as the classical ground state in the following, is infinitely degenerate. This term is
diagonal in real space1 and Mott states, one electron per site exactly, denoted |n(0)⟩,
gives the lowest classical energy

E0|n(0)⟩ = H0|n(0)⟩ = 3NsV |n(0)⟩.

The general form of this state is

|n(0)⟩ =
Ns∏
i=1

d†
iτi

|0⟩,

where τi =↑, ↓ is the occupied orbital on site i. It is necessary to fix a gauge convention
for the fermionic sign. We choose a gauge where sites, from 1 (left) to Ns (right), are
together with first orbital ↑ (left) and ↓ (right)

d†
1↑d

†
1↓d

†
2↑d

†
2↓...d

†
Ns↑d

†
Ns↓|0⟩. (4.3)

We note D the ensemble of all 2Ns Mott states.

4.2.3 First order corrections

The first order correction to the energy is

E(1)
n = ⟨n(0)| (K +H1) |n(0)⟩ = 0 − µ

Ns∑
i=1

⟨n(0)|ni↑|n(0)⟩ − ⟨n(0)|ni↓|n(0)⟩.

This energy depends on the considered Mott state n. The perturbation at first order
on K is always zero because applying the perturbation on the classical ground state

d†
iτi
djτj

|n(0)⟩

1The kinetic term is diagonal in reciprocal space.



78 Orbital order in the Mott regime

gives a state with the site j empty and i doubly occupied, which is out of the target
sub-space. The energy of this state is higher. Indeed, E = E0 + Ũ − V and at most
V = Ũ/3 according to Section 3.3, so, Emin = E0 + 2Ũ/3 > E0. In addition, it is not a
Mott state so it does not belong to the ensemble of the classical ground state, which is
required by the perturbation theory.

Now that we have computed the correction to the energy, one needs the correction
to the wavefunction

|n(1)⟩ =
∑
k ̸∈D

⟨k(0)| (K +H1) |n(0)⟩
E0 − E

(0)
k

|k(0)⟩ =
∑
k ̸∈D

(
0 + E(1)

n

) ⟨k(0)|n(0)⟩
E0 − E

(0)
k

|k(0)⟩,

where one sums over all states different from the Mott states. The basis is orthonormal,
so it cancels the contribution at the first order to the wavefunction

|n(1)⟩ =
∑
k ̸∈D

E(1)
n

δk,n

E0 − E
(0)
k

|k(0)⟩ = 0.

Because the first order in perturbation is always zero for the kinetic term, we will
go further, i.e. to the second order in perturbation.

4.2.4 Second order corrections

The second order of perturbation theory for a degenerate ground state of H0 is

Heff
mn =

∑
l ̸∈D

⟨m| (K +H1) |l⟩⟨l| (K +H1) |n⟩
E0 − E1

(4.4)

=
∑
l ̸∈D

1
E0 − E1

⟨m|K|l⟩⟨l|K|n⟩ + ⟨m|K|l⟩ ⟨l|H1|n⟩︸ ︷︷ ︸
=0

+ ⟨m|H1|l⟩︸ ︷︷ ︸
=0

⟨l|K|n⟩

+ ⟨m|H1|l⟩︸ ︷︷ ︸
=0

⟨l|H1|n⟩︸ ︷︷ ︸
=0

 (4.5)

where Em = En = E0 the energy of the classical ground states |m⟩ and |n⟩ , El = E1

the energy of the virtual state |l⟩ and the difference E0 − El = V − Ũ .
The second order corrections are null for H1. Indeed this perturbation is a diagonal

operator so the latter does not project a classical ground state to another state, which
means the ensemble of indexes l in Equation 4.5 is empty, therefore there is no correction
at second order.
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Fig. 4.1 (top left) The 4 inequivalent processes on one link starting from a Mott state
with one electron on site i and one on site j to a virtual state (bottom left), unique if
it exists, with two electrons on site j by application of the perturbation K. The red
and gray disks represent the electron on orbital ↑ and ↓, respectively. (right) The 16
inequivalent processes on one link starting from the same Mott state to the virtual state
then return to one of the initial states by the second application of the perturbation
K (Mott state). Each step, the system gain or lose an energy tττ ′

ij depending on the
fermionic sign (in red).
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As K does not project |n⟩ nor |m⟩ on any other classical ground state that belongs to
the ensemble D as mentioned above, we can add this ensemble in the sum over l without
changing the results to make appear the resolution of the identity (I = ∑

l |l⟩⟨l|), so
we obtain

Heff
mn = ⟨m|KK|n⟩

E0 − E1
(4.6)

= − 1
W

∑
⟨ij⟩,ττ ′

∑
⟨kl⟩,τ ′′τ ′′′

tττ ′

ij t
τ ′′τ ′′′

kl ⟨m|(d†
iτdjτ ′ + h.c)(d†

kτ ′′dlτ ′′′ + h.c)|n⟩, (4.7)

where W = Ũ − V . Notice that because of the condition on the strength of Coulomb
interaction, the prefactor 1

V −Ũ
is always negative. This statement will be important

later because this prefactor will give an antiferromagnetic coupling at the origin of the
frustration.

Equation 4.7 describes processes where an electron jumps on a neighbor and comes
back on the same site, but not necessarily on the same orbital. The second order
perturbation on the microscopic model defined on nearest neighbors makes the effective
Hamiltonians depend only on bonds (i, j), so it is convenient to think in term of links
between two nearest neighbors. On a bond between site i and j, let us consider the
4 states, denoted as |n⟩ = |τiτj⟩, with n = 0, 1, 2, 3 and τ =↑, ↓, the two eg orbitals.
By application of the perturbation K, there is only one virtual state, if it exists. The
left panel of Figure 4.1 summarizes the four Mott states (top) and the virtual state
(bottom). The second application of the perturbation K projects the virtual state
to all possible |n⟩. Each application of K lowers the energy by tττ ′

ij . All 16 possible
processes in one direction with the corresponding energy tττ ′

ij and the fermionic sign in
red are listed on the right panel in Figure 4.1. The fermionic sign here comes from the
rewriting of the virtual state in our gauge choice (see Eq. 4.3). Figure 4.1 represents
the action of the perturbation in one bond direction.

In the basis |0⟩, |1⟩, |2⟩, |3⟩, gathering all these processes and taking into account
their complex conjugate gives the following effective Hamiltonian on one bond

Heff
u⃗l

= ρ2

W


−2t↑↓2

u⃗l
−t↑↓

u⃗l

(
t↓↓
u⃗l

− t↑↑
u⃗l

)
−t↑↓

u⃗l

(
t↓↓
u⃗l

− t↑↑
u⃗l

)
2t↑↓2

u⃗l

−t↑↓
u⃗l

(
t↓↓
u⃗l

− t↑↑
u⃗l

)
−t↑↑2

u⃗l
− t↓↓2

u⃗l
2t↑↑

u⃗l
t↓↓
u⃗l

−t↑↓
u⃗l

(
t↑↑
u⃗l

− t↓↓
u⃗l

)
−t↑↓

u⃗l

(
t↓↓
u⃗l

− t↑↑
u⃗l

)
2t↑↑

u⃗l
t↓↓
u⃗l

−t↑↑2
u⃗l

− t↓↓2
u⃗l

−t↑↓
u⃗l

(
t↑↑
u⃗l

− t↓↓
u⃗l

)
2t↑↓2

u⃗l
−t↑↓

u⃗l

(
t↑↑
u⃗l

− t↓↓
u⃗l

)
−t↑↓

u⃗l

(
t↑↑
u⃗l

− t↓↓
u⃗l

)
−2t↑↓2

u⃗l

 .
(4.8)
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We will now write this matrix explicitly for the three different directions using the
different hopping integrals:

Heff
u⃗1 = ρ2

W


0 0 0 0
0 −1 2cs 0
0 2cs −1 0
0 0 0 0

 ,

Heff
u⃗2 = ρ2

8W


−3(c− s)2 −

√
3(c− s)2 −

√
3(c− s)2 3(c− s)2

−
√

3(c− s)2 −5c2 − 6sc− 5s2 (3c+ s)(c+ 3s)
√

3(c− s)2

−
√

3(c− s)2 (3c+ s)(c+ 3s) −5c2 − 6sc− 5s2 √
3(c− s)2

3(c− s)2 √
3(c− s)2 √

3(c− s)2 −3(c− s)2


and

Heff
u⃗3 = ρ2

8W


−3(c− s)2 √

3(c− s)2 √
3(c− s)2 3(c− s)2

√
3(c− s)2 −5c2 − 6sc− 5s2 (3c+ s)(c+ 3s) −

√
3(c− s)2

√
3(c− s)2 (3c+ s)(c+ 3s) −5c2 − 6sc− 5s2 −

√
3(c− s)2

3(c− s)2 −
√

3(c− s)2 −
√

3(c− s)2 −3(c− s)2

 .

4.2.5 Pseudospin representation

The two eg orbitals can be viewed as a pseudospin. The question here is Can we
write the effective Hamiltonian in terms of spin 1/2 operators? It is always possible to
write a 4 × 4 hermitian matrix as a linear combination of Kronecker products of Pauli
matrices (see Appendix E). We can use Equation E.3 to express the Hamiltonian in
the new basis. Let us now explicitly write Heff

u⃗l=1,2,3
in the three directions

Heff
u⃗1 = ρ2

W

(
τ
(
σ+

i σ
−
j + σ−

i σ
+
j

)
+ 1

2σ
z
i σ

z
j − 1

2

)
, (4.9)

Heff
u⃗2 = ρ2

W

(
δ
(
σ+

i σ
−
j + σ−

i σ
+
j

)
+ ξσz

i σ
z
j + α

(
σ+

i σ
+
j + σ−

i σ
−
j

)
− β

(
σz

i σ
+
j + σz

i σ
−
j + σ+

i σ
z
j + σ−

i σ
z
j

)
− 1

2

)
, (4.10)

Heff
u⃗3 = ρ2

W

(
δ
(
σ+

i σ
−
j + σ−

i σ
+
j

)
+ ξσz

i σ
z
j + α

(
σ+

i σ
+
j + σ−

i σ
−
j

)
+ β

(
σz

i σ
+
j + σz

i σ
−
j + σ+

i σ
z
j + σ−

i σ
z
j

)
− 1

2

)
, (4.11)

with
σ± = 1

2 (σx ± σy)
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and 

α = 3(c−s)2

8 = 3
8 − 3cs

4
β =

√
3(c−s)2

8 =
√

3
8 −

√
3cs
4

δ = (3c+s)(c+3s)
8 = 3

8 + 5cs
4

τ = 2cs
ξ = 1

8 + 3cs
4 .

We can notice from these expressions that they are all a function of cs = cos (θ) sin (θ) =
sin (2θ) /2, so the Hamiltonian is π-periodic. The case t = t′ correspond to θ = π/4
and it is interesting to notice that the Hamiltonian is symmetric with respect to this
value H(θ− π/4) = H(−θ− π/4). We just need to study the Hamiltonian in the range
[π/4, 3π/4], other values of θ can be deduced using these two properties. The SU(2)
point, for t = t′, is the only case where the Hamiltonian has symmetries.

As the energy is defined with respect to an arbitrary constant, in the following we
will set to zero the diagonal component to these terms to simplify the expressions.

We finish this section with the pseudospin representation of the correction at first
order to the energy which is rather simple because the matrix representation is directly
a Pauli matrix

H1 = −µ
∑

i

σz
i . (4.12)

We can see that the chemical potential µ from Equation 4.12 matches the pseudo-
magnetic field h in Equation 4.2.

Finally, the total effective Hamiltonian is

Heff =
Ns∑
i=1

3∑
l=1

Heff
u⃗l

+H1. (4.13)

The index i stands for an orbital on site r⃗i = αiu⃗1 + βiu⃗2 , αi, βi are integers, which
interacts with an orbital on the direction l such that the position of the latter is
r⃗i + u⃗l=1,2,3.

4.3 Classical orbitals

To study the effective Hamiltonian, Equation 4.13, we start with a simple method of
classical approach analogous to classical spin. In fact, we will see that this approach
captures most of the physics if we compare with exact diagonalizations (See Section 4.4).
We will perform two equivalent classical treatments: with Ns vectors of three dimensions
τ⃗i = (τx

i , τ
y
i , τ

z
i ) using Equations 4.9, 4.10 and 4.11 in Section 4.3.1 and with an approach
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in terms of linear combination of orbitals |τi⟩ = τi↑| ↑⟩ + τi↓| ↓⟩ using Equation 4.8 in
Section 4.3.2. The idea for both of them is to minimize the energy. While equivalent,
these methods take different path to minimize the energy and can help in avoiding
spurious local minima.

In this section, we will first describe the two methods and show they are equivalent,
then introduce the order parameters to identify the different phases and quickly review
some results for the standard Heisenberg model before finally present the phase diagram.

Nota Bene: The prefactor ρ2

W
corresponds to an antiferro-orbital coupling because

its sign, positive, remains the same for the considered range of parameters. For now
on, we normalize the Hamiltonian with this factor.

4.3.1 Classical spin approach

The idea of the first method is to minimize the energy with respect to 3Ns parameters,
the ensemble of local orientations of pseudospin {τ⃗i = (τx

i , τ
y
i , τ

z
i )}. In the Hamiltonian,

we substitute the Pauli matrices σ⃗i by the coordinates of the vectors τ⃗i.

The number of parameters to minimize can be reduced by Ns using the fact that
the norm of the vector τ⃗i is a constant, so we can write their coordinates with spherical
coordinates: 

τx
i = cosαi sin βi

τ y
i = sinαi sin βi

τ y
i = cos βi,

with βi ∈ [0, π[ and αi ∈ [0, 2π[. Now, we have only 2Ns variables to minimize. Let us
write explicitly the form of the energy

E =
∑
⟨ij⟩

hij +H1
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with

hu⃗1 = 1
2 (cos (βi) cos (βj) + 2cs cos (αi − αj) sin (βi) sin (βj)) ,

hu⃗2 = 1
8
(
cos (βi)

(√
3(2cs− 1) cos (αj) sin (βj) + (6cs+ 1) cos (βj)

)
+ sin (βi) (8cs sin (αi) sin (αj) sin (βj)

+ cos (αi)
(
(2cs+ 3) cos (αj) sin (βj) +

√
3(2cs− 1) cos (βj)

)))
,

hu⃗3 = 1
8
(
cos (βi)

(
−

√
3(2cs− 1) cos (αj) sin (βj) + (6cs+ 1) cos (βj)

)
+ sin (βi) (8cs sin (αi) sin (αj) sin (βj)

+ cos (αi)
(
(2cs+ 3) cos (αj) sin (βj) −

√
3(2cs− 1) cos (βj)

)))
,

H1 = −h
Ns∑
i=1

cos (βi) .

One can notice that it depends only on the product cs, as previously mentioned in
Section 4.2.5.

To minimize this function, we developed a C++ program using the library Dlib [128],
especially the function find_min_box_constrained. The strategy to find the minimum
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, where the derivative is
computed numerically. The algorithm stops when the difference between variables
from two iterations is less than an arbitrary precision, here set to 10−14, exactly as
introduced for mean-field in Equation 3.10.

The only size effect of this approach is that the unit-cell of the global minimum
must be compatible with the studied cluster. The reason is simple: if a solution is
found for a size n times the unit-cell, for example 3, Ns = 3n, we can plug this solution
for any cluster such that Ns/3 is an integer and the energy per site will be the same.
In practice, it is really convenient, especially in case of incommensurate state as the
order depends on the size of the finite system, because we can compare the energy per
site of the different sizes. Here, we took every clusters such as Lx = Ly or Lx = 3Ly

and N = LxLy/3 is an integer. Lx and Ly are the number of sites along the directions
u⃗1 and u⃗2. We computed for cluster up to 576 sites. Larger sizes are easily accessible
in terms of memory, but the computation time of each point takes too much time to
perform a scan over the whole range of parameters.

The range for the parameter θ has been discussed previously in Section 4.2.5 and
the range that we choose for the field h is [0, 6] because it captures all the physics.
Indeed, the cutoff is done for h = 6 because it is a value high enough to overcome all
other terms and ensure to be in the ferro-orbital phase. It is enough to consider only
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positive values because due to the symmetries between orbitals ↑ and ↓; a negative sign
of h corresponds to change the sign of the chemical potential. As our two eg orbitals
are equivalent, it just switches orbital ↑ and ↓.

We performed scans for given value of θ from h = 0 to h = 6 and vice versa where
we initialized the local orientations of the orbitals τ⃗i for each scan with random numbers.
At each step in h, increasing or decreasing h by a small amount, we inject the previous
solution, i.e. the ensemble of {τ⃗i}, as a starting point for the minimization. It speeds
up the algorithm because if the solution at the current step is close to the previous
one, for example when the phase is the same or in case of second order transition, the
procedure will find quickly the solution. The fact that we scan by increasing then
decreasing h avoids to be trapped in a local minima in case of a first order transition.
Finally, we used this trick to scan in h as we expect rather smooth transition with
classical approach, the field will polarize the orbitals, but not in θ because more drastic
changes can happen in case of transition.

4.3.2 Linear Combination

Instead of substituting the Pauli matrices σi by a vector τi, we can also work in a
basis of bonds. We will see later that this assumption makes this approach equivalent
to the classical calculations that we explained previously. A site is now described by
a vector which is a linear combination of orbitals ↑ and ↓: |τi⟩ = τi↑| ↑⟩ + τi↓| ↓⟩ =
τi↑d

†
i↑|0⟩ + τi↓d

†
i↓|0⟩. The wave function to minimize is

|WF⟩ =
∑
i,τ

τiτ |τ⟩,

where τiτ ∈ C and |τ⟩ = | ↑⟩, | ↓⟩. It means we will minimize the wave function

E = ⟨WF|Heff|WF⟩.

Only terms of the form σα
i σ

β
j exist , with α, β = x, y, z. This observation will simplify

the problem to solve because we only need to compute terms of the form

⟨WF|σα
i σ

β
j |WF⟩ = ⟨WF|σα

i |WF⟩⟨WF|σβ
j |WF⟩.

The only non-zero term of each bracket are on one site

⟨τiτj|σα
i σ

β
j |τiτj⟩ = ⟨τi|σα

i |τi⟩⟨τj|σβ
j |τj⟩,



86 Orbital order in the Mott regime

where a link between two nearest neighbors is

|τiτj⟩ = |τi⟩ ⊗ |τj⟩ = τi↑τj↑| ↑↑⟩ + τi↑τj↓| ↑↓⟩ + τi↓τj↑| ↓↑⟩ + τi↓τj↓| ↓↓⟩,

with |ττ ′⟩ = |τ⟩ ⊗ |τ ′⟩. The basis {|τi⟩} is orthonormal , so

⟨τi|τj⟩ = δij. (4.14)

We can rewrite |τi⟩ = cos (βi/2) | ↑⟩ + sin (βi/2) eiαi| ↓⟩ with αi, βi ∈ [0, 2π[, as it
satisfies Equation 4.14.

All the statements we made for the first approach apply here as well.

• We also developed a C++ code using Dlib library with the same options.

• The size effects behave the same.

• We took the same clusters.

• We used the same tricks to speed up the convergence of the Broyden-Fletcher-
Goldfarb-Shanno algorithm.

This method is more time consuming than the direct substitution that we saw
previously in Section 4.3.1 because it deals with complex numbers. Nevertheless, we
also used this approach because we can directly compare the results from both methods
to avoid being trapped in a local minimum. Indeed, these methods never assure that
the solution that we find is a global minimum, even for a closed domain as it never
scan the whole ensemble of each parameters.

To see the equivalence with the direct substitution seen in Section 4.3.1, we introduce
a vector

τ⃗ ′
i =


⟨τi|σx|τi⟩
⟨τi|σy|τi⟩
⟨τi|σz|τi⟩

 =


cosαi sin βi

sinαi sin βi

cos βi

 =


τx′

i

τ y′

i

τ z′
i

 .
We see immediately that it matches the previous form of the vector seen in Section 4.3.1.
We substitute these coordinates with the Pauli matrices in the Hamiltonian as we
did previously, and we obtain the same energy because this vector satisfies the only
constraint which is to cover all the unit sphere.
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4.3.3 Order parameters

Before presenting the results, we will introduce the order parameters used to characterize
all phases.

• The polarization along one direction α = x, y, z that we introduced in Section C.1
(see Equation C.2)

τα = 1
Ns

Ns∑
i=1

τα
i .

Typically, τ z will be non-zero at large field h, as the latter minimize the energy
when the orbitals have a finite polarization along the z axis.

• The structure factor, similar to the orbital-orbital correlation (see Equation C.3)

⟨τ
(
k⃗
)
τ
(
−k⃗

)
⟩ = 1

N2
s

∑
k⃗∈BZ

τ⃗i.τ⃗je
−ik⃗.(r⃗i−r⃗j),

where BZ stands for Brillouin zone. The latter is defined in Section A.1.2. To
shorten the notation, we will write the structure factor τ

(
k⃗
)

in the following.

u⃗1

−u⃗2 u⃗3 u⃗1

−u⃗2u⃗3

Fig. 4.2 The two types of triangles considered for the chirality.

• The chirality gives information about the order in a triangle. The two types
of triangle are depicted in Figure 4.2: up (blue) and down (red). From now
on, let us consider only the up triangles. Because chirality is defined on this
three-sublattice, it is only relevant when the structure factor is on the K-point.
The chirality can be of two types, scalar or vectorial. The scalar chirality is [129]

χs = 1
Ns

Ns∑
i=1

τ⃗i.(τ⃗i+nn1 × τ⃗i+nn2),

with i+nn1, respectively i+nn2, the index nearest neighbors along u⃗1, respectively
u⃗2. The latter is equal to zero when it is chiral, i.e. when the vectors of each
triangle on the lattice can form a closed loop (in a plane), which is characteristic
of the 120° order because all vectors have the same norm. The vectorial chirality
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on one triangle is [130]

χ⃗i = 2
3
√

3
(τ⃗i × τ⃗i+nn1 + τ⃗i+nn1 × τ⃗i+nn2 + τ⃗i+nn2 × τ⃗i)

which gives informations about orders between the triangles. It is more convenient
to look at this quantity in the reciprocal space:

χ(k⃗) = 1
N2

s

∑
k⃗∈F BZ

χ⃗i.χ⃗je
−ik⃗.(r⃗i−r⃗j),

analogous to the structure factor. To compare with the scalar form, χ (Γ) = 1.
when χs = 0.

4.3.4 Heisenberg model

h
Y configuration 1/3-plateau V configuration Ferro-induced

0 1 2 3 4 5
Fig. 4.3 Cartoon of a phase diagram for the Heisenberg model on the triangular lattice
with a magnetic field when gathering results from different approaches (see text). The
1/3-plateau is not present in classical approaches. The different phases of the phase
diagram are sketched on the top. From left to right: Y configuration, 1/3-plateau, V
configuration and Ferro-induced phase.

As mentioned before, the isotropic case t = t′, or θ = π/4, corresponds to the
Heisenberg model. It is always good for a new model such as the one studied here to
benchmark known limit cases. Although Heisenberg model has a simple form, it is
still widely studied because of the difficulties encountered to solve it, especially when
the frustration is strong. An exhaustive bibliography about the Heisenberg model for
the triangular lattice is beyond the scope of this thesis, however a schematic phase
diagram is shown Figure 4.3 where each color corresponds to a phase. This is shown
by a gradient in opacity in the figure.

This schematic phase diagram is based on previous studies. One can cite for example
an attempt to solve it exactly in 1986 [131], more recently Monte Carlo simulations in



4.3 Classical orbitals 89

2011 [132], Density Matrix Renormalization Group (DMRG) approach in 2012 [133],
1/S expansion by Chubukov group in 2014 [134], Classical and Cluster Mean-Field
(CMF) approaches in 2014 [135] followed by the recent (October 2015) dilute Bose gas
expansion, valid in the high field regime performed by the same group [136].

There are four phases: the Y configuration, the 1/3-plateau (only for quantum
approaches), the V configuration and the fully polarized phase. Cartoons of the classical
phases are drawn on top of the phase diagram in Figure 4.3.

Depending on the method, the transition lines do not appear at the same value of
h. The transition lines also shifts from one study to another because of the cutoff on
the order parameters. The transition from the V configuration to the Ferro-induced is
a perfect example.

Notice that our study is consistent with these results, excepted the 1/3-plateau
which is not possible classically, but found in the quantum approach (See Section 4.4).

One needs to define when the order parameters is close enough to zero. In the
example of the V configuration to ferro-induced phase, the value of hc at which the
transition happen will strongly depends on this criteria because 1 − Sz goes smoothly
and slowly to zero. If the criteria is 0.1 or 0.01, in this case, it can shift hc to a value
close to 3, to a critical field hc close to 5.

4.3.5 Classical phase diagram

The phase diagram from the classical approach is presented in Figure 4.4. It is build
by gathering results for both methods (Section 4.3.1 and Section 4.3.2) using sizes up
to 576 sites. Before describing the different areas, let us give a quick overview of what
can be expected then emphasize specific values of θ.

The line at θ = π
4 corresponds to the isotropic case, in other words to the Heisen-

berg model. We have already discussed the results. Away from the isotropic case,
we have a XXZ-like model with extra terms. One of them is α

(
σ+

i σ
+
j + σ−

i σ
−
j

)
=

α
2

(
σx

i σ
x
j − σy

i σ
y
j

)
. When α is large and positive, close to θ = 3π

4 (modulo π), the
orbitals are aligned in the same way along y axis to minimize the energy. At strong
field h, there is a large gap between the orbitals. Thus, only one is filled. It is the
ferro-orbital phase, where τ z = 1.

There are specific values of θ we want to emphasize for the correspondence with
the previous chapter.

• θ = π
4 is the isotropic case, it corresponds to the Heisenberg model as mentioned

previously.
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■ τx

◆ τ(M1)
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0.0
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θ/π
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Fig. 4.4 (left) Phase diagram for classical orbitals as a function of θ and h. The
labels are the different order parameters used to identify the phases. The background
correspond to the value of τx. (right) Evolution at h = 2 (dashed line on left panel) of
some order parameters: τx, τ (K) = τ (K1) + τ (K2) and τ (M1).

• θ ≃ 0.147584π corresponds to t′/t = 1/2.

• θ ≃ −0.102416π corresponds to t′/t = −1/3.

• θ = −π
4 (t′/t = −1) is the electron/hole symmetric point (See Section 3.2).

• θ = π
2 corresponds to t = 0.

We will now describe the phase diagram in more details.

Close to the Heisenberg model

Let us focus first on the area of the phase diagram close to the Heisenberg model, so
around θ = π

4 , where we recover all known classical phases (see Section 4.3.4).
The 120° phase appears at zero-field characterized by all the τα are zero, structure

factor has a peak on the K-point and the vectorial chirality has a peak on the Γ point.
Because of the degeneracy of this state, the 120° order can belong to any plane.

In presence of a weak field, in the area χ (Γ) = 0 and τ (K) = 0 on Figure 4.4, it
becomes the more general Y configuration, as sketched in the left panel of Figure 4.5,
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Fig. 4.5 Sketches of the phases found in model Equation 4.13 close the Heisenberg model.
From left to right: The Y configuration, the V configuration and the ferro-orbital phase.
The orbitals are projected in the xz-plane.

where orbitals start to have a finite τ z component which lifts the degeneracy for θ ̸= π/4
and therefore project orbital in the xy-plane.

There is a transition to another threefold orbital order, the V configuration, sketched
in the middle panel of Figure 4.5. The structure factor remains at the K-point with
two orbitals are equivalent on the three-sublattice but the chirality goes to zero (area
τ (K) = 0 on Figure 4.4).

At strong filed, the ferro-orbital phase is stabilized, see sketch on the right panel
of Figure 4.5, with all orbitals completely polarized, τ z = 1, thus all other order
parameters are zero (area τ z = 1 on Figure 4.4). This phase is the equivalent to the
field-induced ferromagnetic phase in the Heisenberg model.

Away from the isotropic case

Let us now explore the other areas of the classical phase diagram.

Fig. 4.6 Sketches of the commensurate phases found in model Equation 4.13 that are
missing in the Heisenberg model. From left to right: Stripes phase, xz phase. and y
phase. The orbitals are projected in the xz-plane on the left and middle and yz-plane
on the right.
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Fig. 4.7 Orbital density wave found in model Equation 4.13 that are missing in the
Heisenberg model. Structure factor of the ODW in the first Brillouin Zone for θ = 0.4π
and h = 3 for a cluster of 324 sites. The two inequivalent points are represented with
the corresponding equivalent on the other edge. The radius of the disk is in arbitrary
unit. The disk at the Γ point does not appear.

Away from the isotropic case, in the area τ (M) = 0 on Figure 4.4, a transition
happens to striped order characterized by a peak in structure factor at the M1 point
(see Brillouin zone in Figure 3.17). This point corresponds to stripes in the u⃗1 direction,
as sketched on left panel of Figure 4.6. It comes from the anisotropy of the model.
It is an effective ferro-orbital coupling (negative coupling) in the u⃗1 direction and
antiferro-orbital coupling (positive coupling) in the other directions.

There is an incommensurate order called Orbital Density Wave (ODW) in the area
between the threefold orbital order and the stripes. The structure factor is on the
border of the Brillouin zone, between the K and M1 point, as shown in Figure 4.7.

Far from the isotropic case (θ ≃ 3π
4 ) every orbital are along the y axis at zero field

(area τ y ̸= 0 on Figure 4.4), as sketched in right panel of Figure 4.6. The field will
continuously mix the y component with the x and z components. In terms of structure
factor, it corresponds to a peak at the Γ-point. We can explain this phase by writing
the Hamiltonian (Eq. 4.13) with the Pauli matrices instead of the σ+ and σ− operators,
which leads to a −ασy

i σ
y
j term. Because the term α is large in this case, we can see

that the term −ασy
i σ

y
j drives the system. It minimizes the energy to have two nearest

neighbors with the same sign giving a non-zero τ y
i component.

Finally, the area without label is a phase where all sites are equivalent so the
structure factor has a peak at the Γ-point with non-zero τx and τ z components, as
sketched in the middle panel of Figure 4.6. Notice the absence of the polarization along
y axis.

With this simple classical approach, we unravel three novel phases far from the
isotropic point. However we miss the 1/3-plateau stabilized by the quantum fluctuation
that we neglected. We will treat exactly the effective Hamiltonian in the next section
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to recover the 1/3-plateau because of the presence of quantum fluctuations and to
confirm that we capture the physical properties with the classical approach.

4.4 Exact Diagonalization
In this section, we will solve the Hamiltonian exactly because the former approach
does not capture the quantum fluctuations of the system.

Due to the huge size of Hilbert space, exact diagonalization can be done for small
systems only. Indeed, the memory consumption is at least proportional to the Hilbert
space size for sparse matrices2 and Hilbert space size grows exponentially with the
number of sites: 2N = eN ln 2. It means each time that the size of the cluster increases
by one, the resources consumed qre double, so we immediately see that the size of the
system is the limitation.

We will see in the first part of this section that we can use the symmetries of
the system to reduce the size of Hilbert space, in particular the translations and the
point group symmetries, because we can block-diagonalize the Hamiltonian. Then, we
will present the results obtained with brute-force diagonalization for the two available
clusters within our computing limitation: 12 and 16 sites. Brute-force diagonalization
gives access to the spectrum and the wavefunctions as to the degeneracy. Finally,
we will present the results obtained with the Lanczos algorithm, an iterative method
which gives access to the ground state of a non-degenerate system. It allows us to
increase the size of the system up to 24 sites3. The problem is then to extract the
thermodynamic limit from such small sizes with so few points.

The states of the art for the Heisenberg model are:

• 39 spins 1/2 for the Heisenberg model on the triangular lattice reached in Januar
2004 with SPINPACK [137].

• 42 spins 1/2 on a linear chain (January 2009) and square lattice (April 2008)
with the same program package [137].

• 63 spins 1/2 on a kagome lattice in 2013 [138].

Because our system does not have all the symmetries of the Heisenberg model, we are
far from reaching such size. Indeed, Sz is not conserved and, as we will see right after,
our Hamiltonian is C2 in general, not C6v.

2A sparse matrix is a matrix where only non-zero elements are stored.
3A 36 sites cluster can be reached but is not included because the computation time is too long

with respect to the duration of the thesis.
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4.4.1 Symmetries

Introduction to symmetries

To overcome memory limitation due to the large size of Hilbert space, we will use the
symmetry of the system. Indeed, if we consider NS symmetries, the size of the Hilbert
space (NH) can be reduced up to NH/NS.

To study the Hamiltonian, we use a cluster with a finite size that we repeat to
simulate an infinite lattice using translations via the Periodic Boundary Conditions (See
Section A.1.2). Formally, the two-dimensional plane becomes a torus. A cluster has
different symmetries, discrete (invariance by translation, rotation, reflexion, and so on
and so forth) or continuous, such as SU(2), symmetries which can be in real space or in
the phase state. In the following, we will focus on the discrete symmetries of the system.
Using symmetries for the Hamiltonian means applying a unitary transformation such
that the Hamiltonian becomes block-diagonal. Each of these blocks is associated to a
symmetry sector (introduced short after) and forms a subspace that can be diagonalized
independently. From this last statement, we understand first that it reduces the size of
Hilbert space.

Using symmetries can be also very interesting in case of a degenerate state when
using the Lanczos algorithm which does not work with degenerate ground state. Each
of these ground states can be in a different block making a block to diagonalize non
degenerate.

There are three symmetry categories in our system: Translations, point group
symmetries and, at zero-field, an orbital symmetry between the orbitals ↑ and ↓. The
orbital ↑ is represented numerically by 1 and the orbital ↓ by a 0. With this symmetry,
we can toggle all orbitals ↑ in ↓ and vice versa, e.g. | ↑↓⟩ = | ↓↑⟩. We will not focus too
much on this symmetry because it corresponds to only one line in the phase diagram.

Let us introduce some definitions.
Applying a symmetry S on a vector |r⟩ gives another vector

S|r⟩ = ω|S(r)⟩,

where |S(r)⟩ is the image of |r⟩ by the symmetry S.
There exists a integer n such that Sn = I, so applying n times the symmetry S let

a vector invariant
Sn|r⟩ = ωn|r⟩,



4.4 Exact Diagonalization 95

and thus ωn = 1 giving ω = ei2π k
n , the nth root of unit, with k an integer. The quantity

ω is the character of the symmetry S.
We introduce the inverse of the symmetry S−1, defined as

S−1S = SS−1 = I

or, equivalently,
S−1|S(r)⟩ = ω∗|r⟩.

It implies that ωω∗ = 1.
For an ensemble of symmetries, a set of characters is called a symmetry sector.
Let us take the symmetry "up/down" | ↑↓⟩ = ωup/down| ↓↑⟩. If ωup/down = 1, the

wavefunction is symmetric and if ωup/down = −1, the wavefunction is antisymmetric.
We work in an orthogonal basis, which simplifies the problem.

Translations

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

6 7 8 9 10 11

Fig. 4.8 Diamond representation of a 12 sites cluster. The two arrows are the translation
vectors of the cluster. The position of each cluster is a linear combination of these two
arrows with integer coefficients. We label the sites of the cluster from 0 to 11. The
black numbers are the first cluster, red and blue numbers are the clusters translated
by the arrows. Green numbers are other clusters repeated with the combination of the
two arrows.

The translation symmetry decreases the most the size of the basis because the
number of translation symmetries is the number of sites. We construct them with two
operators, T1 and T2, where Ti shifts all the orbital states by one unit vector along the
direction of the lattice u⃗i. Figure 4.9 is a graphical representation of this operator.
Because of the periodic boundary conditions, which are represented by the Figure 4.8
for a cluster of 12 sites, TLx

1 = I and T
Ly

2 = I. Also, T−1 = TLx−1
1 and T−2 = T

Ly−1
2 .

These two operators commute
T1T2 = T2T1.
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7 8 9

4 5 0 1

10 11 6

2 3

Fig. 4.9 The translation symmetry T1 shifts all the sites by the vector u⃗1, represented
here by the red arrow on the right. On the left panel, the corresponding indexes after
shifting all the sites.

The last statement means we can always apply these two symmetries at the same time.
It is not the case, for example, with the point group symmetry, as we shall see later.
The set of all translation symmetry operators is

T (x, y) = T x
1 T

y
2 ,

with x ∈ [0, Lx[ and y ∈ [0, Ly[. This set is not unique; we just take an arbitrary choice
of all the nonequivalent symmetry operators. The character of the generic translation
operator T (x, y) is ωk = eik⃗.r⃗(x,y), with r⃗ (x, y) = xu⃗1 + yu⃗2 and k⃗, the momentum, is
the ensemble of the points in the Brillouin Zone. Each representation of the translation
symmetry corresponds to a k⃗ point in the First Brillouin Zone.

Point Group Symmetries

8 9 10

5 0 1 2

11 6 7

3 4

6 11 10

1 0 5 4

9 8 7

3 2

Fig. 4.10 The rotation symmetry C2 rotates all the sites by an angle π around the
point (0,0), represented here by the red arrow on the right. On the left panel, the
corresponding indexes after rotating all the sites.

A Point Group is a group of symmetries that keep at least one point fixed, typically,
rotations (one fixed point) and reflexions (fixed line). The point group symmetry of
the effective Hamiltonian is C2. It means that it is invariant by I and a rotation of π.
A Graphical representation of C2 is depicted in Figure 4.10. The table of irreducible
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Table 4.1 Character table of C2.

I C2

A 1 1
B 1 -1

Table 4.2 Character table of C6v for representations of dimension one.

I 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1

representations of this point group is listed Table 4.1. For θ = π/4, because all three
directions are equivalent, i.e. the Hamiltonian is isotropic, we can apply I, rotate the
system by π/3 (2C6, 2C3, C2) and perform mirror symmetries with axes along the
directions of the lattice (3σv) and the bisectors of the directions of the lattice (3σd). The
set of all these operations is the point group C6v and the irreducible one-dimensional
representations are listed Table 4.2. The representations of higher dimensions are out
of the scope of this thesis.

A cluster is invariant by rotation if the norm of the vector for the Periodic Boundary
Conditions are equal. It is the case for both the regular and the tilted cluster, but not
for the rectangular cluster (See Section A.1.2).

Compatible symmetries

All symmetries cannot be applied at the same time. Both the Hamiltonian and the
cluster has to be compatible with all considered symmetries. We define two compatible
symmetries if they commute. An example of two compatible symmetries is given
Figure 4.11 for the application of two translations, T1 and T2, on a nine sites cluster.
We see that these operators commute because the result does not depend on the order
of the application. However, it is not the case for the translations with the point
group. we can show it with an example by taking the same nine-site cluster, but for
the translation T1 and the rotation Rπ. If we apply T1Rπ and we compare with RπT1,
the news indexes does not match (see Fig. 4.12). Here, Rθ is the operator that rotates
the system by π around the point (0,0).
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T1

T2

T1T2

T2T1

Fig. 4.11 On the left, a cluster of nine sites for the triangular lattice with periodic
boundary conditions. Each site has a label from 0 to 8. The application of the
symmetry operator T1, respectively T2, gives the cluster on the center top, respectively
bottom. The application of T2, respectively T1, on the latter gives the same cluster in
both cases.

0 1 2

3 4 5

6 7 8 0 12
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012

345

678

0 12
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6 78

01 2

34 5

67 8

T1

T1Rπ

Rπ

RπT1

̸=

Fig. 4.12 On the left, a cluster of nine sites for the triangular lattice with periodic
boundary conditions. Each site has a label from 0 to 8. The application of the
symmetry operator T1, respectively Rπ, gives the cluster on the center top, respectively
bottom. The application of Rπ, respectively T1, on the latter gives different clusters:
on the right top, respectively bottom.
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Although translations and point group symmetries do not commute in general, they
are compatible in certain symmetry sectors. Relevant example for the following are the
Γ-point and the M -points which are compatible with C2, whereas K-points are not.

Representatives

In practice, we do not compute explicitly the unitary transformation to make the
Hamiltonian block-diagonal. Indeed, the matrix representation of such operator is
too large and it is what we try to avoid when we use the symmetries. We want to
work with the smallest possible basis. This basis, which is of course a subspace of the
Hilbert space, is an ensemble of states called representatives |ri⟩. A representative is
a state from which one can build other states by applying symmetries. Applying all
symmetries on each representative gives the whole ensemble of states of the Hilbert
space.

Each set of representatives for which the Hamiltonian is block-diagonal form a
subspace called symmetry sector.

Let us look at a simple example where we consider a block diagonal matrix A

A =



U −t 0 0 0
−t U 0 0 0
0 0 U −t −t
0 0 −t U −t
0 0 −t −t U



ω1 ω2

The two blocks are boxed and correspond to a symmetry sector ωi=1,2 with ω1 has
two representatives and ω2 has three representatives. These blocks can be diagonalized
independently.

In practice, our Hamiltonian is not obviously block diagonal. To build the basis
of a symmetry sector, in other words, the ensemble of representatives of a symmetry
sector, we take all possible states not connected by any operation of symmetry.

The eigenvector |ψ⟩ of the new eigenvalue problem, i.e. finding the eigenstates of
the Hamiltonian in the subspace of a symmetry sector, is

|ψ⟩ =
Nr∑
i=1

αi|ri⟩,
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with Nr the number of representatives |ri⟩, and the wavefunction of the ground state
of the Hamiltonian |ψ̃⟩ is connected to this eigenvector by symmetry operations

|ψ̃⟩ = 1
NS

NS∑
p=1

Sp|ψ⟩,

with {Sp} the ensemble of the NS symmetries. Finally, the wavefunction as a function
of the representatives and the symmetries is

|ψ̃⟩ = 1
NS

NS∑
p=1

Sp

Nr∑
i=1

αi|ri⟩. (4.15)

It gives a basis which can be larger than the actual basis of the symmetry sector.
Indeed, the previous operation does not involve the symmetry sector, only the symmetry
operations. We need to do a reduction.

Reduction

The reduction is an operation which gives the actual basis of a symmetry sector. If the
sum of all characters associated to an operation of symmetry that let a representative
invariant is zero, then this state is not a representative associated to the symmetry
sector. Let us rewrite Equation 4.15

|ψ̃⟩ = 1
NS

Nr∑
i=1

αi

∑
q∈Ei

ωq

 |ri⟩ +
∑

q∈Ēi

ωq|Sq(ri)⟩
 ,

with Ei the ensemble of symmetries that let |ri⟩ unchanged and Ēi are the other
symmetries. If ∑q∈Ei

ωq = 0, the representatives associated to the indexes q ∈ Ei do
not contribute to the first term of the wavefunction. One can show they also do not
contribute to the second part.

The reduction has been done properly if the sum over all symmetry sectors of the
dimensions of each basis associated to the symmetry sector times its dimension is equal
to the size of the Hilbert space.

Now, we have the smallest basis possible by application of symmetries. Its size will
depend on the symmetry sector, and we don’t know a priori in which symmetry sector
is the ground state, and for all set of symmetries, there is a symmetry sector with all
the characters equal to one, so there is no reduction. When we apply the Hamiltonian
to a ket, it projects the ket in the whole Hilbert space. Then, we apply the symmetry
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operators to find the representatives. It is possible that the representative does not
exist if it has been removed by the reduction. In this case, this resulting ket does not
contribute.

|2⟩ |3⟩

|0⟩ |1⟩ω1

ω2ω3

ω4

Fig. 4.13 Two paths connect |0⟩ and |3⟩. The blue path goes through |1⟩, such as |3⟩ =
S1S2|0⟩ = ω1ω2|0⟩. The red path goes through |2⟩, such as |3⟩ = S3S4|0⟩ = ω3ω4|0⟩.

There is a physical meaning to this operation of reduction. Each symmetry operation
on a vector gives different character. Let us consider two vectors |0⟩ and |3⟩ connected
by symmetries. If the path taken to go from one vector to another is not unique (See
Fig. 4.13 for an example), these vectors will not contribute if the character associated to
the symmetry operations, ω1ω2 and ω3ω4 in this example, are different. It means that
the link between a vector and its representative does not depend on the symmetries
applied, but only on the symmetry sector. Notice that there is always a symmetry
sector where all paths are equivalent (ωi = 1), so all representatives contribute.

Observables

Let us see how to write a matrix element of an operator Ô which commutes with the
Hamiltonian oij = ⟨r̃i|Ô|r̃j⟩ where {|r̃i} is the orthonormal basis in the whole Hilbert
space. The basis of the representatives is orthonormal ⟨ri|rj⟩ = δij. The operator Ô
project the ket |rj⟩ in the whole Hilbert space

Ô|rj⟩ =
∑

k

αk|k⟩.

To each of the resulting states |k⟩ corresponds a representative |rl(k)⟩ by application
of the symmetry Sm(k). Only the representatives equal to |ri⟩ will contribute to the
matrix element, so, such that l (k) = i. A matrix element is

oij = ⟨r̃i|Ô|r̃j⟩ =
∑

k such that l(k)=i

αkωm(k)

√√√√deg (pi)
deg (pj)

,
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where deg (pi) is the degeneracy of the representative pi.
The degeneracy of the representative |ri⟩ is

deg(ri) =
∑

q∈Ei

ωq,

with Ei the ensemble of the indexes q of the symmetry Sq which let the representative
unchanged, ie Sq|ri⟩ = ωq|Sq(ri)⟩ = ωq|ri⟩. One can show that it does not depend on the
symmetry sector and it is equal to the number of symmetries that let the representative
unchanged, Card (Ei). If the latter is null in a symmetry sector, it corresponds to a
representative which has been eliminated during the reduction process.

4.4.2 Quantum phase diagrams

Methods

In this section, we briefly describe the tools that we used to build the phase diagrams.
To identify the transition lines, we used the continuity of the first two derivative of

the energy and to characterize the phases, we will use the same order parameters than
for the classical approach, presented in Section 4.3.3, with few differences. We compute
correlations of observables rather than their mean-values; the form of the structure
factor remains unchanged, however the polarization along one direction α = x, y, z and
the chirality change. The former becomes the correlation with respect to an arbitrary
reference (here the first site)

τα = 1
4Ns

Ns∑
i=1

⟨σα
1 σ

α
i ⟩, (4.16)

in practice we use only the z component, and the latter will not be computed in this
dissertation because of lack of time, as it requires even for the scalar chirality, to code a
large number of operators: 36 terms of product of 6 nondiagonal operators. Beside, the
computation time for such quantity can be large. Real space correlations are computed
to draw snapshots of the different phases, using the following formula

τi = 1
4Ns

Ns∑
i=1

(
2⟨σ+

1 σ
−
i ⟩ + 2⟨σ−

1 σ
+
i ⟩ + ⟨σz

1σ
z
i ⟩
)
. (4.17)

We used two methods to obtain the results in exact diagonalizations, the brute-force
diagonalization and Lanczos algorithms.
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The brute-force exact diagonalization consists to diagonalize the complete Hamilto-
nian. It gives access to the whole spectra and all associated eigenvectors. However it
suffers of large computing limitations in terms of time and memory consumption that
make it suitable for small systems only, the 12-site and 16-site clusters in this work.

Lanczos algorithm is an iterative method to compute the lowest eigenvalue and its
eigenvector if it is not degenerate. We will not present the details of the method here,
it is presented in many books (see for example Vernay thesis in Ref. [139]), nevertheless
let us introduce the idea. The matrix, here the Hamiltonian H, is transformed into a
tridiagonal matrix T . How is that convenient? A routine to diagonalize a tridiagonal
matrix, such as QR algorithm implemented in dstevx function of LAPACK [104], needs
only two vectors: the diagonal and the subdiagonal elements of the matrix. These
same vectors will be used to store the eigenvalue (energy of the ground state) and
its eigenvector (ground state), so no extra memory is used for the output, making
the memory consumption linear with the Hilbert space size, whereas as the memory
consumption for brute-force diagonaliation is the Hilbert space size square. It allows
us to reach a cluster of 24 sites.

As we mentioned before, exact diagonalization methods can return the eigenvector
only for non-degenerate ground state. Indeed, in case of degeneracy, the algorithm
will pick a random vector that belongs to the subspace of the ground state. Using
the symmetries helps because the degeneracy can be lifted, but how do we know that
the ground state is not degenerate? Short answer, we do not. A symmetry breaking
on the average of quantities that are not explicitly broken in the Hamiltonian, e.g.
⟨τx

i ⟩ = ⟨τx
j ⟩ whereas ⟨τ z

i ⟩ and ⟨τ z
j ⟩ can be different in this case or ⟨ni⟩ = ⟨nj⟩ in

multiorbital extended Hubbard model that we studied in the previous chapter, is an
evidence of degeneracy in the symmetry sector. Although the smooth variation of
quantities, such as order parameters and correlations, as a function of a parameter is a
clue that the ground state is not degenerate, it is not enough to show the absence of
degeneracy.

We obtained these results by developing a C++ program using fast linear algebra
libraries, Armadillo [114], openBLAS [111, 112] and LAPACK [104]. We used transla-
tions and C2 symmetries and diagonalized the Hamiltonian in each symmetry sector,
that allows us to easily parallelize the code.

Zero-field results

The spectra as a function of θ for clusters of 12 and 16 sites are shown Figure 4.14
at zero-field (left and right, respectively). Some gaps are closing as a function of θ
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Fig. 4.14 The Spectrum, obtained with brute-force exact diagonalizations, minus the
energy of the ground state En − E0 for clusters of (left) 12 and (right) 16 sites as a
function of θ over one period at h = 0.
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Fig. 4.15 Energy of the second eigenvalue minus the energy of the ground state E1 −E0
for clusters of (left) 12 and (right) 16 sites as a function of θ over one period. Labels
correspond to the symmetry sector associated to the eigenvalue with the degeneracy
between brackets. For the 12-site cluster, equivalent symmetry sector to K1 (2) and
K2 (2) are A (2) and B (2). On the same cluster, for θ = π/4 (dashed line), the
degeneracy of the two symmetry sectors is 3.
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while others remain open. One can notice the qualitative differences between the two
sizes that are related to a size effect. We start by focusing on the gap between the first
two energies shown on Figure 4.15. A closing or opening gap is a precursor of a phase
transition at the thermodynamic limit. On the 12-site cluster, one can identify 5 areas
but only 3 one the 16-site cluster.
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(b) 16 sites
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Fig. 4.16 First (black) and second (red) derivative of energy of the ground state of
clusters of 12 (left), 16 (middle) and 24 (right) sites as a function of θ over one period.

These areas can be seen also by looking at the continuity of the first and second
derivatives, as shown in Figure 4.16 for 12-, 16- and 24-site clusters. We clearly see the
second derivative (red line) is discontinuous where the gaps close or open. Although
the derivative in Figure 4.16 are with respect to θ, one can mention that the same
transitions are found for the derivative with respect to h. A cluster of 16 sites is not a
good candidate to describe the physics of triangular lattice because the number of sites
is not a multiple of 3. Both 12-site and 24-site cluster give similar results. In both
cases we have four phase transitions and we recover the same number of transition than
with the classical approach, even though the values are different because of correlations
and size effects.

Close to the isotropic case for the 12-site cluster, on the left panel of Figure 4.15,
the second eigenvalue is either on K-points if translation symmetries are used or in
symmetry sector A and B when using C2 point group symmetry. The energy of the
second eigenvalue is twofold degenerate for each symmetry sector, excepted on the
SU(2) point (θ = π/4) where they are threefold degenerate. Away from this area, the
second eigenvalue belongs to k⃗-points, Γ- and M -points, that can be diagonalized with
C2 point group symmetry. Notice that the second eigenvalue on the 16-site cluster is
instead in the ΓA symmetry sector because the K-points are absent of the Brillouin
zone for this cluster.
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Fig. 4.17 Orbital sector wn at zero-field as defined in Equation 4.18 as a function of θ.
From darker to lighter red, n increases from 0 to 24.

τ z, the orbital sector, is a good quantum number in our model only at θ = π/4,
the case where the Hamiltonian commutes with τ z,

[
Heff, τ z

]
. This information can

be of relevance to reach larger cluster size because one can reduce the Hilbert space
size by considering only states to given orbital sectors, e.g. τ z = 0 at zero-field.
Here, we wonder if considering τ z as a good quantum number for θ ̸= π/4 is a good
approximation by looking at the mixing of the orbital sectors. Figure 4.17 represents,
for the 24-site cluster at h = 0, the weight of each orbital sector τ z = |n↑ − n↓| /2

wτz = ⟨n↑=Ns/2−τz⟩ + ⟨n↑=Ns/2+τz⟩. (4.18)

It shows which vectors of the Hilbert space contribute to the wavefunction. We can
see that almost all the weight is on states of τ z = 0 close to the isotropic case so
diagonalizing the Hamiltonian in the orbital sector τ z = 0 can be a good approximation.
For intermediate values of θ, τ z = 1, 2, 3 also contribute to the wavefunction. It is
then possible to constraint the Hilbert space to states in orbital sectors τ z = 0, 1, 2, 3.
At θ = 3π/4 all orbital sectors have no neglected weight, so no approximation on
the Hilbert space can be done. The fact that the wavefunction has weight on orbital
sectors n ̸= 0, on the contrary to the Heisenberg model, comes from the additional
σ±

i σ
±
j and σ±

i σ
z
j terms that couple different orbital sectors. Notice that this value as

a meaning only at low field because it breaks the ↑/↓ symmetry so one can look at
wn↑ = ⟨n↑=Ns/2−n⟩; wn↓ = ⟨n↓=Ns/2−n⟩ being always zero for h positive.

Results in presence of a pseudo-magnetic field

The phase diagrams obtained in the presence of a pseudo-magnetic field for 12 and 24
sites are displayed in Figure 4.18 where we also draw the classical phase diagram for
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Fig. 4.18 Quantum phase diagram for a cluster of 12 (left) and 24 (right) sites. We
draw the classical phase diagram (light grey dashed lines) for convenient comparison.
Colored areas represent the different symmetry sectors of the wavefunction: white for
the Γ-point, light red of the K-point, dark red for the M1-point and the two small oval
white areas with dark edges at the transition between ODW and ferro-orbital are at
the K/2-points, as shown on the Brillouin zone in inset.
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convenient comparison. In addition to transition lines and labels of the phases, the
colored areas represent the different symmetry sectors of the wavefunction: white for
the Γ-point, light red of the K-point, dark red for the M1-point and the two small oval
white areas with dark edges at the transition between ODW and ferro-orbital are at
the K/2-points, as shown on the Brillouin zone in inset. We do not display the 16-site
phase diagram as the K-points, important for this system, are absent of the Brillouin
zone.

Fig. 4.19 Correlations in real space from Equation 4.17. for some phases at θ = π/4:
zero-orbital polarization (h = 0), 1/3-plateau (h = 1.5), V configuration (h = 3) and
ferro-orbital (h = 5) The radius of the disks in proportional to the correlations. Black
and red correspond to correlations and anti-correlations, respectively.

Fig. 4.20 Sketches of the phases at θ = π/4 built using the sign of correlations in
real space from Figure 4.19. From left to right: zero-orbital polarization (h = 0),
1/3-plateau (h = 1.5), V configuration (h = 3) and ferro-orbital (h = 5). No arrow
means an absence of correlations. Notice that the zero-orbital polarization and the
1/3-plateau phases have the same representation.

Around θ = π/4, there are five phases. Real space correlations of some of them
are shown in Figure 4.19 with a corresponding sketch in Figure 4.20. At low field,
a plateau of zero-orbital polarization is found. While increasing the field, the τ z

increases almost continuously. We associate this phase to the Y configuration because
of the finite orbital polarization and the anti-correlation in real space with the nearest
neighbors. Small intermediate plateaus appear with discontinuous second derivative of
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the energy. The number of these transitions increases with the size of the cluster so can
be associated to size effect and are ignored. Then the 1/3-plateau is reached, before
going the same process where the orbital polarization increases almost continuously
but with a positive correlation with nearest neighbor so we associate this phase to the
V configuration. All these phases have a finite correlation on K-points. There is also a
small correlation on the M -points coming from the fact that the 24-site cluster does
not respect rotation symmetry. It is worth to notice that, because the 12-site cluster
respect the rotation symmetry, no M -points peaks appears in this area for the 12-site
cluster. Finally, at high field, the ferro-orbital phase (τ z = 1) is reached.

The small plateaus of orbital magnetization, zero-polarization and the 1/3-plateau,
come from the fact that, at θ = π/4, τ z is a good quantum number, i.e. τ z commutes
with the Hamiltonian. Although it is not true as soon as θ ̸= π/4, it is effectively the
case in this area of the phase diagram, as shown at zero-field.

Fig. 4.21 Correlations in real space for phases at θ = π/2 in the M -points area:
M2 M3 (h = 0), and M1 stripes (h = 1), The radius of the disks in proportional
to the correlations. Black and red correspond to correlations and anti-correlations,
respectively.

Fig. 4.22 Sketches of the phases at θ = π/2 in the M -points area: built using the sign
of correlations in real space from Figure 4.21: M2 M3 (h = 0), and M1 stripes (h = 1).
No arrow means an absence of correlations.

Away from the isotropic case θ = π/4, around θ = π/2, two stripe orders are
stabilized. Their real space correlations are shown in Figure 4.21 with a corresponding
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sketch in Figure 4.22. A stripe order on the M1-point is stabilized at intermediate field,
whereas peaks in correlations are on M2- and M3-points at low field.

While increasing h, one can see that the ground state changes of symmetry sector,
alternating from Γ to K or M1. However, in analogy with the different plateaus of
orbital polarization, we associated these changes in symmetry sector to size effects as
their number increases with the size.

Fig. 4.23 Correlations in the Brillouin zone of the ODW phase obtained in exact
diagonalization for θ = 0.38π and h = 3.2. The radius of the disks in proportional to
the correlations. The Γ-point is not displayed.

Between the M -points and K-points areas, there is an orbital density wave (ODW)
with a peak in correlations at the only point available between K and M1. The weight
continuously goes from K- to M1-points with a maximum on middle. The 24-site
cluster is the first size that allow such state; the 12-site cluster does not have any point
on the ΓM lines therefore no orbital density wave is found. In addition, there is no set
of parameter for which the ground state is in K/2-point symmetry sector. Nevertheless,
one can see that there is already a small area where the ground state is in the M -point
symmetry sector at the crossing of K-, M - and Γ-points region. It is a precursor to
the orbital density wave.

Finally, far from the isotropic case, around θ = 3π/4, there are peaks in correlations,
excepted on the Γ-point in the correlations. No plateau has been found before orbital
saturation at high field. The absence of transition while increasing the field for the
12-site cluster is associated to a size effect. Although the first two derivatives of the
energy are continuous for the 12-site cluster, the behavior of the second derivative
already present evidence of the transition that appears when increasing the size of the
system.

To conclude, let us compare the results from classical and quantum approaches.
The transition lines in the phase diagrams are in good agreement in both approaches;
we can divide the phase diagram in five parts: (i) high field with the ferro-orbital
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phase, (ii) close to the isotropic case for the Heisenberg limit, (iii) the M area with
stripe orders, (iv) the orbital density wave between the two latter, and (v) far from the
isotropic case with correlations on the Γ-point only. The shapes of the transition lines
are also similar between the classical and quantum approach. Moreover, as already
pointed out, we can identify the lower and upper parts of the threefold orbital order
(τ(K) ̸= 0) to the Y and V configurations, respectively, by looking at the real space
snapshots of the correlations.

There are, however, few differences. First, the presence of two plateaus, zero-
polarization and the 1/3-plateau, only possible with quantum fluctuations. This
1/3-plateau has been already observed [135]. Second, another stripe phase is found
with the quantum approach in the M area. Finally, far away from the isotropic case,
only one transition is found with the quantum approach while increasing the field
whereas two transitions are found classically.

Further comparison requires more investigation, such as computing the ⟨τ yτ y⟩
correlation to properly identify the phase around θ = 3π/4.

4.5 Conclusion

Using perturbation theory in the Mott regime, we derived a generic Heisenberg-
like effective Hamiltonian for the eg-orbitals that makes possible analogy with spins
(Equation 4.8) with a known limiting case which is the standard Heisenberg model.
We study this model for the triangular lattice with two approaches to build the phase
diagrams, both classical and quantum, and unravel rich phase diagrams including new
phases without threefold orders away from the isotropic case.

Using the strength of symmetries and the Lanczos algorithm, we were able to
diagonalize the Hamiltonian for a 24-site cluster.

The known phases from the Heisenberg model have an extension as a function
of the anisotropy of the band structure of eg-orbitals and are therefore not limited
to the isotropic case. However, new phases are stabilized due to the influence of the
kinetic effects on these orbitals: stripe orders, phases with finite polarization along a
given direction and orbital density waves. These phases have been found with the two
methods that we used, i.e. the classical approach and the exact diagonalizations.

Although the two approaches are consistent with each other, let us remind the few
main differences: (i) no plateau can be found classically (ii) there are two different
phases with quantum approach in the M area of the phase diagram, and (iii) a phase
at intermediate field around θ = 3π/4 is found classically.
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We have also identified some open questions that remain to be addressed for this
model, is there a chiral order with quantum approach and how it behaves, what is the
origin the stripe orders, is the phase at θ = 3π/4 found with exact diagonalization
as a correlation on the y component, how strong are the size effects with exact
diagonalization.



Chapter 5

Conclusion of the dissertation

During this dissertation, we studied theoretically how the frustration of Coulomb
interactions and multiorbital kinetic effects on triangular lattices can lead to a variety
of original electronic phases. Our studies are motivated by the physical properties of an
important class of layered compounds with d-bands, such as layered transition-metal
dichalcogenides and 2H-AgNiO2 that we presented in the first chapter. These systems
exhibit various charge orders, for example the

√
13 ×

√
13 star of David pattern for the

former and the metallic threefold charge order for the latter. Due to the geometry of
the underlying atomic lattices, a form of frustration arises from the degeneracy of the
classical ground state where all local constrains can not be satisfied. Such frustration
can lead to novel phases when the quantum fluctuations are included. We introduced
the charge frustration in analogy of magnetic frustration and indeed found a specific
phase that comes from this effect, the pinball liquid. This is a peculiar state where an
insulating threefold charge order (pins) is surrounded by a metallic honeycomb lattice
with itinerant electrons (balls), first predicted in the context of quarter-filled organic
compounds but never observed experimentally in these compounds.

In order to address the multiorbital problem, we derived a generic multiorbital
extended Hubbard model in the second chapter. We refined this generic model to
the specific case of eg-orbitals with one electron per site in average and we assumed
a strong local Coulomb interaction U leading to a spinless model. A brief review of
the single-band spinful Hubbard model at half filling, its extended version and the
multiorbital spinfull extended Hubbard model revealed the richness of Hubbard models
and the expected states in the limiting cases that correspond to these models.

In the third chapter, we performed a complete study of the model, as a function of all
microscopic parameters, focusing on the interplay between frustrated electron-electron
interactions and multiorbital effects for the specific case of eg-orbitals. To this end, we
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used different means: noninteracting limit, electrostatic considerations, unrestricted
Hartree-Fock approach and exact diagonalization. We started with the tight-binding
approach revealing a Lifshitz transition, the presence of Van Hove singularities and
different topologies of the Fermi surface. Using electrostatic considerations, we built
an effective model to sketch a preliminary phase diagram. Such a simple model
already unravels a phase diagram with the main features of the full phase diagrams
found with unrestricted Hartree-Fock and exact diagonalization, but does not give all
informations about orbital and charge orders, or what can happen for intermediate
values of interactions. We performed an unrestricted Hartree-Fock approach, a method
without assumption on the symmetry breaking, suitable for large unit-cell phases
and revealed a number of charge-ordered and orbital-order phases. More than ten
phases have been found, including (i) a homogeneous metal at weak interactions,
(ii) a Mott state at strong local Coulomb interactions, (iii) a pinball charge order at
strong local and non-local interactions, (iv) a charge order without orbital order at
strong short-range Coulomb interactions and weak local interactions and (v) a pinball
liquid phase at intermediate values of interactions. Apart from the phases known for
the single-band spinful extended Hubbard model, equivalent to the spinless extended
Hubbard model for eg-orbital, such as the homogeneous metal and the different orders
at low short-range Coulomb interactions or at strong Coulomb interactions, we found (i)
the pinball liquid and its dual, the inverse pinball liquid, that is experimentally observed
in AgNiO2, (ii) the large unit-cell

√
12 ×

√
12 insulating charge order, which could

be related to the
√

13 ×
√

13 star of David charge order in dichalcogenide compound
1T -TaS2, and (iii) incommensurate charge and orbital density waves. These phases are
purely stabilized by the quantum fluctuations as we were able to show in two ways.
First, they are discriminated from other classically degenerate orders by the band
structure. Second, although these phases are stabilized in a broad range of parameters,
varying the band structure induces transitions to other classically degenerate orders,
e.g. pinball liquid and

√
12 ×

√
12 charge order to their dual and PCOI to PCOIII.

One of the achievements of this thesis has been to find large unit-cell orders with a
model with only nearest neighbors interactions which was made possible by the use of
the unrestricted Hartree-Fock method in real space, in contrast to previous work where
the constraints did not allow all symmetry breakings [95, 93]. In order to validate
these results, we performed a comparison with exact diagonalization results, obtained
by Arnaud Ralko, which confirmed qualitatively the unrestricted Hartree-Fock phase
diagram.
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We noticed that the unrestricted Hartree-Fock method failed to capture the physical
properties for parameters of the band structure t′/t far from the isotropic case, especially
at t′ = −t, for strong local Coulomb interactions. To address this problem, we choose
to develop a perturbation theory starting from the Mott state and derived a Heisenberg-
like Hamiltonian. In addition to the terms corresponding to the Heisenberg model, the
specific form of the hopping integrals of eg-orbitals induces an anisotropy and extra
terms σ±

i σ
±
j and σz

i σ
±
j , that couples all orbital sectors. In order to investigate the model,

we included a chemical potential to favor one orbital having the form of a magnetic field.
We studied the new model with both a classical approach and exact diagonalization in
the quantum case, using the strength of symmetries and Lanczos algorithm to reach
a 24-site cluster size. Beside the standard phases obtained close to the isotropic case
where the effective Hamiltonian reduces to the Heisenberg model, namely the Y and
V configurations, the 1/3-plateau and the ferro-orbital phase, we found phases with
a finite τ y component and finite τx and τ z components far from the isotropic case.
For intermediate values of the band structure anisotropy t′/t, stripe orders are also
stabilized with structure factor either on M2- and M3-points at low pseudo-magnetic
field and M1-point at stronger pseudo-magnetic field. At intermediate values of the
pseudo-magnetic field h, an orbital density wave is stabilized between the threefold
orbital orders of the isotropic case and stripe orders. Phase diagrams from classical
approach and exact diagonalization qualitatively agree with two noteworthy differences
(i) the 1/3 plateau can not be stabilized classically and (ii) although we could not
completely characterize the phase far from the isotropic case in exact diagonalization,
the extra transition found classically does not seem to subsist in exact diagonalization
according to the continuity of the derivatives of the energy.

The interplay between multiorbital kinetic effects, frustration and electron-electron
interactions on the triangular lattice can stabilize various phases and tuning them can
induce transitions. Whereas we were able to understand many of the key features
of the phases diagrams for both the multiorbital spinless extended Hubbard model
and the Heisenberg-like Hamiltonian, some points still need to enlightened. For the
multiorbital spinless extended Hubbard model: What is the role of the filling? What
is the mechanism for the transition from the inverse pinball liquid to the

√
12 ×

√
12

charge order? For the Heisenberg-like Hamiltonian: Is there a chiral order? What is
the origin of the stripe order? is the phase found far away from the isotropic case
found with exact diagonalization as a correlation on the y component? What are the
size effects in exact diagonalization? The purpose of future work will be to answer
these open questions.
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Appendix A

Trianglar lattice

A.1 Triangular lattice

A.1.1 Three sublattice

A B

C

A

A

u⃗1

u⃗2

v⃗1

v⃗2

Fig. A.1 Triangular lattice, unit cell vectors u⃗1 and u⃗2; with the sublattice A, B and C,
connected to equivalent sites by linear combination of v⃗1 and v⃗2 with integer coefficients.
Two other A sites are labelled.

The phases we will meet in this dissertation, such as the pinball liquid, often have
threefold orders, either on charge or orbitals. It can be seen as defining a new Bravais
lattice with three sites per unit cell, represented in Figure A.1. In the triangular lattice,
the unit call vectors are u⃗1 = (1, 0) and u⃗2 =

(
1/2,

√
3/2

)
and all equivalent site of the

three sublattice are connected by linear combination of v⃗1 = 2u⃗1 − u⃗2 and v⃗1 = u⃗1 + u⃗2

with integer coefficients. This sublattice will be use many times in the following to
describe threefold orders.

However, this description is not enough because one does not know a priori if other
modulations occurs. This is why we need a more general concept, the Brillouin zone
that we present below.
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A.1.2 Brillouin zone

Q1

Q2

k

1

k

2

Γ K1

K1

K1

K2

K2

K2

M1

M1

M2

M2

M3

M3

Γ

K/2 M

K

M′Γ′

K′

Fig. A.2 (left) First Brillouin zone of the triangular lattice for a cluster of 12 sites with
the high symmetry points. The edges of the Brillouin zone are in red. The k⃗-points
are in black. Two Brillouin zones are connected are the vectors Q⃗1 and Q⃗2 and two
k⃗-points are connected by vectors k⃗1 and k⃗2. (right) Main symmetry points in the
original (black) and reduced (red) Brillouin zone for three-sublattice ordering.

The Brillouin zone and in particular the first Brillouin zone is the ensemble of all
the non-equivalent points in the reciprocal space. The shape of the Brillouin zone
depends on the lattice geometry. The latter is defined by unit-cell vectors u⃗l, l = [1, D]
and D the dimension of space. For a finite system with Periodic Boundary Conditions
(PBC) t⃗l, the vectors which connect two clusters, the number of non-equivalent points
in the Brillouin zone is discrete and equal to the number of sites in the system. The
discretization depends on the geometry of the finite cluster. Notice that although we
will focus only on the triangular geometry, the method below is generic to define any
Brillouin zone.

The triangular geometry is defined by the two unit-cell vectors u⃗1 = (1, 0) and
u⃗2 =

(
1/2,

√
3/2

)
. We will consider three types of clusters for the triangular lattice,

defined by their periodic boundary condition vectors:

• The regular cluster t⃗1 = Lu⃗1 and t⃗2 = Lu⃗2.

• The tilted cluster t⃗1 = L (u⃗1 + u⃗1) and t⃗2 = L (−u⃗1 + 2u⃗1).

• The rectangular cluster t⃗1 = 2L (u⃗1 + u⃗1) and t⃗2 = L (−u⃗1 + 2u⃗1).

L is an integer. The last cluster does not respect the rotation symmetry because
the norm of the vectors are different. Nevertheless they all respect the translation
symmetry.
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Let us first define the shape of the Brillouin zone, then we shall define the dis-
cretization. The generic formula to transform a set of three vectors, a⃗1, a⃗2 and a⃗3, from
real space to the reciprocal space is

b⃗1 = 2π a⃗2 × a⃗3

a⃗1.(⃗a2 × a⃗3)
,

b⃗2 = 2π a⃗3 × a⃗1

a⃗1.(⃗a2 × a⃗3)
,

b⃗3 = 2π a⃗1 × a⃗2

a⃗1.(⃗a2 × a⃗3)
,

where a⃗1.(⃗a2 × a⃗3) is the volume occupied by the vectors. The first set of vectors to
transform is the unit-cell vectors u⃗1 and u⃗2. In the third direction, the pattern does
not repeat, formally, it is equivalent to a pattern that repeats at infinity. So their
expression in three dimension is

e⃗1 = (1, 0, 0), e⃗2 = (1/2,
√

3/2, 0), e⃗3 = lim
α→∞

(0, 0, α)

and the two vector that will define the shape of the Brillouin zone are

Q⃗1 = 2π
(

1,− 1√
3
, 0
)
, Q⃗2 = 2π

(
0, 2√

3
, 0
)
.

These two vectors connect two Brillouin zone. The edges of the latter are the lines
normal to the vectors at the midpoints.

The discretization of the Brillouin zone comes from the vectors t⃗1 and t⃗2 that shall
be transformed in vectors k⃗1 and k⃗2 of the reciprocal space:

• The regular cluster k⃗1 = 2π
(

1
L
,− 1√

3L

)
and k⃗2 = 2π

(
0, 2√

3L

)
.

• The tilted cluster k⃗1 = 2π
(

2
3L
, 0
)

and k⃗2 = 2π
(
− 1

3L
, 1√

3L

)
.

• The rectangular cluster k⃗1 = 2π
(

1
3L
, 0
)

and k⃗2 = 2π
(
− 1

3L
, 1√

3L

)
.

An example of Brillouin zone is given on the left in Figure A.2 for a cluster of 12
sites.

In this thesis, we sometimes consider the three sublattice we presented above. It is
interesting to describe briefly its Brillouin zone. The new Bravais lattice contains three
sites thus the area of the parallelogram form by them must be equal to three. The new
Bravais vectors connect two equivalent sites so we can consider for example the new
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unit-cell vectors v⃗1 = u⃗1 + u⃗2 and v⃗1 = −2u⃗1 + u⃗2. The corresponding Brillouin zone
will be labelled reduced. Both the original and the reduced Brillouin zone are plot on
the right panel in Figure A.2 with the main high symmetry points. One can notice in
particular that the K-points, respectively the K/2 points, of the original Brillouin zone
match the Γ-point, respectively the M -points, of the reduced Brillouin zone. So, each
modulation that can be represented by the three sublattice above will be characterized
in the Brillouin zone by a peak on K-point.



Appendix B

t2g orbitals

The t2g-orbitals are relevant to describe systems such as cobaltites which have rich
phase diagrams. In particular, t2g-orbitals are studied to understand the mechanism of
exotic superconductivity in triangular-lattice cobalt oxides [140].

The 27 hopping integrals corresponding to the t2g, using Slater and Koster [100],
are

txy,xy = 3l2m2 (ddσ) +
(
l2 +m2 − 4l2m2

)
(ddπ) +

(
n2 + l2m2

)
(ddδ)

txy,x2−y2 = 3
2 lm

(
l2 −m2

)
(ddσ) + 2lm

(
m2 − l2

)
(ddπ)

+1
2 lm

(
l2 −m2

)
(ddδ)
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√

3lm
(
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2
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√
3lmn2 (ddπ)
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√

3
2 lm
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)
(ddδ)
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)2
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4
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(ddδ)
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√
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√
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Γ M K Γ

Fig. B.1 Band structure of t2g-orbitals along the path ΓMKΓ as defined in the
Appendix A.1.2 with parameters fitting 1T-TaS2 [18, 141].
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The band structure along the path ΓMKΓ corresponding to these hopping integrals
is plot in Figure B.1 with parameters fitting 1T-TaS2 [18, 141]. We choose this specific
compound due to its peculiar large unit-cell charge-ordered phase of

√
13 ×

√
13 Star

of David modulation.





Appendix C

Phase characterization

In this appendix, tools used to characterized phases, order parameters, and to describe
them in reciprocal space, with spectral function, will be introduced.

C.1 Order parameters

Let us introduce the order parameters we used to characterize the different phases of
the system.

Due to the absence of constraints, the mean-field Hamiltonian does not necessarily
commute with τ 2 and τ z, which are, respectively, the total orbital pseudospin operator
and its z component. To look for orbital orders, we use different order parameters.
One can notice that the Fock terms of the Hubbard interaction can be recast in terms
of the ladder pseudospin operators, allowing for the extraction of the average orbital
components ⟨τx⟩, ⟨τ y⟩, and ⟨τ z⟩

τ τ
i = 1

2d
†
iτdiτ , τ

+
i = 1

2d
†
i↑di↓, τ

−
i = 1

2d
†
i↓di↑. (C.1)

We add an 1/2 factor to make the comparison with the spin more convenient. This
is particularly useful in order to characterize, in addition to the charge symmetry
breaking, solutions having an orbital order such as the 120° phase already observed in
the Hubbard model at large U [84, 85]. Let us express these operators into the orbital
components

τx
i = τ+

i + τ−
i , τ

y
i = −i

(
τ+

i − τ−
i

)
, τ z

i = τ ↑
i − τ ↓

i .

and
τi = (τx

i , τ
y
i , τ

z
i ) .
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This vector will be used to draw the vectorial representation of snapshots in Section 3.4.
Notice that it adds informations about in-plane orders that are not present in regular
snapshots, which are based on Hartree paramters only.

The total orbital operators are just the sum over all sites of the lattice

τα = 1
Ns

Ns∑
i=1

τα
i . (C.2)

This quantity gives information about global orbital polarization but does not
capture local arrangement. If one, the following quantity is nonzero

Ns∑
i=1

|⟨ni↑ − ni↓⟩| .

In case of commensurate order, orbital-orbital correlations gives access to the type
of order in reciprocal space

T
(
k⃗
)

= (1/Ns) ⟨τ z
(
−k⃗

)
τ z
(
k⃗
)
⟩. (C.3)

In addition, we used charge-charge correlations to identify charge orders

C
(
k⃗
)

= (1/Ns) ⟨ρ
(
−k⃗

)
ρ
(
k⃗
)
⟩,

with ρ
(
k⃗
)

being the Fourier transform of the total on-site density operator ni↑ + ni↓.
An equivalent approach can be to look at the charge and the orbital ordering in

term of pseudo-probabilities as explained in Appendix F.
Insulating states are characterized by a gap at the Fermi energy equivalently the

conducting state is possible only if excitations at Fermi energy are possible. Different
methods can determine if a phase is metallic or insulating. One can cite for example
the Drude weight which is derived from optical conductivity [142–146], however, our
mean-field study did not give conclusive results as explained in Appendix G. Another
possibility is to compute the electronic compressibility 1

κ
∝ dµ

dn
, with µ the chemical

potential and n the number of particles. κ = 0 if the phase is incompressible which is
characteristic to insulating states. A proper study of compressibility with a mean-field
approach required a great attention to insure each points used for the finite numerical
derivative, which itself contain drawbacks, converged to the global minima, otherwise
fluctuations in the curve of µ (n) can appear and lead to spurious results. We will not
use this approach but we compute the charge gap ∆g which is the energy gap if we
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add or remove an electron to the system so it corresponds to excitation around Fermi
energy

∆g = E (Ne − 1) + E (Ne + 1) − 2E (Ne) . (C.4)

It is expected that the reaction of the system to the variation of one electron to be
small for a conducting state (∆g ≃ 0) but very sensitive for an insulator (finite ∆g).

Notice that we will use the same quantities for Exact diagonalization results
in section 3.5 and in addition will compute the average double occupation D =
(1/Ns) ⟨∑Ns

i=1 ni↑ni↓⟩ which is expected to be zero in a Mott state where each site has
only one electron but higher than the metallic state in charge ordered states because the
charge disproportion will fill some sites more than others raising the double occupancy.
It is especially true for some specific order such as the

√
12 ×

√
12 droplet phase will

meet later.
Numerically, order parameters does not reach exactly the expected value for a given

phase and the stability, i.e. the fluctuation for two close sets of parameters (t, t′, Ũ , V ),
depends on the type of parameter so the cut off used are different. Nevertheless, their
behavior change sharply (see right panel of Figure 3.5 and Figure 3.6) so a cut off is
usually easy to define and we took typically an approximation at 10−3 to the expected
order parameters for a given phase.

C.2 Spectral function

To analyze the reconstruction of the band structures and Fermi surfaces, we computed
the spectral function

Aτ

(
k⃗, ω

)
= −1

π
Im⟨ψ|dk⃗τ

1
ω −H + iη

d†
k⃗τ

|ψ⟩. (C.5)

It is the imaginary part of the Green’s function.
On each k⃗ point of the Brillouin zone, the Green’s function has a pole when ω is

an eigenvalue of the Hamiltonian.
Spectral function gives three important informations: (i) the band structure, (ii)

the density of states through the sum over all the Brillouin zone and (iii) the Fermi
surface with a cut at ω = EF , with EF the Fermi energy, i.e. the energy of the last
occupied state.

One can experimentally have access to the informations given by the spectral
function, for example with Angle-Resolved Photoemission Spectroscopy (ARPES)
which is a direct measurement of the spectral function. ARPES involves looking at
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the reaction of the system (H) to the extraction of an electron (dk⃗τ ) with a beam
(ω ∝ hν). The sample is beamed with an energy ω ∝ hν. The beam excites the
electrons. The excited electron is analyzed, i.e. one measure the angle, which gives
information about the momentum, and the energy of the extracted electron. The
momentum perpendicular to the surface is not conserved. However, the momentum
parallel to the surface is conserved. In two-dimensional material, only the parallel
momentum is of interest which makes ARPES an ideal tool in this case.

One can also have access to the Fermi surface via the method of Fermi-surface
reconstruction by quantum oscillations. The latter are obtained through the torque
τ⃗ = m⃗× B⃗, with m⃗ the magnetization and B⃗ the magnetic field, by doing the Fourier
transform. The peaks, associated to a frequency, is related to an area in the Fermi
surface.

Γ
Γ K Γ K

Fig. C.1 (left) Slice of the Fermi surface when the magnetic field is pointing along
the c axis. The predicted orbits are shown (solid and dotted lines) inside the and
non-magnetic (hexagonal) Brillouin zone. Figure reproduced from [147] and rotated of
30°. Fermi surfaces for the noninteracting triangular lattice a filling of 0.2 for (center)
electron and (right) hole.

The Fermi surface of 2H-AgNiO2 has been measured using this method with the
presence of a magnetic field [147], which has an interesting side effect for our purpose.
The metallic charge-ordered phase in this compound has a magnetic order which makes
the picture more complicated. Above 38T, the magnetic order is completely removed
because all spins are parallel. In this configuration, it is energetically favorable for
electrons on the same site to be on different orbitals rather than pairing. It correspond
to the approximation Umm ≫ Um,m′ we made above in Section 2.2. In this sense,
this can be seen as if the system becomes spinless. We reproduced the Fermi surface
measured by Coldea on the left panel in Figure C.1.



C.2 Spectral function 141

At last, we want to add final comment about Fermi surfaces. Let us consider a
simple model, e.g. the tight-binding for electrons in triangular lattice

ϵe
(
k⃗
)

= −2
(

2 cos
(
kx

2

)
cos

(√
3ky

2

)
+ cos (kx)

)
.

For holes, the relation will be the same relation with an opposite sign

ϵh
(
k⃗
)

= −ϵe
(
k⃗
)
.

The two corresponding Fermi surfaces for a low filling of 0.2 are plotted on the center
and the right panels in Figure C.1. One can see that in the case of electrons (left), the
Γ point is circled and for holes (right), the K points are circled.





Appendix D

Symmetrizations

In this appendix, we shall introduce the symmetrization. We use this method in
the unrestricted Hartree-Fock approach. It adds constrain in the evolution of the
convergence in the algorithm which can help to achieve the latter. The drawback is
that it makes assumptions about the solution. The unrestricted Hartree-Fock algorithm
must always be tested without symmetrization in order to assure the mean-field ground
state is compatible with the chosen cluster. Symmetrization can never be used for
incommensurate phase.

Symmetrization is the fact to choose a cluster, so a set of two vectors for two-
dimensional systems, and constrain parameters to repeat in real space with a modulation
which is at most this cluster. It involves the k⃗-points in the Brillouin zone for these
parameters are limited to the k⃗-points of the chosen cluster. Parameters connected
by a linear combination of vectors of the chosen cluster with integer coefficients are
average. Then, this average value is affect to all assumed equivalent sites.

This action is repeated at each iteration of the unrestricted Hartree-Fock algorithm.
We performed the symmetrization typically on the local electronic density, Hartree
mean-field parameters, and also on the Fock mean-field parameters. Basically, we
used all possible clusters defined in Appendix A.1.2 up to 48 sites. One can cite for
example the symmetrization on a three-sublattice with the vectors v⃗1 = u⃗1 + u⃗2 and
v⃗1 = −2u⃗1 + u⃗2. The symmetrization giving the best results is on 12 sites. It is working
everywhere except for the PCOI phase and, of course, for the incommensurate phases.





Appendix E

Basis of hermitian matrices in the
Pauli matrices representation

In this appendix, we shall briefly review how to express 2 × 2 and 4 × 4 hermitian
matrices as a function of Kronecker Products of the Pauli matrices.

2 × 2 Matrix

Any 2 × 2 hermitian matrix can be a representation of an operator acting on a 1/2-spin.
These matrices can always be rewritten in the Pauli matrices basis {I2, σ

x, σy, σz} ,
with I2 the identity matrix and the Pauli matrices

σx =
 0 1

1 0

 , σy =
 0 −i
i 0

 , σz =
 1 0

0 −1

 .
Proof. A is a general 2 × 2 hermitian matrix.

A =
 a b

b∗ d

 = αI2 + βσx + γσy + δσz, (E.1)

with a, b, c, d, α, β, γ, δ ∈ C. If Eq. E.1 has a solution, so any 2 × 2 hermitian matrix
can be written as a linear combination of Pauli matrices. This Eq. E.1 has a solution


α = a

2 + d
2

β = Re{b}
γ = Im{b}
δ = a

2 − d
2 .
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Let us write the linear combination

A = 1
2 (a+ d) I2 + Re{b}σx + Im{b}σy + 1

2 (a− d)σz.

Notice that all coefficients are now real.

4 × 4 Matrix

At this point, one can ask: Is a 4 × 4 hermitian matrix can be expressed in term in
term of Kronecker Products of Pauli matrices? In other words, can we find a linear
combination of complex coefficients of the ensemble of the 16 Kronecker Products of
Pauli matrices to express a 4 × 4 hermitian matrix? The answer is yes, and we shall
prove it now.

Proof. M is a 4 × 4 hermitian matrix

M =


m11 im12i +m12r im13i +m13r im14i +m14r

m12r − im12i m22 im23i +m23r im24i +m24r

m13r − im13i m23r − im23i m33 im34i +m34r

m14r − im14i m24r − im24i m34r − im34i m44

 .

The coefficient mij are real numbers. Our basis is

B = {bi, i ∈ [1, 16]}

with

b1 = I2 ⊗ I2, b2 = I2 ⊗ σx, b3 = I2 ⊗ σy, b4 = I2 ⊗ σz, b5 = σx ⊗ I2, b6 = σx ⊗ σx,

b7 = σx ⊗ σy, b8 = σx ⊗ σz, b9 = σy ⊗ I2, b10 = σy ⊗ σx, b11 = σy ⊗ σy, b12 = σy ⊗ σz,

b13 = σz ⊗ I2, b14 = σz ⊗ σx, b15 = σz ⊗ σy, b16 = σz ⊗ σz.

In the following, the Kronecker product will be implicit, σi ⊗ σj = σiσj and by
convention, the Kronecker product with Identity will be implicit, e.g. σi ⊗ I2 = σi ans
I2 ⊗ I2 = 1.

G =
16∑

i=1
αibi
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is the most general linear combination with complex coefficient αi ∈ C for this basis. If

M = G (E.2)

has a solution, any 4 × 4 hermitian matrix can be written as a linear combination of
Kronecker Products of Pauli matrices. Eq. E.2 has a solution, which is:

M = 1
4 (m11 +m22 +m33 +m44) b1 + 1

2 (im13i +m13r + im24i +m24r) b2

+ 1
2 (−im13i +m13r − im24i +m24r) b3 + 1

4 (m11 +m22 −m33 −m44) b4

+ 1
2 (im12i +m12r + im34i +m34r) b5 + (m14r + im14i)b6

+ (m23r − im23i)b7 + 1
2 (im12i +m12r − im34i −m34r) b8

+ 1
2 (−im12i +m12r − im34i +m34r) b9 + (m23r + im23i)b10

+ (m14r − im14i)b11 + 1
2 (−im12i +m12r + im34i −m34r) b12

+ 1
4 (m11 −m22 +m33 −m44) b13 + 1

2 (im13i +m13r − im24i −m24r) b14

+ 1
2 (−im13i +m13r + im24i −m24r) b15

+ 1
4 (m11 −m22 −m33 +m44) b16. (E.3)





Appendix F

Pseudo-probabilities

The density-density correlation function is a good way to draw snapshots of the
phases we found for the multiorbital extended Hubbard model because it reads pseudo-
probabilities. It is not real probabilities in the sense that they are not defined positive
and can be complex. The following tool is mostly used in quantum optics and know
as the degree of coherence. In our case, the best way to look at the snapshots of
the unrestricted Hartree-Fock approach is to look at the normalized second order
correlation function

g2 (x, x′;x′, x) = G2 (x, x′;x′, x)
G1 (x, x)G1 (x′, x′) ,

with
G1 (x, x′) = ⟨c†(x)c(x′)⟩,

G2 (x, x′;x′, x) = ⟨c†(x)c†(x′)c(x′)c(x)⟩

and x and x′ are variables, usually the coordinate with or without the time. The first
order correlation function G1 (x, x) reads the probability of having a particle in x P (x).
The second order correlation function G2 (x, x′;x′, x) reads the probability of having a
particle in x and x′ P (x ∩ x′) = P (x|x′)P (x′) = P (x′|x)P (x) in term of conditional
probabilities and using Bayes’ theorem. Using the Wick theorem for fermions,

⟨c†
icjc

†
kcl⟩ = ⟨c†

icj⟩⟨c†
kcl⟩ + ⟨c†

icl⟩⟨cjc
†
k⟩,

one found the general result

g2 (i, j; j, i) = 1 −
⟨c†

icj⟩⟨c†
jci⟩

⟨ni⟩⟨nj⟩
.
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The latter is real for the Multiorbital Extended Hubbard Model and g2(i, i; i, i) = 0
(Pauli principle). Formally, g2 (i, j; j, i) = P (i|j)

P (i) , with P (i) the probability to have an
electron on the state i and P (i|j) the probability to have an electron on the state i
given that an electron is on the state j. From this statement, one can immediately
notice that g2 = 1 means the state i and j are independent. The previous expression
of g2 is convenient for the Hartree-fock approximation because it depends on the
mean-field parameters. However, an expression as a function of diagonal operators is
more suitable for Lanzos approximation

g2 (i, j; j, i) = ⟨ninj⟩ − ⟨ni⟩δi,j

⟨ni⟩⟨nj⟩
,

with δi,j the Kronecker delta. To simplify the picture of a phase, we will focus only
on the correlation between two sites regardless the orbitals. Here a formal derivation,
P (i) = ⟨ni⟩ = ⟨n↑

i ⟩ + ⟨n↓
i ⟩. For i ̸= j, P (i ∩ j) = ⟨ninj⟩. Using Wick theorem,

P (i ∩ j)
P (i)P (j) = 1 −

∑
τ,τ ′=↑,↓

∣∣∣⟨cτ†
i c

τ ′
j ⟩
∣∣∣2∑

τ,τ ′=↑,↓⟨nτ
i ⟩⟨nτ ′

j ⟩
≡ g2 (i, j; j, i) . (F.1)



Appendix G

Drude weight for Hubbard model
in mean-field approximation

This section describe an attempts to determine the metallic character of mean-field
solutions via a calculation of the Drude weight. Although the calculations were not
conclusive because we failed to compute reasonable value of Drude weight they contain
some useful informations, for example for the noninteracting case, that we choose to
report here.

G.1 One-dimensional chain

We will study Drude weight an one-dimension chain.

G.1.1 Kinetic energy of a finite system

The kinetic operator of an one-dimensional noninteracting chain is

K̂ = −t
Ns∑
i=1

(
ĉ†

i ĉi+1 + ĉ†
i+1ĉi

)
,

where Ns is the number of sites in the system, t the hopping integral which is the
amplitude of probability for an electron to go from on site to another and ĉi (ĉ†

i ) the
annihilation (creation) operator of an electron on the site i. The Fourier transform of
the creation and annihilation operators is introduced as follow:

ĉ†
i = 1√

Ns

∑
k⃗∈BZ

e−ik⃗.r⃗i ĉ†
k⃗
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and
ĉi = 1√

Ns

∑
k⃗∈BZ

eik⃗.r⃗i ĉk⃗,

where r⃗i is the position of the site i and BZ is the Brillouin Zone (See Section A.1.2).
This transformation directly diagonalize this operator

K̂ = −2t
∑

k⃗∈BZ

cos
(
k⃗.u⃗

)
ĉ†

k⃗
ĉk⃗.

with u⃗ the displacement between two sites nearest neighbors (n.n.) in one direction,
r⃗n = nu⃗.

G.1.2 Peierls substitution

To distinguish a metal from a insulator at zero-temperature, we look at the response
of the system to an electromagnetic field. We apply a vector potential A⃗ to the tight
binding model which changes the hopping integral with the Peierls substitution [142,
144, 145]

tu⃗i
→ tu⃗i

eA⃗.u⃗i .

u⃗i is the unit cell vector in the i direction. We define A⃗ = ∑
i

ϕi

Li
e⃗i with Li the length

of the lattice in the i direction (Li = Niui) and e⃗i the canonical basis vectors in space.
With this substitution, the kinetic operator becomes

K̂
(
A⃗
)

= −2
∑

k⃗∈BZ

ĉ†
k⃗
ĉk⃗

Nn.n./2∑
j=0

tv⃗j
cos

((
k⃗ + A⃗

)
.v⃗j

)
, (G.1)

with Nn.n. the number of nearest neighbors and v⃗j the vector connecting two nearest
neighbors in the j direction. It leads to the Drude weight in a v⃗i direction [144]

Di = lim
V →∞

1
V

∂2E
(
A⃗
)

∂A2
i

∣∣∣∣∣∣
A⃗=0⃗

, (G.2)

with V the volume of the system, E
(
A⃗
)

the ground state and Ai = A⃗.v⃗i.
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G.1.3 Spectrum of the noninteracting chain in the presence
of a vector potential

We apply the vector potential to an one-dimensional chain. In this case, the latter is
A⃗ → A = ϕ

L
, with ϕ the flux and L = uNs the size of the chain.

K̂ (ϕ) = −2t
∑

k∈BZ
cos

(
ku+ ϕ

Ns

)
ĉ†

k⃗
ĉk⃗.

To find the ground state, we can list the energies given by all possible set of k⃗ used in
the sum

E (ϕ) = −2t
∑

k⃗∈BZ

cos
(
k⃗.u⃗+ ϕ

N

)

then take the lowest energy. Here, we are interested by the ground state close to A⃗ = 0⃗.
Using the expression of k⃗, we can show the energy does not depend on the spacing u
between sites:

E (ϕ) = −2t
∑
{n}

cos
(

(2πn+ ϕ) 1
N

)
,

with {n} defined such as to span all k-points.
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Fig. G.1 Spectrum of a quarter-filled one-dimensional chain with 4 (left) and 8 (right)
sites.

Even though our main focus is the half-filled system, we want to show here that
there are parity effect that can be clearly seen in the quarter-filled case. Spectrum of a
quarter-filled chain of 4 sites (left) and 8 sites (right) as a function the vector potential
A⃗ are report in Figure G.1. Due to a parity effect1, one can see that the behavior of
the energy of ground state close to A⃗ = 0⃗ is completely different and most notably, the
second derivative of the energy is different in both cases. So, one can expect different
behaviors of the limit in the convergence of the Drude weight due to the odd or even
number of electrons, however the limit should be the same.

1One electron in the first case and two in the second case.
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Fig. G.2 Spectrum of a half-filled one-dimensional chain with 4 (left) and 8 (right)
sites.

Spectrum of a half-filled chain of 4 sites (left) and 8 sites (right) as a function the
vector potential A⃗ are report in Figure G.2. One can see that crossing levels goes to
A⃗ = 0⃗ when the size of the system increases (also shown in Ref. [148]). It means that
we have to be careful to crossing levels in order to have a defined derivative of energy
when we compute the thermodynamic limit in Drude weight.

G.1.4 Drude weight of an one-dimension chain

Noninteracting system
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Fig. G.3 Convergence of Drude weight for a quarter-filled (left), half-filled (middle)
and filled (right) chain as a function of the size.

Figure G.3 reports the convergence to the thermodynamic limit of the Drude weight
for three fillings: quarter, half and completely filled band. As expected from the
spectrum seen above, the convergence of the Drude weight has a parity effect and this
effect is stronger for a quarter-filled system than the half-filled system, moreover, for
small system, one can find negative Drude weight corresponding to permanent currents,
nevertheless, the same limit is reached at the thermodynamic limit.

For a completely filled band, one expects an insulator. However the right panel of
Figure G.3 represents the Drude weight as previously for a filled band and as for a
partially filled band, a parity effect appears. The second derivative of the energy is
always zero for even number of sites but has a finite value for a finite size. The system
behaves as expected at the thermodynamic limit.
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Short-range interaction

As defined in Section 2.2, we want to study the effects of short-range interactions
V moreover, in a mean-field approximation, so we will compare here with exact
diagonalization.
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Fig. G.4 Value of the energy of the ground state for a half-filled cluster of 12 sites
without vector potential as a function of the short-range interaction V computed with
Lanczos and mean-field theory algorithm.

First, we plot the energy of the ground state for both method in Figure G.4 for a
12-site cluster at half-filling. and one can notice a notable energy difference. Let us see
if this difference can change the behavior of the system.
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Fig. G.5 Drude weight computed using (left) Lanczos algorithm and (right) mean-field
theory as a function of the short-range interaction V for a half-filled chain of 12 sites.

The Drude weight is expected to drop for sufficient interaction because it induces a
phase transition to a charge-ordered state. Figure G.5 reports the evolution of Drude
weight for 12-site cluster as a function of V for both an exact treatment (left panel) and
a mean-field approach (right panel). One can clearly see that the mean-field approach
is far from capturing the qualitative behavior of Drude weight.
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G.2 Temperature effects on a noninteracting chain
with mean-field theory

Because we sometimes use a small temperature in the mean-field approach, we conclude
on the one-dimensional chain by looking at its effect on the Drude weight. Even for
small temperature, effects on mean-field solution are notable because temperature
mixes all quasiparticle associated to the eigenvectors d†

κ|0⟩ (see Section 3.4.1)
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Fig. G.6 Energy of the ground state of a noninteracting half-filled chain of 4 sites as a
function of the vector potential found exactly and with Mean Field Theory algorithm
at finite-temperature (β = 5).

Figure G.6 summarizes the result in the non-interacting limit at zero and finite
temperature. We took an inverse temperature β = 5 much larger than the typical
temperature we use in unrestricted Hartree-Fock (β = 100) in order to amply the effect.
The effect of the temperature is drastic on the Drude weight as it becomes negative
which correspond to a permanent current. The conclusions for the system of 4 sites
are the same for the system of 8 sites. To conclude this section, computing the Drude
weight in the mean-field approach with temperature should be done carefully.

G.3 Drude weight in noninteracting half-filled tri-
angular lattice

We conclude this appendix with the Drude weight of the noninteracting half-filled
triangular lattice.
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The kinetic operator for the triangular lattice in the presence of a vector potential
using (Eq. G.1) is

K̂
(
A⃗
)

= −2t
∑
{k⃗}

ĉ†
k⃗
ĉk⃗ cos

((
k⃗ + A⃗

)
.u⃗1
)

−2tc
∑
{k⃗}

ĉ†
k⃗
ĉk⃗ cos

((
k⃗ + A⃗

)
. (u⃗2 + u⃗3)

)
,

with u⃗1 = (1, 0), u⃗2 =
(
1/2,

√
3/2

)
, and u⃗3 = u⃗2 − u⃗1.
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Fig. G.7 Drude weight in the u⃗x and u⃗y directions for the noninteracting half-filled
triangular lattice.

The convergence of the Drude weight in the u⃗x and u⃗y directions is plotted in
Figure G.7. The convergence is rather smooth and there is no notable different between
x and y direction.

Notice that no parity effect is present, however, we can see oscillations in the
convergence of the Drude weight.

We conclude this appendix by mentioning that negative Drude weight, computed
this the second derivative as we did or using the current operator, for the half-filled
Hubbard model is a confirmed effect in one dimension [149, 150] by different methods
which has no physical meaning [151] as one can show that it is a size effect and that it
goes to zero at the thermodynamic limit. This negative Drude weight has also been
reported for d-orbitals with a mean-field approach [152].




