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3 Quantum and classical correlations 35 Introduction hen ooling down diluted tomi gses to tempertures of the order of nKD quntum sttistis eomes prominentD nd quntum degenery leds to phenomen like ondenstionD pprition of permi surfesD etFFF his physil regime remined for long inessile to experimentsD ut in the lst twenty yers mzing tehnologil dvnes in oolingD trpping nd imging hve mde it possile to hieve some spetulr resultsF gold toms hve eome very tive nd produtive (eld of physis t the fronE tier etween tomi physis nd ondensed mtter physisF his (eld hs lso seen the wrd of two xoel prizesD tht went to ghuD gohenEnnoudji nd hillips in IWWU for the development of ooling nd trpping tehniques sed on the use of lser light nd to gornellD iemnn nd uetterle in PHHI for the reliztion of foseEiinstein ondenstion in lkli tomi gsesF he ltter hievement ID euse of the groundEreking impt it hd in the ninetiesD is proly the est known result in the (eld nd pved the wy to mny other eutiful resultsX the study of the fgEfig rossover PD the reliztion of the super)uidEwott insultor quntum phse trnsition QD the reliztion of rti(il guge (elds R nd topologil nd strutures SD just to nme someF he progress hs een onstnt sine then nd stteEofE theErt experiments n ttin n unpreedented ontrolD even t the sle of the single tom TF ht mkes physis of quntum gses prtiulrly interesting is the posE siility of relizing the fmous 4quntum emultor4 proposed y peynmn in the eighties UF hen deling with quntum systems the omputtionl ost for ext lultions grows exponentilly with the size of the systemD renE dering the lultions not slle nd limited to mirosopi sizesF por this reson peynmn proposed not to lulteD ut to simulte quntum systems experimentllyF he ide is to study some 4simple4 experimentl systems whih possess quntum degrees of freedomD nd whih n e mpped onto more omplex systemsF por exmpleD old toms in optil ltties @whih we will over more in detil in the next setionAD n e used to simulte W eletrons in rystlsF he min sujet of this thesis is the development of new pproximtion sheme for the numeril study of lttie oson modelsD inspired y the physis of old toms in optil lttiesF herefore the min themes in this thesis re of numeril nd theoretil interestD with potentil relevne for stteEofEtheErt experimentsF sn the following we give rod introdution to eh of these spetsF sn the (rst prt we over some experiments nd tehniques whih re of interest for the models tht we will del withF sn the seond prt we give give rod pnormi introdution to omputtionl methods in ondensed mtter theoryD to ontextulize the method tht we will develop in the following hptersF sn the lst prt we introdue some of the theoretil spets whih re of fundmentl importne to justify our methodF his triprtite introdution will set the ground for the following hptersD where the ore of this thesis will e developedF 1.1 Experimental aspects: optical lattices en optil lttie is stnding pttern of interfering lser emsF etoms n ouple to suh strutureD whih is periodi in speD vi n indued dipole moment nd therefore experiene lttieEshped potentil VF his sheme llows to relize mny di'erent geometri struturesX ui lttieD for exmpleD is reted using lser ems oriented in three orthogonl diretionsD iEdimensionl rry of oneEdimensionl tues using lser ems oriented in two orthogonl diretions E see pigF IFI@EAF sn generlD ny periodi lttie struture n e relized y superimposing (nite numer of lser emsF he periodi struture of optil ltties permits to use numer of theoretil tools proper to ondensed mtter suh sD for exmpleD the tightE inding pprohF por this reson optil ltties n e used to relize experimentlly models suh s the @foseAErurd modelF sn this thesis we will fous on twoEdimensionl osoni ltties nd in prtiulr on squreD tringulr nd kgome lttiesD whih re shown in pigF IFI@EeAD nd whih hve een relized in severl experiments WD IHD IIF ht mkes optil ltties extremely interesting is their wide tunilityF he lttie onstnt n e ontrolled vi the wvelength of the lser emsD the depth of the lttie vi the intensity of the ems nd the intertions mong toms vi peshh resonnes PF his is in strong ontrst to hrd ondensed mtterD where the properties of solids re determined y their internl lttie strutureD whih in generl nnot e modi(ed ontinuously in the experimentsF rving lightEmde lttie implies lso some other mjor dvntgesX there re no defets nd there re no phononsD sine the lttie sites re determined y minim in the interferene pttern nd nnot e displed y olletive exittionF wesurements in optil ltties re performed through imging tehE II pigure IFIX @A vser orienttion nd potentil pro(le in ui lttieF @A vser orienttion nd potentil pro(le in twoEdimensionl squre ltE tie of oneEdimensionl tuesF @EeA woEdimensionl squreD tringulr nd ugome lttiesF pigures @A nd @A dpted from efF IPF niquesD whih in reent yers hve rehed very high level of resolution ! this is the seD for exmpleD of sorption imging nd )uoresene imging VF e widespred tehnique ! whih motivtes mny of the results of this thesis ! is timeEofE)ight imging VD whih permits to mesure the momenE tum distriution of the tomi loudF st onsists in swithing o' ruptly oth the trpping nd the lttie potentils ndD fter time intervlD deE teting the toms through sorption imgingF huring the expnsionD the sptil distriution mps out the momentum distriution n(k) efore the trp releseF his relies on the ssumption thtD when the potentils re swithed o'D toms expnd freelyF yne my notie tht timeEofE)ight imE ges ! see eFgF pigF IFP@A ! re t most twoEdimensionlD given tht n integrtion of the loud imge long the line of sight is performed y the imging systemD lthough reent experiments IQ hve demonstrted full tomogrphi reonstrution of the momentum distriutionF sn the two following prgrphs we present some experimentl results whih show the huge potentil of optil ltties nd whih re lso signi(E nt for the themes tht we will over in the following hptersF 1.1.1 Quantum phase transitions et zero temperture the vrition of rmiltonin prmeter @eFgF mgneti (eldD intertion strengthD FFFA n produe quntum phse trnsition in the ground stte of mnyEody system IRF uh trnsition is not driven y therml )ututionsD s for therml phse trnsitionsD ut y quntum )ututionsD whih re onsequene of reisenerg9s unertinty prinipleF sn old tomi ltties @s well s in ny other experimentl systemAD the temperture is oviously not zeroD ut one n oserve (niteEtemperture onsequenes of the presene of zeroEtemperture quntum phse trnsitionF yne importnt exmple of quntum phse trnsition is the super)uid E wott insultor trnsition in the forementioned foseErurd model IRF his model is desried y rmiltonin
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with J the tunneling prmeterD whih desries the rte t whih toms tunnel from one site of the lttie to n djent one @here with the notE tion •, • we ssumed nerestEneighor tunneling onlyAY U the intertion prmeterD whih ounts for onEsite repulsionY nd µ the hemil potenE tilF hen J U the hopping energy domintesD nd the system is in super)uid phseD in whih toms delolize ll over the lttie nd the system possesses longErnge phse ohereneF his phse exhiits lol denE sity )ututions nd hs no gp in the exittion spetrumF hen U J intertions dominte nd for integer lttie (llings the system enters the soElled wottEinsultor phseD in whih toms re lolized t lttie sites nd the system exhiits shortErnge phse ohereneD with gp opening in the exittion spetrumF hese two phses re onneted y quntum phse trnsition nd tuning the rtio J/U gives ess to its experimentl reliztionF sn n optil lttie suh tuning n e hieved y ontrolling the intensity of the lser emsD whih in turn ontrols the lttie depthF he deeper is the lttieD the more suppressed re hopping proessesD sine the poE tentil rrier to overome is higherD nd the more relevnt re intertionsD sine toms tend to lolize t the minim of the lttie nd then strongly repel eh otherF wore quntittivelyD we hve tht J ∼ exp(-2V 0 /E R ) ISD with V 0 the lttie potentil depth nd E R referene energy lled reoil energyD whih mens tht the rtio J/U depends exponentilly on the lttie depthF he (rst proposl of n experimentl protool to relize the super)uid E wott insultor trnsition is due to tksh et al. in IWWV IT nd the (rst reliztion to qreiner et al. in PHHQ QF he experiment ws relized in ui lttie with Rb toms nd the rmiltonin of the system ws vried ontinuously from the super)uid regime to the wott insulting regimeF sn pigF IFP@A we show the timeEofE)ight imges reported in qreiner9s IQ rtileF por wek ltties @topEleft imgeA the system shows mrked peks in the enter of the frillouin zones @nd t the reiprol lttie vetorsAD whih denotes the phse oherene of the super)uid stteF snresing the lttie depthD the peks grdully dispperD until longErnge oherene is lostF his sme experiment ws lter relized lso in one IU nd two IV dimensionl lttiesF e n use the super)uid E wott insultor phse trnsition to introdue nother importnt tehnique whih is proper to optil lttiesX lttie shkE ingF st n e shown thtD when lttie undergoes periodi modultion of its sptil phse t frequeny ω out of resonne with respet to ll trnsiE tion energies of the systemD nd muh lrger thn the hopping nd ollision rtes in the lowest ndD it is possile to give n e'etive desription of the lttie in whih the hopping prmeters re renormlized s J = JJ 0 (K/ω)D where J 0 is fessel funtion of the (rst kindD K is the shking mplitude nd ω is the shking frequenyF sn prtiulrD one my suppress hopping proesses y hoosing mplitude nd frequeny suh tht K/ω is lose to zero of the fessel funtion J 0 nd thus relize one gin super)uid E wott insultor phse trnsitionF his method ws (rst proposed y ikrdt et al. IW nd relized y vignier et al. in PHHW PHF sn pigF IFP@A we show timeEofE)ight imges from lttieEshking experiment y enesini et al.

PIX notie tht in this se frgg peks pper only long one dimensionD sine the experiment ws relized with single pir of ounterEpropgting emsF he (gure shows from left to right timeEofE)ight di'rtion ptterns of ltties undergoing shkings hrterized y n inresingly lrge K/ω rtioF yne my notie tht regime lking phse oherene ppers twieD sine two suessive zeros of the fessel funtion re explored with the K/ω rtioF woreoverD in etween the two zeros the fessel funtion is negativeD hnging the sign of the hoppings nd the position of the frgg peksF vtE tie shking is in priniple powerful toolD ut its rnge of pplition is limited y onstrints on the shking frequeny ωX the ltter is required to e o'Eresonnt with respet to the other energy sles of the systemD in order to keep the e'etive desription vlidD ut it nnot e too lrgeD sine it would require lrge mplitudes K to hve sizle K/ω rtiosD whih in turn would produe heting s side e'etF 1.1.2 Articial gauge elds yne of the urrent hllenges of oldEtom experiments is to ess the physis indued y strong guge (eldsD even in the most generl se of non elin (eldsF he min limittion to the simultion of mgnetism with old toms is the neutrlity of the lttersF eently mny tehniques hve een developed to overome this di0ultyF yne possile tehnique is to put the toms in rottionF et frequeny lose to tht of the trpD the gorioE lis fore mimis the tion of vorentz fore ting on hrged prtile pigure IFPX @A uper)uid E wott insultor quntum phse trnsition through tuning of the lttie depthF @A uper)uid E wott insultor quntum phse trnsition through lttie shkingF pigures dpted from efsF Q nd PI respetivelyF in uniform mgneti (eld PPF fut this method su'ers from the fundE mentl drwk tht the presene of the entrifugl foreD longside with the goriolis oneD mkes the system unstle for lrge rottion frequeniesF en lterntive method for optil lttie systems is the use of lserEssisted hoppings PQD nmely hoppings proesses in whih prtiles lso quire geometri phse φ ij D thus relizing rmiltonin of the form
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sf ssisted hoppings re orgnized suh tht prtiles quire (nite phse Φ = i→j φ ij on losed loopD this sheme mimis mgneti )ux PRF enE other method is the foreEmentioned lttie shkingF he shking frequeny n e hosen suh tht the fessel funtions renormlizing the hopping pE rmeter tke negtive vluesD whih is equivlent to hving omplex hopE ping proess where toms quire geometri phse Φ = πF his method n e used to relize frustrted tringulr lttie IHD whih will e the topi of our lst hpterD or frustrted ugome lttie IIF sn these two ltties frustrtion indues di'erent forms of degenery t low energies in the singleEprtile spetrumD nmely twoEfold degenery in the se of IS pigure IFQX @A hses nd ssoited experimentl timeEofE)ight di'rtion ptternsF @A etngulr to spirl to stggered hin phse trnsitionF ixE perimentl timeEofE)ight di'rtion ptterns on the left nd orresponding theoretil lultions on the rightF pigures dpted from efF PSF the tringulr lttie nd n in(nite )tEnd degenery in the se of the ugome lttieF es onsequeneD ondenstion of free osons my our t inequivlent vetors of the frillouin zone @tringulrA or not our t ll @ugomeAX studying the (niteEtemperture physis of these ltties in the presene of intertions is therefore very interestingF yne importnt result due to lttie shking is the simultion of frustrted lssil mgnetismD relized y truk et al. in PHII PSF sn the experiE ment twoEdimensionl tringulr lttie of oneEdimensionl tues is (lled with osoni tomsF et low tempertures eh tue hosts foseEiinstein ondensteD whih hs well de(ned phse φ i F his system n e mpped onto model of lssil XY spins S i = [cos(φ i ), sin(φ i )]D where the phse of the ondenste orresponds to the orienttion of the spinF fy lttie shking one n tune independently the hoppings in di'erent diretionsD nd this permits to relize rod vriety of phses @ferromgneti s well s ntiEferromgnetiAF pigF IFQ@A gives visul representtion of these phses in terms of spins nd of the ssoited experimentl di'rtion pttern in timeEofE)ight experimentsF his experiment lso permits to study vriety of phse trnsitionsX pigF IFQ@A shows the evolution of the system from rhomi phse @shown in pigF IFQ@AA to spirl phseD nd then to stggered oneEdimensionl hinsF 1.2 Theoretical aspects: correlations and entanglement sn this thesis we will fous on some importnt theoretil spets of quntum mnyEody theoryF sn prtiulrD our seond hpter will e dedited to entnglement nd quntum orreltionsF intnglement is n essentil qunE tum property of mnyEody sttes tht mnifests itself in the impossiility of desriing the stte of quntum degree of freedom independently of the othersF eording to the seminl work of erner PTD most generl mixed stte is lled entngled if it is not seprleY nd stte is seprle @or lssilly orreltedA ifD given two susystems A nd BD its density mtrix n e expressed s ρ = s p s ρ(s) A ⊗ ρ(s) B D with p s normlized lssil distriution funtionF sn the se of pure sttes @for whih ρ2 = ρAD generi stte n lwys e determined s seprle or not y using the hmidt rnk riterionD whih is sed on hmidt deomposition of the vetor stte @using orthonorml ses for the rilert spes of A nd BA PUF sn the se of mixed sttes @for whih ρ2 = ρA the sitution omplites onsiderlyX the hmidt rnk riterion is not pplile ndD in generlD determining if stte is entngled or not is n xEhrd prolem PVF e neessryD yet not su0ientD riterion for seprility is the eresErorodeki riterion PWD whih is sed on positive de(niteness of prtil trnspose of the density mtrixF he(ning quntum orreltions is lsoD in generlD nonEtrivil tskF sn the se of pure sttes one n unmiguously ssoite quntum orrelE tions with entnglementD ut in the se of mixed sttes it ppers more omplited to give preise de(nitionD sine therml orreltions re lE wys present t T > 0F e possile de(nition ould e extrted from the non lol disturne produed y lol mesurementD whih is reveled y the soElled quntum disord QHF sn ghpF Q we will give new lterE ntive oservleEdependent de(nitionD lulted s the di'erene etween the usul totl orreltion funtion nd response funtionF his quntityD unlike quntum disordD will prove to e ompletely insensitive to lssil therml ritil phenomenF e will lso study the sptil struture of this newlyEde(ned orreltion funtion nd show tht its rpid dey justi(es the introdution of riterion for e'etive seprility of quntum systemsF 1.3 Numerical aspects: computational methods he impressive development of experiments in old toms hs een omE pnied y prllel development of zest of omputtionl methodsF gluE ltions for quntum systems re prtiulrly hllenging euse their omE puttionl ost grows generlly esponentilly with the size of the systemF por this reson most methods rely either on pproximtions or on stohsE 1.3. NUMERICAL ASPECTS IU ti pprohF yne of the ore topis of this thesis is the proposl of new numeril pproh to the thermodynmis of lttie oson systemsF por this reson we (nd it instrutive to give n overview over some of the most ommon methods pprohing the sme prolemF e shll review their strengths nd weknessesD nd we will set the stge for our pprohD tht we rie)y introdue in the lst prgrphF e few of these methods will e nlyzed more in detils in ghpF PF 1.3.1 Exact Diagonalization he very (rst pproh to mnyEody system would e to try nd solve its ssoited eigenvlue prolem through full digonlistion of the rmiltoE ninF his method n e pplied to ny kind of system utD s we explined in the previous prgrphsD the exponentil growth of rilert spe with the size of the system limits its use to smll sizesD where results re strongly fE feted y (niteEsize e'etsF peedEups re possile y exploiting symmetries of the system or y usingD for exmpleD the vnzos lgorithm QIF his lgorithm lultes the (rst m eigenvlues nd eigenvetors of n nxn mE trixD with m nD nd it is prtiulrly useful if one is only interested in the ground stte of the system or in very low temperturesD where few eigenE sttes n suessfully desrie the systemF tteEofEtheErt vnzosEsed tehniques permit to digonlize systems of S = 1/2 reiseneerg spins on ltties of up to round RH sites QPD QQF hespite its limittionsD this method remins very importnt for models to whih other methods re not pplile in generl @eFgF fermioni systemsD frustrted quntum mgnetsAF 1.3.2 Mean-eld theory e (rst pproximted pproh to mnyEody systems is menE(eld @wpA theoryD whih onsists in deoupling the )ututions of some degrees of freeE dom of the system nd then oupling them through their verge vluesF his tehnique n e pplied to lrge vriety of systems rnging from fermioni gses @see eFgF the fmous rrtreeEpok theory QRA to the osoni lttie models of interest in our workF sn this ltter seD wp theory deouE ples the osoni modes ssoited to eh lttie site orD in its improved luster version @wpAD to lusters of sites QSF hespite eing orret t semiEquntittive level in mny situtionsD wp nd wp miss systemtilly the longEwvelength )ututions tht dominte eFgF the physis of ritil pointsF por exmpleD they ompletely miss the peulir nture of the superE )uid phse of twoEdimensionl lttie osons E see ghpF PF 1.3.3 DMRG and variational approaches he hensity wtrix enormliztion qroup @hwqA QT is vritionl method whih is est suited for oneEdimensionl or qusiEoneEdimensionl systems t zero tempertureF hwq relizes systemti truntion of the rilert spe of the system nd it onstruts wveEfuntion y keeping smll numer of importnt sttes @the most prole eigensttes of reE dued density mtrixA in series of inresingly lrge susystemsF hwq n e pplied to virtully ll oneEdimensionl systemsD nd it hs proven to e extremely urte thnks to the wek entnglement ontent of most oneEdimensionl rmiltonins of physil interestF st n e pplied to equiE lirium systems whih reh few thousnds of sitesD nd it n e used s well to study nonEequilirium phenomen @on smller lttiesA QUF ixtenE sions of hwq re possile to (nite temperture QV nd to ylinderEshped twoEdimensionl ltties QWF ritionl methods whih re similr to hwq in spirit re sed on wtrix rodut ttes @wAD whih re restrited to oneEdimensionl systemsD nd their generliztion to ny dimensionD the soElled ensor xetwork ttes @xA RHF hese methods re prtiulrly suited for the study of ground sttesD ut there exist some very reent extensions to (niteE temperture RIF 1.3.4 Quantum Monte Carlo he nme untum wonte grlo @wgA denotes fmily of stohsti methods sed on wonte grlo pprohD whih inludes eFgF vritionl wgD di'usion wgD pth integrl wg ! RPD RQD RR for rief introdution to the wonte grlo methodD in its wetropolis versionD we refer the reder to ppendix eF he ommon ground of these methods is the lultion of multiEdimensionl integrls through guided stohsti smpling of the integrnd @importne smplingAF wg is statistically exact in the sense tht n idel in(niteEtime simultion onverges to the ext resultF his method revels to e very e'etive in desriing longErnge orreltions nd ritil phenomenF he min wekness of wg is tht its use is limited to rodD yet restrited lss of modelsF he domin of ppliility of wg is limited y the soElled 4sign prolem4D whih prevents the pplition of wg to generi fermioni systemsD or to osoni systems in guge (elds @inluding frustrted mgnetismAF he sign prolem rises from negtive @or imginryA proility mplitudes ppering in the simultions RSF sn the se of fermions the origin of this prolem resides in the properties of the wveEfuntionD whih is ntiEsymmetri for the exhnge of two prtilesF he impossiility of pplying wg to systems whih re urrently of gret interest for experimentsD suh s frustrted lttiesD requires for the serh of new lterntive methodsF 1.3.5 Auxiliary Field Monte Carlo sn the lst hpter of this thesis we introdue method lled uxiliryE(eld wonte grlo @epwgAD whih is similr in spirit to pprohes suh s tht used in efF RT for spins nd osonsD or to some others used in the ontext of lttie fermions RUF sn its generl version epwg su'ers from hevy sign prolemD tht we overome y using semiElssil pproximtion tht we develop in ghpF R nd we ll quntum menE(eld @wpA pproximtionF he epwg method supplemented with the wp pproximtion is redE ily suited for the study of the thermodynmis of lrge lss of osoni systemsD inluding frustrted lttie osonsF 1.4 Outline of the thesis he thesis is orgnized s followsF sn ghpF P we nlyze more in detil some of the methods ommonly in use for the study of the thermodynmis of lttie systemsF sn ghpF Q we study quntum nd lssil orreltions nd show how they live on very di'erent length slesF e fous in prtiulr on the foseE rurd model in the limits of hrdEore osons nd quntum rotorsF sn ghpF RD on the sis of this lengthEsle seprtionD we introdue the forementioned quntum menE(eld pproximtion nd pply it to the test model of quntum rotorsF sn ghpF S we introdue the uxiliryE(eld wonte grlo pproh @epwgAD nd pply its wpEpproximted version to the study of frustrted osons in tringulr lttieF ghpF T is devoted to onlusionsF

Chapter 2 Some numerical approaches to lattice-boson systems sn this hpter we rell nd illustrte more in detil some of the numeril methods mentioned in the introdutionF e use untum wonte grlo resultsD whih re sttistilly extD s refereneD nd ompre them to luster menE(eld theory @wpA nd qutzwiller wonte grlo @qwgAD two methods sed on qutzwiller menE(eld enstzF wp is selfEonsistent method whih n e improved systemtilly y onsidering lusters of lrger sizeF feing limited to smllEsized lusterD this method is unle to pture longErnged orreltionsF qwgD onverselyD thnks to its stohsti ntureD is le to desrie therml )ututions t ll slesF st ptures therefore the orret nture of therml phses nd phse trnsitionsD ut it is less urte then wp lose to zero tempertureD euse in tht limit it redues to singleEsite wpF he fous of this hpter is on hrdEore osons on squre lttie t (nite tempertureD whih will often serve s test system lso in the following hptersF he hoie of this model is motivted y the limited omputtionl ost required y simultions @with respet toD for exmpleD the more generl se of 4softore4 osonsA due to the miniml size of the lol rilert speF xonethelessD in order to keep the tretment s generl s possileD ll the equtions will refer to 4softore4 osonsD while ll the plots will show results for hrdEore osonsF foth wp nd qwg ould e used for systems with mgneti frustrtionD for whih we shll not hve referene method to ompre withF PI PP CHAPTER 2. SOME NUMERICAL APPROACHES 2.1 Hard-core bosons in two dimensions e rell the rmiltonin of the foseErurd modelD whih hs lredy een mentioned in the introdutionX

Ĥ = -J ij b † i bj + h.c. - U 2 i ni (n i -1) -µ i ni . @PFIA
he vrious phses of the system re est hrterized y studying the (rstEorder orreltion funtion g(i, j) = b † i bj F hen onsidering twoE dimensionl systemD werminEgner9s theorem predits the sene of true ondenstionD nmely of longErnge phse oherene t ny tempertureD imposing tht g(i, j) deys to zero t lrge distnesF xonetheless the sysE tem still exhiits ferezinskiiEuosterlitzEhouless @fuA phse trnsition RVD RWD SH etween low temperture nd high temperture phseF et low temperture the orreltion funtion exhiits n lgeri dey in the form g(r) ∼ r -η(T ) , @PFPA where r = |r ir j | is the interEsite distneF he system is in regime lled 4qusiEondenste4 SID in whih the numer of prtiles in the onE densteD n(k = 0) = (1/L 2 ) ij b † i bj sles s L 2-η(T ) D nmely it diverges @s η(T ) < 2AD ut is not extensiveF his hppens euse therml e'ets re strong enough to prevent full ondenstion even t very low temperE turesF gonverselyD t high temperture the orreltion funtion shows n exponentil dey g(r) ∼ e -r/ξ(T ) , @PFQA hrterizing norml phseD in whih n(k = 0) remins (nite for L → ∞F herefore there must e trnsition etween the two regimes t some T BKT F st is not possile to ssoite n order prmeter to suh trnsition @it is sid to e of 4in(nite order4 RWAD ut it is nevertheless hrterized y the divergene of the orreltion length ξ(T ) while pprohing T BKT from oveF sn the limit of lrge onEsite intertion U/J 1D nd (lling n < 1D osons reh the 4hrdEore4 limitD in whih one my neglet the multiple ouption of eh lttie siteF sn this limit one my inorporte the hrdE ore onstrint into the ommuttion reltions of the opertorsD y requesting tht

[â i , â † j ] = 0 for i = j , (â † i ) 2 = (â i ) 2 = 0 , {â i , â † i } = 1 , @PFRA
where we renmed the osoni opertors s a ( †) D to highlight tht they refer to osons of hrdEore typeF he intertion term n then e dropped in iqF @PFIAD nd the rmiltonin eomes

Ĥhc = -J ij â † i âj + h.c. -µ i ni . @PFSA
he ommuttion reltions of hrdEoreEoson opertors re the sme s those of the uli mtries σ + nd σ -D implying the mpping from hrdEore osons to S = 1/2 spins s SP

âi → Ŝ- i = Ŝx i -i Ŝy i , @PFTA â † i → Ŝ+ i = Ŝx i + i Ŝy i . @PFUA
fy introduing the new opertors in the rmiltonin nd removing the onstnt termsD one gets the new rmiltonin

ĤXY = -2J i,j Ŝx † i Ŝx j + Ŝy † i Ŝy j -µ i Ŝz i , @PFVA
whih is preisely tht of the S = 1/2 quntum XY model in trnsverse mgneti (eld µF his ext mpping llows one to express results either in the lnguge of spins or of lttie osonsF 2.2 Quantum Monte Carlo rrdEore osons on squre lttie n e e0iently simulted using unE tum wonte grloD here in the ttisti eries ixpnsion @iA formultion RPD RQD RRF ithout going into the detils of this formultionD we shll limit ourselves to sying tht it is sed on ylor expnsion of the denE sity opertor e -β Ĥ in powers of the inverse temperture βF sn pigsF PFI we show some results otined using ode developed y F osildeF ith these plots we do not intend to study the system in detilD ut just to give quntittive referene for the other methods tht we present in the following setionsF por this reson we limit ourselves to smll lttiesF pigsF PFI@EA show the kineti energy nd the k = 0 pek of the momenE tum distriution n(k) for di'erent lttie sizesF foth quntities re divided y the numer of sites of the lttieF es one my expet the kineti enE ergy grows with the trnsition from super)uid to norml phseD wheres the momentum pek deresesD sine oherene is progressively lostF pigF PFI@A shows pek for the spei( hetD whih normlly ppers just ove the fu trnsition SRF he spei( het does not show ny disontinuity sineD s sid previouslyD the trnsition is n in(niteEorder oneF et the trnsition the n(k = 0) sles s L 7/4 D sine η(T BKT ) = 1/4 SSF yne my extrt n estimte for the in(niteEsize system fu trnsition temperture y (niteE size slingD s shown in pigF PFI@dAF pigure PFIX @EA uineti energy nd n(k = 0)D oth expressed per siteF @A pei( hetF @dA piniteEsize sling for n(k = 0)L -7/4 F he vertil line mrks the referene fu trnsition temperture s otined in SQF ell plots refer to hrdEore osons nd employ the temperture t = k B T /JD with k B the foltzmnn onstntF 2.3 Cluster mean-eld approach es we mentioned in the introdutionD menE(eld @wpA pproximtion ST mounts to deoupling the )ututions of seleted degrees of freedom of systemD nd oupling the ltter only through their verge vluesF sn the PS se of lttie osonsD these degrees of freedom might e the osoni modes ssoited to single sites of the lttieD or to lusters of sitesD in order to gin more urte desription E see pigF PFPF hen onsidering the ground stte of the systemD luster wp pproh mounts to minimizing the groundEstte energy

E[ψ M F ] = ψ M F | Ĥ|ψ M F @PFWA
of wve funtion in the form

|ψ MF = ⊗ c |ψ c , @PFIHA
where c is the luster indexF sn the (nite temperture se it mounts to minimizing the free energy

F [ρ; T ] = Tr[ρ Ĥ + T ρ log ρ] @PFIIA of ftorized density mtrix ρρ MF = ⊗ c ρc .
@PFIPA foth iqF @PFIHA nd iqF @PFIPA show how wp theory neglets ny form of orE reltions nd entnglement mong degrees of freedom elonging to di'erent lustersF yn the other hndD one my notie tht suh n pproh eomes ext in the limit of n in(nite lttie onnetivityD sine entnglement gets spred mong ll degrees of freedom nd then eomes negligileF sn the following we present the selfEonsistent luster wp method QSD SUD SV sed on the qutzwiller nstzD oth for zero nd (nite temperturesF 2.3.1 Single-site Gutzwiller mean eld he onventionl qutzwiller enstz SW mounts to ftorizing the wveE funtion into lusters omposed of single sitesF sn homogeneous lttieD eh site i will hve lol wve funtion

|ψ i = nmax n=0 f n i |n i , @PFIQA
where |n i is lol pok stte with n prtiles nd n max is onvenient utE o'F e fous on spei( site j nd express the wve funtion of the system s |ψ χ j ⊗ |ψ j D where |ψ χ j = ⊗ i =j |ψ i is the wve funtion of the rest of the system ut the site j @χ j stnds for the omplement to jAF xotie tht this eqution is in the form of iqF @PFIHAF he foseErurd rmiltonin iqF @PFIA n then e written s sum of three ontriutions Ĥ = Ĥj + Ĥχ j + Ĥjχ j , @PFIRA whih desrie respetively the site jD the rest of the systemD nd the interE tion etween j nd the rest of the systemX

Ĥj = U 2 nj (n j -1) -µn j , Ĥχ j = -J i =j,l =j b † i bl + h.c. + U 2 i =j ni (n i -1) -µ i =j ni , Ĥχ j j = -J j b † j bj + h.c. , @PFISA
where j denotes the sum over the nerest neighors of site jF e n de(ne n e'etive onEsite rmiltonin Ĥj e = ψ χ j | Ĥ|ψ χ j for the site jD tht in the lol sis {|n j } hs mtrix form

Ĥj e m j n j = m j | Ĥj |n j + ψ χ j | Ĥχ j |ψ χ j δ m j n j -J j m j | b † j |n j ψ χ j | bj |ψ χ j + h.c. . @PFITA
rere m j | Ĥj |n j n e esily expressed in the lol sis {|n j }D wheres ψ χ j | Ĥχ j |ψ χ j δ m j n j represents n energy o'setD whih n then e negletedF yne n mke initilly n ritrry hoie for the oe0ients {f n } ndD sine the lttie is homogeneousD express the expettion vlues for the sites j in iqF @PFISA s

ψ| bj |ψ = ψ j | bj |ψ j = n j f * n j f n j +1 √ n + 1 . @PFIUA
his permits to digonlize the rmiltonin nd to otin new set of oe0ients {f n j } from the ground stteF he proess n e iterted until it rehes onvergene nd the (nl ground stte n e used to lulte expettion vlues for the oservlesF his proedure is onsistent with vritionl pproh to the groundE stte energyD whih n e minimized using the method of vgrnge multiE pliersF yne hs

E λ = ψ| Ĥ|ψ -λ ψ|ψ , @PFIVA
where λ is vgrnge multiplier whih ounts for the normliztion of the wve funtionF smposing the vnishing of the derivtive with respet to the lol wveEfuntion ψ j |D we otin

∂E λ ∂ ψ j | = ψ χ j | Ĥ|ψ χ j |ψ j -λ|ψ j = Ĥj e |ψ j -λ|ψ j = 0 , @PFIWA
whih is preisely the eigenvlue prolem of Ĥj e F 2.3. CLUSTER MEAN-FIELD APPROACH PU he selfEonsistent method here presented for zero tempertureD n e esily extended to (nite tempertureD y onsidering system in the form of iqF @PFIPAD nmely ρ = ⊗ i ρi F yne n otin n e'etive rmiltonin t site j s

Ĥj e = r χ j [ Ĥ ρ] = Ĥj -Jz Φ b † j + h.c. , @PFPHA
where r χ j denotes prtil tre over the omplement to jF rere z is the oordintion numer of the lttie nd Φ is the wp prmeterD whih is the sme is the sme for ll the z neighors of the lttie site jD sine the lttie is homogeneousF yne n mke onvenient initil ssumption for Φ @whih ounts for mking n initil ssumption for ρA nd lulte new wp prmeter s

Φ = r[ bj e -β Ĥj e ]
r[e 

|ψ c = Nmax Nc=1 f Nc |N c . @PFPPA
rere |N c = |n 0 , n 1 , ..., n s c D with n i the numer of prtiles on the iEth site of the luster nd N max = s(n max + 1) onvenient utEo'F he e'etive lol rmiltonin of c results

(H c e ) McNc = ψ χc | Ĥχc |ψ χc δ McNc + M c | Ĥc |N c -J j∈∂c ν j Φ M c | b † j |N c + h.c. , @PFPQA
where Ĥc @ Ĥχc A indites foseErurd rmiltonin iqF @PFIA restrited to sites i nd j @notA elonging to the luster cD Φ denotes the wp prmeterD ∂c is the frontier of the luster nd ν j is the numer of onnetions linking the site j to sites outside the lusterF por exmpleD for squre lttie nd squre lusterD ν j is P for orner site nd I for site long n edge ! see pigF PFP@AF his form of iqF @PFPQA relies one gin on the ssumption tht the wp to whih order sites ouple is the sme in ll the diretionsD whih is onsequene of onsidering homogeneous lttieF yne mde n initil pigure PFPX @A grtoon of squre lttie divided into QxQ lustersF @EA womentum pek nd kineti energy per site lulted with wp for di'erent luster sizesD ompred to wg @dt from QTxQT lttieAF @dA ixtrpoltion of the trnsition temperture with the surfeEtoEulk rtio of lustersF he horizontl line represents the referene vlue T BKT = 0.685 k B /JF ell plots refer to hrdEore osons nd employ the redued temperture t = k B T /JD with k B the foltzmnn onstntF ssumption for the oe0ients {f Nc }D new wp prmeter n e otined

2.3. CLUSTER MEAN-FIELD APPROACH PW s Φ = Mc,Nc f * Mc f Nc M c | bt |N c , @PFPRA
where t denotes trget site elonging to the lusterF his siteD if possileD should elong to the ulk of the lusterD or t lest e minimlly oupled to the wpD in order to void the e'ets of the luster oundries s muh s possileF es in the se of singleEsite wpD this proedure n e iterted until onvergene is rehedD nd expettion vlues for the oservles n e lulted from the (nl ground stteF his method n e strightforwrdly generlized to (nite tempertures in omplete nlogy to wht is done in the singleEsite seF esults otined with wp for Pd hrdEore osons on the squre lttie re reported in pigF PFP@EAD where they re ompred to wgF epplying the wp pproh to hrdEore osons mounts to rephrse ll the previous formuls involving osoni opertors bi D b † i in terms of hrdEore oson opE ertors âi D â † i @or simply to set n max = 1AF he omprison is drwn using wg dt for the lrgest of the ltties onsidered so fr @the QTxQT ltE tieAD whih is the lest 'eted y (niteEsize e'etsF yne n notie how results slowly move loser to those of wg upon inresing the size of the lustersF roweverD the wp pproh ompletely misses the nture of the lowEtemperture phseD whih is desried y wp s possessing true longE rnge order in ontrdition to werminEgner9s theoremY s well s the nture of the trnsitionD whih is inevitly represented s elonging to the wp universlity lssF yne my extrt n estimte for the ext trnsition temperture y using polynomil extrpoltion in the surfeEtoEulk rtio λ of the lustersD de(ned s

λ = N ext N int + N ext , @PFPSA
where N ext is the numer of onds linking the degrees of freedom within the luster to those externl to the lusterD while N int is the numer of onds within the lusterF rene λ = 1 for the si @singleEsiteA menE(eld pE proximtionD while λ = 0 orresponds to the ext result of single luster overing the whole systemF e performed liner (t to the wp estimtes of the trnsition temperture for eh luster sizeD orresponding to the temE perture t whih n(k = 0) vnishesF he result is shown in pigF PFP@dAF he in(niteEsize estimte tkes vlue T λ=0 = (0.86 ± 0.05) k B /JD whih ppers to e quite fr from the est estimte T BKT = 0.685 k B /J SQF yne my lso notie tht wp results strongly depend on the luster sizeD with the in(niteEsize estimted trnsition temperture eing lmost hlf the singleEsite one @λ = 1AF his result will e useful for the following hptersD where similr proedure of extrpoltion will e usedD leit in di'erent ontextF

Gutzwiller Monte Carlo

e present now 4hyrid4 method whih relies on oth wp nd wonte grlo pprohD nd whih hs een used in few reent works deling with frustrted osons nd spins THD TIF he qutzwiller wveEfuntion introdued in the previous setion n e st in its most generl form s

|ψ( f ) = N i=1 |ψ i = N i=1 nmax n i =0 f (i) n i |n i , @PFPTA where f = {f (i) n i } is n rry of N (n max + 1) omplex oe0ientsD normlized s nmax n i =0 |f (i)
n i | 2 = 1 on eh siteF xotie tht now oe0ients n di'er from site to siteF feuse of the normliztion onstrint we hve tht f (i)

n i = α (i) n i e iφ (i) n i D with 0 ≤ α (i)
n i ≤ 1F e n lulte the prtition funtion of the system s

Z = {n i } {n i }|e -β Ĥ|{n i } = C D[ f ] ψ( f )|e -β Ĥ|ψ( f ) , @PFPUA
where C is numeril ftor nd we hve set

D[ f ] = i,n i df (i) n i df * (i) n i 2πi = i,n i dφ (i) n i dα (i) n i α (i) n i δ n i (α (i) n i ) 2 -1 .
@PFPVA e notie tht the metri for the mplitude n e hosen ritrrilyD sine it only modi(es the numeril ftor CF rere we hve hosen the one nturlly emerging from the integrl of the oe0ients on the omplex plneF he weights ψ( f )|e -β Ĥ|ψ( f ) re still unknown without digonlizE ing the rmiltoninF e drsti pproximtion onsists in ssuming tht qutzwiller stte |ψ( f ) indeed digonlizes ĤD so tht

ψ( f )|e -β Ĥ|ψ( f ) ≈ e ψ( f )|-β Ĥ|ψ( f ) = e -βE( f ) , @PFPWA
where

E( f ) = -2J i,j nmax n i ,n j =1 γ ij (n i , n j ) cos θ (i) n i -θ (j) n j + i,n i α (i) n i 2 U 2 n i (n i -1) -µn i @PFQHA nd γ ij (n i , n j ) = √ n i n j α (i) n i α (i) n i -1 α (j) n j α (j)
n j -1 , @PFQIA QI pigure PFQX @EA uineti energy nd k = 0 pek in momentum distriution lulted using wg nd qwgF @A piniteEsize sling for n(k = 0)L -7/4 F ell plots refer to hrdEore osons nd employ the redued temperture t = k B T /JD with k B the foltzmnn onstntF with θ (i)

n i = φ (i) n i -φ (i)
n i -1 F his model represents generlized XY model with )ututing ouplingsD with the XY spins living on (d + 1)-dimensionl lttie with sites (i, n i )D where the extr dimension is provided y the ouE ption numerF he XY intertions involve ll sites (i, n i ) nd (j, n j ) with (i, j) nerest neighorsF yne n pproximte the prtition funtion s

Z ≈ Z GM F = C D[ f ] e -βE( f ) , @PFQPA
whih is suitle for wonte grlo pprohF yne my notie thtD t su0iently high tempertures @suh tht βU, βJ 1AD iqF @PFPWA eomes extX f ) , @PFQQA wheres t T = 0 the pproh reprodues the qutzwiller menE(eld ground stteF e wonte grlo simultion of the prtition funtion iqF @PFQPA should ontin two types of movesX n updte of α (i)

ψ( f )|e -β Ĥ|ψ( f ) ≈ 1 -β ψ( f )| Ĥ|ψ( f ) = 1 -βE( f ) ≈ e -βE(
n i oe0ientsD preserving the onstrint n i (α (i) n i ) 2 -1D nd n updte of the θ (i) n i oe0ientsF yservles n e otined s Ô GMC = ψ( f )| Ô|ψ( f ) T = C D[ f ] ψ( f )| Ô|ψ( f ) e -βE( f ) Z @PFQRA por exmpleD the twoEpoint opertor b † i bj tkes the form b † i bj = nmax n i ,n j =1 γ ij (n i , n j ) cos θ (i) n i -θ (j) n j + i sin θ (i) n i -θ (j) n j .
@PFQSA his n e used to lulte the kineti energy nd the n(k = 0) pekD whih re shown in pigF PFQF his pproximtion gives y onstrution quntittive desription of the thermodynmis of the foseErurd model t su0iently high temE perture for the expression iqF @PFQQA to e vlidF qiven tht iqF @PFQHA hs the sme symmetries nd rnge of the intersite ouplings s the originl foseErurd rmiltoninD therml trnsitions re expeted to e reproE dued with the orret universlity lssD even though the orret vlue of the trnsition temperture is lrgely missedF his n e seen in pigF PFQ@AD where the estimte T BKT ≈ 0.36 k B /J is roughly one hlf of the ext vlueF his shows how etter desription of quntum )ututionsD tht here re pprohed in wp wyD is fundmentl for orret quntittive piture of (niteEtemperture physisF et low tempertures the essentil lssil nture of the (eld theory de(ned y iqF@PFQHA emergesF yne my notie tht the kineti energyD in pigF PFQ@AD is liner t low temperturesD thus implying onstnt spei( het C v F his is lssil resultD whih is onsequene of the equiprtition of energy nd is in strong ontrst with the C v ∼ T 2 dependeneD determined y fose sttistisD tht one would exE pet for our model TPF woreoverD this overestimtion of temperture e'ets t low temperture is rguly t the origin of the underestimtion of the trnsition tempertureF yne my lso notie tht t zero temperture the method provides the singleEsite wp ground stteD s n e seen ompring the lowEtemperture vlues for kineti energy nd n(k = 0) in pigF PFQ@EA to those in pigF PFP@EAF QQ es (nl remrkD we notie tht one my nively think of generlizing the qwg pproh to the se of luster deoupling in the form

|ψ cM F = Nc c=1 |ψ c , @PFQTA ψ cM F |e -β Ĥ|ψ cM F e -β ψ cM F | Ĥ|ψ cM F . @PFQUA
fut this pproximtion turns out not to e usefulX the vetor f prmetrizing the luster wp stte grows exponentilly with the luster sizeD nd iqF @PFQUA does not eome more urte upon inresing the luster sizeD not even in the limit in whih the luster oinides with the whole systemF Chapter 3

Quantum and classical correlations

sn this hpter we investigte the sptil struture of quntum orreltions y introduing quntum orreltion funtionD de(ned s the di'erene eE tween the totl orreltion funtion nd response funtionF e show how this newlyEde(ned quntum orreltion funtion ! in ontrst with the omE monly used quntum disord ! only ptures the truly quntum spets of mnyEody quntum sttesF e lso oserve tht its very rpid sptil dey nturlly de(nes riterion for e'etive seprility of susystemsF hese rgumentsD esides eing of spei( theoretil interest themselvesD onstiE tute fundmentl justi(tion for the pproh to lttie systems tht we will develop in ghpF RF

Quantum correlation functions

e onsider generi quntum model with rmiltonin ĤD in therml equiE lirium t temperture T D or t n inverse temperture β = (k B T ) -1 F vet ÔA nd ÔB e some lol oservles ssoited with two non overlpping regions A nd B of the systemF e de(ne the twoEpoint quantum correlation function @gpA etween A nd B s followsX

δ ÔA δ ÔB Q = δ ÔA δ ÔB - ∂ ÔA λ B ∂λ B λ B =0 @QFIA = δ ÔA δ ÔB - 1 β β 0 dτ δ ÔA (τ )δ ÔB (0) . rere ... = Tr(...ρ) denotes the therml vergeD with ρ = e -β Ĥ/Z nd Z = Tr(e -β Ĥ)Y δ Ô = Ô -Ô is the )utution with respet to the verE geY λ B is (eld oupling to ÔB vi term -λ B ÔB dded to the rmiltoE nin nd ... λ B = Tr[...ρ(λ B )] with ρ(λ B ) = e -β( Ĥ-λ B ÔB ) /Tr[e -β( Ĥ-λ B ÔB ) ]Y QS Ô(τ ) = e τ Ĥ
Ôe -τ Ĥ is the imginryEtimeEevolved opertorF e simple physE il exmple of this ould e twoEsite system with sites A nd B where ÔA = nA D ÔB = nB nd λ B = µ B is lol hemil potentilF he gp evlutes the di'erene etween the onventionl twoEpoint orreltion funtion @gpA involving the regions A nd BD nd the response funtion of region A upon perturing region B with (eld λ B F sn ny lsE sil systemD these two quntities re identi(ed vi )ututionEdissiption reltion TQD nd therefore the gp is identilly zeroF sn quntum sysE temD the gp is nonEzero sineD in generlD oth ommuttors [ ÔA , Ĥ] nd [ ÔB , Ĥ] re nonEvnishingF st is immedite to verify tht if one of them vnishesD then the gp vnishesF he gp proes how the ÔA nd ÔB re jointly incompatible with ĤD nmely how the reisenerg9s unertinties of ÔA nd ÔB on eigensttes of Ĥ orrelte with eh otherF yne my notie tht the ft tht oth ÔA nd ÔB possess quntum unertinty is not su0E ient to hve nonEzero gpF por exmpleD for rmiltonin Ĥ = ĤA + ĤB D where A nd B re two unorrelted susystems @nmely [ ĤA , ĤB ] = 0AD one n esily show tht the gp vnishes even if oth [ ÔA , ĤA ] nd [ ÔB , ĤB ] re nonEzeroF gorreltions etween the susystems A nd B re neessry in order to hve nonEzero gpF st is interesting to explore the low @T = 0A nd high @T = ∞A temperture limits of the gpF yne would expet tht the gp oinides with the totl gp t T = 0D where no therml ontriution is presentD nd tht it vnishes t T = ∞D where quntum e'ets dispperF sn the following we show tht these expettions re mthedF roving the oinidene of gp nd totl gp t zero temperture mounts to proving tht the imginryEtime orreltion funtionD evluted on the ground stte of the system δ ÔA (τ )δ ÔB (0) 0 D dereses to zero for τ → ∞F his is true if the integrl

β 0 dτ δ ÔA (τ )δ ÔB (0) 0 ≤ β 0 dτ δ ÔA (τ )δ ÔB (0) 0 @QFPA
grows slowlier thn linerly with βD so tht it vnishes when divided y βF yne n mke use of the sis |n of eigensttes of Ĥ with eigenenergies E n D nd ssume tht the system dmits nonEdegenerte ground stte |0 F yne hs tht

δ ÔA (τ )δ ÔB (0) 0 = n>0 0|δ ÔA |n n|δ ÔB |0 e -∆Enτ ≤ n>0 0|δ ÔA |n n|δ ÔB |0 e -∆Enτ , @QFQA
where ∆E n = E n -E 0 > 0D nd the groundEstte term disppers euse 0|δ ÔA(B) |0 = 0 y onstrutionF rene the imginryEtime orreltion QU funtion is sum of exponentilly deresing termsD nd it dereses to zero in the limit τ → ∞D thus proving wht nnouned previouslyF e deliertely ssumed tht the ground stte is uniqueD sine the se of degenerte ground stte is somehow pthologilF enywyD in the hypotheti se of degenerte ground stteD one ould lift the degenery with n in(nitesiml perturtionD nd remrk tht the identity etween quntum nd totl orreltion funtion t T = 0 is ompletely independent of the perturtionF sn the opposite limit of T = ∞ one n expnd the exponentils e ±τ Ĥ nd esily show tht the gpD s expetedD vnishesF

Hamiltonian separability

eording to the previously mentioned erner9s de(nition PT stte is de(ned s seprle @or lssilly orreltedA if its density mtrix n e written s ρ =

s p s ρ(s) A ⊗ ρ(s) B , @QFRA
where p s is normlizedD lssil distriution funtion weighing di'erent ftorized forms for ρF sn generlD owing to the semiEpositive de(niteness of density opertorsD we n lwys write them s exponentil of @e'etiveA rmiltonin opertorsX

ρ = e -β Ĥ = s p s e -β Ĥ(s) A ⊗ e -β Ĥ(s) B @QFSA
where Ĥ = Ĥln ZF sn order to lulte the gpD it is neessry to know expliitly how the density mtrix is deformed upon pplying (eld termD nmely upon shifting the rmiltonin Ĥ y -λ A ÔA -λ B ÔB F his invites us to restrit the onept of seprility ! see pigF QFI ! to tht of Hamiltonian separabilityD nmely to interpret Ĥ(s) A(B) s physical rmiltonins whih re 'eted linerly y the orresponding (eld termsF rene we shll sy tht seprle density mtrix ρ @s in iqF @QFSAA is rmiltoninEseprle if (d) When two sites i and j of a lattice system are separated by a distance far exceeding the quantum coherence length ξ Q , the sites in between mediate their correlations in a similar way as a classical statistical eld coupling the two sites.

ρ(λ A , λ B ) = e -β( Ĥ-λ A ÔA -λ B ÔB ) = s p s e -β( Ĥ(s) A -λ A ÔA ) ⊗ e -β( Ĥ(s) B -λ B ÔB ) . @QFTA @notie tht ρ(λ A , λ B )
classical statistical eld whose congurations are parametrized by the parameter s, and which correlate A and B in a classical sense. We can make the following statement:

Theorem: A non-zero QCF, δ ÔA δ ÔB Q = 0, for some observables ÔA and ÔB implies that A and B are not Hamiltonian-separable.

Proof: Considering a Hamiltonian-separable density matrix for subsystems A and B, ρ(λ A , λ B ) as in Eq. (3.5), and the corresponding partition function

Z(λ A , λ B ) = Tr[ρ(λ A , λ B )], we have that ∂ ÔA ∂λ B λ B =0 = 1 Z(0, 0) s p s Tr A { ÔA e -β Ĥ(s) A } ∂ ∂λ B Tr B {e -β( Ĥ(s) B -λ B ÔB ) } λ B =0 -ÔA 1 Z(0, 0) ∂Z(0, λ B ) ∂λ B λ B =0 = ÔA ÔB -ÔA ÔB . (3.7)
As a consequence, Hamiltonian separability implies the vanishing of all QCFs δ ÔA δ ÔB Q , and the presence of at least one non-vanishing QCF negates Hamiltonian separability. Therefore, nding a nite QCF rules out that the correlations between the uctuations of local observables ÔA and ÔB are generated purely by cor- QW relted lssil noiseF hisproving rmiltonin seprility does not imply disproving the most generl form of seprility in iqF @QFRA ! see pigF QFI ! whih would e equivlent to proving entnglementD nd whih remins hllenging tskF xonetheless the sene of rmiltonin seprility is tightly relted to the existene of some form of quntum orreltionsF es (nl remrk we oserve tht the ove result is not limited to iprtitions of the systemD ut it pplies to A nd B eing ny two susystems in ritrry multiEprtitions of the totl systemF 3.2.1 An example of Hamiltonian inseparability e (nd it instrutive to show n exmple of non rmiltonin seprle system nd of its rmiltonin seprle versionF e onsider twoEmode osoni systemD equivlent to two site foseE rurd modelD with rmiltonin

Ĥ = -J( b † A bB + h.c.) + U ( b † A ) 2 b2 A + U ( b † B ) 2 b2 B @QFVA
ontining hopping term @JA nd repulsion @U A termF sn this system the (eld orreltions b † A bB hve nonEzero quntum omponent b † A bB Q determined y the hopping termD nd the density mtrix is not rmiltonin seprleD one gin euse of the hopping termF he rmiltoninEseprle version of this system would hve rmilE tonin Ĥ = ĤA + ĤB D where

ĤA (Ψ, Ψ * ) = -(Ψ * bA + h.c.) + U ( b † A ) 2 b2 A ĤB (Ψ, Ψ * ) = -(Ψ * bB + h.c.) + U ( b † B ) 2 b2 B @QFWA
re dependent on omplex lssil (eld ΨD nd orresponding density opertor

ρ = 1 Z dΨdΨ * 2πi P (Ψ, Ψ * ) e -β ĤA ⊗ e -β ĤB . @QFIHA
sn this se the (eld orreltions b † A bB re indued uniquely y the lssil (eld termD nd do not dmit quntum prtD nmely b †

A bB Q = 0F sndeedD introduing the nottion bA(B) Ψ = Tr bA(B) e -β ĤA(B) (Ψ,Ψ * ) @QFIIA one hs tht b † A bB = 1 Z dΨdΨ * 2πi P (Ψ, Ψ * ) b † A Ψ bB Ψ = 0. @QFIPA
iven if the verges b † A bB Ψ ftorizeD orreltions do exist etween the verge vlues bA(B) Ψ vi the ommon oupling to the Ψ (eldF yn the other hndD quntum orreltions vnish s onsequene of the theorem disussed in the previous setionF 3.3 Quantum coherence length he gp of ny oservle is redily essile to nlytil nd numeriE l omputtions for ll models whih dmit n e0ient lultion of the orreltion nd response funtionsF rere we exploit this property to expliE itly lulte the gp for fose (elds in two very di'erent regimes of the twoEdimensionl foseErurd modelD of whih we rell the rmiltonin

Ĥ = -J ij b † i bj + h.c. + U 2 i ni (n i -1) -µ i ni . @QFIQA
yne regime shll e tht of hrdEore osonsD whih we hve lredy introE dued in eF PFI nd whih is desried y rmiltonin

Ĥ = -J ij (â † i âj + h.c.) -µ i ni , @QFIRA with â( †)
i osoni opertors for hrdEore osonsD nd the other one tht of quntum rotorsF he ltter model is est understood rewriting iqF @QFIQA @up to n dditive onstntA s

Ĥ = -J ij ( b † i bj + h.c.) + U 2 i (n i -ν) 2 , @QFISA
where ν = µ/U + 1/2 is the verge densityF king ν to e n integer δn i = niν n e onsidered s eing n ngulr momentum opertor nonilly onjugted to phse opertor θi with ommuttion reltions [ θi , δn i ] = iD so tht δn i = -i ∂ ∂θ i F woreoverD in the limit of very lrge verge (llingD ν 1D one n dopt phseEnumer deomposition of the fose opertorD bi ≈ e i θi √ ni D nd neglet numer )ututions in the hopping term of iqF @QFISAD bi ≈ √ ν e i θi F his then leds to the quntumErotor rmiltonin

ĤQR = -2Jν ij cos(θ i -θ j ) - U 2 i ∂ 2 ∂θ 2 i , @QFITA
where we hve dropped the opertor nottion for θ i D s we re now working in n expliit phse representtion of the rmiltoninF sn oth sesD we proe the (rstEorder totl orreltion funtion g(i, j) = ĉ † i ĉj nd the (rstEorder gp

g Q (i, j) = ĉ † i ĉj Q = ĉ † i ĉj - 1 β dτ ĉ † i (τ )ĉ j (0) @QFIUA
for the fose (eldD where ĉi = âi for hrdEore osons nd ĉi = e iθ i for quntum rotors @we normlized the (eld opertor y √ nAF ine (rstEorder 3.3. QUANTUM COHERENCE LENGTH RI orreltions re the dominnt ones in the ove modelsD one my nturlly expet tht the (rstEorder gp re lso the dominnt ones mong ll gpsF his ws expliitly veri(ed in our numeril simultions in the se of hrdE ore osonsD y ompring with the seondEorderD or densityEdensity gpD δn i δn j Q F e lulted the (rst order gp for hrdEore osons using quntum wonte grlo @here in the tohsti eries expnsion formultion RPD RQD RRAD nd for quntum rotors using pthEintegrl wonte grlo TRD TSD mking use in oth ses of ode developed y F osildeF pigsF QFP@EA show the totl (rstEorder gp in the super)uid phse of hrdEore osons nd quntum rotors s funtion of tempertureF e noE tie thtD in oth sesD the gp lys orders of mgnitudes elow the totl orreltion funtion g(i, j) down to very low temperturesF wost imporE tntlyD it deys exponentially t all (nite temperturesD reveling the exE istene of hrteristi quantum coherence length ξ Q whih is ompletely insensitive to the divergent orreltion length ssoited with the super)uid phseF pigsF QFP@EdA show the temperture dependene of the quntum oherE ene length ξ Q in oth modelsF ht were extrted from the integrted vorentzin width of the k = 0 pek of the 4quntum momentum distriuE

tion4 n Q (k) = 1 L 2 ij e ik•(r i -r j ) g Q (i, j)F he (
gures lerly show diverE gene of ξ Q upon lowering the tempertureD ut its symptoti temperture dependeneD while presumed to follow power lw @ξ Q ∼ T -α A is di0ult to extrt from the numerisX one n lerly oserve rossovers etween t lest two temperture ehviors with α = 1/2 nd IF he temperture ehvior in the thermodynmi limit n e predited nlytilly on the sis of spinEwve theoryD whih gives ξ Q ∼ T -1 TTF he quntum oherene length sets the hrteristi sle eyond whih two susystems n e onsidered s nerly rmiltoninEseprle ! in exE pliit physil termsD when g Q (i, j)

1D the orreltions etween the two points i nd j ould hve een prepred y oupling two independent suE systems @ontining sites i nd j respetivelyA to the sme soure of lssil noiseF yviously this soure does not exist physillyD ut one n onsider the degrees of freedom sptilly seprting the sites i nd j s the e'eE tive 4lssil us4 for orreltions mong the two sites ! lssil euse the distne etween i nd j exeeds the quntum oherene length @see pigF QFI@AAF e few other riteri for seprility hve een reently introdued for lttie systems sed on the quntum pisher informtion TUD TVD skew inE formtion TW nd quntum vrine UH of olletive oservleF sn the following prgrph we verify the onsisteny of the gpEsed method with these other pprohesF pigure QFPX Upper panels. untum orreltion funtion g Q of fose (elds for @A hrdEore osons with L = 64 nd di'erent tempertures t = k B T /JY @A quntum rotors with u = U/(2J n) = 1D L = 32 nd di'erent tempertures t = k B T /(2J n)F he g Q funtion is ompred to the totl orreltions g(r)F rere r is the shortEhnd nottion for (r, 0)F olid lines re exponentil (ts A e -d(x|L)/ξ Q d(x|L) -η for g Q D where d(x|L) = (L/π) sin(πx/L) is the ord lengthF ell dt refer to the super)uid phseF Lower panels. untum oherene length ξ Q vsF temperture for @A hrdEore osonsY @dA quntum rotors with u = 1F he solid nd dshed lines indite t -1 nd t -1/2 power lwsF 3.4. QUANTUM VARIANCE RQ 3.4 Quantum variance of a collective observable sn the following we rie)y introdue quntum vrine @A for olletive oservle UH nd show how it de(nes n 4inseprility length4 expressing the miniml liner size of lusters into whih the density mtrix n e e'eE tively seprtedF e lulte this length for hrdEore osons on squre lttie nd ompre the result to tht otined for the quntum oherene lengthF his omprison would lso indiretly ount for omprison to the forementioned untum pisher snformtion nd kew snformtionD to whih represents tight lower oundF 3.4.1 Denition of quantum variance qiven generi opertor ÔD its quntum vrine on generi therml stte ρ is de(ned s

δ 2 Ô Q = Ô2 - 1 β β 0 dτ Ô(τ ) Ô(0) , @QFIVA nd it is suh tht δ 2 Ô Q ≤ δ 2 Ô = Ô2 -Ô 2 UHF
sn the following we shll fous on olletive opertor Ô = i ôi D whih is the sum of lol opertors ôi with ounded spetrum in [o min , o max ]F por suh n opertor the represents the integrl of the gp δô i δô j Q F e onsider stte ρ whih n e seprted into lusters of size p @or pEseprleAD nmely whih dmits the seprle form

ρ = s p s ⊗ c ρ(s) c @QFIWA
where ρ(s) c is the density mtrix for single lusterF por suh stte δ 2 Ô Q is upperEounded s

δ 2 Ô Q ≤ s p s c δ 2 Ôc Q,s ≤ s p s c δ 2 Ôc s , @QFPHA where ( δ 2 Ôc Q,s ) δ 2
Ôc s is the @quntumA vrine of the luster opertor Ôc = i∈c ôi F gonsidering prtition of the system of totl size N into identil lusters of size p @suh tht N/p is n integerAD one n show tht the vrine of the oservle Ôc is esily upperEounded using imodl distriution for the oservle Ôc with vlues po max nd po min oth hving proility IGP UHD whih gives

δ 2 Ôc ≤ p 2 4 (o max -o min ) 2 . @QFPIA
es onsequeneD for ll pEseprle sttesD the stis(es the oundX

δ 2 Ô Q ≤ N p 4 (o max -o min ) 2 . @QFPPA
his ound is oviously neessry ut not su0ient ondition for pEseprilityD nmely sttes whih re not pEseprle ut re p Eseprle with p > p @up to p = ∞A my still omply with the oundF es onsequene of the ound given oveD one ould use the quntum vrine s witness of entnglementF qiven therml stte with qunE tum vrine δ 2 Ô Q D in order to pproximte it with pEseprle stte one needs to use lusters with p t lest tking the vlue whih sturtes the ound of iqF @QFPPAD nmely p ≥ p min = 4

δ 2 Ô Q /[N (o max -o min ) 2 ]F
rene the quntum vrine witnesses entnglement mong t lest p min sitesF gonsidering then the lol oservles ôi with unit spetrl widthD ∆o = o maxo min = 1D whih mximize the quntum vrine of the orE responding olletive oservle Ô mong ll olletive oservlesD for dEdimensionl system one n de(ne n inseparability length l I s

l I = 4 N sup Ô:∆o=1 δ 2 Ô Q 1/d . @QFPQA
his length indites the minimal liner size of lusters uilding seprle stte of the kind of iqF @QFIWAD whih is omptile with the mximum qunE tum vrine of olletive oservlesF st is therefore to e onsidered s lower ound to the length eyond whih two susystems n e onsidered s e'etively seprle in the stte of the systemF rene it is meningful to ompre it to the quntum oherene length ξ Q D whih is the nturl @rmiltoninEAseprility lengthD nd to whih l I my e expeted to t s lower oundF 3.4.2 Quantum variance vs quantum coherence length he length l I n e esily lulted oth in the se of hrdEore osons nd of quntum rotorsF yne n mximize the quntum vrine of olE letive oservle with ∆o = 1 y onsideringX IA for hrdEore osonsD ôi = (

â i + â † i )/2Y PA for quntum rotorsD ôi = [cos(θ i ) + sin(θ i )/(2 √ 
2)F sn oth ses the quntum orreltion funtion ôi ôj Q is proportionl to the quntum (eld orreltion funtionD nmely ôi ôj Q = g Q (i, j)/2 @for hrdEore osonsA nd ôi ôj Q = g Q (i, j)/8 @quntum rotorsAF es onseE queneD the orresponding quntum vrine is relted to the k = 0 pek in the 4quntum momentum distriution4 n Q

(k) = 1 L 2 ij e ik•(r i -r j ) g Q (i, j)D nmely δ 2 Ô Q = N n Q (0)/2 @hrdEore osons t hlf (llingA nd δ 2 Ô Q = N n Q (0)/8 @
quntum rotorsAF qiven tht the g Q (i, j) is the dominnt qunE tum orreltion funtionD nd it is positive de(niteD the quntum momenE 3.4. QUANTUM VARIANCE RS pigure QFQX untum oherene length ξ Q nd inseprility length l I vsF temperture for @A hrdEore osonsY @A quntum rotors with u = 1F he solid nd dshed lines indite t -1 nd t -1/2 power lwsF tum distriutionD whih is its integrlD will give the dominnt quntum vriE ne mong ll oservlesD s requested in iqF @QFPQAF his de(nes the inseprility lengths l I = 2n Q (k = 0) for hrdEore osons nd l I = n Q (k = 0)/2 for quntum rotorsD whih n e extrted from wonte grlo simultionsF he results for the two models re shown in pigF QFQD where they re ompred to the dt previously shown for the quntum oherene lengthF es expetedD l I proves to e lower ound to the ξ Q F he two lengths show similr temperture dependeneD thus supporting the interprettion of ξ Q s the hrteristi length sle eyond whih two susystems n e onsidered s nerly @rmiltoninAEseprleF yne n lso try to estlish sling reltionship etween the two lengths l I nd ξ Q F sndeedD one n expet the quntum orreltion funE tion to dey sX

g Q (r) ∼ e -r/ξ Q r d-2+η
@QFPRA @whih is veri(ed y the (ts of the numeril dt in pigF QFQAF hereforeD integrting g Q (r) one otins

n Q (k = 0) ∼ ∞ a dr r d-1 g Q (r) ∼ ξ 2-η Q ∞ a/ξ Q dx e -x x η-1 @QFPSA
where a is the lttie spingF nder the ssumption tht ξ Q /a 1D the integrl loses its dependene on ξ Q D nd hene one otins the sling reltion

l I ∼ [n Q (k = 0)] 1/d ∼ ξ 2-η d Q . @QFPTA
he temperture dependene of the two lengths is generilly di'erent unless φ = (2η)/d = 1F he dt in pigF QFQ@EA suggest thtD for the models of interestD 1/2 φ 1 in the lowEtemperture regime of ξ Q /a 1F sn generl one n expet tht φ ≤ 1D so tht the inequlity l I ≤ ξ Q holds for T → 0D where oth quntities divergeF 3.5 Quantum discord he gp tht we introdued in this hpter ptures n essentil form of quntum orreltion etween lol oservles elonging to distint susysE tems of n extended quntum system in therml equiliriumF en lternE tive de(nition of quntum orreltions hs een given using quntum disord @hA QHD UID UPD whih is n oservleEindependent quntity tht expresses to wht extent density mtrix violtes n identity vlid for lssilD joint proility distriutions of severl vrilesF sn the following we rie)y inE trodue h nd then drw omprison to our de(nition of gpD in the se of hrdEore osonsF 3.5.1 Denition of quantum discord vet us tke two sites i nd j in the lttieD nd de(ne the redued density mtries ρi D ρj nd ρij for the single sites i nd jD nd for the twoEsite ompound ijD respetivelyF he totl mount of orreltions @of lssil and quntum originA mong the two sites is generlly expressed vi the mutul informtion

I(i, j) = S(ρ i ) + S(ρ j ) -S(ρ ij ) @QFPUA
where S(ρ) = -Tr(ρ log 2 ρ) is the von xeumnn entropyF PU he muE tul informtion expresses the 4missing4 entropy in the ompound stte due to orreltions in the )ututionsX nmelyD there exists informtion on i whih n e gined y mking oservtions on jD nd vieEversF sndeed S(ρ ij |ρ j ) = S(ρ ij ) -S(ρ j ) is the entropy of ij onditioned on the knowledge of the stte of jD nd the ft tht this entropy is less thn tht of ρi @igE noring ompletely jA implies the existene of orreltions etween i nd jD whih provide informtion on i when mesuring jF his oservtion invites to nlyze the density mtrix onditioned on mesurements on site jF gonsidering the lol oservle Ôj on site j with eigenvlues o 

S(ρ ij | Ôj ) = k p k S(ρ ij,k ) , @QFPWA
whih expresses the verge entropy tht the system hs fter mesurement of the oservle Ôj ! verged over ll the possile outomes of the meE surementD with their a priori proilities p k F sn lssil system the p k would e the sttistil weights of the on(gurtions of site jD nd therefore iqF @QFPWA would represent the entropy of ij onditioned upon the knowlE edge of jD S(ρ ij |ρ j )F sn quntumEmehnil systemD this is no longer the seD euse mesurements on j not only give informtion on iD ut lso pertur its stteF he mount y whih mesurements on j pertur i is then qunti(ed y the quntum disord

D(i, j) = I(i, j) -C(i, j) @QFQHA
where

C(i, j) = S(ρ i ) -min Ôj S(ρ ij | Ôj ) @QFQIA
expresses the @soElledA 4lssil4 orreltionsD nmely the mximum mount of informtion tht n e gined on i y mking mesurements on jF he funtion D(i, j) ptures the fundmentl disrepny @or 4disord4A eE tween the entropy ssoited with the orreltions mong sites i nd jD nd the mximl informtion tht one n gin on i y mking projetive meE surements on jX the ltter does not sturte the former euse lol meE surements distur the stte nd they redue orreltions etween i nd jF sn summryD seen s generlized orreltion funtionD D(i, j) proes how muh mesurement on i n 'et the stte of jF iven for sttes in whih two susystems re seprleD the mesurement on one system n 'et the stte of the other @this is true when the ftorized density mtries ρ(s) A(B) in the seprle form do not ommute with eh otherAF rene quntum disord n e nonEzero even in the presene of seprilityF 3.5.2 Quantum discord vs quantum correlation function untifying disord for generi degrees of freedom is in generl hrd proE lemD due to the mximiztion opertion implied in iqF @QFQIAD ut quntiE ttive omprison etween gp nd h is possile in the se of hrdEore pigure QFRX @A gomprison etween gp nd hF @A eroEmomentum pek in the totl nd 4quntum4 momentum distriution for Pd hrdEore osonsF pull symols refer to n Q (k = 0)D while open ones to n(k = 0)F osonsF eording to efsF UQD UR in the limit |r ir j | → ∞D h tkes the form

D(i, j) ≈ (C 2 1 + C 2 2 )/(2 log 2) @QFQPA
with C 1 = g(i, j)/2 nd C 2 = ni njni nj F herefore the quntum disordD eing symptotilly proportionl to the squre of the orreltion funtionsD hs their ext sme rnge ! s ws lredy disussed in efF US in vriety of di'erent modelsF por Pd hrdEore osons the twoEpoint h deys lgerilly throughout the super)uid phse nd exponentilly only in the norml phseD in similr wy s ordinry orreltions do ! nd it is singulr t the fu trnsitionD even though this trnsition is uniquely driven y therml )ututions nd quntum )ututions nd orreltions re not supposed to exhiit singulrities t therml phse trnsitionsF his is to e ontrsted with the gpD not ering ny signture of the fu trnsition nd deying exponentilly t ll (nite temperturesF hese oservtions re supported y the plots shown in pigF QFRF pigF QFR@A shows tht the 4quntum4 momentum distriution n Q (k = 0)D nmely the integrl of the quntum orreltion funtionD does not exhiit ny singulrity t the fu trnsition of hrdEore osons @ourring for t = k B T /J ≈ 0.685 UTAF yn the other hndD t the fu ritil temperture the integrl of the totl orreltionsD n(k = 0)D exhiits wellEknown divergeneF pigF QFR@A shows omprison etween the h nd the gp in the super)uid phse of hrdEore osonsF he gpD s lredy oserved in the previous plotsD deys exponentillyD wheres the h deys lgerillyF he drmti di'erene etween h nd gpD nd the sensitivity of h to lssil ritil phenomenD suggest tht the notion of quntum orE reltions ttriuted to h should e ritilly reEexminedF he sensitivity of the twoEpoint h to ordinry orreltions n e simply tred k to its de(nition in terms of the redued twoEpoint density mtrix ρij whih is in turn fully expressed through orreltion funtionsF yn the other hndD the gp depends on the redued density mtrix nd its deformtion upon pplying (eld t site i @or jAF es onsequene the gp provides inforE mtion eyond tht ontined in ordinry orreltions nd in the twoEpoint hF Chapter 4

Quantum mean-eld approximation sn this hpter we introdue n pproh to lttie systems tht we nme quntum menE(eld @wpA pproximtionD or luster wp @wpAD in its most generl luster versionF his ltter relies on the (ndings of our previous hpterD nd in prtiulr on the di'erent sptil struture found for therml nd quntum orreltionsD whih permits to develop n pproximtion tht 'ets quntum orreltions onlyD thus preserving full desription of therE ml orreltionsF sn the following we develop the formlism of wpD using pthEintegrl pprohD nd we show numeril results for twoEdimensionl quntum rotorsD whih lredy served s test model in the previous hpterF 4.1 Path-integral approach for lattice bosons sn this setion we introdue the oherentEstte pthEintegrl pproh to the prtition funtionD whih will e the referene formlism throughout the remining hptersF vet us onsider one gin foseErurd rmiltonin

Ĥ = i =j J ij b † i bj + V ij 2 ni nj + i U 2 ni (n i -1) -µn i , @RFIA
to whih we lso dded term @V ij A for intertions etween di'erent sitesF wore generl models @inluding spin degrees of freedomD nonEelin guge (eldsD etFA n lso e treted similrlyD ut we keep working with our usul spinless foseErurd model for the ske of simpliity in the expositionF e n now introdue the pthEintegrl expression of the prtition funE tion in terms of oherent osoni sttesF hese sttes represent the eigenE sttes bi |φ = φ|φ of the osoni opertorsD form n overEomplete nonE orthonorml sis of the rilert spe nd stisfy ompleteness reltion 

Z = D[{φ i (τ )}] e -S[{φ i (τ )}] , @RFPA
where

S[{φ i (τ )}] = β 0 dτ i φ * i (τ ) ∂ ∂τ φ i (τ ) + Ĥ({φ i (τ ), φ * i (τ )}) , @RFQA Ĥ({φ i (τ ), φ * i (τ )}) = - β 0 dτ i =j φ * i (τ )J ij φ j (τ ) + |φ i (τ )| 2 V ij 2 |φ j (τ )| 2 + i U 2 |φ i (τ )| 4 -µ|φ i (τ )| 2 , @RFRA
where S[{φ i (τ )}] is the iuliden tion for the omplex (eld φ i (τ ) depenE dent on imginry time τ ∈ [0, β] where β = (k B T ) -1 F e would like to stress the ft tht the oupling terms mong di'erent sites in iqF @RFQA re uniquely ontined in ĤD nd they re therefore ompletely local in imginry timeF his oservtion will e very importnt in the followingF 4.2 From cluster-mean-eld states to cluster-separable states sn eF PFQ we presented luster menE(eld pproh to lttie systems sed on ftorized enstz for the density mtrixF sn this prgrph we rie)y reformulte it in the lnguge of pthEintegrl nd then introdue new pprohD whih stems from more generl enstz for the density mtrixF 4.2.1 Cluster mean eld gluster men (eld ssumes ftorized density mtrix ρcMF = ⊗ c ρc , @RFSA whih hs prtition funtion in the form

Z cMF = c Z c @RFTA where Z c = D[{φ i∈c (τ )}] e -S (MF) c @RFUA 4.3. QUANTUM MEAN-FIELD APPROXIMATION SQ nd S (MF) c [{φ i∈c (τ )}] = dτ Ĥc ({φ i∈c (τ ), φ * i∈c (τ )}) + dτ i∈c,j / ∈c -J ij φ * i (τ ) bj + c.c. + V ij n i (τ ) nj - β 2 i∈c,j / ∈c -J ij b † i bj + c.c. + V ij ni nj @RFVA
where we hve introdued the nottion n i (τ ) =: |φ i (τ )| 2 nd Ĥc denotes rmiltonin of the form iqF @RFRA restrited to sites elonging to the sme luster cF rere ... indites the therml vergeD to e lulted selfE onsistently using the prtition funtion in the form of iqF @RFTAF foth iqF @RFSA nd iqF @RFTA show how the wp pproh retins the quntum nture of the osoni (eldD s well s its orreltions within eh lusterD ut disrds orreltions of ll forms etween lustersF his results in negleting longEwvelengths )ututions nd prevents orret desription of ritil phenomen elow the upper ritil dimension 4.2.2 Incorporating classical correlations into cMF yn the sis of the oservtions mde in eF QFPD lssil orreltions n e inluded in the wp enstz for the density mtrixD y promoting iqF @RFSA to the most generl seprle form

ρsep = {Ψ} p({Ψ}) [⊗ c ρc ({Ψ})] , @RFWA
where {Ψ} is set of @possily ontinuousA vriles prmeterizing the form of the luster density mtrix ρc ({Ψ})D nd p({Ψ}) ≥ 0 is the proility of the ssoited ftorized form PTF st is importnt to notie tht the temE perture is ontined in the funtionl form of oth ρc nd pF e vritionl optimiztion of iqF @RFWA to minimize the free energy is essentilly imposE sileD given the extreme freedom of the funtion p({Ψ})F sn the following setion we show how n pproximtion tht we will nme quantum meaneld @wpA provides n expliit eduted enstz for the density mtrix of osoni lttie model in the form of iqF @RFWAF 4. the terms of the tion oupling two sites i nd j @with i = jAD the wp pproximtion mounts to tking

S (hop) ij [φ i (τ ), φ j (τ )] = - β 0 dτ (φ * i (τ ) J ij φ j (τ ) + c.c.) QMF ≈ - 1 β β 0 dτ β 0 dτ φ * i (τ ) J ij φ j (τ ) + c.c. = -β φi * J ij φj = S (hop) ij [ φi , φj ] @RFIHA nd S (pot) ij [n i (τ ), n j (τ )] = - β 0 dτ n i (τ ) V ij n j (τ ) QMF ≈ - 1 β β 0 dτ β 0 dτ n i (τ ) V ij n j (τ ) = -β ni V ij nj = S (pot) ij [n i , nj ] , @RFIIA
where we hve introdued the timeEverged (eld nd density

φi = 1 β β 0 dτ φ i (τ ) , ni = 1 β β 0 dτ n i (τ ) . @RFIPA
iquivlentlyD the wp pproximtion mounts to sustituting the oupling etween the imginryEtime evolutions of the (eld φ i D nd of its squred mplitude |φ i | 2 D t di'erent sites with the oupling etween the averages over suh evolutions ! whene the onept of quntum @or imginryEtimeA men (eldF 4.3.1 Cluster QMF approximation his pproximtion n e esily st in luster formD y dividing the ij onds into intrEluster nd interEluster onesD nd pplying the menE(eld pproximtion in imginry time to ll interEluster ouplingsF nder this pproximtionD the oherent stte tion in iqF @RFQA tkes the form

S[{φ i (τ )}] QMF ≈ c S c [{φ i∈c (τ )}] + c<c i∈c,j∈c S ij [ φi , φj ; ni , nj ] @RFIQA
where we hve introdued the luster tion

S c [{φ i∈c (τ )}] = i∈c S i [{φ i (τ )}] + i,j∈c S ij [φ i (τ ), φ j (τ ); n i (τ ), n j (τ )] . @RFIRA τ 0 β φ1 φ2 φ3 φ4 (a) C C C C φ1(τ ) J12, V12 τ 0 β φ1 φ2 φ3 φ4
all-to-all couplings cluster (b)

φ i (τ ) C τ J ij V ij J ij V ij φi S i S ij = S (hop) ij + S (pot) ij S ij [ φi , φj ; ni , nj ] = S (hop) ij [ φi , φj ] + S (pot) ij [n i , nj ] D[{φ i (τ )}] φi ni Z ≈ ⎛ ⎝ j d φj d φ * j dn j 2πi ⎞ ⎠ e -c =c i∈c,j∈c S ij [ φi , φj ;n i ,n j ] c { φi∈c ,n i∈c } D[{φ i∈c (τ )}] e -Sc[{φ i∈c (τ )}] .
iqF @RFWAF e introdue two uxiliry (eldsD omplexEvlued one @Ψ i A nd relEvlued one @ i AD nd perform rurdEtrtonovih trnsformtion UV s in the followingX

e -ij S (hop) ij [ φi , φj ] = 1 det J Dψ e -β ij Ψ * i [(J ) -1 ] ij Ψ j -β i (Ψ i φ * i +Ψ * i φi ) , e -ij S (pot) ij [n i ,n j ] = 1 det V Dρ e -β ij i [(V ) -1 ] ij j -β i i ni , @RFITA where Dψ = j β 2 dΨ j dΨ * j 2πi
nd Dρ = ( i β d i )D the primed @nd douleE primedA sums @ A re restrited to those sites whih re indeed involved in n interEluster ond for the kineti energy @the potentil energyAD nd the mtries J nd V re onnetivity mtries restrited to interEluster onds @for the kineti energy nd potentil energy respetivelyAF e shll here ssume tht J nd V re positive de(niteD so tht the r trnsformtion is well de(nedD otherwise they n e ppropritely rede(nedD leving the essene of the present rgument intt ! see ghpF S for further disussionF he r trnsformtion llows therefore to st the prtition funtion within the wp pproximtion into the seprle formD Z ≈ Tr(ρ cQMF ) with @up to multiplitive onstntsA

ρcQMF ∼   j dΨ j dΨ * j d j 2πi   e -Saux[{Ψ i ,Ψ * i ; i }] ( ⊗ c ρc [{Ψ i∈c , Ψ * i∈c ; i∈c }] ) ,
@RFIUA where we hve introdued the uxiliryE(eld tion

S aux [{Ψ i , Ψ * i ; i }] = β ij Ψ * i [(J ) -1 ] ij Ψ j + β ij i [(V ) -1 ] ij j , @RFIVA nd the singleEluster density mtrix ρc [{Ψ i∈c , Ψ * i∈c ; i∈c }] = e -β Ĥ(eff) c [{Ψ i∈c ,Ψ * i∈c ; i∈c }] , @RFIWA
with the e'etive singleEluster rmiltonin

Ĥ(eff) c = Ĥc - i∈c Ψ i b † i + Ψ * i bi - i∈c i ni , @RFPHA
where Ĥc is the physil rmiltoninD iqF @RFIAD restrited to intrEluster onds @for the o'Esite termsA nd luster sites @for the onEsite termsAF hereE fore the e'etive luster rmiltonin hs the form of the physil rmiltoE nin plus 4oundry4 soure terms @ontining the uxiliry (elds Ψ i , Ψ * i A nd 4oundry4 potentil term @ontining the uxiliry (eld i A involving the sites oupled to other sites outside the lusterF es one my lredy notie from the previous equtionsD the wp pE proh redues to the stndrd wp pproh in the limit of zero temperE tureD s we will further eluidte with n exmple in eF SFQFIF 4.4. THEORETICAL BASIS FOR THE CQMF APPROXIMATION SU 4.4 Theoretical basis for the cQMF approximation sn this setionD we provide justi(tion for the wp pproximtionD whih stems from the forml seprtion etween lssil nd quntum orE reltions introdued in our previous hpterF e strt y rie)y relling the (rstEorder orreltion funtions tht we introdued nd y giving their pthEintegrl expressionsD in order to e oherent with the formlism used throughout this hpterF e de(ned the totl orreltion funtion

g(l, m) = b † l bm = 1 Z D[{φ i (τ )}] φ * l (τ )φ m (τ ) e -S , @RFPIA
for ny ritrry time τ ∈ [0, β]D the therml orreltion funtion

g T (l, m) = 1 β dτ b † l (τ ) bm (0) = 1 Z D[{φ i (τ )}] φ * l φm e -S , @RFPPA
nd the quntum orreltion funtion

g Q (l, m) = g(l, m) -g T (l, m) @RFPQA = 1 Z D[{φ i (τ )}] 1 β dτ (φ * l (τ ) -φ * l )(φ m (τ ) -φm ) e -S ,
where S stnds for the tion S[{φ i (τ )}] in iqF @RFQAF epplying wp pE proximtionD whih relies on density mtrix in the form iqF @RFWAD mounts to onsidering the vrious luster s rmiltoninEseprleF eording to the theorem proved in eF QFP this implies thtD within the wp pproximE tionD ll the quntum orreltion funtions re zero etween sites elonging to di'erent lustersD nmely tht g Q (l, m) = 0 for l ∈ c nd m ∈ c D with c = c F herefore the wp pproximtion truntes quntum orreltions to distnes not exeeding the liner size of the lusters nd 4onfuses4 the totl orreltions mong di'erent lusters with their therml prt onlyF 4.4.1 Two dierent length scales sn the previous hpter @see pigF QFPAD we showed thtD for hrdEore osons nd quntum rotorsD the (rstEorder orreltion funtion deys exponentilly t any (nite tempertureF his dey is hrterized y quntum oherE ene length ξ Q D whih is independent of the orreltion length ξ for the dey of the totl orreltionsD nd whih is suh tht ξ Q < ξF his lengthEsle seprtion etween therml nd quntum orreltions onstitutes the min motivtion ehind the wp pproximtionF he ltterD introduing spE til uto' in the quntum orreltions t length sle l c /2 @the mximum distne etween the ulk of the luster nd its oundriesAD would e in ft ompletely ritrry if the quntum orreltion funtion did not posses n exponentil deyF yne n then expet the qulity of the pproximtion to depend on the rtio ϑ = 2ξ Q /l c D eing more urte when ϑ 1F

g = g T + A e r/⇠ Q g ⇡ g T ⇠ Q r r l c exact correlations cQMF correlations (a) (b) g = gT + A e r/(↵l c ) g = gT ⇡ ⇡
pigure RFPX @A keth of the orreltions in quntum mnyEody system t (nite tempertureF feyond hrteristi quntum oherene length ξ Q totl orreltions @gA re very losel to the therml prt @g T AY @A keth of the wp ount for orreltions in quntum mnyEody systems t (nite tempertureF feyond length proportionl to the luster size @αl c A the totl orreltions re desried s identical to @pproximteA therml orreltions gT F he existene of (nite quntum oherene length ξ Q de(nes disE tne eyond whih therml nd totl orreltions re nerly identilD s skethed in pigF RFP@AF his in turn implies thtD for r ξ Q D orrelE tions in quntum mnyEody system n e regrded ! to within very good pproximtion ! s those generted y n e'etively lssil systemF yne n then design lssil modelD whih would pture the longErnge @r ξ Q A orreltionsD nd whose lol degrees of freedom @on the sle ξ Q A re renormlized in their e'etive ouplings y shortErnge quntum )utuE tionsF he wp pproh is preisely systemti wy of uilding e'etive lssil theories whih desrie shortErnge quntum orreltions up to sle proportionl to the luster liner size l c D nd whih then identify the totl orreltions with @pproximteA therml ones @g T A eyond tht sleF his is skethed in pigF RFP@AF 4.4.2 Eects of the cluster decomposition e n mke some generl onsidertions out the in)uene of using wp pproximtion on the desription of the systemF he generl sympE toti form of orreltion funtions reds A e -r/ξ r d-2+η @RFPRA where AD ξ nd η depend generilly on the temperture nd on the size of the system when extrted from (niteEsize dtF he wp dds to these dependenies further lusterEsize dependeneD nmely A = A(ϑ; T, L)D ξ = ξ(ϑ; T, L)D η = η(ϑ; T, L)F feing restrited to quntum )ututionsD the wp is le to pture the orret divergene of the orreltion length t therml trnsitionD s well s the orret exponent η t the ritil pointF he position @T c A of the ritil pointD nywyD my depend signi(ntly on the ϑ prmeterD nmely T c = T c (ϑ)F sn generl we expet T c (ϑ > 0) > T c (0) sineD y systemtilly underestimting quntum e'etsD the wp overestimtes the trnsition pointsF his n e intuitively understood from pigF RFIX the wp pproximtion mounts to inresing lolly the onnetivity of the ouplings ppering in the tion tht weighs the pth integrlD nd this is expeted to stilize orreltions ginst therml )ututionsF woreoverD if ξ ∼ ξ Q D the shortErnge properties of the orreltion funtion re dominted y quntum e'etsD nd therefore ξ will depend very strongly on ϑF ynly the ondition ϑ 1 would ensure good desription of the orreltion funtion in this regimeF gonverselyD when ξ ξ Q D therml nd quntum orreltions quire true seprtion of slesD whih ould permit to urtely desrie the longErnge spets of therml orreltionsD while only prtilly ounting for quntum orreltionsF he next setions re dedited to quntittive test of the ilities nd limittions of the wp shemeF hue to its onvenient pthEintegrl solutionD we will use one gin the twoEdimensionl quntumErotor model s refereneD nd we will study in prtiulr the onvergene of relevnt physil oservles upon inresing the luster sizeF 4.5 Quantum rotors and the QMF approximation e rell the rmiltonin of quntum rotors

H QR = -2Jν ij cos(θ i -θ j ) - U 2 i ∂ 2 ∂θ 2 i , @RFPSA
whih ws lredy presented in the previous hpterD in iqF @QFITAF sn wht follows we shll (rst desrie the pthEintegrl representtion of this model nd the implementtion of wp pproximtionD nd then disuss numerE il results onerning the onvergene of the wp pprohF he pthEintegrl representtion of the prtition funtion for the qunE tum rotor n e relized y using oherent sttes with unit normD nmely φ i = e iθ i F he prtition funtion tkes then the form

Z QR = D[{e iθ i (τ ) }] e -S QR [{e iθ i (τ ) }] .
@RFPTA he tion S QR D s shown in efsF TRD VID n e st in the form of n e'etive lssil XY model in (d + 1) dimensionsF yne n disretize the imginry time in M slies of length δτ = β/M using rotterEvie disretizE tion UU nd tke the limit M → ∞F he qulity of suh n expnsion is ontrolled y the rtio = δτ U F sn prtiulrD for → 0D one n use the illin pproximtion VPD whih gives n tion in the form

S QR ≈ M k=1 -K ij cos(θ i,k -θ j,k ) -K τ i cos(θ i,k -θ i,k+1 ) , @RFPUA
where we hve introdued the oupling onstnts K = /u nd K τ = 2/ for the 4speElike4 nd 4@imginryAEtimeElike4 ouplings respetivelyD the redued repulsion prmeter u = U/(2Jn) nd the rotterEdisretized phse (eld θ i (τ ) → θ i,k F epplying wp to iqF @RFPUA mounts to simply rede(ning the e'etive XY ouplingsF sndeed the wp pproximtion ddresses the speElike @KA ouplings etween sites elonging to di'erent lustersD nd it rede(nes them from lol in imginry time to ompletely nonElol @whih is the sme s ssuming tht lusters intert vi imginryEtime verged osoni (eldsD e iθ i AF hen the wp e'etive tionD s usulD reks up into n intrE luster prt nd n interEluster prtX

S QR QMF ≈ c S c + c =c S cc , @RFPVA
where c, c re pirs of interting lustersF he intrEluster rmiltonin is simply the e'etive rmiltonin iqF @RFPUA spei(ed to the sites nd links within given luster cX

S c = M k=1 -K ij ,i,j∈c cos(θ i,k -θ j,k ) -K τ i∈c cos(θ i,k -θ i,k+1
) , @RFPWA while the interEluster rmiltonin ontins the menE(eld ouplings in imgE inry time etween neighoring lustersX

S cc = - K M M k,k =1 ij ,i∈c,j∈c cos(θ i,k -θ j,k
) . @RFQHA TI pigure RFQX @EA otl orreltions within the wp pproximtion with vrile luster size l c for quntum rotors on the squre lttieF rere u = 3 nd L = 36F @dA emperture dependene of the η exponent extrted from powerElw (ts to the orreltion funtion with l c = 1 nd l c = L = 36 @see textAD over the rnge r ∈ [3, L/2]Y the result is ontrsted to tht of lssil spinEwve @A theoryD η(t) = t/(2π)F e pthEintegrl evlution of the prtition funtion within the wp pproximtion mounts therefore to simulting lssil XY model with sptilly nisotropi ouplings nd llEtoEll ouplings in imginry time for interEluster links @see gin pigF RFI for rtoonAF 4.6 cQMF results for quantum rotors sn this setion we (nlly test numerilly the ility of the wp of deE sriing our test model of quntum rotors in squre lttieF his model possesses super)uid phse with lgerilly deying orreltion funtion g for tempertures elow ritil fu trnsition t < t BKT F he ritil t BKT temperture is deresing funtion of the intertion uD nd it vnE ishes t quntum ritil point u c ≈ 5.8D eyond whih the ground stte of the system eomes gpped wott insultor with exponentilly deying orreltions VQF he wp tionD iqF @RFPVAD lends itself nturlly to pthEintegrl wonte grlo @swgA studyF por this reson simultions re relized using swg ode developed y F osildeF 4.6.1 Description of correlations e strt y studying how lusters ehve in the desription of the totl orreE ltion funtionD fousing on strongly interting super)uid regime @u = 3AF pigsF RFQ@EA show tht for most vlues of the distne r @nmely for r ≥ 2AD the orreltion funtion g(r) otined vi wp onverges from ove to the ext resultF he wp pproximtion therefore overestimtes the strength of orreltions y underestimting quntum e'etsF he logrithmi sle of the plots permits lso to oserve something rther remrkleX despite the ler di'erene in the very vlue of the orreltion funtionD the longErnge tils of the orreltion funtions for di'erent l c vlues pper s nerly prE llelF his suggests tht the symptoti ehvior of the orreltion funtion is ptured y the wp up to multiplitive onstntD whih ounts for the inomplete desription of shortErnge quntum )ututionsF yne n use the previous dt to extrt the exponent ηD y (tting the orreltion funtion to powerElw A/d(r|L) η D where d(r|L) = (L/π) sin(πr/L) is the hord lengthD whih is well suited for systems de(ned on torusD nmely with periodi oundry onditionsF he soEextrted η exponent is shown s funtion of temperture in pigF RFQ@dAD where it is ompred to the lssil limit η = t/(2π)D whih omes the spinEwve theoryD vlid t low T for u = 0F st is ler tht wp ptures the sustntil speedEup in the inrese of the η exponent with respet to spin wvesF his is due to the ft tht η = t/(2π s (u, t = 0))D with s (u, t = 0) the super)uid densityD dereses s u inresesF woreoverD we n oserve tht using the wp for the smllest luster @l c = 1A lredy produes very urte result ompred to the ext one @l c = 36AF his proves the remrkle ility of wp to desrie quntittively longErnge orreltionsD whih is nonEtrivil resultD s quntum )ututions re indeed strong in this exmE pleF his possiility of e'etively desriing therml )ututions even y disrding quntum orreltions etween di'erent sites ! whih is the se for l c = 1 ! provides n interesting insight into the physis of quntum roE pigure RFRX herml vsF quntum orreltions in the super)uid phse of Pd quntum rotors @t = 0.1D u = 3D L = 36A within the wp pproximtionF @A herml orreltions g T for di'erent luster sizesD normlized y the vlue t mximum distne r = L/2Y @A untum orreltions g Q for di'erent luster sizesF torsF st shows thtD su0iently fr from the quntum ritil point u = u c D the quntum renormliztion of the η exponent for the powerElw dey of super)uid orreltions omes from veryEshortErnged quntum )ututionsF he form of the longErnge til of the orreltion funtionD nd the E ury of the (l c = 1)Ewp in desriing the η exponentD suggest tht the pproximtion ould desrie the therml orreltions g T very urtelyD ut only up to n overll multiplitive ftorF his ltter would ount for the ft thtD in the rel systemD the e'etive lssil degrees of freedom re reovered y tring out quntum )ututions orrelted within volume ∼ ξ 2 Q F his n e tested y plotting the normlized therml orreltion funtion g T (r)/g T (L/2)D where the normliztion to the symptoti vlue elimintes the oveEmentioned multiplitive ftorF pigF RFR@A ompres the normlized therml orreltions for di'erent luster sizes with the ext result @l c = 36AX remrkly the full struture of the therml orreltion funtion is well ptured y the wp pprohF woreoverD we n oserve tht the therml orreltion funtion exhiits powerElw ehvior @very well (tted y A/d(r|L) η A ross the entire rnge of seprtions rD wheres the totl orreltion funtion lerly devites from simple power lwD s shown in pigF RFQ@EAD when pprohing r = 0F his implies tht the shortErnge devition from powerElw omes entirely from the quntum pigure RFSX otl vsF therml orreltions of Pd quntum rotors @t = 0.1D u = 3D L = 36A for three di'erent luster sizesF he devition of totl orreltions g from powerElw dey t short distne omes entirely from the quntum orreltionsF pigure RFUX ling of the energy density e with the luster prmeter λ @see textA for quntum rotors on the squre lttieF λ vlues orrespond to luster liner sizes l c = ID PD QD RD TD IP nd PR @in deresing orderAF he solid nd dshed line re liner (t @exluding the points t λ = 0 nd IA nd powerElw (t a 1 + a 2 λ a 3 @retining ll pointsAD respetivelyF wodel prmeters re u = 3 nd L = 24F

orreltionsD whih re progressively ptured y the wp pproh with n inresingly lrge luster size @pigF RFR@AAF pigF RFS summrizes ll these onsidertions y showing how therml orreltions ontriute to totl orreltionsF he totl orreltion funtion reprodues powerElw therml orreltion funtion t lrge distnesD one n exponentilly deying shortErnge quntum omponent hs died out over distne r ξ Q for the rel systemD or n imposed distne r ≥ l c for its wp pproximtionF his is in greement with the rtoon proposed in pigF RFPF e n now test the ehvior of wp when pprohing the quntum ritil pointX we hoose the vlue u = 5D whih is lose to u c 5.8F pigF RFT reports results for the normlized therml orreltions nd for the η expoE nentF he plots show tht the onvergene with the luster size is muh slower thn in the u = 3 seD nd tht lrge lusters re neessry to give stisftory desription of the systemF he reson ehind this ehvior is tht ξ Q is signi(ntly lrger with respet to the previous seF hereforeD the e'etive lssil degrees of freedomD whose orreltions re proed y pigure RFVX ling of the ondenste pek n k=0 with the luster prmeter λ for quntum rotors on the squre lttieF vines nd prmeters s in pigF RFUF g(r) @or g T (r)A t r ξ Q D emerge from integrting out shortErnge quntum )ututions over lrger quntumEorrelted volumesF es resultD the expoE nent η for the dey of g(r) is 'eted y inresingly longerErnge quntum )ututionsD nd simple wp pproh with l c = 1 is not su0ient ny moreF 4.6.2 Cluster-size scaling sn order to determine the preise form of the onvergene of oservles upon inresing the luster sizeD we fous our ttention on the energy density nd on the momentumEdistriution pek n(k = 0)D whih n e lulted from the orreltion funtion b † i bj = e i(θ i -θ j ) . @RFQIA pigsF RFU nd RFV show the lusterEsize sling of the kineti energy nd of the n(k = 0) respetivelyD oth lulted in the super)uid phseD for u = 3F e oserve thtD when plotted ginst the surfeEtoEulk rtio λD the two quntities sle generilly s power lw towrds the ext @λ = 0A resultD whih vlidtes the hoie of the λ prmeter to extrpolte the (niteEluster results towrds the ext oneF sn prtiulr the exponent of the power lw seemingly pprohes I when T → 0D whih is onsistent pigure RFWX ling of the ondenste pek n k=0 with the luster prmeter λ for quntum rotors on the squre lttieF λ vlues orrespond to luster liner sizes l c = ID PD QD TD WD nd IV @in deresing orderAF wodel prmeters re u = 5.8 nd L = 18F vines s in pigF RFVF with the numeril oservtion of liner sling in groundEstte studies of lttie oson modelsD sed on the wp QSD VRD VSD VTF yn the other hndD the powerElw exponent ppers to grow grdully upon inresing the tempertureD nmely the onvergene towrds the ext result is slightly fsterD the higher the tempertureF pinllyD it is interesting to oserve tht the lusterEsize sling of the wp results holds not only in the super)uid phseD ut lso long the quntumEritil trjetoryD nmely for (nite tempertures ove the qunE tum ritil point u = u c ≈ 5.8 for the super)uid wottEinsultor trnsitionF es shown in pigF RFWD powerElw sling is well onsistent with the numeriE l resultsD with nerly liner sling whih persists t higher temperturesD nd muh lrger preftorF he slower sling revels strong enhneE ment of quntum orreltions in the quntum ritil regionD in spite of the ft tht the totl orreltions hve in ft quired n exponentilly deE resing form t (nite tempertureD in ontrst with the super)uid phseF his revels one gin the semiElssil nture of the wp pproximE tionD limited y the strength of quntum orreltions nd not y tht of therml onesF Chapter 5

Auxiliary-eld Monte Carlo sn this hpter we introdue numeril pproh to lttie systems lled uxiliryE(eld wonte grlo @epwgAD whih is similr in spirit to pprohes suh s tht used in efF RT for spins nd osonsD or to some others used in the ontext of lttie fermions RUF sn its generl version epwg su'ers hevy sign @orD more generllyD 4phse4A prolemD whih n e eliminted y mking pproximtionsF e show tht possile pproximtion sts the density mtrix of the system in luster quntum menE(eld @wpA formD s tht introdued in ghpF RF herefore the results of our previous hpters onstitute fundmentl justi(tion for suh n opertionD tht priori would e ompletely ritrryF sn the end of the hpter we pply the epwg method supplemented with the wp pproximtion to the study of the thermodynmis of hrdEore osons oth on squre lttie ! whih dmits numerilly ext solution vi quntum wonte grlo ! s well s on tringulr frustrted @πE)uxA lttie ! whih insted prevents the use of quntum wonte grlo euse of severe sign prolemF his ltter system is prtiulrly interesting euse it ould e implemented experimentlly using ultrEold toms in n optil lttie in the presene of n rti(il guge (eld VUF 5.1 Partition function as a path-integral over auxiliary elds e onsider the foseErurd rmiltonin

Ĥ = - ij J ij b † i bj + h.c. + U 2 i ni (n i -1) -µ i ni , @SFIA
where J ij = J * ji is the most generl rermitin hopping mtrixD possily inE luding guge (eldF ith respet to ghpF RD for the ske of simpliity in the expositionD we hve restrited ourselves to the se of n onEsite interE tion onlyF enlogously to wht done in the previous hpterD we express TW the prtition funtion of the system in terms of oherentEstte pthEintegrls IRD UUD VV s

Z = Tr[e -β Ĥ] = D[{φ i (τ )}] exp{-S[{φ i (τ )]} , @SFPA with S[φ i (τ )] = i S i [φ i (τ )] + ij S ij [φ i (τ ), φ j (τ )] , @SFQA S i [φ i (τ )] = β 0 dτ φ * i (∂ τ -µ)φ i + U 2 |φ i | 4 , @SFRA S ij [φ i (τ ), φ j (τ )] = - β 0 dτ φ * i J ij φ j . @SFSA
he hopping mtrix is in generl not positive de(niteD ut one n lwys dd digonl onstnt J ij → Jij = J ij + Kδ ij to hieve this propertyD nd rede(ne ordingly the hemil potentil s µ → µ -KF por instneD in the se of the squre lttieD whose energy minimum is -4JD we need term K = 4J + @with > 0A to render J ij positive de(niteF yne the positive de(niteness of the hopping mtrix is ensuredD one n use the rurdEtrtonovih deoupling IRD UU

exp   ∆τ ij φ * i Jij φ j   = @SFTA 1 det( J/∆τ ) i d(ReΨ i )d(ImΨ i ) 2π e -∆τ [ ij Ψ * i J-1 ij Ψ j -i (Ψ * i φ i +c.c.)]
t eh imginryEtime stepD using set of omplex auxiliary elds {Ψ i (τ )}F gonerning the sptil struture of the J-1 ij ouplingsD one my sy thtD eFgF on the squre lttieD J-1 ij ehves t lrge distnes s the fessel funtion K 0 (| r ir j |/λ) deying exponentilly over the lengthEsle λD where λ = J/ VWF he prtition funtion tkes the form

Z = D[{Ψ i (τ )}] det J e -S Ψ [{Ψ i (τ )}] i Z i [Ψ i (τ )] , @SFUA where S Ψ [{Ψ i (τ )}] = dτ ij Ψ * i (τ )( J-1 ) ij Ψ j (τ ) @SFVA nd Z i [Ψ i (τ )] = D[φ i (τ )] e -{ S i [φ i (τ )] + β 0 [Ψ * i (τ )φ i (τ )+Ψ i (τ )φ * i (τ )] } @SFWA

AUXILIARY-FIELD MONTE CARLO AND SIGN PROBLEM

UI

is the e'etive prtition funtion of single siteF his ltter n e rewritten in the form

Z i [Ψ i (τ )] = Tr T τ exp - β 0 dτ Ĥi (τ ) @SFIHA
where T τ is the imginryEtimeEordering opertorF he e'etive singleEsite prtition funtion is most expliitly written upon disretizing the imginryE time diretionX

τ → τ k = k∆τ D with k = 1, ..., M nd ∆τ = β/M X Z i [Ψ i (τ )] = lim M →∞ Tr M k=1 exp -∆τ Ĥi (k∆τ ) @SFIIA
where the 4instntneous4 rmiltonin in imginry time is

Ĥi (k∆τ ) = -Ψ * i (k∆τ ) bi + h.c. + U 2 i ni (n i -1)-(µ-K) i ni . @SFIPA
sn reent yers the oherentEstte pthEintegrl hs ome under srutiny euse of some essentil miguities it exhiitsD nd it therefore my not seem s solid sis for numeril pproh WHF e would like to point out tht the pthEintegrl formlism is not stritly neessry to otin iqF @SFUAD ut we used it for the onveniene of the presenttionF woreover the pthE integrl of iqF @SFWA is extly lulted to give iqF @SFIIAD whih is expressed in opertoril formD nd whih will e the sis of our susequent nlysisF sn eppF f we show possile lterntive derivtion of iqF @SFUA whih does not mke use of the oherentEstte pthEintegrlF 5.2 Auxiliary-eld Monte Carlo and sign problem e my express iqF @SFUA in the form

Z = D[{Ψ i (τ )}] w[{Ψ i (τ )}] @SFIQA with w[{Ψ i (τ )}] weights given y w[{Ψ i (τ )}] = e -S Ψ [{Ψ i (τ )}] i Z i [Ψ i (τ )] , @SFIRA
whih suggests the possiility of implementing wonte grlo pproh tht is usully lled uxiliryE(eld wonte grlo @epwgAD y performing mE plitude nd phse updtes for the uxiliry (elds {Ψ i (τ )}F he lulE tion of eh lol prtition funtion Z i [Ψ i (τ )] would require M digonlE iztions of (n max + 1) × (n max + 1) mtriesD nmely the H i (k∆τ ) mtries whih need to e exponentited to produe the in(nitesiml propgtors exp [-∆τ H i (k∆τ )]F Z i would then e otined s the tre of the produt of the M exponentited mtriesF herml verges of oservles ould e estimted s

Ôi = [ Ôi ] MC = D[{Ψ i (τ )}] w[{Ψ i (τ )}] [ Ôi ] D[{Ψ i (τ )}] w[{Ψ i (τ )}] @SFISA
where

[ Ôi ] = 1 Z i Tr Ôi T τ exp - β 0 dτ Ĥi (τ ) , @SFITA for singleEsite oservles nd Ôi 1 ... Ôin = [ Ôi 1 ]...[ Ôin ] MC @SFIUA
for nEsite oservlesF fut in order for this numeril pproh to e e'etiveD to perform suh simultion one hs to ensure tht ll the weights w[{Ψ i (τ )}] re rel positive or zeroF his is the se for the omponent e -S Ψ [{Ψ i (τ )}] D whih is prodE ut of qussinsD ut there is no reson in priniple to sy tht the lol prtition funtions i Z i [Ψ i (τ )] re lso rel positiveD euse the opertor ppering in iqF @SFIIA under the tre is the produt of more thn two rermitin opertorsF uh produt dmits nonEzero tre for oth its rermitin prt @whih gives rel ontriutionA s well s its ntiErermitin prt @whih gives n imginry ontriutionAF ith omplex weightsD the sttistil verges Ôi @whih re rel numersA re the result of the sum of oth positive nd negtive terms oming from the rel s well s the imgE inry prt of w[{Ψ i (τ )}] nd [ Ôi ]D hene the sign prolem @tht one my ll here 4phse4 prolemD sine it emerges from omplex numersAF hereforeD in order to implement meningful numeril pprohD it is essentil to develop some form of pproximtionsD s we disuss in the followingF 5.3 Time-independent auxiliary elds: a quantum mean-eld approximation e (rstD simple pproximtion onsists in ignoring the imginryEtime depenE dene of the uxiliry (eldsX

Ψ i (τ ) ≈ Ψi . @SFIVA
his mounts to deouple the imginryEtime dynmis of the di'erent sitesD tht remin oupled only through the men (elds in imginry timeF sn this se the singleEsite prtition funtion Z i eomes physical prtition funtion @nmely the tre of the exponentil of n rermitin opertorAD nd therefore the wonte grlo simultion n e done strightforwrdlyD s it mounts to the smpling of the following ojet

Z = i d(Re Ψi )d(Im Ψi ) 2π w({ Ψi }) @SFIWA 5.3. TIME-INDEPENDENT AUXILIARY FIELDS UQ
with positiveEde(nite w({ Ψi }) weightsF yne n esily oserve tht the pproximtion of timeEindependent uxE iliry (elds @sepA sets the density mtrix in form whih is preisely tht of wp density mtrix @see iqF @RFIUAA for singleEsite lustersF woreoverD s we show in the following setionD for T → 0D this pproh redues to wp pproximtionF 5.3.1 T = 0 limit of the time-independent-auxiliary-eld approximation: Gutzwiller mean-eld solution sn the limit T → 0 the singleEsite prtition funtions eome

Z i [ Ψi ] → e -βE 0 [ Ψi ] , @SFPHA with E 0 [ Ψi ]
the groundEstte energy of the rmiltonin Ĥi ( Ψi )F his redues the sttistil sum to the form

Z ≈ i d(Re Ψi )d(Im Ψi ) 2π e -βE eff [{ Ψi }] , @SFPIA
where the e'etive uxiliry (eld energy E eff hs the form

E eff [{ Ψi }] = ij Ψ * i [ J-1 ] ij Ψj + i ψ 0,i | Ĥi ( Ψi )|ψ 0,i . @SFPPA
rere |ψ 0,i is the ground stte of the singleEsite rmiltonin Ĥi [ Ψi ]F he groundEstte vlue of the uxiliry (elds is then found upon minimizing the e'etive energy

δE eff δΨ * i = j [ J-1 ] ij Ψj -bi 0 = 0 @SFPQA
where bi 0 = ψ 0,i | bi |ψ 0,i D nd we hve used rellmnEpeynmn9s theorem to evlute the derivtive of the groundEstte energyF snverting this reltion we (nd tht the groundEstte uxiliry (eld on(gurtion stis(es the selfE onsistent ondition

Ψi,0 = j Jij bj 0 = j J ij bj 0 + K bi 0 , @SFPRA
where the expettion vlue of bj is tken on the ground stte of the singleE site rmiltonin ontining the uxiliry (eld itselfF his ondition is similr to tht stis(ed y the ground stte in the qutzwiller menE(eld pproxiE mtion ! see iqsF @PFITA nd @PFIUAD ut it shll e extly the sme only in the se of K = 0F yne n show thtD in squre lttieD iqF @SFPRA is the sme s the qutziller menE(eld ondition for rmiltonin with rede(ned prmeters J → J + K/4 nd µ → µ -KF his shll give (rst ide of how the use of the digonl shift K 'ets the orret desription of the modelF

( J(inter) ) Ψ i (τ ) ≈ Ψi J (inter) ij J (intra) ij ij φ * i J ij φ j = ij∈B φ * i J (inter) ij φ j + ij φ * i J (intra) ij φ j , B J(inter) ij = J (inter) ij + Kδ ij μ i∈B → μ i∈B -K Z = D[{Ψ i∈B (τ )}] det( J(inter) ) e -S Ψ [{Ψ i∈B (τ )}] c Z c [{Ψ i (τ )} c ] 5.3. TIME-INDEPENDENT AUXILIARY FIELDS US where S Ψ [{Ψ i∈B (τ )}] = dτ ij∈B Ψ * i (τ ) [( J(inter) ) -1 ] ij Ψ j (τ ) @SFPUA nd Z c [{Ψ i∈c (τ )}] = D[{φ i∈c (τ )}] e -{ Sc[{φ i∈c (τ )}] + β 0 i∈Bc [Ψ * i (τ )φ i (τ )+c.c.] } .
@SFPVA rere c is the luster indexD B c is the oundry of the luster cD nd S c is the tion desriing the ulk of the lusterX

S c [{φ i∈c (τ )}] = i∈c S i [φ i (τ )] - ij∈c β 0 dτ φ * i J (intra) ij φ j . @SFPWA
he luster e'etive prtition funtion is esily rewritten in opertoril form s

Z c [{Ψ i∈c (τ )}] = Tr T τ exp - β 0 dτ Ĥc (τ ) @SFQHA
where the luster rmiltonin is given y

Ĥc (τ ) = - i∈Bc Ψ * i (τ ) bi + h.c. - ij∈c J (intra) ij b † i bj + h.c. + U 2 i∈c ni (n i -1) -µ i∈c,i ∈Bc ni -(µ -K) i∈Bc ni .@SFQIA
e would like to stress tht so fr the pproh is extX no pproximtion hs een employedF et this point one n employ the pproximtion Ψ i (τ ) ≈ Ψi in the previous equtionF his llows us to hieve positive weights nd to simulte the model through wonte grlo pprohD using mplitude nd phse updtes for the uxiliry (elds { Ψi }F yne my lso oserve tht the pproximtion on the oundry of the luster sts the density mtrix in the form of wp density mtrixD s in iqF @RFIUAF sn the previous hpterD we proved wp pproximtion to e e'etive in the desription of lttie osons t (nite tempertureF his ws in turn onsequene of length sle seprtion of lssil nd therml orreltions lredy shown in ghpF QF hereforeD the epwg with luster deomposition nd timeEindependent uxiliry (elds n e regrded s physilly motivted pproh pplile to wide lss of lttie systemsD sine it permits the study of models involving omplex hopping proessesF his pproh onstitutes systemti onstrution of e'etive lssil (eld theories for lssil uxiliry (elds living on the oundry of the lustersD hrterized y n tion

S e [{ Ψi∈B }] = S Ψ [{ Ψi∈B }] - c log Z c [ Ψi∈Bc ] .
@SFQPA pigure SFPX uineti energy density @A nd n(k = 0) @A for di'erent luster sizes with ewpgD ompred to wgF lots show L = 12 lttie nd employ the temperture t = k B T /JD with k B the foltzmnn onstntF he division into lusters relizes sptil renormliztion of the lttie @see pigF SFIAD with oth quntum nd therml )ututions eing integrted on the sle of the lustersF sn the following we pply the method to the test model of hrdEore osons on squre lttieD nd we then pproh the prolem of hrdEore osons on frustrted tringulr lttieF 5.4 Application of AFMC to hard-core bosons on a square lattice vet us rell the (µ = 0) rmiltonin of hrdEosons in squre lttieX

Ĥ = - ij J ij â † i âj + h.c. . @SFQQA
es disussed in the previous setionsD the rurdEtrtonovih trnsforE mtion requires the introdution of digonl shift K to the hopping mE trix in order to mke it positive de(niteF sn the following we hoose K = |α min |(1 + ε)D where α min is the minimum eigenvlue of the mtrix J (inter) ij nd ε > 0F he hosen ε shll e ig enough to ensure positive de(niteness of the hopping mtrixD ut lso smllD in order to minimlly 'et the resultsF sn the following we lwys tke ε = 0.05Y moreoverD we notied tht for smll ε results depend wekly on its spei( hoieF 5.4. HARD-CORE BOSONS UU pigure SFQX piniteEsize sling for n(k = 0) for di'erent luster sizesF es lredy pointed out in eF SFID the shift in the hopping mtrix is ompensted y the one of the hemil potentilF nder the sep pproxE imtion this seemingly hrmless shift remins imprinted on the oundry of the lusterD 'eting the luster physis in wy tht only disppers upon growing the luster sizeF o elerte the lusterEsize onvergeneD we mke the hoie of removing the hemilEpotentil shift ltogetherD nd therey ssuring prtileEhole symmetry when µ = 0 on eh lusterD whtever the luster sizeF sn pigF SFP we report plots showing the kineti energy nd the n(k = 0) pigure SFRX viner (t to extrpolte the λ = 0 estimte of the fu trnsiE tionF esults re ompred to those previously shown in pigF PFP for wpF pek in momentum distriution @for di'erent luster sizesAD nd ompre them to wg resultsF pirst of ll one n oserve tht epwg results get loser to the ext results upon inresing the luster sizeF enlogously to wht done in esF PFP nd PFRD we extrt estimtes for the fu trnsiE tion temperture using (niteEsize sling for n(k = 0)F his is done for ll the ville luster sizes ! see pigF SFQF he soEotined estimtes n e extrpolted linerly in the surfeEtoEulk rtio λ nd then give n in(niteE size @λ = 0A estimteD s previously done in eF RFTFPF sn pigF SFRD we relize liner (t in λD whih gives vlue T λ=0 = (0.69 ± 0.02) k B /JD omptile with the referene vlue T BKT = 0.685 k B /J SQF he hoie of liner interpoltion @with respet to polynomil oneD s done in eF RFTFPA is moE tivted y the limited numer of points villeD whih is in turn imposed y the exessive omputtionl ost of lrgerEsize lustersF sn pigF SFR we lso show the results previously otined using luster men (eld @eF PFQAF yne n ppreite how epwg ! whihD t vrine with wpD n pture longEwvelength therml )ututions tht govern the trnsition ! n pE ture the orret universlity lss of the trnsition for eh luster sizeD nd is signi(ntly more urte in the estimte thn wpF woreoverD epwg results pper to e muh less sttered thn wp onesD thus showing muh less steep liner interpoltion funtionF es (nl remrkD we notie tht epwg points @ontrrily to wp pointsA 

XY κ Δ = (i→j)∈Δ sin(θ i -θ j ) λ = 0 K T BKT λ > 0 XY XY 5.
H = -J i,j S i • S j = -J i,j
cos(θ iθ j ) , @SFQRA with S i = (cos θ i , sin θ i ) nd J < 0F his model shows frustrtionD sine spins nnot orient ntiEferromgnetilly with respet to ll onds in whih they re involvedF he ground stte exhiits QEsulttie struture with spins forming 120 degrees ngles with one notherF his ground stte posE sesses Z 2 hirl degeneryD with the two hirl ground sttes hrterized y the on(gurtions shown in pigF SFS @up to U (1) symmetryAF et (nite tempertures this model shows two phse trnsitionsX spin trnsitionD nd hirl trnsitionD ssoited with the spontneous symmetry reking of the inversion symmetryF he spin trnsition is ssessed to hppen t lower temperture thn the hirl oneD thus showing 4spinEhirlity deoupling4F he nture of oth trnsitions is somehow detedX some works limed the hirl trnsition to elong to stndrd ssing universlity lss WID WPD WQD wheres some others reported possile devitions of the ritil exponents from the stndrd ssing ones WRD WSY some works limed the spin trnsition to elong to stndrd fu universlity lss WRD WSD WTD wheres some othE ers reported possile devitions of the ritil exponents from the stndrd fu ones WID WPD WQF sn the following we will not enter this deteD ut we will ssume the trnsitions to elong to ssing nd fu lsses respetively nd use the orresponding ritil exponents for the (niteEsize sling nlyE sisF es referene vlues for the trnsitions we give those presented in reent work y yuhi nd uwmur WQD whih estimtes T BKT 0.505 k B /J nd T Is 0.513 k B /JD therefore with the spin trnsition ourring t temperture round 1.5% lower thn hirl oneF 5.5.2 Hard-core bosons on a frustrated triangular lattice e study the quntum XY model in the lnguge of hrdEore osonsD relying on the ext mpping presented in eF PFIF he rmiltoninD for the se of µ = 0D will e

Ĥ = - ij J ij â † i âj + h.c. , @SFQSA
whih hs the sme form s in iqF @SFQQAD ut with the nonEzero elements of the hopping mtrix suh tht J ij = -J < 0 @there is πE)uxAF his model s well requires the introdution of K shift @tht we hoose s in eF SFRA in order to mke the hopping mtrix positive de(niteD therefore the sme VI pigure SFTX uineti energyD density pek nd urrent struture ftor for the tringulr lttieF oservtions s in eF SFR pplyF e fous in prtiulr on two oservlesD whih will serve to hrterize the fu nd ssing trnsitionsF yne shll e ptured y the pek in the momentum distriutionD whih for the two hirl ground sttes shown efore ours respetively t k = (-4π/3; 0) nd k = (4π/3; 0)D nd equivlent points in the frillouin zoneF e de(ne n oservle n 4/3 = n(-4π/3; 0) + n(4π/3; 0) 2 , @SFQTA pigure SFUX piniteEsize sling for n 4/3 on tringulr lttieF whih is the verge of the peks of the two hirl on(gurtionsF he other oservle shll e struture ftor for urrentsD de(ned s

S(q = 0) = 1 N 2 ∆ ∆∆ κ∆ κ∆ , @SFQUA
where ∆ denotes tringulr plquette oriented in hosen diretion @upE wrds or downwrdsA nd κ∆ =

(i→j)∈∆ i(â † i âj -â † j âi ) @SFQVA

HARD-CORE BOSONS IN A FRUSTRATED LATTICE

VQ pigure SFVX piniteEsize sling for S(q = 0) on tringulr lttieF is the osoni urrent over losed loop on suh plquetteD whose sign deE pends on the hirlity of the plquetteF he struture ftor is designed suh tht it is mximl for on(gurtions in whih ll tringulr plquettes oriented in the sme diretion hve the sme hirlity ! whih is the se for the two ground sttesF sn pigF SFT we show timeEindependent epwg results for the kineti energyD the momentum pek nd the urrent struture ftor for singleEsiteD tringulr nd rhomi lusters @see pigF SFS for the lusters shpeAF e n mke some more omments on the simultionF es done in the previous setion for the squre lttieD we introdue digonl shift on the pigure SFWX viner (ts for T BKT nd T Is in the surfeEtoEulk rtio for singleEsiteD tringulr nd rhomi lustersF hopping mtrix tht we do not ounterlne with new shift for the hemE il potentilF his is done gin with the im of preserving hlf (lling for ll luster mtriesF woreoverD in the se of tringulr nd rhomi lusters the sum @SFQUA is restrited to tringles entirely ontined in lusterD in order to hve ll onds desried in the sme wyF ell dt in pigF SFT @s well s those in the following setionA re the result of n verge over PH indepenE dent simultionsF his ws done in order to hve smooth urvesF woreoverD ll simultions @nd in prtiulr those for tringulr nd rhomi lustersA showed very slow onvergeneD whih required the use of nneling @see eppF eAF 5.5.3 Finite-size and cluster-size scaling e follow now the sme pproh s in eF SFS nd derive estimtes for the fu nd ssing trnsition tempertures through (niteEsize sling nd lusterEsize slingF sn pigsF SFU nd SFV we show (niteEsize sling for singleE siteD tringulr nd rhomi lusters for oth momentum pek n 4/3 nd urrent struture ftor S(q = 0)F e use the η exponent for the Pd fu universlity lss nd the Pd ssing lssD whih is in oth ses η = 1/4D nd for eh luster size we extrt n estimte for the trnsition temperturesF hen we perform liner (ts for the soEextrted (niteEsize estimtes in order VS to hve in(niteEsize estimtes for the two trnsition temperturesD s shown in pigF SFWF he plot suggests tht the deoupling of the two trnsitions is preserved in the quntum modelF sn prtiulrD for ll the three luster sizes invesE tigted @nd for the in(niteEsize estimtes s wellA T BKT < T Is D s found in the lssil modelF he plot lso seems to suggest tht quntum e'ets enhne the seprtion etween the two trnsitionsF yur linerly extrpoE lted estimtes for the trnsitions re T BKT = (0.272 ± 0.007) k B /J nd T Is = (0.290 ± 0.004) k B /JD with T BKT pproximtely 6% lower thn T Is F gonverselyD in the lssil model T BKT is found to e round 1.5% lower thn T Is WQF Chapter 6

Conclusions sn this thesis we pprohed lttie quntum systems oth from theoretil nd numeril point of viewF sn the (rst prt we mde some onsidertions of generl interest for equilirium mnyEody sttesD minly onerning the nture nd struture of orreltionsF sn the seond prtD on the sis of these resultsD we developed n pproximted frmework whih is prtiuE lrly suited for the numeril study of osoni models @inluding frustrted lttiesA urrently t interest in experimentl physisF e introdued new quntum orreltion funtion @gpAD tht we deE (ned s the di'erene etween the onventionl twoEpoint orreltion funE tion involving the regions A nd BD nd the response funtion of region A upon perturing region B with (eld λ B F sn the lssil se these two quntities re identi(ed y )ututionEdissiption reltionD whih reks down quntumEmehnillyF e studied the sptil struture of the gp nd of its lssil ounterprtD nd showed lengthEsle seprtionD with quntum orreltions deying exponentilly @with hrteristi qunE tum oherene lengthA t ll temperture nd lssil orreltions deying either lgerilly or exponentillyD depending on the tempertureF e showed tht (nite gps rule out spei( form of seprility tht we nmed rmiltonin seprilityD thus suggesting tht the quntum oherE ene length n e regrded s n e'etive seprility length of the systemD whih is lso omptile with similr seprility length de(ned y qunE tum vrine UHF woreoverD we ompred the quntum orreltion funtion with n importnt referene quntity in the physis of quntum informtionD the quntum disord QHD whih mesures the nonElol disturne tht lol mesure produes in quntum systemF untum disord is regrded s n oservle mesuring truly quntum orreltionsD ut we showed tht @t vrine with the gpA it is sensitive to purely lssil phenomenD thus suggesting the neessity of ritilly revise its useF yn the sis of the oserved lengthEsle seprtion in the sptil struE ture of lssil nd quntum orreltionsD we introdued n pproximtion VU VV CHAPTER 6. CONCLUSIONS to lttie systems tht we nmed quntum menE(eld @wpAF he ltter relizes deomposition of the system into lustersX quntum orreltions re ut t the luster edgesD wheres therml orreltions re properly deE sried y form of lssil orreltion introdued in the density mtrixF es long s the rtio etween the quntum oherene length nd the luster liner size is muh igger thn oneD the pproximtion is extremely urteF e tested the pproximtion for model of quntum rotors in squre ltE tieD for whih we studied severl luster sizes nd extrted estimtes for the in(niteEsize luster performing (t in the surfeEtoEulk rtio of the lustersF pinllyD we mde use of the wp pproximtion in the generl frmeE work of the soElled uxiliryE(eld wonte grlo @epwgA RTF his llowed us to irumvent the severe sign prolem whih hrterizes epwg nd develop widely pplile pproximte methodF sn prtiulrD we pplied suh method to the study of the thermodynmis of hrdEore osons in frustrted @or πE)uxA tringulr lttie @equivlent to the ntiEferromgneti quntum XY modelAF his onstitutes to our knowledge the (rst numerE il study of the trnsitions of this modelF imultions showed the sme trnsitions @ fu nd n ssing oneA s in the lssil modelD ut with tempertures strongly renormlized y quntum e'etsF he renormlizE tion of the fu trnsition temperture is more severe thn tht of the ssing oneD inresing the width of the inEetween hirl phseF hese results suggest the possiility of pplying the new method we deE veloped to mny other models of urrent interest oth in ultrEold toms nd in ondensed mtterF yne my study eFgF frustrted ltties suh s the kgome lttie II or the nisotropi tringulr lttie WUF fut one my lso move wy from the πE)ux se nd investigte the rofstdter model for osons WVD whih represents one of the 4holy grils4 of urrent experimenE tl e'orts in ultrEold tomsF sntroduing seondD relEvlued uxiliry (eld llows one to desrie s well ritrry densityEdensity intertions @s disussed in eF RFQAX this opens the pth to studying eFgF XXZ models or dipolr toms in guge (eldD to ite few exmplesF pinllyD using spinor uxiliry (eld { Ψ i } llows one to tret spinful osonsD potentilly extending the purpose of our method to nonEelin guge (eldsF Chapter 7 s would like to thnk mny peopleD who were very importnt to me during these three yersF s m wre tht it is not the niest thing for rederD ut s would like to thnk everyone in the lnguge we usully spek togetherF er prim os vorrei ringrzire il mio supervisor ommso osildeF hurnte il mio dottorto ho vuto l fortun di lvorre on un person eE ezionle si dl punto sienti(o he dl punto di vist umnoF te voudris remerier ussi tous les memres du loD en prtiulier mes ollègues doE tornts hvidD oinD tenEoD ernud et fptiste ve qui j9i prtgé plein de moments très gréles pendnt nos reps et puses féF orrei ringrzire l mi fmigliX i miei genitori fru e 0D mi sorell rD mio frtello elessndroD mi nonn qemmD mio ognto hevisD i miei zii vu e wihel e i miei ugini ommso e ssellF uesti tre nni di dottorto hnno oiniso on un periodo prtiolrmente omplito per tutti noiD m or si gurd l futuro3 orrei ringrzire gli mii itlini on uiD nonostnte i si ved rrE mente us dell distnzD ontinu d esseri un legme molto forteF sn prtiolreD tr gli mii vresini vorrei ringrzire enn&wnu e wollD tr quelli 4pvesi4 elrioD l wrgheD eleD ol&uentD endreottiD il fgttD il esD l uizD l irniD wnett e oF te voudris ussi remerier mes mis lyonnisD qui ont rendu m vie lyonnise juste génile 3 te voudris ommener pr mes olos entoineD vurine et wrineD ve qui j9i tout prtgé pendnt es dernier tempsF te voudris remerier ussi frieD glireD plorine et gorlie pour les mille hoses trop ien qu9on fites ensemleF te ne peux ps oulier les mis interntionux de 4v gs xostr4D le meilleur entre ulturel de vyonFFF sn prtiolre tr questi ultimi vorrei ringrzire edrián e wriF VW WQ e would like to mke remrk out the trnsition proilitiesF yne is free to set to zero some of the proilities t(x, y) @s tipilly done in wonte grlo lgorithmsAD ut there must lwys exist nonEzero proility pth onneting two sttes x nd y @ergodiity ondition IHHAF his is neessry to ensure the onvergene to the proility distriution regrdless to the initil stteF ytherwise the hin ould e stuk in region of the phse spe whih not onneted to the regions where the most relevnt sttes re situtedF st is possile to show IHH tht under these onditions the wrkov hin onverges to set distriuted s the proility distriution pF sn the followE ing prgrph we see how to prtilly hoose the trnsition proilities to relize suh proessF A.3 Metropolis algorithm he trnsition proility is often written s t(x → y) = q(x, y)α(x, y) , @eFTA where q(x, y) selets the pir of sttes to e onneted y the trnsitionD nd α(x, y) provides the trnsition stteF vet us hoose t rndom n initil on(gurtion x 1 for the systemF he lgorithm is onstituted of N -1 steps nd the protool to move from step i to step i + 1 is the followingD where x i is the on(gurtion t the iEth stepX • qenerte on(gurtion y from the proility q(x i , •)F

• qenerte rndom vlue ξ from the uniform distriution on (0, 1)F

• glulte the eptne proility α(x i , y) = min 1, e -βEy q(y, x i ) e -βEx i q(x i , y) , @eFUA where the rtio inside the rkets is the soElled eptne rtioF

• sf ξ ≤ α(x i , y)D then set x i+1 = yD otherwise set x i+1 = x i F
st n esily e heked tht eqution iqsF @eFUA nd @eFTA stisfy the deE tiled lne onditionF yne should notie tht set of sttes distriuted s the proility distriution p hs een generted without the expliit knowledge of the proilities pD of whih we do not know expliitly the normliztion ftor @represented y the prtition funtionAF et the end of the proess one hs generted smple (x 1 , ..., x N ) nd n lulte the estimtor

Q M C ≡ N i=1 Q(x i ) N . @eFVA
st is importnt to notie tht the vrine of this estimtor nnot e esE timted s r[Q

M C ] = N i=1 (Q(x i ) -Q M C
) 2 /N D sine the vriles onE sidered re not independentF ypillyD for prtil resonsD most of the proilities t(x → y) re hosen to e zeroD whih determines orreltion etween the on(gurtions t eh stepD sine two susequent on(gurtions hve similr physil propertiesF his lls for the neessity of onsidering some methods to properly ount for orreltionsF A.4 Autocorrelation time yne ould sy tht in stohsti proessD orreltions dey over hrE teristi time sle @ ertin numer of stepsAD tht is lled utoorreltion timeF en utoorreltion funtion n e de(ned sX

C Q (j) = 1 (N -j)σ 2 N -j i=1 (Q(x i ) -Q MC ) (Q(x i+j ) -Q MC ) , @eFWA where σ 2 = N i=1 (Q(x i ) -Q M C ) 2 /N in the denomintor is used to norE mlize the rtioD suh tht C Q (0) = 1F sf one ssumes tht the orreltions dey exponentilly s C Q (j) ∼ e -j τ Q D then it is possile to estimte the utoorreltion time y integrtion s τ Q ∼ N -1 j=0 C Q (j) , @eFIHA
where one my notie tht we kept n index QD sine this quntity is in priniple oservleEdependentF his implies tht the e'etive numer of unorrelted mesurements is not N D ut N/(2τ Q )D whih mens tht if we onsider point in the wrkov hinD it will hve τ Q orrelted elements on his left nd τ Q orrelted elements on his rightF es onsequene over lok of 2τ Q steps widthD mesures re orreltedF he sttistil error for the estimte of Q will then result 

∆ Q = (2τ Q ) σ 2 N . @eFIIA A.
{ Q(x) 1 , ..., Q(x) b } . @eFIQA
fy inresing the size b of the loksD nonEonseutive loks re less nd less orreltedF yne b is su0iently igD we n ssume tht verges in iqF @eFIQA re independent nd then lulte the vrine s r

[Q M C ] = 1 k(k -1) k i=1 r[( Q i -Q M C ) 2 ] .
@eFIRA hroughout this thesis error rs were estimted y mking use of this forE mulF A.6 Dependence on the initial conguration es shown in iqF @eFIIAD in the limit of n in(nite simultion N → ∞D the results of wonte grlo tend to the ext result nd do not depend on the initil on(gurtionF fut rel simultions lwys hve (nite numer of stepsD nd the dependene on the initil on(gurtion might result in is on the resultsD in prtiulr if the hosen on(gurtion is very fr wy @in terms of wonte grlo stepsA from the region where the most relevnt sttes @from the point of view of foltzmnn weightsA re lotedD or in se the system exhiits metstle sttes for the stohsti dynmis generted y the wonte grlo simultionF o eliminte ny dependene on the initil on(gurtionD nd let the on(gurtion move to the region of phse spe ontriuting the most to the sttistil sumsD the (rst prt of the wg simultion is devoted to therE mliztionD during whih mesurements of oservles re not reordedF por thermliztion to e e'etiveD the length of the thermliztion proess should exeed the utoorreltion time of ll oservles of interestF por some kind of systems thermliztion might not e su0ient or might require very lrge numer of stepsF por this reson one n use n lE terntive proess lled nneling IHPF e rndom on(gurtion is hosen t temperture muh higher thn the one t whih the system will e studiedF et high tempertures ompletely rndom on(gurtion is often proper on(gurtion of the systemF e short thermliztion is performed t tht tempertureF hen the temperture is lowered of ertin ∆T nd the proess is repetedF he proess is iterted until the desired temperture is rehedF sn this wy the system is guided towrds the low temperture grdully with redued proility of getting trpped in metstle sttesD nd it n estlish the orret equilirium regime t low temperturesF ell the simultions presented in ghpF SD for exmpleD mke use of nnelingF i ni (n i -1) -(µ -K) i ni F he density opertors n e deoupled using rurdEtrtonovih trnsforE mtion s 

exp -∆τ Ĥ = DΨ G 1 -∆τ α Ψ α b † α + Ψ * α bα + ∆τ |Ψ α | 2 b † α bα + ĤU,µ-K + O(∆τ 2 ) = DΨ G : e -∆τ α ( 
= lim M →∞ exp -∆τ Ĥ M @fFQA = lim M →∞ i M k=1 dΨ i,k dΨ * i,k 2πi e -∆τ k ij Ψ * i,k J-1 ij Ψ j,k N ⊗ i ρi + O(M ∆τ 2 )
where the lol density opertors red

ρi = k : e -∆τ Ψ * i,k bi +Ψ i,k b † i + Ĥ(d) i (U,µ-K) : . @fFRA
king the tre of this density opertor gives preisely iqF @SFUAD thus provE ing the equivlene of this pproh with the pthEintegrl oneF e my oserve tht in the se of ordinry osons norml ordering is not essentilD nd negleting it leds to n overll multiplitive onstnt whih ppers in front of the density opertorF yn the other hndD for hrdE ore osons the norml ordering is essentil to otin the orret density opertorF Bibliography 

  RT 4 Quantum mean-eld approximation 51 RFI thEintegrl pproh for lttie osons F F F F F F F F F F F F SI RFP prom lusterEmenE(eld sttes to lusterEseprle sttes F F F SP RFQ untum menE(eld pproximtion F F F F F F F F F F F F F F F SQ RFR heoretil sis for the wp pproximtion F F F F F F F F SU RFS untum rotors nd the wp pproximtion F F F F F F F F F SW RFT wp results for quntum rotors F F F F F F F F F F F F F F F F TP 5 Auxiliary-eld Monte Carlo 69 SFI rtition funtion s pthEintegrl over uxiliry (elds F F F TW SFP euxiliryE(eld wonte grlo nd sign prolem FF F F F F F F F UI SFQ imeEindependent uxiliry (elds F F F F F F F F F F F F F F F F UP SFR rrdEore osons F F F F F F F F F F F F F F F F F F F F F F F F F UT SFS rrdEore osons in frustrted lttie F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F WI eFP wrkov hinX ergodiity nd detiled lne F F F F F F F F F WP eFQ wetropolis lgorithm F F F F F F F F F F F F F F F F F F F F F F F WQ eFR eutoorreltion time F F F F F F F F F F F F F F F F F F F F F F FWR eFS eduing orreltions with loks F F F F F F F F F F F F F F F F WR eFT hependene on the initil on(gurtion F F F F F F F F F F F F WS Chapter 1

Figure 3

 3 Figure 3.1: (a) Hamiltonian-separable states are a subset of separable states: ruling out Hamiltonian separability does not prove entanglement. (b) A quantum Hamiltonian acting coherently on the subsystems A and B correlates quantum mechanically the uncertainties on the local observables ÔAand ÔB , generating a non-vanishing quantum correlation function; (c) The opposite scenario is the one in which the two subsystems are locally in an equilibrium state governed by two separated Hamiltonians, correlated to a common classical noise source; in this case the quantum correlation function δ ÔA δ ÔB Q vanishes identically; (d) When two sites i and j of a lattice system are separated by a distance far exceeding the quantum coherence length ξ Q , the sites in between mediate their correlations in a similar way as a classical statistical eld coupling the two sites.

k

  on the ssoited eigenspesD one n de(ne the ompound density mtrix of sites ij onditioned upon the outome 3mesurement of the oservle Ôj D nd verged on ll posE sile outomes of the mesurementD n e therefore expressed s

  dφ * dφ 2πi e φ * φ |φ φ| = 1F hey onsent to express the prtition funtion of SI SP CHAPTER 4. QUANTUM MEAN-FIELD APPROXIMATION the system s IRD UUD UV

  in the super)uid phse of Pd quntum rotors with u = 5D L = 36F @A xormlized therml orreltions t t = 0.15 for vrious luster sizesF @A η exponent extrted from powerElw (ts of the therml orreltion funtion over the rnge [3,

  Ψα b † α +h.c.)+ ĤU,µ-K : + O(∆τ 2 ) @fFPA where : ... : denotes norml orderingD G = e -∆τ α |Ψα| 2 K-α /N D N is the normliztion of the qussin distriution for the uxiliry (eld Ψ α nd DΨ = α dΨαdΨ * α 2πi F ghnging vriles in the uxiliryE(eld integrl from WU WVAPPENDIX B. FORMULATION OF AFMC WITHOUT THE COHERENT STATES Ψ α to Ψ i D one otins for the density opertor ρ the following formX ρ

  

  

  

  

  

  

  

  

  

  5.1 Classical anti-ferromagnetic XY model on a triangular lattice

	he lssil S = 1/2 ntiEferromgneti XY model on tringulr lttie
	is desried y rmiltonin

  5 Reducing correlations with blocks yne wy to irumvent the presene of (nite utoEorreltion time is to divide the series into set of loks whose width is muh igger thn the utoEorreltion time itselfF xmelyD one divides the set {x 1 , ..., x N } into k loks of b > τ Q elements ehD suh tht N = kbX

	A.6. DEPENDENCE ON THE INITIAL CONFIGURATION	WS
	nd lulte the verge of eh lokX	
		@eFIPA

{x 1 , ..., x b , x b+1 , ..., x 2b , ..., x (k-1)b+1 , ..., x kb }
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Appendix A

Monte Carlo method ine the wonte grlo method WWD IHHD IHI is entrl onept throughout this thesisD we (nd it instrutive to give short pedgogil introdutionD whih might interest reder with no previous knowledge in this (eldF e fous in prtiulr on the pplition of wonte grlo to @lssilA physil system nd on the implementtion of the wetropolis lgorithmF A.1 Basics vet us onsider physil system t therml equiliriumF he expettion vlue for some extensive quntity Q @internl energyD entropyD mgnetizE tionFFFA will e of the formX

where the sums re rried out on the N mirosttes of the systemD Q(x) is the vlue of Q mesured on mirostte x nd e -βEx is the foltzmnn weight of suh mirostteF nfortuntelyD this expression n only e evluted extly for very smll systemsD sine N is typilly very lrge numerF his n e esily understood y thinking to system of n prtiles with z possile internl sttesX the numer of mirosttes is N = z n D whih grows exponentilly with the numer of prtilesF yne ould then think of seleting N < N mirosttes through uniform smpling of the phse spe nd pproximting the therml verge with n estimtor

@eFPA fut this opertionD in generlD does not give stisftory resultF yftenD nd in prtiulr t low temperturesD the therml verge is dominted y very few sttes with respet to the totl numer of sttesF e (niteEtime uniform WI WP APPENDIX A. MONTE CARLO METHOD smpling of phse spe would most likely selet lmost only sttes with negligile foltzmnn weight nd then give ised estimtorF yne ould then use nother pprohF he expettion vlue in iqF @eFIA is weighed verge of the elements {Q(x)}D where the weight of ny Q(x) is its foltzmnn weightF yne ould generte set of N sttes {x 1 , ..., x N }D where stte x ours with frequeny proportionl to its foltzmnn weight @or equivlently to its normlized proility p(x) introdued in iqF @eFIAAF his llows to uild n estimtor of the form

sn the following we show how to use stohsti proess to generte set of sttes distriuted s proility distriution pF A.2 Markov chain: ergodicity and detailed balance vet us onsider n initil mirostte x 1 F yne n introdue n ritrry proility distriution t(x → y) ≥ 0 ∀x, yD whih gives the proility of trnsitioning from stte x to stte yF e new stte x 2 n e generted using the trnsition proility t(x 1 , y)F his proess n e iterted until one hs produed hin of sttes {x 1 , ..., x N }F uh hin is lled wrkov hin nd its most remrkle feture is tht the stte t step i depends only on the stte t step i -1 nd not on the previous historyF st is ostumry to sy tht the hin hs no memoryF his is onsequene of the ft tht the proilities t(x → y) do not depend on timeF yne n require the hin to onverge symptotilly to proility distriution pD y imposing some onditions on the hoie of t(x → y)F e (rst ondition ould e to sk tht t equilirium the system trnsitions to nd from ny stte x t the sme rteX

@eFRA fut one n show tht this ondition lone is not su0ient to determine suh onvergeneD euse of mehnism lled 4loop yle4 IHHF st is neessry to mke further ssumptionsF he previous ondition ould e mde more strit y imposing tht t equilirium ny trnsition ours with proility whih is equl to the one of the inverse trnsitionX p(x)t(x → y) = p(y)t(y → x) .

@eFSA his eqution is ustomrily lled the detiled lne equtionF where we expnded the hopping prt of the rmiltonin in terms of the eigenvlues { α } of the hopping mtrix J ij nd orresponding density operE tors { b † α bα } nd we de(ned ĤU,µ-K = U