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Marco Polo descrive un ponte, pietra per pietra.
- Ma qual è la pietra che sostiene il ponte? - chiede Kublai Kan.
- Il ponte non è sostenuto da questa o quella pietra, - rispon-
de Marco, ma dalla linea dell'arco che esse formano.
Kublai Kan rimane silenzioso, ri�ettendo. Poi soggiunge:
- Perchè mi parli delle pietre? È solo dell'arco che m'importa.
Polo risponde: - Senza pietre non c'è arco.

Italo Calvino, Le città invisibili





Abstract in French

Les atomes froids dans les réseaux optiques permettent d'avoir un contrôle
sans précédent des états a N-corps fortement corrélés. Pour cette raison,
ils représentent un excellent outil pour l'implémentation d'un � simulateur
quantique �, utile pour réaliser de manière expérimentale de nombreux hamil-
toniens de systèmes d'intérêt physique. En particulier, ils rendent possible
la création de champs de jauge arti�ciels; ces derniers permettant d'accéder
à la physique du magnétisme frustré. Dans ce travail, il s'agit de s'intéresser
à la thermodynamique des atomes froids, en abordant ce sujet de manière
théorique et numérique. A ce jour, le Monte Carlo quantique est la méthode
la plus e�cace dans ce domaine. Néanmoins, en raison de ce qu'on appelle
le � problème du signe �, elle ne peut s'appliquer qu'à une classe restreinte
de systèmes, et dont par exemple les systèmes frustrés ne font pas partie.
L'intérêt de cette thèse est de développer une nouvelle méthode approximée
fondée sur une approche Monte Carlo. La première partie de cette thèse est
consacrée à des considérations de nature théorique sur la structure spatiale
des corrélations classiques et quantiques. Ces résultats nous permettent de
développer, dans une deuxième partie, une approximation nommée � champ
moyen quantique �. Celle-ci permet de proposer, dans une troisième partie,
une méthode numérique qu'on appelle � Monte Carlo du champ auxiliaire �
et qu'on applique à des cas d'intérêt physique, notamment au réseau trian-
gulaire frustré.
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Chapter 1

Introduction

When cooling down diluted atomic gases to temperatures of the order of
nK, quantum statistics becomes prominent, and quantum degeneracy leads
to phenomena like condensation, apparition of Fermi surfaces, etc... This
physical regime remained for long inaccessible to experiments, but in the
last twenty years amazing technological advances in cooling, trapping and
imaging have made it possible to achieve some spectacular results. Cold
atoms have become a very active and productive �eld of physics at the fron-
tier between atomic physics and condensed matter physics. This �eld has
also seen the award of two Nobel prizes, that went to Chu, Cohen-Tannoudji
and Phillips in 1997 for the development of cooling and trapping techniques
based on the use of laser light and to Cornell, Wiemann and Ketterle in 2001
for the realization of Bose-Einstein condensation in alkali atomic gases. The
latter achievement [1], because of the ground-breaking impact it had in the
nineties, is probably the best known result in the �eld and paved the way to
many other beautiful results: the study of the BCS-BEC crossover [2], the
realization of the super�uid-Mott insulator quantum phase transition [3], the
realization of arti�cial gauge �elds [4] and topological band structures [5],
just to name some. The progress has been constant since then and state-of-
the-art experiments can attain an unprecedented control, even at the scale
of the single atom [6].

What makes physics of quantum gases particularly interesting is the pos-
sibility of realizing the famous "quantum emulator" proposed by Feynman in
the eighties [7]. When dealing with quantum systems the computational cost
for exact calculations grows exponentially with the size of the system, ren-
dering the calculations not scalable and limited to microscopic sizes. For this
reason Feynman proposed not to calculate, but to simulate quantum systems
experimentally. The idea is to study some "simple" experimental systems
which possess quantum degrees of freedom, and which can be mapped onto
more complex systems. For example, cold atoms in optical lattices (which
we will cover more in detail in the next section), can be used to simulate
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10 CHAPTER 1. INTRODUCTION

electrons in crystals.
The main subject of this thesis is the development of a new approximation

scheme for the numerical study of lattice boson models, inspired by the
physics of cold atoms in optical lattices. Therefore the main themes in this
thesis are of numerical and theoretical interest, with a potential relevance for
state-of-the-art experiments. In the following we give a broad introduction
to each of these aspects. In the �rst part we cover some experiments and
techniques which are of interest for the models that we will deal with. In the
second part we give give a broad panoramic introduction to computational
methods in condensed matter theory, to contextualize the method that we
will develop in the following chapters. In the last part we introduce some of
the theoretical aspects which are of fundamental importance to justify our
method. This tripartite introduction will set the ground for the following
chapters, where the core of this thesis will be developed.

1.1 Experimental aspects: optical lattices

An optical lattice is a standing pattern of interfering laser beams. Atoms can
couple to such a structure, which is periodic in space, via an induced dipole
moment and therefore experience a lattice-shaped potential [8]. This scheme
allows to realize many di�erent geometric structures: a cubic lattice, for
example, is created using laser beams oriented in three orthogonal directions,
a bi-dimensional array of one-dimensional tubes using laser beams oriented
in two orthogonal directions - see Fig. 1.1(a-b). In general, any periodic
lattice structure can be realized by superimposing a �nite number of laser
beams. The periodic structure of optical lattices permits to use a number of
theoretical tools proper to condensed matter such as, for example, the tight-
binding approach. For this reason optical lattices can be used to realize
experimentally models such as the (Bose)-Hubbard model. In this thesis we
will focus on two-dimensional bosonic lattices and in particular on square,
triangular and kagome lattices, which are shown in Fig. 1.1(c-e), and which
have been realized in several experiments [9, 10, 11].

What makes optical lattices extremely interesting is their wide tunability.
The lattice constant can be controlled via the wavelength of the laser beams,
the depth of the lattice via the intensity of the beams and the interactions
among atoms via Feshbach resonances [2]. This is in strong contrast to hard
condensed matter, where the properties of solids are determined by their
internal lattice structure, which in general cannot be modi�ed continuously
in the experiments. Having a light-made lattice implies also some other
major advantages: there are no defects and there are no phonons, since the
lattice sites are determined by minima in the interference pattern and cannot
be displaced by a collective excitation.

Measurements in optical lattices are performed through imaging tech-
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Figure 1.1: (a) Laser orientation and potential pro�le in a cubic lattice.
(b) Laser orientation and potential pro�le in a two-dimensional square lat-
tice of one-dimensional tubes. (c-e) Two-dimensional square, triangular and
Kagome lattices. Figures (a) and (b) adapted from Ref. [12].

niques, which in recent years have reached a very high level of resolution �
this is the case, for example, of absorption imaging and �uorescence imaging
[8]. A widespread technique � which motivates many of the results of this
thesis � is time-of-�ight imaging [8], which permits to measure the momen-
tum distribution of the atomic cloud. It consists in switching o� abruptly
both the trapping and the lattice potentials and, after a time interval, de-
tecting the atoms through absorption imaging. During the expansion, the
spatial distribution maps out the momentum distribution n(k) before the
trap release. This relies on the assumption that, when the potentials are
switched o�, atoms expand freely. One may notice that time-of-�ight im-
ages � see e.g. Fig. 1.2(a) � are at most two-dimensional, given that an
integration of the cloud image along the line of sight is performed by the
imaging system, although recent experiments [13] have demonstrated a full
tomographic reconstruction of the momentum distribution.

In the two following paragraphs we present some experimental results
which show the huge potential of optical lattices and which are also signi�-
cant for the themes that we will cover in the following chapters.
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1.1.1 Quantum phase transitions

At zero temperature the variation of a Hamiltonian parameter (e.g. magnetic
�eld, interaction strength, ...) can produce a quantum phase transition in
the ground state of a many-body system [14]. Such a transition is not driven
by thermal �uctuations, as for thermal phase transitions, but by quantum
�uctuations, which are a consequence of Heisenberg's uncertainty principle.
In cold atomic lattices (as well as in any other experimental system), the
temperature is obviously not zero, but one can observe �nite-temperature
consequences of the presence of zero-temperature quantum phase transition.

One important example of quantum phase transition is the super�uid -
Mott insulator transition in the aforementioned Bose-Hubbard model [14].
This model is described by a Hamiltonian

Ĥ = −J
∑
〈i,j〉

(
b̂†i b̂j + h.c.

)
− U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i , (1.1)

with J the tunneling parameter, which describes the rate at which atoms
tunnel from one site of the lattice to an adjacent one (here with the nota-
tion 〈·, ·〉 we assumed nearest-neighbor tunneling only); U the interaction
parameter, which accounts for on-site repulsion; and µ the chemical poten-
tial. When J � U the hopping energy dominates, and the system is in
a super�uid phase, in which atoms delocalize all over the lattice and the
system possesses long-range phase coherence. This phase exhibits local den-
sity �uctuations and has no gap in the excitation spectrum. When U � J
interactions dominate and for integer lattice �llings the system enters the
so-called Mott-insulator phase, in which atoms are localized at lattice sites
and the system exhibits short-range phase coherence, with a gap opening
in the excitation spectrum. These two phases are connected by a quantum
phase transition and tuning the ratio J/U gives access to its experimental
realization.

In an optical lattice such a tuning can be achieved by controlling the
intensity of the laser beams, which in turn controls the lattice depth. The
deeper is the lattice, the more suppressed are hopping processes, since the po-
tential barrier to overcome is higher, and the more relevant are interactions,
since atoms tend to localize at the minima of the lattice and then strongly
repel each other. More quantitatively, we have that J ∼ exp(−

√
2V0/ER)

[15], with V0 the lattice potential depth and ER a reference energy called
recoil energy, which means that the ratio J/U depends exponentially on the
lattice depth. The �rst proposal of an experimental protocol to realize the
super�uid - Mott insulator transition is due to Jaksch et al. in 1998 [16]
and the �rst realization to Greiner et al. in 2003 [3]. The experiment was
realized in a cubic lattice with Rb atoms and the Hamiltonian of the system
was varied continuously from the super�uid regime to the Mott insulating
regime. In Fig. 1.2(a) we show the time-of-�ight images reported in Greiner's
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article. For weak lattices (top-left image) the system shows marked peaks
in the center of the Brillouin zones (and at the reciprocal lattice vectors),
which denotes the phase coherence of the super�uid state. Increasing the
lattice depth, the peaks gradually disappear, until long-range coherence is
lost. This same experiment was later realized also in one [17] and two [18]
dimensional lattices.

We can use the super�uid - Mott insulator phase transition to introduce
another important technique which is proper to optical lattices: lattice shak-
ing. It can be shown that, when a lattice undergoes a periodic modulation of
its spatial phase at a frequency ω out of resonance with respect to all transi-
tion energies of the system, and much larger than the hopping and collision
rates in the lowest band, it is possible to give an e�ective description of the
lattice in which the hopping parameters are renormalized as J ′ = JJ0(K/ω),
where J0 is a Bessel function of the �rst kind, K is the shaking amplitude
and ω is the shaking frequency. In particular, one may suppress hopping
processes by choosing amplitude and frequency such that K/ω is close to
a zero of the Bessel function J0 and thus realize once again a super�uid -
Mott insulator phase transition. This method was �rst proposed by Eckardt
et al. [19] and realized by Lignier et al. in 2009 [20]. In Fig. 1.2(b) we show
time-of-�ight images from a lattice-shaking experiment by Zenesini et al.
[21]: notice that in this case Bragg peaks appear only along one dimension,
since the experiment was realized with a single pair of counter-propagating
beams. The �gure shows from left to right time-of-�ight di�raction patterns
of lattices undergoing shakings characterized by an increasingly large K/ω
ratio. One may notice that a regime lacking phase coherence appears twice,
since two successive zeros of the Bessel function are explored with the K/ω
ratio. Moreover, in between the two zeros the Bessel function is negative,
changing the sign of the hoppings and the position of the Bragg peaks. Lat-
tice shaking is in principle a powerful tool, but its range of application is
limited by constraints on the shaking frequency ω: the latter is required to
be o�-resonant with respect to the other energy scales of the system, in order
to keep the e�ective description valid, but it cannot be too large, since it
would require large amplitudes K to have sizable K/ω ratios, which in turn
would produce heating as a side e�ect.

1.1.2 Arti�cial gauge �elds

One of the current challenges of cold-atom experiments is to access the
physics induced by strong gauge �elds, even in the most general case of
non abelian �elds. The main limitation to the simulation of magnetism with
cold atoms is the neutrality of the latters. Recently many techniques have
been developed to overcome this di�culty. One possible technique is to put
the atoms in rotation. At frequency close to that of the trap, the Corio-
lis force mimics the action of a Lorentz force acting on a charged particle
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Figure 1.2: (a) Super�uid - Mott insulator quantum phase transition through
tuning of the lattice depth. (b) Super�uid - Mott insulator quantum phase
transition through lattice shaking. Figures adapted from Refs. [3] and [21]
respectively.

in a uniform magnetic �eld [22]. But this method su�ers from the funda-
mental drawback that the presence of the centrifugal force, alongside with
the Coriolis one, makes the system unstable for large rotation frequencies.
An alternative method for optical lattice systems is the use of laser-assisted
hoppings [23], namely hoppings processes in which particles also acquire a
geometric phase φij , thus realizing a Hamiltonian of the form

Ĥ = −J
∑
〈i,j〉

(
eiφij b̂†i b̂j + h.c.

)
− U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i . (1.2)

If assisted hoppings are organized such that particles acquire a �nite phase
Φ =

∑
i→j φij on a closed loop, this scheme mimics a magnetic �ux [24]. An-

other method is the afore-mentioned lattice shaking. The shaking frequency
can be chosen such that the Bessel functions renormalizing the hopping pa-
rameter take negative values, which is equivalent to having a complex hop-
ping process where atoms acquire a geometric phase Φ = π. This method
can be used to realize a frustrated triangular lattice [10], which will be the
topic of our last chapter, or a frustrated Kagome lattice [11]. In these two
lattices frustration induces di�erent forms of degeneracy at low energies in
the single-particle spectrum, namely a two-fold degeneracy in the case of
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Figure 1.3: (a) Phases and associated experimental time-of-�ight di�raction
patterns. (b) Rectangular to spiral to staggered chain phase transition. Ex-
perimental time-of-�ight di�raction patterns on the left and corresponding
theoretical calculations on the right. Figures adapted from Ref. [25].

the triangular lattice and an in�nite �at-band degeneracy in the case of the
Kagome lattice. As a consequence, condensation of free bosons may occur
at inequivalent vectors of the Brillouin zone (triangular) or not occur at all
(Kagome): studying the �nite-temperature physics of these lattices in the
presence of interactions is therefore very interesting.

One important result due to lattice shaking is the simulation of frustrated
classical magnetism, realized by Struck et al. in 2011 [25]. In the experi-
ment a two-dimensional triangular lattice of one-dimensional tubes is �lled
with bosonic atoms. At low temperatures each tube hosts a Bose-Einstein
condensate, which has a well de�ned phase φi. This system can be mapped
onto a model of classical XY spins Si = [cos(φi), sin(φi)], where the phase
of the condensate corresponds to the orientation of the spin. By lattice
shaking one can tune independently the hoppings in di�erent directions, and
this permits to realize a broad variety of phases (ferromagnetic as well as
anti-ferromagnetic). Fig. 1.3(a) gives a visual representation of these phases
in terms of spins and of the associated experimental di�raction pattern in
time-of-�ight experiments. This experiment also permits to study a variety
of phase transitions: Fig. 1.3(b) shows the evolution of the system from a
rhombic phase (shown in Fig. 1.3(a)) to a spiral phase, and then to staggered
one-dimensional chains.
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1.2 Theoretical aspects: correlations and entangle-

ment

In this thesis we will focus on some important theoretical aspects of quantum
many-body theory. In particular, our second chapter will be dedicated to
entanglement and quantum correlations. Entanglement is an essential quan-
tum property of many-body states that manifests itself in the impossibility
of describing the state of a quantum degree of freedom independently of the
others. According to the seminal work of Werner [26], a most general mixed
state is called entangled if it is not separable; and a state is separable (or
classically correlated) if, given two subsystems A and B, its density matrix

can be expressed as ρ̂ =
∑

s psρ̂
(s)
A ⊗ ρ̂

(s)
B , with ps a normalized classical

distribution function.
In the case of pure states (for which ρ̂2 = ρ̂), a generic state can always

be determined as separable or not by using the Schmidt rank criterion, which
is based on a Schmidt decomposition of the vector state (using orthonormal
bases for the Hilbert spaces of A and B) [27]. In the case of mixed states
(for which ρ̂2 6= ρ̂) the situation complicates considerably: the Schmidt
rank criterion is not applicable and, in general, determining if a state is
entangled or not is an NP-hard problem [28]. A necessary, yet not su�cient,
criterion for separability is the Peres-Horodecki criterion [29], which is based
on positive de�niteness of a partial transpose of the density matrix.

De�ning quantum correlations is also, in general, a non-trivial task. In
the case of pure states one can unambiguously associate quantum correla-
tions with entanglement, but in the case of mixed states it appears more
complicated to give a precise de�nition, since thermal correlations are al-
ways present at T > 0. A possible de�nition could be extracted from the
non local disturbance produced by a local measurement, which is revealed
by the so-called quantum discord [30]. In Chap. 3 we will give a new alter-
native observable-dependent de�nition, calculated as the di�erence between
the usual total correlation function and a response function. This quantity,
unlike quantum discord, will prove to be completely insensitive to classical
thermal critical phenomena. We will also study the spatial structure of this
newly-de�ned correlation function and show that its rapid decay justi�es the
introduction of a criterion for e�ective separability of quantum systems.

1.3 Numerical aspects: computational methods

The impressive development of experiments in cold atoms has been accom-
panied by a parallel development of a zest of computational methods. Calcu-
lations for quantum systems are particularly challenging because their com-
putational cost grows generally esponentially with the size of the system.
For this reason most methods rely either on approximations or on a stochas-
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tic approach. One of the core topics of this thesis is the proposal of a new
numerical approach to the thermodynamics of lattice boson systems. For
this reason we �nd it instructive to give an overview over some of the most
common methods approaching the same problem. We shall review their
strengths and weaknesses, and we will set the stage for our approach, that
we brie�y introduce in the last paragraph. A few of these methods will be
analyzed more in details in Chap. 2.

1.3.1 Exact Diagonalization

The very �rst approach to a many-body system would be to try and solve its
associated eigenvalue problem through full diagonalisation of the Hamilto-
nian. This method can be applied to any kind of system but, as we explained
in the previous paragraphs, the exponential growth of Hilbert space with the
size of the system limits its use to small sizes, where results are strongly af-
fected by �nite-size e�ects. Speed-ups are possible by exploiting symmetries
of the system or by using, for example, the Lanczos algorithm [31]. This
algorithm calculates the �rst m eigenvalues and eigenvectors of an nxn ma-
trix, with m� n, and it is particularly useful if one is only interested in the
ground state of the system or in very low temperatures, where a few eigen-
states can successfully describe the system. State-of-the-art Lanczos-based
techniques permit to diagonalize systems of S = 1/2 Heiseneberg spins on
lattices of up to around 40 sites [32, 33]. Despite its limitations, this method
remains very important for models to which other methods are not applicable
in general (e.g. fermionic systems, frustrated quantum magnets).

1.3.2 Mean-�eld theory

A �rst approximated approach to many-body systems is mean-�eld (MF)
theory, which consists in decoupling the �uctuations of some degrees of free-
dom of the system and then coupling them through their average values.
This technique can be applied to a large variety of systems ranging from
fermionic gases (see e.g. the famous Hartree-Fock theory [34]) to the bosonic
lattice models of interest in our work. In this latter case, MF theory decou-
ples the bosonic modes associated to each lattice site or, in its improved
cluster version (cMF), to clusters of sites [35]. Despite being correct at a
semi-quantitative level in many situations, MF and cMF miss systematically
the long-wavelength �uctuations that dominate e.g. the physics of critical
points. For example, they completely miss the peculiar nature of the super-
�uid phase of two-dimensional lattice bosons - see Chap. 2.

1.3.3 DMRG and variational approaches

The Density Matrix Renormalization Group (DMRG) [36] is a variational
method which is best suited for one-dimensional or quasi-one-dimensional
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systems at zero temperature. DMRG realizes a systematic truncation of the
Hilbert space of the system and it constructs a wave-function by keeping
a small number of important states (the most probable eigenstates of a re-
duced density matrix) in a series of increasingly large subsystems. DMRG
can be applied to virtually all one-dimensional systems, and it has proven
to be extremely accurate thanks to the weak entanglement content of most
one-dimensional Hamiltonians of physical interest. It can be applied to equi-
librium systems which reach a few thousands of sites, and it can be used as
well to study non-equilibrium phenomena (on smaller lattices) [37]. Exten-
sions of DMRG are possible to �nite temperature [38] and to cylinder-shaped
two-dimensional lattices [39].

Variational methods which are similar to DMRG in spirit are based
on Matrix Product States (MPS), which are restricted to one-dimensional
systems, and their generalization to any dimension, the so-called Tensor
Network States (TNS) [40]. These methods are particularly suited for the
study of ground states, but there exist some very recent extensions to �nite-
temperature [41].

1.3.4 Quantum Monte Carlo

The name Quantum Monte Carlo (QMC) denotes a family of stochastic
methods based on a Monte Carlo approach, which includes e.g. variational
MC, di�usion MC, path integral MC � [42, 43, 44] for a brief introduction
to the Monte Carlo method, in its Metropolis version, we refer the reader
to appendix A. The common ground of these methods is the calculation
of multi-dimensional integrals through a guided stochastic sampling of the
integrand (importance sampling). QMC is statistically exact in the sense
that an ideal in�nite-time simulation converges to the exact result. This
method reveals to be very e�ective in describing long-range correlations and
critical phenomena. The main weakness of QMC is that its use is limited to
a broad, yet restricted class of models. The domain of applicability of QMC
is limited by the so-called "sign problem", which prevents the application
of QMC to generic fermionic systems, or to bosonic systems in gauge �elds
(including frustrated magnetism). The sign problem arises from negative
(or imaginary) probability amplitudes appearing in the simulations [45]. In
the case of fermions the origin of this problem resides in the properties of
the wave-function, which is anti-symmetric for the exchange of two particles.
The impossibility of applying QMC to systems which are currently of great
interest for experiments, such as frustrated lattices, requires for the search
of new alternative methods.
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1.3.5 Auxiliary Field Monte Carlo

In the last chapter of this thesis we introduce a method called auxiliary-�eld
Monte Carlo (AFMC), which is similar in spirit to approaches such as that
used in Ref. [46] for spins and bosons, or to some others used in the context of
lattice fermions [47]. In its general version AFMC su�ers from a heavy sign
problem, that we overcome by using a semi-classical approximation that we
develop in Chap. 4 and we call quantum mean-�eld (QMF) approximation.
The AFMC method supplemented with the QMF approximation is read-
ily suited for the study of the thermodynamics of a large class of bosonic
systems, including frustrated lattice bosons.

1.4 Outline of the thesis

The thesis is organized as follows.
In Chap. 2 we analyze more in detail some of the methods commonly in

use for the study of the thermodynamics of lattice systems.
In Chap. 3 we study quantum and classical correlations and show how

they live on very di�erent length scales. We focus in particular on the Bose-
Hubbard model in the limits of hard-core bosons and quantum rotors.

In Chap. 4, on the basis of this length-scale separation, we introduce the
aforementioned quantum mean-�eld approximation and apply it to the test
model of quantum rotors.

In Chap. 5 we introduce the auxiliary-�eld Monte Carlo approach (AFMC),
and apply its QMF-approximated version to the study of frustrated bosons
in a triangular lattice.

Chap. 6 is devoted to conclusions.
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Chapter 2

Some numerical approaches to

lattice-boson systems

In this chapter we recall and illustrate more in detail some of the numerical
methods mentioned in the introduction. We use Quantum Monte Carlo
results, which are statistically exact, as a reference, and compare them to
cluster mean-�eld theory (cMF) and Gutzwiller Monte Carlo (GMC), two
methods based on a Gutzwiller mean-�eld Ansatz. cMF is a self-consistent
method which can be improved systematically by considering clusters of
larger size. Being limited to small-sized cluster, this method is unable to
capture long-ranged correlations. GMC, conversely, thanks to its stochastic
nature, is able to describe thermal �uctuations at all scales. It captures
therefore the correct nature of thermal phases and phase transitions, but it
is less accurate then cMF close to zero temperature, because in that limit it
reduces to single-site MF.

The focus of this chapter is on hard-core bosons on a square lattice at
�nite temperature, which will often serve as a test system also in the following
chapters. The choice of this model is motivated by the limited computational
cost required by simulations (with respect to, for example, the more general
case of "softcore" bosons) due to the minimal size of the local Hilbert space.
Nonetheless, in order to keep the treatment as general as possible, all the
equations will refer to "softcore" bosons, while all the plots will show results
for hard-core bosons. Both cMF and GMC could be used for systems with
magnetic frustration, for which we shall not have a reference method to
compare with.

21
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2.1 Hard-core bosons in two dimensions

We recall the Hamiltonian of the Bose-Hubbard model, which has already
been mentioned in the introduction:

Ĥ = −J
∑
〈ij〉

(
b̂†i b̂j + h.c.

)
− U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i . (2.1)

The various phases of the system are best characterized by studying the
�rst-order correlation function g(i, j) = 〈b̂†i b̂j〉. When considering a two-
dimensional system, Mermin-Wagner's theorem predicts the absence of true
condensation, namely of long-range phase coherence at any temperature,
imposing that g(i, j) decays to zero at large distances. Nonetheless the sys-
tem still exhibits a Berezinskii-Kosterlitz-Thouless (BKT) phase transition
[48, 49, 50] between a low temperature and a high temperature phase. At
low temperature the correlation function exhibits an algebraic decay in the
form

g(r) ∼ r−η(T ) , (2.2)

where r = |ri − rj | is the inter-site distance. The system is in a regime
called "quasi-condensate" [51], in which the number of particles in the con-
densate, n(k = 0) = (1/L2)

∑
ij〈b̂
†
i b̂j〉 scales as L2−η(T ), namely it diverges

(as η(T ) < 2), but is not extensive. This happens because thermal e�ects
are strong enough to prevent full condensation even at very low tempera-
tures. Conversely, at high temperature the correlation function shows an
exponential decay

g(r) ∼ e−r/ξ(T ) , (2.3)

characterizing a normal phase, in which n(k = 0) remains �nite for L→∞.
Therefore there must be a transition between the two regimes at some TBKT .
It is not possible to associate an order parameter to such a transition (it is
said to be of "in�nite order" [49]), but it is nevertheless characterized by
the divergence of the correlation length ξ(T ) while approaching TBKT from
above.

In the limit of large on-site interaction U/J � 1, and �lling n < 1,
bosons reach the "hard-core" limit, in which one may neglect the multiple
occupation of each lattice site. In this limit one may incorporate the hard-
core constraint into the commutation relations of the operators, by requesting
that

[âi, â
†
j ] = 0 for i 6= j ,

(â†i )
2 = (âi)

2 = 0 ,

{âi, â†i} = 1 , (2.4)



2.2. QUANTUM MONTE CARLO 23

where we renamed the bosonic operators as a(†), to highlight that they refer
to bosons of hard-core type. The interaction term can then be dropped in
Eq. (2.1), and the Hamiltonian becomes

Ĥhc = −J
∑
〈ij〉

(
â†i âj + h.c.

)
− µ

∑
i

n̂i . (2.5)

The commutation relations of hard-core-boson operators are the same as
those of the Pauli matrices σ+ and σ−, implying the mapping from hard-core
bosons to S = 1/2 spins as [52]

âi → Ŝ−i = Ŝxi − iŜyi , (2.6)

â†i → Ŝ+
i = Ŝxi + iŜyi . (2.7)

By introducing the new operators in the Hamiltonian and removing the
constant terms, one gets the new Hamiltonian

ĤXY = −2J
∑
〈i,j〉

(
Ŝx†i Ŝ

x
j + Ŝy†i Ŝ

y
j

)
− µ

∑
i

Ŝzi , (2.8)

which is precisely that of the S = 1/2 quantum XY model in a transverse
magnetic �eld µ. This exact mapping allows one to express results either in
the language of spins or of lattice bosons.

2.2 Quantum Monte Carlo

Hard-core bosons on a square lattice can be e�ciently simulated using Quan-
tum Monte Carlo, here in the Statistic Series Expansion (SSE) formulation
[42, 43, 44]. Without going into the details of this formulation, we shall
limit ourselves to saying that it is based on a Taylor expansion of the den-
sity operator e−βĤ in powers of the inverse temperature β. In Figs. 2.1 we
show some results obtained using a code developed by T. Roscilde. With
these plots we do not intend to study the system in detail, but just to give a
quantitative reference for the other methods that we present in the following
sections. For this reason we limit ourselves to small lattices.

Figs. 2.1(a-b) show the kinetic energy and the k = 0 peak of the momen-
tum distribution n(k) for di�erent lattice sizes. Both quantities are divided
by the number of sites of the lattice. As one may expect the kinetic en-
ergy grows with the transition from super�uid to normal phase, whereas the
momentum peak decreases, since coherence is progressively lost. Fig. 2.1(c)
shows a peak for the speci�c heat, which normally appears just above the
BKT transition [54]. The speci�c heat does not show any discontinuity since,
as said previously, the transition is an in�nite-order one. At the transition
the n(k = 0) scales as L7/4, since η(TBKT ) = 1/4 [55]. One may extract an
estimate for the in�nite-size system BKT transition temperature by �nite-
size scaling, as shown in Fig. 2.1(d).
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Figure 2.1: (a-b) Kinetic energy and n(k = 0), both expressed per site. (c)
Speci�c heat. (d) Finite-size scaling for n(k = 0)L−7/4. The vertical line
marks the reference BKT transition temperature as obtained in [53]. All
plots refer to hard-core bosons and employ the temperature t = kBT/J ,
with kB the Boltzmann constant.

2.3 Cluster mean-�eld approach

As we mentioned in the introduction, a mean-�eld (MF) approximation [56]
amounts to decoupling the �uctuations of selected degrees of freedom of a
system, and coupling the latter only through their average values. In the
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case of lattice bosons, these degrees of freedom might be the bosonic modes
associated to single sites of the lattice, or to clusters of sites, in order to gain
a more accurate description - see Fig. 2.2.

When considering the ground state of the system, a cluster MF approach
amounts to minimizing the ground-state energy

E[ψMF ] = 〈ψMF |Ĥ|ψMF 〉 (2.9)

of a wave function in the form

|ψMF〉 = ⊗c|ψc〉, (2.10)

where c is the cluster index. In the �nite temperature case it amounts to
minimizing the free energy

F [ρ;T ] = Tr[ρ̂Ĥ+ T ρ̂ log ρ̂] (2.11)

of a factorized density matrix ρ̂

ρ̂MF = ⊗cρ̂c . (2.12)

Both Eq. (2.10) and Eq. (2.12) show how MF theory neglects any form of cor-
relations and entanglement among degrees of freedom belonging to di�erent
clusters. On the other hand, one may notice that such an approach becomes
exact in the limit of an in�nite lattice connectivity, since entanglement gets
spread among all degrees of freedom and then becomes negligible.

In the following we present the self-consistent cluster MF method [35, 57,
58] based on the Gutzwiller ansatz, both for zero and �nite temperatures.

2.3.1 Single-site Gutzwiller mean �eld

The conventional Gutzwiller Ansatz [59] amounts to factorizing the wave-
function into clusters composed of single sites. In a homogeneous lattice,
each site i will have a local wave function

|ψi〉 =

nmax∑
n=0

fni |ni〉 , (2.13)

where |ni〉 is a local Fock state with n particles and nmax is a convenient cut-
o�. We focus on a speci�c site j and express the wave function of the system
as |ψχj 〉 ⊗ |ψj〉, where |ψχj 〉 = ⊗i6=j |ψi〉 is the wave function of the rest of
the system but the site j (χj stands for the complement to j). Notice that
this equation is in the form of Eq. (2.10). The Bose-Hubbard Hamiltonian
Eq. (2.1) can then be written as a sum of three contributions

Ĥ = Ĥj + Ĥχj + Ĥjχj , (2.14)
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which describe respectively the site j, the rest of the system, and the inter-
action between j and the rest of the system:

Ĥj =
U

2
n̂j(n̂j − 1)− µn̂j ,

Ĥχj = −J
∑

〈i6=j,l 6=j〉

(
b̂†i b̂l + h.c.

)
+
U

2

∑
i6=j

n̂i(n̂i − 1)− µ
∑
i6=j

n̂i ,

Ĥχjj = −J
∑
〈j′〉

(
b̂†j b̂j′ + h.c.

)
, (2.15)

where 〈j′〉 denotes the sum over the nearest neighbors of site j. We can
de�ne an e�ective on-site Hamiltonian Ĥj

e�
= 〈ψχj |Ĥ|ψχj 〉 for the site j,

that in the local basis {|nj〉} has a matrix form(
Ĥj
e�

)
mjnj

= 〈mj |Ĥj |nj〉+ 〈ψχj |Ĥχj |ψχj 〉δmjnj

− J
∑
〈j′〉

(
〈mj |b̂†j |nj〉〈ψχj |b̂j′ |ψχj 〉+ h.c.

)
. (2.16)

Here 〈mj |Ĥj |nj〉 can be easily expressed in the local basis {|nj〉}, whereas
〈ψχj |Ĥχj |ψχj 〉δmjnj represents an energy o�set, which can then be neglected.
One can make initially an arbitrary choice for the coe�cients {fn} and, since
the lattice is homogeneous, express the expectation values for the sites j′ in
Eq. (2.15) as

〈ψ|b̂j′ |ψ〉 = 〈ψj |b̂j |ψj〉 =
∑
nj

f∗njfnj+1

√
n+ 1 . (2.17)

This permits to diagonalize the Hamiltonian and to obtain a new set of
coe�cients {fn′j} from the ground state. The process can be iterated until
it reaches convergence and the �nal ground state can be used to calculate
expectation values for the observables.

This procedure is consistent with a variational approach to the ground-
state energy, which can be minimized using the method of Lagrange multi-
pliers. One has

Eλ = 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉 , (2.18)

where λ is a Lagrange multiplier which accounts for the normalization of the
wave function. Imposing the vanishing of the derivative with respect to the
local wave-function 〈ψj |, we obtain

∂Eλ
∂〈ψj |

= 〈ψχj |Ĥ|ψχj 〉|ψj〉 − λ|ψj〉 = Ĥj
e�
|ψj〉 − λ|ψj〉 = 0 , (2.19)

which is precisely the eigenvalue problem of Ĥj
e�
.
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The self-consistent method here presented for zero temperature, can be
easily extended to �nite temperature, by considering a system in the form
of Eq. (2.12), namely ρ̂ = ⊗iρ̂i. One can obtain an e�ective Hamiltonian at
site j as

Ĥj
e�

= Trχj [Ĥρ̂] = Ĥj − Jz
(

Φb̂†j + h.c.
)
, (2.20)

where Trχj denotes a partial trace over the complement to j. Here z is the
coordination number of the lattice and Φ is the MF parameter, which is the
same is the same for all the z neighbors of the lattice site j, since the lattice
is homogeneous. One can make a convenient initial assumption for Φ (which
accounts for making an initial assumption for ρ̂) and calculate a new MF
parameter as

Φ =
Tr[b̂je−βĤ

j
e� ]

Tr[e−βĤ
j
e� ]

. (2.21)

This procedure can be iterated as in the case of zero temperature until it
reaches convergence. Thermal averages for the observables can be calculated
using the �nal form of the e�ective Hamiltonian.

2.3.2 Cluster Gutzwiller mean �eld

The previous approach can be easily generalized to clusters of sites. One can
focus on a speci�c cluster c of s sites, with a local wave-function in the form

|ψc〉 =

Nmax∑
Nc=1

fNc |Nc〉 . (2.22)

Here |Nc〉 = |n0, n1, ..., ns〉c, with ni the number of particles on the i-th site
of the cluster and Nmax = s(nmax + 1) a convenient cut-o�. The e�ective
local Hamiltonian of c results

(Hc
e�)McNc

= 〈ψχc |Ĥχc |ψχc〉δMcNc + 〈Mc|Ĥc|Nc〉
− J

∑
j∈∂c

νj

(
Φ〈Mc|b̂†j |Nc〉+ h.c.

)
, (2.23)

where Ĥc (Ĥχc) indicates Bose-Hubbard Hamiltonian Eq. (2.1) restricted to
sites i and j (not) belonging to the cluster c, Φ denotes the MF parameter,
∂c is the frontier of the cluster and νj is the number of connections linking
the site j to sites outside the cluster. For example, for a square lattice and
a square cluster, νj is 2 for a corner site and 1 for a site along an edge � see
Fig. 2.2(a). This form of Eq. (2.23) relies once again on the assumption that
the MF to which border sites couple is the same in all the directions, which
is a consequence of considering a homogeneous lattice. Once made an initial
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Figure 2.2: (a) Cartoon of a square lattice divided into 3x3 clusters. (b-c)
Momentum peak and kinetic energy per site calculated with cMF for di�erent
cluster sizes, compared to QMC (data from 36x36 lattice). (d) Extrapolation
of the transition temperature with the surface-to-bulk ratio of clusters. The
horizontal line represents the reference value TBKT = 0.685 kB/J . All plots
refer to hard-core bosons and employ the reduced temperature t = kBT/J ,
with kB the Boltzmann constant.

assumption for the coe�cients {fNc}, a new MF parameter can be obtained
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as
Φ =

∑
Mc,Nc

f∗Mc
fNc〈Mc|b̂t|Nc〉 , (2.24)

where t denotes a target site belonging to the cluster. This site, if possible,
should belong to the bulk of the cluster, or at least be minimally coupled
to the MF, in order to avoid the e�ects of the cluster boundaries as much
as possible. As in the case of single-site MF, this procedure can be iterated
until convergence is reached, and expectation values for the observables can
be calculated from the �nal ground state.

This method can be straightforwardly generalized to �nite temperatures
in complete analogy to what is done in the single-site case.

Results obtained with cMF for 2d hard-core bosons on the square lattice
are reported in Fig. 2.2(b-c), where they are compared to QMC. Applying
the cMF approach to hard-core bosons amounts to rephrase all the previous
formulas involving bosonic operators b̂i, b̂

†
i in terms of hard-core boson op-

erators âi, â
†
i (or simply to set nmax = 1). The comparison is drawn using

QMC data for the largest of the lattices considered so far (the 36x36 lat-
tice), which is the least a�ected by �nite-size e�ects. One can notice how
results slowly move closer to those of QMC upon increasing the size of the
clusters. However, the cMF approach completely misses the nature of the
low-temperature phase, which is described by cMF as possessing true long-
range order in contradiction to Mermin-Wagner's theorem; as well as the
nature of the transition, which is inevitably represented as belonging to the
MF universality class. One may extract an estimate for the exact transition
temperature by using a polynomial extrapolation in the surface-to-bulk ratio
λ of the clusters, de�ned as

λ =
Next

Nint +Next
, (2.25)

where Next is the number of bonds linking the degrees of freedom within the
cluster to those external to the cluster, while Nint is the number of bonds
within the cluster. Hence λ = 1 for the basic (single-site) mean-�eld ap-
proximation, while λ = 0 corresponds to the exact result of a single cluster
covering the whole system. We performed a linear �t to the cMF estimates
of the transition temperature for each cluster size, corresponding to the tem-
perature at which n(k = 0) vanishes. The result is shown in Fig. 2.2(d).
The in�nite-size estimate takes a value Tλ=0 = (0.86 ± 0.05) kB/J , which
appears to be quite far from the best estimate TBKT = 0.685 kB/J [53].
One may also notice that cMF results strongly depend on the cluster size,
with the in�nite-size estimated transition temperature being almost half the
single-site one (λ = 1). This result will be useful for the following chapters,
where a similar procedure of extrapolation will be used, albeit in a di�erent
context.
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2.4 Gutzwiller Monte Carlo

We present now a "hybrid" method which relies on both a MF and a Monte
Carlo approach, and which has been used in a few recent works dealing with
frustrated bosons and spins [60, 61].

The Gutzwiller wave-function introduced in the previous section can be
cast in its most general form as

|ψ(~f)〉 =
N⊗
i=1

|ψi〉 =
N⊗
i=1

(
nmax∑
ni=0

f (i)
ni |ni〉

)
, (2.26)

where ~f = {f (i)
ni } is an array of N(nmax+1) complex coe�cients, normalized

as
∑nmax

ni=0 |f
(i)
ni |2 = 1 on each site. Notice that now coe�cients can di�er

from site to site. Because of the normalization constraint we have that
f

(i)
ni = α

(i)
ni e

iφ
(i)
ni , with 0 ≤ α

(i)
ni ≤ 1. We can calculate the partition function

of the system as

Z =
∑
{ni}

〈{ni}|e−βĤ|{ni}〉 = C

∫
D[~f ] 〈ψ(~f)|e−βĤ|ψ(~f)〉 , (2.27)

where C is a numerical factor and we have set

D[~f ] =
∏
i,ni

df
(i)
ni df

∗(i)
ni

2πi
=
∏
i,ni

dφ(i)
ni dα

(i)
ni α

(i)
ni δ

(∑
ni

(α(i)
ni )

2 − 1

)
. (2.28)

We notice that the metric for the amplitude can be chosen arbitrarily, since it
only modi�es the numerical factor C. Here we have chosen the one naturally
emerging from the integral of the coe�cients on the complex plane.

The weights 〈ψ(~f)|e−βĤ|ψ(~f)〉 are still unknown without diagonaliz-
ing the Hamiltonian. A drastic approximation consists in assuming that
a Gutzwiller state |ψ(~f)〉 indeed diagonalizes Ĥ, so that

〈ψ(~f)|e−βĤ|ψ(~f)〉 ≈ e〈ψ(~f)|−βĤ|ψ(~f)〉 = e−βE(~f) , (2.29)

where

E(~f) = − 2J
∑
〈i,j〉

nmax∑
ni,nj=1

γij(ni, nj) cos
(
θ(i)
ni − θ(j)

nj

)
+

∑
i,ni

(
α(i)
ni

)2
(
U

2
ni(ni − 1)− µni

)
(2.30)

and
γij(ni, nj) =

√
ninjα

(i)
ni α

(i)
ni−1α

(j)
nj α

(j)
nj−1 , (2.31)
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Figure 2.3: (a-b) Kinetic energy and k = 0 peak in momentum distribution
calculated using QMC and GMC. (c) Finite-size scaling for n(k = 0)L−7/4.
All plots refer to hard-core bosons and employ the reduced temperature
t = kBT/J , with kB the Boltzmann constant.

with θ(i)
ni = φ

(i)
ni −φ(i)

ni−1. This model represents a generalized XY model with
�uctuating couplings, with the XY spins living on a (d + 1)−dimensional
lattice with sites (i, ni), where the extra dimension is provided by the occu-
pation number. The XY interactions involve all sites (i, ni) and (j, nj) with
(i, j) nearest neighbors. One can approximate the partition function as

Z ≈ ZGMF = C

∫
D[~f ] e−βE(~f) , (2.32)
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which is suitable for a Monte Carlo approach. One may notice that, at
su�ciently high temperatures (such that βU, βJ � 1), Eq. (2.29) becomes
exact:

〈ψ(~f)|e−βĤ|ψ(~f)〉 ≈ 1− β〈ψ(~f)|Ĥ|ψ(~f)〉 = 1− βE(~f) ≈ e−βE(~f) , (2.33)

whereas at T = 0 the approach reproduces the Gutzwiller mean-�eld ground
state.

A Monte Carlo simulation of the partition function Eq. (2.32) should

contain two types of moves: an update of α(i)
ni coe�cients, preserving the

constraint
∑

ni
(α

(i)
ni )

2−1, and an update of the θ(i)
ni coe�cients. Observables

can be obtained as

〈Ô〉 GMC=
〈
〈ψ(~f)|Ô|ψ(~f)〉

〉
T

= C

∫
D[~f ] 〈ψ(~f)|Ô|ψ(~f)〉 e

−βE(~f)

Z (2.34)

For example, the two-point operator 〈b̂†i b̂j〉 takes the form

〈b̂†i b̂j〉 =

〈
nmax∑
ni,nj=1

γij(ni, nj)
[
cos
(
θ(i)
ni − θ(j)

nj

)
+ i sin

(
θ(i)
ni − θ(j)

nj

)]〉
.

(2.35)
This can be used to calculate the kinetic energy and the n(k = 0) peak,
which are shown in Fig. 2.3.

This approximation gives by construction a quantitative description of
the thermodynamics of the Bose-Hubbard model at a su�ciently high tem-
perature for the expression Eq. (2.33) to be valid. Given that Eq. (2.30)
has the same symmetries and range of the intersite couplings as the original
Bose-Hubbard Hamiltonian, thermal transitions are expected to be repro-
duced with the correct universality class, even though the correct value of
the transition temperature is largely missed. This can be seen in Fig. 2.3(c),
where the estimate TBKT ≈ 0.36 kB/J is roughly one half of the exact value.
This shows how a better description of quantum �uctuations, that here are
approached in a MF way, is fundamental for a correct quantitative picture
of �nite-temperature physics. At low temperatures the essential classical
nature of the �eld theory de�ned by Eq.(2.30) emerges. One may notice
that the kinetic energy, in Fig. 2.3(a), is linear at low temperatures, thus
implying a constant speci�c heat Cv. This is a classical result, which is a
consequence of the equipartition of energy and is in strong contrast with
the Cv ∼ T 2 dependence, determined by Bose statistics, that one would ex-
pect for our model [62]. Moreover, this overestimation of temperature e�ects
at low temperature is arguably at the origin of the underestimation of the
transition temperature. One may also notice that at zero temperature the
method provides the single-site MF ground state, as can be seen comparing
the low-temperature values for kinetic energy and n(k = 0) in Fig. 2.3(a-b)
to those in Fig. 2.2(b-c).
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As a �nal remark, we notice that one may naively think of generalizing
the GMC approach to the case of cluster decoupling in the form

|ψcMF 〉 =

Nc⊗
c=1

|ψc〉 , (2.36)

〈ψcMF |e−βĤ|ψcMF 〉 ' e−β〈ψcMF |Ĥ|ψcMF 〉. (2.37)

But this approximation turns out not to be useful: the vector ~f parametrizing
the cluster MF state grows exponentially with the cluster size, and Eq. (2.37)
does not become more accurate upon increasing the cluster size, not even in
the limit in which the cluster coincides with the whole system.
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Chapter 3

Quantum and classical

correlations

In this chapter we investigate the spatial structure of quantum correlations
by introducing a quantum correlation function, de�ned as the di�erence be-
tween the total correlation function and a response function. We show how
this newly-de�ned quantum correlation function � in contrast with the com-
monly used quantum discord � only captures the truly quantum aspects of
many-body quantum states. We also observe that its very rapid spatial decay
naturally de�nes a criterion for e�ective separability of subsystems. These
arguments, besides being of speci�c theoretical interest themselves, consti-
tute a fundamental justi�cation for the approach to lattice systems that we
will develop in Chap. 4.

3.1 Quantum correlation functions

We consider a generic quantum model with Hamiltonian Ĥ, in thermal equi-
librium at a temperature T , or at an inverse temperature β = (kBT )−1. Let
ÔA and ÔB be some local observables associated with two non overlapping
regions A and B of the system. We de�ne the two-point quantum correlation

function (QCF) between A and B as follows:

〈δÔAδÔB〉Q = 〈δÔAδÔB〉 −
∂〈ÔA〉λB
∂λB

∣∣∣
λB=0

(3.1)

= 〈δÔAδÔB〉 −
1

β

∫ β

0
dτ〈δÔA(τ)δÔB(0)〉 .

Here 〈...〉 = Tr(...ρ̂) denotes the thermal average, with ρ̂ = e−βĤ/Z and

Z = Tr(e−βĤ); δÔ = Ô − 〈Ô〉 is the �uctuation with respect to the aver-
age; λB is a �eld coupling to ÔB via a term −λBÔB added to the Hamilto-
nian and 〈...〉λB = Tr[...ρ̂(λB)] with ρ̂(λB) = e−β(Ĥ−λBÔB)/Tr[e−β(Ĥ−λBÔB)];

35
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Ô(τ) = eτĤÔe−τĤ is the imaginary-time-evolved operator. A simple phys-
ical example of this could be a two-site system with sites A and B where
ÔA = n̂A, ÔB = n̂B and λB = µB is a local chemical potential.

The QCF evaluates the di�erence between the conventional two-point
correlation function (CF) involving the regions A and B, and the response
function of region A upon perturbing region B with a �eld λB. In any clas-
sical system, these two quantities are identi�ed via a �uctuation-dissipation
relation [63], and therefore the QCF is identically zero. In a quantum sys-
tem, the QCF is non-zero since, in general, both commutators [ÔA, Ĥ] and
[ÔB, Ĥ] are non-vanishing. It is immediate to verify that if one of them
vanishes, then the QCF vanishes. The QCF probes how the ÔA and ÔB are
jointly incompatible with Ĥ, namely how the Heisenberg's uncertainties of
ÔA and ÔB on eigenstates of Ĥ correlate with each other. One may notice
that the fact that both ÔA and ÔB possess quantum uncertainty is not su�-
cient to have a non-zero QCF. For example, for a Hamiltonian Ĥ = ĤA+ĤB,
where A and B are two uncorrelated subsystems (namely [ĤA, ĤB] = 0), one
can easily show that the QCF vanishes even if both [ÔA, ĤA] and [ÔB, ĤB]
are non-zero. Correlations between the subsystems A and B are necessary
in order to have a non-zero QCF.

It is interesting to explore the low (T = 0) and high (T =∞) temperature
limits of the QCF. One would expect that the QCF coincides with the total
CF at T = 0, where no thermal contribution is present, and that it vanishes
at T =∞, where quantum e�ects disappear. In the following we show that
these expectations are matched.

Proving the coincidence of QCF and total CF at zero temperature amounts
to proving that the imaginary-time correlation function, evaluated on the
ground state of the system 〈δÔA(τ)δÔB(0)〉0, decreases to zero for τ →∞.
This is true if the integral∣∣∣∣∫ β

0
dτ〈δÔA(τ)δÔB(0)〉0

∣∣∣∣ ≤ ∫ β

0
dτ
∣∣∣〈δÔA(τ)δÔB(0)〉0

∣∣∣ (3.2)

grows slowlier than linearly with β, so that it vanishes when divided by β.
One can make use of the basis |n〉 of eigenstates of Ĥ with eigenenergies En,
and assume that the system admits a non-degenerate ground state |0〉. One
has that∣∣∣〈δÔA(τ)δÔB(0)〉0

∣∣∣ =

∣∣∣∣∣∑
n>0

〈0|δÔA|n〉〈n|δÔB|0〉e−∆Enτ

∣∣∣∣∣
≤
∑
n>0

∣∣∣〈0|δÔA|n〉〈n|δÔB|0〉∣∣∣ e−∆Enτ , (3.3)

where ∆En = En − E0 > 0, and the ground-state term disappears because
〈0|δÔA(B)|0〉 = 0 by construction. Hence the imaginary-time correlation
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function is a sum of exponentially decreasing terms, and it decreases to
zero in the limit τ → ∞, thus proving what announced previously. We
deliberately assumed that the ground state is unique, since the case of a
degenerate ground state is somehow pathological. Anyway, in the hypothetic
case of a degenerate ground state, one could lift the degeneracy with an
in�nitesimal perturbation, and remark that the identity between quantum
and total correlation function at T = 0 is completely independent of the
perturbation.

In the opposite limit of T = ∞ one can expand the exponentials e±τĤ

and easily show that the QCF, as expected, vanishes.

3.2 Hamiltonian separability

According to the previously mentioned Werner's de�nition [26] a state is
de�ned as separable (or classically correlated) if its density matrix can be
written as

ρ̂ =
∑
s

psρ̂
(s)
A ⊗ ρ̂

(s)
B , (3.4)

where ps is a normalized, classical distribution function weighing di�erent
factorized forms for ρ̂. In general, owing to the semi-positive de�niteness
of density operators, we can always write them as exponential of (e�ective)
Hamiltonian operators:

ρ̂ = e−β
ˆ̃H =

∑
s

ps e
−βĤ(s)

A ⊗ e−βĤ
(s)
B (3.5)

where ˆ̃H = Ĥ − lnZ. In order to calculate the QCF, it is necessary to know
explicitly how the density matrix is deformed upon applying a �eld term,

namely upon shifting the Hamiltonian ˆ̃H by −λAÔA−λBÔB. This invites us
to restrict the concept of separability � see Fig. 3.1 � to that of Hamiltonian
separability, namely to interpret Ĥ(s)

A(B) as physical Hamiltonians which are
a�ected linearly by the corresponding �eld terms. Hence we shall say that a
separable density matrix ρ̂ (as in Eq. (3.5)) is Hamiltonian-separable if

ρ̂(λA, λB) = e−β( ˆ̃H−λAÔA−λBÔB)

=
∑
s

ps e
−β(Ĥ(s)

A −λAÔA) ⊗ e−β(Ĥ(s)
B −λBÔB) . (3.6)

(notice that ρ̂(λA, λB) has no longer a unit trace). Physically, Hamiltonian-
separability amounts to imagining that � as sketched in Fig. 3.1 � A and B
are physical systems individually in thermal equilibrium states with Hamil-
tonians Ĥ(s)

A(B), and both coupled to a source of classical noise � namely a
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related classical noise. Disproving Hamiltonian separability does not imply
disproving the most general form of separability in Eq. (3.4) � see Fig. 3.1
� which would be equivalent to proving entanglement, and which remains
a challenging task. Nonetheless the absence of Hamiltonian separability is
tightly related to the existence of some form of quantum correlations. As a
�nal remark we observe that the above result is not limited to bipartitions of
the system, but it applies to A and B being any two subsystems in arbitrary
multi-partitions of the total system.

3.2.1 An example of Hamiltonian inseparability

We �nd it instructive to show an example of a non Hamiltonian separable
system and of its Hamiltonian separable version.

We consider a two-mode bosonic system, equivalent to a two site Bose-
Hubbard model, with Hamiltonian

Ĥ = −J(b̂†Ab̂B + h.c.) + U(b̂†A)2b̂2A + U(b̂†B)2b̂2B (3.8)

containing a hopping term (J) and a repulsion (U) term. In this system
the �eld correlations 〈b̂†Ab̂B〉 have a non-zero quantum component 〈b̂†Ab̂B〉Q
determined by the hopping term, and the density matrix is not Hamiltonian
separable, once again because of the hopping term.

The Hamiltonian-separable version of this system would have a Hamil-
tonian Ĥ = ĤA + ĤB, where

ĤA(Ψ,Ψ∗) = −(Ψ∗b̂A + h.c.) + U(b̂†A)2b̂2A

ĤB(Ψ,Ψ∗) = −(Ψ∗b̂B + h.c.) + U(b̂†B)2b̂2B (3.9)

are dependent on a complex classical �eld Ψ, and a corresponding density
operator

ρ̂ =
1

Z

∫
dΨdΨ∗

2πi
P (Ψ,Ψ∗) e−βĤA ⊗ e−βĤB . (3.10)

In this case the �eld correlations 〈b̂†Ab̂B〉 are induced uniquely by the classical

�eld term, and do not admit a quantum part, namely 〈b̂†Ab̂B〉Q = 0. Indeed,
introducing the notation

〈b̂A(B)〉Ψ = Tr
[
b̂A(B)e

−βĤA(B)(Ψ,Ψ
∗)
]

(3.11)

one has that

〈b̂†Ab̂B〉 =
1

Z

∫
dΨdΨ∗

2πi
P (Ψ,Ψ∗)〈b̂†A〉Ψ〈b̂B〉Ψ 6= 0. (3.12)

Even if the averages 〈b̂†Ab̂B〉Ψ factorize, correlations do exist between the
average values 〈b̂A(B)〉Ψ via the common coupling to the Ψ �eld. On the
other hand, quantum correlations vanish as a consequence of the theorem
discussed in the previous section.
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3.3 Quantum coherence length

The QCF of any observable is readily accessible to analytical and numeri-
cal computations for all models which admit an e�cient calculation of the
correlation and response functions. Here we exploit this property to explic-
itly calculate the QCF for Bose �elds in two very di�erent regimes of the
two-dimensional Bose-Hubbard model, of which we recall the Hamiltonian

Ĥ = −J
∑
〈ij〉

(
b̂†i b̂j + h.c.

)
+
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i . (3.13)

One regime shall be that of hard-core bosons, which we have already intro-
duced in Sec. 2.1 and which is described by a Hamiltonian

Ĥ = −J
∑
〈ij〉

(â†i âj + h.c.)− µ
∑
i

n̂i , (3.14)

with â(†)
i bosonic operators for hard-core bosons, and the other one that of

quantum rotors. The latter model is best understood rewriting Eq. (3.13)
(up to an additive constant) as

Ĥ = −J
∑
〈ij〉

(b̂†i b̂j + h.c.) +
U

2

∑
i

(n̂i − ν)2 , (3.15)

where ν = µ/U + 1/2 is the average density. Taking ν to be an integer
δn̂i = n̂i − ν can be considered as being an angular momentum operator
canonically conjugated to a phase operator θ̂i with commutation relations
[θ̂i, δn̂i] = i, so that δn̂i = −i ∂∂θi . Moreover, in the limit of very large
average �lling, ν � 1, one can adopt a phase-number decomposition of the
Bose operator, b̂i ≈ eiθ̂i

√
n̂i, and neglect number �uctuations in the hopping

term of Eq. (3.15), b̂i ≈
√
ν eiθ̂i . This then leads to the quantum-rotor

Hamiltonian

ĤQR = −2Jν
∑
〈ij〉

cos(θi − θj)−
U

2

∑
i

∂2

∂θ2
i

, (3.16)

where we have dropped the operator notation for θi, as we are now working
in an explicit phase representation of the Hamiltonian.

In both cases, we probe the �rst-order total correlation function g(i, j) =

〈ĉ†i ĉj〉 and the �rst-order QCF

gQ(i, j) = 〈ĉ†i ĉj〉Q = 〈ĉ†i ĉj〉 −
1

β

∫
dτ〈ĉ†i (τ)ĉj(0)〉 (3.17)

for the Bose �eld, where ĉi = âi for hard-core bosons and ĉi = eiθi for
quantum rotors (we normalized the �eld operator by

√
n̄). Since �rst-order
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correlations are the dominant ones in the above models, one may naturally
expect that the �rst-order QCF are also the dominant ones among all QCFs.
This was explicitly veri�ed in our numerical simulations in the case of hard-
core bosons, by comparing with the second-order, or density-density QCF,
〈δn̂iδn̂j〉Q. We calculated the �rst order QCF for hard-core bosons using
quantum Monte Carlo (here in the Stochastic Series expansion formulation
[42, 43, 44]), and for quantum rotors using path-integral Monte Carlo [64, 65],
making use in both cases of a code developed by T. Roscilde.

Figs. 3.2(a-b) show the total �rst-order QCF in the super�uid phase of
hard-core bosons and quantum rotors as a function of temperature. We no-
tice that, in both cases, the QCF lays orders of magnitudes below the total
correlation function g(i, j) down to very low temperatures. Most impor-
tantly, it decays exponentially at all �nite temperatures, revealing the ex-
istence of a characteristic quantum coherence length ξQ which is completely
insensitive to the divergent correlation length associated with the super�uid
phase.

Figs. 3.2(c-d) show the temperature dependence of the quantum coher-
ence length ξQ in both models. Data were extracted from the integrated
Lorentzian width of the k = 0 peak of the "quantum momentum distribu-
tion" nQ(k) = 1

L2

∑
ij e

ik·(ri−rj)gQ(i, j). The �gures clearly show a diver-
gence of ξQ upon lowering the temperature, but its asymptotic temperature
dependence, while presumed to follow a power law (ξQ ∼ T−α) is di�cult
to extract from the numerics: one can clearly observe crossovers between
at least two temperature behaviors with α = 1/2 and 1. The temperature
behavior in the thermodynamic limit can be predicted analytically on the
basis of spin-wave theory, which gives ξQ ∼ T−1 [66].

The quantum coherence length sets the characteristic scale beyond which
two subsystems can be considered as nearly Hamiltonian-separable � in ex-
plicit physical terms, when gQ(i, j) � 1, the correlations between the two
points i and j could have been prepared by coupling two independent sub-
systems (containing sites i and j respectively) to the same source of classical
noise. Obviously this source does not exist physically, but one can consider
the degrees of freedom spatially separating the sites i and j as the e�ec-
tive "classical bus" for correlations among the two sites � classical because
the distance between i and j exceeds the quantum coherence length (see
Fig. 3.1(c)).

A few other criteria for separability have been recently introduced for
lattice systems based on the quantum Fisher information [67, 68], skew in-
formation [69] and quantum variance [70] of a collective observable. In the
following paragraph we verify the consistency of the QCF-based method with
these other approaches.
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Figure 3.2: Upper panels. Quantum correlation function gQ of Bose �elds for
(a) hard-core bosons with L = 64 and di�erent temperatures t = kBT/J ; (b)
quantum rotors with u = U/(2Jn̄) = 1, L = 32 and di�erent temperatures
t = kBT/(2Jn̄). The gQ function is compared to the total correlations g(r).
Here r is the short-hand notation for (r, 0). Solid lines are exponential �ts
A′e−d(x|L)/ξQd(x|L)−η

′
for gQ, where d(x|L) = (L/π) sin(πx/L) is the cord

length. All data refer to the super�uid phase. Lower panels. Quantum
coherence length ξQ vs. temperature for (c) hard-core bosons; (d) quantum
rotors with u = 1. The solid and dashed lines indicate t−1 and t−1/2 power
laws.
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3.4 Quantum variance of a collective observable

In the following we brie�y introduce quantum variance (QV) for a collective
observable [70] and show how it de�nes an "inseparability length" expressing
the minimal linear size of clusters into which the density matrix can be e�ec-
tively separated. We calculate this length for hard-core bosons on a square
lattice and compare the result to that obtained for the quantum coherence
length. This comparison would also indirectly account for a comparison to
the aforementioned Quantum Fisher Information and Skew Information, to
which QV represents a tight lower bound.

3.4.1 De�nition of quantum variance

Given a generic operator Ô, its quantum variance on a generic thermal state
ρ̂ is de�ned as

〈δ2Ô〉Q = 〈Ô2〉 − 1

β

∫ β

0
dτ 〈Ô(τ)Ô(0)〉 , (3.18)

and it is such that 〈δ2Ô〉Q ≤ 〈δ2Ô〉 = 〈Ô2〉 − 〈Ô〉2 [70].
In the following we shall focus on a collective operator Ô =

∑
i ôi, which

is the sum of local operators ôi with a bounded spectrum in [omin, omax].
For such an operator the QV represents the integral of the QCF 〈δôiδôj〉Q.
We consider a state ρ̂ which can be separated into clusters of size p (or
p-separable), namely which admits the separable form

ρ̂ =
∑
s

ps ⊗c ρ̂(s)
c (3.19)

where ρ̂(s)
c is the density matrix for a single cluster. For such a state 〈δ2Ô〉Q

is upper-bounded as

〈δ2Ô〉Q ≤
∑
s

ps
∑
c

〈δ2Ôc〉Q,s

≤
∑
s

ps
∑
c

〈δ2Ôc〉s , (3.20)

where (〈δ2Ôc〉Q,s) 〈δ2Ôc〉s is the (quantum) variance of the cluster operator
Ôc =

∑
i∈c ôi. Considering a partition of the system of total size N into

identical clusters of size p (such that N/p is an integer), one can show that
the variance of the observable Ôc is easily upper-bounded using a bimodal
distribution for the observable Ôc with values pomax and pomin both having
probability 1/2 [70], which gives

〈δ2Ôc〉 ≤
p2

4
(omax − omin)2 . (3.21)
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As a consequence, for all p-separable states, the QV satis�es the bound:

〈δ2Ô〉Q ≤
Np

4
(omax − omin)2 . (3.22)

This bound is obviously a necessary but not su�cient condition for p-separability,
namely states which are not p-separable but are p′-separable with p′ > p (up
to p′ =∞) may still comply with the bound.

As a consequence of the bound given above, one could use the quantum
variance as a witness of entanglement. Given a thermal state with quan-
tum variance 〈δ2Ô〉Q, in order to approximate it with a p-separable state
one needs to use clusters with p at least taking the value which saturates
the bound of Eq. (3.22), namely p ≥ pmin = 4〈δ2Ô〉Q/[N(omax − omin)2].
Hence the quantum variance witnesses entanglement among at least pmin

sites. Considering then the local observables ôi with unit spectral width,
∆o = omax − omin = 1, which maximize the quantum variance of the cor-
responding collective observable Ô among all collective observables, for a
d-dimensional system one can de�ne an inseparability length lI as

lI =

[
4

N
sup

Ô:∆o=1

〈δ2Ô〉Q
]1/d

. (3.23)

This length indicates the minimal linear size of clusters building a separable
state of the kind of Eq. (3.19), which is compatible with the maximum quan-
tum variance of collective observables. It is therefore to be considered as a
lower bound to the length beyond which two subsystems can be considered
as e�ectively separable in the state of the system. Hence it is meaningful
to compare it to the quantum coherence length ξQ, which is the natural
(Hamiltonian-)separability length, and to which lI may be expected to act
as a lower bound.

3.4.2 Quantum variance vs quantum coherence length

The length lI can be easily calculated both in the case of hard-core bosons
and of quantum rotors. One can maximize the quantum variance of a col-
lective observable with ∆o = 1 by considering: 1) for hard-core bosons,
ôi = (âi + â†i )/2; 2) for quantum rotors, ôi = [cos(θi) + sin(θi)/(2

√
2).

In both cases the quantum correlation function 〈ôiôj〉Q is proportional to
the quantum �eld correlation function, namely 〈ôiôj〉Q = gQ(i, j)/2 (for
hard-core bosons) and 〈ôiôj〉Q = gQ(i, j)/8 (quantum rotors). As a conse-
quence, the corresponding quantum variance is related to the k = 0 peak in
the "quantum momentum distribution" nQ(k) = 1

L2

∑
ij e

ik·(ri−rj)gQ(i, j),

namely 〈δ2Ô〉Q = NnQ(0)/2 (hard-core bosons at half �lling) and 〈δ2Ô〉Q =
NnQ(0)/8 (quantum rotors). Given that the gQ(i, j) is the dominant quan-
tum correlation function, and it is positive de�nite, the quantum momen-
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Figure 3.3: Quantum coherence length ξQ and inseparability length lI vs.
temperature for (a) hard-core bosons; (b) quantum rotors with u = 1. The
solid and dashed lines indicate t−1 and t−1/2 power laws.

tum distribution, which is its integral, will give the dominant quantum vari-
ance among all observables, as requested in Eq. (3.23). This de�nes the
inseparability lengths lI =

√
2nQ(k = 0) for hard-core bosons and lI =√

nQ(k = 0)/2 for quantum rotors, which can be extracted from Monte
Carlo simulations. The results for the two models are shown in Fig. 3.3,
where they are compared to the data previously shown for the quantum
coherence length. As expected, lI proves to be a lower bound to the ξQ.
The two lengths show a similar temperature dependence, thus supporting
the interpretation of ξQ as the characteristic length scale beyond which two
subsystems can be considered as nearly (Hamiltonian)-separable.

One can also try to establish a scaling relationship between the two
lengths lI and ξQ. Indeed, one can expect the quantum correlation func-
tion to decay as:

gQ(r) ∼ e−r/ξQ

rd−2+η̃
(3.24)

(which is veri�ed by the �ts of the numerical data in Fig. 3.3). Therefore,
integrating gQ(r) one obtains

nQ(k = 0) ∼
∫ ∞
a

dr rd−1gQ(r) ∼ ξ2−η̃
Q

∫ ∞
a/ξQ

dx
e−x

xη̃−1
(3.25)

where a is the lattice spacing. Under the assumption that ξQ/a � 1, the



46 CHAPTER 3. QUANTUM AND CLASSICAL CORRELATIONS

integral loses its dependence on ξQ, and hence one obtains the scaling relation

lI ∼ [nQ(k = 0)]1/d ∼ ξ
2−η̃
d

Q . (3.26)

The temperature dependence of the two lengths is generically di�erent unless
φ = (2− η̃)/d = 1. The data in Fig. 3.3(a-b) suggest that, for the models of
interest, 1/2 . φ . 1 in the low-temperature regime of ξQ/a� 1. In general
one can expect that φ ≤ 1, so that the inequality lI ≤ ξQ holds for T → 0,
where both quantities diverge.

3.5 Quantum discord

The QCF that we introduced in this chapter captures an essential form of
quantum correlation between local observables belonging to distinct subsys-
tems of an extended quantum system in thermal equilibrium. An alterna-
tive de�nition of quantum correlations has been given using quantum discord
(QD) [30, 71, 72], which is an observable-independent quantity that expresses
to what extent a density matrix violates an identity valid for classical, joint
probability distributions of several variables. In the following we brie�y in-
troduce QD and then draw a comparison to our de�nition of QCF, in the
case of hard-core bosons.

3.5.1 De�nition of quantum discord

Let us take two sites i and j in the lattice, and de�ne the reduced density
matrices ρ̂i, ρ̂j and ρ̂ij for the single sites i and j, and for the two-site
compound ij, respectively. The total amount of correlations (of classical and
quantum origin) among the two sites is generally expressed via the mutual
information

I(i, j) = S(ρ̂i) + S(ρ̂j)− S(ρ̂ij) (3.27)

where S(ρ̂) = −Tr(ρ̂ log2 ρ̂) is the von Neumann entropy. [27] The mu-
tual information expresses the "missing" entropy in the compound state due
to correlations in the �uctuations: namely, there exists information on i
which can be gained by making observations on j, and vice-versa. Indeed
S(ρ̂ij |ρ̂j) = S(ρ̂ij)−S(ρ̂j) is the entropy of ij conditioned on the knowledge
of the state of j, and the fact that this entropy is less than that of ρ̂i (ig-
noring completely j) implies the existence of correlations between i and j,
which provide information on i when measuring j.

This observation invites to analyze the density matrix conditioned on
measurements on site j. Considering the local observable Ôj on site j with

eigenvalues o(j)
k and projectors P(j)

k on the associated eigenspaces, one can
de�ne the compound density matrix of sites ij conditioned upon the outcome



3.5. QUANTUM DISCORD 47

o
(j)
k of the measurement of the observable Ôj as

ρ̂ij,k =
1

pk

(
Ii ⊗ P(j)

k

)
ρ̂ij

(
Ii ⊗ P(j)

k

)
, (3.28)

where pk = Tr
[(

Ii ⊗ P(j)
k

)
ρ̂
(
Ii ⊗ P(j)

k

)]
[27]. The compound entropy con-

ditioned on the measurement of the observable Ôj , and averaged on all pos-
sible outcomes of the measurement, can be therefore expressed as

S(ρ̂ij |Ôj) =
∑
k

pkS(ρ̂ij,k) , (3.29)

which expresses the average entropy that the system has after a measurement
of the observable Ôj � averaged over all the possible outcomes of the mea-
surement, with their a priori probabilities pk. In a classical system the pk
would be the statistical weights of the con�gurations of site j, and therefore
Eq. (3.29) would represent the entropy of ij conditioned upon the knowl-
edge of j, S(ρ̂ij |ρ̂j). In a quantum-mechanical system, this is no longer the
case, because measurements on j not only give information on i, but also
perturb its state. The amount by which measurements on j perturb i is then
quanti�ed by the quantum discord

D(i, j) = I(i, j)− C(i, j) (3.30)

where
C(i, j) = S(ρ̂i)−minÔjS(ρ̂ij |Ôj) (3.31)

expresses the (so-called) "classical" correlations, namely the maximum amount
of information that can be gained on i by making measurements on j. The
function D(i, j) captures the fundamental discrepancy (or "discord") be-
tween the entropy associated with the correlations among sites i and j, and
the maximal information that one can gain on i by making projective mea-
surements on j: the latter does not saturate the former because local mea-
surements disturb the state and they reduce correlations between i and j.

In summary, seen as a generalized correlation function, D(i, j) probes
how much a measurement on i can a�ect the state of j. Even for states
in which two subsystems are separable, the measurement on one system
can a�ect the state of the other (this is true when the factorized density

matrices ρ̂(s)
A(B) in the separable form do not commute with each other).

Hence quantum discord can be non-zero even in the presence of separability.

3.5.2 Quantum discord vs quantum correlation function

Quantifying discord for generic degrees of freedom is in general a hard prob-
lem, due to the maximization operation implied in Eq. (3.31), but a quanti-
tative comparison between QCF and QD is possible in the case of hard-core
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Figure 3.4: (a) Comparison between QCF and QD. (b) Zero-momentum
peak in the total and "quantum" momentum distribution for 2d hard-core
bosons. Full symbols refer to nQ(k = 0), while open ones to n(k = 0).

bosons. According to Refs. [73, 74] in the limit |ri−rj | → ∞, QD takes the
form

D(i, j) ≈ (C2
1 + C2

2 )/(2 log 2) (3.32)

with C1 = g(i, j)/2 and C2 = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉. Therefore the quantum
discord, being asymptotically proportional to the square of the correlation
functions, has their exact same range � as was already discussed in Ref. [75]
in a variety of di�erent models. For 2d hard-core bosons the two-point QD
decays algebraically throughout the super�uid phase and exponentially only
in the normal phase, in a similar way as ordinary correlations do � and it
is singular at the BKT transition, even though this transition is uniquely
driven by thermal �uctuations and quantum �uctuations and correlations
are not supposed to exhibit singularities at thermal phase transitions. This
is to be contrasted with the QCF, not bearing any signature of the BKT
transition and decaying exponentially at all �nite temperatures.

These observations are supported by the plots shown in Fig. 3.4. Fig. 3.4(a)
shows that the "quantum" momentum distribution nQ(k = 0), namely the
integral of the quantum correlation function, does not exhibit any singularity
at the BKT transition of hard-core bosons (occurring for t = kBT/J ≈ 0.685
[76]). On the other hand, at the BKT critical temperature the integral of the
total correlations, n(k = 0), exhibits a well-known divergence. Fig. 3.4(b)
shows a comparison between the QD and the QCF in the super�uid phase
of hard-core bosons. The QCF, as already observed in the previous plots,
decays exponentially, whereas the QD decays algebraically.

The dramatic di�erence between QD and QCF, and the sensitivity of
QD to classical critical phenomena, suggest that the notion of quantum cor-
relations attributed to QD should be critically re-examined. The sensitivity
of the two-point QD to ordinary correlations can be simply traced back to
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its de�nition in terms of the reduced two-point density matrix ρ̂ij which is
in turn fully expressed through correlation functions. On the other hand,
the QCF depends on the reduced density matrix and its deformation upon
applying a �eld at site i (or j). As a consequence the QCF provides infor-
mation beyond that contained in ordinary correlations and in the two-point
QD.
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Chapter 4

Quantum mean-�eld

approximation

In this chapter we introduce an approach to lattice systems that we name
quantum mean-�eld (QMF) approximation, or cluster QMF (cQMF), in its
most general cluster version. This latter relies on the �ndings of our previous
chapter, and in particular on the di�erent spatial structure found for thermal
and quantum correlations, which permits to develop an approximation that
a�ects quantum correlations only, thus preserving a full description of ther-
mal correlations. In the following we develop the formalism of cMF, using a
path-integral approach, and we show numerical results for two-dimensional
quantum rotors, which already served as a test model in the previous chapter.

4.1 Path-integral approach for lattice bosons

In this section we introduce the coherent-state path-integral approach to
the partition function, which will be the reference formalism throughout the
remaining chapters. Let us consider once again a Bose-Hubbard Hamiltonian

Ĥ =
∑
i6=j

[
Jij b̂

†
i b̂j +

Vij
2
n̂in̂j

]
+
∑
i

[
U

2
n̂i(n̂i − 1)− µn̂i

]
, (4.1)

to which we also added a term (Vij) for interactions between di�erent sites.
More general models (including spin degrees of freedom, non-abelian gauge
�elds, etc.) can also be treated similarly, but we keep working with our usual
spinless Bose-Hubbard model for the sake of simplicity in the exposition.

We can now introduce the path-integral expression of the partition func-
tion in terms of coherent bosonic states. These states represent the eigen-
states b̂i|φ〉 = φ|φ〉 of the bosonic operators, form an over-complete non-
orthonormal basis of the Hilbert space and satisfy a completeness relation∫ dφ∗dφ

2πi eφ
∗φ|φ〉〈φ| = 1. They consent to express the partition function of

51
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the system as [14, 77, 78]

Z =

∫
D[{φi(τ)}] e−S[{φi(τ)}] , (4.2)

where

S[{φi(τ)}] =

∫ β

0
dτ

[∑
i

φ∗i (τ)
∂

∂τ
φi(τ) + Ĥ({φi(τ), φ∗i (τ)})

]
, (4.3)

Ĥ({φi(τ), φ∗i (τ)}) = −
∫ β

0
dτ
∑
i6=j

[
φ∗i (τ)Jijφj(τ) + |φi(τ)|2Vij

2
|φj(τ)|2

]

+
∑
i

[
U

2
|φi(τ)|4 − µ|φi(τ)|2

]
, (4.4)

where S[{φi(τ)}] is the Euclidean action for the complex �eld φi(τ) depen-
dent on imaginary time τ ∈ [0, β] where β = (kBT )−1. We would like to
stress the fact that the coupling terms among di�erent sites in Eq. (4.3) are
uniquely contained in Ĥ, and they are therefore completely local in imaginary
time. This observation will be very important in the following.

4.2 From cluster-mean-�eld states to cluster-separable

states

In Sec. 2.3 we presented a cluster mean-�eld approach to lattice systems
based on a factorized Ansatz for the density matrix. In this paragraph we
brie�y reformulate it in the language of path-integral and then introduce
a new approach, which stems from a more general Ansatz for the density
matrix.

4.2.1 Cluster mean �eld

Cluster mean �eld assumes a factorized density matrix

ρ̂cMF = ⊗cρ̂c , (4.5)

which has a partition function in the form

ZcMF =
∏
c

Zc (4.6)

where

Zc =

∫
D[{φi∈c(τ)}] e−S

(MF)
c (4.7)
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and

S(MF)
c [{φi∈c(τ)}] =

∫
dτ Ĥc({φi∈c(τ), φ∗i∈c(τ)})

+

∫
dτ

∑
i∈c,j /∈c

[
−
(
Jijφ

∗
i (τ)〈b̂j〉+ c.c.

)
+ Vijni(τ)〈n̂j〉

]
−β

2

∑
i∈c,j /∈c

[
−
(
Jij〈b̂†i 〉〈b̂j〉+ c.c.

)
+ Vij〈n̂i〉〈n̂j〉

]
(4.8)

where we have introduced the notation ni(τ) =: |φi(τ)|2 and Ĥc denotes a
Hamiltonian of the form Eq. (4.4) restricted to sites belonging to the same
cluster c. Here 〈...〉 indicates the thermal average, to be calculated self-
consistently using the partition function in the form of Eq. (4.6).

Both Eq. (4.5) and Eq. (4.6) show how the cMF approach retains the
quantum nature of the bosonic �eld, as well as its correlations within each
cluster, but discards correlations of all forms between clusters. This results in
neglecting long-wavelengths �uctuations and prevents a correct description
of critical phenomena below the upper critical dimension

4.2.2 Incorporating classical correlations into cMF

On the basis of the observations made in Sec. 3.2, classical correlations can
be included in the cMF Ansatz for the density matrix, by promoting Eq. (4.5)
to the most general separable form

ρ̂sep =
∑
{Ψ}

p({Ψ}) [⊗c ρ̂c({Ψ})] , (4.9)

where {Ψ} is a set of (possibly continuous) variables parameterizing the form
of the cluster density matrix ρ̂c({Ψ}), and p({Ψ}) ≥ 0 is the probability of
the associated factorized form [26]. It is important to notice that the tem-
perature is contained in the functional form of both ρ̂c and p. A variational
optimization of Eq. (4.9) to minimize the free energy is essentially impos-
sible, given the extreme freedom of the function p({Ψ}). In the following
section we show how an approximation that we will name quantum mean-

�eld (QMF) provides an explicit educated Ansatz for the density matrix of
a bosonic lattice model in the form of Eq. (4.9).

4.3 Quantum mean-�eld approximation

Let us consider the partition function as introduced in Sec. 4.1 in the path-
integral formalism. The hopping and o�-site potential terms, coupling sites
together in the action Eq. (4.3), as we observed previously, are fully local

in imaginary time. The QMF approximation consists in treating them as
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completely non-local, namely imagining that full connectivity exists along
the imaginary-time dimension, namely an all-to-all coupling � see Fig. 4.1
for a cartoon. In terms of equations, calling S(hop)

ij and S(pot)
ij the terms of

the action coupling two sites i and j (with i 6= j), the QMF approximation
amounts to taking

S
(hop)
ij [φi(τ), φj(τ)] = −

∫ β

0
dτ (φ∗i (τ) Jij φj(τ) + c.c.)

QMF≈ − 1

β

∫ β

0
dτ

∫ β

0
dτ ′

(
φ∗i (τ) Jij φj(τ

′) + c.c.
)

= −β φ̄i∗ Jij φ̄j = S
(hop)
ij [φ̄i, φ̄j ] (4.10)

and

S
(pot)
ij [ni(τ), nj(τ)] = −

∫ β

0
dτ ni(τ) Vij nj(τ)

QMF≈ − 1

β

∫ β

0
dτ

∫ β

0
dτ ′ ni(τ) Vij nj(τ

′)

= −β n̄i Vij n̄j = S
(pot)
ij [n̄i, n̄j ] , (4.11)

where we have introduced the time-averaged �eld and density

φ̄i =
1

β

∫ β

0
dτ φi(τ) , n̄i =

1

β

∫ β

0
dτ ni(τ) . (4.12)

Equivalently, the QMF approximation amounts to substituting the coupling
between the imaginary-time evolutions of the �eld φi, and of its squared
amplitude |φi|2, at di�erent sites with the coupling between the averages

over such evolutions � whence the concept of quantum (or imaginary-time)
mean �eld.

4.3.1 Cluster QMF approximation

This approximation can be easily cast in a cluster form, by dividing the ij
bonds into intra-cluster and inter-cluster ones, and applying the mean-�eld
approximation in imaginary time to all inter-cluster couplings. Under this
approximation, the coherent state action in Eq. (4.3) takes the form

S[{φi(τ)}] QMF≈
∑
c

Sc[{φi∈c(τ)}] +
∑
c<c′

∑
i∈c,j∈c′

Sij [φ̄i, φ̄j ; n̄i, n̄j ] (4.13)

where we have introduced the cluster action

Sc[{φi∈c(τ)}] =
∑
i∈c

Si[{φi(τ)}] +
∑
i,j∈c

Sij [φi(τ), φj(τ);ni(τ), nj(τ)] . (4.14)



τ

0

β

φ1 φ2 φ3 φ4
(a)

C C C C

φ1(τ)

J12, V12

τ

0

β

φ1 φ2 φ3 φ4

all-to-all
couplings

cluster
(b)

φi(τ) C

τ
Jij Vij

Jij Vij

φ̄i

Si

Sij = S
(hop)
ij + S

(pot)
ij

Sij [φ̄i, φ̄j ; n̄i, n̄j ] = S
(hop)
ij [φ̄i, φ̄j ] + S

(pot)
ij [n̄i, n̄j ]

∫ D[{φi(τ)}]
φ̄i

n̄i

Z ≈ ∫ ⎛
⎝∏

j

dφ̄j dφ̄∗
j dn̄j

2πi

⎞
⎠ e−

∑
c �=c′

∑
i∈c,j∈c′ Sij [φ̄i,φ̄j ;n̄i,n̄j ]

∏
c

∫
{φ̄i∈c,n̄i∈c}

D[{φi∈c(τ)}] e−Sc[{φi∈c(τ)}] .
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Eq. (4.9). We introduce two auxiliary �elds, a complex-valued one (Ψi) and
a real-valued one (%i), and perform a Hubbard-Stratonovich transformation
[78] as in the following:

e−
∑′
ij S

(hop)
ij [φ̄i,φ̄j ] =

1

det J ′

∫
Dψ e−β

∑′
ij Ψ∗i [(J ′)−1]ijΨj−β

∑′
i(Ψiφ̄

∗
i+Ψ∗i φ̄i) ,

e−
∑′′
ij S

(pot)
ij [n̄i,n̄j ] =

1

detV ′′

∫
Dρ e−β

∑′′
ij %i[(V

′′)−1]ij%j−β
∑′′
i %in̄i , (4.16)

where Dψ =

(∏
j

β2dΨjdΨ∗j
2πi

)
and Dρ = (

∏
i β d%i), the primed (and double-

primed) sums
∑′ (∑′′) are restricted to those sites which are indeed involved

in an inter-cluster bond for the kinetic energy (the potential energy), and the
matrices J ′ and V ′′ are connectivity matrices restricted to inter-cluster bonds
(for the kinetic energy and potential energy respectively). We shall here
assume that J ′ and V ′′ are positive de�nite, so that the HS transformation
is well de�ned, otherwise they can be appropriately rede�ned, leaving the
essence of the present argument intact � see Chap. 5 for further discussion.

The HS transformation allows therefore to cast the partition function
within the cQMF approximation into the separable form, Z ≈ Tr(ρcQMF)
with (up to multiplicative constants)

ρ̂cQMF ∼
∫ ∏

j

dΨjdΨ∗jd%j

2πi

 e−Saux[{Ψi,Ψ∗i ;%i}] ( ⊗c ρ̂c[{Ψi∈c,Ψ
∗
i∈c; %i∈c}] ) ,

(4.17)
where we have introduced the auxiliary-�eld action

Saux[{Ψi,Ψ
∗
i ; %i}] = β

∑′

ij
Ψ∗i [(J

′)−1]ijΨj + β
∑′′

ij
%i[(V

′′)−1]ij%j , (4.18)

and the single-cluster density matrix

ρ̂c[{Ψi∈c,Ψ
∗
i∈c; %i∈c}] = e−βĤ

(eff)
c [{Ψi∈c,Ψ∗i∈c;%i∈c}] , (4.19)

with the e�ective single-cluster Hamiltonian

Ĥ(eff)
c = Ĥc −

∑
i∈c

′ (
Ψib̂
†
i + Ψ∗i b̂i

)
−
∑
i∈c

′′
%in̂i , (4.20)

where Ĥc is the physical Hamiltonian, Eq. (4.1), restricted to intra-cluster
bonds (for the o�-site terms) and cluster sites (for the on-site terms). There-
fore the e�ective cluster Hamiltonian has the form of the physical Hamilto-
nian plus "boundary" source terms (containing the auxiliary �elds Ψi,Ψ

∗
i )

and a "boundary" potential term (containing the auxiliary �eld %i) involving
the sites coupled to other sites outside the cluster.

As one may already notice from the previous equations, the cQMF ap-
proach reduces to the standard cMF approach in the limit of zero tempera-
ture, as we will further elucidate with an example in Sec. 5.3.1.
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4.4 Theoretical basis for the cQMF approximation

In this section, we provide a justi�cation for the cQMF approximation,
which stems from the formal separation between classical and quantum cor-
relations introduced in our previous chapter. We start by brie�y recalling
the �rst-order correlation functions that we introduced and by giving their
path-integral expressions, in order to be coherent with the formalism used
throughout this chapter. We de�ned the total correlation function

g(l,m) = 〈b̂†l b̂m〉 =
1

Z

∫
D[{φi(τ)}] φ∗l (τ ′)φm(τ ′) e−S , (4.21)

for any arbitrary time τ ′ ∈ [0, β], the thermal correlation function

gT (l,m) =
1

β

∫
dτ 〈b̂†l (τ)b̂m(0)〉 =

1

Z

∫
D[{φi(τ)}] φ̄∗l φ̄m e−S , (4.22)

and the quantum correlation function

gQ(l,m) = g(l,m)− gT (l,m) (4.23)

=
1

Z

∫
D[{φi(τ)}]

[
1

β

∫
dτ ′(φ∗l (τ

′)− φ̄∗l )(φm(τ ′)− φ̄m)

]
e−S ,

where S stands for the action S[{φi(τ)}] in Eq. (4.3). Applying a cQMF ap-
proximation, which relies on a density matrix in the form Eq. (4.9), amounts
to considering the various cluster as Hamiltonian-separable. According to the
theorem proved in Sec. 3.2 this implies that, within the cQMF approxima-
tion, all the quantum correlation functions are zero between sites belonging
to di�erent clusters, namely that gQ(l,m) = 0 for l ∈ c and m ∈ c′, with
c 6= c′. Therefore the cQMF approximation truncates quantum correlations
to distances not exceeding the linear size of the clusters and "confuses" the
total correlations among di�erent clusters with their thermal part only.

4.4.1 Two di�erent length scales

In the previous chapter (see Fig. 3.2), we showed that, for hard-core bosons
and quantum rotors, the �rst-order correlation function decays exponentially
at any �nite temperature. This decay is characterized by a quantum coher-
ence length ξQ, which is independent of the correlation length ξ for the decay
of the total correlations, and which is such that ξQ < ξ. This length-scale
separation between thermal and quantum correlations constitutes the main
motivation behind the cQMF approximation. The latter, introducing a spa-
tial cuto� in the quantum correlations at a length scale lc/2 (the maximum
distance between the bulk of the cluster and its boundaries), would be in
fact completely arbitrary if the quantum correlation function did not posses
an exponential decay. One can then expect the quality of the approximation
to depend on the ratio ϑ = 2ξQ/lc, being more accurate when ϑ� 1.
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g = gT + A e�r/⇠Q

g ⇡ gT

⇠Q r

rlc

exact
correlations

cQMF
correlations

(a)

(b)
g = g̃T + A e�r/(↵lc)

g = g̃T

⇡
⇡

Figure 4.2: (a) Sketch of the correlations in quantum many-body system at
�nite temperature. Beyond a characteristic quantum coherence length ξQ
total correlations (g) are very closel to the thermal part (gT ); (b) Sketch of
the cQMF account for correlations in quantum many-body systems at �nite
temperature. Beyond a length proportional to the cluster size (αlc) the total
correlations are described as identical to (approximate) thermal correlations
g̃T .

The existence of a �nite quantum coherence length ξQ de�nes a dis-
tance beyond which thermal and total correlations are nearly identical, as
sketched in Fig. 4.2(a). This in turn implies that, for r � ξQ, correla-
tions in a quantum many-body system can be regarded � to within a very
good approximation � as those generated by an e�ectively classical system.
One can then design a classical model, which would capture the long-range
(r � ξQ) correlations, and whose local degrees of freedom (on the scale ξQ)
are renormalized in their e�ective couplings by short-range quantum �uctua-
tions. The cQMF approach is precisely a systematic way of building e�ective
classical theories which describe short-range quantum correlations up to a
scale proportional to the cluster linear size lc, and which then identify the
total correlations with (approximate) thermal ones (g̃T ) beyond that scale.
This is sketched in Fig. 4.2(b).
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4.4.2 E�ects of the cluster decomposition

We can make some general considerations about the in�uence of using a
cQMF approximation on the description of the system. The general asymp-
totic form of correlation functions reads

A
e−r/ξ

rd−2+η
(4.24)

where A, ξ and η depend generically on the temperature and on the size
of the system when extracted from �nite-size data. The cQMF adds to
these dependencies a further cluster-size dependence, namely A = A(ϑ;T, L),
ξ = ξ(ϑ;T, L), η = η(ϑ;T, L). Being restricted to quantum �uctuations, the
cQMF is able to capture the correct divergence of the correlation length at a
thermal transition, as well as the correct exponent η at the critical point. The
position (Tc) of the critical point, anyway, may depend signi�cantly on the ϑ
parameter, namely Tc = Tc(ϑ). In general we expect Tc(ϑ > 0) > Tc(0) since,
by systematically underestimating quantum e�ects, the cQMF overestimates
the transition points. This can be intuitively understood from Fig. 4.1: the
cQMF approximation amounts to increasing locally the connectivity of the
couplings appearing in the action that weighs the path integral, and this is
expected to stabilize correlations against thermal �uctuations.

Moreover, if ξ ∼ ξQ, the short-range properties of the correlation function
are dominated by quantum e�ects, and therefore ξ will depend very strongly
on ϑ. Only the condition ϑ � 1 would ensure a good description of the
correlation function in this regime. Conversely, when ξ � ξQ, thermal and
quantum correlations acquire a true separation of scales, which could permit
to accurately describe the long-range aspects of thermal correlations, while
only partially accounting for quantum correlations.

The next sections are dedicated to a quantitative test of the abilities
and limitations of the cQMF scheme. Due to its convenient path-integral
solution, we will use once again the two-dimensional quantum-rotor model
as a reference, and we will study in particular the convergence of relevant
physical observables upon increasing the cluster size.

4.5 Quantum rotors and the QMF approximation

We recall the Hamiltonian of quantum rotors

HQR = −2Jν
∑
〈ij〉

cos(θi − θj)−
U

2

∑
i

∂2

∂θ2
i

, (4.25)

which was already presented in the previous chapter, in Eq. (3.16). In what
follows we shall �rst describe the path-integral representation of this model
and the implementation of a cQMF approximation, and then discuss numer-
ical results concerning the convergence of the cQMF approach.
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The path-integral representation of the partition function for the quan-
tum rotor can be realized by using coherent states with unit norm, namely
φi = eiθi . The partition function takes then the form

ZQR =

∫
D[{eiθi(τ)}] e−SQR[{eiθi(τ)}] . (4.26)

The action SQR, as shown in Refs. [64, 81], can be cast in the form of an
e�ective classical XY model in (d + 1) dimensions. One can discretize the
imaginary time in M slices of length δτ = β/M using Trotter-Lie discretiza-
tion [77] and take the limit M → ∞. The quality of such an expansion is
controlled by the ratio ε = δτ U . In particular, for ε → 0, one can use the
Villain approximation [82], which gives an action in the form

SQR ≈
M∑
k=1

[
−K

∑
〈ij〉

cos(θi,k − θj,k)−Kτ

∑
i

cos(θi,k − θi,k+1)
]
, (4.27)

where we have introduced the coupling constants K = ε/u and Kτ = 2/ε
for the "space-like" and "(imaginary)-time-like" couplings respectively, the
reduced repulsion parameter u = U/(2Jn) and the Trotter-discretized phase
�eld θi(τ)→ θi,k.

Applying cQMF to Eq. (4.27) amounts to simply rede�ning the e�ective
XY couplings. Indeed the cQMF approximation addresses the space-like (K)
couplings between sites belonging to di�erent clusters, and it rede�nes them
from local in imaginary time to completely non-local (which is the same as
assuming that clusters interact via imaginary-time averaged bosonic �elds,
eiθi). Then the cQMF e�ective action, as usual, breaks up into an intra-
cluster part and an inter-cluster part:

SQR
QMF≈

∑
c

Sc +
∑
c6=c′

Scc′ , (4.28)

where c, c′ are pairs of interacting clusters. The intra-cluster Hamiltonian is
simply the e�ective Hamiltonian Eq. (4.27) speci�ed to the sites and links
within a given cluster c:

Sc =

M∑
k=1

[
−K

∑
〈ij〉,i,j∈c

cos(θi,k − θj,k)−Kτ

∑
i∈c

cos(θi,k − θi,k+1)
]
, (4.29)

while the inter-cluster Hamiltonian contains the mean-�eld couplings in imag-
inary time between neighboring clusters:

Scc′ = −K
M

M∑
k,k′=1

∑
〈ij〉,i∈c,j∈c′

cos(θi,k − θj,k′) . (4.30)



4.5. QUANTUM ROTORS AND THE QMF APPROXIMATION 61

Figure 4.3: (a-c) Total correlations within the cQMF approximation with
variable cluster size lc for quantum rotors on the square lattice. Here u = 3
and L = 36. (d) Temperature dependence of the η exponent extracted from
power-law �ts to the correlation function with lc = 1 and lc = L = 36 (see
text), over the range r ∈ [3, L/2]; the result is contrasted to that of classical
spin-wave (SW) theory, η(t) = t/(2π).

A path-integral evaluation of the partition function within the cQMF
approximation amounts therefore to simulating a classical XY model with
spatially anisotropic couplings and all-to-all couplings in imaginary time for
inter-cluster links (see again Fig. 4.1 for a cartoon).
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4.6 cQMF results for quantum rotors

In this section we �nally test numerically the ability of the cQMF of de-
scribing our test model of quantum rotors in a square lattice. This model
possesses a super�uid phase with algebraically decaying correlation function
g for temperatures below a critical BKT transition t < tBKT . The critical
tBKT temperature is a decreasing function of the interaction u, and it van-
ishes at a quantum critical point uc ≈ 5.8, beyond which the ground state
of the system becomes a gapped Mott insulator with exponentially decaying
correlations [83]. The cQMF action, Eq. (4.28), lends itself naturally to a
path-integral Monte Carlo (PIMC) study. For this reason simulations are
realized using a PIMC code developed by T. Roscilde.

4.6.1 Description of correlations

We start by studying how clusters behave in the description of the total corre-
lation function, focusing on a strongly interacting super�uid regime (u = 3).
Figs. 4.3(a-c) show that for most values of the distance r (namely for r ≥ 2),
the correlation function g(r) obtained via cQMF converges from above to the
exact result. The cQMF approximation therefore overestimates the strength
of correlations by underestimating quantum e�ects. The logarithmic scale of
the plots permits also to observe something rather remarkable: despite the
clear di�erence in the very value of the correlation function, the long-range
tails of the correlation functions for di�erent lc values appear as nearly par-
allel. This suggests that the asymptotic behavior of the correlation function
is captured by the cQMF up to a multiplicative constant, which accounts for
the incomplete description of short-range quantum �uctuations.

One can use the previous data to extract the exponent η, by �tting the
correlation function to a power-lawA/d(r|L)η, where d(r|L) = (L/π) sin(πr/L)
is the chord length, which is well suited for systems de�ned on a torus,
namely with periodic boundary conditions. The so-extracted η exponent is
shown as a function of temperature in Fig. 4.3(d), where it is compared to
the classical limit η = t/(2π), which comes the spin-wave theory, valid at
low T for u = 0. It is clear that cQMF captures the substantial speed-up
in the increase of the η exponent with respect to spin waves. This is due
to the fact that η = t/(2π %s(u, t = 0)), with %s(u, t = 0) the super�uid
density, decreases as u increases. Moreover, we can observe that using the
cQMF for the smallest cluster (lc = 1) already produces a very accurate
result compared to the exact one (lc = 36). This proves the remarkable
ability of cQMF to describe quantitatively long-range correlations, which is
a non-trivial result, as quantum �uctuations are indeed strong in this exam-
ple. This possibility of e�ectively describing thermal �uctuations even by
discarding quantum correlations between di�erent sites � which is the case
for lc = 1 � provides an interesting insight into the physics of quantum ro-
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Figure 4.4: Thermal vs. quantum correlations in the super�uid phase of 2d
quantum rotors (t = 0.1, u = 3, L = 36) within the cQMF approximation.
(a) Thermal correlations gT for di�erent cluster sizes, normalized by the value
at maximum distance r = L/2; (b) Quantum correlations gQ for di�erent
cluster sizes.

tors. It shows that, su�ciently far from the quantum critical point u = uc,
the quantum renormalization of the η exponent for the power-law decay of
super�uid correlations comes from very-short-ranged quantum �uctuations.

The form of the long-range tail of the correlation function, and the ac-
curacy of the (lc = 1)-cQMF in describing the η exponent, suggest that the
approximation could describe the thermal correlations gT very accurately,
but only up to an overall multiplicative factor. This latter would account for
the fact that, in the real system, the e�ective classical degrees of freedom are
recovered by tracing out quantum �uctuations correlated within a volume
∼ ξ2

Q. This can be tested by plotting the normalized thermal correlation
function gT (r)/gT (L/2), where the normalization to the asymptotic value
eliminates the above-mentioned multiplicative factor. Fig. 4.4(a) compares
the normalized thermal correlations for di�erent cluster sizes with the exact
result (lc = 36): remarkably the full structure of the thermal correlation
function is well captured by the cQMF approach. Moreover, we can observe
that the thermal correlation function exhibits a power-law behavior (very
well �tted by A/d(r|L)η) across the entire range of separations r, whereas
the total correlation function clearly deviates from a simple power law, as
shown in Fig. 4.3(a-c), when approaching r = 0. This implies that the
short-range deviation from a power-law comes entirely from the quantum
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Figure 4.5: Total vs. thermal correlations of 2d quantum rotors (t = 0.1,
u = 3, L = 36) for three di�erent cluster sizes. The deviation of total
correlations g from a power-law decay at short distance comes entirely from
the quantum correlations.
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Figure 4.7: Scaling of the energy density e with the cluster parameter λ
(see text) for quantum rotors on the square lattice. λ values correspond to
cluster linear sizes lc = 1, 2, 3, 4, 6, 12 and 24 (in decreasing order). The
solid and dashed line are a linear �t (excluding the points at λ = 0 and 1)
and a power-law �t a1 + a2λ

a3 (retaining all points), respectively. Model
parameters are u = 3 and L = 24.

correlations, which are progressively captured by the cQMF approach with
an increasingly large cluster size (Fig. 4.4(b)).

Fig. 4.5 summarizes all these considerations by showing how thermal
correlations contribute to total correlations. The total correlation function
reproduces a power-law thermal correlation function at large distances, once
an exponentially decaying short-range quantum component has died out over
a distance r � ξQ for the real system, or an imposed distance r ≥ lc for its
cQMF approximation. This is in agreement with the cartoon proposed in
Fig. 4.2.

We can now test the behavior of cQMF when approaching the quantum
critical point: we choose the value u = 5, which is close to uc ' 5.8. Fig. 4.6
reports results for the normalized thermal correlations and for the η expo-
nent. The plots show that the convergence with the cluster size is much
slower than in the u = 3 case, and that large clusters are necessary to give
a satisfactory description of the system. The reason behind this behavior is
that ξQ is signi�cantly larger with respect to the previous case. Therefore,
the e�ective classical degrees of freedom, whose correlations are probed by
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Figure 4.8: Scaling of the condensate peak nk=0 with the cluster parameter λ
for quantum rotors on the square lattice. Lines and parameters as in Fig. 4.7.

g(r) (or gT (r)) at r � ξQ, emerge from integrating out short-range quantum
�uctuations over larger quantum-correlated volumes. As a result, the expo-
nent η for the decay of g(r) is a�ected by increasingly longer-range quantum
�uctuations, and a simple cQMF approach with lc = 1 is not su�cient any
more.

4.6.2 Cluster-size scaling

In order to determine the precise form of the convergence of observables upon
increasing the cluster size, we focus our attention on the energy density and
on the momentum-distribution peak n(k = 0), which can be calculated from
the correlation function

〈b̂†i b̂j〉 = 〈ei(θi−θj)〉 . (4.31)

Figs. 4.7 and 4.8 show the cluster-size scaling of the kinetic energy and
of the n(k = 0) respectively, both calculated in the super�uid phase, for
u = 3. We observe that, when plotted against the surface-to-bulk ratio
λ, the two quantities scale generically as a power law towards the exact
(λ = 0) result, which validates the choice of the λ parameter to extrapolate
the �nite-cluster results towards the exact one. In particular the exponent
of the power law seemingly approaches 1 when T → 0, which is consistent
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with the numerical observation of linear scaling in ground-state studies of
lattice boson models, based on the cMF [35, 84, 85, 86]. On the other
hand, the power-law exponent appears to grow gradually upon increasing
the temperature, namely the convergence towards the exact result is slightly
faster, the higher the temperature.

Finally, it is interesting to observe that the cluster-size scaling of the
cQMF results holds not only in the super�uid phase, but also along the
quantum-critical trajectory, namely for �nite temperatures above the quan-
tum critical point u = uc ≈ 5.8 for the super�uid Mott-insulator transition.
As shown in Fig. 4.9, a power-law scaling is well consistent with the numeri-
cal results, with a nearly linear scaling which persists at higher temperatures,
and a much larger prefactor. The slower scaling reveals a strong enhance-
ment of quantum correlations in the quantum critical region, in spite of the
fact that the total correlations have in fact acquired an exponentially de-
creasing form at �nite temperature, in contrast with the super�uid phase.
This reveals once again the semi-classical nature of the cQMF approxima-
tion, limited by the strength of quantum correlations and not by that of
thermal ones.
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Chapter 5

Auxiliary-�eld Monte Carlo

In this chapter we introduce a numerical approach to lattice systems called
auxiliary-�eld Monte Carlo (AFMC), which is similar in spirit to approaches
such as that used in Ref. [46] for spins and bosons, or to some others used
in the context of lattice fermions [47]. In its general version AFMC su�ers a
heavy sign (or, more generally, "phase") problem, which can be eliminated
by making approximations. We show that a possible approximation casts
the density matrix of the system in a cluster quantum mean-�eld (cQMF)
form, as that introduced in Chap. 4. Therefore the results of our previous
chapters constitute a fundamental justi�cation for such an operation, that a
priori would be completely arbitrary.

In the end of the chapter we apply the AFMC method supplemented with
the cQMF approximation to the study of the thermodynamics of hard-core
bosons both on a square lattice � which admits a numerically exact solution
via quantum Monte Carlo � as well as on a triangular frustrated (π-�ux)
lattice � which instead prevents the use of quantum Monte Carlo because of
a severe sign problem. This latter system is particularly interesting because
it could be implemented experimentally using ultra-cold atoms in an optical
lattice in the presence of an arti�cial gauge �eld [87].

5.1 Partition function as a path-integral over aux-

iliary �elds

We consider the Bose-Hubbard Hamiltonian

Ĥ = −
∑
ij

(
Jij b̂

†
i b̂j + h.c.

)
+
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i , (5.1)

where Jij = J∗ji is the most general Hermitian hopping matrix, possibly in-
cluding a gauge �eld. With respect to Chap. 4, for the sake of simplicity in
the exposition, we have restricted ourselves to the case of an on-site inter-
action only. Analogously to what done in the previous chapter, we express

69
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the partition function of the system in terms of coherent-state path-integrals
[14, 77, 88] as

Z = Tr[e−βĤ] =

∫
D[{φi(τ)}] exp{−S[{φi(τ)]} , (5.2)

with

S[φi(τ)] =
∑
i

Si[φi(τ)] +
∑
ij

Sij [φi(τ), φj(τ)] , (5.3)

Si[φi(τ)] =

∫ β

0
dτ

[
φ∗i (∂τ − µ)φi +

U

2
|φi|4

]
, (5.4)

Sij [φi(τ), φj(τ)] = −
∫ β

0
dτ φ∗i Jijφj . (5.5)

The hopping matrix is in general not positive de�nite, but one can always
add a diagonal constant Jij → J̃ij = Jij + Kδij to achieve this property,
and rede�ne accordingly the chemical potential as µ→ µ−K. For instance,
in the case of the square lattice, whose energy minimum is −4J , we need a
term K = 4J + ε (with ε > 0) to render Jij positive de�nite.

Once the positive de�niteness of the hopping matrix is ensured, one can
use the Hubbard-Stratonovich decoupling [14, 77]

exp

∆τ
∑
ij

φ∗i J̃ijφj

 = (5.6)

1

det(J̃/∆τ)

∫ ∏
i

d(ReΨi)d(ImΨi)

2π
e−∆τ [

∑
ij Ψ∗i J̃

−1
ij Ψj−

∑
i(Ψ
∗
i φi+c.c.)]

at each imaginary-time step, using a set of complex auxiliary �elds {Ψi(τ)}.
Concerning the spatial structure of the J̃−1

ij couplings, one may say that,

e.g. on the square lattice, J̃−1
ij behaves at large distances as the Bessel

function K0(|~ri−~rj |/λ) decaying exponentially over the length-scale λ, where
λ =

√
J/ε [89]. The partition function takes the form

Z =

∫ D[{Ψi(τ)}]
det J

e−SΨ[{Ψi(τ)}]
∏
i

Zi[Ψi(τ)] , (5.7)

where

SΨ[{Ψi(τ)}] =

∫
dτ
∑
ij

Ψ∗i (τ)(J̃−1)ijΨj(τ) (5.8)

and

Zi[Ψi(τ)] =

∫
D[φi(τ)] e−{ Si[φi(τ)] +

∫ β
0 [Ψ∗i (τ)φi(τ)+Ψi(τ)φ∗i (τ)] } (5.9)
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is the e�ective partition function of a single site. This latter can be rewritten
in the form

Zi[Ψi(τ)] = Tr

{
Tτ exp

[
−
∫ β

0
dτ Ĥi(τ)

]}
(5.10)

where Tτ is the imaginary-time-ordering operator. The e�ective single-site
partition function is most explicitly written upon discretizing the imaginary-
time direction: τ → τk = k∆τ , with k = 1, ...,M and ∆τ = β/M :

Zi[Ψi(τ)] = lim
M→∞

Tr

{
M∏
k=1

exp
[
−∆τ Ĥi(k∆τ)

]}
(5.11)

where the "instantaneous" Hamiltonian in imaginary time is

Ĥi(k∆τ) = −
[
Ψ∗i (k∆τ)b̂i + h.c.

]
+
U

2

∑
i

n̂i(n̂i−1)−(µ−K)
∑
i

n̂i . (5.12)

In recent years the coherent-state path-integral has come under scrutiny
because of some essential ambiguities it exhibits, and it therefore may not
seem as a solid basis for a numerical approach [90]. We would like to point out
that the path-integral formalism is not strictly necessary to obtain Eq. (5.7),
but we used it for the convenience of the presentation. Moreover the path-
integral of Eq. (5.9) is exactly calculated to give Eq. (5.11), which is expressed
in operatorial form, and which will be the basis of our subsequent analysis.
In App. B we show a possible alternative derivation of Eq. (5.7) which does
not make use of the coherent-state path-integral.

5.2 Auxiliary-�eld Monte Carlo and sign problem

We may express Eq. (5.7) in the form

Z =

∫
D[{Ψi(τ)}] w[{Ψi(τ)}] (5.13)

with w[{Ψi(τ)}] weights given by

w[{Ψi(τ)}] = e−SΨ[{Ψi(τ)}]
∏
i

Zi[Ψi(τ)] , (5.14)

which suggests the possibility of implementing a Monte Carlo approach that
is usually called auxiliary-�eld Monte Carlo (AFMC), by performing am-
plitude and phase updates for the auxiliary �elds {Ψi(τ)}. The calcula-
tion of each local partition function Zi[Ψi(τ)] would require M diagonal-
izations of (nmax + 1)× (nmax + 1) matrices, namely the Hi(k∆τ) matrices
which need to be exponentiated to produce the in�nitesimal propagators
exp [−∆τ Hi(k∆τ)]. Zi would then be obtained as the trace of the product
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of the M exponentiated matrices. Thermal averages of observables could be
estimated as

〈Ôi〉 = 〈[Ôi]〉MC =

∫
D[{Ψi(τ)}] w[{Ψi(τ)}] [Ôi]∫
D[{Ψi(τ)}] w[{Ψi(τ)}] (5.15)

where

[Ôi] =
1

Zi
Tr

{
Ôi Tτ exp

[
−
∫ β

0
dτ Ĥi(τ)

]}
, (5.16)

for single-site observables and

〈Ôi1 ...Ôin〉 = 〈[Ôi1 ]...[Ôin ]〉MC (5.17)

for n-site observables.
But in order for this numerical approach to be e�ective, to perform such a

simulation one has to ensure that all the weights w[{Ψi(τ)}] are real positive
or zero. This is the case for the component e−SΨ[{Ψi(τ)}], which is a prod-
uct of Gaussians, but there is no reason in principle to say that the local
partition functions

∏
iZi[Ψi(τ)] are also real positive, because the operator

appearing in Eq. (5.11) under the trace is the product of more than two
Hermitian operators. Such a product admits a non-zero trace for both its
Hermitian part (which gives a real contribution) as well as its anti-Hermitian
part (which gives an imaginary contribution). With complex weights, the
statistical averages 〈Ôi〉 (which are real numbers) are the result of the sum
of both positive and negative terms coming from the real as well as the imag-
inary part of w[{Ψi(τ)}] and [Ôi], hence the sign problem (that one may call
here "phase" problem, since it emerges from complex numbers). Therefore,
in order to implement a meaningful numerical approach, it is essential to
develop some form of approximations, as we discuss in the following.

5.3 Time-independent auxiliary �elds: a quantum

mean-�eld approximation

A �rst, simple approximation consists in ignoring the imaginary-time depen-
dence of the auxiliary �elds:

Ψi(τ) ≈ Ψ̄i . (5.18)

This amounts to decouple the imaginary-time dynamics of the di�erent sites,
that remain coupled only through the mean �elds in imaginary time. In
this case the single-site partition function Zi becomes a physical partition
function (namely the trace of the exponential of an Hermitian operator),
and therefore the Monte Carlo simulation can be done straightforwardly, as
it amounts to the sampling of the following object

Z =

∫ ∏
i

d(ReΨ̄i)d(ImΨ̄i)

2π
w({Ψ̄i}) (5.19)
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with positive-de�nite w({Ψ̄i}) weights.
One can easily observe that the approximation of time-independent aux-

iliary �elds (TIAF) sets the density matrix in a form which is precisely that
of a cQMF density matrix (see Eq. (4.17)) for single-site clusters. Moreover,
as we show in the following section, for T → 0, this approach reduces to a
MF approximation.

5.3.1 T = 0 limit of the time-independent-auxiliary-�eld ap-
proximation: Gutzwiller mean-�eld solution

In the limit T → 0 the single-site partition functions become

Zi[Ψ̄i]→ e−βE0[Ψ̄i] , (5.20)

with E0[Ψ̄i] the ground-state energy of the Hamiltonian Ĥi(Ψ̄i). This reduces
the statistical sum to the form

Z ≈
∫ ∏

i

d(ReΨ̄i)d(ImΨ̄i)

2π
e−βEeff [{Ψ̄i}] , (5.21)

where the e�ective auxiliary �eld energy Eeff has the form

Eeff [{Ψ̄i}] =
∑
ij

Ψ̄∗i [J̃
−1]ijΨ̄j +

∑
i

〈ψ0,i|Ĥi(Ψ̄i)|ψ0,i〉 . (5.22)

Here |ψ0,i〉 is the ground state of the single-site Hamiltonian Ĥi[Ψ̄i]. The
ground-state value of the auxiliary �elds is then found upon minimizing the
e�ective energy

δEeff

δΨ∗i
=
∑
j

[J̃−1]ijΨ̄j − 〈b̂i〉0 = 0 (5.23)

where 〈b̂i〉0 = 〈ψ0,i|b̂i|ψ0,i〉, and we have used Hellman-Feynman's theorem
to evaluate the derivative of the ground-state energy. Inverting this relation
we �nd that the ground-state auxiliary �eld con�guration satis�es the self-
consistent condition

Ψ̄i,0 =
∑
j

J̃ij〈b̂j〉0 =
∑
j

Jij〈b̂j〉0 +K〈b̂i〉0 , (5.24)

where the expectation value of b̂j is taken on the ground state of the single-
site Hamiltonian containing the auxiliary �eld itself. This condition is similar
to that satis�ed by the ground state in the Gutzwiller mean-�eld approxi-
mation � see Eqs. (2.16) and (2.17), but it shall be exactly the same only in
the case of K = 0. One can show that, in a square lattice, Eq. (5.24) is the
same as the Gutziller mean-�eld condition for a Hamiltonian with rede�ned
parameters J → J +K/4 and µ→ µ−K. This shall give a �rst idea of how
the use of the diagonal shift K a�ects the correct description of the model.



(J̃ (inter))

Ψi(τ) ≈ Ψ̄i

J
(inter)
ij

J
(intra)
ij

∑
ij

φ∗
i Jijφj =

∑
ij∈B

φ∗
i J

(inter)
ij φj +

∑
ij

φ∗
i J

(intra)
ij φj ,

B

J̃
(inter)
ij = J

(inter)
ij + Kδij

μi∈B → μi∈B −K

Z =

∫ D[{Ψi∈B(τ)}]
det(J̃ (inter))

e−SΨ[{Ψi∈B(τ)}]
∏
c

Zc[{Ψi(τ)}c]
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where

SΨ[{Ψi∈B(τ)}] =

∫
dτ
∑
ij∈B

Ψ∗i (τ) [(J̃ (inter))−1]ij Ψj(τ) (5.27)

and

Zc[{Ψi∈c(τ)}] =

∫
D[{φi∈c(τ)}] e−{ Sc[{φi∈c(τ)}] +

∫ β
0

∑
i∈Bc [Ψ

∗
i (τ)φi(τ)+c.c.] } .

(5.28)
Here c is the cluster index, Bc is the boundary of the cluster c, and Sc is the
action describing the bulk of the cluster:

Sc[{φi∈c(τ)}] =
∑
i∈c

Si[φi(τ)]−
∑
ij∈c

∫ β

0
dτ φ∗i J

(intra)
ij φj . (5.29)

The cluster e�ective partition function is easily rewritten in operatorial form
as

Zc[{Ψi∈c(τ)}] = Tr

{
Tτ exp

[
−
∫ β

0
dτ Ĥc(τ)

]}
(5.30)

where the cluster Hamiltonian is given by

Ĥc(τ) = −
∑
i∈Bc

[
Ψ∗i (τ)b̂i + h.c.

]
−
∑
ij∈c

[
J

(intra)
ij b̂†i b̂j + h.c.

]
+

U

2

∑
i∈c

n̂i(n̂i − 1)− µ
∑

i∈c,i6∈Bc

n̂i − (µ−K)
∑
i∈Bc

n̂i .(5.31)

We would like to stress that so far the approach is exact: no approximation
has been employed. At this point one can employ the approximation Ψi(τ) ≈
Ψ̄i in the previous equation. This allows us to achieve positive weights and
to simulate the model through a Monte Carlo approach, using amplitude
and phase updates for the auxiliary �elds {Ψ̄i}.

One may also observe that the approximation on the boundary of the
cluster casts the density matrix in the form of a cQMF density matrix, as in
Eq. (4.17). In the previous chapter, we proved cQMF approximation to be
e�ective in the description of lattice bosons at �nite temperature. This was
in turn a consequence of a length scale separation of classical and thermal
correlations already shown in Chap. 3. Therefore, the AFMC with cluster
decomposition and time-independent auxiliary �elds can be regarded as a
physically motivated approach applicable to a wide class of lattice systems,
since it permits the study of models involving complex hopping processes.
This approach constitutes a systematic construction of e�ective classical �eld
theories for classical auxiliary �elds living on the boundary of the clusters,
characterized by an action

Se�[{Ψ̄i∈B}] = SΨ[{Ψ̄i∈B}]−
∑
c

logZc[Ψ̄i∈Bc ] . (5.32)
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Figure 5.2: Kinetic energy density (a) and n(k = 0) (b) for di�erent cluster
sizes with AMFC, compared to QMC. Plots show a L = 12 lattice and
employ the temperature t = kBT/J , with kB the Boltzmann constant.

The division into clusters realizes a spatial renormalization of the lattice (see
Fig. 5.1), with both quantum and thermal �uctuations being integrated on
the scale of the clusters.

In the following we apply the method to the test model of hard-core
bosons on a square lattice, and we then approach the problem of hard-core
bosons on a frustrated triangular lattice.

5.4 Application of AFMC to hard-core bosons on a

square lattice

Let us recall the (µ = 0) Hamiltonian of hard-bosons in a square lattice:

Ĥ = −
∑
ij

(
Jij â

†
i âj + h.c.

)
. (5.33)

As discussed in the previous sections, the Hubbard-Stratonovich transfor-
mation requires the introduction of a diagonal shift K to the hopping ma-
trix in order to make it positive de�nite. In the following we choose K =

|αmin|(1 + ε), where αmin is the minimum eigenvalue of the matrix J (inter)
ij

and ε > 0. The chosen ε shall be big enough to ensure positive de�niteness of
the hopping matrix, but also small, in order to minimally a�ect the results.
In the following we always take ε = 0.05; moreover, we noticed that for small
ε results depend weakly on its speci�c choice.
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Figure 5.3: Finite-size scaling for n(k = 0) for di�erent cluster sizes.

As already pointed out in Sec. 5.1, the shift in the hopping matrix is
compensated by the one of the chemical potential. Under the TIAF approx-
imation this seemingly harmless shift remains imprinted on the boundary of
the cluster, a�ecting the cluster physics in a way that only disappears upon
growing the cluster size. To accelerate the cluster-size convergence, we make
the choice of removing the chemical-potential shift altogether, and thereby
assuring particle-hole symmetry when µ = 0 on each cluster, whatever the
cluster size.

In Fig. 5.2 we report plots showing the kinetic energy and the n(k = 0)
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Figure 5.4: Linear �t to extrapolate the λ = 0 estimate of the BKT transi-
tion. Results are compared to those previously shown in Fig. 2.2 for cMF.

peak in momentum distribution (for di�erent cluster sizes), and compare
them to QMC results. First of all one can observe that AFMC results get
closer to the exact results upon increasing the cluster size. Analogously to
what done in Secs. 2.2 and 2.4, we extract estimates for the BKT transi-
tion temperature using �nite-size scaling for n(k = 0). This is done for all
the available cluster sizes � see Fig. 5.3. The so-obtained estimates can be
extrapolated linearly in the surface-to-bulk ratio λ and then give an in�nite-
size (λ = 0) estimate, as previously done in Sec. 4.6.2. In Fig. 5.4, we realize
a linear �t in λ, which gives a value Tλ=0 = (0.69± 0.02) kB/J , compatible
with the reference value TBKT = 0.685 kB/J [53]. The choice of a linear
interpolation (with respect to a polynomial one, as done in Sec. 4.6.2) is mo-
tivated by the limited number of points available, which is in turn imposed
by the excessive computational cost of larger-size clusters. In Fig. 5.4 we
also show the results previously obtained using cluster mean �eld (Sec. 2.3).
One can appreciate how AFMC � which, at variance with cMF, can capture
long-wavelength thermal �uctuations that govern the transition � can cap-
ture the correct universality class of the transition for each cluster size, and
is signi�cantly more accurate in the estimate than cMF. Moreover, AFMC
results appear to be much less scattered than cMF ones, thus showing a
much less steep linear interpolation function.

As a �nal remark, we notice that AFMC points (contrarily to cMF points)



XY

κΔ =
∑

(i→j)∈Δ sin(θi−θj)

λ = 0

K
TBKT

λ > 0

XY

XY
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5.5.1 Classical anti-ferromagnetic XY model on a triangular
lattice

The classical S = 1/2 anti-ferromagnetic XY model on a triangular lattice
is described by a Hamiltonian

H = −J
∑
〈i,j〉

Si · Sj = −J
∑
〈i,j〉

cos(θi − θj) , (5.34)

with Si = (cos θi, sin θi) and J < 0. This model shows frustration, since
spins cannot orient anti-ferromagnetically with respect to all bonds in which
they are involved. The ground state exhibits a 3-sublattice structure with
spins forming 120 degrees angles with one another. This ground state pos-
sesses a Z2 chiral degeneracy, with the two chiral ground states characterized
by the con�gurations shown in Fig. 5.5 (up to a U(1) symmetry). At �nite
temperatures this model shows two phase transitions: a spin transition, and
a chiral transition, associated with the spontaneous symmetry breaking of
the inversion symmetry. The spin transition is assessed to happen at a lower
temperature than the chiral one, thus showing a "spin-chirality decoupling".
The nature of both transitions is somehow debated: some works claimed the
chiral transition to belong to standard Ising universality class [91, 92, 93],
whereas some others reported possible deviations of the critical exponents
from the standard Ising ones [94, 95]; some works claimed the spin transition
to belong to standard BKT universality class [94, 95, 96], whereas some oth-
ers reported possible deviations of the critical exponents from the standard
BKT ones [91, 92, 93]. In the following we will not enter this debate, but we
will assume the transitions to belong to Ising and BKT classes respectively
and use the corresponding critical exponents for the �nite-size scaling analy-
sis. As reference values for the transitions we give those presented in a recent
work by Obuchi and Kawamura [93], which estimates TBKT ' 0.505 kB/J
and TIs ' 0.513 kB/J , therefore with the spin transition occurring at a
temperature around 1.5% lower than chiral one.

5.5.2 Hard-core bosons on a frustrated triangular lattice

We study the quantum XY model in the language of hard-core bosons,
relying on the exact mapping presented in Sec. 2.1. The Hamiltonian, for
the case of µ = 0, will be

Ĥ = −
∑
ij

(
Jij â

†
i âj + h.c.

)
, (5.35)

which has the same form as in Eq. (5.33), but with the non-zero elements of
the hopping matrix such that Jij = −J < 0 (there is a π-�ux). This model
as well requires the introduction of a K shift (that we choose as in Sec. 5.4)
in order to make the hopping matrix positive de�nite, therefore the same
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Figure 5.6: Kinetic energy, density peak and current structure factor for the
triangular lattice.

observations as in Sec. 5.4 apply. We focus in particular on two observables,
which will serve to characterize the BKT and Ising transitions. One shall
be captured by the peak in the momentum distribution, which for the two
chiral ground states shown before occurs respectively at k = (−4π/3; 0) and
k = (4π/3; 0), and equivalent points in the Brillouin zone. We de�ne an
observable

n4/3 =
[
n(−4π/3; 0) + n(4π/3; 0)

]/
2 , (5.36)
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Figure 5.7: Finite-size scaling for n4/3 on a triangular lattice.

which is the average of the peaks of the two chiral con�gurations. The other
observable shall be a structure factor for currents, de�ned as

S(q = 0) =
1

N2
∆

∑
∆∆′

〈κ̂∆κ̂∆′〉 , (5.37)

where ∆ denotes a triangular plaquette oriented in a chosen direction (up-
wards or downwards) and

κ̂∆ =
∑

(i→j)∈∆

i(â†i âj − â
†
j âi) (5.38)
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Figure 5.8: Finite-size scaling for S(q = 0) on a triangular lattice.

is the bosonic current over a closed loop on such plaquette, whose sign de-
pends on the chirality of the plaquette. The structure factor is designed
such that it is maximal for con�gurations in which all triangular plaquettes
oriented in the same direction have the same chirality � which is the case for
the two ground states. In Fig. 5.6 we show time-independent AFMC results
for the kinetic energy, the momentum peak and the current structure factor
for single-site, triangular and rhombic clusters (see Fig. 5.5 for the clusters
shape).

We can make some more comments on the simulation. As done in the
previous section for the square lattice, we introduce a diagonal shift on the
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Figure 5.9: Linear �ts for TBKT and TIs in the surface-to-bulk ratio for
single-site, triangular and rhombic clusters.

hopping matrix that we do not counterbalance with a new shift for the chem-
ical potential. This is done again with the aim of preserving half �lling for all
cluster matrices. Moreover, in the case of triangular and rhombic clusters the
sum (5.37) is restricted to triangles entirely contained in a cluster, in order
to have all bonds described in the same way. All data in Fig. 5.6 (as well as
those in the following section) are the result of an average over 20 indepen-
dent simulations. This was done in order to have smooth curves. Moreover,
all simulations (and in particular those for triangular and rhombic clusters)
showed a very slow convergence, which required the use of annealing (see
App. A).

5.5.3 Finite-size and cluster-size scaling

We follow now the same approach as in Sec. 5.5 and derive estimates for
the BKT and Ising transition temperatures through �nite-size scaling and
cluster-size scaling. In Figs. 5.7 and 5.8 we show �nite-size scaling for single-
site, triangular and rhombic clusters for both momentum peak n4/3 and
current structure factor S(q = 0). We use the η exponent for the 2d BKT
universality class and the 2d Ising class, which is in both cases η = 1/4, and
for each cluster size we extract an estimate for the transition temperatures.
Then we perform linear �ts for the so-extracted �nite-size estimates in order
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to have in�nite-size estimates for the two transition temperatures, as shown
in Fig. 5.9.

The plot suggests that the decoupling of the two transitions is preserved
in the quantum model. In particular, for all the three cluster sizes inves-
tigated (and for the in�nite-size estimates as well) TBKT < TIs, as found
in the classical model. The plot also seems to suggest that quantum e�ects
enhance the separation between the two transitions. Our linearly extrapo-
lated estimates for the transitions are TBKT = (0.272 ± 0.007) kB/J and
TIs = (0.290 ± 0.004) kB/J , with TBKT approximately 6% lower than TIs.
Conversely, in the classical model TBKT is found to be around 1.5% lower
than TIs [93].
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Chapter 6

Conclusions

In this thesis we approached lattice quantum systems both from a theoretical
and a numerical point of view. In the �rst part we made some considerations
of general interest for equilibrium many-body states, mainly concerning the
nature and structure of correlations. In the second part, on the basis of
these results, we developed an approximated framework which is particu-
larly suited for the numerical study of bosonic models (including frustrated
lattices) currently at interest in experimental physics.

We introduced a new quantum correlation function (QCF), that we de-
�ned as the di�erence between the conventional two-point correlation func-
tion involving the regions A and B, and the response function of region A
upon perturbing region B with a �eld λB. In the classical case these two
quantities are identi�ed by a �uctuation-dissipation relation, which breaks
down quantum-mechanically. We studied the spatial structure of the QCF
and of its classical counterpart, and showed a length-scale separation, with
quantum correlations decaying exponentially (with a characteristic quan-
tum coherence length) at all temperature and classical correlations decaying
either algebraically or exponentially, depending on the temperature. We
showed that �nite QCFs rule out a speci�c form of separability that we
named Hamiltonian separability, thus suggesting that the quantum coher-
ence length can be regarded as an e�ective separability length of the system,
which is also compatible with a similar separability length de�ned by quan-
tum variance [70]. Moreover, we compared the quantum correlation function
with an important reference quantity in the physics of quantum information,
the quantum discord [30], which measures the non-local disturbance that a
local measure produces in a quantum system. Quantum discord is regarded
as an observable measuring truly quantum correlations, but we showed that
(at variance with the QCF) it is sensitive to purely classical phenomena,
thus suggesting the necessity of critically revise its use.

On the basis of the observed length-scale separation in the spatial struc-
ture of classical and quantum correlations, we introduced an approximation
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to lattice systems that we named quantum mean-�eld (QMF). The latter
realizes a decomposition of the system into clusters: quantum correlations
are cut at the cluster edges, whereas thermal correlations are properly de-
scribed by a form of classical correlation introduced in the density matrix.
As long as the ratio between the quantum coherence length and the cluster
linear size is much bigger than one, the approximation is extremely accurate.
We tested the approximation for a model of quantum rotors in a square lat-
tice, for which we studied several cluster sizes and extracted estimates for
the in�nite-size cluster performing a �t in the surface-to-bulk ratio of the
clusters.

Finally, we made use of the QMF approximation in the general frame-
work of the so-called auxiliary-�eld Monte Carlo (AFMC) [46]. This allowed
us to circumvent the severe sign problem which characterizes AFMC and
develop a widely applicable approximate method. In particular, we applied
such a method to the study of the thermodynamics of hard-core bosons in a
frustrated (or π-�ux) triangular lattice (equivalent to the anti-ferromagnetic
quantum XY model). This constitutes to our knowledge the �rst numer-
ical study of the transitions of this model. Simulations showed the same
transitions (a BKT and an Ising one) as in the classical model, but with
temperatures strongly renormalized by quantum e�ects. The renormaliza-
tion of the BKT transition temperature is more severe than that of the Ising
one, increasing the width of the in-between chiral phase.

These results suggest the possibility of applying the new method we de-
veloped to many other models of current interest both in ultra-cold atoms
and in condensed matter. One may study e.g. frustrated lattices such as the
kagome lattice [11] or the anisotropic triangular lattice [97]. But one may
also move away from the π-�ux case and investigate the Hofstadter model for
bosons [98], which represents one of the "holy grails" of current experimen-
tal e�orts in ultra-cold atoms. Introducing a second, real-valued auxiliary
�eld allows one to describe as well arbitrary density-density interactions (as
discussed in Sec. 4.3): this opens the path to studying e.g. XXZ models or
dipolar atoms in a gauge �eld, to cite a few examples. Finally, using a spinor
auxiliary �eld {~Ψi} allows one to treat spinful bosons, potentially extending
the purpose of our method to non-abelian gauge �elds.
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Appendix A

Monte Carlo method

Since the Monte Carlo method [99, 100, 101] is a central concept throughout
this thesis, we �nd it instructive to give a short pedagogical introduction,
which might interest a reader with no previous knowledge in this �eld. We
focus in particular on the application of Monte Carlo to a (classical) physical
system and on the implementation of the Metropolis algorithm.

A.1 Basics

Let us consider a physical system at thermal equilibrium. The expectation
value for some extensive quantity Q (internal energy, entropy, magnetiza-
tion...) will be of the form:

〈Q〉 =

∑
xQ(x)e−βEx∑

x e
−βEx

≡
∑
x

p(x)Q(x) , (A.1)

where the sums are carried out on the N microstates of the system, Q(x)
is the value of Q measured on a microstate x and e−βEx is the Boltzmann
weight of such a microstate. Unfortunately, this expression can only be
evaluated exactly for very small systems, since N is typically a very large
number. This can be easily understood by thinking to a system of n particles
with z possible internal states: the number of microstates is N = zn, which
grows exponentially with the number of particles.

One could then think of selecting N < N microstates through a uniform
sampling of the phase space and approximating the thermal average with an
estimator

QU ≡
∑N

i=1Q(xi)e
−βExi∑N

i=1 e
−βExi

. (A.2)

But this operation, in general, does not give a satisfactory result. Often, and
in particular at low temperatures, the thermal average is dominated by very
few states with respect to the total number of states. A �nite-time uniform
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sampling of phase space would most likely select almost only states with a
negligible Boltzmann weight and then give a biased estimator.

One could then use another approach. The expectation value in Eq. (A.1)
is a weighed average of the elements {Q(x)}, where the weight of any Q(x)
is its Boltzmann weight. One could generate a set of N states {x1, ...,xN},
where a state x occurs with a frequency proportional to its Boltzmann weight
(or equivalently to its normalized probability p(x) introduced in Eq. (A.1)).
This allows to build an estimator of the form

QMC ≡
1

N

N∑
i=1

Q(xi) . (A.3)

In the following we show how to use a stochastic process to generate a
set of states distributed as a probability distribution p.

A.2 Markov chain: ergodicity and detailed balance

Let us consider an initial microstate x1. One can introduce an arbitrary
probability distribution t(x→ y) ≥ 0 ∀x,y, which gives the probability of
transitioning from a state x to a state y. A new state x2 can be generated
using the transition probability t(x1,y). This process can be iterated until
one has produced a chain of states {x1, ...,xN}. Such a chain is called a
Markov chain and its most remarkable feature is that the state at step i
depends only on the state at step i − 1 and not on the previous history. It
is costumary to say that the chain has no memory. This is a consequence of
the fact that the probabilities t(x→ y) do not depend on time.

One can require the chain to converge asymptotically to a probability
distribution p, by imposing some conditions on the choice of t(x → y). A
�rst condition could be to ask that at equilibrium the system transitions to
and from any state x at the same rate:∑

y

p(x)t(x→ y) =
∑
x

p(y)t(y → x) . (A.4)

But one can show that this condition alone is not su�cient to determine
such a convergence, because of a mechanism called "loop cycle" [100]. It is
necessary to make further assumptions.

The previous condition could be made more strict by imposing that at
equilibrium any transition occurs with a probability which is equal to the
one of the inverse transition:

p(x)t(x→ y) = p(y)t(y → x) . (A.5)

This equation is customarily called the detailed balance equation.
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We would like to make a remark about the transition probabilities. One is
free to set to zero some of the probabilities t(x,y) (as tipically done in Monte
Carlo algorithms), but there must always exist a non-zero probability path
connecting two states x and y (ergodicity condition [100]). This is necessary
to ensure the convergence to the probability distribution regardless to the
initial state. Otherwise the chain could be stuck in a region of the phase
space which not connected to the regions where the most relevant states are
situated.

It is possible to show [100] that under these conditions the Markov chain
converges to a set distributed as the probability distribution p. In the follow-
ing paragraph we see how to practically choose the transition probabilities
to realize such a process.

A.3 Metropolis algorithm

The transition probability is often written as

t(x→ y) = q(x,y)α(x,y) , (A.6)

where q(x,y) selects the pair of states to be connected by the transition,
and α(x,y) provides the transition state.

Let us choose at random an initial con�guration x1 for the system. The
algorithm is constituted of N − 1 steps and the protocol to move from step
i to step i+ 1 is the following, where xi is the con�guration at the i-th step:

• Generate a con�guration y from the probability q(xi, ·).

• Generate a random value ξ from the uniform distribution on (0, 1).

• Calculate the acceptance probability

α(xi,y) = min

{
1,

e−βEyq(y,xi)

e−βExi q(xi,y)

}
, (A.7)

where the ratio inside the brackets is the so-called acceptance ratio.

• If ξ ≤ α(xi,y), then set xi+1 = y, otherwise set xi+1 = xi.

It can easily be checked that equation Eqs. (A.7) and (A.6) satisfy the de-
tailed balance condition. One should notice that a set of states distributed
as the probability distribution p has been generated without the explicit
knowledge of the probabilities p, of which we do not know explicitly the
normalization factor (represented by the partition function).

At the end of the process one has generated a sample (x1, ...,xN ) and
can calculate the estimator

QMC ≡
∑N

i=1Q(xi)

N
. (A.8)
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It is important to notice that the variance of this estimator cannot be es-
timated as Var[QMC ] =

∑N
i=1(Q(xi) − QMC)2/N , since the variables con-

sidered are not independent. Typically, for practical reasons, most of the
probabilities t(x→ y) are chosen to be zero, which determines a correlation
between the con�gurations at each step, since two subsequent con�gurations
have similar physical properties. This calls for the necessity of considering
some methods to properly account for correlations.

A.4 Autocorrelation time

One could say that in a stochastic process, correlations decay over a charac-
teristic time scale (a certain number of steps), that is called autocorrelation
time. An autocorrelation function can be de�ned as:

CQ(j) =
1

(N − j)σ2

N−j∑
i=1

(Q(xi)−QMC) (Q(xi+j)−QMC) , (A.9)

where σ2 =
∑N

i=1(Q(xi) − QMC)2/N in the denominator is used to nor-
malize the ratio, such that CQ(0) = 1. If one assumes that the correlations

decay exponentially as CQ(j) ∼ e
− j
τQ , then it is possible to estimate the

autocorrelation time by integration as

τQ ∼
N−1∑
j=0

CQ(j) , (A.10)

where one may notice that we kept an index Q, since this quantity is in
principle observable-dependent. This implies that the e�ective number of
uncorrelated measurements is not N , but N/(2τQ), which means that if we
consider a point in the Markov chain, it will have τQ correlated elements on
his left and τQ correlated elements on his right. As a consequence over a
block of 2τQ steps width, measures are correlated. The statistical error for
the estimate of Q will then result

∆Q =

√
(2τQ)

σ2

N
. (A.11)

A.5 Reducing correlations with blocks

One way to circumvent the presence of a �nite auto-correlation time is to
divide the series into a set of blocks whose width is much bigger than the
auto-correlation time itself. Namely, one divides the set {x1, ...,xN} into k
blocks of b > τQ elements each, such that N = kb:

{x1, ...,xb,xb+1, ...,x2b, ...,x(k−1)b+1, ...,xkb} (A.12)
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and calculate the average of each block:

{〈Q(x)〉1, ..., 〈Q(x)〉b} . (A.13)

By increasing the size b of the blocks, non-consecutive blocks are less and
less correlated. Once b is su�ciently big, we can assume that averages in
Eq. (A.13) are independent and then calculate the variance as

Var[QMC ] =
1

k(k − 1)

k∑
i=1

Var[(〈Q〉i −QMC)2] . (A.14)

Throughout this thesis error bars were estimated by making use of this for-
mula.

A.6 Dependence on the initial con�guration

As shown in Eq. (A.11), in the limit of an in�nite simulation N → ∞, the
results of Monte Carlo tend to the exact result and do not depend on the
initial con�guration. But real simulations always have a �nite number of
steps, and the dependence on the initial con�guration might result in a bias
on the results, in particular if the chosen con�guration is very far away (in
terms of Monte Carlo steps) from the region where the most relevant states
(from the point of view of Boltzmann weights) are located, or in case the
system exhibits metastable states for the stochastic dynamics generated by
the Monte Carlo simulation.

To eliminate any dependence on the initial con�guration, and let the
con�guration move to the region of phase space contributing the most to
the statistical sums, the �rst part of the MC simulation is devoted to ther-
malization, during which measurements of observables are not recorded. For
thermalization to be e�ective, the length of the thermalization process should
exceed the autocorrelation time of all observables of interest.

For some kind of systems thermalization might not be su�cient or might
require a very large number of steps. For this reason one can use an al-
ternative process called annealing [102]. A random con�guration is chosen
at a temperature much higher than the one at which the system will be
studied. At high temperatures a completely random con�guration is often a
proper con�guration of the system. A short thermalization is performed at
that temperature. Then the temperature is lowered of a certain ∆T and the
process is repeated. The process is iterated until the desired temperature
is reached. In this way the system is guided towards the low temperature
gradually with a reduced probability of getting trapped in metastable states,
and it can establish the correct equilibrium regime at low temperatures. All
the simulations presented in Chap. 5, for example, make use of annealing.
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Appendix B

Formulation of AFMC without

the coherent states

In the following we derive Eq. (5.7) without using the coherent-state path-
integral formalism. We make use anyway of the Hubbard-Stratonovich trans-
formation, which is the only truly essential ingredient to obtain such a result.

One can express the in�nitesimal propagator exp
(
−∆τ Ĥ

)
as

exp
(
−∆τ Ĥ

)
= exp

[
−∆τ

(∑
α

(εα −K)b̂†αb̂α + ĤU,µ−K
)]

(B.1)

= 1−∆τ

[∑
α

(εα −K)b̂†αb̂α + ĤU,µ−K
]

+O(∆τ2) ,

where we expanded the hopping part of the Hamiltonian in terms of the
eigenvalues {εα} of the hopping matrix Jij and corresponding density opera-
tors {b̂†αb̂α} and we de�ned ĤU,µ−K = U

2

∑
i n̂i(n̂i− 1)− (µ−K)

∑
i n̂i. The

density operators can be decoupled using a Hubbard-Stratonovich transfor-
mation as

exp
(
−∆τ Ĥ

)
=

∫
DΨ G

{
1−∆τ

[∑
α

(
Ψαb̂

†
α + Ψ∗αb̂α + ∆τ |Ψα|2b̂†αb̂α

)
+ ĤU,µ−K

]
+O(∆τ2)

}

=

∫
DΨ G : e

−∆τ
[∑

α(Ψαb̂
†
α+h.c.)+ĤU,µ−K

]
: +O(∆τ2) (B.2)

where : ... : denotes normal ordering, G = e−∆τ
∑
α
|Ψα|2
K−εα /N , N is the

normalization of the Gaussian distribution for the auxiliary �eld Ψα and
DΨ =

∏
α
dΨαdΨ∗α

2πi . Changing variables in the auxiliary-�eld integral from

97
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Ψα to Ψi, one obtains for the density operator ρ̂ the following form:

ρ̂ = lim
M→∞

[
exp

(
−∆τ Ĥ

)]M
(B.3)

= lim
M→∞

[∫ ∏
i

M∏
k=1

dΨi,kdΨ∗i,k
2πi

e−∆τ
∑
k

∑
ij Ψ∗i,kJ̃

−1
ij Ψj,k

N ⊗i ρ̂i +O(M∆τ2)

]

where the local density operators read

ρ̂i =
∏
k

: e
−∆τ

(
Ψ∗i,k b̂i+Ψi,k b̂

†
i+Ĥ

(d)
i (U,µ−K)

)
: . (B.4)

Taking the trace of this density operator gives precisely Eq. (5.7), thus prov-
ing the equivalence of this approach with the path-integral one.

We may observe that in the case of ordinary bosons normal ordering is
not essential, and neglecting it leads to an overall multiplicative constant
which appears in front of the density operator. On the other hand, for hard-
core bosons the normal ordering is essential to obtain the correct density
operator.
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