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directeurs de thèse, Jean-Christophe Toussaint et Olivier Fruchart. Tous les deux différents
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Introduction

In 2008 Parkin proposed [1] a concept for a three-dimensional (3D) data storage device, in which
series of magnetic domain walls (DWs) act as bits to be moved along vertical nanowires. This
concept answers the rising problem of volume of stored data and the increase of their density. The
3D data storage thus appears as a promising solution. So far, physics has been essentially based
on flat strips which are easier to fabricate using lithography. However, recent improvements
in fabrication techniques enable to address fundamental questions concerning domain walls in
cylindrical nanowires. Indeed, this geometry is the required geometry for the race track memory
proposed by IBM. Not only to integrate DWs in memories is of great interest, DWs are associated
with new physics dealing with their magnetization configuration, spin-polarized currents or spin-
Hall current.

As will be explained in this manuscript, in this type of geometry several types of DWs exist.
Their existences are linked to the dimensions and geometry of the system. Moreover the speeds
of these different DWs are not all similar and can reach 1000m/ sec for the BPW with an applied
field of about 5 mT [2]. As will be shown later, this latter DW is thus of great interest. To obtain
the desired type of DW, the system needs to be properly designed but its magnetic history has
a large impact on the type of DW. The construction of a phase diagram of DWs in a geometry
ranging from nanostrips to nanowires appears as a crucial tool for this aim. Not only the type
of DW according to geometry can be studied but also various physical features characterizing
DWs.

With a phase diagram it is then possible to design the system in order to favor the nucleation
of the desired DW. In a second step I applied simulations to experiments I took part in and
more precisely to image DWs in nanowires, systems with few experimental studies. The most
accessible imaging method at the laboratory is the magnetic force microscopy (MFM). However
the spatial and temporal resolutions of this method are too low and do not enable to discriminate
between different types of DWs. Improvements on the spatial resolution are ongoing work. An
alternative imaging technique is the X-ray Magnetic Circular Dichroism Photo Emission Electron
Microscopy (XMCD-PEEM). This tool appears as crucial in nanomagnetism and spintronics.
Its good enough spatial resolution make possible the study of DWs.

This manuscript is organized as follows. First are presented the studied systems with the
physical background. The second part presents an extended phase diagram of magnetic domain
walls in a geometry ranging from nanostrips to nanowires. This phase diagram is supported by
physical features describing DWs. The third part is dedicated to the application of simulations
on XMCD PEEM imaging. Analysis of experimental contrasts is supported by simulations of the
XMCD contrast. Technical aspects of the shadow XMCD-PEEM technique are presented and
discussed. At the end of the manuscript, perspectives of the numerical study about the motion
of DW in cylindrical nanowires are presented. Details about simulation aspects are explained in
the appendix.
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Introduction (Français)

En 2008, Parkin a proposé [1] un concept de dispositif en 3D pour le stockage de la mémoire
dans lequel des séries de parois de domaines magnétiques (DWs) jouent le rôle de bits qui seront
déplacés le long de l’axe du fil. Ce concept répond au problème grandissant du stockage de
données et de l’augmentation de leur densité. Dans cet optique, le stockage 3D de la mémoire
apparait comme une solution prometteuse. Jusqu’à présent, les études se sont essentiellement
basées sur les bandes plates, lesquelles sont plus faciles à fabriquer en utilisant la technique de
lithographie. Cependant, de récentes avancées dans les techniques de fabrication permettent
de traiter des questions fondamentales à propos des parois de domaines dans les nanofils cylin-
driques. En effet, cette géométrie est très pertinente pour le concept de mémoire proposé par
IBM. Cependant, ce n’est pas uniquement l’application pour les mémoires que ces parois de
domaine suscitent de l’intérêt. En effet, ces parois sont associées à une nouvelle physique en
rapport avec leur configuration micromagnétique, le courant polarisé en spin et l’effet Hall de
spin.

Comme il sera expliqué dans ce manuscrit, plusieurs types de paroi existent dans les nanofils.
Leur existence est liée à la géométrie et aux dimensions du système, or les vitesses de ces parois
diffèrent. Cette vitesse peut atteindre 1000m/ sec pour une paroi de type point de Bloch sous
champ magnétique d’environ 5 mT [2]. Ce dernier type de paroi présente un grand intérêt, ce qui
sera expliqué au cours de ce manuscrit. Pour obtenir le type de paroi souhaité, les dimensions du
système doivent être correctement définies. Cependant, l’histoire magnétique du système joue
également un rôle important pour le choix du type de paroi par le système. La construction d’un
diagramme de phase des parois de domaines magnétiques semble alors un outil clé pour choisir les
dimensions du système en fonction du type de paroi souhaité. Dans cette construction, ce n’est
pas uniquement le type de paroi qui a été étudié, mais aussi des aspects physique caractérisant
les parois de domaine.

Grâce à un diagramme de phase, il est alors possible de dimensionner le système pour fa-
voriser la nucléation du type de paroi de domaine souhaité. L’étape suivante sera alors d’observer
ces parois en utilisant des techniques d’imagerie. La technique d’imagerie la plus accessible au
laboratoire est la microscopie à force magnétique (MFM). Cependant, les résolutions spatiale et
temporelle de cette technique sont trop faibles et ne permettent pas de différencier les différents
types de paroi. Des améliorations sur la résolution spatiale de la MFM. Une technique alterna-
tive est le dichroisme circulaire magnétique des rayons X couplé à la Microscopie par émission
de photo-électrons (XMCD-PEEM). Cet outil apparait comme crucial en nanomagnétisme et
spintronique avec des résolutions spatiale et temporelle suffisantes permettant l’étude des parois
de domaine.

Le manuscrit est organisé ainsi. Premièrement, les systèmes étudiés ainsi que les bases
physiques nécessaires sont présentés. La seconde partie présente une diagramme de phase étendu
des parois de domaine magnétique pour une géométrie allant des nanobandes aux nanofils. Ce
diagramme de phase est complété par des aspects physiques décrivant les parois. La troisième
partie est dédiée à l’observation des parois par en utilisant la technique XMCD-PEEM. L’analyse
des résultats expérimentaux est étayée par des simulations du contraste dichroique. A la fin de
ce manuscrit, des perspectives sur l’étude numérique sur la propagation des parois de domaine
dans les nanofils est présentée. Les détails concernant les simulations sont expliqués en annexe.
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Résumé 1erchapitre (Français)

Les concepts du nanomagnétisme sont connus depuis longtemps. L’existence de parois de do-
maine séparant des zones à aimantation uniforme ou bien les principes du ferromagnétisme sont
connus depuis le début du 20eme siècle et ont été étudiés depuis les années 1960 REF. Au cours
des deux dernières décennies, de nombreux développements expérimentaux ont été effectués
grâce, en partie, aux progrès en nanofabrication et en imagerie.

Au cours des dernières années, la dynamique des parois de domaine connait un intérêt
grandissant. Le but est d’en faire l’ingrédient principal de nouvelles mémoires magnétiques.
Cependant ce n’est pas seulement leur application dans ces dispositifs qui en fait des objets
intéressants. La physique liée à ces objets, particulièrement dans les systèmes compacts avec
une section carrée ou circulaire connait un intérêt grandissant.

En nanomagnétisme, il y a quatre énergies qui sont l’énergie d’échange, l’énergie d’anisotropie
magnétocristalline, l’énergie Zeeman et l’énergie dipolaire ou magnétostatique. L’énergie d’échange
est une énergie à courte portée et tend à aligner les moments magnétiques. L’énergie Zeeman en-
tre en jeu lorsqu’un champ magnétique extérieur est appliqué sur le système. Elle tend à aligner
l’aimantation avec le champ magnétique. L’énergie d’anisotropie magnétocristalline provient
des différentes orientations cristallines d’un solide et du champ cristallin. Cela va donc créer
des axes faciles ou difficiles selon lesquels il sera, ou non, favorable d’orienter l’aimantation.
Enfin, l’énergie dipolaire vient du champ de fuite de chacun des moments magnétiques qui tend
à changer l’orientation des moments magnétiques voisin. Cette énergie est à longue portée.

Lorsque ces énergies entrent en compétition dans un système, on définit des longueurs car-
actéristiques. Si l’énergie magnétocristalline et l’échange sont présentes, on définit la longueur
d’échange d’anisotropie ∆u. Lorsque seules l’énergie dipolaire et l’énergie d’échange sont en
compétition, on définit la longueur d’échange dipolaire ∆d. Parce que les constantes d’échange
et dipolaire varient peu pour les matériaux doux communs, ∆d ∼ 3-5 nm.

Dans une nouvelle partie, sont présentés les modes de renversement. Le mode le plus simple
conserve l’aimantation uniforme au cours de la rotation. Ce modèle a été proposé par Stoner
et Wohlfarth et est applicable pour les petites particules seulement. Il existe d’autres modèles
pour lesquels l’aimantation ne reste pas uniforme. Ce sont des cas extrêmes, pas nécessairement
les plus pertinents expérimentalement.

La suite de ce chapitre est dédiée à la dynamique d’aimantation et à la dérivation de
l’équation Landau-Lifshitz-Gilbert.

La deuxième section est consacrée aux parois de domaine dans les systèmes unidimensionnels.
Après une présentation des parois de Bloch et de Néel pour les films minces, nous verrons le
modèle unidimensionnel de Bloch incluant le profil d’aimantation, l’énergie, la largeur de paroi
et la dynamique. Nous traiterons ensuite de la statique et de la dynamique des parois dans les
bandes, à savoir des systèmes avec une section rectangulaire et relativement plate. Les parois
sont de deux types, la paroi transverse pour les petites dimensions et la paroi vortex pour les
grandes dimensions. Enfin, les parois dans les nanofils, à savoir des systèmes compacts ayant
une section carrée ou circulaire, seront présentées. Dans de tels systèmes, on retrouve la paroi
de type transverse, comme dans les bandes. Il existe un nouvel objet micromagnétique dans les
fils par rapport aux bandes, la paroi point de Bloch.

La troisième partie est consacrée au micromagnétisme numérique. Après une présentation
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des différentes méthodes de simulations (Monte Carlo, minimisation de l’énergie et intégration de
l’équation LLG). C’est cette dernière que nous utilisons. Une présentation brève de la méthode
des différences finies est présentée puis nous nous focaliserons sur la méthode des éléments
finis qui est utilisée par la suite. Ensuite, un point important et couteux du micromagnétisme
numérique est abordé, le calcul du champ démagnétisant qui requiert le plus de temps de calcul.
La méthode des intégrales aux frontières est présentée, puis nous passerons aux détails de la
méthode finalement utilisée, les méthodes multipolaires rapides, plus rapide que la première
méthode. La fin de cette partie est dédiée au code développé au laboratoire pour la résolution
de l’équation LLG et basé sur les éléments finis. Tout d’abord, il s’agit d’expliquer comment on
passe de la formulation forte et locale à une formulation faible, dite intégrale. La première n’est
pas utilisable en éléments finis puisque le Laplacien n’est pas défini aux noeuds du maillage.
On aboutit donc à un schéma dit explicite, relativement classique. Une fois cette formulation
faible obtenue, on peut aborder la discrétisation temporelle et la présentation du θ-schéma.
Ce schéma, suivant la valeur de θ choisie est inconditionnellement stable. Ceci est liée à la
dissipation d’énergie qui est abordée par la suite. Etant donné qu’en micromagnétisme la norme
de l’aimantation est conservée, la variation temporelle de l’aimantation est perpendiculaire à
l’aimantation, on appelle cela le plan tangent. L’idée est alors de projeter l’équation LLG sur
ce plan tangent. Enfin, on abordera rapidement l’ordre 2 en temps.



Résumé 2emechapitre (Français)

Un diagramme de phase des parois de domaines magnétiques est une représentation dans le plan
(épaisseur, largeur) de la paroi de plus basse énergie. Le but de ce diagramme est de comprendre
les parois dans les systèmes unidimensionnels. Les simulations seront donc effectuées pour des
géométrie allant des bandes aux fils, ces derniers ayant une section carrée ou circulaire. De
plus, il semblerait que la physique liée aux bandes est différente de celle des fils. Or, si on
augmente continument l’épaisseur d’une bande, on obtient un fil à section carrée. Les deux
physiques devraient donc est similaires d’où le souhait de proposer une vision unifiée de ces
systèmes. Enfin, les parois transverses dans les fils sont parfois nommées pseudo-transverse ou
paroi hélical. La paroi point de Bloch a aussi été nommée paroi vortex. Cette occurrence du
mot pseudo signifie le développement d’aspects de la distribution d’aimantation qui ne sont pas
compris. Afin de mieux décrire les configurations micromagnétiques, des estimateurs on définit
des estimateurs basés sur des grandeurs physiques. Au début de ma thèse, le diagramme de
phase connu était celui présenté par Thiaville [3].

Avant de s’intéresser précisément au diagramme et aux transitions de phases, on s’intéresse
à la topologie. Si on fait deux coupes perpendiculaires d’une paroi transverse dans un fil à
grand diamètre, on peut observe à la fois une distribution de type transverse, similaire à celui
des bandes et une distribution de type vortex comme dans les bandes. Les parois transverses
dans les fils peuvent donc présenter les deux caractéristiques. En terme de topologie, la paroi
transverse et la paroi vortex partagent la même classe topologique et le fait que le flux magnétique
traverse le fil ou la bande suivant le diamètre ou la largeur. Pour cela, on nommera ces parois
transverse-vortex quand cela à lieu d’être. La paroi point de Bloch fait partie d’une autre
classe puisque l’aimantation est toujours parallèle à la surface. Une manière de vérifier cette
topologie est de regarder la projection de l’aimantation sur la normale locale à la surface dans
un plan (θ, z). Pour cela j’ai développé un code qui est un post-traitement des configurations
micromagnétiques obtenues avec FeeLLGood. Ces cartes d’aimantation de surfaces confirment
les classes topologiques établies. Avec des considérations de symétrie et de topologie, on peut
proposer un diagramme de phase pour la transition du premier ordre entre la paroi vortex et la
paroi transverse. Dans les bandes, l’épaisseur et la largeur sont équivalentes. La diagonale du
diagramme est donc un axe de symétrie. De plus, en partant d’une paroi transverse dans une
bande, en augmentant continument l’épaisseur de la bande tout en maintenant la direction de la
paroi, on obtient une paroi de type vortex. Comme la transformation se fait de façon continue,
sur la diagonale, les deux parois sont dégénérées. Enfin pour transformer la paroi vortex, avec
un coeur suivant x par exemple, en une paroi transverse suivant y, la direction de la paroi doit
changer d’orientation. Cela signifie que le système doit passer une barrière d’énergie avec deux
minima de part et d’autre. La transformation est donc de premier ordre.

Comme on l’a vu, dans les bandes, une paroi est du type soit transverse soit vortex. Cela
n’a pas été quantifié auparavant parce que cet circulation de l’aimantation autour du coeur de
la paroi transverse n’est pas toujours présent. J’ai donc souhaiter quantifier cette circulation.
Pour cela j’ai utilisé le rotationnel de l’aimantation. Comme il s’agit d’un vecteur, il est possible
de le projeter sur une base orthonormale pertinente incluant la direction de la paroi transverse
et l’axe du fil. Alors que nous nous intéressions au développement de la circulation autour
de l’axe de la transverse, la projection sur l’axe du fil montre aussi un développement de la
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circulation de l’aimantation le long de l’axe du fil. La circulation dans les deux directions
de la circulation, transverse et longitudinale, apparait, dans les deux cas, à partir de 7 fois
la longueur d’échange dipolaire. Le curling longitudinal se développe pour diminuer l’énergie
magnétostatique proportionnelle à la densité de charges volumiques en répartissant ces charges.
Ces charges sont dues au caractère tête-à-tête de la paroi transverse et donc proportionnelles
à la section du fil. Le curling transverse sert à diminuer l’énergie dipolaire due aux charges de
surfaces. De plus, le vortex qui se développe autour de l’axe de la transverse peut être vu comme
deux parois transverses asymétriques de polarités opposées et en ce sens comme une brisure de
symétrie. Le développement de la circulation est donc une transition de phase du 2ème ordre.
Cela signifie qu’il n’y a pas de métastabilité de part et d’autre de la transition.

On peut maintenant revenir à la paroi point de Bloch et à la transition avec la paroi transverse
vortex. Pour des raisons de symétrie, nous prévoyons que la zone de stabilité de la paroi point
de Bloch ne se limite pas à la diagonale du diagramme mais s’étendent pour les bandes épaisses.
En effet, une déformation infinitésimale du fil, qu’il soit à section carrée ou circulaire, ne peut
pas conduire à un changement de topologie de la paroi. De plus, nous confirmons la transition
de la paroi transverse à la paroi point de Bloch à 7 fois la longueur d’échange dipolaire.

Des aspects plus fins sur la circulation sont développés ainsi que sur le développement
d’asymétries tant dans les parois transverse que point de Bloch.



Résumé 3emechapitre (Français)

Le chapitre précédent était dédiés principalement théorique. Dans ce chapitre sur la tech-
nique d’imagerie XMCD-PEEM en transmission, le but est d’appliquer les simulations à des
expériences auxquelles j’ai pris part. Afin d’observer la structure des parois, la résolution doit
être inférieure à 50 nm. Parmi les techniques offrant cette résolution spatiale, on peut citer le
SPLEEM (Spin Polarized Low Electron Emission Microscopy) et le SEMPA (Scanning Electron
Microscopy with Polarization Analysis) qui sondent les couches atomiques de surface. Cepen-
dant, avec le SEMPA il est possible d’utiliser des électrons de plus haute énergie qui permet
d’entrer plus profondément dans le matériau. Il existe aussi des techniques qui sondent le vol-
ume de l’échantillon. Ce sont des techniques de transmission qui donnent donc accès à des
informations moyennées le long du trajet du faisceau. On peut citer par exemple l’holographie,
la microscopie de Lorentz, le (S)TXM (Scanning Transmission X-ray Microscopy). La technique
de XMCD-PEEM (X-ray Magnetic Circular Dichroism-PhotoElectron Emission Microscopy) se
pose comme intermédiaire. Ce n’est pas une technique de surface à proprement parlé mais elle
ne permet pas de sonder le magnétisme en profondeur. C’est cette technique qui est retenue
pour sa versatilité et l’expérience que nous avons avec au laboratoire.

La technique XMCD-PEEM a récemment été appliquée à des objets en trois dimensions.
Avec ce type de systèmes, on a accès à l’ombre du fil projetée sur le substrat. Nous ne sommes
pas les premiers à utiliser cette technique qui a été nommée shadow XMCD-PEEM [4] et utilisée
ensuite par plusieurs auteurs [4–8]. Avec cette technique, comme les rayons X sont absorbés le
long de leur trajet dans l’objet en fonction de leur hélicité et de l’aimantation locale, le contraste
ne peut pas être interprété facilement. Afin d’aider à la compréhension des résultats, Streubel
et al . [9, 10] ont simulé le contraste dans l’ombre pour des tubes enroulés, donc proches de
systèmes 2D. De plus, le contraste à la surface des tubes n’étaient pas simulé. Dans le cadre
de ce travail, la simulation du contraste est basée sur des configurations micromagnétiques 3D
obtenues par relaxation de l’aimantation.

La première partie de ce chapitre présente le principe de la microscopie XMCD-PEEM. Cela
commence par une description du dichröısme dans les matériaux ferromagnétiques 3d, le décalage
des bandes spin up et spin down. Ensuite la présentation aborde le processus qui permet de
passer de l’absorption atomique des photons à la mesure de l’absorption par le matériau et no-
tamment la production de photo-électrons. Ces photons électrons sont conduits jusqu’au capteur
à l’aide de lentilles qui permettent de collimater le faisceau. Le contraste magnétique vient de
la différence d’intensité des photo-électrons produits pour chacune des hélicités. La technique
XMCD-PEEM permet de choisir l’énergie des photons incidents et l’intensité résultante est
différente suivant les éléments chimiques. Pour chaque éléments, l’absorption résonante donne
lieu à deux pics aux seuils L2 et L3. De plus, l’imagerie XMCD est sensible à l’aimantation
puisque l’absorption des photons dépend de l’orientation relative de l’aimantation locale et de
la polarisation des photons. Le contraste magnétique est ensuite calculé en faisant le ratio de la
différence sur la somme des intensités des photo-électrons pour chacune des polarisations.

Les fils utilisés sont produits en collaboration avec le département de chimie de l’université
d’Erlangen (Allemagne). Le principe de base pour produire des fils est d’anodiser une mem-
brane d’alumine et de remplir les pores par électro-déposition. Pour produire des fils avec des
modulations de diamètre, il est possible d’utiliser soit l’anodisation pulsée [11] soit l’anodisation
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en trois étapes. La matrice d’alumine est ensuite dissoute et les fils dispersés sur un substrat de
silicium.

Pour imager une paroi, nous procédons en deux étapes. Premièrement, les fils sont alignés
avec le faisceau incident. Un changement de contraste de noir vers blanc indique un changement
d’orientation de l’aimantation et donc la présence d’une paroi. Afin de regarder la structure
de la paroi, l’échantillon est tourné de 90 ◦ hors du microscope, ce qui requiert beaucoup de
temps. Une fois le faisceau perpendiculaire au fil, nous avons accès à la structure de la paroi.
Il est fondamental de constater qu’il y a du contraste dans l’ombre du fil, alors qu’il n’y a
pas de matériau magnétique à cet endroit. Les simulations qui s’ensuivent vont permettre de
comprendre ces contrastes, très différents d’une paroi à l’autre. Ensuite, après une présentation
du modèle d’absorption et de ses hypothèses, le code est vérifié en utilisant des cas tests dont
on peut calculer la solution analytique afin de comparer les résultats. Le premier cas test est
un fil uniformément aimanté avec l’aimantation parallèle au faisceau. Le second cas test est
plus réaliste avec du curling orthoradial sur toute la longueur du fil. Ce dernier sera utile
pour l’identification de la paroi point de Bloch. Dans les cas, on obtient un excellent accord
entre les deux résultats. La comparaison des simulations avec l’expérience pour le point de
Bloch montre un bon accord qualitatif. On a donc identifié une paroi point de Bloch. Cette
identification a été confirmée avec les simulations. Cette observation est la première après une
dizaine d’années de simulations. L’application de ce code de simulation du contraste XMCD-
PEEM à une paroi transverse obtenue par simulations micromagnétiques montre aussi une très
bon accord. Cependant, comme une paroi transverse n’est pas symétrique par rotation autour
de l’axe du fil, il est important de pouvoir tourner le fil afin d’obtenir un accord avec l’expérience.
De plus, le contraste dans l’ombre informe sur la direction du coeur de la paroi et sur les deux
sens de rotation des circulations transverse et longitudinale.

Enfin, afin d’être plus quantitatif et d’obtenir des contrastes plus précis révélant au lieux
le magnétisme, nous avons étudier l’influence des paramètres expérimentaux tels que la tension
d’extraction des électrons, le focus et le signal de fond.



Conclusion (Français)

L’étude des parois de domaine dans les nanofils a connu un intérêt grandissant après la propo-
sition par IBM d’une mémoire 3D. Dans cette application, les bits sont les parois de domaine.
Cependant, au-delà de l’application pour le dispositif, de nombreux aspects physiques liés à ces
parois sont d’un grand intérêt.

Il demeure de nombreux aspects physiques et numériques à étudier sur le sujet des parois de
domaine magnétique. Cependant, nous avons continué le diagramme de phase des DWs pour
une géométrie allant des nanobandes aux nanofils magnétiques. Sur la diagonale, les transitions
de phase de premier et second ordre ont été recherchées. Cependant la transition de phase de
second ordre entre les parois TVW et ATW n’a pas été trouvée. En effet, la paroi ATW n’est
pas l’état fondamentale pour les fils avec les dimensions considérées, c’est-à-dire en-dessous de
150 nm. La paroi point de Bloch, prédit pour les fils à sections carrée et circulaire, donc sur la
diagonale uniquement, étend son domaine d’existence sur une région autour de la diagonale. De
plus, au-dessus de 7∆d pour TVW, un curling à la fois transverse et longitudinal se développe,
le premier autour de l’axe de la paroi, le second le long de l’axe du fil. Ces deux directions
de curling apparaissent comme une méthode pour diminuer l’énergie dipolaire pour les fils à
large diamètre. Cette possibilité de développer du curling autour de deux directions est une
explication pour l’existence du domaine de stabilité du BPW autour de la diagonale, le système
préférant fermer son flux magnétique dès que les dimensions le permettent. Le curling semble
alors une méthode plus efficace que l’asymétrie pour diminuer l’énergie magnétostatique. De
plus, une loi d’échelle sur la largeur de paroi est établie.

L’étude des parois continue avec leur observation en utilisant l’imagerie. Afin d’obtenir
une résolution spatiale suffisante, la technique XMCD-PEEM est choisie. L’observation des
nanofils à section circulaire a été réalisée au cours de trois temps de faisceau durant ma thèse.
Les conditions expérimentales, telles qu’un angle rasant de 16 ◦ permettent l’accès à l’ombre
du fil, projetée sur le substrat. Cependant l’observation de la totalité de l’ombre est possible
uniquement pour les fils suspendus au-dessus du substrat, soit parce qu’ils sont courbés, soit
parce que les bouts de fil sont plus larges. L’ombre du fil contient des informations à propos
de l’aimantation dans le volume du fil, moyennée le long du trajet du rayon X dans le fil.
Cette technique donc une technique de surface, l’utilisation classique du XMCD-PEEM et une
technique de surface, grâce à l’utilisation novatrice des informations contenues dans l’ombre.

Pour aider la compréhension du contraste magnétique qui s’avère complexe, un outil basé
sur les simulations numériques a été développé. Cet outil permet de différencier la paroi TVW
de la paroi BPW, ce qui n’est actuellement pas possible avec la MFM. Nous pouvons donc
affirmer que la paroi point de Bloch a été observée pour la première fois. La comparaison entre
le contraste simulé et le contraste expérimental montre un bon accord qualitatif. Les différences
quantitatives peuvent provenir, par exemple, du signal de fond dans l’ombre non pris en compte
dans les simulations. Ce signal doit en effet être évalué pour chaque série d’images.

Des paramètres expérimentaux tels que la tension d’extraction des photoélectrons, le plan de
focus, le niveau de fond, ont été étudiés afin d’extraire un signal le plus physiquement pertinent.

L’étude de la propagation des parois de domaine sous champ magnétique fait partie du travail
de thèse d’Alexis Wartelle. La relation entre la circulation du BPW et la direction du champ
magnétique appliqué a été confirmée lors d’un temps de faisceau. L’étude numérique de cette
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propagation sera une partie de la thèse de Beatrix Trapp.



Chapter 1

Micromagnetism: concepts and
numerics

Concepts in nanomagnetism have been known for a long time. The existence of domain walls
separating areas of uniform magnetization or principles of ferromagnetism are known since the
early 20th century and have been studied from 1960s [12, 13]. Over the last two decades, several
experimental developments were partly accomplished thanks to progresses in nanofabrication
and imaging.
For the last years, the dynamics of magnetic domain walls has been of increasing interest. The
goal is to make them part of new magnetic memory devices. However, not only the applications
for memories are interesting but also their physical features, especially for compact systems
with square or disk based cross-section, are of rising interest.
After a short description of the different energies involved in nanomagnetism, the characteristic
lengths and the reversal modes, we will consider the Landau Lifshitz Gilbert equation describing
precessional magnetization dynamics. This will be followed by a description of domain walls in
almost dimensional systems and the Bloch model. Then, I will present cylindrical nanowires
and their domain walls, with the promising new kind of domain wall, the Bloch point wall. The
last part is dedicated to micromagnetism and numerics with a description of the fast multipole
method and a presentation of the home-made finite element code FeeLLGood.
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a b

Figure 1.1: Schematic for the energies.(a) Exchange energy. (b) Uniaxial magnetocrystalline anisotropy
in an hexagonal lattice.

1.1 Nanomagnetism

1.1.1 The various energies found in magnetic systems

In magnetism, there are various sources for the energy. They can be local (Zeeman and mag-
netocrystalline energy), short-ranged (exchange energy) or long-ranged (magnetostatic energy).
Two or more of them often compete to reduce the total energy of the system leading to charac-
teristic quantities such as length or energy.

The theory of micromagnetism does not consider each atom separately because it would be
useless and give rise to a too large amount of data to describe them all due to the large number
of atoms. Thus instead of the magnetic moment of one atom, another vector is considered, the
magnetization vector which is a average of the magnetic moments over a small volume. It is a
continuous theory meaning that the magnetization vector, note we speak about magnetization
vector and not magnetic moment, varies continuously within a magnetic material. Moreover,
the magnetization magnitude is kept constant in time in the usual frameworks.

Exchange energy

It is a short range energy between close neighbors. In most cases, its result is to favor paral-
lel alignment of neighbors moments. In a ferromagnetic material, the exchange energy favors
moments with a same direction and therefore uniform magnetization. In an antiferromagnetic
material, exchange energy favors anti-parallel orientation of magnetic moments. Let us now
make the link between the atomistic and micromagnetic models. In the Heisenberg model the
exchange between two neighbor moments is :

E12 = −JS1.S2 (1.1)

with J > 0 for ferromagnetic materials and J < 0 for antiferromagnetic materials. To link the
Ising model to the continuous theory, we use, as an example, the one-dimensional case of a spins
whose only parameter is the angle θ. The scalar product between the two magnetic moments
gives rise to a small variation of θ, δθ (Figure 1.1a). A continuous and smooth variation of the
orientation of the magnetization between neighbors allows to write the expansion of the energy
to the second order in θ:
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E12 = −JS1.S2

= −JS2 cos(θ1 − θ2)

= −JS2 cos(δθ)

∼= −JS2

[

1− δθ2

2

]

= C + JS2 δθ
2

2
(1.2)

Thus, removing the constant that is only an offset, the calculations leads to:

E12 =
1

2
JS2a2

(
δθ

a

)2

, where a is the distance between the spins

E12 vs Eex =
JS2a2

2

(
dθ

dx

)2

=
JS2

2a
︸︷︷︸

A

a3
(
∂θ

∂x

)2

For a 3D case, we first need a volume normalization Eex/a
3 = (JS2/2a)(∂θ/∂x)2. Moreover,

since spins can also point along the three directions of space, and vary along the three directions.
Thus the exchange energy volume density is written:

Eex = A(∇m)2 (1.3)

where m is the magnetization vector and (∇m)2 stands for ΣiΣj(∂mi/∂xj)
2. A is the

exchange stiffness and A ∼= JS2/2a, its unit is J/m. For most of the materials discussed in this
thesis, Fe and Ni, A is of the order of 10−11 J/m.

Magnetocristalline anisotropy energy

This energy arises from the difference of direction between the magnetization and crystalline
directions of the solid. This effect comes from crystal-field effects (coupling electron orbitals
with the lattice) and spin-orbit effects as most of the magnetization in 3d metals arises from
the spin. Some crystalline directions are more favorable than others so that the effect of the
magnetocrystalline energy is to align the magnetization with one of them. There are also easy
planes and to the contrary, hard axis along which alignment of the magnetization is prohibitively
costly. Emc is a function of the type Kf(θ, ϕ) with f a dimensionless function. Only even terms
are considered for the suitability of the time-reversal symmetry. For an hexagonal symmetry:

Emc,hex = K1 sin
2 θ +K2 sin

4 θ + ... (1.4)

where θ is the angle between M and the c axis of the hexagonal lattice (see Figure 1.1b). With
hexagonal symmetry, anisotropy is mostly uniaxial. For simple consideration, in many cases one
considers a second-order uniaxial energy:

Emc = Ku sin
2 θ (1.5)

Uniaxial anisotropy can may originate from sample shape or from material composition.
Shape anisotropy comes from dipolar field as will be discussed in the following (sec Dipolar or
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magnetostatic energy). In that case, uniaxial anisotropy is not an intrinsic property as it depends
on sample shape. Material composition can also induce such anisotropy. For example, annealing
permalloy can create an atomic-scale texture which produces a weak uniaxial anisotropy.

Zeeman energy

The Zeeman energy is the energy of a system in an external magnetic field. Minimization of
this energy tends to align magnetic moments along the applied magnetic field Hext. The volume
density of this energy is given by:

EZ = −µ0M.Hext (1.6)

This term contributes to the system’s energy similarly to the pV term in the enthalpy defined
in thermodynamics as H = U + pV , where U is the internal energy, p the external pressure and
V the volume of the system. Within the same principle that a system under pressure reduces
its size and increases its energy, a magnetic moment tends to align along the field and reduces
its energy (through damping, for example). Enthalpy for a system under a magnetic field is
H = U −µ0M.Hext+pV , thus the Zeeman energy adds a term to the enthalpy and in this sense
is an external energy.

Dipolar or magnetostatic energy

The two names, dipolar or magnetostatic, are equivalent and both will be used in this manuscript.
The dipolar energy has the same physical origin as the Zeeman energy, however it does not imply
an applied field but the dipolar field Hd of the magnetic moments of the system itself.

Ed = −µ0

2

∫∫∫

V
M.HddV (1.7)

The 1
2 factor comes from the mutual feature of this energy and prevents from double counting.

We define the dipolar constant Kd = 1
2µ0M

2
s .

For a given distribution of M, it is therefore necessary to know the resulting distribution
of Hd to evaluate Ed. To do this, one solution is an analogy with electrostatics, considering
magnetic charges. These are pseudo-charges and are not to be linked with particles like electrons
in electrostatics as they are the source of Hd, not of B the magnetic induction. According to
the Maxwell equation divB = 0 (no magnetic monopole), the relationship between the magnetic
field and magnetic induction is:

B = µ0(Hd +M) (1.8)

and then

divHd = −divM (1.9)

To compute the dipolar energy in practice, a method consists in using the magnetic scalar
potential φd, derived from the dipolar field Hd = −grad φd. We note ρ = −div M the volume
charges and σ = M.n the surface charges (n being the outward normal to the surface of the
volume) so that φd is:

φd(r) =

∫∫∫
ρ(u)

4π‖r− u‖ dVu +
{

∂V

σ(u)

4π‖r− u‖dSu (1.10)

With this formula for the magnetic potential, the dipolar energy is:

Ed =
1

2
µ0

(
∫∫∫

V
ρφddV +

{

∂V

σφddS

)

(1.11)
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This latter equation highlights the fact that the effect of the dipolar energy is to tend to
reduce the volume and surface charges of system, even to free the system from charges if only
the dipolar energy is considered.

To deal with the magnetostatic energy, we can use the formalism of demagnetizing factors.
This formalism uses the strong hypothesis that M is uniform, so that is there is no divergence,
M = Σ3

i=1Miui. The dipolar field is then given by:

Hd(r) = Σ3
i=1Mi

∫∫
(ui ·n′)(r− r′)

4π‖r− r′‖3 dS′ (1.12)

so that the dipolar energy is:

Ed = −
∫∫∫

1

2
µ0MiMj dV

∫∫
(ui ·n′)(r− r′)

4π‖r− r′‖3 dS′

= Kd(Nij mi mj)V , mi =
Mi

Ms
(1.13)

where Nij are geometrical coefficients in the range [0, 1]. Let us define the demagnetizing field
which is the dipolar field within a system. There is no approximation in these calculations. We
can write:

< Hd >= −N M (1.14)

where N and M are the demagnetizing tensor and the magnetization vector, and < Hd > the

volume average of Hd, which for most geometries is not uniform. For the N matrix, Tr(N) = 1.
Moreover, it is always possible to diagonalize this matrix so as to find three main axes. The
only cases where the demagnetizing field is perfectly homogeneous are the ellipsoids, cylinders,
slabs,... If we take the example of the cube, axes are equivalent so that Nx = Ny = Nz = 1/3
and the dipolar energy is Ed = Kd

1
3(m

2
x +m2

y +m2
z) =

KdV
3

Let us now take the example of an infinite cylinder along the z axis. Thus there is no

end charges and the demagnetizing factor Nz along z is zero. To follow the rule Tr(N) = 1,
Nx + Ny = 1. Moreover, x and y directions are equivalent for the cylinder so demagnetizing
factors along x and y are equal, Nx = Ny = 1/2. Thus in a cylinder, the magnetization is along
the axis direction where the demagnetizing factor is zero, creating as less charges as possible.
This is what is called sample shape effect.

When magnetization is not uniform, the evaluation of Hd and Ed is the most computational
time consuming among all energies since there is interaction of all the magnetic moments of a
system between each other.

1.1.2 Characteristic lengths

When dealing with real systems, in many cases, several energies compete. Take the example of a
system with a magnetocrystalline anisotropy and a domain wall. Within the domain, magneti-
zation is aligned with the easy axis. This is no more the case in the wall. The magnetocrystalline
anisotropy tends to decrease the width of a wall, so as to decrease the length over which magne-
tization is not aligned along an easy axis, implying a cost of energy. However a sharp rotation
increases the exchange energy (larger angle between two neighboring moments). In such sys-

tems, we define ∆u =
√

A
K . This is the length over which the magnetization can rotate away

from the easy axis. This length is called anisotropy exchange length. It is also called Bloch
parameter or wall width. For hard magnetic materials K is high whereas it is small for soft
magnetic materials. As a result, ∆u ranges from 1 nm (e.g . SmCo5) to 1 µm (e.g . Fe20Ni80).

For cases dipolar and exchange energies compete, the characteristic length is the dipolar

exchange length and is given by: ∆d =
√

2A
µ0M2

s
. This quantity is the relevant one to consider as
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Figure 1.2: Schematic for domains. Sketches for (a)-(c) open domains, (d)-(e) perfect flux-closure do-
mains.

the critical single-domain size for soft magnetic material (see 1.1.3). It is also called exchange
length. A and Ms are rather similar for common soft magnetic materials thus the order of
magnitude for ∆d is 3 to 5 nm. However in a ferrimagnetic garnet, Ms = 1/100 Ms,Fe so that
∆d,garnet ∼ hundreds of nanometers.

1.1.3 Critical single-domain size

In this section we are looking for the critical size under which a sample is uniformly magnetized.
Over this size, domain walls are created for a better flux-closure (Figure 1.2). Consider a
sample with a compact structure, of lateral size R, demagnetizing coefficients N are thus 1/3.
We define lSD, the critical single domain size. Estimation of the critical single domain size
depends on whether the material is soft or hard. Here we deal only with soft magnetic materials
for which the magnetization rotates gradually, that is a collective magnetization distribution.
To determine lSD, the relevant quantities are the dipolar and exchange energies so that lSD is
expected to be linked with the dipolar exchange length ∆d. Under lSD, energy ESD of a uniformly
magnetized system is nearly NKdR

3.

For soft magnetic materials, the volume density of exchange energy scales like Eex = A
(

π
2R

)2

thus the exchange energy Eex ∼ AR. To find the critical single domain size, we solve Eex
∼= ESD

that is AR ∼= NKdR
3 thus R ∼= 1/

√
N
√

A/Kd

In the case of a cube, simulations give the result of lSD ≈ 7∆d whereas for spheres, lSD ≈
4∆d [14]. However lSD is more difficult to estimate for non-compact systems such as wires or
strips. We can take the example of a disk and estimate the transition between the uniform
case (Figure 1.3a) and the vortex state (Figure 1.3b). The total energy of the uniform state
is ESD ≈ NKdtd

2, with d the diameter and t the thickness. The in-plane demagnetizing factor
is ∼ t/d. A rough estimation of the energy E of the vortex state takes into account the dipolar
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a b

Figure 1.3: Schematic for the magnetization in a disk (a) Uniform state for small R. (b) Vortex state
for large R.
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Figure 1.4: Schematic for the demagnetizing field in a finite strip.

and exchange energies: EV ∼ 10∆2
dtKd ∼ At. Finally, the critical single domain size is found

with the equality ESD = EV leading to td = 10∆2
d. Numerical simulations yielded a change of

state for td = 20∆2
d [15], which is of the same order or magnitude but refines the result.

However, even under the critical size lSD, samples may not be perfectly uniformly magnetized.
A demagnetizing field homogeneous and aligned with the uniform magnetization is valid only
for ellipsoid, infinite cylinder with elliptical cross-section, slabs with infinite lateral dimensions,
which is not the case when dealing with strips and wires. If we take the example of a thin film
element, the demagnetizing field is highly inhomogeneous (see Figure 1.4). In the middle of the

strip, it is lower than the average value < Hd >= −N M (see equation 1.14) while it is very high
at the edges (up to Ms/2). This field creates a torque on the magnetization at the edges giving
rise to areas called end domains. In elongated systems, these domains may assume either an ’S’
or a ’C’ shape (Figure 1.5a,b). Another type of end domain is the curling which is a method
to close the magnetic flux, and decrease magnetostatic energy. It is also named circulation
of magnetization. Circulation is equivalent to curling which refers to the curl operator and is
related to the circulation of the magnetization along a close path (Stokes theorem). The name
curling was also used in the reversal mode and nucleation theory (see sec.1.1.4). Thus it is not
only an equilibrium state but can also be a transient one. More details about the circulation of
the magnetization can be found in chap.2. For more compact systems, these end domains are
flower or leaf states (Figure 1.5c,d).

1.1.4 Reversal modes

In this section we present reversal modes for systems for which the demagnetizing field may be
homogeneous and collinear so that no spatially dependent torque acts on the magnetization.
The simplest mode keeps M uniform during the rotation (Figure 1.6b). This model of coherent
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a b
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Figure 1.5: Schematic for the end domains due to the demagnetizing field. (a) ’S’ state. (b) ’C’
state. (c) Flower state. (d) Leaf state.

rotation was proposed by Stoner and Wohlfarth in 1948 to describe the angular dependence
of the magnetization reversal [16, 17]. This model is valid under the strong hypothesis of a
uniform magnetization. With such hypothesis, the model is applicable to very small particles
only. However it has some generalities (exponents, angular dependance) applicable with care to
larger systems.

In the following, we will try to describe reversal modes for large systems where the demag-
netizing field is not homogeneous. The key term of the magnetization reversal is the energy
barrier.

Under an applied field, for sufficiently large systems (see sec.1.1.3), the magnetization may
deviate from the uniform state. Notice also that a system can be uniform in statics but this
does not mean its reversal is uniform. Various models have been proposed to describe non-
uniform magnetization switching. These models are extreme cases which are not necessarily
the most relevant experimentally. Here we deal only with the case of wires. The first reversal
mode is the magnetization curling (Figure 1.6a). This reversal mode starts with an orthoradial
curling around the initial direction of magnetization (along the cylinder axis) giving rise to some
vorticity. The angle between the moment direction and the cylinder axis is solely a function of
the radius solely thus there is only one degree of freedom [18]. Since the magnetization is parallel
to the lateral surface of the cylinder, there are no surface charges. However the system pays
exchange over the diameter. The second mode is the magnetization buckling that is a periodic
deviation of the magnetization from its initial direction, along the wire axis (Figure 1.6c).

Let us define the parameter ρ = R/∆d. For the case of an infinite cylinder, if ρ < 1.1
buckling is the favored mechanism, for ρ > 1.1 it is the curling and the rotation in unison
(Stoner-Wohlfarth model) occurs for dimensions ρ ≪ 1. Calculations can be found in the paper
of E. H. Frei et al . [18]

1.1.5 Landau-Lifshitz-Gilbert equation

Now that we have detailed static or quasistatic magnetic aspects, we can then deal about
magnetization dynamics which becomes precessional at nanosecond time scale. Let us start
with a magnetic moment µ (see Figure 1.7a).
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a

Figure 1.6: Schematic for curling reversal in a wire.(a) Magnetization curling. (b) Spin rotation in
unison or coherent rotation. (c) Magnetization buckling
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Figure 1.7: Schematics for the LLG section.(a) Scheme for the angular moment of a magnetic moment.
(b) Description of the different terms of the LLG equation. The first term µ0γM × Hext

rotates the magnetization out of the plane of the domain wall and induces a precession of
the magnetization around the applied magnetic field. The second term α M

Ms

× dM

dt tilts the
magnetization and leads to the motion of the domain wall.
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µ = IS with S the vector area normal to the loop of current

µ =
q

2πr/v
πr2k

µ =
q

2m
ℓ

with ℓ = mr× v is the angular momentum for a point particle. From quantum mechanics, the
angular momentum is quantized with ~ thus the Bohr magneton is quantized with (e/2me)~.
More generally, we define γ = gq/2m the gyromagnetic ratio with g the Landé factor (g = 2
for spin) so that µ = γℓ. As indicated at the beginning, we are interested in the time evolution
of the magnetic moment under an applied field. Mechanics governs the time evolution of the
angular moment, giving rise to µ:

dℓ

dt
= µ× µ0H

dµ

dt
= µ× µ0γH

Notice that γ < 0 for an electron. This equation stands for a single magnetic moment. However,
we are in the framework of micromagnetism, the magnetization M is the average over a small
volume. This leads to the so-called called Landau-Lifshitz equation [19]:

dM

dt
= γµ0M×H (1.15)

For a field applied along the z direction, the time derivative of the three components of the
magnetization are :







ṁx = +µ0γmyH
ṁy = −µ0γmxH
ṁz = 0

(1.16)

Derivative of the z-component of the magnetization shows that the trajectory is energy
conservative and thus it is a purely precessional movement. However it was observed in matter
that magnetic moments lose energy and there is some damping of the magnetization dynamic.
Moreover, as in quasistatics, in the end the magnetization is parallel to the applied field. To
account for this, a phenomenological term was added by Gilbert [20] αM/Ms × dM/dt which
dissipates energy. Finally, the time evolution equation is the Landau Lifchitz Gilbert equation
(Figure 1.7b):

dM

dt
= µ0γM×H
︸ ︷︷ ︸

precession

+α
M

Ms
× dM

dt
︸ ︷︷ ︸

damping

(1.17)

α is the damping parameter. It is an dimensionless term of the order of 10−3 to 10−2 in
most systems, so that in practice many precessions occur before the system is at rest. The
experimental technique called FerroMagnetic Resonance allows to estimate the value of α .

1.2 Domain walls in one-dimensional systems

1.2.1 General features of domain walls

Bloch versus Néel wall

There are various reasons for a sample to be divided into domains. It may happen in order to
decrease its energy, limiting charges and stray field (see Figure 1.2). Creation of domains may
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Figure 1.8: Domain walls in thin film. (a) Bloch wall. (b) Néel wall. (c) Bloch wall with a Néel cap.
(d) Cross-tie wall

also come from history of the sample. All these reasons boil down to minimizing energy to the
lowest energy state or metastable state. At areas separating these domains, domain walls are
located.

For very thin film, magnetization is parallel to the surface (Figure 1.8b). Although this
configuration gives rise to volume charges, there is no surface charge given by M.n, where n

is the outward normal to the surface. This is the Néel wall. For thicker films, magnetization
lies in the plane of the domain wall so −divM = 0. There are no volume charges but surface
charges. This DW is called Bloch wall. The case of very thick film is a combination of both
Bloch and Néel type (Figure 1.8c). The Bloch wall lies in the bulk whereas the rotation of
the magnetization at the surface towards a Néel cap limits surface charges. If we note t the
thickness of the film then for t & ∆u, the Bloch domain wall (Figure 1.8a) is favored whereas
for t . ∆u it is the Néel wall which is favored.

Angle of walls

Domains and domain walls are 3D objects thus the domain walls are limited by planes defining
the shape of the domain wall. Generally these planes tend to bisect magnetization in each
domain to avoid locally net charges. Let us take a head-to-head DW as in Figure 1.9. Surface
charges on the planes defining the DW are given by the scalar product M.n. First let us have
a look at the left part of the DW M1.n12 = (1/

√
2)Ms and M2.n21 = −(1/

√
2)Ms. Second,

on the right part we have M3.n32 = (1/
√
2)Ms and M2.n23 = −(1/

√
2)Ms . Hence we see this

configuration of the planes gives rise to no net charges.

Cross-tie domain wall

As said above, the domain wall direction tends to bisect that of magnetization in neighboring
domains. Thus unstable 180 ◦ Néel wall can be replaced by composite domain walls with smaller
angle even if this implies an increase of the total domain wall length. An example of these
composite DWs is the cross-tie wall. This domain wall occurs only in soft magnetic materials
where no increase of anisotropy energy is induced. Note that 180 ◦ Bloch walls are replaced
with cross-tie for thickness larger than that predicted for the cross-over between Bloch and Néel
walls.
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Figure 1.9: Scheme for the planes delimiting the TW. Black arrow are the magnetization vectors, red
and blue arrows are the normal to the surface of the planes delimiting the TW.

Figure 1.10: Scheme of a TW in a 1D system. The colors indicates the magnetization direction along
the z axis.

1.2.2 One dimensional model - The Bloch domain wall

Let us now turn to a 1D model which we can describe using previously addressed concepts, as
an application of what has been explained before.

Magnetization profile

Let us consider a system whose magnetization varies along the x-axis as a chain of spins. The
magnetization profile of this system may be described by one variable, the angle θ between the
magnetization direction and the x-axis (Figure 1.11). This model was described by Bloch [21]
with the boundary conditions θ(x = ±∞) ≡ 0 mod π. Within the Bloch domain wall, the
magnetization lies in the plane of the domain wall thus without dipolar field. Two energies
then compete, exchange energy and anisotropy energy which is assumed to be uniaxial for the
simplest case.

The total energy is given by:

E = A

(
dθ

dx

)2

+Ku sin
2 θ (1.18)

It is possible to determine the profile of the 1D domain wall minimizing this energy. The
exact profile is given by minimization of the total energy, making use of the Euler-Lagrange
equation:

y

z

x

m

t
w

Figure 1.11: Definition of the axis and the strips orientation
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∂E

∂θ
=

d

dx

[

∂E

∂( dθdx)

]

(1.19)

Applying this energy minimization to Eq. 1.18 leads to:

A
d2θ

dx2
= Ku sin θ cos θ (1.20)

Mutliplying Eq. 1.20 by dθ/dx and integrating with the conditions dθ/dx(∞) = 0 and
θ(∞) = 0, we get:

A

(
dθ

dx

)2

= Ku sin
2 θ (1.21a)

dx = ±
√

A

Ku

dθ

sin θ
(1.21b)

This is valid for systems of infinite size. Integration of this equation gives rise to the following
solutions:

θ(x) = 0 and θ(x) = π

θ(x) = ±2Arctan
[
exp

(x−q
∆

)] (1.22)

which can be written in term of components of the magnetization along both axes:

mx = tanh(x/∆) and mt = 1/ cosh(x/∆) (1.23)

q is the integration constant corresponding to the position of the DW center along the x axis,
and ∆ the domain wall width or Bloch parameter defined previously(sec.1.1.2). The system can
be uniformly magnetized in one direction or the other (the first two solutions) or there can be
a DW of either circulation (the two other degenerate solutions).

In 1D systems, a transverse anisotropy can be responsible of a dipolar field and is of the
form:

K0 sin
2 θ cos2 ϕ (1.24)

ϕ defining the orientation of magnetization in space. Minimization of the energy, taking into
account this new rotation in space, leads to dϕ/dx = 0 and ϕ(x) = Cste set by anisotropy, or as
we will see later, reflect dynamic conditions.

Energy

As can be seen from Eq. 1.21a, for all positions x, exchange and anisotropy energies are equal,
meaning there is an equipartition of the energy at any part. Thus to calculate the total energy
of the system, only one of either energies needs to be integrated twice:
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Figure 1.12: Domain wall width. Domain wall profile given by equation 1.22. Exact solution for the profile
of the Bloch domain wall (red line) and the lowest-energy solution of the variational model in
black line.

E = 2

∫ +∞

−∞
A(dθ/dx)2 dx

= 2

∫ +∞

−∞
Ea dx

= 2

∫ +∞

−∞

√

Ea(θ)A

(
dθ

dx

)2

dx

= 2

∫ +∞

−∞

√

Ea(θ)A
dθ

dx
dx

= 2

∫ θ(x=+∞)

θ(x=−∞)

√

Ea(θ)A dθ

= 2
√
A

∫ θ(x=+∞)

θ(x=−∞)

√

Ku +K0 sin θ dθ

E = 4
√

A(Ku +K0) (1.25)

Width

There exists several definitions of the domain wall width. A first method is based on the intercept
between asymptotes of the θ(x) function in the domain and in the wall (Figure 1.12). Lilley [22]
proposed a definition for any functional of anisotropy however there exists simple formula for
common anisotropies. For example, for the common case of uniaxial anisotropy this definition
leads to WL,uni = π

√

A/Ku = π∆u. Another method uses the asymptotes of the cos θ(x)
function, related to the magnetization within the domains and their intersection with tangent
of the curve at DW center. The width is then W = 2

√

A/Ku. Another series of definitions
is based on integration rather than tangent. First, this can be applied to more general cases
than to simple uniaxial anisotropy. Second, it is less sensitive to noise, as all data points are
taken into account: WJ =

∫ +∞
−∞ sin2[θ(x)]dx. The flux of magnetization may also be used in the

integral and the width is WF =
∫ +∞
−∞ sin[θ(x)]dx.
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A third definition was proposed by Thiele [23], and is more relevant for DW under precession,

as will be discussed below, WT = 2S/
∫ +∞
−∞

∣
∣dm
dx

∣
∣
2
dx.

Dynamics

Even when dealing with simple one-dimensional systems, solving a functional with the LLG
equation is too complex. Instead, the problem may be reduced to describe the DW with three
parameters only: the domain wall center position along the system axis q, the DW width ∆
and the azimuthal angle of the DW φ [21] (see Figure 1.11 for the angle definition). With these
three parameters it is possible to describe the time-evolution of the magnetization profile:

θ(x, t) = 2Arctan

[

exp

(
x− q(t)

∆(t)

)]

(1.26a)

ϕ(x, t) = φ(t) (1.26b)

Slonczewski proposed a simple view of the dynamic of a DW under field [24]. This method
consists in projecting the LLG equation (1.17) onto the longitudinal and transverse axis. The
system of equation takes into account the time evolution of the wall width ∆. This leads to:

α
q̇

∆
+ φ̇ = γ0Hext (1.27a)

q̇

∆
− αφ̇ = γ0HK

sin 2φ

2
(1.27b)

∆̇ =
12γ0

αµ0Msπ2

[
A

∆
− (Ku −K0 sin

2 φ)∆

]

(1.27c)

K0 is the first perpendicular anisotropy constant and Ku is the longitudinal anisotropy
constant.

This last equation shows that the DW width evolves with a steady-state value,

∆ =

√

A

Ku +K0 sin
2 φ

=
∆0

√

1 + κ sin2 φ
, with ∆0 =

√

A

Ku
(1.28)

∆u is the anisotropy exchange length and κ = K0/Ku. When some anisotropy is present in the
system, the mobility depends on the applied field. Walker introduced [25] a field called Walker
field HW = αHK/2, with HK the anisotropy field. Under this value, the speed increases linearly
with the applied field. This regime is a steady-state DW motion. The wall velocity is:

q̇ = γ0∆(φ)Ha/α (1.29)

Below the Walker field, the speed is thus proportional to 1/α. Above the Walker field, there
is no longer a steady-state value for the angle φ. Instead, the DW undergoes a periodic angular
precession. Because of the anisotropy term, this precession is not linear and the velocity scales
like α.

1.2.3 Domain walls in strips

I designate by strip systems with a rectangular and rather flat cross-section. In strips the
known domain walls are the transverse wall (TW) (Figure 1.13a) and the vortex wall (VW)
(Figure 1.13b) as first described by R. McMichael and M. Donahue [27]. In both cases, magne-
tization remains mostly in plane.

The transverse wall (Figure 1.13a) has been given this name because magnetization lies in
plane along the direction transverse to the strip. Its shape is roughly triangular in order to form
globally uncharged 90 ◦ walls and reduce the magnetostatic energy.
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Figure 1.13: Domain walls in 1D systems. (a) Transverse wall in strip. (b) Vortex wall in strip. (c) Trans-
verse wall in wire. (d) Bloch point wall in wire. (e)-(f) Bloch points of type hedgehog and
curling. (g) Bloch point wall: surface magnetization presented with black arrows (top) and
magnetization flux in the volume (bottom).
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Figure 1.14: Domain wall in strips - Simulations. (a) Known phase diagram for strips. Full green dots
are for first-order phase transition between the VW and the TW. Green triangles are for second-
order phase transition between TW and ATW [3]. Micromagnetic configuration of a (b) VW,
(c) TW and (d) ATW. The dark dots on (c) and (d) locate the entry and exit places of the
magnetic flux. The right column is MFM images of (e) a VW and (f) a ATW [26].
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Figure 1.15: Domain wall motion in strips (a) Fields acting on the magnetization leading to the prop-
agation of the DW. The red arrows are the magnetization vector. The field is applied along
the strip length. First the torque between the applied field and the magnetization tilts the
magnetization out of plane. Then, due to the damping, the magnetization is tilted along
the strip length leading to the propagation of the DW. (b) v = f(Hext) for a TW. There
are two modes, a steady state regime with a mobility proportional to 1/α below HW and a
precessional regime above it, with a mobility proportional to α. (c) v = f(Hext) for a VW.
There are three regimes. First a regime where the VW propagates with a mobility related to
its chirality, second, the regime of the ATW after the transformation of the VW into a ATW
and third a precessional regime.

For the VW (Figure 1.13b), magnetization rotates around a small area called the vortex
core and of dimensions ∼ 3∆d. The fine structure of a VW shows 90 ◦ sub-walls.

For all soft ferromagnetic materials, the magnetic configuration is determined by a compe-
tition between exchange and magnetostatic energies. At low dimensions, simulation shows that
for a thickness t and a width w such that tw . 61∆2

d, the TW is lower in energy than the VW.
Thus this is the ground state. With increasing dimensions, magnetostatic energy prevails due
to a larger cross-section and VW is more favorable. No transverse flux is leaking and head-to-
head charges are more spread out. However the two DWs remain metastable on either sides of
the transition, characterizing a first order phase transition. A later refined study [3] showed a
transition of TW for large width from a symmetric shape to an asymmetric one (Figure 1.14a).
This type of DW is named asymmetric transverse wall (ATW). A micromagnetic configuration
of this DW is presented on Figure 1.14d. Since there is no metastability for the transition be-
tween symmetric and asymmetric TW, it is a second order phase transition. This type of DW
has been observed experimentally (Figure 1.14f) [26].

Domain wall dynamics can be studied using either a magnetic field or through injection of
an electric current. First, let us deal with the transverse wall (Figure 1.15a-b). A magnetic
field induces a precession of magnetization around this field. This precession is responsible for
a demagnetizing field stopping precession around the applied field and thus for the propagation
of the DW to a speed proportional to 1/α (see 1.29).

For high magnetic field, magnetic configuration starts to be non uniform along the width
of the strip, defining the Walker field of the DW. Instead of a uniform precession of the DW
core, an antivortex is injected in the wall, from one edge of the strip. It goes through the strip,
reversing the direction of the transverse component. Since this antivortex costs less in energy
than the precession of the magnetization of the anticore, the Walker field in a strip is lower than
the predictions of the 1d model. Second, let us consider dynamics of vortex wall (Figure 1.15c).
In the first stage, instead of a precession of magnetization around the direction of propagation,
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the vortex core is laterally displaced, depending on chirality. For large enough field, once the
vortex core is expelled from the strip, the configuration is the one of a ATW. Then the behavior
of the DW is the one of the TW above the Walker field, with a vortex instead of an antivortex.

Similarly, a DW is propagated through injection of an electric current. LLG equation Eq. 1.17
is modified with the addition of two terms. Let us define u such that:

u =
JPgµB

2eMs

with J is the spin polarized current density, P is the polarization and gµB/2 is the magnetic
moment of the electron spin. Modified LLG equation reads:

dM

dt
= µ0γM×H+ α

M

Ms
× dM

dt
− (u.∇)M+ βM× [(u.∇)M] (1.30)

The first added term is derived from the local form of the adiabatic spin transfer [28]. The
second term is a phenomenological non-adiabatic term [29]. β is a dimensionless constant of the
same order of magnitude as α. Through an injected current the DW is propagated with the
adiabatic spin transfer torque in the direction of the electron flow. As with a magnetic field,
the damping (α) tends to make magnetization precess around the propagation direction. To the
contrary, the non-adiabatic spin transfer (β) leads to a precession in the other way. Combination
of these two terms results in a torque (only if α 6= β) acting like a magnetic field, inducing a
speed proportional to β/α at high current. Thus, for β > α, such as for permalloy, the behavior
of a domain wall is similar as under field. These theoretical predictions have been confirmed
experimentally.

1.2.4 Domain walls in wires: theory

I name wires compact systems with a disk or square cross-section.

Transverse vortex wall

In nanowires, it has been predicted that there exists a DW similar to the TW (Figure 1.13c)
found in strips and also called transverse since the main component of the wall is perpendicular
to the wire axis. At small diameters the configuration of this TW is close to the one-dimensional
model (Figure 1.10). This type of domain wall is the most stable for diameter below ≈ 7∆d.

Let us now discuss the dynamics of the TW. The 1D model (1.27), under the hypothesis
of a uniform magnetization across the section, provides a qualitative approximation of DW
dynamics. This approximation becomes more and more quantitative at small diameter. Indeed,
in this case magnetization does not have the freedom to rotate within the cross-section, since
it is prohibitively costly in exchange energy. Without perpendicular anisotropy (see 1.28), DW
width is fixed, proportional to ∆0. For this case, angular and longitudinal propagation speeds
under magnetic field reach a steady state.

φ̇ =
1

1 + α2
γ0Ha (1.31a)

q̇ =
α

1 + α2
γ0∆0Ha (1.31b)

Since α ≪ 1, mobility is similar to 1D DW far above Walker field, approximately αγ0∆0Ha

whereas the angular speed is circa γ0Ha. Let us take the example of Permalloy (α ≈ 10−2), with
a 35 nm-wire-diameter with an applied field of 5 mT:
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φ̇ =
1

1 + 10−4
× 2.21.105 × 5.10−3 ∼= 1.1× 102 rad. sec−1 (1.32)

q̇ =
10−2

1 + 10−4
× 2.21.105 ×

√

10−11

1/2× 1.050
× 5.10−3 = 4.8× 10−5m. sec−1 (1.33)

Bloch point wall

Another type of DW that does not exist in strips has been predicted in wires. The main feature
of this second type of domain wall (Figure 1.13d-g) is the curling of magnetization. The third
dimension allows for a circulation of magnetization around the wire axis, enabling a flux-closure.
This is made possible at somewhat large diameter, making the cost of exchange energy acceptable
when compared with the cost in magnetostatic energy.

Topology of this domain wall is different from all others. Indeed, let us consider M.n, the
surface charge density. The transverse flux of transverse wall leads to ±Ms at entering (-) and
exit points (+) of flux. For the BPW, magnetization remains mostly parallel at any point of the
surface. As a consequence, if we consider the Mx = 0 surface, due curling within this surface, the
My and Mz components must also vanish in one point. Thus, all three components of M must
vanish. This object is called Bloch point and was predicted early in the theory of magnetism
[30, 31] and its existence was suspected from examination of boundary conditions at surfaces
of 3D samples [24], then investigated numerically for disk [32, 33] and square [2] cross-sections.
Two equivalent configurations at rest of a BPW are presented in Figure 1.13e,f. However, it will
be explained hereafter these two configurations are not equivalent during steady state motion.
The name of BPW was used by some authors ([34],[35]) to avoid any confusion with the VW
in strips. BPW was found to be more stable than TVW for dimensions above ≈ 7∆d, both for
square and disk cross-sections [2].

A Bloch point wall can hold either a positive (head-to-head) or a negative (tail-to-tail) charge
(Figure 1.16a) and for each charge there are two possible chiralities (Figure 1.16b). These four
configurations are degenerated at steady state. Moreover, at the steady state, magnetization
is radially tilted. Indeed, the head-to-head, or tail-to-tail charge, induces a demagnetizing field
which acts as a torque on the radial component of the magnetization (Figure 1.16a). A positive
charge tilts the magnetization away from the axis so as to reject the positive charges at the
surface and decrease the overall magnetostatic energy of the domain wall. For a negative charge
domain wall, it is the reverse.

The propagation of a BPW under a magnetic field works as follows. First the applied field
exerts a torque on magnetization (γ0m×H, ’precession’ part of the equation 1.17). This torque
induces a time-variation of magnetization so that another torque is applied (αm × dm/dt).
In steady-state regime, both torques compensate each other. Similarly to dynamics in strips,
the tilt of magnetization induces a demagnetizing field leading to a torque along the wire axis,
propagating the domain wall. Chirality should be right with the direction of domain wall
propagation, thus if the field is applied the other way, above a given applied field, chirality
switches. This switching is clearly visible on the plot of the speed versus the applied field. For
a circulation left with the applied field direction, speed is low (mobility very low) and above
a given applied field, corresponding to the energy barrier needed to switch chirality, the speed
increases sharply (large mobility) to reach the high speed regime (almost zero mobility) (see
Figure 1.16d) highlighting the fact that the BPW releases spin waves. The Walker breakdown
thus exhibits a higher value, larger than interesting fields used for propagation . This feature
makes it a good candidate for magnetic memory devices.

An applied field can enhance or reduce the spiraling angle (Figure 1.16c). With a sufficient
applied field, the dipolar field maintaining a given chirality of the BPW is outmatched so that
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Figure 1.16: Bloch point wall charge and chirality. (a) Polarity of a Bloch point. (b) The two chiralities
for a same polarity. (c) Effect of the applied field on the spiraling angle. (d) Speed versus
applied field. Full line: the field compatible with the BPW with favored circulation. Dotted
line: field with the unappropriated direction to propagate the BPW. The green arrow stands
for the change of chirality.

the spiraling angle is not only slightly increased or reduced but the chirality is reversed (green
arrow on Figure 1.16c and d).

The BPW does not enter standard micromagnetism theory with |m = 1|, since magnetization
vanishes at the Bloch point. This will raise some numerical problems as presented by Thiaville
et al. in [36], such as a potential landscape arising from the mesh. Indeed, the center of each
mesh cell is like a tiny potential barrier for the Bloch point. Thus, the system requires to be
meshed with an even number of cells in every directions so that the Bloch point lies in the center
of the sample.

A large number of publications considered magnetization reversal in magnetic nanowires.
However, the vast majority is concerned with the full magnetization reversal, starting from
nucleation and ending in fully-reversed wires. Thus, they do not deal with details of domain
walls. Besides, only a handful of these considered single wires, while most consider large and
dense arrays of wires. The most important experimental part concerns magnetization reversal,
done through domain wall nucleation at one end of the wire.

Apart from our work to be reported in chapter 3, to my knowledge there exists only one
report of the inner structure of a domain wall in cylindrical nanowires. It was based on electron
holography, revealing a transverse wall, and was published in 2013 by Bizière et al. [37], during
my PhD and slightly before our own manuscript reporting TW and BPW [8].

To conclude, DW dynamics in nanostrips and nanowires have both similarities and differ-
ences. In both cases, the dynamics of TW can be described using the 1D model presented in
sec.1.2.2. Above a given field, called Walker field, the mobility drops. Then, a new regime
starts where the transverse component of TW rotates around the axis of the strip and the width
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oscillates. The speed of these domain walls is of several meters per second. The case of BPW,
thus only for wires, is different. It is topologically protected and thus does not exhibit Walker
breakdown. Its speed is predicted to reach almost 1 km/s. Under this field the velocity of the
VW is lower than that of the TW because of energy dissipation at the vortex core. Above 9 mT,
the vortex core is expelled due to the gyrotropic force, thus both velocities become similar. This
marks the transition from symmetric TW to ATW.

1.3 Micromagnetism - Numerics

1.3.1 Overview of numerical simulations

In micromagnetism, except for simple systems, there are generally no analytical solutions. This
lack of analytical solutions justifies the use of simulations to solve micromagnetic problems.
There are several methods in numerical simulations to find the equilibrium state of a system.

First are Monte Carlo simulations. The system is randomly modified by changing the local
magnetization at one site to obtain a new state. A variation of energy E is associated with
this modification of magnetization. If the system reduces its energy, the new state is accepted.
If the change increases energy of the system, the new state is accepted with a probability
P = exp(−∆E

kBT
), with T is the temperature of the system and kB is the Boltzmann constant.

Such simulations can deal with nucleation and propagation of DWs through wires [38].

The second method is minimization of energy by using genetic algorithms [39]. The direction
of magnetization is defined using Euler angles. Theses angles are coded on an integer. Each
bit corresponds to one allele in genetics. We consider an ensemble of magnetic systems, each of
their state being presented as a set of chromosomes. In genetic algorithm, each state is called
population. Using operations such as crossover and mutations of genes in chromosomes within
population, it is possible to reach the global minimum of the whole system.

The third one is the integration of the LLG equation (see equation 1.17). This latter tech-
nique enables to deal with terms that do not derivate from an energy such as the spin transfer
torque. They are included in the effective field of the LLG equation 1.17. This later method
also enables to describe precessional dynamics under field which is not properly described by
the two former.

Let us now focus on LLG equation. Numerics requires the use of a discretization technique,
both spatially and temporally. Regarding temporal discretization, it consists of a division of
time into small time steps. At each step, the micromagnetic configuration is computed. In the
following, we will write mn the magnetization at time step n, and k the time step. A temporal
scheme is of p-order if the local error from the exact solution is in O(kp+1). Thus, starting from
the step 0, it is expected the overall error is in O(kp). We are interested in a temporal scheme
of order larger than one. Indeed, for a given time step, schemes of large order increase the
accuracy of the solution. As a comparison, a Taylor expansion is closer to the solution when
higher orders in the expansion are taken into account. First order can have only a tangential
description, second order can describe parabola, and so on. A few schemes do not amplify error,
they are said to be stable. To the contrary, numerically unstable schemes inject artificial energy
which tends to destabilize the system. These systems cannot be used in practice and we will
use only a stable scheme.

Spatial discretization can be of two types. Finite differences method uses a prismatic lattice
mesh and fields are evaluated at nodes. Nodes correspond to a grid where are defined approxi-
mative values of the unknown of the equation. The unknown is sampled at the nodes of a grid.
Discretization consists in substituting partial derivatives of the quantity by their Taylor expan-
sions. This estimation at each node is obtained through a Taylor expansion of the unknown
quantity from neighbor nodes. Thanks to the translational symmetry of the lattice it is possible
to use Fast Fourier Transforms to compute demagnetizing field, which nevertheless remains the
most time-consuming step. Moreover, thanks to the precision arising from the regular lattice,
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Figure 1.17: Triangular functions and tangent plane. (a) Triangular functions used for the interpolation
of magnetization. In black are numbered the nodes of the mesh. The red rounded numbers
stand for the cells. βi are the triangular functions related the nodes i.

Table 1.1: Advantages and disadvantages of the finite differences and finite elements methods.

Finite Difference Method Finite Element Method

Advantages - Mesh most often regular - Systems with complex shapes thanks
- Derivates evaluated at nodes → to mesh
possibility to use the FFT method -Interpolation at each point in space
- Fine tuning of parameters to evaluate (but |M| is not kept)
variations of the energy

Weaknesses - Only basic system shape - No translational symmetry of the
mesh→ not possible to use the FFT
- Derivatives not defined at nodes

finite differences method is useful when we are interested in the estimation of the variation of
the energy of a system according to various parameters, for instance, to build a phase diagram.
Codes such as the public OOMMF and our own GL-FFT use these techniques [40, 41]. How-
ever this type of mesh can induce numerical anisotropy when it is used for systems with curved
surfaces [42].

Finite element method (FEM) appears as a solution for these systems. The system is dis-
cretized into continuous polyhedrons (tetrahedron, prism, hexahedron), without overlap. Mag-
netization is sampled at each node of this mesh. Nodes correspond to the vertices of the poly-
hedrons. Inside each element, magnetization and its time derivative are linearly interpolated.
The mesh can be either regular over the whole system or be refined around areas of interest
such as boundaries. In our case, we use tetrahedrons, which fit curved systems better, and
the mesh is regular over the whole system. The solution of LLG equation is searched within
a space of continuous functions that are polynomial in each element (polyhedron). The LLG
equation is not solved locally but with its integral form, the so-called weak formulation, relying
on integration technique, such as the Gauss technique. Indeed, FEM is an integral method for
which functions, such as magnetization, are assimilated to an operator associating a scalar prod-
uct to a test function w. A test function, or projected function, is a function that is non-zero
over the elements sharing a node (Figure 1.17a). The function space, the space of functions
containing the solutions of the LLG equation, needs to be carefully chosen, taking into account
the properties of magnetization and boundary conditions (natural conditions). As an example
in micromagnetism, the time derivative of m must be orthogonal to m at nodes. According to
the Galerkin method, the space of test functions corresponds to the space of solution functions.
Moreover, FeeLLGood has been developed with, among others, the request that the magnetiza-
tion norm is 1 and the system is stable, in other words, that is it dissipates energy. Advantages
and disadvantages of the two methods are summarized in Table 1.1

In the following, we will use a finite element method. The use of a non-symmetric mesh with
FEM makes the computing of demagnetizing field more complicated since it is no more possible
to estimate the Laplacian of magnetization by Taylor expansion as used in the finite difference
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approach. There are several other methods, and particularly multipole methods described in the
following. Here is a non exhaustive list of micromagnetic codes: LLG Micromagnetics Simulator
[43], Nmag [44], Vampire [45] and Mumax [46].

1.3.2 Methods to compute the demagnetizing field in FEM

The demagnetizing field is the most time-consuming step since it results from long range pair
interaction involving all magnetic moments. Its direct calculation needs N2 operations where N
is the number of moments. In the continuous approach, there are several methods to compute
this term. The idea is to deal first with the magnetic pseudo-potential φd:

−∆φd = −∇·M (1.34)

which is continuous at the border ∂D of the sample and whose normal derivatives are subject
to a jump condition across ∂D:

[
∂φd

∂n

]

= −n·M (1.35)

The potential also is required to vanish at infinity.
A method to compute the potential is the one proposed by Fredkin et al. [47] and is based

on the boundary integral method (BEM). The potential φd is written as the sum of two parts
such that:

φd = φ1
d + φ2

d (1.36)

where:

1. φ1
d only defined inside the sample is solution of the inhomogeneous Neumann problem:

−∆φ1
d = −∇·M (1.37)

with the boundary condition:
∂φ1

d

∂n
= n·M (1.38)

2. φ2
d, defined everywhere, is solution of the harmonic Laplace equation:

∆φ2
d = 0 (1.39)

with the boundary condition:

[φ2
d] = φ1

d and

[
∂φ2

d

∂n

]

= 0 (1.40)

In practice, φ1
d is first calculated by using a finite element calculation, then φ2

d is estimated
by a boundary integral at every point of the bounded domain D:

φ2
d =

∫∫

φ1
d

∂G

∂n
dS with G(r) = − 1

2π
ln |r| in 2D (1.41)

and G(r) = − 1

4π

1

|r| in 3D (1.42)

φ2
d can be seen as a perturbation to the solution φd and corrects the result obtained at the

first stage. This method prevents to mesh outside the sample, improving computing time which,
however, remains of the order of N4/3 in 3D where N is the number of calculation points. These
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p-1

Figure 1.18: Schematic for the Fast Multipole Method in one dimension. The blue dots are the
expansion centers. The arrows present the translations. This scheme is in 6 lines to make it
clearer however, in the real space, all the lines are merged. At the top are the sources, {x}.
The target y is at the bottom. The z and z′ abscissae are the large blue dots. For the (S|S)
translations, z is the point of the high level (e.g . level 3) and z′ the point of lower level (e.g .
level 2). In case of (S|R) translation it is the reverse. z′ is the point of the high level (e.g . level
3) and z the point of lower level (e.g . level 2). For both types (S|S) and (R|R), translation
is done from z to z′.
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points can be either sources or targets. The second method, detailed in the following is more
powerful. It is the one implemented in our code.

We use fast multipole methods for the fast computation of the demagnetizing field. Long
range interactions are not sensitive to local variations of the magnetic potential. Thus contri-
butions to this potential are grouped in boxes. These boxes are hierarchically ordered, each
box containing information about smaller contained boxes. Thus for each place the magnetic
potential is computed, contributions to the latter are not computed again for all sources.

The main idea of the fast multipole method (FMM) is to transform a node-to-node interaction
into a cell-to-cell interaction. Each FMM-cell is divided until it contains at the most a defined
number of nodes. Thus the system is put into a computation box which is divided into smaller
and smaller boxes or segments, as presented in the 1D case in Figure 1.18. Two multipole
methods exist, the hierarchical and the fast multipole methods. The first one is in O(N logN),
and the second, which is an improvement of the first one, is in O(N).

The computing of the magnetic pseudo-potential leading to the demagnetizing field is com-
puting time-consuming. The idea is thus to use the Fast Multipole Method (FMM) to compute
the magnetic pseudo-potential using a faster method:

φd(r) =
∑

j

qj
|r− rj |

(1.43)

In practice, the system is divided with a dyadic partition in order to get elements (segments
in 1D, squares in 2D and cubes in 3D), containing a limited number of targets or sources. Within
this partition, level n has 2n cells along one direction. For each cell of level n and of center z,
multipolar moments associated to z are calculated. Then information is propagated from level
n to level n−1, writing the multipoles associated to the level n−1 as a function of those of level
n and so on until level 2 (there is no level 1). The maximum number of elements a FMM-cell
can contain is constrained. The system is then divided until boxes contain, at maximum, the
defined number of elements. The next step is to propagate information towards the target (the
place where we want to compute the magnetic potential). Using an identification between far
field and near field expansion (detailed in the following), multipoles are translated from far cells
to the cell containing the target.

For sake of simplicity, let us go deeper into the explanation of FMM and take the example
of the Cauchy kernel to describe the potential. Even though it has no physical meaning, its
writing down is easier than others with a logarithmic kernel for example. In one dimension, it
reads:

K(y − x) =
1

y − x
(1.44)

where sources are at positions x and targets y. Let us define the two notions of far field and
near field expansions. For that, x and y are separated by a third point z, inducing a Taylor
expansion depending on position z:

K(y − x) =
1

y − z + z − x
(1.45)

Far field: Let us assume that z is close to x. Then the kernel becomes:

K(y − x) ∼= 1

y − z

p−1
∑

k=0

(
x− z

y − z

)k

(1.46)

by neglecting the terms of order larger than p. Convergence is possible for
∣
∣
∣
x−z
y−z

∣
∣
∣ < 1

Near field: in that case z is close to y:
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Figure 1.19: Far field and near field translation. t is the translation vector from z to z′. (a) Far field.
{x} is accessible after the translation. (b) Near field. {y} is accessible after the translation.

K(y − x) ∼= −1

x− z

p−1
∑

k=0

(
y − z

x− z

)k

(1.47)

after truncation. Convergence is possible for
∣
∣
∣
y−z
x−z

∣
∣
∣ < 1. In both cases, p is the order of the

multipolar expansion.
As said above the first step is to write down multipoles, that is to say to transfer information

from leaves to expansion points (from level 4 to level 3 in Figure 1.18). An expansion point
is the center of a cell, collecting information from the higher level. This is done using a direct
calculation. These multipoles are then translated from level n to level n − 1. This translation,
called multipole-multipole translation and written (S|S) uses the far field expansion, so that:

K(y − x) =

p−1
∑

k=0

(x− z)k
(

1

y − z

)k+1

=

p−1
∑

k=0

bk(x− z)
︸ ︷︷ ︸

regular

Sk(y − z)
︸ ︷︷ ︸

singular

(1.48)

where the bk(x− z) are the multipole moments. To increase the convergence of the sequence, z
the center of a cell of level n−1 is translated to z′ at level n (Figure 1.19a). The new multipole,
after the translation, is written b̃k(x− z′) and can be written as a function of bk(x− z):

b̃k(x− z′) = (x− z − t)k =
k∑

m=0

(
k
m

)

(−1)k−mtk−m

︸ ︷︷ ︸

(S|S)

(x− z)m
︸ ︷︷ ︸

bm(x−z)

, t = z′ − z

b̃k(x− z′) =

k∑

m=0

(S|S)km bm(x− z) (1.49)

The following aspect of the expansion is the downward pass, that is to say the transfer
from the expansion centers to the target, starting from cells of the lowest level (level 2). This
expansion follows the same principle as the (S|S) translation but in near field. They are called
local-local translation and written (R|R). Let start from the kernel and derive it:

K(y − x) = −
p−1
∑

k=0

(
1

x− z

)k+1

(y − z)k

= −
p−1
∑

k=0

ak(x− z)Rk(y − z) (1.50)
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In the same manner, moments are translated from z to z′ with z the center of the cell of
level n− 1 and z′ the center of the cell of level n (Figure 1.19b):

K(y − x) =

p−1
∑

k=0

ãk(x− z′)Rk(y − z′) (1.51)

ã(x− z′) =

(
1

x− z′

)k+1

=

(
1

x− z − t

)k+1

, t = z′ − z

ã(x− z′) =

(
1

x− z

)k+1
(

1

1− t
x−z

)k+1

ã(x− z′) =

p−1
∑

m=k

(
k
m

)

tm−k

︸ ︷︷ ︸

(R|R)

(x− z)m
︸ ︷︷ ︸

am(x−z)

ã(x− z′) =

p−1
∑

m=k

(
k
m

)

(R|R) am(x− z) (1.52)

Now we are able to translate moments from one level to another, for up and downward
passes. The last step to explain is the transition from the (S|S) to (R|R) translations. The goal
is the write the ak(x− z′) from the bk(x− z), thus to equate far field and near field expansions.

ãk(x− z′) =

(
1

x− z′

)k+1

=

(−1

t

)k+1( 1

1− x−z
t

)k+1

ãk(x− z′) =

p−1
∑

m=0

(−1)k
(
m+ k

k

)

t−m−k−t(x− z)m

ãk(x− z′) =

p−1
∑

m=0

(S|R)km bm(x− z) (1.53)

Standard calculation of the magnetic potential requires N2 operations, if N is the number of
sources and targets. Lets have a look at the number of required operations with FMM. For that,
we discard the convergence radius of the sequence so that all sources and targets are considered.
This explanation is based on the Figure 1.18:

Np+

p−1
∑

k=0

k2 +N × 22 × 22p2 +

p−1
∑

k=0

+Np = Np+
N(p− 1)p(2p− 1)

6

+N × 22 × 22p2 +
N(p− 1)p(2p− 1)

6
+Np (1.54)

∝ N (1.55)

The most important point to decrease the number of operations is the (S|R) translation.
This translation plays the role of the ’middleman’ through which all information passes.

1.3.3 The home-made finite element code FeeLLGood

This section is dedicated to the home-made finite element code FeeLLGood based on the inte-
gration of the LLG equation. First, I present the transformation of the LLG equation to the
weak formulation used in the code.



44 Chapter 1. Micromagnetism: concepts and numerics

Explicit scheme and weak formulation

The crucial property of the LLG equation is m.dmdt = 0. The norm of magnetization is therefore

fixed and dm
dt belongs to the tangent plane of m. Let us go back to the LLG equation (1.17), in

which the effective field may be split as:

Heff = Hexc +Hd +Hext +HK (1.56)

where Hexc is the exchange field, Hd is the dipolar field, Hext is the applied field and
HK is the anisotropy field. With FEM, it is not possible to write the local expressions of
the differential equation, the so-called strong formulation (it is not possible to derive used the
functions at nodes). The equation is thus projected onto test functions (numerical approximation
of a distribution function), giving rise to the weak formulation. A proper sum of weighted test
functions is assumed to be a good approximation of the solution. All the code is based on test
functions wi. They are linked to triangular functions that provide a spatial size. The vector
gives the direction. This weak formulation is therefore used in FeeLLGood. For example, let us
use the exchange field closely related to: m: Hexc = [(2A)/(µ0Ms)]∆m. The constant 2A/µ0Ms

is set to 1 for calculations and the LLG equation becomes:

v = −m×∆m+ αm× v (1.57)

where v = dm/dt is the unknown variable. In cartesian coordinates, using Einstein notation:

v = −m×∆miei + αm× v (1.58)

Hex =







∆mx

∆my

∆my

(1.59)

At this stage the goal is to rebuild a heat-like equation dT/dt = D∆T , so as to determine
the exchange energy. This is achieved by doing the cross product ”m× LLG”:

m× v = −m× (m×H) + αm× (m× v)

m× v = −(m·H)·m+H+ α(m·v)·m− αv

αv +m× v = H− (m·H)·m (1.60)

Let us concentrate on the exchange term of the latter equation: m·H = mx∆mx +
my∆my +mz∆mz with ∆ = div (grad)

m·H = mi ∂
2
xmi +mi ∂

2
ymi +mi ∂

2
zmi

= ∂x(mi ∂xmi)
︸ ︷︷ ︸

=0

−(∂xmi)(∂xmi)

+ ∂y(mi ∂ymi)
︸ ︷︷ ︸

=0

−(∂ymi)(∂ymi)

+ ∂z(mi ∂zmi)
︸ ︷︷ ︸

=0

−(∂zmi)(∂zmi) (1.61)

Thus m·H = −(~∇m)2. If we go back to equation Eq. 1.60, we get:

αv +m× v = ~∆m+ (~∇m)2
︸ ︷︷ ︸

Lagrange multiplier

m (1.62)

The Lagrange multiplier is used to check whether time derivative of magnetization is still in
the tangent plane. Since it is not possible to use local equations, weak (or projective) formulation
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is required. An example of the types of function used to transform the formulation into a weak
formulation is the distribution:

∆rf(r) =

∫

d3r δ(r− r′)∆r′f(r
′) (1.63)

The best numerical approximation of distribution function is triangular function β (Fig-
ure 1.17a) so that equation 1.63 becomes:

∆rf(r) →
∫

d3r βi(r− r′)∆r′f(r
′) (1.64)

With finite element method the local formulation is turned into a weak formulation weighted
with test functions βi. To weigh these local equations we project equation onto vectorial func-
tions, the wi functions. Strong formulation 1.62 is transformed as follows:

∀ w ⊥ m ,

∫

d3r w.αv +

∫

d3r w.(m× v) =

∫

d3r ∆miw.ei
︸ ︷︷ ︸

1

−
∫

d3r (mn
β .∆miei)mβ .w

︸ ︷︷ ︸

=0

(1.65)

There is no boundary conditions that only generate surface terms. Term 1 can be written
as:

∆mβw.eβ = div(∇mβ)wβ

(∆mβ).wβ = −∇mβ .∇wβ + div(w.∇mβ)
∫

d3r ∆mβ .wβ = −
∫

d3r ∇mβ .∇wβ +
{

wβ n.∇mβ dS
︸ ︷︷ ︸

∂m
∂n

=0

(1.66)

∫

αw.v +

∫

w.(m× v) = −
∫

∇wβ .∇mβ (1.67)

Equation Eq. 6.3 is a typical weak formulation for an explicit scheme. Note that we take only
the exchange into account. It is an integral form of LLG equation, weighted by test functions.

We discretize into time step t so that for all times t, there is an integer n such that t = n/∆t,
this weak formulation, so that the explicit scheme becomes:

∫

αw.v +

∫

w.(mn × v) = −
∫

∇wβ .∇mn
β (1.68)

Temporal scheme - θ-scheme

Starting from the weak formulation obtained above, the next step consists in setting up a
temporal scheme. The time-derivative of magnetization is in fact different from v = dm/dt
since it is not possible to get dt → 0. Thus, we write ∆m/∆t. The explicit scheme (6.3) is
associated with a stability condition of the type ∆t/(∆x)2 < ρc.

To stabilize the scheme, we derive a θ-scheme. This scheme follows the same idea as those
derived for heat-like equation. However in the present case, the value of θ has nothing to do
with the order of the method as it is in mechanics. Indeed, our method is a first order method
since we removed the Lagrange multiplier. We thus have:

∫

αw.v +

∫

w.(mn × v) = −
∫

∇wβ .∇mn,θ
β (1.69)

with:
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{
θ = 1 : implicit
θ = 0 : explicit

θ = 1 being equivalent to equation Eq. 1.68, and

mn,θ = mn + θv∆t, θ ∈ [0, 1]

Magnetization is normalized to 1 to follow the theory of micromagnetism. Magnetization we
would like to be mn+1 is then:

mn+1 =
mn,1

|mn,1| =
mn

√
1 + v2∆t2

Taking into account this scheme, LLG equation 1.68 is now:

∫

αw.v +

∫

w.(m× v) = −
∫

∇wβ .∇mn,θ
β

Error is in ∆t2 which is negligible since we consider first order. Thus, the formulation which
is kept is: ∫

αw.v +

∫

w(m× v) + θ∆t

∫

∇wβ .∇vβ = −
∫

∇wβ .∇mn
β (1.70)

Energy dissipation

For the system to relax towards equilibrium there is a need to dissipate energy, otherwise mag-
netization remains on iso-energy lines. If we take into account only exchange energy, to dissipate
energy the weak formulation needs:

En+1 − En =

∫

|∇mn+1|2 −
∫

|∇mn|2

= 2∆t

∫

∇v.∇mn +∆t2
∫

(∇v)2 < 0 (1.71)

This is granted by the following relation, valid with a continuous scheme and under some con-
ditions with a discrete scheme (Bartel’s theorem):

∫

|∇(mn+1)|2 ≤
∫

|∇(mn,1)|2 (1.72)

For instance, for tetrahedrons, dihedral angles must be lower than π/2 and for a hexahedral
mesh, prisms must be right. Now equation 1.71 is going to be written using only v. If we replace
w by v in equation 1.70, which is allowed since the time-derivative of magnetization and test
functions come from the same function space:

∫

αv2 + θ∆t

∫

|∇(v)|2 = −
∫

∇vβ .∇mn
β

∆E ≤ −2∆t

[∫

αv2 + θ∆t

∫

|∇(v)|2
]

+∆t2
∫

|∇v|2

∆E ≤ −2∆t

∫

αv2 + (1− 2θ)∆t2
∫

|∇(v)|2

The first term of the right hand side is the physical dissipation of energy. This latter equation
shows that:

• θ ≥ 1/2 the scheme is energetically stable whatever ∆t is
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• θ = 0 the scheme is stable under conditions

In our simulations, we use θ = 1/2 which is the most stable case. Because of the normalization
of magnetization, it is possible to show that θ = 1/2 does not correspond to a second-order
scheme.

Tangent plane

From LLG equation 1.17, we can note that m· ∂m/∂t = 0, meaning the time derivative of m
lies in the tangent plane of m. This ensures that the norm of m is maintained during the time
evolution. The use of the tangent plane was introduced by Alouges [48]. At each point the test
function and the time derivative of the magnetization are orthogonal to the magnetization. This
tangent plane is built at each step.

ep = r×m

eq = m× ep

where r is the position vector. Thus (m, ep, eq) is an orthogonal basis and (ep, eq) is the
plane base.

In practice, to construct the system of linear equations from the Alouges equation 1.62, first
there is a projection with vectorial function w = βiep then w = βieq. Thus after assembling
matrices, the system of linear equations has 2N equations with 2N unknown factors. At each
node of the finite element mesh, times derivative of magnetization v has two scalar components
(vp, vq).

1.3.4 Towards second order

As a reminder, we said that the θ-scheme does not signify a second order scheme due to the
normalization of magnetization vector.

α

∫

v.w +

∫

(mn,θ × v).w =

∫

Hn,θ.w −
∫

λn+θmn,θ.w (1.73)

where field at time n is Hn,θ = Hn
ext + θ∆t~∆v and λ = m·H is the Lagrange multiplier.

Then:

∫

Hn,θ.w = −
∫

~∇mn.~∇w − θ∆t

∫

~∇v.~∇w (1.74)

Following the same principle as before, we get the following θ-scheme:

α

∫

v.w +

∫

(mn × v).w + θ∆t

∫

~∇v.~∇w = −
∫

~∇mn.~∇w

− θ∆t

∫

λn+θv.w + ϑ(∆t2) (1.75)

−
∫

λn+θmn.w (1.76)

The latter scheme is of ϑ(∆t2) precision. It is possible to switch λn+θ to λn. To stabilize the
scheme, λ is chosen so that λn = Hn

ext.m
n = −(~∇mn)2

We can write equation Eq. 1.75 in another form:

∫ [

(α− θ∆t(~∇.mn)2
]

v.w +

∫

(mn × v).w + θ∆t

∫

~∇v.~∇w = −
∫

~∇mn.~∇w (1.77)
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One possibility to get a unique solution for this equation is to keep [(α− θ∆t(~∇.mn)2] > 0.
A first solution is to limit ∆t. A second solution is to define :

α̃ =
α

1 + θ∆t
α (~∇.m)2

(1.78)

We chose this latter solution.

1.3.5 About the norm of the magnetization

Theory of conventional micromagnetism states that |m| = 1. However, with FEM, magnetiza-
tion is computed at nodes of tetrahedrons, thus implying that the norm is not conserved inside
due to linear interpolation. In the same manner, the study of a Bloch point wall raises some
problems. Indeed, theory does not include any point where magnetization vanishes. In practice,
Bloch point is not well described by the FEM approach. One observes that it lies in the middle
of a cell [36, 49] , as far as possible from nodes where magnetization is necessarily equal to 1.



Chapter 2

Phase diagram of domain walls:
from nanostrips to nanowires

As seen previously (sec.1.2), DWs in strips are of two forms: transverse wall (TW) (Fig-
ure 2.1d) and vortex wall (VW) (Figure 2.1c), initially described by R. McMichael and M.
Donahue [27]. Both types of DWs have a magnetic charge 2twMs with t the thickness of the
strip and w its width. TWs and VWs have been numerically investigated until w = 500 nm
and t = 20nm [3]. A later study [3] showed a transition of TW from a symmetric shape to an
antisymmetric one (ATW) for large width. TW is of lower energy and thus more favourable
than the VW for dimensions tw . 61∆2

d. Regarding nanowires, simulations began later,
pioneered by R. Hertel [33, 50] and H. Forster [32, 51]. In such geometries, there are, as in
strips, TWs (see Figure 2.3) but also Bloch point walls (BPW) (see Figure 2.2d-g). Existence
of the latter is made possible in nanowires of sufficient large diameter thanks to the larger third
dimension compared to strips, enabling a flux-closure of magnetization.
A phase diagram is a two-dimension plot presenting areas of the domain walls of the lowest
energy. Instead of presenting liquid, solid and gas phases in a (Pressure, Temperature) diagram,
here phases are the different types of domain walls and (t, w) stands for (P, T ). The two
dimensions are thickness t and width w. Lines separating each zones on diagram are phase
transition lines. DWs separated by these lines are of the same energy on lines.

49
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Figure 2.1: Domain walls in strip. (a) Coordinates used to describe strips, x and y along transverse
directions, and z along strip length (or the wire length in case of wire). (b) Phase diagram of
DWs in strips known to-date [3, 27] (c-e) Mid-height views of micromagnetic simulations of
vortex (VW), transverse (TW) and asymmetric transverse (ATW) walls. Strip width is 100 nm
and thickness 16 nm for c and d, 28 nm for e. Color codes magnetization component along z.

2.1 Why does it seem interesting and relevant to build a phase
diagram?

So far, a small part of the (t, w) phase diagram has been explored, until t = 20nm and w =
500nm by Nakatani et al . [3]. However a larger range of geometries, not covered by this diagram,
is experimentally achievable [52]. It is thus relevant to describe domain walls that can be found
in such systems. Moreover, strips and wires have been considered as two different kinds of
system and physics seems to be different. However, starting from a strip and increasing its
width gives rise to a wire. Thus physics should be similar. Moreover, there has been no uniform
thinking in the names given to the DWs. As an example various names have been given to refer
to the same DW that can be conflicting whether you think for strip or for wire. For example,
the names Bloch point wall (BPW) [2, 35], vortex wall (VW) [32, 53, 54] or pseudo-vortex wall
[55] have been used to describe for the same object. However, the name VW refers to a type of
DW in strip with a topology which is distinct from that of the BPW, raising a problem when,
for example, dealing with a square wire that can be viewed as a wire or a thick strip. This is not
the only example of confusion that appears when mixing names of DWs. There was a clear lack
of a simple DW classification. The need for such a classification comes from the complexity of
systems that can be found in 3D structures upon increasing their dimensions. The goal here is to
provide a description, using simple characteristics, of a priori complex configurations. For this
classification, we use topology, symmetries and we also introduce measurable quantities such as
the circulation of the magnetization, asymmetry of a DW and the domain wall width. For this
classification, second-order phase transitions and order parameters are linked. This approach
was also done [56].

Finally, this phase diagram will be a tool for emerging experimental production of strips or
wires with perfect rectangular or square cross section [52]. With a phase diagram, wires can be
tailored with dimensions suitable for the desired DW or, conversely, it allows to determine the
type of DW for a given geometry.
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a b

c d

Figure 2.2: Domain wall topology in one-dimensional structures (a) Transverse wall (TW) and (b)
Vortex wall (VW) in strip. (c) TW and (d) Bloch-point wall (BPW) in a cylindrical wire.
(a-) share the same topology whereas (d) is of another type.

With these objectives in mind, concepts and simulations presented in this chapter concern
systems with either square or circular cross section. As said above, the choice for square cross-
section comes from the desire to span continuously the whole space from strips to wires with a
geometry that is relevant for experimentalists using lithography. To the contrary, the circular
cross-section is more relevant for bottom-up synthesis. All results stand for Permalloy (Fe20Ni80)
however they can be renormalized with ∆d to be applied to any other material without magne-
tocrystalline anisotropy.

Before we go into more details, let us define some notions that will be used in the following.
The (t, w) plane is cut with the bisector t = w. The area above this line will be called upper
triangle while the area under will be lower triangle.

I will also use the words circulation and curling. These words are interchangeable. The
latter term refers to the curl operator and is related to circulation of magnetization along a
close path (Stokes theorem). As seen in sec.1.1.4 and sec.1.1.3, the name curling as been used
since the early days of micromagnetism to describe a certain type of reversal mode of magnetic
system (Figure 1.6a). It also refers to magnetic textures with this sort of circulation. Curling
is not only a transient state (nucleation, reversal) but also a steady state that can be a relevant
magnetic configuration at rest (sec.1.1.3). The notion of curling is more general than the one of
vortex which highlights the core structure and is related to a particular magnetic distribution,
VW in strips.

2.2 Domain wall topology

2.2.1 Transverse versus vortex wall

Take the example of the TW and the VW in strips and examine them in more details (see
Figure 2.1c-d). In both of these domain walls, a tube of magnetization goes though the strip.
For the TW the tube goes from one edge to the other and at small diameter the configuration is
close to the one-dimensional model as in disk-based nanowires of small diameter (Figure 2.3a).
In the case of VW, the tube of magnetization goes from the bottom to the top along the thinest
dimension. No matter how is the magnetic configuration in these DWs, they share the funda-
mental aspect that the tube of magnetization goes through the strip. Upon increasing diameter,
or upon increasing the thickness towards a square base for strips, the magnetic configuration
of the TW becomes more complex so that also curling is found (Figure 2.3). We will discuss
this in details in the following. Let us just note for the moment that through a rotation of π/2
around the wire (be it disk or square-based) axis it should be possible to go from a TW (resp.
VW) to a VW (resp. TW). That is in a square and circular nanowires of large enough size,
a TW exhibits both a transverse aspect (a tube of magnetization that crosses the wire) (see
Figure 2.3b) and a vortex aspect (circulation of the magnetization around the transverse com-
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ponent) (see Figure 2.3c) and that the VW and the TW are then degenerate. This degeneracy
is an important point enabling us to state they share the same topology and thus it is possible
to go continuously from one to the other. In that sense, when a DW exhibits both of transverse
and vortex features it is relevant to name it transverse vortex wall (TVW). For dimensions at
which these DWs are only either transverse or vortex they may be named TW or VW to avoid
any confusion. For a sake of clarity, the direction of the transverse (or vortex core) component
is added to the name of the DW, for example, a x-TW for a TW with the transverse component
along x-direction.

2.2.2 Bloch point walls

The main feature of the second type of DW is curling, as for a VW. But in the wire case, the
curling is longitudinal, also called orthoradial curling, and allows a better flux-closure. This
magnetic configuration is made possible in wires and not in strip thanks to a larger lateral
dimension. In strips, the cost in exchange energy prevents the formation of such DW. Orthoradial
curling prevents a radial component. Moreover, the head-to-head character of the DW forbids a
longitudinal component within the wall. Since there is neither a longitudinal component nor a
radial one, there must be a point where the magnetization vanishes. This point, predicted early
in the theory of micromagnetism [24, 31, 57, 58] is called Bloch point. For this DW, there is no
tube of magnetization going through the wire, and with this aspect is of another topology than
TW and VW. Due to its very small size, the Bloch point has not been observed directly. The
name of Bloch point wall was proposed later by A. Thiaville and Y. Nakatani [2] and is now
used by several authors.

2.3 Phase transitions

2.3.1 Definitions

• First-order transitions separate two states that are stable or metastable on either side of
the transition, leading to a hysteresis. There is not necessarily a breaking of symmetry.
Across the transition, the order parameter changes abruptly. For instance the iso-energy
line between the TW and the VW in strips is a first-order transition.

• Second-order transitions are associated with a continuous rise of an internal degree of
freedom in the DW. This degree of freedom is characterized by an order parameter whose
transition is continuous with energy and is associated with a breaking of symmetry. In
this case, only one state exists on either side of the iso-energy line. As an example, one
can think about the transition between TW and ATW in strips [3].

2.3.2 Discussion about the first-order transition between TW and VW

Let us now examine the known TW/VW first-order phase transition. In the lower triangle of
the phase diagram (Figure 2.4a), it is known for w up to 500 nm and t up to 20 nm [3] that the
x-TW is the most stable under the phase transition line (region 1). Since in strips thickness and
width are equivalent, by symmetry versus the diagonal, a x-TW is transformed into a y-TW.
Then by continuously increasing the width of the strip, keeping the same direction for transverse
component, magnetization can be non uniform in the strip plane so that y-VW is the ground
state (region 2). Through this continuous transition from a TW to a VW, three points can be
highlighted. First, we see that (obtained through continuous deformation) these two DWs are
topologically equivalent (Figure 2.3b,c). Second, both DWs have the same energy on the t = w
line, as a π/2-rotation around the length axis transforms a TW into a VW. Third, as an analogy,
it behaves like the liquid-gas transition for which it is possible to find a path to go continuously
from one state to the other around a critical point. The path, in the case of the DW, is the
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Figure 2.3: Illustration of the transverse-vortex character of a TVW in disk based nanowires. (a) left:
open view of the micromagnetic configuration obtained with FeeLLGood for a 30 nm diameter
nanowire. The surface of iso-value mz = 0 (grey disk) and lines of magnetization are displayed.
Right: Open view of the micromagnetic configuration for a circular nanowire of 70 nm diame-
ter. (b) Cross-section view of circular nanowire of 70 nm diameter. Transverse component of
magnetization is pointing up. (c) Same micromagnetic configuration π/2-rotated so that the
transverse part is pointing out, revealing the vortex feature of the TVW around the transverse
part. (d) Scheme for a TVW with the curling part (dotted circle). Green arrows illustrate
magnetization direction, red and blue signs are for the magnetic charges.
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Figure 2.4: Expected phase diagram Sketches are based on existing knowledge extended by symmetry
arguments. Bold (resp. thin) lines mark first (resp. second) order phase transition. Full lines
are used to separated two states, one of them being the ground state. Doted lines are used
when the two states considered are metastable , the ground state being another one. The phase
diagram is built from (a) to (c) adding one by one transition line. (a) First-order transition
line separating transverse walls and vortex walls. (b) Second-order phase transition between
symmetric/asymmetric TWs, but also VWs from Bloch walls. (c) First-order phase transition
separating the BPWs and the TVWs. Thus there are two lines, one separating BPW and VW,
another line separating BPW and TW.
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Figure 2.5: Scheme explaining the right angle between the diagonal and the first-order transition

line.

line t = w. To close to loop and go back to a x-TW (region 1), transverse component need to
rotate and the system to cross an energy barrier with two minima. Thus it is a first order phase
transition.

The y-VW is the ground state above the line, in region 2. If we progressively distort a x-TW
by increasing the thickness of the strip and decreasing its width we end up in region 3 with
t > w. The obtained DW is a x-VW of higher energy than a y-TW. Through this continuous
transition from a TW to a VW, three points can be highlighted. First, we see that (obtained
through continuous deformation) these two DWs are topologically equivalent (Figure 2.3b,c).
Second, both DWs have the same energy on the t = w line, as a π/2-rotation around the length
axis transforms a TW into a VW. Third, as an analogy, it behaves like the liquid-gas transition
for which it is possible to find a path to go continuously from one state to the other around a
critical point. The path, in the case of the DW, is the line t = w.

A question is whether the transition TV/VW line crosses the bisector at right angle at the
point named DTW. There is only one line of phase transition VW/TW. Let us name E(t, w) the
difference of energy between the x-TW and the y-VW. Ex being the energy of a x-TW and Ey

the energy of a y-VW. For any couple (t, w) > 0, E ∈ C2(t, w). Thus it is possible to write the
Taylor expansion around DTW

Ex−TW = E0 + (t− t0)∂tETW(t0, w0) + (w − w0)∂wETW(t0, w0) +
1

2
(u− u0)

2∂ttETW(t0, w0)

+
1

2
(w − w0)

2∂wwETW(t0, w0) + (w − w0)(t− t0)∂wtETW(t0, w0)

Ey−VW = E0 + (t− t0)∂tEVW(t0, w0) + (w − w0)∂wEVW(t0, w0) +
1

2
(u− u0)

2∂ttEVW(t0, w0)

+
1

2
(w − w0)

2∂wwEVW(t0, w0) + (w − w0)(t− t0)∂wtEVW(t0, w0)

E(t, w) = Ex−TW(t, w)− Ey−VW(t, w)

E(t, w) = (t− t0)E
′

t(t0, w0) + (w − w0)E
′

w(t0, w0)

+
1

2
(t− t0)

2
E

′′

t (t0, w0) +
1

2
(w − w0)

2
E

′′

w(t0, w0)

+(t− t0)(w − w0)E
′′

tw(t0, w0)

where E
′

i(t0, w0) = (∂iEx−TW − ∂iEy−VW)(t0, w0), i = t, w

E remains zero along both the diagonal and the iso-energy line and is non-zero along all
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other directions pointing into regions. The swap of t and w is possible if E(t, w) = E(w, t) and
thus if the line crosses the diagonal at right angle.

2.3.3 TVW-BPW

So far the Bloch point wall has been described in literature for the geometry of wires for either
disk [32, 33] or square cross section [2], that is w = t. The TVWs and the BPWs do not share
the same topology, are separated by an energy barrier and are (meta)stable over a large range of
diameters. Thus, the iso-energy line is of first-order. On the bisector, it is known that beyond
a point called DBP, located at t = w ≈ 7∆d, the BPW becomes lower in energy than the TVW
[2]. As the energy of a domain wall is continuous versus the system’s dimensions, there should
exist a region on either side of the diagonal where the BPW is of lower energy than the TVW.
There is thus a line of first order transition between the TVW and the BPW associated with
this region, on either side of diagonal.

Let have a look at this transition (see Figure 2.4c). On the lower triangle, the x-TVW
(ie x-TW) and the y-TVW (ie y-VW) do not have the same energy so that there must exist
two different first order transition lines, one for the x-TVW/BPW (thus x-TW/BPW) and
another, for y-TVW/BPW (thus y-VW/BPW). As said before, on the diagonal, TW and VW
are degenerate thus both first order lines should intercept on the diagonal at the same point
already defined, DBP. As the energy difference between TVW and BPW is differentiable with
C2, no kink is expected at DBP, the two curves display complementary angles with the diagonal.
The two lobes of the blue curve are for the continuity of the full line of the transition BPW/TVW.

2.3.4 Asymmetries

The asymmetry towards a slanted wall is reminiscent for the zig-zag domain wall found in
extended thin film with uniaxial anisotropy [3]. It is characterized by the fact that the locus of
entry and exit of the flux of magnetization on either edge of the strip are shifted along the length
of the strip (see Figure 2.1e). This asymmetry has been detected by simulation by Thiaville
et al . [3] in a refined phase diagram, between the TW and the VW in flat strips. Existence of
this DW was permitted by application of a magnetic field along the strip length as a method to
induce ATW. ATW remains once field is switched off, justifying the place of ATW in the phase
diagram. Asymmetry can also appear spontaneously within a strip. Following this result, let
us assume that this asymmetry exists for a broad range of geometries. In Figure 2.4b let us
continue the transition line TW/ATW towards the diagonal, and beyond in the upper triangle.
In this latter region, broad and narrow dimensions of rectangular cross-section are swapped
with respect to region 1 so that starting from a DW with a dominating x-through flux along
the transverse direction we still end with a DW with a x-through character but along the short
dimension, and thus with a dominant x-VW character. Flux enters from one surface and exits
from the other flat surface. Swapped back into the lower triangle this is a y-VW (3). Thus,
depending the lateral size it is either a TW or an ATW. There is no metastability domain on
either side of the transition line. All these characteristics make the transition TW/ATW a
second-order phase transition (Figure 2.4b). Nevertheless the VW/ATW transition remains of
first-order as it was previously the case for the transition TW/VW. Introduction of asymmetry
in the entry/outlet transforms the VW into a Bloch wall of finite length terminated by a surface
vortex at either of its ends (4) [59–62]. This type of asymmetry is related to the physics of the
transition from a Néel wall to a Bloch wall upon, e.g . applying a magnetic field transverse to
the wall [14, 61, 63]. For all cases, asymmetry appears progressively.

If we now focus again on the lower triangle and on the evolution of the microstructure of
the lowest energy with the thickness . For a same strip width (for example 200 nm), an increase
of the thickness may lead to find ATW (labelled 2) and VW (labelled 3) for small thicknesses
and a transition from VW to Landau walls (labelled 3 and 4) for larger thicknesses. The latest
transition has been detailed recently [64]. The occurrence of the Bloch wall allows to increase the
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Figure 2.6: Phase diagram obtained with micromagnetic simulations Notations for the lines are the
same as Figure 2.4.

length of the wall by giving an internal structure similar to a tilted Landau flux-closure pattern,
illustrating once again similarity between the VW and the TW (see [65] for more details).

2.4 Micromagnetic simulations

Two micromagnetic codes were used to span the whole range of geometries from planar strips to
square and cylindrical nanowires. The first code to be used is the finite difference code OOMMF
[40] to cover continuously the phase diagram from rectangular strips to square nanowires. The
cell size was 1 × 1 × 2nm3 for strips of width smaller than 60 nm and 2 × 2 × 2nm3 for strips
with larger width, up to 100 nm, and 4 × 4 × 2nm3 above. The damping parameter was set
to 1 to speed convergence with no impact on equilibrium state since we study only states at
remanence. Magnetic moments at ends of strips are fixed to prevent formation of end domains,
and length of the strips is chosen so that the aspect ratio is at least 10. The second code is
FeeLLGood, described previously. For these simulations, size of the tetrahedra is about 4 nm
and the damping parameter is set to 1. Charges at ends are removed to simulate an infinite
wire.

The parameters are those of Permalloy Fe20Ni80: µ0Ms = 1T for spontaneous magnetization
and A = 10−11 J/m for exchange stiffness. There is no magnetocrystalline anisotropy. For these
parameters dipolar exchange length is ∆d = 5nm. Moreover, since A and Ms are rather similar
for common soft magnetic materials, ∆d is of the order of 3 ∼ 5nm. All simulations can be
applicable to soft magnetic materials thus magnetocrystalline anisotropy.

Simulations for strips were done by Nicolas Rougemaille from the Néel Institute. I did the
other simulations.

2.4.1 First-order transitions

Simulations were first used to prove the existence and refine the first order transition lines
(Figure 2.6). For that, series of simulations of the two states to be compared were performed
for a given strip width (along x) and variable thickness (along y). The thickness-dependent
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Table 2.1: Summary of common features for first and second order phase transition from one micromagnetic
state to another

First order Second order

Stability Two states on either side, stable or Only one state on either side
metastable No metastability

Order parameter Abrupt transition Continuous transition, breaking of
symmetry

Energy

E

Order parameter

E

Order parameter

energy was fitted with a second-order polynomial. For first order transitions (x-TVW / y-
TVW, x-TVW / BPW and y-TVW/ BPW) states are (meta)stables on either side of the line
of equilibrium and their energies cross with different slopes (see Table 2.1) so that an accurate
determination of the transition is possible.

For wires with disk and square cross-section, we determined the transition BPW/TW to
be ≈ 6.2∆d for disk and ≈ 7.0∆d for square cross-section. Thus we confirm the magnitude
≈ 7.0∆d for the transition in square cross-section as found by Thiaville et al . in [2]. Prolongation
of the known transition line TW/VW towards diagonal was predicted to be of the order of
43nm ≈ 8.5∆d. Thanks to simulations, the fitted transition line (Figure 2.6) gives a transition
for t.w ≈ 60∆2

d that is to say for a point on diagonal: d =
√
60∆d ≈ 7.7∆d meaning the

approximation was rather good. Note that for all cases, DBP < DTW.
We are now going to explain this difference between the disk and square-based nanowire

transition. Figure 2.10a shows the energy of the two types of DWs for both square and disk cross-
sections, normalized by the section area. This normalization, as done in [2], has the advantage
that energy converges towards a finite value at low diameter that is 4

√

AKd/2. This value is
obtained within the effective 1D model taking into account exchange and dipolar energies. A
close look at curves shows that energy difference between the BPW and the TW is enhanced in
disk-based wires compared to square ones. This will be dealt later.

Our simulations confirm that the BPW remains stable over a range of rectangular cross-
sections, over both walls with a dominant TW or VW feature. Finally, the existence of two
distinct lines for BPW/TW and BPW/VW transitions is confirmed. Since DBP < DTW, we
can consider the transition line TW/BPW for small dimensions (up to w = 50 nm). For larger
dimensions, it is the transition VW/BPW which is of interest. Moreover, this order between
DBP and DTW gives rise to a triple point between the TW, BPW and VW.

2.4.2 Second-order transitions and estimators for their order parameter

For first order phase transition, states are metastable on either side of the transition. Energy
curves cross with different slopes, allowing to define a precise intersection point. To the contrary,
for second-order transitions, an initially symmetric state continuously develops a feature that
breaks its symmetry. Parabolic energy curves of each state is defined on only one side of the
transition and both energy curves share the same slope at the transition, making difficult to
better determine accurately transition. In that case, there are two possibilities to determine the
transition. The first is based on energy. The difference between the energy of one state with the
extrapolation of the energy curve of the other state (an extrapolation is necessary because there
is no metastability), is expected to scale with (t− tc)

1/2 in the Landau theory, with m2 and m4

terms in the energy. tc is the thickness for transition and m an order parameter characterizing
the magnitude of breaking of symmetry. The 1/2 exponent was already reported for transitions
in micromagnetics despite the complexity of the system [56]. Both branches are then fitted with
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Figure 2.7: Curling features (a) The three components of the layer-resolved curling for a y-TVW, and
the longitudinal component for a BPW, in a wire with a circular section of diameter 80 nm.
(b) Integration along the wire axis of the layer-resolved curling for a y-TVW in a circular section
wire. (c) Illustration of the competition of transverse with longitudinal curling for TVWs. The
dark arrows stand for the mean direction of magnetization, while the light arrows stand for
the curling part. Frustrated areas are highlighted with an exclamation mark. Cross-sections
highlighting curling through coloring the x component for a y-TVW, for (d) 60 × 60 nm and
(e) 80 × 80 nm square cross-sections, and (f) 80 nm-diameter disk cross-section of a y-TVW.
The sign of the transverse curling is the same in all cases. (g) Longitudinal curling around a
BPW for a 80 nm-diameter disk cross-section.

a parabola sharing the same slope at intercept, giving rise to a large uncertainty to determine
transition which is thus very sensitive to noise. Thus, this method requires closely-spaced data
points and a high accuracy in numerics. Second, an order parameter is defined, characterizing
the amplitude of the breaking of symmetry. This order parameter is a (t, w) direction in the
phase space. An extrapolation towards zero provides the locus of the transition. An exponent
1/2 is also expected from the Landau theory with m2 and m4 and has been reported [56, 66, 67].
It is also possible to find an exponent 1/6 as in [3]. At the transition, the second derivative of
this order parameter is not continuous. In the following, we followed the method based on the
energies. This procedure already enables us to prolongate the second-order known transition
line TW/ATW. This line goes above the TW/VW transition line.

We expect the known transition line TW/ATW to continue until diagonal and above since
there is, a priori, no reason for it to stop. Thus we look for its intersection with the diagonal,
that is to say in circular or square based nanowires. We tried several methods to induce an
asymmetry in these latter systems. The first trial consisted in giving an asymmetry to a TW
in the ansatz used as input for micromagnetic simulation. Induced asymmetry should not be to
large in order not to give to much energy to the system and get a disordered behavior. After
some iterations, TW has returned to its symmetric shape. The second attempt started from
a symmetric TW at equilibrium obtained with a micromagnetic simulation with FeeLLGood.
A magnetic field of a few tens of millitesla is applied along the wire axis so as to break the
symmetry of the TW. While the field is switched on, the TW is asymmetric, but then returns
symmetric without magnetic field. These methods has been tested until diameter of 150 nm
in circular nanowires. Thus there is not ATW on diagonal. We will come back to this in the
following section. Nevertheless, it is possible to extend the previously existing TW/ATW line
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as in Figure 2.6 and in the upper triangle, this line exists, as the transition from VW to Néel
wall then Bloch wall (see schemes on Figure 2.4b). This line, in the lower triangle, is essentially
flat for strip width 100 nm or higher, and we determined it at t = 57.5 ± 2.5nm. However,
when reaching diagonal, the rise of curling is more favorable than the breaking of symmetry (see
sec.2.4.2 for explanations).

Increase in curling in transverse walls

Type of second-order phase transition we describe below has already been reported in the context
of near-single-domain particles [56], but not in the context of domain walls. The case of VW,
with a curling of magnetization around the transverse component, which makes the vortex core,
is well known and found in flat strips. This curling develops to decrease dipolar energy but with
a cost in exchange. However this curling cannot develop in small size system because the very
large gradient of magnetization direction would induce a prohibitive cost in exchange. Following
the same arguments, DWs in nanowires of small diameter are essentially one-dimensional as
illustrated in Figure 2.3a-left. Circulation is computed using the curl of the magnetization. Since
the curl is a vector, it is possible to project it onto a basis made of the transverse component, its
orthogonal direction, and the wire axis. For small diameter, it has only one non-zero component
reflecting the rotation of the magnetization from one domain to the other. Implemented method
is detailed in chap.6.

Increasing diameter, the previously symmetric distribution of magnetization continuously
develops an orthoradial curling, either clockwise or anti-clockwise, so as to decrease dipolar
energy. This breaking of symmetry is again the signature of a second-order transition, with
circulation as an order parameter, for example any component of the quantity curl m. For a
TW, magnetization curl is non zero. Thus the integration of this quantity and its projection
along relevant axis (DW core direction, its orthogonal direction and the wire axis), enables to
identify a curling around DW core. This order parameter can be integrated either on the whole
wire or on a disk cross-section so as to study the evolution of the circulation with increasing
diameter (Figure 2.7b) or along the wire length (Figure 2.7a).

The three components of the z-resolved curl for a TVW in a disk-based nanowire are plotted
versus its length in Figure 2.7a, where the transverse component y is chosen to be the TW
core azimuth. Transverse curling adds a vortex character to the DW as seen from (curl m).uy.
This DW has developed both transverse and vortex features, whose visibility depends on the
cross-section examined Figure 2.3b and c. The reason of difference in the diedron shape at the
core of the TW will be dealt later.

When integrated on a disk cross-section and normalized with the diameter d, the z-component
(along the wire axis), (curl.m).uz, should equal π for a perfectly orthoradial vector field, i .e.
close to the situation found at a BPW center. Let us go back to the one-dimensional model and
take the example of a x-TW, (Figure 1.10) and look at the y component of the magnetization
curl. We see that each side of the TW is like the quarter of a vortex but with opposite directions.
Without using of absolute value, the y component of the curl would vanish (odd function as
seen in Figure 2.7a).

Thus, when integrated along the length of the wire, we take the absolute value to avoid
cancelation and normalize with d2. The curling is then of about π for a DW of length d. The
expected value for the curl along the wire depends both on the length of the wall and the
amount of curling in the wire. Thus, a change in the behavior of the magnetization curl, this
latter taken as an order parameter, indicates a transition. To follow this transition, the curl of
the magnetization is plotted versus wire diameter (Figure 2.7b). The integrated quantity grows
rapidly beyond 36 nm (≈ 7∆d) for both y and z components, exhibiting a breaking of symmetry.
This behavior is the one expected for a second-order phase transition. The x-component remains
almost constant since it stands for the change of orientation from one domain to the other. This
quantity ranges from π/2 at small diameters to π for large diameters. It is not zero at small
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diameter because each side of the wall has the shape of a quarter vortex whose center is at the
side of the wire. Let us look at the x-component of the curl of the magnetization to understand
the limit π/2:

(curl m).ux = ∂ymz − ∂zmy ∼ 1/L, L being the DW width
∫

∂zmy dSdz

d2
=

πR2

d2
[my(0)−mz(−∞) +my(0)−mz(+∞)]

=
π

4
× 2

=
π

2

At large diameter, it gets harder to find an estimation since the distribution of magnetization
is more complex and the 1D model does not apply. Despite this non-zero background, the
superimposed increase of the curl of magnetization is clearly visible as a second-order-like feature.

After the transition, the longitudinal curling keeps rising since there is nothing to prevent
the magnetization to rotate more than one loop. The reason is that these loops enlarge the
wall width and thus enable a decrease of the magnetostatic energy of the wall (see Figure 2.7b).
Since volume charges are given by divM ≈ −∂mz

∂z , if charges are spread through an orthoradial
curling, gradient of magnetization decreases, inducing a reduction of dipolar energy. Moreover,
at large diameter, DW width increases (Figure 2.10b) forcing the magnetization not to be
longitudinal. This increase of diameter is thus linked with a curling of the magnetization to
prevent the magnetization to be transverse to the wire axis and to decrease the dipolar energy.
The explanation for the longitudinal curling is less obvious. It is a characteristic more related to
the BPW but it has been reported and called helicoidal domain wall [68]. Although the two DWs
are different the physics explaining the phenomenon is the same. The longitudinal curling allows
a progressive variation of the longitudinal magnetization mz from one domain to the another
thus a decrease of its gradient along this direction. Since the magnetic charges are proportional
to −∂mz/∂z, the longitudinal curling dilutes them and leads to a decrease of the magnetostatic
energy. Since the decrease in dipolar energy exceeds the increase in exchange energy caused by
the rotation of the magnetization, both longitudinal and transverse are preferred to decrease
the energy for these systems.

Before we go further, let us briefly describe the difference between a x-TW and a x-VW. For
the latter DW there is the rise of a curling around the x-direction. Contrary to the longitudinal
component, the two transverse components do not keep increasing and reach π. This is consistent
with the picture of a vortex wall (only one loop around the vortex core). If we go back to strips,
the transition between a y-TW (resp. x-TW) and a y-VW with curling (resp. x-VW) occurs at
approximately 7∆d for the x dimension (resp. y).

The last paragraph is mainly descriptive and does not give any physical meaning for the rising
of the curling in such micromagnetic systems. As all systems, TVW in wire of increasing diameter
tries to decrease its energy and therefore the increasing magnetostatic energy. Indeed the dipolar
energy has an increasing contribution in head-to-head domain walls while the diameter gets
larger.

We can now turn to explanations for the origins of the curling in these two directions. It can
be noticed that the transverse curling of a TVW can be viewed, in first approximation, as two
ATW of opposite transverse asymmetries (see Figure 2.8b). Thus, in wires there is a breaking
of symmetry as well but it is expressed through a curling and not through a shift between enter
and exit of the magnetic flux. This curling spreads surface and volume charges leading to a
decrease of magnetostatic energy larger than what an ATW would allow. This explains the
tendency of the system to develop transverse curling instead of asymmetry in the entry/outlet
of the magnetic flux.

As magnetic charges are further apart one from one another, domain wall width L increases,
as found in simulations, see calculations in sec.2.5 and Figure 2.10b. For this curve, DW width
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has been computed with : L =
∫ +∞
−∞ sin2 θ dz, definition given by Jakubovics, apart from a factor

2 [69]. At small diameters the limit is expected to be 2
√

2A/Kd ≈ 14.1nm. It is worth noticing
that in circular wires of large diameter, DW lengths for both BPW and TVW are similar, as
well as the z-resolved curling Figure 2.7a, meaning the driving force is the same for the curling
no matter the DW internal structure (see sec.2.5).

Curling: finer features

In this last part, after a presentation of the main aspects about curling and asymmetries we are
now dealing with finer points. First, let us focus on the competition between two components of
the magnetization curl, longitudinal and transverse curling in TVWs (see Figure 2.7c to follow
the discussion). This competition leads to a frustration between both curling directions. Indeed,
the direction of the z-component of magnetization is opposite on either side of the DW. On the
other hand, the magnetization keeps the same direction around the vortex core all along the
transverse direction. These two opposite requests for both curlings are not compatible, and in
practice one of them is predominant over the other depending on geometry. In the case of a
square-based nanowire (see Figure 2.7d,e) transverse curling dominates (seen by the triangular
shape of the transverse part) whereas the two lobes on either sides of the wall originate from
longitudinal curling. It is the reverse for circular nanowires (see Figure 2.7f) for which the
transverse part does not assume a triangular shape extending over the whole cross-section as
was the case for the square nanowire. Indeed, both halves of the wire display each two distincts
lobes of opposite signs for the x-component; upon crossing the wall, ne leaves a lobe of positive
(resp. negative) sign to enter a lobe of similar shape but of negative (resp. positive) sign. In
the square case, only one lobe of definite sign was available right beside the wall core. Here, the
persistence of the two opposite lobes up to the very core of the DW highlights a domination of
the longitudinal curling over the transverse curling. This competition between longitudinal and
transverse curling gives rise to a distorted aspect of TVW with the rise of curling but without
asymmetry as stated above.

Linked to these previous remarks, another feature should be noticed. We will look at the
longitudinal component of magnetization on the surface of the nanowire ans at the surface
charges m.n, n being the local normal to the wire surface and pointing outwards. In square
cross-sections the longitudinal curling induces an extra cost in energy because of edges, creating
surface magnetic charges. Indeed, in Figure 2.8b there are surface charges at edges, and the
change of sign is due to the change in the outward normal to the surface orientation, close
to DW center. To the contrary, in Figure 2.8a, magnetization remains almost parallel to the
surface. This indicates that longitudinal curling of magnetization is not favorable in square-based
nanowires. Thus the efficiency of curling to decrease magnetostatic energy is decreased and leads
to a reduction of the length of DW. This extra cost is found for both TVW and BPW upon
increasing diameter. This extra cost in energy caused by sharp edges may explain the smaller
DW lengths for square-based nanowires compared to disk-based ones, as seen in Figure 2.10b.
This may also explain the occurrence of an asymmetric BPW (ABPW), which does not exist
in disk-based nanowires (Figure 2.8c versus Figure 2.8d). For the same reason, ATW may
occur in nanowires with a square cross-section while they may not in wires with disk cross-
section. Another fine point related to magnetostatics is a outward radial tilt of the longitudinal
component of the magnetization for a BPW in wires with a disk cross-section, at large diameter
(Figure 2.8c bottom). The rise of this radial tilt with diameter is presented on Figure 2.9. Inset
explains the physical reason, which is the consequence of the positive charge centered on the
wall of a head-to-head magnetic distribution. Principle is similar to concertina features in soft
planar magnetic elements (e.g. [70]). These head-to-head charges are also responsible for the
outward radial component of magnetization in longitudinal curling for both BPWs and TVWs
(see Figure 2.8b,d presenting an imbalance between positive and negative contrast: curling is
not perfectly orthoradial, but slightly tilted). This tilt increases with diameter since magnetic
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Figure 2.8: Unrolled surface maps In all cases the length of the view is 1000 nm, and the ratio of lengths
along z and ϕ is exact. (a) m.n maps of TVWs for disk cross-sections with diameters 30 nm
and 120 nm (b) m.n and mz maps of a TVW for square cross-section for side 120 nm. The
circled (dotted-circled) areas indicate the locus of the outgoing (ingoing) flux of magnetization
from the core of the TVW. We show here a sub-variety where the flux enters and exits through
the edges. (c) mz maps of a BPW for disk cross-section of diameter 30 nm and 120 nm. (d)
m.n and mz maps of a BPW in a square cross-section wire of side 120 nm

charge of the wall increases. So does the dipolar field, tilting the z-component of magnetization
at wire surface. It is interesting to note also that the dispersion of magnetization value within
one section vanishes with decreasing the mesh size (Figure 2.9). In [71], Pylyposkyi et al . used
the Landau-Lifshitz-Gilbert equation in term of spins so as to be freed from mesh-dependent
effects on Bloch point wall simulations. Moreover they established that the dipolar field of BPW
induces a radial component of magnetization in Bloch point structure.

Fine micromagnetic features

The large number of features of DWs close to diagonal forces us not to prolongate some lines
into its vicinity. Note for instance that for square-cross section, VW can be of three types. The
tube of magnetization can go from one surface to the other, or from one edge to the opposite
surface and as a third case, from one edge to the opposite edge. The latter case in found in
larger squares for which a flux perpendicular to surface has a prohibitive cost in magnetostatic
energy leading to a tilted flux direction.

2.5 Scaling law for domain wall energy and width

So far in this chapter, beyond the general description of the phase diagram, figures come from
simulations. They are expected to be numerically accurate but do not always help to build an
idea of the physical behavior. It is the purpose of this section to provide physical insights in
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Figure 2.9: Radial tilt of the longitudinal component of magnetization due to the magnetic charge.
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explaining the distribution of values and thus the thickness of the curves. lc is the mesh size.
The shift in the z position only means the DWs are not all centered along the wire axis. The
inset is a scheme to explain the physical feature.

selected issues.

To deal with DW energy and length, nanowires are considered. Only quantities at rest are
considered. Following the idea of giving trends and not accurate nor exact quantities, it is not
of great importance to use the exact definition of the DW width (Lilley[22], Jakubovics[69],
Thiele[23], or other). Two models provided an approximation of the DW width for small
diameters. The first model is from Nakatani et al. [3]. The 1D model for the Bloch wall
(mx = tanh(x/∆), my = 1/ cosh(x/∆)) is a good approximation for DW internal configura-
tion and thus yields a good estimate ∆ of the DW width and is valid for π∆ > 2R and thus
R ≪

√

A/Kd. The model of Hertel [72] discards the monopolar charge of the DW under the
assumption that it is only an offset on energy and ’does not change significantly with the domain
wall width’. He used a variational approach and found the same width as Lilley.

The purpose of the following is to provide a scaling law for large diameters without neglecting
DW charge, which in fact happens to be the leading parameter determining DW width. In a
head-to-head wall, the total charge Q is 2× (Ms× surface cross-section) that is Q = 2πR2Ms for
a disk based wire. In order to get a feeling about the importance of the charge, let us assume
that it is reminiscent of the triangular shape of the TW in strip, distributed in a sphere of radius
R and volume 4/3πR3. The total magnetostatic energy E related to these charges scales with
µ0Q

2/R, so that Ed ∼ KdR
3. On the other hand the density of exchange energy scales like

1/R2 [as eex = A (∇m)2 ∝ 1/R2] thus the volume integrated exchange one scales like AR so
that magnetostatic energy becomes rapidly the dominating energy with increasing diameter. As
seen for curling, to decrease dipolar energy, system spreads magnetic charges and thus enlarges
domain wall. This feature is associated with longitudinal curling. An optimum will be found
between exchange and the dipolar energy.

We consider the following model. Consider a charge Q, spread over a length L in a disk-based
wire of radius R. The volume density of charges is ρ = 2Ms/L = Q/πR2L. For this situation,
we discard numerical factors and compute numerics on an infinite cylindrical wire. We consider
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√

AKd/2 ≈ 5.7mJ/m2[2].
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√
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that for a given value d the area of the cross-section is larger by the amount 4/π in squares
compared to wires.

separately the inside and outside of the wire. First let us deal with the inside. Since we work
with an infinite wire, there is a translational symmetry leading to a logarithmic divergence after
integration. In practice, we integrate until a distance L equal to the wire radius, leading to
log(r/L). Thus for the inside, the energy density Ed scales like Er ∼ ρ2r2 (Gauss theorem).
The total energy is then:

Ed =

∫ R

0
2πEd rdrL ∼ ρ2

∫ R

0
r3drL ∼ ρ2R4L (2.1)

Outside of the wire, dipolar field scales like ρ/r thus energy scales like (ρ/r)2. The integration
gives rise to the same scaling than Eq. 2.1, indeed, over a length L the long range dipolar
interaction becomes negligible. This means that the dipolar energy scales like KdR

4/µ0L.

We have seen that a curling develops in system of increasing dimensions to reduces surface
charges by progressively decreasing the component of magnetization normal to the surface and
thus reducing magnetostatic energy leading to an extra cost in exchange energy. The total cost
in exchange energy scales like LR2 × (A/R2) thus Eex ∼ AL. The minimization of the total
energy E = Eex + Ed with respect to L leads :

L ∼ R2/∆d (2.2)

E ∼ AR2/∆d (2.3)

The wall width is thus expected to increase rapidly with the wire radius [38]. This law
quantitatively fits our simulations (Figure 2.10b), showing that there is a change of regime
from low to large diameters that can be found as the point of intersection between the large-
diameter regime asymptote and the x-axis. Transition is found at ∼ 8∆d, close to the apparition
of curling. This highlights the tight link between increase of DW length and curling.

Conclusion

In this chapter, DWs in close to one-dimensional systems with geometry ranging from strip
to wire have been considered. All DWs found using micromagnetic simulations are of two
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types, based on their topologies, TVWs and BPWs. For the first ones, found in nanostrips and
nanowires, a tube of magnetization goes through the magnetic object. The latter are found
in nanowires. The two families are separated by an energy barrier. Contrary to what was
reported so far, BPW can be found not only in perfectly square or disk-based wires but also in
thick strip and, by extension, probably in non perfectly disk based wires. Using simulations,
a phase diagram was built based on arguments pertaining to phase transitions. We confirm
the magnitude of ≈ 7∆d for the TW/BPW transition in square nanowires. We continued the
known transition between TW and VW until the diagonal and found that it is 7.7∆d. Second
order transitions concern a symmetry breaking in a previously symmetric magnetic textures.
This symmetry breaking is governed by the goal to decrease magnetostatic energy, either by
spreading head-to-head magnetic charges or better closing the transverse component flux. These
features may arise only for samples of whose lateral dimensions at least one is larger than the
dipolar exchange length

√

2A/(µ0M2
s ). Asymmetry can be of two types, either an asymmetry

such as the one found in asymmetric transverse wall in strips, or curling (with longitudinal or
transverse components). The former type of asymmetry may appear for systems with one of
the two transverse directions smaller than 7∆d. As soon as the two dimensions are larger than
7∆d, transverse curling is preferred as it enables a larger decrease in energy. This transverse
curling can also be viewed as two opposite asymmetries on two faces of the strip. This is why
there exists no ATW in strips.

Curling seems to be more efficient to decrease the energy (and thus enlarge DW width) in
circular wires than in (close to) square nanowires, due to magnetostatic energy associated with
edges.



Chapter 3

Shadow XMCD-PEEM: evidencing
domain wall types in magnetic
cylindrical wires

This chapter is dedicated to the imaging of DWs. We used the X-ray Magnetic Circular
Dichroism-Photo Emission Electron Microscopy (XMCD-PEEM) in transmission. This tech-
nique presents good compromise for spatial resolution with respect to the surface / bulk ratio
for nanowires. Moreover, this technique is compatible with time resolved experiments. The
use of transmission give access to the shadow of the wire. This use of XMCD is an original
and new approach of this imaging technique.
Moreover, I decided to develop my own model capable to reproduce XMCD contrast from a
micromagnetic configuration obtained with FeeLLGood.

67
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In the latter chapter, we derived an extended phase diagram for DWs in strips and nanowires.
We can thus assume the type of DW for a given geometry. I am going to apply simulations to
experiments, particularly, imaging of DWs.

To chose an imaging technique some criteria need to be defined. Indeed the choice is based on
desired information, compatibility with environmental parameters (temperature, applied field,
etc.), spatial and time resolution, measured quantity (magnetization, induction, stray field,
etc.). We are looking for a microscopy technique with spatial resolution smaller than the do-
main wall width so as to be able to identify the domain wall internal structure. Regarding
spatial resolution, among microscopies allowing a spatial resolution below 50 nm are XMCD-
PEEM [73], STXM [74], electron holography or Lorentz microscopy [75–77], Scanning Electron
Microscopy with Polarization Analysis (SEMPA) [78], Spin-Polarized Low-Energy Electron Mi-
croscopy (SPLEEM) [79, 80]. Within these techniques some microscopies probe only topmost
atomic layer(s) (SPLEEM and SEMPA), others are transmission techniques and gather infor-
mation about volume magnetic texture over its depth [holography, (S)TXM] with a penetration
depth of the order of 100 nm. However, for the latter, information is averaged along the beam so
that there is a loss of information in case of a magnetic texture varying along the path. XMCD-
PEEM is an intermediate technique with a few nanometers of penetration depth, related to the
mean free path of secondary electrons (used for imaging). This technique has been recently
applied to three-dimensional objects lying on a supporting surface [4–8], where X-rays are tilted
with respect to the normal to the surface. This gives rise to a shadow containing information
about magnetization in the bulk. This technique was named shadow XMCD-PEEM [4]. How-
ever, due to the three-dimensional shape of objects the considered objects and the depth- and
helicity-dependent absorption of X-rays through the structure, the magnetic contrast cannot
be interpreted in a straightforward way. Streubel et al .. [9, 10] simulated the contrast in the
shadow of a rolled tube, however based on an analytical form of the distribution of magneti-
zation in a thin sheet and not on a realistic configuration. Also, contrast at the surface of the
structure was not computed. To the contrary, our method is based on micromagnetic structures
obtained with the relaxation of the magnetization.

This chapter, after a presentation of 3d ferromagnetic materials and XMCD-PEEM tech-
nique, deals with the numerical method developed during my thesis to model and analyze the
shadow-XMCD contrast. The goal of this method is to provide a quantitative analysis of the
contrast using the developed numerical tool. First we present the microscopy technique. The
second part is dedicated to the presentation of the experimental set-up. In the third part, we
present the absorption model used, how it has been implemented, and test cases used to validate
the code. This method is compared to experiment. In a last part, some instrumental aspects
are discussed as well as experimental parameters.

3.1 Principle of the microscopy technique

3.1.1 Dichroism in 3d ferromagnetic elements

In the present work we deal with 3d ferromagnetic material. For these materials, the valence
band is composed of full core subshells and a partly-filled valence/conduction band with orbitals
4s and 3d. For free atoms, the 4s shell is completely filled whereas the 3d one is partially filled.

In ferromagnetic 3d metals, spin up and spin down bands are not equally filled. Indeed,
there is a shift in energy occurring to reduce the electrostatic interaction by decreasing the
band overlap. The shift also increases kinetic energy since energy landscape scales as ~

2k2/2m
(this would not be the case if it scaled as ~k/2m). According to the Stoner criterion, there is a
spontaneous band shift. As a consequence, the 3d spin up band is more filled than the spin down
one leading to the ferromagnetic order (Figure 3.1). Thus the 3d band is responsible for the
magnetism, and in a first approximation, for the spontaneous magnetization of ferromagnetic
material.



3.3.1. Principle of the microscopy technique 69

3d band

core levels

a b

Figure 3.1: (a) Schematic view of the band structure of a ferromagnetic material. The 3d spin-up band
is more filled than the spin-down one. 2p3/2 state is filled twice as much as 2p1/2 state. The
two black arrows on the left side correspond to the energy to transfer one electron from the
core to the 3d band. (b) XAS (top) signal for both positive (full line)and negative (dotted line)
helicities with the L3 and L2 edges. Dichroic signal corresponding to the difference between
the tow helicities. Graphs from [81].

We are now going to explain the meaning of the L2 and L3 edges, which we will use in
microscopy. Orbital moment L of an electron in shells couples to the spin, giving rise to the
spin-orbit coupling. The latter splits energy levels, previously degenerate, into a number of levels
equal to the number of values of the quantum number for J = L + S. This splitting is of the
order of a few to hundreds of electronvolts depending on the system. In case of ferromagnetic
3d, the fine structure related to the subshell 2p (L = 1) is now 2p3/2 with L and S parallel and
2p1/2 with L and S antiparallel (see Figure 3.1a). When excited with photons, electrons can
reach a higher level and thus photon can be absorbed only if the photon energy corresponds to
an interval between two levels, as energy must be conserved during a transition. For photons of
higher energy, electron is only excited towards a free higher energy state or expelled from the
atom. During excitation of levels 2p3/2 and 2p1/2 towards EF, edge associated to 2p3/2 is called
L3 and the one associated to 2p1/2 is called L2 leading to two different absorption peaks.

Besides energy conservation, the Fermi’s golden rule states, using symmetries, that a tran-
sition is feasible only if ∆ℓ = ±1, and ∆s = 0, ℓ being the orbital quantum number and s the
spin quantum number. The transition operator must be even not to be null. Thus transition
must be done between two odd orbitals or between an even orbital and an odd orbital. s and d
orbitals are even. p and f orbitals are odd. According to this rule, electrons excited from 2p can
only hop towards 3d or 4s. During absorption of photon, the angular momentum of the latter
is transferred to the sample. This transfer is −1 (+1) for right (left) circularly polarized light
leading to another condition on the transition which is :

left : ∆mℓ = +1
right : ∆mℓ = −1

where mℓ is the magnetic quantum number. This restriction is visible only if initial and final
states are differentiable. See [82, 83] for further details.

We can now speak about the polarization giving rise to dichroism. This is a requirement
electrons are sensitive to polarization of light otherwise there is not any dichroism. Due to
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selection rules and the number of state for 2p3/2 and 2p1/2 levels, L3 peak is twice higher than
L2 peak. However, at this stage the difference in 3d↑ and 3d↓ populations does not matter since
2p states are not polarized.

However, if we can excite them with photons of controlled helicity, then angular moment
of photons removes the degeneracy of the probability of transition between a helicity parallel
or anti-parallel to magnetization. Probabilities of excitation are given by the Clebsch-Gordan
coefficients. With a +1 helicity, probability for a photon to excite a 2p3/2 with a spin-up is
62.5 % and 37.5 % with a spin-down. In case of 2p1/2 these probabilities are 75 % for a spin
down electron and 25 % for a spin up one. Same proportions are obtained for a −1 helicity.

In practice, we measure two spectra with opposite helicities. To be rigorous, one should
measure the whole energy spectra prior to deduce information about spin and orbital moments.
However, in PEEM, most of time we work at a given energy and proceed to the intensity
difference for both opposite helicities at this energy (Figure 3.1b)

3.1.2 From atomic absorption to measuring absorption on a material

Let now explain briefly the mechanism of absorption of photon through matter. This will be
of use when we model absorption in sec.3.3.1. When a photon travels through matter it has a
probability µ per unit length to be absorbed along its path. If µ is uniform, this results in an
exponential decrease of the initial intensity IX,0(δ) along the path: IX = IX,0e

−µδ where δ is the
length of the path through matter. If energy ~ω of incident photon is high enough, its absorption
by an electron leads to ionization of the atom. The emitted electron is called photo-electron.
Its kinetic energy depends on incident photon energy, binding energy and the work function. If
photon energy is lower than the sum of the biding energy and of the work function, the absorbed
photon excites an electron towards unoccupied states of higher energy. This is the principle of
the XAS (Figure 3.1b) which reflects unoccupied states of valence band. For both ionization
and excitation, photo-electron needs to decrease its energy to go back to its fundamental state
through emission of a photon. This phenomena is called fluorescence. If the photon emitted by
fluorescence is absorbed by an electron, the latter is ejected and called Auger electron. Auger
electrons lead to multiple inelastic collisions giving rise to secondary electrons. There are more
secondary electrons than Auger electrons. Due to the small escape depth of these secondary
electrons, only those close to surface escape material.

For each chemical element, there is a specific energy at which core electrons can be expelled.
Thus, by scanning photon energy, X-rays reach energies corresponding to transitions between
two levels from core to valence band specific to an element.

Absorption peaks of X-ray Absorption Spectroscopy (XAS) spectra provide information
about chemical elements found in the sample. Since the beam is monochromatic and photons
are absorbed at a precise energy depending on material, this technique gives rise to absorption
spectra.

3.1.3 The Photo-Emission-Electron-Microscope

To probe matter, PhotoEmission Electron Microscopy (PEEM) uses an X-ray beam for excita-
tion and collects photoelectrons. Electrons are accelerated when they escape sample and slown
down when they reach the imaging plate. Before to reach the channel plate, electrons pass
though objective lens which determines resolution. After this lens, there are other lens (two or
more) to create an image of the sample behind a backfocal plane aperture. This image is then
magnified by projector lenses. At the end of imaging column, there are other combined lenses
whose goal is to decelerate electrons prior to the cooled charge-coupled device (CCD).

Collection of these electrons on the detector gives rise to the contrast image according to the
amount of photo-electrons emitted from the sample surface. As it is possible to chose energy
of incident photons, this technique is selective in element. In practice, a sample extra bias is
also available. A positive bias prevents extraction from electrons while a negative one selects
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Figure 3.2: XAS and XMCD of cylindrical wires. (a) Red: absorption spectra across the Fe and Ni L
edges normalized to the background signal (absorption on the supporting Si surface). Blue:
inverted and normalized spectra measured in the shadow. In each column below are a few views
of the same wire, at the same location with a field of view 3 × 1 µm. In the top two rows the
X-ray beam is parallel to the wires, whereas it is perpendicular to it in the bottom two rows.
(b,d,f,h) show the absorption contrast summed for both helicities. A shadow is visible only when
the beam is perpendicular to the wire in (d,h). (c,e,g,i) show the XMCD contrast. (b,c,f,g) are
obtained at the Ni L3 edge and (d,e,h,i) at the Fe L3 edge.
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a b

Wires released from 

the membrane 

(TEM view)

c

d

Figure 3.3: Samples (a) Top view of an alumina membrane. (b) Membrane produced by the chemistry
department of the university of Erlangen FAU, used to deposit wires. (c) Wire with diameter
modulations at its end, produced by Sandrine Da Col. (d) Scheme of a wire suspended above
substrate and XAS image for such wire.

electrons with a finite energy. The peak of secondary electrons is at a few electron volts only,
whereas Auger electrons have energies from a few to hundreds of electron volts.

X-rays go through matter over a length of several tens to hundreds of nanometers, excite elec-
trons, but due to the small escape depth of photoelectrons, only those emitted a few nanometers
below the surface can escape the sample. PEEM is thus a technique surface.

3.2 Experimental imaging

3.2.1 Samples

The basic principle of synthesis is standard: anodization of alumina templates to get self-
organized array of pores arranged on a triangular lattice (Figure 3.3a), followed by filling
of the pores by electroplating a magnetic material. This leads to magnetic cylindrical wires.
Whereas this general scheme is quite standard, we made use of more advanced techniques to
have wires with a diameter modulated along their length. These are obtained in pores initially
modulated in diameter. Some had been synthesized by Sandrine Da Col in a pulsed process
(Figure 3.3c), while others were fabricated by our colleagues from the chemistry department
of Erlangen Nurnberg University, making use of a three-step anodization / dissolution process
(Figure 3.3b). Some arrays of pores have been coated with a thin HfO2 layer, to act as a
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a b

Figure 3.4: Marks on the substrate. (a) Template used for the marks imprinted on the Si substrate.
(b) Wires close to a mark.)

protection against oxidation for forthcoming wires. Wires considered are Fe20Ni80 cylindrical
nanowires. Alumina matrix is then dissolved with a sodium hydroxide solution. Thereafter
wires are dispersed on a Si substrate with alignment marks to make the mapping of interesting
wires easier (Figure 3.4). Wires are aligned along a preferential direction using an in-plane
magnetic field during the dispersion. The initial idea of the modulations was to restrict DW
motion and prevent them from annihilation at a wire’s end, so as to be able to study them.
Moreover, thanks to these modulations, the thin part of the wire can be suspended above the
substrate (see Figure 3.3d) which is a very important feature as will be seen in the following.
The length of these wires is a few micrometers.

Prior to perform XMCD-PEEM measurements, samples are characterized. First crystallinity
is characterized using X-ray diffraction and Transmission Electron Microscopy. Results show
both mono and polycrystalline structures. In a second step, magnetism is investigated using
Kerr magnetometry. In a third step, Magnetic Force Microscopy is performed in order to check
whether there are DWs.

3.2.2 Set-up

Element-selective X-ray absorption spectroscopy (XAS) and XMCD-PEEM were carried out at
the spectroscopic photoemission and low-energy electron microscope [84] operated at the undula-
tor beamline Nanospectroscopy of Elettra, Sincrotrone Trieste. Photons impinge on surface with
a grazing angle of 16 ◦. In our experiments, photons are essentially circularly polarized within
an energy range from 50 to 1000 eV. The microscope used at the Nanospectroscopy beamline
is an Elmitec Speleem III. Note that the microscope works with Ultra High Vacuum (UHV).
Experiments were carried out by Olivier Fruchart, Sandrine Da Col, Nicolas Rougemaille, Raja
Afid, Alexis Wartelle, Christophe Thirion, Michal Staňo and myself from the Neel Institute and
Andrea Locatelli, Tevfik Onur Mentes, Benito Santos Burgos and Alessandro Sala from Elettra.
We went to Elettra for three beam times.

3.2.3 Measurements

Spectroscopy was performed across L edges of either Ni or Fe, using circularly polarized radiation
as a probe. Dichroic images were obtained by a pixel-by-pixel operation on the images, taking
the difference between intensities obtained for opposite helicities σ+ and σ−: IXMCD = (Ie,σ−

−
Ie,σ+

)/(Ie,σ−
+ Ie,σ+

). Series of several tens of images with an exposure time of few seconds are
recorded, drift-corrected and finally co-added [85]. This allows to benefit from a high signal-
over-noise ratio while limiting drift effects, providing images with a spatial resolution on the
order of 30nm.
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To image a domain wall we proceed in two steps (except on lucky days when you find a
domain wall right away). First wires are aligned with the beam. This first step informs about
magnetization along the wire axis, that is along the beam direction, and thus can reveal a
reversal in the magnetization direction along the wire. Thus a change in the contrast from black
to white (or the reverse) locates a domain wall (Figure 3.2b,c,f,g). Then the sample is rotated
by 90 ◦ such that the wires are perpendicular to the beam. At Elettra this is a tedious procedure
as the sample holder cannot be rotated. Instead, the sample cartridge must be unmounted from
the microscope stage, and brought back to air. The sample needs to be unmounted, rotated
and remounted manually at crossed-angle. The cartridge is then inserted again under UHV,
remounted on the microscope stage, before proceeding to the re-alignment with the microscope.
This entire procedure takes several hours. Notice that more recent instruments may have a
rotatable sample holder, such as the one in Alba (Barcelona) or Soleil (Paris). In this second
step the magnetization in the domains is perpendicular to the beam and does not give rise to
dichroic signal any more (both polarization are equally absorbed). The contrast comes from
areas where the magnetization is not aligned with the wire axis, such as the DWs. It can also
come from diameter modulations and wire ends where orthoradial curling texture can develop
to decrease the dipolar energy (Figure 3.2d,e,h,i) (see sec.3.3.3).

It can be seen in Figure 3.2(e,i) that DWs may give rise to two types of contrast, with a rather
complex structure. We have thus access to information from the wire surface but also from its
shadow thanks to the grazing angle of 16 ◦. To attribute a type of DW to these contrast and to
understand them, simulated contrast appears to be an important tool, as will described in the
following. Notice that with experimental contrasts, we have information from the surface of the
wire and from its shadow. The latter is another motivation for a simulation tool to understand
it.

3.3 Developing simulations for the quantitative analysis of shadow
XMCD-PEEM

3.3.1 Absorption model

Here we start from 3D micromagnetic textures as an input to simulate the resulting XAS and
XMCD contrasts to be expected at the surface of the nanostructure and in its shadow. We
used two kinds of magnetic textures. The first type is analytical configurations that are used
to highlight simple aspects of the technique, or to compare numerical and analytical results
for the XMCD contrast. The second type of configurations are realistic ones, resulting from
micromagnetic simulations. For that we use the home-made finite element code FeeLLGood [86].
Material parameters are chosen so that they are suitable for Permalloy (Fe20Ni80) : A = 10pJ/m,
µ0Ms = 1T. In order to quicken the relaxation towards equilibrium, the damping parameter
α was set to 1. This has no impact on the result since we considered only states at rest. No
magnetocristalline anisotropy was considered. In this section we explain the method that starts
from a magnetic structure and leads to a XMCD contrast. For XMCD-PEEM contrast modeling,
we need to consider mainly three aspects. First is the absorption of photons through matter.
Second, photo emission of electrons close to surface. Third, collection of these electrons in the
microscope.

Let us first consider X-ray absorption. At each position during the travel through matter,
a probability of absorption per unit length, µ, is associated to the X-ray to be absorbed. This
probability results in a mean free path λ = 1/µ, and depends on the material and the photon
energy. µ also depends on the direction of magnetization compared to the direction of the
beam and its helicity (this is dichroism), which makes µ position-dependent. We consider the
absorption at the L2 and L3 edges of Fe and Ni and use the coefficients determined experimentally
in the case of pure materials and for both helicities (Nakajima et al. [87]). For Permalloy we
assume the absorption coefficient to be µ = 0.2µFe+0.8µNi. All the coefficients are summarized
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Table 3.1: Absorption coefficients µ at the different absorption edges. Figures for pure elements are derived
from [87]

Edge Helicity µFe (nm−1) µNi (nm−1)
Fe20Ni80

µ (nm−1) ∆µ (nm−1) µ+−µ−

µ++µ−
λ (eV)

Fe L3
µ− 0.09 ≈ 0 0.018

-0.008 -0.29 706.8
µ+ 0.05 ≈ 0 0.010

Fe L2
µ− 0.03 ≈ 0 0.006

0.002 0.14 719.9
µ+ 0.04 ≈ 0 0.008

Ni L3
µ− 0.017 0.053 0.046

-0.011 -0.14 852.7
µ+ 0.017 0.040 0.035

Ni L2
µ− 0.017 0.017 0.017

0.003 0.08 870.0
µ+ 0.017 0.021 0.020

in Table 3.1 where µ+ and µ− stand for for the absorption coefficient for the left and right
polarized X-rays, respectively. At the Fe L edges the absorption due to Fe is very large and the
pre-edge absorption due to Ni is very weak. Thus the absorption due to Fe is the dominating
one. At the Ni L edges the post edge absorption due to Fe is no more negligible because the
absorption on Ni, with its nearly filled 3d band, yields less intensity. However, due to the larger
content in Ni, the latter remains the dominant contribution to absorption.

Progressive absorption of the beam in matter is obtained by integrating its position-dependent
rate of absorption through each thickness dℓ of material:

dIX,σ±

dℓ
= −

[
1

2
µ+(1± k̂·m) +

1

2
µ−(1∓ k̂·m)

]

IX,σ±
(3.1)

This formula takes into account energy and helicity dependence, in relation with the direction
of magnetization when in the sample, with k̂ the unit vector along the propagation direction.

Second, we consider the escape of electrons from matter, to yield intensity Ie,σ(rs) at any
point rs at surface. Since the escape length of photo-electrons is only a few nanometers, smaller
than the diameter of wires and than any characteristic magnetic length, we make the assumption
that Ie,σ(rs) reflects intensity of photons at the very surface IX,σ(rs). Thus, we need to estimate
the intensity of emission of photo-electrons Ie,σ(rs) at surface, related to the intensity of photons
IX,σ(r) previously calculated. For magnetic materials, local absorption depends on local mag-
netic configuration and helicity of the polarized beam. Thus photon intensity is multiplied by a
dichroic factor to give rise to photo-electron intensity. To the contrary, in case of non magnetic
surface, for example on the supporting surface, there is no dichroism and Ie,σ(rs) is proportional
to IX,σ(rs).

Let us then discuss the escape of electrons from matter. Theoretically, photo-emitted elec-
trons are emitted isotropically and not perpendicular to the local nor mean surface of sample.
Thus, we expect that the local rate of electrons escaping matter results from the convolution
of the electron intensity described in the previous paragraph, and a function describing this
scattering processes, including production of secondary electrons. In practice however, as the
electron escape depth is only a few nanometers, expected broadening should not exceed these
few nanometers, which is much smaller than the instrumental resolution (circa 30 nm). Thus,
these effects may be safely neglected. At this stage we have an estimation of Ie,σ(rs) at each
point of the surface of the nanostructure and on the supporting surface.

As a third step we need to convert this intensity Ie,σ(rs) into the intensity per unit surface
of the detector Is,σ(x, y). One parameter linking Is(x, y) with Ie,σ(rs) is the angular acceptance
of the microscope. Indeed electrons are emitted on the average along the normal to the local
surface, thus with an angle θ with the microscope axis (Figure 3.6a). Instrumental angular
collection is not exactly known and may depend on the extraction and electron energy, on the
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ba

Figure 3.5: Numerical implementation. (a) presents the method to model the X-ray beam. The red
line stands for the X-ray beam that crosses the elements (in white, from the finite element
discretization) (b) shows the wire on the gridded supporting surface and photon source. The
insert shows the grid of the source, as an example for all grids

contrast aperture, surface roughness, etc. Thus the aim is not to consider an exact transfer
function but to get an estimation. As collection is maximum for θ = 0 and zero for θ = π/2, we
used as a crude model the collection efficiency cos θ. Thus, as the area of nanostructure surface
per area of the detector scales like 1/ cos θ, this choice simply results in the projection of rs onto
the plane of the supporting surface to get its (x, y) coordinates.

In the end, the XMCD contrast is computed as defined previously (IXMCD =
I
s,σ−−I

s,σ+

I
s,σ−+I

s,σ+
).

Thanks to the grazing angle of angle of 16 ◦, in the shadow the resolution is increased by a
factor 3.6 in the direction perpendicular to the beam. Moreover, as some wires are suspended
above the substrate surface due to the modulation of diameter we have access to the whole wire
shadow, projected on substrate. To be as close as possible to experiment, wires can also be
suspended in simulations.

Note that the above procedure is not a bijection but a surjection. Indeed, different magnetic
configurations could result in the same image contrast, as in regular XMCD-PEEM method.
This, along with other issues contributing to image formation such as photon scattering, field
distortion due to wire topography and background electron intensity, will be discussed further
later on (sec.3.5).

3.3.2 Numerical implementation
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Figure 3.6: (a) illustration of the collection of the photo-electrons. e− is the secondary electron emission
direction. θ is the angle between the imaging axis and the latter direction. (b) illustrates the

distortion of the photo-electron trajectory (see sec.3.5.5). (c) Scheme to explain the 1/k̂.n
factor. n is the outward normal to the system.
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In the present study we consider cylindrical nanowires. The numerical method principle
consists in launching parallel rays to mimic the photon source. We consider a regular planar
grid perpendicular to the direction of photons, that stands for a parallel and uniform source
of photons (Figure 3.5b). From each node a ray is launched and intercepts the surface of the
cylinder at two points Pin and Pout respectively, called entering and exit points.

The first step is to compute absorption of photons through matter following equation Eq. 3.1.
For this aim we need to calculate absorption along the ray. The latter is discretized into segments
of a chosen length between Pin and Pout. The integration carried out at the points separating
these segments.

The second step is the production of photo-electrons related to the relative orientation be-
tween the local magnetization and the wave vector, called dichroism. This latter is taken into
account at the wire surface:

Ie,σ±
∝ 1

n· k̂

2

µ+ + µ−

(
1

2
µ+(1± k̂·m) +

1

2
µ−(1∓ k̂·m)

)

IX,σ±
(3.2)

with n the local outward normal to the surface. The pre-factor 1/(n· k̂) reflects the fact that
X-ray entering matter at an angle travels along a length scaling like 1/(n· k̂) while remaining
at a depth smaller than the escape length of electrons, thus contributing more to photo-emission.
As the mean free path of photons is much larger than that of electrons, the photon flux remains
nearly unchanged within this escape scheme, so that the number of electrons emitted is simply
proportional to the length of the photon path. A rapid calculation reads (Figure 3.6c):

sin θ =
t

L
⇒ L =

t

sin θ
=

t

cos(π/2− θ)
=

t

k̂.n
(3.3)

Note that the right hand side is the derivative of X-ray intensity along the propagation path
(as in equation 3.1). The physical sense is clear, as the derivative of IX,σ is the amount of
photons absorbed within that incremental distance, and photoemission is directly proportional
to absorption. For point Psub on substrate, found with the intersection between the ray and
the substrate, photo-electron intensity corresponds to integrated intensity at Pout but with no
dichroism pre-factor. Since secondary electrons are ejected normal to surface there is also no
correction related to the angular acceptance.

The third step in the procedure allocates a photo-electron intensity to all the detector grid
points. Pin with coordinates (x, y, z), is associated with Is(x, y) on screen. In practice, we
want to deliver an image at the screen, so sampling points x and y should be evenly spaced.
However, the lateral density of Pin and Pout is not uniform due to the curvature of wire. To solve
this problem we determine the corresponding detector cell whose coordinates are the closest of
coordinates (x, y) and its near neighbors so as to smooth the photo-electron intensity. It is
equivalent, in signal processing, to apply a laplacian filter which tends to cut off high spacial
frequencies. Finally the XMCD-PEEM contrast is calculated on detector grid.

To be as close as possible to the experimental results, wires are suspended above substrate.
This suspension is to be adapted for the distance between the wire and its shadow to fit the one
of experimental result.

3.3.3 Test cases

In this section we apply simulation method to test cases: transverse magnetization and orthora-
dial curling. These distributions do not exist as such however it enables to validate the code. It
also highlights physical aspects and features that can arise in XMCD-PEEM contrast and can
be useful later identify DWs. In both tests, numerical result was compared to the analytic one.

For the following explanations, let us say that magnetization antiparallel to the direction of
X-rays absorbs more σ+ polarized rays than the other polarization. On the reverse magnetization
parallel to the direction of the X-rays absorbs more σ− polarization.
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Figure 3.7: Illustration of XMCD-PEEM. (a) Illustration of the principle of the dual surface and volume
contrast on the basis of the test case of magnetization parallel to the X-ray beam. The curves
below present the polarization-dependent X-ray intensity at the absorption peak as the X-rays
propagate through the wire section. The first test case is (b) uniform magnetization across the
wire and parallel to the X-ray beam. The second test case (c) is orthoradial curling. Photon
density and XMCD at the surface of the wire (yellow background) and in the shadow (pink
background). The dots stand for the numerical simulation whereas the full lines are for the
analytical solution. The bottom part presents the XMCD contrast for each configuration. A
gap has been set between the wire and the surface so that the entire shadow is visible. Note
that the lateral scale is expanded by a factor sin(16 ◦) ≈ 3.6 in the shadow, thanks to the
grazing incidence.
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Uniform transverse magnetization

The first test case is a wire uniformly magnetized along with the X-ray direction. Figure 3.7b
shows IX,σ(r) and the resulting surface absorption IX,σ(rs) for photons going through the wire.
The two curves illustrate that photons with one of the polarization are more absorbed than
those with the other polarization. Since magnetization does not change orientation along the
path of the photon, the most absorbed polarization is always the same and intensity of these
photons decreases at a faster rate. At the exit of the wire, photons with the most absorbed
polarization are fewer than the others, leading to a dichroic signal which is of opposite sign in
the shadow. The curve in Figure 3.7a illustrates the local absorption that is proportional to
IX,σ(r) multiplied by the dichroic ratio. The maximum of the absorption corresponds to the
center of the shadow for which the length of magnetic material is the largest. The curves in the
shadow of both the X-ray intensity and XMCD contrast exhibit a mirror symmetry, with the
two maxima at the edges where the absorption is the smallest.

If the absorption is large enough, for example if the diameter is large enough, the imbalance
of the remaining photons at the back side of the wire increases and outweighs the dichroic
ratio. This leads to a contrast with opposite sign at the back side of the wire although k̂·m is
identical to that of the front side. There is a critical diameter above which the contrast reverses:
dc = ln(µ+/µ−)/[(µ+−µ−) cos(16

◦)]. The cos 16 ◦ comes from the photon direction. Indeed, the
last photon which escapes wire at the back side travels a distance dc cos 16

◦ (see Figure 3.6d).

δ2 + x2 = dc

sin 16 ◦ = x/d ⇒ x = dc sin 16
◦

δ = dc cos 16
◦ (3.4)

The absorption coefficients µ and thus the photon energy are crucial to determine this effect.
In the case of wires made of Permalloy, dc is respectively 70, 140, 20 and 50 nm at the Fe-
L3, Fe-L2, Ni-L3 and Ni-L2-edge. This clearly illustrates why quantitative simulation of the
contrast is crucial for the analysis of experiments: the contrast may not be indicative of the
local magnetization, neither in magnitude nor even in sign.

Orthoradial curling

The second test case is orthoradial curling. This configuration is interesting since it is close
to real magnetic distributions such as the BPW and curling at the end of a wire. Figure 3.7c
shows IX,σ(r) and XMCD contrast for this distribution. Let us concentrate on the shadow.
The right part corresponds to the top part of the wire, for which magnetization is mostly
parallel to the direction of the beam and absorbs more σ−-polarized X-rays. For the left part
of the shadow, it is the reverse. It corresponds to photons having gone through the bottom
part of the wire, that is the part that absorbs more σ+ than σ− because magnetization is
mostly antiparallel to the direction of the beam, hence the low intensity of IX,σ+ . Center of
the shadow has no XMCD contrast, as at all point through wire diameter, X-ray direction is
perpendicular to magnetization. This globally bipolar contrast is thus a clear signature of the
orthoradial curling. The curve of XMCD contrast (Figure 3.7c) shows a central symmetry
with symmetry point at the center of the wire reflecting symmetry of the configuration. To the
contrary, concerning, direct XMCD contrast at wire surface, it is maximum at the middle of the
wire zone, corresponding to the top of the wire where the beam is tangent to the latter. The
contrast is largely monopolar as in the case of uniform transverse magnetization, which could for
instance naively be expected from a transverse wall with transverse component aligned with the
beam direction. Thus, ascribing surface contrast to a TW or a BPW may remain ambiguous.
Addition of shadow contrast to wire surface contrast is crucial to distinguish between the two
possibilities. This again highlights the requirement for quantitative analysis.
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In both the cases of transverse uniform magnetization and orthoradial curling, there is an
excellent agreement between numerical procedure and analytical results (see dots and line on
Figure 3.7b-c). More details about analytical XMCD-PEEM technique can be found in chap.6.
Thus it is possible to go further and to compare experimental results and simulated ones. These
comparisons will enable the understanding of shadow that, as seen previously, is complex and
also to hint at the magnetic textures in wire.

3.4 Comparing simulations and experiments
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Figure 3.8: Comparison of experiment and simulation for the Bloch point wall (a) Experimental and
(b) simulated contrasts at the surface and in the shadow at the Fe L3 edge. The wire has a
diameter 90 nm. This diameter has been determined from the XAS of the wire shadow. (c)
Micromagnetic simulation of a Bloch point wall, used as an input for simulating the contrast.
(d) Cross-sections for (a) and (b). The inset shows the XAS and XMCD for the experimental
cross section.

In this section, we will focus on the understanding of experimental contrasts (Figure 3.2e-i)
and we will assign them to a type of DW. As seen previously (sec.1.2.4), two types of DWs are
expected in nanowires, transverse wall for diameters below 7∆d and BPW for larger diameters.
Let us now focus on Figure 3.8, where Figure 3.8a is a zoom of Figure 3.2e. Figure 3.8b presents
simulated XMCD contrast without adjustable parameters. The wire diameter and the gap
between the wire and the substrate have been deduced from XAS (Figure 3.2d). BPW could be
ascribed to experimental contrast Figure 3.8a. Indeed the most important signature of BPW is
the bright and dark contrast in the shadow revealing an orthoradial curling. Moreover symmetry
with respect to plane perpendicular to wire axis reveals a pure orthoradial curling. This feature is
compatible only with BPW. A quantitative comparison can be done by using e.g . a cross-section
(Figure 3.8d). Contrast has been normalized so that simulation and experimental maxima
coincide at wire surface. There is almost perfect agreement at wire surface with a sharp peak
shifted aside right from the center of the wire. This lateral shift of XAS and XMCD contrasts
is illustrated on the inset of Figure 3.8d. Experimental XAS results from a convolution between
the theoretical one (as on Figure 3.7c, top part) and the instrumental resolution function. As a
result the maximum of XAS is left shifted compared with the maximum of XMCD contrast. In
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the shadow, the contrast is antisymmetric as expected and cancels at the location that should
coincide with the place of the Bloch point. Nevertheless some features do not fit so well. First,
experimental contrast is wider than simulated one by about 25 nm, second, it is lower. These
aspects mostly comes from experimental aspects that will be discussed later on in sec.3.5.

Let us now turn to the contrast on Figure 3.2i reproduced in Figure 3.9. It can be ascribed
to transverse wall, as suggested by simulation. A signature of this is the lack of symmetry with
respect to a plane perpendicular to the wire axis TW. White and black contrasts at surface,
becoming a black and white contrast in shadow, arise from the curling of magnetization around
the core of the transverse wall. Curling around the core of the transverse wall was expected above
7∆d as presented in Figure 2.7b. This feature favors a magnetization as parallel as possible to
the surface of the wire, preventing occurrence of surface charges. Moreover, contrast along the
direction of the beam is black and white on one side and white and black on the other side of DW,
revealing orthoradial curling of opposite sign on either side of DW as presented with simulations
in Figure 2.7a. Finally, contrast at the center of the shadow reveals the direction of the transverse
part of the DW (the vortex). As seen in Figure 3.9d, XMCD contrast is not invariant under
rotation of the wire around its axis, confirming the role of the transverse component. The latter
being responsible for the large contrast at the center of the shadow, azimuth of the transverse
component is thus a parameter to consider to fit experimental contrast.

As suggested at the end of the section about uniform magnetization (sec.3.3.3), in case of
large enough diameter, contrast should reverse at the backside of wire. This is illustrated on
Figure 3.10. Profiles (Figure 3.10d-f) clearly evidence this contrast inversion which is more
developed for large diameter (Figure 3.10a,d).

a

c

250 nm

a ab

Wire

Shadow

TWTW TW

Shadow

Wire Wire

Shadow

d

Figure 3.9: Comparison of experiment and simulation for the transverse-vortex wall (a) Simulated
and (b) experimental contrasts at the surface and in the shadow at the Fe L3 edge. The wire
has a diameter 70 nm and is lifted 25 nm above the surface. (c) Surface and open view of the
micromagnetic state used for the simulation of the contrast. (d) Dependance of the simulated
contrast on the azimuthal rotation the domain wall. The location and direction of the transverse
core of the wall are indicated above each case.
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Figure 3.10: Illustration of contrast inversion at the back side of wire with a BPW. Material for the
first column is Fe20Ni80. Image gathered at Ni L3 edge. Material for the second and third
column is Co40Ni60. Images were gathered at Co L3 edge. Top row is XMCD contrast images.
For the three images, beam comes from the bottom. The bottom row is composed of profiles
of XMCD contrasts. The wire diameters, measured from XAS images are (a) 170 nm, (b) and
(c) 70 nm. Shadow cannot be used since we do not have access to the whole shadow.

Table 3.2: Absorption coefficient values used in simulation in Figure 3.11. For image (k) they are the
absorption coefficients of Fe L3 edge. For image (m), they are Fe L3 edge coefficients multiplied
by 2 to keep the ratio but not the difference between µ− and µ+

Image (k) Image (m)

µ− (nm−1) 0.018 0.036
µ+ (nm−1) 0.01 0.02

Type of a DW in a wire is mostly determined by the need to decrease magnetostatic energy.
This may lead to an orthoradial curling at wire ends, an orthoradial curling as seen in sec.1.1.3
and also “C” shape end domain. This curling had not been evidenced so far experimentally. Here
we identified it as shown in Figure 3.11. Wire has been determined to be 120 nm in diameter.
Extension of orthoradial curling along wire fits rather well the experimental one.

3.5 Discussion about the experimental contrast and resolution

So far, experimental settings have been stated as a possible limitation for perfect agreement
between simulation and experiment. Thus, in this section more experimental details and in-
strumental aspects not directly included in simulation are discussed, ah they have an impact on
magnetic contrast and spatial resolution.

3.5.1 Microscope settings (start voltage, plane of focus)

When dealing with flat objects, perfect focus is reached simultaneously on shadow and on surface
of the object. In the present case, things are different. In principle the depth of focus of the
instrument is large enough so that top of wire and supporting surface should be both in focus.
In practice, however, this could not be achieved. This is ascribed to the curvature of wire,
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Figure 3.11: Role of the absorption coefficient on contrast. (a) LEEM image of a wire and (c)-
(f) experimental XMCD contrasts of this wire. (g)-(j) are the same experimental contrasts
from which background level has been removed. (b) left is the left end of (h) and to the right
is a simulation of the XMCD contrast at the Fe L3 edge for a wire of 120 nm diameter with
a curling at the end and corresponding micromagnetic configuration. The contrast is 6% for
(c,d,g and h), 5% for (e and i) and 9% for (f and j). Since for the grey scale, the intensity
of the XMCD contrast ∈ [−1, 1], if the contrast is chosen ∈ [−0.06, 0.06], black and white
correspond to 6%. (k) and (m) Simulated XPEEM images for a 90 nm-diameter wire with a
Bloch point wall (see absorption coefficients Table 3.2) and their profiles (l) and (n).



3.3.5. Discussion about the experimental contrast and resolution 85

����

�

����

�

����

�

�
����	



��


����

�

�

150

100

50

0

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
s
)

3.02.52.01.51.00.50.0

Start voltage (eV)

wire
shadow
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distorting trajectories of electrons leaving sample (Figure 3.6), thereby acting in itself as a lens.
This lens effect can be compensated, or not, by the microscope focus, so as to set plane of focus
anywhere between supporting surface and the top of wire. For instance, setting plane of focus
on supporting surface has an effect on XAS and XMCD contrasts with a loss of sharpness as
shown in Figure 3.12a. On the reverse it is possible to focus on wire (Figure 3.12b) loosing
sharpness on shadow. The difference is more striking on wire because it has a large aspect ratio
compared to surface. As we now know, in the case of highly-topographically-distorted samples
as wires, both the start voltage and the focus may be tuned to get the best contrast either
the wire or the shadow. These two settings are linked. Let us explain what is start voltage.
Inside microscope, a high voltage is used to extract electrons. Here high voltage means 18 keV-
STV (18 keV in the case of ELETTRA). Start voltage (STV) is the voltage bias on sample. In
PEEM, a negative start voltage prevent from extraction of electrons while a positive one selects
electrons with a given kinetic energy. The higher the STV the lower the difference in focus.
As an example, with a STV of 3 eV the difference in focus is of 1mA whereas it is 4.2mA for
a STV of 1.5 eV (see Figure 3.13). Unit for the focus is the mA because almost all lenses of
the microscope are electromagnetic lenses, thus they work with coils. Coils are disposed so as
to create a magnetic field with a rotational symmetry which does electron to converge. These
lenses work by controlling current through coils. As a comparison, for an optical lens, to adjust
focus, one adjusts sample-lens distance. For an electromagnetic lens, to adjust the focus, the
parameter is the current through the coil. These images also illustrate that a higher start voltage
leads to a sharpen contrast because photo-electrons are less sensitive to local variations of the
surface work function, such as induced by absorbates and impurities.

STV=3eV STV=1.5eV

Wire

Shadow

a b

dc

Figure 3.13: Illustration of the difference of focus with the start voltage. For all four cases, wire is a
the bottom and shadow at the top. For the first column, STV = 3 eV, for the second column,
STV = 1.5 eV. For the first row, focus is set on the wire whereas it is set on the shadow for
the bottom row. The difference is 1mA at 3 eV and 4.2mA at 1.5 eV. In (b) and (d) the wire
is not visible. Let us have a look at Figure 3.12f to compare the intensity at each STV for the
wire and the substrate.

This may explain why the image quality both in the wire and in the shadow is better in
Figure 3.12e than Figure 3.12d.

A fine tuning of STV may also be used to examine more precisely either the wire or the
shadow. Indeed each material has a different work function. Whether we are interested in the Si
supporting surface or the Py wire surface, STV may be tuned. In the present case, a lower STV
(≈ 2.0 eV) maximizes the number of electrons from shadow whereas a higher STV (≈ 2.8 eV)
gives rise to a higher intensity from wire. In principle, this difference of STV should be visible
only on XAS image that results directly from measured electrons. To the contrary, an XMCD
image results from the difference normalized to the sum of intensities should thus not depend
on the number of electrons and not be influenced by the choice of the start voltage. However
experiment differs from theory and in practice a lower number of electrons reduces the XMCD
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signal as will be discussed in sec.3.5.3.

3.5.2 Photon energy

Let us first discuss the procedure to set the photon energy to maximize XCMD. We have seen
previously that for 3d ferromagnetic materials, L3 edges give rise to a higher magnetic contrast
than L2 edges. Thus we worked mostly at L3 edges. Note that surface oxidation, no matter
how small it is, gives rise to a secondary peak close to the L3 principal peak and slightly
shifts its maximum compared to the metallic spectra (Figure 3.2a). As the XMCD signal is
maximum at the metal peak energy, it is important to determine the latter precisely. To do this
experimentally we deemed more relevant to measure the absorption spectra from the shadow to
set the working energy. Indeed, in this case photons probe the bulk of the wire, with mostly
no oxidation. In principle spectra gathered at the wire surface and in the shadow should be
mirror images of one another, with peaks at the L edges for the former, and dips for the latter.
In practice, we notice that these two spectra at the Fe L3 edge differ significantly, in shape
and position. We understand this as resulting from surface oxidation for the peak at the wire
surface, while the spectrum in the shadow mostly reflects Fe in the core of the wire, with no
oxidation. To the contrary, both spectra are very similar for Ni. This gives the picture of wire
with a nm-thin oxide crust at its surface, largely enriched in Fe, around a metallic Fe20Ni80 core.
Notice that Fe enrichment at surfaces upon oxidation is a usual process for FeNi alloys [88]. In
the end, it remains that the photon energy must be determined from the spectra in the shadow,
to maximize XMCD contrast.

Second, we consider the relative contrasts at the Fe and Ni edges. Let us consider XMCD
contrast on wire. Theoretically we expect the contrast to be slightly better at the Ni L3 edge
than at the Fe L3 one as dichroism is larger at Ni L3 edge than at Fe L3 edge as presented
by ∆µ in Table 3.1. However, in practice we worked at the Fe L3 edge which gives rise to a
larger dichroic signal than the Ni L3 edge for both wire surface and shadow since the resulting
contrast is larger (see the last column of Table 3.1). This will be explained later in sec.3.5.3,
and related to the existence of a background level.

Third, let us highlight the impact of the choice of an absorption spectrum on distribution
features of XMCD contrast. According to what has been explained previously, a positive contrast
at wire surface is associated with a negative one on shadow. Indeed, a large absorption and thus
a loss of photons of a given helicity is associated with an enhanced number of secondary electrons.

The number of photons going through wire is related to the dimensionless quantity dµ± with
d the wire diameter. In case of large absorption, we can expect, for example, a contrast inversion
at back side of the wire. This contrast inversion is visible depending on the simulated edges
Figure 3.11(k,m). However, experimentally, due to spatial resolution, it is difficult to see this
contrast inversion. Certainly, it is visible at high resolution and for wires with large diameter
as presented in Figure 3.13. Finally, we expect the contrast in the shadow to be reinforced and
even to diverge for µd → ∞, at the Ni edge. Yet, it is not the case. This will be explained in
the following section.

3.5.3 Background level in PEEM imaging

Theory shows that for high value of µd, and also of the difference µ+−µ−, it is possible to reach
increasing values of XMCD contrast in the shadow. However this theoretical expectation comes
at the expense of a much reduced intensity of the number of photons. This is the principle of
some polarizers, for example for the helicity of X-rays [89] or spin of electrons [90]. In practice,
an experimental effect limits the contrast. If we examine Figure 3.14 we see that for a broad
wire, for which µd ≫ 1, intensity in the shadow reaches a plateau and remains of the order
of 15% of the intensity over the free supporting surface. Since the background level of the
camera is already subtracted from images, this intensity results from electrons really impinging
on the detector. This background was found to be weakly affected by settings of the LEEM,
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in particular the aperture of the field of view. The contrast aperture, affecting the angular
collection of microscope, does not have a sizeable effect either. This is an a priori mostly helicity-
independent background Ie,b, that thus reduces the computed XMCD contrast. Indeed, in the
XMCD computed so far, Ib does not appear in the difference of intensities at the numerator but
is summed in the denominator. If Ie,b is determined it is possible to get a more accurate value
of the true XMCD by computing: IXMCD,0 = (Ie,σ−

− Ie,σ+
)/(Ie,σ−

+ Ie,σ+
− 2Ie,b). Figure 3.11

presents raw data in the first column, and values corrected from the background level in the
second column. In these, it is striking that contrast in the shadow is higher in the corrected
images than in the raw ones, as expected from theory. This increase of the contrast in shadow by
removing the background level can be a reason to explain the difference of contrast in the shadow
between experiment and simulation (Figure 3.8d). These contrasts also explain why working at
the Fe edges yields a higher contrast than at the Ni edges, whereas a similar contrast would be
expected for Permalloy as computed from the tabulated absorption coefficients (Table 3.1). This
results from the large number of photons absorbed at the Fe edges, and thus the background
level is smaller in relative value. Nevertheless, the signal over noise ratio is poorer in the case
of Ni, an issue discussed below.

As discussed before, the shadow is more reliable to gather information because, for instance,
it is relatively distortion-free. Moreover, the spatial resolution in this area is increased by a
factor 1/ sin(16 ◦) ≈ 3.6 along the beam direction thanks to the projection with a grazing angle,
bringing the resolution to 10 nm. However the limited number of photons collected in shadow is
a practical limitation to this gain. The number of collected photons in shadow is sharply reduced
due to absorption. Thus, if a better resolution is needed, one has to increase the acquisition
time. However it is to be noted that the acquisition time is an optimum. A too short time offers
the advantage of a small drift but also a small number of electrons collected. Thus the noise is
high and drift correction is difficult to compute. To the contrary a long acquisition time gives
rise to a large number of electrons but the drift is so huge that the correction cannot remove it.

3.5.4 Scattering effects

So far we have considered propagation in geometrical optics, neglecting scattering. In general
interaction of X-rays with matter can be described via complex atomic scattering factors. Real
and imaginary parts give rise to the Faraday rotation of photon polarization vector and to
magnetic dichroism, respectively, as the photon beam propagates through magnetic material.
The two are related by the Kramers-Kronig relation, and they are comparable in magnitude
at the Fe L3 edge [91]. Until now, we have considered only the X-ray absorption coefficient,
which is proportional to the imaginary part of the forward scattering amplitude via the optical
theorem [92]. Instead, as we noted above, a proper treatment should include the full scattering
process. Indeed, intensity oscillations near the edge of the shadow are visible in Figure 3.14 due
to Fresnel diffraction from the wire. Furthermore, the Fresnel fringes also show a dichroic signal.

3.5.5 Electric field distortion

LEEM images of non flat surface are distorted [73] because secondary electrons escape perpen-
dicularly to the local surface. Their trajectory is curved through the extraction voltage such
that the size of a convex objects, like the ones we use, is larger than the real size. This creates a
significant distortion to the outgoing low-energy electron wave. In the end there are two aspects
that combine in the final image: the spherical aberrations of the objective lens (due to the an-
gular spread of electrons), and the distorted potential profile of the topographically nonuniform
sample surface. In the case of shadow XMCD-PEEM this experimental feature can be directly
evidenced. Indeed we have access to the shadow of the object from which electrons escape along
the electric field lines. To measure the wire diameter, the width of the shadow is divided by
3.6. The apparent width of the wire deduced from XAS was about 50% larger than the width
obtained from the shadow. Indeed, let us have a look at Figure 3.12c and compare the widths
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Figure 3.14: Scattering effects. Wire image of the intensity for (a) the XMCD and (b) the absorption
contrast summed for both helicities. (c) shows the wire and shadow zones on the contrast
images. The plot (d) presents the intensity at the cross-sections shown in (a) and (b). Dotted
lines are guides to the eye and limit the wire (left, yellow) and shadow areas (right, pink)

of the wire measured with the shadow and directly on the wire. The former gives a diameter
of 57 nm while the latter is 70 nm. But we can also compare these widths and the impact of
the STV on the width measured directly on the wire. The wire diameters we get through this
procedure are those we keep as relevant and use as input for the simulations. Notice this method
to gather the size of the nanostructure is possible only for objects that are slightly above the
supporting surface in order to split the contrast arising from the wire and from the shadow and
then measure the whole shadow.

3.6 Conclusion

The shadow XMCD-PEEM provides a surface and volume information about magnetization,
which is of great importance to solve complex magnetic configurations. Moreover, the increase
of spatial resolution thanks to the use of shadow makes this method unique. To help identifica-
tion of DW, a simulation tool has been developed. Starting from micromagnetic configurations,
we get a XMCD contrast. Simple test cases helped the understanding of the experimental con-
trast. Then simulated contrasts from simulated micromagnetic configuration help to distinguish
between a TVW and a BPW. A comparison between experiments and simulations leads to a
good qualitative agreement. Quantitative differences come from, for example, as presented in
Figure 3.8, a background level that is difficult to quantify. The last part with a study of the
impact of plane of focus, extraction voltage, background level and electric field distortion en-
ables to extract the true structure as well as the contrast. Due to curved surface, plane of focus
can be set between substrate and wire surface. The background level can be measured directly
on images and subtracted to get the contrast free from background. More details about the
simulated contrast can be found in chap.6
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Chapter 4

Conclusion

The study of domain walls in nanowires has known a rising interest after the proposition of IBM
for a three dimension race track memory. In this application, bits are made of DWs. Further
than application to device, many physical features related to these DWs are of interest.

There remains many physical and numerical features to study about DWs in nanowires. Nev-
ertheless, we pursue the phase diagram of magnetic DWs for a geometry ranging from nanostrips
to nanowires. The first and second order phase transition lines have been traced up to diagonal
of the diagram. However, the second-order transition line between TVW and ATW does not
continue until diagonal. Indeed, the latter is not a steady state for wires over the range of tested
geometries, that is until a diameter of 150nm. The Bloch point wall, predicted for nanowires of
square or disk-based cross section, extends its existence and stability domain around the diag-
onal. Moreover, above 7∆d for TVW, both transverse and longitudinal curling rise, the former
around the transverse component, the latter along the wire axis. These two directions of curling
appear as a method to decrease the dipolar energy for large diameter nanowires. This aspect is
an explanation for the stability of the BPW around the diagonal, the system preferring to close
its magnetic flux as soon as its dimensions are suitable. The curling appears as a more efficient
method to decrease the magnetostatic energy than the asymmetry. Moreover, a scaling law for
the DW width has been derived.

The study of DWs continues with their imaging. To get a sufficient spatial resolution,
chosen technique is XMCD-PEEM. XMCD-PEEM imaging of these nanowires of disk-based
cross section has been done three times during my thesis. Experimental conditions, with a 16 ◦

grazing angle enables to access the shadow of the wire. This imaging technique is made possible
for suspended wires, by the fact that they are bent or they have ends with larger diameter. This
shadow contains information about volume magnetization, averaged along path of X-ray. This
technique thus combines a surface imaging and a volume averaged imaging.

To help the understanding of this complicated contrast, a simulation tool has been developed.
This tool enables to discriminate between a TVW and a BPW, which is currently not possible
using the MFM technique. We can thus assert the Bloch point wall has been observed for
the first time. Comparison between simulated contrasts and experimental ones yields a good
qualitative agreement. Quantitative differences may come from, for example, background signal
in the shadow. This signal is to be evaluated for each set of images.

Experimental settings such as the extracting voltage, plane of focus, background level, have
been studied to help to get physical relevant magnetic contrast.

The study of DWs propagation under magnetic field is part of the thesis of Alexis Wartelle.
Connection between BPW circulation and direction of applied field has been confirmed. Nu-
merical study of this propagation will be part of the thesis of Beatrix Trapp.
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Chapter 5

Perspectives

In the framework of a device-oriented work we are interested in structured wires that enable
to control DW motion. Production of wires with diameter modulations along wire are ongoing
work (joined work between Néel Institute, University of Erlangen and Smart Membrane). We
are interested in BPW since this DW is the fastest under an applied magnetic field. These
wires need to be correctly dimensioned to ensure nucleation of a BPW and not TVW. In that
way, the phase diagram tells us to use wires with diameters larger than 35 nm. But due to the
metastability, we chose a diameter of 70 nm.

A wire included in such a device has a modulated diameter along wire axis, either protrusions
or constrictions. The former acts as potential barrier. The latter is a potential well for DWs.
Applied magnetic field will be used either to make DW go through protrusion or to depin DW
from potential well. Thanks to the application of the magnetic field, the DW is moved to the
next diameter modulation. Several field values are to be considered. There is the steady state
regime field accompanied with a high speed, the minimum field to propagate a DW and the
minimum field to depin a DW. Gaussian distributions are to be considered for both latter fields.
The propagation fields have to be sufficiently lower than the depinning fields so that a DW is
only propagated along wire and does not go through diameter modulations.

For this work, there are currently three main steps. First, to plot v = f(Happlied). Second,
we will study influence of diameter modulation shape on depinning field. Third, each field values
will be chosen so that a DW goes through one modulation at a time.

Plot of speed versus applied field has already been done by Thiaville et al . [2]. However
the considered system is a square-based nanowire with a side of 40 nm, and field to apply to
reach steady state regime differs according to geometry. To study dynamics, simulations were
performed using the DW moving frame formulation. Indeed, this is an alternative solution to
very long wires, the latter requiring computing power and memory. To prevent nucleation of
DW from the ends of wire, α = 1-zones have been added in order to dissipate energy. Fields
were applied with a step-wise function from 1 to 10 mT.

However, problems occur at this step. After a given number of iterations, DW speed does
not evolve linearly with time. Number of iterations leading to the change of behavior increases
with field. After this change of behavior, DW moves slower, with some bumps. Close looks at
micromagnetic configurations at long time show these configurations are much more complicated
than a BPW. Systems develop spin waves without cylindrical symmetry (cork-screw shape).
Moreover, wire averaged components mx and my show temporal oscillations. Frequencies of
these oscillations change between the beginning and the end of the simulation meaning there is
a frequency for the first regime and for the second, complex, regime. However it is not clear
whether the change of frequency is directly linked with DW or whether it is related to spin
waves.

A second set of simulations included some modifications. All modifications were done sepa-
rately in order to get the impact for each of them. First, instead of using a step-wise function
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for the applied field, we use a linear function with a rising time of 3.5 ns. With this method,
closer to experimental conditions, energy is not added too fast to the system. Second, influence
of mesh size has to be properly studied. Third, a simulation was done using the laboratory
frame.

Use of linear function for the applied only delayed the change of behavior and time oscillations
of mx and my are still there. A finer mesh gives rise to better results. However, even at the
beginning, behaviors differ. The finest mesh gives rise to a higher speed. Finally, when using
laboratory frame, DW exits wire before any clear change in motion is visible.

After this set of simulations we can bring some conclusions. The use of a three segment wire
with abrupt α-changes is not a relevant solution. This sharp variation acts as a mirror reflecting
spin waves instead of dissipating energy. We already knew BPW may raise some problems since
magnetization norm is not kept. BPW thus tries to remain at the center of the cell, as close
as possible to the wire axis so as to limit dipolar field. However, it is not feasible due to mesh
structure (no cell centered on wire at each mesh layer). As a result, the Bloch point jumps
from one cell to another around the wire axis which might be an explanation of mx and my

oscillations. These jumps can be exacerbated by the reflected spin waves which disturb the
system. Moreover, to check influence of spin waves on oscillation frequencies, a method is to
time average magnetization over the DW only.

We face two possible problems. First, there are numerical problems, mainly due to interaction
between mesh and Bloch point. Second, we need to learn more about dynamical and physical
aspects of an orthoradial curling configuration in cylindrical geometry. To solve these problems,
we can study them separately. First, we can work with tubes which do not present Bloch points.
Then, we can compare oscillation periods of mx and my for a tube and a wire with similar
configurations. Third, we can study the gyrotropic precession of DW within a tube applying
a transverse field then let the system to relax. This precession does not depend on the Bloch
point. Finally, to study the behavior of an orthoradial curling with an applied magnetic field,
we can apply a longitudinal field.

Gyrotropic precession is studied in tube. A transverse to wire field (along x) of 50 mT is
applied with a rising time of 3.5nsec. Once the system reaches its steady state with a no more
increasing x-component, the field is switched off and system relaxes. Relaxation starts with
oscillations of the transverse components of the magnetization, mx and my. DW moves then is
reflected with a high increase of energy. Spin waves and problems at boundaries are certainly
responsible for this reflection.

This new set of simulations reflects it remains problems with spin waves. They are not
absorbed at the end of tubes and wires because they bring too much energy. A solution to solve
this remaining problem is to develop α-matching in the same way as impedance matching.

Another crucial point needs to be investigated to better understand the simulation results.
A close look at micromagnetic simulations at various times show variations from the classic
configuration of a BPW. It is not even clear whether BPW still lies within wire. This means
BPW may have been transformed into another type of DW. To solve this question, a code is
being developed by C. Thirion and myself. The goal is to track a BPW at each simulation
iteration. The physical quantity used for this tracking is the winding number. To each type
of DW is associated a winding number so that, by implementing the temporal computing of
winding number, we will be able to assert if the DW is a BPW or of another type. This tool is
crucial to understand results of BPW simulations.



Chapter 6

Appendix

This appendix presents in details numerical developments done during my thesis. They concern
the homemade finite element code FeeLLGood but also numerical tools used for the phase
diagram and the simulated XMCD contrast.
The first part concerns FeeLLGood. The calculation of the demagnetizing field has been
optimized thanks to the use of a new library. The other point is related to a new formulation
implemented in FeeLLGood in order to work in the DW moving frame. Both developments
have been developed by Jean-Christophe Toussaint then tested and used by me.
The second part is dedicated to numerical tools. First we present the ray tracing method used
to simulate the XMCD contrast as well as surface magnetization maps, domain wall widths
or estimations of the curl of the magnetization for the phase diagram. The ray tracing has
been developed by Jean-Christophe Toussaint and some improvements were brought by me.
I developed the numerical tools associated to the ray tracing.
The third part about the simulation of the MFM contrast has been developed before my thesis
by Jean-Christophe Toussaint. I added the possibility to rotate the wire and designed the
surface simulating the tip path over the wire.

A Some FeeLLGood modifications

A - 1 Speed optimization of the demagnetizing field calculation

We explained (sec.1.1.1) that demagnetizing energy, due to the long range of dipolar interactions,
is computing-time consuming. A possibility to improve its computing time is to find a faster
method to implement the fast multipole method (sec.1.3.2). Idea is to parallelize expansion
calculation (computing of moments) for each level of the dyadic partition in FMM. In the next
step, we collect all information corresponding to one level. Then we proceed to the expansion
at a higher level. ScalFMM library is used for this improvement, developed by INRIA (French
National Institute for Research in Computing and Automatism) [93]. As a result, computing
time of demagnetizing field is ten times smaller than with the previous library (Kifmm 3D
package [94]). Currently the most time consuming step is assembling of elementary matrices in
finite element part.

A - 2 Modification of the formulation used in FeeLLGood: framework with
the domain wall

When using numerical methods, some compromises have to be made, for instance between
simulations with a mesh a fine as possible or a very fast simulation. Another problem arises
when one is interested in domain wall propagation.

In that case, to limit the boundary effects, one can use very long wires (several micrometers)
to enable the DW to propagate. However this method requires large computing resources in
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power and memory. The most convenient solution is to find an alternative method. In that
sense, we chose to bring some modifications to the formulation used in FeeLLGood (sec.1.3.3).
Idea is to introduce a moving frame to keep DW centered during dynamics so that there is
no need to use very long wires. This method is similar as adding a field that moves the DW
backward. A motion of the mesh itself can be implemented however this method raises some
problems. First, mesh is redefined at each step which requires a lot of computing time. Second,
there are artifacts due to the interaction between the mesh and the micromagnetic configuration.
An alternative method, without moving the mesh, is presented here:

Let us start from the Alouges formulation (see p.44):

αv +m× v = H− λm (6.1)

where λ is the Lagrange multiplier and H is the effective field.

First, we project Eq. 6.7 onto a test function w in the tangent plane of mn. We are looking
for v in the tangent plane such that:

∫

αw·v +

∫

w· (mn,θ × v) =

∫

w·Hn,θ −
∫

(mn,θ
·Hn,θ)w·mn,θ (6.2)

where mn,θ = mn + θ∆tv. We linearize Hn,θ = Hn + θ∆tv ∂mHn.

We define φ(mn) = α + θ∆t(mn
·Hn) and then get the formulation for the θ-scheme

integration, neglecting terms in ∆t2:

∫

w·φ(mn)v +

∫

w· (mn × v)− θ∆t

∫

w·

(
∂Hn

∂m
v

)

=

∫

w·Hn (6.3)

We can now turn to the DW moving frame. We define Vz, the instantaneous DW speed
along wire axis as Vz = L

2 < vz > with < vz >= ez · < ∂tm >, < ∂tm > being the volume
average of time derivative of magnetization. Modification of formulation with addition of this
term leads to a transport term added to the time derivative of magnetization. We assume this
term to be small and it is considered as a small perturbation because convergence of the weak
formulation has not been proved with this term. Let us now write the differential of m(z, t):

dm =
∂m

∂z
dz +

∂m

∂t
dt (6.4)

dm

dt
=

∂m

∂z

dz

dt
+

∂m

∂t
(6.5)

dm

dt
=

∂m

∂t
+ Vz

∂m

∂z
︸ ︷︷ ︸

transport term

(6.6)

Taking into account this term, LLG-equation reads:

αv +m× v = H− (m·H)m+ αVz
∂m

∂z
+ Vzm× ∂m

∂z
(6.7)

Changing the frame of reference leads to add two new terms to the Alouges formulation. These
new terms do not make use of the Lagrange multiplier since the local conservation of m forces
m· ∂zm = 0.

We can now write the new weak formulation obtained from equation Eq. 6.3:
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∫

w·φ(mn)v +

∫

w· (mn × v)− θ∆t

∫

w.

(
∂Hn

∂m
v

)

=

∫

w·Hn

+V n
z

∫

w· (mn × ∂mn

∂z
) + αV n

z

∫

w·
∂mn

∂z

+θ∆tV n
z

∫

w·

(

v × ∂mn

∂z
+mn∂v

∂z

)

+αθ∆tVz

∫

w·
∂v

∂z
(6.8)

where three terms are added, acting as a field pushing back domain wall.

B Numerical tool development

B - 1 Ray tracing

Ray tracing tool has first been developed to mimic X-ray traveling through matter and simulate
XMCD-PEEM contrast (see p.76). Jean-Christophe Toussaint developed the basis, found
libraries, wrote code for grid definition. I worked on tests and improvements then post processing
codes based on ray tracing.

XMCD-PEEM gives information about surface magnetization. However, as said before
(chap.3), we have access to shadow reflecting volume magnetization averaged along the path
of an X-ray. Thus, to simulate XMCD-PEEM technique, magnetization is computed at any lo-
cation inside sample, which has been achieved with this code. Since it appeared this method is
very powerful, it has also been used in other post-processing codes. For example, it proved useful
to compute domain wall width or to get surface magnetization maps, in the chapter dedicated
to the phase diagram (see Chap 2).

Let us explain the method implemented for XMCD contrast. Other methods will be detailed
below but they are based on a similar principle. Consider a ray launched from a source that is
a regular planar grid. Numerical description of a grid (Figure 3.5), using Boost library [95], is:

1 struct Grid{

2 Point G;

3 int Nu, Nv;

4 double Lu, Lv;

5 double Scell;

6 double focal;

7 Vector ng;

8 Vector tu;

9 Vector tv;

10 Cell_array cells;

11 };

12

13

14 Grid source;

15

16 source.focal=120*SCALE; // SCALE is the unit
17 source.Nu=1024;

18 source.Nv=1024;

19

20 source.cells.resize(boost::extents[source.Nu][source.Nv]);
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21 cout << source.cells.shape()[0] << " " << source.cells.shape()[1]

<<endl;

22

23 double theta=16.*M_PI/180.;

24 source.ng=Vector(+cos(theta), -sin(theta), 0.);

25 source.tu=Vector(+sin(theta), +cos(theta), 0.);

26 source.tv=CGAL::cross_product(source.ng, source.tu);

27 source.G=Point(fem.cx-source.focal*source.ng.cartesian(0)-fem.lx

/3.,

28 fem.cy-source.focal*source.ng.cartesian(1),

29 fem.cz-source.focal*source.ng.cartesian(2));

30

31 source.Lu=280.*SCALE;

32 source.Lv=700.*SCALE;

Listing 6.1: Example of the definition of a grid

Same template is used to define the other grids (substrate grid and detector grid). Numerical
description of ray is done using geometry toolbox library CGAL [96]. A kernel K is used to
model Euclidean geometry. With this kernel, we can use object of type Ray 3 which is a
directed straight ray in the three-dimensional Euclidean space E3. This ray starts from a point
source and goes to infinity. The first step is to find intersection points between ray and external
surface of nanostructure, called Pin and Pout (see Figure 6.1a). To compute this intersection
point, a function search intersections has been developed, using CGAL objects. Next
step is to determine surface element (triangular) to which theses points belong. Let us take
the example of Pin point. To find the correct triangle, principle is to find a given number of
Pin nearest neighbors and surface element to which they belong. Then we compute surface of
surface element delimited by nodes of these faces and Pin, the latter be it in (Figure 6.1d) or
out (Figure 6.1c) of the face. Here is an algorithm of principle:

1 Find the 10 nearest nodes TMP(ie) to P_in

2 Put them into an array

3 Associate its face Fac(ie) to each nearest neighbor TMP(ie)

4 To create a three-component vector V(i), between P_in and the 3

nodes NOD(i) of Fac(ie)

5 Loop over the faces

6 Create a vector C

7 Loop over the three nodes NOD of the a face:

8 C(i) = cross product between V(i) and V(i+1)

9 End loop

10 S = 1/2 * (norm of each C vectors)

11 If (S /surface of the face < 1)

12 then this is the right face

13 Endif

14 End loop

Listing 6.2: Algorithm of principle to find the face to which the intersection point belongs

Using the ANN library [97], this algorithm is implemented in C++ as follows:
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1 void intercept_facet(Fem& fem, Point_List& point_list, Facet2Pt &

facet2pt, ANNkd_tree* &triangles_kdTree){

2

3 for (std::list<Point>::const_iterator it=point_list.begin(); it !=

point_list.end(); ++it){

4 Point P0=*it;

5 ANNpoint queryPt = annAllocPt(3); // allocate query point
6 queryPt[0]=P0.cartesian(0);

7 queryPt[1]=P0.cartesian(1);

8 queryPt[2]=P0.cartesian(2);

9

10 int NPS=10;

11

12 ANNidx id[NPS]; // allocate near neighbor indices
13 ANNdist distsq[NPS]; // allocate near neighbor dists
14

15 triangles_kdTree->annkSearch(queryPt, NPS, id, distsq, 0.); //
ANN function to find nearest nodes of mesh

16

17 bool found=false;

18 for (int nps=0; nps<NPS; nps++){

19 Fac &fac = fem.fac[id[nps]];

20

21 Vector V[Fac::N]; // vector with a number of components equal to number of
face nodes

22 for (int ie=0; ie<Fac::N; ie++){

23 int i=fac.ind[ie]; //change of numbering
24 Node &node = fem.node[i];

25 Point tmp(node.x, node.y, node.z);

26 V[ie]=Vector(P0, tmp);

27 }

28 double Sp[Fac::N], St=0.;

29 for (int ie=0; ie<Fac::N; ie++){

30 Vector C = cross_product(V[(ie+1)%3], V[(ie+2)%3]);

31 Sp[ie] = 0.5*sqrt(C.squared_length()); // surface of one sub−
triangle

32 St += Sp[ie]; // total sum of all normalized sub−surfaces
33 }

34 double r=St/fac.surf;

35 const double eps=1e-6;

36 if (r<1.+eps)// comparison between surface of face [ind(nps)] and the one
delimited with P0

37 facet2pt[id[nps]]=P0;

38 found=true;

39 }

40 if (found) break;

41 }//endfor nps
42 }

43 if ((facet2pt.size()>0) && (facet2pt.size()!=2)) {

44 cout << "WARNING nb intersections : " << facet2pt.size() <<

endl;

45 }

46 }

Listing 6.3: Example of C++ code to find the face to which a point belongs using ANN library
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At these intersection points, magnetization is interpolated from nodal values of triangle
(face) to which they belong using a method based on the areal coordinates method [98]. For
that, triangle with three nodes (I, II, III) is divided into sub-triangles with a common vertex
Pin (see Figure 6.1d). Then, the polynomials used for the interpolation of the magnetization are
calculated such that the one associated to node I is the ratio between surface of the sub-triangle
(Pin, II, III) and the total surface of triangle (I, II, III) (Figure 6.1d). Same method is applied
for the other two nodes. Algorithm of principle for this method is:

1 N = 3 is the number of nodes of the cell

2 d = 3 is the dimension of the space

3 Loop over N nodes of a face:

4 Create a vector between P and the node n

5 Create a vector C(n) of d components

6 C(n) = cross product between Pin and TMP(n)

7 S(n) = 1/2 * square root( C(n))

8 Stot += S(n)

9 end loop

10

11 Create a N component vector A (interpolation polynomials)

12 Loop over each components of A:

13 A(n)=S(n)/Stot

14 Loop over the N nodes of the face

15 up(d)+=A(n)*(component d of magnetization at node n) //
Creation of d component magnetization vector up at P

16 end loop

17 end loop

Listing 6.4: Algorithm of principle for the areal coordinates method for interpolation of

magnetization

The implementation of this algorithm in C++ reads:

1 /∗−MAGNETIZATION INTERPOLATION FOR TRIANGLE −∗/
2 void interpol(Fem &fem, Fac &fac, Point P, triple &up){

3

4 Vector V[Fac::N];

5

6 //gather coordinates of triangle vertices
7 for (int ie=0; ie<Fac::N; ie++){

8 int i = fac.ind[ie]; //from global to local numbering
9 Node &node = fem.node[i];

10 Point tmp(node.x, node.y, node.z);

11 V[ie]=Vector(P, tmp);

12 }

13

14 double Sp[Fac::N], St=0.;

15 for (int ie=0; ie<Fac::N; ie++){ // loop over all face nodes
16 Vector C = cross_product(V[(ie+1)%3], V[(ie+2)%3]);

17 Sp[ie] = 0.5*sqrt(C.squared_length()); // surface of sub−triangle
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18 St += Sp[ie]; // total surface
19 }

20

21 double alpha[Fac::N];

22 for (int ie=0; ie<Fac::N; ie++){

23 alpha[ie]= Sp[ie]/St; // new lagrangian polynomial
24 }

25

26 up[0]=up[1]=up[2]=0.;

27 for (int ie=0; ie<Fac::N; ie++){

28 int i = fac.ind[ie]; //global numbering of the ith node
29 Node &node = fem.node[i];

30

31 for (int d=0; d<3; d++){ //magnetization at each node
32 up[d] += alpha[ie]*node.u[d];

33 }

34 }

35 }

Listing 6.5: C++ implementation of the areal coordinates method for a triangle

In order to calculate absorption along ray, the latter is discretized into segments of a cho-
sen length between Pin and Pout. For each discretization point, first, we determine element
(tetrahedron in volume of wire, see Figure 6.1b) to which point belongs. Second, magnetization
is interpolated with the method previously described but with four nodes and making use of
sub-tetrahedrons instead of sub-triangles. Sub-triangles are only used for elements at surface of
wire, thus for entering and exit points.

Implementation has been done by using the geometry toolbox library CGAL [96] for rays,
and the nearest neighbourg searching library ANN [97].

B - 2 Surface magnetization maps

We work with configurations in three dimensions where space of coordinates and magnetization
vector have three coordinates. These configurations are difficult to present. Thus several displays
must be used. Some of them are provided by softwares such as Paraview [99] or Visit [100], AVS
[101]. These displays can become crucial when facing very complex structures, especially at
surface. For instance when searching for asymmetric transverse wall, there is a need to know
whether locations where magnetic flux enters and exits are located on a same plane perpendicular
to the wire axis. The goal is thus to get a 2D image of magnetization at wire surface.

There exists alternative methods to get surface magnetization. One can think, for example,
of searching only for surface elements of wire and compute scalar product between normal to
surface and magnetization. Then it will be necessary to check if everything is saved in the proper
way so that when output file is read, values of scalar product are not misplaced. This technique
is much more complicated.

To compute these surface magnetization maps, wire is divided in a given number of con-
strictions perpendicular to the wire axis. For each one, rayss with direction k̂, are radially
launched from wire axis. In that case, we are not interested in tetrahedrons the ray crosses
through wire, but only in its intersection with a surface triangle (see Figure 6.2b). This triangle
and magnetization at intersection are found as explained in sec.B - 1 by interpolation of the
magnetization with areal coordinates. Once magnetization m at surface is obtained, we can
be interested either in radial component of magnetization or in z component of magnetization.
For the former, surface map is in plane (θ, z) where θ goes from 0 to 2π and z covers the wire
length, computing the scalar product between the direction of the ray k̂ and m, so that only the
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Figure 6.1: Description of numerical method. (a) presents method to model X-ray beam. Red line
presents X-ray beam crossing elements (in white, from finite element discretization). Surface
elements of discretized physical system are in grey. (b) shows wire on gridded substrate and
photon source. (c) and (d) illustrate areal coordinate method. Blue, red and striped areas are
the three triangles defined with (Pin, I, II, III). (c) scheme of the sub-triangles with Pin outside
the triangle (I, II, III). (d) sub-triangle with Pin inside the triangle (I, II, III)

radial magnetization is kept (Figure 6.3b). It is summarized in Figure 6.2. Radial component
is equivalent to local normal to surface. Principle of algorithm is the following:

1 Loop over the z position

2 Loop over the angle theta from 0 to 2pi

3 Definition of ray direction n_x= cos(theta) and n_y= cos(

theta)

4 Find entering and exit points of ray

5 Find element to which these points belong

6 Interpolation of magnetization at these points

7 Scalar product between interpolated surface magnetization and

ray

8 end loop

9 end loop

Listing 6.6: Algorithm of principle for map of magnetization

We can also do the scalar product with z direction to get maps of longitudinal component
at surface.

When dealing with square wires, rays launched from wire axis are not normal to surface.
Method is then slightly different (see Figure 6.3a). Rays are still radially launched from wire
axis and intersection with the surface of nanostructure determined. This step enables to find
equispaced magnetization vectors at surface. However, k̂ vector is not equivalent to the outward
normal to surface. Thus instead of computing the scalar product (k̂·m) we compute (ns ·m)
where ns is the outward normal of surface, which is defined for each surface element. With
this configuration, there is a sharp change of normal to surface direction at edges of the square
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thus a sharp change of color on maps (Figure 6.3a). This change highlights circulation of
magnetization, which is an orthoradial curling since the color changes from red to blue (or
vice-versa) at locations where the local magnetization is tangent to the surface. This curling
is accompanied with magnetic charges at wire edges. The first method does not highlight edge
charges. However the latter has the advantage to keep a continuous normal to surface convention
and thus to highlight curling around transverse part (Figure 6.3b).

a

b

z
x

y

Figure 6.2: Surface map technique. (a) Black arrows are for magnetization. (b) Principle of the technique.

B - 3 Computation of a discrete vector field curl

Curl of magnetization has been chosen as an order parameter to follow the breaking of symmetry
occurring in TW. We were first interested in curl integrated over the wire and its plot as a
function of diameter. Following evolution of each curl component, it will be possible to decide
wether the rise of curling we observe on micromagnetic configurations is a second-order phase
transition. It is also possible to gather information from the layer-resolved curl of magnetization,
along wire length, for example, to compare the curl of magnetization of a TVW along wire axis
to the one of a BPW.

Both methods need a normalization. For the layer-resolved method, normalization has be
chosen so that curl equals π for a perfect orthoradial curling, like the one of a BPW. To achieve
this, the value integrated over a disk cross section was divided by d, the diameter. In the curl
integrated over the volume, normalization has been chosen so that the curl equals π for a DW of
length d. Final result is divided by d2. Thus both curling strength and volume enter the result.
A value larger than π can be obtained, for example, in case of a BPW with width much larger
than d (Figure 2.7)b.

Calculation of the curl is another example of use of ray method, making this method mesh
independent. However this independence is limited since, as shown previously (sec.1.3.3) the
derivative of magnetization is constant within a cell.

Obviously there are other methods to implement the curl of magnetization in case of finite
element structured systems. It would be possible to compute the curl of magnetization for each
element of mesh and add them. However this method depends more on mesh and does not allow
to easily get a z-resolved curve of the curl. Indeed, without making use of the ray, method would
have use a loop over all cells to find all those being at a given position. But this method may
lead to a lot of mistakes such as double counts.
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Figure 6.3: Two methods for surface magnetization. Top row: Maps of surface magnetization for a
TW in a 120 nm-side square-based nanowire. Bottom row: Schemes of methods. (a) Surface
magnetization computed using scalar product between normal to surface n and magnetization
m. (b) Surface magnetization using the scalar product between ray launched from wire axis k̂
and magnetization m.
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Figure 6.4: Computed curl technique. (a) Wire with an infinitesimal cylinder. (b) Disk on which the curl
is computed. Large black arrows stand for rays, green triangles schematize tetrahedrons crossed
by ray and black marks are discretization place.

Let us start to detail the layer-resolved method. Let assume wire axis is along the z direction.
The curl is thus computed for layers in the (x, y) plane. Wire length is discretized into small
segments i of length dz. For each zi position, a ray is launched in the y direction, from a point
under the wire, with coordinates (xj , y, zi). The xj-coordinate of the ray spans the diameter size
(see Figure 6.4b). For each ray, the entering and exit points and the intercepted tetrahedrons
are determined as in the section B - 1. Magnetization is then interpolated at one point inside
a tetrahedron. Only one point is necessary due to P1-type polynomials that have a constant
gradient within a cell. The derivatives of the magnetization are obtained using the derivatives
of the Lagrange polynomials and magnetization at nodes. Because we are using P1-type polyno-
mials, we can directly compute spatial derivatives of magnetization by derivating the Lagrange
polynomials. Finally, curl is computed and integrated along the ray path (see Figure 6.4a). At
the end we get magnetization curl for a layer of a given thickness. This method is repeated
along the wire axis so as to get a z-resolved curl of the three components of magnetization as
presented in Figure 2.7a. An algorithm of principle of this code is presented hereafter:
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1 Find direction of transverse component A using the mean value of

the transverse component

2 Build a base with (A, B, z)

3 Loop over the z direction with dz step

4 Increase z by dz

5 Loop over the x position

6 Definition of origin of the ray (x, y, z) and direction

(1, 0, 0)

7 Find the entering and exit points of the ray,

discretization

8 Interpolation of the magnetization at the interior

points

9 Computing of magnetization curl at one Gauss point (

derivatives are constant within a cell) then

multiplication by dx and addition to the previous

term

10 Multiplication of this term by dy and addition

11 end loop

12 end loop

13 Projection of the three components of the curl on (A, B, z) base

14 Saving of components, divided by the diameter

Listing 6.7: Algorithm for the z-resolved curl of the magnetization

For the second method, the first steps are the same as previously. Curl is computed on a
disk as before but then it is integrated over wire volume, adding all layer values. Algorithm of
principle is:

1 Build a base with (A, B, z)

2 Loop over z direction with dz step

3 Loop over x direction

4 Definition of origin of ray (x, y, z) and direction (1, 0,

0)

5 Find entering and exit points of ray, discretization

6 Computing of the curl of magnetization at one interior point

(derivatives are constant within a cell), multiplication

by dy + addition

7 end loop

8 Multiplication of this curl by dz + addition

9 Projection of the three components of the curl to the (A, B,

z) base

10 Saving of components, divided by the squared diameter

11 end loop

Listing 6.8: Algorithm of principle for the wire integrated curl of the magnetization

B - 4 Estimation of the domain wall width

There are various definitions for domain wall width (Lilley [22], Thiele [23], Jakubovics [69]
and others, see sec.2.5). The point is to get a scaling law and not numerical coefficients in
most cases. Exact definition of domain wall width is not important. Thus we decide to use
δDW =

∫ +∞
−∞ sin θ(x)dx which is a variation of the definition of Jakubovics: δJ =

∫ +∞
−∞ sin2 θ(x)dx.
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To compute this integral a procedure based on the one used to compute the curl for a layer was
used. Three components of magnetization are averaged over a layer of wire, so that a direction of
magnetization is associated with a thin cylinder of thickness dz. With these data it is possible to
get the angle between wire axis and the magnetization. Then the sine of this angle is integrated
along wire. Sine is zero within domains and non-zero inside wall contributing to wall width.
Algorithm for the method is:

1 Initialize integral=0.0

2 Loop over z

3 x = xmin

4 Loop over y (ny step)

5 y=ymin + dy*ny

6 Ray launched in the x-direction from P_ori (x, y, z)

7 Find intersection

8 Interpolation of magnetization

9 Add magnetization vectors component by component

10 end loop

11 end loop

12 Loop over all z-layers

13 Get angle theta between z direction and averaged magnetization

14 Integral += abs(sin(theta))

15 end loop

Listing 6.9: Algorithm of principle for domain wall width

a b

z
x

y

dz

y

xxmin xmax

ymin

ymax

Figure 6.5: Computed domain wall width (a) An averaged magnetization direction is associated with a
cylinder of infinitesimal thickness. (b) Ray launching within a layer. Blue dots are places from
where rays are launched.

B - 5 Analytical test cases for XMCD

Simulation code used to simulate shadow XMCD-PEEM (chap.3) has been validated using an
analytical model. For this validation, we used the software Matlab [102]. Two magnetic config-
urations were tested. First, the magnetization is aligned with beam (Figure 3.7b), second, it is
a pure orthoradial curling (Figure 3.7c). Uniform magnetization is the simplest configuration
to test, with absorption along path of X-ray. A wire uniformly magnetized along its axis can be
also used but it is not relevant. Indeed, magnetization is everywhere perpendicular to beam and
thus there is no absorption. Pure orthoradial curling is of interest since it is close to the BPW
configuration. To compare analytical and numerical results, we first compute photon intensity
for each polarization, then XMCD-PEEM contrast.
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Figure 6.6: Scheme for analytical models used for shadow XMCD-PEEM. k̂ is the beam direction,
Pin and Pout are entering and exit points of ray into wire, Pext is the intersection between beam
and substrate. g is the gap between wire and substrate, nf is the local outward normal to wire
surface and n is the normal to substrate. θ is the angle between beam direction and substrate.

Let us have a look at Figure 6.6 to follow discussion. Intensity of remaining photons is
computed in the interval y ∈ [−R ;R].

Intensity

Magnetization parallel to the beam

One assumes that magnetization is perpendicular to wire and aligned with the beam. Due
to absorption, X-ray intensity decreases exponentially along path (Figure 3.7b). More precisely,
one has:

arg0 =
µσ+ + µσ−

2
× xf (6.9a)

arg1,para =
µσ+ − µσ−

2
× xf (6.9b)

IX,σ+(xf) = exp(−arg0 − arg1,uni) (6.9c)

IX,σ−(xf) = exp(−arg0 + arg1,uni) (6.9d)

arg0 is the non-magnetic part on absorption, whereas arg1,uni is magnetic absorption de-
pending on configuration.

Abscissa t where photon intercepts substrate is t = y/ sin(θ)+(R+gap)/ tan(θ) (Figure 6.6).
Then we define a test variable h such that:

h = 0 if t < R (6.10)

h = 1 if t > R

The variable h is used as a test for all photons intercepting substrate. If intersection abscissa
is smaller than wire radius then intensity of considered photon is not taken into account. This
test removes intensity arising from the bottom part of the wire. Thus this part gives electron
contrast in shadow.
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1 for n=1:Ny // y−loop from −R to +R
2 arg0=(kp+km)*xf(n);

3 arg1=(kp-km)*xf(n);

4 Ip(n)=exp(-arg0+arg1);

5 Im(n)=exp(-arg0-arg1);

6 end;

7

8 ti=16*pi/180.; //angle between beam and substrate
9 t=y/sin(ti)+(R+gap)/tan(ti); //definition of the distance from wire bottom and

intersection of ray with substrate
10 h=1-(t<R); //test

Listing 6.10: Matlab code for photon intensity on shadow for a magnetization parallel to beam

Next part computes intensity at wire surface. At entering point xi, intensity is set to one
because no absorption has taken place yet. At exit point of wire, intensity is given by equation
(6.9a):

1 for n=1:Ny

2 arg0=(kp+km)*xf(n);

3 arg1=(kp-km)*xf(n);

4 Iph_p=exp(-arg0-arg1);

5 Iph_m=exp(-arg0+arg1);

6

7 p=p+1;

8 x=-xf(n); // entering point
9 nf=[-xf(n), y(n)]/R;

10 nfng=dot(nf, ng);

11 nfk=nf(1); // x− direction, parallel to photon direction
12 if (nfng>0)

13 Ip(p)=1; Im(p)=1;

14 end;

15

16 p=p+1; x=+xf(n); // exit point
17 nf=[+xf(n), y(n)]/R;

18 nfng=dot(nf, ng); nfk=nf(1);

19 if (nfng>0)

20 Ip(p)=Iph_p; Im(p)=Iph_m;

21 end;

22 end;

Listing 6.11: Matlab code for the photon intensity at wire surface for a magnetization parallel to

beam

Orthoradial curling

For the orthoradial curling, the method is exactly the same as for the uniform magnetization.
Only the argument arg1 related to the magnetic absorption of the exponential differs. They
become:



6.B. Numerical tool development 109

arg0 =
µσ+ + µσ−

2
× xf (6.11a)

arg1,curl =
µσ+ − µσ−

2
× |y| × asinh(xf/y) (6.11b)

IX,σ+(xf) = exp(−arg0 − arg1,curl) (6.11c)

IX,σ−(xf) = exp(−arg0 + arg1,curl) (6.11d)

XMCD-PEEM contrast

We can now turn to XMCD-PEEM contrast. The algorithm is quite the same. First we compute
contrast at each point on shadow by removing points at the bottom surface of wire using test
variable h (see eq.6.10). We add then contrast arising from points at wire surface.

Magnetization parallel to beam

Dichroic contrast on substrate, is given by:

C(p) =
Ie,σ−(p)− Ie,σ+(p)

Ie,σ−(p) + Ie,σ+(p)
(6.12a)

Matlab code for shadow contrast on substrate is:

1 for n=1:Ny // y−loop from −R to +R
2 arg0=(kp+km)*xf(n);

3 arg1=(kp-km)*xf(n);

4 Ip(n)=exp(-arg0+arg1);

5 Im(n)=exp(-arg0-arg1);

6 C(n)=(Im(n)-Ip(n))/(Im(n)+Ip(n)); //Contrast
7 end;

8

9 ti=16*pi/180.; //angle between the beam and the substrate
10 t=y/sin(ti)+(R+gap)/tan(ti); //definition of the distance from the wire bottom

and intersection of ray with substrate
11 h=1-(t<R); //test

Listing 6.12: Matlab code for XMCD contrast on shadow for magnetization parallel to beam

Contrast at surface of wire is split into two parts. We compute separately entering points,
where no absorption has yet taken place through matter, and exit points, with absorption
through matter. First, let us define some variables used in the following:

fpara,σ+ =
2

µσ+ + µσ−

[(µσ+ + µσ−)/2 + (µσ+ − µσ−)/2] (6.13a)

= 1 +
µσ+ + µσ−

µσ+ − µσ−

(6.13b)

fpara,σ− =
2

µσ+ + µσ−

[(µσ+ + µσ−)/2− (µσ+ − µσ−)/2] (6.13c)

= 1− µσ+ + µσ−

µσ+ − µσ−

(6.13d)

nf = [−xf(n), y(n)]/R (6.13e)

asc = |nf · k| (6.13f)
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asc is related to the angle cosine between the outward normal to surface and direction of
extracted electrons. This quantity is linked to the number of events (absorption) occurring in
the wire volume. nf · k is the local normal component in the direction of beam. It is possible
to add 10−16 to asc for cases the two vectors are orthogonal.

The dichroic contrast for entering points only includes the dichroism at the surface of the
material. It is given by:

Ie,σ+(p) = fpara,σ+/asc (6.14a)

Ie,σ−(p) = fpara,σ−/asc (6.14b)

(6.14c)

Contrast for exit points takes into account absorption through matter, combined with dichro-
ism:

Ie,σ+(p) = fpara,σ+ × IX,σ+/asc (6.15a)

Ie,σ−(p) = fpara,σ− × IX,σ−/asc (6.15b)

(6.15c)

In both magnetic cases, contrast is given by:

C(p) =
Ie,σ−(p)− Ie,σ+(p)

Ie,σ+(p) + Ie,σ+(p)
(6.16)

Code for both two cases, entering and exit points, is:

1 p=0;

2 tg=[+cos(ti) sin(ti)]; // beam direction
3 ng=[-sin(ti) cos(ti)]; // orthogonal direction to beam
4 for n=1:Ny // loop over y values from −R to +R
5 arg0=(kp+km)*xf(n);

6 arg1=(kp-km)*xf(n);

7 Iph_p=exp(-arg0-arg1); //photon intensity for positive polarization
8 Iph_m=exp(-arg0+arg1); // photon intensity for negative polarization
9

10 pf_sigmap=(kp+km)/2+(kp-km)/2; //definition of pre−factor for positive
polarization

11 pf_sigmam=(kp+km)/2-(kp-km)/2; // pre−factor for negative polarization
12

13 p=p+1;

14 x=-xf(n); //set x to entering point
15 nf=[-xf(n), y(n)]/R; // normal to surface at entering point
16 nfng=dot(nf, ng);

17 nfk=nf(1);

18 if (nfng>0) // test to keep photo−electrons escaping towards detector
19 asc=abs(nfk);

20 Ip(p)=pf_sigmap/asc; // photo−electron intensity for positive polarization
21 Im(p)=pf_sigmam/asc; // photo−electron intensity for negative polarization
22 C(p)=(Im(p)-Ip(p))/(Im(p)+Ip(p)); //contrast
23 end;

24

25 p=p+1;

26 x=+xf(n); //set x to exit point
27 nf=[+xf(n), y(n)]/R; //normal to surface at exit point
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28 nfng=dot(nf, ng);

29 nfk=nf(1); // x−component of nf along beam direction = dot(nf, tg)
30 if (nfng>0) // test to keep photo−electrons escaping towards detector
31 asc=abs(nfk);

32 Ip(p)=pf_sigmap*Iph_p/asc; //photo−electron intensity for positive
polarization

33 Im(p)=pf_sigmam*Iph_m/asc; // photo−electron intensity for negative
polarization

34 C(p)=(Im(p)-Ip(p))/(Im(p)+Ip(p)); //contrast
35 end;

36 end;

Listing 6.13: Matlab code for XMCD contrast on wire surface for a magnetization parallel to beam

If ray is perpendicular to the normal then the scalar product asc tends to zero. If we note t
the photon path of wave vector k̂ through matter, te the escape depth of photo-electrons and n

the local outward normal to wire surface then:

I =

∫ t

0
e−µxdx =

1− e−µt

µ
(6.17)

∼ t =
te

k̂.n
if t ≪ 1

µ
(6.18)

∼ 1

µ
if t ≫ 1

µ
(6.19)

Thus intensity does not diverge for rays almost tangent to wire surface.

Orthoradial curling

For orthoradial curling, principle is similar as for magnetization parallel to beam. Only
pre-factors differ.

u = −y/R (6.20a)

fcurl,σ+ =
2

µσ+ + µσ−

[(µσ+ + µσ−)/2 + (µσ+ − µσ−)/2]× u (6.20b)

= 1 +
µσ+ + µσ−

µσ+ − µσ−

× u (6.20c)

fcurl,σ− =
2

µσ+ + µσ−

[(µσ+ + µσ−)/2− (µσ+ − µσ−)/2]× u (6.20d)

= 1− µσ+ + µσ−

µσ+ − µσ−

× u (6.20e)

(6.20f)

Other terms are identical. Thus the code used for implementation differs only by adding the
term u = y/R with y = y(n) varying in loop.

C Simulation of the MFM contrast

Magnetic force microscopy (MFM) is the most accessible imaging technique at laboratory. Thus
it is the first to be used to try to locate then identify the type of DW. This technique can also be
used to study propagating fields by imaging before and after a field is applied. Question arises,
whether it may be used to identify the type of DW in cylindrical wires, either TVW or BPW.
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C - 1 Phase contrast in MFM imaging

Cantilever oscillates as an harmonic oscillator in z-direction around its equilibrium position z0.
We work under the assumption of small amplitude oscillations. Taking this force into account,
the dynamics of the cantilever along the z-direction is given by:

mz̈(t) + Γż + c[z(t)− z0] = F ext
z (t) (6.21)

where m is magnetic tip mass, Γ is surrounding media viscosity and c the cantilever stiffness.
Since we made the assumption of small oscillations, it is possible to write the Taylor expansion
of the force around the tip equilibrium position z0:

Fz
∼= Fz(z0) = (z − z0)

∂Fz

∂z

∣
∣
∣
∣
z0

+ ϑ(z − z0)
2 (6.22)

The second derivative of the position along the z direction is then given by:

mz̈ ∼= −c

(

1− 1

c

∂Fz

∂z

∣
∣
∣
∣
z0

)

(z − z0) + F ext
z + Fz(z0) (6.23)

Without any external force, the pulsation the of cantilever is
√

m/c and the frequency is
f0 =

1
2π

√

c/m. With the perturbation from the external force, the oscillation frequency is:

f =
1

2π

√
√
√
√ c

m

(

1− 1

c

∂Fz

∂z

∣
∣
∣
∣
z0

)

= f0

√

1− 1

c

∂Fz

∂z

∣
∣
∣
∣
z0

(6.24)

C - 2 MFM models

Force between sample and tip comes from Zeeman force resulting of magnetization tip stray
field, or equivalently of sample stray field on tip magnetization. Since tip magnetic moment is
supposed to be known and fixed whereas we are looking for sample stray field, we chose the
latter Zeeman force.

It is possible to use either monopolar or dipolar approach. With the monopolar one, magnetic
force is integrated from tip equilibrium position to infinity whereas for the dipolar one, force is
integrated over the tip. Let us present the monopolar approach:

Eint = µ0

∫ +∞

z
d3r′ Mtip(r

′)·H(r′) (6.25)

where H is the stray field from sample.

The force resulting from energy is given by Fz = −∂zEint. Thus, for the monopolar approach,
force along z-direction is given by:

Fz = −µ0SM
z
tipHz(z0) (6.26)

where S is the interaction surface. And relative variation of the oscillating frequency of the tip
is:

∆f

f0
∼= 1

2c

∂Fz

∂z

∣
∣
∣
∣
z0

= −µ0M
z
tipS

1

2c

∂Hz

∂z

∣
∣
∣
∣
z0

(6.27)

In the framework of the dipolar approach, interaction energy is given by:

Eint = µ0

∫ z+L

z
d3r′ Mtip(r

′)·H(r′) (6.28)
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Force is then:

Fz = µ0SM
z
tip[Hz(z)−Hz(z − L)] = µ0SM

z
tipL

∂Hz

∂z
(6.29)

Finally, the relative variation of the oscillation frequency of the tip is:

∆f

f0
∼= −µ0M

z
tipSL

1

2c

∂2Hz

∂z2

∣
∣
∣
∣
z0

(6.30)

Field acts decreasing or increasing frequency for attractive or repulsive interaction.

C - 3 Simulations and results

The developed MFM code is a post-processing of the finite element code FeeLLGood. This
means micromagnetic configurations we use for simulations of MFM contrast are obtained with
relaxation of magnetization (see sec.1.3.3). Material parameters are those of permalloy. MFM
contrast is computed along a path standing for tip trajectory over sample to reflect the so-called
lift mode MFM. This surface will be discretized into finite elements. It is of importance to think
about the shape of this surface and thus to the trajectory of the tip. In the end, the surface is
close to a half cylinder prolongated with flat sides (Figure 6.7a). Sides are enlarged so as to
take into account the place needed by the tip.

Simulation results are presented in Figure 6.7. We confirm rotation invariance around the
wire axis for a BPW (Figure 6.7c). Influence of the orientation of a TVW around wire axis is
illustrated by Figure 6.7d-f. Simulated contrasts are symmetric, contrary to the experimental
ones (Figure 6.8c). This observed asymmetry may originate from three different phenomena.
First, trajectory of the tip over the sample is asymmetric (dotted line in Figure 6.8b). Second,
tip oscillations are not vertical (black arrow in Figure 6.8c). Thus not only ∂zHz is taken into
account but also ∂xHz. Third, magnetization of the tip is not perpendicular to sample. Thus
some derivatives of Hx, coming from the stray field from the sample, may also be included. It
is not clear which of the three origins is the most important.

Lateral resolution of MFM is typically 30 nm, but can reach 20 to 10 nm. However, when
looking at simulated MFM images, we see contrast variations occurring within a very small
distance, typically of the order of 10 nm. These variations are thus not observable experimentally
making it very difficult to discriminate between a transverse and a Bloch point wall.
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Figure 6.7: Simulated MFM contrast (a) Surface. (d) to (e) Top: surface magnetic potential, bottom:
simulated MFM contrast. (b) BPW, d=70 nm, (c) to (e) TVW, d=70 nm. (d) 45 ◦-rotation
around the wire axis from (d). (e) 135 ◦ rotation from (d).
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Figure 6.8: Illustration of the experimental artifact on MFM images. (a) If the tip were moving
vertically, there would be no asymmetry on the image. (b) Tip oscillating at the end of a
cantilever thus not vertically, which induces an asymmetry between the front and back sides
of the wire. (c-e) d = 80 nm. (e) is made out of (c)+(d) to remove the front/back artifact.
(f) Comparison with simulated contrast for a BPW, d = 70 nm. From [11]



Glossary

Abbreviations

ATW Asymmetric transverse wall
BPW Bloch point wall
LLG Landau Lifshitz Gilbert (equation)
MFM Magnetic Force Microscopy
PEEM PhotoElectron Emission Microscopy

SPLEEM Spin Polarized Low Electron Emission Microscopy
TVW Transverse/Vortex wall
TW Transverse wall
VW Vortex wall
XAS X-ray Absorption Spectroscopy

XMCD X-ray Magnetic Circular Dichroism

Symbols

A J/m exchange constant
α - damping parameter
β - non-adiabatic constant
Eex J/m3 exchange energy volume density
Ea J/m3 anisotropy energy volume density
Emc J/m3 magnetocrystalline energy volume density
EZ J/m3 Zeeman energy volume density
Eex J exchange energy
Ed J magnetostatic energy
ESD J single domain energy
EV J vortex state energy

k̂ m−1 wave vector
lSD m single domain critical size
ℓ kg.m2.s−1 angular momentum
Ku J/m3 anisotropy constant
µ A.m2 magnetic momentum
M A/m magnetization vector
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Ms A/m spontaneous magnetization
mℓ magnetic quantum number
φd A magnetic potential
g - Landé factor
Hd A/m dipolar field
HW A/m Walker field
Hext A/m external field
HK A/m dipolar field
∆d m dipolar exchange length
∆u m anisotropy exchange length
W m domain wall width
WJ m Jakubovics domain wall width

WL,uni m Lilley uniaxial domain wall width
WT m Thiele domain wall width



Bibliography

[1] S. S. P. Parkin. U.s. patents 6834005, 6898132, 6920062.

[2] A. Thiaville and Y. Nakatani. Spin dynamics in confined magnetic structures III, chapter
Domain-wall dynamics in nanowires and nanostrips, pages 161–206. Topics Appl. Physics.
Springer, Berlin, 2006.

[3] Y. Nakatani, A. Thiaville, and J. Miltat. Head-to-head domain walls in soft nano-strips:
a refined phase diagram. J. Magn. Magn. Mater. , 290-291:750, 2005.
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