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RESUMO 
 
 
Vono, L.L.R. DESENVOLVIMENTO DE NANOCATALISADORES SUPORTADOS EM 

NANOCOMPÓSITOS MAGNÉTICOS CONTENDO SÍLICA, CÉRIA E TITÂNIA. 2016. 

(205p). Tese de Doutorado – Programa de Pós-Graduação em Química. Instituto de Química, 

Universidade de São Paulo, São Paulo, Brasil e Université Toulouse III – Paul Sabatier, 

Toulouse, França. 

 

 A separação magnética tem recebido muita atenção como uma tecnologia robusta, 

altamente eficiente e rápida para recuperar catalisadores sólidos após uso em reações em fase 

líquida. Muitos estudos têm focado nas metodologias para a imobilização de espécies 

cataliticamente ativas, mas o desenvolvimento de suportes magnéticos tem se limitado a 

nanopartículas magnéticas revestidas com sílica, polímeros ou carbono. O desenvolvimento 

de nanocompósitos magnéticos com a incorporação de outros óxidos é muito desejável para 

ampliar a aplicação dessa tecnologia de separação em catálise. Nesse contexto, estudos da 

estabilidade térmica de magnetita revestida com sílica (Fe3O4@SiO2) foram realizados para 

avaliar a possibilidade de calcina-la sem perder as propriedades magnéticas do suporte. Uma 

etapa de calcinação é necessária para a deposição de diferentes óxidos na superfície da sílica, 

tais como céria e titânia. O Fe3O4@SiO2 calcinado preservou a morfologia “core-shell” e as 

propriedades magnéticas, porém apresentou um aumentou de seis vezes na área superficial. 

Novos suportes magnéticos foram desenvolvidos pela deposição de céria e titânia sobre 

magnetita previamente revestida com sílica. Nanocatalisadores magneticamente recuperáveis 

de Rh, Pd e Ru foram preparados. Os catalisadores foram utilizados na hidrogenação de ciclo-

hexano, benzeno ou fenol e o principal objetivo dessa tese foi o estudo da influência de cada 

suporte na atividade catalítica. Os catalisadores foram preparados de duas formas diferentes: 

impregnação-redução e imobilização de nanopartículas (NPs) metálicas pré-formadas. As NPs 

coloidais foram preparadas pela redução de sais metálicos e, também, pela decomposição de 

complexos organometálicos. Catalisadores de ródio preparados pela impregnação de cloreto 

de ródio(III) e redução com H2 mostraram alguns problemas de reprodutibilidade, que foram 

superados utilizando NaBH4 ou hidrazina como agentes redutores. A preparação de 

catalisadores pela imobilização de NPs coloidais é uma alternativa interessante para obter 

catalisadores reprodutíveis e muito ativos. Nanopartículas de Pd, Rh e Ru foram preparadas a 

partir de organometálicos e imobilizadas em Fe3O4@SiO2 calcinada, Fe3O4@SiO2CeO2 e 

Fe3O4@SiO2TiO2. A eliminação do agente estabilizante torna os catalisadores mais ativos 

durante os reusos. O catalisador de Rh sobre o suporte de céria foi o catalisador mais ativo na 

hidrogenação de ciclohexeno (TOF 125000 h-1). O catalisador de Pd foi o catalisador mais 

seletivo para a hidrogenação de fenol em ciclo-hexanona, independente do suporte usado. A 

formação de ciclo-hexanol é favorecida pelo suporte de titânia e a hidrodesoxigenação para 

produzir ciclo-hexano ocorreu principalmente no suporte de sílica. 

 

Palavras-chave: Catálise, suporte magnético, nanopartículas, sílica, céria, titânia, 

hidrogenação, paládio, ródio, rutênio e ouro. 



ABSTRACT 
 

 

Vono, L.L.R. DESIGN OF NANOCATALYSTS SUPPORTED ON MAGNETIC 

NANOCOMPOSITES CONTAINING SILICA, CERIA AND TITANIA. 2016. (205p) PhD 

Thesis – Graduate program in Chemistry. Instituto de Química, Universidade de São Paulo, 

São Paulo, Brazil and Université Toulouse III – Paul Sabatier, Toulouse, France. 

 

 Magnetic separation has received a lot of attention as a robust, highly efficient and 

rapid catalyst separation technology. Many studies have focused on developing 

methodologies for the immobilization of catalytic active species, but the development of 

magnetic supports has been mainly limited to silica, polymer or carbon-coated magnetic 

nanoparticles (NPs). The design of magnetic nanocomposites and the incorporation of other 

oxides are highly welcome to broaden the application of this separation technology in the 

field of catalysis. In this context, studies of the thermal stability of silica-coated magnetite 

(Fe3O4@SiO2) were performed to evaluate the possibility of calcining it without losing the 

magnetic properties of the support. The calcination would permit the deposition of different 

oxides on the silica surface, such as ceria and titania. The calcined Fe3O4@SiO2 material 

preserved the core-shell morphology and magnetic properties, but increased its surface area 

six times. New magnetic supports were developed by using post-coating process for the 

deposition of ceria and titania onto silica-coated magnetite. Magnetically recoverable Rh, Pd 

and Ru nanocatalysts were prepared. The catalysts were employed in hydrogenation of 

cyclohexene, benzene or phenol and the study of the influence of each support on the catalytic 

activity was a main objective of this thesis. The catalysts were prepared by two different 

approaches: the impregnation and the sol-immobilization of pre-formed metal NPs. The 

colloidal metal NPs were prepared by reduction of metal salts and also by decomposition of 

organometallic complexes. Rhodium catalysts prepared by impregnation of rhodium(III) 

chloride and reduction with H2 showed some reproducibility issues that were surpassed by 

using NaBH4 or hydrazine as reducing agents. The preparation of catalysts by the 

immobilization of colloidal NPs is an interesting alternative to obtain reproducible and very 

active catalysts. Nanoparticles of Pd, Rh and Ru were prepared by an organometallic 

approach and immobilized on calcined Fe3O4@SiO2, Fe3O4@SiO2CeO2 and 

Fe3O4@SiO2TiO2. The elimination of the stabilizing agent leads to more active catalysts upon 

recycling. Rhodium catalysts supported on ceria support was the most active catalyst in the 

hydrogenation of cyclohexene (TOF 125,000 h-1). Palladium catalysts were the most selective 

catalyst for the hydrogenation of phenol to cyclohexanone, no matter the support used. The 

formation of cyclohexanol is enhanced with titania and the hydrodeoxygenation to produce 

cyclohexane occurred mainly with silica. 

 

Keywords: Catalysis, magnetic support, nanoparticles, silica, ceria, titania, hydrogenation, 

palladium, rhodium, ruthenium and gold.



RESUME 
 

 

Vono, L.L.R. ELABORATION DE CATALYSEURS SUPPORTES PAR DEPOT DE 

NANOPARTICULES METALLIQUES SUR DES COMPOSITES MAGNETIQUES 

CONTENANT DE LA SILICE, DE L'OXYDE DE CERIUM ET DE L'OXYDE DE TITANE. 

2016. (205p) Thèse de doctorat – Programme d'études supérieures en chimie. Instituto de 

Química, Universidade de São Paulo, São Paulo, Brésil et Université Toulouse III – Paul 

Sabatier, Toulouse, France. 

 

 

 Introduction 

 

 L'une des principales différences entre les catalyseurs homogènes et hétérogènes est la 

séparation du catalyseur des produits de réaction. En général, les catalyseurs hétérogènes sont 

assez facilement séparés, mais cela peut s’avérer parfois difficile en fonction de la 

granulométrie et de la densité du support de catalyseur et nécessiter le recours à des méthodes 

telles que filtration et centrifugation. De ce fait, la séparation magnétique a reçu beaucoup 

d'attention, offrant une technologie de séparation aisée, rapide et efficace du catalyseur solide. 

Par ailleurs, la séparation magnétique du catalyseur peut être effectuée sans le retirer du 

réacteur, évitant ainsi la perte de masse et l'oxydation due à l'exposition à l'air. La 

caractéristique essentielle pour un bon support magnétique est la propriété de 

superparamagnétisme. Le superparamagnétisme se caractérise par une aimantation à 

saturation élevée lors de l’application d‘un champ magnétique et l'absence de magnétisation 

résiduelle lorsque le champ magnétique n’est plus appliqué. Des matériaux magnétiques 

massifs présentent une structure de multidomaines, mais lorsqu’ils sont préparés de façon à 

obtenir une taille de grains en dessous d'un diamètre critique, la formation d’un domaine 

unique est énergétiquement favorable. La magnétite (Fe3O4) est un matériau magnétique 

exploré pour plusieurs applications et est notamment très utilisés pour la séparation 



magnétique de catalyseurs. Une caractéristique très importante pour un support de catalyseur 

est sa stabilité dans les conditions de réaction et l'encapsulation est l’une des stratégies pour 

atteindre cette caractéristique. De nombreuses études ont été focalisées sur l'immobilisation 

d'espèces actives catalytiques, mais le développement de supports magnétiques est souvent 

limité à des nanoparticules enrobées par du carbone, un polymère ou une silice. Par 

conséquent, l’élaboration de nanocomposites magnétiques incorporant d'autres oxydes que la 

silice apparait comme une voie intéressante pour élargir l'application de la technologie de 

séparation magnétique dans le domaine de la catalyse. 

 

 

 Préparation de supports magnétiques 

 

  Préparation et comportement thermique de particules de 

magnétite recouvertes de silice 

 

 Un nanocomposite constitué de particules de magnétite recouvertes de silice 

(Fe3O4@SiO2) a été préparé par la méthode de micro-émulsion inverse, conduisant à des 

matériaux de haute qualité. L'influence de la durée de la réaction a été évaluée en prélevant 

des échantillons à différents temps de réaction typiquement: 1, 2, 6, 12, 24 et 48 h (figure 1a). 

Le matériau préparé en 6 h présente une taille de particules de 28,0 ± 2,0 nm (figure 1b). 

 



 

Figure 1. (a) L'influence de le temps de la réaction sur la taille des particules de Fe3O4@SiO2 et (b) 

micrographie obtenue par MET. 

 

 Le comportement thermique a été évalué par thermogravimétrie (TG) et la calorimétrie 

à balayage différentiel (DSC). L’analyse par thermogravimétrie a montré que le résidu 

organique présent dans l’écorce de silice est principalement composé de tensioactif qui 

demeure après lavage (figure 2a). L’analyse par DSC a indiqué que l'écorce de silice protège 

les noyaux de magnétite contre l'oxydation (figure 2b). Après calcination sous air à 500 ° C 

pendant 2 h le matériau obtenu (Fe3O4@SiO2Cal) a montré une morphologie et une taille de 

particules core-shell préservées. (figure 3) Les solides Fe3O4@SiO2 et Fe3O4@SiO2Cal ont été 

caractérisés par diffraction des rayons X sur poudres et la comparaison des pics de diffraction 

de la magnétite montre qu’elle a été préservée. 

 



 

Figure 2. (a) TG (ligne solide) et DTG (ligne pointillés) obtenu avec l’énchantilion Fe3O4@SiO2 sous l’air (noir) 

et azote (rouge). (b) DSC obtenues pour la magnétite pure (rouge) et de magnétite revêtues d'oxyde de silicium 

(noir). 

 

 

Figure 3. Micrographie obtenue par MET d’échantilion Fe3O4@SiO2 aprés calcination. 

 

 Les mesures magnétiques ont montré que les deux matériaux sont 

superparamagnétiques et que l’aimantation à saturation est réduite à 13% après calcination 

(figure 4). La calcination a permis d’augmenter de 6 fois la surface spécifique. Ainsi, la 

calcination devrait permettre le dépôt de différents oxydes sur la surface de la silice, tels que 

l'oxyde de cérium et l'oxyde de titane. 
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Figure 4. Mesures magnétiques de Fe3O4@SiO2. 

 

 

  Post-revêtement avec d’oxyde de cérium ou d’oxyde de titane 

 

 Un processus de post-revêtement a été développé pour le dépôt d'oxyde de cérium et 

d'oxyde de titane sur Fe3O4@SiO2. Malgré plusieurs tentatives, le dépôt de TiO2 à la surface 

de Fe3O4@SiO2 n’a pas pu être réalisé. Le dépôt de TiO2 sur Fe3O4@SiO2 a donc été effectué 

par modification d'une méthode décrite pour la préparation de composites « jaune d’œuf » 

conduisant au matériau Fe3O4@SiO2TiO2. Pour le dépôt de CeO2 le solide Fe3O4@SiO2 a été 

traité avec une solution de cérium (IV) et le sel solide a ensuite été séché pour obtenir 

Fe3O4@SiO2CeO2. Les solides Fe3O4@SiO2TiO2 et Fe3O4@SiO2CeO2 ainsi obtenus ont été 

calcinés sous air à 500 °C pendant 2 h. La caractérisation par microscopie électronique en 

transmission (MET) de l'échantillon Fe3O4@SiO2TiO2 (figure 5a) a montré que la 

morphologie cœur-coquille a été préservée et que le dépôt de TiO2 a eu lieu principalement 

sous la forme de nanoparticules d’environ 5 nm. Le diffractogramme DRX enregistré pour 

Fe3O4@SiO2TiO2 n’a révélé que les pics de la magnétite, malgré la présence d’environ 8% en 

poids de TiO2. Les clichés de microscopie électronique à haute résolution (MEHR) obtenus 



pour les nanoparticules de TiO2 ont montré une distance interplanaire de 3,71 Å 

correspondant au plan de Bragg (1 0 1) de la phase de titane anatase (figure 5b). 

 

 

Figure 5. Micrographie de Fe3O4@SiO2TiO2 obtenu par (a) MET et (b) MEHR. 

 

 L’analyse MET de Fe3O4@SiO2CeO2 a montré le dépôt de nanoparticules de CeO2 de 

2,6 ± 0,4 nm à la surface du matériau initial (figure 6). Le diffractogramme DRX de 

Fe3O4@SiO2CeO2 a révélé la présence de pics correspondant à la magnétite d’une part et à 

l'oxyde de cérium (phase cubique) d’autre part. Sur les deux diffractogrammes un large pic lié 

à la silice amorphe est observé. 

 



 

Figure 6. Micrographie obtenue par MET de Fe3O4@SiO2CeO2. 

 

 Les solides Fe3O4@SiO2, Fe3O4@SiO2TiO2 et Fe3O4@SiO2CeO2 ont aussi été 

caractérisés par spectroscopie de photoélectrons X-ray. Les spectres XPS de tous les 

échantillons ont révélé la présence de pics de photoélectrons correspondant à C 1s, O 1s et Si 

2p. Les pics de photoélectrons pour Ti 2p ont montré les composantes Ti4+ et Ti3+ mais 

augmentées de 0,7 eV, par rapport au TiO2 massif. Les pics du Ce ont montré une 

augmentation de 2,1 eV, par rapport au CeO2 massif. Le pic de photoélectrons O 1s montre 

deux composantes attribuées à SiO2 massif et à des groupes Si-OH de surface. Par ailleurs, le 

dépôt d'oxyde de cérium et d'oxyde de titane augmente l’intensité de cette composante, ce qui 

peut être attribué à O résultant de CeO2 et TiO2. 

 

 

 

 

 

 



 Développement de catalyseurs magnétiquement récupérables 

 

  Catalyseurs de rhodium préparé avec trichlorure de rhodium (III) 

 

 Des nanocatalyseurs de rhodium (Rh) supportés ont été préparés par imprégnation 

d’un support Fe3O4@SiO2 préalablement fonctionnalisé par des groupements amines 

(Fe3O4@SiO2NH2) avec une solution de trichlorure de rhodium(III). La réduction du Rh(III) 

en Rh(0) a été réalisée en utilisant le dihydrogène H2, le borohydrure de sodium NaBH4 ou 

l’hydrazine N2H4. Les catalyseurs préparés par réduction sous H2 n’ont montré pas une bonne 

reproductibilité. La réduction par NaBH4 a permis la préparation d'un catalyseur très actif 

dans l'hydrogénation du cyclohexène. Toutefois, il a été observé que l'activité de ce catalyseur 

est dépendante de la charge en métal (tableur 1), alors que les images MET ont révélé des 

nanoparticules de rhodium de tailles similaires. Les nanoparticules de Rh obtenues en utilisant 

l’hydrazine comme agent réducteur ont montré une taille de nanoparticules très proche de 

celle observée pour le catalyseur préparé avec NaBH4. Cependant une différence majeure a 

été observée en ce qui concerne la dispersion des nanoparticules sur le support qui s’est 

avérée bien meilleure dans le cas du catalyseur préparé avec NaBH4. L'activité catalytique en 

hydrogénation du cyclohexène obtenue pour le catalyseur préparé avec N2H4 (TOF = 48,700 

h-1) s’est révélée inférieure à celle du catalyseur issu de la réduction par NaBH4. Par contre, le 

contraire a été observé pour l'hydrogénation du benzène: l'activité catalytique pour le 

catalyseur préparé par N2H4 (TOF = 1600 h-1) est supérieure à celle déterminée pour le 

catalyseur obtenu avec NaBH4 (TOF = 960 h-1). 

 

 

 



Tableur 1. L’activité des catalyseurs de Rh préparé pour imprégnation 

Entrée Rh (wt%)  
Diamètre moyen 

(nm) 
Temps 

(h)a TOF (h-1) 

1 0,1 2,8 ± 0,5 0,57 153190 

2 0,5 2,2 ± 0,4 0,65 85440 

3 1,0 3,1 ± 0,5 0,58 133300 

4 1,5 2,8 ± 0,7 0,87 65469 
a Cyclohexène (14,6 mmol), catalyseur (0,4 mol de Rh), substrat/catalyseur = 35600, 75 ºC, 6 bar H2. 

b Le 
temps de conversion complète (> 99 % conversion déterminé par CG). c Turnover frequency défini par mole de 

substrat consommé x mole de catalyseur introduit x temps de réaction (h) (obtenu à partir de la pente de la 
courbe d'hydrogénation dans la conversion < 20 %). 

 

 Un autre aspect de ce travail de thèse a consisté en la préparation de nanoparticules de 

rhodium stabilisées par le polyvinylalcool (PVA) pour obtenir des suspensions colloïdales de 

rhodium (Rh@PVA) (figure 7a). Pour ce faire, le trichlorure de rhodium(III) a été réduit par 

NaBH4 en présence de PVA. La suspension colloïdale Rh@PVA ainsi obtenue s’est montrée 

très active pour l'hydrogénation du cyclohexène dans des conditions de catalyse biphasique, 

mais elle s’est avérée instable au cours du temps, la formation d’un précipité ayant été 

observée après la réaction. Les résultats de l’hydrogenation ont montré que la réaction était 

limitée par le transfert de masse. L'immobilisation de cette suspension colloïdale par 

imprégation sur le support Fe3O4@SiO2NH2 (figure 7b) a conduit à une meilleure stabilité du 

catalyseur et a permis plusieurs recyclages successifs pendant lesquels une augmentation 

drastique de l’activité catalytique a été observée. 

 



 

Figure 7. Micrographie obtenue par MET de (a) Rh@PVP NPs et de (b) Fe3O4@SiO2NH2RhPVA. 

 

 

  Catalyseurs de palladium préparé avec disodium 

tetrachloropalladate(II) 

 

 Des catalyseurs de palladium (Pd) supportés ont été préparés par imprégnation de 

différents supports (Fe3O4@SiO2, Fe3O4@SiO2NH2, Fe3O4@SiO2CalNH2 et Fe3O4@SiO2Cal) 

avec une solution de disodium tetrachloropalladate(II) suivie d’une étape de réduction par H2. 

Les supports se sont avérés capables d'adsorber des ions Pd2+ sauf le support Fe3O4@SiO2Cal. 

Le support sans fonctionnalisation ultérieure a montré une activité supérieure en 

hydrogénation du cyclohexène, mais au 5ème cycle catalytique, l'activité catalytique a été 

réduite à 63% de la valeur initiale (figure 8). Les catalyseurs obtenus avec les supports 

fonctionnalisés ont montré une activité catalytique similaire, mais l'activité de 

Fe3O4@SiO2NH2Pd était plus constante. Cela pourrait être dû à la faible quantité de 

groupements amines sur ce support comparativement au système Fe3O4@SiO2CalNH2. Pour 

comparaison, des nanoparticules de Pd stabilisées par la polyvinylpyrrolidone (PVP) ont été 

préparées en chauffant au reflux une solution aqueuse de Na2PdCl4 en présence de PVP et 

d'éthanol, conduisant à une suspension colloïdale Pd@PVP-1 qui a pu être immobilisée sur 



les mêmes supports. Toutefois, seuls les supports ayant des groupements amines en surface 

ont pu adsorber le métal. L'activité observée pour l'hydrogénation du cyclohexène en utilisant 

Fe3O4@SiO2CalNH2 comme support pour le Pd a été observée inférieure de 22% par rapport 

à celle du catalyseur préparé avec Fe3O4@SiO2NH2. 

 

 

Figure 8. L’activité du Fe3O4@SiO2Pd (gris clair), Fe3O4@SiO2NH2Pd (gris) et Fe3O4@SiO2CalNH2Pd (gris 

foncé) dans l’hydrogénation du cyclohexène. Les conditions de réaction: 75 ºC, 6 bar H2 et TON 10000. 

 

 Il résulte des résultats obtenus avec les catalyseurs préparés à partir de Fe3O4@SiO2 

que la préparation par imprégnation n’est pas triviale et que les caractéristiques du support 

peuvent avoir une forte influence sur l'activité du catalyseur. 

 

 

 

 



  Préparation de nanocatalyseurs à partir de précurseurs 

organométalliques 

 

 La préparation de nanoparticules métalliques à partir de précurseurs organométalliques 

est un procédé très prometteur du fait de l’obtention de surfaces métalliques très propres mis à 

part la coordination du ligand introduit comme stabilisant. Des suspensions colloïdales de Rh, 

Pd et Ru ont été stabilisées par la PVP. Elles ont été préparées en utilisant des précurseurs 

organométalliques Rh(C3H5)3, Pd2dba3 ou Ru(COD)(COT) et la réduction avec H2 réalisée en 

solution dans le THF. Les suspensions colloïdales ainsi obtenues sont constituées de petites 

nanoparticules métalliques bien dispersées dans la matrice polymère (figure 9) et leur 

immobilisation sur Fe3O4@SiO2Cal, Fe3O4@SiO2TiO2 et Fe3O4@SiO2CeO2 a pu être 

effectuée directement à partir des suspensions dans le THF (figure 10). 

 

 

Figure 9. Micrographie obtenu par MET: (a) Rh@PVP, (b) Pd@PVP et (c) Ru@PVP. 



 

Figure 10. Micrographie obtenu par MET: (a) Rh@PVP, (b) Pd@PVP et (c) Ru@PVP NPs supporté sur (') 

Fe3O4@SiO2Cal, ('') Fe3O4@SiO2CeO2 et (''') Fe3O4@SiO2TiO2. 

 

 Les catalyseurs au Rh ainsi obtenus ont montré l'influence du support sur l'activité 

catalytique et l’utilisation du support Fe3O4@SiO2CeO2 a permis d’atteindre une activité 

catalytique plus élevée (TOF 125000 h-1). Le catalyseur préparé avec l'oxyde de titane 

(Fe3O4@SiO2TiO2) a atteint une activité similaire, mais après plusieurs cycles catalytiques. 

Le catalyseur préparé avec la silice (Fe3O4@SiO2Cal) a atteint une activité de 40% inférieure 

par rapport aux autres (figure 11). La température de conversion maximale pour 

l'hydrogénation en phase gazeuse du cyclohexène est en accord avec l'activité catalytique 

observée en phase liquide. Les catalyseurs de Pd ont montré un comportement différent et la 

meilleure combinaison avec de la silice pour l'hydrogénation en phase liquide, mais les 

températures pour l’hydrogénation en phase gazeuse a été la même pour tous les supports 



(figure 12). La différence dans l'activité des catalyseurs Rh pourrait me connecté à PVP 

élimination. 

 

Figure 11. L’activité catalytique de Rh@PVP supporté sur Fe3O4@SiO2CeO2 (gris clair), Fe3O4@SiO2TiO2 

(gris) et Fe3O4@SiO2Cal (gris foncé) dans l’hydrogenation du cyclohexène. Les conditions de réaction: 6 bar H2, 

75 °C et TON = 35600. 

 

Figure 12. L’activité catalytique de Pd@PVP supporté sur Fe3O4@SiO2CeO2 (gris clair), Fe3O4@SiO2TiO2 

(gris) et Fe3O4@SiO2Cal (gris foncé) dans l’hydrogenation du cyclohexène. Les conditions de réaction: 6 bar H2, 

75 °C et TON = 10000. 



 Les catalyseurs préparés par immobilisation des nanoparticules obtenues par approche 

organométallique ont également été utilisés pour l'hydrogénation du phénol. L'utilisation de 

PVP comme agent stabilisant présente l'inconvénient de lixiviation dans des solvants polaires, 

comme les alcools et l'eau, c’est pourquoi l'hydrogénation du phénol a été menée en utilisant 

du n-hexane comme solvant. L'utilisation de n-hexane rend également inutile l'extraction des 

produits alors que c’est nécessaire avec l'eau. Les catalyseurs au palladium ont montré la plus 

grande sélectivité pour la formation de la cyclohexanone, indépendamment du support utilisé 

(tableur 2). Cependant, le support d'oxyde de titane a amélioré la conversion en cyclohexanol 

pour toutes les nanoparticules métalliques supportées (figure 13). 

 

Tableur 2. L’hydrogenation du phénol en untilisant organométalliques NPs supporté.a 

Entrée Catalyseur 
Conv. 

(%)b 
Selectivité 

(%)b 

   Cyclohexanone Cyclohexanol Cyclohexane 

  2 h 20 h 2 h 20 h 2 h 20 h 2 h 20 h 

1 Fe3O4@SiO2CalPdPVP 94 100 90 82 6 12 4 6 

2 Fe3O4@SiO2CePdPVP 86 99 86 80 12 17 2 3 

3 Fe3O4@SiO2TiPdPVP 91 99 82 78 16 19 2 3 

4 Fe3O4@SiO2CalRhPVP 100 100 26 1 71 87 3 12 

5 Fe3O4@SiO2CeRhPVP 100 100 39 5 61 94 0 1 

6 Fe3O4@SiO2TiRhPVP 100 100 12 0 88 99 0 1 

7 Fe3O4@SiO2CalRuPVP 93 100 24 1 73 92 3 7 

8 Fe3O4@SiO2CeRuPVP 99 100 17 0 83 100 0 0 

9 Fe3O4@SiO2TiRuPVP 100 100 0 0 100 100 0 0 
a Les conditions de réaction: phènol (75 µmol), solvant n-hexane (3 mL), catalyseur (36 mg, 3,7 µmol), et 

substrat/catalyseur = 20, 75 °C, 6 bar H2. 
b Conversion et selectivité déterminé par CG. 

 

 



 

Figure 13. L’hydrogenation/hydrodesoxygénation du phenol en utilisant (a) Pd, (b) Ru et (c) Rh NPs supporté 

sur Fe3O4@SiO2Cal (noir), Fe3O4@SiO2Ce (rouge) et Fe3O4@SiO2Ti (bleu). Conversion du phènol (carrés 

vides) et sélectivité pour cyclohexanol (cercles), cyclohexanone (triangles) et cyclohexane (carrés) 

 

 Une autre réaction qui peut se produire est l’hydrodéoxygénation conduisant à 

l’obtention de cyclohexane en tant que produit. La formation de cyclohexane a été observée 

principalement avec les supports de silice. Le catalyseur Fe3O4@SiO2CalPdPVP, après un 

temps de réaction de 20 h, a montré une sélectivité en 12% en cyclohexane dans des 

conditions douces (75 °C et 6 bar H2). Les catalyseurs au Rh ont montré une activité très 

élevée, ce qui a permis de réaliser la réaction avec un ratio substrat/catalyseur plus élevé 

(Figure 14). Toutefois, l'augmentation du ratio substrat/catalyseur a conduit à la modification 

de la sélectivité, tous les catalyseurs ayant montré une réduction de la sélectivité en 

cyclohexanol et la composition du cyclohexanol et de la cyclohexanone était d'environ 50% 



pour chacun. La hydrodéoxygénation n'a pas été observée lorsque le rapport 

substrat/catalyseur a été augmenté. 

 

 

Figure 14. L’hydrogenation/hydrodesoxygénation du phenol en utilisant (a) Fe3O4@SiO2CalRhPVP, (b) 

Fe3O4@SiO2CeRhPVP et (c) Fe3O4@SiO2TiRhPVP. TON = 20 (noir) et 200 (bleu). Conversion du phènol 

(carrés vides) and selectivité pour cyclohexanol (cercles), cyclohexanone (triangles) and cyclohexane (carrés). 

 

 Le catalyseur Fe3O4@SiO2CalPdPVP a également été étudié pour l'hydrogénation du 

phénol sous 1 et 3 bar de H2 à 55 ºC (figure 15). La formation de cyclohexène n'a pas été 

observée à des pressions inférieures à 6 bar de H2. La conversion du phénol était également 

plus faible pour les pressions inférieures (16, 24 et 34% de 1, 3 et 6 bar H2). Cependant, la 

pression n'a pas affecté la sélectivité de la formation du produit. 

 



 

Figure 15. L’hydrogenation/hydrodesoxygénation du phenol en utilisant Fe3O4@SiO2CalPdPVP. 6 (noir), 3 

(rouge) et 1 bar de H2 (bleu). Conversion du phènol (carrés vides) et selectivité pour cyclohexanol (cercles), 

cyclohexanone (triangles) et cyclohexanol (carrés). 

 

 Les catalyseurs de Pd ont été calcinés sous air à 300 °C pendant 2 h pour éliminer la 

PVP et évaluer l'hydrogénation du phénol en phase aqueuse (tableur 3). Le mélange 

réactionnel dans l'eau a montré 100 % de sélectivité en cyclohexanone. Seul le catalyseur 

avec de l'oxyde de cérium a conduit à 7 % de cyclohexane alors que celui avec de l'oxyde de 

titane a montré 100 % de conversion du phénol. Les catalyseurs au Pd calcinés ont montré une 

activité légèrement améliorée par rapport aux catalyseurs de Pd bruts. L'inconvénient de l'eau 

en tant que solvant est l'impossibilité de séparer magnétiquement les catalyseurs du fait de la 

plus grande affinité des supports avec l’eau. 

 

 

 

 



Tableur 3. L’hydrogenation du phénol en untilisant Pd NPs supporté et calciné et l’eau or n-hexane comme 

solvanta 

Entrée Catalyseur 
Conv. 
(%)b Selectivité (%)b 

   cyclohexanone cyclohexanol cyclohexane 

1 Fe3O4@SiO2CalPdPVPc 79 100 0 0 

2 Fe3O4@SiO2CeO2PdPVPc 70 93 0 7 

3 Fe3O4@SiO2TiO2PdPVPc 100 100 0 0 

4 Fe3O4@SiO2CalPdPVPd 98 95 5 0 

5 Fe3O4@SiO2CeO2PdPVPd 25 95 5 0 

6 Fe3O4@SiO2TiO2PdPVPd 99 96 4 0 
a Les conditions de réaction: phènol (75 µmol, in 3 mL c water ou d n-hexane), catalyseur (36 mg, 3,7 µmol) et 

substrat/catalyseur = 20, 75 °C, 6 bar H2. 
b Conversion and selectivité déterminé par CG. 
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1. INTRODUCTION 

 

 

1.1. Nanocatalysis 

 

 The transformation of raw materials into countless valuable chemical products 

involves catalytic processes in at least one step. Catalysis is not only a tool for the chemical 

industry, but is also considered as a key to solve environmental challenges, mainly related to 

energy production and consumption and to waste minimization or prevention.1 Catalysis is 

one of the 12 principles of green chemistry2 and can be directly related to the principles of 

atom economy, design for energy efficiency and derivatives reduction. 

 Traditionally, catalysis is divided in two major groups: homogeneous and 

heterogeneous catalysis. Homogeneous catalysis is defined by the presence of catalyst and 

substrate in the same phase and soluble molecular and ionic compounds are used as catalysts. 

On the other hand, heterogeneous catalysis is defined by the presence of catalyst and substrate 

in different phases. Typically in the heterogeneous catalysis, metals and metal oxides are used 

as catalysts. Due to the different phases, the separation of heterogeneous catalysts from the 

products is easier and more effective when compared to homogeneous catalysts. 

Homogeneous catalysts may require solvent addition, distillation and other time and energy 

consuming procedures. However, homogeneous catalysts are more selective and more active 

than heterogeneous catalysts. Even though, homogeneous catalysts are less interesting for 

industrial processes than heterogeneous catalyst due to the onerous separation, the increase in 

the regulation of trace amounts of catalytic moieties in commodity chemicals and 

pharmaceutical products, and the typical higher price.3 
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 The effort to surpass the disadvantages of homogeneous catalysis and to integrate the 

advantages of heterogeneous catalysis brought the attention of the catalysis research to 

nanocatalysis. The term nanocatalysis adopted by the literature corresponds to application of 

nanoparticles as catalysts. For example, bulk gold does not show catalytic activity, but when 

reduced to nanoscale (less than 20 nm) gold nanoparticles act as a remarkable catalyst for 

diversified reactions.4 A typical example of the gold nanoparticles catalytic activity is the CO 

oxidation demonstrated by Haruta.5 The remarkable activity and selectivity of metal and metal 

oxide nanocatalysts are basically related to two effects: the size effect and the electronic 

effect. 

 The size effect is considered because there is a huge increase of surface area with the 

reduction of bulk metals to nanoscale. This means also that the amount of corner and edge 

atoms, with lower coordination number, are increased in the nanoscale. The metal atoms with 

low-coordination number in a solid metal structure are often responsible for the active sites of 

the catalyst.6 

 The electronic effect is mainly related to the surface stress. With the reduction of the 

bulk metal to nanoscale arises a surface stress that corroborates to an increase of broken bonds 

of surface atoms when compared to the bulk, resulting in an increase of surface energy that is 

not negligible. The surface stress also contributes to the decrease of the lattice parameter by 

inducing a pressure towards the center of the nanoparticle. Then, in many cases the 

equilibrium shape of a nanoparticle does not correspond to the equilibrium shape of the bulk 

material, and as consequence different facets are displayed in the nanoparticle. The outcome 

induced by the surface stress directly influences the electronic band structure: the valence 

band is reduced and its center of gravidity is shifted on the way to the Fermi level. These 

changes in electronic band structure affect directly the chemisorption of the substrate on the 

surface of the catalyst in a catalytic process, resulting in different activity and selectivity as 
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compared to the bulk catalyst.7 Even though the size effect is related to the enhancement of 

surface area, the electronic effects are also connected with nanoparticle size, since the surface 

stress is proportional to the nanoparticle size and morphology. As a result, the variation of 

nanoparticle size and shape also affects their catalytic performance, which opens a huge 

possibility of studies in this area.8 

 

 

1.1.1. Structure and size sensitive and insensitive reactions 

 

 The idea of size reduction in order to maximize the surface area to obtain more surface 

metallic atoms can suggest higher activity, once there is more metal able to interact with 

substrate. However, this is not always true. It is clear that we have a inumerous combination 

of catalyst, substrate and type of reaction, but those combinations will resume into three main 

groups: size-insensitive, negative and positive size-sensitive reactions.9 These groups are 

characterized by the behavior of the turnover frequency (TOF, mol substrate converted per 

mol (normalized by surface atom) catalyst per time) as function of particle size. The size-

insensitivity is characterized by the independence of TOF with nanoparticle size. The positive 

size-sensitivity is observed when the TOF increases with the decrease in nanoparticle size and 

the negative size-sensitivity observed when the TOF decreases.9-10 

 The size-sensitivity dependence is related to the particle surface characteristics, 

because the chemical properties of the substrate bond that needs to be activated will 

determined the characteristics of surface atom where the lowest activation energy can be 

achieved.10 For the formation or dissociation of π-bond there is a step-edge atom dependence, 

which leads to negative size-sensitivity due to the reduction of this type of atom on particle 

surface with decrease in particle size.9 On the other hand, reaction where the cleavage of σ C-
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C bonds is limiting typically shows a positive size-sensitivity.9 The hydrogenation of 

hydrocarbons is typically size-insensitive reactions.10 On the same way of nanoparticle size, 

the nanoparticles structure can also play a role in the characteristic of size-sensitivity because 

some structures can result in the presence of more surface atom of certain type.9-10 

 

 

1.2. Nanocatalyst 

 

 The efforts to develop nanocatalysts started from the initial observations made by 

different research groups concerning the advantages of using nanoparticles as catalysts:11 

1) The possibility of the size and shape control of the nanoparticles by preparation 

conditions;  

2) Colloidal metal nanoparticles can be dispersed in solution like homogeneous 

catalyst acting in mild conditions (temperature below the boiling point of the 

solvent); 

3) Colloidal metal nanoparticles can be explored as photocatalysts; 

4) Metal nanoparticles can be functionalized promoting different catalytic activity; 

5) A huge variety of bimetallic and trimetallic nanoparticles with different 

composition can be studied; 

6) Supported nanocatalysts can be used in gaseous phase reaction; 

7) Colloidal and supported metal nanoparticles are commonly more active and 

selective than conventional industrial catalysts. 

 Nanoparticle catalysts have already been used successfully in hydrogenation, 

oxidation, C-C coupling, H2 generation, hydrogenolysis, water splitting and photocatalysis 

reactions, among others. Also, nanocatalysts have been efficient for production of biofuels. 
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Their large applicability in increasingly explored green conditions turned nanocatalysts strong 

candidates to create new sustainable pathway for chemical processes.3b 

 Nanocatalysts can be used in their colloidal form or as supported nanoparticle 

catalysts. Usually colloidal nanoparticles are dispersed in a liquid phase and will have limited 

thermal stability. The liquid phase can be a homogeneous or a heterogeneous mixture with the 

substrate. Typically, the synthesis of colloidal nanoparticles requires a metal precursor, a 

reducing agent, a stabilizing agent and a solvent. The ability to disperse nanoparticles in the 

reaction media, the control of their size and shape can be tuned by choosing the stabilizing 

agent (polymer, surfactant, charged compounds, organic ligands, etc.), which makes the 

choice of this reactant extremely important to the design and performance of colloidal 

nanocatalysts.12 The reducing agent can be replaced for some reactant or condition that 

destabilizes the metal precursor, for example, when the metal precursor is a zero valance 

organometallic compound.13 

 Generally, the colloidal nanoparticles are synthesized, purified and suspended in the 

reaction media. Depending on the reaction conditions, colloidal nanoparticles are easy 

deactivated by sintering, morphological changes and leaching.14 Colloidal metal nanoparticles 

can also show some deactivation due to destabilization of the colloidal suspension.15 

Therefore, supported nanoparticles are more versatile when used as catalyst to a variety of 

reactions because of the easy recovery and enhanced stability. Supported nanoparticles can be 

successfully explored in a larger range of reaction conditions than colloidal nanoparticles, 

which can enlarge their applicability as catalyst.  
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1.2.1. Supported nanocatalysts 

 

 Catalysis by supported metal nanoparticles is somehow more complex because of the 

support, which can present some effects in the catalytic activity. These effects are linked to 

the interactions of the metal nanoparticles and the reactants with the support, which can direct 

the catalytic process to different ways of selectivity and activity. The most important effects 

of support and metal particle interaction are the reverse-spillover and the morphology and 

edges.7 

 Reverse-Spillover effect is known as the diffusion of molecular species from the metal 

surface to the support surface. The reverse-spillover is the most known phenomenon in 

heterogeneous catalysis and corresponds to the inverse of spillover: the diffusion of adsorbed 

molecular species from the support to the catalyst particles. This phenomenon provides a 

different way for chemisorption of reactants on the metal particle surface that can be 

energetically more favorable. The structures of the support surface and support defects are 

extremely important to reverse-spillover effect. In some cases, a step of the reaction can occur 

previously on support surface followed by diffusion of intermediaries to the metal 

nanoparticles. The addition of promoter on the support may also influence the reverse-

spillover effect.16 

 The Morphology and Edges effect is more related to structure sensitive reactions, as 

for example, the reduction of NO by CO on Pd that occurs preferably over the plane (1 1 1) of 

Pd nanoparticles. The high bind energy of CO on Pd edges at low coverage is also an example 

of structure sensitivity. The supported nanoparticles have the disadvantage (or advantage) of 

having a part of its structure encapsulated by the support, not being available for catalysis. 

The resulting encapsulation of the metal nanoparticle by the support is defined as “Strong 

Metal-Support Interaction (SMSI)” and is used to explain the decreased chemisorption 
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capacity for CO and H2 on supported metal particles on oxides after heating treatment.17 The 

SMSI depends on the nature of the oxide support and also contributes for the decrease of 

sintering of nanoparticles, which is an advantage compared to colloidal nanoparticles. For 

example, Ag particles are more strongly attached on CeO2 and Fe3O4 (1 1 1) surfaces than on 

MgO (1 0 0), which means that the undesired sintering of nanoparticles occurs easily on MgO 

(1 0 0).18 

 The dependence of the catalytic activity with the nanoparticle morphology and support 

structure requires the rigorous control of their size, shape and composition in order to ensure 

the reproducibility of their properties and also of the results for a given application. In that 

context, nanoparticles studies are of interest only if their synthesis is reproducible with a well-

defined or tunable size and morphology. The variety of nanocatalysts presented in the 

literature seems wide, but the synthetic process is not simple. Both colloidal and supported 

nanoparticles are not the thermodynamically stable form of a metal aggregate. Thus, their 

synthesis has to be kinetically controlled, with the help of stabilizing agents. The synthesis of 

supported nanoparticles with a narrow size distribution and good dispersion is still a challenge 

in the field of nanocatalysis. 

 

 

1.2.2. Synthesis of supported nanocatalysts 

 

 The preparation of supported metal nanoparticles can be achieved by physical, 

chemical or physicochemical approaches. In the physical approach, also known as the top-

down-type method, the supported nanoparticles are prepared from bulk metal treatment in the 

presence of a support. The treatment of the bulk metal can be done with techniques that 

provide energies higher than the bond energy of metal as mechanical force, vaporization or 
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laser ablation, for example. The Physical Vapor Deposition, that includes sputtering 

deposition method, was originally developed for the production of thin films, but was later 

adapted for the deposition of metal nanoparticles on liquid (ionic liquids, silicon oil and 

vegetable oils) and solid substrates.19 In the chemical approach, also known as bottom-up-

type method, metal ions are reduced to metal atoms,11 that aggregate to form metal 

nanoparticles. The aggregation occurs in two steps: nucleation and growth.20 The 

physicochemical approach involves a combination of the physical and chemical approaches. 

A good example is the sonoelectrochemistry method that is a combination of sonochemistry 

(physical) and electrochemistry (chemical). 

 This thesis will focus exclusively in the preparation of supported metal nanoparticles 

by chemical approaches. There are innumerous chemical methods to prepare supported metal 

nanoparticles, among then the impregnation (IMP), sol-immobilization (SI), co-precipitation 

(CP), deposition-precipitation (DP), deposition-reduction (DR), microemulsion, 

photochemical, chemical vapor deposition (CVD) and electrochemical reduction (ER) can be 

highlighted.21 Figure 1.1 shows a schematic illustration of the different methods mentioned 

for the preparation of supported metal nanoparticles. 

 

 

Figure 1.1. Illustration of different preparation methods of supported metal nanoparticles. Adapted from 

Okumura et al.22. 



INTRODUCTION 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

49 

 The impregnation (IMP), also called incipient wetness impregnation or dry 

impregnation, is the most used synthetic approach to prepare supported nanocatalysts. It 

consists in the mixture of a metal precursor solution and the support, followed by the removal 

of the solvent with rotary evaporator or centrifugation.21a Then, the metal loaded solid is 

submitted to a reduction process which can be a reducing agent solution or thermal reduction. 

If previously to the metal reduction the solid was washed to remove the excess of metal, the 

metal loading will depend strongly on the affinity of the metal ion with the support. The 

improvement of this affinity can be done by the functionalization of the support surface with 

organic ligands that can be further removed by calcination. However, if the ligand is not 

removed, it can also have an influence the catalytic activity of the supported metal.23 

 In the co-precipitation (CP) method, the support and the metal ions precipitation 

occurs at the same time and is followed by reduction.21a As a result, it is possible to obtain 

metal nanoparticles immersed on the support matrix, and the catalytic activity will depend 

strongly on the support’s porosity. In some cases, the metal ion can interfere on the 

polymerization or condensation reaction of the support formation. This influence can lead to a 

non-desirable material, which will hardly result in a good nanoparticle dispersion and narrow 

size distribution. An interesting modification of this method is the precipitation of the support 

in the presence of preformed metal nanoparticles.24 In this way, the preparation of desired 

materials can be easily achieved, because the size and morphology of the metal nanoparticles 

were previously controlled in the colloidal synthesis.  

 The Deposition-precipitation (DP) method was first reported by Haruta et al.25 It 

consists in preparation of a solution containing the solubilized metal precursor and the support 

precursor followed by slow precipitation of the support by pH adjustment and reduction of the 

metal precursor by subsequent calcination process. However, the precipitation-deposition 
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presents the same problems of size control and dispersion as found for the co-precipitation 

method. 

 The Deposition-Reduction (DR) method consists in the direct reduction/decomposition 

of the metal precursor over the support. This methodology was used for the reduction of metal 

complexes by the addition of NaBH4 over the support in liquid phase.26 A modification of this 

method consists in the decomposition of organometallic precursors by hydrogen over the 

support in liquid phase conditions.27 

 In the microemulsion method the metal precursor is solubilized in a homogeneous 

mixture of water, oil and surfactant. Then the solid support is impregnated with the 

microemulsion containing the metal ions similar to the impregnation approach.28 Finally, the 

solid containing the metal ions is submitted to metal reduction step. The nanoparticles 

obtained by this methodology have demonstrated a good dispersion and good size and 

morphology control. The explanation can be given by the impregnation of the entire micelles 

of the microemulsion that confines determined amount of metal ions delimiting the 

nanoparticle growth. The affinity of the micelles by the support can be improved by 

increasing the hydrophobicity of the support. 

 The photochemical method is considered an environmentally friendly process because 

it minimizes the use of reactants. It consists in the photodecomposition of the metal precursor 

over the support to form supported metal nanoparticles.29 However, this methodology requires 

photosensitivity metal precursors. 

 The Chemical Vapor Deposition (CVD) has shown to be a controlled and reproducible 

approach to promote well-dispersed metal nanocatalysts. The procedure is accomplished by 

the vaporization of metals and growth of the metal nanoparticles under high vacuum.30  

 The electrochemical reduction approach consists in the electrochemical deposition of 

metal nanoparticles on the support. Generally a solution containing the metal ions and the 
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support are kept under stirring during electrolysis, resulting in the formation of supported 

nanocatalysts.21a The presence of the stabilizing agent or/and a support is important to prevent 

metal deposition on electrode surface. 

 Considering all the advances in the preparation of colloidal metal nanoparticles and 

the multiple strategies and possibilities to achieve the highly desired size, shape and 

composition control (during the nanoparticles synthesis in liquid phase and by choosing the 

metal precursors, stabilizers and reducing process), the immobilization of pre-formed 

nanoparticles on solid supports has received attention as a versatile strategy to prepare 

supported catalysts.12a This approach, also called sol-immobilization (SI) method,31 has been 

shown as a successful alternative to improve the dispersion, size and morphology control of 

supported nanoparticles. The properties of the colloidal nanoparticles, such as size and size 

distribution, are retained when the nanoparticles are immobilized on the support. The 

immobilization of colloidal nanoparticles occurs typically by the interaction of the support 

surface with metal surface or with the colloidal nanoparticle stabilizing agent. The affinity of 

the support for colloidal nanoparticles can be tuned by the support surface functionalization23 

or changing the characteristics of the nanoparticle stabilizing agent. 

 The aqueous phase reduction of metal salts by NaBH4 in the presence of polyvinyl 

alcohol (PVA) has been very often used for the preparation of colloidal nanoparticles to 

achieve supported catalysts by SI method.31 This very simple method provides metal particles 

suitable for catalytic application and is possible to remove the excess of PVA.32 Another route 

to prepare colloidal metal nanoparticles for the SI method is the decomposition of 

organometallic complexes. Generally, olefinic complexes and other metal-organic complexes 

can be decomposed by reaction with of H2 or CO leading to hydrogenation or decoordination 

of the ligands present in the coordination sphere of the metal. The decomposition of the 

organometallic complexes results in free metal (0) atoms that tend to aggregate to form the 
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metal bulk. However, if the decomposition is accomplished in presence of a stabilizing agent 

the aggregation is controlled and nanoparticles are formed.33 

 The organometallic approach is known as an advantageous methodology to the 

preparation of metal nanoparticles because it permits to obtain nanostructures with well-

controlled size, dispersion, chemical composition and morphology. Despite disadvantages 

related to the laborious synthesis of the organometallic precursors and their sensitivity to air 

and moisture of some complexes, this method allows the preparation of nanomaterial of high 

quality and, in the case of catalysis, which may presents remarkable activity due to a cleaner 

surface state.33-34 

 

 

1.2.3. Catalytic activity of supported nanocatalysts 

 

 The choice of the support is very important because the nanocatalyst activity, 

selectivity and metal dispersion can be modified due to the influence of the support. One of 

the most important steps for selecting a support is the chemical and thermal stability at the 

reaction conditions. The most commonly used supports are alumina, silica and carbon. 

However, carbon, graphene, titania, zinc oxide, zirconia, zeolites, magnesia and silicon 

carbide have particular properties that are explored in specific reactions mainly as 

multifunctional catalysts.21a, 35 For example, TiO2 has photocatalytic activity that allied to 

some metal nanoparticles as co-catalysts can result in a miniature photoelectrochemical cell 

and this combination acts as catalyst for photocatalytic water splitting.36 Magnesia presents 

basic properties that can substitute the addition of base in reactions that needs basic media as 

for example, the oxidation of benzyl alcohol by gold supported on basic supports.37 
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 The catalytic activity of supported nanocatalysts is explored in a huge variety of 

reactions and conditions, which makes impossible the description of every application 

described in the literature. Thus, the description below will focus on hydrogenation reactions 

using supported Pd, Rh and Ru nanoparticles, which are related to the results presented in this 

thesis. Hydrogenation reaction consists in the incorporation of molecular hydrogen to a 

molecule in the presence of a catalyst. Cyclization and isomerization that occur under H2 

conditions are also considered as hydrogenation reactions. This reaction is present in very 

important industrial process, as hydrogenation of fat oils, production of organic compounds, 

transformations of functional groups as for example the hydrogenation of nitro to amino 

groups. Particularly, stereoselective hydrogen addition is very important for the 

pharmaceutical industry. The selective reduction by H2 is much explored for purification 

processes as the selective reduction of acetylene in the production of ethene. Other reduction 

methods as hydrogen transfer, metallic hydrides, hydrazine and electrolysis for example can 

be used as alternatives for the catalytic hydrogenation with hydrogen.38 

 The metal nanoparticles have shown to be much more active for hydrogenation 

reaction than single crystals.39 The hydrogenation on metal surface occurs via chemisorption 

of the hydrogen and the substrate to be hydrogenated. The chemisorbed substrates have their 

bonds weakened allowing the incorporation of hydrogen to the substrate. So, it is important 

that the hydrogen atoms have easy diffusion on metal surface. Generally, the hydrogen is 

bonded weakly to metal subsurface, and these atoms are responsible to participate in the 

hydrogenation. Studies made with palladium showed that the subsurface hydrogen in metal 

nanoparticles is more accessible than those in single crystals, which can explain why 

nanocatalysts are more active than their bulk counterparts in hydrogenation reactions.39 

 The following subsections will give an overview of some examples reported in the 

literature for catalysis by supported Pd, Ru and Rh nanoparticles in hydrogenation reactions. 
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1.2.3.1. Supported Palladium nanocatalysts 

 

 Palladium is the most explored noble metal in catalysis due to its very broad 

application. The easy chemisorption of CO, O2, H2, and several functional groups makes Pd a 

very interesting choice for catalysis. However, Pd high activity for different reactions has the 

disadvantage to make Pd not very selective. The literature reports several Pd catalysts 

supported in different materials for hydrogenation reactions. 

 Silica is one of the most common inorganic supports used for Pd nanoparticles. 

Domínguez-Quintero et al.40 reported high catalytic activity of Pd nanoparticles supported on 

silica in hydrogenation reactions. The authors demonstrated the preparation of 1.9 nm Pd 

nanoparticles by the decomposition of the organometallic palladium(II) bis-dibenzylidene 

acetone on commercial silica gel. The catalyst was very active in the hydrogenation of 1-

hexene, cyclohexene, benzene, 2-hexanone, cyclohexanone and benzonitrile, reaching the 

highest hydrogenation rate of 38,250 molproduct mol-1metal h
-1 for hydrogenation of 1-hexene at 

25 ºC and 30 psi H2.  

 The selective hydrogenation of 3,3-dimethylbutanoyl chloride (DMBC) to 3,3-

dimethylbutyraldehyde (DMBA) was explored by Li et al.41 with silica supported Pd 

nanoparticles. In this case, the catalyst was synthesized by the co-precipitation method, also 

called sol-gel methodology, using dinitrodiamminepalladium(II) and tetraethylorthosilicate 

(TEOS) as precursors for palladium and silica. The resulting material containing 3 wt% Pd 

was treated in two different conditions. The activation at 80 °C by bubbling H2 in 

cyclohexane for 1 h showed the highest yield of DMBA. The catalyst was also activated in H2 

atmosphere at 80 °C, 160 °C or 200 °C for 4 h. The activation in H2 atmosphere enhanced the 

catalyst activity, but resulted in the formation of non-desired 3,3-dimethylbutanol product. 

The catalyst could be used in up to seven consecutive runs keeping the conversion above 90% 
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without significant change in the surface area of the catalyst. The reaction conditions were 20 

g DMBC, 2 g Pd catalyst (3wt% Pd), cyclohexane as solvent, 80 °C, H2 bubbling (120 

mL/min) and stirring at 1000 rpm. 

 One advantage for the application of silica as catalyst support is that the surface can be 

easily modified with organosilanes, resulting in grafted ligands on the silica surface. The 

functionalization of silica can improve the metal/nanoparticle impregnation/immobilization, 

alter the catalytic activity and selectivity and modulate the size during nanoparticle 

formation.23 

 Lim et al.42 showed that Pd supported nanoparticles of 2-4 nm prepared by 

impregnation of palladium acetate on amine and 2-pyridinecarboxaldehyde functionalized 

silica supports were very active for hydrogenation of a large variety of olefins in aqueous 

media. 

 The catalyst separation can be enhanced by the presence of magnetic cores in the silica 

matrix. In the same way for bare silica particles, silica-coated magnetite can be easily 

functionalized using organosilanes. Thus, the silica coating of magnetite is an attractive 

approach for preparing magnetically recoverable catalysts. Our research group has studied the 

preparation of Pd supported nanocatalysts for hydrogenation in this type of support 

functionalized with thiol,43 amine,44 ethylenediamine44 and terpyridine27 ligands. 

 In a previous study, Pd nanoparticles of 3.0 nm over amine functionalized silica-

coated magnetic support were prepared by impregnation method. The activity of this catalyst 

in hydrogenation of cyclohexene achieved a hydrogenation rate of 11538 molproduct mol-1metal 

h-1 at 2500 mol of substrate per mol catalyst, 75 °C and 6 atm of H2. Even after 20 cycles of 

cyclohexene hydrogenation, leaching was not observed with this catalyst.45 

 Pd nanocatalyst of 6 nm supported on amine-functionalized silica-coated nanoparticles 

showed reaction rates of 5500 molproduct mol-1metal h-1 in the solventless hydrogenation of 
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cyclohexene at 75 °C and 6 atm H2. The simple change of amine groups for ethylenediamine 

groups on the support surface resulted in nanoparticles of 1 nm with lower catalytic activity 

(800 molproduct mol-1metal h
-1).44 

 The Pd nanocatalyst synthesized by direct deposition method on magnetic support 

functionalized with terpyridine ligand was used successfully for the hydrogenation of -

myrcene with high selectivity for the formation of monohydrogenated compounds. The 

activity and selectivity of the catalyst on terpyridine functionalized support was largely 

increased when compared to similar nanocatalyst on amino-modified magnetic support or to 

Pd/C.27 

 Mesoporous silica has been extensively studied as support because of the 

encapsulation of the metal nanoparticles, which makes them stable. For example, Pd 

nanoparticles in mesoporous silica have been used in the hydrogenation of biomass-derived 

furfural to furfuryl alcohol. The Pd nanoparticles supported in mesoporous silica were 

synthesized by impregnation approach using palladium(II) nitrate as metal precursor and 

adjusting the metal loadings to 1, 3 and 5 wt%. A better homogeneous distribution of Pd 

nanoparticles was obtained for loadings lower than 5 wt% Pd. However, the catalyst 

containing 5 wt% Pd was the most active reaching a conversion of 75% with selectivity of 

71%, under mild conditions.46 Excellent activities in the hydrogenation of nitroaromatics47 

and alkynes48 were observed for Pd nanoparticles supported on mesoporous silica MCM-41 

prepared by co-precipitation method. Different mesoporous supports as mesocellular foam 

silica,49 MMT-150 and SBA-1551 were also explored as support for Pd nanocatalyst in 

hydrogenation reactions.  

 Micro and nanospheres complex structures of mesoporous support have gained 

attention to be used as support for Pd. Pd nanoparticles of 4.3 nm supported in amine 

functionalized structured mesoporous silica nanospheres were prepared by impregnation 
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method. This catalyst was active for hydrodechlorination of chlorophenols and presented 

activity for further hydrogenation of phenol, indicating his potential use as hydrogenation 

catalyst.52 A hydrophobic core–hydrophilic shell structured mesoporous silica spheres was 

used successfully as support for Pd nanocatalyst. This catalyst was employed in the selective 

hydrogenation of phenol to cyclohexanone in aqueous phase reaching 98.5 % of conversion 

and 97.1 % of selectivity at 1 atm of H2 and 80 ºC. The cyclohexanone is an important 

intermediate in the production of nylon 6 and nylon 66 in the chemical industry.53 

 Porous silica shell prepared over Pd nanoparticles is another type of catalyst found in 

the literature. However, the synthesis of this material is not simple, and involves different 

approaches based on controlled hydrolysis of silica precursor. The resulting material is 

present as Pd nanocatalyst type core-shell (for the coating of isolated metal nanoparticles) or 

embedded (for the coating of several metal nanoparticles). Silica-coated Pd nanoparticles 

showed interesting catalytic activity for hydrogenation CO2
54 and 4-carboxybenzaldehyde.55 

 In the petrochemical industry the Pd/α-Al2O3 catalyst is one of the most important 

hydrogenation catalysts. This fact makes alumina support very interesting in the preparation 

of supported Pd NPs for hydrogenation. Zhang et al.56 prepared Pd/α-Al2O3 by impregnation 

α-Al2O3 with colloidal Pd nanoparticles and obtained a catalyst more active than the 

conventional catalyst in the selective hydrogenation of acetylene in ethylene-rich stream. 

Boehmite-supported Pd nanoparticles achieved a reaction rate of 23520 molproduct mol-1metal h
-1 

with 99% of conversion for hydrogenation of allyl alcohol under mild condition (30 ºC, 1 

MPa H2).
57 Pd nanoparticles were prepared by thermal treatment of porous alumina spheres 

modified by hydrotalcite impregnated with Pd ions resulting in 4 nm nanoparticles. This 

catalysts was active in the hydrogenation of dimethyl terephthalate to dimethyl cyclohexane-

1,4-dicarboxylate, an important polymer modifier.58 
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 Carbon is one of the most common catalyst supports. Recently, Pinilla and co-

workers59 reported the preparation of carbon supported small spherical and homogeneously 

dispersed Pd nanoparticles by direct decomposition of 

tris(dibenzylideneacetone)dipalladium(0) over mesoporous carbon beads. The nanocatalyst 

was used for hydrogenation of anthracene achieving high conversions. The hydrogenated 

byproducts produced by cracking or ring-opening reactions were not observed. The carbon 

supports can also be modified by a doping process. N-doped carbons prepared by different 

approaches were used as supports of small-sized Pd nanoparticles for application as catalyst in 

the selective hydrogenation of phenol to cyclohexanone. The N-doped carbons were prepared 

using carbons with porous size of 3 or 5 nm and by gas thermal ammonolysis or heat 

treatment with melamine. The supports were impregnated with different loadings of Pd. The 

most active catalyst was the one with 1 wt% Pd comprised by the smallest Pd nanoparticles 

(1.2 nm) in the N-doped support (porous size of 3 nm) obtained by gas thermal ammonolysis. 

Moreover, this catalyst was reused five times without losing the activity.60 Carbon nanotubes 

are also being employed as potential supports for nanocatalysts. Pd nanoparticles supported 

on carbon nanotubes were investigated in hydrogenation of polystyrene,61 nitrobenzene,62 

biomass-derived levulinic acid63 and alkenes.64 N-doped carbon nanotubes obtained by gas 

thermal ammonolysis and O-doped carbon nanotubes obtained by vapor of HNO3 treatment 

were investigated as support for Pd nanocatalyst in the hydrogenation of 1,5-cyclooctadiene in 

gas flow reaction at 50 ºC. The Pd nanoparticles in both supports present similar size (2.7 nm) 

but the N-doped carbon nanotubes resulted in better catalytic performance for the olefin 

hydrogenation. The exceptional catalytic activity observed for Pd nanoparticles supported on 

N-doped carbon nanotubes was attributed to the structural and electronic promoting effect of 

the support since the nitrogen species can be considered as both structural and electronic 

promoters. One example is the influence of the significant polarity changes by the nitrogen 
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that can influence the adsorption of reactant molecules in catalysis.65 Literature also reports 

carbon-coated magnetic nanoparticles as catalysts supports. Baig and Varma66 reported a 

magnetic carbon-supported Pd catalyst synthesized via co-precipitation of nanoferrites and 

carbon deposition by calcination using renewable cellulose as carbon source. The 

nanocatalyst was active for the hydrogenation of a variety of alkenes and aryl nitro 

compounds at 1 atm H2 and room temperature, with total conversion in less than 1 h. Carbon-

coated cobalt nanoparticles can also be used as Pd nanoparticles support for hydrogenation.67 

 Polymers are very interesting supports for nanocatalyst due to the presence of various 

functional groups and the formation of porous structure. Pd(II) complexes are known as 

catalyst for polymerization and the further reduction of Pd(II) can result in Pd nanoparticles 

encapsulated in the polymer structure. Pd nanoparticles supported on polymer were tested in 

hydrogenation of quinolines to tetrahydroquinolines that are important intermediates in 

chemical industry. The polymer supported Pd nanocatalyst was prepared by co-

polymerization of the metal containing monomer palladium 2-(acetoacetoxy)ethyl 

methacrylate, with the suitable co-monomer ethyl methacrylate and the cross-linker ethylene 

glycol dimethacrylate. The Pd nanoparticles are formed under the conditions of hydrogenation 

of the quinolines (0.5 mol% of Pd, 10 atm H2 and 80 °C in autoclave reactor). The 4 nm Pd 

nanocatalyst formed achieved 98 % conversion for six different quinolines and could be 

reused for at least nine times without losing activity and selectivity and without showing 

aggregation or leaching during the reuses.68 Another example of Pd-catalyzed polymerization 

in the preparation of polymer supported nanoparticles was also used by Ishida et al.69 In this 

case Pd nanoparticles encapsulated by microporous polymer were obtained by polymerization 

of 1,3,5-triethynylbenzene and 1,4-diiodobenzene in the presence of Pd(PPh3)4, followed by a 

thermal treatment with N2 or H2. The change of 1,4-diiodobenzene by similar biphenyl or 

hydroxyl containing aromatic groups also was investigated. The series of polymer supported 
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Pd nanoparticles presented 1.6-3.5 nm size and they were very active to hydrogenation of 4-

nitrostyrene and hydrogenation of N-benzylideneaniline, reaching conversions of 99%. The 

preparation of Pd nanoparticles supported on polymer can also be made by simple 

immobilization method, as reported by Zhang and co-workers.70 Pd nanoparticles were 

immobilized to the polymer Cr-MIL-101, with incorporation of HSO3 in different amounts in 

the polymer structure. The catalyst was tested in hydrogenation of -valerolactone to 

ethylvalerate, although without good catalytic activity and a maximum conversion of 51% and 

selectivity of 26% at 200 ºC, 3 MPa H2 and 10 h. On the other hand, the Pd nanocatalyst in 

Cr-MIL-101 without HSO3 treatment was also explored in hydrogenation of 2,3,5-

trimethylbenzoquinone to 2,3,5-trimethylhydroquinone (used for vitamin E production) with 

better activity than conventional Pd/C catalyst.71 

 Others catalyst supports for hydrogenation reaction have been explored less 

extensively but with promising results. Pd nanoparticles over magnetite and functionalized 

magnetite were investigated in nitrocompounds72 and olefins43 hydrogenation. Pd 

nanoparticles supported in functionalized zeolite were used for hydrogenation of styrene.73 

Graphene and graphene oxide supported Pd nanoparticles were used as catalysts in 

hydrogenation of olefins,74, -unsaturated ketones,75,-unsaturated carboxylic acids76 and 

citral.77 Magnesium oxide is not very often used as support for hydrogenation reaction 

because its basicity is more interesting for oxidation reactions. However, Pd nanoparticles 

supported on magnesium oxide were used for hydrogenation of quinolines, alkenes and 

biodiesel showing to be four times more active than commercial Pd/SiO2 and Pd/Al2O3 

catalysts in the hydrogenation of quinoline.78 Finally, Pd nanoparticles on TiO2 were active 

for hydrogenation of cinnamaldehyde.79 

 Some studies reported in the literature compare the catalytic activity of Pd 

nanoparticles in different supports for hydrogenation reactions. A huge variety of supports for 
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Pd nanoparticles were investigated by Kulagina and co-workers.80 Pd NPs were prepared via 

reduction of Pd(II) ions over carbon, SiO2, diatomites, WO3, Ta2O5, Nb2O5, V2O5, TiO2, 

CeO2, ZrO2, Ga2O3, In2O3, Cr2O3, Fe2O3, Al2O3, CaF2, BaSO4 and Ca3(PO4)2. The possibility 

of changes in chemical surface of some supports during in situ reduction of Pd(II) was 

considered in this study. According to the authors the WO3, V2O5, TiO2, CeO2, Nb2O5 and 

ZrO2 supports could have shown chemical changes, but their surfaces were preserved, as 

observed by diffuse reflectance spectra after air exposure. However, during the catalytic 

hydrogenation conditions there is a high possibility of chemical surface changes that must be 

considered. The Pd nanocatalysts with this variety of supports were evaluated on catalytic 

hydrogenation of maleic acid, which showed to be a support-dependent process. The effect of 

the nature of oxide support was discussed in terms of the effective ionic potentials of the 

cations at the support surfaces. The authors could obtain a good relationship between the 

reaction rates and the effective ionic potentials of the cations in the hydrogenation of maleic 

acid. The Pd nanoparticles on oxide followed the rule of increasing reaction rates with the 

decreasing of oxidation number of the cations that belong to the support (decreasing their 

polarizability): Ta2O5 < TiO2 ≈ SiO2 < Al2O3. The catalyst on Cr2O3, Fe2O3, Ga2O and In2O3 

were the less active ones, probably because the metal containing oxides have uncompleted 

external electron shells which raises their polarizability. Pd NPs supported on carbon was the 

most active catalyst. 

 Pd nanocatalysts supported on CeO2, ZnO and TiO2 were studied in the selective 

hydrogenation of butadiene. The supports were treated by calcination at 300 °C for 1 h under 

O2 atmosphere or by removal of physisorbed water by vacuum at room temperature for 2 h. 

The Pd NPs were deposited on the support by organometallic chemical vapor deposition 

technique. The nanocatalysts were tested in selective hydrogenation of butadiene, a well-

known structure-sensitive reaction. The calcined supports showed better selectivity to 
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butadiene. One explanation for this behavior is the structural evidences obtained for palladium 

nanoparticles that were more dispersed in the calcined supports. Moreover, the spectra of CO 

adsorbed on Pd NPs demonstrated a significant presence of exposed (111) faces for calcined 

TiO2 and ZnO. The Pd (1 1 1) faces are reported to be very selective in butadiene 

hydrogenation.81 

 Colloidal Pd nanoparticles stabilized by PVP of 3-5 nm were immobilized on carbon, 

alumina, silica and calcium carbonate support for hydrogenation of 2-butyne-1,4-diol to 2-

butene-1,4-diol at 50 ºC and 22 atm H2. The Pd nanoparticles on carbon and CaCO3 presented 

similar selectivity, but the carbon support was almost two times more active. Intermediate 

activity was obtained with the supports Al2O3 and SiO2, but due to formation of side products, 

as butyraldehyde, butanol and acetals, the selectivity was poor. The comparison of prepared 

catalysts with conventional Pd catalysts supported in similar materials demonstrated that the 

nanocatalysts were around 10 times more active and more selective.82 

 Domínguez-Domínguez and co-workers83 investigated γ-alumina, zeolite Beta, MCM-

41, Al-MCM-41 with immobilized pre-synthesized 2.5 nm colloidal Pd nanoparticles. The 

catalysts were tested in the partial hydrogenation of phenylacetylene, although activity and 

selectivity were not considerably different with the different supports. However, all catalysts 

were considered highly active and selective under mild conditions (50 ºC and H2 flow 30 

mL/min). The catalysts with MCM-41 and Al-MCM-41 were also prepared by an alternative 

method. This method consisted in the synthesis of the supports by precipitation in the 

presence of Pd colloidal nanoparticles. The resulting MCM-41 and Al-MCM-41 catalysts 

were about 4 and 7 times more active than those prepared by Pd nanoparticles immobilization, 

and the selectivity was preserved. This result was interesting because the last method resulted 

in Pd NPs of diameter around 6.5 nm and a reduction of the catalytic activity could be 
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expected. This result is a demonstration of the importance of metal interaction with the 

support that may surpass the size effect.  

 

 

1.2.3.2. Supported Rhodium nanocatalysts 

 

 Rhodium is an important metal in hydrogenation reactions because it displays high 

activity for hydrogenation of arenes. Supported Rh NPs for hydrogenation of arenes are found 

in the literature using a large variety of supports, such as silica,84 nanozeolite,85 mesoporous 

clay,86 charcoal,87 carbon nanotubes,88 aluminum oxyhydroxide,89 boehmite,90 

hydroxyapatite91 and magnetic support.92 

 The catalytic performance of Rh nanocatalysts can be drastically affected by 

nanoparticle shape. Park and co-workers87 prepared colloidal Rh of different shapes and 

immobilized them on charcoal. The resulting materials were tested as catalysts in the 

hydrogenation of arenes. The tetrahedral supported Rh NPs were almost 6 times more active 

than spherical ones, and 109 times more active than conventional Rh/C catalyst. 

 The influence of the support for Rh NPs was also explored. For example basic oxides 

MgO, CaO and SrO were tested as supports for Rh NPs. The supported nanocatalysts were 

prepared via impregnation of organometallic Rh complex in the support followed by 

reduction under 3.4 bar H2 at 50 ºC in a glass reactor. The catalysts presented comparable Rh 

particle size, dispersion and surface area. For quinoline hydrogenation, the catalytic activity 

increased with the basicity: MgO < CaO < SrO. However, for hydrogenation of toluene, the 

authors did not observe any relationship with basicity. The explanation for the relationship 

observed for quinoline hydrogenation is that basic supports are able of promoting heterolytic 

hydrogen activation and an ionic hydrogenation mechanism. The ionic mechanism is related 



INTRODUCTION 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

64 

to the strong N-H bonding created with the nitrogen atom of the substrate and the basic site of 

the support, which facilitates the hydrogenation of the aromatic ring. However, toluene does 

not interact with the support basic sites, thus the reaction is not influenced by the basicity of 

the support.93 

 The effect of the support grains size was also studied in hydrogenation by Rh NPs. 

Silicas of different grains size (80 and 120 m) with similar porous volume and diameter 

were evaluated as support for 5 nm colloidal Rh NPs. The supported nanocatalysts were 

prepared via sol-immobilization method without calcination step and were used in the 

hydrogenation of different arenes. However, the authors did not report differences in catalytic 

activity for the different supports.94 

 The catalytic performances of silica or titania supported Rh nanoparticles were 

compared in arene hydrogenation. Hubert and co-workers95 prepared Rh NPs supported in 

SiO2 and TiO2 by sol-immobilization of colloidal Rh NPs. Colloidal and supported Rh NPs 

were evaluated in the hydrogenation of toluene in water (solvent), 1 mol% Rh, 1 atm H2 and 

room temperature. The catalytic activities followed the order: colloidal Rh NPs < Rh NPs on 

SiO2 < Rh NPs on TiO2 with reaction rate of 53, 163 and 222 molproduct mol-1metal h-1, 

respectively. However, none explanation was given for the high activity of titania supported 

Rh nanoparticles. Generally, TiO2 and SiO2 do not differ in terms of support for 

hydrogenation since their polarizability is similar.80 

 

 

1.2.3.3. Supported Ruthenium nanocatalysts 

 

 Ruthenium nanoparticles are active in several hydrogenation reactions. For example, 

Ru NPs supported in clays, as hectorite and montmorillonite, were active in the hydrogenation 
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of nitro compounds,96 arenes97 and selective hydrogenation of -unsaturated ketones.98 

Carbon supports (porous carbon, carbon nanotubes and carbon nanofibers) were used 

successfully in the preparation of supported Ru NPs for hydrogenation of arenes,99 nitro 

compounds,100 cinnamaldehyde,101 lactic acid102 and oils.103 Inorganic oxides like SiO2,
104 

MgO105 and SnO2
106 were investigated in the hydrogenation of arenes as support for Ru NPs. 

Finally, Ru NPs on magnetic support were active in selective hydrogenation of -

unsaturated ketones.107 

 The influence of support in hydrogenation reactions by Ru NPs was reported in the 

literature by some research groups. Cao and co-workers108 prepared -alumina and carbon 

supported Ru NPs by impregnation of Ru(III) ions followed by thermal reduction. The 

catalysts were evaluated in hydrogenation of levulinic acid to -valerolactone. The carbon 

support showed higher activity than alumina. The authors suggested that the high activity 

observed for carbon supported Ru NPs is related to the stability of metallic Ru in carbon 

against oxidation. According to XPS data, the binding energy of Ru 3d 5/2 on carbon is closer 

to metallic Ru than on Al2O3. FTIR data also showed that the ratio Ru0/Run+ is higher in 

carbon support than for Al2O3. The doping of the supports with potassium increased the 

catalytic activity for both supports and the activity of Ru NPs on K-doped Al2O3 support 

reached similar activity to K-doped carbon support. The Ru NP catalysts were five times more 

active than commercial Ru catalysts. 

 Liu and co-workers109 used porous alumina microfibers as template for the preparation 

of Ru NPs embedded in mesoporous carbon microfiber. The deposition of carbon on alumina 

template containing Ru(III) was accomplished by chemical vapor deposition of carbon using 

benzene or pyridine as the carbon source. The Ru was reduced under catalyst preparation 

conditions. The catalytic activity of Ru NPs in mesoporous carbon microfiber was studied in 

hydrogenation of D-glucose. Commercial carbon nanotubes and carbon microfibers were 
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impregnated with Ru(III) and thermally reduced for comparison with the synthesized 

catalysts. The catalysts prepared in synthesized mesoporous carbon microfibers were more 

active due to the 1-D morphology that can facilitate the diffusion of reactants and products. 

Also, the hydrogen spillover is easier by the high metal-support interaction.  

 Rutile and anatase phase of TiO2 were investigated as support for Ru NPs in 

hydrogenation of CO2. Lin and co-workers110 prepared the catalysts by impregnation of 

Ru(III) in TiO2 followed of calcination and reduction in H2 atmosphere. The supported Ru 

nanoparticles size was 4 nm in anatase-TiO2 and 1.1 nm in rutile-TiO2. Also in rutile-TiO2 the 

nanoparticles were well-dispersed on the support. The Ru-O-Ti bond was characterized by 

EXAFS in rutile-TiO2 supported Ru NPs, which suggest a strong metal-support interaction. 

As consequence, rutile-TiO2 promotes a better metal dispersion and a higher thermal stability 

in hydrogenation of CO2. The Ru NPs in anatase-TiO2 were more active initially, because the 

nanoparticle size is more suitable for CO2 hydrogenation. However, they are easily 

deactivated by thermal treatment.  

 Jahjah and co-workers111 compared the activity of colloidal Ru NPs prepared with 

organometallic precursor immobilized in carbon nanotubes, SiO2, Al2O3 and activated carbon. 

The catalysts were tested in the hydrogenation of styrene, acetophenone and p-methylanisole. 

The Ru NPs immobilized on activated carbon was the less active catalyst due to the high 

microporosity of the support, which result in more transfer mass limitations compared to the 

others supports. The intermediary activity observed for Al2O3 support was a result from the 

weak interaction of the colloidal nanoparticles, because Ru NPs were agglomerated after 

catalytic reaction. Carbon nanotubes and SiO2 supports resulted in the highest activity, 

although the Ru NPs supported on SiO2 deactivated after the first run in the hydrogenation of 

styrene and the Ru NPs in carbon nanotubes were active after 3 cycles. Under the reaction 

conditions, the nanoparticles could migrate inside the SiO2 porous. On the other hand, the 
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metal nanoparticles are dispersed on the surface of carbon nanotubes, which can facilitate the 

contact with substrates. 

 

 

1.2.3.4. Deactivation of supported nanocatalysts 

 

 The catalyst deactivation is an issue in Nanocatalysis, as it is in heterogeneous 

catalysis. The sintering of supported metal nanoparticles is one of the main mechanisms for 

the loss of catalytic activity, because of the particle migration and coalescence or Ostwald 

ripening.112 The nanoparticle growth can occur by detachment and migration of metal atoms 

from one nanoparticle to another via the support surface or gas phase. This process is called as 

Ostwald ripening and results in a solid containing a mixture of different nanoparticles sizes 

and shapes. Also, the nanoparticle growth during the sintering can occur by migration of an 

entire nanoparticle by diffusion on the support surface followed by collision and coalescence. 

In the case of nanoalloys, the sintering can also result in composition change.113 

 Temperature is one of the main factors responsible for sintering because the melting 

point is a size-dependent physical property and metal nanoparticles, typically, present a lower 

melting point compared to bulk metal.7 The sintering process is also affected by changes in 

the nanoparticle surface energy. The nanoparticle surface energy can be modified by 

atmosphere, stabilizing agents, support surface functionalization, addition of promoters, 

among several other factors.113 The metal dispersion on the support can also contribute to the 

sintering process. Nanocatalysts strongly attached to the support, metal nanoparticles 

encapsulated in core-shell, yolk-shell, core-sheath or mesoporous structures are ways to avoid 

sintering.113 However, the encapsulation of the nanoparticles in the support is difficult and can 

drastically decrease the catalytic activity of the metal nanoparticles. The reduction of catalytic 



INTRODUCTION 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

68 

activity can be a result of the blockage of active sites by the support and also because the 

substrate diffusion will be limited by the shell porosity. In any way, the encapsulation of 

nanoparticles is recommended for the preparation of catalysts that will be used under extreme 

reaction conditions.114 

 The deactivation of supported nanocatalysts can also occurs via poisoning, fouling and 

volatization of active components, similar to common heterogeneous catalysts.115 After 

sintering, the second common reason for nanocatalyst deactivation is the poisoning that 

consists in strong binding of molecular species on the catalyst active sites or due to carbon 

deposition on metal surface.  

 

 

1.3. Magnetically recoverable and recyclable nanocatalysts 

 

 As mentioned before, heterogeneous catalysts as well as supported metal nanoparticle 

catalysts have the advantage of easy separation compared to homogeneous catalysts. 

However, even heterogeneous catalysts can sometimes still be harsh to separate from the 

products depending on the granulometry and density of the catalyst support. Separation 

processes that involve centrifugation, filtration, decantation and distillation are time or energy 

consuming. On the other hand, magnetic separation allows fast removal of catalysts from 

crude samples avoiding mass loss and catalyst oxidation since separation process occurs 

without removing the catalyst from the reaction flask. The catalyst recycling can be easily 

performed by washing it directly in the reaction flask and by adding new portions of the 

substrate. In comparison with traditional separation, the magnetic separation is much more 

simple and can be more efficient.116 In this context, magnetic supports are intensively 

explored as supports for molecular catalysts117 and nanocatalysts.118 
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 Magnetite (Fe3O4) under the form of nanoparticles is being employed in several 

applications as magnetic resonance image contrast,119 enzyme immobilization,120 cell 

separation,121 drug delivery122 and catalysts support43 due to its low toxicity and 

superparamagnetic behavior.123 The superparamagnetism is a size-dependent property that is 

characterized by elevated saturation magnetization in the presence of a magnetic field and 

absence of residual magnetization when ceased the magnetic field.124 Bulk magnetic materials 

present a multidominium structure, but when the material is reduced below a critical diameter 

the formation of single domain nanoparticles is energetically favorable. The absence of 

residual magnetization of superparamagnetic materials is a consequence of the easy magnetic 

reorientation at temperatures higher than blocking temperature (Tb). Tb is the temperature 

where the thermal energy is higher than the barrier energy, which allows the magnetic 

reorientation. At temperature lower than Tb the material will be in a blocked condition and 

showing residual magnetization, but above Tb it can be separated (high magnetization in the 

presence of an applied magnetic field) and easily redispersed (no residual magnetization) after 

removal of magnetic field. The absence of residual magnetization of superparamagnetic 

supports allows the catalyst to be dispersed in reaction media without support aggregation. 

This characteristic is indispensable for catalyst separation and reuse.125 Figure 1.2 shows an 

example of magnetic separation of silica-coated magnetite. 
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Figure 1.2. Magnetic separation of silica-coated magnetite 

 

 Support stability under reaction conditions is a very important characteristic to 

preserve the magnetic properties for an efficient magnetic separation. The encapsulation of 

magnetic nanoparticles with a protective coating is an interesting strategy to produce more 

stable materials. Besides improving the support stability, the coating also facilitates the 

catalyst preparation by offering a surface that can be easily modified with organic compounds 

or contains high surface area with a mesoporous material, for example, silica.125 Silica126 and 

carbon127 are so far the most explored coating for magnetic nanoparticles. The silica coating is 

the most versatile because it is easy performed, very resistant to organic solvents, provides an 

easy functionalization, is chemically and thermally stable under typical reaction conditions.126 

The most known methods to coat iron oxide with a protective shell of silica is by Stöber 

method,128 microemulsion,129 reverse microemulsion,130 aerosyl pyrolysis,131 and arc-

discharge method.132 All these methods present advantages and disadvantages, for example 

Stöber method is simple and low cost, but it can easily result in pear-necklace structures 

instead of single particles.133 The aerosyl pyrolysis method can produce large amounts of 

materials and arc-discharge method results in high purity materials, but both methods require 

sophisticated equipment. The disadvantage of microemulsion and reverse microemulsion 

methods is the higher cost compared to Stöber method. However, the formation of micelles 
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permits the confinement of the particles and the control of silica growth134 and high quality 

materials can be prepared.92 

 The carbon coating is resistant in acid and basic conditions, but the coating requires 

more sophisticated methods. The most explored synthesis for magnetic nanoparticles 

encapsulated in carbon was accomplished via template,135 chemical vapor deposition 

(CVD),136 and hydrothermal/solvothermal method.137 

 The coating of iron oxides with other oxides that are relevant for application as 

catalysts supports is limited to few examples. Álvarez et al.138 reported a method for 

preparation of titania-coated magnetite. The method consists in the treatment of an aqueous 

suspension of magnetite with isopropyl alcohol and titanium(IV) isopropoxide, which result 

in a poorly controlled morphology that was enhanced when a previous silica-coating was 

performed. The preparation of “peapod” like structures were reported by Ye et al.139 through 

the deposition of titania over silica-coated magnetite. The control of addition of 

tetrabutyltitanate resulted in the preparation of well-controlled material with spherical to 

‘peapod’ like morphology. The precipitation of Ti(SO4)2 in the presence of magnetic NPs 

resulted in the direct coating of magnetite with titania.140 The urea used as precipitation agent 

allows the slow release of ammonia and the hydrolysis and condensation rate of TiO2 

precursor is controlled. The titania-coating was also reported in an ultrasonic bath at 90 ºC for 

1.5 h using a mixture of ethanol/water and titanium butoxide in the presence of magnetic 

particles, although the material obtained showed a very large size (bigger than 100 nm).141 Liu 

et al.142 demonstrated the titania-coating of silica-coated magnetite using glacial acetic acid to 

promote the hydrolysis of titanium butoxide, which resulted in particles with a layer of titania 

(8-10 nm). The direct coating of magnetite with alumina was reported by Sun et al. by the 

suspension of magnetite powder in an ethanolic solution of aluminum propoxide and the drop 

wise addition of water/ethanol mixture. However, the authors showed a scanning electron 
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microscopy that does not clarify the quality of the alumina-coating control.143 Some studies 

have demonstrated that it is possible to obtain metal nanoparticles encapsulated by others 

oxides than silica; even in a core-shell structure, but the conditions of the synthesis does not 

allow the isolation of sufficient material to make viable their use as catalyst support.24, 144 

 

 

1.4. Justification 

 

 The main goal of this thesis is to contribute for the preparation of magnetically 

recoverable catalysts that are more resistant to reaction media. The type of magnetic support 

available are mainly based on bare magnetic nanoparticles (e.g. magnetite and other ferrites), 

silica-coated or carbon-coated magnetic nanoparticles. There is a lack of magnetic supports 

containing titania, ceria or other oxides prepared with good morphological control that are 

very welcome for application in the field of catalysis. In this thesis, we explored strategies for 

the coating of iron oxide with titania and ceria and their influence in the catalytic activity of 

supported metal nanoparticles. 

 As described in section 1.2.2, there are several methods to prepare supported metal 

nanoparticles and here we selected the IMP and SI methods for the preparation of controllable 

and reproducible catalysts. The preparation of supported metal NPs is very important for the 

study of the support influence in the catalytic activity. Initially we explored the preparation of 

Rh catalysts by IMP method using different reducing agents (H2, NaBH4 and N2H4) and by SI 

method. The IMP method was also employed in the preparation of Pd catalysts using silica-

coated magnetite before and after thermal treatment and their amino-functionalized 

counterparts.  
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 The direct influence of silica-coated magnetite containing ceria or titania in the 

catalytic activity of Rh, Pd and Ru NPs was explored in the hydrogenation of cyclohexene 

(Rh and Pd) and in the hydrogenation of phenol (Rh, Pd and Ru). The Rh, Pd and Ru catalysts 

were prepared using an organometallic approach in order to obtain well-controlled and 

reproducible NPs and the catalysts were prepared by SI method. It is very important to note 

that there are several examples of support influence studies in the literature where supported 

metal NPs are prepared by different methods. The differences between the supported metal 

NPs can be more important than the support effect in the catalytic performance. Thus, the use 

of well-controlled and reproducible NPs is the most important requirement to a support effect 

study. 
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2. OBJECTIVES 

 

 

2.1. General 

 

 

 The general objective of this thesis is the development of magnetic nanocomposites 

containing silica, ceria and titania for the preparation of magnetically recoverable supported 

metal nanoparticles catalysts for hydrogenation reactions. 

 

2.2. Specifics 

 

 

 The specific objectives of this thesis are: 

 

 Preparation of silica-coated magnetite using a reverse microemulsion 

method and the study of its thermal behavior; 

 Deposition of cerium and titanium oxides on silica-coated magnetite; 

 Characterization of the physical and chemical properties of the magnetic 

nanocomposites; 

 Preparation of catalysts based on the impregnation of rhodium(III) chloride 

and disodium tetrachloropalladate(II) on magnetic supports; 

 Preparation of catalysts based on the sol-immobilization of colloidal 

suspensions of rhodium and palladium nanoparticles on magnetic supports; 
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 Preparation of colloidal rhodium, palladium and ruthenium nanoparticles 

using an organometallic approach and immobilization of the colloidal 

nanoparticles on magnetic supports; 

 Evaluation of the catalytic activity of the obtained magnetic nanomaterials 

in hydrogenation reactions using cyclohexene, benzene or phenol as 

substrates. 
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3. MATERIALSAND METHODS 

 

 

3.1. Materials 

 

3.1.1. Reagents 

 

 Iron(III) chloride hexahydrate, cyclohexane, oleic acid, IGEPAL CO-520, 

tetraethylortosilicate (TEOS), (3-aminopropyl)triethoxysilane (APTES), Brij-30, titanium(IV) 

isopropoxide (TTIP), ammonium cerium(IV) nitrate, rhodium(III) chloride hydrate, 

allylmagnesium chloride 2M in THF, tetrahydrothiophene, sodium borohydride, 

polyvinylpyrrolidone (PVP) (K30, Mw 40000), polyvinylalcohol (PVA) (80% hydrolyzed, 

Mw 10000), hydrazine, cyclohexene (without stabilizer), phenol, n-hexane, titanium(IV) 2-

ethylhexyloxide (TEO), triethanolamine (TEOA), 1-butanol, 1-heptanol, 1-dodecanol, 

tetrahydrofuran (THF) (without stabilizer), dichloromethane and pentane were purchased 

from Sigma-Aldrich. Iron (II) chloride tetrahydarate, gold(III) chloride hydrate, benzyl 

alcohol and Tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) were purchased from Alfa 

Aesar and used as received. Palladium(II) chloride was purchased from Alfa Aesar and the 

solubilization in water was performed by addition of 2 eq. NaCl. (cyclo-octadiene)(cyclo-

octatriene)ruthenium(0)(Ru(COD)(COT)) was purchased from Nanomeps and stored in glove 

box. Hydrochloric acid (35%), ammonia solution (26-28%) and isopropyl alcohol were 

purchased from J.T. Baker. Acetone, methanol, ethanol and toluene were purchased from 

Synth. The solvents were used as received, otherwise it is specified in the experimental part. 
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3.1.2. Equipments 

 

 The main instruments used are listed below: 

 Gas chromatographer GC-2010 equipped with a FID detector (Shimadzu, Japan) and 

capillary columns Rtx-wax or Rtx-5 both with 30 m length and I.D. 0.25 mm (Restek, United 

States) from the Prof. Dr. Liane M Rossi and Prof. Dr. Alcindo A. dos Santos (IQ-USP, 

Brazil) and HP 5890 equipped with the same Rtx-wax column from Dr Karine Philippot 

(LCC-CNRS, Toulouse). 

 Fourier transform infrared spectrometer GX 2000 (Perkin Elmer, United States) from 

LCC-CNRS, Toulouse. 

 Thermobalance TG-51 and Differential Scanning Calorimeter DSC-50 (Shimadzu, 

Japan) from Prof. Dr. Jivaldo R Matos, IQ-USP, Brazil. 

 Transmission electron microscope JEM 2100 (JEOL, United States) from LNNano, 

Brazil and from IQ-USP, Brazil; JEM 1011 (JEOL, United States) from TEMSCAN, 

Toulouse; Philips CM200 from Prof. Dr. Pedro K. Kiyohara (IF-USP, Brazil). 

 Flame atomic absorption spectrometer AA-6300 (Shimadzu, Japan) from Prof. Dr. 

Liane M Rossi IQ-USP, Brazil. 

 Inductively coupled plasma optical emission spectrometer Arcos (Spectro, Germany) 

from Analysis Center at IQ-USP, Brazil. 

 X-ray diffractometer Ultima + (Rigaku, Japan) from Prof. Dr. Márcia C. A. Fantini 

(IF-USP, Brasil). 

 Glove box UNIlab (MBRAUM, Germany) from Dr. Karine Philippot (LCC-CNRS, 

Toulouse). 

 Integrated Microreactor-MS system equipped with a CATLAB-PCS Module and a 

QIC-20 MS Module (Hiden Analytical, UK) from Prof. Dr. Liane M. Rossi (IQ-USP, Brazil). 
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 Hydrogen monitoring system was assembled using homemade stainless steel vessels, 

pressure transmitter 510 (Huba Control, Germany), data logger FieldLogger (Novus, Brazil) 

and the control software FieldChart (Novus, Brazil) from Prof. Dr. Liane M. Rossi (IQ-USP, 

Brazil). 

 SQUID magnetometer XL-200 (Quantum Design, United States) from Prof. Renato F. 

Jardim (IF-USP, Brazil). 

 Spherical analyzer HA-100 (VSW, UK) from Prof. Dr. Richard Landers (IF-USP) for 

X-ray photoelectron analysis. 

 

 

3.2. Methods 

 

3.2.1. Synthesis of silica-coated magnetite supports 

 

 The synthesis of magnetite and their stabilization with oleic acid was prepared as 

described previously.43, 145 Typically, a mixture of an aqueous solutions of Iron(III) chloride 

hexahydrate (10 mL, 1.0 mol L-1) and Iron(II) chloride tetrahydrate (2.5 mL, 2.0 mol L-1 in 

hydrochloric acid 2.0 mol L-1) was added to a solution of ammonia (250 mL, 0.7 mol L-1) 

under N2 atmosphere and mechanical stirring (10000 rpm, Ultra-Turrax T-18 Homogenizer, 

IKA Works). The mixture was kept under stirring and under inert atmosphere for 30 min. The 

obtained material was separated with a magnet and washed 3 times with portions of 250 mL 

of deionized water. The stabilization of the magnetite nanoparticles in cyclohexane was 

performed by the addition of oleic acid.43, 146 This procedure consist in the dispersion of the as 

prepared magnetite nanoparticles in 250 mL deionized water followed by the drop-wise 

addition of oleic acid (7 mmol, 2 mL diluted in 10 mL acetone) under mechanical stirring 
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(10000 rpm, Ultra-Turrax T-18 Homogenizer, IKA Works). The obtained solid was 

magnetically separated and washed 3 times with portions of 25 mL acetone. After the washing 

procedure the material was dispersed in 50 mL cyclohexane and centrifuged at 2000 rpm for 

30 min (Eppendorf 5804 centrifuge). The supernatant solution was collected and, typically, 

contained 20 to 25 mg L-1 of oleic acid stabilized magnetite nanoparticles in cyclohexane. 

 Silica coating was performed by means of a reverse microemulsion.147 Initially, 700 

mL cyclohexane and 44.6 g IGEPAL CO-520 were added in a round bottom flask. This 

mixture was stirred mechanically until total dispersion of the surfactant. Then, 200 mg of 

oleic acid stabilized magnetite (20 mL of the previously prepared suspension diluted to 10 mg 

mL-1) and 9.44 mL ammonia solution (21 mmol) were added. The solution was vigorously 

stirred until total solubilization of the ammonia solution. Finally, 7.7 mL TEOS (2 mmol) was 

added and the mixture kept under mechanical stirring for the desired time, typically 6 h. The 

silica-coated magnetite was recovered from the solution by the addition of 300 mL methanol. 

The suspension in methanol was centrifuged (6500 rpm for 20 min) and washed two times 

with 300 mL portions of ethanol. The obtained material was dried under air at 90 ºC in an 

oven. This procedure, typically, results in around 1.5 g of silica-coated magnetite 

(Fe3O4@SiO2). In order to remove any organic matter still present in the silica shell, the 

Fe3O4@SiO2 material was calcined under static air atmosphere at 500 ºC for 2 h (heating rate 

of 20 ºC min-1). The calcined sample was denoted as Fe3O4@SiO2Cal. 

 

 

3.2.1.1. Functionalization of silica surface with amine groups 

 

 The silica-coated magnetite solids (Fe3O4@SiO2 and Fe3O4@SiO2Cal) were 

functionalized with amine groups using (3-aminopropyl)triethoxysilane (APTES). Typically, 
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300 mg solid were added to 45 mL dry toluene under N2 atmosphere and magnetic stirring. 

After the solid was well-dispersed, 450 µL APTES were added and the mixture kept under 

magnetic stirring for 2 h. The obtained material was magnetically separated and washed with 

45 mL toluene and, then, washed two times with portions of 45 mL acetone. The solid 

Fe3O4@SiO2NH2 was dried under air at 100 ºC for 20 h in an oven. 

 

3.2.1.2. Quantification of amine groups 

 

 The quantification of amine groups grafted on the surface of Fe3O4@SiO2 and 

Fe3O4@SiO2Cal was determined by a colorimetric method of ninhydrin.148 The reaction of the 

ninhydrin probe with primary amines is selective and results in a purple solution that can be 

quantified by UV-Vis spectroscopy. Typically, 50 mg of functionalized solid was mixed with 

1 mL ninhydrin solution (5 wt% in ethanol) and 5 mL phosphate buffer solution (pH = 6.4). 

The mixture was maintained under magnetic stirring and boiling water bath for 1 h. The 

magnetic solid was magnetically separated and washed with portions of deionized water (70 

ºC). The obtained solution volume was adjusted to 100 mL and the absorbance at 565 nm 

obtained by UV-Vis spectroscopy. The calibration curve was prepared using APTES. 
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3.2.2. Deposition of metallic oxides in silica-coated magnetite 

 

3.2.2.1. Deposition of titanium oxide 

 

 The deposition of titania on the Fe3O4@SiO2 composite was performed by a 

modification of the method described by Güttel et al.149 for the preparation of gold yolk-shell 

material.149 Initially, 200 mg Fe3O4@SiO2 were dispersed in Brij-30 in ethanol (0.4 mmol L-1, 

in 30 mL ethanol). To ensure the dispersion of the solid, the mixture was stirred for 20 h. 

Then, 90 µL of titanium(IV) isopropoxide (TTIP) solution (80 % in 1-butanol) were added 

under magnetic stirring. After 20 h, the solid was magnetically separated and washed with 3 

portions of 15 mL ethanol. The obtained material was calcined under static air atmosphere at 

500 ºC for 2 h. The resulting material was denoted as Fe3O4@SiO2TiO2. 

 

 

3.2.2.2. Deposition of cerium oxide 

 

 The deposition of ceria on the Fe3O4@SiO2 composite was performed by the 

impregnation of the solid with ammonium cerium(IV) nitrate. Typically, 100 mg Fe3O4@SiO2 

were dispersed in 4 mL ethanol under magnetic stirring. After 2 h, 8 mg of ammonium 

cerium(IV) nitrate were added and the mixture kept under magnetic stirring for another 20 h. 

The impregnated solid was recovered by evaporation of the solvent under low pressure. The 

obtained solid was collected and calcined under static air atmosphere at 500 ºC for 2 h. The 

resulting material was denoted as Fe3O4@SiO2CeO2. 

 

 



MATERIALS AND METHODS 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

82 

3.2.3. Synthesis of metal precursors 

 

3.2.3.1. Synthesis of Tris(allyl)Rhodium(III) complex 

 

 The tris(allyl)rhodium(III) complex was prepared following a modification of a 

previously reported method.150 Initially, 1.5 g of RhCl3.xH2O was added to a Schlenk flask 

and the atmosphere was changed to Ar using a vacuum/Ar line. The rhodium salt was 

solubilized in 140 mL THF (dry and without stabilizer), that was transferred from a Schlenk 

flask under Ar through a cannula. The addition of 36 mL allylmagnesium chloride solution (2 

mol L-1 in THF) was made under vigorous magnetic stirring and a cold bath (ethanol with 

liquid N2). The reaction mixture was kept under magnetic stirring for 20 h. The solution color 

changed to yellow and the THF was slowly removed under vacuum. In order to enhance the 

extraction of the product, the solid was removed from the Schlenk wall using a spatula under 

a constant flow of argon. The product was extracted by the addition of small portions of dry 

pentane under argon atmosphere. The suspension was transferred by cannula to a celite 

column. The pentane was removed under vacuum and the product transferred to sublimation 

apparatus inside a glove box (MBRAUN, Germany. Water and O2 lower than 1 ppm). The 

sublimation was done under vacuum and 50 ºC. The purified Rh(C3H5)3 was stored at -3 ºC in 

a freezer inside the glove box. The obtained mass of Rh(C3H5)3 was around 700 mg. 

 

 

3.2.3.2. Synthesis of Chloro(tetrahydrothiophene)gold(I) 

 

 The chloro(tetrahydrothiophene)gold(I) complex was prepared following a previously 

reported method.151 Initially, 1 g of HAuCl4.3H2O was transferred to a Schlenk flask inside 
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the glove box (MBRAUN, Germany. Water and O2 lower than 1 ppm). Under a positive flow 

of argon, 8.2 mL of ethanol absolute (degassed by freezing pump) and 1.6 mL distilled water 

(degassed by bubbling with argon for 20 min) were added by syringe under stirring. Then 

0.47 mL tetrahydrothiophene were added drop-wise resulting in the precipitation of a yellow 

solid, which turns white with the addition of more tetrahydrothiophene. After 30 minutes 

under stirring, the obtained solid was transferred to a porous glass filter using a cannula, under 

argon atmosphere, and washed with ethanol. The product was removed from the filter with 

dichloromethane and the solution recovered in a Schlenk flask. The dichloromethane was 

removed under reduced pressure. Yield: 624 mg AuCl(THT). 

 

 

3.2.4. Synthesis of metal nanoparticles 

 

3.2.4.1. Synthesis of palladium nanoparticles by reduction of metal salts 

 

 Polyvinylpyrrolidone-stabilized palladium nanoparticles (Pd@PVP-1) were prepared 

by reduction of Pd2+ ions following a literature reported method.152 Typically, 15 mL 

disodium tetrachloropalladate(II)aqueous solution (2 mmol L-1), 21 mL deionized water, 14 

mL ethanol and 33.5 mg of PVP were added in a round bottom flask under magnetic stirring 

and kept for 2 h under reflux. The obtained solution was concentrated in a rotary evaporator to 

final volume of 10 mL and the colloidal Pd nanoparticles were used without further 

purification.  
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3.2.4.2. Synthesis of rhodium nanoparticles by reduction of metal salts 

 

 Polyvinyl alcohol-stabilized rhodium nanoparticles (Rh@PVA) were prepared in 

aqueous solution using NaBH4 as reducing agent, following a modification of the method 

reported by Lopez-Sanchez et al. for the preparation of Au@PVA NPs.32 Typically, an 

aqueous solution of rhodium(III) chloride hydrate (80mL, 0.8 mmol L-1) was mixed with 13.5 

mL of an aqueous PVA solution (1 wt%) under magnetic stirring. Then, a fresh prepared 

NaBH4 aqueous solution (3 mL, 0.1 mol L-1) was drop wise added under vigorous magnetic 

stirring. The magnetic stirring was maintained for 30 min and the obtained colloidal metal 

nanoparticles were used without further purification. 

 

 

3.2.4.3. Synthesis of ruthenium, palladium and rhodium nanoparticles by 

decomposition of organometallic complexes 

 

 The preparation of Rh, Ru and Pd@PVP NPs were performed by the decomposition of 

the corresponding organometallic complexes in the presence of H2 and PVP in THF solution. 

All metal nanoparticles were prepared by a modification of a previously reported method.153 

 Inside a glove box (MBRAUN, Germany. Water and O2lower than 1 ppm), 42 mg 

Ru(COD)(COT), 30 mg Rh(C3H5)3 or 61 mg Pd2(dba)3 were added to a 300 mL Fischer-

Porter glass reactor. Under a positive flow of argon, 30 mL of THF (dry and purified) were 

transferred by syringe to a Schlenk flask containing 136 mg PVP under magnetic stirring. 

After the solubilization, the PVP solution in THF was transferred by cannula to the Fischer-

Porter glass reactor containing the metal precursor without stirring and under a cold bath 

(ethanol and liquid N2). Then, the reactor was pressurized with 3 bar H2 and the stirring was 
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initiated. The cold bath was removed and the reactor kept under static pressure and magnetic 

stirring for 24 h. The THF was removed under reduced pressure and the material was washed 

with two portions of hexane. The resulting solid was dried under vacuum and stored in a 

glove box. 

 

 

3.2.4.4. Synthesis of gold nanoparticles 

 

 The Au@PVP NPs were prepared following two different methods. The first method 

was reported by de Caro et al.154 and consists in the decomposition of a gold(I) complex in the 

presence of H2. The second method was reported by Tsunoyama et al.155 and consists in the 

reduction of gold(III) chloride by NaBH4. 

 Method 1: Inside the glove box (MBRAUN, Germany. Water and O2 lower than 1 

ppm), 43 mg AuCl(THT) were added to a Fischer-Porter reactor. Under a positive flow of 

argon, 30 mL of THF (dry and purified) were added to a Schlenk flask containing 136 mg 

PVP. After the solubilization, the PVP solution in THF was transferred by cannula to the 

Fischer-Porter reactor containing the Au(I) precursor without stirring and under a cold bath 

(ethanol and liquid N2). Then the reactor was pressurized with 3 bar of H2 and at the same 

time the stirring was initiated. The mixture was kept under room temperature for 24 h. The 

volume of THF was reduced under vacuum to 4 – 5 mL, and then the material was washed 

with two portions of hexane and dried under vacuum. 

 Method 2: Initially, 20 mg HAuCl4.3H2O and 555 mg of PVP were solubilized in 50 

mL deionized water under an ice bath. Then, an aqueous solution of NaBH4 (5 mL, 100 mmol 

L-1) was fast added. After stirring for 30 min, the resulting brown solution was transferred to a 

dialysis bag. The solution was left for 48 h in dialysis against deionized water.  



MATERIALS AND METHODS 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

86 

3.2.5. Catalysts preparation by impregnation method 

 

3.2.5.1. Rhodium catalysts 

 

 Rhodium catalysts were prepared by the impregnation of Fe3O4@SiO2NH2 support 

with RhCl3.xH2O aqueous solution followed by three different methodologies for the 

reduction of the Rh3+ ions on the support surface. Basically, three different reducing agents 

were employed (H2, NaBH4 and N2H4). The reduction under H2 was made following the 

procedure previously reported by Jacinto et al.92 Typically, 50 mg Fe3O4@SiO2NH2 was 

dispersed in 10 mL aqueous rhodium(III) chloride solution (0.21 g mL-1) under magnetic 

stirring. The solution was kept under magnetic stirring for 2 h. The solid was magnetically 

recovered and washed with two portions of 4 mL acetone. The catalysts were dried under air 

at 90 ºC for 3 h. The reduction of the Rh3+ by H2 occurred in situ during the first catalytic 

hydrogenation cycle (see item 3.3.7). The reduction with NaBH4 or N2H4 was performed by 

the addition of 2.5 mol NaBH4 or 10 mol N2H4 per mol of Rh. Typically, 50 mg of the support 

freshly impregnated with Rh3+ ions dispersed in deionized water (volume adjusted to final 

solution of 4 mL) and 1 mL of a freshly prepared NaBH4 aqueous solution (0.7 mg, 1.8x10-2 

mmol) or neat N2H4 (2µL, 7.3x10-2 mmol) were mixed under stirring. After 2 h under stirring 

at room temperature, the solid was magnetically recovered and washed with two portions of 2 

mL deionized water and one portion of 2 mL acetone. The solids were dried under air for 20 

h. The catalysts were expected to obtain nominal 1.5 wt% metal, but the actual metal content 

was determined by FAAS. 
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3.2.5.2. Palladium catalysts 

 

 Palladium catalysts were prepared by the impregnation of the support with Na2PdCl4 

aqueous solution. In a 20 mL scintillation flask were added 4 mL of Na2PdCl4 aqueous 

solution (0.5 mg Pd) and 50 mg of different supports: Fe3O4@SiO2, Fe3O4@SiO2NH2, 

Fe3O4@SiO2Cal, and Fe3O4@SiO2CalNH2. The solution was kept under magnetic stirring for 

2 h. The solid was magnetically recovered and washed with two portions of 2 mL deionized 

water and one portion of 2 mL acetone. The solids were dried under air for 20 h. The 

reduction of the Pd2+ by H2 occurred in situ during the first catalytic hydrogenation cycle (see 

item 3.3.7) The catalysts were expected to obtain nominal 1.0 wt% metal, but the actual metal 

content was determined by FAAS. 

 

 

3.2.6. Catalyst preparation by immobilization of preformed metal 

nanoparticles 

 

3.2.6.1. Immobilization of preformed metal nanoparticles prepared with 

salt precursors 

 

 Rhodium catalysts were prepared by the dispersion of 30 mg of Fe3O4@SiO2 or 

Fe3O4@SiO2NH2 in 18 mL colloidal suspension Rh@PVA NPs (0.5 mg Rh). The mixture 

was kept under stirring for 2 h. Then, the solid was magnetically separated and washed with 

two portions of 2 mL deionized water and one portion of acetone. The solid was dried under 

air at 100 ºC for 20 h. The actual metal content was determined by FAAS. 
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 Palladium catalysts were prepared by the dispersion of 50 mg of magnetic support 

(Fe3O4@SiO2, Fe3O4@SiO2NH2, Fe3O4@SiO2Cal, and Fe3O4@SiO2CalNH2) in 4 mL 

colloidal aqueous suspension of Pd@PVP-1 NPs (0.5 mg Pd). The mixture was kept under 

stirring for 2 h. Then, the solid was magnetically separated and washed with two portions of 2 

mL deionized water and one portion of acetone. The solid was dried under air at 100ºC for 12 

h. The actual metal content was determined by FAAS. 

 

 

3.2.6.2. Immobilization of preformed metal nanoparticles prepared with 

organometallic precursors 

 

 The metal nanoparticles were immobilized on the magnetic supports by the dispersion 

of the magnetic solid in THF containing the desired amount of metal nanoparticles to obtain 

catalysts with nominal 1.5 wt% metal. Typically, 200 mg of magnetic support 

(Fe3O4@SiO2Cal, Fe3O4@SiO2CeO2 and Fe3O4@SiO2TiO2) and 40 mg of metal 

nanoparticles were dispersed in 80 mL of dried THF (without stabilizer). The mixture was 

kept under stirring for 48 h. Then, the solid was magnetically separated and washed two times 

with portions of 40 mL THF. The solid was dried in vacuum. The actual metal content was 

determined by FAAS. 
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3.2.7. Catalytic reactions 

 

3.2.7.1. Hydrogenation of cyclohexene and benzene in liquid phase 

 

 The hydrogenation of cyclohexene was performed in a 100 mL Fischer-Porter glass 

reactor at constant H2 pressure. The reactor containing the catalyst powder or solution and the 

substrate was pressurized with 2 bar H2 and purged 3 times. The reactor was placed in an oil 

bath and the temperature controlled by a magnetic heating plate (IKA works, H7 CMAG with 

ETS-D5 temperature controller). The typical catalytic conditions were substrate to catalyst 

molar ratio of 35600 for cyclohexene and 500 for benzene, constant pressure of 6 bar H2 and 

75 ºC. Additional reactions were performed with different conditions (details are provided in 

table footnotes). The consumption of H2 was monitored in a reservoir connected to the reactor 

through a pressure regulator. The catalytic activity was expressed in terms of turnover 

frequency (TOF) as the amount in mol of substrate converted by mol of metal per hour at 

initial reaction times (conversion < 20%). The reaction total time was determined by the end 

of H2 consumption. The H2 monitoring system and the TOF calculation are described in 

section 3.3.7. The conversion of substrate was confirmed by gas chromatography. The GC 

settings are described in the section 3.3.5. 

 

 

3.2.7.2. Hydrogenation of cyclohexene in gas phase 

 

 The hydrogenation of cyclohexene in gas phase was performed on an Integrated 

Microreactor-MS system equipped with a CATLAB-PCS Module and a QIC-20 MS Module 

(Hiden Analytical, UK). Typically, 15-25 mg catalyst powder were placed in a quartz tube 
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(length: 20 cm, width: 5 mm) with a quartz wool bed. The Ar flow was diverted to a saturator 

at 21 ºC filled with cyclohexene and then passed through the reactor. Flow reactant mixture 

containing 2:4 vol% cyclohexene:H2 and Ar balance was passed through the reactor with a 

total flow rate of 50 mL min-1 and heated at 10 °C/min from 50 to 500 ºC. The reactions 

performed with O2 followed the same conditions, but with the substitution of H2 for O2. 

Analysis of the products was carried out by on-line mass spectrometry (Hiden Analytical, 

UK). For the on-line analysis of the gas mixture, the mass spectrometer was operated in 

continuous mass scanning mode (1 scan/min.) which allows for a simultaneous monitoring of 

the ion current corresponding to a mass range of 75 to 90 amu for the reactants and all 

possible reaction products. 

 

 

3.2.7.3. Hydrogenation of phenol in liquid phase 

 

 The hydrogenation of phenol was performed in a 100 mL Fischer-Porter glass reactor 

at constant H2 pressure following the same procedure described for the hydrogenation of 

cyclohexene and benzene (Section 3.2.7.1). The phenol was solubilized previously in hexane 

or water (0.025 mol L-1) and 3 mL of the phenol solution were added into the reactor together 

with 36 mg (1.25 mmol) of catalyst. The typical catalytic conditions were substrate to catalyst 

molar ratio of 20, constant pressure of 6 bar H2 and 75 ºC. Additional reactions were 

performed with different conditions (details are provided in table footnotes). Samples were 

collected after 5, 15, 25 and 35 min and after 1, 2, 3, 4 and 20 h. The conversion of phenol 

and the products selectivity were determined by GC using biphenyl as internal standard. The 

GC settings are described in the section 3.3.5. 
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3.2.7.4. Oxidation of Benzyl alcohol 

 

 The oxidation of benzyl alcohol was performed in a 100-mL Fischer-Porter glass 

reactor at constant O2 pressure. The reactor was loaded with 4 mg catalyst (Ru@PVP 

(4µmol), Pd@PVP (4 µmol) or Rh@PVP (4 µmol)) or 62 mg catalyst (Au@PVP, 4 µmol). 

The Ru, Rh and Pd@PVP nanoparticle powders were manipulated inside a glove box 

(MBRAUN, Germany. Water and O2 lower than 1 ppm) and the Au@PVP nanoparticle 

powder was manipulated in air. Under positive flow of argon, 2 mL of benzyl alcohol (20 

mmol) was added to the reactor. After the dispersion of the catalyst under magnetic stirring, 

the solution was divided in two 100-mL Fischer-Porter reactors (for the 2 h and 24 h 

reaction). The reactors were pressurized with 3 bar O2 and heated to 100 or 150 °C for the 

desired time. The typical conditions applied were substrate to catalyst molar ratio of 5000 

without the use of base. Conversion of benzyl alcohol and selectivity of products in the 

catalytic reactions were determined by GC using mesitylene as internal standard. Before 

injection, the samples were filtrated in celite column to remove the catalyst. The GC settings 

are described in the section 3.3.5. 

 

 

3.3. Analysis techniques 

 

3.3.1. X-ray diffraction 

 

 X-ray diffraction (XRD) technique consists in the irradiation of a solid sample with a 

parallel X-ray beam at variable angles. Due to the small wavelength (0.5 to 2.5 Å) the X-ray 

beam penetrates the sample and is scattered by atoms from the crystalline array (with spacing 
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at the order of the X-ray wavelength), which generate constructive or destructive interactions. 

A constructive interaction will take place when the incidence angle results in an X-ray beam 2 

penetrating nλ more than X-ray beam 1, where n is an integer number and λ the X-ray 

wavelength (figure 3.1). 

 

 

Figure 3.1. Constructive reflection of an X-ray beam. 

 

 From the figure 3.1 we see that, by definition, sin � = �� �⁄  and, once, 2�� = ��, 

then the Bragg’s law was deduced as �� = 2� sin �. The value d depends on the material, 

because it is one of the atoms distances in the crystalline array (of atoms, ions, etc.). In this 

way, the angles where a constructive interaction will take place are characteristic for each 

material. The X-ray diffraction patterns can be found in databases, for example 

Crystallographic Open Database (COD) or the International Center for Diffraction Data 

(ICDD). 

 The XRD analysis where performed in an X-ray diffratometer Ultima + (Rigaku, 

Japan) with Cu K1 X-ray source (40kV, 20mA), 15 s per point, 15 rpm and angular step of 

0.02º. 
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3.3.2. Transmission electron microscopy 

 

 The transmission electron microscopy (TEM) technique consists in the formation of an 

image by an electron beam that was transmitted through a sample. The transmission electron 

microscope is composed basically by an electron gun, a condenser lens, an objective lens and 

projective lenses. The electron gun is responsible for the electron beam generation and 

acceleration. The condenser lens will control the electron beam and the objective lens adjusts 

the image formation. The projective lenses are responsible for the magnification. The TEM 

microscope principle is represented in the figure 3.2. 

 

 

Figure 3.2. Illustration of a transmission electron microscope 

 



MATERIALS AND METHODS 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

94 

 One of the most important steps for TEM analysis is the sample preparation. 

Typically, the sample is placed on a copper grid coated with a polymer and a carbon layer. 

Normally, the sample is suspended in a solvent and a drop is allowed to dry over the grid. 

However, there are innumerous manners to deposit the sample on the copper grid. 

 The sample medium size can be determined by measuring of the dimensions of a large 

number of objects using appropriate image software. This measurement is made by the 

calibration of the image pixel size in relation to a known distance (scale bar). Here the 

particles sizes were determined using the ImageJ software, then converted into a frequency 

counting size distribution histogram using Origin software and fitted using a Gaussian 

function to obtain the average size and the size distribution value (full width at half maximum 

(FWHM) from a Gaussian fit). 

 The materials were characterized using a Philips CM200 (Prof. Pedro Kiyohara, IF-

USP), JEOL JEM-2100 (LNNano, Brazil) or a JEOL JEM-1100 (TEMSCAN, France). The 

samples were prepared by the deposition of 4µL of a suspension in isopropyl alcohol or THF 

containing the nanomaterial sample in a copper grid coated with Formvar and carbon 

(TedPella, United States). The samples were dried under air and placed in a vacuum chamber 

before analysis. 

 

 

3.3.3. Thermogravimetry Analysis and Differential Scanning 

Calorimetry 

 

 The Thermogravimetry analysis (TG) consists in the measurement of the mass sample 

variation in function of time or temperature. Typically, the sample is placed in an inert 

crucible and the system mass monitored during a temperature program. This temperature 
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program can be a heating ramp or an isotherm and analysis can be made under inert, reductive 

or oxidative dynamic atmospheres. The Differential Scanning Calorimetry (DSC) consists in 

the measurement of the heat flow of a sample in comparison with a standard. The DSC shows 

the occurrence of endothermic or exothermic process that the sample suffers as a function of 

temperature. Some of these processes are glass transition, phase transition, decomposition and 

others. 

 The TG curves were obtained in a thermobalance TGA-51 (Shimadzu, Japan) using 

dynamic atmosphere of air or N2 (50 mL min-1), heating rate of 10 ºC and sample mass 

between 12 and 20 mg. The DSC curves were obtained using a DSC-50 (Shimadzu, Japan) 

with dynamic atmosphere of N2 (50 mL min-1), heating rate of 10 ºC min-1 and sample mas 

around 3 mg. 

 

 

3.3.4. Inductively Coupled Plasma Optical Emission Spectroscopy 

and Flame Atomic Absorption Spectroscopy 

 

 Inductively coupled plasma optical emission spectroscopy (ICP OES) and flame 

atomic absorption spectroscopy (FAAS) are techniques employed in the quantification of 

elements present in a sample. These techniques have a lot of common steps, but their 

detection is based in opposite phenomenon. ICP OES analyses light emitted and FAAS light 

absorbed. In both cases the sample is usually treated to obtain only ionic species of the desired 

analytes. The obtained solution is aspirated and nebulized to facilitate the atomization by 

argon plasma (ICP OES) or acetylene/air flame (FAAS). ICP OES can be considered a multi 

elemental technique and FAAS analyzes only one element at a time. FAAS can read only one 

element because the light source is a hollow cathode lamp of the element under analysis. In 
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ICP OES, there is an optical system normally composed of an echelle monochromator that 

separate the emitted light before it reaches the detector. In this way, the element being 

detected is dependent of the configuration of the optical system and, thus, the capability to 

read more elements in sequence. 

 All the ICP OES analysis was made in the Analytical Center at the Institute of 

Chemistry (IQ USP) using a Spectro Arcos Spectrometer (Spectro, Germany). FAAS analysis 

was performed using a Shimadzu AA-6300 Atomic Absorption Spectrophotometer 

(Shimadzu, Japan) equipped with Photron or Hamamatsu hollow cathode lamps. 

 

 

3.3.5. Gas Chromatography 

 

 The gas chromatography (GC) is based in the interaction of a sample with a stationary 

phase located inside a capillary column and the detection of the separated components by a 

detector. There are a lot of different detectors and one of the most common is the flame 

ionization detector (FID). FID detects the presence of a molecule by the formation of charged 

species in a hydrogen flame by the variation of the flame potential. This charged species are 

created when one component from the sample reaches the detector. Typically, FID is less 

sensitive for molecules with low molecular weight and with oxygen atoms. GC can be easily 

used for quantitative analysis by the introduction of an internal standard. The internal standard 

is very important due to the different response factor of different analytes and also because the 

injection can lead to different amount of sample introduced in the capillary column. The 

internal standard is used to give a relative response factor and, then, through a calibration 

curve recover the sample quantitative composition. 
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 The hydrogenation of cyclohexene or benzene products were analyzed in a Shimadzu 

GC-2010 equipped with an auto-injector Shimadzu AOC-21 (Shimadzu, Japan) and an Rtx-

Wax capillary column (30 m, I.D. 0.25 mm, Restek, United States). The detector and injector 

temperature was 150 ºC and the temperature program was 40 ºC for 5 min and heating to 150 

ºC at 5 ºC min-1 holding this temperature for 5 min. The samples were diluted in cyclopentane 

and there was no need for an internal standard because the response factor of benzene, 

cyclohexene and cyclohexane are similar. 

 The hydrogenation/hydrodesoxygenation of phenol product analysis was performed in 

the same equipment with an Rtx5 capillary column (30 m, I.D. 0.25 mm, Restek, United 

States). The injector and detector temperature was 200 ºC and the temperature program was 

40 ºC for 5 min, then heating to 135 ºC at 5 ºC min-1 and 150 ºC at 20 ºC min-1 holding this 

temperature for 5 min. The samples were prepared in n-hexane and biphenyl was added as an 

internal standard (12.5 mmol L-1 at the sample). The phenol conversion and product 

selectivity were calculated using biphenyl as internal standard. 

 The oxidation of benzyl alcohol products were analyzed in a HP 5890 (HP, United 

States) with an Rtx-Wax capillary column (30 m, I.D. 0.25 mm, Restek, United States).The 

injector and detector temperature was 200 ºC and the temperature program was 60 ºC for 5 

min, then heating to 200 ºC at 20 ºC min-1 holding this temperature for 15 min. The samples 

were prepared in cyclohexane and mesitylene was added as internal standard (100 mmol L-1).  

 The identification of the products by gas chromatography was done by their 

characteristic retention time in the developed method. The retention times were determined by 

the injection of a sample containing the desired analyte. The response factors were obtained 

with a calibration curve with standard reactants and products. The calibration curve gives the 

relationship between the concentration of standards and the respective ratio of their peak area 

corrected by the internal standard area. The correction of the analyte signal area is performed 
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because the amount of sample that enters the capillary column can be different for several 

reasons. The internal standard is an inert compound that is present in all samples in a known 

concentration. The peak area is linearly proportional to the product amount enabling the 

calculation of conversion and selectivity based on the area of the peaks obtained in the 

chromatogram. The conversion and selectivity was calculates as below: 

 

%���������� =
[��������]������� − [��������]�����

[��������]�������
 

%����������� =
[�������]�������
∑ ��������

 

 

 An external standard was added to avoid variations in the quantification of the 

products due to deviations in sample preparation and injection volume. 

 

 

3.3.6. Magnetic measurements 

 

 The principle of a Superconducting Quantum Interference Device (SQUID) is the 

Josephson effect and the quantization of a magnetic flow in a closed circuit. The Josephson 

effect is characterized by the superconducting condition of a system of two superconductors 

connected by a thin insulating barrier (Josephson junction). In the SQUID magnetometer there 

are two Josephson junctions. A current will be equally divided in the absence of an external 

magnetic field. The application of an external magnetic field results in a screening current that 

generates a magnetic field that cancels the external field. When the current in the Josephson 

junctions exceeds a critical current, the junction change to a normal state and the potential can 

be detected. The value of critical current of the magnetometer is a function of the applied 
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magnetic field. In this way, the measurement of critical current allows the determination of 

the magnetic flux that goes through the dispositive. 

 The magnetic measurements were performed in a SQUID magnetometer XL-200 

(Quantum Design, United States). The measurements of MxH were collected at 300 K from 

50 to - 50 kOe and the FC/ZFC curves collected with a magnetic field of 50 Oe and from 5 to 

350 K. 

 

 

3.3.7. Hydrogen monitoring system 

 

 The hydrogenation reactions and the hydrogenation/hydrodeoxygenation of phenol 

were performed in a 100 mL Fischer-Porter glass reactor. The reactor was connected to a H2 

high pressure reservoir (stainless steel vessel equipped with a pressure transmitter 510 (Huba 

Control, Germany) by a pressure regulator, so the reactions were performed at constant H2 

pressure (constant supply of hydrogen as the reaction proceeds). The temperature was 

controlled using an oil bath and a heating plate with a temperature controller and the reaction 

was magnetically stirred. The hydrogenation system was depicted in figure 3.3. 
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Figure 3.3. Scheme of the hydrogenation system 

 

 The pressure transmitter signal is converted (Novus Field Logger, Novus, Brazil) and 

the pressure of the H2 reservoir as a function of time is recorded in a computer using the Field 

Chart Software (Novus, Brazil). When the reaction is no longer consuming H2 in the 

monitoring system, the reactor is closed and allowed to cool to room temperature. 

Independently of the initial pressure at the H2 reservoir, the consumption of hydrogen (drop in 

the reservoir pressure, P) will be the same for a certain amount of double bonds being 

hydrogenated. This is true because the reservoir volume is constant and the temperature at the 

reservoir does not change during the reaction time (room temperature). This value of P can 

be converted in number of mols of hydrogen consumed and consequently number of mols of 

double bonds hydrogenated. However, P values are used as an indication if the reaction 

reached or not total conversion when the hydrogen consumption stopped and the true 

conversion is always determined by GC analysis. It is quite common that all the cyclohexene 

and benzene hydrogenations are able to reach total conversion.  
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 The catalytic activity can be expressed in many different ways; e.g., the turnover 

number (TON), which is defined as the number of mols of substrate converted per mol (or 

mass or sites) of catalyst and the turnover frequency (TOF), which is defined as the number of 

mols of substrate converted per mol (or mass or sites) of catalyst per unit of time. We will 

present the TON and TOF in mol of catalysts (total mol of metal).156 Considering that all 

catalysts are metal nanoparticles, the number of surface sites is difficult to determine using 

chemisorption techniques (CO, H2) usually employed in heterogeneous catalysis and these 

techniques were not used here to avoid any misinterpretation of the results.  

For these reactions that reach full conversion of the substrates, the TON is equal to 

substrate to catalysts molar ratio used in the reaction, otherwise it can be calculated using the 

reaction conversion obtained. The turnover frequency (TOF) can be determined by converting 

the H2 consumption as a function of time curve into a substrate consumption (or conversion) 

versus time curve, which can then be converted into a TON versus time curve by multiplying 

each conversion data by the substrate to catalyst molar ratio value used in a particular 

reaction. The TOF is obtained by the linear fitting of the curve of TON against time (the 

linear portion of the curve which is typically obtained from initial conversion until ca. 20% 

conversion) (figure 3.4). The module of the angular coefficient will be the TOF, given in h-1.  
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Figure 3.4. Example of the determination of TOF value 

 

 

3.3.8. X-ray photoelectron spectroscopy (XPS) 

 

 The X-ray photoelectron spectroscopy is a technique that permits the determination of 

the chemical and electronic state and the elemental composition of a sample. Basically, the 

XPS consists in the irradiation with soft X-ray (ex. Al Kα 1,486 eV) of a sample under high 

(~10-8 mbar) or ultra-high vacuum (< 10-9 mbar) and the detection of emitted photoelectrons. 

The sample electrons will be excited by the X-ray and the ones with lower energy will be 

emitted as photoelectrons. The XPS is considered a surface analysis because electrons emitted 

from the sample internal part are reabsorbed, but the photoelectrons emitted from the surface 

can reach the detector. The XPS detector determines the kinetic energy and the amount of 

emitted photoelectrons. The detector has a hemi-spherical shape and the application of an 

electric field allows the selection of electrons with specific kinetic energies. The binding 

energy is determined by the subtraction of the X-ray energy from the kinetic energy of the 
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photoelectron. It is worth to mention that there is a work function that needs to be subtracted 

from the photoelectron kinetic energy, which is dependent on the spectrometer and the 

material. The obtained spectra can be deconvoluted in order to characterize the element 

species present in the sample, once the biding energies are characteristic of the element and its 

electronic and chemical states. 

 The XPS analysis were performed at high vacuum (<5x10-8 mbar) using a 

hemispherical analyzer HA100 (VSW, United States) operating in FAT mode (Fixed analyzer 

transmission). The samples were fixed in a stainless steel support using a double-side tape. 
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4. RESULTS AND DISCUSSION 

 

 

4.1. Development of magnetic supports 

 

 Magnetic nanoparticles have received a lot of attention as support for catalysts because 

of the great advantage in catalyst separation and recycle. However, the pure magnetic 

nanoparticles are very sensitive to oxidation, agglomeration and exhibit chemical reactivity, 

which are undesirable characteristics for catalysts supports. Then the encapsulation of the 

magnetic nanoparticles in inorganic component becomes a way to enhance the magnetic 

nanoparticles stability and increase their application field as catalyst supports. Silica is an 

important material for magnetic nanoparticle coating because it maintains the magnetic 

properties and promotes an equilibrium against the magnetic forces that lead to NPs 

agglomeration.116, 126 Moreover, the grafting of specific ligands on silica surface is easily 

accomplished due to the presence of the silanol groups, which is an important characteristic in 

the preparation of supported molecular catalysts.157 Nanoparticulated silica also have received 

a lot of attention as support due to its high surface area, rigid framework and excellent thermal 

and mechanical stability.158 

 Considering the importance of silica coating, here we investigated in more detail the 

silica-coated magnetite nanoparticle support reported elsewhere92 in terms of synthesis, 

purification treatments and thermal stability. Furthermore, the silica-coated magnetic support 

surface was modified with functional groups and post-coated with TiO2 and CeO2 oxides in 

order to broaden the scope of magnetic supports for application in catalysis. Once silica is 

considered an inert support126 in a huge variety of reactions, it is interesting to explore 
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magnetic supports containing surface that can promote changes in the catalytic behavior of 

metal nanocatalysts and by this way enhance the catalytic properties towards multifunctional 

catalysts. 

 

 

4.1.1. Preparation and thermal behavior of silica-coated magnetite 

 

 Silica-coated magnetite was prepared using a microemulsion method adapted from the 

literature147 and first published by Rossi’s group in 2008.92 This magnetic material has been 

routinely synthesized in our research group and used as catalyst support for the preparation of 

magnetically recoverable catalysts.116 However, the evaluation of its thermal stability as well 

as how the silica shell formation occurs as a function of reaction time was never studied in our 

group. There were two main motivations for this study. The first was to control the size of the 

silica shell and, then, prepare a catalyst support containing less silica (more magnetite per 

mass of material means fast separation during magnetic separation), which would allow a 

post-coating process with other oxides without losing magnetic separation properties. The 

second motivation was to determine the thermal stability of the silica-coated magnetite (and 

uncoated) to understand what kind of thermal treatment can be applied to these materials 

without changing or losing the magnetic properties. The thermal treatment is an important 

step during a post-coating process with other oxides (ceria, titania, etc.). Another effect of 

calcination can be the enhancement of the surface area by removing the surfactants adsorbed 

at the silica shell. 

 The first step was the optimization of the reaction time. The coating of magnetite was 

typically prepared in 16 h reaction time. In order to follow the evolution of silica shell 

thickness in function of the reaction time, samples were collected from the same 
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microemulsion in 1, 2, 6, 12, 24 and 48 h. The same washing procedure was performed for all 

samples and their morphology and size were analyzed by TEM. Figure 4.1 displays the TEM 

micrographs and corresponding size distribution histograms. Figure 4.2 displays an analysis 

of the silica shell growth as a function of reaction time.  

 

 

Figure 4.1. Micrographs obtained by TEM of the silica-coated magnetite prepared with reaction time of (a) 1h, 

(b) 2 h – 20.1 ± 1.3 nm, (c) 6 h – 28.0 ± 2.0 nm, (d) 12 h – 31.2 ± 1.0 nm, (e) 24 h – 33.8 ± 1.2 nm and (f) 48 h – 

34.7 ± 1.2 nm. The corresponding size distribution histograms fitted to Gaussian function are shown in ('). 
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Figure 4.2. Silica-coated magnetite particle size as a function of reaction time. 

 

 The sample collected after 1 h showed a high aggregation level and we were not able 

to estimate the particle size (not included in figure 4.2). Similarly, the aggregation level in the 

sample collected after 2 h is also high; however, we were able to estimate an average particle 

size, despite the material’s pearl-necklace structure. The aggregation observed for these 

samples are due to the high concentration of unreacted TEOS in the alcoholic phase, which 

promotes the material aggregation during the separation and washing procedures. The 

separation of the material from the microemulsion is a critical step to obtain a high quality 

material and this has been discussed in the literature. Wang et al.159 reported the comparison 

of different methods to separate and wash silica-coated Ag NPs prepared by a similar reverse 

microemulsion. The authors demonstrated that the sedimentation washing procedure resulted 

in aggregation and washing by Soxhlet extraction caused dissolution of the silica shell. 

However, ethanol (the solvent used in washing by Soxhlet extraction) is not expected to cause 

silica corrosion. The authors indicated that the washing procedure by Soxhlet extraction was 

the better procedure, although by our experience and observation the centrifugation procedure 
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shows excellent results. The material obtained after 6 h of reaction is comprised of well-

defined spherical core-shell magnetite-silica nanostructures with a final size of 28.0 ± 2.0 nm. 

The silica shell slightly grows after longer reaction times and reached 34.7 ± 1.2 nm after 48 h 

of reaction (figure 4.2).  

Further experiments were performed using the material prepared with a reaction time 

of 6 h. This time is enough to obtain a material with a silica shell of ca. 10 nm and the 

formation of silica spheres without magnetic cores is negligible. Also, the amount of TEOS 

remaining in the reaction media does not promote aggregation during the separation and 

washing procedures. This material will be denoted as Fe3O4@SiO2. 

 The thermal behavior of the silica-coated magnetite was evaluated by TG/DTG and 

DSC. Figure 4.3 shows the TG/DTG result for Fe3O4@SiO2 under dynamic atmosphere of air 

and N2. There are two main mass loss processes that sum ca. 15 % of mass loss. The first one 

represents a loss of ca. 6 % and is related to loss of water adsorbed in the silica shell. The 

second step is related to the loss of organic matter of ca. 9 %. As expected, the second mass 

loss process occurs at a higher temperature for heating under N2 atmosphere when compared 

to air atmosphere. The figure 4.4 presents the TG/DTG analysis obtained for authentic 

samples of IGEPAL CO-520 and oleic acid. Comparing the temperatures for the 

decomposition of the surfactant and oleic acid with the second mass loss process in the silica-

coated magnetite nanoparticles, it is clear that the organic material being decomposed from 

Fe3O4@SiO2 corresponds to the residual surfactant, which was not completely eliminated 

during the washing process.  
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Figure 4.3. TG (solid) and DTG (dashed) obtained with the Fe3O4@SiO2 at a heating rate of 10 ºC min-1 and 

dynamics atmosphere of air (black) and nitrogen (red). 

 

 

Figure 4.4. TG curves (solid) and DTG (dashed) obtained with (a) oleic acid and (b) IGEPAL CO-520 at a 

heating rate of 10 ºC min-1 and dynamic atmosphere of air (black) and of nitrogen (red). 

 

 Figure 4.5 displays DSC curves of bare magnetite nanoparticles (Fe3O4 prepared by 

co-precipitation) and silica-coated magnetite nanoparticles. The DSC analysis of the 

magnetite exhibits a peak after 500 ºC that can be assigned to an oxidation process, most 

probably its conversion into maghemite (Fe2O3). In fact, the material obtained after 

calcination at 500 ºC for 2 h has dramatically changed magnetic properties, possessing a very 

poor magnetic response when compared to the original magnetite sample. The material is 
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capable to align in the magnetic field, but is not pulled by the magnet. In the DSC curve for 

Fe3O4@SiO2, the process at ca. 400 ºC that was assigned to the surfactant decomposition was 

observed, but the process attributed to the magnetite oxidation is not present. These results 

suggest that the silica layer protects the magnetite core against oxidation.  

 

 

Figure 4.5. DSC curves obtained for (a) pure magnetite and (b) silica-coated magnetite. 

 

 The surface area of the silica-coated magnetite before and after calcination was 

evaluated by BET analysis. The as prepared solid has a surface area measured as 18 m2 g-1 

and the solid after calcination resulted in a surface area of 111 m2 g-1. Thus, the calcination 

procedure was able to increase the surface area by a factor of approximated 6 times. The 

material characterization by TG/DTG and BET suggests that the solid may have changed its 

morphology, once mass is being lost and surface area is increasing after calcination. In order 

to evaluate morphological modification, the material after calcination was analyzed by TEM. 

Figure 4.6 presents the silica-coated magnetite NPs after calcination. The core-shell 

morphology and the size of the silica nanospheres were preserved. The morphology and size 

is quite similar to the as prepared sample shown in figure 4.1b. The average size for the 

(a) 

(b) 
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calcined material was determined as 28.1 ± 1.2 nm. The difference in size is negligible and 

indicates that the change in surface area does not come from morphology changes, but from 

the removal of organic matter present in the pores and surface of the silica shell. 

 

 

Figure 4.6. Micrograph obtained by TEM of Fe3O4@SiO2 after calcination and the correspondent size 

distribution histogram fitted to a Gaussian function 

 

 The crystallinity and the phase purity of the as prepared and calcined materials were 

further characterized by XRD (figure 4.7). The XRD patterns of both samples are similar with 

respect to peak positions and relative intensity, which indicates that the thermal treatment did 

not induce any modification in the magnetic core crystal phase. The XRD analysis of 

Fe3O4@SiO2 and Fe3O4@SiO2Cal revealed an amorphous phase of silica and the diffraction 

peaks at 30.02°, 35.40°, 43.45°, 53.75°, 57.25° and 62.95° corresponding to the indexed 

planes of cubic crystals of Fe3O4 (220), (311), (400), (422), (511) and (440), according to the 

crystallographic data (ICSD# 084098). The fact that the XRD are similar can indicate that the 

material did not undergo oxidation, but the characterization of magnetite and maghemite is 
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not trivial by XRD, because their diffraction patterns are quite similar. Thus, the XRD 

analysis was inconclusive regarding the oxidation of the magnetite core. 

 

 

Figure 4.7. XRD diffraction pattern for silica-coated magnetite (a) before and (b) after calcination. 

 

 To fully characterize the influence of the calcination in the material’s properties is 

necessary to evaluate its magnetic properties. The magnetization M as a function of the 

applied magnetic field, M(H), and cycles of zero field cooled (ZFC) and field cooled (FC), 

measured under H = 50 Oe and in a large range of temperature, were performed to evaluate 

the magnetic properties of the silica-coated magnetite nanoparticles before and after 

calcination. The M(H) curves taken at 300 K showed no hysteresis for both samples, with 

negligible coercive field and remanence (figure 4.8). This indicates that the magnetic cores 

are in the superparamagnetic state at room temperature before and after the thermal treatment. 

The magnetic properties are given in function of mass and once the calcination provoke an 

elimination of the organic matter it results in different proportion of non-magnetic and 
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magnetic material in the sample. This means that if the comparison is limited to the sample 

mass and magnetic response the sample before calcination will have less influence of the 

magnetic material than the sample after calcination. To correct this discrepancy and, then, be 

able to compare the two samples, the contents of iron in both samples were quantified by ICP 

OES. The quantification analysis resulted in 5.8% of iron in the sample before calcination and 

9.1 % in the sample after calcination. The mass reduction observed in the TG is in agreement 

with the variation observed by ICP OES. This comparison demonstrates that the calcination 

procedure is enough to promote the total removal of the organic matter present in the silica 

shell, because any failure in the removal of organic matter would lead to a difference between 

the techniques. Correcting the magnetization values by the amount of magnetite in the 

material before and after calcination we notice that the thermal treatment caused only a 

slightly reduction of the saturation magnetization (Ms) from 83 to 72 emu g-1. So, the 

calcination procedure provoked a reduction of ca. 13 % in the Ms value. The as prepared 

material shows a saturation magnetization around 10 - 17 % lower than bulk magnetite (92 - 

100 emu g-1).160 

 

Figure 4.8. Magnetization curves for the materials Fe3O4@SiO2 (solid) and Fe3O4@SiO2Cal (dashed). 
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 The reduction of the Ms value is a strong evidence of partial oxidation of the 

magnetite core. Although, the oxidation is the most likely reason for reduction of Ms there are 

other characteristics that need to be taken into account. In bulk magnetite, there are a very few 

atoms on the surface (surface area to volume ratio very low), so the material will have a large 

contribution of the bulk atoms for the magnetic response and only a small contribution of the 

surface atoms. The surface is not perfect and most likely presents an amorphous phase and in 

the case of magnetite there is oxygen deficiency in the surface. So, the crystalline phase is 

very important for the magnetic response and the disadvantage of decreasing particles size is 

the increase of surface area to volume ratio. In this sense, making magnetite nanoparticles 

very small can have an undesired effect of reducing the magnetic response.161 A strategy to 

increase the magnetic response of very small magnetite particles is the coordination of organic 

acids to their surface. The acid coordination reduces the oxygen vacancies on the surface and, 

then, can increase the magnetic responsive volume of the particle.161 Thus, the reduction of 

the magnetic response after calcination can be either related to the removal of the coordinated 

oleic acid by the thermal treatment or the partial oxidation of magnetite. 

 The cycles of zero field cooled (ZFC) and field cooled (FC) for the silica-coated 

magnetite nanoparticles before and after calcination (figure 4.9) revealed that the blocking 

temperature did not change after calcination. This is an indication that the calcination did not 

provoke magnetite oxidation, change in particle size or in the dipolar interactions between 

particles. It is worth to note that despite the small decrease in the magnetic response of the 

calcined material this material is capable of being magnetically separated in the presence of a 

neodymium magnet (4000 G) used in the separation process (catalytic studies). 
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Figure 4.9. ZFC and FC curves for Fe3O4@SiO2 (solid) and Fe3O4@SiO2Cal (dashed) obtained under magnetic 

field of 50Oe. 

 

 The functionalization of the silica support with amine groups is largely employed as a 

strategy for the preparation of supported catalysts,125 thus the effect of calcination (and 

increased surface area) on the functionalization of the silica-coated magnetite nanoparticles 

was evaluated. A typical functionalization using APTES was performed using the as prepared 

and calcined solids. The quantification resulted in 0.17 and 1 mmol NH2 g
-1 in the as prepared 

and calcined solid materials, respectively. This difference in the extension of the 

functionalization is directly related to the enhanced surface area of the calcined solid. This 

result is also an indication that the calcination procedure is not removing silanol groups from 

the silica surface, because a lower presence of silanol groups on the silica surface should lead 

to a lower functionalization extension.162 In fact, the higher functionalization (~6 times) is 

comparable to the increase of six times of surface area of the calcined solid. It is also possible 

that some ethoxides groups are remaining in the silica after the coating and the calcination can 
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remove then. The removal of these groups should lead to the formation of silanol groups and, 

so, enhance the functionalization extension. 

 A summary of the all measured properties of silica-coated magnetite nanoparticles 

(prepared in a microemulsion for 6 h) before and after calcination is given in table 4.1 

 

Table 4.1. Summary of silica-coated magnetite properties obtained by different techniques. 

Entry Measurement Fe3O4@SiO2 Fe3O4@SiO2Cal 

1 TEM 28.0 ± 2.0 nm 28.1 ± 1.2 nm 

2 BET 18 m2 g-1
 111 m2 g-1 

3 Fe content 5.8 % 9.1 % 

4 
Saturation 

magnetization 
83 emu g-1 72 emu g-1 

5 NH2
 0.17 mmol g-1 1 mmol g-1 

 

 The reason why the silica layer is providing an extra protection to the magnetic cores 

is not totally understood, but it can be the result of different effects. The most reasonable one 

is the lack of accessibility of oxygen to the magnetic cores, owing to the high silica density at 

the inner shell. Another explanation can be the formation of Fe-O-Si bonds at the surface of 

the magnetite particles during the silica coating that can be more stable than Fe-OH against 

oxidation. In fact, the formation of this kind of bonds is reported in the literature as necessary 

for the transfer of magnetite particle from the organic solvent to the aqueous reverse micelle 

interior and promotion of silica coating. Vogt et al. demonstrated by FTIR the exchange of 

oleic acid for partial hydrolyzed TEOS on magnetic nanoparticles surface.134 

 X-ray photoelectron spectroscopy was used to determine the chemical state of the 

elements in the Fe3O4@SiO2 support after calcination. The spectra of the O 1s, Si 2p and C 1s 

core levels have been collected and shown in figure 4.10 and the binding energy (BE) are 

summarized in table 4.2. The O 1s XPS spectrum depicted in figure 4.10 shows the presence 
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of two oxygen components at BE 530.3 and 533.0 eV. The peak at BE of 533.0 eV is to bulk 

SiO2.
163The peak at BE of 530.3 eV can be attributed to surface hydroxyl groups, but this 

peak is very often present in several oxides.164 In addition to this, the peak corresponding to C 

1s core-level was registered at 284.55 eV (C–C/C–H).165 The presence of carbon is an 

indication that either the calcination procedure did not remove all the carbon from the silica 

shell/magnetic material or it is due to adventitious carbon contamination. 

 

 

Figure 4.10. XPS spectra of O 1s, Si 2p and C 1s core-level obtained with Fe3O4@SiO2 

 

Table 4.2. Binding energies of O 1s, Si 2p and C 1s core levels observed in XPS analysis of Fe3O4@SiO2 

Entry Element 
Binding 

Energy / eV 

1 C 284.55 

2 
O 

530.34 

3 533.02 

4 Si 108.82 
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 The studies about the thermal stability of silica-coated magnetite and their properties 

after calcination revealed that the coating with silica preserved the magnetic properties of the 

magnetic cores, even though the magnetic properties of pure magnetite are severely changed 

upon heating. The possibility of preserving the magnetic properties upon calcination at 500oC 

is a very important behavior that, in principle, expands the preparation of coated magnetite 

with other metal oxides than silica. Typically, a calcination step is involved in the preparation 

of oxides such as titania, alumina, ceria, etc. In the next sections, we will describe the 

preparation of magnetite coated with other oxides, i.e., ceria and titania. 

 

 

4.1.2. Preparation of titania-coated magnetite: post-coating process 

 

 The initial goal was the deposition of titania directly on the magnetite surface. Thus 

the first attempt was the substitution of TEOS for titanium(IV) isopropoxide (TTIP) in the 

reverse microemulsion method. However, the addition of TTIP in the reaction medium 

resulted in the almost instantaneously formation of a white precipitate as the result of a fast 

hydrolysis. The major challenge is to control the hydrolysis rates that is higher for titanium 

alkoxides compared to their silicon counterparts. This higher rate of hydrolysis of TTIP is an 

intrinsic property of the molecule. For silicon alkoxides the Si-O-R bond has a covalent 

character, however, for titanium, this character is more ionic. In order to avoid the fast 

hydrolysis of TTIP and be able to prepare a titania-coated magnetite some modification were 

made on the reverse microemulsion method. The first attempt was the substitution of 

ammonia solution for water, but this substitution delayed the precipitation only in few 

seconds. In fact, only 30 seconds after the TTIP addition the solution started to become turbid 

and after few minutes the precipitation was observed. The precipitate was formed in two 
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steps. The initial solution was only turbid and then started to precipitate. Thus, it is very 

reasonable to consider new experiments using less TTIP. The TTIP addition was varied from 

1 to 50 % of the initial amount and water was used instead of ammonia solution. However, 

even with only 1% of TTIP precipitation was observed. The precipitation was also observed 

for a microemulsion prepared in the absence of magnetite nanoparticles, which suggests that 

the precipitation of the microemulsion with TTIP was not caused by any interaction with the 

magnetite nanoparticles. 

 The role of ammonia used in the microemulsion for the preparation of silica-coated 

magnetite is to accelerate the hydrolysis rate of TEOS, but it also acts as a growth controller. 

This happens because the surface of oxides has a formal negative charge, which would attract 

the ammonium cations. The presence of ammonium cations hinders the surface growth, due to 

an electrostatic repulsion. Consequently, the substitution of ammonia solution for water 

reduces the hydrolysis rate, but might have a detrimental effect of removing the ammonium 

growth control. Thus, ammonia solution was used for a new series of experiments with 

various amounts of TTIP (from 1 to 50 %). However, the same behavior was observed.  

 With the aim to reduce the hydrolysis rate and avoid the microemulsion precipitation, 

we used a titania precursor with a lower hydrolysis rate than TTIP thanks to higher steric 

hindrance namely titanium(IV) 2-ethylhexyloxide (TEO). However, this substitution led to 

only a small difference on the precipitation time. The TEO started to precipitate after a longer 

time when compared to TTIP, but still was not able to control the growth of a shell of titania 

on magnetite.  

 In the literature, Kwon et al.166 described the coating of gold nanoparticles with titania 

using TTIP. The authors used triethanolamine to reduce the hydrolysis rate of TTIP. The 

reduction of the hydrolysis rate was attributed to the formation of a complex between the 

triethanolamine and TTIP. We first noticed that a solution of triethanolamine and TTIP 
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prepared in isopropyl alcohol can be diluted in water without causing precipitation. Thus, this 

solution was added to the reverse microemulsion (without the addition of magnetite). The 

microemulsion become turbid just after the addition of the triethanolamine/TTIP solution, but 

the solution remained stable (without precipitation) for 30 min. The morphology of the 

material prepared using triethanolamine/TTIP solution was investigated by TEM. The 

micrograph presented in figure 4.11 showed particles with spherical morphology, but without 

control on the particle size.  

 

 

Figure 4.11. TEM micrograph of titania spheres prepared using the complex triethanolamine/TTIP. 

 

 Again, the substitution of ammonia solution by water did not result in any particular 

advantage to avoid precipitation. The utilization of isopropyl alcohol as solvent for 

TTIP/triethanolamine solution is also a point of concern to the microemulsion stability, 

because alcohols are typically used to precipitate reverse microemulsions. We next tested the 

addition of several alcohols to the reverse microemulsion, but the amount of alcohols added 

did not cause phase segregation. The alcohols added were methanol, isopropyl alcohol, 1-

butanol, 1-heptanol and 1-dodecanol and none of them affected visually the stability of the 
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microemulsion. Similarly, the addition of a solution of triethanolamine did not cause a visual 

effect on the stability of the microemulsion. However, the direct mixture of TTIP and 

triethanolamine resulted in the hydrolysis of TTIP and precipitation. These observations 

suggest that the hydrolysis rate is still a problem for the titania coating following this 

methodology. 

 A further search in the literature showed that the coating of magnetite with titania is 

not trivial and most of the studies report materials with poor morphology control.138, 167 In 

fact, some materials referred as core-shell nanomaterials are, in fact, comprised of random 

mixture of TiO2 and magnetite. However, the results reported by Alvarez et al.138 showed that 

the presence of a first coating with a silica layer can improve the morphology of titania 

deposition, when it is added through a post-coating step. Among the many post-coating 

methodologies reported in the literature, the one used to prepare a “yolk shell” like 

nanostructures called our attention and was selected for further studies. Güttel et al.149 

described the preparation of Au NPs encapsulated in hollow TiO2 spheres (“yolk shell”). We 

thus adapted the methodology described above for the post-coating of Fe3O4@SiO2 with 

titania. Figure 4.12 shows the micrograph obtained by TEM/HRTEM for the 

Fe3O4@SiO2TiO2 material obtained after calcination at 500 ºC. The material exhibits a 

morphology comprised of silica spheres (ca. 25-30 nm) that contain magnetic nanoparticles in 

the core (ca. 10 nm) and additional TiO2 nanoparticles of about 5 nm decorating the silica 

shell (figure 4.12a) can be observed. EDS analysis of the small nanoparticles at the solid 

surface (dashed region in figure 4.12b) revealed Si and Ti atoms (figure 4.12c) and analysis of 

the whole nanostructure revealed the presence of Fe, Ti and Si atoms (figure 4.12d). The 

absence of Fe signal when the surface of the particle was analyzed is an indication that the 

crystalline particle in the surface is not magnetite. On the other hand the presence of Ti 
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demonstrates that the particle at the surface is TiO2. The amount of TiO2 in the 

Fe3O4@SiO2TiO2 is around 8 wt% (nominal). 

 

 

 

Figure 4.12. Characterization of Fe3O4@SiO2TiO2: micrograph obtained by (a) TEM and by (b) HRTEM and 

Energy dispersive X-ray spectroscopy (EDS) analysis of the (c) particle surface and (d) whole particle. 

 

 The TEM analysis revealed that the deposition of titania occurs as a mixture of 

nanoparticles and shell coating. Although, the XRD analysis of Fe3O4@SiO2TiO2 revealed the 

diffraction peaks of Fe3O4, but it does not contain any characteristic diffraction peaks 

expected for titania anatase or rutile phases (figure 4.13). However, HRTEM analysis of the 

small particles on the silica surface corroborates the presence of TiO2 nanoparticles with an 
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interplanar distance of 3.71Å. This interplanar distance corresponds to the (1 0 1) Bragg plane 

of anatase phase of TiO2.
168 

 

 

Figure 4.13. XRD pattern for Fe3O4@SiO2TiO2 (a) and Fe3O4@SiO2 (b). 

 

 X-ray photoelectron spectroscopy was used to determine the chemical state of the 

elements in the Fe3O4@SiO2TiO2. The C 1s, O 1s, Si 2p and Ti 2p photoelectron peaks were 

detected in the XPS measurements and figure 4.14 shows the spectra and table 4.3 

summarizes the BE. 
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Figure 4.14. XPS spectra of O 1s, Si 2p, C 1s and Ti 2p core-level obtained with Fe3O4@SiO2TiO2 

 

Table 4.3. Binding energies of O 1s, Si 2p, C 1s and Ti 2p core levels observed in XPS analysis of 

Fe3O4@SiO2TiO2 

Entry Element 
Binding 

Energy / eV 

1 C 284.55 

2 
O 

530.53 

3 533.00 

4 Si 108.41 

5 

Ti 

464.63 

6 462.93 

7 461.30 

8 459.09 

9 457.40 

 

 As for Fe3O4@SiO2, the O 1s spectra showed two oxygen components. But, the 

oxygen component at BE 530.5 eV can been assigned to TiO2.
163-164 The oxygen arising from 
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TiO2 appears around 530 eV, which is the same energy as surface hydroxyl groups, and could 

lead to some errors if quantitative measurements are required. However, the intensity of the 

oxygen component at BE 530 eV increases after the post-coating process used for the 

deposition of titania (figure 4.14), which allows a qualitative analysis of the deposition of 

titania on silica. Moreover, the BE of Fe3O4@SiO2TiO2 increased about 0.7 eV with respect 

to the BE of pure titania at 529.8 eV,169 which may be assigned to a decrease of basicity of 

surface oxygen ions, which arises from the enhancement of their coordinative unsaturation as 

a consequence of the very small titania particle size. 

 The XPS spectrum of the Si 2p core level of Fe3O4@SiO2TiO2 support exhibits one 

component at BE 108.4 eV. This BE is very close to the observed for Fe3O4@SiO2 indicating 

that the silica shell was preserved. Figure 4.14 shows the Ti 2p XPS spectrum, which consists 

of a doublet. At the lower binding energy region, the peak is assigned to Ti 2p3/2 whereas the 

higher energy region is owing to the binding energy at the atomic orbital of Ti 2p1/2. Each 

one was fitted into two components for Ti4+ and Ti3+species. The two Ti4+ peaks were 

observed at 464.6 and 459.1 eV, which agreed with Ti4+ in pure anatase TiO2 form.170 The 

two Ti3+ peaks are observed at 457.57 and 462.93 eV is very similar to reported values.163 The 

peak separation of 5.54 eV for Ti4+ and 5.36 eV for Ti3+between the Ti 2p1/2 and Ti 2p3/2 

signals excellently agreed with the reported values in the literature.163 The peak at BE 461.30 

eV is related to the emission of the X-ray source. Again a peak corresponding to C 1s core 

level was registered at BE 284.9 eV (C–C/C–H) and is assigned to carbon contamination.165 

 The deposition of titania was performed using titanium(IV) isopropoxide, but the XPS 

analysis demonstrated the presence of Ti3+. The composition percentage of Ti4+ and Ti3+ 

determined by the area of the respective peaks is 82 and 18 %, respectively. The presence of 

Ti3+ is very interesting and might be a consequence of the experimental conditions. The silica-

coated magnetite is an insulator, so the X-ray irradiation generates a positive charge that is 
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compensated by an electron beam. The electron beam might be the reason for the reduction of 

Ti4+ to Ti3+.  

 

 

4.1.3. Preparation of ceria-coated magnetite: post coating process 

 

 Ceria deposition on Fe3O4@SiO2 was performed using a post-coating step, as 

previously described for Fe3O4@SiO2TiO2. Based on the results with titania and also due to 

the lack of examples in the literature about coating of magnetite with ceria, we did not put too 

much effort to try to coat magnetite directly with a shell of ceria. The deposition of ceria 

particles on Fe3O4@SiO2 was achieved by an impregnation step followed by calcination. 

Fe3O4@SiO2 was treated with ammonium cerium nitrated in ethanol under stirring at room 

temperature for 20 h. The solid obtained after centrifugation and drying was calcined at 500 

ºC for 2 h. The material obtained was characterized by TEM (figure 4.15a). The EDS analysis 

shows the presence of cerium on the silica surface. The material exhibits a morphology 

comprised of silica spheres (ca. 25-30 nm) that contains magnetic nanoparticles in the core 

(ca. 10 nm) and additional CeO2 nanoparticles of about 2.6 ± 0.4 nm decorating the silica 

shell (figure 4.15b). The amount of deposited CeO2 is around 2 wt% (nominal). 
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Figure 4.15. Characterization of Fe3O4@SiO2CeO2: (a) micrograph obtained by TEM, (b) Energy dispersive X-

ray spectroscopy (EDS) analysis and (c) Lognormal adjusted size distribution histogram. 

 

 The XRD analysis of Fe3O4@SiO2CeO2 revealed the diffraction peaks of Fe3O4, an 

amorphous phase of silica, and the diffraction peaks of ceria with face centered cubic phase 

characterized by the Bragg diffractions at 2θ of 28º (111), 33º (200) and 47º (220) (figure 

4.16). The peak attribution was made by the comparison with the crystallographic file 

JCPDS#810792. The broad diffraction peaks result from the small ceria nanoparticle size. 

 

(a) 

(b) (c) 
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Figure 4.16. XRD pattern of (a) Fe3O4@SiO2CeO2 and (b) Fe3O4@SiO2. The peaks attributed to magnetite are 

indicated with ■ and to ceria with *. 

 

 X-ray photoelectron spectroscopy was used to determine the chemical state of the 

elements in the Fe3O4@SiO2CeO2 supports. The Ce 3d photoelectron peaks were present in 

the Fe3O4@SiO2CeO2 sample and, as described before, the C 1s, O 1s and Si 2p photoelectron 

peaks were also detected. The spectra of the O 1s, Si 2p and Ce 3d core levels have been 

collected and shown in figure 4.17 and the BE are summarized in table 4.4.  
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Figure 4.17. XPS spectra of O 1s, Si 2p, C 1s and Ce 3d core-level obtained with Fe3O4@SiO2CeO2 

 

Table 4.4. Binding energies of O 1s, Si 2p, C 1s and Ce 3d core levels observed in XPS analysis of 

Fe3O4@SiO2CeO2 

Entry Element 
Binding 

Energy / eV 
Ce 3d 

attribution 

1 C 284.45  

2 
O 

530.68  

3 532.88  

4 Si 108.61  

5 

Ce 

917.87 u''' 

6 909.21 u'' 

7 906.30 u' 

8 903.26 u 

9 900.03 v''' 

10 888.44 v'' 

11 885.33 v' 

12 882.63 v 
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 The O 1s XPS spectrum of Fe3O4@SiO2CeO2 shows two oxygen components; 

however, as described for Fe3O4@SiO2TiO2 the oxygen component at BE 530.7 eV can also 

been assigned to CeO2.
164, 171 The intensity of the oxygen component at BE 530 eV also 

increases after the ceria post-coating process (figure 4.17), which, as mentioned for TiO2, 

indicates a qualitative characterization of ceria deposition on silica. Again as for TiO2, the BE 

of Fe3O4@SiO2CeO2 increased about 2.1 eV with respect to the BE of pure ceria at 528.6 

eV,171-172 which may be assigned to a decrease of basicity of surface oxygen ions due to small 

ceria NPs. Figure 4.17 shows the XPS spectra of the Si 2p core level of Fe3O4@SiO2CeO2 

supports which exhibits one component at BE 108.6 eV. Figure 4.17 shows the XPS spectrum 

of the Ce 3d core level of the Fe3O4@SiO2CeO2 support. The spectra was fitted into 8 

components in accordance with Burroughs et al., where the components u, u'', u''' and v, v'', 

v''' are attributed to Ce4+ 3d. Also, the components v’ and u’ are attributed to Ce3+ 3d.173 The 

components v0 and u0 were not observed due to the low concentration of Ce in the sample that 

results in low signal to noise ratio.174 The components u, u'', u''' and v, v'', v''' were observed at 

BE 903.26, 909.21, 917.87, 882.63, 888.44 and 900.03 eV, respectively. The components u’ 

and v’ were observed at BE 906.30 and 885.33 eV, respectively. Thus, the Ce 3d core level 

spectrum demonstrates the presence of 69 and 31 % of Ce4+ and Ce3+. In addition to this, 

peaks corresponding to C 1s core-level were registered for all used catalysts at 284.9 eV (C–

C/C–H).165 

 The deposition of ceria was performed using ammonium cerium(IV) nitrate, but the 

XPS analysis demonstrated the presence of Ce3+. As observed for TiO2 deposition, the 

presence of Ce3+ might be a consequence of the experimental conditions related to the charge 

compensation. 
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4.2. Development of magnetically recoverable metal 

nanoparticle catalysts 

 

 Different methods were employed to obtain magnetically recoverable metal 

nanoparticle catalysts using the magnetic supports developed in the first part of this Thesis. 

Initially, the results obtained for Rh and Pd nanoparticle catalysts prepared using metal salts, 

RhCl3.xH2O or Na2PdCl4, will be presented and discussed. These catalysts were prepared by 

an IMP method and by the SI method with preformed metal nanoparticles prepared using 

metal salts and the support Fe3O4@SiO2. Later, the discussion will focus on Rh, Pd and Ru 

nanoparticle catalysts prepared by the SI method with metal nanoparticles prepared using 

organometallic precursors and the supports Fe3O4@SiO2, Fe3O4@SiO2TiO2 and 

Fe3O4@SiO2CeO2. The last discussion will involve the difficulties to prepare Au 

nanoparticles through the decomposition of Chloro(tetrahydrothiophene)gold(I) and the 

preparation of Rh@PVA using a modification of the organometallic approach. 

 

 

4.2.1. Rhodium catalysts prepared using RhCl3.xH2O 

 

4.2.1.1. Rhodium catalysts prepared by the impregnation method 

 

 The first attempt to prepare a magnetically recoverable Rh catalyst followed a 

methodology developed in our research group.92 The methodology is a modification of the 

well-known IMP method used in the preparation of heterogeneous catalysts. The main 

difference was the functionalization of the catalyst support before the impregnation with the 
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metal precursors. The functionalization of the support with amino groups improved the 

impregnation of Fe3O4@SiO2 with metal salts (high metal loading) and avoided metal 

leaching during the catalytic reactions.175 Another difference was the reduction of the metal 

precursor, which was performed in situ during the hydrogenation of an olefin model molecule, 

cyclohexene, with H2.
92 The modified IMP method was compared with the impregnation of 

preformed Rh NPs (obtained in collaboration with the group of Prof. Dr. Alain Roucoux 

(Rennes, France) into Fe3O4@SiO2. The catalytic studies on the hydrogenation of 

cyclohexene revealed that the catalyst prepared by impregnation of preformed Rh 

nanoparticles is very active even with low metal loading (< 0.1 wt%). However, a catalyst 

prepared by the modified IMP method with 0.1 wt% of Rh on Fe3O4@SiO2NH2 was not as 

active. In fact, some difficulties were found to prepare this catalyst. The first preparation of 

this catalyst, following the previously reported procedure,92 but with 0.1 wt% metal resulted 

in an inactive catalyst for the hydrogenation of cyclohexene. So, the preparation of a catalyst 

was repeated with a metal loading of 1.5 wt%, as previously reported. However, the material 

remained inactive. The impregnation and washing procedure was considered the problematic 

step, so different washing procedures were investigated. The solid after metal impregnation 

was washed with portions of water, ethanol and acetone or only with acetone. The most 

reproducible washing method to obtain an active catalyst was acetone washing only; however, 

inconsistencies in the catalytic activity were observed from batch to batch. The catalysts 

containing 0.1 and 1.5 wt% Rh were used for the hydrogenation of cyclohexene and the 

results are summarized in table 4.5. 
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Table 4.5. Catalytic activity of supported Rh catalysts reduced by H2 in the hydrogenation of cyclohexene.a 

Entry Rh (wt%) Cycle Time (h)b TOF (h-1)c 

1 
0.1 

1 22 3360 

2 2 65 Inactive 

3 1.5 1 2 75000 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (0.4 mol of Rh), substrate/catalyst=35600, 75ºC, 6 

bar H2.
b Time interval required for each cycle reaction completion estimated by H2 consumption curves (> 99 % 

conversion as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per 
moles of catalyst per hour (calculated by the slope of the hydrogenation curve at <20 % conversion). 

 

 

Figure 4.18. Hydrogenation of cyclohexene by Rh catalysts containing 0.1 (empty squares) and 1.5 (squares) 

wt% Rh supported on Fe3O4@SiO2NH2 and reduced by H2. Reaction conditions: 6 bar H2, 75 ºC and 

substrate/catalyst = 35600. 

 

 The catalytic activity of the catalyst containing 0.1 wt% Rh was 6 times lower than the 

catalyst containing 1.5 wt% Rh, and 70 times lower than the catalyst containing 0.1 wt% Rh 

prepared using preformed metal nanoparticles.176 Moreover, this catalyst was inactive when 

tested for a second reaction cycle. These results demonstrate that despite the simplicity, the 

preparation of the catalyst by IMP (in situ reduction with H2) is not trivial. Rh NPs were not 
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observed during TEM analysis of the 0.1 wt% Rh catalyst. This can be an indication of the 

presence of very small nanoparticles, which resulted in the very low consumption of H2 

observed in figure 4.18, after 3.5 h of reaction. A plausible explanation for this can be a strong 

metal-support interaction that affects the metal reduction process. The catalyst prepared with 

1.5 wt% Rh contains Rh nanoparticles of 3-5 nm decorating the silica surface,92 but it took 

more than one hour to the catalyst become active. The period of time without any noticeable 

consumption of hydrogen is denoted as activation time and corresponds to the time necessary 

for metal reduction under hydrogen, or restructuring into the active metal form. 

 Considering that the reduction of the metal precursor with H2 was not efficient, we 

decided to try a different reducing agent and have chosen NaBH4. Various catalysts 

containing 0.1, 0.5, 1.0 and 1.5 wt% of Rh were prepared. They were more active than the 

catalysts reduced by H2 and the results are summarized in table 4.6 and figure 4.19. All 

catalysts exhibited an activation time without consumption of H2, but as the Rh3+ was 

previously reduced by NaBH4, this time necessary to form the active catalyst was much faster, 

ca. 15 min. The size of the Rh nanoparticles in each catalyst was determined after analysis of 

the micrographs obtained by TEM/HRTEM (figure 4.20).  
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Figure 4.19. Hydrogenation of cyclohexene by Rh containing catalysts (0.1 to 1.5 wt% Rh) supported in 

Fe3O4@SiO2NH2 and reduced by NaBH4. Reaction conditions: 6 bar H2, 75 ºC and substrate/catalyst molar ratio 

= 35600. Metal content: 0.1 (squares), 0.5 (empty squares), 1.0 (circle) and 1.5 % (circle). 

 

Table 4.6. Catalytic activity of supported Rh catalysts reduced by NaBH4 in the hydrogenation of 

cyclohexene and Rh NPs size. 

Entry Rh (wt%) 
Mean diameter 

(nm) 
Time (h)a TOF (h-1) 

1 0.1 2.8 ± 0.5 0.57 153,190 

2 0.5 2.2 ± 0.4 0.65 85,440 

3 1.0 3.1 ± 0.5 0.58 133,300 

4 1.5 2.8 ± 0.7 0.87 65,469 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (0.4 mol of Rh), substrate/catalyst=35600, 75ºC, 6 

bar H2.
b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % conversion 

as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per moles of 
catalyst per hour (calculated by the slope of the hydrogenation curve at <20 % conversion). 
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Figure 4.20. TEM micrographs of supported Rh catalysts reduced by NaBH4: (a) 0.1; (b) 0.5; (c)1.0 and (d) 1.5 

wt% Rh. The corresponding size distribution histograms fitted to Gaussian function are shown in (a'), (b'), (c') 

and (d'). 

2.0 2.5 3.0 3.5 4.0

0

4

8

12

16

20

24

28

32

S
iz

e
 d

is
tr

ib
u

tio
n

 (
%

)

Diameter / nm

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0

4

8

12

16

20

24

 

S
iz

e
 d

is
tr

ib
u

tio
n

 (
%

)

Diameter / nm

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

5

10

15

20

25

30

35

40

45

 

S
iz

e
 d

is
tr

ib
u
tio

n
 (

%
)

Diameter / nm

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0

5

10

15

20

25

30

35

 

 

S
iz

e
 d

is
tr

ib
u

tio
n

 (
%

)

Diameter / nm

(a) 

(d') (c') 

(a') (b') 

(c) (d) 

(b) 



RESULTS AND DISCUSSION 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

137 

 All the catalysts have very similar mean sizes ranging from 2.2 to 3.1 nm, which are 

technically the same considering the size distribution range. The catalysts with different metal 

loadings presented different catalytic activity, but the difference can not be attributed to 

variation in the NP size. The catalysts with 0.1 wt% Rh was the most active, reaching TOF of 

150,000 h-1, which is comparable with the catalyst with 0.1 wt% Rh prepared by SI method 

reported elsewhere.176 This result suggest that H2 is a very mild reducing agent for this system 

(IMP with 0.1 wt% Rh), but NaBH4 is more efficient allowing the preparation of very active 

catalysts. For higher metal loading the reduction with H2 was as efficient as with NaBH4. The 

Rh catalysts (1.5 wt% Rh) reduced by H2 and NaBH4 exhibited similar catalytic activity (table 

4.5 entry 3 and 4.6 entry 4). It is also interesting to observe that the NPs size is not a function 

of the metal loading, at least in the concentration range studied. Some agglomeration or 

sintering of individual support particles can be observed in the TEM micrographs of the 

catalysts when compared with the micrographs of the support. This change in the support 

structure can be caused by an increase in the pH of the solution during the reduction with 

NaBH4. Although, the agglomeration observed did not affect the magnetic separation 

capability of the materials. 

 The catalyst containing 1.5 wt% Rh was selected for further studies and was employed 

in the hydrogenation of benzene, which was used as a model substrate for aromatic 

hydrogenation. The hydrogenation curves are displayed in figure 4.21 and catalytic results are 

summarized in table 4.7.  
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Table 4.7. Catalytic activity of supported Rh catalyst (1.5 wt%) reduced by NaBH4 in the hydrogenation of 

benzene.a 

Entry Cycle Time (h)b TOF (h-1)c 

1 1 1 850 

2 2 1.15 770 

3 3 0.88 960 
a Reaction conditions: Benzene (2.2 mmol), catalyst (4.5 mol of Rh), substrate/catalyst = 500, 75ºC, 6 bar H2, 1 

mL n-hexane. b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % 
conversion as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per 

moles of catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 

 

 

Figure 4.21. Hydrogenation of benzene by Rh containing catalysts (1.5 wt% Rh) supported on Fe3O4@SiO2NH2 

and reduced by NaBH4. Reaction conditions: 6 bar H2, 75 ºC and substrate/catalyst molar ratio = 500. 

 

 The results obtained with the Rh catalyst reduced with NaBH4 were very interesting; 

however the NaBH4 can leave some contamination on the metal surface. Thus, we decided to 

study the effect of using hydrazine as reducing agent in the catalyst preparation, trying to 

prepare a catalyst with a cleaner surface. The reduction with hydrazine was conducted in 

water, following the same procedure as for NaBH4, to prepare a catalyst containing 1.5 wt% 
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Rh. The hydrogenation curves are displayed in figure 4.22 and the catalytic performance for 

the catalyst reduced by hydrazine in the hydrogenation of cyclohexene and benzene are 

summarized in table 4.8. The catalyst reduced using hydrazine resulted in a lower activity for 

the hydrogenation of cyclohexene, when compared with the catalysts (1.5 wt% Rh) reduced 

with H2 and NaBH4, but this catalyst was more active in the hydrogenation of benzene than 

the catalyst prepared using NaBH4. The best result reported before was a TOF of 1000 h-1 for 

the hydrogenation of benzene using the catalyst reduced by H2.
92 

 

Table 4.8. Catalytic activity of supported Rh catalyst (1.5 wt%) reduced by hydrazine.a 

Entry Substrate Cycle Time (h)b TOF (h-1)c 

1 
Cyclohexene 

1 3.8 21,300 

2 2 1.6 48,700 

3 

Benzene 

1 1.45 740 

4 2 0.8 1,500 

5 3 0.55 1,280 

6 4 0.7 1,600 
a Reaction conditions: Cyclohexene (14.6 mmol) or Benzene (2.2 mmol), catalyst (0.4 mol and 4.5 mol of Rh, 

respectively), substrate/catalyst = 35600 (cyclohexene) and 500 (benzene), 75ºC, 6 bar H2 and 1 mL n-hexane 
(benzene). b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % 

conversion as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per 
moles of catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 
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Figure 4.22. Hydrogenation of (a) cyclohexene and (b) benzene by Rh containing catalysts (1.5 wt% Rh) 

supported on Fe3O4@SiO2NH2 and reduced by N2H4. Reaction conditions: 6 bar H2, 75 ºC and substrate/catalyst 

molar ratio= 35600 (cyclohexene) and 500 (benzene). 

 

 The size of the Rh nanoparticles in the 1.5wt% Rh catalyst reduced by hydrazine was 

2.6  0.6 nm, determined with the micrograph obtained by TEM and its corresponding size 

distribution histogram (figure 4.23). However, considering the NPs size distribution for metal 

reduction with hydrazine and NaBH4 (2.8  0.7 nm, shown in figure 4.20d), there was no 

significant difference in size. 

 

 

Figure 4.23. TEM micrograph of supported Rh catalyst (1.5 wt.%) reduced by hydrazine and the correspondent 

size distribution histogram fitted to a Gaussian function. 
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 The only difference between the catalysts prepared with NaBH4 and hydrazine was the 

dispersion of the Rh NPs on the support. The micrograph displayed in figure 4.23 shows that 

the Rh NPs in catalyst reduced by NaBH4 are more evenly distributed over the solid surface 

than the Rh NPs in the catalyst reduced by hydrazine. Different interaction between the 

aromatic ring and the Rh surface can be the reason to the activities differences. Thus, Raman 

Spectroscopy was used in an attempt to characterize the interaction between the benzene ring 

and the Rh NPs in each catalyst, but no difference was observed that could explain why the 

catalyst reduced by hydrazine was more active for benzene hydrogenation than the catalyst 

reduced by NaBH4. The fact that two similar catalysts display so different catalytic behaviors 

is very intriguing. Both catalysts were prepared using the support prepared in the same 

synthesis and the RhCl3.xH2O from the same flask. So, the only difference in their synthesis 

was the reducing agent. Considering that each reducing agent will lead to different species 

adsorbed at the catalyst surface, the difference could be explained by different NPs surface 

state. In principle, the NaBH4 would be more problematic in terms of contamination of the 

metal surface than hydrazine, which should have a cleaner oxidation in the perspective of 

surface contamination. Moreover, the behavior of the catalyst reduced with hydrazine is more 

similar to the behavior of the catalysts reduced with H2 (cleaner surfaces). In this way, the 

reason for the different catalytic behavior should be related to the metal surface 

contamination, although the true reason could not be disclosed without analysis of the catalyst 

surface. 
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4.2.1.2. Rhodium catalysts prepared by the sol-immobilization method 

 

The desire to obtain supported Rh catalysts very active and, on the same way, having a 

higher control on the metal characteristic (size and composition) led us to follow a current 

trend in the literature on the preparation of supported metal nanoparticles; i.e., to explore the 

immobilization of pre-formed metal nanoparticles on the support, which is also referred as 

sol-immobilization technique.31 The choice of the stabilizing agent was a point of concern for 

the preparation of metal nanoparticles for their application in the field of catalysts. In this 

way, a methodology reported for the preparation of Au@PVA NPs was adapted to prepare 

Rh@PVA NPs.32 There are several methods and stabilizing agents to produce Rh NPs, but 

this method was selected due to the simplicity of working in aqueous solution and the 

promising results that were being achieved by members of our research group with 

AuPd@PVA.177 Moreover, the application of PVA as a stabilizer for Rh NPs was already 

reported in the literature and resulted in catalytically active nanoparticles.178 

 The synthesis of Rh@PVA NPs was performed in water and the metal salt precursor 

was reduced by NaBH4 in the presence of excess of polyvinyl alcohol. The size of the Rh 

nanoparticles was 4.3 ± 1.3 nm, obtained after analysis of the micrograph obtained by TEM 

and its corresponding size distribution histogram (figure 4.24). The sample contains 

nanoparticles of mostly spherical morphology; however, the control on the nanoparticle shape 

was quite poor and other morphologies, such as triangular or cubic shapes were also observed. 

Despite the morphological issues, the colloidal suspension is very stable and could be stored 

for several months without visible precipitation. In any case, all reactions and impregnations 

were performed using a freshly prepared colloidal solution. As mentioned before, the choice 

of the stabilizing agent is always a compromise between size or shape control and surface 

properties (how strong, how much and where the stabilizing binds to the metal surface?), 
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which will reflect directly in the catalytic activity. A general rule says that a strong 

coordinating stabilizer can control better the particle size and shape, but also block the 

catalyst surface. Thus, a desirable stabilizing agent is one binding strongly enough to protect 

the metal NPs and weakly enough to not became a catalyst inhibitor.179 

 

 

Figure 4.24. Micrograph obtained by TEM of Rh@PVA NPs and the correspondent size distribution histogram 

fitted to a Gaussian function. 

 

 Initially, the Rh@PVA aqueous colloidal suspension was used in biphasic 

hydrogenation of cyclohexene; the catalyst is present in the aqueous phase and the reactant 

and product form an immiscible organic phase. The catalytic reaction occurs at the interface 

and may be delayed by phase transfer limitations. Under these conditions, we studied the 

effect of temperature and of the substrate to catalyst molar ratio on the hydrogenation of 

cyclohexene. Table 4.9 entries 1-4 and figure 4.25 show the activity of Rh@PVA colloidal 

suspension in the hydrogenation of cyclohexene at different temperatures and at a fixed 
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catalyst to substrate molar ratio of 35600. The temperature had small effect in the catalyst 

activity. The only exception is the reaction at 100 ºC that resulted in a TOF around 1.6 times 

higher than the others, although the pressure increased a little at this temperature. This result 

demonstrates that the reaction is being limited by mass transfer and at the range of 25 to 75 ºC 

the temperature is not critical. We have tried to study the reaction at 125 and 150 ºC, but at 

temperatures higher than 100 ºC the pressure at the glass reactor started to increase a lot and 

the reaction was stopped for safety reasons. It is worth to note that the colloidal suspension 

precipitated after the reaction at all temperatures investigated and the catalyst could not be 

reused. 

 

Table 4.9. Catalytic activity of colloidal suspension of Rh@PVA in the hydrogenation of cyclohexene.a 

Entry Temperature (ºC) TON Time (h)b TOF (h-1)c 

1 25 35,600 1.6 27,250 

2 50 35,600 2.0 29,880 

3 75 35,600 1.7 30,960 

4 100 35,600 1.8 47,470 

5 75 71,200 1.8 55,670 

6 75 142,400 2 103,990 

7 75 284,800 3.6 120,650 

8 75 569,600 7.4 162,680 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (0.052-0.4 mol of Rh), substrate/catalyst = 35600-

569600 (cyclohexene), 75ºC, 6 bar H2. 
b Time interval required for reaction completion estimated by H2 

consumption curves (> 99 % conversion as determined by GC). c Turnover frequency expressed as moles of the 
substrate transformed per moles of catalyst per hour (calculated by the slope of the hydrogenation curve at <20 

% conversion) 
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Figure 4.25. Hydrogenation of cyclohexene by aqueous colloidal Rh@PVA NPs at different temperatures. 

Reaction conditions: 6 bar H2, 25-100 ºC and substrate/catalyst molar ratio = 35600. 

 

 These Rh@PVA nanoparticles were also used to study the response in the catalyst 

activity due to variations in the substrate to catalyst molar ratio. In order to keep the 

conditions as close as possible for all reactions, the volume of aqueous colloidal solution and 

amount of substrate were kept constant and the reactions were performed at 75 ºC and 6 bar 

H2. The Rh@PVA colloidal solution was diluted until the desired substrate to catalyst molar 

ratio value was achieved (for a given amount of substrate and using the same volume of water 

in all reactions). Table 4.9 and figure 4.26 show that the TOF increases with the increase of 

substrate to catalyst molar ratio or the TON (considering that all reactions reached 100% 

conversion). It is very interesting that even with a TON as higher as 569600 the activity was 

still increasing. This behavior is an indication that the system is really limited by mass 

transfer. During the reactions with different TON the catalyst colloidal suspension was still 

precipitating at the end of the reaction and could not be reused. 
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Figure 4.26. Catalytic activity of Rh@PVA in the hydrogenation of cyclohexene in function of substrate/catalyst 

ratio. Reaction conditions: 6 bar H2, 75 ºC and substrate/catalyst ratio = 35600-569600. 

 

 The mass transfer limitation due to the aqueous-organic biphasic system and the 

catalyst precipitation during reaction are the major drawback of the utilization of Rh@PVA 

NPs colloidal solution in the hydrogenation of cyclohexene. However, these problems can be 

circumventeded by the immobilization of Rh@PVA NPs on a solid support, which in 

principle will improve the thermal stability, help to remove excess PVA during the washing 

steps and promote an intimate contact between the catalyst and substrate (the solid will 

disperse in the liquid phase). The magnetic solid Fe3O4@SiO2 was used for the 

immobilization of Rh@PVA NPs; however, the support surface was first functionalized with 

amino groups using (3-aminopropyl)triethoxysilane, since Fe3O4@SiO2 was not capable to 

adsorb the metal NPs from an aqueous solution probably due to low metal-support interaction 

was very low. The metal-support interaction was improved after functionalization with amine 

group. The difference was easily visualized by the different color of the supernatant of the 

impregnation solution, which was clear in the case of amino-functionalized support and dark 
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in the case of bare support. Therefore, the catalyst was prepared by the immobilization of 

Rh@PVA NPs on the amine functionalized solid (Fe3O4@SiO2NH2). The desired amount of 

Fe3O4@SiO2NH2 powder was added to an aqueous colloidal suspension of Rh@PVA NPs. 

The suspension was stirred at room temperature for 2 h. After washing and drying, the 

quantification of Rh by FAAS confirmed the presence of 1.0 wt% Rh on the solid. 

 The Fe3O4@SiO2NH2RhPVA (1 wt% Rh) catalyst was used for successive 

hydrogenations of cyclohexene and benzene and the results are summarized in table 4.10 and 

the hydrogenation curves in figure 4.27. The immobilization of the Rh@PVA on a solid 

magnetic support allowed the catalyst to be recycled and the catalyst was reused for 

consecutive hydrogenation reactions. The catalyst could be recycled five times without 

deactivation for the hydrogenation of cyclohexene. In the case of benzene hydrogenation, a 

decrease of 50% in the TOF could be seen in the 4th recycle, but this decrease of activity was 

not caused by metal leaching (none metal was detected in the solution by ICP OES). Once 

metal leaching in not the reason for activity loss, the next concern is the morphology stability. 

During catalysis the metal NPs can suffer sintering which can result in less catalytic sites 

available for catalysis. The catalyst was characterized by TEM before and after benzene 

hydrogenation (figure 4.28). The catalyst morphology was preserved and the particle size 

before (4.3 ± 1.3 nm) and after catalysis (4.1 ± 1.0 nm) are similar, which indicates that no 

morphological changes occurred under reaction conditions. It is worth to mention that the Rh 

NPs sizes are the same in the colloidal solution (figure 4.24) and after immobilization in the 

solid support. 
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Table 4.10. Catalytic activity of Fe3O4@SiO2NH2RhPVA catalyst.a 

Entry Substrate Cycle 
Time 
(h)b 

TOF 
(h-1)c 

1 

Cyclohexene 

1 0.38 135,500 

2 2 0.32 195,800 

3 3 0.5 173,800 

4 4 0.67 139,600 

5 5 0.7 142,900 

6 

Benzene 

1 1.4 1,700 

7 2 1.5 1,180 

8 3 3 830 

9 4 2.8 700 
a Reaction conditions: Cyclohexene (14.6 mmol) or Benzene (4.5 mmol), catalyst (0.4mol and 4.5 mol of Rh, 
respectively), substrate/catalyst = 35600 (cyclohexene) and 1000 (benzene), 75 ºC, 6 bar H2 and 1 mL n-hexane 

(benzene). b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % 
conversion as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per 

moles of catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 

 

 The catalytic activity of Fe3O4@SiO2NH2RhPVA increased by 437 % compared to the 

catalytic activity of the colloidal Rh@PVA NPs solution. This can be attributed to the 

reduction of the mass transfer limitation. However, a further increase of 40 % at the second 

reaction suggests that the interaction polymer-metal might have changed or, even, a removal 

of the polymer. The immobilized Rh@PVA NPs showed the highest TOF value (195,800 h-1, 

table 4.10 entry 2) for the hydrogenation of cyclohexene, considering all prepared Rh 

catalysts. Thus, demonstrating that even with the deleterious effect of the presence of large 

amount of stabilizer the preparation of preformed metal NPs is a very interesting route to 

prepare highly active catalysts. 
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Figure 4.27. Hydrogenation of (a) cyclohexene and (b) benzene by Rh@PVA supported in Fe3O4@SiO2NH2 

(1.5 wt%). Reaction conditions: 6 bar H2, 75 ºC and substrate/catalyst molar ratio = 35600 (cyclohexene) and 

1000 (benzene). 

 

 

Figure 4.28. Micrograph obtained by TEM of Fe3O4@SiO2NH2RhPVA (A) as prepared and (B) after benzene 

hydrogenation cycle 4 and the correspondent size distribution histogram fitted to a Gaussian function. 
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4.2.2. Catalysts prepared with Na2PdCl4 

 

4.2.2.1. Palladium catalysts prepared by the impregnation method 

 

 Palladium catalysts were prepared using Na2PdCl4 as precursor following the 

methodology used with RhCl3.xH2O. According to previous results in our research group, the 

synthesis of Pd catalysts does not show the same inconsistences observed in the preparation of 

Rh catalysts.  

 Initially, the supports Fe3O4@SiO2, Fe3O4@SiO2Cal, Fe3O4@SiO2NH2 and 

Fe3O4@SiO2CalNH2 were treated with an aqueous solution of Na2PdCl4 to obtain catalysts 

containing 1.0 wt% Pd. The catalysts were washed with deionized water and with acetone and 

dried in oven. The metal loading in each solid was determined by FAAS and the results are 

summarized in table 4.11. The amount of Pd in the different supports was found very close to 

the nominal value, except for Fe3O4@SiO2Cal (calcined and not functionalized) support, 

which was not able of adsorbing the Pd ions.  

 

Table 4.11. Quantification of Pd in the magnetic supports by FAAS 

Entry Sample Pd (wt%) 

1 Fe3O4@SiO2Pd 1.01 % 

2 Fe3O4@SiO2CalPd 0.06 % * 

3 Fe3O4@SiO2NH2Pd 1.05 % 

4 Fe3O4@SiO2CalNH2Pd 1.00 % 

* Below the quantification limit. 

 

 The fact that the Fe3O4@SiO2Cal was not adsorbing the Pd2+ ions from the 

impregnation solution is an indication that the organic material present in the silica shell is 
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responsible for the metal uptake (in the case of Fe3O4@SiO2, residual surfactant used in the 

microemulsion may be present). As reported before, the amino-functionalized solids were 

very efficient in the impregnation process, because the amine groups are able to improve the 

metal adsorption in a process called ligand-assisted preparation method.44 The non-

functionalized solid adsorbed the Pd2+ ions; however, the functionalization is very important 

to prevent the metal leaching during catalytic cycles. 

 The Pd catalysts were tested in the hydrogenation of cyclohexene at 75 ºC, 6 bar H2 

and a substrate to catalyst molar ratio of 10000. The results obtained after four successive 

reaction cycles are summarized in figure 4.29 and table 4.12. Figure 4.30 shows the 

hydrogenation curves obtained. 

 

 

Figure 4.29. Activity of Fe3O4@SiO2Pd (light grey), Fe3O4@SiO2NH2Pd (grey) and Fe3O4@SiO2CalNH2Pd 

(dark grey) in the hydrogenation of cyclohexene. Reaction conditions: 75 ºC, 6 bar H2 and TON 10,000. 
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Table 4.12. Catalytic activity of Pd catalyst prepared by IMP in the hydrogenation of cyclohexene.a 

Entry Catalyst Cycle Time (h)b TOF (h-1)c 

1 

Fe3O4@SiO2Pd 

1 0.27 44,000 

2 2 0.26 46,400 

3 3 0.36 32,000 

4 4 0.47 30,900 

5 5 0.51 27,800 

6 

Fe3O4@SiO2NH2Pd 

1 0.66 20,000 

7 2 0.57 20,600 

8 3 0.55 27,250 

9 4 0.55 26,700 

10 5 0.55 25,900 

11 

Fe3O4@SiO2CalNH2Pd 

1 1.32 10,100 

12 2 0.98 16,500 

13 3 0.78 18,100 

14 4 0.55 34,700 

15 5 0.78 21,800 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (1.5 mol of Pd), substrate/catalyst = 10000, 75 ºC, 6 

bar H2. 
b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % conversion 

as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per moles of 
catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 

 

 It is important to notice that the as prepared catalyst is comprised of Pd2+ and that the 

formation of the real active specie (Pd0) occurs in situ during the first hydrogenation reaction. 

Thus, the catalysts have a longer activation time at the first reaction, when compared with the 

second reaction, where the Pd NPs was already formed. The amino-functionalized supports 

exhibited a longer activation time (without consumption of H2, figure 4.30 b and c) than the 

non-functionalized solid (figure 4.30 a). This behavior suggests that the reduction of Pd2+ to 

Pd0 is more difficult in the presence of coordinating groups grafted on the support surface, 

leading to longer activation time. 
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Figure 4.30. Hydrogenation of cyclohexene by Pd containing catalysts (1.0 wt% pd) supported in (a) 

Fe3O4@SiO2, (b) Fe3O4@SiO2NH2 and (c) Fe3O4@SiO2CalNH2. Reaction conditions: 6 bar H2, 75 ºC and 

substrate/catalyst molar ratio = 10000. 

 

 The catalyst with higher activity was the Fe3O4@SiO2Pd, but at the 5th cycle its 

activity dropped to 63 % of the initial activity. This reduction of activity was observed before 

for a similar catalyst44 and was attributed to the metal leaching or to coalescence due to a 

weak interaction metal-support. On the other hand, the catalyst Fe3O4@SiO2NH2Pd showed a 

constant, but lower activity than Fe3O4@SiO2Pd. The lower activity is attributed to an 

inhibition effect of the functional groups grafted in the silica surface and is observed also for 

the Fe3O4@SiO2CalNH2Pd. Despite the lower activity, the advantages of the functionalization 

are the catalytic activity retention in successive reaction cycles and the prevention of metal 
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leaching. The increasing of the Fe3O4@SiO2CalNH2Pd activity can be explained either by 

changes in NPs size (restructuring under reaction conditions) or to an effect of decreasing the 

amount of functional groups on support surface that are interacting with the metal 

nanoparticles. In order to compare the effect of the amount of ligand groups and at the same 

time eliminate the contribution of metal NPs size (and composition) on the catalytic activity, 

the same supports were treated with an aqueous colloidal suspension of Pd NPs (see results 

and discussion at 4.2.2.2). 

 

 

4.2.2.2. Palladium catalysts prepared by the sol-immobilization method 

 

The SI method using Pd@PVP-1 NPs provides the preparation of catalysts with metal 

nanoparticles of similar size and surface properties. The catalytic activity will be only affected 

by the support and the functional groups grafted on the support, so any difference in the 

measured TOF will be a consequence of the support characteristics. The supports 

Fe3O4@SiO2, Fe3O4@SiO2Cal, Fe3O4@SiO2NH2 and Fe3O4@SiO2CalNH2 were treated with 

a colloidal Pd@PVP-1 NPs solution to obtain catalysts containing 1.0 wt% Pd. The catalysts 

were washed with deionized water and acetone and dried in oven. The metal loading in each 

solid was determined by FAAS and the results show that only the functionalized supports 

were able to adsorb the Pd@PVP-1 NPs. The Fe3O4@SiO2NH2PdPVP and 

Fe3O4@SiO2CalNH2PdPVP catalysts contain 1.0 wt% of Pd, but the Fe3O4@SiO2 and 

Fe3O4@SiO2Cal supports were recovered with undetectable amounts of Pd. Due to the 

absence of Pd, the supports Fe3O4@SiO2 and Fe3O4@SiO2Cal were not employed in catalytic 

tests. The functionalized solids adsorbed Pd@PVP-1 NPs due to presence of NH2 groups 

grafted on their surface. In the case of preformed NPs the adsorption by the support is directly 
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related to a stronger interaction of the support (or NH2 groups) with the metal compared to the 

existing interaction of the metal nanoparticle with solvent through the stabilizing ligand (in 

this case, PVP). In this way, the absence of ligands on the support surface resulted in a weaker 

interaction with the metal when compared to the existing interaction with the solvent, but a 

stronger interaction occurred in the presence of NH2 due to the coordinating properties of the 

amine groups. This has also being referred in the literature as a coordination capture method, 

due to the coordinating properties of the ligands grafted on the support.23 

 The Pd catalysts prepared by SI method were employed in the hydrogenation of 

cyclohexene at 75 ºC, 6 bar H2 and a substrate to catalyst molar ratio of 10,000 and the results 

are summarized in figure 4.31 and table 4.13. Once the metal NPs are the same in both 

catalysts (prepared in the same synthesis batch) the difference in the activity observed is 

related to a support effect or maybe the amount of functional groups grafted on the support 

surface. The amount of -NH2 grafted on the calcined support is six times the amount found in 

the as prepared support and the catalytic activity of Fe3O4@SiO2CalNH2PdPVP is 22 % lower 

than the catalytic activity of Fe3O4@SiO2NH2PdPVP. These results suggest that the increase 

in the amount of NH2 groups grafted on the support has a detrimental effect on the catalytic 

activity. These results showed that despite the method to prepare metal NPs the characteristics 

of the support are essential for the quality of the catalyst prepared. The presence of functional 

groups is quite important for the preparation of catalysts, since they allow the preparation of 

durable and leaching-free catalysts. The drawback of the functionalization is the reduction of 

catalytic activity. The amount of functional groups can also result in a catalyst with 

unpredictable behavior, as demonstrated by Fe3O4@SiO2CalNH2Pd. 
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Figure 4.31. Hydrogenation of cyclohexene by colloidal Pd@PVP-1 (1.0 wt% Rh) supported in Fe3O4@SiO2, 

Fe3O4@SiO2NH2 (squares) and Fe3O4@SiO2CalNH2 (circles). Reaction conditions: 6 bar H2, 75 ºC and 

substrate/catalyst molar ratio = 10000. 

 

Table 4.13.Catalytic activity of Pd catalyst prepared by SI of Pd@PVP-1 in the hydrogenation of cyclohexene.a 

Entry Catalyst Time (h)b TOF (h-1)c 

1 Fe3O4@SiO2NH2PdPVP-1 0.25 57,200 

2 Fe3O4@SiO2CalNH2PdPVP-1 0.4 44,300 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (1.5 mol of Pd), substrate/catalyst = 10000, 75 ºC, 6 

bar H2. 
b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % conversion 

as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per moles of 
catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 
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4.3. Development of magnetically recoverable metal 

nanoparticle catalysts through decomposition of organometallic 

complexes 

 

 All the results and reactions performed so far showed that even with methodologies 

that are well established, the preparation of catalysts comprised of supported metal NPs is not 

trivial. For example, the studies dedicated to Rh catalysts prepared using RhCl3.xH2O 

demonstrated that the washing procedure is very critical and can lead to an inactive catalyst or 

to a very active one. Also, the reducing agent showed to be able to affect the catalytic 

properties of metal NPs and has to be carefully selected. The studies with Pd catalysts 

demonstrated that the amount of functional groups on the solid affect the metal-support 

interaction and, consequently, the catalyst activity. The problems observed in the preparation 

of Rh catalyst by the IMP method could be minimized when preformed metal NPs where 

employed in the catalyst preparation by the SI method. Indeed, the use of preformed 

Rh@PVA NPs resulted in a reproducible Rh catalyst, which was very active in the 

hydrogenation of cyclohexene and benzene, but the morphological control was limited.  

 The different supports prepared by the deposition of ceria or titania on silica-coated 

magnetite were used for the preparation of magnetically recoverable catalyst. However, in 

order to study the influence of the support (silica, ceria and titania) on the catalytic properties, 

it is very important to minimize the differences in the catalyst preparation method and mainly 

in the metal NPs properties (size, composition and surface species). It is not uncommon to 

find in the literature studies where the comparison between supports uses different methods to 

prepare the supported metal NPs. In this way, the reported differences can be due to a 

difference in the preparation method rather than due to the support, as we demonstrated so far. 
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In order to avoid that the differences observed in catalytic performance results from 

differences in the preparation of the metal NPs, we prepared a series of catalysts supported on 

silica, ceria and titania magnetic composites using preformed metal NPs. However, a higher 

control over the NPs morphology, size and composition is desired. Thus, the organometallic 

approach developed in the group of Dr Karine Philippot at Laboratoire de Chimie de 

Coordination/CNRS has been chosen for the preparation of metal NPs. The next step is the 

immobilization of preformed metal NPs into magnetic supports. The magnetic supports 

selected for the immobilization was Fe3O4@SiO2Cal, Fe3O4@SiO2CeO2 and 

Fe3O4@SiO2TiO2. The metals selected were rhodium, palladium and ruthenium. 

 

 

4.3.1. Synthesis of Rh, Pd and Ru NPs stabilized with PVP 

 

 Rh, Pd and Ru NPs were synthesized by the decomposition of organometallic 

precursors in the presence of H2 and polyvinylpyrrolidone (PVP) as the stabilizer agent, 

following a methodology developed at the Laboratoire de Chimie de Coordination/CNRS, 

Toulouse.153 

 The organometallic compounds used in this study were Rh(C3H5)3, Ru(COD)(COT) 

and Pd2dba3 (figure 4.32). The metal NPs were synthesized under controlled atmosphere 

using Schlenk techniques, in order to preserve the reactants and products from humidity and 

air contact before immobilization on the supports. The organometallic complex Rh(C3H5)3 

was synthesized and Pd2dba3 and Ru(COD)(COT) were purchased from Alfa Aesar and from 

NanoMeps, respectively. The Rh(C3H5)3 was synthesized by the reaction of allylmagnesium 

chloride with rhodium(III) chloride in dry and degassed THF. The obtained product was 
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purified by filtration on a celite column, THF was removed by vacuum and the organometallic 

compound obtained was finally purified by sublimation. 

 

 

Figure 4.32. Structure of the organometallic compounds used: (a) Rh(C3H5)3, (b) Ru(COD)(COT) and (c) 

Pd2dba3 

 

 Rh, Pd and Ru stabilized with PVP NPs were prepared using the same methodology 

and keeping the same molar proportion between metal and PVP. The three organometallic 

compounds are olefinic compounds and their treatment under hydrogen leads to the reduction 

of the olefinic ligands and formation of the NPs. The metal NPs obtained present a high 

morphological and size control. The medium NPs size measured from TEM micrographs were 

1.9 ± 0.3, 2.0 ± 0.4 and 1.3 ± 0.3 nm for Rh@PVP, Pd@PVP and Ru@PVP, respectively 

(figure 4.33). These results demonstrate the versatility of the methodology and a wide range 

of metal NPs can be easily prepared.  
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Figure 4.33. Micrograph obtained by TEM of (a) Rh@PVP, (b) Pd@PVP and (c) Ru@PVP. The corresponding 

size distribution histograms fitted to Gaussian function are shown in (a'), (b') and (c'). Scale bar = 50 nm. 

 

 

4.3.2. Rh, Ru and Pd catalysts prepared by the sol-immobilization 

method 

 

 Rh@PVP, Pd@PVP and Ru@PVP NPs synthesized by the decomposition of 

organometallic precursor were immobilized on the supports Fe3O4@SiO2Cal, 

Fe3O4@SiO2CeO2 and Fe3O4@SiO2TiO2. The supports were not functionalized because in 

this case the interaction between the metal and the support would be affected by the functional 

groups. The influence of the different oxides would be hindered by the influence of amine 

groups.  

 It is important to note that differently from the previously results, the immobilization 

of the metal NPs on non-functionalized solid was efficiently achieved using THF colloidal 

solutions of preformed NPs. This can be explained by a stronger interaction between the metal 
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NPs and support than the solvation of PVP in THF. However, the dispersion of these catalysts 

in water or alcohol results in the leaching of the metal due to higher solvation of PVP in water 

or alcohol. Consequently, non-polar solvents are preferred for the catalytic studies to avoid 

metal leaching. 

 TEM analysis of the catalysts revealed the immobilization of metal NPs on the 

supports (figure 4.34). We have shown before that the size of the metal NPs (Rh@PVA) is 

not altered during the catalyst preparation by SI method. In the particular case of figure 4.34, 

the size of Rh, Pd and Ru NPs was determined in figure 4.33. It was difficult to determine 

their size after immobilization because they are very small (1.3 – 2.0 nm). 

 

 

Figure 4.34. TEM micrographs of (a) Rh@PVP, (b) Pd@PVP and (c) Ru@PVP NPs supported on 

Fe3O4@SiO2Cal, (') Fe3O4@SiO2CeO2 and ('') Fe3O4@SiO2TiO2. Scale bar = 50 nm. 



RESULTS AND DISCUSSION 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

162 

4.3.3. Catalytic reactions 

 

 The prepared catalysts were employed in different reactions, such as: Benzyl alcohol 

oxidation, hydrogenation of cyclohexene and phenol hydrogenation. 

 

 

4.3.3.1. Hydrogenation of cyclohexene 

 

 The Rh and Pd catalysts were employed in the hydrogenation and dehydrogenation of 

cyclohexene in liquid phase or gas phase. The immobilization of the metal nanoparticles on 

magnetic supports allowed the catalyst to be easily recovered by magnetic separation in liquid 

phase reactions and their recycle for successive hydrogenation batches. The catalysts could be 

recycled six times without losing activity for the hydrogenation of cyclohexene. All the 

reactions were reached 100 % conversion (GC). The hydrogenation of cyclohexene was 

carried out applying the same conditions as for the catalysts prepared by reduction of metal 

salts and the results are reported in table 4.14 and recycling studies in figure 4.35 and 4.36. 
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Figure 4.35. Catalytic hydrogenation of cyclohexene using Rh@PVP supported NPs on (a) Fe3O4@SiO2Cal, (b) 

Fe3O4@SiO2CeO2 and (c) Fe3O4@SiO2TiO2. Reaction conditions: 6 bar H2 and 75 °C and substrate/catalyst 

molar ratio = 35600. 

 

 The activation times observed for the Rh catalysts prepared by SI method using 

Rh@PVP prepared with organometallic approach were very short. These activation times 

indicate a very clean metallic surface, despite the presence of PVP. Thus, the PVP stabilizer 

appears to not interfere with the hydrogen chemisorption at the metal surface and olefin 

adsorption. Moreover, the expected steric hindrance of the PVP polymer remaining at the 

metal nanoparticle surface is not playing an important role in this system for the 

hydrogenation of cyclohexene. 
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Table 4.14. Influence of the support on the catalytic activity of immobilized Rh@PVP NPs prepared by 

organometallic approach in the hydrogenation of cyclohexene.a 

Entry Catalyst Cycle Time (h)b TOF (h-1)c 

1 

Fe3O4@SiO2CalRhPVP 

1 2.4 47,400 

2 2 2.0 54,250 

3 3 1.9 63,000 

4 4 1.8 75,550 

5 5 2.0 71,600 

6 6 3.0 74,900 

7 

Fe3O4@SiO2CeO2RhPVP 

1 1.6 62,700 

8 2 1.0 112,100 

9 3 0.9 103,440 

10 4 0.8 122,900 

11 5 1.0 124,000 

12 6 1.1 107,800 

13 

Fe3O4@SiO2TiO2RhPVP 

1 2.1 39,250 

14 2 1.9 39,300 

15 3 2.3 36,700 

16 4 2.0 60,650 

17 5 0.8 122,470 

18 6 0.8 116,000 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (0.4 mol of Rh), substrate/catalyst = 35600, 75 ºC, 6 

bar H2. 
b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % conversion 

as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per moles of 
catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 
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Figure 4.36. Catalytic activity in the hydrogenation of cyclohexene of Rh@PVP supported NPs in 

Fe3O4@SiO2CeO2 (light gray), Fe3O4@SiO2TiO2 (gray) and Fe3O4@SiO2Cal (dark gray). Reaction conditions: 6 

bar H2 and 75 °C and TON of 35600. 

 

 The catalytic activity, expressed in TOF (calculated at initial rates), obtained with 

Fe3O4@SiO2CalRhPVP, Fe3O4@SiO2CeO2RhPVP and Fe3O4@SiO2TiO2RhPVP catalysts in 

the first hydrogenation cycle of cyclohexene was quite close, but some differences were 

observed in the recycling experiments. The ceria supported catalysts 

Fe3O4@SiO2CeO2RhPVP showed an increase of about 50 % in the catalytic activity from the 

first reaction to the second reaction and was constant during the next recycles, reaching TOF 

of 125,000 h-1. The titania supported catalyst Fe3O4@SiO2TiO2RhPVP showed a catalytic 

activity increase after the 5th recycle and reached the same activity as the 

Fe3O4@SiO2CeO2RhPVP catalyst. The silica supported catalyst Fe3O4@SiO2CalRhPVP 

presented a less intense increase of activity than the other catalysts upon recycling and 

reached a TOF of around 75,000 h-1. These results suggest that the post-coating of the 

magnetic silica material with ceria and titania led to improvement of the Rh NP catalyst 

activity. 
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 The catalytic activity of Fe3O4@SiO2CalPdPVP, Fe3O4@SiO2CeO2PdPVP and 

Fe3O4@SiO2TiO2PdPVP in the first hydrogenation of cyclohexene and in the recycling 

experiments did not follow the same trend as observed for Rh catalysts. In the case of Pd, the 

best combination was Pd@PVP and silica support. The results are shown in table 4.15 and 

recycling studies in figure 4.37 and 4.38. The activation times observed for the Pd catalysts 

prepared by SI method using Pd@PVP prepared with organometallic approach were very 

short. As observed for Rh@PVP catalysts, these activation times indicate a very clean 

metallic surface, despite the presence of PVP. 

 

 

Figure 4.37. Catalytic hydrogenation of cyclohexene using Pd@PVP supported NPs (a) Fe3O4@SiO2Cal, (b) 

Fe3O4@SiO2CeO2 and (c) Fe3O4@SiO2TiO2. Reaction conditions: 6 bar H2, 75 °C and substrate/catalyst molar 

ratio = 10,000. 
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Table 4.15. Influence of the support on the catalytic activity of immobilized Pd@PVP NPs prepared by 

organometallic approach in the hydrogenation of cyclohexene.a 

Entry Catalyst Cycle Time (h)b TOF (h-1)c 

1 

Fe3O4@SiO2CalO2PdPVP 

1 1.2 36,100 

2 2 0.6 36,360 

3 3 0.43 40,080 

4 4 0.45 40,160 

5 5 0.45 41,880 

6 6 0.7 39,260 

7 

Fe3O4@SiO2CeO2PdPVP 

1 1.3 21,100 

8 2 1.3 20,060 

9 3 1.16 21,700 

10 4 1.16 24,060 

11 5 1.3 22,080 

12 6 1.5 21,500 

13 

Fe3O4@SiO2TiO2PdPVP 

1 1.12 29,900 

14 2 1.3 20,400 

15 3 1.3 19,500 

16 4 1.9 20,300 

17 5 1.7 18,800 

18 6 2.0 19,200 
a Reaction conditions: Cyclohexene (14.6 mmol), catalyst (1.46 mol of Pd), substrate/catalyst = 10000, 75 ºC, 6 
bar H2. 

b Time interval required for reaction completion estimated by H2 consumption curves (> 99 % conversion 
as determined by GC). c Turnover frequency expressed as moles of the substrate transformed per moles of 

catalyst per hour (calculated by the slope of the hydrogenation curve at < 20 % conversion) 
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Figure 4.38. Catalytic activity in the hydrogenation of cyclohexene of Pd@PVP supported NPs in 

Fe3O4@SiO2CeO2 (light gray), Fe3O4@SiO2TiO2 (gray) and Fe3O4@SiO2Cal (dark gray). Reaction conditions: 6 

bar H2, 75 °C and TON of 10,000. 

 

 It is very interesting to observe differences in the catalyst activity due to a support 

effect in a simple structure-insensitive reaction such as hydrogenation of cyclohexene. The 

support was not expected to have an influence in this reaction, because cyclohexene and H2 

expected to absorb on the metal surface and not on the support. Considering that all catalysts 

are prepared with metal NPs of the same size, the difference in activity may be related to the 

interactions of the metal NPs with the support. Strong interactions with the support can 

promote energy surface changes which can result in easy removal of PVP from metal NPs 

surface during the washing steps after the immobilization process,23 while affecting the 

chemisorption of the reactants. TiO2 and CeO2 also can have their oxidation state changed 

under reducing conditions in presence of Pd, increasing their polarizability, and as 

consequence decreasing the Pd catalytic activity has been reported.80 This was a very 
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interesting observation and gas phase hydrogenation of cyclohexene was performed to study 

this effect.  

 The hydrogenation of cyclohexene was carried out in gas phase using a flow reactor 

(CATLAB, Hiden Analytical). 15 mg of catalyst powder was placed in a quartz tube reactor 

(length: 20 cm, width: 5 mm). A flow reactant mixture containing 4 vol% H2 and 2 vol% 

cyclohexene balanced with argon was passed through the reactor with a total flow rate of 100 

mL min-1 and heated at 10 °C/min from 50 to 500 °C. Both hydrogenation and 

dehydrogenation products, cyclohexane and benzene, were observed in the temperature range 

from 50 to 350 °C. Figure 4.39 shows the reaction profile mass response for cyclohexane 

(m/z= 84) and benzene (m/z= 78) as a function of temperature. Previous studies on Pt/SiO2 

demonstrated that cyclohexene and benzene are not formed with thermodynamic 

selectivity.180 The hydrogenation of cyclohexene at low temperature is thermodynamically 

preferred, while dehydrogenation dominates at high temperature, and the switch between 

preferential hydrogenation and dehydrogenation occurs over a very narrow temperature range. 

Reaction temperatures of 127 °C favor hydrogenation (Kh/Kd = 107), while 327 °C favors 

dehydrogenation (Kh/Kd = 10-2).181 There are few studies on the selectivity of cyclohexene 

conversion in excess hydrogen over experimental conditions where the formation of both 

cyclohexane and benzene is thermodynamically permissible181 because most experimental 

studies have focused on conditions where only hydrogenation occurs (low temperature) or 

conditions where only dehydrogenation occurs (high temperature).182 
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Figure 4.39. Gas composition by mass spectrometry of hydrogenation of cyclohexene in gas phase by 

Fe3O4@SiO2CalRhPVP (black), Fe3O4@SiO2CeO2RhPVP (light gray) and Fe3O4@SiO2TiO2RhPVP (dark gray). 

Mass response of (a) cyclohexane (m/z = 84) and (b) benzene (m/z = 78). 

 

 Here, the conversion of cyclohexene in the presence of excess H2 (H2/cyclohexene 

ratio = 2:1) is characterized by three regimes: hydrogenation of cyclohexene to cyclohexane 

at low temperature (T < 100oC), an intermediate temperature range in which both 

hydrogenation and dehydrogenation occur; and a high temperature regime in which the 

dehydrogenation of cyclohexene dominates (T > 200oC). The temperatures where the Rh 

catalysts showed maximum hydrogenation activity are 65, 75 and 85 ºC for 

Fe3O4@SiO2CeO2RhPVP, Fe3O4@SiO2TiO2RhPVP and Fe3O4@SiO2CalRhPVP, 

respectively. At this temperature range, cyclohexane is the main product. However, at higher 

temperatures, the reaction main product is benzene, due to the dehydrogenation of 

cyclohexene. This reaction occurs at a similar temperature range for all catalysts. 

 Supported catalysts possess oxide-metal interfaces that are absent from the extended 

single crystal surface. The nature of this oxide-metal interface is unknown but significant 

evidence exists suggesting that it is highly active and capable of altering reaction 

selectivity.183 Reducible oxides, such as TiO2 are well known for metal-support interactions 

with metal nanoparticles possibly providing sites of high Lewis acidity. In this way, Escobar 

et al. reported a positive effect on cyclohexane dehydrogenation activity of nickel supported 
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on Al2O3 by the addition of titania, since the resulting mixed oxide at Al/Ti 1/25 ratio 

promoted a better dispersion of Ni. However, dehydrogenating activity was suppressed on 

equimolar Al/Ti, that the authors attributed to be geometrical and electronic in nature.184 

 The catalytic conversion of cyclohexene to benzene, which is the rate determining step 

in cyclohexane to benzene conversion reaction - an important petroleum refining and 

reforming processes,185 has also been studied under oxidative conditions in the presence of 

O2, instead of H2. The oxidative dehydrogenation can overcome a thermodynamic limitation 

of dehydrogenation of cyclohexane and coking issues, which can cause catalyst 

deactivation.186 The dehydrogenation was attempted in the presence of O2, keeping the same 

catalytic conditions, but replacing H2 by O2 (fresh catalysts were used). In these conditions, 

Fe3O4@SiO2CalRhPVP was the only active rhodium catalyst. The temperature where the 

reaction starts (275 ºC) is higher than in the presence of H2, but the conversion occurs from 

this temperature until the higher measured temperature. 

 

 

Figure 4.40. Gas composition obtained by mass spectrometry during dehydrogenation of cyclohexene in gas 

phase by Fe3O4@SiO2CalRhPVP (black), Fe3O4@SiO2CeO2RhPVP (light gray) and Fe3O4@SiO2TiO2RhPVP 

(dark gray). Mass response of benzene (m/z = 78). 
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 On the same way, Palladium catalysts supported on Fe3O4@SiO2Cal, 

Fe3O4@SiO2CeO2 and Fe3O4@SiO2TiO2 were also employed in the gas phase hydrogenation 

of cyclohexene. Figure 4.41 shows the formation of cyclohexane and benzene as a function of 

temperature. The temperature range where the main selectivity is cyclohexane is similar as for 

Rh catalysts, but the temperature where the maximum conversion is achieved is around 70 ºC 

for all Pd catalysts. This result indicates that Pd catalytic activity on cyclohexene 

hydrogenation is not suffering support influence, which is in agreement with the very 

different results observed for Pd and Rh catalysts in the liquid phase hydrogenation of 

cyclohexene (figure 4.38 and 4.36). 

 The benzene formation temperature for maximum conversion with Pd catalysts 

supported on Fe3O4@SiO2Cal, Fe3O4@SiO2CeO2 and Fe3O4@SiO2TiO2 is 248, 238 and 242 

ºC, respectively. The Pd catalysts show maximum conversion at temperatures around 40 ºC 

higher than Rh catalysts.  

 

 

Figure 4.41. Gas composition by mass spectrometry of hydrogenation of cyclohexene in gas phase by 

Fe3O4@SiO2CalPdPVP (black), Fe3O4@SiO2CeO2PdPVP (light gray) and Fe3O4@SiO2TiO2PdPVP (dark gray). 

Mass response of (a) cyclohexane (m/z = 84) and (b) benzene (m/z = 78). 

 



RESULTS AND DISCUSSION 
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania 

 

173 

 The liquid phase hydrogenation of cyclohexene showed support influence for the Rh 

catalysts, where ceria and titania supports resulted in higher catalytic activity. On gas phase 

hydrogenation, the same behavior was observed for Rh catalysts, but Pd catalysts showed the 

same temperature for the maximum conversion to cyclohexane. This is an indication that the 

palladium nanoparticles are not being affected by the support in this specific reaction.  

 Supported Rh@PVP catalysts presented different PVP elimination profile during 

preliminary studies with CO oxidation. The elimination of PVP can be observed by an intense 

peak in CO2 mass response just before the catalysts achieve the maximum conversion. This 

CO2 peak can be observed for Fe3O4@SiO2CalRhPVP at 150 ºC and for 

Fe3O4@SiO2TiO2RhPVP at 140 ºC. On the other side, the Fe3O4@SiO2CeO2RhPVP showed a 

very different behavior. The conversion was oscillating before PVP elimination and occurred 

in a much higher temperature (175 ºC) (figure 4.42b). We have little information about this 

behavior, but it clearly demonstrates a different interaction of PVP, metal and support, which 

should be the reason for the higher activity in the hydrogenation of cyclohexene observed for 

Fe3O4@SiO2CeO2RhPVP. The peak was attributed to the PVP elimination due to its absence 

in a second reaction using the catalyst Fe3O4@SiO2TiO2RhPVP, although the temperature 

where the reaction reaches maximum conversion shifted to 155 ºC. This increase is an 

indication of oxidation and/or aggregation of the Rh NPs. 
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Figure 4.42. Conversion of CO (black) to CO2 (gray) by (a) Fe3O4@SiO2CalRhPVP, (b) 

Fe3O4@SiO2CeO2RhPVP, (c) Fe3O4@SiO2TiO2RhPVP and (d) reuse of the Fe3O4@SiO2TiO2RhPVP catalyst. 

 

 

4.3.3.2. Hydrogenation of phenol 

 

 The hydrogenation of phenol is a reaction of interest to evaluate the influence of the 

nature of supports on the activity and selectivity of supported metal NPs. In this reaction the 

support can influence the product selectivity due to the adsorption of phenol on the support’s 

surface. Literature data report that the adsorption of phenol at acidic sites occurs in a co-

planar orientation and at basic sites in a non-planar orientation (figure 4.43). As a 

consequence, the supports with acidic sites tend to enhance the formation of cyclohexanol and 
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basic sites the formation of cyclohexanone.187 Figure 4.43 shows the adsorption of phenol by 

basic sites and acidic sites and the favored product formation. 

 

 

Figure 4.43. Phenol adsorption by basic and acidic sites and enhanced product selectivity. Adapted from Cheng 

et al.187 

 

 The hydrogenation of phenol was performed following the standard conditions for 

liquid phase catalysis using Fisher Porter glass reactor (75 ºC and 6 bar H2) employed so far, 

except for a substrate-to-catalyst molar ratio of 20, which is much lower than the in 

cyclohexene hydrogenation. The H2 monitoring system used to follow the cyclohexene 

hydrogenation (Experimental section – 3.3.7) is not sensitive enough to detect pressure drop 

in the conditions used, due to the small amount of substrate and consequently, small 

consumption of H2. A reaction with this substrate-to-catalyst molar ratio and a detectable H2 

consumption would require an impractical amount of solution and catalyst for the used 

reactors. In any case, this reaction is not trivial to be monitored by H2 consumption, because 

successive reactions that consume H2 can occur (figure 4.44). Thus, differently from the 

previous hydrogenation reactions, the phenol hydrogenation was not be monitored by the H2 

monitoring system. The phenol conversion was followed by GC analysis of samples taken in 

time intervals from the reactor. In this way, the reactor was cooled down and depressurized to 

take each sample, a procedure that can affect the reaction course. In order to avoid a high 

influence during this time, all samples were taken following the same procedure and the time 

between cooling, sample collection and reinitialization of the reaction were as close as 

possible for all samples. 
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Figure 4.44. Hydrogenation and hydrodeoxygenation of phenol reaction and side reactions. 

 

 Table 4.16 shows the comparison of conversion and selectivity obtained with the 

different metals and supports in the hydrogenation of phenol for samples analyzed after 2 and 

20 h. The catalysts used in this reaction were the Rh@PVP, Ru@PVP and Pd@PVP 

supported on the solids Fe3O4@SiO2Cal, Fe3O4@SiO2CeO2 and Fe3O4@SiO2TiO2. 

 

Table 4.16. Hydrogenation of phenol using supported metal NPs obtained by organometallic approach.a 

Entry Catalyst 
Conv. 

(%)b 
Selectivity 

(%)b 

   Cyclohexanone Cyclohexanol Cyclohexane 

  2 h 20 h 2 h 20 h 2 h 20 h 2 h 20 h 

1 Blank 0 0 0 0 0 0 0 0 

2 Phenol solution 0 0 0 0 0 0 0 0 

3 Pd/C 99 100 47 39 52 61 0 0 

4 Fe3O4@SiO2CalPdPVP 94 100 90 82 6 12 4 6 

5 Fe3O4@SiO2CeO2PdPVP 86 99 86 80 12 17 2 3 

6 Fe3O4@SiO2TiO2PdPVP 91 99 82 78 16 19 2 3 

7 Fe3O4@SiO2CalRhPVP 100 100 26 1 71 87 3 12 

8 Fe3O4@SiO2CeO2RhPVP 100 100 39 5 61 94 0 1 

9 Fe3O4@SiO2TiO2RhPVP 100 100 12 0 88 99 0 1 

10 Fe3O4@SiO2CalRuPVP 93 100 24 1 73 92 3 7 

11 Fe3O4@SiO2CeO2RuPVP 99 100 17 0 83 100 0 0 

12 Fe3O4@SiO2TiO2RuPVP 100 100 0 0 100 100 0 0 
a Reactions conditions: phenol (75 µmol), solvent n-hexane (3 mL), catalyst (36 mg, 3.7 µmol), and 

substrate/catalyst = 20, 75°C, 6 bar H2. 
b Conversion and selectivity determined by GC. 
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 Initially, the hydrogenation of phenol was performed with the commercially available 

catalyst Pd/C (3 wt%, Sigma-Aldrich, Co). Despite being very active in the hydrogenation of 

phenol (100 % conversion), this Pd/C catalyst was not selective, thus producing a mixture of 

cyclohexanone and cyclohexanol (Table 4.16, entry 3). Blank experiments were also 

performed, giving no conversion (Table 4.16, entry 1 and 2). Figure 4.45 shows the 

conversion and selectivity as a function of time obtained with the catalysts 

Fe3O4@SiO2CalPdPVP, Fe3O4@SiO2CeO2PdPVP and Fe3O4@SiO2TiO2PdPVP. 

Independently of the support the Pd catalysts are selective to cyclohexanone formation. They 

display small differences in the selective during time, but all catalysts show the same 

tendency. The results obtained after 20 h are presented in the table 4.16 (entries 4 to 6) and 

show that the titania was the less selective catalyst, but the difference to ceria in 

cyclohexanone selectivity is only 2 %. In this way, we can conclude that the selectivity is not 

being modified by support influence. The biggest difference was observed for the silica 

support that shows conversion to cyclohexane, the product of hydrodeoxygenation of phenol, 

but the selectivity was 4 % after 2 h and only 6 % even after 20 h (table 4.16, entry 4). The 

other supports reached a selectivity of 3 % after 20 h to cyclohexene (table 4.16, entries 5 and 

6). 
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Figure 4.45. Phenol hydrogenation/hydrodeoxygenation using Fe3O4@SiO2CalPdPVP (black), 

Fe3O4@SiO2CeO2PdPVP (red) and Fe3O4@SiO2TiO2PdPVP (blue). Conversion of phenol (empty squares) and 

selectivity to cyclohexanol (circles), cyclohexanone (triangles) and cyclohexane (squares) 

 

 Similar studies were performed with Ru catalysts prepared by the immobilization of 

Ru@PVP NPs on different supports (Fe3O4@SiO2CalRuPVP, Fe3O4@SiO2CeO2RuPVP and 

Fe3O4@SiO2TiO2RuPVP catalysts). The curves of selectivity and conversion of phenol as a 

function of reaction time are presented in the figure 4.46. The reactions conditions were the 

same as for Pd catalysts and the GC analysis were performed in the same way. Differently 

from Pd, the Ru catalysts were more selective to cyclohexanol and in the case of ceria and 

titania supports, the selectivity to cyclohexanol reached 100 % in 4 h. At initial reaction times, 

the Ru catalysts showed low conversion compared to Pd, but after 30 min the conversion 

increased very fast with time. This might be an indication that the Ru is partially oxidized, 

which would be expected since the immobilization was performed under air and the catalysts 

were not kept under argon before catalysis. The catalyst supported on ceria and titania reached 

100 % phenol conversion faster than silica supported catalyst. The samples analyzed after 1 h 

reaction showed quite different conversion values. The catalysts containing titania reached 
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100 % conversion, but the conversion with catalysts with only silica was around 80 %. 

Besides the hydrogenation products, cyclohexanone and cyclohexanol, the product of 

hydrodeoxygenation of phenol, cyclohexane, was observed for the silica supported catalyst 

and the selectivity reached 7 % after 20 h (Table 4.16, entry 10). Cyclohexane was not present 

in the samples collected when ceria and titania supports were used. 

 

 

Figure 4.46. Phenol hydrogenation/hydrodeoxygenation using Fe3O4@SiO2CalRuPVP (black), 

Fe3O4@SiO2CeO2RuPVP (red) and Fe3O4@SiO2TiO2RuPVP (blue). Conversion of phenol (empty squares) and 

selectivity to cyclohexanol (circles), cyclohexanone (triangles) and cyclohexane (squares) 

 

 The Rh catalysts prepared by the immobilization of Rh@PVP NPs on different 

supports (Fe3O4@SiO2CalRhPVP, Fe3O4@SiO2CeO2RhPVP and Fe3O4@SiO2TiO2RhPVP 

catalysts) were also more selective to cyclohexanol as demonstrated in figure 4.47. However, 

Rh showed total conversion of phenol even for samples collected after 5 min. This result 

characterizes the Rh catalysts as the most active for phenol hydrogenation. The major 

differences are the conversion rates of cyclohexanone to cyclohexanol. Titania support 

reached 96 % selectivity to cyclohexanol after 4 h. As observed with Ru catalysts, only the Rh 
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catalyst supported on silica was active in the hydrodeoxygenation of phenol with formation of 

cyclohexane. After 20 h, the selectivity to cyclohexane was 12 %.  

 

  
Figure 4.47. Phenol hydrogenation/hydrodeoxygenation using Fe3O4@SiO2CalRhPVP (black), 

Fe3O4@SiO2CeO2RhPVP (red) and Fe3O4@SiO2TiO2RhPVP (blue). Conversion of phenol (empty squares) and 

selectivity to cyclohexanol (circles), cyclohexanone (triangles) and cyclohexane (squares) 

 

 In order to better study the selectivity of the Rh catalysts, the substrate-to-catalyst 

molar ratio was increased to 200. The curves of conversion and selectivity as a function of 

reaction time under these new conditions are shown in the figure 4.48. The conversion of 

phenol for all catalysts was slower when using a higher substrate-to-catalyst molar ratio, as 

expected. However, the selectivity changed, which resulted in different compositions as the 

reaction proceeds. All catalysts showed the tendency to an equal selectivity to cyclohexanone 

and cyclohexanol (table 4.17 and figure 4.48). The Fe3O4@SiO2TiO2RhPVP with 

substrate/catalyst ratio of 200 was the only Rh catalyst to show after 2 h a slightly higher 

selectivity to cyclohexanone. This is an indication that the catalyst supported on titania was 

more affected by the changes in catalytic conditions. 
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Figure 4.48. Phenol hydrogenation/hydrodeoxygenation using Fe3O4@SiO2CalRhPVP (a), 

Fe3O4@SiO2CeO2RhPVP (b) and Fe3O4@SiO2TiO2RhPVP (c) with substrate/catalyst molar ratio = 20 (black) 

and 200 (blue). Conversion of phenol (empty squares) and selectivity to cyclohexanol (circles), cyclohexanone 

(triangles) and cyclohexane (squares). 

 

Table 4.17. Hydrogenation of phenol using supported Rh NPs obtained by organometallic approach.a 

Entry Catalyst 
Conv. 

(%)b 
Selectivity 

(%)b 

   Cyclohexanone Cyclohexanol Cyclohexane 

  2 h 20h 2 h 20h 2 h 20h 2 h 20h 

1 Fe3O4@SiO2CalRhPVP 100 100 52 53 48 47 0 0 

2 Fe3O4@SiO2CeO2RhPVP 100 100 53 60 47 39 0 0 

3 Fe3O4@SiO2TiO2RhPVP 100 100 44 56 57 43 0 0 
a Reactions conditions: phenol (75 µmol), solvent n-hexane (3 mL), catalyst (36 mg, 3.7 µmol), and 

substrate/catalyst = 200, 75 °C, 6 bar H2. 
b Conversion and selectivity determined by GC. 
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 Considering the whole series of catalysts investigated, Pd catalysts were the most 

selective for the conversion of phenol to cyclohexanone with the lower production of 

cyclohexanol. Cyclohexanone is a valuable intermediate in the preparation of ε-caprolactam, 

which is used in the manufacturing of nylon-6, nylon-6,6 and polyamide resins. 

Cyclohexanone is industrially produced by the hydrogenation of phenol or oxidation of 

cyclohexene.188 In this way, a catalyst with high selectivity to cyclohexanone is very 

interesting. Moreover, the formation of cyclohexane due to the hydrodeoxygenation of phenol 

is also very interesting as an alternative route for the production of alkanes. Phenol is a model 

for lingocelullosic biomass and the preparation of catalysts selective to the 

hydrodeoxygenation opens the possibility to produce fuels from bio-feedstock.189 The 

formation of cyclohexane was observed at mild conditions, but with low selectivity and 

mainly with the silica support for Pd, Rh and Ru catalyst. Zhao et al.189b reported the 

hydrodeoxygenation at 150 ºC, 50 bar H2, substrate/catalyst ratio 500 in H3PO4 aqueous 

solution (0.5 wt%). 

 The hydrogenation of phenol using the magnetic support Fe3O4@SiO2TiO2 resulted in 

a higher selectivity to cyclohexanol, independently of the metal NPs. This indicates that the 

support is affecting the catalytic performance of the supported metal NPs. The formation of 

cyclohexanol during the hydrogenation of phenol is enhanced by the presence of acidic 

groups on the support surface. This result demonstrates the possibility to tune catalytic 

properties of supported metal NPs. 
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Figure 4.49. Phenol hydrogenation/hydrodeoxygenation using Fe3O4@SiO2CalPdPVP at H2 pressure of 6 bar 

(black), 3 (red) and 1 bar (blue). Conversion of phenol (empty squares) and selectivity to cyclohexanol (circles), 

cyclohexanone (triangles) and cyclohexane (squares). 

 

 Typically in the heterogeneous catalysis a calcination procedure is usually applied in 

order to enhance the catalytic properties of the material, either by improving the metal support 

interaction or by removing surface contaminants. Consequently, to study the effect of 

calcination, the Pd catalysts were calcined at 300 ºC for 2 h, to remove the PVP stabilizer. 

The obtained materials were tested in the hydrogenation of phenol using water and n-hexane 

as solvent. The reactions were analyzed after 2 h by GC and the results are presented in table 

4.18. Independently on the solvent and catalyst, the selectivity to cyclohexanone was very 

high. In water, the formation of cyclohexanol was not observed and conversions were lower 

than 80 %, except for titania which presented 100 % conversion to cyclohexanone. The 

formation of cyclohexane was observed only for the ceria support in water, which is 

interesting because ceria support showed the lowest conversion both in water and n-hexane. A 

small enhancement of the catalytic results can be observed comparing the results obtained 

with the as prepared Pd catalysts in n-hexane (except for ceria support). However, the use of 
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water as solvent was not a good alternative, because the catalysts could not be totally removed 

by a magnet. This is sometimes observed for silica particles that stabilize very well in water 

and, then, are less easily separated magnetically. Thus, for this reason the n-hexane was the 

selected solvent. The as prepared catalysts were not used in aqueous solution to avoid metal 

leaching, once PVP is well soluble in water. 

 

Table 4.18. Hydrogenation of phenol with calcined Pd using water and n-hexane as solvent.a 

Entry Catalyst 
Conv. 
(%)b Selectivity (%)b 

   cyclohexanone cyclohexanol cyclohexane 

1 Fe3O4@SiO2CalPdPVPc 79 100 0 0 

2 Fe3O4@SiO2CeO2PdPVPc 70 93 0 7 

3 Fe3O4@SiO2TiO2PdPVPc 100 100 0 0 

4 Fe3O4@SiO2CalPdPVPd 98 95 5 0 

5 Fe3O4@SiO2CeO2PdPVPd 25 95 5 0 

6 Fe3O4@SiO2TiO2PdPVPd 99 96 4 0 
a Reactions conditions: phenol (75 µmol, in 3 mL c water or d n-hexane), catalyst (36 mg, 3.7 µmol), 

substrate/catalyst = 20, 75°C, 6 bar H2.
b Conversion and selectivity determined by GC. 

 

 

4.3.2.4. Benzyl alcohol oxidation 

 

 A very interesting reaction for the evaluation of support influence in the catalytic 

activity of supported metal NPs is the oxidation of benzyl alcohol. However, we could not use 

the supported catalysts due to the high solubility of PVP in polar media and, consequently, 

leaching of metal@PVP NPs to the solution. Some interesting and worth mention catalytic 

results were obtained using the supports and colloidal PVP-stabilized NPs of Ru, Rh, Pd and 

Au (Table 4.19). These reactions were intended as controls for the comparison of support 

influence. 
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Table 4.19. Oxidation of Benzyl alcohol 

Entry Catalysta 
Time 
(h) 

Conv. 
(%) 

Selectivity to 
benzaldehyde (%) 

1b - 24 4 78 

2 Fe3O4@SiO2CeO2 24 0.3 47 

3 Fe3O4@SiO2TiO2 24 0 -- 

4 Fe3O4@SiO2Cal 24 0 -- 

5 Ru@PVP 2 7 98 

6 Ru@PVP 24 20 99 

7 Au@PVP 2 2.4 100 

8 Au@PVP 24 5.7 98 

9 Rh@PVP 2 0.9 100 

10 Rh@PVP 24 1.5 91 

11 Pd@PVP 2 23 86 

12 Pd@PVP 24 95 71 
a Reaction conditions: benzyl alcohol (1 mL, 10 mmol), catalyst (2 mg, 2 µmol), 100 ºC, 3 bar O2 and 

substrate/catalyst = 5000. b Reaction without catalyst. 

 

 A blank reaction with benzyl alcohol only in the reactor resulted after 24 h in the 

conversion of around 4 % of the substrate (table 4.19 entry 1). The blank reaction with 

support and substrate resulted in a remarkable reduction of conversion of benzyl alcohol. 

 In the reactions performed with colloidal NPs some initial conclusions are: (a) gold is 

very selective, but not very active; (b) ruthenium is selective to benzaldehyde and only 

moderately active; (c) rhodium is selective, but is poorly active and (d) palladium is very 

active and not selective. The trend observed for the series of catalysts are in agreement with 

literature data. The results observed make Au@PVP NPs interesting candidates for further 

studies in the oxidation of alcohols. In fact, Au NP catalysts have received a lot of attention in 

the literature given the high selectivity they provide in oxidation reactions.190 Since, the 
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preparation of Au@PVP was not straightforward it will be presented later in the section 

4.3.3.1. 

 The colloidal Au@PVP NPs were not stable under reaction conditions and the solution 

color changed from brown to red, which is an indication of change in particle size or 

aggregation. The TEM characterization of the sample recovered after the reaction (figure 4.50 

A) showed Au NPs with average diameter larger than before catalysis (4.0 ± 1.5 nm). The 

TEM analysis after reaction of the Rh@PVP NPs and Ru@PVP NPs did not show any NP 

morphological or size modification. The Rh@PVP NPs size after reaction is 1.9 ± 0.4 nm and 

Ru@PVP NPs is 1.6 ± 0.2 nm (figure 4.50 B and C). 

 

 

 

Figure 4.50. Micrograph obtained by TEM of (a) Au@PVP, (b) Rh@PVP and (c)Ru@PVP after benzyl alcohol 

oxidation and the correspondent size distribution histogram adjusted to a Gaussian function. Scale bar = 50 nm 

 

 The Pd@PVP was not analyzed because the NP precipitated after the reaction. The 

supported Pd NPs employed in the oxidation of benzyl alcohol did not precipitate, but the 

metal leaching was sufficient to turn the supernatant solution color into black. The NPs did 
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not precipitate in the presence of the support; however, they did not stay attached to the 

support either, which means that we could not study the influence of support because, at the 

end, the NPs are not interacting with the support and are acting free in solution. The samples 

after 24 h with colloidal Pd@PVP NPs resulted in a solid product meaning a high conversion 

to benzoic acid. Otherwise, in the presence of support the resulting product after 24 h is 

liquid. Thus, the lack of precipitation is clearly due to less benzoic acid formation. No further 

studies were performed. 

 In an attempt to remove PVP and minimize the metal leaching, the supported 

Au@PVP NPs catalysts were calcined at 300 ºC for 2 h under air atmosphere. Unfortunately, 

the resulting materials were not active in the benzyl alcohol or CO oxidation. The lack of 

activity in both reactions indicated that the thermal treatment resulted in large metal NPs, 

once that the activity for CO oxidation is size dependent.22 

 

 

4.3.3. Difficulties found in the preparation of preformed metal 

nanoparticles 

 

4.3.3.1. Gold nanoparticles stabilized with PVP 

 

 Gold catalysts and exhibit excellent catalytic properties and high selectivity in various 

reactions, especially oxidation ones; however, gold has a limited impact on industrial 

catalysis. For instance, Au NPs are known to be very active catalysts in the oxidation of CO at 

low temperature. They also received attention as catalysts for the selective oxidation of 

alcohols to aldehydes.190  
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 In nanocatalysis, a challenge still to be overcome is the preparation of catalysts of 

controlled size that are sufficiently stable, while maintaining an acceptable activity and 

selectivity under real catalytic conditions. One objective of this thesis was to look for 

synthesis conditions in solution to obtain size-controlled gold NPs, which is not trivial, in 

order to prepare Au-supported catalysts and study the influence of the support on the catalytic 

performance. Literature data already reported that the activity of gold nanoparticles can be 

affected by the nature of the supports.191 For example, Au supported on nanoceria was 

described as active for benzyl alcohol oxidation in absence of added base, usually necessary 

as co-catalyst.192 

 Our first intent towards the synthesis of size-controlled Au NPs was the preparation of 

a gold complex and its decomposition into Au@PVP NPs. The selected complex was 

Chloro(tetrahydrothiophene)gold(I) (AuCl(THT)) (figure 4.51) employed by de Caro et al.154 

as precursor for the preparation of Au@PVP NPs. 

 

 

Figure 4.51. Structure of AuCl(THT) 

 

 The complex AuCl(THT) was prepared from the reaction of AuCl3 with THT in 

degassed ethanol. The complex was characterized by elemental analysis (Table 4.20) and 

FTIR (figure 4.52). The elemental analysis experimental results are in agreement with the 

theoretical calculation and the vibrational bands in the FTIR spectra are characteristic of 

AuCl(THT) (νAu-Cl = 328 cm-1 and νAu-S = 347 cm-1).  

 

 

AuCl S
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Table 4.20. Elemental analysis of AuCl(THT) 

Element Theoretical % 
Experimental 

% 

C 14.99 14.77 

H 2.52 2.31 

 

 

Figure 4.52. Infrared transmission spectrum of AuCl(THT) obtained using CsBr pellets 

 

 The procedure to prepare Au@PVP followed the same principle as for Rh, Pd and 

Ru@PVP NPs and is also very similar to a method reported by de Caro et al.154 who 

decomposed the complex AuCl(THT) in dichloromethane under CO atmosphere at room 

temperature. The gold precursor was first dissolved in a THF solution of PVP and submitted 

to 3 bar hydrogen pressure. After 20 h, the solution did not show any visible sign of change. 

The first and most clear indication of Au NPs formation is the color. Indeed, Au NPs display 

plasmon bands and lead to colored colloidal solution where the color is size dependent. The 

fact that the Au@PVP NPs were not formed could be attributed to a solvent effect given we 

used THF and not dichloromethane as reported. In another reaction we reproduced the 
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reaction conditions of de Caro et al. that are dichloromethane as solvent and atmosphere of 1 

bar CO, but it was also unsuccessful. In order to remove light influence, the reactor was 

covered with aluminum foil. However, this covering did not afford any improvement. 

Consequently, a series of reactions with variation of parameters like temperature, atmosphere, 

pressure and light exposure were performed to try to obtain optimized conditions to prepared 

Au@PVP by the previously reported method. Independently of the conditions, at room 

temperature no sign of reaction was observed. At 70 ºC, both under argon or CO atmosphere, 

the reaction resulted in the formation of a brown precipitate, which demonstrated that the 

temperature was responsible for the decomposition of the metal precursor. The materials 

obtained with this method were comprised of gold particles of uncontrolled size and 

morphology with a diameter higher that 200 nm. The light exposure did not affect the 

reaction, except for a reactor left opened to air that resulted in bulk gold. As a second attempt 

to promote the reduction of the gold precursor at room temperature (mild conditions) NaBH4 

was added as reducing agent instead of CO or H2, resulting in a dark blue solution. The TEM 

analysis revealed a poor control in morphology and size (figure 4.53a). 

 

 

Figure 4.53. Micrograph obtained by TEM of gold particles prepared by reduction of AuCl(THT) with (a) 

NaBH4 and PVP and (a) H2 and hexadecylamine. 

 

(a) (b) 
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 Gomez et al.193 discussed the preparation of Au NPs using the AuCl(THT) as 

precursor and hexadecylamine (HDA) as stabilizer. The presence of HAD induces formation 

of an intermediate gold amino complex that can be reduced by H2. Figure 4.53b shows the 

TEM micrograph of the Au NPs obtained after addition of small amount of HDA in the 

reaction medium. The resulting material is morphologically controlled, but the particle 

diameter is larger than we expected (10-15 nm). Although, this method appeared interesting in 

terms of size-control we moved back to the search of a synthetic method for smaller gold 

nanoparticles stabilized by PVP. 

 To prepare small Au@PVP NPs, we followed a method reported by Tsunoyama et 

al.155 that consists in the addition of NaBH4 in an aqueous solution of HAuCl4 and PVP at low 

temperature. The characterization by TEM showed an agglomerated material before 

purification (figure 4.54b), but nicely dispersed and small Au@PVP NPs (1.1 ± 0.2 nm) were 

observed after dialysis against water (figure 4.54a). The dialysis does not select the particles 

or separate the agglomerates, but is most likely that the removal of the dissolved salts, that 

induce the agglomeration, provide a clear solution. 
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Figure 4.54. Micrograph obtained by TEM of Au@PVP (a) after and (b) before dialysis and (a’) the size 

distribution histogram adjusted to a Gaussian function of the Au@PVP after dialysis. 

 

 

4.3.3.2. Rhodium nanoparticles with PVA and organometallic approach 

 

 The preformed Rh NPs used in this thesis were prepared using RhCl3.xH2O and PVA 

as stabilizer (metal reduction method) or Rh(C3H5)3 and PVP as stabilizer (organometallic 

decomposition method). In order to justify the selection of different stabilizer agents, we 

should mention that we have tried the preparation of Rh@PVA using the organometallic 

approach, in order to compare with previous results; however, the PVA is not soluble in THF 

and, then addition of water was necessary. The addition of water in the reaction media 

allowed the solubilization of PVA and the presence of THF the solubilization of the Rh 

precursor. The reactor was pressurized with 3 bar H2 under magnetic stirring and kept under 
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stirring and pressure for 20 h. The resulting solution was a colloidal suspension of Rh@PVA 

that was characterized by TEM (figure 4.55a). However, after a few days the metal particles 

precipitated. This precipitation is attributed to the presence of THF, because it can be 

prevented if the material is dried and redispersed in water after preparation. The Rh@PVA 

material prepared by this method is comprised of individual particles and large aggregates 

(also comprised of small particles). This is probably a solvent effect due to the presence of 

THF in solution, which should interfere in the solubilization of PVA. 

 Rh@PVA prepared by using the same conditions (THF/Water) and RhCl3.xH2O as 

precursor exhibited very similar aggregates, as observed by TEM analysis (figure 4.55b).  

 

 

Figure 4.55. Micrograph obtained by TEM of Rh@PVA prepared using as precursor (a) Rh(C3H5)3 and (b) 

RhCl3.xH2O. Scale bar = 100 nm. 

 

 Independently of the presence of aggregates, the Rh@PVA aqueous suspension 

prepared by the organometallic decomposition method was employed in the hydrogenation of 

cyclohexene at room temperature, 3 bar H2 and substrate-to-catalyst molar ratio of 35600. The 

reaction was followed for 1 h and the conversion determined by GC was 58 %.After the 

hydrogenation reaction the catalyst phase was visually similar to the fresh suspension, so the 

solution was recycled to a second reaction. After 1 h the GC analysis showed a conversion of 

11 % of cyclohexene to cyclohexane. The TEM analysis of the Rh@PVA after catalysis 

(a) (b) 
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showed an increase in the aggregation of small particles (figure 4.56). Thus, despite the 

catalyst deactivation the use of organometallic precursor was and enhancement in the stability 

of colloidal Rh@PVA NPs solution. 

 

 

Figure 4.56. Micrograph obtained by TEM of Rh@PVA prepared by organometallic approach after 

hydrogenation of cyclohexene. 
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5. CONCLUSION 

 

 

 Magnetic separation is present in numerous material treatment operations due to their 

inherent magnetic properties, but only in the last decade it received attention as a very 

promising method to recover catalysts from product solutions. Several strategies for the 

immobilization of non-magnetic catalysts on magnetic supports have been developed. The 

immobilization of catalysts on iron oxides, e.g. magnetite, is possible, and coating of the 

magnetic material with a protective layer improves the stability and facilitates the 

immobilization process. However, the magnetic supports available are still mostly limited to 

silica, polymer and carbon-coated magnetic materials. The preparation of magnetic supports 

containing different oxides can thus expand the applicability of magnetic separation in 

catalysis. In the context frame of this PhD work, we could demonstrate that a support material 

comprised of silica-coated magnetite (Fe3O4@SiO2) can be calcined, preserving the 

morphology and magnetic properties. The silica shell provides protection to the magnetic core 

against oxidation. This protection should be related to the hindrance of oxygen diffusion to 

the magnetic cores and to the formation of Fe-O-Si bonds inherent to the silica coating 

mechanism. The calcination increased the surface area and allowed the development of a 

post-coating process for the deposition of titania and ceria onto the silica surface. Thus, 

Fe3O4@SiO2TiO2 and Fe3O4@SiO2CeO2 support materials comprised of particles of titania or 

ceria onto the silica shell were successfully prepared. The new developed support materials 

were used for the preparation of magnetically recoverable catalysts containing Rh, Pd and Ru 

nanoparticles. 

 A first set of rhodium catalysts supported on silica-coated magnetite were prepared by 

IMP of rhodium(III) chloride. The impregnation step was possible after functionalization of 
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the support with amine groups, as demonstrated previously by our research group. The 

reduction of Rh3+ ions was performed using NaBH4 or hydrazine as reducing agents to surpass 

the reproducibility issues during the reduction with H2. The Rh catalysts prepared by 

reduction with NaBH4 were very active in the hydrogenation of cyclohexene. Despite the 

similar metal NPs size, the catalyst reduced by hydrazine showed lower activity. In fact, the 

catalytic activity of hydrazine reduced Rh catalysts were similar to previous reported H2 

reduce Rh catalyst. In order to gain a better control on the metal NPs characteristics (size and 

composition), colloidal Rh@PVA NPs were prepared by reduction of rhodium(III) chloride 

by NaBH4 in an aqueous solution containing 1 wt% PVA. The Rh@PVA NPs of 4.2 ± 1.2 nm 

form a very stable aqueous colloidal solution that can be used directly for biphasic reaction 

with the catalyst being in the aqueous phase and the substrate, i.e. cyclohexene, being the 

organic phase. However, the colloidal solution is not stable under reaction conditions and the 

NPs precipitated even at 25 ºC and could not be reused. The immobilization of Rh@PVA on 

Fe3O4@SiO2NH2 resulted in a more stable catalyst and also eliminated the mass transfer 

limitation due to the presence of aqueous phase. The TOF in the hydrogenation of 

cyclohexene reached values of 135,000 h-1
 with a TON of 35600 molsubstrate mol-1catalyst, while 

at the same conditions the unsupported Rh NPs showed a TOF of 31000 h-1. The catalyst was 

also active for benzene hydrogenation, but the catalyst deactivates upon recycling. The 

determined by the quantification of Rh content in the products of cyclohexene and benzene 

hydrogenation was below the detection limit for Rh by ICP OES, which exclude metal 

leaching. The characterization by TEM demonstrated that the NPs morphology and size were 

not changed after catalytic reactions. Thus, the Rh catalyst was very stable under reaction 

conditions. 

 Palladium catalysts supported on silica-coated magnetite were also prepared by the 

IMP of palladium(II) chloride using H2 as reducing agent. The calcined support 
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Fe3O4@SiO2Cal was not capable to adsorb Pd2+ ions, but the non-calcined support adsorbs 

Pd2+ ions even without functionalizing its surface. The Fe3O4@SiO2Pd catalyst showed the 

higher catalytic activity in hydrogenation of cyclohexene, but also a strong deactivation upon 

recycling. The functionalization of the silica surface with amine groups allowed us to prepare 

a more stable but less active catalyst. Colloidal Pd@PVP-1 NPs prepared using palladium(II) 

chloride were immobilized on the same solids, but in this case only amine functionalized 

solids were able to uptake the metal nanoparticles from the impregnation solution. The 

catalyst prepared with calcined support, which contains higher surface area and higher amount 

of amine groups, was less active than the catalyst prepared with non-calcined support. Thus, it 

suggests a deleterious effect on the catalytic activity by amine groups. The poisoning effect to 

amine groups has precedents in the literature, but has to be studied in more detail.  

 Rhodium, ruthenium and palladium colloidal NPs of controlled size and composition 

were prepared by the decomposition of organometallic compounds in the presence of PVP 

and hydrogen. These M@PVP NPs were immobilized on Fe3O4@SiO2Cal, Fe3O4@SiO2CeO2 

and Fe3O4@SiO2TiO2. The Rh and Pd catalysts were employed in the cyclohexene 

hydrogenation. The Fe3O4@SiO2CeO2RhPVP was the most active catalyst reaching a TOF of 

ca. 125,000 h-1, while Fe3O4@SiO2TiO2RhPVP reached the same activity after recycling and 

Fe3O4@SiO2CalRhPVP was always less active than the other catalysts reaching a TOF of 

75,000 h-1. Considering that all catalysts were prepared with similar NPs, this behavior might 

be related to differences in the elimination of PVP stabilizer. Preliminary result obtained 

during temperature programmed oxidation of CO showed that the conversion of CO was 

dependent on the elimination of PVP. On the other hand, the silica supported 

Fe3O4@SiO2CalPdPVP was the most active among the palladium catalysts in liquid phase 

reaction. However, the temperature for maximum conversion of cyclohexene was the same 

for all the Pd catalysts, which demonstrated the absence of support influence. In the case of 
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Rh catalysts, the temperature was different (Tmax Ce < Tmax Ti < Tmax Si) and is in agreement 

with the order of activity showed in liquid phase hydrogenation during recycling. These 

catalysts were also employed in the hydrogenation of phenol. The Pd catalysts were able to 

selectively convert phenol in cyclohexanone, no matter the support and the reaction 

conditions used. Rhodium and ruthenium catalysts were not able to stop the reaction and 

cyclohexanone was further hydrogenated to cyclohexanol. The formation of cyclohexanol is 

more effective in the case of the support with titania, the most acid of the series. The 

hydrodeoxygenation of phenol to produce cyclohexane, which is also a very interesting 

product if one consider the conversion of phenol derived from biomass into alkanes, occurred 

mainly in the support with silica. 

 In this way, the major contribution of this thesis is related to the demonstration that the 

preparation of supported metal nanocatalysts is not a trivial procedure. The IMP method, 

which in principle can be considered a simple way to obtain supported metal nanoparticles, is 

not so straightforward and the reproducibility of catalytic properties can be a problem. 

Depending on the metal and support, the impregnation procedure can be less effective, while 

the functionalization of the support is an alternative to improve metal-support interaction. The 

reduction with hydrogen is the cleaner option, but NaBH4 was shown to provide higher 

activity. The main concern about the use of NaBH4 or hydrazine is the unknown species 

adsorbed on the metal surface after reduction. For the comparison of different supports, the 

size and size distribution of the supported metal nanoparticles prepared by IMP method will 

be affected by the support, which is a limitation for comparison between catalysts. The 

immobilization of colloidal metal NPs (SI method) is an excellent alternative to prepared 

catalysts in different supports with metal NPs of similar size. The main drawback is the 

presence of a chosen stabilizing agent. It was shown that it can lead to more active catalysts, 

but the catalytic activity can still be affected by the support. The type of support and the 
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presence and nature of ligands are very important during the preparation of supported 

catalysts and can affect the catalytic activity, even in support unrelated reactions. The metal –

support interaction can affect the chemistry on the surface of pre-formed NPs and the way the 

stabilizers will be removed after the immobilization process. Also, the preparation of 

magnetic nanocomposites containing titania and ceria with high morphological control is not 

easy, but deposition of metal oxides on silica-coated magnetite can be easily performed 

through different methods. This observation demonstrates how a widely known catalyst 

support can be very versatile and modified to further improve catalyst performances. 
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6. PERSPECTIVES 

 

 

 The development of ceria and titania deposition methods into silica-coated magnetite 

is a very interesting contribution to the catalysis field. The observation of the thermal stability 

of the silica coated magnetite allows the deposition of a large variety of oxides and the 

application of these new supports in support sensitive reactions is very interesting. The 

deposition of MgO and Al2O3 on silica-coated magnetite was also performed, but they are still 

being characterized. 

 One important contribution of this thesis is in the preparation of catalysts. We 

demonstrated that there are several variables that can affect the catalytic activity of a 

supported NP. This demonstrated that the control of the preparation procedure is very 

important and that depending on the study intention this control is even more important. Thus, 

the SI method using either NPs from salts or organometallics precursors is very reproducible 

and very important for support effect studies. 

 This thesis work will continue with the further characterization of silica-protection of 

magnetic cores against oxidation, phenol hydrogenation will be more explore and new 

magnetic supports will be prepared and used as catalyst support for hydrogenation reactions. 
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