
HAL Id: tel-01451729
https://theses.hal.science/tel-01451729

Submitted on 1 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of information flows in telecommunication
networks

Thibaut Lefebvre

To cite this version:
Thibaut Lefebvre. Optimization of information flows in telecommunication networks. Networking
and Internet Architecture [cs.NI]. Conservatoire national des arts et metiers - CNAM, 2016. English.
�NNT : 2016CNAM1053�. �tel-01451729�

https://theses.hal.science/tel-01451729
https://hal.archives-ouvertes.fr

CONSERVATOIRE NATIONAL DES
ARTS ET MÉTIERS

École Doctorale d’Informatique Télécommunications et Électronique

Laboratoire CEDRIC, équipe Optimisation Combinatoire

THÈSE DE DOCTORAT

présentée par : Thibaut LEFEBVRE

soutenue le : 27 juin 2016

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Discipline / Spécialité : Informatique / Recherche Opérationnelle

Optimization of information flows

in telecommunication networks

THÈSE DIRIGÉE PAR

Mme ELLOUMI Sourour MCF HDR, ENSIIE
M. BENTZ Cédric MCF, CNAM
M. GOURDIN Éric Ingénieur de recherche, Orange

RAPPORTEURS

M. FORTZ Bernard PR, Université Libre de Bruxelles
M. NACE Dritan PR, Université de Technologie de Compiègne

EXAMINATEURS

Mme BAZGAN Cristina PR, Université Paris Dauphine
M. BEN-AMEUR Walid PR, TELECOM SudParis
M. PICOULEAU Christophe PR, CNAM

À mes parents

If people do not believe that

mathematics is simple, it is only

because they do not realize how

complicated life is.

John von Neumann

Remerciements

Je tiens à remercier ici les nombreuses personnes qui ont contribué, de près ou de loin,

à l’aboutissement de ma thèse.

Je souhaite tout d’abord remercier ma directrice de thèse, Sourour Elloumi, pour sa

présence à mes côtés et son soutien tout au long du périple et pour m’avoir transmis la

passion et les valeurs de la recherche académique. Je tiens également à remercier Éric

Gourdin, d’abord pour m’avoir offert l’opportunité de passer trois ans au sein d’Orange,

ensuite pour l’encadrement, le soutien et la protection qu’il m’a prodigués afin que je

puisse effectuer mes travaux dans d’excellentes conditions. Enfin, je désire remercier Cédric

Bentz pour avoir accepté d’encadrer ma thèse, ainsi que pour les longues heures que nous

avons passées à étudier des problèmes variés de théorie de la complexité. Finalement, je

souhaite remercier collectivement mes trois encadrants, d’abord pour m’avoir supporté

(aux deux sens du terme) pendant ces années, ensuite pour le savant mélange de liberté et

d’orientation qu’ils ont su me prodiguer afin de me guider dans mon parcours, enfin pour la

patience et le dévouement dont ils ont fait preuve lors de la phase de rédaction du présent

manuscrit.

Je remercie les Professeurs Bernard Fortz et Dritan Nace d’avoir accepté d’être rappor-

teurs de ma thèse. Je tiens également à remercier les Professeurs Cristina Bazgan, Walid

Ben-Ameur et Christophe Picouleau pour avoir accepté de faire partie de mon jury de

thèse.

Je tiens ensuite à remercier la société Orange pour le financement de mes travaux de

recherche pendant les trois années de mon contrat avec le groupe.

5

Je tiens à remercier chaleureusement Maurice pour toute l’aide qu’il m’a apportée et

les conseils qu’il m’a prodigués afin que je puisse mener à bien la phase "expérimentation"

de ma thèse. Je lui suis reconnaissant de m’avoir formé aux langages Ruby et Julia ainsi

qu’aux bonnes pratiques du développement logiciel. Merci aussi à son collègue de bureau

Christophe pour son enthousiasme communicatif (surtout lors de réunion à l’improviste

dans un RER).

Je souhaite maintenant remercier toutes les personnes que j’ai eu l’opportunité de

côtoyer pendant mes trois années à Orange. Je pense en particulier à Nabil pour les nom-

breuses opportunités qu’il m’a données de présenter mes travaux de recherche dans des

conférences internationales. Je pense aussi à Florence pour son excellent cours de théo-

rie de l’information, à Ruby pour nos échanges autour de l’utilisation du codage dans les

centres de données, ou encore à Adam pour l’organisation de séminaires sur l’apprentissage

automatique. Je tiens également à remercier Régine pour son aide lors de la mise en place

du cadre légal de ma thèse. Je remercie aussi tous les membres de l’équipe TRM pour leur

accueil et leur soutien pendant ces trois ans, notamment Pierre, Amal, Mathieu, Yannick,

Claudio, Raluca, Bruno, Wuyang, Luca, Philippe, Félipe, Nancy, Alain, Christian, Bobby

et Yuhui. J’ai une pensée particulière pour tous les doctorants encore attelés à la tâche

au moment où j’écris ces lignes : Paul, Guanglei, Léonce et Yassine. Je souhaite égale-

ment remercier les personnes que j’ai eu la chance de croiser lors des séminaires de RO

régulièrement organisés par Éric : Vincent, Matthieu, Prosper, Cédric et Stéphane.

Ma reconnaissance va également aux membres du laboratoire CEDRIC du CNAM.

Merci à Anne d’avoir accepté d’être membre de mon jury de mi-parcours. Merci à Viviane et

à Stéphane pour nos conversations enrichissantes. Merci à Sami d’avoir toléré ma présence

dans son bureau. Merci en particulier aux membres de l’équipe OC pour leur soutien et

la motivation qu’ils m’ont communiqués. Je pense notamment à Amélie, Agnès et Daniel.

Merci aussi aux membres du bureau des doctorants avec qui j’ai eu l’occasion de discuter

lors de mes passages au CNAM : Pierre-Louis, Sabine et Dimitri. Une pensée pour Thomas

qui poursuit sa thèse au moment de la rédaction de ces lignes. Merci à Alain Billionnet et

à toute l’équipe RO de l’IIE pour m’avoir donné le goût de cette discipline. Merci à Alain

Faye pour m’avoir offert l’opportunité de transmettre ce goût aux nouveaux étudiants de

6

l’école. Un grand merci à Marie-Christine pour sa contribution à la fois au commencement

et à l’achèvement de mon doctorat.

Je ne peux pas manquer non plus de remercier tous mes anciens collègues

d’EURODECISION qui m’ont soutenu lors de la dernière phase de rédaction de mon ma-

nuscrit, en particulier Edwin, Salif, Cheikh, Philippe, et Romain. Enfin, merci à Denis et

à Céline pour m’avoir offert l’opportunité d’achever mon manuscrit.

Merci à David, Haïtem et Gen pour les expéditions "héroïques" sur GW2. Merci à

Maxime et Stanislas pour leur soutien. Merci à Marion pour ses encouragements. Un grand

merci à Grégoire qui m’a constamment balisé le chemin depuis le Master.

Finalement, je tiens à remercier ma famille pour son soutien indéfectible tout au long

de ma thèse. Merci à Vanda pour sa foi en moi et un immense merci à mes parents pour

leur amour.

7

8

Résumé

Dans les réseaux de télécommunications, la demande croissante pour de nouveaux ser-

vices, comme la diffusion de vidéos en continu ou les conférences en ligne, engendre un

besoin pour des dispositifs de télécommunication où le même contenu est acheminé depuis

un émetteur unique vers un groupe de récepteurs. Cette évolution ouvre la voie au déve-

loppement de nouvelles techniques d’acheminement des données, comme le multicast qui

laisse un nœud du réseau copier ses données d’entrée puis retransmettre ces copies, ou le

codage réseau, qui est une technique permettant à un nœud d’effectuer des opérations de

codage à partir de ses données d’entrée. Cette thèse traite de la mise en place de techniques

de codage au sein d’un réseau multicast filaire. Nous formalisons certains problèmes qui

apparaissent naturellement dans ce contexte grâce à la recherche opérationnelle et à des

outils d’optimisation mathématique. Notre objectif est de développer des modèles et des

algorithmes afin de calculer, au moins de manière approchée, certaines grandeurs qui ont

vocation à être pertinentes dans le cadre de la comparaison de techniques d’acheminement

de données dans un réseau de télécommunications. Nous évaluons ainsi, d’un point de vue

à la fois théorique et expérimental, l’impact induit par l’introduction de techniques de co-

dage au sein d’un réseau multicast. Nous nous concentrons en particulier sur des critères

importants pour un opérateur de télécommunication, comme la maximisation du débit

d’information entre une source et un ensemble de destinataires dans le réseau, la minimisa-

tion de la congestion sous contrainte de demande, ou la minimisation de la perte de débit

ou du coût induit par l’acheminement des données dans un réseau soumis à des pannes.

Mots clés : Optimisation réseau, Programmation mathématique, Codage réseau,

Multicast, Multiflot, Arbre de Steiner

9

10

Abstract

In telecommunication networks, the increasing demand for new services, like video-

streaming or teleconferencing, along with the now common situation where the same con-

tent is simultaneously requested by a huge number of users, stress the need for point to

many data transmission protocols where one sender wishes to transmit the same data to

a set of receivers. This evolution leads to the development of new routing techniques like

multicast, where any node of the network can copy its received data and then send these

copies, or network coding, which is a technique allowing any node to perform coding op-

erations on its data. This thesis deals with the implementation of coding techniques in

a wired multicast network. We formalize some problems naturally arising in this setting

by using operations research and mathematical optimization tools. Our objective is to de-

velop models and algorithms which could compute, at least approximately, some quantities

whose purpose is to be relevant as far as forwarding data using either multicast and network

coding in telecommunications networks is concerned. We hence evaluate, both in theory

and numerically, the impact of introducing coding techniques in a multicast network. We

specifically investigate relevant criteria, with respect to the field of telecommunications,

like the maximum amount of information one can expect to convey from a source to a set

of receivers through the network, the minimum congestion one can guarantee while satis-

fying a given demand, or the minimum loss in throughput or cost induced by a survivable

routing in a network prone to failures.

Keywords: Network optimization, Mathematical programming, Network coding,

Multicast, Multicommodity flow, Steiner tree

11

12

Résumé des travaux de thèse

Introduction

Motivation

L’émergence d’Internet et des réseaux de télécommunications modernes constitue un

changement majeur dans l’histoire humaine. Ces réseaux de télécommunications ont rendu

possible la transmission d’informations de manière instantanée et fiable d’un point à un

autre de la planète. Il s’en est suivi une révolution dans les modes de communications et

la manière dont nous interagissons avec notre environnement. Il est ainsi loisible à tout un

chacun de communiquer en temps réel avec une personne (ou une machine) située dans

l’autre hémisphère. De plus, bien que l’intention à l’origine de la plupart de nos actions

soit l’obtention d’une modification de notre environnement proche, il n’en demeure pas

moins que l’impact de ces mêmes actions peut acquérir une portée planétaire. Ainsi, un

phénomène initialement local peut acquérir une dimension globale de par sa propagation

au sein d’un réseau de télécommunications, ce dernier engendrant un effet de rétroaction

positive (au sens cybernétique du terme).

D’un point de vue historique, les premiers dispositifs de télécommunications, comme

les pigeons voyageurs, le télégraphe ou le téléphone, ont été développés pour permettre

la communication d’un point à un autre du réseau : Un émetteur souhaite expédier un

message à un récepteur unique au sein du réseau. Dans une certaine mesure, Internet a lui

aussi été pensé dans cette optique d’utilisation. De nos jours, la demande croissante pour de

nouveaux types de services, comme la diffusion de vidéos en continu ou les conférences en

ligne, engendre un besoin pour des dispositifs de télécommunications ou le même contenu

est acheminé depuis un émetteur unique vers un groupe de récepteurs. Cette évolution

13

dans l’utilisation des réseaux de télécommunications ouvre la voie au développement de

nouveaux services afin de répondre à ces besoins. D’un point de vue technique, il s’avère

cependant nécessaire d’adapter les réseaux afin d’être en mesure de répondre à ce nouveau

type de requête. Une manière de le faire consiste à modifier le mécanisme de diffusion de

l’information dans un réseau de télécommunications filaire qui repose sur la transmission

de paquets de données. Une voie prometteuse consiste à effectuer d’autres opérations que

la seule transmission de paquets au niveau des nœuds du réseau de télécommunication.

Nous allons à présent décrire succinctement le principe de fonctionnement d’un réseau

de télécommunications filaire avant de présenter les stratégies alternatives d’acheminement

de l’information au sein d’un réseau étudiées dans le présent manuscrit.

Objectifs

Les travaux effectués dans cette thèse ont été conduits avec deux objectifs principaux.

D’abord, nous cherchons à formaliser, et si possible à résoudre, certains problèmes qui

apparaissent naturellement dans le domaine de l’acheminement d’informations dans un

réseau de télécommunications à l’aide d’outils issue de l’optimisation mathématique et plus

particulièrement de l’optimisation dans les réseaux. Ensuite, nous proposons des modèles

et des algorithmes afin de pouvoir évaluer, d’un point de vue tant théorique que pratique,

l’impact de certaines techniques d’acheminement de l’information sur le fonctionnement

d’un réseau de télécommunications. Plus précisément, nous cherchons à déterminer l’impact

de la mise en place de techniques de codage au sein d’un réseau dont les nœuds sont déjà

équipés d’un dispositif de diffusion multicast (les définitions sont données dans la section

suivante).

Nous concentrons notre attention sur les aspects combinatoires des problèmes que nous

étudions ce qui nous pousse à ne pas considérer d’autres aspects connexes et cruciaux de ces

mêmes problèmes. Le présent manuscrit peut donc être considéré comme s’inscrivant dans

le champ de l’optimisation dans les réseaux plutôt que dans celui des télécommunications,

bien que les travaux présentés ici prennent leur source au sein de ce dernier domaine. Le

souhait de l’auteur est que les chercheurs et les praticiens des télécommunications trouvent

dans le présent document des idées et des outils utiles à la résolution de leurs problèmes.

14

Sujet de la thèse

Vocabulaire de la théorie des graphes

Nous allons souvent représenter un réseau de télécommunications à l’aide d’un graphe,

de sorte qu’il est opportun de donner d’emblée quelques notions de théorie des graphes

qui nous seront utiles par la suite. Un graphe non orienté G = (V,E) est la donnée d’un

ensemble fini V dont les éléments sont appelés les sommets du graphe, et d’un sous-ensemble

E de l’ensemble de toutes les paires de sommets distincts, dont les éléments sont appelés

les arêtes du graphe. Un graphe orienté D = (V,A) est la donnée d’un ensemble fini V dont

les éléments sont également appelés sommets du graphe orienté, et d’un sous-ensemble A

de l’ensemble de tous les couples de sommets distincts, dont les éléments sont appelés les

arcs du graphe orienté. Enfin, un graphe bi-orienté B = (V, L) est un cas particulier de

graphe orienté tel que, si un couple de sommets (u, v) fait partie de l’ensemble des arcs de

B, alors le couple de sommets (v, u) fait également partie de ce dernier ensemble. La paire

d’arcs (u, v) et (v, u) est appelée un lien. Dans la notation B = (V, L), L fait référence à

l’ensemble des liens du graphe bi-orienté. Nous utilisons souvent le terme générique graphe

pour englober les trois cas précédents. Tous les graphes que nous considérons sont supposés

sans boucle, ont au moins deux sommets et au moins un lien, et comportent au plus un lien

entre deux sommets donnés. L’ordre d’un graphe est son nombre de sommets tandis que sa

taille fait référence à son nombre d’arêtes ou d’arcs (suivant le type de graphe considéré).

Un graphe D = (V ,A) est un sous-graphe d’un graphe D = (V,A), ce que l’on note

D ⊆ D, si V est un sous-ensemble de V et que A est un sous-ensemble de l’intersection

de A avec l’ensemble des paires / couples de sommets distincts de V . Étant donné un

graphe D = (V,A), un chemin p dans D est un sous-graphe de D dont les arcs peuvent

être ordonnés de sorte à ce que l’origine de chaque arc de p coïncide avec l’extrémité de

l’arc qui le précède dans l’ordre. Un cycle dans un graphe D = (V,A) est un chemin dont

l’extrémité du dernier arc dans l’ordre est l’origine du premier arc par rapport à l’ordre.

Un graphe est acyclique s’il ne contient pas de cycle parmi ses sous-graphes. Un chemin

acyclique est dit simple. Un graphe D = (V,A) est connecté du point de vue d’un sommet

v s’il existe (au moins) un chemin d’origine v vers chaque autre sommet du graphe D. Un

15

arbre enraciné en un sommet v dans un graphe D = (V,A) est un sous-graphe acyclique

de D contenant v et connecté du point de vue de v. Le lecteur consultera l’ouvrage de

West et al. [1] et celui de Bondy et Murty [2] pour une introduction plus complète à la

théorie des graphes. Concernant les graphes orientés, nous renvoyons le lecteur vers le livre

de Bang-Jensen et Gutin [3]. Enfin, nous souhaitons mentionner l’ouvrage de Chartrand

et al. [4].

Modèles de réseaux

De manière informelle, un réseau est une collection de dispositifs, appelés nœuds du

réseau, inter-connectés entre eux de sorte à ce qu’un sous-ensemble de nœuds, appelés

terminaux, puissent communiquer entre eux. Un nœud intermédiaire est un nœud du réseau

qui n’est ni la source, ni un terminal. La communication entre deux nœuds du réseau

s’effectue par la transmission de messages. L’un des terminaux, appelé la source, dispose

de l’ensemble des données que souhaitent obtenir tous les autres, les terminaux. Un nœud

du réseau peut recevoir un message en provenance d’un autre nœud avant de lui-même

transmettre ce message à un troisième nœud. Deux nœuds du réseau sont connectés s’il est

possible à au moins l’un d’entre eux de directement transmettre un message à l’autre, sans

passer par un troisième nœud au préalable.

Il est assez naturel de modéliser un réseau de télécommunications à l’aide d’un graphe

(orienté ou non suivant les besoins) D = (V,A) où chaque nœud est modélisé par un som-

met et deux sommets sont reliés par un arc ou une arête s’ils sont connectés au sens défini

précédemment. La structure du graphe résultant est fonction du type de transmission au-

torisé entre les nœuds. Si, pour chaque paire de nœuds connectés, les deux nœuds peuvent

simultanément envoyer un message et en recevoir un en provenance de l’autre nœud, le

graphe sera bi-orienté. Si au contraire l’un des deux nœuds de la paire doit jouer le rôle

de récepteur tandis que l’autre joue le rôle d’émetteur, les rôles pouvant être échangés, le

graphe associé est non orienté. Enfin, si le rôle de chaque nœud au sein d’une paire est figé,

l’un est toujours l’émetteur, l’autre le récepteur, le graphe correspondant est orienté. Ce

choix du modèle de réseau a un impact crucial sur les résultats tant théoriques qu’expéri-

mentaux obtenus. La table 1 ci-dessous résume l’impact du type de graphe.

16

Structure Canal Schéma

Bi-orienté Lien
u v

Non orienté Arête
u v

Orienté Arc
u v

Table 1 – Schéma de chaque modèle de réseau.

Dans la suite, nous identifions implicitement le réseau, c’est à dire le dispositif physique,

avec son modèle, le graphe, en considérant que le graphe traduit la topologie sous-jacente du

réseau. De plus, nous énonçons fréquemment une propriété sans préciser le modèle de réseau

utilisé. Cela signifie simplement que cette dernière propriété reste valide indépendamment

de la structure de graphe utilisé pour modéliser le réseau. Les terminaux d’un réseau

peuvent communiquer entre eux s’il existe (au moins) un chemin depuis le nœud source

vers chaque terminal du réseau. Cela signifie qu’il est possible d’acheminer un message

depuis la source vers n’importe quel terminal par une suite de transmission directe entre

les nœuds du réseau. Pour simplifier, nous supposons en fait que le réseau est connecté

du point de vue de la source, au sens précédemment défini de la théorie des graphes.

Nous supposons en outre que chaque nœud intermédiaire du réseau permet d’acheminer

un message depuis la source vers au moins un terminal (sans perte de généralité puisque

supprimer les nœuds ne satisfaisant pas cette dernière propriété est sans impact sur les

possibilités d’acheminement de l’information au sein du réseau et peut être effectué par

des méthodes efficaces). Nous allons à présent nous intéresser à l’information en elle-même,

puisqu’elle constitue le cœur de notre sujet.

Modèle de flot

Étant donné un réseau comme défini précédemment, nous avons besoin d’un modèle

simple et générique afin de décrire le phénomène de propagation de l’information à travers

un canal de ce réseau. Puisque nous considérons explicitement la topologie du réseau, il

est souhaitable que ce modèle permette de déduire certaines propriétés de l’état global

du réseau à partir de la connaissance de son état local en chaque nœud. Un modèle de

flot représente l’état de chaque canal du réseau par un nombre réel positif appelé flot. Ce

17

nombre correspond à la quantité d’informations transitant par ce canal par unité de temps

(mesuré en bit par seconde, par exemple). Dans ce modèle, il est naturel de caractériser

chaque canal par le débit maximum d’information pouvant transiter par lui. Cette dernière

grandeur est appelée la capacité du canal. Définir formellement et calculer la capacité d’un

canal est l’un des problèmes centraux de la théorie de l’information dont l’origine remonte

aux travaux de Shannon [5]. Le lecteur pourra consulter l’ouvrage de Cover et Thomas [6]

pour plus de détails sur le calcul de la capacité de Shannon d’un canal. Pour notre propos,

il est suffisant de supposer que la capacité de chaque canal est une donnée connue, en fait

un nombre rationnel positif (calculable).

Ce modèle de flot permet de formaliser une large classe de problèmes d’optimisation

d’un réseau de télécommunication [7]. Il est en outre possible de concevoir des algorithmes

efficaces afin de résoudre certains de ces problèmes. Il devient alors possible de répondre à

des questions du type "Peut-on acheminer telle quantité d’information depuis cette source

à destination de ce terminal ?", ou bien "Quelle quantité d’information devons-nous faire

transiter par chaque canal afin de satisfaire une certaine demande ?", ou encore "Comment

devons-nous modifier la capacité de chaque canal afin de pouvoir satisfaire telle requête ?".

Aussi intéressant soit-il, ce modèle souffre d’au moins trois limitations :

Premièrement, il ne permet de réaliser qu’une analyse quantitative du fonctionnement

du réseau, sans plus de précisions quant à l’aspect qualitatif. Ainsi, il est seulement possible

de décrire quelle quantité d’information transite via le réseau, mais rien ne peut être dit au

sujet de ce qui circule dans le réseau (concernant les données ou la forme des messages).

Deuxièmement, nous faisons implicitement l’hypothèse que la quantité d’information

transitant par un canal est une grandeur continue, nonobstant la granularité intrinsèque

des données. Il serait sans doute plus réaliste de considérer que le flot sur un canal est un

multiple entier d’une certaine unité de débit élémentaire.

Troisièmement, le modèle de flot considéré dans cette thèse est statique, ou au mieux

stationnaire. Il n’est donc pas possible de prendre directement en compte la dynamique

du réseau. Il est néanmoins possible d’adapter ces modèles à un cadre dynamique par

l’incorporation d’un modèle dynamique discret, au prix d’une complexité de résolution

accrue. Indépendamment de ces limitations, l’approche présentée ici permet de définir for-

18

mellement, voire de calculer, certaines quantités utiles à la prise de décisions, comme la

quantité maximum d’information qu’il est possible de transmettre via le réseau, depuis une

source vers un ensemble de terminaux. En dépit de son apparente simplicité, ce modèle

permet de formuler certains problèmes dont la complexité dépasse nos capacités de trai-

tement actuelles. En pratique, ce modèle de flot fournit une intuition précieuse quant au

comportement d’un réseau de télécommunications.

Nous allons maintenant détailler le modèle de capacité d’un canal en fonction du type de

graphe considéré. Nous étudions un réseau avec deux nœuds u et v qui peuvent directement

communiquer via un canal. Lorsque le graphe est bi-orienté, chaque arc du lien entre u et

v dispose de sa capacité propre. Nous supposons en outre que la capacité de l’arc (u, v)

vaut exactement celle de l’arc (v, u). Si le graphe est non orienté, chacun des deux sens

de communication, de u vers v ou de v vers u, dispose d’une capacité ajustable de sorte

que la somme de ces deux capacités variables égale la capacité fixe du canal. Enfin, pour

un graphe orienté, chaque arc dispose d’une capacité qui lui est propre. En notant c la

capacité du canal, la table 2 résume les propriétés de ce canal suivant le type de graphe.

Structure Canal Capacité
Bi-orienté Lien c(u,v) = c et c(v,u) = c

Non orienté Arête c(u,v) + c(v,u) = c

Orienté Arc c(u,v) = c

Table 2 – Modèle de la capacité du canal en fonction du type de graphe.

On considère à présent un exemple classique de réseau, représenté sur la figure 1, appelé

réseau papillon / "butterfly network" dans la littérature (en raison de sa forme). Ce réseau

est composé d’un nœud source s, de quatre nœuds intermédiaires n1, n2, n3, n4 et de

deux terminaux r1, r2. Nous choisissons de le modéliser par un graphe orienté de sorte

qu’à chaque canal est associé un arc dont la capacité est égale à 1 message par unité de

temps. Cela signifie que l’envoi du message a depuis la source vers le nœud intermédiaire

n1 entraînerait l’occupation de la totalité du canal (s, n1) pendant une unité de temps.

Supposons que chacun des deux terminaux r1 et r2 souhaite obtenir les deux messages

a et b détenus par le nœud source s. L’objectif est de communiquer simultanément les

deux messages à chacun des deux terminaux par une suite de transmissions qui respecte

19

la topologie du réseau. Il est intéressant de remarquer que, si le problème consistait à

acheminer les deux messages à un seul terminal, r1 ou r2, il suffirait de transmettre les

deux messages suivant deux chemins arc-disjoints.

Figure 1 – Le réseau papillon orienté avec une capacité unitaire sur chaque arc.

Bien qu’ils lui empruntent son champ lexical, les modèles présentés jusqu’ici ne sont

nullement spécifiques au domaine des télécommunications, au sens où le concept de réseau

avec des capacités sur les liens est couramment utilisé pour modéliser des systèmes de

distribution d’eau, de gaz, ou d’énergie, voire des réseaux biologiques. Cela nous amène à

nous interroger quant aux spécificités d’un réseau de télécommunications ou, dit autrement,

aux propriétés intrinsèques d’un flot d’information qui le distingue d’un flux de matière. Une

des caractéristiques fondamentales de la donnée réside dans la possibilité de la manipuler,

de la transformer ou de la dupliquer. Si ces propriétés ne semblent pas particulièrement

attractives lorsque le problème consiste à acheminer de l’information depuis une source vers

un terminal, sauf pour gérer les erreurs de transmission, nous allons voir que la possibilité

d’effectuer des opérations élémentaires sur la donnée révèle tout son intérêt dans le cadre

de la transmission d’un même contenu depuis une source vers un groupe de terminaux.

20

Opérations sur les données

Unicast

L’opération la plus simple et la plus classique qu’un nœud d’un réseau de télécommu-

nications puisse effectuer est le transfert de données, ce qui donne naissance au principe de

transmission appelé unicast dans la littérature des télécommunications. Le nœud reçoit un

message en provenance d’un autre nœud sur un de ses canaux d’entrée et le transfère via

un de ses canaux de sortie à destination d’un troisième nœud, suivant le schéma représenté

sur la figure 2.

Figure 2 – Schéma de principe d’une transmission unicast. Le nœud intermédiaire n reçoit
un flot de données comportant le message a sur un canal d’entrée et transmet le message
en transférant le flot de données sur un canal de sortie.

On observe que l’ensemble des canaux utilisés pour acheminer le message depuis une

source vers un terminal induit un chemin simple dans le graphe associé au réseau. L’utili-

sation de transmissions unicast dans le réseau papillon orienté peut donner naissance à la

situation dépeinte sur la figure 3 où chaque terminal obtient le message a.

Multicast

Une autre opération élémentaire consiste à dupliquer la donnée afin d’obtenir une co-

pie conforme du message d’origine. Il s’agit exactement du principe sur lequel repose la

transmission multicast : au lieu de simplement transmettre la donnée reçue sur un canal

d’entrée, un nœud intermédiaire du réseau peut réaliser un certain nombre de copies du

message avant de transmettre chaque copie sur un de ses canaux de sortie, comme repré-

senté sur la figure 4. Cette technique astucieuse permet d’économiser de la bande passante

(la capacité consommée), puisqu’il n’est plus nécessaire d’acheminer la même information

plusieurs fois afin d’atteindre tous les terminaux, comme illustré par la figure 5. De par

ce principe de parcimonie, un message transitant au plus une fois par chaque canal, l’en-

21

Figure 3 – Utilisation de la technique unicast dans le réseau papillon orienté.

Figure 4 – Schéma de principe d’une transmission multicast. Le nœud intermédiaire n
reçoit un flot de données comportant le message a sur un canal d’entrée, puis duplique
ce message afin de transférer simultanément deux flots de données comportant le même
message sur ses canaux de sortie.

semble des canaux utilisés pour acheminer un message donné depuis un nœud source vers

un groupe de terminaux induit un arbre dans le graphe associé au réseau.

Cet arbre est enraciné au niveau du nœud source, couvre tous les terminaux et peut

utiliser un sous-ensemble de nœuds intermédiaire afin de transmettre le message. Par la

suite, un tel sous-graphe sera appelé un arbre de Steiner par rapport à la source et aux

terminaux. Permettre à tous les nœuds du réseau papillon orienté de réaliser des opéra-

tions de copie des messages obtenus en entrée peut mener à la configuration dépeinte sur

la figure 6. On voit sur le schéma de la figure 6 que, bien que les nœuds n1, n2 et n4

réalisent des opérations de copie, la configuration présentée ne permet pas d’acheminer les

deux messages a et b à chacun des deux terminaux, puisque le terminal r2 n’obtient que le

message b. Pour satisfaire les deux requêtes, il est nécessaire de transmettre simultanément

les deux messages via le canal (n3, n4), ce qui est impossible en l’état, puisque l’envoi d’un

22

Figure 5 – Comparaison entre a) la technique unicast et b) la technique multicast, pour un
petit réseau. En unicast, le nœud intermédiaire n peut uniquement transmettre la donnée
transférée par le nœud source, de sorte que chaque message doit être envoyé deux fois
via le canal (s, n) (une fois pour chaque terminal). Si l’on autorise le nœud n a dupliquer
le message, grâce à la technique multicast, il suffit d’expédier une seule fois le message
à travers le canal (s, n), ce qui implique que la consommation de bande passante de ce
dernier canal est divisée par deux.

seul message consomme la totalité de la capacité du canal. Cela signifie que l’utilisation

de la technique du multicast seule ne permet pas de résoudre notre problème de commu-

nication. Bien que cela ne constitue pas le sujet du présent document, nous souhaitons

mentionner que l’utilisation de la technique multicast requiert l’emploi de protocoles de

communication spécifiques. Le lecteur pourra consulter le livre de Williamson [8], l’étude

d’Obraczka [9], le tutoriel par Sahasrabuddhe et Mukherjee [10], ou encore l’étude de Hos-

seini et al. [11] pour plus d’informations sur le multicast. Notre approche se concentre sur

les problèmes d’optimisation liés à l’emploi de la technique multicast au sein d’un réseau

de télécommunications. Le lecteur pourra consulter l’étude de Oliveira et Pardalos [12], qui

traite précisément de ce sujet. Enfin, le multicast présenté ici est lié aux problèmes d’arbres

de Steiner. Ces derniers sont étudiés dans l’ouvrage de Cheng et Du [13]. Le lecteur pourra

également consulter le livre de Du et Hu [14], qui est plus spécifiquement orienté vers les

problèmes de télécommunications.

Codage réseau

La notion de codage réseau / "network coding" a été formellement introduite en l’an

2000 dans le papier de Ahlswede et al. [15]. Le codage réseau repose sur l’idée d’offrir

à un nœud d’un réseau de télécommunications la possibilité d’effectuer des opérations

de codage. L’idée de coder un message au niveau du nœud source est assez ancienne, et

23

Figure 6 – Utilisation de la technique multicast dans le réseau papillon orienté.

permet notamment de réduire l’impact des erreurs de transmission. La nouveauté provient

de ce que la donnée puisse également être codée au niveau des nœuds intermédiaires du

réseau. Formellement, un nœud intermédiaire reçoit un ensemble de messages via ses canaux

d’entrée. Le nœud va alors combiner ces messages entre eux de sorte à créer (au moins) un

nouveau message codé, qu’il va ensuite diffusé sur ses canaux de sortie, comme illustré sur

la figure 7.

Figure 7 – Schéma de principe du codage réseau. Le nœud intermédiaire n obtient deux
flots de données via ses canaux d’entrée, l’un des flots comportant le message a, l’autre
le message b. Ce nœud va alors combiner ces deux messages afin de produire un nouveau
message codé c, qu’il va par la suite diffuser sur son canal de sortie, en transmettant un
nouveau flot de données. Dans cet exemple, les deux messages a et b sont représentés par
un octet, de sorte que le message codé c est obtenu par application d’une opération de ou
exclusif / xor sur chaque composante des messages d’entrée, suivant le tableau ci-dessous :

⊕ 0 1

0 0 1

1 1 0

Sauf mention explicite du contraire, nous supposerons toujours que les techniques de

24

codage sont déployées au sein d’un réseau où il est déjà possible d’utiliser la technique du

multicast, de sorte que chaque nœud du réseau peut appliquer des opérations de duplication

et de codage sur ses données d’entrée.

Nous considérons à présent la configuration dépeinte par la figure 8 dans le réseau

papillon orienté. Le nœud intermédiaire n3 effectue une opération de codage tandis que les

Figure 8 – Combinaison des techniques de multicast et de codage dans le réseau papillon
orienté.

nœuds n1, n2 et n4 dupliquent leur entrée sur leurs sorties (multicast). Sous réserve que

chaque terminal soit capable de décoder le message codé c reçu à partir de l’autre message

obtenu, chaque terminal va bien retrouver les deux messages a et b. En ce qui concerne

le décodage, le terminal r1 reçoit le message codé c et le message original a. Dans notre

exemple, il est possible de reconstruire le message original b en effectuant à nouveau une

opération de ou exclusif / xor sur chaque composante des deux messages sus-mentionnés.

De même, à partir du message codé c et du message original b, le terminal r2 peut également

retrouver le message original a. Cela signifie que la combinaison des techniques multicast

et codage réseau permet bien de résoudre notre problème de départ, là où le multicast seul

ne pouvait fournir de solution.

Il faut cependant prendre garde à ce que l’utilisation de techniques de codage implique

la conception d’un schéma de codage, c’est-à-dire qu’il est nécessaire de préciser pour chaque

nœud du réseau les opérations de codage qu’il doit effectuer, ce qui inclut le type de code

25

a utiliser, afin que la suite des opérations de codage réalisées au niveau de l’ensemble du

réseau permette à chaque terminal de décoder l’information. La figure 8 dépeint un schéma

de codage dans le réseau papillon orienté. Cette étape de construction d’un schéma de

codage s’ajoute à celle de la conception du plan d’acheminement des données à travers

le réseau, qui est présente quelles que soient les techniques employées. Une présentation

détaillée des techniques de codage proposées dans la littérature du codage réseau dépasse

le cadre du présent document. Nous nous bornerons à renvoyer le lecteur vers le papier

de Ahlswede et al. [15] ou vers l’ouvrage de Yeung [16] pour une étude du lien entre le

codage réseau et la théorie de l’information. Le lecteur pourra également consulter le livre

de Fragouli et Soljanin [17] et celui de Médard et Sprintson [18] pour une introduction plus

complète au domaine du codage réseau. Enfin, le lecteur intéressé par le codage réseau peut

aussi lire l’étude de Matsuda et al. [19] ou bien celle de Bassoli et al. [20].

Contenu de la thèse

Organisation

Le contenu du présent manuscrit est réparti à travers cinq chapitres principaux, numé-

rotés de deux à six, le premier chapitre correspondant à l’introduction générale. Chaque

chapitre traite d’un sujet propre, de sorte que les chapitres sont relativement indépendants

entre eux. Cela n’exclut cependant pas l’existence de liens entre ces chapitres, représentés

sur la figure 9. Nous allons à présent détailler le contenu de chaque chapitre.

Flots d’information

Le second chapitre peut être considéré comme un état de l’art des modèles de flots

d’informations étudiés tout au long du manuscrit. Dans ce chapitre, nous nous concen-

trons sur le problème consistant à maximiser la quantité d’information qu’il est possible

de transmettre depuis une source vers un ensemble de terminaux. Nous commençons par

présenter le problème classique du flot maximum qui est au cœur de l’optimisation dans

les réseaux [7]. Nous montrons ensuite comment ce problème peut être généralisé au cas

d’un réseau multicast où une source délivre un même contenu à un ensemble de termi-

26

Figure 9 – Dépendances entre les chapitres. (Une flèche du Chapitre A vers le Chapitre B
est une incitation à lire A avant B.)

naux. Pour cela, nous introduisons le concept de flot de Steiner qui modélise un processus

d’acheminement des données via des arbres de Steiner. Un exemple de flot de Steiner est

donné sur la figure 10. Nous montrons comment résoudre le problème du flot de Steiner

maximum via un algorithme de génération de colonnes. Nous définissons ensuite un flot

codé à partir de la littérature sur le codage dans les réseaux multicast. Nous expliquons

alors comment le problème de flot codé maximum peut être résolu en temps polynomial via

la programmation linéaire ou des méthodes d’optimisation dans les réseaux. Enfin, nous

introduisons la notion de gain de codage telle qu’elle a été définie dans la littérature sur le

codage réseau, afin d’évaluer l’impact de ces techniques de codage sur le débit attendu dans

un réseau multicast. Nous présentons également les résultats théoriques et expérimentaux

associés à ce gain de codage.

Flots d’information multi-commodités

Dans le troisième chapitre, nous présentons une extension des modèles de flots d’in-

formation présentés lors du précédent chapitre, afin de traiter du cas multi-commodités.

27

Figure 10 – Un exemple de flot de Steiner dans le réseau papillon orienté avec une capacité
unitaire sur chaque arc. Chacun des trois arbres de Steiner permet d’acheminer 1

2 unités
de flot, pour un débit maximum de valeur 3

2 .

Une commodité, ou session, est la donnée d’une source et d’un ensemble de terminaux qui

souhaitent recevoir des données en provenance de ce nœud source. Un exemple d’instance

est représenté sur la figure 11. Nous supposons qu’un opérateur unique décide de l’ache-

minement de l’information depuis les sources vers les terminaux et de la répartition de la

bande passante au niveau de chaque lien du réseau. Bien que chaque commodité soit dispo-

sée à coopérer avec les autres, nous supposons en revanche que ces dernières ne souhaitent

pas voir leurs données codées avec celles des autres commodités, ce par exemple pour des

raisons de confidentialité de l’information. Un exemple de schéma de codage respectant

cette dernière contrainte est donné sur la figure 12.

Nous considérons alors la somme pondérée ou la proportion minimum de la demande de

chaque commodité comme critères à maximiser, et nous étudions les problèmes de flot d’in-

formation associés. Nous étudions la complexité de chaque problème, et montrons comment

adapter les idées présentées au précédent chapitre pour concevoir des algorithmes adaptés

à ce nouveau cadre. Nous donnons également des résultats d’approximation concernant les

flots de Steiner, grâce à l’approche proposée par Garg et Könemann [21], et étendue par

Fleischer [22]. Nous généralisons ensuite le concept de gain de codage, tel que présenté

dans le précédent chapitre, à chaque critère, puis nous dérivons des résultats théoriques et

expérimentaux pour chacun des gains.

28

Figure 11 – Un réseau obtenu en fusionnant deux copies du réseau papillon orienté. La
source s1 cherche à transmettre ses données aux terminaux r1 et r2 tandis que la source s2
tente de faire de même avec les terminaux r2 et r3. Chaque arc du réseau est muni d’une
capacité unitaire sauf l’arc (n2, r2) dont la capacité est de 2. La transmission d’un message
via un lien consomme une unité de capacité de ce lien.

Flots d’information à coût minimum

Le quatrième chapitre est motivé par le phénomène de congestion dans les réseaux de

télécommunications. Nous adaptons nos modèles de flot d’information au problème de la

recherche d’un flot de coût minimum qui satisfasse une demande donnée, dans un réseau

où le délai de propagation de l’information à travers un lien est modélisé par une fonction

de coût non linéaire et convexe, du type Kleinrock [23], du flot qui transite par ce lien. Un

exemple d’une telle fonction de coût est donné sur la figure 13.

Nous étudions la complexité de chaque problème de minimisation du coût d’un flot

d’information puis nous proposons un algorithme, basé sur la méthode du gradient et

l’optimisation convexe, afin de calculer efficacement un flot d’information qui limite autant

que possible l’impact du phénomène de congestion. Nous montrons explicitement comment

la résolution d’un problème de flot d’information à coût minimum avec une fonction de coût

non linéaire mais convexe peut-être ramené à la résolution d’une suite de problèmes de flot

d’information à coût minimum avec une fonction de coût linéaire. Nous étendons ensuite

la notion de gain de codage au présent contexte et nous donnons des résultats théoriques

et expérimentaux sur les valeurs possibles de ce gain.

29

Figure 12 – Un schéma de codage associé à un multi-flot utilisant le codage dans le réseau
précédent. Le message c est obtenu par codage des messages a et b tandis que le message
z est le résultat du codage des messages x et y. Chaque terminal reçoit 2 unités de flot par
commodité à laquelle il appartient.

Flots d’information à coût minimum tolérant aux pannes

Le cinquième chapitre traite de la tolérance aux pannes dans les réseaux de télécom-

munications. Nous étudions le problème de calcul d’un flot d’information à coût minimum,

qui satisfasse une demande donnée, dans un réseau soumis à la possibilité qu’un seul lien

tombe en panne. Nous supposons naturellement qu’il n’est plus possible d’acheminer de

l’information à travers un lien lorsque celui-ci tombe en panne. Dans le cas d’un flot de

Steiner, l’impact d’une panne d’arc sur un arbre est décrit sur la figure 14. Afin de simplifier

notre étude, nous nous focalisons sur le cas où le coût de transit sur chaque lien est une

fonction linéaire du flot qui le traverse. Nous cherchons alors un plan d’acheminement de

l’information statique qui garantisse que la demande soit satisfaite quel que soit le lien du

réseau qui tombe en panne. Nous étudions la complexité de chaque problème de minimisa-

tion du coût d’un flot d’information tolérant aux pannes et proposons un algorithme, basé

sur la programmation linéaire, pour le résoudre en pratique. Nous introduisons enfin un

gain de codage associé au présent contexte puis nous donnons des résultats théoriques et

expérimentaux sur les valeurs possibles de ce gain.

30

0

50

100

150

200

c
o
s
t

0 0.2 0.4 0.6 0.8 1

load = ow / capacity

0.01

0.1

1

10

100

1000

104

c
o
s
t

0 0.5 1 1.5 2

load = ow / capacity

Figure 13 – Courbe d’une fonction de coût de type Kleinrock en fonction de la charge du
lien (le ratio flot sur capacité du lien). Le coût d’acheminement de l’information via le lien
devient prohibitif lorsque la charge dépasse 90%.

Flots d’information tolérant aux pannes

Dans le sixième chapitre, nous poursuivons l’étude commencé au chapitre précédent sur

les problèmes de conception de flot d’information tolérant aux pannes. Dans ce chapitre,

nous nous intéressons à la maximisation du débit résiduel expérimenté par chaque terminal

dans le pire cas de panne d’un lien du réseau. Nous étudions à nouveau la complexité de

chaque problème de maximisation du débit d’un flot d’information tolérant aux pannes

et nous fournissons un algorithme, toujours basé sur la programmation linéaire, pour le

résoudre efficacement. Nous mettons également l’accent sur les liens très fort qui unissent

les problèmes présentés dans ce chapitre et ceux étudiés dans le chapitre précédent. En

particulier, nous introduisons à nouveau un gain de codage et nous montrons que ce dernier

est directement lié au gain de codage du chapitre précédent. Nous en déduisons des résultats

théoriques sur les valeurs possibles de ce nouveau gain, avant de donner d’autres résultats

expérimentaux. Si le chapitre précédent peut être vu comme une tentative d’évaluer le coût

de prise en compte des pannes, celui-ci a pour objectif d’estimer la résistance d’un réseau

face à la possibilité qu’un lien tombe en panne.

31

Figure 14 – a) Un réseau orienté avec une source et trois terminaux. b) Un arbre de
Steiner qui n’utilise pas le lien (s, a) n’est pas affecté par la panne de ce lien. c) Un arbre
de Steiner qui utilise le lien (s, a) ne peut plus acheminer de flot jusqu’au terminal r1,
comme suggéré par la ligne en pointillé, mais peut toujours délivrer de l’information aux
terminaux r2 et r3.

Conclusion

Résumé

Dans cette thèse, nous étudions des modèles de flot d’information dans les réseaux de

télécommunications par le prisme de l’optimisation mathématique. La possibilité de réali-

ser des opérations comme la copie ou le codage des données, combiné avec l’augmentation

de la puissance de calcul disponible au niveau des nœuds du réseau, permet d’envisager

l’utilisation de techniques d’acheminement de l’information prometteuses, comme le mul-

ticast ou le codage réseau, afin d’aider l’opérateur à faire face aux tendances qui émergent

dans l’usage qui est fait de son réseau.

À cette fin, il est nécessaire de développer de nouveaux outils afin de faciliter le proces-

sus de prise de décisions du praticien quant à la conception et au choix des caractéristiques

d’un réseau. L’objectif de cette thèse est donc de proposer de tels outils d’optimisation des

flots d’information dans les réseaux. En focalisant notre attention sur les modèles et sur

les algorithmes, nous laissons tout loisir à la communauté des praticiens des télécommuni-

cations d’évaluer les bénéfices du déploiement d’une technique donnée au sein d’un réseau

particulier. Nous espérons que les outils présentés ici permettront de faciliter la résolution

de certains problèmes qui se posent naturellement dans le cadre des flots d’information.

32

En pratique, l’utilisation de la technique du multicast est limitée par des restrictions

sur le nombre d’arbres qu’il est possible de gérer lorsqu’un opérateur souhaite acheminer

de l’information dans un réseau. Pour cette raison, nous focalisons notre attention sur

des méthodes itératives, comme la génération de colonnes ou la descente de gradient, qui

peuvent renvoyer des solutions impliquant peu d’arbres en un temps raisonnable, et nous

laissons de côté d’autres types de méthodes. En ce qui concerne l’utilisation de techniques

de codage, nous gardons constamment à l’esprit qu’il est dans la pratique nécessaire de

concevoir un schéma de codage afin de compléter le plan d’acheminement de l’information

au sein du réseau.

Pistes de recherche

Nous allons à présent suggérer certaines pistes de recherche qui nous semblent dignes

d’investigation, mais que nous avons dû laisser en jachère par manque de temps.

En ce qui concerne les gains de codage, de nombreuses questions pertinentes demeurent

en suspens. En particulier, la finesse des résultats théoriques démontrés dans la littérature

et dans le présent manuscrit reste sujette à amélioration. Nous ignorons également s’il est

possible de décider en temps polynomial du bénéfice de la mise en place de techniques de

codage au sein d’un réseau multicast lorsque le critère est le gain de codage.

De même, et toujours au sujet de la complexité des problèmes étudiés, nous sommes

incapables de déterminer celles des deux problèmes d’optimisation de flot de Steiner pré-

sentés aux chapitres cinq et six. Nous avons cependant démontrés que les sous-problèmes

associés sont NP-difficiles. De même, nous ne savons rien quant à la possibilité de concevoir

un algorithme approché pour chacun de ces problèmes. Cette question se pose également

pour le problème de flot de Steiner présenté dans le quatrième chapitre. Enfin, la concep-

tion d’algorithmes décentralisés pour résoudre en temps polynomial les divers problèmes

de flot codé décrits dans cette thèse est une problématique pertinente pour les praticiens

des télécommunications.

Enfin, nous supposons tout au long du manuscrit que chaque nœud du réseau est capable

de réaliser toutes les opérations nécessaires, comme la copie ou le codage des données. Dans

la pratique, ces opérations nécessitent l’installation d’un dispositif spécifique au niveau

33

de chaque nœud du réseau (au minimum un composant logiciel), de sorte qu’il est sans

doute plus réaliste de supposer que seul un sous-ensemble des nœuds pourra effectuer des

opérations complexes, les autres nœuds restant cantonnés à un rôle de transmission des

données. Ainsi, de nombreux problèmes intéressants apparaissent dans ce nouveau contexte.

Contents

1 Introduction 45

1.1 Motivations . 45

1.2 Telecommunication network . 46

1.2.1 Vocabulary of graph theory . 46

1.2.2 Network topology . 47

1.2.3 Flow model . 48

1.3 Performing operations on data . 52

1.3.1 Unicast . 52

1.3.2 Multicast . 52

1.3.3 Network coding . 54

1.4 Content of the PhD . 57

1.4.1 Goals . 57

1.4.2 Methodology . 58

1.4.3 Dissertation outline . 58

2 Maximum information flows 61

2.1 Introduction . 61

2.1.1 Motivation . 61

2.1.2 Content . 61

35

2.1.3 Maximum flow and the notion of throughput 62

2.2 Maximum Steiner flow . 68

2.2.1 Steiner trees . 68

2.2.2 Problem statement . 68

2.2.3 A detailed example . 70

2.2.4 Linear programming formulation . 74

2.2.5 Example continued . 75

2.2.6 Complexity and algorithms . 75

2.2.7 Computing a maximum Steiner flow by column generation 79

2.2.8 Greedy packing of widest Steiner trees 80

2.3 Maximum coded flow . 82

2.3.1 Problem statement . 82

2.3.2 A detailed example . 85

2.3.3 Linear programming formulations . 87

2.3.4 Complexity and algorithms . 90

2.3.5 Coding scheme . 92

2.4 Features of the information flows . 94

2.4.1 Coding gain . 94

2.4.2 Example continued . 96

2.4.3 Features of the coding gain . 96

2.5 Conclusion . 103

3 Multicommodity information flows 105

3.1 Introduction . 105

3.1.1 Motivation . 105

3.1.2 Content . 106

36

3.1.3 Multicommodity flows . 106

3.2 Multicommodity Steiner flows . 112

3.2.1 Setting . 112

3.2.2 Maximum weighted multicommodity Steiner flow 113

3.2.3 Maximum concurrent Steiner flow . 121

3.3 Multicommodity coded flows . 125

3.3.1 Setting . 125

3.3.2 Maximum weighted multicommodity coded flow 126

3.3.3 Maximum concurrent coded flow . 132

3.4 Features of the information flows . 137

3.4.1 Multicommodity coding gains . 137

3.4.2 Features of the multicommodity coding gains 138

3.4.3 Experimental evaluation of the multicommodity coding gains 143

3.5 Conclusion . 153

4 Convex cost information flows 155

4.1 Introduction . 155

4.1.1 Motivation . 155

4.1.2 Content . 155

4.1.3 Minimum convex cost flow . 156

4.2 Minimum convex cost Steiner flow . 159

4.2.1 Problem statement . 159

4.2.2 A detailed example . 161

4.2.3 Mathematical programming formulation 163

4.2.4 Complexity and algorithms . 163

4.2.5 Bounds on the value of a minimum-cost Steiner flow 164

37

4.2.6 Algorithm . 167

4.3 Minimum convex cost coded flow . 173

4.3.1 Problem statement . 173

4.3.2 Example continued . 174

4.3.3 Mathematical programming formulations 175

4.3.4 Complexity and algorithms . 177

4.3.5 A new algorithm . 178

4.3.6 Coding scheme . 182

4.4 Features of the information flows . 182

4.4.1 Cost coding gain . 182

4.4.2 Features of the cost coding gain . 183

4.4.3 Experimental evaluation of the convex cost coding gain 188

4.5 Conclusion . 195

5 Minimum cost survivable information flows 197

5.1 Introduction . 197

5.1.1 Motivation . 197

5.1.2 Content . 197

5.1.3 Minimum cost survivable flow . 198

5.2 Minimum cost survivable Steiner flow . 201

5.2.1 Problem statement . 201

5.2.2 A detailed example . 203

5.2.3 Linear programming formulation . 204

5.2.4 Complexity and algorithms . 205

5.2.5 Redundant Steiner trees . 212

38

5.2.6 Computing a minimum cost survivable Steiner flow by column gen-

eration . 214

5.3 Minimum cost survivable coded flow . 215

5.3.1 Problem statement . 215

5.3.2 Example continued . 218

5.3.3 Linear programming formulations . 218

5.3.4 Complexity and algorithms . 221

5.3.5 Coding scheme . 221

5.4 Features of the information flows . 222

5.4.1 Survivable cost coding gain . 222

5.4.2 Features of the survivable cost coding gain 223

5.4.3 Experimental evaluation of the survivable cost coding gain 228

5.5 Conclusion . 232

6 Maximum survivable information flows 235

6.1 Introduction . 235

6.1.1 Motivation . 235

6.1.2 Content . 235

6.1.3 Maximum survivable flow . 236

6.2 Maximum survivable Steiner flow . 239

6.2.1 Problem statement . 239

6.2.2 A detailed example . 241

6.2.3 Linear programming formulation . 243

6.2.4 Complexity and algorithms . 244

6.2.5 Computing a maximum survivable Steiner flow by column generation 244

6.2.6 Nominal and residual throughputs 245

39

6.3 Maximum survivable coded flow . 245

6.3.1 Problem statement . 245

6.3.2 Example continued . 248

6.3.3 Linear programming formulations . 248

6.3.4 Complexity and algorithms . 251

6.3.5 Coding scheme . 252

6.3.6 Nominal and residual throughputs 253

6.4 Features of the information flows . 254

6.4.1 Survivable coding gain . 254

6.4.2 Features of the survivable coding gain 255

6.4.3 Experimental evaluation of the survivable coding gain 262

6.5 Conclusion . 268

7 Conclusion 269

7.1 Wrap up . 269

7.2 Future research . 271

A Basics of linear programming 287

A.1 Linear programming . 287

A.1.1 A brief history . 287

A.1.2 Problem statement . 287

A.1.3 Duality . 288

A.1.4 Integer linear programming . 290

A.1.5 Column generation . 290

A.1.6 Summary . 292

A.2 Linear programming and the maximum flow problem 292

40

B Approximation algorithms 295

B.1 The framework of Garg and Könemann . 295

B.1.1 Reformulation of the covering problem 295

B.1.2 Framework of the algorithm . 296

B.1.3 Approximation guarantee . 297

B.1.4 Running time . 299

B.1.5 Algorithm . 300

B.2 The framework of Fleischer and Wayne . 301

B.2.1 A reformulation of the dual problem 301

B.2.2 Framework of the algorithm . 301

B.2.3 Approximation guarantee . 303

B.2.4 Running time . 305

B.2.5 Algorithm . 306

C Coding gains 309

C.1 Multicommodity coding gains . 309

C.1.1 Multicommodity coding gain . 309

C.1.2 Concurrent coding gain . 311

C.1.3 Cost coding gain . 312

C.1.4 Survivable cost coding gain . 312

C.1.5 Survivable coding gain . 314

42

Nomenclature

χC Cost of a minimum-cost survivable coded flow

χS Cost of a minimum-cost survivable Steiner flow

δ+(v) Set of arcs with the vertex v as origin

δ−(v) Set of arcs with the vertex v as destination

ℓ A link (pair of arcs) of a bidirected network

λC Value of a maximum concurrent coded flow

λS Value of a maximum concurrent Steiner flow

φC Value of a maximum multicommodity coded flow

φS Value of a maximum multicommodity Steiner flow

ψC Cost of a minimum-cost coded flow

ψS Cost of a minimum-cost Steiner flow

ρC Value of a maximum survivable coded flow

ρS Value of a maximum survivable Steiner flow

ϕC Value of a maximum coded flow

ϕS Value of a maximum Steiner flow

A Set of all arcs of a directed or bidirected network

a An arc of a directed or bidirected network

B A bidirected network

43

ca Capacity of the arc a

D A directed network

d Demand

E Set of all edges of an undirected network

e An edge of an undirected network

fa The amount of flow on the arc a

G An undirected network

gχ Survivable cost coding gain

gλ Concurrent coding gain

gφ Multicommodity coding gain

gψ Cost coding gain

gρ Survivable coding gain

gϕ Coding gain

ha The amount of coded flow on the arc a

L Set of all links of a bidirected network

p A simple path

R A set of receivers vertices of the network

s A source vertex of the network

t A Steiner tree

V Set of all vertices of a network

wa Weight of the arc a

xp The amount of flow on the simple path p

xt The amount of flow on the Steiner tree t

P Set of paths

T Set of Steiner trees

Chapter 1

Introduction

1.1 Motivations

Telecommunication networks and the Internet have emerged as one of the most fun-

damental changes in recent human history. By allowing almost-instantaneous, cheap, and

reliable communication across the world, modern telecommunication drastically impacted

the way we interact with others and our environment: instead of being limited to its im-

mediate surrounding, anyone can presently interact with people or connected machines

located an hemisphere away. Furthermore, although most of our everyday actions are still

performed with the intent of immediately interacting locally with our surrounding environ-

ment, the possibility of broadcasting those actions may multiply, delay, or even transform

their impact in an unpredictable way, to the point where an initially local phenomenon may

become global through positive feedback, in the cybernetic meaning of this term, induced

by the telecommunication network.

From a historical perspective, the first telecommunication devices, like messenger pi-

geons, the telegraph, or the phone, were designed for point to point communications: one

sender wishes to transmit a message to a single receiver. This was also true in the early

stages of the Internet. Nowadays, the increasing demand for new kinds of services, like

video-streaming or live-teleconferencing, along with the now common situation where the

same content is simultaneously requested by a huge number of users, stress the need for

point to many data transmission protocols: one sender wishes to transmit the same data

to a set of receivers. This evolution offers new opportunities to develop corresponding

45

services for various customers, but it also emphasizes the need for new ways of adapting a

telecommunication network so it can cope with those required changes. One such way is

to modify the routing techniques currently used in wired networks, which relies on packets

forwarding. A promising way lies in allowing nodes of a telecommunication network to

perform more operations than merely forwarding data.

We first provide a brief description of the core concept of a telecommunication network,

then we describe how current forwarding mechanisms could be empowered to handle data

distribution in a more efficient way. Finally, we summarize our goals, our methodology and

the content of this dissertation.

1.2 Telecommunication network

1.2.1 Vocabulary of graph theory

Since a telecommunication network is often depicted through a graph, some basic no-

tions of graph theory naturally appear as a prerequisite to our discussion regarding network

optimization. An undirected graph G = (V,E) is made of a finite set V whose elements are

called vertices, along with a subset E of all pairs of distinct vertices of V , whose elements

will be referred to as edges. A directed graph, or digraph, D = (V,A) consists of a finite set

V of vertices, along with a subset A of all couples of distinct vertices of V , whose elements

are called arcs. Finally a bidirected graph B = (V,A) is a digraph such that for any pair of

vertices {u, v} of B, the couple (u, v) belongs to the set A if and only if the couple (v, u)

does. In the following, a graph will refer to either an undirected graph, or a digraph, or

a bidirected graph. Notice those definitions implicitly assume a graph to be loop-free and

devoid of multiple edges between any pair of vertices. We shall further assume that any

graph under consideration has at least two distinct vertices and at least one edge. The

order of a graph is its number of vertices while the size of a graph is its number of edges. A

graph G = (V ,E) is a subgraph of a graph G = (V,E), denoted by G ⊆ G, if V is a subset

of V and E is a subset of the intersection between E and the set of all pairs / couples of

distinct vertices of V . A path in a graph G is a subgraph of G whose edges can be ordered

in a sequence such that the extremity of one edge is the origin of the following one. A cycle

46

in a graph G is a path such that the extremity of the last edge is the origin of the first one

in the aforementioned sequence. A graph is acyclic if it does not contain a cycle among its

subgraphs. A path is simple if it is acyclic. A graph G is connected if there exists a path

between any pair of vertices in G. A tree in a graph G is a connected acyclic subgraph of

G. For a more extensive introduction to graph theory, the reader is referred to the book

by West et al. [1] or the classical book by Bondy and Murty [2]. The reader interested by

digraphs may have a look at the book by Bang-Jensen and Gutin [3]. Finally we would

like to point out the book by Chartrand et al. [4].

1.2.2 Network topology

Informally, a network is a finite collection of objects, called nodes, which are inter-

connected so as to allow distant communication between a subset of nodes called terminals.

A non-terminal node will be referred to as an intermediate one. In the following, a message

will be any piece of data which is structured so as to allow a node to proceed with it. A

message is made of two parts, a header which contains information for the network, and a

body where the actual content of the message lies. We usually distinguish among all the

terminals, a specific node called source node, which has all the available information, and

one or more receiver nodes, which are requesting the aforementioned information from the

source. We further assume that each node can receive a message from another one, then

forward it to a third one. We say that two nodes share a channel if it is possible for at

least one of those nodes to send a message to the other one without relying on any other

node as intermediate for the transmission. Observe that our definition of a network is

quite abstract and, as a consequence, a group of people randomly dispatched in a field,

each one yelling at the others, would qualify as a telecommunication network according to

our present description.

It is natural enough to model a network as a graph G = (V,E), where V is the set

of nodes and E is the set of links so that there is a link between a pair of nodes if and

only if those two nodes share a channel. The structure of this graph is constrained by the

considered network. If it is possible for any pair of nodes sharing a channel to communicate

in both directions simultaneously, then the underlying graph will be called bidirected. If

47

instead it is required that one node is listening while the other one is sending information

(they can play different roles at different times), the corresponding graph is undirected.

Finally, if each node in any given pair has a fixed role, either sender or listener, the graph

is directed. The type of graph used to model the network will have a huge impact on

both theoretical and practical results one can obtain. Table 1.1 below summarizes this

discussion.

Structure Channel Scheme

Bidirected Link
u v

Undirected Edge
u v

Directed Arc
u v

Table 1.1 – Scheme of each graph structure

In the following, we often implicitly identify the network, the physical device, with

its model, the graph. We usually rephrase this by saying that the graph captures the

underlying topology of the network. Furthermore, we shall often make a statement regarding

a network without any explicit mention of its underlying graph structure. The reader

should then understand that this particular statement holds regardless of the peculiar

graph structure. A network is connected with respect to a given set of terminals if and only

if, for any receiver, it is possible to find a path starting at the source and ending at this

receiver. Hence, a network is connected if and only if it is possible to convey information

from the source to any receiver through a finite sequence of messages passing between

nodes. For the sake of simplicity, we shall further assume the network to be connected in

the classical graph-theoretical sense and that any intermediate node in the network can

be used by the source to convey data to at least one receiver. We shall now focus our

attention on the information itself, which lies at the core of telecommunication.

1.2.3 Flow model

Given a network consisting of at least two nodes sharing a channel, we are looking for a

simple and generic way to describe the information propagation phenomenon taking place

48

along a channel. Since we are explicitly dealing with the network topology, we are looking

for a model which allows to deduce global properties from local ones: given the state of

each channel of the network, we should be able to fully characterize the state of the whole

network itself. Roughly speaking, a flow model summarizes the state of any channel by

a single positive real number called its flow or rate, corresponding to the amount of data

going through this channel every unit of time (expressed in bits per second for example).

Hence it becomes possible to describe the channel by a single quantity, called capacity,

which is the maximum rate this channel can sustain. Properly defining the capacity of a

channel is one of the main problems of the field called information theory, taking its roots

in the pioneering work of Shannon [5]. We refer the reader interested in digging into the

information theoretical definition of a channel capacity to the book by Cover and Thomas

[6]. For our purpose it will be sufficient to assume we are given, for each channel of the

network, a positive capacity, which we further assume to be a rational number a computer

can easily deal with. The proposed flow model allows one to formalize, and hopefully to

solve efficiently, a large class of network optimization problems [7]. It becomes possible to

answer questions like: "Is it possible to route this amount of flow from this source node to

this receiver node?", "What amount of flow should we route through each channel so as

to satisfy some given demand?", or "How should we modify this channel capacity so as to

meet a given request?". This simple model has at least three drawbacks: Firstly, it only

allows for a quantitative analysis of the behavior of a network, without more consideration

for the content itself. Hence, it is only possible to describe how much information is

going through the network, but nothing can be said about which information is actually

conveyed and the message structure cannot be encompassed by this approach. Secondly,

we implicitly assume the amount of information flowing through a channel is a continuous

quantity notwithstanding the actual granularity of data. To tackle this issue, it would be

more realistic to consider an integral number of messages by unit of time. Thirdly, this

flow model is either static, or at best stationary. Hence, it cannot deal with any dynamical

aspect of the network behavior. Regardless of such limitations, this approach allows one

to at least properly, read mathematically, define, then hopefully compute, some interesting

quantity like, for example, the average amount of information which can be conveyed from

49

the source to any receiver in the network. Despite its crude aspect, we will see that this

model often gives rise to problems whose computational complexity by far exceeds our

ability to deal with them. Nonetheless, this simple flow model also provides useful insights

on the behavior of practical networks.

We shall now describe our model of channel capacity as a function of the graph struc-

ture. Consider a network with at least two nodes u and v sharing a channel. When the

graph associated to this network is bidirected, we model the channel between nodes u and v

by a pair of directed arcs, one arc (u, v) from u to v, the other one in the reverse direction,

(v, u) from v to u. Each arc is equipped with its own capacity but we require the two

capacities on the arcs (u, v) and (v, u) to have the same value. However, when the graph

is undirected, the channel is modelled by a single edge with a capacity shared by the two

possible flows, one going from u to v, the other one from v to u. Finally, when the graph

is directed, assuming it is only possible to use the channel to convey information from u to

v, the model is given by a single arc (u, v) with a capacity value. Assuming any channel is

equipped with a capacity c, Table 1.2 summarizes the capacity model of each structure.

Structure Channel Capacity
Bidirected Link c(u,v) = c c(v,u) = c

Undirected Edge c(u,v) + c(v,u) = c

Directed Arc c(u,v) = c

Table 1.2 – Capacity model of each graph structure.

Although it is very common in the network optimization literature that the

directed version of a problem encompasses the undirected one, we would like

to point out that this will not always be the case along the present document.

In the following, we will precise the model hierarchy of each problem.

As an example, consider the network depicted on Figure 1.1, which we will refer to

as the directed butterfly network (the name comes from its butterfly shape), made of one

source s, four intermediate nodes n1, n2, n3, n4, and two receivers r1 and r2. Here,

we choose to model this network by a digraph. Each arc, corresponding to one of the

nine existing channels, has a unit capacity, measured in number of messages by unit of

time that can go through it. Hence, sending message a emitted by at the source on any

50

of its two output arcs, would consume the whole capacity of this arc for one time step.

Assume each receiver requests the two messages a and b, so one is looking for a way to

simultaneously convey both messages to each receiver by performing a sequence of step by

step data transfers according to the network topology. Notice that should only one receiver

actually requests the two messages, it would be easy to convey both messages by using

two arc-disjoint paths. Observe that, up to now, our discussion over telecommunication

Figure 1.1 – The directed butterfly network with unit capacity on each arc.

networks only makes use of telecommunication itself as a semantic field: the very notion

of a network with capacity on the channels can be and has been applied to model many

problems outside the field of telecommunication, ranging from water distribution systems

to biological networks. However, as already pointed out by Cover and Thomas, "the theory

of information flow in networks does not have the same simple answers as the theory of

flow of water in pipes." [6]. This important remark leads us to search some fundamental

features of an information flow. Thus, we are inquiring about the possibility offered by a

flow of data with respect to another common type of flow conveying a resource like water,

gas, or electricity. A fundamental feature of data is that it can be freely manipulated,

transformed, stored, and even cloned. Although this does not seems to be interesting if

one wishes to send data along a network from a given source to a single destination, except

for transmission losses handling, it appears that the ability to perform operations on data

inside the network gives rise to promising applications in the case one wishes to send the

51

same data from one source to a set of receivers. We shall now give more details on this

latter point.

1.3 Performing operations on data

1.3.1 Unicast

The most classical operation performed by any node of a telecommunication network

is to forward data. This principle of forwarding, referred to as unicast in the telecom-

munication literature, means a node simply transmits on only one of its output channels

a message previously obtained from one of its input channels, as depicted in Figure 1.2.

Observe that the set of edges used to convey a given message from the source to a receiver

Figure 1.2 – Scheme of the unicast principle. The intermediate node n receives a stream
of packets with message a from one of its input channels, then forwards this message by
releasing the stream of packets on one of its output channels.

induces a simple path in the network between the source and this peculiar receiver. Apply-

ing unicast techniques in the directed butterfly network may lead to the situation depicted

in Figure 1.3 where both receivers get message a.

1.3.2 Multicast

A simple operation one could perform with data is to replicate it so as to obtain a perfect

copy. This is exactly the principle underlying multicast: instead of merely forwarding the

received information, any intermediate node of the network is allowed to perform copies of

the data conveyed by its input channels, before simultaneously releasing those copies on

its output channels, as emphasized in Figure 1.4. This powerful technique allows one to

spare the precious bandwidth, or used capacity, since it is no longer required to send the

same information multiple times in order to reach each receiver, as depicted in Figure 1.5.

Because of this property of sparsity, any information being transmitted only once through

52

Figure 1.3 – Using the unicast technique inside the directed butterfly network.

Figure 1.4 – Scheme of the multicast mechanism. The intermediate node n first receives a
stream of packets with message a from its input channel, then it replicates this message so
as to create several streams of packets with the same message a which are simultaneously
released on its output channels.

a given edge, the set of used edges associated to the sequence of all transmissions of a

particular piece of data, from the source to the set of receivers, typically induces a subgraph

taking the shape of a tree, rooted at the source and spanning all receivers along with some

of the intermediate nodes. In the following a multicast tree, or Steiner tree, will refer to

such a construction. Back to the directed butterfly network, allowing all nodes to perform

multicast operations could lead to the configuration depicted in Figure 1.6. Observe that, in

Figure 1.6, although the network replicates data at intermediate nodes n1, n2, and n4, the

depicted configuration does not satisfy our expected requirement that both receivers should

get the two messages a and b, since receiver r2 only gets message b. To satisfy all requests,

one should be able to simultaneously send both messages through channel (n3, n4) which is

impossible since one message consumes the whole channel capacity. Hence, the multicast

technique alone appears insufficient to solve this particular forwarding problem. Although

53

Figure 1.5 – Comparison of a) the unicast setting and b) the multicast setting, on a small
network. In unicast the intermediate node n can only forward data received from the source.
Hence, any message has to be sent twice on the channel (s, n), once for each receiver. By
allowing node n to perform a multicast operation, replicating the received data, it becomes
sufficient to send the message only once on channel (s, n), effectively halving the consumed
bandwidth on this channel.

this manuscript does not delve into this direction, the multicast technique requires specific

protocols so as to convey information through a network. We refer the reader to the book by

Williamson [8], the survey by Obraczka [9], the tutorial by Sahasrabuddhe and Mukherjee

[10], and the survey by Hosseini et al. [11] for more information regarding this topic.

Instead, the present work focuses on multicast as a combinatorial problem. The interested

reader may read the survey by Oliveira and Pardalos [12] which specifically deals with this

latter topic. Since combinatorial multicast involves the use of Steiner trees, the classical

book by Cheng and Du [13] along with the more telecommunication focused one by Du

and Hu [14] may also be useful.

1.3.3 Network coding

The concept of network coding has been formally introduced in a breakthrough research

paper by Ahlswede et al. in 2000, see [15]. The main idea behind network coding is to

allow any node in the network, especially intermediate ones, to perform coding operations.

Notice that the idea of encoding a message at the source so as to reduce errors during the

transmission process is quite old. The novelty of network coding lies in the idea of allowing

coding to take place inside the network. An intermediate node receives a set of messages

from its input channels, and instead of directly releasing the information, the node creates

a bunch of new messages from the obtained data thanks to a chosen coding mechanism

54

Figure 1.6 – Using the multicast technique inside the directed butterfly network.

applied to the original received messages, see Figure 1.7. Unless explicitly mentioned, we

Figure 1.7 – Scheme of the network coding mechanism. The intermediate node n first
receives two streams of packets with messages a and b from its input channels. It then
combines those two messages so as to produce a new coded message c. This newly created
message is afterward released on the output channel of node n through a stream of coded
packets. In this example, assuming that the two messages a and b are actually encoded
as binary strings of fixed size, the coded message c can be created by performing a xor
operation component-wise, according to the following table:

⊕ 0 1

0 0 1

1 1 0

will always assume in the sequel that the coding process takes place in a network where

the multicast setting is allowed. Hence, it is possible to freely perform both replicating

and coding operations at any node inside the network. Back to our forwarding problem in

the directed butterfly network, we now focus our attention on the configuration depicted

on Figure 1.8. Here, the network performs a coding operation at intermediate node n3

along with replicating data at intermediate nodes n1, n2, and n4. Assuming that each

55

Figure 1.8 – Using a combination of multicast and network coding techniques in the directed
butterfly network.

receiver is able to decode message c, by using the other non-coded message it gets, both

receivers will obtain the two messages a and b. Given non-coded message a and coded

message c, receiver r1 combines those two messages to get message b back, while receiver

r2 computes message a from non-coded message b and coded message c. In our example,

it is sufficient to perform component-wise xor operations on the two messages obtained by

each receiver to get the missing one back. Hence, by simultaneously performing duplicating

and coding operations in the network one can solve this forwarding problem, while using

multicast alone is insufficient. Notice however that the implementation of network coding

involves the design of a coding scheme. Not only has one to decide how data should be

conveyed from the source to each receiver along the network (as in unicast or multicast)

but one also has to consider how to code/decode the data at each intermediate node of

the network (namely, what kind of code should be used), while ensuring that each receiver

is able to properly decode the coded information delivered by its input channels. As an

example, Figure 1.8 can be regarded as a depiction of a coding scheme used to convey the

two messages a and b to both receivers in the directed butterfly network. Since a survey

of the coding techniques which have been proposed in the network coding literature is way

beyond the scope of this manuscript, we will instead provide some useful references. In

addition to the seminal work of Ahlswede et al [15], the reader looking for a connection

56

between information theory and network coding may have a look at the book by Yeung [16].

For a good introduction to network coding, the reader can review the book by Fragouli

and Soljanin [17] or the more recent one by Médard and Sprintson [18]. Finally, the reader

may also be interested in the survey by Matsuda et al. [19] or the one by Bassoli et al.

[20].

1.4 Content of the PhD

1.4.1 Goals

The work conducted during this PhD had two main goals. First, trying to formalize

some problems naturally arising in the field of telecommunications by using operations

research and mathematical optimization tools. Our objective is to develop models and

algorithms which could either compute or at least approximate some quantities which we

consider relevant as far as forwarding data in networks is concerned. The second goal is

to evaluate, both in theory and numerically, the impact of network coding techniques in

a multicast network. This means we compare, for a given network, the two settings of

multicast alone versus multicast with network coding.

We specifically focus our attention on combinatorial multicast and combinatorial net-

work coding, with much less emphasis put on some very important aspects like multicast

routing protocols, network code design, or the information theoretic notion of network

capacity. Hence this manuscript should be regarded as lying in the field of network opti-

mization rather than in the one of telecommunications, although the latter plays a crucial

role in the sequel by providing insights on the relevance of the proposed models. From

a more practical perspective, we are interested in applications regarding live streaming

services like video-conferencing or multi-users content distribution. Hence our approach

deals exclusively with the setting where any receiver is requesting the same content from

one unique source. We would like to point out that relaxing any of those restrictions may

quickly lead to intractable problems as emphasized by Lehman and Lehman [24], Cassuto

and Bruck [25], Dougherty et al. [26], Chekuri et al. [27], and Langberg and Sprintson

[28].

57

We focus our attention on single-session routing problems where the set of receivers is

fixed, leaving apart the practical dynamic version of those problems where one or more

nodes may join or leave the set of current receivers. We also restrict our study to wired

networks, while we would like to mention that a huge literature on wireless and mobile

networks has been produced for both multicast alone and multicast with network coding.

Finally, coding techniques can be deployed in a network without multicast, a setting re-

ferred to as multiple-unicast framework in the relevant network coding literature, although

the corresponding problems are considerably harder than their multicast counterparts, see

[29].

1.4.2 Methodology

Our methodology can be roughly described as follows: We first identify a relevant

criterion with respect to the field of telecommunications, like, for example, the maximum

amount of information one can expect to convey from the source to a set of receivers

through the network, or the minimum amount of network congestion one can guarantee

while satisfying a given demand. Once this choice has been made, we formalize the two

corresponding forwarding problems thanks to operations research and network optimization

techniques: One problem corresponding to the setting where multicast alone is considered,

another problem to deal with the case where both multicast and network coding can be

simultaneously used. We then design an algorithm whose purpose is either to compute

an optimal solution if possible or to find a feasible solution with a provable guarantee on

its quality. We finally discuss the impact of the network structure on the benefit one can

expect from introducing network coding mechanisms in a multicast network.

1.4.3 Dissertation outline

The core of the present manuscript is divided into five chapters, referred to as the

main chapters, and followed by a last concluding chapter. Each of the main chapters is

itself made of an introduction, followed by the main body, and ended by a conclusion.

Each main chapter deals with its own topic so that the five aforementioned chapters are

relatively independent. Beware however since some connections do exist between them.

58

The scheme depicted on Figure 1.9 below provides a summary of those connections.

Figure 1.9 – Dependencies between chapters. (An arrow from Chapter A towards Chapter B
is an incentive to read A before B.)

The second chapter can be thought of as a state-of-the-art regarding network optimiza-

tion and information flows. We begin by presenting the maximum flow problem. We then

formally define the two types of information flows which we will deal with throughout this

document, namely the Steiner flow and the coded flow. The topic of interest in this chapter

is how to maximize the throughput experienced by all receivers in the network.

In the third chapter we present an extension of the information flow framework to the

setting where the network is simultaneously handling more than one commodity or session.

The topic of interest is to study the maximum amount of flow which can be conveyed in a

network where the operator wishes to ensure some form of fairness among the commodities.

We study the complexity and approximability of some multicommodity information flow

problems, and we extend some classical results in the network coding literature to the

multicommodity setting by expanding the analysis presented in the second chapter.

The fourth chapter is motivated by congestion issues in telecommunication networks.

We show how to extend to the information flow framework the classical problem of finding

59

a minimum cost flow in a network where each channel is associated with its own convex cost

function. We present algorithms based on the conditional gradient to solve each minimum

cost information flow problem. We provide theoretical bounds on the gain one can expect

from using network coding in this setting by combining some convex analysis with classical

results in the network coding literature regarding minimum-cost information flows where

the cost function is linear.

The fifth chapter deals with survivability and failure tolerance issues in a telecommuni-

cation network. We study the problem of finding a minimum cost information flow while

satisfying an explicitly given demand in a network prone to single channel failures. For the

sake of simplicity we focus the study on the setting where the cost function of each channel

is linear. We propose models and algorithms, based on linear programming, to deal with

this issue. The content of the fifth chapter can be regarded as an extension of classical

results in the network coding literature to the framework of a network prone to failures.

In the sixth chapter, we pursue the study begun in the fifth chapter by considering

the problem of maximizing the residual amount of flow which can be routed by an infor-

mation flow in the worst-case of a single channel failure. We again propose models and

algorithms, based on linear programming, to deal with this issue. We also underline the

strong connection between the problems studied in this chapter and those presented in the

previous one. While the fifth chapter can be regarded as an attempt to evaluate the cost

of handling failures, the purpose of the sixth chapter is to estimate the survivability of a

network with respect to single channel failures.

60

Chapter 2

Maximum information flows

2.1 Introduction

2.1.1 Motivation

This chapter draws a state-of-the-art for the simple setting where one wishes to find the

maximum amount of data one can expect to convey from a source node to a set of receiver

nodes, thanks to a telecommunication network where multicast and coding techniques may

be freely used at any node. Throughout this chapter, we attempt at providing a unified

view of many well-known results in the network coding literature.

2.1.2 Content

We first present the famous maximum flow problem which lies at the core of network

optimization [7]. This problem has an interest of its own, highlighting the impact of a

model formulation, and it will also play a crucial role in the whole chapter. The second

problem we shall present, referred to as the maximum Steiner flow problem, can be thought

of as a generalization of the maximum flow problem under path formulation, with Steiner

trees replacing paths as the basic components of the flow. We will provide a complete study

of the maximum Steiner flow problem, with a particular emphasis on its main application

as a way to compute the maximum amount of data one can convey through a multicast

network. The third problem we shall consider, namely the maximum coded flow problem,

takes its roots in the network coding setting, where one wishes to establish the maximum

amount of data which can be conveyed by performing coding operations at intermediate

61

nodes of a multicast network. It turns out that this last problem is tightly connected to

the maximum flow problem. We then introduce the notion of coding gain as an indicator

of the benefit, in terms of maximum achievable throughput, one can expect from using

coding techniques in a multicast network. We review various results from the network

coding literature regarding the values one can expect the coding gain to take as a function

of the network structure. The reader already familiar with the maximum flow problem may

skip the remaining of this introduction.

2.1.3 Maximum flow and the notion of throughput

2.1.3.1 Literature review

The so-called maximum flow problem is arguably one of the most fundamental problems

in the field of network optimization. Laying its roots in the Fifties with the pioneering

works of Harris and Ross [30], Ford and Fulkerson [31], or Elias et al. [32], this problem

enjoys constant attention from both practitioners and the academic community since then.

Recent breakthrough papers on this particular problem include but are not limited to

[33, 34, 35, 36]. We refer the reader to the classical book by Ahuja et al. [7] for a general

presentation of various algorithms solving this problem. See also the paper by Schrijver

[37] for a historical perspective.

2.1.3.2 Arc formulation

We are given a directed network D = (V,A) with a special vertex s called the source

and another vertex r, distinct from s, called the receiver. Assume there is at least one path

from the source to the receiver. Also assume we are given, for each arc a of the network, a

non-negative real number ca called the capacity of a. In the following, we denote by δ−D(U),

respectively δ+D(U), the set of arcs entering, respectively leaving, a set of vertices U ⊆ V .

δ−D(U) = {(v, u) ∈ A : v ∈ V \ U, u ∈ U} (2.1)

and

δ+D(U) = {(u, v) ∈ A : u ∈ U, v ∈ V \ U} (2.2)

62

We drop the subscript D when it is clear from the context. When the set U is a singleton,

U = {u}, we use the slight abuse of notation δ−(u) and δ+(u).

A flow f is a function from the set of arcs A to the set of non-negative real numbers

R+. The quantity fa is called the amount of flow on arc a. A flow f satisfies the capacity

requirements if, for each arc a, the amount of flow fa on a is at most the value of the

capacity ca, namely fa ≤ ca. Furthermore, a flow f meets the conservation requirements if,

for each vertex v different from the source s and the receiver r, the amount of flow entering

v equals the amount of flow leaving v:

∑

a∈δ−(v)

fa =
∑

a∈δ+(v)

fa (2.3)

Those conservation requirements prohibit both the creation and the destruction of flow at

any vertex different from the source or the receiver. The throughput, or value, |f | of a given

flow f is the net amount of flow leaving the source, or equivalently, from the conservation

requirements, the net amount of flow entering the receiver:

|f | =
∑

a∈δ+(s)

fa −
∑

a∈δ−(s)

fa =
∑

a∈δ−(r)

fa −
∑

a∈δ+(r)

fa (2.4)

Let F be the set of all flows satisfying both the capacity and conservation requirements.

The maximum flow problem is to find a flow whose throughput is maximum:

Problem Maximum flow
Instance Network D = (V,A), source s, receiver r, capacity ca for each arc a
Solution A feasible flow f ∈ F in D
Objective Maximize the value |f | of flow f as defined in Equation (2.4)

We denote by ϕF the value of a maximum flow for the considered instance:

ϕF = max
f∈F
|f | (2.5)

It can be shown that, if the capacity ca of each arc a is an integer, then there exists a

maximum flow f such that its amount on any arc is integer, so that its throughput also

has an integer value. Although this problem has been presented so far in the setting of

directed networks (for the reader’s convenience), it is possible to properly define it in the

setting of undirected networks. Given an undirected network G = (V,E) with source s,

63

receiver r, and capacity ce for each edge e, consider the bidirected network B = (V,A)

associated to G by replacing each edge {u, v} by the pair of arcs (u, v) and (v, u). Also

replace the previous capacity requirements by f(u,v) + f(v,u) ≤ c{u,v} for each edge {u, v}.

The definition above is referred to as the arc formulation of the maximum flow problem

so as to distinguish it from the path formulation of the same problem which we shall present

below. In the remaining of this thesis, we often model an optimization problem using a

framework called linear programming. We refer the interested reader to Appendix A.1 for

a brief review of this framework. The arc formulation of the maximum flow problem yields

the following linear program:

ϕF = max ϕ (2.6)

s.t. fa ≤ ca ∀a ∈ A (2.7)
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = bv(ϕ) ∀v ∈ V (2.8)

ϕ, fa ≥ 0 ∀a ∈ A (2.9)

with

bv(ϕ) =

ϕ if v = s (2.10)

−ϕ if v = r (2.11)

0 otherwise (2.12)

For each arc a, variable fa stands for the amount of flow going through a, while variable ϕ

models the throughput of flow x. Constraints (2.7) ensure that the flow satisfies all capacity

requirements, while Constraints (2.8) enforce the conservation of flow at each intermediate

vertex of the network.

2.1.3.3 Path formulation

We choose to present this formulation in the setting of directed networks so as to

emphasize the connection with the previous one. Notice however that the path formulation

of the maximum flow problem is transparent to any kind of network model (digraph or

undirected graph). Let D = (V,A) be a directed network, with a source vertex s, a receiver

vertex r, and a capacity ca on each arc a. We denote by P the set of all simple (loop-free)

paths from the source to the receiver. Also let Pa be the subset of such paths going through

arc a.

64

In this context, a flow x is a function from the set of paths P to the set of non-negative

real numbers R+. The quantity xp is called the amount of flow on path p. Given a flow x

under path formulation, one can define a flow f under arc formulation by setting:

fa =
∑

p∈Pa

xp (2.13)

Flow x is then called a path decomposition of flow f , while vector f will be referred to as

the arc projection of x. A flow x satisfies the capacity requirements if and only if its arc

projection f does, namely fa ≤ ca for each arc a. Observe that the previous conservation

requirements are implicitly satisfied in this formulation (see Appendix A.2 for a formal

proof). In this model, the throughput |x| of a given flow x is the sum of the contributions

of all paths:

|x| =
∑

p∈P

xp (2.14)

Notice that this definition of the throughput of flow x is compatible with the previous one,

namely |x| = |f |, where vector f stands for the projection of flow x (see Appendix A.2 for

a formal proof). We denote by XP the set of all flows satisfying the capacity requirements:

XP =

x ∈ RP
+ :

∑

p∈Pa

xp ≤ ca ∀a ∈ A

(2.15)

The maximum flow problem still consists in finding a flow whose throughput is maximum:

Problem Maximum flow
Instance Network D = (V,A), source s, receiver r, capacity ca for each arc a
Solution A feasible flow x ∈ XP in D
Objective Maximize the value |x| of flow x as defined in Equation (2.14)

We denote by ϕP the value of a maximum flow for the considered instance:

ϕP = max
x∈XP

∑

p∈P

xp (2.16)

The path formulation of the maximum flow problem also yields a linear program:

ϕP = max
∑

p∈P

xp (2.17)

s.t.
∑

p∈Pa

xp ≤ ca ∀a ∈ A (2.18)

xp ≥ 0 ∀p ∈ P (2.19)

65

For each simple path p, the variable xp stands for the amount of flow conveyed through

p. Observe that, since we may have an exponential number of paths in P, this model may

have an exponential number of variables. Constraints (2.18) ensure that flow x satisfies all

capacity requirements.

The arc and path formulations of the maximum flow problem are equivalent with respect

to the value of a maximum flow, namely ϕF = ϕP (see Appendix A.2 for a formal proof).

2.1.3.4 Complexity and algorithms

The maximum flow problem can be solved to optimality in strongly polynomial time,

with respect to the instance size (say the order n and the size m of the network), thanks to

the Edmonds-Karp algorithm [38]. Interestingly, this algorithm provides a feasible solution

to both formulations. See the book by Ahuja et al. [7] for a comparison between various

algorithms solving this problem.

2.1.3.5 Minimum cut

The dual of the maximum flow problem is called the minimum cut problem. One is

looking for an assignment of a non-negative value on each arc of the network so as to

minimize the overall weighted sum of those values, where the weight of each arc a is its

capacity ca. Furthermore, the assignment must ensures that the length of any path from

the source to the receiver is at least 1, where the length of each arc is precisely its assigned

value. It turns out that there is always an optimal solution to the minimum cut problem

such that the value assigned to each arc a of the network is either 0 or 1. Thus, a cut can

be identified with a subset of arcs. It is also possible to define a cut between the source s

and the receiver r as a subset of vertices U such that s ∈ U and r ∈ V \ U . Those two

definitions are compatible since, given a cut U with respect to the latter definition, the set

of arcs δ+(U) is a cut with respect to the former one.

2.1.3.6 A detailed example

Consider the small directed network depicted on Figure 2.1 (a). A throughput of 3

(measured in the same unit as the capacities) can be conveyed from the source s to the

66

receiver r by a maximum flow f in this network, as highlighted on Figure 2.1 (b). On

Figure 2.1 (c), a path decomposition x associated to the maximum flow f is depicted.

Notice that each path conveys 1 unit of flow. A minimum cut between the source s and

the receiver r is provided on Figure 2.1 (d). It can be checked that any path in the network

has an incurred length of value at least 1 with respect to the value on each arc. Moreover,

the overall weighted sum of those values equals 3 (where the weight of each arc is its

capacity). The optimality of this cut follows by weak duality.

Figure 2.1 – (a) A small directed network. (b) A maximum flow of value 3 in this network.
(c) A path decomposition associated to the previous flow. Each path is used to convey 1
unit of flow. (d) The minimum cut induced by the arcs in δ+(U) where U = {s, n1, n2}.

2.1.3.7 Summary

Given a telecommunication network with a single source, a single receiver, and a ca-

pacity on each channel, the maximum flow problem allows to properly define and compute

the maximum amount of information one can theoretically convey from the source to the

receiver through the channels of the network while meeting the capacity requirement of

each channel. In the following we shall see how the above study can be extended to the

multi-receivers case.

67

2.2 Maximum Steiner flow

2.2.1 Steiner trees

We first introduce some definitions which will be used in the remaining of this thesis.

The name Steiner comes from Swiss mathematician Jakob Steiner (1796–1863). Given an

undirected network G = (V,E) and a subset R of required vertices, a Steiner tree is a tree

in G spanning all vertices in R. By a slight abuse of notation, we often identify the tree,

regarded as a network, with the set of all its edges. Namely, we write e ∈ t to mean that a

given edge e is part of a tree t (like we do for a path p). Notice that a Steiner tree may also

use vertices outside of R, called Steiner vertices. Given a directed network D = (V,A) (or

a bidirected network B = (V, L)) along with a root vertex s and a set of required vertices R

(not containing s), a directed Steiner tree, also known as a Steiner arborescence, or Steiner

out-branching, is a directed tree, rooted at s, and spanning all vertices in R. A directed

Steiner tree may also use vertices outside of R. For the sake of simplicity, we shall use

the term Steiner tree regardless of the network structure in the remaining of this thesis.

Whether we are actually considering an undirected or a directed Steiner tree can always be

inferred from the context. For example, we write a ∈ t to mean that a given arc a is part of

a directed Steiner tree. In the following, we will often consider vectors whose components

are indexed by the set of all Steiner trees of a given network. Dealing with such a vector

requires some cautions, since a network may have a gigantic number of Steiner trees. For

example, the undirected network depicted on Figure 2.2 has roughly 50 millions Steiner

trees [39].

2.2.2 Problem statement

A telecommunication network is often requested to perform the basic task of conveying

the very same information from a source to a set of terminal nodes. Assuming there are

at least two such nodes, the network operator is naturally prone to save resources, like

bandwidth or energy, by grouping those individual requests. One opportunity to do so is

by using the so-called multicast routing. As explained in the previous chapter, multicast

is a technique allowing any intermediate node of the network to make copies of its input

68

Figure 2.2 – An undirected network with 16 vertices, among which 11 are required (denoted
by a square), and 35 edges. This network has 49 956 624 Steiner trees spanning all required
vertices [39].

data. The set of edges used to convey a particular piece of data induces a multicast tree, or

Steiner tree, in the network. The model presented below is a fractional packing of Steiner

trees studied extensively by Jain et al. in [40]. A similar model was proposed by Garg et

al. [41] for overlay multicast, a setting where only some nodes called end-hosts are allowed

to duplicate data while other nodes are only forwarding it.

We focus on the case of a directed network since it encompasses the case of a bidirected

or undirected one. The instance is made of a directed network D = (V,A) with a source s,

a set R of receivers (not containing s), and a capacity ca for each arc a. We assume that

the network is connected, so that any receiver can get information from the source. In a

directed network, this last assumption implies that there is at least one directed path from

the source toward each receiver. A Steiner flow x is an assignment of a non-negative real

value xt to each Steiner tree t spanning s and R. For any Steiner tree t, the quantity xt

is called the amount of flow on tree t. A Steiner flow x is feasible if it satisfies all capacity

requirements, namely that, for any arc a, the sum of the flow contribution over all trees

using a is upper-bounded by the arc capacity ca. We denote by XT the set of all feasible

Steiner flows:

XT =

{

x ∈ RT
+ :

∑

t∈Ta

xt ≤ ca ∀a ∈ A

}

(2.20)

where T is the set of all Steiner trees spanning s and R, and Ta is the subset of such trees

using arc a. The throughput, or value, |x| of Steiner flow x is the overall sum of the flow

69

contribution of each tree:

|x| =
∑

t∈T

xt (2.21)

We are now ready to properly define our problem:

Problem Maximum Steiner flow
Instance Network D = (V,A), source s, set of receivers R,

and capacity ca on each arc a
Solution A feasible Steiner flow x ∈ XT in D
Objective Maximize the value |x| of Steiner flow x as defined in Equation (2.21)

We denote by ϕS the value of a maximum Steiner flow for the considered instance:

ϕS = max
x∈XT

∑

t∈T

xt (2.22)

Observe that, when the set R is a singleton, R = {r}, a Steiner tree spanning s and R is

a simple path between the source and the unique receiver r. Hence the maximum Steiner

flow problem can be regarded as a generalization of the classical maximum flow problem

to more than one receivers.

Another interesting special case arises when all vertices except the source are receivers,

R = V \ {s}. Notice that, in this setting, a Steiner tree spanning s and R actually spans

all vertices of the network. In this case, all Steiner trees are in fact spanning trees and

we can define a spanning flow accordingly. We shall refer to the associated problem as the

maximum spanning flow problem:

Problem Maximum spanning flow
Instance Network D = (V,A), source s, capacity ca on each arc a
Solution A feasible spanning flow x ∈ XT in G
Objective Maximize the throughput |x| of spanning flow x as defined in Equation (2.21)

We still denote by ϕS the value of a maximum spanning flow for the considered instance,

since the meaning should be clear from context.

2.2.3 A detailed example

Consider the three networks depicted on Figure 2.3. Notice that they share the same

underlying topology and only differ by the type of their communication channels. In the

70

following, we shall highlight the influence of the network structure on both the optimal

value and the shape of an optimal solution to the maximum Steiner flow problem.

Figure 2.3 – (a) The bidirected butterfly network. (b) The undirected butterfly network.
(c) The directed butterfly network. In each case, all channels have a one unit capacity.

2.2.3.1 Steiner flow in the bidirected butterfly network

We first have a look at the bidirected butterfly network. Recall that, in this case, each

communication channel is made of two links oriented in opposite directions, each link being

equipped with a capacity of its own, and the two capacities sharing the same value. The

Steiner flow depicted on Figure 2.4 uses two Steiner trees, each tree conveying 1 unit of

flow to both receivers, inducing an overall throughput of value 2. Notice that this Steiner

flow satisfies all capacity requirements. We shall prove later that it is a maximum Steiner

flow in the bidirected butterfly network.

71

Figure 2.4 – A Steiner flow in the bidirected butterfly network. Each one of those two trees
conveys 1 unit of flow to both receivers. Thus this Steiner flow delivers a throughput of
value 2.

2.2.3.2 Steiner flow in the undirected butterfly network

We now turn our attention toward the undirected butterfly network where each channel

can convey flow in both directions by using the capacity of one single link. Consider the

Steiner flow depicted on Figure 2.5. This flow uses nine Steiner trees. Each tree on the

first line of Figure 2.5 conveys 1
8 units of flow while each of the six remaining trees on

the second and third lines brings 1
4 units of flow to both receivers. Thus this Steiner flow

provides an overall throughput of value 15
8 . Again, one can check that this Steiner flow

is indeed feasible with respect to the capacity constraints, and we shall proof later that

it is actually an optimal solution to the maximum Steiner flow problem in the undirected

butterfly network.

72

Figure 2.5 – A Steiner flow in the undirected butterfly network. Each tree on the first line
conveys 1

8 units of flow, while each of the six remaining trees below carries 1
4 units of flow.

This Steiner flow ensures that each receiver gets 15
8 units of flow.

73

2.2.3.3 Steiner flow in the directed butterfly network

Finally, we consider the directed butterfly network. Figure 2.6 provides a description

of a Steiner flow using three Steiner trees, each one carrying 1
2 units of flow, for an overall

throughput of value 3
2 . This Steiner flow satisfies all capacity requirements and we shall

justify later its optimality with respect to the maximum Steiner flow problem in the directed

butterfly network.

Figure 2.6 – A Steiner flow in the directed butterfly network. Each one of the three trees
conveys 1

2 units of flow, inducing an overall throughput of value 3
2 .

2.2.4 Linear programming formulation

We will now provide a linear programming formulation of the maximum Steiner flow

problem, originally presented in [40] as a problem of fractionally packing Steiner trees:

ϕS = max
∑

t∈T

xt (2.23)

s.t.
∑

t∈Ta

xt ≤ ca ∀a ∈ A (2.24)

xt ≥ 0 ∀t ∈ T (2.25)

where, for each arc a, Ta is the set of all Steiner trees using a. For each Steiner tree t,

variable xt stands for the amount of flow conveyed by t. Since the number of Steiner trees

in a graph may be exponential with respect to its number of arcs or vertices, the number of

variables in the above linear program may be exponential in the size of the instance. Notice

however that there is only one capacity constraint for each arc of the network, leading to

74

a polynomial number of Constraints (2.24). Also observe that this linear program is a

fractional packing problem, also called positive linear programming, since all entries of the

constraint matrix, constraint vector, and objective vector are non-negative. We denote by

y the vector of dual variables associated to Constraints (2.24). The dual of the previous

formulation is given by:

min
∑

a∈A

caya (2.26)

s.t.
∑

a∈t

ya ≥ 1 ∀t ∈ T (2.27)

ya ≥ 0 ∀a ∈ A (2.28)

This time we end up with a polynomial number of variables and an exponential number

of constraints in this linear program. Notice that the dual of the previous packing problem

is a covering problem: One wishes to assign a non-negative value to each arc of the network

so as to minimize the overall sum of these values, while ensuring that the sum of these

values over all arcs of any Steiner tree is at least 1, as described by Constraints (2.27).

2.2.5 Example continued

Back to our previous example with the butterfly networks, we are now ready to justify

our assertions regarding the optimality of each Steiner flow presented above. For each

network, a solution to the dual of the linear programming formulation of the maximum

Steiner flow problem is depicted on Figure 2.7. To certify the feasibility of a proposed

solution with respect to Constraints (2.27), one has to check that the sum of the values

over all edges of any Steiner tree is at least 1. This can be done easily in both the bidirected

and directed cases, while a more careful inspection, involving the consideration of many

trees, may be required in the undirected case. For each butterfly network, the dual solution

value equals the one of the corresponding Steiner flow depicted above, see Table 2.1. The

optimality of those flows hence follows from weak duality in linear programming.

2.2.6 Complexity and algorithms

While talking about complexity, and unless explicitly mentioned, the running time of

an algorithm is evaluated by providing an upper-bound on the worst case. This upper-

75

Figure 2.7 – A feasible solution to the dual of the above linear programming formulation
of the maximum Steiner flow problem in (a) the bidirected butterfly network, (b) the
undirected butterfly network, (c) the directed butterfly network. To avoid any confusion,
only positive values are depicted on the figure.

Structure Throughput Dual value
Bidirected 2 2

Undirected 15
8

15
8

Directed 3
2

3
2

Table 2.1 – For each butterfly network, the throughput of the Steiner flow previously
described equals the value of the proposed dual solution.

bound is a function of the instance size, namely the network order n, its size m, and the

number k of receivers.

A polynomial-time algorithm to solve the maximum Steiner flow problem in a bidirected

network has been presented in [42]. This algorithm crucially relies on the notion of arc

splitting, replacing a pair of arcs (u, v) and (v, w) by a single arc (u,w). The main idea is to

reduce the initial problem to one of packing spanning arborescences in a suitable network.

This new network is obtained from the original one by performing a sequence of splitting

operations, so as to isolate any relay node while preserving the global connectivity between

the source and any receiver.

It turns out that the complexity of the maximum Steiner flow problem in undirected

networks, respectively directed networks, is heavily tied to the complexity of the so-called

minimum Steiner tree problem, respectively minimum Steiner arborescence problem:

76

Problem Minimum Steiner tree
Instance Undirected network G = (V,E), set of required vertices R,

and weight we on each edge e
Solution A tree t spanning R in G
Objective Minimizing the overall weight

∑

e∈twe of tree t

Problem Minimum Steiner arborescence
Instance Directed network D = (V,A), root vertex s, set of required vertices R,

and weight wa on each arc a
Solution An arborescence t rooted at s and spanning R in D
Objective Minimizing the overall weight

∑

a∈twa of arborescence t

Given a minimization (respectively maximization) problem Π along with a positive real-

valued function α, an approximation algorithm with ratio α, or α-approximation algorithm,

is a procedure which finds, for any instance of Π, a feasible solution whose value is at most

(respectively at least) α times the value of an optimal solution of Π for this instance, in time

polynomial with respect to the size of the considered instance. For the sake of simplicity,

we shall assume that the function α takes its value in the interval [1,+∞[regardless of

the optimization direction (minimization or maximization) since the meaning should be

clear from the context. The problem Π admits a constant approximation ratio if there

exists an α-approximation algorithm where α is a constant function. A polynomial-time

approximation scheme (PTAS) is a parametrized approximation algorithm with ratio 1+ ǫ

where the positive parameter ǫ can be made arbitrarily small. A fully polynomial-time

approximation scheme (FPTAS) is a PTAS which runs in time polynomial in 1
ǫ . Finally,

notice that a 1-approximation algorithm actually returns an exact solution.

The minimum Steiner tree problem is NP-hard to solve [43], and it is actually NP-

hard to approximate it within an approximation ratio of 96
95 [44]. As far as we know, the

algorithm providing the best approximation ratio for solving this problem in polynomial

time has been proposed in [45]. This algorithm returns a Steiner tree whose weight is at

most 1.39 times the weight of an optimal solution.

The minimum Steiner arborescence problem is also NP-hard, and, given any posi-

tive ǫ, it can not be approximated within a ratio better than O(log2−ǫ n) unless NP ⊆

ZPTIME(npolylog(n)) [46]. However, the minimum Steiner arborescence problem is ap-

77

proximable in polynomial time within ratio O(kǫ) for any positive ǫ, see [47].

The following theorem, stated in [40], establishes the fundamental connection between

the maximum Steiner flow problem and the minimum Steiner tree problem.

Theorem 1. [40, Theorem 4.1] There is an α-approximation algorithm for the maximum

Steiner flow problem in undirected networks, respectively directed networks, if and only if

there is an α-approximation algorithm for the minimum cost Steiner tree problem, respec-

tively minimum cost Steiner arborescence problem.

Theorem 1 means that the approximation ratio is actually preserved when passing from

the minimum cost Steiner tree problem to the maximum Steiner flow problem. The proof

relies on the following fact: given a candidate solution y to the dual linear program of

the maximum Steiner flow problem, the process of testing whether y is actually feasible

with respect to Constraints (2.27), is equivalent to solving the so-called separation problem

of the dual. But this dual separation problem is exactly the minimum cost Steiner tree

problem with weight ya on each arc a. We point out to the reader that the proof also rests

on the use of the ellipsoid method [48].

Regarding the maximum spanning flow problem, the separation problem of its dual is

the minimum spanning tree problem which can be solved in strongly polynomial time thanks

to Kruskal’s algorithm [49], Prim’s algorithm [50], or even by using a linear programming

compact formulation of this problem as the one proposed in [51]. The directed version of

this problem, referred to as the minimum spanning arborescence problem in the literature,

can be solved in strongly polynomial time by the Chu–Liu/Edmonds’ algorithm [52, 53]. To

directly solve the maximum spanning flow problem, one can use the algorithm proposed by

Gabow and Manu in [54] which returns a maximum spanning flow in strongly polynomial

time, regardless of the network structure.

By combining this last theorem with the results mentioned above, one immediately

gets the content of Table 2.2 regarding complexity and approximability of the maximum

Steiner flow problem.

78

Structure Complexity Inapproximability Approximation
Bidirected P N/A 1

Undirected NP-hard 96
95 1.39

Directed NP-hard Ω(log2−ǫ n) ∀ǫ > 0 O(kǫ) ∀ǫ > 0

Spanning P N/A 1

Table 2.2 – Complexity and approximation of the maximum Steiner flow problem.

2.2.7 Computing a maximum Steiner flow by column generation

As already mentioned, one of the main difficulties faced when dealing with the maximum

Steiner flow problem is the lack of explicit information regarding the set T of all Steiner

trees in the network. Recall that the cardinality of this set may be huge. When trying

to solve this problem, it becomes quite natural to look for a method where useful trees

would be generated on the fly by the algorithm, so as to avoid any useless, computationally

expensive, enumeration of the trees. A popular technique satisfying this requirement is the

so-called column generation method. We refer the interested reader to the brief review in

Appendix A.1 for a presentation of this technique.

When applying this method to solve the maximum Steiner flow problem, to each com-

ponent of vector x corresponds a Steiner tree. Initialize the procedure by first looking for

a tree t, then define a feasible Steiner flow by routing up to the minimum capacity over

all arcs of t on tree t. Notice that solving the pricing problem for a given Steiner flow x

actually amounts to finding an unknown Steiner tree t maximizing the reduced cost given

by:

rt = 1−
∑

a∈t

ya (2.29)

where y is the corresponding dual vector. Hence, one is looking for a Steiner tree t whose

overall cost is minimum, given weight ya on each arc a, which is exactly the minimum cost

Steiner tree problem. Although this problem is NP-hard, it can be solved to optimality

by using one of its many classical mixed-integer linear programming formulations, see [55].

For our purpose, it will be convenient to use the mixed-integer linear program below in

order to compute a minimum-cost Steiner tree, rooted at s and spanning all vertices in

R, in a directed network D = (V,A) with weight wa on each arc a (a valid model for

undirected networks can be inferred from this one).

79

min
∑

a∈A

waxa (2.30)

s.t.
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(1) ∀r ∈ R, v ∈ V (2.31)

f ra ≤ xa ∀a ∈ A, r ∈ R (2.32)

f ra ≥ 0 ∀a ∈ A, r ∈ R (2.33)

xa ∈ {0, 1} ∀a ∈ A (2.34)

where

brv(φ) =

φ if v = s (2.35)

−φ if v = r (2.36)

0 otherwise (2.37)

For each arc a, and each receiver r, variable f ra is set to 1 if and only if arc a is used to

connect source s to receiver r in the tree. For each arc a, variable xa is set to 1 if and only

if a is part of the tree. Constraints (2.31) ensure that the tree interconnects the source

and each receiver. Constraints (2.32) prevent an arc a from being used in the tree unless

this arc is made part of the tree. The column generation method applied to the maximum

Steiner flow problem can be summarized by the scheme depicted on Figure 2.8.

2.2.8 Greedy packing of widest Steiner trees

The following heuristic algorithm for solving the maximum Steiner flow problem was

proposed in [56]. The main idea is to perform a greedy packing of Steiner trees. To under-

stand the incentive behind this algorithm, assume one is restricted to use a single Steiner

tree to convey flow from the source to all receivers. Since one is interested in maximizing

the throughput experienced by any receiver, the most promising tree is the one allowing

to convey as much flow as possible. It should be clear that the maximum amount of flow

which can be carried by a tree is upper-bounded by the minimum capacity among all edges

of this tree. Hence, one is looking for a Steiner tree whose minimum capacity is maximum

among all Steiner trees of the network. Such a tree is called a widest Steiner tree, or bottle-

neck Steiner tree, and it naturally gives rise to the widest Steiner tree problem, also known

80

Figure 2.8 – Scheme of the column generation procedure specialized to solve the maximum
Steiner flow problem. A mixed-integer linear programming solver may be called so as to
get a minimum-cost Steiner tree when applying the algorithm main step (described in the
dotted box).

as the bottleneck Steiner tree problem.

Problem Widest / bottleneck Steiner tree
Instance Network D = (V,A), root vertex s, set of required vertices R,

and capacity ca on each arc a
Solution A tree t rooted at s and spanning R in D
Objective Maximize the minimum capacity mina∈t ca of tree t

Multiple algorithms solving this last problem in polynomial time, with respect to the

instance size, have been proposed in the literature, see [56] and references therein. See

also the modification of Dijkstra’s algorithm presented in [57] to solve the mirror problem

of finding a Steiner tree whose maximum weight is minimized in a weighted network.

Reversing inequalities in this last algorithm immediately yields a procedure to compute a

widest Steiner tree.

Now observe that one can use any algorithm to solve the widest Steiner tree problem

as a subroutine in a greedy packing as follows: Starting from the original network, first

81

call the subroutine to get a widest Steiner tree. Route the maximum feasible amount of

flow along this tree and update all residual capacities of the network accordingly. Reiterate

the search for a widest Steiner tree in the network with the residual capacities. Continue

this process until no new tree can be found. Observe that, at each iteration (except the

last one), at least one arc is saturated, hence the whole procedure performs at most one

call to the subroutine for each arc of the network. Algorithm 1 provides the corresponding

pseudo-code.

Algorithm 1 : algorithm for solving the maximum Steiner flow problem.

Input: Network D = (V,A), source s, set of receivers R, capacity ca for each arc a;
Output: A set T of Steiner trees and a feasible Steiner flow x using trees in T ;
1. Set the residual capacity of arc a equal to the original one, res[a] = c[a];
2. Initialize the set of supporting trees, T = ∅;
3. while There is a widest Steiner tree t with respect to the residual capacities do

4. Compute ν = mina∈t res[a];
5. Add t to the set of trees, T = T ∪ {t};
6. Saturate the tree, x[t] = ν;
7. Update the residual capacity of each arc a of t, res[a] = res[a]− ν;
8. end while

9. Return x and T .

2.3 Maximum coded flow

2.3.1 Problem statement

Network coding in multicast networks takes its roots in the pioneering work by Ahlswede

et al. [15] where the following theorem, referred to as the fundamental theorem of network

coding (in directed multicast networks), has first been stated.

Theorem 2. [15, Theorem 1] Given directed network D = (V,A) with source vertex s, set

of receiver vertices R, and capacity ca for each arc a, the maximum amount of the same

information which can be simultaneously conveyed in network D from s to each receiver in

R, assuming both multicast and network coding are allowed, equals the minimum, among

all receivers, of the value of a maximum flow between the source and any given receiver.

The original proof in [15] rests on information theory, see also its presentation by Yeung

in the book [16]. An alternative proof relying on linear algebra has been provided by Li

82

et al. in [58], while a third one grounded on polynomial algebra is due to Koetter and

Médard [59]. It should be clear to the reader that, regardless of the routing technique,

the amount of information which can be conveyed from the source s to any receiver r

is actually upper-bounded by the value of a minimum cut, or equivalently the one of a

maximum flow, between the source and this receiver, even if said receiver is requesting

data alone. Since the goal is to send the same data to all receivers, it is rather natural

that the amount of information which can be delivered to all receivers is upper-bounded

by the minimum of those values of maximum flows. The breakthrough brought by this last

theorem lies in that this upper-bound can actually be achieved by performing multicast and

coding operations in the network. This last result fundamentally implies that, in order to

compute the maximum amount of information one can expect to convey from the source

to all receivers in a telecommunication network where both multicast and network coding

are simultaneously allowed, it is sufficient to solve a set of independent maximum flow

problems, where the capacity of any arc of the network can be fully used by each receiver,

without struggle between receivers over bandwidth consumption of a channel. This last

remark is the main incentive for the coded flow model presented below.

The fundamental theorem of network coding holds for both directed and bidirected net-

works. Beware however, that this result is not valid in any undirected network.

The following counter-example is taken from [60]. Consider the small triangle network

depicted on Figure 2.9 a) with a source, two receivers, and a unit capacity on each edge. It

should be clear that the value of a minimum cut between the source and each receiver is 2.

However, it can be shown that the maximum amount of information the source can provide

to both receivers actually equals 3
2 , since it is not possible to convey one unit of data from

r1 to r2 while simultaneously sending another unit from r2 to r1. This throughput of value

3
2 is achievable with data replication alone (without coding), as depicted on Figure 2.9 b).

In the following, we will provide a linear program proposed by Li et al. [60, 39] to properly

define and compute the maximum amount of the same information which can be simul-

taneously conveyed from a source to a set of receivers, thanks to network coding, in an

undirected multicast network G.

For now, we consider a directed or bidirected network and we focus on the setting where

83

Figure 2.9 – a) A small network made of a source and two receivers connected as a triangle.
Each edge has a one unit capacity. b) A Steiner flow in this network using three trees, each
one conveying 1

2 units of flow. Each receiver get 3
2 units of flow which is also the maximum

throughput achievable in this network by using both multicast and network coding. The
value of a minimum cut between the source and any receiver is 2.

both copying and coding mechanisms are allowed. The framework is the same as the one

of the maximum Steiner flow problem. The instance is still made of a directed network

D = (V,A) with source s, set of receivers R (not containing s), and a capacity ca for each

arc a. We still assume the network to be connected (there is at least one path from the

source to each receiver), so that any receiver can get information from the source. A coded

flow x is an assignment of a non-negative real value xp to each simple path p from the

source to any receiver r. The quantity xp is called the amount of flow on path p. Observe

that, for each receiver r, the restriction of a coded flow x to the set of simple paths from

s to r is a classical flow. A coded flow x is feasible if it satisfies all capacity constraints,

namely that, for each receiver r, the classical flow, induced by the restriction of x to the set

of simple paths from s to r, meets the capacity requirements of a flow. This last definition

means that the bandwidth consumption, induced by a feasible coded flow x over an arc of

the network, is obtained by taking the maximum, rather than the sum, over all receivers,

of the amount of flow going from the source toward each receiver through this arc. We

denote by XP the set of all feasible coded flows:

XP =

x ∈ RP
+ :

∑

p∈Pr
a

xp ≤ ca ∀a ∈ A, r ∈ R

(2.38)

84

where, for any receiver r, Pra is the set of all simple (loop-free) paths between s and r using

arc a. For each receiver r, we also denote by Pr the set of all simple paths between the

source and this receiver. Finally, let P be the set of all simple paths between the source

and any receiver. The throughput, or value, |x| of coded flow x is the minimum throughput

experienced by any receiver:

|x| = min
r∈R

∑

p∈Pr

xp (2.39)

We can now formally define our problem:

Problem Maximum coded flow
Instance Network D = (V,A), source s, set of receivers R, capacity ca on each arc a
Solution A feasible coded flow x ∈ XP in D
Objective Maximize the value |x| of coded flow x as defined in Equation (2.39)

In the following, we denote by ϕC the value of a maximum coded flow for the considered

instance:

ϕC = max
x∈XP

min
r∈R

∑

p∈Pr

xp (2.40)

Observe that, when the set R is a singleton, the maximum coded flow problem is nothing

but the maximum flow problem between the source and the unique receiver.

2.3.2 A detailed example

Consider again the three variants of the butterfly network presented earlier on Fig-

ure 2.3. For each of the three cases, the path decomposition of a maximum coded flow

is depicted on Figure 2.10. Observe that in all cases the maximum coded flow uses two

paths for each receiver, each path conveying 1 unit of flow, for an overall throughput of

value 2 experienced by both receivers in each network. Although the value of a maximum

coded flow can indeed vary with the kind of network considered, this example illustrates

that the structure of a maximum coded flow can be considerably simpler than the one of

a maximum Steiner flow. Recall however that, for now, we are only taking the routing

aspect into account, leaving any actual coding process, occurring at intermediate nodes of

the network, largely uncharted.

85

Figure 2.10 – The path decomposition of a maximum coded flow in (a) the bidirected
butterfly network, (b) the undirected butterfly network, and (c) the directed butterfly
network. In all cases, each path is used to convey 1 unit of flow for a throughput of value
2. The optimality of each coded flow can be inferred by observing that, in each case, the
value of a minimum cut from the source to any receiver is 2.

86

2.3.3 Linear programming formulations

2.3.3.1 Directed and bidirected networks

We shall now provide a linear programming formulation of the maximum coded flow

problem in a directed or bidirected network. This formulation is an immediate consequence

of Theorem 2:

ϕC = maxϕ (2.41)

s.t. ϕ ≤
∑

p∈Pr

xp ∀r ∈ R (2.42)

∑

p∈Pr
a

xp ≤ ca ∀a ∈ A, r ∈ R (2.43)

xp ≥ 0 ∀p ∈ P (2.44)

ϕ ∈ R (2.45)

For each simple path p, variable xp stands for the amount of flow conveyed by p. Hence,

the number of variables in the above linear program may again be exponential in the in-

stance size. Constraints (2.42) along with the maximization of variable ϕ ensure that,

for any feasible vector x, the throughput experienced by any receiver is at least ϕ. Con-

straints (2.43) enforce the network coding capacity requirements. We denote by y the

vector of dual variables associated with Constraints (2.43), and by z the one corresponding

to Constraints (2.42). The dual of the previous linear program is:

ϕC = min
∑

a∈A

∑

r∈R

cay
r
a (2.46)

s.t.
∑

r∈R

zr = 1 (2.47)

∑

a∈p

yra ≥ z
r ∀r ∈ R, p ∈ Pr (2.48)

yra, z
r ≥ 0 ∀a ∈ A, r ∈ R (2.49)

Observe that the dual of the problem of finding the maximum flow of minimum value

among all receivers consists in looking for a convex combination of cuts, with exactly one

such cut induced by each receiver.

We refer to the linear program 2.41 as the path formulation of the maximum coded flow

problem (in a directed network) so as to distinguish it from the following linear program,

87

which will be referred to as the arc formulation of the same problem:

ϕC = maxϕ (2.50)

s.t.
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(ϕ) ∀r ∈ R, v ∈ V (2.51)

f ra ≤ ca ∀a ∈ A, r ∈ R (2.52)

f ra ≥ 0 ∀a ∈ A, r ∈ R (2.53)

(2.54)

where

brv(ϕ) =

ϕ if v = s (2.55)

−ϕ if v = r (2.56)

0 otherwise (2.57)

For each arc a and each receiver r, variable f ra models the amount of flow going from s

to r through a. Constraints (2.51) enforce, for each receiver r, the flow conservation at

each vertex of the network of the individual flow from s to r. Beware that those flow

conservation constraints do not impose conservation of the coded flow at any vertex of the

network. Constraints (2.52) enforce the network coding capacity requirements.

We shall now study the maximum coded flow problem in an undirected network.

2.3.3.2 Undirected networks

As previously mentioned, the network coding fundamental theorem does not hold for

undirected networks. However, the following linear program, which is due to Li et al.

[60, 39], allows to define and compute the maximum amount of information which can be

conveyed from a source to a set of receivers in a multicast undirected network through the

use of network coding techniques. Given an undirected network G = (V,E) with source s,

set of receivers R, and capacity ce for each edge e, the idea is to look for a maximum coded

flow in the new instance defined as follows: Consider the bidirected network B = (V, L)

obtained by replacing each edge of G by a pair of reverse arcs, referred to as a link.

Keep the source and the receivers as defined in G. Finally, assign a variable capacity ha

on each arc a of the bidirected network so that, for each link ℓ, the sum over its two

arcs of the variable capacity of each arc should not be greater than the fixed capacity

88

cℓ of the edge (in G) associated to this link. Those last requirements, referred to as

the orientation constraints, ensure that, for each link, the overall amount of flow going

through it, taking both directions into account, does not exceed the original capacity of

the edge (in the undirected network) associated to this link. Hence, it should be clear that

a coded flow meeting those orientation constraints in bidirected network B induces a coded

flow in undirected network G satisfying a "reasonable definition" (for a telecommunication

practitioner) of the capacity requirements in the undirected network. To summarize the

discussion in [60, 39], the following linear program allows to look for a maximum coded

flow over all possible orientations of the undirected network:

ϕC = maxϕ (2.58)

s.t. ϕ ≤
∑

p∈Pr

xp ∀r ∈ R (2.59)

∑

p∈Pr
a

xp ≤ ha ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (2.60)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (2.61)

ha, xp ≥ 0 ∀a ∈ ℓ, ℓ ∈ L, p ∈ P (2.62)

(2.63)

For each simple path p, variable xp stands again for the amount of flow conveyed by

p, while, for each arc a, variable ha models the amount of coded flow going through a.

Notice that this linear program may also have an exponential number of variables with

respect to the instance size. Here also, Constraints (2.59) along with the maximization

of variable ϕ ensure that, for any feasible vector x, the throughput experienced by any

receiver is at least ϕ. Constraints (2.60) can be regarded as capacity requirements with a

variable capacity ha for each arc a. Finally, Constraints (2.61) are the previously detailed

orientation constraints. Observe that, those orientation requirements induce a flow coupling

between all receivers so that, unlike the previous case, the maximum coded flow problem

in an undirected network can not be solved by a decomposition into a set of independent

instances of the maximum flow problem. This also implies that the undirected variant of

the maximum coded flow problem can not be reduced to the directed case and hence requires

an independent study. We shall refer to the linear program above as the path formulation

of the maximum coded flow problem in an undirected network. For practical purposes, it is

89

often convenient to use the following linear program, which is the original contribution in

[60, 39], and will be referred to as the arc formulation of the maximum coded flow problem:

ϕC = maxϕ (2.64)

s.t.
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(ϕ) ∀r ∈ R, v ∈ V (2.65)

f ra ≤ ha ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (2.66)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (2.67)

f ra , ha ≥ 0 ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (2.68)

(2.69)

with

brv(ϕ) =

ϕ if v = s (2.70)

−ϕ if v = r (2.71)

0 otherwise (2.72)

For each arc a, and each receiver r of the bidirected network B = (V, L), variable f ra

models the amount of flow going from s to r through a (as in the case of a directed

network). Again, Constraints (2.65) enforce, for each receiver r, the flow conservation at

each vertex of the network of the individual flow from s to r. Beware that, here also, those

flow conservation constraints do not impose conservation of the coded flow, symbolized by

vector h, at any vertex of the network. The other variables and constraints play similar

roles in both formulations.

Regarding undirected networks, Li and Li actually show that any exchange of role

between the source and a particular receiver leaves the value of a maximum coded flow

unaltered [61, Theorem 4].

2.3.4 Complexity and algorithms

As explained above, the achievable capacity of a directed network where multicast and

network coding are both simultaneously allowed is exactly the minimum over all receivers

of the value of a maximum flow between the source and this receiver. It is then quite

natural that computing this value can be done by finding one maximum flow for each

receiver. Observe however that we are not only interested in the optimal value ϕC alone

90

but also in any information regarding the actual routing process. Fortunately, by applying

any classical maximum flow algorithm, we can also get a path decomposition for each

maximum flow. This implies that we can obtain the supporting paths which shall be used

to convey flow to each receiver. We can therefore conclude that solving the maximum

coded flow problem can be done in strongly polynomial time by performing one call to a

maximum flow subroutine for each receiver of the network.

The previous complexity result relies on the ability to decompose the maximum coded

flow problem into a set of tractable sub-problems. Since this decomposition property does

not hold for each problem considered in this thesis, we shall now present a way to deal

with the optimization of a coded flow by a more subtle use of Theorem 2. The next lemma

emphasizes the equivalence between the arc and path formulations of the maximum coded

flow problem.

Lemma 1. Consider an instance of the maximum coded flow problem given by a directed

network D = (V,A), with source s, set of receivers R, and capacity ca on each arc a. It is

possible to convert, in polynomial time, a basic feasible solution to this instance under one

formulation into a basic feasible solution of the same value, for the same instance under

the other formulation.

Proof. It should be clear from the similarity of both formulations that the vectors x and f

which collects information regarding each individual flow are the only quantities at stake.

Given a basic feasible solution x for the path formulation, a basic feasible solution f for

the arc formulation is defined by setting for each arc a and each receiver r:

f ra =
∑

p∈Pr
a

xp (2.73)

This vector f can be computed in polynomial time, provided the number of nonzero com-

ponents of vector x is itself polynomial with respect to the instance size. Conversely, given

a basic feasible solution f for the arc formulation, a basic feasible solution x for the path

formulation can be computed as follows: For each receiver r, let f r be the vector of com-

ponents f ra over each arc a of the network. Observe that vector f r is the arc projection of

a simple flow between the source and receiver r. For each receiver r, compute a path de-

composition of this simple flow using the algorithm presented by Ahuja et al. [7, Theorem

91

3.5] which runs in polynomial time. (It is also possible to consider, for each receiver r, the

instance of the maximum flow problem defined by setting s as source, r as receiver, and

capacity f ra on each arc a of the network. The algorithm provided by Edmonds and Karp

[38] can compute a path decomposition of a maximum flow for this instance in polynomial

time.) The concatenation of all those path decompositions (one per receiver) gives the

desired vector x (under the convention that a component of vector x induced by a path

which is not returned by the decomposition algorithm is implicitly set to 0).

Observe that the proof of Lemma 1 rests on an implicit decomposition of the flow and

not on some proper feature of a coding flow.

Regardless of the network structure (directed or undirected), the arc formulation of the

maximum coded flow problem is a linear program involving a polynomial number of contin-

uous variables and constraints, with respect to the instance size. Combined with Lemma 1,

this last remark implies that the maximum coded flow problem can be solved in strongly

polynomial time in a directed network, even if one is requesting a path decomposition of

the solution, as it is often the case in telecommunication.

Although the introduction of another linear program and the use of Lemma 1 may seem

cumbersome compared with Theorem 2, this last approach is more general, encompassing

the case of undirected networks, since it does not rely on the ability to decompose the

original problem into a set of tractable sub-problems.

The maximum coded flow problem in an undirected network can also be solved in

polynomial time thanks to a distributed algorithm proposed by Li and Li [62].

2.3.5 Coding scheme

The pioneering work of [15] only establishes a theoretical proof of the existence of a

coding scheme allowing an operator to meet the maximum network rate achievable through

coding. However, their definition of a code is sufficiently generic to encompass many

potential coding processes which may be used in practical applications.

The breakthrough paper by Li et al. [58] introduces the concept of linear network code,

where the output of any node is a linear combination of its inputs with coefficients taken

92

in a large enough finite field, and highlights that, for a directed acyclic network, such a

code is sufficient to achieve the maximum network coding rate. The algebraic framework

developed by Koetter and Médard [59] also considers linear network codes over finite fields

although their elegant approach rather rests on a subtle combination of algebraic geometry

and matrix theory. This framework, further developed in [63], ultimately leads to the

idea of random linear network coding, where coefficients in the finite field are randomly

picked at each node, so that any receiver can decode its input data with high probability,

see the paper by Ho et al. [64]. Random linear network coding is a simple decentralized

approach to the network code design problem. Following a long line of research, Jaggi et

al. proposed a deterministic polynomial-time algorithm returning a linear network code

sufficient to achieve the network coding maximum rate [65].

This last algorithm requires an alphabet of size O(|R|) to encode messages, where R

is the set of receivers requesting the data. In [24] Lehman and Lehman exhibit instances

where an alphabet of size Ω(
√

|R|) is required, even if nonlinear network codes are allowed.

They also show in the same paper that minimizing the alphabet size of a linear network

code is an NP-hard task.

Another practical limitation regarding network coding lies in the number of nodes

performing coding operations instead of merely forwarding data. This issue is studied

by Langberg et al. in [66], where the authors present an algorithm, improving over the

complexity of the one proposed in [65], while providing an upper-bound on the number

of nodes involved in the coding process. In the same paper, the authors also show that

looking for a network code minimizing the number of coding nodes is an NP-hard problem.

Nonetheless, this last problem can be practically tackled by using a heuristic algorithm, as

the one proposed by Kim et al. in [67].

Regarding networks with directed cycles, a network decomposition originally proposed

by Fragouli and Soljanin [68] suggested a connection between network coding and con-

volutional codes, see [69] by the same authors. This connection gave rise to a now well-

established network coding theory for networks with directed cycles, see the study by Jaggi

et al. [70], the one by Li and Yeung [71], and the paper of Erez and Feder [72].

To put an end to our journey through this topic, we would like to mention to the reader

93

a survey on network coding by Sanna and Izquierdo [73] along with one by Bassoli et al.

[20].

2.4 Features of the information flows

2.4.1 Coding gain

One of the primary motivations behind the introduction of coding process at interme-

diate nodes of a multicast network has been the hope for an improvement of the maximum

amount of information the network operator could simultaneously provide to each receiver

[15]. Researchers in the network coding community have been pondering about the advan-

tage of deploying such coding process.

Question 1. Is there an incentive, with respect to the maximum achievable throughput, to

use network coding in a multicast network?

To answer this question one needs a proper criterion to evaluate the benefit of deploying

coding techniques inside a network. The following quantity has been retained by the

community:

Definition 1. Given a network D = (V,A) with source s, set of receivers R not containing

s, and capacity ca for each arc a, the coding gain gϕ, also known as the coding advantage,

provided by network coding over multicast alone, is the ratio of the value of a maximum

coded flow over the one of a maximum Steiner flow, namely:

gϕ =
ϕC
ϕS

(2.74)

Recall that we only consider networks where there is at least one path between the

source and each receiver. Hence, we can safely assume ϕS > 0 since there exists at least

one Steiner tree to convey flow in the network. Thus, the previous definition of the coding

gain gϕ is well-grounded. A value of gϕ lower than 1 means that allowing coding process

to take place inside the network is detrimental to the multicast framework. A value of gϕ

greater than 1 implies that the corresponding multicast network actually benefits from the

deployment of network coding techniques. Finally a value of gϕ exactly equal to 1 means

94

that there is no incentive to implement network coding process in the considered multicast

network, with respect to this criterion. The following theorem, which is the formalization

of a common knowledge in the network coding literature, basically states that allowing

network coding deployment inside a multicast network never impedes the performance of

this network.

Theorem 3. Given a network D = (V,A) with source s, set of receivers R, and capacity

ca for each arc a, the coding gain gϕ is at least 1.

Proof. The underlying idea of this theorem is that routing using multicast only corresponds

to the special case of using both multicast and network coding simultaneously in a network

where no coding operation is performed, only simple data duplication. Let x be a maximum

Steiner flow. We shall build a feasible coded flow x with the same throughput as x. For

each receiver r and each path p between s and r, define:

xp =
∑

t∈T

pr
t
=p

xt (2.75)

where, for any Steiner tree t and any receiver r, prt is the unique path from s to r in t.

We first show that coded flow x satisfies all capacity requirements assuming Steiner flow x

does. Observe that for any arc a and any receiver r:

∑

p∈Pr
a

xp =
∑

p∈Pr
a

∑

t∈T

pr
t
=p

xt (2.76)

≤
∑

t∈Ta

∑

p∈P

pr
t
=p

xt (2.77)

=
∑

t∈Ta

xt (2.78)

≤ ca (2.79)

where the first inequality stands since, if arc a is used by path p while p is part of Steiner

tree t, then a is also used by t. The last equality holds because there is only one path prt

between source s and receiver r in any Steiner tree t. Finally recall that we assume x to

be a feasible Steiner flow from which we get the last inequality. Thus coded flow x meets

95

all capacity requirements. Regarding the value of x , one has for any receiver r:

∑

p∈Pr

xp =
∑

p∈Pr

∑

t∈T

pr
t
=p

xt (2.80)

=
∑

t∈T

∑

p∈Pr

pr
t
=p

xt (2.81)

=
∑

t∈T

xt (2.82)

where the last equality comes again from the uniqueness of the path prt for a given Steiner

tree t and a given receiver r. By combining this last result with the feasibility of coded

flow x , and the optimality of Steiner flow x, one gets ϕS ≤ ϕC , or equivalently gϕ ≥ 1.

2.4.2 Example continued

Consider again the three variants of the butterfly network described earlier. Since we

know the value ϕS of a maximum Steiner flow along with the value ϕC of a maximum

coded flow, we immediately deduce the value of the coding gain gϕ for each variant, as

summarized in Table 2.3. Observe that there is no incentive to use network coding in the

bidirected butterfly network, while there is a benefit to perform coding operations in both

the undirected and directed butterfly networks. Those results highlight the importance of

the network structure on the benefit one can expect to get from network coding.

Structure ϕS ϕC gϕ
Bidirected 2 2 1

Undirected 15
8 2 16

15

Directed 3
2 2 4

3

Table 2.3 – The coding gain gϕ of each butterfly network.

2.4.3 Features of the coding gain

We shall now present various results regarding the coding gain gϕ. Most of those results

are well-known in the network coding literature.

96

2.4.3.1 Two special cases

We first have a look at the so-called unicast setting where there is only one receiver,

R = {r}. As previously mentioned, in this particular setting, a Steiner tree spanning

both the source s and the receiver r is simply a path between s and r. A maximum

Steiner flow then becomes nothing but a classical maximum flow under path decomposition.

Furthermore, a maximum coded flow also becomes a simple maximum flow since there is

only one receiver. The following lemma is thus common knowledge in the network coding

literature.

Lemma 2. [61, Corollary 1] Given a network D = (V,A) with source s, receiver r distinct

from s, and capacity ca for each arc a, it is possible to achieve the maximum throughput

between s and r by performing forwarding operations only. Therefore one has gϕ = 1 in

this setting.

Another interesting setting lies in the other extreme case regarding receivers, the so-

called broadcast setting where each vertex of the network except the source is a receiver,

R = V \ {s}. The following theorem emphasizes that the value of a maximum spanning

flow equals the one of a maximum coded flow in any directed network. This means that

performing coding operations is not required in a directed broadcast network as far as

maximum throughput is concerned.

Theorem 4. [42] Given a directed network D = (V,A) with source s, set of receivers

V \ {s}, and capacity ca for each arc a, the value of a maximum spanning flow and the one

of a maximum coded flow are equal, thus gϕ = 1.

The proof of this theorem relies on a theorem due to Edmonds on packing arc-disjoint

spanning arborescences in a digraph [74], see [75] for details.

The previous result regarding equality between the value of a maximum spanning flow

and the one of a maximum coded flow also holds in any undirected network. This leads to

the same conclusion as the previous one regarding the potential benefit of network coding

in an undirected broadcast network [61, 76].

97

Theorem 5. [61, Corollary 2] Given an undirected network G = (V,E) with source s, set

of receivers V \{s}, and capacity ce for each edge e, the value of a maximum spanning flow

and the one of a maximum coded flow are equal, thus gϕ = 1.

The proof of this theorem as stated in [61, 76] rests on the celebrated Tutte-Nash-

Williams theorem [77, 78], see [75].

2.4.3.2 Bidirected networks

We shall now turn our attention to the coding gain in bidirected networks. The next

theorem states that the value of a maximum Steiner flow equals the one of a maximum

coded flow in any bidirected network. This means that allowing network coding over

multicast in a bidirected network cannot improve the maximum throughput experienced

by all receivers [42, 79].

Theorem 6. [42, Theorem 1] Given a bidirected network B = (V, L) with source s, set of

receivers R, and capacity ca for each arc a, the value of a maximum Steiner flow and the

one of a maximum coded flow are equal, namely gϕ = 1.

The proof of this theorem relies on the idea of arc splitting, i.e. replacing a pair of

arcs (u, v) and (v, w) by a single arc (u,w). Starting from the original network, perform

a sequence of arc splitting operations thanks to a theorem due to Frank and Jackson,

see [42, 3], so as to obtain a new digraph where all intermediate nodes are isolated. The

remaining of the proof involves the use of Theorem 4 to conclude. This theorem is important

since the core network of the Internet can be roughly modeled by a bidirected network, see

the discussion on this topic in [42, 79] and references therein.

2.4.3.3 Undirected networks

We shall now study the coding gain in undirected networks. The next theorem empha-

sizes that, in any undirected network, the value of a maximum coded flow is upper-bounded

by twice the one of a maximum Steiner flow. This implies that allowing coding operations

to take place in an undirected network may at most double the throughput experienced by

any receiver.

98

Theorem 7. [61, Corollary 2] Given an undirected network G = (V,E) with source s, set

of receivers R not containing s, and capacity ce for each edge e, the value of a maximum

coded flow is at most twice the one of a maximum Steiner flow, equivalently gϕ ≤ 2.

The proof of Theorem 7 is quite similar to the one of Theorem 6 and rests on the

idea of edge splitting, replacing a pair of edges {u, v} and {v, w} by a single edge {u,w}.

Perform a sequence of edge splitting operations thanks to a theorem of Mader, see [61, 80],

so as to transform the original network where each capacity has been doubled into a new

undirected graph where all intermediate nodes are isolated. The proof is then established

thanks to Theorem 5. We would like to point out that alternative proofs of this theorem

have been proposed in the literature, resting on either linear programming [81] or graph

theory [82].

A quite natural question arising from this last result is whether this upper-bound of 2 on

the coding gain of any undirected network is actually tight. To the best of our knowledge,

the currently highest example of coding gain is a limit case of 8
7 [81].

2.4.3.4 Directed networks

We shall now deal with the coding gain in directed networks. The following theorem

highlights that, unlike their bidirected or undirected counterpart, those networks can admit

arbitrarily large coding gain.

Theorem 8. [83, 84] For any real number η ≥ 1, there exists an infinite family of directed

networks with unit capacity such that the ratio between the value of a maximum coded flow

and the one of a maximum Steiner flow satisfies gϕ ≥ η.

The proofs proposed in [83, 84] rely on a family of networks known as combination

networks in the literature. We denote by [n] the set of all positive integers between 1 and

positive integer n (included). Given two positive integers k and n with k ∈ [n], the directed

combination network C(n, k) is made of three layers of vertices. The first layer is made of

the source s, the second layer consists of a set of n intermediate nodes identified with the

set [n], and the third layer is made of a set R of
(

k
n

)

receivers. We identify each receiver

with a subset of [n] of cardinality k. Those three layers are connected together by one arc

99

from the source to each intermediate node, and one arc from an intermediate node to each

receiver which contains this node, regarded as an element of [n]. Furthermore each arc a

has a unit capacity: ca = 1. Three combination networks are depicted on Figure 2.11.

Figure 2.11 – (a) The combination network C(n, k) for n = 3 and k = 2. (b) The com-
bination network C(n, k) for n = 4 and k = 2. (c) The combination network C(n, k) for
n = 4 and k = 3.

The proof of Theorem 8 in [83] rests on coding theory while the one in [84] relies on

information theory. We shall now give a third original proof that makes use of the theory

of duality in linear programming. To do so, we will need the following lemma:

Lemma 3. In a directed combination network C(n, k), any Steiner tree t rooted at the

source s and spanning all receivers R is required to use at least n − k + 1 intermediate

nodes, or equivalently n− k + 1 arcs between the first and second layers.

Proof. Try to build a Steiner tree. By picking an intermediate node, the tree can span up

to
(

n−1
k−1

)

receivers. Thus
(

n
k

)

−
(

n−1
k−1

)

=
(

n−1
k

)

receivers remains unspanned. By picking

another intermediate node, at most
(

n−2
k−1

)

new receivers can become part of the tree and

100

(

n−1
k

)

−
(

n−2
k−1

)

=
(

n−2
k

)

receivers remains unspanned. By induction we get:

(

n

k

)

=
n−1
∑

j=k−1

(

j

k − 1

)

(2.83)

and spanning all receivers can be done by picking (n − 1) − (k − 1) + 1 = n − k + 1

intermediate nodes but no less.

We are now ready for the proof of Theorem 8 which rests on arguments similar to those

developed in [85] for undirected combination networks.

Proof. Consider a combination network C(n, k). Since there are exactly k arc-disjoint paths

from the source to each receiver, one immediately gets the value of a maximum coded flow

in this network, ϕC = k. The next step is to determine the value of a maximum Steiner

flow in this network, namely ϕS = n
n−k+1 . Consider the set of n Steiner trees defined as

follows: For each integer i ∈ [n], tree ti is made of n − k + 1 intermediate nodes starting

from node i up to node i+ n− k where each index is taken modulo n. Pick all arcs from

the source to those n − k + 1 intermediate nodes to connect the first and second layers.

In order to connect the second and the third layer, start by picking all receivers reachable

from intermediate node i, then pick all unspanned receivers reachable from intermediate

node i + 1 (index modulo n) and proceed iteratively by greedily picking all receivers still

unspanned. Observe that any arc of the network is used by at most n− k + 1 trees. This

implies that the Steiner flow defined by routing 1
n−k+1 units of flow on each of those trees

and nothing on any other tree meets all capacity requirements. Since its value is n
n−k+1 ,

we get ϕS ≥ n
n−k+1 . The Steiner flow hence defined for network C(4, 2) is depicted on

Figure 2.12 (a). Let y be the vector defined by setting ya = 1
n−k+1 for each arc from the

source to an intermediate node, and ya = 0 for any arc from an intermediate node to a

receiver. From Lemma 3, any Steiner tree uses at least n − k + 1 arcs from the source to

intermediate nodes, therefore vector y is a feasible solution to the dual of the maximum

Steiner flow problem with value n
n−k+1 . This feasible dual solution for network C(4, 2)

is depicted on Figure 2.12 (b). By weak duality in linear programming combined with

the previous result we get ϕS = n
n−k+1 . Hence, the coding gain of network C(n, k) is

gϕ = k(n−k+1)
n . Setting n = 2k leads to a coding gain of value gϕ = k+1

2 . This last quantity

101

is unbounded when the parameter k grows to infinity. Finally, given real number η ≥ 1,

the network C(2k, k) with k = ⌈2η − 1⌉ satisfies all requirements of the theorem.

Figure 2.12 – (a) A maximum Steiner flow in network C(4, 2). Each of the four trees
conveys 1

3 units of flow for an overall throughput of value 4
3 . (b) A feasible solution to

the dual of the maximum Steiner flow problem. Only arcs from the source to intermediate
nodes have a positive value.

We point out that at least one other family of directed networks, first defined in [86],

also exhibits provably high coding gain, see [87].

2.4.3.5 Experimental evaluation of the coding gain

All results presented so far involve very structured networks. Regarding the coding

gain, one may legitimately ask whether a more realistic network topology could benefit from

102

network coding, assuming multicast is always allowed. Unfortunately for network coding

promoters, it seems that networks for which the coding gain gϕ is strictly greater than one

are rather scarce. For undirected networks, the authors of [39] report that on a sample of

over one thousand randomly generated topologies, the coding gain value remains stuck to

1.0 in all instances. When considering directed networks, a comparison of network coding

with various heuristic algorithms solving the maximum Steiner flow problem, including the

one presented above, performed on six network topologies of Internet Service Providers,

shows few benefits of network coding as far as maximum throughput is concerned [56].

This trend is confirmed by the results presented in [88] where the coding gain remains

stuck at 1.0 for hundreds of randomly generated instances.

However, one should not conclude from those results that network coding is devoid of

any practical interest. First notice that, in all cases, the computational complexity involved

in finding a maximum coded flow is significantly lower than the one required to obtain a

maximum Steiner flow. Besides, as already pointed out in [88], the maximum Steiner flow

problem is a rather theoretical view of the rate one could expect from the use of multicast

techniques. This is because each multicast tree requires constant management from the

network operator. Thus the number of trees one could use to convey information through a

network is strongly restricted. Adding this constraint on the number of trees when looking

for a maximum Steiner flow causes a soaring of the experimental coding gain [88]. Hence,

in the mind of a telecommunication operator, network coding should be regarded as a tool

allowing one to practically achieve the maximum rate of a multicast network, rather than

a technique to improve this maximum rate [56, 39].

2.5 Conclusion

In this chapter we presented two network optimization problems, motivated by prac-

tical telecommunication applications, namely the maximum Steiner flow problem and the

maximum coded flow problem. Since each problem can be used to evaluate the maximum

amount of data one can convey from a source node to a set of receiver nodes in a partic-

ular setting, multicast alone for the maximum Steiner flow problem, multicast combined

with coding for the maximum coded flow problem, one can use both problems to define

103

an indicator, the coding gain, allowing comparisons between those two settings. We then

provided a summary of various and important results which have been previously proposed

in the network coding literature, regarding the domain of values one can expect the coding

gain to take. Those results are summarized in Table 2.4 below. Recall that the greater the

value actually taken by the coding gain in a given multicast network, the more beneficial

network coding techniques would be if implemented in this particular network.

Structure Coding gain
Bidirected {1}

Undirected [1, 2]

Directed [1,+∞[

Table 2.4 – Coding gain domain for each channel model.

Table 2.4 also highlights how impactful the channel model actually is on the coding

gain. No benefit could be expected from using coding techniques in a bidirected network,

while network coding can at most double the maximum amount of data experienced by

any receiver in an undirected multicast network. Finally one can expect the coding gain

of a directed network to be arbitrarily large.

The approach taken in this chapter will be our reference for the following ones. We shall

consider a problem of general interest in the telecommunication community, then propose a

network optimization model for the associated problem in each setting, multicast alone or

combined with coding techniques. Once done, we shall formally define an associated gain

by taking the ratio of their optimal values. We shall then study this ratio in an attempt

to evaluate the benefit of introducing coding mechanisms in a multicast network.

104

Chapter 3

Multicommodity information flows

3.1 Introduction

3.1.1 Motivation

To the best of our knowledge, most of the work in the multicast and network coding

literature focuses on the single commodity case where one wishes to send the very same

information from one source to a set of receivers by performing replication and coding

operations at intermediate nodes of the network. However, in practical applications, it

may be the case that the network has to deal with a set of sources, each such source

wanting to convey its own data to its own set of receivers through the network. In the

following, we call commodity such a couple (source, set of receivers). The word commodity

is chosen to highlight the connection with some multicommodity flow problems in network

optimization [7]. Notice however that the word session is frequently used as a synonym of

commodity in the field of telecommunications. Although each commodity may be willing

to coordinate its efforts with the others, by sharing communication protocols, it is unlikely

that one commodity would allow its own data to be mixed with the information flow

of another commodity, due to confidentiality issues. This motivates the development of

models for handling this multicommodity setting we just described, which is the topic of

the present chapter.

105

3.1.2 Content

We shall first provide a brief summary of two classical problems as they appear in the

multicommodity flow literature [7], namely the maximum weighted multicommodity flow

problem and the maximum concurrent flow problem. As we did in Chapter 2, we shall

then present an extension of each problem in the framework of information flows. We

first introduce the notion of multicommodity Steiner flow before studying the maximum

weighted multicommodity Steiner flow problem and the maximum concurrent Steiner flow

problem. Roughly speaking, each problem is again obtained by replacing paths with Steiner

trees as flow support in a suitable framework. It is then natural to consider the variant

of each of the two aforementioned Steiner flow problems where coding mechanisms are

allowed to take place in the telecommunication network. We thus successively present the

maximum weighted multicommodity coded flow problem and then the maximum concurrent

coded flow problem. Finally, we shall define and study a natural extension of the coding

gain to the multicommodity setting in an attempt to evaluate the impact of introducing

coding techniques in a multicast network. In doing so, we explicitly draw a connection

between the coding gain and the newly defined multicommodity coding gain. The scheme

depicted on Figure 3.1 provides an overview of all problems studied in both the previous

and the present chapters along with the interconnections between them. The reader already

familiar with the maximum multicommodity flow problems may skip the remaining of this

introduction. Furthermore, an extensive review of all problems presented below may be

unnecessary at first reading.

3.1.3 Multicommodity flows

3.1.3.1 Setting

A multicommodity flow can be regarded as a natural extension of a simple flow (as

defined at the beginning of the previous chapter) where the network is requested to convey

flow between several couples source/destination. For brevity, we focus on the case of

directed networks, without loss of generality since it encompasses the case of undirected

ones. Consider a directed network D = (V,A) with a capacity ca for each arc a. A

106

Figure 3.1 – Scheme of all problems studied in both the previous and the present chapters.
An arrow from problem ΠA toward problem ΠB indicates that ΠB is a generalization of
ΠA (or equivalently ΠA is a special case of ΠB). All problems on a same line share a
common routing strategy (and a common algorithmic complexity) while all problems on a
same column share a common feature.

commodity, indexed by an integer k, is a transportation request from a peculiar source

node sk to another peculiar receiver node rk. Depending of the considered problem, a

positive real demand dk may also be specified for each commodity k. Let K be the set of

all commodities.

For each commodity k, we denote by Pk the set of all simple paths from sk to rk. Let

P be the union of the sets Pk over all commodities, P =
⋃

k∈K P
k. Furthermore, for each

arc a, and each commodity k, let Pka be the subset of Pk made of all paths using arc a.

Finally, for each arc a, let Pa be the subset of P made of all paths using arc a. In other

107

words, Pa is the union of the sets Pka over all commodities, Pa =
⋃

k∈K P
k
a .

A multicommodity flow x is an assignment of a non-negative real value xp to each

simple path p from sk to rk, for each commodity k. A multicommodity flow x is feasible

if it satisfies the capacity requirements, namely that the sum over all commodities of the

contribution of each path using an arc a is smaller than the capacity ca of this arc. We

denote by XP the set of all feasible multicommodity flows:

XP =

x ∈ RP
+ :

∑

p∈Pa

xp ≤ ca ∀a ∈ A

(3.1)

One can define a multicommodity flow problem by picking an objective function. We focus

on maximizing a function of the throughput experienced by each receiver.

3.1.3.2 Maximum weighted multicommodity flow

Problem statement

According to the previous setting, consider the case where a non-negative weight wk

is associated to each commodity k. Given a multicommodity flow x, those weights are

reflecting some preferences among commodities when the network operator aims to maxi-

mize the weighted sum of the throughput experienced by each receiver, referred to as the

value of multicommodity flow x:

w(x) =
∑

k∈K

wk
∑

p∈Pk

xp (3.2)

where for each commodity k,
∑

p∈Pk xp is the amount of flow going from source sk to re-

ceiver rk. This objective function leads to the so-called maximum weighted multicommodity

flow problem:

Problem Maximum weighted multicommodity flow
Instance Network D = (V,A), capacity ca on each arc a, set of commodities K, and

for each commodity k, source sk, receiver rk, non-negative weight wk

Solution A feasible multicommodity flow x ∈ XP in D
Objective Maximize the value w(x) of multicommodity flow x

as defined in Equation (3.2)

108

We denote by φF the value of a maximum weighted multicommodity flow for the considered

instance:

φF = max
x∈XP

w(x) (3.3)

The special case where wk = 1 for each commodity k is known as the maximum multicom-

modity flow problem in the literature. Notice that, when restricted to a single commodity

(|K| = 1), the present problem amounts to finding a maximum flow with respect to this

commodity.

Linear programming formulations and problem complexity

The maximum weighted multicommodity flow problem can be modelled using linear

programming:

φF = max
∑

k∈K

wk
∑

p∈Pk

xp (3.4)

s.t.
∑

k∈K

∑

p∈Pk
a

xp ≤ ca ∀a ∈ A (3.5)

xp ≥ 0 ∀p ∈ P (3.6)

where, for each simple path p, variable xp stands for the amount of flow conveyed through

p. Hence, this model may involve an exponential number of variables, due to the number

of paths in P. We will refer to the previous model as the path formulation of the maximum

weighted multicommodity flow problem, so as to distinguish it from the arc formulation

of the same problem. The aforementioned arc formulation leads to the following linear

program:

φF = max
∑

k∈K

wkφk (3.7)

s.t.
∑

a∈δ+(v)

fka −
∑

a∈δ−(v)

fka = bkv(φ
k) ∀v ∈ V, k ∈ K (3.8)

∑

k∈K

fka ≤ ca ∀a ∈ A (3.9)

φk, fka ≥ 0 ∀a ∈ A, k ∈ K (3.10)

with

bkv(φ) =

φ if v = sk (3.11)

−φ if v = rk (3.12)

0 otherwise (3.13)

109

For each arc a and each commodity k, variable fka stands for the amount of flow of com-

modity k going through a, while variable φk models the throughput experienced by receiver

rk.

The arc formulation of the maximum weighted multicommodity flow problem involves

a polynomial number of variables and constraints (with respect to the instance size) so

that the problem can be solved in polynomial time. Given an optimal solution f for the

arc formulation, an optimal solution x for the path formulation can be built in polynomial

time thanks to the technique presented in the proof of Lemma 1: For each commodity

k, let fk be the vector of components fka over each arc a of the network. Observe that

vector fk is the arc projection of a simple flow between the source sk and the receiver

rk. For each commodity k, compute a path decomposition of this simple flow using the

algorithm presented by Ahuja et al. [7, Theorem 3.5] which runs in polynomial time. The

concatenation x of all those path decompositions (one per commodity) is clearly a path

decomposition of the multicommodity flow f . We refer the interested reader to the chapter

devoted to multicommodity flows in [7] for a broader algorithmic perspective.

3.1.3.3 Maximum concurrent flow

The framework remains the same as previously. Consider the situation where a positive

demand dk is associated to each commodity k. The network operator wishes to satisfy as

much of each commodity demand as possible, while ensuring strict fairness between the

commodities. The objective is then to maximize the fraction of the demand experienced

by every commodity, this last quantity being referred to as the value of a multicommodity

flow x in what follows:

d(x) = min
k∈K

∑

p∈Pk xp

dk
(3.14)

where for each commodity k,
∑

p∈Pk xp is the amount of flow going from source sk to re-

ceiver rk. This objective function leads to the so-called maximum concurrent flow problem:

110

Problem Maximum concurrent flow
Instance Network D = (V,A), capacity ca on each arc a, set of commodities K, and

for each commodity k, source sk, receiver rk, positive demand dk

Solution A feasible multicommodity flow x ∈ XP in D
Objective Maximize the value d(x) of multicommodity flow x

as defined in Equation (3.14)

We denote by λF the value of a maximum concurrent flow for the considered instance:

λF = max
x∈XP

d(x) (3.15)

Notice again that, when restricted to a single commodity (|K| = 1), the previous problem

amounts to finding a maximum flow with respect to this commodity.

Linear programming formulations and problem complexity

The maximum concurrent flow problem can also be formalized through linear program-

ming:

λF = max λ (3.16)

s.t. dkλ ≤
∑

p∈Pk

xp ∀k ∈ K (3.17)

∑

k∈K

∑

p∈Pk
a

xp ≤ ca ∀a ∈ A (3.18)

xp ≥ 0 ∀p ∈ P (3.19)

where, for each simple path p, variable xp models the amount of flow conveyed through p.

This model may also involve an exponential number of variables. The previous model is

called the path formulation of the maximum concurrent flow problem, so as to distinguish

it from its arc formulation whose linear program is given below:

λF = max λ (3.20)

s.t. dkλ ≤ φk ∀k ∈ K (3.21)
∑

a∈δ+(v)

fka −
∑

a∈δ−(v)

fka = bkv(φ
k) ∀v ∈ V, k ∈ K (3.22)

∑

k∈K

fka ≤ ca ∀a ∈ A (3.23)

φk, fka ≥ 0 ∀a ∈ A, k ∈ K (3.24)

111

where

bkv(φ) =

φ if v = sk (3.25)

−φ if v = rk (3.26)

0 otherwise (3.27)

As previously, for each arc a and each commodity k, variable fka stands for the amount of

flow of commodity k going through a, while variable φk models the throughput experienced

by receiver rk.

The arc formulation of the maximum concurrent flow problem involves a polynomial

number of variables and constraints (with respect to the instance size) so that the problem

can be solved in polynomial time. As before, given an optimal solution f for the arc

formulation, an optimal solution x for the path formulation can be built in polynomial

time thanks to the technique presented in the proof of Lemma 1.

3.1.3.4 Summary

We presented two examples of multicommodity flow problems which are well-known in

the literature [7]. We will now study the extension of each problem to the framework of

information flows.

3.2 Multicommodity Steiner flows

3.2.1 Setting

For the sake of simplicity, we focus our study on the case of a directed network, without

loss of generality since it encompasses the case of an undirected one. The instance is made

of a network D = (V,A) with a capacity ca for each arc a, and an index set K whose

elements are called commodities, such that to each commodity k is associated a node

sk, the source for commodity k, and a subset Rk of terminal nodes, called receivers of

commodity k. Depending on the considered application, a positive real demand dk may

also be specified for each commodity k. This setting allows one to model most cases of

multiple multicast sessions, concurrently occurring in a given network, where each source

independently conveys its own data to its receivers. We shall further assume that all

112

commodities are distinct, without loss of generality since we can add artificial sources

and connect each of them to the network without altering the overall network structure.

Notice however that we do not assume any two set of receivers, associated with two different

commodities, to be distinct.

For each commodity k, we denote by T k the set of all Steiner trees spanning sk and

Rk, and by T the union of the sets T k over all commodities, T =
⋃

k∈K T
k. Furthermore,

for each arc a, and each commodity k, we denote by T ka the subset of T k made of all trees

using arc a. Finally, for each arc a, let Ta be the subset of T made of all trees using arc a.

Equivalently Ta is the union of the sets T ka over all commodities, Ta =
⋃

k∈K T
k
a .

A multicommodity Steiner flow x is an assignment of a non-negative real value xt to each

Steiner tree t spanning sk and Rk, for each commodity k. A multicommodity Steiner flow x

is feasible if it satisfies the capacity constraints, namely that the sum over all commodities

of the contribution of each Steiner tree using an arc a is smaller than the capacity ca of

this arc. We denote by XT the set of all feasible multicommodity Steiner flows:

XT =

{

x ∈ RT
+ :

∑

t∈Ta

xt ≤ ca ∀a ∈ A

}

(3.28)

One may define a multicommodity Steiner flow problem by adding an objective function.

We focus on the analog of each function previously used to define a multicommodity flow

problem.

3.2.2 Maximum weighted multicommodity Steiner flow

3.2.2.1 Problem statement

Consider the framework where a non-negative weight wk is associated to each com-

modity k. Practical examples of such weights are the unit weight case, wk = 1 for each

commodity k, or the proportional weight case, wk =
(

|Rk|/
∑

k∈K |R
k|
)

. The aim is then

to maximize the weighted sum, over all commodities, of the shared throughput experienced

by each group of receivers within a commodity. Given a multicommodity Steiner flow x,

we call value of x the quantity:

w(x) =
∑

k∈K

wk
∑

t∈T k

xt (3.29)

113

where for each commodity k,
∑

t∈T k xt is the throughput provided by source sk to each

receiver in Rk. By a suitable choice of the weight vector w, the network operator can

expect to achieve some balance in the capacity distribution between commodities. Observe

however that a weighted sum may be a bad criterion if the network operator wishes to

enforce strict fairness between the commodities. This objective function naturally leads to

the following problem:

Problem Maximum weighted multicommodity Steiner flow
Instance Network D = (V,A), capacity ca on each arc a, set of commodities K, and

for each commodity k, source sk, set of receivers Rk, non-negative weight wk

Solution A feasible multicommodity Steiner flow x ∈ XT in D
Objective Maximize the value w(x) of multicommodity Steiner flow x

as defined in Equation (3.29)

We denote by φS the value of a maximum weighted multicommodity Steiner flow for the

considered instance:

φS = max
x∈XT

w(x) (3.30)

Observe that, when restricted to a single commodity (|K| = 1), the present problem

amounts to finding a maximum Steiner flow with respect to this commodity.

114

3.2.2.2 A detailed example

We consider the network depicted on Figure 3.2 which we shall refer to as the directed bi-

butterfly network. This network is obtained by merging two copies of the directed butterfly

network, while setting the capacity of each arc a of the network to 1, except for the arc

(n2, r2) whose capacity is 2. We are looking for a maximum weighted multicommodity

Figure 3.2 – The directed bi-butterfly network.

Steiner flow in the instance defined by setting two commodities in the directed bi-butterfly

network with s1 = s1, R1 = {r1, r2}, s2 = s2, and R2 = {r2, r3}. Furthermore, the weight

of each commodity is set to 1
2 . A maximum weighted multicommodity Steiner flow x is

depicted on Figure 3.3. Multicommodity Steiner flow x uses three trees per commodity,

each tree routing 1
2 units of flow, so that the overall throughput induced by Steiner flow x

is 3
2 .

115

Figure 3.3 – A maximum multicommodity Steiner flow x using six trees in the directed
bi-butterfly network. Each tree conveys 1/2 units of flow so that each receiver experiences
a throughput of 3/2 per commodity. The overall throughput induced by Steiner flow x

equals 3/2.

116

3.2.2.3 Linear programming formulation

The maximum weighted multicommodity Steiner flow problem can be formalized using

linear programming. To the best of our knowledge, the formulation below was first proposed

by Saad et al. [89] with the additional requirement to use one single Steiner tree per

commodity:

φS = max
∑

k∈K

wk
∑

t∈T k

xt (3.31)

s.t.
∑

k∈K

∑

t∈T k
a

xt ≤ ca ∀a ∈ A (3.32)

xt ≥ 0 ∀t ∈ T (3.33)

For each Steiner tree t, variable xt stands for the amount of flow routed through t. Observe

that, since we may have an exponential number of trees in T , the previous model may also

have an exponential number of variables. Constraints (3.32) ensure that the Steiner flow

x is feasible. It is interesting to consider the dual of the above linear program:

φS = min
∑

a∈A

caya (3.34)

s.t.
∑

a∈t

ya ≥ w
k ∀k ∈ K, t ∈ T k (3.35)

ya ≥ 0 ∀a ∈ A (3.36)

where y is the vector of dual variables associated to Constraints (3.32). When wk = 1

for each commodity k, the dual problem amounts to finding a multi-commodity Steiner

multi-cut.

3.2.2.4 Complexity and algorithms

The separation problem associated to the dual of the above linear programming for-

mulation of the maximum weighted multicommodity Steiner flow problem is to find a

minimum-cost Steiner tree t with respect to arc cost function y. This last problem is NP-

hard [43], hence by the equivalence between polynomial-time separation and polynomial-

time optimization for convex polytopes [90], the dual problem is also NP-hard. Thus, the

maximum weighted multicommodity Steiner flow problem is NP-hard.

To say more about this problem, we shall introduce the class of fractional packing prob-

lems to which the maximum weighted multicommodity Steiner flow problem belongs. We

117

shall then present a framework due to Garg and Könemann [21] to handle any problem of

this class. Given a subroutine to solve the minimum Steiner tree problem with accuracy

α, this framework provides an algorithm, running in polynomial time, to solve the maxi-

mum weighted multicommodity Steiner flow problem with ratio α(1 + ǫ), where ǫ is any

fixed positive real number. This algorithm does not rely on the ellipsoid method and only

incurs a factor (1 + ǫ) loss in the approximation ratio. The reader only interested by the

complexity result may skip the following discussion up to Corollary 2.

3.2.2.5 Approximation algorithm

Fractional packing, also known as positive linear programming, refers to a problem of

the form max{cTx|Ax ≤ b, x ≥ 0} where A is an (m × n) real matrix with non-negative

entries, b is a positive vector in Rm, and c is a positive vector in Rn. Observe that the

maximum weighted multicommodity Steiner flow problem is actually a packing problem.

Let I = [n] and J = [m]. Without loss of generality, every row and column of A contains

at least one non-zero entry, and, for any couple of indices (i, j) ∈ I × J , the (i, j)th

entry of A, denoted by A(i, j), is at most the ith entry of b, denoted by bi (see [91] for a

discussion regarding those assumptions). Let Aj denote the jth column of A for any j ∈ J .

The dual of a given packing problem, called the covering problem, is the linear program

min{bT y|AT y ≥ c, y ≥ 0}. We further assume that the covering problem is feasible (the

zero vector is always a feasible primal solution to the packing problem with value 0). By

linear programming duality, the packing and covering problems share the same optimal

value, and the value of any feasible solution of the covering problem is greater than, or

equal to, the value of any feasible solution of the packing problem. The method proposed by

Garg and Könemann in [21] allows to solve the packing problem provided an oracle which,

given a dual vector y, computes exactly the quantity σ(y) = minj{A
T
j y/cj}. Observe

that computing σ(y) amounts to solving the separation problem associated to the covering

problem.

However, in many applications, we only have access to a weak oracle which, given a dual

vector y, returns a column q such that ATq y/cq ≤ ασ(y) where α is the oracle approximation

ratio. This ratio can be either a constant or a function of the size of the instance. When

118

α = 1 the oracle is exact, but we may also have α = 1 + ǫ for any desired accuracy ǫ (the

oracle is then an FPTAS or a PTAS), or α equal to a constant, corresponding to the use

of a constant approximation algorithm as oracle.

Saad et al. [89] show that the framework developed by Garg and Könemann [21]

can be extended to cope with weak oracles. More precisely, the algorithm preserves the

approximation ratio α from the oracle to the packing problem up to a 1 + ǫ factor. The

need for such an extension typically arises in some packing problems where there is an

exponential number of possible columns (with respect to the size of the instance) implying

that the matrix A and the vector c are only known through the oracle, while the dual

separation problem is NP-hard but can be approximated to some extent.

Theorem 9. [89] Given accuracy ω > 0 and an oracle to find an α-approximate solution to

the dual separation problem in time TOracle, the Garg and Könemann algorithm computes

an (1−ω)/α-approximate solution to the packing problem, in time O(ω−2m log(m)TOracle).

When the oracle is an FPTAS or a PTAS, the previous result can be specialized as

follows:

Corollary 1. Given accuracy ω > 0 and an FPTAS or a PTAS, which finds an (1 + ǫ)-

approximation to the dual separation problem in time TOracle (where ǫ(ω) is chosen as

above), the Garg and Könemann algorithm computes an (1 − ω)-approximate solution to

the packing problem, in time O(ω−3m log(m)TOracle).

The overall increase of the running time, from ω−2 to ω−3, is due to the requirement

for the quality of the approximation of the packing problem to be the same as the one of

the oracle. For the sake of completeness we provide a full proof of Theorem 9, along with

the pseudo-code of the associated algorithm, in Appendix B.1.

Assume we want to study a packing problem with an exponential number of columns

so that the constraints matrix A is only known through an oracle. Observe that, in the

definition of σ, the oracle approximately solve the ratio variant of the covering separation

problem. If vector c is known to be equal to the all-ones vector then the ratio version is

119

equivalent to the linear variant of the covering separation problem from an approximation

perspective. Otherwise, if the components of vector c are only provided through calls to the

oracle, the very existence of such an oracle can be an issue since many "classical" approx-

imation algorithms are designed to solve linear variants of hard problems. Nonetheless, it

is sometimes possible to approximate the ratio variant given a subroutine to approximate

the linear variant, see [92] and references therein.

As mentioned above, the separation problem associated to the dual of the maximum

weighted multicommodity Steiner flow problem is to find a Steiner tree whose cost with

respect to given dual vector y is minimum. Thus, one is looking for a solution to the

following problem:

min
k∈K

1

wk
min
t∈T k

∑

a∈t

ya (3.37)

Hence, the following corollary follows:

Corollary 2. Given accuracy ω > 0, and an oracle to find an α-approximate minimum cost

Steiner tree in time TSteiner, the Garg and Könemann algorithm computes an α(1 + ω)-

approximate solution to the maximum weighted multicommodity Steiner flow problem, in

time O(ω−2m log(m)TSteiner).

We refer the reader to the discussion leading to Table 2.2 in the previous chapter, for a

summary regarding the complexity and approximability of the minimum cost Steiner tree

problem. Also see the paper by Ciebiera et al. [93] for a more practical perspective.

For our purpose, it is more meaningful to look for an exact method to solve the maxi-

mum weighted multicommodity Steiner flow problem, like column generation.

3.2.2.6 Computing a maximum weighted multicommodity Steiner flow by

column generation

Although the problem of finding a Steiner tree of minimum cost is NP-hard [43], it can

be solved to optimality by using one of its many classical mixed-integer linear programming

formulations, see [55]. Hence, the separation problem in Equation (3.37) can be solved to

optimality by performing one call to a mixed-integer linear programming solver for each

commodity, so as to get one minimum-cost Steiner tree per commodity. By using this solver

120

as a subroutine in a column generation procedure, one can hope to compute a maximum

weighted multicommodity Steiner flow in a reasonable amount of time, given an instance

of reasonable size.

3.2.3 Maximum concurrent Steiner flow

3.2.3.1 Problem statement

As previously mentioned, a maximum weighted multicommodity Steiner flow may in-

duce an unfair allocation of the network resources among commodities. Consider the

framework where a positive demand dk is associated to each commodity k. The network

operator wishes to satisfy as much of each commodity demand as possible, while enforcing

strict fairness between the commodities. The objective is then to maximize the fraction of

the demand experienced by every commodity, this last quantity being referred to as the

value of a multicommodity Steiner flow x:

d(x) = min
k∈K

∑

t∈T k xt

dk
(3.38)

where for each commodity k,
∑

t∈T k xt is the throughput provided by source sk to each

receiver in Rk. This objective function leads to the following problem:

Problem Maximum concurrent Steiner flow
Instance Network D = (V,A), capacity ca on each arc a, set of commodities K, and,

for each commodity k, source sk, set of receivers Rk, and positive demand dk

Solution A feasible multicommodity Steiner flow x ∈ XT in D
Objective Maximize the value d(x) of multicommodity Steiner flow x

as defined in Equation (3.38)

We denote by λS the value of a maximum concurrent Steiner flow for the considered

instance:

λS = max
x∈XT

d(x) (3.39)

Observe that solving the restriction of the present problem to the single commodity setting

(|K| = 1) amounts to finding a maximum Steiner flow with respect to this commodity.

121

3.2.3.2 Linear programming formulation

The maximum concurrent Steiner flow problem can be formalized using linear program-

ming:

λS = max λ (3.40)

s.t. dkλ ≤
∑

t∈T k

xt ∀k ∈ K (3.41)

∑

k∈K

∑

t∈T k
a

xt ≤ ca ∀a ∈ A (3.42)

xt ≥ 0 ∀t ∈ T (3.43)

For each Steiner tree t, variable xt stands for the amount of flow routed through t. Observe

that, since we may have an exponential number of trees in T , the previous model may have

an exponential number of variables. The single variable λ models the satisfied fraction of

each commodity demand. Constraints (3.41) along with the maximization of variable

λ ensure that, for each commodity, as much of its demand as possible is satisfied, while

Constraints (3.42) ensure that the Steiner flow x is feasible. It is also interesting to consider

the dual of the above linear program:

λS = min
∑

a∈A

caya (3.44)

s.t.
∑

k∈K

dkzk = 1 (3.45)

∑

a∈t

ya ≥ zk ∀k ∈ K, t ∈ T k (3.46)

ya, zk ≥ 0 ∀a ∈ A, k ∈ K (3.47)

where y is the vector of dual variables associated to Constraints (3.42) while z is the one

associated to Constraints (3.41). When dk = 1 for each commodity k, the dual problem

amounts to finding a set of Steiner multi-cuts.

3.2.3.3 Complexity and algorithms

Notice that the special case of the maximum concurrent Steiner flow problem where

there is only one single commodity with unit demand is exactly the problem of packing

Steiner trees fractionally so as to maximize the overall throughput experienced by each

receiver. Since this special case is already NP-hard [40], so is the maximum concurrent

Steiner flow problem.

122

In the following, we shall introduce the class of max-min resource sharing problems

which includes the maximum concurrent Steiner flow problem. We shall then present a

framework also due to Garg and Könemann [21] and later extended by Fleischer [94, 22]

to handle any problem of this class. Given a subroutine to solve the minimum Steiner tree

problem with accuracy α, this framework provides an algorithm, running in polynomial

time, to solve the maximum concurrent Steiner flow problem within a ratio α(1+ ǫ), where

ǫ is any fixed positive real number. We stress out that it is not possible to simply apply

the argument provided by Jain et al. in [40] to reach a similar conclusion through the

ellipsoid method, because of the shape of the dual objective function. Again, the reader

only interested by the complexity result may skip the following discussion up to Corollary 3.

3.2.3.4 Approximation algorithm

The linear max-min resource sharing problem can be thought of as a generalisation of

the packing problem. It is of the form max{λ|dλ ≤ Hx,Ax ≤ b, x ≥ 0} where A is an

(m× n) real matrix with non-negative entries, b is a positive vector in Rm, d is a positive

vector in Rh, and H is an (h × n) block diagonal binary matrix, such that each block is

made of a single row where every coefficient is a 1. Observe that the maximum concurrent

Steiner flow problem is actually a linear max-min resource sharing problem. Let K be a

set indexing the rows of H, whose elements are called commodities. We assume, without

loss of generality, that each such row k has at least one non-zero entry and we denote by

Ck the set of all columns j of matrix H such that H(k, j) = 1. The max-min resource

sharing problem was previously studied by Fleischer and Wayne in [22] under the name

of the k-commodity packing problem. Its dual is min{bT y|dT z = 1, AT y ≥ HT z, y, z ≥ 0}.

We assume that the dual problem is feasible (the zero vector is always a feasible primal

solution to the max-min resource sharing problem with value 0). In [22], the authors use

the Garg-Könemann method to design an FPTAS given an exact oracle to solve a variant

of the dual separation problem. However, we may only have access to a weak oracle for

solving the dual separation problem. As already pointed out in [22], when h = 1, the

max-min resource sharing problem becomes equivalent to the packing problem.

It is possible to adapt the framework of Fleischer and Wayne [22], which is based on the

123

method developed by Garg and Könemann in [21] for solving the maximum concurrent flow

problem, to cope with a weak oracle. Again, the algorithm preserves the approximation

ratio α from the oracle to the max-min resource sharing problem up to a 1 + ǫ factor.

Theorem 10. Given accuracy ω > 0 and an oracle to find an α-approximate solution to

the dual separation problem in time TOracle, the Garg, Könemann, Fleischer, and Wayne

algorithm computes an (1 − ω)/α-approximate solution to the max-min resource sharing

problem, in time O(ω−2(m+ h log(h)) log(m)TOracle).

A full proof of Theorem 10, along with the pseudo-code of the associated algorithm,

can be found in Appendix B.2.

The separation problem associated to the dual of the maximum concurrent Steiner flow

problem is to find, for each commodity k, a Steiner tree rooted at sk, spanning Rk, and

whose cost with respect to given dual vector y is minimum. This implies the following

corollary:

Corollary 3. Given accuracy ω > 0 and an oracle to find an α-approximate minimum cost

Steiner tree in time TSteiner, the Garg-Könemann-Fleischer-Wayne algorithm computes an

α(1 + ω)-approximate solution to the maximum concurrent Steiner flow problem, in time

O(ω−2(m+ |K| log(|K|)) log(m)TSteiner).

We again refer the reader to the discussion leading to Table 2.2 in the previous chapter,

for a summary regarding the complexity and approximability of the minimum cost Steiner

tree problem. Also see the paper by Ciebiera et al. [93] for implementations of some

algorithms. To conclude the present discussion, we would like to point out that an approach

similar to the one presented here, combining the framework of Garg and Könemann with

an approximation algorithm as subroutine, has been provided by Baltz et al. in [95] to

solve the twin problem of finding a maximum concurrent Steiner flow, namely the minimum

multicast congestion problem. See also the paper by Jansen et al. for more on this last

problem [96].

For our purpose, it is more interesting to look for an exact method to solve the maximum

concurrent Steiner flow problem, like column generation.

124

3.2.3.5 Computing a maximum concurrent Steiner flow by column generation

The separation problem associated to the dual of the maximum concurrent Steiner

flow problem can be solved to optimality by performing one call to a mixed-integer linear

programming solver for each commodity. By using this solver as a subroutine in a column

generation procedure, one can hope to compute a maximum concurrent Steiner flow in a

reasonable amount of time, given an instance of reasonable size.

We shall now focus on the setting where coding techniques are allowed in the network.

3.3 Multicommodity coded flows

3.3.1 Setting

The setting is the same as before. As in the previous chapter, we shall distinguish

between directed and bidirected networks on the one hand, and undirected networks on

the other hand. To summarize, the undirected network model is again obtained by adding

orientation constraints to the bidirected network model. The instance is still made of a

network D = (V,A) (directed or bidirected, for the sake of simplicity) with a capacity ca

for each arc a, along with an index set K whose elements are called commodities, such

that to each commodity k is associated a source sk and a subset Rk of receivers. We may

also be given a positive real demand dk for each commodity k. We shall again assume

that all commodities are distinct (without loss of generality, as previously explained).

Also recall that we do not assume any two sets of receivers, associated with two different

commodities, to be distinct. That said, we allow intra-commodity coding, but not inter-

commodity coding: it is only possible to code messages originating from the same source.

This prevents potential security leaks where a receiver from one commodity could decode

information from another one. Our results hence differ from other approaches like the one

undertaken by Cassuto and Bruck [25] and further extended by Chekuri et al. [27], where

one wishes to use coding techniques so as to route data inside a network, from a single

source toward a set of receivers, each receiver having its own demand.

For each commodity k, and each receiver r ∈ Rk, we denote by P(k,r) the set of all simple

125

paths between sk and r, and by P the union of the sets P(k,r) over all commodities and

all receivers, P =
⋃

k∈K

⋃

r∈Rk P(k,r). Furthermore, for each arc a, each commodity k, and

each receiver r ∈ Rk, let P(k,r)
a be the subset of P(k,r) made of all paths using arc a. Finally,

for each arc a, let Pa be the subset of P made of all paths using a. Equivalently Pa is the

union of the sets P(k,r)
a over all commodities and all receivers, Pa =

⋃

k∈K

⋃

r∈Rk P
(k,r)
a .

A multicommodity coded flow x is an assignment of a non-negative real value xp to

each simple path p between a source sk and a receiver r ∈ Rk, for each commodity k.

The multicommodity coded flow x is feasible if it satisfies the capacity constraints, namely

that the sum over all commodities of the contribution of each coded flow using an arc a is

smaller than the capacity ca of this arc. This means that given a multicommodity coded

flow x, along with an arc a, the amount of coded flow going through a for commodity k

alone is given by:

hka = max
r∈Rk

∑

p∈P
(k,r)
a

xp (3.48)

while the overall used capacity is taken as the sum of those terms over all commodities,

namely:

ha =
∑

k∈K

hka (3.49)

Those equations directly translate our allowance of intra-commodity coding along with the

prohibition of inter-commodity coding. In the following, we denote by XP the set of all

feasible multicommodity coded flows

XP =

x ∈ RP
+ :

∑

k∈K

max
r∈Rk

∑

p∈P
(k,r)
a

xp ≤ ca ∀a ∈ A

(3.50)

Again, one may define a multicommodity coded flow problem by adding an objective

function. In the following, we consider the two functions previously studied in this chapter.

3.3.2 Maximum weighted multicommodity coded flow

3.3.2.1 Problem statement

Consider again the framework where a non-negative weight wk is associated to each

commodity k. The aim is still to maximize the weighted sum, over all commodities, of the

126

shared throughput experienced by each group of receivers within a commodity. Given a

multicommodity coded flow x, for each commodity k, the minimum throughput experienced

by each receiver in Rk is:

φk = min
r∈Rk

∑

p∈P(k,r)

xp (3.51)

(where, for each commodity k,
∑

p∈P(k,r) xp is the throughput provided by source sk to

receiver r ∈ Rk) so that the value of multicommodity coded flow x is given by:

w(x) =
∑

k∈K

wkφk (3.52)

This objective function gives rise to the following problem:

Problem Maximum weighted multicommodity coded flow
Instance Network D = (V,A), capacity ca on each arc a, set of commodities K, and,

for each commodity k, source sk, set of receivers Rk, non-negative weight wk

Solution A feasible multicommodity coded flow x ∈ XP in D
Objective Maximize the value w(x) of multicommodity coded flow x

as defined in Equation (3.52)

We denote by φC the value of a maximum weighted multicommodity coded flow for the

considered instance:

φC = max
x∈XP

w(x) (3.53)

Observe that solving the restriction of the present problem to the single commodity setting

(|K| = 1) amounts to finding a maximum coded flow with respect to this commodity.

3.3.2.2 Example continued

Consider again the directed bi-butterfly network depicted on Figure 3.2. This time,

we are looking for a maximum multicommodity coded flow in the directed bi-butterfly

network under the same setting as in the previous example, namely s1 = s1, R1 = {r1, r2},

s2 = s2, and R2 = {r2, r3}, whereas the weight of each commodity is set to 1
2 . A coding

scheme associated to a maximum weighted multicommodity coded flow x for this instance

is depicted on Figure 3.4. The overall throughput induced by coded flow x is 2 since each

receiver experiences a throughput of 2 units of flow per commodity.

127

Figure 3.4 – A coding scheme associated to a maximum weighted multicommodity coded
flow x in the directed bi-butterfly network. Each receiver experiences a throughput of 2
units of flow per commodity.

3.3.2.3 Linear programming formulations

Directed and bidirected networks

In a directed or bidirected network, the maximum weighted multicommodity coded

flow problem can be formalized using linear programming:

φC = max
∑

k∈K

wkφk (3.54)

s.t. φk =
∑

p∈P(k,r)

xp ∀k ∈ K, r ∈ Rk (3.55)

∑

p∈P
(k,r)
a

xp ≤ h
k
a ∀a ∈ A, k ∈ K, r ∈ Rk (3.56)

∑

k∈K

hka ≤ ca ∀a ∈ A (3.57)

hka, xp ≥ 0 ∀a ∈ Az, k ∈ K, p ∈ P (3.58)

For each simple path p, variable xp stands for the amount of flow routed along p. Observe

that, since we may have an exponential number of paths in P, the previous model may

also have an exponential number of variables. For each arc a and each commodity k,

variable hka models the amount of coded flow going through a for commodity k. Notice

that each variable hka satisfies Equation (3.48) in an optimal solution. Furthermore, for

128

each commodity k, variable φk stands for the minimum amount of flow experienced by

any receiver in Rk, thanks to Constraints (3.55) along with the shape of the objective

function, so that each variable φk satisfies Equation (3.51) in an optimal solution. Finally,

Constraints (3.56)-(3.57) ensure that the coded flow x is feasible. Beware that the above

path formulation of the studied problem can not be further decomposed into a set of easier

sub-problems since the commodities are competing for bandwidth access.

The following linear program can be used to solve the arc formulation of the maximum

weighted multicommodity coded flow problem (in a directed or bidirected network):

max
∑

k∈K

wkφk (3.59)

s.t.
∑

a∈δ+(v)

f (k,r)a −
∑

a∈δ−(v)

f (k,r)a = b(k,r)v (φk) ∀k ∈ K, r ∈ Rk, v ∈ V (3.60)

f (k,r)a ≤ hka ∀a ∈ A, k ∈ K, r ∈ Rk (3.61)
∑

k∈K

hka ≤ ca ∀a ∈ A (3.62)

f (k,r)a , hka ≥ 0 ∀a ∈ A, k ∈ K (3.63)

where

b(k,r)v (φ) =

φ if v = sk (3.64)

−φ if v = rk (3.65)

0 otherwise (3.66)

For each arc a, each commodity k, and each receiver r ∈ Rk, variable f (k,r)a stands for the

amount of flow of commodity k, going from source sk to receiver r through arc a.

Undirected networks

The linear program below, inspired by the work of Li et al. [60, 39], allows to define

and compute a maximum weighted multicommodity coded flow in any undirected network.

An instance of the considered problem is made of an undirected network G = (V,E) with

capacity ce for each edge e, and a set K of commodities with, for each commodity k, a

source sk, a set of receivers Rk, and a non-negative weight wk. We shall now use the

same idea as when defining a maximum coded flow in an undirected network: Consider the

bidirected network B = (V, L) obtained by replacing each edge of G by a pair of reverse

129

arcs. Keep the sources and the receivers as defined in G. Finally, assign a variable capacity

ha on each arc a of the bidirected network then add an orientation constraint for each link

ℓ. The following linear program allows to look for a maximum weighted multicommodity

coded flow over all possible orientations of the undirected network:

φC = max
∑

k∈K

wkφk (3.67)

s.t. φk =
∑

p∈P(k,r)

xp ∀k ∈ K, r ∈ Rk (3.68)

∑

p∈P
(k,r)
a

xp ≤ h
k
a ∀a ∈ A, k ∈ K, r ∈ Rk (3.69)

∑

k∈K

hka ≤ ha ∀a ∈ A, k ∈ K (3.70)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (3.71)

hka, ha, xp ≥ 0 ∀a ∈ A, k ∈ K, p ∈ P (3.72)

For each simple path p, variable xp still stands for the amount of flow routed along p.

(The proposed model may have an exponential number of variables.) For each arc a

and each commodity k, variable hka models the amount of coded flow going through a

for commodity k, while variable ha accounts for the variable arc capacity. Variable φk

stands for the minimum amount of flow experienced by any receiver in Rk, thanks to

Constraints (3.68) along with the shape of the objective function. Constraints (3.69) and

Constraints (3.70) can be respectively regarded as intra-commodity and inter-commodity

capacity requirements, with a variable capacity ha for each arc a. Finally, Constraints (3.71)

are the previously mentioned orientation constraints.

The previous linear program allows to solve the path formulation of the studied problem.

It is also interesting to consider the linear program below which provides an arc formulation

130

of the same problem:

max
∑

k∈K

wkφk (3.73)

s.t.
∑

a∈δ+(v)

f (k,r)a −
∑

a∈δ−(v)

f (k,r)a = b(k,r)v (φk) ∀k ∈ K, r ∈ Rk, v ∈ V (3.74)

f (k,r)a ≤ hka ∀a ∈ A, k ∈ K, r ∈ Rk (3.75)
∑

k∈K

hka ≤ ha ∀a ∈ A, k ∈ K (3.76)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (3.77)

f (k,r)a , hka, ha ≥ 0 ∀a ∈ A, k ∈ K, r ∈ Rk (3.78)

with

b(k,r)v (φ) =

φ if v = sk (3.79)

−φ if v = rk (3.80)

0 otherwise (3.81)

where for each arc a, each commodity k, and each receiver r, variable f (k,r)a stands for the

amount of flow from source sk to receiver r going through arc a, variable hka models the

amount of coded flow going through a for commodity k, and variable ha is the variable arc

capacity. Constraints (3.74) enforce flow conservation at each vertex, while the role played

by the other constraints is the same as in the path formulation.

3.3.2.4 Complexity and algorithms

Regardless of the network structure, the linear program obtained by considering the arc

formulation of the maximum weighted coded flow problem involves a polynomial number

of continuous variables along with a polynomial number of constraints (with respect to the

instance size). Hence, it is possible to get the arc decomposition of a maximum weighted

multicommodity coded flow in polynomial time. Given such an arc decomposition f , a

path decomposition x can be built in polynomial time thanks to the technique presented

in the proof of Lemma 1: For each commodity k, and each receiver r ∈ Rk, let f (k,r) be the

vector of components f (k,r)a over each arc a of the network. Observe that vector f (k,r) is

the arc projection of a simple flow between source sk and receiver r. For each commodity

k and each receiver r ∈ Rk, compute a path decomposition of this simple flow using the

131

algorithm presented by Ahuja et al. [7, Theorem 3.5]. The concatenation x of all those

path decompositions (one per receiver of each commodity) is clearly a path decomposition

of the multicommodity coded flow f . Observe that this strategy involves the computation

of
∑

k∈K |R
k| path decompositions of a simple flow, which can be done in polynomial time.

3.3.2.5 Coding scheme

So far, we focused on the routing aspect of the multicommodity coded flow. Now, we

turn our attention to the coding scheme design. Given a maximum weighted multicom-

modity coded flow x along with its associated vector f , one can use any classical network

coding design algorithm to get a coding scheme for each commodity, independently from

the other commodities: For each commodity k, give to the aforementioned coding scheme

design algorithm the network G with capacity hka on each arc a as input. This technique

is referred to as coding by superposition in the literature, see [60, 39, 15] and references

therein.

3.3.3 Maximum concurrent coded flow

3.3.3.1 Problem statement

Consider again the framework where a positive demand dk is associated to each com-

modity k. Recall that given a multicommodity coded flow x, for each commodity k, the

minimum throughput experienced by each receiver in Rk is:

φk = min
r∈Rk

∑

p∈P(k,r)

xp (3.82)

The objective is still to maximize the fraction of the demand experienced by every com-

modity, this last quantity being referred to as the value of a multicommodity coded flow

x:

d(x) = min
k∈K

φk

dk
(3.83)

This objective function leads to the following problem:

132

Problem Maximum concurrent coded flow
Instance Network D = (V,A), capacity ca on each arc a, set of commodities K, and,

for each commodity k, source sk, set of receivers Rk, positive demand dk

Solution A feasible multicommodity coded flow x ∈ XP in D
Objective Maximize the value d(x) of multicommodity coded flow x

as defined in Equation (3.83)

In the following, we denote by λC the value of a maximum concurrent coded flow for the

considered instance:

λC = max
x∈XP

d(x) (3.84)

Observe that, when restricted to a single commodity (|K| = 1), the present problem

amounts to finding a maximum coded flow with respect to this commodity.

3.3.3.2 Linear programming formulations

Directed and bidirected networks

In a directed or bidirected network, the maximum concurrent coded flow problem can

be formulated through linear programming as follows:

λC = max λ (3.85)

s.t. dkλ ≤
∑

p∈P(k,r)

xp ∀k ∈ K, r ∈ Rk (3.86)

∑

p∈P
(k,r)
a

xp ≤ h
k
a ∀a ∈ A, k ∈ K, r ∈ Rk (3.87)

∑

k∈K

hka ≤ ca ∀a ∈ A (3.88)

hka, xp ≥ 0 ∀a ∈ A, k ∈ K, p ∈ P (3.89)

For each simple path p, variable xp stands for the amount of flow routed along p. We may

again end up dealing with an exponential number of such variables. For each arc a and

each commodity k, variable hka models the amount of coded flow going through a for com-

modity k. Observe that each variable hka satisfies Equation (3.48) in an optimal solution.

Variable λ stands for the minimum fraction of the demand experienced by any receiver,

thanks to Constraints (3.86) along with the shape of the objective function. Finally, Con-

straints (3.87)-(3.88) ensure that the multicommodity coded flow x satisfies all capacity

requirements. Again, the above path formulation of the present problem can not be fur-

133

ther decomposed into a set of easier sub-problems due to the competition for bandwidth

between the commodities.

The linear program below can be used to solve the arc formulation of the maximum

concurrent coded flow problem (in a directed or bidirected network):

max λ (3.90)

s.t. dkλ ≤ φk ∀k ∈ K (3.91)
∑

a∈δ+(v)

f (k,r)a −
∑

a∈δ−(v)

f (k,r)a = b(k,r)v (φk) ∀k ∈ K, r ∈ Rk, v ∈ V (3.92)

f (k,r)a ≤ hka ∀a ∈ A, k ∈ K, r ∈ Rk (3.93)
∑

k∈K

hka ≤ ca ∀a ∈ A (3.94)

f (k,r)a , hka ≥ 0 ∀a ∈ A, k ∈ K (3.95)

where

b(k,r)v (φ) =

φ if v = sk (3.96)

−φ if v = rk (3.97)

0 otherwise (3.98)

For each arc a, each commodity k, and each receiver r ∈ Rk, variable f (k,r)a stands for the

amount of flow of commodity k, going from source sk to receiver r through arc a.

Undirected networks

Li et al. [60, 39] proposed the linear program below so as to define and compute a

maximum concurrent coded flow in an undirected network. An instance of the problem

is made of an undirected network G = (V,E) with capacity ce for each edge e, and a set

K of commodities with, for each commodity k, a source sk, a set of receivers Rk, and a

positive demand dk. We shall use the same trick as previously by introducing the bidirected

network B = (V, L) naturally associated to G, with a variable capacity ha on each arc a of

the bidirected network along with an orientation constraint for each link ℓ. The next linear

program allows to find a maximum concurrent coded flow over all possible orientations of

134

the undirected network:

λC = max λ (3.99)

s.t. dkλ ≤
∑

p∈P(k,r)

xp ∀k ∈ K, r ∈ Rk (3.100)

∑

p∈P
(k,r)
a

xp ≤ h
k
a ∀a ∈ A, k ∈ K, r ∈ Rk (3.101)

∑

k∈K

hka ≤ ha ∀a ∈ A, k ∈ K (3.102)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (3.103)

hka, ha, xp ≥ 0 ∀a ∈ A, k ∈ K, p ∈ P (3.104)

For each simple path p, variable xp still stands for the amount of flow routed along p. (The

model may have an exponential number of variables.) For each arc a and each commodity

k, variable hka models the amount of coded flow going through a for commodity k, while

variable ha is the variable arc capacity. Variable λ stands for the minimum fraction of the

demand experienced by any receiver, thanks to Constraints (3.100) along with the shape of

the objective function. Constraints (3.101) and Constraints (3.102) are respectively intra-

commodity and inter-commodity capacity requirements, with a variable capacity ha for each

arc a. Finally, Constraints (3.103) are the previously mentioned orientation constraints.

The previous linear program allows to solve the path formulation of the studied prob-

lem. As before, we also consider the linear program below which is associated to the arc

formulation of the same problem:

λC = max λ (3.105)

s.t. dkλ ≤ φk ∀k ∈ K, r ∈ Rk (3.106)
∑

a∈δ+(v)

f (k,r)a −
∑

a∈δ−(v)

f (k,r)a = b(k,r)v (φk) ∀k ∈ K, r ∈ Rk, v ∈ V (3.107)

f (k,r)a ≤ hka ∀a ∈ A, k ∈ K, r ∈ Rk (3.108)
∑

k∈K

hka ≤ ha ∀a ∈ A, k ∈ K (3.109)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (3.110)

f (k,r)a , hka, ha ≥ 0 ∀a ∈ A, k ∈ K, r ∈ Rk (3.111)

135

with

b(k,r)v (φ) =

φ if v = sk (3.112)

−φ if v = rk (3.113)

0 otherwise (3.114)

where for each arc a, each commodity k, and each receiver r, variable f (k,r)a stands for the

amount of flow from source sk to receiver r going through arc a, variable hka models the

amount of coded flow going through a for commodity k, and variable ha is the arc capacity.

Constraints (3.107) enforce flow conservation at each vertex, while the role played by the

other constraints is the same as in the path formulation.

3.3.3.3 Complexity and algorithms

Regardless of the network structure, the arc formulation of the maximum concurrent

coded flow problem involves a polynomial number of (continuous) variables and constraints

(with respect to the instance size) so that an arc decomposition of a maximum concur-

rent coded flow can be computed in polynomial time. In order to get an equivalent path

decomposition of this multicommodity coded flow in polynomial time, simply use the tech-

nique previously described in the proof of Lemma 1, which involves the computation of
∑

k∈K |R
k| path decompositions of a simple flow in the present setting (see the discussion

above regarding the complexity of the maximum weighted multicommodity coded flow

problem).

3.3.3.4 Coding scheme

Again, given a maximum concurrent coded flow x along with its associated vector h,

one can use any classical network coding design algorithm to get a coding scheme for each

commodity, independently from the other commodities: for each commodity k, give to the

coding scheme design algorithm the network D with capacity hka on each arc a as input. We

refer the interested reader to [60, 39, 15] for more details regarding coding by superposition.

136

3.4 Features of the information flows

3.4.1 Multicommodity coding gains

Considering the results presented in the first chapter regarding the coding gain, it seems

quite natural to study the benefits of using coding techniques in the present framework.

Question 2. Is there an incentive, with respect to the maximum weighted or concurrent

throughput, to use network coding in the multiple-multicast setting ?

To answer this question one needs again a proper criterion to evaluate the benefit of

deploying coding techniques inside the network. The following two quantities seem quite

natural.

Definition 2. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, set of receivers Rk, and non-negative weight wk, along with capacity ca for

each arc a, the multicommodity coding gain gφ, provided by network coding over multicast

alone, is the ratio of the value of a maximum weighted multicommodity coded flow over the

one of a maximum weighted multicommodity Steiner flow, namely:

gφ =
φC
φS

(3.115)

Definition 3. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, set of receivers Rk, and positive demand dk, along with capacity ca for each

arc a, the concurrent coding gain gλ, provided by network coding over multicast alone, is

the ratio of the value of a maximum concurrent coded flow over the one of a maximum

concurrent Steiner flow, namely:

gλ =
λC
λS

(3.116)

Since we restrict our attention to networks where, for each commodity k, there is at

least one path between source sk and each receiver r ∈ Rk, it is safe to assume both φS > 0

and λS > 0, since there exists at least one Steiner tree per commodity to convey flow in

the network. Hence, both the definitions of the multicommodity coding gain gφ and the

concurrent coding gain gλ are well-grounded. A value of gφ or gλ greater than 1 implies

that the corresponding multicast network actually benefits from the deployment of network

137

coding techniques, while a value of gφ or gλ equal to 1 means that there is no incentive to

implement any network coding process in the considered multicast network, with respect

to this criterion. Finally, a value of gφ or gλ smaller than 1 means that network coding

actually impedes the multicast network. The following pair of theorems basically states

that this last situation can not occur.

Theorem 11. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, set of receivers Rk, and non-negative weight wk, along with capacity ca for

each arc a, the weighted multicommodity coding gain gφ is at least 1.

The underlying idea of this theorem is again that routing using multicast only corre-

sponds to the special case of using both multicast and network coding simultaneously in a

network where no coding operation is performed but simple data duplication. Furthermore,

the proof itself is very similar to the one of Theorem 3. The interested reader will find a

formal proof of Theorem 11 in Appendix C.1.

Theorem 12. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, set of receivers Rk, and positive demand dk, along with capacity ca for each

arc a, the concurrent coding gain gλ is at least 1.

The proof of Theorem 12 is very similar to the one of Theorem 11 and can also be

found in Appendix C.1.

3.4.2 Features of the multicommodity coding gains

We shall now present various results regarding the multicommodity coding gains gφ

and gλ. First notice that, in the single-commodity case, when the set K is a singleton,

both gφ and gλ actually equal the coding gain gϕ.

3.4.2.1 Multiple-unicast

Consider the setting where, for each commodity k, there is only one single receiver rk,

Rk = {rk}. As previously mentioned, in this particular case, a Steiner tree spanning both

the source sk and the receiver rk is just a path between sk and rk. A multicommodity

138

Steiner flow then becomes a classical multicommodity flow. Furthermore a multicommodity

coded flow also becomes a simple multicommodity flow since there is only one receiver per

commodity. Those remarks immediately imply the two following lemmas:

Lemma 4. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, receiver rk distinct from sk, and non-negative weight wk, along with capacity

ca for each arc a, it is possible to achieve the maximum weighted throughput among all

commodities by performing forwarding operations only. Thus gφ = 1 in this setting.

Lemma 5. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, receiver rk distinct from sk, and positive demand dk, along with capacity ca

for each arc a, it is possible to achieve the maximum concurrent throughput between all

commodities by performing forwarding operations only. Thus gλ = 1 in this setting.

Beware that, in order to get those two theorems, we still assume that inter-commodity

coding is not allowed. Our approach hence differs from the multiple-unicast framework as

it is traditionally defined in the network coding literature [61].

3.4.2.2 Coding gain and multicommodity coding gains

The following pair of theorems provides a connection between the single-commodity

coding gain and its multicommodity counterparts.

Theorem 13. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, set of receivers Rk, and non-negative weight wk, along with capacity ca for each

arc a, the multicommodity coding gain gφ is upper-bounded by the quantity |K|maxk∈K g
k
ϕ

where for each commodity k, gkϕ is the coding gain associated to the instance with k as the

only commodity in the network.

Proof. For each commodity k, we denote by ϕkS and ϕkC respectively the value of a maximum

Steiner flow, and the one of a maximum coded flow, when the whole network can be used to

convey data from source sk to set of receivers Rk. Hence, for each commodity k, gkϕ =
ϕk
C

ϕk
S

.

We first show that:
1

|K|

∑

k∈K

wkϕkS ≤ φS (3.117)

139

For each commodity k, let xk be a maximum Steiner flow in the single-commodity setting,

so that ϕkS =
∑

t∈T k xkt . Define multicommodity Steiner flow x by setting, for each com-

modity k and each Steiner tree t ∈ T k, xt = xkt . For any arc a and any commodity k, the

feasibility of Steiner flow xk implies:

∑

t∈T k
a

xkt ≤ ca (3.118)

so that for any arc a:
∑

k∈K

∑

t∈T k
a

xt ≤ |K|ca (3.119)

Furthermore, the weighted throughput of multicommodity Steiner flow x is:

∑

k∈K

wk
∑

t∈T k

xt =
∑

k∈K

wk
∑

t∈T k

xkt (3.120)

=
∑

k∈K

wkϕkS (3.121)

by optimality of Steiner flow xk for each commodity k. Hence, scaling multicommodity

Steiner flow x by a factor 1
|K| gives a feasible solution of value 1

|K|

∑

k∈K w
kϕkS to the

maximum weighted multicommodity Steiner flow problem. This directly implies the de-

sired inequality. Now, observe that φC ≤
∑

k∈K w
kϕkC since an optimal multicommodity

coded flow induces a coded flow satisfying all capacity requirements for each commodity

k. Combining this last inequality with Equation (3.117) yields:

gφ ≤
|K|

∑

k∈K w
kϕkC

∑

k∈K w
kϕkS

(3.122)

which can be rewritten as:

gφ ≤
|K|

∑

k∈K w
kgkϕϕ

k
S

∑

k∈K w
kϕkS

(3.123)

thanks to the definition of gkϕ for each commodity k. Bounding each gkϕ by maxk∈K g
k
ϕ in

the right-hand side of this last inequality provides the expected result.

Theorem 14. Given a network D = (V,A), set of commodities K with for each commodity

k, source sk, set of receivers Rk, and positive demand dk, along with capacity ca for each

arc a, the concurrent coding gain gλ is upper-bounded by the quantity |K|maxk∈K g
k
ϕ where

for each commodity k, gkϕ is the coding gain associated to the instance with k as the only

commodity in the network.

140

Proof. Again, this proof is very similar to the one of Theorem 13. For each commodity k,

we still denote by ϕkS and ϕkC respectively the value of a maximum Steiner flow, and the

one of a maximum coded flow, when the whole network can be used to convey data from

source sk to set of receivers Rk. Hence, for each commodity k, gkϕ =
ϕk
C

ϕk
S

. We first show

that:
1

|K|
min
k∈K

ϕkS
dk
≤ λS (3.124)

For each commodity k, let again xk be a maximum Steiner flow in the single-commodity

setting, so that ϕkS =
∑

t∈T k xkt . Define multicommodity Steiner flow x as previously, by

setting for each commodity k and each Steiner tree t ∈ T k, xt = xkt , so that for any arc a,

Equation (3.119) still holds. The minimum fraction of each demand which can be satisfied

by multicommodity Steiner flow x is:

min
k∈K

∑

t∈T k xt

dk
= min

k∈K

ϕkS
dk

(3.125)

by optimality of Steiner flow xk for each commodity k. Again, scaling multicommodity

Steiner flow x by a factor 1
|K| yields a feasible solution to the maximum concurrent Steiner

flow problem. This directly implies the desired inequality. We shall now justify that the

following inequality holds:

λC ≤ min
k∈K

ϕkC
dk

(3.126)

Observe that an optimal solution x to the maximum concurrent coded flow problem induces,

for each commodity k, a coded flow satisfying all capacity requirements while ensuring:

min
r∈Rk

∑

p∈P(k,r)

xp ≤ ϕ
k
C (3.127)

for any commodity k. (The multicommodity coded flow x induces a feasible coded flow

with respect to each commodity.) This in turn implies:

min
k∈K

1

dk
min
r∈Rk

∑

p∈P(k,r)

xp ≤ min
k∈K

ϕkC
dk

(3.128)

which is the expected inequality by optimality of x. Combining this last result with Equa-

tion (3.124) leads to:

gλ ≤
|K|mink∈K

(

ϕkC/d
k
)

mink∈K
(

ϕkS/d
k
) (3.129)

141

which can be rewritten as:

gλ ≤
|K|mink∈K

(

gkϕϕ
k
S/d

k
)

mink∈K
(

ϕkS/d
k
) (3.130)

thanks to the definition of gkϕ for each commodity k. Bounding gkϕ by maxk∈K g
k
ϕ for each

commodity k in the right-hand side of this last inequality concludes the proof.

We shall now combine those two theorems with the results presented in the first chapter,

so as to characterize the domain of each multicommodity coding gain for some networks.

3.4.2.3 Bidirected networks

Recall from Theorem 6 in the previous chapter that the coding gain gϕ of a bidirected

network always equals 1. Combining this result with Theorem 13 and Theorem 14 respec-

tively provides an upper-bound on the value of the multicommodity coding gain gφ and

the one of the concurrent coding gain gλ of a bidirected network:

Corollary 4. Given a bidirected network B = (V, L), set of commodities K with for each

commodity k, source sk, set of receivers Rk, and non-negative weight wk, along with capacity

cℓ for each link ℓ, the multicommodity coding gain gφ is upper-bounded by the number of

commodities, gφ ≤ |K|.

Corollary 5. Given a bidirected network B = (V, L), set of commodities K with for each

commodity k, source sk, set of receivers Rk not containing sk, and positive demand dk,

along with capacity cℓ for each link ℓ, the concurrent coding gain gλ is upper-bounded by

the number of commodities, gλ ≤ |K|.

3.4.2.4 Undirected networks

Similarly, recall from Theorem 7 (in the previous chapter) that the coding gain gϕ of

an undirected network lies in the interval [1, 2]. Combining this result with Theorem 13

and Theorem 14 respectively provides an upper-bound on the value of the multicommodity

coding gain gφ and the one of the concurrent coding gain gλ of an undirected network:

142

Corollary 6. Given an undirected network G = (V,E), set of commodities K with for each

commodity k, source sk, set of receivers Rk not containing sk, and non-negative weight wk,

along with capacity ce for each edge e, the multicommodity coding gain gφ is upper-bounded

by twice the number of commodities, gφ ≤ 2|K|.

Corollary 7. Given an undirected network G = (V,E), set of commodities K with for

each commodity k, source sk, set of receivers Rk not containing sk, and positive demand

dk, along with capacity ce for each edge e, the concurrent coding gain gλ is upper-bounded

by twice the number of commodities, gλ ≤ 2|K|.

3.4.2.5 Directed networks

From Theorem 8, the coding gain gϕ of a directed network can be arbitrarily large.

As previously mentioned, in the special case of a single-commodity, the multicommodity

coding gain gφ and the concurrent coding gain gλ are both equal to gϕ. Therefore, those

two quantities can be arbitrarily large in a directed network, as emphasized by the two

theorems below:

Theorem 15. For any real number η ≥ 1, there exists an infinite family of directed net-

works with unit capacity and a single-commodity such that the ratio between the value of a

maximum weighted multicommodity coded flow and the one of a maximum weighted multi-

commodity Steiner flow satisfies gφ ≥ η.

Theorem 16. For any real number η ≥ 1, there exists an infinite family of directed net-

works with unit capacity and a single-commodity such that the ratio between the value of

a maximum concurrent coded flow and the one of a maximum concurrent Steiner flow

satisfies gλ ≥ η.

3.4.3 Experimental evaluation of the multicommodity coding gains

3.4.3.1 Setting

We use fifteen network topologies taken from the SNDlib library [97]. We then ar-

bitrarily build a set K of commodities by picking for each commodity k a vertex sk as

source, and a subset of vertices Rk as receivers. The capacity of each channel is picked

143

in the set [10] (of all integers between 1 and 10) uniformly at random. When dealing

with multicommodity weighted information flows, the weight of each commodity k is set

to wk =
(

|Rk|/
∑

k∈K |R
k|
)

. As far as concurrent information flows are concerned, the

demand dk of each commodity k is picked in the set {1, 2, 5} uniformly at random.

We then compute each optimal Steiner flow by coupling a column generation algorithm

with a subroutine generating minimum-cost Steiner trees by solving to optimality the

mixed-integer linear program 2.34 presented in the previous chapter (see also [55]). Each

optimal coded flow problem is computed by solving its associated arc formulation thanks to

a linear programming solver. All algorithms are implemented in Julia 0.3.8 [98, 99]. We use

the Julia package JuMP [100] to call the open-source (mixed-integer) linear programming

solver CLP/CBC [101].

3.4.3.2 Undirected networks

Our test bench is made of fifteen networks whose features are summarized in Table 3.1.

For each instance, we give the number of vertices |V |, the number of edges |E|, the number

of commodity |K|, and the list of the numbers of receivers per commodity. We also provide

the list of weights per commodity along with the list of demands per commodity.

Instance |V | |E| |K| (|Rk|)k∈K (wk)k∈K (dk)k∈K
abilene 12 15 2 3 ; 3 1/2 ; 1/2 1 ; 1

atlanta 15 22 2 4 ; 5 4/9 ; 5/9 2 ; 1

france 25 45 2 4 ; 6 2/5 ; 3/5 2 ; 1

geant 22 36 3 3 ; 4 ; 10 3/17 ; 4/17 ; 10/17 5 ; 2 ; 2

germany50 50 88 3 4 ; 4 ; 4 1/3 ; 1/3 ; 1/3 1 ; 2 ; 2

giul39 39 86 4 3 ; 3 ; 3 ; 3 1/4 ; 1/4 ; 1/4 ; 1/4 1 ; 2 ; 1 ; 1

india35 35 80 3 4 ; 4 ; 4 1/3 ; 1/3 ; 1/3 1 ; 2 ; 2

newyork 16 49 2 4 ; 4 1/2 ; 1/2 1 ; 5

nobel-eu 28 41 3 3 ; 3 ; 4 3/10 ; 3/10 ; 2/5 1 ; 2 ; 2

norway 27 51 3 3 ; 4 ; 5 1/4 ; 1/3 ; 5/12 5 ; 2 ; 2

pioro40 40 89 2 3 ; 6 1/3 ; 2/3 1 ; 1

polska 12 18 2 3 ; 5 3/8 ; 5/8 1 ; 2

ta1 24 55 2 4 ; 6 2/5 ; 3/5 1 ; 2

ta2 65 108 3 3 ; 4 ; 5 1/4 ; 1/3 ; 5/12 1 ; 5 ; 1

zib54 54 81 2 4 ; 4 1/2 ; 1/2 1 ; 2

Table 3.1 – Some features of the fifteen instances.

144

Table 3.2 gives, for each undirected instance, information regarding the maximum

weighted multicommodity Steiner flow returned by the column generation algorithm. More

precisely, column φS indicates the value of the optimal Steiner flow. Column Trees gives

the number of trees actually used by the optimal Steiner flow to convey some positive flow.

Finally, column Iterations gives the number of iterations made by the column generation

algorithm while column Time provides the associated running time expressed in seconds.

Instance φS Trees Iterations Time (s)
abilene 6.0 4 2 0.34

atlanta 6.07 9 21 1.54

france 5.13 6 15 1.34

geant 5.14 6 14 2.53

germany50 6.17 27 16 4.35

giul39 9.75 54 30 8.1

india35 7.33 22 17 2.49

newyork 15.5 15 16 1.14

nobel-eu 6.0 8 11 0.65

norway 9.06 30 26 6.17

pioro40 11.07 32 56 125.38

polska 5.33 11 12 0.68

ta1 12.88 22 28 2.67

ta2 9.11 27 18 4.24

zib54 6.25 10 15 1.88

Table 3.2 – Features of the maximum weighted multicommodity Steiner flow returned by
the column generation algorithm for each undirected network.

Table 3.3 is very similar to Table 3.2 in that it provides, for each undirected instance,

information regarding the coded flow returned by the linear programming solver. Column

φC gives the value of the optimal coded flow while column Time provides the associated

running time expressed in seconds.

Observe that, for each undirected instance, the multicommodity coding gain gφ equals

1.

Table 3.4 gives, for each undirected instance, information regarding the maximum con-

current Steiner flow returned by the column generation algorithm. More precisely, column

λS indicates the value of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

145

Instance φC Time (s)
abilene 6.0 0.01

atlanta 6.07 0.01

france 5.13 0.03

geant 5.14 0.04

germany50 6.17 0.4

giul39 9.75 0.27

india35 7.33 0.11

newyork 15.5 0.03

nobel-eu 6.0 0.04

norway 9.06 0.09

pioro40 11.07 0.08

polska 5.33 0.01

ta1 12.88 0.05

ta2 9.11 0.26

zib54 6.25 0.05

Table 3.3 – Features of the maximum weighted multicommodity coded flow returned by
the linear programming solver for each undirected network.

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Instance λS Trees Iterations Time (s)
abilene 6.0 4 4 0.43

atlanta 3.67 8 8 0.58

france 3.0 6 13 1.28

geant 0.89 7 9 2.17

germany50 3.5 24 22 5.45

giul39 7.0 38 29 4.39

india35 4.4 20 26 4.04

newyork 5.17 22 24 1.64

nobel-eu 3.4 7 10 0.66

norway 2.61 25 29 5.41

pioro40 10.29 35 44 37.86

polska 1.5 3 2 0.2

ta1 7.67 19 31 2.66

ta2 3.17 19 27 5.04

zib54 4.17 11 16 2.15

Table 3.4 – Features of the maximum concurrent Steiner flow returned by the column
generation algorithm for each undirected network.

Table 3.5 presents, for each undirected instance, information regarding the coded flow

146

returned by the linear programming solver. Column λC gives the value of the optimal

coded flow while column Time provides the associated running time expressed in seconds.

Instance λC Time (s)
abilene 6.0 0.02

atlanta 3.67 0.01

france 3.0 0.03

geant 0.89 0.04

germany50 3.5 0.18

giul39 7.0 0.15

india35 4.4 0.14

newyork 5.17 0.03

nobel-eu 3.4 0.03

norway 2.61 0.08

pioro40 10.29 0.09

polska 1.5 0.01

ta1 7.67 0.04

ta2 3.17 0.11

zib54 4.17 0.12

Table 3.5 – Features of the maximum concurrent coded flow returned by the linear pro-
gramming solver for each undirected network.

Notice that, for each undirected instance, the concurrent coding gain gλ is equal to 1.

3.4.3.3 Bidirected networks

The test bench for bidirected instances is obtained by considering the bidirected network

associated to each undirected instance presented in Table 3.1. All other features of the

undirected instances remain unchanged.

Table 3.6 provides, for each bidirected instance, information regarding the maximum

weighted multicommodity Steiner flow returned by the column generation algorithm. More

precisely, column φS indicates the value of the optimal Steiner flow. Column Trees gives

the number of trees actually used by the optimal Steiner flow to convey some positive flow.

Finally, column Iterations gives the number of iterations made by the column generation

algorithm while column Time provides the associated running time expressed in seconds.

Table 3.7 gives, for each bidirected instance, information regarding the coded flow

returned by the linear programming solver. Column φC gives the value of the optimal

147

Instance φS Trees Iterations Time (s)
abilene 7.5 4 4 0.35

atlanta 6.29 6 15 0.4

france 5.12 10 15 0.65

geant 5.14 5 10 0.68

germany50 9.0 22 24 2.49

giul39 11.5 46 29 2.86

india35 14.33 51 46 4.16

newyork 18.0 19 16 0.65

nobel-eu 9.14 16 10 0.42

norway 10.44 15 21 1.3

pioro40 14.71 29 34 2.92

polska 5.67 8 8 0.15

ta1 12.88 17 23 1.25

ta2 10.78 29 21 2.76

zib54 8.0 11 11 0.79

Table 3.6 – Features of the maximum weighted multicommodity Steiner flow returned by
the column generation algorithm for each bidirected network.

coded flow while column Time provides the associated running time expressed in seconds.

Instance φC Time (s)
abilene 7.5 0.01

atlanta 6.29 0.01

france 5.13 0.03

geant 5.14 0.04

germany50 9.0 0.17

giul39 11.5 0.2

india35 14.33 0.16

newyork 18.0 0.03

nobel-eu 9.14 0.08

norway 10.44 0.06

pioro40 14.71 0.06

polska 5.67 0.01

ta1 12.88 0.04

ta2 10.78 0.09

zib54 8.0 0.04

Table 3.7 – Features of the maximum weighted multicommodity coded flow returned by
the linear programming solver for each bidirected network.

Observe that, for each bidirected instance, the multicommodity coding gain gφ always

equals 1.

148

Table 3.8 gives, for each bidirected instance, information regarding the maximum con-

current Steiner flow returned by the column generation algorithm. More precisely, column

λS indicates the value of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Instance λS Trees Iterations Time (s)
abilene 6.0 2 3 0.4

atlanta 3.67 4 5 0.15

france 3.0 7 7 0.38

geant 0.89 7 7 0.62

germany50 3.5 21 23 2.58

giul39 7.0 33 32 3.3

india35 7.33 38 41 4.03

newyork 6.0 17 28 1.14

nobel-eu 4.0 6 8 0.38

norway 3.0 19 23 1.54

pioro40 14.0 33 48 4.41

polska 1.5 2 2 0.05

ta1 7.67 17 25 1.36

ta2 3.17 16 29 4.15

zib54 5.33 13 15 1.09

Table 3.8 – Features of the maximum concurrent Steiner flow returned by the column
generation algorithm for each bidirected network.

Table 3.9 presents, for each bidirected instance, information regarding the coded flow

returned by the linear programming solver. Column λC gives the value of the optimal

coded flow while column Time provides the associated running time expressed in seconds.

Observe that, for each bidirected instance, the concurrent coding gain gλ equals 1.

3.4.3.4 Directed networks

Each directed instance below is actually a bidirected network where, for each link (pair

of reverse arcs), the capacity of one of the two arcs of the link is multiplied by a coefficient

picked in the set {1, 2, 3, 5, 10} uniformly at random. This choice preserve the original

network connectivity while removing some restrictions found in the previous bidirected

149

Instance λC Time (s)
abilene 6.0 0.01

atlanta 3.67 0.01

france 3.0 0.03

geant 0.89 0.04

germany50 3.5 0.09

giul39 7.0 0.15

india35 7.33 0.12

newyork 6.0 0.02

nobel-eu 4.0 0.03

norway 3.0 0.06

pioro40 14.0 0.07

polska 1.5 0.01

ta1 7.67 0.04

ta2 3.17 0.1

zib54 5.33 0.04

Table 3.9 – Features of the maximum concurrent coded flow returned by the linear pro-
gramming solver for each bidirected network.

setting. All other features of the bidirected instances remain unchanged.

Table 3.10 provides, for each directed instance, information regarding the maximum

weighted multicommodity Steiner flow returned by the column generation algorithm. More

precisely, column φS indicates the value of the optimal Steiner flow. Column Trees gives

the number of trees actually used by the optimal Steiner flow to convey some positive flow.

Finally, column Iterations gives the number of iterations made by the column generation

algorithm while column Time provides the associated running time expressed in seconds.

Table 3.11 gives, for each directed instance, information regarding the coded flow re-

turned by the linear programming solver. Column φC gives the value of the optimal coded

flow while column Time provides the associated running time expressed in seconds.

Notice that, for each directed instance, the multicommodity coding gain gφ always stays

equal to 1.

Table 3.12 gives, for each directed instance, information regarding the maximum con-

current Steiner flow returned by the column generation algorithm. More precisely, column

λS indicates the value of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

150

Instance φS Trees Iterations Time (s)
abilene 7.5 4 3 0.34

atlanta 6.29 6 11 0.31

france 5.63 5 10 0.45

geant 9.64 11 14 0.93

germany50 11.67 33 26 2.78

giul39 11.5 32 24 2.36

india35 23.67 48 29 2.58

newyork 27.5 20 18 0.73

nobel-eu 9.57 11 7 0.3

norway 15.89 19 27 1.71

pioro40 16.14 29 25 2.11

polska 5.67 6 6 0.12

ta1 14.38 13 25 1.34

ta2 10.89 22 18 2.38

zib54 15.0 16 13 0.94

Table 3.10 – Features of the maximum weighted multicommodity Steiner flow returned by
the column generation algorithm for each directed network.

Instance φC Time (s)
abilene 7.5 0.03

atlanta 6.29 0.01

france 5.63 0.03

geant 9.64 0.04

germany50 11.67 0.14

giul39 11.5 0.17

india35 23.67 0.08

newyork 27.5 0.09

nobel-eu 9.57 0.03

norway 15.89 0.06

pioro40 16.14 0.06

polska 5.67 0.01

ta1 14.38 0.04

ta2 10.89 0.08

zib54 15.0 0.04

Table 3.11 – Features of the maximum weighted multicommodity coded flow returned by
the linear programming solver for each bidirected network.

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Table 3.13 presents, for each directed instance, information regarding the coded flow

151

Instance λS Trees Iterations Time (s)
abilene 6.0 2 3 0.37

atlanta 3.67 4 4 0.12

france 3.0 4 6 0.31

geant 1.86 13 10 0.75

germany50 6.5 30 25 2.81

giul39 9.2 36 34 3.57

india35 11.0 36 46 4.48

newyork 9.17 21 33 1.35

nobel-eu 4.5 6 10 0.45

norway 4.2 15 17 1.19

pioro40 15.5 26 30 2.84

polska 1.5 2 2 0.06

ta1 7.67 14 17 0.99

ta2 3.17 12 19 2.7

zib54 10.0 19 25 1.82

Table 3.12 – Features of the maximum concurrent Steiner flow returned by the column
generation algorithm for each directed network.

returned by the linear programming solver. Column λC gives the value of the optimal

coded flow while column Time provides the associated running time expressed in seconds.

Instance λC Time (s)
abilene 6.0 0.01

atlanta 3.67 0.01

france 3.0 0.03

geant 1.86 0.05

germany50 6.5 0.18

giul39 9.2 0.24

india35 11.0 0.07

newyork 9.17 0.02

nobel-eu 4.5 0.02

norway 4.2 0.05

pioro40 15.5 0.06

polska 1.5 0.01

ta1 7.67 0.04

ta2 3.17 0.15

zib54 10.0 0.04

Table 3.13 – Features of the maximum concurrent coded flow returned by the linear pro-
gramming solver for each directed network.

For each directed instance, the concurrent coding gain gλ stays equal to 1.

152

3.4.3.5 Analysis

For each type of information flow, and for each instance, the proposed algorithm finds

an optimal solution in a matter of seconds. Regardless of the network structure, it seems

there is few incentives to use coding techniques, as far as the multicommodity coding gains

are concerned. However, in a multicommodity setting, the decentralized approach allowed

by the use of coding techniques may favor network coding over multicast alone. Finally, we

observe that, the value of a maximum concurrent information flow is lower than the one

of a maximum weighted multicommodity information flow (beware that the two settings

slightly differs). This can be interpreted as the price of fairness.

3.5 Conclusion

In this chapter, we explained how to extend the framework of information flows to

the case where multiple sessions or commodities are simultaneously accessing the network.

We showed that given the proper definition of a multicommodity Steiner flow along with

the one of a multicommodity coded flow, it is possible to define, model, and compute an

information flow variant of some classical multicommodity flow problems as they appear

in network optimization. We proposed to extend the notion of coding gain to the mul-

ticommodity setting, so as to define an indicator, called the multicommodity coding gain,

allowing comparisons between multicast alone and multicast combined with coding tech-

niques. By using well-known features of the coding gain in a single commodity setting, we

analysed the domain of values one can expect the multicommodity coding gain to take.

Those results are summarized in Table 3.14 below. Recall that the greater the value ac-

tually taken by the coding gain in a given multicast network, the more beneficial network

coding techniques would be if implemented in this particular network.

Structure Coding gain Multicommodity coding gain Concurrent coding gain
Bidirected {1} [1, |K|] [1, |K|]

Undirected [1, 2] [1, 2|K|] [1, 2|K|]

Directed [1,+∞[[1,+∞[[1,+∞[

Table 3.14 – Coding gain domain for each channel model. |K| is the number of commodities.

153

Table 3.14 also highlights how impactful the channel model actually is on both mul-

ticommodity coding gains. Observe that the multicommodity setting seems to dilate the

potential of network coding with respect to the single commodity setting. However, we

would like to stress out that we ignore whether those bounds are actually tight.

Similarly to what we did in this chapter, it is possible to use the present framework of

multicommodity information flows to extend the classical minimum-cost multicommodity

flow problem. We refer the interested reader to the paper by Raayatpanah et al. [102] for

an in-depth presentation of the network coding variant of this problem.

Notice that, in the whole chapter, we always assumed that a single operator would take

all decisions regarding the network use. It would be interesting to consider instead the

game-theoretic variant of each problem, where each commodity is selfishly trying to satisfy

its own needs regardless of those of the others.

Finally, as already explained, we focus on a setting where inter-commodity coding is

explicitly prohibited. We would like to mention that handling inter-commodity coding

remains an open and difficult research topic, even when restricted to the special case where

each commodity involves only one single receiver, known as the multiple unicast setting in

the network coding literature.

154

Chapter 4

Convex cost information flows

4.1 Introduction

4.1.1 Motivation

The multicast framework was primarily developed to cope with the increasing demand

for live services, like video-streaming, teleconferencing, or online gaming. It is then natural

to study the problem of designing a multicast routing scheme at low cost. Furthermore,

one may ask whether network coding might help to reduce the congestion in a multicast

network.

Previous works on this topic mainly focused on the so-called multicast congestion prob-

lem [103, 104, 96] where one wishes to minimize the maximum over the channels of the

ratios "flow over available bandwidth". In this chapter, we study a different problem where

each channel of the network has its own convex cost function and we want to minimize the

sum over the channels of the cost contribution of each channel.

4.1.2 Content

We first present the so-called minimum convex cost flow problem which will be the

foundation for all subsequent generalizations. The second problem we shall present, referred

to as the minimum convex cost Steiner flow problem, is one of those possible generalizations

of the previous problem, with Steiner trees replacing paths as the basic component of the

flow. We provide a complete study of the minimum convex cost Steiner flow problem

including an algorithmic perspective. The third problem we consider, namely the minimum

155

convex cost coded flow problem, naturally appears when one is trying to reduce the cost of

conveying data in a multicast network by using coding techniques. We shall then introduce

the notion of cost coding gain as an indicator of the benefit one can expect from using those

coding techniques in a multicast network to tackle cost issues.

4.1.3 Minimum convex cost flow

4.1.3.1 Problem statement

In the following, we deal with convex sets and convex functions. Recall that a set X

of a real vector space is convex if, for any pair of points x1 and x2 in X, and any γ in the

interval [0, 1], the point (1−γ)x1+γx2 lies in X. Furthermore, a function ψ from a convex

set X to R is convex if, for any pair of points x1 and x2 in X, and any γ in the interval

[0, 1], the inequality ψ((1− γ)x1 + γx2)) ≤ (1− γ)ψ(x1) + γψ(x2) holds.

For the sake of simplicity, we focus again on the case of directed networks, without

loss of generality since it encompasses the case of undirected ones. The instance is made

of a network D = (V,A) with a special node s called the source, another peculiar node

r referred to as the receiver, and a positive demand d modeling an amount of flow to be

conveyed from the source to the receiver. We are also given, for each arc a, a convex,

continuously differentiable, non-decreasing, and univariate cost function ψa from R+ to

R+. For each arc a, the cost function ψa may be parameterized by a capacity ca which is

a given feature of the arc. For each arc a, we denote by ψ′
a the first derivative of ψa. We

shall further assume that given any non-negative real number z, we can compute (via an

oracle) the values ψa(z) and ψ′
a(z) in polynomial time for any prescribed accuracy. Recall

that a flow x is an assignment of a non-negative real value xp to each simple path p from

the source to the receiver. We denote by P the set of such paths, and by Pa the subset

of paths in P using arc a. Given a flow x, we call xp the flow on path p, and we define

fa as the induced flow on arc a, fa =
∑

p∈Pa
xp. The associated vector f is called the arc

projection of flow x. Given a capacity vector c on the arcs, a flow x satisfies the capacity

requirements if, for each arc a, the amount of flow on a is smaller than, or equal to, the arc

capacity, namely fa ≤ ca. Moreover, flow x enforces the demand if the receiver actually

experiences a throughput of value d,
∑

p∈P xp = d. The problem we consider here is to

156

find a flow x, enforcing the demand, and minimizing the overall cost function ψ defined as

the sum of the cost functions (ψa)a∈A over all arcs:

ψ(x) =
∑

a∈A

ψa(fa) (4.1)

where vector f is the arc projection of flow x. Notice that ψ is also convex, non-decreasing,

and defined from RP
+ to R+, thanks to the previous assumptions on the family of cost

functions (ψa)a∈A. Given a flow x, we shall refer to the quantity ψ(x) as the overall cost

of x, which, from our previous assumptions, can be computed in polynomial time. Also

notice that this overall cost is separable with respect to the arcs but not with respect to

the paths. Further observe that, in the design of a flow, there is no incentive to route more

than d units of flow on any arc since the total demand is d and ψa is non-decreasing for

each arc a. We further assume that ψa(0) = 0 for each arc a. This can be done without loss

of generality, since any fixed cost incurred by the use of the network can be kept aside from

the objective function. Finally, it is possible to make the capacity requirements implicit

by assuming that for each arc a such that ca ≤ d, the penalty ψa(fa) incurred by routing

a flow of value fa ∈ [ca, d] is high enough so as to prevent any capacity violation. This

problem transformation can be achieved by taking for each arc a a suitable function ψa,

which increases quickly at the neighborhood of ca. We provide an example of such a family

of functions later in this chapter. Although this last assumption is not mandatory for the

problem at hand, it will be useful later on. In the following, we denote by XP the set of

all flows enforcing the demand constraint:

XP =

x ∈ RP
+ :
∑

p∈P

xp = d

(4.2)

A flow x is feasible if x ∈ XP . We are now ready to formally express our problem:

Problem Minimum convex cost (uncapacitated) flow
Instance Network D = (V,A), source s, receiver r distinct from s,

convex cost function ψa for each arc a, positive demand d
Solution A feasible flow x ∈ XP in D
Objective Minimize the overall cost ψ(x) of flow x as defined in Equation (4.1)

157

We denote by ΨF the optimal value of this problem for the instance of interest:

ΨF = min
x∈XP

ψ(x) (4.3)

4.1.3.2 Mathematical programming formulation

The minimum convex cost flow problem can be formalized using mathematical pro-

gramming:

ΨF = min
∑

a∈A

ψa(fa) (4.4)

s.t.
∑

p∈P

xp = d (4.5)

fa ≥
∑

p∈Pa

xp ∀a ∈ A (4.6)

fa, xp ≥ 0 ∀a ∈ A, p ∈ P (4.7)

For each path p, variable xp stands for the amount of flow routed on p, while, for each

arc a, variable fa models the amount of flow going through a. Observe that, since we

may have an exponential number of paths in P , the previous model may also have an

exponential number of variables. Constraint (4.5) ensures that flow x satisfies the demand

d. Combined with the assumption that each function ψa is non-decreasing and the fact

that the objective function is to be minimized, Constraints (4.6) enforce variable fa to take

the value
∑

p∈Pa
xp, for any arc a, in an optimal solution.

This path formulation may involve a huge number of variables. Fortunately, the fol-

lowing polynomial size formulation of the minimum convex cost flow problem can be used

instead:

ΨF = min
∑

a∈A

ψa(fa) (4.8)

s.t.
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = bv(d) ∀v ∈ V (4.9)

fa ≥ 0 ∀a ∈ A (4.10)

with

bv(d) =

d if v = s (4.11)

−d if v = r (4.12)

0 otherwise (4.13)

where for each arc a, variable fa stands for the amount of flow going through a.

158

4.1.3.3 Complexity and algorithms

Thanks to this arc formulation, the minimum convex cost flow problem can be viewed

as a problem of minimizing a convex function over a convex set induced by a polynomial

number of linear constraints. Therefore, all standard techniques of convex optimization

are available, see the book by Boyd and Vandenberghe [105] for extensive results regarding

this field. Notice that, in the arc formulation of the minimum convex cost flow problem,

we could directly incorporate the capacity requirements to the set of constraints, instead

of assuming them implicitly through the cost functions, while keeping a tractable problem.

This harder variant of the problem can be efficiently solved by various algorithms, see the

survey by Ouorou et al. [106]. Also have a look at the chapter dealing with this topic in

the classical book by Ahuja et al. [7]. The interested reader may also review the book by

Bertsekas et al [107].

4.2 Minimum convex cost Steiner flow

4.2.1 Problem statement

The setting of this problem is similar to the one of the minimum convex cost flow

problem, except that the single receiver is replaced by a set of receiver vertices. For

brevity, we still focus the study on the case of directed networks (without loss of generality

since it still encompasses the case of undirected ones). Formally, the instance is made of

a network D = (V,A) with a source s, a set R of receivers distinct from s, and a positive

demand d. Recall that a Steiner flow x is an assignment of a non-negative real value xt to

each Steiner tree t spanning both s and R. We denote by T the set of such Steiner trees,

and by Ta the subset of trees in T using arc a. Given a Steiner flow x, we call xt the flow on

tree t and we define fa as the induced flow on arc a, fa =
∑

t∈Ta
xt. The associated vector

f will be referred to as the arc projection of Steiner flow x. Given a capacity vector c on

the arcs, a Steiner flow x satisfies the capacity requirements if, for each arc a, the amount

of flow on a is smaller than, or equal to, the arc capacity, namely fa ≤ ca. Furthermore,

we say that x meets the demand if each receiver experiences a throughput of value d,

namely
∑

t∈T xt = d. When talking about minimum convex cost Steiner flow, a natural

159

setting would be as follows: given a convex cost function ψ from RT
+ to R+, and a capacity

vector c on the arcs, find a Steiner flow x, satisfying both the capacity requirements and

the demand constraint, whose cost with respect to ψ is minimum. Unfortunately, it is

NP-hard to decide whether there exists a feasible solution to this problem, since finding a

point in the polytope of constraints amounts to solving the decision version of the problem

of fractionally packing Steiner trees, which is NP-hard [40]. Hence, in this chapter, we

focus on a slightly different problem where we relax the capacity requirements. Like in the

previous study, we shall assume that the overall cost function ψ is of the form provided

in Equation (4.1), namely ψ(x) =
∑

a∈A ψa(fa), where vector f is the arc projection of

Steiner flow x, and, for each arc a, ψa is again a convex, continuously differentiable, non-

decreasing, and univariate cost function from R+ to R+ with ψa(0) = 0. For each arc a,

we still denote by ψ′
a the first derivative of ψa. We shall again assume that given any

non-negative real number z, the values ψa(z) and ψ′
a(z) can be computed in polynomial

time for any prescribed accuracy. In order to keep the problem tractable, while taking

into accounts the existence of a capacity ca on each arc a of the network, it is desirable

to pick, for each arc a such that ca ≤ d, a cost function ψa which increases quickly at the

neighborhood of ca, so as to prevent any practical capacity violation. Given a Steiner flow

x, its arc projection f , and an arc a, we call ψa(fa) the cost induced by x on arc a, while

the overall cost of x is the quantity ψ(x). Notice that this overall cost is separable with

respect to the arcs but not with respect to the trees. In the following, we denote by XT

the set of all Steiner flows meeting the demand constraint:

XT =

{

x ∈ RT
+ :
∑

t∈T

xt = d

}

(4.14)

A Steiner flow x is feasible if x ∈ XT . We are now ready to formally express our problem:

Problem Minimum convex cost (uncapacitated) Steiner flow
Instance Network D = (V,A), source s, set of receivers R,

convex cost function ψa for each arc a, positive demand d
Solution A feasible Steiner flow x ∈ XT in D
Objective Minimize the overall cost ψ(x) of Steiner flow x as defined in Equation (4.1)

160

We denote by ψS the value of a minimum-cost Steiner flow for the considered instance:

ψS = min
x∈XT

ψ(x) (4.15)

When the set R is a singleton, R = {r}, a Steiner tree spanning s and R is a simple path

between the source and the unique receiver r. Hence, the minimum convex cost Steiner

flow problem can indeed be regarded as a generalization of the minimum convex cost flow

problem to more than one receivers.

Consider the special case where all vertices except the source are receivers, R = V \{s}.

Observe that, in this setting, a Steiner tree spanning s and R is actually a spanning tree

and we can define a spanning flow accordingly. We naturally refer to the associated prob-

lem as the minimum convex cost spanning flow problem:

Problem Minimum convex cost (uncapacitated) spanning flow
Instance Network D = (V,A), source s, convex cost function ψa for each arc a

positive demand d
Solution A feasible spanning flow x ∈ XT in D
Objective Minimize the overall cost ψ(x) of spanning flow x as defined in Equation (4.1)

We still denote by ψS the value of a minimum-cost spanning flow for the considered in-

stance, since the meaning should be clear from the context.

4.2.2 A detailed example

We consider again the directed butterfly network which is depicted on Figure 4.1 a). We

are interested in solving the minimum cost Steiner flow problem under unit demand, namely

d = 1, while the cost function ψa on each arc a is given by the expression ψa(z) = z
ca−z

for

any z ∈ [0, d], where the capacity ca of each arc a is set to 1. A minimum-cost Steiner flow

x is depicted on Figure 4.1 b). Notice that it uses five Steiner trees to satisfy the whole

demand. The overall cost induced by Steiner flow x is 10.97.

161

Figure 4.1 – a) The directed butterfly network. b) A minimum-cost Steiner flow x using
five trees in the directed butterfly network. Each tree on the first row routes 7/50 units
of flow, while each tree on the second row conveys 9/50 units of flow. The last tree on
the third row brings 9/25 units of flow to each receiver. The network at the bottom-right
provides the percentage of the load fa

ca
for each arc a. The cost induced by Steiner flow x

is 10.97.

162

4.2.3 Mathematical programming formulation

The minimum convex cost Steiner flow problem can be formalized using mathematical

programming:

ψS = min
∑

a∈A

ψa

(

∑

t∈Ta

xt

)

(4.16)

s.t.
∑

t∈T

xt = d (4.17)

xt ≥ 0 ∀t ∈ T (4.18)

For each Steiner tree t, the variable xt stands for the amount of flow routed on t. Observe

that, since we may have an exponential number of trees in T , this model may also have an

exponential number of variables. Constraint (4.17) ensures that the Steiner flow x meets

the demand d.

4.2.4 Complexity and algorithms

Although we have relaxed the capacity requirements, the resulting problem is still

intractable as emphasized by the next theorem:

Theorem 17. The minimum convex cost Steiner flow problem remains NP-hard even if

the cost function of each arc is a linear mapping.

Proof. Assume that, for each arc a, the cost function ψa is of the form ψa(z) = waz for any

non-negative real number z, where wa is a fixed non-negative real number. We perform a

reduction from the minimum-cost Steiner tree problem. Notice that, for any Steiner flow

x satisfying the demand constraint, we have:

ψ(x) =
∑

a∈A

wa

(

∑

t∈Ta

xt

)

(4.19)

=
∑

t∈T

(

∑

a∈t

wa

)

xt (4.20)

Getting an optimal solution to this problem amounts to routing d units of flow on a

minimum-cost Steiner tree with weight wa on each arc a. Solving the minimum convex

cost Steiner flow problem to optimality would hence provide at least one minimum-cost

Steiner tree, while finding such a tree is an NP-hard task [43].

163

Observe that the proof above is valid in both directed and undirected networks.

4.2.5 Bounds on the value of a minimum-cost Steiner flow

Since it is difficult in all generality to solve the minimum convex cost Steiner flow

problem, it seems relevant to look for computable bounds on its optimal value.

4.2.5.1 Upper bound thanks to a feasible solution

We first focus on deriving an upper bound on the optimal value ψS . We do this by

considering the restriction of the minimum convex cost Steiner flow problem where the

number of trees supporting the flow is limited to one. In this case the whole demand d has

to be conveyed through a single Steiner tree. Since we are looking for a Steiner flow whose

cost is minimum, it is thus natural to route the demand on a minimum-cost Steiner tree

with weight ψa(d) on each arc a as emphasized by the following lemma:

Lemma 6. Given an instance of the minimum convex cost Steiner flow problem, a minimum-

cost Steiner tree t, with weight ψa(d) for each arc a, induces a feasible Steiner flow by

routing the whole demand d on t, namely:

ψS ≤ min
t∈T

∑

a∈t

ψa(d) (4.21)

Finding such a minimum-cost Steiner tree is intractable, but one can always use an α-

approximation algorithm in order to compute the bound in polynomial time. This bound

allows one to evaluate the benefit of using more than one tree to convey flow in the network.

Notice that conveying the whole demand on a single tree is likely to violate some of the

network capacity requirements, which will translate in a huge penalty incurred through the

cost functions. In other words, unless it is possible to satisfy the whole demand thanks to

a single tree, one should expect this upper-bound to be quite loose. Since efficient mixed

integer linear programming (MILP) formulations of the minimum-cost Steiner tree problem

are available in the literature [55], one can also rely on a solver to find a minimum-cost

Steiner tree in "affordable" time.

164

4.2.5.2 Lower bound on the minimum cost

To get a lower bound on the optimal value ψS , we will exploit the convexity of the

overall cost function ψ. In the following, we denote by 〈·, ·〉 the canonical inner product on

RT and by ∇ψ(x) the gradient of function ψ, evaluated at point x ∈ RT . We will need the

following lemma:

Lemma 7. Given a Steiner flow x, for any Steiner tree s, the partial derivative of the

overall cost function ψ with respect to variable xs, evaluated at x, can be expressed as:

∂ψ

∂xs
(x) =

∑

a∈s

ψ′
a(fa) (4.22)

where vector f is the arc projection of Steiner flow x.

Proof. Let f be the arc projection of the considered Steiner flow x. Through classical

differential calculus we get:

∂ψ

∂xs
(x) =

∂

∂xs

[

∑

a∈A

ψa(fa)

]

(4.23)

=
∑

a∈A

∂fa
∂xs

∂ψa
∂fa

(fa) (4.24)

=
∑

a∈A

∂fa
∂xs

ψ′
a(fa) (4.25)

=
∑

a∈s

ψ′
a(fa) (4.26)

where the last equality comes from fa =
∑

t∈Ta
xt, which stands for any arc a.

This lemma implies one can easily compute any component of the gradient ∇ψ(x),

evaluated at point x, assuming the Steiner tree associated to this component is known.

The next lemma will have important algorithmic applications:

Lemma 8. Given any Steiner flow x, not necessarily satisfying the demand constraint, the

following relation holds:

ψS − ψ(x) ≥ dmin
t∈T

[

∑

a∈t

ψ′
a(fa)

]

−
∑

a∈A

ψ′
a(fa)fa (4.27)

165

Proof. By convexity of ψ, we have for any two Steiner flows x and y:

ψ(y)− ψ(x) ≥ 〈∇ψ(x), y − x〉 (4.28)

Let x∗ be an optimal solution to the minimum convex cost Steiner flow problem. For any

Steiner flow x, we get:

ψS − ψ(x) = ψ(x∗)− ψ(x) (4.29)

≥ 〈∇ψ(x), x∗〉 − 〈∇ψ(x), x〉 (4.30)

Although we do not know x∗, we can minimize the right-hand side of the previous inequality

to get:

ψS − ψ(x) ≥ min
y∈XT

〈∇ψ(x), y〉 − 〈∇ψ(x), x〉 (4.31)

By Lemma 7:

〈∇ψ(x), x〉 =
∑

t∈T

∂ψ

∂xt
(x)xt (4.32)

=
∑

t∈T

∑

a∈t

ψ′
a(fa)xt (4.33)

=
∑

a∈A

∑

t∈Ta

ψ′
a(fa)xt (4.34)

=
∑

a∈A

ψ′
a(fa)fa (4.35)

We now focus on the first term in the right-hand side of Equation (4.31). By Lemma 7:

min
y∈XT

〈∇ψ(x), y〉 = min
y∈XT

∑

t∈T

∂ψ

∂xt
(x)yt (4.36)

= min
y∈XT

∑

t∈T

(

∑

a∈t

ψ′
a(fa)

)

yt (4.37)

= min
y∈XT

∑

a∈A

ψ′
a(fa)

∑

t∈Ta

yt (4.38)

and this last minimization problem is nothing but the minimum convex cost Steiner flow

problem with linear cost function z 7→ ψ′
a(fa)z for each arc a. Notice that, in this problem,

x is fixed, and y is the vector of variables. As previously explained (while discussing the

problem complexity), an optimal solution to this last problem can be designed by routing

166

the whole demand d on a minimum-cost Steiner tree with weight on each arc a set to

ψ′
a(fa). Hence we get:

min
y∈XT

〈∇ψ(x), y〉 = dmin
t∈T

∑

a∈t

ψ′
a(fa) (4.39)

After substitution of this last result, along with the one obtained in Equation (4.35),

Equation (4.31) yields the stated inequality.

Thanks to this lemma we get the following lower bound on the optimal value ψS :

Lemma 9. Given any instance of the minimum convex cost Steiner flow problem, the

following inequality holds:

ψS ≥ dmin
t∈T

∑

a∈t

ψ′
a(0) (4.40)

Proof. Apply Lemma 8 with the zero Steiner flow, x ≡ 0, whose arc projection is clearly

the zero vector f ≡ 0. Notice that ψ(0) = 0 since ψa(0) = 0 for each arc a.

Since finding a minimum-cost Steiner tree with weight ψ′
a(0) on each arc a is an NP-

hard task, one can instead use an approximation algorithm with approximation ratio α to

find a good quality tree in polynomial time. Once this is done, simply multiply the tree

cost by d
α to get a lower bound on ψS .

4.2.6 Algorithm

4.2.6.1 The conditional gradient method

We will now describe an algorithm to solve the minimum convex cost Steiner flow

problem. Our approach rests on the conditional gradient method, also known as the Frank-

Wolfe algorithm [108]. We refer the interested reader to the work of Jaggi [109] for a general

presentation of this method. This algorithm has already been successfully specialized to

the minimum cost multi-commodity flow problem, see the paper by Fukushima [110], the

survey by Ouorou et al. [106] and references therein. Also have a look at the classical book

by Bertsekas [111]. We shall now describe the proposed algorithm:

167

4.2.6.2 Principle of the algorithm

The algorithm proceeds in iterations which we index by i. It starts from a feasible

Steiner flow x(0), and, at each iteration, it tries to decrease the overall cost of the current

flow x(i) by switching flow from expensive Steiner trees to a cheaper one. A strong re-

quirement in the design of our algorithm is that, at any iteration i, we only have access

to a subset T (i) of active Steiner trees, those which were previously generated by the algo-

rithm (see below). This means we implicitly assume that most components of the vector

x(i) ∈ RT are set to zero. Hence, great care should be taken, while updating the current

solution, that the number of trees whose corresponding component in x(i+1) is positive

remains tractable. Our algorithm ensures that at most one more tree can carry flow at

each iteration, specifically T (i) ⊆ T (i+1) and |T (i+1)| ≤ |T (i)| + 1. To initialize the algo-

rithm, find any Steiner tree and route d units of flow on it. It can be convenient to look

for a minimum-cost Steiner tree with weight on each arc a set to ψ′
a(0) so as to simultane-

ously compute the lower bound provided by Lemma 9. This gives x(0). At iteration i, the

algorithm performs the following two steps sequentially.

4.2.6.3 First step - tree search

The first step is devoted to the search for a tree which could receive some of the flow

carried by other trees, so as to decrease the overall cost of the resulting Steiner flow. A

suitable candidate for such a flow transfer is a minimum-cost Steiner tree with weight

ψ′
a(f

(i)
a) on each arc a, where vector f (i) is the arc projection of Steiner flow x(i). To

understand why, notice that, from Lemma 7, for any Steiner tree t, the partial derivative

of the overall cost function ψ with respect to variable xt, evaluated at x(i), can be expressed

as:

∂ψ

∂xt
(x(i)) =

∑

a∈t

ψ′
a(f

(i)
a) (4.41)

Thus, the problem of minimizing the function 〈∇ψ(x(i)), x〉 over x ∈ XT (here ∇ψ(x(i))

is fixed) turns out to be the minimum linear cost Steiner flow problem described above,

with cost ψ′
a(f

(i)
a) for each arc a. Hence, the minimum-cost Steiner tree with respect to the

aforementioned weights corresponds to the gradient descent direction. Although finding

168

such a tree is NP-hard, efficient mixed integer linear programming (MILP) formulations for

this problem exist. Suppose we are given an oracle (say a MILP solver) which computes in

"affordable" time a minimum-cost Steiner tree t(i). Define T (i+1) = T (i)∪{t(i)}. Computing

t(i) and updating the set of active trees constitutes the first step performed by the algorithm

at iteration i.

4.2.6.4 Second step - load balancing

The second step consists in updating the current flow. Assume x(i) ∈ XT is a Steiner

flow satisfying the demand constraint and using the trees in T (i). Let vector f (i) be the arc

projection of Steiner flow x(i). We denote by y(i) the Steiner flow induced by routing the

whole demand d on Steiner tree t(i). More formally, Steiner flow y(i) is defined as y(i)
t(i)

= d,

and y
(i)
t = 0 for any other tree t ∈ T (i+1) \ {t(i)}, while we implicitly assume y(i)t = 0 for

any inactive tree t ∈ T \T (i+1). Steiner flow y(i) hence defined clearly satisfies the demand

constraint. However, its cost may be far worse than ψ(x(i)) since routing the whole demand

on a single Steiner tree is likely to violate some capacity requirements, assuming the demand

d is high enough. In a sense, going from x(i) to y(i) is equivalent to switching the whole

flow from the trees in T (i) to tree t(i) which may be an exaggerated move. It then seems

appropriate to look for a balanced decision between the two extremes of doing nothing

(keeping x(i)), and switching the whole flow on tree t(i) (which gives y(i)). Therefore, it

is natural to look for a convex combination (1 − γ)x(i) + γy(i), with γ ∈ [0, 1], as a flow

switching strategy. Let ν be the function defined on [0, 1] by ν(γ) = ψ([1− γ]x(i) + γy(i)).

The best strategy to reduce the overall routing cost is then to pick the optimal value γ∗ of

the following optimization problem:

min
γ∈[0,1]

ν(γ) = min
γ∈[0,1]

∑

a∈t(i)

ψa(f
(i)
a + γ(d− f (i)a)) +

∑

a∈A\t(i)

ψa(f
(i)
a − γf

(i)
a)

 (4.42)

Observe that, in this last problem, γ is the only variable since vectors x(i) and f (i) are

fixed. The function γ 7→ ν(γ) is convex on the interval [0, 1] which allows the use of a line

search algorithm to compute γ∗. We refer the interested reader to the book by Bazaraa

[112] for more details regarding the line search strategy. Define the new Steiner flow x(i+1)

169

as follows:

x(i+1) = (1− γ∗)x(i) + γ∗y(i) (4.43)

From the convexity of the feasible domain XT , this new Steiner flow x(i+1) satisfies the

demand constraint since the current Steiner flow x(i) does. Moreover we have:

ψ(x(i+1)) = ν(γ∗) ≤ ν(0) = ψ(x(i)) (4.44)

where the inequality comes from the optimality of γ∗. Equation 4.44 implies the algorithm

does not deteriorate the quality of its solution through an iteration.

4.2.6.5 Convergence

By definition of tree t(i), Lemma 8 gives, for each iteration i:

ψS ≥ ψ(x
(i)) + d

∑

a∈t(i)

ψ′
a(f

(i)
a)−

∑

a∈A

ψ′
a(f

(i)
a)f (i)a (4.45)

In the following, we denote by (ℓ(i))i∈Z+ the sequence defined by:

ℓ(0) = dmin
t∈T

∑

a∈t

ψ′
a(0) (4.46)

which is a lower bound on ψS according to Lemma 9, and, for any iteration i:

ℓ(i) = max

ℓ(i−1), ψ(x(i)) + d
∑

a∈t(i)

ψ′
a(f

(i)
a)−

∑

a∈A

ψ′
a(f

(i)
a)f (i)a

 (4.47)

For any iteration i, let ψ(i) = ψ(x(i)). From the previous discussion, it should be clear that

the sequence (ψ(i))i∈Z+ is non-increasing, the sequence (ℓ(i))i∈Z+ non-decreasing, and, for

each iteration i, ℓ(i) ≤ ψS ≤ ψ(i). Furthermore, it can be shown that ψ(i) − ℓ(i) = O
(

1
i

)

,

by using arguments similar to those presented in [109, Theorem 2].

Recall, however, that the algorithm is polynomial in the number of calls to the oracle

looking for a minimum-cost Steiner tree, but no guarantee can be made on the running

time of this last subroutine.

Notice that, in the special case where all vertices except the source are receivers, the

minimum convex cost spanning flow problem can be solved efficiently by applying the con-

ditional gradient method. In this case, the sub-problem to be solved at each iteration

170

is to find a minimum spanning tree with weight ψ′
a(fa) on each arc a, where vector f is

the arc projection of the current solution x of the algorithm. Such a tree can be com-

puted in strongly polynomial time thanks to Kruskal’s algorithm [49], Prim’s algorithm

[50], or a linear programming compact formulation [51]. When the network is directed,

the Chu–Liu/Edmonds’ algorithm [52, 53] returns a minimum spanning arborescence in

strongly polynomial time.

4.2.6.6 Summary

In the following, let ΠT be the minimum convex cost Steiner flow problem. Given a set

of Steiner trees T , denote by ΠT the restriction of problem ΠT to variables indexed by the

trees in T . Let us summarize the behavior of the algorithm at iteration i: starting from a

feasible solution to problem ΠT (i) , the algorithm first finds a Steiner tree inducing a good

descent direction, then it shifts flow from other trees to this one, according to a balance

rule, in order to build a feasible solution to problem ΠT (i+1) . The algorithm runs until a

predetermined maximum number of iterations I is reached or until some fixed threshold ǫ

on the gap between the value ψ(i) and the lower-bound ℓ(i) is met. Figure 4.2 summarizes

the whole process while Algorithm 2 below provides the corresponding pseudo-code.

171

Figure 4.2 – Scheme of the proposed algorithm for solving the minimum convex cost Steiner
flow problem.

Algorithm 2 : algorithm for solving the minimum convex cost Steiner flow problem.

Input: network D = (V,A), source s, set of receivers R, convex cost function ψa for each
arc a, demand d, maximum number of iterations I, threshold ǫ > 0;

Output: a minimum-cost Steiner flow x;
1. Initialize x by computing a Steiner tree t0 and routing d units of flow on it;
2. Compute the projection f of x;
3. Let i = 0, and T = {t0};
4. Compute the initial lower bound ℓ according to Equation (4.46)
5. while i < I and ψ(x)− ℓ > ǫ) do

6. Compute wa = ψ′
a(fa) for each arc a;

7. Find a minimum-cost Steiner tree t with respect to weights w thanks to a subroutine;

8. Update the set of active trees, T = T ∪ {t};
9. Use line-search to find the optimal solution γ∗ to Problem (4.42);

10. Update the current flow x and its projection f according to Equation (4.43);
11. Update the lower bound ℓ according to Equation (4.47);
12. i = i+ 1;
13. end while

14. Return x, f , and T .

172

4.2.6.7 Improvement

The proposed algorithm can be improved by using the so-called gradient projection

method [113] which has already been successfully specialized to the minimum cost multi-

commodity flow problem, an approach referred to as the flow deviation method in the

literature, see [114, 115, 111, 106].

4.3 Minimum convex cost coded flow

4.3.1 Problem statement

We now turn our attention to the problem of finding a coded flow with minimum cost.

As in the previous chapters, we will make a distinction between directed and bidirected

networks on the one hand, and undirected networks on the other hand. To summarize the

distinction, the expression of the cost of a coded flow depends on the network structure.

The setting is exactly the same as in the previous problem: the instance is made of a

network D = (V,A) with source s, set R of receivers, and a cost function ψa for each arc

a, along with a positive real demand d. We also keep all our previous assumptions on the

family of functions (ψa)a∈A. Hence, we will also relax all capacity requirements, assuming

again that, for each arc a such that ca ≤ d, the penalty ψa(fa) incurred by routing a flow

of value fa ∈ [ca, d] is high enough to prevent any capacity violation. Recall that a coded

flow x is an assignment of a non-negative real value xp to each path p between s and a

receiver r. We denote by Pr the set of such paths, by P the union of those sets Pr for

all r ∈ R, and by Pra the subset of Pr using arc a. Given a coded flow x, we call xp the

flow on path p, f ra the flow induced on arc a toward receiver r, namely f ra =
∑

p∈Pr
a
xp,

and ha the coded flow on arc a, i.e. ha = maxr∈R f
r
a (notice the use of the max operator

instead of the sum). We again refer to vector f and h respectively as the arc projection

and the coding vector associated to coded flow x. Given a capacity vector c on the arcs,

a coded flow x satisfies the capacity requirements if, for each arc a, the amount of coded

flow on a is smaller than, or equal to, the arc capacity, namely ha ≤ ca. Furthermore, we

say that x meets the demand if each receiver r experiences a throughput of value d, i.e.
∑

p∈Pr xp = d. We define the overall cost of a coded flow x as in Equation (4.1), except

173

that the coding vector h is now playing the role previously fulfilled by the arc projection

f , which yields:

ψ(x) =
∑

a∈A

ψa(ha) (4.48)

Given a coded flow x and its coding vector h, along with an arc a, we call ψa(ha) the cost

induced by x on arc a, while the overall cost of x is the quantity ψ(x). Notice that this

overall cost is again separable with respect to the arcs but not with respect to the paths. In

the following, we denote by XP the set of all coded flows meeting the demand constraints:

XP =

x ∈ RP
+ :

∑

p∈Pr

xp = d ∀r ∈ R

(4.49)

A coded flow x is feasible if x ∈ XP . We are now ready to formally express this new problem:

Problem Minimum convex cost (uncapacitated) coded flow
Instance Network D = (V,A), source s, set of receivers R,

convex cost function ψa for each arc a, positive demand d
Solution A feasible coded flow x ∈ XP in D
Objective Minimize the overall cost ψ(x) of coded flow x as defined in Equation (4.48)

We denote by ψC the value of a minimum-cost coded flow for the considered instance:

ψC = min
x∈XP

ψ(x) (4.50)

Notice that, when the set R is a singleton, the minimum convex cost coded flow problem is

exactly the minimum convex cost flow problem between the source and the unique receiver.

4.3.2 Example continued

Consider again the directed butterfly network depicted on Figure 4.1 a). This time,

we are studying the minimum cost coded flow problem under the same setting as in the

previous example. Namely, the demand is set to d = 1, and the cost function ψa on each

arc a is ψa(z) = z
ca−z

for any z ∈ [0, d] where the capacity of each arc a is ca = 1. A

minimum-cost coded flow x for this instance is depicted on Figure 4.3. The coded flow

x uses two paths to convey the data from the source to each receiver. The overall cost

induced by coded flow x is 8.94.

174

Figure 4.3 – A minimum-cost coded flow x . It uses exactly two paths to route the data
from the source to each receiver. Each path using the arc (n3, n4) conveys 47/100 units of
flow, while each of the two other paths routes 53/100 units of flow. The third network on
the right provides the percentage of the load fa

ca
for each arc a. The overall cost induced

by the coded flow x is 8.94.

4.3.3 Mathematical programming formulations

4.3.3.1 Directed and bidirected networks

The minimum convex cost coded flow problem can also be formalized using mathemat-

ical programming:

ψC = min
∑

a∈A

ψa(ha) (4.51)

s.t.
∑

p∈Pr

xp = d ∀r ∈ R (4.52)

ha ≥
∑

p∈Pr
a

xp ∀a ∈ A, r ∈ R (4.53)

ha, xp ≥ 0 ∀a ∈ A, p ∈ P (4.54)

For each path p, variable xp stands for the amount of flow routed on p, while, for each arc a,

variable ha models the amount of flow going through a. Observe that, since we may have an

exponential number of paths in P , the previous model may also have an exponential number

of variables. Constraints (4.52) ensure that, for each receiver, the coded flow x meets the

demand d. Combined with the assumption that each function ψa is non-decreasing and

the fact that the objective function is to be minimized, Constraints (4.53) enforce variable

ha to take the value maxr∈R
∑

p∈Pr
a
xp, for any arc a, in an optimal solution.

175

Although this path formulation may involve a huge number of variables, the following

arc formulation of the minimum convex cost coded flow problem was presented by Lun et

al. in [116]:

ψC = min
∑

a∈A

ψa(ha) (4.55)

s.t.
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(d) ∀r ∈ R, v ∈ V (4.56)

ha ≥ f
r
a ∀a ∈ A, r ∈ R (4.57)

f ra , ha ≥ 0 ∀a ∈ A, r ∈ R (4.58)

with

brv(d) =

d if v = s (4.59)

−d if v = r (4.60)

0 otherwise (4.61)

For each arc a and each receiver r, variable f ra stands for the amount of flow from source s

to r going through a, while variable ha models the amount of coded flow conveyed through

a. Observe that, again, we implicitly use the monotonicity of the cost functions in the

definition of Constraints (4.57) so as to get ha = maxr∈R f
r
a , for any arc a, in an optimal

solution.

4.3.3.2 Undirected networks

To understand why the model of the minimum convex cost coded flow problem in

an undirected network differs from the one in a directed network, consider an undirected

network G = (V,E) along with the bidirected network B = (V, L) obtained from G by

replacing each edge e by a pair of directed arcs, or link while keeping the source and the

receivers as defined in G. The difference between the two models lies in that, in the

undirected framework, there is a cost function ψℓ associated to each link ℓ of the bidirected

network (ψℓ is actually the cost function ψe of the edge e from which link ℓ originates)

while in the bidirected setting, each arc of the pair is equipped with its own cost function.

Observe that the two models remain distinct even if we assume that both cost functions

are equal, namely ψa1 = ψa2 (denoted by ψℓ in the following) for each link ℓ = {a1, a2}

in bidirected network B: Given a coded flow x in bidirected network B along with its

176

coding vector h, all that can be say is that ψℓ(ha1) + ψℓ(ha2) has no reason to be equal to

ψℓ(ha1 +ha2). As already pointed out by Yin et al. [42] the two models become equivalent

when each cost function of the network is linear.

To compute a minimum convex cost coded flow in an undirected network G = (V,E),

solve the problem obtained by replacing in the bidirected network B = (V, L) associated

to G the objective function by the following one:

∑

ℓ∈L

ψℓ(ha1 + ha2) (4.62)

where, for each link ℓ = {a1, a2}, the cost function ψℓ is set to the cost function ψe of the

edge e from which link ℓ originates.

4.3.4 Complexity and algorithms

Regardless of the network structure, the arc formulation of the minimum convex cost

coded flow problem can be regarded as a problem of minimizing a convex function over

a convex set induced by a polynomial number of linear constraints. Therefore, we have

all standard techniques of convex optimization at our disposal [105] to compute an arc

decomposition of a minimum-cost coded flow in polynomial time. Given such an arc de-

composition f , a path decomposition x can be built in polynomial time thanks to the

technique presented in the proof of Lemma 1: For each receiver r, let f r be the vector of

components f ra over each arc a of the network. The vector f r is the arc projection of a

simple flow between the source and receiver r. For each receiver r, compute a path decom-

position of this simple flow using the algorithm presented by Ahuja et al. [7, Theorem 3.5]

which runs in polynomial time. The concatenation of all those path decompositions (one

per receiver) is clearly a valid path decomposition of the coded flow.

A decentralized algorithm to solve the minimum convex cost coded flow problem is

proposed by Lun et al. in [116]. If one is interested in the game theoretic approach

where each receiver tries to selfishly minimize its own cost, the proof of existence of a local

Nash equilibrium along with an algorithm to find one are presented by Bhadra et al. in

[117]. Notice that, considering the arc formulation of the minimum convex cost coded flow

problem, we could directly incorporate the capacity requirements to the set of constraints,

177

instead of assuming them implicitly through the cost functions, while keeping a tractable

problem. We chose to relax those capacity requirements to allow comparisons between

information flows.

4.3.5 A new algorithm

4.3.5.1 The conditional gradient method

We will now propose an algorithm to solve the minimum convex cost coded flow prob-

lem. We simply pick the conditional gradient method as with the previous problem. There-

fore, this algorithm is very similar to Algorithm 2. The main differences arise from the

selection of the initial coded flow x(0) along with the linear subproblem to be solved at each

iteration. Notice however that the function x 7→
∑

a∈A ψa

(

maxr∈R

[

∑

p∈Pr
a
xp

])

from XP

to R+ is not differentiable with respect to variable xp, for any path p between the source

and a receiver.

In the following we will specialize the conditional gradient method for solving the

arc formulation of the minimum convex cost coded flow problem. We denote by F the

polytope induced by Constraints (4.56)-(4.57)-(4.58). Given a vector (f, h) ∈ F , we write

ψ(f, h) =
∑

a∈A ψa(ha). The mapping (f, h) 7→ ψ(f, h) is clearly differentiable on F and

for each arc a:
∂ψ

∂ha
(f, h) = ψ′

a(ha) (4.63)

while clearly, for each arc a and each receiver r:

∂ψ

∂f ra
(f, h) = 0 (4.64)

so that we can easily compute the gradient ∇ψ(f, h) of the mapping (f, h) 7→ ψ(f, h),

evaluated at point (f, h). Thus, we can find a good descent direction at a given point

(f, h), by solving the following problem:

min
(f,h)∈F

〈∇ψ(f, h), (f,h)〉 = min
(f,h)∈F

∑

a∈A

ψ′
a(ha)ha (4.65)

Observe that the sub-problem defined in Equation (4.65) is exactly the minimum convex

cost coded flow problem with linear cost function z 7→ ψ′
a(ha)z set on each arc a. Fur-

178

thermore, solving this sub-problem provides a lower bound on ψC , as emphasized by the

following lemma:

Lemma 10. Given any vector (f, h) ∈ RA×R+ × RA+, the following relation holds:

ψC − ψ(f, h) ≥ min
(f,h)∈F

∑

a∈A

ψ′
a(ha)ha −

∑

a∈A

ψ′
a(ha)ha (4.66)

Proof. The argument is the same as the one used in the proof of Lemma 8. By convexity of

the mapping (f, h) 7→ ψ(f, h), we have for any two vectors (f, h) and (f,h) of RA×R+ × RA+:

ψ(f, h)− ψ(f,h) ≥ 〈∇ψ(f, h), (f,h)− (f, h)〉 (4.67)

from which we deduce:

ψC − ψ(f, h) ≥ min
(f,h)∈F

〈∇ψ(f, h), (f,h)〉 − 〈∇ψ(f, h), (f, h)〉 (4.68)

From Equations (4.63)-(4.64), we have:

〈∇ψ(f, h), (f, h)〉 =
∑

a∈A

ψ′
a(ha)ha (4.69)

Substituting this last result, along with the one obtained in Equation (4.65), Equation (10)

yields the stated inequality.

Thanks to Lemma 10 we get the following lower bound on the optimal value ψC :

Lemma 11. Given any instance of the minimum convex cost coded flow problem, the

following inequality holds:

ψC ≥ min
x∈XP

∑

a∈A

ψ′
a(0)ha (4.70)

where ha = maxr∈R

[

∑

p∈Pr
a
xp

]

for each arc a.

Proof. Notice that ψ(0, 0) = 0 since ψa(0) = 0 for each arc a. By applying Lemma 10 with

the zero vector, (f, h) ≡ (0, 0), one obtains:

ψC ≥ min
(f,h)∈F

∑

a∈A

ψ′
a(0)ha = min

x∈XP

∑

a∈A

ψ′
a(0)ha (4.71)

where in the last equality ha = maxr∈R

[

∑

p∈Pr
a
xp

]

for each arc a.

179

The problem defined by the right-hand side of Equation (4.70) could simultaneously

provide a feasible coded flow x(0) along with an initial lower-bound ℓ(0) on the optimal value

ψC , assuming it is practically solvable. Hence, it turns out that an efficient subroutine to

solve the minimum linear cost coded flow problem is the only tool required to apply the

conditional gradient method to the original problem. Fortunately, the arc formulation of

this sub-problem can be solved to optimality in polynomial time by linear programming.

4.3.5.2 Principle of the algorithm

The algorithm initialization consists in computing the lower bound on ψC presented

in Lemma 11. This initialization step also provides a feasible vector (f (0), h(0)) ∈ F .

The algorithm then proceeds in iterations which we index by i. At any iteration i, the

algorithm tries to improve its current solution (f (i), h(i)) by performing the following two

steps sequentially. The first step is devoted to the search for a candidate vector (f(i),h(i)) ∈

F , on which some flow could be transferred so as to reduce the overall cost of the designed

solution. To do this, the algorithm calls a subroutine which returns an optimal solution

(f(i),h(i)) to the arc formulation of the minimum linear cost coded flow problem for the

instance where the cost of each arc a is ψ′
a(h

(i)
a). Computing the vector (f(i),h(i)) constitutes

the first step performed by the algorithm at iteration i. The second step consists in

updating the current solution by finding a balance between vectors (f (i), h(i)) and (f(i),h(i)).

Let ν be the function defined on [0, 1] by ν(γ) = ψ([1 − γ](f (i), h(i)) + γ(f(i),h(i))). The

best strategy to reduce the overall routing cost is then to pick the optimal value γ∗ of the

following optimization problem:

min
γ∈[0,1]

ν(γ) (4.72)

Observe that, in this last problem, γ is the only variable since both vectors (f (i), h(i)) and

(f(i),h(i)) are fixed. The function γ 7→ ν(γ) is convex on the interval [0, 1] allowing the

use of a line search algorithm to find γ∗, see [112]. The set F is clearly convex (F is a

polytope). Thus, the algorithm can update the current solution according to the following

rule:

(f (i+1), h(i+1)) = (1− γ∗)(f (i), h(i)) + γ∗(f(i),h(i)) (4.73)

180

In order to complete this second step, it remains to compute the following lower-bound on

ψC which is obtained by combining Lemma 10 with the definition of vector (f (i), h(i)) as

follows:

ℓ(i) = max

(

ℓ(i−1), ψ(f (i), h(i)) +
∑

a∈A

ψ′
a(h

(i)
a)[h(i)

a − h
(i)
a]

)

(4.74)

4.3.5.3 Summary

For any non-negative integer i, let ψ(i) = ψ(f (i), h(i)). The algorithm runs until a

predetermined maximum number of iterations I is reached or until some fixed threshold ǫ

on the gap between the value ψ(i) and the lower bound ℓ(i) is met. By using arguments

similar to those presented in [109, Theorem 2], it can be shown that ψ(i) − ℓ(i) = O
(

1
i

)

.

At each iteration the algorithm calls a subroutine to solve a linear programming problem

involving a polynomial number of continuous variables and constraints. Therefore, the

overall procedure runs in polynomial time. Algorithm 3 provides the corresponding pseudo-

code.

Algorithm 3 : algorithm for solving the minimum convex cost coded flow problem.

Input: network D = (V,A), source s, set of receivers R, convex cost function ψa for each
arc a, demand d, maximum number of iterations I, threshold ǫ > 0;

Output: a minimum-cost coded flow (f, h);
1. Initialize vector (f, h) by calling the subroutine on the linear problem introduced in

Lemma 11;
2. Initialize lower-bound ℓ with the optimal value of this previous problem;
3. Let i = 0;
4. while i < I and ψ(f, h)− ℓ > ǫ) do

5. Compute wa = ψ′
a(ha) for each arc a;

6. Call the subroutine to get an optimal solution (f,h) to the minimum linear cost
coded flow problem with weight wa on each arc a;

7. Use line-search to compute an optimal solution γ∗ to Problem (4.72);
8. Update the current vector (f, h) according to Equation (4.73);
9. Update the lower bound ℓ according to Equation (4.74);

10. i = i+ 1;
11. end while

12. Return the couple of vectors (f, h).

The reader may have notice that the algorithm, as defined above, does not return

a path decomposition of the coded flow, while such a decomposition is often desirable

181

in telecommunication applications. To circumvent this issue, recall that given a feasible

solution (f, h) for the arc formulation, a feasible solution (x, h) for the path formulation of

same value as (f, h) can be built in polynomial time thanks to the technique presented in

the proof of Lemma 1.

4.3.5.4 Improvement

It would be possible to solve the minimum convex cost coded flow problem by using the

previously mentioned gradient projection method [113], also known as the flow deviation

method in the literature [114, 115, 111, 106].

4.3.6 Coding scheme

We assume that there is at least one feasible coded flow satisfying all requirements of

the considered instance. This assumption can be tested in polynomial time by computing

a maximum coded flow in the instance of interest, as explained in Section 2.3, and by

comparing its value ϕC with the demand d. We shall further assume that the coded flow

x returned by Algorithm 3 satisfies all practical capacity requirements, namely ha ≤ ca for

any arc a, where h is the coding vector of coded flow x. This can be done without loss of

generality since, as previously hinted, one can always add those capacity requirements as

explicit constraints in the model, without altering its complexity. Furthermore, the condi-

tional gradient method is also left unmodified by this evolution of the model. Thus, any

of the methods intended to design a coding scheme which have been previously mentioned

in Section 2.3 can be applied to find a suitable coding scheme, ensuring a rate of value d.

4.4 Features of the information flows

4.4.1 Cost coding gain

In this section, we are interested in the following question:

Question 3. Is there an incentive, with respect to the overall routing cost, to use network

coding in a multicast network?

To facilitate comparisons, we introduce the following notion:

182

Definition 4. Given a network D = (V,A) with source s, set of receivers R, cost function

ψa for each arc a, along with positive demand d, the cost coding gain gψ, provided by

network coding over multicast alone, is the ratio of the value of a minimum-cost Steiner

flow over the one of a minimum-cost coded flow, namely:

gψ =
ψS
ψC

(4.75)

Recall that we only consider networks where there is at least one path between the

source and each receiver. Once combined with the absence of explicit capacity require-

ments, it should be clear that this last property implies that both minimum-cost informa-

tion flow problems are feasible. We shall further assume that the quantity ψC is positive

so that the previous definition of the cost coding gain gψ is well-grounded. The next theo-

rem shows that adding the possibility to perform coding operations in a multicast network

never impedes the cost one has to pay to use this network:

Theorem 18. Given a network D = (V,A) with source s, set of receivers R, cost function

ψa for each arc a, along with positive demand d, the cost coding gain gψ is at least 1.

The proof of Theorem 18 is very similar to the one of Theorem 3 and can be found in

Appendix C.1.3. Notice that, with respect to the overall cost, there is an incentive to use

network coding only if gχ > 1. We shall now study the cost coding gain of some networks.

4.4.2 Features of the cost coding gain

4.4.2.1 Cost coding gain in the single receiver case

We first give a word about the setting where there is only one single receiver. In

this case both the minimum convex cost Steiner flow problem and the minimum convex

cost coded flow problem become equivalent to the minimum convex cost flow problem, as

emphasized by the following lemma:

Lemma 12. In a network D = (V,A) with source s, a single receiver r distinct from s,

cost function ψa for each arc a, along with positive demand d, there is no incentive to use

either multicast or network coding and gψ = 1.

183

4.4.2.2 Linear and nonlinear cost coding gain

The following theorem provides a connection between the linear cost coding gain and

the nonlinear one.

Theorem 19. Given a network D = (V,A) with source s, set of receivers R, convex cost

function ψa for each arc a, along with positive demand d, the associated cost coding gain

gψ is upper-bounded by βψ(d)gΨ, where gΨ is the cost coding gain associated to the instance

where the cost function on each arc a is z 7→ ψ′
a(0)z, and βψ(d) = maxa∈A

ψa(d)
dψ′

a(0)
.

Proof. Recall from Equation (4.70) that ψC is lower-bounded by the overall cost ΨC of a

minimum-cost coded flow, satisfying demand d, with linear cost function z 7→ ψ′
a(0)z set

on each arc a, namely ΨC ≤ ψC . Now, let t be a minimum-cost Steiner tree with respect

to weight ψ′
a(0) on each arc a. Following our discussion about Lemma 6, it should be clear

that

ψS ≤
∑

a∈t

ψa(d) (4.76)

Furthermore, by definition of βψ(d), we have:

∑

a∈t

ψa(d) ≤ βψ(d)d
∑

a∈t

ψ′
a(0) (4.77)

Now, observe that the Steiner flow defined by routing the whole demand d on Steiner

tree t is an optimal solution to the minimum cost Steiner flow problem where the linear

cost function on each arc a is z 7→ ψ′
a(0)z. This directly results from the definition of

Steiner tree t and the fact that routing the whole demand d on a single tree is an optimal

routing strategy when the cost function on each arc is linear. Let ΨS be the value of this

minimum-cost Steiner flow, namely ΨS = d
∑

a∈t ψ
′
a(0). Combining Equation (4.76) with

Equation (4.77) and the definition of ΨS leads to:

ψS ≤ βψ(d)ΨS (4.78)

Introducing the linear cost coding gain gΨ = ΨS

ΨC
into Equation (4.78) and using the

inequality ΨC ≤ ψC yields:

ψS ≤ βψ(d)gΨψC (4.79)

184

or equivalently:

gψ ≤ βψ(d)gΨ (4.80)

which is the desired inequality.

We now give a word about the quantity βψ(d). For any arc a and any z ∈ [0, d], the

convexity of the cost function ψa implies:

ψa(z) ≥ ψa(0) + ψ′
a(0)z = ψ′

a(0)z (4.81)

where the equality comes from the assumption ψa(0) = 0. From Equation (4.81) we have

βψ(d) ≥ 1, provided the cost function ψa is convex for each arc a. Furthermore:

Lemma 13. βψ(d) = 1 if and only if, for each arc a, the cost function ψa is linear.

Proof. If ψa is linear for each arc a then ψa(d) = ψ′
a(0)d and βψ(d) = 1. Conversely, if

βψ(d) = 1 then, for each arc a, ψa(d) = ψ′
a(0)d thanks to Equation (4.81). Hence, for each

arc a and any z ∈ [0, d], we have by convexity of ψa:

ψa(z) = ψa

(z

d
d+

(

1−
z

d

)

0
)

≤
z

d
ψa(d) +

(

1−
z

d

)

ψa(0) = ψ′
a(0)z (4.82)

where the second equality comes from ψa(0) = 0. Combining Equation (4.81) with Equa-

tion (4.82), we get ψa(z) = ψ′
a(0)z for any z ∈ [0, d] and ψa is linear for each arc a.

It should be clear by now that βψ(d) is a measure of the non-linearity of the overall cost

function ψ. Thus, Theorem 19 implies that the more nonlinear this overall cost function

ψ is, the wider the cost coding gain domain [1, βψ(d)gΨ] will be. The values of βψ(d) for

some convex cost functions are given in Table 4.1.

Type Formula Domain βψ(d)

Linear z 7→ w1z R+ 1

Square z 7→ w2z
2 R+ +∞

Quadratic z 7→ w2z
2 + w1z R+ 1 + w2

w1
d

Exponential z 7→ exp(z)− 1 R+ d−1(exp(d)− 1)

Kleinrock z 7→ z
1−z [0, 1[(1− d)−1

Table 4.1 – Value of βψ(d) for some convex cost functions ψ.

185

4.4.2.3 Coding gain and linear cost coding gain

An important result regarding the cost coding gain in networks whose channels are

endowed with linear cost functions is given by Yin et al. [79]. Their result can be stated

as follows:

Theorem 20. [79, Theorem 9] Given a network D = (V,A) with source s and set of

receivers R, denote by gϕ(D, c) the coding gain obtained by setting capacity ca on each arc

a. Also denote by gψ(D,w) the cost coding gain obtained by setting linear cost function

z 7→ waz on each arc a along with positive demand d. Then,

max
c≥0

gϕ(D, c) = max
w≥0

gψ(D,w) (4.83)

This last result is fundamental in that it establishes a link between two a priori unrelated

quantities, namely the coding gain gϕ and the linear cost coding gain gψ. Beware that, in

[79], this last theorem is stated for any hyper-network which encompasses the case of all

classical networks.

4.4.2.4 Bidirected and undirected networks

The next theorem, due to Yin et al. [42, 79], gives an upper bound on the linear cost

coding gain of any undirected network:

Theorem 21. [42, Theorem 6] Given an undirected network G = (V,E) with source s, set

of receivers R, linear cost function z 7→ wez on each edge e, along with positive demand d,

the associated cost coding gain gψ is upper-bounded by 2.

Theorem 21 comes from Theorem 20 combined with the upper bound of 2 on the

coding gain gϕ of any undirected network [81]. The result below immediately follows from

Theorem 21 combined with Theorem 19:

Corollary 8. Given an undirected network G = (V,E) with source s, set of receivers R,

convex cost function ψe on each edge e, along with positive demand d, the associated cost

coding gain gψ is upper-bounded by 2βψ(d), where βψ(d) = maxe∈E
ψe(d)
dψ′

e(0)
.

186

Notice that, this last upper bound on the cost coding gain of an undirected network is

function of βψ(d). From Lemma 13, when βψ(d) = 1 we get back Theorem 21.

Recall that we restrict our attention to bidirected networks where the cost functions of

two reverse arcs are equal, ψa1 = ψa2 for each link ℓ = {a1, a2}. Exploiting the equivalence

between an undirected uncapacitated network and a bidirected one, we immediately deduce

that the upper bound of 2βψ(d) also holds for bidirected networks by setting βψ(d) =

maxℓ∈L
ψℓ(d)
dψ′

ℓ
(0)

where ψℓ is the cost function associated to link ℓ.

4.4.2.5 Directed networks

The following result is mentioned by Maheshwar et al. [85] while discussing a conjecture:

Theorem 22. [85, regarding Conjecture 8.1] For any real number η ≥ 1, there exists an

infinite family of directed networks with a cost function on each arc which is either the

identity function z 7→ z or the zero function z 7→ 0, such that the ratio between the value of

a minimum-cost Steiner flow and the one of a minimum-cost coded flow satisfies gψ ≥ η.

Thus, the cost coding gain can be arbitrarily large in directed networks, even if the cost

function on each arc is restricted to be either the identity function z 7→ z or the zero function

z 7→ 0. Again, the proof rests on the family of directed combination networks introduced

in [83, 84]. Interestingly, the analysis conducted in [85] also leads to the following result:

Theorem 23. [85, Theorem 4.1] In a directed combination network with the same linear

cost function z 7→ wz on each arc, the associated cost coding gain gψ is tightly upper-bounded

by 9
8 .

Beware that [85] primarily deals with undirected combination networks, yet the proof

can be straightforwardly adapted to directed ones. This last theorem implies that, although

one can expect an arbitrarily large throughput gain in a directed combination network,

enforcing uniform linear cost on the arcs may prevent any substantial cost gain. We shall

slightly extend this last result as follows:

Corollary 9. In a directed combination network with given demand d, and the same convex

cost function ψ on each arc, the associated cost coding gain gψ is tightly upper-bounded by

9
8βψ(d), where βψ(d) =

ψ(d)
dψ′(0) .

187

Proof. Combine Theorem 23 with Theorem 19 to get the desired inequality.

From Theorem 22 and Corollary 9, it appears that, as far as directed combination net-

works are concerned, having different linear cost functions on the arcs may allow a greater

benefit from network coding techniques than uniform nonlinear convex cost functions.

4.4.3 Experimental evaluation of the convex cost coding gain

4.4.3.1 Setting

We use the same fifteen network topologies taken from the SNDlib library [97] as in

the previous chapter. We then arbitrarily pick a node as source, and a subset of nodes as

receivers. The capacity of each channel is picked in the set [10] (of all integers between

1 and 10) uniformly at random. The demand is chosen sufficiently low so as to allow the

existence of a feasible Steiner flow with respect to capacity requirements. Each channel is

endowed with a Kleinrock-like convex cost function which is parametrized by the channel

capacity. More formally, let κ be the function from [0, 1[to R+ defined by κ(z) = z
1−z and

denote by κ′ the first derivative of κ. Also let ω be a small positive real number. For any

arc a, we set the cost function ψa as follows:

ψa(z) =

κ

(

z

ca

)

if z ∈ [0, (1− ω)ca] (4.84)

κ′(1− ω)[z − ca] + κ(1− ω) if z ∈ [(1− ω)ca, d] (4.85)

where ca is the capacity of arc a. Hence, each function ψa is nonlinear on [0, (1 − ω)ca],

and linear on [(1− ω)ca, d] (assuming this last set is not empty). Notice that the function

ψa and its derivative ψ′
a are continuous on [0, d], and satisfy all the requirements listed in

the beginning of this chapter, provided the value of ω is small enough so as to penalize

heavily any capacity violation, say ω = 10−2 in most practical applications. The shape of

the resulting cost function ψa is depicted in Figure 4.4.

188

0

50

100

150

200

c
o
s
t

0 0.2 0.4 0.6 0.8 1

load = ow / capacity

0.01

0.1

1

10

100

1000

104

c
o
s
t

0 0.5 1 1.5 2

load = ow / capacity

Figure 4.4 – Shape of a Kleinrock-like cost function ψa, (a) plotted on [0, ca] with linear
scale, (b) plotted on [0, 2ca] with logarithmic scale.

We then use Algorithm 2 and Algorithm 3 to respectively solve the minimum convex

cost Steiner flow problem, and the minimum convex cost coded flow problem. Each algo-

rithm runs until either the absolute gap between the current solution and the best known

lower-bound is below a threshold ǫ = 10−2 or after 104 iterations. The algorithm is coded

in Julia 0.3.8 [98, 99]. We use the Julia package "JuMP" [100] to call the open-source

mixed-integer programming solver CLP/CBC [101]. When called by Algorithm 2, CBC

solves the previosuly presented mixed-integer linear program 2.34 (see also [55]) up to op-

timality. In both algorithms, the line-search phase is performed thanks to a golden section

search algorithm [112] provided by the Julia package "Optim".

4.4.3.2 Undirected networks

Some features of our fifteen instances are summarized in Table 4.2. For each instance,

we give the number of vertices |V |, the number of edges |E|, and the number of receivers

|R| in the network. We also provide the demand d, along with the quantity βψ(d).

Table 4.3 gives, for each undirected instance, information regarding the Steiner flow

x returned by Algorithm 2. More precisely, column UB indicates the value of the upper-

bound obtained by routing the whole demand on a single minimum-cost Steiner tree as

189

Instance |V | |E| |R| d βψ(d)

abilene 12 15 3 5 8020

atlanta 15 22 5 3 6700

france 25 45 6 3 6700

geant 22 36 10 4 7525

germany50 50 88 4 3 6700

giul39 39 86 3 3 6700

india35 35 80 4 3 6700

newyork 16 49 4 5 8020

nobel-eu 28 41 3 5 8020

norway 27 51 5 3 6700

pioro40 40 89 6 2 5050

polska 12 18 5 2 5050

ta1 24 55 6 5 8020

ta2 65 108 4 2 5050

zib54 54 81 4 3 6700

Table 4.2 – Some features of the fifteen undirected instances.

explained in Lemma 6. The next column gives the cost ψ(x) induced by Steiner flow x

while column LB provides the best known lower-bound ℓ as defined in Equations (4.46)-

(4.47). Column Gap indicates whether the gap ψ(x)− ℓ is smaller than the fixed threshold

ǫ. Column Trees gives the number of trees actually used by x to convey some positive

flow. Column Congestion provides the quantity maxe∈E
fe
ce

in percentage, where f is the

edge projection of Steiner flow x. Hence a value below 100% implies that x satisfies all

capacity requirements. Finally, column Iterations gives the number of iterations made by

Algorithm 2 while column Time provides the algorithm running time expressed in seconds.

Table 4.4 is very similar to Table 4.3 in that it provides, for each undirected instance,

information regarding the coded flow x returned by Algorithm 3. Column LB gives the

lower-bound defined by Equation (4.74) so that column Gap is computed accordingly.

The quantity maxe∈E
fe
ce

(in percentage), where f is the coding vector of coded flow x is

provided in column Congestion. A value below 100% implies that x satisfies all capacity

requirements.

Observe that, for each undirected instance, the convex cost coding gain gψ equals 1.

190

Instance UB ψ(x) LB Gap Trees Congestion (%) Iterations Time (s)
abilene 6774.58 20.61 20.6 ≤ ǫ 5 86.27 583 18.09

atlanta 6.21 5.74 5.73 ≤ ǫ 9 47.2 42 23.83

france 13.63 9.48 9.47 ≤ ǫ 51 49.82 635 365.62

geant 3444.13 12.34 12.33 ≤ ǫ 18 57.72 86 189.46

germany50 9.74 7.46 7.45 ≤ ǫ 17 33.4 65 161.18

giul39 7.71 5.87 5.86 ≤ ǫ 17 38.17 300 750.36

india35 7.46 5.23 5.22 ≤ ǫ 15 37.5 142 209.59

newyork 11.25 4.36 4.35 ≤ ǫ 19 33.93 253 514.37

nobel-eu 11.17 5.45 5.44 ≤ ǫ 11 50.36 543 36.29

norway 10.99 6.86 6.85 ≤ ǫ 36 33.43 482 2663.28

pioro40 6.8 5.73 5.72 ≤ ǫ 17 26.84 120 1274.71

polska 102.55 6.85 6.84 ≤ ǫ 11 70.48 72 60.11

ta1 10.5 6.49 6.48 ≤ ǫ 32 52.84 128 98.93

ta2 3.3 3.08 3.07 ≤ ǫ 7 28.98 19 14.51

zib54 6.16 4.28 4.27 ≤ ǫ 8 44.61 19 5.27

Table 4.3 – Features of the Steiner flow x returned by Algorithm 2 for each undirected
instance.

Instance ψ(x) LB Gap Congestion (%) Iterations Time (s)
abilene 20.61 20.6 ≤ ǫ 86.27 583 2.43

atlanta 5.74 5.73 ≤ ǫ 47.2 42 0.39

france 9.47 9.46 ≤ ǫ 49.81 93 2.0

geant 12.34 12.33 ≤ ǫ 57.72 80 2.38

germany50 7.46 7.45 ≤ ǫ 33.4 65 2.0

giul39 5.85 5.84 ≤ ǫ 39.07 235 5.49

india35 5.23 5.22 ≤ ǫ 37.5 142 4.0

newyork 4.36 4.35 ≤ ǫ 33.96 252 4.26

nobel-eu 5.45 5.44 ≤ ǫ 50.36 543 5.89

norway 6.86 6.85 ≤ ǫ 33.41 70 3.3

pioro40 5.73 5.72 ≤ ǫ 26.84 120 6.12

polska 6.85 6.84 ≤ ǫ 70.48 72 0.6

ta1 6.49 6.48 ≤ ǫ 52.84 128 3.65

ta2 3.08 3.07 ≤ ǫ 28.98 19 0.72

zib54 4.28 4.27 ≤ ǫ 44.61 19 0.51

Table 4.4 – Features of the coded flow x returned by Algorithm 3 for each undirected
instance.

4.4.3.3 Bidirected networks

The test bench for bidirected instances is obtained by considering the bidirected network

associated to each undirected instance presented in Table 3.1. All other features of the

191

undirected instances remain unchanged.

Table 4.5 gives, for each bidirected instance, some features regarding the Steiner flow

x returned by Algorithm 2.

Instance UB ψ(x) LB Gap Trees Congestion (%) Iterations Time (s)
abilene 6774.58 20.47 20.46 ≤ ǫ 8 86.27 923 10.51

atlanta 6.21 5.69 5.68 ≤ ǫ 9 46.31 26 0.42

france 13.63 9.44 9.43 ≤ ǫ 46 49.82 241 7.89

geant 3444.13 11.49 11.48 ≤ ǫ 58 56.41 556 23.61

germany50 9.74 7.31 7.3 ≤ ǫ 26 34.91 374 16.11

giul39 7.71 5.59 5.58 ≤ ǫ 17 37.61 342 10.56

india35 7.46 5.11 5.1 ≤ ǫ 23 37.34 488 17.68

newyork 11.25 4.22 4.21 ≤ ǫ 17 31.43 80 2.13

nobel-eu 11.17 5.31 5.3 ≤ ǫ 12 45.97 564 8.81

norway 10.99 6.6 6.59 ≤ ǫ 35 30.53 506 16.04

pioro40 6.8 5.68 5.67 ≤ ǫ 17 24.02 63 3.96

polska 102.55 6.77 6.76 ≤ ǫ 10 70.48 180 2.16

ta1 10.5 6.13 6.12 ≤ ǫ 27 52.34 418 14.43

ta2 3.3 3.08 3.07 ≤ ǫ 7 28.98 19 0.91

zib54 6.16 4.24 4.23 ≤ ǫ 9 44.58 23 0.85

Table 4.5 – Features of the Steiner flow x returned by Algorithm 2 for each bidirected
instance.

Similarly, Table 4.6 provides, for each bidirected instance, information on the coded

flow x returned by Algorithm 3.

Notice that, for each bidirected instance, the convex cost coding gain gψ equals 1.

4.4.3.4 Directed networks

Each directed instance below is actually a bidirected network where, for each link (pair

of reverse arcs), the capacity of one of those arcs is multiplied by a coefficient picked

in the set {1, 2, 3, 5, 10} uniformly at random. This choice preserve the original network

connectivity while removing some restrictions found in the previous bidirected setting. All

other features of the bidirected instances remain unchanged.

For each directed instance, some features regarding the Steiner flow x returned by

Algorithm 2 are provided in Table 4.7.

For each directed instance, some information regarding the coded flow x returned by

192

Instance ψ(x) LB Gap Congestion (%) Iterations Time (s)
abilene 20.47 20.46 ≤ ǫ 86.27 925 6.46

atlanta 5.69 5.68 ≤ ǫ 46.31 26 0.23

france 9.44 9.43 ≤ ǫ 49.82 241 5.81

geant 11.49 11.48 ≤ ǫ 56.42 597 18.7

germany50 7.31 7.3 ≤ ǫ 34.91 374 13.54

giul39 5.59 5.58 ≤ ǫ 37.61 342 9.38

india35 5.11 5.1 ≤ ǫ 37.31 488 15.83

newyork 4.22 4.21 ≤ ǫ 31.44 78 1.55

nobel-eu 5.31 5.3 ≤ ǫ 45.97 564 7.74

norway 6.59 6.58 ≤ ǫ 30.02 74 2.01

pioro40 5.68 5.67 ≤ ǫ 24.02 63 3.73

polska 6.77 6.76 ≤ ǫ 70.48 180 1.6

ta1 6.13 6.12 ≤ ǫ 52.3 416 13.01

ta2 3.08 3.07 ≤ ǫ 28.98 19 0.85

zib54 4.24 4.23 ≤ ǫ 44.58 23 0.7

Table 4.6 – Features of the coded flow x returned by Algorithm 3 for each bidirected
instance.

Instance UB ψ(x) LB Gap Trees Congestion (%) Iterations Time (s)
abilene 6769.3 18.38 18.37 ≤ ǫ 5 86.27 2993 22.97

atlanta 5.41 4.46 4.45 ≤ ǫ 14 45.89 179 2.49

france 6.63 5.01 5.0 ≤ ǫ 7 47.88 82 2.39

geant 8.83 5.9 5.89 ≤ ǫ 16 38.68 49 1.86

germany50 5.66 4.69 4.68 ≤ ǫ 10 37.5 69 2.8

giul39 5.21 4.28 4.27 ≤ ǫ 8 26.09 35 1.04

india35 1.48 1.46 1.45 ≤ ǫ 3 23.91 3 0.11

newyork 2.84 2.02 2.01 ≤ ǫ 5 31.32 23 0.53

nobel-eu 4.3 3.39 3.38 ≤ ǫ 5 40.9 279 4.17

norway 2.64 2.4 2.4 ≤ ǫ 6 24.78 9 0.25

pioro40 3.14 2.82 2.81 ≤ ǫ 10 27.97 19 7.87

polska 102.08 6.3 6.29 ≤ ǫ 14 70.47 1210 14.01

ta1 7.34 4.15 4.14 ≤ ǫ 20 46.7 29 0.96

ta2 2.04 1.95 1.94 ≤ ǫ 3 29.21 7 0.38

zib54 2.88 2.51 2.5 ≤ ǫ 6 29.55 37 1.34

Table 4.7 – Features of the Steiner flow x returned by Algorithm 2 for each directed
instance.

Algorithm 3 are given in Table 4.8.

For each directed instance, the convex cost coding gain gψ is equal to 1.

193

Instance ψ(x) LB Gap Congestion (%) Iterations Time (s)
abilene 18.38 18.37 ≤ ǫ 86.27 2993 15.06

atlanta 4.46 4.45 ≤ ǫ 45.89 179 1.87

france 5.01 5.0 ≤ ǫ 47.88 82 1.9

geant 5.9 5.89 ≤ ǫ 38.68 49 1.52

germany50 4.69 4.68 ≤ ǫ 37.5 69 2.41

giul39 4.28 4.27 ≤ ǫ 26.09 35 0.91

india35 1.46 1.45 ≤ ǫ 23.91 3 0.07

newyork 2.02 2.01 ≤ ǫ 31.32 23 0.45

nobel-eu 3.39 3.38 ≤ ǫ 40.9 279 3.44

norway 2.4 2.4 ≤ ǫ 24.78 9 0.22

pioro40 2.81 2.8 ≤ ǫ 26.3 13 0.65

polska 6.3 6.29 ≤ ǫ 70.47 1210 10.08

ta1 4.15 4.14 ≤ ǫ 46.7 29 0.85

ta2 1.95 1.94 ≤ ǫ 29.21 7 0.3

zib54 2.51 2.5 ≤ ǫ 29.55 37 1.11

Table 4.8 – Features of the coded flow x returned by Algorithm 3 for each directed instance.

4.4.3.5 Analysis

For each type of information flow, and for each instance, the algorithm stopping crite-

rion is a gap lower than the threshold ǫ. Hence, for each instance and both information

flows, the solution returned by the proposed algorithm is always optimal up to ǫ. The

benefit of using coding techniques to reduce the overall cost seems to vanish regardless of

the network structure. However, it seems possible to find an (almost) optimal coded flow

faster than an (almost) optimal Steiner flow. Furthermore, a telecommunication practi-

tioner may have to put a restriction on the number of multicast trees used to convey data,

so as to avoid network management issues. Furthermore, although this chapter focuses

on the quest for a minimum-cost Steiner or coded flow, a good feasible solution may be

sufficient in many practical applications. Such a routing may actually be more convenient

to implement due to further restrictions which are not directly taken into account in the

proposed models. Consider a network operator who is trying to improve its quality of

service by tackling delay issues within a multicast network. Assuming the delay induced

by using a channel can be evaluated knowing the load of this channel through a classical

Kleinrock-like cost function, it may be more relevant to look for a Steiner flow whose arc

projection f satisfies maxa∈A
fa
ca
< 0.8 while keeping the number of trees low (say under 5).

194

The question hence becomes whether it is possible to achieve this configuration by using

multicast alone or if some additional coding techniques are required.

4.5 Conclusion

In this chapter we presented two network optimization problems, motivated by practical

telecommunication applications, namely the minimum convex cost Steiner flow problem

and the minimum convex cost coded flow problem. Together, those two flow models provide

a way to evaluate the benefit of using coding techniques in a multicast network for cost

(delay) minimization while satisfying a given demand. One can use both problems to define

an indicator, the cost coding gain, allowing comparisons between multicast alone versus

multicast with coding. We then provide bounds on the domain of values one can expect

the cost coding gain to take. Those results are summarized in Table 4.9 below. Recall that

the greater the value actually taken by the cost coding gain in a given multicast network,

the more beneficial network coding techniques would be if implemented in this particular

network.

Structure Linear cost coding gain Convex cost coding gain
Bidirected [1, 2] [1, 2βψ(d)]

Undirected [1, 2] [1, 2βψ(d)]

Directed [1,+∞[[1,+∞[

Table 4.9 – Cost coding gain domain for each network type. d is the demand

Finally, it would be interesting to generalize the study undertaken here to the case of

multicommodity information flows.

195

196

Chapter 5

Minimum cost survivable

information flows

5.1 Introduction

5.1.1 Motivation

In the previous chapters, we implicitly assumed that all elements of the given network

where perfectly reliable. However, in a real telecommunication network, the failure of an

element of the network is the norm rather than the exception. Taking failures into account

hence becomes a major issue in the design of any network routing rule. In this chapter

we focus on link failures although our models could be easily adapted to cope with node

failures or with a mix of the two. For the sake of simplicity, we consider networks with

infinite capacity so that it is possible to convey any amount of flow through a channel. We

then study the problem where an operator wishes to satisfy a given demand at minimum

cost while handling potential failures. This chapter can hence be regarded as an extension

of some studies dealing with minimum cost information flows [118, 116], so as to cope with

a network prone to failures.

5.1.2 Content

We shall first study the minimum cost survivable flow problem which is an extension of

the classical minimum cost flow problem so as to deal with single link failures. The second

problem we shall present, referred to as the minimum cost survivable Steiner flow problem,

197

can be thought of as a generalization of the previous one in the framework of information

flows. It is then natural to consider the variant of this Steiner flow problem obtained by

allowing coding mechanisms to take place in the telecommunication network, namely the

minimum cost survivable coded flow problem. We shall then define and study the notion of

survivable cost coding gain whose role in the present setting will be similar to the one of the

cost coding gain as defined in the previous chapter, namely as an indicator of the benefit,

in terms of minimum cost, one can expect from using coding techniques in a multicast

network.

5.1.3 Minimum cost survivable flow

5.1.3.1 Problem statement

For brevity, we still focus on the case of directed networks which encompasses the case

of undirected ones. The instance is made of a network D = (V,A) with a source node

s, and a receiver node r distinct from s. We are given, for each arc a of the network,

a non-negative weight wa. Finally, a positive demand d is also part of the instance. We

assume that there exist at least two arc-disjoint paths from the source to the receiver. We

consider an imperfect network which is prone to single arc failures. Namely, any arc of

the network may fail but we seek protection against at most one such failure at a time

(disregarding the case where two or more arcs simultaneously fail). We model the failure

of an arc a by removing it from the network, so that it becomes impossible to convey some

content through this arc. Recall that a flow x is an assignment of a non-negative real value

xp to each simple path p from s to r. Let P be the set of all such paths, and Pa be the

subset of all paths using arc a. Given a flow x, the failure of arc a actually prevents the

flow from delivering some content to the receiver using a path in Pa. The aim is to design

a fault-tolerant flow which satisfies the demand regardless of whether a failure actually

occurs. Our strategy is to look for a static flow, which means that no particular action, like

re-routing or the activation of backup resources, is undertaken whenever a failure occurs.

In this setting, it is required to over-provision the flow so as to meet the demand in case of

failure. The nominal throughput of a flow x is the throughput experienced by the receiver

when no failure occurs. Given a flow x, the residual throughput ρa(x) of x whenever arc

198

a fails, is the difference between the nominal throughput provided by x and the amount of

flow conveyed by x through arc a, namely:

ρa(x) =
∑

p∈P

xp −
∑

p∈Pa

xp (5.1)

or equivalently:

ρa(x) =
∑

p∈P\Pa

xp (5.2)

Observe that this last quantity is exactly the throughput experienced by the receiver when

arc a fails. A flow x is feasible if, for each arc a, the residual throughput of x when a fails

is at least the demand d. We denote by XP the set of all feasible flows:

XP =

x ∈ RP
+ :

∑

p∈P\Pa

xp ≥ d ∀a ∈ A

(5.3)

An operator is interested in reducing the overall bandwidth consumption of the network. It

is then natural to look for a flow whose cost, induced by the over-provisioning in bandwidth,

is as small as possible. Given a flow x, its cost with respect to weight vector w is given by:

w(x) =
∑

a∈A

wa
∑

p∈Pa

xp (5.4)

or equivalently:

w(x) =
∑

p∈P

(

∑

a∈p

wa

)

xp (5.5)

This objective function leads to the following problem:

Problem Minimum cost (uncapacitated) survivable flow
Instance Network D = (V,A), source s, receiver r, weight wa for each arc a,

and positive demand d
Solution A feasible survivable flow x ∈ XP in D
Objective Minimize the cost w(x) of flow x as defined in Equations (5.4)-(5.5)

We denote by χF the value of a minimum-cost survivable flow for the considered instance:

χF = min
x∈XP

w(x) (5.6)

Notice that this problem is a natural extension of the minimum (linear) cost (uncapac-

itated) flow problem so as to cope with single link failures. (The minimum linear cost

uncapacitated flow problem amounts to finding a shortest path from the source to the

receiver with respect to the given weight vector.)

199

5.1.3.2 Linear programming formulations

The minimum cost survivable flow problem can be modelled using linear programming:

χF = min
∑

p∈P

(

∑

a∈p

wa

)

xp (5.7)

s.t.
∑

p∈P\Pa

xp ≥ d ∀a ∈ A (5.8)

xp ≥ 0 ∀p ∈ P (5.9)

where, for each path p, variable xp stands for the amount of flow routed on p. Observe

that, since we may have an exponential number of paths in P , the previous model may

also have an exponential number of variables. Constraints (5.8) ensure that flow x satisfies

the demand d regardless of whether any single arc fails. We refer to the previous model

as the path formulation of the minimum cost survivable flow problem, so as to distinguish

it from the arc formulation of the same problem. The latter leads to the linear program

below:

χF = min
∑

a∈A

wafa (5.10)

s.t. φ− fa ≥ d ∀a ∈ A (5.11)
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = bv(φ) ∀v ∈ V (5.12)

φ, fa ≥ 0 ∀a ∈ A (5.13)

with

bv(φ) =

φ if v = s (5.14)

−φ if v = r (5.15)

0 otherwise (5.16)

For each arc a, variable fa stands for the amount of flow going through a, while variable φ

models the throughput experienced by the receiver r.

5.1.3.3 Complexity and algorithms

The arc formulation of the minimum cost survivable flow problem involves a polynomial

number of variables and constraints (with respect to the instance size) so that the problem

can be solved in polynomial time. Given an optimal solution f for the arc formulation,

200

an optimal solution x for the path formulation can be built in polynomial time thanks to

the technique presented in the proof of Lemma 1: Compute a path decomposition of the

simple flow induced by vector f thanks to the algorithm presented by Ahuja et al. [7,

Theorem 3.5] which runs in polynomial time. We refer the interested reader to the survey

by Orlowski and Pióro [119, 120] for an alternative approach using column generation.

5.2 Minimum cost survivable Steiner flow

5.2.1 Problem statement

We shall now study the extension of the previous problem to a multicast network.

For brevity, we focus our study on the case of a directed network since it encompasses

the case of an undirected one. However, we will make a distinction between a directed

network (which may be bidirected) prone to single arc failures and a bidirected network

prone to single link failures. In the latter case we assume that both arcs of the link are

simultaneously failing while in the former case only one arc fails. The instance is made of

a network D = (V,A) with a source s, a set R of receivers, a non-negative weight wa for

each arc a, and a positive demand d. We assume that there exist at least two arc-disjoint

paths from the source to each receiver. Recall that a Steiner flow x is an assignment of

a non-negative real value xt to each Steiner tree t spanning s and R. Let T denote the

set of all such trees, and, for each arc a, let Ta be the subset of all trees using arc a.

Given a Steiner tree t and a receiver r, we denote by prt the unique path from s to r in

t. For each arc a and each receiver r, let T ra be the set of all Steiner trees t using a to

convey flow toward r, namely a ∈ prt . We assume again that any arc a of the network may

fail. We still model such a failure by removing the corresponding arc from the network.

However the impact of a failure on a Steiner flow differs from the one of the same failure

on a classical flow. Indeed, the failure of arc a prevents any Steiner tree t from using

the failed arc to convey flow from the source s to any receiver r connected to s through

a. In other words, when arc a fails, any receiver r such that a ∈ prt loses its access to

the content conveyed by Steiner tree t. However, a receiver lying in the same connected

component (which is a sub-tree of t) as the source after the removal of the failed arc will

still receive the flow conveyed by t. Figure 5.1 provides an example. This time, the aim is

201

Figure 5.1 – a) A directed network with one source and three receivers. b) A Steiner tree
which does not use the arc (s, a) is left unaffected by the failure. c) A Steiner tree using
the arc (s, a) is unable to convey flow to receiver r1, as emphasized by the dotted line, but
it can still deliver flow to receivers r2 and r3.

to design a fault-tolerant Steiner flow which satisfies the demand regardless of whether a

failure actually occurs. Our strategy remains to look for a static Steiner flow, requiring no

particular action or counter-measure (like re-routing or the activation of backup resources)

to handle a failure. It is again required to over-provision the Steiner flow so as to meet the

demand in case of failure. We call nominal throughput of a Steiner flow x the throughput

experienced by each receiver when no failure occurs. Notice that, in our model, a failure

may cause a huge difference in the throughputs experienced among all receivers. Given a

Steiner flow x, the residual throughput ρra(x) of x with respect to receiver r, whenever arc

a fails, is the difference between the nominal throughput provided by x and the amount of

flow conveyed by x, through arc a, toward receiver r, namely:

ρra(x) =
∑

t∈T

xt −
∑

t∈T r
a

xt (5.17)

or equivalently:

ρra(x) =
∑

t∈T \T r
a

xt (5.18)

Observe that ρra(x) is exactly the throughput experienced by receiver r when arc a fails.

A Steiner flow x is feasible if, for each arc a and each receiver r, the residual throughput

of x experienced by r when a fails is at least the demand d. We denote by XT the set of

202

all feasible Steiner flows:

XT =

x ∈ RT
+ :

∑

t∈T \T r
a

xt ≥ d ∀a ∈ A, r ∈ R

(5.19)

As previously explained, an operator should look for a Steiner flow whose cost, induced by

the over-provisioning in bandwidth, is as small as possible. Given a Steiner flow x, its cost

with respect to weight vector w is given by:

w(x) =
∑

a∈A

wa
∑

t∈Ta

xt (5.20)

or equivalently:

w(x) =
∑

t∈T

(

∑

a∈t

wa

)

xt (5.21)

This objective function naturally leads to the problem below:

Problem Minimum cost (uncapacitated) survivable Steiner flow
Instance Network D = (V,A), source s, set of receivers R, weight wa for each arc a,

and positive demand d
Solution A feasible survivable Steiner flow x ∈ XT in D
Objective Minimize the cost w(x) of Steiner flow x

as defined in Equations (5.20)-(5.21)

We denote by χS the value of a minimum-cost survivable Steiner flow for the considered

instance:

χS = min
x∈XT

w(x) (5.22)

Observe that this problem is a natural extension of the minimum (linear) cost (uncapaci-

tated) Steiner flow problem in order to cope with single link failures. (The minimum linear

cost uncapacitated Steiner flow problem amounts to finding a minimum-cost Steiner tree

from the source to the receiver with respect to the given weight vector.)

5.2.2 A detailed example

We consider again the directed butterfly network which is depicted on Figure 5.2 a).

We are interested in solving the minimum cost survivable Steiner flow problem under unit

demand, namely d = 1, where the weight of each arc a of the network is set to wa = 1. A

minimum-cost survivable Steiner flow x is depicted on Figure 5.2 b). Steiner flow x uses

203

two trees, each one routing the whole demand d so that its overall cost is 10. Thanks to

Steiner flow x, each receiver experiences a throughput of value d regardless of whether any

arc is removed from the network.

Figure 5.2 – a) The directed butterfly network. b) A minimum-cost survivable Steiner flow
using two trees in the directed butterfly network. Each tree conveys the whole demand d
so that the cost of the induced Steiner flow is 10.

5.2.3 Linear programming formulation

The minimum cost survivable Steiner flow problem can be modelled using linear pro-

gramming:

χS = min
∑

t∈T

(

∑

a∈t

wa

)

xt (5.23)

s.t.
∑

t∈T \T r
a

xt ≥ d ∀a ∈ A, r ∈ R (5.24)

xt ≥ 0 ∀t ∈ T (5.25)

where, for each Steiner tree t, variable xt stands for the amount of flow routed on t. Notice

that the previous model may, as the previous linear program, have an exponential number

of variables. Constraints (5.24) ensure that Steiner flow x satisfies the demand d regardless

of whether any single arc fails. If one is interested by the model of single link failures in

a bidirected network B = (V, L), Constraints (5.24) should be replaced by the following

204

ones:
∑

t∈T

xt −

∑

t∈T r
a1

xt +
∑

t∈T r
a2

xt

 ≥ d ∀ℓ = {a1, a2} ∈ L, r ∈ R (5.26)

where we rest on the fact that a Steiner tree is using at most one arc of each link, so that

the two sets T ra1 and T ra2 are disjoint for any link ℓ = {a1, a2} and any receiver r. Let z

be the vector of dual variables associated to Constraints (5.24). The dual of the present

linear program is:

χS = max d
∑

a∈A

∑

r∈R

zra (5.27)

s.t.
∑

r∈R

∑

a∈A\prt

zra ≤
∑

a∈t

wa ∀t ∈ T (5.28)

zra ≥ 0 ∀a ∈ A, r ∈ R (5.29)

Observe that finding a minimum-cost survivable flow amounts to solving a fractional cov-

ering problem. Hence the dual of the minimum cost survivable Steiner flow problem is a

fractional packing problem. It will be convenient to rewrite Constraints (5.28) as follows:

∑

a∈A

∑

r∈R

zra ≤
∑

a∈t

wa +
∑

r∈R

∑

a∈prt

zra (5.30)

5.2.4 Complexity and algorithms

We shall now study the complexity of the minimum cost survivable Steiner flow prob-

lem. Unfortunately, we are not able to either exhibit an algorithm running in polynomial

time, or to provide a reduction to a known NP-hard problem. We will now consider the

separation problem associated to the dual of the present problem. This separation problem,

also referred to as the pricing problem in the following, can be stated as follows:

Problem Pricing problem
Instance Network D = (V,A), source s, set of receivers R,

non-negative weight wa for each arc a, and
non-negative weight zra for each arc a and each receiver r

Solution A Steiner tree t spanning the source and all receivers in D
Objective Minimize the cost of the tree which is given by

∑

a∈twa +
∑

r∈R

∑

a∈prt
zra

Observe that if vector z equals 0, solving the pricing problem amounts to finding a

minimum-cost Steiner tree with respect to weights vector w. However, we are also in-

205

terested by the other case where at least one component of vector z is positive. We shall

actually focus on the special case where the weights vector z satisfies the equality:

∑

a∈A

∑

r∈R

zra = 1 (5.31)

The study of this restriction of the pricing problem is motivated by the role it will play in

the next chapter. We shall now prove that the pricing problem where the instance satisfies

Equation (5.31) is NP-hard in both directed and undirected networks.

5.2.4.1 Directed networks

We begin with the easier case of a directed network.

Theorem 24. The pricing problem is NP-hard in directed networks.

Proof. We perform a reduction from the two node-disjoint paths problem.

Problem Two node-disjoint paths
Instance Directed network D = (V,A), four distinct vertices i1, j1, i2, and j2
Solution Two node-disjoint paths, one from i1 to j1, the other one from i2 to j2 in D
Objective Decide whether two such paths exist

This problem is NP-complete [121]. The reduction goes as follows: given an instance of the

two node-disjoint paths problem, we build an instance of the pricing problem by adding a

source s and two receivers r1 and r2, along with arcs (s, i1), (s, i2), (j1, r1), and (j2, r2).

We set wa = 0 for each arc a of the resulting digraph except (j1, r1) and (j2, r2), with

w(j1,r1) = 1
2 and w(j2,r2) = 1

2 . We also set zra = 0 for each arc a of the resulting graph

and each of the two receivers, except for zr2(s,i1) = 1
2 and zr1(s,i2) = 1

2 . Notice that, the

sum over all arcs and the two receivers of the weights zra equals 1, as required. A scheme

of this construction is depicted on Figure 5.3. We shall prove now that there exist two

node-disjoint paths, one from i1 to j1, the other one from i2 to j2, if and only if there

is a Steiner arborescence rooted at the source and spanning both receivers, with weight

1. To see why, observe that, if there exist two node-disjoint paths, one from i1 to j1 and

another from i2 to j2, then we can use those two paths to build a Steiner arborescence

rooted at s and spanning {r1, r2} with weight exactly 1. Conversely, suppose such a Steiner

206

Figure 5.3 – Scheme of the instance construction used in the proof of Theorem 24.

arborescence t with weight 1 exists in our construction. Notice that such an arborescence

uses arcs (j1, r1) and (j2, r2). Furthermore, the path pr1t necessarily uses the arc (s, i1),

hence the node i1, otherwise it would have to pay the cost zr1(s,i2) which would lead to an

overall weight strictly greater than 1. Similarly, the path pr2t goes through node i2. Thus

tree t induces two paths, one from i1 to j1 and another one from i2 to j2. Moreover, those

paths are node-disjoint since t is an arborescence.

5.2.4.2 Undirected networks

We now turn our attention to the case of an undirected network.

Theorem 25. The pricing problem is NP-hard in undirected networks.

Proof. We perform a reduction from SAT with two or three literals per clause, and such

that each variable occurs at most three times in the whole formula (which is assumed to

be in conjunctive normal form).

207

Problem Restricted SAT
Instance Set of variables, set of clauses with two or three literals per clause

such that each variable occurs at most three times
Solution An assignment of the value TRUE or FALSE to each variable

such that each clause evaluates at TRUE
Objective Decide whether such an assignment exists

This problem is NP-complete [122]. Observe that we can safely assume each variable

appears at most twice and its negation also appears at most twice in any instance (otherwise

it is possible to eliminate this variable by setting it to either TRUE or FALSE). The

reduction is as follows: to each variable we associate a gadget, depicted on Figure 5.4 a),

and to each clause we associate another gadget, represented in Figure 5.4 b). We then

define an undirected network by chaining all variable gadgets, chaining all clause gadgets,

and adding a source s and two receivers r1 and r2, as depicted in Figure 5.5. Consider the

gadget associated to a variable x. The bold edges on the left side of the gadget represent

the first and second occurrences respectively of this variable as a positive literal (with

respect to an arbitrary but fixed ordering) of the clauses, while the bold edges on the right

stand for the first and second occurrences respectively of its negation (with respect to the

same ordering). Finally, assume variable x appears in clause c and this occurrence is the

ith in the whole Boolean formula (again with respect to the same ordering). Then we add

two edges between the gadget of clause c and the ith bold edge in the left side of the gadget

of variable x, such that each vertex of the clause gadget is incident to exactly one of these

two edges. If, instead, the negation of variable x appears in clause c and this occurrence is

the ith in the whole Boolean formula, then we add two edges between the gadget of clause

c and the ith bold edge in the right side of the gadget of variable x. We do this for all

variables and all clauses. Also add one edge e1 between the source and the first variable

gadget, another edge e2 between the source and the first clause gadget, one edge e3 between

the last variable gadget and receiver r1, and one last edge e4 between the last clause gadget

and receiver r2, as depicted in Figure 5.5. Let n be the number of variables, and m the

number of clauses. Set we = 0 for each edge e of the network except e3 and e4 with we3 = 1
2

and we4 = 1
2 . Set the weight zr2e1 = 1

4 , and the weight zr1e2 = 1
4 . For each edge between two

consecutive clause gadgets, set its weight with respect to receiver r1 to 1
4(m−1) (we assume

m ≥ 2). For each non-bold edge of a variable gadget, set its weight with respect to receiver

208

r2 to 1
24n . All other weights of the network are set to 0. Since there are six non-bold edges

for each variable gadget, we have the sum over all edges and over both receivers of the

weights z which equals 1, as required. We shall prove now that the formula is satisfiable

if and only if there is a Steiner tree spanning both receivers and the source, with weight

1. First assume the formula is satisfiable. This implies there exists a path p2 between s

and r2 using edge e2, all edges between two consecutive clause gadgets, some bold edges

associated to an assignment of either TRUE or FALSE to a variable or its negation, and for

each clause c, two edges between the gadget associated to c and the gadget of one variable

x which appears in c. Thus, this path is zigzagging between clause gadgets and variable

gadgets. Observe that, for each gadget of an assigned variable, all bold edges used by this

path lies on the same side of the gadget, either left or right, since the formula is satisfiable.

Thus, it is possible to build a path p1 between s and r1 using edge e1, all edges between two

consecutive variable gadgets and all edges of either the left side or the right side of each

variable gadget, such that the two paths are node-disjoint. Combining those two paths

gives a Steiner tree spanning the source and both receivers. Furthermore this tree has a

weight of value 1 since no edge with a positive weight, with respect to the corresponding

receiver, is used in the tree except for edges e3 and e4. Conversely, assume there exists a

Steiner tree t, spanning the source and both receivers, with weight 1 in the network. This

Steiner tree induces two node-disjoint paths pr1t and pr2t between the source and receivers

r1 and r2 respectively. The path pr1t must cross all variable gadgets, and actually it must

stay on the same side, either left or right, of each variable gadget, since otherwise the

weight of the tree would be strictly greater than 1. By the same argument, the path pr2t

uses all vertices corresponding to clause gadgets and it only uses bold edges in any crossed

variable gadget. Furthermore, the path pr2t uses bold edges of the same side, either left or

right, of each variable gadget it intersects with, since pr1t and pr2t are node-disjoint. This

implies one can deduce a valid assignment of Boolean to some variables, so that each clause

is evaluated at TRUE, by following the path pr1t . Hence, the formula is satisfiable, which

concludes the proof.

209

Figure 5.4 – Gadget a) for a variable, and b) for a clause, used in the proof of Theorem 25.

5.2.4.3 Wrap up

As we have just seen, the pricing problem is NP-hard both in directed and undirected

networks. However, observe that all coefficients in the objective function of the dual of the

present problem share the same value d, see Equation (5.27). It is thus impossible to apply

the celebrated theorem of Grötschel, Lovász, and Schrijver on the equivalence between

polynomial-time separation and polynomial-time optimization for convex polytopes [90].

The previous discussion only emphasizes that, unless P = NP , it is impossible to devise

an algorithm running in polynomial time by combining the ellipsoid method with an oracle

solving the pricing problem. Beware that, it may still be possible to find an algorithm which

would solve the minimum cost survivable Steiner flow problem in polynomial time despite

the two last theorems (for instance, by using another linear programming formulation).

We refer the interested reader to the paper by Nace et al. [123] for a non-trivial example of

a problem whose extended linear programming formulation admits an NP-hard separation

problem while the problem itself can be solved in polynomial time. Hence, we shall leave

the complexity of finding a minimum-cost survivable Steiner flow as an open question:

Conjecture 1. We believe that the minimum cost survivable Steiner flow problem is NP-

210

Figure 5.5 – Scheme of the instance construction used in the proof of Theorem 25.

211

hard.

5.2.5 Redundant Steiner trees

We shall now study an interesting restriction of the minimum cost survivable Steiner

flow problem. Notice that a survivable Steiner flow requires at least two distinct trees so

as to ensure that regardless of whether a failure actually occurs, each receiver remains

reachable from the source. Consider the setting where a survivable Steiner flow is further

restricted to use at most two distinct Steiner trees. This setting is motivated by the

complexity of managing a bunch of trees. This last restriction implies that, for each

receiver, the two paths from the source to this receiver, induced by the couple of routing

trees (one path per tree), have to be arc-disjoint. Formally, we are looking for an element

in the set S defined by:

S =
{

(t1, t2) ∈ T
2 : prt1 ∩ p

r
t2 = ∅ ∀r ∈ R

}

(5.32)

Given a couple (t1, t2) ∈ S, one obtains a survivable Steiner flow by routing the whole

demand d on each tree. Furthermore, the overall cost of this Steiner flow is simply the

demand d times the sum of the costs of the two trees. Thus the restricted problem amounts

to finding a couple of Steiner trees in set S whose total cost with respect to weight vector

w is as small as possible. This last problem can be summarized as follows:

Problem Redundant Steiner trees
Instance Network D = (V,A), source s, set of receivers R, weight wa for each arc a
Solution A couple of Steiner trees (t1, t2) ∈ S in D
Objective Minimize the overall cost

∑

a∈t1
wa +

∑

a∈t2
wa

This problem, along with some extensions to simultaneously handle single node failures,

have been extensively studied in the multicast literature. Although the present problem

is intractable in the worst case, various heuristic algorithms have been devised, returning

practically low-cost solutions. An approximation algorithm with worst-case ratio 2|R| is

presented by Bejerano et al. in [124]. We refer the interested reader to [125, 126] and

references therein for a more in-depth discussion regarding the present problem. It is

also worth mentioning that the problem of finding a couple of minimum-cost redundant

212

spanning trees in a directed network can be solved to optimality in polynomial time [127].

The integer linear program below can be used to find a minimum-cost pair of redundant

Steiner trees, rooted at s and spanning all vertices in R, in a directed network D = (V,A)

with weight wa on each arc a (a valid model for undirected networks can be inferred from

this one).

min
∑

a∈A

waxa +
∑

a∈A

waxa (5.33)

s.t.
∑

a∈δ+(v)

fra −
∑

a∈δ−(v)

fra = brv(1) ∀r ∈ R, v ∈ V (5.34)

∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(1) ∀r ∈ R, v ∈ V (5.35)

fra ≤ xa ∀a ∈ A, r ∈ R (5.36)

f ra ≤ xa ∀a ∈ A, r ∈ R (5.37)

fra + f ra ≤ 1 ∀a ∈ A, r ∈ R (5.38)

fra ∈ {0, 1}, f ra ∈ {0, 1}, xℓ ∈ {0, 1}, xℓ ∈ {0, 1} ∀a ∈ A, r ∈ R (5.39)

with

brv(φ) =

φ if v = s (5.40)

−φ if v = r (5.41)

0 otherwise (5.42)

For each arc a, and each receiver r, variable fra, respectively f ra , is set to 1 if and only if

arc a is used to connect source s to receiver r in the first, respectively second, tree. For

each arc a, variable xa, respectively xa, is set to 1 if and only if a is part of the first,

respectively second, tree. Constraints (5.34)-(5.35) ensure that both trees are connected

and spanning the source along with all receivers. Constraints (5.36)-(5.37) prevent an arc

a from being used as part of a tree unless the arc is actually picked as part of this tree.

Finally, Constraints (5.38) are the coupling constraints between the pair of trees, enforcing

that said couple of trees lies in set S as defined in Equation (5.32).

213

5.2.6 Computing a minimum cost survivable Steiner flow by column
generation

One can solve the minimum cost survivable Steiner flow problem by mean of column

generation techniques. In order to get an initial survivable Steiner flow, one can compute a

pair of redundant Steiner trees by using the integer linear program presented in the previous

section, then route the whole demand d on each of those two trees. Given dual vectors z,

the reduced cost rt associated to variable xt (which we shall refer to as the reduced cost of

tree t by a slight abuse of language) has the following expression:

rt =
∑

a∈A

∑

r∈R

zra −

∑

a∈t

wa +
∑

r∈R

∑

a∈prt

zra

 (5.43)

As previously explained, the pricing problem amounts to looking for a Steiner tree whose

cost, with respect to both weights vectors w and z, is minimum. The following mixed-

integer linear program can be used to solve this pricing problem to optimality. The model

below is provided for a directed network D = (V,A) with weight wa on each arc a (a valid

model for undirected networks can be inferred from this one).

min
∑

a∈A

waxa +
∑

r∈R

∑

a∈A

zraf
r
a (5.44)

s.t.
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(1) ∀r ∈ R, v ∈ V (5.45)

f ra ≤ xa ∀a ∈ A, r ∈ R (5.46)
∑

a∈δ−(v)

xa ≤ 1 ∀v ∈ V (5.47)

xa ∈ {0, 1} ∀a ∈ A (5.48)

f ra ≥ 0 ∀a ∈ A, r ∈ R (5.49)

with

brv(φ) =

φ if v = s (5.50)

−φ if v = r (5.51)

0 otherwise (5.52)

For each arc a, binary variable xa takes value 1 if a is part of the tree, and value 0

otherwise. Flow variable f ra will take value 1 if the unique directed path from s to r in

the tree is using arc a, and value 0 otherwise. Constraints (5.45) ensure that each receiver

214

is connected to the source in the tree, while Constraints (5.46) force each arc used by the

tree to convey some flow to be actually part of the tree. Finally, Constraints (5.47) ensure

that the connected subgraph induced by all arcs actually conveying some positive flow is

indeed a tree. Observe the similarity between this mixed-integer linear program and one

of the classical formulation for the minimum cost Steiner tree problem presented in [55].

If, by solving this problem, we find a tree with a positive reduced cost, this tree represents

a new column to be added to the master problem, which is then solved again. If we are

unable to exhibit such a tree, then it means that we have obtained an optimal solution.

We shall now study the problem of finding a coded flow with minimum cost.

5.3 Minimum cost survivable coded flow

5.3.1 Problem statement

Departing from the previous chapters, we will make a distinction between directed

networks on the one hand, and bidirected or undirected networks on the other hand. To

summarize the distinction, the behavior of an uncapacitated bidirected network prone to

single link failures is identical to the one of an undirected network prone to single edge

failures, assuming that the weights of both arcs of any link are equal. We first focus on

the case of directed networks. The setting is exactly the same as in the previous problem:

The instance is made of a network D = (V,A) with a source s, a set R of receivers, a

non-negative weight wa for each arc a, and a positive demand d. We assume again that

there exist at least two arc-disjoint paths from the source to each receiver. Recall that a

coded flow x is an assignment of a non-negative real value xp to each simple path p from the

source to a receiver. Let P be the set of all such paths. For each receiver r, let Pr denote

the set of all simple paths from s to r. Notice that P =
⋃

r∈R P
r. Finally, for each arc a

and each receiver r, let Pra be the subset of Pr made of all paths using a. We still assume

that any arc a of the network may fail, an event which is again modelled by removing the

failed arc from the network. The impact of a failure on a coded flow is quite close from the

one of the same failure on a classical flow. The failure of arc a prevents any path p from

using the failed arc to convey flow from the source to the corresponding receiver. In other

215

words, given a coded flow x, the failure of arc a actually prevents the flow from delivering

some content to receiver r using a path in Pra . Similarly to the previous cases, the aim

is to design a fault-tolerant coded flow which satisfies the demand regardless of whether

a failure actually occurs. Our strategy is still to look for a static coded flow, requiring

no particular action or counter-measure (like re-routing or the use of backup resources)

to handle a failure. We postpone the design of a fault-tolerant code to a devoted section,

later in this chapter. It is yet required to over-provision the coded flow so as to meet the

demand in case of failure. Given a coded flow x, the nominal throughput of a receiver r is

the throughput experienced by r when no failure occurs. Observe that, here also, a failure

may cause a huge difference in the throughputs experienced among all receivers. Given a

coded flow x, the residual throughput ρra(x) of x with respect to receiver r, whenever arc a

fails, is the difference between the nominal throughput of receiver r (as provided by x) and

the fraction of this nominal throughput conveyed through arc a, namely:

ρra(x) =
∑

p∈Pr

xp −
∑

p∈Pr
a

xp (5.53)

or equivalently:

ρra(x) =
∑

p∈Pr\Pr
a

xp (5.54)

Notice that ρra(x) is exactly the throughput experienced by receiver r when arc a fails. A

coded flow x is feasible if, for each arc a and each receiver r, the residual throughput of

x experienced by r when a fails is at least the demand d. We denote by XP the set of all

feasible coded flows:

XP =

x ∈ RP
+ :

∑

p∈Pr\Pr
a

xp ≥ d ∀a ∈ A, r ∈ R

(5.55)

As already mentioned, an operator should look for a coded flow whose cost, induced by

the over-provisioning in bandwidth, is as small as possible. Recall that, for a coded flow x

and an arc a, the bandwidth consumed by x on a is given by:

ha = max
r∈R

∑

p∈Pr
a

xp (5.56)

216

where vector h is called the coding vector of coded flow x. Given a coded flow x along with

its coding vector h, the cost of x with respect to weight vector w is given by:

w(x) =
∑

a∈A

waha (5.57)

This objective function leads to the following problem:

Problem Minimum cost (uncapacitated) survivable coded flow
Instance Network D = (V,A), source s, set of receivers R, weight wa for each arc a,

and positive demand d
Solution A feasible survivable coded flow x ∈ XP in D
Objective Minimize the cost w(x) of coded flow x as defined in Equation (5.57)

We denote by χC the value of a minimum-cost survivable coded flow for the considered

instance:

χC = min
x∈XP

w(x) (5.58)

Observe that this problem is a natural extension of the minimum (linear) cost (uncapaci-

tated) coded flow problem so as to handle single link failures.

217

5.3.2 Example continued

Consider the instance made of the directed butterfly network depicted on Figure 5.2 a)

with demand d = 1, and a weight wa = 1 for each arc a. A minimum-cost survivable

coded flow x for this instance is depicted on Figure 5.6. The coded flow x uses two paths

routing the whole demand d to convey the data from the source to each receiver, so that

its overall cost is 9. Thanks to coded flow x , each receiver experiences a throughput of

value d regardless of whether any arc is removed from the network.

Figure 5.6 – A minimum-cost survivable coded flow x using exactly two paths to route the
data from the source to each receiver. Each path is routing the whole demand d so that
the overall cost induced by coded flow x is 9.

5.3.3 Linear programming formulations

5.3.3.1 Directed networks

In a directed network D = (V,A), the minimum cost survivable coded flow problem

can be formalized using linear programming:

χC = min
∑

a∈A

waha (5.59)

s.t.
∑

p∈Pr\Pr
a

xp ≥ d ∀a ∈ A, r ∈ R (5.60)

ha ≥
∑

p∈Pr
a

xp ∀a ∈ A, r ∈ R (5.61)

ha, xp ≥ 0 ∀a ∈ A, p ∈ P (5.62)

218

For each path p, variable xp stands for the amount of flow routed on p, while, for each arc

a, variable ha models the amount of coded flow going through a. Observe that we may

again end up with an exponential number of variables to deal with. Constraints (5.60)

ensure that coded flow x satisfies the demand d regardless of whether any single arc fails.

From this path formulation of the minimum cost survivable coded flow problem one can

easily build an alternative arc formulation of the same problem. The linear program below

is naturally associated to this arc formulation of the problem:

χC = min
∑

a∈A

waha (5.63)

s.t. φr − f ra ≥ d ∀a ∈ A, r ∈ R (5.64)
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(φ
r) ∀r ∈ R, v ∈ V (5.65)

ha ≥ f
r
a ∀a ∈ A, r ∈ R (5.66)

φr, f ra , ha ≥ 0 ∀a ∈ A, r ∈ R (5.67)

with

brv(φ) =

φ if v = s (5.68)

−φ if v = r (5.69)

0 otherwise (5.70)

For each arc a and each receiver r, variable f ra stands for the amount of flow going from

source s to receiver r through a, and variable ha accounts for the amount of coded flow on

arc a, whereas variable φr models the throughput experienced by receiver r.

5.3.3.2 Bidirected and undirected networks

We will now study the minimum cost survivable coded flow problem in undirected or

bidirected networks. For the sake of simplicity, we focus on the case of a bidirected network

B = (V, L) prone to single link failures (without loss of generality as already explained in

the beginning of the present section). As in the case of a directed network, the problem of

219

interest can be formalized using linear programming:

χC = min
∑

ℓ∈L

wℓ(ha1 + ha2) (5.71)

s.t.
∑

p∈Pr

xp −

∑

p∈Pr
a1

xp +
∑

p∈Pr
a2

xp

 ≥ d ∀ℓ = {a1, a2} ∈ L, r ∈ R (5.72)

ha ≥
∑

p∈Pr
a

xp ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (5.73)

ha, xp ≥ 0 ∀a ∈ ℓ, ℓ ∈ L, p ∈ P (5.74)

where we rest on the fact that a simple path is using at most one arc of each link, so that

the two sets Pra1 and Pra2 are disjoint for any link ℓ = {a1, a2} and any receiver r. As in

the previous case, for each path p, variable xp stands for the amount of flow routed on

p, while, for each arc a, variable ha models the amount of coded flow going through a.

Constraints (5.72) ensure that coded flow x satisfies the demand d regardless of whether

any single link fails. Since this path formulation of the minimum cost survivable coded flow

problem involves an exponential number of variables, it appears quite natural to introduce

the arc formulation of the same problem to which is associated the following linear program:

χC = min
∑

ℓ∈L

wℓ(ha1 + ha2) (5.75)

s.t. φr − (f ra1 + f ra2) ≥ d ∀ℓ = {a1, a2} ∈ L, r ∈ R (5.76)
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(φ
r) ∀r ∈ R, v ∈ V (5.77)

ha ≥ f
r
a ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (5.78)

φr, f ra , ha ≥ 0 ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (5.79)

where again

brv(φ) =

φ if v = s (5.80)

−φ if v = r (5.81)

0 otherwise (5.82)

As in the case of a directed network, for each arc a and each receiver r, variable f ra stands

for the amount of flow going from source s to receiver r through a, variable ha accounts for

the amount of coded flow on arc a, while variable φr models the throughput experienced

by receiver r.

220

5.3.4 Complexity and algorithms

Regardless of the network structure (directed or bidirected / undirected), the linear pro-

gram obtained by considering the arc formulation of the minimum cost survivable coded

flow problem involves a polynomial number of (continuous) variables and constraints (with

respect to the instance size). Hence, it is possible to compute an arc decomposition of a

minimum-cost survivable coded flow in polynomial time. Given such an arc decomposition

f , a path decomposition x can be built in polynomial time thanks to the technique pre-

sented in the proof of Lemma 1: For each receiver r, let f r be the vector of components f ra

over each arc a of the network. Observe that vector f r is the arc projection of a simple flow

between the source and receiver r. For each receiver r, compute a path decomposition of

this simple flow using the algorithm presented by Ahuja et al. [7, Theorem 3.5] which runs

in polynomial time. The concatenation of all those path decompositions (one per receiver)

is clearly a valid path decomposition of the coded flow.

5.3.5 Coding scheme

Although one can compute the value of a minimum cost survivable coded flow, as

previously defined, it is unclear whether this value has any meaning. Indeed, achieving

the target demand thanks to a coded flow requires not only to take routing decisions but

also involves the design of a coding scheme. This issue has already been addressed by

Koetter and Médard [59, Theorems 11], for the more general case where multiple arcs may

simultaneously fail, from which we deduce the following corollary:

Corollary 10. Given a directed acyclic network D = (V,A) with source s, set of receivers

R, and target throughput d, there exists a static linear coding scheme, common to all single

arc failure patterns, and ensuring a throughput of value d.

Hence, not only can one meet the target demand, but this can be done using only one

coding scheme for handling all failure patterns. This last property is particularly appealing,

since it means no update of the way coding operations are performed in the network is

required in order to cope with a failure. An extension of [59, Theorem 11] to the case of

a network with delays is mentioned at the end of the same paper. An important feature

221

of a coding scheme is the size of the finite field where coding operations are performed.

Building a code whose underlying finite field has a size as small as possible is a desirable

property since it ensures that the coding process remains tractable. The price of a static

coding scheme common to all failure patterns, in terms of an upper-bound on the size of the

required finite field, is emphasized by the following corollary, which is a direct application

of [59, Theorem 12]:

Corollary 11. Given a directed acyclic network D = (V,A) with source s, set of receivers

R, and target throughput d, there exists a static linear coding scheme, common to all

single arc failure patterns, where all operations are performed in a finite field F2q with

q ≤ ⌈log2(1 + |A||R|d)⌉.

Those results above only give a proof of existence of a coding scheme. The following

corollary from [65, Theorem 11] gives a more practical result:

Corollary 12. Given a directed acyclic network D = (V,A) with source s, set of receivers

R, and target throughput d, a static linear coding scheme, common to all single arc failure

patterns, where all operations are performed in a finite field F2q with q ≤ ⌈log2(1+|A||R|d)⌉,

can be found in expected time O(|A|2(|R|d2 +maxv∈V |δ
−(v)|)).

The upper bound on the size of the required finite field is further improved in [128].

Regarding networks with cycles, it is still possible to design a fault-tolerant coding scheme

by using more complicated coding techniques, as explained in [59].

5.4 Features of the information flows

5.4.1 Survivable cost coding gain

We shall now study the impact of implementing coding techniques in the present frame-

work. We are led to ask the following question:

Question 4. Is there an incentive, with respect to the overall survivable cost, to use network

coding in a multicast network?

Similarly to the previously studied frameworks, we introduce the notion below so as to

facilitate comparisons:

222

Definition 5. Given a network D = (V,A) with source s, set of receivers R, non-negative

weight wa for each arc a, along with positive demand d, the survivable cost coding gain gχ,

provided by network coding over multicast alone, is the ratio of the cost of a minimum-cost

survivable Steiner flow over the one of a minimum-cost survivable coded flow:

gχ =
χS
χC

(5.83)

Recall that we only consider networks where there is at least two arc-disjoint paths

from the source to any receiver. Once combined with the absence of explicit capacity

requirements, it should be clear that this last property implies that both minimum-cost

information flow problems are feasible. We shall further assume that the quantity χC is

positive so that the previous definition of the survivable cost coding gain gχ is well-grounded.

The next theorem shows that adding the possibility to perform coding operations in a

multicast network never impedes the survivable cost one has to pay to use this network:

Theorem 26. Given a network D = (V,A) with source s, set of receivers R, non-negative

weight wa for each arc a, along with positive demand d, the survivable cost coding gain gχ

is at least 1.

The proof of Theorem 26 is very similar to the one of Theorem 3 and can be found in

Appendix C.1.4. Notice that, with respect to the survivable cost, there is an incentive to

use network coding only if gχ > 1. We shall now study the survivable cost coding gain of

some networks.

5.4.2 Features of the survivable cost coding gain

5.4.2.1 Single receiver

As always, we first focus on the setting where there is only one receiver. In this case

both the minimum cost survivable Steiner flow problem and the minimum cost survivable

coded flow problem become equivalent to the minimum cost survivable flow problem. This

immediately implies the following lemma:

Lemma 14. Given a network D = (V,A) with source s, a single receiver r distinct from

s, non-negative weight wa for each arc a, along with positive demand d, the survivable cost

coding gain gχ equals 1.

223

5.4.2.2 Bidirected and undirected networks

The next theorem provides an upper-bound on the survivable cost coding gain of an

undirected network.

Theorem 27. Given an undirected network G = (V,E) with source s, set of receivers

R, non-negative weight we for each edge e, along with positive demand d, the value of a

minimum-cost survivable Steiner flow is at most 2|E| times the one of a minimum-cost

survivable coded flow, namely gχ ≤ 2|E|.

Proof. For each edge e, we denote by G − e the undirected network obtained from G by

deleting e while keeping the remaining of the instance unchanged. By a slight abuse of

notation, we still denote by w the weight vector where the component associated to a given

edge e is removed. For each edge e, let ψeS , ψeC , and geψ =
ψe
S

ψe
C

be respectively the cost of

a minimum-cost Steiner flow, the cost of a minimum-cost coded flow, and the cost coding

gain associated to the instance defined by considering network G− e with source s, set of

receivers R, truncated weight vector w, along with demand d. Observe that for any edge e,

the three quantities ψeS , ψeC , and geψ are well-defined from our assumption that there is at

least two edge-disjoint paths from the source to each receiver in network G, so that there

is at least one path between the source and any receiver r in network G− e. For each edge

e, let te be a minimum-cost Steiner tree in network G− e with respect to the (truncated)

weight vector w. Beware that for each edge e, Steiner tree te does not contain e. Recall

from our previous discussion regarding the minimum linear cost Steiner flow problem, that

a minimum-cost Steiner flow can always be designed by routing the whole demand on a

minimum-cost Steiner tree with respect to the same weight vector. This implies that for

each edge e, we have ψe
S = d

∑

e∈te we. Let T be the collection of the Steiner trees te

over all edges. We claim that it is always possible to build a survivable Steiner flow x by

routing the whole demand d on each tree in T . To see why, observe that the failure of an

edge e would leave the Steiner tree te unaffected, so that each receiver would still get a

throughput of value d thanks to tree te. The cost of the induced Steiner flow x is:

w(x) = d
∑

t∈T

∑

e∈t

we =
∑

e∈E

ψeS (5.84)

224

This implies that:

χS ≤ w(x) (5.85)

≤ |E|max
e∈E

ψeS (5.86)

≤ 2|E|max
e∈E

ψeC (5.87)

where the last inequality comes from the upper bound of 2 on the linear cost coding gain

gψ of any undirected network [42, mentioned before Theorem 6]. Finally, observe that

the inequality maxe∈E ψ
e
C ≤ χC is valid since, for any edge e, a minimum-cost coded

flow in the network G− e only protects against the failure of edge e while a minimum-cost

survivable coded flow should simultaneously protect against the failure of any edge. Hence,

χS ≤ 2|E|χC or equivalently gχ ≤ 2|E|.

As previously explained, looking for a minimum-cost survivable information flow in

an uncapacitated bidirected network is equivalent to seeking for the same minimum-cost

survivable information flow in an uncapacitated undirected network G = (V,E). As a

direct consequence, the upper bound of 2|E| also applies for bidirected networks.

5.4.2.3 Directed networks

The following theorem highlights that the survivable cost coding gain can be arbitrarily

large in a directed network. It can be regarded as an extension to the present survivable

framework of a result due to Maheshwar et al. [85, regarding Conjecture 8.1] regarding the

cost coding gain in directed networks.

Theorem 28. For any real number η ≥ 1, there exists an infinite family of directed net-

works with weight either 1 or 0 on each arc, such that the ratio between the value of a

minimum-cost survivable Steiner flow and the one of a minimum-cost survivable coded flow

satisfies gχ ≥ η.

Proof. We will exhibit a family of directed networks with unbounded survivable cost coding

gain. We again use the family of directed combination networks introduced in [83, 84] to

show that the coding gain can be arbitrarily large. Recall that given two positive integers

n and k with k ∈ [n], the directed combination network C(n, k) is made of three layers of

225

vertices: the first layer with the source s, while the second layer is made of n intermediate

nodes identified with [n], whereas the third layer consists of a set R of
(

n
k

)

receivers, indexed

by the subsets of [n] of size k. Those three layers are linked together by one arc from the

source to each intermediate node, and one arc from an intermediate node to each receiver

whose index (a subset of [n]) contains the index of this intermediate node (an element of

[n]). The weight of each arc a from the first layer to the second one is set to wa = 1, while

each arc a from the second layer to the third one has a weight wa = 0. Finally, we shall

assume that the demand is d = 1, without loss of generality. The directed combination

network C(n, k), for n = 4 and k = 3, is depicted on Figure (5.7) (a). We first give an

upper-bound on the cost χC of a minimum-cost coded flow. Observe that there are exactly

k arc-disjoint paths from the source to each receiver. Hence, it is possible to design a

survivable coded flow by routing 1/(k−1) units of flow along each of the k paths from s to

r, for each receiver r. The cost of this survivable coded flow with respect to weights vector

w is n/(k − 1). This implies that χC ≤ n/(k − 1). Although it is not required here, it can

be shown by linear programming duality that this last inequality is actually an equality.

We shall now provide a lower-bound on the cost χS of a minimum-cost survivable Steiner

flow. Formally, we build a feasible solution z to the dual of the linear program associated

to the minimum cost survivable Steiner flow problem. For each arc a, and each receiver r,

we set:

zra =

n− k + 1

(k − 1)
(

n
k

) if a ∈ δ−(r) (5.88)

0 otherwise (5.89)

First notice that:

∑

a∈A

∑

r∈R

zra =
∑

r∈R

∑

a∈δ−(r)

zra (5.90)

=
∑

r∈R

k(n− k + 1)

(k − 1)
(

n
k

) (5.91)

=
k(n− k + 1)

(k − 1)
(5.92)

where the second equality is obtained by observing that, for each receiver r, there is exactly

k arcs in the set δ−(r), while the third equality is valid since there is
(

n
k

)

receivers in the

226

directed combination network C(n, k). Now, observe that for each Steiner tree t:

∑

r∈R

∑

a∈prt

zra =
∑

r∈R

∑

a∈prt∩δ
−(r)

zra (5.93)

=
∑

r∈R

n− k + 1

(k − 1)
(

n
k

) (5.94)

=
n− k + 1

(k − 1)
(5.95)

The second equality is valid because, for each receiver r, there is only one arc in the set

prt ∩δ
−(r). The third equality comes again from the number

(

n
k

)

of receivers in the directed

combination network C(n, k). Recall from Lemma 3 that in such a network, a Steiner tree

t requires at least n − k + 1 intermediate nodes in order to span all receivers. Hence, for

each Steiner tree t:
∑

a∈t

wa ≥ n− k + 1 (5.96)

Combining this last inequality with Equation (5.92) and Equation (5.95) we get for each

Steiner tree t:

∑

a∈t

wa +
∑

r∈R

∑

a∈prt

zra ≥ n− k + 1 +
n− k + 1

(k − 1)
(5.97)

=
k(n− k + 1)

(k − 1)
(5.98)

=
∑

a∈A

∑

r∈R

zra (5.99)

so that vector z satisfies Equation (5.30) and is thus a feasible solution to the dual linear

program with value k(n−k+1)
(k−1) . By weak duality in linear programming, we get χS ≥ k(n−

k+1)/(k−1). Although it is not needed here, notice that it is possible to define a survivable

Steiner flow by suitably picking k Steiner trees in C(n, k), each tree using exactly n−k+1

intermediate nodes in the network, then setting a flow of value 1/(k−1) on each tree. The

cost induced by this survivable Steiner flow is then k(n − k + 1)/(k − 1) so that the last

inequality is actually an equality. We refer the interested reader to Figure (5.7) (b) for an

example. Combining the latest lower-bound on χS with the previous upper-bound on χC

leads to:

gχ ≥
k(n− k + 1)

n
(5.100)

227

Figure 5.7 – a) The directed combination network C(n, k) where n = 4 and k = 3. When
positive, the weight of each arc a is indicated in red near a. b) A Steiner flow x made
of three supporting trees, each one routing 1/2 units of flow, in the directed combination
network C(4, 3). The cost induced by Steiner flow x is 3.

Setting n = 2k yields gχ ≥ (k+1)/2. This last quantity is unbounded when the parameter

k grows to infinity. Finally, given any real number η ≥ 1, the network C(2k, k) with

k = ⌈2η − 1⌉ satisfies all requirements of the theorem.

5.4.3 Experimental evaluation of the survivable cost coding gain

5.4.3.1 Setting

We use the same fifteen network topologies taken from the SNDlib library [97] as in the

previous chapters. We also keep the source and the receivers as in the previous chapter.

The weight of each channel is picked in the set [10] (of all integers between 1 and 10)

uniformly at random. The demand is set to d = 1 without loss of generality.

We compute each optimal Steiner flow by coupling a column generation algorithm with

a subroutine solving the pricing problem thanks to the mixed-integer linear program 5.49

previously presented. Each optimal coded flow problem is computed by solving its asso-

ciated arc formulation thanks to a linear programming solver. All algorithms are imple-

mented in Julia 0.3.8 [98, 99]. We use the Julia package JuMP [100] to call the open-source

228

(mixed-integer) linear programming solver CLP/CBC [101].

5.4.3.2 Undirected networks

For each instance, the number of vertices |V |, the number of edges |E|, and the number

of receivers |R| of the associated network is provided in Table 5.1

Instance |V | |E| |R|

abilene 12 15 3

atlanta 15 22 5

france 25 45 6

geant 22 36 10

germany50 50 88 4

giul39 39 86 3

india35 35 80 4

newyork 16 49 4

nobel-eu 28 41 3

norway 27 51 5

pioro40 40 89 6

polska 12 18 5

ta1 24 55 6

ta2 65 108 4

zib54 54 81 4

Table 5.1 – Some features of the fifteen undirected instances.

Table 5.2 gives, for each undirected instance, information regarding the minimum-

cost survivable Steiner flow returned by the column generation algorithm. More precisely,

column χ0
S indicates the cost of the best pair of redundant Steiner trees, whereas column

χS provides the cost of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Table 5.3 is similar to Table 5.2 in that it provides, for each undirected instance,

information regarding the minimum-cost survivable coded flow returned by the linear pro-

gramming solver. Column χC gives the value of the optimal coded flow while column Time

provides the associated running time expressed in seconds.

Notice that, for each undirected instance, the survivable cost coding gain gχ equals 1.

229

Instance χ0
S χS Trees Iterations Time (s)

abilene 63.0 63.0 2 6 0.88

atlanta 79.0 79.0 2 9 4.62

france 89.0 89.0 2 21 8.21

geant 70.0 70.0 2 13 79.19

germany50 67.0 55.0 3 52 292.38

giul39 44.0 38.5 3 22 7.23

india35 43.0 40.0 6 21 8.57

newyork 26.0 23.0 3 14 10.07

nobel-eu 40.0 40.0 2 6 1.27

norway 73.0 69.5 5 45 63.87

pioro40 120.0 101.33 9 96 1782.7

polska 51.5 53.0 2 10 2.27

ta1 44.0 44.0 2 9 4.28

ta2 40.0 40.0 2 20 15.0

zib54 65.0 54.5 5 12 5.88

Table 5.2 – Features of the minimum-cost survivable Steiner flow returned by the column
generation algorithm for each undirected network.

Instance χC Time (s)
abilene 63.0 0.01

atlanta 79.0 0.01

france 89.0 0.02

geant 68.0 0.03

germany50 55.0 0.03

giul39 38.5 0.02

india35 40.0 0.02

newyork 23.0 0.01

nobel-eu 40.0 0.01

norway 69.5 0.02

pioro40 101.33 0.04

polska 51.5 0.01

ta1 44.0 0.02

ta2 40.0 0.03

zib54 54.5 0.02

Table 5.3 – Features of the minimum-cost survivable coded flow returned by the linear
programming solver for each undirected network.

Recall that the survivable cost coding gain of a bidirected network prone to single link

failures is the same as the one of the associated undirected network with respect to single

edge failures.

230

5.4.3.3 Directed networks

Each directed instance below is actually a bidirected network, built from the associated

undirected one. In the directed setting, we consider single arc failures instead of single

edge or link failures. All other features of the undirected instances remain unchanged.

Table 5.4 gives, for each undirected instance, information regarding the minimum-

cost survivable Steiner flow returned by the column generation algorithm. More precisely,

column χ0
S indicates the cost of the best pair of redundant Steiner trees, whereas column

χS provides the cost of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Instance χ0
S χS Trees Iterations Time (s)

abilene 63.0 63.0 2 6 0.7

atlanta 81.0 81.0 2 12 0.33

france 89.0 89.0 2 16 0.79

geant 68.0 70.0 2 16 1.29

germany50 67.0 55.0 3 50 3.69

giul39 44.0 38.5 3 24 1.23

india35 43.0 40.0 3 22 1.88

newyork 26.0 23.0 3 14 0.53

nobel-eu 40.0 40.0 2 6 0.14

norway 73.0 69.5 7 39 2.85

pioro40 120.0 101.33 6 100 47.3

polska 51.5 51.5 2 13 0.24

ta1 44.5 44.5 2 7 0.39

ta2 40.0 40.0 2 14 1.13

zib54 65.0 54.5 3 13 0.78

Table 5.4 – Features of the minimum-cost survivable Steiner flow returned by the column
generation algorithm for each directed network.

Table 5.5 gives, for each directed instance, information regarding the minimum-cost

survivable coded flow returned by the linear programming solver. Column χC gives the

value of the optimal coded flow while column Time provides the associated running time

expressed in seconds.

Observe that, for each directed instance, the survivable cost coding gain gχ equals 1.

231

Instance χC Time (s)
abilene 63.0 0.04

atlanta 81.0 0.01

france 89.0 0.02

geant 68.0 0.03

germany50 55.0 0.03

giul39 38.5 0.01

india35 40.0 0.02

newyork 23.0 0.01

nobel-eu 40.0 0.01

norway 69.5 0.02

pioro40 101.33 0.06

polska 51.5 0.01

ta1 44.5 0.02

ta2 40.0 0.03

zib54 54.33 0.02

Table 5.5 – Features of the minimum-cost survivable coded flow returned by the linear
programming solver for each directed network.

5.4.3.4 Analysis

For each type of information flow, and for each instance, the proposed algorithm finds

an optimal solution in a matter of seconds. It seems there is few incentives to use coding

techniques, with respect to the survivable cost coding gain, regardless of the network

structure. Since the considered networks are sparse, it seems often possible to design a

minimum-cost survivable Steiner flow supported by a pair of redundant Steiner trees.

5.5 Conclusion

In this chapter we considered two network optimization problems, the minimum cost

survivable Steiner flow problem and the minimum cost survivable coded flow problem. To-

gether, those two models provide a way to evaluate the benefit, in terms of cost reduction,

of using coding techniques in a multicast network prone to single link failure. One can

use both problems to define an indicator, called the survivable cost coding gain, allow-

ing comparisons between multicast alone versus multicast with coding. We then provide

bounds on the domain of values one can expect the cost coding gain to take. Those results

232

are summarized in Table 5.6 below. Recall that the greater the value actually taken by

the survivable cost coding gain in a given multicast network, the more beneficial network

coding techniques would be if implemented in this particular network.

Structure Cost coding gain Survivable cost coding gain
Bidirected [1, 2] [1, 2|L|]

Undirected [1, 2] [1, 2|E|]

Directed [1,+∞[[1,+∞[

Table 5.6 – Survivable cost coding gain domain for each network type.

An operator is often forced to look for a trade off between various conflicting objectives

like ensuring low congestion in the network while over-provisioning the amount of conveyed

flow so as to diminish the impact of a failure on the throughputs actually experienced by the

receivers. In this regard, it would be interesting to combine the models developed in this

chapter along with those presented in the previous one, since solving a minimum convex

cost survivable information flow problem could be done by combining the Frank-Wolfe

method with a subroutine looking for a minimum-cost survivable information flow.

233

234

Chapter 6

Maximum survivable information

flows

6.1 Introduction

6.1.1 Motivation

In this chapter we pursue the study undertaken in the previous chapter regarding

survivable information flows. At the same time, the present work can be considered as an

extension of the one done in the second chapter. Indeed, we shall now study the problem

of maximizing the worst case residual throughput experienced by a set of receivers in a

network prone to single link failures. The present chapter can be regarded as an attempt

to evaluate the fragility of information flows, with respect to single link failures.

6.1.2 Content

We will first study the maximum survivable flow problem which is an extension of the

classical maximum flow problem so as to handle single link failures. The second problem we

shall present, referred to as the maximum survivable Steiner flow problem, can be thought of

as a generalization of the maximum survivable flow problem to the setting of information

flows. We then consider the variant of this Steiner flow problem which appears when

coding mechanisms are allowed in the network, namely the maximum survivable coded flow

problem. We will finally define and study the notion of survivable coding gain which is

similar to the coding gain previously presented. The survivable coding gain is an indicator

235

which evaluates the impact, in terms of maximum residual throughput, one can expect

from deploying coding techniques in a multicast network.

6.1.3 Maximum survivable flow

6.1.3.1 Problem statement

As before, we focus on the case of directed networks which encompasses the case of

undirected ones. The instance is made of a network D = (V,A) with a source node s, a

receiver node r distinct from s and a capacity ca for each arc a. Recall that a flow x is

an assignment of a non-negative real value xp to each simple path p from s to r, and that

x is feasible if it satisfies the capacity constraints (the flow conservation at each vertex is

implied by the paths decomposition). We denote by XP the set of all feasible flows:

XP =

x ∈ RP
+ :

∑

p∈Pa

xp ≤ ca ∀a ∈ A

(6.1)

where P is the set of all simple paths between the source and the receiver, and Pa is the

subset of all paths in P using arc a.

Now we assume that any arc a of the network may fail. We model this event by

removing the corresponding arc from the network. The impact of the failure of arc a on a

given feasible flow x is to prevent the content routed along any path p using a from being

conveyed to the receiver. Given a feasible flow x, we define, for each arc a, the residual

throughput ρa(x) of x whenever arc a fails, as the quantity:

ρa(x) =
∑

p∈P

xp −
∑

p∈Pa

xp (6.2)

or equivalently:

ρa(x) =
∑

p∈P\Pa

xp (6.3)

Observe that the first term in the right-hand side of Equation (6.2) is the nominal through-

put of flow x, the amount of flow which can be conveyed from the source to the receiver when

no failure occurs, while the second term (in the right-hand side of the same equation) is

exactly the amount of flow on arc a. Hence ρa(x) is exactly the amount of flow experienced

by the receiver r when arc a fails. Given a feasible flow x, the residual throughput ρ(x)

236

of x is defined as the minimum, over all possible arc failures, of the residual throughput

ρa(x) associated to the failure of arc a:

ρ(x) = min
a∈A

ρa(x) (6.4)

We are now ready to define formally our problem:

Problem Maximum survivable flow
Instance Network D = (V,A), source s, receiver r, capacity ca on each arc a
Solution A feasible flow x ∈ XP in D
Objective Maximize the residual throughput ρ(x) of flow x

as defined in Equation (6.4)

We denote by ρF the value of a maximum survivable flow for the considered instance:

ρF = max
x∈XP

ρ(x) (6.5)

Notice that a maximum survivable flow x is static: one has to decide how to route flow

before knowing which arc will eventually fail.

6.1.3.2 Linear programming formulations

The maximum survivable flow problem can be modelled using linear programming:

ρF = max ρ (6.6)

s.t. ρ ≤
∑

p∈P\Pa

xp ∀a ∈ A (6.7)

∑

p∈Pa

xp ≤ ca ∀a ∈ A (6.8)

xp ≥ 0 ∀p ∈ P (6.9)

(6.10)

For each simple path p, variable xp stands for the amount of flow conveyed by p. Hence,

the number of variables in the above linear program may be exponential in the size of the

instance. Constraints (6.7) along with the maximization of variable ρ ensure that a residual

throughput of value ρ is experienced by the receiver regardless of whether any arc of the

network fails. Finally, Constraints (6.8) are the classical capacity requirements. From this

path formulation of the maximum survivable flow problem it is possible to deduce an arc

237

formulation of the same problem to which is associated the linear program below, proposed

by Aneja et al. in [129]:

ρF = max ρ (6.11)

s.t. ρ+ fa ≤ φ ∀a ∈ A (6.12)
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = bv(φ) ∀v ∈ V (6.13)

fa ≤ ca ∀a ∈ A (6.14)

φ, fa ≥ 0 ∀a ∈ A (6.15)

where

bv(φ) =

φ if v = s (6.16)

−φ if v = r (6.17)

0 otherwise (6.18)

For each arc a, variable fa stands for the amount of flow going through a, whereas variable φ

and ρ respectively model the nominal and the residual throughput experienced by receiver

r.

6.1.3.3 Complexity and algorithms

This problem has been thoroughly studied by Aneja et al. in [129]. They provide

an algorithm, based on Newton’s method, which returns a maximum survivable flow by

performing O(n) calls to a subroutine solving a maximum flow problem in a network

obtained from the original one by suitably reducing the value of each capacity in the

graph. Hence this problem can be solved in strongly polynomial time.

The authors of [129] also show that the maximum survivable flow problem has some

nice properties. Firstly, given a maximum survivable flow, either it saturates each capacity

of the arcs of a minimum cut when no failure occurs, or there exists an augmenting path

between the source and the receiver in the residual network, and routing flow along that

path increases the value of the nominal throughput. Furthermore, the new flow thereby

obtained is still optimal with respect to the maximum survivable flow problem. Hence,

it is possible to obtain in strongly polynomial time a maximum survivable flow which is

also a maximum flow (without considering failures). This means there is no need to find a

238

trade-off between the nominal throughput and the survivable one as both criteria can be

simultaneously optimized.

Another remarkable feature of this problem arises when one considers its integral version

(by requiring the flow on each path to be a non-negative integer). Although the continuous

relaxation may not provide an integer flow, it is possible to get an integral maximum

survivable flow, starting from a fractional one, by performing two more maximum flow

computations. See [129] for further details.

We would like to mention that an extension of the maximum survivable flow problem,

with an arbitrary number of failures, is studied by Bertsimas et al. in [130, 131] under the

name robust maximum flow problem. In [131], a nice interpretation of this class of survivable

flow problems is given in the light of game theory: the maximum survivable flow problem

can be regarded as a game between a flow player and an adversarial interdictor. The flow

player first picks a set of paths on which flow will be routed, then he decides how much flow

should be conveyed by each path, so as to maximize the residual throughput obtained once

the interdictor, who plays in second position, will have removed the most critical arc of

the network, namely the arc whose deletion incurs the greatest loss in terms of throughput

value for the flow player.

6.2 Maximum survivable Steiner flow

6.2.1 Problem statement

We will now study the extension of the previous problem to a multicast network. As

before, we focus on the case of a directed network since it encompasses the case of an

undirected one. As in the previous chapter, we will make a distinction between a directed

network (which may be bidirected) prone to single arc failures and a bidirected network

prone to single link failures. In the latter case we assume that both arcs of the link are

simultaneously failing while in the former case only one arc fails. The instance is made of

a network D = (V,A) with a source s, a set R of receivers, and a capacity ca for each arc

a. A Steiner flow x is an assignment of a non-negative real value xt to each Steiner tree t

spanning s and R. A Steiner flow x is feasible if it satisfies the capacity constraints. We

239

denote by XT the set of all feasible Steiner flows:

XT =

{

x ∈ RT
+ :

∑

t∈Ta

xt ≤ ca ∀a ∈ A

}

(6.19)

where T is the set of all Steiner trees spanning s and R, while Ta is the subset of all trees

in T using arc a. Given a Steiner tree t and a receiver r, we denote by prt the unique path

from s to r in t. For each arc a and each receiver r, let T ra be the set of all Steiner trees t

using a to convey flow toward r, namely a ∈ prt .

We assume again that any arc a of the network may fail, and once again, we model this

event by removing the corresponding arc from the network. As in the previous chapter, the

impact of the failure of arc a on a given feasible Steiner flow x differs from the impact of

the same failure on a classical flow. Indeed, we model this impact by preventing a Steiner

tree t using a from conveying flow between the source and any receiver r such that the

path prt contains arc a. Hence, a receiver lying in the same connected component (which

is a sub-tree of t) as the source after removal of the failing arc will still receive the flow

conveyed by t. Figure 5.1 provides an example (see the previous chapter). Given a feasible

Steiner flow x, we define, for each arc a and each receiver r, the residual throughput ρra(x)

of x with respect to receiver r, whenever arc a fails, as the quantity:

ρra(x) =
∑

t∈T

xt −
∑

t∈T r
a

xt (6.20)

or equivalently:

ρra(x) =
∑

t∈T \T r
a

xt (6.21)

Observe that the first term in the right-hand side of Equation (6.20) is the nominal through-

put, the amount of flow which can be conveyed to each receiver when no failure occurs,

while the second term (in the right-hand side of the same equation) is the fraction of flow

on arc a routed toward receiver r. Hence ρra(x) is exactly the amount of flow received by

the receiver r when arc a fails. The residual throughput ρ(x) of a given Steiner flow x

is defined as the minimum, over all receivers and all possible arc failures, of the residual

throughput ρra(x) associated to receiver r when arc a fails:

ρ(x) = min
r∈R

min
a∈A

ρra(x) (6.22)

240

We are now ready to define formally our problem:

Problem Maximum survivable Steiner flow
Instance Network D = (V,A), source s, set of receivers R, capacity ca on each arc a
Solution A feasible Steiner flow x ∈ XT in D
Objective Maximize the residual throughput ρ(x) of Steiner flow x

as defined in Equation (6.22)

We denote by ρS the value of a maximum survivable Steiner flow for the considered instance:

ρS = max
x∈XT

ρ(x) (6.23)

Observe that a maximum survivable Steiner flow x is static. When the set R is a singleton,

a Steiner tree spanning s and R is a simple path between the source and the single receiver.

Hence the maximum survivable Steiner flow problem can be regarded as a generalization

of the maximum survivable flow problem to more than one receivers.

6.2.2 A detailed example

We keep working with the directed butterfly network which is depicted on Figure 6.1 a).

We are looking for a maximum survivable Steiner flow in the instance where the capacity

of each arc a of the directed butterfly network is set to ca = 1. Such a maximum survivable

Steiner flow x is depicted on Figure 6.1 b). Steiner flow x uses two trees, each one routing

half a unit of flow. Table 6.1 provides, for each arc a and each receiver r, the residual

throughput ρra(x) experienced by r when a fails. By definition, the residual throughput

ρ(x) is the minimum value which appears in Table 6.1, namely ρ(x) = 1
2 .

241

Figure 6.1 – a) The directed butterfly network. b) A maximum survivable Steiner flow
using two trees in the directed butterfly network. Each tree conveys half a unit of flow, so
that the residual throughput of the induced Steiner flow is 1

2 .

Failure r1 r2
(s, n1) 1/2 1/2

(s, n2) 1/2 1/2

(n1, r1) 1/2 1

(n1, n3) 1 1/2

(n2, r2) 1 1/2

(n2, n3) 1/2 1

(n3, n4) 1/2 1/2

(n4, r1) 1/2 1

(n4, r2) 1 1/2

Table 6.1 – Impact of the failure of each arc on the residual throughput experienced by
each receiver.

242

6.2.3 Linear programming formulation

The maximum survivable Steiner flow problem can be formalized using linear program-

ming:

ρS = max ρ (6.24)

s.t. ρ ≤
∑

t∈T \T r
a

xt ∀a ∈ A, r ∈ R (6.25)

∑

t∈Ta

xt ≤ ca ∀a ∈ A (6.26)

xt ≥ 0 ∀t ∈ T (6.27)

(6.28)

For each Steiner tree t, variable xt stands for the amount of flow conveyed by t. Hence,

the number of variables in the above linear program may be exponential in the size of the

instance. Constraints (6.25) along with the maximization of variable ρ ensure that, for any

Steiner flow x satisfying the capacity requirements modeled by Constraints (6.26), each

receiver experiences a throughput of value at least ρ regardless of whether any arc a fails.

If one is interested by the model of single link failures in a bidirected network B = (V, L),

Constraints (6.25) should be replaced by the following ones:

ρ ≤
∑

t∈T

xt −

∑

t∈T r
a1

xt +
∑

t∈T r
a2

xt

 ∀ℓ = {a1, a2} ∈ L, r ∈ R (6.29)

where we rest on the fact that a Steiner tree is using at most one arc of each link, so that

the two sets T ra1 and T ra2 are disjoint for any link ℓ = {a1, a2} and any receiver r. We

denote by y the vector of dual variables associated to Constraints (6.26), and by z the one

corresponding to Constraints (6.25). The dual of the previous linear program is:

ρS = min
∑

a∈A

caya (6.30)

s.t.
∑

a∈A

∑

r∈R

zra = 1 (6.31)

∑

a∈t

ya +
∑

r∈R

∑

a∈prt

zra ≥ 1 ∀t ∈ T (6.32)

ya, z
r
a ≥ 0 ∀a ∈ A, r ∈ R (6.33)

243

where we get Constraints (6.32) by combining Constraint (6.31) with the set of dual con-

straints associated to the primal vector of variables x:

∑

a∈t

ya ≥
∑

a∈A

∑

r∈R

zra −
∑

r∈R

∑

a∈prt

zra ∀t ∈ T (6.34)

6.2.4 Complexity and algorithms

Observe that the pricing problem is exactly the same as the one appearing in the study

of the minimum cost survivable Steiner flow problem in the previous chapter. We hence

know from Theorem 24 and Theorem 25 that this pricing problem is NP-hard in both

directed and undirected networks. However the coefficients in the objective function of the

dual of the present problem are not arbitrary since the coefficient associated to variable

zra equals 0 for each arc a and each receiver r. It is thus impossible to apply the theorem

established by Grötschel, Lovász, and Schrijver on the equivalence between polynomial-

time separation and polynomial-time optimization for convex polytopes [90]. Again, the

previous discussion only emphasizes that, unless P = NP , it is impossible to devise an

algorithm running in polynomial time by combining the ellipsoid method with an oracle

solving the pricing problem. We acknowledge that it may still be possible to find an

algorithm which would solve the maximum survivable Steiner flow problem in polynomial

time (for instance, by using another linear programming formulation). We again refer

the interested reader to the paper by Nace et al. [123] for a non-trivial example of a

problem whose extended linear programming formulation admits an NP-hard separation

problem while the problem itself can be solved in polynomial time. Hence, we shall leave

the complexity of finding a maximum survivable Steiner flow as an open question:

Conjecture 2. We believe that the maximum survivable Steiner flow problem is NP-hard.

6.2.5 Computing a maximum survivable Steiner flow by column gener-
ation

One can solve the maximum survivable Steiner flow problem by using column generation

techniques. Given dual vectors (y, z), computing the reduced cost σt associated to variable

xt (which we will refer to as the reduced cost of tree t by a slight abuse of language) amounts

244

to solving the separation problem associated to Constraints (6.32). More precisely:

σt = 1−

∑

a∈t

ya +
∑

r∈R

∑

a∈prt

zra

 (6.35)

so that one is looking for a tree whose cost, with respect to the weights vectors y and z,

is minimum. It is possible to solve the pricing problem to optimality by using the mixed-

integer linear programming formulation presented in the previous chapter. If, by solving

this problem, we find a tree with a positive reduced cost, this tree represents a new column

to be added to the master problem, which is then solved again. If we are not able to exhibit

such a tree, then it means that we have obtained an optimal solution.

6.2.6 Nominal and residual throughputs

We study the small network depicted on Figure 6.2 a). This network is made of one

source s, two receivers r1 and r2, along with two intermediate nodes u and v. The capacity

of each arc is set to 1 except for arc (u, v) whose capacity is 2. Consider the Steiner flow

x depicted on Figure 6.2 b) which is supported by two trees, each one routing 1 unit of

flow, so that each receiver gets the two messages a and b. Observe that x is a maximum

survivable Steiner flow with a residual throughput ρ(x) = 1 and a nominal throughput

of 2 according to the model. However, we claim that it is not possible to simultaneously

route both messages to each receiver while ensuring that regardless of which arc may fail,

both receivers will get the same content. To see why, notice that if arc (u, v) fails, Steiner

flow x can not deliver the same message to both receivers although ρ(x) = 1. For this

reason, we disregard the nominal throughput predicted by our model and we decide that

the throughput experienced by each receiver is ρS regardless of whether a failure actually

occurs or not, as suggested by Figure 6.2 c).

6.3 Maximum survivable coded flow

6.3.1 Problem statement

This time, we will distinguish among the three cases of bidirected, directed, and undi-

rected networks. We first focus on the case of directed networks. The setting is exactly

245

Figure 6.2 – a) A small network with one source s and two receivers r1 and r2. The
capacity of each arc is set to 1 except for the arc (u, v) whose capacity is 2. b) A Steiner
flow supported by two trees, each tree conveys 1 unit of flow, so that each receiver get the
two messages a and b. c) In order to guarantee that both receivers get the same content
when arc (u, v) fails, it is required to send twice the same message.

the same as in the previous problem: The instance is made of a network D = (V,A) with a

source s, a set R of receivers, and a capacity ca for each arc a. Recall that a coded flow x is

an assignment of a non-negative real value xp to each simple path p from the source to any

receiver r. A coded flow x is feasible if it satisfies the network coding capacity constraints.

We denote by XP the set of all feasible coded flows

XP =

x ∈ RP
+ :

∑

p∈Pr
a

xt ≤ ca ∀a ∈ A, r ∈ R

(6.36)

where for any receiver r, Pr is the set of all simple paths from s to r, while Pra is the subset

of all paths in Pr using arc a. We also denote by P the set of all simple paths between the

source and any receiver, namely P =
⋃

r∈R P
r.

We assume again that any arc a of the network may fail, which we still model by

removing the corresponding arc from the graph. As in the case of the maximum survivable

flow problem, the failure of arc a prevents any path, connecting the source to a receiver

thanks to a, to route flow to this receiver. This means a coded flow x can only use paths

not affected by the failure to actually convey flow. Given a feasible coded flow x, we define,

for each arc a and each receiver r, the residual throughput ρra(x) of x with respect to receiver

246

r, whenever arc a fails, as the quantity:

ρra(x) =
∑

p∈Pr

xp −
∑

p∈Pr
a

xp (6.37)

or equivalently:

ρra(x) =
∑

p∈Pr\Pr
a

xp (6.38)

Observe that the first term in the right-hand side of Equation (6.37) is the nominal through-

put for receiver r, the amount of flow which can be conveyed to this receiver when no failure

occurs, while the second term (in the right-hand side of the same equation) is the fraction

of flow on arc a routed toward r. Thus, ρra(x) is exactly the throughput experienced by

receiver r when arc a fails. The residual throughput ρ(x) of a given coded flow x is defined

as the minimum, over all receivers and all possible arc failures, of the residual throughput

ρra(x) induced for receiver r by the failure of arc a:

ρ(x) = min
r∈R

min
a∈A

ρra(x) (6.39)

We are now ready to define formally our problem:

Problem Maximum survivable coded flow
Instance Network D = (V,A), source s, set of receivers R, capacity ca on each arc a
Solution A feasible coded flow x ∈ XP in D
Objective Maximize the residual throughput ρ(x) of coded flow x

as defined in Equation (6.39)

We denote by ρC the value of a maximum survivable coded flow for the considered instance:

ρC = max
x∈XP

ρ(x) (6.40)

Notice that a maximum survivable coded flow x is static. This underlies the need for a

static coding scheme, common to all failure patterns. We shall address this issue later.

When the set R is a singleton, the set of paths P is exactly the set of all simple paths from

the source to the single receiver. Hence the maximum survivable coded flow problem can

also be regarded as a generalization of the maximum survivable flow problem to multiple

receivers.

247

6.3.2 Example continued

Consider again the instance made of the directed butterfly network depicted on Fig-

ure 6.1 a) with capacity ca = 1 for each arc a. A maximum survivable coded flow x for

this instance is depicted on Figure 6.3. Coded flow x uses two paths routing one unit of

flow to convey the data from the source to each receiver, so that each receiver experiences

a throughput of value 1 regardless of whether any arc is removed from the network. Thus

the residual throughput of coded flow x is ρ(x) = 1.

Figure 6.3 – A maximum survivable coded flow x using exactly two paths to route the data
from the source to each receiver. Each path is routing one unit of flow, so that the residual
throughput of coded flow x is ρ(x) = 1.

6.3.3 Linear programming formulations

6.3.3.1 Directed and bidirected networks

We shall now provide a linear programming formulation of the maximum survivable

coded flow problem in a directed network:

ρC = max ρ (6.41)

s.t. ρ ≤
∑

p∈Pr\Pr
a

xp ∀a ∈ A, r ∈ R (6.42)

∑

p∈Pr
a

xp ≤ ca ∀a ∈ A, r ∈ R (6.43)

xp ≥ 0 ∀p ∈ P (6.44)

(6.45)

248

For each simple path p, variable xp stands for the amount of flow conveyed by p. Hence,

the number of variables in the above linear program may again be exponential in the size of

the instance. Constraints (6.42) along with the maximization of variable ρ ensure that, for

any coded flow x satisfying the capacity requirements modeled by Constraints (6.43), each

receiver experiences a throughput of value at least ρ regardless of whether any arc a fails.

If one is interested by the model of single link failures in a bidirected network B = (V, L),

Constraints (6.42) should be replaced by the following ones:

ρ ≤
∑

p∈Pr

xp −

∑

p∈Pr
a1

xp +
∑

p∈Pr
a2

xp

 ∀ℓ = {a1, a2} ∈ L, r ∈ R (6.46)

where we rest on the fact that a simple path is using at most one arc of each link, so that

the two sets Pra1 and Pra2 are disjoint for any link ℓ = {a1, a2} and any receiver r.

The previous linear program allows to solve the path formulation of the maximum

survivable coded flow problem. It is also interesting to consider the linear program below

which is associated to the arc formulation of the same problem:

ρC = max ρ (6.47)

s.t. ρ ≤ φr − f ra ∀a ∈ A, r ∈ R (6.48)
∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(φ
r) ∀r ∈ R, v ∈ V (6.49)

f ra ≤ ca ∀a ∈ A, r ∈ R (6.50)

φr, f ra ≥ 0 ∀a ∈ A, r ∈ R (6.51)

with

brv(φ) =

φ if v = s (6.52)

−φ if v = r (6.53)

0 otherwise (6.54)

For each arc a and each receiver r, variable f ra stands for the amount of flow going from

source s to receiver r through a, while variable φr models the throughput experienced by

receiver r.

6.3.3.2 Undirected networks

The linear program below allows to define and compute a maximum survivable coded

flow in an undirected network G = (V,E) with source s, set of receivers R, and capacity

249

ce for each edge e. The idea is the same as the one used to find a maximum coded flow in

an undirected network: Consider the bidirected network B = (V, L) obtained by replacing

each edge of G by a pair of reverse arcs. Keep the source and the receivers as defined in

G. Finally, assign a variable capacity ha on each arc a of the bidirected network then add

an orientation constraint for each link ℓ. The following linear program allows to compute

a maximum survivable coded flow over all possible orientations of the undirected network:

ρC = max ρ (6.55)

s.t. ρ ≤
∑

p∈Pr

xp −

∑

p∈Pr
a1

xp +
∑

p∈Pr
a2

xp

 ∀ℓ = {a1, a2} ∈ L, r ∈ R (6.56)

∑

p∈Pr
a

xp ≤ ha ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (6.57)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (6.58)

ha, xp ≥ 0 ∀a ∈ ℓ, ℓ ∈ L, p ∈ P (6.59)

(6.60)

For each simple path p, variable xp stands again for the amount of flow conveyed by p, while,

for each arc a, variable ha models the amount of coded flow going through a. Notice that

this linear program may also have an exponential number of variables with respect to the

instance size. Here also, Constraints (6.56) along with the maximization of variable ρ ensure

that, for any coded flow x, the throughput experienced by any receiver whenever any arc

a fails is at least ρ. Constraints (6.57) are capacity requirements with a variable capacity

ha for each arc a. Finally, Constraints (6.58) are the previously mentioned orientation

constraints which induce a flow coupling between all receivers. Instead of dealing with

the previous path formulation of the maximum survivable coded flow problem, it is often

more convenient to work with the linear program below, which is associated to the arc

250

formulation of the present problem:

ρC = max ρ (6.61)

s.t. ρ+ f ra ≤ φ
r ∀a ∈ A, r ∈ R (6.62)

∑

a∈δ+(v)

f ra −
∑

a∈δ−(v)

f ra = brv(φ
r) ∀r ∈ R, v ∈ V (6.63)

f ra ≤ ha ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (6.64)

ha1 + ha2 ≤ cℓ ∀ℓ = {a1, a2} ∈ L (6.65)

φr, f ra , ha ≥ 0 ∀a ∈ ℓ, ℓ ∈ L, r ∈ R (6.66)

(6.67)

with

brv(ϕ) =

ϕ if v = s (6.68)

−ϕ if v = r (6.69)

0 otherwise (6.70)

For each arc a, and each receiver r of the bidirected network B = (V, L), variable f ra models

the amount of flow going from s to r through a (as in the case of a directed network). Again,

Constraints (6.62) along with along with the maximization of variable ρ ensure that, for

any coded flow x, the throughput experienced by any receiver whenever any arc a fails is

at least ρ. The other variables and constraints are similar in both formulations.

6.3.4 Complexity and algorithms

Regardless of the network structure, the linear program obtained by considering the

arc formulation of the maximum survivable coded flow problem involves a polynomial

number of (continuous) variables and constraints (with respect to the instance size). Hence,

it is possible to compute an arc decomposition of a maximum survivable coded flow in

polynomial time. Given such an arc decomposition f , a path decomposition x can be

built in polynomial time thanks to the technique presented in the proof of Lemma 1: For

each receiver r, let f r be the vector of components f ra over each arc a of the network.

Observe that vector f r is the arc projection of a simple flow between the source and

receiver r. For each receiver r, compute a path decomposition of this simple flow using the

algorithm presented by Ahuja et al. [7, Theorem 3.5] which runs in polynomial time. The

251

concatenation of all those path decompositions (one per receiver) is clearly a valid path

decomposition of the coded flow.

The next theorem provides a connection between the maximum survivable coded flow

problem and the maximum survivable flow problem in a directed network D = (V,A):

Theorem 29. In a directed network D = (V,A), the maximum survivable coded flow

problem can be decomposed into a set of instances of the maximum survivable flow problem,

one per receiver, and ρC = minr∈R ρ
r
F where for each receiver r, ρrF is the value of a

maximum survivable flow in the instance induced by r.

Proof. Starting from the above linear programming formulation, we introduce a new vari-

able ρr for each receiver r and we replace Constraints (6.42) by the following constraints

for each receiver r

ρ ≤ ρr and ρr ≤
∑

p∈Pr

xp −
∑

p∈Pr
a

xp ∀a ∈ A (6.71)

Observe that we thus obtain a set of completely independent problems, one for each receiver

r. Furthermore, each one is exactly a maximum survivable flow problem between the source

and receiver r.

This decomposition combined with the algorithm proposed by Aneja et al. in [129]

immediately imply the following result:

Corollary 13. In a directed network D = (V,A), the maximum survivable coded flow

problem can be solved in strongly polynomial time by O(|R||V |) calls to a subroutine solving

the maximum flow problem.

In an undirected network, the coupling induced by the orientation constraints precludes

such a decomposition.

6.3.5 Coding scheme

In a directed acyclic network, there exists a static coding scheme common to all failure

patterns ensuring residual throughput ρC thanks to [59, Theorems 11]. We refer the reader

252

Figure 6.4 – a) A coding scheme associated to a maximum survivable coded flow in the
directed butterfly network. Unfortunately, receiver r1 can not decode the coded message c
when the arc (n1, r1) fails. b) A coding scheme ensuring that each receiver gets message a
regardless of whether an arc fails or not.

to the discussion in the previous chapter regarding the design of a coding scheme for a

minimum-cost survivable coded flow. In networks with cycles, it is still possible to design

a fault-tolerant coding scheme by using more complicated coding techniques, as explained

in [59].

6.3.6 Nominal and residual throughputs

According to our model there exists a maximum survivable coded flow x in the directed

butterfly network with a residual throughput ρ(x) = 1 and a nominal throughput of 2.

However, consider the coding scheme depicted on Figure 6.4 a) and observe that whenever

the arc (n1, r1) fails, receiver r1 only gets the coded message c which can not be decoded.

For this reason, we disregard the nominal throughput predicted by our model and we

decide that the throughput experienced by each receiver is ρC regardless of whether a

failure actually occurs or not, as suggested by Figure 6.4 b).

253

6.4 Features of the information flows

6.4.1 Survivable coding gain

We shall now study the impact of implementing coding techniques in the present setting.

We are naturally led to ask the following question:

Question 5. Is there an incentive, with respect to the residual throughput, to use network

coding in a multicast network prone to single link failures?

Similarly to the previously studied frameworks, we introduce the notion below so as to

facilitate comparisons:

Definition 6. Given a network D = (V,A) with source s, set of receivers R, and capacity

ca for each arc a, the survivable coding gain gρ, provided by network coding over multicast

alone, is the ratio of the value of a maximum survivable coded flow over the one of a

maximum survivable Steiner flow:

gρ =
ρC
ρS

(6.72)

Recall that we only consider networks where there is at least two arc-disjoint paths from

the source to any receiver, so that the quantity ρS is positive and the previous definition

of the survivable coding gain gρ is well-grounded. The next theorem shows that adding

the possibility to perform coding operations in a multicast network never impedes the

performance of this network with respect to the residual throughput:

Theorem 30. Given a network D = (V,A) with source s, set of receivers R, and capacity

ca for each arc a, the survivable coding gain gρ is at least 1.

The proof of Theorem 30 is very similar to the one of Theorem 3 and can be found in

Appendix C.1.5. Notice that, with respect to the residual throughput, there is an incentive

to use network coding only if gρ > 1. We shall now study the survivable coding gain of

some networks.

254

6.4.2 Features of the survivable coding gain

6.4.2.1 Single receiver

We first give a word about the case where there is only one single receiver. In this case

both the maximum survivable Steiner flow problem and the maximum survivable coded

flow problem become equivalent to the maximum survivable flow problem, as emphasized

by the next lemma:

Lemma 15. Given a network D = (V,A) with source s, a single receiver r distinct from

s, and capacity ca for each arc a, the survivable coding gain gρ equals 1.

6.4.2.2 Survivable coding gain and survivable cost coding gain

The following theorem establishes a formal connection between two a priori unrelated

quantities, namely the survivable coding gain gρ and the survivable cost coding gain gχ.

This result can be regarded as an extension of [79, Theorem 9] to the present survivable

setting.

Theorem 31. Given a network D = (V,A) with source s and set of receivers R, denote

by gρ(D, c) the survivable coding gain obtained by setting capacity ca on each arc a. Also

denote by gχ(D,w) the survivable cost coding gain obtained by setting non-negative weight

wa on each arc a along with positive demand d. Then,

max
c≥0

gρ(D, c) = max
w≥0

gχ(D,w) (6.73)

Proof. The survivable cost coding gain gχ is left unchanged after scaling of the weight vector

by a positive factor α, namely gχ(D,αw) = gχ(D,w). This invariance of gχ also holds if the

demand is scaled by a positive factor, so that we can assume d = 1 without loss of generality.

Similarly, scaling the capacity vector by a positive factor α will leave the survivable coding

gain gρ unaltered, namely gρ(D,αc) = gρ(D, c). We denote by χS(D,w), respectively

χC(D,w), the cost of a minimum-cost survivable Steiner, respectively coded, flow for the

instance induced by a given weight vector w, so that gχ(D,w) = χS(D,w)
χC(D,w) . Similarly,

255

let ρS(D, c), respectively ρC(D, c), be the residual throughput of a maximum survivable

Steiner, respectively coded, flow for the instance induced by a given capacity vector c,

which means that gρ(D, c) = ρC(D,c)
ρS(D,c)

. We first prove the inequality maxc≥0 gρ(D, c) ≤

maxw≥0 gχ(D,w). Let c be a capacity vector such that ρC(D, c) > 0. Without loss

of generality, we can assume ρC(D, c) = 1 by scaling capacity vector c by [ρC(D, c)]
−1.

Let x be a maximum survivable coded flow with respect to capacity vector c, namely

ρ(x) = ρC(D, c). Let also (y, z) be an optimal solution to the dual of the maximum

survivable Steiner flow problem. Since ρC(D, c) = 1 and d = 1, the couple of vectors (x , c)

is a feasible solution to the minimum-cost survivable coded flow problem for the instance

induced by weight vector y (where the weight of each arc a is set to ya). Furthermore, the

cost of this feasible solution is
∑

a∈A yaca which is exactly ρS(D, c) by optimality of (y, z).

This immediately implies:

χC(D, y) ≤ ρS(D, c) (6.74)

Moreover, by feasibility of (y, z) (with respect to the dual of the maximum survivable

Steiner flow problem), vector z is a feasible solution to the dual of the minimum cost

survivable Steiner flow problem for the instance induced by weight vector y. Furthermore,

since d = 1 the value of this solution is
∑

a∈A

∑

r∈R zra which equals 1 by definition of

(y, z). Combining this last result with our assumption that ρC(D, c) = 1, we obtain:

ρC(D, c) ≤ χS(D, y) (6.75)

Combining Equation (6.74) and Equation (6.75), we deduce that for any capacity vector

c, we can find a weight vector y which satisfies:

gρ(D, c) ≤ gχ(D, y) (6.76)

which directly implies that maxc≥0 gρ(D, c) ≤ maxw≥0 gχ(D,w). Conversely, we shall prove

the inequality maxw≥0 gχ(D,w) ≤ maxc≥0 gρ(D, c). Let w be a weight vector such that

χS(D,w) > 0. Without loss of generality, we can assume χS(D,w) = 1 by scaling weight

vector w by [χS(D,w)]
−1. Let x be a minimum-cost survivable coded flow with respect

to weight vector w, under the assumption d = 1, namely ρ(x) = ρC(D, c). Let h be the

coding vector associated to coded flow x , namely ha = maxr∈R
∑

p∈Pr
a

xp. It should be clear

256

that coded flow x is a feasible solution to the maximum survivable coded flow problem for

the instance induced by capacity vector h (where the capacity of each arc a is set to ha).

Furthermore, its residual throughput ρ(x) is at least d = 1. Combining this last result

with our assumption that χS(D,w) = 1, we get:

χS(D,w) ≤ ρC(D, h) (6.77)

Let z be an optimal solution to the dual of the minimum cost survivable Steiner flow prob-

lem. From our assumption that χS(D,w) = 1 along with d = 1, we have
∑

a∈A

∑

r∈R zra =

1. This implies that the couple of vectors (w, z) is a feasible solution to the dual of the

maximum survivable Steiner flow problem for the instance induced by capacity vector h .

Moreover, the value of this feasible solution is
∑

a∈A hawa which is exactly χC(D,w) by

definition of x and h . Therefore we have:

ρS(D, h) ≤ χC(D,w) (6.78)

Combining Equation (6.77) and Equation (6.78), we deduce that for any weight vector w,

we can find a capacity vector h which satisfies:

gχ(D,w) ≤ gρ(D, h) (6.79)

so that maxw≥0 gχ(D,w) ≤ maxc≥0 gρ(D, c), which concludes the proof.

Observe that Theorem 31 is valid in both directed, bidirected, and undirected networks.

6.4.2.3 Bidirected and undirected networks

Combining Theorem 31 with Theorem 27 obtained in the previous chapter, we imme-

diately deduce the following corollary:

Corollary 14. Given an undirected network G = (V,E) with source s, set of receivers R,

positive capacity ce for each edge e, the value of a maximum survivable coded flow is at

most 2|E| times the one of a maximum survivable Steiner flow, namely gρ ≤ 2|E|.

Since the upper bound of value 2|E| on the survivable cost coding gain gχ also stands

for bidirected networks, so is the same upper bound on the value of the survivable coding

gain gρ of a bidirected network.

257

6.4.2.4 Directed networks

We shall use the following lemma:

Lemma 16. Given a unit capacity network D = (V,A) with source s and set of receivers

R, let ρC be the residual throughput of a maximum survivable coded flow, and let ϕC be the

value of a maximum coded flow. Then ρC = ϕC − 1.

Proof. Removing one arc from a minimum cut between the source and any receiver reduces

the corresponding maximum flow value by one unit. Hence ρC ≤ ϕC − 1. Let x be

a maximum coded flow obtained by sending a maximum flow from the source to each

receiver. We have:

ρ(x) = min
(a,r)∈A×R

∑

p∈Pr

xp −
∑

p∈Pr
a

xp

(6.80)

≥ min
r∈R

∑

p∈Pr

xp − max
(a,r)∈A×R

∑

p∈Pr
a

xp (6.81)

≥ ϕC − 1 (6.82)

so that ρC ≥ ρ(x) ≥ ϕC − 1.

As far as directed networks are concerned, combining Theorem 31 with Theorem 28

(obtained in the previous chapter) yields the following corollary:

Corollary 15. For any real number η ≥ 1, there exists an infinite family of directed

networks such that the ratio between the value of a maximum survivable coded flow and the

one of a maximum survivable Steiner flow satisfies gρ ≥ η.

We can deduce the following slightly stronger result by a direct proof:

Theorem 32. For any real number η ≥ 1, there exists an infinite family of directed net-

works with unit capacities on each arc, such that the ratio between the value of a maximum

survivable coded flow and the one of a maximum survivable Steiner flow satisfies gρ ≥ η.

Proof. We prove this theorem by exhibiting a family of directed networks with unbounded

survivable coding gain. We again use the family of directed combination networks which

258

was used in [83, 84] to show that the coding gain can be arbitrarily large. Recall that given

two positive integers n and k with k ∈ [n], the directed combination network C(n, k) is

made of three layers of vertices: the first layer with the source s, while the second layer

is made of n intermediate nodes identified with [n], whereas the third layer consists of

a set R of
(

n
k

)

receivers, indexed by the subsets of [n] of size k. Those three layers are

linked together by one arc from the source to each intermediate node, and one arc from an

intermediate node to each receiver whose index (a subset of [n]) contains the index of this

intermediate node (an element of [n]). Furthermore each arc a has a unit capacity, ca = 1.

The directed combination network C(n, k), for n = 4 and k = 3, is depicted on Figure 6.5.

From the proof of Theorem 8, the value of a maximum Steiner flow in network C(n, k) is

ϕS = n
n−k+1 , while it is possible to design a maximum coded flow of value ϕC = k in the

same network. Since the network has unit capacities, ρC = k − 1 by Lemma 16. We can

build a Steiner flow x with residual throughput ρ(x) = (k−1)n
k(n−k+1) , and nominal throughput

n
n−k+1 , by using nk Steiner trees, each tree conveying 1

k(n−k+1) units of flow, such that any

arc of the network is used by at most k(n−k+1) distinct trees, hence satisfying all capacity

requirements. Such a Steiner flow, for the combination network C(4, 3), is represented on

Figure 6.6. This implies ρS ≥
(k−1)n

k(n−k+1) . We shall now prove that this residual throughput

is best possible. Let y be the vector defined by setting for each arc a:

ya =

k − 1

k(n− k + 1)
if a ∈ δ+(s) (6.83)

0 otherwise (6.84)

We also define vector z by setting, for each arc a and each receiver r:

zra =

1

k
(

n
k

) if a ∈ δ−(r) (6.85)

0 otherwise (6.86)

We claim that the couple of vectors (y, z) is a feasible solution to the dual of the maxi-

mum survivable Steiner flow problem. To understand why, notice that for any receiver r,

|δ−(r)| = k so that:
∑

r∈R

∑

a∈A

zra =
∑

r∈R

∑

a∈δ−(r)

zra = 1 (6.87)

and Constraint (6.31) is satisfied. Recall from Lemma 3 that any Steiner tree t uses at

259

Figure 6.5 – The directed combination network C(n, k), for n = 4 and k = 3.

least n− k + 1 intermediate nodes in order to span R, thus:

∑

a∈t

ya ≥
k − 1

k
(6.88)

Furthermore, for each Steiner tree t and each receiver r, there is exactly one arc in the set

prt ∩ δ
−(r), which implies:

∑

r∈R

∑

a∈prt

zra =
∑

r∈R

∑

a∈prt∩δ
−(r)

zra (6.89)

=
∑

r∈R

1

k
(

n
k

) (6.90)

=
1

k
(6.91)

Combining Equation (6.88) and Equation (6.91), we obtain that Constraints (6.32) are

satisfied. Since the network has unit capacities:

∑

a∈A

caya =
(k − 1)n

k(n− k + 1)
(6.92)

thus ρS ≤
(k−1)n

k(n−k+1) by weak duality. Hence ρS = (k−1)n
k(n−k+1) , which implies:

gρ =
k(n− k + 1)

n
(6.93)

By taking n = 2k, we obtain gρ = k+1
2 . This last quantity is unbounded when the

parameter k grows to infinity. Finally, given real number η ≥ 1, the network C(2k, k) with

k = ⌈2η − 1⌉ satisfies all requirements of the theorem.

260

Figure 6.6 – A Steiner flow x made of eight supporting trees, each one routing 1/6 units
of flow, in the directed combination network C(h, k), h = 4 and k = 3. This flow has a
nominal throughput λ(x) = 4/3, and a residual throughput ρ(x) = 2/3.

261

The next theorem establishes a connection between the survivable coding gain gρ and

the coding gain gϕ in a directed network with unit capacities.

Theorem 33. In a directed network D = (V,A) with unit capacities, if the coding gain gϕ

equals 1 then the survivable coding gain gρ also equals 1.

Proof. We denote by ϕS and ϕC respectively the value of a maximum Steiner flow and the

one of a maximum coded flow, so that gϕ = ϕC

ϕS
. Let x be a maximum Steiner flow. We

have:

ρ(x) = min
(a,r)∈A×R

∑

t∈T

xt −
∑

t∈T r
a

xt

(6.94)

≥
∑

t∈T

xt − max
(a,r)∈A×R

∑

t∈T r
a

xt (6.95)

≥ ϕS − 1 (6.96)

From Lemma 16 we have ρC = ϕC − 1. We deduce:

ϕS − 1 ≤ ρ(x) ≤ ρS ≤ ρC = ϕC − 1 (6.97)

By assumption, gϕ = 1 so that ϕS = ϕC . Hence ρS = ρC which concludes the proof.

6.4.3 Experimental evaluation of the survivable coding gain

6.4.3.1 Setting

We use the same fifteen network topologies taken from the SNDlib library [97] as in the

previous chapters. We also keep the source and the receivers as in the previous chapter.

The capacity of each channel is picked in the set [10] (of all integers between 1 and 10)

uniformly at random.

We compute each optimal Steiner flow by coupling a column generation algorithm with

a subroutine solving the pricing problem thanks to the mixed-integer linear program 5.49

presented in the previous chapter. Each optimal coded flow problem is computed by solving

its associated arc formulation thanks to a linear programming solver. All algorithms are

implemented in Julia 0.3.8 [98, 99]. We use the Julia package JuMP [100] to call the

open-source (mixed-integer) linear programming solver CLP/CBC [101].

262

6.4.3.2 Undirected networks

Some features of our fifteen instances are summarized in Table 6.2. For each instance,

we recall the number of vertices |V |, the number of edges |E|, and the number of receivers

|R| in the network.

Instance |V | |E| |R|

abilene 12 15 3

atlanta 15 22 5

france 25 45 6

geant 22 36 10

germany50 50 88 4

giul39 39 86 3

india35 35 80 4

newyork 16 49 4

nobel-eu 28 41 3

norway 27 51 5

pioro40 40 89 6

polska 12 18 5

ta1 24 55 6

ta2 65 108 4

zib54 54 81 4

Table 6.2 – Some features of the fifteen undirected instances.

Table 6.3 gives, for each undirected instance, information regarding the maximum sur-

vivable Steiner flow returned by the column generation algorithm. More precisely, column

ρS provides the cost of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Table 6.4 is similar to Table 6.3 in that it provides, for each undirected instance, infor-

mation regarding the maximum survivable coded flow returned by the linear programming

solver. Column ρC gives the value of the optimal coded flow while column Time provides

the associated running time expressed in seconds.

Notice that, for each undirected instance, the survivable coding gain gρ is equal to 1.

263

Instance ρS Trees Iterations Time (s)
abilene 1.0 3 5 0.76

atlanta 2.0 5 7 0.22

france 1.0 6 9 0.62

geant 2.0 5 11 0.93

germany50 7.0 22 32 2.55

giul39 6.0 13 24 1.18

india35 6.0 11 14 0.77

newyork 22.0 17 32 1.22

nobel-eu 8.0 8 11 0.27

norway 6.0 13 23 1.33

pioro40 7.0 18 36 3.94

polska 1.0 5 7 0.19

ta1 8.0 7 16 0.95

ta2 10.0 15 35 3.5

zib54 6.0 11 16 1.64

Table 6.3 – Features of the maximum survivable Steiner flow returned by the column
generation algorithm for each undirected network.

Instance ρC Time (s)
abilene 1.0 0.01

atlanta 2.0 0.01

france 1.0 0.01

geant 2.0 0.02

germany50 7.0 0.02

giul39 6.0 0.07

india35 6.0 0.02

newyork 22.0 0.01

nobel-eu 8.0 0.01

norway 6.0 0.02

pioro40 7.0 0.04

polska 1.0 0.01

ta1 8.0 0.02

ta2 10.0 0.03

zib54 6.0 0.02

Table 6.4 – Features of the maximum survivable coded flow returned by the linear pro-
gramming solver for each undirected network.

6.4.3.3 Bidirected networks

The test bench for bidirected instances is obtained by considering the bidirected network

associated to each undirected instance presented in Table 6.2. All other features of the

264

undirected instances remain unchanged.

Table 6.5 gives, for each bidirected instance, information regarding the maximum sur-

vivable Steiner flow returned by the column generation algorithm. More precisely, column

ρS provides the cost of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Instance ρS Trees Iterations Time (s)
abilene 1.0 3 5 0.28

atlanta 2.0 4 8 0.25

france 1.0 5 7 0.49

geant 2.0 6 15 1.77

germany50 7.0 16 27 2.25

giul39 6.0 7 23 1.33

india35 6.0 14 21 1.69

newyork 22.0 16 32 1.59

nobel-eu 8.0 6 11 0.34

norway 6.0 15 21 1.38

pioro40 7.0 20 35 4.99

polska 1.0 5 8 0.26

ta1 12.0 19 33 2.45

ta2 10.0 17 37 4.2

zib54 7.0 12 17 1.52

Table 6.5 – Features of the maximum survivable Steiner flow returned by the column
generation algorithm for each bidirected network.

Table 6.6 provides, for each bidirected instance, information regarding the maximum

survivable coded flow returned by the linear programming solver. Column ρC gives the

value of the optimal coded flow while column Time provides the associated running time

expressed in seconds.

For each bidirected instance, the survivable coding gain gρ is equal to 1.

6.4.3.4 Directed networks

Table 6.7 gives, for each directed instance, information regarding the maximum sur-

vivable Steiner flow returned by the column generation algorithm. More precisely, column

265

Instance ρC Time (s)
abilene 1.0 0.01

atlanta 2.0 0.01

france 1.0 0.02

geant 2.0 0.02

germany50 7.0 0.02

giul39 6.0 0.01

india35 6.0 0.01

newyork 22.0 0.01

nobel-eu 8.0 0.01

norway 6.0 0.02

pioro40 7.0 0.09

polska 1.0 0.0

ta1 12.0 0.02

ta2 10.0 0.02

zib54 7.0 0.02

Table 6.6 – Features of the maximum survivable coded flow returned by the linear pro-
gramming solver for each bidirected network.

ρS provides the cost of the optimal Steiner flow. Column Trees gives the number of trees

actually used by the optimal Steiner flow to convey some positive flow. Finally, column

Iterations gives the number of iterations made by the column generation algorithm while

column Time provides the associated running time expressed in seconds.

Table 6.8 provides, for each directed instance, information regarding the maximum

survivable coded flow returned by the linear programming solver. Column ρC gives the

value of the optimal coded flow while column Time provides the associated running time

expressed in seconds.

Observe that, for each directed instance, the survivable coding gain gρ is equal to 1.

6.4.3.5 Analysis

For each type of information flow, and for each instance, the proposed algorithm finds

an optimal solution in a matter of seconds. The benefit of using coding techniques to

maximize the residual throughput seems to vanish regardless of the network structure.

However, practical restrictions, like the number of multicast trees used to route the data,

may favor the use of network coding over multicast alone, especially when dealing with

266

Instance ρS Trees Iterations Time (s)
abilene 1.0 3 5 0.09

atlanta 2.0 5 8 0.16

france 1.0 4 10 0.41

geant 2.0 4 12 0.83

germany50 7.0 16 30 1.65

giul39 6.0 10 23 0.87

india35 6.0 12 19 0.89

newyork 22.0 18 34 1.03

nobel-eu 8.0 7 10 0.2

norway 6.0 8 20 0.83

pioro40 7.0 21 34 3.04

polska 1.0 2 8 0.21

ta1 8.0 9 24 1.16

ta2 10.0 18 31 2.25

zib54 7.0 8 15 0.78

Table 6.7 – Features of the maximum survivable Steiner flow returned by the column
generation algorithm for each directed network.

Instance ρC Time (s)
abilene 1.0 0.01

atlanta 2.0 0.01

france 1.0 0.01

geant 2.0 0.02

germany50 7.0 0.02

giul39 6.0 0.01

india35 6.0 0.01

newyork 22.0 0.01

nobel-eu 8.0 0.01

norway 6.0 0.01

pioro40 7.0 0.03

polska 1.0 0.0

ta1 8.0 0.07

ta2 10.0 0.02

zib54 7.0 0.02

Table 6.8 – Features of the maximum survivable coded flow returned by the linear pro-
gramming solver for each directed network.

survivability issues where more trees are required in order to reduce the impact of failures.

267

6.5 Conclusion

In this chapter we consider networks prone to single link failures. We develop models to

compute the maximum survivable throughput allowed by either a Steiner flow or a coded

flow. We also provide algorithms to solve each problem. Furthermore, we define and study

the survivable coding gain which makes comparisons between the two kinds of information

flows. Finally, we derive both theoretical and numerical results on this survivable coding

gain. The theoretical results are summarized in Table 6.9 below.

Structure Coding gain Survivable coding gain
Bidirected {1} [1, 2|L|]

Undirected [1, 2] [1, 2|E|]

Directed [1,+∞[[1,+∞[

Table 6.9 – Survivable coding gain domain for each network structure.

It could be interesting to generalize this study to the framework of multicommodity

information flows.

268

Chapter 7

Conclusion

7.1 Wrap up

Throughout the present dissertation, we investigated models of information flows in

telecommunication networks. The ability to perform basic operations on data, like du-

plication and coding, combined with the increasing computational power available at the

nodes of a telecommunication network, open the way to new advanced routing techniques

like multicast and network coding. Those promising techniques may help a telecommuni-

cation operator to cope with the emerging trends in the network usage. To this end, some

new tools are required to help the practitioner in his decision process regarding the design

and the features of its network. The aim of this thesis, is to propose a toolbox for the

design and the optimization of some information flows in networks. By focusing our anal-

ysis on models and algorithms, we let all freedom to the telecommunication community

to discuss and evaluate the benefit of deploying a given technique in a peculiar network.

However, the tools proposed here may facilitate the design of efficient algorithms to solve

some practical problems naturally arising in the framework of information flows.

Chapter 2 has been devoted to the presentation of the information flow framework

used throughout the entire manuscript, including the very concept of coding gain. We also

explained how some generic methods, like column generation or network flow algorithms,

could be either adapted or successfully used as subroutines in the design of algorithms

dealing with information flows.

269

In Chapter 3, we reviewed various results regarding multicommodity information flows.

We explained wherein many results in this setting are simple extensions of the classical in-

formation flow framework. We also explained how the method originally proposed by Garg

and Könemann [21], and later extended by Fleischer and Wayne [22], could be combined

with an approximation algorithm to find minimum-cost Steiner trees as a subroutine, so

as to solve some multicommodity Steiner flow problems with the same accuracy as the one

provided by the subroutine. Finally, we defined and studied the multicommodity coding

gain as a natural generalization of the aforementioned coding gain.

In Chapter 4 we tackled the issue of congestion in information flows, modelled as a

nonlinear phenomenon. By exploiting some features of the studied problems, like convexity,

we proposed practical algorithms, derived from the conditional gradient method, to find low

cost information flows while satisfying a given demand. We also extend the definition of

cost coding gain to the nonlinear setting while establishing a connection between the linear

gain and the nonlinear one.

Chapter 5 and Chapter 6 are devoted to the study of information flows in the setting

where any link of the network may fail. We propose models and algorithms, based on

linear programming, to design survivable information flows satisfying some requirements

with respect to the quality of service in the worst-case of failure. Although we are not able

to derive the complexity of each Steiner flow problem studied in those two chapters, we can

at least show that the associated pricing problem is NP-hard. We also define and study

the survivable cost coding gain and the survivable coding gain respectively in Chapter 5 and

Chapter 6. Finally, we exhibit a strong connection between those two gains, thanks to the

theory of duality in linear programming.

Since the applications of multicast routing techniques in telecommunications often im-

pose strong restrictions on the number of trees actually used to convey data in the network,

we emphasize the use of iterative algorithms, like column generation or conditional gra-

dient descent, which can produce a sparse exact solution in a reasonable amount of time,

disregarding more sophisticated methods. As far as network coding is concerned, we con-

stantly keep in mind the design of a coding scheme as a requirement to the practical

implementation of coding techniques in a telecommunication network.

270

7.2 Future research

Now, we provide some research topics which we believe would be worth investigating.

We first give a word regarding the various coding gains defined in this thesis. To the

best of our knowledge, it remains unclear whether the upper bound of 2 on the coding

gain gϕ of an undirected network is actually tight. Thus, the question is also open for

every upper bound derived from this one in the present document. Moreover, we may ask

whether it is possible to get a multicommodity coding gain gφ or gλ independent of the

number of commodity, a convex cost coding gain gψ which is not a function of the demand,

or a constant survivable coding gain gχ or gρ. Conversely, it would be interesting to exhibit

another family of networks with provably high coding gains. Finally, we would like to know

if it is possible to decide in polynomial time whether a coding gain differs from 1.

Speaking about tractability, the worst-case complexity of the minimum cost survivable

Steiner flow problem and the one of the maximum survivable Steiner flow problem are still

uncertain. It is also unclear whether it is possible to devise an approximation algorithm for

one of those problems with a provable guarantee on the quality of the returned solution.

The same question could be asked for the minimum convex cost Steiner flow problem.

Finally, it would be interesting to design new algorithms for solving the various coded

flow problems presented in this thesis. In this context, decentralized algorithms running

in polynomial time would be particularly appealing.

At last, notice that in the present dissertation, we always assumed that every node of the

network could perform all operations like duplication and coding. Since those operations

require a specific device to be implemented at each node (at the very least a software), it

is more likely that only a subset of the nodes will be endowed with the ability to perform

those more complex operations, the others being limited to classical data forwarding. Many

interesting problems naturally arise from this new setting.

271

272

Bibliography

[1] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall

Upper Saddle River, 2001. 16, 47

[2] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with

applications, volume 290. Macmillan London, 1976. 16, 47

[3] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and appli-

cations. Springer Science & Business Media, 2008. 16, 47, 98

[4] Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs & digraphs. CRC Press,

2010. 16, 47

[5] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-

BILE Mobile Computing and Communications Review, 5(1):3–55, 2001. 18, 49

[6] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley

& Sons, 2012. 18, 49, 51

[7] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows. Tech-

nical report, DTIC Document, 1988. 18, 26, 49, 61, 62, 66, 92, 105, 106, 110, 112,

132, 159, 177, 201, 221, 251

[8] Beau Williamson. Developing IP multicast networks, volume 1. Cisco Press, 2000.

23, 54

[9] Katia Obraczka. Multicast transport protocols: a survey and taxonomy. Communi-

cations Magazine, IEEE, 36(1):94–102, 1998. 23, 54

[10] Laxman H Sahasrabuddhe and Biswanath Mukherjee. Multicast routing algorithms

and protocols: a tutorial. Network, IEEE, 14(1):90–102, 2000. 23, 54

273

[11] Mahmood Hosseini, Dewan T Ahmed, Shervin Shirmohammadi, and Nicolas D Geor-

ganas. A survey of application-layer multicast protocols. Communications Surveys

& Tutorials, IEEE, 9(3):58–74, 2007. 23, 54

[12] Carlos AS Oliveira and Panos M Pardalos. A survey of combinatorial optimization

problems in multicast routing. Computers & Operations Research, 32(8):1953–1981,

2005. 23, 54

[13] Xiuzhen Cheng and Ding-Zhu Du. Steiner trees in industry, volume 11. Springer

Science & Business Media, 2013. 23, 54

[14] Dingzhu Du and Xiaodong Hu. Steiner tree problems in computer communication

networks. World Scientific, 2008. 23, 54

[15] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W Yeung. Network

information flow. Information Theory, IEEE Transactions on, 46(4):1204–1216, 2000.

23, 26, 54, 56, 82, 92, 94, 132, 136

[16] Raymond W Yeung. Information theory and network coding. Springer Science &

Business Media, 2008. 26, 57, 82

[17] C Fragouli and E Soljanin. Monograph on network coding: Fundamentals and ap-

plications. Foundations and Trends in Networking, 2(1), 2007. 26, 57

[18] Muriel Médard and Alex Sprintson. Network coding: fundamentals and applications.

Academic Press, 2011. 26, 57

[19] Takahiro Matsuda, Taku Noguchi, and Tetsuya Takine. Survey of network coding

and its applications. IEICE transactions on communications, 94(3):698–717, 2011.

26, 57

[20] Riccardo Bassoli, Hugo Marques, Jose Rodriguez, Kenneth W Shum, and Rahim

Tafazolli. Network coding theory: A survey. Communications Surveys & Tutorials,

IEEE, 15(4):1950–1978, 2013. 26, 57, 94

[21] Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for multicom-

modity flow and other fractional packing problems. SIAM Journal on Computing,

37(2):630–652, 2007. 28, 118, 119, 123, 124, 270, 295, 305

274

[22] Lisa K Fleischer and Kevin D Wayne. Fast and simple approximation schemes for

generalized flow. Mathematical Programming, 91(2):215–238, 2002. 28, 123, 270, 301,

305

[23] Luigi Fratta, Mario Gerla, and Leonard Kleinrock. The flow deviation method: An

approach to store-and-forward communication network design. Networks, 3(2):97–

133, 1973. 29

[24] April Rasala Lehman and Eric Lehman. Complexity classification of network infor-

mation flow problems. In Proceedings of the fifteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 142–150. Society for Industrial and Applied Mathe-

matics, 2004. 57, 93

[25] Yuval Cassuto and Jehoshua Bruck. Network coding for non-uniform demands. In In-

formation Theory, 2005. ISIT 2005. Proceedings. International Symposium on, pages

1720–1724. IEEE, 2005. 57, 125

[26] Randall Dougherty, Christopher Freiling, and Kenneth Zeger. Insufficiency of linear

coding in network information flow. Information Theory, IEEE Transactions on,

51(8):2745–2759, 2005. 57

[27] Chandra Chekuri, Christina Fragouli, and Emina Soljanin. On achievable information

rates in single-source non-uniform demand networks. In Information Theory, 2006

IEEE International Symposium on, pages 773–777. IEEE, 2006. 57, 125

[28] Michael Langberg and Alex Sprintson. On the hardness of approximating the network

coding capacity. Information Theory, IEEE Transactions on, 57(2):1008–1014, 2011.

57

[29] Randall Dougherty and Kenneth Zeger. Nonreversibility and equivalent construc-

tions of multiple-unicast networks. Information Theory, IEEE Transactions on,

52(11):5067–5077, 2006. 58

[30] TE Harris and FS Ross. Fundamentals of a method for evaluating rail net capacities.

Technical report, DTIC Document, 1955. 62

[31] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian

journal of Mathematics, 8(3):399–404, 1956. 62

275

[32] Peter Elias, Amiel Feinstein, and Claude E Shannon. A note on the maximum flow

through a network. Information Theory, IRE Transactions on, 2(4):117–119, 1956.

62

[33] James B Orlin. Max flows in o (nm) time, or better. In Proceedings of the forty-fifth

annual ACM symposium on Theory of computing, pages 765–774. ACM, 2013. 62

[34] Jonah Sherman. Nearly maximum flows in nearly linear time. In Foundations of

Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 263–269.

IEEE, 2013. 62

[35] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-

linear-time algorithm for approximate max flow in undirected graphs, and its multi-

commodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 217–226. SIAM, 2014. 62

[36] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solv-

ing linear programs in õ (vrank) iterations and faster algorithms for maximum flow.

In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium

on, pages 424–433. IEEE, 2014. 62

[37] Alexander Schrijver. On the history of the transportation and maximum flow prob-

lems. Mathematical Programming, 91(3):437–445, 2002. 62

[38] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic ef-

ficiency for network flow problems. Journal of the ACM (JACM), 19(2):248–264,

1972. 66, 92

[39] Zongpeng Li, Baochun Li, Dan Jiang, and Lap Chi Lau. On achieving optimal

throughput with network coding. In INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings IEEE, volume 3,

pages 2184–2194. IEEE, 2005. 68, 69, 83, 88, 89, 90, 103, 129, 132, 134, 136

[40] Kamal Jain, Mohammad Mahdian, and Mohammad R Salavatipour. Packing steiner

trees. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 266–274. Society for Industrial and Applied Mathematics, 2003.

69, 74, 78, 122, 123, 160

276

[41] Naveen Garg, Rohit Khandekar, Keshav Kunal, and Vinayaka Pandit. Bandwidth

maximization in multicasting. In Algorithms-ESA 2003, pages 242–253. Springer,

2003. 69

[42] Xunrui Yin, Xin Wang, Jin Zhao, Xiangyang Xue, and Zongpeng Li. On benefits

of network coding in bidirected networks and hyper-networks. In INFOCOM, 2012

Proceedings IEEE, pages 325–333. IEEE, 2012. 76, 97, 98, 177, 186, 225

[43] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972. 77,

117, 120, 163

[44] Miroslav Chlebík and Janka Chlebíková. The steiner tree problem on graphs: Inap-

proximability results. Theoretical Computer Science, 406(3):207–214, 2008. 77

[45] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An im-

proved lp-based approximation for steiner tree. In Proceedings of the forty-second

ACM symposium on Theory of computing, pages 583–592. ACM, 2010. 77

[46] Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In

Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages

585–594. ACM, 2003. 77

[47] Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto

Guha, and Ming Li. Approximation algorithms for directed steiner problems. Journal

of Algorithms, 33(1):73–91, 1999. 78

[48] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and

combinatorial optimization, volume 2. Springer Science & Business Media, 2012. 78

[49] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,

1956. 78, 171

[50] Robert Clay Prim. Shortest connection networks and some generalizations. Bell

system technical journal, 36(6):1389–1401, 1957. 78, 171

[51] R Kipp Martin. Using separation algorithms to generate mixed integer model refor-

mulations. Operations Research Letters, 10(3):119–128, 1991. 78, 171

277

[52] Yoeng-Jin Chu and Tseng-Hong Liu. On shortest arborescence of a directed graph.

Scientia Sinica, 14(10):1396, 1965. 78, 171

[53] Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau

of Standards B, 71(4):233–240, 1967. 78, 171

[54] Harold N Gabow and KS Manu. Packing algorithms for arborescences (and spanning

trees) in capacitated graphs. Mathematical Programming, 82(1-2):83–109, 1998. 78

[55] Michel X Goemans and Young-Soo Myung. A catalog of steiner tree formulations.

Networks, 23(1):19–28, 1993. 79, 120, 144, 164, 189, 215

[56] Yunnan Wu, Philip Chou, Kamal Jain, et al. A comparison of network coding and

tree packing. In Information Theory, 2004. ISIT 2004. Proceedings. International

Symposium on, page 143. IEEE, 2004. 80, 81, 103

[57] Leonidas Georgiadis. Bottleneck multicast trees in linear time. Communications

Letters, IEEE, 7(11):564–566, 2003. 81

[58] Shuo-Yen Robert Li, Raymond W Yeung, and Ning Cai. Linear network coding.

Information Theory, IEEE Transactions on, 49(2):371–381, 2003. 83, 92

[59] Ralf Koetter and Muriel Médard. An algebraic approach to network coding. Net-

working, IEEE/ACM Transactions on, 11(5):782–795, 2003. 83, 93, 221, 222, 252,

253

[60] Zongpeng Li, Baochun Li, Dan Jiang, and Lap Chi Lau. On achieving optimal end-

to-end throughput in data networks: Theoretical and empirical studies. Univ. of

Toronto, Dept. ECE, Tech. Rep, 2004. 83, 88, 89, 90, 129, 132, 134, 136

[61] Zongpeng Li and Baochun Li. Network coding in undirected networks. CISS, 2004.

90, 97, 98, 99, 139

[62] Zongpeng Li and Baochun Li. Efficient and distributed computation of maximum

multicast rates. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, volume 3, pages 1618–

1628. IEEE, 2005. 92

278

[63] Tracey Ho, David R Karger, Muriel Médard, and Ralf Koetter. Network coding

from a network flow perspective. In IEEE International Symposium on Information

Theory, pages 441–441, 2003. 93

[64] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi,

and Ben Leong. A random linear network coding approach to multicast. Information

Theory, IEEE Transactions on, 52(10):4413–4430, 2006. 93

[65] Sidharth Jaggi, Peter Sanders, Philip A Chou, Michelle Effros, Sebastian Egner,

Kamal Jain, and Ludo MGM Tolhuizen. Polynomial time algorithms for multicast

network code construction. Information Theory, IEEE Transactions on, 51(6):1973–

1982, 2005. 93, 222

[66] Michael Langberg, Alexander Sprintson, and Jehoshua Bruck. Network coding: a

computational perspective. Information Theory, IEEE Transactions on, 55(1):147–

157, 2009. 93

[67] Minkyu Kim, Muriel Médard, Varun Aggarwal, Una-May O’Reilly, Wonsik Kim,

Chang W Ahn, and Michelle Effros. Evolutionary approaches to minimizing net-

work coding resources. In INFOCOM 2007. 26th IEEE International Conference on

Computer Communications. IEEE, pages 1991–1999. IEEE, 2007. 93

[68] Christina Fragouli and Emina Soljanin. Information flow decomposition for network

coding. Information Theory, IEEE Transactions on, 52(3):829–848, 2006. 93

[69] Christina Fragouli and Emina Soljanin. A connection between network coding and

convolutional codes. In Communications, 2004 IEEE International Conference on,

volume 2, pages 661–666. IEEE, 2004. 93

[70] Sidharth Jaggi, Michelle Effros, T Ho, and Muriel Médard. On linear network coding.

In Proc. of the 42nd Allerton Conference, 2004. 93

[71] Shuo-Yen Robert Li and Raymond W Yeung. On convolutional network coding.

In Information Theory, 2006 IEEE International Symposium on, pages 1743–1747.

IEEE, 2006. 93

[72] Elona Erez and Meir Feder. Efficient network code design for cyclic networks. Infor-

mation Theory, IEEE Transactions on, 56(8):3862–3878, 2010. 93

279

[73] Michele Sanna and Ebroul Izquierdo. A survey of linear network coding and network

error correction code constructions and algorithms. International Journal of Digital

Multimedia Broadcasting, 2011, 2011. 94

[74] Jack Edmonds. Edge-disjoint branchings. Combinatorial algorithms, 9:91–96, 1973.

97

[75] H Bernhard, BH Korte, and J Vygen. Combinatorial optimization: Theory and

algorithms, 2008. 97, 98

[76] Zongpeng Li, Baochun Li, and Lap Chi Lau. A constant bound on throughput im-

provement of multicast network coding in undirected networks. Information Theory,

IEEE Transactions on, 55(3):1016–1026, 2009. 97, 98

[77] William Thomas Tutte. On the problem of decomposing a graph into n connected

factors. Journal of the London Mathematical Society, 1(1):221–230, 1961. 98

[78] C St JA Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the

London Mathematical Society, 1(1):445–450, 1961. 98

[79] Xunrui Yin, Yan Wang, Zongpeng Li, Xin Wang, Jin Zhao, and Xiangyang Xue.

Bounding the advantage of multicast network coding in general network models.

Communications, IEEE Transactions on, 62(3):1023–1032, 2014. 98, 186, 255

[80] András Frank. Edge-connection of graphs, digraphs, and hypergraphs. In More sets,

graphs and numbers, pages 93–141. Springer, 2006. 99

[81] Amit Agarwal and Moses Charikar. On the advantage of network coding for im-

proving network throughput. In Information Theory Workshop, 2004. IEEE, pages

247–249. IEEE, 2004. 99, 186

[82] Christina Fragouli and Emina Soljanin. Network coding fundamentals. Foundations

and Trends R© in Networking, 2(1):1–133, 2007. 99

[83] Peter Sanders, Sebastian Egner, and Ludo Tolhuizen. Polynomial time algorithms

for network information flow. In Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 286–294. ACM, 2003. 99, 100, 187,

225, 259

280

[84] Chi Kin Ngai and Raymond W Yeung. Network coding gain of combination networks.

In Information Theory Workshop, 2004. IEEE, pages 283–287. IEEE, 2004. 99, 100,

187, 225, 259

[85] Shreya Maheshwar, Zongpeng Li, and Baochun Li. Bounding the coding advantage

of combination network coding in undirected networks. Information Theory, IEEE

Transactions on, 58(2):570–584, 2012. 101, 187, 225

[86] Leonid Zosin and Samir Khuller. On directed steiner trees. In Proceedings of the thir-

teenth annual ACM-SIAM symposium on Discrete algorithms, pages 59–63. Society

for Industrial and Applied Mathematics, 2002. 102

[87] Chandra Chekuri, Christina Fragouli, and Emina Soljanin. On average through-

put and alphabet size in network coding. IEEE/ACM Transactions on Networking

(TON), 14(SI):2410–2424, 2006. 102

[88] Eric Gourdin and Yuhui Wang. Some further investigation on maximum through-

put: Does network coding really help? In Teletraffic Congress (ITC 24), 2012 24th

International, pages 1–8. IEEE, 2012. 103

[89] Mohamed Saad, Tamás Terlaky, Anthony Vannelli, and Hu Zhang. Packing trees

in communication networks. Journal of combinatorial optimization, 16(4):402–423,

2008. 117, 119

[90] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and

its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

117, 210, 244

[91] Jochen Könemann et al. Fast combinatorial algorithms for packing and covering

problems. 2000. 118

[92] José R Correa, Cristina G Fernandes, and Yoshiko Wakabayashi. Approximating

a class of combinatorial problems with rational objective function. Mathematical

programming, 124(1-2):255–269, 2010. 120

[93] Krzysztof Ciebiera, Piotr Godlewski, Piotr Sankowski, and Piotr Wygocki. Approxi-

mation algorithms for steiner tree problems based on universal solution frameworks.

arXiv preprint arXiv:1410.7534, 2014. 120, 124

281

[94] Lisa K Fleischer. Approximating fractional multicommodity flow independent of the

number of commodities. SIAM Journal on Discrete Mathematics, 13(4):505–520,

2000. 123

[95] Andreas Baltz and Anand Srivastav. Fast approximation of minimum multicast

congestion–implementation versus theory. RAIRO-Operations Research-Recherche

Opérationnelle, 38(4):319–344, 2004. 124

[96] Klaus Jansen and Hu Zhang. Approximation algorithms for general packing problems

and their application to the multicast congestion problem. Mathematical Program-

ming, 114(1):183–206, 2008. 124, 155

[97] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib

1.0—survivable network design library. Networks, 55(3):276–286, 2010. 143, 188,

228, 262

[98] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast

dynamic language for technical computing. 2012. arXiv preprint arXiv:1209.5145,

292, 2012. 144, 189, 228, 262

[99] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh

approach to numerical computin. arXiv preprint arXiv:1411.1607, 2014. 144, 189,

228, 262

[100] Miles Lubin and Iain Dunning. Computing in operations research using julia. IN-

FORMS Journal on Computing, 27(2):238–248, 2015. 144, 189, 228, 262

[101] Jeffrey T Linderoth and Ted K Ralphs. Noncommercial software for mixed-integer

linear programming. Integer Programming: Theory and Practice, 3:253–303, 2005.

144, 189, 229, 262

[102] Mohammad A Raayatpanah, H Salehi Fathabadi, Babak H Khalaj, and S Khodayifar.

Minimum cost multiple multicast network coding with quantized rates. Computer

Networks, 57(5):1113–1123, 2013. 154

[103] Santosh Vempala and Berthold Vöcking. Approximating multicast congestion. In

Algorithms and Computation, pages 367–372. Springer, 1999. 155

282

[104] Qiang Lu and Hu Zhang. Implementation of approximation algorithms for the mul-

ticast congestion problem. In Experimental and Efficient Algorithms, pages 152–164.

Springer, 2005. 155

[105] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004. 159, 177

[106] Adamou Ouorou, Philippe Mahey, and J-Ph Vial. A survey of algorithms for convex

multicommodity flow problems. Management Science, 46(1):126–147, 2000. 159, 167,

173, 182

[107] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks, vol-

ume 2. Prentice-Hall International New Jersey, 1992. 159

[108] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval

research logistics quarterly, 3(1-2):95–110, 1956. 167

[109] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In

Proceedings of the 30th International Conference on Machine Learning (ICML-13),

pages 427–435, 2013. 167, 170, 181

[110] Masao Fukushima. A modified frank-wolfe algorithm for solving the traffic assignment

problem. Transportation Research Part B: Methodological, 18(2):169–177, 1984. 167

[111] Dimitri P Bertsekas. Nonlinear programming. 1999. 167, 173, 182

[112] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan Marakada Shetty. Nonlinear

programming: theory and algorithms. John Wiley & Sons, 2013. 169, 180, 189

[113] Jo Bo Rosen. The gradient projection method for nonlinear programming. part

i. linear constraints. Journal of the Society for Industrial & Applied Mathematics,

8(1):181–217, 1960. 173, 182

[114] Dimitri P Bertsekas, Bob Gendron, and Wei Kang Tsai. Implementation of an optimal

multicommodity network flow algorithm based on gradient projection and a path flow

formulation. Technical report, DTIC Document, 1984. 173, 182

[115] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks, vol-

ume 2. Prentice-hall Englewood Cliffs, NJ, 1987. 173, 182

283

[116] Desmond S Lun, Niranjan Ratnakar, Muriel Médard, Ralf Koetter, David R Karger,

Tracey Ho, Ebad Ahmed, and Fang Zhao. Minimum-cost multicast over coded packet

networks. Information Theory, IEEE Transactions on, 52(6):2608–2623, 2006. 176,

177, 197

[117] Sandeep Bhadra, Sanjay Shakkottai, and Piyush Gupta. Min-cost selfish multicast

with network coding. Information Theory, IEEE Transactions on, 52(11):5077–5087,

2006. 177

[118] Desmond S Lun, Niranjan Ratnakar, Ralf Koetter, Muriel Médard, Erfan Ahmed,

and Hyunjoo Lee. Achieving minimum-cost multicast: A decentralized approach

based on network coding. In INFOCOM 2005. 24th Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings IEEE, volume 3, pages

1607–1617. IEEE, 2005. 197

[119] Sebastian Orlowski and Michal Pióro. On the complexity of column generation in

survivable network design with path-based survivability mechanisms. Zuse Institute

Berlin and Warsaw University of Technology, Tech. Rep, 2008. 201

[120] Sebastian Orlowski and Michał Pióro. Complexity of column generation in network

design with path-based survivability mechanisms. Networks, 59(1):132–147, 2012.

201

[121] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeo-

morphism problem. Theoretical Computer Science, 10(2):111–121, 1980. 206

[122] Craig A Tovey. A simplified np-complete satisfiability problem. Discrete Applied

Mathematics, 8(1):85–89, 1984. 208

[123] Dritan Nace, Michał Pióro, Artur Tomaszewski, and Mateusz Żotkiewicz. Complexity

of a classical flow restoration problem. Networks, 62(2):149–160, 2013. 210, 244

[124] Yigal Bejerano, Suman Jana, and Pramod V Koppol. Efficient construction of di-

rected redundant steiner trees. In Local Computer Networks (LCN), 2012 IEEE 37th

Conference on, pages 119–127. IEEE, 2012. 212

[125] Muriel Médard, Steven G Finn, and Richard A Barry. Redundant trees for preplanned

recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Trans-

actions on Networking (TON), 7(5):641–652, 1999. 212

284

[126] Yigal Bejerano and Pramod V Koppol. Link-coloring based scheme for multicast and

unicast protection. In High Performance Switching and Routing (HPSR), 2013 IEEE

14th International Conference on, pages 21–28. IEEE, 2013. 212

[127] Yigal Bejerano and Pramod V Koppol. Optimal construction of redundant multicast

trees in directed graphs. In INFOCOM 2009, IEEE, pages 2696–2700. IEEE, 2009.

213

[128] Fang Li and Wangmei Guo. An efficient polynomial time algorithm for robust mul-

ticast network code construction. Communications Letters, IEEE, 19(2):143–146,

2015. 222

[129] Yash P Aneja, R Chandrasekaran, and KPK Nair. Maximizing residual flow under

an arc destruction. Networks, 38(4):194–198, 2001. 238, 239, 252

[130] Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian Stiller. Robust and adaptive

network flows. Operations Research, 61(5):1218–1242, 2013. 239

[131] Dimitris Bertsimas, Ebrahim Nasrabadi, and James B Orlin. On the power of ran-

domization in network interdiction. arXiv preprint arXiv:1312.3478, 2013. 239

[132] Michael R Garey and David S Johnson. Computers and intractability, volume 29.

wh freeman New York, 2002. 290

[133] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. Springer,

2005. 291

[134] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,

1998. 292

[135] Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms

for fractional packing and covering problems. Mathematics of Operations Research,

20(2):257–301, 1995. 305

[136] Maurice Sion et al. On general minimax theorems. Pacific J. Math, 8(1):171–176,

1958. 305

285

286

Appendix A

Basics of linear programming

A.1 Linear programming

A.1.1 A brief history

We first quickly review the history of linear programming. This field, also referred

to as linear optimization in the literature, is concerned with the maximization (or the

minimization) of a linear mapping over the sub-set of a vector space induced by a set of

linear inequalities. It takes its roots around 1940, in the pioneering works of Kantorovich,

Koopmans and Hitchcock on some economic-related problems. Linear optimization was

later extended by Dantzig, who proposed, in 1947, the so-called simplex algorithm as a

generic method to solve the main problem of this field. In 1979, Khachiyan introduced the

ellipsoid algorithm as the first method to solve linear programming problems in polynomial

time with respect to the instance size. A major breakthrough in the field came from

the interior point method devised by Karmarkar in 1984. Linear programming currently

remains a very active research field while enjoying a wide use in industrial and economic

applications.

A.1.2 Problem statement

We shall focus on the case where the linear mapping is to be maximized, without

loss of generality, since switching between maximization and minimization of a function

φ over a set X is a matter of replacing said function by its opposite, minx∈X φ(x) =

−maxx∈X −φ(x). An instance of a linear optimization problem is made of a vector c ∈ Rn,

287

a vector b ∈ Rm and a matrix A ∈ Rm×n where m and n are two positive integers. The task

at hand is to find a non-negative vector x ∈ Rn satisfying the inequalities Ax ≤ b and such

that the quantity cTx is as large as possible (where T denotes the transpose operator). The

vector x can be regarded as a collection of variables to be adjusted so as to maximize the

value cTx, it is often referred to as the variable vector. A non-negative vector x is feasible,

or a feasible solution, if it satisfies each linear inequality, also referred to as a constraint,

induced by the overall inequalities Ax ≤ b. Let X be the set of all feasible vectors, for this

peculiar instance of the optimization problem. For the sake of simplicity, we shall assume

in what follows that this set is non-empty so that the optimization problem has at least

one feasible solution with respect to the considered instance. It is possible to formalize a

generic linear maximization problem as follows:

Problem Generic linear programming (canonical form)
Instance Objective vector c ∈ Rn, constraints vector b ∈ Rm,

and constraints matrix A ∈ Rm×n

Solution A feasible vector x ∈ X = {x ∈ Rn : Ax ≤ b}
Objective Maximize the value cTx of vector x

In the following, we denote by z∗ the value of a maximum feasible vector x∗ for the

considered instance. Such a vector x∗ is an optimal solution to (this instance of) the

problem. The overall optimization problem can be summarized thanks to the following

notation, referred to as the linear program associated to this formulation of the problem:

z∗ = max cTx (A.1)

s.t. Ax ≤ b (A.2)

x ≥ 0 (A.3)

A.1.3 Duality

We shall refer to the previous maximization problem as the primal problem. To this

linear optimization problem can be associated another one, called the dual problem, and

288

whose linear program is:

d∗ = min bT y (A.4)

s.t. AT y ≥ c (A.5)

y ≥ 0 (A.6)

Here, the non-negative vector y ∈ Rm is the collection of all variables, where the objective

is to minimize the quantity bT y over the set defined by the inequality AT y ≥ c. In the

following, we shall further assume that the dual problem is feasible. Let x, respectively y,

be a feasible solution to the primal, respectively dual, problem. The weak duality theorem

states that the corresponding objective value of the primal problem is not greater than the

one of the dual problem:

cTx ≤ (AT y)Tx = (Ax)T y ≤ bT y (A.7)

where the first, respectively second, inequality comes from the feasibility of y, respectively

x, with respect to the dual, respectively primal, problem combined with the non-negativity

of x, respectively y. The strong duality theorem further states that, for a couple (x∗, y∗)

of optimal primal/dual vectors, the primal solution value actually equals the dual solution

value, namely cTx∗ = bT y∗. Finally, observe that the dual problem can also be modelled

by the following linear program:

d∗ = −max −bT y (A.8)

s.t. (−A)T y ≤ −c (A.9)

y ≥ 0 (A.10)

Applying the previous dual transformation to this last linear program yields the subsequent

one:

z∗ = −min −cTx (A.11)

s.t. −Ax ≥ −b (A.12)

x ≥ 0 (A.13)

which is nothing but a reformulation of the primal problem. Hence, the dual problem of

the dual problem is the primal problem. Given a pair of primal/dual problems, each of

those two roles is rather a matter of convention.

289

A.1.4 Integer linear programming

We may also have to deal with integer linear programming. A problem of this class

is obtained from a linear optimization problem by imposing that each component of a

candidate solution x is integer:

z∗ = max cTx (A.14)

s.t. Ax ≤ b (A.15)

x ∈ Zn+ (A.16)

The linear program obtained by replacing the set of integrality constraints x ∈ Zn+ by

x ∈ Rn+ is called the continuous relaxation of the integer programming problem. If only

a subset among all components of vector x are restricted to lie in Z+, one gets a mixed

integer linear programming problem. Since those integrality requirements actually break

the structure of the generic linear program (the set of all feasible solutions is no longer

convex), it should not be surprising to find that a (mixed) integer linear programming

problem is usually considerably harder to solve than its continuous counterpart. Actually,

given a matrix A ∈ Rm×n and a vector b ∈ Rm, the problem of deciding whether there exists

a binary vector x satisfying the inequality Ax ≤ b is already NP-hard in the strong sense

[132]. Although this rules out the possibility to find an algorithm running in polynomial

time to solve any generic integer linear programming problem (unless P = NP), practically

efficient methods to solve, or at least to approximate, this class of problems have been

devised in the last decades. A very popular one is the so-called branch and bound approach,

which often rests on the ability to solve efficiently the continuous relaxation of the integer

programming problem.

A.1.5 Column generation

We shall now briefly describe this method with an emphasis on its application to our

problem. Consider the following generic linear program:

max cTx (A.17)

s.t. Ax ≤ b (A.18)

x ≥ 0 (A.19)

290

where we assume that the number of components of vector x is too huge to cope with

explicitly, while the number of linear inequalities induced by Constraints (A.18) remains

tractable (read polynomial in the instance size). The dual of this linear program is:

min bT y (A.20)

s.t. AT y ≥ c (A.21)

y ≥ 0 (A.22)

Given vector y, the separation problem associated to the dual program, also referred to as

the pricing problem, is to decide whether Constraints (A.21) are all satisfied by vector y.

Defining the vector of reduced costs as c−AT y, the pricing problem amounts to look for a

positive component of this last vector. Observe that, by duality, there is one such constraint

for each component of vector x, hence there is a gigantic number of dual constraints to

check.

We shall now describe the column generation algorithm. The main idea is to work

with a restricted subset of all primal variables (the components of vector x). Initialization

is performed by looking for a feasible primal solution x. We implicitly assume that this

solution uses only a small subset of active variables. Let y be the corresponding dual vector.

The next step is to solve the pricing problem with vector y. A violated constraint in the dual

induces a variable, or column (of matrixA), to be added to the set of active variables. If such

a violated constraint is found, update the set of active variables accordingly and solve the

new primal problem thus obtained. Repeat the previous procedure until the current dual

vector is feasible with respect to Constraints (A.21), which means that the vector of reduced

costs is non-positive. In this last case, we get a feasible solution x to the primal problem,

and a feasible solution y to the dual problem, satisfying the complementary slackness

conditions. By linear programming duality, x is an optimal solution to the primal problem

so the procedure stops and returns x. Observe that although this method eventually returns

a feasible solution, assuming the primal problem is feasible, it may involve an exponential

number of iterations. The reader interested in a more detailed presentation of the column

generation method and its applications is referred to consult any book on this topic, [133]

for example.

291

A.1.6 Summary

Linear programming is our core tool to model and compare the various optimization

problems encountered along the manuscript. In some situations, linear programming is

actually our only way to properly define a problem while avoiding intricate troubles. Fur-

thermore, formulating an optimization problem as a linear program immediately provides

powerful tools, like the aforementioned theory of duality, along with efficient and well-

understood algorithms and methods. We refer the interested reader to the various books

dealing with linear programming, like Schrijver’s comprehensive treatise of the topic [134].

A.2 Linear programming and the maximum flow problem

We prove that the arc formulation and the path formulation of the maximum flow

problem are equivalent in that both yield the same optimal value. Given a flow x under

path formulation, define a flow f under arc formulation by setting:

fa =
∑

p∈Pa

xp (A.23)

We first prove that f is a feasible flow with respect to the arc formulation. It should

be clear that vector f satisfies the capacity requirements assuming that vector x does.

Furthermore, for any vertex v different from the source s or the receiver r:

∑

a∈δ−(v)

fa =
∑

a∈δ−(v)

∑

p∈Pa

xp (A.24)

=
∑

p∈P

∑

a∈δ−(v)∩p

xp (A.25)

=
∑

p∈P

∑

a∈δ+(v)∩p

xp (A.26)

=
∑

a∈δ+(v)

∑

p∈Pa

xp (A.27)

=
∑

a∈δ+(v)

fa (A.28)

with the convention that a sum over the empty set equals 0. The first and the last equalities

come from Equation (A.23), while the third equality results from the simple fact that for

any path p the sets δ−(v) ∩ p and δ+(v) ∩ p are either simultaneously empty or singletons

292

(recall that v is distinct from s and r). Thus, vector f also satisfies all conservation

constraints. Moreover we have:

|f | =
∑

a∈δ+(s)

fa −
∑

a∈δ−(s)

fa (A.29)

=
∑

a∈δ+(s)

∑

p∈Pa

xp −
∑

a∈δ−(s)

∑

p∈Pa

xp (A.30)

=
∑

p∈P

(
∑

a∈δ+(s)∩p

xp −
∑

a∈δ−(s)∩p

xp) (A.31)

=
∑

p∈P

xp (A.32)

= |x| (A.33)

where the second equality comes from Equation (A.23) and the fourth one can be deduced

by observing that any path p uses exactly one arc to leave the source and never comes back

to it since p is loop-free. Hence, the value of vector f equals the one of vector x. Combining

all previous results, it is always possible to define a feasible solution f to the arc formulation

from a feasible solution x to the path formulation, such that the value of f equals the one of

x. Therefore, the value ϕF of a maximum flow with respect to the arc formulation is greater

than, or equal to, the value ϕP of a maximum flow with respect to the path formulation.

We will use the theory of duality in linear programming to justify the other inequality. We

first provide the dual of each formulation of the maximum flow problem, starting with the

arc formulation. Let y be the dual vector associated to Constraints (2.7), and let z be the

one associated to Constraints (2.8). The dual of the linear program associated to the arc

formulation is:

ϕF = min
∑

(u,v)∈A

c(u,v)y(u,v) (A.34)

s.t. zr − zs ≥ 1 (A.35)

y(u,v) + zu − zv ≥ 0 ∀(u, v) ∈ A (A.36)

y(u,v) ≥ 0 ∀(u, v) ∈ A (A.37)

zv ∈ R ∀v ∈ V (A.38)

293

We also consider the dual of the linear program associated to the path formulation:

ϕP = min
∑

a∈A

caya (A.39)

s.t.
∑

a∈p

ya ≥ 1 ∀p ∈ P (A.40)

ya ≥ 0 ∀a ∈ A (A.41)

where y is the vector of dual variables associated to Constraints (2.18). Consider an optimal

solution y to the dual of the linear program associated to the path formulation. By strong

duality applied to the primal / dual path formulation linear programs, the value of y is

exactly the one of a maximum flow with respect to the path formulation, namely ϕP . To

define a feasible solution to the dual of the linear program associated to the arc formulation,

just keep the vector y and, for any vertex v, set the value of variable zv to the length of

a shortest path from the source s to v, with length ya on each arc a. By definition of

a shortest path one has zv ≤ zu + y(u,v) for any arc (u, v) and thus Constraints (A.36)

are satisfied. From Constraints (A.40), the value of a shortest path from the source s

to the receiver r is at least 1. This implies zr ≥ 1. Also notice that zs = 0. Hence,

Constraint (A.35) is satisfied. Finally (y, z) is a feasible solution to the dual of the linear

program associated to the arc formulation with the same value as y, namely ϕP . This

implies that ϕF ≤ ϕP by weak duality applied to the primal / dual arc formulation linear

programs. Finally ϕF = ϕP .

294

Appendix B

Approximation algorithms

B.1 The framework of Garg and Könemann

The presentation below is directly inspired from [21].

B.1.1 Reformulation of the covering problem

We will use the following reformulation of the covering problem. Given covering variable

vector y, we denote by D(y) = bT y its corresponding value. Let β be the optimal value of

the following problem:

β = min
y≥0

{

D(y)

σ(y)

}

(B.1)

The next lemma shows that this last problem is actually a reformulation of the covering

problem.

Lemma 17. Given an optimal solution y∗ to the covering problem, we have β = D(y∗).

Proof. Let y∗ be an optimal solution to the covering problem. Since σ(y∗) ≥ 1 by feasibility

of y∗ we get D(y∗) ≥ D(y∗)
σ(y∗) ≥ β. Now, let y be a non-negative vector such that β = D(y)

σ(y) .

From our previous assumption on the feasibility of the covering problem, the quantity β is

finite, hence σ(y) > 0. Without loss of generality we can assume σ(y) = 1 since otherwise

we could just divide y by σ(y) to obtain a new solution where this assumption is satisfied.

Hence, y is a feasible solution to the covering problem and we get β = D(y) ≥ D(y∗).

295

B.1.2 Framework of the algorithm

Assume we have an approximation algorithm which, given a dual vector y, returns a

column q such that ATq y/cq ≤ ασ(y). We now describe how to alter the method origi-

nally proposed by Garg and Könemann to get an approximation algorithm for the packing

problem, using the aforementioned approximation algorithm as a subroutine.

Let δ and ǫ be two positive real numbers whose values will be suitably chosen later.

The algorithm proceeds in iterations which we index by l. Start from the primal solution

x(0) = 0 and the potentially infeasible dual solution y(0)i = δ/bi for all i. In iteration l, the

algorithm first looks for a provably good column q of A by making a call to the oracle sub-

routine with input y(l−1). Observe that, even if the dual constraint corresponding to column

q is not violated, there is no guarantee that all dual constraints are satisfied, unless α = 1.

The algorithm then determines a row p of A such that bp/A(p, q) = mini∈I{bi/A(i, q)} and

increases xq by bp/A(p, q). Hence, the algorithm increases the value of variable xq as much

as possible without violating any constraint in the original packing problem. Observe that

this increase in iteration l is independent from the choices made by the algorithm at previ-

ous iterations, which implies that the primal vector x is likely to be infeasible with respect

to the packing constraints. Let z(l) be the value of the primal vector constructed by the

algorithm at the end of iteration l. Thus z(l) = z(l−1) + cqbp/A(p, q) holds with z(0) = 0.

The dual solution y is updated by setting for all i

y
(l)
i = y

(l−1)
i

(

1 + ǫ
bp/A(p, q)

bi/A(i, q)

)

(B.2)

For brevity, we use the notation D(l) = D(y(l)) and σ(l) = σ(y(l)) for each iteration l. The

procedure terminates after τ iterations, where τ is the smallest integer such that D(τ) ≥ 1.

Observe once again that the resulting primal vector is likely to be infeasible with respect

to the packing constraints. In order to get a feasible solution to the packing problem, we

will scale the vector returned by the algorithm by a suitable value, as emphasized by the

next lemma.

Lemma 18. The vector obtained by scaling down by a factor of log1+ǫ(
1+ǫ
δ) the vector x

returned by the previous algorithm is a feasible solution to the packing problem.

296

Proof. We show that the scaled vector satisfies the packing constraints. When, at iteration

l, the algorithm picks column q and increases variable xq by the amount bp/A(p, q), the

left-hand-side of the ith primal constraint is increased by bpA(i, q)/A(p, q) for each i. By

definition of p this last quantity is upper-bounded by bi, or equivalently the quantity

ν
(l)
i = bpA(i, q)/biA(p, q) satisfies ν(l)i ≤ 1. Simultaneously, the dual variable yi is multiplied

by a factor 1+ ǫνi. Since for any ν such that 0 ≤ ν ≤ 1, 1+ ǫν ≥ (1+ ǫ)ν (using the Taylor

series of (1 + ǫ)ν), we get:

τ
∏

l=1

(1 + ǫν
(l)
i) ≥ (1 + ǫ)

∑τ
l=1 ν

(l)
i (B.3)

At iteration l, the ith dual variable increases by a factor 1 + ǫν
(l)
i which is smaller than

1 + ǫ since ν(l)i ≤ 1. Initially y(0)i = δ/bi. After τ − 1 iterations, we have by definition of

τ , biy
(τ−1)
i ≤ D(τ − 1) < 1 (since bi ≥ 0 for each i), hence y(τ−1)

i < 1/bi which implies

y
(τ)
i < (1 + ǫ)/bi. The value of the left-hand-side of the ith packing constraint at the end

of the algorithm is equal to
∑τ

l=1 ν
(l)
i bi. Moreover,

y
(τ)
i = y

(0)
i

τ
∏

l=1

(1 + ǫν
(l)
i) (B.4)

hence, from the definition of y(0)i :

τ
∏

l=1

(1 + ǫν
(l)
i) =

y
(τ)
i

y
(0)
i

<
1 + ǫ

δ
(B.5)

which, combined with Equation (B.3), directly implies that:

τ
∑

l=1

ν
(l)
i < log1+ǫ(

1 + ǫ

δ
) (B.6)

Therefore, the left-hand-side of the ith packing constraint is at most bi log1+ǫ((1 + ǫ)/δ),

and scaling down the vector returned by the algorithm by log1+ǫ((1+ ǫ)/δ) gives a feasible

solution to the packing problem.

B.1.3 Approximation guarantee

The next lemma states that the feasible solution to the packing problem obtained after

scaling has almost the same guarantee on its quality than the guarantee provided by the

oracle used as a subroutine.

297

Lemma 19. Given an oracle with ratio α to solve the separation problem (associated to the

covering problem), the algorithm can be tuned to return a feasible solution to the packing

problem whose value is no less than (1− ω)/α times the optimal one, where ω is any fixed

positive real number.

Proof. Let α be the quality ratio guaranteed by the subroutine. We first show that β/z(τ) ≤

αǫ/ ln((mδ)−1). At iteration l ≥ 1, we have:

D(l) =
∑

i∈I

biy
(l)
i (B.7)

=
∑

i∈I

biy
(l−1)
i + ǫ

bp
A(p, q)

∑

i∈I

A(i, q)y
(l−1)
i (B.8)

= D(l − 1) + ǫ(z(l) − z(l−1))ATq y
(l−1)/cq (B.9)

≤ D(l − 1) + αǫ(z(l) − z(l−1))σ(l − 1) (B.10)

where the inequality comes from the approximation guarantee of the subroutine. By in-

duction on l, we have:

D(l) ≤ D(0) + αǫ
l
∑

h=1

(z(h) − z(h−1))σ(h− 1) (B.11)

Since D(0) = mδ and, by definition of β, for each iteration l, β ≤ D(l)/σ(l) we get the

following recurrence relation:

D(l) ≤ mδ +
αǫ

β

l
∑

h=1

(z(h) − z(h−1))D(h− 1) (B.12)

Let η be the sequence defined by η(0) = mδ and for each l ∈ [τ]:

η(l) = mδ +
αǫ

β

l
∑

h=1

(z(h) − z(h−1))η(h− 1) (B.13)

By induction on l, we have D(l) ≤ η(l). Furthermore:

η(l) = mδ +
αǫ

β

l−1
∑

h=1

(z(h) − z(h−1))η(h− 1) +
αǫ

β
(z(l) − z(l−1))η(l − 1) (B.14)

= (1 +
αǫ

β
(z(l) − z(l−1)))η(l − 1) (B.15)

≤ η(l − 1) exp(
αǫ

β
(z(l) − z(l−1))) (B.16)

298

where the inequality comes from the inequality 1 + h ≤ exp(h) which holds for any h ≥ 0.

By induction on l, we get η(l) ≤ mδ exp(αǫβ z
(l)). Hence D(l) ≤ mδ exp(αǫβ z

(l)). By our

stopping condition:

1 ≤ D(τ) ≤ mδ exp(
αǫ

β
z(τ)) (B.17)

which directly leads to the claimed upper bound.

We now use this result to establish our lemma. Let γ be the ratio of the value of the

optimal solution to the covering problem over the value of the scaled feasible primal solution

returned by the algorithm. By substituting our bound on β/z(τ) we get from Lemma 17:

γ =
β log1+ǫ(

1+ǫ
δ)

z(τ)
≤

αǫ ln(1+ǫδ)

ln(1 + ǫ) ln((mδ)−1)
(B.18)

By choosing δ = (1 + ǫ)[(1 + ǫ)m]−1/ǫ we obtain ln((1 + ǫ)/δ)/ ln((mδ)−1) = (1 − ǫ)−1

which leads to:

γ ≤
αǫ

(1− ǫ) ln(1 + ǫ)
≤

αǫ

(1− ǫ)(ǫ− ǫ2

2)
≤

α

(1− ǫ)2
(B.19)

where the second inequality, which is valid for any ǫ ∈]0, 1[, comes from the Taylor series

of ln(1 + ǫ). Hence, we choose ǫ such that (1− ǫ)−2 ≤ 1 + ω, so that the scaled solution is

an (1− ω)/α approximation to the packing problem, where ω is any desired accuracy.

Notice that, if the subroutine is a PTAS (respectively FPTAS), we can choose α = 1+ǫ

as accuracy of the approximation algorithm. By setting δ = (1 + ǫ)[(1 + ǫ)m]−1/ǫ2 instead

of the value used in the above proof, we get γ ≤ (1 − ǫ)−2 ≤ 1 + ω which gives a PTAS

(respectively FPTAS) for the packing problem.

B.1.4 Running time

The next lemma shows that the algorithm runs in time polynomial in the size of the

input, provided the oracle runs in polynomial time.

Lemma 20. The algorithm terminates after at most O(m⌈log1+ǫ(δ
−1)⌉) iterations. Hence,

its overall complexity is O(ω−2m log(m)TOracle), where TOracle is the time required to

approximately solve the dual separation problem by calling the oracle, and ω is the desired

accuracy.

299

Proof. Initially y
(0)
i = δ/bi for each i. The last time the value of the dual variable yi

was increased, its value just before the update was less than 1/bi, otherwise we could not

have D(τ − 1) < 1. Since the algorithm increases it by a factor at most 1 + ǫ, the final

value of the dual variable yi does not exceed (1 + ǫ)/bi. Each time one packing constraint

is saturated (which happens at each iteration), the corresponding dual variable value is

increased by a factor exactly 1 + ǫ. Thus, this can happen at most ⌈log1+ǫ(
1
δ)⌉ times for

each dual variable. Since there are m dual variables, the total number of iterations is at

most m⌈log1+ǫ(
1
δ)⌉. From δ = (1 + ǫ)[(1 + ǫ)m]−1/ǫ combined with ǫ = 1 − (1 + ω)−1/2,

the number of iterations is upper-bounded by O(ω−2m log(m)). The algorithm performs

one call to the oracle at each iteration. The overall complexity follows.

B.1.5 Algorithm

Algorithm 4 below provides the corresponding pseudo-code:

Algorithm 4 : the Garg-Könemann framework for packing problems

Input: An oracle to compute an α-approximate solution to the dual separation problem
induced by matrix A and vector c, vector b, accuracy ω;

Output: An (1−ω)/α-approximated feasible solution x of value z to the packing problem;

1. Define ǫ = 1− (1 + ω)−1/2, δ = (1 + ǫ)((1 + ǫ)m)−1/ǫ;
2. Initialize yi = δ/bi, x = 0, z = 0;
3. while bT y < 1 do

4. Call the oracle to find column q such that ATq y/cq ≤ ασ(y);
5. Compute row p which minimizes bi/A(i, q) over all rows i ∈ I;
6. Update primal vector x, xq = xq+ bp/A(p, q) and primal value z = z+ cqbp/A(p, q);

7. Update dual vector y, yi = yi(1 + ǫ
bpA(i,q)
biA(p,q)

) for each row i ∈ I;
8. end while

9. Scale variables xj = xj/ log1+ǫ(
1+ǫ
δ) for each j ∈ J and value z = z/ log1+ǫ(

1+ǫ
δ);

10. Return x and z.

300

B.2 The framework of Fleischer and Wayne

The presentation below is directly inspired from [22].

B.2.1 A reformulation of the dual problem

Given a dual variable vector (y, z), we define D(y) = bT y and σ(z) = dT z. For any

non-negative vector y we can define a new vector z(y) by setting z(y)k = minj∈Ck{ATj y}.

Notice that vector z(y) is non-negative provided that vector y is itself non-negative. In

the following we use the notation σ(y) = σ(z(y)) and we focus on vector y. Let β be the

optimal value of the following problem:

β = min
y≥0

{

D(y)

σ(y)

}

(B.20)

The next lemma shows that this last problem is actually a reformulation of the dual of the

max-min resource sharing problem.

Lemma 21. Given an optimal solution (y∗, z∗) to the dual problem, we have β = D(y∗).

Proof. Let (y∗, z∗) be an optimal solution to the dual problem. We clearly have AT y∗ ≥

HT z(y∗). Furthermore, dT z(y∗) ≥ dT z∗ = 1 thus dT z(y∗) > 0. Without loss of generality,

we can assume that dT z(y∗) = 1 since otherwise we could just divide vector y∗ by dT z(y∗)

to get a new vector satisfying this assumption. We get D(y∗) = D(y∗)
σ(y∗) so that D(y∗) ≥ β.

Now, let y be a non-negative vector such that β = D(y)
σ(y) . From the inequality D(y∗) ≥ β

combined with the assumption on the feasibility of the dual problem, the quantity β is

finite, hence σ(y) > 0. We assume again that σ(y) = 1, without loss of generality since

we can scale vector y by dT z(y) so that this assumption is satisfied, while preserving the

optimality of the scaled vector. Since AT y ≥ HT z(y), the couple of vectors (y, z(y)) is a

feasible solution to the dual problem with value D(y) = D(y)
σ(y) = β. Thus β ≥ D(y∗).

B.2.2 Framework of the algorithm

Assume we have an approximation algorithm which, given a dual variable vector y,

returns a column q such that ATq y ≤ αminj∈J{A
T
j y}. We now describe how to incorporate

301

this approximation algorithm as a subroutine in a method to approximately solve the

max-min resource sharing problem.

Again, we use two positive real numbers δ and ǫ whose values will be suitably chosen

later. The algorithm works in phases, indexed by l, each phase consisting of as many

iterations as the number of commodities. Hence, iterations are indexed by k. Start from

primal vector x(0) = 0 and dual vector y(0)i = δ/bi for all i. We will fix the value of the

variable λ at the end of the algorithm. At phase l, for each commodity k, we perform as

many steps as required to distribute an amount dk over a subset of columns of matrix A.

More precisely, we start iteration k of phase l by setting the remaining demand ̺k to dk.

While ̺k remains positive, the algorithm first calls the oracle to find a column q such that

ATq y ≤ αminj∈Ck{ATj y} where y is the current dual vector. The algorithm then looks for a

row p minimizing bi/A(i, q). Let ν = min{̺k, bp/A(p, q)}. The algorithm increases primal

variable xq by ν, decreases remaining demand ̺k by ν, and updates dual variable yi for all

i according to the following equation:

yi = yi

(

1 + ǫν
A(i, q)

bi

)

(B.21)

Once ̺k is set to 0 we are done with iteration k. Phase l ends when we have taken

care of all commodities. The procedure terminates as soon as D(y) ≥ 1. In the sequel,

we denote by τ the corresponding phase. At the end of this procedure, the algorithm

performs one last call to the oracle for each commodity k, to compute column qk such that

AT
qk
y ≤ αminj∈Ck

{ATj y}. Define zk = AT
qk
y/α for each commodity k (although we define

zk at the end of each step, we only need to compute vector z at the end of the procedure).

Scaling both y and z by dT z if this last quantity is smaller than 1, we obtain a feasible

dual solution (y, z). In the first τ − 1 phases, for each commodity k, the overall demand

is dk(τ − 1) since, at the end of each phase, the algorithm ensures ̺k = 0 for every k.

Hence, at the end of the procedure Hkx ≥ dk(τ − 1) for every commodity k. Fix λ at

mink∈K{Hkx/dk}. From the previous remark, we have λ ≥ τ − 1. For brevity, we still use

the notation D(l) = D(y(l)) and σ(l) = σ(y(l)) for each phase l. In order to get a feasible

solution to the primal problem, we will scale the vector x returned by the algorithm and

the value of variable λ by a suitable value, as emphasized by the next lemma.

302

Lemma 22. Scaling down by a factor of log1+ǫ(
1
δ) both the vector x returned by the previous

algorithm and the value of variable λ, as defined above, gives a feasible solution to the max-

min resource sharing problem.

Proof. The argument is similar to the one used in the proof of Lemma 18. When the algo-

rithm increases the value of variable xq by bp/A(p, q), the left-hand-side of the ith packing

constraint (corresponding to the ith row of matrix A) increases by bpA(i, q)/biA(p, q) which

is less than one by definition of p. Each increase in the left-hand-side of the ith packing

constraint by 1 causes dual variable yi to be multiplied by at least 1+ǫ. Since D(τ−1) < 1,

y
(τ−1)
i < 1/bi for each i. From y

(0)
i = δ/bi, we get that the value of the left-hand-side of

the ith constraint after τ − 1 phases is at most bi log1+ǫ(1/δ). This holds for all primal

packing constraints, hence scaling down by log1+ǫ(1/δ) the primal vector x, returned by

the algorithm after τ − 1 phases, gives a new vector satisfying those packing constraints.

Scaling λ by the same value maintains the validity of the fairness constraints dλ ≤ Hx,

which concludes the proof.

B.2.3 Approximation guarantee

The next lemma states that the feasible solution to the primal problem, obtained after

scaling, has almost the same guarantee on its quality than the guarantee provided by the

oracle used as a subroutine.

Lemma 23. Given an oracle with ratio α to solve the dual separation problem for a fixed

commodity, the proposed algorithm can be tuned to return a feasible solution to the primal

problem whose value is no less than (1−ω)/α times the optimal one, where ω is any given

positive real number.

Proof. Let α be the quality ratio guaranteed by the subroutine. Assuming β ≥ α (we shall

remove this assumption later), we show that β/(τ − 1) ≤ αǫ/[(1− ǫ) ln((1− ǫ)/(mδ))]. Let

y(l,k,s) and z(l,k,s) be the value of the dual vectors y and z, respectively, at the end of step

s in iteration k of phase l. Denote by ν(l,k,s) the increment amount in this step (recall that

ν = min{̺k, bp/A(p, q)}). Let also y(l,k) and z(l,k) be respectively the values of the dual

303

vectors y and z at the end of iteration k. At the end of step s, it holds that:

D(y(l,k,s)) =
∑

i∈I

biy
(l,k,s)
i (B.22)

=
∑

i∈I

biy
(l,k,s−1)
i + ǫν(l,k,s)

∑

i∈I

Aiqky
(l,k,s−1)
i (B.23)

= D(y(l,k,s−1)) + ǫν(l,k,s)ATqky
(l,k,s−1) (B.24)

= D(y(l,k,s−1)) + αǫν(l,k,s)z(l,k,s−1) (B.25)

Observe that y is monotonically increasing throughout any iteration and hence so is z. We

get:

D(y(l,k,s)) ≤ D(y(l,k,s−1)) + αǫν(l,k,s)z(l,k) (B.26)

From
∑

s ν
(l,k,s) = dk we obtain:

D(y(l,k)) ≤ D(y(l,k−1)) + αǫdkz
(l,k) (B.27)

Summing over k in a phase l leads to:

D(l) ≤ D(l − 1) + αǫσ(l) (B.28)

Recall that we assume β ≥ α. Since by definition β ≤ D(l)/σ(l), it comes for each phase l:

D(l) ≤
D(l − 1)

1− αǫ/β
(B.29)

From D(0) = mδ we deduce by induction on l:

D(l) ≤
mδ

(1− αǫ/β)l
=

mδ

(1− αǫ/β)
(1 +

αǫ

β − αǫ
)l−1 ≤

mδ

(1− ǫ)
exp(αǫ(l − 1)/(β(1− ǫ)))

(B.30)

where the last inequality comes from β ≥ α (hence 1
1−[αǫ/β] ≤

1
1−ǫ) along with the Taylor

series of exp(αǫ
β[1−ǫ]). From our stopping condition we have:

1 ≤ D(τ) ≤
mδ

(1− ǫ)
exp(αǫ(τ − 1)/(β(1− ǫ))) (B.31)

which directly leads to:
β

τ − 1
≤

αǫ

(1− ǫ) ln((1− ǫ)/(mδ))
(B.32)

which is the claimed upper bound.

We now use this result to establish our lemma. Let γ be the ratio of the value of the

304

optimal solution to the dual problem over the value of the scaled feasible solution returned

by the algorithm. From Lemma 21 and Lemma 22 we have:

γ =
β log1+ǫ(1/δ)

λ
≤

αǫ ln(1/δ)

(1− ǫ) ln(1 + ǫ) ln((1− ǫ)/(mδ))
(B.33)

where the last inequality comes from λ ≥ τ − 1. For δ = (m/(1 − ǫ))−1/ǫ the ratio

ln(1/δ)/ ln((1− ǫ)/(mδ)) equals (1− ǫ)−1 hence

γ ≤
αǫ

(1− ǫ)2 ln(1 + ǫ)
≤

αǫ

(1− ǫ)2(ǫ− ǫ2/2)
≤

α

(1− ǫ)3
(B.34)

where the second inequality comes from the Taylor series of ln(1 + ǫ). Hence, we choose ǫ

such that (1− ǫ)−3 ≤ 1 + ω, so that the scaled solution is an (1− ω)/α approximation to

the max-min resource sharing problem, where ω is any fixed accuracy.

B.2.4 Running time

We shall now explain how to remove the assumption β ≥ α. We use the same arguments

as in [21, 22] which are based on an idea proposed in [135].

Lemma 24. The algorithm runs for at most O(h log(h)⌈log1+ǫ(m/(1− ǫ))/ǫ⌉) iterations.

Proof. By weak duality combined with the feasibility of the primal solution returned by

the proposed algorithm, we have:

1 ≤ γ ≤
β log1+ǫ(1/δ)

τ − 1
(B.35)

where the last inequality comes from λ ≥ τ − 1. Hence the number of phases τ in the

above procedure is less than 1 + β log1+ǫ(1/δ) = 1 + β log1+ǫ(m/(1 − ǫ))/ǫ. Notice that

this upper-bound depends on β which can be modified by scaling the instance vector d.

Let ζk be the maximum sum of k-commodity variables satisfying all constraints Ax ≤ b

when all variables corresponding to other commodities are set to 0. We also denote by xk

the corresponding vector and by x the aggregation of the vectors xk over every commodity.

Let ζ = mink∈K ζ
k. It should be clear from Sion’s minimax theorem [136] that β ≤ ζ.

Furthermore, the inequality ζ/h ≤ β holds since vector x is a feasible solution to the

305

max-min resource sharing problem in the instance obtained by multiplying vector b by h.

We scale demand vector d by ζ
αh so as to get the new value of ζ equals to αh. Hence

α ≤ β ≤ αh. If the algorithm does not stop within υ = 2α⌈log1+ǫ(m/(1 − ǫ))/ǫ⌉ phases

then we know that β > 2α. We then double the demand, hence β is halved but still at

least α. The algorithm runs for an additional υ phases and if it does not halt we double

the demand again. Since we halve the value of β after every υ phases, the total number of

such phases is at most υ log(h). There are at most h iterations per phase. The complexity

follows.

Observe that, although computing ζ may be intractable, we can compute an (1−ω)/α

approximation by combining the subroutine with the packing algorithm described above.

The next lemma shows that the algorithm runs in time polynomial in the size of the

input, provided the oracle runs in polynomial time.

Lemma 25. The number of steps in the entire algorithm exceeds the number of itera-

tions by at most O(m⌈log1+ǫ(m/(1− ǫ))/ǫ⌉). Hence, its overall complexity is O(ω−2(m+

h log(h)) log(m)TOracle), where TOracle is the time required to approximately solve the

dual separation problem by calling the oracle, and ω is the desired accuracy.

Proof. We show how to bound the total number of steps. For each step but the last

we have ν = bp/A(p, q), hence the algorithm increases at least dual variable yp by a

multiplicative factor of 1 + ǫ. From D(τ − 1) < 1 we deduce that yi ≤ 1/bi for each i

before the last step of the algorithm. Since yi initially equals δ/bi the total number of steps

performed by the algorithm exceeds the number of iterations by at most ⌈m log1+ǫ(1/δ)⌉ =

⌈m log1+ǫ(m/(1 − ǫ))/ǫ⌉. Combining this last upper-bound along with Lemma 24 and

ǫ = 1 − (1 + ω)−1/3, the algorithm performs at most O(ω−2(m + h log(h)) log(m)) steps.

The oracle is called once at each step. The overall complexity follows.

B.2.5 Algorithm

Algorithm 5 below provides the corresponding pseudo-code.

306

Algorithm 5 : the Garg-Könemann-Fleischer-Wayne method for max-min resource shar-
ing problems

Input: An oracle to compute an α-approximate solution to the dual separation problem
induced by matrices A and H, vector b, vector d, accuracy ω;

Output: An (1−ω)/α-approximated feasible solution x of value λ to the max-min resource
sharing problem;

1. Define ǫ = 1− (1 + ω)−1/3, δ = (m/(1− ǫ))−1/ǫ;
2. Initialize yi ← δ/bi, x← 0;
3. while bT y < 1 do

4. ̺← d;
5. L← K;
6. while L 6= ∅ and bT y < 1 do

7. Pick k ∈ L;
8. L← L \ {k};
9. while ̺k > 0 and bT y < 1 do

10. Call the oracle to find column qk such that AT
qk
y ≤ αminj∈Ck{ATj y};

11. Compute row pk which minimizes bi/A(i, q) over all rows i ∈ I;
12. Let ν = min{̺k, bpk/A(p

k, qk)};
13. Update primal vector x, xq ← xq + ν;
14. Update remaining demand vector ̺, ̺k ← ̺k − ν;

15. Update dual vector y, yi ← yi(1 + ǫνA(i,q
k)

bi
) for each row i ∈ I;

16. end while

17. end while

18. end while

19. Scale variables xj ← xj/ log1+ǫ(
1
δ) for each known column j ∈ J ;

20. Compute λ← mink∈K{Hkx/d
k};

21. Return x and λ.

307

308

Appendix C

Coding gains

C.1 Multicommodity coding gains

C.1.1 Multicommodity coding gain

Proof of Theorem 11:

Proof. The underlying idea of this theorem is again that routing using multicast only cor-

responds to the special case of using both multicast and network coding simultaneously

in a network where no coding operation is performed but simple data duplication. Fur-

thermore, the proof itself is very similar to the one of Theorem 3. Let x be a maximum

weighted multicommodity Steiner flow. We shall build a feasible multicommodity coded

flow x with the same value as x. For each commodity k, each receiver r ∈ Rk and each

path p between sk and r, define:

xp =
∑

t∈T k

pr
t
=p

xt (C.1)

where for any commodity k, any Steiner tree t ∈ T k, and any receiver r ∈ Rk, prt is the

unique path between sk and r in t. We first show that coded flow x satisfies all capacity

309

requirements assuming Steiner flow x does. Observe that for any arc a,

∑

k∈K

max
r∈Rk

∑

p∈P
(k,r)
a

xp =
∑

k∈K

max
r∈Rk

∑

p∈P
(k,r)
a

∑

t∈T k

pr
t
=p

xt (C.2)

≤
∑

k∈K

max
r∈Rk

∑

t∈T k
a

∑

p∈P(k,r)

pr
t
=p

xt (C.3)

=
∑

k∈K

max
r∈Rk

∑

t∈T k
a

xt (C.4)

=
∑

k∈K

∑

t∈T k
a

xt (C.5)

=
∑

t∈Ta

xt (C.6)

≤ ca (C.7)

where the first inequality stands since, if arc a is used by path p while p is part of Steiner

tree t then a is also used by t. The second equality holds since, for any commodity k,

there is only one unique path prt between source sk and receiver r ∈ Rk in any Steiner

tree t ∈ T k. The third equality stands because for any arc a, and any commodity k, the

quantity
∑

t∈T k
a

xt is independent of the receiver. Finally recall that we assume x to be a

feasible Steiner flow from which we get the last inequality. Thus coded flow x meets all

capacity requirements. Regarding the value of x , one has for any commodity k, and any

receiver r ∈ Rk:

∑

p∈P(k,r)

xp =
∑

p∈P(k,r)

∑

t∈T k

pr
t
=p

xt (C.8)

=
∑

t∈T k

∑

p∈P(k,r)

pr
t
=p

xt (C.9)

=
∑

t∈T k

xt (C.10)

where, for any commodity k, the last equality comes again from the uniqueness of the path

310

prt for a given Steiner tree t ∈ T k and a given receiver r ∈ Rk. Hence we get:

φ(x) =
∑

k∈K

wk min
r∈Rk

∑

p∈P(k,r)

xp (C.11)

=
∑

k∈K

wk min
r∈Rk

∑

t∈T k

xt (C.12)

=
∑

k∈K

wk
∑

t∈T k

xt (C.13)

= φ(x) (C.14)

By combining this last result with the feasibility of multicommodity coded flow x , and the

optimality of multicommodity Steiner flow x, one get φS ≤ φC , or equivalently gφ ≥ 1.

C.1.2 Concurrent coding gain

Proof of Theorem 12:

Proof. This proof is very similar to the one of Theorem 11 in that given a maximum con-

current multicommodity Steiner flow x we shall build a feasible concurrent multicommodity

coded flow x with the same value as x. Multicommodity coded flow x is defined according

to Equation C.1 so that it satisfies all capacity requirements provided multicommodity

Steiner flow x does. Furthermore, by definition of x the equality

∑

p∈P(k,r)

xp =
∑

t∈T k

xt (C.15)

still holds for any commodity k, and any receiver r ∈ Rk. Therefore, we get:

λ(x) = min
k∈K

min
r∈Rk

1

dk

∑

p∈P(k,r)

xp (C.16)

= min
k∈K

min
r∈Rk

1

dk

∑

t∈T k

xt (C.17)

= min
k∈K

1

dk

∑

t∈T k

xt (C.18)

= λ(x) (C.19)

By combining this last result with the feasibility of multicommodity coded flow x , and the

optimality of multicommodity Steiner flow x, one get λS ≤ λC , or equivalently gλ ≥ 1.

311

C.1.3 Cost coding gain

Proof of Theorem 18:

Proof. Let x be a minimum cost Steiner flow. We shall build a feasible coded flow x with

a cost not greater than the one induced by x. For each receiver r and each path p from s

to r, we define:

xp =
∑

t∈T

pr
t
=p

xt (C.20)

where prt is the unique path in Steiner tree t from the source s to the receiver r. As

previously, it can be shown that x is a coded flow whose nominal throughput between the

source and any receiver is exactly the one provided by x to all receivers. More precisely,

we have for each receiver r:
∑

p∈Pr

xp =
∑

t∈T

xt = d (C.21)

So it remains to show that the cost of x on any arc a is not greater than the one of x. For

each arc a and each receiver r we have again:

∑

p∈Pr
a

xp ≤
∑

t∈Ta

xt (C.22)

so that for each arc a:

max
r∈R

∑

p∈Pr
a

xp ≤
∑

t∈Ta

xt (C.23)

which directly implies the expected result by monotonicity of the function ψa of each arc a.

Hence the overall cost induced by the coded flow x is smaller or equal to the one induced

by the Steiner flow x. By optimality of x we get ψC ≤ ψS , or equivalently gψ ≥ 1.

C.1.4 Survivable cost coding gain

Proof of Theorem 26:

Proof. Let x be a minimum cost survivable Steiner flow. We shall build a survivable coded

flow x with a cost not greater than the one induced by x. For each receiver r and each

312

path p from s to r, we define again:

xp =
∑

t∈T

pr
t
=p

xt (C.24)

where prt is the unique path in Steiner tree t from the source s to the receiver r. We

already proved that x is a coded flow whose nominal throughput between the source and

any receiver is exactly the one provided by x to all receivers. More precisely, we have for

each receiver r:
∑

p∈Pr

xp =
∑

t∈T

xt (C.25)

Recall from the study of the cost coding gain that for each arc a and each receiver r:

∑

p∈Pr
a

xp =
∑

t∈T r
a

xt (C.26)

Once combined, Equation (C.25) and Equation (C.26) imply that for each arc a and each

receiver r:

∑

p∈Pr\Pr
a

xp =
∑

p∈Pr

xp −
∑

p∈Pr
a

xp (C.27)

=
∑

t∈T

xt −
∑

t∈T r
a

xt (C.28)

=
∑

t∈T \T r
a

xt (C.29)

≥ d (C.30)

where the last inequality comes from the feasibility of Steiner flow x. Thus, coded flow x

satisfies all survivability requirements. Now, let h be the arc projection of coded flow x as

defined in Equation (5.56). Combining the definition of h with Equation (C.26) one gets

for each arc a and each receiver r:

ha = max
r∈R

∑

p∈Pr
a

xp (C.31)

= max
r∈R

∑

t∈T r
a

xt (C.32)

≤
∑

t∈Ta

xt (C.33)

313

where the last inequality comes from the inclusion T ra ⊆ Ta. Finally observe that, for each

arc a, the inequality:

ha ≤
∑

t∈Ta

xt (C.34)

along with the non-negativity of each weight wa, directly imply that the overall cost induced

by coded flow x is not greater than the one induced by Steiner flow x. By optimality of x

we deduce χC ≤ χS , or equivalently gχ ≥ 1.

C.1.5 Survivable coding gain

Proof of Theorem 30:

Proof. The proof follows the same line of reasoning as the one of Theorem 26 above.

314

315

Thibaut LEFEBVRE

Optimization of information flows in
telecommunication networks

Résumé :
Dans les réseaux de télécommunications, la demande croissante pour de nouveaux services, comme la
diffusion de vidéos en continu ou les conférences en ligne, engendre un besoin pour des dispositifs de
télécommunication où le même contenu est acheminé depuis un émetteur unique vers un groupe de
récepteurs. Cette évolution ouvre la voie au développement de nouvelles techniques d’acheminement des
données, comme le multicast qui laisse un nœud du réseau copier ses données d’entrée puis retransmettre
ces copies, ou le codage réseau, qui est une technique permettant à un nœud d’effectuer des opérations
de codage à partir de ses données d’entrée. Cette thèse traite de la mise en place de techniques de codage
au sein d’un réseau multicast filaire. Nous formalisons certains problèmes qui apparaissent naturellement
dans ce contexte grâce à la recherche opérationnelle et à des outils d’optimisation mathématique. Notre
objectif est de développer des modèles et des algorithmes afin de calculer, au moins de manière approchée,
certaines grandeurs qui ont vocation à être pertinentes dans le cadre de la comparaison de techniques
d’acheminement de données dans un réseau de télécommunications. Nous évaluons ainsi, d’un point de
vue à la fois théorique et expérimental, l’impact induit par l’introduction de techniques de codage au
sein d’un réseau multicast. Nous nous concentrons en particulier sur des critères importants pour un
opérateur de télécommunication, comme la maximisation du débit d’information entre une source et un
ensemble de destinataires dans le réseau, la minimisation de la congestion sous contrainte de demande,
ou la minimisation de la perte de débit ou du coût induit par l’acheminement des données dans un réseau
soumis à des pannes.

Mots clés :
Optimisation réseau, Programmation mathématique, Codage réseau, Multicast, Multiflot, Arbre de Steiner

Abstract:
In telecommunication networks, the increasing demand for new services, like video-streaming or telecon-
ferencing, along with the now common situation where the same content is simultaneously requested by
a huge number of users, stress the need for point to many data transmission protocols where one sender
wishes to transmit the same data to a set of receivers. This evolution leads to the development of new
routing techniques like multicast, where any node of the network can copy its received data and then send
these copies, or network coding, which is a technique allowing any node to perform coding operations
on its data. This thesis deals with the implementation of coding techniques in a wired multicast
network. We formalize some problems naturally arising in this setting by using operations research
and mathematical optimization tools. Our objective is to develop models and algorithms which could
compute, at least approximately, some quantities whose purpose is to be relevant as far as forwarding
data using either multicast and network coding in telecommunications networks is concerned. We hence
evaluate, both in theory and numerically, the impact of introducing coding techniques in a multicast
network. We specifically investigate relevant criteria, with respect to the field of telecommunications,
like the maximum amount of information one can expect to convey from a source to a set of receivers
through the network, the minimum congestion one can guarantee while satisfying a given demand, or the
minimum loss in throughput or cost induced by a survivable routing in a network prone to failures.

Keywords:
Network optimization, Mathematical programming, Network coding, Multicast, Multicommodity flow, Steiner tree

	Introduction
	Motivations
	Telecommunication network
	Vocabulary of graph theory
	Network topology
	Flow model

	Performing operations on data
	Unicast
	Multicast
	Network coding

	Content of the PhD
	Goals
	Methodology
	Dissertation outline

	Maximum information flows
	Introduction
	Motivation
	Content
	Maximum flow and the notion of throughput

	Maximum Steiner flow
	Steiner trees
	Problem statement
	A detailed example
	Linear programming formulation
	Example continued
	Complexity and algorithms
	Computing a maximum Steiner flow by column generation
	Greedy packing of widest Steiner trees

	Maximum coded flow
	Problem statement
	A detailed example
	Linear programming formulations
	Complexity and algorithms
	Coding scheme

	Features of the information flows
	Coding gain
	Example continued
	Features of the coding gain

	Conclusion

	Multicommodity information flows
	Introduction
	Motivation
	Content
	Multicommodity flows

	Multicommodity Steiner flows
	Setting
	Maximum weighted multicommodity Steiner flow
	Maximum concurrent Steiner flow

	Multicommodity coded flows
	Setting
	Maximum weighted multicommodity coded flow
	Maximum concurrent coded flow

	Features of the information flows
	Multicommodity coding gains
	Features of the multicommodity coding gains
	Experimental evaluation of the multicommodity coding gains

	Conclusion

	Convex cost information flows
	Introduction
	Motivation
	Content
	Minimum convex cost flow

	Minimum convex cost Steiner flow
	Problem statement
	A detailed example
	Mathematical programming formulation
	Complexity and algorithms
	Bounds on the value of a minimum-cost Steiner flow
	Algorithm

	Minimum convex cost coded flow
	Problem statement
	Example continued
	Mathematical programming formulations
	Complexity and algorithms
	A new algorithm
	Coding scheme

	Features of the information flows
	Cost coding gain
	Features of the cost coding gain
	Experimental evaluation of the convex cost coding gain

	Conclusion

	Minimum cost survivable information flows
	Introduction
	Motivation
	Content
	Minimum cost survivable flow

	Minimum cost survivable Steiner flow
	Problem statement
	A detailed example
	Linear programming formulation
	Complexity and algorithms
	Redundant Steiner trees
	Computing a minimum cost survivable Steiner flow by column generation

	Minimum cost survivable coded flow
	Problem statement
	Example continued
	Linear programming formulations
	Complexity and algorithms
	Coding scheme

	Features of the information flows
	Survivable cost coding gain
	Features of the survivable cost coding gain
	Experimental evaluation of the survivable cost coding gain

	Conclusion

	Maximum survivable information flows
	Introduction
	Motivation
	Content
	Maximum survivable flow

	Maximum survivable Steiner flow
	Problem statement
	A detailed example
	Linear programming formulation
	Complexity and algorithms
	Computing a maximum survivable Steiner flow by column generation
	Nominal and residual throughputs

	Maximum survivable coded flow
	Problem statement
	Example continued
	Linear programming formulations
	Complexity and algorithms
	Coding scheme
	Nominal and residual throughputs

	Features of the information flows
	Survivable coding gain
	Features of the survivable coding gain
	Experimental evaluation of the survivable coding gain

	Conclusion

	Conclusion
	Wrap up
	Future research

	Basics of linear programming
	Linear programming
	A brief history
	Problem statement
	Duality
	Integer linear programming
	Column generation
	Summary

	Linear programming and the maximum flow problem

	Approximation algorithms
	The framework of Garg and Könemann
	Reformulation of the covering problem
	Framework of the algorithm
	Approximation guarantee
	Running time
	Algorithm

	The framework of Fleischer and Wayne
	A reformulation of the dual problem
	Framework of the algorithm
	Approximation guarantee
	Running time
	Algorithm

	Coding gains
	Multicommodity coding gains
	Multicommodity coding gain
	Concurrent coding gain
	Cost coding gain
	Survivable cost coding gain
	Survivable coding gain

