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Introduction

Recent years have witnessed an increasing role of non-perturbative effects in
modern day theoretical physics. For example, in the context of non-abelian gauge
theories which describe elementary particle physics in a wide energy scale, the
perturbative expansion is sufficient for high energy scales, but for the low energy
limit where the gauge couplings grow strong and non-abelian symmetries are un-
broken the non-perturbative effects become extremely important, in particular to
explain the phenomenon of confinement. Non-perturbative effects are important
in the context of string theories as well. For instance, after the compactification
string theories receive two kinds of corrections : «o'-corrections and corrections
from string coupling constant (g,). Both of these corrections can be perturbative
and non-perturbative. These non-perturbative contributions are necessary ingre-
dients for consistency with beautiful as well as mathematically intriguing dualities
between different theories. In the case of superstring theories they have a nice
interpretation in terms of branes wrapping different supersymmetric cycles in the
compactification manifold. The content pertaining to the thesis is primarily to
understand the dynamics of such non-perturbative objects.

In the course of pursuing the Ph.D., I have been working on such non-perturbative
effects in the case of ten dimensional type II A /B string theories compactified on
Calabi-Yau threefolds, with Sergei Alexandrov. After the compactification, apart
from the gravitational multiplet, there are two kinds of matter multiplets called
vector multiplets (VM) and hypermultiplets (HM). The low energy effective action
is completely determined by the geometry of the moduli spaces of VM and HM.
Since the vector multiplets are well-understood by now, the main goal of our work
has been to find the HM moduli space including all instanton corrections. For
achieving this one needs to invoke various dualities and require consistency with
the symmetries of type IIA /B string theories.

But performing this task is difficult compared to the vector multiplet case due
to one crucial feature of the hypermultiplets. Whereas the supersymmetry requires
the vector multiplet moduli space to be a special Kahler manifold, the hypermulti-
plet moduli space is a Quaternion-Kéahler manifold which is a difficult geometrical
object to study. The most convenient way to work with such manifolds is to pass
to their twistor spaces which are CP! bundles on them. The advantage is that
on the twistor space there are certain so-called holomorphic transition functions
that encode the entire geometry of the base space in nice fashion. Therefore, the
problem of incorporating instanton corrections to the HM moduli space reduces
to the problem of obtaining transition functions that generate these corrections.
Due to this it is important to understand how different symmetries of the HM
moduli space are realized at their twistor spaces. It is known that all of them can
be lifted to holomorphic isometries at the twistor space, however one still needs to
find their explicit action at that level.

v
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In our first project ( [30]) we provided an explicit twistorial construction of
quaternion-K#hler manifolds (obtained by deforming the so-called c-map spaces)
carrying an isometric action of the modular group SI(2,Z) which is a manifest
symmetry of type [1B string theories. We found how this symmetry is lifted to the
twistor space and a certain non-linear constraint which must be satisfied by the
transition functions to be consistent with isometric action of SL(2,Z). Besides, we
also established the instanton corrected mirror-map between the physical fields of
type ITA and type IIB string theories. As a byproduct of our analysis, we found a
modular invariant function that encodes all deformations of the quaternion-Kéhler
space in a non-trivial way. Its existence is not evident a priori and it might have
an interpretation as an S-duality invariant partition function. This work provided
a general framework for incorporating NS5-instantons in string compactifications
with N=2 supersymmetry.

In our next work ( [23]), we applied the above construction to the concrete
issue of incorporating NS5 instantons in the type IIB framework. The starting
point was the construction of D-instantons in type ITA framework as established
in Alexandrov, Pioline, Saueressig and Vandoren in 2008, [18] and later to all or-
ders in instanton expansion by Alexandrov, [19]. Then using mirror symmetry
and exploiting S-duality symmetry of type IIB string theory, in particular the fact
that under SL(2,Z) symmetry D5 and NS5 instantons transform as a doublet, we
derived the transition functions for NS5 instantons. Actually finding the transition
functions directly is a difficult exercise due to the fact that the constraint imposed
on them by SL(2,Z) symmetry is extremely non-linear and had been obtained in
our previous work. The key idea to overcome this problem was to introduce a
new parametrization of the quaternion-Kéahler manifolds. Instead of the transi-
tion functions it relies on the so-called “contact hamiltonians" in terms of which
the above-mentioned constraint takes a simple linear form. From these contact
Hamiltonians it is then straightforward to compute the transition functions which
is the main result of this work. Then we proceeded further and incorporated also
D(-1)-D1 instanton contributions ( [24]|) alongwith fivebrane instantons in another
project. There we derived the transition functions in that more general case. We
also provided a thorough study of discrete isometry groups. We found that the
standard representations of these groups obtained by discretization of the classical
continuous symmetries is inconsistent with the closure of the group action. We
showed how to modify the representations to make them consistent. It turns out
that these modifications have origins in the so-called quadratic refinement, leading
to a natural question which we would like to understand better. In particular, we
expect that this modificaton arises due to subtleties in the definition of the one-
loop determinant around D-instanton background, so they have an origin similar
to the Freed-Witten anomaly (Freed,Witten 1999, [58]).

One of the main reasons why we work at the level of the twistor space and the
transition functions on it is because it is hopelessly complicated to compute the
explicit expression for the metric on the quaternion-Kéhler space in the general
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case. However if one considers only electrically charged instantons it is still possible
to evaluate the metric explicitly. In chapter4, we give the expression for the metric
in such cases following the work in [11]. Moreover, we also investigated the fate of
the curvature singularity appearing at the perturbative level. This singularity must
be resolved by instantons, but our results show that inclusion of D(-1) instantons
is not sufficient for this purpose, indicating that probably one has to include all the
instantons, in particular the NS5-instantons. One of the important cross-checks to
our construction is that, in the four dimensional case corresponding to the universal
hypermultiplet, our metric fits the Tod ansatz and provides an exact solution of
the continuous Toda equation, for the case considered. We provided some details
of this fact in our paper.

The research that I have been pursuing throughout my Ph.D., i.e. to un-
derstand instanton-corrected HM moduli space, requires further investigations on
which I would like to continue working in future. Despite what we have achieved,
there remain several very important issues to be addressed. A summary and if
known, possible ways to tackle the unsolved issues will be given in the final chap-
ter containing discussions and conclusions.

Although, this thesis will be mainly concerned with string compactifications,
there are several other closely connected and interesting topics to the works. In
particular, for the four dimensional N—2 gauge theories compactified on a circle,
the instanton-corrected moduli space constructed by Gaiotto, Moore and Neitzke
is dual to the D-instanton corrected HM moduli space in our context in a precise
mathematical sense which goes by the name of “QK/HK-correspondence". An-
other of such examples is that there could be a relation between NS5-instanton
corrections and the quantization of cluster varieties. To state even one more,
there also exists a possibility to relate NS5-instanton corrections with amplitudes
appearing in the context of topological strings, as already advocated in (Alexan-
drov,Persson,Pioline 2010, [21]). Such dualities and deep interconnections that
occur throughout theoretical physics deserve further investigations.

This thesis is organized as follows :

e In chapter 1, we will start with the recapitulation of some basic facts in string
theory, before proceeding to briefly discuss about the problems that we are
going to encounter during the thesis.

e In the chapter 2 we will discuss about the geometric nature of the Calabi-
Yau manifolds in some details, after which we will move on to describe the
generic structure of the hypermultiplet moduli space and its symmetries at
the classical level. We will also comment on how incorporation of instanton
corrections break those classical symmetries to their discrete subgroups.

e In chapter 3 we will discuss the mathematical construction for finding an ef-
ficient description of the geometry of the hypermultiplet moduli space. This
geometry is quaternion-Kéhler, as we shall see in the next chapter. The

vi
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mathematical technique which we will describe is called twistor formula-
tion which is an efficient way to deal with difficult geometric objects, the
quaternion-Kahler spaces.

e In chapter 4 we will pass to effects of the D-instantons to hypemultiplet
moduli space, after briefly reviewing its perturbative loop corrected metric.
We will exploit the mathematical theory of twistor spaces spelled out in the
chapter 3. In the end we will find out the D-instanton corrected metric
explicitly in a particular case and comment on the topology associated with
spaces with such metrics.

e In chapter 5, we will talk about the mirror symmetry at the quantum level.
We will start with D-branes and their classifications. Then we will delve into
describing realization of S-duality at the level of the twistor space and give
its mathematical construct. We will derive the mirror map between type ITA
and IIB fields in presence of all possible instanton corrections.

e In chapter 6, we will discuss about the symmetries in the quantum hyper-
multiplet moduli space. We shall see how to realization a consistent action
for all the groups. It will lead us to the consideration of a certain type of
half-integral anomalies in the transformation of the fields under monodromy.

e Then chapter 7 contains one of the highlights of the works. We give the form
of NS5-brane instanton contributions. We show how invoking constraints
imposed by the S-duality symmetry, it is possible to derive them. As an aside,
we shall also find that the actions of discrete symmetry groups discussed in
chapter 6 render My invariant in presence of NS5-instantons.

e Finally, we will summarize all the results and some of the persisting problems.

This thesis is primarily based on the work of the following papers (in chrono-
logical order), which are attached in the end.

e S. Alexandrov and S. Banerjee, “Modularity, Quaternion-Kahler spaces and
Mirror Symmetry,” J. Math. Phys. 54, 102301 (2013).

e S. Alexandrov and S. Banerjee, “Fivebrane instantons in Calabi-Yau com-
pactifications,” Phys.Rev. D90 (2014) 041902.

e S. Alexandrov and S. Banerjee, “Dualities and fivebrane instantons,” JHEP
1411 (2014) 040.

e S. Alexandrov and S. Banerjee “Hypermultiplet metric and D-instantons",
JHEP, 1502, (2015) 176.
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CHAPTER 1

Some basic facts about string theory

One of the most challenging frontiers in physics is finding a consistent theory of
quantum gravity. There are several reasons why this problem is very important.
First of all, from purely aesthetic point of view it is desirable to formulate a
single theory that takes into account all of the fundamental forces together. A
priori there is no reason why gravity should be treated differently compared to
the other forces : electromagnetic, strong and weak, where the latter forces are
consistently described in the framework of quantum field theory. However, finding
a formulation that includes gravity as well turns out to be complicated. The
reason actually stems from the fact that gravity behaves in a significantly different
fashion, as it is a force that operates at large distance scales. The second most
important motivation becomes clear when we try to understand the physics at
the time of the big-bang when Planck scale effects play the dominant role. For
being able to understand such physics to consider quantum gravity is of paramount
importance. On one hand wunification of all fundamental forces and on the other
hand the urge to have a firmer grasp on the such fundamental physics, i.e. to
understand the phenomenon of the big-bang, among others are reasons for which
such a tremendous amount of intellectual endeavor is poured into the attempt of
quantizing gravity by physicists all around the world.

Among all the theories of quantum gravity proposed till this date, it appears to
be the case that string theory is the most promising candidate. First, string theory
seems to be able to provide the correct platform for unification of all fundamental
forces. Furthermore, presumably it also provides an answer to the question of
what happens to the laws of physics at the Planck scale. However despite all
of its successes, it suffers from a serious drawback. One still needs to connect
string theory to the experimentally viable realm for making falsifiable predictions.
Although the recent years have witnessed significant progress in this regard, the
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final goal unfortunately still remains illusive.

1.1 A brief history of string theory

Although string theory from today’s standpoint seems to be the most promising
theory for explaining all fundamental forces, it actually has a rather curious history.
The fashion in which string theory evolved, sometimes going through a very barren
period on the verge of being rejected and sometimes with a flurry of new ideas with
remarkable breakthroughs, has been nothing short of a engrossing thriller. In this
section, we start by reviewing this extremely interesting chain of events.

String theory came into being as an attempt to understand strong interaction.
Before QCD was discovered the tower of particles in the processes involving strong
interaction required to be explained. For this Veneziano started considering the so
called dual models. He required the scattering amplitudes in the s and t-channels
should coincide.

This requirement along with unitarity and locality were strong enough to fix
the amplitudes. Thus it was possible to find them completely in some simple cases
and in general cases their asymptotic forms could be derived. In particular, it
was shown that they are much softer compared to the field theoretic amplitudes.
Moreover, the amplitudes coincided to that of the strings and the duality s and
t-channel amplitudes become evident - they are two degenerate limits of the same
string configuration. Also the absence of ultraviolet divergences got a natural
interpretation. In field theory they appear due to the local nature of the interaction
related to the fact that interacting objects are thought to be pointlike. When such
pointlike objects (particles) are replaced by strings the singularity gets smoothened
out over the string worldsheet.

That was the first time when any theory which has some resemblance to the
string theories of the present day was considered. However, the advent of QCD
and interpretation of particles that participate in strong interaction through their
constituent quarks led to the seeming demise of the interest in strings momentar-
ily. Furthermore, the amplitudes computed from dual models did suffer from the
exponential fall off as well. Together it meant for revival strings had to await for
some other source of interest.

Luckily, the wait was not for long. It was soon realized that each string pos-
sesses a spectrum of excitations. Considering closed strings, a massless mode with
spin 2 was discovered, which does have the same characteristics as graviton, the
particle responsible for gravitational interaction. Moreover, the open string spec-
trum contains a massless vector boson so that they can describe gauge theories,
leading to the unification. These facts provided yet another impetus towards the
investigation of strings which then started to be considered as theories relevant for
quantum gravity.
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This completely changed the perspectives from which string theory was looked
at. Since then string theory has been developed as a theory that attempts to unify
all the fundamental forces including gravity. Let us have a look at this development
in the following in a bit more systematic fashion.

1.2 Bosonic strings and Polyakov action

The content here closely follows that of Polchinski in [1,2]. To start, let us first
recapitulate the Nambu-Goto action for a string which is given by the area of world
sheet, so that classical trajectories for strings are its world sheets with minimal
area

Sna|X] =

/dadn/—h(X), det hay = h, (1.1)
b

where o is a constant of dimension length squared, the metric induced on the
world sheet is

2ma!

hap = G 0. X0, X", (1.2)

where X#(1,0) describe the embedding of the worldsheet into the target space and
G, 1s the target space metric.

This complicated non-linear action can be classically rewritten as the so called
Polyakov action

1
Splh, X] = ——— [ dodrV—h G, h*0, X 0, X", (1.3)
iYed »
where the worldsheet metric h,;, is now considered as dynamical variable and (1.2)
appears as one of the equations of motion. This can be further extended by adding

the standard Einstein term which is a total derivative in two dimensions,

1
— [ dodrvV—hR =y, (1.4)
47 »

which is a total derivative in two dimensions given by the Euler characteristic of
the surface. For a Riemann surface with ¢ handles and b boundaries it is given by,

x=2-—2g—0b. (1.5)
Taking into account this contribution, the Polyakov action becomes,
1
Sp = —1 //dO'dT\/—h [Gwh“bﬁaX“ﬁbX” + O/VR] : (1.6)
o [

For completeness, one has to also put some boundary conditions in the case
of open strings, for which Neumann condition is imposed on the boundary of
the world-sheet 9%. Moreover, one identifies closed strings as having periodic
boundary conditions on the world-sheet.
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1.2.1 World sheet point of view

Since we consider the world sheet metric as a dynamical variable, the Polyakov
action can be viewed as a theory of two dimensional gravity coupled to the matter
fields X*. We would like to quantize the world-sheet theory that we found in the
previous section.

We will do this using the framework of path integral quantization. To define
the path integral, we perform the Wick rotation to the Euclidean signature on the
worldsheet

Z= > / DX, e P2, (1.7)

surfaces X

The sum over the surfaces should be understood as a sum over all possible topolo-
gies which is equivalent to the sum over the genus of the Riemann surface, supple-
mented by the integral over diffeomorphism invariant classes of the metric,

dooe Z/Dp(hab). (1.8)

surfaces X g

Now to perform the integral one uses the standard trick of Faddeev-Popov gauge
fixing where the symmetry is the world sheet diffeomorphisms. However, there is
another symmetry that one needs to consider, the Weyl invariance.

1.2.2 Weyl invariance

Apart from Poincare and diffeomorphism symmetries, the Polyakov action does
possess another symmetry at the classical level, the rescaling symmetry of the
world sheet metric or the Weyl invariance,

hab — €¢>hab~ (19)

This symmetry together with the diffeomorphisms is responsible for equivalence of
the Polyakov and Nambu-Goto actions.

However, at the quantum level the above symmetry (Weyl invariance) can be
broken, as the integration measure of the path integral over the metrics has to
be regularized and in general there is no regularization scheme that keeps all the
symmetries intact.

This anomaly can be best expressed in terms of the stress-energy tensor which
is

ab__2_7T55P__z a b u_l ab C Y
T = T by o (8 X, 0°X 2h 0.X,0°X ) ) (1.10)

The invariance under infinitesimal Weyl transformation implies that classically

0Sp
B 22P T =0, 111
b S = T, (1.11)

h
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On the other hand, at the quantum level the vacuum expectation value of 7
becomes non-vanishing and can be shown to be proportional to the curvature of
the target space metric,

(15) = —1—6273- (1.12)

To understand the meaning of the proportionality coefficient ¢, let us consider the
Polyakov action with the worldsheet metric fixed to the flat one

Sp=vx+

yo— /E dodr6"0, X0, X" (1.13)

The above action still possesses the conformal symmetry. In two dimensions, it is
realized in terms of the Virasoro algebra, which at the quantum level acquires a
central extension. The coefficient ¢ is actually nothing but the central charge of
this algebra.

It can be shown (see for example [1]) that the ghosts that appear due to gauge
fixing the diffeomorphism symmetry give rise to negative contribution to the cen-
tral charge of value —26. Since this two dimensional theory is still a conformal
theory, to conclude about critical dimensions, it is sufficient to compute the cen-
tral charge. For each bosonic degree of freedom the contribution to the central
charge is +1. Taking all contributions into account, then for having an anomaly
free theory one must formulate the theory in 26 dimensions as ¢ = D — 26. Hence
we get to the well known statement that bosonic strings live in 26 dimensions.

This gives an exact result for the Weyl symmetry. Thus, one of the gauge
symmetries of the classical theory turns out to be broken. This effect can be
seen from other important approaches of string quantization. For example, in the
framework of the canonical quantization, in the flat gauge one finds breakdown of
unitarity. Similarly, in the light cone quantization, one finds that the global Lorentz
symmtery of the target space is broken. This exemplifies why the existence of Weyl
symmetry is so important for existence of a viable theory of strings.

From the gauge fixed action (1.13) one can draw also another important con-
clusion. As we will see later in this chapter, the string theories are defined as
asymptotic expansions in the string coupling constant. This expansion is nothing
but a sum over the genera of the string world-sheet . It can be associated with
string loop expansion, because adding a handle or a strip for a closed or an open
string cases respectively, can be interpreted as emission and reabsorption of virtual
string.

Using the expression for gauge-fixed Polyakov action (1.13), we see that the
partition function (1.7) contains terms each of which is weighted by a factor e "X
depending only on the topology. Due to this one needs to associate a factor of e
for attaching a handle to a closed string and e” for attaching a strip to the open
string. On the other hand each interaction is determined by the corresponding
coupling constants. Thus, one arrives at the following relation

Jclosed ™~ 61’7 YJopen ™~ ey/2- (114)
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1.3 Low energy limits primer

In this section we are going to deal with string theories in curved spacetime. In
the next section we will incorporate the fermions as well, as they give rise to
string theories which are comparatively more well-behaved than string theories
which contain only bosons. However, fixing our attention just to the bosonic part
suffices here as one can always recover the fermionic terms using supersymmetric
transformations.

In fact, we have already discussed an action for strings moving in general
spacetime. It is given by the o-model (1.6) with arbitrary G,,(X). Actually
one can consider the general spacetime metric as a coherent state of gravitons
appearing in the closed string spectrum. Hence, any generic G, roughly can be
interpreted as summing of excitations of this mode.

Apart from gravitons there are other two massless modes in the string spectrum,
the antisymmetric tensor B, and the dilaton ¢. Thus a natural generalization of
(1.6) is given by the following,

1
Ao

So

/ 2oVh [(h™G (X)) + 16 B, (X)) 0, X" 0, X" + o/ Rp(X)] . (1.15)

Notice that the dilaton is actually a generalization of v. From the identification
(1.14), the string coupling constant can vary in spacetime, being exponential of
the dilaton,

Gclosed ™ €¢- (116)

In contrast to the Polyakov action in flat spacetime the action (1.15) is non-linear
and represents an interacting theory. The couplings of this theory are coefficients
of G, By, and ® of their expansions in X*.

The effective theory, which appears in the low-energy limit, should be a theory
of fields in the target space. On the other hand, from the world sheet point of view,
these fields represent an infinite set of couplings of a two-dimensional quantum field
theory. Therefore, equations of the effective theory should be some constraints on
the couplings. The only constraint which is not put by hand is that the (1.15)
should define a non-linear o-model. It means that the resulting quantum field
theory must retain Weyl invariance. It is this condition which gives necessary
equations on the target space fields.

The [S-functions for all the target space fields which play the roles of couplings
in the theory on the worldsheet should vanish. A very non-trivial fact which, on
the other hand, can be considered as a sign of consistency of the approach, is that
the equations for S-functions can be derived from the following spacetime action,

D —26 1
4 2 —
o, + R +4(Vo) D

1
Seft = 3 /de\/—Ge_% {— HH"™ |, (1.17)
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where H is the field strength for the two form field B. All terms in the action are
very natural representing the simplest Lagrangian for a scalar, antisymmetric spin-
2 fields. Although the first term is very large because of the o in the denominator,
it exactly vanishes for D = 26. The factor of e~2¢ indicates that the action is
written in the string frame. Rescaling the metric appropriately, one can recover
the standard Einstein term. Thus it is clear that at the low energy approximation,
one gets back the usual Einstein gravity.

1.4 Superstring theories

In section 1.2 we discussed how to define a consistent string theory in 26 dimen-
sions. It is obvious that in order to connect to real world one has to compactify®
such theories on manifolds of dimension 22. The final theory should of course
depend on the manifold chosen for conpactification. However, since there is no
general principle which determines this manifold to compactify on, it is impossible
to find the right compactification. The situation becomes even worse once it is
realized that there actually exist string modes for which mass squared is negative
in this case, called “tachyons" violating unitarity of the theory. This pathology is
the main culprit which makes it a bad theory to consider.

It turns out that this situation can be cured if one adds fermions, what leads
to a theory of superstrings. The prefix “super” comes from the fact that these
theories have some amount of supersymmtry. Below we briefly describe both target
space and world-sheet formulation of these theories, even though for computational
purposes the latter is preferred.

The target space description for the superstring theories is called Green-Schwarz
formalism. When one considers one or two sets of Majorana-Weyl spinors with
respect to the global Lorentz symmetry of the target space (but scalars in the
world-sheet), they determine the amount of supersymmetry in the final theory,
which can be either A/ = 1 or N/ = 2. This automatically implies that the di-
mensions of the theory can not be arbitrary. It can be either D = 3,4,6 or 10.
Furthermore for an anomaly free quantum theory it turns out that the number of
dimensions can be only 10 which we call as the “critical" dimensions of the super-
string theories. In contrast to bosonic string theory, the target space formulation
of superstrings inherently ensure the absence of the pathological tachyonic modes
as the spectrum starts from massless modes.

In the second type of formulation, superstring theories with world-sheet super-
symmetry are considered (Ramond-Neveu-Schwarz formalism). The world-sheet
fermions ¢* transform as vectors under the global Lorentz symmetry of the target

!Compactification is a procedure of getting down to the relevant dimension from higher di-
mensional theories. Tt was actually first considered long ago around 1920’s by Kaluza and Klein.
They tried to construct a unified theory of gravity and electromagnetism. To get rid of extra
dimensions, one considers them to be “smaller" than the visible scales and the manifold that is
made out of them to be compact.
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space. Furthermore since the supersymmetry is considered on the world-sheet,
the conformal symmetry of the bosonic strings is promoted to a superconformal
symmetry.

For such theories again the formula for the anomaly (1.12) holds, as it is still a
conformal theory. We should again analyze when the conformal anomaly vanishes.
In this case one has to take into account that there are extra world-sheet fermions
and ghosts that arise from gauge fixing local fermionic symmetry. It turns out
that the contribution to the central charge of the superconformal ghosts is 11 and

contribution of each fermion is 1. Hence,

1 3
¢=D~26+5D+11=2(D - 10), (1.18)

indicating that D = 10 for an anomaly free quantum theory, in agreement with
the result obtained in the Green-Schwarz formalism.

To analyze spectrum of this formulation, one should now impose boundary
conditions on the worldsheet fermions ¥*. But now the number of posiibilities is
doubled with respect to the bosonic case. For example, in the case of the closed
strings, one can not only choose periodic boundary conditions on ¥*, but also anti-
periodic condition. These two sectors are called the the Ramond (R) and and the
Neveu-Schwarz (NS) sectors. This RNS formulation represents an extension of the
conformal field theory (1.13) to the superconformal field theory. The additional
degrees of freedom in this case precisely correspond to " and the R and NS
sectors are related by the so called spectral flow symmetry of the superconformal
field theory. In each of the sectors R or NS the superstring has different spectra of
modes. From the worldsheet point of view the R-sector ddescribes fermions and
the NS-sector describes the bosons. However, now we again encounter the all too
familiar problem : there exist tachyonic modes for the NS-sector.

We started to build up a theory on the world-sheet which should amount to
the same as the target space theory of Green-Schwarz. These tachyons mentioned
above could potentially spoil the construction. Fortunately, there exists a mecha-
nism going by the name of GSO (Gliozzi-Scherk-Olive) projection which removes
tachyons and several other modes out of the spectrum, rendering the final the-
ory to be well-defined. Finally, it has also been proven by exploiting intricate
relations among symmetries of superstring theories in 10 dimensions that both
Green-Schwarz and Ramond-Neveu-Schwarz formalisms are equivalent providing
the final piece of construction.

Now we have a consuistent formalism for the superstring theory. But one ques-
tion arises : how many superstring theories exist 7 Is it unique ? At the classical
level, it is certainly not unique. There are several possibilities : open/closed, ori-
ented /unoriented, N = 1/N = 2 string theories. Besides, for open strings, one can
introduce Yang-Mills gauge symmetries adding charges to the ends of the strings.
Also, considering N/ = 1 closed strings, one can construct the so called heterotic
string theories where one can also introduce gauge groups.
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Generally quantum theories suffer from anomalies which we need to cancel.
This fact restricts the gauge group of open strings to SO(32) and gauge groups
for heterotic strings to SO(32) or Eg x Eg. Eventually, we have five consistent
superstring theories :

e Type ITA : N' = 2 non-chiral closed strings,

Type IIB : N = 2 chiral closed strings,

Type I : N =1 uoriented open strings with gauge group SO(32) and unori-
ented closed strings,

heterotic strings with gauge group SO(32)

3

heterotic strings with gauge group FEg x Eg.

1.4.1 M-theory and dualities

Since there are five consistent superstring theories, the situation is not completely
satisfactory. Tt is natural to look for further unification. In [3], Witten showed
that all of the string theories can actually be realized as different limits of a single
theory, which is one dimensional higher, the so called M-theory and all of the string
theories can be related by various dualities to each other.

The picture that was found for M-theory, tells that different superstring theories
are manifestations of different vacua of the M-theory. A generic point in the
moduli space corresponds to an 11-dimensional vacuum, as the M-theory is itself
11-dimensional. Furthermore, it has got a special 11-dimensional Lorentz invariant
vacuum which is described by the flat spacetime.

To understand how different superstring theories can be combined into M-
theory, one needs to compactify this very special vacuum in different fashions. If
one compactifies it on a torus, N/ = 2 theories are obtained, whereas compactifi-
cation on a cylinder leads to N’ = 1 theories. The known superstring theories are
then produced as degenerate limits of the torus or the cylinder. For example, to
get the type ITA one considers a torus with one of the radii is much bigger than
the other. Then one effectively performs the compactification on a circle and the
string coupling constant in this case is determined by the smaller radius. For the
type IIB one actually considers the situation when both of the radii of the torus
vanish but the ratio is finite which is related to the string coupling in this case. For
heterotic or type I string theories one has to consider different radii or lengths of
the cylinders to realize them as different limits of the M-theory. All these theories
are related through T or S-duality. This T-duality is the symmetry relating two
theories by inverse compactification radii, correspondingly inverting the coupling
and therefore, interchanging the momentum and winding modes 2. S-duality on

2T-duality on the world-sheet changes the sign of the right movers.
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the other hand allows to go from weak coupling to strong coupling limit. We will
see detailed applications of them later.

There was a problem before, namely there was no way through which one
could assign a value for v in (1.14). In light of the M-theory, this inadequacy
is also resolved. Now the string coupling constant depends on the background
on which the theory is considered. Thus, it can be a moduli of the underlying
M-theory so that it is not a free parameter any longer.

The two main ingredients that propelled second superstring revolution are the
discovery of the web of dualities relating various superstring theories and the pos-
sibility to realize them as various limits of M-theory, which we have just described,
as well as the discovery of D-branes which play a crucial role in establishing the
dualities. These D-branes have dual interpretations. On one hand they are soli-
tonic solutions to supergravity equations and on the other they can be interpreted
as objects on which open strings end. For open strings ending on D-branes, Dirich-
let boundary conditions are imposed on fields moving on open string world-sheet.
From the point of view of T-duality, the presence of D-branes is necessary because
T-duality interchanges Neumann and Dirichlet boundary conditions. Apart from
D-branes, one should also consider another kind of non-perturbative object, the so
called Neveu-Schwarz (NS) five-branes which are dual to the fundamental strings
carrying the B-field charges.

1.5 String compactifications

We have already seen that in order to be able to connect to the four dimensional
real world, it is necessary to compactify higher dimensional string theories on some
compact manifold. The extra dimensions are compact and small enough for being
invisible at the usual scales. According to our previous discussion, bosonic string
theory is not suitable to study because there is no criterion that dictates what
kind of manifolds one should choose to perform the compactification, as there is no
particular preference a priori. Since the theory obtained finally crucially depends
on the kind of manifold chosen, the inability to narrow down the possibilities,
makes it an inviable theory to consider.

Throughout this thesis, we will focus on the compactification of type II super-
string theories on Calabi-Yau threefolds. Although, we will discuss such theories
in details in the next chapter, here we want to make some cursory remarks about
them, so that we can connect to the next chapter seamlessly. Upon choosing the
compactification manifold to be Calabi-Yau, one finds that it is possible to retain
N = 2 supersymmetry in the low energy effective action, where typically one finds
a supegravity theory coupled to matter fields. We work with A/ = 2 supersym-
metry because, it is far less rigid than a theory with N = 4 supersymmetry, and
on the other hand it is still amenable to analytical tools in contrast to N = 1
theories, which although are phenomenologically more relevant, often pose rather

10
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technically extremely difficult situations, if not intractable.

An implication of N' = 2 supersymmetry is that the low energy theory is com-
pletely determined by the metric on the moduli space, which can be parametrized
by the vacuum expectation values of the four dimensional scalars. Moreover, the
moduli space gets factorized into two disconnected components, known as the vec-
tor multiplet (VM) sector and the hypermultiplet sector (HM). A more thorough
exposition to them is delegated in the next chapter.

We shall find that the vector multiplets are classically exact and well under-
stood, whereas understanding the hypermultiplet sector is more challenging. Dur-
ing the course of the thesis, our emphasis will primarily lie upon finding a quantum
corrected description of the HM moduli space. With the input data being some
topological characteristics of the Calabi-Yau threefolds, our main purpose will be
to go to the deep quantum or non-perturbative regime. Even though the final
objective has not been achieved yet, some recent progresses, as we are going to
find in the thesis, certainly give us encouragements that we are actually not very
far away.

11



CHAPTER 2

Compactification of type |l string theories on Calabi-Yau
threefolds and their moduli spaces

As mentioned in the previous chapter, all of the five consistent superstring the-
ories are formulated in ten dimensions. To connect them to the realm of viable
experiments for making falsifiable predictions, one has to compactify them on six
dimensional manifolds, so that in the end we obtain theories in four dimensions.
At the low energies this procedure typically gives rise to supergravity coupled to
matters. For these effective theories, we will restrict ourselves to the lowest order
of o/-corrections, necessarily leading to the fact that the low energy effective action
(LEEA) is restricted to the two derivative terms only.

Of course the precise form of these effective actions depends on what kind
of manifold is chosen for compactification. It turns out that for retaining eight
unbroken supercharges, one has to choose the compactification manifolds to be
Calabi-Yau threefolds (where we neglect the possibility of presence of fluxes and
consider only torsionless Calabi-Yau). In this thesis, we will mainly focus on
four dimensional theories preserving N = 2 supersymmetry. In the rest of this
chapter, we will describe the general structures of the moduli spaces obtained after
performing such compactifications of type IT A /B string theories. We will conclude
by mentioning, what features of classical low energy effective actions are expected
to be retained when quantum corrections, both perturbative and non-perturbative
are included, and justify the reasons for such expectations.

2.1 Calabi-Yau manifolds and their moduli spaces

A compact Calabi-Yau threefold (2)) is a Ricci-flat Kéhler manifold, which nec-
essarily means the first Chern class for them vanishes. They are characterized by

12
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the existence of a unique globally well-defined covariantly constant holomorphic
(3,0) form which we will call by Q and a canonically defined complex structure.

Calabi-Yau threefolds do not admit any non-trivial 1 and 5-cycle which is
implied by the condition h%1(Q)) = h'9(Q) = 0. Moreover uniqueness of the
non-degenerate form € is expressed by the condition A*°(9)) = 1.

The space of deformations of a Calabi-Yau manifold comprises of two sectors :
the complex structure deformations and the Kéahler class deformations. Clearly, €2
determines the complex structure uniquely on 2). On the other hand the informa-
tion about the Kéhler structure is contained in the (1,1) Kéhler form J. Locally
the moduli space of complex structure deformation is then given by H*'(2), C) and
the Kéhler class deformation locally coincides with (), R). In fact, one should
consider the complexification of the Kéahler form J as it always appears with the
two form B-field as B +iJ. Then the moduli space that we need to analyze is the
product of the above two moduli spaces

My = Mc() x Mk (D). (2.1)

Without going into the details of intrinsic definition, let us remind the reader
that a special Kahler geometry can be defined as a Kéahler geometry with the
special structure, that all geometric quantities can be determined in terms of a
single holomorphic function called the prepotential. Both the above sectors are
equipped with such geometries, more precisely, local special Kéahler geometries.
For this case, the special Kdhler manifolds are completely determined by a degree
two homogeneous function F'(X), where X* are the coordinates with indices A =
0,...,n and n is the complex dimension of the manifold. Then the Kahler potential
is given by

K = —log [I(X*F\(X) — X FA(X))] . (2.2)

Using the projective coorinates X* /X = (1, 2%) one can find the metric from the
Kahler potential by

9ab = 003 K(2, 7). (2.3)

The holomorphic three form € and the complexified Kédhler (1,1)-form provide
natural candidates for the metric, the above defined coordinates and the prepo-
tential. We discuss these above two cases separately and introduce a few formulas
on the way.

2.1.1 Complex structure moduli

The holomorphic three form €2 gives rise to the following Kéhler potential on

M () given by,

IC:—logi/Q/\Q. (2.4)
2
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We now want to introduce holomorphic Darboux coordinates on M(2)). For
doing so, let us consider the full cohomology group

H3 — HS’O ey H2’1 ey H1,2 D HO’S. (25)

This is dual to H3(2)) where we a choose a symplectic marking A* By such that
AMEBy = §4. Given such a basis, let us define

XA:/ Q, FA:/ Q. (2.6)
AN Ba

Clearly this is a highly redundant coordinate system (= 2(h*! + 1)), as the space
of complex structure deformations is only h*' dimensional. As a result, one can
always choose a basis of cycles for which F) becomes the derivative of F/(X) with
respect to X*. Let us show it explicitly. For that we need to use the Riemann
bilinear identity,

/@wx:;(/AAw BAX-/AAX/BA@D) (2.7)

Since the deformation of €2 can be at most a (2, 1)-form

O:/Q/\ﬁAQ
)

(2.8)
_ / (X"Bs + Fod®) A (B + 0y FuA”) |
2
Then using the bilinear identity one immediately finds
1
0=F)— X"0zFx =2 [FA — 50 (X*Fy)| . (2.9)

Integrating, we find that prepotential is a second degree homogeneous function
as F' = %XAFA. This defines the prepotential for the complex structure moduli
and in particular, the Kéhler potential (2.4) coincides with the one following from
(2.2).

2.1.2 Kahler moduli

In this case, one should consider instead the even cohomology group.
HY =H'¢ H*® H* ® H. (2.10)

Let us choose a basis in this space parametrized by w; = (1,w;) and w! = (wy, w?),
where wy is the volume form, such that

w; Aw! = (53%9, wi \wj = K;Z'jk-wk (2.11)

14
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and the indices I = (0,7) = 0,1, ..., h"1(2)). The second equation defines the triple
intersection numbers. Choosing the dual basis of two cycles 4 and a basis of four
cycles v;, the triple intersection number can be found as

Kijk = / wi A wji A Wi = (Vi Vjs Vi) - (2.12)
2

Then the natural metric on Mg () is given by

1

where V' = % fg J N J A Jis the Calabi-Yau volume.
Then the holomorphic coordinates on Mg (%)) are

o' = b+ it :/(B+1J). (2.14)
2

Let us introduce the homogeneous coordinates X! = (1,v%). In terms of X! the
prepotential for the moduli space of complexified Kéihler class deformations takes
the form,
1 Xixix*k

F(X) = —6 liijkT,
where (2.2) indeed leads to the Kéhler potential from (2.13). We will see in the
following that this cubic prepotential is only an approximation in the large volume
limit t* — oo of the prepotential that appears in string compactification.

(2.15)

2.2 Field content of type II supergravities in four
dimensions

In order to obtain the low energy effective action in four dimensions, one starts
from ten dimensional supergravity theories. We will focus particularly on type ITA
and type I1B supergravity theories. We will be interested in the bosonic sectors
only, because the fermionic sectors can in principle be restored by supersymmetic
transformations.

The bosonic sectors in 10 dimensions are subdivided into two parts, the NS
and the RR sectors. The former comprises the ten-dimensional metric §yy, the
two form field By and the ten dimensional dilaton ¢E, whereas the latter sector
contains p-form potentials flp. For the type ITA theory p = 1,3 and for type IIB,
p = 0,2,4, with an additional constraint on /14, such that its field strength is
self-dual, F5 = % F.

To perform the compactification these differential forms should be expanded
in the basis of harmonic forms. For type IIB side such forms have already been
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introduced in the previous subsection. For type ITA one has to remember that
there is no nontrivial 1 or 5-cycles so that one has to consider only 3-forms. One
can choose dual forms to A" and B, cycles introduced in section 2.1.1 to be ap,
and 3% respectively, such that

/ o™ = 6%, By =0, / o™ =0, By = —63. (2.16)
AA AA Ba By

The procedure of compactification to four dimensions on Calabi-Yau is described
in details in |2| and a relevant review is present in |4]. In the following we will only
discuss the field contents in the two cases of in four dimensions.

2.2.1 Type ITA

The bosonic sector of type ITA supergravity in 10-dimensions is described by the
following action [2] :

1 2 4 N A~ 1 A N n A A A
SHA = — / |:6_2(;s <R*1+4d¢/\*¢— —Hg/\*Hg) — <F2/\*FQ+F4/\*F4
2 2 2.17)
— By AdAs A dA3:| ,
where hats stand for fields in 10-dimensions and
Hy— By, Fy—dA, i dds— A A Hy (2.18)

Let us now analyze what happens due to compactification.

e First let us try to understand the NS-NS sector to which gxy, Bg,é belong.
Then

(gXY)IOd = (guw ti’ Za)4d = (ng’ ti’ Za)4d—dual !
(BZ)IOd = (B2 + biw¢)4d = (Ua bi)

®10d F Gad > Dad—dual,

4d—dual ’ (219)

where the first arrow indicates dimensional reduction from 10 to 4 dimensions
and the second arrow indicates dualization in 4 dimensions.

e Then for the RR sector,
(A1>10d = (A(f)4d = (A(l))éldfdual;
. . - . - 2.20
(Ashioa = (As + Ajws + oy +GaBY) > (constant, 47, %Gy 220

4d 4d—dual

Thus, in four dimensions the fields organize in the following multiplets :

16
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gravitational multiplet (g, AY),

e tensor multiplet (Bs, ¢, %, o).,

o 12! hypermultiplets (2%, (% (,) ,

e 1! vector multiplets (A}, v' = b' + it?).

As is not included because in four dimensions it can be dualized to a constant
which we put to zero as it does not carry any degree of freedom. However in |5]
it was shown that it can play an important role by inducing a gauge charge for
the NS-axion o, where o appears due to dualization of the field B,. After this
dualization the tensor multiplet gets converted into another hypermultiplet and
there are now h?!' + 1 hypermultiplets in total. The hypermultiplet that comes
from the dualization of tensor multiplet is always present and is called the universal
hypermultiplet. When the compactification manifold is chosen to be a rigid Calabi-
Yau threefold, by which one means that there is no complex structure moduli i.e.
h?! = 0, this is the only hypermultiplet that remains in the spectrum.

2.2.2 Type IIB

The bosonic sector of type 1IB supergravity in 10-dimensions is described by the
following action [2] :

1 o A A A1 A
SIIA:_/|:€_2¢(R*1+4d¢/\*¢—§H3/\*H3>

2
) (2.21)
—(ﬂMﬂ+EAMﬂ5EAﬁg—&AM@M&y
and
ﬁg :dBQ, Fl :dAo,
(2.22)

Fy=ddy—AgnHy By =ddi— S Ay A Hy+ 2By A dA,
Let us find out the situation after compactification.
e In the NS-NS sector
(9xv)10a = (Gur ' 2%) 4 = (G2 2%) 10
(32)1Od = (BQ + bi“l’)z;d = (1/’7 bi)4d—dual7 (2.23)
D104 — D1a — Pad—dual-
e Then for the RR sector,
(Ao)md = (")aa = () 1a—aual,
(A2)100 (A2 + cwi) g = (€0,€) 40 gy (2.24)
(Ai)ioa = (Dios + D' + s + AiaBt) o (es, AL A7)

4d—dual
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Due to the self-duality condition on Fj, the scalars DZ and vectors 1211,/\ are dual
to the two forms Dj and the vectors A% Thus they are redundant fields not
contributing to the spectrum. The fields arrange as in multiplets below :

e gravitational multiplet (g, AY),

e double tensor multiplet (Bs, As, ¢, ),
e ! hypermultiplets (¢, 0%, ¢, D) |

e 12! vector multiplets (A, z%).

As above, the double tensor multiplet and h'! tensor multiplets can be dualized
to hY' + 1 hypermultiplets and we have the final form of the spectrum.

Here, we would like to emphasize that the above conditions on the number
of vector multiplets (VM) and hypermultiplets (HM) in type ITA and type TIB
theories are in the perfect agreement with the statement of mirror symmetry,
extension of which when quantum corrections are present is one of the principal
focus of the entire work. Given a mirror pair of Calabi-Yau threefolds (2), QA)) the
Hodge numbers are related as the following,

RHHY) = h*HD), KPN(Y) = hMN(D). (2.25)

This means that under mirror symmetry the numbers of the vector multiplets and
the hypermultiplets of type IIA and type IIB theories are exchanged to each other
if the compactification manifolds are chosen to be mirror of one another.

2.3 Low energy effective actions

When one restricts to the lowest order of o’-corrections, the relevant terms in the
LEEA should be considered upto two derivatives terms only. In this approximation
the VM and HM stay decoupled from each other and supersymmetry puts severe
restrictions on the form of the action. It becomes

1
S:§/R*1+SVM+SHM. (2.26)

The form of Sy is well known, see for example |6]. It is as the following,

1 1 , -
Sun = / {_5 Im N7 FTA«F7 + 5 Re Ny FIAF7 + Kig(v,0)do’ A dv? | (2.27)
The graviphoton field strength F° has been combined with the other gauge field
strengths to F'’s. N = 2 supersymmetry dictates the forms of the matrices Ki;
and N7;. Both of them are determined by a holomorphic prepotential on the
special Kihler manifold spanned by the moduli v*. The former is just the metric
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on this space and is given by the derivatives of the Kédhler potential. The latter is
defined as

N[KNJLU UL

N ) F - —’
17(v,0) = F; NxyoXoY

(2.28)
where N;; =i(Fr; — Fpj), vf = (1,v%). The matrix N7, has a physical interpreta-
tion as a matrix of gauge couplings. Moreover unlike N;;, which has a Lorentzian
signature, the matrix N7 is negative definite and hence the kinetic term is positive
definite, as it must be.

Next we turn to the HM part of the action. It takes the form of a non-linear
o-model,

Stv = /d4xga5(q)auq°‘8“qﬂ. (2.29)

Here a = 1,...,4ny, where ng is the number of HM’s and ¢ denotes all of the
scalars. Again ¢,5(q) can not be arbitrary, N = 2 supersymmetry restricts it to
be quaternion Kéhler (QK) |7|. We will discuss about these types of geometries in
the next chapter.

This shows that the LEEA of Calabi-Yau compactifications of type II string
theories is completely determined by the geometry of the VM and HM moduli
spaces. Moreover at the two derivative level the full moduli space factorizes ,

M4d = MVM X MHM, (230)

where My and My are vector multiplet and hypermultiplet moduli spaces,
respectively. Since the above statements are consequences of N = 2 supersymme-
try, they should continue to hold even in presence of all quantum corrections. As
mentioned earlier, the former is a special Kiahler (SK) manifold and the latter is a
QK manifold.

The holomorphic prepotential describing the vector multiplet moduli space is
tree-level exact, more precisely, it does not receive any correction in g, and can
be explicitly computed. In particular, for the type IIB theory, where the vector
multiplet moduli space coincides with the space of complex structure deforma-
tions Myy = MC(@), the prepotential is also independent of the o’-corrections.
Therefore in this case the VM’s obtained by Kaluza-Klein reduction is exact and
hence is determined by (2.4).

On the other hand, the My, in the type ITA side coincides with the moduli
space of complexified Kéhler class deformations Myy = Mg (). However, the
prepotential (2.15) is only the large volume approximation. Its the correct form can
be derived by exploiting mirror symmetry. In particular, since the moduli spaces
of type ITA and type IIB theories should coincide provided they are compactified
on a mirror pair of Calabi-Yaus, we have

ML (@) = MU (D), Mind () = M (D). (2.31)
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Therefore, the prepotential on the type ITA side can be computed from the exact
prepotential on the type IIB side. The result of such computation turns out to be

Xix/x* C(3)(X°)?

F(X) = —ryjp ——a— + Ay X' X7
(X) Kijk o T Ars + X9 2(2mi)

6.X

(X0)2 (01« 2mik; Xt/ XO
BT DI L
kivieHy (D)

(2.32)

w

The last two terms arise due to o’-corrections and can not be derived by Kaluza-
Klein reductions. The term involving ((3) comes from perturbative corrections
due to o and the last term comes from corrections due to worldsheet instantons.
The Lig arises due to multicovering effects and n,(i) are genus zero Gopakumar-Vafa
(GV) invariants. The procedure is described in [8,9]. The second term which is a
quadratic one with real symmetric matrix A;;, is usually omitted in the literatures
because it does not affect the Kahler potential. However in later stages it will be
crucial for our discussion and we include it from the very beginning.

The vector multiplet side is completely under control once the prepotential is
determined, because the moduli space is a special Kahler manifolds, as had been
mentioned before. On the other hand, the situation for the hypermultiplets is not
as simple. My, can have corrections in g, [10] and furthermore, the QK geometry
is much more complicated. In chapter 3, we will address this issue using twistor
techniques.

2.4 Hypermultiplet moduli space

This section is devoted to description of the classical HM moduli space and its sym-
metries. We will also describe how the quantum corrections break the continuous
symmetries to discrete ones.

2.4.1 Classical hypermultiplet metric

M always contains field parametrizing either M or M depending on whether
we are on type ITA or type IIB side respectively. As a consequence of classical mir-
ror symmetry the metrics of both sides should coincide. It is actually known that
to every projective (local) special Kidhler manifold one can associate a quaternion
Kéhler manifold [6,12|, so that the latter are still described only by prepotential.
This construction realizes the classical metric on M. The procedure is known
as c-map and correspondingly the metric (2.35) is said to be in the image of it.

We now turn to understanding the physical origin of this c-map. Let us consider
type ITA and type IIB theories compactified on the same Calabi-Yau threefold
times a circle. T-duality along the circle implies that

IIA/( x Sg) = 1IB/( x S} /z). (2.33)
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On the other hand, their low energy descriptions can be obtained if one compact-
ifies the four dimensional theory from the previous subsection on a circle. This
leads to two massless scalars corresponding to each of the gauge fields. One of them
comes from the component of the gauge field along the circle and the other appears
by dualization of the remaining three dimensional component of that gauge field.
In particular, it means that a vector multiplet in four dimensions leads to a hy-
permultiplet in 3d additionally to the hypermultiplet associated with the metric.
the corresponding three dimensional effective action is then a non-linear o-model
whose target space is a product of two QK spaces. For either of type ITA or 11B
theories the full three dimensional moduli space is given by,

Msq = Qc() x Qk (D), (2.34)

which are extensions of complex structure and complexified Kahler class moduli
spaces of the Calabi-Yau, respectively. One of the factor come from the HM moduli
space My and the other comes from vector and gravitational multiplet in the
way which we have just described above. Then (2.33) simply exchanges the two
factors.

At the classical level, where one ignores instanton corrections coming from
the winding modes of the circle, the Kaluza-Klein reduction is sufficient. Then
it is possible to find the metric on Mﬁ{f from the metric on M\B,l/\f, explaining
why the hypermultiplet moduli spaces are still given by the same holomorphic
prepotentials.

In the following we present the c-map metric using the fields adapted to the
type ITA side only. To find the metric on the type IIB side, what one needs is a
simple application of classical mirror symmetry which we will explain elaborately
in chapter 5. The result on the type ITA side reads as follows,

: e / = ’
d32 — d% _ i(ImN)AE (dCA —NAA/d<A> (dCE —Ngg/d<2>
' o - N2 . (2.35)
+ 167’2 <d0‘ —+ CAdCA _ CAdCA> + 4’Ca5dzad2b7

where 7 = e? 1/g(24) and the Kihler potential is given in terms of (2.4).

Let us present the topological structure of the space described by the classical
metric presented above. On top of the complex structure moduli space M¢(2))
parametrized by z%, there is a torus bundle on the intermediate Jacobian, Jo(2))
with the fiber parametrized by the RR scalars, as T, = H*(9),R)/H*(,Z).
One can choose Griffiths or Weil complex structure on the intermediate Jacobian,
where the periods are related by (2.28). On top of it, there is still a circle bundle
parametrized by the NS-axion ¢ and the dilaton appears as an overall factor. The
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structure then is that of a two-staged fibration,

Sl —  C(r)
I
R x| T — 2@ | (2.30)
!
Mc(D)

2.4.2 Symmetries of the classical metric

Before we embark on to the study of the quantum corrections to the hypermultiplet
moduli space, it is important to ponder over the symmetries at the classical level.
In the absence of explicit microscopic computations, these symmetries are the only
tools that allow us to access the quantum corrected metric. At this stage, let us
remind the reader for convenience the field content in the hypermultiplet sectors
of the cases for type ITA and type IIB theories.

TypellA : 2, ¢, 0 and ¢, Ca.

. S 0 (2.37)
TypellB : v* =b" +it", ¢, ¢ and ¢, ¢', ¢;, ¢p.

e Symplectic invariance

Type ITA construction has manifest symplectic invariance because all the
four dimensional fields are defined with respect to a symplectic basis of 3-
cycles (AY, By). Although (2.35) is written down when a particular choice of
such cycles is made, there is no canonical way of doing it. It is always pos-
sible to perform a symplectic rotation by a matrix O € Sp(2h*! + 2,7Z) and
as the physical results must not be dependent on the symplectic marking, in
particular the metric, they should be manifestly invariant under such trans-
formations. The symplectic rotation acts as the following on all symplectic

vectors,
(AN a b\ /A"
o (£ o (25 (). o

where a, b, c,d are (h*! + 1) x (h*! + 1) matrices obeying

a’c—c’a=0=b"d—-d"b, a’d—c'b=1. (2.39)

The scalars r and ¢ are invariant under symplectic transformation. To see
that the metric is symplectically invariant, let us start by considering the
second term. Now noticing [13],

N = (c+dN)(a+DbN) ™,

ImN +— (a+bN) TImAN(a+bN)™, (2.40)
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we find that this term is indeed invariant.

The transformation of 2% is induced by symplectic transformation of the vec-
tor (XA, Fy), built from the homogeneous coordinate and the prepotential.
This fact allows one verify explicitly that the last term in (2.35) is invariant
under symplectic transformations. Altogether, these ensure that the metric
is symplectically invariant.

e S-duality

Moreover the type IIB string theory is invariant under S-duality [14]. In
absence of o/ or gs-corrections at large volume and small string coupling
limit, this symmetry is realized by continuous action of SL(2,R) group.
Its action on the coordinates adapted to the type IIB side (for manifest
invariance under SL(2,R)) is,

ar +b

T vl t* — t%er + d|, Co M Cq
. cT

SL(2,R)> g : c® (@ b c® ), d —c\ (¢

b c d)\bv*)’ WY —b a (N

(2.41)

with ad — bc = 1, where the relations between fields in type IIA and type
IIB are given by!,

S, C=n, =),
- 1 ~ 1
Ca =cCq+ 5 Rabe bb(cc - lec> ) CO =Cy — 6 Rabe babb(cc - lec) ) (242)

1 1
o=-=201+ 57'100) + co(c® — b)) — 8 Kabe b“cb(cC — b,

However, after incorporation of quantum corrections one expects it to be
broken down to a discrete subgroup of SL(2,R). We will get back to its
discussion in chapter 5, and it will be our guiding principle for deriving
results for the “fivebrane instantons".

e Heisenberg symmetry

The RR scalars and the NS scalar in the metric (2.35) are actually obtained as
either periods or duals to gauge fields present in ten dimensional superstring
theories. This is the origin of the Heisenberg symmetry, as it is a consequence
of the gauge symmetries. [15] discusses this situation and they are examples
of the so called Peccei-Quinn symmetries. Its action is most conveniently
realized in terms of type ITA fields :

TH,/@ : (CAa 5A7 U) — (CA + 77A7 5/\ + If]Au o+ 2Kk — ﬁACA + TIAQ:A)' (243)

"When we use a to label the indices of type IIB fields, we tacitly assume that we are working
on the mirror Calabi-Yau, so that h%1(Q)) = h%1(2)), and hence is not a contradictory notation.
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Furthermore, the composition of two such transformations is given by

THl,Hl : THQ,NQ = TH1+H2751+H}2+% <H1,H2>' (244)

Here H = (n,7,) is a symplectic vector and the symplectic invariant inner
product is given by (H, H') = ijxn'™ — nij,. At this stage H € R» and €
R. In the following section we will discuss how non-perturbative quantum
corrections due to instantons break them down to integers.

e Symmetry around the large volume point

There is another kind of Peccei-Quinn symmetry which can be easily under-
stood from the type IIB side. When the scalars b* dual to the two form field
By is in the hypermultipler sector, this symmetry is inherited from the gauge
symmetry of the latter. In the prepotential (2.32) one can actually drop the
last two terms in the large volume limit, where o/-corrections are absent. In
that case it is a continuous symmetry, whereas in presence of o/-corrections
it becomes discrete. Furthermore such shift should be accompanied by trans-
formation of the RR scalars as the following,

s 1
b® — b2 + Ea’ ga s Ca + Eang Ca — Ca o /{abccbec o iﬁabCEbECCO,
Ma .
€ - - - 1 1
Go = Co — Ca€” + 5 KapeCl€P€C + G Kapee€?eCO..
(2.45)

e Mirror symmetry

As we have already seen, the moduli spaces of type ITA and type IIB sides are
identical, provided they are obtained by compactfication on mirror Calabi-
Yau threefolds. These different facets of the same theory are useful to deal
with various types of symmetries which are most naturally realized in one
or the other. For example, whereas S-duality is a manifest symmetry in the
type I1B side, type ITA formulation is ideally suited for symplectic invariance.
The advantage of mirror symmetry is that it allows to pass from one to the
other.

2.5 Qualitative nature of quantum correction

In string theory there are two sources of quantum corrections to the results ob-
tained by Kaluza-Klein reduction : they can come from two coupling constants, o
and g,, and can be both perturbative and non-perturbative. The o’-corrections can
appear only where the Kédhler moduli present, for example this is the reason why
type ITA vector multiplets receive such corrections. Due to the c-map the situation
is reversed for the hypermultiplet sector. Whereas My is o/-exact, it receives
corrections from them on the type IIB side. However, for both of these cases in
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the lowest order in g, the metric is determined completely by the prepotential by
(2.35).

The g corrections appear in both M}y, and Mp,; as the dilaton is a part of
hypermultiplet in both type ITA and type IIB theories. On the other hand for the
vector multiplets the metric is tree level exact in g,. Below, we discuss qualitative
effects of the g, corrections to the geometry of My both perturbatively and
non-perturbatively for the case of hypermultiplets.

e Perturbative corrections

Perturbative corrections should be obtained by expanding in powers of dila-
ton which is the counting parameter for the string loop expansion. It is
important that in the perturbative approximation the metric must retain
the continuous Heisenberg symmetry (2.43) [16,17]..

e Non-perturbative corrections

Non-perturbative corrections emanate from Fuclidean branes wrapping dif-
ferent non-contractible cycles of the Calabi-yau threefold [10]. Such correc-
tions are called instantons because these objects seem to be point-like objects
from the four dimensional perspective. In the case of of string theory two of
such objects generate instanton contributions,

— The first of them are so called D-instanton effects coming from D-branes.
Physically they can be interpreted as arising from Dp-branes with (p +
1)-dimensional worldvolume, wrapping appropriate cycles in the Calabi-
Yau. For type ITA, p is even, whereas for type IIB p is odd.

Since a Calabi-Yau threefold does not admit any non-trivial one or five
cycle, there are only D2-instantons in the type ITA side wrapping 3-
dimensional cycles in ). They are labeled by the charge vector v =
(p™, qa), representing the cycle wrapped, gz A" + p*Ba € H3(2).

In the case of type IIB side all instantons wrapping different even-
dimensional cycles are present. The ones that come from wrapping 0
and 2—dimensional cycles are called D(-1) and D1 instantons. Through
mirror symmetry they are related to the A-D2 instantons (g # 0, p* =
0 coming from D-branes wrapping A-cycles in type ITA side). The other
two D3 and D5 instantons are mapped to the B-D2 instantons (coming
from D-branes wrapping B-cycles in type ITA) with non-vanishing p“
and p° respectively.

Schematically the D-instanton corrections take the following forms [10],

3| D inst ~ Q(y; 2) 2N g =2mianct =) (2.46)

where it depends on some moduli dependent functions giving strengths
to the instantons, known as central charges Z, and are given by

Z, = qn2" — p*Fy. (2.47)

25



2. Compactification of type II string theories on Calabi- Yau threefolds and their
moduli spaces

The BPS indices Q(7; z) are some moduli and charge dependent coef-
ficients. They give rise to the instanton measures and it is well known
that they are related to the counting states for the case of black holes.
They are piecewise constant function on the moduli 2%, where the jumps
occur across codimension one surfaces, the so called walls of marginal
stability about which we will discuss in chapter 4.

It is clear that the RR-fields (¢*,(y) , in the D-instanton action break
the continuous Heisenberg symmetries (2.43) to discrete ones. After
incorporation of all sorts of D-instantons all shift symmetries along the
RR-fields become discrete. For the type IIB side, the effect is similar,
the theta-angles are now the fields c°, ¢, ¢y, ¢;.

— There is another non-perturbative obejact called NS5-branes, that are
magnetic dual to fundamental strings. Since they have six dimensional
worldvolume they can wrap the entire Calabi-Yau manifold. They are
responsible for the breaking down of the final continuous symmetry
which is continuous translation along NS axion ¢. Schematically, their
action is given by,

5d82|NS5 ~ e 27lkIV/g}—miko (2.48)

Taking all non-perturbative effects into account, leads to the hypermul-
tiplet moduli space devoid of all continuous isometries, while only a
discrete subgroup of them is retained.

2.6 Present status

Recent years have marked a lot of progress in the understanding the hypermultiplet
metric for the type II string theories. We presently have a neater description of
QK geometries using twistor techniques, understanding which will be the main
focus of the following chapter. The inclusion of D-instantons on type ITA side
consistently with the symplectic invariance had been already achieved in [18,19].
The D(-1) and D1 instantons on the type IIB side had also been accounted for
in [20]. Furthermore initial steps of including NS5 instantons have also been taken
in [21], where also several interesting and connected problems are addressed, for
example some relation to topological strings. The question of D3-instantons on
type IIB has also been attempted in [22| although its understanding still remains
incomplete as the analysis has been done in the large volume limit and only upto
first order in instantons. Here we go beyond these results. In particular, now
we have understood the NS5 instantons on the type IIB side mostly, barring a
few subtleties, [23,24]. Furthermore an explicit expression for the metric has been
calculated in [11] in presence of A-D2 instantons on the type ITA side. We reiterate
that all of these were achieved by invoking different symmetries of the type ITA
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and IIB formulations. Before coming to these points in later chapters, we need to
first review the twistor techniques for the QK manifolds, which we are going to do
next.
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CHAPTER 3

Twistorial description of Quaternion Kahler manifolds

In the preceding chapter we found that compactifications of type II string the-
ories on Calabi-Yau threefolds lead us to study hypermultiplet moduli spaces of
four dimensional N' = 2 supergravities. Moreover, we also saw that these hyper-
multiplet moduli spaces are quaternion-Kéahler manifolds. The physical problem
that we want to address is describing these hypermultiplet moduli spaces when all
possible quantum corrections are present. But it is not easy to deal with general
QK manifolds. The difficulty of handling them stems from the fact that they are
rather complicated geometric objects. This fact renders the problem of includ-
ing instanton corrections directly at the level of metric to be extremely difficult.
Fortunately there is a way to circumvent this problem .

Let us recall why special Kdhler manifolds are comparatively easier geometric
objects. The reason is that there exists a holomorphic prepotential which com-
pletely encodes their geometry. In the case of QK manifolds we would also like
to have such a nice, elegant and substantially more convenient description. The
twistor construction that we are going to present in this chapter actually does the
job. It turns out that such construction leads to similar objects through which the
geometry of QK space can be completely encoded. In the following we are going
to recapitulate the essence of these techniques and we will find out how certain
holomorphic transition functions on the twistor space will serve our purpose.

3.1 Quaternion Kihler manifolds and their twistor
spaces

Our discussion closely follows |25] and the review [4]. A QK space M is a 4n real
dimensional Riemannian manifold with the holonomy group contained in USp(n) x

28



Quaternion Kdhler manifolds and their twistor spaces. 3.1

SU(2) |26]. The n = 1 case is the simplest and special in the sense that the QK
manifold is then defined as a self-dual Einstein manifold.

The QK space carries a triplet of non-integrable almost complex structures .J*
satisfying the quaternionic algebra. They define the quaternionic two-forms by
WH(X,Y) = g(J'X,Y). These two forms are covariantly closed with respect to the
SU(2) part p of the Levi-Civita connection and are proportional to the curvature
of p,

AG+px@d=0, dp+ 3, (3.1)

where v is related to the Ricci curvature v = WRH)‘ The major problem with such
spaces is that they are not even complex manifolds. However, it is still possible to
describe the geometry of QK spaces analytically by passing to its twistor space.

The twistor space Z of the QK manifold M is the total space of a CP!' bundle
on M. This CP"! is the sphere defined by the triplet of almost complex structures.
In contrast to the QK space, this twistor space is a complex manifold. Furthermore

it carries an integrable canonical complex contact structure given by the kernel of
the O(2)-twisted (1,0)-form

Dt = dt + p, — ipst + p_t2, (3.2)

where py = —% (p1 Fip2) and ¢t is the stereographic coordinate of CP!.

There is a more convenient way to describe this complex contact structure via
a holomorphic one-form X, known as contact one-form. Locally there exists a
function, the so called contact potential ®[, that allows us to construct it from
the (1,0)-form Dt,

N S
Xl = = 2 py, (3.3)
1t
where the index indicates the fact that we are working only locally in a patch
U; C Z. This contact potential is a quantity that will play a very important role
in future. For instance it determines the Kéahler potential on Z by

; 1+t ,

The advantage of the contact one-form X becomes manifest when one intro-
duces holomorphic Darboux coordinates. Namely, it is always possible to choose
complex coordinates (f[/z‘], /[i}, CKM) on a patch U; on the twistor space such that X'l
can be locally trivialized as [25,27]

X = dal? + gy agy. (3.5)

The contact structure is completely determined by the transformations relating
the Darboux coordinates in the intersection of two different patches U; NU;. These
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“contactomorphisms" should preserve the contact one-form up to a holomorphic
factor,

XUl = fxl, (3.6)

The contactomorphisms defined above can be parametrized by the transition
functions HW € H'(Z,0(2)), which are holomorphic functions of Darboux co-

ordinates 5{}] on one patch and {N/[f}, all on the other. The gluing conditions that
relate Darboux coordinates on two different patches turn out to be

&y = & — O HY + &0, H,
fA = fA + 85[/;]}[” ; (3.7)
ol = ol 1 HI) — ghog H,

using which the holomorphic rescaling factors in (3.6) becomes
fin=1—0un HY, (3.8)

and is completely determined by H[!.

These gluing conditions appended with appropriate regularity conditions can
be rewritten as a set of integral equations for the Darboux coordinates [25]. The
Darboux coordinates here are functions of the QK coordinates (z*) as well as the
CP!fiber coordinate t. We require that the coordinate 6[/2] has only simple poles

at t = 0, 00, and allow for the coordinate al! to have logarithmic singularities at
t=0,00 .1

Afpit 3y — AN L1y A gy dt’ t,"‘t - 1] Ao o ]
5[i] (1} ) ) - - Z 27T1t' 1 — £l o f[j] al] )
~[’L] m dt, t, + t [7{]}
V(@ t) = By + - Z]{ o g Oy (3.9)
: At ¢+t i
all(z# 1) = B, — 2icy logt + = Z f i (H — &0 H ﬂ).

Here t € Z/A{M, where U7 is the projection of Ul on the CP' and C;’s are
contours that surround U, The complex variables Y* and the real variables
AM By, B, play the roles on coordinates of the QK manifold. Counting the num-
ber of parameters we find 4n + 1, where n is the quaternionic dimension of M.
They contain one parameter extra because the overall phase rotation of Y can be

! Actually one can allow for logarithmic singularities for both {;:/[\1] and al. They give rise to
the so called “anomalous dimensions" ¢y and ¢, [25]. In what follows, cp’s are not relevant for
our considerations. But ¢, is, because it encodes the one loop correction in gs.
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absorbed by redefining the CP! coordinate ¢. In mathematical parlance the pro-
cedure of solving these integral equations is known as “parametrizing the twistor
lines". There is an important thing to notice in the above integral equations : the
index ¢ inside the integral can be replaced with any other index for any other patch
in the twistor space as the transition functions satisfy certain cocycle conditions.
This fact is important in computations presented later.

Finally one can find the gluing conditions for the contact potential,

ol — ol =1log(1 -9

«

o HET), (3.10)

This can be solved to find [25]

Z ar
Pl = - _Z% 2mit! log(1 = o H'7), (3:.11)

where the constant part is

1 dt —1vA A z
LS b (YA — YD) 9a H 4 ¢,
_ 8 JG ( ) 38 ’ (3.12)

o® — oRe [0+ (t=0)]
2 cos [%Zj fcj % log(1 — 8amHW)]

and the index [+] denotes the patch surrounding the north pole (¢ = 0) on CP*.

One more important fact to note that all the quantities such as contact one-
form, Darboux coordinates, transition functions and contact potential satisfy real-
ity conditions under the combined action of complex conjugation and the antipodal
map, <[t] = —1/t, provided that the covering of Z by patches {i4;} remains in-
variant, i.e. U; is mapped to U; and back. In particular, the transition functions
satisfy

[H) = HUI, (3.13)

3.2 Contact bracket formalism

There is a further simplification if one introduces certain objects called “contact
hamiltonians". They were introduced in [23,24|. The difficulty of parametrizing
the contact transformations with usual transition functions arises from the fact
that H! are functions of Darboux coordinates in two different patches. Due to
this the apparently simple gluing conditions may be generated by complicated
transition functions. In particular when one discusses symmetries this creates a
big obstacle. Typically such symmetries define some action locally at each patch
U; on the twistor space by their action on the Darboux coordinates. These actions
can take a highly nonlinear form if one tries to realize such symmetries in terms
of HJ, We will see examples of such situations later.
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3. Tuwistorial description of Quaternion Kdahler manifolds

Before, we introduce the contact hamiltonian, we would like to recapitulate
certain facts about contact geometry, the relevant geometry for the twistor spaces.
Let us consider a contact vector field X, associated with a function h. It is
determined by

i, dX = —dh + R(W)X, 1y, X =h. (3.14)

Here tx denotes the contraction with a vector field and R is the so called Reeb

vector determined as the unique element of the kernel of dX" satistying X'(R) = 1.

Furthermore, we define the contact bracket which is an extension of Poisson

bracket in the realm of contact geometry. Tts definition for two objects 11 € O(2m)
and p5 € O(2n) is as a map to O(2(m +n — 1)) given by [18],

{1, 2 ymn = 8§AM135A,U2 + (mﬂl - angAlh) Ol

A (3.15)

— Oen 120z, pi — (npta — EX0enpiz) upin.

From the definition the skew-symmetry is obvious, in particular

{1, 1ymn = (m —n)udap. (3.16)

(3.15) also satisfies the Leibnitz rule and the Jacobi identity. For some section
ps € O(2k) the Leibnitz rule becomes

{Mlﬂm M3}m+n,k = Ml{l@, M3}n,k + MQ{Mh M3}m,k~ (3-17)

The Jacobi identity turns out to be the following relation,

{/ﬁb {M27 M3}n,k}m,n+k71 - {/JJ27 {Ml, M3}m,k}n,m+k—1

3.18
- {{#17[1’2}771,717,u3}m+n—17k — 0 ( )

Since we will mostly need the case of {, }1 o below, to reduce the cumbersome-
ness of the notation we will drop the indices if no confusion arises. It provides
the action of a vector field X, with the (generalized) moment map 4 on a local
complex function sy [28]. In particular given such py and po, the contact bracket
is defined by the action of the vector field associated to p; as

{p1, 2} = Xy o (3.19)

Setting puy; = h and ps to be one of the Darboux coordinates, one explicitly finds
{h7 ’SA} = = agAh + anah7 {h7 gA} - aEAha (3 20)

{h,a} = h — " 9nh. '

If the same function h is used to represent sections of two different bundles
O(2) and O(0), one finds that the bracket is not antisymmetric, the fact which
follows from (3.16). Instead it satisfies,

{h,h} = hd.h = hR(h), (3.21)
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Gauge transformation. 3.3

which can be obtained by applying ¢x, on the first equation of (3.14) and of course,
without loosing generality we can choose the Reeb vector field R(h) = 0,h.

A crucial property of the contact bracket following from its definition is that
it generates infinitesimal contact transformation. This means

EXhX = dLXhX + LthX = R(h).)( (322)

Thus exponentiating the action of the contact bracket one generates a finite contact
transformation. This implies that the gluing conditions can be rewritten as,
=) _ AWl (3.23)

for some function Al
The action on each of the Darboux coordinates is given by

s, . .
b =Y = gy — 0 H 4 &) 0 Y,
2y Gy 2l i
5{[{] _ }f,[\} — g/[\] 4 85@][{[]], (3.24)
ol = (W} Gl — ol + H! — f[Az']aﬁfz\'JH[ij]‘

From the above we can also find an expression for the usual transition function
HU! in terms of Al as

H[ij] _ (e{h[ijly.} . 1) a[i] + 5[11\} <e{hw]7'} . 1> gk] (3_25>

The important point here is that rewriting the gluing conditions by (3.24)
avoids the complication of having to compute derivatives only after transferring to
the patches U; for the Darboux coordinates E/[Z] and aV!, which are arguments of
HUl Indeed, if one uses the contact hamiltonians, the derivatives that enter the
gluing conditions can be taken treating the Darboux coordinates on the same patch
as independent variables. This simplification will play an important role when we
will discuss QK manifolds with symmetries and their twistor spaces. Also it is
useful to note that in the case where HW! is dependent on 5[‘}] only the contact

hamiltonian A} coincides with the transition function, H! (Sfl\]) = pll (ffl\})

3.3 Gauge transformation

The transition functions are actually not uniquely determined. It is still possible to
perform local contact transformations on each of the patches of the twistor space
U; € Z [25]. Since these gauge transformations are contact transformations after
all, the formalism of the contact brackets can be utilized in this case as well [24]. We
will call the contact hamiltonians that generate these local contact transformations
as “gauge transformation contact hamiltonians". A crucial difference between the
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3. Tuwistorial description of Quaternion Kdahler manifolds

transition functions that generate contact transformations between two different
patches and the generators of gauge transformations is that the latter has to be
regular in the patches on which they act ensuring that the regularity of Darboux
coordinates on their patches of definition is not spoiled. In the following, we denote
the gauge transformation by ¢l and as explained they are regular in ;.

The effect of a general gauge transformation is captured by the following for-
mula,

exp <thj]> = eixgm exXp (Xh[ij]> exglj], (3.26)

and can be computed in principle by using the Baker-Campbell-Hausdorff formula.
Later we will find that the relevant gauge transformation contact hamiltonians
take the same functional form in each of the patches and will depend on only the
Darboux coordinates §[/Z.‘}, i.e. gll = g(¢y). The Jacobi identity (3.18) in this case
implies

(X, Xn] = X{gh}y - (3.27)

Using this we can find explicitly how the contact hamiltonian Al changes to h[gij]
due the gauge tranformation induced by ¢! as

B = e~lo ] (3.28)

Then the above entails into the following simple relation,
P = (€8, &y~ Deag, o — g + €0eng) | (3.29)

affecting the contact hamiltonian k! by only linear shifts in the arguments.

3.4 QK manifold with symmetries

In this section we will discuss the general procedure for dealing with QK manifolds
with symmetries. As was mentioned in the previous chapter, it is not possible to
perform detailed microscopic computations explicitly in many occasions. In such
situations the only guiding principles are the symmetries of the metric on the
moduli space. Remarkably, the symmetries turn out to be sufficient to determine
the non-perturbative structure of My entirely. More precisely, in terms of some
Calabi-Yau data such as Donaldson-Thomas invariants, intersection numbers etc.
the symmetries impose strong enough requirements from which in principle the
metric is computable.

For having better understanding of such symmetries we will again use the
twistor formulation. It is well known that all symmetries of QK spaces can be
lifted to their twistor spaces [26]. Apart from the symmetries there is now an
extra advantage of holomorphicity whose virtue will be extensively used later.

The lift of the symmetries to the twistor space Z is defined by the action on
the Darboux coordinates. Naturally, since the transition functions depend on the
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QK manifold with symmetries . 3.4

Darboux coordinates, they can not be arbitrary in presence of such symmetries.
Instead the defining action on the Darboux coordinates will give rise to certain
constraints on the transition functions. Furthermore for a proper lift, the metric
on the twistor space should also remain invariant under the symmetry. This means
that the stereographic coordinate ¢ must also transform in a specific way. Indeed,
this is the case because if we look at the integral equations for the Darboux coor-
dinates, we find that there are explicit dependences on t. If the lift is consistent,
one should be able to rederive the transformation properties of the Darboux co-
ordinates, provided the transformation of the fiber coordinate. Finally, since the
transition functions are associated to the patches covering the twistor space, con-
straints on the transition functions also fix how the patches should reshuffle. More
precisely, under the action of symmetries, the transition functions and the patches
to which they are associated with, transform in such a way that the covering of Z
remains invariant. At this stage, it is also important to note that the symmetries
render the contact structure on Z invariant. In particular, the contact one-form
gets only rescaled by a holomorphic factor under the action of symmetries. Let us
investigate the effect of this a bit elaborately.

Detailed discussions of these lifting problems already exist in the literatures
[18,21,22,28-30|. As was remarked before that crucial simplifications can be
achieved if one formulates construction exploiting the contact bracket formulation,
we will focus on this only here following [23,24]. We want to find how the contact
bracket, (3.20) behaves under contact transformation ¢ : X — AX, where ) is a
holomorphic factor. For this we will prove the following,

Q'Xh :X)\—lg.h. (330)

Let us denote the transformed quantities by primes. We have (3.14) at our disposal.
Instead of proving (3.30), we will prove the following,

ix,_,,, d(AX) = —di' + R'(W)\X, Lx, 1, (AX) =N (3.31)
To show (3.30) it is enough to prove,
ARAT'R)X = Aix,,,,dX + Ad(A'H) (3.32)
= Aix,_,, dX +dR — (ex,_,,, X)dA, '

from (3.14). The second equation in (3.31) is satisfied trivially. The first one can
be rewritten using the above as the following,

(kailh,d/\) X — (LX
= A (LX

o X) AN+ N ix - dX 4 dR = AR'(W)X

B (3.33)
dlog A+ R(A'H) — R'(K)) X = 0.

A—Ln/

Applying the map p to (3.14) we obtain

X(R)=\", trd (AX) = (trd\) X — dlog A + A ipdX = 0. (3.34)
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3. Tuwistorial description of Quaternion Kdahler manifolds

Contracting the second equation with X,-1;, we get

AW R'(N) —ux,,,,dlog A = Aipex,, ,dX (3.35)
= R'(W) — LXrlh,dlog)\ — R\ =0, '

completing the proof of (3.33).
Thus we know how p acts on the contact brackets from (3.30). It is given by

o-{h. fy={ "o ho- [} (3.36)

This property generalizes the familiar invariance of the Poisson bracket under
canonical transformations to the realm of contact geometry. The usefulness of of
the property in (3.36) will be revealed in due course of the thesis, in particular,
when we have to deal with S-duality symmetry on the type IIB side.

3.5 Evaluation of the metric on the QK manifolds

This section is devoted towards explaining the procedure of computing the metric
on QK space starting from the data on its twistor space. The discussion is along
the lines of |11,25|. In the next chapter we present the computation of an explicit
expression for the metric to all orders in instanton expansion for a special case.

Since later we will derive the metric in the case where the transition functions
HU) are independent of the coordinate «, in the following formulas we drop this
dependence from the very beginning. For this case moreover the contact potential
becomes globally well defined. Our interest lies in the case when the curvature v
is negative. Hence we set v = —1, as it can be adjusted by changing the value of
the cosmological constant affecting the metric by an overall factor only.

First one needs to expand the Darboux coordinates around the north pole in

the CP!,

6[-‘,—] _€[+ t ! + £[+] (t)a
S 2 o), (3.37)
alfl = — 21ca logt + ab™ + O(t),

From (3.3) we can compute the Levi-Civita part of the SU(2) connection,

pr=- eid) ISH] 1de 0

1 (3.38)
pt= =7 (daf + g 0agl] + g Madl)
from which we determine the 2-form w? by the following,
wd = —2dp® + dipT Ap. (3.39)
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The next aim is to reexpress this w® in terms of a basis of (1,0)-forms. Such a

basis was provided in [11,25] and reads as
. 1

a a,—1 ;+0,—1 ~ + ~ + 0,—1
2= d (gm /el ) C A=dill, Fa= g daf+2edloggl)" (3.40)
This basis specifies the almost complex structure J3. Finally the metric can be
computed from g(X,Y) = w?(X, J3Y). To do this in practice, one should rewrite
w3, computed by (3.39) in terms of differentials of (generically real) coordinates on
M. Then in terms of the basis 7% = (7% 75, 7o) given in (3.40). The final result
should look like

Wi =igyymX ATV, (3.41)

which is explicitly of (1,1) Dolbeault type. From (3.41) the metric readily follows
as ds? = 29y @7Y. In the next chapter we will discuss implementation of this
procedure explicitly in some special cases.
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CHAPTER 4

Quantum corrections to the hypermultiplet moduli space and
D-instantons

In this chapter we initiate the analysis of including quantum corrections to the
hypermultiplet moduli space My, As was mentioned, these quantum corrections
can be of two types, perturbative and non-perturbative. First, we will find out
how My gets deformed by inclusion of perturbative corrections in string coupling
constant g,. Then we will proceed on to finding its description when D-instantons
are present restricting to the type ITA formulation. We will do this by exploiting the
twistor formalism that has been discussed in chapter 3. After that we will compute
an explicit expression for the metric when a particular subset of the D-instantons
is present [11]. We will also consider in detail the four dimensional moduli space
resulting from the compactification performed on a rigid Calabi-Yau manifold and
its relation with Toda equation. We will finish this chapter by discussing what
happens to the curvature singularity appearing in the perturbative metric (4.1),
in the presence of D-instantons.

4.1 One loop corrected metric

At the one-loop level the metric on My is well known [16,17,31 33|. Tt has also
been reproduced using twistorial analysis in [25]. The result is,

r—+2c

1 2 ) N ,
ds? = ar? — = (NAZ _2r+d) 2A22> (ch — Fypdch ) (dgz _ Fupd(® )

r2(r + c¢) r rk
r+c S A ALF 2 A(r+ec) e
T (dor+ Gadc™ = Ml + 8edic ) + = Kypdz"d2",
(4.1)
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One loop corrected metric. 4.1

where as was introduced before, Nyy, = —2Im F)x; is an invertible matrix with in-
definite signature (N** being the inverse) on the special Kihler base parametrized
by 2%, Ay is the Kéhler connection Agx = %(/Cadz“ — K3dz%). The one-loop cor-
rection is parametrized by ¢ which is ¢ = —152-, where xy = 2 (h"1(2)) — h*1 (D))
is the Euler class for the Calabi-Yau threefold ¥). Topologically the one-loop de-
formed metric still has the structure of (2.36).

It is well known that the perturbative metric does not allow corrections higher
than one loop in g, . The evidence for it can be understood by analysis of the
structure of (4.1). We observe that the one-loop parameter ¢ corrects various terms
which depend on the dilaton r as well as the connection of the o circle bundle by
introducing a term proportional to the Kdhler connection A,

Do = do + (pd¢® — ¢*dl, + 8cAy. (4.2)
The curvature of the circle bundle of the axion o in (2.36) takes the following form

1

d(5 Do) = wr - i%dAK, (4.3)
where wr = dCy Ad¢? is the curvature form of the torus T.:=H(,R)/H*D,Z)
parametrizing the fiber of the intermediate Jacobian J.(2)). Perturbative correc-
tions beyond one-loop will presumably lead to presence of positive power terms in
r in the connection of the o circle bundle conflicting with the quantization condi-
tion on the first Chern class [21]. In particular, this argument indicates why higher
loop corrections than one-loop are forbidden.

4.1.1 Twistor description of one-loop corrected HM moduli
space

Let us now give the twistorial construction of the one-loop corrected hypermultiplet
moduli space described by the metric (4.1). As we have already learned in the
previous chapter, it is sufficient to provide a covering and the set of transition
functions associated to it. In practice, we will only work locally in the moduli
space. This means that we should only consider the covering of the CP! fiber and
the Darboux coordinates can develop singularities only in ¢.

Thus we have to consider the Riemann sphere of the CP!. Let us cover it
three patches U, ,U_ and Uy, where the first two cover the north pole and the
south pole respectively and Uy covers the equatorial region. Clearly one requires
two independent transition functions for the corresponding intersections of Uy with
Uy. Tt turns out that if we choose the following transition functions,

HY = F(),  HYT=F(9), (4.4)

one recovers the expression for the classical metric (2.35). To incorporate one-
loop correction, one should add the anomalous dimensions ¢, = —2c¢. Then it is
straightforward to recover (4.1) following the procedure presented in 3.5.
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4. Quantum corrections to the hypermultiplet moduli space and D-instantons

This is an example of toric QK manifold (that has n+ 1 commuting isometries)
for which the Darboux coordinate £ is globally well-defined. For this reason we
abstain from writing the patch index for them in the above equation.

We also write down the Darboux coordinates on the patch U,

oy =M+ REIN — 2,
V= (RO FA(2) — tFA(2)), (4.5)
A% = o + R(tW(2) —tW(Z)) — 8iclogt,

where &% = —2a[0 — 5[’(\)}51[3} is a symplectic invariant object constructed from o/,
and

W (z) = Fo(2)CM — 22, (4.6)

Furthermore R is related to the dilaton. More precisely, the dilaton is identified
with the contact potential which for this case is globally well-defined as we are
working with a toric QK manifold,

e? =ef = TK(Z, Z) —c. (4.7)

4.2 D-instantons in twistor space

The metric (4.1) given in the previous section provides the complete description of
perturbatively corrected hypermultiplet moduli space. The next step is to include
instantons. We know already from chapter 2 that they can be of the two types : D-
instantons and NSb5-instantons. The latter are exponentially suppressed compared
to the former (we assume that we are working in the region of the moduli space
where the string coupling is small) and will be ignored in this chapter. Besides, in
this section we will be working in the type ITA side.

The construction of the twistor space in presence of D-instantons had been
found in [18,19]. Since we are working on the type ITA side, the D-instantons can
possibly wrap only non-contractible three cycles. It should be a special Lagrangian
submanifold in the homology class gz — p*ya € H3(Q),Z), where the vectors
v = (p*, qa) are the charges of the D-branes associated with them. Our goal
here is to describe corrections that appear to My owing to the presence of such
BPS objects. Our construction crucially hinges on the techniques developed in the
previous chapter. Introduction of the D-instantons can be viewed as a refinement
of the covering of the twistor space compared to the one-loop corrected case. Once
the final description is obtained, it is in principle possible to compute the metric
on the D-instanton corrected HM moduli space following the procedure in 3.5.

So the first task is to describe this new covering. To begin let us fix particular
value for the complex structure moduli z*. Then the phase of the central charge
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D-instantons in twistor space. 4.2

function can be used to determine the direction of the so called BPS rays ¢, which
are lines on the CP! that run from the south to the north pole defined by,

0, ={t:7,/it € iR}, (4.8)

For each ¢, there is an anti-brane BPS ray corresponding to the charge —v. (_,
can be obtained by taking antipodal image of the former. Together they form a
circle which divides the equatorial patch Uy into two parts. Introduction of all
possible D-instantons then amounts to subdividing U, by introducing a countably
infinite number of such BPS rays indexed by their associated charges.

After this one needs to give the transition functions for these rays. They are
given by

a1 i
Fylidl — H’y(:»[y]> _ §quA(H4(:L]))2’ (4.9)
where
_ Q Y . —27i=
H,(E,) = 4;2) Liz (op(y) ™), (4.10)

and Eg] = qu[/}] — pAéK}, op() and Q(v) are the so called quadratic refinements
and the Donaldson-Thomas invariant respectively, which we define below. The
quadratic refinement is a phase assignment to the charge lattice I" required for the
consistency with the wall-crossing which we shall discuss shortly. It should satisfy

the following relation,

op(v+7) = (=1 op(y)on(v), (4.11)

where (,) denotes the standard symplectic pairing. The most general solution to
the above condition reads as

/1
op(v) = exp [%l (—5 qap™ + qaf — p%fﬂ : (4.12)

where (04, ¢%) are the so called characteristics. If they are half integers, the
quadratic refinement becomes just a sign factor. The numerical factors Q(v)’s
are some topological invariants associated to the Calabi-Yau manifolds. When
the magnetic charges are absent, i.e. p* = 0, they reduce to the genus zero
Gopakumar-Vafa invariants that are present in the in the instanton part of the

holomorphic prepotential in (2.32),
Q0,q1) = nf),  2(0,0,90) = xy- (4.13)

One should also worry about the transition functions associated to the patches
that surround the north and south poles Uy,

H™ = P(g) +G,,  H=F(&) -G, (4.14)
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4. Quantum corrections to the hypermultiplet moduli space and D-instantons

The explicit expression of G, can be found in [19]. Here we just want to mention
that G, has two branch cuts from ¢ = 0 and ¢ = oo to the two roots of EE] (t) =0,
such that the jumps in the Darboux coordinates get cancelled by the ones in H+]
and HI=% leading to regular Darboux coordinates in [£] patches.

At this stage we would like to show an instance of the virtue of the contact
bracket formulation that was described in the previous chapter. The D-instanton
transition function in (4.9) can be reproduced using (3.25) if one chooses the

contact hamiltonians to be

hm(f,é) = H,(2,). (4.15)

Notice that already for this relatively simpler case we see that we can get rid of
the non-linear term in (4.9) using our new formalism of contact brackets.

We also write down the expression for the Darboux coordinates here as they
will be required for computation of the metric which we present later,

1
A _ A —-1_A A N IA ~(1)
Ep=C +R (T —tz )+TZQ(7)P VANGE

L _ |
WG+ R(TFy—tFy) + 57 2 () TV (),

. 1 R - R _ -
ol =4iclogt — 5075 ("W — W) + 622 Z Q) (' Zy +tZ,) Jv(/l)(())
,y/

i dt' t 4+ ¢ iz 1 5
S0 [ T Lo (5 ) = S0 &),

1673 & b, tt—t 2
(4.16)
where .
Wi(z) = FA(z)CA — 22, (4.17)
and we introduced two functions'
1
L. (z) =Liy(ez) + 5 log zlog(1 — €z),

TI(t) = log (1 - 00(7)6‘2“5”“')> :

U=t

4.2.1 Relations to wall-crossing phenomena

Till this point we confined our attention to a fixed value of the complex structure
moduli. Let us now vary it slowly across the moduli space. As a result, the
central charges Z,(z) corresponding to the charges change and consequently at

! The first function is a variant of the Roger dilogarithm which satisfies the famous pentagon
identity and plays an important role in integrability [34].
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some point for two different charges they align (i.e. their phases become the same)
after which they exchange their relative positions. But the contactomorphisms
across such BPS rays do not commute provided the charges are mutually non-
local, (v,7') # 0. Thus it means that two different orders of BPS rays lead to two
different solutions for the Darboux coordinates leading to two different metrics
for them. This is an apparent contradiction as the metric on the moduli space is
supposed to be smooth everywhere from physical expectations.

To reconcile with the continuity of the metric, one must take into consideration
the wall-crossing phenomena. Indeed, in the context of gauge theories and super-
gravity it is well-known that there exist codimension 1 lines of marginal stability
(LMS) in the moduli space [35,36]. Across the LMS the spectrum of BPS states
jumps discontinuously. This means that crossing the wall either the BPS states
decay or recombine to form a bound state. For example, it is known that the
distance between the centers of a two-centerd black hole is given by [36]

1 <717’Y2> |Z71 + Zw|
7 .

72)

(4.19)

T2 =

T2 Im(Z

Y1

The presence of the denominator implies that the moduli space is split into two
chambers by the codimension 1 LMS for which central charges of 7; and ~, align.
These two regions correspond to the cases r15 > 0 and r15 < 0. Since a negative
distance is meaningless physically, it indicates that the two-centered solution is
unstable and it decays.

Thus we see that LMS appears when the central charges align. In the language
of twistor construction this means that the BPS rays £,’s align. Furthermore, the
information about the single particle spectrum is contained in the BPS indices
Q(v) and they appear explicitly in the transition functions. They also depend on
the moduli 2z, but since they are piecewise constant we drop this dependence if no
confusion arises. It turns out that to take jumps of the BPS indices into account
is important. Because this the only possibility through which we can cancel the
discontinuity arising from reordering of the BPS rays. That this is indeed the case
has been established in [37].

Note that the operators eXnbl = e""} generating the contact transforma-
tions induced by (4.15) are nothing else but a lift to the contact geometry of
the Kontsevich-Soibelman (KS) operators U3 satisfying the wall crossing for-
mula [38]. It dictates how the DT invariants change after crossing a wall of
marginal stability in the moduli space of the complex structure deformations
parametrized by z® and ensures the smoothness of the moduli space metric across
the walls [37]. Provided I'(z) is a set of charges for which Z,(z) become aligned
at point 2% and Q*(v) are the DT invariants on the two sides of the wall, the KS
formula states that

¥ m
Uil’(v) — H U3+(7), (4.20)
yel(2) v€l(z)
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4. Quantum corrections to the hypermultiplet moduli space and D-instantons

where the two products are taken in the opposite order. (In both cases the order
corresponds to decreasing the phase of Z, at a given point in the moduli space.)
The operators U, are defined as

U, =exp (Z %) , (4.21)

n=1

and e, satisfies the algebra of the complex torus

e ev] = (1) (7,7 Ve (4.22)

Identifying e, = op(y)e 2=, one recognizes in the operators Uy as the ex-

ponentiated transition functions H, and the adjoint action on e, generates the
symplectomorphisms. Actually for this chapter the above discussion suffices as
the D-instantons induce symplectomorphism in the (¢, 5) subspace. However, for
the most general case, one needs to still extend the KS formula to the realm of
contact geometry which was achieved in [39] and was done through use of certain
dilogarithm identities.

This brings out the fact that the smoothness of the moduli space My cru-
cially depends on the existence of the lines of marginal stability. Across them
the spectrum of BPS particles change and the way it does is dictated by the KS
wall-crossing formula (4.20). The realization of this in the twistorial language
then has the simple interpretation that crossing the wall leads to reshuffling of the
contours on the CP! in such a way that discontinuity of the Darboux coordinates
and the jumps of the BPS indices precisely cancel each other. This is actually a
restatement of the KS formula in our context.

4.3 Explicit expression for the metric in the mutu-
ally local case

In this section we will construct an explicit expression for the metric for the case of
mutually local charges (7,+'). In the most general case implementing the procedure
of section 3.5 amounts to solving the integral equations for the Darboux coordinates
explicitly, which can be attained order by order only. For the case of D-instanton
corrected metric non mutually local charges finding an expression that is valid for
all orders in the instanton expansion is impossible as the equations take the form
of a set of TBA equations 40|, which are known to be impossible to solve exactly.
Due to this reason, we restrict to the case where the D-instanton charges satisfy
(v.,7) =0

The first step is to extract the relevant Laurent coefficients for the Darboux
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coordinates,
gt o= R (4.23)
1
= =gz 2ty (4.24)
v
: : 1
Mp o= G— FanC® - s > QM Van Y, (4.25)
v
= 1 1
I[H = —iRZ"Npy — ﬁFAEGC Ce ) ;Q(y) [VVAJW(L‘H
1 1
—___ F 2r0 7(1) r ) Q(~ €. 7MW (,1) 1.96
o [azep VA + oo Favep ; (V)= T T7 | (4.26)
1 ~
g = 3 (0 +¢M - FAZCA<E> +2i(r +¢) (4.27)

1 dt/ _ i= /
_@ [27” / —ng )6 2m u'y(t)>
Y ’Y

1
_VYACAij(l) o RZ’yJ’y(L+) + Wp/\j’}gl) E Q(PY/)Vy’Ajry(/l)] 7(428)
,Y/

where we used the following abbreviations for the integrals

dt _
‘7’7(1) - / T log (1 — UD(”y)e*%“M/(t)) , (4.29)
K’Y
dt 1
(@) _
7 /e t o-D(y)e%ia,(t) 1 (4.30)
Ty = / sxr og (L= op(y)e =), (4.31)
1
(24) _
SR /e HEL gp(y)e2mi= 0 — 17 (4.32)

We also introduced two useful notations =, (t) = ga¢* — A+ R(ETVZ, —t2) =
@7 -+ R(t*127 — tZ,y) and VVA =qgpn — FAEpE.

Lastly the contact potential becomes

T:TK(Z Z)—c—

' dt _ ~

3272 >_90) /é + (772, —12,)log (1 - op(y)e =0
Yy vy

(4.33)

Now let us construct the basis of one-forms using (3.40). This basis can cer-
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4. Quantum corrections to the hypermultiplet moduli space and D-instantons

tainly be further simplified and are given by,

dz?,
~ 1
Vr =dCy — Fapd(® — 32 27: Q(7) (qa — p"Fax) djv(l),

(4.34)
¥ =dr+2cdlogR —

Y00 (R2,470) — 7 (RZ,))
Y

+ ;L (da 4 Gpdeh — gAde) .

As was mentioned the goal is to rewrite the quaternionic 2-form w® as (3.41)
using the (1,0)-forms in (4.34). For this we compute the SU(2) parts of the Levi-
Civita connection first. Using (3.38) it is found to be

i oy o R 1
Pt =1 Rz (ch — Fygd¢ ) - ;Q(W)dejv( |
. -d CAdCt — MG, + 2RPKA R g LHqz L-)dZ
=y o+ (ad¢™ — ¢dCa + K—RZ (7)(~7y y—Jy 7)
L Y

(4.35)

Then w?® becomes

1
S
w = @dr/\

- - R _
do + Cude™ = ¢ME, — s > Q@) (7Pdz, - gz,
v

’K 1 - 2 -
+R dlog — A A + — (d(A AdCy — iR?Naxdz™ A dZ + % AZEYN A yz)

2r R? 2r
1 ) _
AT ; Q(y) <dj§1’+> ANd(RZ,) —dTH) ad (RZ7)>. (4.36)

We will not reproduce the full calculation here. We refer the reader to appendix
B of |11] for this. We only give the final expression for w? here written in the form
of (3.41)
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i AN iR? .
w? = - + - - 22V A Vs
4r? (1 — RQU) 4r
—o- M (y +—§ Q)Vn T (42, - U Z 6K)>
.

= iR . Y= o
VAN <y2 - 1_ Z Q(’}//)V’y’Ejv(?, ) (dZ,y/ — UlZﬂ/aK)>

2
IRQK a b (2) AY — )
5 Kande A d2” — K2U2 ZQ 2, PTP — oaM o5 | 0K N OK
o K Z Q(y ~U'Z,0K) A (dZ, - U Z,0K) }

From this the metric can be easily read off through w3(X,Y) = g(X, J?Y). The
one-form Y, introduced in (4.34) is rewritten as

- i _
Vp =dCy — Frgd¢® — o > QVou | JPde, + R (7> dz, + 7> dZ,)
Y

@)
9 1d aar /
e ( e K- 200 ( d@"?<Zv'dZ”’+Z“dZ”/)>>]'

(4.38)

An important feature of this result is that it shows that in the presence of instan-
tons Y has a non-vanishing projection along dr.
The other one-form > becomes

. 2 Cn aas
2:2(1—R2U> d7~+4 (da+<Ad< _¢ d<A+V), (4.39)
To be concise we introduced several notations once again:

e The first one is an invertible matrix My, which is an instanton corrected
version of Nuy. It is given by

Mys = Nps— o Z QY TDV AV, 5. (4.40)
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e We also used the following set of convenient notations :

1 _
LRy (Zvjw@ o Z’Yj'y(2 )) )
(4.41)
Ua = Z (7)o, Vaa
N
e A potential U which is
U=K — —ZQ ) Z, 2T + oA M 0, (4.42)
and another potential labeled by charges is given by
W, = Z,J3 — JED o M Vs, (4.43)

e We have already seen that the one-loop correction introduces a term pro-
portional to the Kéahler connection to the o circle bundle. In presence of
instanton corrections, this term is promoted to

4
V = 2R2K< i ) § Q(y (vv+—ﬂ2)VWAMAE@g) c,
Z L g0
7r1U Ay K smr ‘77 ) 4z, (4.44)

(W +Z§—UJ )dzw},

where we introduced the following linear combination of differentials of the
RR-fields

I 1
C, = N (gy — Re Fazp®) (dgE ~ Re F2@d§@> + 1 NasptdeY (445)
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Finally let us write down the expression for the metric in this case,

2 2r 1 - - 2
ds? = = (1- dr)? d d¢ch — ¢Md
° 7“2( R2U)( ") +32r2 (1- R22TU) ( o+ 6ad¢T =6 CA+V>

2

R
23 [P+ o [VAM s — ZQ W,dZ,

1 B
- M™* (y +—= Z Qy)Voa T (A2, - U 1278K)>

_ iR . o L
X (yz - ng(V )V«/zjv(?’ ) (dZW/ -U lwaﬁK)>
.y/

R?K
r

2

+ 0K |?

_J.a3zb
(Kabdz dz 27‘(‘KU

oo K Z Q) TP |dz, - UlZﬁKf) . (4.46)

Actually, the result in (4.46) is valid for two cases. One of them is the case when
we restrict to the set of mutually local charges, for which it is exact. The other
corresponds to the inclusion of all D-instanton charges (4.46), but restricted to
the one-instanton approximation. This effectively means to truncate the instanton
series expansion at the linear order in Donaldson-Thomas (DT) invariants (7).
Further simplificatons occur in the latter case. One can explicitly construct the
inverse of the matrix My from (4.40) and one can solve for R in terms of other
coordinates through the expression for the contact potential (4.33).

One more complication arises due to the presence of instanton corrections.
The nice two-staged fibration structure of the one-loop corrected space (2.36) is
now broken down. Firstly, the dilaton is not factorized now. Instead it enters
non-trivially along with 2% and (¢?, fA) in the expression for Y, due to presence
of terms proportional to dr. Secondly, the metric on the subspace parametrized
by the complex structure moduli acquires a complicated dependence on the other
coordinates. The only fibration that survives is the circle bundle of the NS-axion
o so that the total space has the following topological obstruction

S; — MHM
\J (4.47)

inst

r,2,(,C "
The connection on this circle bundle can be easily read off from (4.46) and is given
by, (ad¢h — ¢MdCy 4 V, where V is given by (4.45).
Finally, since we working in type ITA framework the metric must be symplectic
invariant. However, it is hard to see it in the expression (4.46). That it is indeed
present has been verified explicitly in appendix B.4 in [11].
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4.4 Universal hypermultiplet and Toda potential

One very interesting case in our context arises when the compactification is done on
a “rigid Calabi-Yau" threefold, which does not have any complex structure moduli
as for them h?1(2)) = 0. The vanishing of the Hodge number for type ITA string
theory compactified on ) therefore implies that there is only one hypermultiplet
which in literatures is known as universal hypermultiplet [41]. The hypermultiplet
moduli space in this situation is then a four dimensional QK manifold. In this
special case the QK geometry allows for a more explicit description as it is defined
as an Einstein manifold with non-vanishing cosmological constant and self-dual
Weyl curvature.

Ignoring NS5-brane instantons, as we have been doing throughout this chapter,
implies that there is at least one continuous isometry preserved, the translation
along the NS-axion ¢ for the HM moduli space. With a proper choice of coordinate
metric on such four-dimensional QK manifolds can be written in the form of Tod
ansatz [42] parametrized by one real function,

3| P 1
2 2 T31.9> 2
ds* = —= e (dp® + e’ dzdz) + 72 (df + ©)7| , (4.48)
where T'is a function of (p, z, Z) and is independent of § parametrizing the direction
of the isometry. Furthermore,

1
d® = i(0,Pdz — 9;Pdz) Adp — 2i0,(Pe’)dz A dz, (4.50)

whereas the Einstein self-duality condition of the metric is encoded in the Toda
differential equation to be satisfied by the function 7T,

9.0:T + 92" = 0. (4.51)

This description is more convenient because all instanton corrections are en-
coded in just one function, the Toda potential T which is constrained by the
Toda equation (4.51). Hence to extract them it suffices to find appropriate solu-
tion of the Toda equation. This strategy was very successful at the one-instanton
level [43 47]%. However, the results beyond this approximation are often not reli-
able because, to fix the ambiguities of integration typically some ansatz for T is
made. Due to such unjustified simplifications those results can not be trusted in
full generality.

But now that we have the twistor construction, we do not need to find the Toda
potential from the differential equation. Instead it serves just as a consistency

2A similar strategy can be applied to derive NS5-brane instantons as well [48], because generic
4d QK manifolds can be parametrized by solutions of another, more complicated non-linear
differential equation, which replaces the Toda equation in the absence of the isometry [49].
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Curvature singularity in presence of D-instantons. 4.5

check, that is once a proper identification of coordinates and the Toda potential
is made one has to verify if the Toda equation should be satisfied automatically.
Indeed, this is the case if one identifies [50],

e g o o oimy2).  (w52)

¢ _
67 Z = )
2" 8

One can now actually compute the metric My by restricting (4.46) to four di-
mensions. One can also explicitly verify that 7T satisfies Toda equation. For details
of these checks and result for the metric we refer the reader to |11].

Since there is no complex structure moduli in this case the only possible value
the indices A, X can take here is 0. We therefore drop the index altogether. More-
over the prepotential for the rigid Calabi-Yaus is necessarily quadratic as it is a
degree two homogeneous function of only one argument [57],

F(X):%Xz, /\E)\l—i)\gzﬁ—g, (4.53)
where )\ is a fixed complex number, given by the ratio of periods of the holomor-
phic 3-form € H>%(2)) over an integral symplectic basis (A, B) of H3(2),Z), with
A2 > 0. Choosing electric frame for the mutual local charges we can explicitly con-
struct the solutions for the Toda coordinates [11| given by a set of transcendental
equations,

T/2 )
ol — ZL/\Q(P +c)— 432)\2 q>20 Q((0,9))q cos(2mq¢) Ky (8mqe™?), -
z = % (= X) — ﬁ Z Q((0,¢))q sin(2mq¢) Ko (SquT/2>’
q>0

where we have introduced the rational DT invariants defined by

0y =320

dly

(4.55)

In the general case where no restriction on charges is imposed the above equa-
tions become more involved owing to the presence of complicated twistor integrals
which in general can not be reduced to a product of Bessel functions unlike the
situation above.

4.5 Curvature singularity in presence of D-instantons

Just by mere inspection or a more diligent computation of the quadratic curvature
(Riemann tensor squared) of the metric (4.1) one can find that there is a curvature
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4. Quantum corrections to the hypermultiplet moduli space and D-instantons

singularity for yg > 0 at r = —2¢. In this section we would like to address the
question that what happens to this singularity when D-instantons are included.

Looking at the kinetic terms corresponding to the dilaton and the NS-axion
o in (4.46) and comparing them with similar terms in the one-loop corrected
metric (4.1) we find that the factor r 4 2c is promoted in presence of the instanton
corrections to

1
3 R*U — 7. (4.56)

Therefore it is natural to expect that setting the above to zero will give rise to a
singularity equation, that is the equation describing the singular hypersurface on
M. Substituting expressions for U and 7 one arrives at

4= ZQ ( (2,0 + Z j<1—)—|zv|2t77<2>) (4.57)

1 / ,
to3 (Z () (2,T% + 2,72V, ) M= () (2, 780+

v Y
203507 ) V) =0

There is actually another more geometric way to extract the equation for sin-
gularity. Let us illustrate it in the case for one-loop metric first. From (4.5) one
can easily find the expressions for Darboux coordinates near the north pole. Using
the procedure to construct (1,0)-forms in 3.5 we obtain the following,

Im* =dz“,
Ya = dly — Fasd(”, (4.58)
S — dr + 2cdlog R + i (da 4 Cadeh — gAdéA) .
The curvature singularity occurs if the basis forms become degenerate. The only
possibility for this to happen in (4.58) is
ReY = de? + 2cdlogR = 0, (4.59)

which gives the corresponding equation for singularity. Using the one loop relation
between R and the dilaton one obtains that it reduces to

r+2c =0, (4.60)

which thus represents the equation for singularity for the one loop corrected HM
moduli space. In the more complicated case when instanton corrections are present
one can do the similar exercise as above with the (1,0)-forms defined in (4.34) to
recover (4.57).

We write the equation (4.57) using R instead of the dilaton because in a sense
it is a more fundamental quantity, as it is related to the 10-dimensional string
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coupling. In the weak coupling regime R — oo the first term in this equation
dominates to all others. Let us also note that this term is positive. It means that
(4.57) can only have solutions if the left hand side becomes negative somewhere in
the moduli space. For understanding whether this can happen, we need to analyze
the equation in strong coupling regime R — 0. The only way to do this is to
exploit S-duality symmetry. But to do this, it is required to make this symmetry
manifest.

To this end, we first need to go to the type IIB formulation. The electrically
charged D-instantons on the type IIA side are then mapped to contributions com-
ing from the D(-1) and D1-brane instantons. The D(-1)-instantons are point like
objects and are only labeled by a single charge ¢o. The latter, D1-instantons can
wrap two dimensional cycles inside the Calabi-Yau and are labeled by charges q,.
Apart from the exponential corrections coming from g, there are perturbative and
non-perturbative o’-corrections. The non-perturbative corrections in o/ come from
the worldsheet instantons. The resulting moduli space then admits an isometric
action of SL(2,7) group which is the S-duality symmetry on the type IIB side.
Under this symmetry the perturbative o’-corrections mix with D(-1)-instantons
and the worldsheet instanton corrections mix with D1-instantons.

At this stage we use the relevant mirror maps to rewrite (4.57) in manifestly
SL(2,Z)-invariant form. We will use them in the following to rewrite (4.57) in
manifestly S-duality invariant form by performing Poisson resummation over ¢.

R - %’ Za = ba + it&) CO = T1, Ca = _(Ca - lea)‘ (461>

We remind the reader from chapter 2 that action of the SL(2,Z) transformation
represented by the matrix ( CCL Z ) is realized on the type I1B coordinates in the

following way,

a a
ZZ:; £ — |er + d|t°, <Za)—><cc‘ Z)(Z) (4.62)
where we combined the inverse 10-dimensional string coupling 7, = 1/g, with the
RR-field 77 into an axio-dilaton 7 = 71 + iTs.

We will restrict to the case with D(-1)-instantons only. Since these D(-1)-
instantons mix with one-loop corrections in the same SL(2,7Z) multiplet, working
in this approximation is justified. One could already hope for the possibility of
removing the one-loop singularity by the presence of D(-1)-instantons only.

Since we drop the worldsheet instantons the prepotential in this case is given
by

T —

XeXbXe iC(3)xg
6X0 i 1673
where the first term is the usual cubic term and the second one encodes the per-
turbative o’-correction. Since we consider only D(—1)-instantons the D-brane

F(X) = —Kape (X9)2, (4.63)
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charges are labeled by only one number ¢y. In this case the DT invariant is inde-
pendent of the charge and coincides with the Euler characteristic of the Calabi-Yau,
Q(g0) = Xy = —Xg, where 9) is the mirror Calabi-Yau. The prepotential (4.63)
leads to the following expression for the exponential of Kéhler potential,

¢(3)xy
K =8V — 4.64
) (164
where V = = /ﬁabctatbtc is the Calabi-Yau volume and we used the relation z* =

b +it® from the mirror map (4.61).

We will not give details of the resummation procedure here. It can be found
in |11]. We write the result only and analyze its consequences. The equation for
singularity in manifestly S-duality invariant form turns out to be

2
X@ Eg/Q(T) B QXQj
6473V 75 /2 (643 VTS/ 2)2

——Z Z 75 (mn' — nm')? _0
|m7 +nPm/r + 0P|

mneZ m’ n' €7

1+ [ESQ/Q(T)

(4.65)

where the Ej3/5 is the non-holomorphic Eisenstein series and is modular invariant,

3/2
/ T

m,nel

Now that we have obtained (4.65), we can exploit the power of S-duality for
going to strong coupling regime to weak coupling. To do this, let us first put 74 =0
for convenience. Then S-duality transformation acts by

Ty — 72_1, V — VTg. (4.67)

with this we can extract information about the strong coupling limit. Since in
hindsight we know that the equation (4.57) is S-duality invariant, we can work
directly with it. After we perform the S-duality transformation (4.67) as above
we can taking the limit the limit 7, — oo, corresponding to the strong coupling,
as it was the usual weak coupling limit. The instanton contributions become
exponentially suppressed and the left hand side of the singularity equation has the
expansion,

NG SN Oy

Xy
TV E " eV eE 2 sy

Goop ™ H1HO(eT).
(4.68)

Unlike the case before the transformation, where the left hand side was always
positive, the dominant contribution now comes from the first term going —7; °.
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Thus we conclude that the singularity remains even if one incorporates D(-1)-
instantons. The situation actually becomes worse as compared to the one-loop
corrected case. There the singularity existed for only xg > 0, whereas now it
exists for any sign of the Euler characteristic.

Finally to remark, we do not expect that any of the D-instantons can cure
this situation. The only possibility to get rid of the singularity appears to require
the inclusion of NSH-instantons. Their exponentially suppressed contribution at
the weak coupling regime can drastically alter the situation at the strong coupling
though S-duality. Tt will be very interesting to investigate their effect and is one
of the works for future.
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CHAPTER 5

Mirror symmetry at the quantum level

In the previous chapter, we worked with the hypermultiplet moduli space in the
type ITA picture. As was mentioned, mirror symmetry relates the HM moduli
space of type IIA string theory compactified on a Calabi-Yau %) and that of type
IIB string theory compactified on a mirror Calabi-Yau Qj Let us now turn to
the latter formulation. Even though these two descriptions should be identical
due to mirror symmetry, it is convenient to have both of them at our disposal,
because there are several situations which simplify in either of these frameworks.
In particular, for type IIB theory there is a very powerful S-duality. Many of the
results presented in the thesis depend crucially on clever use of this symmetry,
for example, finding fivebrane transition functions on the type IIB side, which we
will present in chapter 7. Finally, the mirror symmetry at the quantum level is
still a conjecture, although in the light of the recent results, it does not seem to
be an unattainable goal to establish it in the presence of all possible quantum
corrections.

Let us briefly summarize the differences between the HM moduli spaces in
the two mirror formulations. First, instead of complex structure deformations of
the Calabi-Yau 2%, one considers the complexfied Kéhler moduli v, where we are
using the same index because for mirror pair of Calabi-Yaus h>'(9) = h' (D).
The periods of RR 3-form are replaced by the periods of the even dimensional
RR forms (%, c%, ¢4, o). Furthermore, one can combine 7, = ¢ with the ten
dimensional string coupling constant 75 = 1/gs to form an axio-dilatonic field
T =17 +1im.

Next, we consider the type of symmetries that characterize each of the par-
ticular formulations. The type IIA theory is manifestly symplectically covariant,
whereas the pertinent symmetry for type IIB is SL(2,7Z) duality. The physical
fields in type IIB form a representation under the action of this symmetry group.
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D-branes and charge quantization. 5.1

In particular, this implies that, at the quantum level, our construction in type ITA
framework must have a hidden SL(2,7Z) symmetry, which can be made manifest
by passing to the type IIB side.

In this chapter we are going to provide a description of the twistor space of a
class of QK manifolds admitting an isometric action of SL(2,7Z). We also show
how it can be significantly simplified in terms of the contact hamiltonians. This
simplification will be crucial in later chapters where we are going to present our
results for fivebrane transition functions.

5.1 D-branes and charge quantization

In this section we address the problem of classifying D-instantons on the type
ITB side. It turns out that the simplistic description of instantons as some n-
dimensional objects wrapping n-dimensional cycles and classified by integers enu-
merating these cycles is not enough. The correct way to describe them is through
the derived category of coherent sheaves [51]|. In particular, for a non-vanishing
D5-brane charge p°, a bound state of D5-D3-D1-D(-1) branes can be represented
as a coherent sheaf £ on @, of rank rk(E) = p°. The charge vector is given by the
so called generalized Mukai vector in the even-dimensional cohomology basis [52],

7' = ch(E)\/Td(D) = p° + pwa — gy + ghg, (5.1)

A

where ch(E) and Td(Q)) are the Chern character of the sheaf and the Todd class of
the Calabi-Yau %) respectively. From this one can obtain expressions for charges
explicitly,

q, = — (/ chyo(E) + %%) , (5.2)

Ya

o= [ (0E)+ e(Prea)).

showing that charges ¢}, are not integers. There seems to be an apparent clash
with the mirror symmetry because the charge vector in the type ITA formulation
is identified with the integer homology class H3(),Z).

This puzzle can be resolved as follows [21]. Let us compare the central charge
associated to D-instantons in type 1IB

Zy = / e v/, (5.3)
D)

a7
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and the central charge in type IIA given by the prepotential restricted to the large
volume limit
R be XaXbXC 1 A »
F(X)= "2+ A\ XX~ 5.4
It is important to keep the quadratic piece here, even though it does not affect
Kéhler potential. Then identifying 2® with v, the two expressions coincide if

Gy = qr — Ansp™ (5.5)

For this identification, one should take into account the conditions satisfied by the
matrix Ay, is constrained by certain conditions,

(a) AOO S Z,

C2.q
b) Ags € 2% 4+ 7,
(b) 0624+

(5.6)

1
(C) Aabpb - 5 Rabe pbpc € Za

1 1

d) = Kapep PPp° + —coup® € Z,

(d) & Kabed"D"D" + 15 C2aP
for any arbitrary p® € Z. The above conditions ensure that the symplectic trans-
formation (5.5) maps the rational charges of the type IIB formulation (5.1) to the
integer charges of the type ITA formulation. The quantization condition for the
primed charges is given by the following,

: p’ 1

1
4o €L — ﬁCZ,a - 5 K'abcpbpca q; €Z— ﬁpacla- (57)

It turns out that the above quantization conditions on D-brane charges gets
reflected in the mirror symmetry and S-duality transformations as well. To in-
vestigate this, first let us see how mirror symmetry relates the type ITA and type
IIB RR fields. They appear in the imaginary part of the D-brane action, whereas
the real part is determined by the central charge which gives the strength of the
D-instantons. We have already discussed the D-brane action in the type ITA for-
mulation in chapter 2. In type IIB, instead it is given by [53, 54|

Sp_up = 27g; | Z,| + 27Ti/ A Aevene=5B2 (5.8)
2

where the RR potential Aeven g
Aeven =Bz — (0 _ oy, — (1t — Q:[')w@, (5.9)
and the shifted RR fields are related to the unshifted ones by
Ch=Ca — AasC™. (5.10)

This shift is the same as in (5.5) and absorbs the quadratic term in the prepotential.
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5.2 S-duality in the HM moduli space

In chapter 2 we have already discussed about the action of S-duality on the classical
HM moduli space. In this approximation, the action of the SL(2,R) group on the
type 1IB fields is given by (2.41) and the classical mirror map is given by (2.42).
In this chapter our goal is to give a description of a generic QK manifold
admitting only an isometric action of SL(2,7Z). We are going to provide explicit
construction of the mirror map in presence of all possible quantum corrections.
Although, we will not be providing any concrete transition functions here, we will
do the necessary groundwork to establish that it is indeed possible to preserve
quaternion-Kéhler structure while breaking all the continuous isometries.

But before proceeding further there are a few comments to make.

e The continuous SL(2,R) symmetry is present only at the classical level.
Already, o corrections break it. However it was shown in [55], [20] that
if D(-1) and D1 instanton corrections are incorporated, one can restore a
subgroup of it, namely SL(2,7Z). Furthermore, isometric action of the latter
is also expected to hold even when all quantum corrections are incorporated.

e The RR fields in terms of period integrals of 10-dimensional gauge potentials
are [5,18],

X X A 1 -~ ~
COIAO, Ca:/ AQ, Ca:—/ (A4——BQ/\A2>,
e Ya 2

. (5.11)

Co = —/ <A6—BQ/\A4+§B2/\A2/\A2) .
2

The above expressions are exact only at the classical level. In general we

define the type IIB fields as those which transform accrding to (2.41). Obvi-

ously, this means that the mirror map (2.42) receives quantum corrections.

As has been mentioned, one of our goals in this chapter is to obtain explicit

expressions for them.

e At the quantum level, SL(2,Z) transformations are given by (2.41) with
a,b,c,d € 7, except that the D3-axion ¢, which was invariant, now acquires
a constant shift ¢, — ¢, — c2,6(g) [21]. Here, £(g) is the multiplier system
of the Dedekind function n(7) given by

at+b
2mie(g) U (M)
(cm+d)' 2 n(r)

e (5.12)

In particular, e2™=®) is the 24*® root of unity corresponding to the fractional
terms appearing in the quantization condition of the charges ¢). Its appear-
ance can be traced back to the fact that the S-duality transformations and
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5. Mirror symmetry at the quantum level

the Heisenberg shifts (2.43) are not completely independent. Actually one
should identify the Heisenberg transformation with the parameter n° = b

with the SL(2,7Z) transformation induced by the matrix <(1) 11) . This iden-

tification indeed works if one takes into account this constant shift of the
axion ¢,. Even though this issue does not seem to be crucial, there is an-
other reason which shows that this modification is really needed. Later, in
chapter 7 we shall see that this modification is important also for consistency
of the actions of the isometry groups generated by SL(2,7Z), monodromy and
Heisenberg symmetry, on the fivebrane transition functions.

5.3 Monodromy invariance and spectral flow

Another important symmetry that has to be taken into account at the non-
perturbative level is the monodromy which arises from the possibility of going
around the singularities in the moduli space of complexified Kéhler class defor-
mations MK(@) This should be a symmetry because the final metric must be
smooth everywhere. Here we are interested in the monodromy around the large

volume point. This symmetry is generated by
b — b + €, ' € 7. (5.13)

Since in (5.9), the B-field is present alongwith the RR potential, to realize such
symmetry one should also perform a symplectic rotation of RR-fields [21],

- - 1
ME“ : CO = Cov (a = Ca + €a7 (clu = Cc/z - ’QabCCbec Y ’{abcebecc()?
. ) 2 (5.14)
C(/) = C[/) - Cclzea + 5 K'abc€a€b<6 + 6 /‘iabceaGbeCCO'
The above transformation can be rewritten in terms of the unprimed fields. Then
the matrix inducing the symplectic transformation becomes

1 0 0 0

. €? éab 0 0
p(Mee) = —Lq(e€) — Kape€© 0 6 ’ (5.15)

Lo(e)  Ly(e) +2A4p¢ 1 —¢
where we introduced two functions
L()_l b c A b L()_l abc+1 a (516)
o(€) = = Kape€ €€ — Agpe’, €) = = Kgpe€€ € — C9 q€", .
5 fiab b 0 g fiab 19 &

which are integer valued because of the properties of the matrix Axy (5.6).
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S-duality in the twistor space. 5.4

Note that, the D-brane action Sy remains invariant if the monodromy trans-
formation is associated with a similar transformation on the charge lattice, the so
called spectral flow defined by

v = yle] = p(Mea).y. (5.17)

The symplectic matrix is integer valued, and hence it preserves the charge lattice
and hence is an admissible transformation.

Since the D-instanton action remains invariant under combined actions of mon-
odromy transformation and the spectral flow associated with it, the BPS indices
Q(vy;v) should also be invariant. Although the moduli dependence for them is
mild, it is crucial for the invariance to take it into account.

5.4 S-duality in the twistor space

The most prominent feature of type IIB formulation is its S-duality symmetry.
For our case it is generated by the action of SL(2,Z) group on the type 1IB
fields according to (2.41). We have already seen that the problem of incorporating
quantum corrections can be most conveniently tackled at the level of the twistor
space. Therefore, it is important to understand how S-duality acts on the twistor
space. More precisely, we want to obtain the twistor description when there is
only an isometric action SL(2,7Z) group present. Our goal is twofold here. First,
we want to understand what kind of constraints are imposed at the level of the
twistor space in this case. Secondly, we want to obtain the mirror map relating
the type IIA and type IIB fields. Of course, since we do not specify concrete
transition functions, the latter results will be only formal. This question of finding
appropriate transition functions will be addressed in a later chapter.

5.4.1 Lift of the SL(2,R) for tree level HM moduli space
We start from the classical twistor space of the HM moduli space which carries an
isometric action of the continuous group SL(2,R). In the classical approximation,

the last two terms in the prepotential in (2.32) are absent. Furthermore if we
redefine the Darboux coordinates as

L - 1
Er = Ea — Apn€™, o =a+ 3 Aps€he”, (5.18)
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5. Mirror symmetry at the quantum level

the quadratic piece in the prepotential is also removed and one remains just with
the first cubic term. The Darboux coordinates are !

& = AR —1zY),
Vo= QAR ) ] (2), (5.19)
1 ~ B _ R2 _
o = (0 + (M) = RCVETE — tFY) = RAEPF 4 R 4 T (N 4 2 ).

In any case the isometric action of SL(2,R) must have a holomorphic representa-
tion on the Darboux coordinates. To achieve this one has to also prescribe how
the fiber coordinate ¢ transforms. This was found in [29] and the result reads as

t)_)cm+t(c7q+d)+t]w+d] B 1+tidt_ " —t (5.20)
(cri+d) +er +d| —ters 157 —¢ 1+t5% '

where tft’d are the two roots of the equation c£® + d = 0 and are given by

cd cn+dF|er +d|
tf = ;

pedped — 1, 5.21
s Lt (5.21)

Then the transformation of the Darboux coordinates under the action of SL(2,R)
are found to be [18],

0 a§0+b a ga s s CRabe acb
gHma chgo—l—d’ faf—>fa+m§§7 (522)

@) 7 (—db _ac> @) e (—[c2(a50 Cj/b()cf el + d)2) ‘

Moreover, one obtains the following transformations for the contact potential,the
Kahler potential on the twistor space and the contact one-form,

©b—>i Kz Kz —log(|c€® + d)) Xt v
ler +d|’ z z ’ €0+ d

e (5.23)

So, it turns out that the Kihler potential changes by a Kéhler transformation
consistently, leaving the metric on the twistor space Z or the metric on the HM
moduli space My invariant. Furthermore the contact structure remains invari-
ant, as the contact one form rescales by a holomorphic factor only, ensuring that
the S-duality acts by inducing a contact transformation.

IFor clarity of notations, we drop the primes in the rest of this chapter and by F°!, we denote
the classical cubic part of the prepotential.
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5.4.2 Modular constraint on the transition functions

Now we want to deform the QK space of the previous subsection in a modular
invariant fashion. More precisely, we will assume that all the continuous isometries
are broken and find a description of the QK spaces admitting isometric action of
SL(2,7Z). In such situation the twistor space description is the most efficient one.
The inclusion of instantons that are responsible for breaking of the continuous
SL(2,R) symmetry to its discrete subgroup SL(2,7Z), refines the covering on the
twistor space and the same happens for the associated set of transition functions.
The first issue that one needs to address here is how S-duality is realized in this
context.

For this purpose, to avoid unnecessary complications, we first provide the sim-
plest construction in terms of open patches and closed contours [29,30] and later
comment on generalizations.

Let the twistor space Z be defined by the covering

Z=U, UU_ U (Upnlmn) (5.24)

where Uy cover the north and south poles of CP! as above and U, ,, are mapped
to each other under the antipodal map and SL(2,Z) transformations

S Unn) =U—rn—n, (5.25)

U — U i, <7:::) = ( _db —ac ) (Z), (5.26)

including an invariant patch Uy = Uy . Furthermore, we assume in addition that
cﬁgn n T d is non-vanishing in U, , for all (¢,d) # (£m, £n), including (m,n) =
(0,0), and has a simple zero for (¢,d) = (m,n). Denoting this zero by t%¢, the
reality condition for £° and (5.25) imply that

[t9] =t =1 (5.27)
With the covering (5.24) we associate the following set of transition functions

HEO = F(g), B = Fg),  HO™Y = G (€ €9, 01,
(5.28)
where F°(X) is the cubic prepotential.?> The functions G,,, are not arbitrary.
Besides the reality conditions

$[Grn] = G, (5.29)

2Note that this assumption implies that Ukm kn for k > 1 are all identical, in particular
Uy, +r, = Ux. However, we consider all such patches to be different. This sacrifice in rigor renders
the presentation to be less cumbersome. A more precise analysis is actually possible, but it does
not change any result.
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5. Mirror symmetry at the quantum level

they must transform in such a way so that the modular invariance is ensured. The
action of S-duality transformation must preserve the contact structure. A simple
way to realize this is through demanding that the Darboux coordinates transform
according to (5.22), where the only new feature is that the Darboux coordinates
are labeled by patch indices [m,n]. Under S-duality, the patches that cover the
twistor space should reshuffle to each other. In particular it means that a different
patch with indices [m/, n’] should be related to the patch indexed by [m,n| by
S-duality transformation as the following,

m’ a c m
(h)=(52) () (530
Performing SL(2,7) transformations on the gluing conditions (3.7) one then

finds that the holomorphic transition functions are required to satisfy the condi-
tion,

G

Gm/ n' 3 ¢ Il T QT;;L/ n'

k= E Rabe 5["” ] : Trl;z’ TL’Tﬁ’L’ n’

’ &y Td 6 (€ T A)(cky +d) ™ ’
2 €€l ) T T o Tt

+ — Rabe
6 " (€D + d) (el + d)?

T Lo (5.31)

a b c
- C_ Rabe f[m/m/]f[m/’n/]g[m/’n/] ( 0 / ,) 2
6 (€0 + d)2(cgly +d)2

where

TA  — 851[{)] Gmm — 5{3]&1[0} Gm,n- (5.32)

m,n

This constraint is one of the main conditions for the SL(2,7Z) invariant construc-
tion. As we will see below, even though this constraint looks complicated due
to non-linearities, they can be removed if one chooses to work using the contact
hamiltonians which were introduced in chapter 3.

5.4.3 Modular action on the twistor fiber

Although it was not mentioned explicitly, in the previous subsection while describ-
ing the modular invariant construction of the twistor space, we tacitly assumed
that the CP! coordinate transforms appropriately. By this, we mean that ¢ trans-
forms in such a way that the Darboux coordinates admit the action of SL(2,7Z)
group as in (5.22). In our considerations, the main complication comes from the
fact that £° is not globally defined anymore, and as a result the transformation
of the fiber coordinate also receives corrections. However, quite remarkably, it
is still possible to find the “appropriate" transformation of ¢ by considering the
transformation of the Kéahler potential Kz on the twistor space and requiring that
it transforms by Kéhler transformation (5.23) [30]. In the process of finding how ¢
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S-duality in the twistor space. 5.4

transforms, we have come across a truely beautiful mathematical construct which
we are going to call as invariant points. This objects are generalizations of =i in
the classical case, which remains invariant under the action of SL(2,R) (5.20). We
are going to explain what these objects are in more details in the following.

e The first and most important thing to consider is the transformation of ¢. It
was found in [30] that this transformation is rational and is given by,

p t— tc,d
: -
gedlt] =CE T (5.33)
where the constant prefactor should satisfy |C%%| = |t>?| and we used the

notation g. 4 for the SL(2,Z) action.

Furthermore, the transformation (5.33) should satisfy a certain group law.
In particular, this implies that g.4[g_.[t]] = t since the two SL(2,Z) trans-
formations are inverse of each other. This allows to fix the prefactor in (5.33)
as

Co' = goa[t27],  t9fcot =odcs (5.34)

In fact, from the reality properties of tid, one can easily see that the second
of the above conditions is the same as the condition on the modulus of C“.
It is easy to see that this transformation is a natural generalization of the
transformation (5.20) valid in the classical case.

e Now we turn to one of the other key features. It turns out that along with
the roots of c£% +d = 0, the critical points of £ also play an important role.
They are defined by

Oy (51) = 0, (5.35)

and are related to each other by the antipodal map ¢[s;] = s_. They are
instanton corrected versions of the points sy = Fi. These objects are called
invariant points because they are fixed points of SL(2,Z) transformation.
This can be seen from the fact that gcvd[atf[%]] ~ ﬁtﬁ%} 3 which will become
clear from the expressions of the Darboux coordinates that we will present
in a short while. It is important to realize that s, should be viewed not
just as functions on the QK space M, but also as sections of the bundle

3From general expectations, we assume that these points belong to the patch 14y. This makes
the construction less cumbersome. Furthermore, in the classical case or in the case when there
are two continuous isometries, these points indeed are in Ufy. The instantons corrections, when
specific transition functions are considered, are supposed to be not behaving too “wildly" . More
precisely,s+ should be perturbations around their classical values. Of course, we can relax this
assumption, but we do not expect the results to change significantly by taking this into account.
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5. Mirror symmetry at the quantum level

Z — M. Therefore, their invariance is properly interpreted as invariance of
the sections. Thus they satisfy the following property,

c,d
cd S+ —t7
gc,d[sﬂ:] = gc,d[t]t:si = Cid ﬁ (536)
4+ — L_

e Having introduced the critical points, we are now in a position to introduce
the invariant kernel which play a crucial role for making the modular sym-
metry explicit. We define it as a t-independent shift of the kernel appearing
in (3.9) in the following way such that the integration measure remains S-
duality invariant,

1/t +t dt/ dt/
Kt t) == k(t — K(t,t — K(t,t 5.37
00 =3 (g k), FReO TR G
where
s.s_ —t?
k(t) = . 5.38
A S TS (538)
Hence we have the invariant kernel as
dt dt’ (t — t—s_ t—s_)(t' —
0 K(t,t/) S ( S+)( S ) + ( S )( S+) (539)
t 2 (t—t)(t' —sp)(t' —s)

Now, armed with the S-duality invariant kernel, invariant points and the points
t"", we can proceed to find expressions for Darboux coordinates satisfying (5.22)%.

The non-perturbative mirror map

From equation (3.9), we see that the Darboux coordinates depend on both the
coordinates on the base A*, By, B,,Y" and the fiber coordinate t. Typically these
coordinates on M has very simple relations with type ITA coordinates and are fixed
by symplectic invariance of the type ITA construction. However, our goal here is to
rewrite the integral equations for the Darboux coordinates in such a way that the
action of SL(2,Z) on them is realized as (5.22), provided the right transformation
of t given by (5.33). For this one has to express the coordinates A%, By, B,,Y* by
type IIB physical fields 7, 0%, t*, ¢, ¢,, %, which admit a simple and more natural
action of the modular group (2.41). Here, we call this relation as the “mirror
map". Essentially, such coordinate transformations provide generalizations of the
classical mirror map (2.42), because the relations of A%, By, B,, Y with type TTA
coordinates are simple, as we have already mentioned.

4For convenience, we drop the constant shift in ¢, which can be always restored
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To this end, let us first give the mirror map relation. The constant terms in
the integral equations for the Darboux coordinates are given by ® [30],

1 yA _ .
A A Z _yA [70 A [70]
At = 2<s++8>(5+s P) 53, 0 (g - o).

B = — - - k H[] }
A Z% 2mit £)o &

AF 0] _ A 0
B, = (o049 Z]{ 277115 H[J | _ S[J‘]aé[Aj]H[] ]) ’

where the index “cl" refers to the quantities given by the classical mirror map. Now
with this and the following result for mirror map of Y, one can check that the
Darboux coordinates indeed satisfy (2.41).

Let us define®

. _ _ dt s —t)+s (sy — 1)
YA = iy 27 8+S 7{ + U (541
1723_— Z 2mri t—5+) (t—s )2 ma (5:41)

where

be (s iU _ —iUy\ __ 2 —4a
wop  oye Ml ose ) S2ysst i, MtanUZe  (5.42)
(s —s4)cosU

and
t T“

o e ngmn e (5.43)
U o— —S+Z% log (1 — 0y Gm,n)‘ (5.44)

(t—sp)(t—s_)

Then, provided at the critical points one has

0 _ 0 _ =
ggﬂ(&r) = 7 ) ) 5[5)](3—) = 7 S (5.45)
209t \/S1S— . Ly
RS =4 — e LY 5.46
200y (5+) cosU 5 —s5, ; (5.46)
where L® is an arbitrary real vector. Then Y should transform as ”
CCd Cd CidtC,dgaé tc,d
YO = c,d c,d\9 c,dy YV = — c,d +c,d[éd]( - )c,d ' (547)
c(t}” —t27)? P[c,d}(t+ ) (5" = £29)?ppea (£5°)

5The index j stands for all possible patches and contours.
6The prime on the sum indicates that it runs over (m,n) € Z2/(0,0).
" pim,n) are defined as c{ﬁmn] +d=—t"1t—t7")(tE—t"")ppnn (t).
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5. Mirror symmetry at the quantum level

All these above results are not too difficult to prove and the proofs are given in
appendix C of [30].

Now, we can find an explicit equation determining the invariant points. Using
(5.40) and (5.41), the expression for the Darboux coordinate £° in the patch U
becomes,

1T S1S_
f[%}@):ﬁJr e < - —t)
—S+ t

t—s+ )t —s_ ' (t—sy)(t — s t— s )t — sy O(5.48)
4 X Zfémn ) )+ ( ) ) 1

(7= O — s )20 —s ™"

Thus, from 8t§[0](si) = 0, one can obtain the equation

Sy +S_ tTT?LTL
= ; : 5.49
(sy —s)3 47r7'2 Z fmn (t—s1)%(t—s_)? (5.49)

Supplemented by the condition ¢ [s+] = s_, it can be solved by perturbative ex-
pansion in powers of (integrals of) the transition functions T,?m generating defor-
mations.

Finally, let us mention that our construction is invariant under the action
of a U(1) symmetry that rotates the phase of the fiber coordinate as t +— €'%t.
As a particular case, this entails that the invariant points are defined upto this
rescaling s4 — €?s,. This induces an extra symmetry in the complex coordinates
YA €Y and is responsible for the auxiliary coordinate discussed below (3.9).
A way to fix this is to demand sy to be purely imaginary [30|. This truly imposes
an additional condition, as the defining equation for si (5.49) does not fix it.
That the invariant points are imaginary can be viewed as “gauge fixing" of the
U(1) symmetry and it is assumed to be a part of our construction.®

Modular invariant potential

As a byproduct in [30] a modular invariant potential was also constructed using the
constant part of the contact potential. The existence of this function is surprising
as it encodes all deformations of the QK space respecting modular symmetry in a
non-trivial way. It is given by

s 5 |€ mzn $omn 225t mﬁlog(l 9,10 Gm.n)
+ - —

=
721/ COS|: Z fc

{% Im (YAF,(Y))

m,n

4 10g (1 = Do) G, n):| (5.50)

167r2f dt =y A — tYA)aéA Gmn+( IFA(Y)—tFA(Y))T,ﬁm}}.

8Notice that there exists other choices for fixing the gauge as well. One can consider ImY? =
0, for example. However, we choose Re s+ = 0, as this is the most convenient one.
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In [56], [57], an attempt to construct such a function was made although its geo-
metric origin was unclear. The work in [30] suggests that the modular invariant
function Z has its origin in the constant part of the contact potential. From
physics point of view, perhaps, % can be interpreted as an S-duality invariant
partition function.

5.4.4 Virtue of contact hamiltonians : an example

It is hard to overstate the simplicity of the description using contact hamiltonians.
In this section we provide another instance of usefulness of this. Of course, as had
been mentioned this construction is completely equivalent to the one presented
before using normal transition function depending on coordinates of two different
patches. However, the advantage is that, the latter is more efficient than the for-
mer and contact hamiltonians contain sufficient information so that the transition
functions can be constructed from them valid to all orders.

From (3.36), A = cﬁ[%m} + d for our case because of (5.23), which implies that
the constraint on the contact hamiltonian will be

. Bl /
[Z} m’,n’ m _ a C m
g (n)-G9G) e

which is a simple modular constraint, compared to the very complicated non-linear
one given in (5.31).

Instead of using (3.36), one can choose a more pedestrian way? One can ex-
plicitly find from the transformation of the Darboux coordinates (5.22) that

Eed {h7 f}

c 'hyc : =
{8ed 8ed f} €0 +d

— C8ed (h (850]“ — 5Oaaf)) , (5.52)
which can also be immediately seen from the Leibnitz property of the contact
brackets.

This comes in handy because the action of S-duality can be conveniently en-
coded in terms of its action on the contact bracket as,

Wy ARl yg=t {Rlil g~ L. 0 Bl
{3 g7l = gBed (s Yeca = egealhecat = o Hd)geaht™, 3 (5.53)

ged " €
proving (5.51).

In the next chapter, we will first discuss how to reformulate the type ITA con-
struction for D-instantons in chapter 4 in the type I1B side, with explicit invariance
under S-duality. Then we will proceed on to providing the fivebrane transition
functions valid to all orders in instanton expansion.

90f course, both yield the same result. We give this just to present yet another method to
find the same result in this specific case.
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CHAPTER 0

The symmetry group of My

In this chapter, we are going to discuss about the fate of the symmetry group of
the HM moduli space Myy. We have already learned that instanton corrections
break the classical continuous isometries to their discrete subgroups in chapter 2.
We have also seen in the previous chapter that, monodromy invariance around the
large volume point is generated due to the shift of the B-field (2.45). Furthermore,
symmetries under the continuous transformations of RR and NS scalars in chap-
ter 2, get broken down to discrete transformations as well. Finally, there is the
SL(2,7Z) symmetry of the HM moduli space.

The goal of this chapter is to obtain closure of the group generated by mon-
odromy around the large volume point, Heisenberg shifts and SL(2,7) together.
It turns out, demanding that the full quantum HM moduli space remains invari-
ant under the action of these symmetry groups is sufficient to achieve this task.
In the process we will find that, a rather non-trivial modification of the integer
monodromy transformations given in [21] is required. Such modifications are ac-
tually not ad hoc, but rather originates from subtleties in the quadratic refinement
(4.12), introduced in chapter 4. Finally, we will also try to unravel the possible
connections and thereby perhaps similar interpretation of this modification to the
Freed-Witten anomaly [58].

6.1 Revisiting classical HM moduli space

At the classical level, one has to consider the algebra of a semi-direct product
SL(2,R) x N, where N = NU ¢ N® @ N®) is a nilpotent algebra of dimension
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3by + 2, satisfying !
[N(l), N(l)} C N®. [N(p)’ N(q)} =0,if p+q >3, (6.1)

where the generators NV, N NG transform as by doublets, by singlets and one
doublet under SL(2,R) respectively [22]. The relation of this algebra decomposi-
tion with the symmetries due to SL(2,R), (2.45) and (2.43) are as the following.

e The group elements T((Ela)na) are obtained by exponentiating N (with suit-
able admixture of higher order generators) consisting of (2.45) and (2.43),
with non-vanishing n“.

e The group elements Tf) are obtained by exponentiating N® correspond to
the Heisenberg shifts with non-vanishing 7,.

e The group elements T( )E is obtained by exponentiating N and coincide
with Heisenberg shlfts Wlth non-vanishing 7, &

e Unlike the Heisenberg shifts belonging to IV, the Heisenberg shift ¢° s (°+n°
belongs to to SL(2,R) and in fact coincides with SL(2,R) transformation
T T4+ 2

6.2 Quantum HM moduli space and its symme-
tries

In this section, we are going to describe the effects of quantum corrections to the
classical symmetries of Mpyy. We have already seen how to realize quantum S-
duality symmetry for the HM moduli space in chapter 5. Furthermore, in presence
of instantons, we have also seen that to be able to identify SL(2,7Z) transformation

generated by (é l;) and Heisenberg shifts ¢° + (% 4+ 1°, we need to modify the

transformation of the axion ¢, by a constant shift proportional to £(g). Now what
we have to do is to make the other pieces fit together. For what concerns us, we
will have to consider the semidirect product group SL(2,7Z) x N(Z), when quan-
tum corrections are present. It is natural to assume that under the group N(Z)
consisting of integer monodromy transformation and large gauge transformation
the HM moduli space remains invariant. However, to achieve that, just a naive
discretization of the (2.45) and (2.43) does not work. Here we are going to provide
the consistent set of discrete transformations [21].

Before going further, let us recall some facts about the quadratic refinements
and the characteristics appear therein, as these characteristics will be present in
the transformations of the axions due to the action of large gauge transformations.

"We use the abbreviation [4, B] = A~!B~1AB to write the commutators.
2In presence of quantum corrections how to make this identification work was already discussed
in chapter 5.
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Quadratic refinements and characteristics

The quadratic refinement op(7y) typically appears in chiral bosonic partition func-
tion [61 64]. In our context, as we have already discussed it is required for the
consistency with the wall-crossing phenomena. One can write a general solution
to (4.11) as

. 1
op(y) = exp [27r1 (—5 p* (gn + Aasp™) + (qa + Ansp™) 05 — pAqﬁD,A)} , (6.2)

whre 04 and ¢p 5 are the characteristics which are also known as generalized spin
structures on %). These are defined modulo integers. The terms proportional to
the matrix A arise because of the fact that we have changed the basis and non-
integrality of the charge 7 in the type IIB side (5.5), as we have already seen in
the previous chapter.

Although, one can think about these characteristics as just half-integer num-
bers, the symplectic invariance of the D-instanton transition function requires the
quadratic refinement op(7) to transform under symplectic rotations as the follow-

ing,

s 2250 (3 5) - (B) = o [(0) - (o)) ]
(6.3)

where (A)y denotes the diagonal of a matrix A.

In addition to the D-instanton characteristics, there exist a similar set of objects
O = (6", ¢n), characterizing the fibration of the NS-axion circle bundle over the
torus parametrized by the RR scalars. Under a symplectic transformation, they
behave in the same way as the D-instanton characteristics through (6.3).

Now we are in a position to give the quantum corrected transformations for
Heisenberg shifts and monodromy.

e First, let us consider the Heisenberg shifts. They were given in [21], and are
as the following,

T i ¢ttt a = o+ Tia, (6.4)
o o+ 26 — A (¢ = 20%) + ™ (Ca + Aas — 2¢4) — 0 s
Here (77A777A7 K) € Zth’l—H))-

e Next, as was discussed in [21,69], the monodromy transformation in (5.14)
should be appended by a transformation of the NS-axion as

0+ 0+ 26(Mea), (6.5)

where k(M) is the character of the monodromy group, while considering
all instanton corrections. Since the monodromy group is abelian in nature,
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this character becomes k(M) = K.e*. The compensating spectral flow
transformation (5.17) takes the following form explicitly,

0

a a a c p c
p [6] =p + € pou QG[G] = Ga — "fa,bcpb6 - 5 HabCEb6 ’
(6.6)

1
qole] = qo — qa€" + 3 FabeD €€ + % Kape€ €'€C.

6.3 Failure of the group law

Even these above non-trivial adjustments turn out to be not satisfactory for ob-
taining a faithful representation of the duality groups. Let us first see where it
fails precisely. The relevant actions of various symmetries on the type IIB fields
are given in the appendix A.2 in a tabular form in [24]|. Computing the commu-
tator between S-duality and Heisenberg transformation , we find that apart from

monodromy we get some anomalous terms, 3
b® b® 0
c® c? 0
1 (1
SIS | o | = My | o |+ éabn” L (6.7)
Co co n* (¢a + 2= — 1 Aun)
v v n" (Ko + 5¢)

where we remember to have set the NS5-instanton characteristics * = 0. This
requirement comes from the fact that for Heisenberg shift n® = 0, the group
law (see below (6.11)) should hold. Furthermore, if one considers the fivebrane
transition functions which we present in the next chapter, under Heisenberg shift
with 7 = 0, should be invariant [21]. This is ensured only if #* = 0. This
somewhat simplifies the transformation of the characteristics by eliminating some
terms in (6.3),

1
¢a = ¢a + 5 Haaceca
1
2

(6.8)
Do > o — €Dy (Lo(€) — €*Lo(€) + Kaace®e®) .

However, the situation is still not satisfactory, because it is clear from (6.7) a
consistent action of all symmetries is not generated ensuring closure of the group.
Although in (6.7) the anomalous terms (i.e. the terms due to which (6.11) fails
to hold), in the transformation of ¢y and ¢ can be removed by appropriately
choosing ¢, and the character k,, the one in the transformation of ¢, can not be
canceled. Thus we have to conclude that the monodromy, Heisenberg and S-duality
transformations fail to form a consistent group representation.

38 = (? _01> is the non-trivial generator of SL(2,7Z).
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6.4 Constructing group representations

To resolve the inconsistencies, first we notice that we can absorb the D-instanton
characteristics to RR and NS scalars. This is because these characteristics appear
with the RR scalars in particular combinations, as in (6.9), and subsequently, to
ensure the invariance of the HM moduli space metric one has to absorb them in
the NS axion as well.

M -0 = ¢
(h — dpa + AxsOp — Ca, (6.9)
o+ ppal™ — 05 (5/\ + AAECE> = 0.

This now amends the monodromy transformation,

ba — ba_'_ea’ Ca — Ca‘i‘ECLgO,

~ ~ 1
Ca = Ca - Kabchec Y 'Liabcebecco + Aabeba

2
- - . 1 1 1 a
Mea CO = CO - Caea + 5 "iabccaebec + = Habceaebecco - 5 Aabeaeb + % “
1 1
o = 0 — Ayt — 5 (Aabeaeb + 1 027(16&) O+ 2k,4€.
(6.10)

The modification in monodromy transformation compared to (5.14) is clearly due
to the anomalous terms that appeared in (6.7). With this, we proceed to show
how to construct a group representation involving the discrete symmetry groups
of Heisenberg shift, Monodromy and S-duality.

Below in table 6.1 we display the action of the corrected symmetry transfor-
mations on the type IIB coordinates. Provided that one fixes the character of the
monodromy group as k(M) = —22 |24] indeed we find the group representation.

24
In particular, we obtain
—1(1
SIS = My, (6.11)
0 —1Y\.
where S = 1 o )isone of the generators of the SL(2,7Z) group, the so called

S-generator. The action of the other generator T" = ! 1) coincides with the

10
Heisenberg shift 7 — 74 1. Since SL(2,Z) group is generated as a “word" of these
S and T-transformations g = S™7T™ S™2T™2 .. it suffices to verify the group
law separately for them. As T-transformation is one of the Heiseberg shifts it
commutes with Téﬁln)a and the only non-trivial commutator that we have to check

is (6.11).
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b® c® Cq Co W
S a e €,a _
c Ca+ =% Y o
c2,
T b® c® +b® Ca = Sf Co Y — ¢
co — €%c,
M he & €@ a +1 bC+A b 1 a(bb+2b)c w_i_l ab.c a
ca € c Ca + 5 Kabe€ € ab€ G Fabc€ €’)c 6 Kabc€'C'CC — Rq€

_%Aabﬁaeb + ‘328,11 €4

U+ n%q + 5 Aan™n’

(1) a a a _ 1 bpc b 1 apbpe €2,a a
TO,na b ¢+ Ca 5 Rabel] be + Aabn Co + g fvabct] b°b° + oq N _% /’fabcnabb(CC + 277c)

Trg) b* c® Ca + M Co WY
Téj}m b® c? Cq Cco + 770 w + K

Table 6.1: The action of generators of the discrete symmetry transformations in
the type IIB coordinate basis.

6.4.1 Commutators of different elements

Here we present the results of different commutators among various elements gen-

erating the group using the transformation rules from table 6.1 (Tg,)o = Mea).

e Commutators with S :

-1 _ (2) 3)

S Me S = TO,—EQ TQAabeb TO, 3Lo(€)—€Lq(—¢)?
— 1

ST, S = My,

(6.12)
—17(2) o _ (2
S Tﬁa S = Tﬁa ,
170 o _ m3)
S TFIO’HS = Tf&ﬁo,
e Commutators with 7" :
_ () (2 (3)
[Mea’ T] - 7—1076‘1j-vLa(e)j-LLo(e“),eaLa(e)fLo(e)7
[T, T) = [T, T = 1, (6.13)
(3) _ @3 .
[Tﬁo,ﬁ’ T] - Toﬁﬁo’

e The nilpotent subgroup generated by Heisenberg and monodromy transfor-
mations :
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_Mga, Té,ln)a_ _ 73 7(3)

_’§111)06b77C 77“La(—€)7—€aLa(Ti)’

@] _ 7®
M, T2 = T8
: (6.14)
10, 7] = 7

[Té},}a, T® ] = [M 7 }

70,

2 7] _
2T ] =1

a ? ﬁOvK

From the above we see that the modifications proposed in |24] indeed gives rise
to a nice group representation.

6.5 Some remarks on modifications of the mon-
odromy transformation

The monodromy transformation of the axions ensuring consistent consistent group
representation of the discrete symmetries was given in (6.10). We have seen how
the amendments came into being compared to (5.14) [21]|. The crucial feature of the
new terms appearing in (6.10) is that they have origins in the quadratic refinement
for D-instantons, or more precisely the D-instanton characteristics appearing in
(6.2). Additionally, these modifications in monodromy transformation ensure that
the NS5-brane characteristics transform homogeneously, due to which they can
now be dropped. Since the other characteristics corresponding to D-instantons are
already absorbed in the axions, in our results they do not appear (see for example
(7.24) in the next chapter).

As was mentioned in chapter 4, the quadratic refinement of the intersection
form is defined by the homomorphism o : I' +— U(1). For the self-dual three form
flux H = dB, the solution for them is given by [21],

O'@(H) — 6271'1(7%mAnA+mA9Aan<sz)7 (615)
where © = (64, ¢, ) are NS5-brane characteristics, as introduced before and (my, n*)
are integers.

After absorbing the D-instanton characteristics to the RR and NS-axions, their
transformation is now modified by half-integer shifts. As we are going to see below,
similar half-integer shifts arising from “monodromy-like" transformation of certain
U(1) gauge fields appear in the context of the so called Freed-Witten anomaly [58].

41t might seem to be a bit of overkilling to discuss these characteristics again, as we have
already seen in case of amended monodromy transformation all of them drop. But we discuss
them here as we want to contrast how the subtleties related to characteristics are traded against
the subtleties in the monodromy transformation (6.10). We reiterate again that doing so was
crucial [24] as it made sure the discrete symmetries form a group representation.
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Even though, the anomalies considered by Freed and Witten are on the worldsheet
in presence of D-branes, it seems that they are closely analogous to the anomalous
terms appearing in the monodromy transformation (6.10). Before proceeding, let
us describe Freed-Witten anomaly briefly (and rather crudely). Then we will finish
by exploring possible (and conjectural) connections of (6.10) with them.

6.5.1 Freed-Witten anomaly

Here we recall some facts about global anomalies in the worldsheet path integral
of type II string theories in presence of D-branes [58|. The worldsheets that we
consider are oriented Riemann surfaces, mapped to spacetime Y which admits
spin structure as our model contains fermions. For the simplest case of closed
worldsheets without boundary, the worldsheet measure is well defined, provided Y
is spin.

The situation gets complicated if one starts considering D-branes. They are
supported on an oriented submanifold () on which strings can end. The boundary
of the worldsheet 0% maps to this (). On @ there is a field A which is considered
to be a U(1) gauge field conventionally, turns out to have correct interpretation as
a Spin® connection [58]. Furthermore, the B field considered in this discussion is
topologically trivial and for convenience, additionally we set it to zero.

The relevant contribution to the worldsheet path integral that one has to con-
sider is then

pfaff (D) x > $os 4, (6.16)

where pfaff (D) is the pfaffian of the worldsheet Dirac operator and the second
factor is the holonomy of A around the boundary of the boundary of X.

The main result of [58] concerns the computation of the anomaly in pfaff (D),
which is a section of a line bundle over the space of parameters mapping the world-
sheets X to the spacetime Y. This bundle carries a natural metric and connection.
The anomaly can then be understood as an obstruction to the existence of a global
flat section having unit norm. It was shown by Freed and Witten that this con-
nection is flat, but there is a holonomy 41 determined by a certain mod 2 class
(which in this case is the second Steifel-Whitney class) of the normal bundle N to
the D-brane worldvolume ().

For the path integral to be well-defined, there must be a compensating anomaly
coming from the A field. For the case when B = 0, this can be understood as a

consequence of A being a Spin® connection, from which it can be deduced that the
W3(N)=0.5

53 is the canonical integral lift of the third Stiefel-Whitney class ws and is the obstruction
to Spin® structure. It is related by the connecting homomorphism, the so called Bockstein map
to wq, as W3(N) = S(wz(N)). From the long exact sequence in cohomology of @ induced
from the short exact coefficient sequence [58], one can show that 2W3(N) = 0 and W3(N) = 0
precisely when wy (V) can be lifted to a class in H?(Q,Z). In fact, W3 reduces to mod 2 to
the Stiefel-Whitney class ws, and this is actually true for all odd Stiefel-Whitney classes
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Let us analyze this case a bit further. The anomaly cancellation for closed
surfaces imply that the result for (6.16) does not depend on spin structures and
one can set the number of right and left movers to be equal. This makes the Dirac
operator real and hence pfaff (D) is real. This pfaff (D) is not a number and one
can not choose a particular sign for it. Consider a family of ¥ parametrized by a
circle C. Then we have amap ¢ : ¥ x C'+— Y and ¢(0% x C) C Q. It was shown
in |58| that going around the loop changes the sign as

ptaff (D) s (—1)* pfaff (D), (6.17)

where a = (0% x C, ¢*(w2(Q))). In particular, the ambiguity in definition exists
if wy(Q) is non-zero (second Stiefel-Whitney class).
Given the normal bundle N to ) in Y one has the following

(I4+w (V) +wa(Y)+ ...) =1+ w1 (Q) + wa(Q) + .. ) (1 + wy (Q) + w2 (Q) + ...). (6.18)
Since Y is spin, wi(Y) = we(Y) = 0 and hence
a= (0¥ x C,¢"(we(N))) as wa(Q) = wa(N), (6.19)

which have a more natural formulation in K-theory [58].

Now for the path integral to be well-defined the second factor should have
the exact same ambiguity, so as to cancel that of the first. To understand its
geometric origin, let us consider the Levi-Civita connection w on (). The structure
group SO(n) can be represented as a double cover Spin (n). The trace of the

holonomy connection is
Tr P exp <2777{ w) : (6.20)
)y

The sign ambiguity here comes due to the fact that there are two ways to lift
SO(n) to Spin(n). Then the product of the second factor and the above is well-
defined if the worldsheet integration measure is well-defined as argued by Freed
and Witten. The important point is that in the trace of the holonomy around 0%
the only spinors that appear have charge 1 with respect to A. Such spinors are
actually sections of S(Q)) ® L, where L is the line bundle whose connection is A
and S is the spin representation of SO(n). Such tensor product is called to be a
Spin¢ structure of (). This shows why the geometric nature of the “gauge field" A
should be indeed that of a Spin® connection.

When we say “Freed-Witten" anomaly in the following, we do not ascribe the
same meaning to it as in the literature. Instead cavalierly we mean this particular
sign ambiguity, the consideration of which as we have seen, is extremely crucial for
the worldsheet path integral to be well-defined. In the next section we speculate if
the half-integer terms in our modified monodromy transformation can be given a
similar geometric interpretation to that of the sign ambiguity considered by Freed
and Witten.
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6.5.2 Connection of the monodromy transformation (6.10)
with Freed-Witten anomaly

One of the important contents of the global worldsheet anomalies described in the
previous subsection is that it originates form monodromy around a closed loop of
the “U(1) gauge field" A. As we have already found, in our case the monodromy
transformation acquires similar half-integer terms as in (6.10).

In (2.45) monodromy transformation has a simple interpretation. As far as
they are concerned, the transformations can be obtained by shifting the fields
b* — b* 4+ €%, in the following relation,

Asvene=B — (0 _ cay, — Lt — &Jw@, (6.21)
where the RR-potential in A®V" € Heve“(Qj, R). While doing that the RR-potential
has to be kept fixed. As we have already seen, for the classical case whereas the
NS-axion remains invariant, for the quantum case it transformed by the character
of the monodromy group for (5.14).

As an attempt to explain the anomalous terms in (6.10), one can think of the
following simple resolution. If one defines the RR-potentials as

(Aeven + %CQ(@) + A) e—B _ CO _ Cawa — élwa — 50(")2:)’ (622)

shifting the B field actually generates the anomalous terms in (6.10), provided
one does not transform the RR-potential and A is a two-form such that AN B =
Agpw’® and ANBAB = Aabb“bbw@. But then it requires us to have

Aab = liabC.AC. (623)

When such modified definition for the RR-potential is considered, the imaginary
part of the D-instanton action is also affected,

fee
X

But the problem is that (6.23) fails to hold. We actually have checked with
various Calabi-Yau data. Surprisingly for many of them (6.23) actually works.
However for a few it fails to hold and in the following we are going to provide an
example of such.

Let us consider the Calabi-Yau embedded in the product of projective spaces

P?% x P3,
3 31
6 o
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The above is the so called configuration matrix defined as a pair [n|q]. It specifies
the embedding space and degrees of the homogeneity of the defining polynomials.
For this example, we have

fabcaﬁ‘xaxbxcyayﬂ = 07 gaaa:aya =0. (626)

However, the configuration matrix does not specify the coefficients f.0p and
Jao Otherwise [60]. Then from the adjunction formula, one can find that cy; =
44,c99 = 36. One can also compute the intersection numbers, k111 = 2, K112 =
5, K129 = 3, Kogos = 0. Furthermore, one can calculate the Euler characteristic and
Hodge numbers following [60]. They come out to be —150 and h!'! = 2, h'? = 77

respectively. Since we have % (/@aabeb — IiabCEbec) = 0mod Z, one finds that

1
Aab = éﬁaab mod Z, (627)

where we have used the fact that L,(e) is integral from (5.6). Then we obtain

1
AH = 0, A22 = 07 A12 - 5 (628)

The above values of for the elements of the matrix A is inconsistent with (6.23).
From (6.23), we have

A11 = Klll.Al + /{112./42 = 2./41 + 5A2 =0 mod Z,

1
A12 = HlZlAl + /€122A2 = 5A1 + 3./42 = 5 mod 7Z (629)
Agy = Kogpt A" + Kgge A2 =3A' =0  mod Z.

Then it means that, for some integer m, we have A' = m/3. Hence, from the first

of the equations, for some integer n, one obtains Ay = % (n — %m) Plugging into
the second equation, we get Ao = % mod Z, which clearly is a contradiction.

Thus, we conclude that the way of modifying (6.22) is too naive.

The other natural possibility that one can consider is that the RR-potential
transforms itself, although, this proposal is still conjectural. If that is the case in-
deed, one can interpret the anomalous terms in (6.10) have similar origins to that
of Freed-Witten anomaly, because of the following reasons. There is a striking
similarity between the origin of the anomalous terms acquired by the transfor-
mation of the RR-potential A®V*" under integer monodromy transformation and
the half-integer terms that appeared from the U(1) gauge field A in the context
of Freed-Witten anomaly. Since in our case the RR-scalars appear as periods of
the RR-potential, it is reasonable to expect that the anomalous terms in (6.10)
have a similar geometric origin. Furthermore, one expects that that these half-
integer terms appear from the subtleties of the one-loop determinant around the
D-instanton background, in a similar vein with [58].
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CHAPTER [

Mirror symmetry in action : instantons in type |IB formulation

In this chapter our goal is to describe My including all possible instanton cor-
rections. In contrast to the situation a few years ago, now we have a better handle
on the instanton corrections, thanks to the works in [18-24], which crucially de-
pended on the advent of the twistor space formalism to describe quaternion Kéahler
manifolds, which was developed in [25]. The advantage of working at the level of
the twistor space was mentioned in chapter 3. The holomorphic structure of the
twistor space Z and various symmetries of the QK space lifted to the twistor space,
can be exploited to compute these instanton corrections.

In chapter 4, we have already seen the construction of D-instanton corrected
HM moduli space on the type ITA side to all orders in instanton expansion. The
problem of incorporating NShH-instanton correction can be addressed most eco-
nomically on the type IIB side [23|. Since D5 and NS5-instantons transform as a
doublet under SL(2,Z), once we know the D5-instantons in type IIB, we can invoke
the S-duality constraint (5.31), or equivalently (5.51) to find fivebrane instantons.
Starting from the D-instantons on the type ITA side, one just applies mirror map
relations to find the bound state of D5-D3-D1-D(-1) instantons on the type 1IB
formulation. Then one generates fivebrane instantons by application of S-duality
constraint. What is still missing, is the modular invariant construction when one
considers the bound state of D3-D1-D(-1) instantons. An attempt to find it was
made in [22| at the large volume limit and one-instanton approximation. Even
at that level, the picture was not satisfactory. The main obstacle in this regard
stems from the fact that D3-brane instantons are modular invariant themselves.
Unlike the case for fivebrane instantons which were derived, for D3-instantons the
construction should be consistent with modularity. To ensure this consistency is a
rather non-trivial problem. However, the mathematical structure of D3-instantons
found in |22| is no less than fascinating. It discerns a rich interplay between
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7. Mirror symmetry in action : instantons in type IIB formulation

mock modular functions and contact geometry, a priori two completely different
branches of mathematics,. It is one of our goals to investigate this problem further
to have the final word for D3-instantons.

7.1 D(-1)-D1 instantons

Let us first recall the construction of D(-1)-D1 instantons along the lines of [20].
They correspond to instantons with vanishing magnetic charge p®*. Through mirror
symmetry, they are related to the A-D2 instantons in the type ITA side. The metric
when these instantons are the only ones considered was given in chapter 4 equation
(4.46) where the expression is written in type ITA coordinates. In this case the
Darboux coordinates ¢ are globally defined and the integrals appearing in the
twistor lines for the Darboux coordinates can be explicitly evaluated. Furthermore,
since there is no fA and « dependence in this case, the non-linearities in the S-
duality constraint (5.31) disappear and it coincides with (5.51), satisfying a simpler
modular constraint

G chd + reg. (7.1)
Furthermore, the transition functions originate from simple modular forms, due to
which coincide with the contact hamiltonians, as was remarked in 3.

Let us briefly describe how SL(2,Z) invariant construction of D(-1)-D1 instan-
tons was obtained starting from electrically charged D2 instantons in the type ITA
formulation as was done in [20]. One starts with the expression for the D-instanton
transition function (4.10) where the charge lattice is restricted to p* = 0. Then a
Poisson resummation with respect to ¢y is performed. Thereby, one finds a sum
over two integers (m,n) where the first one appears due to expansion of the dilog-
arithm counting multi-covering effects and the second one appears as a result of
resummation, i.e. ¢q is traded for n. Similar situation arises for the Darboux
coordinates as well. In particular, it turns out that for each of the expression of
the Darboux coordinates, there is a term that transforms as (5.22) and another
anomalous piece. However, such anomalous terms can be removed if one performs
local contact transformations appropriately in the patches of definition of Darboux
coordinates. As a result one indeed finds an SL(2,7Z) invariant construction of the
twistor space.

The resulting twistor space can be described by (5.24) where the patches U, ,
surround the roots " of the equation m&® +n = 0. The transition functions are
given by

e—27rimqa£a ?é
. _— m # 0
D1 _ 1 0 ) m2(mé&S +n)’ ’
van(g) - _(27T 3 Z n‘(la ( eéwinqag‘z/go (72)
ga€ Hy U{0} (Y ——— m=0

n

82



Subtleties of NS5-brane contributions. 7.2

Here we set n(()o) = —Xg/2 and used that

Q(VDI) :nf(l(t)z) for YD1 = (07 07 j:qzu QO)a {Qa} 7é 07

(0)

(7.3)
Qyp(-1)) =2ny" for p1) = (0,0,0, ).

It is useful to note also that the contributions to (7.2) with m = 0 are nothing
but the o/-corrected part of the prepotential, > _, GOD}L = Foloop L [ws - Since
Uy = U;, the transition functions to the poles are determined by adding the
respective classical pieces.

The resulting covering of the twistor space looks completely different from the
melon-shaped covering on the type ITA side from which we started. This fact can
be reconciled by remembering that in order to find modular invariant description of
the twistor space we had to perform certain gauge transformations. The generating
functions can be singular outside their patch of definition. As a result, the gauge
transformed Darboux coordinates can have different singularity structure than the
ones we started with. In [20] through a careful analysis, it was shown that the
constructions in the type ITA and type IIB formulations are indeed the same.

Having found the SL(2,Z) invariant description for D(1)-D1 instantons, we first
proceed to obtain the fivebrane transition functions, as was done in [21,24]. We
are going to assume that there is no bound state of the form D3-D1-D(-1) present,
which can be restated as setting 2(y) = 0 for the charges v = (0, p%, ¢u, @), p* # 0.
We will finish this chapter by showing that the moduli space My in presence of
fivebrane instantons under the action of discrete isometries discussed in chapter 6.

7.2 Subtleties of NS5-brane contributions

Before giving the procedure of finding the fivebrane contributions, let is make some
remarks on why NS5-brane contributions are rather difficult to find. Even though
a result to all orders in the instanton expansion was found in |23, 24|, there are
several issues that require better understanding.

e First of all the dynamics of NS5-branes is not actually well understood. The
worldvolume theory, in particular for the case of multiple fivebranes is not
known to the full extent.

Let us consider type ITA formulation compactified on a Calabi-Yau %), with a
stack of £ Euclidean NS5-branes whose worldvolume W is g) itself. For k =1
the worldvolume supports five scalar fields (describing transverse fluctuations
of W in R1%x S, where S* is the M-theory circle), two symplectic Majorana-
Weyl fermions and the two-form potential B, whose field strength H is self-
dual,

s H = iH. (7.4)
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The worldvolume W behaves as a magnetic source for the two form potential
B which propagates in the 10 dimensional bulk of spacetime. On the other
hand, the field strength H for the NS two form field B acts a source of the
RR 3-form potential As. This flux behaves as if D-branes are bound to a
single NS5-brane.

The problems are two fold. First, due to the self-duality condition (7.4) the
3-form flux can not be defined properly for the bound state of D-branes and
NS5-branes if the intersection product of 3-cycles supprting D-branes is non-
vanishing. This means that the partition function describing the dynamics
of the NS5-brane should be interpreted as a section of some bundle.

One has to be rather careful while considering the situation k£ > 1. A way
to do that is by following [67], although a deeper understanding is required
According to it, k-fivebranes split into twisted sectors labeled by the pairs of
integers (p,q) such that pg = k. It is interpreted as k fivebranes wrapping
) recombine into ¢ fivebranes wrapping p copies of ). The dynamics of a
(p,q) twisted sector is described by ¢* interacting self-dual two forms B;jy.
q among them B;; stay massless and the abelian two form B = Z;}:le
describes center of mass degrees of freedom.

e The NS5-instantons impart true stringy corrections to the HM moduli space
Mpuy. In absence of a dependence in the transition functions, one can
exploit the QK/HK correspondence [39]. It is a procedure to map the QK
space having an isometry to an HK space with a hyperholomorphic line
bundle (whose curvature is a (1, 1)-form with respect to all of three complex
structures) and the transition functions on twistor space of the HK space
does not have explicit ¢ dependence. Although, while giving the twistor
description of the D-instantons in chapter 4, we did not resort to it, it was
quite clear that we restricted to the symplectic subspace of (5,5) on the
twistor space. When NSbH-instantons are present all continuous isometries
are broken as we have seen in chapter 2 and one has to work using the
full-fledged contact geometry.

7.3 Fivebrane corrections

Before proceeding, let us summarize the strategy we are going to take to derive
fivebrane transition functions on the type IIB side. We will include D(-1)-D1 in-
stantons from the very beginning. The BPS rays for electric D-instantons with
charge 7 = (0,0,0, o) are aligned along the imaginary axis and BPS rays corre-
sponding to D-instantons with charge vector 5 = (0,0, G4, §o) are colored by green
in figure 7.1. It was shown in [20] how to rotate these BPS rays by first performing
a Poisson resummation on the ¢y and then doing gauge transformation as shown
in figure 7.1. It was found that, starting from the A-D2 instantons on the type
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;? 25 {0; 0; U, f;‘ul

Figure 7.1: Example of the BPS rays corresponding to D5 (red), D1 (green) and
D(-1) (brown) branes and the effect of the gauge transformation which rotates
the two latter types of rays to the real line. U/, denotes the patch lying in the
counterclockwise direction from the BPS ray /..

ITA side, one finds a modular invariant construction for D(-1)-D1 instantons on
the type IIB side. However, the D5-instanton transition functions (across the red
BPS rays in figure 7.1) do not remain unaffected due to this procedure. They be-
come gauge transformed and the corresponding contact hamiltonians are shown in
figure 7.2. We are almost done now. The application of S-duality constraint (5.51)
should give us fivebrane contact hamiltonian in presence of D(-1)-D1 instantons.
In the following, in a step by step fashion, we show how to implement this strategy
concretely.

7.3.1 Gauge transformation due to D(-1)-D1 instantons

To display the effect of gauge transformation, we need to first introduce some
conventions. We define an ordering of the charges as v > 7/ iff 0 < arg(ZvZW_,l) < T
Then for each charge v we define an associated set of D(-1)-brane charges whose
BPS rays lie in the same half-plane as Z,

F(v_l) ={%=1(0,0,0,40) : GoReZ, >0}, (7.5)

and another set of D1-brane charges for which the BPS rays are between ¢, and
the imaginary axis

and 4>~ for N(vy) odd
4 <~ for N(v) even

(7.6)

where H, is the set of charges corresponding to effective homology classes on
@, Hy is the set of opposite charges, and N(v) denotes the quadrant which Z,

I = {? =(0,0,da, o) € Hy UH; : N(7) = N(v)
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7. Mirror symmetry in action : instantons in type IIB formulation

belongs to.! Note that both the ordering and the two charge sets Fgﬂ) may
change after crossing a wall of marginal stability. Given this, we take the BPS
rays corresponding to gauge transformation generating transition function on U,

to lie on the anti-clockwise direction of the from the BPS ray /., (see the figure
7.1).

The gauge transformation contact hamiltonian is then given by

1 . .
D — (1N | Z (%] (7]
g = (—-1)"" 5 E R+ § RO (7.7)

yer{™ yer()

This has a very simple meaning. The Dl-instanton BPS rays and correspond-
ingly the discontinuities are rotated to either of the positive or negative real axis,
whichever is the closest. The D(-1)-instantons before gauge transformation were
aligned along the imaginary axis. After the gauge transformation, they are split
into two halves and each of them are also rotated to the real axes.

As a result the contours of D(-1) and D1 instantons are now along the positive
or negative real axes and the corresponding contact hamiltonians can be summed
up as they depend only on ¢*. Poisson resumming over g, leads to the alternative
twistor description, complying with the S-duality constraints. Instead of BPS rays
now we consider the usual S-duality invariant contours for D(-1)-D1 case, which
are circles surrounding the points ¢}"". The corresponding contact hamiltonians
coincide with (7.2) as ), = G

7.3.2 Db-instantons after gauge transformation

The gauge transformation imparts non-trivial effects on the D5-instanton transi-
tion functions. This is due to the fact that while rotating the BPS rays for D(-1)
and D1-instantons, one necessarily crosses the BPS rays corresponding to D3 or D5
instantons for generic cases where the charges are mutually non-local. However,
since the gauge transformation contact hamiltonians are dependent of & only, the
resulting shift in the D5 contact hamiltonians are linear shifts (3.29),
5 = = = A

€)= Hy(E),  EY =2, + p Oagl(©). (7.8)
One can also compute the corresponding transition functions which take the fol-
lowing form,

—1)NM) - B
H!b] — hgﬂ + 27r2quA(h[gﬂ)2 — % Z g e 2mirEt o (47T2quAh[gy]) ’
ser{VurH

(7.9)

'One can write N(y) = |2 arg (iZ,)].
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Figure 7.2: Schematic representation of the twistor data generating D(-1)-D1 and
Db-instantons in the type IIB picture

where

Ex)y=1—(14x)e™™ (7.10)
The twistor space takes the form of figure 7.2.

7.3.3 Wallcrossing and gauge transformation

Let us demonstrate that the gauge transformation (7.8) is consistent with wall-
crossing phenomena. For brevity, let us introduce the notation E(z) = ¢?™2.

First, consider the original Kontsevich-Soibelman wallcrossing formula (4.20)
when apart from D5-instantons, there are only electric D-instantons having charge
vector ¥ = (0,0,0,.Gy) along with the bound states of D-instantons with charges
v = (p°, p% qa, qo) P° # 0. The D-instantons with charge 7 are aligned along the
imaginary axis. Then the KS formula is

H U 2F () HU X H U, 0 (7) H UQ (7) HUX H U’%—(’Yj):L
o, EF 40>0 i €F<5) %6F<5 40>0 Y4 €F§5>
(7.11)
where we look at the upper half plane only in figure 7.1. + and - indices over
the DT invariants denote chambers after and before wallcrossing respectively. A
similar analysis can of course be performed for the lower half plane. FgB) and FgS)
denote BPS rays in the first and second quadrants respectively.

However, when one performs gauge transformation, the contours change. The
BPS ray corresponding to 7 now gets rotated to the real axis and the twistor
space looks loke figure 7.2. One can now raise the question : what does ensure
consistency with wallcrossing, given such drastically different twistor space 7 The
point is that the gauge transformation affects the transition function corresponding
to the charge v. The corresponding KS operators are

U, = Wy, U, Wiiy), (7.12)
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7. Mirror symmetry in action : instantons in type IIB formulation

where U, was the KS operator for charge v before gauge transformation and W),
is the operator generating the gauge transformation in the nth quadrant. In first
and second quadrants they become

W= J[U:* = exp [_8_?; > E(—éioéo)] ,
W, = H Ug = exp [% Z E(-éfoﬁo)] ;

(7.13)

whereas for the other two quadrants the products run over negative charges 2.

Then it is easy to check that

H U;’m(»yj) H U;,m(%') H US,_('”) H US,_(W)
J % % J

’YjEFES) ﬂ/iel“f) viel“§5> vjel“f)

= H (WQ_IUA/_],QWW)WQ) H (WflUy:Qﬂ%)Wl)

v ers? yier$

I <Wf1U2_(Wi)Wl) I1 <W51U%—<71>W2>

5 5
"/iEFg ) ’y]EFé )

=W, ! H U;ﬁ*(w)HU;X H Uv:m(%)

5 d 5
’YJEF<1 ) Go>0 'Yieré )

H Ug’(%)HUg H U%*('yj) W,

5 g 5
yier® ©>0 ()

=1,

where we have used (7.11) and the contact structure represented by the gauge
transformed operators is smooth across the wall.

Now one can consider charges corresponding to D1-D(-1) bound state having
charge 4 = (0,0, a4, Go) and corresponding BPS rays in type ITA alongwith BPS
rays corresponding to charges ~, as in figure 7.1. * For being able to do the analysis
as above, one needs the gauge transformation operators

N(7)p (0

(—1)NMM X (-1) ia
w,= 1] U; 1] v; : (7.14)

5"/@0>0 :}'GF'(YI)

2Here ¥ = O &
3We assume that we are at the point in the moduli space which does not belong to any line
of marginal stability.
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where e, = sign (Re Z,). The transformed operators read as
U, =W, 'U,W,, (7.15)

With this one should consider gauge transforming U, as we did in the previous case.
Doing exactly similar analysis one can explicitly prove that the contact structure
and hence the twistor space does remain smooth after the gauge transformation.

7.3.4 Fivebrane instantons from S-duality

Now we have all ingredients to reach our main goal — the twistorial description
of fivebrane instantons in the presence of D1-D(-1)-instanton corrections.* To
this end, we simply apply the modular constraint (5.51) to the gauge transformed
contact hamiltonian in (7.8). More precisely, we split the D5-D3-D1-D(-1) brane
bound state charge v into two components, p° corresponding to the D5-brane
charge and 4 = (p%, ¢4, qo) as the rest. Then we identify hmﬂ = h[gﬂ and we apply

the SL(2,Z) constraint with the matrix

a b
g = <k/p0 p/p0> € SL(2,72), (7.16)

where the two integers (p,k) # (0,0) have p® as the greatest common divisor,
whereas a and b must satisfy ap —bk = p". The integer k will appear as NS5-brane
charge. As for the other charges, it is convenient to pack them into rational charges
n® = p®/k, n® = p/k and the so-called invariant charges [21]
. 1 phpe
o =qa T 5 Kabe—>
o =4 o fab 0
. P 1 pip"pe
do =¢qo + + 5 Kabe 75>
3 ()

(7.17)

which are invariant under the spectral flow transformation.
Now a simple application of the S-duality constraint (5.51) gives the fivebrane
contact hamiltonian

i = (%) (ke + p) g - D€, €)

Oro(3) k
= 2D (69 1) 1) B( S

(7.18)

where we have used the following notations

4We remind that our construction ignores the effect of D3-instantons. Although such ap-
proximation is physically unjustified, at a formal level it can be achieved by setting to zero all
DT-invariants () for charges with p® = 0, p® # 0. Note however that we do include the effect
of D3-branes bound to D5-branes, as required by invariance under monodromies.
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(1)

0(,,04 — ké a a
(r"% da(§* +n%)) . onqo — Crape(g)

Spps = — kSyn + L

k2(€0 + n) 2
1)) L (7.19)
- % Z n(ipAQAE(Sk:,p;’y)
Y€k, piy

with S,a = a — n’éy + F(E +n).

(2) S-duality transformed D1-brane twistorial action (note that both actions

(7.19) and (7.20) are regular at & = 0 and reduce in this limit to the (gauge

transformed) D-instanton twistorial actions —='% and —Z5, respectively.)

~ G (p°)* P2 Ga" a .-
Sy = - — =%, 7.20
T T 260 40y K€+ n0) kDD (7.20)

(3) Rational Gopakumar-Vafa invariants nl constructed from standard invari-

ants by using

Qy) = Z%. (7.21)

dly

(4) Transformed BPS indices that (%) = Q(v,g - 2), that take into account
that the DT invariants are only piecewise constant and the moduli dependence of
them is affected by S-duality transformation.

(5) The transformed charge lattice

Drps =TV (g - 2) UL V(g - 2). (7.22)

The dependence on z* comes from the fact that the definitions (7.5) and (7.6)
depend on the central charge function.

(7) Target quadrant in the complex plane Ny, (%) = |2 arg (ig - Z,)|.

The contours on the CP! associated with the contact hamiltonians (7.18) are
given by the image under S-duality of the original BPS ray /..

lepy ={t: Z,(g-2)/(g-t) € iR™}. (7.23)

It can be found that they join the points t]jt’p. (‘as in figure 7.3).

The expression for the transition function can be computed from the contact
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Figure 7.3: Schematic representation of the twistor data generating D(-1)-D1 and
all fivebrane instantons. BPS rays joining different points t’ip correspond to dif-
ferent fivebrane charges k£ and p. Different BPS rays joining the same points
correspond to different reduced charges 7.

hamiltonian (7.18). The expression is valid to all orders and is given by

N N . 5 (1n0)2 2k2Fd +
A —hf) am () (S ZEETE )
R PEANKE +00) (14 2mikhy])?
) k(&0 +n) _ & 4m?p°(gap™) | 31
N P -_ 7 ~ ~ -
— (= 1)Ner® A2p) E : ”qE<Sk,p;v>€ k(€0 + n0) hIZP :

Y€k pi5

(7.24)

It was checked in |24] that the above transition function indeed satisfies (5.31).
It exemplifies the power of the contact hamiltonian formulation. Solving the con-
straint on the transition functions is actually very cumbersome. Instead, the solu-
tion through the new parametrization is much more efficient.

7.4 Monodromy and Heisenberg invariance of five-
brane instanton corrected HM moduli space

In chapter 6, we have seen that requiring that the HM moduli space is invariant
under the action of the algebra generated by discrete symmetries, one can find a
nice group representation for SL(2,7Z) x N(Z). This led to the modification of the
monodromy transformation (6.10) and as a consequence, unlike (6.7) the anoma-
lous terms disappear in (6.10), so that one has Té}n)aS = SM,,. The fivebrane
transition functions that we have derived in (7.24), is obtained by the application
of the S-duality constraint (5.31) on the D5-instanton transition function on the
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type IIB side. Thus with the amended transformations, it should be possible to
check (6.11) explicitly by considering the action of symmetries on the fivebrane
transition function (7.24). This serves as a crosscheck that the action of the dis-
crete symmetries on the physical fields given in chapter 6 is indeed consistent.

In the following, we give the verification that the full contact structure of the
twistor space remains invariant, or equivalently My remains invariant under the
action of integer monodromy, Heisenberg and S-duality symmetries. Before going
further, let us recollect some facts about the characters ¢(g) appearing in the
S-duality transformation of the RR-axion c,.

7.4.1 The character ¢(g) and Dedekind sum

The character e(g), as we have already seen is defined by the following,

ar+b
eQﬂis(g) — "l (C‘r+d) ' (725)
e+ )2 (7)
In particular, 24¢(g) is an integer and it has the explicit representation,
2—1’4 sign(d) (c=0)
ce) = { 52— ds(dc) — L (c>0) (7.26)
“d 4 1s(d,c)+1 (c<0)

where s(d,c) is the Dedekind sum. It can be written in terms of the following

function ) { fi_ 2] —1/2, i i E E\Z (7.27)
wo- 3 () () o9

It can be easily shown that
iy rd d 1 <l rd
d = - — =(c—1)|—(2¢—1)— - | — - | — 7.29
s(d, o) Z(()) =1 (521~ ) ZH (7.29)

where we set ¢ > 0. Thus, for the generators S and T of the SL(2,Z) group, one
obtains

1 1
S) = —= T) = —. 7.30
It also satisfies a reciprocity relation which we will require for the proof,
1 /d 1 c 1
d d)=—|-+—+-] —-. 7.31
s(d, c) + s(c, d) 12 <c+cd+d) 4 ( )
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7.4.2 Invariance under monodromy

We first discuss the invariance of the fivebrane instanton corrected contact struc-
ture under monodromy transformations. The lift of (6.10) to the twistor space is
given by the following action on the Darboux coordinates

& - ¢, £ £ 4 €€,

~ ~ 1

fa — é-a - "'iabcebé-C - 5 Habcebecfo + Aabeb

Mee éo — 50 - eaéa + = Kape€ €E¢ + 6 Kape€ €€ — 3 Apete? + 8 2 e,

1 1 .

0 = O = ( RaeCE F Rapee @€ + = Ko e (€0)? ) + 2L e,
2 3 24

(7.32)

and the fiber coordinate ¢ does not transform. Let us first find what constraint it
entails on the transition function. One can easily find that

1 c
arfa (Mea H ) 6&(1 — Rgbe€ ﬂlj] 5 6bE 7’![8]]’
: | b . b (7.33)
853}(]\/[&1 . H[lﬂ) a 0 H — € 850 H+ — 5 "iabc€a€ ’_T[Z] + 6 ﬁabc€a€ GCT[(Z-)]'},

where T[’}J] is introduced in (5.31). From the transformation of « one can now
obtain the constraint on the transition functions

©j i 1 a c 1 a c 1 a c
Mo - HW = fll 4 5 Fabe€ Tﬁﬂﬂm + = Kabe€ ebﬂij]ﬂ?ﬂ + G fabe€ ebe (T[?j])Q. (7.34)

2

The D-instanton action remains invariant under monodromy transformation, if one
supplements it with the spectral flow transformation on the lattice of charges (6.6)
with the parameter ¢ = z% €. To proceed we have to first check the invariance of
(7.19). For the last term, one should change the summation variable as

G Go— €%y Ga > G- (7.35)

Then both the factors p*Gy and the exponential in S’k,pﬁ remain invariant. One
could worry about having changed the summation range while doing this. But
in fact it stays the same. Because both g -7, and g - Z5 remain invariant if one
performs the spectral flow transformation on the charge lattice. This proves that
the last term is invariant.
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Let us calculate the phase v(e) appearing in MeahEZL = v(e) hmj Then

1 k 0 —1
v(e) = E(—k:e“/ia — PCaa€” {— —€ (£ —) — p_] — bq.e" — M Apete

8 PO p0 ) 24 2
2
—io/fabce“p”pc + % (p — b)Kapee€"p” — p—o (P — b)Kabe€ €€’
2p 2p 6p (7.36)
o [0p° p '
=E< — C2,4€ {E (1 - p/po)z) - §S(k/p0,p/p0)
p 0
+3 - po)} + (p/p° + 1) (1 +b) Aue pb>,

where we have used the expression for (7.26) and exchanged the arguments in
the Dedekind sum by (7.31), and (5.6). The last term in the above expression is
clearly integer, because due to the SL(2,Z) relation ap/p® — bk/p’ = 1, both of
b and p/p® can not be even. For the other term, we first use the expression for
the Dedekind sum (7.29). We also remember that ¢y, is even and hence the last
term in (7.29) does not contribute. Then after a bit of algebra one arrives at the
following expression for the phase,

€2,4€"

v(e) = E(— 2 (d = 1) (b(d + 1) = c(2d — 1))) , (7.37)

where ¢ = p/p® and d = k/p°. It can be rewritten as

Co,0€"

v(e) :E< D (d—1) (blad — be)(d+ 1) — c(2d — 1))>

=E <—62’“€a (d—1) [-bc(d+ 1)+ c(d+1) — 3cd]) (7.38)

:E(Czia; (d—1)(d+1)b—1)b+ 1)) .

In the second and third steps we have used the fact that 3d(d —1)(d 4 1) and
1d(d — 1) are integers respectively. Now it is not difficult to see that v(e) = 1.
First,b and d can not be simultaneously even. Secondly, (b* — 1)(d* — 1) is not
divisible by three only if b = 3k and d = 3l, where k,[ € Z. But this is impossible,
as it contradicts ad — bc = 1. Hence, we have proven that the contact structure
remains invariant under monodromy transformation mapping contact hamiltonians
to each other as

2 3 —pe® (0]
Mea - hmo - hm? rer ”7 Mea - b pizy = Lo pii[—pee p0) (7.39)

The transition functions (7.24) are also mapped to each other as a consequence.
However, they satisfy the non-linear constraint (7.34) as the following °

Spea : 1 1 1
M. -Hmpf /Pl HIZ]) + 3 Kape€?TPTC + 5 Kape€ €?TTC + g Kape€ € e(T)2. (7.40)

5This is yet another instance of the virtue of the contact bracket formulation. Instead of
having to deal with non-linear (7.34) one can work with simpler (7.39).
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To end the proof that My remains invariant under monodromy transformation
(6.10) accompanied by spectral flow transformation, we need to ensure that the
rational DT invariants ) ,(¥) remains invariant. It was shown in [68] that the
BPS indices indeed remain invariant under combined action of monodromy trans-
formations and spectral flow transformation on the charge lattice with the same
parameter. Hence the proof is complete.

7.4.3 Invariance under Heisenberg transformation

For a direct check of the group law presented in chapter 6, one has to also verify
that the action of Heisenberg shifts keep the contact structure invariant. From
the commutators given in chapter 6 clearly, the only Heisenberg transformation
generator that can possibly have non-trivial action on the fivebrane transition
function (7.24)or the corresponding contact hamiltonian (7.18) is To(ﬁln)a. Its action
at the level of the twistor space is given by,

~ ~ ~ ~ C a a
£ = =t &y bt Aan®, & o &+ 220,
o 24 (7.41)
a = atn Gt 5 Awn™'

As was the case with monodromy transformation, to ensure invariance of My
after fivebrane instanton corrections, one has to perform a spectral flow transfor-
mation on the charge lattice 4 — 4le], but now with the parameter e* = kZ—;.
Thus, we have to establish that

Bl _ pl=kn"/p°]] _
Toge - hyy = Ny, ) Toye - Lrpy = Crpal—kne /p0]- (7.42)
For the transition functions, the invariance of the contact structure is encoded in
the following transformation of transition functions into each other,

T o - HOFTPN = gl (7.43)

v
While the second equation in (7.42) is a requirement for the contact structure to
be invariant, we have to check the first one that maps contact hamiltonians to
each other for consistency. Let us compute the phase v(n) in Tp . hm) = v(n) hmp.
Then a direct calculation leads to

k a c k a p k 1
v(n) =E<— KabeD"P"° + 5027,177 [s (_ _o) 3 (po o 1)]

2p°
k(k—1 . " ap®
—%Aabn n +n" Aup® — YPALA(G)) ,

(7.44)

Using (5.6) the above can be rewritten as

o) = B(Pesar |50~ L (1= +

a

12

g (¢ - 1)1 —(a—1)(c+1) Aabnapb> ,

(7.45)
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where we preferred to write the result in terms of ¢ = k/p® and d = p/p°. Now note
that the relation ad —bc = 1 ensures that a and ¢ can not be simultaneously even.
Therefore, the last term in (7.45) is an integer and thus disappears. Furthermore,
using the expression for the Dedekind sum (7.29) and taking into account that
caom” is even, one finds

V() = E(p%mna (c—1) F =1+ Le—1)+ % (c + 1)}) . (7.46)

8 12
Now the situation is similar to the case of monodromy. The first term can be

dropped because c(c — 1)p°(p° — 1) € Z. The rest can be rewritten as

() = B( g5 cantle+ Dl = Dla - D(a+ 1)) (7.47
which is equal to one, as 6|(c+1)(c — 1)(a — 1)(a + 1). This ends the proof of the
invariance of the fivebrane transition function under Heisenberg transformations.

Thus we have proven by direct action of the symmetries on the transition
function that the group law (6.11) holds with the modified monodromy transfor-
mations, which was one of the major results in [24].

Before we finish, we would like to point out some shortcomings of our construc-
tions. The twistor space presented in figure 7.3 has a rather complicated structure.
There are open patches surrounding t"" which lie along the real line. On top of
that, there are fivebrane contours that divide the twistor space into several other
patches as they connect the points t}"". The first problem comes from the fact
that we have assumed the points t!"" do not have any accumulation point on the
real line, that is they are separable. Although, it seems to be a mild assumption,
it is desirable to get rid of this. An even more serious problem arises with the
fivebrane contours. They intersect in infinitely many points on the twistor space.
Unfortunately, the transition function that we have derived (7.24) is not consistent
with the cocycle condition around them. The situation can get even worse if the
points form a dense set on the twistor space. Unfortunately, the author does not
know how to reconcile SL(2,7Z) invariance with the cocyclicity at these points and
this renders the problem for future investigations.
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CHAPTER 8

Discussion and conclusions

This thesis mainly pertains to understanding of the quaternion-Kéahler manifolds
that arise as hypermultiplet moduli space of type II string theories compactified
on Calabi-Yau threefolds. We have discussed how to incorporate various quan-
tum corrections to this HM moduli space. The thesis follows the lead from [4]
and [70]. We show how to include various quantum corrections step by step :
starting from one-loop to the tree-level metric, then discussing how to incorporate
D-instantons and finally the NS5-instantons. They all are included coherently with
the quaternion-Kéahler property of the HM moduli space metric,

Our construction crucially relies on the twistorial techniques that had been
introduced in chapter 3. It generalizes the superconformal approach which is ap-
plicable in the presence of sufficient number of commuting isometries on the HM
moduli space. The advent of the twistor construction helps us to go beyond such
restrictions and in particular, this procedure is immensely important for incor-
porating various instantons as we have seen in the subsequent chapters. In this
framework, various non-trivial and rather complicated physical effects got a simple
and nice geometric interpretation.

e It turns out that there is an even simpler description of the twistor spaces.
Instead of working with the transition functions introduced in |25], one can
introduce the so called contact hamiltonians [23]. The advantage is that, it
facilitates handling of various symmetries at the level of the twistor space.
We have already seen the advantages in two instances : for realization of
S-duality symmetry and monodromy invariance around the large volume
point. Having to deal with constraints imposed by symmetries on contact
hamiltonians is much more easier compared to the constraints on the usual
transition functions.
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8. Discussion and conclusions

The reason can be traced to the fact that unlike the parametrization with
usual transition functions, the contact hamiltonian depends on the Darboux
coordinates on the same patch. A consistent realization of the symmetries
necessarily requires that the derivatives entering in the gluing conditions
abide by certain constraints, as the action of a symmetry group at the level
of the twistor space is defined by its action on the Darboux coordinates. The
complication with the usual transition functions comes from the fact that
there one has to care about the patches meticulously while taking deriva-
tives and this gets reflected in the expressions for derivatives. The situation
simplifies drastically with our new parametrization using contact hamilto-
nian. The constraints subsequently are significantly simpler on the contact
hamiltonians. Our derivation of the fivebrane instanton corrections in chap-
ter 7 crucially depended on this simplification.

e In [24], we found the fivebrane instanton correction to the HM moduli space.
This is actually one of the main works that is presented in this thesis. Our
result is valid to all orders, extending it from the linear instanton analysis
performed in [21|. Achieving this result was possible owing to our new for-
mulation using the contact hamiltonians. In chapter 7, as we have discussed,
exploiting a rather intricate chain of duality arguments, especially exploiting
S-duality symmetry of the type IIB formulation, we derived the fivebrane
transition functions on the type IIB side.

e Our findings about the discrete isometry groups for the HM moduli space is
very interesting. We have resolved the issue raised in [21] regarding consis-
tency of actions of the discrete symmetry groups on the HM moduli space. In
the process we obtained a group representation and thereby we have shown
that the fivebrane instanton corrected Mgy admits their action in a consis-
tent fashion.

e In [30], we have presented the results for the non-perturbative mirror maps,
when the HM moduli space admits no continous isometry. This is the sit-
uation when one considers the NS5-instantons. Our investigations for the
NS5-instantons to all orders in instanton expansion set off from that point.
While accomplishing the task of describing such a QK manifold, we had
come across several nice and at the same time intriguing geometrical ob-
jects such as the invariant points and a function encoding modular invariant
deformations of the twistor space to all orders.

e In [11], we have found an explicit expression for the HM moduli space metric
valid to all orders when one restricts to the set of mutually local charges for
the D-instantons. The same result is also valid for generic D-instantons to
first order in instanton expansion. We have also found that for the universal
hypermultiplet case, one can recast the result in the form of the Tod ansatz
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and the Toda potential constructed satisfies the Toda equation. This serves
as a consistency check for our results and as a byproduct, we have found the
result for the Toda coordinates given by a set of transcendental equations.

Although in light of all these results it seems that the final destination of
describing the HM moduli space with all instanton corrections is not too far, there
are several problems that are still lurking around. We plan to investigate them in
more details in future. In the following, we present them in order.

e In chapter 4 we came across the issue of curvature singularity in the HM
moduli space. We have seen that the curvature singularity of the one-loop
corrected metric at r = —2c¢ gets dressed up in presence of instantons. In
particular, D(-1)-instantons affect the position of the singularity on the mod-
uli space and it turns out that the situation becomes even worse compared
to the perturbative metric. Whereas, the singularity in the perturbative case
was present only if the Euler characteristic of the Calabi-Yau was negative,
after considering D(-1)-instantons we find that it is present always. It is
unlikely that other D-instantons can change this situation. The only possi-
bility through which this singularity can be removed is perhaps the inclusion
of NS5-instantons. They behave in a significantly different fashion at the
strong coupling regime and thus can drastically alter the behavior of the
metric. We aim to study this situation in details in future.

e Another important issue to be addressed is finding the NS5-instantons in the
type ITA formulation. Such a result must comply with the symplectic invari-
ance of the type ITA side. Concerning the inclusion of NS5-instantons, it will
be also interesting to investigate if they regulate the exponentially divergent
growth of BPS indices Q(v). It is our hope that, the results presented in this
thesis is a step forward to the understanding of these problems.

e We need to understand the SL(2,7Z) invariant picture of D3-brane instantons
better. An attempt towards it was made in [22] and from its findings, it is
quite clear that they indeed admit an SL(2,Z) invariant description. The rich
interplay between mock modular forms and contact geometry as was found
in [22] is probably only the tip of the iceberg. A thorough understanding
extending the construction to all orders in instanton corrections and at a
generic point on the HM moduli space, will probably help us to unravel
much more deeper connections. Addressing this problem is one our goals in
future.

e We hope to connect our results with other domains of string theory more
intimately, for example with topological strings and BPS black holes. We
cherish the idea of being able to extend at least some of our results to the
context of vacua with N = 1 supersymmetry and thus making them useful
for phenomenological model building.
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8. Discussion and conclusions

e An important step was taken by improving the action of the discrete sym-
metries at the quantum level on the HM moduli space M. Namely, we
found that the closure of the duality group requires a modification of the
integer monodromy transformation. As was said before, this adjustment had
a double effect : on one hand it provided a consistent implementation of all
discrete symmetry transformations, on the other hand it also resolved the
apparent conflict of the fivebrane instantons, Heisenberg and monodromy
symmetries |21].

However, the proposed modification of the monodromy transformation on
the RR-fields raised the following problem. We reiterate our observations in
the chapter 6 here once again. Before the modification, monodromy transfor-
mation acted by shifting RR-fields according to (2.45). This can be derived
from the definition of RR-scalars in terms of the B-field and RR-potential
Aever € Heven(9),R) (6.21), by just applying a shift on the B-field, while
keeping the RR-potential fixed. With the modified monodromy transfor-
mation, it would then be natural to ask if the anomalous terms in (6.10)
can be generated in a similar way. As we have already explained in section
6.5, in the latter case the situation is not so simple. From what we have
understood by now, the anomalous terms appearing in (6.10) have rather
non-trivial geometric origins, about which some conjectural remarks were
made at the end of chapter 6. We hope to have better justification for them
in future, especially a better clarification from the standpoint of geometric
understanding.
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