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Abstract

Automatic human face analysis refers to the processing of facial images by machines in
order to infer useful information, such as identity, gender, ethnicity, mood, etc. Face
analysis has many interesting applications in security, human computer interaction,
social media analysis, etc. Therefore, though face analysis is an well-established
computer vision problem, it is still an active research topic attracting considerable
attention from researchers. The research community mainly aims to develop more
robust systems with the ability to fulfill the requirements of current applications.

This thesis contributes to a number of face analysis tasks: face verification and
identification, gender recognition, ethnicity recognition and kinship verification. Faces
from three different imaging supports i.e. RGB images, depth maps and videos are
used throughout the thesis. We present novel approaches and in-depth studies for
solving and improving the face analysis problem.

First, we tackle face verification problem from RGB images. The local binary pat-
terns based face verification scheme has been revised through proposing novel efficient
representations, which cope with the original approach drawbacks while improving
the verification performance.

Next, the problems of identity, gender and ethnicity recognition are investigated
from both RGB and depth images. The aim is to assess the usefulness low-quality
depth images, acquired with Microsoft Kinect low-cost sensor, in coping with facial
analysis tasks. The performance of RGB images and depth maps are compared to
show the ability of the latter ones to deal with sever environment illumination cir-
cumstances.

Furthermore, the thesis contributes to the problem of kinship verification from
videos, where the family relationship between two persons is checked by comparing
their facial attributes. The dynamics of faces are efficiently coded by the means of
spatio-temporal descriptors and deep features. The value of using videos in kinship
problem is shown by comparing their performance against that of still images.

Throughout the thesis, various benchmark databases are used and extensive exper-
iments are carried out to validate our proposed approaches and developed methods.
Besides, the results of the proposed approaches are compared against the state of the
art, highlighting our contributions and showing improvements. Future directions for
the presented contributions are outlined at end of the thesis.
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Chapter 1

Introduction

Human face is involved in an impressive variety of different activities. It houses the

majority of our sensory apparatus - eyes, ears, mouth, and nose - allowing the bearer

to see, hear, taste, and smell. Apart from these biological functions, it also provides

a number of signals about our health, emotional state, identity, age, gender, etc.

Humans have an impressive ability to read faces. Indeed, inspecting a person’s face,

one can easily know whether the person is male or female, Asian or Caucasian, happy

or sad, healthy or sick, etc. The aim of automatic face analysis is to make machines

able to perform such tasks.

Machine analysis of faces plays a key role in many emerging applications of com-

puter vision, including biometric recognition systems, human-computer interfaces,

smart environments, visual surveillance, and content-based retrieval of images from

multimedia databases. Due to its many potential applications, automatic face anal-

ysis which includes, e.g., face detection, face recognition, gender classification, age

estimation and facial expression recognition, has become one of the most active top-

ics in computer vision research [69].

Despite of the considerable research advance achieved in the past years in vari-

ous face analysis problems, the topic is still very active attracting attention by re-

searchers from computer vision, pattern recognition and machine learning disciplines.

This interest is not only motivated by the increasing robustness requirements of cur-

rent applications but also by encountered challenges that prevent developing robust
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systems for real world applications. A widely varied and extremely complicated chal-

lenges limit the development of ideal face analysis systems. On one hand, human

face is inherently a non rigid 3D object which deforms and moves (due, for example,

to expressions and head poses) in complex ways making considerable changes to its

ordinary shape. Other face-internal changes may appear because of some face parts

like hair, mustache and beard as well as change occurring because of age. On the

other hand, various effects external to face, such as garments (e.g., glasses, make up,

hat, mask, scarf, etc.) and environment illumination, significantly affect face analysis

tasks. Finally, combinations of the previously mentioned constraints make the face

analysis task extremely hard to perform.

To overcome the above challenges, face analysis has been studied from different

sensing technologies. While mostly RGB images have been employed, other image

types have also been studied but with less magnitude. For instance, 3D face scans

have been used to overcome the head pose, facial expression and illumination change.

Face videos have also been used in order to take face dynamics into account. On

the other hand, to address these challenges, various feature extraction methods and

classification approaches have been investigated to increase the robustness of face

analysis systems.

The present thesis aims to study some still open issues within face analysis re-

search. A particular emphasis is given to feature extraction and modeling stages. The

contributions are summarized in the following section.

1.1 Thesis contributions

This thesis contributes to different stages of face analysis systems. Various face anal-

ysis tasks (i.e., identity, gender, ethnicity and kinship) are investigated by considering

several imaging technologies (i.e. RGB images, depth images and videos).

The thesis mainly focuses on developing powerful face descriptors and models

which are evaluated on various face analysis tasks. First of all, the successful local

binary patterns (LBP) descriptor is revisited addressing some of its inherent short-
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comings in face description. Specifically, we propose an efficient and compact LBP-

based face representation using vector quantization maximum a posteriori adaptation

modeling. Additionally, we have proposed an improved version of the original LBP-

histogram representation. To enhance the face description, we build a generic face

using a pool of face images from a background population and derive a specific user

histogram representation by adapting the generic model to each person. The two pro-

posed approaches are evaluated, each one separately as well as their combination, on

the problem of face verification from RGB images. The resets of these investigations

are published in Papers I and II.

Another contribution is concerns the use of novel low-cost depth sensing devices

for face analysis tasks. We have investigated face identification, gender classification

and ethnicity recognition using depth images acquired with Microsoft Kinect sen-

sors. We aimed to study the feasibility and usefulness of employing low resolution

depth images for automatically inferring meaningful face information. For this pur-

pose, we employed four different feature extraction methods (Local Binary Patterns

(LBP), Local Phase Quantization (LPQ), Histogram of Oriented Gradients (HOG)

and Binarized Statistical Image Features (BSIF)) for representing face depth images.

Besides, the performance of depth images has been compared against RGB counter-

parts to analyze the benefits of each type of images. The contributions of this part

of the thesis are published in Papers III and IV.

The thesis contributes also to face analysis from videos where the problem of

kinship verification has been investigated. To account for the dynamics of the face,

face videos are represented by three spatio-temporal descriptors as well as the pow-

erful deep features. Deep features are extracted by an efficient deep convolutional

neural networks architecture. The spatio-temporal features are extensions of LBP,

LPQ and BSIF features to enable describing video sequences in three dimensional

planes. Furthermore, to highlight the importance of using videos for solving kinship

verification problem, we carry out a comparison of videos performance against those

of still images. The contributions of this part of the thesis are published in Paper V.
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1.2 Thesis organization

The thesis is organized as follows:

• In Chapter 2, we introduce some background and preliminaries. First, we in-

troduce the main face analysis tasks mostly studied in the literature. Next,

potential applications and motivations for the research on face analysis topics

are discussed. Then, we depict the generic scheme for face analysis and ex-

plain the details of each component involved in the global system. The chapter

presents also the challenges related to face image analysis and summarizes some

existing solutions.

• In Chapter 3, we tackle face verification problem using LBP features. Two

face verification approaches are proposed. The first one [19] is based on the

quantization of LBP codes and modeling the resulting vectors by the maxi-

mum a posterior paradigm. The second approach [20] enhances the histogram

representation in LBP-baseline of face recognition. The new histogram rep-

resentation results from weighting a generic face histogram and the targeted

person histogram. Both approaches are further fused to improve the verifica-

tion performance. The evaluation is performed using two publicly available face

databases showing significant improvements.

• In Chapter 4, we study three face analysis tasks, namely identity, gender and

ethnicity recognition, from both RGB and depth images acquired by Microsoft

Kinect sensor. We present the Microsoft Kinect sensor and review its use for

different face analysis tasks [16, 18]. The study of this chapter involves four

different local descriptors. We extend the LBP used for describing faces from

RGB images in Chapter 3, as well as three other descriptors (LPQ,HOG and

BSIF) for describing faces from low resolution depth images. Extensive evalua-

tion and analysis of the proposed approach is performed on four different Kinect

databases. Furthermore, comparisons between results of different features and

image types for the studied problems are discussed.
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• In Chapter 5, we address the problem of kinship verification from face videos [17].

We first present some analysis of recent works on Kinship verification problem

to identify the important and less investigated issues. Based on this analysis,

we propose an efficient approach to cope with kinship verification problem. The

proposed approach is based on the combination of spatio-temporal features and

the recently widely successful deep features and support vector machines for

classification. Spatio-temporal features are extensions of the features used in

Chapter 4, for RGB and depth images, to describe faces from videos. We exten-

sively evaluate the proposed approach on a kinship video database and compare

our results against state-of-the-art.

• In Chapter 6, we summarize the thesis work, present our conclusions and draw

some future directions.

The main content of the thesis is summarized in Fig. 1-1.
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Figure 1-1: Main content of the thesis.
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Chapter 2

Background

In this chapter, we introduce the background information and the notions required

for understanding the thesis. After introducing the main face analysis tasks, we

enumerate their extensive applications which justify the ongoing research interest in

the topic. Next, we present a generic face analysis flow chart and detail its different

components. We also overview the challenges related to face analysis and present the

main remedies proposed by state-of-the-art works. Throughout the sections of the

chapter, a brief survey pointing out the major achievements will be provided.

2.1 Face analysis tasks

A wide rage of information can be automatically inferred from human faces. This

section overviews the main face analysis tasks.

Face recognition [69] is the most researched task and it has a big influence on

other face analysis tasks. As a biometric, a face has many advantages above the

other modalities. Capturing a face image is a non-intrusive process since usually less,

or even no, cooperation of the person is required. Another important reason making

face among the top biometric modalities is the omnipresence of cameras, which fa-

cilitates the face acquisition. Face recognition encompasses two different operational

modes: verification and identification. The former, also known as authentication, is

the process of checking whether a given face corresponds to a claimed identity. In
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this first mode, a unique matching of the test face against the claimed person face is

needed. On the other hand, face identification refers to finding out whether a probe

face belongs to one person among the population of a face database. In face identi-

fication, the matching of the probe face against the whole database is indispensable.

Though, the first research on automatic face recognition is originated by Woodrow

Bledsoe in 1964 [15], the topic is still today among the most active in computer vision,

pattern recognition and machine learning research communities.

Expression classification [42] is also an important research topic in automatic face

analysis. Facial expressions can reflect different information about the person in-

cluding emotions, mental activities, social interaction and physiological signals. Psy-

chologists identified six prototypic primary facial expressions called basic emotions:

happiness, sadness, fear, disgust, surprise and anger. These expressions are universal

across human ethnicities. Automatic facial expression recognition is accomplished by

the classification of face motion and face deformation into different classes based on

face visual information. The research on facial expression analysis dates back to 1978,

by the pioneer work of Suwa et al. [108], then gained much interest since the 1990s.

Human face holds also a variety of demographic information [125], such as age,

gender and ethnicity. These facial information has been extremely useful in many

fields such as forensics, customer analysis, surveillance, biometrics and video index-

ing. For instance, demographic facial information can help boosting face recognition

algorithms [57]. While face based gender and ethnicity classification are challenging

tasks, age estimation is harder to perform, mainly because age changes with time

while gender and ethnicity remain the same for a given person.

Automatic kinship verification from faces is an emerging task that aims at de-

termining whether two persons have a biological kin relation or not by comparing

their facial attributes. Kinship verification is important for automatically analyzing

the huge amount of photos daily shared on social media. It helps understanding the

family relationships in these photos. Kinship verification is also useful in case of

missing children and elderly people with Alzheimer as well as in kidnapping cases.

Kinship verification can also be used for automatically organizing family albums and
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generating family trees.

2.2 Applications and motivation

A key issue that motivates the ongoing and growing research on face analysis topics

is the wide range of their important applications. This section gives on overview of

current and potential face analysis applications.

2.2.1 Security

Security is a crucial concern of todayś world with cross-countries terrorism threat.

Face plays an important role in establishing security. One of the most important and

worldwide spread applications is biometrics which aims at identifying or authenticat-

ing persons based on their physiological or behavioral traits. Along with fingerprint,

face is the most widely used biometric modality. Face biometrics are used in identity

documents, such as passports, national identity cards, driving licenses, etc. Border

control of immigrants is an other important issue for many countries where face-based

identification is used to prevent illegal immigration. Other applications for face as a

biometric include secure access to buildings, electronic devices, e-commerce services,

etc.

Surveillance is another important security issue where face analysis and recogni-

tion plays an important role. Surveillance cameras are today deployed everywhere

and the automatic analysis of the huge data collected by these cameras is crucial.

For instance, face recognition has been applied to identify the suspects of Boston

Marathon bombings [62] by inspecting the data collected by the surveillance cameras

around the place.

Face analysis finds also important applications in forensics [58] by analyzing ev-

idences collected from crime scenes in order to reconstruct and describe events in a

legal setting. For example, facial sketches created based on eyewitness description

are of great use in law enforcement to help identifying suspects involved in a crime.

Automatic matching of the drawn sketch against criminals databases may accelerate
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capturing dangerous criminals and hence preventing more crimes.

2.2.2 Social media analysis

Today, social networks are powerful tools that influence many aspects of human life

including culture, economy, politics, etc. Automatic analysis of the huge amount

of daily shared data on social networks is very important for building strategies and

future visions in various fields. Photos and videos of individuals, family, friends, group

of people, etc. are among the most shared types of data in social networks. Therefore,

developing effective automatic face analysis tools for analyzing, understanding and

exploiting these data gained a remarkable attention these last years [115, 27, 44].

2.2.3 Human computer interaction

To make human computer interaction more natural, face [11], gesture and speech

analysis have been extensively considered. Robots that read the facial expression

of the person, deduce the actual emotion and react accordingly have been recently

developed. Moreover, face analysis has been useful for user immersion in virtual

reality and game applications. Fatigue detection by analyzing car drivers face has

been investigated to prevent car accidents.

2.2.4 Automatic health assessment

As human face holds information about the health status of the person, there were

an interest in automatically assessing a person health by analyzing the face. Many

works are inspired by traditional Chinese medicine. Automatic pain detection, which

is useful for elderly people surveillance, has been the subject of many studies [8].

Researchers have also estimated the heart rate from face videos by inspecting the

change in the face color [70].
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2.3 Generic face analysis framework

We distinguish two different stages in building a face analysis system: the training

stage (Fig. 2-1), where the system is built, tested and optimized, and the operational

stage (Fig. 2-2), where the system is deployed in a targeted environment to fulfill the

desired application.

The process of face analysis starts by capturing the face using a sensor (e.g.,

camera, depth camera). Then, the face needs to be located within the captured image.

This step is called face detection (or localization). In case of video data, the detected

face can be tracked along the video sequence. Once detected, the face region is

segmented from the image and forwarded to the next component. In the preprocessing

step, the face image undergoes a number of treatments in order to enhance it and

to mitigate different artifacts. Usually, this step involves photometric and geometric

normalizations. Next, a feature extraction method is applied to characterize the face

in a distinguishable way. A mathematical model is afterward built for the extracted

descriptors, where the aim is to categorize the descriptors in a specific class depending

on the face analysis task being performed. In the training step, the specific parameters

of each component of the system are optimized on a given database according to

certain performance metric. The output of the training stage are the models and the

optimal parameters for the whole system components.

In the operational stage (Fig.2-2), the system captures new instances of faces

which are submitted to face detection, preprocessing and description components

successively. All these three steps are executed with the optimal parameters obtained

at the training stage. Once the face features are extracted, they are matched to the

trained models and attributed to the most likely class the input face may belong to.

According to the performed face analysis task, the output of the system this time is

the predicted class.

More technical details on the framework components is provided in the following

subsections.
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Figure 2-1: Training phase of face analysis system.
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Figure 2-2: Operational phase of face analysis system.

2.3.1 Face detection and tracking

Face detection [126, 124] knew a tremendous progress during the past years thanks to

the availability of in-the-wild data (i.e. faces captured in unconstrained conditions),

collected from the Internet, with its publicly available benchmarking and the devel-

opment of robust computer vision algorithms. The goal of face detection is to predict

whether or not an image contains one or more human faces. The face detection al-

gorithm returns the rectangles indicating the location of each detected face in the

image (see Fig. 2-3). Yang et al [124] categorized the various face detection methods
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into four groups: i) knowledge-based methods use pre-defined rules based on human

knowledge in order to detect a face; ii) feature invariant approaches aim to find face

structure features that are robust to pose and lighting variations; iii) template match-

ing methods use pre-stored face templates to locate a human face in an image; and

iv) appearance based methods learn face models from a set of representative training

face images which are used for face detection.

Figure 2-3: Illustration of face detection.

The Viola-Jones face detector [114] is considered as the most inspiring method for

face detection. The detector is based on three main ideas that make it powerful and

running in real time. The first concept is the use of integral image or summed area

table algorithm, which quickly and efficiently computes the sum of values in a rectan-

gle, for rapid computation of Haar-like features. The second technique is the classifier

learning with AdaBoost, which is a method for building highly accurate classifier by

combining many weak ones, each with moderate accuracy. Finally, the third idea is

the attentional cascade structure, where sub-windows of the image undergo a series

of weak classifiers that reject the majority of negative sub-windows making the detec-

tion extremely fast. Viola and Jones method made face detection practically feasible

in real-world applications and today it is widely implemented in digital cameras and

photo software.
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Another important face detection algorithm is the so-called deformable parts-

based model (DPM) or pictorial structures model [43]. DPM qualitatively describes

the visual appearance of an object. Its basic idea is to represent an object by a collec-

tion of parts organized in a deformable configuration. The appearance of each part of

the object is modeled separately and the deformable configuration is represented by

connections between the pairs of parts. One way of implementing DPM is to describe

the pictorial structure of objects via an undirected graph. In the case of face, the set

of graph vertices correspond to facial parts, and the set of edges indicates the connec-

tion between facial parts. The parts may correspond to semantically meaningful facial

landmarks (such as mouth, nose, eyes, etc.) or can be automatically learned through

training examples. The major drawback of DPM models is their high computational

complexity.

In the case of face analysis from video, it is important to keep the trace of a

face, previously located with a face detector in a given frame, along the next frames

until it disappears from the scene. Face tracking algorithms employ both spatial

and motion information in sequences of frames to continuously follow the movements

of previously detected faces. Face tracking algorithms are mainly divided into two

categories. The first one is feature-based tracking, which matches local interest-

points between successive frames and updates the tracking parameters. An example

of this first category is the 3D deformable face tracking [129]. The second category is

appearance-based approach, which tracks faces by matching a statistical model of face

appearance to the image. Examples of this category include 2D Active Appearance

Models (AAM) [31].

2.3.2 Face description

The literature overview reveals a plethora of face descriptors that have been investi-

gated for various face analysis tasks. There are several ways to categorize different

face description approaches [69]. One of the most widely used divisions is to distin-

guish whether the method is based on representing the feature statistics of small local

face patches (i.e. local) or computing features directly from the entire image or video
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(i.e. global or holistic).

Typical holistic features include subspace methods, which project the data into

a low dimensional space, such as the Eigenfaces [113] and Fisherfaces [12]. The

former approach is based on Principal Component Analysis (PCA), which aims to

represent the data by minimizing its reconstruction error. The PCA seeks a data

representation in the orthogonal directions corresponding to the highest variances.

The principal component axes are defined by the eigenvectors corresponding to the

highest eigenvalues of the covariance matrix of the face data. The face data is pro-

jected into the subspace spanned by these directions. The latter approach is based on

Linear Discriminant Analysis (LDA), which seeks discriminant features subspace by

taking into account the data classes. LDA finds a subspace in which the within class

variability is minimized and the between class variability is maximized. To handle

the nonlinear nature of face data, PCA and LDA have been extended [104, 123] by

applying a nonlinear mapping, using some kernel functions, of the input data to a

new space.

Among the popular and successful state-of-the-art local face descriptors are Scale

Invariant Feature Transform (SIFT) [74], Histograms of oriented Gradients (HoG) [32],

Gabor wavelets [73], Local Binary Patterns (LBP) [88], etc. Generally, these features

characterize the information around a set of points or from face regions (see Fig. 2-4)

then aggregate the features in a vector by the means of some methods such as his-

tograms and bag of features [87]. The local methods have proved to be more effective

in real world conditions given their ability to handle small changes in local face areas.

However, the global methods have been employed to complement the local descriptors

giving a third feature category termed hybrid features.

2.3.3 Face modeling and classification

The classifiers that have been investigated for different face analysis tasks are far

beyond the coverage of this part. However, in this section, we mention the most

commonly used classifiers and face models, especially those which have made a re-

markable advance in face analysis research. Firstly, the nearest neighbor classifier is
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Figure 2-4: Different strategies for extracting local face features from: a) face grid,
b) face regions, c) face landmarks [69].

commonly used for classifying similarities, usually computed with a distance function,

between face feature vectors. The face sample to classify is attributed to the class with

the nearest training samples. Support vector machines (SVM) are also among the

most frequently used classifiers for face analysis. SVM builds optimal separating hy-

perplanes which maximizes the margin between different classes in high dimensional

spaces. Other powerful classification tools are artificial neural networks, which auto-

matically lean different classes based on a brain inspired process. The recent findings

achieved by employing very deep neural network architectures highly impacted face

analysis, thus making impressive advances [110, 107]. Recent face classification trends

include the sparse representation classifier (SRC) [120] which represents a facial image

as a linear combination of training images from the same class. The class of a given

face is recovered by selecting the class corresponding to the smallest reconstruction

error (i.e. sparsest representation).

Regarding models, the aim is to build a face model that is able to capture the face

variations. A typical example is the elastic bunch graph matching approach [119],

where the face is modeled as a graph with nodes are the face landmark points and

edges are labeled with distances. The local regions around the landmarks are de-

scribed with Gabor wavelets. Thus, the face geometry is encoded by the edges while

the texture is encoded by the nodes. In order to account for variations, several face

graphs are stacked so that all Gabor jets describing the same landmark point are
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assembled together in a bunch. Graphs constructed by different combinations of the

jets result in variations in different faces. A new face is matched by finding the land-

mark points that maximize a graph similarity function. Graph similarity is computed

as the average of the best possible match between the new face and any face stored

within the bunch and normalized with a topographical term which accounts for face

distortion. Another successful face model is the 3D morphable model [14]. A 3D

model, which encodes both face shape and texture, is first constructed from 3D face

scans using computer graphics’ techniques. To account for different face variations,

the morphable model separates intrinsic parameters of the face from extrinsic imag-

ing parameters. In order to match face images, the images are first parameterized in

terms of the morphable model by fitting the model to the face images and similar-

ity between the derived parameters is estimated. Other well established face models

include statistical models such as hidden Markov models [102].

2.4 Challenges and remedies

Face analysis systems are trained with a limited number of face samples captured

under certain conditions while in real life face undergoes huge intrinsic and extrinsic

changes. Fig 2-5 illustrates some challenging face images captured in the wild. It

is practically impossible to cover all the face variations in the training stage making

the face analysis systems fail processing unseen faces with new variations. Further-

more, it has been demonstrated by literature studies [1] that variations (in terms

of illumination, head pose, etc.) in different face images of the same person can be

larger than variation of faces from different persons. Therefore, face analysis perfor-

mance degrades remarkably in adverse environments. This section reviews the main

challenges that hinder face analysis and refers to the main solutions proposed in the

literature.
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Figure 2-5: Examples of challenging face images.

2.4.1 Illumination

Illumination change in uncontrolled environments is one of the biggest challenges to

face analysis. Even in controlled environments, illumination is still a big challenge to

deal with. Face images are sensitive to the direction of lighting as well as the resultant

pattern of shading that alter informative features and lead to fake contours. Specular

reflections on eyes, teeth and wet skin are also a type of illumination to count for.

Photometric normalization techniques such as histogram equalization and gamma

intensity correction are usually the first preprocessing steps to be applied to face

images in order to compensate for face illumination. Among other literature solu-

tions to the problem of illumination is the development of face descriptors robust

to illumination change. However, the study by [1], which involved several relatively

illumination-insensitive image representations under changes of viewpoint and illumi-

nation, demonstrated that no method is completely sufficient to address the problem.

Some researches resort to other sensing technologies which are less prone to illumi-
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nation change than intensity images. Therefore, 3D sensors have been used to capture

face range images which describe the depth of the scene objects. An alternative to

3D sensors is to reconstruct the face from 2D images by means of computer vision

techniques and apply synthetic illumination to the 3D face model. Near infrared

(NIR) sensors have also been investigated to overcome the face illumination problem.

Thermal imaging is another sensing technology for handling face illumination change.

Both NIR and thermal images are inherently less sensitive to illumination change how-

ever the former is less efficient in outdoor strong NIR illumination conditions while

the latter is affected by the temperature change and opaque to eye glasses.

2.4.2 Head pose and viewpoint change

3D faces, either collected by 3D scanners or reconstructed from 2D images, are useful

for dealing with head poses and viewpoint changes. Many approaches for head pose

estimation have been proposed in the literature [85]. Once the pose is estimated, the

head can be rotated to a normalized position (very often a frontal pose) and the face

is further analyzed. One can also deal with head pose by either building a face model

from face images of the same individual but with different head orientations [48] or

by building separate view-based models for the same face [93]. The pose can also be

corrected by fitting a 3D morphable model [14] to the image then generating frontal

view of the face. The fitting is achieved based on face landmark correspondence

between the 3D model and the face image. This correspondence requires an automatic

detection of facial points in the 2D images.

2.4.3 Occlusion

Face analysis in uncontrolled situations is very difficult because of uncooperative

users. In face recognition for example, the uncooperative subjects try to fool the

system by intentionally disguising. The face or parts of it may be covered using

sunglasses, scarf, hat, fake face hair, etc. Many researchers attempted to handle

such situations by proposing approaches that are robust to partial face occlusion.
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Subspace methods have been used to project the face into a new space and discard

the occluded parts. Local face descriptors are shown to be more robust to partial face

occlusion than the holistic approaches. Faces are usually partitioned into small blocks

and each block is modeled separately. Since, the corresponding blocks are matched,

only blocks spanning the occlusion will be affected. The sparse representation [120]

has been found to cope well with occlusions. Some other methods [117] attempted to

reconstruct the occluded face parts, while others (e.g., [84, 111]) detect the occlusion

and use only non-occluded parts for face analysis.

2.5 Summary

In this chapter, we presented an overview of automatic face analysis. We discussed

some exciting applications and attractive motivations for the continuous research in

this topic. The generic face analysis flowchart is depicted and its components are

explained. We have also enumerated a number of practical challenges that restrain

the face analysis problems. Throughout the chapter, the main milestones that marked

the history of face analysis are briefly presented.

The chapter is intended to provide understanding of automatic face analysis con-

cepts pointing out the main state of the art breakthroughs. Literature works, which

are close and directly related to our work, will be presented with technical details in

the corresponding chapters of the thesis.
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Chapter 3

Face verification

Biometric systems can run into two fundamentally distinct modes: (i) verification (or

authentication) and (ii) recognition (more popularly known as identification). In the

former mode, the system aims to confirm or deny the identity claimed by a person

(one-to-one matching) while in latter mode the system aims to identify an individual

from a database (one-to-many matching). Because of its natural and non-intrusive

interaction, identity verification and recognition using facial information is among

the most active and challenging areas in computer vision research [69]. However,

despite the achieved progress during the recent decades, face biometrics [68] (that is

identifying individuals based on their face information) is still a major area of research.

Particularly, wide range of viewpoints, aging of subjects and complex outdoor lighting

are still challenges in face recognition.

The recent developments in face analysis and recognition have shown that the

local binary patterns (LBP) [88] provide excellent results in representing faces [2, 95].

LBP is a gray-scale invariant texture operator which labels the pixels of an image

by thresholding the neighborhood of each pixel with the value of the center pixel

and considers the result as a binary number. LBP labels can be regarded as local

primitives such as curved edges, spots, flat areas etc. The histogram of the labels can

be then used as a face descriptor. Due to its discriminative power and computational

simplicity, the LBP methodology has attained an established position in face analysis

and has inspired plenty of new research on related methods. In the same context,
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we present in this chapter a couple of different LBP variants to address the face

verification problem.

The rest of the chapter is organized as follows. Section 3.2 describes the orig-

inal LBP operator and Section 3.3 explains LBP scheme for face recognition. In

Section 3.4, our first proposed approach for efficient and compact LBP representa-

tion overcoming LBP drawbacks (i.e. sparse and unstable histograms) is introduced.

Section 3.5 presents the second proposed approach for robust LBP feature vector

estimation. Experimental evaluation is presented in Section 3.6 and conclusions are

drawn in Section 3.7.

3.1 Motivations and approach overview

The original LBP has some limitations that need to be addressed in order to increase

its robustness and discriminative power and to make the operator suitable for the

needs of different types of problems. The present thesis proposes new solutions that

address inherent problems to the original LBP-based face verification system. One

problem with the LBP method, for instance, is the number of entries in the LBP

histograms as a too small number of bins would fail to provide enough discriminative

information about the face appearance while a too large number of bins may lead to

sparse and unstable histograms. To overcome this drawback, we propose an efficient

and compact LBP representation for face verification. The face is first divided into

several regions from which LBP features are extracted. LBP codes in each region

are then quantified into a low-dimensional feature vector. The face is represented by

concatenating the vectors from all the regions. We generate reliable face model using

vector quantization maximum a posteriori adaptation (VQMAP) method [19]. For

face verification, we use the mean squared error (MSE) to match a test feature vector

to the claimed user model.

Another drawback of the LBP method lays in the feature vector robustness as the

histogram estimation is not always reliable. We tackle this problem by first estimating

a reliable generic feature vector obtained from a pool of users. Face images are divided

42



into equal blocks from which LBP features are extracted and LBP histograms over

blocks are concatenated to form a feature vector [20]. The adapted histogram of a

given block is obtained by weighting its histogram and the generic block one. The

Chi-square (χ2) distance is used to match a probe against the claimed identity model.

To compensate the cohort effect introduced by the generic feature vector, we finally

normalize the obtained score by subtracting the distance between the probe and the

generic feature vectors.

We extensively evaluate our two proposed approaches as well as their fusion on

two publicly available benchmark databases, namely XM2VTS and BANCA. We

compare our obtained results against not only those of the original LBP approach

but also those of other LBP variants, demonstrating very encouraging performance.

3.2 The local binary patterns

The LBP operator has been first introduced in [88] as a texture analysis approach. It is

defined as a gray-scale invariant texture measure, derived from the image appearance

in a local neighborhood of the pixel. It has been shown to be a powerful means

of texture description thanks to its properties in real-world applications, such as

discriminative power, computational simplicity and tolerance against monotonic gray-

scale changes.

The original LBP operator forms labels for the image pixels by thresholding the

3×3 neighborhood of each pixel with the center value and considering the result as a

binary number. Fig. 3-1 shows an example of an LBP calculation. The histogram of

these 28 = 256 different labels can then be used as the image descriptor.

The operator has been extended to use neighborhoods of different sizes. Using a

circular neighborhood and bilinearly interpolating values at non-integer pixel coor-

dinates allow any radius and number of pixels in the neighborhood. The notation

(P,R) is generally used for pixel neighborhoods to refer to P sampling points on a

circle of radius R. The calculation of the LBP codes can be easily done in a single
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Figure 3-1: The basic LBP operator.

scan through the image. The value of the LBP code of a pixel (xc, yc) is given by:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p, (3.1)

where gc corresponds to the gray value of the center pixel (xc, yc), gp refers to gray

values of P equally spaced pixels on a circle of radius R, and s defines a thresholding

function as follows:

s(x) =

 1, if x ≥ 0;

0, otherwise.
(3.2)

Another important extension to the original operator is the definition of the so

called uniform patterns. This extension was inspired by the fact that some binary

patterns occur more commonly in texture images than others. A local binary pattern

is called uniform if the binary pattern contains at most two bitwise transitions from 0

to 1 or vice versa when the bit pattern is traversed circularly. The number of different
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labels in uniform patterns configuration is reduced to P (P − 1) + 3. For instance, the

58 different uniform patterns in LBP8,R are depicted in Fig. 3-2. In the computation

of the LBP labels, uniform patterns are used so that there is a separate label for each

uniform pattern while all the non-uniform patterns are labeled with a single label.

This yields to the following notation for the LBP operator: LBPu2
P,R. The subscript

indicate the use of the operator in a (P,R) neighborhood. Superscript u2 stands for

using only uniform patterns and labeling all remaining patterns with a single label.

Figure 3-2: The uniform patterns in LBP8,R configuration [95].

Each LBP label (or code) can be regarded as a micro-texton. Local primitives

which are codified by these labels include different types of curved edges, spots, flat
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areas, etc. Fig.3-3 illustrates some of the texture primitives detected by the LBP

operator.

Figure 3-3: Some texture primitives detected by the LBP operator [95].

Since its introduction, LBP gave inspirations to wide range of variants as well as

many new descriptors [55]. Furthermore, LBP has been successful in many computer

vision problems [95, 21]. For instance, face analysis is one of the application where

LBP had a considerable contribution in pushing the state of the art forward. The

following section introduces the LBP-based face representation.

3.3 Face representation using LBP

In LBP-based approaches, an image is generally described using the histogram of the

LBP codes composing the image. This histogram representation does not encompass

the location information. Therefore, this representation is not suitable for face im-

ages as the face is a structured object, where the position of its parts (i.e., eyes, nose,

mouth, etc.) is very important for matching between two facial images. In order

to avoid facial spatial information loss, Ahonen et al.[2] subdivided the face images

into several small blocks. Then, LBP feature is extracted from each block separately,

building a per block local descriptor. The final face descriptor is obtained by com-

bining all the local descriptors from the different blocks. This scheme is illustrated

in Fig. 3-4.

The above face description overcome the limitations of the holistic representations.

Indeed, it has been shown to be more robust to variations in pose and illumination
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Figure 3-4: Face description using LBP.

than the holistic methods. Moreover, the histogram based face description effectively

represents the face on three different locality levels: i) at pixel-level represented by

the LBP labels forming the histogram bins, ii) regional level represented by the local

histogram, and iii) a global level represented by the concatenation of the regional

histograms.

In this original LBP based face representation and most of its variants, extracted

histograms over different blocks are generally sparse. In other words, most of bins in

the histogram are zero or near to zero, particularly in the case of small face blocks.

Indeed, the number of LBP labels in a block depends on its size. On one hand, large

blocks produce dense histograms that badly represent local face changes. On the other

hand, small blocks are robust to local changes but create unreliable sparse histograms,

as the number of histogram bins exceeds by far the number of LBP patterns in the

block.

Another problem with LBP representation is that the number of bins in the his-

togram is function of the number of neighborhood sampling points P . Therefore, the

number of histogram bins grows considerably when P increases (there are 2P bins in

original LBP and P ∗ (P − 1) + 3 bins in uniform LBP). Hence, small neighborhood

yields in compact but poor representation whereas large neighborhood produces huge

and unreliable feature vectors. This problem is more serious in many LBP variants,

for instance if the face blocks are overlapped, resulting in larger number of local

histograms. Another example where the feature size counts is the multi-scale repre-
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sentation is adopted [71, 98], in which P and R parameters are varied to generate

diverse representations of the same block, and the resulting histograms are concate-

nated. This representation, known as over-complete LBP (OVLBP) [10], generates a

very high dimensional feature vector.

Besides, inspecting face representation based on LBP reveals the fact that not

all labels are always occurring in some face region. Labels with low occurrences can

be considered as noise, produced by one bit transition in the LBP code, and thus

are useless for characterizing the face region. Therefore, a block can be efficiently

characterized by a more accurate low dimensional vector by discarding such patterns.

The aforementioned shortcomings of the LBP-based face representation lead us to

ask the two following questions. The first question is: Is there a better representation

than the histogram one that better exploits the LBP power? The second question is:

How one can improve the histogram representation in order to overcome its weakness.

In the following sections, we answer these two questions by proposing two approaches

that deal with the raised problems.

3.4 Face verification using LBP and VQMAP

This section introduces our first approach, which answers the first issue in LBP face

representation. We propose an alternative representation instead of the histogram.

Specifically, we apply vector quantization to LBP codes in order to derive a compact

representation. Afterward, we model the resulting face feature vectors by the MAP

paradigm.

3.4.1 LBP Quantization

We apply vector quantification to the LBP codes of each block in the face. This allows

to dynamically obtain a more accurate per face-block feature vector that represents

the face region in a better way, where only significant patters are taken into account.

Patterns of each block in the face are clustered into a fixed number of groups and the

face is represented by resulting codebook. Thus, only relevant LBP labels of a given
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block will be represented while other labels, representing noise, are ignored. Fig. 3-

5 compares the resulting feature vector using the histogram representation against

the vector quantization. The histogram representation generates a high dimensional

sparse feature whereas the vector quantization generates a low dimensional dense

feature. The gain in terms of feature size proportionally increases with the number

of the neighborhood pixels P . In this example, the size of the block feature vector is

59 and 243 for P = 8 and P = 16, respectively in the histogram representation while

only the VQ-LBP generates a vector of size 32 in both cases.

 

Figure 3-5: Face block description: LBP histogram against VQ-LBP codebook. The
histograms are larger and sparse while the codebooks are dense and compact

In this approach, the clustering of LBP labels is achieved by LindeBuzoGray

algorithm (LBG) [72]. LBG algorithm is similar to K-means [78] clustering method,

which takes a set of vectors S = {xi ∈ Rd|i = 1, . . . , n} as input and generates a

representative subset of vectors C = {cj ∈ Rd|j = 1, . . . , K}, called codebooks, with

a specified K << n as output according to the similarity measure. In LBG the

number of clusters is a power of two, i.e. K = 2t, t ∈ N . The LBG algorithm is

detailed bellow.

We note that in our case the input vectors are formed by the LBP codes of

each face block, as shown in Fig.3-6, of all the training samples. The output of the

algorithm is the codebook describing the face. Since LBP labels are discrete values

of a defined interval, quantization process is fast, overcoming the main challenge of

49



Algorithm 1 LBG algorithm

1: Input training vectors S = {xi ∈ Rd|i = 1, . . . , n}.
2: Initiate a codebook C = {cj ∈ Rd|j = 1, . . . , K}.
3: Set D0 = 0 and let k = 0.
4: Classify the n training vectors into K clusters according to xi ∈ Sq if ‖xi − cq‖p ≤
‖xi − cj‖p for j 6= q.

5: Update cluster centers cj, j = 1, . . . , K by cj = 1
|Sj |
∑

xi∈Sj
xi.

6: Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

‖xi − cq‖p.
7: If Dk−1−Dk

Dk
> ε (a small number), repeat steps 4 to 6.

8: Output the codebook C = {cj ∈ Rd|j = 1, . . . , K}.

Vector Quantization (VQ) on huge continuous data.

 

 

 

 

Figure 3-6: LBP-face quantization.

3.4.2 VQMAP model

We model faces by maximum a posteriori vector quantization (VQMAP) which has

the advantage of generating reliable models, especially when only few enrollment faces

per user are available.

VQMAP was first formulated by [51] and applied for speaker verification. It

is a special case of the Gaussian mixture maximum a posteriori method (GMM-

MAP) [99]. In this last model, Gaussian mixtures have three sets of parameters

to be adapted: mean vectors (centroids), covariance matrices, and weights. VQMAP

model is motivated by the fact that accurate models could be obtained by only adapt-
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ing the mean vectors in the GMM-MAP approach [99]. By reducing the number

of free parameters, the VQMAP model achieves much faster adaptation as well as

simpler implementation. Moreover, the similarity computation for a given probe is

further simplified by replacing the log likelihood ratio (LLR) computation by the

mean squared error (MSE) [51]. Indeed, the speed gain in VQMAP originates mostly

from the replacement of the Gaussian density computations with squared distance

computations, leaving out the exponentiation and additional multiplications [51].

The main issue in the VQ approach is the estimation of the centroids modeling the

face. Let the model parameters noted by θ = (ct1, . . . , c
t
K)t where ci are the centroids

and K is their number. This estimation has been formulated by MAP. Formally,

MAP seeks the parameters Θ that maximize the posterior probability density function

(pdf):

ΘMAP = arg max
Θ

P (Θ/X)

= arg max
Θ

P (X/Θ)g(Θ),
(3.3)

where P (X/Θ) is the likelihood of the training set X = {x1, . . . , xN} given the pa-

rameters Θ and g(Θ) is the prior pdf of the parameters.

The above formulation of VQMAP requires the definition of the likelihood func-

tion P (X/Θ) as well as the prior distribution g(Θ). The likelihood pdf should take

the fact that VQ is non probabilistic model based mean squared error (MSE) into

account. Therefore, the likelihood has been modeled as a Gaussian mixture with

identity covariances and the prior pdf is modeled by the probability of K indepen-

dent Gaussians. The MAP estimates for Vector Quantization is then derived based

on k-means algorithm. The detailed formulation and mathematical development of

the VQMAP model is provided in Appendix A.

3.4.3 Face verification system

The proposed face verification system based on LBP features and VQMAP model

is depicted in Fig. 3-7. In the training stage, a model is generated for each autho-
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Figure 3-7: LBP-VQMAP face verification system.

rized user of the system. To generate a user model, a generic face model, called

universal background model (UBM), is first created using a pool of training faces.

After extracting LBP codes from each face, we divide the faces into blocks of equal

size. Then, we run LBG algorithm considering together the set of blocks of the same

position from all training faces. A codebook representing the background model is

obtained. User specific model is then inferred from the global model by applying the

MAP adaptation process using the training faces of the user.

In the verification stage, LBP features are extracted from the probe face F which

is divided into blocks with the size set at the training phase. Then, for each block

of the probe face, the closest UBM vectors are searched. For the face model, nearest

neighbor search is performed on the corresponding adapted vectors only. The match

score S is the difference between the UBM and the target C quantization errors [61]:

S = MSE(F,UBM)−MSE(F,C) (3.4)
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where:

MSE(X, Y ) =
1

|X|
∑
xi∈X

min
yk∈Y
||xi − yk||2 (3.5)

where xi and yk are the elements of X and Y , respectively.

The resulting score is compared to the decision threshold set at the training phase

to decide whether to accept the user as authentic or reject him/her as imposter.

3.5 Face verification using adapted LBP histograms

One of the reasons behind the success of LBP methods for face recognition is its sim-

plicity and rapidity. This is mainly due to histogram representation of LBP codes.

However, the histogram estimation may not be accurate in some cases, such as small

changes in the image, lack of training samples or subdivision of low resolution faces

into small boxes. For instance, Fig. 3-8 depicts LBP histogram of the same block (red

box) from three images of a person taken in the same session under the same acqui-

sition conditions. Although the three faces are very similar, at the LBP histogram

level, noticeable differences could be perceived. In this section, we propose an elegant

approach for coping with robust LBP histogram representation.

Figure 3-8: LBP histograms of the same block from three face images of a subject,
taken in the same session, and their adapted histogram.

Since faces of different persons share some similarities, it is expected that some
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LBP codes, which are representative of the face parts (nose, eyes, mouth, etc.), are

common between different faces. Here, we make use of this intuition to enhance

LBP histogram representation. Our proposed approach consists of creating a generic

LBP histogram for each face block computed over the pool of the same region from

several users faces. This generic histogram encloses characteristics from all trained

users. The generic histogram is then adapted to each user. Hence, a face region is

represented by a weighted sum of its LBP histogram and the corresponding generic

histogram:

Ĥr
c (lk) = αHr

w(lk) + (1− α)Hr
c (lk) (3.6)

In Eq. 3.6, Hr
w denotes the generic histogram of block r. Hr

w is estimated using

the LBP codes from all the blocks of the same position r in the world faces. Hr
C is

the histogram of the face block r for client c and α ∈ [0, 1] is a weighting factor that

defines the contribution of each component to the final representation. lk is the kth

bin in the histogram.

An example of the adapted histogram is shown in Fig. 3-8. The adapted histogram

catches the important information represented by the highest bins in each of the three

histograms of individual faces. However some extra bins, known as cohort effect, are

introduced by the adaptation. We compensate the cohort effect at the score level.

The feature vector of a given face image is formed by concatenating the different

blocks’ adapted histograms. For each training face of a given user, we generate a

separate feature vector. The score between a training feature vector Ĥk
c and a probe

one Hk
p is computed by the χ2 histogram similarity measure. In order to eliminate

the cohort effect introduced by adapting the global model, we normalize the obtained

score by subtracting the similarity between the probe and the generic feature vector

(second term in (3.7)). Thus, the normalized score is given by:

S =
∑
k

(χ2(Hk
p , Ĥ

k
c )− χ2(Hk

p , H
k
w)) (3.7)
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where

χ2(X, Y ) =
∑
i

(X(i)− Y (i))2

X(i) + Y (i)
(3.8)

For each probe, the highest score to the claimed user train features is compared

to a threshold to decide either to accept or to reject the authentication.

3.6 Experimental analysis

In this section, we use two publicly available benchmark databases, namely XM2VTS

and BANCA, to evaluate the two proposed approaches, presented in Sections 3.4

and 3.5, and assess their performance. Moreover, we compare the two approaches

and their fusion against some recent state-of-the-art methods.

3.6.1 Databases

XM2VTS

The XM2VTS database [81] contains face videos from 295 subjects. The database was

collected in four different sessions separated by one month interval. In each session

two videos for each subject of the database were recorded. A set of 200 training

clients, 25 evaluation impostors and 70 test impostors contributed in collecting the

database. Fig. 3-9 shows an example of one shot from each session for a subject in

the XM2VTS database.

Figure 3-9: Example of XM2VTS face images of the same person across different
sessions.

Two evaluation configurations, known as Lausanne protocol configurations (LPI

& LPII), were defined with XM2VTS to assess the biometric systems performance in
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verification mode. The two configurations are illustrated in Table 3.1. The database

is divided into three subsets: train, evaluation and test. The training data serves for

building clients models. Evaluation subset is used to tune system parameters. Finally,

system performances are estimated on the test subset, using evaluation parameters.

The difference between the two protocols, LPI and LPII, lays in the per-subject

number of face samples in each subset and the session these samples are taken from.

Table 3.1: Partitioning of the XM2VTS database according to the two configurations.

 Configuration I Configuration II 

Session Shot Clients Imposters Clients Imposters 

1 
1 Training 

Evaluation Test 

Training 

Evaluation Test 

2 Evaluation 

2 
1 Training 

2 Evaluation 

3 
1 Training 

Evaluation 
2 Evaluation 

4 
1 

Test Test 
2 

BANCA

The BANCA database [9] contains 52 users (26 male and 26 female). Faces are col-

lected through 12 different sessions with various acquisition devices of different qual-

ity and in different environment conditions: controlled (high-quality camera, uniform

background, controlled lighting), degraded (web-cam, non-uniform background) and

adverse (high-quality camera, arbitrary conditions). Examples of the three conditions

are shown in Fig. 3-10. For each session, two videos are recorded: a true client access

and an impostor attack.

In the BANCA protocol, seven distinct configurations for the training and testing

policy have been defined. In our experiments, we consider the three configurations

referred as Matched Controlled (MC), Unmatched Adverse (UA) and Pooled Test (P).

As shown in Table 3.2, all of the considered configurations, use the same training

conditions: each client is trained using images from the first recording session of the

controlled scenario. Testing is then performed on images taken from the controlled
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Figure 3-10: Example of BANCA face images from the three acquisition conditions :
controlled (left), degraded (middle) and adverse (right).

scenario for MC test and adverse scenario for UA test, while P test is performed by

pooling test data from different conditions. The database is divided into two groups,

g1 and g2, containing the same number of subjects alternatively used for development

and evaluation.

Table 3.2: Partitioning of Banca database for MC, UA and P configurations.

  Configuration 

Session MC UA P 

1 Train Train Train 

2 Test   Test 

3 Test   Test 

4 Test   Test 

5       

6     Test 

7     Test 

8     Test 

9       

10   Test Test 

11   Test Test 

12   Test Test 

3.6.2 Setup

In the experiments, we use the same parameters for both databases. We cropped the

faces using provided eye positions and resize them to 80×64. Faces are subdivided

into equal blocks of 8×8 pixels, yielding in 80 blocks per face. We note that no more

preprocessing of face images was performed. We consider different LBP parameters
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: (P,R) ∈ {(8, 2), (16, 2), (24, 3)}. Finally, for the sake of comparison, experiments

with similar configuration are also carried out for the baseline LBP approach.

We assess the verification performance by the half total error rate (HTER) which

is the mean of false acceptance rate (FAR) and false rejection rate (FRR) of the

evaluation set :

HTER =
FAR(θ) + FRR(θ)

2
(3.9)

The threshold θ corresponds to the optimal operating point of the development

set, defined by the minimal equal error rate (EER).

Finally, to compare different systems, we also draw the detection error trade-off

(DET) curve, which plots the FAR vs. FRR and allows comparison at different

operating points with an emphasis around the equal error rate (EER) region.

Table 3.3: HTER (%) on XM2VTS database using LPI and LPII protocols for dif-
ferent configurations of LBP baseline and our proposed methods.

Method Parameters
Protocol

LPI LPII

LBP Baseline

LBP(8,2)

3.0 2.2

Proposed approach 1: VQMAP 3.0 0.8

Proposed approach 2: AH 1.3 0.5

LBP Baseline

LBP(16,2)

2.9 2.0

Proposed approach 1: VQMAP 2.3 1.1

Proposed approach 2: AH 1.2 0.5

LBP Baseline

LBP(24,3)

3.9 2.9

Proposed approach 1: VQMAP 1.9 1.0

Proposed approach 2: AH 1.3 0.3

3.6.3 Results and discussion

We report in Tables 3.3 and 3.4 the results of the two proposed approaches as well

as those of the baseline LBP system on XM2VTS and BANCA databases. These
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results clearly show that the two proposed approaches outperform the original LBP

approach in all configurations (i.e. for different parameters and different protocols).

In the VQMAP based approach, the performance gain can be explained by the

fact that not all the information present in the baseline LBP representation is dis-

criminative. Indeed, most of the bins in the baseline LBP histograms are close to zero

and may represent noise. Hence, vector quantization produces discriminative feature

vectors which contain most relevant LBP codes in the face.

In the approach based on the Adapted Histograms (AH), the information from

concatenated generic histograms yields more discriminative feature vectors. The pro-

posed normalization plays also an important role in the achieved results. The error

rate of the approach based on the Adapted Histograms is nearly one-third of that of

the baseline LBP on both databases and for most configurations.

In the experiments on XM2VTS database (Table 3.3), our two proposed ap-

proaches outperform the baseline LBP in all the configurations and for both protocols

LPI and LPII. Moreover, the two approaches show more robustness to different chal-

lenges present in the BANCA database. In fact, they perform better than the baseline

LBP in almost all the configurations (Table 3.4). We also note that the best HTERs

for the considered protocols are obtained by our approaches.

We also performed a score level fusion of the two proposed approaches by first

normalizing the scores using z-norm. Then we used logistic regression to fuse the two

systems. The baseline LBP, our two approaches and their fusion systems are compared

using the DET curve. Fig. 3-11 show the DET curve for the best configuration on the

P protocol of BANCA database including faces from different acquisition conditions

(controlled, degraded and adverse). The effectiveness of the proposed approaches over

the baseline LBP method for different operating points is clearly shown in Fig. 3-11.

Furthermore, the fusion of the two methods enhances the performance, indicating a

relative complementary of the two approaches.

Finally, we compare in Table 3.5 our obtained results against those of some state-

of-the-art counterpart on the challenging BANCA database. These results indicate

that our proposed approaches show competitive results. In the scenario of controlled
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Table 3.4: HTER (%) on BANCA database for MC, UA and P protocols using
different configurations of LBP baseline and our proposed methods.

Method Parameters
Protocol

MC UA P

LBP Baseline

LBP(8,2)

10.5 17.3 25.0

Proposed approach 1: VQMAP 4.0 14.9 16.6

Proposed approach 2: AH 4.2 16.4 12.1

LBP Baseline

LBP(16,2)

10.9 18.5 28.4

Proposed approach 1: VQMAP 3.8 18.8 20.7

Proposed approach 2: AH 3.3 15.8 12.1

LBP Baseline

LBP(24,3)

12.3 25.0 33.3

Proposed approach 1: VQMAP 4.8 18.2 20.4

Proposed approach 2: AH 3.7 17.5 12.6

acquisition conditions (MC) protocols, the best results are given by our adapted LBP

histogram method. Furthermore, the fusion of the two proposed approaches yields

in the best performance for MC, UA and P protocols. It is also worth noting that,

in contrast to the other methods, our proposed approaches also inherit the simplicity

and computational efficiency of the original LBP approach.

Table 3.5: HTER (%) for state of the art methods on BANCA database.

Method Protocol

MC UA P

LBP Baseline [2] 10.5 17.3 25.0

LBP-MAP [100] 7.3 22.1 19.2

LBP-KDE [3] 4.3 18.1 17.6

Weighted LBP-KDE [3] 3.7 15.1 11.6

Proposed approach 1: VQMAP 3.8 14.9 16.6

Proposed approach 2: AH 3.3 15.8 12.1

Fusion VQMAP-AH 3.3 14.4 11.6
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Figure 3-11: DET curve for baseline LBP, our two approaches (VQMAP and AH)
and their fusion (VQMAP-AH) on BANCA database for the pooled protocol P.

3.7 Conclusion

In this chapter, we revisited the LBP-based face recognition scheme showing its weak-

ness concerning the histogram representation of LBP codes. We presented two novel

approaches to deal with the drawbacks of the original LBP-based face representation.

The main advantage of the first method is the reduction of the feature vector length

using vector quantization. Indeed, competitive results are obtained using very com-

pact feature vectors. Furthermore, the robustness of the system is enhanced by using

MAP adaptation to generate the face model.

The second method enhances the robustness of the LBP histograms by adaptation

of generic histograms computed over a pool of users’ faces. Adapted histograms of face

regions are concatenated to form a reliable feature vector. Chi-square distance is used

to match a probe face feature vector to the nearest claimed identity feature vector.

The obtained similarity is normalized to compensate the cohort effect introduced by
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the generic feature vector.

Furthermore, we performed a score level fusion of the two proposed methods

using logistic regression after normalizing scores by z-norm. The fusion yields slightly

enhanced performance. Compared to state-of-the-art, the error rates on XM2VTS

and BANCA databases demonstrated the efficiency of the proposed approaches and

their fusion.
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Chapter 4

Face analysis from Kinect data

Analyzing faces under pose and illumination variations from 2D images is a complex

task which can be better handled in 3D [35]. 3D face shapes can be acquired with high

resolution 3D scanners. However, conventional 3D scanning devices are usually slow,

expensive and large-sized, making them inconvenient for many practical applications.

Therefore, assessing new 3D sensing technologies for face analysis applications is an

extremely important topic given its direct impact on boosting the system robustness

to common challenges.

Fortunately, the recently introduced low-cost depth sensors such as the Microsoft

Kinect device allow direct extraction of 3D information, together with RGB color

images. This provides new opportunities for computer vision in general and particu-

larly face analysis research . Such sensors are a potential alternative to classical 3D

scanners. Hence, low-cost depth sensing has recently attracted a significant attention

in the vision research community [50, 6].

This chapter explores the usefulness of the depth images provided by the Mi-

crosoft Kinect sensors in different face analysis tasks. We conduct an in-depth study

comparing the performance of the depth images provided by Microsoft Kinect sensors

against RGB counterpart images in three face analysis tasks, namely identity, gender

and ethnicity. Four local feature extraction methods are considered for encoding both

face texture and shape: Local Binary Patterns (LBP) [88], Local Phase Quantization

(LPQ) [4], Histogram of Oriented Gradients (HoG) [32] and Binarized Statistical
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Image Features (BSIF) [60]. Extensive experiments are carried out on three pub-

licly available Kinect face databases, namely FaceWarehouse [23], IIIT-D [47] and

CurtinFaces [65].

The chapter is organized as follows. First, the Kinect sensor is briefly introduced

in Section 4.1. Section 4.2 overviews the related literature work devoted to the use of

Kinect depth images for automatic face analysis. Section 4.3 presents our methodol-

ogy for studying the usefulness of Kinect depth images in different face analysis tasks.

Section 4.4 describes the experiments and discusses the obtained results. Section 4.5

provides the conclusions.

4.1 Kinect sensors

The Microsoft Kinect sensor was first introduced in 2009 as a natural user interface

of the Microsoft game console Xbox 360. Kinect captures both conventional RGB

images and depth maps of the scene. The depth-sensing system is licensed from the

PrimeSense Company and the exact technology behind it is still unrevealed. However,

the depth computation is, most probably, based on the structured light principle.

The depth sensing process is composed of an infrared (IR) projector, which emits an

infrared irregular dot distribution, and an IR camera which captures the projected

IR pattern to estimate the depth map. In addition to the RGB and depth sensing

hardware, Kinect provides also an array of four microphones equipped with enhanced

noise suppression capabilities, mainly aimed for voice command in games.

Due to its characteristics, Kinect is a good alternative to expensive high-quality

3D scanners. For instance, a comparison between Kinect and Minotlta VIVID 910,

used for collecting FRGC face database [94], is provided in Table 4.1 and Fig.4-1.

The advantages provided by Kinect in terms of size, weight and price are obvious.

However, on the other hand the quality of the 3D scans is very low compared to that

provided by existing 3D scanners.

The Kinect sensor provides both color and depth videos as 640 × 480 pixel res-

olution at 30 fps. However, the Kinect depth data is very noisy and the distance
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Figure 4-1: Comparing face images acquired with Minolta VIVID 910 scanner (left)
against Kinect (right).

computation of far objects often fails. The maximum distance that can be detected

is 4.5 meters. Recently, a more accurate version of the device, namely Kinect 2, has

been released. The new Kinect has higher color and depth resolution and can sense

far away objects (up to 8 meters) more accurately.

There exist other Kinect-like devices such as Asus Xtion PRO LIVE 1 and Leap

Motion 2. The former is practically similar to Kinect and provides the same function-

alities while the latter is a smaller device intended to track the hand gestures. The

3D sensing technology is being embedded in mobile devices, such as Google Tango 3,

1http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
2https://www.leapmotion.com/
3https://www.google.com/atap/project-tango/
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Table 4.1: Comparing Kinect and Minolta VIVID 910 3D scanning devices.

Device Kinect Minolta VIVID 910
Size 7.3cm× 28.3cm× 7.28cm 21.3cm× 41.3cm× 27.1cm
Weight 564.5 g 11 Kg
Speed 0.033s 2.5s
Price < 200 $ > 50K $
Color resolution 640× 480 640× 480
Depth resolution 320× 240 640× 480
Range 0.8 ∼ 4 m 0.6 ∼ 2.5 m

opening new horizons for wider applications. Similarly to Kinect, these devices are

mainly intended for natural user interface applications.

4.2 Review of works using Kinect for face analysis

The facial depth images provided by Kinect-like low-cost sensors are unfortunately

currently of low-resolution and noisy. This can be due, for instance, to missing data

(holes) in some parts of the face, inaccurate depth value computation and limited

distance coverage from the sensor (2 to 4 meters). Despite these challenges, many

researchers have recently explored Kinect depth images for different facial analysis

tasks. The Kinect sensor has been used for face detection and tracking and head

pose estimation as well as for inferring and classifying facial information. The face

recognition problem is the most studied task while there exist few work dealing with

gender and expression recognition. Other use of Kinect includes facial modeling and

animation for games and human-computer interaction applications. In the follow-

ing we review the literature works which utilized Kinect facial images for various

applications.

4.2.1 Face detection and tracking, pose estimation

As a crucial preprocessing step for various face analysis tasks, Kinect has been used

for face detection and segmentation, head pose estimation and normalization and

face tracking. Some work make use of depth maps only while others combine both
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RGB and depth data. Among the work relying on depth data only, Fanelli et al.[40]

presented a system for real time head localization and head pose estimation. The

authors extended the random regression forest [38] to classify depth image patches

between the head and the rest of the body. Then, a regression is performed in the

continuous spaces of head positions and orientations. Experiments on BIWI Kinect

head pose database [39] demonstrated good performance as well as robustness to

occlusion. In another work, Padeleris et al. [90] rendered auxiliary range images of

the reconstructed head from candidate poses and attempted to find the most similar to

a reference view obtained at initialization. They formulated the head pose estimation

as an optimization problem that quantifies the divergence of the depth measurements

between the rendered views and the reference one. Li et al. [67] performed head

tracking using iterative closest point (ICP) algorithm by registering a dense face

template to depth data captured by Kinect. Niese et al. [86] also fitted a user specific

face model with ICP algorithm to determine the head pose. Cao and Lu [24] detected

and cropped the head from depth images for fatigue detection application. They split

the depth image into different regions, extracted the contour of each region, and then

used ellipse fitting algorithm to fit the contour points. The detected head is the region

with the lowest fitness cost.

On the other hand, combination of color and depth information for face detection

and tracking and head pose estimation has been proven to achieve more robustness

than using the two modalities separately. For instance, in order to accelerate face

detection, Duc et al. [36] used the depth information from the Microsoft Kinect to

estimate the size of the face, thus they limited the range of candidate regions for

face detection. They further applied depth-based skin segmentation by imposing ge-

ometric constraints, which improved the efficiency of finding human skin as well as

reduced the computational cost. Zhang et al. [127] proposed an automatic face seg-

mentation approach employing both color and depth cues. Skin color detection and

depth constraint are used together to provide prior information. Given these pri-

ors, the segmentation is performed by the local spline regression and active learning

framework. Tomari et al. [112] detected and tracked head pose with Kinect for social
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robots navigation planning. Initially, possible human regions are segmented out and

validated using depth and Hu moment features. Afterward, Haar-like features with

the Adaboost classifier are employed to estimate potential head regions within the

segmented areas. The obtained head regions are post-validated by examining their

dimension and their probability of containing skin. The head pose estimation and

tracking is performed by a boosted-based particle filter. Yang et al. [122] combined

HoG features extracted from Kinect color and depth images for face detection and

head pose estimation. First, they employed nine HoG filters (corresponding to differ-

ent yaw and pitch angle intervals) trained with support vector machines (SVMs) to

achieve a coarse face detection. Then, the detected face location is refined and a feed-

forward multi-layer perception (MLP) network is trained to estimate face orientation.

Jin el al. [59] used both color and depth acquired with Kinect for face detection, facial

region segmentation and head pose estimation. In case of face detection with enough

confidence, the head pose is employed to initialize the parameters of the AAM (active

appearance model) algorithm [37]. The AAM algorithm, which usually uses the three

RGB color channels, is extended to use the face depth information as well. Both face

texture and depth are fitted to a model in order to locate the facial features. The

authors claimed the ability of their approach to detect faces in presence of complex

background and under severe head-pose variations as well as the ability to achieve

more accurate facial landmark labeling compared to the traditional AAM algorithm.

However, no details about the used experimental data and evaluation protocol were

provided.

4.2.2 Face recognition

As stated before, face recognition using Kinect depth images is the most investi-

gated considered among face analysis problems. For instance, Pamplona et al. [91]

addressed continuous authentication problem using 3D faces acquired with Kinect.

Faces are first detected and normalized using ICP. According to its pose, each face

is registered to one of the three positions: frontal, left profile or right profile. HoG

features are extracted and matched to corresponding regions of interest (ROI). This
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system was evaluated on four 40 minutes long videos with variations in facial expres-

sion, occlusion and pose, where an equal error rate of 0.8% was reported. Li et al.

[66] tackled face recognition under pose, illumination, expression and disguise using

the Kinect sensor. They proposed a preprocessing algorithm that generates a canon-

ical frontal view for both depth map and texture of the face irrespective of its initial

position. To this end, after face registration to a reference model, facial symmetry

is employed to recover missing face parts, fill holes and smooth the face depth data.

Sparse representation classifier (SRC) is used for both depth and texture separately.

Evaluation of this system on CurtinFaces dataset [65] yields in 88.7% recognition rate

using depth data only and 96.7% when face texture and depth are fused. Min et al.

[83] used the PrimeSensor device for real time 3D face identification. To accelerate the

processing and meet the real-time constraint, instead of registration to each gallery

face, a probe face is registered to a few intermediate references (canonical faces) ran-

domly selected from the gallery. Moreover, ICP algorithm was implemented on a

GPU. Good identification results have been reported on a dataset of 20 people with

average speed ranging from 0.04s to 0.38s, depending on the number of the canonical

faces. However, the experimental analysis does not consider severe challenges like

head pose, expression and illumination variations. Goswami et al. [46] proposed a

Kinect based face recognition system, where the HoG descriptor is computed on the

entropy of RGB-D faces and the saliency of RGB. A random decision forest classifier

is used to establish the identity from the concatenation of five HoG descriptors. Ciac-

cio et al. [29] handled the 3D head pose variation problem, by generating different

rotated faces either from the probe or the target. The target consists of one frontal

face per enrolled subject while the probes can be at any pose angle. For recogni-

tion, LBP and covariance matrices are separately used as features and fused after

classification at score level. Experiments on faces with variations in six yaw angles

demonstrated that using the rendered rotated faces from the target frontal face yields

better results than other schemes. Mantecon et al. [80] proposed a face recognition

system using the second version of Kinect which provides higher depth resolution.

Inspired by LBP, they proposed depth local quantized pattern descriptor (DLQP)
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which quantifies the difference between the depth value of a pixel and its neighboring

ones. Only depth differences between -35 mm and 35 mm have been quantized as

the most relevant depth values of human faces lie in this interval. To keep the DLQP

descriptors with a reasonable size, depth differences are coded using 3 bits only. For

classification, one-vs-all SVM is adopted. Experiments on HRRFaceD dataset [80]

showed some improvements compared to SIFT and LBP features.

4.2.3 Gender and expression recognition

Other literature face classification problems studied from Kinect depth data include

expression recognition and gender classification. Savran et al. [103] coped with 3D

expression recognition using Kinect. Face detection from depth maps is first applied

using the approach proposed in [38]. The detected region is transformed to point

clouds and cropped to remove the non-facial points. Further, hole filling and noise

smoothing is applied on the depth map images. Face is described using surface

curvature descriptors computed on point cloud data. Using only Kinect 3D data,

the authors obtained 77.4% accuracy in emotion valence detection. Fusing mean

curvature features with luminance data boosted the accuracy to 89.4%. Expression

recognition using Kinect depth maps has also been studied by Malawski et al. [79].

They used Kinect SDK to locate and track several face landmarks. Histograms of

the slopes of line segments connecting the face landmark points are used as features.

The best recognition accuracy, on images of 10 individuals with small variations in

pose and illumination, was obtained using AdaBoost-based feature selection and SVM

classifier.

On the other hand, gender classification using Kinect depth data has been ad-

dressed by Huynh et al. [56]. The depth differences are computed at each pixel along

different orientations leading to a separate depth difference image corresponding to

each orientation. Both depth differences and their signs, at each pixel and through

different orientations, are encoded in the range of -8 to 7 in order to form a small

sized feature vector, called Gradient-LBP. Evaluation on Eurecom Kinect dataset [56]

demonstrated improvements outperforming LBP and 3DLBP features.
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4.2.4 Face modeling, reconstruction and animation

In other researches, which are less related to the present thesis, Kinect depth maps

are used for modeling faces [106, 116, 26, 53, 82] for computer graphic applications.

High resolution 3D faces are reconstructed from Kinect low resolution depth data

and used for different applications. Examples of these applications include 3D video

conference [5], personalized avatars [135], real-time facial animation [22, 118], etc.

4.2.5 Discussion and contribution motivation

The analysis of the presented review highlights several remarks on the use of the

depth maps of faces. Mostly, the depth data has been exploited to preprocess the

face and to assist the RGB images based systems. Particularly, depth data has been

used in head pose variation to normalize the face into a reference pose. Depth data

is also helpful for face detection and segmentation especially in illumination variation

situations.

Face description and classification from depth images is less investigated in the

literature. While face recognition is the most relatively tackled problem from depth

data, only a scarce number of research investigated expression and gender recognition

problems. To the best of our knowledge, by the time of the review was being written,

no research investigated the other face analysis problems from Kinect depth data

including age estimation, ethnicity classification, emotion state, etc.

The review also points out the fact that face depth maps maybe either used

solely or combined with RGB channels. However, one notes that there is a lack in

comparing the performance of RGB images against depth maps in order to understand

the benefits of using depth information.

Another important issue concerns the experimental data and evaluation bench-

marks used by the reviewed researches. Most papers make use of private databases

which are generally of small size containing a limited number of subjects and/or lim-

ited number of samples per subject. Moreover, data is often collected in laboratory

environments where real-life challenges are not simulated. Even though few Kinect
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face databases are made publically available (See our paper [18] for the detailed de-

scription of these databases), the test protocols frequently differ from a paper to

another. All the mentioned concerns make the results biased, incomparable and hard

to reproduce. These issues hinder the advance in this research topics.

Motivated by the previous limitations, we carry out a study of various face analysis

tasks from both RGB images and depth maps. We employ different features to

describe faces from both types of images. The best available Kinect face databases

are used to evaluate the performances of the studied methods. We also compare depth

maps against RGB image in all the study scenarios. The following section provides

the details of the proposed framework for our study.

4.3 A framework for face analysis from Kinect data

To gain insights into the usefulness of the depth images in different face analysis

tasks, we carried out a comprehensive analysis comparing the performance of the

depth images versus RGB counterparts in three face analysis tasks, namely identity,

gender and ethnicity recognition, considering four local feature extraction methods.

Extensive evaluation is performed on three publicly available benchmark databases.

In this Section, we present our experimental framework comprising preprocessing,

feature extraction methods and classifier.

4.3.1 Preprocessing

The depth images acquired by the Kinect sensor usually need to be pre-processed

to overcome the noisy and low quality nature of the images. In our framework, the

depth images are preprocessed as follows. First, the depth maps provided by Kinect

are mapped into real world 3D coordinates. Thus, each pixel is represented by six

values: x, y and z coordinates and the three RGB values. Then, the resulted cloud

of points C is translated so that the nose tip is located at the origin. This is achieved

by subtracting the nose coordinates (xnose, ynose, znose) from the all the points in the
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cloud:

(xt, yt, zt) = (x, y, z)− (xnose, ynose, znose),∀(x, y, z) ∈ C. (4.1)

The face region is extracted using an ellipsoid centered at the nose tip by discarding

all the points outside the ellipsoid. Then, the face point cloud is smoothed and re-

sampled to a grid of 96× 96. Examples of cropped 2D and 3D face images are shown

in Fig. 4-2. Finally, for the 3D face part, we drop the x and y coordinates and keep

only the z coordinates for describing the face shape.

Figure 4-2: Examples of 2D cropped image (left) and corresponding 3D face image
(right) obtained with the Microsoft Kinect sensor after preprocessing.

4.3.2 Feature extraction

After preprocessing, four facial local image descriptors are extracted from the depth

and RGB images. In contrast to global face descriptors which compute features

directly from the entire face image, local face descriptors representing the features in

small local image patches have shown to be more effective in real world conditions [52].

The considered local face descriptors in our experiments are LBP, LPQ, HoG and

BSIF. LBP and HoG are selected for their popularity in computer vision whereas

LPQ and BSIF are recent descriptors which showed very promising results in different

problems [7, 97]. To the best of our knowledge, BSIF has never been used to describe

Kinect depth face data. While, LBP has been presented in the previous chapter, the

description of the three remaining features is given bellow.
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Local Phase Quantization (LPQ)

LPQ was originally proposed for describing and classifying texture blurred images [89]

then applied to face recognition from blurred images [4]. The LPQ descriptor bases

on the robustness and high insensitivity of the low-frequency phase components to

centrally symmetric blur. Therefore, the descriptor uses the phase information of

short-term Fourier transform (STFT) locally computed on a window around each

pixel of an image. Let Nx be the M2 neighborhoods of the pixel x and let f(x) be

the image function at the bi-dimensional position x. The output of the STFT at the

pixel x is given by:

F (x, u) =
∑
y∈Nx

f(x− y)e−j2πu
T y = W T

u fx, (4.2)

where u indicates the bi-dimensional spatial frequency. In the LPQ descriptor, only

four complex frequencies are considered: u0 = (α, 0), u1 = (α, α), u2 = (0, α), u3 =

(−α,−α) where α is a small scalar frequency (α << 1) ensuring the blur is centrally

symmetric. Hence, each pixel of position x is characterized by a vector Fx:

Fx =[Re{F (x, u0), F (x, u1), F (x, u2), F (x, u3)},

Im{F (x, u0), F (x, u1), F (x, u2), F (x, u3)}],

= Wfx,

(4.3)

where Re{.} and Im{.} denotes the real part and the imaginary part of a complex

number.

In order to derive a binary code for the pixel x , the vector Fx needs to be quan-

tized. To maximize the information preservation by the quantization, the coefficients

should be statistically independent. Therefore, a de-correlation step, based on a

whitening transform, is applied in LPQ before the quantization process. Assuming

that the image function f(x) is a result of a Markov process with the correlation

coefficient between two adjacent pixels is ρ and the variance of each sample is 1, the
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covariance between two adjacent pixels xi and xj is

σi,j = ρ||xi−xj ||, (4.4)

where ||.|| denotes the L2 norm. Using these information, one computes the covariance

matrix C of the M2 neighborhoods. Hence, the covariance matrix of the transform

coefficient vector Fx can be obtained from:

D = WCW T , (4.5)

for ρ > 0, D is not a diagonal matrix, meaning that the coefficients are correlating.

Assuming Gaussian distribution, independence can be achieved using the following

whitening transform:

Gx = V TFx, (4.6)

where V is an orthonormal matrix derived from the singular value decomposition

(SVD) of the matrix D, that is:

D = UΣV T . (4.7)

Gx is computed for all image positions and subsequently quantized using a simple

scalar quantizer:

qi =

0 if gi < 0

1 otherwise

, (4.8)

where gi is the ith component of Gx. Finally, the resulting binary quantized coeffi-

cients are represented as integer value in [0-255] as follows:

LPQ(x) =
8∑
i=1

qi2
i−1. (4.9)

76



Histogram of Oriented Gradients (HoG)

HoG [32] was initially developed for human detection but later extended and applied

to many other computer vision problems. The basic idea behind HoG is that an

object appearance and shape can be characterized by the distribution of local intensity

gradients or edge directions. To compute the HoG descriptor of a given image I, the

gradients are first obtained at each pixel by computing two 1D derivatives in both

horizontal and vertical directions. This is corresponding to filtering the image with

the two following filters:

Dx =
[
−1 0 −1

]
, (4.10)

Dy =


1

0

−1

 , (4.11)

thus, the x and y derivatives are obtained by the convolutions:

Ix = I ∗Dx, (4.12)

and

Iy = I ∗Dy. (4.13)

The magnitude and orientation of the gradient are then computed as follows:

|G| =
√
I2
x + I2

y , (4.14)

θ = arctan
Iy
Ix
. (4.15)

The image is divided into small spatial regions called cells. The magnitudes of

the gradient at each pixel of the cell are accumulated into a histogram according to
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the gradient direction. This is equivalent to a weighted vote for an orientation-based

histogram, where the weight is the value of the magnitude. In the original work [32],

non-signed orientations have been found to perform better. Therefore, a histogram of

B = 9 bins (orientations) evenly spaced over 0 to 180 degrees was utilized. To prevent

quantization artifacts due to small image changes, each pixel of the cell contributes

to two adjacent bins by a fraction of the magnitude.

In order to cope with local changes of illumination and contrast, four adjacent

cells (2 × 2) are grouped together forming one block. The blocks in an image are

horizontally and vertically overlapped, by two cells in each direction, respectively.

The four-cell histograms of each block are concatenated into a vector v, which is

normalized by its Euclidean norm:

vn =
v√
‖v‖2 + ε

, (4.16)

where the small positive value ε is added to prevent division by zero.

The final HoG feature vector is formed by concatenating all the normalized block

features of the image. Finally, this feature is normalized again to count for the overall

image contrast.

Binarized Statistical Image Features (BSIF)

BSIF approach [60] is a relatively recent descriptor inspired by LBP. Instead of using

hand-crafted filters, such as in LBP and LPQ, the idea behind BSIF is to automati-

cally learn a fixed set of filters from a small set of natural images. The set of filters

are derived based on statistics of training images. Given an image patch X of size

l× l pixels and a linear filter Wi of the same size, the filter response si is obtained by:

si =
∑
u,v

Wi(u, v)X(u, v) = wTi x, (4.17)

where wi and x are vectors containing the pixels of Wi and X, respectively. A binary
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code chain b is obtained by binarizing each response si as follows:

bi =

 1, if si ≥ 0

0, otherwise
, (4.18)

bi is the ith element of b. In the aim to learn a powerful set of filters Wi, the statistical

independence of the responses si should be maximized. Let W be the matrix of size

n× l2 formed by stacking the n filters wi. Independent filters estimation is achieved

using independent component analysis (ICA). Therefore, one needs to decompose W

into two parts so that the filters responses are rewritten as:

S = Wx = UV x = Uz, (4.19)

where z = V x, and U is a n×n square matrix, and matrix V simultaneously performs

the whitening and dimensionality reduction of training samples x. The randomly

sampled training patches x are first normalized to zero mean and principal component

analysis (PCA) is applied to reduce their dimension to n. Specifically, let C denote

the covariance matrix of samples x and its eigen decomposition is C = BΛBT , the

matrix V is defined as:

V = (Λ−1/2BT )1:n, (4.20)

where Λ contains the eigenvalues of C in descending order, and (.)1:n denotes the first

n rows of the matrix in parenthesis.

Then, given the zero-mean whitened data samples z, one may use standard inde-

pendent component analysis algorithm to estimate an ortHoGonal matrix U which

yields the independent components S of the training data. In other words, since

z = U−1S, the independent components allow to represent the data samples z as a

linear superposition of the basis vectors defined by the columns of U−1. Finally, the

filter matrix W = UV is computed, which can be directly utilized for calculating

BSIF features.
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Face description

Figure 4-3 depicts examples of results when applying the four selected local descriptors

on face texture and depth images acquired with Kinect sensor for a subject from the

FaceWarehouse database[23]. In our experiments, we extended the BSIF description

method to handle depth images by learning the filters using facial depth images from

the FRGC database [94] as training data. These filters are then used to compute

BSIF features on Kinect depth images. We found this new learning approach yields

in better filters, in terms of performances of face classification, than the original ones.

Figure 4-3: Examples of results after applying the four descriptors to face texture and
depth images. From left to right: the original face image (top: texture image and
bottom: its corresponding depth image) and the resulting images after the application
of LBP, LPQ, HoG and BSIF descriptors, respectively.

To form the face feature vector, for each descriptor, the RGB and depth images

are first divided into several local regions from which local histograms are extracted

and then concatenated into an enhanced feature histogram used for classification.

4.3.3 Classification

The classification of both RGB and depth descriptors is performed using a support

vector machine classifier (SVM). SVM is a supervised classification algorithm that

aims to find the optimal separating hyperplane of the high dimensional training data.
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This is achieved via maximization of the margins (distance of closest data, regardless

of its class, to the hyperplane). The training feature vectors along with their labels

are input to SVM, which outputs a model able to predict the labels of new unseen

data. In our case, since we are dealing with nonlinear face feature vectors, we opt

for a radial basis function (RBF) kernel. The nonlinear SVM maps the original data

into a new space, using the kernel function, in which classes separation is improved.

4.4 Experiments and results

We analyzed the performance of the four local descriptors (LBP [88], LPQ [4],

BSIF [60] and HoG [32]) presented in Section 4.3.2 on three publicly available Kinect

face databases, FaceWarehouse [23], IIIT-D [47] and Curtinfaces [65], containing both

RGB and depth facial images acquired with Kinect. We report the results for three

different face classification problems: face identification, gender recognition and eth-

nicity classification. We have used the ground truth data whenever it is available

with the database and in case data is not labeled we inferred the needed information

from the face images (e.g, gender). We note that we have been limited to the three

face analysis tasks mainly because of the available data and metha-data nature. For

example, we were unable to perform age estimation because the ages of persons are

not provided. The databases, evaluation methodology and results are provided in the

following.

4.4.1 Databases

FaceWarehouse and IIIT-D databases are selected as these are among the largest

available databases (regarding the number of subjects) while CurtinFaces is the most

challenging Kinect face database (in terms of head pose, illumination and expression).

The three databases are described below.

• The CurtinFaces Kinect Database4 [65] contains over 5000 images of 52

4https://researchdata.ands.org.au/curtinfaces-database/3640
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subjects in both RGB and depth maps obtained by Kinect sensor. The partic-

ipants consist of 10 females and 42 males. The subjects in the database belong

to three different ethnic groups (Caucasians, Chinese and Indians). The facial

images have various variations in pose, illumination, facial expression as well

as sunglasses and hand disguise. The faces of each subject are acquired under

many combinations of these challenges. For each subject, there are 49 images

under 7 poses and 7 facial expressions, 35 images under 5 illuminations and 7

expressions, and 5 images under disguise (sunglasses and hand). The full set for

each person consists of 97 images. CurtinFaces is among the most challenging

Kinect face databases.

• The FaceWarehouse Database5 [23] comprises 150 individuals aged from

7 to 80. For each subject, the RGB-D face data is captured for the neutral

expression and 19 other expressions. During recording, a guide face mesh for

each specific expression is sequentially shown to the person, who is asked to

imitate the expression and rotate his/her head within a small angle range, while

keeping the expression fixed. For every RGB-D raw data record, a set of facial

feature points on the color image are automatically localized, and manually

adjusted for better accuracy. A template facial mesh is then deformed to fit

the depth data while matching the feature points on the color image to their

corresponding points on the mesh. Based on the 20 fitted meshes of each person,

47 individual-specific expression blendshapes per person are constructed.

• The IIIT-D RGB-D Face Database 6 [46] comprises 106 male and female

subjects. All the subjects are of the same ethnicity (Indian). The number of

images per subject varies between 11 and 254 images. The total number of

images in the database is 4605. The database is captured in two different ses-

sions. The images are captured under normal illumination with some variations

in pose and expression. IIIT-D is the largest Kinect face database in terms of

the number of subjects. Since the images are not segmented, the database can

5http://gaps-zju.org/facewarehouse/
6https://research.iiitd.edu.in/groups/iab/facedatabases.html
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be used for face detection, besides its use for identity and gender recognition.

Table 4.2 outlines the main characteristics of the presented face Kinect databases.

For each database, we report the number of subjects, the number of samples per

subject and the main challenges presented in the database.

Table 4.2: Kinect face databases employed in our experiments.

Database # Subjects # Samples Challenges
FaceWarehouse [23] 150 20 Pose and expression
IIIT-D [46, 47] 106 11-254 Expression and pose
CurtinFaces [65] 52 97 Pose, expression, light-

ing and disguise

Examples of the depth and RGB face images for a person from CurtinFaces

database are illustrated in Fig. 4-4.

Figure 4-4: Face images samples from a subject of the CurtinFaces database. Top:
RGB faces, middle: their corresponding raw depth maps and bottom: depth cropped
face.

4.4.2 Setup

In this section, we provide details about the parameters used in different experiments

and evaluation protocols. First, for each of the four features, as the aim of our study

is not to optimize the performances, we used default parameters with no adjustments.

Uniform LBP patterns are extracted with a radius R = 2 and neighborhood P = 8.

The window size in LPQ is set to 5. HoG features are quantized with 9 bin histograms.
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The filters used in BSIF are learned from patches of 11 × 11 and coded with 8 bits.

For each feature, histograms are computed from non-overlapped blocks of 16 × 16

pixels, for both RGB and depth images, and concatenated to form the face feature

vector.

For identity recognition, five images per subject are used for training and the rest

for test. In gender and ethnicity classification, 10 subjects7 per class are used to

train the models and the other subjects are used for test. We note that for gender

and ethnicity classification, subjects belonging to train and test subsets are mutually

exclusive in other to avoid the identity bias in classification. Ethnicity evaluation

is performed on FaceWarehouse (Chinese vs. White) and CurtinFaces (Caucasian,

Chinese and Indian) databases only since IIIT-D database includes only one ethnicity.

Finally, the performances are assesses in terms of correct classification rates. For

all the experiments, five-fold cross validation strategy is performed and the mean

classification rate and standard deviation are reported.

4.4.3 Experimental results

Tables 4.3, 4.4 and 4.5 summarize the average accuracy and standard deviation for

the three face analysis problems.

Table 4.3: Mean classification rates (%) and standard deviation using RGB and depth
for face identity classification on FaceWarehouse, IIIT-D and CurtinFaces databases.

Method
Database

FaceWarehouse IIIT-D CurtinFaces
RGB Depth RGB Depth RGB Depth

LBP 99.6∓0.1 85.3∓0.4 93.8∓1.6 84.4∓1.0 66.2∓0.6 84.0∓1.1
LPQ 99.7∓0.1 85.4∓0.4 93.4∓1.4 84.7∓1.8 57.6∓1.0 73.8∓1.1
HoG 98.4∓0.4 86.4∓0.6 92.5∓1.5 82.8∓1.3 68.2∓1.0 83.8∓1.0
BSIF 99.8∓0.1 88.5∓0.4 91.5∓1.7 77.8∓1.2 72.2∓1.0 77.8∓1.1

The analysis of the results points out that, generally, better performances on the

FaceWarehouse database and IIIT-D database compared to the CurtinFaces database.

7In case the number of subjects for a given class is less than 20, half of the subjects are used for
training and the other half for testing.
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Table 4.4: Mean classification rates (%) and standard deviation using RGB and depth
for face gender classification on FaceWarehouse, IIIT-D and CurtinFaces databases.

Method
Database

FaceWarehouse IIIT-D CurtinFaces
RGB Depth RGB Depth RGB Depth

LBP 74.7∓1.7 77.6∓2.7 87.5∓1.6 76.4∓5.5 86.3∓3.2 84.3∓4.5
LPQ 78.4∓2.6 78.8∓1.7 88.0∓2.4 77.4∓4.5 85.3∓3.8 83.5∓3.9
HoG 78.6∓2.3 77.5∓1.5 86.1∓2.5 70.1∓3.3 86.8∓2.1 85.0∓4.1
BSIF 78.9∓3.0 78.2∓1.7 86.2∓3.2 70.3∓1.9 87.7∓2.6 85.2∓2.5

Table 4.5: Mean classification rates (%) and standard deviation using RGB and
depth for facial ethicithy classification on FaceWarehouse and CurtinFaces database.
Results are not provided for IIIT-D database as only one ethnicity is represented in
this database.

Method
Database

FaceWarehouse IIIT-D CurtinFaces
RGB Depth RGB Depth RGB Depth

LBP 90.6∓4.3 95.3∓1.1 - - 70.5∓3.1 69.4∓3.2
LPQ 93.8∓3.9 96.5∓1.0 - - 71.3∓3.0 68.6∓3.0
HoG 94.6∓4.0 96.8∓1.6 - - 69.3∓3.3 67.8∓2.4
BSIF 96.0∓2.7 98.4∓0.6 - - 74.9∓3.6 70.2∓2.7

CurtinFaces database is indeed more challenging in terms of variations of pose, ex-

pression and illumination.

In overall, the RGB images yield in better performances compared to the depth

images. Nevertheless, the results of the depth images alone are still good and actually

much better than our expectations based on the human perception. It is indeed quite

hard to visually distinguish the subjects using only the depth images. One can also

notice from the results on CurtinFaces database through the three tables that depth

images may compete or even outperform RGB images under challenging illumination

and pose variations. Another important remark is that the difference in classification

accuracy between depth and RGB images is less significant in gender and ethnicity

classification than it is in identity classification. In particular, depth outperforms

RGB in ethnicity classification on FaceWarehouse database. These results point out

the usefulness of Kinect depth images in some face classification problems.
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Regarding the performance of different features, the four descriptors perform com-

parably across the three databases. However, in most of the cases, the new BSIF

descriptor yields in the best classification rates. Our extensions to BSIF to describe

depth images by learning dedicated depth filters demonstrated interesting results,

making BSIF generally better than the three other descriptors.

Figure 4-5 visually illustrates the obtained results on FaceWarehouse database.

From this figure, one can easily notice that RGB clearly outperforms depth in iden-

tity classification. The performance difference is becoming less significant in gender

classification problem. In ethnicity classification, the depth surprisingly outperforms

the RGB based methods.

Figure 4-5: Classification accuracy for identity, gender and ethnicity using RGB and
depth on FaceWarehouse database.

Our main goal through this work is to compare the performance of Kinect depth

and RGB images in different face analysis tasks. Thus, we did not aim at optimizing

the overall performance using complex methods.

The depth images provided by Kinect sensor are of low quality and noisy thus

requiring a crucial preprocessing before analysis. The outcomes on such images are

highly depending on the preprocessing step and hence cannot be easily generalized or

compared to previously reported results if a different preprocessing is applied. Even

though, for completeness, we summarize in Table 4.6 the performances reported by

other authors in the literature dealing with face analysis tasks on publicly available
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Kinect face datasets. Again, one cannot fairly compare the different methods since

each method uses different data and/or different evaluation protocols. Furthermore,

most of the reported works combine RGB and depth modalities but omit to report

the performance of each modality separately.

Table 4.6: Summary of reported performance of literature work on face analysis using
Kinect sensor.

Method Application Dataset Accuracy

RISE[47] Face recognition III-D 81.0 % (RGB-D)
Eurecom 89.0 % (RGB-D)

COV+LBP[29] Face recognition CurtinFaces 84.6% (RGB-D)

Depth+DCS[66] Face recognition CurtinFaces 88.7 % (D)
91.1% (RGB)
96.7% (RGB-D)

DLQP[80] Face recognition HRRFace 63.95% (D)

G-LBP[56] Gender recognition Eurecom 87.1% (D)

3DLBP[56] Gender recognition Eurecom 85.9% (D)

Curvature [103] Expression recognition SBIA 77.4% (D)
84.9% (RGB)
89.4% (RGB-D)

As an indication, Li et al. [66] reported a face recognition accuracy of 88.7%

using complex depth preprocessing steps, including symmetric filling of face depth

maps, on CurtinFaces dataset while we achieved 84.0% using simple LBP feature

only. Our performance is comparable to the work of Ciaccio et al. [29] combining

LBP and covariance features on the same dataset. Gender recognition was tackled

by Huynh et. [56] achieving 87.1% accuracy using depth images on Eurecom dataset.

Our experiments on larger and more challenging databases yield better results as can

be noticed from tables. To the best of our knowledge, the ethnicity classification has

not been previously addressed using Kinect data.

4.5 Conclusion

In this chapter, we presented a review on using Kinect depth data for different face

analysis problems. The review of the literature revealed that the recently introduced

consumer low-cost depth sensors have attracted a big interest from researchers work-
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ing on face analysis tasks. The device was mainly used for face recognition and face

detection, segmentation and tracking as well as head pose estimation and normaliza-

tion. To this end, the depth maps are either considered alone or combined with RGB

channels.

To gain more insight, we presented the first comprehensive study in the litera-

ture exploring the usefulness of the depth information acquired by the low-cost depth

sensor in different face analysis tasks including face identification, gender recogni-

tion and ethnicity classification. We carried out intensive experimental evaluation

with four state-of-the-art local face descriptors on three publicly available Kinect

face databases. While it is difficult to visually distinguish the subjects using only

the depth images, the obtained results confirmed that the depth facial information

alone provides promising classification results beyond the expectations based on the

human perception. Moreover, we found depth maps to perform better than RGB

images under sever illumination, expression and viewpoint changes. Regarding the

best performing methods, the introduced BSIF features derived from a new set of

filters showed interesting results for both RGB and depth images.
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Chapter 5

Kinship verification from videos

This chapter deals with automatic kinship verification from face videos. Kinship

verification from faces is a challenging task. Indeed, it inherits the research problems

of face verification from images captured in the wild under adverse pose, expression,

illumination and occlusion conditions. In addition, kinship verification should deal

with wider intra-class and inter-class variations, as persons from the same family

may look very different while faces of persons with no kin relation may look similar.

Moreover, automatic kinship verification can face new challenges since a pair of input

images may be from persons of different sex (e.g. brother-sister kin) and/or with a

large age difference (e.g. father-daughter kin).

The published papers and organized competitions (e.g. [76, 75]) dealing with

automatic kinship verification over the past few years showed some promising results.

Typical current best-performing methods combine several face descriptors, apply met-

ric learning approaches and compute Euclidean distances between pairs of features

for kinship verification. One can remark that theses works are based on handcrafted

features extracted from images while kinship verification is less investigated using

deep learning and videos. In the present chapter, we aim to exploit the temporal in-

formation present in face videos, investigating the use of both spatio-temporal shallow

features and deep features describing faces.

This chapter is organized as follows. Section 5.1 briefly overviews the related

work and motivates our approach. The proposed approach for kinship verification
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from videos is described in Section 5.2. Experiments and analysis are then given in

Section 5.3. In Section 5.4, we give the conclusions.

5.1 Background and motivation

Kinship verification from face is receiving increasing interest by the research commu-

nity. This is mainly motivated by its potential applications, especially in analyzing

daily shared data in social web. The first approaches to tackle kinship verification

were based on low level handcrafted feature extraction and SVM or k-NN classifiers.

For instance, Zhou et al. [132] used a spatial pyramid learning descriptor; Gabor gra-

dient orientation pyramid has been used by Zhou et al. [133]; and Self-similarity of

Weber faces was utilized by Kohli et al. [64]. Several types of face features are then

combined by many researchers and used for verifying the kin relation. For example,

in the second kinship competition [75], all the proposed methods used three or more

descriptors. The best performing method in this competition employed four different

local features (LBP, HOG, over-complete LBP - OCLBP - and Fisher vectors).

On the other hand, different metric learning approaches have been investigated

for tackling the kinship verification problem. Lu et al. [77] learned a distance metric

where the face pairs with a kin relation are pulled close to each other and those without

a kin relation are pushed away. Recently, Zhou et al. [134] applied ensemble similarity

learning for solving the kinship verification problem. They learned an ensemble of

sparse bi-linear similarity bases from kinship data by minimizing the violation of

the kinship constraints between pairs of images and maximizing the diversity of the

similarity bases. Yan et al. [121] and Hu et al. [54] learned multiple distance metrics

based on various features, by simultaneously maximizing the kinship constraint (pairs

with a kinship relation must have a smaller distance than pairs without a kinship

relation) and the correlation of different features.

Motivated by the impressive success of deep learning approaches in various im-

age representation and classification [105] in general and face recognition in partic-

ular [107], Zhang et al. [128] recently proposed a convolution neural network archi-
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tecture for face-based kinship verification. The proposed architecture is composed

by two convolution max pooling layers followed by a convolution layer then a fully

connected layer. A two-way soft max classifier is used as the final layer to train the

network. The network takes a pair of RGB face images of different persons as an

input, checking the possible kin relations. However, their reported results do not

outperform the shallow methods presented in the FG15 kinship competition on the

same datasets [75]. The reason behind this may be the scarcity of training data, since

deep learning approaches require the availability of enough training samples which is

not the case for available face kinship databases.

While most of the published works cope with kinship problem from images, to

our knowledge the only work that performed kinship from videos was conducted by

Dibeklioglu et al. [34]. The authors combined facial expression dynamics with facial

appearance as features and used SVM for classification.

It appears that most of literature works on kinship verification are mainly based on

shallow handcrafted features and hence are not associated with the recent significant

progress which has been made in machine learning suggesting the use of deep features.

Moreover, the role of facial dynamics in kinship verification is mostly unexplored as

most existing works focus on analyzing still facial images instead of video sequences.

Based on these observations, we propose to approach the problem of kinship verifica-

tion from spatio-temporal point of view and also exploit the recent progress in deep

learning.

5.2 Video-based kinship verification

This section describes our approach for kinship verification from videos. In the fol-

lowing, we first present an overview of the proposed approach, then we provide the

details of each step.
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5.2.1 Approach overview

Fig. 5-1 depicts an overview of our approach for kinship verification from videos.

Given two face video sequences, to verify their kin relationship, our proposed ap-

proach starts with detecting, cropping and aligning the face images based on facial

landmarks. Then, two types of descriptors are extracted: shallow spatio-temporal

texture features and deep features. As spatio-temporal features, we extract local bi-

nary patterns (LBP) [2], local phase quantization (LPQ) [4] and binarized statistical

image features (BSIF) [60]. These features are all extracted from three orthogonal

planes (TOP) of the videos. Deep features are extracted by convolutional neural

networks (CNNs) [92]. The pairs of features are then combined to be used as inputs

to support vector machines (SVM) for classification. A score level fusion is then per-

formed, to combine all the features’ results, and the issued score is used to decide

whether the two persons in the input videos have a kin relation or not. The details

of the proposed approach are presented in the following sections.
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Figure 5-1: Overview of the proposed approach for kinship verification from videos.
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5.2.2 Face detection and tracking

The first step in our proposed approach is to segment the face region from each

video sequence. Therefore, we employed an active shape model (ASM) [30] based

approach. ASM is a statistical model of the shape of an object. It represents an

object by the distribution of a set of points. The model is built based on a set

of training images annotated with landmark points. To detect a new instance of the

object, the ASM iteratively deforms to fit the object in the new image. Therefore, two

steps are alternatively performed to match the model to the new instance: generating

a suggested shape by inspecting the neighborhood of each point and adapting the

suggested shape to the model.

In our case, we detect 68 facial landmarks tracking them along the video. Faces

are then cropped from all the frames of the video and aligned based on the detected

landmarks. Fig. 5-2 illustrates an example of the detected face landmarks in one

frame and the cropped face.

Figure 5-2: Example of face cropping: (left) a frame annotated with the detected
landmarks, and (right) the cropped and aligned face region.
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5.2.3 Face description

For describing faces from videos, we use two types of features: texture spatio-temporal

features and deep learning features. These features are introduced hereafter.

Spatio-temporal features

Spatio-temporal texture features have been shown to be efficient for describing faces

in various face analysis tasks, such as face recognition [63] and facial expression clas-

sification [131]. The spatio-temporal textural dynamics of the face in a video are

extracted from three orthogonal planes XY, XT, and YT [96, 130, 7], separately. X

and Y are the horizontal and vertical spatial axes of the video, and T refers to the

time axis. An example of the orthogonal planes at a pixel of the video is given in

Fig. 5-3. This approach characterizes the video sequence in three ways: a stack of

XY planes in axis T, a stack of XT planes in axis Y and a stack of YT planes in

axis X. The XT and YT planes provide information about the space-time transitions

while XY plane represents the spatial information.
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Figure 5-3: Illustration of three orthogonal planes used to extract dynamic textural
face descriptors from a video.
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The face video is subdivided into smaller volumes (see Fig. 5-4) in order to main-

tain the facial spatial structure. For each region, the texture features of each plane are

summarized in a separate histogram and then the three histograms are concatenated

into a single feature vector (Fig. 5-5). The final face descriptor is composed by the

concatenation of all the regions’ features.

Figure 5-4: Division of video into region volumes.

Figure 5-5: Three plan feature vector.

Three local texture descriptors ( LBP [2], LPQ [4] and BSIF [60]), used in the

previous chapter for still images, are extended here to describe face appearance from

videos. The features are extracted by applying the previous regions three planes strat-

egy. Furthermore, the three features are extracted at multiple scales, to take benefit

of the multi-resolution representation [25], by varying their parameters. Hence, the
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utilized parameters of LBP are P = {8, 16, 24} and R = {1, 2, 3}; and for LPQ

and BSIF descriptors, the filter sizes were selected as W = {3, 5, 7, 9, 11, 13, 15, 17}.

The feature dimension sizes for the three neighborhoods of LBP are 3540, 14580 and

33300, respectively. For both LPQ and BSIF the feature size is 15360 for each filter.

Deep learning features

Deep neural networks have been recently outperforming the state of the art in various

classification tasks [101]. Particularly, convolutional neural networks (CNNs) demon-

strated impressive performance in object classification in general and face recognition

in particular [110]. Two factors are mainly behind this success of deep learning ap-

proaches. The first one is the abundance of web scale training data. Indeed, the

networks used to beat the state of the art in image detection and classification [101]

are very deep architectures (e.g. Google network (GoogLeNet) has 22 layers [109] )

trained with millions of samples and thousands of classes. The second factor is the

advance made by hardware computation speed, especially GPU, enabling the train-

ing of very deep architectures with billions of parameters. Even though, training of

very deep architectures still require days or even months with the current available

hardware.

The deep learning approaches have many advantages. First, deep neural networks

are scalable models having the capacity to learn highly complex representations of

thousands of categories. Once trained, a deep model stores its knowledge compactly

in learned parameters, making it easy to deploy in any environment. It can then be

easily used for fast prediction of new inputs with no need for storing additional data.

Additionally, deep learning approaches learn to extract discriminative features in con-

trast to hand-engineered feature extractors, such as LBP and its variants. Moreover,

in a deep learning model both feature extraction and classification steps are optimized

at the same time, which is not the case of classical approaches.

In this work, we utilize a convolutional neural network (CNN) for extracting deep

face features. CNNs are hierarchical machine learning models which are able to

learn complex representations of images and signals using vast amounts of training
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data. Inspired by the human visual system, CNNs progressively extract sophisticated

representation of the input by learning transformations in multiple layers. Fig. 5-6

illustrates an example of a deep CNN. A deep CNN is formed by alternating many

convolutional and subsampling layers. Usually, the top of the network is composed

by one or more fully connected layers and a classification layer.

Figure 5-6: Example of a convolutional neural network.

As stated before, deep neural networks require a huge amount of training data

to learn efficient features, which is not the case for the available kinship databases.

Indeed, our preliminary experiments using a Siamese CNN architecture [28] as well as

deep architecture proposed by a previous work [128] for kinship verification yielded

lower performance than shallow features. An alternative for extracting deep face fea-

tures is to use a pre-trained network. A number of very deep pre-trained architectures

has already been made available by researchers. In our case, we use the VGG-face [92]

network which has been initially trained for face recognition on a reasonably large

dataset of 2.6 million images of 2622 people. This network has been evaluated for

face verification from both pairs of images and videos showing interesting performance

compared against state of the art. This motivated us to use VGG-face network for

extracting deep face features for kinship verification.

The detailed parameters of the VGG-face CNN are provided by Table 5.1. The

input of the network is an RGB face image of size 224 × 224 pixels. The network

is composed of 13 linear convolution layers (conv), each followed by a non-linear

rectification layer (relu). Some of these rectification layers are followed by a non-

linear max pooling layer (mpool). Following are two fully connected layers (fc) both
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outputting a vector of size 4096. At the top of the initial network are a last fully

connected layer with the size of classes to predict (2622) and a softmax layer for

computing the class posterior probabilities.

To extract deep face features for kinship verification, we input the video frames

one by one to the CNN and collect the feature vector issued by the fully connected

layer fc7 (all the layers of the CNN except the class predictor fc8 layer and the softmax

layer are used). All the frames’ features of a given face video are finally averaged to

obtain the video descriptor.

Table 5.1: VGG-face CNN architecture.

layer 0 1 2 3 4 5 6 7 8 9
type input conv relu conv relu mpool conv relu conv relu
name conv1 1 relu1 1 conv1 2 relu1 2 pool1 conv2 1 relu2 1 conv2 2 relu2 2
support 3 1 3 1 2 3 1 3 1
filt dim 3 64 64 128
num filts 64 64 128 128
stride 1 1 1 1 2 1 1 1 1
pad 1 0 1 0 0 1 0 1 0

layer 10 11 12 13 14 15 16 17 18
type mpool conv relu conv relu conv relu mpool conv
name pool2 conv3 1 relu3 1 conv3 2 relu3 2 conv3 3 relu3 3 pool3 conv4 1
support 2 3 1 3 1 3 1 2 3
filt dim 128 256 256 256
num filts 256 256 256 512
stride 2 1 1 1 1 1 1 2 1
pad 0 1 0 1 0 1 0 0 1

layer 19 20 21 22 23 24 25 26 27 28
type relu conv relu conv relu mpool conv relu conv relu
name relu4 1 conv4 2 relu4 2 conv4 3 relu4 3 pool4 conv5 1 relu5 1 conv5 2 relu5 2
support 1 3 1 3 1 2 3 1 3 1
filt dim 512 512 512 512
num filts 512 512 512 512
stride 1 1 1 1 1 2 1 1 1 1
pad 0 1 0 1 0 0 1 0 1 0

layer 29 30 31 32 33 34 35 36 37
type conv relu mpool conv relu conv relu conv softmx
name conv5 3 relu5 3 pool5 fc6 relu6 fc7 relu7 fc8 prob
support 3 1 2 7 1 1 1 1 1
filt dim 512 512 4096 4096
num filts 512 4096 4096 2622
stride 1 1 2 1 1 1 1 1 1
pad 1 0 0 0 0 0 0 0 0
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5.2.4 Classification

To classify a pair of face features as positive (the two persons have a kinship relation)

or negative (no kinship relation between the two persons), we use a bi-class linear

support vector machine classifier. Before feeding the features and their labels to

the SVM, each pair of features has to be transformed into a single feature vector as

imposed by the classifier. We have examined various ways for combining a pair of

features, such as concatenation and vector distances. We have empirically found that

utilizing the normalized absolute difference shows the best performance. Therefore,

in our work, a pair of feature vectors X = {x1, . . . , xd} and Y = {y1, . . . , yd} is

represented by the vector F = {f1, . . . , fd} where :

fi =
∑
i

|xi − yi|∑
i (xi + yi)

(5.1)

5.3 Experiments

5.3.1 Database and test protocol

To evaluate the proposed approach, we use UvA-NEMO Smile database [33], which

is , to the best of our knowledge, the only available video kinship database. The

database was initially collected for analyzing posed versus spontaneous smiles of sub-

jects. Videos are recorded with a resolution of 1920 × 1080 pixels at a rate of 50

frames per second under controlled illumination conditions. A color chart is placed

on the background of the videos to allow further illumination and color normaliza-

tion. The ages of the subjects in the database vary from 8 to 76 years. Many families

participated in the database collection, allowing its use for evaluation of automatic

kinship from videos. A total of 95 kin relations were identified between 152 subjects in

the database. There are seven different kin relations between pairs of videos: Sister-

Sister (S-S), Brother-Brother (B-B), Sister-Brother (S-B), Mother-Daughter (M-D),

Mother-Son (M-S), Father-Daughter (FD), and Father-Son (F-S). The association of

the videos of persons having kinship relations gives 228 pairs of spontaneous and
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287 pairs of posed smile videos. The statistics of the database are summarized in

Table 5.2.

Table 5.2: Kinship statistics of UvA-NEMO Smile database.

Spontaneous Posed
Relation Subj. # Vid. # Sub. # Vid. #
S-S 7 22 9 32
B-B 7 15 6 13
S-B 12 32 10 34
M-D 16 57 20 76
M-S 12 36 14 46
F-D 9 28 9 30
F-S 12 38 19 56
All 75 228 87 287

 

    

 

  

       

       

S-S B-B S-B M-D M-S F-D F-S 

 

Figure 5-7: Samples of pair images form UvA-NEMO Smile database for different
kin relations. Positive pairs are combinations of first row with second row (green
rectangles) and negative pairs are combinations of second row with third row (red
rectangles).

Following [34], we randomly generate negative kinship pairs corresponding to each

positive pair. Therefore, for each positive pair we associate the first video with an-

other video of a person within the same kin subset while ensuring there is no relation

between the two subjects. Examples of the positive pairs and the generated negative

pairs are illustrated by Fig. 5-7. For all the experiments, we perform a per-relationship

evaluation and report the average accuracy (rate of correctly classified pairs) of spon-

taneous and posed videos. The accuracy for the whole database, obtained by pooling

all the relations, is also provided. Since the number of pairs of each relation is small,
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we apply the leave-one-out evaluation scheme.

The performances in different experiments are assessed in terms of ROC curves

and accuracy (correct classification rates):

accuracy =
TP + TN

P +N
, (5.2)

where TP is the number of correctly classified positive pairs, TN is the number of

correctly classified negative pairs, P is the number of all positive pairs, and N is the

number of all negative pairs.

5.3.2 Results and analysis

We have performed various experiments to assess the performance of the proposed

approach. In the following, we present the obtained results for each experiment and

discuss them.

Comparing deep features against shallow features

First we compare the performance of the deep features against the spatio-temporal

features. The results for different features are reported in Table 5.3. The ROC

curves for separate relations as well as for the whole database are depicted in Fig. 5-

8. The performances of the three spatio-temporal features (LBPTOP, LPQTOP and

BSIFTOP) show competitive results on different kinship relations. Considering the

average accuracy and the accuracy of all the kinship relations, LPQTOP is the best

performing method, closely followed by the BSIFTOP, while LBPTOP shows the

worst performance.

On the other hand, deep features report the best performance on all kinship

relations significantly improving the verification accuracy. The gain in verification

performance of the deep features varies between 2% and 9%, for different relations,

compared with the best spatio-temporal accuracy. These results highlight the ability

of CNNs in learning face descriptors. Even though the network has been trained for

face recognition, it generates highly discriminative face features for the task of kinship
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Table 5.3: Accuracy (in %) of kinship verification using spatio-temporal and deep
features on UvA-NEMO Smile database.

Method S-S B-B S-B M-D M-S F-D F-S Mean All
BSIFTOP 75.07 83.46 71.23 82.46 72.37 81.67 79.84 78.01 75.83
LPQTOP 69.67 78.21 82.54 71.71 83.30 78.57 83.91 78.27 76.02
LBPTOP 80.47 77.31 70.50 78.29 72.37 84.40 71.50 76.41 72.82

DeepFeat 88.92 92.82 88.47 90.24 85.69 89.70 92.69 89.79 88.16

verification.
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(a) Sister-Sister
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(b) Brother-Brother

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1. LBPTOP
2. LPQTOP
3. BSIFTOP
4. DeepFeat

(c) Sister-Brother
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(d) Mother-Daughter
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(e) Mother-Son
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(f) Father-Daughter
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(g) Father-Son
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(h) All

Figure 5-8: Comparing deep vs. shallow features on UvA-NEMO Smile database.
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Comparing different relations

Regarding different types of kin relations, the best verification accuracy is obtained

for B-B and F-S while the lowest are S-B and M-S. These results are maybe due to

the different sex of the pairs. One can conclude that checking the kinship relation is

easier between persons of the same gender. However, a further analysis of this point

is needed as the accuracy of S-S is average in our case. Unfortunately, this analysis is

not easy with the currently available data. It is also noticed that the performance of

kinship between males (B-B and F-S) is better than between females (M-D and S-S).

Moreover, the difference in age of the persons has an effect on the kinship verification

accuracy. For instance, the difference in age of brothers (best performance) is lower

than it is for M-S (lowest performance).

Comparing videos against images

We have carried out an experiment to check if verifying kinship relations from videos

instead of images is worthy. Therefore, in this experiment, we employ the first frame

from each video of the database. For this experiment, spatial variants of texture

features (LBP, LPQ and BSIF) and deep features are extracted from the face images.

Fig. 5-9 shows the ROC curve comparing the performance of videos against still

images for each relation as well as for the pool of all relationships. The superiority

of the performance of videos compared with still images is obvious for each feature,

demonstrating the importance of face dynamics in verifying kinship between persons.

Again, deep features extracted from still face images demonstrate high discriminative

ability, outperforming both the spatial texture features extracted from images and

the spatio-temporal features extracted from videos. We note that, in still images (see

Fig. 5-9), LPQ feature outperforms both LBP and BSIF.
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(a) Sister-Sister
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(b) Brother-Brother
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(c) Sister-Brother
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(d) Mother-Daughter
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(e) Mother-Son
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(f) Father-Daughter

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1. LBPTOP
2. LPQTOP
3. BSIFTOP
4. DeepFeat Video
5. LBP
6. LPQ
7. BSIF
8. DeepFeat Image

(g) Father-Son
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Figure 5-9: Comparing videos vs. still images for kinship verification on UvA-NEMO
Smile database.

110



Table 5.4: Comparison of our approach for kinship verification against state of the
art on UvA-NEMO Smile database.

Method S-S B-B S-B M-D M-S F-D F-S Mean All
Fang et al. [41] 61.36 56.67 56.25 56.14 55.56 57.14 55.26 56.91 53.51
Guo & Wang [49] 65.91 56.67 60.94 58.77 62.50 67.86 55.26 61.13 56.14
Zhou et al. [133] 63.64 70.00 60.94 57.02 56.94 66.07 60.53 62.16 58.55
Dibeklioglu et al. [34] 75.00 70.00 68.75 67.54 75.00 75.00 78.95 72.89 67.11

Our DeepFeat 88.92 92.82 88.47 90.24 85.69 89.70 92.69 89.79 88.16
Our Deep+Shallow 88.93 94.74 90.07 91.23 90.49 93.10 88.30 90.98 88.93

Feature fusion

We have fused spatio-temporal features and deep features to check their complemen-

tarity. For simplicity, we have opted for a simple sum at the score-level to perform the

fusion. Table 5.4 shows a comparison of the fusion results with the previous works.

Overall, the fusion enhanced the verification accuracy by a significant margin. The

effect is more evident in the relationships depicted by different sex and higher age

variation, such as M-S (improved by 4.8%) and F-D (improved by 3.4%).

Comparison against state of the art

Comparing our results against the state-of-the-art ones demonstrates considerable

improvements in all the kinship subsets as shown in Table 5.4. For better illustration

we depict in Fig. 5-10 the performance of our approach the best one from the state of

the art [34]. Depending on the relation type, the improvement in verification accuracy

of our approach compared with the best performing method by Dibeklioglu et al. [34]

ranges from 9% to 23%. The average accuracy of all the kin relations has been

improved by over 18%.
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Figure 5-10: Performance of our approach against the best state-of-the-art one.

Classification examples

Finally, in Fig.5-11 and Fig.5-12 we provide some examples of positive pairs correctly

classified and positive pairs wrongly classified by our fusion approach, respectively.
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S-S B-B S-B M-D M-S F-D F-S

Figure 5-11: Examples of correctly classified positive kin pairs by our approach using
both spatio-temporal features and deep features.

S-S B-B S-B M-D M-S F-D F-S

Figure 5-12: Examples of wrongly classified positive kin pairs by our approach using
both spatio-temporal features and deep features.
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5.4 Conclusion

In this chapter, we have investigated the kinship verification problem from face video

sequences. Faces are described using both spatio-temporal features and deep learned

features. Experimental evaluation has been performed on the kinship part of UvA-

NEMO Smile video database. Our study demonstrates the high efficiency of deep

features in describing faces for inferring kinship relations. Further fusion of spatio-

temporal features and deep features exhibited interesting improvements in verification

accuracy. We have also shown the out-performance of videos against still images in

kinship verification. Furthermore, comparison of our approach against the previous

similar work indicates significant improvements in verification accuracy.

Using a CNN pre-trained for face recognition, we obtained improved results for

kinship verification demonstrating the generalization ability of deep features to similar

tasks. Even though the deep features results in our work are very promising, these

features are extracted in a frame basis way. Employing a video deep architecture

would lead into better results. However, the scarcity of kinship videos prevented us

from opting to a such solution.
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Chapter 6

Summary and future work

This thesis investigated several face analysis tasks, namely face verification and iden-

tification, gender recognition, ethnicity classification and kinship verification, from

RGB images depth maps and videos. In this chapter, the thesis contributions are

summarized and perspectives are elaborated.

6.1 Summary

In the first part of the thesis, we have proposed two novel approaches for improving

face description and modeling based on local binary patterns. Both approaches are

evaluated on face authentication problem showing interesting enhancements in terms

of verification performance. The two proposed approaches share the same intuition

of reinforcing a user-specific model by making use of generic face model, exploiting

the shared similarities of human faces, which is adapted to each person specificity.

The first method is theoretically well established. A compact feature vector is auto-

matically selected from face region’s LBP codes by clustering each region codes of a

pool of background faces. The maximum a posteriori paradigm is employed to infer

a specific model for a given person. The second approach keeps the simplicity of

histogram representation, which is strengthened via a new improved estimation. A

face model is estimated as weighted sum of a generic model and the person specific

model. We have fused both approaches yielding in further improvements compared
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to the LBP-baseline as well as similar previous works.

The 3D facial scans have been shown to outperform RGB images in face analysis

under adversarial illumination, head pose and expression conditions. However, high

resolution 3D scanners, given their cost, size and scan speed, are impractical for de-

ployment of face analysis applications. The recent advance in 3D sensing technology

provides very promising alternatives to old scanners. The thesis contributes in this

scope by the use of facial depth maps, captured with Microsoft Kinect, which are

of low resolution but of low cost and rendered at video rates. Moreover, Kinect like

sensors are today being miniaturized and integrated in portable devises, opening new

perspectives for using such depth images in many exiting applications. Motivated by

these benefits, we conducted an in-depth study on three databases involving four dif-

ferent descriptors to compare depth maps against RGB images for three face analysis

tasks. While humans are unable to infer any useful information from the kinect noisy

depth images, we showed that machines are successful in predicting identity, gen-

der and ethnicity from such images. Moreover, we demonstrated that Kinect depth

images outperform their RGB counterparts under sever illumination, expression and

head pose challenges.

The thesis contributed to automatic face-based kinship verification, which is a

relatively new and challenging research problem in computer vision. While most of

the existing works extract shallow handcrafted features from still face images, we

approached this problem from spatio-temporal point of view and explored the use of

both shallow texture features and deep features for characterizing faces. Promising

results, especially those of deep features, are obtained. Our experiments also showed

the superiority of using videos over still images, hence pointing out the important

role of facial dynamics for kinship verification. Furthermore, the fusion of the two

types of features (i.e. shallow spatio-temporal texture features and deep features)

yielded significant performance improvements compared to state-of-the-art methods.

Our experiments also pointed out the impact of gender and wide age differences on

the problem of kinship verification.

To sum up, since efficient face description is a key step in the face analysis system,
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in this thesis, we mainly focused on employing efficient local texture features for de-

scribing faces. We first extracted these features from still images, which we have later

extended to depth maps and videos. In the last part of the thesis, we have considered

the promising deep features, which exhibited remarkable performance improvements.

Moreover, efficient face modeling approaches have also been developed by the first

part of the thesis. All our contributions have been validated through extensive eval-

uation on publicly available face databases and fairly compared against state of the

art.

6.2 Future directions

The work presented in this thesis opens up some perspectives and suggests some

future research directions which are elaborated hereafter:

Firstly, though limited to some specific face analysis problems, the work of the

present thesis can easily be extended to handle other similar face analysis tasks, such

as age estimation, expression recognition, pain detection, etc.

Our proposed VQMAP face model generates a compact and efficient represen-

tation instead of a high dimensional LBP feature vector. It is worth to apply the

proposed model to other LBP variants and LBP-like features which generate higher

size features, especially those involving multi-resolution and over complete represen-

tations. Furthermore, it is of interest to investigate other metrics in both clustering

and matching steps in the VQMAP model. For instance, as Hamming distance is

more appropriate for binary series matching, it would yield further performance im-

provements, given the binary nature of LBP codes. We note also that our histogram

adaptation approach is directly applicable to all other histogram-based image descrip-

tors.

Regarding face analysis from 3D scans, even though a number of face databases

acquired with Kinect has already been made available for research purposes (see our

paper [18] for a detailed description of the available Kinect face databases), most

of these databases are small-sized and collected in controlled environments. Be-
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sides, there is no standard evaluation protocol associated with the publicly available

datasets. Thus, each published paper designs its own evaluation methodology making

it difficult to fairly compare various research results. Therefore, it is crucial to define

standard evaluation protocols for each database.

Besides, the depth sensing is being developed and improved rapidly. Actually,

a new version of Kinect (named Kinect 2), with enhanced depth sensing providing

better quality depth maps, has been recently released by Microsoft. Google has also

recently integrated a depth sensor in its Tango mobile devices. To the best of our

knowledge, there is only one small publicly available Kinect 2 depth face database

(HRRFaceD [80]) while no depth face database acquired with mobile devices exists.

Thus, collecting new datasets with the latest versions of RGB-D sensors considering

real world challenges and defining standard evaluation protocols is a key issue to be

considered by the research community. Another promising research path is exploring

3D videos (i.e. 4D data) by analyzing faces from spatio-temporal depth data.

The lack of databases is also noticed for kinship problem. In this thesis, because

of training data scarcity, we have been constrained to use a CNN pre-trained (for

face recognition), in our experiments. Even though the deep features we extracted

gave are very promising results, these features are extracted in a frame basis way.

Employing a video deep architecture would lead into better results. However, deep

learning approaches require the availability of huge training data, which is not the

current case for Kinship. Therefore, further work includes the collection of a large

kinship video database encompassing real world challenges to enable learning deep

video features.
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Appendix A

Vector quantization maximum a

posteriori

This appendix presents the vector quantization maximum a posteriori (VQ-MAP) [51]

model. We provide the formulation and detail mathematical development of the

model.

The goal of vector quantization is to estimate the parameter vector, denoted as

Θ = (ct1, . . . , c
t
K)t, which models the data. Here, ci are the centroids and K is the

model size, which is a trade-off between the representation accuracy and the data

model size.

The maximum a posteriori modeling paradigm, irrespective of the actual model

in question, is formulated as a way to seek Θ that maximizes the posterior probability

density function (pdf). Formally:

ΘMAP = arg max
Θ

P (Θ/X)

= arg max
Θ

P (X/Θ)g(Θ),
(A.1)

where P (X/Θ) is the likelihood of the training set X = {x1, . . . , xN} given the pa-

rameters Θ, and g(Θ) is the prior pdf of the parameters. Three subproblems need to

be solved so that a maximization algorithm can be derived:

• The likelihood function P (X/Θ) needs to be defined in terms of vector quanti-
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zation;

• An appropriate prior distribution g(Θ) needs to be defined;

• The prior distribution contains its own set of parameters, which also needs to

be estimated.

In the following, these points are addressed and the maximization algorithm is

derived.

A.1 Modeling VQ as a Gaussian mixture

For the VQ-MAP algorithm, one must formulate Equation (A.1) in the vector quan-

tization framework. Since VQ is not a parametric probabilistic model, one needs to

specify a likelihood pdf that corresponds to the mean squared error (MSE), which

defines the VQ model. The likelihood P (X/Θ) can be modeled as a Gaussian mixture

as in [13]. The density of the kth component is defined as:

p(x/ck,Σk) =
1

2πε
exp

{
− 1

2ε
‖x− ck‖2

}
, (A.2)

where Σk = Iε, and ε is constant. It is shown in [13] that with this model, the EM

algorithm reduces to k-means algorithm and that component prior weights πk do not

play any role in the algorithm. The weights just reflect the proportion of the data

vectors in a given cluster.

A.2 Defining the prior density

When selecting the appropriate prior density g(Θ), a good choice would be the con-

jugate prior of the p(x/ck,Σk) as in [13]. Prior distribution is called a conjugate prior

if its algebraic form is the same as the resulting posterior distribution. The conjugate

prior of a multivariate Gaussian with a known covariance matrix is a multivariate
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Gaussian. Therefore the prior of the component k is modeled as:

p(ck/µk, Σ̂k) = Bk exp

{
−1

2
(ck − µk)tΣ̂k

−1
(ck − µk)

}
, (A.3)

where Σ̂k is the covariance matrix of the prior distribution, and

Bk =
1

(2π)D/2
∣∣∣Σ̂k

∣∣∣1/2 . (A.4)

Assuming independence between the parameters of the individual mixture com-

ponents, as was done in [45], the prior model can be written as:

g(Θ) ∝
K∏
k=1

g(ck/µk, Σ̂k). (A.5)

A.3 MAP estimates for vector quantization

In order to maximize the posterior pdf in Equation (A.1), one needs to jointly de-

termine the observation posteriors and the model parameters of each component.

Unfortunately, the maximization cannot be performed directly [45]. Instead, locally

optimal solution can be obtained by EM algorithm [13] for the Gaussian mixture mod-

els and by k-means algorithm for the vector quantization models. Both algorithms

work essentially in a similar manner:

1. find observation posteriors (E-step);

2. given the posteriors, re-estimate the parameters (M-step).

In k-means, the observation posteriors correspond to hard partitioning of the

dataset. In the M-step, the parameters are maximized by calculating new centroid

estimates. Now the corresponding steps need to be defined in the new framework so

that MAP parameters can be optimized.

Interestingly, the term g(Θ) affects the maximization of the posterior distribution

only in the M-step [13]. Optimal Θ with respect to observation posteriors can then
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be calculated by maximizing the following auxiliary function [45]:

R(Θ, Θ̂) = Q(Θ, Θ̂) + log(Θ), (A.6)

where Θ̂ are the parameters estimated in the previous iteration, and Θ are the pa-

rameters to be estimated. The function Q is the expectation of the complete-data log

likelihood [13] and can be expressed as:

Q(Θ, Θ̂) =
N∑
i=1

K∑
j=1

γik {lnπk + ln p(x/ck,Σk)} , (A.7)

where πk is the prior weight of the component k, and γik is the posterior probability

of the observation i for the component k. By letting ε → 0 in Equation (A.2), the

complete-data log likelihood function becomes the MSE [13]:

Q(Θ, Θ̂) = −1

2

N∑
i=1

K∑
j=1

rik ‖xi − ck‖2 . (A.8)

The values of rik form a binary matrix, where

rik =

1, if k = arg minj ‖xi − cj‖ ;

0, otherwise.

(A.9)

In vector quantization literature, MSE describes the distortion when observations

xi are encoded as their nearest centroids cj.

By substituting (A.5) and (A.8) into (A.6), one arrives at a new auxiliary function

form:

R(Θ, Θ̂) = −
N∑
i=1

K∑
j=1

rik ‖xi − ck‖2 −
K∑
k=1

(ck − µtk)Σ̂k

−1
(ck − µk). (A.10)

ck needs to be found such for each component that minimizes the above equation.

The µk and Σ̂k are the prior parameters for the component k, and they are selected

from a previously trained universal background model as in [99]. However, in the
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VQ model, covariance matrices (variance parameters) are not recorded as a part of

the UBM. Therefore, for all components the covariances are set to Σ̂k = I. This is

motivated by the model assumptions in Equation (A.2). Now, R(Θ, Θ̂) can be written

as:

R(Θ, Θ̂) = r11 ‖x1 − c1‖2 + . . .+ rNK ‖xN − cK‖2 + ‖c1 − µ1‖2 + . . .+ ‖cK − µK‖2 .

(A.11)

Now, let Sk = {x1, . . . , x|Sk|} denotes the set of training vectors that are mapped

to ck. Rk denotes the terms of R(Θ, Θ̂) that contain centroid ck:

Rk = ‖x1 − ck‖2 + . . .+
∥∥x|Sk| − ck

∥∥2
+ ‖ck − µk‖2

= 2|Sk| 〈x̄k, ck〉+ |Sk| ‖ck‖2 ‖ck − µk‖2

= 2|Sk| 〈x̄k, ck〉+ (|Sk|+ 1) ‖ck‖2 + 2 〈ck, µk〉 ,

(A.12)

where |Sk| is the number of vectors mapped to centroid ck, and x̄k is the average of

all vectors in the same cluster. Taking the gradient with respect to ck from Equa-

tion (A.12), the centroid re-estimation formula for the M-step as is obtained:

ck =
|Sk|
|Sk|+ 1

x̄k +
1

|Sk|+ 1
µk. (A.13)
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