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Titre : Modélisation du bruit de phase et de la gigue d’une 
PLL, pour les liens séries haut débit. 

Résumé :  

La vitesse des liens séries haut débit (USB, SATA, PCI-express, etc.) a atteint 

les multi-gigabits par seconde, et continue à augmenter. Deux des principaux 

paramètres électriques utilisés pour caractériser les performances des SerDes sont 

la gigue transmis à un niveau de taux d’erreur donné et la capacité du récepteur à 

suivre la gigue à un taux d’erreur donné.   

Modéliser le bruit de phase des différents components du SerDes, et extraire 

la gigue temporelle pour la décomposer, aideraient les ingénieurs en conception de 

circuits à atteindre les meilleurs résultats pour les futures versions des SerDes. 

Générer des patterns de gigue synthétiques de bruits blancs ou colorés permettrait 

de mieux analyser les effets de la gigue dans le système pendant la phase de 

vérification.  

La boucle d’asservissement de phase est un des contributeurs de la gigue 

d’horloge aléatoire et déterministe à l’intérieur du système. Cette thèse présente une 

méthode pour modéliser la boucle d’asservissement de phase avec injection du bruit 

de phase et estimation de la gigue temporelle. Un modèle dans le domaine temporel 

en incluant les effets de non-linéarité de la boucle a été créé pour estimer cette 

gigue. Une nouvelle méthode pour générer des patterns synthétiques de gigue avec 

une distribution Gaussienne à partir de profils de bruit de phase coloré a été 

proposée.   

Les standards spécifient des budgets séparés de gigue aléatoire et 

déterministe. Pour décomposer la gigue de la sortie de la boucle d’asservissement 

de phase (ou la gigue généré par la méthode présentée), une nouvelle technique 

pour analyser et décomposer la gigue a été proposée. Les résultats de modélisation 

corrèlent bien avec les mesures et cette technique aidera les ingénieurs de 

conception à identifier et quantifier proprement les sources de la gigue ainsi que 

leurs impacts dans les systèmes SerDes. 

 Nous avons développé une méthode, pour spécifier la boucle 

d’asservissement de phase en termes de bruit de phase.  Cette méthode est 

applicable à tout standard (USB, SATA, PCIe, …) et définit les profils de bruits de 
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phases pour les différentes parties de la boucle d’asservissement de phase, pour 

s’assurer que les requis des standards sont satisfaits en termes de gigue. Ces 

modèles nous ont également permis de générer les spécifications de la PLL, pour 

des standards différents.  

Mots clés : bruit de phase, gigue, taux d’erreur, décomposition de la gigue, liens 

séries haut débit, SerDes, analyse temps-fréquence, boucle d’asservissement de 
phase, gigue aléatoire, gigue déterministe, génération de bruit coloré, génération de 
bruit blanc 
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Title : PLL Phase Noise & Jitter Modeling, for High Speed 
Serial Links 

Abstract :  

Bit rates of high speed serial links (USB, SATA, PCI-express, etc.) have 

reached the multi-gigabits per second, and continue to increase. Two of the major 

electrical parameters used to characterize SerDes Integrated Circuit performance are 

the transmitted jitter at a given bit error rate (BER) and the receiver capacity to track 

jitter at a given BER.  

Modeling the phase noise of the different SerDes components, extracting the 

time jitter and decomposing it, would help designers to achieve desired Figure of 

Merit (FoM) for future SerDes versions. Generating white and colored noise synthetic 

jitter patterns would allow to better analyze the effect of jitter in a system for design 

verification. 

The phase locked loop (PLL) is one of the contributors of clock random and 

periodic jitter inside the system. This thesis presents a method for modeling the PLL 

with phase noise injection and estimating the time domain jitter. A time domain model 

including PLL loop nonlinearities is created in order to estimate jitter. A novel method 

for generating Gaussian distribution synthetic jitter patterns from colored noise 

profiles is also proposed.  

The Standard Organizations specify random and deterministic jitter budgets. In 

order to decompose the PLL output jitter (or the generated jitter from the proposed 

method), a new technique for jitter analysis and decomposition is proposed. Modeling 

simulation results correlate well with measurements and this technique will help 

designers to properly identify and quantify the sources of deterministic jitter and their 

impact on the SerDes system. 

 We have developed a method, for specifying PLLs in terms of Phase Noise. 

This method works for any standard (USB, SATA, PCIe, …), and defines Phase 

noise profiles of the different parts of the PLL, in order to be sure that the standard 

requirements are satisfied in terms of Jitter.  

Keywords : Phase Noise, Jitter, BER, jitter decomposition, high speed serial 

links, SerDes, time-frequency analysis, PLL, RJ, DJ, colored noise generation, white 
noise generation 
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1.1 Introduction 

Integrated Circuits have become essential part of our lives in the last decades. 

They are found in our daily life applications. Their range of applications is very large 

(such as smartphones, tablets, computers, cars, TVs, screens, cameras, connected 

objects, electronic gadgets, etc.) and is growing daily. This increasing number of 

applications and the all-time increasing quality of service requested by users, results 

in more components complexity and much more data transferred between them.  

In order to make the connection between different devices easier by replacing 

a multitude of connectors, and simplify software configuration of all devices, the 

Universal Serial Bus (USB) was developed in the early 1990’s. The USB [USB] was 

designed to standardize the connection of computer peripherals to computers. Since 

then, it has been used in a lot of other devices (such as smartphones, tablets, video 

game consoles, etc.). 

The reason for creating high speed serial links is to be able to transfer much 

more data within the same timeframe, and get better quality. For example, as shown 

in Fig 1-1, the transfer rate necessary in 1990’s of 147 Mbps has been increased by 

40 times within 20 years, reaching 5.9 Gbps in 2010’s, in order to obtain todays FULL 

HD quality on our PC screens. [Yonsei] 

 

Figure 1-1: Why High Speed Serial Links? 
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Therefore, the serial communication techniques transferring data within 

devices (or interconnecting several devices together) have been revolutionized in the 

last decades to respond the continuously increasing market demand [Hong] - [Kuo].  

High Speed Serial Links (HSSLs) are today the “dominant” [Stauffer] 

communication links of Input/Output for many chips, and reach currently speeds up 

to tens of Gbps [Hanumolu] – [Ong]. 

  

1.2 Applications of High Speed Serial Links 

HSSLs are used in most mobile devices (such as smartphones or tablets) to 

interconnect different components inside them. For example they connect the 

processor to the camera, to the storage device, to the modem, to another chip, etc… 

This kind of communications uses channels’ length of up to 10 cm. 

HSSLs are also used inside laptops, computers, TVs, screens, etc. They 

connect board-to-board chips, such as processor-to-memory, or processor-to-

processor communications. This kind of communications uses channels up to 50 cm 

long. 

Another utility of HSSLs is to connect different devices together, for example 

processor-to-peripheral or processor-to-storage devices. Some of the most known 

HSSLs for these kinds of connections are PCIe, USB, SATA, etc. This kind of 

communications uses channels up to 3 m long. 

In addition to these applications, HSSLs are also used in network 

communications (such as LAN: Ethernet), which might use channels up to 100 

meters long. 

As each of the above applications has different requirements, a variety of 

HSSLs with different protocols are designed to fulfill their needs. 

 

1.3 Challenges of High Speed Serial Links 

Two of the main challenges of HSSLs are increasing the data rates and 

reducing the power consumption.  
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As shown in Fig 1-2, the data centers have a real challenge looking for about 

80% of transfer rate growth each year. 

 

 

Figure 1-2: Worldwide Data Transferring Traffic - Cisco Visual Networking Index 

To answer to the permanent increasing request of bandwidth, Fig 1-3 shows 

the different standards that double their bandwidths every 4 years. Furthermore, we 

remark an average period of 4 years between technologies used in industrial market 

(FC - Fiber Channel), and the standards developed for consumer market (PCI-

Express, USB, DP).  

Consequently, the expertise capitalized during the design of High Speed serial 

links might be reused for the design of HSSLs dedicated for consumer market. 

As shown in Fig 1-3, the data rates have increased from 480 Mbps to 16 Gbps 

within the last 15 years.  

 
Figure 1-3: HSSLs Speed Evolution over years 
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Decreasing power consumption has been staying a priority for decades on all 

integrated circuits. Fig 1-4 shows STMicroelectronics HSSLs circuits IP performances 

in terms of power consumption in the last 10 years: 

 
Figure 1-4: Power consumption evolution of STM HSSL circuits. 

It is a big challenge to find out the compromise of how much we can decrease 

the power consumption of each block of the IP without degrading global 

performances of the system.  

 

1.4 Jitter Role in High Speed Serial Links 

Jitter is defined as the phase variation of a timing signal from its ideal positions 

in time, which corresponds to an early or late transition, as shown in Fig 1-5 [Dou_1] 

- [HFE] - [Kuo] - [LeCroy] - [Sui] - [Wisetphanichkij]. 

 

Figure 1-5: Jitter Definition 
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The amount of jitter on a transmission is related to the BER (Bit Error Rate). If 

jitter is too high, it can cause transmission errors [Zhang]. The receiving circuit will 

interpret the bit differently from the transmitted one, as shown in Fig 1-6 [HFE]. 

Hence, the global transmission performance is degraded. 

 

Figure 1-6: Transmission Error due to Jitter 

With the growing speeds of HSSLs, it becomes very difficult to maintain high 

signal quality. The absolute tolerated jitter quantity gets smaller [Tripathi], and the 

noise level becomes much more sensitive. High Speed Serial Links standards 

require an expected error rate (BER) of 10-12 [LeCroy]. While this represents only 1 

bit error every 167 minutes at 100 Mbps, it translates to 1 bit error every ~3 minutes 

at 5 Gbps and to 1 bit error every 1 minute at 16 Gbps. This is why the capacity to 

determine and limit jitter is one of the most important elements in maintaining high 

signal quality in HSSL transmissions [Sharma].  
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1.5 High Speed Serial Links System Study 

In Fig 1-7 we find the principal components of a High Speed Serial Links 

System. [Hanumolu] - [Palermo] - [Yonsei]  

 

Figure 1-7: High Speed Serial Links System 

On the left side of the picture, the “Serializer” converts the incoming parallel 

data into series ones. It serializes data from 10 or 20 bits into 1 bit. 

The “PLL” generates the different clocks needed for the Transmission and the 

Reception. It is one of the main contributors for clock Random and Periodic 

jitter. [Hansel] - [Telba] 

The “TX” enables the transmission. It takes the digital stream and transforms it 

to electrical signal (First stage of Signal Amplitude Pre-Equalization is done here). 

This block contributes to clock jitter. It is the first contributor of ISI jitter (circuit non 

linearity). 

On the right side of the figure, the receiver block “RX” decodes the received 

signal, and transforms electrical signal into digital stream. This block contributes to 

clock jitter (clock recovery algorithm + analog sampling clock source). Second stage 

of Signal Post-Equalization is done here: CTLE + DFE (circuit non linearity). 

The “CDR” (Clock and Data Recovery) is responsible for locking the receiver 

clock to the transmitter clock by correcting the phase and frequency offsets, and 

recovering the transmitted data.  

The “Deserializer” converts the data from series to parallel. It de-serializes 

data from 1 bit to 10 or 20 bits. 
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Between the “TX” and the “RX” the “channel” has different properties, 

depending on the transmission medium (Backpannel, Ports, Cables …). 

 

1.6 Motivation of this thesis 

Two of the major electrical parameters used to characterize SerDes Integrated 

Circuit performances are the Transmitter & Receiver clocks jitter at a given BER and 

the Insertion Loss capabilities.  

Modeling the phase noise of the different SerDes components, extracting the 

time jitter and decomposing it, would help designers to achieve desired FoM for 

future SerDes versions.  

As mentioned in 1.5, the PLL is the main contributor of clock random and 

periodic jitter inside the HSSLs system. This is the reason why we decided to create 

a PLL Model with phase noise injection in order to estimate the time domain jitter. To 

better estimate the time jitter by including the PLL loop nonlinearities, a time domain 

model is also created. 

The Standard Organizations (such as USB or PCIe) specify random and 

deterministic jitter budgets. In order to decompose the PLL output estimated TIE jitter 

into random and deterministic jitter, a new technique for jitter analysis and 

decomposition is proposed.  

Modeling simulation results correlate well with measurements and this 

technique will help designers to properly identify and quantify the sources of 

deterministic jitter and their impact on the SerDes system. 

Furthermore, these models permit us to determine System Specifications for a 

new IP development, by determining maximum phase noise profile to be respected 

by designers for each sub-block, in order to satisfy standards in term of Random and 

Deterministic Jitter. 
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1.7 Thesis Organization 

This thesis is organized as follows: 

Chapter 2, “Jitter and Phase Noise Theoretical Study” presents the general 

theoretical study of jitter. The complete study for calculating Jitter in the Time and 

Frequency domain is detailed here. 

Chapter 3, “PLL Modeling” is divided into two main sections; the first one 

presents complete PLL Modeling in the Frequency Domain. The second section 

presents the chart flow, and the Time Domain PLL Modeling including nonlinearities. 

Result comparison is done between both models in order to validate the Time 

Domain Model.  

Chapter 4, “Generation of colored noise patterns with Gaussian Jitter 

distribution” describes a novel method for generating colored noise patterns with 

Gaussian distributions. PLL has Colored Noise profile properties. In order to analyze 

SerDes system characteristics, it is important to generate synthetic colored noise 

patterns with a Gaussian distribution. The patterns will be used to predict impact of 

jitter on the system performance with time domain simulation during the design 

verification phase.  

Chapter 5, “RJ/DJ Jitter Decomposition Technique”, presents a new technique 

for decomposing Random from Deterministic Jitter. Results of Simulations and 

Measurements are given to verify that this technique works properly.  

Chapter 6, “PLL Specifications”, gives detailed example of specifications in 

term of Phase Noise and Jitter for PLL. The specifications are given as example 

based on PCI-Express Standard requirements, using our developed models. 

Chapter 7, “Conclusions and Perspectives”, summarizes the work presented in 

this thesis and gives future perspectives on algorithm improvements. 
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2.1 Introduction to Jitter 

Jitter is defined as the phase variation of a timing signal from its ideal positions 

in time, as shown in Fig 2-1 [Dou_1] - [HFE] - [Kuo] - [LeCroy] - [Sui] - [Zamek] - 

[Wisetphanichkij]. 

 

Figure 2-1: Time Jitter 

It can be viewed as different forms: 

The cumulative jitter corresponds to the difference between the nth measured 

edge instant ‘tn’ and the ideal ‘nT’ where T corresponds to the ideal signal period 

[HFE] - [Kuo]. This is the time interval error (TIE), shown in Fig 2-2 and expressed as 

(2.1): 

𝛷𝑛 =  𝑡𝑛 –  𝑛𝑇                                                                                                      (2.1) 

 

Figure 2-2: Cumulative Jitter 

The periodic jitter corresponds to the difference between the measured 

period and the ideal period. It is shown in Fig 2-3 and expressed as (2.2) [Kuo]. 

𝛷𝑛
′ = 𝛷𝑛 − 𝛷𝑛−1                                                                                             (2.2) 
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Figure 2-3: Periodic Jitter 

The cycle to cycle jitter corresponds to the difference between consecutive 

bit periods. It is shown in Fig 2-4 and expressed as (2.3) [Kuo]. 

Φn
′′ =  Φn′ − Φn−1′                                                                                               (2.3) 

 

Figure 2-4: Cycle to Cycle Jitter 

 In this thesis we will study the cumulative TIE jitter. It consists of Random Jitter 

(RJ), which is unpredictable, unbounded timing noise, and Deterministic Jitter (DJ), 

which is uncorrelated to data and bounded [Dou_1] - [Hansel] - [Kim] - [Kuo] - [Li] - 

[Sharma] - [Sui] - [Wisetphanichkij]. The PCI-express standard [PCIe] gives the 

decomposition of jitter as follow:  

 Data Uncorrelated Jitter 

o Unbounded Jitter 

 Random Jitter (𝑇𝑇𝑋−𝑅𝐽) 

 Total Jitter (𝑇𝑇𝑋−𝑈𝑇𝐽) 

o Bounded  

 Deterministic Jitter (𝑇𝑇𝑋−𝑈𝐷𝐽𝐷𝐷) 
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Equation (2.4) describes the total jitter as a function of BER and is related to 

the RJ and DJ components of jitter. [LeCroy] - [Tektronix] 

𝑇𝐽 = 𝑁(𝐵𝐸𝑅) ∗ 𝑅𝐽 + 𝐷𝐽                                                                                            (2.4) 

The Bit Error Rate is the measurement of data reliability; it corresponds to the 

probability of doing an error while determining a bit level. Another view of jitter is 

provided by the bathtub plot. It is a graph of BER in log scale versus jitter as shown 

in Fig 2-5 [HFE] - [Zhang]. 

 

Figure 2-5: BER Graph 

In the above bathtub plot, for a given BER, we have an eye-opening which 

corresponds to the distance between the two curves of the bathtub curve.  

The purpose of this chapter is to present the general theoretical study of jitter. 

The complete study for calculating Jitter in the Time and Frequency domain is given 

here. This chapter is composed as follows: 

In Section 2.2 we provide Jitter fundamentals and equations to calculate it in 

Time & Frequency domain. 



23 

 

Section 2.3 presents a complete study about Phase & Amplitude noise. In this 

section we will show that a noise is composed of a Phase and an Amplitude Noise. 

Study will be done for noisy sinusoidal signals.  

Section 2.4 proves that the Amplitude noise has no impact on jitter (under a 

given Noise Profile Power limit). 

 Chapter’s conclusions are given in Section 2.5. 

 

2.2 Jitter Calculation 

In this section, we provide principal equations, for calculating Jitter, in the Time 

Domain, and in the Frequency Domain. 

2.2.1 Jitter Calculation in Time Domain 

In the Time Domain, the phase noise modulated signal is expressed as in (2.6) 

and is shown in Fig 2-6: 

Original Signal:                      𝑠𝑖𝑔         =  𝛼sin (𝜔𝑐𝑡)                                    (2.5) 

Phase Modulated Signal:      𝑠𝑖𝑔𝑛𝑜𝑖𝑠𝑦  =  𝛼sin (𝜔𝑐𝑡 + 𝛽 sin(𝜔𝑚𝑡))                (2.6) 

where: 

𝛽 is the Amplitude of the jitter, 2 ∗ 𝛽 is the Jitter peak to peak, and 𝜔𝑚 = 2 ∗ 𝜋 ∗ 𝐹𝑚 

the jitter modulation (with 𝐹𝑚 the modulating Frequency).   

𝛼 is the Amplitude of the signal, and 𝜔𝑐 = 2 ∗ 𝜋 ∗ 𝐹𝑐 the carrier modulation (with 𝐹𝑚 

the carrier Frequency). 

 

Figure 2-6: Time Domain Phase Modulation 
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The Jitter peak-to-peak can be expressed in radians (2.7), and in seconds 

(2.8).  

𝐽𝑖𝑡𝑡𝑒𝑟𝑝𝑝𝑟𝑎𝑑𝑖𝑎𝑛𝑠
= 2 ∗ 𝛽                                                                                             (2.7) 

𝐽𝑖𝑡𝑡𝑒𝑟𝑝𝑝𝑠𝑒𝑐𝑜𝑛𝑑𝑠
=  

𝐽𝑖𝑡𝑡𝑒𝑟𝑝𝑝𝑟𝑎𝑑𝑖𝑎𝑛𝑠

2∗𝜋∗𝐹𝑐
=  

2∗𝛽

2∗𝜋∗𝐹𝑐
    with  𝐹𝑐 = 𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦                      (2.8) 

Let’s consider we have a TIE Jitter with N random 𝒙𝒊 values. The Jitter RMS is 

expressed as in (2.9). It corresponds to the Standard Deviation of the TIE Jitter.  

𝐽𝑖𝑡𝑡𝑒𝑟𝑅𝑀𝑆 = 𝜎(𝑇𝐼𝐸) =  √
1

𝑁
 ∑ (𝑥𝑖 −  𝜇)2𝑁

𝑖=1      where     𝜇 =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                   (2.9) 

 

2.2.2 Jitter Calculation in Frequency Domain 

2.2.2.1 1 Spur Noise 

From time domain jitter calculation above, we show how to perform this 

computation in frequency domain. As previously computed in the time domain (2.8), 

the equation for the Jitter peak-to-peak is given in (2.10): 

𝐽𝑖𝑡𝑡𝑒𝑟𝑠𝑝𝑢𝑟𝑝𝑝
=  

2∗𝛽

2∗𝜋∗𝐹𝑐
                                                                                           (2.10) 

As β is not directly available, we need to express this equation with 

information available from a spectrum analyzer, or a phase noise analyzer. 

From Annexe 8.1, we can decompose (2.6) equation into the following 

expression (2.11), with the condition that jitter rms is well below 2π: 

𝑓(𝑡) ≃ 𝜶𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝜶𝜷

𝟐
(− sin(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚))            (2.11) 

The frequency (in absolute value) representation of this modulated signal 

(2.11) is given in Fig 2-7. 

With:   𝐴𝑛 =  
𝛼∗𝛽

2
  and  𝐴𝑐 =  𝛼 . From which we extract β:     𝛽 =  2 ∗

𝐴𝑛

𝐴𝑐
 

So the Jitter Peak-To-Peak equation (2.10) can be expressed as (2.12): 

𝐽𝑖𝑡𝑡𝑒𝑟𝑠𝑝𝑢𝑟𝑝𝑝
=  

4∗
𝐴𝑛
𝐴𝑐

2∗𝜋∗𝐹𝑐
                                                                                               (2.12) 
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Figure 2-7: Frequency Representation of the modulated signal 

The spectrum analyzer provides the Power information, in dB. In order to use 

information provided by spectrum analyzer, or phase noise analyzer, we need to 

express An and Ac into dBc. The Phase Noise Profile is then expressed as in (2.13) 

𝐿𝑠𝑝𝑢𝑟𝑑𝐵𝑐
= 𝑃𝑛𝑑𝐵

− 𝑃𝑐𝑑𝐵
=  10 ∗ log (

𝑃𝑛

𝑃𝑐
) = 10 ∗ log (

𝐴𝑛
2

𝐴𝑐
2) = 20 ∗ log (

𝐴𝑛

𝐴𝑐
)           (2.13) 

From the equation (2.13), we can extract: 

𝐴𝑛

𝐴𝑐
=  10

𝐿𝑠𝑝𝑢𝑟𝑑𝐵𝑐
20 =  √10

𝐿𝑠𝑝𝑢𝑟𝑑𝐵𝑐
10      (2.14)     and     𝐽𝑖𝑡𝑡𝑒𝑟𝑠𝑝𝑢𝑟𝑝𝑝

=  
4∗

√
10

𝐿𝑠𝑝𝑢𝑟𝑑𝐵𝑐
10

2∗𝜋∗𝐹𝑐
     (2.15) 

2.2.2.2 Multi Spurs Noise Profile 
 

Before calculating RMS Jitter of an area, we consider a carrier frequency Fc 

with multiple phase modulation sinuses. We have presented in Fig 2-8 the FFT with 

|absolute| values: 

Any periodic signal, with the Fourier Series, can be written as (2.16): 

𝑓(𝑡) =  𝛼sin(𝜔𝑐𝑡 + 𝛽1 sin(𝜔𝑚1
𝑡) +  𝛽2 sin(𝜔𝑚2

𝑡) + ⋯ +  𝛽𝑘 sin(𝜔𝑚𝑘
𝑡))            (2.16) 

With Jitter: 𝐹𝐽𝑖𝑡𝑡𝑒𝑟(𝑡) =  𝛽1 sin(𝜔𝑚1
𝑡) +  𝛽2 sin(𝜔𝑚2

𝑡) + ⋯ + 𝛽𝑘 sin(𝜔𝑚𝑘
𝑡)           (2.17) 

The average value of 𝐹𝐽𝑖𝑡𝑡𝑒𝑟 = 0. 
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Figure 2-8: Spectral Analysis of multi-spur phase noise modulated signal 

From the Parseval Theorem, with conservation of energy, we can express the 

RMS value of 𝐹𝐽𝑖𝑡𝑡𝑒𝑟 (2.18): 

(𝐹𝑗𝑖𝑡𝑡𝑒𝑟𝑟𝑚𝑠
)2 =

1

𝑇
∫ 𝐹𝐽𝑖𝑡𝑡𝑒𝑟(𝑡)2𝑇

0
𝑑𝑡 =  ∑

1

2
𝛽1

2 +  
1

2
𝛽2

2 + ⋯ +  
1

2
𝛽𝑘

2∞
0                            (2.18) 

So the Jitter RMS will be calculated as following: 

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=

√(
1

2
(𝛽1)2+

1

2
(𝛽2)2+⋯+ 

1

2
(𝛽𝑘)2)

2𝜋𝐹𝑐
=

√(
1

2
(2

𝐴𝑛1
𝐴𝑐

)2+
1

2
(2

𝐴𝑛2
𝐴𝑐

)2+⋯+
1

2
(2

𝐴𝑛𝑘
𝐴𝑐

)2)

2𝜋𝐹𝑐
            (2.19) 

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=

√4∗
1

2
∗∑ (

𝐴𝑛𝑘
𝐴𝑐

)2𝑚
𝑘=1

2𝜋𝐹𝑐
=

√
4∗

1

2
∗∑

√
10

𝐿𝑠𝑝𝑢𝑟𝑘𝑑𝐵𝑐
10

2

𝑚
𝑘=1

2𝜋𝐹𝑐
=

√
2∗∑ 10

𝐿𝑠𝑝𝑢𝑟𝑘𝑑𝐵𝑐
10𝑚

𝑘=1

2𝜋𝐹𝑐
      (2.20) 

2.2.2.3 Area Noise Profile 
 

The RMS Jitter, when a given L(f) noise profile is continuous (Fig 2-9), and not 

discrete as given before (Fig 2-8), is calculated with the following formula (2.21) 

[Analog] - [Feng] - [Maxim] - [Zamek], which is the integration of the whole band of 

frequencies:  

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑎𝑟𝑒𝑎
=  

1

2∗𝜋∗𝐹𝑐

√2 ∗ ∫ 10
𝐿(𝑓)

10 𝑑𝑓
∞

0
                                                                  (2.21) 
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Figure 2-9: Spectral Analysis of Area Profile Phase Noise Modulated Signal 

In order to calculate the 𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑎𝑟𝑒𝑎
, we must integrate the following 

frequency bandwidths: 

 Up to infinite for Sinusoidal Signal 

 Up to 2 ∗ 𝐹𝑐 for Square Signal 

The demonstrations of Integrating Bandwidth are given in Annex 8.4. 
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2.3 Phase and Amplitude Noise Study 

The objective of this section is to show that a given Noise profile can be 

expressed as a sum of a phase and amplitude noise. 

2.3.1 Noise Spur Modulation 

Let’s consider we have following Carrier Frequency with given Noise. The 

noise can be described as a phase modulation, with one spur Dirac, as shown in Fig 

2-10: 

 

Figure 2-10: Carrier Frequency with given Noise 

The phase modulation of Fig 2-10 can be written as (2.22): 

𝜹(𝝎𝒄 + 𝝎𝒎) =  
𝟏

𝟐
𝜹(𝝎𝒄 − 𝝎𝒎) +  

𝟏

𝟐
𝜹(𝝎𝒄 + 𝝎𝒎) − 

𝟏

𝟐
𝜹(𝝎𝒄 −  𝝎𝒎) + 

𝟏

𝟐
𝜹(𝝎𝒄 + 𝝎𝒎)    (2.22) 

Our hypothesis is that this is expressed with an Amplitude Noise (2.23) and 

Phase noise (2.24). We will prove these equations in (2.29): 

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆𝑵𝒐𝒊𝒔𝒆 =       
𝟏

𝟐
𝜹(𝝎𝒄 −  𝝎𝒎) +  

𝟏

𝟐
𝜹(𝝎𝒄 + 𝝎𝒎)                       (2.23) 

𝑷𝒉𝒂𝒔𝒆𝑵𝒐𝒊𝒔𝒆           =  − 
𝟏

𝟐
𝜹(𝝎𝒄 −  𝝎𝒎) +  

𝟏

𝟐
𝜹(𝝎𝒄 +  𝝎𝒎)             (2.24) 

For equation development details, check Annex 8.1. 

Equation (2.22) is Equivalent to Fig 2-11: 
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Figure 2-11: Noise decomposition into Amplitude and Phase Noise 

So, a given Noise (Fig 2-10) can be expressed as sum of a Phase and an 

Amplitude Noise (Fig 2-11). 

2.3.2 Phase Noise & Amplitude Noise Modulation 
 

Let’s consider that we have a phase and amplitude noise Modulation (2.25): 

𝑽(𝒕) = 𝑽𝟎 𝒔𝒊𝒏[(𝝎𝒄𝒕) + 𝜷𝒔𝒊𝒏(𝝎𝒎𝒕 + 𝝋𝒎)] [𝟏 + 𝜶𝒄𝒐𝒔(𝝎𝒎𝒕 + 𝝋𝒎)]                       (2.25) 

 

Equation (2.25) can be expressed as (2.26): 

𝑉(𝑡) = [𝑉0𝑠𝑖 𝑛(𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚))] ∗     (2.26) 

               [1 + 𝛼 𝑐𝑜𝑠(𝜔𝑚𝑡 + 𝜑𝑚)]   

 

If we develop equation (2.26), we obtain (2.27): 

𝑉(𝑡) =  [𝑉0𝑠𝑖 𝑛(𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚))] +   (2.27) 

             [𝑉0𝑠𝑖 𝑛(𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚))] ∗

               𝛼 𝑐𝑜𝑠(𝜔𝑚𝑡 + 𝜑𝑚)  
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As 𝛼*𝛽 << 1, (2.27) becomes (2.28): 

𝑉(𝑡) = [𝑉0𝑠𝑖 𝑛(𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚))] +    (2.28) 

               𝑉0𝑠𝑖 𝑛(𝜔𝑐𝑡) 𝛼 𝑐𝑜𝑠(𝜔𝑚𝑡 + 𝜑𝑚) 

 

Equation (2.28) is also expressed with Phase Noise and Amplitude Noise: 

𝑉(𝑡) = 𝑉0 𝑠𝑖𝑛(𝜔𝑐𝑡) +  
𝛽𝑉0

2
[− 𝒔𝒊𝒏(𝝎𝒄𝒕 − 𝝎𝒎𝒕 − 𝝋𝒎) + 𝒔𝒊𝒏(𝝎𝒄𝒕 + 𝝎𝒎𝒕 + 𝝋𝒎)]      (2.29) 

                              +
𝑉0𝛼

2
[𝒔𝒊𝒏(𝝎𝒄𝒕 − 𝝎𝒎𝒕 − 𝝋𝒎) + 𝒔𝒊𝒏(𝝎𝒄𝒕 + 𝝎𝒎𝒕 + 𝝋𝒎)]                       

 

Equation (2.29) is represented in Fig 2-12. 

 

Figure 2-12: Amplitude & Phase Noise Modulation for Sinusoidal Signal 

In conclusion, any noise added to the signal, can be represented as a sum of 

a Phase and an Amplitude noise.  

This is also demonstrated for Square Signals. For equations and 

demonstration of noise added to square signals, check Annex 8.2.  

The particular case of measuring transition positions at a given offset is given 

in Annex 8.3. 
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2.4 Phase & Amplitude Noise Impact onto TIE jitter 
 

In this chapter, we will show the impact of Phase and Amplitude noise on TIE jitter: 

2.4.1 Translate phase noise into TIE Jitter 
 

As shown in Section 2.2, the TIE Jitter is calculated as follows: 

 In Time Domain: 

𝐽𝑖𝑡𝑡𝑒𝑟𝑠𝑝𝑢𝑟𝑝𝑝
=  

2∗𝛽

2∗𝜋∗𝐹𝑐
                                                                         (2.30) 

 In Frequency Domain: 

o 1 Spur Noise: 

𝐽𝑖𝑡𝑡𝑒𝑟𝑠𝑝𝑢𝑟𝑝𝑝
=  

4∗
√

10

𝐿𝑠𝑝𝑢𝑟𝑑𝐵𝑐
10

2∗𝜋∗𝐹𝑐
                                                               (2.31) 

o Multi Spur Noise: 

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=  

√
2∗∑ 10

𝐿𝑠𝑝𝑢𝑟𝑘𝑑𝐵𝑐
10𝑚

𝑘=1

2𝜋𝐹𝑐
                                                    (2.32) 

o Area Noise:  

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑎𝑟𝑒𝑎
=  

1

2∗𝜋∗𝐹𝑐

√2 ∗ ∫ 10
𝐿(𝑓)

10 𝑑𝑓
∞

0
                                             (2.33) 

We integrate: 

 Up to infinite for Sinusoidal Signal 

 Up to 2 ∗ 𝐹𝑐 for Square Signal 

2.4.2 Translate amplitude noise into TIE Jitter 

2.4.2.1 One spur Amplitude Noise Modulation 
 

The Amplitude Noise Modulation is expressed as follows (2.34): 

𝑽(𝒕) = 𝑽𝟎 𝒔𝒊𝒏(𝝎𝒄𝒕) [𝟏 + 𝜶 𝒄𝒐𝒔(𝝎𝒎𝒕)]                          (2.34) 

We will have a transition due to amplitude jitter, each time |α cos(ωmt)| > 1. 

This might come at any time, and would deteriorate our TIE Jitter. 



32 

 

 In order to prevent this effect, 𝛼 should be <<1. 

If 𝛼 << 1, then       −1 ≪ 𝛼 𝑐𝑜𝑠(𝜔𝑚𝑡) ≪ 1                  (2.35) 

Or,  1 + 𝛼 𝑐𝑜𝑠(𝜔𝑚𝑡) ≫ 0                     (2.36) 

So if 𝛼 << 1, the sign on V(t) will not change and the amplitude noise will not 

impact the TIE Jitter. 

2.4.2.2 Spectrally flat profile Amplitude Noise modulation 
 

In this section, we will define the profile limit, below which the amplitude noise 

has No impact on the Jitter. This is done following several steps: 

 First of all, depending on the samples number (Nsamples), we find how many 

sigma σ we have: 

For example, if we have Nsamples = 1e6 samples, then, we find the corresponding 

number of sigma σ (𝑁𝑠𝑖𝑔𝑚𝑎): 

𝑁𝑠𝑖𝑔𝑚𝑎 = 2 ∗ √2 ∗ 𝑒𝑟𝑓𝑐𝑖𝑛𝑣 (
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 2) = 2 ∗ √2 ∗ 𝑒𝑟𝑓𝑐𝑖𝑛𝑣 (

1

106 ∗ 2) = 𝟗. 𝟓𝟎𝟔𝟖𝝈   (2.37) 

In order to have half of the jitter Peak-to-Peak being below -1 (so we have a 

transition due to Amplitude Noise), we create a random amplitude noise with twice 

the σ value: 

The value of 2 times the σ is: 
2

𝑁𝑠𝑖𝑔𝑚𝑎
= 0.2104.                                                                    (2.38) 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑟𝑎𝑛𝑑(1, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠) ∗

2

𝑁𝑠𝑖𝑔𝑚𝑎
                                           (2.39) 

After multiple simulation results on Matlab, we verify that this is the limit, below 

which amplitude noise will have no impact on TIE Jitter. 

The 2nd step is to find the Profile Limit, below which the Amplitude Noise has 

no Impact. 

As in (2.39), in order to have a transition due to Amplitude Noise, we search 

the limit for twice the value of σ. 

 We have found it theoretically, and confirmed it through Matlab Simulations. 

In conclusion, under a defined profile, the amplitude noise will have no impact 

on TIE Jitter. This is why we will take only the Phase Noise into account. 
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2.5 RJ/DJ Jitter Correlation Algorithm 

2.5.1 Introduction 

The total Random (2.40) and total Deterministic (2.41) jitters are defined as 

following in the literature [Agilent] - [Kim] - [Tektronix]:  

𝑅𝐽𝑇𝑜𝑡𝑎𝑙 =  √𝑅𝐽1
2 +  𝑅𝐽2

2 +  𝑅𝐽3
2 +  …                                                                     (2.40) 

𝐷𝐽𝑇𝑜𝑡𝑎𝑙 =  𝐷𝐽1 +  𝐷𝐽2 +  𝐷𝐽3 +  …                                                                     (2.41) 

 The Total Jitter is given as in (2.42): 

𝑇𝐽 = 𝑁(𝐵𝐸𝑅). 𝑅𝐽𝑇𝑜𝑡𝑎𝑙 + 𝐷𝐽𝑇𝑜𝑡𝑎𝑙                  (2.42) 

with N(BER), a multiplicative coefficient depending on the BER value, as given in 

Table 2-1: 

 
Table 2-1: Multiplying coefficients depending on BER. 

BER 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15 

N(BER) 10.399 11.224 11.996 12.723 13.412 14.069 14.698 15.301 15.883 

 

This value is given as a Worst Case value in the standards [PCIe]. For the 

Total Deterministic Jitter, all DJ variables are independent from each other, so they 

can be considered as Random variables. Therefore, the total DJ is a convolution 

between all DJ [Papoulis] - [Tektronix]. The real Total Jitter (𝑇𝐽) is then smaller than 

the calculation equation given in (2.42). This is why we are proposing to better 

estimate the Total Jitter. This would help designers to better constraint design and 

achieve desired FoM. 

2.5.2 Proposed Method Principle 

 The idea of the new calculation method, with all steps is given in Fig 2-13. Its 

principle is the following: 

 Step 1: 

As explained above, the total Deterministic Jitter is defined as the convolution 

of all Deterministic Jitters found in the system, as given in (2.43). 

𝐷𝐽𝑇𝑜𝑡𝑎𝑙 =  𝐷𝐽1 ∗  𝐷𝐽2 ∗  𝐷𝐽3 ∗  …                                                                     (2.43) 
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The total Random Jitter is defined same as before (2.40). 

 Step 2: 

 The Total Jitter corresponds then to the convolution of the total DJ spurs 

(2.43) to the RJ standard deviation (2.40), and is expressed as in (2.44): 

𝑇𝐽 = 𝐷𝐽𝑇𝑜𝑡𝑎𝑙 ∗ 𝑅𝐽𝑇𝑜𝑡𝑎𝑙                   (2.44) 

Step 3: 

 Equation (2.44) will give the CDF and CCDF of the total Jitter, in a linear scale. 

Step 4: 

 The calculated CDF & CCDF are transposed to a logarithmic scale, and 

extrapolated to have curve estimation at different BER. The difference between the 

CDF and CCDF curves at any given BER will give the Total Jitter estimation at this 

BER. 

 

 

Figure 2-13: Total Jitter Estimation 

 Some examples of different convolutions are given in Annex 8.5. They prove 

that the developed algorithm which performs the convolutions between all DJ jitters 

works as expected. 
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2.6 Chapter Conclusion 

In this section we have given all necessary equations to calculate jitter in the 

time and frequency domain.  

We have shown that any given noise can be expressed as sum of a Phase 

and an Amplitude Noise.  

We have demonstrated that the Amplitude Noise has no impact on Jitter under 

a given profile. Therefore, in this thesis, we will only work on Phase Noise Profiles for 

the jitter.  

 
 

 



36 

 

  



37 

 

Chapter 3:  PLL Modeling 
 

3.1 Introduction ............................................................................................................... 38 

3.2 PLL Architecture ....................................................................................................... 38 

3.2.1 Phase Detector .................................................................................................... 39 

3.2.2 Charge Pump (CP) ............................................................................................. 39 

3.2.3 Loop Filter .......................................................................................................... 40 

3.2.4 VCO ................................................................................................................... 41 

3.2.5 Divider ................................................................................................................ 41 

3.2.6 Sigma-Delta Modulator: ..................................................................................... 42 

3.3 Frequency Domain PLL modeling with phase noise injection .................................. 43 

3.3.1 Fractional PLL modeling for a small signal analysis ......................................... 43 

3.3.2 Open Loop Phase Noise Profiles ........................................................................ 44 

3.3.3 PLL Simulation in the Frequency Domain ........................................................ 45 

3.4 Time domain PLL modeling with jitter injection ...................................................... 46 

3.4.1 Time jitter generation ......................................................................................... 46 

3.4.2 PLL Simulation in the Time Domain ................................................................. 47 

3.5 Frequency-Time domain comparison ........................................................................ 50 

 

Table of Figures 
Figure 3-1: PLL Architecture ................................................................................................... 38 

Figure 3-2: Phase-Frequency Detector Output ......................................................................... 39 
Figure 3-3: Charge Pump schematic ........................................................................................ 39 

Figure 3-4: Loop Filter Schematic ........................................................................................... 40 
Figure 3-5: VCO ....................................................................................................................... 41 
Figure 3-6: Divider ................................................................................................................... 41 
Figure 3-7: PLL schematic with Sigma Delta Modulator ........................................................ 42 

Figure 3-8: Sigma Delta Modulator ......................................................................................... 42 
Figure 3-9: PLL Schematic with Phase Noise Injection .......................................................... 43 
Figure 3-10: Noise Transfer Function for each sub-block of the PLL ..................................... 44 

Figure 3-11: Open-loop phase noise profiles ........................................................................... 44 

Figure 3-12: Closed-loop phase noise profiles ......................................................................... 45 
Figure 3-13: Time Jitter Generation Technique ....................................................................... 46 
Figure 3-14: Chronogram ......................................................................................................... 47 

Figure 3-15: Flow Chart ........................................................................................................... 48 
Figure 3-16: Flow Chart with Jitter injection ........................................................................... 49 
Figure 3-17: VCO Phase Noise at the PLL Output for Frequency & Time Domain Models .. 50 
 

Table of Tables 
Table 3-1: Correlations between Frequency & Time Domain Simulations ............................. 51 
 



38 

 

3.1 Introduction 

Modeling the phase noise of the different SerDes components and extracting 

the time jitter would help designers to achieve desired Figure of Merit for future 

SerDes versions [Bidaj]. The phase locked loop (PLL) is one of the main contributors 

of clock random and periodic jitter inside the system [Hansel] - [Telba]. This chapter 

presents a method for modeling the PLL with phase noise injection and estimating 

the time domain jitter. A time domain model including PLL loop nonlinearities is 

created in order to estimate jitter. We present in this chapter a particular PLL 

architecture, which is also implemented in STMicroelectronics SerDes circuits.  

 

3.2 PLL Architecture 
 

A phase-locked loop is a feedback system where an oscillator-generated 

signal is phase locked to a reference clock [Soyuer]. Phase-locked loops can be 

used, for example, to generate stable output high frequency clock from a fixed lower-

frequency one.  

A PLL is composed of the following building blocks: Phase Detector, Charge 

Pump, Low-Pass Filter, Voltage Controlled Oscillator (VCO) and Feedback Divider, 

as shown in Fig 3-1. [Analog] - [Arakali] - [Chu] - [Herzel] - [Nonis] - [Pu] - [Schober] - 

[Ting] - [Wu] - [Yuan]. 

 

Figure 3-1: PLL Architecture 

 At the input of the PLL, we have the Reference Clock (Oscillator), which is a 

periodic signal. For SerDes applications, it is generally a Clock signal, between 

20MHz and 100MHz.  
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3.2.1  Phase Detector 

The Phase-Frequency Detector (PFD) compares the phase and frequency of 

the feedback clock generated by the VCO to the ones of the REF clock, and 

generates an error to adjust the oscillator and keep the phases and frequencies 

matched. It produces an UP and DOWN output signal [Chu] - [Kennedy] - [Pu] - 

[Schober] - [Young] - [Yuan], proportional to the phase error when the PLL reaches 

the locked state (as shown in Fig 3-2).  

 

Figure 3-2: Phase-Frequency Detector Output 

 

3.2.2 Charge Pump (CP) 

The above UP and DOWN output phase error signals enter the Charge Pump 

as shown in Fig 3-3 [Schober].  

 

Figure 3-3: Charge Pump schematic 
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The charge pump generates a current related to the input phase errors, which 

is proportional to the PFD pulse widths [Chu]. (3.1) 

𝐶𝑃𝐺𝑎𝑖𝑛 =  
1

2𝜋
∗ 𝐼𝐶𝑃 

 

3.2.3 Loop Filter 

The Loop Filter is an integrator. It generates a voltage to control the VCO from 

phase detector pulses [Young], and make it go faster/slower depending on the phase 

error sign. In Fig 3-4 we show a 4th order filter, very common in the PLL for RF 

applications. 

 

Figure 3-4: Loop Filter Schematic 

 The 𝐶1 capacitance is used to integrate the current coming from the Charge 

Pump. The resistance 𝑅2 and the capacitance 𝐶2 add one zero to the Transfer 

Function to ensure the loop stability. The two first order low-pass filters added 

afterwards serve to better filter the high frequency noises and the reference 

frequency spurs.  
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3.2.4 VCO 

A Voltage-Controlled oscillator is an oscillator whose output oscillation 

frequency is controlled by the filter’s output voltage 𝒗(𝒕), as shown in Fig 3-5. 

 

Figure 3-5: VCO 

 

 The time-domain phase relationship is given in (3.1). 

𝛷𝑜𝑢𝑡(𝑡) =  ∫ ∆𝜔𝑜𝑢𝑡(𝑡)𝑑𝑡 = 𝐾𝑉𝐶𝑂 ∫ 𝑣(𝑡)𝑑𝑡            3.1 

with 𝜔𝑜𝑢𝑡(𝑡) =  𝜔0 +  ∆𝜔𝑜𝑢𝑡(𝑡) =  𝜔0 +  𝐾𝑉𝐶𝑂𝑣(𝑡)                           3.2                  

 

3.2.5 Divider  

 The Divider will serve as a frequency divider as shown in Fig 3-6. The loop 

feedback frequency will be a division of the PLL output frequency. 

 

Figure 3-6: Divider 
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3.2.6 Sigma-Delta Modulator: 
 

A Sigma Delta (SD) modulator is implemented for the Fractional PLL 

[Kennedy] - [Sadeghi] - [Ye]. The schematic of the PLL with the SD modulator added 

is given in Fig 3-7.  

 

Figure 3-7: PLL schematic with Sigma Delta Modulator 

The schematic of the SD modulator (3-TAP Sigma Delta Modulator) is given in 

Fig 3-8: 

 

Figure 3-8: Sigma Delta Modulator 
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A 3-TAP Sigma Delta Modulator is chosen in order to send the noise due to 

the division in the High Frequencies. This noise will then be filtered by the PLL Low 

Pass Filter equivalent transfer function. 

 

3.3 Frequency Domain PLL modeling with phase noise injection 

3.3.1 Fractional PLL modeling for a small signal analysis 

The first step is to model each sub-block of the PLL in MATLAB, with its 

proper transfer function. A phase noise profile is then injected for each sub-block. 

The PLL schematic with phase noise injection for each sub-block is given in Fig 3-9. 

 

Figure 3-9: PLL Schematic with Phase Noise Injection 

The small-signal closed-loop transfer function of the PLL is described in (3.3): 

𝑇𝐹(𝑠) =  
𝐼𝐶𝑃
2𝜋

 𝐻𝐹𝑖𝑙𝑡𝑒𝑟(𝑠) 2𝜋 
𝐾𝑉𝐶𝑂

𝑠

1+
1

𝑁
 
𝐼𝐶𝑃
2𝜋

 𝐻𝐹𝑖𝑙𝑡𝑒𝑟(𝑠) 2𝜋 
𝐾𝑉𝐶𝑂

𝑠

                                                               (3.3) 

With:   ICP: Charge pump current.           

HFilter(s): Filter transfer function to ensure loop stability with a cutoff frequency at 150 

kHz, and a phase margin of 60°. 

KVCO: Gain of the VCO in Hz/V,     N: Frequency Division ratio 

 We give in Fig 3-10 an example of the Noise Transfer Function of each sub-

block of the PLL. 
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Figure 3-10: Noise Transfer Function for each sub-block of the PLL 

3.3.2 Open Loop Phase Noise Profiles 

Phase noise profiles for each sub-block of the PLL (except the ΣΔ profile 

which is a mathematical equation of order 3 ΣΔ) are simulated with ELDO RF. Their 

open-loop phase noise profiles (in dBc/Hz) are shown in Fig 3-11 (Charge pump 

noise profile is in 𝑑𝐵𝐴
√𝐻𝑧

⁄  and Filter loop noise profile is in 𝑑𝐵𝑉
√𝐻𝑧

⁄ ).  

Simulation conditions might change the different phase noise profiles. We 

have a realistic distribution of the noise. All profiles are given in single-sideband 

(SSB) power [Howe]. The VCO and the ΣΔ noise profiles are around the 1st 

harmonic (H1) of the VCO frequency. The reference profile is around H1 of the 

reference frequency. The filter and phase detector/charge-pump profiles are around 

DC. 

 

Figure 3-11: Open-loop phase noise profiles 
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These open-loop phase noise profiles (Fig 3-11) are passed through the closed-

loop system response (Fig 3-10) and the output closed-loop noise profiles are given 

in Fig 3-12: 

 

Figure 3-12: Closed-loop phase noise profiles 

3.3.3 PLL Simulation in the Frequency Domain 

It is important to estimate the jitter present at the output of the PLL (in closed-

loop) as the PLL is one of the main contributors of jitter. To do this, the RMS jitter is 

computed in the frequency domain using the closed-loop phase noise profiles L(f) 

presented in Fig 3-12. This is done using the mathematical formula (3.4) with 𝑭𝑪 

(Carrier Frequency) [Feng] - [Maxim] - [Zamek]. The integration is multiplied by 2 (to 

include the total power, as the noise profiles are given in SSB). 

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟 =  
1

2𝜋𝐹𝐶

√2 ∫ 10
𝐿(𝑓)

10 𝑑𝑓
𝐹𝐶
2

0
                     (3.4) 

The frequency domain model gives a global estimation of the RMS jitter. It 

does not give visibility of the DJ linked to imperfections of the PLL loop, which is 

possible with time domain model.  

In order to characterize SerDes performance in terms of BER including 

nonlinearities, we need to model and measure the jitter in the time domain. 

 



46 

 

3.4 Time domain PLL modeling with jitter injection 

The time domain PLL simulation was done using the generated open-loop 

phase noise profiles. 

3.4.1 Time jitter generation 

The steps to generate the time noise jitter are given below, and are shown in     

Fig 3-13. This method allows the time jitter to be obtained from the phase noise 

profile. 

 

Figure 3-13: Time Jitter Generation Technique 

Step 1: First open-loop phase noise profile ℒ(𝑓) is recovered from the ELDO 

RF simulation, calculated as in (3.4).  

ℒ(𝑓) = 10𝑙𝑜𝑔10(
𝐴𝑁(𝑓)2

𝐴𝐶
2 )                                         (3.4) 

where AN is the phase noise and AC the carrier amplitude at a given frequency. 

 The power P of a spur n, corresponding to Δf frequency step, around ‘fn’ offset 

frequency, is calculated in (3.5): 

𝑃𝑛 =  ∫ ℒ(𝑓)𝑑𝑓
𝑓𝑛+ 

1

2
∆𝑓

𝑓𝑛− 
1

2
∆𝑓

        (in dBc/Δf)                (3.5) 

Step 2: For each value of the power profile 𝑃𝑛, we associate a random phases 

with equal probability to be from 0 to 2π defined by the formula (3.6).  

𝜑𝑛 =  𝑒𝑗 2𝜋 𝑟𝑎𝑛𝑑[0:1]                                    (3.6) 
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By multiplying the power profile defined in (3.5) by the associated random 

phases as in (3.6), we obtain the phase noise PNn which is the noise corresponding 

to frequency offsets from 0 to Fc/2, by step of Δf, with Fc carrier frequency (3.7). 

𝑃𝑁𝑛 = 𝑃𝑛𝜑𝑛                                           (3.7) 

Step 3: To generate the time noise jitter from the frequency noise, the inverse 

FFT is used. To do this, we complete the vector of the FFT corresponding to 

frequencies Fc/2→Fc, with the conjugate and symmetric of the phase noise profile. In 

this way, performing the IFFT of the frequency vector provides a time vector with real 

values only. 

Step 4: The IFFT is calculated, and the time jitter noise is added to the 

transition position of the perfect clock signal, on the different sub-blocks of the PLL. 

This will be shown in next paragraph.  

3.4.2 PLL Simulation in the Time Domain 

We present here a time domain model (sampled model) which permits to take 

into account the non-linearity effect of the PLL. Furthermore, this permits to study 

precisely the time and frequency behavior of the PLL, and predict the different spurs 

in the frequency spectrum.  

The model proposed in this section is a sampled model, which means that 

only some events inside the PLL are taken into account. This increases the efficiency 

of the model, because it can reduce the number of points of the simulation, and keep 

a good precision.  

 The samples for calculations are taken only on useful edges, as shown in the 

chronogram of Fig 3-14. 

 

Figure 3-14: Chronogram 
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 The minimum calculation points for the model are represented with a cross on 

the voltage control Vtune in Fig 3-14. They correspond to modifications of state of the 

system, as for example the change of the charge pump Icp value. This chronogram 

(Fig 3-14) represents the behavior of the PLL as introduced in previous section 3.3.  

Based on Fig 3-14, we can develop the model sampled at Tref and based on 

the complete flow chart shown in Fig 3-15.  

 

Figure 3-15: Flow Chart 

 First of all it is important to initialize the simulation parameters (simulation 

duration, sampling frequency, …), and the different PLL parameters (reference 

frequency, division ratio, VCO gain, …).  
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 Then the phase difference (or delay) Δt between the reference edges and the 

division feedback are calculated. This corresponds to the modeling of the Phase 

Detector. A counter up to Ndiv is used, in order to simulate the VCO, Ndiv times faster 

than the reference. The Loop time is calculated, in order to update Δt value.  

 Then depending the Δt sign and value, the Icp is calculated. This corresponds 

to the Charge Pump generated current. The loop filter converts the generated Icp into 

the Vtune voltage. At the end, the VCO generates the fvco frequency output depending 

on the Vtune voltage input.  

The next step is to inject the jitter corresponding to each block, into the Time 

Domain PLL Model. This is done as shown in the Flow Chart in Fig 3-16. We add the 

jitter corresponding to the different blocks of the PLL, in specific places at the flow 

chart. 

 

Figure 3-16: Flow Chart with Jitter injection 
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 At the end of the time simulation of the PLL in closed-loop we measure the 

standard deviation, σ, of the TIE which corresponds to the closed-loop RMS jitter and 

the jitter due to circuit model nonlinearities. 

 

3.5 Frequency-Time domain comparison  

We simulated Phase Noise of each sub-block of the PLL in both models and 

compared them to see if they correlate in terms of Phase Noise and RMS Jitter. 

 We show in Fig 3-17 one example of simulation results comparing VCO Phase 

Noise at the Output of the PLL, for both models. In red color, we have the Frequency 

Domain, and in blue color, the Time Domain simulation results. We remark that both 

models correlate very well.  

 

Figure 3-17: VCO Phase Noise at the PLL Output for Frequency & Time Domain Models 

Furthermore, Table 3-1 shows one example of jitter results in terms of RMS 

jitter for each sub-block of the PLL, and the comparison between frequency domain 

simulations as defined in 3.3 and time domain simulations as defined in 3.4. For the 

comparison, in the time domain simulation, we have not introduced nonlinearity 

defaults, but have taken into account only the jitter due to Phase Noise profiles. 
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Table 3-1: Correlations between Frequency & Time Domain Simulations 

PLL Sub-Blocks 
Frequency Domain 

RMS Jitter 

Time Domain 

RMS Jitter 

Correlation % 

Error 

VCO 4.57 ps 4.52 ps 1.1 % 

REF 0.82 ps 0.81 ps 1.2 % 

CP 0.62 ps 0.63 ps 1.6 % 

FILTER 1.06 ps 1.07 ps 0.9 % 

ΣΔ 1.23 ps 1.21 ps 1.6 % 

 

Table 3-1 shows accurate correlation between both simulation methods, 

allowing RMS jitter to be modelled within 2% of error between the time and the 

frequency domain analysis. 

In the time domain we have loop imperfections (mainly due to phase error 

discretization) which lead to additional jitter at TIE output [Kieffer]. The time model 

was created in order to estimate the time jitter of the system.  
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4.1 Introduction 

In this chapter we will concentrate our study only on unbounded & 

uncorrelated jitter, also called Gaussian random noise or Random Jitter (RJ). 

RJ can have different noise properties. It can have a white (spectrally flat) or 

colored (spectrally curved) noise profile. Many approaches have been developed 

based on white noise generation [Endo] - [Kafadar]. Nevertheless theoretical studies 

on colored noise generation are less common as it depends on dedicated 

requirements for a specific application [Chow] - [İspir] - [Murch] - [Kasdin]. 

From laboratory measurements of a transmitter output (TX of a SerDes) we 

may observe two characteristics: 

 From Phase Noise Analyzer measurement (Agilent (Keysight) E5052B) in Fig 

4-1 we observe that the jitter has a profile that is spectrally colored. 

 

Figure 4-1: Phase Noise Analyzer Measurement 

 From J-BERT measurement (N4903B 12.5Gbps Agilent (Keysight) Serial Bert) 

in Fig 4-2 we observe the unbounded tails of timing jitter which show its 

Gaussian distribution properties. 

 

Figure 4-2: J-BERT Measurement 
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In order to analyze SerDes system characteristics, it is important to generate 

synthetic colored noise patterns with a Gaussian distribution. The patterns will be 

used to predict impact of jitter on the system performances with time domain 

simulation during the design verification phase. 

In this chapter we present a different method for generating synthetic patterns 

with Gaussian distribution from colored noise PSD profiles.  

In section 4.2 of this chapter we describe our criteria to decide whether or not 

a generated white or colored noise pattern has a Gaussian distribution.  

In section 4.3, we generate white noise patterns with a Gaussian distribution, 

with the method explained in 3.4.1. We will also validate our criteria used to decide 

whether or not the generated noise patterns have Gaussian distribution properties.  

In section 4.4 we describe several methods from the literature for generating 

colored noise patterns. We will determine, based on our criteria, if these methods 

match our expectations in term of noise power profile and Gaussian jitter distribution. 

Section 4.5 describes our novel method for generating colored noise patterns 

with Gaussian distributions. 

Results and conclusions are given in section 4.6. 

 

4.2 Definition of criteria for colored noise with Gaussian distribution 

In this section we describe different criteria for determining whether or not the 

generated noise patterns have Gaussian distribution properties. This will be done in 

two steps: 

The first step is to process the Power Spectral Density (PSD) of the TIE jitter 

in order to define the type of noise profile (white or colored). 

The second step evaluates the maximum acceptable error between a 

Cumulated Density Function (CDF) from a synthetic pattern with Gaussian jitter 

distribution (obtained from a signal with white noise PSD) and the CDF from the ideal 

Gaussian error function (4.1). This maximum error will then be used to define the 

template to determine whether or not a synthetic pattern has Gaussian distribution 

properties. 
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𝐸𝑟𝑟𝑜𝑟𝑓𝑐𝑡 =  
1

2
+

1

2
erf (

𝑥

𝜎√2
)                                                                                       (4.1) 

With  𝑒𝑟𝑓(𝑥) =  
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
                                                                                (4.2) 

Step 1: 

Once a TIE jitter pattern is generated, the first step is to calculate its PSD 

using (4.3).  

𝛷𝑙𝑖𝑛(𝜔) = ∫ 𝜑(𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
                                                                            (4.3) 

 The Power Spectral Density 𝜱(𝝎) of the signal 𝒙(𝒕), is the Fourier Transform 

of the autocorrelation function 𝝋(𝝉).  

 The power of the PSD is converted to dB using (4.4). 

𝛷𝑑𝐵(𝜔) = 10 ∗ 𝑙𝑜𝑔10(
|𝛷𝑙𝑖𝑛(𝜔)|

𝛷1𝑝𝑠
)                                                                             (4.4) 

with √∫ (𝛷1𝑝𝑠)2𝑑𝜔
+∞

0
= 1𝑝𝑠                                                                                (4.5)      

This allows the noise profile to be better visualized and to determine whether it 

is white or colored noise. An example of a white and colored noise profile is shown in 

Fig 4-3. 

 

Figure 4-3: Example of a white and colored noise profile 
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Step 2: 

The next step is to calculate the CDF & the Complementary Cumulated 

Density Function (CCDF) of the TIE jitter. In order to calculate the CDF & the CCDF 

of the TIE, we need to plot its Probability Density Function (PDF), as shown in Fig 4-

4. 

 

Figure 4-4: Histogram of PDF of the TIE Jitter 

From the PDF we can calculate the CDF & CCDF of the Jitter. The CDF is 

calculated by integrating the PDF curve, as shown in Fig 4-5. 

 

Figure 4-5: CDF Calculation from PDF 

 The CCDF is calculated using (4.6). 

𝐶𝐶𝐷𝐹 = 1 − 𝐶𝐷𝐹                                                                                 (4.6) 

 The linear scale allows the global distribution to be properly represented. 

Nevertheless, it is there difficult to compare the tails of the distribution on a linear 

scale. 
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 This is why the calculated CDF and CCDF are transposed to a logarithmic 

scale, as shown in Fig 4-6. The logarithmic scale allows the tails of the distribution to 

be properly compared.   

 The CDF curve (plotted using both linear and logarithmic scales) and the 

CCDF curve (plotted using the logarithmic scale only) of the TIE jitter are compared 

to the template based on the Gauss error function (4.1) in order to determine whether 

or not it has Gaussian distribution properties. 

If the CDF and the CCDF of the TIE jitter from the generated synthetic pattern 

lies within the template (Fig 4-6.a) then we determine that the synthetic pattern has 

Gaussian distribution properties. Otherwise, the synthetic pattern is set as non-

Gaussian distribution, as shown in Fig 4-6.b. 

 

Figure 4-6: Log. scale CDF & CCDF example of a Gaussian and not Gaussian distribution 

To define the template used to determine whether or not a CDF has Gaussian 

distribution properties, we generated synthetic pattern with 106 values using pseudo 

random pattern generation techniques. From [Kang] - [Lee], we may claim that the 

pseudo random sequence generation we use for simulation has Gaussian distribution 

properties and white PSD profile. 

For the CDF on a linear scale, we define the maximum error used for the 

template between 1% and 99% of the CDF. 

For the CDF on a logarithmic scale we define the maximum error used for the 

template between BER from 10-2 to 10-6. 
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The standard deviation of the error 𝜎𝑒𝑟𝑟𝑜𝑟 (in fs) is calculated for a total random 

jitter with a standard deviation of 1𝑝𝑠. This level is chosen arbitrarily, then as the error 

𝜎𝑒𝑟𝑟𝑜𝑟 is calculated from this value, it can be scaled to any other RMS jitter values. 

In order to estimate properly 𝜎𝑒𝑟𝑟𝑜𝑟 between a simulated CDF and its ideal 

Gaussian error function (4.1), we perform 1000 simulations. A template of ±4𝜎𝑒𝑟𝑟𝑜𝑟 is 

then defined around the Gauss error function. Consequently, 99.99% of synthetic 

patterns with Gaussian distribution properties will be detected positively by our 

criteria. For the sake of clarity, we provide the template range of ±4𝜎𝑒𝑟𝑟𝑜𝑟 for a limited 

set of values in Table 4-1. 

Table 4-1: Maximum error in fs to have Gaussian distribution 

Linear Scale CDF (Fig 4-6.a) Logarithmic Scale CDF (Fig 4-6.b) 

Percentage ± 𝟒 𝝈𝒆𝒓𝒓𝒐𝒓 BER ± 𝟒 𝝈𝒆𝒓𝒓𝒐𝒓 

20 % ± 5.40 fs 10-2   ± 14.04 fs 

40 % ± 5.04 fs 10-3   ± 35.64 fs 

50 % ± 4.96 fs 10-4 ± 104.80 fs 

60 % ± 5.08 fs 10-5 ± 288.80 fs 

80 % ± 5.36 fs 10-6 ± 996.00 fs 

 

These templates are illustrated with grey regions in the following CDF plots for 

a linear (Fig 4-7.a) and a logarithmic scale (Fig 4-7.b). We have a Gaussian 

distribution only if the CDF and CCDF curves of the TIE jitter lie within limits shown in 

grey. 

 

Figure 4-7: CDF Templates to ensure Gaussian distribution for the generated pattern 
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4.3 White noise generation with Gaussian distribution 

4.3.1 White noise patterns generation 

In this section we will generate white noise patterns of Gaussian distribution. 

The steps to generate the time noise jitter (based on 3.4.1) are given below, and are 

shown in Fig 4-8. This method allows the time jitter to be obtained from the phase 

noise profile.  

Step 1: We first define a white noise profile, ℒ(𝑓), calculated using (4.7).  

ℒ(𝑓) = 10𝑙𝑜𝑔10(
𝐴𝑁

2

𝐴𝐶
2)                                                                                                (4.7) 

where AN is the phase noise and AC the carrier amplitude at a given frequency.  

 The power P of a spur n, corresponding to a Δf frequency step, around ‘fn’ 

offset frequency, is calculated using (4.8): 

𝑃𝑛 =  ∫ ℒ(𝑓)𝑑𝑓
𝑓𝑛+ 

1

2
∆𝑓

𝑓𝑛− 
1

2
∆𝑓

        (in dBc/Δf)                                                                       (4.8) 

 

Figure 4-8: Time jitter generation from phase noise profiles. 

Step 2: For each value of the power profile, 𝑃𝑛, we associate a random phase 

with equal probability of lying between 0 and 2π, defined by the formula (4.9).  

𝜑𝑛 =  𝑒𝑗 2𝜋 𝑟𝑎𝑛𝑑[0:1]                                                                                                   (4.9) 

By multiplying the power profile defined in (4.8) with the associated random 

phases in (4.9), we obtain the phase noise, PNn using (4.10), which is the noise 
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corresponding to frequency offsets from 0 to Fc/2, by step of Δf, with Fc carrier 

frequency. 

𝑃𝑁𝑛 = 𝑃𝑛. 𝜑𝑛                                                                                                          (4.10) 

Step 3: To generate the time noise jitter from the frequency noise, the inverse 

FFT is used. To do this, we complete the vector of the FFT corresponding to 

frequencies Fc/2→Fc, with the conjugate and symmetric of the phase noise profile. In 

this way, performing the IFFT of the frequency vector results in a time vector with 

only real parts. 

Step 4: The time jitter noise is obtained by calculating the IFFT. Using our 

criteria we will verify that the generated white noise pattern has Gaussian distribution.  

4.3.2 Verifying if generated white noise pattern has Gaussian distribution 
based on our criteria. 

As described in Section 4.2, we have defined several criteria to verify whether 

or not the generated pattern is a Gaussian distribution. In Fig 4-9 we plot the PSD of 

the generated time jitter using the above technique. We verify that the generated jitter 

corresponds to a white noise profile, since its power is spectrally flat. 

 

Figure 4-9: White noise profile generated Power 

Our criteria are applied after processing its CDF & CCDF on a linear (Fig 4-

10.a) and a logarithmic scale (Fig 4-10.b). The template defined in Section 4.2 

confirms the Gaussian distribution. Based on our criteria, defined in Section 4.2, the 

generated white noise pattern with this method has Gaussian distribution properties. 
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Figure 4-10: CDF & CCDF curves of the generated white noise pattern. 

In conclusion, in order to ensure a Gaussian distribution on the tails, a 

generated pattern should satisfy the following conditions: 

 The CDF of the TIE fits the CDF of the Error Function on a linear scale within 

defined maximum error for a given percentage. 

 The CDF & CCDF of the TIE fits the CDF & CCDF of the Error Function on a 

logarithmic scale within defined maximum error for a given BER. 

 

4.4 Methods from literature for generating colored noise patterns 

In this paragraph we study different existing methods for generating colored 

noise patterns.  

4.4.1 Filtering generated white noise pattern 

Various approaches in the literature are based on white noise filtering to obtain 

colored noise patterns [Ferdi] - [Park] - [Zao]. 

In this section we show that, based on our criteria, such techniques degrade 

the Gaussian distribution properties of the pattern. 
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To demonstrate this, we created a -40dB/dec filter in order to filter the white 

noise pattern with Gaussian distribution that we generated in Section 4.3.1. The 

Transfer Function of the filter is given in (4.11). 

𝑇𝐹𝐹𝑖𝑙𝑡𝑒𝑟 =  
𝜔2

(𝜔+𝑠)2                                                                                                    (4.11) 

The filter response is given in Fig 4-11. 

 

Figure 4-11: Filter Response for filtering white noise 

In Fig 4-12 we plot the filtered noise PSD (in dB) and verify that the generated 

jitter corresponds to a colored noise profile (a slope of -40dB/dec from 10MHz to 

2.5GHz). 

 

Figure 4-12: Filtered noise power profile. 

The CDF & CCDF of the generated Colored Noise pattern are processed and 

transposed to a linear (Fig 4-13.a) and a logarithmic scale (Fig 4-13.b). The criteria 

confirming the Gaussian distribution, defined in Section 4.2, are also shown as grey 

shading in Fig 4-13. We observe that the colored noise generated by filtering the 
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white noise does not have a Gaussian distribution. The CDF & CCDF curves of the 

TIE do not fit within the defined limits. 

 

Figure 4-13: CDF & CCDF of Colored Noise generated by Filtering 

Since the filtering technique does not meet our criteria for Gaussian 

distribution colored noise patterns, we go on to explore other methods from the 

literature. 

4.4.2 IIR filtering method 

We have tested and implemented the “IIR Filtering Method”, given in [Kasdin]. 

Its transfer function (TF) for filtering the random jitter and generating a colored noise 

profile is given in (4.12): 

𝐻(𝑧) =  
1

1− 
𝛼

2
𝑧−1− 

𝛼
2

(1−
𝛼
2

)

2!
𝑧−2+⋯

                                                                                     (4.12) 

with α determining the noise power profile of 1 𝑓𝛼⁄  law. 

This method has some specific limitations. It is limited in generating colored 

noise profiles, for slopes from -20dB/dec to +20dB/dec. This may be sufficient for 

many applications, but for our SerDes system, the PLL noise profile has a slope of -

40dB/dec. This method cannot therefore be used. 
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Another drawback is that, in increasing slope noise, it adds deterministic spurs 

to the generated random noise, as shown in the PSD in Fig 4-14. This is due to the 

numerous poles in the transfer function. 

 

Figure 4-14: DJ Spurs added to random colored noise 

Furthermore, for +20dB/dec and -20dB/dec noise profiles, the generated 

random pattern is bounded on the tails. Its CDF and CCDF are not included within 

the template limitations defined in Section 4.2, as shown in Fig 4-15. 

 

Figure 4-15: Colored noise generated with IIR filtering 
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We conclude that the distribution of the generated colored noise pattern with 

this method does not meet our criteria for a Gaussian distribution and may not 

behave well in time domain simulations. 

4.4.3 Colored noise generation with IFFT 

We also tested and implemented the “Colored noise generation with IFFT” 

given in [İspir].  

We defined a colored noise profile, with a slope of -20dB/dec. We aim to 

generate a time jitter using an IFFT from a given phase noise profile. We used the 

method in 3.4.1 to generate the time jitter from the defined profile of -20dB/dec slope. 

The results of the PSD of the generated noise using this method are shown in Fig 4-

16. 

 

Figure 4-16: PSD of a -20dB/dec generated noise profile 

The CDF and CCDF are transposed onto a linear (Fig 4-17.a) and a 

logarithmic scale (Fig 4-17.b). We observe that the CDF & CCDF of the generated 

TIE jitter do not fall within the template limitations, defined in Section 4.2.  

We therefore conclude that the noise pattern generated with this method does 

not have a Gaussian distribution either. 
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Figure 4-17: Colored noise generated with IFFT 

 We showed that these three methods do not permit to generate colored noise 

patterns with a Gaussian distribution. This is why we propose a novel method for 

generating colored noise with Gaussian distribution. 

 

4.5 New method for generating colored noise with Gaussian 
distribution 

This section is separated into two parts. 

The first explains the reasons why we have a bounded effect on the CDF & 

CCDF tails of the generated TIE jitters with the different methods explained in section 

4.4.  

The second part describes our method for generating Gaussian distribution 

colored noise patterns. 

The analysis has been performed on low pass filtering PSD profiles (some 

examples are given in Fig 4-18). We claim that similar analysis and results could be 

obtained for band pass filtering PSD noise profiles. 
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Part 1: 

First, it is important to understand why we have a bounded effect on the tails 

instead of a Gaussian distribution, from the time noise jitter obtained using the 

method described in Section 3.4.1  

We generated noise patterns with different colored noise profiles. For each 

pattern, the total RMS power is kept unchanged. Three examples are shown in Fig 4-

18. 

We started by setting the filter cut-off frequency (Fcut) to 100kHz (Fig 4-18.a), 

1MHz (Fig 4-18.b) and 10MHz (Fig 4-18.c). 

For each of these profiles, we applied a decreasing slope noise, from -1dB/dec 

to -40dB/dec, after the cut-off frequencies. Two examples of slopes of -10dB/dec and 

-30dB/dec are shown in Fig 4-18. 

Then, for each of the three Fcut frequencies, simulations were performed (with 

noise slopes from -1dB/dec to -40dB/dec). The RMS power corresponding to low 

frequencies (4.13) (below the cut-off frequency, shown in black in Fig 4-18) and the 

RMS power corresponding to high frequencies (4.14) (above the cut-off frequency 

shown in grey in Fig 4-18) were computed.  

𝑅𝑀𝑆𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑤 𝐹𝑟𝑒𝑞 =  ∫ 10
ℒ(𝑓)

10
𝐹𝑐𝑢𝑡

0
                                                                             (4.13) 

𝑅𝑀𝑆𝑃𝑜𝑤𝑒𝑟 𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞 =  ∫ 10
ℒ(𝑓)

10

𝐹𝑐
2

𝐹𝑐𝑢𝑡
                                                                             (4.14) 

 

Figure 4-18: Generated types of colored noise profiles. 
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The RMS powers of low and high frequencies are plotted in Fig 4-19 for the 3 

examples shown in Fig 4-18. 

 

Figure 4-19: RMS power of low and high frequencies 

The x-axis of Fig 4-19 represents the slopes from -1dB/dec to -40dB/dec. 

Furthermore, Fig 4-19 indicates all the points where synthetic pattern 

compliance with the properties of a Gaussian distribution has been detected, 

according to criteria defined in section 4.2. 

We remark that we lose the Gaussian distribution properties when the RMS 

power in the low frequencies starts occupying more than 10% of the total power while 

the low frequencies occupies less than 1% of the total signal. 

 

Part 2: 

 Based on previous results and analysis, we propose to increase the noise 

power over all frequencies by adding a white noise pattern with a power σfloor_noise. 

We then tune σfloor_noise until we reach the limit condition where our generated pattern 

is detected to have Gaussian distribution properties. 
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This method for generating colored noise synthetic patterns with Gaussian 

distribution properties comprises two steps. 

 Step 1: 

 The first step consists in verifying whether or not the generated colored noise 

pattern has Gaussian distribution, based on our criteria of Section 4.2. 

 If the generated colored noise pattern does not have Gaussian distribution 

properties, then Step 2 is performed. 

 Step 2: 

 We start by generating two different patterns. 

 The first one corresponds to a colored noise profile (an example profile with a 

slope of -40dB/dec is given in Fig 4.20.a).  

 The second pattern corresponds to a white noise profile (Fig 4.20.b). 

 For each profile we generate the corresponding time jitter pattern using the 

method explained in 3.4.1. 

 

Figure 4-20: Step 1 - Generating white and colored noise profiles. 
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Then the two generated time jitter patterns are summed, as shown in Fig 4.21. 

By doing so, we obtain a colored noise profile, with a slope of -40dB/dec and limited 

by a white noise floor, as shown in the PSD in Fig 4.21. 

 

Figure 4-21: Step 2 - Generating colored noise profiles with Gaussian distribution. 

 The minimum necessary power of the white noise floor is automatically 

computed, through a dichotomy-like algorithm. This computed minimum white noise 

power allows Gaussian distribution properties for the generated pattern to be 

achieved.  

 From the CDF plot in Fig 4.21, we observe that the jitter corresponding to the 

new generated colored noise profile is a Gaussian distribution. It fits very well within 

the limits defined in Section 4.2. 
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4.6 Results - generating colored noise patterns with Gaussian 
distribution. 

To validate our novel method, several colored noise patterns with different 

slopes were generated. For each of the generated jitter patterns, we calculated its 

CDF and CCDF to verify whether or not it has Gaussian distribution properties. 

We provide two examples of the generated phase noise PSD profiles              

(-20dB/dec (Fig 4.22.a) and -40dB/dec (Fig 4.22.b)) with their respective CDF and 

CCDF shown to lie within our defined template, confirming that both synthetic 

patterns have Gaussian distribution properties based on our criteria of Section 4.2. 

Nevertheless this has been done by limiting the colored noise floor profile as seen in 

the PSD of Fig 4.22. 

 

Figure 4-22: Generated colored noise profiles with Gaussian distribution. 

 

4.7 Chapter’s conclusion 

We propose a novel method for generating colored noise patterns, by computing 

the optimal trade-off between the noise profile and a Gaussian distribution. Specific 

criteria are defined to verify whether or not a generated noise pattern has Gaussian 

distribution properties. The generated colored noise patterns will be used to predict 

the impact of jitter on SerDes performances during the design verification phase, 

using time domain simulation. This will allow desired Figure of Merit to be achieved. 
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5.1 Introduction 

The TIE can be separated into two major jitter categories: random and 

deterministic jitter. Random jitter (RJ) is unpredictable timing noise, which typically 

follows a Gaussian distribution [Dou_1] - [Mistry]. Deterministic jitter (DJ) is 

predictable and the Peak-to-Peak (PP) value of this jitter is bounded [HFE] - 

[Sharma]. 

The standard organizations give specific budgets for RJ and DJ [USB] - [PCIe]. 

It is then important to be able to properly identify and quantify each type of jitter in the 

pattern, by decomposing the jitter into RJ and DJ. 

As given in Section 4.2, RJ can have different noise properties. It can have a 

white (spectrally flat) [Endo] - [Kafadar] or colored (spectrally curved) [İspir] - [Murch] 

- [Kasdin] noise profile.  

In order to decompose the TIE jitter and cover all kind of noise types, we 

introduce a new algorithm, for decomposing jitter into RJ and DJ. The proposed 

algorithm is to be validated by generated white and colored noise patterns, and 

laboratory measurements.  

Various jitter analysis and decomposition methods have been developed for 

diagnosing and testing high speed interfaces [Aleksić] - [Dou_2] - [Erb] - [Hong] - 

[Kho] - [Li] - [Mistry] - [Tzou] - [Wisetphanichkij]. The principal objective of these 

methods is to have an estimation of the quantity of each type of jitter (RJ / DJ) in the 

system. 

In section 5.2 of this chapter we will compare some of the existing techniques 

for jitter decomposition, with their limitations.  

Section 5.3 explains step by step the novel technique of jitter decomposition 

developed for model noise estimations. 

Section 5.4 gives jitter decomposition results, from generated white and colored 

noise patterns with Gaussian Jitter Distribution for the Random jitter.  

Conclusions and future perspectives are given in section 5.5. 
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5.2 Various existing RJ/DJ decomposition techniques 
 

In this paragraph we study different existing techniques for jitter decomposition 

into RJ and DJ. 

5.2.1 Time lag correlation technique 

The Time lag correlation (TLC) method [Dou_2] is an efficient technique for jitter 

decomposition, as each component of jitter evolves with time. As RJ is a random 

variable, it has small correlation with its lagged time series while sinusoidal jitters 

(SJ) have strong correlation. Decomposition of duty cycle distortion (DCD), RJ and 

multiple SJ is then possible using this method. However, this technique becomes 

very complex when total jitter (TJ) contains more jitter components, and will cost 

longer simulation time to obtain accurate results. 

5.2.2 Tail fitting method 

The Tail fitting method [Li] is used to correctly identify the three unknown 

Gaussian model parameters, which are the mean 𝜇 (𝜇𝐿 & 𝜇𝑅), the standard deviation 

𝜎 (𝜎𝐿 & 𝜎𝑅), and the amplitude 𝐴 (𝐴𝐿 & 𝐴𝑅) of tail area for left and right distribution as 

given in Fig 5-1. This method is based on extracting the RMS value (𝜎) of the RJ 

from the 2 tails of the Probability Density Function (PDF) and defining the PP value of 

the DJ by the difference between the two peaks in the PDF. This method does not 

work properly when the RMS value is comparable to the PP value of DJ since there 

is only one peak on the PDF. 

 

Figure 5-1: Tail Fitting Method for Jitter Decomposition 
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5.2.3 Dual Dirac Decomposition Method 

The Dual-Dirac decomposition method is actually the most frequently used 

jitter decomposition technique [Aleksić] - [Hong]. This method is similar to the Tail 

Fitting method [Li]. It is a very quick method for estimating RJ and DJ. It assumes 

that jitter is separated into RJ which has Gaussian distribution and DJ which is 

bounded and consists of two Dirac delta functions, as shown in Fig 5-2. [Agilent] - [Li] 

- [Mistry] - [Tektronix] 

 

Figure 5-2: Dual-Dirac Method for Jitter Decomposition 

 

Therefore, the dual-Dirac model is a Gaussian approximation to the outer 

edges of the jitter distribution displaced by 𝐷𝐽(𝛿𝛿). Once the standard deviation and 

𝐷𝐽(𝛿𝛿) are measured the eye closure at any BER value can be estimated with (5.1) 

[Agilent] - [Mistry] - [Tektronix] 

𝑇𝐽(𝐵𝐸𝑅) ≅ 2𝑄𝐵𝐸𝑅 . 𝜎 +  𝐷𝐽(𝛿𝛿)              (5.1) 

where 𝑄𝐵𝐸𝑅 is calculated from the complementary error function, as given in Table 5-

1. [Agilent] - [Tektronix] 

Table 5-1: QBER values, multiplicative constant determining eye closure due to RJ 

BER 10
-10

 10
-11

 10
-12

 10
-13

 10
-14

 

𝑄𝐵𝐸𝑅 6.4 6.7 7.0 7.3 7.6 

 

 

Nevertheless, the estimated Dual-Dirac deterministic jitter DJ(δδ) with this 

method is smaller than the real Peak-to-Peak deterministic jitter DJ(p-p) [Tektronix], 

as shown in Fig 5-3 [Agilent]. This method only permits to have a fast estimation of 

global decomposition, without enough precision. 
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Figure 5-3: Dual-Dirac DJ is smaller than real Peak-to-Peak DJ 

 

5.3 Extended Jitter Decomposition Technique 

In order to optimize jitter decomposition results we propose a novel method for 

decomposing the total TIE jitter into RJ and DJ. 

Based on the dual-Dirac method, we multiplied the number of Dirac tones 

derived from the deterministic jitter estimation, which are convoluted with the 

Random Jitter as shown in Fig 5-4. This is done in order to better approach the real 

jitter distribution. The total jitter TIE is described by the sum of all these convolutions. 

 

Figure 5-4: Jitter Decomposition proposed method 
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The principle of the proposed algorithm for jitter decomposition is shown in Fig 

5-5. The idea of the method firstly consists in identifying all possible DJ spurs by 

applying a threshold, which is calculated with a sliding window over all frequencies. 

Then, from the possible DJ spurs, the algorithm considers more or less spurs as DJ 

and the others as RJ, and with loop iterations, finds the best match for RJ/DJ 

separation.  

 

Figure 5-5: Jitter Decomposition Algorithm 
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There are several steps detailed below, which are applied in order to estimate 

RJ and DJ quantities of the TIE jitter. 

Step1:  

First of all, the TIE jitter that will be decomposed is 

recovered from simulation results (generated noise 

patterns), or measurements in laboratory. The Initial CDF 

and CCDF of this TIE are calculated.  

They will be compared in Step 10 with the Estimated CDF 

and CCDF. 

 

Step2:  

The PSD of the TIE time jitter is calculated. This is done with 

(5.1). 

𝛷𝑙𝑖𝑛(𝜔) = ∫ 𝜑(𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
                                               (5.1) 

The Power Spectral Density 𝛷(𝜔) of the signal 𝑥(𝑡) is the 

Fourier Transform of the autocorrelation function 𝜑(𝜏).  

The power of the PSD is converted to dB using (5.2). 

𝛷𝑑𝐵(𝜔) = 10 ∗ 𝑙𝑜𝑔10(
|𝛷𝑙𝑖𝑛(𝜔)|

𝛷1𝑝𝑠
)                                                                                  (5.2) 

with √∫ (𝛷1𝑝𝑠)2𝑑𝜔
+∞

0
= 1𝑝𝑠                                                                                     (5.3) 

 

Step3:  

A sliding window is applied over all the frequencies, to define 

a threshold. The threshold corresponds to the 95% of the 

power value of the noise spurs inside the window. 
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Step4:  

To limit possible RJ Spurs, the algorithm defines a Limit of 

6dB and starts by defining as possible DJ spurs all spurs 

above this limit. The latter is automatically changed and 

adapted (increased or decreased) by the algorithm, in order 

to obtain best match of jitter decomposition, with Loop 

iterations. 

 

Step5:  

From the possible deterministic 

spurs, the strongest spurs 

corresponding to DJ are selected 

first, and this number is automatically 

increased or decreased for each loop 

iteration. The rest of the spurs 

(smallest ones), are defined as possible random noise spurs. 

 

Step6:  

The time jitter is calculated for the 

spurs considered as DJ, and for the 

spurs related to RJ. This is done to 

have the time jitter corresponding 

only to DJ, and the time jitter 

corresponding only to RJ. 

 

Step7:  

The DJ time noise PDF is calculated from the time jitter 

corresponding to DJ. This gives the dispersion of the spurs, 

with power probability.  
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Step8:  

For the RJ time noise, the standard deviation (σ) of the time 

jitter corresponding to RJ is calculated. 

  

 

 

 

Step9:  

By convolution between estimated DJ Diracs and estimated 

RJ standard deviation (as shown in Fig 5-6), the algorithm 

calculates the estimated CDF and CCDF. 

  

 

 

Step10:  

The estimated and initial CDF and CCDF are transposed to 

a logarithmic scale. The logarithmic scale allows the tails of 

the distribution to be properly represented. The error 

between the CDF and CCDF curves of the initial generated 

TIE and the estimated CDF and CCDF curves is calculated 

for each of the iterations. Then, the algorithm returns by 

loop iterations to Step4 to update the limit power value above the threshold. 

 

Step11:  

Loop iterations end when all possible DJ spurs are selected as DJ. The result having 

the minimum error calculated in Step10 over all the loop iterations, gives the best 

estimation between RJ and DJ. 

 

 

 



82 

 

In Fig 5-6, we give an example of a colored noise profile, with DJ spurs 

injected with random amplitudes and at random modulation frequencies. We remark 

that the algorithm has successfully detected all injected DJ spurs. 

 

Figure 5-6: All DJ spurs detected by algorithm 

 

5.4 Results of the generated noise patterns 

In order to validate the extended algorithm, we generated noisy signals, with 

different noise profile types for the random jitter: white noise (spectrally flat), and 

colored noise profiles (from -1dB/Dec to -40dB/Dec slopes).  

The synthetic noise patterns were generated with the method explained in 

Chapter 4. 

The noisy patterns are generated with exactly known RJ and DJ quantities. 

Random number of spurs, amplitudes, and frequencies were used for the DJ. The 

noise patterns were then used by our algorithm in order to decompose the jitter.  

Algorithm worked very well on separating RJ and DJ for any generated white 

or colored noise. For sake of clarity, we will give below results for one of the noise 

profiles (-20dB/Dec noise slope). 

 Different noises, with different RMS values for the RJ (0.1ps, 1ps, 2ps or 3ps), 

and different PP values for the DJ (0ps, 3ps, 6ps, 9ps, 12ps, 15ps) were generated.  
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Some results of estimating the RJ RMS quantities are given in Fig 5-7. Others 

of estimating the DJ PP quantities are given in Fig 5-8. 

 

Figure 5-7: RJ for different quantities of generated RJ & DJ Jitter 

 

 

 

Figure 5-8: DJ for different quantities of generated RJ & DJ Jitter 
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We remark that the algorithm estimates with precision the generated RJ RMS 

quantities (Fig 5-7) and DJ PP values (Fig 5-8). This is done for any RJ & DJ quantity 

injected, and any spur number composing the DJ (examples of 3, 5 and 7 spurs are 

given in each of the figures). 

 

5.5 Results of the Laboratory Measurements 

Laboratory measurements and correlation with the simulation model allow the 

validity of the algorithm to be confirmed. We used a J-BERT instrument (N4903B 

12.5Gbps Agilent Serial Bert) to create a noisy signal. It injects known RJ and DJ to 

the signal. The waveform is captured by a 50Gsamples/s Tektronix Oscilloscope 

(DSA720004B). 

The samples are used by our algorithm in order to separate RJ and DJ. Some 

results of injected jitter by the J-BERT and estimated jitter by our algorithm are given 

in Table II.: 

Table 5-2: Correlation between Injected and Estimated Jitter 

J-BERT (Jitter Injection) MODEL (Jitter Estimation) 

Injected RJ Injected DJ Estimated RJ Estimated DJ 

   0 ps   0 ps 0.50 ps   2.49 ps 

   0 ps 18 ps 0.50 ps 22.40 ps 

   0 ps 36 ps 0.51 ps 41.00 ps 

0.5 ps   0 ps 0.76 ps   2.59 ps 

0.5 ps 18 ps 0.75 ps 22.41 ps 

0.5 ps 36 ps 0.75 ps 41.46 ps 

   1 ps   0 ps 1.19 ps   2.29 ps 

   1 ps 18 ps 1.15 ps 22.59 ps 

   1 ps 36 ps 1.14 ps 41.48 ps 

1.5 ps   0 ps 1.65 ps   2.56 ps 

1.5 ps 18 ps 1.64 ps 22.98 ps 

1.5 ps 36 ps 1.60 ps 41.72 ps 

 

We see that jitter estimated by our algorithm correlates with jitter injected by 

the J-BERT. Our model is “stable” for random jitter estimation, for any value of 

injected deterministic jitter.  

Our algorithm estimates ~0.5ps of RJ when no RJ is injected by the J-BERT. 

This is J-BERT and oscilloscope natural random jitter. 
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For example, when ~0.5ps of RJ is injected by the J-BERT, the algorithm 

estimates ~0.7ps due to Gaussian noise addition in (5.4): 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑅𝐽 = √𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑𝑅𝐽
2 +  𝐽𝐵𝐸𝑅𝑇𝑅𝐽

2 = √0.52 + 0.52 = 0.7 𝑝𝑠               (5.4) 

Our algorithm also estimated more DJ than the J-BERT was supposed to have 

injected. From the biggest spurs that the algorithm considered as DJ, we extracted 

spurs at frequencies corresponding to the injected spur frequency (100 MHz), and its 

harmonics. The DJ corresponding to these spurs explains most of the above 

difference. 

We also remarked that some spurs permanently correspond to DJ for any DJ 

or RJ injected value. These spurs exist at different frequencies and correspond to 

~2ps of permanent deterministic jitter. One example of these spurs is given in Fig 5.. 

This corresponds to the case of 0ps of DJ and 0ps of RJ generated. The DJ spurs 

correspond to ~2ps of DJ.  

 
Figure 5-9: DJ Spurs when no DJ is injected 

 

Moreover, we can observe that whatever the RJ injected for a given DJ, the 

estimated DJ value by the algorithm are close, which proves that our algorithm is well 

suited for RJ/DJ estimation and extraction. 
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5.6 Conclusion 

We succeeded in proposing a jitter separation method, which estimates with 

accuracy RJ and DJ quantities in the TIE, for any type of noise profiles (White or 

Colored Noise Profiles). The algorithm was validated by generated synthetic noise 

patterns, with exactly known Random and Deterministic jitter.  

This method will be useful for designers during design phase, as it will help 

them to properly constraint the design and better estimate jitter contribution of their 

blocks. This method decomposes jitter into RJ & DJ and also allows identifying the 

sources causing DJ to improve overall solution and optimize the performances of the 

circuit for future versions. 
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6.1 Introduction 

In this chapter we will specify a PLL design that has to fit within PCI-Express 

specifications. This will be done based on the PCI-Express (PCIe) standard 

requirements. We will propose a method of specifying the PLL, and show a complete 

example of how we define the PLL bandwidth (BW) and the different dBc/Hz phase 

noise profiles for each part of the PLL.  

 In our proposed method, the RMS jitter will be calculated for the 3 different 

principal noise parts of the PLL, which are shown in Fig 6-1: 

 The InBand Noise 

 The -20dB/dec slope Noise 

 The Floor Noise 

 

 

Figure 6-1: PLL Specification Schematic 



89 

 

6.2 PCIe Standard Specifications 

 The specifications used as starting point are the PCIe Standard Specifications 

[PCIe]. The targets to reach on the PCI-Express Gen4 Specs are given in Table 6-1. 

These targets are taken from “PCI Express® Base Specification Revision 4.0, page 

1007, table 9.5”. We remark that we have a total of 0.89ps RMS jitter budget. 

 
Table 6-1: PCI-Express Specifications 

Symbol 
Parameter 

Description 
16Gbps Units 

𝑇𝑇𝑋−𝑈𝑇𝐽 
Tx uncorrelated total 

jitter 
12.5 (max) ps PP 

𝑇𝑇𝑋−𝑅𝐽 Tx Random jitter 0.89 (max) ps RMS 

 

Based on the total RMS jitter budget, we can attribute as example 50% of the 

total jitter budget to the PLL, and the other 50% to the TX and RX.  

So the Total RMS Jitter attributed to the PLL on these specifications 

example is 0.445 ps. 

The PCI-Express has a Common clock scenario (which means we have a 

High Bandwidth PLL). In this case the PC distributes the Reference (Ref) clock (Clk) 

everywhere, as shown in Fig 6-2.  

As defined in PCIe Standards [PCIe], the SSC modulation is embedded within 

the reference clock. Therefore, the Root Cpx and the End point share same 

reference clock, with same SSC Modulation of reference clock. 

 

Figure 6-2: PCIe Common Clock 

The PCIe subsystem defines the PLL bandwidth limit that each SerDes must 

comply with: 

 To guarantee Root Cpx & End Point are frequency aligned 
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 To minimize low frequency Phase Noise inside system 

The PLL must respect the Bandwidth parameters given in Table 6-2. 

These data are taken from “PCI Express® Base Specification Revision 4.0, page 

1006, table 9.5” 

 
Table 6-2: PCIe Standards - PLL BW Parameters 

Symbol 
Parameter 

description 
16Gbps Units 

𝐵𝑊𝑇𝑋−𝑃𝐾𝐺−𝑃𝐿𝐿1 

Tx PLL banwidth 

corresponding to 

PKGTX-PLL1 

4.0 (max) 

2.0 (min) 
MHz 

𝐵𝑊𝑇𝑋−𝑃𝐾𝐺−𝑃𝐿𝐿2 

Tx PLL banwidth 

corresponding to 

PKGTX-PLL2 

5.0 (max) 

2.0 (min) 
MHz 

𝑃𝐾𝐺𝑇𝑋−𝑃𝐿𝐿1 

Tx PLL peaking 

corresponding to 

BWTX-PKG-PLL1 

2.0 (max) dB 

𝑃𝐾𝐺𝑇𝑋−𝑃𝐿𝐿2 

Tx PLL peaking 

corresponding to 

BWTX-PKG-PLL2 

1.0 (max) dB 

 

For the High PLL Bandwidth scenario, based on the above specifications, we 

conclude that the PLL bandwidth should be comprised between 2MHz and 5MHz, 

and the peaking can be up to 2dB maximum.  

 

6.3 PLL Loop Filter Calculations 
 

The different Loop Filter possibilities given in Table 6-2 were studied, in order 

to cover all BW and peaking possibilities. The idea is to choose the best PLL 

Bandwidth, and minimize global Phase Noise impact. The loop filter is the one given 

in Fig 3-4.  The different BW frequencies and peaking used are the following:  

Peaking:    0.5 dB,  1.0 dB,  1.5 dB,  2.0 dB  

BW Frequency:  2 MHz,  3 MHz,  4 MHz,  5 MHz 
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In order to create the Transfer Functions with above properties, in Open Loop, 

we make sure that at 0dB, we have the maximum Phase Margin, as shown in        

Fig 6-3: 

 

Figure 6-3: Open Loop Transfer Function 

Then we check Peaking Value and the Frequency @ -3dB (cut off frequency is 

-3dB at Nyquist Frequency), in Closed Loop, as shown in Fig 6-4: 

 

Figure 6-4: Closed Loop Response 
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In Table 6-3, we show the different simulated values, for the different Transfer 

Functions that we generated: 

 
Table 6-3: PLL Bandwidth Possibilities 

Peaking (@CL) 
BW Freq                 

(@-3dB in CL) 
0dB OL (Frequency) 

Phase Margin                              

(@ OL, @ 0dB) 

0.5dB 

2MHz 1.7 MHz 80° 

3MHz 2.5 MHz 80° 

4MHz 3.3 MHz 80° 

5MHz 4.2 MHz 80° 

1.0dB 

2MHz 1.5 MHz 72° 

3MHz 2.3 MHz 72° 

4MHz 3.0 MHz 72° 

5MHz 3.8 MHz 72° 

1.5dB 

2MHz 1.2 MHz 64° 

3MHz 2.0 MHz 64° 

4MHz 2.7 MHz 64° 

5MHz 3.3 MHz 64° 

2.0dB 

2MHz 1.3 MHz 58° 

3MHz 1.9 MHz 58° 

4MHz 2.6 MHz 58° 

5MHz 3.3 MHz 58° 

 

6.4 CDR equivalent Transfer Function 
 

As given in the standards, we have chosen a CDR Type I, 1st order CDR        

(-20dB/dec). The transfer function of the CDR is given in (6.2): 

𝐻(𝑠) =  
𝑠

𝑠+ 𝜔𝑛
                      (6.2) 

With: 𝜔𝑛 =  𝜔3𝑑𝐵 = 2𝜋 ∗ 10𝑀𝐻𝑧 , we have a cut-off frequency of 10 MHz at -3dB. 

These parameters were taken from specifications “PCI Express® Base Specification 

Revision 4.0, page 999, paragraph 9.3.5.5”. 
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The Transfer Function of the CDR is given in Fig 6-5. 

 

Figure 6-5: CDR Transfer Function 

 

6.5 RMS Jitter Calculation 

The RMS jitter will be calculated for the 3 different principal noise parts of the 

PLL, as shown in Fig 6-1.   

The details of each one of these parts are given below: 

Inband Noise  

This corresponds to the noise (spectrally flat) which is filtered through 

the PLL Low Pass Filter equivalent TF.  

The PLL blocks composing this profile are the followings: 

o Reference Clock 

o Charge Pump 

o Divider output 

-20dB/dec Noise  

This corresponds to the noise (spectrally colored -20dB/dec) which is 

filtered through the PLL High Pass Filter equivalent TF (PLL Output) 

The PLL blocks composing this profile are the followings: 

o VCO Thermal Noise 
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Floor Noise  

This corresponds to the noise (spectrally flat) which is filtered through 

the PLL High Pass Filter equivalent TF (PLL Output) 

The PLL blocks composing this profile are the followings: 

o VCO Phase Noise 

o Correction Filter Noise 

As given in 6.2, the maximum total RMS Jitter for the PLL is defined as 

0.445ps. So the equation of the total RMS jitter would be equal to (6.3) 

√𝑵𝒐𝒊𝒔𝒆𝑰𝒏𝑩𝒂𝒏𝒅
𝟐 +  𝑵𝒐𝒊𝒔𝒆−𝟐𝟎𝒅𝑩/𝒅𝒆𝒄

𝟐 +  𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓
𝟐 = 0.445𝑝𝑠                  (6.3) 

Let’s consider the 3 noise parts composing the PLL noise profile have equal 

proportion of jitter. Then, (6.3) would become (6.4): 

√3. 𝑵𝒐𝒊𝒔𝒆𝒑𝒂𝒓𝒕
2 = 0.445𝑝𝑠                                                                             (6.4) 

and 𝑵𝒐𝒊𝒔𝒆𝒑𝒂𝒓𝒕 = 𝟎. 𝟐𝟓𝟕𝒑𝒔. 

So the maximum authorized RMS Jitter for each of the defined noise profiles 

would be 0.257ps.   

We will define below the maximum noise profiles in dBc/Hz for each of the 

defined profiles, in order to have a maximum RMS jitter of 0.257ps for each part. 

 

6.5.1 InBand Noise 

The RMS Jitter coming from noise (spectrally flat) that passes through the PLL 

Low Pass Filter, was calculated for different possible phase noise profiles and for the 

different PLL Bandwidths. Results are given in Table 6-4. The defined maximum 

RMS Jitter budget is 257fs. In the table in blue color are highlighted all the jitter 

values below 0.257ps. 
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Table 6-4: InBand Noise RMS Jitter 

 Profile (dBc/Hz) 

Peaking BW Freq -110 -115 -120 -125 -130 -135 -140 -145 -150 

0.5dB 

2MHz 1.86e-12 1.04e-12 5.87e-13 3.30e-13 1.86e-13 1.04e-13 5.87e-14 3.30e-14 1.86e-14 

3MHz 2.81e-12 1.58e-12 8.88e-13 4.99e-13 2.81e-13 1.58e-13 8.88e-14 4.99e-14 2.81e-14 

4MHz 3.72e-12 2.09e-12 1.18e-12 6.62e-13 3.72e-13 2.09e-13 1.18e-13 6.62e-14 3.72e-14 

5MHz 4.70e-12 2.64e-12 1.49e-12 8.35e-13 4.70e-13 2.64e-13 1.49e-13 8.35e-14 4.70e-14 

1dB 

2MHz 1.43e-12 8.04e-13 4.52e-13 2.54e-13 1.43e-13 8.04e-14 4.52e-14 2.54e-14 1.43e-14 

3MHz 2.36e-12 1.33e-12 7.48e-13 4.21e-13 2.36e-13 1.33e-13 7.48e-14 4.21e-14 2.36e-14 

4MHz 3.18e-12 1.79e-12 1.00e-12 5.65e-13 3.18e-13 1.79e-13 1.00e-13 5.65e-14 3.18e-14 

5MHz 4.08e-12 2.29e-12 1.29e-12 7.25e-13 4.08e-13 2.29e-13 1.29e-13 7.25e-14 4.08e-14 

1.5dB 

2MHz 1.19e-12 6.71e-13 3.78e-13 2.12e-13 1.19e-13 6.71e-14 3.78e-14 2.12e-14 1.19e-14 

3MHz 1.98e-12 1.11e-12 6.27e-13 3.53e-13 1.98e-13 1.11e-13 6.27e-14 3.53e-14 1.98e-14 

4MHz 2.79e-12 1.57e-12 8.82e-13 4.96e-13 2.79e-13 1.57e-13 8.82e-14 4.96e-14 2.79e-14 

     2dB 

2MHz 1.12e-12 6.28e-13 3.53e-13 1.98e-13 1.12e-13 6.28e-14 3.53e-14 1.98e-14 1.12e-14 

3MHz 1.88e-12 1.06e-12 5.95e-13 3.35e-13 1.88e-13 1.06e-13 5.95e-14 3.35e-14 1.88e-14 

4MHz 2.68e-12 1.51e-12 8.48e-13 4.77e-13 2.68e-13 1.51e-13 8.48e-14 4.77e-14 2.68e-14 

 

Let’s target a PLL Bandwidth of 3MHz, with 1.5dB of peaking. For a phase 

noise profile of -135dBc/Hz, even if we have a Bandwidth modification due to Kvco 

variation, we should still satisfy targeted jitter value. 

In order to be sure that we satisfy standards, for the Targeted PLL BW (1,5dB 

of peaking and 3MHz of BW), we study the jitter impact due to Kvco variation. We 

vary Kvco from -50% to +50%, and calculate RMS Jitter, as given in Table 6-5: 

Table 6-5: Kvco variation impact on InBand RMS Jitter 

Kvco 
0dB OL 

Frequency 

Phase 

Margin 

(@OL 

@0dB) 

-3dB CL 

Frequency 

Peaking 

CL 

Gain 

Margin 

RMS Jitter 

(sec) 

0.50*Kvco 1.09MHz 58.90° 1.59MHz 2.37dB -120dB 5.78e-14 

0.75*Kvco 1.55MHz 62.90° 2.26MHz 1.82dB -116dB 8.49e-14 

1.00*Kvco 2.00MHz 64.08° 2.98MHz 1.50dB -113dB 1.11e-13 

1.25*Kvco 2.45MHz 63.96° 3.73MHz 1.30dB -112dB 1.37e-13 

1.50*Kvco 2.89MHz 63.17° 4.49MHz 1.15dB -110dB 1.63e-13 

We remark that even in worst case (where Kvco gets 50% higher), we have a 

RMS Jitter due to InBand noise of 0.163ps, which is still smaller than the maximum 

defined RMS Jitter of 0.257ps.  

Therefore the InBand Noise Profile is set to -135dBc/Hz maximum, and 

𝑵𝒐𝒊𝒔𝒆𝑰𝒏𝑩𝒂𝒏𝒅 = 𝟎. 𝟏𝟔𝟑𝒑𝒔 in worst case.  
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We can also define the External Clock Noise Profile which is generally set to 

10dB below the InBand Noise Profile. So we can define it to -145dBc/Hz maximum, 

and 𝑵𝒐𝒊𝒔𝒆𝑬𝒙𝒕𝑹𝒆𝒇 = 𝟎. 𝟎𝟑𝟓𝒑𝒔 in worst case.  

In Fig 6-6 is shown the reason why for same frequency, the noise decreases 

when the peaking increases.  

 

 

Figure 6-6: Comparision between 2 different PLL BW 

We have shown as example 2 different PLL BW, Frequencies fixed at 2MHz, 

but in blue 0.5dB of peaking, and in red 2dB of peaking. We remark that the 2nd one 

cuts a little bit faster the high frequencies, which explains a better result of RMS 

Jitter, for same BW frequency, but higher peaking. 

6.5.2 -20dB/dec Noise 

Table 6-6 gives the RMS jitter (in s), for the different phase noise profiles (in 

dBc/Hz) of the different “Slopes of -20dB/dec”, passing at “X” dBc/Hz value @ 1MHz, 

and for different PLL bandwidths. We have colored in blue color all RMS jitter below 

0.257ps. We remark that this is reached for any noise profile and PLL Bandwidth. 
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Table 6-6: -20dB/dec Noise RMS Jitter given for different profiles 

 Slope Profile (dBc/Hz) passing at X value @ 1MHz 

Peaking BW Freq -100 -105 -110 -115 -120 -125 -130 

0.5dB 

2MHz 5.47e-14 3.08e-14 1.73e-14 9.73e-15 5.47e-15 3.08e-15 1.73e-15 

3MHz 5.34e-14 3.00e-14 1.69e-14 9.49e-15 5.34e-15 3.00e-15 1.69e-15 

4MHz 5.19e-14 2.92e-14 1.64e-14 9.24e-15 5.19e-15 2.92e-15 1.64e-15 

5MHz 5.05e-14 2.84e-14 1.60e-14 8.97e-15 5.05e-15 2.84e-15 1.60e-15 

1dB 

2MHz 5.65e-14 3.18e-14 1.79e-14 1.01e-14 5.65e-15 3.18e-15 1.79e-15 

3MHz 5.57e-14 3.13e-14 1.76e-14 9.90e-15 5.57e-15 3.13e-15 1.76e-15 

4MHz 5.48e-14 3.08e-14 1.73e-14 9.74e-15 5.48e-15 3.08e-15 1.73e-15 

5MHz 5.36e-14 3.02e-14 1.70e-14 9.54e-15 5.36e-15 3.02e-15 1.70e-15 

1.5dB 

2MHz 5.76e-14 3.24e-14 1.82e-14 1.02e-14 5.76e-15 3.24e-15 1.82e-15 

3MHz 5.74e-14 3.23e-14 1.81e-14 1.02e-14 5.74e-15 3.23e-15 1.81e-15 

4MHz 5.68e-14 3.20e-14 1.80e-14 1.01e-14 5.68e-15 3.20e-15 1.80e-15 

5MHz 5.61e-14 3.16e-14 1.77e-14 9.98e-15 5.61e-15 3.16e-15 1.77e-15 

2dB 

2MHz 5.83e-14 3.28e-14 1.84e-14 1.04e-14 5.83e-15 3.28e-15 1.84e-15 

3MHz 5.84e-14 3.29e-14 1.85e-14 1.04e-14 5.84e-15 3.29e-15 1.85e-15 

4MHz 5.82e-14 3.27e-14 1.84e-14 1.04e-14 5.82e-15 3.27e-15 1.84e-15 

5MHz 5.78e-14 3.25e-14 1.83e-14 1.03e-14 5.78e-15 3.25e-15 1.83e-15 

 

  For the Targeted PLL BW (1,5dB of peaking and 3MHz of BW), if we vary 

Kvco from -50% to +50%, we have following values, given in Table 6-7: 

 

Table 6-7: Kvco variation impact on -20dB/dec slope RMS Jitter 

Kvco 50% Kvco 75% Kvco 100% Kvco 125% Kvco 150% Kvco 

RMS Jitter (sec) 5.47e-14 5.47e-14 5.47e-14 5.47e-14 5.47e-14 

 

 We remark that there is no impact on this jitter, due to Kvco variation. 

Therefore the -20dB/dec Noise Profile is set to -100dBc/Hz maximum at 1MHz, and 

𝑵𝒐𝒊𝒔𝒆−𝟐𝟎𝒅𝑩/𝒅𝒆𝒄 = 𝟎. 𝟎𝟓𝟒𝟕𝒑𝒔 in worst case. 

 We can now calculate the proportion of RMS jitter left to the Noise Floor 

Profile: 

In equation (6.3) we had: 

√𝑵𝒐𝒊𝒔𝒆𝑰𝒏𝑩𝒂𝒏𝒅
𝟐 +  𝑵𝒐𝒊𝒔𝒆−𝟐𝟎𝒅𝑩/𝒅𝒆𝒄

𝟐 +  𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓
𝟐 = 0.445𝑝𝑠                   

 

 

Therefore, we can find the jitter proportion left to 𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓 with (6.5): 
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𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓 =  √𝟎. 𝟒𝟒𝟓𝟐 − (𝑵𝒐𝒊𝒔𝒆𝑰𝒏𝑩𝒂𝒏𝒅
𝟐 + 𝑵𝒐𝒊𝒔𝒆−𝟐𝟎𝒅𝑩/𝒅𝒆𝒄

𝟐)        (6.5) 

and 𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓𝒎𝒂𝒙
= 𝟎. 𝟒𝟏𝟎𝒑𝒔 

 

6.5.3 Noise floor 

Table 6-8 gives the RMS jitter (in s) for Floor noise, when passing through 

high pass filter PLL. The RMS jitter values are independent of peaking or PLL BW 

frequency. This is because the PLL high pass filter max BW Frequency is set to 

5MHz. Compared to the 8GHz frequency we integrate, it is negligible (about 0.03%). 

 
Table 6-8: Floor Noise RMS Jitter given for different profiles 

Profile (dBc/Hz) 

-110 -115 -120 -125 -130 -135 -140 -145 -150 

5.62e-12 3.16e-12 1.78e-12 1.00e-12 5.62e-13 3.16e-13 1.78e-13 1.00e-13 5.62e-14 

 

We defined above 𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓𝒎𝒂𝒙
= 𝟎. 𝟒𝟏𝟎𝒑𝒔, so the global budget of the floor 

phase noise is -135dBc/Hz at maximum based on Table 6-8. 

For the targeted PLL BW (1,5dB of peaking and 3MHz of BW), if we vary Kvco 

from -50% to +50%, we have following values, given in Table 6-9: 

 
Table 6-9: Kvco variation impact on Floor RMS Jitter 

Kvco 50% Kvco 75% Kvco 100% Kvco 125% Kvco 150% Kvco 

RMS Jitter (sec) 3.1629e-13 3.1630e-13 3.1630e-13 3.1631e-13 3.1632e-13 

 

There is no impact on this jitter, due to Kvco variation. Therefore the floor 

noise profile is set to -135dBc/Hz maximum, and 𝑵𝒐𝒊𝒔𝒆𝑭𝒍𝒐𝒐𝒓 = 𝟎. 𝟑𝟏𝟔𝒑𝒔 in worst 

case. 

 

 

 

 

 

 

 



99 

 

6.6 Resuming Results 
 

In conclusion, for our example, the targeted PLL bandwidths will be as given in 

Table 6-10: 

Table 6-10: Targeted PLL Bandwidths 

Clock Scenario: Peaking PLL BW 

Common Clock (High BW) 1.5 dB 3 MHz 

 

The Targeted Phase Noise Profiles are the followings: 

External REF   => -145dBc/Hz 

InBand Noise   => -135dBc/Hz 

Slope Noise (-20db/dec)  => -100dBc/Hz @ 1MHz 

Noise Floor   => -135dBc/Hz 

 

The results in term of RMS Jitter are given in Table 6-11.  

Table 6-11: Resuming Results in terms of RMS Jitter 

 

Ref               

Clock 

Scenario 

External Ref 

-145dBc/Hz 

InBand 

Noise                   

-135dBc/Hz 

-20dB/dec 

Noise            

-100dBc/Hz 

@ 1MHz 

Floor             

Noise               

-135dBc/Hz 

Total              

RMS              

Jitter 

Standards      
0.445ps 

(max) 

Simulated 

Jitter with 

Targetted 

PLL 

Parameters 

High              

BW                 

PLL 

0.084ps 0.163ps 0.055ps 0.316ps 0.369ps 

 

  

We conclude that in this example, for the chosen phase noise profiles and PLL 

BW specifications, we satisfy standard requirements in terms of RMS Jitter. 
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Furthermore, The Jitter Correlation Algorithm method explained in 2.5 for 

estimating the total jitter by convolving all DJ jitters helped us optimize the total jitter 

of our PLL block in terms of jitter budget: 

 Minimum of 3ps of total jitter (in a worst case) at BER 10-12, when all DJ Jitters 

are considered as Dual-Diracs. 

 Minimum of 8ps of total jitter (in a normal case) at BER 10-12., when DJ jitters 

are considered as equally-distributed. 
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Chapter 7:  Conclusions and Perspectives 

As explained in the beginning of this thesis, two of the major electrical 

parameters used to characterize SerDes integrated circuit performances are: 

 The transmitter voltage level & transmitted jitter at a given BER 

 The receiver maximum insertion loss capabilities & capacity to track jitter at a 

given BER. 

Modeling the phase noise of the different SerDes components, extracting the 

time jitter and decomposing it, would help designers to achieve desired figure of merit 

for future SerDes versions. 

The PLL is one of the contributors of clock random and periodic jitter inside the 

system. This is the reason why we decided to model the PLL with phase noise 

injection and estimate the RMS jitter.  

There were 3 main goals for our study: 

 Our 1st target was to obtain a strong knowledge of jitter, phase noise, and 

time/frequency analysis.  

 The 2nd target was to provide tools for the designers during the design phase, 

so they can properly constraint the design and estimate the jitter contribution 

of each block of the PLL. Furthermore, provide tools to analyze effect of non-

linearity in the system. 

 The 3rd target was to provide tools for the designers during the IC validation 

phase to decompose jitter into RJ & DJ, and also identify the sources causing 

DJ to improve overall solution. 

We have started by doing a deep theoretical study of jitter and phase noise. 

We understood how they are related, and how to analyze them in both domains (time 

and frequency).  

Then we have developed a frequency domain PLL model. The phase noise 

profiles corresponding to each sub-block of the PLL are obtained from harmonic 

balance simulations. This is a small signal model which works with transfer functions, 

and estimates the RMS jitter found in the system, at the output of the PLL. 
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In order to include loop nonlinearities, and estimate the time jitter, we have 

created a time-domain PLL model. The characteristics of this model are the 

followings: 

 First of all it converts the phase noise profiles into time jitter. (The time jitter 

can also be obtained from laboratory measurements) 

 The time jitters corresponding to each sub-block of the PLL are injected in the 

time domain PLL loop 

 The model will estimate the time jitter of the system, at the output of the PLL. 

 The RMS jitter can then be estimated by calculating the standard deviation of 

the time jitter. 

The frequency-domain model allowed us to validate the time-domain model in 

terms of RMS jitter, by comparing their results, with a maximum of 1.6% of difference. 

From laboratory measurements of a transmitter output (TX of a SerDes) we 

may observe two characteristics: 

1) The jitter has a profile that is spectrally colored. 

2) The jitter has Gaussian distribution properties. 

In order to analyze SerDes system characteristics, it is important to generate 

synthetic colored noise patterns with a Gaussian distribution. The patterns will be 

used to predict impact of jitter on the system performance with time domain 

simulation during the design verification phase. They will also be used to define the 

budgets in terms of jitter, for the different blocks of SerDes system. 

To our knowledge, in the literature there is no previous study proposing a 

method for generating colored noise patterns, with Gaussian distribution properties 

for the time jitter. We have proposed a novel method for generating colored noise 

patterns with Gaussian distributions properties.  

The standard organizations (such as USB or PCIe) specify random and 

deterministic jitter budgets. In order to decompose the PLL output estimated TIE jitter 

into random and deterministic jitter, we proposed a new technique for jitter analysis 

and decomposition. We realized laboratory measurements to verify the algorithm. 

Jitter extraction simulation results correlate well with measurements and this 
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technique will help designers to properly identify and quantify the sources of 

deterministic jitter and their impact on the SerDes system. 

Furthermore, these models helped us developing a new method, for System 

Specifications. We did PLL specifications in terms of phase noise, for different 

standards and different PLL properties. All generated specifications satisfy standards 

in terms of random and deterministic jitter. 

 In perspective, it would be interesting to model the full chain of the SerDes, by 

modeling the TX, RX and the channel. There is a real interest in modeling the CDR 

as it will quantify the jitter removed after CDR filtering.  
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8.1 Sinusoidal Signal, Phase & Amplitude Noise 

8.1.1 Sinusoidal Signal Phase Modulation Equations 
 

In this sub-section, we give equation demonstration of decomposition of a 

phase modulation formula. 

We have a phase modulation equation (8.1):     

𝑽(𝒕) = 𝑽𝟎𝒔𝒊𝒏 [(𝝎𝒄𝒕) + 𝜷𝒔𝒊𝒏(𝝎𝒎𝒕 + 𝝋𝒎)]             (8.1)  

Expressing the equation with exponentials as in (8.2):  

𝑉(𝑡) = 𝑉0
𝑒𝑗𝜔𝑐𝑡+𝑗𝛽𝑠𝑖𝑛 (𝜔𝑚𝑡+ 𝜑𝑚) − 𝑒−𝑗𝜔𝑐𝑡−𝑗𝛽𝑠𝑖𝑛 (𝜔𝑚𝑡+ 𝜑𝑚)

2𝑗
                                       (8.2) 

We note: 𝑎 = 𝜔𝑐𝑡  and  𝑏 = 𝛽𝑠𝑖𝑛 (𝜔𝑚𝑡 + 𝜑𝑚)                                            (8.3) 

So the above exponential equation (8.2) becomes (8.4): 

𝑉(𝑡) = 𝑉0
𝑒𝑗𝑎+𝑗𝑏 − 𝑒−𝑗𝑎−𝑗𝑏

2𝑗
                                                                    (8.4) 

We have the following exponential development (8.5): 

𝑒𝑗𝑥 ≃ 1 + 𝑥 +  
(𝑗𝑥)2

2!
+  … +  

(𝑗𝑥)𝑛

𝑛!
+  휀                                                     (8.5) 

For x<<1, the exponential development (8.5) is approximated to:  𝑒𝑗𝑥 ≃ 1 + 𝑥  (8.6) 

We rewrite the equation: 

𝑉(𝑡) =  
𝑉0

2𝑗
[𝑒𝑗𝑎(1 + 𝑗𝑏) −  𝑒−𝑗𝑎(1 − 𝑗𝑏)]                                                (8.7) 

𝑉(𝑡) =  
𝑉0

2𝑗
[(𝑒𝑗𝑎 − 𝑒−𝑗𝑎) + 𝑗𝑏(𝑒𝑗𝑎 + 𝑒−𝑗𝑎)]                                                       (8.8) 

𝑉(𝑡) =  
𝑉0

2𝑗
(𝑒𝑗𝑎 − 𝑒−𝑗𝑎) +

𝑉0

2
𝑏(𝑒𝑗𝑎 + 𝑒−𝑗𝑎)                                                          (8.9) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0

2
𝛽𝑠𝑖𝑛 (𝜔𝑚𝑡 + 𝜑𝑚)(𝑒𝑗𝑎 + 𝑒−𝑗𝑎)                                                             (8.10) 

We note: 𝑐 = 𝜔𝑚𝑡 + 𝜑𝑚                   (8.11) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0

2
𝛽𝑠𝑖𝑛 (𝑐)(𝑒𝑗𝑎 + 𝑒−𝑗𝑎)                                                                      (8.12) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0

2
𝛽

𝑒𝑗𝑐−𝑒−𝑗𝑐

2𝑗
(𝑒𝑗𝑎 + 𝑒−𝑗𝑎)                                                                   (8.13) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0𝛽

2∗2𝑗
(𝑒𝑗𝑐 − 𝑒−𝑗𝑐)(𝑒𝑗𝑎 + 𝑒−𝑗𝑎)                                                       (8.14) 
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𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0𝛽

2∗2𝑗
(𝑒𝑗(𝑐+𝑎) + 𝑒𝑗(𝑐−𝑎) − 𝑒−𝑗(𝑐−𝑎) − 𝑒−𝑗(𝑐+𝑎))                                          (8.15) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0𝛽

2
(

𝑒𝑗(𝑐+𝑎)−𝑒−𝑗(𝑐+𝑎)

2𝑗
+  

𝑒𝑗(𝑐−𝑎) −𝑒−𝑗(𝑐−𝑎)

2𝑗
)                                               (8.16) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0𝛽

2
(𝑠𝑖𝑛(𝑐 + 𝑎) + 𝑠𝑖𝑛 (𝑐 − 𝑎))                                                          (8.17) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝑎) +
𝑉0𝛽

2
(𝑠𝑖𝑛(𝑎 + 𝑐) − 𝑠𝑖𝑛 (𝑎 − 𝑐))                                                          (8.18) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
(𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚) − 𝑠𝑖𝑛 (𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚))                               (8.19) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚))                        (8.20) 

This is represented with Fig 8-1: 

 

 

Figure 8-1: Phase Noise Modulation for Sinusoidal Signal 
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8.1.2 Sinusoïdal Signal Amplitude Modulation Equations 
 

In this sub-section, we give equation demonstration of decomposition of an 

Amplitude Modulation. 

We have an amplitude modulation equation:   

𝑽(𝒕) = 𝑽𝟎 𝒔𝒊𝒏(𝝎𝒄𝒕) [𝟏 + 𝜷 𝒄𝒐𝒔(𝝎𝒎𝒕)]                                                 (8.21) 

𝑉(𝑡) = 𝑉0
𝑒𝑗𝜔𝑐𝑡 − 𝑒−𝑗𝜔𝑐𝑡

2𝑗
[1 + 𝛽

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
]                                          (8.22) 

𝑉(𝑡) = 𝑉0
𝑒𝑗𝜔𝑐𝑡 − 𝑒−𝑗𝜔𝑐𝑡

2𝑗
+ 𝑉0𝛽

𝑒𝑗𝜔𝑐𝑡 − 𝑒−𝑗𝜔𝑐𝑡

2𝑗
∗

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
                    (8.23) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2

𝑒𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)+𝑒𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
      (8.24) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
[

𝑒𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+

𝑒𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)

2𝑗
] (8.25) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
[

𝑒𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+

𝑒𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)

2𝑗
] (8.26) 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
[𝑠𝑖𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚)]           (8.27) 

This is represented with Fig 8-2: 

 

Figure 8-2: Amplitude Noise Modulation for Sinusoidal Signal 
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8.2 Square Signal, Phase & Amplitude Noise 

8.2.1 Square Signal, Phase Modulation Equations 

In this sub-section, we give equation demonstration of decomposition of a 

Phase Modulation for a Square Signal. 

Let us consider a sinusoidal signal, with Fc frequency:  

sin𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = sin (𝜔𝑐𝑡)                                       (8.28) 

As explained in Annexe 8.1, the phase modulation of the sinusoidal signal is 

expressed as in ():  

𝐬𝐢𝐧𝒔𝒊𝒈𝒏𝒂𝒍𝒏𝒐𝒊𝒔𝒚
(𝒕) = 𝑽𝟎 𝐬𝐢𝐧(𝝎𝒄𝒕 +  𝜷𝐬𝐢𝐧 (𝝎𝒎𝒕))                                                    (8.29) 

For a square signal, a phase modulation corresponds to a displacement of Δt 

in time. This might be showed with the Fig 8-3: 

 

 

Figure 8-3: Phase Noise Modulation for Square Signal (Time Domain) 

 

The decomposition with the Fourier Series of a time square signal with same 

Fc frequency can be noted as: square𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) =  𝑉0
4

𝜋
∑

sin ((2𝑘−1)𝜔𝑐𝑡)

(2𝑘−1)
∞
𝑘=1               (8.30) 
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For a sinusoidal signal, the displacement in time is expressed as: 

𝑠𝑖𝑛𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) = 𝑉0 𝑠𝑖𝑛(𝜔𝑐𝑡 +  𝑃ℎ𝑎𝑠𝑒𝑁𝑜𝑖𝑠𝑒(𝑡))                                                      (8.31) 

𝑠𝑖𝑛𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) = 𝑉0 𝑠𝑖𝑛 (𝜔𝑐(𝑡 +  

𝑃ℎ𝑎𝑠𝑒𝑁𝑜𝑖𝑠𝑒(𝑡)

𝜔𝑐
))                                                      (8.32) 

𝑠𝑖𝑛𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) = 𝑉0 𝑠𝑖𝑛(𝜔𝑐(𝑡 +  𝛥𝑡))                                                                      (8.33) 

In a square signal, the displacement in time is expressed as:  

square𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) = 𝑉0 

4

𝜋
∑

sin ((2𝑘−1)𝜔𝑐(𝑡−𝛥𝑡))

(2𝑘−1)
∞
𝑘=1                                                     (8.34) 

Let’s denote 𝛼 =  (2𝑘 − 1)                               (8.35) 

If we develop the expression (8.34) (for 1 harmonic only): 

square𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) =  

V0sin (𝛼∗𝜔𝑐(𝑡−𝛥𝑡))

𝛼
=  

V0sin (𝛼∗(𝜔𝑐𝑡−𝜔𝑐𝛥𝑡))

𝛼
≡  

V0sin (𝛼∗(𝜔𝑐𝑡+𝛽𝑠𝑖𝑛(𝜔𝑚𝑡)))

𝛼
      (8.36) 

So a phase modulation of a square signal can be expressed as:   

𝐬𝐪𝐮𝐚𝐫𝐞𝒔𝒊𝒈𝒏𝒂𝒍𝒏𝒐𝒊𝒔𝒚
(𝒕) = 𝑽𝟎

𝟒

𝝅
∑

𝒔𝒊𝒏 ((𝟐𝒌−𝟏)[𝝎𝒄𝒕+𝜷 𝒔𝒊𝒏(𝝎𝒎𝒕)])

(𝟐𝒌−𝟏)
∞
𝒌=𝟏                                                         (8.37) 

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
= 𝑉0  

4

𝜋
∗

𝑒𝑗𝜔𝑐𝑡+𝑗𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)  − 𝑒−𝑗𝜔𝑐𝑡−𝑗𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)

2𝑗
 +                                                     (8.38) 

                           𝑉0  
4

3𝜋
∗

𝑒3𝑗𝜔𝑐𝑡+3𝑗𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)  − 𝑒−3𝑗𝜔𝑐𝑡−3𝑗𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)

2𝑗
+               

                           𝑉0  
4

5𝜋
∗

𝑒5𝑗𝜔𝑐𝑡+5𝑗𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)  − 𝑒−5𝑗𝜔𝑐𝑡−5𝑗𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)

2𝑗
+ ⋯  

 

We note: 𝑎 = 𝜔𝑐𝑡  and  𝑏 = 𝛽𝑠𝑖𝑛 (𝜔𝑚𝑡)                                                                 (8.39) 

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑉0

4

𝜋
∗

𝑒𝑗𝑎+𝑗𝑏  − 𝑒−𝑗𝑎−𝑗𝑏

2𝑗
        +  𝑉0

4

3𝜋
∗

𝑒3𝑗𝑎+3𝑗𝑏  − 𝑒−3𝑗𝑎−3𝑗𝑏

2𝑗
+                     (8.40) 

                            𝑉0
4

5𝜋
∗

𝑒5𝑗𝑎+5𝑗𝑏  − 𝑒−5𝑗𝑎−5𝑗𝑏

2𝑗
+ ⋯                

 

We have the following exponential development: 

𝑒𝑗𝑥 = 1 + 𝑗𝑥 +  
(𝑗𝑥)2

2!
+  … +  

(𝑗𝑥)𝑛

𝑛!
                                                                          (8.41) 
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For n*x<<1, the exponential development is approximated to:  𝑒𝑗𝑛𝑥 = 1 + 𝑗𝑛𝑥    (8.42) 

This expression (8.42) can be considered as valid, because only the first 

harmonics count.  

We rewrite the equation (8.40): 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
= 𝑉0  

4

2𝑗𝜋
∗ [𝑒𝑗𝑎 (1 + 𝑗𝑏) −  𝑒−𝑗𝑎 (1 − 𝑗𝑏)] +                                         (8.43) 

                            𝑉0
4

3∗2𝑗𝜋
∗ [𝑒3𝑗𝑎 (1 + 3𝑗𝑏) −  𝑒−3𝑗𝑎 (1 − 3𝑗𝑏)] +         

                            𝑉0   
4

5∗2𝑗𝜋
∗ [𝑒5𝑗𝑎 (1 + 5𝑗𝑏) − 𝑒−5𝑗𝑎 (1 − 5𝑗𝑏)] + ⋯  

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑉0

4

2𝑗𝜋
∗ [(𝑒𝑗𝑎 −  𝑒−𝑗𝑎 ) + 𝑗𝑏(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 )] +              (8.44) 

                             𝑉0
4

3∗2𝑗𝜋
∗ [(𝑒3𝑗𝑎 −  𝑒−3𝑗𝑎 ) + 3𝑗𝑏(𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 )] +                 

                             𝑉0  
4

5∗2𝑗𝜋
∗ [(𝑒5𝑗𝑎 −  𝑒−5𝑗𝑎 ) + 5𝑗𝑏(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 )] + ⋯  

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑉0

4

2𝑗𝜋
∗ (𝑒𝑗𝑎 − 𝑒−𝑗𝑎 ) + 𝑉0

4

2𝜋
∗  𝑏(𝑒𝑗𝑎 + 𝑒−𝑗𝑎 ) +                  (8.45)                                  

                            𝑉0  
4

3∗2𝑗𝜋
∗ (𝑒3𝑗𝑎 −  𝑒−3𝑗𝑎 ) +  𝑉0

4

2𝜋
∗ 𝑏(𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 ) +  

                           𝑉0   
4

5∗2𝑗𝜋
∗ (𝑒5𝑗𝑎 −  𝑒−5𝑗𝑎 ) +  𝑉0

4

2𝜋
∗ 𝑏(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯  

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
= 𝑉0

4

2𝑗𝜋
∗ (𝑒𝑗𝑎 − 𝑒−𝑗𝑎 ) + 𝑉0

4

3∗2𝑗𝜋
∗ (𝑒3𝑗𝑎 −  𝑒−3𝑗𝑎 ) +             (8.46) 

                            𝑉0
4

5∗2𝑗𝜋
∗ (𝑒5𝑗𝑎 −  𝑒−5𝑗𝑎 ) + ⋯ +            

                            𝑉0
4

2𝜋
∗  𝑏(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) + 𝑉0

4

2𝜋
∗ 𝑏(𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 ) +  

                            𝑉0
4

2𝜋
∗ 𝑏(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯  

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
= 𝑉0 ∗

4

𝜋
∗ [

(𝑒𝑗𝑎 − 𝑒−𝑗𝑎 )

2𝑗
+

1

3
∗

(𝑒3𝑗𝑎 − 𝑒−3𝑗𝑎 )

2𝑗
+

1

5
∗

(𝑒5𝑗𝑎 − 𝑒−5𝑗𝑎 )

2𝑗
+ ⋯ ] +      (8.47)                                 

                            𝑉0
4

2𝜋
∗ [𝑏(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) + 𝑏(𝑒3𝑗𝑎 + 𝑒−3𝑗𝑎 ) +  𝑏(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯ ]   
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𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.48) 

                             𝑉0
4

2𝜋
∗ [𝑏(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) +  𝑏(𝑒3𝑗𝑎 + 𝑒−3𝑗𝑎 ) +  𝑏(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯ ]    

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.49) 

                            𝑉0
4

2𝜋
∗ [𝛽sin (𝜔𝑚𝑡)(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) +  𝛽sin (𝜔𝑚𝑡)(𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 ) +   

                                           𝛽𝑠𝑖𝑛 (𝜔𝑚𝑡)(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯ ]   

 

We note: 𝑐 = 𝜔𝑚𝑡                                     (8.50) 

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.51) 

                             𝑉0
4

2𝜋
∗ [𝛽sin (𝑐)(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) +  𝛽sin (𝑐)(𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 ) +   

                                           𝛽𝑠𝑖𝑛 (𝑐)(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯ ]    

 

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
= 𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                    (8.52) 

                            𝑉0
4

2𝜋
∗ [𝛽sin (

𝑒𝑗𝑐−𝑒−𝑗𝑐

2𝑗
) (𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) +  𝛽sin (

𝑒𝑗𝑐−𝑒−𝑗𝑐

2𝑗
) (𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 ) +   

                                          𝛽𝑠𝑖𝑛 (
𝑒𝑗𝑐−𝑒−𝑗𝑐

2𝑗
) (𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯ ]    

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                    (8.53) 

                   𝑉0
4

2𝑗2𝜋
∗ [𝛽sin(𝑒𝑗𝑐 − 𝑒−𝑗𝑐)(𝑒𝑗𝑎 +  𝑒−𝑗𝑎 ) +  𝛽sin(𝑒𝑗𝑐 − 𝑒−𝑗𝑐)(𝑒3𝑗𝑎 +  𝑒−3𝑗𝑎 ) +   

                                    𝛽𝑠𝑖𝑛 (𝑒𝑗𝑐 − 𝑒−𝑗𝑐)(𝑒5𝑗𝑎 +  𝑒−5𝑗𝑎 ) + ⋯ ]   
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𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.54) 

                             𝑉0
4𝛽

2𝑗2𝜋
∗ [(𝑒𝑗(𝑐+𝑎) + 𝑒𝑗(𝑐−𝑎) − 𝑒−𝑗(𝑐−𝑎) − 𝑒−𝑗(𝑐+𝑎)) +  

                                               (𝑒𝑗(𝑐+3𝑎) + 𝑒𝑗(𝑐−3𝑎) − 𝑒−𝑗(𝑐−3𝑎) − 𝑒−𝑗(𝑐+3𝑎)) +    

                                               (𝑒𝑗(𝑐+5𝑎) + 𝑒𝑗(𝑐−5𝑎) − 𝑒−𝑗(𝑐−5𝑎) − 𝑒−𝑗(𝑐+5𝑎)) + ⋯ ]    

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.55) 

                              𝑉0
4𝛽

2𝜋
∗ [(

𝑒𝑗(𝑐+𝑎)− 𝑒−𝑗(𝑐+𝑎)

2𝑗
+  

𝑒𝑗(𝑐−𝑎)−𝑒−𝑗(𝑐−𝑎)

2𝑗
) +  

                                             (
𝑒𝑗(𝑐+3𝑎)− 𝑒−𝑗(𝑐+3𝑎)

2𝑗
+  

𝑒𝑗(𝑐−3𝑎)−𝑒−𝑗(𝑐−3𝑎)

2𝑗
) +    

                                              (
𝑒𝑗(𝑐+5𝑎)− 𝑒−𝑗(𝑐+5𝑎)

2𝑗
+  

𝑒𝑗(𝑐−5𝑎)−𝑒−𝑗(𝑐−5𝑎)

2𝑗
) + ⋯ ]    

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.56) 

                              𝑉0
4𝛽

2𝜋
∗ [(𝑠𝑖𝑛(𝑐 + 𝑎) + 𝑠𝑖𝑛 (𝑐 − 𝑎)) +  

                                             (𝑠𝑖𝑛(𝑐 + 3𝑎) + 𝑠𝑖𝑛 (𝑐 − 3𝑎)) +    

                                              (𝑠𝑖𝑛(𝑐 + 5𝑎) + 𝑠𝑖𝑛 (𝑐 − 5𝑎)) + ⋯ ]    

 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                    (8.57) 

                              𝑉0
4𝛽

2𝜋
∗ [(𝑠𝑖𝑛(𝑎 + 𝑐) − 𝑠𝑖𝑛 (𝑎 − 𝑐)) +  

                                             (𝑠𝑖𝑛(3𝑎 + 𝑐) − 𝑠𝑖𝑛 (3𝑎 − 𝑐)) +    

                                             (𝑠𝑖𝑛(5𝑎 + 𝑐) − 𝑠𝑖𝑛 (5𝑎 − 𝑐)) + ⋯ ]    
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𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑥𝑠𝑞𝑢𝑎𝑟𝑒 +                   (8.58) 

                              𝑉0
4𝛽

2𝜋
∗ [𝑠𝑖𝑛(𝜔𝑐𝑡  + 𝜔𝑚𝑡) − 𝑠𝑖𝑛 (𝜔𝑐𝑡 − 𝜔𝑚𝑡) +  

                                             (𝑠𝑖𝑛(3𝜔𝑐𝑡  + 𝜔𝑚𝑡) − 𝑠𝑖𝑛 (3𝜔𝑐𝑡 − 𝜔𝑚𝑡)) +    

                                             (𝑠𝑖𝑛(5𝜔𝑐𝑡  + 𝜔𝑚𝑡) − 𝑠𝑖𝑛 (5𝜔𝑐𝑡 − 𝜔𝑚𝑡)) + ⋯ ]    

 

This is represented with Fig 8-4: 

 

Figure 8-4: Phase Noise Modulation for Square Signal (Frequency Domain) 

 

We remark that phase noise is constant, and reported to all carriers. 

In order to verify above equations, we created in Matlab the 4 signals: 

 sin𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) 

 square𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) 

 sin𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) 

 square𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) 

First of all, we verified that Square noisy signal, corresponds or not to the 

sinusoidal noisy signal. 



116 

 

The time simulation is shown in Fig 8-5 for 𝛽 = 0.1. 

 

Figure 8-5: Time simulation of Phase Noise Sinusoidal & Square signal 

We remark that noisy square signal follows perfectly noisy sinusoidal signal. 

We calculate the FFT of the noisy square signal in order to verify if it correlates 

with Fig 8-4. Noise Spurs are given in absolute values. The results are given in Fig 8-

6: 

 

Figure 8-6: Phase Noise Modulation for Square Signal – Result of FFT 
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This correlates exactly with spurs in Fig 8-4. 

Phase noise spurs stay constant, harmonics spurs decrease. This proves that 

the theoretical decomposition is correct. We lose 20log(n) dBc to each ‘n’-th 

harmonic from the 1st one. 

8.2.2 Square Signal, Amplitude Modulation Equations 
 

In this sub-section, we give equation demonstration of decomposition of an 

Amplitude Modulation for a Square Signal. 

Let us consider a sinusoidal signal, with Fc frequency: sin𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = sin (𝜔𝑐𝑡)     (8.59) 

As explained before, the amplitude modulation of the sinusoidal signal is:  

𝐬𝐢𝐧𝒔𝒊𝒈𝒏𝒂𝒍𝒏𝒐𝒊𝒔𝒚
(𝒕) = 𝐬𝐢𝐧(𝝎𝒄𝒕) [𝟏 +  𝜷𝐜𝐨𝐬 (𝝎𝒎𝒕)]                                                        (8.60) 

For a square signal, an amplitude modulation corresponds to a displacement 

of ΔV in time. This might be shown with the Fig 8-7: 

 

 

Figure 8-7: Amplitude Noise Modulation for Square Signal 
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The decomposition with the Fourier Series of a time square signal with same 

Fc frequency can be noted as: square𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) =  
4

𝜋
∑

sin ((2𝑘−1)𝜔𝑐𝑡)

(2𝑘−1)
∞
𝑘=1                   (8.61) 

 

An amplitude modulation for a square signal is expressed as:   

𝐬𝐪𝐮𝐚𝐫𝐞𝒔𝒊𝒈𝒏𝒂𝒍𝒏𝒐𝒊𝒔𝒚
(𝒕) =

𝟒

𝝅
∑

𝒔𝒊𝒏 ((𝟐𝒌−𝟏)𝝎𝒄𝒕)

(𝟐𝒌−𝟏)
∞
𝒌=𝟏 [𝟏 + 𝜷 𝒄𝒐𝒔(𝝎𝒎𝒕)]                                  (8.62) 

 

𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) =

4

𝜋
∗

𝑒𝑗𝜔𝑐𝑡 − 𝑒−𝑗𝜔𝑐𝑡

2𝑗
[1 + 𝛽

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
]     +                (8.63) 

                                           
4

𝜋
∗

𝑒𝑗3𝜔𝑐𝑡 − 𝑒−𝑗3𝜔𝑐𝑡

3∗2𝑗
[1 + 𝛽

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
]  +  

                                           
4

𝜋
∗

𝑒𝑗5𝜔𝑐𝑡 − 𝑒−𝑗5𝜔𝑐𝑡

5∗2𝑗
[1 + 𝛽

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
]  + ⋯  

 

𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) =

4

𝜋
∗

𝑒𝑗𝜔𝑐𝑡 − 𝑒−𝑗𝜔𝑐𝑡

2𝑗
+ 

4

𝜋
∗

𝑒𝑗3𝜔𝑐𝑡 − 𝑒−𝑗3𝜔𝑐𝑡

3∗2𝑗
+ 

4

𝜋
∗

𝑒𝑗5𝜔𝑐𝑡 − 𝑒−𝑗5𝜔𝑐𝑡

5∗2𝑗
+ ⋯ +       (8.64) 

                                           
4

𝜋
𝛽 ∗

𝑒𝑗𝜔𝑐𝑡 − 𝑒−𝑗𝜔𝑐𝑡

2𝑗

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
+  

                                           
4

𝜋
𝛽 ∗

𝑒𝑗3𝜔𝑐𝑡 − 𝑒−𝑗3𝜔𝑐𝑡

3∗2𝑗

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
+  

                                           
4

𝜋
𝛽 ∗

𝑒𝑗5𝜔𝑐𝑡 − 𝑒−𝑗5𝜔𝑐𝑡

5∗2𝑗

𝑒𝑗(𝜔𝑚𝑡+𝜑𝑚)+ 𝑒−𝑗(𝜔𝑚𝑡+𝜑𝑚)

2
+ ⋯  

 

𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) =

4

𝜋
∗ [

sin(𝜔𝑐𝑡)

1
+ 

sin(3𝜔𝑐𝑡)

3
+  

sin(5𝜔𝑐𝑡)

5
+ ⋯ ] +                                       (8.65)                   

                                        
4𝛽

2𝜋
∗

𝑒𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚) + 𝑒𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+  

                                      
4𝛽

2∗3∗𝜋
∗

𝑒𝑗(3𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚) + 𝑒𝑗(3𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(3𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(3𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+  

                                      
4𝛽

2∗5∗𝜋
∗

𝑒𝑗(5𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚) + 𝑒𝑗(5𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(5𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(5𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+ ⋯  
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𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) = 𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) +                                                                               (8.66) 

                                       
4𝛽

2𝜋
∗

𝑒𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚) − 𝑒−𝑗(𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+

 𝑒𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)

2𝑗
   

                                      
4𝛽

3∗2𝜋
∗

𝑒𝑗(3𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚) − 𝑒−𝑗(3𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+

 𝑒𝑗3(𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(3𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)

2𝑗
   

                                      
4𝛽

5∗2𝜋
∗

𝑒𝑗(5𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚) − 𝑒−𝑗(5𝜔𝑐𝑡+𝜔𝑚𝑡+𝜑𝑚)

2𝑗
+

 𝑒𝑗(5𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)− 𝑒−𝑗(5𝜔𝑐𝑡−𝜔𝑚𝑡−𝜑𝑚)

2𝑗
   

 

𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) = 𝒔𝒒𝒖𝒂𝒓𝒆𝒔𝒊𝒈𝒏𝒂𝒍(𝒕) +                                                                              (8.67) 

                                           
4𝛽

2𝜋
∗ [

𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑
𝑚

) + 𝑠𝑖𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑
𝑚

) + 
1

3
𝑠𝑖𝑛(3𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑

𝑚
)

+
1

3
𝑠𝑖𝑛(3𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚) + 

1

5
𝑠𝑖𝑛(5𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑚) +

1

5
𝑠𝑖𝑛(5𝜔𝑐𝑡 − 𝜔𝑚𝑡 − 𝜑𝑚)

]  

This is represented with Fig 8-8: 

 

 

Figure 8-8: Amplitude Noise Modulation for Square Signal (Frequency Domain) 

In order to verify above equations, we created in Matlab the 4 signals: 

 sin𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) 

 square𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) 

 sin𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) 

 square𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑖𝑠𝑦
(𝑡) 
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First of all, we verified if a Square noisy signal corresponds or not to the sinusoidal 

noisy signal. The time simulation (with 𝛽 = 0.1) is shown in Fig 8-9: 

 

Figure 8-9: Time simulation of Amplitude Noise Sinusoidal & Square signal 

We remark that noisy square signal follows perfectly noisy sinusoidal signal. 

We calculate the FFT of the noisy square signal in order to verify if it correlates 

with Fig 8-8. Noise Spurs are given in absolute values. The results are given in Fig 8-

10: 

 

Figure 8-10: Amplitude Noise Modulation for Square Signal – Result of FFT 
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This correlates exactly with spurs in Fig 8-8. 

Amplitude noise spurs decrease proportionally with Frequency Harmonics 

amplitudes 1/n. 

 

8.3 Measuring Transition Position at a given Offset. 
 

In this section, we will show the fact that adding an offset plays the same role 

as we had a Phase & an Amplitude Noise. An Offset, is added as a DC, so @0Hz of 

frequency. 

If we add an offset @0Hz, normally we should find a Phase & Amplitude Noise 

@ 2*Fc, as shown in Fig 8-11: 

 

Figure 8-11: Adding an offset to the signal 

We add an Offset directly to the signal, with the following equation: 

𝑉(𝑡) = 𝑽𝟎 𝒔𝒊𝒏[(𝝎𝒄𝒕 + 𝝋𝒄)] + 𝑨𝒏 𝒔𝒊𝒏(𝝎𝟎𝒕 + 𝝋𝒌)                                                    (8.68) 

Equation (8.68) can be written as: 

𝑉(𝑡) = 𝑽𝟎 𝒔𝒊𝒏[(𝝎𝒄𝒕 + 𝝋𝒄)] + 𝑨𝒏𝒔𝒊𝒏 (𝝎𝒄𝒕 − 𝝎𝒎𝒕 + 𝝋𝒄 + 𝝋𝒌)                                 (8.69) 

𝑉(𝑡) = 𝑉0 𝑠𝑖𝑛[(𝜔𝑐𝑡 + 𝜑𝑐)] + 2
𝐴𝑛

2
𝑠𝑖𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 + 𝜑𝑐 + 𝜑𝑘) +                              (8.70) 

                                                     
𝐴𝑛

2
𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑐 − 𝜑𝑘) −

𝐴𝑛

2
𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑐 − 𝜑𝑘)       

        

𝑉(𝑡) = 𝑉0 𝑠𝑖𝑛[(𝜔𝑐𝑡 + 𝜑𝑐)] +                                (8.71) 

              
𝐴𝑛

2
[𝑠𝑖𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 + 𝜑𝑐 + 𝜑𝑘) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑐 − 𝜑𝑘)] +             

           
𝐴𝑛

2
[𝑠𝑖𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 + 𝜑𝑐 + 𝜑𝑘) − 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑐 − 𝜑𝑘)]                
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Equation (8.71) can be represented with Amplitude Noise and Phase Noise.  

𝑉(𝑡) = 𝑉0 sin[(𝜔𝑐𝑡 + 𝜑𝑐)] +                  (8.72) 

              
𝐴𝑛

2
[𝒔𝒊𝒏(𝝎𝒄𝒕 − 𝝎𝒎𝒕 + 𝝋𝒄 − 𝝋𝒌) + 𝐬𝐢𝐧(𝝎𝒄𝒕 + 𝝎𝒎𝒕 + 𝝋𝒄 + 𝝋𝒌)] +          

             
𝐴𝑛

2
[𝑠𝑖𝑛(𝜔𝑐𝑡 − 𝜔𝑚𝑡 + 𝜑𝑐 + 𝜑𝑘) − 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚𝑡 + 𝜑𝑐 − 𝜑𝑘)]                   

 

In our case, 𝝎𝒎 =  𝝎𝒄, so the (8.72) equation becomes: 

𝑉(𝑡) = 𝑉0 sin[(𝜔𝑐𝑡 + 𝜑𝑐)] +
𝐴𝑛

2
[𝒔𝒊𝒏(𝝎𝟎𝒕 + 𝝋𝒄 − 𝝋𝒌) + 𝐬𝐢𝐧(𝟐𝝎𝒄𝒕 + 𝝋𝒄 + 𝝋𝒌)] +    (8.73) 

                                            
𝐴𝑛

2
[𝑠𝑖𝑛(𝜔0𝑡 + 𝜑𝑐 + 𝜑𝑘) − 𝑠𝑖𝑛(2𝜔𝑐𝑡 + 𝜑𝑐 − 𝜑𝑘)]        

 Equation (8.73) shows that an Offset, is also decomposed as a sum of a 

Phase & an Amplitude Noise. 

 

8.4 Integration Band for Sin and Square Signal 
 

The objective of this section is to define the integration band for a sinusoidal 

signal, and the integration band for a square signal. 

The schematic used to create jitter is given in Fig 8-12: 

 

Figure 8-12: Convert Noisy Sinusoidal signal to Noisy Square Signal 
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The TIE jitter is the same for SIN & SQUARE signals. We know that for a 

sinusoidal signal we integrate the noise up to infinite. We will define the integration 

band of a square signal, so the power of the noise (and the RMS Jitter) included in 

the integration band is same as the one of the sinusoidal signal. 

We make the hypothesis that for a square signal, we integrate up to 2*Fc. 

In this section, we will try to demonstrate that our hypothesis is exact, and that 

for a square signal, we should integrate the noise from 0 up to 2*Fc. 

Simulations on ELDO, VERILOG-A and MATLAB are given in Annexe 8.4.5 to 

support the different mathematical results. 

8.4.1 Let’s consider a phase noise @ 𝝎𝒎𝟏, with 𝟎  < 𝝎𝒎𝟏 <   𝑭𝒄 
 

First of all we take a noise found at an offset of ω1 from the carrier frequency. 

We apply it to a sinusoidal and to a square signal.  

The noisy sinusoidal signal is expressed as: 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚1𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚1𝑡 + 𝜑𝑚))          (8.74) 

The Carrier amplitude is:  𝐴𝑐 = 𝑉0              The Noise amplitude is:  𝐴𝑛1 =
𝑉0𝛽

2
 

RMS Jitter is found from −∞ to ∞. The frequency representation of the 

sinusoidal modulated signal is given in Fig 8-13. 

 

Figure 8-13: Frequency representation of the sinusoidal modulated signal 
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The jitter RMS of this noise is:   

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=

√[(
𝐴𝑛1
𝐴𝑐

)2+(
−𝐴𝑛1

𝐴𝑐
)2+ (

𝐴𝑛1
−𝐴𝑐

)2+(
−𝐴𝑛1
−𝐴𝑐

)2 ]

2𝜋𝐹𝑐
=

√4∗
𝐴𝑛1

2

𝐴𝑐
2

2𝜋𝐹𝑐
=

2∗
𝐴𝑛1
𝐴𝑐

2𝜋𝐹𝑐
=

2∗
𝛽

2

2𝜋𝐹𝑐
=  

𝛽

2𝜋𝐹𝑐
 (8.75) 

The noisy square signal is expressed as: 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑉0

4

𝜋
(𝑠𝑖𝑛(𝜔𝑐𝑡 )) + 𝑉0

4𝛽

2𝜋
(𝑠𝑖𝑛(𝜔𝑐𝑡  + 𝜔𝑚1𝑡) − sin(𝜔𝑐𝑡 − 𝜔𝑚1𝑡)) +    (8.76) 

                            
𝑉0

3

4

𝜋
(𝑠𝑖𝑛(3𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(3𝜔𝑐𝑡  + 𝜔𝑚1𝑡) − 𝑠𝑖𝑛 (3𝜔𝑐𝑡 − 𝜔𝑚1𝑡)) +   

                            
𝑉0

5

4

𝜋
(𝑠𝑖𝑛(5𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(5𝜔𝑐𝑡  + 𝜔𝑚1𝑡) − 𝑠𝑖𝑛 (5𝜔𝑐𝑡 − 𝜔𝑚1𝑡)) + ⋯  

Check Annexe 8.2 for more information. 

The frequency representation of the square modulated signal is given in Fig 8-14. 

 

Figure 8-14: Frequency representation of the square modulated signal 

 

The RMS Jitter (TIE) of the square signal should be same as the one of the 

sinusoidal signal. We will try to define integration band for which these 2 noises are 

equal.  
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For Harmonic 1 

First of all we calculate the noise around Harmonic 1, with integration band 

from 0 to 2*Fc frequency. 

The Carrier amplitude is:  𝐴𝑐 = 𝑉0
4

𝜋
            The Noise amplitude is:   𝐴𝑛1 = 𝑉0

4𝛽

𝜋2
 

The frequency representation of the square modulated signal with the 

integration band is given in Fig 8-15. 

 

Figure 8-15: Freq. rep. of square modulated signal with Integration band 0->2*Fc 

 

The jitter RMS found from 0 to 2*Fc:  

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=

√2∗[(
𝐴𝑛1
𝐴𝐻1

)2+(
−𝐴𝑛1
𝐴𝐻1

)2]

2𝜋𝐹𝑐
=  

2∗
𝐴𝑛1
𝐴𝐻1

2𝜋𝐹𝑐
=  

2∗
𝛽

2

2𝜋𝐹𝑐
=  

𝛽

2𝜋𝐹𝑐
                                  (8.77) 

The multiplication by ‘2’, is done in order to take in account negative frequencies. 
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We remark that when “0  < 𝜔𝑚1 <   𝐹𝑐” the global jitter of sinusoidal signal 

(8.75) is equal to the jitter included around H1 for the square signal, from 0 to 2Fc 

(8.77). The example of a phase noise @ ω2, with 𝜔𝑚2 > 𝐹𝑐, is given in Annexe 8.4.4. 

8.4.2 Explaining why all noise spurs (with different ωm) are found between 
0 and 2*Fc frequencies. 

 

The objective of this section, is to show that a noise at any offset, is aliased 

between 0 and 2*Fc frequency. 

Let’s consider we have a square signal, with a noise spur ωm. Let’s 

consider that ωm is found between (n-1)*ωc and n*ωc frequency. The noisy 

square signal is expressed as: 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑉0

4

𝜋
(𝑠𝑖𝑛(𝜔𝑐𝑡 )) + 𝑉0

4𝛽

2𝜋
(𝑠𝑖𝑛(𝜔𝑐𝑡  + 𝜔𝑚𝑡) − sin(𝜔𝑐𝑡 − 𝜔𝑚𝑡)) +       (8.78) 

                      
𝑉0

3

4

𝜋
(𝑠𝑖𝑛(3𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(3𝜔𝑐𝑡  + 𝜔𝑚𝑡) − 𝑠𝑖𝑛 (3𝜔𝑐𝑡 − 𝜔𝑚𝑡)) + ⋯ +   

                      
𝑉0

𝑛

4

𝜋
(𝑠𝑖𝑛(𝑛 ∗ 𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(𝑛 ∗ 𝜔𝑐𝑡  + 𝜔𝑚𝑡) − 𝒔𝒊𝒏 (𝒏 ∗ 𝝎𝒄𝒕 − 𝝎𝒎𝒕)) + ⋯  

 

If “(𝐧 − 𝟏) ∗ 𝛚𝐜  < 𝛚𝐦 <   𝐧 ∗ 𝛚𝐜”: 

In Fig 8-16 we show only the noise spur, corresponding to the H1 Frequency: 

 

Figure 8-16: Frequency representation – Noise spurs corresponding to H1. 
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Then, from (8.78) we remark that for the n’th harmonic, the corresponding 

noise is expressed as: 

𝑉0

𝑛

4

𝜋
(𝑠𝑖𝑛(𝑛 ∗ 𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(𝑛 ∗ 𝜔𝑐𝑡  + 𝜔𝑚𝑡) − 𝒔𝒊𝒏 (𝒏 ∗ 𝝎𝒄𝒕 − 𝝎𝒎𝒕)) + ⋯        (8.79) 

We find the aliasing frequencies for 1 of the 2 spur noises of (8.80): 

−𝐬𝐢𝐧 (𝐧 ∗ 𝛚𝐜𝐭 − 𝛚𝐦𝐭))  ≡  −sin ((𝑛 ∗ 𝜔𝑐 − 𝜔𝑚) ∗ 𝑡)                                                 (8.80) 

We know that (n − 1) ∗ ωc < ωm <  n ∗ ωc,                                                           (8.81) 

so ωm =  (n − 1) ∗ ωc +  𝛥𝜔𝑚 with “0 <  𝛥𝜔𝑚 <   𝐹𝑐” 

 

−𝐬𝐢𝐧 (𝐧 ∗ 𝛚𝐜𝐭 − 𝛚𝐦𝐭))   ≡  −𝑠𝑖𝑛 ((𝑛 ∗ 𝜔𝑐 − ((𝑛 − 1) ∗ 𝜔𝑐 +  𝛥𝜔𝑚)) ∗ 𝑡)    with “0  < 𝛥𝜔𝑚 <   𝐹𝑐”  (8.82)           

                                               ≡  −𝑠𝑖𝑛 ((𝜔𝑐 +  𝛥𝜔𝑚)) ∗ 𝑡)                      with “0  < 𝛥𝜔𝑚 <   𝐹𝑐”   

So one of the noise spurs corresponding to an n’th harmonic (8.79), is aliased 

as a noise between 0 and 2*Fc (8.82).  

In Fig 8-17 we show the aliased spur noise: 

 

Figure 8-17: Frequency representation – Noise spurs aliased from 0 to 2*Fc. 
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8.4.3 Let’s consider a spectrally flat phase noise profile (up to n*Fc) 
 

The objective of this section, is to show that for a noise profile from −∞ to +∞, 

the integration band on the square signal ∫ 𝑁𝑜𝑖𝑠𝑒𝑠𝑞𝑢𝑎𝑟𝑒
2𝐹𝑐

0
, is equal to the integration 

band on the sinusoidal signal ∫ 𝑁𝑜𝑖𝑠𝑒𝑠𝑖𝑛
+∞

−∞
. 

The noisy sinusoidal signal: 

The noise on the sinusoidal signal is presented in Fig 8-18:  

 

Figure 8-18: Frequency representation – Spectrally Flat Noise on Sinusoidal Signal. 

If we present negative frequencies also, we will get Fig 8-19: 

 

Figure 8-19: Freq. representation of flat noise on Sin. Signal with negative Freq. 

So the total RMS jitter, of the sinusoidal noisy signal will be: 
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𝐽𝑖𝑡𝑡𝑒𝑟𝑅𝑀𝑆 =
∫ 𝑁𝑜𝑖𝑠𝑒𝑠𝑖𝑛

+∞
−∞

2𝜋𝐹𝑐
=  

√∑ 𝑁𝑜𝑖𝑠𝑒𝑘
2∞

𝑘=1

2𝜋𝐹𝑐
=

√4∗(𝑛1
2+𝑛2

2+𝑛3
2+𝑛4

2+𝑛5
2+𝑛6

2 +⋯ )

2𝜋𝐹𝑐
               (8.83) 

The noisy square signal: 

The noise on the square signal is presented as in Fig 8-20:  

 

Figure 8-20: Freq. representation of flat noise on Square Signal with negative Freq. 

 

So the total RMS jitter, of the sinusoidal noisy signal will be: 

𝐽𝑖𝑡𝑡𝑒𝑟𝑅𝑀𝑆 =  
∫ 𝑁𝑜𝑖𝑠𝑒𝑠𝑞𝑢𝑎𝑟𝑒

2𝐹𝑐
0

2𝜋𝐹𝑐
=  

√2∗∑ 𝑁𝑜𝑖𝑠𝑒22𝐹𝑐
0

2𝜋𝐹𝑐
=

√2∗(2∗(𝑛1
2+𝑛2

2+𝑛3
2+𝑛4

2+𝑛5
2+𝑛6

2 +⋯ ))

2𝜋𝐹𝑐
   (8.84) 

𝐽𝑖𝑡𝑡𝑒𝑟𝑅𝑀𝑆 =  
√4∗(𝑛1

2+𝑛2
2+𝑛3

2+𝑛4
2+𝑛5

2+𝑛6
2 +⋯ )

2𝜋𝐹𝑐
                                                           (8.85) 

 We remark that (8.85), is equal to (8.83). 

This proves that our hypothesis is correct. The noise for a square signal 

should be integrated from 0 to 2*Fc. 
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8.4.4 Phase noise @ 𝝎𝒎𝟐, with 𝝎𝒎𝟐 >   𝑭𝒄 
 

Now we will consider a noise found at an offset of ω2 from the carrier 

frequency. We apply it to a sinusoidal and to a square signal.  

The noisy sinusoidal signal is expressed as: 

𝑉(𝑡) = 𝑉0𝑠𝑖𝑛 (𝜔𝑐𝑡) +
𝑉0𝛽

2
(−𝑠𝑖 𝑛(𝜔𝑐𝑡 − 𝜔𝑚2𝑡 − 𝜑𝑚) + 𝑠𝑖𝑛(𝜔𝑐𝑡 + 𝜔𝑚2𝑡 + 𝜑𝑚))        (8.86) 

The Carrier amplitude is:  𝐴𝑐 = 𝑉0             The Noise amplitude is:  𝐴𝑛2 =
𝑉0𝛽

2
 

RMS Jitter is found from −∞ to ∞. This is represented with Fig 8-21: 

 

Figure 8-21: Phase Noise Modulation for Sinusoidal Signal 

 

The jitter RMS of this noise is:   

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=

√[(
𝐴𝑛2
𝐴𝑐

)2+(
−𝐴𝑛2

𝐴𝑐
)2+ (

𝐴𝑛2
−𝐴𝑐

)2+(
−𝐴𝑛2
−𝐴𝑐

)2 ]

2𝜋𝐹𝑐
=

√4∗
𝐴𝑛2

2

𝐴𝑐
2

2𝜋𝐹𝑐
=

2∗
𝐴𝑛2
𝐴𝑐

2𝜋𝐹𝑐
=

2∗
𝛽

2

2𝜋𝐹𝑐
=  

𝛽

2𝜋𝐹𝑐
 (8.87) 
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The noisy square signal is expressed as: 

𝑥𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑜𝑖𝑠𝑒
=  𝑉0

4

𝜋
(𝑠𝑖𝑛(𝜔𝑐𝑡 )) + 𝑉0

4𝛽

2𝜋
(𝑠𝑖𝑛(𝜔𝑐𝑡  + 𝜔𝑚2𝑡) − sin(𝜔𝑐𝑡 − 𝜔𝑚2𝑡)) +    (8.88) 

                             
𝑉0

3

4

𝜋
(𝑠𝑖𝑛(3𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(3𝜔𝑐𝑡  + 𝜔𝑚2𝑡) − 𝑠𝑖𝑛 (3𝜔𝑐𝑡 − 𝜔𝑚2𝑡)) +   

                             
𝑉0

5

4

𝜋
(𝑠𝑖𝑛(5𝜔𝑐𝑡 )) + 𝑉0  

4𝛽

2𝜋
(𝑠𝑖𝑛(5𝜔𝑐𝑡  + 𝜔𝑚2𝑡) − 𝑠𝑖𝑛 (5𝜔𝑐𝑡 − 𝜔𝑚2𝑡)) + ⋯  

 

This is represented with Fig 8-22: 

 

Figure 8-22: Phase Noise Modulation for Square Signal 

 

The RMS Jitter (TIE) of the square signal should be same as the one of the 

sinusoidal signal. We will try to define integration band for which these 2 noises are 

equal.  
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For Harmonic 1 

The Carrier amplitude is:  𝐴𝑐 = 𝑉0
4

𝜋
            The Noise amplitude is:  𝐴𝑛2 = 𝑉0

4𝛽

𝜋2
 

RMS Jitter is found from 0 to 2*Fc. This is represented with Fig 8-23: 

 

Figure 8-23: Phase Noise Modulation for Square Signal – Integration Band 0->2*Fc 

 

The jitter RMS is found from 0 to 2*Fc:   

𝑅𝑀𝑆𝐽𝑖𝑡𝑡𝑒𝑟𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑢𝑟𝑠
=

√2∗[(
𝐴𝑛2
𝐴𝐻1

)2+(
−𝐴𝑛2
𝐴𝐻1

)2]

2𝜋𝐹𝑐
=  

2∗
𝐴𝑛2
𝐴𝐻1

2𝜋𝐹𝑐
=  

2∗
𝛽

2

2𝜋𝐹𝑐
=  

𝛽

2𝜋𝐹𝑐
                                  (8.89) 

 

We remark that when “𝜔𝑚2 >   𝐹𝑐” the global noise of sinusoidal signal is equal 

to the noise included around H1 for the square signal, from 0 to 2Fc. 

 This demonstrates that for any 𝜔𝑚, the noise spur is aliased from 0 to 2*Fc. 
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8.4.5 Simulations of noisy Sinusoidal / Square signal 
 

The objective of this part is to study noise impact in sinusoidal and square 

signals, and confirm the integration bandwidths of sinusoidal/square signals, through 

different simulations. 

3 types of simulations were done: 

 Eldo simulations.  

 Verilog-A simulations. 

 Matlab simulations. 

 

8.4.5.1 Eldo Simulation 

The following simulation schematic Fig 8-24 was done in Eldo: 

 

Figure 8-24: Eldo Simulation Schematic 

 

The Oscillator block (VCO or crystal) generates a sinusoidal signal with a 

phase noise. The signal is sent to the transmitter thanks to a buffer. This buffer 

converts the sinusoidal signal into a square one. This schematic is equivalent to Fig 

8-12. The TIE jitter for the sinusoidal signal and for the square signal should be 

same. 
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As seen in (2.22), we consider that the noise is constituted of Phase Noise & 

Amplitude Noise   (50% - 50%) 

We show on same graph, Fig 8-25, Phase & Amplitude Noise, for Sinusoidal 

and Square signal. 

 

Figure 8-25: Amplitude & Phase noise for Sinusoidal/Square signal 

We see in Fig 8-25 that we have the same level of amplitude & phase noise for 

sinusoidal signal (50%-50%). This is normal, and is in correlation with (2.22).  

For square signal, phase noise profile is “higher” than the one of the sinusoidal 

signal and amplitude noise profile much lower (and decreasing). This is in correlation 

with explications in Annexe 8.2. 

Above results are in correlation with Annexe 8.4.3. Because of the aliasing, 

the phase noise floor increases for the square signal. 

Explain the fact that the phase noise floor increases for square signal. 

The Noise Transfer function of a square signal is given in Fig 8-26: 

 

Figure 8-26: Noise Transfer Function of a square signal 

If we calculate its FFT, and convolute with Phase Noise profile, we will have 

the impact of Fig 8-27:  



135 

 

 

Figure 8-27: Convolute Phase noise profile with Noise Transfer Function FFT 

 

As shown in Fig 8-27 we suppose that the quadratic sum of the aliasing noise 

powers will increase the phase noise profile for the square signal.  

8.4.5.2 Verilog-A Simulation 
 

To be sure we have only phase noise on the square signal, we use a Verilog-A 

VCO. We do a noisetran simulation to extract the TIE and an eye diagram. We use a 

resistor to generate the noise, as the noisetran doesn’t support the noise table 

definition.  

The results of the time simulations and the FFT of sin/square signals are given 

in Fig 8-28: 

 

 

Figure 8-28: Sin/Square Signals Eye Diagrams & FFT 

 

We remark in Fig 8-28 that noise floor is higher for square signal. (same 

conclusion as with Eldo Simulation of Fig 8-25).  
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The next step is to verify that the TIE Jitter is the same for sinusoidal and 

square signal. We show in Fig 8-29 the results of the TIE jitter for Sinusoidal and 

Square signal: 

 

Figure 8-29: Sin/Square Signals TIE Jitter 

We remark that the TIE Jitter is same, for sinusoidal & square signal. So the 

fact that the phase noise profile increases for the square signal, will not increase the 

TIE Jitter.  

8.4.5.3 How to explain the fact that jitter is the same with sinusoidal & square 
signal? 

 

The easiest explication is given with the graph of Fig 8-30: 

 

 

Figure 8-30: TIE for SIN/SQUARE signal 

 

If we multiply the noisy sinusoidal signal by 5: 0V x 5 gives always 0V. The 

square signal will cross the 0V at the same time than the noisy sinusoidal signal. So 

there is no reason to change the TIE value. 
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8.4.5.4 Matlab Simulation 

We will try to verify by Matlab simulations, that for square signal, noise is 

integrated up to 2*Fc. This is done in several steps: 

 We create a square signal 

 We create Phase Noise (limited within Fmin and Fmax) 

 We realize frequency domain jitter calculations 

 We realize time domain jitter calculations (independent to the frequency 

domain ones) 

 Comparison of results is done.  

8.4.5.4.1 Creating Square Noisy Signal: 

 

As shown in 2.4.2, the amplitude noise has no impact in TIE jitter. We will 

create a square signal from a phase noise modulated sinusoidal signal, with a given 

Gain & Threshold, as shown in Fig 8-31: 

 

 

Figure 8-31: Creating Square Signal from Sinusoidal signal 

 

In order to transform noisy Sinusoidal Signal into Square one, we used 

following equations: 

𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑎 ∗ cos (2𝜋𝐹𝑐𝑡 + 𝑃ℎ𝑎𝑠𝑒𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡))                                        (8.90) 

𝑆𝑞𝑢𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐺𝑎𝑖𝑛 ∗ 𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙𝑠𝑖𝑔𝑛𝑎𝑙     (limited @ ±Threshold)                        (8.91) 

  



138 

 

In next step, we will check that we have the same noise power for sinusoidal 

or square signal, inside the integration bands we made hypothesis on. 

 For sinusoidal signal we will integrate noise up to infinite. 

 For square signal we will integrate noise up to 
𝐹𝑐

2
. 

8.4.5.4.2 Creating Frequency Limited Phase Noise: 

 

In order to verify the Integration band, we do following steps: 

 First of all we create time random phase noise. 

 We calculate FFT of these phase noise, to have their frequency position. 

 Then we filter the phase noise frequencies, in order to have the noise only 

included between a defined minimum and maximum frequency band, as 

shown in Fig 8-32.  

 

 

Figure 8-32: Creating frequency filtered phase noise 

 

 At the end IFFT is calculated, to have the time phase noise values, included 

between Fmin and Fmax.  
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 Then the time sinusoidal signal is modulated with above calculated phase 

noise: 

𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙𝑛𝑜𝑖𝑠𝑦𝑠𝑖𝑔𝑛𝑎𝑙
=  𝛼sin (𝜔𝑐𝑡 + 𝑃ℎ𝑎𝑠𝑒𝑀𝑜𝑑𝑁𝑜𝑖𝑠𝑒

(𝑡))                                           (8.92) 

 Next step is to calculate square signal. This is done same as in (8.91). 

At this point we have a sinusoidal signal, and a square signal, both phase 

modulated with a defined specific phase noise. 

In order to calculate the power of each signal, we calculate the FFT of the sinusoidal 

& square signal.  

The result is given in Fig 8-33. As seen In Annexes 8.4.5.1, we remark that 

the profile of phase noise of the square signal is higher than the one of the sinusoidal 

signal. 

 

 

Figure 8-33: FFT of Sinusoidal & Square Noisy Signal - Matlab 

 

This simulation is done for different noise frequency bands, in order to verify 

that the integration hypothesis is correct. 

As example, we filtered phase noise for bands of noise from 0 to 10*Fc.  

In all simulation tests, we measured power of noise for sinusoidal signal with 

integration band −∞ → +∞ (including negative frequencies, not shown on the graph), 

and for square signals, with integration band 0 → 2 ∗ 𝐹𝑐 as in Fig 8-34. 
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Figure 8-34: FFT of Sinusoidal & Square Noisy Signal - Matlab 

 

Sinusoidal signal power in dBc is calculated with equation (8.93). 

𝑃𝑜𝑤𝑒𝑟𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙𝑁𝑜𝑖𝑠𝑒
(𝑑𝐵𝑐) =  √

2∗∑ 𝑆𝑖𝑛𝑆𝑖𝑔𝑛𝑎𝑙𝑁𝑜𝑖𝑠𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑃𝑜𝑤𝑒𝑟

∞
0

𝑆𝑖𝑛𝑆𝑖𝑔𝑛𝑎𝑙𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑃𝑜𝑤𝑒𝑟

                            (8.93) 

 

Square signal power in dBc is calculated with equation (8.94). 

𝑃𝑜𝑤𝑒𝑟𝑆𝑞𝑢𝑎𝑟𝑒𝑁𝑜𝑖𝑠𝑒
(𝑑𝐵𝑐) =  √

2∗(2∗∑ 𝑆𝑞𝑢𝑎𝑟𝑒𝑆𝑖𝑔𝑛𝑎𝑙𝑁𝑜𝑖𝑠𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐶𝑎𝑟𝑟𝑖𝑒𝑟

2∗𝐹𝑐
0 )

𝑆𝑞𝑢𝑎𝑟𝑒𝑆𝑖𝑔𝑛𝑎𝑙𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐1𝑃𝑜𝑤𝑒𝑟

                           (8.94) 

In all simulations the power of noise was the same with sinusoidal/square 

signals.  

This is a first proof that our hypothesis is correct. 

The next step will be to calculate jitter in time/frequency domain, and compare 

them in order to see if we find the same jitter or not. 
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8.4.5.4.3 Frequency Domain Calculations: 

The FFT of both signals is calculated, and given in Fig 8-35: 

 

 

Figure 8-35: FFT of Sinusoidal & Square Noisy Signal - Matlab 

 

For the sinusoidal signal we integrate up to infinite. For the square signal, up 

to Fc offset from Fc frequency (so up to 2*Fc). 

Then we use equations to calculate Jitter: 

𝑁𝑜𝑖𝑠𝑒𝑆𝑖𝑛𝑆𝑖𝑔 =  √
2∗𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝑆𝑖𝑛𝑆𝑖𝑔

𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑟𝑟𝑖𝑒𝑟

                           𝑁𝑜𝑖𝑠𝑒𝑆𝑞𝑢𝑎𝑟𝑒𝑆𝑖𝑔 =  √
2∗𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝑆𝑞𝑢𝑎𝑟𝑒𝑆𝑖𝑔

𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑟𝑟𝑖𝑒𝑟

    

𝐽𝑖𝑡𝑡𝑒𝑟𝑅𝑀𝑆𝑆𝑖𝑛𝑆𝑖𝑔
=  

𝑁𝑜𝑖𝑠𝑒𝑆𝑖𝑛𝑆𝑖𝑔

2𝜋𝐹𝑐
= 123𝑝𝑠                   𝐽𝑖𝑡𝑡𝑒𝑟𝑅𝑀𝑆𝑆𝑖𝑛𝑆𝑖𝑔

=  
𝑁𝑜𝑖𝑠𝑒𝑆𝑖𝑛𝑆𝑞𝑢𝑎𝑟𝑒

2𝜋𝐹𝑐
= 123𝑝𝑠 

So we remark that the results are equal. 

 

8.4.5.4.4 Time Domain Calculations: 

 

We measure the TIE of time sine & square signals. This is done by measuring 

the transition positions. Then we measure the standard deviation of the TIE of both 

signals. Results are given as follow: 

𝜎𝑆𝑖𝑛𝑆𝑖𝑔 = 𝑆𝑡𝑑(𝑆𝑖𝑛𝑇𝐼𝐸) = 123𝑝𝑠                              𝜎𝑆𝑞𝑢𝑎𝑟𝑒𝑆𝑖𝑔 = 𝑆𝑡𝑑(𝑆𝑞𝑢𝑎𝑟𝑒𝑇𝐼𝐸) = 123𝑝𝑠 
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8.4.5.5 Resuming Table: 
 

 

We see on following Table 8-1, that for different noise filtering profiles, results 

between SIN or SQUARE RMS Jitter are same: 

Table 8-1: Square Signal vs Time Signal Jitter 

 
 

The Table 8-1 confirms the theoretical equations. 

We must integrate: 

 Up to infinite for sinusoidal signal 

 Up to 2Fc for square signal 

 

8.5 Convolution of different Diracs: 

In this section we give different examples of convolutions between different. 

8.5.1 Convolution of two deterministic jitters: 

The first step of our method (2.5.2) consists in defining the total deterministic 

jitter. This is done by convolving all DJ together. An example of the convolution 

between two DJ spurs is given in Fig 8-36. 
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Figure 8-36: Convolution of two DJ Jitters 

 Step 1 consists in defining the Diracs of the two DJ jitters who will be 

convolved. All Jitter Diracs are normalized at 1, as given in (8.95). 

∑ 𝐷𝑖𝑟𝑎𝑐𝑠 = 1                   (8.95) 

Step 2 convolves each Dirac of DJ2 with all Diracs of DJ1.  

 The X-axis position of the convolved vector will be the sum of X-positions of 

DJ1 and X-positions of DJ2. 

 The Y-axis will be the multiplication of Y values of DJ1 and Y values of DJ2. 

 

8.5.2 Convolution of 1*1 Diracs: 

8.5.2.1 Example 1 

Here we convolve 2 Dirac spurs with each other: 

The 1st Dirac is found at 0ps.  

The 2nd Dirac is found at 7ps. 

The convolved Dirac is supposed to be found at 7ps (as given in Section 8.5.1, 

its X position is the sum of X-positions of the 2 other Diracs. So 0ps + 7ps = 7ps). 

 The result of the convolution is given in Fig 8-37.  
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Figure 8-37: Example 1 - Convolution of 1*1 Dirac 

 As expected, we remark that the convolved Dirac result is found at 7ps of X 

axis position. 

8.5.2.2 Example 2: 

Here we convolve 2 Dirac spurs with each other: 

The 1st Dirac is found at -5.5ps.  

The 2nd Dirac is found at 7ps. 

The convolved Dirac is supposed to be found at 1.5ps (X position is the sum of 

X-positions of the 2 other Diracs. So -5.5ps + 7ps = 1.5ps). 

 The result of the convolution is given in Fig 8-38.  

 

Figure 8-38: Example 2 - Convolution of 1*1 Dirac 



145 

 

As expected, we remark that the convolved Dirac result is found at 1.5ps of X 

axis position. 

8.5.3 Convolution of multi*1 Diracs: 

8.5.3.1 Example 1 

Here we convolve 2 Dirac spurs with each Other: 

The 1st Dirac of DJ1 is found at -7.5ps.  

The 2nd Dirac of DJ1 is found at -5.5ps.  

The 1st Dirac of DJ2 is found at 7ps. 

The convolved Diracs are supposed to be found at -0.5ps and 1.5ps (its X 

Position is the sum of X-positions of the 2 other Diracs. So -7.5ps + 7ps = -0.5ps and 

-5.5ps + 7ps = 1.5ps). 

 The result of the convolution is given in Fig 8-39.  

 

Figure 8-39: Example 1 - Convolution of multi*1 Dirac 

 As expected, we remark that the convolved Dirac results are found at -0.5ps 

and 1.5ps of X axis positions. 

8.5.4 Conclusion 

These examples prove that convolutions are done correctly between all Dirac 

spurs of the different DJ jitters. 
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List of acronyms 
 

BER  Bit Error Rate 

BW  Bandwidth 

CDF  Cumulated Density Function 

CCDF  Complementary Cumulated Density Function 

CDR  Clock and Data Recovery 

CL  Closed Loop 

CTLE  Continuous Time Linear Equalization 

DCD  Duty Cycle Distortion 

DJ  Deterministic Jitter 

DFE  Decision Feedback Equalization 

FFT  Fast Fourier Transform 

FoM  Figure of Merit 

H1  1st Harmonic  

HSSLs High Speed Serial Links 

IFFT  Inverse Fast Fourier Transform 

IIR  Infinite Impulse Response 

LPF  Low Pass Filter 

OL  Open Loop 

PCIe  PCI-Express 

PDF  Probability Density Function 

PFD  Phase-Frequency Detector 

PLL  Phase Locked Loop 

PP  Peak-to-Peak 

PSD  Power Spectral Density 

REF  Reference Clock 
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RF  Radio Frequency 

RJ  Random Jitter 

RMS  Root Mean Square 

RX  Receiver 

SD  Sigma-Delta 

SJ  Sinusoidal Jitter 

SSB  Single Side Banded 

SSC  Spread Spectrum Clocking 

TCL  Time Lag Correlation 

TF  Transfer Function 

TIE  Time Interval Error 

TJ  Total Jitter 

TX  Transmitter 

USB  Universal Serial Bus 

VCO  Voltage Controlled Oscillator 
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Résumé de la thèse: 

 

La vitesse des liens séries haut débit (USB, SATA, PCI-express, etc.) a atteint 

des débits de plusieurs gigabits par seconde, et continue à augmenter. Deux des 

principaux paramètres électriques utilisés pour caractériser les performances des 

SerDes sont le jitter transmis à un niveau de taux d’erreur donné et la capacité du 

récepteur à suivre le jitter à un taux d’erreur donné.   

 

Modéliser le bruit de phase des différents composants du SerDes et extraire le 

jitter temporel pour le décomposer, aideraient les ingénieurs en conception de 

circuits à atteindre des meilleurs résultats pour les futures versions des SerDes. De 

plus, générer des patterns de jitter correspondant à des bruits blancs ou colorés 

permettrait de mieux analyser ces effets dans le système pendant la phase de 

vérification.  

 

La boucle d’asservissement de phase (PLL) est un des contributeurs 

principaux du jitter d’horloge aléatoire et déterministe à l’intérieur du système. 

Pendant les 3 années de recherche j’ai développé une méthode pour modéliser la 

PLL (en temporel et en fréquentiel) avec injection du bruit de phase et estimation du 

jitter.  

 

Nous avions 3 objectifs principaux pour notre étude : 

 Notre 1er objectif était d’acquérir une connaissance solide sur le jitter, le bruit 

de phase et l’analyse temps/fréquence. 

 Notre 2ème objectif était de fournir aux designers des outils pendant la phase 

de design, pour contraindre le système proprement et estimer le jitter de 

chaque sous-bloc de la PLL.  

 Notre 3ème objectif était de fournir aux designers des outils pendant la phase 

de validation du circuit pour décomposer le jitter en aléatoire (RJ) et 

déterministe (DJ), et identifier les sources de ce dernier afin d’améliorer les 

performances du système.  



157 

 

J’ai donc développé un modèle de la PLL dans le domaine fréquentiel. Les 

profils de bruits de phase correspondant à chacun des sous-blocs de la PLL sont 

obtenus à partir de simulations ELDO. Le modèle fréquentiel est un modèle petit 

signal qui fonctionne avec des fonctions de transfert, et estime le jitter RMS du 

système, à la sortie de la PLL.  

 

 Pour pouvoir inclure les non-linéarités de la boucle, et estimer le jitter 

temporel, j’ai créé un modèle temporel de la PLL. Les caractéristiques de ce modèle 

sont les suivantes : 

 il convertit les profils de bruit de phase en jitter temporel.  

 ces jitters temporels correspondant à chacun des sous-blocs de la PLL sont 

injectés dans la boucle de la PLL. 

 Le modèle estime le jitter temporel à la sortie de la PLL. 

 Le jitter RMS peut être calculé avec l’écart-type du jitter temporel.  

 

Le modèle fréquentiel de la PLL nous a permis de valider le modèle temporel 

en termes de jitter RMS, en comparant les résultats, avec une différence maximale 

de 1.6%. 

 

A partir de mesures en laboratoire d’un transmetteur (TX d’un SerDes) nous 

pouvons observer deux caractéristiques : 

 Le jitter a un profil spectral coloré.  

 Le jitter a des propriétés de distribution Gaussienne. 

 

Pour pouvoir analyser les caractéristiques d’un système SerDes, il est 

important de générer des patterns de jitter colorés avec une distribution Gaussienne. 

Ces patterns seront utilisés pour prédire l’impact du jitter sur les performances du 

système avec la simulation dans le domaine temporel pendant la phase de 

vérification. Ils seront également utilisés pour définir les budgets en termes de jitter, 

pour les différents blocs du système SerDes. 
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Nous avons proposé pour la 1ère fois dans la littérature une nouvelle méthode 

pour générer des patterns synthétiques de jitter avec une distribution Gaussienne à 

partir de profils de bruit de phase coloré.   

 

Les standards spécifient des budgets séparés pour le RJ et DJ. Pour 

décomposer et analyser le jitter de la sortie de la PLL en RJ & DJ, une nouvelle 

technique a été mise au point. Les résultats de modélisation corrèlent bien avec les 

mesures et cette technique aidera les ingénieurs de conception à identifier et 

quantifier proprement les sources du jitter ainsi que leurs impacts dans les systèmes 

SerDes. 

 

 Grace à ces modèles, nous avons développé une méthode pour spécifier la 

PLL en termes de bruit de phase.  Cette méthode est applicable à tout standard 

(USB, SATA, PCIe, …) et définit les profils de bruit de phase pour les différentes 

parties de la PLL, pour s’assurer que les requis des standards sont satisfaits en 

termes de jitter.  

 

 


