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 General Introduction 

Since the last century, the main energy sources have been fossil fuels (oil, gas and coal) which 

have led to economic concerns (limited resources) and ecological issues (global warming). 

With the rise of renewable energy sources (wind, sun, hydropower…), one of today’s 

challenges has been to create cheaper and more efficient technologies to store this intermittent 

energy (1, 2). Recently, another challenge has emerged with the popularization of 

rechargeable portable electronic devices (laptop, smart phone, etc.) that require increasing 

energy and power densities. Electrochemical energy storage solutions such as batteries and 

supercapacitors are environmentally friendly and have the advantage of excellent efficiency 

and adaptable scale (3-5). Batteries store the energy through electrochemical reduction and 

oxidation reactions while supercapacitors, also called electrochemical capacitors, store energy 

through double layer electrostatic interactions (6). 

The demand for higher energy and power densities is continuously increasing. Unfortunately, 

current commercial batteries and supercapacitors are not suitable to face future needs (5, 7). 

To be economically sustainable, electrode materials need to provide better performances at 

the same cost or lower. Indeed, commercial electrochemical capacitors suffer from low 

energy densities because they use activated carbon electrodes which store the energy only 

through double layer capacitance (4). In recent years it has been proposed that a promising 

method to reach higher energy densities with supercapacitors is to use pseudocapacitive 

materials that store energy through fast redox reactions. In a different manner, hybrid 

capacitors based on lithium ion battery technology are another solution proposed to increase 

the energy density. 

The work reported herein focuses on the electrochemical performances of a new family of 

material called MXene. MXenes are a family of two-dimensional transition metal carbides 
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which have shown promising results in the field of lithium ion battery application (8, 9). The 

motivation to study these materials is that their chemical composition are more diverse than 

carbon and contain transition metals that can allow redox reaction and higher energy density. 

In this work, we investigated a few members of this family; Ti3C2, Ti2C, Ti3CN, Nb2C, V2C, 

Ti1.5V1.5C2 and TiVC, in 3 different electrochemical storage devices; supercapacitors, sodium-

ion batteries and sodium-ion capacitors.  

The first chapter is a bibliographic review. We explain the principle of lithium ion batteries 

before focusing on the state of the art sodium ion batteries and electrochemical capacitors. 

Finally, a summary of the performance of various two-dimensional materials used for energy 

storage are given in the last part, before concluding with an introduction about the new family 

of MXene. 

The second chapter describes the experimental methods used. In particular, the MXene 

synthesis from the MAX phase is presented, as well as its delamination treatment. The basic 

principles of the electrochemical and material characterizations are also given. 

The third chapter focuses on the electrochemical performance of Ti3C2 as an electrode 

material for electrochemical capacitors in aqueous electrolytes. The spontaneous intercalation 

mechanism from aqueous electrolyte ion into MXene is described.  

The forth chapter starts with an overview of all synthetized MXene materials behavior upon 

sodium ion intercalation in half cell batteries. We identified V2C as a promising electrode for 

sodium-ion capacitor and further used V2C as a positive electrode in a full cell with hard 

carbon as the negative electrode. 

In the fifth chapter, MXene electrochemical behavior is investigated in organic electrolytes. 

The electrochemical storage mechanism is analyzed by in-situ X-ray diffraction. 

In the final part, the general conclusion and perspective of this work are presented. 
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Chapter I :  Bibliography 

I Electrochemical storage 

The first reported electrochemical storage device was a battery created by Alessandro Volta in 

1800 (10). It consisted of a zinc electrode and a copper electrode separated by a paper soaked 

with NaCl electrolyte. The mechanism taking place (oxidation of Zn and oxygen reduction at 

the Cu electrode) was not understood until 1834 when Michael Faraday demonstrated that the 

oxidation state of the Zn metal changed during the reaction. This discovery contributed to the 

creation of a new scientific field called Electrochemistry. The 19th and 20th centuries saw the 

development of electrochemical energy storage technologies such as batteries and 

supercapacitors.  

Among the numerous great improvements of batteries, some of the most notable are the 

development of the lead acid battery by Gaston Planté in 1859 , the Zn-MnO2 dry cell in 

1887, the first Nickel-Cadmium battery in 1899, the commercial success of alkaline battery in 

1959 and finally, after the discovery in 1980 of LiCoO2 as cathode material from J. 

Goodenough (11) and graphite as anode from B.Scrosati and others (12), SONY introduced 

the lithium ion battery to the market in 1991. The latter has revolutionized portable electronic 

devices (phone, laptop, etc.) and electric vehicles (Tesla).  

The research on supercapacitors is more recent with the first patent in 1957 from H. Becker at 

General Electrics, consisting of stainless steel electrodes in sulfuric acid electrolyte (13). 

However the charge mechanisms were not yet understood. Research done between 1966 and 

1970 at Sohio Corporation (Standard Oil Company Of Ohio) using graphite electrodes in 

organic electrolyte (14) revealed that the charge storage mechanism is due to the formation of 

double layer, the interphase of which was studied by Helmholtz in 1879 (15). Commercial 
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applications waited until 1982 by the Nippon Electric Company.  The first devices had low 

capacitances and low energy densities (0.5 Wh/kg) limiting their applications. Nevertheless, 

better products based on activated carbons were quickly commercialized by several 

companies that invested in the research, such as Panassonic, Elna, ECOND, Maxwell and 

Batscap. Different commercial electrochemical capacitors were produced for various 

applications, from transport (stop and go) to large scale stationary storage. Electrochemical 

capacitors based on another principle, called pseudocapacitance, have been studied as well 

(16). Conway was the first to describe oxide materials that store energy through fast faradaic 

reactions. Pseudocapacitor materials are typically transition metal oxides (RuO2, MnO2, V2O5, 

etc.) and electronically conducting polymers (polyaniline, polypyrrole, etc.) but no 

commercial application has emerged so far (4, 17). 

Nowadays, many different chemistries can be used for electrochemical energy storage devices 

that broaden the range of energy and power densities available, as shown Figure I.1. The 

energy and power stored are calculated according to: 

𝐸 =
1

2
𝐶 × ∆𝑉²                        Eq.1 

𝑃 = ∆𝑉²
4𝑅

                                  Eq.2 

Where: C is the capacitance of the cell (F), ΔV is the potential window (V) and R is 

equivalent series resistance (Ω). 

It appears that energy storage through faradaic oxidation-reduction reactions in batteries 

provides higher energy densities but lower power densities than devices that store energy 

through electrostatic interaction such as electrochemical capacitors. In the following, the 

scientific principles of lithium ion battery, sodium ion battery, electrochemical capacitors and 

hybrid capacitors are introduced.  
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Figure I.1: Ragone plot (specific power vs. specific energy) (adapted from (4)). 
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I. 1 Batteries 

As previously mentioned, there are many different types of batteries but all batteries store 

energy through faradaic oxidation-reduction reactions at the electrodes, as described in Figure 

I.2. In these devices two electrodes, negative and positive, are separated by an ion-conducting 

and electronic-insulating electrolyte. The oxidation states of the electrode active materials are 

modified by charge transfer during battery charge and discharge. When the two electrodes are 

connected, electricity is spontaneously generated (discharge). Oxidation of the active material 

occurs at the anode during discharge which generates electrons while reduction occurs at the 

cathode which consumes electrons. The reaction occurs until one electrode has totally reacted. 

The battery can be recharged by applying an external current. (18) 

 

Figure I.2: Schematic representation of a battery during discharge (A) and charge (B). 

 

 

Each electrodes material has characteristic electrode potential (noted E, expressed in V vs. 

SHE) and capacity (noted Q, expressed in mAh/g) determined according to the following 

equations (18) : 



Chapter I: Bibliography 

 

9 

 

𝐸 = 𝐸′° − 2,3 ×
𝑅𝑇
𝑛𝐹

𝑙𝑜𝑔(
𝜃

1−𝜃
)      Eq. 3  

𝑄 =
𝑛𝐹

3.6×𝑀
                                               Eq. 4  

Where: E’° is the standard potential of the redox couple (V vs. SHE), F is the Faraday 

constant (96485 C/mol), θ is the extent of fractional coverage of the surface of inner structure, 

R is the universal gas constant (8.314 J/K.mol), T is the absolute temperature (K), M is the 

molar mass (g/mol) and n is the number of moles of electrons transferred. 

In terms of electrochemical characterization, the behavior of a battery-type material is 

illustrated Figure I.3. The cyclic voltammetry and galvanostatic charge-discharge principles 

are extensively described in chapter 2. There are well defined potentials where the oxidation 

and reduction occurs that are identified by peaks in the cyclic voltammetry and by plateaus in 

the galvanostatic charge-discharge.  

 

Figure I.3: Typical behavior of a lithium-ion battery material during cyclic voltammetry (A) 

and galvanostatic charge-discharge measurement (B). 

 

Although various commercial battery systems exist based on various chemistries, we will only 

describe lithium ion and sodium ion batteries, the latter being under development. 
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I. 1-1 Lithium-ion batteries 

Lithium-ion batteries are the most advanced electrochemical energy storage technology in 

terms of performance (5). The advantage of this technology is its low cost, high energy 

density (>550Wh/L) and long cycle life (~ 1000 cycle). Figure I.4 is a schematic 

representation of a commercial lithium ion battery. It is composed of graphite as negative 

electrode, LiCoO2 (LCO) positive electrode and 1M LiPF6 as electrolyte. The reactions 

occurring at the electrodes are respectively (19): 

C6 + xe
-
 + xLi

+
 ↔ LixC6             (1) 

Li1-xCoO2 + xe
-
 + xLi

+ 
↔ LiCoO2 (2) 

Where x is the mole number.  

 These Li
+
 intercalation reactions lead to specific capacity up to 165 mAh/g and a voltage of 

4.1V.  Seen from (1) and (2) both electrodes can host lithium ions. This mechanism is called 

the rocking chair because the active Li ions are “transported” back and forth between the two 

electrodes during charge and discharge, as illustrated in Figure I.4. This mechanism is specific 

to ion battery technology that we will also observe in sodium ion batteries (19-21).  

 

Figure I.4: Schematic representation of a Li-ion battery during discharge (A) and charge (B). 

 



Chapter I: Bibliography 

 

11 

 

For the past few decades, extensive efforts have been focused on the improvement of 

materials’ capacities. The graphite anode in Li ion batteries suffers from irreversible capacity 

loss due to solid electrolyte interphase formation during cycling and has limited energy and 

power density. In addition, the LCO cathode is expensive, not thermally safe, and has short 

cycle life and low power density. Figure I.5 presents various electrodes proposed in the 

literature to replace current electrode materials.  The main alternatives are; LiMn2O4 (LMO), 

LiNiMnCoO2 (NMC) and LiFePO4 (LFP) (22, 23).  LMO is safer and has better power 

density than LCO but lower energy density and cycle life. NMC has high energy and high 

power densities however LFP is safer, has longer cycle life and possesses higher power 

density than all other Li-ion systems, but lower voltage and higher self-discharge (24). 

Materials for lithium ion battery are not the main focus here but other relevant materials will 

be presented in the second part of this chapter.  

 

Figure I.5: Voltage vs. Capacity of relevant positive and negative electrodes materials for 

lithium-ion battery (adapted from (1)).  
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I. 1-2 Sodium-ion batteries 

In recent years, there has been speculation concerning lithium reserves and its price (25, 26). 

The main producers are Talison in Australia, FMC in Argentina, SQM and Rockwood 

Lithium ion in Chile and Tianqi Lithium in China. An increase demand in lithium is predicted 

for the next few decades, especially driven with the need of large scale energy storage 

facilities and electric vehicles. Because lithium is not abundant and the resources are mainly 

located in emerging countries, it could create political tensions and increase the cost of 

metallic lithium and lithium salts. Even if it is uncertain that a lithium economic crisis will 

occur, these concerns have driven the researchers to study more sustainable alternative energy 

storage technologies. 

Since sodium is one of the most abundant elements on earth and homogenously distributed 

(see Table 1), it will not suffer from geopolitical issues (25-29). Moreover, the copper current 

collector that is required in lithium ion battery anode technology can be replaced by cheaper 

aluminum current collectors. Beside these advantages, it is important to know that the 

technology used in Li-ion batteries and Na-ion batteries are very similar. This has renewed the 

interest in the development of Na-ion technology (30-34). The advancement of Na-ion 

batteries faces several intrinsic challenges. First, the redox potential of Na
+
/Na is higher than 

Li
+
/Li, reducing the operating voltage. Then, the ionic radius is larger, meaning that many 

materials cannot reversibly host it (for example graphite), it can cause higher volumetric 

change, and reduce the ionic conductivity and diffusion. Because of these drawbacks, the 

firsts Na based systems that was developed in the 90’s had been disregarded, until recently 

(20, 21, 35-38). 
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Table 1: Comparison of lithium and sodium properties. 

 Li Na 

Abundance in Earth crust 20 ppm 23 000 ppm 

Average world production 24 600 tons 281 800 000 tons 

Specific capacity 3860 mAh/g 1160 mAh/g 

Redox potential -3.045 V vs. SHE -2.714 V vs. SHE 

Ionic radius 0.76 Å 1.02 Å 

 

One of the challenges that sodium-ion batteries are facing is the limited number of suitable 

negative materials. Graphite is the most commonly used negative electrode in Lithium-ion 

batteries. It has numerous advantages, such as a very competitive cost and reasonable capacity 

of 372 mAh/g. Although Na-ion technology is similar to that of Li-ion, unfortunately Na-ion 

do not intercalate into graphite (27-29). Several alternatives have been studied from carbon 

materials to alloys. The most notable anode materials, hard carbon and NaTiO2, are discussed 

here. A comparison between the different electrodes is shown at the end of this part, Figure 

I.7. 

Hard carbon, amorphous carbon synthetized by oxidation then carbonization under neutral 

flow, has been proposed as a negative electrode for sodium-ion batteries as early as in 2000 

by Dahn et al. (39). It has been later studied and improved by several independent groups, 

notably in 2002 by Thomas et al. (40), by Komaba in 2011 (41) and finally by Ponrouch et al. 

in 2013 (42). The later investigated the effect of the synthesis method to optimize the surface 

area, the porosity, the particle size and the degree of graphitization in order to obtain the best 

electrochemical performance, as shown in Figure I.6. Specific capacity up to 326 mAh/g at 

C/10 rate with excellent capacity retention (>100 cycles) and excellent rate capability (230 

mAh/g at 1C rate) were achieved by hard carbon prepared through a relatively cheap 

pyrolysis of sugar. These results are comparable to graphite in lithium ion battery. 
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Figure I.6: Electrochemical performance of hard carbon with different synthesis methods 

cycled in 1M NaClO4 in EC:PC vs. metallic Na: first cycle galvanostatic charge-discharge 

curves (A) and capacities vs. cycle number (B) (adapted from (42)). 

 

The other relevant negative electrode materials are early transition metal oxides, in particular 

Ti-based intercalation compounds, such as NaTiO2 and Na2Ti3O7. Xiong et al. showed 

promising results obtained from large NaTiO2 nanotube (lateral dimension >80 nm) (43). 

Capacity improved from 70 to 150 mAh/g after 15 cycles at C/3 rate when cycled between 1V 

and 2.5V vs Na
+
/Na. This was attributed to the fact that Na ion concentration on the surface is 

increasing upon cycling and suggests the need for pre-cycling a cell in some cases limiting 

commercial interest. Senguttuvan et al. reported on Na2Ti3O7 which is a very low voltage 

insertion compound (between 0.2 and 0.4 V vs. Na
+
/Na) (44). Capacity about 200 mAh/g at 

low rate (C/25 rate) was measured, corresponding to the insertion of 2 Na ions. But suffer 

from low rate capability and cycle life.  

Numerous studies have been done on cathode materials for lithium-ion battery and this is the 

reason most of the cathode  materials proposed for sodium-ion batteries are the sodiated 

counterpart of the well-studied layered transition metal oxides, olivines and compounds with 

the NASICON framework. 

Early research on transition metal oxides containing sodium, NaxMO2, were done in the 80’s 

by Delmas et al. (45). It was demonstrated that reversible insertion/deinsertion is feasible and 
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therefore extensive research on such structure has been done. The most studied metal oxides 

are NaxMnO2 and NaxCoO2 based materials (46-53). In these systems, capacities up to 140 

mAh/g at slow rates were obtained but on a large 2-3.8V potential range  numerous two-phase 

transition steps are observable which is undesirable for real devices.  

Olivine structured-materials have been extensively studied for lithium ion batteries, most 

notably LiFePO4 (54). Its sodium based analog, NaFePO4, has logically been proposed (55-

58). Although the capacities obtained, 125 mAh/g at C/20 rate, are comparable to the capacity 

obtained with LiFePO4 in lithium-ion battery (150 mAh/g) the same drawback associated with 

low potential is present.  

The NASICON, or Natrium super ion conductor, is a family of 3D structure with good 

structural stability and fast ion conduction. Several member of this family have been 

investigated, such as NaTi2(PO4)3, NaNbFe(PO4)3, Na2TiFe(PO4)3 , Na2TiCr(PO4)3 and 

Na3V2(PO4)3 (35, 59-61). Recently the effort focused on carbon-coated Na3V2(PO4)3 

demonstrated capacity up to 240 mAh/g when cycled between 3.8V and 1.5V at C/12.5 rate 

but a potential plateau at 1.6V vs Na
+
/Na was observed, which is neither cathodic nor anodic 

(61-65).  

Another important part of a battery is the electrolyte (41, 47, 66, 67). The most common 

electrolyte formulations found in the literature are similar to those used in lithium ion battery, 

replacing Li
+
 ions with Na

+
: NaPF6 or NaClO4 salts are dissolved in carbonate ester solvents 

such as propylene carbonate, ethylene carbonate or diethyl carbonate. The formation of the 

solid electrolyte interphase (SEI) in sodium-ion batteries has been less investigated than in 

Lithium-ion battery. It appeared that the SEI is not stable and homogeneous in these 

electrolytes causing coulombic inefficiency. Here also research efforts on electrolyte additives 

to stabilize the SEI have been inspired from Li-ion battery field. Ponrouch et al., proposed the 

addition of fluoroethylene (FEC) to stabilized the SEI film at the negative electrode and 
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results showed an improved cycling capacity (66). Deeper understanding of the SEI formation 

and solvent formulation will have to be performed to further improve the performance of 

sodium-ion batteries, however it is not the focus of this thesis. 

 

Figure I.7: Voltage vs. Capacity of relevant positive and negative electrodes materials for 

sodium ion battery. All materials can be found in the text. 

I. 2 Supercapacitors 

Supercapacitors, also called electrochemical capacitors or electrical double layer capacitors, 

consist of two electrodes separated by a separator soaked with electrolyte (68). Different from 

batteries, supercapacitors have high power densities, excellent rate capability and almost 

infinite cycle life. Supercapacitors can store energy through two fast-kinetic charge storage 

mechanisms: double layer capacitance and pseudocapacitance (3, 4, 69). The difference 

between these two mechanisms will be described in the following sections.  

I. 2-1 Double –Layer Capacitance 

The double-layer capacitance is caused by electrostatic separation of the charges at the 

electrode / electrolyte interface when a potential is imposed, as described in the simplified 
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schematic Figure I.8. Several models have been developed to describe the double layer 

successively by Helmholtz (1853) (15), Gouy and Chapman (1913)(70), Stern (1924), 

Grahame (1947) (71), Bockris, Devanthan and Muller (1963).  

The Helmholtz model describes the double layer as two layers of opposite charge 

accumulated at the electrode/electrolyte interface and separated by the radius of the solvated 

ion. The Gouy-Chapman model describes a diffuse model of the double layer, due to 

thermodynamic distribution of counter-ions from the electrolyte. The Stern model represented 

in Figure I.8.B combines both model and considers that the charge compensation occurs 

within a volume of electrolyte defined by the thickness d of the diffusive layer. The layer of 

charges in the electrolyte near the interface is in fact composed of several layers. Right next to 

the negative electrode there is the compact layers or Helmoltz layers at the distance of the 

partially desolvated and solvated cations radius and then the Gouy-Chapman diffusive layer. 

 

Figure I.8: Schematic representation of an electrochemical double layer capacitor (A) and the 

Stern model (B). 

 

The capacitance can be described as the association of the Helmoltz capacitance and Gouy-

Chapman capacitance in serie: 
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1

𝐶𝑑𝑙
=

1

𝐶𝐻𝑒𝑙𝑚𝑜𝑙𝑡𝑧
+

1

𝐶𝐺𝑜𝑢𝑦−𝐶ℎ𝑎𝑝𝑚𝑎𝑛
=

𝑑

𝐴𝜀𝑟𝜀0
+

1

𝐴𝜀𝑟𝜀0𝜅𝐷
         Eq.5 

Where: Cdl is the double layer capacitance (F) of the electrode, A is the electrode surface area 

(m²), εr is the relative dielectric constant, ε0 is the permittivity of the vaccum (8.85 10
-12

 F/m), 

d is the approaching distance of the ions (m) and κD is the Debye length or 1/κD is the 

diffusion length of the Gouy-Chapman layer. 

In concentrated electrolyte, like in our work, 1/κD tends to 0. Thus, the double layer 

capacitance is defined by the Helmholtz capacitance. 

As described in Figure I.8.A, there are two electrodes facing each other. Therefore the total 

capacitance of the cell can be described as the combination of the two electrodes capacitances 

in series and is given by the following equation: 

1
𝐶𝐶𝑒𝑙𝑙

= 
1
𝐶+

+
1
𝐶−

               Eq.6 

The electrochemical responses of an ideal supercapacitor are shown Figure I.9. In contrast to 

batteries, the storage mechanism do not occurs at a specific potential, thus no plateaus or 

peaks are present. The current response to linear voltage sweep in cyclic voltammetry has a 

rectangular shape corresponding to equation 7.  

𝐼 = 𝐶 𝑑𝑉 𝑑𝑡⁄                   Eq.7 

Where, I is the current (A), C is the capacitance (F), V is the potential (V) and t is the time (s). 

Further characteristic of the electrochemical measurement methods will be described in 

Chapter 2. 
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Figure I.9: Typical behavior of electrochemical double layer capacitors during cyclic 

voltammetry (A) and galvanostatic charge-discharge measurement (B). 

 

The electrode materials must exhibit high electric conductivity and high specific surface area. 

The best candidates are carbon materials, such as carbon nanotubes, graphene sheets and 

activated carbon (72-75). They have a large electrochemical stability voltage window in 

addition to their high electric conductivity and their high specific surface area. The most 

conventional materials used are activated carbons thanks to their good properties and low 

cost. Activated carbons are synthetized from biomass (coconut shell, wood, etc.) by 

carbonization at temperatures lower than 800°C in inert atmosphere, then treated in a process 

called activation, consisting of physical method (steam, etc.) and/or chemical treatment 

(strong bases, etc.), in order to enhance the porosity (76). Table 2 summarizes the properties 

of these materials:  
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Table 2: Comparison of different carbon materials electrochemical performances (75).  

  Specific Capacitance (F/g) 

 Specific surface area 

(m²/g) 
In 1M H2SO4 

In organic 

electrolyte 

Activated carbon 2000 - 3000 300 240 

Carbide derived carbon 1300 - 2500 200 170 

Carbon nanotubes 300 - 1000 150 90 

Onion-like carbon 550 40 38 

Graphene 300 - 3000 280 170 

Carbon aerogels 400 – 1000 100 80 

Kotz demonstrated that when increasing the specific surface area above 1500 m²/g, the 

capacitance reached a limit of about 100 F/g (77). Another significant parameter is the pore 

size distribution and the electrode-electrolyte interface. Chmiola et al. (78) controlled the pore 

size distribution of a CDC by controlling the synthesis temperature and demonstrated the 

importance of these parameters on the electrochemical performance. An unprecedented 

increase in capacitance was observed for pore size smaller than 1 nm, which was attributed to 

ion de-solvatation observed when the average pore size corresponds to the ion size (79, 80).  

I. 2-2 Pseudocapacitance 

The electrochemical behavior, such as the current response of a potential change, of a 

pseudocapacitor is similar to double layer capacitors. The distinction comes from the energy 

storage mechanism as double layer capacitance occurs through electrostatic interaction 

whereas pseudocapacitance is due to electron-transfer reactions (16, 17, 81). Therefore, higher 

energy density can be achieved using pseudocapacitive materials. However, it can also be 

distinguished from faradaic reaction occurring in batteries for two main reasons: the faster 

charging time and the linear dependence of the charge stored with the potential window.  
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Conway described pseudocapacitance as one of the three faradaic mechanisms described in 

Figure I.10 that can exhibit capacitive electrochemical behavior. The first case is 

underpotential deposition, which is metal ions forming an adsorbed monolayer at a different 

metal's surface above their redox potential. The second case is redox capacitance, which is the 

electrochemical adsorption of ion onto the surface or near surface of a material with a 

concomitant faradaic charge-transfer. The third case is intercalation capacitance, which is the 

faradaic intercalation of ions into tunnels or layers of electrode materials. It is worth noting 

that some battery-type materials can exhibit this behavior thanks to tuning the engineering of 

the electrodes; usually using thin film technology or nanometric particles synthesis to achieve 

pseudocapacitive behavior (16, 82). These materials are called extrinsic pseudocapacitive 

materials because their bulk counterparts do not behave as supercapacitor type materials, as 

opposed to intrinsic pseudocapacitive materials that behave similar to a double layer 

capacitors regardless of the particle size. 

 

Figure I.10: Different types of reversible redox mechanisms that give rise to 

pseudocapacitance: underpotential deposition (A), redox pseudocapacitance (B) and 

intercalation pseudocapacitance (C) (adapted from (16)). 

Since pseudocapacitive electrodes store energy through faradaic reactions, the capacitance (C) 

can be expressed by equation 8.  
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𝐶 = (
𝑛𝐹
𝑀
)
𝜃
𝐸

                            Eq. 8 

Where, C is the specific capacitance (F/g), n is the number of electron, F is the Faraday 

constant (96 485 C/mol) and M is the molecular weight of the active material (mol/g). This 

induces an infinite apparent redox potential next to each other and the potential (E) responds 

linearly with the extent of fractional coverage of the surface of inner structure or the 

advancement of the reaction (θ). 

 This translates as mirror image voltammograms and a triangular shaped galvanostatic charge-

discharge curve, as illustrated in Figure I.11. In other words, the capacitive behavior of 

pseudocapacitve electrodes results from fast, successive, indistinguishable, and reversible 

redox reactions occurring at the surface, which are not limited by diffusion (83). 

 
Figure I.11: Typical behavior of pseudocapacitive material during cyclic voltammetry (A) 

and galvanostatic charge-discharge measurement (B). 

Transition metal oxides, such as MnO2, RuO2, TiO2 and V2O5 were the first materials 

investigated for pseudocapacitor (16). The most studied is RuO2 because regardless of its high 

cost it present the highest conductivity and three stable oxidation state occurring on a 1.2V 

potential range (84-88). When cycled in sulfuric acid the reaction noted in Figure I.10.B 

occurs. Figure I.12 shows the voltammograms obtained for different potential ranges and 

highlights the pseudocapacitive behavior of RuO2 as the broad anodic and cathodic peaks are 

symmetric. First results using RuO2 showed capacitance up to 720 F/g (88, 89).  
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Figure I.12: Cycle voltammetry of RuO2 in H2SO4 at 50 mV/s (adapted from (3)).  

Other metal oxides have been studied, in particular MnO2 because of its low cost, resource 

abundance, environmental friendlyness and high theoretical capacitance (90). Capacitance up 

to 260 F/g was obtained in 0.5M K2SO4 (91). Because of the low electronic conductivity of 

oxide materials, the preparation of composites using a carbon matrix was proposed to benefit 

from better electric conductivity as well as higher specific surface area. In the second part of 

this chapter we will investigate some composites with graphene. 

I. 2-3 Electrolyte 

The electrolyte is a key factor in the electrochemical performance of a supercapacitor (92). 

The energy and power are proportional to the square of the potential window (equations 1 and 

2). Therefore research has been focused on formulating electrolytes with large potential 

window stability. There are three types of liquid electrolytes: aqueous electrolytes, organic 

electrolytes and ionic liquids. The ionic conductivity, the temperature stability and the 

compatibility with the electrode are also important factors. Table 3 summarizes the properties 

of these electrolytes and it falls to the engineer to select the best electrolyte corresponding to 

the desired application.  

 



Chapter I: Bibliography 

 

24 

 

Table 3: Properties of electrolytes (72, 92, 93). 

 Potential window 

stability (V) 

Conductivity (mS/cm) Temperature 

stability (°C) 

Aqueous < 1.2 >400 -20 to +50 

Organic < 3 <100 -40 to +80 

Ionic Liquid < 6 <15 -100 to +400 

 

Ionic liquids, which are room-temperature solvent-free electrolytes, show the largest potential 

window and temperature stability.  However they have lower conductivity which reduces 

power density. Two of the most conventional ionic liquids used are EMITFSI (1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide) and EMIBF4 (1-ethyl-3-

methylimidazolium tetrafluoroborate).  

Organic electrolytes are typically solutions of tetraethyl ammonium salts dissolved in 

acetonitrile (ACN) or propylene carbonate (PC).  

Aqueous electrolytes suffer from reduced potential window limited by the electrolysis 

potentials of water. Nevertheless, they are the most used electrolytes thanks to safety, 

convenience, high conductivity, low cost and good compatibility with most electrode 

materials, in particular with pseudocapacitive electrodes. Figure I.13 shows example of the 

behavior of an activated carbon in various electrolytes. In all cases, rectangular shaped cyclic 

voltammograms are obtained; however the operating potential ranges and resistances are 

different and will be explained later. 
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Figure I.13: Cycle voltammetry of activated carbon at 5 mV/s in different electrolytes 

(adapted from (94)). 

I. 2-4 Hybrid Capacitors 

The principle of a hybrid between electrochemical capacitors and batteries was first 

introduced by John Miller (95). Hybrid capacitors combine an electrochemical capacitor 

electrode with a battery electrode. As the battery-type electrode potential is mostly constant 

during the charge-discharge (plateau), the total cell potential behaves like the electrochemical 

capacitor electrode that is the cell potential changes linearly with time during constant charge-

discharge cycles, as described in Figure I.14. The objectives of these systems are to deliver 

higher energy than supercapacitors at higher power density than batteries (96, 97), by 

increasing the average discharge voltage and the cell capacity. In other words, hybrid 

capacitors are promising energy storage devices that bridge the gap between batteries and 

supercapacitors on the Ragone plot (Figure I.1). 

The capacitance of a hybrid cell is described by equation 6. In the case of a symmetric EC the 

cell capacitance can be expressed as half the capacitance of an electrode ( 𝐶𝑐𝑒𝑙𝑙 = 𝐶𝐸𝐶+,− 2⁄ ). 

Whereas in the case of an asymmetric hybrid capacitor, the capacitance of the faradaic 

electrode (CFaradaic) is greatly superior to the capacitance of the capacitive electrode (CEC) and 

the total cell capacitance is expressed as follow: 
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1

𝐶𝑐𝑒𝑙𝑙
=

1

𝐶𝐸𝐶
+

1

𝐶𝐹𝑎𝑟𝑎𝑑𝑎𝑖𝑐
      ⇔𝐶𝑡𝑜𝑡𝑎𝑙 ≈ 𝐶𝐸𝐶  

Therefore the total capacitance in a hybrid capacitor cell is twice the capacitance of a 

symmetric EC. Depending of the choice of the faradaic electrode, the cell voltage can be 

greatly improved. However, using a faradaic electrode also comes with a limitation in the rate 

capability and cycle life because of the presence of a battery-like electrode. 

 

Figure I.14: Electrode potentials vs. specific capacity of each electrode in a symmetric 

carbon/carbon supercapacitor and an asymmetric Li-ion hybrid during charge (A). Cell 

potential vs. specific capacity based on the total mass of the two electrodes (B). 

Several hybrid systems have been investigated. In aqueous electrolytes the most extensively 

systems studied are: Carbon/NiOOH in KOH (98), Carbon/PbO2 in H2SO4 (commercial)(99) 

and MnO2/Carbon in K2SO4 (100). Although these systems are interesting, this thesis will 

focus only on hybrid capacitor in organic electrolytes that are lithium ion capacitors and 

sodium ion capacitors since these systems have larger voltage window and show the best 

performances in terms of power and energy densities. 

Li-ion capacitor systems combine high energy density from the lithium ion intercalation 

electrode of batteries and high power of supercapacitors electrode. The electrolytes used are 

lithium salts in carbonate-based organic solvents, similar to electrolytes used in Lithium-ion 

batteries. Due to their high energy and power densities, they are intended for use in a wide 

variety of applications, such as transportation (electric and hybrid cars), electronics 
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(telephones and  laptops), and storage of renewable energy. Several companies have started to 

commercialize their devices, such as ACT, JM Energy Corp, Ioxus, Asahi Kasei FDK Energy, 

Aowei and TAIYO YUDEN Co (97).  

Amatucci et al. were the first to propose a non-aqueous hybrid device in 2001 (101), with two 

systems: activated carbon/Li4Ti5O12 (LTO) and activated carbon/WO2 in a 1M LiBF4 in 

acetonitrile. The most interesting is the former because LTO has several advantages including 

high coulombic efficiency (≈100%), high theoretical capacity (175 mAh/g), safe cycling with 

redox plateau potential at 1.55 V vs. Li
+
/Li (above solid electrolyte interphase formation), 

small volumetric changes and low cost. Such devices reached up to 18 Wh/kg (102). Figure 

I.15 shows the first results published by Amatucci et al. Later this system’s power 

performance has been greatly improved by Naoi et al. using a nanocomposite between carbon 

nanofibers and nano-crystal of LTO synthetized by ultracentrifugation (103, 104). This 

process solved the problem of the low conductivity of LTO. Excellent high rate performances 

were obtained with up to 40 mAh/g at 1200C rate as well as excellent cycle life. Activated 

carbon is still used as positive electrode thanks to its suitable properties already discussed 

earlier and counter anion of the electrolyte can form double layer capacitance at its surface. 

 

Figure I.15: Discharge profile as function of rate (A) and  three-electrode measurement (B) 

of an asymmetric hybrid cell utilizing an activated carbon positive electrode and Li4Ti5O12 

negative electrode in LiPF6 EC/DMC electrolyte (adapted from (101)). 
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With graphite and activated carbon being respectively the most used electrodes in batteries 

and supercapacitors, asymmetric hybrid devices combining these two materials were proposed 

(105). The graphite needs to be pre-lithiated because of the formation of the solid electrolyte 

interphase and lithium-ion consumption that decrease the conductivity during the first 

lithiation. The advantage of pre-lithiated graphite/activated carbon system compared to 

LTO/AC is that graphite as a higher specific capacity and low intercalation/deintercalation 

potential (0.1V vs Li
+
/Li) extending the cell operating voltage range. This system has been 

commercialized by JMEnergy since 2008, with cells that claim capacities of 2200F and power 

densities up to 10 kW/kg  but energy densities limited at 10Wh/kg (106).  

However, the limited supply of lithium and quickly widening use of energy storage devices 

justify replacement of lithium with a cheap and abundant element. For the same reason that 

sodium ion-batteries emerged as an alternative to Li-ion batteries, sodium-ion capacitors, 

where the Li intercalation electrode is replaced with a low cost Na ion electrode were 

proposed (107-110). In 2012, Kuratani et al. investigated HC/activated carbon Na-IC and 

showed the feasibility of such systems (108). Similar to lithium-ion capacitors and sodium-ion 

batteries, most of the on-going work on Na-ion capacitors is focused on the development of 

negative electrodes and several anodes have been proposed, such as hard carbon, carbon 

nanotubes, NiCo2O4 and sodium titanate nanotubes.  
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II Relevant 2D Materials for energy storage 

High power densities can only be reached if the energy storage mechanism is either an 

electrostatic interaction at the electrode / electrolyte interface or fast surface redox reaction. 

Therefore, bulk materials containing inactive volume that does not participate in charge 

storage are inappropriate candidates.  In a 2D material, all the active material is directly in 

contact with the electrolyte as the single sheets of the material are only a few nanometers 

thick. Moreover, 2D materials have also attracted attention as promising electrode materials 

since graphene has excellent conductivity, has similar surface area to activated carbon and can 

be use without insulating binder (111). This thesis focus on a new family of 2D materials 

called MXene. Before describing the state-of-the-art MXene, other relevant 2D materials for 

energy storage will be introduced. 

II. 1 Graphene 

Among 2D materials, Graphene is by far the most famous (Nobel Prize 2010) and the most 

extensively studied. It consists of a few layers of carbon with a graphitic structure that has an 

excellent theoretical electric conductivity, high charge carrier mobility, high specific surface 

area, high transparency, high flexibility and great mechanical strength (112-115). These 

properties are very interesting for many applications, including energy storage. Recently, 

graphene electrodes were prepared for ECs and Lithium-ion battery. 

II. 1-1 Graphene for supercapacitors 

As mentioned, graphene has a very high specific surface area (SSAtheoretical = 2630 m²/g) 

corresponding to a maximum theoretical capacitance of 550 F/g, one of the highest among 

carbon materials. Therefore many attempt to use graphene as electrode material in EC have 

been attempted that have been more or less successful (116-123). Zhu et al. used microwaved 
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exfoliation of graphene oxide activated in KOH with an apparent specific surface area of 3100 

m²/g. Performances in several electrolytes were investigated and capacitance up to 166 F/g 

were obtained in organic electrolyte (BMIMBF4) with good cycle life but resistive 

voltammograms compared to activated carbons (120). El-Kady et al, developed a laser 

scribing technique to prepare few micrometer thick graphene, obtaining a graphene specific 

surface area of 1520 m²/g. The authors used a polymer gel electrolyte (PVA-H3PO4) to 

assemble an all solid supercapacitor and tested the flexibility of the cell, as described in 

Figure I.16. The performance at different angles demonstrates the feasibility of flexible 

supercapacitors that have many new applications such as wearable electronic. Other 

electrolytes were used to increase the potential range and capacitance up to 276 F/g were 

obtained in EMIMBF4 ionic liquid with a potential range of 3.5V. The limitation here lies in 

the small areal capacitance (mF/cm²) due to the use of thin film. 

 

Figure I.16: Design of a flexible supercapacitor based on laser-scribed graphene. (inset) A 

digital photograph showing the flexibility of the device (A) Cyclic voltammograms and the 

effect of the bending at 1000 mV/s (adapted from (121)). 

 

II. 1-2 Graphene for Lithium ion batteries 

Keeping in mind that graphite is the most commonly used negative electrode in lithium ion 

batteries, graphene has still attracted a great deal of attention for Lithium-ion batteries. The 
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theoretical capacity of graphene is 744 mAh/g (twice that of graphite) corresponding to two 

layers of lithium on both sides of the graphene sheet. Many research teams currently 

investigate graphene for Lithium-ion batteries, both experimentally and theoretically (122, 

124-131). However the storage mechanism is still not understood, in particular the diffusion 

of lithium and the effect of defects on performances. 

The first investigations by Yoo et al. showed a capacity of 540 mAh/g for graphene sheets 

prepared by reduction of graphene oxide and later improved to 650 mAh/g with thinner 

graphene. These capacities are higher than for graphite and support the hypothesis that lithium 

can be adsorbed at the graphene surface. The authors added C60 to further increase the 

capacity up to 784 mAh/g.  Graphene prepared by other synthesis route lead to different 

results highlighting the effects of the synthesis method used.  

However, graphene is facing major obstacles of it is to be used as the negative electrode for 

Lithium-ion batteries (122). First, there are no plateaus during galvanostatic charge-discharge 

which are required for stable discharge voltage. Second, the solid electrolyte interphase 

formation and reaction with functional groups during the first cycle are responsible for a 

significant degree of irreversibility in the first cycle (126). Third, the rate capability is poor 

because of the limited lithium diffusion in stacked graphene layers. 

II. 2 Graphene Composites 

II. 2-1 Graphene composites for supercapacitors 

Metal oxides, presented earlier as materials for supercapacitors, store the energy through 

pseudocapacitance (fast reversible redox reactions). The low conductivity of most oxides and 

of doped polymers limits their electrochemical performances. Composite materials using good 

electric conductors such as CNTs or carbon black were investigated early on and recently 
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graphene composites have been proposed. Another factor to improve the performance is the 

use of nanomaterials, because the fast redox reaction occurs at the surface of the electrode and 

the inner part is not active. Therefore, nanomaterials benefit from increased specific surface 

area, shorter diffusion and reduced charge transfer length (125). 

Metal oxide/graphene composites have also been proposed (125, 132-134). MnO2/graphene 

nanosheet composites were synthetized and exhibited good conductivity, good capacitance 

(310 F/g), good cycle life (95% retention after 15000 cycles) and good rate capability. 

Ni(OH) was synthesized in situ on graphene sheets and showed capacitances up to 935 F/g. 

Similar techniques were used for the synthesis of CoOH2/graphene composite and leads to 

972 F/g. 

However, despite graphene composites showing higher capacitance than graphene thanks to 

redox reactions, insulating materials reduces the conductivity and the composite has lower 

cycle life and rate capability than its pure graphene counterpart. More work is on-going to 

find new synthesis routes and balance between these different factors. 

II. 2-1 Graphene composites for batteries 

As mentioned earlier, many other electrodes with higher capacity than graphite have been 

proposed. Some have intrinsic drawbacks such as a huge volume change during cycling (Sb, 

Sn and Si) or a poor electrical conductivity (metal oxides). Therefore, mixing these materials 

with carbon materials (including graphene) is considered to be a solution.  

The electrode materials commonly used in Lithium-ion battery (Co3O4, Fe2O3, TiO2, SnO2, 

LiFePO4, etc.) were investigated for graphene composites in order to improve their 

conductivity and rate capability with more or less success in laboratory scale (135-145). 

Negative electrode using metal alloy reaction to stores energy such as Si, Sb or Sn have 

excellent theoretical capacity but have problems such as huge volume change, short cycle life, 
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low rate capability and aggregation of particles. It is reported that graphene composites 

partially solve these issues (146-148).  For example  Chou et al. showed a graphene/Si 

composite with capacity up to 1168 mAh/g, whereas graphene showed less than 200 mAh/g 

and silicon nanoparticle showed 346 mAh/g, but the issue of short cycle life persists (148).  

II. 3 Transition metal dichalcogenides 

Transition metal dichalcogenides are a family of two dimensional materials that are composed 

of MX2 layer, with M a transition metal element (Mo, W, etc.) and X a chalcogen element (S, 

Se, etc.) (149). The most common member of this large family are MoS2, WS2, and SnS2 as 

represented in Figure I.17. Multilayered transition metal dichalcogenides are structurally 

similar to graphite. Like graphite, the layers of transition metal dichalcogenides are bound to 

each other by weak Van-der-Waals interaction that can be broken to obtain single sheets that 

have different physical and chemical properties. These materials have been considered for 

different applications, including energy storage (150). 

 

Figure I.17: Structure of several typical layered transition metal sulfides: (A) MoS2 or WS2, 

(B) ZrS2 or VS2, (C) VS4 and (D) SnS2 (adapted from (149)). 
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II. 3-1 Lithium ion battery 

Among the transition metal dichalcogenide family, the layered transition metal sulfides have 

attracted attention as potential electrode for lithium ion battery for different reasons. They 

store energy through complex mechanism such as conversion or alloying reactions. They have 

theoretical capacity higher than graphite (from 432 mAh/g for WS2 to 1196 mAh/g for VS4), 

show less volume change compared to silicon and metal oxides, and better rate capability and 

cycle life thanks to their layered structure. 

The most investigated transition metal dichalcogenides for Lithium-ion battery are MoS2 

(151, 152) and Sn2S (149, 150, 153). Many MoS2 synthesis routes have been investigated but 

the capacity, up to 1183 mAh/g, has short cycle life. Moreover, the lithium storage 

mechanism in MoS2 and several other metal sulfides is a 3 steps process which is not practical 

for commercial applications. Although the first cycle is irreversible, the interest of this system 

relies on the reversible lithiation/delithiation of sulfur. A systematic study by Kim and 

Goodenough demonstrated that the position of the potential plateau of this reaction increased 

with the heavier transition metal used (154).  

II. 3-2 Electrochemical Capacitors 

Relatively few studies have been focused on transition metal dichalcogenide for 

supercapacitor applications. Feng et al. investigated two dimensional VS2 nanosheets for an 

in-plane supercapacitor (155). They succeeded in synthesizing VS2 thin film with a high 

specific surface area and high conductivity. They fabricated the in-plane supercapacitors by a 

mechanical shaping process and a solid electrolyte (BMIMBF4-PVA gel) was used. 

Capacitance was measured from galvanostatic charge discharge and volumetric capacitance 

values up to 317 F/cm
3
 were obtained with good cyclability. However, the cyclic 
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voltammogram shown in Figure I.18 is very resistive and far from the rectangular shape 

expected for supercapacitors.  

 
Figure I.18: Performances of the in-plan supercapacitor based on VS2; cyclic voltammetry 

(A) and cycle life (B) (adapted from (155)). 

TiS2 was suggested to have a pseudocapacitive behavior by Conway. Recently, Muller et al. 

investigated the electrochemical performance of TiS2 as electrode for Li-ion capacitors (156). 

The authors observed and analyzed the storage mechanism, separating the capacitive and 

pseudocapacitive behavior. Figure I.19 shows the electrochemical performance. Impressive 

capacitances up to 540 F/g at 4C and 320 F/g at 120C were obtained but a potential drop 

occurs between 3V and 2,5V, reducing the real voltage window. 

 

Figure I.19: Charge−discharge curves (A) and rate capability (B) of TiS2 (adapted from 

(156)). 
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III New two dimensional material: MXene  

A new family of 2D materials has been discovered in 2011 by Y. Gogotsi’ and M. Barsoum’s 

groups at Drexel University; a whole family of exfoliated materials derived from MAX 

phases and called MXene (8, 157). These materials have a layered structure composed of 

more than one element.  Ti3C2, Ti2C, Ta4C3 and TiNbC were the first synthetized compounds 

(158). The main interest in MXenes for energy storage applications is that these materials 

contain a carbide core that guarantees good conductivity and tunable transition metal oxides at 

the surface that can undergo redox reaction. Its potential for lithium ion battery and lithium 

ion capacitor applications has been previously demonstrated.  

III. 1 MAX Phase 

MAX phases are a class of layered ternary carbide or nitride composed of an early transition 

metal element M, an A-group element A and carbon or nitrogen represented by X. Figure I.20 

shows a classification of the MAX phases on periodic table (159).  

 

Figure I.20: Repartition of M, A and X elements on the periodic table (adapted from (159)). 

These phases are layered hexagonal (space group D
4

6h–P63/mmc) with two formula units per 

cell, as represented in Figure I.21. They are organized in a Mn+1AXn chemistry, where n is 1, 
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2, or 3. There are commonly called by their respective chemistry, for example Ti3AlC2 

belongs to the 312’s group.  

Regardless of the chemistry, a MAX phase structure can be described as close-packed layers 

of M layers which are interleaved with A layers in the center of trigonal prism and where X 

atoms occupy the octahedral site in M6X. The main difference between the three structures 

shown in Figure I.21 is the number of M-layers separating the A-layers; in the 211's there are 

two, in the 312's three and in the 413's four.  

 

Figure I.21: Crystalline structure of MAX phases M2AX, M3AX2 and M4AX3 (adapted from 

(159)). 

MAX phases are highly damage tolerant, resistant to chemical attack, thermal shock resistant, 

and machinable. In other terms, they have some properties found in metals and some found in 

ceramics. Anomalously, they are soft for transition metal carbides and nitrides. 

The Vickers hardness values are between 2-8 GPa, which is high for transition metal. In some 

MAX phases it has been shown that they have plastic-brittle transition at temperature above 

1000°C, while retaining decent mechanical properties. At elevated temperature, these phases 

decompose incongruently into MX-based compound and A-rich liquids in inert atmosphere 
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whereas they are oxidized in air. Some display formation of protective oxide layer, and 

therefore have excellent oxidation resistance.   

III. 2 Synthesis of MXene 

A family of MAX derived compounds has been discovered: MXene. More precisely it is 

exfoliated layers of MAX phases where the A layer is removed. Developed in 2011, the first 

synthesis route consists of wet HF treatment of the MAX phases previously described. Figure 

I.22 shows a schematic representation of the MXene synthesis. The reaction occurring are the 

following: 

𝑀𝑛+1𝐴𝑋𝑛 + 3𝐻𝐹 → 𝑀𝑛+1𝑋𝑛 +
3

2
𝐻2 + 𝐴𝐹3 

𝑀𝑛+1𝑋𝑛 + 2𝐻2𝑂 → 𝑀𝑛+1𝑋𝑛(𝑂𝐻)2 + 𝐻2 

𝑀𝑛+1𝑋𝑛 + 2𝐻𝐹 → 𝑀𝑛+1𝑋𝑛𝐹2 +𝐻2 + 𝐴𝐹3 

After etching, MXene surface is not M-terminated but covered with oxygen-containing 

groups and fluorine. Considering that there are more than 60 MAX phases known, with 

different properties, MXene family is already believed to be as diverse and complex as its 

precursor. Previous studies already show the successful synthesis of several member of this 

family: Ti3C2, Ta4C3, TiNbC, and (V0.5Cr0.5)3C. Figure I.23 shows scanning electron 

microscopy images of MAX phases and exfoliated MXene. Electric conductivities of cold 

pressed MXene disks were found to be comparable to multilayer graphene. The specific 

surface area was found to be about 20 m²/g.  
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Figure I.22: Schematic synthesis of MXene from MAX phases. 

 

Figure I.23: Secondary electron micrographs for (A) Ti3AlC2 particle before treatment. 

Particles after HF treatment of (B) Ti3AlC2, (C) Ti2C, (D) Ta4AlC3, (E) TiNbAlC and (F) 

Ti3AlCN (adapted from (158)) 

 

 

 



Chapter I: Bibliography 

 

40 

 

III. 3 Delamination 

Intercalation and delamination of two-dimensional solids is a requisite step in many cases for 

exploiting the enhanced properties of two-dimensional materials. In 2012, Mashtalir et al. 

demonstrated that MXene can be intercalated by Urea, hydrazine and N,N-

dimethylformamide (160). The increase of the c-lattice parameter of surface functionalized 

Ti3C2 was observed by X-ray diffraction (from 19.5 to 25.5 and 26.8 Å). Figure 24.A shows a 

schematic representation of intercalated MXene. When dimethyl sulphoxide (DMSO) was 

intercalated into Ti3C2, followed by sonication in water, the Ti3C2 was delaminated (d-

Ti3C2Tx) forming a stable colloidal solution (Figure 24.B) that was in turn filtered to produce 

single sheet MXene (Figure 24.C). 

 

Figure I.24: Schematic representation of the intercalation mechanism (A). Particle size 

distribution in aqueous colloidal solution; inset shows Tyndall scattering effect in the solution 

(B). Scanning electron microscope image of d-Ti3C2 single flake on alumina membrane (C) 

(adapted from (160)). 
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III. 4 Applications 

Ti2C was the first member of the family to be analyzed for lithium ion battery application. 

The reason is that Ti2AlC is one of the most common and cheapest MAX phases. Powders 

with particles smaller than 45 μm (− 325 mesh) are commercially available. It is also an 

excellent electronic conductor and its associated MXene is the lightest (158).  

Figure I.25.A shows the cyclic voltammogram of the Ti2C electrode. A broad irreversible 

peak was observed around 0.6 V, during the first lithiation (9). It was attributed to the 

formation of a solid electrolyte interphase and to an irreversible reaction with the electrode 

material. Authors assigned these peaks with TiO2 and lithiated titania. Thanks to the 

similarities, the following redox reaction was proposed: 

Ti2COx + yLi
+
 + ye

−
 ↔LiyTi2COx 

It is suggested by the authors that because the electrode is dried at 200°C prior to assembling 

the coin cell, all absorbed water and OH species are removed. Figure 25.B shows capacity 

values vs. cycle number. A stable capacity of 225 mAh/g at a C/25 rate was reported 

corresponding to about one Li per Ti2C formula unit. A promising reversible cycling capacity 

of 80 mAh g
−1

 at 3C rate and 70 mAh g
−1

 after 200 cycles at a 10C rate were reported.  

Moreover, Ti2C was investigated as negative electrode in non-aqueous asymmetric cell in 

lithium ion capacitors (161). Authors investigated the lithiation/delithiation mechanism. 

Figure I.26.A shows in-situ X-ray diffraction measurement. A shift was observed, coherent 

with the lithium insertion process. Figure I.26.B shows charge and discharge specific capacity 

at 10C rate. The capacity decreased from 70 mAh/g to 60 mAh/g after 1000 cycle.  
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Figure I.25: Cyclic voltammetry at a constant scan rate of 0.2 mV/s. The solid arrows refer to 

main peaks positions during lithiation and delithiation cycles (A) and capacities vs cycle 

number at different scan rates (B) (adapted from (9)). 

 

 

Figure I.26: In-situ X-ray diffraction patterns during charge and dicharge of Ti2C (A) Charge 

and discharge specific capacity vs. cycle number of a Ti2C/activated carbon asymmetric cell 

at 10C rate. Inset: corresponding curves at different cycles (B) (adapted from (161)). 
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The delamination process of Ti3C2 recently discovered was used to assemble a binder-free 

MXene ‘paper’ (inset Figure. I.27.A) by filtering the aforementioned colloidal solution 

through a membrane. The breakthrough in terms of Lithium-ion battery applications is the Li-

ion uptake on d-Ti3C2 free-standing paper. As shown in Fig. I.27.A the capacity of d-Ti3C2 is 

a factor of 4 higher than that of as-synthesized Ti3C2. The paper showed a capacity of 410 

mAh/g at a 1C cycling rate and 110 mAh/g at 36C. As shown in Fig I.27.B, the 410 mAh/g 

represents three Li per Ti3C2(OH)2. The capacity obtained at 1C was higher than the 

maximum theoretical capacity of  Ti3C2 MXene predicted (320 mAh/g (162)). The results at 

1C rate are better than graphite and MXene exhibits excellent rate capability promising for 

high power applications. Nevertheless no plateau was observed during cycling thus limiting 

the interest for this material as a lithium ion battery electrode. The good rate capability 

obtained was not the objective of this preliminary work, but it raised the interest of these 

materials toward high power applications. It is essential to further study this large family of 

material to improve its power densities.  

 

Figure I.27: Comparison of the performance of exfoliated and delaminated Ti3C2 as anode 

material in Li-ion batteries. Inset shows scanning electron microscope image of an additive-

free film of delaminated f-Ti3C2 filtered through the membrane. (A) The galvanostatic 

charge/discharge curves at a 1C rate. The “y” value shown on top x-axis was calculated 

assuming a MXene chemistry of Ti3C2(OH)2 (B) (adapted from (160)) 
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IV PhD goal 

This PhD thesis started just after the demonstration by O. Mashtalir et al. (160) of the 

intercalation of large organic molecule into MXene and elaborated the procedure to obtain 

delaminated MXene. I co-authored this article and my contribution consisted in the 

electrochemical testing of the delaminated paper as electrode materials for lithium ion 

batteries and demonstrated the impressive rate capability of this material. 

Herein, the primary objective of this PhD thesis is to investigate MXene performance for high 

power applications. The challenges are to select the right MXene for each application, to 

optimize the selected MXene by preparing composites or by chemically modifying its surface 

and to investigate the energy storage mechanism. Energy storage applications and two-

dimensional materials are among the hottest research topics. Since the initial discovery of 

MXene in 2011, scientific activities on this topic started worldwide.  

The high rate performance demonstrated in Lithium-ion batteries led to the investigation of 

the electrochemical performance of MXene for ECs. Chapter III is focused on multilayered 

MXene and delaminated MXene electrodes tests in various aqueous electrolytes. The effect of 

the surface chemistry is extensively discussed. The results demonstrated the intercalation of 

large cation into Ti3C2, including Na
+
. This encourages the exploration of MXene for beyond-

lithium ion batteries.  

Chapter IV is focused on the systematic investigation of all synthetized MXene for negative 

and positive electrodes for either sodium ion batteries or sodium ion capacitors. The behavior 

during charge-discharge lacked a potential plateau, which is extremely important for practical 

battery type electrodes. Therefore the research shifted toward Na-ion capacitor. However 

around the same time, Wang et al. released an article about Ti2C as negative electrode for Na-
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ion capacitor.  In order to propose innovative research, V2C has been proposed as positive 

electrode and a full cell with hard carbon was assembled. 

The results obtained in 2014 by Ghidui et al. (163) concerning a new synthesis method and 

the results obtained by Zhao et al. (164) concerning CNT/MXene composite modified the 

direction of the end of the thesis. From the study of HF synthetized MXene, we changed to 

the study of CNT/’clay’MXene. Chapter V investigates the electrochemical behavior as 

supercapacitors electrodes in organic electrolyte in order to increase the potential window and 

increase the power density. 
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Chapter II :  Materials and Methods  

I MXene synthesis 

Two-dimensional transition metal carbides and nitrides, called MXene, studied in this thesis 

were prepared in collaboration with Professor M. Barsoum’s group at Drexel University.  

I. 1 MAX Phase 

MXenes are derived from MAX phases that are a class of layered ternary carbide and/or 

nitride that has been introduce in the previous chapter (Figure I.20 and I.21). The MAX 

phases used are either commercial or were prepared at Drexel University by ball milling raw 

precursor in a specific ratio then heating in a tube furnace under argon. The following seven 

different MAX phases were prepared for the study; Ti3AlC2, Ti2AlC, Nb2AlC, V2AlC, 

TiVAlC, Ti1.5V1.5AlC2 and Ti3AlCN. 

The Ti3AlC2 MAX phase was synthetized by mixing commercial Ti2AlC powders (> 92 wt%, 

3-ONE-2, Voorhees, NJ) with TiC (99%, Johnson Matthey Electronic, NY) in a 1:1 molar 

ratio, followed by ball milling for 24 h using zirconia balls. The mixture was then heated at 5 

°C/min, under flowing argon in a tube furnace for 2 h at 1,350 °C. The resulting lightly 

sintered brick was ground with a TiN-coated milling bit and sieved through a 400 mesh sieve 

producing powder with particle size less than 38 mm (8).  

I. 2 Etching 

Wet hydrofluoric acid (HF) treatment of MAX phases was the first efficient method to 

synthetize MXenes discovered. It allows selective extraction of the aluminum layers from the 

MAX phases.  
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To synthetize a given MXene, 10 g of the corresponding MAX phase is immersed in 100 mL 

of a HF solution (Fisher Scientific, Fair Lawn, NJ) at room temperature. The reactions 

between HF and the MAX phase were previously discussed in chapter I. The resulting 

suspension was then washed several times using deionized water and centrifuged to separate 

the powders. The resulting layers are terminated with mostly oxygenated and fluorinated 

groups, which are weakly bonded together. In regards to the functional groups, Tx is added to 

the MXene formula, where “Tx” stand for terminated-surface groups such as in Ti3C2Tx. Table 

4 gives the detailed synthesis conditions for each MXene. 

Table 4: Synthesis condition of MXene. 

MAX Phase HF concentration time MXene 

Ti3AlC2 50% 18h Ti3C2Tx 

Ti2AlC 10% 10h Ti2CTx 

Nb2AlC 50% 90h Nb2CTx 

V2AlC 50% 8h V2CTx 

TiVAlC 50% 1h TiVCTx 

Ti1.5V1.5AlC2 50% 18h Ti1.5V1.5C2Tx 

Ti3AlCN 30% 18h Ti3CNTx 

 

I. 3 Delamination  

The delamination process, described in chapter I and illustrated Figure II.1, consists of 

intercalating a large organic molecule to weaken the bond between layers and using ultra-

sound to completely separate the layers (165). After mixing Ti3C2Tx with dimethyl sulfoxide 

(DMSO) for 18 h at room temperature, the colloidal MXene suspension was centrifuged to 



Chapter II: Materials and Methods 

51 

 

separate the intercalated powder from the liquid DMSO. After decantation of the DMSO, 

deionized water was added to the residue in a weight ratio of MXene to water of 1:500. After 

bath sonication of the suspension for 6 h, centrifuging was carried out and the colloidal 

solution was filtered using a porous anodic aluminium oxide membrane filter (47 mm 

diameter, 0.2 mm pore size, Whatman Anodisc, Maidstone, UK) and dried in the oven at 

70°C overnight, resulting in d-MXene ‘paper’ that detach easily from the membrane (160).  

 

Figure II.1: Schematic illustration of the delamination process. 
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II Electrochemical characterizations 

Electrochemical characterizations of the materials were done using two types of swagelok 

cells (2- and 3-electrode). Three main electrochemical techniques were used (cyclic 

voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy) at 

room temperature using a VMP3 potentiostat (Bio-logic S.A, France). 

 

II. 1 Electrochemical cells 

II. 1-1 Two-electrode setup 

Figure II.2 shows the two electrode Swagelok cell used for assessing the electrochemical 

performances of the different MXenes synthetized.  

 

Figure II.2: Picture of a 2-electrode Swagelok cell. 

This configuration was mainly used for cyclic voltammetry tests in a half-cell sodium ion 

battery configuration. In this case, the working electrode is set as the positive electrode and 

metallic sodium is the negative electrode. The cell was assembled in an argon-filled glovebox 

because both the electrolyte and metallic sodium are oxygen and water sensitive.  
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II. 1-2 Three-electrode setup 

In a three electrode configuration, a reference electrode is added and placed near the two 

others. Therefore, it is possible to control the potential of the working (positive) electrode and 

while simultaneously measuring the potential of the negative electrode vs. the Reference. 

Silver wire was selected to be the quasi-reference electrode thanks to its electrochemical 

stability in all the electrolytes studied. Figure II.3 shows the three electrode Swagelok cell 

used for this setup. 

 

Figure II.3: Picture of a 3-electrode Swagelok cell. 

With this cell, two types of setup are possible. In the first case, the potential is controlled 

and/or measured between the working electrode and the reference electrode. This 

configuration was used in chapters 3 and 5, where an overcapacitive activated carbon was 

used as a counter electrode. In the second case, the potential is controlled and/or measured 

between the working electrode and the counter electrode. This configuration was used in 

chapter 4 for the full cell study using hard carbon negative counter electrode and positive 

V2CTx electrode.  

II. 2 Cyclic voltammetry 

Cyclic voltammetry measurement consists of measuring the current response when imposing 

a potential change at a constant scan rate (v in V/s) between two set potentials according to 

the following equation: 
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𝐸(𝑡) = 𝐸0 ± 𝑣𝑡                   Eq. 9 

Where, E0 is the initial potential (V), generally the open circuit potential, v is the scan rate 

(V/s), t is time (s). 

When the cell’s potential reaches a set potential, the linear potential sweep is reversed. During 

cycling, a current is generated due to the potential variation. Herein, the current is mainly 

driven by various electrochemical phenomena occurring at the electrode/electrolyte interface. 

The two main phenomena are charge storage through redox reactions and double layer 

capacitance. Their corresponding I vs. E voltammograms are shown Figure II.4. 

 

Figure II.4: Typical cyclic voltammograms of redox (A) and double layer (B) materials. 

In the first example (Figure II.4.A) the presence of two set of peaks (O1;R1 and O2:R2) that 

could be attributed to two redox reactions. 

A
n+

 + ne
-
  ↔ A                    (1) 

A
(n+m)+

 + me
-
  ↔ A

n+
      (2) 

In this example, the oxidant of one reaction is the reductant of this other. The distance 

between the peaks, or ∆Ep, of the second reaction is larger than the first, meaning that this 

reaction is more irreversible (or shows a larger potential polarization).  ∆Ep also increases 

with the scan rate and diffusion limitation can be extrapolated. In reversible redox reaction, 

the areas of oxidation and reduction peaks are the same. In most battery-type electrode, the 
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peak current intensity is proportional to the square root of the scan rate which means that the 

reactions are usually kinetically limited by mass transfer to the electrode.  

In the second example, Figure II.4.B, rectangular shaped voltammograms characteristic of 

capacitive behavior is observed. The differences between an ideal double layer capacitor and 

a more realistic supercapacitor have many origins. An ideal double layer capacitance is 

constant at all scan rates and is determined from the equation 10: 

𝐶𝑑𝑙 =
𝐼
𝑣

                                Eq. 10 

Where, Cdl is the double layer capacitance of an electrode (F), v is the scan rate (V/s) and I is 

the current (A). 

Several phenomena can cause deviation from ideal rectangular voltammograms. The most 

common are the series resistance (mainly coming from the electrolyte resistance), electrolyte 

decomposition, gas evolution, irreversible surface reaction and the carbon pore size 

distribution that may create mass transfer limitation in smaller pores at high potential scan 

rate. 

II. 3 Galvanostatic charge-discharge measurement 

The galvanostatic charge-discharge measurement consists of passing a constant current to the 

cell and recording the potential evolution with time. A potential window is selected and when 

a potential limit is reached the current is reversed. The charge/discharge curves are usually 

plotted as potential vs. time or potential vs. capacity. This technique is also used to estimate 

the cycle life of the cell, by repeating the charge/discharge a high number of times and trace 

the capacity or capacitance vs. the cycle number. The cycling rate is generally noted as C/n 

rate where n is the time in hours for a complete charge or discharge at the corresponding 

current density and C the capacity (Ah). Usually the rate is lower for battery (tenth of minutes 

to hours) than for supercapacitors (tenth of seconds to minutes). 
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As shown in chapter 1, batteries and supercapacitors have different behaviors during 

galvanostatic cycling. Figure II. 5 summarize the main characteristic observable on a charge-

discharge curves. 

 

Figure II.5: Typical galvanostatic charge-discharge curves of lithium ion intercalation (A) 

and double layer (B) materials. 

In both cases, the specific capacity is calculated from equation 11. Volumetric and areal 

capacities are also often calculated.  

𝑄 =
𝐼×𝑡
𝑚

                    Eq.11 

Where Q is gravimetric capacity (mAh/g), I is the current applied (A), t is the time (h) and m 

is the mass (g). 

In the example of redox reaction Figure II.5.A, the plateau regions are characteristic of a two-

phase mechanism corresponding to the insertion of cations into the host material. These redox 

reactions occur at a given potential. The differences of plateau potential during charge and 

discharge can originate from thermodynamic limitation, charge transfer kinetics limitation, 

ions diffusion, and electrical resistance (166). In most cases for batteries, irreversibility is 

observed during the first cycle. For lithium-ion batteries irreversible reactions occur, such as 

the formation of a solid electrolyte interphase at the anode during charging, which is 

responsible for the irreversibility seen in the first cycle (167). 
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In the case of capacitive-type electrodes, Figure II.5.B, the potential follows a quasi-straight 

line during galvanostatic charge-discharge measurements that correspond to the following 

equation: 

∆𝐸 = 𝐼 × (𝐸𝑆𝑅 +
𝑡
𝐶
)           Eq. 12 

Where ΔE is the potential evolution (V), I is the current applied (A), ESR is the equivalent 

series resistance (Ω), C is the double layer capacitance (F) and t is the time (s). 

The coulombic efficiency is a factor that brings out information regarding the cycle life of a 

cell. It is calculated from the following equation: 

𝜂(%) =
𝑄
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄
𝑐ℎ𝑎𝑟𝑔𝑒

                    Eq.13  

Double layer capacitive materials have excellent coulombic efficiency (>99%) which allow 

supercapacitors to reach 100,000 cycles. In contrast, electrode materials that store charge 

through redox reactions usually have lower coulombic efficiency. The cycle life of lithium ion 

batteries is approximately hundreds of cycles. 

II. 4 Electrochemical Impedance Spectroscopy 

This technique consists in imposing a sinusoidal potential of small amplitude (few mV) over a 

wide range of frequency f (from hundreds of kHz down to few mHz) according to equation 14 

to a steady state. Equation 15 describes the current response to the applied potential. It is a 

sinusoidal current which presents a shifted angle of phase φ. 

𝐸 = 𝐸0 + ∆𝐸𝑠𝑖𝑛(𝜔𝑡)         Eq.14 

𝐼 = 𝐼0 + ∆𝐼𝑠𝑖𝑛(𝜔𝑡 + 𝜑)         Eq.15 

Where E is the potential (V), E0 is the initial steady state potential (V), ΔE is the amplitude of 

the signal (V), ω is the pulsation (rad.s
-1

), t is the time (s), I is the current (A), I0 is the initial 

steady state current (in this thesis I0 = 0 A), ΔI is the amplitude of the current response (A) 

and φ is the phase shift. 
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In order to facilitate mathematical treatment, the potential and current during the 

electrochemical impedance spectroscopy are usually written with complex numbers as follow: 

∆𝐸 = ∆𝐸𝑚𝑎𝑥𝑒
𝑗(𝜔𝑡)         Eq.16 

∆𝐼 = ∆𝐼𝑚𝑎𝑥𝑒
𝑗(𝜔𝑡+𝜑)         Eq.17 

The complex impedance is defined by the ratio between the complex potential and complex 

current: 

𝑍 =
∆E
∆I

=
∆𝐸𝑚𝑎𝑥

∆𝐼𝑚𝑎𝑥
𝑒−𝑗𝜑         Eq.18 

And using the Euler’s formula: 

𝑍 ==
∆𝐸𝑚𝑎𝑥

∆𝐼𝑚𝑎𝑥
∙ [cos(𝜑) − 𝑗𝑠𝑖𝑛(𝜑)] = 𝑅𝑒(𝑍) − 𝑗 × 𝐼𝑚(𝑍)         Eq.18 

 

Where Re(Z) and Im(Z) are the real part and imaginary part of the impedance. 

The most common data representation method is to plot –Im(Z) versus Re(Z) which is called 

the Nyquist plot. Figure II.6 represents the Nyquist plot of the electrochemical impedance for 

two different electrochemical systems. 

The equivalent circuit of lithium ion electrode is presented Figure II.6.A, accompanied with a 

typical impedance of an intercalation material LixMn2O4 (168-170). When the frequency 

tends to ∞, the impedance depends on the electrolyte resistance. When the frequency 

decreases, the first semi-circle observed corresponds to the solid electrolyte interphase and the 

second semi-circle describes non-ideal double layer behavior. At lower frequency, an element 

called Warburg impedance is present, related to diffusion limitation, then the curve tends 

toward a vertical line associated with intercalation capacitance (169). 

The Nyquist impedance and equivalent circuit of a porous electrode in electrochemical double 

layer capacitors are represented in Figure II.6.B. This model, called the Transmission Line 

Model, was proposed by De Levie in 1963 and consists of a succession of series/parallel RC 
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components that account for the porosity of the carbon (171, 172). At high frequency the ions 

can only reach the outer surface of the electrode, thus the impedance depends on the 

electrolyte resistance, the current collector resistance and electronic resistance of electrodes. 

When the frequency decreases, schematically, ions can access deeper into the pores, thus the 

resistance increase due to the diffusion of ions inside the pores. As the frequency decreases, it 

reaches the knee frequency which corresponds to the frequency where the resistance reaches a 

maximum. At lower frequency, a vertical straight line is observed corresponding to a 

capacitive behavior (173). 

 

Figure II.6: Typical Nyquist plots of a battery-type materials (LixMn2O4) (A) and carbon 

double layer material (B). Inset: equivalent circuit (adapted from (169) (173)). 

 

III Materials Characterization Techniques 

III. 1 X-ray diffraction 

III. 1-1 Principle 

X-ray diffraction is an analytical technique used to characterize materials atomic structure. A 

solid is defined as crystal when it is composed of a regular arrangement of atoms as 

represented in Figure II.7. The crystal is defined by a three dimensions lattice and the 
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interplane atomic spacing is noted dhkl where h, k and l, called Miller indices, are the 

reciprocal of the lattice vectors.  

The X-rays generated from copper excitation irradiate the solid, and are scattered from its 

electrons. The wavelength of copper Kα radiation is similar in size to dhkl (few Å). As a 

consequence, diffraction patterns can be observed due to constructive and destructive 

interference between x-rays and atoms. The condition for constructive interference is given by 

the Bragg’s Law: 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃         Eq.19 

Where n is an integer corresponding to the order of the reflection, λ is the wavelength of 

radiation used, dhkl is the interplane atomic spacing and θ is the scattering angle. 

In a θ-2θ configuration, θ corresponds to the angle between the hkl plan and the incident X-

ray and the diffracted X-ray. The detector is placed at an angle 2θ to the incident X-ray. The 

results are usually presented as the intensity vs. 2θ. From the position of intensity peak it is 

possible to calculate dhkl according the Bragg’s Law. In the specific case of MXene the (002) 

plane, corresponding to h=0 k=0 and l=2, diffracts and is one of the most intense peaks 

observed. The 2θ position of this peak is therefore used to determine the c-lattice parameter. 

 

Figure II.7: Schematic representation of Bragg’s diffraction. 
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III. 1-2 Equipment 

Ex-situ X-rat diffraction patterns of the electrodes were collected using a Bruker D4 

diffractometer using a Cu Kα radiation (λ = 1.5406 Å) in the range 2θ = 5−50° with a step of 

0.016°. 

In-situ X-ray diffraction patterns of Ti3C2Tx electrodes were collected on a Brucker D8 

diffractometer using a Cu Kα radiation (λ=1.5406 Å) with a step of 0.02°. Figure II.8 shows 

the special 2-electrode Swagelok-type cell designed in LRCS (Amiens University), where the 

samples are placed and covered with materials that are transparent to X-ray to avoid 

electrolyte evaporation and allow in-situ X-ray diffraction recording. With aqueous 

electrolytes a Mylar window was used whereas a beryllium window was used with organic 

electrolytes. The counter electrodes were either overcapacitive activated carbon or metallic 

sodium. In each chapter, the corresponding experimental details of the in-situ setup will be 

described. 

 

Figure II.8: Photography of the electrochemical in-situ X-ray diffraction cell. 
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III. 2 Scanning electron microscopy 

III. 2-1 Principle 

Scanning electron microscopy is a technique commonly used to observe the topography of 

materials at the microscopic scale based on the interaction of the material with a beam of 

electrons. The electron beam is produced thermionically by the tungsten filament cathode of 

an electron gun. The interaction between material and the electron beam produce various 

types of radiation (electrons, X-rays and fluorescence). Specialized detectors collect the 

secondary electrons which are low-energy electrons (<50 eV) ejected from the k-shell of the 

atoms at the surface of the material. An image is created by scanning the material surface with 

the electron beam and recording the number of secondary electron detected.  

III. 2-1 Equipment 

Two scanning electron microscopes were used to investigate the electrodes’ morphology, 

structure and thickness. A JSM-6700F (JEOL, Japan) was used by Barbara Daffos and a Zeiss 

Supra 50 VP (Carl Zeiss SMT AG, Oberkochen, Germany) was used by Maria R. Lukatskaya. 

 

III. 3 Energy dispersive X-ray spectroscopy 

Energy dispersive X-ray spectroscopy is a technique used for elemental analysis and is often 

present in scanning electron microscopes, like in our case. A Zeiss Supra 50 VP (Carl Zeiss 

SMT AG, Oberkochen, Germany) was used. The principle is to use an X-ray detector to 

record the number and energy of X-rays produced in the sample studied during irradiation by 

an electron beam. The energies of the X-ray emitted are converted to measure the elemental 

composition of the sample.  
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III. 4 Gas Sorption Analysis 

Gas sorption analysis consists of measuring the quantity of gas absorbed by the sample 

studied as a function of gas pressure at constant temperature. This data can be used to 

calculate the specific surface area using the Brunauer–Emmet–Teller equation. Nitrogen 

sorption analysis at 77 K using a Micromeritics ASAP 2020 apparatus was carried out after 

outgassing under vacuum at 300 °C for 12 h. The analysis was performed with the help of 

Barbara Daffos. 

 

III. 5 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy is a technique commonly used to analyze the surface 

chemistry of a sample based on the interaction of the material with an X-ray beam that 

produces photo-emitted electrons. The number and kinetic energy of these electrons can be 

measured using a specialized detector under ultrahigh vacuum (<10
-7

 Pa). An X-ray 

photoelectron spectrometer (VersaProbe 5000, Physical Electronics Inc., USA) using a 100 

µm monochromatic Al Kα X-ray beam to irradiate the surface of the samples was used to 

obtain X-ray photoelectron spectra. Emitted photoelectrons were collected using a 180° 

hemispherical electron energy analyzer. Samples were analyzed at a 45° takeoff angle 

between the sample surface and the path to the analyzer. High-resolution spectra were taken at 

a pass energy of 23.50 eV and with a step size of 0.05 eV. The peak fitting was carried out 

using CasaXPS Version 2.3.16 RP 1.6. The experiment and analyses were performed by 

Kevin M. Cook at Drexel University. 
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Chapter III :  MXene as a Supercapacitor electrode in 

aqueous electrolytes 

I Introduction 

The primary objective of this chapter is to investigate the electrochemical performance of 

MXene as an electrode material for supercapacitors for high power applications.  

Our strategy is to develop MXene electrodes for supercapacitors that could potentially store 

energy through surface redox reactions or intercalation of ions between layers. In this chapter, 

the study focuses exclusively on Ti3C2Tx which was selected because it has shown the best 

performances in lithium ion batteries (160). The intercalation of ions between MXene layers 

has been previously observed. Come et al. demonstrated the intercalation of Li
+
 into Ti2C 

promoted electrochemically (161) and Mastalir et al. showed the spontaneous intercalation of 

organic molecules (DMSO, hydrazine, urea) into Ti3C2 (160). The purpose of this work is to 

investigate the spontaneous intercalation of ions from several aqueous electrolytes in between 

the 2D Ti3C2Tx layers, where Tx stands for surface terminal groups containing oxygen and 

fluorine functional groups. The electrochemical performance of Ti3C2Tx in a variety of 

electrolytes was measured by cyclic voltammetry and galvanostatic charge-discharge 

techniques. The surface chemistry was analyzed by X-ray photoelectron spectroscopy and the 

intercalation mechanism was observed by X-ray diffraction. 
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II Spontaneous intercalation of cation 

II. 1 Study by X-ray diffraction 

To investigate the spontaneous reaction of Ti3C2Tx with aqueous solutions, 0.4 g of as-

synthetized Ti3C2Tx powder was added to 50 mL of various aqueous electrolytes, stirred for 

an hour with a magnetic stirrer at room temperature; then the solution was decanted after 

powder sedimentation; this process was repeated 5 times.  The final time the solution was 

filtered on a hydrophilic polypropylene membrane (GH polypropylene). The powders were 

collected and analyzed by x-ray diffraction. X-ray diffraction patterns of Ti3C2Tx and treated 

Ti3C2Tx (here in LiOH as an example) are shown in Figure III.1. As described in Chapter 2, 

the distance between single Ti3C2 sheets of Ti3C2Tx and treated Ti3C2Tx is proportional to the 

c-lattice parameter which can be calculated directly from the (00n) peaks according to 

equation 18: 𝑑(00𝑛) = 𝑛 × 𝜆 2𝑠𝑖𝑛(𝜃)⁄ = 𝑛 × 𝑑𝑐−𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 . The (002) peak was always 

the most intense peak of the pattern, therefore calculations and discussions focus on this peak. 

In the case of Ti3C2Tx the c-lattice parameter is calculated to be 20.3 Å. The intercalation of 

species between layers induces an increase in the c-lattice parameter, noticeable by the 2θ 

downshift of the (00n) peaks position compared to the untreated Ti3C2Tx.  

Figure III.2 shows the X-ray diffraction patterns of Ti3C2Tx obtained after treatment in 

various electrolytes. The aqueous solutions selected were 1M sulfuric acid (H2SO4), 1M 

lithium hydroxide (LiOH), 1M sodium hydroxide (NaOH), 1M potassium hydroxide (KOH), 

1M potassium acetate (KOAc), 1M potassium sulfate (K2SO4), 3M sodium acetate (NaOAc), 

1M lithium sulfate (Li2SO4), 1M sodium sulfate (Na2SO4) and 1M magnesium sulfate 

(MgSO4). A 2θ downshift was observed in all cases except with Ti3C2Tx treated by 1M 

H2SO4. A possible explanation is that the distance between two Ti3C2 layers is large enough 

that of the intercalation of small H
+
 has no effect on the c-lattice parameter. Another 
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explanation could be that the as-synthetized Ti3C2Tx already contains intercalated H
+
 cations 

that comes from the acidic environment during the synthesis with hydrofluoric acid. 

 

Figure III.1: X-ray diffraction pattern of Ti3C2Tx and LiOH-Ti3C2Tx. Purple diamond 

indicates peak coming from measurement set-up. Inset is a schematic of the intercalation 

process. 

Figure III.2A shows Ti3C2Tx treated in KOH, KOAc and K2SO4. The three chemicals share 

the same cation, thus the difference in their c-lattice parameter is related to other factors, such 

as pH or anion size. Yet, despite the acetate ion being larger than the hydroxide ion, KOH- 

Ti3C2Tx has a larger c-lattice parameter than KOAc- Ti3C2Tx, thus the difference cannot be 

directly correlated with the size of the anion. The same conclusion can be deduced from the 

results presented in Figure III.2B where Ti3C2Tx is treated with three chemicals that share the 

same Na
+
 cation. 

Figure III.2C shows Ti3C2Tx treated in 1M LiOH, NaOH and KOH. In this case, the anion and 

the pH are the same for the three solutions; therefore the differences observed should be 

attributed to the cation nature. Slightly different shifts are observed but it does not correlate 
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with the cation size. Although the downshift of the (002) peaks is not exactly the same, they 

are more similar to each other than with any of the other electrolytes investigated, which 

demonstrates the importance of the pH. 

Figure III.2D shows Ti3C2Tx treated in 1M H2SO4, Li2SO4 and MgSO4. Here, the anion is the 

same but the cation and pH are different. As explained before no shift was recorded after 

treatment in H2SO4. The intercalation from Li2SO4 is comparable to results obtained with 

Na2SO4 and K2SO4. The shift obtained in the case of the MgSO4 treatment is the largest 

observed so far. As the pH of 1M Li2SO4, Na2SO4, K2SO4 and MgSO4 is similar, it suggests 

that the cation valence has an effect on the lattice expansion.  

To conclude, the shift depends on both pH and valence of the cation.  

Energy-dispersive X-ray spectroscopy analysis of Ti3C2Tx after treatment in a few electrolytes 

was performed in order to demonstrate if either the cations or the anions were intercalated into 

Ti3C2Tx layers. Results are presented in Table 5 and confirmed the presence of the cations 

while anion (sulfur) was not detected. This implies that the cations intercalate between the 

Ti3C2Tx layers.  
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Figure III.2: X-ray diffraction patterns of Ti3C2Tx after treatment in electrolytes with 

different anions (A-B) and different cations (C-D). 
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Table 5: Energy-dispersive X-ray spectroscopy analysis of Ti3C2Tx-based powder. 

Material 

Atomic % 

Ti C O F S 
Cation of 

electrolyte 

Ti3C2Tx 30.0 14.8 16.0 18.9 - - 

KOH-Ti3C2Tx 30.0 21.2 30.9 11.4 - 3.2 

NaOAc-Ti3C2Tx 30.0 16.2 18.2 27.4 - 5.5 

K2SO4-Ti3C2Tx 30.0 17.8 8.4 15.4 0 1.4 

Na2SO4-Ti3C2Tx 30.0 17.5 12.9 15.8 0 1.0 

*
Values of the carbon, oxygen and fluorine content are approximate, since spectra were 

collected from the rolled Ti3C2Tx-based electrode, which contained carbon additive 

(contributes to C and O content) and PTFE binder (contributes to C, O and F content) 

(adapted from (174)). 

In most of 2D materials, the intercalation of ions is electrochemically driven or is limited by 

diffusion and kinetics (175, 176). In order to shed light on the spontaneous intercalation 

mechanism, X-ray diffraction spectra of Ti3C2Tx in an in-situ cell containing a 1M MgSO4 

solution was recorded during cycling, as shown in Figure III.3. In the first pattern (yellow) 

there are no shifts observed but with time the peak at 9° starts to decline while a peak at lower 

angles emerged. In the second scan the two peaks are clearly identifiable. The emerging peak 

shift from 6.7° to 6° in the following scans. This suggests that the intercalation reaction of 

MgSO4 into Ti3C2Tx layers is limited by diffusion.  

Similar experiments (not reported here) were attempted with Ti3C2Tx in 1M KOH and 3M 

NaOAc but the (002) downshift was observed immediately. This suggests that the diffusion 

and kinetic parameters of the intercalation depends on the electrolyte used but further work is 

needed to better understand the mechanism. 
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Figure III.3: X-ray diffraction patterns of Ti3C2Tx during intercalation from 1M MgSO4. 

Each pattern took 20 min to be recorded. Vertical dashed lines indicate the original position of 

the (002) peak. 

II. 2 Delamination 

Similar to the spontaneous intercalation of aqueous electrolytes described in the previous 

pages, Mashtalir et al. demonstrated the intercalation of large organic molecules, in particular 

dimethyl sulfoxide (DMSO) (160). The intercalation of DMSO was demonstrated by X-ray 

diffraction, as shown in Figure III.4. The intercalation has the effect of weakening the bond 

between Ti3C2Tx layers. Thanks to this, it is possible to separate most layers to each other by 

ultrasonication. This procedure, called delamination, is described in detail in chapter 2. Figure 

III.4 shows the X-ray diffraction pattern obtained for the freestanding delaminated Ti3C2 film 

prepared by filtration, noted d-Ti3C2Tx. A peak was observed at 6.16° meaning that the 

delaminated layers recombined with the same orientation. The d-Ti3C2Tx (002) peak is at 

lower angle than the DMSO-Ti3C2Tx (002) peak proving that DMSO molecules are not 

present between layers after the washing and ultrasonication steps. 
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Figure III.4: X-ray diffraction patterns of Ti3C2Tx, DMSO-Ti3C2Tx and d-T3C2Tx. 

 

III Surface modification 

The surface chemistry of the as-synthetized Ti3C2Tx is rich in oxygenated and fluorinated 

groups (157). After Ti3C2Tx treatment in various aqueous electrolytes, cations were found in 

the material but the nature of the bond between cation and the Ti3C2Tx surface is not known. 

The hypothesis deduced earlier is that the intercalation of cations induces a change in the c-

lattice parameter that depends on the pH and cation valence. Theoretical predictions suggested 

that treatment in basic aqueous solutions should replace –F terminal groups with hydroxyl 

groups as Ti-F becomes unstable at high pH (177). Moreover the delamination process 

demonstrated that the morphology of MXenes can be modified. 

In the following, our goal was to investigate the morphology and surface chemistry 

modifications of Ti3C2Tx after two different processes: 1) the intercalation of K
+
 cations 

between Ti3C2Tx layers from treatment in 1M KOH and 1M KOAc as described previously; 
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2) the delamination of individual Ti3C2Tx layers after the intercalation of DMSO and 

ultrasonication (160).To monitor these processes, the structure and chemistry of the Ti3C2Tx 

electrodes were analyzed by scanning electron microscopy (Zeiss, Supra 50VP, Oberkochen, 

Germany) and X-ray photoelectron spectroscopy (VersaProbe 5000, Physical Electronics Inc., 

USA).  

III. 1 Observation by scanning electron microscopy 

The morphologies of Ti3C2Tx, KOH-Ti3C2Tx and d-Ti3C2Tx were observed using scanning 

electron microscopy as shown in Figure III.5. Ti3C2Tx and KOH-Ti3C2Tx images showed 

aggregates of multilayered particles. Although the K
+
 intercalation preserved the exfoliated 

morphology, it can be noted that the layer thickness appears to be larger than before 

intercalation as if layers were glued together. This phenomenon is commonly observed in 

intercalated graphite (178, 179).  

d-Ti3C2Tx images shows layers on top of each other’s forming a continuous ordered film and 

no multilayered Ti3C2Tx aggregate is noticeable. This led to an increase in the specific surface 

area up to 100 m²/g while Ti3C2Tx and KOH-Ti3C2 specific surface areas are about 20 m²/g 

(160). As described in chapter 2, the d-Ti3C2Tx film electrode is prepared by filtration and 

does not contain any binder. The reason we obtained a free standing and flexible film is 

thanks to the formation of a network of layers overlapping (similarly to graphene (123)). 
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Figure III.5: Scanning-electron microscope images of Ti3C2Tx (A), KOH-Ti3C2Tx (B) and d-

Ti3C2Tx (C) (adapted from (180)). 
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III. 2 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy was used to characterize the surface chemistry of the 

samples. High-resolution X-ray photoelectron spectroscopy spectra of the samples (Ti3C2Tx, 

KOH-Ti3C2Tx, KOAc-Ti3C2Tx and d-Ti3C2Tx, shown in Figure III.6.A-C) in the F 1s region 

indicated that the Ti3C2Tx sample contained a large amount of F-terminated Ti (Figure 

III.6.A). It was also noticed that AlF3 salt residue from MAX phase etching was only present 

in the KOAc-Ti3C2Tx and Ti3C2Tx samples. It was completely removed after KOH or DMSO 

treatment. The intensity of the Ti-F peaks decreases in the order d-Ti3C2Tx, KOAc-Ti3C2Tx, 

KOH-Ti3C2Tx, being the lowest for the latter one. The signal of the Ti-F component, which 

was initially at 684.4 eV, shifts toward a higher-binding energy as F is removed from Ti as 

fluoride salt.  

Due to the 2D-nature of the Ti3C2Tx, oxidation does not proceed homogeneously and likely 

starts from the outer edges of the Ti3C2Tx grains, giving oxides and mixed carboxides 

(TiCxOy) at the flake edges and on the outermost surface layer of the multilayer particle, while 

Ti3C2Tx remains in the center of the grain.  This inhomogeneity gives rise to the broadened 

and convoluted spectra seen in the Ti 2p region (Figure III.6.B). In this region, the Ti-carbide 

photoemission arises from Ti3C2Tx, while the Ti (II) and Ti (III) components arise from these 

mixed oxides and carboxides, and the Ti (IV) component arises from TiO2 present on the 

surface of the grains as oxidation goes to completion. These spectra also include a component 

for Ti-F that becomes less prominent and merges with that for Ti (IV), likely as a result of the 

formation of a small amount of the intermediate, fluorinated TiO2, as hydroxyl groups replace 

the –F termination during the oxidation of the outer surface of Ti3C2Tx. This region also 

indicates oxidation of the surface of the Ti3C2Tx grains to Ti (IV) (TiO2) for all modified 

Ti3C2Tx samples. Accordingly, instead of F-termination, the KOH-Ti3C2Tx, KOAc-Ti3C2Tx 

and d-Ti3C2Tx surfaces are terminated with oxygen-containing groups. High-resolution 
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spectra of the samples in the K 1s region (Figure III.6.C) reveal two components, the first is 

for K
+
 that is strongly electrosorbed and the second component suggests that K

+
 is present as 

salt, probably KF. The electrosorbed K
+
 is much more prevalent in KOAc-Ti3C2Tx than in 

KOH-Ti3C2Tx.  Figure III.6.D shows a schematic view summarizing these two chemical 

modification paths for Ti3C2Tx. 

 

Figure III.6: Characterization data of Ti3C2-based materials after surface modification in 

various intercalation agents. High-resolution X-ray photoelectron spectroscopy spectra in the 

F 1s region (A), the Ti 2p region (B), and K 2p region (C). Schematic illustration of the 

modifications of Ti3C2Tx; delamination and intercalation of K
+
 (D) (adapted from (180)). 
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IV Electrochemical characterization 

 

We demonstrated that a spontaneous intercalation reaction modifying the surface chemistry 

can occur when Ti3C2Tx is in contact with different electrolytes. However the objective of this 

work is to investigate the electrochemical behavior of Ti3C2Tx.  For this purpose, we prepared 

Ti3C2Tx electrodes by mixing the dried powder in ethanol with 5 wt. % 

polytetrafluoroethylene binder (60 wt.% in H2O, Aldrich) and 5 wt. % carbon black (Alfa 

Aesar), followed by rolling and cutting the electrode film into 7 mm diameter disks with 

thicknesses between 50 µm and 70 µm.  

IV. 1 Results in various aqueous electrolytes 

A large array of electrolytes were selected to observe the response to different electrolytes 

properties (stability window, pH, conductivity, cation and anion etc). The aqueous solutions 

selected were the same as used in previous tests: 1M sulfuric acid (H2SO4), 1M lithium 

hydroxide (LiOH), 1M sodium hydroxide (NaOH), 1M potassium hydroxide (KOH), 1M 

potassium acetate (KOAc), 1M potassium sulfate (K2SO4), 3M sodium acetate (NaOAc), 1M 

lithium sulfate (Li2SO4), 1M sodium sulfate (Na2SO4) and 1M magnesium sulfate (MgSO4).  

The resulting cyclic voltammograms using a three-electrode Swagelok cell with Ag wire  as 

reference electrode and overcapacitive activated carbon as counter electrode at 20 mV/s are 

shown in Figure III.7. The main advantage of this electrochemical configuration is that the 

counter electrode potential is almost constant and therefore it allows to the study of the 

behavior of the working electrode over the total potential range.  

Unlike what is observed for graphite, there was no irreversible capacitance loss during the 

first cycle for any of the studied electrolytes (181).The conductivities of all electrolytes are 
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presented in Table 6. As explained extensively in chapter 1 and 2 the rectangular shaped 

cyclic votammograms indicate a capacitive behavior.  

Rectangular shaped cyclic voltammograms were obtained in all electrolytes, with some broad 

peaks noticeable in some cases. Curiously the peaks are located at -0.2V vs. Ag in the 

following electrolytes; NaOAc, KOAc, Na2SO4, K2SO4, MgSO4, H2SO4. Further work is 

needed to identify the reaction. As explained in detail in chapter 1, the presence of peaks in a 

cyclic voltammograms is due to redox reactions. The combination of an overall rectangular 

shaped cyclic voltammogram with few broad peaks is commonly observed in 

pseudocapacitive materials, such as RuO2 that is described in detail in Figure I.12.  

The performance of Ti3C2Tx electrodes tested at different scan rates is summarized in Figure 

III.7.F. The specific capacitances were calculated by integrating the reduction portions of the 

cyclic voltammograms. The capacitances obtained at 2 mV/s were found between 45 F/g and 

108 F/g. These results are quite high for such low specific surface area electrodes. Indeed, the 

capacitance due to the double layer is directly proportional to the specific surface area, as 

described by equation 5. However, Ti3C2Tx electrodes have a moderate specific surface area 

of 23 m²/g (160) which is very small compared to electrochemical double layer capacitor 

electrodes such as activated carbon (2000 m²/g). If double layer capacitance were the only 

operative mechanism, the capacitance for this material should be lower than 6 F/g as the areal 

capacitance of double layer capacitor is up to 20 µF/cm² (4). It is important to note that the 

capacitances obtained greatly depend of the electrolyte used.  

To study the effect of a cation’s size on the electrochemical behavior we analyzed the cyclic 

voltammograms obtained with electrolytes that have the same valence, the same anion and the 

same pH. No clear dependence on the cation size can be deduced since results with K
+
 are 
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better than Na
+
 with hydroxide anions (Figure III.7.A) but the opposite order appears with 

acetate anions (Figure III.7.B).  

The responses in the Li2SO4, Na2SO4, K2SO4 and MgSO4 (Figure III.7.C-D) are distinctively 

different. This is in agreement with the fact that the cations are intercalating, and not the 

anions. The best performance among sulfate electrolytes with close to neutral pH was 

obtained with MgSO4 (up to 82 F/g). As the conductivity in MgSO4 is the lowest, the better 

performance was suggested to be attributed to the bivalence of Mg
2+

. However other 

electrolytes with multivalent cations (1M Al2(SO4)3 and 1M Al(NO3)3) were investigated by 

Lukatskaya et al., as seen in Annex 1 (174). Their performances were lower than with MgSO4 

even if Al(NO3)3 conductivity is higher (110 mS/cm²). Therefore no direct link between a 

cation’s valence and electrochemical performance can be concluded. 

The highest capacitances among all electrolytes studied were obtained in 1M H2SO4 with 

capacitance up to 108 F/g at 2 mV/s. This electrolyte has the best conductivity but the lowest 

potential window because of the low pH. Broad peaks at -0.2V vs. Ag are well defined. 

Recent work based on chronoamperometry at different potential suggests that these peaks in 

H2SO4 are associated with hydrogen storage but no study in the other electrolytes where this 

peak was observed has been performed to confirm it (182).   

To conclude, the best performances were obtained with 1M H2SO4 and 1M MgSO4, which 

have very different physical properties (different cation sizes, different conductivities, 

different pH). In the following section, effort will be focused on understanding the energy 

storage mechanism.  

 

 



Chapter III: MXene as a Supercapacitor electrode in aqueous electrolytes  

 

82 

 

 

 

Figure III.7: Electrochemical performance of Ti3C2Tx in various electrolytes; cyclic 

voltammograms at 20 mV/s in LiOH, NaOH and KOH (A) NaOAc and KOAc (B), Li2SO4 

and Na2SO4 (C) K2SO4 and MgSO4 (D) H2SO4(E) Summary of rate performances in the 

different aqueous electrolytes (F). 
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Table 6: Ionic conductivities of the various aqueous electrolytes used in electrochemical 

experiments (183, 184).  

Electrolyte 
Conductivity, 

mS/cm 

1 M H2SO4 265 

1 M KOH 191 

1 M LiOH 150 

1 M NaOH 141 

1 M K2SO4 100 

1 M Na2SO4 100 

1 M KOAc 92 

3 M NaOAc 79 

1 M Li2SO4 71 

1 M MgSO4 51 

 

IV. 2 Mechanism study by in situ X-ray diffraction 

Electrodes that store charges through double layer capacitance have an areal capacitance up to 

20 µF/cm²(4). It can be calculated that in order to reach a capacitance of 40 F/g based on 

double-layer, a specific surface area of 200 m²/g is the minimum required, which is far above 

the value measured for Ti3C2Tx electrodes. Therefore the double layer capacitance 

contribution to the total capacitance in this case is limited. To shed light on the energy storage 

mechanism, in-situ X-ray diffraction was performed using Ti3C2Tx electrodes. It consists of 

recording the X-ray diffraction spectra at different potentials using the experimental set-up 

described in Chapter 2. Figure III.8 shows the results in the three different electrolytes that 

were selected for this study; 1M KOH, 1M MgSO4 and 3M NaOAc.  
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Confirming the results shown previously, we observe that when Ti3C2Tx is in contact with 

these aqueous electrolytes a (002) peak downshift was observed, demonstrating the 

spontaneous intercalation mentioned earlier. In the case of MgSO4 the peaks appeared after 2 

hours. The shift observed for NaOAc and MgSO4 does not correspond perfectly to the values 

observed in Figure III.2. A possible explanation is that the materials used are slightly 

different, for example in one case the material used is a powder treated for 6 hours in the 

electrolytes and in the other case it is a film electrode of untreated Ti3C2Tx with PTFE binder 

and carbon black that is soaked in the electrolyte.  

In-situ X-ray diffraction studies during cycling showed that electrochemical cycling leads to 

small changes in the c-lattice parameters. This demonstrates that there is an intercalation 

process occurring. For example, when a Ti3C2Tx electrode was cycled in a KOH containing 

electrolyte, the c values fluctuated within 0.33 Å as the potential was scanned from -1 to - 0.2 

V, as shown Figure III.8.A.  Interestingly, a slight shrinkage in c-lattice parameter was 

observed with increasing potential. The simplest explanation for this observation is that the 

positively charged ions incorporated in Ti3C2Tx increase the electrostatic attraction between 

layers, in a manner analogous to what is observed for MnO2 (185). 

Similar behavior was observed when Ti3C2Tx was cycled in 3M NaOAc as shown Figure 

III.8.B. The lattice expanded and shrank up to 0.22 Å during oxidation and reduction which is 

smaller than in 1M KOH. Considering that acetate anions are larger than hydroxide anions 

and that the capacitance at low scan rate were better in 3M NaOAc than in 1M KOH, the 

lower change in the lattice is attributed to the smaller size of the cation. It also further 

supports the hypothesis that the anions do not intercalate. 

Figure III.8.C shows the in-situ X-ray diffraction results in 1M MgSO4. When Ti3C2Tx was 

electrochemically cycled, here again, a slight shrinkage in c values was observed with 

increasing V. The shift of the (002) peak almost doubled compared to the KOH and NaOAc 
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electrolytes (0.5 Å) and might either be due to the larger size of the cation and/or its 

bivalence. As the same phenomenon is demonstrated in these three very different electrolytes 

it can be generalized that Ti3C2Tx stores energy through an intercalation capacitance 

mechanism. 

 

Figure III.8: Electrochemical in-situ X-ray diffraction study of Ti3C2Tx in 1M KOH (A), 1M 

MgSO4 (B) and 3M (NaOAc) (C).Vertical dashed lines indicate the original position of the 

(002) peak. Inclined arrows show the direction of the (002) peak shift. Illustration of cycling 

direction and concomitant change in c-lattice parameters (adapted from (174)). 
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IV. 3 Surface-modified Ti3C2Tx performance 

The effect of intercalation and delamination of the Ti3C2Tx on its surface chemistry has been 

studied by X-ray photoelectron spectroscopy in part II.2.2. It was confirmed that terminal 

fluorine was successfully replaced with oxygen-containing functional groups after the 

chemical intercalation of potassium acetate (KOAc-Ti3C2Tx) and potassium hydroxide (KOH-

Ti3C2Tx). Delamination of Ti3C2Tx layers, denoted d-Ti3C2Tx, led to both an increase of the 

specific surface area of MXene films and the modification of the surface chemistry of d-

Ti3C2Tx. 

Theoretical calculations using first-principles simulation recently investigated the Li, Na, K, 

Mg, Ca, and Al storage on MXene nanosheets (177, 186). The effect of the surface chemistry 

on the electrochemical performance for use in batteries was systematically studied. The 

results demonstrated that bare MXenes have higher capacities and greater ion mobilities than 

the O-terminated MXenes. It is expected that the surface chemistry of MXene has an effect on 

the behavior in the case of supercapacitor as well because HF-synthetized MXene are 

terminated with –F and –OH/=O functional groups, where the –F group may be a 

disadvantage to charge storage since F
-
 is not known to participate in any pseudocapacitive 

energy storage processes.   

In the following, we investigated the influence of the surface chemistry of Ti3C2Tx on its 

electrochemical performance in the acidic electrolyte sulfuric acid (H2SO4), this electrolyte 

was chosen because it had the best electrochemical performance.  

Figure III.9.A shows the cyclic voltammograms of all samples tested at 10 mV/s sweep rate in 

aqueous 1 M H2SO4. The best performances were achieved using d-Ti3C2Tx electrodes, with 

an outstanding volumetric capacitance of 520 F/cm
3
 and a gravimetric capacitance of 325 F/g 



Chapter III: MXene as a Supercapacitor electrode in aqueous electrolytes  

87 

 

at 2 mV/s (Figure III.9.B). We believe the superior performance of d-Ti3C2Tx electrodes 

originate from several sources. First, it is a 6 times thinner electrode, leading to better charge 

transfer and improved mass transfer. It also has a higher specific surface area and is denser 

because of its morphology (aligned MXene flakes). Nonetheless, d-Ti3C2Tx has shown a 

stronger dependence of performance on scan rate, which is assumed to be caused by the flakes 

aligning parallel to the current collector and increasing the transport path for ions as the film 

thickness increases.  

The Ti3C2Tx, KOH-Ti3C2Tx and KOAc-Ti3C2Tx electrodes have the same specific surface 

area, therefore the difference in electrochemical performance can only be related to the 

difference in surface chemistry. The moderate capacitances for Ti3C2Tx are consistent with the 

absence of redox activity of the F-termination. The KOAc-Ti3C2Tx and KOH-Ti3C2Tx 

electrodes exhibit similar behavior, with the latter having a higher gravimetric capacitance 

thanks to a lower content of F-groups (Figure III.6.A). Their surfaces are terminated by 

oxygen-containing groups, including –OOH, =O and –OH, which are known to be responsible 

for pseudocapacitive behavior seen in carbon in acidic electrolytes. This hypothesis is 

consistent with the shape of the cyclic voltammograms presented in Figure III.9.A, where the 

presence of a set of broad peaks at -0.2 and -0.1 V/Ref is observed. These peaks were 

assumed to originate from surface redox reactions of MXene leading to changes in the degree 

of oxidation of titanium in MXene, which is a transition metal capable of changing oxidation 

degree between +3 and +4.  

Figure III.10.A shows the capacitance vs. cycle number dependencies obtained from 

galvanostatic charge-discharge curves shown in Figure III.10.B. Stable capacitances of 415 

F/cm
3
 and 215 F/cm

3
 were obtained at 5 A/g for d-Ti3C2Tx and KOH-Ti3C2Tx, respectively. 

After 10 000 cycles, no significant degradation was observed. Similar electrochemical 
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performances improvements due to the delamination process were observed in some other 

electrolytes (KOH, NaOAc and MgSO4) as seen in Annex 2. 

 

Figure III.9: Electrochemical performance of Ti3C2-based electrodes in 1M H2SO4: cyclic 

voltammograms profiles at 10 mV/s(A).  Summary of rate performances (B) (adapted from 

(180)). 

 

 

Figure III.10: Charge and discharge volumetric capacitance vs. cycle number of KOH-

Ti3C2Tx and d-Ti3C2Tx electrodes from galvanostatic cycling in 1M H2SO4 at 5 A/g (A).  

Galvanostatic charge-discharge profile of d-Ti3C2Tx (B) (adapted from (180)). 
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V Conclusion 

We have demonstrated the intercalation of a wide range of cations (Li
+
, Na

+
, K

+
 and Mg

2+
) 

between Ti3C2Tx layers from various aqueous solutions. The mechanism depends on pH and 

the nature of the cations. The electrochemical behavior of Ti3C2Tx was investigated in these 

aqueous electrolytes. The energy storage mechanism was identified to be intercalation 

capacitance by in-situ X-ray diffraction. 

The best performance was observed in sulfuric acid electrolytes. The effect of intercalation 

and delamination of the two-dimensional titanium carbide, Ti3C2Tx (MXene) on its surface 

chemistry and electrochemical capacitance has been demonstrated. The change in surface 

chemistry (-F repaced by –O) led to a 4-fold increase in the capacitance in sulfuric acid, 

demonstrating a pseudocapacitive contribution to the electrochemical behavior of MXene. A 

recent study using in-situ X-ray absorption spectroscopy confirmed the change of oxidation 

state of Ti atoms in Ti3C2Tx (182). Later, the performance of Ti3C2Tx itself was improved by 

optimizing the d-Ti3C2Tx electrode formulation (164) and a new synthesis route of Ti3C2Tx 

(163). 

The delamination process gave rise to an electrochemical capacitance of 520 F/cm
3 

at 2 mV/s, 

the highest volumetric capacitance reported for this material. This value is dramatically higher 

than the 60-100 F/cm
3
 for activated graphene (120, 187) or 180 F/cm

3
 for micrometer-thin 

carbide-derived carbon electrodes (188, 189). Extreme values of 1200 F/cm
3
 (190) and 640 

F/cm
3
 (191) for MnO2 hybrid electrodes were obtained on thin films of supported 

nanoparticles and cannot be compared with our electrodes. Moreover, freestanding d-Ti3C2Tx 

electrodes are highly flexible  which is promising for wearable energy storage devices (192).  

The fact that cations of different size and valence can be accommodated between the Ti3C2Tx 

layers opens the door for the use of MXene in batteries going beyond Li-ions and metal-ion 

capacitors. 
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Chapter IV :  MXene for Na-ion capacitors 

I Introduction 

One of the most important applications of MXene are electrodes for lithium ion batteries. For 

example, Ti3C2, V2C and Nb2C have recently shown better performance than Ti2C, with 

reversible capacities about 400 mAh/g, 300 mAh/g and 200 mAh/g at 1C rate respectively 

(160, 193). Unfortunately, all data showed incompatible working potential window (from 0V 

to 2.5V) and a sloping charge-discharge which are drawbacks for batteries. 

However, such a drawback becomes a key advantage for assembling hybrid devices, such as 

lithium and sodium ions capacitors. Ti2C was proposed for Li-ion capacitors and exhibited 70 

mAh/g at 10C rate (Figure I.26) (161). All MXene tested for lithium ion battery (Ti3C2, Nb2C 

and V2C) are expected to be suitable for lithium ion capacitors. In particular, delaminated 

Ti3C2 electrodes have shown excellent power capability in batteries (Figure I.27) and a full 

cell could be assembled with a suitable battery-type counter electrode. However, the results 

shown in the previous chapter highlighted the innovative possibility to go beyond lithium 

with energy storage solutions based on the inexpensive sodium chemistry. Indeed, we 

demonstrated the fast intercalation of large cations between Ti3C2Tx layers from various 

aqueous electrolytes, including sodium-based electrolytes. 

Considering that Na
+
 intercalation into Ti3C2Tx from aqueous electrolytes lead to good 

performance, the Na
+
 intercalation into MXene-based electrodes should be investigated for 

sodium-ion capacitors in organic electrolytes in order to increase the potential range. Herein 

we report our work to identify the most suitable MXene electrode to reach the highest energy 

and power densities for use in the assembly of a full sodium hybrid cell.  
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II Selection of suitable MXene electrode 

Results in aqueous supercapacitors and lithium ion batteries emphasized that the 

electrochemical performance depend on the composition of MXene (M and X elements) as 

well as its surface chemistry. Therefore, before creating a full Na-ion capacitor we 

investigated the electrochemical behavior of all synthetized MXene in sodium based organic 

electrolyte. The synthesis conditions of MXenes are described in the chapter 2. Again reiterate 

that MXenes are terminated with functional groups (OH and F) and the formulas are 

annotated with Tx to account for these surface termianations. 

Table 7 shows an estimated theoretical capacitance (Q) of MXene using the following 

equations: 

𝑀𝑛+1𝑋𝑛 + 𝑦𝑁𝑎+ + 𝑦𝑒− ↔𝑁𝑎𝑦𝑀𝑛+1𝑋𝑛 

𝑄 =
𝑦𝐹

3.6×𝑀
                                               (Eq. 4) 

Where: y is the number of sodium intercalated, F is the Faraday constant (96485 C/mol) and 

M is the molar mass (g/mol).  

Table 7: Capacitance estimation. Calculation did not take into account the surface chemistry 

and considered the intercalation of a single sodium per MXene formula. 

Mn+1Xn Ti3C2Tx Ti3CNTx Nb2CTx Ti2CTx TiVCTx Ti1.5V1.5CTx V2CTx 

Q (mAh/g) 160 158 135 249 242 156 235 

 

 

II. 1 Comparison of cyclic voltammograms 

A two-electrode Swagelok cell was used for half-cells with metallic sodium as counter and 

reference electrode separated by a glass fiber separator (GFA). The working electrode was a 

given MXene powder mixed with 20 wt. % of carbon black (Alfa Aesar) to ensure good 

conductivity. The electrolyte used was 1M NaPF6 in EC:DMC (1:1). Figure IV.1 shows the 
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cyclic voltammograms of carbon black and of all synthetized MXene materials. The result 

with carbon black shows that a reaction occurs below 0.5V vs. Na
+
/Na. The cell was cycled 

between 0 and 4V vs. Na
+
/Na in order to observe the electrolyte reaction occurring at high 

potential and determine the potential stability range (3.7 V). As expected the electrochemical 

behavior greatly varies according to the MXene composition. 

The corresponding capacities are shown in Figure IV.2. Surprisingly the performance of 

Ti2CTx and Nb2CTx are the lowest observed whereas good performances were achieved for 

lithium ion batteries using the same materials. In all MXenes, an irreversibility was observed 

during first cycle, originating from the formation of the solid electrolyte interphase as well as 

irreversible processes, such as reactions between Na
+
 and residual water or unwashed etching 

products from the synthesis. A large degree of irreversibility was observed in particular for 

Ti3CNTx (70% capacity loss) lessening the interest of this material for commercial 

rechargeable energy storage application (5). 

As the performance also depends on the surface chemistry it is difficult to attribute the 

electrochemical behaviors solely to the composition of M and X in MXenes. However, it 

appears that TiVCTx and Ti1.5V1.5C2Tx cyclic voltammograms are very similar, suggesting 

that there could be peaks characteristic to the composition.  

The electrochemical performances of Ti3C2Tx, TiVCTx, Ti1.5V1.5C2Tx and V2CTx are in the 

same order of magnitude (150 mAh/g). But Ti3C2Tx and V2CTx could only be cycled in a 

limited potential range. Indeed, Ti3C2Tx capacitive behavior is achieved below 2.5 V, which is 

suitable for negative electrodes, while V2CTx has a redox peak above 3V, suitable for positive 

electrodes. To conclude, Ti3C2Tx and V2CTx were selected for further investigation because 

they have lower irreversibility, better defined redox peaks and their synthesis condition is 

better known. 
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Figure IV.1: Cyclic voltammetry of Carbon black (A) and MXene (B-H) at 0.2 mV/s in 1 M 

NaPF6 in EC:DMC. 
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Figure IV.2: Capacity of all MXene calculated from cyclic voltammetry at 0.2 mV/s. 

III Ti3C2Tx  

Ti3C2Tx is the most studied MXene. In the previous chapter, we demonstrated that we could 

modify its electrochemical behavior in a given electrolyte by tuning its surface chemistry and 

morphology. Preliminary experiment in half-cell sodium ion batteries showed a capacity 

above 120 mAh/g, which is promising in the field of sodium ion battery. We first investigated 

the charge storage mechanism of Ti3C2Tx. Then, inspired by our previous results in 

supercapacitors, we attempted to improve the electrochemical performance by chemical 

treatment. 

 

III. 1 Energy storage mechanism 

In order to investigate the mechanism of energy storage mechanism, we again performed 

electrochemical in-situ X-ray diffraction experiments. We used the in-situ cell described in 

chapter 2 using a mixture of 80 wt. % of Ti3C2Tx and 20 wt. % of carbon black (Alfa Aesar) 

powder. Figure IV.3 shows the X-ray diffraction spectra during galvanostatic-charge 

discharge at 0.03 A/g. 

During the first charge a downshift of the (00n) peaks, here (002) and (004), were recorded. 

This was attributed to sodium intercalation between Ti3C2Tx layers. According to equation 4, 
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the capacity was converted into the number of sodium intercalated and revealed that almost 3 

cations are inserted into Ti3C2Tx per formula unit, although the calculation overestimated this 

value because it did not take into account the solid electrolyte interphase formation nor the 

side reaction with impurities. Regardless, the c-lattice parameter expansion during the first 

charge is 1.4 Å, which is larger than the ionic radius of neat Na
+
. This suggests that more than 

1 layer of sodium can be intercalated into Ti3C2Tx, but an effect of the solvation shell is not 

excluded. 

During the next charge and discharge, a reversible cell expansion and shrinkage of 0.4 Å is 

observed. Ti3C2Tx does not fully recover to its original lattice size. This phenomenon was 

previously observed upon cation intercalation from aqueous electrolytes and lithium 

intercalation in lithium ion capacitors (Figure I.26). It suggests that during the first reduction 

sodium cations are irreversibly intercalated and form a pillared structure, similar to what is 

seen in a other 2D materials (141, 194-196). 

 

 

Figure IV.3: In-situ X-ray diffraction spectra (A) of Ti3C2Tx.during galvanostatic charge-

discharge at 0.03 A/g and corresponding charge-discharge curves (B). 

 



Chapter IV: MXene for Na-ion capacitors  

99 

 

III. 2 Modification of Ti3C2Tx 

As the results presented in Figure III.9 (capacitance improvement after chemical treatment in 

aqueous supercapacitors) suggest a valid strategy to improve the performance is to tune the 

surface chemistry of the MXene. For this purpose, Ti3C2Tx was modified using the same 

treatment, described in chapter 3.II.1. In brief, Ti3C2Tx was immersed and stirred for 6 hours 

in different electrolytes. Here, Ti3C2Tx was immersed in 1M potassium hydroxide (KOH-

Ti3C2Tx), 1M potassium acetate (KOAc-Ti3C2Tx), 1M lithium hydroxide (LiOH-Ti3C2Tx) and 

1M sodium hydroxide (NaOH-Ti3C2Tx) replacing fluorine at the surface by oxygenated 

functional groups. 

For comparison with the untreated Ti3C2Tx in Figure IV.1.B, we performed cyclic 

voltammetry tests at 0.2 mV/s using modified-Ti3C2Tx with 20 wt. % carbon black. The 

results, shown Figure IV.4.A-D, demonstrate that the various treatments greatly influenced 

the electrochemical response upon cycling.  

The first cycle irreversibility was reduced in all modified-Ti3C2Tx. It can be attributed to the 

contribution of two phenomena. First, the chemical treatments removed impurities such as 

aluminum fluoride and therefore prevented irreversible side reaction. Second, cations were 

spontaneously pre-intercalated from the aqueous electrolyte during the chemical treatments 

(seen Figure III.2), resulting in an already pillared structure before cycling in the sodium ion 

battery half-cell.  

The shape of the cyclic voltammograms was modified with a clear displacement of the redox 

peaks. For example, the oxidation peak at 0.5 V vs Na
+
/Na in the untreated Ti3C2Tx (Figure 

IV.1.B) disappeared in the others cases. Broad peaks at 1.2 V and 1V were observed in KOH-

Ti3C2Tx and KOAc-Ti3C2Tx, respectively. NaOH-Ti3C2Tx exhibits well defined sharp redox 

peaks at 2.3 V while LiOH-Ti3C2Tx redox peaks are at 2.3 V and 1.6 V. 
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Whereas a 4-fold increase in capacitance was achieved by KOH treatment in the case of 

aqueous supercapacitors, herein the capacities achieved were not greatly improved, as seen 

Figure IV.7. To conclude, we observed that it is possible to modify the Ti3C2Tx behavior by 

chemical treatments. It is conceivable that one could be able to tune precisely a given MXene 

behavior by controlling the synthesis and post-treatment condition. This goal requires a 

separate extensive study.  

 

 

Figure IV.4: Cyclic voltammetry of Ti3C2Tx treated in KOH (A) KOAc (B) NaOH (C) or 

LiOH (D) at 0.2 mV/s in 1 M NaPF6 in EC:DMC. 
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III. 2-1 Delaminated Ti3C2Tx 

The delamination process discovered by Mashtalir et al. (160) already led twice to energy 

storage improvement (shown Figure I.27 and Figure III.9). The experimental procedure to 

prepare a binder-free flexible film electrode is detailed in chapter 2.  

The cyclic voltammograms obtained from this material are shown in Figure IV.5. The d-

Ti3C2Tx behavior is different than any Ti3C2Tx-based electrode previously tested. 

Unexpectedly, the performance is worse than untreated Ti3C2Tx. Several possible reasons 

exist, such as ion accessibility hindered by residual DMSO or fast deterioration of the 

electrode in air, but none were investigated because a new synthesis method was discovered at 

Drexel University which quickly stole our attention. Recent research suggests that in-plane 

alignment of Ti3C2Tx sheets limits the accessibility of electrolyte ions (164). 

 

Figure IV.5: Cyclic voltammetry of d-Ti3C2Tx at 0.2 mV s
-1

 in 1 M NaPF6 in EC:DMC. 
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III. 2-2 Clay Ti3C2Tx 

All the MXene results described previously were obtained from the selective etching of Al 

from MAX phases by a concentrated solution of hydrofluoric acid (HF). Handling HF is 

dangerous and new procedures were investigated for safer and easier manufacturing. Early in 

2014, a new synthesis procedure has been proposed by Ghidiu et al. (163), by replacing the 

hydrofluoric acid etching agent with a mixture of hydrochloric acid (HCl) and fluoride salt 

(LiF, etc.). This mixture produces in-situ HF that can react as previously described. The main 

advantage of this procedure is that it is easier to handle and uses safer and inexpensive 

chemicals. It consisted of mixing 2g of T3AlC2 in 100 mL of a 6M HCl/LiF at room 

temperature for 24 hours. With this mixture, the aluminum layer in Ti3AlC2 is still etched 

away but the produced Ti3C2Tx behaves like clay that can be rolled by a glass tube to obtain a 

binder free flexible freestanding film electrode (163).  

Figure IV.6.A shows the scanning electron microscopy image of the cross-section. We can 

observe that the film electrode is composed of multilayered Ti3C2Tx and delaminated Ti3C2Tx 

that created a network acting as binder and being responsible for the flexibility of the 

electrode. The electrochemical behavior of this material was investigated by cyclic 

voltammetry. In Figure IV. 6.B the cyclic voltammogram shape can be described as 

rectangular with a well-defined redox couple at 2.4V vs. Na
+
/Na. Notably, the first cycle 

irreversibility is the lowest observed so far. Although the capacity is lower than in other 

Ti3C2Tx its behavior is still attractive for sodium ion capacitor. Cyclic voltammetry at 

different rates has been performed to investigate the rate capability. The capacitance decreases 

quickly with increasing scan rate. At moderate rate 10 mV/s only 23 mAh/g remains which is 

too limited for real applications. 
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Figure IV.6: Scanning electron microscopy image of Ti3C2Tx clay (A). Cyclic voltammetry 

of Ti3C2Tx clay at 0.2 mV s
-1

 (B) and at different rates (C) in 1 M NaPF6 in EC:DMC. (A)  

Summary of rate performances (D). 

 

 

Figure IV.7: Capacity of all Ti3C2Tx-based electrodes calculated from cyclic voltammetry at 

0.2 mV/s. 
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Early in 2015, the first experimental investigation of sodium-ion capacitors using MXenes 

was published by Wang et al. (195), who used Ti2C as the negative electrode and alluaudite 

Na2Fe2(SO4)3 as the positive electrode, as shown in Figure IV.8. The cyclic voltammetry of 

this Ti2CTx is very different than the one we observed in Figure IV.1, proving the influence of 

the synthesis conditions on the electrochemical performance. Interestingly it showed 

similarities to the clay Ti3C2Tx (Figure IV.6), with redox peaks around 2.2 V vs. Na
+
/Na. The 

mechanism was studied by ex situ X-ray diffraction and showed sodium intercalation only 

during the first charge. Surprisingly, this is a different mechanism than what was observed in 

Figure IV.3, despite this one could argue that ex-situ X-ray diffraction spectra could be 

irrelevant if extra care concerning reaction in air and electrode drying are not taken into 

account. The full cell showed a good rate capability and high specific power of 1.4 kW/kg 

with specific energy of 260 Wh per kg of Ti2C.  

Although promising results were shown with Ti3C2Tx, previous sodium ion battery studies 

demonstrated that it is not the best MXene in terms of performance. We decided to 

concentrate our effort on V2CTx. 
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Figure IV.8: Cyclic voltammetry for Ti2CTx in a 1 M NaPF6/EC−DEC electrolyte at a scan 

rate of 0.2 mV/s (A). Ex situ X-ray diffraction patterns during cycling (B). Charge/discharge 

curves of Ti2CTx and alluaudite Na2Fe2(SO4)3 versus Na/Na
+
; the specific currents are 30 and 

6 mA/g, respectively. The inset is a schematic illustration of the Ti2CTx−alluaudite 

Na2Fe2(SO4)3 full cell (C). Charge/discharge profiles at various rates (D) (adapted from 

(196)). 
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IV V2CTx as positive electrode 

In contrast with Ti2C and Ti3C2 which can only be used as negative electrodes because of 

their operating potential window, V2CTx shows a potential window ranging from 1 V to 3.5 V 

vs Na
+
/Na. It is attractive as a positive electrode in Na sodium ion capacitors. Here, we 

extensively investigated the electrochemical behavior of two-dimensional vanadium carbide, 

V2C, which has been identified as the most promising member from the MXene family for 

use as a positive electrode. We first performed further test in half cells, then we studied the 

energy storage mechanismn and finally a full cell was assembled using a known negative 

electrode. 

IV. 1 V2CTx vs Na 

IV. 1-1 Electrode preparation 

V2CTx electrodes were prepared with 5 wt.% polytetrafluoroethylene binder (60 wt.% in 

H2O, Aldrich) and 15 wt.% carbon black (Alfa Aesar) to secure a sufficient electronic 

conductivity. The electrodes were rolled and cut into ≈30 μm thick disk with an average mass 

loading of 5 mg.cm
-
². A two-electrode Swagelok cell was used for half-cells with metallic 

sodium as counter and reference electrode separated by a glass fiber separator (GFA).  

IV. 1-2 Cyclic voltammetry 

Figure IV.9.A shows the cyclic voltammetry results at different scan rates while the change 

of the capacitance with the scan rate is described in Figure IV.9.B. High capacitances of 100 

F/g or 170 F/cm
3
 were obtained at slow scan rates and 50 F/g was still measured at 50 mV/s, 

evidence for good power performance of V2CTx for Na intercalation. At low scan rates, two 

different regions can be seen in the cyclic voltammograms, corresponding to two different 

electrochemical processes. From 1 V to 2.2 V, the rectangular shape of the voltammogram 
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describes pseudocapacitive behavior. A similar storage mechanism has been previously 

demonstrated in others MXenes. For example Ti3C2 cycled in aqueous electrolyte exhibits a 

rectangular-shaped voltammogram attributed to redox reactions and intercalation (174, 197). 

Redox peaks are identified at low scan rates, with an oxidation peak at 3 V (peak A), and a 

reduction peak at 2.5 V vs. Na
+
/Na, (peak B). As the scan rate increases, the redox peaks tend 

to disappear, thus suggesting a diffusion limitation at scan rate beyond 2 mV/s. The large 

potential range and the absence of any 2-phase system plateaus make V2C less suitable for 

sodium ion battery electrodes, but such features are attractive for sodium ion capacitors. 

 

Figure IV.9: Cyclic voltammetry of V2CTx at different scan rate (A) and summary of rate 

performance (B) (adapted from (198)). 

IV. 1-3 Galvanostatic charge discharge 

V2CTx was cycled at current densities from 30 mA/g to 1 A/g corresponding to the rate 

from C/3 (3 hours discharge) to 20C (3 min discharge), as shown in Figure IV.10. At low 

charge/discharge rates, the faradic efficiency decreases, thus leading to a capacity fade with 

cycling. At a low rate (C/3), the capacity fading is more pronounced in the first 40 cycles. 

Good capacity up to 70 mAh/g was obtained, with remarkable stability at discharge rates 

beyond 3C. The performance achieved experimentally is lower than that predicted by first-

principles simulations corresponding to the maximum theoretical capacity for a bare V2C 

monolayer (335 mAh/g)(186). Experimentally, the capacity is limited by the presence of 
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MAX phase residue, functionalized layers and stacked layers. Thus, there is much room for 

further increases in the capacitance of this material.  

 

Figure IV.10: Charge-discharge profiles of V2CTx (A) and cycle life (B) from galvanostatic 

charge-discharge at different rates (adapted from (198)). 

 

IV. 1-4 Mechanism 

IV. 1-5 Electrochemical impedance spectroscopy 

Characterization by electrochemical impedance spectroscopy was done at different 

potentials (Figure IV.11). The constant charge transfer resistance, as well as the improvement 

in the capacitive region at low frequencies, between 1 V to 2.5 V correlate well with a 

pseudo-capacitive intercalation mechanism. The charge transfer resistance (200 Ω/cm²) 

associated with the Na
+
 pseudo-intercalation reaction explains the resistive behavior observed 

in the cyclic voltammetry curves. The increase of the charge transfer resistance and the semi-

infinite diffusion limitation visible in the low-frequency region at 3.2 V is associated with the 

full desodiation of V2CTx, in agreement with the redox peaks observed in the 

voltammograms.  
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Figure IV.11: Nyquist plot from electrochemical impedance spectroscopy at different 

potentials (adapted from (198)). 

IV. 1-6 X-ray diffraction 

Figure IV.12 shows ex-situ X-ray diffraction patterns of V2CTx recorded at different 

voltages, where it can be observed that the (002) peak shifts continuously and reversibly from 

9° to 12° during cycling between 1 and 3.5V vs Na
+
/Na. In this potential range, the change is 

perfectly reversible, thus demonstrating that there are no undesired side reactions occuring. 

During sodiation, c-lattice parameter increases with the amount of Na
+
 stored.  This 

demonstrates that V2CTx stores energy through intercalation of Na ions in between layers in a 

similar way to what was previously demonstrated for both, intercalation of Li
+
 into Ti2C

(161)
 

or Ti3C2(177) and Na
+
 into Ti3C2 (196). There is no new phase appearing at 3.5 V vs. Na

+
/Na, 

thus the redox process identified by peaks A and B in the voltammogram do not modify the 

crystallographic structure of the material. A 4.6 Å change in c-lattice parameter was observed, 

as calculated from Bragg’s law. Taking into account that there are two interlayer gaps in a 

lattice unit, there is a 2.3 Å expansion or shrinkage during sodiation and desodiation, 

respectively. This is a larger change than expected for a single layer of Na
+
 ions, which 

indicates that a second layer of Na
+
 could be intercalated, as shown for Ti3C2 intercalated by 
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Na
+
 (196). The peak at 13° corresponds to V2AlC from incomplete synthesis reaction. This 

peak does not move during cycling, demonstrating that the MAX phase is not 

electrochemically active and that the capacity could be increased by increasing V2CTx yield. 

Nevertheless, the presence of this peak is useful as a reference for the other peaks.  

 

Figure IV.12: X-ray diffraction patterns at different potentials. (*) Peak of unreacted V2AlC 

(adapted from (198)). 

 

IV. 2 Full cell 

IV. 2-1 Negative electrode Hard Carbon  

The objective is to assemble a full cell using V2CTx as positive electrode and hard carbon 

(HC) as negative electrode for sodium intercalation (42). The hard carbon synthesized by 

pyrolysis of sugar under argon flow was selected because Ponrouch et al. demonstrated its 

low working potential (below 1V), good cycle life (>100cycles), and high specific capacity 

(230 mAh/g at 1C rate).  
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Galvanostatic charge-discharge cycling of hard carbon electrodes was done at the same C-rate 

as V2CTx in perspective to assemble the full cell. In Figure IV.13 , the expected key features 

of a carbon intercalation electrode were observed, with an intercalation potential below 1 V vs 

Na
+
/Na and a capacity beyond 200 mAh/g at low rates.  

 

Figure IV.13: Charge-discharge profiles Hard Carbon electrode. 

 

IV. 2-2 Full cell testing 

Based on half-cell results, hybrid Na-ion capacitor full cells were assembled in three-electrode 

Swagelok© cells using an Ag wire as pseudo-reference electrode. The electrodes were pre-

sodiated by immersing them in the electrolyte and short-circuited with metallic sodium. By 

anticipating the capacity decrease of V2CTx during the first cycles, we calculated a HC/V2CTx 

weight ratio of 1:2.  

In such conditions, the over-capacitive HC electrode allows a better potential stability for the 

negative electrode. The full cells were tested from C/3 to 20C rate. Figure IV.14.B shows the 

electrochemical performance obtained in a full cell configuration. All the gravimetric 
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capacities are calculated based on the total weight of both positive and negative electrodes in 

order to focus on the performances of the device. As the mass ratio of positive to negative 

electrode is 1:2, the equivalent capacities based on the mass of V2CTx are three times higher 

than those presented in Figure IV.14.  

The charge/discharge galvanostatic profile is presented in Figure IV.14.A. During discharge, a 

sharp potential drop occurs from 3.5 V down to 2.6 V, followed by a small plateau at 2.5 V 

due to the redox reaction peaks observed in Figure IV.9.A. Figure IV.14.B shows that high-

power performance could be achieved with 40% of the total capacity obtained at 20C, despite 

the use of a Na-ion intercalation HC negative electrode. The capacity decrease during the first 

cycles at the low rate (C/3) is associated with a decrease of the coulombic efficiency due to 

redox reactions occuring beyond 3V.  

Figure IV.14.C shows the cycle life of the full cell at a high rate (20C). After 300 cycles, the 

capacity retention is 70%. Interestingly, the capacity slightly increases during the first 70 

cycles. Afterward, the capacity decrease is associated with the decrease of the faradic 

efficiency down to 98%. In order to better understand this decrease, both electrodes were 

studied using a 3-electrode cell. Figure IV.14.D shows the 2
sd

 and 200
th

 cycles. First, we can 

notice that the negative electrode potential range is smaller than 1 V because HC is in excess. 

As explained previously, a slightly overcapacitive negative electrode is necessary to ensure a 

good stability. Although the positive electrode has low irreversibility, it is sufficient to drive a 

shift of the negative electrode toward higher potentials after a large number of cycles. The 

potential of the V2CTx electrode goes slightly beyond the optimum operating potential range 

of 1 V to 3.5 V, which leads to irreversible redox reactions, thus explaining the capacity 

decrease upon cycling. An optimization of the electrode mass ratio should prevent the 

observed drift of the positive electrode potential, leading to an improvement in cyclability.  
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Figure IV.14: Charge-discharge profiles at various rates (A). Change of the capacity during 

galvanostatic charge-discharge at different rates (B). Capacity vs cycle number (C). Details of 

the potential range of positive and negative electrodes at 1A/g (D). Capacities were calculated 

for the total mass of both positive and negative active material, taken with the weight ratio as 

1:2 (adapted from (198)). 
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V Conclusion 

This work shows that at least one representative of the large family of MXenes, V2CTx, can 

serve as the positive electrode for a sodium ion capacitor. Investigation of the mechanism of 

sodiation and desodiation of V2CTx by X-ray diffraction shows continuous intercalation of 

sodium ions between the V2CTx layers in a wide range of potentials. Electrochemical testing 

in half-cells demonstrated that both capacitive (pseudocapacitive) and diffusion-limited redox 

processes take place. An asymmetric full cell was assembled using hard carbon, a known 

anode material for sodium ion battery. V2CTx/HC sodium-ion capacitor showed promising 

results, with a capacity of 50 mAh/g.  

It is important to note that all results shown here were obtained on samples containing 

residual MAX phase, therefore decreasing the overall performances. The capacitance could be 

improved by tuning the surface chemistry by post-synthesis treatment or by the new synthesis 

route of MXene, via a fluoride salt and HCl etching, proposed for Ti3C2Tx. It may offer 

material of higher purity, which will also show improved performance in Na-ion capacitors. 

Finally, with just two MXenes studied in Na-ion capacitors to date and already showing 

promise for use as both, negative and positive electrodes, there is clear opportunity to create 

devices with both electrodes made of 2D carbides, but further studies of electrochemical 

behavior of those new materials are needed. 
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Chapter V :  MXene as a Supercapacitor electrode in 

organic electrolyte 

I Introduction 

MXene-based Ti3C2 electrodes have shown excellent capacitance in aqueous electrolytes in 

chapter 3, but in a narrow potential window which limits both the energy and power density. 

We have shown that the morphology and surface chemistry have a great impact on the 

electrochemical performance. New electrode formulation and synthesis routes have been 

explored by other researcher to continuously improve the performance of MXene electrodes 

in aqueous supercapacitors. Their recent discoveries are described in the following. 

 

I. 1 Recent development in MXene electrode preparation 

I. 1-1 MXene composite 

The interest in composites has been demonstrated previously with the example of graphene 

composites. As MXene has comparable properties to graphene, the elaboration of MXene 

composites is a promising method to obtain new material properties. 

Zhao et al. proposed the fabrication of various carbon material/Ti3C2 composites (164). Tests 

with several carbon compounds (carbon nanotube, graphene or onion-like carbon) and 

different fabrication process (layer by layer sandwiched structure or mixed) were performed. 

The emphasis of the research was to obtain a flexible electrode for supercapacitors. 1M 

MgSO4 electrolyte was used to compare the different composites. The impressive results were 

obtained with a sandwich-like composite of carbon nanotube/MXene fabricated as described 

in Figure V.1. As carbon nanotubes do not contribute significantly to the capacitance, the 
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improvement is attributed to the conductivity increase, to the increase of spacing between 

layers and to the well-organized layered structure that increase the diffusion rate. 

Capacitances up to 390 F/cm
3
 were obtained for sandwich-like Ti3C2/single-walled carbon 

nanotubes and up to 435 F/cm
3
 for sandwich-like Ti3C2/reduced graphene oxide. Liu et al. 

prepared a carbon nanotubes/Ti3C2 composite for lithium ion batteries (199).The composite 

exhibited higher capacity (428 mAh/g) than individual Ti3C2 (96 mAh/g) and better rate 

capability.  

Ling et al. investigated MXene composite with polymer (200). Charged polydiallyldimethyl-

ammonium chloride or an electrically neutral polyvinyl alcohol was mixed with Ti3C2 in 

solution then filtered to obtain free-standing composite films. The objective was also to 

investigate flexible electrode for aqueous supercapacitors. Capacitance up to 530 F/cm
3
 was 

obtained with a gel electrolyte. 

 

Figure V.1: Schematic showing the preparation of the sandwich-like MXene/Carbon 

nanotubes papers (A). Digital photographs showing a flexible and free-standing sandwich-like 

MXene/carbon nanotubes paper (B) and wrapping of latter around a 5-mm-diameter glass rod 

(C) (adapted from (164)) 

 

 



Chapter V: MXene as a supercapacitor electrode in organic electrolyte  

119 

 

I. 1-2 Clay MXene 

MXene synthetized with the new method proposed by Ghidiu et al. (163) behaves differently 

than MXene synthetized by the concentrated HF method. The wet product behaves like clay 

and can be rolled as described on Figure V.2. In a single step (rolling) a conductive, flexible, 

and free-standing film can be prepared. In comparison, preparing the free-standing 

delaminated film previously described is laborious. Clay-like MXene did not show the 

graphite like (accordion-like) morphology. This was attributed to shearing of layers 

containing water acting as lubricant. The authors investigated the electrochemical behavior 

for aqueous supercapacitor using H2SO4. They obtained excellent capacitance values up to 

900 F/cm
3
 and 245 F/g at 2 mV/s.  

 

Figure V.2: Schematic of MXene clay synthesis and electrode preparation (adapted from 

(163)). 
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I. 2 Objectives 

MXene has been investigated several times as electrode material for supercapacitors in 

aqueous electrolytes, but all the results reported showed a limited potential window due to 

water electrolysis. Moreover, oxidation of Ti3C2 under high anodic potentials in aqueous 

electrolytes further limits its use to cathodes of asymmetric devices. As both the energy and 

the power density increase with the square of the potential window, the expansion of the 

voltage window is one of the key challenges for designing supercapacitors with improved 

performance and organic electrolytes may expand the voltage window beyond 2-2.5 V.  

Here, we investigated the electrochemical behavior of Ti3C2 MXene in 1M solution of 1-

ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) in acetonitrile and 

two other common organic electrolytes. Both the addition of carbon nanotubes and the new 

synthesis procedure showed an increase in performance.  The following describes the use of 

clay, delaminated, and composite Ti3C2 electrodes with carbon nanotubes in order to 

understand the effect of the electrode architecture and composition on the electrochemical 

performance.   
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II Electrode preparation 

Ti3C2Tx was synthesized by selectively etching the aluminum layer out of the Ti3AlC2 MAX 

phase in a 6M HCl/LiF solution at 35°C for 24h (163). The obtained material was then 

washed with distilled water. Full delamination of Ti3C2Tx was obtained by ultrasonication for 

1h in distilled water. A composite material was prepared by mixing the colloidal solution of 

delaminated Ti3C2 with 20 wt. % of multiwalled carbon nanotubes (MWCNT C100, 

Graphistrength) which have specific surface area of 175 m²/g. The as-synthetized Ti3C2Tx, the 

delaminated Ti3C2Tx, and the CNT/Ti3C2Tx composite were filtered on polypropylene 

membranes then rolled into film electrodes on Teflon membranes using a glass tube. Once 

dried, the films were easily removed from the membrane to obtain the freestanding flexible 

Ti3C2Tx, d-Ti3C2Tx, and CNT-Ti3C2Tx films without binder. The electrodes were prepared by 

cutting the films into ~25 mm² rectangles with a razor blade, with mass loadings of 1.5 

mg/cm², 1.8 mg/cm² and 2.8 mg/cm² respectively, for Ti3C2Tx, d-Ti3C2Tx and CNT-Ti3C2Tx 

electrodes. The thicknesses were measured from scanning electron microscope observations 

and Ti3C2Tx, d-Ti3C2Tx and CNT-Ti3C2Tx film densities were calculated to be 2.3 g/cm
3
, 3.0 

g/cm
3
 and 2.9 g/cm

3
, respectively. 

 

III Materials characterization 

A scanning electron microscope JSM-6700F (JEOL, Japan) was used to investigate the 

morphology of the samples. Figure V.3 shows cross-section scanning electron microscopy 

images of electrode materials. The as-prepared MXene clay, denoted as Ti3C2Tx, is shown in 

Figure V.3.A-B. MXene layers can be rolled and sheared, forming a freestanding flexible 

electrode (163, 180). Fully delaminated MXene electrodes, denoted as d-Ti3C2Tx (Figure 

V.3.C-D), were prepared for improving the electrochemical performance by taking advantage 
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of a higher specific surface area resulting from delamination. The specific surface areas 

values were 23 m²/g for multilayered Ti3C2 and 98 m²/g for delaminated Ti3C2 measured 

elsewhere by nitrogen gas sorption analysis (160) while 128 m²/g was estimated for CNT-

Ti3C2Tx. 

However, previous studies demonstrated that restacking of delaminated MXene layers 

forming a dense MXene “paper” with in-plane alignment of MXene sheets limits the 

accessibility of electrolyte ions. Such restacking issue can be prevented by addition of carbon 

nanoparticles (164, 199). Accordingly, composite electrodes were prepared by mixing 

appropriate amounts of d-Ti3C2Tx and MWCNTs. The specific surface area obtained by 

nitrogen gas sorption analysis was 70 m²/g for the CNT-Ti3C2TX. Figure V.3.E-F show 

scanning electron microscopy images of a cross-section of the CNT-Ti3C2Tx composite 

electrode, where CNTs are homogeneously spread between the Ti3C2 layers since no 

aggregates can be seen. Aside from preventing restacking, CNT addition is known to increase 

the conductivity of the electrodes (164, 199, 201-203). 
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Figure V.3: Scanning electron microscope images of rolled Ti3C2Tx “clay” (A-B), d-Ti3C2Tx 

(C-D) and CNT-Ti3C2Tx (E-F) electrode films (adapted from (204)). 
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IV Electrochemical behavior 

Most pseudocapacitive materials, such as RuO2, have high capacitance values in aqueous 

electrolytes (720 F/g for RuO2 (88)) but very low in organic electrolytes. The reason for this 

important difference could be found in redox mechanisms in aqueous electrolytes that do not 

work in organic solutions. However Ti3C2Tx is promising because it can store the charge 

through intercalation capacitance even in organic electrolytes as it was demonstrated 

previously by Come et al. (161) and in chapter 4. In this part the study focused on the 

electrochemical behavior in a common organic electrolyte; 1M EMITFSI (Solvionic) 

dissolved in acetonitrile (Acros Organics). Three-electrode Swagelok© cells were used with 

Ti3C2 as working electrode, an Ag wire as a pseudo-reference electrode and a commercial 

activated carbon (YP17 Kuraray, Japan) overcapacitive counter electrode prepared by mixing 

5 wt.% polytetrafluoroethylene binder (60 wt.% in H2O, Aldrich) to 95 wt.% of YP17.  A 

polypropylene membrane (GH Polypro, Pall) was used as a separator. 

 

IV. 1 Characterization of carbon nanotube 

Since we prepared a composite electrode with carbon nanotubes it was important to determine 

the capacitance contribution of this additive. In the first chapter we reported that carbon 

nanotubes capacitances are estimated at 60 F/g in the literature. However the performance 

depends on various parameters and we need to test the exact carbon nanotube that we 

selected.  

Figure V.4 shows the cyclic voltammetry results at different scan rates of the multiwalled 

carbon nanotube C100 from Graphistrength © tested as powder in a three-electrode Swagelok 

cell with a Ag wire reference and overcapacitive activated carbon counter electrode. 

Gravimetric capacitance up to 36 F/g was obtained. This value is lower than what is reported 

for some other carbon nanotubes, but the cyclic voltammograms exhibits a rectangular shaped 
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response characteristic to double layer capacitance. A good rate capability highlights the good 

conductivity of this material. The capacitance contribution of 20 wt. % of these carbon 

nanotubes in the composite can be assumed to not exceed 7.2 F/g and will be taken into 

account. 

 

Figure V.4: Electrochemical performance of multiwalled carbon nanotubes in 1M EMITFSI 

in acetonitrile; cyclic voltammograms at different scan rates (A) and summary of capacitance 

with the potential scan rate (B). 

 

IV. 2 Cyclic voltammetry 

Figure V.5 shows cyclic voltammograms of the three Ti3C2-based electrodes at 20 mV/s in 

1M EMITFSI in acetonitrile. The electrochemical signatures of the three samples appear to be 

similar, characterized by a capacitive envelope and a set of redox peaks around -0.2 V and -

0.4 V vs. Ag. The potential difference between the oxidation and the reduction peaks, 

associated with kinetics and ohmic limitations, changes from one electrode to another. The 

smallest difference is observed for CNT-Ti3C2Tx,which can be associated with a first 

approach to a faster diffusion path, thanks to the addition of CNTs. Ti3C2Tx shows a similar 

electrochemical signature with a slightly larger overpotential. d-Ti3C2Tx shows the largest 

overpotential and most resistive behavior, possibly due to the restacking of delaminated layers 

during electrode preparation. The potential range (1.8V) is narrower than expected from this 
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electrolyte but could be explained by water trapped between Ti3C2 layers, responsible for 

electrolyte reaction at the extrema of the potential range visible at low scan rates. 

The change of the capacitance (calculated from the integration of the charge during cyclic 

voltammograms measurements) with the potential scan rate is shown Figure V.5.D. 

Capacitance up to 245 F/cm
3
 (85 F/g) was obtained at 2 mV/s for CNT-Ti3C2, with 75% 

capacitance retention at 100 mV/s (50% for d-Ti3C2Tx). This performance highlights a fairly 

high power capability of the electrodes, which is assumed to originate from the open 2D 

structure of the material and the associated high accessibility of the surface to ions. The lower 

rate performance of d-Ti3C2Tx could be attributed to poor charge percolation.  

 

Figure V.5: Cyclic voltammograms of Ti3C2Tx (A), d-Ti3C2Tx (B) and CNT-Ti3C2Tx (C) in 

1M EMITFSI in acetonitrile electrolyte at different scan rates and summary of the change of 

capacitance with the potential scan rate (D). These measurements were done using a three-

electrode Swagelok cell (adapted from (204)). 
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IV. 3 Electrochemical impedance spectroscopy 

The electrochemical impedance spectroscopy measurements (Figure V.6) on the three 

different samples were performed between 200 kHz and 100 mHz in two-electrode 

configuration after polarization at 0.5 V vs. Ag (open circuit voltage) using three-electrode 

setup. The smaller semi-circle suggests that the addition of MWCNT greatly improves the 

charge percolation of the electrode. Additionally, there is little to no influence of MWCNTs 

on the electronic conductivity of the electrode, as can be seen from the constant value of the 

high-frequency resistance. This can be explained by a much higher conductivity of metallic 

Ti3C2Tx electrode films (~ 2000 S/cm (200)) compared to conventional activated carbon, 

oxide or even graphene electrodes. 

 

Figure V.6: Nyquist plot at 0.5 V vs. Ag reference obtained using a two-electrode setup 

(adapted from (204)). 

 

IV. 4 Galvanostatic charge-discharge measurement 

Figure V.7.A-C shows the galvanostatic charge-discharge curves obtained at 1A/g for the 

three electrodes. Gravimetric capacitances were calculated from the total mass of the 

composite electrode; associated volumetric capacitances were obtained using the density of 
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the respective electrodes. The curves are almost linear but contain a slight change in their 

slopes which correspond to the redox peaks identified previously. It appears that the 

electrodes exhibit pseudo-capacitive behavior. Also, a 5-10 times lower specific surface area 

of MXene (174) compared to activated carbons (4) would lead to a very low capacitance 

without contribution of charge-transfer processes. Figure V.7.D shows the cycle life for the 

different electrodes at 1A/g.  CNT-Ti3C2Tx shows a good stability, with 90% capacitance 

retention after 1,000 cycles. Ti3C2Tx and d-Ti3C2Tx show a lower stability and faster 

capacitance decrease during cycling, as well as a lower coulombic efficiency.  

 

Figure V.7: Galvanostatic charge-discharge curves of Ti3C2Tx (A), d-Ti3C2Tx (B) and CNT-

Ti3C2Tx (C) in 1M EMITFSI in acetonitrile electrolyte obtained at 1 A/g and the 

corresponding cycle life of those electrodes (D). These measurements were done using a 

three-electrode Swagelok cell (adapted from (204)). 
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V Charge storage mechanism 

V. 1 In-situ X-ray diffraction 

The energy storage mechanism was investigated by recording in situ X-ray diffraction 

patterns at different potentials (Figure V.8). Each set of Bragg peaks can be indexed using the 

(00n) diffraction planes of Ti3C2 which are characteristic of the interlayer spacing. 

Interestingly at the open current voltage before cycling (open circuit voltage is 0.15 V vs. Ag) 

a (00n) downshift was observed, demonstrating a spontaneous intercalation similar to what 

was than previously observed in aqueous electrolytes.  

The comparison of patterns indicates that depending on the applied potential two different sets 

of Bragg peaks are observed and that the phase change occurs at the same potential where the 

set of redox peaks appears in the cyclic voltammetry (Figure V.5.C). This shows that the 

intercalation / deintercalation processes follow a reversible two-phase mechanism. On the 

basis of the diffraction angle of (002) Bragg peaks (Figure V.8.B), it can be deduced that in 

the -0.8 V to -0.5 V potential range, the interlayer distance is 1.3 Å larger than at potentials 

above -0.5 V and should correspond to the intercalation and de-intercalation of ions from the 

electrolyte into Ti3C2Tx. 
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Figure V.8: In-situ X-ray diffraction patterns of CNT-Ti3C2Tx at different potentials in the 5-

50° 2 range (A). Purple diamonds indicate peaks coming from the cell for in situ 

measurements. Inset (B) shows a zoom in the 5-7° 2 range and cycle voltammograms 

recorded at 20 mV/s (C) (adapted from (204)). 

This charge storage mechanism was not expected for Ti3C2Tx because it differs from the 

progressive and continuous intercalation process previously observed for MXenes materials in 

aqueous supercapacitors (chapter 3) and metal-ions capacitors (Figure I.26 and chapter 4). 

Another method to reveal this fast and reversible two-phase transformation is to record the X-

ray diffraction spectra during the electrochemical cycling over the total potential range instead 

of at fixed potential. For this purpose the in-situ cell was cycled at fast scan rate (50 mV/s) 

while the X-ray diffraction spectra was recorded slowly, as shown Figure V.9. The two set of 

peak were identifiable clearly demonstrating that this two-phase transformation is not limited 

by diffusion or kinetics. 
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Taking into account that the EMI
+
 spontaneously intercalated between Ti3C2Tx layers, a 

reasonable hypothesis for the intercalation/deintercalation mechanism observed is the 

formation of a second EMI
+
 layer. This hypothesis, represented in the inset of Figure V.9 is 

supported by a recent in-situ aberration-corrected scanning transmission electron microscope 

experiment that demonstrated the formation of 2 layers of Na
+
 between Ti3C2Tx layers (196).  

 

Figure V.9: In-situ X-ray diffraction patterns of CNT-Ti3C2Tx during cycling at 50 mV/s. 

Purple diamonds indicate peaks corresponding to the in situ cell. Inset: Schematic of the two-

phase transformation. 

 

V. 2 Cyclic voltammetry 

Considering the low value of the intercalation potential, one can assume in a first 

approximation that the expansion is due to the intercalation of the EMI
+
 cations between 

Ti3C2 layers and the shrinkage is attributed to its de-intercalation. Reversible intercalation of 

organic ions accompanied by peaks in the cyclic voltammograms, was observed for porous 

carbon electrodes when the ion size was somewhat larger than the pore size (205). 

Interestingly when cycled within the 0.1 V to 1 V potential range, Ti3C2Tx capacitance 
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quickly decreases with the cycle number, while it is more stable when cycled between -0.8 V 

and 0.1 V, as shown Figure V.10. This suggests that the capacitive behavior observed above 0 

V is associated with a redox process at negative potentials. In other 2D materials, it is 

observed that the intercalation of ions can form a pillared structure (141, 194-196). It is 

possible that cycling exclusively in the positive region causes the structure to collapse.  

 

Figure V.10: Cyclic voltammograms of Ti3C2Tx in different potential ranges at 20 mV/s 

(adapted from (204)). 

 

VI Other organic electrolytes 

The electrochemical performance of Ti3C2Tx electrodes in aqueous electrolytes greatly 

depended on the electrolytes used. This was demonstrated in chapter 3 by performing 

extensive electrochemical tests in a wide variety of electrolytes. Herein, the behavior of CNT-

Ti3C2Tx in two other commonly used organic electrolytes, 1M EMIBF4 (1-ethyl-3-

methylimidazolium tetrafluoroborate, Fluka) and 1M TEABF4 (tetraethylammonium 

tetrafluoroborate, Acros Organics), was tested by cyclic voltammetry at 20 mV/s. 
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Figure V.11.A shows the cyclic voltammogram of the CNT-Ti3C2Tx electrode in 1 M EMIBF4 

in acetonitrile electrolyte (a smaller anion but the same cation as in Figure V.5). The 

electrochemical signature is similar to that obtained in 1M EMITFSI in acetonitrile electrolyte 

(Figure V.5); more specifically, we note the presence of a set of redox peaks at the same 

potential. Figure V.11.B shows the cyclic voltammogram of the CNT-Ti3C2Tx electrode in 1 

M TEABF4 in acetonitrile electrolyte. When replacing the “planar” EMI
+
 cation with the 

larger and more “spherical” TEA
+
 cation, the electrochemical response is drastically changed. 

The reduction (intercalation) peak is present at a lower potential (-1 V vs Ag wire), but the 

reaction seems irreversible with an oxidation wave shifted to about 0.5 V. It is probable that 

the large TEA
+
 ions are stuck between MXene sheets after intercalation, decreasing the 

reversibility of the process, but also contributing to pillaring. The comparison of the cyclic 

voltammograms of CNT-Ti3C2Tx in 1M solutions of EMITFSI, EMIBF4 and TEABF4 in 

acetonitrile provides further evidence that the redox reaction is due to the intercalation of 

cations. These measurements suggest that the intercalation/deintercalation of the EMI
+
 cation 

is responsible for the reversible redox process occurring at -0.4 V vs. Ag. This hypothesis 

should be further confirmed by other in situ characterization techniques, such as 

electrochemical quartz crystal microbalance (206) or nuclear magnetic resonance (207).  

 

Figure V.11: Cyclic voltammetry of CNT-Ti3C2Tx at 20 mV/s in 1 M solutions of EMIBF4 

(A) and TEABF4 (B) in acetonitrile (adapted from (204)).  
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VII Conclusions  

The electrochemical behavior of Ti3C2Tx as an electrochemical capacitor electrode in organic 

electrolytes has been investigated. Capacitance up to 32 F g
-1

 was obtained for as-produced 

Ti3C2Tx-MXene clay and improved up to 85 F g
-1

 by delamination and addition of carbon 

nanotubes. Intercalation of large EMI
+
 cations between the layers of Ti3C2 has been 

demonstrated suggesting that other large or multivalent cations may be similarly intercalated 

into MXenes from organic electrolyte solutions. Ti3C2Tx capacitance was increased 3-fold, up 

to 85 F g
-1

 and 245 F cm
-3

 at 2 mV s
-1

 by using carbon nanotubes as an additive to improve 

ion accessibility to the active material. The CNT/Ti3C2Tx electrodes show a good rate 

performance and good cycle life stability.  

Considering that this is the first report on capacitance of Ti3C2 in organic electrolytes used in 

supercapacitors and that Ti3C2 is only one of more than a dozen of already synthesized 

MXenes, there are good reasons to expect further improvement in capacitance as the optimal 

MXene-electrolyte couples have been identified and their performance optimized. It took less 

than two years to increase capacitance of Ti3C2-MXene in aqueous electrolyte from about 100 

F g
-1

 (174) to 320 F g
-1

 (180) and we expect fast improvement of capacitance in organic 

electrolytes as well.  
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 General Conclusion 

The objective of this thesis was to investigate the electrochemical behavior of a new family of 

two-dimensional materials called MXenes for designing high energy and power 

electrochemical storage. In this context, various MXenes were prepared and tested as 

electrodes for supercapacitors in aqueous electrolytes, for sodium-ion hybrid capacitors, and 

for supercapacitors in organic electrolytes. 

A bibliographic review has introduced the principles of supercapacitors and intercalation 

batteries in the first chapter. Then, the interest of 2D materials for energy storages was 

discussed with examples of graphene and transition metal dichalcogenides which have both 

shown drawbacks and performance limitations. Finally, the state-of-the-art new 2D family of 

transition metal carbide, MXene, was presented. They have better conductivity than transition 

metal dichalcogenides and more diverse chemical compositions than graphene. The first 

results as electrodes materials for lithium ion batteries and lithium ion capacitors 

demonstrated the possibility to use MXene for energy storage and led us to start further 

investigation. 

The second chapter describes the synthesis conditions of 7 MXenes, but it is only a few 

members of a large family of materials. Electrochemical setups and tests were presented. The 

experimental material characterization techniques used in this thesis were explained.   

In the third chapter, we investigated Ti3C2-based electrodes in various aqueous electrolytes. 

The spontaneous intercalation of few cations was demonstrated. The lattice expansion 

observed by X-ray diffraction could not be directly linked to the size of the cation, but rather 

to the contribution of both ion valence and pH. Using chemical modification of the MXene 

materials, we highlighted the effect of the surface chemistry and the morphology. The 

electrochemical performances greatly depended on the electrolytes used and we demonstrated 
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that the energy storage mechanism was the pseudo-intercalation reaction mechanism. The best 

performance in terms of capacitance was obtained in 1M H2SO4 with capacitances up to 520 

F/cm
3
 or 325 F/g. The volumetric capacitance in particular is higher compared to similar 

materials. The corresponding maximum energy density of 16Wh per kg with a power density 

of 200 W per Kg of MXene was obtained. Although these values are higher than conventional 

carbon-based supercapacitors, they were limited by the small potential ranges. 

As the intercalation of Na
+
 was demonstrated from aqueous electrolyte, we focused our work 

on the design of organic sodium-ion capacitors, in the fourth chapter. All synthetized MXenes 

were considered to be potentially attractive for this application, but only V2C was studied as 

positive electrode. The intercalation mechanism was studied. The secondary objective of this 

part was to assemble a complete hybrid cell. For this purpose, hard carbon has used as the 

negative electrode. The full cell assembled shows capacity up to 50 mAh/g. Unfortunately, 

the performances at higher rate were lower than other materials proposed for this application. 

Finally, in the last chapter, our research work focused on supercapacitors in organic 

electrolyte using Ti3C2 electrode synthetized by a new method which is more environmentally 

friendly and scalable. Using a carbon nanotube/MXene composite, a gravimetric capacitance 

of 85 F/g was obtained which is less than activated carbons. However, the volumetric 

capacitance, up to 245 F/cm
3
, is higher than other electrodes cycled in organic electrolytes. 

The high energy density of 8.10
-2

 Wh/cm
3
 obtained at a power density of 16 W/cm

3
 

highlighted the interest of MXene for applications where the volume is the main concern. A 

different storage mechanism than the two previous cases was demonstrated consisting of a 

two phase reaction based on the intercalation of the EMI
+

 cation. Preliminary results suggest 

that the size of the cation has an influence on the electrochemical behavior. 
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To conclude, this thesis highlights the need to develop new electrode materials and shows that 

MXenes are promising candidates for supercapacitor electrodes, but that further work is 

needed to better understand and optimize these materials. 

 

 Future Work 

We have demonstrated that the surface chemistry of MXene can be modified by chemical 

treatment in various electrolytes and that it plays an important role in the electrochemical 

behavior of MXene. To further investigate these phenomena, work focusing on controlling the 

surface chemistry by other treatment (such as hydrogenation at high temperature) and using 

other analytical technics will be performed. Besides, the spontaneous and electrochemical 

ions intercalation, demonstrated by X-ray diffraction, is not totally understood. The use of a 

broader variety of electrolytes could reveal more of the intercalation mechanism. 

After investigating Ti3C2-based electrodes in aqueous electrolytes and organic electrolytes, 

which showed promising results, it sounds appealing to investigate their electrochemical 

behavior in ionic liquids to increase the energy and power densities by increasing the potential 

range. Indeed, EMITFSI dissolved in acetonitrile has a smaller potential stability window than 

its pure ionic liquid phase. We have demonstrated that EMI
+
 dissolved in acetonitrile could be 

reversibly intercalated into Ti3C2Tx, but the physicochemical properties in ionic liquid are 

different therefore a new study will take place. 

Moreover, MXenes could be investigated in other energy storage applications. Ones of the 

most promising technologies under development are multivalent batteries based on Mg
2+

, 

Ca
2+

 and Al
3+

. The interest is that redox reactions with such ions exchange more electrons 

than with Li
+
 or Na

+
. We demonstrated than at least Mg

2+
 spontaneously intercalates from 

aqueous electrolyte into Ti3C2 layers, which strongly encourages us to pursue in that direction. 
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Finally, in this thesis we mainly focused on Ti3C2 and V2C, but they are members of a large 

family of two-dimensional transition metal carbides/nitrides. The synthesis work leading to 

new MXenes family needs to be continued. There is high probability that, if their composition 

and surface chemistry are properly controlled, other MXenes can achieve even higher 

electrochemical performances for the applications proposed here.  

 

 

 



 

 

 

 

 

 

 

Annexes



 

 

 



Annexes 

143 

 

 Annexes 

Annex 1 

 

 

Figure A.1:  Cyclic voltammetry for Ti3C2Tx in a K2SO4, Al2SO4 and Al(NO3)3 electrolytes 

at a scan rate of 10 mV/s (adapted from (174)). 
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Annex 2 

 

 

Figure A.2:  Electrochemical performance of the binder-free delaminated d-Ti3C2 

electrodes:Cyclic voltammetry 1M KOH (A) 1M MgSO4 (B) and 0.5M K2SO4 (C) 

electrolytes at a scan rate of 10 mV/s. Rate performance of the d-Ti3C2 (open symbols) vs. f-

Ti3C2 (solid symbols) in KOH, MgSO4 and NaOAc electrolytes (D) (adapted from (174)). 
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 Résumé de Thèse 

Introduction générale 

Les sources d’énergies majoritairement utilisées de nos jours sont le pétrole, le gaz, le 

charbon et le nucléaire, ce qui entraine de nombreuses problématiques tant du point de vue 

économique (épuisement des ressources) qu’écologique (pollution et réchauffement 

climatique). La mise en place de sources d’énergies renouvelables, telle que les énergies 

solaire et éolienne, nécessite d’améliorer les technologies permettant de stocker cette énergie 

intermittente pour la distribuer de façon continue à grande échelle (1, 2). Le développement 

des systèmes de stockage de l’énergie est aussi motivé par la généralisation des dispositifs 

électroniques portables, tels que les smartphones et les ordinateurs, qui consomment de plus 

en plus d’énergie. Les systèmes de stockage électrochimiques tels que les batteries et les 

supercondensateurs sont des solutions énergétiques qui offrent l’avantage d’émissions nulles 

de dioxyde de carbone, de rendements énergétiques élevés ainsi que des tailles contrôlables 

(3-5).  

La demande en énergie et puissance ne cesse d’augmenter. Les batteries et 

supercondensateurs commercialisés actuellement ne possèdent pas les caractéristiques 

techniques adaptées (densité d’énergie et/ou de puissance) pour subvenir aux besoins 

énergétiques des années futures (4-6). Ces dernières années, il a été mis en avant qu’une plus 

grande densité d’énergie peut être acquise par les supercondensateurs lorsqu’ils utilisent des 

matériaux pseudocapacitifs, c’est-à-dire lorsqu’ils stockent l’énergie grâce à des réactions 

d’oxydo-réductions rapides de surface, contrairement au stockage de charge électrostatique 

comme c’est le cas pour les supercondensateurs commercialisés à base de carbone.  

L’objectif de cette thèse est d’étudier les performances électrochimiques d’une nouvelle 

famille de matériaux peusocapacitifs, appelée MXène, afin d’obtenir de hautes densités 
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d’énergie et de puissance. Les MXènes sont une famille de matériaux carbonés métalliques 

bidimensionnels qui ont démontré des résultats prometteurs dans le domaine des batteries 

lithium-ion (7, 8). Ces matériaux possèdent une variété de compositions chimiques (non 

limité au carbone) et sont composés de métaux de transition qui peuvent participer à des 

réactions d’oxydo-réductions permettant d’obtenir de plus grandes densités d’énergie.  Le 

manuscrit est structuré en cinq chapitres qui décrivent de manière détaillée les résultats 

présentés. 

 

Chapitre I : Etude bibliographique 

Le premier chapitre de cette thèse présente une étude bibliographique qui décrit les principes 

de fonctionnement des supercondensateurs et présente l’état de l’art des MXènes. 

Les différents systèmes de stockage de l’énergie sont généralement complémentaires les uns 

des autres, comme on peut le voir lorsque l’on place les systèmes sur le diagramme de Ragone 

(Figure 1). Les batteries sont caractérisées par des charges lentes de l’ordre de plusieurs 

heures - ce qui leur confère une grande densité d’énergie - tandis que les condensateurs 

délivrent de grandes puissances et de faibles énergies en quelques millisecondes ; les 

supercondensateurs sont des systèmes aux performances intermédiaires entre les deux. 
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Figure I.1. Diagramme de Ragone (puissance vs. énergie spécifique) (adaptée de (4)).  

 

I. Supercondensateurs 

Il existe plusieurs types de supercondensateurs, distincts par la nature des matériaux utilisés, 

mais tous possèdent de grandes puissances, d’excellentes durées de vie et leurs signatures 

électrochimiques sont similaires. On distingue deux mécanismes de stockage de charge : le 

stockage capacitif avec les supercondensateurs à base de carbone de grande surface 

développée qui fait intervenir le phénomène d’interactions électrostatiquesdans la double 

couche électrochimique , et le stockage faradique qui met en jeu des réactions 

d’oxydoréductions rapides de surface dans les supercondensateurs pseudo-capacitifs (3, 4, 9).  

La réponse électrochimique d’un supercondensateur idéal est représentée Figure I .2. A la 

différence des batteries, le mécanisme de stockage des charges ne se produit pas à un potentiel 

précis mais sur toute la plage de potentiel ; c’’est pourquoi il n’y a pas de pic présent lors de 

la voltampérométrie cyclique, ni de plateau lors des tests galvano-statiques. 
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Figure I.2. Comportement électrochimique d’un supercondensateur au cours d’une 

voltampérométrie cyclique (A) et d’un cycle galvanostatique (B). 

 

Les supercondensateurs à double couche électrochimique : 

Dans les supercondensateurs à double couche électrochimique, le mécanisme de stockage des 

charges est purement électrostatique. Le comportement capacitif du matériau est causé par la 

séparation électrostatique des charges à l’interface électrode/ électrolyte qui forme la double 

couche électrochimique lorsqu’un potentiel est appliqué entre les deux électrodes, comme 

décrit schématiquement dans la Figure I.3.  

 

Figure I.3. Schéma représentant le fonctionnement d’un supercondensateur à double couche 

électrochimique (A) et le modèle de Stern de la double couche (B). 
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Les matériaux d’électrodes utilisés doivent être composés de matériaux actifs poreux de très 

grandes surfaces spécifiques, être conducteurs électriques et chimiquement stables. Les 

différentes formes du carbone, tels les nanotubes de carbone, le graphène et les charbons 

actifs sont de bons candidats (10-13). Les charbons actifs sont les plus fréquemment utilisés 

du fait de leurs bonnes propriétés de conductivité électrique, leurs faibles coûts et des 

capacités de 300 F/g.  Ils sont synthétisés à partir de matériaux naturels peu coûteux (coquille 

de noix de coco, bois, charbon) par une étape de carbonisation puis une étape d’activation qui 

créée la porosité du matériau et augmente la surface spécifique jusqu’à 3000 m²/g (oxydation 

dans la vapeur d’eau ou réaction avec des bases) (14).  

 

Les supercondensateurs pseudo-capacitifs : 

Dans un supercondensateur pseudo-capacitif, le mécanisme de charge est une succession de 

réactions faradiques réversibles et rapides qui peuvent être distinguées des réactions 

faradiques des batteries car le temps de charge est plus rapide et la quantité de charge est 

linéaire au potentiel (15-17). La présence de réaction d’oxydoréduction a pour effet d’obtenir 

de plus hautes valeurs de capacité et d’énergie comparé aux supercondensateurs à double 

couche électrochimique.  

Les oxydes métalliques, tels que MnO2, RuO2, Co2O3, TiO2 et V2O5 (16), ont été les premiers 

étudiés. RuO2 est l’un des plus étudiés car malgré son coût élevé, il a la meilleure conductivité 

et trois états d’oxydations stables sur 1.2V, ce qui permet d’obtenir des capacités de 720 F/g 

(18-22). 

 

Les supercondensateurs hybrides : 

Les systèmes hybrides sont une alternative par rapport aux supercondensateurs classiques 

(dits symétriques) car ils associent une électrode de supercondensateur à une électrode de 
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batterie. Ceci permet de bénéficier à la fois de la puissance du supercondensateur et de la 

densité d’énergie d’une batterie. La combinaison d’électrodes différentes permet d’augmenter 

la tension de cellule et de stocker une plus grande densité d’énergie par rapport aux 

supercondensateurs conventionnels. 

Les électrolytes : 

L’électrolyte est un facteur clé pour les performances électrochimiques d’un 

supercondensateur (23). L’énergie et la puissance sont en effet proportionnelles au carré de la 

tension de fonctionnement de la cellule qui est limitée par la stabilité électrochimique de 

l’électrolyte. Cependant, la conductivité ionique, la stabilité en température et la compatibilité 

avec les matériaux d’électrodes sont aussi importants. On distingue trois types d’électrolytes 

liquides : les électrolytes aqueux, les électrolytes organiques et les liquides ioniques. Le 

Tableau 1 présente les propriétés de ces électrolytes. 

 

Tableau 1. Propriétés des électrolytes (10, 23, 24). 

 

Stabilité 

électrochimique  

(V) 

Conductivité ionique 

(mS/cm) 

Temperature (°C) 

Aqueux < 1.2 >400 -20 to +50 

Organique < 3 <100 -40 to +80 

Liquide ionique < 6 <15 -100 to +400 

 

II. Les MXènes 

Les phases MAX : 

Une nouvelle famille de matériaux bidimensionnels, nommée MXène, a été découverte en 

2011 à l’université de Drexel (Philadelphie, USA). Il s’agit de matériau synthétisé par 
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exfoliation d’une phase précurseur, la phase MAX, de formule Mn+1AXn où M est un métal de 

transition, A est un élément des groupes IIIA ou IVA et X est un atome de carbone et/ou 

d’azote, dont la structure est représentée  Figure I.4 (7, 25, 26). 

 

Figure I.4. Répartition des éléments M, A et X sur la table périodique et structure crystalline 

des phases MAX (adaptée de (26)). 

 

La synthèse des MXènes : 

Les MXènes ont une structure bidimensionnelle formée de feuillets de Mn+1Xn  reliés entre 

eux par des liaisons faibles de Van der Waals. L’intérêt principal de ces matériaux est qu’ils 

sont composés d’une couche de carbure au cœur qui garantit une bonne conductivité 

électrique et une couche de métaux de transition à la surface qui peut participer à des 

réactions d’oxydo-réductions. De nombreux MXène sont envisageables (plus de soixante) 

mais les premiers composés synthétisés sont Ti3C2, Ti2C, Ta4C3 et TiNbC par élimination de 

la couche d’aluminium des phases MAX correspondantes par réaction chimique avec l’acide 

fluorhydrique (27).  Après réaction, la surface des MXènes est composée de groupes 

fonctionnels oxygénés et fluorés. La surface spécifique de ces matériaux est 

approximativement 20 m²/g, ce qui est très faible comparé aux électrodes de carbone utilisés 

commercialement dans les supercondensateurs à double couche électrochimique. 
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Dans la majorité des matériaux bidimensionnels, tels que le graphène,  une étape de 

délamination consistant à séparer complétement les feuillets les uns des autres est nécessaire 

afin d’améliorer les propriétés du matériau. En 2012, Mashtalir et al. ont réalisé la 

délamination de la MXène Ti3C2 en utilisant des ultrasons après l’intercalation de la MXène  

par du diméthylsulfoxyde (28). La surface spécifique du Ti3C2 après délamination a augmenté 

jusqu’à 98 m²/g. 

Les applications des MXènes : 

La première application des MXènes étudiée a été pour les batteries lithium-ion, en 

choisissant la MXène Ti2C car il s’agit de la plus légère (27). Les premiers résultats ont 

démontré une capacité stable de 225 mAh/g à une vitesse de C/25 (une charge ou décharge en 

25 heures), ce qui correspond à la réaction d’un ion lithium par formule de Ti2C lors de la 

réaction électrochimique proposée suivante: 

Ti2COx + yLi
+
 + ye

−
 ↔LiyTi2COx 

Le Ti2C a aussi été proposé en tant qu’électrode négative pour les supercondensateurs 

hybrides à ion lithium (29). Lors de cette étude, de bonnes performances à grande vitesse de 

charge ont été obtenues (70 mAh/g à 10C pour 1000 cycles). Le mécanisme de stockage de 

l’énergie a été étudié par diffraction des rayons X. Il a été démontré qu’il s’agit de 

l’intercalation des ions lithium entre les feuillets de Ti2C.  

Les performances obtenues avec le Ti3C2 après délamination en tant qu’électrode pour anode 

de batterie lithium-ion est de 410 mAh/g à 1C et 110 mAh/g à 36C. Ces résultats sont 

prometteurs car supérieurs aux électrodes de graphite utilisées dans les batteries commerciales 

mais aussi car le Ti3C2 démontre une excellente rétention de capacité à grande vitesse de 

balayage. Grâce à ces performances, les MXène semblent intéressantes pour des applications 

à haute puissance. Il est donc essentiel de continuer à étudier cette famille dans le cadre des 

supercondensateurs. 
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Chapitre II : Matériaux et techniques expérimentales  

Les phases MAX utilisées au cours de ce travail sont soit commerciales (3-ONE-2, Voorhees, 

NJ), soit préparées par broyage à billes suivi d’un traitement thermique sous argon, à 

l’université de Drexel (groupes de M. Barsoum et Y. Gogotsi).  Un total de sept phases MAX 

ont été choisies pour notre étude ; Ti3AlC2, Ti2AlC, Nb2AlC, V2AlC, TiVAlC, Ti1.5V1.5AlC2 

et Ti3AlCN. 

Le protocole de synthèse des MXènes par traitement des phases MAX dans l’acide 

fluorhydrique consiste à immerger 10g de la phase MAX sélectionnée dans 100 mL d’une 

solution de HF (Fisher Scientific, Fair Lawn, NJ) à température ambiante. Après plusieurs 

heures, la suspension obtenue est récupérée et rincée à l’eau distillée ; la phase MXène sous 

forme de poudre est ensuite séparée par centrifugation. La surface des MXènes obtenues est 

riche en groupes contenants des atomes d’oxygène et de fluor, c’est pourquoi le suffixe Tx est 

ajouté à la formule chimique. Le Tableau 2 résume les conditions expérimentales d’obtention 

de chaque MXène. 

Tableau 2. Conditions de synthèse des MXènes 

Phase MAX Concentration HF  Temps MXène 

Ti3AlC2 50% 18h Ti3C2Tx 

Ti2AlC 10% 10h Ti2CTx 

Nb2AlC 50% 90h Nb2CTx 

V2AlC 50% 8h V2CTx 

TiVAlC 50% 1h TiVCTx 

Ti1.5V1.5AlC2 50% 18h Ti1.5V1.5C2Tx 

Ti3AlCN 30% 18h Ti3CNTx 
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Différentes techniques de caractérisations ont été utilisées dans cette thèse, en particulier la 

diffraction des rayons X, la microscopie électronique pour les caractérisations structurales et la 

voltampérométrie cyclique, le cyclage galvanostatique et la spectroscopie d’impédance pour les 

caractérisations électrochimiques. 

 

Chapitre III : Etude électrochimique des MXènes pour les 

supercondensateurs en milieu aqueux 

I. Introduction 

L’objectif principal de ce chapitre est d’observer les performances électrochimiques des 

MXènes en tant qu’électrodes pour les supercondensateurs pour des applications de fortes 

puissances. Nous avons choisi d’étudier exclusivement la MXène Ti3C2 car elle présente les 

meilleures performances dans les batteries lithium-ion. Au vue de la faible surface spécifique 

du Ti3C2 (23 m²/g), de bonnes performances ne peuvent être expliquées que par l’existence de 

réactions électrochimiques de type pseudo-capacitives. Les électrolytes aqueux ont été choisis 

car ils possèdent de meilleures conductivités et sont compatibles avec les électrodes pseudo-

capacitives trouvées dans la littérature.  

 

II. L’intercalation spontanée des cations 

Dans un premier temps, nous avons étudié la stabilité du Ti3C2Tx dans les électrolytes aqueux. 

En utilisant l’analyse par diffraction des rayons X, nous avons mis en évidence que lorsque le 

Ti3C2Tx est immergé pendant 5 heures dans les électrolytes aqueux aux pH basiques et 

neutres, la taille de la maille augmente. La Figure III.1.A montre le décalage du pic 

correspondant au paramètre de maille c après immersion dans de l’hydroxyde de potassium et 

de l’acétate de potassium. Ceci signifie qu’il y a une réaction d’intercalation spontanée d’ions 
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des électrolytes entre les feuillets de Ti3C2Tx. Les résultats d’analyse dispersive en énergie 

démontrent qu’il s’agit du cation de l’électrolyte.  

La comparaison des différents résultats obtenus avec les 10 électrolytes sélectionnés n’ont pas 

permis de définir clairement les forces motrices de la réaction d’intercalation, mais il semble 

qu’il y ait une contribution du pH de l’électrolyte ainsi que de la valence du cation. 

Grâce à l’étude par spectroscopie photoélectronique X, nous avons mis en évidence que les 

protocoles d’intercalations des cations et de délaminations modifient la chimie de surface du 

Ti3C2Tx. En effet, lors de ces deux traitements, les groupes fluorés sont plus ou moins 

remplacés par des groupes oxygénés, comme représenté schématiquement sur la Figure 

III.1.B. 

 

 

Figure III.1. Spectres de diffraction des rayons X (A) et schéma de la modification chimique 

de la surface du Ti3C2Tx (B) après traitement dans des sels de potassium et délamination. 

 

III. Caractérisation électrochimique  

Nous avons testé les performances électrochimiques du Ti3C2Tx en tant qu’électrode de 

supercondensateurs dans 10 électrolytes aqueux aux propriétés différentes (pH, cation, anion, 

conductivité et fenêtre de stabilité de potentiel). Le comportement dans chaque électrolyte est 
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différent, comme l’illustre la comparaison entre les voltampérogrammes obtenus dans trois 

électrolytes différents dans la Figure III.2.A. A faible vitesse de balayage (2 mV/s), les 

capacités obtenues vont de 45 F/g à 108 F/g. Ces valeurs sont élevées pour des matériaux à 

faible surface spécifique. En effet, si le mécanisme de stockage de l’énergie était 

électrostatique (adsorption d’ions à la surface des MXenes) comme dans les 

supercondensateurs à double couche, les capacités obtenues dans tous les électrolytes seraient 

très faibles et peu dépendantes de l’électrolyte. Ceci suggère qu’un autre mécanisme de 

charge doit avoir lieu.  

Les voltampérogrammes dans les divers électrolytes sont rectangulaires mais dans certains cas 

des pics peuvent être présents. L’allure rectangulaire du signal avec la présence de pics larges 

ressemble à la signature électrochimique caractéristique des réactions d’oxydoréductions 

présentent dans les supercondensateurs pseudocapacitifs. 

Nous avons étudié le mécanisme de charge dans l’acétate de sodium, l’hydroxyde de 

potassium et le sulfate de magnésium par une étude in situ de diffraction des rayons X, c’est-

à-dire l’enregistrement des spectres de diffractions à différent états de charge du 

supercondensateur. La Figure III.2.B présente les résultats dans l’hydroxyde de potassium 

mais la même tendance a été observée dans les deux autres électrolytes étudiés. Les résultats 

démontrent que durant la charge, la maille se contracte (décalage du pic vers les petits angles) 

puis s’agrandit durant la décharge. Le paramètre de maille c fluctue de 0.33 Å lors du cycle. 

Ceci démontre que le mécanisme de stockage des charges est dû à l’intercalation des cations 

entre les feuillets de Ti3C2Tx d’une manière semblable au MnO2 (30). 
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Figure III.2. Voltampérogrammes du Ti3C2Tx dans MgSO4, H2SO4 et KOH (A). 

Diffractogrammes obtenus pendant la charge et décharge dans du KOH (B).  

 

Le rôle de la morphologie et de la chimie de surface du Ti3C2Tx sur les performances 

électrochimiques a été observé par comparaison du comportement électrochimique de quatre 

échantillons dans le même électrolyte (1M H2SO4). Les quatre échantillons sont ; le Ti3C2Tx 

non traité, le Ti3C2Tx après intercalation spontanée dans de l’hydroxyde de potassium (KOH-

Ti3C2Tx), le Ti3C2Tx après intercalation spontanée dans du acétate de potassium (KOAC-

Ti3C2Tx) et du Ti3C2Tx après délamination (d-Ti3C2Tx). La Figure III.3 présente les résultats 

obtenus. 

Comme Ti3C2Tx, KOH-Ti3C2Tx et KOAc-Ti3C2Tx ont la même valeur de surface spécifique, 

la différence de performance ne peut provenir que de leur différence de fonctions de surface. 

Il est donc possible de conclure que les groupes de fonctions oxygénés (-OOH, =O et –OH) 

présents majoritairement dans KOH-Ti3C2Tx et KOAc-Ti3C2Tx sont responsables de 

l’amélioration de la capacité observée par le biais de réactions électrochimiques rapides à la 

surface du matériau. Le d-Ti3C2Tx bénéficie à la fois de groupes oxygénés actifs et d’une 

surface spécifique quatre fois plus élevée. C’est pour cette raison que cet échantillon montre 

les meilleures performances avec 325 F/g et 520 F/cm
3
 à 2 mV/s.  
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Figure III.3. Voltampérogrammes dans 1M H2SO4 à 10 mV/s (A) et capacités en fonction de 

la vitesse de balayage (B) (adaptée de (180)). 

 

Chapitre IV : Etude électrochimique des MXènes pour les 

supercondensateurs hybrides à ion sodium 

I. Introduction 

Dans le chapitre précédent, nous avons démontré de bonnes performances électrochimiques 

grâce à l’intercalation de divers cation. Mais la tension de cellule est très faible dans tous les 

électrolytes aqueux. Afin d’augmenter les densités de puissance et d’énergie, il est possible 

d’utiliser des supercondensateurs hybrides dans des électrolytes organiques. Les résultats 

préliminaires du Ti2C en tant qu’électrode pour supercondensateur hybride à ion lithium ont 

démontré la faisabilité d’un tel système (29).  

D’un autre côté, nous venons d’observer que le phénomène d’intercalation dans le Ti3C2 ne se 

limite pas aux ions lithiums. Ces dernières années, il a été démontré qu’il y a un intérêt 

économique important à remplacer le lithium par le sodium dans les batteries et les 

supercondensateurs hybrides. En effet, les ressources en lithium sont limitées et situées dans 

peu de pays (principalement en Chine, Chili, Bolivie et Australie), ce qui créé des tensions 

économiques et politiques, alors que le sodium se trouve en abondance partout dans le monde. 
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Dans la suite de ce chapitre, nous avons étudié plusieurs MXènes dans des demi-cellules de 

batterie au sodium. Nous avons principalement étudié la MXène V2CTx en tant qu’électrode 

positive pour les supercondensateurs hybrides à ions sodium.   

II. Etude électrochimique du V2CTx 

Avant d’assembler une cellule hybride complète, composée du V2CTx et d’un matériau de 

type batteries, il est essentiel d’analyser le comportement électrochimique du V2CTx. Pour 

cela, des tests en demi-cellule, contenant une contre-électrode en sodium métallique, ont été 

effectués. La Figure IV.1 montre les résultats obtenus par voltampérométrie cyclique, à 

différentes vitesses de balayage. Des valeurs élevées de capacités ont été obtenues ; 100 F/g 

ou 170 F/cm
3
 à faible vitesse et 50 F/g à 50 mV/s. Deux régions sont identifiables sur les 

voltampérogrammes à faible vitesse. Un comportement capacitif est observable entre 1 V et 

2.2 V vs. Na
+
/Na, caractérisé par une forme rectangulaire, alors qu’un couple de pics 

d’oxydo-réduction se situe à 3V et 2.5V (pics A et B). Lorsque la vitesse de balayage 

augmente au-delà de 2 mV/s, les pics disparaissent, démontrant ainsi que cette réaction 

électrochimique est limitée par la diffusion.  

 

Figure IV.1. Voltampérogrammes dans 1M NaPF6 dans EC:DMC (A) et capacités en 

fonction de la vitesse de balayage (B) (adaptée de (198)). 
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La Figure IV.2 présente l’étude du mécanisme de stockage de charge par diffraction des 

rayons X à différents potentiels. Ces résultats démontrent qu’il s’agit de l’intercalation des 

ions sodium sur toute la plage de potentiel et non de deux zones de comportements différents. 

Une expansion/contraction réversible de 2.3 Å entre deux feuillets est observée. 

Contrairement aux résultats en milieu aqueux, ici nous observons que le paramètre de maille 

augmente pendant l’insertion de sodium.  

 

 

Figure IV.2. Diffractogrammes obtenus à différents potentiels. (*) Pics d’impureté du 

précurseur V2AlC (adaptée de (198)). 

 

III. Caractérisation électrochimique d’une cellule hybride Hard Carbon/V2CTx 

Une électrode négative de batterie sodium-ion a été choisie, nommée hard carbon, dans le but 

d’assembler une cellule hybride complète. Etant donné les capacités respectives des deux 

électrodes, le ratio massique 1:2 pour hard carbon/ V2CTx a été choisi.  

La Figure IV.3 présente les résultats électrochimiques de cette cellule à plusieurs vitesses de 

charge et décharge, entre C/3 et 20C. Les valeurs de capacités présentées sont calculées en 

tenant compte de la masse totale des deux électrodes. Lors de la décharge galvanostatique, il 
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est intéressant de noter qu’il y a une grande chute de potentiel de 3.5V à 2.6V ce qui réduit la 

fenêtre de potentiel réellement utilisable. Plus de 40% de la capacité est préservée lorsque la 

vitesse de charge est augmentée de C/3 à 20C. Ceci démontre de bonnes performances 

adaptées pour des applications en haute puissance. Après 300 cycles, une perte de capacité de 

30% est observée. La durée de vie estimée pour cette cellule semble donc être courte 

comparée aux supercondensateurs à double couche électrochimique. La dégradation de 

capacité est liée au glissement de la fenêtre de potentiel, observable lorsqu’on compare la 

différence de potentiel de chaque électrode entre le deuxième et au deux-centième cycle. Une 

optimisation du rapport massique entre les deux électrodes pourrait améliorer la durée de vie.  

 

Figure IV.3. Courbes de charge et décharge galvanostatique (A) et capacités correspondantes 

en fonction du nombre de cycles (B). Capacités spécifiques en fonction du nombre de cycles à 

1A/g (C) et détail des potentiels (D) (adaptée de (198)). 
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Chapitre V : Etude électrochimique des MXènes pour les 

supercondensateurs en milieu organique 

I. Introduction 

Les résultats obtenus dans le chapitre III dans divers électrolytes aqueux ont montré 

d’excellentes capacités. Cependant, la faible tension de cellule, due à l’électrolyse de l’eau, 

limite grandement les densités d’énergies et de puissances accessibles. Dans ce dernier 

chapitre, nous avons choisi d’étudier les performances électrochimiques des MXènes dans 

trois électrolytes organiques afin d’augmenter la tension de cellule. Tenant compte de 

l’importance de la chimie de surface et de la morphologie des électrodes sur les 

comportements électrochimiques, nous avons décidé d’utiliser une nouvelle voie de synthèse 

pour préparer l’électrode de MXène de façon optimale. Nous nous sommes inspirés de la 

méthode d’élimination de l’aluminium de Ti3AlC2Tx par un mélange à 6 M de d’acide 

chlorhydrique et de fluorure de lithium élaborée par Ghidiu et al. (31) et de l’amélioration que 

l’ajout de nanotubes de carbone apporte au MXène, comme démontré par Zhao et al. (32). 

 

II. Etude électrochimique 

Trois matériaux différents ont été étudiés ; le Ti3C2Tx, le Ti3C2Tx délaminé par ultrason (noté 

d-Ti3C2Tx), et le composite contenant 20% de nanotube de carbone et 80% de Ti3C2Tx (noté 

CNT-Ti3C2Tx). La Figure V.1 montre les voltampérogrammes obtenus à 20 mV/s et les 

capacités obtenues entre 2 mV/s et 100 mV/s dans une solution à 1M de 1-ethly-3-

methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) dans l’acétonitrile.  

Les capacités obtenues sont différentes mais leurs comportements électrochimiques se 

ressemblent et peuvent être décrits par une enveloppe capacitive et des pics d’oxydo-

réductions autour de -0.2 V et -0.4 V vs. Ag. La différence de potentiel entre le pic 

d’oxydation et le pic de réduction est associée à des limitations cinétiques et ohmiques. En 
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comparant la position des pics de chaque électrode, on observe que la plus faible différence de 

potentiel entre les pics est obtenue avec le CNT-Ti3C2Tx, ce qui confirme que l’ajout de 

nanotubes de carbone améliore la conductivité et la diffusion. 

La capacité maximale, 245 F/cm
3
 ou 85 F/g, est obtenue avec CNT-Ti3C2Tx à 2 mV/s. Cette 

électrode démontre un bon comportement en puissance car 75% de cette capacité reste 

accessible à 100 mV/s (contre 50% dans le cas de d-Ti3C2Tx). Par analogie avec les résultats 

montrés dans le chapitre III, la différence de capacité entre les différentes électrodes est 

attribuée à la différence de morphologies qui peut modifier l’accessibilité des ions à la surface 

des feuillets.  

 

 

Figure V.1. Voltampérogrammes dans 1M EMITFSI dans l’acétonitrile à 20 mV/s (A) et 

capacités en fonction de la vitesse de balayage (B) (adaptée de (204)). 

 

III. Etude du mécanisme de stockage des charges 

Une étude du mécanisme de stockage des charges a été entreprise en utilisant la diffraction 

des rayons X in-situ. La Figure V.2 montre les diffractogrammes du CNT-Ti3C2Tx obtenus à 

différents potentiels. L’intercalation spontanée d’ions entre les feuillets a été observée par un 

décalage des pics avant de commencer les tests, comme c’était le cas dans certains 

électrolytes aqueux étudiés au chapitre III.  
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Les résultats de diffraction des rayons X démontrent qu’il y a deux jeux de pics distincts selon 

le potentiel appliqué. Le changement de pics s’effectue aux potentiels des pics d’oxydo-

réduction observés sur le voltampérogramme. Ceci démontre qu’il y a un changement de 

phase associé à cette réaction électrochimique. La différence entre les deux phases peut 

s’expliquer par une différence de la distance entre feuillets de 1.3 Å. Ce comportement est 

différent de l’intercalation continue des ions observé dans les deux chapitres précédents. 

 

Figure V.2. Diffractogrammes obtenus pendant la réduction et l’oxydation du CNT-Ti3C2Tx 

(A). Les pics notés par des losanges violets sont associés à la cellule de diffraction. Zoom 

entre 5 et 7° (B) et voltampérogrammes à 20 mV/s (C) (adaptée de (204)). 
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Conclusion générale 

L’objectif de cette thèse était d’étudier le comportement électrochimique d’une nouvelle 

famille de matériaux bidimensionnels appelée MXène, dans le cadre d’application dans les 

supercondensateurs. Dans ce contexte, plusieurs MXènes ont été préparées et modifiées pour 

obtenir les meilleures performances électrochimiques, tout en analysant le mécanisme de 

stockage des charges mis en jeu.  

Ces recherches ont permis, pour la première fois,  i) de démontrer l’intercalation spontanée 

d’une grande variété de cations entre feuillets de MXène, ii) de modifier la chimie de surface 

et d’observer son effet sur le comportement électrochimique, iii) de mettre en évidence le 

mécanisme de stockage pseudo-capacitif liant de l’intercalation (continue ou à potentiel fixe, 

selon l’électrolyte) et des réactions d’oxydo-réduction de surface, et enfin iv) d’assembler un 

supercondensateur hybride à ions sodium complet utilisant une MXène en électrode positive, 

avec d’excellentes capacités volumiques (520 F/cm
3
 dans l’H2SO4 et  245 F/cm

3
 dans 

l’EMITFSI dans l’acétonitrile).  

D’autre part, ces découvertes nous encouragent à poursuivre l’étude des MXènes dans le 

cadre du stockage de l’énergie. Il serait intéressant de poursuivre ces travaux en testant les 

performances dans les liquides ioniques et dans les batteries à cation multivalent, ainsi 

qu’étudier de nouvelles MXènes. 
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