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Thèse de Doctorat

Discipline: Mathématiques
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Esimation d’un Modèle de Mélange paramétrique

et Semiparamétrique par des ϕ−divergences

dirigée par Pr. Michel BRONIATOWSKI

Soutenance le 17 novembre devant le jury composé de
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de mon séjour en France et qui m’accorde sa confiance et son support à tout moment.
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tuation terrible dans mon pays. Ses idées, ses conseils ainsi que sa vision de mon travail
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Summary

Résumé

L’étude des modèles de mélanges est un champ d’étude très vaste. D’autre part, les
ϕ−divergences sont des outils statistiques qui de plus en plus attirent l’attention des
statisticiens et les praticiens. Dans cette thèse, nous présentons et étudions quelques as-
pects et propriétés des ϕ−divergences et les estimateurs qui sont construits à base d’une
ϕ−divergence. Nous employons ces estimateurs à l’estimation des modèles de mélanges.
Dans une seconde partie de cette thèse, nous construisons et développons une nouvelle
structure pour les modèles de mélanges semiparamétriques. L’estimation dans ce nouveau
modèle est basée sur les ϕ−divergences qui offrent de bons outils pour le traitement de
notre nouvelle approche.

Nous présentons dans la première partie de cette thèse les ϕ−divergences, et nous en
faisons un rappel des principales propriétés. Nous présentons les méthodes existantes dont
l’objectif est de produire des estimateurs pour des modèles paramétriques basés sur des
ϕ−divergences. Nous nous intéressons à l’étude de la méthode de Beran, de l’approche
de Basu-Lindsay et de la forme dual des ϕ−divergences. Nous nous intéressons en par-
ticulier à la dernière approche. Nous montrons que les estimateurs basés sur la forme
duale des ϕ−divergences dans un contexte paramétrique ne sont pas robustes. Ceci est
exploré théoriquement et expérimentalement avec des simulations numériques. Nous pro-
posons ensuite une modification qui rend ces estimateurs robustes. Le nouvel estimateur
est alors comparé avec les autres méthodes existantes qui produisent des estimateurs ro-
bustes à base des ϕ−divergences. La comparaison est également menée par rapport à
un estimateur considéré comme �très performant� pour l’estimation dans des modèles
paramétriques; le minimum density power divergence. Notre nouvel estimateur montre de
bonnes propriétés par rapport aux autres estimateurs en compétition.
Dans un second temps, nous présentons un algorithme d’optimisation dont l’objectif est
de calculer les estimateurs à base de divergences. Notre algorithme est un algorithme
proximal qui perturbe la fonction objective à chaque itération par une autre fonction con-
venablement choisie. La convergence des séquences générées par l’algorithme est étudiée.
Nous montrons que les points limites des séquences générées par l’algorithme sont des
points stationnaires de la fonction objective. D’autres propriétés de convergence glob-
ale de la séquence vers un optimum local de la fonction objective sont explorées mais en
imposant des hypothèses plus restrictives. Nous étudions la convergence de la séquence
générée par l’algorithme proximal dans plusieurs exemples. La convergence de l’algorithme
EM est étudiée à nouveau sur quelques exemples mais dans l’esprit de notre approche.

Dans la deuxième partie de cette thèse, nous construisons une nouvelle structure pour
les modèles de mélanges semiparamétriques à deux composantes dont l’une est incon-
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nue. La nouvelle approche permet l’incorporation d’une information a priori linéaire
sur la composante inconnue; par exemple des contraintes de moments ou de L-moments.
Nous développons deux approches pour l’estimation de ce modèle; une approche pour les
contraintes de type moments et une approche pour les contraintes de L-moments. Les
propriétés asymptotiques des estimateurs résultant sont étudiées et prouvées sous des
hypothèses standards. Nous illustrons par des simulations numériques les avantages de
la nouvelle approche et de l’incorporation d’une information a priori par rapport aux
méthodes existantes d’estimation d’un modèle semiparamétrique sans aucune information
préliminaire à part une hypothèse de symétrie.

Mots clés: Modèle de mélange, ϕ−divergence, estimateur à noyau symétrique et
asymétrique, algorithme proximal, dualité de Fenche-Legendre, modèle semiparamétrique,
modèle semiparamétrique de quantile, L-moments.
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Abstract

The study of mixture models constitutes a large domain of research. On the other hand,
ϕ−divergences attract more and more the attention of statisticians and practitioners. In
this work, we show some of the aspects and properties of ϕ−divergence-based estimators.
We employ these estimators in mixture models. We build and develop in a second part
a new structure for semiparametric mixture models and estimate the new model using
ϕ−divergences efficiently.

In the first part of this work, we present ϕ−divergences and recall some of their ba-
sic properties. We present some of the existing methods in the literature which produce
parametric estimation using ϕ−divergences; namely Beran’s approach, the Basu-Lindsay
approach and the dual formula of ϕ−divergences. We are interested in the later method.
We show that the estimator based on the existing dual formula of ϕ−divergences in the
parametric settings is not robust against outliers in several models. The problem is ex-
plored theoretically and experimentally. We propose a modification to this estimation
method in order to robustify it. The new estimator is then compared to existing methods
based on ϕ−divergences. The comparison is also done with respect to a powerful estima-
tor in parametric estimation; the minimum density power divergence estimator. Our new
estimator shows encouraging performances.
We present after that an optimization algorithm in order to calculate estimators based
on a divergence criterion. The algorithm is a proximal-point algorithm which optimizes a
modified version of the objective function by adding a suitable regularization term. Con-
vergence properties of the presented algorithm are studied. We prove the convergence of
the limiting points of the sequence generated by the algorithm to stationary points of the
objective function. More properties are explored but with further assumptions in order
to prove the convergence of the whole sequence towards a local optimum of the objective.
Several examples are discussed, and another proof of convergence of the EM algorithm is
given in several mixtures in the light of our approach.

In a second part of this work, we construct a new structure for semiparametric two-
component mixture models where one component is unknown. The new structure per-
mits to incorporate some prior linear information about the unknown component such
as moments or L-moments constraints. Two different approaches are developed using
ϕ−divergences in order to estimate the semiparametric mixture model; an approach for
moment-type constraints and an approach for L-moments constraints. The asymptotic
properties of the resulting estimators are studied and proved under standard conditions.
The new structure is demonstrated by simulations to produce better estimates using the
prior information than existing methods in the literature which do not consider in general
any prior information except for a symmetric assumption.

Keywords: Mixture model, ϕ−divergence, symmetric and asymmetric kernel den-
sity estimator, proximal-point algorithm, Fenchel-Legendre duality, semiparametric model,
semiparametric linear quantile model, L-moment.

5 / 208



Contents

Remerciement 1

Summary 3

List of Figures 10

List of Tables 12

Introduction 15
0.1 Première partie: Estimation robuste basée sur des ϕ−divergences avec ap-
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Introduction

Le but de cette thèse est l’étude et l’estimation d’un modèle de mélanges de lois de la
forme:

P (.|φ) =

j∑
i=1

λiPi(.|θi), t.q.

j∑
i=1

λi = 1.

Dans la première partie de la thèse (Chap.1 et 2), le modèle de mélange est paramétrique.
C’est à dire que la distribution de chaque composante, indexée par i = 1, · · · , j, corre-
spond a une loi connue paramétrée par θi. Dans la deuxième partie de la thèse (Chap.3 et
4), nous aborderons le cas particulier où j = 2 en supposant que la première composante
du mélange est paramétrique alors que la deuxième est nonparamétrique. Nous proposons
ensuite une structure où la deuxième composante est semiparamétrique au sens où elle ap-
partient à une famille de lois définies par des contraintes linéaires, par exemple l’ensemble
des lois de probabilité ayant une variance égale au carré de l’espérance. Les modèles de
mélanges paramétriques ont des applications diverses en biologie, en machine learning
etc., voir Titterington et al. [1985] ou McLachlan and Peel [2005] pour plus de détails.
Les modèles de mélanges semiparamétriques ont été employés dans différents contextes en
génétique (Ma et al. [2011]), biologie (Bordes et al. [2006]) en machine learning (Song et al.
[2010]) pour des algorithmes de clustering, etc. Le modèle semiparamétrique pourrait être
appliqué dans d’autres situations et sur plus d’applications comme en traitement du signal.

L’estimation d’un modèle de mélange paramétrique se fait en général avec l’algorithme
EM de Dempster et al. [1977]. L’algorithme EM offre une procédure facile à programmer et
dont la complexité est faible. En effet, l’algorithme EM maximise la log-vraisemblance du
modèle de mélange itérativement. A chaque itération, nous maximisons la vraisemblance à
l’intérieur de chaque classe (composante) en attribuant des poids hi,k à chaque observation
(numéro i) mesurant son appartenance à la classe k. Cependant, l’algorithme EM produit
des estimateurs non-robustes parce que nous calculons le maximum de vraisemblance en fin
de compte. Le maximum de vraisemblance est un estimateur qui est connu d’être sensible
aux points aberrants (outliers) et au fait que le modèle ne contient pas la vraie distribution
des données (misspecification). L’objectif de la première partie est d’appliquer un autre
outil d’estimation qui produit des estimateurs robustes. Nous formulons également un
algorithme qui ressemble à l’algorithme EM au sens où l’optimisation n’est pas menée sur
tous les paramètres en même temps, mais sur les proportions dans une étape et sur les
paramètres décrivant les classes dans une autre étape.
L’estimation d’un modèle de mélange semiparamétrique à deux composantes est un sujet
très récent. Plusieurs méthodes existent pour estimer la proportion et/ou les paramètres
de la composante paramétrique sans qu’il y ait de contraintes sur la composante inconnue.
Une hypothèse de symmétrie sur la composante inconnue a été employée afin de mieux
estimer le modèle de mélange; voir Bordes and Vandekerkhove [2010] et Maiboroda and
Sugakova [2012]. L’estimation d’un modèle de mélange semiparamétrique sans qu’il y ait
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de contraintes sur la composante inconnue est difficile surtout lorsque nous avons à estimer
des paramètres inconnus de la composante paramétrique. Nous proposons une méthode
pour estimer un modèle de mélange semiparamétrique lorsque la composante inconnue est
définie par des contraintes linéaires de type moments ou L-moments. Nous étudions les
propriétés asymptotiques des estimateurs obtenus. Plusieurs simulations numériques sont
présentées afin d’illustrer l’avantage de la nouvelle approche.

0.1 Première partie: Estimation robuste basée sur des ϕ−divergences
avec application aux modèles de mélanges paramétriques

0.1.1 Chapitre 1: Estimation basée sur des ϕ−divergences

Les ϕ−divergences sont des mesures de distance ou dissimilarité entre des distributions
de probabilité ou plus généralement entre des measures σ−finies. Elles ont été introduites
indépendamment par Csiszár [1963] et Ali and Silvey [1966]. Pour deux mesures P et
Q σ−finies telles que Q est absolument continue par rapport à P , nous définissons la
ϕ−divergence entre Q et P par:

Dϕ(Q,P ) =

∫
Rr
ϕ

(
dQ

dP
(x)

)
dP (x),

où ϕ est une fonction positive convexe telle que ϕ(1) = 0. Si ϕ est strictement convexe
alors:

Dϕ(Q,P ) = 0 si et seulement si P = Q.

L’estimation par une ϕ−divergence se fait en minimisant celle-ci entre une famille de lois
et une mesure de probabilité PT inconnue. La loi PT n’est connue en générale que par
un échantillon Y1, · · · , Yn observée. La famille de lois est un modèle Pφ avec φ ∈ Φ ⊂ Rd
paramétré par le paramètre φ. Le but est de trouver le meilleur vecteur de paramètres φT

tel que PφT soit le plus proche possible de PT d’un point de vue d’une ϕ−divergence. En

particulier, si PT est un membre du modèle (Pφ)φ, alors il existe φT tel que PT = PφT , et

φT = arg min
φ∈Φ

Dϕ(Pφ, PT ).

Comme PT est inconnue, nous avons besoin de la remplacer par un estimateur afin
d’estimer φT . Dans le cas où les mesures de probabilité sont définies sur des espaces
discrets, PT est remplacée par la mesure empirique, voir Lindsay [1994]. Dans le cas
des modèles continus, remplacer PT par sa version empirique n’est pas convenable, car le
modèle ne serait pas absolument continu par rapport à la mesure empirique pour n’importe
quel n, et aucune procédure d’estimation ne pourrait être produite, voir Broniatowski and
Vajda [2012]. Plusieurs approches ont été proposées afin d’approximer la ϕ−divergence
lorsque le modèle est continu.

• L’approche de Beran [1977]. Cette approche consiste à remplacer directement PT
par un estimateur à noyau. L’approche de Beran [1977] a été proposée dans le cas
de la divergence de Hellinger. Cette approche a été plus tard généralisée à la classe
des ϕ−divergences par Park and Basu [2004] et Kuchibhotla and Basu [2015].

• L’approche de Basu and Lindsay [1994]. Cette approche consiste à remplacer PT par
un estimateur à noyau et convoler le modèle avec le même noyau afin de réduire le
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rôle de la fenêtre. Les auteurs démontrent que sous une certaine condition (difficile)
sur le noyau (noyau transparent), l’estimateur basé sur leur approche est consistant
sans avoir besoin que l’estimateur à noyau soit consistant.

• La forme dual des ϕ−divergences. Cette approche a été développée indépendamment
par Broniatowski and Keziou [2006] et Liese and Vajda [2006]. On peut montrer que
pour trois densités de probabilités pα, pφ et pT , nous avons:

Dϕ(pφ, pT ) ≥
∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
pα

)
(y)pT (y)dy,

où ϕ#(t) = tϕ′(t)− ϕ(t), et que l’égalité est atteinte lorsque pα = pT . Alors:

Dϕ(pφ, pT ) = sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
pα

)
(y)pT (y)dy

}
. (0.1.1)

Il suffit maintenant de remplacer pT (y)dy par la mesure empirique dPn afin d’avoir
un estimateur dit dual de la ϕ−divergence. L’intérêt de cette approche est que,
contrairement aux autres approches, nous n’avons pas besoin d’un estimateur à
noyau, et donc nous n’avons pas à chercher un bon noyau et une bonne fenêtre.

Dans le premier chapitre, nous nous intéressons à la forme duale des ϕ−divergences.
Broniatowski and Keziou [2009b] et Liese and Vajda [2006] proposent le minimum dual
ϕ−divergence estimateur (MDϕDE) de φT :

φ̂ = arg inf
φ∈Φ

sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx− 1

n

n∑
i=1

ϕ#

(
pφ
pα

)
(yi)

}
.

Lorsque PT appartient au modèle Pφ, la forme duale estime bien la ϕ−divergence parce
que le supremum sur α sera atteint à α = φT . Cependant, si PT n’est pas dans le modèle,
ce n’est plus le cas. Par exemple, le cas des données contenant des outliers. En effet, si
PT n’est pas dans le modèle, alors nous aurons:

Dϕ(pφ, pT ) ≥ sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
pα

)
(y)pT (y)dy

}
.

Nous illustrons à la figure (1) un exemple simple qui montre l’impact de ce problème. Nous
illustrons également la solution que nous allons proposer ensuite. Notre solution consiste
à utiliser un estimateur à noyau au lieu de pα. Ceci permet de s’adapter à pT que ce soit
sous le modèle ou non, et en même temps permet de se débarasser de la forme suprémale.
Notre nouvel estimateur est défini par:

Dϕ(pφ, pT ) = sup
w>0

{∫
ϕ′
(

pφ
Kn,w

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
Kn,w

)
(y)pT (y)dy

}
. (0.1.2)

En effet, un ”bon” choix de la fenêtre permet d’introduire le nouvel estimateur:

φ̂n = arg inf
φ∈Φ

∫
ϕ′
(

pφ
Kn,wopt

)
(x)pφ(x)dx− 1

n

n∑
i=1

ϕ#

(
pφ

Kn,wopt

)
(yi).

Nous démontrons que ce nouvel estimateur est consistant et asymptotiquement Gaussian
sous des hypothèses standards. Les simulations numériques montrent que le nouvel es-
timateur performe mieux que les autres estimateurs présentés dans ce chapitre. Nous
comparons la performance de cet estimateur avec le minimum density power divergence
(MDPD) de Basu et al. [1998] qui est un estimateur de Bregman. Notre estimateur per-
forme aussi bon que le MDPD dans plusieurs simulations et performe mieux dans un
modèle à queue lourde qui est le GPD.
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Figure 1: Sous-estimation causée par la forme duale classique en comparaison avec notre
alternative. La vraie distribution PT est 0.9N (µ = 0, σ = 1)+0.1N (µ = 10, σ = 2). Figure
(a) montre la forme duale classique (0.1.1) en comparaison avec la nouvelle formulation
duale définie par (0.1.2). Figure (b) montre les approximations correspondantes après
avoir remplacé la vraie distribution par sa version empirique.

0.1.2 Chapitre 2:

Les procédures d’estimation présentées dans le chapitre précédent sont en général non-
convexes. Les méthodes d’optimisation convexe ne garantissent que la convergence vers
un optimum local de la fonction objective si celle-ci n’est pas convexe. Nous introduisons
dans ce chapitre un algorithme d’optimisation proximale. Un algorithme proximal est un
algorithme itératif qui à chaque itération optimise une version régularisée de la fonction
objective. Les algorithmes proximaux ont été prouvés de produire de meilleurs résultats
que les algorithmes d’optimisation classiques, voir Goldstein and Russak [1987].
Soient (X1, Y1), · · · , (Xn, Yn) un échantillon de couples de variables aléatoires i.i.d. dis-
tribuées selon la densité f(x, y|φT ) pour un φT ∈ Φ. Soient (x1, y1), · · · , (xn, yn) des
réalisations de ces couples. Les données y1, · · · , yn sont les données observées et les
données x1, · · · , xn sont les données inobservées ou les étiquettes. Par exemple, les données
x1, · · · , xn sont les classes correspondant aux points y1, · · · , yn.
L’algorithme EM est une procédure itérative qui estime le vecteur de paramètres φT en
maximisant l’espérance de la log-vraisemblance complétée sachant les données observées,
c.à.d.

φk+1 = argmax
Φ

Q(φ, φk)

= argmax
Φ

E
[
log(f(X,Y|φ))

∣∣∣Y = y, φk
]
,

où X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) et y = (y1, · · · , yn). On peut démontrer que ces
itérations s’écrivent de la façon suivante:

φk+1 = argmax
Φ

n∑
i=1

log (pφ(yi)) +
n∑

i=1

∫

X
log

(
hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx. (0.1.3)
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où hi(x|φk) = f(x,yi|φk)
p
φk

(yi)
est la densité conditionnelle des étiquettes sachant une donnée yi,

et pφ est la loi marginale des données observées. L’algorithme EM (0.1.3) s’écrit comme
un algorithme proximal, car nous sommes en train de maximiser la log-vraisemblance en
la perturbant à chaque itération de l’algorithme par une fonction positive qui ressemble à
une distance de Kullback-Lebiler mais entre les densités conditionnelles des étiquettes.
Tseng [2004] propose de généraliser (0.1.3) en permettant au terme proximal à prendre
d’autres formes plus générales guidées par une fonction génératrice ψ. Tseng propose
l’algorithme suivant:

φk+1 = arg sup
φ

J(φ)−Dψ(φ, φk), (0.1.4)

où J(φ) est la log-vraisemblance et

Dψ(φ, φk) =

n∑
i=1

∫
X
ψ

(
hi(x|φ)

hi(x|φk)

)
hi(x|φk)dx. (0.1.5)

La fonction ψ est prise comme une fonction convexe positive qui vérifie ψ(1) = ψ′(1) = 0.
Pour l’algorithme (0.1.3), ψ(t) = − log(t) + t− 1.
L’algorithme EM ainsi que la généralisation faite par Tseng ont une objective de maximiser
la log-vraisemblance. Par conséquent, les estimateurs issus de ces algorithmes ne sont pas
robustes contre les outliers ou une perturbation du modèle autour de la vraie distribution
des données. Pour cela, nous proposons de généraliser l’algorithme de Tseng en utilisant
le lien entre la maximisation de la log-vraisemblance et la minimisation de la distance de
Kullback-Leibler entre la mesure empirique et le modèle dans les modèles discrets. Bien
évidemment, pour les modèles continus, ce lien est atteint de manière différente, car la
distance entre le modèle et la mesure empirique n’est pas bien définie1. Nous proposons
de remplacer la log-vraisemblance par un estimateur d’une ϕ−divergence.

φk+1 = arg inf
φ

D̂ϕ(pφ, pT ) +
1

n
Dψ(φ, φk). (0.1.6)

En prenant D̂ϕ(pφ, pT ) l’estimateur induit par la forme duale (0.1.1) après avoir replacé
pT (y)dy par dPn, et pour ϕ(t) = − log(t) + t− 1, nous avons:

φk+1 = arg inf
φ

{
sup
α

1

n

n∑
i=1

log(pα(yi))−
1

n

n∑
i=1

log(pφ(yi)) +
1

n
Dψ(φ, φk)

}

= arg inf
φ

{
− 1

n

n∑
i=1

log(pφ(yi)) +
1

n
Dψ(φ, φk)

}

= arg sup
φ

{
1

n

n∑
i=1

log(pφ(yi))−
1

n
Dψ(φ, φk)

}

= arg sup
φ

J(φ)− 1

n
Dψ(φ, φk).

Donc, notre algorithme contient la généralisation de Tseng. De plus, pour ψ(t) = − log(t)+
t−1, on se trouve avec l’algorithme EM. Nous proposons également dans le cas d’un modèle
de mélange

pφ(y) =
s∑
i=1

λipi(y|θi)

1Dans le monde des ϕ−divergences, cette distance est considérée infinie.
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un algorithme proximal à deux niveaux; une sous-étape qui optimise sur les proportions
λi et une sous-étape qui optimise sur les paramètres décrivant les classes θi. En d’autres
termes:

λk+1 = arg inf
λ∈[0,1]s,s.t.(λ,θk)∈Φ

D̂ϕ(pλ,θk , pφ∗) +Dψ((λ, θk), φk); (0.1.7)

θk+1 = arg inf
θ∈Θ,s.t.(λk+1,θ)∈Φ

D̂ϕ(pλk+1,θ, pφ∗) +Dψ((λk+1, θ), φk). (0.1.8)

Nous démontrons sous des hypothèses standards que les séquences (φk)k générées par
l’un des algorithmes (0.1.6) ou (0.1.7, 0.1.8) convergent vers un point stationnaire de
l’estimateur de la divergence φ 7→ D̂ϕ(pφ, pT ).
Définissons l’ensemble Φ0 par:

Φ0 = {φ ∈ Φ : D̂ϕ(pφ, pT ) ≤ D̂ϕ(pφ0 , pT )}. (0.1.9)

Nous citons ici les deux principaux résultats théoriques concernant la convergence de la
séquence Φk générée par les algorithmes (0.1.6) ou (0.1.7, 0.1.8).

Proposition 0.1.1. Supposons que les séquences (0.1.6) et (0.1.7, 0.1.8) sont bien définies
dans Φ. Pour les deux algorithmes, la séquence (φk)k vérifie les propriétés suivantes:

(a) Dϕ(pφk+1 |pT ) ≤ Dϕ(pφk |pT );

(b) ∀k, φk ∈ Φ0;

(c) Supposons que les fonctions φ 7→ D̂ϕ(pφ|pT ), Dψ sont semicontinues inférieurement
et que l’ensemble Φ0 est compact, alors la séquence (φk)k est bien définie et bornée.

De plus, la séquence
(
D̂ϕ(pφk |pT )

)
k

converge.

Cette proposition annonce une propriété essentielle de l’algorithme. Sous des condi-
tions simples, nous avons que la fonction objective (l’estimateur de la divergence) converge
le long de la séquence φk, voir figure (2). Cette propriété peut être utilisée comme un critère
d’arrêt de l’algorithme au cas où la séquence de vecteurs φk ne converge pas. Un deuxième
résultat principal dans ce travail prouve la convergence des sous-suites vers un point sta-
tionnaire de la divergence estimée. Ce résultat est nouveau, car les résultats existants
supposent que le terme proximal Dψ vérifie une hypothèse d’identifiabilité Dψ(φ, φ′) = 0
ssi φ = φ′. Dans ce résultat, nous ne demandons pas cette hypothèse.

Proposition 0.1.2. Supposons que

1. les fonctions φ 7→ D̂ϕ(pφ|pT ), Dψ et ∇1Dψ sont définies et continues sur, respective-
ment, Φ,Φ× Φ et Φ× Φ;

2. ∇D̂ϕ(pφ|pT ) est définie et continue sur Φ;

3. Φ0 est compact,

alors pour l’algorithme défini par (0.1.6), toute sous-suite convergente converge vers un
point stationnaire de la fonction objective φ → D̂(pφ, pT ). De plus, si l’hypothèse 2 n’est

pas vérifiée, alors 0 appartient au sous-gradient de φ 7→ D̂(pφ, pT ) calculé au point limite.
En d’autres termes, les sous-suites convergentes convergent vers des points stationnaires
généralisés.
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Figure 2: Décroissance de la (estimateur de la) distance de Hellinger entre la vraie distri-
bution des données et le modèle estimé à chaque itération de l’algorithme proximal dans
le cas d’un modèle de mélange à 2 composantes Gaussiennes. La figure de gauche illustre
la courbe des valeurs pour le nouvel estimateur dual (0.1.2) estimé. La figure de droite
illustre la courbe des valeurs de l’estimateur dual classique (0.1.1) estimé. Les valeurs sont
représentées sur une échelle logarithmique log(1 + x). Le 1-step représente l’algorithme
(0.1.6), et le 2-step représente l’algorithme (0.1.7, 0.1.8)

Example 0.1.1. Dans un mélange de deux composantes Gaussiennes:

pλ,µ(x) =
λ√
2π
e−

1
2

(x−µ1)2 +
1− λ√

2π
e−

1
2

(x−µ2)2 ,

on peut démontrer avec notre approche que les points limites générés par l’algorithme EM
sont des points stationnaires de la log-vraisemblance dès que le vecteur initial φ0 vérifie la
condition suivante:

J(φ0) > max

[
J

(
0,∞, 1

n

n∑
i=1

yi

)
, J

(
1,

1

n

n∑
i=1

yi,∞

)]
,

où J est la log-vraisemblance. D’autres exemples et discussions sont présentés dans le
chapitre ci-dessous. Les simulations numériques menées sur des mélanges de Gaussiens et
des mélanges de Weibull montrent que l’algorithme proximal marche, et nous arrivons à
calculer les estimateurs basés sur les formes duales présentées dans le chapitre précédent.
Une application de notre algorithme proximal sur le density power divergence de Basu
et al. [1998] est également présentée.

0.2 Deuxième partie: Modèles de mélanges semiparamétriques
à deux composantes dont l’une est inconnue

Un modèle de mélange semiparamétrique à deux composantes est définie par:

f(x) = λf1(x|θ) + (1− λ)f0(x), for x ∈ Rr, (0.2.1)

où λ et θ sont deux paramètres à estimer. f0 est considérée inconnue durant l’estimation.
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0.2.1 Chapitre 3: Modèles de mélanges semiparamétriques à deux com-
posantes dont l’une est définie par des contraintes linéaires sur sa
distribution

Le modèle de mélange semiparamétrique (0.2.1) a été étudié et employé dans certaines
applications récemment par plusieurs auteurs, Bordes et al. [2006], Robin et al. [2007],
Song et al. [2010], Ma et al. [2011] et Xiang et al. [2014]. Dans ces papiers, le modèle n’a
pas été traité avec la définition générale donnée ci-dessus. Certains auteurs ont considéré
que θ est connu de manière à ce que la composante paramétrique soit entièrement connue.
D’autres auteurs ont considéré une distribution précise comme le Gaussien pour f1 sans
aucune généralisation à d’autres familles de distributions.
Plusieurs méthodes d’estimation du modèle de mélanges semiparamétrique (0.2.1) ont été
introduites. Bordes et al. [2006] proposent d’étudier le modèle (0.2.1) lorsque r = 1, f0 est
symétrique par rapport à une valeur inconnue µ0 et f1 est entièrement connue, c.à.d. θ est
connu. Song et al. [2010] proposent d’étudier le modèle (0.2.1) lorsque f1 est un Gaussien
centré en 0 avec une variance inconnue. Ils supposent en plus que f0(0) = 0. D’autres
auteurs ont proposé des méthodes de type EM, voir Robin et al. [2007], Song et al. [2010]
et Ma et al. [2011]. Une méthode basée sur la distance de Hellinger a été proposée par
Xiang et al. [2014], mais nous n’en parlons pas, car l’algorithme présenté dans leur article
n’est pas claire et contient des calculs intégrales qui ne se font pas avec des méthodes
numériques.
Ces méthodes d’estimation ne sont pas basées sur une théorie solide exceptée la méthode
de Bordes et al. [2006]. De plus, le comportement asymptotique des algorithmes proposés
n’a pas été étudié. La convergence des méthodes itératives de type EM n’a pas été établie
non plus. La méthode de Bordes et al. [2006] exploite la structure de symétrie imposée sur
f0 pour construire un estimateur consistant et asymptotiquement Gaussien, voir Bordes
and Vandekerkhove [2010].
L’article de Xiang et al. [2014] illustre une comparaison entre plusieurs méthodes d’estimation
pour le modèle semiparamétrique (0.2.1) lorsque θ est connu. Les méthodes donnent de
bonnes performances sans qu’il y ait une méthode gagnante. Les données ont été générées
par des mélanges de deux Gaussiens. Nous avons refait des simulations similaires mais en
considérant θ inconnu. Les résultats n’ont pas été satisfaisants. La méthode de Bordes
and Vandekerkhove [2010] a tendance à donner de bonnes résultats pour une proportion
basse de la partie paramétrique, mais non pas très proche de zéro. Les autres méthodes ont
tendance à donner de bonnes performances lorsque la proportion de la partie paramétrique
est élevée. Nous croyons que le problème vient du degré de difficulté du modèle de mélange
semiparamétrique. L’ajout d’une information a priori comme la symétrie de f0 a permis
d’améliorer l’estimation et de mieux étudier la théorie liée à la méthode.
Suivant l’idée de Bordes et al. [2006], nous proposons d’ajouter une information a pri-
ori relativement générale de manière à ce que nous puissions bien estimer le modèle de
mélange semiparamétrique. Nous proposons d’ajouter une information linéaire comme
les contraintes de moments. Les contraintes linéaires peuvent être traitées avec des outils
d’analyse convexe. Nous définissons ainsi notre modèle de mélange semiparamétrique sous
des contraintes linéaires sur la composante inconnue par:

P (.|φ) = λP1(.|θ) + (1− λ)P0 s.t.

P0 ∈Mα =

{
Q ∈M s.t.

∫
Rr
dQ(x) = 1,

∫
Rr
g(x)dQ(x) = m(α)

}
(0.2.2)

où g(x) = (g1(x), · · · , g`(x)) et m(α) = (m1(α), · · · ,m`(α)).
L’estimation d’un modèle semiparamétrique défini par des contraintes linéaires a été
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étudiée par Broniatowski and Keziou [2012]. Les auteurs proposent d’estimer un modèle
semiparamétrique par des ϕ−divergences. Broniatowski and Decurninge [2016] ont tra-
vaillé avec des modèles semiparamétriques sous des contraintes de L-moments. Afin
d’exploiter leurs méthodologies, nous devons travailler plutôt sur un modèle défini par
P0. En effet, supposons avoir un échantillon X1, · · · , Xn distribué selon PT un mélange
de deux lois P1(.|θ∗) et P ∗0 . Nous avons:

P ∗0 =
1

1− λ∗
PT −

λ∗

1− λ∗
P1(.|θ∗). (0.2.3)

Définissons l’ensemble:

N =

{
Q =

1

1− λ
PT −

λ

1− λ
P1(.|θ), λ ∈ (0, 1), θ ∈ Θ

}
. (0.2.4)

Notons que P ∗0 appartient à N pour λ = λ∗ et θ = θ∗. Par ailleurs, comme P ∗0 vérifie
l’ensemble de contraintes de Mα∗ pour un α∗ inconnu, nous pouvons écrire:

P ∗0 ∈ N
⋂
∪α∈AMα.

Alors, il est raisonnable de définir une procédure d’estimation qui minimise la distance
entre N et ∪α∈AMα. Cette distance est atteinte en P ∗0 . Nous avons alors:

(λ∗, θ∗, α∗) ∈ arg inf
λ,θ,α

inf
P0∈Mα

Dϕ

(
P0,

1

1− λ
PT −

λ

1− λ
P1(.|θ)

)
. (0.2.5)

Ceci est un problème d’optimisation sur un espace de dimension infinie. Pour le résoudre,
nous utilisons un résultat de dualité de Fenchel-Legendre, voir Proposition 1.4 de De-
curninge [2015] (voir également Proposition 4.2 de Broniatowski and Keziou [2012]).

(λ∗, θ∗, α∗) = arg inf
φ

inf
Q∈Mα

Dϕ

(
Q,

1

λ− 1
PT −

λ

1− λ
P1(.|θ)

)
= arg inf

φ
sup

ξ∈Rl+1

ξtm(α)− 1

1− λ

∫
ψ
(
ξtg(x)

)
dPT (x)

+
λ

1− λ

∫
ψ
(
ξtg(x)

)
dP1(x|θ). (0.2.6)

où ψ(t) = supx tx−ϕ(x). Dans cette formule, nous avonsm(α) = (1,m1(α), · · · ,m`(α)). Il
est possible maintenant d’estimer le triplet (λ∗, θ∗, α∗) à la base d’un échantillonX1, · · · , Xn

par:

(λ̂, θ̂, α̂) = arg inf
λ,θ,α

sup
ξ∈Rl+1

ξtm(α)− 1

1− λ
1

n

n∑
i=1

ψ
(
ξtg(Xi)

)
+

λ

1− λ

∫
ψ
(
ξtg(x)

)
dP1(x|θ). (0.2.7)

Nous prouvons que cet estimateur est consistant et asymptotiquement Gaussien sous des
hypothèses standards.

Example 0.2.1. Prenons l’exemple d’un modèle de mélange à deux composantes dont
l’une est définie par trois contraintes de moments (les trois premiers moments). L’ensemble
Mα est défini par:

Mα =

{
Q :

∫
dQ(x) = 1,

∫
xdQ(x) = m1(α),

∫
x2dQ(x) = m2(α),

∫
x3dQ(x) = m3(α)

}
.

23 / 208



LIST OF TABLES 24

Si ϕ(t) = (t− 1)2/2, alors ψ(t) = 1
2 t

2 + t et l’optimum sur ξ est donné par:

ξ(φ) = Ω−1

(
m(α)−

∫
g(x)

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

))
, pour φ ∈ Φ+.

où

Ω =

∫
g(x)g(x)t

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
.

Φ+ est l’ensemble de paramètres pour lesquels la fonction objective est concave par rapport
à ξ. En d’autres termes, Φ+ = {φ : Ω est symétrique définie positive}. Soit Mi le moment

d’ordre i de PT . Dénotons également M
(1)
i (θ) le moment d’ordre i de la composante

paramétrique P1(.|θ).

Mi = EPT [Xi], M
(1)
i (θ) = EP1(.|θ)[X

i].

Un calcul simple montre que:

Ω =

∫
g(x)g(x)t

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
=

[
1

1− λ
Mi+j−2 −

λ

1− λ
M

(1)
i+j−2(θ)

]
i,j∈{1,··· ,4}

.

et la fonction objective dans (0.2.6) est donnée par:

H(φ, ξ) = ξtm(α)−
[

1

2
ξ2

1 + ξ1 + (ξ1ξ2 + ξ2)

(
1

1− λ
M1 −

λ

1− λ
M

(1)
1 (θ)

)
+(ξ2

2/2+ξ1ξ2+ξ3)

(
1

1− λ
M2 −

λ

1− λ
M

(1)
2 (θ)

)
+(ξ1ξ4+ξ2ξ3+ξ4)

(
1

1− λ
M3 −

λ

1− λ
M

(1)
3 (θ)

)
+ (ξ2

3/2 + ξ2ξ4)

(
1

1− λ
M4 −

λ

1− λ
M

(1)
4 (θ)

)
+ ξ3ξ4

(
1

1− λ
M5 −

λ

1− λ
M

(1)
5 (θ)

)
+ξ2

4/2

(
1

1− λ
M6 −

λ

1− λ
M

(1)
6 (θ)

)]
.

Cet exemple montre que notre estimateur peut être calculé de manière efficace et avec une
complexité linéaire sans que la dimension des données intervienne.

Des simulations numériques ont été menées afin de tester la validité de notre approche
et de comparer sa performance aux méthdes existantes.

0.2.2 Chapitre 4: Modèles de mélanges semiparamétrique à deux com-
posantes dont l’une est définie par des contraintes de L-moments

Le sujet de ce chapitre est considéré comme la suite du chapitre précédent. Nous avons
proposé une structure pour un modèle de mélange semiparamétrique à deux composantes
dont l’une est définie par des contraintes linéaires. En prenant des contraintes de moments,
on est aperçu que les chiffres de calculs explosent facilement. Exemple 0.2.1 montre le cas
des trois premiers moments imposés sur la composante inconnue P0. Le calcul de la matrice
Ω ainsi que la fonction objective ensuite H(φ, ξ) est une arithmétique entre les moments
de la composante paramétrique et les moments du mélange. Avec les trois premiers mo-
ments, nous avons déjà à calculer les moments jusqu’à l’ordre 6. Si l’on travaille avec
des distributions à queues lourdes, le moment d’ordre 6 prendra des valeurs d’ordre 1010
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voire plus. Les moments du mélange eux-mêmes seront remplacés durant l’estimation par
des moments empiriques. Ceux-ci explosent rapidement pour un échantillon donné même
pour des distributions à queues légères. En effet, le calcul de l’inverse de la matrice Ω
devient délicat. Par exemple, durant nos simulations numériques, il n’a pas été possible
d’utiliser une méthode numérique pour inverser la matrice Ω car elle a eu une sensibilité
élevée dans certains voisinages des paramètres φ, et par conséquent, nous avons calculé
l’inverse avec des méthodes d’inversion par bloc directes.
Récemment, les L-moments ont été proposés par Hosking [1990] et ils sont de plus en plus
utilisés comme des alternatives des moments standards. Les L-moments sont représentatifs
et caractérisent la loi de probabilité dès que son espérance existe, voir Théorème 1 de Hosk-
ing [1990]. De plus, les quatre premiers L-moments sont des indicateurs de la moyenne,
l’échelle, le skewness et le kurtosis. Ces premières propriétés sont déjà intéressantes pour
considérer les L-moments. Nous citons aussi le fait que les calculs numériques des L-
moments ne s’explosent pas facilement et dans nos simulations, les valeurs numériques ont
été toujours proches de 1 et aucun problème de sensibilité de matrices n’a été rencontré.
Avant de procéder à l’introduction du nouveau modèle, nous rappelons la définition des
L-moments. Soient X1:n < . . . < Xn:n les statistiques d’ordre associées à un échantillon
X1, · · · , Xn i.i.d. ayant une fonction de répartition FT .

Definition 0.2.1. Le L-moment d’ordre r, noté λr, r = 1, 2, . . . est défini par:

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr−k:r) .

Une propriété très intéressante et essentielle des L-moments est qu’ils sont linéaires en
les mesures de quantile. Une mesure de quantile est définie par le moyen de la fonction
quantile de la manière suivante. Pour tout borélien de B([0, 1])

F−1(B) =

∫ 1

0
1x∈BdF−1(x) ∈ R ∪ {−∞,+∞}.

Les L-moments peuvent être réécrits par

λr = −
∫
R
Kr(t)dF

−1(t), r ≥ 2 (0.2.8)

où

Kr(t) =

∫ t

0
Lr−1(u)du =

r−1∑
k=0

(−1)r−k

k + 1

(
r

k

)(
r + k

k

)
tk+1 (0.2.9)

sont les polynômes de Legendre translatés et intégrés. La linéarité des L-moments par
rapport aux quantiles est la clé essentielle pour construire notre méthode d’estimation
dans un mélange semiparamétrique basée sur le résultat de dualité de Fenchel-Legendre.
Nous définissons notre modèle de mélange semiparamétrique à deux composantes dont
l’une est définie par des contraintes de L-moments par:

P (.|φ) = λP1(.|θ) + (1− λ)P0 s.t.

F−1
0 ∈Mα =

{
Q−1 ∈M−1,Q−1 � F−1

0 s.t.

∫ 1

0
K(u)dQ−1 = m(α)

}
(0.2.10)
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où m(α) = (m2(α), · · · ,m`−1(α)). Nous définissons de manière similaire au chapitre
précédent un modèle par le moyen de P0. Définissons les ensembles:

Φ+ =

{
(λ, θ) ∈ (0, 1)×Θ :

1

1− λ
FT −

λ

1− λ
F1(.|θ) est une fonction de répartition

}
,

N−1 =

{
Q−1 ∈M−1 : ∃(λ, θ) ∈ Φ+ s.t. Q−1 =

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1
}
.

L’ensemble Φ+ représente l’ensemble effectif des paramètres concernés dans le nouveau
modèle écrit avec P0. En effet, un couple (λ, θ) ne définit pas en général une fonction
de répartition ayant la forme 1

1−λFT −
λ

1−λF1(.|θ). Pour cela, il est important pour
le moment de ne garder que les paramètres qui rendent cette fonction une fonction de
répartition. Nous aurons la possibilité plus tard d’ignorer ce problème et de travailler sur
tout l’ensemble Φ.
Nous avons:

F∗0
−1 ∈ N−1

⋂
∪αMα.

Donc, il est raisonnable de définir une procédure d’estimation qui minimise une distance
entre les deux ensembles N−1 et ∪αMα.

(λ∗, θ∗, α∗) ∈ arg inf
(λ,θ,α)∈Φ+

inf
F−1

0 ∈Mα

Dϕ

(
F−1

0 ,

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1
)
. (0.2.11)

Afin de résoudre ce problème d’optimisation qui est mené sur un espace de dimension
infinie, nous utilisons à nouveau la Proposition 1.4 de Decurninge [2015] (voir également
Proposition 4.2 de Broniatowski and Keziou [2012]) pour écrire:

(λ∗, θ∗, α∗) ∈ arg inf
(λ,θ,α)∈Φ+

sup
ξ∈R`−1

ξtm(α)−
∫ 1

0
ψ
(
ξtK(u)

)
d

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(u).

En utilisant le Lemme 1.2 de Decurninge [2015], nous pouvons écrire:

(λ∗, θ∗, α∗) ∈ arg inf
(λ,θ,α)∈Φ+

sup
ξ∈R`−1

ξtm(α)−
∫
R
ψ

(
ξtK

(
1

1− λ
FT (x)− λ

1− λ
F1(x|θ)

))
dx.

(0.2.12)
Ceci est une procédure d’estimation où la fonction de répartition générant les données
FT peut être approximée par sa version empirique afin d’estimer le triple (λ∗, θ∗, α∗) à la
base d’un échantillon donné. Cependant, la caractérisation de l’ensemble Φ+ ici n’est pas
évidente et très coûteuse numériquement. De plus, l’ensemble Φ+ pourrait prendre des
formes qui ne sont pas adéquates pour les algorithmes d’optimisation numériques, voir
figure (3). Afin de résoudre ce problème, nous montrons que φ∗ = (λ∗, θ∗, α∗) est un
infimum global de la fonction H(φ, ξ(φ)) où:

H(φ, ξ) = ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
FT (y)− λ

1− λ
F1(y|θ)

)]
dy,

et
ξ(φ) = arg sup

ξ∈R`−1

H(φ, ξ).

Donc, si la fonction H(φ, ξ(φ)) n’a qu’un seul infimum global, ceci ne sera autre que φ∗.
Cela justifie notre procédure d’estimation:

φ∗ = arg inf
(α,θ,λ)∈Φ

sup
ξ∈R`−1

ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
FT (x)− λ

1− λ
F1(x|θ)

)]
dx. (0.2.13)
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Figure 3: Differentes formes de l’ensemble Φ+. Pour le mélange Weibull-Lognormal, c’est
le Weibull qui est la composante semiparametrique.

Avec un échantillon X1, · · · , Xn distribué selon FT , nous estimons φ∗ par:

φ̂ = arg inf
(α,θ,λ)∈Φ

sup
ξ∈R�−1

ξtm(α)−
∫

ψ

[
ξtK

(
1

1− λ
Fn(x)−

λ

1− λ
F1(x|θ)

)]
dx. (0.2.14)

Nous montrons que cet estimateur est consistant et asymptotiquement Gaussien sous des
hypothèses standards. Les simulations numériques montrent le gain de l’utilisation des
contraintes de L-moments par rapport aux moments standard surtout lorsque la proportion
de la composante paramétrique est très basse; 0.05 voire 0.01.

Example 0.2.2. Prenons le cas d’une divergence de χ2 pour ϕ(t) = (t− 1)2/2 et ψ(t) =
t2/2 + t. La fonction objective H(φ, ξ) est donnée par:

H(φ, ξ) = ξtm(α)−
∫

1

2

(
ξtK (F0(y|φ))

)2
+ ξtK (F0(y|φ)) dy,

où

F0(y|φ) =
1

1− λ
FT (y)−

λ

1− λ
F1(y|θ).

La fonction H est un polynôme de degrée 2 en ξ. Pour tout φ ∈ Φ, le supremum par
rapport à ξ est donné par:

ξ(φ) = Ω−1

(
m(α)−

∫
K(F0(y|φ))dy

)
,

où

Ω =

∫
K (F0(y|φ))K (F0(y|φ))t dy.

La matrice Hessienne de ξ �→ H(φ, ξ) est égale à −Ω, et donc c’est une matrice symétrique
définie négative pour tout φ dans Φ. Par conséquent, ξ(φ) est un supremum global de
ξ �→ H(φ, ξ).

27 / 208



Part I

Robust Estimation Using
ϕ−Divergences with Application
to Parametric Mixture Models

28



Chapter 1

Estimation using a phi-divergence

The maximum likelihood estimation is a simple and efficient method to estimate unknown
parameters of a given model. The most common drawback of this method is its sensibility
to contamination and misspecification. From the first years of the twentieth century, many
researchers such as Pearson, Hellinger, Kullback, Neymann and others started developing
different approaches using distance-like functions between probability density functions
called divergences. Several divergence-based techniques permit to construct robust es-
timators, such as ϕ−divergences (Csiszár [1963], Ali and Silvey [1966]), S−divergences
(Ghosh et al. [2013]), Rényi pseudodistances (see for example Toma and Leoni-Aubin
[2013]), Bregman divergences and many others. In this work, we are particularly inter-
ested in ϕ−divergences on the one hand, and on the other hand, in comparing the resulting
estimators and existing approaches with the maximum likelihood estimator (MLE) and
some well-known divergences.
Estimation using ϕ−divergences is based on the idea of minimizing a distance between
the true distribution and a given model. In practice, the true distribution is replaced by
its empirical version calculated on the basis of an n−sample. When working with discrete
models, everything goes well and a simple plug-in of the empirical distribution results in
a plausible and good estimation procedure, see Lindsay [1994]. The true challenge ap-
pears when we work with continuous models and smoothing techniques are apparently
necessary tools. Several techniques were proposed in the literature. We give a brief sum-
mary of some of these approaches and present a new method which has very encouraging
performances and properties. A comparison of several methods based on ϕ−divergences
will be presented at the end of this chapter with an extensive simulation study on several
distributions. The comparison is held with respect to the maximum likelihood estimator
(MLE) and a powerful estimator called the minimum density power divergence (MDPD)
introduced by Basu et al. [1998].

1.1 A brief introduction about ϕ-divergences

1.1.1 Definition, useful properties and standard examples

ϕ-divergences were introduced independently by Csiszár [1963] (as ”f -divergences”) and
Ali and Silvey [1966]. Let P and Q be two σ−finite measures defined on (Rr,B(Rr))
such that Q is absolutely continuous (a.c.) with respect to (w.r.t.) P . Let ϕ : R 7→
[0,+∞] be a proper convex function with ϕ(1) = 0 and such that its domain domϕ =
{x ∈ R such that ϕ(x) <∞} := (aϕ, bϕ) with aϕ < 1 < bϕ. The ϕ-divergence between Q
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and P is defined by:

Dϕ(Q,P ) =

∫
Rr
ϕ

(
dQ

dP
(x)

)
dP (x), (1.1.1)

where
dQ

dP
is the Radon-Nikodym derivative. WhenQ is not a.c.w.r.t. P , we setDϕ(Q,P ) =

+∞. When, P = Q then Dϕ(Q,P ) = 0. Furthermore, if the function x 7→ ϕ(x) is strictly
convex on a neighborhood of x = 1, then

Dϕ(Q,P ) = 0 if and only if P = Q. (1.1.2)

In the definition of ϕ−divergences, we have considered the general case of σ−finite mea-
sures. In the whole Part I (Chapters 1 and 2) of this work, we will only be interested in
ϕ−divergences between probability measures. In Chapter 3, we will be working with finite
signed measures, and finally in Chapter 4, we will be working in the frame frame of the
general case of σ−finite measures.
Several standard statistical divergences can be expressed as ϕ−divergences; the Hellinger,
the Pearson’s and the Neymann’s χ2, and the (modified) Kullback-Leibler. They all be-
long to the class of Cressie-Read (see Cressie and Read [1984]), also known as ”power
divergences”, defined through the generator function ϕγ given by:

ϕγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
, (1.1.3)

for γ = 1
2 , 2,−2, 0, 1 respectively1. More details and properties can be found in Liese and

Vajda [1987] or Pardo [2006].
Estimators based on ϕ−divergences were developed in the parametric (see Beran [1977],Lind-
say [1994],Park and Basu [2004],Broniatowski and Keziou [2009a]) and the semiparametric
setups (see Broniatowski and Keziou [2012] and Broniatowski and Decurninge [2016]). In
completly nonparametric setup, we may mention the work of Karunamuni and Wu [2009]
on two component mixture models when both components are unknown.

1.1.2 General estimation based on ϕ-divergences

Estimation based on ϕ−divergences consists in finding the projection of the true distri-
bution PT on the set {Pφ, φ ∈ Φ}, i.e. the model. Minimum discrepancy or minimum
divergence estimators are defined by:

φT = arg min
φ∈Φ

Dϕ(Pφ, PT ). (1.1.4)

This procedure was proved to be robust in the sens that a perturbation of the model in
a small neighborhood of PT would result in a small perturbation in the resulting esti-
mates, see Donoho and Liu [1988]. Beran [1977] has proved that arg min φ∈ΦDϕ(Pφ, P )
for the case of the Hellinger divergence is continuous as a function of P in a Hellinger
neighborhood of PT . This is also translated into an automatic robustness of the Hellinger
divergence for small perturbations around the true distribution in the Hellinger topology.

In practice, the estimation procedure (1.1.4) needs to be approximated on the basis of
a dataset X1, · · · , Xn since the true distribution is unknown. When working with discrete

1For γ ∈ {0, 1}, the limit is calculated since it is not well-defined. We denote ϕ0(x) = − log x + x − 1
for the case of the modified Kullback-Leibler and ϕ1(x) = x log x− x+ 1 for the Kullback-Leibler.
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models, ϕ−divergences are approximated using a direct plug-in of the empirical distri-
bution Pn. This is possible because both the model and the empirical distribution are
absolutely continuous with respect to each others for large n. Efficient and robust esti-
mators were derived and extensively studied; see for example Simpson [1987] and Lindsay
[1994].

For continuous models, the empirical distribution is no longer suitable to replace di-
rectly the true distribution since the model has a continuous support. Thus, the model is
not absolutely continuous with respect to Pn for any n and no estimation procedure can
be produced, see Broniatowski and Vajda [2012] for a discussion about this point. Authors
such as Beran [1977], Park and Basu [2004] and Kuchibhotla and Basu [2015] proposed
to simply smooth the empirical distribution using kernels, see paragraph 1.2.1. Basu and
Lindsay [1994] proposed to smooth both the model and the empirical distribution; see
paragraph 1.2.2. Although smoothing the model may result in a loss of information, Basu
and Lindsay show, in simple models, that this loss is rather small. They also notice that
there is still a difficulty in the choice of the window and the kernel for the smoothing.
Recently, an approach based on some convexity arguments has been proposed indepen-
dently by Liese and Vajda [2006] and Broniatowski and Keziou [2006], see paragraph 1.3.1.
In both articles, the authors provide similar ”supremal” representations of ϕ−divergences
where a simple plug-in of the empirical distribution is possible without any smoothing
techniques. The resulting estimators were called as minimum dual ϕ−divergence estima-
tors (MDϕDE). Another estimator based on the dual formula called the dual ϕ−divergence
estimator (DϕDE) was proposed. This estimator is proved to be consistent by Bronia-
towski and Keziou [2009b], see paragraph 1.3.2 for more details. Since the introduction of
the MDϕDE, no complete study about its robustness was proposed except for the calculus
of the influence function in Toma and Broniatowski [2011] and Broniatowski and Vajda
[2012]. There were no simulation studies either, except for the paper of Frýdlovà et al.
[2012]. However, in the later, the authors have considered only the case of Gaussian model
where the MDϕDE coincides with the maximum likelihood estimator. Broniatowski [2014]
has proved that the MDϕDE coincides with the MLE on any regular exponential family,
hence on a Gaussian model. Hence, the simulation results of Frýdlovà et al. [2012] shows
only that known fact that the MLE is not robust.
The dual representation proposed by both Liese and Vajda [2006] and Broniatowski and
Keziou [2006] yields estimators which perform well under the model and have efficiency
comparable to the MLE2. Weak and strong consistency is reached under classical condi-
tions (see Broniatowski and Keziou [2009b]). Limit laws of the MDϕDE and the estimated
divergence are simple and were exploited to build statistical tests. However, when we are
not under the model, this approach suffers from lack of robustness. Under contamination
or under misspecification, this approach does not approximate well the ϕ−divergence be-
tween the true distribution and the model. It even remarkably underestimates its value.
We propose in the sequel a brief explanation of this problem and provide a general solution,
see paragraph 1.4.2. A new robust estimator called kernel-based MDϕDE is introduced.
Our estimator avoids the supremal form of the MDϕDE, see paragraph (1.5.1). We study
asymptotic properties of this estimator in Section 1.6.

2The MDϕDE is even as efficient as the MLE in regular exponential families.
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1.2 Estimation based on ϕ−divergences in continuous mod-
els

In what follows, we suppose to have an i.i.d. sample Y1, · · · , Yn drawn from the proba-
bility distribution PT . The function K will denote a kernel function defined on Rr not
necessarily symmetric. In this section, we present two general approaches to approximate
a ϕ−divergence on the basis of a given sample.

1.2.1 Beran’s approach: Smoothing of the empirical distribution

A simple and natural approach to approximate the ϕ−divergence between the true dis-
tribution of the data PT and the model is to replace PT by a smoothed version of the
empirical distribution Pn, say Kn,w with w a smoothing parameter. An estimator of φT

is then given by:

φ̂ = arg min
φ∈Φ

∫
ϕ

(
pφ
Kn,w

)
(y)Kn,w(y)dy. (1.2.1)

This method was first introduced in the context of ϕ−divergences by Beran [1977] who
studied the Hellinger divergence in a univariate context and proved that it is robust
and asymptotically efficient in the same time. It was then generalized to the class of
ϕ−divergences in the univariate context, see Park and Basu [2004] and Kuchibhotla and
Basu [2015]. The Hellinger divergence has very favorable properties. Indeed, Jiménez and
Shao [2001] proved that no minimum power-divergence estimator performs better than the
minimum Hellinger in terms of both second order efficiency and robustness. The idea of
Beran was also employed in the estimation of the proportion of a nonparametric mixture
model, see Karunamuni and Wu [2009]. In their approach, however, we suppose to have
three i.i.d. samples; a sample drawn according to each component and a sample drawn
from the whole mixture. See also Tang and Karunamuni [2013] for an application on finite
mixture regression models and the references therein.
In the multivariate context, Tamura and Boos [1986] have studied the asymptotic prop-
erties of the Hellinger divergence. Surprisingly, the estimator needs a correction term in
order to converge to a multivariate Gaussian distribution at a

√
n speed. In the univariate

case, this correction term does not exist since it converges to zero in probability when
multiplied by

√
n.

Asymptotic properties of the resulting estimators were only studied in the previous
references when Kn,w is the Parzen-Rosenblatt kernel density estimator, i.e. a symmetric
kernel density estimator. In the context of nonnegative supported distributions, the use
of symmetric kernels is not advised especially if there is a considerable mass near zero
which is the case for example of the exponential distribution. Several techniques for bias
correction were proposed, see Karunamuni and Alberts [2005] for a survey. We mention
also asymmetric kernels, see for example Libengue Dobele-kpoka [2013] for a general ap-
proach. We give in the next paragraph more details especially about asymmetric kernels
and provide some examples. These two solutions provided considerable improvement in
the estimation of densities defined on the half real line. To the best of our knowledge,
the use of asymmetric kernels in parametric estimation has not been considered in the
literature. This is may be because asymmetric kernels is still a recent topic and the first
paper goes back to Chen [1999]. Moreover, the theory is not sufficiently developed yet.
Indeed, consistency of asymmetric kernel density estimators is only proved on every com-
pact subset of the domain of definition of the true density and not on the whole domain.
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Consistency becomes more difficult to prove when the density explodes for example near
zero. Furthermore, the rules for the choice of the window are not very efficient as we will
see in the simulations in Section 1.7.

Remark 1.2.1. Unlike symmetric kernels, generalization of asymmetric kernels to the
multivariate case is not simple. So far, and to the best of our knowledge, there is only
two recent papers which treat the multivariate case Bouezmarni and Rombouts [2010]
and Funke and Kawka [2015]. The two papers suppose that the data is bounded. Both
methods can be applied in our kernel-based MDϕDE and in Beran’s method (and its
generalization), but more investigations are needed in order to employ them in the Basu-
Lindsay approach.

1.2.2 The Basu-Lindsay approach: Smoothing the model

The idea of smoothing the empirical distribution was applied to avoid the problem of
absolute continuity of the model with respect to Pn when we use the later to replace the
true distribution in (1.1.1). Basu and Lindsay [1994] argue that the use of this method
requires consistency and rates of convergence for the kernel estimator. Thus, they propose
to smooth not only the empirical distribution, but also the model. Indeed, smoothing
equally the model pφ and the empirical measure Pn, as in (1.2.2) here below, may reduce
the influence of the choice of the window on the resulting estimator. For example, if the
smoothing is by convolution with a symmetric kernel K such as the Gaussian kernel, the
Basu-Lindsay approach is summarized in the following two lines:

p∗φ(x) =
1

w

∫
R
pφ(y)K

(
x− y
w

)
dy;

φ̂ = arg inf
φ∈Φ

∫
R
ϕ

(
p∗φ(x)

Kn,w(x)

)
Kn,w(x)dx, (1.2.2)

where Kn,w(x) = 1
nw

∑
K
(x−yi

w

)
is the Parzen-Rosenblatt symmetric-kernel estimator.

For example, in the Gaussian model N (µ, σ2), the smoothed model is merely a Gaussian
density with variance equal to σ2 + h2. Thus, the Basu-Lindsay approach appears as if
we are calculating a divergence between a weighted version of the model and the kernel
estimator.
The authors prove the robustness of (1.2.2) using the residual adjustment function (RAF),
see Lindsay [1994], since the corresponding influence function is generally unbounded,
keeping first order efficiency in hand. The basic problem from a theoretical point of view
is that in order to eliminate the role of the smoothing window, one needs to find what
the authors call a transparent kernel3. This is a very hard task in general as has already
been mentioned in Kuchibhotla and Basu [2015] for example. Basu and Lindsay have only
provided three simple examples (Gaussian, Poisson and gamma) where one can provide a
transparent kernel but have not shown any leads for a general method. They have also
shown in simple examples that when we use non transparent kernels, loss of information is
not large. Besides, consistency and rates of convergence for the kernel estimator become
necessary in order to obtain the consistency of the resulting estimator.
We will show in the following paragraph that if we are working with non classical situations

3The transparency assumption here means that the smoothed score function (derivative of the log-
likelihood) is proportional to the non smoothed one. The proportion rate can only be a function of the
parameters.
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such as densities defined on [0,∞), we may encounter further difficulties in the Basu-
Lindsay approach.

Smoothing-the-model’s effect: symmetric versus asymmetric kernels

The Basu-Lindsay approach seems to be more sensitive to the choice of the kernel than
standard methods. For example, let’s take the case of densities defined on (0,∞) (with
zero possibly included). Simple examples of such distributions are Weibull distributions
and generalized Pareto distributions (GPDs). It is well-known that estimation based on
symmetric kernels is biased near zero. Thus, smoothing the model with such kernels will
result in similar bias near zero. Figure 1.1 shows the influence of a Gaussian kernel on a
GPD model. The smoothed model has a peak near zero and decreases then towards zero,
and hence largely underestimates the values of the ”not smoothed” model near zero. Thus,
the divergence calculates a distance between a biased estimator of the true distribution and
a biased model, and there is no intuitive guarantee of what should give the minimization
of such function. Standard methods which do not smooth the model would suffer less from
this sort of problems since the bias is only in the kernel estimator.
Simulation results in Section 1.7 show that among the three methods which use a kernel
estimator (Beran’s approach, the Basu-Lindsay approach and our kernel-based MDϕDE
which will be introduced later on) the Basu-Lindsay approach is the most sensitive one.
Under the model, all three methods do not give satisfactory results in comparison to the
MLE (or the classical MDϕDE which will be presented later on) when we use symmetric
kernels. When outliers are present, they still give a better result than the MLE.

Figure 1.1: Smoothing the model with a Gaussian kernel results in a great loss in informa-
tion. The use of an asymmetric kernel such as the the reciprocal inverse Gaussian (RIG)
seems to be a good alternative

The solution for the previous problem is of course to either use a bias-correction method,
see Karunamuni and Alberts [2005], or to use asymmetric kernels which do not suffer
from the boundary bias, see Libengue Dobele-kpoka [2013]. A more intriguing example is
a Weibull distribution with shape parameter in (0, 1). The density function explodes to
infinity as we approach from zero4. Cases such as GPD models can be treated efficiently

4Of course, if we are defining the Weibull distribution with a location parameter, the pdf explodes to
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using bias-correction methods since the support needs to be semi-closed. Models which
have singularities such as the Weibull model can be treated using asymmetric kernels such
as gamma kernels or reciprocal inverse Gaussian kernels5. Such kernels could be employed
to recover a good performance in the Basu-Lindsay approach.

Let’s see how this kind of solution can be applied on the Basu-Lindsay approach. We
discuss only the case of asymmetric kernels since similar arguments hold for bias-correction
methods. Let f̂ be the asymmetric-kernel estimator defined by:

f̂(x) =
1

nc(y1, · · · , yn)

n∑
i=1

Kx,w(yi),

where Kx,w is the asymmetric kernel calculated at observation yi, and c(y1, · · · , yn) is a
constant which ensures integrability to 1. For example, K is the gamma kernel:

Kx,w(y) =
yx/w

Γ(1 + x/w)h1+x/w
e−y/w, for y ∈ [0,∞),

where Γ is the classical gamma function. Estimator f̂ can no longer be defined as the
convolution between the asymmetric kernel and the empirical distribution in the same
way as symmetric ones. Thus, the smoothed model in the Basu-Lindsay approach can no
longer be obtained by simple convolution. It is given by:

p∗φ(x) =

∫ ∞
0

1

c(y)
Kx,w(y)pφ(y)dy,

where c(y) is a function which normalizes the kernel for each value of y in order to be a
density. It is given by:

c(y) =

∫ ∞
0

Kz,w(y)dz.

Unfortunately, this normalization function cannot be calculated but numerically. Taking
into account the number of integrations needed to perform such a task and the calculus
of the ϕ−divergence afterwards which also needs numerical integration, we get a high
complexity and execution time. In comparison to the classical approach of smoothing only
the empirical distribution (Kuchibhotla and Basu [2015]), the calculus of the smoothed
model imposes two extra embedded integrals making the calculus of the ϕ−divergence
very difficult on two levels. The first one is the execution time, and the second one is the
subtlety of the whole calculus since all these integrals are carried out over slow decreasing
functions on the half real line6.

Remark 1.2.2. We were unable to use asymmetric kernels in the Basu-Lindsay approach,
because integration calculus (three embedded ones) failed even when restricting the cal-
culus of the normalizing function c(y) on a finite interval. The execution time using the
statistical tool R Core Team [2015] on an i7 laptop with 8G RAM took 12 minutes for a
simple calculus of the smoothed model. One can imagine now the execution time of the

infinity near the value of the location parameter.
5Asymmetric kernels have an attractive property that they can treat both bounded and unbounded

densities.
6The calculus of bounded integrals is far more simple than infinite integrals. Besides, a slow decreasing

function (at the border of the its domain), even if it is smooth, is harder to be handled by numerical
integration methods than fast decreasing ones.
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ϕ−divergence and finally the optimization over φ. The method should work if one can
handle efficiently the problem of numerical integrations and give close results to the case
when we do not smooth the model.

Remark 1.2.3. The use of the normalization function is necessary to get a very small
loss of information. If it is not used, there will be a similar underestimation near zero to
the case of symmetric kernels when applied on models defined on a semi-closed intervals.

The Varying Kernel Density Estimator

Very recently, Mnatsakanov and Sarkisian [2012] have proposed a kernel-type estimator
which does not contain a normalization function. Their approach is based on the so called
Mellin transform to approximate the distribution function and then derive an estimate of
the density function. Let F be a cdf and define the following operator:

(MF) (j) =

∫ ∞
0

t−jdF(t) = µj , for j = 0, 1, · · ·

Introduce the sequence of operators M−1
α :

(
M−1

α µ
)

(x) = 1−
α∑
k=0

(αx)k

k!

∞∑
j=k

(−αx)j−k

(j − k)!
µj , x ∈ R+. (1.2.3)

Here µ = {µj , j = 0, 1, · · · } and α→∞ at a specific rate. The transformMF(1−z) where
z is a complex variable, is known as the Mellin transform. It is possible to recover a function
from its Mellin Transform, see for example Tagliani [2001]. Under some conditions, we
may write:

Fα =M−1
α MF α→∞−−−−→

weakly
F.

Inserting the empirical moments in (1.2.3), we may construct an estimator of F as follows:

F̃(x) = 1− 1

n

n∑
i=1

α∑
k=0

1

k!

(
α

Xi
x

)k
exp

(
− α

Xi
x

)
, x ∈ R+.

Notice that the inner sum in the previous display tends to 1Xi>x as α→∞ which means
that F̃ approximates indeed F. Note also that the estimator F̃ is derivable so that an
estimator of the density can be deduced directly by derivation as follows:

f̂α(x) =
1

n

n∑
i=1

1

yi

1

Γ(α)

(
αx

yi

)α
exp

(
−αx
yi

)
, (1.2.4)

for a ”bandwidth” α ∈ N∗. This is called by Mnatsakanov and Sarkisian [2012] the varying
kernel density estimator (vKDE). This estimator is different from the estimators defined
based on symmetric or asymmetric kernels as explained by the authors. They provide a
bias-corrected version of this estimator to reduce the bias at the boundary in practice.
Nevertheless, we prefer to use (1.2.4) because it integrates to 1 and the Basu-Lindsay
approach can be performed more efficiently and reasonably in comparison to the use of
asymmetric kernels when working with distributions defined on R+. The parameter α
is a natural number, and (1.2.4) is L1–consistent as α goes to infinity under suitable
conditions. It even achieves the optimal rate of convergence for MSE and MISE.
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It is important to notice that f̂α(0) = 0 for α ≥ 1. Thus, it is preferable in the context of
density estimation to be used for densities which have value equal to 0 at 0 or for densities
which are defined on (0,∞). However, in kernel-based estimation procedures, the value at
zero is not important because it disappears in integration calculus. Besides, no observation
will have exactly the value zero. Thus, (1.2.4) can still be used in a parameter estimation
procedure even if we are working with densities not well defined on zero or have a positive
value at zero.

1.3 A plug-in estimate: the dual formula of ϕ−divergences

1.3.1 The minimum dual φ-divergence estimator

Liese and Vajda [2006] propose the following ”supremal” representation of ϕ−divergences.
Let P be a class of mutually absolutely continuous distributions such that for any triplet
P, PT and Q, ϕ′(dP/dQ) is PT -integrable. Theorem 17 in Liese and Vajda [2006] states
that:

Dϕ(PT , P ) = sup
Q∈P

∫
ϕ′
(
dQ

dP

)
dPT +

∫
ϕ

(
dQ

dP

)
dP −

∫
ϕ′
(
dQ

dP

)
dQ (1.3.1)

and the supremum is attained when Q = PT .
Broniatowski and Keziou [2006] have also developed a similar and a more general rep-
resentation of Dϕ(P, PT ). Let F be any class of B−measurable real valued functions.
Let MF be the subspace of the space of probability measures M defined by MF =
{P ∈ M s.t.

∫
|f |dP <∞,∀f ∈ F}. Assume that ϕ is differentiable and strictly con-

vex. Then, for all P ∈ MF such that Dϕ(P, PT ) is finite and ϕ′(dP/dPT ) belongs to F ,
the ϕ−divergence admits the dual representation (see Theorem 4.4 in Broniatowski and
Keziou [2006]):

Dϕ(P, PT ) = sup
f∈F

∫
fdP −

∫
ϕ∗(f)dPT , (1.3.2)

where ϕ∗(x) = supt∈R tx−ϕ(t) is the Fenchel-Legendre convex conjugate of ϕ. Moreover,
the supremum is attained at f = ϕ′(dP/dPT ).
When substituting F by the class of functions {ϕ′(dP/dQ)}, and using the property
ϕ∗(ϕ′(t)) = tϕ′(t)− ϕ(t), we obtain the same representation given above in (1.3.1). Both
formulations (1.3.1) and (1.3.2) are interesting in their own and in their proofs. The second
formula gives us the opportunity to reproduce many supremal forms for the ϕ−divergence.
In a parametric setup where dPφ = pφdx for φ ∈ Φ ⊂ Rd and the true distribution generat-
ing the data is a member of the model, i.e. PT = PφT for some φT ∈ Φ, Broniatowski and
Keziou [2009b] propose to use the class of functions Fφ = {ϕ′(pφ/pα), α ∈ Φ}. Assume
that ϕ and its convex dual are strictly convex. Suppose also the integrability condition:∫ ∣∣∣∣ϕ′(pφpα

)
(x)

∣∣∣∣ pφ(x)dx <∞, ∀α, φ ∈ Φ. (1.3.3)

Then, the dual representation of Dϕ in the parametric setting is now written as:

Dϕ(pφ, pφT ) = sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
pα

)
(y)pφT (y)dy

}
. (1.3.4)

where ϕ#(t) = tϕ′(t)−ϕ(t). The idea behind this choice is that the supremum is attained
when α = φT . Since pφT is unknown, one thinks about replacing pφT dy by the empirical
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distribution. This seems very natural and does not cause any problem of absolute conti-
nuity as in formula (1.1.1). Moreover, no smoothing is needed. We now get the following
approximation:

D̂ϕ(pφ, pφT ) = sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx− 1

n

n∑
i=1

ϕ#

(
pφ
pα

)
(yi)

}
. (1.3.5)

Both Broniatowski and Keziou [2009b] and Liese and Vajda [2006] propose to estimate
the set of parameters φT by:

φ̂n = arg inf
φ∈Φ

sup
α∈Φ

D̂ϕ(pφ, pφT ). (1.3.6)

This was called by Broniatowski and Keziou [2009b] the minimum dual ϕ−divergence
estimator (MDϕDE). The authors have studied the asymptotic properties and provided
sufficient conditions for the consistency of this estimator. They have also built some statis-
tical tests based on it. Toma and Broniatowski [2011] and Broniatowski and Vajda [2012]
have studied the robustness of such an estimator from an influence function (IF) point
of view. The IF is unfortunately unbounded in general and does not even depend on ϕ
for the class of Cressie-Read functions ϕγ presented in the introduction. This fact is still
not sufficient to conclude the non robustness of the MDϕDE. It was pointed out by many
authors in the context of ϕ−divergences that one may have an unbounded influence func-
tion, still the resulting estimators enjoy good robustness against outliers, see Beran [1977]
for the Hellinger divergence in continuous models and Lindsay [1994] for a general class of
ϕ−divergences in discrete models. In the former paper, Beran has studied the robustness
by considering the Hellinger continuity of the approximate distribution for the estimator
when the model varies in a small Hellinger neighborhood of the true distribution. In the
later paper, Lindsay has studied the robustness through Pearson’s residuals by introducing
a new criterion called as the residual adjustment function (RAF). Robustness properties
were studied through the RAF and by simulations. In the context of S-divergences, Ghosh
et al. [2013] has shown that the robustness of the resulting estimator depends on two pa-
rameters although the IF only depends on one of them.
So far, and to the best of our knowledge, there is not even a simulation study of the ro-
bustness of the MDϕDE although it is an estimator which, similarly to the power density
estimator of Basu et al. [1998], does not require any smoothing or escort parameters. Be-
sides, the asymptotic properties are proved with merely classical conditions on the model.
The only simulation study is done by Frýdlovà et al. [2012] and focuses only on the Gaus-
sian model. In their results, the MDϕDE yields similar results to the maximum likelihood
estimator when no contamination is present, while they get some cases where the MDϕDE
is robust under contamination, although they should not as we will see later in paragraph
1.4.2.

1.3.2 The Dual ϕ−divergence estimator

General facts and comments

The dual ϕ−divergence estimator (DϕDE) was defined in Broniatowski and Keziou [2009b]
(see also Keziou [2003]) as the argument of the supremum in (1.3.5). It is defined by:

α̂n(φ) = arg sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx− 1

n

n∑
i=1

[
pφ
pα
ϕ′
(
pφ
pα

)
− ϕ′

(
pφ
pα

)]
(yi)

}
(1.3.7)
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for a given ”escort” parameter φ. This M-estimator is far more simple than the classical
MDϕDE defined by (1.3.6) since it needs only one optimization over α for a given choice of
the escort parameter φ. Besides, Toma and Broniatowski [2011] proved that this estimator
is robust in some scale and location models from an IF point of view, provided a suitable
choice of the escort parameter. Toma and Broniatowski [2011], Toma and Leoni-Aubin
[2010] and Keziou [2003] built robust tests using this estimator.

Relation with the density power divergences

The minimum density power divergence (MDPD) was first introduced by Basu et al. [1998].
It is defined by:

φ̂n = arg inf
φ∈Φ

∫
p1+a
φ (z)dz − a+ 1

a

1

n

n∑
i

paφ(yi)

= arg inf
φ∈Φ

EPφ
[
paφ
]
− a+ 1

a
EPn

[
paφ
]
. (1.3.8)

Let’s look at the DϕDE for power divergences with γ = −a < 0. It is given by:

α̂n = arg sup
α∈Φ

1

γ − 1

∫
pγθ
pγ−1
α

(x)dx− 1

γ

1

n

n∑
i=1

[
pθ
pα

]γ
(yi)

= arg sup
α∈Φ

− 1

a+ 1

∫
pa+1
α

paθ
(x)dx+

1

a

1

n

n∑
i=1

[
pα
pθ

]a
(yi)

= arg inf
α∈Φ

∫
pa+1
α

paθ
(x)dx− 1 + a

a

1

n

n∑
i=1

[
pα
pθ

]a
(yi)

= arg inf
α∈Φ

EPα
[(

pα
pθ

)a]
− a+ 1

a
EPn

[(
pα
pθ

)a]
. (1.3.9)

By comparing (1.3.8) and (1.3.9), we can deduce that the DϕDE seems to be a penal-
ized form of the MDPD. This penalization by a density pθ creates a big trouble from a
robustness point of view. The robustness of the DϕDE is now not only controlled by the
divergence power a = −γ but also through pθ. We have seen in the previous paragraph
that the robustness of the DϕDE in a two-component Gaussian mixture varies according
to the position of θ with respect to θT the true vector of parameters. The difficulty of the
choice of this escort parameter constitutes the only drawback of the DϕDE in comparison
to the MDPD. In Broniatowski and Vajda [2012], the authors establish an interesting link
between ϕ−divergences and the density power divergence (1.3.8), see their Theorem 4.1.2.

1.4 Limitations of the MDϕDE and DϕDE

1.4.1 The influence of the escort parameter on the robustness of the
DϕDE

The IF of the DϕDE is given by (see Toma and Broniatowski [2011]):

IF(y|φ) =

[∫
Jf (x)pφT (x)dx

]−1 [∫ ( pφ
pφT

)γ
(x)∇φpφT (x)dx−

(
pφ
pφT

)γ
(y)
∇φpφT (y)

pφT (y)

]
,
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where:

f(α, φ, y) =

∫
pγφ

pγ−1
α

pφdx−
[
pφ
pα

(y)

]γ
.

Previous papers which discussed the choice of the escort parameter have either let the
choice arbitrary in the region where the IF is bounded (Toma and Broniatowski [2011]),
or proposed to use robust estimates for the escort parameters (Cherfi [2011] and Frýdlovà
et al. [2012]). The first idea is very complicated since we have no idea about the true value
of the parameters and a bad choice of the escort parameter even inside the region where
the IF is bounded does not ensure a good result. In Frýdlovà et al. [2012] and Cherfi
[2011], experimental results show that the DϕDE in a Gaussian model is very close to the
escort parameter and coincides with the escort parameter when the later is equal to the
MLE. The last fact can be easily verified following the proof of Theorem 6 in Broniatowski
[2014]. Indeed, one may show that the MLE is a zero of the estimating equation of the
DϕDE and has a definite negative Hessian matrix of the corresponding objective function.
On the other hand, the use of a robust escort parameter is not always a good idea as we
will show in the following two examples.

Example 1.4.1. Consider a two-component Gaussian mixture model. We will give some
conditions on the escort parameter in order to make the IF bounded. The first term in the
influence function is a matrix which is independent of y and is constant. Supposing that
it is invertible, we investigate both the existence of the integral, which is also a constant,
and the boundedness of the remaining term which depends on y. The integral exists since
the the fraction is of order eax whereas the derivative is of order e−x

2
. Boundedness of

the IF is therefore equivalent to the boundedness of the remaining term. One can show
by simple limit calculus that the escort parameter needs to verify either of the following
conditions according to the value of γ:

µ1 > µT1 , µ2 < µT2 if γ > 0; (1.4.1)

µ1 < µT1 , µ2 > µT2 if γ < 0, (1.4.2)

in order for the IF to be bounded. Simulation results show that the use of a robust escort
parameter verifying the set of conditions (1.4.1, 1.4.2) leads to a more robust parameter
than the escort. However, the use of a robust escort parameter which does not fulfill the
set of conditions (1.4.1, 1.4.2) has a negative impact on the resulting estimator. In our
simulations in Section 1.7, we have analyzed the mixture whose true set of parameters is
(λT = 0.35, µT1 = −2, µT2 = 1.5) where the dataset was contaminated by 10% of outliers,
see paragraph 1.7.2 for more details. We used our new MDϕDE, defined in Section 1.5,
as an escort parameter φ̂1 which is robust. The divergence criterion is the Hellinger
divergence which corresponds to γ = 0.5. Thus, we are in the context of condition (1.4.1).
The new MDϕDE verifies this condition and the resulting DϕDE has a better error, see
table 1.4.1 here below. In the same table, we give another escort parameter φ̂2 which is
as good as the previous one based on the total variation distance (see Section 1.7 for the
definition), and even slightly better. If we calculate the DϕDE using the escort parameter
φ̂2 which clearly does not verify condition (1.4.1), the error is nearly doubled.

Example 1.4.2. Let pφ be a generalized Pareto distribution:

pν,σ(y) =
1

σ

(
1 + ν

y

σ

)−1− 1
ν
, for y ≥ 0.
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Estimator Total variation

φ̂1 = (λ̂ = 0.349, µ̂1 = −1.767, µ̂2 = 1.377) 0.087

φ̂2 = (λ̂ = 0.36, µ̂1 = −2.2, µ̂2 = 1.7) 0.079

DϕDE(φ̂1) 0.076

DϕDE(φ̂2) 0.115

Table 1.1: The influence of a robust escort parameter on the DϕDE in a mixture of
two Gaussian components. The error is calculated between the true distribution and the
estimated one, see Sec. 1.7

The shape and the scale are supposed to be unknown and equal to νT = 0.7, σT = 3. It
is necessary for the IF of the DϕDE to be bounded7 following the value of γ to locate the
shape of the escort parameter with respect to the true value of the shape parameter. If
γ ∈ (0, 1), it is necessary for the IF to be bounded that ν < νT . If γ < 0, then the IF can
be bounded whenever ν > νT . Our simulation results in paragraph 1.7.3 show that for
γ = 0.5, the DϕDE calculated using a robust escort parameter (our kernel-based MDϕDE)
has deteriorated the performance significantly. The total variation distance corresponding
to the escort parameter is 0.05 whereas the total variation distance corresponding to the
DϕDE is 0.12.

The past two examples8 form an opposed result to the conjecture of both articles
Frýdlovà et al. [2012] and Cherfi [2011] about the use of robust escort parameter. The use
of a robust escort is a gamble and does not guarantee a better estimator than the escort
itself. Thus, we are taking a great risk by using the DϕDE. Notice, finally, that the DϕDE
is still more robust than the MLE and the classical MDϕDE even if the IF is not bounded.
There is still a remedy, but we did not consider in our simulations yet. We may use several
escort parameters and calculate for each of them the corresponding DϕDE. Then, use a
procedure to combine the results of such estimators. Lavancier and Rochet [2016] provide
a way to combine several estimators in order to obtain a better one by searching for the
”best linear” combination between initial estimates.

1.4.2 Lack of robustness of the MDϕDE

Unboundedness of the IF The influence function of the MDϕDE is given by (see
Toma and Broniatowski [2011] or Broniatowski and Vajda [2012]):

IF(y) =

[∫ ∇φpφT (x).
(
∇φpφT (x)

)t
pφT (x)

dx

]−1
∇φpφT (y)

pφT (y)
.

The matrix is constant, hence if we suppose that it is invertible, boundedness properties

of the IF is determined by the fraction
∇φpφT (y)

p
φT

(y) . We will calculate this fraction in two

examples; a mixture of Gaussian distributions and a mixture of Weibull distributions. The
fraction is unbounded in both examples. Besides, it is immediate to see that the same
conclusion holds in an exponential family model.

Example 1.4.3. Consider the mixture of two Gaussian components

p(λ,µ1,µ2)(y) = λ
1√
2π
e−

1
2

(y−µ1)2 + (1− λ)
1√
2π
e−

1
2

(y−µ1)2 .

7The IF contains an inverse of a 2 × 2 matrix which cannot be simply calculated. Since it is a mere
constant, we only discussed the other terms in the IF.

8See the remaining of the simulations for more examples.
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We have

∇φpφT (y)

pφT (y)
=


e−

1
2 (y−µT1 )2−e−

1
2 (y−µT2 )2

λT e−
1
2 (y−µT1 )2+(1−λT )e−

1
2 (y−µT1 )2

λT (y−µ1)e−
1
2 (y−µT1 )2

λT e−
1
2 (y−µT1 )2+(1−λT )e−

1
2 (y−µT1 )2

(1−λT )(y−µ2)e−
1
2 (y−µT2 )2

λT e−
1
2 (y−µT1 )2+(1−λT )e−

1
2 (y−µT1 )2

 =


1−e(µ

T
2 −µ

T
1 )y+1

2 (µT1 )2− 1
2 (µT2 )2

λT+(1−λT )e(µ
T
2 −µ

T
1 )y+1

2 (µT1 )2− 1
2 (µT2 )2

λT (y−µ1)

λT+(1−λT )e(µ
T
2 −µ

T
1 )y+1

2 (µT1 )2− 1
2 (µT2 )2

(1−λ)T (y−µ2)

λT e(µ
T
1 −µ

T
2 )y+1

2 (µT2 )2− 1
2 (µT1 )2+1−λT

 .

Let’s suppose that µT1 < µT2 . The first component of the previous vector is bounded at
both plus and minus infinity. The second component is bounded at +∞, whereas it has a
−∞ limit at −∞. The third component is bounded at −∞ whereas it has a +∞ limit at
+∞. This shows that the IF of the MDϕDE is unbounded.

Example 1.4.4. Consider the mixture of two Weibull components:

p(λ,ν1,ν2)(x) = 2λν1(2x)ν1−1e−(2x)ν1 + (1− λ)
ν2

2

(x
2

)ν2−1
e−(x2 )

ν2

.

We calculate the fraction
∇νpνT (y)

p
νT

(y) .

∇νpνT (x)

pνT (x)
=



2νT1 (2x)ν
T
1 −1e−(2x)

νT1 − ν
T
2
2 (x2 )

νT2 −1
e−(x2 )ν

T
2

2λT νT1 (2x)ν
T
1 −1e−(2x)

νT1 +(1−λT )
νT2
2 (x2 )

νT2 −1
e−(x2 )

νT2

2λT
(

1+νT1 log(2x)−νT1 log(2x)(2x)ν
T
1

)
(2x)ν

T
1 −1e−(2x)

νT1

2λT νT1 (2x)ν
T
1 −1e−(2x)

νT1 +(1−λT )
νT2
2 (x2 )

νT2 −1
e−(x2 )

νT2

1−λT
2

(
1+νT2 log(2x)−νT2 log(2x)(2x)ν

T
2

)
(2x)ν

T
2 −1e−(2x)

νT2

2λT νT1 (2x)ν
T
1 −1e−(2x)

νT1 +(1−λT )
νT2
2 (x2 )

νT2 −1
e−(x2 )

νT2


.

The second component is clearly unbounded neither near zero (it is of order log(2x)) nor

at infinity (it is of order e(2x)ν
T
2 −(2x)ν

T
1 ). Hence the IF of the MDϕDE is unbounded for

the mixture of Weibull distribution.

Equality with MLE in exponential families. An important aspect about the classi-
cal MDϕDE is that it coincides with the maximum likelihood estimator in full exponential
models whenever the corresponding true divergence Dϕ is finite, see Broniatowski [2014].
This covers the standard Gaussian model for which Frýdlovà et al. [2012] provided clear
robust properties of the MDϕDE when outliers are generated by the standard Cauchy
distribution. This contradicts with the theoretical result presented in Broniatowski [2014]
which is an exact one and depends only on analytic arguments. We have done similar
simulations and found out that numerical problems may play a role here. Generally, such
problems come from numerical approximations such as numerical integration. In a Gaus-
sian model, all integrals in (1.3.5) have close formulas and easy to calculate, see Frýdlovà
et al. [2012] or Broniatowski and Vajda [2012]. However, when using the standard Cauchy
distribution to generate outliers, we get points with very large values superior to 100.
These points participate only in the sum term in the MDϕDE (1.3.5). A Gaussian den-
sity with parameters not very far from the standard ones (µ = 0, σ = 1) will produce a
value equal to 0 in numerical computer programs. Thus, numerical problems of the form
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0/0 would appear when calculating the sum term in (1.3.5) since the summand is of the
form g(pθ/pα)(yi). If one uses simple practical solutions to avoid this, such as adding
a very small value (e.g. 10−100) to the denominator or the nominator, a thresholding
effect is produced and the true fraction is badly calculated. As a result, such outliers
would have practically no effect in the procedure as if they were not added, and one
would obtain ”forged robust estimates”. The same thresholding effect does not happen
in the MLE since the likelihood function does not contain any fractions. On the other
hand, if one calculates the fraction using the properties of the exponential function, i.e.
pθ(yi)/pα(yi) = exp[(yi − α)2/2 − (yi − φ)2/2], the MDϕDE defined by (1.3.6) gives the
same result as the maximum likelihood estimator and never better even with Cauchy con-
tamination.
We have performed further simulations on several models which do not belong to the expo-
nential family and found out that the MDϕDE have a very similar behavior to the MLE,
see Section 1.7 below. Papers such as Barron and Sheu [1991] discussed how one can esti-
mate a probability density using exponential families and proved interesting convergence
rates. Such paper can explain partially our claim passing by the result in Broniatowski
[2014].

Non robustness of the MDϕDE under outliers or, more generally, under mis-
specification can be explained. When PT is a member of the model, the approx-
imated dual formula converges to the ϕ−divergence, and the argument of the infimum
to the corresponding one, as the number of observations increases, see Proposition 3.1 in
Broniatowski and Keziou [2009b]. This result, however, does not hold when PT is not a
member of the model, i.e. under contamination or misspecification. Indeed, consistency
is a consequence of the following limit:

D̂n(Pφ, PT )→ sup
α∈Φ

{∫
ϕ′
(
pφ
pα

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
pα

)
(y)dPT (y)

}
,

together with the fact that the arginf of the left hand side converges to the arginf of
the right hand side. However, the limiting quantity is the dual representation of the
ϕ−divergence, and since the equality in (1.3.4) holds uniquely when pα = dPT /dy (oth-
erwise there is inequality) then it is never attained as long as PT is not a member of
the model. Moreover, the limiting quantity is a lower bound of the divergence and
minimizing the former does not guarantee the minimization of the later. Figure 1.2
represents this idea on a standard Gaussian model where the mean is unknown and
the standard deviation is fixed at 1 and is known. The true distribution is then con-
taminated by a Gaussian distribution N (µ = 10, σ = 2). Thus PT has the density
0.9N (µ = 0, σ = 1) + 0.1N (µ = 10, σ = 2). The model pφ is a Gaussian model N (µ, 1).
Taking the Hellinger divergence, ϕ(t) = (

√
t − 1)2/2, we plot the dual ϕ−divergence for-

mula (1.3.4) in Fig(a) and its empirical version (1.3.5) in Fig(b) using a 100-sample drawn
from PT . We also plot the true values of the Hellinger divergence calculated using for-
mula (1.1.1). The minimum of the dual representation is attained at approximately µ = 1
whereas it is attained at approximately 0 for the true divergence. The curve of the dual
representation is almost all the time below the curve of the true divergence. We also
included in the figures the alternative dual formula introduced in the following paragraph
which overcomes this problem.
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Figure 1.2: Underestimation caused by the classical dual representation compared to the
new one. The true distribution is taken to be 0.9N (µ = 0, σ = 1) + 0.1N (µ = 10, σ = 2).
Figure (a) shows the dual representation defined by (1.3.4) in comparison with the new
reformulation defined by (1.5.1). Figure (b) shows the corresponding approximations when
we replace the true distribution by its empirical version

1.5 A new robust estimator: kernel-based dual formula

1.5.1 New reformulation of the dual representation

As stated previously, if the model (pα)α does not contain the true distribution pT , the
supremum in the dual formula is no longer attained and formula (1.3.4) is no longer an
identity because the right hand side underestimates the divergence Dϕ(pφ, pT ).
An intuitive solution is to replace pα by some adaptive (nonparametric) estimator of pT
which does not take into account the restriction of being in the model. In the resulting
dual representation the supremum is attained whether we are under the model or not and
we have equality between the dual representation and the ϕ−divergence. This way, the
resulting criterion should inherit robustness properties against possible contamination as
it approximates a ϕ−divergence.
One should be able to propose many solutions which correspond to this idea in order to
reach a supremal attainment in the dual representation which may vary depending on
the situation. For example, if we face a proportion of large-values outliers, one may add
an extra component to pα, i.e. replace pα with the mixture λpα + (1 − λ)qθ. The extra
component covers the outliers part in a smooth way. This suggestion is still very specific
and treats only the case of contaminated data. Any nonparametric estimator of pT can
be used whose parameters may be determined automatically in the supremum calculus9.
We propose here to use a kernel density estimator. In what follows Kn,w denotes a kernel
estimator of pT defined using a symmetric or asymmetric kernel with or without bias-
correction treatment.
For the definition of the new estimator, let y1, · · · , yn be an i.i.d. sample drawn from the
probability law PT . The number of observations n is fixed here. More formally, define the
following class of functions Fφ,n = {ϕ′(pφ/Kn,w), w > 0}. The dual representation is now

9These parameters can be a window for a kernel estimator or parameters of a limited development in
a suitable basis of functions, see Barron and Sheu [1991] for some examples of such approaches.
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given by:

DYnϕ (pφ, pT ) = sup
w>0

{∫
ϕ′
(

pφ
Kn,w

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
Kn,w

)
(y)pT (y)dy

}
(1.5.1)

under a similar condition to (1.3.3) which is given by,∫ ∣∣∣∣ϕ′( pφ
Kn,w

)
(x)

∣∣∣∣ pφ(x)dx <∞, ∀w > 0,∀φ ∈ Φ. (1.5.2)

We avoided to write Dϕ(pφ, pT ) in formula (eqn:NewExactDualForm), because the new
dual formula may not ensure equality with the ϕ−divergence, but only a good approxi-
mation using a sample Yn = {Y1, · · · , Yn}. A ”good” choice of the window wopt would
yield10:

Dϕ(pφ, pT ) ≈
∫
ϕ′
(

pφ
Kn,wopt

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ

Kn,wopt

)
(y)pT (y)dy.

Replace pT by its empirical version. Our final approximation is given by:

D̂ϕ(pφ, pT ) =

∫
ϕ′
(

pφ
Kn,wopt

)
(x)pφ(x)dx− 1

n

n∑
i=1

ϕ#

(
pφ

Kn,wopt

)
(yi). (1.5.3)

We avoid any indexation with respect to the sample or to n for the sake of clarity. Define
now the new minimum dual ϕ−divergence estimator by:

φ̂n = arg inf
φ∈Φ

∫
ϕ′
(

pφ
Kn,wopt

)
(x)pφ(x)dx− 1

n

n∑
i=1

ϕ#

(
pφ

Kn,wopt

)
(yi). (1.5.4)

In comparison to the MDϕDE defined by (1.3.6), we have removed the internal optimiza-
tion procedure leaving only one simple optimization which keeps our procedure at the
same level of complexity as other estimation procedures such as Beran’s approach (Beran
[1977]) and its generalization, and Basu et al. [1998].
An important question which arises now is: what should be the value of wopt since its
calculus demands knowing the true distribution? In the literature on kernel estimation,
there exists many rules (automatic or not) to determine sub-optimum windows such as
Silverman’s (or Scott’s) rule-of-thumb, cross-validation methods, etc; see for example Ven-
ables and Ripley [2013] Chap 5. Figure 1.2 shows in a Gaussian example contaminated by
a Gaussian component N (10, 2) the use of Silverman’s rule with a Gaussian kernel. The
classical dual representation clearly underestimates the true divergence whereas the new
reformulation stays close to it.
It is important to point out that the optimization problem in (1.5.4) is in general not
convex. This is the case of the general class of divergence-(or disparity-)based estimators.
Thus, we need to use a numerical optimization algorithm in order to calculate our kernel-
based MDϕDE, see Section 1.7 for more details.

10Recall that the supremum in (1.5.1) is attained at a window for which Kn,w is as close as possible to
pT . Thus, a good choice of the window should result in a kernel estimator close to pT and could be a good
guess to the argument of the supremum in equation (1.5.1).
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Remark 1.5.1. The new MDϕDE keeps the MLE as a member of its class for the choice
of ϕ(t) = − log(t) + t− 1. Indeed, ϕ′(t) = −1/t+ 1 and tϕ′(t)− ϕ(t) = log(t). Thus,∫

ϕ′
(

pφ
Kn,wopt

)
(x)pφ(x)dx = 1,

1

n

n∑
i=1

[
pφ

Kn,wopt

ϕ′
(

pφ
Kn,wopt

)
− ϕ

(
pφ

Kn,wopt

)]
(yi) =

1

n

n∑
i=1

log (pφ)− log
(
Kn,wopt

)
(yi).

This entails that :

φ̂n = arg inf
φ∈Φ

1− 1

n

n∑
i=1

log (pφ(yi)) +
1

n

n∑
i=1

log
(
Kn,wopt(yi)

)
= arg sup

φ∈Φ

1

n

n∑
i=1

log (pφ(yi))

= MLE.

Remark 1.5.2. In the spirit of our approach, one can write a dual formula for Beran’s
approach in the case of the Hellinger divergence or more generally for any ϕ−divergence,
see paragraph 1.2.1. Consider the class of functions Fφ,n = {ϕ′(pφ/Kn,w), w > 0}, then
by (1.5.1) we can write:

Dϕ (pφ,Kn,w0) = sup
w>0

{∫
ϕ′
(

pφ
Kn,w

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ
Kn,w

)
(y)Kn,w0(y)dy

}
=

∫
ϕ′
(

pφ
Kn,w0

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ

Kn,w0

)
(y)Kn,w0(y)dy,

where w0 is a window calculated using an automatic rule as mentioned here above for wopt.
The only difference with the kernel-based dual formula (1.5.3) is that we are integrating

function ϕ#
(

pφ
Kn,w0

)
with respect to the empirical distribution instead of a smoothed

version of it.

1.6 Asymptotic properties and robustness of the new kernel-
based MDϕDE

We present in this section some of the asymptotic properties of the new MDϕDE defined by
(1.5.4). We use Theorem 5.7 from van der Vaart [1998] which we restate here. Consistency
of the kernel-based MDϕDE means that φ̂n defined by (1.5.4) converges in probability to
φT the true vector of parameters when we are under the model, i.e. PT = PφT . If we are
not under the model, consistency holds towards the projection of PT on the model in the
sens of the divergence. In other terms, the projection PφT is the member of the model Pφ
whose parameters are defined by φT = arg inf φ∈ΦDϕ(Pφ, PT ).
Similarly to Basu and Lindsay [1994], there are some cases (which are rare) such as the
location Gaussian model in which consistency of the kernel-based MDϕDE does not require
any condition on the kernel window. Thus, one may find simpler versions of the results
we give below. We will be however interested in the general situation where the window
needs to converge towards zero at a certain rate.
In a second part of this section, we calculate the limiting law of the new estimator under
strong but standard assumptions. We, finally, calculate the influence function of the
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kernel-based MDϕDE for a fixed window, and show how the use of a kernel estimate in
place of the model pα in the dual formula (1.3.4) interferes to make the IF bounded.
We use the same notations as in van der Vaart [1998] to denote integration. Thus, if f is
a P−integrable function, we denote Pf the integral

∫
fdP . Moreover, Kw ∗P denotes the

operation of smoothing dP by the kernel Kw with bandwidth equal to w. This smoothing
can be done by simple convolution as in the case of Rosenblatt-Parzen kernel estimator.
Other kinds of smoothing are presented in Section 1.2.2. In this section only, the smoothing
is supposed to be an additive operator in the sense that Kw ∗ (P ±Q) = Kw ∗P ±Kw ∗Q.

1.6.1 Consistency

Theorem 5.7 from van der Vaart [1998] permits to treat the consistency of a general class
of M-estimates. It is stated as follows:

Theorem 1.6.1. Let Mn be random functions and let M be a fixed function of φ such
that for every ε > 0

sup
φ∈Φ
|Mn(φ)−M(φ)| P−→ 0, (1.6.1)

inf
φ:‖φ−φT ‖≥ε

M(φ) > M(φT ). (1.6.2)

Then any sequence of estimators φ̂n with Mn(φ̂n) ≤ Mn(φT )− oP (1) converges in proba-
bility to φT .

In our approach, function Mn corresponds to the criterion function PnH(Pn, φ), where
H(Pn, φ, y) is defined by:

H(Pn, φ, y) =

∫
ϕ′
(

pφ
Kw ∗ Pn

)
(x)pφ(x)dx− ϕ#

(
pφ(y)

Kw ∗ Pn(y)

)
.

Function M is simply defined by the expected11 limit in probability of Mn, since the Law
of Large Numbers cannot be used because the average term is not a sum of i.i.d. random
variables. It is given by PTh(PT , φ) where h(PT , φ, y) is defined as:

h(PT , φ, y) =

∫
ϕ′
(
pφ
pT

)
(x)pφ(x)dx− ϕ#

(
pφ
pT

)
(y).

In order to prove (1.6.1), write:

sup
φ∈Φ
|PnH(Pn, φ)− PTh(PT , φ)| ≤ sup

φ∈Φ
|PnH(Pn, φ)− Pnh(PT , φ)|+

sup
φ∈Φ
|PTh(PT , φ)− Pnh(PT , φ)|. (1.6.3)

Now, the second supremum tends to 0 in probability by the Glivenko-Cantelli theorem
as soon as {h(PT , φ), φ ∈ Φ} is a Glivenko-Cantelli class of functions, see van der Vaart
[1998] Chap. 19 Section 2 and the examples therein. The problem then resides in finding
conditions under which the first term tends to 0 in probability. The remaining of the
paragraph will be concerned with the search for such conditions. In the whole section
concerning the consistency of our new estimator, the window parameter w is supposed to
depend on n in order to be able to use Theorem 1.6.1 without any modification. Besides,

11In the literal sense and not mathematically.
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the construction of the estimator from (1.5.1) shows the explicit link of the window with
n.
We next provide a set of sufficient conditions in order for the new estimator to be consis-
tent. We treat the general class of ϕ−divergences in a first theorem. The result imposes
strong but standard assumptions on the model. After that, We present a result for a
subclass of ϕ−divergences with simpler conditions on the model. Some exceptional cases
may be studied separately in order to deduce simpler conditions.

Remark 1.6.1. Large values of γ in absolute value are not interesting in general and
may lead to practical complications. Values of γ greater than 1 leads to integrability
problems in condition (1.5.2) for the new MDϕDE and in (1.3.3) for the classical one in
standard examples such as the scale Gaussian model, and the supremum in (1.3.4) is not
well defined. The special case of γ = 2 which corresponds to the Pearson’s χ2 is included
by this remark. This not very surprising. The Pearson’s χ2 is a very sensitive criterion and
measures the relative error committed. Thus small errors committed at values where the
distribution has small values will have the same influence as the values where distribution
attributes a greater density.

An essential assumption will be the consistency of the kernel estimator. We refer to
Wied and Weibßach [2012], Zambom and Dias [2013] or Libengue Dobele-kpoka [2013]
Chap. 1 for a brief survey on symmetric kernels. When using asymmetric kernels, un-
fortunately consistency is proved only on every compact subset of the support of the
distribution function, see Bouezmarni and Scaillet [2005] or Libengue Dobele-kpoka [2013]
Chap. 3 for a more general approach. Thus, our proof does not cover these kernels.
Assumption (1.6.2) in Theorem 1.6.1 means that function φ 7→ PTh(PT , φ) has a unique
and well separated minimum. Uniqueness is achieved when we are under the model
(PT = PφT ) since function φ 7→ PTh(PT , φ) is non other than the dual representation
(with the supremum calculated) of the ϕ−divergence Dϕ(Pφ, PφT ). Using the property
that Dϕ(pφ, pφT ) = 0 iff pφ = pφT , uniqueness is immediately verified as soon as the model
is identifiable. If we are not under the model (misspecification), the projection of PT on
the model Pφ may not be unique and assumption (1.6.2) is still needed.

General Result

We will derive in this paragraph a result which concerns the general class of ϕ−divergences.
It was difficult to build such result without imposing strong assumptions on the model.
Hereafter, simpler conditions will be proved for the particular class of Cressie-Read func-
tions ϕγ for γ ∈ (−1, 0). As mentioned here above, using inequality (1.6.3), the difficult
term is first one. It is given by:

PnH(Pn, φ)− Pnh(P, φ) =

∫ [
ϕ′
(

pφ
Kw ∗ Pn

)
− ϕ′

(
pφ
pT

)]
(x)pφ(x)dx

− 1

n

n∑
i=1

ϕ#

(
pφ

Kw ∗ Pn

)
(yi)− ϕ#

(
pφ
pT

)
(yi).

The key idea is to treat each term (the integral and the sum) separately and prove its
uniform convergence in probability towards 0. Another important step is to apply the
mean value theorem in order to transfer the difference from functions ϕ′ and ϕ# into a
difference between the kernel estimator and the true distribution where consistency of the
former is exploited. The proof of the following theorem is differed to Appendix 1.8.1.
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Theorem 1.6.2. Assume that:

1. function t 7→ ϕ(t) is twice differentiable;

2. the kernel is defined on a compact and the kernel density estimator is consistent, i.e.
supx |Kw ∗ Pn(x)− pT (x)| → 0 in probability;

3. the model pφ is defined on a compact set and bounded independently of φ, and pT is
also defined on the same compact and bounded;

4. for any ε > 0, infφ:‖φ−φT ‖≥ε PTh(PT , φ) > PTh(PT , φ
T ),

then the minimum dual ϕ−divergence estimator defined by (1.5.4) is consistent whenever
it exists.

Notice that assumption 3 is strong but stays standard. It was already used in the
literature, see for example Beran [1977]. The need to impose such restrictive assumptions
stems from the nature of the dual formula which contains the quotient pφ/Kn,w on the one
hand. On the other hand, our approach which consists in using a data-based estimator
results in sums of strongly dependent terms which cannot be treated in a simple and a
general way. In the next paragraph, we treat a subclass of ϕ−divergences where we can
control the terms of inequality (1.6.3) without the need to assumption 3.

Case of power divergences with γ ∈ (−1, 0)

Here we have:

PnH(Pn, φ)−Pnh(P, φ) =
1

γ − 1

∫
(Kw ∗ Pn)1−γ − p1−γ

T

p−γφ
(x)dx− 1

nγ

n∑
i=1

(Kw ∗ Pn)−γ − p−γT
p−γφ

(yi).

(1.6.4)
The key idea for proving the consistency is to use the uniform continuity of functions
t 7→ t−γ and t 7→ t(−γ+1)/2. The proof of the following theorem is differed to Appendix
1.8.2.

Theorem 1.6.3. For the class of power divergences defined through the class of Cressie-
Read functions ϕγ with γ ∈ (−1, 0), assume that:

1. the kernel estimator is consistent, i.e. supx |Kw ∗ Pn(x)− pT (x)| → 0 in probability;

2.
{(

pφ
pT

)γ
, φ ∈ Φ

}
is a Glivenko-Cantelli class of functions;

3. there exists n0 such that ∀n ≥ n0, the probability that the quantity

An = sup
φ

∫
(Kw ∗ Pn)

−γ+1
2 (x) + p

−γ+1
2

T (x)

p−γφ (x)
dx

is upper bounded independently of n is greater than 1− ηn for some ηn → 0;

4. there exists n0 such that ∀n ≥ n0, the probability that the quantity

Bn = sup
φ

1

n

n∑
i=1

pγφ(yi)

is upper bounded independently of n is greater than 1− ηn for some ηn → 0;
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5. for any ε > 0, infφ:‖φ−φT ‖≥ε PTh(PT , φ) > PTh(PT , φ
T ),

then the minimum dual ϕ−divergence estimator defined by (1.5.4) is consistent whenever
it exists.

This result is clearly more general than the result of Theorem 1.6.2. We treat models
which may be defined on the whole set Rd. The assumptions are still accessible as we will
demonstrate in the following example.

Example 1.6.1. We take a simple example of a Gaussian model with unknown mean φ =
µ which is supposed to be in a close interval [µmin, µmax]. We consider power divergences
for which γ ∈ (−1, 0). We use Theorem 1.6.3 to prove consistency. The Gaussian kernel
is used. Assumption 1 is easily checked by considering the list of conditions in Theorem
A in Silverman [1978]. Assumption 2 holds since

pγφ
pγ
φT
pφT (x) = e−

1
2
x2−µy+ 1

2
µ2 .

The verification of assumption 3 is technical, so that we let it to the end. For assumption
4, in order to study Bn, it suffices to consider the quantity supφ

∫
pγφpφT . Indeed, the

Glivenko-Cantelli theorem states that both quantities supφ
1
n

∑n
i=1 p

γ
φ(yi) and supφ

∫
pγφpφT

are uniformly close for sufficiently large n independently of φ, hence boundedness of either
of them implies boundedness of the other. We have:∫

pγφpφT = c2e
− −γ

1+γ
µ2

2 .

for some constant c2. Here again, since µ is supposed to be in a closed interval, the previous
quantity is bounded. This entails that Bn is bounded and assumption 4 is fulfilled.
We move now to assumption 5. By the dual representation of the divergence, we have
PTh(PT , φ) = Dϕ(pφ, pφT ). This implies that :

PTh(PT , φ) =
1

γ(γ − 1)
e
γ2−γ

2
µ2 − 1

γ(γ − 1)
.

This function clearly verifies assumption 5 since it has a minimum at µ = 0 and this
minimum is well separated.
We go back to assumption 3. The second term is given by:

∫ p
−γ+1

2

φT
(x)

p−γφ (x)
= c1e

γ2−γ
2(1+γ)

µ2

for some constant c1. It is thus bounded since µ is supposed to be in a closed interval.
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For the first term, let η > 0. By Jensen’s inequality, we may write:

∫
(Kw ∗ Pn)

1−γ
2 (y)

p−γφ (y)
dy =

(2π)
1−η
2

η3/2

∫ Kw ∗ Pn

p
2 η−γ
1−γ

φ


1−γ
2

(y)
1√

2π/η
e−η

(y−µ)2
2 dy

≤ (2π)
1−η
2

η3/2

∫ Kw ∗ Pn

p
2 η−γ
1−γ

φ

(y)
1√

2π/η
e−η

(y−µ)2
2 dy


1−γ
2

≤ (2π)η/2−γ−1/2e

(
η−γ
1−γ−

η
2

)
µ2 ×

(
1

nw

n∑
i=1

e−
y2i
2w2

∫
e
− 1−γ−2(η−γ)w2+η(1−γ)w2

2w2(1−γ)
y2+

(1−γ)yi−2w2(η−γ)µ+w2(1−γ)ηµ
w2(1−γ)

y
dy

) 1−γ
2

.

We calculate each integral separately:∫
e
− 1−γ−2(η−γ)w2+η(1−γ)w2

2w2(1−γ)
y2+

(1−γ)yi−2w2(η−γ)µ+w2(1−γ)ηµ
w2(1−γ)

y
dy =

√
2πw

√
1− γ

1− γ + (−η + 2γ − ηγ)w2
exp

[ (
(1− γ)yi − 2w2(η − γ)µ+ w2(1− γ)ηµ

)2
2w2(1− γ) (1− γ − 2(η − γ)w2 + η(1− γ)w2)

]
.

We now proceed to estimate the sum over i. First, the only important term in the precedent
integral is the one with factor y2

i . Therefore, we denote in the precedent integral c2, c1, c0

respectively the coefficients of terms y2
i , yi and the constant term. We denote also c the

constant before the exponential (without the w). We only give the form of c2:

c2 =
1− γ

2w2 (1− γ − 2(η − γ)w2 + η(1− γ)w2)
.

We now have:

1

nw

n∑
i=1

e−
y2i
2w2

∫
e
− 1−γ−2(η−γ)w2+η(1−γ)w2

2w2(1−γ)
y2+

(1−γ)yi−2w2(η−γ)µ+w2(1−γ)ηµ
w2(1−γ)

y
dy

= c
1

n

n∑
i=1

exp

[(
c2 −

1

2w2

)
y2
i + c1yi + c0

]

= c
1

n

n∑
i=1

exp

[
η − 2γ + ηγ

2 (1− γ − 2(η − γ)w2 + η(1− γ)w2)
y2
i + c1yi + c0

]
.

The final step is to use a version of the law of large numbers for independent random
variables such as the two series theorem of Kolomogrov (see [Feller, 1971] Chap VII,
Theorem 3 page 238) since the terms of the sum do not have the same probability law,
but guided by the standard Gaussian law. The general term of the sum is given by:

Zi = exp

[
η − 2γ + ηγ

2 (1− γ − 2(η − γ)w2 + η(1− γ)w2)
y2
i + c1yi + c0

]
.

One can verify that the expectation of Zi exists as soon as the following condition is
fulfilled:

0 ≤ η < 1 and γ > −1.
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Indeed,

E[Zi] =
1√
2π

∫
exp

[
(η − 1)(γ + 1) + (η − 2γ + ηγ)w2

2 (1− γ − 2(η − γ)w2 + η(1− γ)w2)
y2 + (c1 + µ)y + c0 − µ2/2

]
.

The dominating term in the integral is the one with y2. It suffices then that the coefficient
of y2 to be negative so that the integral exists. We have

(η − 1)(γ + 1) + (η − 2γ + ηγ)w2

2 (1− γ − 2(η − γ)w2 + η(1− γ)w2)
< 0

if the denominator is positive and the nominator is negative. The denominator is equal to
1 − γ + (−η + (2 − η)γ)w2. Suppose that η ∈ (0, 1), then the denominator is positive as
soon as :

w2 <
1− γ

η − (2− η)γ
. (1.6.5)

On the other hand, the nominator is equal to (η−1)(γ+1)+(η−2γ+ηγ)w2. If η ∈ (0, 1),
then the nominator is negative as soon as:

w2 <
(1− η)(1 + γ)

η − (2− η)γ
. (1.6.6)

Combining this with (1.6.5) and since (1 − η)(1 + γ) < 1 − γ, then if η ∈ (0, 1), the
coefficient of y2 is negative as soon as (1.6.6) is fulfilled. Recall that, both η and γ are
fixed values which do not depend on n (the sample size). Moreover, the window w need to
go to zero as n goes to infinity to ensure the consistency of the kernel density estimator.
Thus condition (1.6.6) is fulfilled for any γ ∈ (−1, 0) as soon as η ∈ (0, 1).
The variance can be calculated similarly and proved to be finite under some condition to
be identified. It suffices to calculate the second order moment. We have:

E[Z2
i ] =

1√
2π

∫
exp

[
2η − 3γ + 2ηγ − 1 + (η − 2γ + ηγ)w2

2 (1− γ − 2(η − γ)w2 + η(1− γ)w2)
y2 + (c1 + µ)y + c0 − µ2/2

]
.

The coefficient of the dominating term is negative as soon as the denominator is positive
(when η ∈ (0, 1)) and the nominator is negative. This is translated into the following
condition:

w2 <
−2η − 2ηγ + 3γ + 1

η − 2γ + ηγ
.

The right hand side is positive only if:

γ >
2η − 1

3− 2η
.

Since η ∈ (0, 1) and the function η 7→ 2η−1
3−2η is increasing, then possible values for γ where

the variance is finite is (−1/3, 0). It results that for γ ∈ [−1
3 , 0), the Kolomogrov’s two

series theorem applies and the average 1
n

∑
Zi now converges in probability. Besides,

the remaining factor c also converges as n goes to infinity (and w goes to zero) to a

constant (equal to 1). Thus, boundedness of
∫ (Kw∗Pn)

1−γ
2 (y)

p−γφ (y)
dy is ensured. The argument

becomes uniform on µ since it is supposed to be inside a closed interval [µmin, µmax]. All
assumptions of Theorem 1.6.3 are now verified, and the kernel-based MDϕDE defined by
(1.5.4) is consistent in the Gaussian model.
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1.6.2 Asymptotic normality

In the literature on M-estimators, we study the asymptotic normality starting from the
estimating equation, see van der Vaart [1998] Chap. 5 Section 5.3. The idea, then, consists
in using a Taylor expansion. Keeping the same notation as in the previous paragraph, the
estimating equation has the form:

∇PnH(Pn, φ̂) = 0.

We apply a Taylor expansion on ∇PnH(Pn, φ) between φ̂ and φT .

∇PnH(Pn, φ̂) = ∇PnH(Pn, φ
T ) + JPnH(Pn,φT )(φ̂− φT ) + oP

(
n−1/2

)
.

The left hand side is zero by definition of φ̂. The oP
(
n−1/2

)
comes from a suitable control

on the third derivatives of the objective function. If the matrix of second order derivatives
JPnH(Pn,φT ) converges in probability to an invertible matrix J , then, we may write:

√
n(φ̂− φT ) = J−1√n∇PnH(Pn, φ

T ) + oP (1). (1.6.7)

The main problem resides in showing that
√
n∇PnH(Pn, φ

T ) has a multivariate Gaussian
limit law. In the case of our kernel-based MDϕDE, the vector

√
n∇PnH(Pn, φ

T ) is not
a sum of i.i.d. terms (the case of M-estimates). It contains the difficulty of the case of
divergences approximated by replacing the true distribution by a kernel density estimator
(Beran [1977] or Park and Basu [2004]). Besides, there is a sum of strongly dependent
terms making the treatment of this vector very complicated in a general setup. Strong,
but standard, conditions are needed in order to study the asymptotic distribution. We
only study the case of univarite densities. The general case of multivariate densities is
more complicated, because there should be a correction term similarly to Tamura and
Boos [1986]. We leave this part to a future work.
The following result covers all power divergences, i.e. ϕ−divergences with ϕ = ϕγ with
γ ∈ R \ {0, 1}. The proof is differed to Appendix 1.8.3.

Theorem 1.6.4. For the class of power divergences with ϕ = ϕγ for γ 6= {0, 1}, assume
that:

1. the kernel-based MDϕDE φ̂ is consistent;

2. the kernel K is symmetric and has a compact support where it is of class C1. More-
over z2K(z) is integrable;

3. the density pφT is defined on a compact, is positive, bounded and twice derivable

such that p′′
φT

is bounded. Moreover, there exists a neighborhood of φT such that the
partial derivatives up to third order with respect to φ are bounded;

4. n1/2w
− logw →∞ and n1/2w2 → 0,

then, √
n(φ̂− φT ) −→

L
N
(

0, (2γ2 + 1)J−1S
(
J−1

)t)
, (1.6.8)

where S =
∫
∇pφT∇ptφT .
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Assumptions on the model in this theorem are restrictive, but stay standard. Similar
conditions were considered in the study of the rates of convergence of the kernel density
estimation, see Wied and Weibßach [2012]. They were also considered in the study of
asymptotic properties of ϕ−divergences, see Beran [1977] Theorem 4. Furthermore, con-
ditions on the bandwidth are verified for w = n−1/4−δ for δ ∈ (0, 1/8), see Bordes and
Vandekerkhove [2010] Remark 3.1. Notice that even with such strong assumptions, the
proof is not simple and demands several techniques and results from the theory on kernel
density estimation.

Remark 1.6.2. Under the assumptions of Theorem 1.6.4, consistency of the kernel-based
MDϕDE is ensured by Theorem 1.6.2 provided the differentiability of ϕ up to second order
(assumption 1) and the uniqueness and well separability of the minimum (assumption 4).
Notice that the consistency of the kernel estimator (assumption 2) is also fulfilled, see
Wied and Weibßach [2012] Theorem 2.

Remark 1.6.3. The condition on the existence and boundedness of p′′
φT

can be relaxed
to being Lipschitz function. This demands however more assumptions on the bandwidth,
see lemma 3.1 in Bordes and Vandekerkhove [2010].

1.6.3 Influence Function for a given window

In practice, the choice of the window is based on methods such as cross-validation, Gaus-
sian approximations or even based on personal experience. Thus, it is interesting to study
the robustness properties supposing that the window is generated by an external tool.
Although in practice, we estimate the window on the basis of an observed dataset, this
creates a complication in the definition and the calculation of the influence function. For
this reason, we suppose that the window is fixed and independent of n.
The influence function (IF), although being limited to the existence of a noise-component,
is easy to calculate in general12 and gives an aspect of the robustness of an estimator
whenever the IF is bounded. We derive in this paragraph the influence function of the
new MDϕDE for the class of power divergences. The general case of function ϕ seems to
give an incomprehensible formula, and is not as interesting as the case of power divergences.

We recall the definition of the IF. Let C be a functional which gives for a probability
distribution P the estimator corresponding to the argument of the infimum of PH(P, φ)
defined earlier, i.e.

C(P ) = arg inf
φ∈Φ

∫
ϕ′
(

pφ
Kw ∗ P

)
(x)pφ(x)dx−

∫
ϕ#

(
pφ(y)

Kw ∗ P (y)

)
dP (x).

Hence, C(Pn) is non other than the estimator given by (1.5.4) for a given w. Fisher
consistency is translated by C(PφT ) = φT . This is unfortunately not verified in general
when the window is supposed to be calculated by an external tool, because the dual
formula is a priori a lower bound of Dϕ(Pφ, PφT ), and we cannot be sure that it would
verify the same identifiability property, i.e. D(Q,P ) = 0 iff P = Q whenever ϕ is strictly
convex. Example 1.6.1 shows, however, a case where Fisher consistency is attained for
any value of the window w.
The influence function measures the impact of a small perturbation in the distribution P

12This is regardless of the theoretical justifications of its existence.
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on the resulting estimator. It is hence defined by:

IF(P,Q) = lim
ε→0

C ((1− ε)P + εQ)− C(P )

ε
.

We generally detect the influence of an outlier x0 by observing what happens when we
replace P by (1− ε)P + εδx0 .
In the literature on M-estimates, one may derive the IF from the estimating equation. For
power divergences, the estimating equation corresponding to P is given by:

γ

γ − 1

∫ pγ−1
C(P )∇pC(P )

(Kw ∗ P )γ−1
(x)dx =

∫ pγ−1
C(P )∇pC(P )

(Kw ∗ P )γ
(x)dP (x), (1.6.9)

where the gradient is calculated with respect to φ. The influence function is obtained by
”derivation”13 of the two sides with respect to ε after having replaced P by (1−ε)P +εQ.
Denote Jpφ the matrix of second derivatives of pφ with respect to φ. The following result
gives the formula of the IF for power divergences when the noise is generated by an
arbitrary distribution Q or when an outlier is present. The proof is differed to Appendix
1.8.4.

Theorem 1.6.5. The influence function of the kernel-based MDϕDE defined by (1.5.4)
for a given window is given by:

IF(PT , Q) = γA−1

∫ pγ−1
C(PT ) [Kw ∗Q]∇pC(PT )

(Kw ∗ PT )γ

(
1− pT

K ∗ PT

)
(x)dx

+A−1

∫ pγ−1
C(PT )∇pC(PT )

(Kw ∗ PT )γ
(x)dQ(x). (1.6.10)

If C is Fisher consistent, i.e. C(PT ) = φT , then the influence function is given by:

IF(PT , Q) = γA−1

∫ pγ−1
φT

[Kw ∗Q]∇pφT
(Kw ∗ PT )γ

(
1− pT

K ∗ PT

)
(x)dx

+A−1

∫ pγ−1
φT
∇pφT

(Kw ∗ PT )γ
(x)dQ(x). (1.6.11)

Finally, if Q = δx0, then the IF is given by:

IF(PT , x0) = γA−1

∫ pγ−1
C(PT ) [Kw ∗ δx0 ]∇pC(PT )

(Kw ∗ PT )γ

(
1− pT

Kw ∗ PT

)
(x)dx

+A−1
pγ−1
C(PT )∇pC(PT )

(Kw ∗ PT )γ
(x0), (1.6.12)

where

A =

∫ (
γ

γ − 1
− pT (x)

Kw ∗ PT

) [(γ − 1)∇pC(PT )

(
∇pC(PT )

)t
+ pC(PT )JpC(PT )

]
pγ−2
C(PT )

(Kw ∗ PT )γ−1
.

(1.6.13)

13The arginf function is a troublesome function when it comes to continuity and derivatives.
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Remark 1.6.4. The form of the IF is somewhat similar to the IF of the classical MDϕDE
defined by (1.3.6). Toma and Broniatowski [2011] show that the IF of the classical MDϕDE
is given by:

IF(PT , x) = J−1∇pφT
pφT

, (1.6.14)

where J is the information matrix given by
∫ ∇p

φT
(∇p

φT
)t

p
φT

. Going back to the IF of the

new MDϕDE given by (1.6.12) and making w goes to zero would replace Kw ∗PT by pφT .

The first term thus disappears, and the IF would give A−1∇pφT
p
φT

, where A = J + 1
γ−1JpφT

and Jp
φT

is the matrix of second derivatives of pφ with respect to φ.
On the other hand, a general comparison for w > 0 is also interesting. Indeed, the second
term in (1.6.12) is a function of x and seems to be the term guiding the boundedness of
the IF. We can rewrite it as follows:

A−1
pγ−1
C(PT )∇pC(PT )

(Kw ∗ PT )γ
(x0) = A−1

pγC(PT )

(Kw ∗ PT )γ
∇pC(PT )

pC(PT )
(x0).

A direct comparison with (1.6.14) shows that our approach has resulted in the term
pγ
C(PT )

(Kw∗PT )γ which could oblige the IF to be bounded in some cases. This is the ratio be-
tween the true density and the smoothed one. When γ > 0, it is surprising that the IF
becomes more bounded as the ratio between the true distribution and the smoothed one
decreases, which means that the smoothing is producing over estimation at the tail of the
distribution.

Example 1.6.2. We resume the univariate Gaussian example. It can be proved that in
this model, the kernel-based MDϕDE is Fisher consistent. Indeed, function PTH(PT , µ)
is given by:

PTH(PT , µ) =
1

γ − 1

√
1 + w2

1 + γw2
e
− γ(1−γ)

2(1+γw2)
µ2 − 1

γ

√
1 + w2

(γ + 1)w2 + 1
e
− γ(w2+1−γ)

2(1+(γ+1)w2)
µ2

− 1

γ(γ − 1)
.

This formula holds for γ ∈ [−1,∞) \ {0, 1} whatever the value of w. It also holds for
γ < −1 whenever w2 ≤ − 1

γ . This function has a minimum at µ = 0 whatever the value

of w when γ > 0 (but different from 1), and has a local14 minimum at zero when γ < 0
whatever the value of w, see figure (1.3).

Let’s calculate the IF given by (1.6.12). We leave the calculus of the matrix A to the end.
The second term is given by:

pγ−1
φT
∇pφT

(Kw ∗ P )γ
(x0) = (1 + w2)γ/2x0e

− γw2

2(1+w2)
x20 .

14The minimum of PTH(PT , µ) is −∞ and is attained at ±∞, but when we restrain the set of possible
parameters to a compact subset around zero, the estimation procedure becomes possible. Recall also that
consistency was only proved when µ ∈ [µmin, µmax], see example 1.6.1 in this section.
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Figure 1.3: Function PTH(PT , µ) for different windows and divergences. They all have an
infimum at zero

Hence, this quantity is bounded as soon as γ > 0. The second quantity is an integral
which needs to exist and be finite. We have:

pγ−1
φT

(x)K((x− x0)/w)∇pφT (x)

(Kw ∗ P )γ(x)

(
1− p

Kw ∗ P

)
(x) =

(1 + w2)
γ+1
2

w
exp

[
− γw4 + 1

2w2(1 + w2)
x2 +

xx0

w2
− x2

0

2w2

]
×
(

1√
1 + w2

e
− x2

2(1+w2) − e−
x2

2

)
.

It is clear now that if γ > 0, the integral exists. We should not forget that the integral term
also depends on x0. The dominating term is e−x

2
0 , so that the integral term is bounded as

a function of x0 as soon as the integral exists.
It remains to show that the term A exists and is invertible. Since ∇pφT (x) = xe−x

2/2, and

Jp
φT

= (1 + x2)e−x
2/2, then:

A =

√
1 + w2

2π

γ

γ − 1

(√
2π

a
+ γ

√
2π

a3

)
− 1 + w2

√
2π

(√
2π

b
+ γ

√
2π

b3

)
,

where a = γw2+1
1+w2 and b = γw2+w2+1

1+w2 . It is clear that for γ ∈ (0, 1), the two terms
constituting A have the same sign, hence A cannot be zero since it is the sum of two
negative terms. However, if γ > 1, A may by zero for some cases. Indeed, A is 0 whenever
γ2(1 + γ + 2γw2)2(1 + (γ + 1)w2)3 − (γ − 1)(1 +w2)(1 + γ + (γ + 2)w2)2 = 0. Notice that
function w 7→ γ2(1 + γ + 2γw2)2(1 + (γ + 1)w2)3 − (γ − 1)(1 +w2)(1 + γ + (γ + 2)w2)2 is
equal to 2γ − 1 > 0 when w = 0, whereas it has a −∞ limit at +∞. Thus, it passes by
zero for some w > 0 since it is a continuous function.
Previous arguments permit us to conclude for sure that for γ ∈ (0, 1), the influence function
of the estimator defined by (1.5.4) is bounded in the Gaussian model independently of the
bandwidth of the Gaussian kernel. Moreover, it is unbounded for γ < 0. Hence, one can
hope to get a robust estimation when γ ∈ (0, 1), whereas further investigations are needed
for the case of γ < 0.

57 / 208



Estimation using a phi-divergence 58

1.7 Simulation study: comparison

Summary of the estimation methods and error criterion. We summarize the re-
sults of 100 experiments by giving the average of the estimates and the error committed,
and the corresponding standard deviation. We consider two error criteria; the total varia-
tion distance (TVD) and the Chi square divergence between the true distribution and the
estimated one. These criteria are defined as follows:

√
χ2(pφ, pφT ) =

√√√√∫ (
pφ(y)− pφT (y)

)2
pφT (y)

dy; (1.7.1)

TVD(pφ, pφT ) = sup
A∈Bn(R)

∣∣dPφ(A)− dPφT (A)
∣∣ . (1.7.2)

We prefer to use the Chi square divergence, because it measures the relative error between
two probability laws. Hence, the error committed on sets where the true distribution
attributes small values is penalized in a similar way to sets where the true distribution
attributes large values. We use also the TVD because it has the property of measuring the
largest error committed when measuring a set A using the estimated distribution instead
of the true one. The TVD can be directly calculated using the L1 distance. Indeed, the
Scheffé lemma (see Meister [2009] page 129.) states that:

sup
A∈Bn(R)

∣∣dPφ(A)− dPφT (A)
∣∣ =

1

2

∫
R

∣∣pφ(y)− pφT (y)
∣∣ dy.

We consider the Hellinger divergence for estimators based on ϕ−divergences. Our prefer-
ence of the Hellinger divergence is that we hope to obtain robust estimators without loss
of efficiency, see Jiménz and Shao [2001]. The parameter vector is estimated using six
methods:

1. Maximum likelihood (MLE) which is calculated using EM for mixture models;

2. The classical MDϕDE defined by (1.3.6);

3. Our kernel-based MDϕDE defined by (1.5.4) with different choices for the kernel
and its bandwidth;

4. The Basu-Lindsay approach with different choices for the kernel and its bandwidth;

5. The dual ϕ–divergence estimator (DϕDE) defined by (1.3.7) with escort parameter
the result of our kernel-based MDϕDE with the best choice of the kernel and window
among presented possibilities;

6. The minimum power density estimator (MDPD) of Basu et al. [1998] defined by
(1.3.8) for a ∈ {0.1, 0.25, 0.5, 0.75, 1}.

We give for each experiment a summary of the results with comments, and precise the
used kernels and the corresponding windows choices. We finally give an overall conclusion
with some practical remarks.
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Practical issues: Optimization was done using the Nelder-Mead algorithm. Integra-
tions calculus were done using function distrExIntegrate of package distrEx which is
a slight modification of the standard function integrate. It performs a Gauss-Legendre
quadrature when function integrate returns an error. We have noticed that functions
such as integral of package pracma15, although has a good performance, is slow. Besides,
function int of package rmutil, which uses either the Romberg method or algorithm 614
of the collected algorithms from ACM, seems to underestimate the value of the integral
in slightly difficult circumstances such as heavy tailed distributions. For example, when
we used it to calculate the classical MDϕDE in the GPD case, it gave robust results
because it underestimated the infinity part of the integral (forged thresholding effect).
Finally, during some experiences on GPD observations and Weibull distributions based on
the Basu-Lindsay approach, function distrExIntegrate failed to converge and function
integral was used to attain a result.

Summary of the models and presentation of the results. Our simulation study
covers the following models:

1. Gaussian model with unknown mean and variance;

2. Gaussian mixture with two components where the proportion and the two means
are unknown;

3. Generalized Pareto distribution with unknown shape and scale;

4. Three Weibull mixtures with two components where the proportion and the two
shapes are unknown.

Outliers were added in the original data in many ways which will be specified according to
each case. We have either added noise outside the support of the dataset or by dispersing
the noise over the whole dataset. We have also used different distributions to produce the
noise.
For the first two models, we only used a Gaussian kernel with window chosen using either
Silverman’s rule (nrd0 in the statistical tool R) or Sheather and Jones’ rule (SJ). For the
heavy tailed models which are defined on the half real line, we needed to use non classical
kernels such as asymmetric kernels (RIG: reciprocal inverse Gaussian and GA: gamma
kernels) and the varying KDE of Mnatsakanov and Sarkisian [2012] denoted here as MT
(Mellin transform) defined here above by (1.2.4), followed by the value of the bandwidth
α ∈ {5, 10, 15, 20}. In the GPD model and the first Weibull mixture, we present a simple
comparison between symmetric kernels and other non classical methods and show the
advantage of the later in such context. We therefore avoided using symmetric kernels for
other Weibull mixtures. For the Basu-Lindsay approach, we did not implement asymmetric
kernels, see discussion in paragraph 1.2.2. We only used the varying KDE.
Concerning the rule for deciding the window for the non classical kernels, we have tried
out the cross-validation method (CV), but it resulted always in large (small for the varying
KDE) and inconvenient windows especially when outliers are inserted. We were, therefore,
obliged to use fixed windows in order to obtain good results. For each kernel and method,
the window value or the rule used to calculate it is written next to it. More details can
be found at each paragraph.

15Function integral includes a variety of adaptive numerical integration methods such as Kronrod-
Gauss quadrature, Romberg’s method, Gauss-Richardson quadrature, Clenshaw-Curtis (not adaptive) and
(adaptive) Simpson’s method.
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1.7.1 Univariate Gaussian model

We consider the Gaussian distribution N (µ, σ2) when both parameters µ and σ are un-
known. We generate at each run a 100-sample of the standard Gaussian distribution
N (0, 1). Outliers are added simply by replacing the 10 largest values in the sample by the
value 10.
The maximum likelihood estimator of the parameters are simply the empirical mean and
variance µ̂ = 1

100

∑
yi, σ̂

2 = 1
99

∑
(yi − µ̂)2. For methods which need kernels, we used a

Gaussian kernel with two rules for the window; Silverman’s rule and Sheather and Jones’
one. We calculate the minimum density power divergence estimator (MDPD) for values
of the tradeoff parameter a ∈ {0.1, 0.25, 0.5, 0.75, 1}. The DϕDE was calculated using the
kernel-based MDϕDE as an escort with Silverman’s rule. Estimation results are summa-
rized in table 1.2. Estimation error is calculated in table 1.3.
When we are under the model, all compared methods give the same result with very
slight differences. As we add 10% outliers, the classical MDϕDE and the MLE give the
same result which is positively deviated from the true mean with a large variance. This
is already expected by virtue of the result of [Broniatowski, 2014]. Other methods, ours
included, give robust results except for MDPD with a = 0.1. Our estimator (for both
windows choices) is at the same level of efficiency as the MLE under the model. Besides,
the window choice seems irrelevant for methods based on kernels but for Beran’s method
where Silverman’s rule is slightly better. The MDPD seems to give the best tradeoff be-
tween efficiency and robustness for a = 0.5 conquering other methods. The kernel-based
MDϕDE and the Basu-Lindsay approaches give slightly better efficiency which is traded
with slightly lower robustness in comparison to the result of MDPD with a = 0.5.

Estimation
method

No Outliers 10% Outliers
µ sd(µ) σ sd(σ) µ sd(µ) σ sd(σ)

Hellinger

Classical MDϕDE 0.005 0.111 0.983 0.082 0.833 0.103 3.157 0.039

New MDϕDE - Silverman 0.005 0.113 0.967 0.081 -0.187 0.114 0.810 0.069
New MDϕDE - SJ 0.005 0.113 0.973 0.082 -0.191 0.114 0.800 0.068

Basu-Lindsay - Silverman 0.005 0.114 0.968 0.081 -0.191 0.114 0.805 0.068
Basu-Lindsay - SJ 0.005 0.113 0.970 0.081 -0.193 0.114 0.799 0.067

Beran - Silverman 0.005 0.113 1.024 0.087 -0.191 0.114 0.878 0.075
Beran - SJ 0.005 0.112 1.048 0.089 -0.192 0.114 0.853 0.073

MDPD 0.1 0.005 0.112 0.983 0.082 0.319 0.111 2.451 0.079
MDPD 0.25 0.006 0.112 0.983 0.083 -0.145 0.114 0.854 0.074
MDPD 0.5 0.008 0.117 0.979 0.087 -0.115 0.116 0.875 0.081
MDPD 0.75 0.010 0.123 0.975 0.093 -0.093 0.120 0.894 0.089
MDPD 1 0.012 0.129 0.971 0.098 -0.077 0.124 0.910 0.094

DϕDE 0.005 0.112 0.982 0.082 -0.164 0.114 0.873 0.080

MLE 0.005 0.111 0.988 0.082 0.833 0.103 3.172 0.039

Table 1.2: The mean value and the standard deviation of the estimates in a 100-run experi-
ment in the standard Gaussian model. The divergence criterion is the Hellinger divergence.
The escort parameter of the DϕDE is taken as the new MDϕDE with Silverman’s rule.
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Estimation
method

No Outliers 10% Outliers
χ2 sd(χ2) TVD sd(TVD) χ2 sd(χ2) TVD sd(TVD)

Hellinger

Classical MDϕDE 0.104 0.052 0.054 0.026 8.503 0.113 0.516 0.002

New MDϕDE - Silverman 0.106 0.052 0.056 0.028 0.230 0.063 0.136 0.041
New MDϕDE - SJ 0.105 0.052 0.055 0.027 0.239 0.062 0.141 0.041

Basu-Lindsay - Silverman 0.105 0.052 0.055 0.028 0.235 0.062 0.139 0.040
Basu-Lindsay - SJ 0.105 0.052 0.055 0.027 0.240 0.062 0.142 0.040

Beran - Silverman 0.114 0.063 0.054 0.025 0.191 0.067 0.110 0.042
Beran - SJ 0.125 0.076 0.057 0.026 0.205 0.066 0.119 0.042

DϕDE 0.104 0.052 0.054 0.026 0.183 0.068 0.105 0.042

MDPD 0.1 0.104 0.051 0.053 0.026 5.772 0.356 0.411 0.013
MDPD 0.25 0.105 0.052 0.054 0.026 0.185 0.066 0.107 0.042
MDPD 0.5 0.110 0.054 0.057 0.028 0.165 0.068 0.094 0.042
MDPD 0.75 0.116 0.060 0.060 0.032 0.152 0.070 0.086 0.043
MDPD 1 0.121 0.066 0.063 0.036 0.144 0.070 0.080 0.043

MLE 0.104 0.052 0.053 0.025 8.522 0.111 0.518 0.002

Table 1.3: The mean value of errors committed in a 100-run experiment with the standard
deviation. The divergence criterion is the Hellinger divergence. The escort parameter of
the DϕDE is taken as the new MDϕDE with Silverman’s rule.

61 / 208



Estimation using a phi-divergence 62

1.7.2 Mixture of two Gaussian components

We show in this paragraph several simulations from a two-component Gaussian mixture
where the data is contaminated or not by a 10% of outliers. The true values of the mixture
parameters are λ = 0.35, µ1 = −2, µ2 = 1.5. The variance of both components is supposed
to be known and fixed at 1. Contamination was done for the first mixture by adding in the
original sample to the 5 lowest values random observations from the uniform distribution
U [−5,−2]. We also added to the 5 largest values random observations from the uniform
distribution U [2, 5]. Estimation results are summarized in table 1.4. Estimation error
is calculated in table 1.5. Maximum likelihood estimates are calculated using the EM
algorithm. Table 1.7.2 contains a simulation with 1000 observations in each sample to
illustrate that the comparison holds with higher number of observations.
Under the model, all compared methods give the same performance. When outliers are
added, both classical MDϕDE and MLE are not robust and give the same result. Other
methods provide robust results. Error values are close for ϕ−divergence-based estimators
and very close to results obtained by the MDPD which gives slightly better performances.

Table 1.4: The mean value and the standard deviation of the estimates in a 100-run
experiment in the two-component Gaussian mixture

Estimation
method

No Outliers 10% Outliers
λ sd(λ) µ1 sd(µ1) µ2 sd(µ2) λ sd(λ) µ1 sd(µ1) µ2 sd(µ2)

Classical MDϕDE 0.360 0.054 -1.989 0.204 1.493 0.136 0.342 0.064 -2.617 0.288 1.713 0.172

New MDϕDE - Gauss:Silverman 0.360 0.054 -1.993 0.208 1.499 0.133 0.349 0.058 -1.767 0.226 1.377 0.135
New MDϕDE - Gauss:1.2 0.359 0.054 -2.024 0.210 1.523 0.132 0.348 0.058 -1.811 0.218 1.411 0.132

Basu-Lindsay - Gauss:Silverman 0.361 0.055 -1.979 0.207 1.490 0.139 0.339 0.062 -1.927 0.305 1.377 0.158
Basu-Lindsay - Gauss:0.9 0.361 0.055 -1.976 0.215 1.489 0.143 0.334 0.066 -1.987 0.288 1.378 0.162

Beran - Gauss:Silverman 0.371 0.050 -1.985 0.203 1.546 0.132 0.369 0.053 -1.788 0.218 1.477 0.134
Beran - Gauss:0.9 0.381 0.046 -1.968 0.202 1.594 0.127 0.375 0.048 -1.785 0.218 1.502 0.130

DϕDE 0.361 0.054 -1.988 0.203 1.492 0.136 0.355 0.056 -2.132 0.224 1.605 0.137

MDPD 0.1 0.360 0.054 -1.991 0.207 1.493 0.134 0.346 0.059 -2.052 0.243 1.452 0.144
MDPD 0.25 0.360 0.053 -1.994 0.213 1.492 0.133 0.351 0.057 -1.832 0.223 1.394 0.134
MDPD 0.5 0.360 0.053 -1.997 0.226 1.489 0.136 0.353 0.056 -1.819 0.218 1.404 0.132

MLE (EM) 0.360 0.054 -1.989 0.204 1.493 0.136 0.342 0.064 -2.617 0.288 1.713 0.172

Table 1.5: The mean value of errors committed in a 100-run experiment with the standard
deviation in the two-component Gaussian mixture

Estimation
method

No Outliers 10% Outliers√
χ2 sd(

√
χ2) TVD sd(TVD)

√
χ2 sd(

√
χ2) TVD sd(TVD)

Classical MDϕDE 0.113 0.044 0.064 0.025 0.335 0.102 0.150 0.034

New MDϕDE - Gauss:Silverman 0.113 0.045 0.064 0.025 0.155 0.059 0.087 0.033
New MDϕDE - Gauss:1.2 0.114 0.047 0.064 0.025 0.139 0.053 0.078 0.030

Basu-Lindsay - Gauss:Silverman 0.115 0.043 0.065 0.024 0.155 0.073 0.085 0.033
Basu-Lindsay - Gauss:0.9 0.118 0.043 0.067 0.024 0.147 0.059 0.083 0.034

Beran - Gauss:Silverman 0.113 0.046 0.064 0.025 0.132 0.050 0.073 0.027
Beran - Gauss:0.9 0.117 0.050 0.066 0.028 0.127 0.049 0.070 0.026

DϕDE 0.112 0.044 0.064 0.025 0.142 0.061 0.076 0.031

MDPD 0.1 0.113 0.044 0.064 0.025 0.124 0.052 0.069 0.029
MDPD 0.25 0.114 0.045 0.064 0.025 0.140 0.054 0.079 0.030
MDPD 0.5 0.117 0.047 0.065 0.025 0.138 0.053 0.078 0.030

MLE 0.113 0.044 0.064 0.025 0.335 0.102 0.150 0.034
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Estimation
method

No Outliers 10% Outliers√
χ2 sd(

√
χ2) TVD sd(TVD)

√
χ2 sd(

√
χ2) TVD sd(TVD)

Classical MDϕDE 0.036 0.016 0.020 0.009 0.308 0.031 0.142 0.013

New MDϕDE - Gauss:Silverman 0.036 0.015 0.020 0.009 0.146 0.024 0.082 0.014
New MDϕDE - Gauss:1.2 0.042 0.017 0.023 0.009 0.095 0.022 0.051 0.012

Basu-Lindsay - Gauss:Silverman 0.037 0.016 0.021 0.009 0.132 0.026 0.074 0.014
Basu-Lindsay - Gauss:1.2 0.040 0.017 0.022 0.009 0.129 0.041 0.071 0.022
Basu-Lindsay - Gauss:1 0.039 0.017 0.022 0.009 0.076 0.022 0.045 0.014

Beran - Gauss:Silverman 0.038 0.016 0.021 0.009 0.116 0.024 0.062 0.013
Beran - Gauss:1.2 0.114 0.018 0.066 0.010 0.114 0.022 0.065 0.012
Beran - Gauss:1 0.078 0.018 0.045 0.010 0.087 0.022 0.044 0.011

DϕDE 0.045 0.016 0.020 0.009 0.079 0.023 0.044 0.013

MDPD 0.1 0.036 0.015 0.020 0.009 0.046 0.016 0.027 0.010
MDPD 0.25 0.036 0.015 0.020 0.009 0.095 0.023 0.053 0.013
MDPD 0.5 0.037 0.015 0.021 0.009 0.092 0.022 0.050 0.012

MLE 0.036 0.016 0.020 0.009 0.308 0.031 0.142 0.013

Table 1.6: The mean value of errors committed in a 100-run experiment with the standard
deviation in the two-component Gaussian mixture. Number of observations is 1000
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1.7.3 Generalized Pareto distribution

We show in this paragraph several simulations from the generalized Pareto distribution
(GPD) where the data is contaminated or not by a 10% of outliers. A GPD with a fixed
location at zero, a scale parameter σ > 0 and a shape parameter ν > 0 is defined by:

pν,σ(y) =
1

σ

(
1 + ν

y

σ

)−1− 1
ν
, for y ≥ 0.

The true set of parameters is ν = 0.7, σ = 3. Outliers are added by replacing 10 ob-
servations (chosen randomly) from each sample by observations from the distribution
GPD(ν = 1, σ = 10, µ = 500) where µ is the location parameter. Estimation results
are summarized in table 1.7. Estimation error is calculated in table 1.8. The maximum
likelihood estimator was calculated using the gpd.fit function of package ismev.

Under the model, all presented methods except for the Basu-Lindsay approach have
close performance to the MLE and sometimes even better for given choices of the kernel
or the tradeoff parameter. Our kernel-based MDϕDE attained a similar performance to
the MLE for all non classical kernels and the corresponding choices of the window, and at-
tained an even better efficiency than the MLE. Beran’s method attained this performance
only with the varying KDE. The MDPD attained it only for small values of a (=0.1). The
use of a symmetric kernel (here the Gaussian) did not give good results in kernel-based
methods except for our kernel-based MDϕDE with a Silverman’s rule for the window16.
This may be some indication of low sensitivity to the kernel used.
When outliers are added, the performance of kernel-based methods was slightly deterio-
rated whereas other methods (the MDPD included for all values of a) were greatly in-
fluenced, and the error is at least doubled; MDPD for all cases included. The use of
asymmetric kernels seems to be the most convenient for a GPD model. Our kernel-based
MDϕDE seems to give the best result (in χ2 and TVD) for all kernels and corresponding
windows keeping a great gap in its favor in comparison with other methods.

Remark 1.7.1. The nature of the heavy tail of the GPD (slow decrease at infinity) made
integration calculus difficult, and some integration functions failed to give fairly correct
results. We, therefore, and in order to avoid integration on an infinite interval [0,∞),
propose to use a quantile trick which is translated by the change of variable:∫ ∞

0
ϕ′
(
pφ
pα

)
(x)pφ(x)dx =

∫ 1

0
ϕ′
(
pφ
pα

)
pφ(F−1

φ (y))dy,

where F−1
φ (y) = σ

ν ((1 − y)−ν − 1) is the quantile of the GPD probability law Pφ. This
idea may appear ineffective since it does not change anything in the integral (the quantile
function takes back values from [0, 1) into [0,∞)). In fact, integration methods perform
in general better when integrating on a finite interval than when integrating on an infinite
one.

16The Sheather and Jones’ rule did not give satisfactory results.
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Estimation
method

No Outliers 10% Outliers
ν sd(ν) σ sd(σ) ν sd(ν) σ sd(σ)

Hellinger

Classical MDϕDE 0.721 0.174 3.029 0.575 1.655 0.113 2.694 0.491

New MDϕDE - Gauss Silverman 0.463 0.142 2.719 0.586 0.571 0.197 2.427 0.599
New MDϕDE - Gauss SJ 0.343 0.108 2.858 0.597 0.368 0.141 2.798 0.569
New MDϕDE - RIG CV 0.528 0.140 3.125 0.611 0.775 0.202 2.844 0.571
New MDϕDE - RIG Nrd0 0.562 0.139 3.133 0.605 0.817 0.219 2.815 0.545
New MDϕDE - RIG SJ 0.522 0.129 3.138 0.616 0.688 0.191 2.903 0.574
New MDϕDE - GA CV 0.530 0.139 3.117 0.610 0.766 0.204 2.833 0.577
New MDϕDE - GA Nrd0 0.564 0.139 3.112 0.601 0.814 0.211 2.787 0.544
New MDϕDE - GA SJ 0.520 0.126 3.135 0.607 0.691 0.185 2.895 0.576
New MDϕDE - MT 5 0.641 0.156 3.217 0.615 1.202 0.161 2.806 0.510
New MDϕDE - MT 10 0.607 0.153 3.272 0.628 1.090 0.195 2.876 0.552
New MDϕDE - MT 15 0.588 0.150 3.307 0.636 1.026 0.206 2.920 0.565
New MDϕDE - MT 20 0.573 0.148 3.331 0.643 0.979 0.212 2.956 0.577

Basu-Lindsay - Gauss Silverman 0.128 0.125 6.022 1.522 0.122 0.109 7.151 2.025
Basu-Lindsay - Gauss SJ 0.078 0.066 4.603 1.057 0.097 0.087 4.843 1.316
Basu-Lindsay - MT 5 0.833 0.156 2.232 0.651 0.765 0.189 2.937 0.666
Basu-Lindsay - MT 10 0.853 0.197 2.297 0.659 0.777 0.193 2.880 0.704
Basu-Lindsay - MT 15 0.881 0.176 2.293 0.517 1.164 0.169 2.893 0.530
Basu-Lindsay - MT 20 0.907 0.180 2.337 0.603 0.936 0.206 2.694 0.580

Beran - Gauss Nrd0 0.216 0.108 5.165 1.218 0.197 0.125 6.084 1.546
Beran - Gauss SJ 0.231 0.108 3.988 0.919 0.229 0.134 4.135 0.939
Beran - RIG CV 0.516 0.134 3.890 0.832 0.833 0.218 3.944 0.745
Beran - RIG Nrd0 0.515 0.138 4.441 1.026 0.878 0.233 4.229 0.954
Beran - RIG SJ 0.507 0.136 3.813 0.787 0.732 0.200 3.641 1.113
Beran - GA CV 0.486 0.134 3.936 0.847 0.745 0.207 4.097 0.822
Beran - GA Nrd0 0.475 0.139 4.510 0.998 0.778 0.220 4.547 1.032
Beran - GA SJ 0.503 0.133 3.780 0.773 0.703 0.186 3.589 0.781
Beran - MT 5 0.711 0.150 3.384 0.640 1.339 0.140 2.979 0.551
Beran - MT 10 0.665 0.150 3.315 0.620 1.231 0.155 2.900 0.530
Beran - MT 15 0.637 0.154 3.310 0.640 1.164 0.169 2.893 0.530
Beran - MT 20 0.627 0.156 3.302 0.637 0.936 0.206 2.694 0.580

DϕDE 0.720 0.179 3.026 0.580 1.45 0.290 2.749 0.524

MDPD 1 0.729 0.402 3.023 0.660 1.039 0.483 3.273 0.681
MDPD 0.75 0.716 0.331 3.025 0.631 1.021 0.416 3.242 0.645
MDPD 0.5 0.715 0.263 3.023 0.603 1.028 0.361 3.171 0.605
MDPD 0.25 0.722 0.200 3.019 0.581 1.292 0.240 2.955 0.532
MDPD 0.1 0.723 0.175 3.019 0.568 1.564 0.154 2.779 0.500

MLE 0.719 0.174 3.031 0.58 1.654 0.113 2.695 0.492

Table 1.7: The mean value and the standard deviation of the estimates in a 100-run
experiment in the GPG model. The escort parameter of the DϕDE is taken as the new
MDϕDE with Silverman’s rule.
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Estimation
method

No Outliers 10% Outliers
χ2 sd(χ2) TVD sd(TVD) χ2 sd(χ2) TVD sd(TVD)

Hellinger

Classical MDϕDE 0.099 0.077 0.044 0.026 1.027 0.195 0.142 0.014

New MDϕDE - Silverman 0.159 0.056 0.087 0.034 0.171 0.070 0.097 0.044
New MDϕDE - SJ 0.189 0.052 0.100 0.035 0.183 0.066 0.098 0.042
New MDϕDE - RIG CV 0.109 0.045 0.058 0.027 0.114 0.065 0.053 0.029
New MDϕDE - RIG Nrd0 0.100 0.044 0.054 0.027 0.142 0.130 0.056 0.029
New MDϕDE - RIG SJ 0.110 0.044 0.059 0.027 0.104 0.056 0.054 0.030
New MDϕDE - GA CV 0.108 0.045 0.058 0.027 0.114 0.063 0.054 0.029
New MDϕDE - GA Nrd0 0.100 0.044 0.054 0.027 0.132 0.092 0.056 0.028
New MDϕDE - GA SJ 0.109 0.044 0.058 0.027 0.104 0.056 0.054 0.030
New MDϕDE - MT 5 0.093 0.053 0.049 0.028 0.472 0.307 0.089 0.024
New MDϕDE - MT 10 0.095 0.050 0.051 0.028 0.336 0.243 0.078 0.026
New MDϕDE - MT 15 0.097 0.048 0.053 0.028 0.268 0.193 0.072 0.027
New MDϕDE - MT 20 0.099 0.047 0.054 0.029 0.226 0.154 0.068 0.028

Basu-Lindsay - Silverman 0.301 0.08 0.179 0.048 0.361 0.110 0.214 0.061
Basu-Lindsay - SJ 0.256 0.046 0.145 0.033 0.264 0.055 0.151 0.039
Basu-Lindsay - MT 5 0.155 0.082 0.090 0.047 0.100 0.077 0.051 0.036
Basu-Lindsay - MT 10 0.155 0.080 0.085 0.043 0.102 0.078 0.053 0.038
Basu-Lindsay - MT 15 0.140 0.107 0.071 0.050 0.421 0.278 0.086 0.025
Basu-Lindsay - MT 20 0.157 0.085 0.078 0.044 0.160 0.083 0.059 0.031

Beran - Gauss Nrd0 0.241 0.072 0.142 0.045 0.297 0.090 0.177 0.053
Beran - Gauss SJ 0.199 0.049 0.109 0.034 0.207 0.044 0.114 0.032
Beran - RIG CV 0.133 0.060 0.076 0.038 0.226 0.128 0.094 0.041
Beran - RIG Nrd0 0.164 0.085 0.097 0.051 0.306 0.235 0.114 0.054
Beran - RIG SJ 0.123 0.060 0.069 0.039 0.146 0.097 0.070 0.048
Beran - GA CV 0.136 0.060 0.078 0.038 0.195 0.100 0.094 0.044
Beran - GA Nrd0 0.169 0.078 0.101 0.048 0.267 0.186 0.121 0.057
Beran - GA SJ 0.120 0.058 0.068 0.037 0.130 0.078 0.065 0.040
Beran - MT 5 0.103 0.067 0.052 0.030 0.915 0.729 0.111 0.022
Beran - MT 10 0.093 0.057 0.049 0.029 0.581 0.615 0.095 0.023
Beran - MT 15 0.094 0.054 0.050 0.029 0.421 0.278 0.086 0.025
Beran - MT 20 0.095 0.055 0.051 0.029 0.371 0.298 0.081 0.026

DϕDE 0.099 0.077 0.048 0.028 0.843 0.407 0.120 0.030

MDPD 1 0.211 0.310 0.068 0.038 0.477 0.665 0.089 0.047
MDPD 0.75 0.204 0.389 0.062 0.034 0.424 0.545 0.085 0.043
MDPD 0.5 0.141 0.160 0.056 0.030 0.419 0.515 0.082 0.039
MDPD 0.25 0.106 0.082 0.049 0.028 0.669 0.441 0.104 0.030
MDPD 0.1 0.099 0.083 0.047 0.027 0.955 0.326 0.133 0.019

MLE 0.099 0.077 0.048 0.026 1.025 0.195 0.142 0.014

Table 1.8: The mean value of errors committed in a 100-run experiment with the standard
deviation for the GPD model. The escort parameter of the DϕDE is taken as the new
MDϕDE with the gamma kernel.
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1.7.4 Mixtures of Two Weibull Components

We present the results of estimating three different two-component Weibull mixtures. The
model has the following density:

pφ(x) = 2λν1(2x)ν1−1e−(2x)ν1 + (1− λ)
ν2

2

(x
2

)ν2−1
e−(x2 )

ν2

.

Scale parameters are supposed to be known and equal to 0.5 for the first component
and 2 for the second component. The proportion is unknown and fixed at 0.35. Shape
parameters are supposed unknown. Our examples cover a variety of cases of a Weibull
mixture where the density function has either a finite limit at zero or goes to infinity for
one of the components:

1. a mixture with close modes ν1 = 1.2, ν2 = 2;

2. a mixture with one mode and with limit equal to infinity at zero ν1 = 0.5, ν2 = 3;

3. a mixture with no modes and with limit equal to infinity at zero ν1 = 0.5, ν2 = 1.

We plot these mixtures in figure 1.4. Outliers were added in different ways to illustrate
several scenarios. For the first mixture, outliers were added by replacing 10 observations
of each sample chosen randomly by 10 observations drawn independently from a Weibull
distribution with shape ν = 0.9 and scale σ = 3. See tables (1.9) and (1.10). For the second
mixture, we added to the 10 largest observations of each sample a random observation
drawn from the uniform distribution U [2, 10]. See tables 1.11 and 1.12. For the third
one, outliers were added by replacing 10 observations, chosen randomly, of each sample
by observations from the uniform distribution U [max yi, 75] after having verified that no
observation in the overall data has exceeded the value 50. See tables 1.13 and 1.14.

Figure 1.4: The three Weibull mixtures used in our experience.
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The caclulus of the χ2 divergence between the estimated model and the true distribution
gave often infinity on all mixtures for all estimation methods even under the model. This
is because a small bias in the estimation of the shape parameter results in a great relative
error in both the tail behavior and near zero. We therefore, only provide the TVD as an
error criterion.
The first Weibull mixture was the least complicated case. We were able to get satisfactory
results for our kernel-based MDϕDE using a Gaussian kernel. The two other mixtures
were more challenging, and we needed to use asymmetric kernels to solve the problem of
the bias near zero. It is worth noting that the Basu-Lindsay approach provided very bad
estimates in the three mixtures which keeps it out of the competition. Note also that the
use of a Gaussian kernel gave very pleasant results for the first mixture in spite of the
boundary bias. We excluded it from mixtures which have infinity limit at zero because it
did not work well because of the large bias at zero.

For the first mixture, under the model all presented methods provide close results
(and sometimes better) to the MLE except for the Basu-Lindsay approach with all available
choices and Beran’s method with the varying KDE (MT) for windows 5 and 10 which fail.
Under contamination, our method gives better results than all other methods and have
very close (even slightly better) performance to the MDPD for tradeoff parameter higher
than 0.25.
For the second mixture, the Basu-Lindsay approach failed again. Beran’s method gave
good result under the model only in one case; the RIG with window 0.01. The MDPD
worked very well only for a tradeoff parameter lower than 0.5 and gave a good compromise
between robustness and efficiency. It gave the best compromise in the presented methods.
Our kernel-based MDϕDE has close results to the MDPD with difference of 0.01 in the
TVD. It is worth noting that our kernel-based MDϕDE gave faire results for the two
proposed kernels; the asymmetric kernel RIG for window 0.01 as before and the varying
KDE MT for windows 10, 15 and 20. A fact which was not verified for other kernel-based
methods showing again a less sensibility towards the kernel.
For the third mixture, the Basu-Lindsay approach did not give good results especially
under the model. The only satisfactory results (which gave a good tradeoff between
robustness and efficiency) were obtained by our kernel-based MDϕDE for RIG kernel
with window 0.01, Beran’s method with the same kernel and window and the MDPD for
a = 0.5. Our method and Beran’s gave the same result with difference of 0.015 in favor
of the MDPD. Better efficiency were obtained by other choices but on the cost of the
robustness of the resulting estimator under contamination.
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Estimation
method

No Outliers 10% Outliers
λ sd(λ) ν1 sd(ν1) ν2 sd(ν2) λ sd(λ) ν1 sd(ν1) ν2 sd(ν2)

Hellinger

Classical MDϕDE 0.355 0.066 1.245 0.228 2.054 0.237 0.410 0.257 1.045 0.255 1.718 0.849

New MDϕDE - Gauss Silverman 0.384 0.067 1.221 0.244 2.138 0.291 0.348 0.076 1.121 0.265 1.822 0.319
New MDϕDE - Gauss SJ 0.387 0.067 1.227 0.240 2.188 0.308 0.356 0.076 1.133 0.261 1.905 0.319
New MDϕDE - RIG 0.01 0.371 0.066 1.297 0.231 2.215 0.321 0.355 0.100 1.213 0.229 1.955 0.344
New MDϕDE - RIG 0.1 0.358 0.065 1.233 0.210 2.065 0.267 0.330 0.117 1.127 0.226 1.741 0.304
New MDϕDE - RIG SJ 0.351 0.066 1.217 0.207 2.001 0.245 0.324 0.132 1.107 0.226 1.670 0.297
New MDϕDE - MT 5 0.328 0.112 1.301 0.235 1.809 0.192 0.363 0.229 1.195 0.213 1.592 0.356
New MDϕDE - MT 10 0.330 0.091 1.355 0.235 1.923 0.220 0.351 0.204 1.247 0.230 1.645 0.285
New MDϕDE - MT 15 0.327 0.076 1.383 0.234 1.973 0.237 0.348 0.199 1.275 0.233 1.680 0.294
New MDϕDE - MT 20 0.328 0.076 1.403 0.233 2.002 0.249 0.348 0.198 1.295 0.235 1.702 0.297

Basu-Lindsay - Gauss Silverman 0.752 0.064 2.199 0.248 38.66 8.66 0.822 0.083 1.927 0.276 32.37 13.52
Basu-Lindsay - Gauss SJ 0.723 0.059 2.205 0.257 16.18 10.75 0.759 0.065 1.958 0.263 19.52 10.56
Basu-Lindsay - MT 5 0.403 0.072 1.339 0.224 3.241 0.547 0.346 0.076 1.260 0.210 2.874 0.338
Basu-Lindsay - MT 10 0.390 0.069 1.409 0.234 3.281 0.465 0.337 0.067 1.319 0.217 2.813 0.233
Basu-Lindsay - MT 15 0.393 0.067 1.458 0.248 3.297 0.476 0.333 0.062 1.340 0.232 2.823 0.257
Basu-Lindsay - MT 20 0.399 0.066 1.472 0.221 3.282 0.458 0.335 0.068 1.362 0.225 2.819 0.300

Beran - Gauss Silverman 0.254 0.058 1.313 0.087 2.010 0.200 0.182 0.074 1.174 0.162 1.703 0.253
Beran - Gauss SJ 0.295 0.067 1.371 0.104 2.085 0.225 0.240 0.079 1.284 0.127 1.794 0.266
Beran - RIG 0.01 0.368 0.064 1.240 0.198 2.147 0.277 0.339 0.094 1.151 0.200 1.858 0.332
Beran - RIG 0.1 0.345 0.061 1.117 0.103 1.897 0.172 0.289 0.095 1.033 0.125 1.570 0.247
Beran - RIG SJ 0.320 0.060 1.069 0.074 1.725 0.138 0.260 0.123 0.997 0.088 1.416 0.203
Beran - MT 5 0.453 0.307 1.146 0.178 1.386 0.180 0.626 0.349 1.055 0.172 1.461 0.531
Beran - MT 10 0.354 0.201 1.238 0.201 1.553 0.133 0.419 0.304 1.134 0.202 1.450 0.425
Beran - MT 15 0.334 0.153 1.286 0.211 1.664 0.143 0.404 0.277 1.178 0.188 1.500 0.370
Beran - MT 20 0.334 0.136 1.317 0.218 1.738 0.156 0.383 0.256 1.207 0.198 1.542 0.348

DϕDE 0.356 0.066 1.248 0.232 2.069 0.278 0.332 0.142 1.113 0.248 1.700 0.289

MDPD 1 0.358 0.087 1.238 0.252 2.127 0.521 0.343 0.113 1.167 0.239 2.005 0.517
MDPD 0.75 0.353 0.073 1.236 0.237 2.088 0.397 0.341 0.108 1.164 0.235 1.951 0.432
MDPD 0.5 0.354 0.068 1.238 0.230 2.071 0.345 0.336 0.105 1.159 0.237 1.860 0.344
MDPD 0.25 0.354 0.066 1.239 0.226 2.053 0.272 0.324 0.131 1.132 0.235 1.699 0.321
MDPD 0.1 0.355 0.066 1.242 0.227 2.048 0.238 0.394 0.241 1.091 0.215 1.780 0.792

MLE (EM) 0.355 0.066 1.245 0.228 2.054 0.237 0.321 0.187 0.913 0.313 1.575 0.325

Table 1.9: The mean value and the standard deviation of the estimates in a 100-run
experiment on a two-component Weibull mixture (λ = 0.35, ν1 = 1.2, ν2 = 2). The escort
parameter of the DϕDE is taken as the new MDϕDE with the SJ bandwidth choice.
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Estimation
method

No Outliers 10% Outliers
mean median sd mean median sd

Hellinger

Classical MDϕDE 0.052 0.048 0.025 0.108 0.094 0.099

New MDϕDE - Gauss Silverman 0.058 0.054 0.029 0.068 0.065 0.034
New MDϕDE - Gauss SJ 0.058 0.053 0.029 0.064 0.061 0.031
New MDϕDE - RIG 0.01 0.058 0.052 0.030 0.059 0.057 0.030
New MDϕDE - RIG 0.1 0.051 0.049 0.026 0.066 0.062 0.032
New MDϕDE - RIG SJ 0.050 0.050 0.026 0.071 0.066 0.032
New MDϕDE - MT 5 0.057 0.055 0.025 0.081 0.074 0.032
New MDϕDE - MT 10 0.054 0.053 0.026 0.075 0.071 0.032
New MDϕDE - MT 15 0.054 0.054 0.026 0.073 0.069 0.032
New MDϕDE - MT 20 0.055 0.054 0.027 0.073 0.069 0.031

Basu Lindsay - Gauss Silverman 0.298 0.289 0.042 0.247 0.253 0.050
Basu Lindsay - Gauss SJ 0.252 0.256 0.051 0.242 0.246 0.044
Basu Lindsay - MT 5 0.127 0.141 0.046 0.121 0.111 0.042
Basu Lindsay - MT 10 0.133 0.136 0.039 0.117 0.111 0.036
Basu Lindsay - MT 15 0.134 0.141 0.039 0.118 0.110 0.038
Basu Lindsay - MT 20 0.132 0.138 0.039 0.117 0.109 0.039

Beran - Gauss Silverman 0.068 0.062 0.028 0.082 0.081 0.031
Beran - Gauss SJ 0.060 0.054 0.028 0.067 0.065 0.029
Beran - RIG 0.01 0.052 0.048 0.026 0.060 0.058 0.029
Beran - RIG 0.1 0.042 0.039 0.020 0.067 0.061 0.030
Beran - RIG SJ 0.045 0.044 0.017 0.079 0.076 0.030
Beran - MT 5 0.099 0.097 0.016 0.125 0.125 0.022
Beran - MT 10 0.073 0.070 0.021 0.102 0.100 0.028
Beran - MT 15 0.064 0.060 0.022 0.092 0.089 0.030
Beran - MT 20 0.059 0.055 0.023 0.086 0.084 0.030

DϕDE 0.053 0.049 0.027 0.068 0.065 0.031

MDPD 1 0.065 0.061 0.034 0.068 0.064 0.030
MDPD 0.75 0.059 0.056 0.029 0.063 0.060 0.029
MDPD 0.5 0.056 0.052 0.029 0.061 0.056 0.029
MDPD 0.25 0.052 0.048 0.027 0.068 0.067 0.031
MDPD 0.1 0.051 0.048 0.026 0.088 0.083 0.039

MLE 0.052 0.048 0.025 0.095 0.098 0.035

Table 1.10: The mean value with the standard deviation of the TVA committed in a 100-
run experiment on a two-component Weibull mixture (λ = 0.35, ν1 = 1.2, ν2 = 2). The
escort parameter of the DϕDE is taken as the new MDϕDE with the SJ bandwidth choice.
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Estimation
method

No Outliers 10% Outliers
λ sd(λ) ν1 sd(ν1) ν2 sd(ν2) λ sd(λ) ν1 sd(ν1) ν2 sd(ν2)

Hellinger

Classical MDϕDE 0.344 0.059 0.497 0.079 3.063 0.476 0.376 0.053 0.339 0.030 2.892 0.484

New MDϕDE RIG - 0.01 0.330 0.061 0.540 0.140 3.170 0.503 0.338 0.061 0.432 0.105 3.055 0.583
New MDϕDE RIG - 0.1 0.371 0.063 0.468 0.138 3.045 0.452 0.392 0.072 0.372 0.085 2.927 0.464
New MDϕDE RIG - SJ 0.395 0.072 0.442 0.134 3.013 0.443 0.424 0.086 0.354 0.082 2.916 0.459
New MDϕDE MT - 5 0.311 0.062 0.520 0.065 2.875 0.451 0.316 0.063 0.376 0.036 2.699 0.471
New MDϕDE MT - 10 0.302 0.062 0.548 0.077 2.903 0.433 0.306 0.062 0.384 0.039 2.727 0.448
New MDϕDE MT - 15 0.295 0.063 0.564 0.084 2.927 0.434 0.298 0.063 0.388 0.042 2.745 0.450
New MDϕDE MT - 20 0.289 0.063 0.575 0.091 2.943 0.437 0.291 0.063 0.392 0.044 2.758 0.454

Basu-Lindsay MT - 5 0.250 0.070 0.834 0.168 2.849 0.733 0.185 0.074 0.715 0.208 2.189 0.155
Basu-Lindsay MT - 10 0.240 0.065 0.797 0.157 2.789 0.550 0.197 0.087 0.707 0.201 2.324 0.132
Basu-Lindsay MT - 15 0.254 0.073 0.745 0.140 2.915 0.584 0.204 0.078 0.674 0.181 2.352 0.092

Beran RIG - 0.01 0.298 0.058 0.647 0.082 3.017 0.437 0.295 0.057 0.486 0.081 2.842 0.460
Beran RIG - 0.1 0.234 0.054 0.652 0.105 2.374 0.245 0.216 0.053 0.408 0.056 2.149 0.291
Beran RIG - SJ 0.194 0.056 0.653 0.134 1.936 0.246 0.142 0.065 0.402 0.144 1.601 0.325
Beran MT - 5 0.250 0.070 0.463 0.058 1.603 0.140 0.245 0.083 0.340 0.062 1.494 0.208
Beran MT - 10 0.278 0.066 0.501 0.069 2.005 0.181 0.275 0.079 0.354 0.033 1.868 0.260
Beran MT - 15 0.286 0.065 0.524 0.075 2.224 0.218 0.284 0.071 0.365 0.033 2.068 0.280

DϕDE 0.343 0.059 0.5004 0.084 3.047 0.474 0.372 0.056 0.357 0.056 2.897 0.502

MDE 0.75 0.444 0.126 0.595 0.080 3.466 0.643 0.417 0.127 0.602 0.087 3.233 0.606
MDE 0.5 0.376 0.067 0.551 0.093 3.159 0.488 0.357 0.067 0.555 0.097 2.980 0.484
MDE 0.25 0.347 0.061 0.512 0.096 3.057 0.472 0.331 0.062 0.471 0.068 2.879 0.491
MDE 0.1 0.344 0.059 0.496 0.084 3.050 0.470 0.343 0.058 0.384 0.037 2.859 0.484

MLE (EM) 0.344 0.059 0.498 0.079 3.063 0.476 0.376 0.053 0.339 0.303 2.892 0.482

Table 1.11: The mean value and the standard deviation of the estimates in a 100-run
experiment in a two-component Weibull mixture (λ = 0.35, ν1 = 0.5, ν2 = 3). The escort
parameter of the DϕDE is taken as the new MDϕDE with Silverman’s rule.
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Estimation
method

No Outliers 10% Outliers
mean median sd mean median sd

Hellinger

Classical MDϕDE 0.060 0.055 0.024 0.096 0.094 0.025

New MDϕDE RIG - 0.01 0.074 0.070 0.034 0.076 0.073 0.039
New MDϕDE RIG - 0.1 0.079 0.064 0.053 0.099 0.086 0.062
New MDϕDE RIG - SJ 0.091 0.075 0.068 0.120 0.099 0.078
New MDϕDE MT - 5 0.062 0.061 0.027 0.081 0.073 0.031
New MDϕDE MT - 10 0.066 0.064 0.028 0.076 0.070 0.030
New MDϕDE MT - 15 0.069 0.068 0.028 0.076 0.071 0.030
New MDϕDE MT - 20 0.072 0.073 0.029 0.076 0.071 0.030

Basu-Lindsay MT - 5 0.119 0.114 0.039 0.131 0.121 0.029
Basu-Lindsay MT - 10 0.109 0.106 0.033 0.119 0.100 0.038
Basu-Lindsay MT - 15 0.107 0.103 0.030 0.112 0.097 0.033

Beran RIG - 0.01 0.077 0.080 0.026 0.066 0.063 0.029
Beran RIG - 0.1 0.105 0.104 0.025 0.112 0.108 0.038
Beran RIG - SJ 0.157 0.032 0.032 0.193 0.180 0.053
Beran MT - 5 0.182 0.183 0.025 0.207 0.202 0.032
Beran MT - 10 0.127 0.127 0.028 0.153 0.146 0.037
Beran MT - 15 0.102 0.104 0.029 0.126 0.121 0.036

DϕDE 0.060 0.057 0.024 0.091 0.088 0.027

MDP 0.75 0.103 0.083 0.067 0.097 0.083 0.065
MDP 0.5 0.068 0.067 0.029 0.069 0.067 0.028
MDP 0.25 0.062 0.058 0.026 0.064 0.062 0.029
MDP 0.1 0.061 0.059 0.024 0.076 0.072 0.027

MLE 0.060 0.056 0.024 0.096 0.094 0.024

Table 1.12: The mean value with the standard deviation of the TVA committed in a 100-
run experiment on a two-component Weibull mixture (λ = 0.35, ν1 = 0.5, ν2 = 3). The
escort parameter of the DϕDE is taken as the new MDϕDE with the SJ bandwidth choice.
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Estimation
method

No Outliers 10% Outliers
λ sd(λ) ν1 sd(ν1) ν2 sd(ν2) λ sd(λ) ν1 sd(ν1) ν2 sd(ν2)

Hellinger

Classical MDϕDE 0.367 0.102 0.550 0.104 1.054 0.194 0.352 0.158 0.273 0.050 1.051 0.407

New MDϕDE - 0.01 0.445 0.103 0.562 0.135 1.212 0.284 0.409 0.133 0.464 0.156 1.148 0.293
New MDϕDE - 0.1 0.432 0.101 0.502 0.141 1.139 0.241 0.460 0.210 0.378 0.125 1.114 0.302
New MDϕDE - SJ 0.431 0.101 0.485 0.141 1.127 0.244 0.487 0.216 0.356 0.108 1.110 0.309
New MDϕDE MT - 5 0.350 0.158 0.619 0.134 1.006 0.211 0.436 0.313 0.375 0.121 1.245 1.177
New MDϕDE MT - 10 0.338 0.148 0.643 0.135 1.019 0.167 0.474 0.322 0.409 0.140 1.150 0.516
New MDϕDE MT - 15 0.335 0.148 0.658 0.135 1.029 0.161 0.456 0.321 0.411 0.146 1.292 1.689

Basu-Lindsay MT - 5 0.392 0.178 0.734 0.122 1.042 0.022 0.351 0.225 0.757 0.177 1.048 0.026
Basu-Lindsay MT - 10 0.340 0.149 0.742 0.103 1.037 0.024 0.260 0.175 0.712 0.147 1.039 0.024
Basu-Lindsay MT - 15 0.340 0.149 0.742 0.103 1.037 0.024 0.222 0.126 0.696 0.125 1.043 0.016

Beran - 0.01 0.370 0.098 0.685 0.091 1.125 0.188 0.381 0.211 0.572 0.183 1.058 0.215
Beran - 0.1 0.234 0.093 0.747 0.113 1.028 0.118 0.419 0.372 0.479 0.211 1.181 0.553
Beran RIG - SJ 0.211 0.185 0.745 0.130 1.034 0.230 0.259 0.331 0.367 0.181 1.105 0.542
Beran MT - 5 0.302 0.205 0.584 0.129 0.867 0.120 0.471 0.388 0.376 0.128 1.097 0.738
Beran MT - 10 0.327 0.175 0.610 0.132 0.929 0.121 0.490 0.347 0.394 0.131 1.155 0.803
Beran MT - 15 0.331 0.165 0.623 0.128 0.962 0.128 0.470 0.340 0.400 0.132 1.174 0.893

DϕDE 0.371 0.111 0.544 0.100 1.064 0.240 0.473 0.293 0.382 0.175 1.431 1.818

MDPD 0.75 0.494 0.181 0.619 0.089 1.341 0.689 0.505 0.243 0.625 0.087 1.313 0.641
MDPD 0.5 0.413 0.134 0.577 0.101 1.143 0.349 0.412 0.255 0.582 0.101 1.059 0.358
MDPD 0.25 0.366 0.108 0.542 0.110 1.064 0.349 0.554 0.348 0.503 0.117 1.205 0.995
MDPD 0.1 0.368 0.109 0.539 0.106 1.059 0.237 0.451 0.322 0.370 0.111 1.280 1.407

MLE (EM) 0.372 0.108 0.549 0.100 1.055 0.192 0.417 0.194 0.291 0.073 1.114 0.468

Table 1.13: The mean value and the standard deviation of the estimates in a 100-run
experiment in a two-component Weibull mixture (λ = 0.35, ν1 = 0.5, ν2 = 1). The escort
parameter of the DϕDE is taken as the new MDϕDE with Silverman’s rule.
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Estimation
method

No Outliers 10% Outliers
mean median sd mean median sd

Hellinger

Classical MDϕDE 0.056 0.055 0.026 0.124 0.114 0.035

New MDϕDE RIG - 0.01 0.079 0.073 0.039 0.090 0.082 0.044
New MDϕDE RIG - 0.1 0.079 0.065 0.059 0.112 0.101 0.050
New MDϕDE RIG - SJ 0.076 0.065 0.041 0.129 0.117 0.065
New MDϕDE MT - 5 0.063 0.058 0.029 0.114 0.095 0.041
New MDϕDE MT - 10 0.067 0.063 0.028 0.112 0.102 0.038
New MDϕDE MT - 15 0.069 0.067 0.028 0.111 0.105 0.036

Basu-Lindsay MT - 5 0.095 0.067 0.078 0.118 0.087 0.088
Basu-Lindsay MT - 10 0.094 0.074 0.073 0.112 0.088 0.080
Basu-Lindsay MT - 15 0.093 0.072 0.067 0.103 0.088 0.063

Beran RIG 0.01 0.079 0.081 0.028 0.089 0.087 0.033
Beran RIG 0.1 0.087 0.085 0.023 0.103 0.102 0.025
Beran RIG - SJ 0.094 0.092 0.023 0.100 0.097 0.021
Beran MT - 5 0.061 0.060 0.022 0.127 0.134 0.044
Beran MT - 10 0.059 0.055 0.025 0.115 0.096 0.041
Beran MT - 15 0.060 0.056 0.025 0.112 0.097 0.039

DϕDE 0.057 0.055 0.028 0.117 0.113 0.034

MDPD 0.75 0.102 0.091 0.050 0.093 0.088 0.039
MDPD 0.5 0.072 0.067 0.032 0.075 0.074 0.033
MDPD 0.25 0.061 0.056 0.028 0.092 0.090 0.039
MDPD 0.1 0.058 0.055 0.027 0.108 0.087 0.039

MLE 0.056 0.055 0.026 0.122 0.117 0.029

Table 1.14: The mean value with the standard deviation of errors committed in a 100-run
experiment on a two-component Weibull mixture (λ = 0.35, ν1 = 0.5, ν2 = 1). The escort
parameter of the DϕDE is taken as the new MDϕDE with the SJ bandwidth choice.
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1.7.5 Concluding remarks and comments

We summarize the most important remarks based on our simulations presented above.

• Our kernel-based MDϕDE gave very good results in all situations. It has the best
performance especially in difficult situations, and the lowest sensitivity to the choice
of the kernel and the window in the class of ϕ−divergence-based estimators. In com-
parison to the MDPD, results were close in the Gaussian and the Weibull mixture,
and the MDPD had slightly better results. In the GPD model, our kernel-based
MDϕDE had clearly better results than the MDPD making it a good competitor.

• The execution time of the compared methods varies. Both the classical MDϕDE
and the Basu-Lindsay approach were the most time consuming. The MLE and the
MDPD were the best in execution time, whereas both our new kernel-based MDϕDE
and Beran’s approach were in the middle with close execution time.

• Both the MLE and the classical MDϕDE have the best performance under the model
even in difficult models with heavy tails where kernel-based approaches could not
give a satisfactory result. In regular situations such as the Gaussian mixture model,
all methods were equivalent under the model.

• When contamination is present, the compared estimators gave results as expected.
Both the MLE and the classical MDϕDE are not robust against contamination. The
DϕDE guided by our kernel-based MDϕDE gave very good results under the model.
However, when contamination is present, there was no improvement and sometimes
a deterioration in the performance in comparison to the escort parameter. This is
the case of the Weibull mixtures and the GPD model. The obtained results are still
better than MLE and the classical MDϕDE.

• The Basu-Lindsay approach worked very well in regular situations and even showed
a slight improvement in efficiency in comparison to the Beran’s method which is con-
cordant to the result of Basu and Sarkar [1994]. It gave surprisingly good results in
the GPD model under contamination when we used the varying KDE in comparison
to the situation under the model. Unfortunately, it did not give satisfactory results
in the Weibull mixtures. This method seems very sensitive to the kernel under diffi-
cult situations since the model is already influenced by the kernel creating a loss of
information.

• The minimum density power divergence gave very good results in all situations except
for the GPD. The best tradeoff parameter from our set of candidates was a = 0.5.

• The Beran’s method gave very good tradeoff (and many times the best) between
robustness and performance under the model in most of the situations, but not very
well in the GPD model. The best choice of the kernel for the GPD and the Weibull
mixture was the RIG with window 0.01. It was sensitive to the choice of the kernel
and its window in many situations.
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• The applicability of our kernel-based MDϕDE to multivariate situations is bound by
the use of integration in higher dimensions which is the case of other ϕ−divergence-
based estimators and the case of the MDPD when applied to mixture models except
for the L2 distance (a=1) which still has its limitations. A general solution is to use
Monte-Carlo approximation for the integral.

• The results obtained using a fixed window for symmetric or asymmetric kernels give
rise to an interesting question about the choice of the window. This question will be
discussed in future work.

1.8 Appendix: Proofs

1.8.1 Proof of Theorem 1.6.2

Proof. Let ε > 0. We want to prove that limn→∞ P
(
supφ∈Φ |PnH(Pn, φ)− Pnh(PT , φ)| < ε

)
=

1. Since ϕ is twice differentiable (which also implies the differentiability of ϕ#), then by
the mean value theorem, there exist two functions λ1, λ2 : R→ (0, 1) such that:

ϕ′
(

pφ
Kw,n

)
(x)− ϕ′

(
pφ
pT

)
(x) = ϕ′′

(
λ1(x)

pφ
Kw,n

(x) + (1− λ1(x))
pφ
pT

(x)

)[
pφ
Kw,n

(x)−
pφ
pT

(x)

]
,

= ϕ′′
(
λ1(x)

pφ
Kw,n

(x) + (1− λ1(x))
pφ
pT

(x)

)
pφ

Kw,npT
(x) [pT −Kw,n] (x)

= An(x, φ) [pT −Kw,n] (x)

ϕ#

(
pφ
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)
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(
pφ
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)
(yi) =

(
ϕ#
)′(

λ2(yi)
pφ
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(yi) + (1− λ2(yi))
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(yi)

)[
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−
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=
(
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)′(

λ2(yi)
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(yi) + (1− λ2(yi))
pφ
pT

(yi)

)
pφ

Kw,npT
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× [pT −Kw,n] (yi)

= Bn(yi, φ) [pT −Kw,n] (yi).

We denoted:

An(x, φ) = ϕ′′
(
λ1(x)

pφ
Kw,n

(x) + (1− λ1(x))
pφ
pT

(x)

)
pφ

Kw,npT
(x)

Bn(yi, φ) =
(
ϕ#
)′(

λ2(yi)
pφ
Kw,n

(yi) + (1− λ2(yi))
pφ
pT

(yi)

)
pφ

Kw,npT
(yi).

Let n be sufficiently large such that:

sup
x
|Kw ∗ Pn(x)− pT (x)| ≤ min

(
ε,

ε

An
,
ε

Bn

)
where An = supφ

∫
An(x)dx and Bn = supφ

1
n

∑
Bn(yi) which exist by virtue of assump-

tion 3 of the present theorem on the one hand and on the other hand the fact that functions
x 7→ λ1(x) and x 7→ λ2(x) are bounded uniformly inside (0, 1). This event occurs with
probability 1 − ηn with ηn → 0 by the strong consistency assumption (point 2). This
implies that both events: ∣∣∣∣∫ [ϕ′( pφ

Kw ∗ Pn

)
− ϕ′

(
pφ
pT

)]
pφ

∣∣∣∣ ≤ ε,∣∣∣∣∣ 1n
n∑
i=1

ϕ#

(
pφ

Kw ∗ Pn

)
(yi)− ϕ#

(
pφ
pT

)
(yi)

∣∣∣∣∣ ≤ ε
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happen with probability greater than 1−ηn independently of φ. Finally, we conclude that

P

(
sup
φ∈Φ
|PnH(Pn, φ)− Pnh(PT , φ)| < 2ε

)
≥ 1− ηn,

and hence supφ∈Φ |PnH(Pn, φ) − Pnh(PT , φ)| → 0 in probability. To end the proof, we
use assumption 3 together with the result in Example 19.9 in van der Vaart [1998] Chap.

19 which imply that {ϕ#
(
pφ
pT

)
, φ ∈ Φ} is a Glivenko-Cantelli class of functions. Hence,

supφ∈Φ |PTh(PT , φ)−Pnh(PT , φ)| → 0 in probability. Using inequality (1.6.3), we conclude
that supφ∈Φ |PnH(Pn, φ)−PTh(PT , φ)| → 0 in probability. Finally, the previous arguments
prove the first point (1.6.1) in Theorem 1.6.1. The second point in Theorem 1.6.1 is the
same as assumption 4 of the present theorem. By definition of the kernel-based MDϕDE as
a minimum of the criterion function φ 7→ PnH(Pn, φ), Theorem 1 entails the consistency
of our new estimator. �

1.8.2 Proof of Theorem 1.6.3

We follow the same idea of the proof of Theorem 1.6.2. In order to treat the second term in
the right hand side of equation (1.6.4), we use the uniform continuity of function t 7→ t−γ .
Indeed, if |Kw ∗ Pn(x)− pT (x)| < δ2, then:

|(Kw ∗ Pn)−γ(yi)− p−γT (yi)| <
ε

supφ
1
n

∑
pγφ(yi)

.

By the consistency of the kernel estimator, the previous inequality happens with proba-
bility 1 − ηn with ηn → 0. Thus, Bn of Theorem 1.6.2 is now replaced by the simpler
quantity

Bn = sup
φ

1

n

n∑
i=1

pγφ(yi). (1.8.1)

On the other hand, in order to treat the first term in the right hand side of equation
(1.6.4), we rewrite the integral as follows:∫

(Kw ∗ Pn)−γ+1 (x)− p−γ+1
T (x)

p−γφ (x)
dx =

∫ [
(Kw ∗ Pn)

−γ+1
2 (x)− p

−γ+1
2

T (x)

] [
(Kw ∗ Pn)

−γ+1
2 (x) + p

−γ+1
2

T (x)

]
p−γφ (x)

dx.

Now, using the uniform continuity of function17 t 7→ t
−γ+1

2 , we may deduce that if |Kw ∗
Pn(x)− pT (x)| < δ1, then:

|(Kw ∗ Pn)
−γ+1

2 (x)− p
−γ+1

2
T (x)| < ε

supφ
∫ (Kw∗Pn)

−γ+1
2 (x)+p

−γ+1
2

T (x)

p−γφ (x)
dx

. (1.8.2)

Again, by the consistency of the kernel estimator, the previous inequality happens with
probability 1−ηn with ηn → 0. Thus An of Theorem 1.6.2 is now replaced by the quantity

An = sup
φ

∫
(Kw ∗ Pn)

−γ+1
2 (x) + p

−γ+1
2

T (x)

p−γφ (x)
dx.

17notice that −γ+1
2
∈ (0, 1) since γ ∈ (−1, 0).
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Existness and finitness of both An and Bn in probability are ensured by assumptions 3
and 4. Now, using inequalities (1.8.2) and (1.8.1), both events∣∣∣∣∣

∫
(Kw ∗ Pn)1−γ − p1−γ

T

p−γφ
(x)dx

∣∣∣∣∣ < ε;∣∣∣∣∣ 1n
n∑
i=1

(Kw ∗ Pn)−γ − p−γT
p−γφ

(yi)

∣∣∣∣∣ < ε,

happen with probability greater than 1−ηn independently of φ. Finally, we conclude that

P

(
sup
φ∈Φ
|PnH(Pn, φ)− Pnh(PT , φ)| < 2ε

)
≥ 1− ηn,

and hence supφ∈Φ |PnH(Pn, φ)−Pnh(PT , φ)| → 0 in probability. To end the proof, we use
assumption 2 together with the Glivenko-Cantelli theorem to deduce that supφ∈Φ |PTh(PT , φ)−
Pnh(PT , φ)| → 0 in probability. Using inequality (1.6.3), we conclude that supφ∈Φ |PnH(Pn, φ)−
PTh(PT , φ)| → 0 in probability. Finally, the previous arguments prove the first point
(1.6.1) in Theorem 1.6.1. The second point in Theorem 1.6.1 is the same as assumption
4 of the present theorem. By definition of the kernel-based MDϕDE as a minimum of
the criterion function φ 7→ PnH(Pn, φ), Theorem 1 entails the consistency of our new
estimator. �

1.8.3 Proof of Theorem 1.6.4

In the whole proof, the index T will be omitted from φT for the sake of clarity. We start
with calculating the gradient ∇PnH(Pn, φ).

∇PnH(Pn, φ) =
γ

γ − 1

∫
∇pφ

pγ−1
φ

Kγ−1
n,w

dx− 1

n

n∑
i=1

∇pφ
pγ−1
φ

Kγ
n,w

(yi). (1.8.3)

We treat each term separately. The first term can be rewritten as:∫
∇pφ

pγ−1
φ

Kγ−1
n,w

dx =

∫
∇pφpγ−1

φ

[
K1−γ
n,w − p

1−γ
φ

]
dx+

∫
∇pφdx.

The second term in the right hand side is zero because pφ is a density, provided change-
ability between integration and differentiation. For the first term, we write a second order
Taylor expansion of function t 7→ t1−γ :

K1−γ
n,w − p

1−γ
φ = (1− γ)(Kn,w − pφ)p−γφ +

−γ
2

(Kn − pφ)2Mn(x)−γ−1,

where Mn(x) is a point in between Kn,w(x) and pφ(x). We now have:∫
∇pφpγ−1

φ

[
K1−γ
n,w − p

1−γ
φ

]
dx = (1− γ)

∫
∇pφp−1

φ [Kn,w − pφ] dx+

−γ
2

∫
∇pφp−1

φ Mn(x)−γ−1 [Kn,w − pφ]2 dx. (1.8.4)

Using equations (3.11-3.13) from Beran [1977], we may write:

√
n

∫
∇pφp−1

φ [Kn,w − pφ] dx −→
L
N (0, S), (1.8.5)
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where S =
∫
∇pφ∇ptφdx.

The second term will be handled in a similar way to equations (3.11-3.13) from Beran
[1977]. Let Kn(x) = K(x/wn)/wn. Write∫

∇pφp−1
φ Mn(x)−γ−1 [Kn,w − pφ]2 dx =

∫
∇pφp−1

φ Mn(x)−γ−1 [Kn,w −Kn ∗ Pφ]2 dx+

2
∫
∇pφp−1

φ Mn(x)−γ−1 [Kn,w −Kn ∗ Pφ] [Kn ∗ Pφ − pφ] dx+
∫
∇pφp−1

φ Mn(x)−γ−1 [Kn ∗ Pφ − pφ]2 dx,

(1.8.6)

and prove that each term has a limit equal to zero when multiplied by
√
n. There are two

essential arguments. The first one uses equation (3.11) from Beran [1977] to write:

sup
x
|Kn ∗ Pφ − pφ| ≤

w2

2
sup
x

∣∣p′′φ(x)
∣∣ ∫ x2K(x)dx. (1.8.7)

The second one is a result of Corollary 5 from Wied and Weibßach [2012]:

lim
n→∞

√
nw

−2 logw
sup
x

|Kn,w −Kn ∗ Pφ|√
pφ

=

(∫
K2(y)dy

)
. (1.8.8)

We treat the first term in equation (1.8.6) using equation (1.8.8).

√
n

∫
|∇pφ| p−1

φ Mn(x)−γ−1 [Kn,w −Kn ∗ Pφ]2 dx ≤
[√

nw

−2 logw
sup
x

|Kn,w −Kn ∗ Pφ|√
pφ

]2

×−2 log(w)

n1/2w

∫
|∇pφ|Mn(x)−γ−1dx

= O
(
−2 log(w)

n1/2w

)
.

We treat the second term in equation (1.8.6) using equations (1.8.8) and (1.8.7).

√
n

∫ |∇pφ|
pφMn(x)γ+1

[Kn,w −Kn ∗ Pφ] [Kn ∗ Pφ − pφ] dx ≤
√

nw

−2 logw
sup
x

|Kn,w −Kn ∗ Pφ|√
pφ

× sup
x

∣∣p′′φ(x)
∣∣ ∫ x2K(x)dx

√
−2 log(w) w3/2

2

∫
|∇pφ|p

−1/2
φ Mn(x)−γ−1dx

= O
(
w3/2

√
−2 log(w)

)
.

We treat the third term in equation (1.8.6) using equation (1.8.7).

√
n

∫
|∇pφ|p−1

φ Mn(x)−γ−1 [Kn ∗ Pφ − pφ]2 dx ≤
√
n
h4

2
sup
x

∣∣p′′φ(x)
∣∣ [∫ x2K(x)dx

]2

×
∫ |∇pφ|
pφMn(x)γ+1

dx

= O
(
n1/2h4

)
.

We conclude using assumption 3 that :

√
n

∫
∇pφp−1

φ Mn(x)−γ−1 [Kn,w − pφ]2 dx −→
P

0.
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This entails together with (1.8.5) that the first term in PnH(Pn, φ) multiplied by
√
n is a

centered multivariate Gaussian with covariance matrix S.
The sum term in PnH(Pn, φ) can be treated similarly. Firstly, write:

1√
n

n∑
i=1

∇pφ
pγ−1
φ

Kγ
n,w

(yi) =
1√
n

n∑
i=1

∇pφpγ−1
φ

[
K−γn,w − p

−γ
φ

]
(yi) +

1√
n

n∑
i=1

∇pφ
pφ

(yi).

Now the second term in the right hand side, is asymptotically Gaussian with mean zero
and covariance matrix equal to S. For the first term, we apply the mean value theorem
on function z−γ . There exists a bounded function Mn(yi) in between Kn,w(yi) and pφ(yi)
such that:

1√
n

n∑
i=1

∇pφpγ−1
φ

[
K−γn,w − p

−γ
φ

]
(yi) =

−γ√
n

n∑
i=1

∇pφ
p2
φ

[Kn,w − pφ] (yi)

+
γ(γ + 1)√

n

n∑
i=1

∇pφ
p3
φ

[Kn,w − pφ]2 (yi)

The treatment of the second term in the right hand side can be done similarly to the
second term in equation (1.8.4) and thus converges to zero when multiplied by

√
n. The

first term will be proved to have the same asymptotic behavior to the first term in equation
(1.8.4). Write the difference between these terms. Let ψ(x) =

∇pφ
p2φ

.

√
n

∣∣∣∣∣−1√
n

n∑
i=1

ψ(x) [Kn,w − pφ] (yi)−
∫
ψ(x) [Kn,w − pφ] pφ(x)dx

∣∣∣∣∣ ≤
sup
x
|Kn,w(x)− pφ(x)|

√
n

∣∣∣∣∫ ψ(x) [Kn,w − pφ] (dPn − dPφ)(x)

∣∣∣∣ =

√
n

∣∣∣∣∫ (Fn − Fφ)(x)d (ψ(x) [Kn,w − pφ]) (x)

∣∣∣∣ ≤
√
n sup |Fn − Fφ|

[
sup |K ′n,w − p′φ|

∫
ψ(x)dx+ sup |Kn,w − pφ|

∫
ψ′(x)dx

]
.

Now, using rates of convergence of the empirical distribution function (see for example
van der Vaart [1998] p. 268), the kernel density estimator (see for example Bordes and
Vandekerkhove [2010] Lemma 3.1) and the derivative of the kernel density estimator (see
Schuster [1969] Theorem 2.5), we prove easily that the right hand side of the inequality in
the previous display tends to zero in probability. This proves our claim. Now it remains
to use the asymptotic normality limit in equation (1.8.5) to deduce that:

√
n

(
−1√
n

n∑
i=1

∇pφ
p2
φ

[Kn,w − pφ] (yi)

)
−→
L
N (0, S).

Collecting the three pieces which generate the asymptotic normality in the whole calculus,
we may conclude that:

√
n∇PnH(Pn, φ) −→

L
N
(

0, (2γ2 + 1)

∫
∇pφ∇ptφ

)
.

The matrix of second order partial derivatives JPnH(Pn,.) can be treated in an easier way
than the vector ∇PnH(Pn, φ). It can be shown using similar techniques to those used here
above that JPnH(Pn,.) converges in probability at rate oP (n−1/2). We may conclude now
that the asymptotic normality result (1.6.8) holds.
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1.8.4 Proof of Theorem 1.6.5

For a clearer writing, we omit the index T from PT in this proof. Deriving the left hand
side of the estimating equation (1.6.9) gives:

γ

γ − 1

∫ [
(γ − 1)∇pC(P )

(
∇pC(P )

)t
+ pC(P )JpC(P )

]
pγ−2
C(P )

(Kw ∗ P )γ−1
IF(P,Q)

− γ
∫ pγ−1

C(P ) [Kw ∗ (Q− P )]∇pC(P )

(Kw ∗ P )γ
(x)dx.

Deriving the right hand side of the estimating equation (1.6.9) gives:

∫ [
(γ − 1)∇pC(P )

(
∇pC(P )

)t
pγ−2
C(P ) + pγ−1

C(P )JpC(P )

]
(Kw ∗ P )γ

(x)dP (x)IF(P,Q)

− γ
∫ pγ−1

C(P ) [Kw ∗ (Q− P )]∇pC(P )

(Kw ∗ P )γ+1
(x)dP (x) +

∫ pγ−1
C(P )∇pC(P )

(Kw ∗ P )γ
(x)(dQ− dP )(x).

We have now:

A IF(P,Q) = γ

∫ pγ−1
C(P ) [Kw ∗ (Q− P )]∇pC(P )

(Kw ∗ P )γ
(x)dx+

∫ pγ−1
C(P )∇pC(P )

(Kw ∗ P )γ
(x)(dQ− dP )(x)

− γ
∫ pγ−1

C(P ) [Kw ∗ (Q− P )]∇pC(P )

(Kw ∗ P )γ+1
(x)dP (x),

where A is defined by formula (1.6.13). Assuming that A is invertible and using the
estimating equation (1.6.9), we can write:

IF(P,Q) = γA−1

∫ pγ−1
C(P ) [Kw ∗Q]∇pC(P )

(Kw ∗ P )γ

(
1− p

K ∗ P

)
(x)dx+A−1

∫ pγ−1
C(P )∇pC(P )

(Kw ∗ P )γ
(x)dQ(x).

The remaining of the proof is a simple substitution of C(P ) by φT when P = PφT , and
replacing Q by the dirac measure on a point x0. �
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Chapter 2

Iterative Proximal-Point
Algorithm for the Calculus of
Divergence-Based Estimators with
Application to Mixture Models

In the previous chapter, we have presented and introduced several estimators; an estima-
tor based on Beran’s approach (1.2.1), an estimator based on the Basu-Lindsay approach
(1.2.2), the MDϕDE (1.3.6), the DϕDE (1.3.7), our new kernel-based MDϕDE (1.5.4) and
the MDPD (1.3.8). All these estimators, the MLE included, are in general non convex
(or non concave for the DϕDE) optimization problems. The calculus of these estima-
tors in general is then not guaranteed to give a good result for a finite-sample setup
when we use any standard optimization algorithm. There exist several optimization al-
gorithms such as Gradient descent algorithms (first and second order gradient descent
and gradient-conjugate algorithms), the BFGS algorithm, the Nelder-Mead’s algorithm,
Brent’s algorithm among others, see Lange [2013]. These algorithms guarantee the con-
vergence of the iterative procedure to a global optimum whose objective function it is a
strictly convex (or concave) function. If it is not the case, the algorithm converges to a
local optimum. Each optimization method has its own advantages and drawbacks. There
are also some algorithms which treat functions which can be written as the difference of
two convex functions called convex-concave optimization algorithms, see Yuille and Ran-
garajan [2003]. These algorithms, for example, give in general better results than convex
optimization algorithms for this kind of functions.

There is on the other hand, another type of optimization algorithms which attack a
modified version of the objective function, say D(φ) + g(φ, φk), where D is the objective
function and g is a perturbation function which depends on the current iteration k. A
perturbation of the objective function has a goal of giving it a ”better form”. The iterative
procedure then proceeds to optimize the modified function iteratively as the perturbation
becomes less and less important as the number of the iteration increases. This kind of
algorithms is called proximal-point algorithms. It was first proposed by Martinet [1970]
who used a perturbation of the form g(φ, φk) = ‖φ − φk‖. Generally, the proximal term
has a regularization effect in the sense that a proximal point algorithm is more stable and
frequently outperforms classical optimization algorithms, see Goldstein and Russak [1987].
Furthermore, and as mentioned in [Chrétien and Hero, 2008], proximal point algorithms
permit to avoid saddle points.
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The EM algorithm is a very interesting example of proximal point algorithms, see para-
graph 2.1.2 for a detailed calculus or the papers of Chrétien and Hero [1998] and Tseng
[2004]. Indeed, one may rewrite the conditional expectation of the complete log-likelihood
as a sum of the log-likelihood function and a distance-like function over the conditional
densities of the labels provided an observation. Thus, the EM algorithm has the log-
likelihood as an objective function which is being perturbed by a distance-like function.
Chrétien and Hero Chretien and Hero [1998] proved superlinear convergence of a proximal
point algorithm derived by the EM algorithm. Notice that EM-type algorithms usually
enjoy no more than linear convergence.

Taking into consideration the need for robust estimators, and the fact that the MLE is
the least robust estimator among the class of divergence-type estimators, we generalize the
EM algorithm (and the version in Tseng [2004]) by replacing the log-likelihood function by
an estimator of a ϕ−divergence between the true distribution of the data and the model.
We, thus, propose to calculate divergence-based estimators mentioned here above using a
proximal-point algorithm based on the work of Tseng [2004] on the log-likelihood function.
This proximal-point algorithm extends the EM algorithm. Our convergence proof of the
iterative procedure requires some regularity of the estimated divergence with respect to
the parameter vector which can be easily checked using Lebesgue theorems except for the
dual formula (1.3.5). Indeed, the supremal form of the estimated divergence in the dual
formula complicates the situation. Recent results in Rockafellar and Wets [1998] provide
sufficient conditions to solve this problem. It may at time be very difficult to prove that
the objective function is differentiable with respect to φ, therefore, our results cover the
case when the objective function is not differentiable.
We also propose a two-step iterative algorithm to calculate divergence-based estimators
for mixture models motivated by the EM algorithm; a step to calculate the proportion and
a step to calculate the parameters of the components. Proofs for this simplified version
become more technical. The goal of this simplification is to reduce the dimension over
which we optimize since in lower dimensions, optimization procedures are more efficient1.
Another contribution of this work concerns the assumptions ensuring the convergence of
the algorithm. In the previous works on such type of proximal algorithms such as the
papers of Tseng [2004] and Chrétien and Hero [1998], the proximal term is supposed to
verify an identifiability property. In other words g(φ, φ′) = 0 if and only if φ = φ′. We
show that such property is difficult to verify and it is often not fulfilled in mixture models.
We provide a way to relax such condition without imposing further assumptions.

2.1 Development of the proximal-point algorithm from the
EM algorithm

2.1.1 General context and notations

Let (X,Y ) be a couple of random variables with joint probability density function f(x, y|φ)
parametrized by a vector of parameters φ ∈ Φ ⊂ Rd. Let (X1, Y1), · · · , (Xn, Yn) be n copies
of (X,Y ) independently and identically distributed. Finally, let (x1, y1), · · · , (xn, yn) be
n realizations of the n copies of (X,Y ). The xi’s are the unobserved data (labels) and

1This does not cover all optimization methods. For example, the Nelder-Mead algorithm is considered
as ”unreliable” in univariate optimization. The Brent method can be used as an alternative. Note that
these two algorithms are suitable for non differentiable functions since they only use function values to
reach an optimum.
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the yi’s are the observations. The vector of parameters φ is unknown and need to be
estimated.
The observed data yi are supposed to be real vectors and the labels xi belong to a space
X not necessarily finite unless mentioned otherwise. Denote dx the measure on the label
space X (for example the counting measure if X is discrete). The marginal density of the
observed data is given by pφ(y) =

∫
f(x, y|φ)dx.

For a parametrized function f with a parameter a, we write f(x|a). We use the notation
φk for sequences with the index above. Derivatives of a real valued function ψ defined
on R are written as ψ′, ψ′′, etc. We use ∇f for the gradient of real function f defined on
Rd, ∂f to its subgradient and Jf to the matrix of second order partial derivatives. For a
generic function H of two variables (φ, θ), ∇1H(φ, θ) denotes the gradient with respect to
the first (vectorial) variable φ.

2.1.2 EM algorithm and Tseng’s generalization

The EM algorithm is a well-known method for calculating the maximum likelihood esti-
mator of a model where incomplete data is considered. For example, when working with
mixture models in the context of clustering, the labels or classes of observations are un-
known during the training phase. Several variants of the EM algorithm were proposed, see
McLachlan and Krishnan [2007]. The EM algorithm estimates the unknown parameter
vector by generating the sequence (see [Dempster et al., 1977]):

φk+1 = arg max
Φ

Q(φ, φk)

= arg max
Φ

E
[
log(f(X,Y|φ))

∣∣∣Y = y, φk
]
,

where X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) and y = (y1, · · · , yn). By independence
between the couples (Xi, Yi)’s, the previous iteration may be rewritten as:

φk+1 = arg max
Φ

n∑
i=1

E
[
log(f(Xi, Yi|φ))

∣∣∣Yi = yi, φ
k
]

= arg max
Φ

n∑
i=1

∫
X

log(f(x, yi|φ))hi(x|φk)dx, (2.1.1)

where hi(x|φk) is the conditional density of the labels (at step k) provided yi. It is given
by:

hi(x|φk) =
f(x, yi|φk)
pφk(yi)

. (2.1.2)

This justifies the recurrence equation given by [Tseng, 2004]. It is slightly different from
the EM recurrence defined in [Dempster et al., 1977]. The conditional expectation of the
logarithm of the complete likelihood provided the data and the parameter vector of the
previous iteration is calculated, here, on the vector of observed data. The expectation is
replaced by an integral against the corresponding conditional density of the labels.
It is well-known that the EM iterations can be rewritten as a difference between the log-
likelihood and a Kullback-Liebler distance-like function. Indeed, using (2.1.2) in (2.1.1),
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one can write:

φk+1 = arg max
Φ

n∑
i=1

∫
X

log (hi(x|φ)× pφ(yi))hi(x|φk)dx

= arg max
Φ

n∑
i=1

∫
X

log (pφ(yi))hi(x|φk)dx+
n∑
i=1

∫
X

log (hi(x|φ))hi(x|φk)dx

= arg max
Φ

n∑
i=1

log (pφ(yi)) +
n∑
i=1

∫
X

log

(
hi(x|φ)

hi(x|φk)

)
hi(x|φk)dx

+
n∑
i=1

∫
X

log
(
hi(x|φk)

)
hi(x|φk)dx.

The final line is justified by the fact that hi(x|φ) is a density, therefore it integrates to 1.
The additional term does not depend on φ and, hence, can be omitted. We now have the
following iterative procedure:

φk+1 = arg max
Φ

n∑
i=1

log (pφ(yi)) +

n∑
i=1

∫
X

log

(
hi(x|φ)

hi(x|φk)

)
hi(x|φk)dx. (2.1.3)

As stated in [Tseng, 2004], the previous iteration has the form of a proximal point max-
imization of the log-likelihood, i.e. a perturbation of the log-likelihood by a (modified)
Kullback distance-like function defined on the conditional densities of the labels. Tseng
proposed to generalize the Kullback distance-like term into other types of divergences.
Tseng’s recurrence is now defined by:

φk+1 = arg sup
φ

J(φ)−Dψ(φ, φk), (2.1.4)

where J is the log-likelihood function and Dψ is a distance-like function defined on the
conditional probabilities of the classes provided the observations and is given by:

Dψ(φ, φk) =
n∑
i=1

∫
X
ψ

(
hi(x|φ)

hi(x|φk)

)
hi(x|φk)dx, (2.1.5)

for a real positive convex function ψ such that ψ(1) = ψ′(1) = 0. Dψ(φ1, φ2) is positive
and equals zero if φ1 = φ2. Moreover, Dψ(φ1, φ2) = 0 if and only if ∀i, hi(x|φ1) = hi(x|φ2)
dx−almost everywhere. Clearly, (2.1.4) and (2.1.3) are equivalent for ψ(t) = − log(t)+t−1.

2.1.3 Generalization of Tseng’s algorithm

We use the relation between maximizing the log-likelihood and minimizing the Kullback-
Liebler divergence to generalize the previous algorithm. We therefore replace the log-
likelihood function by a ϕ−divergence Dϕ (in the sense of [Csiszár, 1963]) between the
true density of the data pφT and the model pφ. Since the value of the divergence depends on
the true density which is unknown, an estimator of the divergence needs to be considered.
We may use any estimator among (1.2.1), (1.2.2), (1.3.5) or (1.5.3). Our new algorithm
is defined by the following recurrence:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT ) +
1

n
Dψ(φ, φk) (2.1.6)
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where Dψ(φ, φk) is defined by (2.1.5). When ϕ(t) = − log(t) + t− 1, it is easy to see that
we get recurrence (2.1.4). Take for example the case of the approximation (1.3.5). Since

ϕ′(t) = −1
t + 1, we have

∫
ϕ′
(
pφ
pα

)
pφdx = 0. Hence,

D̂ϕ(pφ, pφT ) = sup
α

1

n

n∑
i=1

log(pα(yi))−
1

n

n∑
i=1

log(pφ(yi)).

Using the fact that the first term in D̂ϕ(pφ, pφT ) does not depend on φ, so it does not
count in the arg inf defining φk+1, we may rewrite (2.1.6) as:

φk+1 = arg inf
φ

{
sup
α

1

n

n∑
i=1

log(pα(yi))−
1

n

n∑
i=1

log(pφ(yi)) +
1

n
Dψ(φ, φk)

}

= arg inf
φ

{
− 1

n

n∑
i=1

log(pφ(yi)) +
1

n
Dψ(φ, φk)

}

= arg sup
φ

{
1

n

n∑
i=1

log(pφ(yi))−
1

n
Dψ(φ, φk)

}
= arg sup

φ
J(φ)−Dψ(φ, φk).

For notational simplicity, from now on, we redefine Dψ with a normalization by n, i.e.

Dψ(φ, φk) =
1

n

n∑
i=1

∫
X
ψ

(
hi(x|φ)

hi(x|φk)

)
hi(x|φk)dx. (2.1.7)

Hence, our set of algorithms is redefined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT ) +Dψ(φ, φk). (2.1.8)

We will see later that this iteration forces the estimated divergence to decrease and that
under suitable conditions, it converges to a (local) minimum of D̂ϕ(pφ, pφT ). It results
that, algorithm (2.1.8) is a way to calculate the minimum ϕ−divergence estimator defined
by (1.2.1), (1.2.2), (1.3.6) or (1.5.4).
Before proceeding to study the convergence properties of such algorithm, we will propose
another algorithm for the case of mixture models. In the EM algorithm, the estimation
of the parameters of a mixture model is done mainly by two steps, see paragraph 2.5.2.
The first step estimates the proportions of the classes whereas the second step estimates
the parameters defining the classes. Our idea is based on a directional optimization of the
objective function in (2.1.8). Convergence properties of the two-step algorithm will also
be studied, but the proofs are more technical.

2.2 Two-step Algorithm for mixtures

Let pφ be a mixture model with s components:

pφ(y) =

s∑
i=1

λifi(y|θi). (2.2.1)

Here, φ = (λ, θ) with λ = (λ1, · · · , λs) ∈ [0, 1]s such that
∑

j λj = 1, and θ = (θ1, · · · , θs) ∈
Θ ⊂ Rd−s such that Φ ⊂ [0, 1]s×Θ. In the EM algorithm, the corresponding optimization
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to (2.1.8) can be solved by calculating an estimate of the λ’s as the proportions of classes,
and then proceed to optimize on the θ’s (see for example [Titterington et al., 1985]).
This simplifies the optimization in terms of complexity (optimization in lower spaces) and
clarity (separate proportions from classes parameters). We want to build an algorithm
with the same property and divide the optimization problem into two parts. One which
estimates the proportions λ and another which estimates the parameters defining the form
of each component θ. We propose the following algorithm:

λk+1 = arg inf
λ∈[0,1]s,s.t.(λ,θk)∈Φ

D̂ϕ(pλ,θk , pφT ) +Dψ((λ, θk), φk); (2.2.2)

θk+1 = arg inf
θ∈Θ,s.t.(λk+1,θ)∈Φ

D̂ϕ(pλk+1,θ, pφT ) +Dψ((λk+1, θ), φk). (2.2.3)

This algorithm corresponds to a directional optimization for recurrence (2.1.8) by con-
sidering simply the unit vectors as directions. We can therefore prove analogously that
the estimated divergence between the model and the true density decreases as we proceed
with the recurrence.

We end the first part of this chapter by three remarks:

• Function ψ defining the distance-like proximal term Dψ needs not to be convex as in
Tseng [2004]. As we will see in the convergence proofs, the only properties needed
are: ψ is a non negative function defined on R+ verifying ψ(t) = 0 iff t = 1, and
ψ′(t) = 0 iff t = 1.

• The simplified version is not restricted to mixture models. Indeed, any parametric
model, whose vector of parameters can be separated into two independent parts, can
be estimated using the simplified version.

• As we will see in the proofs, results on the simplified version (2.2.2, 2.2.3) can be
extended to a further simplified one. In other words, one may even consider an
algorithm which attack a lower level of optimization. We may optimize on each class
of the mixture model instead of the whole set of parameters. Since the analytic
separation is not evident, one should expect some loss of quality as a cost of a less
optimization time.

The remaining of the chapter is devoted entirely to the study of the convergence of the
sequences generated by either of the two sets of algorithms (2.1.8) and (2.2.2, 2.2.3) pre-
sented above. A key feature which will be needed in the proofs is the regularity of the
objective function D̂ϕ(pφ, pφT ). Regularity of all divergence estimators mentioned at the
begining of this chapter can be checked using Lebesgue theorems except for the dual for-
mula (1.3.5). Indeed, continuity and differentiability are not simple since the dual formula
is defined through a supremum. The following section is devoted to the study of the
regularity of a function written as the supremum of a bivariable function.

2.3 Analytical properties of the dual formula of ϕ−divergences

The dual formula defining the estimator of the divergence between the true density and
the model defined by (1.3.5) seems quite complicated. This is basically because of a
functional integral and a supremum over it. Continuity and differentiation of the integral
is resolved by Lebesgue theorems. We only need that the integrand as well as its partial
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derivatives to be uniformly bounded with respect to the parameter. However, continuity
or differentiability of the supremum is more subtle. Indeed, even if the optimized function
is C∞, it does not imply the continuity of its supremum. Take for example function
f(x, u) = −exu. We have:

sup
x
f(x, u) =

{
−1 if u = 0;
0 if u 6= 0.

On the basis of the theory presented in [Rockafellar and Wets, 1998] about parametric op-
timization, we present two ways for studying continuity and differentiability of D̂ϕ(pφ, pφT )
defined through (1.3.5). The first one is the most important because it is easier and de-
mands less mathematical notations. In the first approach, we provide sufficient conditions
in order to prove continuity and differentiability almost everywhere of the dual estimator
of the divergence. This approach will be used in the study of the convergence of our
proximal-point algorithm, see Section 2.6. The second approach is presented for the sake
of completness of the study. We give sufficient conditions which permit to prove the dif-
ferentiability everywhere.
We recall first the definition of a subgradient of a real valued function f .

Definition 2.3.1 (Definition 8.3 in Rockafellar and Wets [1998]). Consider a function
f : Rd → R̄ and a point φ∗ with f(φ∗) finite. For a vector v in Rd, one says that:

(a) v is a regular subgradient of f at φ∗, written v ∈ ∂̂f(φ∗), if:

f(α) ≥ f(φ∗)+ < v, α− φ∗ > +o (|α− φ∗|) ;

(b) v is a (general) subgradient of f at φ∗, written v ∈ ∂f(φ∗), if there are sequences
αn → φ∗ with f(αn)→ f(φ∗), and vn ∈ ∂̂f(αn) with vn → v.

2.3.1 A result of differentiability almost everywhere : Lower-C1 func-
tions

Definition 2.3.2 ([Rockafellar and Wets, 1998] Chap 10.). A function D : Φ→ R, where
Φ is an open set in Rd, is said to be lower-C1 on Φ, if on some neighborhood V of each φ
there is a representation

D(φ) = sup
α∈T

f(α, φ)

in which the functions α 7→ f(α, φ) are of class C1 on V and the set T is a compact set
such that f(α, φ) and ∇φf(α, φ) depend continuously not just on φ ∈ Φ but jointly on
(α, φ) ∈ T × V .

In our case, the supremum form is globally defined. Moreover, T = Φ. In case Φ is
bounded, it suffices then to take T = cl(Φ) the closure of Φ since α 7→ f(α, φ) is continu-
ous. The condition on T to be compact is essential here, and can not be compromised, so
that it is necessary to reduce in a way or in another the optimization on α into a compact
or at least a bounded set. For example, one may prove that the values of α 7→ f(α, φ)
near infinity are lower than some value inside Φ independently of φ.
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Theorem 2.3.1 (Theorem 10.31 in [Rockafellar and Wets, 1998]). Any lower-C1 function
D on an open set Φ ⊂ Rd is both (strictly2) continuous and continuously differentiable
where it is differentiable. Moreover, if ∆ consists of the points where D is differentiable,
then Φ \∆ is negligible3.

The stated result can be ensured by simple hypotheses on the model pφ and the func-

tion ϕ. Unfortunately, since the estimated divergence D̂ϕ(pφ, pφT ) will not be everywhere

differentiable, we can no longer talk about the stationarity of D̂ϕ(pφ, pφT ) at a limit point
of the sequence φk generated for example by (2.1.8). We therefore, use the notion of sub-
gradients. Indeed, when a function g is not differentiable, a necessary condition for x0 to
be a local minimum of g is that 0 ∈ ∂g(x0) and it becomes sufficient whenever g is proper
convex4. Moreover, as g becomes differentiable at x0, then ∇g(x0) ∈ ∂g(x0) with equality
if and only if g is C1. In other words, proving that 0 ∈ ∂D̂ϕ(pφ̂, pφT ) means that φ̂ is a

sort of a generalized stationary point of φ 7→ D̂ϕ(pφ, pφT ).
We will be studying later on in paragraphs (2.6.3) and (2.7.1) examples where we ver-
ify with more details the previous conditions and see the resulting consequences on the
sequence (φk)k.

2.3.2 A result of everywhere differentiability: Level-bounded functions

Definition 2.3.3 ([Rockafellar and Wets, 1998] Chap 1.). A function f : Rd × Rd → R̄
with values f(α, φ) is (upper) level-bounded in α locally uniformly in φ if for each φ0 and
a ∈ R there is a neighborhood V for φ0 such that the set {(α, φ)|φ ∈ V, f(α, φ) ≥ a} is
bounded in Rd × Rd for every a ∈ R.

For a fixed φ, the level-boundedness property corresponds to having f(α, φ) → −∞
as ‖α‖ → ∞. In order to state the main result for this case, let φ0 be a point at which
we need to study continuity and differentiability of φ 7→ supα f(α, φ). A first result gives
sufficient conditions under which the supremum function is continuous. We state it as
follows:

Theorem 2.3.2 ([Rockafellar and Wets, 1998] Theorem 1.17). Let f : Rn×Rm → R̄ be an
upper semicontinuous function. Suppose that f(α, φ) is level-bounded in α locally uniformly
in φ. For function φ 7→ supα f(α, φ) to be continuous at φ0, a sufficient condition is the
existence of α0 ∈ arg max α f(α, φ0) such that φ 7→ f(α0, φ) is continuous at φ0.

Since in general, we do not know exactly where the supremum will be, one proves the
continuity of φ 7→ f(α, φ) for every α.
A Further result about continuity and differentiability of the supremum function can also
be stated. Define, at first, the sets Y (φ0) and Y∞(φ0) as follows:

Y (φ0) =
⋃

α∈arg sup β f(β,φ0)

M(α, φ0), for M(α, φ0) = {a|(0, a) ∈ ∂f(α, φ0)}

Y∞(φ0) =
⋃

α∈arg sup β f(β,φ0)

M∞(α, φ0), for M∞(α, φ0) = {a|(0, a) ∈ ∂∞f(α, φ0)}

2A strictly continuous function f is a local Lipschitz continuous function, i.e. for each x0 ∈ intΦ, the
following limit exists and is finite

lim sup
x,x′→x0

|f(x′)− f(x)|
x′ − x

3A set is called negligible if for every ε > 0, there is a family of boxes {Bk}k with d−dimensional
volumes εk such that A ⊂ ∪kBk and

∑
k εk < ε.

4See [Rockafellar and Wets, 1998] theorem 10.1.
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where ∂∞f is the horizon subgradient, see Definition 8.3 (c) in Rockafellar and Wets
[1998]. We avoided to mention the definition here in order to keep the text clearer. Fur-
thermore, in the whole chapter, the horizon subgradient will always be equal to the set {0}.

Theorem 2.3.3 (Corollary 10.14 in [Rockafellar and Wets, 1998]). For a proper upper
semicontinuous function f : Rd × Rd → R̄ such that f(α, φ) is level-bounded in α locally
uniformly in φ, and for φ0 ∈ dom supα f(α, φ):

(a) If Y∞(φ0) = {0}, then φ 7→ supα f(α, φ) is strictly continuous at φ0;

(b) if Y (φ0) = {a} too, then5 φ 7→ supα f(α, φ) is C1 at φ0 with ∇ supα f(α, φ) = a.

In our examples, f will be a continuous function and even C1(Φ×Φ). This implies that
∂∞f(α, φ) = {0} and ∂f(α, φ) = {∇f(α, φ)}, see Exercise 8.8 in Rockafellar and Wets
[1998]. Hence, Y∞(φ0) = {0} whatever φ0 in Φ. Moreover M(α, φ0) = {∇φf(α, φ0)} so
that Y (φ0) =

⋃
{∇φf(α, φ0)} and the union is on the set of suprema of α 7→ f(α, φ0). If

f(α, φ) is level-bounded in α locally uniformly in φ, then the supremum function becomes
strictly continuous. Moreover, if the function f has the same gradient with respect to φ
for all the suprema of α 7→ f(α, φ), then supα f(α, φ) becomes continuously differentiable.
This is for example the case when function α 7→ f(α, φ) has a unique global supremum
for a fixed φ, which is for example the case of a strictly concave function (with respect to
α for a fixed φ).

Example 2.3.1. Let (pφ)φ be an exponential model defined by:

pφ(x) = exp [T (x).φ− C(φ)] .

Let ϕ(t) = t log(t)− t+ 1. The dual representation of the divergence (formula (1.3.5)) is
then given by:

D̂ϕ(pφ, pφ∗) = sup
α

{
Epφ [T (X)].(φ− α) + C(α)− C(φ)− 1

n

n∑
i=1

eT (yi).(φ−α)+C(α)−C(φ)

}
+1.

In order to prove that the optimized function is level-bounded in α locally uniformly in
φ, we take a bounded open neighborhood around φ, and we prove that the optimized
function tends to −∞ as ‖α‖ tends to infinity. For example, for the Gaussian case with
the mean µ as the parameter of interest, we have:

D̂ϕ(pµ, pµ∗) = sup
β∈R

1

2
µ2 − µβ +

1

2
β2 − 1

n

n∑
i=1

eyi(µ−β)+ 1
2
β2− 1

2
µ2 + 1.

It is clear that eβ
2

is the dominant term at ∞, and by putting µ in a bounded interval,
the limit of the optimized function when β tends to infinity is easily calculated and equals
−∞.
For the exponential case pa(x) = ae−ax with a > 0 the parameter of interest, we have:

D̂ϕ(pa, pa∗) = sup
b>0

b

a
− log(b) + log(a)− 1

n

n∑
i=1

e−yi(a−b)−log(b)+log(a).

5In the statement of the corollary in [Rockafellar and Wets, 1998], the supremum function becomes
strictly differentiable, but to avoid extra vocabularies, we replaced it with an equivalent property.
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Here again, the dominant term is eyib at infinity. Since an observation of an exponential
law is positive, the limit when b tends to infinity is hence easily calculated and equals −∞.
For part (a) of Theorem 2.3.3 to be verified, we still need to prove that Y∞(φ0) = {0}. How-
ever, this is verified because the optimized function, here, is continuously differentiable,
so that it is strictly continuous. This implies that Y∞(φ0) = {0}. Hence, D̂ϕ(pφ, pφT ) is
strictly continuous.
To prove that it is also C1, we need to prove that Y (φ0) contains but one element. First
of all, since the optimized function is differentiable, Y (φ0) =

⋃
{∇φf(α, φ0)}. The union

is over the set {arg max α f(α, φ0)}. Let’s calculate the jacobian matrix with respect to
α and see when it might be definite negative, and hence function α 7→ f(α, φ) would be
strictly concave and would only have one maximum whenever it exists6. If for any φ, it is
definite negative, this should be sufficient to prove the claim.

∇αf(α, φ) = −Epφ [T (X)] +∇C(α)− 1

n

n∑
i=1

(∇C(α)− T (yi))e
T (yi).(φ−α)+C(α)−C(φ)

Jf (α, φ) = JC(α)− 1

n

n∑
i=1

(
JC(α) + (∇C(α)− T (yi)).(∇C(α)− T (yi))

t
)
eT (yi).(φ−α)+C(α)−C(φ)

For the Gaussian example, we have:

∂f

∂β
(β, µ) = −µ+ β − 1

n

n∑
i=1

(β − yi)eyi(µ−β)+ 1
2
β2− 1

2
µ2

∂2f

∂β2
(β, µ) = 1− 1

n

n∑
i=1

(
1 + (β − yi)2

)
eyi(µ−β)+ 1

2
β2− 1

2
µ2

The gradient has at least one zero since it is continuous and has +∞ limit at −∞ and
−∞ limit at +∞. The second derivative with respect to β is unfortunately not necessarily
negative so that function β 7→ f(β, µ) is not concave. An analytical study of function f
seems very difficult. Let’s simulate a 10-sample of the standard Gaussian probability law,
and let a mathematical tool such as Mathematica do the painting. Table (2.1) shows the
dataset used.

yi 0.644 -3.144 -1.029 -0.367 0.353 -0.704 1.148 0.674 0.148 -0.721

Table 2.1: A 10-sample Gaussian dataset.

We make a 3D plot for f(β, µ) in two parts. The first part for µ > 0 and the second is for
µ < 0 to get a clear view about what happens when µ changes, see figure (2.1). Although
the second derivative with respect to β is not necessarily negative, function β 7→ f(β, µ)
has only one maximum point. We conclude that function supβ f(β, µ) is continuously
derivable for the dataset provided in table (2.1).

6Notice that for both the Gaussian and exponential example, the derivative passes by zero as will be
explained later on. Therefore, strict concavity would imply the existence of one maximum.
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Figure 2.1: A 3D plot of function f in the Gaussian example shows that there is only one
maximum for each value of µ.

For the exponential case, we have:

∂f

∂b
=

1

a
− 1

b
− 1

n

n∑
i=1

(
byi −

1

b

)
e−yi(a−b)−log(b)+log(a)

∂2f

∂b2
=

1

b2
− 1

n

n∑
i=1

(
yi +

1

b2
+

(
byi −

1

b

)2
)
e−yi(a−b)−log(b)+log(a)

We similarly have the same previous problem. The second derivative is not necessarily
negative, however, when simulating a dataset and plotting function f , we may conclude
that it has only one maximum whenever a is fixed. Hence function supb f(a, b) becomes
continuously derivable.
These two examples, although very simple, shows the difficulty in proving differentiability.
Our proof, earlier, depends heavily on graphical tools, which may still appear not totally
convincing. Another undesirable aspect is that even if we admit the graphical indications
about the existence of a unique maximum, the final conclusion stays related to the dataset
we are working on. An analytical proof for previous examples remain an open problem
for further work.

Remark 2.3.1 (An implicit function point of view). One may try in case f(α, φ) is
concave to calculate the gradient with respect to α. At the supremum, whenever it exists,
we have ∇αf(α, φ) = 0. The solution in α is a priori a function of φ, say α(φ). The
implicit function theorem provides a way to prove the existence of such function and gives
sufficient conditions for continuity and differentiability. Notice that a global version of the
implicit function theorem is needed here in order to define α(φ) on the whole Φ and not
locally. As soon as we have such a function, we may write f(α(φ), φ) = D̂ϕ(pφ, pφT

), and
the divergence becomes differentiable using a simple chain rule. The problem with this
solution is that the conditions to ensure a global function α(φ) are not simple, see for
example [Cristea, 2007] and the references therein.

2.4 Convergence properties

We adapt the ideas given in [Tseng, 2004] to develop a suitable proof for our proximal
algorithm. We present some propositions which show how according to some possible
situations one may prove convergence of the algorithms defined by recurrences (2.1.8) and
(2.2.2, 2.2.3). Let φ0 = (λ0, θ0) be a given initialization for the parameters, and define the
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following set
Φ0 = {φ ∈ Φ : D̂ϕ(pφ, pφT ) ≤ D̂ϕ(φ0, φT )} (2.4.1)

where D̂ϕ(φ, φT ) is any estimator of the ϕ−divergence among (1.2.1), (1.2.2), (1.3.5) or
(1.5.3). We suppose that Φ0 is a subset of int(Φ). The idea of defining such a set in this
context is inherited from the paper of [Wu, 1983] which provided the first correct proof
of convergence for the EM algorithm. Before going any further, we recall the following
definition of a (generalized) stationary point.

Definition 2.4.1. Let f : Rd → R be a real valued function. If f is differentiable at a
point φ∗ such that ∇f(φ∗) = 0, we then say that φ∗ is a stationary point of f . If f is not
differentiable at φ∗ but the subgradient of fat φ∗, say ∂f(φ∗), exists such that 0 ∈ ∂f(φ∗),
then φ∗ is called a generalized stationary point of f .

Using continuity and differentiability assumptions on both D̂ϕ and Dψ, we will prove
the following results:

• For both algorithms (2.1.8) and (2.2.2, 2.2.3), if Φ0 is closed and {φk+1 − φk} → 0,
then any limit point of (φk)k is a stationary point of the objective function D̂ϕ(φ, φT );

• For algorithm (2.1.8), if we only have Φ0 is compact, then any limit point is a
stationary point of the objective function;

• For algorithm (2.2.2, 2.2.3), if Φ0 is compact and ‖λk+1 − λk‖ → 0, then any limit
point is a stationary point of the objective function;

• For both algorithms (2.1.8) and (2.2.2, 2.2.3), if Φ0 is compact and Dψ(φ, φ′) > 0
iff φ 6= φ′, then {φk+1 − φk} → 0 and any limit point is a stationary point of the
objective function.

• In case the objective function φ 7→ D̂ϕ(pφ|pφT ) is not continuously differentiable, we
prove previous points for algorithm (2.1.8) with generalized stationary point instead
of stationary point.

We will be using the following assumptions which will be checked in several examples later
on.

A0. Functions φ 7→ D̂ϕ(pφ|pφT ), Dψ are lower semicontinuous;

A1. Functions φ 7→ D̂ϕ(pφ|pφT ), Dψ and ∇1Dψ are defined and continuous on, respec-
tively, Φ,Φ× Φ and Φ× Φ;

AC. ∇D̂ϕ(pφ|pφT ) is defined and continuous on Φ;

A2. Φ0 is a compact subset of int(Φ);

A3. Dψ(φ, φ̄) > 0 for all φ̄ 6= φ ∈ Φ.

Recall also the assumptions on functions hi defining Dψ. We suppose that hi(x|φ) >
0, dx− a.e., and ψ(t) = 0 iff t = 1. Besides ψ′(t) = 0 iff t = 1.
Concerning assumptions A1 and AC, we have previously discussed the analytical properties
of D̂ϕ(pφ|pφT ) after Section 2.2 and in Section 2.3. In what concerns Dψ, continuity and
differentiability can be obtained merely by fulfilling Lebesgue theorems conditions. For
example, if hi(x, φ) is continuous and bounded uniformly away from 0 independently of φ,
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then continuity is guaranteed as soon as ψ is continuous. If we also suppose that∇φhi(x, φ)
exists, is continuous and is uniformly bounded independently of φ, then as soon as ψ is
continuously differentiable, Dψ becomes continuously differentiable. For assumption A2,
there is no universal method. Still, in all the examples that will be discussed later, we
use the fact that the inverse image of a closed set by a continuous function is closed.
Boundedness is usually ensured using a suitable choice of φ0. Finally, assumption A3 is
checked using Lemma 2 proved in [Tseng, 2004] which we restate here.

Lemma 2.4.1 (Tseng [2004] Lemma 2). Suppose ψ to be a continuous non negative
function such that ψ(t) = 0 iff t = 1. For any φ and φ′ in Φ, if hi(x|φ) 6= hi(x|φ′) for
some i ∈ {1, · · · , n} and some x ∈ int(X) at which both hi(.|φ) and hi(.|φ′) are continuous,
then Dψ(φ, φ′) > 0.

In section (2.6), we present three different examples; a two-component Gaussian mixture,
a two-component Weibull mixture and a Cauchy model. We will see that the Cauchy
example verifies assumption A3. However, the Gaussian mixture does not seem to verify
it. Indeed, the same fact stays true for any mixture of the exponential family.
We start by providing some general facts about the sequence (φk)k and its existence. We
also prove convergence of the sequence (D̂ϕ(pφk |pφT ))k.

Remark 2.4.1. All results concerning algorithm (2.1.8) are proved even when assumption
AC is not fulfilled. We give proofs using the subgradient of the estimated ϕ−divergence.
In the case of the two-step algorithm (2.2.2, 2.2.3), it was not possible and thus remains an
open problem. The difficulty resides in manipulating the partial subgradients with respect
to λ and θ which cannot be handled in a similar way to the partial derivatives.

Remark 2.4.2. Convergence properties are proved without using the special form of
the estimated ϕ−divergence. Thus, our theoretical approach applies to any optimization
problem whose objective is to minimize a function φ 7→ D(φ). For example, our approach
can be applied on density power divergences (Basu et al. [1998]), Bregman divergences,
S-divergences (Ghosh et al. [2013]), etc.

Proposition 2.4.1. We assume that recurrences (2.1.8) and (2.2.2, 2.2.3) are well defined
in Φ. For both algorithms, the sequence (φk)k verifies the following properties:

(a) D̂ϕ(pφk+1 |pφT ) ≤ D̂ϕ(pφk |pφT );

(b) ∀k, φk ∈ Φ0;

(c) Suppose that assumptions A0 and A2 are fulfilled, then the sequence (φk)k is defined

and bounded. Moreover, the sequence
(
D̂ϕ(pφk |pφT )

)
k

converges.

The proof of this proposition is differed to Appendix 2.9.1. The interest of Proposition
2.4.1 is that the objective function is ensured, under mild assumptions, to decrease along-
side the sequence (φk)k. This permits to build a stop criterion for the algorithm since in
general there is no guarantee that the whole sequence (φk)k converges. It may also con-
tinue to fluctuate in a neighborhood of an optimum. The following result provides a first
characterization about the properties of the limit of the sequence (φk)k as (generalized) a
stationary point of the estimated ϕ−divergence. The proof is differed to Appendix 2.9.2.

Proposition 2.4.2. Suppose that A1 is verified, and assume that Φ0 is closed and {φk+1−
φk} → 0.
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(a) For both algorithms (2.1.8) and (2.2.2,2.2.3), if AC is verified, then the limit of
every convergent subsequence is a stationary point of D̂ϕ(.|pφT );

(b) For the first algorithm (2.1.8), if D̂ϕ(.|pφT ) is not differentiable, then the limit of

every convergent subsequence is a ”generalized” stationary point of D̂ϕ(.|pφT ), i.e.

zero belongs to the subgradient of D̂ϕ(.|pφT ) calculated at the limit point;

Assumption {φk+1 − φk} → 0 used in Proposition 2.4.2 is not easy to be checked unless
one has a close formula of φk. This is the case of the EM algorithm applied on a Gaussian
mixture, see Tseng [2004] Section 5. In general, we prove that {φk+1 − φk} → 0 by
imposing an identifiability assumption over the proximal term, see Chrétien and Hero
[1998] Lemma 5 or Tseng [2004] Lemma 1. The following proposition is a mere adaptation
of such results to the context of ϕ−divergences and the two-step algorithm. The proof
is differed to Appendix 2.9.3. We will present later a result which does not need such
assumption.

Proposition 2.4.3. For both algorithms defined by (2.1.8) and (2.2.2,2.2.3), assume A1,
A2 and A3 verified, then {φk+1 − φk} → 0. Thus, by proposition 2 (according to whether
AC is verified or not) implies that any limit point of the sequence φk is a (generalized)7

stationary point of D̂ϕ(.|pφT ).

We can go further in exploring the properties of the sequence (φk)k, but we need to
impose more assumptions. The following corollary provides a convergence result of the
whole sequence and not only some subsequence. The convergence is also towards a local
minimum as soon as the estimated divergence is locally strictly convex. The proof of the
following result is differed to Appendix 2.9.4.

Corollary 2.4.1. Under the assumptions of Proposition 3, the set of accumulation points
of (φk)k is a connected compact set. Moreover, if D̂(pφ, pφT ) is strictly convex in a neigh-
borhood of a limit point8 of the sequence (φk)k, then the whole sequence (φk)k converges
to a local minimum of D̂(pφ, pφT ).

Proposition 2.4.3 although provides a general solution to prove that {φk+1−φk} → 0, the
identifiability assumption over the proximal term is hard to be fulfilled. It is not verified in
the most simple mixtures such as a two component Gaussian mixture, see Section (2.6.1).
This was the reason behind our next result. We prove that we do not need to assume
identifiability of the proximal term in order to prove that any convergent subsequence of
(φk)k is a (generalized) stationary point of the estimated ϕ−divergence.
A similar idea was employed in [Chrétien and Hero, 2008] who studied a proximal algo-
rithm for the log-likelihood function with a relaxation parameter9. Their work however
requires that the log-likelihood has −∞ limit as ‖φ‖ → ∞ which is not verified on several
mixture models (e.g. the Gaussian mixture model). Our result treat the problem from
another approach based on the introduction of the set Φ0.

Proposition 2.4.4. Assume A1, AC and A2 verified. For the algorithm defined by (2.1.8),
any convergent subsequence converges to a stationary point of the objective function φ→
D̂(pφ, pφT ). If AC is dropped, then 0 belongs to the subgradient of φ 7→ D̂(pφ, pφT ) at the
limit point.

7The case where AC is not verified is only proved for the first algorithm (2.1.8)
8This assumption can be replaced by local strict convexity since a priori, we have no idea where might

find a limit point of the sequence (φk)k.
9A sequence of decreasing positive numbers multiplied by the proximal term.
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The proof is differed to Appendix 2.9.5 We could not perform the same idea on the two-
step algorithm (2.2.2,2.2.3) without assuming that the difference between two consecutive
terms of either the sequence of weights (λk)k or the sequence of form parameters (θk)k
converges to zero. The proof is differed to Appendix 2.9.6.

Proposition 2.4.5. Assume A1 and A2 verified. For the algorithm defined by (2.2.2,2.2.3).
If ‖θk+1 − θk‖ → 0, then any convergent subsequence (φN(k))k converges to a stationary
point of the objective function φ→ D̂(pφ, pφT ).

Remark 2.4.3. The previous proposition demands a condition on the distance between
two consecutive members of the sequence (θk)k which is a priori weaker than the same
condition on the whole sequence φk = (λk, θk). Still, as the regularization term Dψ does
not verify the identifiability condition A3, it stays an open problem for a further work. It
is interesting to notice that condition ‖θk+1−θk‖ → 0 can be replaced by ‖λk+1−λk‖ → 0,
but we then need to change the order of steps (2.2.2) and (2.2.3). A condition over the
proportions seems to be simpler.

Remark 2.4.4. We can define an algorithm which converges to a global infimum of the
estimated ϕ−divergence (see paragraph 2.5.1). The idea is very simple. We need to
multiply the proximal term by a sequence of positive numbers which decreases to zero, say
1/k. The justification of such variant can be deduced from Theorem 3.2.4 in [Chrétien and
Hero, 2008]. The problem with this approach is that it depends heavily on the fact that
the supremum on each step of the algorithm is calculated exactly. This does not happen
in general unless function D̂ϕ(pφ, pφT ) + βkDψ(φ, φk) is strictly convex. Although in our

approach, we use similar assumption to prove the consecutive decreasing of D̂ϕ(pφ, pφT ),
we can replace the infimum calculus in (2.1.8) by two things. We require at each step that
we find a local infimum of D̂ϕ(pφ, pφT )+Dψ(φ, φk) whose evaluation with φ 7→ D̂ϕ(pφ, pφT )

is less than the previous term of the sequence φk. If we can no longer find any local maxima
verifying the claim, the procedure stops with φk+1 = φk. This ensures the availability of
all proofs presented in this paper with no further changes.

2.5 Case Studies and Variants of the algorithm

2.5.1 An algorithm with theoretically global infimum attainment

We present a variant of algorithm (2.1.8) which ensures theoretically convergence to a
global infimum of the objective function D̂ϕ(pφ, pφT ) as long as there exists a convergent
subsequence. The idea is the same as Theorem 3.2.4 in [Chrétien and Hero, 2008]. Define
φk+1 by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT ) + βkDψ(φ, φk).

The proof of convergence is very simple and does not depend on the differentiability of any
of the two functions D̂ϕ or Dψ. We only assume A1 and A2 to be verified. Let (φN(k))k
be a convergent subsequence. Let φ∞ be its limit. This is guaranteed by the compactness
of Φ0 and the fact that the whole sequence (φk)k resides in Φ0 (see Proposition 2.4.1-b).
Suppose also that the sequence (βk)k converges to 0 as k goes to infinity.
Let φ by a vector of Φ which has a value of D̂ϕ(pφ, pφT ) strictly inferior to the value of
the same function at φ∞, i.e.

D̂ϕ(pφ, pφT ) < D̂ϕ(pφ∞ , pφT ). (2.5.1)
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By definition of φN(k), we have:

D̂ϕ(pφN(k) , pφT ) + βN(k)−1Dψ(φN(k), φN(k)−1) ≤ D̂ϕ(pφ, pφT ) + βN(k)−1Dψ(φ, φN(k)),

which holds for every φ in the whole set Φ. Using the non negativity of the term
βN(k)−1Dψ(φN(k), φN(k)−1), one can write:

D̂ϕ(pφN(k) , pφT ) ≤ D̂ϕ(pφ, pφT ) + βN(k)Dψ(φ, φN(k)). (2.5.2)

As we pass to the limit on k, recall firstly that (βk)k converges to 0, so that any subsequence
(βN(k))k also converges to 0. Secondly, the continuity assumption on Dψ implies that,

since φN(k) → φ∞, Dψ(φ, φN(k)) converges to Dψ(φ, φ∞). By compactness of Φ0 and
Proposition 2.4.1-b, we have φ∞ ∈ Φ0. The continuity again of Dψ will imply that the
quantity Dψ(φ, φ∞) is finite. Finally, inequality (2.5.2) now implies that:

D̂ϕ(pφ∞ , pφT ) ≤ D̂ϕ(pφ, pφT )

which contradicts with the choice of φ verifying (2.5.1). Hence, φ∞ is a global infimum on
Φ.
The problem with this approach is that it depends heavily on the fact that the supremum
on each step of the algorithm is calculated exactly. This does not happen in general unless
function D̂ϕ(pφ, pφT ) + βkDψ(φ, φk) is convex or that we dispose of an algorithm which
can solve perfectly non convex optimization problems10. Although in our approach, we
use similar assumption to prove the consecutive decreasing of D̂ϕ(pφ, pφT ), we can replace
the infimum calculus in (2.1.8) by two things. We demand that at each step that we find
a local infimum of D̂ϕ(pφ, pφT ) + Dψ(φ, φk) whose evaluation with φ 7→ D̂ϕ(pφ, pφT ) is

less than the previous term of the sequence φk. If we can no longer find any local infima
verifying the claim, the procedure stops with φk+1 = φk. This ensures the availability of
all the proofs presented in this paper with no change.

2.5.2 The EM algorithm in the context of mixture models

In the case of mixture models (2.2.1), the EM recurrence can be rewritten in two parts; a
part where the maximization is on the proportions, and a part on the parameters describing
the form of classes. We code the s classes directly by their indices {1, · · · , s}. Starting
from (2.1.1), one may insert directly the constraint on the λ’s into the optimized function
as follows:

(λk+1
1 , · · · , λk+1

s−1 , θ
k+1
1 , · · · , θk+1

s ) = arg sup
λ1≥0,··· ,λs−1≥0,(θ1,···θs)∈Θ

n∑
i=1

s−1∑
j=1

log (λjp(yi|θj))hi(j|φk)

+

n∑
i=1

log

1−
s−1∑
j=1

λj

 p(yi|θj)

hi(j|φk)

where

hi(xj |φk) =
λkj fj(yi|θkj )∑
j λ

k
j fj(yi|θkj )

.

10In this case, there is no meaning in applying an iterative proximal algorithm. We would have used the
optimization algorithm directly on the objective function D̂ϕ(pφ, pφT )

97 / 208



Iterative Proximal-Point Algorithm for the Calculus of Divergence-Based Estimators with Application to Mixture
Models 98

Now, the property of the logarithmic function in transforming the product into a sum is
the cornerstone in the simplification of the optimization.

(λk+1
1 , · · · , λk+1

s−1 , θ
k+1
1 , · · · , θk+1

s ) = arg sup
λ1≥0,··· ,λs−1≥0,(θ1,···θs)∈Θ

n∑
i=1

s−1∑
j=1

log(λj)hi(j|φk)+

n∑
i=1

log

1−
s−1∑
j=1

λj

hi(s|φk)+
n∑
i=1

s−1∑
j=1

log (λjp(yi|θj))hi(j|φk)+
n∑
i=1

log (p(yi|θj))hi(s|φk).

The optimized function is, thus, written as the sum of two independent functions in the
sense that the first one contains only proportions parameters whereas the second contains
other parameters. Since the parameters (proportions and the others) are independent
from each others11, one can rewrite the previous optimization problem as the sum of two
optimization problems:

(λk+1
1 , · · · , λk+1

s−1) = arg sup
λ1≥0,··· ,λs−1≥0

n∑
i=1

s−1∑
j=1

log(λj)hi(j|φk) +
n∑
i=1

log

1−
s−1∑
j=1

λj

hi(s|φk);

(θk+1
1 , · · · , θk+1

s ) = arg sup
(θ1,···θs)∈Θ

n∑
i=1

s−1∑
j=1

log (λjp(yi|θj))hi(j|φk) +
n∑
i=1

log (p(yi|θj))hi(s|φk).

The first step can be explicitly calculated. Solving the gradient equation gives:

1

λj

n∑
i=1

hi(j|φk)−
1∑s−1
l=1 λl

n∑
i=1

hi(s|φk) = 0 ∀j ∈ {1, · · · , s− 1};

∑n
i=1 hi(s|φk)∑n
i=1 hi(j|φk)

λj = 1−
s−1∑
l=1

∀j ∈ {1, · · · , s− 1};(2.5.3)

λ1 + · · ·+
(

1 +

∑n
i=1 hi(s|φk)∑n
i=1 hi(j|φk)

)
λj + λs−1 = 1 ∀j ∈ {1, · · · , s− 1}; (2.5.4)

Equation (2.5.3) implies that:

∀j ∈ {1, · · · , s− 1}, 1∑n
i=1 hi(j|φk)

λj =
1∑n

i=1 hi(j|φk)
λ1. (2.5.5)

Rewriting equation (2.5.4) for j = 1 and using previous identities gives:

1 =

(
1 +

∑n
i=1 hi(s|φk)∑n
i=1 hi(1|φk)

)
λ1 +

s−1∑
l=2

∑n
i=1 hi(l|φk)∑n
i=1 hi(1|φk)

λ1;

1 = λ1

[
1 +

n−
∑n

i=1 hi(1, φ
k)∑n

i=1 hi(1, φ
k)

]
;

λ1 =
1

n

n∑
i=1

hi(1, φ
k).

In the second line, we used the fact that hi(s|φk) = 1 −
∑s−1

l=1 hi(l|φk). Finally, we use
(2.5.5) to deduce that:

λ1 =
1

n

n∑
i=1

hi(1, φ
k)∀j ∈ {1, · · · , s− 1}.

11There is no common constraint between them.

98 / 208



Iterative Proximal-Point Algorithm for the Calculus of Divergence-Based Estimators with Application to Mixture
Models 99

Now, the EM recurrence is given by:

λk+1
j =

1

n

n∑
i=1

hi(xj |φk) j ∈ {1, · · · , s− 1};

θk+1 = arg sup
θ

n∑
i=1

s∑
j=1

log (fj(yi|θj))hi(xj |φk).

This was the idea behind our algorithm defined by (2.2.2,2.2.3). Furthermore, the second
part of the optimization can be simplified more than that. We may write an optimiza-
tion corresponding to each class since the optimized function is a sum of terms each of
which depends only of the parameter vector θj defining the corresponding class. The EM
algorithm can be rewritten as follows:

λk+1
j =

1

n

n∑
i=1

hi(xj |φk)j ∈ {1, · · · , s− 1}

θk+1
j = arg sup

θj

n∑
i=1

log (fj(yi|θj))hi(xj |φk) j ∈ {1, · · · , s}

This suggests to go further in algorithm (2.2.2,2.2.3) and use the same idea of directional
optimization on the second part (2.2.3). The convergence results can be extended to this
variant without any additional assumptions.

2.6 Theoretical study of convergence on some mixtures with
application to the EM algorithm

In this section, we present three examples where we check assumptions A0-A3 and AC
and study the convergence properties of the sequence φk. We only consider for the esti-
mated divergence the two dual formula presented in paragraphs 1.3.1 and 1.5.1. Other
ϕ−divergence-based estimators; Beran’s and Basu-Linsday’s approaches, can be treated
in a similar way to the kernel-based MDϕDE.

2.6.1 two-component Gaussian mixture

We suppose that the model (pφ)φ∈Φ is a mixture of two Gaussian densities, and suppose
that we are only interested in estimating the means µ = (µ1, µ2) ∈ R2 and the proportions
λ = (λ1, λ2) ∈ [η, 1−η]2. The use of η is to avoid cancellation of any of the two components
and to keep the hypothesis about the conditional densities hi true, i.e. hi(x|φ) > 0 for
x = 1, 2. We also suppose to simplify the calculus that the components variances are
reduced (σi = 1). The model takes the form:

pλ,µ(x) =
λ√
2π
e−

1
2

(x−µ1)2 +
1− λ√

2π
e−

1
2

(x−µ2)2 , (2.6.1)

where Φ = [η, 1− η]s ×Rs. Here φ = (λ, µ1, µ2). The distance-like function Dψ is defined
by:

Dψ(φ, φk) =

n∑
i=1

ψ

(
hi(1|φ)

hi(1|φk)

)
hi(1|φk) +

n∑
i=1

ψ

(
hi(2|φ)

hi(2|φk)

)
hi(2|φk),
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where:

hi(1|φ) =
λe−

1
2

(yi−µ1)2

λe−
1
2

(yi−µ1)2 + (1− λ)e−
1
2

(yi−µ2)2
, hi(2|φ) = 1− hi(1|φ).

It is clear that functions hi are of class C1 on (int(Φ)), and as a consequence, Dψ is also
of class C1 on (int(Φ)).
If we are using the dual estimator of the ϕ−divergence given by (1.3.5), then
assumption A0 can be verified using the maximum theorem of Berge [1963]. There is
still a great difficulty in studying the properties (closedness or compactness) of the set
Φ0. Moreover, all convergence properties of the sequence φk require the continuity of
the estimated ϕ−divergence D̂ϕ(pφ, pφT ) with respect to φ. In the context of paragraph

2.3, D̂ϕ(pφ, pφT ) = supα∈Φ f(α, φ) for the Gaussian mixture cannot be treated directly
using any of the two presented approaches. We propose to assume that Φ is compact,
i.e. assume that the means are included in an interval of the form [µmin, µmax]. Now
D̂ϕ(pφ, pφT ) = supα∈Φ f(α, φ) is a lower−C1 function since f(α, φ) is of class C1(Φ) using

Lebesgue theorems. Thus, using Theorem 2.3.1, D̂ϕ(pφ, pφT ) is continuous and differen-
tiable almost everywhere with respect to φ.
The compactness assumption of Φ implies directly the compactness of Φ0. Indeed

Φ0 =
{
φ ∈ Φ, D̂ϕ(pφ, pφT ) ≤ D̂ϕ(pφ0 , pφT )

}
= D̂ϕ(pφ, pφT )−1

(
(−∞, D̂ϕ(pφ0 , pφT )]

)
.

Φ0 is then the inverse image by a continuous function of a closed set, so it is closed in Φ.
Hence, it is compact.

Conclusion 1. Using Propositions 2.4.4 and 2.4.1, if Φ = [η, 1 − η] × [µmin, µmax]2,
the sequence (D̂ϕ(pφk , pφT ))k defined through formula (1.3.5) converges and there exists

a subsequence (φN(k)) which converges to a stationary point of the estimated divergence.
Moreover, every limit point of the sequence (φk)k is a stationary point of the estimated
divergence.

If we are using the kernel-based dual estimator given by (1.5.3) with a Gaus-
sian kernel density estimator, then function φ 7→ D̂ϕ(pφ, pφT ) is continuously differentiable
over Φ even if the means µ1 and µ2 are not bounded. For example, take ϕ = ϕγ defined
by (1.1.3). There is one condition which relates the window of the kernel, say w, with the
value of γ; γ(w2 − 1) > −1. For γ = 2 (the Pearson’s χ2), we need that w2 > 1/2. For
γ = 1/2 (the Hellinger), there is no condition on w.
Closedness of Φ0 is proved similarly to the previous case. Boundedness is however must
be treated differently since Φ is not necessarily compact and is supposed to be Φ =
[η, 1− η]s × Rs. For simplicity take ϕ = ϕγ . The idea is to choose φ0 an initialization for
the proximal algorithm in a way that Φ0 does not include unbounded values of the means.
Continuity of φ 7→ D̂ϕ(pφ, pφT ) permits to calculate the limits when either (or both) of
the means tends to infinity. If both means goes to infinity, then pφ(x) → 0,∀x. Thus,

for γ ∈ (0,∞) \ {1}, we have D̂ϕ(pφ, pφT ) → 1
γ(γ−1) . For γ < 0, the limit is infinity. If

only one of the means tends to ∞, then the corresponding component vanishes from the
mixture. Thus, if we choose φ0 such that:

D̂ϕ(pφ0 , pφT ) < min

(
1

γ(γ − 1)
, inf
λ,µ

D̂ϕ(p(λ,∞,µ), pφT )

)
if γ ∈ (0,∞) \ {1}; (2.6.2)

D̂ϕ(pφ0 , pφT ) < inf
λ,µ

D̂ϕ(p(λ,∞,µ), pφT ) if γ < 0, (2.6.3)
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then the algorithm starts at a point of Φ whose function value is inferior to the limits of
D̂ϕ(pφ, pφT ) at infinity. By Proposition 2.4.1, the algorithm will continue to decrease the

value of D̂ϕ(pφ, pφT ) and never goes back to the limits at infinity. Besides, the definition of
Φ0 permits to conclude that if φ0 is chosen according to condition (2.6.2,2.6.3), then Φ0 is
bounded. Thus, Φ0 becomes compact. Unfortunately the value of infλ,µ D̂ϕ(p(λ,∞,µ), pφT )
can be calculated but numerically. We will see next that in the case of Likelihood function,
a similar condition will be imposed for the compactness of Φ0, and there will be no need
for any numerical calculus.

Conclusion 2. Using Propositions 2.4.4 and 2.4.1, under condition (2.6.2, 2.6.3) the
sequence (D̂ϕ(pφk , pφT ))k defined through formula (1.5.3) converges and there exists a

subsequence (φN(k)) which converges to a stationary point of the estimated divergence.
Moreover, every limit point of the sequence (φk)k is a stationary point of the estimated
divergence.

In the case of the likelihood ϕ(t) = − log(t) + t− 1, the set Φ0 can be written as:

Φ0 =
{
φ ∈ Φ, J(φ) ≥ J(φ0)

}
= J−1

(
[J(φ0),+∞)

)
,

where J is the log-likelihood function. Function J is clearly of class C1 on (int(Φ)). We
prove that Φ0 is closed and bounded which is sufficient to conclude its compactness, since
the space [η, 1− η]s × Rs provided with the euclidean distance is complete.
Closedness. The set Φ0 is the inverse image by a continuous function (the log-likelihood).
Therefore it is closed in [η, 1− η]s × Rs.
Boundedness. By contradiction, suppose that Φ0 is unbounded, then there exists a
sequence (φl)l which tends to infinity. Since λl ∈ [η, 1 − η], then either of µl1 or µl2 tends
to infinity. Suppose that both µl1 and µl2 tend to infinity, we then have J(φl)→ −∞. Any
finite initialization φ0 will imply that J(φ0) > −∞ so that ∀φ ∈ Φ0, J(φ) ≥ J(φ0) > −∞.
Thus, it is impossible for both µl1 and µl2 to go to infinity.
Suppose that µl1 →∞, and that µl2 converges12 to µ2. The limit of the likelihood has the
form:

L(λ,∞, φ2) =

n∏
i=1

(1− λ)√
2π

e−
1
2

(yi−µ2)2 ,

which is bounded by its value for λ = 0 and µ2 = 1
n

∑n
i=1 yi. Indeed, since 1− λ ≤ 1, we

have:

L(λ,∞, φ2) ≤
n∏
i=1

1√
2π
e−

1
2

(yi−µ2)2 .

The right hand side of this inequality is the likelihood of a Gaussian model N (µ2, 0), so
that it is maximized when µ2 = 1

n

∑n
i=1 yi. Thus, if φ0 is chosen in a way that J(φ0) >

J
(
0,∞, 1

n

∑n
i=1 yi

)
, the case when µ1 tends to infinity and µ2 is bounded would never be

allowed. For the other case where µ2 →∞ and µ1 is bounded, we choose φ0 in a way that
J(φ0) > J

(
1, 1

n

∑n
i=1 yi,∞

)
. In conclusion, with a choice of φ0 such that:

J(φ0) > max

[
J

(
0,∞, 1

n

n∑
i=1

yi

)
, J

(
1,

1

n

n∑
i=1

yi,∞

)]
(2.6.4)

12Normally, µl2 is bounded; still, we can extract a subsequence which converges.
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the set Φ0 is bounded.
This condition on φ0 is very natural and means that we need to begin at a point at least
better than the extreme cases where we only have one component in the mixture. This
can be easily verified by choosing a random vector φ0, and calculate the corresponding log-
likelihood value. If J(φ0) does not verify the previous condition, we draw again another
random vector until satisfaction.

Conclusion 3. Using Propositions 2.4.4 and 2.4.1, under condition (2.6.4) the sequence
(J(φk))k converges and there exists a subsequence (φN(k)) which converges to a stationary
point of the likelihood function. Moreover, every limit point of the sequence (φk)k is a
stationary point of the likelihood.

Assumption A3 is not fulfilled (this part applies for all aforementioned situations).
As mentioned in the paper of [Tseng, 2004], for the two Gaussian mixture example, by
changing µ1 and µ2 by the same amount and suitably adjusting λ, the value of hi(x|φ)
would be unchanged. We explore this more thoroughly by writing the corresponding
equations. Let’s suppose, by absurd, that for distinct φ and φ′ we have Dψ(φ|φ′) = 0. By
definition of Dψ, it is given by a sum of non negative terms, which implies that all terms
need to be equal to zero. The following lines are equivalent ∀i ∈ {1, · · · , n}:

hi(0|λ, µ1, µ2) = hi(0|λ′, µ′1, µ′2)

λe−
1
2

(yi−µ1)2

λe−
1
2

(yi−µ1)2 + (1− λ)e−
1
2

(yi−µ2)2
=

λ′e−
1
2

(yi−µ′1)2

λ′e−
1
2

(yi−µ′1)2 + (1− λ′)e−
1
2

(yi−µ′2)2

log

(
1− λ
λ

)
− 1

2
(yi − µ2)2 +

1

2
(yi − µ1)2 = log

(
1− λ′

λ′

)
− 1

2
(yi − µ′2)2 +

1

2
(yi − µ′1)2

Looking at this set of n equations as an equality of two polynomials on y of degree 1 at n
points, we deduce that as we dispose of two distinct observations, say, y1 and y2, the two
polynomials need to have the same coefficients. Thus the set of n equations is equivalent
to the following two equations:{

µ1 − µ2 = µ′1 − µ′2
log
(

1−λ
λ

)
+ 1

2µ
2
1 − 1

2µ
2
2 = log

(
1−λ′
λ′

)
+ 1

2µ
′
1

2 − 1
2µ
′
2

2 (2.6.5)

These two equations with three variables have an infinite number of solutions. Take for
example µ1 = 0, µ2 = 1, λ = 2

3 , µ
′
1 = 1

2 , µ
′
2 = 3

2 , λ
′ = 1

2 .

Remark 2.6.1. The previous conclusion can be extended to any two-component mixture
of exponential families having the form:

pφ(y) = λe
∑m1
i=1 θ1,iy

i−F (θ1) + (1− λ)e
∑m2
i=1 θ2,iy

i−F (θ2).

One may write the corresponding n equations. The polynomial of yi has a degree of at
most max(m1,m2). Thus, if one disposes of max(m1,m2) + 1 distinct observations, the
two polynomials will have the same set of coefficients. Finally, if (θ1, θ2) ∈ Rd−1 with
d > max(m1,m2), then assumption A3 does not hold.

This conclusion holds for both algorithms (2.1.8) or (2.2.2,2.2.3). Unfortunately, we
have no an information about the difference between consecutive terms ‖φk+1−φk‖ except
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for the case of ψ(t) = ϕ(t) = − log(t) + t − 1 which corresponds to the classical EM
recurrence:

λk+1 =
1

n

n∑
i=1

hi(0|φk), µk+1
1 =

∑n
i=1 yihi(0|φk)∑n
i=1 hi(0|φk)

µk+1
1 =

∑n
i=1 yihi(1|φk)∑n
i=1 hi(1|φk)

.

Tseng [2004] has shown that we can prove directly that φk+1 − φk converges to 0.

2.6.2 Two-component Weibull mixture

Let pφ be a two-component Weibull mixture:

pφ(x) = 2λα1(2x)α1−1e−(2x)α1 + (1− λ)
α2

2

(x
2

)α2−1
e−(x2 )

α2

(2.6.6)

We have Φ = (0, 1) × R∗+ × R∗+. Similarly to the Gaussian example, we will study con-
vergence properties in light of our theoretical approach. We will only be interested in
divergences with the class of Cressie-Read functions ϕ = ϕγ given by (1.1.3).
The weight functions hi are given by:

hi(1|φ) =
2λα1(2x)α1−1e−(2x)α1

2λα1(2x)α1−1e−(2x)α1 + (1− λ)α2
2

(
x
2

)α2−1
e−(x2 )

α2
, hi(2|φ) = 1− hi(1|φ).

It is clear the functions hi are of class C1(int(Φ)) and so does φ 7→ Dψ(φ, φ′) for any
φ′ ∈ Φ.
If we are using the dual estimator defined by (1.3.5), then continuity can be
treated similarly to the case of the Gaussian example. Here, however, the continuity and
differentiability of the optimized function f(α, φ), where D̂ϕ(pφ, pφT ) = supα f(α, φ), are
more technical. We list the following three results without any proof, because it suffices to
study the integral term in the formula. Suppose, without loss of generality, that φ1 < φ2

and α1 < α2.

1. For γ > 1, which includes the Pearson’s χ2 case, the dual representation is not well
defined since supα f(α, φ) =∞;

2. For γ ∈ (0, 1), function f(α, φ) is continuous.

3. For γ < 0, function f(α, φ) is continuous and well defined for φ1 < γ−1
γ α1 and

α2 ≥ φ2. Otherwise f(α, φ) = −∞, but the supremum supα f(α, φ) is still well
defined.

In both cases 2 and 3, differentiability of function f(α, φ) holds only on a subset of Φ×Φ
which cannot be written as A×B, and thus the theoretical approaches presented in Sec-
tion 2.3 are not suitable. In order to end this part, we emphasize the fact that, similarly
to the Gaussian example, even continuity of the estimated divergence D̂ϕ(pφ, pφT ) with
respect to φ cannot be treated by our theoretical approaches unless we suppose that Φ
is compact. If Φ is compact, function f(α, φ) becomes level-bounded and Theorem 2.3.2
applies and we can deduce that the estimated divergence is continuous. Differentiability
is far more subtle if we use Theorem 2.3.1.
Similar conclusion as Conclusion 1 can be stated here with no changes except for the fact
that assumption AC is not fulfilled. This entails that our conclusion will be about the
subgradient of the estimated divergence.
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Remark 2.6.2 (Strict continuity of D̂ϕ under boundedness assumption of the shape
parameters). When γ < 0, we can prove strict continuity of φ 7→ D̂ϕ(pφ, pφT ) using
Theorem 2.3.3. We need to calculate Y∞ defined by:

Y∞(φ0) =
⋃

α∈arg sup β f(β,φ0)

M∞(α, φ0), for M∞(α, φ0) = {a|(0, a) ∈ ∂∞f(α, φ0)}.

Let α0 ∈ arg sup β f(β, φ0). Since the value of f(β, φ) is −∞ on the set {(α, φ) ∈ Φ|α2 <
φ2}, then its supremum over β is attained outside of it. Consequently, (α0, φ0) belongs to
the set {(α, φ) ∈ Φ|α2 ≥ φ2} where the integral in function f is of class C1 which implies
that f is also of class C1. This entails that f(α, φ) is strictly continuous at (α0, φ0) which
is, by Theorem 9.13 in [Rockafellar and Wets, 1998], equivalent to ∂∞f(α0, φ0) = {0}.
Now, we may conclude that M∞(α, φ0) = {0}, and hence Y∞ = {0}. All ingredients of
Theorem 2.3.1 are ready, and we conclude that the dual representation of the divergence
φ 7→ D̂ϕ(pφ, pφT ) is strictly continuous.
If we could prove that the set Y (φ) contains only one element given a vector φ, then the
differentiability of the estimated divergence would be obtained using point (b) of Theorem
2.3.3. This demands however a great effort since the characterization of the set Y (φ)
demands an investigation of the form of the estimated divergence and the model used.

If we are using the kernel-based dual estimator given by (1.5.3) with a Gaus-
sian kernel density estimator, then things are a lot simplified. We need only to treat the
integral term. From an analytic point of view, the study of continuity depends on the
kernel used; more specifically its tail behavior. If we take a Gaussian kernel, then we have:

• For γ > 1, it is necessary that min(φ1, φ2) > 2, otherwise the estimated divergence is
infinity. Thus, it is necessary for either of the true values of the shapes to be inferior
to 2 in order for the estimation to be valid;

• For γ ∈ (0, 1), then the estimated divergence is C1(int(Φ));

• For γ < 0, it is necessary that min(φ1, φ2) < 1 − 1
γ and max(φ1, φ2) < 2. If these

conditions do not hold, then the estimated divergence is minimized at −∞ at any
vector of parameters which does not verify the previous condition.

In the first case, if we use a heavier-tailed kernel such as the Cauchy Kernel, the estimated
divergence becomes C1(int(Φ)). In the third case, if we use a compact-supported kernel
such as the Epanechnikov’s kernel, the condition is reduced to only min(φ1, φ2) < 1− 1

γ .
Similar conditions to (2.6.2,2.6.3) can be obtained and we have the same conclusion as
Conclusion 2.
In the case of the Likelihood ϕ(t) = − log(t) + t− 1, we illustrate the convergence of
the EM algorithm through our theoretical approach. Assumptions A1 and AC are clearly
verified since both the log-likelihood and the proximal term are sums of continuously
differentiable functions, and integrals do not intervene here. The set Φ0 is given by:

Φ0 =
{
φ ∈ Φ, J(φ) ≥ J(φ0)

}
= J−1

(
[J(φ0),∞)

)
=

{
φ ∈ Φ, L(φ) ≥ L(φ0)

}
where L(φ) is the likelihood of the model, and J(φ) = log(L(φ)) is the log-likelihood
function. We will show that under similar conditions to the Gaussian mixture, the set Φ0

is compact.
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Closedness of Φ0. Since the shape parameter is supposed to be positive, continuity of
the log-likelihood would imply only that Φ0 is closed in [0, 1] × R∗+ × R∗+, a space which
is not closed and hence is not complete. We therefore, propose to extend the definition of
shape parameter on 0. From a statistical point of view, this extension is not reasonable
since the density function of Weibull distribution with a shape parameter equal to 0 is the
zero function which is not a probability density. Besides, identifiability problems would
appear for a mixture model. Nevertheless, our need is only for analytical purpose. We
will add suitable conditions on φ0 in order to avoid such subtlety keeping in hand the
closedness property.
We suppose now that the shape parameter can have values in R+. The set Φ0 is now the
inverse image of [L(φ0),∞) by the likelihood function13 which is continuous on [0, 1] ×
R+ × R+. Hence, it is closed in the space [0, 1]× R+ × R+ embedded with the euclidean
norm which is complete. It suffices then to prove that Φ0 is bounded.
Boundedness of Φ0. We will make similar arguments to the case of the Gaussian mixture
example. We need to calculate the limit at infinity when the shape parameter of either of
the two components tends to infinity. If both α1 and α2 goes to infinity, the log-likelihood
tends to −∞. Hence any choice of a finite φ0 can avoid this case. Suppose now that α1

goes to infinity whereas α2 stays bounded. The corresponding limit of the log-likelihood
functions is given by:

J(λ,∞, α2) =
n∑
i=1

log

(
(1− λ)

α2

2

(yi
2

)α2−1
e−( yi2 )

α2

)

if there is no observation yi equal to 1
2 . In fact, if there is yi = 1

2 , the limit is +∞ and the
set Φ0 cannot be bounded. However, it is improbable to get such an observation since the
probability of getting an observation equal to 1

2 is zero. The case when α2 goes to infinity
whereas α1 stays bounded is treated similarly.
To avoid the two previous scenarios, one should choose the initial point of the algorithm
φ0 in a way that it verifies:

J(φ0) > max

(
sup
λ,α2

J(λ,∞, α2), sup
λ,α1

J(λ, α1,∞)

)
. (2.6.7)

Since all vectors of Φ0 have a log-likelihood value greater than J(φ0), the previous choice
permits the set Φ0 to avoid non finite values of φ. Thus it becomes bounded when-
ever φ0 is chosen according to condition (2.6.7). Finally, the calculus of both terms
supλ,α1

J(λ, α1,∞) and supλ,α2
J(λ, α2,∞) is not feasible but numerically. Those, how-

ever, can be simplified a little. One can notice by writing these terms without the logarithm
(as a product), the term which has λ is maximized when it is equal to 1. The remaining
of the calculus is a maximization of the likelihood function of a Weibull model14.
We conclude that the set Φ0 is compact under condition (2.6.7). Finally, it is important
to notice that condition (2.6.7) permits also to avoid the border values which corresponds
to α1 = 0 or α2 = 0. Indeed, when either of the shape parameters is zero, the correspond-
ing component vanishes and the corresponding log-likelihood value is less than the upper
bound in condition (2.6.7). The same conclusion as Conclusion 3 can be stated here for
the Weibull mixture model.

13We do not use this time the log-likelihood function since it is not defined when both shape parameters
are zero.

14In a Weibull model, the calculus of the MLE cannot be done but numerically when the parameter of
interest is the shape parameter.

105 / 208



Iterative Proximal-Point Algorithm for the Calculus of Divergence-Based Estimators with Application to Mixture
Models 106

Notice that the verification of assumption A3 is a hard task here because it results in a
set of n non-linear equations.

2.6.3 Pearson’s χ2 algorithm for a Cauchy model

Let {(xi, yi), i = 0, · · · , n} be an n-sample drawn from the joint probability law defined
by the density function:

f(x, y|a, x0) =
a(y − x0)2ex

π (a2 + (y − x0)2ex)2 , x ∈ [0,∞), y ∈ R

where a ∈ [ε,∞), with ε > 0, denotes a scale parameter and x0 ∈ R denotes a location
parameter. We define an exponential probability law with parameter 1

2 on the labels. It
is given by the density function:

q(x) =
1

2
e−x/2.

Now, the model defined on the observed data becomes a Cauchy model with two param-
eters:

p(a,x0)(y) =

∫ ∞
0

f(x, y|a, x0)dx =
a

π(a2 + (y − x0)2)
, a ≥ ε > 0, x0 ∈ R.

The goal of this example is to show how we prove assumptions A1-3 and AC in order
to explore the convergence properties of the sequence φk generated by either of the al-
gorithms (2.1.8) and (2.2.2,2.2.3). We also discuss the analytical properties of the dual
representation of the divergence.
In this example, we only focus on the dual representation of the divergence given by (1.3.5)
because the resulting MDϕDE is robust against outliers (so does the MLE). Thus there is
no need to use a robust estimator such as the kernel-based MDϕDE which needs a choice
of a suitable kernel and window.

Cauchy model with zero location

We suppose here that x0 = 0, and we are only interested in estimating the scale parameter
a. The Pearson’s χ2 divergence is given by:

D(pa, pa∗) =
1

2

∫ [
pa(y)

pa∗
− 1

]2

pa∗(y)dy.

Let’s rewrite the dual representation of the Chi square divergence:

D̂(pa, pa∗) = sup
b≥ε

{∫
R

p2
b(x)

pa(x)
dx− 1

2n

n∑
i=1

p2
b(yi)

p2
a(yi)

}
− 1

2
.

A simple calculus shows: ∫
R

p2
b(x)

pa(x)
dx =

(a2 + b2)π

2ab
.

This implies a simpler form for the dual representation of the divergence:

D̂(pa, pa∗) = sup
b≥ε

{
(a2 + b2)

2ab
− 1

2n

n∑
i=1

a2(b2 + y2
i )

2

b2(a2 + y2
i )

2

}
− 1

2
. (2.6.8)
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Let f(a, b) denote the optimized function in the above formula. We calculate the first
derivative with respect to b:

∂f

∂b
(a, b) = − πa

2b2
+

π

2a
− 1

2n

n∑
i=1

a2

(a2 + y2
i )

2

(
2b− 2y4

i

b3

)
.

Notice that as a ≥ ε the term π
2a stays bounded away from infinity uniformly. Therefore, it

suffices then that b exceeds a finite value b0 in order that the derivative becomes negative.
Hence, there exists b0 such that b 7→ f(a, b) becomes decreasing independently of a. On
the other hand ∀a > 0, limb→∞ f(a, b) = −∞. It results that all values of the function
b 7→ f(a, b) for b > b0 does not have any use in the calculus of the supremum in (2.6.8),
since, by the decreasing property if b 7→ f(a, b), they all should have values less than the
value at b0. We may now rewrite the dual representation of the Chi square divergence as :

D̂(pa, pa∗) = sup
b∈[ε,b0]

{
(a2 + b2)

2ab
− 1

2n

n∑
i=1

a2(b2 + y2
i )

2

b2(a2 + y2
i )

}
− 1

2
. (2.6.9)

We have now two pieces of information about f(a, b). The first is that it is level-bounded
locally in b uniformly in a (see paragraph (2.3.2)). The second is that we are exactly in
the context of lower−C1 functions (2.3.1). First of all, function f is C1([ε,∞) × [ε,∞))
function, so that part (a) of Theorem 2.3.3 is verified and the function a 7→ D̂(pa, pa∗) is
strictly continuous. To prove it is continuously differentiable, we need to prove that the
set

Y (a) =
⋃

b∈arg max b′ f(a,b)

{
∂f

∂a
(a, b)

}
contains but one element. From a theoretic point of view, two possible methods are
available: Prove that either there is a unique maximum for a fixed a, or that the derivative
with respect to a at all maxima does not depend on a (they have the same value). In our
example, function b 7→ f(a, b) is not concave. We may also plot it using any mathematical
tool provided that we already have the data set. We tried out a simple example and
generated a 10-sample of the standard Cauchy distribution (a = 1), see table (2.2). We
used Mathematica to draw a 3D figure of function f , see figure (2.2).

yi 0.534 -18.197 0.726 -0.439 -1.945 0.0119 12.376 -0.953 0.698 0.818

Table 2.2: A 10-sample Cauchy dataset.

It is clear that for a fixed a, the function b 7→ f(a, b) has two maxima which may both
be global maxima. For example for a = 0.9, one gets figure (2.3). It is clearer now that
conditions of Theorem 2.3.3 are not fulfilled, and we cannot prove that function D̂(pa, pa∗)
is continuously differentiable every where.
It is however not the end of the road. We still have the results presented in paragraph

(2.3.1). Function D̂(pa, pa∗) is lower-C1. Therefore, it is strictly continuous and almost
everywhere continuously differentiable. Hence, we may hope that the limit points of the
sequence (φk)k for algorithm (2.1.8) are in the set of points where the dual representation
of the Chi square divergence is C1, or be more reasonable and state any further result on
the sequence in terms of the subgradient of D̂(pa, pa∗).
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Figure 2.2: A 3D plot of function f(a, b) for a 10-sample of the standard Cauchy distri-
bution.

Figure 2.3: A 2D plot of function f(0.9, b) for a 10-sample of the standard Cauchy distri-
bution.

Compactness of Φ0. We check when the set Φ0 = {a|D̂(pa, pa∗) ≤ D̂(pa0 , pa∗)} is closed
and bounded in [ε,∞) for an initial point a0. Closedness is proved using continuity of
D̂(pa, pa∗). Indeed,

Φ0 = D̂−1(pa, pa∗)
(

(−∞, D̂(pa0 , pa∗)]
)
.

Boundedness is proved by contradiction. Suppose that Φ0 is unbounded, then there
exists a sequence (al)l of points of Φ0 which goes to infinity. Formula (2.6.9) shows that
b stays in a bounded set during the calculus of the supremum. Hence the continuity of
D̂(pa, pa∗) implies:

lim
a→∞

D̂(pa, pa∗) = +∞.

This shows that by choosing any finite a0, the set Φ0 becomes bounded. Indeed, the
relation defining Φ0 implies that ∀l, D̂(pal , pa∗) ≤ D̂(pa0 , pa∗) <∞, and a contradiction is
reached by taking the limit of each part of this inequality. Hence Φ0 is closed and bounded
in the space [ε,∞) which is complete provided with the euclidean distance. We conclude
that Φ0 is compact15.
In this simple example, we only can use algorithm (2.1.8) since there is only one param-
eter of interest. Proposition 2.4.4 can be used to deduce convergence of any convergent
subsequence to a generalized stationary point of D̂(pa, pa∗).

15If we are to use a result which concerns the differentiability of D̂(pa, pa∗), one should consider the case
when Φ0 shares a boundary with Φ. A possible solution to avoid this is to consider an initial point a0 such
that D̂(pε, pa∗) > D̂(pa0 , pa∗). This expels the the boundary from the possible values of Φ0.
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To deduce more results about the sequence (ak)k, we may try and verify assumption A3
using Lemma 2.4.1. Let’s write functions hi.

hi(x|a) =
f(x, yi|a)

pa(yi)
=
y2
i e
x(a2 + y2

i )

(a2 + exy2
i )

2
.

Clearly, for any i ∈ {1, · · · , n} and a ≥ ε, function x 7→ hi(x|a) is continuous. Let a, b ≥ ε
such that a 6= b. Suppose that:

∀i, hi(x|a) = hi(x|b) ∀x ≥ 0.

This entails that:

a2b4 − a4b2 + (b4 − a4)y2
i +

(
a2e2x + 2b2ex − b2e2x − 2a2ex

)
y4
i = 0, i = 1, · · · , n.

This is a polynomial on yi of degree 4 which coincides with the zero polynomial on n
points. If there exists 5 distinct observations16, then the two polynomials will have the
same coefficients. Hence, we have b4− a4 = 0. This implies that a = b since they are both
positive real numbers. We conclude that Dψ(a, b) = 0 whenever a = b which is equivalent
to assumption A3. Proposition 2.4.3 can now be applied to deduce that sequence (ak)
defined by (2.1.8) (with φk replaced by ak) is well defined and bounded. Furthermore,
it verifies ak+1 − ak → 0, and the limit of any convergent subsequence is a generalized
stationary point of D̂(pa, pa∗). The existence of such subsequence is guaranteed by the
compactness of Φ0 and the fact that ∀k, ak ∈ Φ0.

Cauchy model with both parameters

The model is now defined by:

p(a,x0)(y) =
a

π(a2 + (y − x0)2)
, a ≥ ε > 0, x0 ∈ R.

Formula (2.6.8) of the dual representation of the Chi square divergence becomes:

D̂(pa,x0 , pa∗,x0) = sup
b≥ε,x1∈R

{
(a2 + b2 + (x1 − x0)2)

2ab
− 1

2n

n∑
i=1

a2(b2 + (yi − x1)2)2

b2(a2 + (yi − x0)2)2

}
− 1

2
.

(2.6.10)
Let f(a, b, x0, x1) be the optimized function in the previous formula. This time, it does not
seem easy to prove that the supremum can be calculated on a compact set. We, therefore,
work on the second approach to study continuity of D̂(pa,x0 , pa∗,x0), i.e. level-boundedness
approach (see paragraph (2.3.2)). For a, let (a−ã, a+ã) ⊂ [ε,∞) be an open neighborhood
around a, and for x0, let (x0 − x̃, x0 + x̃) be an open neighborhood around x0. It is clear
that as either b → ∞ or x1 → ±∞, we have f(a, b, x0, x1) → −∞ since the first term in
f is of order b (resp. x2

1) whereas the second term in f is of order b2 (resp. x4
1) as long

as a is bounded away from zero and x0 is supposed to be bounded. Finally, when both
b and x1 goes to infinity, the important terms in calculating the limit are of order b − b2

and
x21
b −

(
x21
b

)2
. Hence the limit is a fortiori −∞. We conclude that:

f(a, b, x0, x1) −−−−−−−−→
‖(b,x1)‖→∞

−∞

16If one uses the point x = 0, the result follows directly without supposing the existence of distinct
observations.
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Now that f is level-bounded in (b, x1) locally uniformly in (a, x0), and since f is readily
continuous (so it is upper semicontinuous), all ingredients for Theorem 2.3.3 part (a) are
ready. Hence D̂(pa,x0 , paT ,xT0

) is strictly continuous17.

Now that D̂(pa,x0 , pa∗,x0) is continuous, we may use analogous arguments to those given
in the previous paragraph to prove closedness and boundedness of Φ0. Boundedness is
treated a bit differently since the supremum is no longer calculated over a bounded set.
By definition of the supremum, one can write:

sup
b≥ε,x1∈R

{
((al)2 + b2 + (x1 − xl0)2)

2alb
− 1

2n

n∑
i=1

(al)2(b2 + (yi − x1)2)2

b2((al)2 + (yi − xl0)2)2

}
− 1

2
≥{

((al)2 + b′2 + (x′1 − xl0)2)

2alb′
− 1

2n

n∑
i=1

(al)2(b′2 + (yi − x′1)2)2

b′2((al)2 + (yi − xl0)2)2

}
− 1

2

for any b′ ≥ ε and x′1 ∈ R. As the sequence (al, xl0) goes to infinity, the second hand of the
previous inequality tends to infinity. Hence the limit of the left hand is also infinity. Thus,
liml→∞ D̂(pal,xl0

, paT ,xT0
) =∞. We conclude that by choosing any finite initialization, the

set Φ0 becomes bounded. As we could not give any argument about the differentiability
of D̂(pa,x0 , pa∗,x0), the only theoretical results we may state are about the subgradient of
D̂(pa,x0 , pa∗,x0).
Finally, we prove that Dψ((a, x0), (b, x1)) > 0 as (a, x0) 6= (b, x1). We use Lemma 2.4.1.
Let x = 0; a point at which hi is (right)18 continuous. We need to prove that there exists
i such that if hi(0|a, x0) = hi(0|b, x1) then a = b and x0 = x1. We have hi(0|a, x0) =
hi(0|b, x1) is equivalent to

(yi − x0)2(a2 + (yi − x0)2)

(a2 + (yi − x0)2)2
=

(yi − x1)2(b2 + (yi − x1)2)

(b2 + (yi − x1)2)2
, ∀i ∈ {1, · · · , n},

or equivalently(
b2 + x2

0 + x2
1 + 4x1x0

)
y2
i − 2

(
b2x0 + x0x

2
1 + x1x

2
0

)
yi + b2x2

0 + x2
1x

2
0 =(

a2 + x2
1 + x2

0 + 4x0x1

)
y2
i − 2

(
a2x1 + x1x

2
0 + x0x

2
1

)
yi + a2x2

1 + x2
0x

2
1.

Suppose that there are at least three distinct observations. The previous identities can be
rewritten as an identity between two polynomial of degree 2 in yi. Since they are equal
at three distinct roots, they must be identical and all coefficients are equal with their
corresponding ones. The coefficient of y2

i suffices to deduce that is a = b. Identify now
the coefficients of yi to get that b2x0 = a2x1. Since a, b > 0, then x0 = x1.
We finally conclude using Proposition 2.4.3 that if we use algorithm (2.1.8) or algorithm
(2.2.2,2.2.3), the distance between two consecutive terms of the sequence (ak, xk0)k tends to
0 and any limit point of the sequence is a generalized stationary point of D̂(pa,x0 , paT ,xT0

).

2.7 Simulation study

We summarize the results of 100 experiments on 100-samples (with and without outliers)
from two-component Gaussian and Weibull mixtures by giving the average of the error

17In order to get the same results we have on lower-C1 functions, we need to prove that D̂(pa,x0 , paT ,xT0
)

is also regular in the sense of Clarke at all points of its domain; a result which we get by a theorem of
Rademarcher, see [Rockafellar and Wets, 1998] Chapter 9.

18In the proof of the lemma, we use continuity to deduce a certain result in a neighborhood of a point at
which function hi is continuous. Here, right continuity still gives us a neighborhood of the form [x, x+ ε)
which suffices to complete the proof.
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committed with the corresponding standard deviation. The error criterion is mainly the
total variation distance (TVD) defined by (1.7.2). We also provide for the Gaussian mix-
ture the values of the χ2 divergence between the estimated model and the true mixture,
defined by (1.7.1), since it gave infinite values for the Weibull experiment.
We used different ϕ−divergences to estimate the parameters and compared the perfor-
mances of the two dual formulas of estimating a ϕ−divergence (1.3.5) and (1.5.3). We
also included the MDPD of Basu et al. [1998] defined by (1.3.8) for a tradeoff parameter
a = 0.5. This parameter resulted in very good results throughout all simulations carried
in the previous chapter. Other estimators of the divergence could also be considered in a
future work, see the simulations of the previous chapter for a detailed comparison between
these estimators. For the Gaussian mixture, we used the Pearson’s χ2 and the Hellinger
divergences, whereas in the Weibull mixture, we used the Neymann’s χ2 and the Hellinger
divergences. For the proximal term, we used ψ(t) = 1

2(
√
t − 1)2. We illustrate also the

performance of the EM method in the light of our method, i.e. using initializations ver-
ifying conditions (2.6.4) for the Gaussian mixture and conditions (2.6.7) for the Weibull
one. When outliers were added, these initializations did not give always good results and
the convergence of the proportion was towards the border η = 0.1 or 1− η = 0.9. In such
situations, the EM algorithm was initialized using another starting point manually.
We used the Nelder-Mead algorithm (see [Nelder and Mead, 1965]) for all optimization
calculus. The method proved to be more efficient in our context than other optimization
algorithms although having a slow convergence. Such method is derivative-free and applies
even if the the objective function is not differentiable which may be the case of the esti-
mated divergence defined through (1.3.5). The Nelder-Mead algorithm is known to give
good results in problems with dimension at least 2 and does not perform well in dimension
1. We thus used Brent’s method in such cases. It is also a derivative-free method which
works only in a compact subset from R. The calculus was done under the statistical tool
[R Core Team, 2015]. In what concerns numerical integrations, see Section 1.7.

2.7.1 The two-component Gaussian mixture revisited

We consider the Gaussian mixture (2.6.1) presented earlier with true parameters λ =
0.35, µ1 = 2, µ2 = 1.5 and fixed variances σ1 = σ2 = 1. Since we are using an error func-
tion criterion, label-switching problems do not interfere. Figure (2.4) shows the values of
the estimated divergence for both formulas (1.3.5) and (1.5.3) on a logarithmic scale at
each iteration of the algorithm. The 1-step algorithm refers to algorithm (2.1.8), whereas
2-step refers to algorithm (2.2.2,2.2.3). We omitted the initial point in order to produce a
clear image of the decrease of the objective function. For the kernel-based dual formula,
we used a Gaussian kernel. Results are given in table (2.3).
We used the same data simulated in paragraph 1.7.2, so that contamination was done by
adding in the original sample to the 5 lowest values random observations from the uniform
distribution U [−5,−2]. We also added to the 5 largest values random observations from
the uniform distribution U [2, 5]. Results are presented in table (2.4).
It is clear that the kernel-based MDϕDE is more robust than the EM algorithm and the
classical MDϕDE for both the Pearson’s χ2 and the Hellinger divergences. Differences
between the two divergences are not significant for both estimation methods of the di-
vergence. Besides, in comparison with the results obtained with a direct optimization in
paragraph 1.7.2, we find no significant differences. The proximal point algorithm wored as
well on the density power divergence. The MDPD produced robust estimates with minor
differences with respect to the kernel-based MDϕDE in favor of the former.
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Estimation
method

Error criterion√
χ2 TVD

Chi square

Algorithm
(2.1.8)

MDϕDE 0.108, sd = 0.052 0.061, sd = 0.029
kernel-based MDϕDE 0.118 , sd = 0.052 0.066 ,sd= 0.027

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.108, sd = 0.052 0.061, sd = 0.029
kernel-based MDϕDE 0.118, sd = 0.051 0.066 ,sd= 0.027

Hellinger

Algorithm
(2.1.8)

MDϕDE 0.108, sd = 0.052 0.050 , sd=0.025
kernel-based MDϕDE 0.113, sd = 0.044 0.064 ,sd=0.025

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.108, sd = 0.052 0.061, sd = 0.029
kernel-based MDϕDE 0.113, sd = 0.045 0.064 ,sd=0.025

MDPD a = 0.5 - Algorithm (2.1.8) 0.117, sd = 0.049 0.065, sd = 0.025
MDPD a = 0.5 - Algorithm (2.2.2,2.2.3) 0.117, sd = 0.047 0.065, sd = 0.025

EM 0.113, sd = 0.044 0.064 , sd = 0.025

Table 2.3: The mean value of errors committed in a 100-run experiment with the standard
deviation. No outliers are considered here. The divergence criterion is the Chi square
divergence or the Hellinger. The proximal term is calculated with ψ(t) = 1

2(
√
t− 1)2.

Estimation
method

Error criterion
χ2 TVD

Chi square

Algorithm
(2.1.8)

MDϕDE 0.334, sd = 0.097 0.146,sd=0.036
kernel-based MDϕDE 0.149 , sd = 0.059 0.084 ,sd=0.033

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.333, sd = 0.097 0.149, sd = 0.033
kernel-based MDϕDE 0.149 , sd = 0.059 0.084, sd=0.033

Hellinger

Algorithm
(2.1.8)

MDϕDE 0.321, sd = 0.096 0.146, sd=0.034
kernel-based MDϕDE 0.155 , sd = 0.059 0.087 ,sd=0.033

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.322, sd = 0.097 0.147, sd = 0.034
kernel-based MDϕDE 0.156 , sd = 0.059 0.087 ,sd=0.033

MDPD a = 0.5 - Algorithm (2.1.8) 0.129, sd = 0.049 0.065, sd = 0.025
MDPD a = 0.5 - Algorithm (2.2.2,2.2.3) 0.138, sd = 0.053 0.078, sd = 0.030

EM 0.335, sd = 0.102 0.150, sd = 0.034

Table 2.4: Error committed in estimating the parameters of a 2-component Gaussian
mixture with 10% outliers. The divergence criterion is the Chi square divergence or the
Hellinger. The proximal term is calculated with ψ(t) = 1

2(
√
t− 1)2.
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Figure 2.4: Decrease of the (estimated) Hellinger divergence between the true density and
the estimated model at each iteration in the Gaussian mixture. The figure to the left is
the curve of the values of the kernel-based dual formula (1.5.3). The figure to the right is
the curve of values of the classical dual formula (1.3.5). Values are taken at a logarithmic
scale log(1 + x).

2.7.2 The two-component Weibull mixture model revisited

We consider the Weibull mixture (2.6.6) with shapes φ1 = 0.5, φ2 = 3 and λ = 0.35
which are supposed to be unknown during the estimation procedure. Here, we denote
φ = (φ1, φ2) (α = (α1, α2), respectively) the shapes of the Weibull mixture model p(λ,φ)

(p(λ,α), respectively). We used the same data simulated in paragraph 1.7.4, so that con-
tamination was done by replacing 10 observations of each sample chosen randomly by 10
i.i.d. observations drawn from a Weibull distribution with shape ν = 0.9 and scale σ = 3.
Results are presented in tables (2.5) and (2.6).
Manipulating the optimization procedure for the Neymann’s χ2 was difficult because of
the numerical integration calculus and the fact that for a subset of Φ (or Φ × Φ accord-
ing to whether we use the estimator (1.3.5) or the estimator (1.5.3)) the integral term
produces infinity, see paragraph 2.6.2 for more details. We therefore needed to keep the
optimization from approaching the border in order to avoid numerical problems. For the
Hellinger divergence, there is no particular remark.
For the case of the estimated divergence (1.3.5), if γ = −1, i.e. the Neymann χ2, we
need that α1 < φ1/2, otherwise the integral term is equal to infinity. In order to avoid
numerical complications, we optimized over α1 ≤ 0.05 + φ1/2. The value 0.05 ensures a
small deviation from the border.
For the case of the estimated divergence (1.5.3), we used a Gaussian kernel for the Hellinger
divergence. For the Neymann’s χ2 divergence, we used the Epanechnikov’s kernel to avoid
problems at infinity. Besides, it permits to integrate only over [0,max(Y ) + w], where w
is the window of the kernel, instead of [0,∞). In order to avoid problems near zero, it is
necessary that min(φ1, φ2) < 1− 1

γ = 2.

Comments on the tables: Experimental results show a clear robustness of the estima-
tors calculated using the kernel-based MDϕDE in comparison to other estimators using
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the Hellinger divergence. When we are under the model, all estimation methods have the
same performance. On the other hand, using the Neymann χ2 divergence, results are dif-
ferent in the presence of outliers. The classical MDϕDE calculated using formula (1.3.5)
shows better robustness than other estimators, but is still not as good as the robustness
of the kernel-based MDϕDE using the Hellinger. Lack of robustness of the kernel-based
MDϕDE is not very surprising since the influence function of the kernel-based MDϕDE is
unbounded when we use the Neymann χ2 divergence in simple models such as the Gaus-
sian model, see Example 1.6.2.
In what concerns the proximal algorithm, there is no significant difference between the
results obtained using the 1-step algorithm (2.1.8) and the ones obtained using the 2-step
algorithm (2.2.2,2.2.3) using the Hellinger divergence. Differences appear when we used
the Neymann χ2 divergence with the classical MDϕDE. This shows again the difficulty
in handling the supermal form of the dual formal (1.3.5). Finally, in comparison to the
results obtained with a direct optimization in paragraph 1.7.4, there is no significant dif-
ferences.
The proximal-point algorithm worked as well using the density power divergence. The
MDPD produced robust and efficient estimates which are slightly better than the results
obtained by the kernel-based MDϕDE using the Hellinger divergence and clearly better
than the results obtained using the Neymann χ2.

Estimation
method

Error criterion
TVD

Neymann Chi square

Algorithm
(2.1.8)

MDϕDE 0.114 , sd = 0.032
kernel-based MDϕDE 0.057, sd = 0.028

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.131, sd = 0.042
kernel-based MDϕDE 0.056, sd = 0.026

Hellinger

Algorithm
(2.1.8)

MDϕDE 0.059, sd = 0.024
kernel-based MDϕDE 0.057, sd = 0.029

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.061, sd = 0.026
kernel-based MDϕDE 0.057, sd = 0.029

MDPD a = 0.5 - Algorithm (2.1.8) 0.056, sd = 0.029
MDPD a = 0.5 - Algorithm (2.2.2,2.2.3) 0.056, sd = 0.029

EM 0.059, sd = 0.024

Table 2.5: The mean value of errors committed in a 100-run experiment of a two-
component Weibull mixture with the standard deviation. No outliers are considered.
The divergence criterion is the Neymann’s χ2 divergence or the Hellinger. The proximal
term is taken with ψ(t) = 1

2(
√
t− 1)2.
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Estimation
method

Error criterion
TVD

Neymann Chi square

Algorithm
(2.1.8)

MDϕDE 0.085, sd = 0.036
kernel-based MDϕDE 0.138, sd = 0.066

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.096, sd = 0.057
kernel-based MDϕDE 0.127, sd = 0.056

Hellinger

Algorithm
(2.1.8)

MDϕDE 0.120, sd = 0.034
kernel-based MDϕDE 0.068, sd = 0.034

Algorithm
(2.2.2,2.2.3)

MDϕDE 0.121, sd = 0.034
kernel-based MDϕDE 0.068, sd = 0.034

MDPD a = 0.5 - Algorithm (2.1.8) 0.060, sd = 0.029
MDPD a = 0.5 - Algorithm (2.2.2,2.2.3) 0.061, sd = 0.029

EM 0.129, sd = 0.046

Table 2.6: The mean value of errors committed in a 100-run experiment of a two-
component Weibull mixture with the standard deviation. 10% outliers are considered.
The divergence criterion is the Neymann’s χ2 divergence or the Hellinger. The proximal
term is taken with ψ(t) = 1

2(
√
t− 1)2.
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2.8 Conclusions

We presented in this chapter a proximal-point algorithm whose objective was the mini-
mization of (an estimate of) a ϕ−divergence. The set of algorithms proposed here contains
by construction the EM algorithm. We provided in several examples a proof of convergence
of the EM algorithm in the spirit of our approach. We also showed how we may prove con-
vergence for the two estimates of the ϕ−divergence (1.3.5) and (1.5.3). We reestablished
similar results to the ones in Tseng [2004] in the context of ϕ−divergences, and provided
a new result by relaxing the identifiability condition on the proximal term. Although our
simulations do not permit to confirm the practical gain in comparison to direct methods,
they are sufficient to conclude that the proximal algorithm works. The two-step algorithm
(2.2.2,2.2.3) showed only slight deterioration in performance comparing to the original
one (2.1.8) which is very encouraging especially that the dimension of the optimization
is reduced at each step. Simulations have shown again the robustness of ϕ−divergences
against outliers in comparison to the MLE.

2.9 Appendix: Proofs

2.9.1 Proof of Proposition 2.4.1

Proof. We prove (a). For the first algorithm defined by (2.1.8), we have by definition
of the arginf:

D̂ϕ(pφk+1 , pφT ) +Dψ(φk+1, φk) ≤ D̂ϕ(pφk , pφT ) +Dψ(φk, φk).

We use the fact that Dψ(φk, φk) = 0 for the right hand and that Dψ(φk+1, φk) ≥ 0 for the

left hand side of the previous inequality. Hence D̂ϕ(pφk+1 , pφT ) ≤ D̂ϕ(pφk , pφT ).
For the simplified algorithm defined by (2.2.2, 2.2.3), recurrence (2.2.2) and the defi-
nition of the arginf give:

D̂ϕ(pλk+1,θk , pφT ) +Dψ((λk+1, θk), φk) ≤ D̂ϕ(pλk,θk , pφT ) +Dψ((λk, θk), φk)

≤ D̂ϕ(pλk,θk , pφT ). (2.9.1)

The second inequality is obtained using the fact that Dψ(φ, φ) = 0. Using recurrence
(2.2.3), we get:

D̂ϕ(pλk+1,θk , pφT ) +Dψ((λk+1, θk), φk) ≥ D̂ϕ(pλk+1,θk+1 , pφT ) +Dψ((λk+1, θk+1), φk)(2.9.2)

≥ D̂ϕ(pλk+1,θk+1 , pφT ). (2.9.3)

The second inequality is obtained using the fact that D(φ|φ′) ≥ 0. The conclusion is
reached by combining the two inequalities (2.9.1) and (2.9.3).
We prove (b). Using the decreasing property previously proved in (a), we have by recur-

rence ∀k, D̂ϕ(pφk+1 , pφT ) ≤ D̂ϕ(pφk , pφT ) ≤ · · · ≤ D̂ϕ(pφ0 , pφT ). The result follows for both
algorithms directly by definition of Φ0.
We prove (c). By induction on k. For k = 0, clearly φ0 = (λ0, θ0) is well defined (a choice

we make19). Suppose for some k ≥ 0 that φk = (λk, θk) exists. For the first algorithm
defined by (2.1.8), we prove that the infimum is attained in Φ0. Let φ ∈ Φ be any vector

19The choice of the initial point of the sequence may influence the convergence of the sequence. See the
example of the Gaussian mixture in paragraph (2.6.1).
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at which the value of the optimized function has a value less than its value at φk, i.e.
D̂ϕ(pφ, pφT ) +Dψ(φ, φk) ≤ D̂ϕ(pφk , pφT ) +Dψ(φk, φk). We have:

D̂ϕ(pφ, pφT ) ≤ D̂ϕ(pφ, pφT ) +Dψ(φ, φk)

≤ D̂ϕ(pφk , pφT ) +Dψ(φk, φk)

≤ D̂ϕ(pφk , pφT )

≤ D̂ϕ(pφ0 , pφT ).

The first line follows from the non negativity of Dψ. As D̂ϕ(pφ, pφT ) ≤ D̂ϕ(pφ0 , pφT ),
then φ ∈ Φ0. Thus, the infimum can be calculated for vectors in Φ0 instead of Φ. Since
Φ0 is compact and the optimized function is lower semicontinuous (the sum of two lower
semicontinuous functions), then the infimum exists and is attained in Φ0. We may now
define φk+1 to be a vector whose corresponding value is equal to the infimum.
For the second algorithm defined by (2.2.2,2.2.3). Similarly, the infimum in (2.2.2)
can be calculated on λ’s such that (λ, θk) ∈ Φ0. Indeed, suppose there exists a λ at
which the value of the optimized function is less than its value at λk, i.e. D̂ϕ(pλ,θk , pφT ) +

Dψ((λ, θk), φk) ≤ D̂ϕ(pλk,θk , pφT ) +Dψ((λk, θk), φk). We have:

D̂ϕ(pλ,θk , pφT ) ≤ D̂ϕ(pλ,θk , pφT ) +Dψ((λ, θk), φk)

≤ D̂ϕ(pλk,θk , pφT ) +Dψ((λk, θk), φk)

≤ D̂ϕ(pλk,θk , pφT )

≤ D̂ϕ(pφ0 , pφT ).

This means that (λ, θk) ∈ Φ0 and that the infimum needs not to be calculated for all
values of λ in Φ, and can be restrained onto values which verify (λ, θk) ∈ Φ0.
Define now Λk = {λ ∈ [0, 1]s|(λ, θk) ∈ Φ0}. First of all, λk ∈ Λk since (λk, θk) ∈ Φ0.
Therefore, Λk is not empty. Moreover, it is compact. Indeed, let (λl)l be a sequence
of elements of Λk, then the sequence ((λl, θk))l is a sequence of elements of Φ0. By
compactness of Φ0, there exists a subsequence which converges in Φ0 to an element of the
form (λ∞, θk) which clearly belongs to Λk. This proves that Λk is compact. Finally, since
by assumption A0, the optimized function is lower semicontinuous so that it attains its
infimum on the compact set Λk. We may now define λk+1 as any vector verifying this
infimum.
The second part of the proof treats the definition of θk+1. Let θ be any vector such that
(λk+1, θ) ∈ Φ and at which the value of the optimized function in (2.2.3) is less than its
value at φk. We have

D̂ϕ(pλk+1,θ, pφT ) ≤ D̂ϕ(pλk+1,θ, pφT ) +Dψ((λk+1, θ), φk)

≤ D̂ϕ(pλk+1,θk , pφT ) +Dψ((λk+1, θk), φk)

≤ D̂ϕ(pλk,θk , pφT ) +Dψ((λk, θk), φk)

≤ D̂ϕ(pλk,θk , pφT )

≤ D̂ϕ(pφ0 , pφT )

The third line comes from the previous definition of λk+1 as an infimum of (2.2.2). This
means that (λk+1, θ) ∈ Φ0, and that the infimum in (2.2.3) can be calculated with respect
to values θ which verifies (θ, λk+1) ∈ Φ0. Define now Θk = {θ ∈ Rd−s|(λk+1, θ) ∈ Φ0}.
One can prove analogously to Λk, that it is compact. The optimized function in (2.2.3) is,

117 / 208



Iterative Proximal-Point Algorithm for the Calculus of Divergence-Based Estimators with Application to Mixture
Models 118

by assumption A0, lower semicontinuous so that its infimum is attained on the compact
Θk. We may now define θk+1 as any vector verifying this infimum.
Convergence of the sequence (D̂ϕ(pφk , pφT ))k in both algorithms comes from the fact that
it is non increasing and bounded. It is non increasing by virtue of (a). Boundedness
comes from the lower semicontinuity of φ 7→ D̂ϕ(pφ, pφT ). Indeed, ∀k, D̂ϕ(pφk , pφT ) ≥
infφ∈Φ0 D̂ϕ(pφ, pφT ). The infimum of a proper lower semicontinuous function on a compact

set exists and is attained on this set. Hence, the quantity infφ∈Φ0 D̂ϕ(pφ, pφT ) exists and
is finite. This ends the proof.

2.9.2 Proof of Proposition 2.4.2

Proof. We prove (a). Let (φnk)k be a convergent subsequence of (φk)k which converges

to φ∞. First, φ∞ ∈ Φ0, because Φ0 is closed and the subsequence (φnk) is a sequence of
elements of Φ0 (proved in Proposition 2.4.1.b).
Let’s show now that the subsequence (φnk+1) also converges to φ∞. We simply have:

‖φnk+1 − φ∞‖ ≤ ‖φnk − φ∞‖+ ‖φnk+1 − φnk‖

Since φk+1 − φk → 0 and φnk → φ∞, we conclude that φnk+1 → φ∞.
Let’s start with the first algorithm (2.1.8). By definition of φnk+1, it verifies the
infimum in recurrence (2.1.8), so that the gradient of the optimized function is zero:

∇D̂ϕ(pφnk+1 , pφT ) +∇Dψ(φnk+1, φnk) = 0

Using the continuity assumptions A1 and AC of the gradients, one can pass to the limit
with no problem:

∇D̂ϕ(pφ∞ , pφT ) +∇Dψ(φ∞, φ∞) = 0

However, the gradient ∇Dψ(φ∞, φ∞) = 0 because (recall that ψ′(1) = 0):

∇Dψ(φ, φ) =

n∑
i=1

∫
X

∇hi(x|φ)

hi(x|φ)
ψ′
(
hi(x|φ)

hi(x|φ)

)
hi(x|φ)dx =

n∑
i=1

∫
X
∇hi(x|φ)ψ′(1)dx

Hence the gradient ∇Dψ(φ, φ) = 0. This implies that ∇D̂ϕ(pφ∞ , pφT ) = 0.
For the second algorithm (2.2.2,2.2.3), by definition of λnk+1 and θnk+1, they verify
the infimum respectively in recurrences (2.2.2) and (2.2.3). Therefore, the gradient of the
optimized function is zero for each step. In other words:

∇λD̂ϕ(pλnk+1,θnk , pφT ) +∇λDψ((λnk+1, θnk), φnk) = 0

∇θD̂ϕ(pλnk+1,θnk+1 , pφT ) +∇θDψ((λnk+1, θnk+1), φnk) = 0

Since both (φnk+1) and (φnk) converge to the same limit φ∞, then setting φ∞ = (λ∞, θ∞),
we get λnk+1 and λnk tends to λ∞. We also have θnk+1 and θnk tends to θ∞. The
continuity of the two gradients (assumptions A1 and AC) implies that:

∇λD̂ϕ(pλ∞,θ∞ , pφT ) +∇λDψ((λ∞, θ∞), φ∞) = 0

∇θD̂ϕ(pλ∞,θ∞ , pφT ) +∇θDψ((λ∞, θ∞), φ∞) = 0

However, ∇Dψ(φ, φ) = 0, so that ∇λD̂ϕ(pφ∞ , pφT ) = 0 and ∇θD̂ϕ(pφ∞ , pφT ) = 0. Hence

∇D̂ϕ(pφ∞ , pφT ) = 0.
We prove (b). For the first algorithm, we use again the definition of the arginf. As the

118 / 208



Iterative Proximal-Point Algorithm for the Calculus of Divergence-Based Estimators with Application to Mixture
Models 119

optimized function is not necessarily differentiable at the points of the sequence φk, a
necessary condition for φk+1 to be an infimum is that 0 belongs to the subgradient of the
function on φk+1. Since Dψ(φ, φk) is assumed to be differentiable, the optimality condition
is translated into:

−∇Dψ(φk+1, φk) ∈ ∂D̂ϕ(pφk+1 , pφT ) ∀k

Since D̂ϕ(pφ, pφT ) is continuous, then its subgradient is outer semicontinuous (see [Rock-
afellar and Wets, 1998] Chap 8, proposition 7). We use the same arguments presented in
(a) to conclude the existence of two subsequences (φnk)k and (φnk+1)k which converge to
the same limit φ∞. By definition of outer semicontinuity, and since φnk+1 → φ∞, we have:

lim sup
φnk+1→φ∞

∂D̂ϕ(pφnk+1 , pφT ) ⊂ ∂D̂ϕ(pφ∞ , pφT ) (2.9.4)

We want to prove that 0 ∈ lim supφnk+1→φ∞ ∂D̂ϕ(pφnk+1 , pφT ). By definition of limsup20:

lim sup
φ→φ∞

∂D̂ϕ(pφ, pφT ) =
{
u|∃φk → φ∞, ∃uk → u with uk ∈ ∂D̂ϕ(pφk , pφT )

}
In our scenario, φ = φnk+1, φk = φnk+1, u = 0 and uk = ∇1Dψ(φnk+1, φnk). The
continuity of∇1Dψ with respect to both arguments and the fact that the two subsequences
φnk+1 and φnk converge to the same limit, imply that uk → ∇1Dψ(φ∞, φ∞) = 0. Hence

u = 0 ∈ lim supφnk+1→φ∞ ∂D̂ϕ(pφnk+1 , pφT ). By inclusion (2.9.4), we get our result:

0 ∈ ∂D̂ϕ(pφ∞ , pφT )

2.9.3 Proof of Proposition 2.4.3

Proof. The arguments presented are the same for both algorithms (2.1.8) and (2.2.2,2.2.3).
By contradiction, let’s suppose that φk+1 − φk does not converge to 0. There exists a
subsequence such that ‖φN0(k)+1 − φN0(k)‖ > ε, ∀k ≥ k0. Since (φk)k belongs to the
compact set Φ0, there exists a convergent subsequence (φN1◦N0(k))k such that φN1◦N0(k) →
φ̄. The sequence (φN1◦N0(k)+1)k belongs to the compact set Φ0, therefore we can extract
a further subsequence (φN2◦N1◦N0(k)+1)k such that φN2◦N1◦N0(k)+1 → φ̃. Besides φ̂ 6= φ̃.
Finally since the sequence (φN1◦N0(k))k is convergent, a further subsequence also converges
to the same limit φ̄. We have proved the existence of a subsequence of (φk)k such that
φN(k)+1−φN(k) does not converge to 0 and such that φN(k)+1 → φ̃, φN(k) → φ̄ with φ̄ 6= φ̃.
The real sequence D̂ϕ(pφk , pφT )k converges as proved in Proposition 2.4.1-c. As a result,

both sequences D̂ϕ(pφN(k)+1 , pφT ) and D̂ϕ(pφN(k) , pφT ) converge to the same limit being
subsequences of the same convergent sequence. In the proof of Proposition 2.4.1, we can
deduce the following inequality:

D̂(pλk+1,θk+1 , pφT ) +Dψ((λk+1, θk+1), φk) ≤ D̂(pλk,θk , pφT ) (2.9.5)

which is also verified to any substitution of k by N(k). By passing to the limit on k, we get
Dψ(φ̃, φ̄) ≤ 0. However, the distance-like function Dψ is positive, so that it becomes zero.
Using assumption A3, Dψ(φ̃, φ̄) = 0 implies that φ̃ = φ̄. This contradicts the hypothesis
that φk+1 − φk does not converge to 0.
The second part of the proposition is a direct result of Proposition 2.4.2.

20We use here the definition corresponding to the outer limit, see [Rockafellar and Wets, 1998] Chap 4,
definition 1 or Chap 5-B.
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2.9.4 Proof of Corollary 2.4.1

Proof. Since the sequence (φ)k is bounded and verifies φk+1−φk → 0, then Theorem 28.1
in [Ostrowski, 1966] implies that the set of accumulation points of (φk)k is a connected
compact set. It is not empty since Φ0 is compact. Let φ∞ be a limit point of (φk)k. The
assumption about strict convexity of D̂(pφ, pφT ) in a neighborhood of φ∞ implies that it
is isolated in the sense that if there are another limit point φ̃, then there is ε > 0 such
that ‖φ∞ − φ̃‖ > ε. Hence, the set of accumulation points can be written as the union
of at least two disjoint open sets which contradicts the connectedness property. Thus,
φ∞ is the only limit point of the sequence (φk). To end the proof, we need to show that
the whole sequence converge. By contradiction, if it does not converge, there exists then
ε > 0 and an infinity of terms which verifies ‖φN0(k) − φ∞‖ > ε. By compactness of Φ0,
one may extract a subsequence of (φN0(k))k, say (φN1◦N0(k))k, which converges to some φ̂.
Moreover, by continuity of the euclidean norm, ‖φN1◦N0(k) − φ∞‖ → ‖φ̂ − φ∞‖. Hence
‖φ̂− φ∞‖ ≥ ε. Contradiction is reached by uniqueness of the limit point of the sequence
(φk)k.

2.9.5 Proof of Proposition 2.4.4

Proof. If (φk)k converges to, say, φ∞, the result falls simply from Proposition 2.
If (φk)k does not converge. Since Φ0 is compact and ∀k, φk ∈ Φ0 (proved in Proposition
1), there exists a subsequence (φN0(k))k such that φN0(k) → φ̃. Let’s take the subsequence
(φN0(k)−1)k. This subsequence does not necessarily converge; still it is contained in the
compact Φ0, so that we can extract a further subsequence (φN1◦N0(k)−1)k which converges
to, say, φ̄. Now, the subsequence (φN1◦N0(k))k converges to φ̃, because it is a subsequence
of (φN0(k))k. We have proved until now the existence of two convergent subsequences
φN(k)−1 and φN(k) with a priori different limits. For simplicity and without any loss of
generality, we will consider these subsequences to be φk and φk+1 respectively.
Conserving previous notations, suppose that φk+1 → φ̃ and φk → φ̄. We use again
inequality (2.9.5):

D̂(pφk+1 , pφT ) +Dψ(φk+1, φk) ≤ D̂(pλk,θk , pφT )

By taking the limits of the two parts of the inequality as k tends to infinity, and using the
continuity of the two functions, we have

D̂(pφ̃, pφT ) +Dψ(φ̃, φ̄) ≤ D̂(pφ̄, pφT )

Recall that under A1-2, the sequence
(
D̂ϕ(pφk , pφT )

)
k

converges, so that it has the same

limit for any subsequence, i.e. D̂(pφ̃, pφT ) = D̂(pφ̄, pφT ). We also use the fact that the

distance-like function Dψ is non negative to deduce that Dψ(φ̃, φ̄) = 0. Looking closely at
the definition of this divergence (2.1.7), we get that if the sum is zero, then each term is
also zero since all terms are non negative. This means that:

∀i ∈ {1, · · · , n},
∫
X
ψ

(
hi(x|φ̃)

hi(x|φ̄)

)
hi(x|φ̄)dx = 0

The integrands are non negative functions, so they vanish almost ever where with respect
to the measure dx defined on the space of labels.

∀i ∈ {1, · · · , n}, ψ

(
hi(x|φ̃)

hi(x|φ̄)

)
hi(x|φ̄) = 0 dx− a.e.
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The conditional densities hi are supposed to be positive21, i.e. hi(x|φ̄) > 0, dx − a.e..

Hence, ψ
(
hi(x|φ̃)

hi(x|φ̄)

)
= 0, dx− a.e.. On the other hand, ψ is chosen in a way that ψ(z) = 0

iff z = 1, therefore :

∀i ∈ {1, · · · , n}, hi(x|φ̃) = hi(x|φ̄) dx− a.e. (2.9.6)

Since φk+1 is, by definition, an infimum of φ 7→ D̂(pφ, pφT ) +Dψ(φ, φk), then the gradient
of this function is zero on φk+1. It results that:

∇D̂(pφk+1 , pφT ) +∇Dψ(φk+1, φk) = 0, ∀k

Taking the limit on k, and using the continuity of the derivatives, we get that:

∇D̂(pφ̃, pφT ) +∇Dψ(φ̃, φ̄) = 0 (2.9.7)

Let’s write explicitly the gradient of the second divergence:

∇Dψ(φ̃, φ̄) =

n∑
i=1

∫
X

∇hi(x|φ̃)

hi(x|φ̄)
ψ′

(
hi(x|φ̃)

hi(x|φ̄)

)
hi(x|φ̄)

We use now the identities (2.9.6), and the fact that ψ′(1) = 0, to deduce that:

∇Dψ(φ̃, φ̄) = 0

This entails using (2.9.7) that ∇D̂(pφ̃, pφT ) = 0.
Comparing the proved result with the notation considered at the beginning of the proof,
we have proved that the limit of the subsequence (φN1◦N0(k))k is a stationary point of the
objective function. Therefore, The final step is to deduce the same result on the original
convergent subsequence (φN0(k))k. This is simply due to the fact that (φN1◦N0(k))k is a
subsequence of the convergent sequence (φN0(k))k, hence they have the same limit.
When assumption AC is dropped, similar arguments to those used in the proof of
Proposition 2-b. are employed. The optimality condition in (2.1.8) implies :

−∇Dψ(φk+1, φk) ∈ ∂D̂ϕ(pφk+1 , pφT ) ∀k

Function φ 7→ D̂ϕ(pφ, pφT ) is continuous, hence its subgradient is outer semicontinuous
and:

lim sup
φk+1→φ∞

∂D̂ϕ(pφk+1 , pφT ) ⊂ ∂D̂ϕ(pφ̃, pφT ) (2.9.8)

By definition of limsup:

lim sup
φ→φ∞

∂D̂ϕ(pφ, pφT ) =
{
u|∃φk → φ∞,∃uk → u with uk ∈ ∂D̂ϕ(pφk , pφT )

}
In our scenario, φ = φk+1, φk = φk+1, u = 0 and uk = ∇1Dψ(φk+1, φk). We have

proved above in this proof that ∇1Dψ(φ̃, φ̄) = 0 using only convergence of (D̂ϕ(pφk , pφT ))k,
inequality (2.9.5) and some properties of Dψ. Assumption AC was not needed. Hence,

uk → 0. This proves that, u = 0 ∈ lim supφk+1→φ∞ ∂D̂ϕ(pφnk+1 , pφT ). Finally, using the
inclusion (2.9.8), we get our result:

0 ∈ ∂D̂ϕ(pφ̃, pφT )

21In the case of two Gaussian (or more generally exponential) components, this is justified by virtue of
a suitable choice of the initial condition.
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2.9.6 Proof of Proposition 2.4.5

Proof. We use the same lines from the previous proof to deduce the existence of two con-
vergent subsequences φN(k)−1 and φN(k) with a priori different limits. For simplicity and
without any loss of generality, we will consider these subsequences to be φk and φk+1

respectively. Suppose that φk → φ̄ = (λ̄, θ̄) and φk+1 → φ̃ = (λ̃, θ̃).
We first use inequality (2.9.5) as in the previous proposition, the convergence of the se-
quence (D̂ϕ(pλk,θk , pφT ))k and some basic properties of Dψ to deduce that:

∀i ∈ {1, · · · , n}, hi(x|φ̃) = hi(x|φ̄) dx− a.e. (2.9.9)

Let’s calculate the gradient of the objective function with respect to λ and θ separately
at the limit of (φk+1)k. By definition of θk+1 as an arginf in (2.2.3), we have:

∂

∂θ
D̂ϕ(pλk+1,θk+1 , pφT ) +

∂

∂θ
Dψ((λk+1, θk+1), φk) = 0 ∀k

Using the continuity of the derivatives (Assumptions A1 and AC), we may pass to the
limit inside the gradients:

∂

∂θ
D̂ϕ(pλ̃,θ̃, pφT ) +

∂

∂θ
Dψ((λ̃, θ̃), φ̄) = 0 ∀k

As in the proof of Proposition 3, all terms in the gradient of Dψ depend on ψ′
(
hi(x|λ̃,θ̃)
hi(x|φ̄)

)
which is zero by virtue of (2.9.9). Hence ∂

∂θ D̂ϕ(pλ̃,θ̃, pφT ) = 0.

We prove now that ∂
∂λD̂ϕ(pλ̃,θ̃, pφT ) = 0. This is basically ensured by recurrence (2.2.2),

identities (2.9.9), assumptions A1-AC and the fact that ψ′(1) = 0. Indeed, using recurrence
(2.2.2), λk+1 is an optimum so that the gradient of the objective function is zero:

∂

∂λ
D̂ϕ(pλk+1,θk , pφT ) +

∂

∂λ
Dψ((λk+1, θk), λk, θk) = 0, ∀k

Since ‖θk+1 − θk‖ → 0, then θ̄ = θ̃. By passing to the limit in the previous identity and
using the continuity of the derivatives, we have:

∂

∂λ
D̂ϕ(pλ̃,θ̄, pφT ) +

∂

∂λ
Dψ((λ̃, θ̃), λ̄, θ̄) = 0

Since the derivative of Dψ is a sum of terms which depend all on ψ′(hi(x|λ̃,θ̄)
hi(|λ̄,θ̄)

), and using

identities (2.9.9), we conclude that ψ′(hi(|λ̃,θ̄)
hi(|λ̄,θ̄)

) = ψ′(1) = 0 and ∂
∂λDψ((λ̃, θ̄), λ̄, θ̄) = 0.

Finally, θ̄ = θ̃ implies that ∂
∂λD̂ϕ(pλ̃,θ̂, pφT ) = 0.

We have proved that ∂
∂λD̂ϕ(pλ̃,θ̃, pφT ) = 0 and ∂

∂θ D̂ϕ(pλ̃,θ̃, pφT ) = 0, so the gradient is zero
and the stated result is proved.
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Chapter 3

Semiparametric two-component
mixture models where one
component is defined through
linear constraints on its
distribution function

A two-component mixture model with an unknown component is defined by:

f(x) = λf1(x|θ) + (1− λ)f0(x), for x ∈ Rr (3.0.1)

for λ ∈ (0, 1) and θ ∈ Rd to be estimated and the density f0 is considered to be unknown.
Such model appears in the study of gene expression data coming from microarray analy-
sis. An application to two bovine gestation mode comparison is performed in Bordes et al.
[2006]. The authors suppose that θ is known, f0 is symmetric around an unknown µ and
that r = 1. Xiang et al. [2014] studied a more general setup by considering θ unknown and
applied model (3.0.1) on the Iris data by considering only the first principle component
for each observed vector. Another application of model (3.0.1) in genetics can be found in
Ma et al. [2011]. See also Patra and Sen [2016] for applications arising in astronomy and
from microarray experiment.
Robin et al. [2007] used the semiparametric model (supposing that θ is known) in multi-
ple testing procedures in order to estimate the posterior population probabilities and the
local false rate discovery. Song et al. [2010] studied a similar setup where θ is unknown
without further assumptions on f0. They applied the semiparametric model in sequential
clustering algorithms as a second step. After a sequential clustering algorithm finds the
center of a cluster, the next step is to identify the observations belonging to this cluster.
If we assume that the center of the cluster is known and that the distribution of obser-
vations not belonging to the cluster is unknown, the problem of identifying observations
in the cluster is similar to the problem of estimating the mixing proportion in a special
two-component mixture model. The mixing proportion can be considered as the propor-
tion of observations belonging to the cluster. Finally, model (3.0.1) can also be regarded
as a contamination model, see Titterington et al. [1985] or McLachlan and Peel [2005] for
further applications of general mixture models.

Existing estimation methods for model (3.0.1) were proved or illustrated to work but
only in specific situations and the only simulated example was a dataset generated by
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a Gaussian mixture. The paper of Xiang et al. [2014] provides a comparison of several
estimation methods for the semiparametric model. The compared methods give satisfac-
tory results in most simulations, but no method performs uniformly good on all simulated
mixtures. In all these simulations the authors consider θ to be given. We noticed that as
we add θ to the set of unknown parameters, things become different. The performance of
these methods depend on the proportion of the parametric component if it is high or low.
They may have very poor performances sometimes even if the number of observations is
high as we will demonstrate in the simulation section.
It is important for an estimation method to be applicable in contexts where the para-
metric component is not fully known. For example, the parametric component may be a
signal whereas the unknown component is a noise. We need to extract the location of the
signal or any other information concerning its shape and not only the proportion of the
noise. We believe that the failure of the existing methods when the parametric component
is not fully known comes from the degree of difficulty of the semiparametric model, i.e
we do not possess sufficient information about the model in order to estimate it. Bordes
and Vandekerkhove [2010] considered a symmetric assumption on the unknown compo-
nent (see also Bordes et al. [2006]). This gave the model a structure and permitted to
improve the estimation and made the study of the asymptotic properties of the resulting
estimators tractable. Moreover, they were able to give sufficient conditions under which
the semiparametric model is identifiable. Nevertheless, such assumption is very restrictive
and cannot be applied for example in the context of distributions defined on a subset of
R. It appears that the addition of prior information should be helpful and may lead to
a more understandable theory and better estimation results. We propose to add some
information about f0 in a way that we stay in between a (restrictive) fully parametric
settings and a (complex) fully semiparametric one.
In this chapter, we introduce a method which permits to add a, relatively general, prior
information about the unknown component in order to decrease the degree of difficulty of
the model and be able to better estimate it. Such information needs to apply linearly on
the distribution function of the unknown component such as moment-type information.
For example, we may have an information relating the first and the second moments of
f0 such as

∫
xf0(x) = α and

∫
x2f0(x)dx = m(α), see Broniatowski and Keziou [2012]

and the references therein. Such information adds some structure to the model without
precising the value of the moments. More examples will be discussed later on.
Unfortunately, the incorporation of linear constraints on the distribution function can-
not be done directly in existing methods because the optimization1 will be carried over
a (possibly) infinite dimensional space, and we need a new approach. Convex analysis
offers a way using the Fenchel-Legendre duality to transform an optimization problem
over an infinite dimensional space. On the other hand, ϕ−divergences offer a way by their
convexity properties to exploit this duality result. The paper of Broniatowski and Keziou
[2012] gives a complete study of this problem in the non mixture case, see also Decurninge
[2015] Chap. 1 and Keziou [2003] Chap. 3. We will exploit these results to build upon a
new estimation procedure which takes into account linear information over the unknown
component’s distribution.

1Not all existing methods, as we will see in the next paragraph, are defined through an optimization
procedure. Hence, it becomes more difficult to introduce this kind of constraints inside the estimation
procedure.
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3.1 Semiparametric two-component mixture models in the
literature

The literature on semiparametric mixture models contains several methods which permit
to estimate efficiently the parameters with or without estimating the unknown component.
All these methods were never tested on difficult situations except for datasets generated
from a mixture of two Gaussian components with very close means (difference of means
equal to 1.5) when the first component f1 is fully known.
We present in this section the principle estimation methods in the literature. We present
the method of Bordes and Vandekerkhove [2010] which is based on a symmetry constraint
over the unknown component. We present also two EM-type algorithms introduced by
Robin et al. [2007] and Song et al. [2010], and an SEM-type algorithm developed by Bordes
et al. [2007]. There is also an interesting method developed in Song et al. [2010] based
on the identifiability of a two-component mixture model when f1 is Gaussian, called the
π−maximizing algorithm. Finally, a method based on the Hellinger divergence was de-
veloped by Xiang et al. [2014]. However, the algorithm presented in their article is not
clear and contains difficult integration calculus which cannot be calculated directly by a
numerical method. The authors did not give any further explanations on how to do the
calculus. We therefore prefer not to discuss it here.
We advise the reader to consult the simulation results in Xiang et al. [2014]. The arti-
cle contains a comparison between some of these methods in a two-component Gaussian
mixture. We will also be testing all these methods on further simulations and different
models to explore their capacities in estimating the semiparametric mixture model.

3.1.1 Semiparametric two-component mixture models under a symme-
try assumption

Bordes et al. [2006] proposed to study the semiparametric model (3.0.1) when r = 1, θ is
given and the unknown component is supposed to be symmetric. Thus, the semiparametric
model (3.0.1) can be rewritten as:

f(x|λ, θ) = λf1(x|θ) + (1− λ)f0(x− µ0), ∀x ∈ R. (3.1.1)

Bordes et al. [2006] have studied the identifiability of this simplified model by impos-
ing either a symmetry assumption over f1, conditions over the characteristic function or
conditions on the tail behavior of the components. Let us summarize their estimation
procedure. Let F0,F1 and F be the cumulative distribution functions (cdf) of f0, f1 and f
respectively. We have:

F0(x) =
1

1− λ
F(x+ µ0|λ, θ)−

λ

1− λ
F1(x+ µ0|θ).

Define the following functions:

H1(x|λ, θ,F) =
1

1− λ
F(x+ µ0|λ, θ)−

λ

1− λ
F1(x+ µ0|θ),

H2(x|λ, θ,F) = 1− 1

1− λ
F(µ0 − x|λ, θ) +

λ

1− λ
F1(µ0 − x|θ).

By symmetry of f0, we have F0(x) = 1 − F0(−x), and thus H1(x|λ, θ,F) = H2(x|λ, θ,F).
This means that if d is a distance mapping, then d(H1(.|λ, θ,F), H2(.|λ̃, θ̃,F)) = 0 if λ = λ̃
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and θ = θ̃. Otherwise the distance will be positive if d is chosen properly. In Bordes et al.
[2006], the authors propose to use an Lq distance and define the estimation procedure by:

(λ̂, θ̂) = arg inf
λ,θ

(∫ ∣∣∣H1(x|λ, θ, F̂n)−H2(x|λ, θ, F̂n)
∣∣∣q dx)1/q

where F̂n is an estimator of F. The authors proved consistency of this estimation procedure,
but were unable to prove its asymptotic normality. Besides, Bordes and Vandekerkhove
[2010] argue that the use of an Lq distance leads to numerical instability. They also
propose to use the alternative distance L2(dF). The new procedure is now defined by:

(λ̂, θ̂) = arg inf
λ,θ

n∑
i=1

[
H1(xi|λ, θ, F̂n)−H2(xi|λ, θ, F̂n)

]2
. (3.1.2)

Bordes and Vandekerkhove [2010] prove that the above estimator is consistent and asymp-
totically Gaussian. This method produces in practice good estimates even in difficult
situations such as two-component Gaussian mixture when the two components are close
provided that we restrict the proportion parameter inside an interval of the form (η, 1−η)
for a small η, say 0.1. It is however unusable in the context of distributions which are
defined on a subset of R. Besides, a generalization to the multivariate case does not seem
simple.
Notice that, in the original approach presented by Bordes et al. [2006] or Bordes and Van-
dekerkhove [2010] we suppose that θ is given, so that the parametric component is fully
known. We find however no problem in writing the same algorithm for the case when θ is
considered unknown. In what concerns the theoretical results developed in these papers,
we did not check their validity when θ is unknown. We mention the work of Maiboroda and
Sugakova [2012] who use the approach of Bordes and Vandekerkhove [2010] and propose
several methods to estimate the unknown component. They also study the theoretical
properties of their estimators such as L-consistency and rates of convergence.

3.1.2 EM-type algorithms

This kind of algorithms is based on defining a vector of weights w = (w1, · · · , wn) for the
observations and then estimate the unknown component using a weighted kernel estimator
as follows:

f̂0(x|w) =
1

nh

1∑
1− wi

n∑
i=1

(1− wi)K
(
x− xi
h

)
.

The proportion is then, similarly to the EM algorithm, estimated by averaging these
weights whereas the parameters of the known component are calculated by maximizing
a weighted likelihood function. Such methods were proposed by several authors such
as Song et al. [2010], Robin et al. [2007] and Ma et al. [2011]. They differ by how to
calculate the weights. In tRobin et al. [2007] and Song et al. [2010], we calculate the
weights by an iterative procedure in the same way as the EM algorithm does, i.e. as the
quotient of the probability of being in the first component to the probability of being in
the mixture. In Ma et al. [2011], the authors propose a weighted histogram to estimate the
unknown component where the bins and their number are chosen before the estimation
procedure (prior guess). They calculate after that the weights by maximizing a likelihood-
like function related to the discretized model.
The method of Ma et al. [2011] has many drawbacks and practical issues. We need at first
to precise a close interval for the values of the unknown component, then a good guess
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for the number of bins. Besides, if one thinks about increasing the bins in order to give a
closer estimate of f0, it will cost much on the optimization step as each bin has its own
parameter. Besides, in multivariate situations, the number of bins explodes easily and the
optimization over the unknown weights becomes very difficult.
Other EM-type algorithms are very simple to implement and have good execution time
when the number of observations is small, however, they do not perform very well in
situations when the two components are close enough.
We present briefly the algorithms of Song et al. [2010] and Robin et al. [2007], and their
analytical properties.

Robin et al. [2007] EM-type algorithm. The authors propose to estimate the weight
vector w by the following iterative algorithm. For some initial value of λ and θ, say λ0, θ0,
define at iteration k + 1 for k ≥ 0:

w
(k+1)
i =

λ(k)f1(xi|θ(k))

λ(k)f1(xi|θ(k)) + (1− λ(k))f̂0(xi|w(k))
. (3.1.3)

When the vector θ is known, the algorithm is proved to converge under mild conditions,
see Theorem 1 in Robin et al. [2007]. We only need that the proportion to be inside the
interval (0, 1) and that for all j and i the quantities K((xi − xj)/h) are positive, which is
theoretically fulfilled as long as we are not using a compacted-support kernel and there is
no ties in the dataset2. On the other hand, the algorithm is proved to converge towards a
fixed point of function ψ defined by:

ψ = (ψ1, · · · , ψn)

ψj(w1, · · · , wn) =
(1− λ)

∑n
i=1 (1− wi)K((xi − xj)/h)/h

(1− λ)
∑n

i=1 (1− wi)K((xi − xj)/h)/h+
∑n

i=1wif1(xj |θ)
,

provided that θ is known. In what concerns our objective, θ will be unknown, and this
theoretical result may not hold. The algorithm is still applicable. Besides, the theoretical
result supposes that the proportion is known. The authors propose to estimate the pro-
portion by

∑
wi/n as a natural choice, but state that this can easily lead the algorithm

to converge to a proportion equals to 0 or 1. They propose another estimator suitable to
the application they considered (estimation of the FDR) by adding an assumption that
the distribution of the unknown component is defined on a semi-closed interval (−∞, a).
Besides, the cdf of the parametric component must verify F1(a) < 1. This means that
the semiparametric component distribution must have a lighter tail than the parametric
component one. An R package, kerfdr, was written about this approach where the data
is supposed to be bounded, see Guedj et al. [2009]. In our examples and simulations, the
distribution of both components is the same; either (0,∞) or the whole real line R. Thus,
we cannot adapt this methodology.
We adapt the following algorithm based on the ideas of Robin et al. [2007] as follows.
Let D be a kernel function and h be a pre-chosen window, and denote Di(x) = D(x−xih ).

Initialize the algorithm with λ(0), θ(0) and a vector of weights for the observations say

2Which is simply ensured if the data is distributed from a continuous probability distribution.
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(w
(0)
1 , · · · , w(0)

n ). At iteration k calculate

p̂
(k)
0 (yi) =

1∑
j w

(k−1)
j

∑
l

w
(k−1)
l Di(yl);

λ(k) =
1

n

∑
l

w
(k−1)
l ;

θ(k) = arg max
θ

∑
i

w
(k−1)
i log(p1(yi|θ));

w
(k)
i =

λ(k)p1(yi|θ(k))

λ(k)p1(yi|θ(k)) + (1− λ(k))p̂
(k)
0 (yi)

.

Repeat this iteration until convergence.

Song et al. [2010] EM-type algorithm. The authors propose to estimate the weight
vector without the need to estimate the unknown component and merely using an estimate
of the whole mixture. The authors propose two methods with no proofs of convergence.
Let f̂n be an estimator of the mixture density on the basis of an n−sample. The first
recurrence proposed by the authors is given by:

w
(k+1)
i = min

[
1,

λ(k)f1(xi|θ(k))

f̂n

]
. (3.1.4)

The authors argue that this formulation does not stabilize well and propose the alternative
iteration:

w
(k+1)
i = min

[
1,

2λ(k)f1(xi|θ(k))

λ(k)f1(xi|θ(k)) + f̂n

]
, (3.1.5)

and state that this new formulation is better without any theoretical justification. It is
worth noting that these algorithms were only proposed in the context of a mixture of a two
Gaussian components when one component is unknown. We, however, see no problem in
using them in a more general context and even in the multivariate case since no particular
constraint on f1 is needed in order to write the iterative procedure.

3.1.3 Stochastic EM-type method

Bordes et al. [2007] have proposed a stochastic EM-type algorithm to estimate the param-
eters in model (3.1.1), i.e. under the symetry assumption. There is however no problem
in using their algorithm in the general context of model (3.0.1). We give the general form
for this algorithm which can also be used in a multivariate context as we will see in the
simulation section.
The algorithm starts by giving an initial Bernoulli vector Z(0) which attributes a zero to
coordinate Zi if the observation xi is drawn according to the unknown component f0 and
one if xi is drawn according to the parametric component f1(.|θ). We then calculate the

initial proportion λ(0) =
∑n

i=1 Z
(0)
i /n, and give an initial value for the vector θ, say θ(0).

At iteration k + 1, calculate the kernel density estimator of the unknown component as
follows:

f̂0(x|Z(k)) =
1

h(1−
∑
Z

(k)
i )

n∑
i=1

(1− Z(k)
i )K

(
x− xi
h

)
.
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Calculate the weights by:

w
(k)
i =

λ(k)f1(xi|θ(k))

λ(k)f1(xi|θ(k)) + (1− λ(k))f̂0(xi|Z(k))
.

Generate now a Bernoulli vector Z(k+1) with probabilities (w
(k)
1 , · · · , w(k)

n ), and calculate
now the new proportion:

λ(k+1) =
1

n

n∑
i=1

Z
(k+1)
i .

Finally, we calculate the new vector of parameters θ(k+1) by maximum likelihood using the

observations for which Z
(k+1)
i is equal to 1. We repeat this procedure until the sequence of

proportions λ(k) stabilizes. It is preferable in the context of the stochastic EM algorithm
not to keep the final iteration, but to average the results of the n0 final iterations instead.
For our simulations, we performed 5000 iterations and averaged the 4000 final iterations,
see figure (3.1) for a better understanding.

Figure 3.1: Fluctuations in a trajectory of the semiparametric SEM algorithm in a Weibull
mixture.

This method has a good performance in regular situations when the two components do
not overlap. Besides, the asymptotic behavior of the sequence of points which generates
the algorithm remains an open problem.

3.1.4 π−maximizing method

Song et al. [2010] propose another kind of algorithm which is based on the identifiability
condition of a mixture of two Gaussian components with known means. They state that no
estimating procedure can distinguish between two sets of parameters (λ1, θ1) and (λ2, θ2)
as long as they both verify:

λif1(x|θi) < f(x),∀x, for i = 1, 2.

This is because the unknown component whose form is not specified by any prior condition
can take the form of a mixture to fill the gap between λf1(x|θ) and f(x), see figure (3.2).
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Figure 3.2: The solid line is the density estimation of the whole mixture. The dotted
lines are two examples of normal densities that fit under the mixture density. These two
cases can not be distinguished by an estimating procedure. Figure copied from Song et al.
[2010].

Based on this idea, Song et al. [2010] propose the following estimation procedure:

λ̂ = sup
θ

min
xi

f̂(xi)

f1(xi|θ)
(3.1.6)

θ̂ = arg sup
θ

min
xi

f̂(xi)

f1(xi|θ)
. (3.1.7)

The authors prove that if f0(0) = 0, f1 is a centered Gaussian distribution with unknown
variance σ2 and that the tail of the mixture is not heavier than the tail of the Gaussian
component, then:

λ∗ = sup
σ>0

inf
x

f(x)

f1(x|σ)
,

where the supremum is attained at σ = σ∗ the true value of the scale. This constitutes
a simple theoretical justification to the estimation procedure (3.1.6, 3.1.7). The authors
do not provide, however, any real proof of consistency or a generalization to other distri-
butions other than the Gaussian. Notice that a proof of consistency does not seem to be
simple mainly because we are dealing with a double optimization procedure.

3.2 Semiparametric models defined through linear constraints

Now that the idea of the semiparametric mixture model is presented, we proceed to propose
our new model. We want to integrate linear information in the semiparametric model and
propose an estimation procedure which permits to retrieve the true vector of parameters
defining the model on the basis of a given i.i.d. sample X1, · · · , Xn drawn from the mixture
distribution PT .
We prefer to proceed step by step. The previous paragraphs introduced semiparametric
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mixture models. Now we will present models which can be defined through a linear
information. These models are not necessarily mixtures of distributions. Besides, the
constraints or the linear information defining the model will apply over the whole model,
i.e. if the model is a mixture then the constraints apply over the whole mixture and not
only over one component. We give in this section a brief idea of what the literature offers
us to study such model. In the next section we will proceed to aggregate the two ideas, i.e.
mixture models and semiparametric models defined through linear constraints, in order to
introduce our semiparametric mixture model where a component is parametric (but not
fully known) and a component is defined through linear constraints.

3.2.1 Definition and examples

Denote by M+ the set of all probability measures (p.m.) defined on the same measurable
space as PT , i.e. (Rr,B(Rr)).

Definition 3.2.1. Let X1, · · · , Xn be random variables drawn independently from the
probability distribution PT . A semiparametric model is a collection of probability measures
Mα(PT ), for α ∈ A ⊂ Rs, absolutely continuous with respect to PT which verifies a set of
linear constraints, i.e.

Mα(PT ) =

{
Q ∈M+ such that Q� PT ,

∫
g(x)dQ(x) = m(α)

}
, (3.2.1)

where g : Rr → R` and m : A → R` are specified vector-valued functions.

This semiparametric model was studied by many authors, see Broniatowski and Keziou
[2012], Broniatowski and Decurninge [2016] (with dP replaced by dP−1 the quantile mea-
sure), Owen [1990] (in the empirical likelihood context) and Jiahua Chen [1993] (for finite
population problems). It is possible in the above definition to make g depend on the pa-
rameter vector α, but we stay for the sake of simplicity with the assumption that g does
not depend on α. The theoretical approach we present in this chapter remains valid if g
depends on α with slight modification on the assumptions and more technicalities at the
level of the proofs.

Example 3.2.1. A simple and standard example is a model defined through moment
constraints. Let PT be the Weibull distribution with scale a∗ and shape b∗. We define
Mα with α = (a, b) ∈ (0,∞)2 to be the set of all probability measures whose first three
moments are given by: ∫

xidQ(x) = aiΓ(1 + i/b), i = 1, 2, 3.

The setMα∗ is a ”neighborhood” of probability measures of the Weibull distribution PT .
It contains all probability measures absolutely continuous with respect to the Weibull
mixture PT and which share the first three moments with it. The union of the sets Mα

contains all probability measures whose first three moments share the same analytic form
as a Weibull distribution.

If the true distribution PT verifies the set of ` constraints (3.2.1) for some α∗, then the
set

Mα∗(PT ) =

{
Q ∈M+ such that Q� PT ,

∫
g(x)dQ(x) = m(α∗)

}
(3.2.2)
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constitutes a ”neighborhood” of probability measures of PT . Generally, one would rather
consider the larger ”neighborhood” defined by

M =
⋃
α∈A
Mα,

because the value of α∗ is unknown and needs to be estimated. The estimation procedure
aims at finding α∗ the (”best”) vector for which PT ∈Mα∗ . This is generally done by either
solving the set of equations (3.2.1) defining the constraints for Q replaced by (an estimate
of) PT or by minimizing a suitable distance-like function between the setM and (an esti-
mate of) PT . In other words, we search for the ”projection” of PT onM. Solving the set of
equations (3.2.1) is in general a difficult task since it is a set of nonlinear equations. In the
literature, similar problems were solved using the Fenchel-Legendre duality. Broniatowski
and Keziou [2012] proposed to estimate the value of α∗ using ϕ−divergences developing
an efficient and a simple estimation method using the duality of Fenchel-Legendre. In the
next chapter, we will see similar semiparametric models defined through linear constraints
over the quantile measures. Broniatowski and Decurninge [2016] proposed also to use
ϕ−divergences and basing on the duality of Fenchel-Legendre to estimate his ”semipara-
metric linear quantile models”, see Chapter 4.

In the next paragraph, we present the duality technique which will be essential in the
development of our estimation method.

3.2.2 Estimation using ϕ−divergences and the duality technique

As mentioned in the previous paragraph, ϕ−divergences offer an efficient tool to handle
the projection of a probability measure on a set of probability measures. This remains
also valid for finite signed measures. We will explain how we may use ϕ−divergences to
find the ”best” vector α∗ such that PT ∈Mα∗ . The optimality of the solution is absolute
if the distribution PT verifies the constraints for some value α∗. Otherwise, the vector
α∗ is sub-optimum in the sens that optimality is considered merely from a point of view
of ϕ−projections (see definitions below). The following definitions concern the notion of
ϕ-projection of finite signed measures over a set of finite signed measures and are essential
in order to clearly present the estimation procedure and introduce our new estimation
methodology. The context of semiparametric models presented earlier can be extended to
finite signed measures, see the theory in Broniatowski and Keziou [2012]. For our study,
the use of finite signed measures and not only probability measures is essential as will be
demonstrated in the next section.

Definition 3.2.2. Let M be some subset of M , the space of finite signed measures. The
ϕ-divergence between the set M and some finite signed measure P , noted as Dϕ(M, P ),
is given by

Dϕ (M, P ) := inf
Q∈M

Dϕ(Q,P ). (3.2.3)

Furthermore, we define the ϕ−divergence between two subsets of M , say M and N by:

Dϕ (M,N ) := inf
Q∈M

inf
P∈N

Dϕ(Q,P ).

Definition 3.2.3. Assume that Dϕ(M, P ) is finite. A measure Q∗ ∈M such that

Dϕ(Q∗, P ) ≤ Dϕ(Q,P ), for all Q ∈M

is called a ϕ-projection of P ontoM. This projection may not exist, or may not be defined
uniquely.
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Estimation of the semiparametric model using ϕ−divergences is summarized by the
following optimization problem:

α∗ = arg inf
α∈A

inf
Q∈Mα

Dϕ(Q,PT ). (3.2.4)

We are, then, searching for the projection of PT on the set M = ∪αMα. We are more
formally interested in the vector α∗ for which the projection of PT on M belongs to the
setMα∗ . Notice that the setsMα need to be disjoint so that the projection cannot belong
to several sets in the same time.
The magical property of ϕ−divergences stems from their characterization of the projection
of a finite signed measure P onto a setM of finite signed measures, see Broniatowski and
Keziou [2006] Theorem 3.4. Such characterization permits to transform the search of a
projection in an infinite dimensional space to the search of a vector ξ in R` through the
duality of Fenchel-Legendre and thus simplify the optimization problem (3.2.4). Note that
Theorem 3.4 from Broniatowski and Keziou [2006] provides a formal characterization of
the projection, but we will only use it implicitly.
Let ϕ be a strictly convex function which verifies the same properties mentioned in the
definition of a ϕ−divergence, see paragraph 1.1.1. The Fenchel-Legendre transform of ϕ,
say ψ is defined by:

ψ(t) = sup
x∈R
{tx− ϕ(x)} , ∀t ∈ R.

We are concerned with the convex optimization problem

(P) inf
Q∈Mα

Dϕ(Q,PT ). (3.2.5)

We associate to (P) the following dual problem

(P∗) sup
ξ∈R`

ξtm(α)−
∫
ψ
(
ξtg(x)

)
dPT (x). (3.2.6)

We require that ϕ is differentiable. Assume furthermore that
∫
|gi(x)|dPT (x) <∞ for all

i = 1, . . . , ` and there exists some measure QT a.c.w.r.t. PT such that Dϕ(QT , PT ) < ∞.
According to Proposition 1.4 in Decurninge [2015] (see also Proposition 4.2 in Broniatowski
and Keziou [2012]) we have a strong duality attainment, i.e. (P) = (P∗). In other words,

inf
Q∈Mα

Dϕ (Q,PT ) = sup
ξ∈R`

ξtm(α)−
∫
ψ
(
ξtg(x)

)
dPT (x). (3.2.7)

The estimation procedure of the semiparametric model (3.2.4) is now simplified into the
following finite-dimensional optimization problem

α∗ = arg inf
α∈A

Dϕ(Mα, PT )

= arg inf
α∈A

sup
ξ∈R`

ξtm(α)−
∫
ψ
(
ξtg(x)

)
dPT (x).

This is indeed a feasible procedure since we only need to optimize a real function over
R`. Examples of such procedures can be found in Broniatowski and Keziou [2012], Bro-
niatowski and Decurninge [2016], Newey and Smith [2004] and the references therein.
Robustness of this procedure was studied theoretically by Toma [2013] and was shown
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numerically3 in Broniatowski and Decurninge [2016].

Now that all notions and analytical tools are presented, we proceed to the main objec-
tive of this chapter; semiparametric mixtures models. The following section defines such
models and presents a method to estimate them using ϕ−divergences. We study after
that the asymptotic properties of the vector of estimates.

3.3 Semiparametric two-component mixture models when
one component is defined through linear constraints

3.3.1 Definition and identifiability

Definition 3.3.1. Let X be a random variable taking values in Rr distributed from a
probability measure P . We say that P (.|φ) with φ = (λ, θ, α) is a two-component semi-
parametric mixture model subject to linear constraints if it can be written as follows:

P (.|φ) = λP1(.|θ) + (1− λ)P0 s.t.

P0 ∈Mα =

{
Q ∈M s.t.

∫
Rr
dQ(x) = 1,

∫
Rr
g(x)dQ(x) = m(α)

}
(3.3.1)

for λ ∈ (0, 1) the proportion of the parametric component, θ ∈ Θ ⊂ Rd a set of parameters
defining the parametric component, α ∈ A ⊂ Rs is the constraints parameter vector and
finally m(α) = (m1(α), · · · ,m`(α)) is a vector-valued function determining the value of
the constraints.

The identifiability of the model was not questioned in the context of Section 3.2 be-
cause it suffices that the setsMα are disjoint (the function m(α) is one-to-one). However,
in the context of this semiparametric mixture model, identifiability cannot be achieved
only by supposing that the sets Mα are disjoint.

Definition 3.3.2. We say that the two-component semiparametric mixture model subject
to linear constraints is identifiable if it verifies the following assertion. For two triplets
(λ, θ, α) and (λ̃, θ̃, α̃) in Φ = (0, 1)×××A, if

λP1(.|θ) + (1− λ)P0 = λ̃P1(.|θ̃) + (1− λ̃)P̃0, with P0 ∈Mα, P̃0 ∈Mα̃, (3.3.2)

then λ = λ̃, θ = θ̃ and P0 = P̃0 (and hence α = α̃).

This is the same identifiability concept considered in Bordes et al. [2006] where the
authors exploited their symmetry assumption over P0 and built a system of moments equa-
tions. They proved that if P1 is also symmetric, then equation (3.3.2) has two solutions,
otherwise it has three solutions. Their idea appears here in a natural way in order to prove
the identifiability of our semiparametric mixture model (3.3.1).

Proposition 3.3.1. For a given mixture distribution PT = P (.|φ∗), suppose that the
system of equations:

1

1− λ
m∗ − λ

1− λ
m1(θ) = m0(α)

3The results in Broniatowski and Decurninge [2016] show that his estimator is not robust against
outliers, but robust against misspecification.
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where m∗ =
∫
g(x)dPT (x) and m1(θ) =

∫
g(x)dP1(x|θ), has a unique solution (λ∗, θ∗, α∗).

Then, equation (3.3.2) has a unique solution, i.e. λ = λ̃, θ = θ̃ and P0 = P̃0, and the
semiparametric mixture model PT = P (.|φ∗) is identifiable.

The proof is differed to Appendix 3.7.1.

Example 3.3.1 (Semiparametric two-component Gaussian mixture). Suppose that P1(.|θ)
is a Gaussian model N (µ1, 1). Suppose also that the set of constraints is defined as follows:

Mµ∗0
=

{
f0 s.t.

∫
f0(x)dx = 1,

∫
R
xf0(x)dx = µ∗0,

∫
R
x2f0(x)dx = 1 + µ∗0

2

}
.

We would like to study the identifiability of the two-component semiparametric Gaussian
mixture whose unknown component P0 shares the first two moments with the Gaussian
distribution N (µ∗0, 1) for a known µ∗0. Using Proposition 3.3.1, it suffices to study the
system of equations

1

1− λ

∫
xf(x|µ∗1, µ∗0, λ∗)dx−

λ

1− λ

∫
xf1(x|µ1)dx = µ∗0

1

1− λ

∫
x2f(x|µ∗1, µ∗0, λ∗)dx−

λ

1− λ

∫
x2f1(x|µ1)dx = 1 + µ∗0

2.

Recall that
∫
xf(x|µ∗1, µ∗0, λ∗)dx = λ∗µ∗1 + (1 − λ∗)µ∗0 and

∫
x2f(x|µ∗1, µ∗0, λ∗)dx = 1 +

λ∗µ∗1
2 + (1− λ∗)µ∗02. The first equation in the previous system entails that:

λµ1 − λµ∗0 = λ∗µ∗1 − λ∗µ∗0. (3.3.3)

The second equation gives:

λ∗(1 + µ∗1
2)− λ∗(1 + µ∗0

2) = λµ2
1 − λµ∗0

2 (3.3.4)

The nonlinear system of equations (3.3.3, 3.3.4) has a solution for µ1 = µ∗1, λ = λ∗.
Suppose by contradiction that µ1 6= µ∗1 and check if there are other solutions. The system
(3.3.3, 3.3.4) implies:

λ =
λ∗(1 + µ∗1

2)− λ∗(1 + µ∗0
2)

(µ1 − µ∗0)(µ1 + µ∗0)
=
λ∗µ∗1 − λ∗µ∗0
µ1 − µ∗0

This entails that

µ1 + µ∗0 =
λ∗
[
(1 + µ∗1

2)− (1 + µ∗0
2)
]

λ∗ [µ∗1 − µ∗0]
= µ∗1 + µ∗0

Hence, µ1 = µ∗1 which contradicts what we have assumed. Thus µ1 = µ∗1, λ = λ∗ is the only
solution. We conclude that if µ∗0 is known and that we impose two moments constraints
over f0, then the semiparametric two-component Gaussian mixture model is identifiable.
Notice that imposing only one condition on the first moment is not sufficient since any
value of λ ∈ (0, 1) would produce a corresponding solution for µ1 in equation (3.3.3).
We therefore are in need for the second constraint. Notice also that if λ = λ∗, then
µ1 = µ∗1. This means, by continuity of the equation over (λ, µ1), if λ is initialized in a
close neighborhood of λ∗, then µ1 would be estimated near µ∗1. This may represent a
remedy if we could not impose but one moment constraint.
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3.3.2 An algorithm for the Estimation of the semiparametric mixture
model

We have seen in paragraph 3.2.2 that it is possible to use ϕ−divergences to estimate a
semiparametric model as long as the constraints apply over P (.|φ), i.e. the whole mixture.
In our case, the constraints apply only on a component of the mixture. It is thus reasonable
to consider a ”model” expressed through P0 instead of P . We have:

P0 =
1

1− λ
P (.|φ)− λ

1− λ
P1(.|θ).

Denote PT = P (.|φ∗) with φ∗ = (λ∗, θ∗, α∗) the distribution which generates the observed
data. Denote also P ∗0 to the true semiparametric component of the mixture PT . The only
information we hold about P ∗0 is that it belongs to a setMα∗ for some (possibly unknown)
α∗ ∈ A. Besides, it verifies:

P ∗0 =
1

1− λ∗
PT −

λ∗

1− λ∗
P1(.|θ∗). (3.3.5)

We would like to retrieve the value of the vector φ∗ = (λ∗, θ∗, α∗) provided a sample
X1, · · · , Xn drawn from PT and that P ∗0 ∈ ∪αMα. Consider the set of signed measures:

N =

{
Q =

1

1− λ
PT −

λ

1− λ
P1(.|θ), λ ∈ (0, 1), θ ∈ Θ

}
. (3.3.6)

Notice that P ∗0 belongs to this set for λ = λ∗ and θ = θ∗. On the other hand, P ∗0 is
supposed, for simplicity, to belong to the union ∪α∈AMα. We may now write,

P ∗0 ∈ N
⋂
∪α∈AMα.

If we suppose now that the intersection N
⋂
∪α∈AMα contains only one element (see

paragraph 3.3.4 for a discussion) which would be a fortiori P ∗0 , then it is very reasonable
to consider an estimation procedure by calculating some ”distance” between the two sets
N and ∪α∈AMα. Such distance can be measured using a ϕ−divergence by (see Definition
3.2.2):

Dϕ(M,N ) = inf
Q∈N

inf
P0∈M

Dϕ(P0, Q). (3.3.7)

We may reparametrize this distance using the definition of N . Indeed,

Dϕ(∪αMα,N ) = inf
Q∈N

inf
P0∈∪αMα

Dϕ(P0, Q)

= inf
λ,θ

inf
α,P0∈Mα

Dϕ

(
P0,

1

1− λ
PT −

λ

1− λ
P1(.|θ)

)
. (3.3.8)

If we still have P ∗0 as the only signed measure which belongs to both N and ∪αMα, then,
the argument of the infimum in (3.3.8) is none other than (λ∗, θ∗, α∗), i.e.

(λ∗, θ∗, α∗) = arg inf
λ,θ,α

inf
P0∈Mα

Dϕ

(
P0,

1

1− λ
P (.|φ∗)− λ

1− λ
P1(.|θ)

)
. (3.3.9)

It is important to notice that if P ∗0 /∈ ∪Mα, then the procedure still makes sense. Indeed,
we are searching for the best measure of the form 1

1−λPT −
λ

1−λP1(.|θ) which verifies the
constraints.
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3.3.3 The algorithm in practice : Estimation using the duality technique
and plug-in estimate

The Fenchel-Legendre duality permits to transform the problem of minimizing under
linear constraints in a possibly infinite dimensional space into an unconstrained opti-
mization problem in the space of Lagrangian parameters over R`+1, where ` + 1 is the
number of constraints. We will apply the duality result presenter earlier in paragraph
3.2.2 on the inner optimization in equation (3.3.8). Redefine the function m as m(α) =
(m0(α),m1(α), · · · ,m`(α)) where m0(α) = 1. We have:

inf
Q∈Mα

Dϕ

(
Q,

1

λ− 1
PT −

λ

1− λ
P1(.|θ)

)
= sup

ξ∈Rl+1

ξtm(α)− 1

1− λ

∫
ψ
(
ξtg(x)

)
(dPT (x)− λdP1(x|θ))

= sup
ξ∈Rl+1

ξtm(α)− 1

1− λ

∫
ψ
(
ξtg(x)

)
dPT (x)

+
λ

1− λ

∫
ψ
(
ξtg(x)

)
dP1(x|θ).

Inserting this result in (3.3.9) gives that:

(λ∗, θ∗, α∗) = arg inf
φ

inf
Q∈Mα

Dϕ

(
Q,

1

λ− 1
PT −

λ

1− λ
P1(.|θ)

)
= arg inf

φ
sup

ξ∈Rl+1

ξtm(α)− 1

1− λ

∫
ψ
(
ξtg(x)

)
dPT (x)

+
λ

1− λ

∫
ψ
(
ξtg(x)

)
dP1(x|θ).

The right hand side can be estimated on the basis of an n−sample drawn from PT , say
X1, · · · , Xn, by a simple plug-in of the empirical measure Pn. The resulting procedure can
now be written as:

(λ̂, θ̂, α̂) = arg inf
λ,θ,α

sup
ξ∈Rl+1

ξtm(α)− 1

1− λ
1

n

n∑
i=1

ψ
(
ξtg(Xi)

)
+

λ

1− λ

∫
ψ
(
ξtg(x)

)
dP1(x|θ). (3.3.10)

This is a feasible procedure in the sens that we only need the data, the set of constraints
and the model of the parametric component.

Example 3.3.2 (Chi square). Let’s take the case of the χ2 divergence for which ϕ(t) =
(t − 1)2/2. The Convex conjugate of ϕ is given by ψ(t) = t2/2 + t. For (λ, θ, α) ∈ Φ, we
have:

inf
Q∈Mα

Dϕ

(
Q,

1

λ− 1
PT −

λ

1− λ
P1(.|θ)

)
= sup

ξ∈Rl+1

ξtm(α)− 1

1− λ

∫ [
1

2

(
ξtg(x)

)2
+ ξtg(x)

]
dPT (x)

+
λ

1− λ

∫ [
1

2

(
ξtg(x)

)2
+ ξtg(x)

]
dP1(x|θ).

It is interesting to note that the supremum over ξ can be calculated explicitly. Clearly,
the optimized function is a polynomial of ξ and thus infinitely differentiable. The Hessian
matrix is equal to −Ω where:

Ω =

∫
g(x)g(x)t

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
. (3.3.11)
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If the measure 1
1−λdP−

λ
1−λdP1(.|θ) is positive, then Ω is symmetric definite positive (s.d.p)

and the Hessian matrix is symmetric definite negative. Consequently, the supremum over
ξ is ensured to exist. If it is a signed measure, then the supremum might be infinity. We
may now write:

ξ(φ) = Ω−1

(
m(α)−

∫
g(x)

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

))
, if Ω is s.d.p

For the empirical criterion, we define similarly Ωn by:

Ωn =
1

n

1

1− λ

n∑
i=1

g(Xi)g(Xi)
t − λ

1− λ

∫
g(x)g(x)tdP1(x|θ). (3.3.12)

The solution to the corresponding supremum over ξ is given by:

ξn(φ) = Ω−1
n

(
m(α)− 1

n

1

1− λ

n∑
i=1

g(Xi) +
λ

1− λ

∫
g(x)dP1(x|θ)

)
, if Ωn is s.d.p

3.3.4 Uniqueness of the solution ”under the model”

By a unique solution we mean that only one measure, which can be written in the form
of 1

1−λPT −
λ

1−λP1(.|θ), verifies the constraints with a unique triplet (λ∗, θ∗, α∗). The
existence of a unique solution is essential in order to ensure that the procedure (3.3.9) is
a reasonable estimation method. We provide next a result ensuring the uniqueness of the
solution. The idea is based on the identification of the intersection of the set N ∩M. The
proof is differed to Appendix 3.7.2.

Proposition 3.3.2. Assume that P ∗0 ∈M = ∪αMα. Suppose also that:

1. the system of equations:∫
gi(x) (dP (x|φ∗)− λdP1(x|θ)) = (1− λ)mi(α), i = 1, · · · , ` (3.3.13)

has a unique solution (λ∗, θ∗, α∗);

2. the function α 7→ m(α) is one-to-one;

3. for any θ ∈ Θ we have :

lim
‖x‖→∞

dP1(x|θ)
dPT (x)

= c, with c ∈ [0,∞) \ {1};

4. the parametric component is identifiable, i.e. if P1(.|θ) = P1(.|θ′) dPT−a.e. then
θ = θ′,

then, the intersection N ∩M contains a unique measure P ∗0 , and there exists a unique
vector (λ∗, θ∗, α∗) such that PT = λ∗P1(.|θ∗) + (1−λ)P ∗0 where P ∗0 is given by (3.3.5) and
belongs to Mα∗. Moreover, provided assumptions 2-4, the conclusion holds if and only if
assumption 1 is fulfilled.

There is no general result for a non linear system of equations to have a unique solution;
still, it is necessary to ensure that ` ≥ d+s+1, otherwise there would be an infinite number
of signed measures in the intersection N

⋂
∪α∈AMα.
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Remark 3.3.1. Assumptions 3 and 4 of Proposition 3.3.2 are used to prove the iden-

tifiability of the ”model”
(

1
1−λPT −

λ
1−λP1(.|θ)

)
λ,θ

. Thus, according to the considered

situation we may find simpler ones for particular cases (or even for the general case). Our
assumptions remain sufficient but not necessary for the proof.

Example 3.3.3. One of the most popular models in clustering is the Gaussian multivariate
mixture (GMM). Suppose that we have two classes. Linear discriminant analysis (LDA)
is based on the hypothesis that the covariance matrix of the two classes is the same. Let
X be a random variable which takes its values in R2 and is drawn from a mixture model
of two components. In the context of LDA, the model has the form:

f(x, y|λ, µ1, µ2,Σ) = λf1(x, y|µ1,Σ) + (1− λ)f1(x, y|µ2,Σ),

with:

f1(x, y|µ1,Σ) =
1

2π
√
|det(Σ)|

exp

[
−1

2
((x, y)t − µ1)tΣ((x, y)t − µ1)

]
, Σ =

(
σ2 ρ
ρ σ2

)
.

We would like to relax the assumption over the second component by keeping the fact
that the covariance matrix is the same as the one of the first component. We will start by
imposing the very natural constraints on the second component.∫

xf0(x, y)dxdy = µ2,1,∫
yf0(x, y)dxdy = µ2,2,∫
x2f0(x, y)dxdy = σ2,∫
y2f0(x, y)dxdy = σ2,∫
xyf0(x, y)dxdy = ρ+ µ2,1µ2,2 − µ2

2,1 − µ2
2,2.

These constraints concern only the fact that the covariance matrix Σ is the same as the
one of the Gaussian component (the parameteric one). In order to see whether this set of
constraints is sufficient for the existence of a unique measure in the intersection N ∩M,
we need to write the set of equations corresponding to (3.3.13) in Proposition 3.3.2.∫

x

[
1

1− λ
f(x, y)− λ

1− λ
f1(x, y|µ1, σ, ρ)

]
dxdy = µ2,1,∫

y

[
1

1− λ
f(x, y)− λ

1− λ
f1(x, y|µ1, σ, ρ)

]
dxdy = µ2,2,∫

x2

[
1

1− λ
f(x, y)− λ

1− λ
f1(x, y|µ1, σ, ρ)

]
dxdy = σ2,∫

y2

[
1

1− λ
f(x, y)− λ

1− λ
f1(x, y|µ1, σ, ρ)

]
dxdy = σ2,∫

xy

[
1

1− λ
f(x, y)− λ

1− λ
f1(x, y|µ1, σ, ρ)

]
dxdy = ρ+ µ2,1µ2,2 − µ2

2,1 − µ2
2,2,

The number of parameters is 7, and we only have 5 equations. In order for the problem to
have a unique solution, it is necessary to either add two other constraints or to consider
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for example µ1 = (µ1,1, µ1,2) to be known4. Other solutions exist, but depend on the prior
information. We may imagine an assumption of the form µ1,1 = aµ1,2 and µ2,1 = bµ2,2 for
given constants a and b.
The gain from relaxing the normality assumption on the second component is that we are
building a model which is not constrained to a Gaussian form for the second component,
but rather to a form which suits the data. The price we pay is the number of relevant
constraints which must be at least equal to the number of unknown parameters.

3.4 Asymptotic properties of the new estimator

3.4.1 Consistency

The double optimization procedure defining the estimator φ̂ defined by (3.3.10) does not
permit us to use M-estimates methods to prove consistency. In Keziou [2003] Proposition
3.7 and in Broniatowski and Keziou [2009a] Proposition 3.4, the authors propose a method
which can simply be generalized to any double optimization procedure since the idea of
the proof slightly depends on the form of the optimized function. In order to restate
this result here and give an exhaustive and a general proof, suppose that our estimator
φ̂ is defined through the following double optimization procedure. Let H and Hn be two
generic functions such that Hn(φ, ξ)→ H(φ, ξ) in probability for any couple (φ, ξ). Define
φ̂ and φ∗ as follows:

φ̂ = arg inf
φ

sup
ξ
Hn(φ, ξ);

φ∗ = arg inf
φ

sup
ξ
H(φ, ξ).

We adapt the following notation:

ξ(φ) = arg sup
t

H(φ, t), ξn(φ) = arg sup
t

Hn(φ, t)

The following theorem provides sufficient conditions for consistency of φ̂ towards φ∗. This
result will then be applied to the case of our estimator.
Assumptions:

A1. the estimate φ̂ exists (even if it is not unique);

A2. supξ,φ |Hn(φ, ξ)−H(φ, ξ)| tends to 0 in probability;

A3. for any φ, the supremum of H over ξ is unique and isolated, i.e. ∀ε > 0,∀ξ̃ such
that ‖ξ̃ − ξ(φ)‖ > ε, then there exists η > 0 such that H(φ, ξ(φ))−H(φ, ξ̃) > η;

A4. the infimum of φ 7→ H(φ, ξ(φ)) is unique and isolated, i.e. ∀ε > 0,∀φ such that
‖φ− φ∗‖ > ε, there exists η > 0 such that H(φ, ξ(φ))−H(φ∗, ξ(φ∗)) > η;

A5. for any φ in Φ, function ξ 7→ H(φ, ξ) is continuous.

In assumption A4, we suppose the existence and uniqueness of φ∗. It does not, however,
imply the uniqueness of φ̂. This is not a problem for our consistency result. The vector
φ̂ may be any point which verifies the minimum of function φ 7→ supξHn(φ, ξ). Our
consistency result shows that all vectors verifying the minimum of φ 7→ supξHn(φ, ξ)

4or estimated by another procedure such as k−means.
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converge to the unique vector φ∗. We also prove an asymptotic normality result which
shows that even if φ̂ is not unique, all possible values should be in a neighborhood of
radius O(n−1/2) centered at φ∗.
The following lemma establishes a uniform convergence result for the argument of the
supremum over ξ of function Hn(φ, ξ) towards the one of function H(φ, ξ). It constitutes
a first step towards the proof of convergence of φ̂ towards φ∗. The proof is differed to
Appendix 3.7.3.

Lemma 3.4.1. Assume A2 and A3 are verified, then

sup
φ
‖ξn(φ)− ξ(φ)‖ → 0, in probability.

We proceed now to announce our consistency theorem. The proof is differed to Appendix
3.7.4.

Theorem 3.4.1. Let ξ(φ) be the argument of the supremum of ξ 7→ H(φ, ξ) for a fixed φ.
Assume that A1-A5 are verified, then φ̂ tends to φ∗ in probability.

Let’s now go back to our optimization problem (3.3.10) in order to simplify the previous
assumptions. First of all, we need to specify functions H and Hn. Define function h as
follows. Let φ = (λ, θ, α),

h(φ, ξ, z) = ξtm(α)− 1

1− λ
ψ
(
ξtg(z)

)
+

λ

1− λ

∫
ψ
(
ξtg(x)

)
dP1(x|θ).

Functions H and Hn can now be defined through h by:

H(φ, ξ) = PTh(φ, ξ, .), Hn(φ, ξ) = Pnh(φ, ξ, .).

In example 3.3.2, we considered the the case of the Pearson’s χ2. The supremum is
infinity whenever the matrix Ω defined by (3.3.11) is s.d.p. It is thus interesting to define
the effective set of parameters. Define the set Φ+ by

Φ+ = {φ ∈ Φ s.t. ξ 7→ H(φ, ξ) is strictly concave}

Outside the set Φ+, function ξ 7→ H(φ, ξ) is not upper bounded.

Theorem 3.4.2. Assume that A1, A4 and A5 are verified for Φ replaced by Φ+. Suppose
also that

sup
ξ∈R`+1

∣∣∣∣∣
∫
ψ
(
ξtg(x)

)
dPT (x)− 1

n

n∑
i=1

ψ
(
ξtg(Xi)

)∣∣∣∣∣ n→∞−−−→
P

0, (3.4.1)

then the estimator defined by (3.3.10) is consistent.

The proof is differed to Appendix 3.7.4. Assumption A5 could be handled using Lebesgue’s
continuity theorem if one finds a PT−integrable function h̃ such that |ψ

(
ξtg(z)

)
| ≤ h̃(z).

This is, however, not possible in general unless we restrain ξ to a compact set. Otherwise,
we need to verify this assumption according the situation we have in hand, see example
3.4.1 below for more details. The uniform limit (3.4.1) can be treated according to the
divergence and the constraints which we would like to impose. A general method is to
prove that the class of functions {x 7→ ψ

(
ξtg(x)

)
, ξ ∈ R`+1} is a Glivenko-Cantelli class

of functions, see van der Vaart [1998] Chap. 19 Section 2 and the examples therein for
some possibilities.
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Remark 3.4.1. Under suitable differentiability assumptions, the set Φ+ defined earlier
can be rewritten as:

Φ+ = Φ ∩
{
φ : JH(φ,.) is definite negative

}
,

where JH(φ,.) is the Hessian matrix of function ξ 7→ H(φ, ξ) and is given by:

JH(φ,.) = −
∫
g(x)g(x)tψ′′(ξtg(x))

(
1

1− λ
dPT −

λ

1− λ
dP1

)
(x). (3.4.2)

The problem with using the set Φ+ is that if we take a point φ in the interior of Φ, there
is no guarantee that it would be an interior point of Φ+. This will impose more difficulties
in the proof of the asymptotic normality. We prove in the next proposition that this is
however true for φ∗. Besides, the set Φ+ is open as soon as

∫
Φ is not void. The proof is

differed to Appendix 3.7.6.

Proposition 3.4.1. Assume that function ξ 7→ H(φ, ξ) is of class C2 for any φ ∈ Φ+.
Suppose that φ∗ is an interior point of Φ, then there exists a neighborhood V of φ∗ such
that for any φ ∈ V, JH(φ,.) is definite negative and thus ξ(φ) exists and is finite. Moreover,
function φ 7→ ξ(φ) is continuously differentiable on V.

Corollary 3.4.1. Assume that function ξ 7→ H(φ, ξ) is of class C2 for any φ ∈ Φ+. If
Φ is bounded, then there exists a compact neighborhood V̄ of φ∗ such that ξ(V̄) is bounded
and {x 7→ ψ

(
ξtg(x)

)
, ξ ∈ ξ(V̄)} is a Glivenko-Cantelli class of functions.

Proof. The first part of the corollary is an immediate result of Proposition 3.4.1 and the
continuity of function φ 7→ ξ(φ) over int(Φ+). The implicit functions theorem permits
to conclude that ξ(φ) is continuously differentiable over int(Φ+). The second part is an
immediate result of Example 19.7 page 271 from van der Vaart [1998].

This corollary suggests that in order to prove the consistency of φ̂, it suffices to restrict
the values of φ on Φ+ and the values of ξ on ξ(int(Φ+)) in the definition of φ̂ (3.3.10).
Besides, since {x 7→ ψ

(
ξtg(x)

)
, ξ ∈ ξ(int(Φ+))} is a Glivenko-Cantelli class of functions,

the uniform limit (3.4.1) is verified by the Glivenko-Cantelli theorem.

Remark 3.4.2. There is a great difference between the set Φ+ where Ω is s.d.p. (JH is
s.d.n.) and the set where only 1

1−λdPT −
λ

1−λdP1 is a probability measure. Indeed, there

is a strict inclusion in the sense that if 1
1−λdPT −

λ
1−λdP1 is a probability measure, then

Ω is s.d.p., but the inverse is not right. Figure (3.3) shows this difference. Furthermore,
it is clearly simpler to check for a vector φ if the matrix Ω is s.d.p. It suffices to calculate
the integral5 (even numerically) and then use some rule such as Sylvester’s rule to check
if it is definite negative, see the example below. However, in order to check if the measure

1
1−λdPT −

λ
1−λdP1 is positive, we need to verify it on all Rr.

Remark 3.4.3. The previous remark shows the interest of adapting a methodology based
on signed measures and not only positive ones. We have a larger and better space to search
inside for the triplet (λ∗, θ∗, α∗). For example, in figure (3.3), the optimization algorithm
which tries to solve (3.3.10) gets stuck if we only search in the set of parameters for which

1
1−λdPT −

λ
1−λdP1 is a probability measure. This does not happen if we search in the set

Φ+. Moreover, even if the algorithm returns a triplet (λ̂, θ̂, α̂) for which the semiparametric

5If function g is a polynomial, i.e. moment constraints, then the integral is a mere subtractions between
the moments of PT and the ones of P1.
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Figure 3.3: Differences between the set where 1
1−λdPT −

λ
1−λdP1 is positive (Fig (b)) and

the set Φ+ (Fig (a)) in a Weibull–Lognormal mixture.

component P0 = 1
1−λdPT −

λ
1−λdP1 is not a probability measure, it should not mean that

the procedure failed. This is because we are looking for the parameters and not to estimate
P0. Besides, it is still possible to threshold the negative values from the density and then
regularize in order to integrate to one.

Example 3.4.1 (χ2 case). Consider the case of a two-component semiparapetric mixture
model where P0 is defined through its first three moments. In other words, the set of
constraints Mα is given by:

Mα =

{
Q :

∫
dQ(x) = 1,

∫
xdQ(x) = m1(α),

∫
x2dQ(x) = m2(α),

∫
x3dQ(x) = m3(α)

}
.

We have already seen in example 3.3.2 that if ψ(t) = t2/2 + t, the Pearson’s χ2 convex
conjugate, then the optimization over ξ can be solved and the solution is given by:

ξ(φ) = Ω−1

(
m(α)−

∫
g(x)

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

))
, for φ ∈ Φ+.

Let Mi denotes the moment of order i of PT . Denote also M
(1)
i (θ) the moment of order i

of the parametric component P1(.|θ).

Mi = EPT [Xi], M
(1)
i (θ) = EP1(.|θ)[X

i].

A simple calculus shows that:

Ω =

∫
g(x)g(x)t

(
1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
=

[
1

1− λ
Mi+j−2 −

λ

1− λ
M

(1)
i+j−2(θ)

]
i,j∈{1,··· ,4}

.

The solution holds for any φ ∈ int(Φ+). Continuity assumption A5 over ξ 7→ H(φ, ξ) is
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simplified here because function H is a polynomial of degree 2. We have:

H(φ, ξ) = ξtm(α)−
[

1

2
ξ2

1 + ξ1 + (ξ1ξ2 + ξ2)

(
1

1− λ
M1 −

λ

1− λ
M

(1)
1 (θ)

)
+(ξ2

2/2+ξ1ξ2+ξ3)

(
1

1− λ
M2 −

λ

1− λ
M

(1)
2 (θ)

)
+(ξ1ξ4+ξ2ξ3+ξ4)

(
1

1− λ
M3 −

λ

1− λ
M

(1)
3 (θ)

)
+ (ξ2

3/2 + ξ2ξ4)

(
1

1− λ
M4 −

λ

1− λ
M

(1)
4 (θ)

)
+ ξ3ξ4

(
1

1− λ
M5 −

λ

1− λ
M

(1)
5 (θ)

)
+ξ2

4/2

(
1

1− λ
M6 −

λ

1− λ
M

(1)
6 (θ)

)]
.

Regularity of function φ 7→ ξ(φ) is directly tied by the regularity of the moments of P1(.|θ)
with respect to θ. If M

(1)
i is continuous with respect to θ and m(α) is continuous with

respect to α, then the existence of φ∗ becomes immediate as soon as the set Φ is compact.
If φ∗ is an interior point of Φ, then Proposition 3.4.1 and Corollary 3.4.1 apply. Thus
int(Φ+) is non void and the class {x 7→ ψ

(
ξtg(x)

)
, ξ ∈ ξ(int(Φ+))} is a Glivenko-Cantelli

class of functions. Assumption A4 remains specific to the model we consider.
The previous calculus shows that our procedure for estimating φ̂ can be done efficiently
and the complexity of the calculus does not depend on the dimension of the data. Besides,
no numerical integration is needed.

3.4.2 Asymptotic normality

We will suppose that the model pφ is C2(int(Φ+)) and that ψ is C2(R). In order to simplify
the formula below, we suppose that ψ′(0) = 1 and ψ′′(0) = 1. These are not restrictive
assumptions and can be relaxed. Recall that they are both verified in the class of Cressie-
Read functions (1.1.3).
Define the following matrices:

Jφ∗,ξ∗ =
(

1
(1−λ∗)2

[
−EPT [g(X)] + EP1(.|θ∗) [g(X)]

]
, λ∗

1−λ∗
∫
g(x)∇θp1(x|θ∗)dx,∇m(α∗)

)
;(3.4.3)

Jξ∗,ξ∗ = EP ∗0
[
g(X)g(X)t

]
; (3.4.4)

Σ =
(
J tφ∗,ξ∗Jξ∗,ξ∗Jφ∗,ξ∗

)−1
; (3.4.5)

H = ΣJ tφ∗,ξ∗J
−1
ξ∗,ξ∗ ; (3.4.6)

W = J−1
ξ∗,ξ∗ − J

−1
ξ∗,ξ∗Jφ∗,ξ∗ΣJ

t
φ∗,ξ∗J

−1
ξ∗,ξ∗ . (3.4.7)

Recall the definition of Φ+ and define similarly the set Φ+
n

Φ+ =

{
φ :

∫
g(x)g(x)t

(
1

1− λ
dPT −

λ

1− λ
dP1

)
(x|θ) is s.p.d.

}
; (3.4.8)

Φ+
n =

{
φ :

1

n

1

1− λ

n∑
i=1

g(Xi)g(Xi)
t − λ

1− λ

∫
g(x)g(x)tdP1(x|θ) is s.p.d.

}
.(3.4.9)

These two sets are the feasible sets of parameters for the optimization problems (3.3.9)
and (3.3.10) respectively. In other words, outside of the set Φ+, we have H(φ, ξ(φ)) =∞.
Similarly, outside of the set Φ+

n , we have Hn(φ, ξn(φ)) =∞.

Theorem 3.4.3. Suppose that:

1. φ̂ is consistent and φ∗ ∈ int (Φ);
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2. the function α 7→ m(α) is C2;

3. ∀φ ∈ B(φ∗, r̃) and any ξ ∈ ξ(B(φ∗, r̃)), there exist functions h1,1, h1,2 ∈ L1(p1(.|θ))
such that

∥∥ψ′ (ξtg(x)
)
g(x)

∥∥ ≤ h1,1(x) and
∥∥ψ′′ (ξtg(x)

)
g(x)g(x)t

∥∥ ≤ h1,2(x);

4. ∀ξ ∈ ξ(B(φ∗, r̃)), there exist functions h2,1, h2,2 ∈ L1(dx) such that
∥∥ψ (ξtg(x)

)
∇θp1(x|θ)

∥∥ ≤
h2(x) and

∥∥ψ (ξtg(x)
)
Jp1(.|θ)

∥∥ ≤ h2(x);

5. for any couple (φ, ξ) ∈ B(φ∗, r̃) × ξ(B(φ∗, r̃)), there exists a function h3 ∈ L1(dx)
such that

∥∥ψ′ (ξtg(x)
)
g(x)∇θp1(x|θ)t

∥∥ ≤ h3(x);

6. finite second order moment of g under PT , i.e. EPT [gi(X)gj(X)] <∞ for i, j ≤ `;

7. matrices Jξ∗,ξ∗ and J tφ∗,ξ∗Jξ∗,ξ∗Jφ∗,ξ∗ are invertible,

then ( √
n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
−→
L
N
(

0,
1

(1− λ∗)2

(
H
W

)
VarPT (g(X))

(
Ht W t

))
,

where H and P are given by formulas (3.4.6) and (3.4.7).

The proof is differed to Appendix 3.7.7. Assumption 3 entails the differentiability
of function Hn(ξ, φ) up to second order with respect to ξ whatever the value of φ in a
neighborhood of φ∗. Assumption 4 entails the differentiability of function Hn(ξ, φ) up
to second order with respect to θ in a neighborhood of θ∗ inside ξ(B(φ∗, r̃)). Finally,
assumption 5 implies the cross-differentiability of function Hn(ξ, φ) with respect to ξ and
θ.
Differentiability assumptions in Theorem 3.4.3 can be relaxed in the case of the Pearson’s
χ2 since all integrals in functionsHn andH can be calculated. Our result covers the general
case and thus we need to ensure differentiability of the integrals using Lebesgue theorems
which requires the existence of integrable functions which upperbound the integrands.

3.5 Simulation study

We perform several simulations in univariate and multivariate situations and show how
prior information about the moments of the distribution of the semiparametric component
P0 can help us better estimate the set of parameters (λ∗, θ∗, α∗) in regular examples, i.e.
the components of the mixture can be clearly distinguished when we plot the probability
density function. We also show how our approach permits to estimate even in difficult
situations when the proportion of the parametric component is very low; such cases could
not be estimated using existing methods.
Another important problem in existing methods is their quadratic complexity. For exam-
ple, an EM-type method such as Robin et al. [2007]’s algorithm or its stochastic version
introduced by Bordes et al. [2007] performs n2+3n operations in order to complete a single
iteration. An EM-type algorithm for semiparametric mixture models needs in average 100
iterations to converge and may attain 1000 iterations6 for each sample. To conclude, the
estimation procedure performs at least 100(n2+3n) operations. In a signal-noise situations
where the signal has a very low proportion around 0.05, we need a greater number of ob-
servations say n = 105. Such experiences cannot be performed using an EM-type method

6This was the case of the Weibull mixture.
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such as Robin et al. [2007]’s algorithm or its stochastic version introduced by Bordes et al.
[2007] unless one has a ”super computer”. The method of Bordes and Vandekerkhove
[2010] shares similar complexity7 O(n2). Last but not least, the EM-type method of Song
et al. [2010] and their π−maximizing one have the advantage over other methods, because
we need only to calculate a kernel density estimator once and for all, then use it at each
iteration8. Nevertheless, the method has still a complexity of order n2.
Our approach, although has a double optimization procedure, it can be implemented when
g is polynomial and ϕ corresponds to the Pearson’s χ2 in a way that it has a linear com-
plexity O(n). First of all, using the χ2 divergence, the optimization over ξ in (3.3.10)
can be calculated directly. On the other hand, all integrals are mere calculus of empirical
moments and moments of the parametric part, see Example 3.4.1. Empirical moments can
be calculated once and for all whereas moments of the parametric part can be calculated
using direct formulas available for a large class of probability distributions. What remains
is the optimization over φ. In the simulations below, our method produced the estimates
instantly even for a number of observations of order 107 whereas other existing methods
needed from several hours (algorithms of Song et al. [2010]) to several days (for other
algorithms). It is however important to notice that if the number of constraints is large
enough, say a function of n, then we no longer have a linear complexity.
Because of the very long execution time of existing methods, we restricted the comparison
to simulations in regular situations with n < 104. Experiments with greater number of
observations were only treated using our method and the methods in Song et al. [2010]. In
all tables presented hereafter, we performed 100 experiments and calculated the average
of resulting estimators. We provided also the standard deviation of the 100 experiments
in order to get a measure of preference in case the different estimation methods gave close
results.
Our experiments cover the following models:

• A two-component Weibull mixture;

• A two-component Weibull - Lognormal mixture;

• A two-component Gaussian – Two-sided Weibull mixture;

• A two-component bivariate Gaussian mixture.

We apply the several estimation methods from Section 3.1. We have chosen a variety of
values for the parameters especially the proportion. The second model may represent a
problem from queue theory where the left component represents the impatient customers
whereas the right component represents the regular customers. The third model stems
from a signal-noise application where the signal is centered at zero whereas the noise is
repartitioned at both sides. The fourth model appears in clustering and is only presented
to show how our method performs in multivariate contexts.
In all our experiments, no numerical integration was used since they can be easily calcu-
lated as functions of the empirical moments of the data and the moments of the parametric
component, see Example 3.4.1. Simulations were done using the R Core Team [2015]. Op-
timization was performed using the Nelder-Mead algorithm, see Nelder and Mead [1965].
For the π−maximizing algorithm of Song et al. [2010], we used the Brent’s method because

7we need more than 24 hours to estimate the parameters of one sample with 105 observations.
8We were able to perform simulations with n = 105 observations but needed about 5 days on an i7

laptop clocked at 2.5 GHz with 8GB of RAM. For Robin et al. [2007]’s algorithm, a few iterations took
about one day. One can imagine the time needed to estimate 100 samples with 105 observations in each
sample.
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the optimization was carried over one parameter.
For our procedure, we only used the χ2 divergence, because the optimization over ξ can be
calculated without numerical methods9. Recall that the optimized function over ξ is not
always strictly concave and the Hessian matrix may be definite positive, see remark 3.4.1.
It is thus important to check for each vector φ = (λ, θ, α) if the Hessian matrix is still
definite negative for example using Sylvester’s criterion. If it is not, we set the objective
function to a value such as 102. Besides, since the resulting function φ 7→ Hn(φ, ξn(φ))
as a function of φ is not ensured to be strictly convex, we used 10 random initial feasible
points inside the set Φ+

n defined by (3.4.9). We then ran the Nelder-Mead algorithm and
chose the vector of parameters for which the objective function has the lowest value. We
applied a similar procedure on the algorithm of Bordes and Vandekerkhove [2010] in order
to ensure a good and fair optimization.

Remark 3.5.1. In the literature on the stochastic EM algorithm, it is advised that we
iterate the algorithm for some time until it reaches a stable state, then continue iterating
long enough and average the values obtained in the second part. The trajectories of
the algorithm were very erratic especially for the estimation of the proportion. For us,
we iterated for the stochastic EM-type algorithm of Bordes et al. [2007] 5000 times and
averaged the 4000 final iterations.

Remark 3.5.2. Initialization of both the EM-type algorithm of Song et al. [2010] and
the SEM-type algorithm of Bordes et al. [2007] was not very important, and we got the
same results when the vector of weights was initialized uniformly or in a ”good” way. The
method of Robin et al. [2007] was more influenced by such initialization and we used most
of the time a good starting points.

Remark 3.5.3. For the methods of Song et al. [2010], we need to estimate mixture’s
distribution using a kernel density estimator. For the data generated from a Weibull
mixture and the data generated from a Weibull Lognormal mixture, we used a reciprocal
inverse Gaussian kernel density estimator with a window equal to 0.01 according to our
simulations in Chapter 1.

Remark 3.5.4. Matrix inversion was done manually using direct inversion methods, be-
cause the function solve in the statistical program R produced errors sometimes because
the matrix was highly sensible at some point during the optimization. For matrices of
dimension 4× 4 and 5× 5 we used block matrix inversion, see for example Lu and Shiou
[2002]. The inverse of a 3× 3 was calculated using a direct formula.

3.5.1 Data generated from a two-component Weibull mixture modeled
by a semiparametric Weibull mixture

We consider a mixture of two Weibull components with scales σ1 = 0.5, σ2 = 1 and
shapes ν1 = 2, ν2 = 1 in order to generate the dataset. In the semiparametric mixture
model, the parametric component will be ”the one to the right”, i.e. the component whose
true set of parameters is (ν1 = 2, σ1 = 0.5). We illustrate several values of the proportion
λ ∈ {0.7, 0.3}, see figure (3.4). This constitutes a difficult example for both our method and
existing methods such as EM-type methods or the π−maximizing algorithm of Song et al.
[2010]. We therefore, simulated 10000 samples and fixed both scales during estimation.
We estimate the proportion and the shapes of both components. For our method, the

9We noticed no great difference when using a Hellinger divergence.
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variance of the estimator of ν1 was high and we needed to use 4 moments to reduce it
to an acceptable range. Of course, as the number of observations increases, the variance
reduces. We, however, avoided greater number of observations because methods such as
Robin et al. [2007] need very long execution time for even one sample. The method of
Bordes and Vandekerkhove [2010] cannot be applied here since the support of the mixture
is R+.
Moments of the Weibull distribution are given by:

E[Xi] = σiΓ(1 + i/ν), ∀i ∈ N.

For our method , function g is a vector of polynomials that is g(x) = (1, x, x2, x3)t when
we use only 3 moment constraints. It suffices to add x4 when the number of constraints is
4. On the other hand, m(α) = (1, σΓ(1 + 1/ν), σ2Γ(1 + 2/ν), σ3Γ(1 + 3/ν)). The results
of our method are clearly better than existing methods which practically failed and could
not see but one main component with shape in between the two shapes, see table (3.1).
Although our method presents an inconvenient greater variance for ν1, the Monte-Carlo
mean of the hundred experiences is still unbiased. We believe that the use of other types
of constraints would have resulted in better results without the need to add one more
constraint.

Nb of observations λ sd(λ) ν1 sd(ν1) ν2 sd(ν2)

Mixture 1 : n = 104 λ∗ = 0.7, ν∗1 = 2, σ∗1 = 0.5(fixed), ν∗2 = 1, σ∗2 = 1(fixed)

Pearson’s χ2 3 moments 0.700 0.010 2.006 0.217 1.005 0.024
Pearson’s χ2 4 moments 0.701 0.010 2.014 0.086 1.013 0.024

Robin 0.654 0.101 1.591 0.085 — —
Song EM-type 0.907 0.004 1.675 0.020 — —

Song π−maximizing 0.782 0.006 1.443 0.012 — —

Mixture 1 : n = 104 λ∗ = 0.3, ν∗1 = 2, σ∗1 = 0.5(fixed), ν∗2 = 1, σ∗2 = 1(fixed)

Pearson’s χ2 3 moments 0.304 0.016 2.191 0.887 0.998 0.013
Pearson’s χ2 4 moments 0.303 0.016 2.120 0.285 1.001 0.013

Robin 0.604 0.029 1.256 0.037 — —
Song EM-type 0.806 0.005 1.185 0.018 — —

Song π−maximizing 0.624 0.007 1.312 0.013 — —

Table 3.1: The mean value with the standard deviation of estimates in a 100-run experi-
ment on a two-component Weibull mixture.
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Figure 3.4: The Weibull mixtures, see table (3.1)
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3.5.2 Data generated from a two-component Weibull-LogNormal mix-
ture modeled by a semiparametric Weibull-LogNormal mixture

We consider a mixture of two components; a Weibull component with scale = 1 and shape
= 1.5, and a log-normal component with meanlog = 3 and scale = 0.5, see figure (3.5)
for the considered cases. In the results of table (3.2), the parametric part is considered
to be the Lognormal distribution. In the results of table (3.3), the parametric part of the
semiparametric model is considered to be the Weibull distribution.
The number of observations for each mixture depends on its subtlety. As the proportion
of the parametric component becomes lower, we needed more observations to produce
reasonable estimates. We chose the number of observations in a way that the standard
deviation of estimated parameters does not exceed 1.
We used the first three moments such that we can estimate three parameters; the propor-
tion of the parameteric component, the shape of the Weibull component and the mean-
parameter of the Lognormal component. Thus, the scales of both components are supposed
to be known during the estimation procedure. The moments of these two distributions
are given by:

Weibull: E[Xi] = σiΓ(1 + i/ν);

Lognormal: E[Xi] = eiµ+i2σ2/2.

For our method , function g is a vector of polynomials that is g(x) = (1, x, x2, x3)t. Func-
tion m(α) is given by (1,E[X],E[X2],E[X3])t with the corresponding moments according
to whether we consider the Weibull or the log-normal as the semiprametric component.
Our new method seems to produce high variance of the shape of the Weibull compo-
nent. This should not be surprising, because the part which influences on the moments
of the model is the Lognormal component. Its moments have an exponential form and
small differences in the mean-parameter could compensate for a great differences in the
shape of the Weibull component. The results are still satisfactory since we get to estimate
an information of the semiparametric component at a great precision together with the
proportion.

Nb of observations λ sd(λ) µ sd(µ) ν sd(ν)

Mixture 1 : λ∗ = 0.7, µ∗ = 3, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 1(fixed)

n = 102 0.384 0.117 2.654 0.153 0.488 0.018
n = 103 0.518 0.068 2.806 0.099 0.473 0.014
n = 104 0.605 0.044 2.903 0.069 0.531 0.326
n = 105 0.651 0.030 2.957 0.041 0.809 0.630
n = 106 0.682 0.018 2.979 0.022 1.638 0.813

Table 3.2: The mean value with the standard deviation of estimates produced by our
procedure with three moments constraints in a 100-run experiment on a two-component
Weibull– Lognormal mixture. The parametric component is the Lognormal distribution.
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Nb of observations λ sd(λ) ν sd(ν) µ sd(µ)

Mixture 1 : n = 103, λ∗ = 0.3, ν∗ = 1.5, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 0.308 0.017 1.484 0.624 3.002 0.026
Robin 0.296 0.015 1.557 0.068 — —

Song EM-type 0.291 0.015 1.614 0.087 — —
Song π−maximizing 0.230 0.022 1.662 0.251 — —

SEM 0.284 0.041 1.570 0.263 — —

Mixture 2 : n = 104, λ∗ = 0.1, ν∗ = 1, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 0.103 0.006 1.284 0.677 3.001 0.007
Robin 0.095 0.003 1.049 0.031 — —

Song EM-type 0.100 0.004 0.894 0.039 — —
Song π−maximizing 0.085 0.005 1.024 0.055 — —

SEM 0.094 0.015 1.054 0.228 — —

Mixture 3 : n = 104, λ∗ = 0.05, ν∗ = 1, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 0.052 0.004 1.312 0.703 3.001 0.006
Song EM-type 0.050 0.003 0.855 0.068 — —

Song π−maximizing 0.042 0.003 1.013 0.052 — —

Mixture 4 : n = 5× 104, λ∗ = 0.05, ν∗ = 0.4, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 0.049 0.002 0.629 0.438 3.001 0.004
Song EM-type 0.064 0.001 0.345 0.004 — —

Song π−maximizing 0.024 0.001 0.773 0.010 — —

Table 3.3: The mean value with the standard deviation of estimates in a 100-run experi-
ment on a two-component Weibull-log normal mixture. The parametric component is the
Weibull distribution.
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Figure 3.5: The Weibull – Lognormal mixtures, see tables (3.2,3.3)
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3.5.3 Data generated from a two-sided Weibull Gaussian mixture mod-
eled by a semiparametric two-sided Weibull Gaussian mixture

The (symmetric) two-sided Weibull distribution can be considered as a generalization of
the Laplace distribution and can be defined through either its density or its distribution
function as follows:

f(x|ν, σ) =
1

2

σ

ν

(
|x|
σ

)ν−1

e
−
(
|x|
σ

)ν
, F(x|ν, σ) =

{
1− 1

2e
−( xσ )

ν

x ≥ 0

e−(−xσ )
ν

x < 0

We can also define a skewed form of the two-sided Weibull distribution by attributing
different scale and shape parameters to the positive and the negative parts, and then
normalizing in a suitable way so that f(x) integrates to one; see Chen and Gerlach [2013].
The moments of the symmetric two-sided Weibull distribution we consider here are given
by:

E[X2k] = σ2kΓ(1 + 2k/ν)

E[X2k+1] = 0, ∀k ∈ N.

We simulate different samples from a two-component mixture with a parametric compo-
nent f1 a Gaussian N (µ = 0, σ = 0.5) and a semiparametric component f0 a (symmetric)
two-sided Weibull distribution with parameters ν ∈ {3, 2.5, 1.5} and a scale σ0 ∈ {1.5, 2},
see figure (3.6) for different choices of the proportion. We perform different experiments
to estimate the proportion and the mean of the parametric part (the Gaussian) and the
shape of the semiparametric component. The values of the scale of the two components
are considered to be known during estimation. We consider the following two sets of
constraints:

M1:3 =

{
f0 :

∫
R
f0(x)dx = 1,Ef0 [X] = 0,Ef0 [X2] = σ2

0Γ(1 + 2/ν),Ef0 [X3] = 0, ν > 0

}
;

M2:4 =

{
f0 :

∫
R
f0(x)dx = 1,Ef0 [X2] = σ2

0Γ(1 + 2/ν),Ef0 [X3] = 0,

Ef0 [X4] = σ4
0Γ(1 + 4/ν), ν > 0

}
.

The first set imposes that the semiparametric component is centered around zero whereas
the second one does not impose it.
The first set of constraints is not really suitable for estimation especially when the number
of observations is high enough. The reason is simple and is based on the original idea
behind our procedure, see paragraph 3.3.2. The first and the third moment constraints
are practically the same constraint. Indeed, the number of models of the form 1

1−λf(.)−
λ

1−λf1(x|θ) verifying the constraints of M1:3 is infinite because the first and the third
constraints give rise to the following equations:

λµ = 0

λµ
(
µ2 + 3σ2

1

)
= 0.

The zero in the right hand side comes from the fact that the first and the third true
moments of the whole mixture are zero. These are two equations in λ and µ (since σ1 is
supposed to be known) with infinite number of solutions (µ, λ) ∈ {0}× [0, 1]. This entails

154 / 208



Semiparametric two-component mixture models where one component is defined through linear constraints on its
distribution function 155

Figure 3.6: Mixtures of two-sided Weibull – Gaussian with low and high proportion of the
parametric part. See table (3.4)

that theoretically, there is an infinite number of models of the form 1
1−λf(.)− λ

1−λf1(x|θ)
in the intersection N ∩M1:3. Still, the empirical version of these equations is

λµ =
1

n

n∑
i=1

Xi;

λµ
(
µ2 + 3σ2

1

)
=

1

n

n∑
i=1

X3
i .

As the number of observations is very small, the right hand side of both equations is
biased enough from zero and it is highly possible that the number of solutions becomes
not only finite but reduced to one. As the number of observations increases, the law of
large numbers implies directly that the right hand side becomes arbitrarily close to zero
and the set of solutions becomes infinite. This is exactly what happened in the simulation
results in table (3.4) below. The algorithm favored the value zero for the estimate of
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the proportion as the true proportion of the parametric component became close to zero,
whereas the estimates of the mean took values very dispersed centered around zero but with
a high standard deviation. The set of constraints M2:4 gave clear better results even for
very low proportions. On the other hand, our method outperforms other semiparametric
algorithms without prior information especially when the proportion of the parameteric
component is low. This shows once more the interest of incorporating a prior information
in the estimation procedure.
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Estimation method λ sd(λ) µ sd(µ) ν sd(ν)

Mixture 1 :n = 100 λ∗ = 0.7, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 3, σ∗1 = 1.5(fixed)

Pearson’s χ2 under M1:3 0.713 0.064 -0.0003 0.085 4.315 0.118
Pearson’s χ2 under M2:4 0.764 0.067 -0.012 0.342 2.893 0.731

Bordes symmetry Triangular Kernel 0.309 0.226 0.240 0.609 µ2 = −0.220 sd(µ2) =0.398
Bordes symmetry Gaussian Kernel 0.211 0.133 0.106 0.533 µ2 = −0.035 sd(µ2) =0.203

Robin et al. 0.488 0.137 -0.005 0.114 — —
EM-type Song et al. 0.762 0.040 -0.005 0.092 — —

π−maximizing Song et al. 0.717 0.156 -0.161 2.301 — —
Stochastic EM 0.539 0.083 -0.005 0.112 — —

Mixture 2 :n = 100 λ∗ = 0.3, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 3, σ∗1 = 1.5(fixed)

Pearson’s χ2 under M1:3 0.333 0.079 0.001 0.316 4.243 0.442
Pearson’s χ2 under M2:4 0.407 0.077 0.012 0.575 2.925 0.454

Bordes symmetry Triangular Kernel 0.272 0.119 0.773 0.947 µ2 = −0.430 sd(µ2) =0.393
Bordes symmetry Gaussian Kernel 0.206 0.104 0.855 0.911 µ2 = −0.308 sd(µ2) =0.350

Robin et al. 0.203 0.078 -0.109 0.947 — —
EM-type Song et al. 0.494 0.035 -0.132 0.806 — —

π−maximizing Song et al. 0.384 0.129 0.014 1.321 — —
Stochastic EM 0.263 0.040 -0.062 0.646 — —

Mixture 3 :n = 300 λ∗ = 0.2, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 3, σ∗1 = 1.5(fixed)

Pearson’s χ2 under M1:3 0.200 0.058 0.004 0.215 4.058 0.684
Pearson’s χ2 under M2:4 0.252 0.055 0.069 0.573 2.932 0.200

Bordes symmetry Triangular Kernel 0.439 0.108 -0.972 0.328 µ2 =1.036 sd(µ2) =0.496
Bordes symmetry Gaussian Kernel 0.414 0.096 -0.928 0.289 µ2 = −1.125 sd(µ2) =0.470

Robin et al. 0.278 0.068 -0.062 1.253 — —
EM-type Song et al. 0.461 0.023 0.162 1.128 — —

π−maximizing Song et al. 0.362 0.020 0.025 1.224 — —
Stochastic EM 0.292 0.057 0.118 1.027 — —

Mixture 4 :n = 105 λ∗ = 0.2, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 2.5, σ∗1 = 2(fixed)

Pearson’s χ2 under M1:3 0.161 0.010 -0.002 0.019 3.874 0.661
Pearson’s χ2 under M2:4 0.203 0.004 -0.018 0.213 2.492 0.012

EM-type Song et al. 0.325 0.012 -0.061 1.469 — —
π−maximizing Song et al. 0.251 0.002 -0.158 1.592 — —

Mixture 5 :n = 105 λ∗ = 0.2, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 2(fixed)

Pearson’s χ2 under M1:3 0.015 0.030 0.203 2.381 2.150 0.138
Pearson’s χ2 under M2:4 0.213 0.013 -0.004 0.436 1.494 0.009

EM-type Song et al. 0.397 0.002 0.001 0.021 — —

Mixture 6 :n = 105 λ∗ = 0.05, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 2(fixed)

Pearson’s χ2 under M1:3 0.005 0.033 -0.105 2.693 1.581 0.056
Pearson’s χ2 under M2:4 0.066 0.013 -0.036 0.857 1.493 0.008

EM-type Song et al. 0.304 0.014 -0.030 0.910 — —
π−maximizing Song et al. 0.231 0.002 0.017 0.801 — —

Mixture 7 :n = 107 λ∗ = 0.05, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 2(fixed)

Pearson’s χ2 under M1:3 0.006 0.010 0.024 0.197 1.500 0.019
Pearson’s χ2 under M2:4 0.051 0.001 0.002 0.259 1.500 0.001

Mixture 8 :n = 107 λ∗ = 0.01, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 2(fixed)

Pearson’s χ2 under M1:3 0.005 0.002 -0.011 0.162 1.509 0.004
Pearson’s χ2 under M2:4 0.011 0.001 -0.013 0.594 1.499 0.001

Table 3.4: The mean value with the standard deviation of estimates in a 100-run experi-
ment on a two-component two-sided Weibull–Gaussian mixture.
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3.5.4 Data generated from a bivariate Gaussian mixture and modeled
by a semiparametric bivariate Gaussian mixture

We generate 1000 i.i.d. observations from a bivariate Gaussian mixture with proportion
λ = 0.7 for the parametric component. The parametric component is a bivariate Gaussian
with mean (0,−1) and covariance matrix I2. The unknown component is a bivariate
Gaussian with mean (3, 3) and covariance matrix:

Σ2 =

(
σ∗2

2 ρ∗

ρ∗ σ∗2
2

)
, σ∗2

2 = 0.5, ρ∗ ∈ {0, 0.25}.

In a first experiment, we suppose that we know the whole parametric component, and
that the unknown component belongs to the set M1

M1 =

{∫
R2

f0(x, y)dxdy = 1,

∫
R2

xf0(x, y)dxdy =

∫
R2

yf0(x, y)dydx = θ, θ ∈ R
}
.

We suppose that the only unknown parameters are the center of the unknown cluster (θ, θ)
and the proportion of the parametric component.
In a second experiment, we suppose that the center of the parametric component is un-
known but given by (µ, µ − 1) for some unknown µ ∈ R. The set of constraints is now
replaced with M2 given by

M2 =

{∫
R2

f0(x, y)dxdy = 1,

∫
R2

xf0(x, y)dxdy =

∫
R2

yf0(x, y)dydx = θ,∫
R2

xyf0(x, y)dxdy = θ2 + ρ∗, θ ∈ R
}
.

The covariance between the two coordinates ρ∗ in the unknown component is supposed to
be known. We tested two values for ρ∗ = 0 and ρ∗ = 0.25, see figure (3.7).
Although existing methods were only proposed for univariate cases, we see no problem in
using them in multivariate cases without any changes. The only method which cannot be
used directly is the method of Bordes and Vandekerkhove [2010] because it is based on
the symmetry of the density function, so it remained out of the competition.
For methods which use a kernel estimator, we used a kernel estimator for each coordinate
of the random observations, i.e. Kwx,wy(x, y) = Kwx(x)Kwy(y). The EM-type algorithm of
Song et al. [2010] performs as good as our algorithm. The SEM algorithm of Bordes et al.
[2007] gives also good results. The algorithm of Robin et al. [2007] and the π−maximizing
algorithm of Song et al. [2010] failed to give satisfactory results.
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Figure 3.7: The two bivariate Gaussian mixtures.

Estimation method λ sd(λ) µ sd(µ) θ sd(θ)

Mixture 2 : ρ∗ = 0 and µ1 = (µ, 1− µ) is unknown

Pearson’s χ2 under M1 0.680 0.027 — — 2.854 0.233
Pearson’s χ2 under M2 0.694 0.019 0.016 0.035 3.034 0.045

SEM 0.724 0.015 0.090 0.043 µ1,2 = -0.880 sd(µ1,2) =0.053
Robin 0.954 0.064 0.779 0.212 µ1,2 = -0.221 sd(µ1,2) =0.218

Song EM 0.697 0.014 0.003 0.038 µ1,2 = -0.996 sd(µ1,2) =0.039
Song π−maximizing 0.114 0.297 0.538 1.810 µ1,2 = -0.463 sd(µ1,2) =1.810

Mixture 3 : ρ∗ = 0.25 and µ1 = (µ, 1− µ) is unknown

Pearson’s χ2 under M2 0.704 0.026 0.033 0.060 3.071 0.101
SEM 0.730 0.016 0.083 0.052 µ1,2 =-0.878 sd(µ1,2) =0.055
Robin 0.890 0.025 0.566 0.117 µ1,2 = -0.434 sd(µ1,2) =0.117

Song EM 0.704 0.015 0.016 0.047 µ1,2 = -0.973 sd(µ1,2) =0.040
Song π−maximizing 0.095 0.268 0.564 1.606 µ1,2 = -0.436 sd(µ1,2) =1.606

Table 3.5: The mean value with the standard deviation of estimates in a 100-run experi-
ment on a two-component bivariate normal mixture.
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3.6 Conclusions

In this chapter, we proposed a structure for a two-component semiparametric mixture
models where one component is parameteric with unknown parameter, and a compo-
nent defined by linear constraints on its distribution function. These constraints may be
moments constraints for example. We proposed also an algorithm which estimates the
parameters of this model and showed how we can implement it efficiently even in multi-
variate contexts. The algorithm has a linear complexity when we use the Pearson’s χ2

divergence and the constraints are polynomials (thus moments constraints). We provided
sufficient conditions in order to prove the consistency and the asymptotic normality of the
resulting estimators.
Simulations show the gain we have by adding moments constraints in comparison to ex-
isting methods which do not consider any prior information. The method give clear good
results even if the proportion of the parametric component is very low (equal to 0.01). In
signal-noise applications, this can be interpreted otherwise. As long as we are able to esti-
mate with relatively high precision the proportion of the signal (parametric component),
we are proving the existence of the signal in a very heavy noise (99% of the data) even
if the position of the signal is not accurately estimated. We showed in a simple example
that our model can be applied in multivariate contexts. The new model shows encouraging
properties and results, and should be tested further on real datasets.

3.7 Appendix: Proofs

3.7.1 Proof of Proposition 3.3.1

Proof. Based on equation (3.3.2), we may write the corresponding constraints equations,
which are a fortiori equal:

λ

∫
g(x)dP1(x|θ) + (1− λ)m(α) = λ̃

∫
g(x)dP1(x|θ̃) + (1− λ̃)m(α̃).

Define the following function:

G : Rd → R` : (λ, θ, α) 7→ λ

∫
g(x)dP1(x|θ) + (1− λ)m(α).

The solution to the previous system of equations is now equivalent to the fact that function
G is one-to-one. This means that for a fixed m∗, we need that the nonlinear system of
equations:

1

1− λ
m∗ − λ

1− λ
m1(θ) = m0(α) (3.7.1)

has a unique solution (λ, θ, α). The value of m∗ is given by
∫
g(x)dPT where PT is the

mixture we are considering. To conclude, suppose that the system (3.7.1) has a unique
solution (λ∗, θ∗, α∗) for each given m∗, then function G is one-to-one and the constraints
equations imply that λ = λ̃, θ = θ̃ and α = α̃. Finally, using (3.3.2), we may deduce that
P0 = P̃0. Thus, the semiparametric mixture model is identifiable as soon as the nonlinear
system of equations (3.7.1) has a unique solution (λ∗, θ∗, α∗).
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3.7.2 Proof of Proposition 3.3.2

Proof. Let P0 be some signed measure which belongs to the intersection N ∩M. Since
P0 belongs to N , there exists a couple (λ, θ) such that:

P0 =
1

1− λ
PT −

λ

1− λ
P1(.|θ). (3.7.2)

This couple is unique by virtue of assumptions 3 and 4. Indeed, let (λ, θ) and (λ̃, θ̃) be
two couples such that:

1

1− λ
PT −

λ

1− λ
P1(.|θ) =

1

1− λ̃
PT −

λ̃

1− λ̃
P1(.|θ̃) dPT − a.e. (3.7.3)

This entails that:

1

1− λ
− λ

1− λ
dP1(x|θ)
dPT (x)

=
1

1− λ̃
− λ̃

1− λ̃
dP1(x|θ̃)
dPT (x)

.

Taking the limit as ‖x‖ tends to ∞ results in:

1− cλ
1− λ

=
1− c̃λ
1− λ̃

.

Note that function z 7→ (1 − cz)/(1 − z) is strictly monotone as long as c 6= 1. Hence, it
is a one-to-one map. Thus λ = λ̃. Inserting this result in equation (3.7.3) entails that:

P1(.|θ) = P1(.|θ̃) dPT − a.e.

Using the identifiability of P1 (assumption 4), we get θ = θ̃ which proves the existence of
a unique couple (λ, θ) in (3.7.2).
On the other hand, since P0 belongs to M, there exists a unique α such that P0 ∈ Mα.
Uniqueness comes from the fact that function α 7→ m(α) is one-to-one (assumption 2).
Thus, P0 verifies the constraints∫

dP0(x) = 1,

∫
gi(x)dP0(x) = mi(α), ∀i = 1, · · · , `.

Combining this with (3.7.2), we get:∫ (
1

1− λ
dPT −

λ

1− λ
dP1(x|θ)

)
= 1,

∫
gi(x)

(
1

1− λ
dPT −

λ

1− λ
dP1(x|θ)

)
= mi(α),

(3.7.4)
for all i = 1, · · · , `. This is a non linear system of equations with `+1 equations. The first
one is verified for any couple (λ, θ) since both P (.|φ∗) and P1 are probability measures.
This reduces the system to ` nonlinear equations.
Now, let P0 and P̃0 be two elements in N ∩M, then there exist two couples (λ, θ) and
(λ̃, θ̃) with λ 6= λ̃ or θ 6= θ̃. Since P0 ∈ M, there exists α such that P0 ∈ Mα. Similarly,
there exists α̃ possibly different from α. Now, (λ, θ, α) and (λ̃, θ̃, α̃) are two solutions
to the system of equations (3.7.4) which contradicts with assumption 1 of the present
proposition.
We may now conclude that, if a signed measure P0 belongs to the intersection N ∩M,
then it has the representation (3.7.2) for a unique couple (λ, θ) and there exists a unique
α such that the triplet (λ, θ, α) is a solution to the non linear system (3.7.4). Conversely,
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if there exists a triplet (λ, θ, α) which solves the non linear system (3.7.4), then the signed
measure P0 defined by P0 = 1

1−λP (.|φ∗)− λ
1−λP1(.|θ) belongs to the intersection N ∩M.

This is because on the one hand, it clearly belongs to N by its definition and on the other
hand, it belongs to Mα since it verifies the constraints and thus belongs to M.
It is now reasonable to conclude that under assumptions 2-4, the intersection N ∩ M
includes a unique signed measure P0 if and only if the set of ` non linear equations (3.7.4)
has a unique solution (λ, θ, α).

3.7.3 Proof of Lemma 3.4.1

Proof. The proof is based partially on the proof of Proposition 3.7 part (ii) in Keziou
[2003].
We proceed by contradiction. Let ε > 0 be such that supφ ‖ξn(φ)−ξ(φ)‖ > ε. Then, there
exists a sequence ak ∈ Φ such that ‖ξn(ak)− ξ(ak)‖ > ε. By assumption A3, there exists
η > 0 such that:

H(ak, ξ(ak))−H(ak, ξn(ak)) > η.

Thus,

P

(
sup
φ
‖ξn(φ)− ξ(φ)‖ > ε

)
≤ P (H(ak, ξ(ak))−H(ak, ξn(ak)) > η) . (3.7.5)

Let’s prove that the right hand side tends to zero as n goes to infinity which is sufficient
to accomplish our claim.
By definition of ξn(ak) and assumption A2, we can write:

Hn(ak, ξn(ak)) ≥ Hn(ak, ξ(ak))

≥ H(ak, ξ(ak))− oP (1)

where oP (1) does not depend upon ak by virtue of A2. Now we have:

H(ak, , ξ(ak))−H(ak, ξn(ak)) ≤ Hn(ak, ξn(ak))−H(ak, , ξn(ak)) + oP (1)

≤ sup
ξ,φ
|Hn(φ, ξ)−H(φ, ξ)|+ oP (1).

Last but not least, assumption A2 permits to conclude that the right hand side tends to
zero in probability. Since the left hand side is already nonnegative by definition of ξ(ak),
then by the previous result we conclude that H(ak, , ξ(ak))−H(ak, ξn(ak)) tends to zero in
probability. Employing this final result in inequality (3.7.5), we get that supφ ‖ξn(φ)−ξ(φ)‖
tends to zero in probability.

3.7.4 Proof of Theorem 3.4.1

Proof. We proceed by contradiction in a similar way to the proof of Lemma 3.4.1. Let
κ > 0 be such that ‖φ∗ − φ̂‖ > κ, then by assumption A4, there exists η > 0 such that :

H(φ̂, ξ(φ̂))−H(φ∗, ξ(φ∗)) > η.

This can be rewritten as:

P
(
‖φ∗ − φ̂‖ > κ

)
≤ P

(
H(φ̂, ξ(φ̂))−H(φ∗, ξ(φ∗)) > η

)
. (3.7.6)

We now demonstrate that the right hand side tends to zero as n goes to infinity. Let
ε > 0 be such that for n sufficiently large, we have supξ,φ |H(φ, ξ)−Hn(φ, ξ)| < ε. This
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is possible by virtue of assumption A2. The definition of φ̂ together with assumption A2
will now imply:

Hn(φ̂, ξn(φ̂)) ≤ Hn(φ∗, ξn(φ∗))

≤ H(φ∗, ξn(φ∗)) + sup
ξ,φ
|H(φ, ξ)−Hn(φ, ξ)|

≤ H(φ∗, ξn(φ∗)) + ε. (3.7.7)

We use now the continuity assumption A5 of function ξ 7→ H(φ∗, ξ) at ξ(φ∗). For the ε
chosen earlier, there exists δ(φ∗, ε) such that if ‖ξ(φ∗)− ξn(φ∗)‖ < δ(φ∗, ε), then:

|H(φ∗, ξn(φ∗))−H(φ∗, ξ(φ∗))| < ε.

This is possible for sufficiently large n since supφ ‖ξ(φ∗)− ξn(φ∗)‖ tends to zero in proba-
bility by Lemma 3.4.1. Inserting this result in (3.7.7) gives:

Hn(φ̂, ξn(φ̂)) ≤ H(φ∗, ξ(φ∗)) + 2ε.

We now have:

H(φ̂, ξ(φ̂))−H(φ∗, ξ(φ∗)) ≤ H(φ̂, ξ(φ̂))−Hn(φ̂, ξn(φ̂)) + 2ε

≤ H(φ̂, ξ(φ̂))−H(φ̂, ξn(φ̂)) +H(φ̂, ξn(φ̂))−Hn(φ̂, ξn(φ̂)) + 2ε.

Continuity assumption of H implies that for ε > 0, there exists δ(φ̂, ε) > 0 such that if
‖ξ(φ̂)− ξn(φ̂)‖ < δ(φ̂, ε), then:∣∣∣H(φ̂, ξ(φ̂))−H(φ̂, ξn(φ̂))

∣∣∣ ≤ ε.
This is again possible for sufficiently large n since supφ ‖ξ(φ∗) − ξn(φ∗)‖ tends to zero in
probability by Lemma 3.4.1. This entails that:

H(φ̂, ξ(φ̂))−H(φ∗, ξ(φ∗)) ≤ H(φ̂, ξn(φ̂))−Hn(φ̂, ξn(φ̂)) + 3ε

≤ sup
ξ,φ
|H(φ, ξ)−Hn(φ, ξ)|+ 3ε

≤ 4ε

We conclude that the right hand side in (3.7.6) goes to zero and the proof is completed.

3.7.5 Proof of Theorem 3.4.2

Proof. We will use Theorem 3.4.1. We need to verify assumptions A2 and A3. Since
the class of functions {(φ, ξ) 7→ h(φ, ξ, .)} is a Glivenko-Cantelli class of functions, then
assumption A2 is fulfilled by the Glivenko-Cantelli theorem. Finally, assumption A3 can
be checked by strict concavity of function ξ 7→ H(φ, ξ). Indeed, for any η ∈ (0, 1) and any
ξ1, ξ2, we have by strict convexity of ψ :

ψ
(
ηξt1g(x) + (1− η)ξt2g(x)

)
< ηψ

(
ξt1g(x)

)
+ (1− η)ψ

(
ξt2g(x)

)
.

If the measure dP/(1− λ)− λdP1(.|θ)/(1− λ) is positive10, we may write:∫
ψ
(
ηξt1g(x) + (1− η)ξt2g(x)

)( 1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
<

η

∫
ψ
(
ξt1g(x)

)( 1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
+(1−η)

∫
ψ
(
ξt2g(x)

)( 1

1− λ
dP (x)− λ

1− λ
dP1(x|θ)

)
,

10This measure can never be zero since it integrates to one, thus we do not need to suppose that it is
nonnegative.
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which entails that

H(φ, ηξ1 + (1− η)ξ2) > ηH(φ, ξ1) + (1− η)H(φ, ξ2),

and function ξ 7→ H(φ, ξ) becomes strictly concave. However, the measure dP/(1 − λ) −
λdP1(.|θ)/(1 − λ) is in general a signed measure and the previous implication does not
hold. This is not dramatic because function ξ 7→ H(φ, ξ) has only two choices; it is either
strictly convex or strictly concave. In case function ξ 7→ H(φ, ξ) is strictly convex, then
its supremum is infinity and the corresponding vector φ does not count in the calculus of
the infimum after all. This means that the only vectors φ ∈ Φ which interest us are those
for which function ξ 7→ H(φ, ξ) is strictly concave. In other words, the infimum in (3.3.10)
can be calculated over the set:

Φ+ = Φ ∩ {φ : ξ 7→ H(φ, ξ) is strictly concave}

instead of over Φ. All assumptions of Theorem 3.4.1 are now fulfilled and φ̂ converges in
probability to φ∗.

3.7.6 Proof of Proposition 3.4.1

Proof. We already have:

1

1− λ∗
PT −

λ∗

1− λ∗
P1(.|θ∗) = P ∗0 ,

and since P ∗0 is supposed to be a probability measure, the matrix JH(φ∗,.) is definite
negative. Thus φ∗ ∈ Φ+. Since the set of negative definite matrices is an open set (see
for example page 36 in Lange [2013]), there exists a ball U of negative definite matrices
centered at JH(φ∗,.). Continuity of φ 7→ JH(φ,.) permits11 to find a ball B(φ∗, r̃) such that
the subset {JH(φ,.) : φ ∈ B(φ∗, r̃)} is inside U . Now the neighborhood we are looking at is
the ball B(φ∗, r̃).
For the second part of the proposition, the existence and finiteness of ξ(φ) for φ ∈ V =
B(φ∗, r̃) is immediate since function ξ 7→ H(φ, ξ) is strictly concave. Besides the the
differentiability of the function φ 7→ ξ(φ) is a direct result of the implicit function theorem
applied on the equation ξ 7→ ∇H(φ, .). Notice that the Hessian matrix of H(φ, .) is
invertible since it is symmetric definite negative.

3.7.7 Proof of Theorem 3.4.3

Proof. We follow the steps of Theorem 3.2 in Newey and Smith [2004]. The idea behind
the proof is a mean value expansion with Lagrange remainder of the estimating equations.
We need at first to verify if φ̂ belongs to the interior of Φ+ in order to be able to differentiate
φ 7→ Hn(φ, ξ). This can be done similarly to Proposition 3.4.1. We also can prove (by
replacing H by Hn and ξ(φ) by ξn(φ)) that φ 7→ ξn(φ) is continuously differentiable in a
neighborhood of φ∗.
We may now proceed to the mean value expansion. By the very definition of ξn(φ), we
have:

∂Hn

∂ξ
(φ, ξn(φ)) = 0 ∀φ ∈ int(Φ+),

11To see this, consider Sylvester’s rule which is based on a test using the determinant of the sub-matrices
of JH . Each determinant needs to be negative. The continuity of the determinant function together with
the continuity of φ 7→ JH(φ,.) will imply that we may move around J(H(φ∗, .)) in a small neighborhood in
a way that the determinants of the sub-matrices stay negative.
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which also holds for φ = φ̂, i.e.

∂Hn

∂ξ
(φ̂, ξn(φ̂)) = 0.

On the other hand, the definition of φ̂ implies that:

∂

∂φ
Hn(φ, ξn(φ))

∣∣∣∣
φ=φ̂

= 0.

Since function φ 7→ ξn(φ) is continuously differentiable. A simple chain rule implies

∂

∂φ
(Hn(φ, ξn(φ)))

∣∣∣∣
φ=φ̂

=
∂

∂φ
Hn(φ̂, ξn(φ̂)) +

∂

∂ξ
Hn(φ̂, ξn(φ̂))

∂ξn
∂φ

(φ̂)

=
∂

∂φ
Hn(φ̂, ξn(φ̂)).

The second line comes from the definition of ξn(φ) as the argument of the supremum of
function ξ 7→ Hn(φ, ξ). Now, the estimating equations are given simply by:

∂Hn

∂ξ
(φ̂, ξn(φ̂)) = 0;

∂Hn

∂φ
(φ̂, ξn(φ̂)) = 0.

We need to calculate these partial derivatives. We start by the derivative with respect to
ξ:

∂Hn

∂ξ
(φ, ξ) = m(α)− 1

1− λ
1

n

n∑
i=1

ψ′
(
ξtg(xi)

)
g(xi) +

λ

1− λ

∫
ψ′
(
ξtg(x)

)
g(x)p1(x|θ)dx

(3.7.8)
We calculate the partial derivatives with respect to α, λ and θ:

∂Hn

∂α
= ξt∇m(α) (3.7.9)

∂Hn

∂λ
= − 1

(1− λ)2

1

n

n∑
i=1

ψ
(
ξtg(xi)

)
+

1

(1− λ)2

∫
ψ
(
ξtg(x)

)
p1(x|θ)dx (3.7.10)

∂Hn

∂θ
=

λ

1− λ

∫
ψ
(
ξtg(x)

)
∇θp1(x|θ)dx (3.7.11)

Notice that by Lemma 3.4.1, the continuity of φ 7→ ξ(φ) and the consistency of φ̂ towards
φ∗, we have ξn(φ̂)→ ξ(φ∗) = 0 in probability. A mean value expansion of the estimating
equation between (φ̂, ξn(φ̂)) and (φ∗, 0) implies that there exists (φ̄, ξ̄) on the line between
these two points such that:(

∂Hn
∂φ (φ̂, ξn(φ̂))
∂Hn
∂ξ (φ̂, ξn(φ̂))

)
=

(
∂Hn
∂φ (φ∗, 0)
∂Hn
∂ξ (φ∗, 0)

)
+ JHn(φ̄, ξ̄)

(
φ̂− φ∗
ξn(φ̂)

)
, (3.7.12)

where JHn(φ̄, ξ̄) is the matrix of second derivatives of Hn calculated at the mid point
(φ̄, ξ̄). The left hand side is zero, so we need to calculate the first vector in the right hand
side. We have by simple substitution in formula (3.7.8):

∂Hn

∂ξ
(φ∗, 0) = m(α∗)− 1

1− λ∗
1

n

n∑
i=1

g(xi) +
λ∗

1− λ∗

∫
g(x)p1(x|θ∗)dx.
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Using the assumption that the model (3.3.5) verify the set of constraints defining Mα

together with the CLT, we write:

√
n
∂Hn

∂ξ
(φ∗, 0) −→

L
N
(

0,
1

(1− λ∗)2
VarPT (g(X))

)
. (3.7.13)

Using formulas (3.7.9), (3.7.10) and (3.7.11), we may write:

∂Hn

∂α
(φ∗, 0) = 0;

∂Hn

∂λ
(φ∗, 0) = − 1

(1− λ∗)2
+

1

(1− λ∗)2
= 0;

∂Hn

∂θ
(φ∗, 0) =

λ∗

1− λ∗

∫
∇θp1(x|θ∗)dx =

λ∗

1− λ∗
∇θ
∫
p1(x|θ∗)dx = 0.

The final line holds since by Lebesgue’s differentiability theorem using assumption 5 for
ξ = 0, we can change between the sign of integration and derivation. Combine this with
the fact that p1(x|θ∗) is a probability density function which integrates to 1, gives the
result in the last line.
We need now to write an explicit form for the matrix JHn(φ̄, ξ̄) and study its limit in
probability. It contains the second order partial derivatives of function Hn with respect
to its parameters. We start by the double derivatives. Using formulas (3.7.8), (3.7.9),
(3.7.10) and (3.7.11), we write:

∂2Hn

∂ξ2
= − 1

1− λ
1

n

n∑
i=1

ψ′′
(
ξtg(xi)

)
g(xi)g(xi)

t +
λ

1− λ

∫
ψ′′
(
ξtg(x)

)
g(x)g(x)tp1(x|θ)dx;

∂2Hn

∂α2
= ξtJm(α);

∂2Hn

∂λ2
= − 2

(1− λ)3

1

n

n∑
i=1

ψ
(
ξtg(xi)

)
+

2

(1− λ)3

∫
ψ
(
ξtg(x)

)
p1(x|θ)dx;

∂2Hn

∂θ2
=

λ

1− λ

∫
ψ
(
ξtg(x)

)
Jp1(x|θ)dx;

∂2Hn

∂ξ∂α
= ∇m(α);

∂2Hn

∂ξ∂λ
= − 1

(1− λ)2

1

n

n∑
i=1

ψ′
(
ξtg(xi)

)
g(xi) +

1

(1− λ)2

∫
ψ′
(
ξtg(x)

)
g(x)p1(x|θ)dx;

∂2Hn

∂ξ∂θ
=

λ

1− λ

∫
ψ′
(
ξtg(x)

)
g(x)∇θp1(x|θ)tdx;

∂2Hn

∂α∂λ
= 0;

∂2Hn

∂α∂θ
= 0;

∂2Hn

∂λ∂θ
=

1

(1− λ)2

∫
ψ
(
ξtg(x)

)
∇θp1(x|θ)dx.

As n goes to infinity, we have ξ̄ → 0 and φ̄ → φ∗. Then, under regularity assumptions
of the present theorem, we can calculate the limit in probability of the matrix JHn(φ̄, ξ̄).
The blocks limits are given by:

∂2Hn

∂ξ2

P→ −EP ∗0
[
g(X)g(X)t

]
,

∂2Hn

∂α2

P→ 0,
∂2Hn

∂λ2

P→ 0,
∂2Hn

∂θ2

P→ 0,
∂2Hn

∂ξ∂α

P→ ∇m(α∗)
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∂2Hn

∂ξ∂λ

P→ − 1

(1− λ∗)2
EPT [g(X)] +

1

(1− λ∗)2

∫
g(x)p1(x|θ∗)dx

∂2Hn

∂ξ∂θ

P→ λ∗

1− λ∗

∫
g(x)∇θp1(x|θ∗)dx, ∂2Hn

∂α∂λ

P→ 0,
∂2Hn

∂α∂θ

P→ 0,
∂2Hn

∂λ∂θ

P→ 0,

taking into account that ψ(0) = 0, ψ′(0) = 1 and ψ′′(0) = 1. The limit in probability of
the matrix JHn(φ̄, ξ̄) can be written in the form:

JH =

[
0 J tφ∗,ξ∗

Jφ∗,ξ∗ Jξ∗,ξ∗

]
,

where Jφ∗,ξ∗ and Jξ∗,ξ∗ are given by (3.4.3) and (3.4.4). The inverse of matrix JH has the
form:

J−1
H =

(
−Σ H
Ht W

)
,

where

Σ =
(
J tφ∗,ξ∗Jξ∗,ξ∗Jφ∗,ξ∗

)−1
, H = ΣJ tφ∗,ξ∗J

−1
ξ∗,ξ∗ , W = J−1

ξ∗,ξ∗ − J
−1
ξ∗,ξ∗Jφ∗,ξ∗ΣJ

t
φ∗,ξ∗J

−1
ξ∗,ξ∗ .

Going back to (3.7.12), we have:(
0
0

)
=

(
0

∂Hn
∂ξ (φ∗, 0)

)
+ JHn(φ̄, ξ̄)

(
φ̂− φ∗
ξn(φ̂)

)
.

Solving this equation in φ and ξ gives:( √
n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
= J−1

H

(
0√

n∂Hn∂ξ (φ∗, 0)

)
+ oP (1).

Finally, using (3.7.13), we get that:( √
n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
−→
L
N (0, S)

where

S =
1

(1− λ∗)2

(
H
W

)
VarPT (g(X))

(
Ht W t

)
.

This ends the proof.
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Chapter 4

Semiparametric two-component
mixture models where one
component is defined through
L-moments constraints

Recall that a semiparametric two-component mixutre model is defined by:

f(x) = λf1(x|θ) + (1− λ)f0(x), for x ∈ R (4.0.1)

for λ ∈ (0, 1) and θ ∈ Rd to be estimated and the density f0 is considered to be unknown.
We have proposed in Chapter 3 a method which incorporates moment-type constraints
on the unknown component. The method outperforms other semiparametric methods
which do not use prior information encouraging the use of a suitable prior information.
Moment-type constraints are not suitable for positive-support mixtures especially when
the density does not decrease fast enough. The method needs more observations to be
able to estimate such mixtures.
We thus propose here to use L-moments constraints. L-moments have become classical
tools alternative to central moments for the description of dispersion, skewness and kur-
tosis of a univariate heavy-tailed distribution. Distributions such as the Lognormal, the
Pareto and the Weibull distributions are standard examples of such distributions. The
use of L-moments is evolving since their introduction by Hosking [1990]. One of the main
interests of L-moments is that they can be defined as soon as the expectation of the ran-
dom variable exists. Broniatowski and Decurninge [2016] has proposed a structure and an
estimation procedure for semiparametric models defined through L-moments conditions.
The resulting estimators performe well under the model, and they outperforme existing
methods in misspecification contexts.
Similarly to the case of moment constraints seen in the previous chapter, the incorporation
of L-moments constraints cannot be done directly in existing methods for semiparametric
mixtures (see paragraph 3.1) because the optimization will be carried over a (possibly)
infinite dimensional space on the one hand, and on the other hand, existing methods use
either the distribution function or the probability density function and cannot adapt an
approach based on the quantile function. Our approach introduced in the previous chap-
ter cannot be used either because L-moments are not linear functions of the distribution
function as we will see in paragraph 4.1.1. We thus need a new tool. Convex analysis
offer away using Fenchel-Legendre duality to transform an optimization problem over an
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infinite dimensional space to the space of Lagrangian parameters (finite dimensional one).
ϕ−divergences, by their convexity properties, are suitable tools in order to use the du-
ality result. Chap 1 in the PhD thesis of Decurninge [2015] introduced a method based
on ϕ−divergences to estimate a semiparametric model defined subject to L-moments con-
straints. We will exploit his methodology to build a new estimation procedure which takes
into account L-moments constraints over the unknown component’s distribution.

4.1 Semiparametric models defined through L-moments con-
straints

In this section, we present a definition of a semiparametric model subject to L-moments
constraints in a similar way to semiparametric models defined through moments con-
straints. An essential part to begin with is the definition of L-moments. We will keep
this part brief and one can consult Decurninge [2015] Chap. 1 or Hosking [1990] for more
details.
We recall two important notions; the quantile function and the quantile measure. Let
X1, . . . Xn be n i.i.d. copies of a random variable X taking values in R with unknown
cumulative distribution function (cdf) F. Denote by F−1(u) for u ∈ (0, 1) the associated
quantile function of the cdf F defined by

F−1(u) = inf {x ∈ R, s.t. F(x) ≥ u} , u ∈ (0, 1).

We can associate to F−1 a measure F−1 on B([0, 1]) given by

F−1(B) =

∫ 1

0
1x∈BdF−1(x) ∈ R ∪ {−∞,+∞}.

The integral here is a Riemann-Stieltjes one. F−1 is a σ−finite measure since F−1 has
bounded variations on every subinterval [a, b] from (0, 1).
In this section, we suppose that E|X| <∞ and

∫
|x|dF (x) <∞. We adapt the standard

notation for the cumulative distribution function (cdf) and measures, i.e. a measure P
has a cdf F, a density p with respect to the Lebesgue measure and a quantile measure
F−1, and a measure Q has a cdf Q, a density q with respect to the Lebesgue measure and
a quantile measure Q.

4.1.1 L-moments: Definition and first properties

Let X1:n < . . . < Xn:n be the order statistics associated to the sample X1, · · · , Xn.

Definition 4.1.1. The L-moment of order r, denoted λr, r = 1, 2, . . . is defined as a linear
combination of the expectation of order statistics:

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr−k:r) .

If F is continuous, then the expectation of the j-th order statistic is given by

E [Xj:r] =
r!

(j − 1)!(r − j)!

∫
R
xF(x)j−1 [1− F(x)]r−j dF(x). (4.1.1)
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In particular, the first three L-moments are

λ1 = E[X];

λ2 = (E [X2:2]− E [X1:2]) /2;

λ3 = (E [X3:3]− 2E [X2:3] + E [X1:3]) /3.

Using formula (4.1.1), L-moments can be expressed using the quantile function F−1 (see
Proposition 1.1. from Decurninge [2015]) as follows:

λr =

∫ 1

0
F−1(u)Lr−1(u)du ∀r ≥ 1,

where Lr is the shifted Legendre polynomial of order r and is given by:

Lr(u) =

r∑
k=0

(−1)r−k
(
r

k

)(
r + k

k

)
uk.

Moreover, for r ≥ 2:

λr = −
∫
R
Kr(t)dF−1(t), (4.1.2)

where

Kr(t) =

∫ t

0
Lr−1(u)du =

r−1∑
k=0

(−1)r−k

k + 1

(
r

k

)(
r + k

k

)
tk+1 (4.1.3)

is the integrated shifted Legendre polynomial (see Proposition 1.2 in Decurninge [2015]).
Notice that L-moments are polynomials in the cdf and linear in the quantile measure.

4.1.2 Semiparametric Linear Quantile Models (SPLQ)

SPLQ models were introduced by Broniatowski and Decurninge [2016]. The definition
passes by the quantile measures instead of the distribution function. It is possible to define
semiparametric models subject to L-moments constraints using the distribution function.
However, their estimation would be very difficult because the constraints are not linear in
the distribution function. They are instead linear in the quantile measure. This will be-
come clearer as we go further in this subject. Denote M−1 the set of all σ−finite measures.

Definition 4.1.2. A semiparametric linear quantile model related to some quantile mea-
sure F−1

T is a collection of quantile measures absolutely continuous with respect to F−1
T

sharing the same form of L-moments, i.e.

M =
⋃
α∈A

{
F−1 � F−1

T , s.t.

∫ 1

0
Kr(t)F

−1(dt) = m(α)

}
,

where m(α) = (−λ2, · · · ,−λ`) and α ∈ A ⊂ Rs.
Example 4.1.1 (Decurninge [2015]). Consider the model which is the family of all the
distributions of a r.v. X whose second, third and fourth L-moments satisfy:

λ2 = σ
(

1− 2−1/ν
)

Γ

(
1 +

1

ν

)
λ3 = λ2

[
3− 2

1− 31/ν

1− 2−1/ν

]

λ4 = λ2

[
6 +

5(1− 4−1/ν)− 10(1− 3−1/ν)

1− 2−1/ν

]
,
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for σ > 0, ν > 0. These distributions share their first L-moments of order 2, 3 and 4 with
those of a Weibull distribution with scale and shape parameter; σ, ν.

In SPLQ models, the objective is to estimate the value of α∗ for which the true quan-
tile measure F−1

T of the data belongs to Mα∗ on the basis of a sample X1, · · · , Xn. The
estimation procedure is generally done by either solving the set of equations defining the
constraints or by minimizing a suitable distance-like function between the setM and some
estimator of F−1

T based on an observed sample. In other words, we search for the ”projec-
tion” of F−1

T on M.
We have seen in the previous chapter that ϕ−divergences offer a way to calculate a ”pro-
jection” of a finite signed measure on a set of finite signed measures, see definitions 3.2.2
and 3.2.3. ϕ−divergences can still be used to identify some distance between a σ−finite
measure and a set of σ−finite measures. We may write:

α∗ = arg inf
α∈A

Dϕ

(
Mα,F

−1
T

)
= arg inf

α∈A
inf

F−1∈Mα

Dϕ

(
F−1,F−1

T

)
. (4.1.4)

Of course, if F−1
T ∈ Mα∗ for some α∗ ∈ A, then Dϕ

(
∪αMα,F

−1
T

)
= 0. Otherwise, α∗

corresponds to the parameter of the closest set Mα from the ϕ−divergence point of view
to the quantile measure F−1

T .

4.1.3 Estimation using the duality technique

The estimation procedure (4.1.4) is not feasible because it concerns the minimization over
a subset of possibly infinite dimension. The duality technique presented in paragraph
3.2.2 can be applied here too in order to transform the calculus of the projection from
an optimization problem over a possibly infinite dimensional space into an optimization
problem over R`−1, where ` − 1 is the number of constraints defining the set Mα. We
recall briefly this techniques by applying it directly in the context of quantile measures.
Corollary 1.1 from Decurninge [2015] states the following. If there exists some F−1 inMα

such that aϕ < dF−1/dF−1
T < bϕ F−1

T -a.s. where domϕ = (aϕ, bϕ) then,

inf
F−1∈Mα

∫ 1

0
ϕ

(
dF−1

dF−1
T

)
(u)F−1

T (du) = sup
ξ∈R`−1

ξtm(α)−
∫ 1

0
ψ
(
ξtK(u)

)
F−1
T (du). (4.1.5)

This formula permits to build a plug-in estimate for α by considering a sample X1, · · · , Xn,
see Remark 1.15 in Decurninge [2015].

α̂ = arg inf
α

sup
ξ∈R`−1

ξtm(α)−
n−1∑
i=1

ψ

(
ξtK

(
i

n

))
(Xi+1:n −Xi:n). (4.1.6)

This plug-in estimate is very interesting in its own, because it does not need any numerical
integration. Besides, if we take ϕ to be the χ2 generator, i.e. ϕ(t) = (t − 1)2/2 whose
convex conjugate is ψ(t) = t2/2 + t, the optimization over ξ can be solved directly in a
similar way to Example 3.3.2, see also Example 1.12 in Decurninge [2015]. We will get
back to this interesting case study later on.
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4.2 Semiparametric two-component mixture models when
one component is defined through L-moments constraints

4.2.1 Definition and identifiability

Definition 4.2.1. Let X be a random variable taking values in R distributed from a
probability measure P whose cdf is F. We say that P (.|φ) with φ = (λ, θ, α) is a two-
component semiparametric mixture model subject to L-moments constraints if it can be
written as follows:

P (.|φ) = λP1(.|θ) + (1− λ)P0 s.t.

F−1
0 ∈Mα =

{
Q−1 ∈M−1,Q−1 � F−1

0 s.t.

∫ 1

0
K(u)Q−1(du) = m(α)

}
(4.2.1)

for λ ∈ (0, 1) the proportion of the parametric component, θ ∈ Θ ⊂ Rd a set of parame-
ters defining the parametric component, α ∈ A ⊂ Rs is the constraints parameter, K =
(K2, ...,K`) is defined through formula (4.1.3) and finally m(α) = (m2(α), · · · ,m`(α)) is
a vector-valued function determining the values of the L-moments.

Notice that m(α) must contain the negative values of the L-moments by equation
(4.1.2), i.e mr(α) = −λr. In this definition, it may appear that we have mixed quantiles
with probabilities. This is however necessary in order to show the structure of the mixture
model which generates the data. This structure is uniquely defined through the distribu-
tion function and does not have a ”proper” writing using the quantile measure. In general,
there is no formula which gives the quantile of a mixture model, and in practice, statis-
ticians use approximations to calculate the quantile of a mixture model. Thus, working
with the quantiles will make us lose the linearity property relating the two components
with the mixture’s distribution. In the previous chapter, this linearity played an essential
role in the estimation procedure and simplified the calculus of the estimator on several
levels. We will get back to this idea later on, and a ”partial” solution will be proposed in
order to get back to the mixture distribution instead of its quantile.
It is important to recall that the use of quantiles in the definition of semiparametric mod-
els subject to L-moments constraints stems from the fact that the constraints are linear
functionals in the quantiles. Thus, an estimation procedure which employs the quantiles
instead of the distribution function can be solved using the Fenchel-Legendre duality in a
similar way to paragraph 4.1.3.

The identifiability of the model was not questioned in the context of SPLQ models be-
cause it suffices that the setsMα are disjoint (the function m(α) is one-to-one). However,
in the context of this semiparametric mixture model, identifiability cannot be achieved
only by supposing that the sets Mα are disjoint.

Definition 4.2.2. We say that the two-component semiparametric mixture model subject
to L-moments constraints is identifiable if it verifies the following assertion. If

λP1(.|θ) + (1− λ)P0 = λ̃P1(.|θ̃) + (1− λ̃)P̃0, with F−1
0 ∈Mα, F̃

−1
0 ∈Mα̃, (4.2.2)

then λ = λ̃, θ = θ̃ and P0 = P̃0 (and hence α = α̃).

This is the same identifiability concept considered in Definition 3.3.2 (and by Bordes
et al. [2006]) except that the unknown component’s quantile belongs to the set Mα.
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Proposition 4.2.1. For a given mixture distribution PT = P (.|φ∗) whose cdf is FT ,
suppose that the system of equations:∫ 1

0
K(u)

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(du) = m(α) (4.2.3)

has a unique solution (λ∗, θ∗, α∗). Then, equation (4.2.2) has a unique solution, i.e. λ =
λ̃, θ = θ̃ and P0 = P̃0, and the semiparametric mixture model PT = P (.|φ∗) is identifiable.

The proof is differed to Appendix 4.5.1. Note that the proof although has a close idea
to the proof of Proposition 3.3.1 is different with more technical difficulties.

Example 4.2.1 (Two-component exponential mixture). We propose to look at an expo-
nential mixture defined by:

f(x|λ∗, a∗1) = λ∗a∗1e
−a∗1x + (1− λ∗)a∗0e−a

∗
0x

where a∗1 = 1.5, a∗0 = 0.5 and λ∗ ∈ {0.3, 0.5, 0.7, 0.85}. This is considered to be the distribu-
tion generating the observed data. Suppose that the second component f∗0 (x) = a∗0e

−a∗0x

is unknown during the estimation. Furthermore, suppose that we hold an information
about f∗0 that its quantile F∗0

−1 belongs to the following class of functions:

M =

{
F−1 � F∗0

−1,

∫ 1

0
u(1− u)F−1(du) =

1

2a∗0

}
.

This set contains all probability distributions whose second L-moment has the value 1
2a∗0

.

We would like to check the identifiability of the semiparametric mixture model subject
to the second L-moment constraint of the exponential distribution E(a∗0). The system of
equations (4.2.3) is given by:∫ 1

0
u(1− u)

(
1

1− λ
FT −

λ

1− λ
F1(.|a1)

)−1

(du) =
1

2a∗0
.

In order to calculate the left hand side, we use the alternative definition of the second
L-moment λ2 = (E[X2:2]− E[X1:2]) /2 and exploit formula (4.1.1). We have∫ 1

0
u(1− u)

(
1

1− λ
FT −

λ

1− λ
F1(.|a1)

)−1

(du) =∫
R+

x

[
2

(
1

1− λ
FT (x)− λ

1− λ
F1(x|a1)

)
− 1

](
1

1− λ
pT (x)− λ

1− λ
p1(x|a1)

)
dx

A direct calculus of the right hand side shows:∫
R+

x

[
2

(
1

1− λ
FT (x)− λ

1− λ
F1(x|a1)

)
− 1

](
1

1− λ
pT (x)− λ

1− λ
p1(x|a1)

)
dx =

2C1 − (λ+ 1)C2

(1− λ)2
+

λ2 − 2λ

2a1(1− λ)2
+

2λ∗λ

(1− λ)2(a1 + a∗1)
+

2λ(1− λ∗)
(1− λ)2(a1 + a∗0)

where

C2 =
λ∗

a∗1
+

1− λ∗

a∗0

C1 =
λ∗

a∗1
+

1− λ∗

a∗0
− λ∗2

4a∗1
− (1− λ∗)2

4a∗0
− λ∗(1− λ∗)

a∗1 + a∗0
.
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In figure (4.1), we show the set of solutions of the following equation:

2C1 − (λ+ 1)C2

(1− λ)2
+

λ2 − 2λ

2a1(1− λ)2
+

2λ∗λ

(1− λ)2(a1 + a∗1)
+

2λ(1− λ∗)

(1− λ)2(a1 + a∗0)
=

1

2a∗0
, (4.2.4)

for several values of λ∗ in the figure to the left. The figure to the right shows the
intersection between the set of solutions and the set Φ+ = {(λ, a), s.t. 1

1−λFT (x) −
λ

1−λF1(x|a1) is a cdf}. It is clear that the nonlinear system of equations (4.2.3) has an
infinite number of solutions. In order to reduce the number of solutions into one, we need
to consider another L-moment constraint. We do not pursue this here because the calculus
is already complicated even in this simple model.
Note that the set of solutions is shrinking as the proportion of the unknown component
f0 becomes smaller (the value of λ∗ increases). This gives rise to a difficult and an impor-
tant question; what happens if we have a number of constraints inferior to the number of
parameters. This question is not pursued here.

Figure 4.1: The set of solutions under a constraint over the second L-moment. Each
closed trajectory corresponds to a value of the proportion of the parametric part indicated
above of it. The figure to the left represents the whole set of solutions of the equation
(4.2.4) for different values of the true proportion λ∗. The figure to the right represents the
intersection between the set of solutions of equation (4.2.4) for λ∗ = 0.7 with the set Φ+.

4.2.2 An algorithm for the estimation of the semiparametric mixture
model

In the context of our semiparametric mixture model, we want to estimate the parameters
(λ, θ, α) on the basis of two pieces of information; an i.i.d. sample X1, · · · , Xn drawn from
PT and the fact that F∗

0
−1 belongs to the set M. For SPLQ models, we have seen that

using ϕ−divergences, we were able to construct an estimation procedure by minimizing
some distance between the set of constraints and the distribution generating the data. The
resulting estimation procedure is an optimizing problem over an infinite dimensional space.
We exploited the linearity of the constraints and transformed the estimation procedure
into a feasible optimization problem over R�−1 using the Fenchel-Legendre duality.
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In order to use the Fenchel-Legendre duality, the constraints need to apply over the whole
mixture. In our semiparametric mixture model, the constraints apply over the quantile of
only one component; F−1

0 . We thus propose to define another ”model” based on F−1
0 . We

have:

F∗0
−1 =

(
1

1− λ∗
FT (.|φ∗)− λ∗

1− λ∗
F1(|θ∗)

)−1

.

Denote the associated quantile measure

F∗0
−1 =

(
1

1− λ∗
FT (.|φ∗)− λ∗

1− λ∗
F1(|θ∗)

)−1

.

Define the set N−1 by:

N−1 =

{
Q−1 ∈M−1 : ∃(λ, θ) ∈ (0, 1)×Θ s.t. Q−1 =

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1
}
.

Notice that the set N−1 here is different from the set N defined in the previous chapter
by (3.3.6). Here, not all the couples (λ, θ) in (0, 1) × Θ are accepted, because function

1
1−λFT −

λ
1−λF1(|θ) may not be a cdf for for these couples. Define the set of effective

parameters Φ+ by:

Φ+ =

{
(λ, θ) ∈ (0, 1)×Θ :

1

1− λ
FT −

λ

1− λ
F1(.|θ) is a cdf

}
. (4.2.5)

Now, the set N−1 can be characterized using Φ+ by:

N−1 =

{(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

, for (λ, θ) ∈ Φ+

}
.

The introduction of the set Φ+ is only temporary, and we will not need it at the end of
this section in order to build our estimation procedure. Notice now that F∗0

−1 is a member
of N−1 for (λ, θ) = (λ∗, θ∗). On the other hand, and by definition of the semiparametric
mixture model, F∗0

−1 ∈Mα∗ . We may write:

F∗0
−1 ∈ N−1

⋂
∪αMα. (4.2.6)

If we suppose that the intersection (which is not void) contains only one element which
will be F∗0

−1 (see paragraph 4.2.5 for a discussion on the uniqueness), then it becomes
reasonable to consider an estimation procedure by calculating a ”distance” between the
two sets ∪αMα and N−1. Using definition 3.2.2, we may write:

Dϕ

(
∪αMα,N−1

)
= inf

Q−1∈N−1
inf

F−1
0 ∈∪αMα

Dϕ

(
F−1

0 ,Q−1
)

= inf
(λ,θ)∈Φ+,α∈A

inf
F−1

0 ∈Mα

Dϕ

(
F−1

0 ,

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1
)
.

(4.2.7)

Now by virture of (4.2.6), it holds that

(λ∗, θ∗, α∗) ∈ arg inf
(λ,θ,α)∈Φ+

inf
F−1

0 ∈Mα

Dϕ

(
F−1

0 ,

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1
)
. (4.2.8)

Next, we will treat this estimation procedure using the Fenchel duality in order to write a
feasible optimization procedure, and then proceed to build upon a plug-in estimator based
on an observed dataset X1, · · · , Xn.
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4.2.3 Estimation using the duality technique

Applying the duality result (4.1.5) on the estimation procedure (4.2.7) gives:

Dϕ

(
∪αMα,N−1

)
= inf

(λ,θ,α)∈Φ+
sup

ξ∈R`−1

ξtm(α)−
∫ 1

0
ψ
(
ξtK(u)

)( 1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(du).

(4.2.9)
In order to keep formulas clearer, we adapt the following notation:

F0(y|φ) =
1

1− λ
FT (y)− λ

1− λ
F1(y|θ)

Note that we must ensure the integrability condition∫
‖K (F0(y|φ)) ‖dx <∞,

in order to be able to use the duality technique. This is ensured by the definition of the
polynomial vector K. Indeed, there exists a constant c such that:

‖K (F0(y|φ))‖ ≤ c (F0(y|φ)) (1− F0(y|φ)) .

Since F0(y|φ) =
(

1
1−λFT (y)− λ

1−λF1(y|θ)
)

is supposed here to be a cdf because (λ, θ, α) ∈
Φ+, it suffices then that F0(y|φ) has a finite expectation so that the previous integral
becomes finite.
This formulation is only useful when one has a sample of i.i.d. observations of the distri-
bution 1

1−λPT −
λ

1−λP1(.|θ) for every λ and θ, because the integral can be approximated
directly using the order statistics as in formula (4.1.6). We need, however, a formula
which shows directly the cdf because it would permit to approximate directly the objec-
tive function and avoid the calculus of the inverse of 1

1−λFT −
λ

1−λF1(.|θ). Besides, the
replacement of the true cdf by the empirical one does not guarantee that the difference

1
1−λFT −

λ
1−λF1(.|θ) remains a cdf and more complications would appear in the proof of

the consistency.
Using Lemma 1.2 from Decurninge [2015] we may make the change of variable desired.∫ 1

0
ψ
(
ξtK(u)

)( 1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(du) =

∫
R
ψ

(
ξtK

(
1

1− λ
FT (x)− λ

1− λ
F1(x|θ)

))
dx.

(4.2.10)
Employing (4.2.10) and (4.2.9) in (4.2.8), we may write:

(λ∗, θ∗, α∗) ∈ arg inf
(λ,θ,α)∈Φ+

sup
ξ∈R`−1

ξtm(α)−
∫
R
ψ

(
ξtK

(
1

1− λ
FT (x)− λ

1− λ
F1(x|θ)

))
dx.

(4.2.11)
We may now construct an estimator of φ∗ by replacing FT by the empirical cdf calculated
on the basis of an i.i.d. sample X1, · · · , Xn. The resulting estimation procedure is still
very complicated. This is mainly because we need to characterize the set Φ+. It is possible
but is very expensive. For example, we may think about checking if the derivative with
respect to x 1

1−λpT (x) − λ
1−λp1(x|θ) is non negative at a large randomly selected set of

points. On the other hand, the set Φ+ can take fearful forms for some mixtures. In Figure
(4.2), we have two examples of Φ+. In the exponential mixture (the figure to the left), Φ+

has a ”good” form in the sense that it is convex and contains (λ∗, θ∗) = (0.7, 1.5) with a
sufficiently large neighborhood around it. Thus, optimization procedures should not face
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any problem finding the optimum. However, in the Weibull-Lognormal mixture (the figure
to the right) with (λ∗, µ∗) = (0.7, 3), the set Φ∗ is not even connected. Besides, there is
not a sufficient neighborhood around (λ∗, µ∗) which permits an optimization algorithm
to move around. During my simulations on data generated from a Weibull-Lognormal
mixture distribution, the optimization algorithms could not reach such optimum and were
always stuck at the initial point. A solution will be proposed in the next paragraph where
we introduce the final step in the sequel of this estimation procedure.

Figure 4.2: Different forms of the set Φ+. For the Weibull-Lognormal mixture, the Weibull
is the semiparametric component.

4.2.4 The algorithm in practice and a plug-in estimate

The problem with the estimation procedure (4.2.11) is that the optimization is over the
set Φ+ which may take ”non-practical forms” as explained in the previous paragraph.
The problem can be reread otherwise. The difficulty comes mainly from the fact that
function 1

1−λFT − λ
1−λF1(.|θ) may not be a cdf and the quantile would not exist. Thus, the

estimation procedure in formula (4.2.8) cannot be used. We have, however, made disappear
the quantiles in formula (4.2.11) using a change of variable. Besides, there is no problem
in calculating the optimized function in formula (4.2.11) for any triplet (λ, θ, α) ∈ Φ even
if the parameters do not define a proper cdf for function 1

1−λFT − λ
1−λF1(.|θ). Besides,

and more importantly, φ∗ is a global infimum of the objective function H(φ, ξ(φ)) over
the whole set Φ (and not only overy Φ+) where:

H(φ, ξ) = ξtm(α)−
∫

ψ

[
ξtK

(
1

1− λ
FT (y)−

λ

1− λ
F1(y|θ)

)]
dy

and ξ(φ) = arg sup ξ∈R�−1 H(φ, ξ). Indeed, for any φ ∈ Φ, we have:

H(φ, ξ(φ)) ≥ H(φ, 0) = 0.
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Besides, using the duality attainment at φ = φ∗, we may write

H(φ∗, ξ(φ∗)) = inf
F−1

0 ∈Mα∗
Dϕ

(
F−1

0 ,

(
1

1− λ∗
FT −

λ∗

1− λ∗
F1(.|θ∗)

)−1
)

= inf
F−1

0 ∈Mα∗
Dϕ

(
F−1

0 ,F∗0
−1
)

= 0.

Thus, if function H(φ, ξ(φ)) does not have several global infima inside Φ, (λ∗, θ∗, α∗) will
hold as the only global minimum of it. In other words

φ∗ = arg inf
(α,θ,λ)∈Φ

sup
ξ∈R`−1

ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
FT (x)− λ

1− λ
F1(x|θ)

)]
dx. (4.2.12)

Provided an i.i.d. sample X1, · · · , Xn distributed from PT , the cdf FT can be approximated
by its empirical version 1

n

∑
1Xi≤x. Hence, φ∗ can be estimated by:

φ̂ = arg inf
(α,θ,λ)∈Φ

sup
ξ∈R`−1

ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
Fn(x)− λ

1− λ
F1(x|θ)

)]
dx. (4.2.13)

Remark 4.2.1. Notice that the dual attainment no longer holds on the complementary
set Φ \ Φ+ since we are working with ”signed cumulative functions”. Our idea is to offer
the optimization algorithm a larger neighborhood around the optimum in order to be able
to find it. The important fact in the extended procedure is that φ∗ is a global infimum of
the objective function. Our simulation study shows that the extension to Φ does not affect
the results in several examples, and the estimator φ̂ is not biased and has an acceptable
variance, see Section 4.4 for more details.

4.2.5 Uniqueness of the solution ”under the model”

By a unique solution we mean that only one quantile measure, which can be written in

the form of
(

1
1−λFT − λ

1−λF1(.|θ)
)−1

for (λ, θ) ∈ Φ+, verifies the L-moments constraints

with a unique triplet (λ∗, θ∗, α∗). The existence of a unique solution is essential in order
to ensure that the procedure (4.2.11) is a reasonable estimation method. We provide next
a result ensuring the uniqueness of the solution. The proof is differed to Appendix 4.5.2.
The proof does not provide sufficient conditions for the existence of a unique solution over
Φ because in the proof we only study the intersection N−1∩M and characterize it without
using the Fenchel duality.

Proposition 4.2.2. Assume that F∗0
−1 ∈M = ∪αMα. Suppose also that:

1. the system of equations:∫ 1

0
K(u)

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(du) = m(α) (4.2.14)

has a unique solution (λ∗, θ∗, α∗);

2. the function α 7→ m(α) is one-to-one;

3. for any θ ∈ Θ we have :

lim
x→∞

p1(x|θ)
pT (x)

= c, with c ∈ [0,∞) \ {1};
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4. the parametric component is identifiable, i.e. if p1(.|θ) = p1(.|θ′) dPT−a.e. then
θ = θ′,

then, the intersection N−1∩M contains a unique measure F∗0
−1, and there exists a unique

vector (λ∗, θ∗, α∗) such that PT = λ∗P1(.|θ∗) + (1−λ)P ∗0 where P ∗0 is given by (3.3.5) and
belongs to Mα∗. Moreover, provided assumptions 2-4, the conclusion holds if and only if
assumption 1 is fulfilled.

There is no general result for a non linear system of equations to have a unique solution;
still, it is necessary to ensure that we impose a number of constraints at least equal to the
number of unknown variables, otherwise there would be an infinite number of σ−finite
measures in the intersection N−1

⋂
∪α∈AMα.

Remark 4.2.2. Assumptions 3 and 4 of Proposition 3.3.2 are used to prove the identifia-

bility of the ”model”
(

1
1−λPT −

λ
1−λP1(.|θ)

)
λ,θ

. These conditions may be rewritten using

the cdf. Furthermore, according to the considered situation we may find simpler ones
for particular cases (or even for the general case). Our assumptions remain sufficient but
not necessary for the proof. Note also that similar assumption to 3 can be found in the
literature on semiparametric mixture models, see Proposition 3 in Bordes et al. [2006].

4.3 Asymptotic properties

We study the asymptotic properties of the estimator φ̂ defined by (4.2.13). For the consis-
tency, we will assume that function H(φ, ξ(φ)) has a unique infimum on Φ. This infimum
is a fortiori φ∗. On the other hand, the limiting law would not change if the infimum
is truly φ∗ or any other point. φ̂ will be centered at the infimum with a multivariate
Gaussian limit law. It would not, however, be interesting unless it is centered around φ∗.

4.3.1 Consistency

We will use Theorem 3.4.1 since we are in the same context of double optimization. This
time, function Hn does not have the form of Pnh. Let’s start by precising the functions
H and Hn.

H(φ, ξ) = ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
FT (y)− λ

1− λ
F1(y|θ)

)]
dy;

Hn(φ, ξ) = ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
Fn(y)− λ

1− λ
F1(y|θ)

)]
dy,

and recall the notations:

F0(y|φ) =
1

1− λ
FT (y)− λ

1− λ
F1(y|θ);

F̂0(y|φ) =
1

1− λ
Fn(y)− λ

1− λ
F1(y|θ);

ξ(φ) = arg sup
ξ∈R`−1

H(φ, ξ);

ξn(φ) = arg sup
ξ∈R`−1

Hn(φ, ξ).
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We start by calculating the difference H(φ, ψ)−Hn(φ, ψ).

H(φ, ξ)−Hn(φ, ξ) =

∫
ψ
[
ξtK

(
F̂0(y|φ)

)]
− ψ

[
ξtK (F0(y|φ))

]
dy. (4.3.1)

The following lemma is essential for the proof of the consistency. We need to transform the
optimization over ξ onto a compact set. Thus, important values of ξ which are necessary
for the calculus of the supremum are bounded. The proof is differed to Appendix 4.5.3.

Lemma 4.3.1. Suppose that function ξ 7→ H(φ, ξ) is of class C2(R`−1). Then, functions
φ 7→ ξ(φ) and φ 7→ ξn(φ) are well defined and C1 on the interior of the whole set Φ.
Moreover, if Φ is compact, then φ̂ and φ∗ exist and the sets Im(ξ(.)) and Im(ξn(.)) are
compact.

Differentiability of function H with respect to ξ can be checked in general using Lebesgue
theorems, but it would not have been wise to impose an assumption over the integrand
since ψ′ is increasing and ξ is a priori in R`−1. For the class of functions of Cressie-Read
(1.1.3), we have ψ(t) = 1

γ (γt − t + 1)γ/(γ−1) − 1
γ . Thus, for γ > 1, ψ(t) → ∞ as t → ∞.

Therefore, it is important to study each special case alone. For example, ψ(y) = y2/2 + y
is the dual of the Chi square generator ϕ(t) = (t − 1)2/2, then H(ξ, φ) is a polynomial
of degree 2 in ξ and hence differentiable up to second order, see Example 4.3.1 below for
more details.
We state the consistency of the estimator φ̂ defined by (4.2.13). The proof is based on
Theorem 3.4.1 from the previous chapter and is differed to Appendix 4.5.4.

Theorem 4.3.1. Suppose that

C1. Φ is a compact subset of Rd;

C2. function ψ is continuously differentiable;

C3. the infimum of φ 7→ H(φ, ξ(φ)) is unique and isolated, i.e. ∀ε > 0,∀φ such that
‖φ− φ∗‖ > ε, there exists η > 0 such that H(φ, ξ(φ))−H(φ∗, ξ(φ∗)) > η;

C4. function α 7→ m(α) is continuous;

C5. function ξ 7→ H(φ, ξ) is of class C2(R`−1);

C6. the integral
∫ √

FT (y)(1− FT (y))dy is finite,

then the estimator φ̂ defined by (4.2.13) converges in probability to φ∗.

Remark 4.3.1. If we use φ̃ defined by (4.2.11), only assumption C3 should be changed.
We need to suppose that the infimum exists and is unique inside Φ+ instead of the whole
parameter space Φ. This is less restrictive than assumption C3 since we are working inside
a subset of Φ.

Remark 4.3.2. Assumption C5 is used (together with assumption C1) in order to apply
Lemma 4.3.1. As discussed earlier after Lemma 4.3.1, differentiability of function ξ 7→
H(φ, ξ) may be very difficult to check using Lebesgue theorems. When ψ(t) = t2/2 +
t, function H(φ, ξ) is twice differentiably continuous as a function of ξ, because it is a
polynomial of order 2 in ξ. Assumption C6 will be needed again in the proof of the
asymptotic normality. Sufficient conditions are discussed in Remark 4.3.4 hereafter.
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Example 4.3.1 (χ2 case). The case of the χ2 divergence is very interesting similarly to
the case of moment-type constraints (see Example 3.4.1) simply because the optimization
over ξ can be calculated. Write function H(φ, ξ) for ψ(t) = t2/2 + t.

H(φ, ξ) = ξtm(α)−
∫

1

2

(
ξtK (F0(y|φ))

)2
+ ξtK (F0(y|φ)) dy.

This is a polynomial of order 2 in ξ and thus H(φ, ξ) is of class C2(R`−1) as soon as the
integrals exist. Indeed, for any r ≤ `, there exists cr such that:

|Kr (F0(y, |φ))| ≤ cr |F0(y, |φ) (1− F0(y, |φ))| (4.3.2)

≤ cr
(1− λ)2

[FT (y) (1− FT (y)) + λFT (y)(1− F1(y)) + λF1(1− FT (y))+

λ2F1(y)(1− F1(y))
]
. (4.3.3)

For example, if the distributions FT and F1 are defined on R+, then the right hand side is
integrable as soon as the expectations of FT and F1 are finite.
A simple calculus of the derivative of function ξ 7→ H(φ, ξ) gives

∂H

∂ξ
(ξ, φ) = m(α) −

∫
K (F0(y, |φ)) ξtK (F0(y, |φ)) dy +

∫
K (F0(y, |φ)) dy.

The optimum is attained for:

ξ(φ) = Ω−1

(
m(α)−

∫
K(F0(y|φ))dy

)
,

where

Ω =

∫
K (F0(y|φ))K (F0(y|φ))t dy.

Furthermore, the Hessian matrix is equal to −Ω, so it is symmetric definite negative
whatever the value of the vector φ. Thus, ξ(φ) is a global maximum of function ξ 7→ H(ξ, φ)
for any φ ∈ Φ. This was not the case for moment-type constraints since the Hessian matrix
might be definite positive for some values of the vector φ. The empirical version of this
calculus is obtained similarly by replacing F0(y|φ) by F̂0(y|φ).
Conditions of the consistency theorem can be verified. Assumption C1 is very natural in
practice since in general, we have in mind a range of values for the parameters. Assumption
C2 is fulfilled since ψ(t) is polynomial of degree 2. Assumption 3 is not simple in general
and depends on the model. Assumption C4 follows the problem we have. In Example 4.1.1,
m(α) = (−λ2,−λ3,−λ4) is continuous on (0,∞) × (0,∞), and assumption C4 becomes
verified. We have verified assumption C5 at the beginning of the example. Assumption
C6 is not restrictive. It is verified for example in an exponential mixture. The idea is to
control the tail behavior of the distribution, see remark (4.3.4) for a general approach.

4.3.2 Asymptotic normality

The convergence in law of the estimator φ̂ defined by (4.2.13) is not simply deduced
in the same way we obtained it in the moment-constraints case. A Taylor expansion
of the gradient of function H would not show directly the empirical distribution which
combined with the CLT gives the asymptotic normality. The expansion results in the term∫
K(F̂0(x))dx which is a functional of the empirical distribution, that is( √

n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
= J−1

H

(
0

√
n
[
m(α∗)−

∫
K(F̂0(y|φ∗))dy

] )+ oP (1).
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In the case of simply one component (no parametric component) defined through L-
moment constraints, Decurninge [2015] used a result based on Theorem 6 from Stigler

[1974] in order to establish the limit law of
√
n
[
m(α∗)−

∫
K(F̂0(y|φ∗))dy

]
. This result is

based on sums of order statistics which cannot be adapted to our context since F̂0 is an
estimator of F0 different from the corresponding empirical distribution. We present a new
result adapted to our context where the proof still shares a part of the idea of the proof
of the result of Stigler [1974]. The proof is differed to Appendix 4.5.5.

Proposition 4.3.1. Suppose that E|Xi| <∞. Suppose also that∫ √
FT (y) (1− FT (y))dy < ∞, (4.3.4)∫ ∫

FT (min(x, y))− FT (x)FT (y)dxdy < ∞. (4.3.5)

For any vector φ = (λ, θ, α) ∈ Φ, we then have

√
n

[∫
K

(
1

1− λ
Fn(y)− λ

1− λ
F1(y|θ)

)
dy −

∫
K

(
1

1− λ
FT (y)− λ

1− λ
F1(y|θ)

)
dy

]
D−−−−−→ N (0,Σ) ,

where the covariance matrix Σ is given by

Σr1,r2 =

∫ ∫
(FT (min(x, y))− FT (x)FT (y))

r1−1∑
k=0

cr1,kF0(x|φ)k
r2−1∑
k=0

cr2,kF0(y|φ)kdydx,

(4.3.6)
and cr,k = (−1)r−k−1

(
r−1
k

)(
r+k−1
k

)
for r, r1, r2 ∈ {2, · · · , `}.

Remark 4.3.3. It was not possible to use a functional delta method (see van der Vaart
[1998] Chap. 20, Theorem 20.8) in a similar way to Theorem 3.2 in Bordes and Vandek-
erkhove [2010] in order to prove the limiting law here because the functional G 7→

∫
K(G)

is not Hadamard differentiable.

Remark 4.3.4. Integrability conditions (4.3.4) and (4.3.5) over the distribution function
can be reformulated by imposing directly conditions over the distribution function using
the notion of regular variations and the Lemma page 280 in Feller [1971]. Regular vari-
ations transform the problem into conditions over the tails of the distribution functions.
Suppose that there exists a constant ρ+ < −2 and a function L+(x) such that:

1− FT (x) = xρ+L+(x), with
L+(tx)

L+(t)
−−−−−−−→

t→∞
1,∀x > 0. (4.3.7)

Then, the integral
∫∞
y

√
1− FT (x)dx converges and there exists a function M+(y) such

that M+(ty)/M+(t)→ 1,∀y and
∫∞
y [1− FT (x)] dx = yρ++1M+(y). For the neighborhood

of −∞, we make similar assumptions over FT (x). Suppose that there exists a constant
ρ− < −2 and a function L−(x) such that:

FT (x) = xρ−L−(x), with
L−(−tx)

L−(t)
−−−−−−−−→

t→−∞
1,∀x < 0. (4.3.8)
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Then, the integral
∫ y
−∞

√
FT (x)dx converges and there exists a function M−(y) such that

M−(ty)/M−(t)→ 1,∀y and
∫∞
y FT (x)dx = yρ−+1M−(y).

These two assertions permit to conclude that condition (4.3.4) is verified since
√

FT (x)(1− FT (x)) ≤√
FT (x)1x∈(−∞,0) +

√
1− FT (x)1x∈(0,∞). Moreover, condition (4.3.5) can also be check.

Let’s discuss what happens when y is at a neighborhood of either +∞ or −∞. For any
y > 0, one may write:∫ +∞

y
[FT (min(x, y))− FT (y)FT (x)]dx = FT (y)

∫ +∞

y
[1− FT (x)]dx

= FT (y)yρ++1M+(y)

which is integrable in a neighborhood of +∞ with respect to y by (4.3.7). On the other
hand, for any y < 0, one may write∫ y

−∞
[FT (min(x, y))− FT (y)FT (x)]dx = [1− FT (y)]

∫ y

−∞
FT (x)dx

= [1− FT (y)] yρ−+1M−(y)

which is integrable in a neighborhood of −∞ with respect to y by (4.3.8). Thus, condition
(4.3.5) is ensured under assumptions (4.3.7,4.3.8).

We move on now to show the asymptotic normality of the estimator φ̂. Define the following
matrices:

Jφ∗,ξ∗ =

 −
∫ [

1
(1−λ∗)2FT (y)− 1

(1−λ∗)2F1(y|θ∗)
]
K ′(F0(y|φ∗))dy

λ∗

1−λ∗
∫
∇θF1(y|θ∗)K ′(F0(y|φ∗))tdy

∇m(α∗)


t

; (4.3.9)

Jξ∗,ξ∗ =

∫
K(F0(y|φ∗))K(F0(y|φ∗))tdy; (4.3.10)

Σ̃ =
(
J tφ∗,ξ∗Jξ∗,ξ∗Jφ∗,ξ∗

)−1
;

H = Σ̃J tφ∗,ξ∗J
−1
ξ∗,ξ∗ ; (4.3.11)

P = J−1
ξ∗,ξ∗ − J

−1
ξ∗,ξ∗Jφ∗,ξ∗Σ̃J

t
φ∗,ξ∗J

−1
ξ∗,ξ∗ . (4.3.12)

We use the same notations considered at the beginning of this section for F0(x|φ), F̂0(x|φ), ξ(φ)
and ξn(φ).

Theorem 4.3.2. Suppose that assumptions of Proposition 4.3.1 are fulfilled. Suppose also
that

1. (φ̂, ξn(φ̂)) tends to (φ∗, 0) in probability;

2. φ∗ ∈ int(Φ);

3. α 7→ m(α) is of class C2;

4. there exists an integrable function B1 such that ‖∇θF1(y|θ)‖ ≤ B1(y) for θ in a
neighborhood of θ∗;

5. there exist integrable functions B2,1 and B2,2 such that ‖∇θF1(y|θ)∇θF1(y|θ)t‖ ≤
B2,2(y) and ‖JF1(y|θ)‖ ≤ B2,1(y) for θ in a neighborhood of θ∗;

183 / 208



Semiparametric two-component mixture models where one component is defined through L-moments constraints184

6. the integral
∫

[FT (y)− F1(y)]dy exists and is finite;

7. the matrices Jξ∗,ξ∗ and J tφ∗,ξ∗Jξ∗,ξ∗Jφ∗,ξ∗ are invertible.

Then, ( √
n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
−→
L
N
(

0,

(
H
P

)
Σ
(
Ht P t

))
,

where H,P and Σ are given respectively by formulas (4.3.11), (4.3.12) and (4.3.6).

The proof of this theorem is differed to Appendix 4.5.6. In assumption 1, we could only
demand the consistency of φ̂, since the consistency of ξn(φ̂) can be deduced from it using
the continuity of φ 7→ ξ(φ) and the uniform convergence of ξn(.) towards ξ(.), see Lemma
3.4.1. Assumptions 4-6 are used in the proof to ensure the differentiability up to second
order with respect to ξ and φ of Hn(φ, ξ) for any n.

4.4 Simulation study

We perform several simulations and show how a prior information about the distribution
of the semiparametric component P0 can help us better estimate the set of parameters
(λ∗, θ∗, α∗) in regular examples, i.e. the components of the mixture can be clearly distin-
guished when we plot the probability density function. We also show how our approach
permits to estimate even in difficult situations when the proportion of the parametric
component is very low; such cases could not be estimated using existing methods. We
show also the advantage of using L-moments constraints over moment constraints using
the approach developed in the previous chapter.
In our experiments, the datasets were generated by the following mixtures:

• A two-component Weibull mixture;

• A two-component Weibull – Lognormal mixture;

• A two-component Gaussian – Two-sided Weibull mixture;

We have chosen a variety of values for the parameters especially the proportion. Program-
ming tools are the same as in the case of the moment-type constraints. We only used
the χ2 divergence, because the optimization over ξ can be calculated without numerical
methods, see Examples 4.3.1 and 3.4.1. Since the objective function φ 7→ Hn(φ, ξn(φ)) as
a function of φ is not ensured to be strictly convex, we used 6 fixed initial points which we
specify for each example separately. We then ran the Nelder-Mead algorithm and chose
the vector of parameters for which the objective function has the lowest value. We ap-
plied a similar procedure on the algorithm of Bordes and Vandekerkhove [2010] in order
to ensure a fair comparison.
All numerical integrations were calculated using function integral of package pracma. It
was the only function that converged on all the calculus, see Section 1.7 for more details
about other numerical integration functions.
We did not use any function error criterion here because the compared methods do not
provide the same set of parameters. For example, the method of Bordes and Vandek-
erkhove [2010] estimates a mean value for the unknown component whereas our approach
estimates a shape parameter. Other existing methods do not estimate any information
about the parameters of the unknown component.
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4.4.1 Data generated from a two-component Weibull mixture modeled
by a semiparametric Weibull mixture

We consider a mixture of two Weibull components with scales σ1 = 0.5, σ2 = 1 and shapes
ν1 = 2, ν2 = 1 in order to generate the dataset. In the semiparametric mixture model, the
parametric component will be ”the one to the right”, i.e. the component whose true set
of parameters is (ν1 = 2, σ1 = 0.5).
We impose on the unknown component three L-moments constraints; the second, the third
and the fourth Weibull L-moments. They are given in Example 4.1.1. We thus have

m(α = ν) =


−λ2 = −σ

(
1− 2−1/ν

)
Γ(1 + 1/ν)

−λ3 = −λ2 ×
(

3− 21−3−1/ν

1−2−1/ν

)
−λ4 = −λ2 ×

(
6 + 5(1−4−1/ν)−10∗(1−3−1/ν)

1−2−1/ν

)


and K(t) = (t(t−1), t(t−1)(2t−1), t(t−1)(1+5(t−1)+5(t−1)2))t. This mixture was not
easily estimated by either our estimation procedure or the semiparametric methods from
the literature. Our estimator, although has a higher variance, is still not biased in the
same way estimates of other methods are. The L-moment constraints gave an estimator
with less variance than the estimator based on moments constraints, but with slightly
higher bias on the proportion.

Nb of observations λ sd(λ) ν1 sd(ν1) ν2 sd(ν2)

Mixture 1 : n = 104 λ∗ = 0.3, ν∗1 = 2, σ∗1 = 0.5(fixed), ν∗2 = 1, σ∗2 = 1(fixed)

Pearson’s χ2 3 moments 0.304 0.016 2.191 0.887 0.998 0.013
Pearson’s χ2 3 L-moments 0.348 0.062 1.828 0.648 0.984 0.021

Robin 0.604 0.029 1.256 0.037 — —
Song EM-type 0.806 0.005 1.185 0.018 — —

Song π−maximizing 0.624 0.007 1.312 0.013 — —

Table 4.1: The mean value with the standard deviation of estimates in a 100-run experi-
ment on a two-component Weibull mixture.

4.4.2 Data generated from a two-component Weibull-LogNormal mix-
ture modeled by a semiparametric Weibull-LogNormal mixture

We consider a dataset generated from a mixture of a Weibull and a Lognormal distri-
butions. The Weibull component has a scale σ∗1 = 1 and a shape ν∗1 ∈ {1.5, 1, 0.4} in
order to illustrate several scenarios; a distribution whose pdf explodes to infinity at zero,
a distribution whose pdf has finite value at zero and a distribution whose pdf goes back
to zero at zero. The Lognormal component has a scale σ∗2 = 0.5 and a mean parameter
µ∗ = 3. The Lognormal distribution has a heavy tail which is inherited in the mixture
distribution.
In a first part, we perform a comparison of convergence speed between the method un-
der moments constraints and the method under L-moments constraints as we increase
the number of observations n. Details about the simulations under moments constraints
can be found in paragraph 3.5.2. The Weibull component is considered as the unknown
component during estimation, and impose three L-moments constraints. The first 4 L-
moments of the Weibull distribution are given in Example 4.1.1.
In a second part, we perform an estimation of a semiparametric mixture model where the
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Lognormal component is considered unknown and defined through 3 L-moments condi-
tions; the second, the third and the fourth L-moment. The L-moments of the Lognormal
distribution do not have a close formula and are calculated numerically using function
lmrln3 of package lmom written by Hosking.
Results in table (4.2) show that L-moments are more informative and we need less data in
order to get good estimates in comparison to moments constraints. In order to calculate
the estimate φ̂, we considered 6 initial points; namely the set

φ(0) ∈ {(0.8, 2, 1), (0.5, 2, 1), (0.8, 1, 1), (0.7, 3, 1.5), (0.7, 2, 2), (0.5, 4, 2), (0.5, 1.5, 2)} .

The vector φ̂ was taken as the one which corresponds to the lowest value among the infima
produced by the optimization algorithm.
In table (4.3) the Lognormal component is the unknown component during estimation.
Initialization of the optimization algorithm, for example in mixture 2, was taken from the
set {(0.1, 0.5, 1), (0.15, 0.5, 0.7), (0.05, 1.5, 2.5), (0.1, 1, 3)}.
It is clear that the moments constraints gave better results than L-moments constraints
in mixture 1 for the estimation of the scale of the Weibull component. For the second
mixture, both types of constraints give similar results. The two methods have the same bias
in the estimation of the scale of Weibull component; the moments constraints produced
a positive bias whereas the L-moments constraints produced a negative bias. The L-
moments produced a smaller variance. In the third mixture, the L-moments constraints
gave clear better results. The last mixture is the most difficult one in the sense that the
proportion of the parametric component is very low.

nb of observations Estimation method λ sd(λ) µ sd(µ) ν sd(ν)

True Parameters : λ∗ = 0.7, µ∗ = 3, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 1(fixed)

n = 102 Pearson’s χ2 L-moments 0.685 0.069 2.798 0.413 0.436 0.074
Pearson’s χ2 Moments 0.384 0.117 2.654 0.153 0.488 0.018

n = 103 Pearson’s χ2 L-moments 0.677 0.017 3.014 0.028 0.726 0.272
Pearson’s χ2 Moments 0.518 0.068 2.806 0.099 0.473 0.014

n = 104 Pearson’s χ2 L-moments 0.697 0.009 3.003 0.010 1.343 0.185
Pearson’s χ2 Moments 0.605 0.044 2.903 0.069 0.531 0.326

Table 4.2: The mean value with the standard deviation of estimates in a 100-run exper-
iment on a two-component Weibull-log normal mixture. The parametric component is
the log-normal with unknown mean parameter µ. The semiparametric component is the
Weibull component which is defined by its first three L-moments (moments resp.) with
unknown shape ν.

4.4.3 Data generated from a two-sided Weibull Gaussian mixture mod-
eled by a semiparametric two-sided Weibull Gaussian mixture

We have already presented this model in paragraph 3.5.3. The 2nd, 3rd and 4th L-moments
of the two-sided Weibull distribution are given by:

λ2 =

[
1− 1

21+1/ν

]
σ2Γ

(
1 +

1

ν

)
;

λ3 = 0;

λ4 =

[
1− 6

21+1/ν
+

15

2× 31+1/ν
− 5

2× 41+1/ν

]
σ2Γ

(
1 +

1

ν

)
.
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Nb of observations λ sd(λ) ν sd(ν) µ sd(µ)

Mixture 1 : n = 103, λ∗ = 0.3, ν∗ = 1.5, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 L-moments 0.313 0.019 1.027 0.541 2.992 0.050
Pearson’s χ2 Moments 0.308 0.017 1.484 0.624 3.002 0.026

Mixture 2 : n = 104, λ∗ = 0.1, ν∗ = 1, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 L-moments 0.104 0.006 0.795 0.379 2.994 0.015
Pearson’s χ2 Moments 0.103 0.006 1.284 0.677 3.001 0.007

Mixture 3 : n = 5× 104, λ∗ = 0.05, ν∗ = 0.4, σ∗1 = 1(fixed), µ∗ = 3, σ∗2 = 0.5(fixed)

Pearson’s χ2 L-Moments 0.049 0.002 0.448 0.129 3.000 0.006
Pearson’s χ2 Moments 0.049 0.002 0.629 0.438 3.001 0.004

Table 4.3: The mean value with the standard deviation of estimates in a 100-run experi-
ment on a two-component Weibull-log normal mixture. The parametric component is the
Weibull with unknown shape ν. The semiparametric component is the lognormal compo-
nent which is defined by its first three L-moments (moments resp.) with unknown mean
parameter µ.

Results are presented in table (4.4). The L-moments constraints produce clear better
results than the moments constraints in all the mixtures. The estimation based on L-
moments constraints produced clear lower variance. Besides, and once again, the L-
moments constraints seem to be more informative and we need less number of observations
than moments constraints in order to produce good estimates.
In this example we presented a challenge to our estimation method by simulating mixtures
with very low proportion of the parametric part; mixture 3 with λ∗ = 0.05 and mixture 4
with λ∗ = 0.01. Using signal-noise terms, in mixture 4, only one percent of the data comes
from the signal whereas 99% of the data is pure noise. The location of the signal is then
estimated around zero with standard deviation of 0.3 with the L-moments constraints. It
is not well localized however using moments constraints with 105 observations, and we
need at least 108 observations to reach a similar precision to the result obtained with
L-moments constraints. It is still important to notice that using moments or L-moments
constraints, we were able to confirm the existence of a signal component (the parametric
component).
In what concerns the initialization of the algorithm under L-moments constraints, we used:

Mix 1 : {(0.8, 1, 1), (0.5,−1, 2.5), (0.8, 0.5, 2), (0.7, 0, 3), (0.7, 1, 4), (0.5, 2, 3.5)}
Mix 2 : {(0.2, 1, 1), (0.5,−1, 2.5), (0.2, 0.5, 2), (0.3, 0, 3), (0.3, 1, 4)}
Mix 3 : {(0.1, 1, 1), (0.05,−1, 2.5), (0.03, 0.5, 2), (0.01, 0, 1.5), (0.005, 1, 0.7)}
Mix 4 : {(0.1, 1, 1), (0.005, 1, 0.7)}

For the last mixture, we have found no changes in using more initial points than the two
given points. Besides, execution time was very long (about 5 samples per day), so we
preferred to use only two starting points.
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Estimation method λ sd(λ) µ sd(µ) ν sd(ν)

Mixture 1 : n = 100, λ∗ = 0.7, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 3, σ∗1 = 1.5(fixed)

Pearson’s χ2 – L-Moments 0.758 0.067 -2.28×10−3 0.098 3.040 0.639
Pearson’s χ2 under M2:4 0.764 0.067 -0.012 0.342 2.893 0.731

Mixture 2 : n = 100, λ∗ = 0.3, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 3, σ∗1 = 1.5(fixed)

Pearson’s χ2 – L-Moments 0.364 0.082 -0.016 0.246 3.058 0.418
Pearson’s χ2 under M2:4 0.407 0.077 0.012 0.575 2.925 0.454

Mixture 3 : n = 5000, λ∗ = 0.05, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 2(fixed)

Pearson’s χ2 – L-Moments 0.050 0.013 0.026 0.365 1.496 0.020
Pearson’s χ2 under M2:4 0.066 0.013 -0.036 0.857 1.493 0.008

Mixture 4 : n = 105, λ∗ = 0.01, µ∗ = 0, σ∗2 = 0.5(fixed), ν∗ = 1.5, σ∗1 = 2(fixed)

Pearson’s χ2 – L-Moments 0.011 0.003 0.023 0.377 1.500 0.005
Pearson’s χ2 under M2:4 0.025 0.010 - 0.047 1.356 1.495 0.006

Table 4.4: The mean value with the standard deviation of estimates in a 100-run exper-
iment on a two-component two-sided Weibull–Gaussian mixture under L-moment con-
straints.
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4.4.4 Conclusions

In this chapter, we introduced another structure for semiparametric mixture models with
unknown component by imposing L-moments constraints on it. The method was proved
to be consistent and asymptotic normal under standard assumptions. The estimation
method under L-moments constraints presented several advantages in comparison to the
estimation method under moments constraints. We were able to estimate over the whole
parameter space and no need to check if the optimized function ξ 7→ H(φ, ξ) is strictly
concave for every φ. Although the estimation method under L-moments constraints need
numerical integrations (which is not the case of moments-type constraints procedure), the
resulting estimator seems to have lower variance. Moreover, L-moments are demonstrated
through simulations to be more informative than moments constraints, and we need less
number of observations in order to obtain good estimates.

4.5 Appendix: Proofs

4.5.1 Proof of Proposition 4.2.1

Proof. Denote M1 the set of all probability measures. Based on equation (4.2.2), we have:

P0 =
1

1− λ
PT −

λ

1− λ
P1(.|θ)

P̃0 =
1

1− λ̃
PT −

λ̃

1− λ̃
P1(.|θ̃)

Define the following function:

G : Rd−s ×M+ → Im(G) ⊂M1 : (λ, θ, P0) 7→ λP1(.|θ) + (1− λ)P0.

where
M+ = {P0 ∈M1 s.t. F−1

0 ∈M}.

Identifiability is now equivalent to the fact that function G is one-to-one. This means that
for a given mixture distribution PT ∈Im(G), we need that there exists a unique triplet
(λ, θ, P0) such that

PT = λP1(.|θ) + (1− λ)P0

In other words:

P0 =
1

1− λ
PT −

λ

1− λ
P1(.|θ)

The equality of measures imply the equality of the quantiles. Thus, we may write:∫ 1

0
K(u)F−1

0 (du) = m(α) =

∫ 1

0
K(u)

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(du). (4.5.1)

The assumption of the present proposition imposes the existence of unique solution (λ∗, θ∗, α∗)
to the previous nonlinear system of equations. Let’s go back to function G. For a given
mixture distribution PT ∈ Im(G), take λ = λ∗, θ = θ∗ to be the solution to the nonlinear
system (4.5.1), and define P ∗0 by:

P ∗0 =
1

1− λ∗
PT −

λ∗

1− λ∗
P1(.|θ∗).
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Notice that P ∗0 ∈Mα∗ . Suppose that PT can be written in two manners. In other words,
suppose that there exists another triplet (λ̃, θ̃, P̃0) with P̃0 ∈Mα̃ such that:

PT = λ̃P1(.|θ̃) + (1− λ̃)P̃0.

We then have:

P̃0 =
1

1− λ̃
PT −

λ̃

1− λ̃
P1(.|θ̃),

and consequently,

m(α̃) =

∫ 1

0
K(u)

(
1

1− λ̃
FT −

λ̃

1− λ̃
F1(.|θ̃)

)−1

(du).

Thus, (λ̃, θ̃, α̃) is a second solution to the system (4.5.1). Nevertheless, the system of
equations (4.5.1) has a unique solution by assumption of the present proposition. Hence,
a contradiction is reached and the triplet (λ∗, θ∗, P ∗0 ) is unique. We conclude that function
G is one-to-one and the semiparametric mixture model subject to L-moments constraints
is identifiable.

4.5.2 Proof of Proposition 4.2.2

Proof. Let F−1
0 be some quantile measure which belongs to the intersection N−1 ∩M.

Since F−1
0 belongs to N−1, there exists a couple (λ, θ) ∈ Φ+ such that:

F−1
0 =

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

. (4.5.2)

This couple is unique by virtue of assumptions 3 and 4. Indeed, let (λ, θ) and (λ̃, θ̃) be
two couples such that:(

1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

=

(
1

1− λ̃
FT −

λ̃

1− λ̃
F1(.|θ̃)

)−1

This entails that:

1

1− λ
FT (x)− λ

1− λ
F1(x|θ) =

1

1− λ̃
FT (x)− λ̃

1− λ̃
F1(x|θ̃). (4.5.3)

By derivation of both sides, we get an identity in the densities:

1

1− λ
− λ

1− λ
p1(x|θ)
pT (x)

=
1

1− λ̃
− λ̃

1− λ̃
p1(x|θ̃)
pT (x)

.

Taking the limit as x tends to ∞ results in:

1− cλ
1− λ

=
1− cλ̃
1− λ̃

.

Note that function z 7→ (1 − cz)/(1 − z) is strictly monotone as long as c 6= 1. Hence, it
is a one-to-one map. Thus λ = λ̃. Inserting this result in equation (4.5.3) entails that:

F1(.|θ) = F1(.|θ̃).
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Using the identifiability of P1 (assumption 4), we get θ = θ̃ which proves the existence of
a unique couple (λ, θ) in (4.5.2).
On the other hand, since F−1

0 belongs toM, there exists a unique α such that F−1
0 ∈Mα.

Uniqueness comes from the fact that the function α 7→ m(α) is one-to-one (assumption
2). Thus, F−1

0 verifies the constraints∫ 1

0
K(u)F−1

0 (du) = m(α).

Combining this with (4.5.2), we get:∫ 1

0
K(u)

(
1

1− λ
FT −

λ

1− λ
F1(.|θ)

)−1

(du) = m(α). (4.5.4)

This is a non linear system of equations with ` equations. Now, let F−1
0 and F̃

−1
0 be

two elements in N−1 ∩M, then there exist two couples (λ, θ) and (λ̃, θ̃) with λ 6= λ̃ or

θ 6= θ̃ such that F−1
0 and F̃

−1
0 can be written in the form of (4.5.2) with respectively (λ, θ)

and (λ̃, θ̃). Since F−1
0 ∈ M, there exists α such that F−1

0 ∈ Mα. Similarly, there exists

α̃ possibly different from α such that F̃
−1
0 ∈ Mα̃. Now, (λ, θ, α) and (λ̃, θ̃, α̃) are two

solutions to the system of equations (4.5.4) which contradicts with assumption 1 of the
present proposition.
We may now conclude that, if a quantile measure F−1

0 belongs to the intersection N−1 ∩
M, then it has the representation (4.5.2) for a unique couple (λ, θ) and there exists a
unique α such that the triplet (λ, θ, α) is a solution to the non linear system (4.5.4).
Conversely, if there exists a triplet (λ, θ, α) which solves the non linear system (4.5.4),

then the quantile measure F−1
0 defined by F−1

0 =
(

1
1−λFT − λ

1−λF1(.|θ)
)−1

belongs to the

intersection N−1 ∩M. This is because on the one hand, it clearly belongs to N−1 by its
definition and on the other hand, it belongs to Mα since it verifies the constraints and
thus belongs to M.
It is now reasonable to conclude that under assumptions 2-4, the intersection N−1 ∩M
includes a unique quantile measure F−1

0 if and only if the set of ` non linear equations
(3.7.4) has a unique solution (λ, θ, α).

4.5.3 Proof of Lemma 4.3.1

Proof. The same arguments hold for both functions ξ(φ) and ξn(φ). We therefore, proceed
with ξ(φ). Function ξ 7→ H(φ, ξ) is strictly concave since1 it is C2 and have the following
Hessian matrix:

JH(φ,.) = −
∫
K (F0(y, |φ))K (F0(y, |φ))tψ′′

(
ξtK (F0(y, |φ))

)
dy.

Since ψ is strictly convex, then ψ′′(z) > 0 for any z. Thus the matrix JH(φ,.) is definite
negative and ξ 7→ H(φ, ξ) is strictly concave. By the implicit function theorem, function
φ 7→ ξ(φ) is uniquely defined and C1 over int(Φ). Notice here that even if 1

1−λFT (y) −
λ

1−λF1(y|θ) is negative, the matrix JH(φ,.) can still be definite negative unlike the case of
moment constraints.
The second part of the proposition is a direct consequence from the continuity of function
φ 7→ ξ(φ).

1One can prove the strict concavity simply by calculating H(φ, uξ1 + (1− u)ξ2).
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4.5.4 Proof of Theorem 4.3.1

Proof. We will use Theorem 3.4.1. We start with assumption A2. We prove, first, that
the supremum over ξ can only be calculated over a compact subset of Rl. This is a direct
result from Lemma 4.3.1. One can redefine the estimator by maximizing over ξ on the
subset Ξ =Im(ξ(.)) ⊂ Rl independently of φ. We thus have:

Dϕ(Mα,F0(.|φ)) = sup
ξ∈Ξ

H(φ, ξ)

φ∗ = arg inf
φ

sup
ξ∈Ξ

H(φ, ξ).

We redefine now the estimation procedure (4.2.13) as follows:

φ̂ = arg inf
α,θ,λ

sup
ξ∈Ξ

ξtm(α)−
∫
ψ

[
ξtK

(
1

1− λ
FT (y)− λ

1− λ
F1(y|θ)

)]
dy

Using the mean value theorem, there exists η(y) ∈ (0, 1) such that2:

ψ
(
ξtK (F0(y|φ))

)
− ψ

(
ξtK

(
F̂0(y|φ)

))
= ξt

(
K (F0(y|φ))−K

(
F̂0(y|φ)

))
× ψ′

(
η(y)ξtK (F0(y|φ)) + (1− η(y))ξtK

(
F̂0(y|φ)

))
(4.5.5)

An exact formula of function η(y) will not be needed. We will only use the fact that its
image is included in (0, 1). By the central limit theorem, one can write:

√
n

Fn(y)− FT (y)√
FT (y)(1− FT (y))

→ N (0, 1) .

Since F̂0(y|φ)− F0(y|φ) = Fn(y)− FT (y), we write

√
n

F̂0(y|φ)− F0(y|φ)√
FT (y)(1− FT (y))

→ N (0, 1) ,

which entails by the delta method that:

√
n
K
(
F̂0(y|φ)

)
−K (F0(y|φ))√

FT (y)(1− FT (y))
→ N

(
0,∇K (F0(y|φ))∇K (F0(y|φ))t

)
. (4.5.6)

Since function K is a vector of polynomials, its gradient is a matrix of polynomials.
Besides, the distribution function F0(y|φ) takes its values in [0, 1], thus the variance of the
limiting law in (4.5.6) is of order 1

n independently of y and φ. We may now write:

K
(
F̂0(y|φ)

)
−K (F0(y|φ))√

FT (y)(1− FT (y))
= oP (1) (4.5.7)

2In the case of the Chi square, λ(y) = 1
2
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Going back to equation (4.3.1), we use equations (4.5.5) and (4.5.7) to write:

H(φ, ξ)−Hn(φ, ξ) =

∫
ξt
(
K (F0(y|φ))−K

(
F̂0(y|φ)

))
ψ′
[
η(y)ξtK (F0(y|φ))

+(1− η(y))ξtK(F̂0(y|φ))
]
dy

=

∫ √
FT (y)(1− FT (y))ξt

(
K (F0(y|φ))−K

(
F̂0(y|φ)

))
√
FT (y)(1− FT (y))

×ψ′
(
η(y)ξtK (F0(y|φ)) + (1− η(y))ξtK

(
F̂0(y|φ)

))
dy

= ξtop(1)

∫ √
FT (y)(1− FT (y))ψ′

[
η(y)ξtK (F0(y|φ))

+(1− η(y))ξtK(F̂0(y|φ))
]
dy.

The finale line can also be justified by the Chebyshev’s inequality, see Remark 4.5.1, or
even using the calculus in the proof of Proposition 4.3.1 below.
It suffices now to prove that the integral in the previous display is finite. Here, ξ (resp.
φ) is inside the compact set Ξ (resp. Φ), and functions η(y),F0(y|φ) and F̂0(y|φ) all take
values inside the compact interval [0, 1]. Thus, continuity of ψ′ suffices to conclude that
there exists a constant M independent of y, φ and ξ such that:∣∣∣ψ′ (η(y)ξtK (F0(y|φ)) + (1− η(y))ξtK

(
F̂0(y|φ)

))∣∣∣ ≤M. (4.5.8)

This entails using assumption C6 that:∫ √
FT (y)(1− FT (y))

∣∣∣ψ′ (η(y)ξtK (F0(y|φ)) + (1− η(y))ξtK
(
F̂0(y|φ)

))∣∣∣ dy ≤

M

∫ √
FT (y)(1− FT (y))dy

< +∞.

Finally, the integral is finite and the compactness of Ξ implies that ‖ξ‖ is bounded. There-
fore, we have:

H(φ, ξ)−Hn(φ, ξ) = oP (1),

independently of ξ and φ. We may deduce now that:

sup
φ,ξ
|H(φ, ξ)−Hn(φ, ξ)| P−−−−→

n→∞
0.

This proves assumption A2.
Assumption A3 is immediately verified since function ξ 7→ H(φ, ξ) is strictly concave. As-
sumption A4 is what we have assumed in assumption C3. Finally, continuity assumption
A5 is a direct result from assumptions C4 and C5 using Lebesgue’s continuity theorem.
All assumptions of Theorem 3.4.1 are fulfilled and the consistency of φ̂ follows as a conse-
quence.

Remark 4.5.1. We can prove assumption A2 in the previous proof without the use of
the ”small o” notation. We first have:

K
(
F̂0(y|φ)

)
−K (F0(y|φ))√

FT (y)(1− FT (y))

P→ 0.
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This is translated into the following limit:

∀ε > 0, P

∣∣∣∣∣∣
K
(
F̂0(y|φ)

)
−K (F0(y|φ))√

FT (y)(1− FT (y))

∣∣∣∣∣∣ < ε

 −−−→
n→∞

1

Thus, there exists a sequence of positive numbers (an)n independent of3 y which goes to
zero at infinity such that:

P

∣∣∣∣∣∣
K
(
F̂0(y|φ)

)
−K (F0(y|φ))√

FT (y)(1− FT (y))

∣∣∣∣∣∣ < ε

M̃

 ≥ 1− an

where M̃ = M supΞ ‖ξ‖
∫
FT (y)(1− FT (y))dy and M is defined through inequality (4.5.8).

On the other hand, the event:∥∥∥∥∥∥
K
(
F̂0(y|φ)

)
−K (F0(y|φ))√

FT (y)(1− FT (y))

∥∥∥∥∥∥ < ε

M̃

implies the event:

∫ √
FT (y)(1− FT (y))‖ξ‖

∥∥∥∥∥∥
(
K (F0(y|φ))−K

(
F̂0(y|φ)

))
√
FT (y)(1− FT (y))

∥∥∥∥∥∥ψ′ (η(y)ξtK (F0(y|φ))

+(1− η(y))ξtK
(
F̂0(y|φ)

))
dy

<
ε

M̃

∫ √
FT (y)(1− FT (y))‖ξ‖ψ′

(
η(y)ξtK (F0(y|φ)) + (1− η(y))ξtK

(
F̂0(y|φ)

))
dy

< ε.

This entails that
|H(φ, ξ)−Hn(φ, ξ)| < ε.

The final line does not depend on (φ, ξ), and we may deduce that:

P

(
sup
φ,ξ
|H(φ, ξ)−Hn(φ, ξ)| < ε

)
≥ 1− an.

4.5.5 Proof of Proposition 4.3.1

Proof. We would like to calculate the difference
∫
K(F̂0(y|φ))dy −

∫
K(F0(y|φ))dy as a

functional of the difference F̂0(y|φ)− F0(y|φ). For two reals a and b, we have:

Kr(a)−Kr(b) =

r−1∑
k=0

cr,k
k + 1

(
ak+1 − bk+1

)
,

where cr,k = (−1)r−k−1
(
r−1
k

)(
r+k−1
k

)
. Using the identity ak+1−bk+1 = (a−b)

∑k
j=0 a

jbk−j ,
we can write:

Kr(a)−Kr(b) = (a− b)
r−1∑
k=0

k∑
j=0

cr,k
k + 1

ajbk−j .

3This is possible using Chebyshev’s inequality and using the fact that K (F0(y|φ)) can be bounded
independently of y and φ.
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Applying this formula on a = F̂0(y|φ) and b = F0(y|φ) yields

Kr

(
F̂0(y|φ)

)
−Kr (F0(y|φ)) =

(
F̂0(y|φ)− F0(y|φ)

) r−1∑
k=0

k∑
j=0

cr,k
k + 1

F̂0(y|φ)jF0(y|φ)k−j

=
1

1− λ
(Fn(y)− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

F̂0(y|φ)jF0(y|φ)k−j .

(4.5.9)

We will show that the sum term can be rewritten using only F0(y|φ). By the Kolmogorov-
Smirnov theorem, we have:

sup
y

∣∣∣F̂0(y|φ)− F0(y|φ)
∣∣∣ = sup

y
|Fn(y)− FT (y)| = OP

(
1√
n

)
.

This permits us to simply write that

F̂0(y|φ) = F0(y|φ) +OP

(
1√
n

)
,

with OP

(
1√
n

)
tends to zero in probability as n goes to infinity independently of y. Thus

formula (4.5.9) can be rewritten as:

Kr

(
F̂0(y|φ)

)
−Kr (F0(y|φ)) =

1

1− λ
(Fn(y)− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

(
F0(y|φ)j +OP

(
1√
n

))
× F0(y|φ)k−j

=
1

1− λ
(Fn(y)− FT (y))

r−1∑
k=0

cr,kF0(y|φ)k

+OP

(
1√
n

)
1

1− λ
(Fn(y)− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

F0(y|φ)k−j .

Integrating the two sides of the previous equation and multiplying by
√
n gives:

√
n

∫ [
Kr

(
F̂0(y|φ)

)
−Kr (F0(y|φ))

]
dy =

1

1− λ

∫ √
n (Fn(y)− FT (y))

r−1∑
k=0

cr,kF0(y|φ)kdy

+OP

(
1√
n

)
1

1− λ

∫ √
n (Fn(y)− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

F0(y|φ)k−jdy. (4.5.10)

The first integral in the right hand side is the part which will produce the Gaussian
distribution of the limit law using the CLT. It remains to prove that the second integral
in the right hand side tends to zero in probability. Using the law of iterated logarithm,
we can write:

lim sup
n→∞

√
n

log log n

Fn(y)− FT (y)√
FT (y) (1− FT (y))

=
√

2. (4.5.11)
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We now may write the integral in the second term as follows:

OP

(
1√
n

)∫ √
n (Fn(y)− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

F0(y|φ)k−jdy =

OP

(√
log log n

n

)∫ √
n

log log n

Fn(y)− FT (y)√
FT (y) (1− FT (y))

√
FT (y) (1− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

F0(y|φ)k−jdy.

The sum term inside the integral is bounded uniformly on y. Combine this with the limit
in (4.5.11), we may deduce that for n sufficiently large, there exists a constant M such
that:∫ √

n

log log n

|Fn(y)− FT (y)|√
FT (y) (1− FT (y))

√
FT (y) (1− FT (y))

r−1∑
k=0

k∑
j=0

|cr,k|
k + 1

F0(y|φ)k−jdy ≤

M

∫ √
FT (y) (1− FT (y))dy

< ∞

Thus, the integral exists and is finite for sufficiently large n. This entails that:

OP

(
1√
n

)∫ √
n (Fn(y)− FT (y))

r−1∑
k=0

k∑
j=0

cr,k
k + 1

F0(y|φ)k−jdy
n→∞−−−−−−−→

P
0, in probability.

(4.5.12)
Going back to equation (4.5.10), the second term in the right hand side tends to zero in
probability. We need now to treat the first term.∫ √

n (Fn(y)− FT (y))

r−1∑
k=0

cr,kF0(y|φ)k =
1√
n

n∑
i=1

∫
(1Xi≤y − FT (y))

r−1∑
k=0

cr,kF0(y|φ)kdy.

(4.5.13)
This is a sum of i.i.d. random variables. Before proceeding any further, it is necessary to
prove that such random variables are well defined (the integrals exist) and have a finite
variance. First of all, we have:

∫ ∞
−∞
|1Xi≤y − FT (y)|

r−1∑
k=0

cr,kF0(y|φ)kdy =

∫ Xi

−∞
FT (y)

r−1∑
k=0

cr,kF0(y|φ)kdy

+

∫ ∞
Xi

(1− FT (y))

r−1∑
k=0

cr,kF0(y|φ)kdy (4.5.14)

On the other hand, since the |Xi|’s have finite expectation, then Xi is finite almost surely
and we have:

E|Xi| =

∫ ∞
t=0

P (|Xi| > t) dt

=

∫ ∞
0

(1− FT (t)) dt+

∫ 0

−∞
FT (t)dt.

Thus, FT (t) is integrable in the neighborhood of −∞, and 1 − FT (t) is integrable in the
neighborhood of +∞. This proves that the integral in equation (4.5.14) exists and is finite.
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Now the random variables in (4.5.13) are well defined. The expectation is zero using the
Fubini’s theorem:

E

[∫
(1Xi≤y − FT (y))

r−1∑
k=0

cr,kF0(y|φ)kdy

]
=

∫
E (1Xi≤y − FT (y))

r−1∑
k=0

cr,kF0(y|φ)kdy = 0.

The final part of the proof is to calculate the covariance matrix. Let r1 and r2 be two
positive natural numbers such that r1 ≤ ` and r2 ≤ `. The Fubini’s theorem yields:

E
∫

(1Xi≤y − FT (y))

r1−1∑
k=0

cr1,kF0(y|φ)kdy

∫
(1Xi≤x − FT (x))

r2−1∑
k=0

cr2,kF0(x|φ)kdx =

∫ ∫
E (1Xi≤x − FT (x)) (1Xi≤y − FT (y))

r1−1∑
k=0

cr1,kF0(x|φ)k
r2−1∑
k=0

cr2,kF0(y|φ)kdydx

Denoting Σ the covariance matrix, we may write:

Σr1,r2 =

∫ ∫
(FT (min(x, y))− FT (x)FT (y))

r1−1∑
k=0

cr1,kF0(x|φ)k
r2−1∑
k=0

cr2,kF0(y|φ)kdydx.

The sum of i.i.d. variables in (4.5.13) are now well defined and the CLT applies and gives:

1√
n

n∑
i=1

∫
(1Xi≤y − FT (y))

r−1∑
k=0

cr,kF0(y|φ)kdy
D−−−−−→ N (0,Σ).

This result together with (4.5.12) and (4.5.10) complete the proof.

4.5.6 Proof of Theorem 4.3.2

Proof. The proof is based on a mean value expansion between (φ̂, ξn(φ̂)) and (φ∗, 0) sim-
ilarly to the case of moment constraints Theorem 3.4.3. We therefore, need to calculate
the first and second order derivatives.
First order derivatives are given by:

∂Hn

∂ξ
(φ, ξ) = m(α)−

∫
K(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

∂Hn

∂α
(φ, ξ) = ξt∇m(α)

∂Hn

∂λ
(φ, ξ) = −

∫ [
1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

]
ξtK ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

∂Hn

∂θ
(φ, ξ) =

λ

1− λ

∫
∇θF1(y|θ)ξtK ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy.
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Second order derivatives are given by:

∂2Hn

∂ξ2
(φ, ξ) =

∫
K(F̂0(y|φ))K(F̂0(y|φ))tψ′′

(
ξtK(F̂0(y|φ))

)
dy

∂2Hn

∂α2
(φ, ξ) = ξtJm(α)

∂2Hn

∂2λ
(φ, ξ) = −

∫ [
2

(1− λ)3
Fn(y)− 2

(1− λ)3
F1(y|θ)

]
ξtK ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

−
∫ [

1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

]2

ξtK ′′(F̂0(y|φ))ψ′
(
ξtK(F̂0(y|φ))

)
dy

−
∫ [

1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

]2 [
(ξtK ′(F̂0(y|φ))

]2
ψ′′
(
ξtK(F̂0(y|φ))

)
dy

∂2Hn

∂θ2
(φ, ξ) =

λ

1− λ

∫
JF1(.|θ)ξ

tK ′(F̂0(y|φ))ψ′
(
ξtK(F̂0(y|φ))

)
dy

− λ2

(1− λ)2

∫
∇θF1(y|θ)∇θF1(y|θ)tξtK ′′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

− λ2

(1− λ)2

∫
∇θF1(y|θ)∇θF1(y|θ)t

[
ξtK ′(F̂0(y|φ))

]2
ψ′′
(
ξtK(F̂0(y|φ))

)
dy

Crossed derivatives:

∂2Hn

∂ξ∂α
(φ, ξ) = ∇m(α)

∂2Hn

∂ξ∂λ
(φ, ξ) = −

∫ [
1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

]
K ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy −∫

K(F̂0(y|φ))

[
1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

]
ξtK ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

∂2Hn

∂ξ∂θ
(φ, ξ) =

λ

1− λ

∫
∇θF1(y|θ)K ′(F̂0(y|φ))tψ′

(
ξtK(F̂0(y|φ))

)
dy

+
λ

1− λ

∫
K(F̂0(y|φ))∇θF1(y|θ)tξtK ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

∂2Hn

∂α∂λ
(φ, ξ) = 0

∂2Hn

∂α∂θ
(φ, ξ) = 0

∂2Hn

λ∂θ
(φ, ξ) =

1

(1− λ)2

∫
∇F1(y|θ)ξtK ′(F̂0(y|φ))ψ′

(
ξtK(F̂0(y|φ))

)
dy

+
λ

1− λ

∫
∇θF1(y|θ)

[
1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

]
ξtK ′′(F̂0(y|φ))

×ψ′
(
ξtK(F̂0(y|φ))

)
dy

+
λ

1− λ

∫
∇θF1(y|θ)

[
1

(1− λ)2
Fn(y)− 1

(1− λ)2
F1(y|θ)

] [
ξtK ′(F̂0(y|φ))

]2

×ψ′′
(
ξtK(F̂0(y|φ))

)
dy

Notice that by assumption 1, interesting values of ξ are only in a neighborhood of the
vector 0 which can be taken to be the ball B(0, ε) for some ε > 0. Besides, the derivatives
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given here above are well defined using Lebesgue theorems. Indeed, all integrands are
controlled by either K(F̂(y|φ)) or Fn(y)−F1(.|θ) which are both integrable independently
of φ as soon as F1(.|θ) has a finite expectation. Similar discussion for the former was given
in Example 4.3.1, and for the later in the proof of Proposition 4.3.1 but for Fn(y)−FT (.|θ)
instead. Other derivatives are controlled by assumtions 4-6 of the present theorem.
A mean value expansion of the gradient of Hn between (φ̂, ξn(φ̂)) with Lagrange remainder
gives that there exists (φ̄, ξ̄) on the line between these two points such that:(

∂Hn
∂φ (φ̂, ξ(φ̂))

∂Hn
∂ξ (φ̂, ξn(φ̂))

)
=

(
∂Hn
∂φ (φ∗, 0)
∂Hn
∂ξ (φ∗, 0)

)
+ JHn(φ̄, ξ̄)

(
φ̂− φ∗
ξn(φ̂)

)
, (4.5.15)

where JHn(φ̄, ξ̄) is the matrix of second derivatives of Hn calculated at the mid point
(φ̄, ξ̄). First order optimality condition at (φ̂, ξn(φ̂)) is translated by:

∂

∂ξ
Hn(φ̂, ξn(φ̂)) = 0

∂

∂φ
(Hn(φ, ξn(φ)))

∣∣∣∣
φ=φ̂

= 0.

The chain rule permits us to calculate the second line simply as a derivative with respect
to φ calculated at the optimal point (φ̂, ξn(φ̂)), i.e.

∂

∂φ
(Hn(φ, ξn(φ)))

∣∣∣∣
φ=φ̂

=
∂

∂φ
Hn(φ̂, ξn(φ̂)) +

∂

∂ξ
Hn(φ̂, ξn(φ̂))

∂ξn
∂φ

(φ̂)

=
∂

∂φ
Hn(φ̂, ξn(φ̂)).

Thus, optimality conditions at (φ̂, ξn(φ̂)) are given by:

∂Hn

∂ξ
(φ̂, ξn(φ̂)) = 0,

∂Hn

∂α
(φ̂, ξn(φ̂)) = 0,

∂Hn

∂λ
(φ̂, ξn(φ̂)) = 0,

∂Hn

∂θ
(φ̂, ξn(φ̂)) = 0.

On the other hand, we have at (φ∗, 0):

∂Hn

∂ξ
(φ∗, 0) = m(α∗)−

∫
K(F̂0(y|φ∗))dy, ∂Hn

∂α
(φ∗, 0) = 0,

∂Hn

∂λ
(φ∗, 0) = 0,

∂Hn

∂θ
(φ∗, 0) = 0.

By proposition 4.3.1, since m(α∗) =
∫
K(F0(y|φ∗)),

√
n

[
m(α∗)−

∫
K(F̂0(y|φ∗))dy

]
L−→ N (0,Σ) (4.5.16)

with Σ is the matrix of covariance defined by formula (4.3.6). It remains now to calculate
the limit in probability of the matrix JHn(φ̄, ξ̄). Recall first that as n goes to infinity
φ̄ → φ∗ and ξ̄ → 0. Moreover, by the Slutsky theorem and the law of large numbers, we
have:

F̂0(y, |φ̄) =
1

1− λ̄
Fn(y)− λ̄

1− λ̄
F1(y|θ̄) n→∞−−−→ 1

1− λ∗
FT (y)− λ∗

1− λ∗
F1(y|θ∗) = F0(y|φ∗).

We may now give the limit of the blocs of the matrix JHn(φ̄, ξ̄):

∂2Hn

∂ξ2
(φ∗, 0) =

∫
K(F0(y|φ∗))K(F0(y|φ∗))tdy, ∂2Hn

∂α2
(φ∗, 0) = 0,

∂2Hn

∂2λ
(φ∗, 0) = 0,

∂2Hn

∂θ2
(φ∗, 0) = 0.
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Crossed derivatives:

∂2Hn

∂ξ∂α
(φ∗, 0) = ∇m(α∗),

∂2Hn

∂α∂λ
(φ∗, 0) = 0,

∂2Hn

∂α∂θ
(φ∗, 0) = 0,

∂2Hn

λ∂θ
(φ∗, 0) = 0,

∂2Hn

∂ξ∂λ
(φ∗, 0) = −

∫ [
1

(1− λ∗)2
FT (y)− 1

(1− λ∗)2
F1(y|θ∗)

]
K ′(F0(y|φ∗))dy

∂2Hn

∂ξ∂θ
(φ∗, 0) =

λ∗

1− λ∗

∫
∇θF1(y|θ∗)K ′(F0(y|φ∗))tdy.

The limit in probability of the matrix JHn(φ̄, ξ̄) can be written in the form:

JH =

[
0 J tφ∗,ξ∗

Jφ∗,ξ∗ Jξ∗,ξ∗

]
where Jφ∗,ξ∗ and Jξ∗,ξ∗ are given by (4.3.9) and (4.3.10). The inverse of matrix JH has
the form:

J−1
H =

(
−Σ̃ H
Ht P

)
,

where

Σ̃ =
(
J tφ∗,ξ∗Jξ∗,ξ∗Jφ∗,ξ∗

)−1
, H = Σ̃J tφ∗,ξ∗J

−1
ξ∗,ξ∗ , P = J−1

ξ∗,ξ∗ − J
−1
ξ∗,ξ∗Jφ∗,ξ∗Σ̃J

t
φ∗,ξ∗J

−1
ξ∗,ξ∗

Going back to (4.5.15), we have:(
0
0

)
=

(
0

∂Hn
∂ξ (φ∗, 0)

)
+ JHn(φ̄, ξ̄)

(
φ̂− φ∗
ξn(φ̂)

)
.

Solving this equation in φ and ξ gives:( √
n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
= J−1

H

(
0√

n∂Hn∂ξ (φ∗, 0)

)
+ oP (1).

Finally, using (4.5.16), we get that:( √
n
(
φ̂− φ∗

)
√
nξn(φ̂)

)
−→
L
N (0, S)

where

S =

(
H
P

)
Σ
(
Ht P t

)
.

This ends the proof.
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Conclusions and Perspectives

We summarize some of the most important contributions achieved in this work, and give
some future perspectives and research directions concerning the different subjects pre-
sented in this manuscript.

• We studied in the first chapter the dual formula of ϕ−divergences and showed the
limitations of the estimators built using it. We emphasized on the lack of robust-
ness of the so-called MDϕDE and explained the reason behind this problem. This
permitted us to introduce a new robust estimator which we called the kernel-based
MDϕDE. The new estimator is proved to be consistent, asymptotically Gaussian
and robust under standard conditions.

• The detailed simulation study presented at the end of Chapter 1 opened several
questions. When we work with symmetric kernels, the choice of the window influ-
ences on the estimation result. Automatic methods did not give the best results and
a suitably-chosen fixed value of the kernel gave always a better result. This gives
rise to the question about the best window choice with respect to the estimation
procedure instead of the density estimator.

• The use of asymmetric kernels is very useful and must be considered in estimation
procedures which uses kernels as soon as we are working with distributions defined
on a subset of R. The choice of the kernel was not of a great importance, but the
choice of the window was essential. Indeed, existing methods for the choice of the
window for asymmetric kernels do not give satisfactory results and a fixed choice of
the window gave clear good results almost all the time.

• We presented in the second chapter a proximal-point algorithm for the calculus of
divergence-based estimators. We studied the convergence properties of this algo-
rithm and relaxed the identifiability assumption over the proximal term.

• Our simulations show that the proximal algorithm give the same results as a direct
optimization algorithm. The question is: Can the proximal algorithm give clear bet-
ter results than direct optimization methods? We could not explore this question in
the present work. We could consider a well-known model where direct optimization
algorithms fail and converge to ”bad” local optima and test whether our proximal
algorithm succeed to give a better result.
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• The role of the proximal term could also be studied. Indeed, we have noticed that
the use of a proximal term of the form ‖φ− φk‖ is not suitable for our simulations.
The use of a Hellinger-type proximal term gives better results.

• We presented in the third chapter a new structure for semiparametric two-component
mixture models where a component is defined through linear constraints such as
moments constraints. The new structure permits the addition of a relatively gen-
eral prior information about the unknown component. The new structure puts the
model in between a (restrictive) fully parametric model and a complex semiparamet-
ric setup. The new structure permits to estimate the parameters of the parametric
component keeping the unknown component in a neighborhood of some family of
distributions. The resulting estimator is proved under standard conditions to be
consistent and asymptotically normal.

• The estimation procedure presented in Chap. 3 has a linear complexity when we
use the χ2 divergence and when the constraints are polynomials in the distribution
function (moments constraints). Besides, no numerical integration or smoothing are
needed which permits to calculate the estimates instantly which is a clear advan-
tage over existing methods. The later requires from several hours to several days in
order to estimate the parameters of only one sample when the sample size becomes
high enough (of order 105). Besides, it permitted in several simulated examples the
identification of a parametric component even when the proportion of it is very low
(of order 0.01).

• It is necessary and intriguing that we apply our new model on real data and see if we
can get satisfactory results. Moreover, we should test the performance of our method
on data where the true unknown component P ∗0 does not verify the constraints.

• In chapter 4, we presented another structure for semiparametric two-component
mixture models when one component is defined by L-moments constraints. The
resulting estimator was proved to be consistent and asymptotically normal under
standard conditions. In comparison to the structure introduced in Chap. 3 using
moments constraints, the use of L-moments constraints shows a clear improvement
of performance. In several simulations, we were able to obtain better results with
L-moments constraints than with moments constraints and with a smaller number
of observations.

• In the literature on L-moments, there exist some propositions and attempts to define
multivariate L-moments. Our approach in Chap. 4 only treat univariate L-moments.
This may be explorer in a future work.

• An important and difficult question common for both chapters 3 and 4 is: can we
use less number of constraints than the number of parameters ? and even if we have
an infinite number of solutions, can we ensure that these solutions are in a small
neighborhood of the true set of parameters ?

202 / 208



Bibliography

S. M. Ali and S. D. Silvey. A General Class of Coefficients of Divergence of One Distribution
from Another. Journal of the Royal Statistical Society. Series B (Methodological), 28
(1):131–142, 1966.

Andrew R. Barron and Chyong-Hwa Sheu. Approximation of density functions by se-
quences of exponential families. Ann. Statist., 19(3):1347–1369, 09 1991.

Ayanendranath Basu and Bruce G. Lindsay. Minimum disparity estimation for continuous
models: Efficiency, distributions and robustness. Annals of the Institute of Statistical
Mathematics, 46(4):683–705, 1994.

Ayanendranath Basu and Sahadeb Sarkar. The trade-off between robustness and efficiency
and the effect of model smoothing in minimum disparity inference. Journal of Statistical
Computation and Simulation, 50:173–185, 09 1994.

Ayanendranath Basu, Ian R. Harris, Nils L. Hjort, and M. C. Jones. Robust and efficient
estimation by minimising a density power divergence. Biometrika, 85(3):549–559, 09
1998.

Rudolf Beran. Minimum hellinger distance estimates for parametric models. Ann. Statist.,
5(3):445–463, 05 1977.

C. Berge. Topological Spaces: Including a Treatment of Multi-valued Functions, Vector
Spaces, and Convexity. Dover books on mathematics. Dover Publications, 1963.

L. Bordes and P. Vandekerkhove. Semiparametric two-component mixture model with
a known component: An asymptotically normal estimator. Mathematical Methods of
Statistics, 19(1):22–41, 2010. ISSN 1066-5307.
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Stéphane Chrétien and Alfred O. Hero. On em algorithms and their proximal generaliza-
tions. ESAIM: Probability and Statistics, 12:308–326, 1 2008.

Noel Cressie and Timothy R. C. Read. Multinomial goodness-of-fit tests. J. Roy. Statist.
Soc. Ser. B, 46(3):440–464, 1984. ISSN 0035-9246.

Mihai Cristea. A Note on Global Implicit Function Theorem. Journal of Inequalities in
Pure and Applied Mathematics, 8, 2007.

I. Csiszár. Eine informationstheoretische Ungleichung und ihre anwendung auf den Beweis
der ergodizität von Markoffschen Ketten. Publications of the Mathematical Institute of
Hungarian Academy of Sciences, 8:95–108, 1963.

Imre Csiszár. Eine informationstheoretische Ungleichung und ihre Anwendung auf den
Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int.
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