
HAL Id: tel-01454962
https://theses.hal.science/tel-01454962v1

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protocoles de sécurité efficaces pour les réseaux de
capteurs IP sans-fil et l’Internet des Objets

Kim Thuat Nguyen

To cite this version:
Kim Thuat Nguyen. Protocoles de sécurité efficaces pour les réseaux de capteurs IP sans-fil et l’Internet
des Objets. Networking and Internet Architecture [cs.NI]. Institut National des Télécommunications,
2016. English. �NNT : 2016TELE0025�. �tel-01454962�

https://theses.hal.science/tel-01454962v1
https://hal.archives-ouvertes.fr

These de Doctorat

Spécialité: Télécommunications

École doctorale: Informatique, Télécommunications et Électronique de Paris

Présenté par

Kim Thuat NGUYEN

Pour obtenir le grade de
DOCTEUR DE TÉLÉCOM SUDPARIS

Protocoles de sécurité efficaces pour les réseaux de
capteurs IP sans-fil et l’Internet des Objets

Soutenue le 08/12/2016 devant le jury composé de:

Isabelle CHRISTMENT Professeur à Télécom Nancy Rapporteur

Yves ROUDIER Professeur à l’Université de Nice Sophia-Antipolis Rapporteur

Sébastien TIXEUIL Professeur à l’Université Pierre et Marie Curie Examinateur

Säıd GHAROUT Ingénieur de recherche à Orange lab Examinateur

Nouha OUALHA Ingénieur de recherche au CEA LIST Encadrant

Maryline LAURENT Professeur à Télécom SudParis Directeur de thèse

Thèse No: 2016TELE0025

Thesis Dissertation

Speciality: Telecommunications

Doctoral School: Information, Telecommunications and Electronics of Paris

Presented by

Kim Thuat NGUYEN

For the degree of
DOCTOR OF TELECOM SUDPARIS

Lightweight Security Protocols for IP-based
Wireless Sensor Networks and the Internet of Things

Defended on 08/12/2016 in front of a jury composed of:

Isabelle CHRISTMENT Professor at Telecom Nancy Reviewer

Yves ROUDIER Professor at Université de Nice Sophia-Antipolis Reviewer

Sébastien TIXEUIL Professor at Université Pierre et Marie Curie Examiner

Säıd GHAROUT Research Engineer, Orange Labs Examiner

Nouha OUALHA Research Engineer at CEA LIST Advisor

Maryline LAURENT Professor at Telecom SudParis Thesis director

Thesis No: 2016TELE0025

Contents

Abstract 7

Résumé 9

Acknowledgment 11

List of Tables 12

List of Figures 13

1 Introduction 15
1.1 IoT security challenges . 15
1.2 Problem Statement and Objectives . 17
1.3 Contributions . 18
1.4 Thesis Outline . 19

2 Preliminaries and Scientific Background 21
2.1 Cryptographic Primitives . 21

2.1.1 Symmetric Key Cryptography . 21
2.1.2 Public Key Cryptography . 22

2.1.2.1 Public Key Encryption . 22
2.1.2.2 Digital signature scheme . 23

2.1.3 Signcryption schemes . 24
2.1.3.1 Formal definition of a signcryption scheme 24
2.1.3.2 Example of Zheng’s signcryption scheme 24

2.1.4 Attribute-Based Encryption . 25
2.1.4.1 Access structure . 25
2.1.4.2 Bilinear Map . 26
2.1.4.3 Formal definition of Ciphertext-Policy Attribute-based Encryption 27
2.1.4.4 Properties of Attribute-based Encryption Schemes 27

2.1.5 Proxy re-encryption schemes . 28
2.1.5.1 Properties of a proxy re-encryption scheme 28
2.1.5.2 Symmetric cipher proxy re-encryption 29

2.2 Elliptic Curve Cryptography . 29
2.2.1 Basic ECC operations . 29
2.2.2 Computational Hardness Assumptions for ECC 30

2.3 Implicit Certificate . 31
2.4 Summary . 31

3

3 Lightweight Cryptographic Primitives and Secure Communication Protocols
for IoT 33
3.1 Lightweight cryptographic primitives for IoT . 33

3.1.1 Symmetric Key Ciphers . 34
3.1.2 Public Key Ciphers . 35

3.2 Lightweight protocols and methods for establishing secure communications in IoT 35
3.2.1 Security properties . 35
3.2.2 Taxonomy of key establishment protocols for the IoT 36

3.2.2.1 Scenario under consideration . 36
3.2.2.2 Classification . 36
3.2.2.3 Related work in IoT security protocol classification 38

3.2.3 Asymmetric key schemes . 39
3.2.3.1 Key transport based on public key encryption 39
3.2.3.2 Key agreement based on asymmetric techniques 42

3.2.4 Symmetric key pre-distribution schemes 43
3.2.4.1 Probabilistic key distribution . 44
3.2.4.2 Deterministic key distribution 44

3.2.5 Discussion . 47
3.3 Identified approaches towards lightweight security mechanisms 50
3.4 Summary . 52

4 ECKSS: Elliptic Curve Korean Signature-Based Signcryption for IoT 53
4.1 Background on DSA variants . 54

4.1.1 Elliptic Curve Digital Signature Algorithm (ECDSA) 54
4.1.2 Elliptic Curve Korean Certificate-based Digital Signature Algorithm . . . 55

4.2 Our proposed signcryption scheme . 56
4.2.1 System and Threat model for a signcryption scheme 56

4.2.1.1 System model . 56
4.2.1.2 Threat models for signcryption Schemes 56

4.2.2 Existing Signcryption Schemes . 58
4.2.3 The certificateless elliptic curve Korean signature-based signcryption ECKSS 58

4.2.3.1 Security parameter generation process 58
4.2.3.2 ECKSS description . 59
4.2.3.3 Public Key Validation . 59

4.2.4 Game-based security proofs . 60
4.2.4.1 Notations for the security proof 60
4.2.4.2 Confidentiality of our scheme . 60
4.2.4.3 Unforgeability of our scheme . 63

4.2.5 Provided security features and extension 65
4.2.6 ECKSS Performance Evaluation . 66

4.2.6.1 Performance comparison . 66
4.2.6.2 Estimation of energy consumption on emulated sensor platform 68

4.3 ECKSS Application to MIKEY . 69
4.3.1 Introduction to MIKEY modes and extensions 70
4.3.2 Design motivations . 71
4.3.3 The MIKEY-ECKSS mode specification 71
4.3.4 The MIKEY-ECKSS-HMAC mode specification 72
4.3.5 Security considerations . 73
4.3.6 Experimental performance evaluation . 73

4

4.3.6.1 Comparison with related work 73
4.3.6.2 Experimental tools and platforms 74
4.3.6.3 Methodology . 75
4.3.6.4 Experimental results of ECKSS 75
4.3.6.5 Experimental results of the proposed MIKEY modes 76

4.4 Summary . 77

5 OEABE: Outsourcing the Encryption of Ciphertext-Policy Attribute-Based
Encryption 79
5.1 Related work . 80

5.1.1 Related work on Ciphertext-Policy ABE schemes 80
5.1.2 Reducing the computational cost of CP-ABE encryption 80

5.2 System and Threat model . 81
5.2.1 System model . 81
5.2.2 Threat model . 82

5.3 Secure outsourcing encryption mechanism for CP-ABE 83
5.3.1 Bethencourt et al.’s Ciphertext-policy Attribute-Based Encryption 83
5.3.2 OEABE description . 84
5.3.3 Correctness of our proposal . 85

5.4 Security analysis . 86
5.5 Performance analysis . 87

5.5.1 Quantified Comparison . 87
5.5.2 Estimation of energy consumption on emulated sensor platform 88
5.5.3 Execution time of OEABE encryption on a laptop 88

5.6 Examples of applications of OEABE . 90
5.6.1 Personal Health Data Sharing . 90
5.6.2 Group Key Management . 91

5.7 Summary . 91

6 AKAPR: Authenticated Key Agreement Mediated by a Proxy Re-Encryptor
for IoT 93
6.1 From proxy re-encryption to server-assisted key agreement protocol 94
6.2 Existing approaches on proxy re-encryption . 94
6.3 Lightweight Bi-directionnal Proxy re-encryption Scheme with Symmetric Cipher 96

6.3.1 The proposed proxy re-encryption (PRE) scheme 96
6.3.2 Comparison of our PRE scheme to related work 97

6.4 Lightweight Authenticated and Mediated Key Agreement for IoT 98
6.4.1 Network architecture and scenario description 98
6.4.2 Security assumptions and notations . 99
6.4.3 AKAPR protocol description . 100

6.5 Security analysis of AKAPR . 103
6.5.1 Resistance against attacks . 103
6.5.2 Formal security validation with ProVerif 104

6.6 Summary . 105

7 Conclusion and Perspectives 107

Author Publications 109

Annexes 110

5

Glossary of Acronyms 114

Bibliography 116

6

Abstract

The Internet of Things (IoT) enables billions of embedded computing devices to connect to
each other. The smart things cover our everyday friendly devices, such as, thermostats, fridges,
ovens, washing machines, and TV sets. It is easy to imagine how bad it would be, if these
devices were spying on us and revealing our personal information. It would be even worse if
critical IoT applications, for instance, the control system in nuclear reactors, the vehicle safety
system or the connected medical devices in health-care, were compromised. To counteract these
security threats in the IoT, robust security solutions must be considered. However, IoT devices
are limited in terms of memory, computation and energy capacities, in addition to the lack of
communication reliability. All these inconvenients make them vulnerable to various attacks, as
they become the weakest links of our information system.

In this context, we seek for effective security mechanisms in order to establish secure com-
munications between unknown IoT devices, while taking into account the security requirements
and the resource constraints of these devices. To do so, we focus on two major challenges,
namely, lightweight security protocols in terms of processing and infrastructure and lightweight
key establishment mechanisms, as existing solutions are too much resource consuming.

First of all, traditional secure encryption methods (e.g. RSA) usually require operations that
are consuming too much for the computing capacity of IoT devices. In addition, in conventional
security solutions, public key cryptosystems usually rely on a Public Key Infrastructure (PKI) to
provide identity management and authentication, but PKIs are not suitable for low-bandwidth
and resource-constrained environments.

To address this first challenge, we first propose ECKSS - a new lightweight signcryption
scheme which does not rely on a PKI. This proposal enables to encrypt and sign messages simul-
taneously while ensuring the confidentiality and unforgeability of the communication channels.
In addition, the message exchanges are authenticated without relying on certificates. More-
over, we also propose OEABE which is a delegation-based mechanism for the encryption of the
Ciphertext-Policy Attribute-Based Encryption (CP-ABE). CP-ABE is an attribute-based public
key encryption scheme that gives users the flexibility to determine who can decrypt their data
at runtime. Our solution enables a resource-constrained device to generate rapidly a CP-ABE
ciphertext with authorization access rights to its data. This solution is particularly useful as
the volume of data issued from IoT devices grows exponentially every year.

Second, the existing key establishment mechanisms do not take into account specific con-
straints of heterogeneous environments, e.g. IoT. Indeed, in order to establish a common key
between two unknown entities, one usually employs a key transport scheme based on a public
key encryption algorithm, which is generally expensive for limited-resource devices. The second
approach consists of using a key agreement scheme, in which the two communicating parties are
involved in the negotiation of the final key. We can employ, in this case, a Diffie-Hellman key
exchange, or a server-assisted key agreement. However, these methods have several drawbacks

7

such as poor performances on limited-resource devices, or vulnerability to key-escrow attacks.
To solve this second challenge, we first propose two new key distribution modes for the

standard key management protocol MIKEY, based on our signcryption scheme ECKSS. These
modes inherit the lightness of ECKSS and avoid the use of a PKI. The experimental results,
conducted in the Openmote sensor platform, have proven the efficiency of our solutions com-
pared with other existing methods of MIKEY. Then, we propose a new key agreement scheme,
named AKAPR. In case the two communicating parties are involved in the key negotiation pro-
cedure, AKAPR is very suitable in the context of IoT. As such, it can operate even if the two
communicating parties are highly resource-constrained.

All our proposals were informally validated (for OEABE) or formally validated either through
a sequence of games or the automatic cryptographic verifier ProVerif.

8

Résumé

L’Internet des Objets (IdO) permet à des milliards de dispositifs informatiques embarqués de
se connecter les uns aux autres. Les objets concernés couvrent la plupart de nos appareils de
la vie quotidienne, tels que les thermostats, les réfrigérateurs, les fours, les machines à laver et
les téléviseurs. Il est facile d’imaginer l’ampleur du danger, si ces dispositifs venaient à nous
espionner et révélaient nos données personnelles. La situation serait encore pire si les applications
critiques IdO, par exemple, le système de contrôle des réacteurs nucléaires, le système de sécurité
du véhicule ou les dispositifs médicaux, étaient compromis. Afin de garantir la sécurité et
lutter contre des menaces de sécurité dans l’IdO, des solutions de sécurité robustes doivent être
considérées. Cependant, les appareils pour l’IdO sont limités en mémoire, capacités de calcul et
énergie, et disposent de moyens de communication peu fiables, ce qui les rend vulnérables à des
attaques variées.

Dans ce contexte, nous recherchons des mécanismes de sécurité efficaces pour établir des
communications sécurisées entre des entités IdO qui ne partagent pas préalablement de clés cryp-
tographiques, tout en tenant en compte des exigences de sécurité et des contraintes en ressources
de ces dispositifs. Pour ce faire, nous nous concentrons sur deux défis majeurs, à savoir des proto-
coles de sécurité légers en termes de calculs et d’infrastructure, et des mécanismes d’établissement
de clés légers, les solutions existantes actuellement étant beaucoup trop coûteuses pour les dis-
positifs IdO.

Tout d’abord, les méthodes de chiffrement asymétriques traditionnelles (par exemple RSA)
exigent généralement des opérations beaucoup trop coûteuses pour des dispositifs IdO. De plus,
dans les solutions de sécurité conventionnelles, les primitives de chiffrement à clé publique
reposent généralement sur une infrastructure à clé publique (PKI) pour gérer l’identité et
l’authentification, mais de telles infrastructures sont beaucoup trop consommatrices de ressources.

En réponse à cette première problématique, nous avons, d’une part, proposé ECKSS - un
nouveau schéma de signcryption léger qui évite l’utilisation de PKI. Cette proposition permet
de chiffrer et signer simultanément des messages en garantissant la confidentialité et la non-
falsification du canal de communication. De plus, les échanges de message sont authentifiés sans
recourir à des certificats. Par ailleurs, nous avons aussi proposé OEABE qui est un mécanisme de
délégation pour le chiffrement à base d’attributs CP-ABE (Ciphertext-Policy Attribute-Based
Encryption). CP-ABE est un schéma de chiffrement par attributs qui permet aux utilisateurs de
préciser au moment du chiffrement qui pourra déchiffrer leurs données. Notre solution, OEABE,
permet à un dispositif contraint en ressources de générer rapidement un chiffré CP-ABE tout
en précisant les droits d’accès à ses données. Cette solution est d’autant plus utile que le vol-
ume de données générées par les dispositifs IdO est en augmentation exponentielle chaque année.

Ensuite, les mécanismes d’établissement de clés existants ne prennent pas en compte de
contraintesspécifiques pour des environnements hétérogènes comme l’IdO. En effet, pour convenir
d’une clé commune entre deux entités inconnues, il est souvent fait appel à un schéma de transfert

9

de clés basé sur un algorithme de chiffrement à clé publique, ce qui est généralement trop coûteux
pour les dispositifs limités en ressources. La deuxième approche consiste à utiliser un schéma
d’échange de clés où les deux parties communicantes participent à la négociation de la clé finale.
Dans ce cas là, se trouvent utiliser soit un échange de clés Diffie-Hellman, soit un échange de
clés assisté par un serveur. Ces deux méthodes ont l’inconvénient d’être inadaptées à l’IdO
avec des performances trop médiocres ou bien vulnérables aux attaques de tiers de séquestre
(key-escrow).

En réponse à cette deuxième problématique, nous avons proposé tout d’abord deux modes
de distribution de clés pour le protocole standard de gestion de clés MIKEY. Ils s’appuient
sur notre schéma de signcryption ECKSS et héritent ainsi de la légèreté d’ECKSS à la fois en
termes de calculs et de dispensent d’utilisation de PKI. Les résultats expérimentaux, obtenus
à partir d’une plateforme de capteurs Openmote, ont prouvé l’efficacité de nos solutions com-
parativement aux autres méthodes de MIKEY. Nous avons aussi proposé un schéma d’échange
de clés, appelé AKAPR qui est très adapté dans le cas où les deux parties qui participent à la
négociation de clés sont très contraintes en ressources.

Nos propositions on été validées informellement (pour OEABE) ou formellement, soit à l’aide
de séquences de jeux, soit avec le vérificateur automatique ProVerif.

10

Acknowledgment

This thesis becomes reality with the kind support and help of many individuals. I would like to
express my sincerest gratitude to all of them.

I would like to express my special gratitude and thanks to my advisor Dr. Nouha OUALHA,
for her keen interest on every stage of my research. Her prompt inspirations, timely supports
with kindness, enthusiasm and dedication, have enabled me to complete this thesis.

I owe a deep sense of gratitude to my thesis director Prof. Maryline LAURENT for
her scientific approach, meticulous scrutiny, vast knowledge and insightful suggestions during
all phases of my thesis. It is a great honor for me to be her PhD student.

My sincere thanks also goes to Prof. Isabelle CHRISTMENT and Prof. Yves
ROUDIER, for being reviewers and members of the jury. Their insightful comments and
encouragement, but also their hard questions inspired me to widen my research from vari-
ous perspectives. I would like to thank the rest of my thesis committee: Prof. Sébastien
TIXEUIL and Dr. Säıd GHAROUT, for their interest, involvement and time.

I would like also to say thank you to all my colleagues at LSC laboratory for the stimulating
discussions, and for all the fun we have had in the last three years.

Last but not the least, it is my privilege to thank my parents and my wife Linh, for their
constant encouragement throughout my thesis period.

Thank you very much, everyone!

11

List of Tables

3.1 Classes of Constrained Devices (KB = 1024 bytes) [37] 34
3.2 Summary of proposed security solutions for IoT 49

4.1 Performance comparison between our scheme and related work 67
4.2 Energy consumption and time execution of atomic operations on Wismote [184] . 67
4.3 Modifications made to the Signcrypt and Unsigncrypt algorithms 73
4.4 Performance comparison of our propositions and ECC-based MIKEY modes in

related work . 74
4.5 Energy consumption and time execution of ECKSS algorithms on the Openmote

platform . 75
4.6 Energy consumption and time execution of ECDSA algorithms on the Openmote

platform . 76
4.7 Energy consumption and time execution of our proposed MIKEY modes on open-

mote . 77

5.1 Information accessible to DG, DC and an external attacker A 87
5.2 Comparison of our proposal and related work . 88
5.3 Time execution and Energy consumption of ECC operations on Wismote [147] . 88
5.4 Bit length of q and r to obtain desired security level 89

6.1 Two existing approaches of a proxy re-encryption scheme 95
6.2 Comparison of our scheme and related work . 97

12

List of Figures

1.1 Secure communication is essential in the Internet of Things 16

2.1 An example of public key encryption . 22
2.2 Digital signature processes [118] . 23
2.3 Example of an access policy . 26
2.4 General architecture of a proxy re-encryption scheme 28

3.1 Network architecture of our scenario . 37
3.2 Classification of key bootstrapping mechanisms in IoT 38
3.3 Public key transport mechanism . 39
3.4 Identity-based Cryptography Infrastructure . 40
3.5 Key agreement based on asymmetric mechanisms 43
3.6 Server-assisted mechanism . 45
3.7 Proxy-based assisted server infrastructure . 47

4.1 Functions which determine membership in the list L0 and L1 from partial infor-
mation . 61

4.2 Random Oracle Simulators H0Sim and H1Sim . 61
4.3 Signcryption Oracle Simulator SCSim . 62
4.4 Unsigncryption Oracle Simulator USCSim . 62
4.5 Random Oracle Simulators H1Sim in game G1 . 64
4.6 Total estimated energy consumption of our schemes and related work 69
4.7 Basic message format for a MIKEY public key encryption method 70
4.8 Elliptic curve Korean signature-based signcryption key distribution method for

MIKEY . 72
4.9 HMAC-authenticated Elliptic Curve Korean signature-based signcryption key dis-

tribution method for MIKEY . 72
4.10 Performance comparison of our proposal ECKSS with the algorithm ECIES . . . 76
4.11 Performance comparison of our proposed MIKEY modes and MIKEY-ECIES mode 77

5.1 DP builds an ABE cipertext and sends it to DC 82
5.2 Our considered scenario: DP computes partially the ABE-CT, which is then

completed by the DG . 82
5.3 Secure delegation for the encryption of CP-ABE 85
5.4 Estimation of energy consumption of OEABE and CPABE in the emulated Wis-

mote platform . 89
5.5 Average execution time in the encryption phase of OEABE and CPABE on a laptop 90
5.6 An eHealth scenario for our delegation-based CP-ABE scheme 91

6.1 Our proposed symmetric cipher proxy re-encryption scheme 96
6.2 Network architecture and considered scenarios . 99

13

6.3 Lightweight Secure Key Agreement for IoT . 102

14

Chapter 1

Introduction

The Internet of Things (IoT) is designed as a network of highly connected devices (things). In
today’s perspective, the IoT includes various kinds of devices, e.g., sensors, actuators, RFID tags,
or smartphones, which are very different in terms of size, weight, functionality and capabilities.
IoT devices are increasingly deployed. Indeed, according to Gartner’s forecast [113], the IoT will
grow to more than 26 billion deployed units by 2020. The main challenge is how to make such
devices operate in the conventional Internet. Inspired by this motivation, recent research efforts
have focused on the design of new protocols and the adaptation and application of standard
Internet protocols in the IoT. For instance, the initiative of the 6LoWPAN [5] working group
allowed the smallest devices with limited processing capabilities to become part of the Internet
by enabling the use of IP over these devices; thus, enabling the connection of literally billions of
devices to the Internet, in which very different things such as temperature and humidity sensors
can directly communicate with each other, with a human carrying a smartphone, with a heating
and cooling system, or with a remote backend server.

While the concept of IoT is easy to grasp, major research efforts still need to be made, in
particular, in resolving challenges associated with security, privacy, and trust. Allowing each
single physical object to connect to the Internet and to share information may create more
threats than ever for our personal data and business secret information. As depicted in Figure
1.1, concerned objects cover our everyday friendly devices, such as, thermostats, fridges, ovens,
washing machines, and TV sets. It is easy to imagine how bad it would be, if these devices
were spying on us and revealing our personal information. It would be even worse if critical
IoT applications, for instance, the control system in nuclear reactors, the vehicle safety system
or the connected medical devices in health-care, were compromised. In order to guarantee the
security and privacy threats in the IoT, robust security solutions need to be considered. However,
existing standard protocols for security protections can not be directly applied in the IoT due
to IoT device’s resource limitations e.g. in terms of energy, processing power and memory, in
addition to the lack of communication reliability.

1.1 IoT security challenges

Being a very common model for monitoring physical data and environmental conditions, the
Wireless Sensor Network (WSN) was initially designed as a closed network where all environ-
mental data are collected by sensor nodes and then transferred to a remote location through a
gateway. The direct connections between the end-users and the sensor nodes are not privileged
in such model. All communications are forwarded between nodes and passed to the outside
world by the gateway. The WSN was motivated by military applications for example, the use
of sensors for detecting enemy intrusion on the field. As an extension of WSN, the IoT is an

15

Figure 1.1: Secure communication is essential in the Internet of Things

evolution of traditional internet model where the digital world meets the physical world. The
explosion of the number of connected devices obligates the extension of IPv4 to IPv6. Con-
sidered as the foundation of IoT, IPv6 is subject to the same attack threat as IPv4, such as,
spoofing, fragmentation attacks, sniffing, neighbor discovery attacks, rogue devices, man-in-the-
middle attacks, and others. However, IoT opens a completely new dimension of security threats.
Indeed, the IoT offers connectivity for both types: human-to-machine and machine-to-machine
communications. In the near future, everything is likely to be equipped with small embedded
devices which are able to connect to the Internet. Such ability is useful for various domains in
our daily life: i.e. from building automation, smart city, and surveillance system to all wearable
smart devices. However, the more the IoT devices are deployed, the greater our information
system is at risk. Indeed, a non-negligible number of devices in IoT are vulnerable to security
attacks, for example, denial of service and replay attacks, due to their constrained resources and
the lack of protection methods.

In order to obtain the needed security, IoT systems have to deal with multiple security
challenges including the following:

• Resource constraints – the resource-constrained nature in memory, computation capacities
and energy of IoT devices, may not support the expensive operations required in complex
and evolving security algorithms. IoT devices often operate on lossy and low-bandwidth
communication channels. It seems to be impossible to apply directly standard conven-
tional security protocols of the Internet in the context of IoT. As an example, the use of
small packets (i.e. IEEE 802.15.4 supports only 127-bytes packets [161]) may result in
fragmentation of larger packets when using the standard protocols. This will exhaust the
life time of sensor nodes and open new possibility of DoS attacks. Hence, the standard
security protocols must be redesigned to adapt such difficult scenario, in order to offer
equivalent security levels with more efficient performance for the IoT.

• Resilience to attacks – IoT devices are typically small, inexpensive with little or no physical
protection. For example, a mobile/sensor device can be stolen or fixed devices can be
moved. Such attacks may modify the data read by users without any one noticing. As a

16

result, the system has to avoid single points of failure so a compromised node will not affect
the whole system. Besides, the secured network must also avoid the resource-depletion
attacks launched against resource-constrained devices.

• Privacy protection – The popularity of RFID tags has raised privacy concerns because
anyone can track tags and find the identity of the objects carrying them. In addition, as
wearable technology increases its pace, we will be soon able to connect our bodies to the
Internet by ”putting on” tiny hardware devices (e.g. Implant chips inside our bodies).
Consequently, our personal information (i.e. healthcare records) must remain secured and
should not be traceable, linkable and identifiable.

• Interoperability – Deploying security solutions in the IoT should not hinder the functional
operation of interconnected heterogeneous devices.

• Availability – The sensor nodes must be available when needed. High availability network
of things should remain functional, especially against denial-of-service attacks, such as
flooding of incoming messages to targeted nodes forcing them to shut down

• Scalability – The IoT network, for instance WSNs, is generally composed of a large number
of devices. The proposed security protocol should be able to scale. This property is tightly
related to the amount of information that each device has to keep in memory for a secure
channel to be negotiated with as many entities as possible (other sensor nodes or Internet
entities).

1.2 Problem Statement and Objectives

In the context of IoT, two devices in a large network composed of multiple devices are not
necessarily known to each other. As a result, we cannot consider applying directly symmetric
security solutions to create secure communications between them. In such case, the security link
between these devices can be created by using an asymmetric security protocol or by relying on
a trusted third party. In this thesis, we are interested in such procedure of establishing secure
associations and exchanges between unknown entities in heterogeneous environments. Below,
we clarify several existing problems that need to be addressed.

First, secure communications between unknown entities are generally provided via secure key
establishment mechanisms, including key agreement and key distribution solutions [141]. Their
objective is for both parties to possess a common secret key for initiating secure communica-
tions. On one hand, regarding key agreement methods, it is natural to use directly asymmetric
techniques to generate a common secret key between two unknown entities [163]. However,
this method requires generally expensive operations in both communicating parties. As an
alternative, the server-based key agreement protocols are much more energy-saving than the
asymmetric approaches as they are based on the symmetric techniques. However, this solution
is vulnerable to the key escrow attacks in case the assisted server is compromised and discloses
the negotiated session keys. On the other hand, the key distribution methods refer to the public
key encryption mechanisms to encrypt the secret key, as the communicating parties do not share
any credentials a priori. However, most of the public key encryption algorithms require inten-
sive calculations (e.g. RSA) and a complicated identity management systems for the devices to
authenticate each other. As a result, there is a continuing need for authenticated lightweight key
establishment methods in IoT. The challenge is to limit not only the number of expensive oper-
ations (e.g. exponentiation) to be executed in both parties but also the communication overhead.

17

Second, there is a strong need for designing new lightweight encryption solutions adapted
to the IoT constrained environments. Traditional secure encryption methods (e.g. RSA [165])
are indeed usually calculation-intensive with large key sizes which undermine the computation
capacity of IoT devices. On the other hand, lightweight authenticated encryption mechanisms
that are able to provide secure and fast data transmissions, are very useful in heterogeneous
environments. There exist actually many public key cryptosystems in the literature [121]. The
difficult task is how to propose a more lightweight public key cryptosystem for IoT devices based
on existing techniques in an optimized manner.

Finally, in conventional security solutions, public key cryptosystems usually rely on a Public
Key Infrastructure (PKI) to provide identity management and authentication. In such a model,
each party is authenticated through X.509 certificates. However, the verification and manage-
ment of certificates require important computation operations and bandwidth for communicating
with remote entities and also sophisticated revocation mechanisms. The aforementioned require-
ments are not suitable for low-bandwidth and resource-constrained environments. The challenge
is to propose solutions that avoid the burden of PKI-based solutions while satisfying the security
requirements.

In order to cope with the aforementioned problems and challenges, we set the following
objectives:

• Objective A: propose a lightweight public key encryption mechanism without PKI de-
pendence and apply, if possible, the proposed solutions into a standard key management
protocol.

• Objective B: propose an efficient key agreement protocol that is suitable for highly
constrained devices.

• Objective C: provide a mathematical or formal security proof for the proposed schemes.

• Objective D: conduct an experimental performance assessment of the proposed solutions
in emulated or real sensor platforms.

1.3 Contributions

The contributions of this thesis are summarized in the following:

• Contribution 1 – A new lightweight and provably secure encryption scheme is proposed
in the context of IoT and then applied to the standard key distribution protocol MIKEY.
Our proposal provides a new lightweight key distribution method for MIKEY that can be
used in resource-constrained devices (Objective A, Objective C, Objective D).

• Contribution 2 – OEABE is an outsourcing mechanism for the Encryption of Ciphertext-
Policy Attribute-based Encryption (CP-ABE). In other words, OEABE is a delegation-
based variant of CP-ABE where even constrained IoT devices can generate a CP-ABE
ciphertext. IoT devices generate an extremely high volume of data which cannot be all
stored in user devices, but should be instead kept encrypted in powerful but not necessarily
trusted servers (e.g. public cloud services). CP-ABE is one mechanism of interest but it
requires significant computation costs which increase with the complexity of input access
policies. Our OEABE proposal enables resource-constrained devices to compute a CP-ABE
ciphertext with merely one exponentiation. This advantage can be extremely beneficial in
many scenarios, for example eHealth applications (Objective A, Objective D).

18

• Contribution 3 – AKAPR is a new lightweight key agreement protocol dedicated to
resource-limited devices. AKAPR is composed of only four message exchanges. Thanks
to the delegation-based approach, the constrained devices are free from any expensive
cryptographic operation (e.g. exponentiation or pairing). Moreover, in our proposal, the
assisted-server is unable to learn any agreed secret keys between the two communicating
parties, thus mitigating the key-escrow attacks (Objective B, Objective C).

1.4 Thesis Outline

The remainder of this dissertation is organized as follows.

Chapter 2 - Preliminaries and Scientific Background this chapter presents the ba-
sic background on several cryptographic primitives. We give fundamental notions on sym-
metric/asymmetric cryptography and three asymmetric encryption algorithms: signcryption,
attribute-based encryption and proxy re-encryption. Then, we introduce the Elliptic Curve
Cryptography (ECC) since its use has been recommended in embedded devices [134]. Several
cryptographic hard problems in the ECC setting are also presented as well. Finally, we survey
the use of implicit certificates in recent proposed solutions for IoT environments.

Chapter 3 - Lightweight Cryptographic Primitives and Secure Communication
Protocols for IoT In this chapter, we analyze existing lightweight cryptographic primitives
and secure communication protocols for the Internet of Things. We focus mainly on lightweight
cryptographic schemes and lightweight key establishment protocols and methods. Then, we
identify promising directions that can be used to propose lightweight secure communication
mechanisms for IoT.

Chapter 4 - ECKSS: Elliptic Curve Korean Signature-based Signcryption for
IoT this chapter describe our first contribution. We introduce a novel lightweight asymmetric
encryption scheme based on signcryption. Our scheme inherits the lightness of the signcryption.
It is also provably secure in the random oracle and certificate-free. Then, we apply the proposed
certificateless signcryption scheme to the standard key distribution MIKEY. We then asset the
suitability of the new proposed MIKEY mode in real sensor platform.

Chapter 5 - OEABE: Outsourcing the Encryption of Ciphertext-Policy Attribute-
Based Encryption this chapter describes our second contribution. In practice, an attribute-
based encryption mechanism still requires important computation overhead for resource-constrained
devices because of the exponentiation operations to be executed in the encryption and decryp-
tion phases. In this chapter, we present a novel mechanism for outsourcing the encryption
of Ciphertext-Policy Attribute-based Encryption (CP-ABE). The proposed solution accelerates
significantly the encryption phase of CP-ABE and hence suitable for constrained devices.

Chapter 6 - AKAPR: Authenticated Key Agreement Mediated by a Proxy Re-
Encryption for IoT in this chapter, we specify our third contribution. Our objective is to
facilitate the secure communication between any two entities in IoT environment, even if both
entities are highly resource-constrained and unknown to each other. That is, we first focus on
the idea behind the proxy re-encryption where there exists a proxy in the middle that can trans-
late a ciphertext dedicated for one party into a ciphertext dedicated for another party. Indeed,
we propose a lightweight proxy re-encryption mechanism that does not require any heavyweight
cryptographic operation, such as modular exponentiation. Then, we employ the proposed mech-

19

anism to build a key agreement protocol devoted for use in highly constrained environments,
such as IoT. The security of the proposal has been validated by the automatic cryptographic
verifier ProVerif.

Chapter 7 - Conclusion and Perspectives this chapter concludes the dissertation by
giving a synthesis of our contributions and several perspectives for future work.

20

Chapter 2

Preliminaries and Scientific
Background

In this dissertation, we give a specific state of the art for each contribution. Hence, this chapter
provides only scientific and technical backgrounds that are useful for the lecture of this docu-
ment. Concretely, we first present the background on different cryptographic primitives. We
concentrate mostly on the primitives that are related to our work. Then, we present the elliptic
curve cryptography, in which we provide basic notions of ECC operations and several problems
in ECC which are assumed to be computationally infeasible in cryptography. Finally, we discuss
the notions of implicit certificate which is a good alternative method to avoid the burden of
public key infrastructure (PKI) in the context of the Internet of Things.

2.1 Cryptographic Primitives

In this section, we present basic concepts and notions of different fundamental cryptographic
primitives.

2.1.1 Symmetric Key Cryptography

This subsection provides an introduction to symmetric key cryptography. The latter can be
mentioned as private key encryption. In fact, a secret key is used to protect the communication
between any two parties, say Alice and Bob. They employ this key in both the encryption
and the decryption processes. We define a symmetric key encryption scheme in the following
Definition 1.

Definition 1 (Symmetric key encryption scheme).
A symmetric key encryption scheme with the input security parameter k, is defined by a pair

of two deterministic algorithms (Enc,Dec) as follows:

• Enc(K,M) → C. This is the encryption algorithm that takes as input an element K of
the set of keys K, a message M from the set of plaintexts (or messages)M and outputs an
encrypted message C from the set of ciphertexts C. The set K is defined by the parameter
k, i.e. K = {0, 1}l, where l is a positive integer generated from k.

• Dec(K,C)→M . This is the decryption algorithm that takes as input the same secret key
K, the ciphertext C and outputs the message M .

It is required that the equation Dec(K,Enc(K,M)) = M holds for every K ∈ K and M ∈M.

21

M

Bob

M = DprivAlice(EpkAlice(M))

Alice

EpkAlice(M)

Figure 2.1: An example of public key encryption

In addition, we define the one-time indistinguishability (OT-IND) property of the symmetric
key encryption (SKE) in the following:

Definition 2 (OT-IND for symmetric encryption scheme). Let SKE = (Enc,Dec) be a
bijective one-time symmetric encryption scheme with security parameter k, A be a probabilistic
polynomial time (PPT) adversary against the security of SKE in the sense of OT-IND. The
advantage of A to win the following game must be negligible:

• The challenger uniformly chooses at random a secret K ∈ {0, 1}l, where l is an integer
calculated from k.

• A is given the security parameter k. It then outputs a pair of messages (m0,m1) of equal
length and passes them to the challenger.

• On receiving this pair, the challenger selects a bit b
$←− {0, 1} and outputs the ciphertext

CT = Enc(K,mb) or ⊥ if the messages do not have equal length.

• A receives the ciphertext CT and outputs b′. A wins the game if b′ = b.

A’s advantage is defined to be AdvOT−INDA (k) = 2Pr[b′ = b]− 1.

This property will be used in the formal security proof provided in Section 4.2.4.

2.1.2 Public Key Cryptography

Although the symmetric key cryptography outperforms in terms of efficiency, it has one major
inconvenient, which is the need for secure key distribution channel. Indeed, when using a
symmetric key encryption scheme, different entities are able to securely communicate together
if and only if they have done the preparation of cryptographic keys. Such feature presents an
important limitation when the number of communicating parties become large and when several
parties wish to communicate privately from all the others. W. Diffie and M. E. Hellman [61] are
the first to propose the theory of public key cryptography (PKC). In a PKC cryptosystem, each
entity has a pair of keys: a public key and a private key. The two keys are usually mathematically
associated. An attacker can find the private key from a public key if and only if he can resolve a
hard mathematical problem. In the following, we give more details on the two variants of PKC:
public key encryption and digital signature.

2.1.2.1 Public Key Encryption

Public key encryption allows secure transmission of a secret message. As an example, Figure
2.1 describes the procedure where Bob encrypts the message M under Alice’s public key pkAlice.

22

M
Hash

function
Message Digest

Signature
Generation

Signature
Verification

Signature

Private Key

Public Key

Valid or Invalid

Figure 2.2: Digital signature processes [118]

The encrypted message is then sent to Alice. Only Alice can decrypt the ciphertext because she
possesses the right private key privAlice.

As mentioned above, public key encryption schemes are usually based on a hard mathematical
problem. For example, RSA [165] and Rabin [159] are built upon the Integer Factorization
Problem, while ECC [100] is based on the Elliptic Curve Discrete Logarithm Problem. RSA
[165] is the most popular algorithm for asymmetric cryptography. However, the algorithm is
relatively slow, resource-demanding and hence incompatible with the constrained devices. On
the other hand, ECC is very attractive for embedded systems as it is well-known to offer shorter
keys, which leads to smaller computational requirements. More details on ECC are provided in
Section 2.2.

2.1.2.2 Digital signature scheme

Digital signature is one of the most important public key primitives which is able to provide
authentication, authorization and non-repudiation properties. It is an analog of written signature
in the sense that the signer can claim the ownership of a document thanks to his signature. In the
digital world, the signed documents are usually in the form of binary files or text messages. In
order to generate a signature, the signer has to possess a key pair: a public key and a private key.
A signature scheme consists of two algorithms: signature generation and signature verification.
Figure 2.2 provides a brief description of the mentioned processes. As we shall see, the private
key is employed in the signature generation process. This key must be kept secret, otherwise
any body with the possession of such key can generate a valid signature. A digital signature
scheme must satisfy the three following properties:

• Unforgeability : A digital signature is designed in a way that an adversary, who does not
know the private key, cannot generate himself a valid signature on a different message. In
other words, the signature generated by a signer can not be forged.

• Verifiability : A digital signature scheme must be verifiable. As such, the verifier must be
able to mathematically validate a signature using the sender’s public key. By doing so, he
can be sure that the source message has not been modified. This procedure ensures the
integrity of the transferred message.

• Non-repudiation: the verifier must be sure that the key pair owner actually generates the

23

signature. This property means that by proving the obtained signature and the signatory’s
public key, the verifier can prove to a ”judge” that the signatory sent the message. A
binding of a signer’s identity and the signer’s public key (e.g. given by the public key
infrastructure [11]) shall be performed to provide such assurance.

2.1.3 Signcryption schemes

Suppose that Alice desires to send a message to Bob in a secure manner. Here, the latter means
an authenticated communication. Their communication must be not only confidential, but also
integrity protected. In case that they do not share any credentials a priori, a common approach
is to use a combination of public key encryption and digital signature. Hence, one can sign-
then-encrypt or encrypt-then-sign the data. Both mentioned methods require the addition of
workloads of a public key encryption scheme and a digital signature scheme. These approaches
are proved to be much more costly in terms of computation and communication complexity
than the signcryption approach. This latter, initially proposed in [201], combines simultane-
ously signature and encryption in an optimized manner. As such, instead of using a public key
encryption scheme to encrypt the data, a signcryption scheme uses actually a symmetric algo-
rithm to encrypt/decrypt the secret data. Then, the unforgeability of the message is guaranteed
by a digital signature. Formal definition of a signcryption scheme is given below.

2.1.3.1 Formal definition of a signcryption scheme

Definition 3 (A signcryption scheme). We define a signcryption scheme as a tuple of four
probabilistic polynomial time (PPT) algorithms (Setup, KeyGen, Signcrypt, Unsigncrypt) with
the following functionalities:
– Setup(k) → cp. Given a security level parameter k, output the public parameters cp. The
other functions takes cp as an implicit input.
– KeyGen(cp) → (privI , pkI), (privR, pkR). Generate public/private pair of keys for two parties
(Initiator and Responder).
– Signcrypt(privI , pkI , pkR,M) → C or ⊥ (the error symbol). Given the public/secret keys of
the Initiator, the public key of the Responder and a message M , return either a signcryptext C
or ⊥.
– Unsigncrypt(pkI , privR, pkR, C)→M . Given the signcryptext C, the public/secret keys of the
Responder, the public key of the Initiator, return either a message M or ⊥.

2.1.3.2 Example of Zheng’s signcryption scheme

In this section, we describe the Zheng’s original signcryption scheme (ZSCR) as mentioned in
[201]. The algorithms in Definition 3 are briefly specified in the following:

• Setup(k) → cp = (q, p, g,G,H), where q is the finite field size, p is a large prime number
such that p|(q− 1), g is chosen on Zq such that p is its prime order, l is a positive number

generated from the input security level k and G : {0, 1}∗ → {0, 1}l,H : {0, 1}∗ → Zp are
two hash functions.

• KeyGen(cp) → (privI , pkI), (privR, pkR), where privI and privR are randomly generated
from Zp. Additionally, pkI = gprivI and pkR = gprivR .

• Signcrypt(privI , pkI , pkR,M) → C: To signcrypt a message M intended to R, I runs the
following steps:

1. Choose randomly x from Zp

24

2. Compute K = pkxR

3. Generate the ephemeral symmetric key: τ = G(K)

4. Compute c = Encτ (M)

5. Compute r = H(M,pkI , pkR,K)

6. Compute s = x/(r + privI)

7. Obtain the ciphertext C = (c, r, s)

• Unsigncrypt(pkI , privR, pkR, C) → M : Upon receiving the ciphertext C = (c, r, s) from I,
R obtains the encrypted message by following the procedure below:

1. Compute w = (pkIg
r)s

2. Compute K = wprivR

3. Compute τ = G(K)

4. Compute M = Decτ (c)

5. Verify if H(M,pkI , pkR,K) = r

We can observe that ZSCR combines the symmetric encryption and a shortened ElGamal
signature [71] in order to generate the ciphertext. The scheme has been formally proved to be
confidentially and unforgeably secure in the random oracle [201]. In addition, ZSCR offers good
computation performance since it requires only 4 exponentiations to complete a secure message
transfer.

2.1.4 Attribute-Based Encryption

Attribute-Based Encryption (ABE) is a public key primitive where both encryption and decryp-
tion are based on attributes (e.g. job position, gender...). In addition, a user can restrict access
to its data by defining an access policy. Sahai et al. [168] are the first to propose the notion of
ABE. Their encryption scheme is initially applied for Identity-based encryption (IBE), where
the entity identifier is considered as a combination of attributes. Subsequently, many related
encryption schemes based on the ABE paradigm have been introduced. There exist two forms of
ABE: Key-Policy Attribute-Based Encryption (KP-ABE) [91] or Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [28, 127, 195]. In a KP-ABE system, the user’s private key is
associated with access policies, while a set of attributes is embedded in the ciphertext. On the
other hand, CP-ABE embeds the access policy in the ciphertext, while user keys are associated
with attributes. Such property gives users the flexibility to determine who can decrypt data
at runtime. In chapter 6, we propose a solution that makes changes to the original CP-ABE
scheme proposed by Bethencourt et al. [28]. Similar applications of our proposal also work for
the schemes proposed in [127, 195] but it is out of scope of this dissertation.

In this section, we first provide general definitions of an access structure and bilinear map.
Then, we present a brief formal description of CP-ABE. Finally, we present some desirable
properties of an ABE scheme.

2.1.4.1 Access structure

We define an access structure in the following:

Definition 4 (Access structure [25]). Let {P1, P2, ...Pn} be a set of parties. A collection
A ⊆ 2{P1,P2,...Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C then C ∈ A. An access structure
(respectively, monotonic access structure) is a collection (respectively, monotone collection) A

25

AND

home OR

family friend

adult

Figure 2.3: Example of an access policy

of non-empty subsets of {P1, P2, ...Pn}, i.e. A ⊆ 2{P1,P2,...Pn} {∅}. The sets in A are called the
authorized sets , and the sets not in A are called the unauthorized sets.

An access structure A is often used in a secret sharing scheme [25] to define the sets of parties
that can reconstruct the master secret key using their shared part of the master secret key. In
the context of ABE scheme, the role of the parties is taken by the attributes [92]. Thus, A
will contain the authorized sets of attributes. An access structure A is called monotone access
structure if it does not contain the negation value of attributes. On the contrary, if A contains
the ”not” of each attribute, it is mentioned as a non-monotone access structure.

In an ABE scheme, an access structure is generally represented by an access tree. Each
non-leaf node of an access tree represents a threshold-gate, such as AND and OR, and the
leaves are associated with attributes. In general, we can define an access tree from a provided
access policy. Figure 2.3 gives an example of an access policy. In a CP-ABE scheme, a user
can decrypt an ABE ciphertext if and only if the attributes embedded in the user’s private key
satisfy the access tree. Please refer to [28] for more details on the construction of an access tree.

For illustration, we give a concrete example of an ABE application using the access policy
defined in Figure 2.3. Bob desires to authorize the permission of driving his car to a specific
person. A user can drive his car by having the key or presenting a token using his smartphone.
Bob encrypts the token using an ABE mechanism. The user has to decrypt the ciphertext sent
by Bob to get the token. In Bob’s access policy, the user cannot start the car if the location is
not at home. He must also be a family member or a close friend to Bob. In addition, if he is not
an adult, he cannot start the car. Such condition prevents his child at home from driving the
car. By using the access policy defined in Figure 2.3, Bob can easily express his requirement.

2.1.4.2 Bilinear Map

In an ABE mechanism, some facts about groups with efficiently computable bilinear maps will
be used.

Let G0 and G1 be two cyclic elliptic curve groups of prime order p over finite field Fp. Let
P be a generator of G0 and e be a bilinear map, such that e : G0 × G0 → G1. e has the two
following properties:

• Bilinearity: for all R,S ∈ G2
0 and a, b ∈ Z2

p, we have e(aR, bS) = e(R,S)ab.

• Non-degeneracy: e(P, P) 6= 1.

Both operations on G0 and the bilinear map e must be efficiently computable.

26

2.1.4.3 Formal definition of Ciphertext-Policy Attribute-based Encryption

A CP-ABE scheme consists of four fundamental algorithms Setup, KeyGen, Encrypt and Decrypt
with the following functions:

• Setup(sp) → (PK,MK). This algorithm takes as input the security parameter sp and
returns the system public key PK as well as the system master key MK. PK is used for
message encryption, while MK is used to generate user private keys and is known only to
the authority.

• KeyGen(MK,S) → SK. This algorithm takes as input the system master key MK, the
set of attributes S and returns the user secret key SK.

• Encrypt(PK,M, T)→ CT . This algorithm takes as input the public key PK, the message
M and the access structure T . It then outputs the ciphertext CT .

• Decrypt(CT,SK) → M . This algorithm takes as input the ciphertext CT , the user secret
key SK and returns the message M .

In ABE, including KP-ABE and CP-ABE, the algorithms Setup and KeyGen are run by a
trusted authority in order to generate the system keys PK, MK and user private keys. Any user
who has the public key PK can generate a ciphertext by using the algorithm Encrypt. However,
only authorized users (i.e. users possessing a private key that satisfies the access structure
embedded in the ciphertext) can decrypt the ciphertext by calling the algorithm Decrypt.

2.1.4.4 Properties of Attribute-based Encryption Schemes

As also mentioned in [126, 156], an ABE scheme is expected to provide the following features:

• Data confidentiality : The data to be sent using an ABE scheme is encrypted before any
transmission. Unauthorized parties cannot learn any information from the encrypted data.

• Fine-grained access control : By providing different private keys for users, the system
authority is able to restrict user access rights to specific resources.

• Scalability : Even if the number of authorized users increases, the system can work effi-
ciently.

• User revocation: The system can revoke the access rights of a user at any moment. The
revoked user can not access encrypted data anymore.

• Collusion resistance: If multiple users collude, they are only able to decrypt an ABE
ciphertext if at least one of the colluded users can decrypt it. In other words, the colluded
users can not combine their secret keys to generate new secret keys with superior access
rights.

Some related work [101, 129] mentioned also another feature for an ABE scheme, named user
accountability. This property ensures that legal user private keys can not be shared between
unauthorized users. For example, the authors in [101] propose to bind user personal information
to the decryption policy. As such, a token server is introduced to take part in every decryption
process. Before any decryption operation, users have to get a token T from the token server in
order to successfully decrypt the ciphertext. This interaction removes the key misuse problem
and presents a simple way to revoke users.

27

Figure 2.4: General architecture of a proxy re-encryption scheme

2.1.5 Proxy re-encryption schemes

In this section, we specify the most useful properties of a Proxy Re-encryption (PRE) scheme
and general definition of a symmetric cipher proxy re-encryption scheme.

2.1.5.1 Properties of a proxy re-encryption scheme

In a proxy re-encryption scheme, as described in Figure 2.4, Bob can delegate the decryption
right on an encryption to Alice with the help of a semi-trusted proxy (i.e. An entity that acts
and returns correct results according to demanded tasks but can be untrusted when processing
sensitive data). In general, the proxy uses a prior provided secret, namely, proxy key or re-
encryption key, to translate a ciphertext dedicated to Bob to another ciphertext dedicated to
Alice. However, it cannot gain any information on the secret keys of Bob or Alice and is unable
to read the content of the encrypted messages.

Proxy re-encryption schemes are characterized according to different criteria. The works
in [94] and [31] provide several properties by which to compare different proxy re-encryption
schemes. We briefly redefine these desirable properties as follows.

• Uni-directionality: The proxy re-encryption scheme is said to be unidirectional if the re-
encryption key of the proxy can be used in only one direction. In contrast, a bidirectional
proxy re-encryption scheme permits the re-encryption key to be used to translate encrypted
messages from Alice to Bob and vice versa.

• Non-Interactivity: In a non-interactive scheme, Alice can generate a re-encryption key,
while offline, from its secret key and Bob’s public values without the participation of
the Key Distribution Center (KDC), the proxy, or Bob. On the other hand, interactive
schemes require the participation of parties (including KDC) to generate the re-encryption
keys.

• Multiple-use: Some proxy re-encryption schemes can re-encrypt a ciphertext multiple
times. For example, Bob can demand a re-encryption of a ciphertext re-encrypted for
him which is previously intended to Alice to obtain a ciphertext dedicated to Charlie
without actually decrypting the message. Such scheme is called mutiple-use. In oppo-
sition, a single-use proxy re-encryption scheme permits the proxy to perform only one
re-encryption on a ciphertext.

• Non-transitivity: In a non-transitive scheme, the proxy cannot combine provided re-
encryption keys to re-delegate decryption rights. For example, given three entities A,

28

B and C, the proxy is unable to construct the re-encryption key rkA→C from A to C from
the two supplied re-encryption keys rkA→B and rkB→C .

• Collusion resistance: In a proxy re-encryption scheme, it is desirable that Bob even col-
luding with the proxy, can not guess the secret key of Alice.

2.1.5.2 Symmetric cipher proxy re-encryption

We define below the main algorithms of a proxy re-encryption scheme that employs symmetric
ciphers which is more adapted to be used in constrained sensor devices.

Definition 5 (Symmetric cipher proxy re-encryption). A symmetric cipher proxy re-encryption
consists of five algorithms (KeyGen,ReKeyGen,Encrypt, Decrypt,Reencrypt) with the following
functions:

• KeyGen(k) → (idA, idB, skA, skB). Given a security level parameter k, output the iden-
tifiers and the secret keys for two entities A and B. These keys are to be used in the
encryption and decryption processes.

• ReKeyGen(idA, idB, skA, skB)→ rkA→B. Given the identifiers and secret keys of A and B,
output the re-encryption key rkA→B.

• Encrypt(idA, skA,M, idB) → CA. Given the identifiers (idA, idB), the secret key skA and
a message M , return the ciphertext CA.

• Reencrypt(rkA→B, CA) → CB. Given a ciphertext CA encrypted by the entity A and the
re-encryption key rkA→B, return a ciphertext CB to be decrypted by B.

• Decrypt(idB, skB, CB, idA)→M . Given a secret skB and a ciphertext CB and the identi-
fiers (idA, idB), return the plaintext M .

2.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is a public key cryptosystem. It was independently dis-
covered by Victor Miller [144] and Neil Koblitz [120] in 1985 as an alternative mechanism for
implementing public key cryptography. Unlike RSA, ECC-based protocols are based on the prob-
lem of finding the discrete logarithm of random elliptic curve element (also known as ECDLP),
which is much more difficult to resolve at equivalent key lengths [100].

In this section, we first describe the basic elliptic curve operations. Then, we define some
problems which are assumed computationally unbreakable in ECC.

2.2.1 Basic ECC operations

To be used in cryptography, ECC operations consider finite field (Galois Field) algebra with
focus on prime field (e.g. Ft) and extended binary field (e.g. F2m), since the latter provide fast
and precise arithmetic. In this section, we introduce some details on the elliptic curve operations
on the prime finite field.

The elliptic curve E(Ft) on the prime finite field Ft is actually defined by the following
equation:

y2 = x3 + ax+ bmod p, where a, b ∈ Ft and 4a3 + 27b2 6= 0 (2.1)

Each point on the elliptic curve can be represented as a vector in affine coordinates such
as P = (px, py), where px and py must satisfy the equation 2.1. The only difference is that all

29

coordinates must be integers in modular p. A special point O is defined in the elliptic curve as
point at infinity. In order to do any meaningful cryptographic operation, one has to understand
the calculation of points on the elliptic curve. Three point operations are considered in ECC,
as described in the following:

• Point addition: Considering the two points P = (px, py) and Q = (qx, qy), there exists
a point R = (rx, ry) such that R = P + Q where P is distinct from Q and is also not
−Q = (qx,−qy). We can calculate each coordinate of R using the following formulas:

s =
py − qy
px − qx

rx = s2 − px − qx
ry = s(px − rx)− py

For each point P on the elliptic curve, we also have P + (−P) = O and P +O = P .

• Point doubling: This returns to the case where we find the point R such that R = 2P . We
can obtain the coordinates of R by employing the following formulas:

s =
3p2
x + a

2py

rx = s2 − 2px

ry = s(px − rx)− py

• Point multiplication: By using only the point addition, we can achieve the result of the
multiplication between one point and a natural number k. As such, we can find the point
R such that R = kP by applying k point additions. Such multiplication can also be done
using the simple double and add algorithm [100], which requires only O(log k) steps. The
inverse of that point multiplication, i.e. find the value of k from R and P , is known as
discrete logarithm. This problem is considered computationally infeasible and is recognized
as the foundation of ECC cryptosystems. More detailed examples on ECC operations can
be found in [100, 45].

In order to use ECC, all parties must agree on a list of parameters that define an elliptic
curve. This list is termed as domain parameters. For example, the elliptic curve E(Fq) domain
parameters over prime field Fq can be defined by the sextuple (q, a, b,G, p, h), where t is the field
size, two elements a, b specify the elliptic curve E(Fq), G is the base point, p is the prime order
of G and h = #E(Fq)/p, is the cofactor. Further guidance on the selection of recommended
domain parameters for elliptic curve cryptography can be found in [9].

2.2.2 Computational Hardness Assumptions for ECC

Let G be a cyclic group of prime order p. For our purposes, G is a subgroup of points of a
suitable elliptic curve E(Fp) over finite field. P is a generator of G. We define the following
security assumptions:

Definition 6 (Decisional Diffie-Hellman (DDH) Problem). Given the ”Diffie-Hellman
tuples” < P, [a]P, [b]P, [c]P >, decide whether ab ≡ c (mod p) or not.

Definition 7 (Computational Diffie-Hellman (CDH) Problem). Given < P, [a]P, [b]P >,
for unknown a, b ∈ Zp, compute [ab]P .

30

Definition 8 (Gap Diffie-Hellman (GDH) Problem). Given that the DDH problem is easy
in G, solve an instance of the CDH problem < P, [a]P, [b]P >.

Definition 9 (Discrete Logarithm Problem (DLP)). Given the two points P and Q on the
elliptic curve over finite field Fp, find d ∈ Zp so that [d]P = Q.

Definition 10 (Gap Discrete Log (GDL) Problem). Given that the DDH problem is easy
in G, solve an instance of the DLP problem < P,Q >.

More details on the assumptions can be found in [100, 151].

2.3 Implicit Certificate

In a public key infrastructure, the existence of a Certificate Authority (CA) is essential. As
such, users of a public key need to be sure that the associated private key is possessed by the
correct entity (person or system). This assurance can be provided by having a trusted CA that
binds the public key of an entity and its identity in the form of a public key certificate. In
fact, the latter contains a CA’s signature on public information of a subject. If this signature
is valid then one will have confidence that the data embedded in the certificate is correct. In
other words, the user named in the certificate has the right private key associated to the public
key included in the certificate.

The main problem of PKIs is that the size of each certificate is approximately 1 KB [104].
This requirement is sometimes impossible for certain range of resource-constrained devices (e.g.
class 0 and class 1 devices [37]) or environments with limited bandwidth capacity. Consequently,
one alternative for the PKI infrastructure in the resource-constrained environments is the im-
plicit certificate. Implicit certificates are first introduced in the work of [89, 98]. As mentioned
in [141], the implicit certificate public key schemes can be classified into two categories: (i)
self-certified implicit certificate schemes and (ii) identity-based implicit certificate schemes. The
two approaches keep the principal idea of using the CA’s public key, user’s identity and some
reconstruction public data to regenerate the user’s public key. This technique permits to embed
directly a certificate to the public key instead of requiring a separate value. In the first category,
the user computes himself his private key and the associated public key. In the second category,
the CA is responsible for generating the user’s private key. This approach is more lightweight
than the first one as CA computes the private key for users. However, it has one major incon-
venient which is the key-escrow attack that can be performed by the CA, where the CA is able
to masquerade as the user.

Employing implicit certificates is a suitable approach for use in the constrained environments.
Indeed, several works [174, 155] propose to use implicit certificates in key agreement protocols in
the context of IoT. In chapter 4, we propose a key distribution mechanism that relies on identity-
based implicit certificate public key approach. Even if our proposition requires a trusted key
distribution center, it is very much lightweight and hence is suitable to the resource-constrained
feature of WSNs and IoT.

2.4 Summary

In this chapter, we present a general introduction on cryptographic primitives and several related
notions which are useful for further reading of this dissertation. Beside basic notations of
symmetric/asymmetric cryptography, we introduce more details on signcryption, attribute-based
encryption and proxy re-encryption. They are three asymmetric primitives that relate to our
three proposals in chapters 4, 5 and 6, respectively. Then, we provide general information on the

31

elliptic curve cryptography (ECC). The reason is that all of our proposals are constructed based
on ECC. In fact, ECC is a promising approach since it reduces significantly the key sizes and
hence more relevant in the context of IoT than other asymmetric primitives such as RSA. We
describe also several mathematically hard problems in the ECC setting. These assumptions are
to be used throughout this thesis, especially in the security proof provided in chapter 4. Finally,
we take a look at several related works on implicit certificate. The latter is a basic method to
remove the burden of PKI in the context of constrained environments such as IoT.

32

Chapter 3

Lightweight Cryptographic
Primitives and Secure
Communication Protocols for IoT

All secure communication protocols and mechanisms must consider the resource-constrained
nature of IoT devices. Recent researches [135, 53] survey multiple solutions to be used in
constrained environments, such as IoT. As a secure communication protocol relies also on the
used cryptographic algorithm, we classify these solutions into two main approaches: i) lightweight
cryptographic primitives and ii) lightweight cryptographic protocols and methods. In the first
approach, the main objective is to design and employ ultra-lightweight cryptographic algorithms
that can be applied in IoT environments while proving desired security levels. On the other hand,
the second approach concentrates on using relevant cryptographic primitives and techniques in
order to build security protocols and methods for secure communications.

In this chapter, we survey several existing lightweight cryptographic primitives and secure
communication solutions according to the two approaches mentioned above. Section 3.1 presents
some related work on lightweight cryptographic primitives to be used in resource-constrained
environments. Then, Section 3.2 classifies some lightweight security mechanisms and protocols
with respect to their provided security services and performances. Finally, Section 3.3 presents
some promising trends and ideas towards lightweight security solutions suitable for use in the
IoT.

3.1 Lightweight cryptographic primitives for IoT

The rapid deployment of the Internet of Things implies an extensive coverage of billions of smart
objects to the conventional Internet. The IoT devices are usually featured with constrained re-
sources, such as low computation capability, low memory and limited battery. These constraints
must be taken into account when it comes to selecting the appropriate security protocol to be
used. As a result, many lightweight cryptographic primitives are proposed in the context of IoT
while considering the trade-off between security guarantee and good performance.

Lightweight cryptographic primitives consist of cryptographic algorithms that meet the re-
quirement of constrained environments. However, this does not mean they are less secure ciphers.
In fact, these primitives should be referred to small footprint, low power computation and low
energy consumption ciphers. In addition, they are supposed to support a sufficient security level
even if adapted to resource-limited devices.

In this section, we provide an overview of lightweight cryptographic primitives in the lit-

33

Name data size (e.g., RAM) code size (e.g., Flash)
Class 0 << 10 KB << 100 KB
Class 1 10 KB 100 KB
Class 2 50 KB 250 KB

Table 3.1: Classes of Constrained Devices (KB = 1024 bytes) [37]

erature. Lightweight symmetric ciphers are presented first. Then, several asymmetric ciphers,
which can be suitable for resource-constrained devices, are introduced as well. Both approaches
are actively studied by ongoing researches in order to provide suitable cryptosystems for IoT
applications.

3.1.1 Symmetric Key Ciphers

For certain groups of ultra-constrained devices (e.g. class 0 and class 1 devices as depicted in
Table 3.1), it is mostly impossible to communicate with other Internet nodes using a full Internet
protocol stack, such as HTTP and Transport Layer Security (TLS). In addition, symmetric
cryptography is widely believed to be suitable for resource-constrained devices. As a result,
many recent researches try to optimize and design new symmetric algorithms for use in the
Internet of Things.

The symmetric algorithms are designed to work in both software and hardware implementa-
tions. The software-based approach requires in general a microprocessor on embedded devices
to operate, which makes it more portable than the hardware-based one. Indeed, hardware-
based ciphers are designed to reduce the logic gates to be used to materialize the cipher [135].
Such optimization limits the deployment of these ciphers on specific platforms. However, these
hardware-oriented algorithms can find their place in ultra-constrained devices, such as RFID
tags. As such, the authors in [53] compare some lightweight symmetric ciphers in terms of
key size, block size, consumed resources measured in gate equivalents (GE) and code size (in
bytes) in both software and hardware implementations. The results show that the hardware-
oriented ciphers, such as, PRESENT [34] and HIGHT [103] perform well when compared to
software-based ciphers.

Among the proposed algorithms, the standardized cipher AES [55] is one of the most well-
known and fastest symmetric algorithm. Even being really fast, AES requires significantly
larger code size than several recently proposed symmetric algorithms, such as: Speck, Simon
[24], PRESENT [34], HIGHT [103] and Piccolo [178]. In [62], the authors confirm this fact by
evaluating 13 lightweight symmetric ciphers in terms of execution time, RAM footprint and code
size. In particular, they conclude that Simon and Speck [24] are the smallest and fastest ciphers
on the evaluated platforms.

Although the performance of symmetric key encryption algorithms are much more efficient
than the asymmetric ones, the rapid deployment of smart devices requires through unpracti-
cal key provisioning and management. As such, the main difference between symmetric and
asymmetric cryptosystems is the way the secret keys are employed. Symmetric cryptography
uses a unique key for both encryption and decryption processes. As a result, the pair-wise se-
cret key between any two entities must be agreed prior to communication. However, such key
pre-distribution mechanism does not scale well in a large IoT networks.

34

3.1.2 Public Key Ciphers

Unlike symmetric cryptography, public key algorithms use a pair of public/private keys. Any
one can encrypt a message under the public key of another party. However, only this latter
can decrypt the encrypted data. The major advantage of using public key cryptography is
that it facilitates the establishment of secure communications between any two parties previ-
ously unknown to each other. Public key algorithms are more scalable than their symmetric
counterparts, but they are usually more complex in terms of computation.

We can mention some traditional asymmetric primitives such as ECC [144], RSA [165],
Rabin [159] or ElGamal [159]. Among them, ECC [144] is usually mentioned as a suitable and
attractive cryptosystem for embedded systems. Its main advantage is its key length which is
smaller than RSA at the same security level.

Recent researches are also interested in the application of hyperelliptic curve cryptography
(HECC) [140] in resource constrained environments. A hyperelliptic curve is a generalization of
an elliptic curve. As such, a hyperelliptic curve of genus 1 is an elliptic curve. HECC is believed
to provide better performance than ECC in terms of memory space and computational overhead.
The authors in [193, 115, 78] proved the performance of HECC by presenting its applications in
the Wireless Sensor Networks and several RFID tags.

As another lightweight cipher, NTRU [102] is one of the most promising cryptosystem for
resource-constrained devices. It is a quantum-resistant cryptosystem which is known to be
a lattice-based alternative to RSA and ECC. Indeed, its cryptographic elementary operations
require only polynomial multiplications, which are highly efficient and suitable for resource-
limited devices. Some other cryptosystems, such as the Code-based Cryptography McEliece
[138] or the Multivariate-Quadratic [153], are efficient in the encryption and decryption processes
and are good candidates for post-quantum cryptography. However, these cryptosystems require
large key sizes, even when compared with RSA.

3.2 Lightweight protocols and methods for establishing secure
communications in IoT

In this section, we describe different approaches that have been employed to propose lightweight
security mechanisms in the context of IoT. We focus mainly on the key establishment protocols.
Section 3.2.1 discusses some required security properties for the IoT. Section 3.2.2 gives a clas-
sification of recently proposed security protocols for IoT. In sections 3.2.3 and 3.2.4, we provide
in-depth description of the protocols based on asymmetric key schemes and the protocols based
on symmetric key pre-distribution schemes. Section 3.2.5 evaluates the solutions according to
the different security criteria.

3.2.1 Security properties

Several security properties may need to be satisfied in order to secure the IoT. These general
security properties have been also identified in [85], [173]. Generally, the security services that
should be provided include confidentiality, integrity, authentication, authorization, and fresh-
ness. The security requirements are centered on data if sensitive data measured or shared by
IoT devices may need to be protected. Security requirements may also involve controlled access
to other resources, for instance the IoT network layer. The following security properties will be
discussed in this section in relation with the security protocols and solutions proposed for the
IoT:

35

• Confidentiality: Exchanged messages in the IoT may need to be protected. An attacker
should not gain knowledge about the messages exchanged between a sensor node and any
other Internet entity.

• Integrity: The alteration of messages should be detected by the receiver.

• Authentication: The receiver should be able also to verify the origin of the exchanged
messages.

• Authorization: IoT devices should be able to verify whether certain entities are authorized
to access their measured data. At the network layer, only authorized devices should be
able to access the IoT network. Unauthorized devices should not be able to route their
messages over the IoT devices, because it may deplete their energy.

• Freshness: This property ensures that no older messages are replayed. This is important
to secure the communication channel against replay attacks.

3.2.2 Taxonomy of key establishment protocols for the IoT

The life cycle of a “thing” is composed of three phases (as denoted in [85]): bootstrapping,
operational and maintenance phases. The bootstrapping phase refers to any processing tasks
required before the network can operate. Sarikaya et al. [173] also define that this process
involves a number of settings to be transferred between nodes that shared no prior knowledge
of each other. The bootstrapping step of a device is complete when all security parameters
(e.g., secret keys) are securely transferred to the device. This study focuses on recent security
solutions proposed for a secure bootstrapping process.

In this section, we first describe the reference model in section 3.2.2.1 that illustrates the
scenario in which the considered security protocols can be deployed. We then present, in section
3.2.2.2, our classification of the security protocols based on the key bootstrapping mechanism,
and compare, in section 3.2.2.3, our classification with related work.

3.2.2.1 Scenario under consideration

The security protocols analyzed in this chapter, as illustrated in Figure 3.1, involve two entities.
At least one of them is a device with resource constraints, whereas the second entity can be
seen as another constrained device or an external Internet server (i.e., with rich resources).
The considered network of “things” consists of a number of tiny nodes communicating with
each other and with an unconstrained resource border router (6LBR). The 6LBR is the bridge
between the sensor node and the outside world. The 6LBR may take part in the communication
between two entities in a passive (transparent to the communicating parties) or active (as a
mediator in the communication process) manners. Our study concentrates mainly on securing
unicast communications between two entities. Note that group communications are out of scope
of this chapter.

3.2.2.2 Classification

In this chapter, existing security solutions for IoT is categorized into two main types: solu-
tions that rely on asymmetric key schemes and solutions that pre-distribute symmetric keys to
bootstrap a secure communication. This section describes the two first levels of the proposed
taxonomy.
– Asymmetric key schemes (AKSs): The key schemes based on asymmetric cryptography,
also known as Public-key cryptography (PKC) are considered as a very common approach to

36

Figure 3.1: Network architecture of our scenario

establish a secure communication between two (or more) parties. They employ asymmetric al-
gorithms and are widely deployed in the conventional Internet. The applicability of AKSs in
the IoT has one major inconvenience, which is the computation cost and energy consumption.
Despite of expensive operations, a lot of researches still seek to apply AKSs in the context of
IoT. The proposed approaches can be classified into two categories: key transport based on
public key encryption and key agreement based on asymmetric techniques.

• Key transport based on public key encryption: Similarly to the traditional key transport
mechanism, the first category requires from the public key to securely transport informa-
tion. Various key establishment techniques have been proposed for IoT, ranging from raw
public key usage to complex implementations in X.509 standard.

• Key agreement based on asymmetric techniques: The second category is based on asym-
metric primitives in which a shared secret is derived among two or more parties. In this
category, we notice obviously the DH protocol [11] and its variants as we will mention
later.

– Symmetric key pre-distribution schemes: In addition to asymmetric approaches,
researchers propose also multiple techniques using symmetric key establishment mechanisms to
bootstrap secure communication in the IoT. Symmetric approaches often assume that nodes
involved in the key establishment share common credentials. The pre-shared credentials might
be a symmetric key or some random bytes flashed into the sensor before its deployment. This
category can be divided into two main sub-categories:

• Probabilistic key distribution: This sub-category concerns the mechanisms that distribute
security credentials (keys, random bytes) chosen randomly from a key pool to constrained
nodes. During their initial communication, each two nodes may discover a common key,
with certain probability, to establish a secure communication.

• Deterministic key distribution: In this sub-category, a deterministic design is applied to
create the key pool and to distribute uniformly the keys such that each two nodes share a
common key.

Figure 3.2 summarizes our taxonomy. Each class of the security solutions provides its own
advantages and disadvantages, as it will be discussed in Sections 3.2.3 and 3.2.4.

37

Key bootstrap-
ping in IoT

Asymmetric key
schemes

Key transport
based on public
key encryption

Raw public key
encryption

Certificate-based
encryption

Identity-based
encryption

Key agreement
based on symmet-
ric techniques

Symmetric key
pre-distribution
schemes

Probabilistic key
distribution

Deterministic key
distribution

Offline key distri-
bution

Server-assisted
key distribution

External assisted
server

Proxy-based as-
sisted server

Figure 3.2: Classification of key bootstrapping mechanisms in IoT

3.2.2.3 Related work in IoT security protocol classification

Classification approaches have been proposed in several works [169, 43, 166, 194]. In [169], the
authors propose several ways to classify key establishment approaches, for instance based on
the employed authentication method or the underlying cryptographic primitive. Camtepe et
al. [43] give a detailed classification of symmetric key distribution protocols for two different
scenarios: distributed and hierarchical WSNs. In each scenario, the authors analyze diverse
mechanisms to establish pair-wise and group-wise keys between sensor nodes. Similarly, Wang
et al. [64] propose a classification of symmetric key management protocols in WSN, but based
on the network structure and the probability of key sharing between a pair of sensor nodes.
Their works at a very first level differentiate centralized and distributed key schemes. At a
second level, they provide other differentiation based on the probabilistic and deterministic key
establishment mechanisms. Roman et al. [166] give a high level classification based on the
key management systems (KMS), namely: key pool framework, mathematical framework, ne-
gotiation framework and public key framework. They conclude that public key cryptography
can be a viable solution for sensor nodes that run as client nodes (in the model client-server).
For server nodes, mathematical-based KMS, such as polynomial scheme, provide better per-
formances. The aforementioned approaches do not sufficiently cover possible key distribution
mechanisms (asymmetric and symmetric methods), for example, only symmetric approaches are
studied in [43, 194]. Besides, they provide heterogeneous classifications due to unrelated different
criteria, as in [166, 194]. By taking into account the classifications described above, especially
in [169], our taxonomy covers asymmetric key distribution mechanisms for IoT, in addition to
symmetric approaches. The taxonomy is marking out different protocols by the key establish-
ment scheme used to establish a secret session key: asymmetric or symmetric techniques. As
mentioned in section 3.1, we do not consider protocols that establish group-wise keys between
sensor nodes for which interested readers could refer to [43]. Only pair-wise key establishments
are considered in this chapter. Our taxonomy has a high classification degree leading to a more
in depth protocol evaluation. For instance, in the asymmetric approach, we do not only discuss
on the applicability of public key cryptography in the context of IoT, as described in [166], but

38

Figure 3.3: Public key transport mechanism

we also differentiate different asymmetric key schemes based on the key delivery scheme (key
transport or key agreement).In symmetric key pre-distribution schemes, we organize the existing
security protocols into two categories: probabilistic and deterministic key distribution. These
categories have also been mentioned in [43, 194]. However, in the deterministic approach, we
go further by distinguishing protocols that have server(s) participating in the key negotiation
process from protocols that do not depend on any third party during key establishment phase.

3.2.3 Asymmetric key schemes

The position of asymmetric cryptography or PKC is clear in the conventional Internet. However,
it is not the case in the context of IoT because of its expensive encryption and verification
operations. However, the development and implementation of PKC in IoT has never been
stopped. In fact, new improvements of several primitives (i.e. ECC, NTRU) continue to reduce
the cost of cryptographic operations, so the PKC approach is of a growing interest for constrained
environments. A brief study in the following sections demonstrates various possible forms of
asymmetric key schemes in IoT.

3.2.3.1 Key transport based on public key encryption

This sub-category looks into the key establishment schemes where the public key is used to
transport secret data or to negotiate a session key. Several methods are used to generate the
pair of public and private keys. In this sub-category, we classify these mechanisms based on the
public/private keys generation methods.

Figure 3.3 gives an example of a communication scenario between two entities A and B. In
this scenario, A and B can use directly the public keys to create an encrypted channel. The
Certificate Authority (CA) may participate to verify the identity of the message transmitter
when certificates are supported. This method can be expensive for resource-constrained- sensor
nodes, in particular when using a traditional algorithm like RSA. Without a verifiable relation-
ship between the public key and the identity (i.e. ID-based cryptography, cryptographic-based
ID or with CA mediation), this approach becomes vulnerable to the man-in-the-middle attack.
Indeed, both A and B cannot authenticate each other’s identity. An attacker may generate any
public/private keys and pretend to be A when communicating with B.

39

Figure 3.4: Identity-based Cryptography Infrastructure

• Raw public key encryption: Some mechanisms assume that the public key has been
distributed beforehand or using out-of-band communications. These mechanisms offer small
number of message exchanges but they are not scalable, because the public keys of all devices
should be known by each device.

Some “raw public key encryption” mechanisms, i.e. Rabin’s scheme [159] or NtruEncrypt
[88] have been recommended for WSNs. Rabin’s scheme is very similar to the RSA algorithm
(widely used cryptosystem), which is also based upon the hardness of the factorization prob-
lem. In fact, the scheme requires the same energy consumption for decryption operations than
RSA with the same security level. However, it offers much faster mechanism for encryption
operations because only one squaring is required to encrypt a message.

NtruEncrypt is a cryptosystem which is known to be a lattice-based alternative to RSA
and ECC (Elliptic Curve Cryptography) primitives. The mechanism is highly efficient and
suitable for the most limited-resource devices such as smartcards and RFID tags. In [88], the
authors give a comparison of the three PKC mechanisms proposed for constrained devices:
the Rabin’s scheme, NtruEncrypt and ECC. The results show that NtruEncrypt leads to the
smallest average power consumption. Nevertheless, this cryptosystem often requires large-size
messages, and might result in packet fragmentation at lower layers and many re-transmissions
in the presence of communication errors. The protocols that are based on “raw public key
encryption” require small number of exchanged messages. This is actually advantageous if
the transmission power is the most important and limiting factor.

• Certificate-based Encryption: Certificate-based protocols are a popular choice to establish
a secure communication between two entities over Internet. The trust relationship between
the two entities is guaranteed by a well-known third party (CA) using the standard X.509
certificate that validates the identity of the entity as illustrated in Figure 3.3. Indeed, each
sensor node possesses a certificate signed by the trusted CA. This latter can be loaded into
the node before the deployment or can be directly acquired on request from a trusted party.

TLS [60] has been recommended by many standards specified by IETF (Internet Engineering
Task Force) for security services. However, it is mentioned in [123] and [162] that TLS
is not a wise choice with respect to the security best practices in IoT. In fact, TLS runs
normally in a reliable transport protocol like TCP which is unsuitable for constrained resource

40

devices, due to its congestion control algorithm. As a replacement for TLS in the tightly
constrained environments, the DTLS [164] (Datagram Transport Layer Security) protocol has
been proposed recently. It operates over the unreliable transport protocol i.e., UDP and
provides the same high security levels as TLS.

The utilization of a certificate is basically expensive. To reduce the power consumption, both
hardware and software related improvements have been considered by researchers:

– Usage of cryptographic hardware accelerators: The hardware accelerators are in
charge of all cryptographic computations. Kothmayr et al. in [123] propose a method
to implement DTLS using hardware assistance on sensor nodes. The solution assumes
that each sensor is equipped with a TPM (Trusted Platform Module). A TPM is an
embedded chip that offers secure generation of cryptographic keys and sealed storage as
well as hardware support for cryptographic algorithms. The fully authenticated handshake
can be performed between a sensor (equipped with TPM) and a subscriber (another sensor
or external entity). Both sensor and subscriber transmit their X.509 certificate to initiate
the authentication phase. These certificates are signed by a trusted CA and are included
in a fully authenticated DTLS handshake. This solution not only has a high security level
by establishing the trusted relationship with the assistance of an approved third party, but
it also provides message integrity, confidentiality and authenticity with affordable energy,
end-to-end latency and memory overhead as claimed by the authors.

Nevertheless, the approach is expensive and complex with respect to deploying a hardware
accelerator next to every sensor, especially for large number of sensors.

– Optimization of existing protocols (software implementation): A security protocol
employing the certificates is tailored to provide higher performance without affecting the
robustness of the protocol. Raza et al. [162] propose a modification of DTLS using the
6LoWPAN compression mechanism [105]. The modified protocol reduces the size of some
headers (i.e. the DTLS record header, the handshake header, the handshake message).
These changes improve the performance of DTLS in terms of packet size, energy consump-
tion, processing time and network response time. However, the proposed solution does not
propose backward compatibility with the actual DTLS standard, in particular with respect
to header compression.

Hummen et al. [108] propose a design idea to effectively reduce the overhead of the DTLS
handshake. Full handshake procedure requires 15 message exchanges, high dynamic storage
capability (RAM) during the communication and long processing time for cryptographic
tasks. In order to mitigate the full handshake inconvenience, the authors propose to del-
egate the handshake procedure to a rich-resource entity, e.g. the gateway or the device’s
owner. All certificate related tasks are performed in the rich-resource entity and only the
session-state message is sent to the constrained device. The session can then be established
using this message with no additional calculation. This modified DTLS can highly reduce
communication overhead at the condition that the rich-resource server is trusted.

Granjal et al. [93] present similar modifications to DTLS, but the DTLS handshake is
mediated by the 6LoWPAN border router (6LBR). The 6LBR participates in the secure
communication but is transparent to sensing devices and the Internet host. The border
router intercepts and forwards packets at the transport-layer. From the point of view of
the Internet host, it communicates with the 6LBR using traditional DTLS protocol where
authentication is supported by ECC based certificate. On the other side, the 6LBR op-
erates in the pre-shared key security mode for communicating to the constrained sensing
devices. Moreover, the 6LBR authenticates the nodes with a mechanism inspired by Ker-
beros [122]. If the authentication is successful, a secret session key is generated to secure the

41

communication between the sensing devices and the 6LBR. Actually, it is used to encrypt
the pre-master key in the ClientKeyExchange message that the Internet host sends to the
6LBR. When the pre-master secret key is computed successfully in the Internet host and the
sensing device, end-to-end DTLS security is enabled. The proposed architecture delegates
all the expensive operations (ECC computation, key agreement. . .) to the border router
so that it offers better lifetime for sensing devices. Nevertheless, the 6LBR is considered
to be a single point of failure. The IKE protocol [59] works usually jointly with IPsec to
provide security associations (SAs) between two entities. This protocol has a variant where
the mutual authentication is enabled using RSA-based certificates. Ray et al. [160] propose
another variant for IKE that is based on ECC-based public key certificate for authentica-
tion and ECDH for key agreement instead of RSA and DH protocol. The proposal reduces
the computation cost as it is mainly limited to the point multiplication operations and it
requires smaller key size than RSA for the same level [100].

• Identity-based encryption: The first implementation of Identity-Based Cryptography was
developed by Shamir in 1984 [177]. This type of cryptography defines a well-known string
(identity) representing an individual or an organization, which is used as a public key. The
private key of each entity is generated from its public key by a trusted party (Figure 3.4),
named a Public Key Generator (PKG). This solution eliminates the need for certificates, which
makes the solution advantageous especially for WSNs. Indeed, any sensor nodes can simply
generate the public key of other nodes when needed to establish a secure communication using
their identities. In addition, the revocation mechanism is supported by consulting the list of
valid sensor identities. However, ID- based schemes are vulnerable to key-escrow attacks as
the PKG knows the private keys of all nodes in the network. It can impersonate any node and
consequently intercept all the traffic in the system. Therefore, the PKG is always considered
as well protected and trusted by all network nodes.

In a constrained environment, IBE paradigm is mostly implemented using the ECC primitive
[197, 93]. Yang et al. [197] propose IBAKA – an IBE scheme inspired by Boneh et al. scheme
[36]. However, they tailor the IBE method into an ECDH [100] key exchange in order to
establish a session key. Their proposal still requires 2 bilinear pairings and 3 scalar point
multiplications each time a secret key is bootstrapped.

Szczechowiak et al. [185] propose TinyIBE – a very simple authenticated key distribution
based on IBE for heterogeneous sensor networks. The scheme requires no pairing calculation.
It is able to retrieve a session key for two nodes after only 2 message exchanges.

3.2.3.2 Key agreement based on asymmetric techniques

This sub-category is about key agreement protocols based on asymmetric primitives in the IoT.
As mentioned in various research works, a key agreement protocol is the mechanism where
two (or more) parties derive a shared secret and no other party can predetermine the secret
value. Figure 3.5 illustrates the process of a typical asymmetric key agreement. Km is the
secret generated after the agreement procedure. This symmetric key is then used to secure the
communication.

The Diffie-Hellman (DH) protocol [163] and its variants are classical examples for asym-
metric key agreement. However, DH protocols are considered expensive and unsuitable for the
constrained nodes in particular, for class 0 and 1 according to the node classification in terms
of resource capacity in lwig-terminology [37].

Some variants of the DH protocol are considered in constrained environments using ECC,
i.e. ECDH. The ECDH cryptographic primitive offers smaller key size than RSA. Indeed, the

42

Figure 3.5: Key agreement based on asymmetric mechanisms

US National Institute for Standard and Technology (NIST) in [30] has showed that to achieve
the security level of 128-bit AES key size, one can prefer 256 bit key size using elliptic curve
instead of 3072 bit parameters in RSA and DH protocol. As an example, Giacomo et al. in
[57] implemented a key agreement protocol based on ECDH providing authentication using the
Elliptic Curve Digital Signature Algorithm (ECDH-ECDSA). Practical measurements on the
MICAz and the TelosB sensors showed that ECDH-ECDSA is affordable in terms of computation
complexity.

HIP-DEX (Host Identity Protocol Diet Exchange) [146] applies also the DH protocol to gen-
erate a session key between two entities after only a 4-messages exchange. This protocol is a
variant of HIP Base Exchange [145] specially designed to reduce the complexity of cryptographic
computations. It uses the smallest possible set of cryptographic primitives (e.g., AES-CBC in-
stead of cryptographic hash functions), removes digital signatures and implements static ECDH
to encrypt the session key, etc. This protocol has been largely taken into consideration in the
context of IoT by many recent works [139, 145]. For instance, Mica et al. in [139] propose an
efficient network access mechanism based on HIP-DEX for mobile nodes joining the local sensor
network. Besides, Hummen et al. in [107] tailor HIP-DEX to the IoT, in particular, by adapting
the session resumption mechanism as in TLS [75]. As such, the constrained node performs ex-
pensive operations once and maintains session-state for re-authentication and re-establishment
of a secure channel.

The key agreement protocols based on DH require fewer messages to establish a session key
but the computational tasks on sensor nodes are usually complex.

3.2.4 Symmetric key pre-distribution schemes

In this sub-category, the communicating parties often initially share some credentials before
bootstrapping the communication. The key pre-distribution mechanisms may differ as described
in the following sections.

43

3.2.4.1 Probabilistic key distribution

The mechanism of random key pre-distribution (RKP) was first proposed by Eschenauer et al
[76]. A typical RKP consists of three phases: key pre-distribution, shared-key discovery and
path-key establishment. In the scheme, a large key pool is generated. Keys are then randomly
selected from the key pool and distributed to sensor nodes. Any two nodes may share a common
key with a certain probability. The third phase is triggered when two nodes do not share any
common key. In this process, one node first generates a random key K. It then sends the key to
its neighbours using the pre-established secure channel. The process continues until the key K
arrives at the other node. K is considered afterward as the pairwise key between both nodes.

Several solutions are inspired by this scheme [65, 46, 114, 110]. These proposals improve
specially the pre-distribution phase to enhance the key connectivity between nodes and reduce
the memory space needed for key storage. In fact, Du et .al [65] propose a key pre-distribution
scheme that relies on the deployment knowledge and avoids unnecessary key assignments. Ito
et al. [114] develop a scheme based on Du et al. [65] works but the keys are mapped on two-
dimensional positions. They propose a probability density function which provides better key
connectivity. Chan et al. [46] develop also a mechanism to reinforce the path-key establishment
phase. The basic idea is that node A finds all possible links to a node B. It generates for each
link a random value and routes these values to B. The common keys between A and B are
protected by these random values. The generated key will be shared by both nodes, unless the
adversary manages to eavesdrop on all paths between them.

The probabilistic key distribution generally does not guarantee session key establishment
between all nodes even with the path-key establishment phase. Two nodes may not share any
common keys with a certain probability.

3.2.4.2 Deterministic key distribution

In this sub-category, the described key schemes rely on a deterministic process to generate the
key pool and to distribute keys to nodes in order to guarantee secure full connectivity in the
network. In deterministic solutions, the key schemes are distinguished by the presence or not of
a trusted third party during the key bootstrapping.

• Offline key distribution: The offline key distribution method is widely used in WSNs
because of its simplicity. Depending on the used protocol, every node in the same network
may share a network key or each two nodes may have a common pairwise key. The session key
is then generated after very few data exchanges without the presence of any third party. The
offline key distribution provides efficiency in terms of energy consumption because it does not
require expensive cryptographic computations like asymmetric approaches. However, when
a sensor node is physically attacked, the secret data stored inside the node can be exposed.
Consequently, the attacker can gain access to several nodes which share the secret key with
the attacked node, or in the worst case, it may access the whole network.

In several existing works, mathematical properties have been applied to create the model for
securing key exchanges between sensor nodes. These mechanisms are still applicable in the
context of IoT. The most well-known schemes are based on bivariate polynomials ([79] and
[133]). In these schemes, a node A shares with other nodes a bivariate n-degree polynomial
f(x, y). A can obtain the pairwise key with another node B by calculating the value of
f(idA, idB), where idA and idB are the respective identities of A and B. In the same way,
B can obtain the same pairwise key, since f(idA, idB) is equal to f(idB, idA)). In another
scheme, called the Bloom’s scheme [32], a secret symmetric matrix D is generated from the
shared secret key between two nodes A and B. Each of them generates a public matrix IA

44

Figure 3.6: Server-assisted mechanism

and IB respectively for A and B. The private keys are respectively privA = D × IA and
privB = D×IB for A and B. Finally, the pairwise key is calculated by solving (privA×IB) or
(privB × IA). The problem with these latter two schemes is that the session key will remain
unchanged for every two nodes.

SNAKE [176] and BROSK [154] are two key establishment schemes where the session key is
generated without the need for a key server to perform key management. These two protocols
assume that all nodes in the same network share a master secret key. In SNAKE, the session
key is obtained by hashing two random nonces generated from each communicating party using
the pre-shared key. BROSK broadcasts the key negotiation message containing a nonce. Once
a node receives the message from its neighbors, it can construct the session key by computing
the message authentication code (MAC) of two nonces.

Raza et al. in [161] implement the standard Internet security protocol IPsec in an IP-based
WSN (using 6LoWPAN). The authors propose mechanisms to compress the AH and ESP
header in order to integrate IPsec with the 6LoWPAN layer but they keep a reasonable
packet size. AH and ESP mechanisms provide origin authenticity, message integrity and
confidentiality protection of IP packets but they do not handle the key exchange. The security
associations are established manually using pre-shared key.

As another lightweight key pre-distribution scheme, Oscar et al. [84] propose HIMMO, a
quantum-resistant solution that enables identity-based key sharing and verification of creden-
tials of IoT devices in a single message. HIMMO allows a device to generate efficiently a pair-
wise key with another device based on its identity. They provide also a new operation mode,
named as DTLS-HIMMO, for the standard protocol DTLS [164]. The authors claim that
DTLS-HIMMO provides equivalent security properties when compared to DTLS-Certificate
security suite, while being quantum resistant and lightweight as symmetric primitives.

The offline key distribution does not provide rekeying operations. When the system changes
to other secret keys, all the entities in the network need to be updated to establish secure
communications using the new keys.

45

• Server-assisted key distribution: Due to the resource limitations of constrained devices,
the cryptographic computation and other expensive tasks (e.g., identity management, key
generation) can be handled at rich–resource servers. Server-assisted approaches for key es-
tablishment protocols have been proposed in this respect in IoT. In such protocols, message
exchanges engage two entities and one (or more) trusted server. The server shares long-term
key a priori with each communicating entity. It often plays the role of a key distribution
center (KDC) and then supplies the session key to each party by re-encrypting it using the
shared keys as shown in Figure 3.6.

1) External assisted server: In this sub-category, the assisted entities are external rich-
resource servers which are located outside the WSN. As a result, they can handle the key
distribution of one or several WSNs.

The second approach proposes in [123] is inspired by the TLS Pre-Shared Key cipher
suite [75]. Each sensor has to pre-install some random bytes called protokeys before the
deployment. These random bytes are used to derive the PSK (Pre-Shared Key) key for
each session. Instead of using TPM, a central rich-resource server is employed to create
the security association between the sensor node and the subscriber. The protokeys are
also known by the trusted server. The server then generates the same session key for the
subscriber from the protokeys.

MIKEY-Ticket [186] is an additional mode to the basic MIKEY [15] protocol, in which
a KDC is involved in the process of establishing a security association between the two
parties. MIKEY-Ticket originated from the ticket concept of Kerberos [122]. The KDC
securely communicates with the node initiating the protocol (Initiator) and the responding
node (Responder) by encrypting important data using the pre-shared master key shared
with each node. Nevertheless, the protocol is vulnerable to Denial of Service (DoS) attacks,
particularly replaying messages to the Responder. To prevent these attacks, Boudguiga et
al. in [38] propose a new key establishment, called SAKE (Sever Assisted Key Establish-
ment) based on the MIKEY-Ticket mode but removing the threat of DoS attacks. SAKE
allows establishing security associations between the two parties after only five exchanged
messages, compared to six messages in the original MIKEY-Ticket. Indeed, upon reception
of the first message from the Initiator, the KDC generates the session key and contacts
directly the Responder. This change reduces one message exchange comparing to MIKEY-
ticket. Besides, as each message of SAKE contains a MAC computed with a key shared
with the receiver, the DoS attack is mitigated.

Other IoT solutions of key distribution based on an external server, include solutions that
implement the PANA protocol (Protocol for Carrying for Network access) [150]. PANA
runs over UDP and uses EAP (Extensible Authentication Protocol) for authentication that
supports multiple authentication methods including pre-shared key distribution. Kanda et
al. [116] propose an improvement of PANA to adapt the resource-constraints. The main
modifications consist of reducing the number of message exchanges (e.g., choosing EAP-
PSK as the only authentication method), removing unused PANA header fields, minimizing
the collection of cryptographic primitives at the constrained device. These proposals may
effectively reduce the PANA implementation code size at the device, but the authors do
not give an estimation of the gains that might be obtained, for example, in terms of energy
consumption or network-response time.

2) Proxy-based assisted server: This sub-category does not require an external server but
a proxy-based server (PBS) located within the WSN, as shown in Figure 3.7. This server
is equipped with sufficient resources and storage capacity to execute all expensive tasks
for constrained nodes. It often plays the role of a mediator to associate the sensor nodes

46

Figure 3.7: Proxy-based assisted server infrastructure

and other entities. Additionally, the PBSs usually share a symmetric secret key with the
constrained nodes and the 6LBR router.

Using the same considerations, Hussen et al. [109] propose SAKES providing secure au-
thentication and key establishment between a sensor node and an external Internet host.
Upon the reception of a sensor node request, the PBS authenticates the sensor node with
the help of 6LBR. It then applies a DH key agreement mechanism with the remote server
and calculates the session key (SK) on behalf of the sensor node as the sensor node is
resource constrained. Finally, the sensor node can communicate with the remote server in
a secure manner using the SK received from the PBS.

In this same sub-category, Saied et al. [170] present the Distributed HIP Exchange (D-
HIP) protocol inspired by HIP-BEX [145]. They use the same network model as described
in Figure 3.7. During the key negotiation step, a constrained node establishes a session
key with the server using the DH protocol by delegating the 2 modular exponentiation
operations to the proxy nodes. It first splits its secret exponent a into n parts a1, a2, ..., an
where n is the number of the less constrained nodes. It then sends each part ai to a
neighbor node (proxies) PBSi. The node PBSi calculates its part of the final DH session
key: SKi = (gbmod p)ai where the value (gbmod p) is achieved from the remote server
(or Internet host). PBSi sends SKi back to the constrained node. From these values, the
constrained node obtains the same final DH session key as the server (by multiplying the
n values received). This approach has a major advantage that all expensive computation
tasks are done by the PBS nodes. However, the number of message exchanges can be large
depending on the number of PBS nodes. As we know, the transmission cost is non-negligible
and packet lost during communication can happen at any time.

3.2.5 Discussion

Table 3.2 illustrates examples of security protocol solutions which are implemented in WSN
and IoT. It compares these solutions using the identified criteria given in Section 3.2.1. At first
glance, we can easily identify that most of the general security services are well provided by the
proposed protocols. Nevertheless, few protocols support the Access control (AC) and Privacy
Protection (PP) properties. The AC service is very important and needed in such perspective
where an Internet host can only access the sensor node to execute actions or to retrieve data
according to its access privileges. The server-based protocols usually offer this requirement, for
example, with the help of an authorization server. On the other hand, the PP strengthens the

47

anonymity of communications. This property becomes very important in today perspective as
personal data on sensor nodes must remain untraceable by any attackers.

48

C
o
n

fi
d

en
ti

a
li
ty

In
te

g
ri

ty

A
u

th
en

ti
ca

ti
o
n

A
u

th
o
ri

za
ti

o
n

F
re

sh
n

es
s

R
es

il
ie

n
ce

C
o
m

p
u

ta
ti

o
n

C
o
m

p
le

x
it

y

C
o
m

m
u

n
ic

a
ti

o
n

C
o
m

p
le

x
it

y

M
em

o
ry

S
ca

la
b

il
it

y

P
ri

v
a
cy

P
ro

te
ct

io
n

Key bootstrapping
in IoT

Asymmetric key
schemes

Key transport based
on public key
encryption

RPKE
Protocols based on:
NTRU [87], Ra-
bin’s scheme [159]

l n/a n/a n/a n/a l m m l l n/a

Moustaine et al.
[72]

n/a l l m m l l l l l l

ZKP based on
ECDLP[49]

n/a l l m l l m l l l l

CBE
DTLS modified
[162, 108]

l l l m l l m m l l l

IKEv2-ECC based
[160]

l l l m l l m m l l l

IBS
TinyIBE[185] l m l m m l l m l m m
IBAKA[197] l l l m l l m m l l l

Key agreement based
on asymmetric
techniques

ECDH-ECDSA[57] l l l m l l m l l l m
HIP-DEX[146] l l l m l l l l l l m

Symmetric key
pre-distribution
schemes

Probabilistic key
distribution

E-G[76] l m m m m m l m m m m
Du et al. [65] l m m m l m l m m m m
Chan et al. [46] l m m m m m l m m m m
Ito et al. [114] l m m m m m l m m m m

Deterministic key
distribution

OKD

Blom’s scheme
based [65, 33]

l m m m m m l l l m m

SNAKE[176] l l l m l m l l l m m
BROSK [125] l l l m l m l l l m m
Lightweight IPsec
[161]

l l l m l m m m l l l

Granjal et al. [93] l l l m l l m m l l l
Diet-ESP [143] l l l m l l l m n/a m l

EAS
Mikey-ticket[186] l l l l l m l l l m m
SAKE[39] l l l m l l l l l m m
PANA/EAP-
PSK[150, 116]

l l l m l l l l l m m

PBAS
SAKES[109] l l l m l l m l m m m
D-HIP[170] l l l m l m m m m m m

Table 3.2: Summary of proposed security solutions for IoT
Solutions are grouped based on the mentioned classification in Figure 3.2. Some abbreviations are used: (RPKE) – Raw public key encryption, (CBE) – Certificate based encryption,
(IBS) – Identity based schemes, (OKD) – Offline key distribution, (EAS) – External server assisted, (PBAS) – Proxy-based assisted server. Eleven metrics are provided to evaluate the
solutions: Confidentiality, Integrity, Authentication, Authorization, Freshness, Resilience, Computation complexity, Communication Complexity, Memory or storage space required
for keying materials, Scalability and Privacy Protection. The Resilience, Computation complexity, Communication Complexity and Memory columns can take two different values:
l(good or medium performance level) and m(low performance level), which indicate the level of a specific protocol to support a property. Communication complexity refers to the
number of message exchanges in general until a secret key is negotiated. The (n/a) notation means “not applicable”. We define simple notations to evaluate the security services: l-
supported, m- not supported. The evaluation of RPKE assumes the protocols that used the mentioned primitives (no real protocol reference).

49

In the high level synthetic picture, the table shows that the asymmetric solutions usually
require high computation complexity on sensor nodes. However, these approaches have high
resilience against node capture attacks, low memory requirements for keying materials, few
message exchanges and high scalability for large networks. On the other hand, the key pre-
distribution schemes offer low complexity computation which is really beneficial for constrained
nodes, but, they have their own inconveniences, such as high communication complexity, high
memory space for keying materials, low level of scalability for large networks and vulnerability
against node capture attacks.

3.3 Identified approaches towards lightweight security mecha-
nisms

There are some new approaches being pushed by researchers. They always keep their interest in
both asymmetric and symmetric approaches; even if the symmetric paradigm is considered to be
more energy efficient. The asymmetric solutions are still preferable because of their deployment
facility, flexibility and scalability in terms of key management. Besides, the public key paradigm
allows two entities without any prior-trust relationship with each other, establishing a secure
channel, which is generally an important feature in real time scenarios. The following points
need to be highlighted before designing any efficient security protocols for constrained devices
in IoT:

• Optimizing asymmetric solutions: The asymmetric approaches are generally energy-
consuming. The first ambition is to reduce the required computation time in order to save
energy for sensor nodes. One can think about adapting directly NTRU to the standard
protocols because it is currently the most energy-efficient primitive. However, this primi-
tive requires more memory space for keying materials than other asymmetric primitives.
Some researchers are working on optimizing mathematical mechanisms used in crypto-
graphic algorithms, i.e. Marin et al. in [136] discuss a solution to optimize the ECC
primitives. They propose an optimization for the modular multiplication operation. The
solution is evaluated in the widely-used microprocessor MSP430. The authors claimed that
the optimization is presenting the lowest time and number of required operations for ECC
multiplication. Another method to reduce the energy consumption on sensor nodes relies
on pre-computation techniques. It helps diminishing the cost of modular exponentiations
in several signature and key management schemes, such as ECDSA or Diffie-Hellman key
exchange. The idea is to store a set of n Discrete Log pairs in the form (ai, g

aimod q) .
Then, a “random” pair (r, grmod q) is generated from a subset of k pairs chosen randomly
in the memory. The technique seems simple, but it requires the value of n to be sufficiently
large in order to ensure the randomness of the generated pairs (r, grmod q). Ateniese et al.
[16] improve the pre-computation techniques above and apply it to ECDSA. They show
that almost 50% of energy is saved with ECDSA with pre-computation compared to the
original signature scheme and also to the NTRUsign signature scheme (which is considered
to be a natural candidate in low-power devices).

On the other hand, several researches adapt the properties of asymmetric primitives in an
optimized manner to fit in the most constrained environment of IoT. Effectively, Mous-
taine et al. [72] propose an efficient authentication protocol for low-cost RFID systems
based on an adaption of NTRU. This adaption first delegates the complex operations of
NTRU (i.e. modular arithmetic, polynomial multiplication) to the server. Secondly, the
tags require only additions and circular shifts to encrypt the challenges during the authen-
tication phase. Besides, the protocol is resistant against classical attacks including replays,

50

tracking and man in the middle attacks with very low requirements for computation. As
another asymmetric technique, Zero-knowledge proofs (ZKP) [49, 80] is also a candidate
for future proposals in IoT. ZKP are interactive proof systems involving two entities: a
prover and a verifier. The prover demonstrates the knowledge of a secret to the verifier
without revealing a single bit about the secret. ZKP relies on some hard mathematical
problems, such as the factorization of integers, i.e. [49] or the discrete logarithm problem
(DLP) [80]. This mechanism is commonly used in WSN for node authentication. For
example, the authors in [80] provide an efficient authentication scheme based on DLP
over elliptic curve groups. The scheme requires only three messages between the prover
and verifier. ZKP has advantages in terms of the amount of messages being sent and the
memory usage on nodes as also mentioned in [49, 80]. One can benefit ZKP to propose
an efficient key bootstrapping protocol in IoT with the node authentication provided by
ZKP.

• Tailoring the existing standard protocols to IoT: Standard security protocols can
be adapted to work in constrained and heterogeneous environments of IoT. As described
in this chapter, many attempts have been done to adapt and apply standard protocols
in the context of IoT, for example, DTLS [86, 162, 108], IPsec [161], IKEv2 [160], HIP-
DEX [139, 146, 145]. As another example, Kivinen et al. [119] propose a minimum
implementation of standard IKE [117] by removing the requirement for certificates. This
minimum variant defines only two message exchanges for key negotiation and provides
entity authentications using pre-shared key approach. On the other hand, Migault et al.
[143] suppose that the security associations between entities are established using existing
mechanism like IKEv2. They are interested in the security of packet transmissions by
proposing Diet-ESP - an adaptation of ESP (Encapsulation Security Protocol) to IoT
in order to compress and reduce the ESP overhead. The authors define mechanisms to
remove or reduce some “unnecessary” or “larger than required” ESP fields for the specific
needs or applications of IoT devices. However, the deployment of Diet-ESP has to keep
the trade-off between the security requirements and the battery life time of constrained
devices. Indeed, as depicted by the authors, small SPI (Security Parameters Index) size,
small size of ICV (Integrity Check Value) and removing SN (Sequence Number) expose
the devices to respectively Denial of Service, spoofing and replay attacks.

• Using hybrid approaches: Another trend consists of combining the advantages of both
symmetric and asymmetric solutions. Meca et al. in [139] choose HIP-DEX (an asymmetric
technique) [146] to provide access to a local sensor network. A mobile node is authenticated
with help of a central server. If the authentication is successful, the server sends securely
the necessary parameters for the mobile node by encrypting the data with the session key
generated after the DH exchanges. These parameters are actually a bivariate polynomial
used to bootstrap secure communications with a local node (a symmetric technique).
The pairwise key generated by the shared polynomial is employed as a master key to
generate multiple session keys for specific purposes. The presence of a third party in
such hybrid approach becomes essential in the IoT. Firstly, the rich-resource server is
expected to support almost all heavyweight computations. As such, the sensor nodes
with limited energy and capabilities are no longer involved in this expensive process as
described in [109, 170]. The constrained node can establish a communication with external
hosts without implementing the full asymmetric process. Additionally, the assisted servers
are capable to provide fine-grained access control such that only authorized actions are
executed on sensor nodes.

51

3.4 Summary

In this chapter, we survey and analyze lightweight cryptographic primitives and secure communi-
cation protocols recently proposed in the literature for the Internet of Things. We present in the
first place several lightweight cryptographic primitives that are suitable for resource-constrained
devices. Then, we take a more in-depth look into the security protocols and methods that have
been used to establish secure communications. Our analysis concentrates mainly on the key es-
tablishment procedure. We classify different protocols into different groups in order to analyze
their forces and weaknesses. Finally, based on the obtained results, we identify some interesting
and promising directions for lightweight security mechanisms in the context of IoT.

The rest of this thesis presents our contributions following the three identified directions.
Concretely, by pursuing the first direction, we proposed in a first place ECKSS, an optimized
signcryption scheme in chapter 4, which is very lightweight and exempted from the use of
certificates. In addition, we introduced a modification to the Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) in chapter 5 that can accelerate its encryption to be feasible even in
resource-constrained devices. In the second direction, we adapted the standard key management
protocol MIKEY to present two new MIKEY key distribution modes. As described in chapter
4, these modes use ECKSS as their public key encryption algorithm, and hence inherit the
lightness of ECKSS in terms of computation overhead. In the third direction, we introduced a
server-assisted key agreement protocol that can work with highly resource-limited devices. This
proposal, as specified in chapter 6, allows the IoT devices with limited resources to agree on a
session key without involving any expensive asymmetric operation.

52

Chapter 4

ECKSS: Elliptic Curve Korean
Signature-Based Signcryption for
IoT

In order to provide a lightweight security for constrained devices in IoT, one can think of using
directly symmetric and hardware-based solutions. However, these methods have several incon-
veniences. Indeed, using only symmetric cryptography might put IoT devices on high risks
even when only one among the symmetric secret keys is exposed. In addition, such approach
should be considered uniquely in small scale networks. On the other hand, hardware-oriented
solutions usually accelerate cryptographic operations and hence reduce computation charges on
constrained devices. Nevertheless, it is difficult to attach a cryptographic accelerator or a trusted
platform module (TPM) for each device in large scale IoT. In that respect, there is another ap-
proach which is to optimize existing lightweight cryptographic primitives in order to work with
limited-resource devices. Such software-based approach is feasible to deploy in large-scale and
heterogeneous networks such as IoT.

In this chapter, we present our first contribution. That is, in the first part, we propose
ECKSS, a novel certificateless signcryption-based scheme in the elliptic curve setting [147].
This scheme has several advantages. First, the scheme is provably secure in the random oracle
model. Second, it provides the following security properties: outsider/insider confidentiality
and unforgeability; non-repudiation and public verifiability, while being efficient in terms of
communication and computation costs. Third, the scheme offers the certificateless feature,
so certificates are not needed to verify the user’s public keys. For illustration, we conducted
experimental evaluation based on an emulated sensor Wismote platform and compared the per-
formance of the proposed scheme to concurrent signcryption schemes. In the second part, we
apply our proposed signcryption scheme to propose novel lightweight ECC-based key distri-
bution extensions for MIKEY [15]. The latter is a standard key management protocol, used
to set up common secrets between any two parties for multiple scenarios of communications.
To our knowledge, these extensions are the first ECC-based MIKEY extensions that employ
signcryption schemes. Our proposed extensions benefit from the lightness of the signcryption
scheme, while being discharged from the burden of the public key infrastructure (PKI) thanks
to its certificateless feature. To demonstrate their performance, we implemented our proposed
extensions in the Openmote sensor platform and conducted a thorough performance assessment
by measuring the energy consumption and execution time of each operation in the key establish-
ment procedure. The experimental results prove that our new MIKEY extensions are perfectly
suited for resource-constrained devices.

53

This chapter is organized as follows. Section 4.1 recalls the two standard DSA-based signa-
ture schemes ECDSA and EC-KCDSA. Our proposed signcryption scheme is inspired from these
signature schemes. As a result, the descriptions are provided in order to justify the lightness
of our solution. Section 4.2 describes in detail our proposed signcryption mechanism. A formal
security proof and an experimental evaluation of the scheme are also described. Then, in Section
4.3, we apply the proposed signcryption solution to propose two new modes for the standard key
distribution MIKEY, while presenting also the security considerations and a thorough experi-
mental evaluation of the two proposed extensions. Finally, we conclude our first contribution in
Section 4.4.

4.1 Background on DSA variants

As the standardization is a crucial factor in practical cryptosystems, multiple signcryption
schemes are derived from standard signatures, such as DSA [180, 190], ECDSA [189, 179],
KCDSA [167, 128, 199]. The Digital Signature Algorithm (DSA) [118] is a well-known standard
for digital signatures. Its elliptic curve analog ECDSA, is presented in [118]. Our proposed
signcryption scheme is based on EC-KCDSA (ECC-based KCDSA). We present in the following
the original ECDSA and EC-KCDSA signature schemes with the objectives of clarifying the
difference between the two schemes and justifying our choice.

4.1.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA was standardized by the National Institute of Standard and Technology (NIST) and
then adopted by FIP 186-4 in 2013 [118]. In order to generate and verify an ECDSA signature,
the signer (S) and verifier (V) must agree on the domain parameters D = (q, a, b,G, p, h). The
ECDSA key pair of S is generated as follows:

• Select a random number privS on Zp as the private key.

• Compute the public key PKS = privS .G

The public key validation is highly recommended in practical scenario since it helps to prevent
malicious insertion of an invalid public key, which can enable some attacks, such as the attacks
on the Diffie-Hellman Key Agreement discovered by Lim et Lee [130]. The common method is
to demand assurances from a trusted party (e.g. Certification Authority) for each used public
key.

Then, the detailed description of ECDSA signature generation and verification is presented
in the following:

• Signature generation: To sign a message M , the signer S does the following steps:

1. Select randomly an integer k in Zp
2. Calculate the elliptic curve point (x1, y1) = k.G

3. Compute r = x1 mod p. If r = 0 then go to step 1

4. Compute HASH(M) and convert this string to an integer e, where HASH is a
cryptographic hash function, such as SHA-2

5. Compute s = k−1.(e+ privS .r) mod p. If s = 0 then go to step 1

6. Send (r, s) to V as S’s signature for the message M

54

• Signature Verification: To verify S’s signature (r, s) on M , V first validates the domain
parameters D and S’s public key PKS . Then, V does the following:

1. Verify that (r, s) are integer in Zp
2. Compute HASH(M) and convert this string to an integer e

3. Compute w = s−1 mod p

4. Compute u1 = ewmod p and u2 = rwmod p

5. Compute W = u1.G+ u2.PKS = (x1, y1)

6. The signature is valid if r = x1 mod p

4.1.2 Elliptic Curve Korean Certificate-based Digital Signature Algorithm

We describe in this subsection the ECC-based version of KCDSA [131] since our proposal is
based on Elliptic Curve Cryptography. This variant was called as EC-KCDSA, which is almost
similar to KCDSA except the change of group operations. In fact, the underlying multiplicative
group used in KCDSA is replaced by the additive group of elliptic curve points.

The detailed signature generation and verification of EC-KCDSA is presented in the follow-
ing:

• Security parameters generation: Let E be an elliptic curve over prime finite field
defined by the domain parameters (q, a, b,G, p, h). Suppose that a signer S wish to send
a signature on the message M to a verifier V . The security keys of S are specified in the
following:

– privS : signer’s private key such that privS ∈ Zp
– PKS : signer’s public key such that PKS = privS

−1.G

– z: a hash value of Cert Data, i.e. z = H2(Cert Data). Here Cert Data denotes the
signer’s certification data, which should contain at least signer’s identity, the public
key PKS and the domain parameters (q, a, b,G, p, h).

We define also two hash functions H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}l, where l is
an integer generated from the input security level.

• Signature generation: The signer generates a signature (r, s) for a message M as follows:

– Choose randomly an integer number k ∈ Zp
– Compute W = k.G

– Compute the first part r of the signature as r = H1(W)

– Compute e = r ⊕H1(z||M)

– Compute the second part s of the signature as s = privS .(k − e)

• Signature Verification: On receiving the signature (M, r, s), the verifier can check the
validity of the signature as follows:

– Check the validity of signer’s certificate

– Exact the signer’s certification data Cert Data and compute z = H2(Cert Data)

– Compute e = r ⊕H1(z||M)

– Compute W = s.PKS + e.G

– Check that r = H1(W)

As we shall see, EC-KCDSA is even more lightweight than ECDSA since it is exempted from
two modular inversions in the signature generation and verification.

55

4.2 Our proposed signcryption scheme

The rest of this section is organized as follows. Section 4.2.1 presents the considered architecture
and threat model for a signcryption scheme. Section 4.2.2 introduces related existing schemes
on signcryption. Section 4.2.3 describes in detail our signcryption scheme. We present the basic
security results of our scheme and its proofs in section 4.2.4. In section 4.2.5, we discuss the
provided features of our proposal and propose a small modification to transform our scheme to
be insider secure. The performance assessment of our proposal is given in section 4.2.6.

4.2.1 System and Threat model for a signcryption scheme

In this section, we introduce the considered system architecture and threat model for a sign-
cryption scheme.

4.2.1.1 System model

The considered scenario throughout this document contains the following actors:

• An Initiator (I) and a Responder (R), which respectively initiates the communication and
responds to incoming requests.

• A trusted Key Management Server (KMS), which is responsible for generating keying
materials and that acts as the root of trust of the responder and initiator.

The KMS is in charge of providing key material for all communicating devices. In this docu-
ment, it is considered that there is only one KMS. Applications may use multiple or distributed
KMSs and hence may need different system parameters (general parameters, public/private
keys). The mechanism for deciding which system parameters to use (when more than one KMS
is available) is out of scope of this chapter.

The KMS first selects a secret value mk as the system secret master key. The KMS’s public
key PKKMS is then generated from mk. This public key is the root of trust for both parties. The
KMS then provides key material for each device in the system. The idea of key construction
is inspired from works in [96]. For an entity I, it defines a public validation token (VI) to
validate the relation between the secret key of each device and PKKMS . Our approach uses VI
to cryptographically bind I’s public key to PKKMS , instead of having a pair of public/private
keys and a certificate. VI does not require any further explicit certification. KMS also attributes
a short unambiguous identifier for each device. A device identification must be unique and can
be renewed along with its key material by the KMS. Note that the transfer of key parameters
to each device must be secure.

4.2.1.2 Threat models for signcryption Schemes

This section presents the security models for two security notions of signcryption schemes: con-
fidentiality against chosen-ciphertext attacks (CCA), which is also known as semantic security,
and the unforgeability against chosen-message attacks (CMA). We consider a multi-user setting
as already studied in [18, 14]. Concisely, there exist many other users in addition to the attacked
Initiator (I) and Responder (R). The attacker can be either an insider or outsider that acts by
replacing the initiator/responder public keys at will when accessing the signcryption/unsign-
cryption oracles. In the outsider setting, an attack is perpetrated by a third party which is
different from I and R. On the other hand, an attack in the insider setting is issued from an
internal party, meaning that the attacker is a compromised I or R. In such model, the owner
of a private key is unable to retrieve any information on a ciphertext previously signcrypted

56

by himself without knowing the randomness used to produce that ciphertext. Thereafter, this
chapter refers to confidentiality as the confidentiality against CCA in the outsider model, and
it refers to unforgeability as the unforgeability against CMA in the insider model.

Definition 11 (SC-IND-CCA2 [18]). Let A be a PPT adversary against the confidentiality
of a signcryption scheme between the (fixed) initiator I, and the (fixed) responder R, with
security parameter k. A has negligible advantage to win the following game, denoted as
EXPTSC−IND−CCA2

A (k):

• The challenger runs the algorithms Setup and KeyGen to generate keying material for I
and R. (privI , privR) are kept secret while (pkI , pkR) are given to A.

• A can make calls to the signcryption and unsigncryption oracles. On each signcryption
query, A produces a pair (m, pkB) at will where pkB is an arbitrary receiver’s public
key (that public key may differ from pkR) and m is the message. On receiving this pair,
the signcryption oracle OSC returns the result of Signcrypt(privI , pkI , pkB,m) to A. On
each unsigncryption query, A produces a pair (pkA, C) at will where pkA is an arbitrary
initiator’s public key and C is a signcryptext. On receiving this pair, the unsigncryption
oracle OUSC returns the result of Unsigncrypt(pkA, privR, pkR, C) to A.

• A outputs a pair of messages of equal length (m0, m1). On receiving this pair, the

challenger selects a bit b
$←− {0, 1} and sends the challenge ciphertext CRS = Signcrypt

(privI , pkI , pkR,mb) to A.

• A submits a number of queries to OSC and OUSC as A did in previous steps. However, it
is not allowed to query OUSC on (pkI , CRS). Note that A can query OUSC on (pkA, CRS)
for any pkA 6= pkI and query OUSC on (pkI , C) for any C 6= CRS .

• At the end of the game, A outputs b′ and wins the game if b′ = b.

A’s advantage is defined to be AdvSC−IND−CCA2
A (k) = 2Pr[b′ = b]− 1.

Definition 12 (SC-UF-CMA [18]). Let A be a PPT adversary against the unforgeability of a
signcryption scheme with security parameter k. A has negligible advantage to win the following
game, denoted as EXPTSC−UF−CMA

A :

• The challenger runs the algorithms Setup and KeyGen to generate a pair of public/private
keys (privI , pkI) for the initiator I.

• A can make calls to OSC , but not to OUSC , because it can generate by itself a pair of
receiver’s private/public keys. On each signcryption query, A produces a pair (m, pkB) at
will where pkB is an arbitrary receiver’s public key and m is the message. On receiving
this pair, OSC returns the result of Signcrypt(privI , pkI , pkB,m) to A.

• At the end of the game, A outputs a pair of receiver’s private/public keys (privR, pkR)
and a signcrypted text CRS . We say that A wins the game if the following conditions are
satisfied: (i) CRS is a valid signcryptext from S to R (this means that the unsigncryption
process is done under the initiator’s public key pkI and the receiver’s private key privR);
(ii) A did not query on (mRS , pkR) to OSC , where mRS is the plaintext of the signcryptext
CRS .

57

4.2.2 Existing Signcryption Schemes

We are mainly interested in the signcryption schemes based on the Diffie-Hellman problem in this
thesis. As surveyed in [58], there exist several schemes based on different security assumptions,
such as: Bilinear Maps [22] and RSA problem [59]. Most of the signcryption schemes are
derived from popular signature schemes (refer to the survey in [58]). For examples, Zheng’s
scheme [201] is based on ElGamal encryption and signature [71], which is computationally
efficient, but requires complex interactive zero-knowledge proof to validate the non-repudiation
and does not provide insider confidentiality. Bao et al. [19] modify Zheng’s proposal to provide
the public verifiability property without the need for the recipient’s private key. However, the
previous scheme is not semantically secure, as written by Shin et al. [180]. They claim their new
signcryption proposal based on DSA (Digital Signature Algorithm) [81], namely SCDSA+, to
be confidentially and unforgeably secure, without giving a formal proof. There exist also several
schemes issued from the standardized signature algorithm ECDSA [99, 190]. Both schemes
provide desirable security properties but still result in poorer performance than our schemes.
Certificateless signcryption schemes remove the use of certificates. However, they usually require
costly pairing operations for public key validation [20]. Some similar proposals are successful to
remove pairing operations in their construction [196, 175]. However, they still require 10 and 12
modular exponentiations.

KCDSA (Korean Certificate-based Digital Signature Algorithm) [132] is a variant of DSA,
whose design allows to relieve the signature generation and verification procedures of modular
inversions required in DSA. Two signcryption variants of KCDSA are first proposed by Yum et
al. [199]. However, their security has not been formally proved by the authors. Besides, the
first variant is confidentially insecure in the insider model. The second one is not semantically
secure due to the disclosure on the hash of the message, in addition to being more expensive in
terms of performance comparing to our proposals (one extra exponentiation). Several works on
identity-based signcryption scheme based on KCDSA exist, such as [128, 167]. Though, these
schemes require 3 costly pairing operations, which is not practical for constrained nodes in the
IoT.

4.2.3 The certificateless elliptic curve Korean signature-based signcryption
ECKSS

In this subsection, we present a lightweight signcryption scheme based on the standardized
signature KCDSA [131]. We name our proposed scheme as ECKSS. We start by describing the
security parameter generation process. Then, we introduce our proposed signcryption scheme.
Finally, we show that our scheme is exempted from certification requirements.

4.2.3.1 Security parameter generation process

Depending on the security parameter as input, KMS first runs the Setup algorithm to define
an elliptic curve E over finite field Fq with a generator G, and p is the prime order. Further
guidance on the selection of recommended domain parameters for elliptic curve cryptography
can be found in [81].

Two hash functions are also defined: H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}l, where l
is an integer number defined from the input security level. (Enc, Dec) are the encryption and
decryption algorithms of a symmetric cipher. Then, KMS executes the KeyGen algorithm to
generate the keying material for I and R. From a chosen master key mk, KMS calculates its
public key as PKKMS = mk.G. For an entity A with the identifier idA, KMS generates its
public and private values as follows:

58

• Compute VA = xA.G, where xA is a random number on Zp

• Compute the private key for A: privA = (mk + xA.H1(idA||VA||G||PKKMS))−1

• Compute the public key PKA = priv−1
A .G

• Set the public parameters of A as PubA = (PKA, VA)

4.2.3.2 ECKSS description

The detailed procedure of ECKSS is described in the following:

• Signcrypt(privI , PKI , PKR,M) → CT : To signcrypt a message M intended to R, I exe-
cutes the following steps:

1. Check the validity of R’s public keys, as described in section 4.2.3.3

2. Choose randomly x← Zp
3. Compute K = x.PKR

4. Generate a secret key: τ = H2(PKI ||PKR||K)

5. Compute r = H1(PKI ||PKR||K||M)

6. Compute s = privI .(x− r)
7. Compute c = Encτ (M)

8. Send the ciphertext CT = (r, s, c) to R

• Unsigncrypt(privR, PKR, PKI , CT) → M : Upon receiving the ciphertext CT = (r, s, c)
from I, R has to perform the following procedure:

1. Check the validity of I’s public keys, as described in section 4.2.3.3

2. Compute W = s.PKI + r.G

3. Compute K = priv−1
R .W

4. Get the secret keys: τ = H2(PKI ||PKR||K)

5. Compute Decτ (c) = M

6. Verify that r = H1(PKI ||PKR||K||M)

In a real implementation, we can combine the steps 2 and 3 of the Unsigncrypt algorithm into
only one step. As such, we compute directly K = (spriv−1

R).PKI + (rpriv−1
R).G. As a result,

the Unsigncryption procedure will require only two exponetiations.

4.2.3.3 Public Key Validation

This section describes the algorithm to be executed in the first step of signcryption and unsign-
cryption phases. Concretely, it explains the process of validating the public pair (PKI , VI) for
any entity I. To validate these public values, the used algorithm requires the identification of I,
namely IDI and the KMS public key PKKMS . The following checks must be passed successfully:

• Validate that PKI and VI lie in the same defined elliptic curve E.

• Compute H1(IDI ||VI ||G||PKKMS), as an integer number on Zp.

• Validate the public key of I using the following equation:

PKI = PKKMS +H1(IDI ||VI ||G||PKKMS).VI (4.1)

59

The algorithm above can be only executed at the first run of the protocol. I and R may save
the trusted public parameters of the other party for future uses. Besides, the revocation of I’s
public values can be checked easily if the identifier IDI is correctly generated. For instance, the
identifier format can include a timestamp in order to automatically enable the expiration of key
material.

4.2.4 Game-based security proofs

In this section, we give a formal security analysis of our proposal. Our analysis is inspired from
works conducted in [18] and [200]. First, we define several security notions needed for the proof.
Then, we prove that the confidentiality and unforgeability of ECKSS are tightly related to the
hardness of the GDH and GDL problems.

4.2.4.1 Notations for the security proof

The security proof requires complex interactions between the oracles. Hence, we use two lists L0

and L1 to keep track of queries to and responses from the hash, signcryption and unsigncryption
oracles. Precisely, L0 contains the values of type (PKA, PKB, W , K, τ) ∈ G2 × G2

? × {0, 1}l.
Likewise, L1 contains the values of type (m, PKA, PKB, W , K, r) ∈ {0, 1}∗ × G2 × G2

? × Zp.
For any set X , we define X? = X ∪ {?}, where the symbol ? denotes the parameter that can
not be calculated by the simulation. We define O to be a DDH oracle that is able to determine
whether or not the tuple (a.P, b.P, c.P) satisfies ab ≡ c (mod p). We index records in the list
Li by the set ILi (i = 0, 1). The symbol ε defines an empty string. The symbol · specifies a
parameter that ”matches” any values. That is, if there exists (x, y, ·) = (u, v, w) then we have
x = u and y = v. For any variable X calculated by a simulator, X∗ is also a simulated value but
its value is the same as the value calculated by the real oracles. We additionally consider that
qi (for i = 0, 1), qSC , and qUSC are the maximum number of queries made to Hi, signcryption
and unsigncryption oracles, respectively.

4.2.4.2 Confidentiality of our scheme

Theorem 13. In the random oracle model, given a PPT adversary A against the SC-IND-CCA2
security of the ECKSS signcryption scheme, there exists a PPT adversary B1 against the GDH
problem and a PPT adversary B2 against the OT-IND property of the symmetric encryption
scheme such that:
AdvSC−IND−CCA2

A (k) ≤ 2AdvGDHB1 (k) +AdvOT−INDB2 (k) + 2qSC(q1+qSC+qUSC)

2lp(k)
+ 2(qSC+qUSC)

2lp(k)
.

Proof. We will prove the theorem via a sequence of games [181]. We denote Si to be the event
that A outputs the bit b′ in game Gi and b′ = b.
Game G0: This is the original attack game EXPTSC−IND−CCA2

A (k) defined in Definition 11.
Hence,

Pr[S0] = 1
2 + 1

2Adv
SC−IND−CCA2
A (k)

Game G1: This game replaces two random oracles H0, H1 by two random oracle simulators
H0Sim and H1Sim. We maintain the simulation of oracles by storing historical queries and
responses into the two lists L0 and L1. We first define rules on how to determine membership
in the list L0 and L1, as described in Figure 4.1. Based on these rules, we simulate H0Sim and
H1Sim as denoted in Figure 4.2.

We observe that the simulation of H0 and H1 is modeled as random oracles and the consis-
tency among hash queries is ensured by the lists L0 and L1. Besides, we assume in this game

60

L0Rule(PKA, PKB,K,W) :
If (PKA, PKB, ·,K, ·) = (PKAi, PKBi,Wi,Ki, τi) or (PKA, PKB,W, ·, ·) =

(PKAi, PKBi,Wi,Ki, τi), i ∈ IL0 then τ
$←− τi

else if there exists (PKAi, PKBi,Wi,Ki, τi) ∈ L0 and O(W,PKB,Ki) = 1 or

O(Wi, PKB,K) = 1 then τ
$←− τi

else τ ←⊥
return τ

L1Rule(m,PKA, PKB,K,W) :
If (m,PKA, PKB, ·,K, ·) = (m,PKAi, PKBi,Wi,Ki, ri) or (m,PKA, PKB,W, ·, ·) =

(m,PKAi, PKBi,Wi,Ki, ri), i ∈ IL1 then r
$←− ri

else if there exists (m,PKAi, PKBi,Wi,Ki, τi), i ∈ IL1 and O(Wi, PKB,K) = 1 or

O(W,PKB,Ki) = 1 then r
$←− ri

else r ←⊥
return r

Figure 4.1: Functions which determine membership in the list L0 and L1 from partial information

H0Sim(PKA, PKB,K) :
τ ← L0Rule(PKA, PKB,K, null)

If τ =⊥ then τ
$←− {0, 1}l; Add(PKA;PKB, ?,K, τ) to L0.

return τ
H1Sim(m,PKA, PKB,K) :
r ← L1Rule(m,PKA, PKB,K, null)

If r =⊥ then r
$←− Zp; Add(m,PKA;PKB, ?,K, r) to L1.

return r

Figure 4.2: Random Oracle Simulators H0Sim and H1Sim

that the signcryption and unsigncryption oracles are perfect. As a result, we have that Game 1
is equivalent to Game 0. Thus,

Pr[S1] = Pr[S0]

Game G2: In this game, we replace the signcryption oracle by the signcryption oracle simulator
SCSim as described in Figure 4.3. This simulator does not require the initiator’s private key
privI to generate a signcryptext. Since s, r are uniformly chosen at random in Zp and W is
computed as W = [s]PKS + [r]G, W is therefore uniformly distributed in G. As a result, as
long as ⊥SC does not occur, we have that Game 1 and Game 2 are equivalent. Note that the size
of Li is bounded by (qi + qSC + qUSC) for i ∈ {0, 1}. Thus, the probability that ⊥SC happens
is bounded by (q1 + qSC + qUSC)/2lp(k) and there are at most qSC executions. Hence, we have:

|Pr[S2]− Pr[S1]| ≤ qSC
(
q1+qSC+qUSC

2lp(k)

)
Game G3: This game replaces the unsigncryption oracle by the simulator USCSim described
in Figure 4.4, in order not to use the receiver’s private key privR. We observe that Game 3 is
identical to Game 2 except when the hash oracles are queried at K∗ = [privR]−1([s]PKS+[r]G).
We consider this situation in three cases:

• H0 is queried on (PKS , PKR,K
∗) or H1 is queried on (m,PKS , PKR,K

∗) by the adver-
sary A. This means that A can recover K∗. As a result, this leads to an algorithm

61

SCSim(PKA, (PKB,m)):

s; r
$←− Zp, W = [s]PKS + [r]G;

τ ← L0Rule(PKA, PKB, null,W)

If τ =⊥ then τ
$←− {0, 1}l; Add (PKA, PKB,W, ?, τ) to L0

c← Encτ (m), r′ = L1Rule(m,PKA, PKB, null,W)
If r′ 6=⊥ then return ⊥ and halt all operations (event ⊥SC)
else Add (m,PKA, PKB,W, ?, r) to L1; C ← (r, s, c)
return C

Figure 4.3: Signcryption Oracle Simulator SCSim

USCSim(PKB, (C,PKA)):
Parse C as (r, s, c)
W = [s]PKA + [r]G; τ ← L0Rule(PKA, PKB, null,W)

If τ =⊥ then τ
$←− {0, 1}l; Add (PKA, PKB,W, ?, τ) to L0

m = Decτ (c); r′ = L1Rule(m,PKA, PKB, null,W)

If r′ =⊥ then r′
$←− Zp; Add (m,PKA, PKB,W, ?, r

′) to L1 if r 6= r′ then return ⊥ else return m

Figure 4.4: Unsigncryption Oracle Simulator USCSim

B1 that can solve the GDH problem, because the adversary can verify the fact that
O(PKR,W,K

∗) = 1.

• The signcryption oracle could attempt to make such queries. However, this requires that
the value of W must be equal to W ∗. Since r, s are uniformly chosen at random in Zp, the
probability that this event occurs, is bounded by the probability qSC/2

lp(k).

• The unsigncryption oracle could attempt to make such queries. In such situation, the
adversary must have made a query to OUSC on (c, r, s) such that: [s]PKS + [r]G =
[s∗]PKS + [r∗]G (1). If (s, r) = (s∗, r∗) then we must have c 6= c∗, because A is not
allowed to query exactly to OUSC on the signcryptext obtained from the signcryption
oracle. We must also have τ = τ∗. Since the symmetric encryption scheme is one-to-one,
we obtain that (m = Decτ (c)) 6= (mb = Decτ∗(c

∗)). As a result, this equation must
hold H1(PKS ||PKR||K∗||m) = H1(PKS ||PKR||K∗||mb). However, as H1 is modeled as
a random oracle, the equation is true only with probability of 1/2lp(k). We then change
the unsigncryption oracle so that it answers ⊥ when queried on (c, r∗, s∗). The probability
that it outputs incorrectly is bounded by qSC/2

lp(k). On the other hand, if (s, r) 6=
(s∗, r∗), we show that the GDH problem can be solved. In fact, from (1), we obtain
that [(s− s∗)]PKS = [(r∗− r)]G. We can deduce that privS

−1 = (r∗− r)/(s− s∗). Hence,
one can compute [ab]G = [priv−1

S]PKR = [(r∗ − r)/(s − s∗)]PKR. At this stage, A can
verify the accuracy of [ab]G by using the DDH oracle O.

Consequently, we have:

|Pr[S3]− Pr[S2]| ≤ qS + qUSC

2lp(k)
+AdvGDHB1

In G3, τ∗ is not used anywhere except when computing the challenge ciphertext c∗. Hence,
if A outputs b′ = b, then there exists an algorithm B2 that can break the OT-IND property of

62

the symmetric encryption scheme. Thus, Pr[S3] = 1
2 + 1

2Adv
OT−IND
B2 (k). Summarizing all the

obtained bounds together, we have:

AdvSC−IND−CCA2
A (k) = 2|Pr[S0] − 1

2 | ≤
2qSC(q1+qSC+qUSC)

2lp(k)
+ 2(qSC+qUSC)

2lp(k)
+ 2AdvGDHB1 (k) +

AdvOT−INDB2 (k)

4.2.4.3 Unforgeability of our scheme

Theorem 14. In the random oracle model, given a PPT adversary A against the SC-UF-CMA
property of the proposed signcryption scheme, there exists a PPT algorithm B against the GDL

problem such that: AdvSC−UF−CMA
A (k) ≤

√
qR ·AdvGDLB (k) + qSC(q1+qSC)+qR+1

2lp(k)
.

We prove the theorem using two lemmas. First, we show that if there exists an attacker A
against the SC-UF-CMA property, we can construct an efficient algorithm B′ that solves the
GDL’ problem which is defined below. Then, we prove that any efficient algorithm B′ can be
transformed to an efficient algorithm B that solves the GDL problem, thus contradicting with
the hardness assumption of GDL in section 2.2.2.

Definition 15 (GDL’ problem). Given (G,n, p, [a]P), where (G,n, p)
$←− Setup(k) and a

$←− Zp,
we define an oracle R as follows: for i=1..qR, on input (PKi,Ki) ∈ G2, return ri

$←− Zp, where
qR is the maximum number of queries made to R. The GDL’ problem is to compute s∗ and
i∗ ∈ {1..qR} such that: Ki∗ = [as∗ + ri∗]PKi∗ .

We first reduce the hardness of SC-UF-CMA property to the hardness of the GDL’ problem
as follows:

Lemma 16. If there exists a PPT adversary A against the SC-UF-CMA property, then there ex-
ists a PPT adversary B′ against the GDL’ problem, such that: AdvSC−UF−CMA

A (k) ≤ AdvGDL′B′ (k)+
qSC(q1+qSC)+1

2lp(k)
.

Proof. We will prove the lemma via a sequence of games [181]. At the end of each game, A
outputs a tuple consisting of (priv∗R, PK

∗
R, C

∗). Let Verify be the algorithm that verifies the two
conditions listed in Definition 12. We denote Si is the event in game Gi that Verify outputs 1.
Game G0: This is the original attack game EXPTSC−UF−CMA

A in Definition 12. Hence,

Pr[S0] = AdvSC−UF−CMA
A (k)

Game G1: This game replaces the random oracles H0 and H1 by the simulated oracles H0Sim
and H1Sim. H0Sim remains unaltered as described in Figure 4.2, while H1Sim is modified as
described in Figure 4.5. The lists L0 and L1 are still employed to store historical queries on
simulated oracles. The rules for determining membership of these lists remain unchanged. As we
shall see, H1Sim makes call to the oracle R defined in the GDL’ problem. Note that R behaves
differently from a random oracle, because it always returns random values even for repeated
queries. Besides, we introduce the list LR that contains the values of type (PKB,K, r, j) ∈
G2×Zp×Z. The above simulation for the random oracle H0 and H1 is perfect. Hence, we have

Pr[S1] = Pr[S0]

Game G2: This game replaces the signcryption oracle by the simulated oracle simulator SCSim
described in Figure 4.3. This simulator does not require the initiator’s private key privI in the
signcryption stage.

63

H1Sim(m,PKA, PKB ,K) :

r ← L1Rule(m,PKA, PKB ,K, null)

If r =⊥ then j ← j + 1; r
$←− R(PKB ,K); Add (PKB ,K, r, j) to LR; Add(m,PKA;PKB , ?,K, r) to L1.

return r

Figure 4.5: Random Oracle Simulators H1Sim in game G1

Since (s, r,W) are independent and uniformly distributed over Z2
p×G, the views of attacker

in Game G1 and Game G2 are equivalent, as long as the event ⊥SC does not happen. The size
of Li is bounded by (qi + qSC) for i ∈ 0, 1. Thus, the probability that ⊥SC happens is bounded
by (q1 + qSC)/2lp(k). There are maximum of qSC queries on the signcryption oracle. Hence, we
have

|Pr[S2]− Pr[S1]| ≤ qSC
(
q1+qSC
2lp(k)

)
Now, we consider the event AskKey that H1Sim has been queried on (m∗, PKS , PKR,K

∗).
Note that if AskKey does not occur, then the value r returned by H1Sim is uniformly generated
from Zp. If C∗ is a valid signcryptext then H1(m∗, PKS , PKR,K

∗) must not have been defined
by the signcryption oracle. Thus, the probability that r = H1(m∗, PKS , PKR,K

∗) is at most
1/2lp(k). As a result, we obtain that Pr[S2|¬AskKey] ≤ 1/2lp(k) and consequently Pr[S2] ≤
Pr[AskKey] + 1/2lp(k).

On the other hand, we show that if AskKey occurs, then there exists an algorithm B′ against
the GDL’ problem. Indeed, B′ is given inputs (G,n, p, PKS) and runs A on this input. If AskKey
occurs, then Amust return (PKR, r

∗, s∗, c∗) such that H1Sim is queried on (m∗, PKS , PKR,K
∗).

Since (m∗, PKR) has never been queried to SCSim, R must be queried on (PKR,K
∗) by H1Sim

and return r∗. Thus, there will exist an entry (PKR,K
∗, r∗, j) ∈ LR, where 1 ≤ j ≤ q1. As

a result, (s∗, j) is a valid solution for the GDL’ problem. Therefore, we have Pr[AskKey] ≤
AdvGDL

′
B′ (k). In conclusion, we achieve the following reduction:

AdvSC−UF−CMA
A (k) ≤ AdvGDL′B′ (k) + qSC(q1+qSC)+1

2lp(k)

In the following, we will apply the general forking lemma defined by Bellare et al. in [26] to
reduce GDL’ to GDL. This approach is also used by Zhang et al. [200] in their proof. We recall
the general forking lemma as follows:

Lemma 17 (General forking lemma [26]). Fixing an integer qR ≥ 1 and a set Z of size h =
2lp(k) ≥ 2. Let V be a randomized algorithm that on input (cp, r1, r2, ..., rqR) returns a pair
(J, σ) consisting of an integer 0 ≤ J ≤ qR and a side output σ. Let IG be a randomized
algorithm that we call input generator. The accepting probability of V, denoted as acc, is

defined as the probability that J ≥ 1 in the experiment: cp
$←− IG; r1, r2, ..., rqR

$←− Z; (J, σ)
$←−

V (cp, r1, r2, ..., rqR). The forking algorithm associated to V is defined as follows:
FV(cp):

Pick coins ρ for V at random r1, ..., rqR
$←− Z; (I, σ) ← V(cp, r1, ..., rqR ; ρ); If I = 0 return

(0, ε, ε); r′1, ..., r
′
qR

$←− Z; (I ′, σ′)← V(cp, r1, ..., rI−1, rI , ..., rqR ; ρ)
If I = I ′ and rI 6= r′I return (1, σ, σ′) else return (0, ε, ε)
Let

frk = Pr[b = 1 : cp
$←− IG; (b, σ, σ′)

$←− FV(cp)]

Then frk ≥ acc · (accqR −
1
h) and alternatively

64

acc ≤ qR
h +

√
qR · frk

Lemma 18. If there exists a PPT adversary B′ against the GDL’ problem, then there exists a

PPT adversary B against the GDL problem such that: AdvGDL
′

B′ (k) ≤ qR
h +

√
qR ·AdvGDLB (k)

Proof. We will use the general forking lemma in this proof. As defined in the proof of Lemma
16, B′ is the algorithm that can solve the GDL’ problem. It takes as input (G,n, p, PKS) where
a = priv−1

S , and returns (j∗, s∗, r∗) or ⊥. We denote an algorithm V that runs B′ as a subroutine.
It takes as input (G,n, p, PKS , r1, ..., rqR). It outputs values of type (j, σ) or (0, ε, ε), where σ
is a tuple of the form (s, r) ∈ Z2

p. The forking algorithm FV is built as in Lemma 17. We define
an algorithm B that runs FV as a subroutine. If FV returns (1, σ, σ′), such that: σ = (s∗, r∗)
and σ′ = (s∗′, r∗′), we have K∗ = K∗′ and PKi∗ = PKi∗′ (because j∗ = j∗′). As a result, the
following equation holds: [priv−1

S · s∗ + rj∗]PKi∗ = [priv−1
S · s∗′ + rj∗′]PKi∗′ . Since rj∗ 6= rj∗′

as defined in the forking algorithm FV , we can extract the initiator’s private key as follows:
privI = (s∗ − s∗′)/(rj∗′ − rj∗). Then B outputs privI as a solution for an instance of the GDL
problem. As we can see, V outputs essentially what B′ outputs. It is obvious that the accepting
probability acc is equal to the success probability of B′, AdvGDL′B′ (k). Similarly, B outputs
identically as FV , so that AdvGDLB (k) = frk. Hence, by the general forking lemma, we have:

AdvGDL
′

B′ (k) ≤ qR
h +

√
qR ·AdvGDLB (k)

4.2.5 Provided security features and extension

We have formally proved in section 4.2.4 that our scheme ECKSS is confidentially secure in
the outsider model and unforgeably secure in the insider model. In [201], the authors suggest
that a signcryption scheme should also support the ”public verifiability” and ”non-repudiation”
features. We claim that ECKSS provides these properties.

• Public verifiability: To prove to a trusted third party that the initiator I actually signed
the plaintext m, R can forward the following tuple (PKS , PKR,m,K, r, s, c). The third
party can verify the signcryptext by executing the steps belows:

– Compute τ = H0(PKS ||PKR||K)

– Verify if m = Decτ (c).

– Verify if r = H1(PKS ||PKR||K||m)

The knowledge on K does not leak any secrecy on the private key of either I or R, as long
as the DLP assumption remains unbreakable for any resource-bounded attackers.

• Non-repudiation: The non-repudiation is a direct result of the unforgeability feature.
The initiator usually can not deny the authority of the signcryptext when executing the
above public verifiability process, if the ciphertext is really issued by him. However, if the
aforementioned process passes successfully, then duplicating valid signcryptext is possible,
which is inconsistent to the unforgeability feature.

It is possible to add the property of insider confidentiality to the previous proposed scheme
with the cost of an extra point multiplication. This property was also considered in [18, 14,
200] and called ”forward security” in several existing works [187, 190, 70]. Indeed, instead of
returning (r, s, c), Signcrypt returns (Q, s, c), where Q = r.G. Similarly, Unsigncrypt verifies the

65

validity of Q instead of r, as follows: Q
?
= H1(PKS ||PKR||K||m).G. As we can see, it is now

computationally infeasible for a bounded resource adversary to recover messages of previous
sessions even under exposure of the private key of the initiator due to the DLP assumption. We
name the resulting scheme as ECKSS+.

4.2.6 ECKSS Performance Evaluation

This section first quantifies the performance of our proposed schemes and then estimates their
energy consumption versus other related schemes on an emulated sensor platform.

4.2.6.1 Performance comparison

Table 4.1 illustrates the efficiency and supported security features of our schemes and multiple
signcryption proposals in related work. The table shows if the scheme supports certificateless
property. Then, the efficiency of each scheme is evaluated with respect to: communication and
computational costs. The communication costs are evaluated as the packet length of signcryp-
text in bits. While, the computational costs are evaluated in terms of the number of expensive
operations needed for the signcryption and unsigncryption processes. Finally, the table summa-
rizes the supported security properties for each scheme.

As shown in Table 4.1, our proposed schemes not only support desirable security features,
but also offer the best performance in terms of computational cost. Indeed, ECKSS requires only
1 point multiplications (PM) for signcryption, 2 PMs and one point addition for unsigncryption.
ECKSS+ requires one more point multiplication in both the signcryption and unsigncryption
process. When compared to the other elliptic curve based schemes ([70, 187, 190, 198, 99]),
ECKSS+ needs the least number of costly operations and also generates the shortest signcrytext
in bits.

66

Efficiency Supported features
Computational cost

Communication cost Signcryption Unsigncryption
Scheme CL PM PA I e EXP PM PA I e EXP UF OCF NR PV ICF StS

Zheng [201] m 2|p|+ |m| 0 0 1 0 1 0 0 0 0 3 l l l l m n/a
SCDSA+ [180] m 2|p|+ |m| 0 0 2 0 2 0 0 1 0 3 l l l l m DSA
Bao et al. [19] m 2|p|+ |m| 0 0 1 0 2 0 0 0 0 3 m l l l m n/a

Yum et al. [199] m 2|p|+ |m| 0 0 0 0 1 0 0 0 0 3 m l l l m KCDSA
Selvi et al. [175] l 2|p|+ |m| 0 0 0 0 5 0 0 0 0 7 l l l m l n/a

S-ECSC [202] m 2|p|+ |m| 1 0 0 0 0 3 1 0 0 0 l l l l m n/a
ECGSC [99] m |G|+ |p|+ |m| 2 0 1 0 0 3 1 1 0 0 l l l l l ECDSA
NCLSC [198] l 3|G|+ |m| 3 1 0 0 0 2 2 0 2 0 l l l l l n/a

Tso et al. [190] m |G|+ |p|+ |m| 3 0 1 0 0 4 1 3 0 0 l l l l l ECDSA
Toorani et al. [187] m |G|+ |p|+ |m| 2 0 0 0 0 4 2 0 0 0 l l l l l n/a

Dutta et al. [70] m |G|+ |p|+ |m| 3 0 1 0 0 5 2 0 0 0 l l l l l n/a
ECKSS l 2|p|+ |m| 1 0 0 0 0 2 1 0 0 0 l l l l m KCDSA

ECKSS+ l |G|+ p|+ |m| 2 0 0 0 0 2 1 0 0 0 l l l l l KCDSA

Table 4.1: Performance comparison between our scheme and related work
Meaning of abbreviations: CL: Certificateless or Public key Verification without a trusted third party, PM: Point multiplication, PA: Point
addition, EXP: Modular exponentiation, I: Modular inversion, e: Pairing operation, UF: Unforgeability, OCF: Outsider Confidentiality, NF:
Non-repudiation, PV: Public verifiability, ICF: Insider Confidentiality or Forward secrecy, StS: Standard signature. We define simple symbols
to evaluate the security services: l- supported, m- not supported. The n/a notation means ”not applicable”. |Y | denotes the length of Y in
bits.

Parameters Strength Size PM PA Inversion Pairing

secg p160 80 160 2460ms/16.25mJ 7ms/0.03mJ 298ms/1.90mJ 3533ms/23.32mJ
nist p192 96 192 3463ms/22.53mJ 8ms/0.04mJ 403ms/2.67mJ 6586ms/43.47mJ
nist p224 112 224 4782ms/32.05mJ 10ms/0.07mJ 577ms/3.81mJ 9573ms/63.19mJ
nist p256 128 256 18.91s/124.07mJ 31ms/0.21mJ 1870ms/12.36mJ 36,16s/238.13mJ

Table 4.2: Energy consumption and time execution of atomic operations on Wismote [184]

67

4.2.6.2 Estimation of energy consumption on emulated sensor platform

In this subsection, we provide details on the implementation of our performance assessment.
Thereafter, we report the performance and energy consumption results of our scheme compared
with related work.

Experimental tools and platforms: We have implemented our assessment program in
C for the operating system Contiki 2.7 [67]. Based on the Relic library [8] version 0.3.5, we
evaluate some cryptographic operations on the four elliptic curves secg p160, nist p192, nist p224
and nist p256. Their domain parameters have been recommended by SECG [9] and NIST [81].
In addition, we opted for the emulated sensor node Wismote to evaluate the required operations
on Cooja [74] - a Java-based simulator designed for the Contiki operating system. Wismote
[184] is a low power wireless sensor module featured with 16 MHz MSP430x micro-controller, 16
kB of RAM, 128 kB of ROM and an IEEE 802.15.4 radio interface. This platform supports 20
bit addressing and sufficient RAM and ROM capacities. Such features are necessary for using a
cryptographic library along with an application on top of it.

Performance: In order to assess the energy consumption, we employ a software-based online
energy estimation mechanism described in [68]. In their model, the total energy consumption
can be evaluated by the following formula: E = U ∗ (Imtm+Iltl+Ittt+Irtr+

∑
Icitci), where U

is the supply voltage, Ii and ti (i = m, l, t, r) are the current draw and the time duration of the
microprocessor in active mode, low power mode, transmit mode and receive mode respectively.
Ici and tci are the current draw and the time duration of the microprocessor for handling other
components, such as sensors and LEDs.

In our scenario, we consider only the first four factors. The value of U is typically 3V, as
with two new AA batteries. Furthermore, the current draw of the sensor node in each mode is
extracted from its data sheet. As an example, the Wismote platform consumes I=2.2mA when
in active mode. The time ti that the component is in mode i, is measured by Powertrace. The
latter is a pre-loaded tool in the Contiki OS, which provides an accuracy up to 94% of the energy
consumption of a device [66].

Table 5.3 shows the execution time and energy cost of ECC operations over the Wismote
platform. We consider only the most expensive operations: point multiplication(PM), point
addition(PA), modular inversion and pairing operation. Each operation is evaluated in the four
mentioned elliptic curves in increasing order of security level. Pairing-based calculation is, as
expected, the most expensive operation. Point multiplication is also an expensive task. That is,
even for the smallest security level of 80 bits, it requires up to 2.5s to compute and consumes
16.25mJ. In addition, we observe that for an elliptic curve with length of 256 bits of field order,
the energy cost for point multiplications and pairing operations becomes huge, since for a single
execution, they consume more than 124mJ and 239mJ, respectively. Besides, they are also
time-consuming (18.91s for a PM and 36.16s for a pairing).

Gathering the measurement results in Table 4.1 and 5.3, we estimate the total energy con-
sumption of our proposed signcryption schemes and five other ECC-based signcryption schemes.
As depicted in Figure 4.6, our proposals ECKSS and ECKSS+ are the most efficient schemes.
The ECGSC [99] scheme has a slightly higher computational cost in comparison with ours.
However, it requires certificates to validate the public keys. This constraint could be very costly
for a sensor node, since the verification of certificates is usually complicated and consuming in
energy. Indeed, when using the nist 9256, ECKSS+ saves more than 17%, 43%, 58% and 60%
of the overall energy consumption in comparison with the schemes of Dutta et al. [70], Tso et
al. [190], Toorani et al. [187] and NCLSC [198], respectively. ECKSS is even more efficient than
ECKSS+ and therefore can be applied on resource-constrained devices.

68

Figure 4.6: Total estimated energy consumption of our schemes and related work

4.3 ECKSS Application to MIKEY

Multimedia Internet KEYing (MIKEY) [15] is a key management protocol which is intended
for use with real-time applications. MIKEY provides different methods to establish a session
key with multiple parties, in addition to the authentication of parties if required. For example,
MIKEY pre-shared key method permits any two parties with a pre-shared secret to set up
a secure communication. However, this mechanism suffers from scalability issues since it is
unpractical to pre-distribute a common key for any two parties in large networks, e.g. the
Internet of Things (IoT). To be scalable, public key encryption-based methods, where any two
parties can establish security communications without any a priori shared common keys, have
been proposed to be employed by MIKEY.

These different key distribution mechanisms can be classified into two categories: (i) a key
exchange mode and (ii) a key transport mode. The MIKEY key exchange modes, such as,
MIKEY-DHSIGN [15], MIKEY-DHHMAC [77], are usually based on the Diffie-Hellman (DH)
key exchange [142]. These modes provide the perfect forward secrecy property, i.e. the compro-
mise of long-term keying materials does not reveal previously derived session keys. Additionally,
both communicating parties participate in the session key generation process. As a result, DH-
based modes require at least two message exchanges to set up a common secret key. As another
disadvantage, these modes do not support the establishment of group keys. In key transport
modes, on the other hand, the initiating party is responsible for the key generation. The gener-
ated keys are then encrypted using the public key of the responding party. Even if key transport
modes do not provide perfect forward secrecy, they are more efficient in terms of computation
and communication than DH-based modes. Indeed, only a half roundtrip is needed to set up a
common key between two parties. Existing key transport modes of MIKEY generally employ a
public key encryption algorithm to protect transferred keys, such as RSA [112] or ECIES [83]
and an additionally public key signature algorithm to sign MIKEY messages.

In this section, we propose to use more lightweight key transport modes built upon our
proposed signcryption scheme ECKSS defined in the previous section. ECKSS is based on
Elliptic Curve Cryptography (ECC), thus inheriting multiple advantages of ECC in terms of
performance. As mentioned in [83], ECC-based schemes require smaller key sizes and offer better
security per bit, when compared with known cryptographic algorithms like RSA. Moreover,
ECKSS offers the certificateless feature that allows to dispense the two parties with the provision

69

Initiator Responder

I MESSAGE: HDR, T, RAND, [IDi|CERTi], [IDr], SP,
KEMAC, [CHASH], PKE, SIGNi

[Optional] R MESSAGE: HDR, T, [IDr], V

Figure 4.7: Basic message format for a MIKEY public key encryption method

of a digital certificate issued by a Public Key Infrastructure (PKI).
The remainder of this section is organized as follows. We first present the payload and data

type formats of a MIKEY key transport mechanism in section 4.3.1. Then, in section 4.3.2, we
clarify our design goals for proposing new key distribution methods for MIKEY. Section 4.3.3
and 4.3.4 give details on these extensions in respect to the original MIKEY payload formats.
Finally, Section 4.3.6 presents the experimental results of the new proposed MIKEY modes.

4.3.1 Introduction to MIKEY modes and extensions

Figure 4.7 describes the basic message composition of a MIKEY key transport method that
uses a public-key encryption algorithm, for example, in the MIKEY-RSA [15] and MIKEY-
ECIES [83] modes. The mechanisms contain two message exchanges: the I MESSAGE and the
R MESSAGE. The main objective of the Initiator’s message is to distribute one or more TGKs
and a set of security parameters in a secure manner. We recall the payload notions as defined
in [15], in the following:

• HDR: The MIKEY header, which contains related data and information mapping to the
specific security protocol used.

• T: The timestamp, used to prevent replay attacks.

• RAND: The random byte-string, which is used as a value for the freshness of the session
key generation process.

• IDx: The identity of the entity X (IDi: Identity of the Initiator, IDr: Identity of the
Responder).

• SP: The security policies.

• KEMAC: The Key Data Transport Payload, which contains the encrypted TGKs and a
MAC.

• CHASH: The Cert Hash Payload, which is the hashes of the used certificates (e.g. CERTi).

• PKE: The Envelope Data Payload, which contains the encrypted envelope key, env key.

• SIGNx: The signature covering the entire MIKEY message, which is generated using the
signature key of the entity X.

• V: The verification message payload containing the MAC calculated over the entire MIKEY
message.

70

As described in Figure 4.7, the MIKEY public key encryption method first chooses an enve-
lope key env key. This key is then to be encrypted using the public key PKR of the Responder
and conveyed in the PKE payload: PKE = E(PKR, env key). Then, the encr key and the
auth key are derived from the envelope key, env key. These two keys are used to build the
KEMAC payload where the encr key is used to encrypt the TGKs. The encrypted part is then
followed by a MAC calculated using auth key over the entire KMAC payload. The whole MIKEY
message is then integrity protected by the signature payload SIGNi.

4.3.2 Design motivations

As MIKEY [15] becomes more deployed, extensions to the base protocol have emerged [83], [10],
[38]. Several of these extensions brought additional key distributions methods to MIKEY, for
instance based on Elliptic Curve Cryptography (ECC) [158]. Since ECC support requires smaller
keys while keeping the same security level as other asymmetric algorithms like RSA, ECC usage
is considered interesting for devices with limited performance and storage capabilities. ECC
extensions to MIKEY offer new mechanisms for authentication, encryption and digital signature
to provide secure key distribution. ECC-based mechanisms such as ECDH to extend the Diff-
Hellman exchange [142], ECDSA or ECGDSA for digital signatures, Elliptic Curve Integrated
Encryption Scheme (ECIES) and Elliptic Curve Menezes-Qu-Vanstone Scheme (ECMQV) to
provide, respectively, integrated encryption and authenticated key exchange, have been defined
in [158]. To the best of our knowledge, ECC-based signcryption mechanisms have not been
proposed for MIKEY, even though these mechanisms have been present in the literature for
many years, and many ECC-based signcryption mechanisms offer a good performance thanks
to their optimized authenticated public key encryption besides the advantages of ECC.

The novel key transport mechanisms for MIKEY are designed to put forwards the following
motivations:

• Performance and Efficiency: Our proposed ECKSS signcryption scheme is able to
transport secret data in a secure manner without intensive calculation. Thus, ECKSS-
based methods for MIKEY is able to address the same scenario as the other key es-
tablishment methods in MIKEY [83]. In fact, existing MIKEY modes are intended
for application-layer key management and multimedia applications. However, thanks to
ECKSS lightweight computation requirements, the proposed methods can be considered in
constrained environments such as IoT. We prove the feasibility of our proposed mechanisms
in such environment in section 4.3.6. Furthermore, the mechanisms are based on elliptic
curve cryptography (ECC). Additionally, when compared with existing ECC-based asym-
metric methods of MIKEY, our proposed mechanisms are the most efficient while offering
equivalent security guarantees. More details are provided in section 4.3.6.1.

• PKI Independence: ECKSS can be applied in the context where no access to a public-
key infrastructure (PKI) is available. Indeed, the validation of entity’s public keys is
realized in equation (1) without certificates. Moreover, as pre-shared master secrets are
not required, the proposed ECKSS-based schemes should be as scalable as other existing
asymmetric mechanisms of MIKEY.

4.3.3 The MIKEY-ECKSS mode specification

Figure 4.8 defines the message exchanges for our first proposal MIKEY-ECKSS. Similarly to
other MIKEY public key encryption methods such as MIKEY-RSA [15] or MIKEY-ECIES [83],
the main objective of the Initiator’s message is to distribute one or more TGKs in a secure
manner. This method reuses the defined payload in section 4.3.1 except the payload ECKSSi

71

Initiator Responder

I MESSAGE: HDR, T, RAND, [IDi|PKi], [IDr],
{SP}, ECKSSi, SIGNi

[Optional] R MESSAGE: HDR, T, [IDr], V

Figure 4.8: Elliptic curve Korean signature-based signcryption key distribution method for
MIKEY

in the I MESSAGE. This payload transports actually the encrypted TGKs through the triple
(r, s, c). To guarantee the integrity protection, we employ the payload SIGNi, which is a signature
covering the entire I MESSAGE. As described in [15], the SIGNi payload will use either ECDSA
or ECGDSA as the signature algorithm.

Upon receiving the I MESSAGE, R first approves the integrity of the message by verifying
the appended signature payload SIGNi. If the verification holds, it then uses the Unsigncrypt
algorithm to decrypt the payload ECKSSi in order to obtain the values of TGKs. In case mutual
authentication is required, the verification message, V, is calculated by building a MAC over the
concatenation of the header HDR (the same as the one that was used in the I MESSAGE), the
timestamps, the identities of the two parties, using the authentication key. The latter is derived
from the received TGKs. Then, we append the V payload to the concatenation (HDR, T, [IDi,
PKi], [IDr]) to form the R MESSAGE. However, as depicted in Figure 4.8, the R MESSAGE is
optional.

4.3.4 The MIKEY-ECKSS-HMAC mode specification

In this subsection, we describe in detail our second key distribution extension for MIKEY. We
call this mode MIKEY-ECKSS-HMAC, since this mode uses ECKSS to envelop the TGKs and
HMAC to ensure the authentication of the messages exchanged. As we shall see, the use of the
signature payload SIGNx still requires multiple exponentiations in the signature generation and
verification processes, e.g. 3 modular exponentiations are needed if using ECDSA. As a result,
MIKEY-ECKSS-HMAC is even more lightweight than MIKEY-ECKSS, which is suitable for
constrained devices.

Initiator Responder

I MESSAGE: HDR, T, RAND, [IDi|PKi], [IDr],
{SP}, ECKSSi, KEMAC

[Optional] R MESSAGE: HDR, T, [IDr], V

Figure 4.9: HMAC-authenticated Elliptic Curve Korean signature-based signcryption key dis-
tribution method for MIKEY

Figure 4.9 describes in detail the MIKEY-ECKSS-HMAC mode. We use the same notations
for the payload names as defined in section 4.3.1. In the I MESSAGE, the ECKSSi payload
contains the triple (r, s, c) as depicted in section 4.2.3.2. The KEMAC payload conveys the
Hash Message Authentication Code (HMAC) of the entire MIKEY message. This technique
is also employed in the MIKEY-DHHMAC method [77]. The HMAC value is calculated using
the secret key kauth. This key is generated during the encryption of TGKs using the ECKSS

72

Signcrypt Unsigncrypt
4) Generate a couple of secret keys:

τ, kauth = H2(PKI ||PKR||K)
4) Get the secret keys:

τ, kauth = H2(PKI ||PKR||K)

Table 4.3: Modifications made to the Signcrypt and Unsigncrypt algorithms

algorithm. Indeed, we make modifications in step 4 of the Signcrypt algorithm and in step 4
of the Unsigncrypt algorithm (see section 4.2.3.2 for more details). Another secret key kauth in
addition to τ is generated, as depicted in Table 4.3. This key is to be used in the creation of
HMAC.

Upon receiving the I MESSAGE, R first runs the Unsigncrypt algorithm to get the value of
TGKs and kauth. The authentication key kauth is then used to verify that the I MESSAGE has
not been modified by an attacker. Indeed, a MAC is calculated over the entire I MESSAGE
using kauth. This value is then compared with the hashed value extracted from the KEMAC
payload. On the other hand, the R MESSAGE’s construction is optional as depicted in Figure
4.9. This message is only needed when mutual authentication between parties is required.

4.3.5 Security considerations

As this chapter proposes two new methods for the MIKEY protocol, existing security consider-
ations discussed in [15] apply here as well.

As mentioned in [15], one should select a secure symmetric cipher supporting at least 128
bits as a practical choice for the actual media protection. In our proposals, the payload ECKSSi
carries the actual encrypted TGKs, the used encryption algorithm should also offer a security
level of at least 128 bits. For the selection of hash functions, we recommend to work at least
with SHA-256 [56] when constructing the ECKSSi payload and other payloads as well. This
should be seriously taken into account in order to achieve the 128-bit level.

Similar to other key transport mechanisms, our proposed methods do not provide the perfect
forward secrecy property. A Diffie-Hellman key distribution resolves this issue but requires the
transmission of the R MESSAGE in order to set up a common secret key.

In order to provide the certificateless feature, our proposed methods rely on the binding
of public values of communicating parties with the public keys issued by KMS. Thus, after
validating a provided public value using equation (1), we can be sure that only KMS is able
to generate such value. It also means that the KMS can read all traffic between any parties
administrated by the KMS. However, we assumed that the KMS is a fully trusted party.

4.3.6 Experimental performance evaluation

In this section, we first quantify the performance of our schemes. Then, we describe our testing
environment and the used methodology to achieve the experimental measurements. Finally, we
provide in detail the performance results in terms of energy consumption and the time execution
of our proposals including the ECKSS algorithm and the two proposed MIKEY modes.

4.3.6.1 Comparison with related work

Table 4.4 illustrates the performances of our two proposed methods and multiple ECC-based
MIKEY modes in related work. The table first identifies if the scheme is a key exchange method
or a key transport method. Then, it shows if the scheme is independent to the public key
infrastructure or not. This property means that a PKI-independent scheme does not require

73

Mode Type PKI I MESSAGE R MESSAGE
PM I e PM I e

MIKEY-DHSIGN [83]
KE

Yes 1 (DH) + 1 (SIGNi) 1(SIGNi) 0 1 (DH) + 2 (SIGNi) 1 (SIGNi) 0
MIKEY-ECQMV [83] Yes 1(ECCPT)+1 (SIGNi) 1 (SIGNi) 0 1 (PKE)+2 (SIGNi) 1 (SIGNi) 0
MIKEY-SAKKE [97]

KT

No 3 (SAKKE)+1 (SIGNi) 1 (SIGNi) 0 2 (SAKKE)+4 (SIGNi) 0 1 (SAKKE)
MIKEY-ECIES [83] Yes 2 (PKE)+1 (SIGNi) 1 (SIGNi) 0 1 (PKE)+2 (SIGNi) 1 (SIGNi) 0
MIKEY-ECKSS No 1 (ECKSSi) + 1 (SIGNi) 0 0 2 (ECKSSi) + 2 (SIGNi) 0 0

MIKEY-ECKSS-HMAC No 1 (ECKSSi) 0 0 2 (ECKSSi) 0 0

Table 4.4: Performance comparison of our propositions and ECC-based MIKEY modes in related
work
Meaning of abbreviations: PM: Modular point multiplication; I: Modular Inversion; e: Pairing operation; PKI: Public Key

Infrastructure; KE: Key Exchange; KT: Key Transport.

standard digital certificates to provide authentication between communicating parties and hence
the scheme is discharged from complex operations during certificate verification, revocation and
management processes. Then, the efficiency of each scheme is evaluated with respect to the
computational cost demonstrated in terms of the number of expensive operations needed to
generate the I MESSAGE and the R MESSAGE. Here, we consider the three most expensive
operations for an ECC-based scheme: modular point multiplication (PM), modular inversion (I)
and pairing operation (e). Furthermore, we provided also the name of the payload that requires
these expensive operations. For example, in a PM column, the line ”2 (PKE) + 1 (SIGNi)”
means that two point multiplications are executed to build the PKE (public key encryption)
payload and 1 other point multiplication is calculated to build the SIGNi (signature) payload.
For simpler comparison, if not explicitly specified in each mode, we assume that SIGNi payload
carries an ECDSA signature and its related data.

As we shall see, the first two modes in Table 4.4: MIKEY-DHSIGN and MIKEY-ECQMV,
are two ECC-based key exchange methods proposed for MIKEY. These methods are based on
the Diffie-Hellman key exchange [142]. Hence, the R MESSAGE is compulsory in order to setup
a common secret key. On the other hand, in a key transport mechanism, I envelops and sends
directly a secret key/message that can be used as a session key without the response from
R. As our proposed schemes are key transport mechanisms, we only make direct comparison
with other key/message distribution mechanisms proposed for MIKEY. As depicted in Table
4.4, MIKEY-ECIES [83] seems to be our direct competitor in terms of performance since it
is slightly more heavyweight than our first proposal MIKEY-ECKSS (with two more modular
inversions to compute). In addition, MIKEY-ECKSS is more lightweight in the generation of
the I MESSAGE which can be beneficial for a very resource-constrained initiator. Our second
proposal MIKEY-ECKSS-HMAC is even more efficient than our first one. As such, it requires
only 1 point multiplication for generating the I MESSAGE and 2 point multiplications for gen-
erating the R MESSAGE. Furthermore, both proposals do not require certificates to validate
the public values of communicating parties, which is not the case in MIKEY-ECIES mode.
MIKEY-SAKKE [97] is also exempted from the use of PKI. However, this mode is much more
expensive than our two methods since a pairing operation needs to be executed when receiving
the R MESSAGE.

4.3.6.2 Experimental tools and platforms

We implemented our assessment program in C for the operating system Contiki 3.0 [67]. Based
on the Relic library version 0.4.0 [8], we evaluated our proposed MIKEY modes on the elliptic
curves secg k256. Its domain parameters have been recommended by SECG [157], which provides
a security level of 128 bits. In addition, we opted for the sensor node Openmote to evaluate the
required operations. Openmote [6] is a low power wireless sensor module featured with 32 MHz

74

Algorithm Time (s) Energy (mJ)

ECKSS Signcrypt 2.64 5.6
ECKSS Unsigncrypt 5.8 12.4

Public Key Validation 3.12 6.6

Table 4.5: Energy consumption and time execution of ECKSS algorithms on the Openmote
platform

Cortex-M3 microcontroller, a CC2520-like radio transceiver, 32 kB of RAM, 512 kB of ROM
and an IEEE 802.15.4 radio interface. This platform supports 32 bit addressing and sufficient
RAM and ROM capacities. Such features are needed in order to use a cryptographic library
along with an application on top of it.

In our testing scenario, we encrypted data using AES in CBC mode. For MAC and message
verification function, we used SHA-256 as secure hash algorithm, which provides digests (hash
values) that are 256 bits. Furthermore, we transported each time a TGK with the size of 32 bytes
in our tests. In each case, the experimental measurements have been obtained by calculating
the average of 100 executions for each operation.

4.3.6.3 Methodology

For measuring the processing time, we used two timers provided in the rtimer library of Contiki
[67]. The first timer with 128 ticks per second was employed to measure the execution time of
expensive operations. The second one is more powerful with 32768 ticks per second. It was used
to measure the time duration of the mote running on a specific mode.

On the other hand, in order to assess the energy consumption, we employed a software-based
online energy estimation mechanism described in [69]. In this model, we can calculate the energy
consumption E in Joule of an operation on Contiki using the following equation:

E = U ∗
∑

Im ∗ tm (4.2)

where U is the supply voltage, Im is the hardware specific current draw, tm is the time duration
and m means a particular mode (e.g. active power mode, low power mode, transmit mode and
receiver mode). In our scenario, the value of U is typically 3V, as with two new AA batteries.
Besides, the current draw of the sensor node in each mode is extracted from its data sheet [1].
Concretely, we considered the following modes in our measurement: power mode 1 (cpu active
mode), power mode 2 (low power mode), active-mode rx (receive mode) and active-mode tx
(transmit mode). The consuming current draw for each mode are respectively: Ipm1 = 0.6mA,
Ipm2 = 1.3µA, Irx = 20mA and Itx = 24mA, as described in [1]. The time duration tm that the
mote is in mode m, is measured using Powertrace and Energest power profile [66]. These latters
are pre-loaded tools in the Contiki OS, which provide an accuracy up to 94% of the energy
consumption of a device.

4.3.6.4 Experimental results of ECKSS

In this subsection, we provide the experimental results of our signcryption scheme ECKSS.
Table 4.5 shows the execution time and energy cost of ECKSS algorithms on the elliptic curve
secg k256 over the Openmote platform. The results reveal that even for a really lightweight
signcrypt algorithm with only one point multiplication, it requires up to 2.6 s to compute and
consumes 5.6 mJ. The resources required for an unsigncrypt are practically doubled since the

75

ECKSS ECIES
0

5

10

15

E
n
er

gy
co

n
su

m
p
ti

on
(m

J
)

Generation
Verification

ECKSS ECIES
0

2

4

6

8

E
x
ec

u
ti

on
ti

m
e

(s
)

Generation
Verification

Figure 4.10: Performance comparison of our proposal ECKSS with the algorithm ECIES

Algorithm Time(s) Energy (mJ)

ECDSA signature generation 2.75 6.3

ECDSA signature verification 5.83 13.6

Table 4.6: Energy consumption and time execution of ECDSA algorithms on the Openmote
platform

algorithm has to compute 2 point multiplications. We provide also in Table 4.5 the resources
consumed by an entity to validate other party’s public values. As we shall see, this process
consumed the same order of magnitude of time and energy as the signcrypt algorithm. Such
property is advantageous since the verification of certificates in a PKI-based scheme is usually
complex and energy and time consuming.

In Figure 4.10, we compare the performance of our ECKSS implementation with the standard
algorithm ECIES, as specified in [41]. ECIES’s implementation is provided in the Relic library
[8]. We remark that the total work load required by our scheme ECKSS is practically identical
to the one of ECIES. As we can see in Table 4.4, ECKSS is more rapid in the data encryption
process but slower in the data decryption process.

4.3.6.5 Experimental results of the proposed MIKEY modes

In this subsection, we describe the performance of our prototype implementations for the two
proposed MIKEY modes.

In MIKEY-ECKSS’s implementation, we use ECDSA as the signature algorithm. Table 4.6
provides the performance of ECDSA algorithms on the Openmote platform. These experimental
results are measured based on the implementation of ECDSA provided in [8]. As we can see,
ECKSS is even slightly more efficient than ECDSA both in the generation and verification pro-
cesses. This fact is understandable since our proposal is exempted from two modular inversions
compared to the ECDSA algorithm.

Additionally, to be more adapted to resource-constrained devices, we replace the timestamps
payload by an incremental counter payload. This counter is used together with the random
number (carried in RAND payload) to mitigate the replay attacks. If it is the first time that I
communicates with R, the counter is set to 0. It is increased by 1 after every successful key/data
transportation.

76

Mode I MESSAGE R MESSAGE
Time (s) Energy (mJ) Time (s) Energy (mJ)

MIKEY ECKSS 5.6 11.9 11.4 24.3
MIKEY ECKSS HMAC 2.6 5.6 5.7 12.2

Table 4.7: Energy consumption and time execution of our proposed MIKEY modes on openmote

0 10 20 30 40

MIKEY-ECKSS-HMAC

MIKEY-ECKSS

MIKEY-ECIES

Energy consumption (mJ)

I MESSAGE
R MESSAGE

0 5 10 15

MIKEY-ECKSS-HMAC

MIKEY-ECKSS

MIKEY-ECIES

Execution time (s)

I MESSAGE
R MESSAGE

Figure 4.11: Performance comparison of our proposed MIKEY modes and MIKEY-ECIES mode

Table 4.7 demonstrates the average time and energy consumption for generating the I MESSAGE
and R MESSAGE, respectively. The measures show that the MIKEY-ECKSS-HMAC mode is
approximately two times more efficient than the MIKEY-ECKSS mode. The performance gap
between them lies in the cost of creating the SIGNi payload. As such, instead of certificates and
signatures, MIKEY-ECKSS-HMAC uses a keyed hash message authentication code (carried by
the KEMAC payload) to guarantee the integrity of the messages exchanged.

Figure 4.11 provides a graphical view of the performance of our proposals in comparison with
the MIKEY-ECIES mode. The performance of the latter are roughly estimated by summing
the experimental results of the two algorithms ECIES and ECDSA given in Figure 4.10 and
Table 4.6. As we shall see, the MIKEY-ECIES mode has a slightly higher computational cost
in comparison with our proposed modes. However, it requires certificates to validate the public
keys. This constraint could be very costly for a sensor node, since the verification of certificates
is usually complex and consuming in time and energy.

4.4 Summary

In this chapter, we presented our first contribution [147, 148] in the respect of proposing
lightweight software-based security mechanisms for the Internet of Things. The proposed solu-
tions are twofold. Indeed, in the initial stage, we present a novel lightweight certificateless elliptic
curve-based signcryption scheme, called ECKSS [147]. The proposed signcryption scheme has
been formally proved to be outsider confidentially and insider unforgeablely secure against chosen
ciphertext/message attacks in the random oracle model. In the second stage, we proposed two
novel ECKSS-based key transport methods for MIKEY: MIKEY-ECKSS and MIKEY-ECKSS-
HMAC [148]. Both methods are relieved from the dependance on a public key infrastructure
thanks to the certificateless feature of ECKSS, and are more lightweight in terms of computa-
tion when compared with existing ECC-based key transport mechanisms proposed for MIKEY.
The performance of the proposed methods have been demonstrated by experimental implemen-

77

tations on the Openmote sensor platform. The results confirmed that our proposed MIKEY
extensions are feasible on resource-constrained devices. Hence, they can be used not only as
key distribution mechanisms for real-time applications but also as lightweight key distribution
solutions for the Internet of Things applications.

Following always the first direction defined in Section 3.3, we propose, in the next chapter,
an optimization to an Attribute-Based Encryption (ABE) scheme. As such, in order to reduce
the encryption cost of the considered ABE scheme, our solution delegates the most expensive
operations to a semi-trusted server without revealing any sensitive information. Inherited from
an ABE scheme, the proposed mechanism enables resource-limited IoT devices not only to
rapidly distribute their data in a secure manner, but also to authorize access to the encrypted
data.

78

Chapter 5

OEABE: Outsourcing the
Encryption of Ciphertext-Policy
Attribute-Based Encryption

In the context of Internet of things (IoT), there will be billions of embedded computing devices
interconnected together [4]. These networks will massively increase the amount of data generated
for analysis. Indeed, according to Cisco’s forecast [2], the data created by the IoT devices will
reach 507.5 zettabytes (i.e., 507.5 trillion gigabytes) per year by 2019. The access to this big data
should be treated carefully, such that a user is able to only access data that he/she is authorized
to. In general, we can manage user’s access rights by performing role-based access control
(RBAC) [172]. However, this model requires complex backend servers for the management of
access rights, in addition to trusted storage sites enforcing access control.

In case the IoT devices authorize who can read a specific data, lightweight access control
mechanisms are to be used in order to not rapidly consume resources (e.g. CPU, memory and
energy) of constrained devices. As described in Section 2.1.4, Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) offers fine-grained access control while giving users the flexibility to de-
termine who can decrypt data at runtime. However, CP-ABE is not only known to be complex
in the decryption phase [95, 203] but also energy-consuming in the encryption process. In fact,
CP-ABE uses complex cryptographic operations to encrypt a message. Additionally, the time
and energy required for these operations grow with the number of attributes in the access policy.

In this chapter, we adapt the encryption algorithm of the original CP-ABE scheme proposed
by Bethencourt et al. [28] in order to better fit the resource requirements of IoT devices.
Concretely, we first propose a new method, namely, OEABE for Outsourcing mechanism for the
Encryption of Ciphertext-Policy ABE. The main idea is to reduce the encryption cost by securely
delegating the most expensive computations in the encryption phase of CP-ABE to a semi-
trusted party. Second, we show that our proposed mechanism is resistant against both external
and internal attackers, without revealing the data content and used security keys. Third, we
present experimental performance results to compare our solution with the original CP-ABE [28].
In these experimental results, we estimate the execution time and the energy consumption of
our proposal on an emulated Wismote sensor platform. Additionally, we implement our solution
and compare its performance with the CP-ABE implementation proposed by Bethencourt [3]
on a laptop. Similar applications of our solution to other schemes proposed in [127, 195] are
possible, but they are out of scope of this work.

The rest of this chapter is organized as follows. Section 5.1 surveys related work on CP-ABE
schemes and solutions proposed to reduce the cost of encryption for ABE schemes. Section 5.2

79

describes the considered system and threat model. We describe in detail our proposed method to
outsource the encryption of CP-ABE in section 5.3. In section 5.4, we provide a security analysis
of our proposed scheme. The performance assessment of our proposal is given in section 5.5.
Section 5.6 gives concrete examples on how to apply OEABE in real world scenarios, while
section 5.7 concludes our work.

5.1 Related work

In this section, we first survey existing proposals on the Attribute-Based Encryption schemes.
Then, we present existing approaches that attempt to reduce the computational cost of the
CP-ABE encryption.

5.1.1 Related work on Ciphertext-Policy ABE schemes

Attribute-Based Encryption (ABE) is a very promising technique for fine-grained access control
applications on encrypted data. After Sahai et al. [168] introduced the first ABE scheme,
many ABE-based schemes [92, 28, 152, 47, 48, 127] have been proposed in the literature. An
ABE scheme can be roughly characterized according to the following criteria: the method that
the policy is embedded (key-policy [92] or ciphertext-policy [28]), the type of access structure
(monotonic [92] or non-monotonic access structure [152]) and the number of trusted attribute
authority (single-authority [28] or multiple-authority [47, 48, 127]).

In this thesis, we interested in the ciphertext-policy ABE schemes. As such, although the
KP-ABE scheme offers fine-grained access control feature, it has one main disadvantage. Indeed,
the data owners cannot decide on who has access to their encrypted data, except by their choice
of descriptive attributes for the data, since the access policy is embedded in the user private
keys. As a result, the data owners have to trust the key issuer. Ciphertext-policy ABE schemes
remove such inconvenience by directly embedding the access policy on the ciphertext. The
data owners can now authorize who can have access on their encrypted data. Thanks to that
interesting property, many CP-ABE schemes are then proposed (e.g. [51, 73, 91, 111, 149]).

In addition, our proposed idea is applied in a single-authority ABE scheme due to its simple
architecture. We mention also some multiple-authorities ABE schemes as they can be used
to extend our idea as well. In a single-authority ABE scheme, all user attributes and private
keys are generated by a central attribute authority. This method facilitates the management of
attributes and keys. However, if the number of authorized users increases, the attribute authority
must be powerful and at the same time can be considered as a single point of failure. To address
this problem, multiple-authorities ABE schemes [47, 48, 40, 127] have been proposed. These
solutions use multiple parties to distribute attributes and private keys to users. Such approach
offers the scalability for the system even if the number of users become large.

5.1.2 Reducing the computational cost of CP-ABE encryption

This subsection discusses existing solutions that reduce the cost of encryption in CP-ABE
schemes. By doing so, CP-ABE schemes can become more adapted for resource-constrained
data owners.

The first approach is to reduce the communication overhead due to the ciphertext length. As
such, in a CP-ABE scheme, the ciphertext length and the number of pairing operations usually
depend on the number of attributes embedded in the access structure. Several works [73, 64]
propose CP-ABE schemes that have constant ciphertext length and fast decryption.

As another approach, many other works propose to outsource CP-ABE encryption opera-
tions. Among works conducted in the literature, Zhibin et al. [203] introduce a solution to

80

securely offload both encryption and decryption processes of CP-ABE to external cloud-based
services. In their encryption process, the access policy is composed of two access structures
T1 and T2, which are connected by an AND root node. T1 is sent to the outsider encryption
service in order to generate the first part of ABE ciphertext. T2 is a sub-tree with only one
attribute. The second part of the ciphertext is computed by the user using T2, where the mes-
sage is actually encrypted. However, this solution requires 3 exponentiations on the user side
which is less efficient than our proposal. Touati et al. [188] propose a proxy-based CP-ABE
in the context of heterogeneous environment, such as, IoT. Their solution presumes that there
exist at least two trusted, non-colluding and unconstrained proxies in the neighbourhood of each
resource-constrained device. By dividing the secret random number s in n parts, each ciphertext
part is computed by the assisting nodes, where n is the number of proxy nodes. This solution
does not require any exponentiation to be executed in the constrained device. However, its
architectural assumptions are excessively unpractical. In addition, the communication overhead
is non-negligible, especially for highly resource-limited devices in IoT. Indeed, this approach ne-
cessitates 2n+ 1 message exchanges instead of one to form a valid ABE ciphertext. As another
approach, Bianchi et al. [29] propose to employ directly CP-ABE in WSN, provided that the
sensor nodes are equipped with energy harvesting capabilities. Such devices are able to harvest
energy from solar light, or even artificial light, such as table lamps and ceiling. When the de-
vice is fully charged and the power consumption on device is lower than the harvested power,
the surplus energy is used to pre-compute the CP-ABE policies. This approach is convenient
when the ciphertext has been computed and stored in the device beforehand. However, the
pre-calculated policies must be stored in the typically limited RAM memory.

Our idea is to delegate partially the CP-ABE encryption to a semi-trusted entity. We
apply our solution in the Bethencourtet al.’s CP-ABE [28]. This scheme uses a single attribute
authority and is able to support both monotonic and non-monotonic access structures. In
addition, it also provides most of the desirable ABE features (i.e. Data confidentiality, Fine-
grained access control, User revocation and Collusion resistance). Background knowledge on
ABE is defined in Section 2.1.4.

5.2 System and Threat model

In this section, we provide descriptions of our considered system and threat model.

5.2.1 System model

In a typical scenario of an ABE system, we consider the three following actors:

• Two parties: a Data Producer (DP) and a Data Consumer (DC), which respectively
encrypt and decrypt data.

• A trusted Key Distribution Center (KDC), which is responsible for the delegation creden-
tial management and distribution (i.e. user attributes and private keys). This function
can be hosted by the CP-ABE KDC.

In our considered scenario, DP is a resource-constrained device, such as a sensor node, while
DC can be a client or services that collect data. Figure 5.1 depicts a typical exchange where DP
builds an ABE ciphertext (ABE-CT) and sends it to DC. To reduce the cost of ABE encryption,
we remove direct exchanges between DP and DC as described in Figure 5.2. In the considered
scenario, DP computes partially the ciphertext and leaves the remaining part of computation

81

DP

DC

ABE-CT

Figure 5.1: DP builds an ABE cipertext and sends it to DC

for a new actor, namely Delegatee (DG). This party is a non-constrained resource devices, e.g.
a smartphone, a proxy or a cloud service. The completed ABE-CT is generated by DG. It

DP

DG (Non-constrained devices)

Cloud storage

DC

ABE-CT

ABE-CT

Figure 5.2: Our considered scenario: DP computes partially the ABE-CT, which is then com-
pleted by the DG

can be either stored by a cloud storage service or directly sent to DC. DC can retrieve the
cleartext message only if its set of attributes satisfies the access structure. Even though not
being considered in this work, mitigation of denial-of-service attacks is possible by providing
data integrity protection to all the messages exchanged between DP, DG and DC, for example,
using a pre-shared secret key. We do not present this in our protocol description for simplicity.

5.2.2 Threat model

This subsection describes the considered threat model in our proposal. Definition 19 provides
an informal description of the considered adversary model. Formal definition of such model can
be found in [90].

Definition 19 (Honest-but-curious adversaries). The honest-but-curious (HBC) adversaries fol-
low correctly the protocol specification. However, the adversary keeps a record of all intermediate
computations in order to learn information that is supposed to remain private.

In our model, we consider that the KDC is a trusted party that provides credentials and
attributes for each party in the system. On the other hand, DG is a honest-but-curious party,
which may attempt to guess the content of DP’s secret key or data from received ciphertexts
produced by DP, while performing tasks according to the protocol and returning correct results,
as described in Definition 19. Our assumption is far from being unpractical since DG acts as an

82

enforcement point that assures data authorization on behalf of the constrained-device DP. Its
existence is considered transparent to DC which is an external party receiving encrypted data.
Finally, we do not handle attacks from DC(s) (with collusion or not) targeting disclosure of secret
keys of DP from the CP-ABE ciphertext as the security and the collusion-resistance property
of original CP-ABE have been proved in [28]. In fact, the used CP-ABE [28] scheme is proven
secure in the generic group model. This model is an artificial model which is weaker than the
standard one. Several recent CP-ABE constructions (e.g. [195, 50]) are said to be secured in the
standard model. However, in this work, we consider the application of our delegation mechanism
to the Bethencourt et al.’s scheme [28] because it is the most simple and expressive CP-ABE
construction. Similar applications of our delegation technique to other CP-ABE schemes are
beyond the scope of this work.

In section 5.4, we first provide an informal security analysis of possible attacks from a com-
putational bounded attacker, namely A, that attempts to guess the cleartext and DP’s private
keys. A can be an external entity or even an internal entity which is a curious DG. Then, we
confirm that our scheme does not weaken the security of CP-ABE and thus reveals no informa-
tion on the cleartext message M and other secret parameters including the secret parameters of
the original CP-ABE scheme and the delegation key used in our proposed mechanism.

5.3 Secure outsourcing encryption mechanism for CP-ABE

In this section, we first present in detail the CP-ABE scheme proposed by Bethencourt et al.
[28]. Then, we describe in detail our outsourcing mechanism OEABE for the encryption of CP-
ABE. Finally, we prove that our proposed delegation mechanism is consistent. For more details
on the cryptographic definitions of a CP-ABE system, the reader can refer to Section 2.1.4 of
this document.

5.3.1 Bethencourt et al.’s Ciphertext-policy Attribute-Based Encryption

As described in [28], a CP-ABE system offers users the capability to decide who can access to
their encrypted data. Each user is associated with a set of attributes. These attributes are
used by KDC to generate user’s private keys. Upon receiving a message M , the encryptor first
chooses a monotone access structure T which contains the authorized sets of attributes for M .
The message is then encrypted using as input this access structure and the public key PK. Only
users holding a set of attributes that satisfy T can decrypt the ciphertext. Note that PK is a
global public key, meaning that it is not specific to any particular user.

The fundamental algorithms of a CP-ABE scheme are specified in the following:

• Setup(sp) → (PK,MK). Given the implicit security parameter sp, output the public
parameter PK = (G0, P,Q = β.P, f = (1/β).P, e(P, P)α) and the master key MK =
(β, α.P).

• KeyGen(MK,S) → SK. Given the master key MK and a set of attributes S, return a
private key SK = (D = ((α + r)/β).P,∀j ∈ S : Dj = r.P + rj .H(j), D′j = rj .P), where r
and rj are randomly chosen from Zp.

• Encrypt(PK,M, T) → CT . Given the public key PK, the message M and the access
structure T , return a ciphertext CT . Concretely, we first choose randomly a number s
from Zp. Then, let qx be the polynomial for node x (including the leaves) in the tree T .
Starting from the root R, we set qR(0) = s and find polynomial qx, such that qx(0) =
qparent(x)(index(x)) for each node x in the tree. The function index(x) returns a number

83

associated with the order of node x. Let Y be the set of leaf nodes in T and qy be a
polynomial for each leaf node y ∈ Y . The ciphertext is constructed as follows:
CT = (T , C̃ = M.e(P, P)αs, C = s.Q, ∀y ∈ Y : Cy = qy(0).P, C ′y = qy(0).H(att(y))),
where H is a hash function that transforms an attribute into an elliptic curve point on G0.

• Decrypt(CT,SK)→M . Given the ciphertext CT and the private key SK, return a message
M .

5.3.2 OEABE description

The proposed solution OEABE consists of two algorithms PreDelegation and CompDelegation,
as depicted in Figure 5.3. The first algorithm is executed by KDC in order to configure all
the security parameters including the secret values to be used in the delegation process. The
second one is initially run by DP and then DG each time data are encrypted. This algorithm
devises the Encrypt process into two stages. The first lightweight stage is run on the constrained
devices DP, while the second stage is executed by DG. The other algorithms of CP-ABE are
kept unchanged. A detailed description of the outsourcing process is given as follows.

PreDelegation. In this phase, KDC first runs the Setup algorithm as in a basic CP-ABE sys-
tem. Depending on the secure parameter k as input, the algorithm chooses a bilinear group G0

of prime order p with a generator P . Two hash functions H : {0, 1}∗ → G0 and h : {0, 1}∗ → Zp,
which behave as random oracles [27], are also chosen. Then, the public key and the master key
are generated as follows: PK = (G0, P,Q = βP, f = (1/β)P, e(P, P)α) and MK = (β, αP). In

the second step, KDC takes as input P,Q and H, and outputs a secret delegation key d
$←− Zp

for each DP and a list of security parameters (γ1 = −dQ, γ2 = −dP, {γ3t}t∈U = {−dH(t)}t∈U),
where U is the list of all defined attributes in the system. d is securely transferred to DP. Sim-
ilarly, the parameters (γ1, γ2, {γ3t}t∈U) are securely sent to DG. As we shall see, DG can not
retrieve any information on d due to the DLP problem (see section 2.2.2 for more details).

CompDelegation. This phase describes the delegation process. The main idea is that DG
executes the most expensive operations on behalf of the constrained device to form a valid ABE-
CT without any knowledge on the secret message M . In order to encrypt a message M under
the access policy ap, DP first chooses randomly a number s from Zp. Then, to securely outsource
expensive calculations to DG, DP binds the value of s using a random value generated from C̃.
The detailed procedure on DP side is described as follows:

• Choose randomly s
$←− Zp

• For a message M , compute C̃ = M(e(P, P)α)s

• Compute s′ = s+ h(C̃)d

• Generate the temporal ciphertext: CT ′ = (ap, C̃, s′)

The expensive computations to generate C, Cy and C ′y are done by DG. DP is only required

to compute one exponentiation to achieve the value of C̃. Then, the temporal ciphertext CT ′ is
sent to DG.

Upon receiving the non-completed ciphertext from DP, DG uses the access policy ap to
define an access tree T . Let qx be the polynomial for node x (including the leaves) in the tree T .
Starting from the root R, we set qR(0) = s′ and find all polynomials qx for each node x in the
tree, as in the original Encrypt algorithm of CP-ABE. We also define Y as the set of leaf nodes

84

KDC

DP DG

DCd γ1, γ2, {γ3t}t∈U

C̃ = Me(P, P)αs

s′ = s+ h(C̃)d

ap, C̃, s′

e = h(C̃), C = eγ1 + s′Q, Define T from ap,
Start with the root node R and set qR(0) = s′,

Find qy(0) ∀y ∈ Y,
∀y ∈ Y : Cy = qy(0)P + eγ2,
C′

y = qy(0)H(att(y)) + eγ3y

CT = (T , C̃, C, ∀y ∈ Y : Cy , C′
y)

PreDelegation

CompDelegation

Figure 5.3: Secure delegation for the encryption of CP-ABE

Meaning of abbreviations: A - -> B: Secure channel between A and B; d: Delegation key of DP; U : List of all defined

attributed in the system; γ1 = −dQ; γ2 = −dP ; {γ3t}t∈U = {−dH(t)}t∈U ; ap: Access policy generated by DP; T : Access

tree; Y : Set of leaf nodes in T .

in T and qy as a polynomial for each leaf node y ∈ Y . Then, DG has to perform the following
procedure:

• Generate e = h(C̃)

• Compute C = eγ1 + s′Q

• ∀y ∈ Y , compute Cy = qy(0)P + eγ2 and C ′y = qy(0)H(att(y)) + eγ3y

• Send the final ciphertext CT = (T , C̃, C, ∀y ∈ Y : Cy, C
′
y) to DC.

This proposal allows the constrained device to offload the expensive calculations of C,Cy and
C ′y, ∀y ∈ Y to DG. This intermediate information is then merged with CT ′ by DG to form the
final ciphertext CT . As a result, the constrained device needs only one message exchange to
generate an ABE-CT. Here, we note that sending s′ does not reveal any secrets of DC. We will
discuss this in section 5.4.

5.3.3 Correctness of our proposal

We need to verify that DC is able to decrypt the ciphertext CT provided by DG. Indeed, we
have:

Cy = qy(0)P + eγ2 = (qy(0)− ed)P

and
C ′y = qy(0)H(att(y)) + eγ3y = (qy(0)− ed)H(att(y)), ∀y ∈ Y

Upon receiving the ciphertext CT , DC runs the Decrypt algorithm as defined in [28]. For
each leaf node y from T , let i = att(y) and S be the set of attributes possessed by DC. If i ∈ S,
the recursion function DecryptNode(CT, SK, y) is proceeded as follows:

85

DecryptNode(CT, SK, y) =
e(Di, Cy)

e(D′i, C
′
y)

=
e(rP + riH(i), (qy(0)− ed)P)

e(riP, (qy(0)− ed)H(i))
= e(P, P)r(qy(0)−ed)

We define the Lagrange coefficient 4i,S for i ∈ Zp and a set, S, of elements in Zp: 4i,S(x) =∏
j∈S,j 6=i

x−j
i−j . For a non-leaf node x, we consider a recursive procedure. Indeed, for all nodes z

that are children of x, it calls DecryptNode(CT, SK, z) and stores the output as Fz. Let Sx be
an arbitrary kx − sized set of child nodes z, DC computes:

Fx =
∏
z∈Sx

F
4i,S′x (0)
z =

∏
z∈Sx

(e(P, P)r(qz(0)−ed))
4i,S′x (0)

=

∏
z∈Sx

(e(P, P)rqz(0))
4i,S′x (0)

e(P, P)
red

∑
z∈Sx

4i,S′x (0)
=

e(P, P)rqx(0)

e(P, P)red
= e(P, P)r(qx(0)−ed),where i = index(z) andS′x = index(z) : z ∈ Sx

,

The above result is deduced from the polynomial interpolation property and the fact that∑
z∈Sx
4i,S′x(0) = 1.

Applying the above computation to the root node R of the tree T , we set A = DecryptNode
(CT, SK,R) = e(P, P)r(qR(0)−ed) = e(P, P)r(s

′−ed) = e(P, P)rs. Besides, we have that the value
of C is identical to the one in original CP-ABE [28]. As such, C = eγ1 + s′Q = e(−d)Q+ (s+
ed)Q = sQ. The algorithm decrypts by computing C̃/(e(C,D)/A) = Me(P, P)αs/(e(sβP, (α+
r)/β)/e(P, P)rs) = M . Therefore, DC obtains the correct cleartext message from the ciphertext
provided by DG.

5.4 Security analysis

In this section, we argue that the security of our delegation mechanism for CP-ABE is equivalent
to the hardness of the DLP problem and the intractability of hash function in the random oracle
model [27]. As such, if there is any vulnerabilities in our mechanism then these vulnerabilities
must exploit mathematical problems related to the DLP problem or to the used cryptographic
hash functions.

As described in section 5.2.2, an attacker A can be an external or internal entity. Thus, we
consider the two following situations with regard to the attacker’s position:
– Case 1: A is an external resource-bounded adversary. The main objective of A is to guess
the cleartext message M and DP’s secret values. To do so, A observes and eavesdrops several
exchanges of different sessions between DP, DG and DC. It may rely on retrieved information
from previous sessions to guess the current encrypted message and DP’s private key. We consider
a particular session j. Table 5.1 lists all the values that are available to DG, DC and A. As we
shall see, apart from public parameters, the values that A gets are apj , s

′
j and CTj (for session

j). In order to guess the cleartext message M , A has to either break the ciphertext CTj or guess
the secret number sj (for session j). The latter means that A needs to guess the delegation key
d, as it is used to mask the value of sj in session j.

We note that CTj does not contain any information related to d and A is unable to figure
out the message M from CTj thanks to the security of the original CP-ABE scheme [28]. As
a consequence, A now has only one possibility left guessing the value of d in order to obtain
M . As a result, we need to be sure that s′j does not disclose the value of d. Our arguments are
based on a basic result on the integer ring Zp.

86

DG DC External A
G0, P,Q, f, e(P, P)α, CT,

γ1, γ2, {γ3t}t∈U
G0, P,Q, f, e(P, P)α, CT,

M, SK
G0, P,Q, f, e(P, P)α, CT,

ap, s′

Table 5.1: Information accessible to DG, DC and an external attacker A

Lemma 20 ([12]). Let p be a prime number. Given an integer k ∈ Zp and an r uniformly dis-
tributed over Zp, the values θ = k+ r (mod p) and δ = kr (mod p) are also uniformly distributed
over Zp.

In our assumption, the hash function h is modeled as random oracle [27]. As a result, h(C̃j)
is randomly distributed in Zp. Besides, we have that sj is uniformly chosen at random in Zp.
Hence, applying the result in Lemma 20, we obtain that s′j = sj + h(C̃j)d is also uniformly
distributed in Zp. Even if A eavesdrops the communication between DP and DG and hence will
be able to re-generate the value of e = h(C̃j), it can not guess neither d nor sj from s′j . Thus,
the only way A can guess the values of sj and d from s′j is to use a brute force attack on Zp.
This is impossible because A is supposed to be a polynomial time adversary.

– Case 2: The attacker A is a curious DG. This means that such DG is an untrustworthy
party, which is curious about the encrypted data sent between DC and DP. As in Case 1, DG
observes and keeps record of intermediate computations of different sessions between DP and
DC. DG’s objective is to guess the cleartext message M and DP’s private keys. As described
in Table 5.1, although DG knows γ1 = −dQ, γ2 = −dP , {γ3t}t∈U = {−dH(t)}t∈U), C = sQ,
Cy = (qy(0) − ed)P and C ′y = (qy(0) − ed)H(att(y)) ∀y ∈ Y , it can not derive the values of d
and s thanks to the hardness of the DLP problem. Besides, DG also has the value of s′. As
another attempt, DG can try to guess the values of d and s from s′. However, the values of d
and s are unconditionally secure, as proved above in Case 1.

Therefore, given the hardness of DLP on G0 and the intractability of hash functions in
the random oracle model, an attacker can neither figure out the cleartext M nor derive the
delegation key d nor guess any secret keys of DP.

5.5 Performance analysis

In this section, we first compare numerically the performance of our solution with respect to the
related works described in section 5.1. Then, we present the experimental performance assess-
ment of our proposal. We first estimate the energy consumption of our proposal in the emulated
Wismote sensor platform. Then, we compare the performance results of our implementation
OEABE and the original CP-ABE implementation [3] in terms of execution time on a laptop.

5.5.1 Quantified Comparison

Table 5.2 illustrates the cost of the encryption and the number of messages to be exchanged
of our ABE scheme and several related works described in section 5.1. The encryption cost is
depicted by the number of the exponentiations to be executed, which is considered as one of the
most expensive operation in a cryptographic algorithm. On the other hand, the transmission is
evaluated by the number of message exchanges. As shown in Table 5.2, our proposal does not
only need one exponentiation, but also require merely one message exchange like the original CP-
ABE scheme [28]. The C-CP-ABE [188] scheme does not require any exponentiations. However,
their approach demands n trusted proxies (n ≥ 2) and needs 2n+ 1 exchanges in order to form

87

a valid ciphertext. These requirements are not scalable and are costly for resource-constrained
devices, where communication costs are non negligible.

EXP NME

original CP-ABE [28] 2|Y |+ 2 1
AGREE [29] 3|Y |+ 1 1

C-CP-ABE [188] 0 2|n|+ 1
PP-CP-ABE [203] 3 1

Our scheme: OEABE 1 1

Table 5.2: Comparison of our proposal and related work
EXP: number of exponentiations to be executed in the encryption phase; NME: Number of
message exchanges; Y : number of leaf nodes in the access policy, n: number of trusted proxies.

5.5.2 Estimation of energy consumption on emulated sensor platform

We conducted experimental evaluation of elliptic curve based cryptographic (ECC) operations
on an emulated sensor platform Wismote with a 16 MHz MSP430x micro-controller, 16 kB of
RAM, 128 kB of ROM. Our testing environment is on Contiki 2.7 [67]. The evaluation program
has been tested on four elliptic curves secg p160, nist p192, nist p224 and nist p256 in increase
order of security level. Their domain parameters have been recommended by SECG [9] and NIST
[81]. We measure the time execution and the energy consumption for ECC exponentiation and
pairing. For more details on the estimation process, please refer to our paper [147]. Table 5.3
describes estimated time execution and energy consumption of an exponentiation and a pairing
in 4 different elliptic curves. As we shall see, even for a medium-level security application
(80 bits), if we use policy composed of 30 attributes, the time and energy needed to compute
an ABE-CT in the original scheme [28] is approximately 152.5 s and 1004.4 mJ for only the
exponentiation process, instead of 2.46 s and 16.25 mj using our proposal. Figure 5.4 presents
the estimated energy consumption in log scale while the number of attribute in the access policy
varies from 1 to 30. We adopt this range because it has been considered to be representative
enough for many real world applications [13]. As shown in the figure, we can confirm that energy
consumption in OEABE is much lower than the basic CPABE scheme. The gap between both
solutions increases with the security level.

5.5.3 Execution time of OEABE encryption on a laptop

Our OEABE implementation is based on the cpabe library [3], which implements the scheme
proposed by Bethencourt et al. [28]. We evaluate our program on a laptop device Ubuntu 14.4
LTS, 2.8 GHz Intel(R) Core(TM) i5-3360M CPU, 8GB RAM. For testing purposes, we changed

Parameters Strength Exponentiation Pairing

secg p160 80 2460ms/16.25mJ 3533ms/23.32mJ
nist p192 96 3463ms/22.53mJ 6586ms/43.47mJ
nist p224 112 4782ms/32.05mJ 9573ms/63.19mJ
nist p256 128 18.91s/124.07mJ 36,16s/238.13mJ

Table 5.3: Time execution and Energy consumption of ECC operations on Wismote [147]

88

Figure 5.4: Estimation of energy consumption of OEABE and CPABE in the emulated Wismote
platform

Security level length of r in bits length of q in bits

80 160 512
112 224 1024
128 256 1536

Table 5.4: Bit length of q and r to obtain desired security level

the input parameters of the cpabe library so that the security level of the ABE scheme varies
from 80 up to 128 bits. As the cpabe library uses the pbc library [7] for pairing-based operations,
we also use the Type A pairings supported by pbc in our tests. This type of pairing is constructed
on the elliptic curve y2 = x3 + x over the field Fq for some prime q = 3 (mod 4). Such curve
can offer different security levels by modifying the two parameters: the prime order r and the
field q. We generate different input parameters with desired security level by varying the values
of q and r as shown in Table 5.4. Note that the performance gap of our scheme and CP-ABE
are independent from the size of the message, because the actual data encryption is performed
with AES by means of a symmetric key which is then encrypted using the ABE mechanism.
Figure 5.5 shows the average execution time of the encryption phase for both OEABE and
CP-ABE implementations. The results are presented for three levels of security: 80, 112 and
128 bits. Each set of input parameters has been randomly chosen at runtime based on the
security level. In each case, the results have been obtained with an average of 100 executions
for each operation. The access policies are also chosen at random from one to 100 attributes.
The policies with 100 attributes are not rare in practical usage when using complex attributes
that contain integer comparison operators. For example, for a simple comparison a < 11, we
need to convert it to a policy tree of 5 attributes composed of AND and OR gates as explained
in [28]. As we can see in Figure 5.5, the encryption time of CP-ABE is almost linear with the
number of attributes involved in the access structure. On the other hand, our solution requires
much less time on the device to finish an encryption. Indeed, in a 128-bits scale, when using

89

Figure 5.5: Average execution time in the encryption phase of OEABE and CPABE on a laptop

policies composed of 100 attributes, encryption requires 0.12 s with our solution and 5.64 s with
the basic scheme, respectively. The reason is that our OEABE scheme does not require more
than one exponentiation while CP-ABE demands up to 2|Y | + 2 exponentiations, where |Y | is
the number of attributes in the access policy.

5.6 Examples of applications of OEABE

CP-ABE has been considered as a highly flexible cryptographic scheme with multiple appli-
cations in the context of IoT. Our proposal removes the intensive computation requirement
of CP-ABE encryption, which makes the encryption of CP-ABE feasible even for highly con-
strained devices. Such feature is potentially of considerable interest to multiple applications in
the context of IoT. In this section, we briefly describe two applications of OEABE: personal
health data sharing and group key management.

5.6.1 Personal Health Data Sharing

Figure 5.6 describes a concrete example of application of our delegation-based CP-ABE scheme
in the eHealth scenario. In such a context, the patient carries a number of embedded wear-
able sensing platforms (for measuring e.g. blood pressure, temperature, pulse) that monitor his
health conditions. The patient desires to authorize the personal data produced by IoT devices
to be only accessed by a set of appreciated users (e.g. doctor, nurses, patent relatives). To do
so, the patient can employ an attribute-based encryption scheme, such as CP-ABE, to encrypt
his personal data. In our solution, the IoT devices compute a partial CP-ABE ciphertext from
patient’s secret data and send it to the semi-trusted parties (e.g. smartphone, tablet, gateway,
etc). These latter will execute the most expensive calculations and generate the complete CP-
ABE ciphertext. This ciphertext is then stored in a cloud service. The doctor and patient’s

90

IoT devices

Semi-trusted parties

Online storage

Doctor

Relatives

Partial CP-ABE
ciphertext CP-ABE ciphertext

Figure 5.6: An eHealth scenario for our delegation-based CP-ABE scheme

relatives can then request for the encrypted data and decrypt it using their secret keys. We con-
sider the patient’s smartphone, tablet or gateway (at his home) as semi-trusted parties because
these devices can be stolen or compromised at any moment. As a result, it is safer to conceal
the patient’s personal health records from these equipment as well.

5.6.2 Group Key Management

As another direct application, the proposal can provide an efficient mechanism to dynamically
define groups and subgroups of smart objects according to different combinations of attributes.
In fact, by using OEABE, a group controller has to compute only one exponentiation for updating
membership in the group. As such, we consider the scenario where different IoT devices (group
members - GMs) subscribe to receive data from another resource-constrained IoT device (group
controller - GC). In such case, GC has to maintain a shared data encryption key K which will be
used to encrypt multicast traffic between him and other GMs. New GMs are provided with this
key through a secure OEABE encryption at the time of joining. However, the main challenge
is when we need to revoke a subset of group members from future communications. This task
consists of distributing the new group key K ′ to all remaining GMs, so that the revoked users
cannot access future exchanges. To do so, GC computes a new access structure T ′ which is
satisfied by the attribute sets of all remaining GMs but not satisfied by the attribute set of any
revoked user. Then, GC computes an OEABE encryption on the new key K ′ using the access
structure T ′. Of course, the assisted parties are in charge of distributing the final CP-ABE
ciphertext to GMs. Therefore, remaining GMs can use their secret keys to recover the new
group key K ′.

5.7 Summary

In this chapter, a novel delegation-based mechanism has been proposed for the encryption al-
gorithm of CP-ABE. Our solution is secure based on the hardness of the DLP problem in the
random oracle without weakening the security of the original CP-ABE scheme. Furthermore, as
shown in the performance analysis on an emulated sensor platform and a laptop, our proposal
offers significantly less computational and communication overhead at the encryptor side than

91

existing solutions in related work. Such approach can be easily applied in several applications,
such as secure data storage and secure group communication, especially when IoT devices with
extremely resource-constrained profile act as a data producer.

Until present, our proposed solutions, i.e. ECKSS, new MIKEY modes and OEABE, allow a
device to distribute a secret key or data without consuming much energy. This secret key can be
used to set up secure communications. However, in case the two communicating parties desire
to negotiate a common key, the previous solutions cannot be considered. In the next chapter,
we will address the need for lightweight key agreement in IoT. That is, we define a new efficient
key agreement protocol inspired from the idea of proxy re-encryption. The proposed protocol
can work even if the communicating parties are highly limited in resources.

92

Chapter 6

AKAPR: Authenticated Key
Agreement Mediated by a Proxy
Re-Encryptor for IoT

In the context of IoT, secure communications between devices, even if they are unknown to each
other, are essential. As a result, due to limited resources and highly interconnected objects,
there is a strong need to design lightweight and scalable key establishment protocols. As shown
in Section 3.2, the existing solutions that require the pre-distribution of secret keys (offline
key distribution) cannot be envisioned. Indeed, we cannot pre-share every time a common
secret key in each device because the number of connected devices composing the network
is very important. If the key pre-distribution is not considered, most of the existing schemes
require expensive cryptographic operations to establish a session key between entities that do not
share common credentials a priori such as ECDH-based approaches [174, 182]. As an example,
Sciancalepore et al. [174] propose a key agreement protocol with implicit certificates in the
context of IoT. Their approach requires four costly operations in order to negotiate a common
key between two parties. In addition, the negotiation algorithm always produces the same key
for a given couple of devices, which can be vulnerable to known-key attacks. Many other efforts
(e.g. in [162], [160]) have been undertaken to reduce the overhead of standard security protocols
so that they can fit in low power computing sensor platforms. However, these solutions still
require the executions of costly cryptographic operations on such platforms. Apart from the
mentioned methods, one can propose to use a server-assisted key distribution scheme to set up a
secure communication, as described in Section 3.2.4.2. In such an approach, the aforementioned
heavyweight computations can be handled by a resource-rich server. Server-assisted approaches
for key establishment protocols have been proposed in this respect for IoT.

In this chapter, we first propose a lightweight proxy re-encryption that uses a symmetric
cipher to encrypt data (see Section 2.1.5 for more details on the proxy re-encryption primi-
tive). Our scheme is able to convert a ciphertext from one key to another with no heavyweight
computational operations. Second, based on the proposed re-encryption scheme, we build an
efficient authenticated key agreement mediated by a proxy re-encryptor, namely AKAPR, for
IoT services. The scheme allows us to establish common secret keys between devices, even
highly resource-constrained ones (e.g. class 1 devices [37]). Third, we present a formal secu-
rity validation of AKAPR using ProVerif [30]. The results show that AKAPR provides mutual
authentication for participants and ensures the secrecy of the generated session keys.

The rest of this chapter is organized as follows. Section 6.1 presents related work on the
server-based key agreement protocols and motivates the use of proxy re-encryption in key estab-
lishment mechanisms. Section 6.2 surveys existing approaches on proxy re-encryption. We then

93

present a novel lightweight proxy re-encryption construction in Section 6.3. Section 6.4 describes
in detail our proposed authenticated key agreement AKAPR for IoT. Section 6.5 provides an
informal security analysis of AKAPR against common attacks with a formal security validation
done by the cryptographic verifier ProVerif [30]. Finally, the conclusion remarks are given in
Section 6.6.

6.1 From proxy re-encryption to server-assisted key agreement
protocol

In this section, we first complete the related work presented in Section 3.2.4.2 on the server-
assisted key establishment protocols. Then, we explain why we apply the idea of proxy re-
encryption to propose a new server-assisted key agreement solution for IoT.

Fouladgar et al. [82] introduce an adaption and an extension of TLS (Transport Layer
Security) handshake to the Wireless Sensor Network. Their solution describes an ECDH key
establishment between a constrained sensor node and an external entity mediated by a par-
tially trusted gateway. Such solution requires only two costly operations on the constrained
node side. However, the gateway is able to launch a man-in-the-middle attack and to estab-
lish a common Diffie-Hellman key with each party without anyone noticing. Saied et al. [171]
propose a lightweight collaborative key agreement based on Diffie-Hellman (DH) key establish-
ment. Their idea is to delegate the heavyweight cryptographic calculation of DH values to the
resource-unconstrained trusted proxies in neighborhood. Such mechanism requires a sufficient
number of non-colluding neighbors in proximity. Besides, it may seem unpractical, since the two
end nodes, which do not share any relation, may not be in possession of a secure established
link with those common proxies. Several works attempt to build a common secret key for any
two entities using the DTLS (Datagram TLS) protocol in the context of IoT. Their approach
is to delegate partially [93, 192] or totally the DTLS handshake [106] to a third party. Such
mechanism removes the overhead of intensive calculations for the constrained-devices. However,
the third party can read all communications between sensor nodes and the Internet hosts. This
feature is not desirable in certain scenarios especially when we do not entirely trust the server.

We remove the mentioned inconvenience by applying a lightweight proxy re-encryption mech-
anism in our proposed key establishment mechanism. In a proxy re-encryption scheme, the proxy
can translate a ciphertext encrypted under one key to another but is not allowed to learn any-
thing on either keys. There exists many PRE schemes in the literature (e.g. in [31], [17],
[94, 137]). Their applications are diverse such as encrypted mail forwarding system, secure data
storage on semi-trusted servers. As the proxy is generally considered as a rich-resource entity,
apart from re-encrypting a ciphertext, it can also assist the communications between resource-
constrained devices. As a result, in this chapter, we present another application of PRE to build
a server-assisted key agreement protocol where the server is unable to recover not only the secret
keys of communicating parties but also the negotiated session keys.

6.2 Existing approaches on proxy re-encryption

We first present several related PRE propositions in the literature. General definitions and the
most useful properties of a PRE scheme are specified in Section 2.1.5.

Blaze et al. [31] first proposed the notion of proxy cryptography where Alice (A) can securely
delegate her decryption rights or her digital signatures to another party Bob (B) with the help

94

Type Typical operations of a proxy re-encryption scheme Examples

PRA A PR B
EpubA (M) EpubB (M)

[31], [17], [94, 137]

PRS A PR B
EskA (M) EskB (M)

[54, 183]

Table 6.1: Two existing approaches of a proxy re-encryption scheme
Meaning of abbreviations: PRA: Proxy re-encryption schemes that employ asymmetric ciphers; PRS: Proxy re-encryption

schemes that employ symmetric ciphers; E: An encryption function; M: Message; pubX : public key of the entity X; skX :

secret key of the entity X; PR: the proxy.

of a proxy. Many works on proxy re-encryption schemes have been proposed in the literature.
We classify these schemes into two categories as depicted in Table 6.1: (a) Proxy re-encryption
schemes that employ asymmetric ciphers (public key cryptography) to encrypt the message and
(b) Proxy re-encryption schemes that employ symmetric ciphers to encrypt the message.

Most of the proposed schemes use a public key primitive to encrypt the message. In [31],
the authors propose the very first proxy re-encryption scheme based on Elgamal cryptosystem
[71]. Alice first generates the ciphertext CA = (m.gr, gar) on message m using its pair of
public/private key (skA = a, pkA = ga). The proxy uses subsequently the re-encryption key
rkA→B = b/a to obtain gbr = (gar)rkA→B . Hence, B receives the new ciphertext CB = (m.gr, gbr)
encrypted under his secret key. This scheme is bidirectional, transitive and exposed to collusion
attacks. As such, the proxy can compute (rkA→B)−1 to obtain the re-encryption key in the
opposite direction from B to A. In addition, the proxy can combine the two re-encryption keys
rkA→B and rkB→C to get the valid re-encryption key from A to C (rkA→C = a/c = (a/b).(b/c)).
Such property is sometimes unwanted. Furthermore, if the proxy colludes with one party, it is
trivial for them both to learn the secret key of the other party. Ateniese et al. [17] proposed
an unidirectional pairing-based proxy re-encryption scheme that fixes the above issues. They
use a proxy key in the form of rkA→B = ga/b. Such configuration provides non-transitivity and
collusion-resistance properties. Indeed, the possession of (rkA→B = ga/b, rkB→C = gb/c) does
not permit the proxy to find out rkA→C = ga/c due to the Decisional Diffie-Hellman Problem
[35]. In addition, colluding with Bob does not help the proxy to discover the secret key of
Alice and vice versa since having ga/b and b does not help him to recover a due to the Discrete
Logarithm Problem. From then onwards, many schemes based on pairing operations have been
proposed including Identity-based (IBE) proxy re-encryption schemes [94, 137]. They are proved
to be secure under chosen ciphertext attack (CCA) assumption. Pairing-free proxy re-encryption
schemes exist, for example [44, 52], but multiple modular exponentiations are still required.

There are several propositions on proxy re-encryption that employ symmetric ciphers to
encrypt the message such as [54, 183]. The main advantage of symmetric cipher proxy re-
encryption approach is the lightness of the employed symmetric cryptographic operations in
terms of complexity and memory usage. In [54], Cook et al. propose two conversion functions
for symmetric ciphers. In their first attempt, they assume that Alice shares with Bob a secret
key kab. In addition, Alice and the proxy must share ka. Then, Alice sends Eka(Ekab(M)) to
the proxy. The proxy decrypts the obtained ciphertext with ka and sends the result Ekab(M)
to Bob. Hence, Bob does not need to share a key with the proxy and yet he can still get the
message M . However, this assumes Alice and Bob must always share a common secret. Such
assumption is not trivial when there exists a significant number of devices in the network, such
as in the context of IoT. In their second attempt (termed as CK to be used in Table 6.2), the
authors provide the proxy the key kp = ka ⊕ kb, built from the secret keys (ka, kb) of A and
B, respectively. A computes C = M ⊕ ka and sends it to the proxy. The proxy performs the

95

A PR B
EncKt (M), t.h(skA||idB) EncKt (M), t.h(skB ||idA)−1

Compute rkA→B .(t.h(skA||idB)) = t.h(skB ||idA)−1

Figure 6.1: Our proposed symmetric cipher proxy re-encryption scheme

conversion by computing C ′ = kp ⊕ C = kb ⊕M . B can then decrypt C ′ to get the message
using its secret key kb. This approach is efficient but not secure. Indeed, B can easily retrieve
the secret key of A by computing kb ⊕ C ⊕ C ′ = ka. In [183], Syalim et al. propose a pure
symmetric cipher proxy re-encryption algorithm. However, this approach requires that A and B
share common secret keys a priori. Moreover, it is assumed that the proxy cannot collude with
any previous users since a compromised user can recover the current encryption key if he/she
has the re-encryption key.

6.3 Lightweight Bi-directionnal Proxy re-encryption Scheme with
Symmetric Cipher

In this section, the concrete description of our proposed symmetric cipher PRE scheme is given.
Then, we compare our proxy re-encryption scheme with related solutions in terms of supported
properties and performance.

6.3.1 The proposed proxy re-encryption (PRE) scheme

In this section, we present in detail our proposed symmetric cipher proxy re-encryption. A
symmetric cipher proxy re-encryption consists of five algorithms (KeyGen,ReKeyGen,Encrypt,
Decrypt,Reencrypt). In addition, we define (Enc,Dec) as the encryption and decryption algo-
rithms of a symmetric encryption scheme. A key distribution center (KDC) is responsible for
providing keying material. As such, KDC runs the two algorithms KeyGen and ReKeyGen to
generate the needed security parameters. We suppose that Alice (A) desires to delegate the
decryption right of a ciphertext CA encrypted under her secret key to Bob (B) with the help of
the proxy (PR). Figure 6.1 describes the message exchanges of our proposed PRE scheme. The
procedure is detailed as follows.

• KeyGen(k)→ (idA, idB, skA, skB): Given the security parameter k, this algorithm outputs
the identifiers (idA, idB) and the secret keys (skA, skB) for A and B, respectively.

• ReKeyGen(idA, skA, idB, skB) → rkA→B: Given the identifiers and the secret keys of A
and B, this algorithm returns the re-encryption key rkA→B = (h(skA||idB).h(skB||idA))−1,
where h : {0, 1}∗ → Zp is a hash function that converts a string to a number on Zp. As we
shall see, our construction results in the fact that rkA→B = rkB→A. This property makes
our proxy-encryption scheme bidirectional meaning that the proxy only needs to store one
re-encryption key to re-encrypt messages from A to B and vice versa.

• Encrypt(idA, skA,M, idB) → CA: Given the identifier of B and a message M , A uses its
identifier idA and its secret key skA to generate a ciphertext CA. A first chooses a random
number t← Zp. Then, it generates a symmetric key Kt ← KDF (t), where KDF is a Key
Derivation Function. Finally, it outputs the ciphertext CA = (EncKt(M), t.h(skA||idB)).

96

Property BBS [31] AFG [17] GG [94] CH [44] CK [54] SN [183] Ours
Type PRA PRA PRA PRA PRS PRS PRS

Directionality bi-d uni-d uni-d bi-d bi-d bi-d bi-d
Non-Interactivity No No Yes No No No No

Multiple-use Yes No Yes Yes Yes No No
Non-Transitivity No Yes Yes No No Yes Yes

Collusion resistance No Yes Yes No No No Yes
Pairing-free Yes No No No Yes Yes Yes

Exponentiation-free No No No No Yes Yes Yes

Table 6.2: Comparison of our scheme and related work
Meaning of abbreviations: bi-d: Bidirectional; uni-d: Unidirectional; PRA: Proxy re-encryption scheme that uses asym-

metric ciphers; PRS: Proxy re-encryption scheme that uses symmetric ciphers.

• Reencrypt(rkA→B, CA) → CB: Upon receiving the ciphertext CA = (C1, C2), PR keeps
C1 unchanged while multiplying C2 with the re-encryption key rkA→B to obtain the new
ciphertext CB = (EncKt(M), t.h(skB||idA)−1).

• Decrypt(idB, skB, CB, idA)→M : Upon receiving CB = (C ′1, C
′
2)

= (EncKt(M), t.h(skB||idA)−1), B first calculates the value of l = h(skB||idA) from its
secret key and the identifier of A. Then, it obtains the value of t by multiplying l to C ′2.
From t, B generates the symmetric key Kt ← KDF (t). Then, it gets the message M by
decrypting C ′1 using the generated key Kt: M = DecKt(EncKt(M)).

Correctness. The correctness of our proposed scheme is straightforward.

6.3.2 Comparison of our PRE scheme to related work

In Table 6.2, we compare several proxy re-encryption schemes in related work with our scheme
based on the properties provided in Section 2.1.5.1. In comparing with asymmetric cipher PRE
schemes, our scheme is much lighter in terms of computational cost. Indeed, the proposed
construction does not necessitate any pairing or exponentiation operation. On the other hand,
while providing equivalent performance compared with symmetric cipher proxy re-encryption
schemes, our scheme is more robust against attacks from compromised receiver, semi-honest
proxy and their corporation. We argue that our scheme provides most of the desirable properties
as described in the following.

First, our scheme is bidirectional since rkA→B = rkB→A. This can be an advantage in
the considered scenario (e.g. IoT) where the proxy has to store only one proxy key for any
pair of devices. Second, in our construction, only KDC can provide the re-encryption key
because it is generated from the secret keys of participants. This property makes our scheme
interactive. However, the scheme can be made partially non-interactive such that A and B can
negotiate a new proxy re-encryption key even when KDC is offline. In fact, A may generate
a new secret key sk′A and compute k1 = h(sk′A||idB).h(skA||idB). B generates also a new
secret key sk′B and compute k2 = h(sk′B||idA).h(skB||idA). k1, k2 are then sent to the proxy.
The latter can now obtain the new proxy re-encryption key by computing 1/(k1.k2.rkA→B) in
Zp. Finally, as each proxy key is generated specifically for a pair of users, the proxy can only
re-encrypt the ciphertext a single time. Such construction makes our scheme unconditionally
non-transitive and collusion-resistant. Indeed, providing rkA→B = (h(skA||idB).h(skB||idA))−1

and rkB→C = (h(skB||idC).h(skC ||idB))−1, the only way that the proxy can get rkA→C is to
have the secret keys of A and C due to one-way property of hash function. Even if B colludes
with the proxy, they only have the value of h(skA||idB) which is only used in the communication

97

between A and B. Such knowledge will not help them to find out A’s secret key skA. In addition,
to obtain rkA→C , they still need both the secret keys of A and C.

6.4 Lightweight Authenticated and Mediated Key Agreement
for IoT

In this section, we present the application of our PRE scheme presented in Section 6.3 to
obtain a very lightweight key establishment mechanism. Our protocol is relevant even with
highly resource-constrained devices in the context of IoT. The first subsection presents the
network architecture and our considered scenarios. The second subsection provides the security
assumptions needed for the description of the protocol. Then, we describe concretely the message
exchanges of our proposal.

6.4.1 Network architecture and scenario description

Figure 6.2 describes the network architecture of our proposal. The considered network of things
consists of a number of tiny nodes communicating with each other and with an unconstrained
resource border router (or gateway). The gateway is the bridge between the sensor network and
the outside world. It may take part in the communication between two entities in a passive
(transparent to the communicating parties) or active (as a mediator in the communication
process) manners.

Our key establishment protocol involves the four following actors:

• Two parties: an Initiator (I) and a Responder (R), which respectively initiates the com-
munication and responds to incoming requests.

• A partial trusted party, named as Delegatee (DG), which is responsible for assisting the
key establishment process between I and R. In fact, DG is provided with a re-encryption
key that allows it to translate the ciphertext from I to R. In addition, it is considered as a
semi-trusted party that acts and returns correct results according to the protocol but can
be curious on transmitted messages.

• A trusted Key Distribution Center (KDC), which is responsible for generating keying
material and acts as the root of trust of the whole system. Besides, KDC is also in charge
of delegation credential management and distribution.

In our considered scenario, I and R can be both resource-constrained devices. At the begin-
ning, KDC provisions the keying material for all users on the system. Hence it can stay offline
until the security parameters need to be refreshed. On the other hand, DG must stay online
and participate actively in the key establishment procedure. Our motivation is that DG acts as
a partially-trusted third party helping the constrained devices to negotiate session keys without
obtaining any knowledge about these keys.

As depicted in Figure 6.2, the initiator can be an external entity requesting for information
of the Responder - a sensor platform device lying in a Wireless Sensor Networks (WSN). The key
negotiation process is assisted by DG. In addition, when I and R are in the same WSN, DG can
provide the delegation keys for the border router (or gateway) so that the key agreement process
can be done locally. Note that the gateway is also considered semi-trusted as a consequence of
which it only knows the delegation keys and is not able to recover the secret keys of I and R.
We provide more details on the security analysis of our proposal in Section 6.5.

98

R1

GW

R2

I2

GW

DG

KDC

I1

Figure 6.2: Network architecture and considered scenarios
→: KDC provides keying material for all actors in the system.

Examples of scenario: (1) →: The external user I1 initiates a key agreement process (mediated by DG) with the resource-

constrained sensor node R1; (2)→: Two unknown resource-constrained nodes (I2 and R2) initiate a key agreement process

with the help of DG and then GW.

6.4.2 Security assumptions and notations

We suppose that I and R possess their own secret keys (skI and skR, accordingly). However, they
do not have any common secrets a priori. On the other hand, DG shares with each communicat-
ing entity X a secret symmetric key Kxd which is employed to protect the integrity of the traffic
between X and DG. As a result, DG shares the secret keys Kid and the secret key Krd with I and
R, respectively. In addition, we use an incremental counter in both communicating parties to mit-
igate the replay attacks. For example, we maintain the counter CTIR in I’s side for all exchanges
with R. If this is the first time that I communicates with R, CTIR is set to 0. It is increased by 1
after every successful key agreement. Furthermore, for each entity X, we denote its identifier as
idX . Such identifier must be unique for each entity. We also define (Enc,Dec) as the encryption
and decryption algorithms of a symmetric encryption scheme. While, (AEnc,ADec) is an au-
thenticated encryption algorithm such that AEncK1,K2(M) = EncK1(M)||MACK2(EncK1(M))
and ADecK1,K2(EncK1(M)||MACK2(EncK1(M))) = M , for each message M and two secret keys
K1,K2. Each key agreement exchange of order i between I and R (Message i, for i = 1, 2, 3) has
two components EDi and MACi(K). EDi defines the appended security parameters and the
encrypted data, while MACi(K) denotes the MAC of EDi computed with the symmetric key
K.

In addition, two hash function h : {0, 1}∗ → Zp and H : {0, 1}∗ → {0, 1}n are also de-
fined, where n is an integer number generated from the input security level. These functions
are modeled as random oracles [27]. Such oracle produces a random value for each new query.
Of course, if an input is asked twice, identical answers are returned. In this work, we also use
a Key Derivation Function (KDF) for generating a symmetric key. KDF is based on a solid
pseudorandom number generator (PRNG) (e.g. in [21]). This function is initialized with several
secret values, called seeds. An attacker with the knowledge of PRNG output should not be able

99

to guess the seeds other than by exhaustive guessing.

6.4.3 AKAPR protocol description

The proposed key establishment protocol AKAPR consists of four messages as depicted in Fig-
ure 6.3. The key negotiation process is mediated by DG. The detailed description of the key
agreement process is given as follows.

– Message 1 from I to DG: To start a new session, I first increases CTIR by one, where
CTIR denotes the current counter of I for all communications with R. CTIR is set to zero if this
is the first time I communicates with R. Next, it generates a session identifier SID at random
(e.g. SID = H(idI ||idR||w), where w is randomly chosen in Zp). Then, I chooses at random
two fresh numbers Ni and t from Zp. The ephemeral authentication keys AK = (AKe, AKa)
are then generated from idI , idR and t using a key derivation function (KDF). To construct the
Message 1, I concatenates the session identifier SID, its identifier idI and R’s identifier idR to
(Ni, CTIR). The concatenation is then encrypted using the algorithm AEnc. As we shall see,
the resulting ciphertext is the encryption and MAC of the concatenation by the pair of keys
(AKe, AKa). This guarantees that the attacker (including DG) cannot modify the encrypted
text of the concatenation. Second, I masks the value of t by multiplying it with the hashed value
h(skI ||idR), where skI is the secret key of I. As we shall see, the result of such multiplication
is randomly distributed in Zp since the two used operands are also randomly generated in Zp.
Then, the first five components of the message (SID, idI , idR,AEncAKe,AKa(idI ||idR||Ni||CTIR),
t.h(skI ||idI)) is completed by a MAC computed with Kid, to form the Message 1.

– Message 2 from DG to R: Upon receiving the Message 1 from I, DG first verifies that
SID is fresh. We suppose that DG stores a list of SID values for each pair of I and R.
Next, DG validates that the message has not been modified by an attacker by verifying its
MAC using Kid. If the verification holds, DG is also certain that the Message 1 has not
been replayed. Then, it modifies the fifth component of the encryption part (ED1) in the
Message 1 with the delegation key dkIR. Indeed, it multiplies t.h(skI ||idR) with dkIR =
(h(skI ||idR).h(skR||idI))−1 to obtain t.h(skR||idI)−1. DG now concatenates the obtained re-
sult to the first four components of the Message 1 to form ED2. The encryption part of the
Message 2, ED2 = (SID, idI , idR,AEncAKe,AKa(idI ||idR||Ni||CTIR), t.h(skR||idI)−1), is then
appended with a MAC computed with Krd.

– Message 3 from R to I: When receiving the Message 2 from DG, R first verifies the authen-
ticity of the message by employing its shared key with DG, Krd. Then, by multiplying the hashed
value of its secret key skR and the identifier of I (idI) to the fifth part of ED2, (t.h(skR||idI)−1),
it obtains t, which is a number on Zp. From t, I generates the secret ephemeral authentication
keys AK = KDF (idI , idR, t) = (AKe, AKa). Next, it decrypts the fourth part of the Message
2 using (AKe, AKa) to get the value of (idI , idR, Ni1, CT

′). It verifies subsequently that CT ′

is superior or equal to its counter number CTRI to be sure about the freshness of the Message
2 (see Section 6.5.1). The counter value of R, CTRI , is now set to the value of CT ′. To con-
struct the Message 3, R first chooses randomly Nr from Zp. Next, it increases CTRI by one.
R now encrypts the concatenation of (SID, idR, idI , Ni1, t, Nr) with the generated key AKe.
The encrypted data is then appended with the session identifier SID to obtain the encryption
part. The latter is finally integrity protected with a MAC based on the generated secret key AKa.

– Message 4 from I to R: After receiving the Message 3 from R, I first approves the authen-
ticity of the message using AKa. Next, it decrypts the encrypted part by employing the secret

100

key AKe to get the values of (SID1, idR, idI , Ni2, t1, Nr1, CTRI1). I verifies that (SID1, Ni2, t1)
is equal to the generated values (SID,Ni, t). It also verifies that CTRI1 = CTIR + 1. Finally,
the session keys are generated from the values (CTRI1, Ni, Nr1) and the identifiers of I and
R: Ks = KDF (CTRI1, idI , idR, Ni, Nr1). I macs the concatenation of (SID, idI , idR, Ni, Nr1)
using the session key Ks and sends directly to R the hashed value appended with the session
identifier SID as a key confirmation message.

Upon receiving the Message 4, R first generates the session key Ks from the identifiers
(idI , idR), the obtained Ni1 in the Message 2, the generated value Nr and its counter number
CTRI . Then, it calculates a MAC from the concatenation of (SID, idI , idR, Ni1, Nr) using the
generated session key Ks. If the latter is identical to the received Message 4, I and R can now
start secure communications, e.g. using standard security protocols such as DTLS-PSK [75]
where the pre-shared keys are provided beforehand by our proposal.

101

I DG R

Message 1: SID, idI , idR,AEncAKe,AKa(idI ||idR||Ni||CTIR),
t.h(skI ||idR),MAC1(Kid)

Message 2: SID, idI , idR,AEncAKe,AKa(idI ||idR||Ni||CTIR),
t.h(skR||idI)−1,MAC2(Krd)

Message 3: SID,EncAKe(SID||idR||idI ||Ni1||t||Nr||CTRI),MAC3(AKa)

Message 4: SID,MACKs(SID||idI ||idR||Ni||Nr1)

incr(CTIR), SID = H(idI , idR, CTIR),

Ni
$←− Zp, t

$←− Zp,
AK = KDF (idI , idR, t) = (AKe, AKa)

Compute t.h(skI ||idR).dkIR = t.h(skR||idI)−1

Get t = h(skR||idI).(t.h(skR||idI)−1), AK = KDF (idI , idR, t) = (AKe, AKa)
(idI , idR, Ni1, CT ′)← ADecAKe,AKa(AEncAKe,AKa(idI ||idR||Ni||CTIR)),

Verify if !(CT ′ < CTRI), then let CTRI = CT ′ and

generate Nr
$←− Zp, incr(CTRI)

Get (SID, idR||idI ||Ni2||t1||Nr1||CTRI1)
= DecAKe(EncAKe(idR||idI ||Ni1||t||Nr||CTRI))

Verify if Ni2 = Ni, CTIR + 1 = CTRI1 and t1 = t,
then generate Ks = KDF (CTRI1, idI , idR, Ni, Nr1)

Generate Ks = KDF (CTRI , idI , idR, Ni1, Nr),
Verify if (Message 4) = MACKs(SID||idI ||idR||Ni1||Nr)

Figure 6.3: Lightweight Secure Key Agreement for IoT
Meaning of abbreviations: dkIR = (h(skI ||idR).h(skR||idI))−1; incr(CT): CT = CT + 1; Message i = (EDi,MACi(K)) for i = 1, 2, 3, e.g. ED1 = (idI , idR,

AEncAKe,AKa (idI ||idR||Ni||CTIR), t.h(skI ||idR)), MAC1(Kid) = MACKid
(ED1).

Security keys needed for each participant: I (CTIR, skI ,Kid), DG (Kid,Krd, dkIR), R (CTRI , skR,Krd).

102

6.5 Security analysis of AKAPR

In this section, we first provide an informal security analysis of AKAPR by describing its re-
sistance against common security attacks. Then, we validate the security of AKAPR using the
cryptographic protocol analyzing tool ProVerif [30].

6.5.1 Resistance against attacks

Our proposal is resistant to the following attacks:

• Replay attack: This attack is mitigated by the used counter numbers (CTIR, CTRI) and
the random numbers (Ni, Nr) at run-time. The replays of messages 1 and 2 are detected
thanks to the counter numbers (CTIR, CTRI). Indeed, for any new session, I increases the
value of CTIR by one. This value is then encrypted inside the Message 1. Upon receiving
the Message 2, R can be sure about the freshness of this message by comparing its counter
number CTRI with CT ′. If the latter is inferior than CTRI then the message is detected
as replayed. On the other hand, the freshness of the Messages 3 and 4 are assured by the
pair of random values Nr and Ni since they are newly generated for each session. DG
can also prevent replay attacks by keeping the session identifier SID. Because CTIR is
increased by one for each communication, the latter will vary in each session.

• Denial-of-service attack (DoS): The Dos attacks aiming at each participant are reduced
in our proposal because all exchanges between parties are authenticated. Indeed, each
message is appended with an authentication code (MAC) that permits the receiving party
to verify if the message is altered during the transmission. Further operations are canceled
if the verification fails.

• Man in the middle attack (MITM): The attacker cannot impersonate any party in our
protocol since each message is protected by the secret keys that are unknown to him.
As such, the Message 1 and the Message 2 are encrypted-then-maced by (AKe,Kid) and
(AKe,Krd), respectively. The Message 3 is encrypted then maced by the ephemeral secret
keys AK = (AKe, AKa), while, the Message 4 is protected by the new generated session
key Ks.

• Key escrow attack: DG is a blind participant in the key agreement procedure. It aids the
key negotiation without having any knowledge on the agreed session key and the secret keys
of I and R. Indeed, although DG participates in the key negotiation process, it possesses
only the delegation key dkIR = (h(skI ||idR).h(skR||idI))−1) for each pair of Initiator and
Responder. In addition, without knowing the secret key of I and R, DG cannot distinguish
dkIR, t.h(skR||idI) and t.h(skI ||idR)−1 from a random number on Zp. The only actor that
can intercept message exchanges between I, R and DG is the KDC. However, we have
assumed that KDC is a totally trusted party which is responsible for the keying material
generations and stays offline.

• Collusion attack: This feature inherits the collusion-resistance property of the proposed
PRE scheme in Section 6.3. As such, even if DG colludes with one party, it cannot retrieve
the secret key of the other party thanks to the one-way property of the hash function h.
Indeed, if R collaborates with DG, they will get the values of t, AK,Ni and Nr. However,
only the messages dedicated for R of I are affected. In fact, DG can only have the value of
h(skI ||idR) which does not help him to find the secret key of I, skI . If DG colludes with
I, I can then decrypt itself the Message 3, which contains no secret information of R. The

103

colluding parties can achieve the value of h(skR||idI). However, they are unable to guess
the secret skR of R thanks again to the one-way property of hash functions.

The above security attacks except the MITM attacks, are usually impossible to be detected
by an automatic software verifier (e.g. ProVerif [30]). In practice, the latter is used to verify
if the essential security properties, such as mutual authentication and secret key protection,
are provided in the testing cryptographic protocol. We provide more details on such software
verification in the next section.

6.5.2 Formal security validation with ProVerif

In this section, we present a formal verification of AKAPR using ProVerif [30]. Our verification
ensures that the proposed protocol provides the secrecy of the generated session keys and the
authentication of participants.

ProVerif is an automatic verifier for cryptographic protocols defined in the Dolev-Yao model
[63]. In such model, the attacker is an active eavesdropper, capable of obtaining any message
passing in the network, initiating a conversation with any other users and impersonating as a
legitimate receiver. It is only limited by the restrictions of the cryptographic methods used.
In other words, the cryptographic primitives is considered idealized in the sense that they are
unbreakable without knowing the employed secret keys.

In Listing 1.2, we provide the ProVerif verification code of our protocol AKAPR while re-
specting the description written in Section 6.4.3. A protocol description in ProVerif is divided
into three parts: the declarations, the process macros and the main process. As described in
Lines 1-44, the declaration part consists of the user types, the security properties, the crypto-
graphic primitive functions and the list of defined events and queries. We define the types, the
communication channel and the identifiers of the participating parties in Lines 1-6. The tables
specified in Lines 8-11 are employed to model the storage of keys in a server. Only I, R and
DG can use these tables to get the associations between host names and keys. Note that we
use the table ctr(host,Zp) to store the counter value of a specific host. To describe the synchro-
nization of the counter values in both sides (I and R), we model only the ideal situation where
there is no failed session between them. In such case, the counter values of I and R are equal.
The detailed synchronization process is described in Lines 52-54, 68, 87 and 90 of Listing 1.2.
Furthermore, the secrecy assumptions are specified in Lines 13-16. For example, sk I and K id
define the secret key of I and its shared key with DG. These keys are kept secret to the attackers.
Then, Lines 18-30 describe the cryptographic functions needed in our protocol. For example,
the function (kdf h(Zp, host) : Zp) generates the hashed value h(aZpNumber||aHostName). On
the other hand, the function (mask(Zp,Zp) : Zp) denotes a simple multiplication on Zp. Other
functions are self-explained according to the protocol specification as depicted in Section 6.4.3.
As we shall see, the correctness of the re-encryption process is modeled in Lines 32-35 based on
the commutativity of multiplication on Zp. Finally, we introduce a list of events and queries
in Lines 37-44. For example, the event beginRkey(host, host, key) represents the request from I
to create a trusted session with R. The defined events play as reference points for the protocol
execution order.

In ProVerif, we can ensure the authentication by testing the correspondence assertions be-
tween the aforementioned events. Indeed, we verify the mutual authentication between I and
R using queries defined in Lines 43-44. For example, the first query in Line 43 says that, if
event endRkey(host, host, key) occurs then, event beginRkey(host, host, key) must have occurred
before. Furthermore, our second interest of this protocol modeling is to verify the secrecy of the
negotiated session key K s. To do so, I and R choose a random number in each side and output
the ciphertext encrypted with K s. Then, they challenge the attacker to find the encrypted data

104

by the queries specified in Lines 41-42. The attacker can obtain the underlying data if and only
if having the secret key K s since the cryptographic primitives are considered as black-boxes in
ProVerif.

The second part of AKAPR ProVerif program describes the process macros for participants
I, R and DG. They are specified in Lines 46-74, Lines 76-99 and Lines 101-109, respectively.
These macros present the operations of I, R and DG during AKAPR execution. Note that in
lines 57, 71, 86 and 98, we insert the events that we specified earlier. The other four process
macros processDK, processKD, processK and processCTR fill the four tables of secret keys defined
in Lines 8-11.

In the last part of Listing 1.2, we specify the main process (Lines 127-141) of the AKAPR
ProVerif program. It instantiates the keying materials needed, inserts these keys to the right
tables and runs the defined macros unlimited times.

The output of the program when running with ProVerif is summarized in Listing 1.1.

1 RESULT event (endIkey (x 72 , y 73 , z)) ==> event (beg inIkey (x 72 , y 73 , z)) i s t rue .
2 RESULT event (endRkey (x 3724 , y 3725 , z 3726)) ==> event (beginRkey (x 3724 , y 3725 ,

z 3726)) i s t rue .
3 RESULT not a t ta cke r (s e c r e t I [! 1 = v 7305]) i s t rue .
4 RESULT not a t ta cke r (secretR []) i s t rue .

Listing 6.1: AKAPR verification results

The result in Lines 1-2 informs us that AKAPR provides mutual authentication of the two
participants I and R. As such, the proved correspondence property in Line 1 implies that R
authenticates I by the fact that I can correctly retrieve the session key Ks. On the other
hand, Line 2 shows that I authenticates R since the latter can obtain the correct ephemeral
key AK after receiving the Message 2. In addition, Lines 3-4 show the results of the queries
not attacker(secretI[]) and not attacker(secretR[]) returned by ProVerif. As we shall see, these
results are true, which means that the secrecy of the random values secretI and secretR are
preserved by the protocol. In other words, the secrecy of the session key generated by AKAPR
is also preserved.

The above ProVerif verification has several limitations. Indeed, in ProVerif, the hypothesis
of perfect cryptography is considered, meaning that the only way to decrypt an encrypted
message is to use the right secret key. Besides, in Line 18-35, we have to model the modular
multiplication and its commutative property required in the re-encryption process by defining
several new functions. This is necessary because real modular multiplication cannot be handled
by ProVerif. In fact, ProVerif verification might not terminate when dealing with protocols that
use algebraic operations such as modular multiplication or Exclusive-or. In addition, several
security protocols that are conceptually safe, but are found flawed when considering algebraic
properties as described in [124]. As a result, one can complete the above formal verification
using other tools such as CryptoVerif [42], CL-Atse [191] or OFMC [23], which support most
of algebraic properties and provide more realistic assumptions, e.g. the hypothesis of perfect
cryptography is not required.

6.6 Summary

In this chapter, we first introduced a novel proxy re-encryption scheme that requires only sym-
metric cipher to encrypt data. We showed that although our scheme is bidirectional and single-
use, it provides the most important features: non-transitivity and collusion-resistance. Further-
more, the scheme is much more efficient when compared with related solutions that use asym-
metric approaches. Second, we proposed a novel authenticated delegation-based and lightweight

105

key agreement protocol to be used in the Internet of Things. This protocol is built upon the
proposed proxy re-encryption scheme. The security of our solution has been formally validated
by ProVerif. In addition, thanks to the used symmetric primitives, the proposed key agreement
mechanism is very lightweight since it does not require any expensive cryptographic operations
such as pairing operation or modular exponentiation. The proposed protocol can be applied
even to class 1 devices having extremely resource-constrained profile.

106

Chapter 7

Conclusion and Perspectives

This thesis aims to propose lightweight cryptographic primitives and security mechanisms for the
Internet of Things. Our objective is to guarantee secure communications between IoT devices,
while taking into account their resource-constrained nature. For this purpose, we conducted at
first a comprehensive survey on existing IoT security protocols and techniques, and we demon-
strated their weaknesses and limitations. Once we have identified areas of research at best
opportunities, we proposed several contributions that can be regrouped into two main axes:
efficient asymmetric encryption algorithms and lightweight key establishment protocols. What
follows is a summary of our thesis contributions.

Thesis summary

In chapter 4, we introduced our two contributions. The first contribution consists of a new
lightweight signcryption scheme, named ECKSS. Our proposed scheme inherits from the effi-
ciency of the signcryption primitive by combining simultaneously public key encryption and
digital signature. In addition, our scheme does not rely on the public key infrastructure to pro-
vide the authentication for each entity in the system. We have formally proved the security of
ECKSS in the random oracle. The scheme ensures the confidentiality and the unforgeability of
communication channels, while being more efficient in terms of computation and communication
overhead than existing signcryption solutions. The second contribution extends the standard
key management protocol MIKEY with an application of ECKSS. We proposed two new key
distribution modes for MIKEY. The experimental results on the Openmote sensor platform val-
idate the efficiency of our proposed MIKEY modes, in particular with respect to other existing
MIKEY methods.

In chapter 5, we presented OEABE, a delegation-based mechanism to accelerate the en-
cryption of the Ciphertext-Policy Attribute-Based Encryption algorithm. Our mechanism of-
floads the most expensive operations of the CP-ABE encryption phase to a semi-trusted server.
OEABE allows the constrained devices to authorize the access to their data in a secure and
lightweight manner. We conducted a performance evaluation of our proposal on the emulated
Wismote sensor platform, in addition to a laptop. The results demonstrated that OEABE scales
well even when the access tree becomes complex and large in terms of the number of attributes.

In chapter 6, we introduced AKAPR, a novel lightweight key agreement mediated by a proxy
re-encryptor particularly suited to resource limitations in the Internet of Things. AKAPR al-
lows two IoT devices even with highly constrained profile to establish a secure session key with

107

no asymmetric techniques. The scheme inherits from the efficiency of our proposed proxy re-
encryption scheme by refraining from performing any expensive cryptographic operation at both
communicating parties. Besides, AKAPR was formally validated using the cryptographic veri-
fier ProVerif. The verification results showed that AKAPR provides mutual authentication for
the two comminicating parties and secrecy of the negotiated session key.

Perspectives

As future perspectives, ECKSS+ could be formally proved to demonstrate that it is confiden-
tially and unforgeably secure in the insider model. As such, even if ECKSS is more efficient
than ECKSS+, ECKSS is only secure in the outsider model since the scheme does not provide
the perfect forward secrecy property. Such feature might be useful in certain scenarios, for ex-
ample, in an environment where the loss of data and physical attacks are frequent. In addition,
a more thorough performance assessment of ECKSS and its MIKEY-based key distributions on
other sensor platforms should be done. For instance, the testing scenario could be more realistic
in terms of network topology, e.g., keys should be securely distributed to two communicating
parties separated by a relevant number of intermediate hops the two communicating parties.

In the same way, the security of OEABE could be validated mathematically in the random
oracle model by providing a formal security proof via a sequence of games. In addition, it would
be more interesting to conduct the experimental evaluation of OEABE on a real sensor plat-
form, such as OpenMote, and elaborate a real cloud service playing the role of the Delegatee. In
such scenario, we can get more practical results on the performance of OEABE, while consider-
ing the communication overhead of our architecture. For future extension, one may apply the
idea of OEABE on other CP-ABE variants, for example, using OEABE in a multiple-authority
CP-ABE scheme to gain more scalability. However, in such scenario, the trade-off between the
scalability and the communication overhead should be considered since a complex architecture
also implies high latency requirements for the management of security parameters.

Regarding AKAPR, the security validation could be consolidated in both formal and math-
ematical aspects. Indeed, as ProVerif considers a less realistic assumption on perfect cryp-
tography, a formal security validation in the computational model by using other automatic
cryptographic verifiers (e.g. CryptoVerif, CL-Atse, OFMC) could be performed. In these ver-
ifiers, the hypothesis of black-boxes cryptographic primitives is removed. Additionally, they
support algebraic operations such as modular multiplication or Exclusive-or. With respect to
the mathematical proof, we can formally define each composition of AKAPR messages and pro-
vide a formal proof in the random oracle model. Last but not least, an experimental evaluation
of the proposed key agreement on real constrained sensor platforms should be performed in
order to confirm the efficiency of AKAPR compared to related work.

As final point, further research and consideration should be given to lightweight quantum-
resistant primitives, such as NTRU and HIMMO. Indeed, with the advent of quantum-computing,
most of the widely used cryptographic primitives and protocols, such as RSA, ECDH, ECDSA
and other DLP-based cryptosystems, become breakable. As a result, post-quantum crypto-
graphic primitives should be more taken into great consideration in the context of IoT while
paying attention to providing acceptable performance on resource-constrained IoT devices.

108

Author Publications

Journals

• Kim Thuat Nguyen, Maryline Laurent, Nouha Oualha, Survey on secure communication
protocols for the Internet of Things, Ad-Hoc Networks journal, Available online 9 February
2015, ISSN 1570-8705, http://dx.doi.org/10.1016/j.adhoc.2015.01.006.

• Kim Thuat Nguyen, Nouha Oualha, Maryline Laurent, Securely Outsourcing the Ciphertext-
policy Attribut-Based Encryption, World Wide Web: Internet and Web Information Sys-
tems journal (WWWJ), submitted the 3rd October 2016.

Conferences

• Kim Thuat Nguyen, Nouha Oualha, Maryline Laurent, Authenticated Key Agreement me-
diated by a Proxy Re-encryptor for the Internet of Things, 21st European Symposium on
Research in Computer Security (ESORICS 2016), Heraklion, September 2016.

• Kim Thuat Nguyen, Nouha Oualha, Maryline Laurent, Novel Lightweight Signcryption-
based Key Distribution Method for MIKEY, the 10th International Conference on Infor-
mation Security Theory and Practice (WISTP 2016), Heraklion, September 2016.

• Kim Thuat Nguyen, Nouha Oualha, Lightweight Attribute-Based Encryption for the Inter-
net of Things, 25th International Conference on Computer Communication and Networks
(ICCCN 2016), Hawaii, August 2016.

• Kim Thuat Nguyen, Nouha Oualha, Maryline Laurent, Lightweight Certificateless and
Provably-Secure Signcryptosystem for the Internet of Things, 14th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (TRUST-
COM 2015), Helsinki, August 2015.

109

Annexes

1 type host .
2 type key .
3 type mkey .
4 type Zp .
5 f r e e c : channel .
6 f r e e I , R: host .
7

8 t a b l e msKey(host , Zp) .
9 t a b l e transMsKey (host , host , Zp) .

10 t a b l e keys (host , mkey) .
11 t a b l e c t r (host , Zp) .
12

13 not a t tacke r (new K id) .
14 not a t tacke r (new K rd) .
15 not a t tacke r (new s k I) .
16 not a t tacke r (new sk R) .
17

18 fun addone (Zp) : Zp .
19 fun enc (b i t s t r i n g , key) : b i t s t r i n g .
20 reduc f o r a l l x : b i t s t r i n g , y : key ; denc (enc (x , y) , y) = x .
21 fun mac(b i t s t r i n g , mkey) : b i t s t r i n g .
22 fun kdf AK (host , host , Zp) : key .
23 fun mkdf AK(host , host , Zp) : mkey .
24 fun kdf h (Zp , host) : Zp .
25 fun k d f f n (Zp , host , host , Zp , Zp) : key .
26 fun mkdf fn (Zp , host , host , Zp , Zp) : mkey .
27 fun mask(Zp , Zp) : Zp .
28 fun kd f rk (Zp , Zp) : Zp .
29 fun inv (Zp) : Zp .
30 fun s i d g e n (host , host , Zp) : b i t s t r i n g .
31

32 reduc f o r a l l r : Zp , k1 : Zp , k2 : Zp ;
33 reenc (mask (r , k1) , kd f rk (k1 , k2)) = mask(r , inv (k2)) .
34 reduc f o r a l l r : Zp , k : Zp ;
35 unmask (mask(r , inv (k)) , k) = r .
36

37 event beg inIkey (host , host , key) .
38 event endIkey (host , host , key) .
39 event beginRkey (host , host , key) .

110

40 event endRkey (host , host , key) .
41

42 query a t tacke r (new s e c r e t I) ;
43 a t tacke r (new secretR) .
44 query x : host , y : host , z : key ; event (endRkey (x , y , z)) ==> event (

beginRkey (x , y , z)) .
45 query x : host , y : host , z : key ; event (endIkey (x , y , z)) ==> event (

beg inIkey (x , y , z)) .
46

47 l e t p r o c e s s I =
48 new s e c r e t I : b i t s t r i n g ;
49 in (c , hostR : host) ;
50 get keys(=I , k id) in
51 new Ni : Zp ;
52 new t : Zp ;
53 get c t r (=I , c t i 0) in
54 l e t c t i : Zp = addone (c t i 0) in
55 i n s e r t c t r (I , c t i) ;
56 l e t AK e : key = kdf AK (I , hostR , t) in
57 l e t AK a : mkey = mkdf AK(I , hostR , t) in
58 event beginRkey (I , hostR , AK e) ;
59 new w: Zp ; l e t SID : b i t s t r i n g = s i d g e n (I , hostR , w) in
60 l e t e1 : b i t s t r i n g = enc ((I , hostR , Ni , c t i) , AK e) in
61 l e t me1 : b i t s t r i n g = mac(e1 , AK a) in
62 get msKey(=I , k i) in
63 l e t tb : Zp = mask(t , kdf h (ki , hostR)) in
64 l e t mac1 : b i t s t r i n g = mac ((SID , I , hostR , e1 , me1 , tb) , k id) in
65 out (c , (SID , I , hostR , e1 , me1 , tb , mac1)) ;
66 in (c , (=SID , e2 : b i t s t r i n g , mac2 : b i t s t r i n g)) ;
67 i f mac ((SID , e2) , AK a) = mac2 then
68 l e t (=SID , =hostR , =I , =Ni , =t , Nrp : Zp , c t r p : Zp) = denc (e2 , AK e

) in
69 i f (c t r p = addone (c t i)) then
70 l e t K s : key = k d f f n (ct rp , I , hostR , Ni , Nrp) in
71 l e t m Ks : mkey = mkdf fn (ct rp , I , hostR , Ni , Nrp) in
72 event beg inIkey (I , hostR , K s) ;
73 l e t mac3 : b i t s t r i n g = mac ((SID , I , hostR , Ni , Nrp) , m Ks) in
74 out (c , (SID , mac3)) ;
75 out (c , enc (s e c r e t I , K s)) .
76

77 l e t processR =
78 new secretR : b i t s t r i n g ;
79 in (c , (SID : b i t s t r i n g , ho s t I : host , =R, e4 : b i t s t r i n g , me4 :

b i t s t r i n g , tbp : Zp , mac4 : b i t s t r i n g)) ;
80 get keys(=R, krd) in
81 i f mac ((SID , hostI , R, e4 , me4 , tbp) , krd) = mac4 then
82 get msKey(=R, kr) in
83 l e t tp : Zp = unmask (tbp , kdf h (kr , ho s t I)) in
84 l e t AK ep : key = kdf AK (hostI , R, tp) in

111

85 l e t AK ap : mkey = mkdf AK(hostI , R, tp) in
86 i f mac(e4 , AK ap) = me4 then
87 event endRkey (hostI , R, AK ep) ;
88 get c t r (=R, c t r) in
89 l e t (=hostI , =R, Nip : Zp , =c t r) = denc (e4 , AK ep) in
90 new Nr : Zp ;
91 i n s e r t c t r (R, addone (c t r)) ;
92 l e t e5 : b i t s t r i n g = enc ((SID , R, hostI , Nip , tp , Nr) , AK ep) in
93 l e t mac5 : b i t s t r i n g = mac ((SID , e5) , AK ap) in
94 out (c , (SID , e5 , mac5)) ;
95 in (c , (=SID , mac6 : b i t s t r i n g)) ;
96 l e t K s : key = k d f f n (addone (c t r) , hostI , R, Nip , Nr) in
97 l e t m Ks : mkey = mkdf fn (addone (c t r) , hostI , R, Nip , Nr) in
98 i f mac ((SID , hostI , R, Nip , Nr) , m Ks) = mac6 then
99 event endIkey (hostI , R, K s) ;

100 out (c , enc (secretR , K s)) .
101

102 l e t processDG =
103 in (c , (SID : b i t s t r i n g , ho s t I : host , hostR : host , e7 : b i t s t r i n g , td :

Zp , mac7 : b i t s t r i n g)) ;
104 get keys(=hostI , kd1) in
105 i f mac ((SID , hostI , hostR , e7 , td) , kd1) = mac7 then
106 get transMsKey(=hostI , =hostR , d k i r) in
107 l e t tdr : Zp = reenc (td , d k i r) in
108 get keys(=hostR , kd2) in
109 l e t m7: b i t s t r i n g = mac ((SID , hostI , hostR , e7 , tdr) , kd2) in
110 out (c , (SID , hostI , hostR , e7 , td , m7)) .
111

112 l e t processDK =
113 in (c , (h i : host , hr : host , k : Zp)) ;
114 i f (h i <> I) && (hr <> R) then i n s e r t transMsKey (hi , hr , k) .
115

116 l e t processKD =
117 in (c , (h : host , k : mkey)) ;
118 i f (h <> I) && (h <> R) then i n s e r t keys (h , k) .
119

120 l e t processK =
121 in (c , (h : host , r : Zp)) ;
122 i f (h <> I) && (h <> R) then i n s e r t msKey(h , r) .
123

124 l e t processCTR =
125 in (c , (h : host , r : Zp)) ;
126 i f (h <> I) && (h <> R) then i n s e r t c t r (h , r) .
127

128 proce s s
129 new s k I : Zp ;
130 new sk R : Zp ;
131 new K id : mkey ;
132 new K rd : mkey ;

112

133 new cpt : Zp ;
134 i n s e r t c t r (I , cpt) ;
135 i n s e r t c t r (R, cpt) ;
136 i n s e r t msKey(I , s k I) ;
137 i n s e r t msKey(R, sk R) ;
138 i n s e r t keys (I , K id) ;
139 i n s e r t keys (R, K rd) ;
140 l e t dgIR : Zp = kd f rk (kdf h (sk I , R) , kdf h (sk R , I)) in
141 i n s e r t transMsKey (I , R, dgIR) ;
142 ((! p r o c e s s I) | (processR) | (! processDG) | (! processK) | (!

processKD) | (! processDK) | (! processCTR))

Listing 7.1: ProVerif code of AKAPR

113

Glossary of Acronyms

IoT Internet of Things
PKI Public Key Infrastructure
CP-ABE Ciphertext-Policy Attribute-Based Encryption
MIKEY Multimedia Internet KEYing
6LoWPAN IPv6 over Low power Wireless Personal Area Networks
WSN Wireless Sensor Network
ECC Elliptic Curve Cryptography
DoS Denial-of-Service
PKC Public Key Cryptography
ABE Attribute-Based Encryption
IBE Identity-based Encryption
KP-ABE Key-Policy Attribute-Based Encryption
KMS Key Management Server
DDH Decisional Diffie-Hellman
CDH Computational Diffie-Hellman
GDH Gap Diffie-Hellman
DLP Discrete Logarithm Problem
GDL Gap Discrete Log
CA Certificate Authority
6LBR 6LoWPAN Border Router
TLS Transport Layer Security
DTLS Datagram Transport Layer Security
ECDH Elliptic Curve Diffie-Hellman exchange
ECDSA Elliptic Curve Digital Signature Algorithm
MAC Message Authentication Code
TPM Trusted Platform Module
CCA Chosen-Ciphertext Attack
CMA Chosen-Message Attack
PPT Probabilistic Polynomial Time
HMAC Hash-based Message Authentication Code
ABE-CT Attribute-based Encryption Ciphertext
DP Data Producer
DC Data Consumer
I Initiator
R Responder
DG Delegatee
PRE Proxy Re-Encryption
KDF Key Derivation Function
PRNG Pseudorandom Number Generator

114

PKC Public Key Cryptography
WSN Wireless Sensor Network
KDC Key Distribution Center
PKG Private Key Generator
DH Diffie-Hellman exchange

115

Bibliography

[1] CC2538 data sheet, http://www.ti.com/lit/ds/symlink/cc2538.pdf, last accessed:
May 2016.

[2] Cisco global cloud index: Forecast and methodology, 2014-2019 white paper.

[3] CPABE toolkit: http://acsc.cs.utexas.edu/cpabe/.

[4] Gartner inc., forecast: The internet of things, worldwide, 2013.

[5] IPv6 over low power wpan (6LoWPAN) IETF working group.

[6] Openmote platform, http://www.openmote.com/, last accessed: May 2016.

[7] Pairing based cryptography library: http://crypto.standford.edu/pbc.

[8] Relic toolkit - an efficient library for cryptography, https://github.com/

relic-toolkit/relic, last accessed: May 2016.

[9] SECG. Sec 2: Recommended elliptic curve domain parameters version 2.0.

[10] Mohammed Riyadh Abdmeziem and Djamel Tandjaoui. An end-to-end secure key manage-
ment protocol for e-health applications. Computers & Electrical Engineering, 44:184–197,
2015.

[11] Carlisle Adams and Steve Lloyd. Understanding public-key infrastructure: concepts, stan-
dards, and deployment considerations. Sams Publishing, 1999.

[12] Basel Alomair and Radha Poovendran. Unconditionally secure authenticated encryption
with shorter keys. In WOSIS, 2009.

[13] Moreno Ambrosin, Mauro Conti, and Tooska Dargahi. On the feasibility of attribute-based
encryption on smartphone devices. IoT-Sys ’15, 2015.

[14] JeeHea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryp-
tion. In LarsR. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 83–107. Springer Berlin Heidelberg,
2002.

[15] Jari Arkko, Elisabetta Carrara, Fredrik Lindholm, Mats Naslund, and Karl Norrman.
RFC 3830: MIKEY: Multimedia internet keying. Internet Engineering, 2004.

[16] Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. Low-cost
standard signatures in wireless sensor networks: A case for reviving pre-computation tech-
niques? In Proceedings of NDSS 2013, 2013.

116

http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.openmote.com/
http://crypto.standford.edu/pbc
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

[17] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage. ACM Transactions
on Information and System Security (TISSEC), 9(1):1–30, 2006.

[18] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of sign-
cryption. In David Naccache and Pascal Paillier, editors, Public Key Cryptography, volume
2274 of Lecture Notes in Computer Science, pages 80–98. Springer Berlin Heidelberg, 2002.

[19] Feng Bao and Robert H. Deng. A signcryption scheme with signature directly verifiable
by public key. In Public Key Cryptography, First International Workshop on Practice
and Theory in Public Key Cryptography, PKC ’98, Pacifico Yokohama, Japan, February
5-6, 1998, Proceedings, volume 1431 of Lecture Notes in Computer Science, pages 55–59.
Springer, 1998.

[20] Manuel Bernardo Barbosa and Pooya Farshim. Certificateless signcryption. In Proceedings
of the 2008 ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’08, pages 369–372, New York, NY, USA, 2008. ACM.

[21] Elaine B Barker and John Michael Kelsey. Recommendation for random number generation
using deterministic random bit generators (revised), NIST Special Publication SP 800-90.
2007.

[22] Paulo S.L.M. Barreto, Benôıt Libert, Noel McCullagh, and Jean-Jacques Quisquater. Ef-
ficient and provably-secure identity-based signatures and signcryption from bilinear maps.
In Bimal Roy, editor, Advances in Cryptology - ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 515–532. Springer Berlin Heidelberg, 2005.

[23] David Basin, Sebastian Mödersheim, and Luca Vigano. An on-the-fly model-checker for
security protocol analysis. In European Symposium on Research in Computer Security,
pages 253–270. Springer, 2003.

[24] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and
Louis Wingers. SIMON and SPECK: Block ciphers for the internet of things. In NIST
Lightweight Cryptography Workshop, volume 2015, 2015.

[25] Amos Beimel. PhD thesis: ”Secure schemes for secret sharing and key distribution”.
Technion-Israel Institute of technology, Faculty of computer science, 1996.

[26] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Proceedings of the 13th ACM conference on Computer and
communications security, pages 390–399. ACM, 2006.

[27] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM, 1993.

[28] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based en-
cryption. In IEEE S & P, 2007.

[29] Giuseppe Bianchi, Angelo T. Capossele, Chiara Petrioli, and Dora Spenza. AGREE:
exploiting energy harvesting to support data-centric access control in WSNs. Ad hoc
networks, 11(8):2625–2636, 2013.

117

[30] Bruno Blanchet. Automatic verification of correspondences for security protocols. Journal
of Computer Security, 17(4):363–434, 2009.

[31] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In Advances in Cryptology—EUROCRYPT’98, pages 127–144. Springer,
1998.

[32] Rolf Blom. An optimal class of symmetric key generation systems. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 335–338. Springer, 1984.

[33] Rolf Blom. An optimal class of symmetric key generation systems. In Advances in cryp-
tology, pages 335–338. Springer, 1985.

[34] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An ultra-
lightweight block cipher. In International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 450–466. Springer, 2007.

[35] Dan Boneh. Algorithmic Number Theory: Third International Symposiun, ANTS-III Port-
land, Oregon, USA, June 21–25, 1998 Proceedings, chapter The Decision Diffie-Hellman
problem, pages 48–63. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[36] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Annual
International Cryptology Conference, pages 213–229. Springer, 2001.

[37] Carsten Bormann, Mehmet Ersue, and A Keranen. Terminology for constrained-node
networks. Internet Engineering Task Force (IETF), RFC, 7228, 2014.

[38] Aymen Boudguiga, Alexis Olivereau, and Nouha Oualha. Server assisted key establishment
for WSN: A MIKEY-Ticket approach. In 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, pages 94–101, July 2013.

[39] Aymen Boudguiga, Alexis Olivereau, and Nouha Oualha. Server assisted key establishment
for WSN: A MIKEY-Ticket approach. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference on, pages 94–
101. IEEE, 2013.

[40] Vladimir Božović, Daniel Socek, Rainer Steinwandt, and Viktória I Villányi. Multi-
authority attribute-based encryption with honest-but-curious central authority. Inter-
national Journal of Computer Mathematics, 89(3):268–283, 2012.

[41] Daniel R. L. Brown. Standards for efficient cryptography, sec 1: elliptic curve cryptogra-
phy. Released Standard Version, 1, 2009.

[42] David Cadé and Bruno Blanchet. Proved generation of implementations from compu-
tationally secure protocol specifications1. Journal of Computer Security, 23(3):331–402,
2015.

[43] Seyit A Camtepe and Bülent Yener. Key distribution mechanisms for wireless sensor
networks: a survey. Rensselaer Polytechnic Institute, Troy, New York, Technical Report,
pages 05–07, 2005.

[44] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In
Proceedings of the 14th ACM conference on Computer and communications security, pages
185–194. ACM, 2007.

118

[45] Certicom. ECC tutorial, https://www.certicom.com/ecc-tutorial, last checked octo-
ber 2016.

[46] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution schemes for
sensor networks. In Security and Privacy, 2003. Proceedings. 2003 Symposium on, pages
197–213. IEEE, 2003.

[47] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography
Conference, pages 515–534. Springer, 2007.

[48] Melissa Chase and Sherman SM Chow. Improving privacy and security in multi-authority
attribute-based encryption. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 121–130. ACM, 2009.

[49] Ioannis Chatzigiannakis, Apostolos Pyrgelis, Paul G Spirakis, and Yannis C Stamatiou.
Elliptic curve based zero knowledge proofs and their applicability on resource constrained
devices. In Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International
Conference on, pages 715–720. IEEE, 2011.

[50] Cheng Chen, Zhenfeng Zhang, and Dengguo Feng. Efficient ciphertext policy attribute-
based encryption with constant-size ciphertext and constant computation-cost. In Provable
Security, pages 84–101. Springer, 2011.

[51] Ling Cheung and Calvin Newport. Provably secure ciphertext policy ABE. In Proceedings
of the 14th ACM conference on Computer and communications security, pages 456–465.
ACM, 2007.

[52] Sherman SM Chow, Jian Weng, Yanjiang Yang, and Robert H Deng. Efficient unidi-
rectional proxy re-encryption. In Progress in Cryptology–AFRICACRYPT 2010, pages
316–332. Springer, 2010.

[53] Simone Cirani, Gianluigi Ferrari, and Luca Veltri. Enforcing security mechanisms in the
IP-based internet of things: An algorithmic overview. Algorithms, 6(2):197–226, 2013.

[54] Debra L Cook and Angelos D Keromytis. Conversion functions for symmetric key ciphers.
Journal of Information Assurance and Security, 2:41–50, 2006.

[55] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.

[56] Quynh Dang. Recommendation for applications using approved hash algorithms. US De-
partment of Commerce, National Institute of Standards and Technology, 2008.

[57] Giacomo De Meulenaer, François Gosset, O-X Standaert, and Olivier Pereira. On the
energy cost of communication and cryptography in wireless sensor networks. In Networking
and Communications, 2008. WIMOB’08. IEEE International Conference on Wireless and
Mobile Computing,, pages 580–585. IEEE, 2008.

[58] Alexander W. Dent and Yuliang Zheng. Practical Signcryption. Springer-Verlag, 2010.

[59] AlexanderW. Dent and John Malone-Lee. Signcryption schemes based on the RSA prob-
lem. In Alexander W. Dent and Yuliang Zheng, editors, Practical Signcryption, Informa-
tion Security and Cryptography, pages 99–117. Springer Berlin Heidelberg, 2010.

119

https://www.certicom.com/ecc-tutorial

[60] Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol version 1.2,
RFC 5246. 2008.

[61] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[62] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and
Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things. IACR
Cryptology ePrint Archive, 2015:209, 2015.

[63] Danny Dolev and Andrew C Yao. On the security of public key protocols. Information
Theory, IEEE Transactions on, 29(2):198–208, 1983.

[64] Nishant Doshi and Devesh C. Jinwala. Fully secure ciphertext policy attribute-based
encryption with constant length ciphertext and faster decryption. Sec. and Commun.
Netw., 7(11):1988–2002, November 2014.

[65] Wenliang Du, Jing Deng, Yunghsiang S Han, and Pramod K Varshney. A key predistri-
bution scheme for sensor networks using deployment knowledge. Dependable and Secure
Computing, IEEE Transactions on, 3(1):62–77, 2006.

[66] Adam Dunkels, Joakim Eriksson, Niclas Finne, and Nicolas Tsiftes. Powertrace: Network-
level power profiling for low-power wireless networks, swedish institute of computer science.
2011.

[67] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight and flexible
operating system for tiny networked sensors. In Local Computer Networks, 2004. 29th
Annual IEEE International Conference on, pages 455–462. IEEE, 2004.

[68] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He. Software-based on-line
energy estimation for sensor nodes. In Proceedings of the 4th Workshop on Embedded
Networked Sensors, EmNets ’07, pages 28–32, New York, NY, USA, 2007. ACM.

[69] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He. Software-based on-
line energy estimation for sensor nodes. In Proceedings of the 4th workshop on Embedded
networked sensors, pages 28–32. ACM, 2007.

[70] Maitreyee Dutta, Anuj Kumar Singh, and Ajay Kumar. An efficient signcryption scheme
based on ECC with forward secrecy and encrypted message authentication. In Advance
Computing Conference (IACC), 2013 IEEE 3rd International, pages 399–403, Feb 2013.

[71] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10–18, New
York, NY, USA, 1985. Springer-Verlag New York, Inc.

[72] Ethmane El Moustaine and Maryline Laurent. A lattice based authentication for low-cost
RFID. In RFID-Technologies and Applications (RFID-TA), 2012 IEEE International
Conference on, pages 68–73. IEEE, 2012.

[73] Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and Masakazu Soshi. A
ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In
International Conference on Information Security Practice and Experience, pages 13–23.
Springer, 2009.

120

[74] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels, Thiemo
Voigt, Robert Sauter, and Pedro José Marrón. Cooja/mspsim: interoperability testing for
wireless sensor networks. In Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, page 27. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2009.

[75] Pasi Eronen and Hannes Tschofenig. Pre-shared key ciphersuites for transport layer secu-
rity (TLS). Technical report, RFC 4279, December, 2005.

[76] Laurent Eschenauer and Virgil D Gligor. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM conference on Computer and communications
security, pages 41–47. ACM, 2002.

[77] Martin Euchner. HMAC-authenticated diffie-hellman for multimedia internet keying
(MIKEY), RFC 4650. 2006.

[78] Junfeng Fan, Lejla Batina, and Ingrid Verbauwhede. Light-weight implementation options
for curve-based cryptography: HECC is also ready for RFID. In Internet Technology and
Secured Transactions, 2009. ICITST 2009. International Conference for, pages 1–6. IEEE,
2009.

[79] Ali Fanian, Mehdi Berenjkoub, Hossein Saidi, and T. Aaron Gulliver. A scalable and
efficient key establishment protocol for wireless sensor networks. In 2010 IEEE Globecom
Workshops, pages 1533–1538. IEEE, 2010.

[80] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
cryptology, 1(2):77–94, 1988.

[81] PUB Fips. 186-2. digital signature standard (DSS). National Institute of Standards and
Technology (NIST), 2000.

[82] Sepideh Fouladgar, Bastien Mainaud, Khaled Masmoudi, and Hossam Afifi. Tiny 3-TLS:
A trust delegation protocol for wireless sensor networks. In Security and Privacy in Ad-Hoc
and Sensor Networks, pages 32–42. Springer, 2006.

[83] Steffen Fries and Dragan Ignjatic. On the applicability of various multimedia internet
keying (MIKEY) modes and extensions. Technical report, 2008.

[84] Oscar Garcia-Morchon, D Gómez-Pérez, J Gutiérrez, R Rietman, B Schoenmakers, and
L Tolhuizen. HIMMO-a lightweight, fully colluison resistant key-predistribution scheme.
Technical report, Cryptology ePrint Archive, Report 2014/698, 2014.

[85] Oscar Garcia-Morchon, Sandeep S. Kumar, Sye Loong Keoh, Rene Hummen, and Rene
Struik. Security considerations in the IP-based internet of things, draft-garcia-core-
security-06. 2014.

[86] Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma, Ludo Tolhuizen, and Jose Luis
Torre-Arce. DTLS-HIMMO: Achieving DTLS certificate security with symmetric key
overhead. In European Symposium on Research in Computer Security, pages 224–242.
Springer, 2015.

[87] Gunnar Gaubatz, J-P Kaps, Erdinc Ozturk, and Berk Sunar. State of the art in ultra-low
power public key cryptography for wireless sensor networks. In Pervasive Computing and
Communications Workshops, 2005. PerCom 2005 Workshops. Third IEEE International
Conference on, pages 146–150. IEEE, 2005.

121

[88] Gunnar Gaubatz, Jens-Peter Kaps, Ersin Ozturk, and Berk Sunar. State of the art in
ultra-low power public key cryptography for wireless sensor networks. In Pervasive Com-
puting and Communications Workshops, 2005. PerCom 2005 Workshops. Third IEEE
International Conference on, pages 146–150, March 2005.

[89] Marc Girault. Self-certified public keys. In Workshop on the Theory and Application of
of Cryptographic Techniques, pages 490–497. Springer, 1991.

[90] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge
university press, 2009.

[91] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext policy
attribute based encryption. In Automata, languages and programming, pages 579–591.
Springer, 2008.

[92] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Proceedings of the 13th ACM CCS,
pages 89–98. Acm, 2006.

[93] Jorge Granjal, Edmundo Monteiro, and Jorge Sa Silva. End-to-end transport-layer security
for internet-integrated sensing applications with mutual and delegated ECC public-key
authentication. In IFIP Networking Conference, 2013, pages 1–9. IEEE, 2013.

[94] Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In Applied
Cryptography and Network Security, pages 288–306. Springer, 2007.

[95] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryption of
ABE ciphertexts. In USENIX Security Symposium, volume 2011, 2011.

[96] Michael Groves. Elliptic curve-based certificateless signatures for identity-based encryption
(ECCSI), RFC 6507. 2012.

[97] Michael Groves. MIKEY-SAKKE: Sakai-Kasahara key encryption in multimedia internet
keying (MIKEY), RFC 6509. 2012.

[98] Christoph G Günther. An identity-based key-exchange protocol. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 29–37. Springer, 1989.

[99] Yiliang Han, Xiaoyuan Yang, Ping Wei, Yuming Wang, and Yupu Hu. ECGSC: Elliptic
curve based generalized signcryption. In Jianhua Ma, Hai Jin, LaurenceT. Yang, and
JeffreyJ.-P. Tsai, editors, Ubiquitous Intelligence and Computing, volume 4159 of Lecture
Notes in Computer Science, pages 956–965. Springer Berlin Heidelberg, 2006.

[100] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryptog-
raphy. Springer Science & Business Media, 2006.

[101] M Jason Hinek, Shaoquan Jiang, Reihaneh Safavi-Naini, and Siamak Fayyaz Shahan-
dashti. Attribute-based encryption with key cloning protection. IACR Cryptology ePrint
Archive, 2008:478, 2008.

[102] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based public key
cryptosystem. In International Algorithmic Number Theory Symposium, pages 267–288.
Springer, 1998.

122

[103] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo,
Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, et al. HIGHT: A new block
cipher suitable for low-resource device. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 46–59. Springer, 2006.

[104] Russell Housley, Warwick Ford, W Polk, and David Solo. RFC 5280: Internet x. 509
public key infrastructure certificate and crl profile, 2008.

[105] Jonathan Hui and Pascal Thubert. Compression format for IPv6 datagrams over ieee
802.15. 4-based networks, RFC 6282. 2011.

[106] René Hummen, Hossein Shafagh, Shahid Raza, Thiemo Voig, and Klaus Wehrle.
Delegation-based authentication and authorization for the IP-based internet of things.
In Sensing, Communication, and Networking (SECON), 2014 Eleventh Annual IEEE In-
ternational Conference on, pages 284–292. Ieee, 2014.

[107] René Hummen, Hanno Wirtz, Jan Henrik Ziegeldorf, Jens Hiller, and Klaus Wehrle. Tai-
loring end-to-end ip security protocols to the internet of things. In 2013 21st IEEE Inter-
national Conference on Network Protocols (ICNP), pages 1–10. IEEE, 2013.

[108] René Hummen, Jan H Ziegeldorf, Hossein Shafagh, Shahid Raza, and Klaus Wehrle. To-
wards viable certificate-based authentication for the internet of things. In Proceedings of
the 2nd ACM workshop on Hot topics on wireless network security and privacy, pages
37–42. ACM, 2013.

[109] HR Hussen, GA Tizazu, Miao Ting, Taekkyeun Lee, Youngjun Choi, and Ki-Hyung Kim.
Sakes: Secure authentication and key establishment scheme for M2M communication in the
IP-based wireless sensor network (6l0wpan). In Ubiquitous and Future Networks (ICUFN),
2013 Fifth International Conference on, pages 246–251. IEEE, 2013.

[110] David D Hwang, Bo-Cheng Charles Lai, and Ingrid Verbauwhede. Energy-memory-
security tradeoffs in distributed sensor networks. In International Conference on Ad-Hoc
Networks and Wireless, pages 70–81. Springer, 2004.

[111] Luan Ibraimi, Milan Petkovic, Svetla Nikova, Pieter Hartel, and Willem Jonker. Mediated
ciphertext-policy attribute-based encryption and its application. In Information security
applications, pages 309–323. Springer, 2009.

[112] Dragan Ignjatic, Lakshminath Dondeti, Francois Audet, and Ping Lin. MIKEY-RSA-R:
An additional mode of key distribution in multimedia internet keying (MIKEY). RFC
4738, November, 2006.

[113] Garner Inc. Forecast: The internet of things, worldwide. 2013.

[114] Takashi Ito, Hidenori Ohta, Nori Matsuda, and Takeshi Yoneda. A key pre-distribution
scheme for secure sensor networks using probability density function of node deployment.
In Proceedings of the 3rd ACM workshop on Security of ad hoc and sensor networks, pages
69–75. ACM, 2005.

[115] Asha Liza John and Sabu M Thampi. Mutual authentication based on HECC for RFID
implant systems. In International Symposium on Security in Computing and Communi-
cation, pages 18–29. Springer, 2016.

123

[116] Mitsuru Kanda, Yoshihiro Ohba, Subir Das, and Stephen Chasko. PANA applicability in
constrained environments, 2012.

[117] Charlie Kaufman. Internet key exchange (IKEv2) protocol, RFC 4306. 2005.

[118] Cameron F Kerry. Digital signature standard (DSS). National Institute of Standards and
Technology, 2013.

[119] Tero Kivinen. Minimal IKEv2, draft IETF. 2012.

[120] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203–209,
1987.

[121] Neal Koblitz and Alfred J Menezes. A survey of public-key cryptosystems. SIAM review,
46(4):599–634, 2004.

[122] John Kohl and Clifford Neuman. The kerberos network authentication service (v5). Tech-
nical report, 1993.

[123] Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brünig, and Georg Carle. A
DTLS based end-to-end security architecture for the internet of things with two-way au-
thentication. In Local Computer Networks Workshops (LCN Workshops), 2012 IEEE 37th
Conference on, pages 956–963. IEEE, 2012.

[124] Pascal Lafourcade, Vanessa Terrade, and Sylvain Vigier. Comparison of cryptographic
verification tools dealing with algebraic properties. In International Workshop on Formal
Aspects in Security and Trust, pages 173–185. Springer, 2009.

[125] Bocheng Lai, Sungha Kim, and Ingrid Verbauwhede. Scalable session key construction
protocol for wireless sensor networks. In IEEE Workshop on Large Scale RealTime and
Embedded Systems (LARTES), page 7. Citeseer, 2002.

[126] Cheng-Chi Lee, Pei-Shan Chung, and Min-Shiang Hwang. A survey on attribute-based en-
cryption schemes of access control in cloud environments. IJ Network Security, 15(4):231–
240, 2013.

[127] Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In Advances
in Cryptology–EUROCRYPT 2011, pages 568–588. Springer, 2011.

[128] Fagen Li and Chunxiang Xu. An improved identity-based KCDSA signcryption scheme. In
Data, Privacy, and E-Commerce, 2007. ISDPE 2007. The First International Symposium
on, pages 230–232, Nov 2007.

[129] Jin Li, Kui Ren, Bo Zhu, and Zhiguo Wan. Privacy-aware attribute-based encryption with
user accountability. In International Conference on Information Security, pages 347–362.
Springer, 2009.

[130] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based schemes
using a prime order subgroup. In Annual International Cryptology Conference, pages
249–263. Springer, 1997.

[131] Chae Hoon Lim and Pil Joong Lee. A study on the proposed korean digital signature
algorithm. In Advances in Cryptology-ASIACRYPT’98, LNCS 1514, Spinger-Verlag, pages
175–186, 1998.

124

[132] Chae Hoon Lim and Pil Joong Lee. A study on the proposed korean digital signature
algorithm. In Advances in Cryptology—ASIACRYPT’98, pages 175–186. Springer, 1998.

[133] Donggang Liu, Peng Ning, and Rongfang Li. Establishing pairwise keys in distributed sen-
sor networks. ACM Transactions on Information and System Security (TISSEC), 8(1):41–
77, 2005.

[134] David J Malan, Matt Welsh, and Michael D Smith. Implementing public-key infrastructure
for sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(4):22, 2008.

[135] Charalampos Manifavas, George Hatzivasilis, Konstantinos Fysarakis, and Konstantinos
Rantos. Lightweight cryptography for embedded systems–a comparative analysis. In Data
Privacy Management and Autonomous Spontaneous Security, pages 333–349. Springer,
2014.

[136] Leandro Marin, Antonio Jara, and Antonio F Skarmeta. Shifting primes: Optimizing
elliptic curve cryptography for smart things. In Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, pages 793–798.
IEEE, 2012.

[137] Toshihiko Matsuo. Proxy re-encryption systems for identity-based encryption. In Pairing-
Based Cryptography–Pairing 2007, pages 247–267. Springer, 2007.

[138] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. Coding
Thv, 4244:114–116, 1978.

[139] Francisco Vidal Meca, Jan Henrik Ziegeldorf, Pedro Moreno Sanchez, Oscar Garcia Mor-
chon, Sandeep S Kumar, and Sye Loong Keoh. HIP security architecture for the IP-
based internet of things. In Advanced Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, pages 1331–1336. IEEE, 2013.

[140] Alfred Menezes, University of Waterloo. Dept. of Combinatorics, Optimization, University
of Waterloo. Faculty of Mathematics, Robert Zuccherato, and Yi-Hong Wu. An elementary
introduction to hyperelliptic curves. Faculty of Mathematics, University of Waterloo, 1996.

[141] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 1996.

[142] Ralph C Merkle. Secure communications over insecure channels. Communications of the
ACM, 21(4):294–299, 1978.

[143] Daniel Migault, Guggemos Tobias, and Daniel Palomares. Minimal ESP, IP security
maintenance and extensions, internet-draft, draft-mglt-lwig-minimal-esp-01.txt. 2014.

[144] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the Theory and
Application of Cryptographic Techniques, pages 417–426. Springer, 1985.

[145] Robert Moskowitz, Tobias Heer, Petri Jokela, and Thomas R. Henderson. Host identity
protocol version 2 (HIPv2), RFC 7401. 2015.

[146] Robert Moskowitz and Rene Hummen. HIP Diet exchange (DEX): draft-moskowitz-hip-
rg-dex-05. Internet Engineering Task Force, Status: Work in progress, Tech. Rep, 2011.

125

[147] Kim Thuat Nguyen, Maryline Laurent, and Nouha Oualha. Lightweight certificateless and
provably-secure signcryptosystem for the internet of things. In the 14th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (IEEE
TrustCom-15), 2015.

[148] Kim Thuat Nguyen, Maryline Laurent, and Nouha Oualha. Novel lightweight signcryption-
based key distribution method for MIKEY. In sthe 10th International Conference on
Information Security Theory and Practice (WISTP), 2016.

[149] Takashi Nishide, Kazuki Yoneyama, and Kazuo Ohta. Attribute-based encryption with
partially hidden encryptor-specified access structures. In International Conference on
Applied Cryptography and Network Security, pages 111–129. Springer, 2008.

[150] Yoshihiro Ohba, Alper Yegin, Basavaraj Patil, Dan Forsberg, and Hannes Tschofenig.
Protocol for carrying authentication for network access (PANA). 2008.

[151] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems
for the security of cryptographic schemes. In International Workshop on Public Key
Cryptography, pages 104–118. Springer, 2001.

[152] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 195–203. ACM, 2007.

[153] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two
new families of asymmetric algorithms. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 33–48. Springer, 1996.

[154] Adrian Perrig, Robert Szewczyk, Justin Douglas Tygar, Victor Wen, and David E Culler.
Spins: Security protocols for sensor networks. Wireless networks, 8(5):521–534, 2002.

[155] Pawani Porambage, Pardeep Kumar, Corinna Schmitt, Andrei Gurtov, and Mika Yliant-
tila. Certificate-based pairwise key establishment protocol for wireless sensor networks. In
Computational Science and Engineering (CSE), 2013 IEEE 16th International Conference
on, pages 667–674. IEEE, 2013.

[156] Zhi Qiao, Shuwen Liang, Spencer Davis, and Hai Jiang. Survey of attribute based en-
cryption. In Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing (SNPD), 2014 15th IEEE/ACIS International Conference on, pages
1–6. IEEE, 2014.

[157] Daniel R. L. Brown. Sec 2: Recommended elliptic curve domain parameters, 2010.

[158] Daniel R. L. Brown, Eugene Chin, and Chi Chiu Tse. ECC algorithms for MIKEY. Work
in Progress, 2007.

[159] Michael O Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. Technical report, DTIC Document, 1979.

[160] Sangram Ray and GP Biswas. Establishment of ECC-based initial secrecy usable for ike
implementation. In Proc. of World Congress on Expert Systems (WCE), 2012.

[161] Shahid Raza, Simon Duquennoy, Tony Chung, Thiemo Voigt, Utz Roedig, et al. Securing
communication in 6LoWPAN with compressed ipsec. In Distributed Computing in Sensor
Systems and Workshops (DCOSS), 2011 International Conference on, pages 1–8. IEEE,
2011.

126

[162] Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt. Lithe:
Lightweight secure CoAP for the internet of things. Sensors Journal, IEEE, 13(10):3711–
3720, 2013.

[163] Eric Rescorla. Diffie-hellman key agreement method, RFC 2631. 1999.

[164] Eric Rescorla and Nagendra Modadugu. Datagram transport layer security version 1.2,
RFC 6347. 2012.

[165] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

[166] Rodrigo Roman, Cristina Alcaraz, Javier Lopez, and Nicolas Sklavos. Key management
systems for sensor networks in the context of the internet of things. Computers & Electrical
Engineering, 37(2):147–159, 2011.

[167] Jong-Ho Ryu, Youn-Seo Jeong, and Dong-Il Seo. Identity based KCDSA signcryption. In
Advanced Communication Technology, 2006. ICACT 2006. The 8th International Confer-
ence, volume 2, pages 6 pp.–1374, Feb 2006.

[168] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology–EUROCRYPT 2005, pages 457–473. Springer, 2005.

[169] Yosra Ben Saied. Collaborative Security for the Internet of Thing. PhD thesis, 2013.

[170] Yosra Ben Saied and Alexis Olivereau. D-HIP: A distributed key exchange scheme for
HIP-based internet of things. In World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2012 IEEE International Symposium on a, pages 1–7. IEEE, 2012.

[171] Yosra Ben Saied, Alexis Olivereau, Djamal Zeghlache, and Maryline Laurent. Lightweight
collaborative key establishment scheme for the internet of things. Computer Networks,
64:273–295, 2014.

[172] Ravi Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, (2):38–47, 1996.

[173] Behcet Sarikaya, Yoshihiro Ohba, Robert Moskowitz, Zhen Cao, and Robert Cragie.
Security bootstrapping solutions for resource-constrained devices, draft-sarikaya-core-
sbootstrapping-05. 2012.

[174] Savio Sciancalepore, Angelo Capossele, Giuseppe Piro, Gennaro Boggia, and Giuseppe
Bianchi. Key management protocol with implicit certificates for iot systems. In Proceedings
of the 2015 Workshop on IoT challenges in Mobile and Industrial Systems, pages 37–42.
ACM, 2015.

[175] S.SharmilaDeva Selvi, S.Sree Vivek, and C.Pandu Rangan. Cryptanalysis of certificateless
signcryption schemes and an efficient construction without pairing. In Feng Bao, Moti
Yung, Dongdai Lin, and Jiwu Jing, editors, Information Security and Cryptology, volume
6151 of Lecture Notes in Computer Science, pages 75–92. Springer Berlin Heidelberg, 2010.

[176] S Seys and B Preneel. Key establishment and authentication suite to counter DoS attacks
in distributed sensor networks. Unpublished manuscript, COSIC, 2002.

127

[177] Adi Shamir. Identity-based cryptosystems and signature schemes. In Workshop on the
Theory and Application of Cryptographic Techniques, pages 47–53. Springer, 1984.

[178] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita,
and Taizo Shirai. Piccolo: an ultra-lightweight blockcipher. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 342–357. Springer, 2011.

[179] Jun-Bum Shin, Kwangsu Lee, and Kyungah Shim. New DSA-verifiable signcryption
schemes. In Information Security and Cryptology—ICISC 2002, pages 35–47. Springer,
2002.

[180] Jun-Bum Shin, Kwangsu Lee, and Kyungah Shim. New DSA-verifiable signcryption
schemes. In PilJoong Lee and ChaeHoon Lim, editors, Information Security and Cryp-
tology — ICISC 2002, volume 2587 of Lecture Notes in Computer Science, pages 35–47.
Springer Berlin Heidelberg, 2003.

[181] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive, 2004:332, 2004.

[182] Marcos A Simplicio Jr, Marcos VM Silva, Renan CA Alves, and Tiago KC Shibata.
Lightweight and escrow-less authenticated key agreement for the internet of things. Com-
puter Communications, 2016.

[183] Amril Syalim, Takashi Nishide, and Kouichi Sakurai. Realizing proxy re-encryption in the
symmetric world. In Informatics Engineering and Information Science, pages 259–274.
Springer, 2011.

[184] Arago Systems. Wismote, http://www.aragosystems.com/images/stories/WiSMote/

Doc/wismote_en.pdf, year=last accessed: Feb. 2015.

[185] Piotr Szczechowiak and Martin Collier. Tinyibe: Identity-based encryption for heteroge-
neous sensor networks. In Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2009 5th International Conference on, pages 319–354. IEEE, 2009.

[186] Tian Tian and John Mattsson. MIKEY-TICKET: Ticket-based modes of key distribution
in multimedia internet keying (MIKEY). 2011.

[187] Mohsen Toorani and Ali Asghar Beheshti Shirazi. An elliptic curve-based signcryption
scheme with forward secrecy. CoRR, abs/1005.1856, 2010.

[188] Lyes Touati, Yacine Challal, and Abdelmadjid Bouabdallah. C-CP-ABE: Cooperative
ciphertext policy attribute-based encryption for the internet of things. In IEEE INDS,
2014.

[189] Raylin Tso, Takeshi Okamoto, and Eiji Okamoto. ECDSA-verifiable signcryption scheme
with signature verification on the signcrypted message. In Information Security and Cryp-
tology, pages 11–24. Springer, 2007.

[190] Raylin Tso, Takeshi Okamoto, and Eiji Okamoto. ECDSA-verifiable signcryption scheme
with signature verification on the signcrypted message. In Dingyi Pei, Moti Yung, Dongdai
Lin, and Chuankun Wu, editors, Information Security and Cryptology, volume 4990 of
Lecture Notes in Computer Science, pages 11–24. Springer Berlin Heidelberg, 2008.

[191] Mathieu Turuani. The CL-Atse protocol analyser. In International Conference on Rewrit-
ing Techniques and Applications, pages 277–286. Springer, 2006.

128

http://www.aragosystems.com/images/stories/WiSMote/Doc/wismote_en.pdf
http://www.aragosystems.com/images/stories/WiSMote/Doc/wismote_en.pdf

[192] Floris Van den Abeele, Tom Vandewinckele, Jeroen Hoebeke, Ingrid Moerman, and Piet
Demeester. Secure communication in IP-based wireless sensor networks via a trusted
gateway. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
2015 IEEE Tenth International Conference on, pages 1–6. IEEE, 2015.

[193] V Vijayalakshmi, R Sharmila, and R Shalini. Hierarchical key management scheme using
hyper elliptic curve cryptography in wireless sensor networks. In Signal Processing, Com-
munication and Networking (ICSCN), 2015 3rd International Conference on, pages 1–5.
IEEE, 2015.

[194] Yong Wang, Garhan Attebury, and Byrav Ramamurthy. A survey of security issues in
wireless sensor networks. 2006.

[195] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. In PKC 2011, pages 53–70. Springer, 2011.

[196] Wenjian Xie and Zhang Zhang. Certificateless signcryption without pairing, 2010.

[197] Lijun Yang, Chao Ding, and Meng Wu. Establishing authenticated pairwise key using
pairing-based cryptography for sensor networks. In Communications and Networking in
China (CHINACOM), 2013 8th International ICST Conference on, pages 517–522. IEEE,
2013.

[198] Gang Yu, Hongzhi Yang, Shuqin Fan, Yong Shen, and Wenbao Han. Efficient certificateless
signcryption scheme from Weil pairing. Journal of Networks, 6(9), 2011.

[199] DaeHyun Yum and PilJoong Lee. New signcryption schemes based on KCDSA. In Kwangjo
Kim, editor, Information Security and Cryptology — ICISC 2001, volume 2288 of Lecture
Notes in Computer Science, pages 305–317. Springer Berlin Heidelberg, 2002.

[200] Wei Zhang. Improvements and Generalisations of Signcryption Schemes. PhD thesis,
2013.

[201] Yuliang Zheng. Signcryption or how to achieve cost (signature & encryption) <<cost (sig-
nature)+ cost (encryption). http://www. pscit. monash. edu. au/yuliang/pubs/signcrypt.
ps. Z, 1999.

[202] Xuanwu Zhou, Zhigang Jin, Yan Fu, Huaiwei Zhou, and Lianmin Qin. Short signcryption
scheme for the internet of things. Informatica (Slovenia), 35(4):521–530, 2011.

[203] Zhibin Zhou and Dijiang Huang. Efficient and secure data storage operations for mobile
cloud computing. In Proceedings of the 8th International Conference on Network and
Service Management, 2012.

129

	Abstract
	Abstract
	Résumé
	Résumé
	Acknowledgment
	Acknowledgment
	List of Tables
	List of Figures
	Introduction
	IoT security challenges
	Problem Statement and Objectives
	Contributions
	Thesis Outline

	Preliminaries and Scientific Background
	Cryptographic Primitives
	Symmetric Key Cryptography
	Public Key Cryptography
	Public Key Encryption
	Digital signature scheme

	Signcryption schemes
	Formal definition of a signcryption scheme
	Example of Zheng's signcryption scheme

	Attribute-Based Encryption
	Access structure
	Bilinear Map
	Formal definition of Ciphertext-Policy Attribute-based Encryption
	Properties of Attribute-based Encryption Schemes

	Proxy re-encryption schemes
	Properties of a proxy re-encryption scheme
	Symmetric cipher proxy re-encryption

	Elliptic Curve Cryptography
	Basic ECC operations
	Computational Hardness Assumptions for ECC

	Implicit Certificate
	Summary

	Lightweight Cryptographic Primitives and Secure Communication Protocols for IoT
	Lightweight cryptographic primitives for IoT
	Symmetric Key Ciphers
	Public Key Ciphers

	Lightweight protocols and methods for establishing secure communications in IoT
	Security properties
	Taxonomy of key establishment protocols for the IoT
	Scenario under consideration
	Classification
	Related work in IoT security protocol classification

	Asymmetric key schemes
	Key transport based on public key encryption
	Key agreement based on asymmetric techniques

	Symmetric key pre-distribution schemes
	Probabilistic key distribution
	Deterministic key distribution

	Discussion

	Identified approaches towards lightweight security mechanisms
	Summary

	ECKSS: Elliptic Curve Korean Signature-Based Signcryption for IoT
	Background on DSA variants
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Elliptic Curve Korean Certificate-based Digital Signature Algorithm

	Our proposed signcryption scheme
	System and Threat model for a signcryption scheme
	System model
	Threat models for signcryption Schemes

	Existing Signcryption Schemes
	The certificateless elliptic curve Korean signature-based signcryption ECKSS
	Security parameter generation process
	ECKSS description
	Public Key Validation

	Game-based security proofs
	Notations for the security proof
	Confidentiality of our scheme
	Unforgeability of our scheme

	Provided security features and extension
	ECKSS Performance Evaluation
	Performance comparison
	Estimation of energy consumption on emulated sensor platform

	ECKSS Application to MIKEY
	Introduction to MIKEY modes and extensions
	Design motivations
	The MIKEY-ECKSS mode specification
	The MIKEY-ECKSS-HMAC mode specification
	Security considerations
	Experimental performance evaluation
	Comparison with related work
	Experimental tools and platforms
	Methodology
	Experimental results of ECKSS
	Experimental results of the proposed MIKEY modes

	Summary

	OEABE: Outsourcing the Encryption of Ciphertext-Policy Attribute-Based Encryption
	Related work
	Related work on Ciphertext-Policy ABE schemes
	Reducing the computational cost of CP-ABE encryption

	System and Threat model
	System model
	Threat model

	Secure outsourcing encryption mechanism for CP-ABE
	Bethencourt et al.'s Ciphertext-policy Attribute-Based Encryption
	OEABE description
	Correctness of our proposal

	Security analysis
	Performance analysis
	Quantified Comparison
	Estimation of energy consumption on emulated sensor platform
	Execution time of OEABE encryption on a laptop

	Examples of applications of OEABE
	Personal Health Data Sharing
	Group Key Management

	Summary

	AKAPR: Authenticated Key Agreement Mediated by a Proxy Re-Encryptor for IoT
	From proxy re-encryption to server-assisted key agreement protocol
	Existing approaches on proxy re-encryption
	Lightweight Bi-directionnal Proxy re-encryption Scheme with Symmetric Cipher
	The proposed proxy re-encryption (PRE) scheme
	Comparison of our PRE scheme to related work

	Lightweight Authenticated and Mediated Key Agreement for IoT
	Network architecture and scenario description
	Security assumptions and notations
	AKAPR protocol description

	Security analysis of AKAPR
	Resistance against attacks
	Formal security validation with ProVerif

	Summary

	Conclusion and Perspectives
	Author Publications
	Annexes
	Glossary of Acronyms
	Glossary
	Bibliography

