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Résumé en Français 
La nutrition est un facteur de risque modifiable pour le cancer. Il est estimé qu’un tiers 

des cas pourraient être évités en adoptant une meilleure alimentation en adéquation avec les 

recommandations les plus récentes. La relation entre nutrition et cancer est complexe, et son 

étude est enrichie par les nouveaux défis apportés par les récentes avancées technologiques 

dans le domaine des « -omiques » auxquels elle doit répondre. Des approches analytiques 

combinant des informations provenant de questionnaires alimentaires avec ceux de 

biomarqueurs et de la métabolomique sont actuellement la cible de nombreuses recherches. 

Cette thèse avait pour but de développer de nouvelles approches biostatistiques afin 

d’étudier la relation entre nutrition et cancer au sein de la cohorte EPIC. Pour ce faire, 

l’applicabilité de nouvelles méthodologies, principalement factorielles, a été étudiée. 

Une nouvelle méthode multivariée pour la réduction de la dimensionnalité, le Treelet 

Transform (TT), a été examinée afin d’extraire des patterns de nutriments issus de 

questionnaires. Les patterns ainsi obtenus étaient facilement interprétables puisque le TT est un 

bon compromis entre analyse en composante principale et clustering hiérarchique. 

Ensuite, un cadre analytique pour implémenter le concept du « meeting-in-the-middle » 

(MITM) a été développé et appliqué dans deux études cas-témoin nichées sur le cancer 

hépatocellulaire avec des données métabolomiques, ciblé et non-ciblée. Le MITM cherche à 

identifier des biomarqueurs qui soient à la fois des marqueurs de certaines expositions passées 

et de conditions pathologiques. L’implémentation s’est focalisée sur l’application de la méthode 

des moindres carrés partiels (PLS) et de l’analyse de médiation. Des signaux métaboliques qui 

médiaient la relation des expositions vers le cancer ont été identifiés.   

Enfin, nous avons examiné la relation entre les niveaux plasmatiques de 60 acides gras 

issus de biomarqueurs et le risque de cancer du sein dans une étude cas-témoin nichée dans 

EPIC. Les résultats issus de cette analyse seront un point de départ pour des développements 

plus poussés.  

Cette thèse servira de base pour des applications épidémiologiques futures examinant la 

relation nutrition-cancer. 

Mots-clefs : Biostatistiques, méthodes multivariées, treelet transform, cancer, nutrition, EPIC, 

meeting-in-the-middle, PLS, PCA, analyse de médiation 
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English Abstract 
Diet is a modifiable risk factor for many cancers. It has been estimated that about a third 

of cancer cases can be prevented by complying with a healthy diet and adhering to the 

recommendations in terms of nutrition. The nutrition-cancer relationship is a complex one, and 

its study is currently at a turning point with the opportunity and challenges brought by the  

recent technological advances in the fields of « -omics ». New analytical strategies are being 

sought to combine and explore information collected through dietary questionnaires, 

biomarkers along with metabolomic data.  

The main objective of this thesis was to develop new biostatistical approaches to 

investigate the diet-cancer relation within the European Prospective Investigation into Cancer 

and nutrition (EPIC) study. To this end, the applicability of new methodologies in the field of 

nutritional epidemiology, mainly multivariate and factorial, has been examined.  

First, a new multivariate dimension reduction method, the Treelet Transform (TT) was 

applied to extract nutrient patterns relying on questionnaire data. The extracted patterns were 

easily interpretable as TT is a good compromise halfway between principal component analysis 

and hierarchical clustering. 

Then, an analytical framework was conceived for the « meeting-in-the-middle » (MITM) 

principle and applied to two nested case-control studies on hepatocellular carcinoma, with 

targeted and untargeted metabolomic data. The MITM aims to identify overlap biomarkers of 

past exposures that are at the same time predictive of disease outcomes. The implementation 

focused on the application of partial least squares (PLS) and mediation analyses. Metabolic 

signatures were identified that mediated the relation from exposures towards cancer risk.  

Last, the association between 60 plasma fatty acids levels assessed from biomarkers and 

breast cancer risk was examined in a nested case-control study in EPIC. Results from this 

analysis are a stepping stone towards more sophisticated modelling. 

This thesis will serve as a basis for future epidemiological applications looking into the 
nutrition-cancer relation. 

Keywords: Biostatistics, multivariate methods, treelet transform, cancer, nutrition, EPIC, 
meeting-in-the-middle, PLS, PCA, mediation analysis
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Résumé substantiel en français 
La nutrition est un facteur de risque modifiable pour de nombreux cancers. 

Environ 35% des cas de cancers pourraient être évités en adoptant une meilleure 

alimentation en adéquation avec les recommandations les plus récentes. Partant de ce 

constat, l’épidémiologie nutritionnelle s’est efforcée dans les 30 dernières années 

d’étudier la relation entre nutrition et cancer, d’appréhender sa complexité et d’en 

comprendre les mécanismes. Avec les avancées technologiques récentes, notamment 

dans le domaine de la biologie moléculaire, de nouvelles données dites «-omiques », en 

particulier les données métabolomiques, ont pu être acquises. Ainsi un nouveau défi 

s’offre à ce domaine : celui d’allier les nouvelles informations de haute dimensionnalité 

provenant de la métabolomique aux informations obtenues par des méthodes plus 

conventionnelles de recueil par questionnaires alimentaires, ainsi qu’avec d’autres 

biomarqueurs.  

Cette thèse avait pour objectif de développer de nouvelles approches 

biostatistiques dans le but d’étudier la relation entre nutrition et cancer au sein de la 

cohorte Européenne Prospective sur le Cancer et la nutrition (EPIC). Pour ce faire, 

l’applicabilité de nouvelles méthodologies, principalement factorielles multivariées, a 

été étudiée. 

Tout d’abord, nous avons appliqué une nouvelle méthode multivariée pour la 

réduction de la dimensionnalité, le Treelet Transform (TT), afin d’extraire des patterns 

alimentaires, et nous l’avons comparée à l’Analyse en Composante Principale (PCA) qui 

est une technique de référence. Cette application a été réalisée dans la sous-cohorte de 

femmes d’EPIC (n=334 850, dont 11 576 cancers de sein incidents) sur 23 nutriments  

estimés à partir de questionnaires alimentaires. Ainsi, deux patterns principaux ont été 

identifiés, pour lesquels l’association avec le risque de développer un cancer du sein 

(BC) a ensuite été évaluée. Un premier profil apparenté à une consommation élevée en 

produits d’origine animale a été associé à une augmentation non significative du risque 

de BC. Un second profil associé à un régime riche en vitamines et minéraux a été relié à 

une diminution significative du risque de BC. Le TT a produit des résultats comparables 

à ceux obtenus avec des méthodes plus classiques. Ces patterns étaient plus facilement 
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interprétables que ceux de la PCA puisque TT permet d’introduire de la sparsité dans les 

composantes. 

Par la suite, nous nous sommes penchés sur des données métabolomiques issues 

de deux études cas-témoin sur le cancer hépatocellulaire (HCC) nichées dans la cohorte 

EPIC, avec 114 cas et 222 témoins appariés pour la première et 147 cas et autant de 

témoins appariés pour la seconde. 

Dans la première étude, nous avons développé un cadre analytique pour 

l’implémentation du concept dit « meeting-in-the-middle » (MITM). L’idée phare du 

MITM est d’identifier des biomarqueurs qui soient à la fois des marqueurs de certaines 

expositions passées et qui soient en même temps prédicteurs de conditions 

pathologiques. Pour ce faire, un ensemble de 21 variables d’expositions « lifestyle » 

(alimentaires, de mode de vie, anthropométriques) ont été reliées à un set de 285 

variables obtenues par résonance magnétique nucléaire (RMN), correspondant à des 

pics reconstitués, grâce à l’application de la méthode des moindres carrés partiels (PLS). 

La PLS est une méthode multivariée combinant des aspects de l’ACP avec ceux de la 

régression linéaire multiple. Elle permet de relier deux sets de données et d’en extraire 

des composantes dont la covariance est maximale. Les facteurs ainsi obtenus ont été 

reliés par le biais de leurs scores au risque de HCC par l’intermédiaire de modèles de 

régression logistique conditionnelle. Enfin, une analyse de médiation a évalué si les 

profils métaboliques obtenus sont des médiateurs de la relation entre les profils de 

« lifestyle » et le HCC.    

Dans la seconde étude cas-témoins nichée portant cette fois-ci sur la métabolomique 

ciblée, nous avons pu affiner le cadre statistique mis en place précédemment. Dans un 

premier temps, nous avons limité le nombre d’expositions à 7 variables provenant d’un 

indice niveau d’adéquation à un mode de vie sain et nous nous sommes focalisés sur un 

ensemble de 132 métabolites bien identifiés. Ensuite, après une première analyse PLS 

générale, nous avons procédé à une analyse de PLS multiple pour obtenir des signatures 

métaboliques spécifiques à chacune des expositions. Enfin, l’analyse de médiation a été 

étendue et adaptée à notre design d’étude, et les effets directs et médiés ont été estimés 

grâce à des modèles de régression logistique conditionnelle. 
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Le cadre analytique développé lors de ces deux applications pourrait être réutilisé et 

ajusté aux besoins d’autres études ayant d’autres types de données « -omiques » ou dans 

des contextes épidémiologiques similaires. 

Enfin, nous nous sommes intéressés à une étude cas-témoin sur le BC nichée dans 

EPIC où 60 mesures d’acides gras (AG) plasmatiques ont été effectuées chez 2 982 cas de 

BC invasifs et autant de témoins appariés. L’association entre chacun des AG et le risque 

de BC a été évaluée à travers des régressions logistiques conditionnelles multivariables 

ajustées. Ces analyses ont été combinées à une correction pour les tests multiples afin de 

préserver la valeur nominale de significativité des tests statistiques. Ainsi, des niveaux 

trop élevés en acide palmitoléique et un indice de désaturation DI16 fort ont été associés 

à une augmentation du risque de BC. Cette étude est l’une des plus larges à cette date se 

basant exclusivement sur des biomarqueurs en ce qui concerne les expositions des AG, 

avec une bonne séparation pour AG trans d’origine animale de ceux d’origine 

industrielle. Elle constitue une première étape dans des analyses plus poussées à venir, 

notamment des analyses de patterns afin de caractériser le lipidome ainsi qu’une 

possible application du MITM. 

Les différentes applications et développements statistiques mis en place lors ce 

travail de thèse viennent répondre à un besoin d’approches dites holistiques qui visent à 

intégrer des données de natures différentes et de haute dimension. Cette prise en 

compte des différents facteurs d’expositions et de risques permettra à l’avenir de mieux 

appréhender les questions de l’épidémiologie nutritionnelle de nouvelle génération. 

Cette thèse servira également de base pour des applications multidisciplinaires futures 

examinant la relation nutrition-cancer.  
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Ever since Doll and Peto’s comprehensive review of 1981 estimating that 30 to 

35% of cancers could be avoided by adopting a better diet in western populations [1], 

the field of nutritional epidemiology strove to investigate nutritional exposures and 

their link with individual cancer sites. The initial estimate was characterised by a wide 

range of uncertainty (from 10 to 70%) [2], and the mechanisms through which specific 

dietary factors contribute to cancer occurrence are still to be understood. Three decades 

later, the quantitative estimate remained around 30-40% [3]. It has been argued that 

obesity and physical inactivity accounted for most of the burden of cancer attributable 

to nutrition, in a broad sense [4]. There is, however, no consensus around these figures 

since the extent to which diet adds to the burden of cancer remains difficult to assess [3]. 

Part of this difficulty is imputed to the lack of knowledge with respect to the stage of 

carcinogenesis on which many nutritional factors may exert their effects and the dose at 

which they may achieve their protective or harmful impact [5]. Nevertheless, nutritional 

epidemiology in the past decades has amassed a growing body of evidence establishing 

diet as an important modifiable risk factor for a substantial proportion of cancers, 

making it a great public health target for prevention [3,6,7]. Studies in nutrition 

provided substantial, yet often inconsistent, epidemiologic evidence of the diet-cancer 

link [7,8] with findings on alcohol consumption [6,9–23], obesity and weight change 

[24–28], fat intake [29–39], meat consumption [29,30,40–48], plant foods [49–52], 

glycaemic index/load [53,54], coffee [55–57], inter alia. In addition, these studies have 

canvassed the relationships between a selection of dietary constituents and molecularly 

[58,59] or anatomically [50,60,61] defined subsets of cancer, and evaluated dietary 

behaviours in relation to cancer [62] and cancer survival [38].  

Nutritional epidemiology is an intricate area due to the fact that diet is not a 

single simple exposure but rather a complex set of many variables, characterised by 

profound inter-correlations between dietary constituents. These inter-correlations may 

arise from food composition, behavioural patterns, e.g. food items are often consumed 

together, or from differences in the energy balance and total energy intake as people 

eating a high-energy diet tend to eat a lot of different nutrients [63].  Disentangling the 

separate effects of each food/nutrient is extremely challenging, largely because of 

confounding and residual confounding [64]. Adding to the methodologic and conceptual 

complexity are the potential physiological interactions amongst nutrients, e.g. Selenium 

(Se) and Vitamin E, Vitamin C and Iron (Fe), including food component synergies or 
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antagonisms [65–68]. Furthering the nutrient assessment challenge is the common 

exposure misclassification.  In fact, nutritional epidemiology relies on dietary 

assessment instruments, mainly questionnaires such as food frequency questionnaires 

or dietary histories, which are subject to random and systematic measurement errors 

[69]. These errors are frequent in self-reported dietary estimates as a consequence of 

study subjects’ consistent underestimation or overestimation of their dietary intakes.   

Traditional approaches initially relied on simple models to evaluate the 

associations between single dietary constituents, i.e. foods or nutrients, possibly 

involving statistical adjustment by total energy intake to ensure iso-caloric comparisons 

[70], and the risk of disease [63]. These models were straightforward to interpret but 

did not necessarily capture the inherent complexity of individuals’ dietary habits, where 

simultaneous variability of many foods is observed. Approaches became progressively 

more complex moving towards multivariable models that accounted for more dietary 

and lifestyle confounders, at times even involving the inclusion of interaction terms. 

While these models may better capture the inner sophistication of the diet-disease 

association, parameters expressing these links are more challenging to interpret. In 

these models the evaluation of the relation between a given dietary exposure and 

disease is conditional on all other confounders included in the linear predictor, and it is 

assumed that they remain constant. This turns out to be an unrealistic assumption that 

does not factor in  the dynamism of an intricate system of synergies between foods, 

nutrients and other lifestyle variables [67,71,72]. The rigorous analysis consistently 

struggles to find the optimal trade-off between the two extremes: over-simplistic 

interpretable models on one hand, and increasingly more multifaceted models that 

progressively lose their ability to provide a realistic overview of individuals’ diet on the 

other, yet involving statistical challenges for their estimation.  

In recent years, research focus of nutritional epidemiology has progressively 

moved towards dietary pattern analysis and the use of multivariate approaches [71]. 

Pattern analysis allows for a comprehensive mode taking the full complexity of diet into 

consideration [73]. Two main strategies are often applied: a priori hypothesis-driven 

patterns and a posteriori data-driven patterns [74,75]. A priori techniques often use 

predefined criteria based on specific health outcomes to construct dietary scores 

reflecting the degree to which a person adheres to given dietary patterns [67,71]. These 

include compliance with guidelines or recommendations such as the WCRF/AICR score 
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[76] and the healthy eating index (HEI) [77], characteristics of established diets such as 

the Mediterranean diet [78–84], or even agreement with dietary aspects of a more 

general healthy lifestyle [85,86]. A priori techniques have seen a shift from adherence to 

a purely dietary predefined pattern towards scores embracing lifestyle factors as 

healthy eating behaviours are often in conjunction with healthy lifestyle practices [86].  

A posteriori methods rely on data driven methods that often use dimension reduction 

techniques such as principal component analysis (PCA) or factor analysis (FA) to yield 

uncorrelated dietary factors based on data covariance or correlation matrices. These 

analyses have been successful in identifying  distinct food/nutrient intake patterns that 

were related to different cancer endpoints [87–128].  Statistical research is underway to 

explore novel multivariate techniques that provide solutions with easier interpretation 

of the components [129,130] and tools to reduce the number of arbitrary steps involved 

(number of components to retain, threshold for loadings, etc.) [131].  Investigations are 

ongoing to assess the validity of these approaches, and evaluate whether they may 

predict disease risk in studies involving populations characterised by heterogeneous 

dietary habits and different cancer rates [71].  

Most of the early results on the role of diet in cancer aetiology stemmed from 

retrospective case-control studies. These designs however are subject to selection and 

recall biases [132], making the retrospective studies not the best suited to effectively 

capture the diet-disease association leading to somewhat inconsistent findings [63,133]. 

It was suggested that prospective designs were more rigorous and provided a valid 

solution to minimise methodological biases [3,63,134,135]. Since information on dietary 

exposure is collected at baseline in cancer-free individuals illness is less likely to affect 

the recall of dietary habits. In addition, prospective cohorts provide the opportunity to 

assess diet over time through repeated measurements and to examine its associations 

with a wide array of diseases with appropriate statistical power, if a sufficiently large 

number of study subjects is enrolled [135]. If the latter condition applies and if the 

follow-up is carried out for several years, prospective designs allow the investigation of 

rare outcomes. The Nurses Health Studies [136] and the EPIC cohort [137,138] were 

among the first large-scale retrospective cohorts expressly designed to explore the diet-

cancer association. In such large sized investigations diet is assessed through the use of 

structured, self-administered questionnaires [135], which include food frequency 

questionnaires (FFQs) for estimation on long-term, or habitual, dietary exposure, i.e. 
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referring to study subjects’ diet during a 12-month period preceding its administration. 

These instruments are then utilized to provide estimations of frequency of consumption, 

portion sizes and total energy intake. Long-term assessment can be complemented by 

short-term instruments, which include food diaries, food records, and 24h dietary 

recalls. These types of assessments are meant to collect deeper aspects of individuals’ 

diet, like, for example, detailed information on portion sizes, timings of meals, recipes 

and possibly cooking methods [139]. All self-reported dietary instruments rely on the 

existence of adequate food and nutrient composition databases, to convert food amounts 

into nutrient and macronutrient contents [135,139]. All dietary assessment methods in 

large scale epidemiological investigation rely on study participants’ ability to recall their 

diet, and are therefore prone to systematic and random measurement errors 

[133,139,140]. Measurement errors can be substantial and can, in turn, bias estimates of 

associations between diet and cancer risk [139–142], and lead to loss of statistical 

power to detect associations [142]. It has been argued that a large proportion of 

inconsistencies and null results observed in population-based studies of diet and cancer 

could be the consequence of poor dietary assessments [143].  One compelling example is 

the downgrading by the 2003 IARC Handbooks of Cancer Prevention on Fruits and 

Vegetables [144] and by the 2007 update of the World Cancer Research Fund (WCRF) 

comprehensive report [145], of the cancer protective role of intakes of fruits and/ or 

vegetables from ‘convincing’ to ‘probable’, depending on the cancer site, which were 

established in the 1997 WCRF comprehensive review [146].  

Research in the field of nutrition has strived to develop better methods to 

ascertain eating behaviours and their reporting [147–154] and to account for 

measurement errors in self-reported dietary measurements [155–159]. However, in the 

absence of an “ideal” reference instrument and in order to obtain “objective” 

observations of food consumption, the use of biomarkers emerged as a valuable 

research instrument. This motivated the collection of study subjects’ biological material 

in population based studies [160].  Dietary biomarkers are biochemical indicators that 

can be viewed as an index of short to long-term dietary intake, of nutrient metabolism or 

markers of the biological consequences of food intake [161]. Biomarkers have been 

introduced in cancer epidemiology with the idea of relying on markers of relevant 

internal dose and markers of biologically effective dose to improve exposure assessment 

[162]. These markers are also known as “concentration” or “recovery” biomarkers 
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[139,163]. Other markers classified as “predictive” biomarkers are markers of early 

response/effect and are used to monitor early changes preceding disease occurrence 

[160,163]. Last, markers of susceptibility can be used in cancer epidemiology to identify 

subgroups in the population with greater susceptibility to cancer [139,161–163]. 

Biomarkers can be quantified in biological samples of serum, blood, plasma, urine. It is 

recognised that these quantities are also affected by random and systematic 

measurement errors, but these errors are assumed to be independent of errors 

associated with self-reported dietary assessments [139,160,163].  As such, they can also 

be used as a means of validation of dietary instruments to estimate the magnitude of 

systematic and random errors in questionnaires. Their use in calibration studies of 

diet/disease association has been advocated but seldom pursued [163]. A great extent of 

cancer research has developed around biomarkers with studies focusing on their 

validation [161,164–166], their methodological challenges [161,167], and their use in 

aetiological models [162,168–172]. The recent technological advancements in high-

throughput technologies, particularly in the field of molecular biology, generated a slew 

of new round of metabolites, which can be acquired in biological samples collected in 

large-scale epidemiological studies [173,174]. Metabolomics is the branch of ‘‘- omics’’ 

concerned with the high-throughput identification and quantification of small molecule 

metabolites present in the human metabolome i.e. the ensemble of all metabolites 

[175,176]. It provides a complete picture of metabolic status and biochemical events 

happening within an organism [177]. These data have the potential to bring useful tools 

to improve our understanding of the role of diet in cancer research [175,178]. 

Biomarker research supports causal reasoning by linking exposures with disease via 

mechanisms. This is the premise on top of which the “meeting-in-the-middle” concept 

was proposed [162].  It aims to find overlap biomarkers that are indicative of a given 

exposure and that are, at the same time, predictive of disease outcome. This 

complementary approach sheds light on the mechanisms through which individual 

dietary (or more generally environmental) exposures diverge towards risk of cancer 

development by investigating life-course biological pathways using –omics technologies 

[162]. To achieve this, new statistical methodologies are being developed to provide 

holistic approaches for the combination of dietary questionnaires and biomarker data to 

be later used in aetiological models and to tackle the challenges brought on by the –

omics data [179]. These data are characterised by high-dimensionality, a correlated 
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structure and a general lack of a priori biological hypotheses resulting in challenges for 

results interpretability [180]. Methodology that conceives a novel use of statistical tools, 

vastly relying on existing methods, has been developed to analyse this new wave of 

overwhelming and promising data [179,181–187]. These range from standard 

procedures of metabolome-wide association studies (MWAS) operated through 

adequate multiple statistical regression models coupled with multiple testing 

corrections to multivariate dimension reduction techniques and approaches for variable 

selection [179]. Some of these techniques are customised for supervised and 

unsupervised analyses of–omics data, in particular involving metabolomics [188–190]. 

Unsupervised learning methods’ main aim is to explore, summarize and discover groups 

or trends that are entailed within the data, they need only a few prior assumptions and a 

little to no a priori knowledge [177]. These include techniques such as PCA, k-means 

clustering or hierarchical clustering. Supervised techniques are methods largely used in 

biomarker discovery, classification, and prediction and usually deal with sets of data 

with response variables. They mainly include partial least squares and support vector 

machine analyses and are now often used in metabolomics data analysis [177,179].  The 

use of mediation [191–195], pathway analyses [196,197], and approaches to model the 

“meeting-in-the-middle” concept are instrumental tools providing analytical solutions to 

fully exploit the multi-dimensional complexity of new generation nutritional 

epidemiological data. 

The methodological work presented in this thesis will draw from already-existing 

or currently-developing statistical tools, notably multivariate factorial techniques, to 

explore the associations between diet and cancer. We take on a holistic approach 

making use of available dietary questionnaire exposures, lifestyle data as well as 

biomarker and –omics data to explore two cancer endpoints (breast and hepatocellular 

carcinoma) in an ideal setting to address challenges related to the multi-factorial 

complexities of dietary exposure. 

These principles were applied in the European Prospective Investigation into 

Cancer and nutrition (EPIC), an on-going multicentre prospective cohort study, mainly 

designed to study the relationship between nutrition and cancer [198]. Over 521,000 

participants, aged between 25 and 70 years, were recruited between 1992 and 2000 

across 23 centres spanning 10 European countries including: France, Germany, Greece, 
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Italy, The Netherlands, Spain, the United Kingdom, Sweden, Denmark and Norway [199]. 

Dietary intake was assessed dependant on the local context using one of these three 

validated tools: extensive self-administrated quantitative dietary questionnaires (DQ), 

semi-quantitative food-frequency questionnaires (FFQ), or through combined dietary 

methods [199]. All these questionnaires were validated and country-specific, conceived 

to capture geographical specificity of diet. Indeed, the international multicentre setting 

of EPIC, combining study populations with different dietary habits, lifestyles and cancer 

incidences, aims to increase the overall statistical power providing a larger variability of 

dietary exposures and cancer outcomes. This heterogeneity across geographical regions 

raises methodological challenges, notably with regards to standardising dietary 

measurements, for a proper comparison on an absolute scale in all sub-cohorts [199–

201]. To this end, in the EPIC calibration study a single 24 hour dietary recall  (24-HDR) 

was collected by trained interviewers between 1995 and 2000 via the EPIC-Soft  

software (now called GLOBODIET, IARC, Lyon, France) from a random large stratified 

sample of roughly 8% of the cohort (approx. 37,000 subjects)[202] . The 24-HDR is used 

as a reference measurement and provides accurate mean estimates of nutrients and 

foods at the population level. Food portion sizes were estimated using a common picture 

book and other assessment methods (e.g. standard units and household 

measures)[200,202]. Foods were classified according to common food classification (88-

266 foods) as described elsewhere [203] and individual intake of 25 priority nutrients, 

plus water, energy and more recently folate [204] were calculated using procedures 

standardized in the ‘EPIC Nutrient DataBase’ (ENDB) [203,205]. The calibration study 

and data harmonization ensured reliable comparisons of different intakes accounting for 

the heterogeneity of data when evaluating the association between nutritional 

exposures and disease outcome. Detailed baseline information including anthropometric 

measures, lifestyle habits (including history of tobacco smoking, alcohol consumption, 

physical activity, education level, etc.), history of previous illness and other relevant 

phenotypic information were collected by questionnaires or trained interviewers [202]. 

Additionally, biological samples were collected at baseline in 80% of the recruited 

cohort participants prior to cancer onset, providing invaluable biomarker 

measurements, as detailed in Table 1. Approval for this study was obtained from the 

ethical review boards of the International Agency for Research on Cancer and from all 

local institutions. 
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 Study subjects 

Country Questionnaire Questionnaire + Blood 

France 74,524 28,083 

Italy 47,749 47,725 

Spain 41,440 39,579 

U.K. 87,942 43,141 

The Netherlands 40,072 36,318 

Greece 28,555 28,483 

Germany 53,091 50,678 

Sweden 53,826 53,781 

Denmark 57,054 56,131 

Norway 37,215 31,000 

Total 521,468 414,889 

Table 1: Number of EPIC study subjects by country with questionnaires 

information and availability of blood samples. 

The present thesis aims to investigate the applicability of multivariate statistical 

methods in the investigation of the relationship between nutrition and cancer, using 

questionnaires and biomarker data available from the EPIC study.   

In a first study described in Chapter 2, we explored the applicability of a new 

dimension-reduction technique that has been recently introduced to the field of 

nutritional epidemiology: the Treelet Transform (TT). We investigated the relationship 

between the extracted nutrient patterns and risk of developing breast cancer overall and 

by hormonal-receptor status in the EPIC Study. Initially developed by Lee et al. [206], TT 

has been conceived as a statistical method aiming to reduce multidimensional datasets 

by harnessing features of PCA and combining them with those of  hierarchical clustering. 

TT yields orthogonal components (eigenvectors of the correlation or covariance matrix 

of the data), that are linear projections of the starting variables while introducing 

sparsity in the component loadings, by making some of these loadings exactly equal to 

zero. In this way, TT produces components that are easier to interpret than in the well-

established PCA [207], where findings’ interpretation is complicated by the fact that all 

component loadings are nonzero. Additionally, TT returns a hierarchical tree reflecting 

the internal structure of the data. These elements make it a very promising technique in 

that respect as it allows for an easier interpretation of the findings and to spot the 
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variables that are mostly contributing to the high variability found within each factor. 

The Chapter 2 paper compares nutrient patterns produced with the novel TT with those 

obtained via the classic PCA and then relates them to breast cancer (BC) outcomes.  The 

use of TT can be extended to other high-dimensional datasets potentially characterized 

by highly correlated variables with redundant information and noise which may benefit 

from a method with a sparsity feature.  

With the similar motivation for dimensionality reduction and extracting the lost 

relevant information, the paper presented in Chapter 3 focused on two sets of data this 

time, one with untargeted metabolomics acquired through 1H Nuclear Magnetic 

Resonance (NMR) protocols and the second set entailing a collection of lifestyle 

exposures. The objective from this work was to provide a practical implementation for 

the “Meeting-in-the-Middle” (MITM) principle, an idea conceived 10 years ago by Vineis 

and Perera [162] that relies on the  identification  of  biomarkers  that  are  both  

reflecting  effects  of  exposures  and  also contributing to future disease risk. Our study 

conceptualized a statistical framework where such overlap biomarkers could be 

identified, first by disentangling the relationship between both sets followed by 

exploring their link with hepatocellular carcinoma (HCC) development in a nested-case 

control study within EPIC. This was done in a context characterized by challenges 

pertaining to the small sample size of the study at hand, making our study difficult to 

validate/replicate, and those pertaining to untargeted metabolomics in general (e.g. 

annotations). This first implementation was successful despite a small number of 

difficulties.   

In Chapter 4, the statistical approach to model the MITM [162,208] is extended 

in another nested case-control study on HCC within EPIC and applied to targeted serum 

metabolomic data acquired through mass-spectrometry techniques. The work is refined 

by having a more restricted set of exposures from a modified healthy lifestyle index [86]. 

The statistical analyses are more comprehensive with Partial Least Squares (PLS) 

applied in turn to each exposure to yield exposure-specific signatures and extensive 

mediation analyses to investigate whether these specific biomarker profiles bridged 

their corresponding lifestyle exposures towards risk of HCC. This work allowed us to 

tackle statistical challenges related to the interpretation of parameters in a context 

characterized by confounding and various sets of potential mediators. 
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Finally, we were involved in another initiative studying the associations between 

biomarkers of fatty acids (FA) and breast cancer (BC) risk in EPIC. Chapter 5 describes 

this study featuring  measurements of 60 plasma phospholipid fatty acids from a large 

nested case-control study on BC, where for the first time it was possible to differentiate 

between trans fatty acids (TFA) coming from industrial products from those originating 

from animal sources. Univariate multivariable regressions were used to relate FA levels 

to BC risk, overall, by menopausal status and by hormonal receptor status. This work is a 

first step providing the background necessary for future and more sophisticated 

modelling, including FA patterns analyses and possibly another application of the MITM 

framework, hypothesis-driven this time around as opposed to the more agnostic 

exploratory implementations conducted thus far.  

To conclude Chapter 6 ensues with a general discussion on the findings and 

topics that were touched upon throughout this thesis. 
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CHAPTER II:  
 

NUTRIENT PATTERNS AND BREAST CANCER IN EPIC 
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CONTEXT 
Breast Cancer (BC) is the most frequent type of cancer affecting women worldwide; it is 

the most prevalent form of cancer in the world and the leading cause of mortality from 

cancer in women both in developed and developing countries [209]. Among modifiable 

risk factors, diet may account for up to 40% of preventable causes of cancer. In 

particular an estimated 50% of BC deaths are attributed to diet although despite 

substantial research, the relationship between diet and BC is still open to debate 

[2,6,210,211]. Usual approaches have often assessed the role of single dietary items i.e. 

micro/macronutrients, foods, energy and alcohol mostly through standard univariate 

analyses, and these have yielded significant results [145]. However, due to the 

complexity of diet and the potential interactions between different dietary components, 

approaches that focus on individual foods or restricted list of nutrients / dietary 

constituents may miss information on the role of diet in disease aetiology [71,73]. 

Dietary patterns have emerged as a tool of choice to depict a broader picture of the 

effects of overall diet. Conceptually, patterns are more akin to reflect reality than 

traditional approaches, as people usually consume a variety of foods often containing a 

complex combination of nutrients. Moreover, some nutrient effects may be too small to 

detect on their own, thus the cumulative effect of a pattern embracing multiple nutrients 

may be easier to identify [71,212]. In this study, nutrient patterns were obtained 

through two multivariate methods, the well-established Principal Component Analysis 

(PCA) [207] and the newly emerging Treelet Transform (TT) [129,213–215]. The 

association between the extracted nutrient patterns and BC was investigated within the 

EPIC study, a multicenter study with heterogeneous data, offering a vast playground to 

address methodological challenges. 

OBJECTIVES 
- To yield nutrient patterns within the women sub-cohort in EPIC by applying the 

TT, a new dimension reduction technique that has been recently introduced to 

the nutritional epidemiology landscape.  To derive nutrient patterns using PCA, a 

more classic approach. 

- To relate nutrient patterns to risk of BC in general, and by taking into account the 

heterogeneity of BC subtypes by integrating information on menopausal and 

hormone receptor status.  



27 
 

- To compare results from two multivariate dimension reduction techniques: PCA 

and TT. 

APPROACH 
The analyses focused on the women sub-cohort within EPIC (N=334,850) where 11,575 

BC cases were ascertained across all centres. A posteriori nutrient patterns were 

obtained by applying multivariate methods (PCA and TT) to a covariance matrix of 23 

log-transformed macro- and micronutrients obtained from dietary questionnaires. The 

aim of PCA is to reduce dimensionality by transforming a large set of correlated foods or 

nutrient items, into a smaller set of uncorrelated variables, called principal components 

that make up the nutrient patterns. TT additionally introduces sparsity in component 

loadings making some of them equal to zero, thus making the interpretation easier. TT 

also produces a hierarchical grouping of variables revealing intrinsic characteristics of 

data structure. Hazard ratios and 95% confidence intervals (HR, 95%CI) were estimated 

and quantified the association between the scores quintiles of the first two components 

and BC risk. The Cox proportional hazard models were stratified by age, centre, and 

adjusted for potential confounding factors including anthropometric measures, non-

alcohol energy, lifestyle and reproductive variables. 

MAIN FINDINGS 
Two main patterns were retained in both TT and PCA analyses, and were consistent in 

terms of pattern identification and amount of total variability explained (over 50% of 

total observed variability).  The first TT component (TC1) loaded highly on cholesterol, 

protein, retinol, vitamins B12 and D, while TC2 reflected a nutrient dense pattern with 

high contributions for β-carotene, riboflavin, thiamin, vitamins C and B6, fibre, Fe, Ca, K, 

Mg, P and folate (Figure 1). The TT components were highly correlated with those of 

PCA (ρTC1, PC1= 0.91, ρ TC2, PC2= 0.86). The first pattern, that was akin to a Western diet, 

was associated with a non-significant increase of 5% in BC risk, whilst the second 

pattern was inversely associated with BC risk with HR=0.89(0.83, 0.95). This decrease 

was also significant for ER+, PR+, PR− and ER+/PR+ tumours. 
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Figure 1: Cluster tree produced by the Treelet Transform. 
Cut-level (red dashed line) was chosen after using a 10-fold cross-validation. Nutrients related to the 
treelet components (TC), indicated with numbered circles, have non-zero loadings on the given 
component. 
 

CONCLUSION 
This study investigated the association between nutrient patterns and BC in the 

international setting of the EPIC study using a new tool in nutritional epidemiology, the 

Treelet Transform. TT has the advantage of introducing sparsity in factor loadings thus 

leading to more easily interpretable patterns. When compared to a more standard 

approach, such as PCA, TT offers a complementary approach yielding comparable 

nutrient patterns accounting for similar amounts of variability. In essence, there is a 

sparsity trade-off: TC are easier to interpret but have a lower information resolution 

than PC, which may lead to disparities in some associations in models with TC scores vs. 

PC scores. The findings suggested a protective association for a diet rich in vitamins, 

minerals and β-carotene, indicating that a diet mostly plant-based decreased BC risk 

while a nutrient patterns characterized by a diet rich in macronutrients of animal origin, 

such as cholesterol or SFA, was related to an increase in BC risk, albeit non-significant. 
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Online Supplementary Material 

A treelet transform analysis to relate nutrient patterns to the risk of hormonal receptor–
defined breast cancer in the European Prospective Investigation into Cancer and 
Nutrition study. 

Supplementary Table 1: TT (cut-level 16) loadings of the third and fourth components. 
 

Variables *  
TT 16 loadings 
TC3 TC4 

Calcium (Ca) 
β-Carotene 
Cholesterol -0.178  0.448 
MUFA 
PUFA 
SFA 
Iron (Fe) 
Fibre 
Potassium (K) 
Magnesium (Mg) 
Phosphorus (P) 
Protein -0.052  0.132 
Retinol -0.410 -0.609 
Riboflavin 
Starch 
Sugar 
Thiamin 
Vitamin B6 
Vitamin B12 -0.254 0.641 
Vitamin C   
Vitamin D 0.856 
Vitamin E 
Folate 
Explained variance 9% 6% 

TC3, treelet component 3. TC4, treelet component 4. 
* log-transformed nutrient variables. 
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Supplementary Table 2: PCA loadings of the 4 derived components.  
 

Variables *†  
PCA loadings 

PC1 PC2 PC3 PC4 
Calcium (Ca) -0.024 0.12 -0.136 0.314 
β-Carotene -0.275 0.601 -0.121 -0.495 
Cholesterol 0.276 0.07 -0.172 0.064 
MUFA 0.018 -0.043 -0.123 -0.148 
PUFA -0.006 0.102 0.131 -0.211 
SFA 0.119 -0.031 -0.155 -0.105 
Iron (Fe) -0.054 0.102 -0.019 0.048 
Fibre -0.131 0.145 0.136 0.006 
Potassium (K) -0.065 0.174 0.065 0.169 
Magnesium (Mg) -0.045 0.142 0.042 0.115 
Phosphorus (P) 0.003 0.108 0.01 0.19 
Protein 0.042 0.077 -0.003 0.159 
Retinol 0.601 0.271 -0.295 -0.275 
Riboflavin 0.004 0.206 -0.131 0.322 
Starch -0.004 -0.112 0.137 -0.068 
Sugar -0.098 0.073 0.01 0.175 
Thiamin -0.076 0.174 0.133 0.183 
Vitamin B6 -0.075 0.177 0.072 0.189 
Vitamin B12 0.362 0.254 -0.266 0.306 
Vitamin C -0.276 0.316 -0.033 0.126 
Vitamin D 0.431 0.25 0.796 0.006 
Vitamin E -0.098 0.153 0.068 -0.256 
Folate -0.141 0.249 -0.014 0.105 
Explained variance 28% 22% 10% 8% 

PC1, principal component 1. PC2, principal component 2. PC3, principal component 3. PC4, 
principal component. 

* log-transformed nutrient variables 
† In bold are PCA loadings >0.20
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Supplementary Table 3: HRs (95%CI) for BC by quintiles of pattern scores (1st and 2nd components of TT 
cut-level 16) for PR positive and PR negative tumours in EPIC women. 
 

Model* 
First component Second component 

PY BC 
cases HR (95% CI) P-LRTa P-trendb PY BC 

cases HR (95% CI) P-LRTa P-trendb 

PR Positive 

Q1 723,730 611 1.00 (ref) 

0.31 0.28 

738,063 801 1.00 (ref) 

0.17 <0.01 

Q2 729,055 850 1.12 (1.01,1.25) 727,815 823 0.96 (0.86,1.06) 

Q3 726,226 805 1.10 (0.98,1.22) 720,137 827 0.95 (0.85,1.05) 

Q4 726,869 800 1.10 (0.98,1.23) 716,542 766 0.90 (0.81,1.00) 

Q5 717,755 812 1.10 (0.97,1.24) 721,078 661 0.87 (0.77,0.98) 

PR Negative 

Q1 722,296 386 1.00 (ref) 

0.46 0.10 

735,796 467 1.00 (ref) 

0.10 0.03 

Q2 726,449 468 0.98 (0.86,1.13) 725,303 449 0.89 (0.78,1.02) 

Q3 723,483 433 0.91 (0.79,1.06) 717,455 434 0.84 (0.73,0.96) 

Q4 724,668 468 0.99 (0.85,1.15) 714,395 454 0.90 (0.78,1.03) 

Q5 715,243 435 0.90 (0.77,1.06) 719,189 386 0.84 (0.72,0.98) 

P- heterogeneityc 0.07 0.36 
HR: hazard ratio. 95%CI, 95% confidence interval. BC, breast cancer. PR, progesterone receptor. PY, 
person-years.  

a P-LRT, p-values for the likelihood ratio test (LRT), that was used to evaluate overall significance of a 
score variable in quintile categories compared with a chi-square distribution with 4 df.  

b P-trend values were obtained by modelling score variables with quintile-specific medians as continuous 

variables.  

c P-heterogeneity values for BC risks across PR status on 1 df were obtained using a data augmentation 
method. 

*Models were stratified by study centre and age in 1-y categories and adjusted for baseline menopausal 
status (premenopausal and perimenopausal [reference] or postmenopausal and women who underwent an 
ovariectomy), baseline alcohol intake (never drinkers [reference], former drinkers, drinkers only at 
recruitment, lifetime drinkers, unknown), height (continuous), BMI (below [reference] or above 25), 
schooling level (none, primary [reference], technical/professional/secondary, longer education, unknown 
/unspecified), age at first full-term pregnancy (nulliparous [reference], ≤ 21years, 21-30 years, > 30 years, 
unknown or missing), age at menarche (≤ 12 years [reference], 12-14 years, >14 years, missing), age at 
menopause (≤50 years [reference], > 50 years, pre-menopause or missing), use of hormones 
(never[reference], ever, unknown), levels of physical activity (inactive [reference], moderately inactive, 
moderately active, active, unknown) and alcohol-free energy(continuous). 
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Supplementary Table 4: HRs (95%CI) for BC by quintiles of pattern scores (1st and 2nd components of 
PCA) for overall, ER positive and ER negative tumours in EPIC women. 

Model* 
First component Second component 

PY BC 
cases HR (95% CI) P-LRTa P-trendb PY BC 

cases HR (95% CI) P-LRTa P-trendb 

Overall 
Q1 729,222 1,843 1.00 (ref) 

0.29 0.07 

748,437 2,143 1.00 (ref) 

0.15 0.046 

Q2 736,877 2,292 1.03 (0.96,1.09) 737,177 2,339 1.03 (0.97,1.10) 

Q3 734,382 2,445 1.06 (1.00,1.13) 732,009 2,280 0.98 (0.92,1.04) 

Q4 735,659 2,478 1.06 (1.00,1.13) 727,730 2,354 0.98 (0.99,1.05) 

 Q5 734,300 2,509 1.07 (1.00,1.15) 725,087 2,460 0.96 (0.89,1.02) 

ER Positive 

Q1 723,700 882 1.00 (ref) 

0.27 0.09 

741,994 1,087 1.00 (ref) 

0.46 0.10 

Q2 730,480 1,201 1.07 (0.98,1.17) 730,010 1,142 1.00 (0.92,1.09) 

Q3 727,426 1,260 1.09 (0.99,1.19) 725,034 1,113 0.94 (0.86,1.03) 

Q4 728,361 1,286 1.11 (1.01,1.22) 720,800 1,173 0.94 (0.86,1.03) 

Q5 726,145 1,201 1.09 (0.99,1.21) 718,273 1,315 0.95 (0.86,1.04) 

ER Negative 
Q1 719,177 215 1.00 (ref) 

0.56 0.91 

736,399 280 1.00 (ref) 

0.02 0.11 

Q2 724,194 287 1.01 (0.85,1.22) 724,298 312 1.10 (0.93,1.30) 

Q3 720,958 333 1.13 (0.94,1.35) 719,335 301 1.05 (0.88,1.25) 

Q4 721,850 306 1.01 (0.83,1.22) 714,609 245 0.83 (0.69,1.00) 

Q5 720,190 297 1.04 (0.85,1.27) 711,728 300 0.96 (0.80,1.16) 

P- heterogeneityc  0.80           0.13 
HR: hazard ratio. 95%CI, 95% confidence interval. BC, breast cancer. ER, estrogen receptor. PY, person-
years.  

a P-LRT, p-values for the likelihood ratio test (LRT), that was used to evaluate overall significance of a 
score variable in quintile categories compared with a chi-square distribution with 4 df.  

b P-trend values were obtained by modelling score variables with quintile-specific medians as continuous 

variables.  

c P-heterogeneity values for BC risks across ER status on 1 df were obtained using a data augmentation 
method. 

*Models were stratified by study centre and age in 1-y categories and adjusted for baseline menopausal 
status (premenopausal and perimenopausal [reference] or postmenopausal and women who underwent an 
ovariectomy), baseline alcohol intake (never drinkers [reference], former drinkers, drinkers only at 
recruitment, lifetime drinkers, unknown), height (continuous), BMI (below [reference] or above 25), 
schooling level (none, primary [reference], technical/professional/secondary, longer education, unknown 
/unspecified), age at first full-term pregnancy (nulliparous [reference], ≤ 21years, 21-30 years, > 30 years, 
unknown or missing), age at menarche (≤ 12 years [reference], 12-14 years, >14 years, missing), age at 
menopause (≤50 years [reference], > 50 years, pre-menopause or missing), use of hormones 
(never[reference], ever, unknown), levels of physical activity (inactive [reference], moderately inactive, 
moderately active, active, unknown) and alcohol-free energy(continuous). 
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Supplementary Table 5: HRs (95%CI) for BC by quintiles of pattern scores (1st and 2nd components of PCA) 
for ER & PR positive and ER & PR negative tumours in EPIC women. 

Model* 
First component Second component 

PY BC 
cases HR (95% CI) P-

LRTa 
P-

trendb PY BC 
cases HR (95% CI) P-

LRTa 
P-

trendb 
ER and PR Positive  

Q1 721,384 525 1.00 (ref) 

0.07 0.04 

718,901 161 1.00 (ref) 

0.77 0.65 

Q2 727,780 775 1.15 (1.03,1.29) 723,803 211 1.00 (0.81,1.23) 

Q3 724,554 805 1.16 (1.03,1.31) 720,508 242 1.09 (0.89,1.35) 

Q4 725,315 790 1.16 (1.03,1.31) 721,445 224 0.98 (0.79,1.23) 

Q5 723,543 758 1.17 (1.03,1.33) 719,832 212 0.99 (0.78,1.25) 

ER and PR Negative 

Q1 739,692 743 1.00 (ref) 

0.38 0.09 

736,067 215 1.00 (ref) 

0.06 <0.05 

Q2 727,688 774 1.03 (0.93,1.14) 723,975 241 1.10 (0.91,1.32) 

Q3 722,601 720 0.96 (0.86,1.07) 718,949 214 0.97 (0.80,1.19) 

Q4 717,804 694 0.94 (0.84,1.05) 714,277 180 0.82 (0.66,1.02) 

Q5 714,791 722 0.94 (0.84,1.06) 711,222 200 0.90 (0.72,1.12) 

P- heterogeneityc 0.45 0.12 
HR: hazard ratio. 95%CI, 95% confidence interval. BC, breast cancer. ER, estrogen receptor. PR, progesterone 
receptor. PY, person-years.  

a P-LRT, p-values for the likelihood ratio test (LRT), that was used to evaluate overall significance of a score 
variable in quintile categories compared with a chi-square distribution with 4 df.  

b P-trend values were obtained by modelling score variables with quintile-specific medians as continuous 

variables.  

c P-heterogeneity values for BC risks across ER\PR status on 1 df were obtained using a data augmentation 
method. 

*Models were stratified by study centre and age in 1-y categories and adjusted for baseline menopausal status 
(premenopausal and perimenopausal [reference] or postmenopausal and women who underwent an 
ovariectomy), baseline alcohol intake (never drinkers [reference], former drinkers, drinkers only at recruitment, 
lifetime drinkers, unknown), height (continuous), BMI (below [reference] or above 25), schooling level (none, 
primary [reference], technical/professional/secondary, longer education, unknown /unspecified), age at first 
full-term pregnancy (nulliparous [reference], ≤ 21years, 21-30 years, > 30 years, unknown or missing), age at 
menarche (≤ 12 years [reference], 12-14 years, >14 years, missing), age at menopause (≤50 years [reference], > 
50 years, pre-menopause or missing), use of hormones (never[reference], ever, unknown), levels of physical 
activity (inactive [reference], moderately inactive, moderately active, active, unknown) and alcohol-free 
energy(continuous). 
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CHAPTER III: 

  
A STATISTICAL FRAMEWORK FOR THE “MEETING-IN-THE-
MIDDLE” APPLIED TO UNTARGETED METABOLOMIC DATA 
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CONTEXT  
Biosciences in the era of Big Data have undergone a profound change in the way 

research is focused, structured and executed. Particularly, recent technological advances 

in the fields of molecular biology and spectrometry resulted in an increased availability 

of ever-complex high-dimensional –omics datasets. Such data pose logistical challenges 

pertaining to their storage, their processing but also to analytical approaches to fully 

exploit them [173]. Aside from the well-established genomics, -omics also encompass a 

variety of other fields including transcriptomics, epigenomics, proteomics and 

metabolomics, an opportunity to examine the “exposome” ( i.e., the entirety of life-

course environmental exposures) in a comprehensive manner [216]. Unlike the genome, 

the “exposome” is modifiable, and can be explored through exposure-biomarker 

approach. One such approach has emerged through the “Meeting-In-The-Middle” 

(MITM) principle, a research strategy that can potentially reveal exposure-specific 

biomarkers that are at the same time predictive of morbid conditions [162,217] by 

looking at associations between exposures, intermediate markers and disease, 

particularly in settings using metabolomics. This is best investigated in prospective 

studies which are especially well-tailored for this purpose as they rely on biological 

samples collected before disease onset, often at recruitment, and therefore are 

marginally influenced by metabolic changes that arise in the disease-development 

process. 

OBJECTIVES 
- To conceive a statistical framework for the MITM approach whose aim is to 

identify biomarkers that are related to specific exposures and that are, at the 

same time, predictive of disease outcome.  

- To include multivariate techniques in the analytical framework for 

dimensionality reduction and relating different sets of data. 

- To apply the analytical strategy within the European Prospective Investigation 

into Cancer and nutrition (EPIC) where biological samples were collected at 

baseline in disease-free participants. Untargeted metabolomic data was acquired 

using NMR techniques from subjects in a nested case-control study on 

hepatocellular carcinoma (HCC), for which information on lifestyle and dietary 

exposures was available. 
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APPROACH 

Figure 2: General original scheme to model the MITM principle. 

The analytical strategy for the MITM was applied towards an analysis of the dietary and 

lifestyle determinants of HCC. In a case-control study on HCC nested within EPIC, serum 
1H NMR spectra (800 MHz) were acquired for 114 cases and 222 matched controls, and 

resulted in 285 metabolic variables (the “responses”). These made up the metabolomics 

set that was related to a set of 21 lifestyle variables (the “predictors”, including 

information on diet, anthropometry and clinical attributes) through Partial Least 

Squares (PLS) (Figure 2). PLS is most suitable for this purpose, as it generalizes features 

of Principal Component Analysis (PCA) and Multiple Linear Regression (MLR), by 

iteratively extracting components that maximize the covariance between two sets of 

variables [218,219]. This resulted on the one hand in extracting the bulk of information 

explaining the most variability, and on the other hand in retaining a restricted number 

of factors, achieving dimensionality reduction. The derived scores were related to HCC 

risk in conditional logistic regressions, and odds ratios and their corresponding 95% 

confidence intervals were computed (OR, 95%CI). Finally, the mediating role of the 

metabolomic signatures between the lifestyle profiles and risk of developing HCC was 

assessed in mediation analyses [208].  

MAIN FINDINGS 
PLS allowed the simultaneous identification of relevant lifestyle and metabolic factors 

whose link can be predictive in the aetiology of chronic diseases. Three PLS factors 

reflected in a lifestyle and metabolic components were selected. A first lifestyle factor 

characterized by a healthy pattern with negative loadings for diabetes status, smoking 
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status and lifetime alcohol intake was not associated with HCC risk, neither was its 

metabolomics counterpart. The lifestyle component of the second PLS factor reflected a 

‘higher-risk exposures’ lifestyle pattern, and showed a significant 54% increase in HCC 

risk. Likewise, its associated metabolic component displayed a significant HCC risk rise 

by 11%. The third PLS lifestyle factor included participants with lower vegetables 

intake, elevated lifetime alcohol consumption, more likely to be ever smokers and have a 

hepatitis infection; one standard deviation increase of this component was associated 

with a statistically significant 37% increase in HCC risk. Similarly, its metabolic 

counterpart characterised by positive signals of ethanol and myoinositol and negative 

loadings for glucose displayed a 22% significant increase in HCC risk.  

CONCLUSION 
This integrated framework allowed the use of all potentially informative aspects of high-

dimensional data including untargeted metabolomics, dietary and lifestyle exposures 

and disease outcome resulting in intermediate biomarker signatures discovery. This 

study devised a way to bridge lifestyle variables to HCC risk through NMR metabolomics 

data possibly highlighting the intersection of relevant markers of exposure with 

predictive markers of disease outcome. This implementation of the MITM was applied 

towards the investigation of HCC determinants; it can be easily extended to similar 

aetiological contexts and to settings characterized by high-dimensional data, 

increasingly frequent in the –omics generation. 

PAPER 
Contribution: First author, discussed the analytical strategy with the supervisor, 

conducted statistical analyses, wrote the first draft of the manuscript, submitted it to the 

journal and replied to reviewers’ comments. 

Reproduced with permission from the Oxford University Press. 



   

53 
 

 



   

54 
 

 



   

55 
 

 



   

56 
 

 



   

57 
 

 



   

58 
 

 



   

59 
 

 



   

60 
 

 



   

61 
 

 



   

62 
 

 



   

63 
 

 



   

64 
 

Supplementary Tables 

A Statistical framework to model the meeting-in-the-middle principle using metabolomic data: 
application to hepatocellular carcinoma in the EPIC study.  

Supplementary Table 1: Summary statistics of the predictors variables (X-set) of the study subjects in the EPIC liver 
nested case–control study (N=336, 114 Cases, 222 Controls). 

  Mean / N* sd / %* p5 p95 N missing 

Dietary Variables (g/day) 
Potatoes and other tubers 100.57 78.15 9.34 266.97 0 

Vegetables 194.20 143.22 45.03 473.45 0 

Legumes 9.85 18.03 0.00 41.18 0 

Fruits, nuts and seeds 232.80 197.94 23.55 585.22 0 

Dairy products 334.40 261.46 49.92 777.48 0 

Cereal and cereral products 227.04 117.67 76.39 458.94 0 

Meat and meat products 115.97 62.29 37.83 236.32 0 

Fish and shellfish 32.88 32.26 3.78 81.43 0 

Egg and egg products 18.67 18.72 1.88 55.57 0 

Fat 34.61 18.48 11.01 70.76 0 

Sugar and confectionary 47.26 51.51 1.93 138.73 0 

Cakes and biscuits 41.33 49.68 0.00 147.26 0 

Non-alcoholic beverages 1053.91 793.31 85.00 2391.90 0 

Anthropometric variables 
BMI (kg/m2) 27.41 4.41 21.22 36.16 0 

Height (cm) 169.70 9.99 152.00 184.80 0 

Lifestyle Variables 
Lifetime alcohol intake (g/day) 23.27 41.38 0 91.998 61 

Physical activity (Mets/h) 77.13 49.45 11.5 173.63 0 

Highest Education Level  

None or primary school completed 167 49.7  -  -  - 

Technical/professional school 75 22.32  -  -  - 

Secondary school 27 8.04  -  -  - 

Longer education (incl. university degree) 62 18.45  -   -  - 

Unspecified or Unknown 5 1.49  -   -  - 

Smoking status 

Never 124 36.9  -  -  - 

Former 125 37.2  -  -  - 

Current smoker 85 25.3  -  -  - 

Unspecified or Unknown 2 0.6  -   -  - 

Pathology variables indicative of lifestyle 
Hepatitis status 1 

No 291 86.87  -  -  - 

Yes 44 13.13  -   -  - 

Diabetes 0 

No 307 91.37  -  -  - 

Yes 29 8.63  -   -  - 

*Mean and standard deviation (sd), were reported for continuous variables and frequencies and percentages (%) were 
reported for categorical variables.  
p5: 5th percentile, p95:95th percentile.
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Supplementary Table 2: Results from the sensitivity analysis run on a subsample (N=271, 92 cases, 179 controls) 
excluding sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). Lifestyle 
and NMR cluster variables contributing to each PLS factor. 
 

PLS 
Factor Lifestyle Variable* Loading 

value 
CS*‡ 
(ppm) Metabolite** Loading 

value 
1 Dairy Products 0.33 7.03 Histidine 0.09 
  Cakes and Biscuits 0.34 5.22 

Glucose 

-0.07 
  Lifetime Alcohol Consumption -0.34 3.88 -0.06 
  Smoking Status -0.26 3.82 -0.07 
  Diabetes -0.59 3.76 -0.06 
    3.71 -0.06 
    3.54 -0.05 
    3.50 -0.07 
    3.48 -0.08 
    3.44 Acetoacetate -0.08 
    3.23 Choline + Glycerphosphocholine -0.05 
    3.03 Creatine 0.10 
    3.01 Albumin 0.10 
    2.28 Acetoacetate 0.10 
    2.22 CH2-CH2-COOC bond of lipids + Acetone -0.03 
    2.06 Proline + Glutamate 0.09 
    1.91 Lysine + Arginine -0.03 
    1.87 Lysine 0.09 
    1.16 Ethanol -0.04 
    1.08 Unknown 1 0.09 
      0.91 CH3 bond of lipids 0.09 
2 Cereal and Cereal Products -0.24 7.17 

Tyrosine 
0.14 

  BMI 0.34 6.87 0.14 
  Height -0.39 5.27 CH=CH bond of lipids -0.14 
  Hepatitis 0.55 5.22 Glucose 0.13 
    5.18 Mannose + Lipid O-CH2  -0.13 
    4.27 Lipid O-CH2  -0.12 
    4.25 Threonine -0.14 
    4.05 Creatinine -0.14 
    3.88 

Glucose 

0.13 
    3.82 0.13 
    3.76 0.13 
    3.75 0.12 
    3.71 0.12 
    3.54 0.15 
    3.50 0.13 
    3.48 0.13 
    3.44 Acetoacetate 0.13 
    3.23 Choline + Glycerphosphocholine 0.12 
    2.80 Aspartate -0.13 
    2.76  =CH-CH2-CH= bond of lipids  -0.12 
    2.19 CH2-CH2-COOC bond of lipids -0.16 
    2.02 Proline + Glutamate -0.14 
    1.53 CH2-CH2-COOC bond of lipids  -0.13 
    1.25 CH2 bond of lipids  -0.12 
      0.86 Cholesterol + CH3 bond of lipids -0.12 

3 Vegetables 0.39 5.25 Glucose 0.17 
  Sugar and Confectionnary -0.21 4.28 Lipid O-CH2  -0.07 
  Lifetime Alcohol Consumption -0.29 4.14 Proline -0.08 
    4.07 Choline + Lipid O-CH2 + Myo-inositol -0.07 
    3.88 

Glucose 

0.16 
    3.82 0.16 
    3.76 0.16 
    3.75 0.14 
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    3.71 0.15 
    3.69 0.16 
    3.63 Myo-inositol -0.16 
    3.54 

Glucose 
0.12 

    3.50 0.17 
    3.48 0.17 
    3.44 Acetoacetate 0.16 
    3.41 

Proline 
-0.10 

    3.35 -0.15 
    3.34 -0.12 
    3.28 Myo-inositol -0.09 
    3.23 Choline + Glycerphosphocholine 0.15 
    1.91 Lysine + Arginine -0.07 
    1.16 Ethanol -0.16 
    0.68 

Cholesterol 
-0.06 

      0.66 -0.08 

*Relevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading 
values <10th percentile (pctl) and >90th pctl or <5th pctl and >95th pctl respectively. 
‡ CS: 1H chemical shift (in ppm) of the cluster (center value). 
**Some of the identified clusters were found to be background noise during the annotation phase and were removed 
from this table. 
 
 
Supplementary Table 3: Results from the sensitivity analysis (N=271, 92 cases, 179 controls) conducted excluding 
sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). Area under the curve 
(AUC), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC models (with 95% CI). 
 
  AUC AUCb** Sensitivity Specificity Accuracy PPV 
Adjustment Covariate (ADJ)*  0.846 (0.793, 0.899) 0.827 (0.765,0.879) 0.750 (0.649, 0.834) 0.838 (0.776, 0.889) 0.808 0.0018 

 
X1 scores + ADJ 0.853 (0.800, 0.905) 0.834 (0.774, 0.890) 0.728 (0.626, 0.816) 0.872 (0.813, 0.917) 0.823 0.0023 
X1+X2 scores + ADJ 0.860 (0.811, 0.910)  0.837 (0.772, 0.893) 0.750 (0.649, 0.834) 0.832 (0.769, 0.884) 0.804 0.0018 
X1+X2+X3 scores + ADJ 0.861 (0.810, 0.912)  0.837 (0.773, 0.893) 0.761 (0.661, 0.844) 0.838 (0.776, 0.889) 0.812 0.0019 

 
Y1 scores + ADJ 0.847 (0.794, 0.900) 0.827 (0.768, 0.884) 0.739 (0.637, 0.825) 0.838 (0.776, 0.889) 0.804 0.0018 
Y1+Y2 scores + ADJ 0.848 (0.794, 0.901)  0.827 (0.764, 0.883) 0.717 (0.614, 0.806) 0.899 (0.846, 0.939) 0.838 0.0028 
Y1+Y2+Y3 scores + ADJ 0.853 (0.800, 0.907) 0.826 (0.763, 0.882) 0.717 (0.614, 0.806) 0.911 (0.859, 0.948) 0.845 0.0032 

*The model is run on the adjustment covariates (ADJ) including the C-reactive protein concentration, alpha-
fetoprotein concentration and a composite score for liver damage. ** AUCb is the bootstrapped-cross validated 
estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors, 
respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively. 
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CHAPTER IV:  
 

A REFINEMENT OF THE “MEETING-IN-THE MIDDLE” 

FRAMEWORK WITH AN APPLICATION IN TARGETED 

METABOLOMICS 
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CONTEXT 1 

The MITM principle [162,180] was used as a research strategy to identify biomarkers 2 

that are related to specific exposures and that are also predictive of disease outcome, by 3 

looking at associations between exposures, contender intermediate markers and 4 

disease. This strategy is particularly of interest in epidemiological studies with 5 

metabolomic data. A first implementation of the MITM principle was presented as a 6 

proof of concept [220], it explored intermediate biomarkers separately, relating them to 7 

nutrient variables and to colon and breast cancer in a nested case-control study. In our 8 

first MITM paper [208], we set-up a single statistical framework by integrating 9 

multivariate methods, namely PLS, and mediation analyses, to fully exploit data 10 

originating from different high-dimensional sets. Building on these previous 11 

implementations of the MITM, and using targeted metabolomic data, we further refined 12 

and developed the analytical scheme by focusing on a restricted set of exposures and by 13 

adapting the mediation analysis to matched case-control study designs. The application 14 

looked yet again into determinants of HCC, the most common form of liver cancer, 15 

which ranks as the 2nd most frequent cause of cancer death worldwide [209]. HCC being 16 

a multi-factorial disease strongly associated with lifestyle factors and with dietary 17 

habits [221],  components of a modified Healthy Lifestyle Index (HLI) scores’ link with 18 

serum metabolites are jointly investigated to possibly identify modifiable lifestyle 19 

exposure patterns and metabolite signatures related to HCC that may ultimately lead to 20 

the identification of targeted cancer prevention schemes. 21 

OBJECTIVES  22 

- To apply the MITM approach in order to explore the components from a 23 

modified HLI with respect to serum metabolites in a nested case-control study 24 

on HCC within the EPIC cohort. Targeted metabolites were acquired through the 25 

BiocratesKit from pre-diagnostic sera samples. 26 

- To further establish and tune the analytical framework previously developed to 27 

yield exposure-specific metabolomics profiles through multiple PLS. 28 

- To develop and adapt the mediation analysis structure to accommodate the 29 

matched nested case-control design. 30 

 31 



   

77 
 

APPROACH 32 

Following a similar scheme as in the previous MITM implementation, for 147 HCC cases 33 

and their matched controls, 132 metabolites levels were acquired from pre-diagnostic 34 

serum samples using standard targeted metabolite profiling protocols (BiocratesKit). 35 

Through PLS analysis, this metabolomics set, including an additional liver damage score, 36 

was linked to a set of 7 lifestyle variables corresponding to components of HLI, 37 

including diet, Body Mass Index (BMI) (kg/m2), physical activity (hourly Metabolic 38 

Equivalent of Task Met-h/week), lifetime alcohol consumption (g/day), smoking, 39 

diabetes at baseline and hepatitis infection. A series of multiple PLS was further applied 40 

using each HLI variable separately to yield metabolite patterns that are specific to each 41 

exposure under scrutiny. Mediation analyses were then performed to assess the 42 

mediating role of the metabolomic profiles in the relationships between the overall 43 

lifestyle profile first, then for each individual HLI component in turn and HCC. Estimates 44 

of the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE) were computed by 45 

adapting formulae from VanderWeele & Vansteelandt (AJE, 2010) [192], to 46 

accommodate conditional logistic regressions for the matched design. Total effects were 47 

also presented. Statistical significance controlled for multiple testing through False 48 

Discovery Rate (FDR) in the multiple PLS results. 49 

MAIN FINDINGS 50 

In the overall analysis, the lifestyle PLS factor scored high for study subjects 51 

characterised, on average, by low propensity towards smoking, alcohol drinking and 52 

obesity. Its metabolic counterpart was positively related to sphingolipids with hydroxyl 53 

group including SM(OH) C14:1, SM(OH) C16:1 and SM(OH) C22:2, and negatively with 54 

glutamic acid, hexoses, PC aaC32:1 and liver damage score. Both components displayed 55 

decreased HCC risks quantified with total effects through with odds ratios (OR) equal to 56 

0.53[95% CI: 0.39, 0.71] and mediator effects adjusted for the exposure OR=0.30[0.19, 57 

0.47] per 1-SD change in components’ scores, respectively. There was evidence of 58 

mediation between this overall “healthy” pattern and HCC through its metabolic 59 

counterpart with NIE=0.62 [0.50, 0.77]. Results from multiple PLS, showed that specific 60 

metabolic signatures of BMI, alcohol intake, diet, smoking and diabetes were found to be 61 

mediators of the relationship between corresponding HLI variables and HCC risk. Their 62 
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respective NIE was equal to 1.56[1.24, 2.96], 1.09[1.03, 1.15], 0.85[0.74, 0.97], 63 

1.22[1.04, 1.44] and 5.11[1.99, 13.14].  64 

CONCLUSION  65 

Using a multiple PLS scheme within a MITM framework, we were able to yield lifestyle-66 

specific metabolomic signatures. These metabolic profiles bridged healthy behaviours 67 

to HCC risk through mediation analyses. The models were fine-tuned and metabolomic 68 

signals specific to BMI, alcohol intake, diet, smoking and diabetes were found to be 69 

mediators on the pathway between each of these exposures and risk of developing HCC. 70 

Future studies applying the MITM should utilize larger sample sizes for improved 71 

power. Nevertheless, the present work clearly offers the utility of the MITM in exploring 72 

environment-disease associations in an integrated setting with highly-dimensional data.  73 

PAPER 74 

Contribution: First author, discussed the analytical strategy with the supervisor, 75 

conducted statistical analyses, wrote the first draft of the manuscript, submitted it to 76 

peer-review journals. 77 

The manuscript is currently in draft format. It has been circulated to the writing group, 78 

and to EPIC collaborators. After a first unsuccessful submission to the Journal of the 79 

National Cancer Institute (JNCI), it has been now submitted and is under consideration 80 

at the International Journal of Epidemiology (IJE).  81 
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Abstract  83 

Background: The “meeting-in-the-middle” (MITM) is a principle to identify exposure 84 

biomarkers that are also predictors of disease. The MITM statistical framework was applied 85 

in a nested case-control study on hepatocellular carcinoma (HCC) within the EPIC cohort 86 

where the components of a modified healthy lifestyle index (HLI) were related to serum 87 

metabolites.   88 

Methods: Lifestyle and targeted metabolomic data were available from 147 HCC cases and 89 

147 matched controls. Partial Least Squares (PLS) analysis related 7 modified HLI variables 90 

(diet, BMI, physical activity, lifetime alcohol, smoking, diabetes, hepatitis) to 132 serum-91 

measured metabolites, and a liver function score. Exposure-specific signatures were also 92 

extracted with PLS models. Mediation analysis evaluated the role of metabolomic PLS scores 93 

in the relationship between the modified HLI and HCC risk.  94 

Results: The overall PLS factor's lifestyle component was negatively associated with lifetime 95 

alcohol, BMI, smoking, diabetes and positively associated with physical activity. Its 96 

metabolic counterpart was positively related to SM(OH) C14:1, C16:1 and C22:2, and 97 

negatively to glutamate, hexoses, and PC aaC32:1. The lifestyle and metabolomics 98 

components were inversely related to HCC risk. The PLS scores expressing metabolic 99 

signatures mediated the association between smoking and lifetime alcohol and HCC with 100 

Natural Indirect Effects respectively equal to 1.22(95% confidence interval [CI]=1.04 to 1.44) 101 

and 1.09(95%CI=1.03 to 1.15). 102 

Conclusions: This study refined the analytical framework of the MITM principle as a way to 103 

investigate the relations between lifestyle factors and disease risk using metabolomics. 104 

Relevant metabolomic signatures were identified as mediators in the relationship between 105 

specific lifestyle exposures and HCC. 106 
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 107 

Keywords: Meeting-in-the-middle, mediation analysis, partial least squares, hepatocellular 108 

carcinoma, targeted metabolomics, healthy lifestyle index, EPIC. 109 

 110 
Key Messages: 

- This work presents a flexible analytical framework for the “meeting-in-the-middle” 
principle, a promising tool to potentially identify causal pathways. The statistical 
strategy relied on an integrative approach to relate exposures to a wide array of 
metabolomics data in relation to hepatocellular carcinoma outcome. 

- Using an individual Partial Least Square approach, exposure-specific metabolic 
signatures were identified and were shown to be predictive for disease outcome. This 
was especially noteworthy for BMI, alcohol, smoking as well as diabetes- specific 
metabolic profiles. 

- The approach can be further extended to similar aetiological contexts and/or using 
other types of –Omics data. 
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Introduction 111 

Metabolomics have become a focal point in epidemiological studies, as a result of 112 

large scale collection of biological samples and technological advances in the fields of 113 

molecular biology and chemometrics[1–4]. Metabolomics offers a broad spectrum of 114 

potential biomarkers to explore in search of causal and mechanistic pathways in disease 115 

development and aetiology. Such endeavours have revealed a number of mechanistic 116 

insights in the understanding of disease progression at metabolic levels and led to 117 

biomarker discovery[5]. 118 

Metabolomic datasets raise challenges from the processing of complex high-119 

dimensional data, to  the  analytical approaches to fully exploit them[1]. New statistical 120 

methodologies are increasingly sought to address the multivariate nature of metabolomic 121 

data[6] and to discover relevant pathological processes that metabolomics may help 122 

investigate. In this scenario, the “meeting-in-the-middle” (MITM) principle[7,8] is used as a 123 

research strategy to identify biomarkers that are related to specific exposures and that are, 124 

at the same time, predictive of the outcome. 125 

The MITM has been previously implemented in a nested case-control study where 126 

intermediate biomarkers were related to nutrients and to colon and breast cancer 127 

indicators[9]. The implementation to multivariate modelling was further extended in a 128 

Partial Least Squares (PLS) analysis to integrate a set of 21 lifestyle variables and 285 129 

metabolic variables from 1H NMR spectra in relation to hepatocellular carcinoma (HCC) 130 

risk[10].  131 
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Since HCC is a multi-factorial disease strongly associated with lifestyle factors[11], 132 

the MITM was applied to identify metabolite signatures related to HCC. The lifestyle 133 

components of a modified healthy lifestyle index (HLI)[12,13] were related to specific 134 

metabolic signals. 135 

In this study an in-depth proof of concept of the MITM is revisited with a focused 136 

strategy to explore the mediating role of metabolic signatures on the path from exposure to 137 

disease in a HCC case-control study nested within the European Prospective Investigation 138 

into Cancer and nutrition (EPIC) using targeted metabolomic data. 139 
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Material and Methods  140 

The nested case-control design 141 

Within a nested case-control study of HCC[14,15] in EPIC, this study focused on 147 142 

cases and 147 matched controls with available biological samples identified in the period 143 

between subjects’ recruitment into the cohort (1993-1998) and 2010[15,16]. Cases of HCC 144 

originated from all participating EPIC centres except for Norway and France that were not a 145 

part of this study. All subjects were cancer-free at the time of blood collection. Information 146 

on population, data collection of dietary and lifestyle data, follow-up, case ascertainment 147 

and matching criteria can be read in Supplementary Methods. 148 

The lifestyle variables (X-set of predictors) 149 

The lifestyle variables were the predictors, referred to as the X-set, and  included 150 

body mass index (BMI) (continuous, kg/m²), average lifetime alcohol intake (continuous, 151 

g/day), the diet score (continuous) described in the Supplementary Methods, physical 152 

activity (continuous metabolic equivalents of task in MET-h/week), smoking (never, ex-153 

smokers quit>10 years, ex-smokers quit <=10 y, current smokers <=15 cig/day, current 154 

smokers > 15 cig/day), hepatitis infection (yes/no) and self-reported diabetes at baseline 155 

(yes/no). These are the components of a healthy lifestyle index (HLI)[12,13], hereby 156 

modified to include hepatitis and diabetes status, as detailed in Supplementary Methods. 157 

The metabolites set (M-set of responses)  158 

Metabolomic data 159 

Metabolic biomarkers from serum samples were measured by tandem mass 160 

spectrometry at IARC, Lyon, France, using the BIOCRATES AbsoluteIDQ p180 Kit (Biocrates, 161 
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Innsbruck, Austria). Details of the sample preparation and mass spectrometry analyses are 162 

provided elsewhere[15,17]. Out of 145 metabolites measured in serum, this study included 163 

132 metabolites with at most 40% of missing values. Metabolite nomenclature has been 164 

previously described[18] and can be found in Supplementary Methods. Measurements that 165 

were below the limit of detection were set to half that value and those below limit of 166 

quantification were set to half that limit (applicable to a total of 16 metabolites for 0.3% to 167 

29.3% of participants). Additionally, measurements that were above the highest 168 

concentration calibration standards were set to the highest values.  169 

Liver function score  170 

A composite score indicative of liver function identifying the number of abnormal 171 

values for six circulating liver blood biomarker tests indicating possible underlying liver 172 

dysfunction[10,14,15] was included in the set of metabolites, the M-set, as detailed in 173 

Supplementary Methods. These biomarkers were acquired at the same time as the 174 

metabolites from the pre-diagnostic blood samples collected at recruitment. 175 

Statistical analyses 176 

Modified HLI and HCC risk 177 

The association between the modified HLI and HCC risk was evaluated through conditional 178 

logistic regression models. Odds ratios, and their 95% confidence intervals (OR, 95%CI) were 179 

computed to express a change in HCC risk reflecting one standard deviation (1-SD) increase 180 

in the index. Unadjusted and liver function score adjusted ORs were estimated.  181 

Principal Component Partial R-squared (PC-PR2) analyses 182 
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Sources of systematic variability within the X-set of HLI variables and the M-set of 183 

metabolites were identified and quantified through the PC-PR2 method[10,19] as described 184 

in Supplementary Methods. For both X- and M-sets, residuals on country and batch (M-set 185 

only) were computed in univariate linear regression models and used in the PLS analyses.  186 

Primary PLS analyses: overall and individual PLS  187 

Exposure variables were related to metabolomic data through PLS analysis that  extracts 188 

linear combinations, referred to as PLS factors, of predictors (the X-set of lifestyle variables) 189 

and responses (the M-set of metabolites), allowing a simultaneous decomposition of both 190 

sets with the aim of maximizing their covariance[20,21]. An overall PLS was conducted using 191 

the entire X-set, then a series of individual PLS analyses was further applied using each HLI 192 

variable separately as the predictor to yield exposure-specific metabolomics signatures. In 193 

an attempt to yield even more specific metabolic signatures, sensitivity PLS analyses using 194 

mutually adjusted lifestyle residuals and country for the X-set and with country and batch 195 

residuals for the M-set were computed and presented in Supplementary Tables. More 196 

details on the process are provided in Supplementary Material.  197 

Mediation analyses 198 

Mediation analysis assessed whether the metabolic profiles mediated the relation between 199 

individual lifestyle factors and HCC risk. For the overall and individual PLS analyses, 200 

mediating effects were computed for each extracted pair of lifestyle variable and M-score, 201 

adapting the formulae from VanderWeele and Vansteelandt[22] to accommodate 202 

continuous exposures and mediators and conditional logistic regression for our matched 203 

setting. For each examined lifestyle variable, estimates of the natural direct effect (NDE), 204 
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the natural indirect effect (NIE), and the total effect (TE) were obtained, along with the 205 

effect of the corresponding M-score adjusted for its counterpart lifestyle exposure and for 206 

confounding variables and referred to as the mediator effect (ME). For more details, see 207 

Supplementary Methods.  208 

All statistical tests were two-sided and p-values < 0.05 were considered statistically 209 

significant. Statistical analyses were performed using PROC PLS in SAS[23] for PLS analyses 210 

and the R Software[24] for linear and conditional logistic regressions and mediation 211 

analyses. 212 
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Results 213 

Study population characteristics by case-control status are presented in Table 1. One 214 

PLS factor was retained after 7-fold cross validation for PLS analysis. The lifestyle PLS factor 215 

identified a ‘healthy’ behavior profile with positive loadings for physical activity, negative 216 

loadings for BMI, lifetime alcohol consumption and smoking (Table 2). The corresponding 217 

metabolomics PLS factor was characterized by glutamic acid, hexoses and sphingomyelins. 218 

The PLS lifestyle factor was inversely associated with HCC risk, with TE=0.53 (95%CI=0.39-219 

0.71, Pvalue=2.64E-05) (Table 4), whereas the HLI score was not related to HCC with OR=0.93, 220 

95%CI=0.84 to 1.02, Pvalue=0.117 (results not shown). The PLS metabolic profile showed a 221 

strong inverse association with HCC risk, with ME (Mediator Effect) equal to 0.30 222 

(95%CI=0.19 to 0.47, Pvalue=1.94E-07). The association of the lifestyle factor with HCC risk 223 

was mediated by the metabolic profile, with NIE=0.62 (0.50 to 0.77, Pvalue=2.12E-05), with an 224 

estimated mediated proportion of 52% (Table 4).  225 

Individual PLS analyses yielded metabolite signatures for each component of the 226 

modified HLI (Table 3). For lifetime alcohol, the signature was negatively related to SM 227 

C16:1, SM C18:1, SM(OH) C14:1, SM(OH) C16:1 and SM(OH) C22:2 and positively related to 228 

glutamic acid and PC aaC32:1. Metabolites associated with smoking included SM C16:1 and 229 

C18:1, SM(OH) C14:1 and C22:2, LysoPC aC28:1 and PC aeC30:2 with negative loadings and 230 

hexoses with positive loadings. In the sensitivity analysis, smoking was negatively associated 231 

with serine, lysine and biogenic taurine and positively with PC aaC36:1 and aaC40:3 232 

(Supplementary Table 3).  Different phosphatidylcholines characterized the metabolic 233 

signature related to diet. The metabolic profile of BMI included glutamic acid, tyrosine, PC 234 

aaC38:3, the liver function score with positive loadings and glutamine, LysoPC aC17:0 and 235 
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LysoPC aC18:2 with negative values. Hexoses and amino acids valine, isoleucine and 236 

phenylalanine were positively associated with diabetes status.  237 

All PLS metabolic signatures, with the exception of physical activity and hepatitis infection, 238 

were associated with HCC risk, with strong evidence of mediation (Table 4). In particular, for 239 

both diabetes and BMI, a positive association for the NIE, equal to 5.11 (1.99 to 13.14, 240 

Pvalue=6.99E-04) and 1.56 (1.24 to 1.96, Pvalue=1.72E-04), respectively, was observed, 241 

together with a lack of association for the NDE, thus suggesting that the relationship 242 

between these two variables and HCC risk was fully mediated by the corresponding 243 

metabolic signatures. As for smoking, diet and lifetime alcohol, the mediated proportions 244 

were 56%, 38% and 24%, respectively, with NIE equal to 1.22 (1.04 to 1.44, Pvalue=0.018), 245 

0.85 (0.74 to 0.97, Pvalue=0.025) and 1.09 (1.03 to 1.15, Pvalue=0.002), respectively. 246 

Noteworthy, the NIE estimate for smoking in the sensitivity analysis was 1.98 (1.34 to 2.92, 247 

Pvalue=5.65E-04), and the relation between smoking and HCC was fully mediated by the M-248 

score (Supplementary Table 4).  249 

The TE estimates showed strong associations for lifetime alcohol (1.40, 95%CI=1.14 250 

to 1.72, Pvalue=1.40E-03), diet score (0.66, 0.47 to 0.92, Pvalue=0.014) and hepatitis infection 251 

(16.70, 4.82 to 57.84, Pvalue=8.92E-06) (Table 4). Most of these associations remained 252 

statistically significant after FDR correction. With the exception of smoking and, to a lesser 253 

extent, lifetime alcohol, the PLS metabolic profiles and estimated associations were virtually 254 

unchanged in the sensitivity analysis (Supplementary Tables 3 and 4). 255 
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Discussion  256 

This study extended the statistical framework of the MITM[10] with a focused 257 

strategy to comprehensively explore the mediating role of metabolite signatures in the 258 

relationship between HLI and HCC.  259 

In a previous implementation of the MITM[10], 21 lifestyle variables were related to 260 

285 metabolic variables acquired from pre-diagnostic sera 1H NMR spectra. In this study , 261 

the X-set of predictors was restricted to the original components of the HLI, most of which 262 

have been previously associated with HCC risk[11,25–34]. Variables from the existing 263 

index[12,13] were complemented by indicators of hepatitis infection and diabetes status at 264 

baseline, which are well-known HCC risk factors[25,26,35]. Alcohol use at recruitment was 265 

replaced by lifetime alcohol intake, mainly to address reverse causality. A more focused 266 

methodology was further developed building on a similar analytical structure.  267 

PLS analysis was used to relate the sets of HLI variables to metabolites. Preliminarily, 268 

an overall factor depicted a lifestyle pattern characterized by low propensity towards 269 

smoking, alcohol drinking and obesity, low prevalence of baseline diabetes or hepatitis 270 

infection and high levels of physical activity. Mediation analyses indicated the metabolite 271 

signature mediated 52% of the association between the healthy lifestyle factor and risk of 272 

HCC. In a second phase, individual PLS models were related to specific components of the 273 

HLI. The specific metabolite signatures were found to mediate the relation with HCC risk for 274 

BMI, lifetime alcohol consumption, smoking, diabetes and diet, with a proportion mediated 275 

of 100, 24, 56, 100 and 38%, respectively. These findings suggested that varying proportion 276 

of the total effect on HCC is exerted via the metabolite signatures, possibly through specific 277 

underlying mechanisms by which the exposure is acting.  278 
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Specifically, a recent IARC handbook evaluation on body fatness and obesity 279 

reported a positive relationship between BMI and risk of liver cancer[36]. Our study 280 

suggests that the increase in HCC risk is entirely mediated by a BMI-specific metabolic 281 

signature characterized by phosphatidylcholines (LysoPC aC18:2, LysoPC aC17:0 and PC 282 

aeC36:2) and tyrosine. PCs are required for lipoprotein assembly and secretion; in particular 283 

acyl-alkyl-PCs were correlated with high-density cholesterol[37,38]. Tyrosine levels 284 

imbalance has been previously related to insulin resistance and type 2 diabetes[39–41]. 285 

Correlation studies conducted in the EPIC-Potsdam cohort exploring the association 286 

between lifestyle factors and blood metabolite levels, acquired with the same targeted 287 

technology showed similar findings, with serum acyl-alkyl-phosphatidylcholines (PC ae), 288 

LysoPC aC17:0, aC18:2 and PC aeC36:2 negatively associated with obesity and BMI whereas 289 

tyrosine was positively related to BMI[42–44].  290 

The metabolic signature fully mediated the association between diabetes, a well-291 

established HCC risk factor[11], and HCC. The contributing metabolites were hexoses, 292 

phenylalanine and LysoPCs, consistently with previous studies based on targeted[41] and 293 

untargeted[45] approaches. These metabolites were further linked with insulin resistance 294 

and involved in glycolysis and gluconeogenesis, and their metabolic alterations was 295 

associated with an increased diabetes risk[41]. 296 

The metabolomics signature of lifetime alcohol intake was negatively associated with 297 

sphingomyelins and positively associated to phosphatidylcholines. Similar metabolites 298 

patterns were observed in a study that focused on alcohol-dependent patients [46]. As 299 

ethanol has been hypothesised to induce lipogenesis in the liver tissues[47], alcohol can 300 
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lead to hepatic injuries causing a disruption of the metabolism of fatty acids and 301 

phospholipids[48]. 302 

The identification of specific metabolic signatures for alcohol and smoking was particularly 303 

challenging in our study, as these two factors are strongly correlated[49–51]. An overlap 304 

between the smoking and alcohol-specific metabolite signatures was observed in the 305 

preliminary analysis, where four common sphingomyelins , i.e. SM C16:1, SM C18:1, SM(OH) 306 

C14:1 and SM(OH) C22:2,were  identified. In the sensitivity analysis, the different lifestyle 307 

exposures were mutually adjusted for prior to PLS, thus leading to a new list of metabolites 308 

associated with smoking which included serine, SM(OH) C22:2 and PC aaC36:1, consistently 309 

to what was reported in the KORA study[52]. As a result, the estimated proportion of 310 

mediation increased from 57 to 100 %, resulting in a metabolic signature capturing smoking-311 

related metabolic features that is more predictive of HCC. 312 

The application of mediation analysis in this study was another challenging aspect of 313 

the analytical framework. A temporal sequence among, in turn, lifestyle exposures, 314 

metabolites and outcome is required[53,54] for the NDE and NIE to have a causal 315 

interpretation. In our study, while cancer occurrence was assessed during follow-up, 316 

lifestyle exposures were assessed at baseline, at the same time of the collection of biological 317 

samples that provided metabolomics data. In this respect it is worth noticing that lifestyle 318 

and metabolomics reflect different exposure windows. The metabolites likely reflect 319 

exogenous and endogenous exposures in a limited timeframe, i.e. between weeks and a few 320 

months as the reliability studies that of serum metabolomics data seem to 321 

indicate[17,18,55]. The diet score was derived from questionnaires that covered the dietary 322 

habits of participants over the past 12 months prior to baseline[56,57]. While lifetime 323 
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alcohol reflected the history of exposure across adult life, other exposures such as BMI, 324 

smoking, physical activity, hepatitis infection and diabetes status were the result of one 325 

point in time assessment at recruitment. Our analytical framework study consistently relied 326 

on the hypothesis that lifestyle factors were stable over time in the middle-age study 327 

populations recruited in EPIC.  328 

Another key aspect of mediation analysis is what is referred to as the ‘cross-world 329 

assumption’, whereby NDE and NIE cannot be identified in the presence of a mediator-330 

outcome confounder that is affected by the exposure[58]. In our study the composite liver 331 

function score, an index compiled from measures of circulating biomarkers of hepatic 332 

function indicating underlying liver impairment[14] was likely affected by lifestyle exposure, 333 

and was, in turn, likely influencing metabolite levels and HCC risk. The use of weighting-334 

based estimation methods to look at joint mediators to compute randomized interventional 335 

effects has been proposed as a solution in the presence of mediator-outcome 336 

confounder[58].  In this study the liver function was added to the list of mediators. In this 337 

way, the metabolic signatures comprised of relevant information on the liver function, and 338 

the link with relevant lifestyle factors was evaluated.  339 

This study was characterized by limited sample size, a direct consequence of the fact 340 

that HCC is a rare disease. Findings from this comprehensive approach suggested that 341 

certain exposure-specific metabolite profiles are intermediate biomarkers on the metabolic 342 

pathway towards hepatocellular carcinogenesis, but replication of these findings in an 343 

independent setting is warranted.  344 

This study further refined an endeavor for high-throughput data to integrate 345 

metabolomics, lifestyle exposures together with disease indicators. Metabolomics lends 346 
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itself as a promising tool to identify metabolites bridging the link between exposure(s) and 347 

disease, as advocated by the MITM principle[7,8].  The framework we developed allows the 348 

identification of informative metabolic signatures, which are useful to elucidate the 349 

underlying biological mechanisms in the relationship between lifestyle exposure to risk of 350 

cancer risk[59].   351 



   

96 
 

Funding 

This work was supported by the French National Cancer Institute (L’Institut National du Cancer; 

INCA) [grant number 2009-139; PI: M. Jenab]. The coordination of EPIC is financially supported by 

the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The 

national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut 

Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la 

Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum 

and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation 

(Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council 

(Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry 

(NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World 

Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Nordic Centre of Excellence 

programme on Food, Nutrition and Health. (Norway); Health Research Fund (FIS), PI13/00061 to 

Granada), Regional Governments of Andalucía, Asturias, Basque Country, Murcia (no. 6236) and 

Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Scientific Council and 

County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; 

C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-

Norfolk and MR/M012190/1 to EPIC-Oxford) (United Kingdom). The work undertaken by N Assi was 

supported by the Université de Lyon I through a doctoral fellowship awarded by the EDISS doctoral 

school. 

"For information on how to submit an application for gaining access to EPIC data and/or 

biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php" 

 

Conflict of Interest 

None to declare. 



   

97 
 

Acknowledgements: 

The authors wish to thank Dr Joshua Sampson from the Division of Cancer Epidemiology and 

Genetics, National Cancer Institute, Rockville, MD, USA, for useful discussions and insightful 

comments on this work. The authors would like to extend their thanks to Mr Bertrand Hémon and 

Ms Carine Biessy from the International Agency for Research on Cancer for their kind help with 

issues related to data management.



   

98 
 

References 

1.  Baker M. The ’Omes Puzzle. Nature. 2013;494:416–9.  

2.  Nicholson JK, Holmes E, Elliott P. The metabolome-wide association study: a new look at 

human disease risk factors. J Proteome Res. 2008 Sep;7(9):3637–8.  

3.  Wild CP, Scalbert A, Herceg Z. Measuring the Exposome: A Powerful Basis for Evaluating 

Environmental Exposures and Cancer Risk. Environ Mol Mutagen. 2013;54(3):480:499.  

4.  Wild CP. Complementing the Genome with an “‘ Exposome ’”: The Outstanding Challenge of 

Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol 

biomarkers Prev. 2005;14(August):1847–51.  

5.  Abu Bakar MH, Sarmidi MR, Cheng K-K, Ali Khan A, Suan CL, Zaman Huri H, et al. 

Metabolomics - the complementary field in systems biology: a review on obesity and type 2 

diabetes. Mol Biosyst [Internet]. 2015 Jul [cited 2016 Jul 28];11(7):1742–74. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/25919044 

6.  Chadeau-Hyam M, Campanella G, Jombart T, Bottolo L, Portengen L, Vineis P, et al. 

Deciphering the Complex: Methodological Overview of Statistical Models to Derive OMICS-

Based Biomarkers. Environ Mol Mutagen. 2013;54:542–57.  

7.  Vineis P, Perera F. Molecular epidemiology and biomarkers in etiologic cancer research: the 

new in light of the old. Cancer Epidemiol Biomarkers Prev. 2007 Oct;16(10):1954–65.  

8.  Vineis P, van Veldhoven K, Chadeau-Hyam M, Athersuch TJ. Advancing the application of 

omics-based biomarkers in environmental epidemiology. Environ Mol Mutagen [Internet]. 

2013 Aug [cited 2016 Jul 28];54(7):461–7. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/23519765 

9.  Chadeau-Hyam M, Athersuch TJ, Keun HC, De Iorio M, Ebbels TMD, Jenab M, et al. Meeting-



   

99 
 

in-the-middle using metabolic profiling - a strategy for the identification of intermediate 

biomarkers in cohort studies. Biomarkers. 2011 Feb;16(1):83–8.  

10.  Assi N, Fages A, Vineis P, Chadeau-hyam M, Stepien M, Duarte-salles T, et al. A statistical 

framework to model the meeting-in-the-middle principle using metabolomic data : 

application to hepatocellular carcinoma in the EPIC study. Mutagenesis. 2015;30(6):743–53.  

11.  Gomaa A-I. Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World J 

Gastroenterol. 2008;14(27):4300–8.  

12.  McKenzie F, Biessy C, Ferrari P, Freisling H, Rinaldi S, Chajès V, et al. Healthy Lifestyle and Risk 

of Cancer in the European Prospective Investigation Into Cancer and Nutrition Cohort Study. 

Medicine (Baltimore) [Internet]. 2016 Apr [cited 2016 Jul 28];95(16):e2850. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/27100409 

13.  McKenzie F, Ferrari P, Freisling H, Chajès V, Rinaldi S, de Batlle J, et al. Healthy lifestyle and 

risk of breast cancer among postmenopausal women in the European Prospective 

Investigation into Cancer and Nutrition cohort study. Int J cancer [Internet]. 2015 Jun 1 [cited 

2016 Jul 28];136(11):2640–8. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/25379993 

14.  Fedirko V, Trichopolou A, Bamia C, Duarte-Salles T, Trepo E, Aleksandrova K, et al. 

Consumption of fish and meats and risk of hepatocellular carcinoma: the European 

Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol. 2013 Aug;24(8):2166–

73.  

15.  Stepien M, Duarte-Salles T, Fedirko V, Floegel A, Kumar-Barupal D, Rinaldi S, et al. Alteration 

of Amino Acid and Biogenic Amine Metabolism in Hepatobiliary Cancers: Findings from a 

Prospective Cohort Study. Submitt to Am J Gastroenterol. 2015;  



   

100 
 

16.  Trichopoulos D, Bamia C, Lagiou P, Fedirko V, Trepo E, Jenab M, et al. Hepatocellular 

carcinoma risk factors and disease burden in a European cohort: a nested case-control study. 

J Natl Cancer Inst. 2011 Nov 16;103(22):1686–95.  

17.  Carayol M, Licaj I, Achaintre D, Sacerdote C, Vineis P, Key TJ, et al. Reliability of serum 

metabolites over a two-year period: A targeted metabolomic approach in fasting and non-

fasting samples from EPIC. PLoS One [Internet]. 2015;10(8):1–10. Available from: 

http://dx.doi.org/10.1371/journal.pone.0135437 

18.  Floegel A, Drogan D, Wang-Sattler R, Prehn C, Illig T, Adamski J, et al. Reliability of serum 

metabolite concentrations over a 4-month period using a targeted metabolomic approach. 

PLoS One. 2011;6(6).  

19.  Fages A, Ferrari P, Monni S, Dossus L, Floegel A, Mode N, et al. Investigating sources of 

variability in metabolomic data in the EPIC study: the Principal Component Partial R-square 

(PC-PR2) method. Metabolomics. 2014;10(6):1074–83.  

20.  Abdi H. Partial least squares regression and projection on latent structure regression ( PLS 

Regression ). Wiley Interdiscip Rev Comput Stat. 2010;2(1):97–106.  

21.  Tenenhaus M. La régression PLS. Technip. Paris; 1998.  

22.  Vanderweele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous 

outcome. Am J Epidemiol. 2010 Dec 15;172(12):1339–48.  

23.  SAS Institute Inc., Cary N. Base SAS® 9.4 Procedures Guide. 2012.  

24.  R Foundation for Statistical Computing, R Core Team. R: A language and environment for 

statistical computing. Vienna, Austria.; 2013.  

25.  Akuta N, Suzuki F, Kobayashi M, Hara T, Sezaki H, Suzuki Y, et al. Correlation Between 

Hepatitis B Virus Surface antigen Level and Alpha-Fetoprotein in Patients Free of 



   

101 
 

Hepatocellular Carcinoma or Severe Hepatitis. J Med Virol. 2014;86:131–8.  

26.  Yang W-S, Va P, Bray F, Gao S, Gao J, Li H-L, et al. The role of pre-existing diabetes mellitus on 

hepatocellular carcinoma occurrence and prognosis: a meta-analysis of prospective cohort 

studies. PLoS One. 2011 Jan;6(12):e27326.  

27.  Berzigotti A, Saran U, Dufour J-F. Physical Activity and Liver Diseases. Hepatology. 

2016;63(3):1026–40.  

28.  Liu X, Xu J. Body Mass Index and Waistline are Predictors of Survival for Hepatocellular 

Carcinoma After Hepatectomy. Med Sci Monit [Internet]. 2015;21:2203–9. Available from: 

http://www.medscimonit.com/abstract/index/idArt/894202 

29.  Niu J, Lin Y, Guo Z, Niu M, Su C. The Epidemiological Investigation on the Risk Factors of 

Hepatocellular Carcinoma: A Case-Control Study in Southeast China. Medicine (Baltimore) 

[Internet]. 2016;95(6):e2758. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/26871825 

30.  Raffetti E, Portolani N, Molfino S, Baiocchi GL, Limina RM, Caccamo G, et al. Role of aetiology, 

diabetes, tobacco smoking and hypertension in hepatocellular carcinoma survival. Dig Liver 

Dis [Internet]. 2015;47(11):950–6. Available from: 

http://dx.doi.org/10.1016/j.dld.2015.07.010 

31.  Rong X, Wei F, Geng Q, Ruan J, Shen H, Li A, et al. The Association Between Body Mass Index 

and the Prognosis and Postoperative Complications of Hepatocellular Carcinoma: A Meta-

Analysis. Medicine (Baltimore) [Internet]. 2015;94:e1269. Available from: 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=ovftq&AN=00

005792-201508010-00026 

32.  Testino G, Leone S, Borro P. Alcohol and hepatocellular carcinoma: A review and a point of 



   

102 
 

view. World J Gastroenterol. 2014;20(43):15943–54.  

33.  Turati F, Trichopoulos D, Polesel J, Bravi F, Rossi M, Talamini R, et al. Mediterranean diet and 

hepatocellular carcinoma. J Hepatol [Internet]. 2014;60(3):606–11. Available from: 

http://dx.doi.org/10.1016/j.jhep.2013.10.034 

34.  Chiang C-H, Lu C-W, Han H-C, Hung S-H, Lee Y-H, Yang K-C, et al. The Relationship of Diabetes 

and Smoking Status to Hepatocellular Carcinoma Mortality. Medicine (Baltimore) [Internet]. 

2016;95(6):e2699. Available from: 

http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00005792-

201602090-00046 

35.  Trichopoulos D, Bamia C, Lagiou P, Fedirko V, Trepo E, Jenab M, et al. Hepatocellular 

carcinoma risk factors and disease burden in a European cohort: a nested case-control study. 

J Natl Cancer Inst. 2011 Nov 16;103(22):1686–95.  

36.  Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and 

Cancer — Viewpoint of the IARC Working Group. N Engl J Med [Internet]. 2016 Aug 25 [cited 

2016 Sep 28];375(8):794–8. Available from: 

http://www.nejm.org/doi/10.1056/NEJMsr1606602 

37.  Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost H-G, et al. Identification of Serum 

Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic 

Approach. Diabetes [Internet]. 2013 Feb 1 [cited 2016 Sep 23];62(2):639–48. Available from: 

http://diabetes.diabetesjournals.org/cgi/doi/10.2337/db12-0495 

38.  Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. 

Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2012 May [cited 2016 Nov 

16];1821(5):754–61. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S138819811100179X 



   

103 
 

39.  Kawanaka M, Nishino K, Oka T, Urata N, Nakamura J, Suehiro M, et al. Tyrosine levels are 

associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepatic 

Med Evid Res. 2015;7:29–35.  

40.  Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B, et al. Tyrosine Is 

Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children. J 

Diabetes Res [Internet]. 2016 [cited 2016 Nov 16];2016:1–10. Available from: 

http://www.hindawi.com/journals/jdr/2016/2108909/ 

41.  Floegel A, Stefan N, Yu Z, M??hlenbruch K, Drogan D, Joost HG, et al. Identification of serum 

metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. 

Diabetes. 2013;62(2):639–48.  

42.  Floegel A, Wientzek A, Bachlechner U, Jacobs S, Drogan D, Prehn C, et al. Linking diet, physical 

activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a 

population-based study. Int J Obes (Lond). 2014;(February):1–9.  

43.  Bachlechner U, Floegel A, Steffen A, Prehn C, Adamski J, Pischon T, et al. Associations of 

anthropometric markers with serum metabolites using a targeted metabolomics approach: 

results of the EPIC-potsdam study. Nutr Diabetes [Internet]. 2016 [cited 2016 Sep 

23];6(6):e215. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27348203 

44.  Kim JY, Park JY, Kim OY, Ham BM, Kim H-J, Kwon DY, et al. Metabolic Profiling of Plasma in 

Overweight/Obese and Lean Men using Ultra Performance Liquid Chromatography and Q-

TOF Mass Spectrometry (UPLC−Q-TOF MS). J Proteome Res [Internet]. 2010 Sep 3 [cited 2016 

Nov 16];9(9):4368–75. Available from: http://pubs.acs.org/doi/abs/10.1021/pr100101p 

45.  Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C, et al. Untargeted Metabolic 

Profiling Identifies Altered Serum Metabolites of Type 2 Diabetes Mellitus in a Prospective, 

Nested Case Control Study. Clin Chem [Internet]. 2015 Mar 1 [cited 2016 Sep 23];61(3):487–



   

104 
 

97. Available from: http://www.clinchem.org/cgi/doi/10.1373/clinchem.2014.228965 

46.  Reichel M, Hönig S, Liebisch G, Lüth A, Kleuser B, Gulbins E, et al. Alterations of plasma 

glycerophospholipid and sphingolipid species in male alcohol-dependent patients. Biochim 

Biophys Acta - Mol Cell Biol Lipids. 2015;1851(11):1501–10.  

47.  You M, Fischer M, Deeg MA, Crabb DW. Ethanol Induces Fatty Acid Synthesis Pathways by 

Activation of Sterol Regulatory Element-binding Protein ( SREBP ). J Biol Chem. 

2002;277(32):29342–7.  

48.  Glen I, Skinner F, Glen E, Mbch B, Macdonell L, Al GET. The Role of Essential Fatty Acids in 

Alcohol Dependence and Tissue Damage. Alcohol Clin Exp Res. 1987;11:37–41.  

49.  Gubner NR, Delucchi KL, Ramo DE. Associations between binge drinking frequency and 

tobacco use among young adults. Addict Behav [Internet]. 2016;60:191–6. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/27156220 

50.  Barrett SP, Tichauer M, Leyton M, Pihl RO. Nicotine increases alcohol self-administration in 

non-dependent male smokers. Drug Alcohol Depend. 2006;81(2):197–204.  

51.  Kuper H, Tzonou A, Kaklamani E, Hsieh C-C, Lagiou P, Adami H-O, et al. Tobacco Smoking , 

Alcohol Consumption and Their Interaction in the Causation of Hepatocellular Carcinoma. Int 

J Cancer. 2000;502:498–502.  

52.  Xu T, Holzapfel C, Dong X, Bader E, Yu Z, Prehn C, et al. Effects of smoking and smoking 

cessation on human serum metabolite profile: results from the KORA cohort study. BMC Med 

[Internet]. 2013 [cited 2016 Sep 28];11:60. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/23497222 

53.  Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and 

causal interpretation: theoretical assumptions and implementation with SAS and SPSS 



   

105 
 

macros. Psychol Methods. 2013;18(2):137–50.  

54.  Gelfand LA, Mensinger JL, Tenhave T. Mediation Analysis: A Retrospective Snapshot of 

Practice and More Recent Directions. J Gen Psychol. 2009;136(2):153–76.  

55.  Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, et al. 

Metabolomics in Epidemiology: Sources of Variability in Metabolite Measurements and 

Implications. Cancer Epidemiol Biomarkers Prev [Internet]. 2013 Apr 1 [cited 2016 Sep 

12];22(4):631–40. Available from: http://cebp.aacrjournals.org/cgi/doi/10.1158/1055-

9965.EPI-12-1109 

56.  Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective 

Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public 

Health Nutr. 2002 Dec;5(6B):1113–24.  

57.  Kaaks R, Slimani N, Riboli E. Pilot Phase Studies on the Accuracy of Dietary Intake 

Measurements in the EPIC Project : Overall Evaluation of Results. 1997;26(1):26–36.  

58.  Vanderweele TJ, Vansteelandt S, Robins JM. Effect decomposition in the presence of an 

exposure-induced mediator-outcome confounder. Epidemiology. 2014;25(2):300–6.  

59.  Bro R, Kamstrup-Nielsen MH, Engelsen SB, Savorani F, Rasmussen MA, Hansen L, et al. 

Forecasting individual breast cancer risk using plasma metabolomics and biocontours. 

Metabolomics [Internet]. 2015;11(5):1376–80. Available from: 

http://dx.doi.org/10.1007/s11306-015-0793-8 

 



   

106 
 

Tables and Figures 

Table 1: Baseline characteristics of the study population of the EPIC nested case-control study on 
hepatocellular carcinoma. 

Cases Controls 
    (N=147) (N=147) 

Characteristics    Mean (sd) or Frequency 
Sex 

Male 102 102 
Female 45 45 

Age at blood collection (y) 60.08 (7.15) 60.06 (7.17) 
Height (cm) 167.70 (10.31) 169.30 (9.91) 
Weight (kg) 79.78 (17.04) 78.28 (12.88) 
BMI (kg/m2) 28.24 (4.74) 27.33 (4.10) 

Total energy (kcal/d) 
2260.84 

(1001.13) 
2276.57 
(640.07) 

Alcohol at recruitment (g/d) 21.56 (34.25) 14.73 (18.92) 
Physical Activity (Met-h/week) 77.87 (53.44) 83.27 (52.23) 
Education Level 

None or Primary School completed 79 77 
Technical/Professional School 33 33 

Secondary School 6 12 
Longer Education (incl. university degree) 22 25 

Unknown 7 0 
Lifetime Alcohol Consumption (g/d)* 31.59 (46.32) 18.13 (18.81) 
Dietscore* 25.69 (6.69) 27.35 (6.16) 
Hepatitis Infection* 

Yes 41 5 
No  106 142 

Diabetes at Baseline* 
Yes 19 10 
No 128 137 

Smoking Status* 
Current > 15 cigarettes/d 25 23 

Current <= 15 cigarettes/d 34 10 
Ex-smokers quit <=10y 17 25 

Ex-smokers quit >10y 29 29 
Never   42 60 

*Missing values were imputed with the EM algorithm. See also frequencies in Supplementary Table 
1.
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Table 2: Exposure variables of the modified HLI and corresponding metabolites contributing to the 
first PLS factor (N=294, X-set= 7, M-set=133). Results from the overall analysis using residuals based 
on country (X- and M-sets) and batch (M-set only).  

Exposure Variable Loadings Metabolites Loadings* 

BMI -0.385 Glutamic Acid -0.192 
Lifetime Alcohol  -0.695 Hexoses -0.191 
Diet score -0.058 SM(OH) C14:1 0.196 
Physical activity 0.297 SM(OH) C16:1 0.179 
Smoking -0.409 SM(OH) C22:2 0.214 
Hepatitis Infection -0.176 PC aaC32:1 -0.184 
Diabetes -0.282 Liver function score -0.186 

* Metabolite variables contributing to each PLS factor were selected based on extreme loading 
values, i.e. below or above the 2.5th and 97.5th percentiles. 

Table 3: Metabolites contributing to the PLS factor of each HLI component (N=294, X-set=1, M-
set=133)*. Results from multiple PLS models performed using residuals based on country (X- and M-
sets) and batch residuals (M-set only). 

 Metabolite Loadings  Metabolite Loadings  Metabolite Loadings 
BMI Lifetime alcohol  Diet score  
 Glutamine -0.186  Glutamic Acid 0.170  PC aaC36:1 -0.178 
 Glutamic Acid 0.230  SM C16:1 -0.171  PC aaC38:0 0.195 
 Tyrosine 0.243  SM C18:1 -0.167  PC aaC38:6 0.230 
 LysoPC aC17:0 -0.218  SM(OH) C14:1 -0.180  PC aaC40:6 0.204 
 LysoPC aC18:2 -0.236  SM(OH) C16:1 -0.184  PC aaC42:2 0.263 
 PC aeC36:2 -0.203  SM(OH) C22:2 -0.211  PC aeC34:1 -0.195 
 Liver function score 0.191  PC aaC32:1 0.211  PC aeC40:6 0.167 
         
Physical activity  Smoking  Hepatitis infection 
 Biogenic Creatinine -0.199  Hexoses 0.136  SM C20:2 -0.179 
 Biogenic Taurine -0.181  SM C16:1 -0.238  SM(OH) C16:1 -0.178 
 Glutamic Acid -0.212  SM C18:1 -0.194  PC aaC32:2 0.188 
 PC aaC34:2 -0.188  SM(OH) C14:1 -0.214  PC aaC34:1 0.184 
 PC aeC34:2 0.209  SM(OH) C22:2 -0.182  PC aaC34:3 0.180 
 PC aeC34:3 0.176  LysoPC aC28:1 -0.204  PC aaC34:4 0.197 
 PC aeC36:3 0.193  PC aeC30:2 -0.264  PC aaC36:5 0.189 
         
Diabetes status        
 Biogenic Alpha AAA 0.236       
 Isoleucine 0.168       
 Phenylalanine 0.158       
 Valine 0.211       
 Hexoses 0.551       
 Lyso PC aC16:1 -0.145       
 Liver function score 0.226       
         
* Metabolite variables contributing to each PLS factor were selected based on extreme loading 
values, i.e. below or above the 2.5th and 97.5th percentiles. 
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Supplementary material: 

Supplementary Table 1: Descriptive statistics of the different components of the modified healthy lifestyle index 
(HLI) and its scoring, in the current nested case-control study on HCC (Cases=147, Controls=147). 

HLI variable Scoring details Frequency Missing Frequency after EM 
BMI (kg/m2) 0 

5th quintile (>30) 0 76 
4th quintile (26-29.9) 1 107 
3rd quintile (24-25.9) 2 52 
2nd quintile (22-23.9) 3 34 

1st quintile (<22) 4 25 
Lifetime alcohol consumption (g/day) 42 

m: >30 ; w: >20  0 65 85 
m: 15-30 ; w: 10-20 1 55 76 

m: 5-15 ; w: 5-10 2 54 55 
0.1-5 3 59 59 
Never 4 19 19 

Diet score 12 
1st quintile (6-21) 0 65 65 

2nd quintile (22-25) 1 55 65 
3rd quintile (26-28) 2 52 54 
4th quintile (29-33) 3 77 77 
5th quintile (34-46) 4 33 33 

Physical activity (METs-h/week) 0 
1st quintile (<45) 0 51 

2nd quintile (46-69) 1 59 
3rd quintile (70-96) 2 44 

4th quintile (97-133) 3 60 
5th quintile (>=134) 4 80 

Smoking  7 
Current > 15 cigarettes/day 0 48 48 

Current <= 15 cigarettes/day 1 43 44 
Ex smokers quit <= 10-years 2 36 42 
Ex smokers quit > 10 years 3 58 58 

Never 4 102 102 
Hepatitis Infection 76 

Yes 0 41 46 
No 4 177 248 

Diabetes at baseline 29 
Yes 0 29 29 
No 4 236   265 

 

Supplementary Table 2: PC-PR2 results* identifying the sources of variability in the modified HLI variables and in the 
Metabolomic data. 

 
 

 

 

 

 

Modified Healthy Lifestyle Index - 7 original variables  
Country  Age at recruitment Sex R2 

6,165 0,645 3,602 10,697     
Metabolomic data - 132 metabolites         

Country Age at blood collection Batch Sex BMI Diet score 
13,146 0,539 7,103 4,028 1,263 0,667 

Physical Activity Alcohol at recruitment Smoking Hepatitis Diabetes R2 
0,555 2,498 0,312 2,664 0,969 29,458 
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* 6 and 21 components were retained to account for 80% (threshold used) of total modified HLI and metabolites 
variables’ variability, respectively.  The R2 value represents the amount of variability in modified HLI/metabolites 
variable explained by the ensemble of investigated predictors. 

 

 Supplementary Table 3: Metabolites contributing* to two selected modified HLI variable-specific PLS factors: 
smoking and lifetime alcohol (N=294, X-set= 1 in turn, M-set=133) – Results reported from the primary analysis, 
using residuals based on country (X- and M-sets) and batch (M-set only), and from the sensitivity analysis, using 
mutually adjusted lifestyle residuals as well as residuals for country and batch (the latter only in the M-set). 

Primary Analysis 
Lifetime Alcohol Smoking 

Metabolites Loadings Metabolites Loadings 
SM C16:1 -0,173 Lysine -0,173 
SM C18:1 -0,175 SM C16:1 -0,218 
SM(OH) C14:1 -0,205 SM C18:1 -0,176 
SM(OH) C16:1 -0,193 SM(OH) C14:1 -0,196 
SM(OH) C22:2 -0,212 SM(OH) C22:2 -0,171 
LysoPC aC28:1 -0,170 LysoPC aC28:1 -0,170 
PC aeC30:2 -0,177 PC aeC30:2 -0,235 

Sensitivity Analysis 
Lifetime Alcohol Smoking 

Metabolites Loadings Metabolites Loadings 
SM C18:1 -0.161 Biogenic Taurine -0.201 
SM(OH) C16:1 -0.168 Lysine -0.211 
SM(OH) C22:1 -0.168 Serine -0.189 
SM(OH) C22:2 -0.203 SM(OH) C14:1 -0.195 
LysoPC aC16:1 0.162 PC aaC36:1 0.23 
PC aaC32:1 0.234 PC aaC40:3 0.202 
Acylcarnitine C2 0.152 PC aeC30:2 -0.206 

* Metabolite variables contributing to each PLS factor were selected based on extreme loading values, i.e. below or 
above the 2.5th and 97.5th percentiles. 
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Supplementary Methods 

Material and Methods 

The EPIC Study 

EPIC is a multicentre prospective study designed to investigate the link between diet, 

lifestyle and environmental factors with cancer incidence and other chronic disease 

outcomes. Over 520,000 healthy men and women aged 25-85 were enrolled between 1992 

and 2000 across 23 EPIC administrative centres in 10 European countries including 

Denmark, France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the 

United Kingdom1. In most of EPIC centers, participants were recruited amongst the general 

population with the following exceptions: for France, women were enrolled from a health 

insurance scheme for school and university employees; in Utrecht, The Netherlands  and in 

Florence, Italy, participants came from breast cancer screening programs; some centers in 

Italy (Turin and Ragusa) and Spain recruited blood donors; and the Oxford sub-cohort 

(United Kingdom) included mostly health-conscious individuals recruited throughout the UK. 

Finally, the French, Norwegian and Naples (Italy) cohorts comprised only women. Extensive 

details of the study design and recruitment methods have been previously published1,2.  

Data collection of dietary and lifestyle data  

During the enrolment period, participants gave informed consent and completed 

questionnaires on diet, lifestyle and medical history. Approval for this study was obtained 

from the ethical review boards of the participating institutions and the International Agency 

for Research on Cancer (IARC). Biological samples were collected for approximately 80% of 

the cohort prior to disease onset. Serum samples were stored at IARC, Lyon, France in -

196°C liquid nitrogen for all countries, with the exception of samples originating from 

Sweden (-80°C freezers) and Denmark  (-150°C nitrogen vapour). Usual diet over the 

previous 12 months was assessed for each individual through validated country-specific 

dietary questionnaires (DQs)1. Nutrient intakes were then estimated using a common 

harmonized food composition database across EPIC countries (EPIC Nutrient Database, 

ENDB)3,4. Information on sociodemographic data including education, smoking and alcohol 

drinking histories as well as physical activity were gathered in lifestyle questionnaires. 

Anthropometric characteristics were directly measured by trained study personnel for most 

of the participants1, but were self-reported in baseline questionnaires for a subset of 
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participants from the EPIC-Oxford sub-cohort, although the accuracy of these self-reported 

data have been validated5. 

Follow-up and case ascertainment in the nested case-control study 

Follow-up started at date of entry to the study and finished at date of diagnosis, death or 

last completed follow-up (from December 2004 up to June 2010), whichever came first. 

Cancer incidence was determined through population cancer registries or through active 

follow-up as detailed elsewhere6. Incident HCC cases were defined as first primary invasive 

tumours and identified through the 10th Revision of International Statistical Classification of 

Diseases, Injury and Causes of Death (ICD10) as C22.0 with morphology codes ICD-O-2 

“8170/3”and “8180/3”. Metastatic cases and other types of primary liver cancer were 

excluded. 

Matching criteria for the nested case-control study 

For each HCC case, one control (n=147) was selected by incidence density sampling7 from all 

cohort members alive and free of cancer (except for non-melanoma skin cancer), and 

matched by age at blood collection (±1 year), sex, study centre, time of the day at blood 

collection (±3 hours), fasting status at blood collection (<3, 3-6,and >6 hours); among 

women, the pair was additionally matched by menopausal status (pre-, peri-, and 

postmenopausal), and hormone replacement therapy use at time of blood collection 

(yes/no).   

Modified Healthy Lifestyle Index (HLI) construction 

The overall HLI had five initial components and was determined for the entire EPIC cohort as 

an unweighted sum of the scores of its individual components, each assigned scores of 0 to 

4, where a higher score indicated a healthier behaviour8,9. This study utilized a modified 

version of the HLI and included smoking, quintiles of physical activity, BMI, quintiles of the 

diet score and lifetime alcohol consumption instead of alcohol at recruitment to avoid 

reverse causality with respect to HCC outcome. In addition, two components reflecting two 

major risk factors of liver cancer10–12 were added to the modified index to make it more 

HCC-specific: diabetes at baseline (No=4, Yes=0)11; and hepatitis infection (No=4, Yes=0, 

assessed from biomarker measures of hepatitis B and hepatitis C viruses’ (HBV, HCV) 
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seropositivity [ARCHITECT HBsAg and anti-HCV chemiluminescent microparticle 

immunoassays; Abbott Diagnostics, France])12. To some extent hepatitis infection can reflect 

certain lifestyle exposures and behaviours. Missing values in some of the index components 

were imputed by an expectation-maximization (EM) algorithm that preserved the variance-

covariance structure of the data13. Descriptive and scoring details on the modified HLI 

components can be viewed in Supplementary Table 1. 

Metabolomic data nomenclature 

Fatty acids side chains are labelled “Cx:y”, where x and y are the numbers of carbon atoms 

and double bonds, respectively. Measured metabolites included 12 acylcarnitines 

(abbreviated according to the fatty acid side chain), 21 amino acids and 6 biogenic amines 

(labelled with their full name), 78 phosphatidylcholines (PC) of which there were 11 “LysoPC 

a” (PCs having one fatty acid side chain with an acyl bound), 34 “PC aa” and 33 “PC ae” (PCs 

having respectively two acyl side chains [diacyl] and one acyl and one alkyl side chains), a 

total of 14 sphingomyelins “SM” of which 5 had a hydroxyl group “SM(OH)” (additionally 

labelled according to the fatty acid side chain) and finally 1 sum of hexoses (including 

glucose, fructose and galactose). PCs were separated by type of bond and number of fatty 

acids side chains. 

Liver function score construction 

This score includes the following tests: alanine aminotransferase >55 U/L, aspartate 

aminotransferase >34 U/L, gamma-glutamyltransferase: men>64 U/L and women>36 U/L, 

alkaline phosphatase >150 U/L, albumin<35 g/L, total bilirubin > 20.5 μmol/L; cut-points 

were provided by the clinical biochemistry laboratory that conducted the analyses (Centre 

de Biologie République, Lyon, France) based on assay specifications as previously 

described6,14. 

The diet score (included in the X-set, continuous and in the modified HLI, categorical) 

An a priori score for diet was proposed within EPIC based on dietary components that have 

been posited to affect risk of cancer9,8. The diet score combined six dietary items including 

cereal fiber, red and processed meats, ratio of polyunsaturated to saturated fatty acids, 

margarine (used as a surrogate marker for trans-fat from industrial sources), glycaemic load, 
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and fruits and vegetables. Details of the diet score computation are provided elsewhere9. 

The resulting continuous variable was included in the X-set as previously mentioned. 

Statistical Analyses 

Principal Component Partial R2 (PC-PR2) 

PC-PR2 combines aspects of PCA with the partial R2 statistic in multiple linear regression 

models. Briefly, the set under scrutiny is reduced through PCA and a number of components 

explaining an amount of total variability above a designated threshold (here, 80%), is 

retained. Multiple linear models are then fitted where each component’s variability is 

explained by regressing it on a list of relevant covariates, yielding an R2 statistic for each of 

the latter. The R2 quantifies the amount of variability each independent variable explains, 

conditional on all other covariates included in the model. Finally, an overall partial R2 is 

computed as a weighed mean for each covariate, using the eigenvalues as components’ 

weights.  

In this study, PC-PR2 was applied to the X-set of 7 exposure variables where the covariates 

explored for systematic variability were country, age at recruitment and sex. With the 

similar objective of identifying sources of variability in the metabolite data, another PC-PR2 

analysis was run on the M-set and the examined covariates included country, age at blood 

collection, batch, sex, BMI, diet score, physical activity, alcohol at recruitment, smoking, 

hepatitis and diabetes at baseline. 

After running PC-PR2, a total of 6 and 21 principal components were retained explaining 

around 80% of total variability among the modified HLI original variables and the 

metabolites set, respectively. The ensemble of explanatory systematic variables accounted 

for 10.7 and 29.5% of total variance within the X- and M- sets, respectively. “Country of 

origin” was the highest contributor with consistently 6.2 and 13.1% in the X- and M-sets, 

followed by “Batch” with 7.1% in the M-set (Supplementary Table 2). PLS analyses were 

carried out controlling for these two variables in the respective sets. Sensitivity analyses 

were also conducted where mutually adjusted lifestyle residuals and country residuals were 

used in the X-set. Country and batch residuals were used in the M-set (Supplementary 

Tables 3-4).  
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Details on the PLS procedure 

PLS is a multivariate method that generalizes features of PCA with those of multiple linear 

regression15,16. Mathematical and computational details of the PLS method and its 

applicability within the MITM framework have been thoroughly described previously17. 

Missing values in the M-set were imputed through a simple EM algorithm18,19 consisting of 

the two following steps. First, the missing values were replaced by the average of the non-

missing values for each related variable and a PLS model is run. In a second step, the missing 

data are assigned their predicted values based on the first model and PLS is then rerun. The 

number of PLS factors to retain was selected after carrying a 7-fold cross-validation to 

minimize the predicted residual sum of squares (PRESS) statistic, a measure of PLS 

performance. Details of the process can be found elsewhere17. PLS factor loadings, i.e. the 

coefficients quantifying how much each original variable contributes to the PLS factor, 

characterize each extracted HLI and metabolomics profile. As the M-set was particularly 

dense in metabolite variables, the interpretation of the metabolomics profile mainly 

focused on those most significantly contributing to the PLS component, reporting variables 

with loading values lower than the 5th and larger than the 95th percentiles. One PLS factor 

was retained in each one of the individual PLS analyses. All lifestyle and metabolomic 

components of PLS factors where mirrored in their respective PLS-scores (X- and M-scores). 

Details on the mediation analyses 

The NDE and NIE were produced through two main models: a linear mediator model and a 

conditional logistic outcome model. HCC being a rare outcome, direct and indirect effects 

were estimated taking into account the nested case-control design. This is done by running 

the mediator regression only for the controls20. After testing, there was no exposure-

mediator interaction, the models can then be simply written as follows: 

Let x be the exposure, m the mediator, c a set of different confounders, y HCC and j the pair 

number ranging among the set {1,…, n=147}: 

 

 

Thus, NDE and NIE are given as follows for a one standard deviation increase in x and m: 
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95% CI for NDE and NIE were computed through the following formulae: 

 

, 

where  and  are the estimated variances of the coefficients and , 

respectively. 

The total effect of X (TE) was computed from the following conditional logistic regressions: 

 

with TE given by: 

 

Usually TE can be written as the product of NDE and NIE. However, in our setting employing 

conditional logistic regression, this is no longer the case because discordant pairs in the 

model adjusted for the mediator are not the same as the model not including the mediator 

(TE).  

The mediator effect (ME), corresponding to the “independent” effect of the M-score 

adjusted for its counterpart lifestyle exposure and for confounding variables was given by: 

 

To control for potential confounding, mediation analyses models were adjusted for the 

modified HLI variables except the one under scrutiny (multiple PLS), with the exception of 

the models from the overall PLS. P-values for NDE and NIE were inferred from the 95%CI, 

whereas for the ME and TE, p-values associated with Wald’s test for continuous exposure 

compared with a chi-square distribution with 1 degree of freedom are reported. The false 

discovery rate (FDR) correction21 was applied to mediation results stemming from the 

multiple PLS analyses. 

For each mediation analysis the estimates for the NDE, NIE, TE and ME were reported for an 

increase in the exposure as follows: an increase of 1-SD for the overall PLS analysis and for 

smoking, an increase of 1-SD among the controls for BMI, physical activity and the diet 

score, an increase of 1 unit (0 to 1) for diabetes and hepatitis, and finally an increase of 12 

g/day (corresponding to one alcohol unit) for lifetime alcohol. 
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Since TE=NDE*NIE does not hold in our setting, the mediated proportion was computed 

using the following formula: 

 

Indeed, the proportion mediated makes real sense only when NDE and NIE have the same 

direction of association and is bounded between 0% and 100%. In this case our formula 

reduces to: 

 

When NDE and NIE have opposite directions, the mediated proportion is not well-defined. 

For example, if  and  so that , it is not clear what the mediated 

proportion would be. In our results, NDE and NIE always had the same direction when they 

were both statistically significant. For example, in our analyses for diabetes (or equivalently 

for BMI), the NIE is significantly associated with an increased risk of HCC and the NDE was 

not significant and had the opposite direction of association. This suggested that TE=NIE and 

using our first formula above we get the appropriate value of 100%. 
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CHAPTER V: 
  

FATTY ACIDS AND BREAST CANCER IN EPIC
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CONTEXT 
Breast cancer (BC) is the most frequent cancer affecting women as one in five new 

cancer cases detected in women is BC, and it is the main cause of cancer death in women 

worldwide. BC incidence is on the rise and is expected to keep rising as the world 

population ages [209,222]. BC is a multifactorial disease whose aetiology embraces 

environmental, lifestyle and dietary risk factors [13,20,22,25,81,88,223–228]. Diet can 

account for about 40% of causes of cancer although there is no consensus around this 

estimate [2,229]. Nonetheless, intakes of some fatty acids (FA) have been suggested to 

affect BC risk. While a high dietary intake of ω-3 polyunsaturated FA (PUFA) from 

marine origins have been hypothesized to decrease BC risk [230], effects of trans FA 

(TFA) have been postulated to increase the development of many non-communicable 

diseases (NCDs) and cancers, including BC, due to a high ratio of cis monounsaturated to 

saturated FA (MUFA to SFA) [231–233].  Many studies were conducted investigating the 

relation between TFA and BC [234], but results from epidemiological data based on 

dietary questionnaires were inconsistent. This is due to the lack of reliable data on FA in 

food composition tables, expressly for TFA, hence biomarkers offer a promising 

objective measure [231].  An investigation into the French arm of EPIC – the E3N sub-

cohort – in a nested case-control study with FA biomarker data showed a statistically 

significant link between industrially produced TFA and increased risk of BC [35]. The 

following work aims to confirm the findings from the latter study by extending the 

analysis to a larger nested case-control sample including subjects from all EPIC 

countries, providing a wider geographical gradient of FA intake.   

 

OBJECTIVES 
- To assess the association between biomarkers of dietary FA intake and risk of BC 

within a large nested case-control study in EPIC. 

- To investigate this association by different hormonal receptor status (different 

BC subtypes) and by menopausal status. 

- To confirm the findings from the French arm of EPIC – E3N – where evidence 

showed the detrimental effects of total trans monounsaturated FA, trans 
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palmitoleic and trans elaidic acids on BC risk, using a larger sample size from the 

whole EPIC cohort with more variability.  

- To provide the necessary evidence on the effects of individual FA, particularly 

TFAs, prior to moving to more complex frameworks exploring the lipidome in 

multivariate and pathway analyses. 

APPROACH 
Within a nested case-control study on BC within EPIC, including 2,982 cases and as 

many matched controls, sixty fatty acids levels were measured by gas chromatography 

in pre-diagnostic plasma. For each plasma phospholipid FA, conditional logistic 

regressions were applied to estimate the odds ratios and associated 95% confidence 

interval (OR, 95%CI). The models were adjusted for date at blood collection, education 

level, BMI, height, menopausal hormone use at baseline, alcohol, age at first birth and 

parity combined, energy intake, and family history of BC. This univariate multivariable 

approach was additionally used in subgroup analyses where the relationships between 

FA were investigated by menopausal status and by oestrogen receptor (ER) and 

progesterone receptor (PR) status in tumours. 

MAIN FINDINGS 
After controlling for multiple testing through the FDR correction, evidence of an 

increased overall BC risk was found associated with high levels of palmitoleic acid with 

OR=1.37 (1.14, 1.64, p-trend<.001, q-value=0.004) comparing the highest quartile with 

the lowest. High levels of the desaturation index DI16 (16:1n-7/16:0) which is a 

biomarker of endogenous hepatic synthesis of MUFA, were associated with a 

statistically significant increase in BC risk by 28%. Contrariwise, high levels of plasma 

phospholipid n-6 PUFA were associated with a decrease in BC risk with OR=0.81 (0.69, 

0.96, p-trend=0.035) but this association did not withstand FDR correction. In subgroup 

analyses by menopausal status, the results did not markedly differ, whereas specific 

associations emerged by hormonal receptor status. Specifically, ER- BC cases 

significantly arose by two-fold in participants with high levels of industrial TFA. This 

increase was not however present in ER+, PR- and PR+ subtypes. 
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CONCLUSION 
Findings from this study carried out on data from all EPIC participating sub-cohorts 

showed that an early increase in endogenous synthesis of MUFA might increase BC risk. 

This confirmed early findings from E3N, where specific MUFA were linked with an 

increased BC risk. These results were consistent and independent from menopausal and 

hormonal receptor status. Dietary industrially-produced TFA increased ER- BC risk. 

These results may contribute to issue guidelines for BC prevention, by considerably 

lowering or eliminating TFA in industrially processed foods. This latter measure would 

likewise benefit the ER- BC subtype that has one of the highest mortality rates. This 

analysis is a first stepping stone looking into the associations between FA and BC. 

Future analyses will look into the complex lipid interactions at the heart of the lipidome, 

and disentangle these associations when considering the common metabolic pathways 

shared by numerous FA, with the scope of looking at BC outcome. 
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Abstract 

Intakes of specific fatty acids have been postulated to impact breast cancer risk but epidemiological 

data based on dietary questionnaires remain conflicting. We assessed the association between 

plasma phospholipid fatty acids and breast cancer risk in a case-control study nested within the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study. Sixty fatty acids were 

measured by gas chromatography in pre-diagnostic plasma phospholipids from 2,982 incident breast 

cancer cases matched to 2,982 controls. Conditional logistic regression models were used to estimate 

relative risk of breast cancer by fatty acid level. The false discovery rate (q-values) was computed to 

control for multiple comparisons. Subgroup analyses were performed by estrogen receptor (ER) and 

progesterone receptor (PR) expression in the tumours. A high level of palmitoleic acid (odds ratio, OR 

for the highest quartile compared with the lowest OR[Q4-Q1 =1.37; 95%CI=1.14-1.64; p for 

trend=0.0001, q-value=0.004) as well as a high desaturation index (DI16) (16:1n-7/16:0) (OR[Q4-

Q1 =1.28; 95%CI=1.07-1.54; p for trend=0.002, q-value=0.037), as biomarkers of endogenous 

synthesis of monounsaturated fatty acids, were significantly associated with increased risk of breast 

cancer. Levels of industrial trans-fatty acids were positively associated with ER-negative tumors (OR 

for the highest tertile compared with the lowest [T3-T1]=2.01; 95% CI=1.03-3.90; p for trend=0.047), 

while no association was found for ER-positive tumors (P-heterogeneity =0.01). These findings 

suggest that increased endogenous synthesis of palmitoleic acid estimated many years prior to 

diagnosis is associated with higher breast cancer risk. Dietary trans fatty acids derived from industrial 

processes may specifically increase ER-negative breast cancer risk.  
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Introduction 

Breast cancer is the most frequently diagnosed cancer among women worldwide with an estimated 

1.8 million new cancer cases diagnosed in 2013 (25% of all cancers) (1). While multiple risk factors for 

breast cancer such as family history, obesity, alcohol, breastfeeding, and reproductive history, are 

well established, very few additional modifiable risk factors have been identified.  

Variation in diet has been suggested to account for up to 25-40% of preventable causes of cancers 

(2). A potential link between dietary fat and breast cancer has been a focus of intense research; 

however, overall findings to date are conflicting (3-5). Epidemiological studies indicate that, rather 

than total fat intake, subtypes of fatty acids could diversely affect breast cancer risk. A high dietary 

intake of cis monounsaturated fat (MUFA) (6), or long-chain n-3 polyunsaturated fatty acids (PUFA) 

from marine sources (7), may reduce breast cancer risk. Conversely, a positive association has been 

reported between dietary intake of saturated fatty acids (SFA) and ER-positive breast cancer (8). 

Finally, a high estimated intake of industrial trans fatty acids (ITFA) derived from industrially-

produced hydrogenated vegetable oils may increase the risk of postmenopausal breast cancer (9). 

However, overall data on specific fatty acids are still discrepant. 

Epidemiological data on biomarkers of exposure to fatty acids and breast cancer risk are also limited. 

Meta-analyses of prospective and/or case-control studies have suggested a protective effect of n-3 

PUFA on breast cancer risk (7), while some SFA and MUFA have been associated with an increased 

risk of breast cancer (10). One prospective study showed a significant association between high 

blood levels of ITFA and increased risk of breast cancer (11). However, in general prospective studies 

have not shown clear associations between patterns of fatty acids and risk of breast cancer, overall 

and by hormonal receptor status (12). More epidemiological prospective studies that integrate 

reliable biomarkers of exposure to fatty acids are needed to further investigate the contribution of 

different types of fatty acids to the etiology of breast cancer, overall and by hormone receptor 

subtypes. 
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The purpose of the current study was to investigate associations between plasma phospholipid fatty 

acids and risk of breast cancer, overall and by hormonal receptor status, in a large case-control study 

nested within the prospective EPIC cohort. 
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Materials and Methods 

The EPIC STUDY 

The EPIC study includes 519,978 participants in 10 European countries: Denmark, France, Germany, 

Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom. Participants gave 

informed consent and completed questionnaires on diet, lifestyle, and medical history. In most 

centers, participants were recruited from the general population. Exceptions were the French cohort 

(women of the health insurance scheme covering teachers), the Utrecht cohort (women attending 

breast cancer screening), the Ragusa cohort (blood donors and their spouses), and one-half of the 

Oxford cohort (vegetarians and health-conscious volunteers). Following a standardized protocol, 

blood samples were collected (1993-2002), aliquoted into plasma, serum, white blood cells and 

erythrocytes, and stored in liquid nitrogen. 

Outcome assessment 

Incident breast cancer cases were identified through population cancer registries or by active follow 

up using health insurance records, cancer and pathology registries, and contacts with participant. 

Subjects were followed up until cancer diagnosis (except non-melanoma skin cancer), death, 

emigration, or the end of the follow-up period.  

Nested case-control study  

Of 367,993 women, the present analysis excluded women with prevalent cancers at any site 

(n=19,853), missing diagnosis or censoring date (n=2,892), missing dietary or lifestyle information 

(n=3,339), in the top or bottom 1% of the ratio of energy intake to energy requirement (n=6,753), 

and non-first breast cancer cases (n=217), which left 334,939 women.  Within this group, 11,576 

women with invasive breast cancer were identified after a median follow-up of 11.5 years. We 

designed a case-control study nested among those who provided a blood sample. Within this 

subgroup, 3,858 women with invasive breast cancer were identified. Due to flooding that occurred in 
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the Danish Biobank, samples from Denmark were not included, leading to a total of 2,982 cases. For 

each case, one matched control was chosen randomly among cohort women without breast cancer. 

Controls were matched to cases by center, age at blood donation (  3 months), menopausal status 

(pre; surgical post; natural post), time of the day at blood collection (  1 hour), fasting status (  3hrs; 

3-6 hrs.; 6 hrs.) and phase of the menstrual cycle (early follicular; late follicular; peri-ovulatory; 

midluteal; other luteal).  

The EPIC study was approved by the Ethical Committee of the International Agency for Research on 

Cancer and individual EPIC centers. 

Fatty acid analyses  

Fatty acids measured in plasma and erythrocyte membrane phospholipids are highly correlated, and 

exhibit similar coefficient correlations with dietary fatty acids estimated through questionnaires (13), 

suggesting that both matrices can be used as biomarkers of habitual intake. In the present study, 

fatty acid concentrations were determined in plasma phospholipids, as our previous cross-sectional 

study within the EPIC study showed that some specific fatty acids measured in this fraction are 

reliable biomarkers of specific food intakes (14,15).  

As previously described (11), total lipids were extracted from plasma samples (200 μl) with 

chloroform-methanol 2:1 (v/v) containing antioxidant butylated hydroxytoluene and L-A-

phosphatidylcholine-dimyristoyl-d54 as an internal standard. Phospholipids were purified by 

adsorption chromatography. Fatty acid methyl esters were formed by transmethylation. Analyses 

were carried out on 7890A gas chromatographs (7890N GC Agilent Technologies). Samples form 

cases and controls were processed in the same batch, and laboratory staff was blinded to any 

participant characteristics. Human plasma were used as quality control samples and included in each 

batch. Fatty acids were identified by their retention times compared with those of commercial 

standards. The relative concentration of each fatty acid, expressed as percent of total fatty acids, was 

quantified by integrating the area under the peak and dividing the result by the total area. Fatty acids 
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were also expressed as absolute concentrations in plasma (μmol/liter) based on the quantity of the 

methyl deuterated internal standard.  

Coefficients of variation for fatty acids ranged from 1.81% for large peaks to 9.75% for the smallest 

peaks. 

We calculated the percentage of the following groups: saturated fatty acids (SFA), cis-

monounsaturated fatty acids (cis-MUFA), ruminant trans fatty acids, industrial trans fatty acids, cis-n-

6 polyunsaturated fatty acids (cis-n-6 PUFA), long-chain n-6 PUFA (20:2n-6, 20:3n-6, 20:4n-6, 22:4n-6, 

22:5n-6), n-3 PUFA, long-chain n-3 PUFA (20:3n-3, 20:4n-3, 20:5n-3, 22:5n-3, 24:5n-3, 24:6n-3, 22:6n-

3), and ratio of long-chain n-6/long-chain n-3 PUFA. We also determined the desaturation indexes 

(DI) as the ratio of product to substrate, either oleic acid to stearic acid (DI18) or the ratio of 

palmitoleic acid to palmitic acid (DI16), as biomarkers of endogenous lipogenesis (16). 

Hormonal receptor status 

Information on estrogen receptor (ER) expression was available for 2,047 cases (1,649 ER-positive, 

398 ER-negative), and on progesterone receptor (PR) expression for 1,729 cases (1,150 PR-positive, 

579 PR-negative). Immunohistochemical measurement of ER and PR expression was performed in 

each EPIC centre. To standardize the quantification of the receptor status, the following criteria were 

applied for a positive receptor status: 10% cells stained, any ‘plus system’ description, 20fmo/mg, 

an Allred score of 3, an IRS 2, or an H-score 10.  

Statistical analyses 

Baseline characteristics of cases and controls were compared using paired t-tests for continuous 

variables. For categorical variables, the statistical significance of case – control differences was tested 

using a chi-square test. All missing values were excluded from calculations. 

In order to evaluate the association between fatty acids and breast cancer risk (overall and specific 

breast cancer subtypes by receptor status), odds ratios (OR) and their 95% confidence intervals (CI) 

were estimated using conditional logistic regression models. Plasma fatty acids were categorized into 
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quartiles (overall cancer risk; cancer by time between blood collection and breast cancer diagnosis or 

by menopausal status at the time of blood collection) or tertiles (analyses by hormonal receptor 

subtypes) based on the distribution of plasma levels in controls.  

Multivariable models included potential confounding factors related to fatty acids and breast cancer 

risk: date of blood collection, body mass index (BMI, kg/m2) (as a continuous variable), years of 

education (low; medium; high), height (as a continuous variable), menopausal hormone use at 

baseline (ever; never), alcohol intake at recruitment (as a continuous variable), age at first birth and 

parity combined (nulliparous; first birth before age 30y, 1-2 children; first birth before age 30y, 3 

children; first birth after age 30y), energy intake (as a continuous variable), and family history of 

breast cancer (yes; no). Tests for trend were computed using the quartile-or tertile-specific means of 

each fatty acid. 

Additionally, a forward selection procedure was run on all fatty acids including groupings, to select 

fatty acids that mostly contribute to the aetiological model. Adjustment variables mentioned above 

were forced into the model and fatty acids considered as explanatory effects are tested. Chi-Square 

statistic was computed for each variable not in the model, if it is significant at the entry level=0.05, 

the corresponding fatty acid was then added to the model. The procedure was repeated until none 

of the remaining variables meets with the entry criterion. 

Sub-analyses were conducted according to hormonal receptor status (ER-positive, ER-negative, PR-

positive, PR-negative), and tests of heterogeneity of associations were performed. Formal tests of 

heterogeneity were based on chi-square statistics, calculated as the deviations of logistic beta-

coefficients observed in each of the subgroups relative to the overall beta-coefficient.  

The false discovery rate (FDR, q-values) was computed for results from the multivariable models 

from the main analysis using the Benjamini-Hochberg correction to control for multiple comparisons 

(17).  
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Statistical tests were 2-sided, and P 0.05 was considered significant. All analyses were performed 

with the SAS 9.2 software (SAS Institute Inc., Cary N. Base SAS® 9.3 Procedures Guide. 2011). 
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Results 

Characteristics of participants 

Baseline characteristics of cases and controls are presented in Table 1. Cases had a significantly 

higher BMI, adult height, a lower number of full term pregnancies and an older age at first full term 

pregnancy.  

Plasma phospholipid fatty acids in cases and controls 

Mean plasma phospholipid fatty acid levels in cases and controls are provided in Table 2. Palmitic 

acid is the main SFA, oleic acid the main cis-MUFA, and linoleic acid the main n-6 PUFA, with a ratio 

of n-6 to n-3 PUFA higher than 2. Elaidic acid, the main ITFA, represents a higher percentage than 

vaccenic acid, the natural trans fatty acid.  

Plasma phospholipid fatty acids and overall breast cancer risk 

Table 3 presents OR and 95% CI of overall breast cancer according to quartiles of fatty acids, 

expressed as percent of total fatty acids. SFA were not statistically significantly associated with breast 

cancer risk. Higher levels of cis-MUFA were associated with increased risk of breast cancer (OR for 

the highest quartile compared with the lowest [Q4-Q1]=1.17; 95%CI=0.98-1.39; p for trend=0.042, q-

value=0.259). Only palmitoleic acid remained statistically significantly related to breast cancer risk 

after FDR correction (OR [Q4-Q1]=1.37; 95%CI=1.14-1.64; p for trend=0.0001, q-value=0.004). 

Consistently, palmitoleic acid (16:1n-7) was the only fatty acid retained by the forward selection 

procedure (data not shown). 

No significant association was found between overall breast cancer and levels of trans-MUFA or trans 

PUFA from natural ruminant sources or industrial sources (Table 3). 

Levels of individual cis n-6 or n-3 PUFAs were not significantly associated with breast cancer 

incidence (Table 3). However, levels of total cis n-6 PUFA were inversely associated with breast 
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cancer risk (OR [Q4-Q1]=0.81; 95%CI=0.69-0.96; p for trend=0.035), while no further association was 

detected with total cis n-3 PUFA. However, the association with n-6 PUFA did not withstand 

correction for multiple testing (q-value=0.259). Further, the ratio of n-6 to n-3 PUFA was not 

associated with breast cancer development (Table 3).  

A higher DI18 was positively associated with breast cancer (OR [Q4-Q1]=1.16; 95%CI=0.97-1.40; p for 

trend=0.031, q-value=0.259). Particularly, increased risk of breast cancer was associated with a high 

DI16, even after controlling for multiple testing (OR for the highest quartile compared with the lowest 

[Q4-Q1]=1.28; 95%CI=1.07-1.54; p for trend=0.002, q-value=0.037).  

Plasma phospholipid fatty acids and breast cancer risk by hormonal receptor status 

Table 4 presents OR and 95% of breast cancer according to fatty acid groupings, presented by 

subgroup of hormonal receptor expression. Although not statistically significant, the positive 

association between breast cancer risk and DI16 remained irrespective of hormonal receptor status. 

Increased risk of ER-negative breast cancer was specifically associated with high levels of ITFA (OR for 

the highest tertile compared with the lowest [T3-T1]=2.01; 95%CI=1.03-3.90; p for trend=0.047), 

while no significant association was found with ER-positive breast cancer (p for 

heterogeneity=0.015). 
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Discussion 

In this large prospective study, we found evidence that higher levels of MUFA, particularly 

palmitoleic acid, as well as higher DI16, were associated with increased risk of breast cancer. In 

addition, higher levels of ITFA were specifically associated with ER-negative breast cancer.   

Nutritional epidemiology has been limited by the assessment of dietary fatty acids through dietary 

assessment methodologies, prone to substantial measurement error. Measurement of plasma 

phospholipid fatty acid offer specific biomarkers of past dietary intakes of fatty acids that cannot be 

endogenously synthesized, irrespective of the source and quality of food (14,15). In contrast, weaker 

associations were found between dietary intakes and SFA, and MUFA because of endogenous 

synthesis and complex fatty acid metabolism (15).  

Accumulating evidence supports a role of early increased de novo synthesis of MUFA in the 

development of breast cancer (16, 18). Stearoyl-CoA desaturase-1 (SCD-1) is the key enzyme in the 

synthesis of MUFA from SFA, suggesting the implication of SCD-1 activity in the biological alterations 

of breast cancer (16, 18). In agreement with our findings, some epidemiological studies reported a 

significant association between increased risk of breast cancer and increasing levels of plasma/serum 

phospholipid or erythrocyte membrane MUFA (palmitoleic acid and/or oleic acid) (19-21). Lipid 

imaging and profiling for tissue samples from different types of cancer reported abundant amounts 

of MUFA relative to PUFA in the cancer microenvironment compared with the adjacent normal 

tissue, leading to decreased in membrane fluidity, which, in turns, influences many crucial 

membrane-associated functions (22).  MUFA can serve as mediators of signal transduction and 

cellular differentiation, and unbalanced levels of these mediators have been also implicated in 

carcinogenesis (16,18). On the other hand, data available from epidemiological studies have 

generally shown a negative association between estimated dietary intake of MUFA with breast 

cancer risk, at least in Mediterranean countries (23,24), suggesting the role of endogenously 

synthesized MUFA in breast cancer development, rather than exogenous dietary MUFA. Thus, these 
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data support the hypothesis that increased endogenous synthesis of MUFA, rather than exogenous 

dietary MUFA, may stimulate breast cancer development, and might represent a specific target for 

breast cancer prevention. 

There are limited data on the impact of SFA and MUFA in the DI measured in plasma phospholipids. 

In a controlled cross-over study, a high dietary intake of SFA has been shown to increase the DI16 

measured in blood cholesterol esters and phospholipids (25). As a consequence, a high DI16 in plasma 

phospholipids that is positively associated with breast cancer risk may be the result of a diet rich in 

SFA, with concomitant increased hepatic desaturation of dietary SFA to MUFA. In a large cross 

sectional study within EPIC, a weak correlation was found between dietary intake of oleic acid, the 

main dietary MUFA, and plasma phospholipid DI18, suggesting that dietary MUFA may not be a strong 

determinant in the DI18 compared with endogenous synthesis from stearic acid. These data may 

suggest the effect of dietary SFA rather than dietary MUFA in high DI measured in plasma 

phospholipids.  

We found no significant association between breast cancer risk overall or by hormonal receptor 

status and levels of n-3 PUFA from marine sources. In contrast, prospective studies conducted in 

Asian populations consistently reported an inverse association between breast cancer risk and 

dietary intake or biomarkers of n-3 PUFA (7). Because n-3 PUFA intake in Asian populations is higher 

compared to Western populations, it was suggested that n-3 PUFA intake from fish might be too low 

in the EPIC population to reveal a possible protective effect on breast cancer (11).  However, in a 

prospective study conducted in Japan with high intakes of n-3 PUFA, no significant inverse 

association was found between n-3 PUFA and breast cancer risk, while a negative trend was reported 

between EPA and ER+PR+ breast cancer (26). Because of the competition between n-3 PUFA and n-6 

PUFA for eicosanoids production as an underlying mechanism, ratio of n-3/n-6 PUFA in diet and 

blood phospholipids has been suggested to play a determinant role in breast cancer risk. Indeed, 

data from a meta-analysis of prospective studies reported a decreased risk of breast cancer 



   

141 
 

associated with increasing ratio of n-3/n-6 PUFA measured in diet or in serum phospholipids (27). 

However, no significant association remained among European populations (27). In agreement with 

this latter finding, we failed to report a significant inverse association between n-3/n-6 ratio and 

breast cancer risk within the EPIC study. In a prospective study conducted in a French population, 

breast cancer risk was not related to any dietary PUFA overall (28); however, opposite associations 

were seen according to food sources of PUFA (28), emphasizing the importance of considering food 

sources of PUFA. If long chain n-3 PUFA originates mainly from fish sources, we cannot distinguish 

the contribution of different food sources (vegetable oils, meat, processed foods) to n-6 PUFA levels 

in plasma phospholipids. This high level of heterogeneity between epidemiological studies may 

suggest that other micronutrients and biochemical pathways may modulate the relationship 

between PUFA and breast cancer. In support of this hypothesis, one prospective study showed that 

antioxidant supplementation modified the association between PUFA and breast cancer risk (29). 

Further epidemiological studies should incorporate markers of micronutrient intake and other 

metabolic factors linked to breast cancer (e.g. insulin, inflammatory markers). 

Trans fatty acids are classified as natural or industrially produced. Natural trans fatty acids are 

produced by the gut bacteria of ruminant animals and are found in small amounts in the food 

products from these animals. ITFA are formed when fats and oils are partially hydrogenated during 

industrial processing techniques, and these fatty acids are found in fast foods, industrially-produced 

products, snack, deep-fried foods, and baked goods. There is evidence that ITFA significantly 

increases the risk of coronary heart disease more than any other dietary component (30). The 

average intake of ITFA in many European countries is now relatively low; however, as the majority of 

the European countries still do not limit the content of ITFA in food, a large number of products 

containing high levels of ITFA are still available in Europe (31). 

Some epidemiological studies have reported a positive association between intake of ITFA and risk of 

breast cancer (11), ovarian cancer (32), colon cancer, and prostate cancer (33).  In the current study, 
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we confirm and refine our previous data on breast cancer (11) by reporting a positive association 

between plasma phospholipid ITFA isomers and breast cancer risk restricted to the subtype of ER-

negative tumours.  Few mechanistic data on the effect of ITFA on cancer development are available. 

One study showed that elaidic acid, the main ITFA, induces hepatic de novo fatty acid synthesis in 

vitro through upregulating the SREBP-1 pathway, while cis MUFA and SFA did not show an effect 

(34). In contrast to ITFA, we found no significant association between natural trans fatty acids and 

breast cancer risk, overall or by hormonal receptor status. 

This study had several strengths including its prospective design, based on a very large number of 

incident breast cancer cases with detailed clinical and epidemiologic data. Additionally, we were able 

to separate trans fatty acid isomers from natural and industrial processes. The major limitation of the 

study is the single collection of blood samples at baseline. Finally, given the longer lifespan of fatty 

acids in adipose tissue and erythrocytes compared with plasma, it might be suggested that fatty acids 

measured in these matrices offer a better measure of longer-term intake than fatty acids measured 

in plasma phospholipids. However, there are data suggesting that plasma fatty acids are correlated 

with erythrocyte levels (13).  

These findings suggest that increased endogenous synthesis of MUFA estimated several years prior 

to diagnosis may be associated with breast cancer development. The identification of 

dietary/lifestyle factors as potential regulators of endogenous MUFA synthesis could provide new 

strategies for breast cancer prevention. ITFA may also specifically increase ER-negative breast cancer 

risk. The poor prognosis and high burden of ER-negative breast cancer mortality make this subtype a 

priority for prevention. Eliminating ITFA in industrial processes and in foods could offer a relatively 

straightforward public health action for reducing non-communicable disease risk. 
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Table 1. Baseline characteristics of control and cancer subjects in the EPIC Study 

Characteristic Controls 

(n=2,982) 

Cases 

(n=2,982) 

P1 

value 

Mean age (years) 53.95 (8.17) 53.94 (8.17) - 

Mean Body Mass Index (kg/m2) 25.30 (4.23) 25.53 (4.47) 0.03 

Mean adult height (cm) 161.23 (6.51) 161.58 (6.55) 0.02 

Age at menarche (years) 12.98 (1.56) 12.95 (1.51) 0.34 

Age (years) at menarche (%)   0.76 

     <12 491 (16.7) 473 (16.2)  

     12-13 649 (22.1) 669 (22.9)  

     13 1802 (61.2) 1782 (60.9)  

Full term pregnancy (%) 2553 (87.4) 2500 (85.7) 0.04 

Age at first full term pregnancy (years) – among parous 

women 

25.24 (4.25) 25.62 (4.32) 0.03 

Number of full term pregnancy – among parous women 2.32 (1.05) 2.24 (0.98) 0.006 

Combined age at first birth and parity (%)   0.05 

     Nulliparous 368 (12.9) 418 (14.7)  

     First birth before age 30 years, 1-2 children 1360 (47.8) 1309 (46.0)  

     First birth before age 30 years, 3 children 741 (26.1) 705 (24.7)  

     First birth after age 30 years 375 (13.2) 416 (14.6)  

Age (years) at menopause (%)   0.49 

     Pre-menopausal 753 (25.2) 753 (25.3)  

     <45 47 (1.6) 49 (1.6)  

     45-54 826 (27.7) 821 (27.5)  

     55+ 1356 (45.5) 1359 (45.6)  

Ever use of menopausal hormones (%) 888 (31.2) 897 (31.4) 0.96 
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Years of education (%)   0.66 

     Low 998 (44.9) 979 (44.7)  

     Medium 606 (27.2) 581 (26.6)  

     High 620 (27.9) 627 (28.7)  

Family history of breast cancer (%) 152 (11.0) 183 (13.2) 0.34 

Smoking status (%)   0.63 

     Never 1689 (57.9) 1653 (56.7)  

     Former 705 (24.2) 727 (24.9)  

     Smoker 522 (17.9) 535 (18.4)  

Mean Physical activity (at work and leisure expressed as 

Metabolic Equivalent Tasks (METS) units)  

103.28 

(53.18) 

101.20 

(53.28) 

0.11 

Physical activity (%)   0.13 

     Inactive 356 (12.5) 406 (14.3)  

     Moderately inactive 903 (31.6) 907 (31.9)  

     Moderately active 1313 (45.9) 1279 (44.9)  

     Active 286 (10.0) 255 (8.9)  

Mean alcohol intake (g/d) 8.34 (12.07) 8.62 (12.31) 0.35 

Mean alcohol intake – consumers only (g/d) 10.09 (12.59) 10.50 (12.84) 0.43 

Mean energy intake (kcal/d) 1949.66 

(544.34) 

1973.61 

(535.32) 

0.07 

Data are presented as means (SD) or percentages. All missing values were excluded from calculations. 

1Baseline characteristics of cases and controls were compared using paired t-tests for continuous 

variables. For categorical variables, the statistical significance of case – control differences was tested 

using a chi-square test. - No p-value was computed for comparing mean ages between cases and 

controls because control subjects were matched to cases by age at blood donation.  
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Table 2. Mean plasma phospholipid fatty acids at baseline among control and case subjects in the 

EPIC Study  

Fatty acids  (% of total fatty acids) Controls 

(n=2,982) 

Mean (SD) 

Cases 

(n=2,982) 

Mean (SD) 

14:0 (myristic acid) 0.27 (0.09) 0.27 (0.09) 

15:0 (pentanoic acid) 0.18 (0.06) 0.18 (0.06) 

16:0 (palmitic acid) 25.53 (2.23) 25.62 (2.23) 

17:0 (heptanoic acid) 0.39 (0.08) 0.39 (0.08) 

18:0 (stearic acid) 14.09 (1.64) 14.03 (1.55) 

16:1n-7 (palmitoleic acid) 0.64 (0.25) 0.66 (0.27) 

18:1n-5 0.16 (0.12) 0.16 (0.13) 

18:1n-7 (cis-vaccenic acid) 1.50 (0.39) 1.52 (0.34) 

18:1n-9 (oleic acid) 10.32 (2.09) 10.42 (2.10) 

16:1n-7/9 (palmitelaidic acid) 0.44 (0.47) 0.43 (0.44) 

18:1n-9/12 (elaidic acid) 0.36 (0.24) 0.36 (0.22) 

18:1n-7 (vaccenic acid) 0.30 (0.15) 0.29 (0.14) 

18:2n-6 (linoleic acid) 22.10 (3.22) 21.97 (3.25) 

18:3n-6 ( -linolenic acid) 0.10 (0.05) 0.11 (0.47) 

20:3n-6 (di-homo- -linolenic acid) 3.34 (0.83) 3.34 (0.84) 

20:4n-6 (arachidonic acid) 10.97 (2.21) 10.98 (2.17) 

22:4n-6 (adrenic acid) 0.37 (0.54) 0.38 (0.57) 

22:5n-6 (osbond acid) 0.25 (0.10) 0.26 (0.11) 

CLA9cis,11trans (conjugated linoleic acid) 0.22 (0.38) 0.22 (0.36) 

18:2ct, 18:2tc, 18:2tt (trans linoleic acid) 0.18 (0.11) 0.18 (0.10) 
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18:3n-3ccc ( -linolenic acid) 0.20 (0.09) 0.20 (0.09) 

20:5n-3 (eicosapentaenoic acid, EPA) 1.18 (0.77) 1.16 (0.73) 

22:5n-3 (docosapentaenoic acid, DPA) 1.00 (0.28) 1.00 (0.31) 

22:6n-3 (docosahexaenoic acid, DHA) 4.73 (1.47) 4.73 (1.47) 

18:3n-3cct, ctt, ttt (trans -linolenic acid) 0.03 (0.03) 0.03 (0.03) 

20:3n-9 (mead acid) 0.19 (0.14) 0.20 (0.14) 

Total SFA 

(10:0, 12:0, 14:0, 15:0, 16:0, 17:0, 18:0, 20:0, 22:0, 24:0) 

40.54 (2.24) 40.56 (2.08) 

Total cis-MUFA 

(14:1, 15:1, 16:1n-7, 17:1, 18:1n-5, 18:1n-7, 18:1n-9, 20:1, 22:1, 

24:1) 

13.00 (2.37) 13.13 (2.39) 

Total trans ruminant fatty acids 

(trans 16:1n-7/9, trans 18:1n-7, CLA) 

0.94 (0.65) 0.93 (0.61) 

Total trans industrial fatty acids 

(18 :1n-9/12, trans 18:2n-6, trans 18:3n-3) 

0.57 (0.30) 0.57 (0.28) 

Total cis-n-6 PUFA 

(18:2, 18:3, 20:2, 20:3, 20:4, 22:4, 22:5) 

37.50 (3.23) 37.39 (3.20) 

Total long-chain n-6 PUFA 

(20:2, 20:3, 20:4, 22:4, 22:5) 

15.30 (2.53) 15.32 (2.48) 

Total cis-n-3 PUFA 

(18:3, 18:4, 20:4, 20:5, 22:5, 24:5, 24:6, 22:6) 

7.19 (2.17) 7.17 (2.14) 

Total long-chain n-3 PUFA 

(20:4, 20:5, 22:5, 24:5, 24:6, 22:6) 

6.98 (2.16) 6.97 (2.14) 

Long-chain n-6/n-3 PUFA 2.39 (0.80) 2.40 (0.83) 

Desaturation index18 (18:1n-9cis/18:0) 0.75 (0.20) 0.76 (0.20) 

Desaturation index16 (16:1n-7/9cis/16:0) 0.03 (0.01) 0.03 (0.01) 
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CHAPTER VI:  
 

GENERAL DISCUSSION 
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In this work we have explored aspects of nutritional epidemiology by combining 

self-reported dietary and lifestyle information together with biomarker measurements 

to deeply investigate features of the diet and cancer association. Our main objective was 

to develop novel statistical frameworks for the application of multivariate statistical 

techniques. This work was made possible by exploiting the availability of data and the 

unique features of the European Prospective Investigation into Cancer and nutrition 

study. Different themes were tackled, ranging from nutrient patterns to use of 

metabolomics and fatty acids, different endpoints, including carcinomas of the breast 

and the liver. This thesis focused on the use of multivariate analytical solutions to make 

full use of available exposure data, thus extracting relevant information that could 

improve our understanding of cancer aetiology in the field of nutritional epidemiology. 

Our approach progressively moved from conventional statistical modelling harbouring 

multivariable regressions coupled with multiple testing corrections, towards a more 

holistic scheme embracing multivariate contexts, using increasingly complex 

mathematical techniques. Evaluations primarily focused on nutrients and cancer 

association and then moved towards integration of dietary biomarkers, of features of 

untargeted and targeted metabolomics. These different features were evaluated 

together with lifestyle exposures, the common denominator of all investigations carried 

out throughout this thesis, using a methodological challenging integrative strategy to 

fully exploit a large amount of epidemiological information. 

In this chapter, we will discuss different aspects pertaining to the data from 

different sources exploited within this thesis, addressing some strengths and 

weaknesses of questionnaire, biomarker and metabolomic data. Advances in lab 

technology, the importance of the validation of the findings, the necessity of replication 

as well as the rationale and evolution of the statistical framework that has been 

developed will be touched upon. Features of mediation analysis, that holds a central part 

in our MITM implementation, are extensively explained. Finally, future perspectives are 

evoked whereby the tools investigating the diet-cancer relation can be further extended 

to embrace Mendelian randomisation or through more complex pathway analyses.  

A large part of the evidence assessed in this thesis relied on dietary information 

originating from validated questionnaire data, whereby nutrients and total energy were 

estimated from harmonised food composition tables, the ENDB, compiled from national 
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databases of the ten EPIC countries following standardized procedures [203,235,236]. 

Thus, analysis described in Chapter 2 featured 23 nutrients and total energy, the 

predictors set in the MITM implementation outlined in Chapter 3 included 13 main 

EPIC food groups, and the diet score used in the study presented in Chapter 4 was 

constructed based on six dietary items known to be related to cancer risks [86]. In 

addition the variables for alcohol consumption (e.g. alcohol at baseline and lifetime 

alcohol intake), used either as part of the main exposures (Chapters 3 and 4) or as 

adjustment confounders (Chapters 2 and 5) were also appraised from lifestyle 

questionnaires [199].  

Standard dietary assessment methods, like food frequency questionnaires are 

feasible and cost-effective to be administered in large epidemiological studies, but are 

prone to exposure misclassification [133]. Measurement error may account for some of 

the lack of consistency that has been pointed out in findings within and across studies 

relying on data from FFQs examining diet and cancer risk [143]. Some of the early 

results found in large cohorts were not confirmed with long-term follow-up [237] and 

many strong findings on the nutrition-cancer relationship unveiled in case-control 

studies could not be replicated in clinical trials [238,239] or in cohort studies [240]. 

Questionnaires are nonetheless a valuable tool for large-scale dietary assessment and 

remain the standard measure for diet in epidemiologic research [5,143]. Much research 

is taking on the challenge of evaluating FFQs and enhancing the quality of their reporting 

[143,241].  

Regardless, new strategies are sought to move from traditional nutritional 

epidemiology that focuses on self-reported dietary and lifestyle factors towards ways to 

investigate the aetiology of diseases not relying on study participants’ capacity to recall 

previous habits, yet exploiting objective measures to assess exposure [143]. Biomarkers 

measured in biological specimens are increasingly being used for this scope [139,163]. 

Dietary biomarkers and –omics technologies provide a very promising means to 

quantify dietary and other environmental exposures [242]. 

The work developed in this thesis utilized biomarker measurements, either to 

estimate the diet-disease risk associations, or as a complementary tool to combine 

evidence from different sources. In Chapters 3 and 4 analytical frameworks that 

integrated, respectively, untargeted NMR and targeted MS data with dietary and lifestyle 

questionnaire data are described. Metabolic profiles were identified that were the 
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overlap signals in the MITM principle: biomarker signatures that are related to specific 

exposures and are predictive of cancer risk at the same time. The evaluation outlined in 

Chapter 5 used biomarker data as the primary exposure of interest where 60 plasma 

fatty acids concentrations were examined in relation with breast cancer risk. These were 

quantified through an improved gas chromatography procedure that allowed a good 

separation of trans fatty acids. Combining questionnaire with biomarker data provided 

us with an unprecedented opportunity to deeply investigate the complex relationships 

between diet and the risk of cancer, using increasingly sophisticated statistical 

techniques. 

An interesting property of dietary biomarkers measured in biological samples is 

that some of them reflect a great number of endogenous factors influencing foods and 

nutrients (e.g. involvement in metabolic pathways, genetic characteristics, excretion, 

tissue turnover, absorption effects, etc.) that affect the correlation of a biomarker with 

its corresponding dietary exposure [139]. Additionally, they also reflect more closely the 

dietary compound’s bioavailable dose, the latter being the relevant parameter in any 

metabolic process they are involved in [243]. With all this in mind, valuable additional 

information of dietary exposure can be obtained through biomarker assessment.  

Different classes of dietary biomarkers can be identified: the “recovery” 

biomarkers provide unbiased estimates of absolute dietary intakes and are therefore 

suitable to be used as reference measurements to assess the accuracy of dietary 

assessments [165]. These markers often reflect the short-term nutritional status and 

display moderate correlation values with estimates of dietary intake [139,163]. 

However, only a few recovery biomarkers are available, i.e. urinary doubly labelled 

water for total energy intake, and urinary nitrogen and potassium for dietary protein 

and potassium intakes, respectively [244]. Blood samples are usually collected in cohort 

studies at recruitment, largely because collecting many replicates of biosamples requires 

considerable resources. This may not be sufficient to describe the evolution of long-term 

dietary exposure using biomarker measurements. A repeated sampling of biospecimens 

would be a valuable asset to monitor changes in diet overtime in prospective designs 

and to better depict dietary intake / nutrient state at baseline and during follow-up [5]. 

In addition, the potential for bias in biosamples collected in nested case-control studies 

within prospective design is reduced but not absent. While these samples are collected 

before diagnosis, the impact of  preclinical conditions may impact the biochemical 
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parameters, thus causing spurious associations [63]. Concentration values of dietary 

biomarkers may be difficult to compare across different studies, mainly due to 

heterogeneity in laboratory processes that may introduce systematic bias affecting the 

biomarker measurement [139,242]. These include the type of biological specimens 

obtained, the differences in sample handling (e.g. procedures of collection, storage, 

thawing), the methodologies employed to measure the biomarker (machinery, precision, 

limits of detection and quantification, day-to-day drifts, etc.) [139].  

With recent advances in technology, many elements related to the laboratory 

settings have improved [245–247]. For example, a method (the group-batch profile – 

GBP method) has been developed to adjust NMR data for systematic variations 

introduced by sample work-up prior to spectral data acquisition [248]. The PC-PR2 

method has been conceived to identify and quantify the contribution of relevant sources 

of variation in metabolomics data prior to investigation of etiological hypotheses [183]. 

This technique has been used in studies described in Chapters 3 and 4. Considerable 

efforts are currently underway to harmonize metabolomics data in order to allow 

pooling data together from different studies, to ensure a better comparability of results 

in international settings. Such harmonisation efforts have started in international 

collaborations such as the The COnsortium of METabolomics Studies (COMETS), a 

partnership among prospective cohort studies involved in the acquirement of 

metabolomics profiling. International consortia face the need to provide 

interdisciplinary solutions to investigate complex data, at a time when epidemiologic 

investigations are accumulating –omics data [249]. 

The unique attributes of metabolomics data and the increase in the amount of 

information they bring make them an appealing opportunity to take on the challenge 

brought by highly dimensional, collinear, nonlinear and non-normal data. With such 

overwhelming sets of data to process, there is an increased demand for statistical 

methodologies and modelling approaches that are needed for better analysis of data. 

After pre-processing and exploratory steps, data analyses of metabolomics 

currently rely mostly on regression-based methods including multivariable regression 

models, multiple testing correction procedures, use of multivariate dimension reduction 

techniques, and to a lesser extent variable selection approaches [179,242]. Univariate 

approaches are employed in the first instance to uncover simple associations between 



   

173 
 

metabolites and exposure or response variables or alternately with disease outcomes. 

Multivariate techniques of dimension reduction applied to large metabolomics sets 

mainly aim to summarize information into a restricted number of latent variables 

known as the principal components. PCA and its derivatives are the most widely used 

methods, while Discriminant Analysis (DA) partitions observations with respect to the 

investigated outcome by maximising the ratio of intergroup to intragroup variation. PLS-

based multivariate approaches combine PCA and MLR to identify latent factors 

capturing as much variation in predictors and responses by extracting linear 

combinations maximising the covariance of the latter sets. Variable selection techniques 

entail a penalisation introduced in regression approaches to ensure sparsity by 

shrinking the values of some of the regression coefficient estimates towards zero. These 

are known as regularized linear regressions and mainly comprise ridge regression, 

Lasso and its variants as well as Elastic Net. These methods are progressively being 

applied to –omics data. In particular, multivariate approaches are subject to over-fitting 

making validation a mandatory step for analytical strategies employing these methods. 

Cross-validation techniques that do not call for the appraisal of additional independent 

samples are typically used to internally validate the findings. In this procedure, the data 

is randomly partitioned into a training set used to build a given model and a test set that 

is removed, usually with a 90%-10% fold proportion. The process is then iterated until 

each sample has served as a test set once. It is a model validation technique evaluating 

the accurate predictive performance of the model in practice and its robustness in face 

of data perturbations [242,250,251]. Yet cross-validation does not guarantee good 

performance across different populations and may even lead to an overestimation of the 

discriminatory classifier performance likely due to biases introduced in the process 

[251,252]. The direction is now in favour of an external independent validation of 

results that would produce more conservative results, but alas even such external 

validations can possibly be subject to some biases, selective reporting and optimism 

causing them to be inflated [251,253]. Validation has become an issue of special concern 

with the exponential growth of –omics that powered expectations for a cutting-edge era 

of personalized medicine. The current recommendation is to adopt routine external 

validation of biomarkers and metabolites, preferably in much larger studies than in 

current practice, and if possible by different teams [252]. Given the inherent complexity 

of biomarker data, it is essential to differentiate true signals from false positives and 
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assess the generalizability of metabolic signatures that arise from analyses [251,252]. In 

Chapter 3, an internal cross validation procedure was performed to evaluate the 

predictive performance of the PLS models. The receiver operating characteristic (ROC) 

curve and the associated area under the curve (AUC) were determined from conditional 

logistic models including progressively the PLS scores, separately for lifestyle and 

metabolomic signatures. The AUC unavoidably increases with the number of covariates 

added to the conditional logistic model. A resampling scheme was devised to compute 

objective unbiased estimates of the AUC inspired from the work of Uno et al [254]. For 

each one of the 1000 drawn bootstrap samples, a 10-fold cross-validation was 

performed, repeated 10 times to remove variation due to random partitioning of data 

and to yield more stable estimates. The predicted values from each of the conditional 

logistic models in the training set were used to derive AUC values in the test set. A 

replication of these findings in independent studies is needed.  

Another motivation for a replication of our findings in external studies or using 

larger samples is the small sample size we had at hand. In the nested case-control 

studies on hepatocellular carcinoma presented in Chapter 3 and Chapter 4, the sample 

sizes were very modest with 114 cases and 222 controls, and 147 cases and 147 

controls, respectively. We made a rather opportunistic use of the available data that 

were at our disposal within different nested case-control studies in EPIC where 

metabolomic data was accessible to investigate the diet-cancer associations or to 

implement statistical strategies in proof-of-concept designs. In Chapter 5, we looked 

into associations between levels of 60 plasma phospholipids fatty acids in one of the 

largest nested case-control studies to date to ascertain fatty acids from biomarkers 

collected within a prospective study. Due to a flooding that occurred in the Danish 

Biobank, samples from Denmark were not included, when these will be added to the 

fold, there will be possibly more power to detect associations that did not withstand 

multiple correction testing. 

Throughout this thesis, we moved from a multivariate problem with dietary data 

(Chapter 2) to a higher-level multivariate problem integrating biomarkers (Chapter 3) 

and then onto a more specific and more tightly defined problem (Chapter 4). We first 

employed TT, a dimension reduction technique to take on one set of nutrients (Chapter 

2), then made use of PLS to best summarise information from two sets of data and then 
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applied a multiple PLS scheme in a more carefully controlled context. We also improved 

on our usage of mediation analysis from a generic use to evaluate the mediating role 

played by the extracted metabolic signatures (Chapter 3) to a more refined use adapted 

to our study design (Chapter 4). More specifically, in the different stages of the 

development of the statistical framework for the MITM implementation different factors 

and exposures were considered. We first embraced a multitude of exposures in the first 

application of the MITM, with 13 main EPIC food groups out of 21 diverse lifestyle 

exposures in Chapter 3. In the next exercise presented in Chapter 4, we simplified the 

exposure to diet by using a diet score constructed based on 6 dietary items, this may 

have been a simplification but it reduced the dilution / dispersion of information by 

having one factor for diet, and possibly resulted in a more specific metabolic factor in 

relation to dietary exposure. The framework developed is flexible and can accommodate 

other statistical methods that can fit like block parts and replace those in use (e.g. 

sparse-PLS or canonical correlation analysis instead of PLS) and can be tailored to be 

used with other –omics datasets and disease endpoints. This stems from the conceptual 

strength of the MITM [162] sustaining that any past exposure may leave alterations, 

either metabolic, genetic, epigenetic inter alia,  that are only expressed far later in time, 

depending on subsequent exposures. The MITM sets the challenge to first identify these 

changes that can be recognised as overlap biomarkers mirroring previous exposures 

and related to pathophysiological conditions, and then to monitor those complex 

changes at the molecular level and relate them and interpret their effects with respect to 

the mechanisms of carcinogenesis. These will ultimately lead to a better understanding 

of the underlying ecology of cancer development in an attempt to connect the external 

exposures to the palette of internal biochemical modifications. 

In our evaluation of whether the metabolic signals mediated the association 

between a given exposure or a lifestyle profile and HCC risk, we resorted to mediation 

analysis (Chapters 3 and 4). Mediation analysis is an increasingly utilised technique, 

widely used across many disciplines, to explore various causal pathways, beyond the 

estimation of simple associations. Mediation analysis investigates the mechanisms that 

underlie an observed relationship between an exposure variable and an outcome 

variable and examines how they relate to a third intermediate variable, the mediator 

[195]. Rather than hypothesizing only a direct causal relationship between the 

independent variable and the dependent variable, a mediational model hypothesizes 
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that the exposure variable causes the mediator variable, which in turn causes the 

outcome variable. The direct and the indirect (through the mediator) levels of 

association levels are then estimated from the outcome and mediator models [193]. 

Although mediation analysis has become very popular in social sciences, its use remains 

challenging. Over simplistic regression models, the possibly greatest merit of mediation 

analysis is that it allows the synergistic structure of the relationship between exposure, 

mediator and outcome variables to be captured and quantified. By introducing more 

complex functional relationships between variables, thus mimicking features of pathway 

analysis, the interpretation of model parameters needs to account for the large amount 

of underlying hypotheses subjacent each mediation model.  Very strong assumptions are 

required for such an ambitious causal endeavour, they must be met and confounders 

must be accounted for in order to have a causal interpretation of the findings [192,193]. 

We were faced with some of these challenges that we addressed especially in Chapter 4. 

One such example relates to temporality; the exposure must precede the mediator that 

in turn precedes the outcome to satisfy the chronological ordering assumption. In EPIC 

and most observational epidemiology settings, most variables of interest, including the 

exposures and mediators under study, were simultaneously assessed at baseline, 

together with the collection of biological samples. Yet, lifestyle and metabolomics reflect 

exposure windows of different nature and time length, thus our working assumption 

was to consider these factors as relatively stable in EPIC. A number of issues still require 

further investigation including intermediate confounders, multiple mediators and their 

inter-correlations and mediator-outcome confounders that are affected by the exposure 

to mention a few. These scenarios may not be trivial to handle, and current research is 

focusing on such challenging aspects and solutions are emerging [192–194,255–257]. 

Nonetheless, mediation analysis remains a tightly controlled environment where every 

variable entering the DAG and every association arrow that is drawn has to comply with 

strict hypotheses [258].  

To overcome challenges related to confounding and reverse causality in 

aetiological models, a Mendelian randomization (MR) method was developed as a way 

to use genetic variants as an instrumental variable for the exposure of interest 

[259,260]. The rationale is that, due to the random heritability of genetic traits brought 

by the random assortment of alleles at the time of gamete formation [260], if a genetic 

variant alters some dietary or lifestyle exposure, including the level of a biomarker, then 
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the direct association of the variant with cancer risk would strongly suggest that the 

biomarker–cancer relationship is not confounded by other factors, and that the primary 

link between the exposure of interest and cancer is causal [261]. Aside from establishing 

causal associations, MR provides estimates of the magnitude of effect between exposure 

and outcome [259]. MR could be used in the diet-biomarker-cancer relationship by 

including information on genetic variations upstream (for instance, with single-

nucleotide polymorphisms). The current knowledge on how genetic variations influence 

dietary habits, nutrient metabolism or how they affect mechanism, bioavailability, 

adsorption or biotransformation of nutrients is progressively growing [262]. It is 

noteworthy to remember that MR, similarly to mediation analysis, also embraces a 

series of assumptions to account for in order to be implemented. Bias can arise when the 

genetic variant targets an exposure that is different from the one of interest [259]. In 

this case the instrumental variable is invalid, either because 1) the variant is not 

predictive of the exposure, 2) is also related to confounding factors of the exposure-

outcome association or 3) is also indirectly related to the outcome, conditional to the 

exposure and confounders. The latter assumptions refer to pleiotropy (multiple effects 

of a single gene), which in essence requires that the genetic variant be strictly linked to 

the exposure of interest, and nothing else [260,263]. Current MR developments are 

striving to fill the methodological gap in order to obtain causal estimates and to evaluate 

MR performance when using invalid instruments [264]. New research is also joining 

efforts between mediation analysis and MR to focus into causal pathways, by 

investigating more complex networks of relationships between variables, through the 

integration of regression-based methods and structural equation models along with the 

use of genetic variants as instrumental variables [263]. In the context of MR this new 

development allows to estimate the direct and indirect effects even in the presence of 

unmeasured confounding. Both mediation and MR analyses tackle causality with 

different approaches but both are rigorous concepts limiting variables amongst them, 

and where a set of assumptions on the exposure, mediator, instrument and outcome are 

required for mediation effects to be interpreted as causal irrespective of the statistical 

models used [193,195]. 

Alternatively, pathway analysis has been suggested as a valuable way to 

investigate etiological mechanisms [197,265]. Pathway analysis employs what is 

referred to as mixed-method research to search for mechanisms, exploiting the principle 
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is that quantitative and qualitative studies have complementary strengths that can be 

used to explore underlying relationships between some explanatory variable and an 

outcome, controlling for other factors [265]. A critical aspect of pathway analysis is the 

need for an a priori knowledge of the expected relationship between the exposure and 

the outcome, the nature of the outcome, and the state of knowledge about causal 

pathways, which is often limited and uncertain. Another degree of complexity is that 

mechanisms in the context of pathway analysis are treated analogously to mediators or 

intermediate variables in standard mediation approaches [266–268], i.e. that the 

mechanism is caused by the exposure and causes the outcome [265]. The 

implementation of pathway analysis is not straightforward and many approaches are 

being developed to adequately apply it [269–271]. A number of metabolic pathway 

analysis tools which includes pathway enrichment analysis [272] can reveal underlying 

complex biological processes and connectivities, and are now used for metabolomics 

data [273,274].  

 Statistical innovations and new methodologies to analyse increasingly high-

dimensional, biologically complex data will be key to pursue the investigation of the 

diet-disease relationship, a relation that evolves in time and crystallizes many already-

established components, but that will inevitably pick up new contributing factors along 

the way.  
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