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Résumé en Francais

La nutrition est un facteur de risque modifiable pour le cancer. Il est estimé qu’un tiers
des cas pourraient étre évités en adoptant une meilleure alimentation en adéquation avec les
recommandations les plus récentes. La relation entre nutrition et cancer est complexe, et son
étude est enrichie par les nouveaux défis apportés par les récentes avancées technologiques
dans le domaine des «-omiques» auxquels elle doit répondre. Des approches analytiques
combinant des informations provenant de questionnaires alimentaires avec ceux de

biomarqueurs et de la métabolomique sont actuellement la cible de nombreuses recherches.

Cette thése avait pour but de développer de nouvelles approches biostatistiques afin
d’étudier la relation entre nutrition et cancer au sein de la cohorte EPIC. Pour ce faire,

I'applicabilité de nouvelles méthodologies, principalement factorielles, a été étudiée.

Une nouvelle méthode multivariée pour la réduction de la dimensionnalité, le Treelet
Transform (TT), a été examinée afin d’extraire des patterns de nutriments issus de
questionnaires. Les patterns ainsi obtenus étaient facilement interprétables puisque le TT est un

bon compromis entre analyse en composante principale et clustering hiérarchique.

Ensuite, un cadre analytique pour implémenter le concept du « meeting-in-the-middle »
(MITM) a été développé et appliqué dans deux études cas-témoin nichées sur le cancer
hépatocellulaire avec des données métabolomiques, ciblé et non-ciblée. Le MITM cherche a
identifier des biomarqueurs qui soient a la fois des marqueurs de certaines expositions passées
et de conditions pathologiques. L'implémentation s’est focalisée sur I'application de la méthode
des moindres carrés partiels (PLS) et de I'analyse de médiation. Des signaux métaboliques qui

médiaient la relation des expositions vers le cancer ont été identifiés.

Enfin, nous avons examiné la relation entre les niveaux plasmatiques de 60 acides gras
issus de biomarqueurs et le risque de cancer du sein dans une étude cas-témoin nichée dans
EPIC. Les résultats issus de cette analyse seront un point de départ pour des développements

plus poussés.

Cette these servira de base pour des applications épidémiologiques futures examinant la

relation nutrition-cancer.

Mots-clefs : Biostatistiques, méthodes multivariées, treelet transform, cancer, nutrition, EPIC,

meeting-in-the-middle, PLS, PCA, analyse de médiation



English Abstract

Diet is a modifiable risk factor for many cancers. It has been estimated that about a third
of cancer cases can be prevented by complying with a healthy diet and adhering to the
recommendations in terms of nutrition. The nutrition-cancer relationship is a complex one, and
its study is currently at a turning point with the opportunity and challenges brought by the
recent technological advances in the fields of « -omics ». New analytical strategies are being
sought to combine and explore information collected through dietary questionnaires,

biomarkers along with metabolomic data.

The main objective of this thesis was to develop new biostatistical approaches to
investigate the diet-cancer relation within the European Prospective Investigation into Cancer
and nutrition (EPIC) study. To this end, the applicability of new methodologies in the field of

nutritional epidemiology, mainly multivariate and factorial, has been examined.

First, a new multivariate dimension reduction method, the Treelet Transform (TT) was
applied to extract nutrient patterns relying on questionnaire data. The extracted patterns were
easily interpretable as TT is a good compromise halfway between principal component analysis

and hierarchical clustering.

Then, an analytical framework was conceived for the « meeting-in-the-middle » (MITM)
principle and applied to two nested case-control studies on hepatocellular carcinoma, with
targeted and untargeted metabolomic data. The MITM aims to identify overlap biomarkers of
past exposures that are at the same time predictive of disease outcomes. The implementation
focused on the application of partial least squares (PLS) and mediation analyses. Metabolic

signatures were identified that mediated the relation from exposures towards cancer risk.

Last, the association between 60 plasma fatty acids levels assessed from biomarkers and
breast cancer risk was examined in a nested case-control study in EPIC. Results from this

analysis are a stepping stone towards more sophisticated modelling.

This thesis will serve as a basis for future epidemiological applications looking into the
nutrition-cancer relation.

Keywords: Biostatistics, multivariate methods, treelet transform, cancer, nutrition, EPIC,
meeting-in-the-middle, PLS, PCA, mediation analysis
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Résumé substantiel en francais

La nutrition est un facteur de risque modifiable pour de nombreux cancers.
Environ 35% des cas de cancers pourraient étre évités en adoptant une meilleure
alimentation en adéquation avec les recommandations les plus récentes. Partant de ce
constat, I'épidémiologie nutritionnelle s’est efforcée dans les 30 dernieres années
d’étudier la relation entre nutrition et cancer, d’appréhender sa complexité et d’en
comprendre les mécanismes. Avec les avancées technologiques récentes, notamment
dans le domaine de la biologie moléculaire, de nouvelles données dites «-omiques », en
particulier les données métabolomiques, ont pu étre acquises. Ainsi un nouveau défi
s’offre a ce domaine : celui d’allier les nouvelles informations de haute dimensionnalité
provenant de la métabolomique aux informations obtenues par des méthodes plus
conventionnelles de recueil par questionnaires alimentaires, ainsi qu’avec d’autres

biomarqueurs.

Cette these avait pour objectif de développer de nouvelles approches
biostatistiques dans le but d’étudier la relation entre nutrition et cancer au sein de la
cohorte Européenne Prospective sur le Cancer et la nutrition (EPIC). Pour ce faire,
I'applicabilité de nouvelles méthodologies, principalement factorielles multivariées, a

été étudiée.

Tout d’abord, nous avons appliqué une nouvelle méthode multivariée pour la
réduction de la dimensionnalité, le Treelet Transform (TT), afin d’extraire des patterns
alimentaires, et nous I'avons comparée a I’Analyse en Composante Principale (PCA) qui
est une technique de référence. Cette application a été réalisée dans la sous-cohorte de
femmes d’EPIC (n=334 850, dont 11 576 cancers de sein incidents) sur 23 nutriments
estimés a partir de questionnaires alimentaires. Ainsi, deux patterns principaux ont été
identifiés, pour lesquels I'association avec le risque de développer un cancer du sein
(BC) a ensuite été évaluée. Un premier profil apparenté a une consommation élevée en
produits d’origine animale a été associé a une augmentation non significative du risque
de BC. Un second profil associé a un régime riche en vitamines et minéraux a été relié a
une diminution significative du risque de BC. Le TT a produit des résultats comparables

a ceux obtenus avec des méthodes plus classiques. Ces patterns étaient plus facilement



interprétables que ceux de la PCA puisque TT permet d’introduire de la sparsité dans les

composantes.

Par la suite, nous nous sommes penchés sur des données métabolomiques issues
de deux études cas-témoin sur le cancer hépatocellulaire (HCC) nichées dans la cohorte
EPIC, avec 114 cas et 222 témoins appariés pour la premiere et 147 cas et autant de
témoins appariés pour la seconde.
Dans la premiére étude, nous avons développé un cadre analytique pour
I'implémentation du concept dit « meeting-in-the-middle » (MITM). L'idée phare du
MITM est d’identifier des biomarqueurs qui soient a la fois des marqueurs de certaines
expositions passées et qui soient en méme temps prédicteurs de conditions
pathologiques. Pour ce faire, un ensemble de 21 variables d’expositions « lifestyle »
(alimentaires, de mode de vie, anthropométriques) ont été reliées a un set de 285
variables obtenues par résonance magnétique nucléaire (RMN), correspondant a des
pics reconstitués, grace a I'application de la méthode des moindres carrés partiels (PLS).
La PLS est une méthode multivariée combinant des aspects de I’ACP avec ceux de la
régression linéaire multiple. Elle permet de relier deux sets de données et d’en extraire
des composantes dont la covariance est maximale. Les facteurs ainsi obtenus ont été
reliés par le biais de leurs scores au risque de HCC par l'intermédiaire de modeles de
régression logistique conditionnelle. Enfin, une analyse de médiation a évalué si les
profils métaboliques obtenus sont des médiateurs de la relation entre les profils de

« lifestyle » et le HCC.

Dans la seconde étude cas-témoins nichée portant cette fois-ci sur la métabolomique
ciblée, nous avons pu affiner le cadre statistique mis en place précédemment. Dans un
premier temps, nous avons limité le nombre d’expositions a 7 variables provenant d'un
indice niveau d’adéquation a un mode de vie sain et nous nous sommes focalisés sur un
ensemble de 132 métabolites bien identifiés. Ensuite, apres une premiere analyse PLS
générale, nous avons procédé a une analyse de PLS multiple pour obtenir des signatures
métaboliques spécifiques a chacune des expositions. Enfin, I’analyse de médiation a été
étendue et adaptée a notre design d’étude, et les effets directs et médiés ont été estimés

grace a des modeéles de régression logistique conditionnelle.



Le cadre analytique développé lors de ces deux applications pourrait étre réutilisé et
ajusté aux besoins d’autres études ayant d’autres types de données « -omiques » ou dans

des contextes épidémiologiques similaires.

Enfin, nous nous sommes intéressés a une étude cas-témoin sur le BC nichée dans
EPIC ou 60 mesures d’acides gras (AG) plasmatiques ont été effectuées chez 2 982 cas de
BC invasifs et autant de témoins appariés. L’association entre chacun des AG et le risque
de BC a été évaluée a travers des régressions logistiques conditionnelles multivariables
ajustées. Ces analyses ont été combinées a une correction pour les tests multiples afin de
préserver la valeur nominale de significativité des tests statistiques. Ainsi, des niveaux
trop élevés en acide palmitoléique et un indice de désaturation DI fort ont été associés
a une augmentation du risque de BC. Cette étude est 'une des plus larges a cette date se
basant exclusivement sur des biomarqueurs en ce qui concerne les expositions des AG,
avec une bonne séparation pour AG trans d’origine animale de ceux d’origine
industrielle. Elle constitue une premiere étape dans des analyses plus poussées a venir,
notamment des analyses de patterns afin de caractériser le lipidome ainsi qu’'une

possible application du MITM.

Les différentes applications et développements statistiques mis en place lors ce
travail de thése viennent répondre a un besoin d’approches dites holistiques qui visent a
intégrer des données de natures différentes et de haute dimension. Cette prise en
compte des différents facteurs d’expositions et de risques permettra a I'avenir de mieux
appréhender les questions de I'épidémiologie nutritionnelle de nouvelle génération.
Cette these servira également de base pour des applications multidisciplinaires futures

examinant la relation nutrition-cancer.
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Ever since Doll and Peto’s comprehensive review of 1981 estimating that 30 to
35% of cancers could be avoided by adopting a better diet in western populations [1],
the field of nutritional epidemiology strove to investigate nutritional exposures and
their link with individual cancer sites. The initial estimate was characterised by a wide
range of uncertainty (from 10 to 70%) [2], and the mechanisms through which specific
dietary factors contribute to cancer occurrence are still to be understood. Three decades
later, the quantitative estimate remained around 30-40% [3]. It has been argued that
obesity and physical inactivity accounted for most of the burden of cancer attributable
to nutrition, in a broad sense [4]. There is, however, no consensus around these figures
since the extent to which diet adds to the burden of cancer remains difficult to assess [3].
Part of this difficulty is imputed to the lack of knowledge with respect to the stage of
carcinogenesis on which many nutritional factors may exert their effects and the dose at
which they may achieve their protective or harmful impact [5]. Nevertheless, nutritional
epidemiology in the past decades has amassed a growing body of evidence establishing
diet as an important modifiable risk factor for a substantial proportion of cancers,
making it a great public health target for prevention [3,6,7]. Studies in nutrition
provided substantial, yet often inconsistent, epidemiologic evidence of the diet-cancer
link [7,8] with findings on alcohol consumption [6,9-23], obesity and weight change
[24-28], fat intake [29-39], meat consumption [29,30,40-48], plant foods [49-52],
glycaemic index/load [53,54], coffee [55-57], inter alia. In addition, these studies have
canvassed the relationships between a selection of dietary constituents and molecularly
[58,59] or anatomically [50,60,61] defined subsets of cancer, and evaluated dietary

behaviours in relation to cancer [62] and cancer survival [38].

Nutritional epidemiology is an intricate area due to the fact that diet is not a
single simple exposure but rather a complex set of many variables, characterised by
profound inter-correlations between dietary constituents. These inter-correlations may
arise from food composition, behavioural patterns, e.g. food items are often consumed
together, or from differences in the energy balance and total energy intake as people
eating a high-energy diet tend to eat a lot of different nutrients [63]. Disentangling the
separate effects of each food/nutrient is extremely challenging, largely because of
confounding and residual confounding [64]. Adding to the methodologic and conceptual
complexity are the potential physiological interactions amongst nutrients, e.g. Selenium

(Se) and Vitamin E, Vitamin C and Iron (Fe), including food component synergies or
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antagonisms [65-68]. Furthering the nutrient assessment challenge is the common
exposure misclassification. In fact, nutritional epidemiology relies on dietary
assessment instruments, mainly questionnaires such as food frequency questionnaires
or dietary histories, which are subject to random and systematic measurement errors
[69]. These errors are frequent in self-reported dietary estimates as a consequence of
study subjects’ consistent underestimation or overestimation of their dietary intakes.
Traditional approaches initially relied on simple models to evaluate the
associations between single dietary constituents, i.e. foods or nutrients, possibly
involving statistical adjustment by total energy intake to ensure iso-caloric comparisons
[70], and the risk of disease [63]. These models were straightforward to interpret but
did not necessarily capture the inherent complexity of individuals’ dietary habits, where
simultaneous variability of many foods is observed. Approaches became progressively
more complex moving towards multivariable models that accounted for more dietary
and lifestyle confounders, at times even involving the inclusion of interaction terms.
While these models may better capture the inner sophistication of the diet-disease
association, parameters expressing these links are more challenging to interpret. In
these models the evaluation of the relation between a given dietary exposure and
disease is conditional on all other confounders included in the linear predictor, and it is
assumed that they remain constant. This turns out to be an unrealistic assumption that
does not factor in the dynamism of an intricate system of synergies between foods,
nutrients and other lifestyle variables [67,71,72]. The rigorous analysis consistently
struggles to find the optimal trade-off between the two extremes: over-simplistic
interpretable models on one hand, and increasingly more multifaceted models that
progressively lose their ability to provide a realistic overview of individuals’ diet on the

other, yet involving statistical challenges for their estimation.

In recent years, research focus of nutritional epidemiology has progressively
moved towards dietary pattern analysis and the use of multivariate approaches [71].
Pattern analysis allows for a comprehensive mode taking the full complexity of diet into
consideration [73]. Two main strategies are often applied: a priori hypothesis-driven
patterns and a posteriori data-driven patterns [74,75]. A priori techniques often use
predefined criteria based on specific health outcomes to construct dietary scores
reflecting the degree to which a person adheres to given dietary patterns [67,71]. These

include compliance with guidelines or recommendations such as the WCRF/AICR score
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[76] and the healthy eating index (HEI) [77], characteristics of established diets such as
the Mediterranean diet [78-84], or even agreement with dietary aspects of a more
general healthy lifestyle [85,86]. A priori techniques have seen a shift from adherence to
a purely dietary predefined pattern towards scores embracing lifestyle factors as
healthy eating behaviours are often in conjunction with healthy lifestyle practices [86].
A posteriori methods rely on data driven methods that often use dimension reduction
techniques such as principal component analysis (PCA) or factor analysis (FA) to yield
uncorrelated dietary factors based on data covariance or correlation matrices. These
analyses have been successful in identifying distinct food/nutrient intake patterns that
were related to different cancer endpoints [87-128]. Statistical research is underway to
explore novel multivariate techniques that provide solutions with easier interpretation
of the components [129,130] and tools to reduce the number of arbitrary steps involved
(number of components to retain, threshold for loadings, etc.) [131]. Investigations are
ongoing to assess the validity of these approaches, and evaluate whether they may
predict disease risk in studies involving populations characterised by heterogeneous

dietary habits and different cancer rates [71].

Most of the early results on the role of diet in cancer aetiology stemmed from
retrospective case-control studies. These designs however are subject to selection and
recall biases [132], making the retrospective studies not the best suited to effectively
capture the diet-disease association leading to somewhat inconsistent findings [63,133].
It was suggested that prospective designs were more rigorous and provided a valid
solution to minimise methodological biases [3,63,134,135]. Since information on dietary
exposure is collected at baseline in cancer-free individuals illness is less likely to affect
the recall of dietary habits. In addition, prospective cohorts provide the opportunity to
assess diet over time through repeated measurements and to examine its associations
with a wide array of diseases with appropriate statistical power, if a sufficiently large
number of study subjects is enrolled [135]. If the latter condition applies and if the
follow-up is carried out for several years, prospective designs allow the investigation of
rare outcomes. The Nurses Health Studies [136] and the EPIC cohort [137,138] were
among the first large-scale retrospective cohorts expressly designed to explore the diet-
cancer association. In such large sized investigations diet is assessed through the use of
structured, self-administered questionnaires [135], which include food frequency

questionnaires (FFQs) for estimation on long-term, or habitual, dietary exposure, i.e.
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referring to study subjects’ diet during a 12-month period preceding its administration.
These instruments are then utilized to provide estimations of frequency of consumption,
portion sizes and total energy intake. Long-term assessment can be complemented by
short-term instruments, which include food diaries, food records, and 24h dietary
recalls. These types of assessments are meant to collect deeper aspects of individuals’
diet, like, for example, detailed information on portion sizes, timings of meals, recipes
and possibly cooking methods [139]. All self-reported dietary instruments rely on the
existence of adequate food and nutrient composition databases, to convert food amounts
into nutrient and macronutrient contents [135,139]. All dietary assessment methods in
large scale epidemiological investigation rely on study participants’ ability to recall their
diet, and are therefore prone to systematic and random measurement errors
[133,139,140]. Measurement errors can be substantial and can, in turn, bias estimates of
associations between diet and cancer risk [139-142], and lead to loss of statistical
power to detect associations [142]. It has been argued that a large proportion of
inconsistencies and null results observed in population-based studies of diet and cancer
could be the consequence of poor dietary assessments [143]. One compelling example is
the downgrading by the 2003 IARC Handbooks of Cancer Prevention on Fruits and
Vegetables [144] and by the 2007 update of the World Cancer Research Fund (WCRF)
comprehensive report [145], of the cancer protective role of intakes of fruits and/ or
vegetables from ‘convincing’ to ‘probable’, depending on the cancer site, which were

established in the 1997 WCRF comprehensive review [146].

Research in the field of nutrition has strived to develop better methods to
ascertain eating behaviours and their reporting [147-154] and to account for
measurement errors in self-reported dietary measurements [155-159]. However, in the
absence of an “ideal” reference instrument and in order to obtain “objective”
observations of food consumption, the use of biomarkers emerged as a valuable
research instrument. This motivated the collection of study subjects’ biological material
in population based studies [160]. Dietary biomarkers are biochemical indicators that
can be viewed as an index of short to long-term dietary intake, of nutrient metabolism or
markers of the biological consequences of food intake [161]. Biomarkers have been
introduced in cancer epidemiology with the idea of relying on markers of relevant
internal dose and markers of biologically effective dose to improve exposure assessment

[162]. These markers are also known as “concentration” or “recovery” biomarkers
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[139,163]. Other markers classified as “predictive” biomarkers are markers of early
response/effect and are used to monitor early changes preceding disease occurrence
[160,163]. Last, markers of susceptibility can be used in cancer epidemiology to identify
subgroups in the population with greater susceptibility to cancer [139,161-163].
Biomarkers can be quantified in biological samples of serum, blood, plasma, urine. It is
recognised that these quantities are also affected by random and systematic
measurement errors, but these errors are assumed to be independent of errors
associated with self-reported dietary assessments [139,160,163]. As such, they can also
be used as a means of validation of dietary instruments to estimate the magnitude of
systematic and random errors in questionnaires. Their use in calibration studies of
diet/disease association has been advocated but seldom pursued [163]. A great extent of
cancer research has developed around biomarkers with studies focusing on their
validation [161,164-166], their methodological challenges [161,167], and their use in
aetiological models [162,168-172]. The recent technological advancements in high-
throughput technologies, particularly in the field of molecular biology, generated a slew
of new round of metabolites, which can be acquired in biological samples collected in
large-scale epidemiological studies [173,174]. Metabolomics is the branch of “- omics”
concerned with the high-throughput identification and quantification of small molecule
metabolites present in the human metabolome i.e. the ensemble of all metabolites
[175,176]. It provides a complete picture of metabolic status and biochemical events
happening within an organism [177]. These data have the potential to bring useful tools
to improve our understanding of the role of diet in cancer research [175,178].
Biomarker research supports causal reasoning by linking exposures with disease via
mechanisms. This is the premise on top of which the “meeting-in-the-middle” concept
was proposed [162]. It aims to find overlap biomarkers that are indicative of a given
exposure and that are, at the same time, predictive of disease outcome. This
complementary approach sheds light on the mechanisms through which individual
dietary (or more generally environmental) exposures diverge towards risk of cancer
development by investigating life-course biological pathways using -omics technologies
[162]. To achieve this, new statistical methodologies are being developed to provide
holistic approaches for the combination of dietary questionnaires and biomarker data to
be later used in aetiological models and to tackle the challenges brought on by the -

omics data [179]. These data are characterised by high-dimensionality, a correlated
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structure and a general lack of a priori biological hypotheses resulting in challenges for
results interpretability [180]. Methodology that conceives a novel use of statistical tools,
vastly relying on existing methods, has been developed to analyse this new wave of
overwhelming and promising data [179,181-187]. These range from standard
procedures of metabolome-wide association studies (MWAS) operated through
adequate multiple statistical regression models coupled with multiple testing
corrections to multivariate dimension reduction techniques and approaches for variable
selection [179]. Some of these techniques are customised for supervised and
unsupervised analyses of-omics data, in particular involving metabolomics [188-190].
Unsupervised learning methods’ main aim is to explore, summarize and discover groups
or trends that are entailed within the data, they need only a few prior assumptions and a
little to no a priori knowledge [177]. These include techniques such as PCA, k-means
clustering or hierarchical clustering. Supervised techniques are methods largely used in
biomarker discovery, classification, and prediction and usually deal with sets of data
with response variables. They mainly include partial least squares and support vector
machine analyses and are now often used in metabolomics data analysis [177,179]. The
use of mediation [191-195], pathway analyses [196,197], and approaches to model the
“meeting-in-the-middle” concept are instrumental tools providing analytical solutions to
fully exploit the multi-dimensional complexity of new generation nutritional

epidemiological data.

The methodological work presented in this thesis will draw from already-existing
or currently-developing statistical tools, notably multivariate factorial techniques, to
explore the associations between diet and cancer. We take on a holistic approach
making use of available dietary questionnaire exposures, lifestyle data as well as
biomarker and —omics data to explore two cancer endpoints (breast and hepatocellular
carcinoma) in an ideal setting to address challenges related to the multi-factorial

complexities of dietary exposure.

These principles were applied in the European Prospective Investigation into
Cancer and nutrition (EPIC), an on-going multicentre prospective cohort study, mainly
designed to study the relationship between nutrition and cancer [198]. Over 521,000
participants, aged between 25 and 70 years, were recruited between 1992 and 2000

across 23 centres spanning 10 European countries including: France, Germany, Greece,
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Italy, The Netherlands, Spain, the United Kingdom, Sweden, Denmark and Norway [199].
Dietary intake was assessed dependant on the local context using one of these three
validated tools: extensive self-administrated quantitative dietary questionnaires (DQ),
semi-quantitative food-frequency questionnaires (FFQ), or through combined dietary
methods [199]. All these questionnaires were validated and country-specific, conceived
to capture geographical specificity of diet. Indeed, the international multicentre setting
of EPIC, combining study populations with different dietary habits, lifestyles and cancer
incidences, aims to increase the overall statistical power providing a larger variability of
dietary exposures and cancer outcomes. This heterogeneity across geographical regions
raises methodological challenges, notably with regards to standardising dietary
measurements, for a proper comparison on an absolute scale in all sub-cohorts [199-
201]. To this end, in the EPIC calibration study a single 24 hour dietary recall (24-HDR)
was collected by trained interviewers between 1995 and 2000 via the EPIC-Soft
software (now called GLOBODIET, IARC, Lyon, France) from a random large stratified
sample of roughly 8% of the cohort (approx. 37,000 subjects)[202] . The 24-HDR is used
as a reference measurement and provides accurate mean estimates of nutrients and
foods at the population level. Food portion sizes were estimated using a common picture
book and other assessment methods (e.g. standard wunits and household
measures)[200,202]. Foods were classified according to common food classification (88-
266 foods) as described elsewhere [203] and individual intake of 25 priority nutrients,
plus water, energy and more recently folate [204] were calculated using procedures
standardized in the ‘EPIC Nutrient DataBase’ (ENDB) [203,205]. The calibration study
and data harmonization ensured reliable comparisons of different intakes accounting for
the heterogeneity of data when evaluating the association between nutritional
exposures and disease outcome. Detailed baseline information including anthropometric
measures, lifestyle habits (including history of tobacco smoking, alcohol consumption,
physical activity, education level, etc.), history of previous illness and other relevant
phenotypic information were collected by questionnaires or trained interviewers [202].
Additionally, biological samples were collected at baseline in 80% of the recruited
cohort participants prior to cancer onset, providing invaluable biomarker
measurements, as detailed in Table 1. Approval for this study was obtained from the
ethical review boards of the International Agency for Research on Cancer and from all

local institutions.
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Study subjects

Country Questionnaire | Questionnaire + Blood
France 74,524 28,083
[taly 47,749 47,725
Spain 41,440 39,579
U.K. 87,942 43,141
The Netherlands 40,072 36,318
Greece 28,555 28,483
Germany 53,091 50,678
Sweden 53,826 53,781
Denmark 57,054 56,131
Norway 37,215 31,000
Total 521,468 414,889

Table 1: Number of EPIC study subjects by country with questionnaires

information and availability of blood samples.

The present thesis aims to investigate the applicability of multivariate statistical
methods in the investigation of the relationship between nutrition and cancer, using
questionnaires and biomarker data available from the EPIC study.

In a first study described in Chapter 2, we explored the applicability of a new
dimension-reduction technique that has been recently introduced to the field of
nutritional epidemiology: the Treelet Transform (TT). We investigated the relationship
between the extracted nutrient patterns and risk of developing breast cancer overall and
by hormonal-receptor status in the EPIC Study. Initially developed by Lee et al. [206], TT
has been conceived as a statistical method aiming to reduce multidimensional datasets
by harnessing features of PCA and combining them with those of hierarchical clustering.
TT yields orthogonal components (eigenvectors of the correlation or covariance matrix
of the data), that are linear projections of the starting variables while introducing
sparsity in the component loadings, by making some of these loadings exactly equal to
zero. In this way, TT produces components that are easier to interpret than in the well-
established PCA [207], where findings’ interpretation is complicated by the fact that all
component loadings are nonzero. Additionally, TT returns a hierarchical tree reflecting
the internal structure of the data. These elements make it a very promising technique in

that respect as it allows for an easier interpretation of the findings and to spot the
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variables that are mostly contributing to the high variability found within each factor.
The Chapter 2 paper compares nutrient patterns produced with the novel TT with those
obtained via the classic PCA and then relates them to breast cancer (BC) outcomes. The
use of TT can be extended to other high-dimensional datasets potentially characterized
by highly correlated variables with redundant information and noise which may benefit
from a method with a sparsity feature.

With the similar motivation for dimensionality reduction and extracting the lost
relevant information, the paper presented in Chapter 3 focused on two sets of data this
time, one with untargeted metabolomics acquired through H Nuclear Magnetic
Resonance (NMR) protocols and the second set entailing a collection of lifestyle
exposures. The objective from this work was to provide a practical implementation for
the “Meeting-in-the-Middle” (MITM) principle, an idea conceived 10 years ago by Vineis
and Perera [162] that relies on the identification of biomarkers that are both
reflecting effects of exposures and also contributing to future disease risk. Our study
conceptualized a statistical framework where such overlap biomarkers could be
identified, first by disentangling the relationship between both sets followed by
exploring their link with hepatocellular carcinoma (HCC) development in a nested-case
control study within EPIC. This was done in a context characterized by challenges
pertaining to the small sample size of the study at hand, making our study difficult to
validate/replicate, and those pertaining to untargeted metabolomics in general (e.g.
annotations). This first implementation was successful despite a small number of
difficulties.

In Chapter 4, the statistical approach to model the MITM [162,208] is extended
in another nested case-control study on HCC within EPIC and applied to targeted serum
metabolomic data acquired through mass-spectrometry techniques. The work is refined
by having a more restricted set of exposures from a modified healthy lifestyle index [86].
The statistical analyses are more comprehensive with Partial Least Squares (PLS)
applied in turn to each exposure to yield exposure-specific signatures and extensive
mediation analyses to investigate whether these specific biomarker profiles bridged
their corresponding lifestyle exposures towards risk of HCC. This work allowed us to
tackle statistical challenges related to the interpretation of parameters in a context

characterized by confounding and various sets of potential mediators.
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Finally, we were involved in another initiative studying the associations between
biomarkers of fatty acids (FA) and breast cancer (BC) risk in EPIC. Chapter 5 describes
this study featuring measurements of 60 plasma phospholipid fatty acids from a large
nested case-control study on BC, where for the first time it was possible to differentiate
between trans fatty acids (TFA) coming from industrial products from those originating
from animal sources. Univariate multivariable regressions were used to relate FA levels
to BC risk, overall, by menopausal status and by hormonal receptor status. This work is a
first step providing the background necessary for future and more sophisticated
modelling, including FA patterns analyses and possibly another application of the MITM
framework, hypothesis-driven this time around as opposed to the more agnostic

exploratory implementations conducted thus far.

To conclude Chapter 6 ensues with a general discussion on the findings and

topics that were touched upon throughout this thesis.
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CHAPTER II:

NUTRIENT PATTERNS AND BREAST CANCER IN EPIC
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CONTEXT

Breast Cancer (BC) is the most frequent type of cancer affecting women worldwide; it is
the most prevalent form of cancer in the world and the leading cause of mortality from
cancer in women both in developed and developing countries [209]. Among modifiable
risk factors, diet may account for up to 40% of preventable causes of cancer. In
particular an estimated 50% of BC deaths are attributed to diet although despite
substantial research, the relationship between diet and BC is still open to debate
[2,6,210,211]. Usual approaches have often assessed the role of single dietary items i.e.
micro/macronutrients, foods, energy and alcohol mostly through standard univariate
analyses, and these have yielded significant results [145]. However, due to the
complexity of diet and the potential interactions between different dietary components,
approaches that focus on individual foods or restricted list of nutrients / dietary
constituents may miss information on the role of diet in disease aetiology [71,73].
Dietary patterns have emerged as a tool of choice to depict a broader picture of the
effects of overall diet. Conceptually, patterns are more akin to reflect reality than
traditional approaches, as people usually consume a variety of foods often containing a
complex combination of nutrients. Moreover, some nutrient effects may be too small to
detect on their own, thus the cumulative effect of a pattern embracing multiple nutrients
may be easier to identify [71,212]. In this study, nutrient patterns were obtained
through two multivariate methods, the well-established Principal Component Analysis
(PCA) [207] and the newly emerging Treelet Transform (TT) [129,213-215]. The
association between the extracted nutrient patterns and BC was investigated within the
EPIC study, a multicenter study with heterogeneous data, offering a vast playground to

address methodological challenges.

OBJECTIVES
- To yield nutrient patterns within the women sub-cohort in EPIC by applying the
TT, a new dimension reduction technique that has been recently introduced to
the nutritional epidemiology landscape. To derive nutrient patterns using PCA, a
more classic approach.
- To relate nutrient patterns to risk of BC in general, and by taking into account the
heterogeneity of BC subtypes by integrating information on menopausal and

hormone receptor status.
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- To compare results from two multivariate dimension reduction techniques: PCA

and TT.

APPROACH

The analyses focused on the women sub-cohort within EPIC (N=334,850) where 11,575
BC cases were ascertained across all centres. A posteriori nutrient patterns were
obtained by applying multivariate methods (PCA and TT) to a covariance matrix of 23
log-transformed macro- and micronutrients obtained from dietary questionnaires. The
aim of PCA is to reduce dimensionality by transforming a large set of correlated foods or
nutrient items, into a smaller set of uncorrelated variables, called principal components
that make up the nutrient patterns. TT additionally introduces sparsity in component
loadings making some of them equal to zero, thus making the interpretation easier. TT
also produces a hierarchical grouping of variables revealing intrinsic characteristics of
data structure. Hazard ratios and 95% confidence intervals (HR, 95%CI) were estimated
and quantified the association between the scores quintiles of the first two components
and BC risk. The Cox proportional hazard models were stratified by age, centre, and
adjusted for potential confounding factors including anthropometric measures, non-

alcohol energy, lifestyle and reproductive variables.

MAIN FINDINGS

Two main patterns were retained in both TT and PCA analyses, and were consistent in
terms of pattern identification and amount of total variability explained (over 50% of
total observed variability). The first TT component (TC1) loaded highly on cholesterol,
protein, retinol, vitamins B12 and D, while TC2 reflected a nutrient dense pattern with
high contributions for 3-carotene, riboflavin, thiamin, vitamins C and B6, fibre, Fe, Ca, K,
Mg, P and folate (Figure 1). The TT components were highly correlated with those of
PCA (prc1,pc1= 0.91, p1cz, pc2= 0.86). The first pattern, that was akin to a Western diet,
was associated with a non-significant increase of 5% in BC risk, whilst the second
pattern was inversely associated with BC risk with HR=0.89(0.83, 0.95). This decrease

was also significant for ER+, PR+, PR- and ER+/PR+ tumours.
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Figure 1: Cluster tree produced by the Treelet Transform.

Cut-level (red dashed line) was chosen after using a 10-fold cross-validation. Nutrients related to the
treelet components (TC), indicated with numbered circles, have non-zero loadings on the given
component.

CONCLUSION

This study investigated the association between nutrient patterns and BC in the
international setting of the EPIC study using a new tool in nutritional epidemiology, the
Treelet Transform. TT has the advantage of introducing sparsity in factor loadings thus
leading to more easily interpretable patterns. When compared to a more standard
approach, such as PCA, TT offers a complementary approach yielding comparable
nutrient patterns accounting for similar amounts of variability. In essence, there is a
sparsity trade-off: TC are easier to interpret but have a lower information resolution
than PC, which may lead to disparities in some associations in models with TC scores vs.
PC scores. The findings suggested a protective association for a diet rich in vitamins,
minerals and (-carotene, indicating that a diet mostly plant-based decreased BC risk
while a nutrient patterns characterized by a diet rich in macronutrients of animal origin,

such as cholesterol or SFA, was related to an increase in BC risk, albeit non-significant.
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Abstract

Objective: Pattern analysis has emerged as a tool to depict the role of multiple
nutrients/foods in relation to health outcomes. The present study aimed at
extracting nutrient patterns with respect to breast cancer (BC) aetiology.

Design: Nutrient patterns were derived with treelet transform (TT) and related to
BC risk. TT was applied to twenty-three log-transformed nutrient densities from
dietary questionnaires. Hazard ratios (HR) and 95% confidence intervals
computed using Cox proportional hazards models quantified the association
between quintiles of nutrient pattern scores and risk of overall BC, and by
hormonal receptor and menopausal status. Principal component analysis was
applied for comparison.

Setting: The European Prospective Investigation into Cancer and Nutrition (EPIC).
Subjects: Women (n 334 850) from the EPIC study.

Results: The first TT component (TC1) highlighted a pattern rich in nutrients found
in animal foods loading on cholesterol, protein, retinol, vitamins By, and D, while
the second TT component (TC2) reflected a diet rich in B-carotene, riboflavin,
thiamin, vitamins C and B, fibre, Fe, Ca, K, Mg, P and folate. While TC1 was not
associated with BC risk, TC2 was inversely associated with BC risk overall (HRgs ,.
1 =0-89, 95% CI 0-83, 0-95, Pyrena < 0-01) and showed a significantly lower risk in
oestrogen receptor-positive (HRQ_; v 1 =0-89, 95% CI 0-81, 0-98, Pyena=0-02)
and progesterone receptor-positive tumours (HRqs ,, o1 =0-87, 95% CI 0-77, 0-98,
Prrenda <0-01).

Conclusions: TT produces readily interpretable sparse components explaining
similar amounts of variation as principal component analysis. Our results suggest
that participants with a nutrient pattern high in micronutrients found in vegetables,
fruits and cereals had a lower risk of BC.

N Assi et al.

Keywords
Nutrient patterns
Treelet transform
Breast cancer
European Prospedtive Investigation
into Cancer and Nufrifion
Principal component analysis

Breast cancer (BC) remains the highest incident cancer
affecting women worldwide, with almost 1670 000 cases
registered in 2012. It is a major public health concern with
mortality from BC accounting for over 522000 deaths in
2012, including almost 198000 deaths in Western coun-
tries and about 324000 in less developed regions'”.
Established BC risk factors include age, genetic mutations,
ethnicity, height, reproductive history, breast-feeding,
hormone therapy and diabetes®™.
number of modifiable lifestyle factors are associated with
BC such as smoking”®, body fat and obesity®™'"”, phy-
sical inactivity"®'*"®, alcohol consumption™*™'® and
diet™>'7*®_ Diet has been suggested to account for up to
25-40% of preventable causes of cancers; in particular,

50 % of BC deaths are linked to diet, although the con-
(12,19,20)

Besides these, a

sensus around this estimate is not unanimous
Standard approaches customarily evaluate the risk of BC
associated with one or a group of dietary items, i.e. food(s)
or nutrient(s). Nevertheless, associations between diet and
disease might be missed when one parses the effect of a
limited list of dietary constituents. Although this simplified
approach of examining a single food or nutrient at
a time has led to important results on the role of an indi-
vidual dietary component in BC aetiology, such as fibre
from vegetables, alcohol, tea consumption, folate and
other micronutrients**1418:20-29 receqrch might benefit
from a more comprehensive approach by exploring BC
aetiology in terms of an integrated ensemble of dietary
characteristics.

To capture the complexity of individuals’ dietary habits,
dietary pattern analysis has emerged as a complementary
holistic methodology focusing on sets of dietary variables
and addressing their inherent interrelations®”.  This
approach is justified as components of dietary exposure are
not independent®** and because it allows to account for
complex relationships between nutrients in biological
pathways®. In addition, BC is a multifactorial disease®™®,
the aetiology of which possibly depends on more than a
restricted list of dietary items.

Recent investigations carried out in Western popula-
tions > have consistently identified two main dietary pat-
terns: the prudent/healthy and the Western/unhealthy®>*>.
While diet is related to cultural background, common nutri-
ents are present in different combinations of foods; hence
looking into diet—disease associations on the nutrient scale
could lead to the identification of specific nutritional profiles
relevant to BC aetiology.

In the present study, nutrient patterns within the Eur-
opean Investigation into Cancer and Nutrition (EPIC) were
related to BC risk. Nutrient patterns were obtained by
applying the treelet transform (TT) that has recently been
introduced into nutritional epidemiology®® and the well-
known principal component analysis (PCA) was used for
the sake of comparison®”. TT yields sparse components
and reveals the intrinsic structure of the data, thus simpli-
fying interpretability. Aspects related to the application of TT
to dietary data in the context of a multi-centre study are
described and discussed. The association between nutrient
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patterns and BC was evaluated using all BC cases and by
taking into account the heterogeneity of BC subtypes by
integrating information on menopausal and hormone
receptor status.

Materials and methods

Study population and exclusion criteria

EPIC is a large prospective cohort of 521 330 healthy men
and women designed to evaluate the relationships between
dietary habits, nutrition, lifestyle factors and the incidence of
cancer. The EPIC cohort includes participants from twenty-
three centres in France, Germany, Denmark, Sweden, Nor-
way, Greece, Ttaly, the Netherlands, Spain and the UK. In
most centres, participants were recruited from the general
population, the exceptions being France (women were
enrolled from a national health insurance scheme covering
teachers in the French education system employees), Ttaly
(Turin and Ragusa: blood donors; Florence: screening pro-
gramme participants), Spain (blood donors) and the Nether-
lands (Utrecht: women participating in BC screening). In
Norway, only women from the general population were
recruited and in the UK, one-half of the cohort (the Oxford
sub-cohort) consisted of ‘health-conscious’ individuals from
England, Wales, Scotland and Northern Ireland. The design
of the study and its rationale along with the recruitment
process have been described elsewhere™®.

Among the 521330 EPIC participants, men were first
removed (n 153 427). Women with prevalent cancers at
any site at baseline (other than non-melanoma skin can-
cer; 17 19 853) or lost to follow-up (1 2892) were excluded,
as were women who did not complete any dietary ques-
tionnaire (n 3315) and those who did not complete a
lifestyle questionnaire (2 26). To avoid including extreme
values, participants in the top and bottom 1% of the dis-
tribution of the ratio of reported total energy intake to
energy requirement (1 6753) were excluded. After exclu-
sion of non-first BC cases (n 2) the cohort included
335062 women upon whom the dietary patterns were
derived. An additional number of women (1 212) with
missing information on BC status were excluded, which
left 334 850 women retained for the statistical analyses.

Cancer assessment

Incident BC cases were identified through population
cancer registries (Denmark, ITtaly, Netherlands, Norway,
Spain, Sweden and UK) or through active follow-up
(France, Germany, Naples and Greece), as detailed in
Ferrari et al.*". Information on oestrogen receptor (ER)
and progesterone receptor (PR) statuses was provided by
each centre on the basis of pathology reports.

Dietary assessment
Long-term usual dietary intake was assessed at baseline
using country-specific and validated dietary questionnaires
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(self-administered FFQ, semi-quantitative or interviewer-
performed)®* ™ In the validation studies, the dietary
questionnaires were compared with a reference method
which was in most centres 24 h dietary recalls, except in
Sweden and the UK, where food records were used. Gen-
erally, the correlation coefficients were between 0-40 and
0-70 for all nutrients examined which was considered
satisfactory . Individual intakes of twenty-three nutrients
and total energy were estimated using a common food
composition database, the EPIC Nutrient Database (ENDB),
which was compiled from national food composition data-
bases of the ten countries represented in EPIC following

standardized procedures***¥.

Lifestyle questionnaires

Information on sociodemographic characteristics, includ-
ing education, and lifestyle habits such as levels of phy-
sical activity, tobacco smoking, as well as consumption of
alcohol and drinking habits, were collected using lifestyle
questionnaires. In addition, anthropometric measures and
past medical information were gathered at recruitment*®.

Nutrient pattern assessment

EPIC-wide nutrient patterns were derived among female
participants in EPIC using TT in the main analysis and PCA
in the sensitivity analysis. The sample covariance matrix of
twenty-three log-transformed nutrient densities, computed
using alcohol-free energy intake' ) was consistently used.
The use of the sample covariance matrix allows variability
to be informative in the pattern discovery phase. The
distribution of nutrient consumption tends to be log-
normal and may not be best described by the mean and
variance on the original scale. Moreover micro- and
macronutrients are expressed on different scales (micro-
grams, milligrams or grams). The nutrient densities were
log-transformed to remove scale dependence and render
their variance (or covariance) independent of the unit of
measure. In line with previous work®*#4®  alcohol
intake was not included and was considered as a lifestyle
factor. Total fat was divided into MUFA, PUFA and SFA,
and total carbohydrates were broken down into starch
and sugar. The micro- and macronutrients studied were
Ca, p-carotene, cholesterol, MUFA, PUFA, SFA, Fe, fibre, K,
Mg, P, protein, retinol, riboflavin, starch, sugar, thiamin,
vitamins Bg, By,, C, D, E and folate. The list of nutrients as
well as the approach described for their handling is con-
sistent with the nutrient patterns initiative within EPIC
described by Moskal er al. 4.

Pattern extraction

The TT method used for pattern extraction is described in
detail by Gorst-Rasmussen and co-workers®>>*”. Briefly,
TT is a dimension reduction technique aimed at convert-
ing a set of observations of possibly correlated variables
into orthogonal components. TT scores, corresponding to
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the projection of data onto components, generally have a
small degree of correlation, unlike PCA scores that are
always uncorrelated. The number of retained components
was based on the percentage of explained variance, scree
plots and interpretability. The nutrient patterns were
defined after the inspection of factor loadings, i.e. eigen-
vectors, expressing the contribution of nutrients to a given
component. Score variables were determined for each
component of TT and reflected adherence to a given
type of diet/nutrient profile. TT combines the quantitative
pattern extraction capabilities of PCA with interpretational
advantages of hierarchical clustering of variables. In TT,
the two variables displaying the highest correlation (or
covariance) are identified, and a PCA is performed on
them. The two variables are then replaced with the score
of their first PCA component and a merge is indicated in
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Fig. 1 Cluster tree produced by the treelet transform algorithm
applied to twenty-three log-transformed nutrient densities for
335062 women in the European Prospective Investigation into
Cancer and Nutrition (EPIC). The dashed line indicates the
chosen cut-level (16) to extract components. The highest-
variance factors, i.e. treelet components at this level of the tree,
are indicated with numbered circles. The nutrients related to
these nodes have non-zero loadings on the given component.
Components 1 and 3 share the same node but the variable
loadings differ
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the cluster tree. This operation is re-iterated until all vari-
ables have joined the cluster tree. In this way, TT produces
a hierarchical grouping of variables which may reveal
intrinsic characteristics of data structure. An important
feature of TT is that it introduces sparsity into factors,
making many factors loadings exactly equal to zero,
potentially simplifying the interpretation. Alongside the
cluster tree dendrogram produced by TT (as exemplified
in Fig. 1), TT vyields a coordinate system for the data at
each level of the cluster tree. Selecting a cluster tree level
(cut-leveD) for the TT cluster tree amounts to choosing the
level of detail desired in the dimension reduction of data.
More variation can be explained at the cost of factor
sparsity when the cluster tree is cut near its ‘root’. If the
data have p variables, there are p — 1 possible cut-levels.
After deciding on the number of components to retain, we
performed a tenfold cross-validation to identify the opti-
mal cut-level, i.e. the point at which increasing the cut-
level does not substantially increase the variation of the
retained patterns. We also performed a sensitivity analysis
to assess the effect of different cut-levels®>*®.

Consistently, a PCA was also applied for the sake of
comparison®”. This technique yields orthogonal compo-
nents that are invariant to the number of subsequent
components retained. PCA identifies the best linear com-
bination of the variables accounting for the most variance
observed in the original data, producing components with
uncorrelated scores. Results of TT analysis were compared
with findings obtained with the more classic PCA method.
To make the comparison easier, and because TT returns
sparse vectors, only nutrients with absolute loadings
greater than 0-2 were retained to identify a given pattern
in PCA.

Patterns and breast cancer risk

The associations between nutrient patterns and risk of BC
were investigated by using Cox proportional hazards
regression models to estimate hazard ratios (HR) and 95 %
confidence intervals. Breslow’s method was adopted for
handling time ties”. The time at entry was the age at
recruitment and the time of exit was the age at cancer
diagnosis, death, loss or end of follow-up, whichever
happened first. Models were stratified by centre, to control
for differences in questionnaire designs, follow-up pro-
cedures and other centre-specific effects, as well as for age
at recruitment (1-year categories)(':'m. Analyses were per-
formed by considering the TT (and principal component
(PC)) scores in quintiles to appreciate potential departure
from linearity. Statistical analyses were adjusted for base-
line menopausal status (premenopausal and perimeno-
pausal (reference) or postmenopausal and women who
underwent an ovariectomy), baseline alcohol intake
(never drinkers (reference), former drinkers, drinkers only
at recruitment, lifetime drinkers, unknown), height (con-
tinuous), BMI (below (reference) or above 25 kg/mz),
schooling level (none, primary (reference), technical/
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professional/secondary, longer education, unknown/
unspecified), age at first full-term pregnancy (nulliparous
(reference), <21 years, 21-30 years, >30 years, unknown
or missing), age at menarche (<12 years (reference),
12-14 years, >14 years, missing), age at menopause (<50
years (reference), >50 years, premenopausal or missing),
use of hormone replacement therapy (never (reference),
ever, unknown), level of physical activity (categorical,
metabolic equivalents of task (MET)/h: inactive (refer-
ence), moderately inactive, moderately active, active,
unknown) and alcohol-free energy (continuous). Use of
oral contraceptive pills (never (reference), ever or
unknown) and smoking status (never smokers (reference),
ex-smokers, current smokers, unknown) were evaluated
but not retained in the final models, due to limiting con-
founding exerted by these variables.

The overall significance of a score variable in categories
was evaluated using the likelihood ratio test statistics
(Prgr) with df =4. Additionally, P values for trend (Pyend)
were computed by modelling a score variable with
quintile-specific medians as continuous. The association
between nutrient patterns and BC risk was evaluated in
pre- and postmenopausal women and according to BC
hormonal receptor status (ER/PR status). Interaction
between menopausal status and pattern scores was
explored. In addition, tests of heterogeneity of associations
according to receptor status were performed using the
data-augmentation method”" by comparing the differ-
ence in the log likelihood between a model with receptor
status-specific variable and a model with a single HR
estimate for the two categories of receptor status to a y*
distribution with df =1 (Pyererogeneiry)-

Departure from linearity was explored with restricted
cubic splines®®, using five knots corresponding to the 1st
and 99th percentiles and medians of the centred scores of
quintiles 1, 3 and 5. Spline plots were produced by taking
the median of the first quintile as reference. Departures
from linearity were assessed via an evaluation of the joint
significance of variables other than the linear one included
in the model using Wald’s test on df=3. Associations
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between all of the PC and BC were investigated in a
consistent way.

Statistical tests were two-sided, the per-test significance
level was set to a=0-05. All analyses were performed
using the SAS statistical software package version 9-3; the
‘t package in the STATA statistical software package
release 12 was used to perform TT.

Results

A total of 11576 BC cases were recorded in 11-5 years of
median follow-up time and 3670439 person-years. Based
on the information obtained at baseline, 2827 cases were
premenopausal, 5872 were postmenopausal, 2548 were
perimenopausal and 328 cases had a bilateral ovariectomy.
Among incident cases, information on hormone receptor
status for ER and PR was available only in 62 % and 52 % of
total cancer cases, respectively, and was distributed as fol-
lows: 81% ER" and 19% ER™ tumours and 63 % PR" and
37% PR™ tumours. Descriptive information of the study
sample by EPIC country is available in Table 1.

Identification of nutrient patterns

Inspection of factor loadings allowed an initial identifica-
tion of four nutrient patterns with TT, explaining 62 % of
total nutrient intake variability within individuals. After a
tenfold cross-validation along with a sensitivity analysis
strategy and after evaluating the interpretability of each
pattern, we chose to cut the cluster tree at level 16.
Loadings of components 1 and 2 are shown in Table 2. TT
yielded a dendrogram shown in Fig. 1, with numbered
nodes indicating the four highest-variance factors, where
factors 1 and 2 were identified as the first two components
after setting the cut-level to 16 indicated by the dashed
line. This dendrogram reveals the correlation structure of
the log-transformed nutrient densities. The first treelet
component (TC1) loaded on vitamin D, vitamin By,
cholesterol, protein and retinol, suggesting a diet rich
in animal products. The second treelet component (TC2)

Table 1 Numbers of women and breast cancer (BC) cases (first tumours only) in the European Prospective Investigation into Cancer and

Nutrition (EPIC) cohort by country

Country No. of women Person-years No. of BC cases Follow-up time (years)* Age at enrolment (years)*
France 67 356 699216 3187 11.8 515
Italy 30498 341417 1047 11.7 509
Spain 24 846 299575 495 126 477
UK general population 17145 200812 719 12-3 55-6
UK health-conscious 35368 385353 761 11.3 415
Netherlands 26 839 315554 916 122 52.7
Greece 15224 148 594 198 107 53-6
Germany 27390 272011 834 109 484
Sweden 26 339 349110 1095 139 50-6
Denmark 28 693 316601 1340 116 56-3
Norway 35152 342195 984 10-1 480
Total 334 850 3670439 11576 11.5 51.0

*Median is given for follow-up time and age at enrolment.
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Table 2 Loadings of the first two components from treelet transform
(TT; cut-level 16)

TT 16 loadings
Variable* TC1 TC2
Ca 0153
B-Carotene 0-721
Cholesterol 0294
MUFA
PUFA
SFA
Fe 0-109
Fibre 0-183
K 0-157
Mg 0-144
P 0-074
Protein 0-086
Retinol 0:-679
Riboflavin 0-141
Starch
Sugar
Thiamin 0-217
Vitamin Bg 0-185
Vitamin B12 0-421
Vitamin C 0-452
Vitamin D 0517
Vitamin E
Folate 0.235
Explained variance 26 % 21%

TCA, treelet component 1; TC2, treelet component 2.
*Log-transformed nutrient variables.

presented high positive loadings on p-carotene, thiamin,
fibre, vitamin C and folate, and singled out some nutrients
with mild loadings (<0-2), i.e. Fe, Ca, K, Mg and P
(Table 2). TC2 may evoke a diet rich in vegetables, fruits
and cereals. While the third treelet component (TC3) was
largely driven by vitamin D, the fourth treelet component
(TC4) was less straightforward to characterize, as dis-
played in the online supplementary material, Supple-
mental Table 1. Distributions of known risk factors for BC
by quintiles of TT scores for the first two components are
displayed in Table 3.

PC loadings are displayed in the online supplementary
material, Supplemental Table 2. PCA produced patterns
similar to TT with respect to the amount of variability
explained and the nutrients contributing to the definition
of each component: with PC1 displaying high loadings for
cholesterol, retinol, vitamin By, and vitamin D and nega-
tive loadings for vitamin C and f-carotene; and PC2 sug-
gesting a micronutrient-dense pattern rich in fruits,
vegetables, plant foods and dairy. The first two compo-
nents (in TT and PCA) explained the most variability and
were the most informative with respect to capturing
meaningful nutrient patterns, and thus were further related
to BC risk in disease models.

Nutrient patierns and breast cancer risk

Scores of nutrient patterns were related to BC risk. TC1
showed no statistically significant association with BC risk
with HRTCI Q50 Q1™ 105 (95 % CI 098, 113, P[rend =036,

N Assi ef al.

Pirr=0-39), while TC2 was significantly associated with
BC risk with HRycz o5 o 01=089 (95% CI 0-83, 0-95,
Piena<0-001, Pgpr=0:02), as shown in Table 4. The
relationship between TT scores and BC risk was modelled
through restricted cubic splines (RCS) and is presented in
Fig. 2. Overall, there was a significant progressive
decrease in BC risk for the second component. TC2 scores
showed a linear decrease in BC risk (RCStcs Prreng = 0-02).
However, no departure from linearity was observed (Py.iq
non-linearity = 0-94 and 0-77, respectively, in TC1 and TCZ2;
Fig. 2). Analyses of interaction between TC (or PC) scores
and menopausal status were not statistically significant
(results not shown).

Hormonal receptor status

In ER™ tumours, no significant association with BC risk was
observed for TC1 and TC2 scores (Table 4). For ER"
tumours there was a decrease in BC risk in the fourth and
fifth quintiles of TC2 scores with HRoy4 . 01=0-90 (95 % CI
0-83, 0:99) and HRgs , o1 =089 (95% CI 0-81, 0-98,
Pyiena=0-02; Table 4). Regarding PR™ tumours (see online
supplementary material, Supplemental Table 3), the sec-
ond component TC2 showed a decreased BC risk with
HRys o, 1 =084 (95% CI 0:72, 0-98). For PR tumours,
TC2 was linked with a decreased BC risk in participants in
the fifth quintile with HR¢s ,. 1 =0-87 (95 % CI 0-77, 0-98).
No significant association was seen for ER'/PR™ tumours
(Table 5). TC2 was linked with a decreased BC risk trend
in ER"/PR" tumours with HRos . o1=0-86 (0-76, 0-98,
Piena <0-01; Table 5). Tests of heterogeneity yielded no
significant results.

PCA derived components displayed a significant
increase in BC risk for PC1 in participants in the highest
quintile and a decreasing trend of BC risk for PC2, as
shown in the online supplementary material, Supple-
mental Table 4 and Supplemental Fig. 1. Results of asso-
ciations of PC with tumours by hormone receptor status
are displayed in the online supplementary material, Sup-
plemental Tables 4 and 5.

Discussion

In the present study, the role of nutrient patterns in the
aetiology of BC was explored through the use of TT, a
multivariate method recently introduced to the landscape
of nutritional epidemiology?*>®. The association was
evaluated in the context of the EPIC study, characterized
by large variability of dietary habits and by a large number
of incident cancer cases across participating centres™®,
In recent years, dietary pattern analysis has emerged as
a promising technique, complementary to methods
focusing on individual foods or food components, to
investigate the relationships between diet and risk of
25). A systematic review and meta-analysis on
3 selected eighteen

disease
dietary patterns in BC aetiology
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Table 3 Lifestyle and dietary baseline characteristics* according to the lowest, middle and highest quintiles of treelet transform (cut-level 16)
scores for the first and second components among 334850 women in the European Prospective Investigation into Cancer and

Nutrition (EPIC)

TCH

TC2

al Q3

Qs Q1 Q3 Qs

Mean sD Mean sD

Mean sD Mean sD Mean sD Mean sD

No. of women 66 988 66 977 66 955 66 961 66 969 66 970
Age (years) 502 118 508 52.0 81 496 93 5141 95 522 109
Weight (kg) 630 116 648 118 650 119 640 119 640 11.7 638 115
Height (cm) 160-1 71 1626 163-0 65 1620 69 1625 67 1620 6-5
Non-alcohol energy (kJ/d) 7665 2280 7573 2171 7368 2121 8309 2406 7623 2138 6820 1929
Non-alcohol energy (kcal/d) 1808 545 1810 519 1761 507 1986 575 1822 511 1630 461
% % % % % %
BMI class
Below 25 kg/m? 57 59 57 58 58 59
Above 25 kg/m? 43 4 43 42 42 M
Schooling level
None 11 3 2 5 5 4
Primary 25 22 26 33 23 17
Technical/professional/secondary 35 47 50 44 46 44
Longer education 25 23 19 16 23 28
Unspecified/unknown 4 5 3 2 3 8
Use of hormone replacement therapy
Never 82 68 60 71 68 69
Ever 16 25 31 20 25 27
Unknown 2 7 9 9 7 4
Age at first term pregnancy
Nulliparous 21 13 1 13 14 19
<21 years 16 18 24 20 18 17
21-30 years 52 56 54 54 56 52
>30 years 9 9 7 8 8 8
Unknown 3 5 4 5 4 5
Age at menarche
<12 years 38 35 33 33 35 39
12-14 46 46 47 46 47 45
>14 years 15 15 17 16 16 14
Unknown 1 4 4 5 3 3
Age at menopause
<50 years 19 16 18 17 17 18
>50 years 19 18 19 16 18 19
Unknown 63 66 63 67 65 62
Menopausal status
Pre and peri 55 55 49 60 53 49
Post and ovariectomy 45 45 51 40 47 51
Alcohol drinkers
Never 16 6 4 8 8 9
Former 6 3 2 4 3 4
Only at recruitment 17 11 8 6 11 19
Lifetime 51 56 46 44 54 57
Unknown 10 22 40 38 24 11
Physical activity
Inactive 31 20 16 25 20 21
Moderately inactive 33 33 28 30 31 33
Moderately active 21 23 18 18 22 24
Active 13 15 12 12 14 17
Unknown 2 10 25 15 13 5

TCA, treelet component 1; TC2, treelet component 2; Q1, quintile 1; Q3, quintile 3; Q5, quintile 5.
*Means and standard deviations are presented for continuous variables, and frequencies are presented for categorical variables.

relevant studies from case—control and cohort studies that
used combinations of foods and micronutrients to identify
dietary patterns' 7?73 Two a  posteriori defined
patterns emerged consistently: the Western/unhealthy
(in seventeen studies) and the prudent/healthy (eighteen

studies)®. In the aforementioned meta-analysis®®, the
prudent/healthy dietary pattern, rich in intakes of vege-
tables, leafy vegetables, legumes and fish, was associated
to decreased BC risk (relative risk comparing top ¢. bottom
categories =0-89, 95 % CI 0-82, 0-99), while the Western/
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Table 4 Hazard ratios (HR) and 95 % confidence intervals for breast cancer (BC) by quintiles of pattern scores (first and second components
of treelet transform, cut-level 16) for overall, oestrogen receptor-positive (ER") and oestrogen receptor-negative (ER™) tumours in 334 850
women in the European Prospective Investigation into Cancer and Nutrition (EPIC)

TCAH TC2
Person- No. of BC Person- No. of BC
Model* years cases HR 95%Cl Piart Prenat  years cases HR 95%Cl Pirrt Puenat
Overall
Q1 730785 1784 1-00 Ref. 039 036 747690 2317 1-00 Ref. 0-02 <0-001
Q2 738136 2342 1-06 099, 1-13 736718 2307 0-95 0-89, 1-00
Q3 735683 2376 1-04 097, 1-11 729544 2365 0-95 0-89, 1-01
Q4 737533 2513 1-06 099, 1-14 725903 2350 0-94 0-88, 1-00
Q5 728303 2561 105 098, 1-13 730584 2237 0-89 0-83, 0-95
ER"
Ql 725634 885 1.00 Ref. 055 047 740268 1133 100  Ref. 013 0-02
Q2 731571 1214 1.07 0.98, 117 729915 1140 0-92 0-84, 1-00
Q3 728782 1212 1.06 097, 1-16 722467 1192 0-92 0-84, 1-00
Q4 729703 1247 108 098, 1:19 719201 1193 0-90 0-83, 0-99
Q5 720422 1272 1.05 0.95, 1-16 724261 1172 0-89 0-81, 0-98
ER™
Q1 721118 227 1-00 Ref. 094 043 734 469 287 1-00 Ref. 025 006
Q2 725180 302 1-03 0-86, 1-23 724168 318 1-06 0-90, 1-24
Q3 722496 301 0-99 0-82, 1-18 716332 288 0-93 078, 1-10
Q4 723410 316 1.01 083, 1.22 713221 288 0-93 078, 1-12
Q5 714166 292 0-95 0-78, 1-16 718180 257 0-87 071, 1-05
Pheterogeneity§ 0-70 012

TC1, treelet component 1; TC2, treelet component 2; Q1, quintile 1; Q2, quintile 2; Q3, quintile 3; Q4, quintile 4; Q5, quintile 5; Ref., reference category.
*Models were stratified by study centre and age in 1-year categories and adjusted for baseline menopausal status (premenopausal and perimenopausal
(reference) or postmenopausal and women who underwent an ovariectomy), baseline alcohol intake (never drinkers (reference), former drinkers, drinkers only
at recruitment, lifetime drinkers, unknown), height (continuous), BMI (below (reference) or above 25 kg/m?), schooling level (none, primary (reference), technical/
professional/secondary, longer education, unknown/unspecified), age at first full-term pregnancy (nulliparous (reference), <21 years, 21-30 years, >30 years,
unknown or missing), age at menarche (<12 years (reference), 12-14 years, >14 years, missing), age at menopause (<50 years (reference), >50 years, pre-
menopause or missing), use of hormone replacement therapy (never (reference), ever, unknown), level of physical activity (inactive (reference), moderately
inactive, moderately active, active, unknown) and alcohol-free energy (continuous).

1PrT, P values for the likelihood ratio test (LRT) that was used to evaluate the overall significance of a score variable in quintile categories compared with a

x° distribution with df=4.

1Pyena, P values obtained by modelling score variables with quintile-specific medians as continuous variables.
§Pheterogeneity, P values for BC risks across ER status with df =1 obtained using a data augmentation method.

unhealthy pattern, characterized by intakes of high-fat
dairy products, red meat, processed meats and French
fries, was not associated with BC risk. A recent study of
the California Teachers Cohort identified a plant-based
pattern, which was related to a reduction of BC risk®”. In
parallel, increasing evidence is accumulating that adher-
ence to the a priori defined Mediterranean pattern is
associated with a decreased BC risk©*7?, although results
from these studies are not totally consistent, particularly
for premenopausal women”7%7?.,

The dimension reduction techniques used herein were
applied to nutrient densities. Nutrients are present in dif-
ferent combinations of foods, are less country-specific and
are directly involved in biological reactions”®. By
exploring macro- and micronutrients, the present study
aimed to provide an exhaustive representation of indivi-
duals’ diet. Log-transformation was used to address scaling
issues that can arise because macro- and micronutrients
are expressed in different units. In this way, the variance
and the components’ decomposition are invariant to
the unit of measure. Dietary normalization was achieved
using equal energy, i.e. by dividing nutrient intakes
by energy intake, minus energy from alcohol intake* .
Most nutrients are associated with total energy because

either they contribute to total energy directly or because
people with higher energy values tend to display larger
intakes of specific nutrients"**7%.

The first two patterns were retained as they were the most
interpretable and depicted realistic nutrient patterns that
could ultimately be linked with disease risk. The first pattern
identified a diet characterized by animal products as
opposed to a vegetarian diet, and was associated with a
non-significant increase of 5% in BC risk (TT). TC1 was
quite comparable to a Western pattern. Two recent reviews
on dietary patterns and BC”*”> showed that diets rich in
high-fat foods and processed meats were associated with an
increased BC risk, although the findings described in both
reviews have not been conclusive in this respect with most
results reporting a positive association between Western-like
dietary pattern and BC being not statistically significant”7*
In our study, the micronutrient-dense pattern characterized
by a diet rich in vitamins and minerals, akin to a prudent
pattern, was associated with an 11 % reduction in BC risk
(TT), in line with previous findings®*”*”>. The protective
effect may come from the anti-carcinogenic properties of
nutrients such as p-carotene, vitamins C and E, that may
exert an antioxidant effect on oestrogen metabolism and
reduce cell proliferation””. The TT components were
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Fig. 2 Relationship between nutrient patterns derived from
treelet transform and breast cancer risk ( , hazard ratio
(HR); ————— , associated 95 % Cl), obtained by using restrictive
cubic splines with values of 1st and 99th percentiles and
medians of quintiles 1, 3 and 5 used as knots, among 334 850
women in the European Prospective Investigation into Cancer
and Nutrition (EPIC): (a) first treelet component (TC1), Pon-
inearity = 094, Pyong=0-88; (b) second treelet component (TC2),
Pron-iinearity =0-77, Prena=0-02. Models were stratified by study
centre and age in 1-year categories and adjusted for baseline
menopausal status (premenopausal and perimenopausal
(reference) or postmenopausal and women who underwent an
ovariectomy), baseline alcohol intake (never drinkers (reference),
former drinkers, drinkers only at recruitment, lifetime drinkers,
unknown), height (continuous), BMI (below (reference) or above
25 kg/m?), schooling level (none, primary (reference), technical/
professional/secondary, longer education, unknown/unspecified),
age at first full-term pregnancy (nulliparous (reference), <21
years, 21-30 years, >30 years, unknown or missing), age at
menarche (<12 years (reference), 12—14 years, >14 years,
missing), age at menopause (<50 years (reference), >50 years,
pre-menopause or missing), use of hormone replacement
therapy (never (reference), ever, unknown), level of physical
activity (inactive (reference), moderately inactive, moderately
active, active, unknown) and alcohol-free energy (continuous).
Pirena was obtained by evaluating the joint significance of
variables other than the linear one in the model by using
Wald's test with df=3

highly correlated with those of PCA (prcipe1 =091, prea,
pc2=0-86). TT and PCA provided overall consistent findings
in terms of pattern identification and amount of total
variability explained. Further analyses were conducted
by menopausal status at cohort enrolment, showing no
differential association in pre- and postmenopausal women.
Analyses carried out by hormonal receptor status showed
that the second TT nutrient pattern was related to a sig-
nificant decrease in BC risk for ER*, PR, PR™ and ER*/PR"

9

tumours. These results are complementary to previous lit-
erature findings on dietary patterns and hormonal defined
risk of BC®#97707%) Indeed, Fung et al. found that a prudent
dietary pattern was linked with decreased ER™ risk (relative
risk =062, 95% CI 0-45, 0-91)7”. ER/PR™ tumour risk was
reduced in postmenopausal women among participants in
the highest quintiles of a plant-based pattern and an a priori
defined Mediterranean diet by 34% and 20%, respec-
tively®””_ Results from the Pooling Project of Prospective
Studies of Diet and Cancer found a protective association
between total fruit or fruit and vegetable consumption in
ER™ tumours but not in ER* tumours or overall BC risk””.

Whereas a large portion of the scientific literature on
dietary patterns has used factor analysis or principal com-
ponent factor analysis”®, the current paper promotes the
use of TT. While PCA produces patterns that are eigenvec-
tors of a covariance/correlation matrix of starting variables,
TT is a multivariate technique that yields components by
aggregating variables according to covariance/correla-

tion”®

, while at the same time exploring the clustering
structure of variables, combining features of PCA with those
of cluster analysis. Eventually, TT produces a cluster tree
revealing the hierarchical grouping structure of variables.
The dendrogram allows a visual inspection of the way dif-
ferent nutrients cluster, possibly easing interpretability of
patterns. In addition, loadings are sparse, i.e. some of them
are equal to zero as they do not pertain to the clustering
node of the component so that a limited number of variables
contributes to each treelet component.

In line with other clustering techniques”®
confronted with subjective decisions to select the appro-
priate cutlevel for the cluster tree. Information on the
grouping structure of variables that have joined (or not) the
tree are specific to each level of the TT tree. By choosing a
cut-level, the user decides on how much information to
extract and the degree of sparsity of the components. If the
tree is cut near the ‘root, all nutrient variables join the tree.
The information would be comparable to PCA output, i.e. all
variables would contribute to treelet components. If the tree

, TT users are

is cut closer to the ‘leaves’, i.e. when the cut-level is lower,
loadings are sparse as many are equal to zero, possibly
making the interpretation easier. By contrast, this may lead
to components that do not capture dietary complexity and
are therefore not informative. As pointed out by Meins-
hausen and Biihlmann, the use of TT leads to a trade-off
between amount of variability explained and sparsity. The
objective is to ‘make the results as sparse as possible but not
any sparser™. To identify an optimal cutlevel, cross-
validation can be used. Once the cut-level is chosen, the
loadings computed are invariant to the number of compo-
nents to be retained; hence keeping # components is an
a priori parameter to be specified in the cross-validation step.

The present study relied on dietary questionnaires to
assess nutrient intakes, which are prone to measurement
errors and may lack information on some relevant nutri-
ents. Questionnaires were country-specific, potentially
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Table 5 Hazard ratios (HR) and 95 % confidence intervals for breast cancer (BC) by quintiles of pattern scores (first and second components
of treelet transform, cut-level 16) for oestrogen receptor-positive + progesterone receptor-positive (ER"/PR*) and oestrogen receptor-
negative + progesterone receptor-negative (ER™/PR") tumours in 334 850 women in the European Prospective Investigation into Cancer and
Nutrition (EPIC)

TCH TC2
Person- No. of BC Person- No. of BC
Model* years cases HR 95%Cl Pirrt Piendat years cases HR 95% Cl Pirrt Piendt
ER'/PR*
Q1 723508 568 1-00 Ref. 016 026 737812 753 1.00 Ref. 015 <001
Q2 728 884 811 115 1.03, 1-29 727617 777 095 086, 1-05
Q3 725948 750 -10 098, 1-23 719931 777 094 084, 1-04
Q4 726 667 751 1-11 098, 1.25 716 303 720 0-89 0-79, 0-99
Q5 717 569 773 111 0.98, 1-26 720914 626 086 0.76, 0-98
ER™/PR™
@] 720830 172 1-00 Ref. 060 0-31 734117 218 1.00 Ref. 0-26 0-08
Q2 724871 235 1-09 0-89, 1-33 723844 241 1.05 0-87, 1-26
Q3 722003 207 093 075, 115 715963 207 088 072, 1.08
Q4 722988 222 0-98 0-79, 1-23 712804 210 093 076, 1-14
Q5 713798 214 0-97 077, 1.22 717762 174 0-85 0-68, 1-06
Preterogeneity§ 019 027

TCA1, treelet component 1; TC2, treelet component 2; Q1, quintile 1; Q2, quintile 2; Q3, quintile 3; Q4, quintile 4; Q5, quintile 5; Ref., reference category.
*Models were stratified by study centre and age in 1-year categories and adjusted for baseline menopausal status (premenopausal and perimenopausal
(reference) or postmenopausal and women who underwent an ovariectomy), baseline alcohol intake (never drinkers (reference), former drinkers, drinkers only
at recruitment, lifetime drinkers, unknown), height (continuous), BMI (below (reference) or above 25 kg/m?), schooling level (none, primary (reference), technical/
professional/secondary, longer education, unknown/unspecified), age at first full-term pregnancy (nulliparous (reference), <21 years, 21-30 years, >30 years,
unknown or missing), age at menarche (<12 years (reference), 12-14 years, >14 years, missing), age at menopause (<50 years (reference), >50 years, pre-
menopause or missing), use of hormone replacement therapy (never (reference), ever, unknown), level of physical activity (inactive (reference), moderately
inactive, moderately active, active, unknown) and alcohol-free energy (continuous).

1Pyqr, P values for the likelihood ratio test (LRT) that was used to evaluate the overall significance of a score variable in quintile categories compared with a

distribution with df=4.

1Pyena, P values obtained by modelling score variables with quintile-specific medians as continuous variables.
§Pheterogeneity, P values for BC risks across ER/PR status with df =1 obtained using a data augmentation method.

introducing systematic between-country differences in
nutrient assessment. However, in the EPIC study, harmo-
nized composition tables across European countries were
used to translate food into nutrient intakes™?, thus size-
ably improving the comparability of nutrient intakes.
One key element in pattern literature is reproducibility
of patterns across populations. With twenty-three centres
from ten countries, EPIC accounts for a wide heterogeneity
in diet®™®?. Previous findings in Moskal et al’s study'*>
on the EPIC data showed that more than 75% of the
variance that would be captured by centre-specific PC was
captured by PC from overall PCA. This evidence suggested
that overall PCA combining data from all EPIC centres
allows capturing a good proportion of the variance
explained by each EPIC centre. This motivated the choice
of applying pattern decomposition on the overall data.

Conclusion

The current study presented results of a nutrient pattern
analysis in an international setting using a new tool, TT, and
subsequently related the patterns to risk of developing BC.
TT is a complementary method to PCA in nutritional epi-
demiology as it produces readily interpretable sparse com-
ponents. In the EPIC study, nutrient patterns characterized
by a diet rich in macronutrients of animal origin, such as

cholesterol or SFA, were associated with a non-significant
increase in BC risk while a diet rich in vitamins, minerals
and P-carotene, indicating a more plant-based diet, was
associated with a significant decreased BC risk. This
decrease was also significant for ERY, PR*, PR™ and ER*/PR*
tumours.
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Online Supplementary Material

A treelet transform analysis to relate nutrient patterns to the risk of hormonal receptor—
defined breast cancer in the European Prospective Investigation into Cancer and
Nutrition study.

Supplementary Table 1: TT (cut-level 16) loadings of the third and fourth components.

TT 16 loadings
TC3 TC4

Variables *

Calcium (Ca)

B-Carotene

Cholesterol -0.178 0.448
MUFA

PUFA

SFA

Iron (Fe)

Fibre

Potassium (K)

Magnesium (Mg)

Phosphorus (P)

Protein -0.052 0.132
Retinol -0.410 -0.609
Riboflavin

Starch

Sugar

Thiamin

Vitamin Bg

Vitamin By, -0.254 0.641
Vitamin C

Vitamin D 0.856

Vitamin E

Folate

Explained variance 9% 6%

TC3, treelet component 3. TC4, treelet component 4.
* log-transformed nutrient variables.
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Supplementary Table 2: PCA loadings of the 4 derived components.

PCA loadings
Variables *t

PC1 PC2 PC3 PC4
Calcium (Ca) -0.024 0.12 -0.136  0.314
B-Carotene -0.275 0.601 -0.121  -0.495
Cholesterol 0.276 0.07 -0.172 0.064
MUFA 0.018 -0.043 -0.123  -0.148
PUFA -0.006 0.102 0.131 -0.211
SFA 0.119 -0.031 -0.155  -0.105
Iron (Fe) -0.054 0.102 -0.019 0.048
Fibre -0.131 0.145 0.136 0.006
Potassium (K) -0.065 0.174 0.065 0.169
Magnesium (Mg) -0.045 0.142 0.042 0.115
Phosphorus (P) 0.003 0.108 0.01 0.19
Protein 0.042 0.077 -0.003  0.159
Retinol 0.601 0.271 -0.295 -0.275
Riboflavin 0.004 0.206 -0.131  0.322
Starch -0.004 -0.112 0.137  -0.068
Sugar -0.098 0.073 0.01 0.175
Thiamin -0.076 0.174 0.133 0.183
Vitamin Bg -0.075 0.177 0.072 0.189
Vitamin By, 0.362 0.254 -0.266  0.306
Vitamin C -0.276 0.316 -0.033 0.126
Vitamin D 0.431 0.25 0.796 0.006
Vitamin E -0.098 0.153 0.068  -0.256
Folate -0.141 0.249 -0.014 0.105
Explained variance 28% 22% 10% 8%

PC1, principal component 1. PC2, principal component 2. PC3, principal component 3. PC4,

principal component.

* log-transformed nutrient variables

t In bold are PCA loadings >0.20
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Supplementary Table 3: HRs (95%CI) for BC by quintiles of pattern scores (1 and 2™ components of TT
cut-level 16) for PR positive and PR negative tumours in EPIC women.

First component Second component
Model* BC R b BC ., b
PY cases HR (95% Cl) P-LRT P-trend PY cases HR (95% Cl) P-LRT P-trend
PR Positive
Ql 723,730 611 1.00 (ref) 738,063 801 1.00 (ref)
Q2 729,055 850 1.12 (1.01,1.25) 727,815 823 0.96 (0.86,1.06)
Q3 726,226 805 1.10(0.98,1.22) 0.31 0.28 720,137 827 0.95 (0.85,1.05) 0.17 <0.01
Q4 726,869 800 1.10(0.98,1.23) 716,542 766 0.90 (0.81,1.00)
Q5 717,755 812 1.10(0.97,1.24) 721,078 661 0.87 (0.77,0.98)
PR Negative
Ql 722,296 386 1.00 (ref) 735,796 467 1.00 (ref)
Q2 726,449 468 0.98 (0.86,1.13) 725,303 449 0.89 (0.78,1.02)
Q3 723,483 433 0.91 (0.79,1.06) 0.46 0.10 717,455 434 0.84 (0.73,0.96) 0.10 0.03
Q4 724,668 468 0.99 (0.85,1.15) 714,395 454 0.90 (0.78,1.03)
Q5 715,243 435 0.90 (0.77,1.06) 719,189 386 0.84(0.72,0.98)
P- heterogeneity* 0.07 0.36

HR: hazard ratio. 95%CI, 95% confidence interval. BC, breast cancer. PR, progesterone receptor. PY,
person-years.

* P-LRT, p-values for the likelihood ratio test (LRT), that was used to evaluate overall significance of a
score variable in quintile categories compared with a chi-square distribution with 4 df.

® P-trend values were obtained by modelling score variables with quintile-specific medians as continuous
variables.

¢ P-heterogeneity values for BC risks across PR status on 1 df were obtained using a data augmentation
method.

*Models were stratified by study centre and age in 1-y categories and adjusted for baseline menopausal
status (premenopausal and perimenopausal [reference] or postmenopausal and women who underwent an
ovariectomy), baseline alcohol intake (never drinkers [reference], former drinkers, drinkers only at
recruitment, lifetime drinkers, unknown), height (continuous), BMI (below [reference] or above 25),
schooling level (none, primary [reference], technical/professional/secondary, longer education, unknown
/unspecified), age at first full-term pregnancy (nulliparous [reference], < 21years, 21-30 years, > 30 years,
unknown or missing), age at menarche (< 12 years [reference], 12-14 years, >14 years, missing), age at
menopause (<50 years [reference], > 50 years, pre-menopause or missing), use of hormones
(never[reference], ever, unknown), levels of physical activity (inactive [reference], moderately inactive,
moderately active, active, unknown) and alcohol-free energy(continuous).
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Supplementary Table 4: HRs (95%CI) for BC by quintiles of pattern scores (1 and 2™ components of
PCA) for overall, ER positive and ER negative tumours in EPIC women.

First component Second component
Model* BC R b BC a b
PY cases HR (95% Cl) P-LRT P-trend PY cases HR (95% Cl) P-LRT"  P-trend
Overall
Ql 729,222 1,843 1.00 (ref) 748,437 2,143 1.00 (ref)
Q2 736,877 2,292  1.03(0.96,1.09) 737,177 2,339  1.03(0.97,1.10)
Q3 734,382 2,445 1.06(1.00,1.13) 0.29 0.07 732,009 2,280 0.98(0.92,1.04) 0.15 0.046
Q4 735659 2,478  1.06(1.00,1.13) 727,730 2,354  0.98(0.99,1.05)
Q5 734,300 2,509 1.07(1.00,1.15) 725,087 2,460  0.96 (0.89,1.02)
ER Positive
Ql 723,700 882 1.00 (ref) 741,994 1,087 1.00 (ref)
Q2 730,480 1,201 1.07(0.98,1.17) 730,010 1,142  1.00(0.92,1.09)
Q3 727,426 1,260  1.09(0.99,1.19) 0.27 0.09 725,034 1,113  0.94(0.86,1.03) 0.46 0.10
Q4 728,361 1,286  1.11(1.01,1.22) 720,800 1,173  0.94(0.86,1.03)
Q5 726,145 1,201  1.09(0.99,1.21) 718,273 1,315  0.95(0.86,1.04)
ER Negative
Ql 719,177 215 1.00 (ref) 736,399 280 1.00 (ref)
Q2 724,194 287 1.01 (0.85,1.22) 724,298 312 1.10(0.93,1.30)
Q3 720,958 333 1.13(0.94,1.35) 0.56 0.91 719,335 301 1.05(0.88,1.25) 0.02 0.11
Q4 721,850 306 1.01(0.83,1.22) 714,609 245 0.83(0.69,1.00)
Q5 720,190 297 1.04 (0.85,1.27) 711,728 300 0.96 (0.80,1.16)
P- heterogeneity® 0.80 0.13

HR: hazard ratio. 95%CI, 95% confidence interval. BC, breast cancer. ER, estrogen receptor. PY, person-
years.

* P-LRT, p-values for the likelihood ratio test (LRT), that was used to evaluate overall significance of a
score variable in quintile categories compared with a chi-square distribution with 4 df.

® p-trend values were obtained by modelling score variables with quintile-specific medians as continuous
variables.

¢ P-heterogeneity values for BC risks across ER status on 1 df were obtained using a data augmentation
method.

*Models were stratified by study centre and age in 1-y categories and adjusted for baseline menopausal
status (premenopausal and perimenopausal [reference] or postmenopausal and women who underwent an
ovariectomy), baseline alcohol intake (never drinkers [reference], former drinkers, drinkers only at
recruitment, lifetime drinkers, unknown), height (continuous), BMI (below [reference] or above 25),
schooling level (none, primary [reference], technical/professional/secondary, longer education, unknown
/unspecified), age at first full-term pregnancy (nulliparous [reference], < 21years, 21-30 years, > 30 years,
unknown or missing), age at menarche (< 12 years [reference], 12-14 years, >14 years, missing), age at
menopause (<50 years [reference], > 50 years, pre-menopause or missing), use of hormones
(never[reference], ever, unknown), levels of physical activity (inactive [reference], moderately inactive,
moderately active, active, unknown) and alcohol-free energy(continuous).
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Supplementary Table 5: HRs (95%CI) for BC by quintiles of pattern scores (1 and 2™ components of PCA)
for ER & PR positive and ER & PR negative tumours in EPIC women.

Model* First component Second component
ode
Py c:s(fas HR (55% C1I) L:'-I'a trepr‘;db PY cfs(;s HR (55% C1) L::I'a tr(fr;db
ER and PR Positive
Ql 721,384 525 1.00 (ref) 718,901 161 1.00 (ref)
Q2 727,780 775 1.15(1.03,1.29) 723,803 211 1.00(0.81,1.23)
Q3 724,554 805 1.16 (1.03,1.31) 0.07 0.04 720,508 242 1.09 (0.89,1.35) 0.77 0.65
Q4 725315 790 1.16 (1.03,1.31) 721,445 224 0.98(0.79,1.23)
Q5 723,543 758 1.17(1.03,1.33) 719,832 212 0.99 (0.78,1.25)
ER and PR Negative
Ql 739,692 743 1.00 (ref) 736,067 215 1.00 (ref)
Q2 727,688 774 1.03(0.93,1.14) 723,975 241 1.10(0.91,1.32)
Q3 722,601 720 0.96 (0.86,1.07) 0.38 0.09 718,949 214 0.97 (0.80,1.19) 0.06 <0.05
Q4 717,804 694 0.94 (0.84,1.05) 714,277 180 0.82 (0.66,1.02)
Q5 714,791 722 0.94 (0.84,1.06) 711,222 200 0.90(0.72,1.12)
P- heterogeneity* 0.45 0.12

HR: hazard ratio. 95%CI, 95% confidence interval. BC, breast cancer. ER, estrogen receptor. PR, progesterone
receptor. PY, person-years.

* P-LRT, p-values for the likelihood ratio test (LRT), that was used to evaluate overall significance of a score
variable in quintile categories compared with a chi-square distribution with 4 df.

® P-trend values were obtained by modelling score variables with quintile-specific medians as continuous
variables.

¢ P-heterogeneity values for BC risks across ER\PR status on 1 df were obtained using a data augmentation
method.

*Models were stratified by study centre and age in 1-y categories and adjusted for baseline menopausal status
(premenopausal and perimenopausal [reference] or postmenopausal and women who underwent an
ovariectomy), baseline alcohol intake (never drinkers [reference], former drinkers, drinkers only at recruitment,
lifetime drinkers, unknown), height (continuous), BMI (below [reference] or above 25), schooling level (none,
primary [reference], technical/professional/secondary, longer education, unknown /unspecified), age at first
full-term pregnancy (nulliparous [reference], < 21years, 21-30 years, > 30 years, unknown or missing), age at
menarche (< 12 years [reference], 12-14 years, >14 years, missing), age at menopause (<50 years [reference], >
50 years, pre-menopause or missing), use of hormones (never[reference], ever, unknown), levels of physical
activity (inactive [reference], moderately inactive, moderately active, active, unknown) and alcohol-free
energy(continuous).
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CHAPTER III:

A STATISTICAL FRAMEWORK FOR THE “MEETING-IN-THE-
MIDDLE” APPLIED TO UNTARGETED METABOLOMIC DATA
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CONTEXT

Biosciences in the era of Big Data have undergone a profound change in the way
research is focused, structured and executed. Particularly, recent technological advances
in the fields of molecular biology and spectrometry resulted in an increased availability
of ever-complex high-dimensional ~omics datasets. Such data pose logistical challenges
pertaining to their storage, their processing but also to analytical approaches to fully
exploit them [173]. Aside from the well-established genomics, -omics also encompass a
variety of other fields including transcriptomics, epigenomics, proteomics and
metabolomics, an opportunity to examine the “exposome” ( i.e., the entirety of life-
course environmental exposures) in a comprehensive manner [216]. Unlike the genome,
the “exposome” is modifiable, and can be explored through exposure-biomarker
approach. One such approach has emerged through the “Meeting-In-The-Middle”
(MITM) principle, a research strategy that can potentially reveal exposure-specific
biomarkers that are at the same time predictive of morbid conditions [162,217] by
looking at associations between exposures, intermediate markers and disease,
particularly in settings using metabolomics. This is best investigated in prospective
studies which are especially well-tailored for this purpose as they rely on biological
samples collected before disease onset, often at recruitment, and therefore are
marginally influenced by metabolic changes that arise in the disease-development

process.

OBJECTIVES

- To conceive a statistical framework for the MITM approach whose aim is to
identify biomarkers that are related to specific exposures and that are, at the
same time, predictive of disease outcome.

- To include multivariate techniques in the analytical framework for
dimensionality reduction and relating different sets of data.

- To apply the analytical strategy within the European Prospective Investigation
into Cancer and nutrition (EPIC) where biological samples were collected at
baseline in disease-free participants. Untargeted metabolomic data was acquired
using NMR techniques from subjects in a nested case-control study on
hepatocellular carcinoma (HCC), for which information on lifestyle and dietary

exposures was available.
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APPROACH

Metabolomics

1, prommEEs 2. Conditional logistic

regression
3. Mediation
analysis
Lifestyle exposures HCC indicator
2. Conditional logistic
regression

Figure 2: General original scheme to model the MITM principle.

The analytical strategy for the MITM was applied towards an analysis of the dietary and
lifestyle determinants of HCC. In a case-control study on HCC nested within EPIC, serum
1H NMR spectra (800 MHz) were acquired for 114 cases and 222 matched controls, and
resulted in 285 metabolic variables (the “responses”). These made up the metabolomics
set that was related to a set of 21 lifestyle variables (the “predictors”, including
information on diet, anthropometry and clinical attributes) through Partial Least
Squares (PLS) (Figure 2). PLS is most suitable for this purpose, as it generalizes features
of Principal Component Analysis (PCA) and Multiple Linear Regression (MLR), by
iteratively extracting components that maximize the covariance between two sets of
variables [218,219]. This resulted on the one hand in extracting the bulk of information
explaining the most variability, and on the other hand in retaining a restricted number
of factors, achieving dimensionality reduction. The derived scores were related to HCC
risk in conditional logistic regressions, and odds ratios and their corresponding 95%
confidence intervals were computed (OR, 95%CI). Finally, the mediating role of the
metabolomic signatures between the lifestyle profiles and risk of developing HCC was

assessed in mediation analyses [208].

MAIN FINDINGS

PLS allowed the simultaneous identification of relevant lifestyle and metabolic factors
whose link can be predictive in the aetiology of chronic diseases. Three PLS factors
reflected in a lifestyle and metabolic components were selected. A first lifestyle factor
characterized by a healthy pattern with negative loadings for diabetes status, smoking
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status and lifetime alcohol intake was not associated with HCC risk, neither was its
metabolomics counterpart. The lifestyle component of the second PLS factor reflected a
‘higher-risk exposures’ lifestyle pattern, and showed a significant 54% increase in HCC
risk. Likewise, its associated metabolic component displayed a significant HCC risk rise
by 11%. The third PLS lifestyle factor included participants with lower vegetables
intake, elevated lifetime alcohol consumption, more likely to be ever smokers and have a
hepatitis infection; one standard deviation increase of this component was associated
with a statistically significant 37% increase in HCC risk. Similarly, its metabolic
counterpart characterised by positive signals of ethanol and myoinositol and negative

loadings for glucose displayed a 22% significant increase in HCC risk.

CONCLUSION

This integrated framework allowed the use of all potentially informative aspects of high-
dimensional data including untargeted metabolomics, dietary and lifestyle exposures
and disease outcome resulting in intermediate biomarker signatures discovery. This
study devised a way to bridge lifestyle variables to HCC risk through NMR metabolomics
data possibly highlighting the intersection of relevant markers of exposure with
predictive markers of disease outcome. This implementation of the MITM was applied
towards the investigation of HCC determinants; it can be easily extended to similar
aetiological contexts and to settings characterized by high-dimensional data,

increasingly frequent in the —omics generation.
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Abstract

Metabolomics is a potentially powerful tool for identification of biomarkers associated with
lifestyle exposures and risk of various diseases. This is the rationale of the ‘meeting-in-the-middle’
concept, for which an analytical framework was developed in this study. In a nested case-control
study on hepatocellular carcinoma (HCC) within the European Prospective Investigation into
Cancer and nutrition (EPIC), serum 'H nuclear magnetic resonance (NMR) spectra (800 MHz) were
acquired for 114 cases and 222 matched controls. Through partial least square (PLS) analysis,

© The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights
reserved. For permissions, please e-mail: journals.permissions@oup.com.
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21 lifestyle variables (the ‘predictors’, including information on diet, anthropometry and clinical
characteristics) were linked to a set of 285 metabolic variables (the ‘responses’). The three resulting
scores were related to HCC risk by means of conditional logistic regressions. The first PLS factor
was not associated with HCC risk. The second PLS metabolomic factor was positively associated
with tyrosine and glucose, and was related to a significantly increased HCC risk with OR = 1.11
(95% Cl: 1.02, 1.22, P=0.02) for a 1SD change in the responses score, and a similar association was
found for the corresponding lifestyle component of the factor. The third PLS lifestyle factor was
associated with lifetime alcohol consumption, hepatitis and smoking, and had negative loadings on
vegetables intake. Its metabolomic counterpart displayed positive loadings on ethanol, glutamate
and phenylalanine.These factors were positively and statistically significantly associated with HCC
risk, with 1.37 (1.05, 1.79, P=0.02) and 1.22 (1.04, 1.44, P= 0.01), respectively. Evidence of mediation
was found in both the second and third PLS factors, where the metabolomic signals mediated
the relation between the lifestyle component and HCC outcome. This study devised a way to
bridge lifestyle variables to HCC risk through NMR metabolomics data. This implementation of
the ‘meeting-in-the-middle’ approach finds natural applications in settings characterised by high-

dimensional data, increasingly frequent in the omics generation.

Introduction

Metabolomic profiles from blood and other biological samples col-
lected from large-scale epidemiologic studies are increasingly being
investigated (1), following recent developments in nuclear magnetic
resonance (NMR) and mass spectrometry (MS) enabling the assess-
ment of metabolic profiles for large numbers of individuals. As a
result, metabolomic data is gradually playing a key part in clinical
and observational studies; and new statistical methodologies (2) are
increasingly being sought to explore insights into pathological pro-
cesses that metabolomics may provide in order to better understand
determinants of disease development. These approaches explore a
variety of aetiological hypotheses; however, they usually focus on
one aspect at a time, combining metabolomics with either epidemio-
logic/phenotypic data on lifestyle exposures (3) or with disease out-
comes (4,5). The main aim of this work is to jointly use all aspects
that are potentially informative to apprehend the contrivances of
disease development.

Metabolomic data offers the opportunity to identify signatures
and biomarkers associated with environmental exposures and the
risk of a disease. Prospective studies are conceptually suitable for this
purpose, since they rely on biological samples collected before dis-
ease onset, and are thus marginally influenced by metabolic changes
due to processes of disease development. In this scenario, the ‘meet-
ing-in-the-middle’ (MITM) approach (6) has been conceived as a
research strategy to identify biomarkers that are related to specific
exposures and that are, at the same time, predictive of disease out-
come. Finding this overlap between exposure and disease of ‘inter-
mediate” biomarkers can potentially disclose useful information on
the exposure-to-disease pathway, and may serve as an objective risk
exposure measure, ultimately allowing the identification of a tar-
geted prevention scheme. The MITM was previously implemented
as a proof of concept in a case—control study nested within a cohort
of healthy individuals (7), where a list of putative intermediate 'H
NMR biomarkers linking exposure to dietary compounds, mainly
micro- and macronutrients, and disease outcomes (colon and breast
cancer) were investigated.

In this study, we extend previous attempts to model the MITM
by fully integrating metabolomics, lifestyle and disease risk in a sin-
gle analytical framework. A strategy was developed to simultane-
ously investigate a broad range of metabolites and lifestyle variables
with a partial least square (PLS) regression model (8). The resulting
scores were related to the risk of hepatocellular carcinoma (HCC),

in a case—control study nested within the European Prospective
Investigation into Cancer and nutrition (EPIC). HCC is the most fre-
quent primary form of cancer affecting the liver, an organ that plays
a critical role in many metabolic pathways (9). HCC is a disease
with multifactorial origins embracing lifestyle and dietary exposures
whose intersection may reveal metabolomic signals (10) relevant
to cancer onset. The system of relationships between metabolomic
profiles and lifestyle factors in relation to HCC was evaluated by
means of mediation analysis. The methodological challenges charac-
terising the analysis of large and complex metabolomic datasets are
described and discussed.

Methods
EPIC design

The European Prospective Investigation into Cancer and nutrition
(EPIC) is a large cohort established to investigate the association
of diet, lifestyle and environmental factors with cancer incidence
and other chronic disease outcomes. Between 1992 and2000, over
520 000 participants aged 20-85 years, were recruited from 23 cen-
tres in 10 Western European countries including Denmark, France,
Germany, Greece, Italy, Norway, Spain, Sweden, the Netherlands
and UK (11). The design, rationale and methods of the EPIC study
including information on dietary assessment methodology, blood
collection protocols and follow-up procedures were discussed previ-
ously (11).

Between 1992 and 1998, standardised lifestyle data, anthropo-
metric measures and biological samples were collected at recruit-
ment, prior to onset of any disease (11). Validated country-specific
questionnaires ensuring high compliance were used to measure
diet over the previous 12 months (12). Blood samples are stored
at the International Agency for Research on Cancer (IARC, Lyon,
France) in -196°C liquid nitrogen for all countries, exceptions being
Denmark (nitrogen vapour, -150°C) and Sweden (freezers, —-80°C).

The nested case-control study

The present study focused on data with available sera samples
from a nested case—control study in EPIC on HCC (13). Cases of
HCC were identified from all participating EPIC centres except for
Norway and France (7 = 117) from recruitment (1993-1998) up
to 2007. Two controls (n = 232) were selected for each case from
all cohort members alive and free of cancer (except non-melanoma
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skin cancer) by incidence-density sampling and were matched on age
at blood collection (=1 year), sex, study centre, date (+2 months),
time of the day at blood collection (+3 h) and fasting status at blood
collection (<3, 3-6, >6h); among women, additional matching cri-
teria included menopausal status (pre-, peri-, post-menopausal) and
hormone replacement therapy (HRT) use at time of blood collection
(yes/no). In the present study, cases and controls were both included
in the analyses as the subjects were all cancer-free at blood collection.
Qut of the total 349 subjects, 7 subjects (3 cases and 4 controls) had
too little serum volume for NMR spectral acquisition with sufficient
sensitivity; 6 additional control subjects were excluded following
the exclusion of their corresponding case subject. The final analysis
included 114 HCC cases and 222 matched controls of which 108
case—control sets with two matched control subjects and 6 sets with
one matched control subject.

NMR spectra acquisition

Sera were processed using standard procedure for 'H NMR meta-
bolic measurement and profiling protocols (14). Details on the sera
sample preparation as well as NMR data acquisition and process-
ing have been described elsewhere (15). In brief, each spectrum was
reduced to 8500 bins of 0.001 ppm width over the chemical shift
range of 0.5-9 ppm. Spectra were normalised to total intensity, cen-
tred and Pareto scaled, and additionally normalised for batch effects
using the batch profiling calibration method (16). After removal of
the structured noise (characterised by a specific mean and standard
deviation) located in a well-known noise region (8.5-9 ppm) and
variables with identical characteristics, the statistical recoupling
of variables (SRV) (17), a bucketing procedure, was applied to the
metabolomic spectra. The SRV procedure identifies clusters of vari-
ables with respect to the ratio of covariance and correlation between
consecutive variables along the chemical shift axis, allowing the res-
tauration of the spectral dependency and the recovery of complex
NMR signals corresponding to potential physical, chemical or bio-
logical entities. More details on the SRV procedure are available in
the Supplementary Appendix, available at Mutagenesis Online. This
permitted a reduction of the number of NMR variables from 8500
bins to 285 clusters of variables corresponding to reconstructed peak
entities which constituted the Y-set of metabolic variables. All steps
to obtain the data were done without knowledge of the case—control
status of the subjects. Quality control (QC) samples were included to
ensure reproducibility of the NMR data acquisition.

Metabolite identification

The assignment of NMR signals observed in the 'H one-dimen-
sional fingerprints to metabolites has been achieved by the analy-
sis of additional 2D NMR experiments 'H-"C HSQC and 'H-'H
TOCSY obtained on a subset of representative samples (one control
and one case). The measured chemical shifts were compared to ref-
erence shifts of pure compounds using HMDB (18), MMCD (19)
and ChenomX (ChenomX NMR suite, ChenomxInc, Edmonton,
Canada) databases.

Lifestyle variables

The predictors (what will be referred to later on as the X-set)
included 13 dietary variables from main EPIC food groups compiled
from validated country-specific food frequency questionnaires (FFQ)
(11,20) (potatoes and other tubers; vegetables; legumes; fruits, nuts
and seeds; dairy products; cereal and cereal products; meat and
meat products; fish and shellfish; egg and egg products; fat; sugar
and confectionary; cakes and biscuits; non-alcoholic beverages),

alcohol average lifetime intake (continuous, g/day), anthropometric
measures including body mass index (continuous, kg/m?) and height
(continuous, cm) that were measured by trained interviewers in the
majority of participants (11), highest level of education achieved
(categorical: none or primary school completed, technical/profes-
sional school, secondary school, longer education (incl. university
degree), unspecified), smoking status (categorical: never, former, cur-
rent smoker, unknown), a measure of physical activity (continuous,
metabolic equivalents of task (MET)/h), hepatitis status [yes/no, from
biomarker measures of HBV and HCV seropositivity (ARCHITECT
HBsAg and anti-HCV chemiluminescent microparticle immunoas-
says; Abbott Diagnostics, France)] and baseline self-reported diabe-
tes status (yes/no). Descriptive information on these variables can be
found in Supplementary Table 1, available at Mutagenesis Online.

Statistical analyses

PC-PR2 analysis

Principal component partial R-square (PC-PR2) was primarily used
to identify and quantify sources of systematic variability within
metabolomic data (15). PC-PR2 combines aspects of principal

component analysis (PCA) and the R statistic in multiple lin-

ear regression, and allows for (some) i;:;lrcorrelatinn between the
explanatory variables under scrutiny (15). In short, PCA is performed
on the 285 clusters of '"H NMR variables and a number of compo-
nents is retained explaining an amount of total variability above a
designated threshold (here, 80%). Then, multiple linear regression
models are fitted where each component’s variability is explained
in terms of relevant covariates, e.g. specific characteristics of sam-
ples like country of origin, smoking status, laboratory treatment,
etc. For each given component, the R’ statistic is computed for
all covariates, quantifying the amount of variability each independ-
ent variable explains, conditional on all other covariates included
in the model. Finally, an overall Rlp_mial is calculated as a weighted
average for every covariate, using the eigenvalues as components’
weights. Mathematical details pertaining to the PC-PR2 method are
described elsewhere (15).

In this study, PC-PR2 was applied to the 285 clusters of
NMR variables, whereas the explanatory variables examined for
systematic variability were NMR batch, country of origin, sex,
age at blood collection, serum clot contact time (centrifugation
at the day of blood collection d, or the following day, d + 1),
length of freezing time (<15 vs. >15 years), and fasting status at
blood collection (< 3, 3-6, > 6 h). With the similar motivation of
identifying sources of variability within lifestyle data, a similar
PC-PR2 analysis was applied to the 21 lifestyle factors, the exam-
ined covariates for systematic variability were country of origin,
sex and age at recruitment. For both metabolomics and lifestyle
data, residuals on the variable accounting for most variability,
identified through PC-PR2 analyses, were computed in a series
of univariate linear regression models (21) and were used in the
subsequent PLS.

PLS analysis

A PLS model was used to relate lifestyle variables to metabolomic
profiles. PLS is a multivariate technique that generalises features of
PCA and multiple linear regression. PLS iteratively extracts linear
combinations of, in turn, predictors (the X-set) and responses (the
Y-set), which in this study, were lifestyle variables and metabolomic
profiles, respectively. First, components or latent factors are extracted
allowing a simultaneous decomposition of the X- and Y-sets, in
order to maximise their covariance (22). The factors extracted from
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the predictors’ set are orthogonal. Computational details of PLS are
described in the Supplementary Appendix, available at Mutagenesis
Online. As a standard step for the PLS algorithm, the X- and Y-sets
were centred and standardised for the analysis and a simple expec-
tation-maximisation (EM) algorithm, adapted from the PLS kernel
algorithm (23,24), was used to compute covariance matrices when
missing values were present in the lifestyle data. This was done as
follows: a first pass of PLS was computed filling in the missing val-
ues by the average of the non-missing values for each corresponding
variable. A second pass was then performed whereby the missing
data were assigned their predicted values based on the first model,
and the PLS regression is recomputed.

Then, a 7-fold cross validation analysis was carried out to
select the number A of significant PLS factors to retain (8) (see
Supplementary Appendix, available at Mutagenesis Online). This
was achieved by splitting the data into seven groups of observa-
tions. In turn, each group of observations was considered as the test
set, while the other six were the training sets, used to perform PLS
analysis. A measure of PLS performance was determined for each
step through the predicted residual sum of squares (PRESS) statistic,
whereby the predicted values in the test set, the ?h matrix, based
on the X-components estimated through the model in the training
set, were compared to the observed responses, the Y matrix. This
comparison is quantified by the squared Euclidean distance between
these two matrices. In turn for an increasing number b of compo-
nents, the process is iterated seven times, until each group of obser-
vations serves as a test set. Eventually, the number 5 of selected PLS
factors is the one minimising the PRESS statistic.

For each PLS factor, loadings were computed for the lifestyle
(X-set) and the NMR (Y-set) variables. The loadings, i.e. coefficients
quantifying the contribution of each original variable to the PLS fac-
tor, were used to characterise the various factors. As the analysis
involved many variables in the X-set and, particularly, in the Y-set,
the interpretation focused primarily on variables with loading values
lower than the 10th percentile and larger than the 90th percentile
for the X variables, and lower than the 5th and larger than the 95th
percentiles for the Y variables, that were deemed the most significant
contributors to the PLS factor.

Logistic regression analysis

Last, scores of each PLS factor were related to HCC risk in conditional
logistic regression models to compute HCC odds ratios (ORs) and
associated 95% confidence intervals (95% CI) where ORs express
the change in HCC risk associated to one standard deviation (1SD)
increase in the score. Models were adjusted for C-reactive protein
concentration, alpha-fetoprotein concentration and for a composite
score indicative of liver damage. The score summarises the number
of abnormal values of circulating enzymes measured in the hepatic
tissue in six liver function tests (alanine aminotransferase >55U/l,
aspartate aminotransferase >34U/l, gamma-glutamyltransferase:
men>64U/l and women>36U/l, alkaline phosphatase >150U/l,
albumin<35 g/l total bilirubin > 20.5 pmol/l; cut-points were pro-
vided by the clinical biochemistry laboratory that conducted the
analyses and were based on assay specifications) (25). These bio-
markers were measured on the ARCHITECT ¢ Systems™ and the
AEROSET System (Abbott Diagnostics) using standard protocols.
Laboratory analyses were performed at the Centre de Biologie
République laboratory, Lyon, France. These adjustments were
deemed necessary to address potential confounding stemming from
metabolic disorders, inflammation or underlying liver dysfunction
(25-28). Adjustments for total dietary fibre, vitamin D, calcium

and iron intakes (continuous) were evaluated but not retained in
the final models for lack of confounding exerted by these variables.
The receiver operating characteristic (ROC) curve and the associ-
ated area under the curve (AUC) were determined from conditional
logistic regressions to evaluate the predictive performance of PLS
models. AUC values were computed for conditional logistic models
including progressively the PLS scores, separately for lifestyle and
metabolomic factors (as shown in Table 4, column 1). The sensi-
tivity, specificity and accuracy were calculated for a cut-off point,
selected as the minimal distance between the ROC curve and the
upper left corner of the diagram (29,30). The corrected positive
predictive value (PPV), taking into account the nested case—control
design (31,32) was computed by including the prevalence of HCC
in the EPIC population (7 = 0.0004), computed over a 7-year period
(1992-2010) where 191 HCC cases were ascertained from a total of
477 206 participants included for case identification after relevant
exclusions. The AUC unavoidably increases with the number of
covariates added to the conditional logistic model. To address this
issue, a resampling scheme was devised to compute an objective/
unbiased estimate of the AUC, inspired by the work of Uno et al.
(33) For each one of the 1000 drawn bootstrap samples, a 10-fold
cross-validation was performed, repeated 10 times to remove vari-
ation due to random partitioning of data and to yield more stable
estimates. The predicted values from each of the conditional logistic
models in the training set were used to derive AUC values in the
test set. The 2.5th and 97.5th percentile values made up the 95%
confidence intervals.

Sensitivity analysis

A sensitivity analysis was performed by running PLS on data exclud-
ing sets where cases were diagnosed within the first 2 years of fol-
low-up. The model was conducted on 271 observations (92 cases,
179 controls), to investigate the performance of the PLS model,
ruling out potential reverse causation. The metabolomic profiles of
HCC cases diagnosed within 2 years from enrollment could reflect
the presence of the tumour rather than informing about tumour aeti-
ology. The variable importance in the projection (VIP) statistic was
used to facilitate the comparison of the sensitivity analysis with the
main analysis. The VIP expresses the explanatory power of a predic-
tor variable X across all response variables Y (see Supplementary
Appendix, available at Mutagenesis Online).

Mediation analysis

The mediating role of the Y-scores in the association between
lifestyle profiles and HCC risk was assessed. Separately for each
extracted combination of lifestyle and metabolomic PLS factors,
mediation analyses were performed with the ‘paramed’ Stata func-
tion that allows for exposure-mediator interaction based on Valeri
and VanderWeele’s work (34). Briefly, mediation was computed
using a Baron and Kenny approach adapted to dichotomous out-
comes (35), where two models were specified. In the mediator model,
the mediator (the Y-score) was linearly regressed on the exposure
(the X-score), while in the outcome model the exposure (X-score)
and the mediator (Y-score) were related to the HCC indicator in
unconditional logistic regressions. Both models accounted for the
concentration of C-reactive protein, alpha-fetoprotein and the com-
posite score of liver damage and additionally accommodated the
other extracted metabolic profiles (Y-scores) to control for mediator-
outcome confounders that may occur when estimating the natural
indirect effect (NIE) (34). As the outcome (HCC) is rare, direct and
indirect effects can be estimated taking into account the case—control
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design. This is done by using the same formulas for the effects, while
running the mediator regression only for the controls (35). As media-
tion packages do not yet accommodate conditional logistic models,
the outcome and the mediator models, which were accommodated
in unconditional logistic regressions, were adjusted for centre and
age at blood collection for sake of consistency with previous steps
of the analysis.

Statistical analyses were performed using R (36) and SAS (37)
in general, with the following packages for specific purposes:
PROC PLS in SAS 9.4 for PLS analyses, ‘paramed’ in Stata 12 (38)
for mediation analyses, ‘OptimalCutpoints’ in R for ROC-related
assessments.

The different steps of the analytical framework developed in this
study to model the MITM are presented in Figure 1.

Results

In the PC-PR2 analyses, a total of 17 and 14 principal components
were retained to explain an amount of total variability exceeding
80% in metabolomics and lifestyle data, respectively. Figure 2 shows
that the ensemble of explanatory variables accounted for 19.4 and
26.7% of total variance, respectively, in metabolomics and lifestyle
data, of which the highest contributor was ‘country of origin® with
consistently 8 and 22%. PLS analysis was carried controlling for
this variable.

After a 7-fold cross-validation, three PLS factors were retained
accounting for 21.7 and 8.5% of the overall variability observed
in predictor and response variables, respectively (Table 1). Lifestyle
variables and clusters of NMR variables contributing highly to
PLS factors were identified using factor loading values (Table 2).
The first PLS factor was predominantly positively associated with
dairy products and cakes and biscuits intake, while lifetime alcohol
intake, smoking status and diabetes displayed negative loadings for
this lifestyle component (Table 2). On the same PLS factor, signals
mainly associated with glucose and bonds of lipids with negative
loading values, and with aspartate, glutamine and lysine with posi-
tive loadings emerged on the metabolomic profile (Table 2). Lifestyle
variables characterising the second PLS factor included cereal prod-
ucts, height and education level with negative loadings, and hepati-
tis with positive loadings. The metabolic signature included NMR
variables with positive loadings associated with aromatic amino
acids (phenylalanine, tyrosine) and glucose; and those with negative

loadings associated mainly with bonds of lipids, threonine and man-
nose (Table 2). The third PLS factor had a lifestyle pattern outlining
intake of vegetables (high negative loadings values), lifetime alcohol
consumption, smoking and hepatitis infection (positive loadings).
Its counterpart NMR pattern highlighted signals of glucose and
aspartate, with high negative loadings, along with signals of ethanol,
myo-inositol, proline and glutamate as prominent metabolites with
positive loadings (Table 2).

Conditional logistic regression models relating HCC risk with
the X- and Y-scores are shown in Table 3. The first PLS factor was
associated to a non-significant decreased HCC risk (23 and 4% in
the X- and Y-scores, respectively), while the second and third fac-
tors were associated to a statistically significant increased HCC risk
(54 and 11%; and 37 and 22% respectively). Results for the ROC
curves parameters are reported in Table 4, including AUC, sensitiv-
ity, specificity, accuracy and PPV for different combinations of the
X- and Y-scores. The AUC of the X-scores and Y-scores for all 3
PLS factors, adjusted for C-reactive protein concentration, alpha-
fetoprotein concentration and the score of liver damage, was 0.859
and 0.853, respectively. An increase in the resampled cross-validated
AUC values was also observed for all three X- and Y-scores, albeit
smaller, with 0.836 and 0.827, respectively. Results from the sensi-
tivity analysis conducted on data excluding sets where cases were
diagnosed within the first 2 years of follow-up, showed similarities
in terms of lifestyle variables’ and metabolites’ loadings on the PLS
factors (Supplementary Table 2, available at Mutagenesis Online).
Notable differences pertained to the identification of new signals
for the first PLS factor including ethanol, histidine and an unknown
compound. On the second lifestyle factor, body mass index (BMI)
(positive loadings) replaced education level (negative loadings) while
the reflected metabolomic profile was comparable to its counter-
part from the main analysis (Supplementary Table 2, available at
Mutagenesis Online). On the third factor, smoking status and hepa-
titis (positive loadings) were replaced by sugar and confectionary
intake (negative loadings); signals contributing to the associated
metabolic profile remained the same but the direction of the associa-
tion was inversed as loadings had opposite signs as compared to the
counterpart PLS factor of the main model (Supplementary Table 2,
available at Mutagenesis Online). Corresponding ORs from condi-
tional logistic regression models relating the X- and Y-scores to HCC
risk are available in Table 5. The scores showed a statistically signifi-
cant association in the second factor for both sets and in the third

Metabolomic signals

(The Y-set)
2. Conditional
1. PLS analysis logistic
3. Mediation regression
analysis
Lifestyle exposure cohdeatn
(The X-set) E— indlcator

2. Conditional logistic regression

Figure 1. General scheme of the analytical framework developed in the study. A PC-PR2 analysis is carried out beforehand to identify relevant sources of
variation. In the PLS model, the X- and Y-sets are related to each other, and scores are computed (1). X- andY-scores are, in turn, associated to a case-control
indicator of HCC status in conditional logistic regression models (2). A mediation analysis is carried out to explore the role of metabolomics in the association

between lifestyle factors and risk of HCC (3).
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Figure 2. PC-PR2 analysis results* identifying the sources of variability in the NMR data (A) and in the lifestyle data (B).
* 17 and 14 components were retained to account for 80% (threshold used) of total NMR (A) and lifestyle variability (B), respectively.The R2 value represents the
amount of variability in NMR/lifestyle variable explained by the ensemble of investigated predictors.

Table 1. Individual and cumulative variation (%) explained by the
first 3 PLS factors in 21 lifestyle (X-set) and 285 NMR (Y-set) vari-
ables

# of PLS Lifestyle variables NMR variables

Factors Individual Cumulative Individual Cumulative
1 6.17 - 551 -

2 6.23 12.40 2.38 7.89

3 927 21.67 0.59 8.48

factor for the Y-set. ROC-associated statistics for different models
are presented in Supplementary Table 3, available at Mutagenesis
Online. The VIP plot (Figure 3) displayed the results for the impor-
tance of the lifestyle variables in the prediction of the Y-set com-
puted for the main PLS model performed including all subjects (A)
and for the sensitivity model (B). The results suggested a potential
gain in stability as prominent lifestyle variables for prediction were
maintained (hepatitis/diabetes/cakes and biscuits), the magnitude of
the VIP was improved for some (fat/lifetime alcohol intake) and less
emphasis was put on others (BMI/physical activity).

Finally, the NIE was assessed in the mediation analyses and the
results are presented in Table 6. Overall, there was limited evidence
that metabolomic signals mediated the association between lifestyle
components and HCC risk in the first PLS factor. Evidence of a sig-
nificant mediated effect by the Y-scores was found in the second and
third PLS factors when models were adjusted for exposure-mediator
interaction (Table 6).

Discussion

In this work, an analytical strategy based on PLS analysis was con-
ceived to extract relevant information from sets of lifestyle and
NMR metabolomic variables, and to relate the resulting components
to the risk of disease. This offered a way to implement the MITM
approach (6) in a nested case—control study on HCC within the EPIC
study. MITM has been suggested as a way to link specific putative
metabolites to lifestyle exposures and disease outcomes, thus leading
to the identification of potential intermediate biomarkers (6).

An implementation of MITM was previously carried out in a
nested case—control study in the Turin subcohort of EPIC (7) based
on prospectively collected plasma samples from a pilot study on
colon and breast cancers. In their work, a list of intermediate mark-
ers was identified by an in-parallel evaluation of the relationships
between untargeted 'H NMR profiles with dietary exposures and
risk of colon and breast cancers using correlation analysis and logis-
tic regression. In our study, a different analytical framework was
developed, largely exploiting features of PLS analysis, a multivariate

technique that iteratively extracts components capturing covariabil-
ity in sets of predictors and response variables (8,39). A set of life-
style predictor variables were related to NMR responses. In a second
step, PLS predictors’ and responses’ scores were linked to the risk
of HCC.

Another sensitive issue in this analysis was the choice of lifestyle
variables. Two disease-indicator variables reflecting environmental
exposures, diabetes and hepatitis, were included in the set of pre-
dictors, as they turned out to have an important role in the char-
acterisation of metabolomic signatures. In addition, diabetes is the
main metabolic risk factor for HCC alongside with fatty liver disease
(40,41), and chronic infection with hepatitis B (HBV) and particu-
larly hepatitis C (HCV) viruses were classified as class I carcinogens
for HCC by IARC (42).

Other relevant biomarkers were not part of the list of predictors
in PLS analysis, but were controlled for in logistic regression models.
This included C-reactive protein, alpha-fetoprotein and a score for
liver damage, an index of different circulating enzymes measured
in the hepatic tissue indicating potential underlying liver function
impairment (25). The alpha-fetoprotein was included as an adjust-
ment factor in the analyses not because of its established part as a
serum marker for HCC diagnosis (26,43), but rather to account for
it as a potential confounder that may cloud the relation between
scores and HCC, both in conditional logistic regressions and in
mediation analyses.

Similarly to other multivariate techniques, a key aspect of PLS
analysis is the choice of the number of factors to retain, in an effort
of exhaustively summarising data variability through a limited
number of factors. Based on a 7-fold cross-validation, three linear
combinations of variables were extracted in this work. A challeng-
ing aspect of this analysis is the interpretation of these factors, with
respect to lifestyle and metabolomic variables. A subjective criterion
based on the distribution of loading values was used throughout.
The variables displaying the most extreme loading values (in abso-
lute terms) were the ones characterising each factor.

The first lifestyle factor highlighted a healthy pattern with nega-
tive loadings for diabetes status, smoking status and lifetime alcohol
intake, and was not associated to HCC risk, similarly to its metab-
olomics counterpart. The lifestyle component of the second PLS
factor, was reflective of a lifestyle pattern reflective of ‘higher-risk
exposures’, and was related to a significant 54% increase in HCC
risk. Likewise, its associated metabolic component displayed a sig-
nificant HCC risk augmentation by 11%. The lifestyle component
of the third PLS factor described participants with lower vegetables
intake, elevated lifetime alcohol consumption, more likely to be ever
smokers and hepatitis positive; one standard deviation increase of
this component was associated to a statistically significant 37%
increase in HCC risk. Similarly, a 22% significant increase in HCC
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Table 2. Lifestyle and NMR cluster variables contributing to each of the 3 PLS factors (N = 336, X-set = 21, Y-set = 285)

PLS factor Lifestyle variable* Loading value CS (ppm)*® Metabolite Loading value
1 Dairy products 0.28 522 Glucose -0.06
Cakes and biscuits 0.32 3.88 -0.05
Lifetime alcohol consumption -0.25 3.82 -0.06
Smoking status -0.39 3.76 -0.06
Diabetes -0.63 < 7 | -0.05
3.54 -0.05
3.50 -0.07
3.48 -0.07
3.44 Acetoacetate -0.07
3.23 Choline + glycerphosphocholine -0.04
3.01 Lysine 0.10
2.94 Albumin 0.10
2.65 Aspartate 0.10
2.42 Glutamine 0.10
2.28 Acetoacetate 0.10
222 CH,-CH,-COOC bond of lipids + acetone -0.04
1.86 Lysine 0.09
1.87 0.10
1.53 CH,-CH,-COOC bond of lipids -0.03
2 Cereal and cereal products -0.16 7A7 Tyrosine 0.13
Height -0.34 6.87 0.13
Education level -0.26 5.27 CH=CH bond of lipids -0.13
Hepatitis 0.49 5.22 Glucose 0.16
5.18 Mannose + lipid O-CH2 -0.12
4.27 Lipid O-CH2 -0.12
4.25 Threonine -0.14
4.07 Choline + lipid O-~CH2 + myoinositol -0.12
4.05 Creatinine -0.14
3.88 Glucose 0.15
3.82 0.16
3.76 0.15
< 47 | 0.15
3.54 0.15
3.50 0.16
3.48 0.16
344 Acetoacetate 0.16
3.23 Choline + glycerophosphocholine 0.15
2.80 Aspartate -0.12
2322 CH,-CH,-COOC bond of lipids + acetone -0.11
2,19 CH,-CH,-COOC bond of lipids -0.15
2.02 Proline + glutamate + CH2=C bonds of lipids -0.13
1.53 CH,-CH,-COOC bond of lipids -0.13
1.25 CH, bond of lipids -0.12
0.86 Cholesterol + CH3 bond of lipids -0.12
3 Vegetables -0.42 7:32 Phenylalanine 0.11
Lifetime alcohol consumption 0.29 522 Glucose -0.13
Smoking status 0.25 4.28 Lipid O-CH, 0.11
Hepatitis 0.26 3.88 Glucose -0.11
3.82 -0.11
3.76 -0.12
371 -0.11
3.69 -0.11
3.63 Myoinositol 0.16
3.50 Glucose -0.13
3.48 -0.12
3.44 Acetoacetate -0.12
3.35 Proline 0.11
3.33 0.13
3.28 Myoinositol 0.12
3.23 Choline + glycerophosphocholine -0.12
2.80 Aspartate -0.13
2.76 part of =CH-CH,-CH= bond of lipids -0.13
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Table 2. Continued

PLS factor Lifestyle variable Loading value CS (ppm)** Metabolite Loading value
2.35 Proline + glutamate 0.12
2.33 0.13
1.20 3-hydroxybutyrate + CH, bond of lipids 0.11
1.16 Ethanol 0.15
0.66 Cholesterol 0.11

“Relevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading values <10th percentile (pctl) and >90th petl

or <5th petl and >95th petl, respectively.
CS: 'H chemical shift (ppm) of the cluster (centre value).

Some of the identified clusters were found to be background noise during the annotation phase and were removed from this table.

Table 3. HCC odds ratios® and 95% confidence interval (OR, 95%
Cl) associated with the lifestyle (X-set) and the NMR clusters (Y-set)
PLS scores in the main analysis (N = 336, X-set = 21, Y-set = 285)

PLS lifestyle variables X-scores PLS NMR Variables Y-scores

Factor OR® (95% CI) P-Wald® Factor OR" (95% CI) P-Wald®

1 0.77 (0.58,1.02) 0.07 1 0.96 (0.91,1.01) 0.09
1.54 (1.06,2.25) 0.02 2 1.11(1.02, 1.22) 0.02
3 1.37 (1.05,1.79) 0.02 3 1.22 (1.04,1.44) 0.01

*Models were adjusted for C-reactive protein concentration, alpha-fetopro-
tein concentration and a composite score for liver damage. Cases and controls
were matched on age at blood collection (= 1 year), sex, study centre, date
(+ 2 months) and time of the day at blood collection (= 3 h), fasting status at
blood collection (<3/3-6/>6h); among women, additional matching criteria
included menopausal status (pre-/peri-/postmenopausal) and hormone re-
placement therapy use at time of blood collection (yes/no).

PORs expressing the change in HCC risk associated to 1SD increase in the
score.

“Wald’s test was for continuous exposure compared with a Chi-square
distribution with 1 degree of freedom (dof).

risk was observed for its metabolic counterpart, characterised by
positive signals of ethanol and myoinositol, and displayed negative
loadings for glucose.

The MITM is captured by the rationale of PLS analysis, in the
sense that each set of lifestyle profiles and metabolic signatures of
the extracted PLS factors mirrored one another. In addition, media-
tion was observed for the second and third PLS factors, whereby the
metabolomic component mediated the relation between the lifestyle
component and HCC, for which statistically significant associa-
tions with HCC risk were estimated, emphasising the presence of a
MITM. Mediation analysis relies on the assumption that there is no
mediator-outcome confounder that is affected by the exposure (34).
In our study C-reactive protein, alpha-fetoprotein and liver damage
score were weakly correlated to lifestyle factor score, thus introduc-
ing potential bias in the estimation of direct and indirect effects in
our mediation analysis. Additionally, a number of background con-
founders (mediator-outcome and exposure-outcome confounders)
were present that we have tried to control for, either by adjustments
or by accounting for potential interactions, however some degree of
bias can remain and caution should be employed when interpreting
the results.

The predictive performance of PLS factors in relation to HCC
occurrence was evaluated through an analysis of AUC values.
The performance of the model improved progressively, with all 3
X- and Y-scores added; after a bootstrapped cross-validation, the
AUC estimates were lower but the increase in the performance was

nevertheless present. The ROC methodology allows estimation of
PPV, which expresses the risk of disease after a positive test (44).In a
setting with low HCC prevalence (7t = 0.0004), in line with Western
populations (45), extremely low PPV estimates were observed. In the
absence of a very specific test, many false positive tests arise from
disease-free individuals (44), thus leading to a dilution of PPV.

A sensitivity analysis was carried out excluding the first 2 years
of follow-up, but results were virtually unchanged, both in terms of
relative risk estimates in logistic regression models, and of percent-
age of variability explained in PLS analysis. These findings suggest
that reverse causation bias, if present, was minimal.

This study had the ambition of integrating in the same analytical
framework study participants’ lifestyle characteristics with a large
number of NMR metabolic profiles. These data pose a number of
methodological challenges due to their size and the complexity of
exhaustively capturing and interpreting the biological processes
they reflect. To address these issues, techniques involving multivari-
ate statistics have been progressively revived in the recent years (2).
Epidemiologic evaluations of metabolomic data frequently com-
bined PLS with discriminant analysis, such as PLS-DA or O-PLS-DA.
The main objective of these methods is to identify a series of metabo-
lomic features distinguishing between two very distinct groups of
study participants (46,47). In such strategies, only one set of vari-
ables is multidimensional and the response is one variable only.
Similar multivariate techniques for pattern extraction, belonging
to the family of regression methods, include reduced rank regres-
sion. This multivariate method relates an ensemble of response
variables to a set of predictor variables where the estimated matrix
of the regression coefficients is of reduced rank (48-50). In addi-
tion, canonical correlation analysis (CCA) (51) is a method applied
to identify the optimum structure or dimensionality of each vari-
able set that maximises the relationship between two sets of multi-
dimensional variables. The main difference between CCA and PLS
regression is that CCA maximises the correlation between the two
new dimensions, i.e. extracted factors, whereas PLS maximises their
covariance. PLS can be considered as a trade-off between CCA and
PCA, since maximising the covariance corresponds to maximising
the product of the correlation and standard deviation, given that cov
(X,Y) = cor(X,Y)*SD(X)*SD(Y).

Untargeted NMR was used in this work to acquire metabolomic
signals. Prior to PLS analysis, a bucketing procedure, the SRV (17,52),
was applied to reduce the number of NMR variables to 285 clus-
ters. This was done by aggregating consecutive NMR bins based on
their covariance to correlation ratio. This allowed the identification
of informative components of the spectra, thus acting as an efficient
noise-removing filter. Subsequently the annotation effort remains chal-
lenging, for a number of reasons. The majority of published metabo-
lomics studies often identified a limited number of metabolites at a

S10T ‘g AIng uo1sand Aq /310-s[eunolpioyxo-agdeinui//:dyy woly papeojumoc]



A PLS model for the meeting-in-the-middle approach

Table 4. Area under the curve (AUC), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC models (with 95% Cl), from
the main PLS analysis (N = 336, X-set = 21, Y-set = 285)

AUC AUChb Sensitivity Specificity Accuracy PPV
Adjustment covariates (AD])*  0.842 (0.794,0.891)  0.821 (0.766,0.868)  0.752 (0.662,0.829) 0.802 (0.743, 0.852) 0.785 0.0015
X1 scores + AD] 0.846 (0.797,0.894)  0.825(0.766,0.875) 0.743 (0.653,0.821) 0.838 (0.783,0.884) 0.806 0.0018
X1 + X2 scores + AD] 0.854 (0.808,0.900) 0.831(0.772,0.881) 0.743 (0.653,0.821) 0.824 (0.768, 0.872) 0.797 0.0017
X1 + X2 + X3 scores + AD] 0.859(0.811,0.907) 0.836(0.778,0.887) 0.796 (0.710,0.866) 0.788 (0.729, 0.840) 0.791 0.0015
Y1 scores + AD] 0.841 (0.793,0.890) 0.817 (0.760,0.865) 0.735(0.643,0.813) 0.820 (0.763, 0.868) 0.791 0.0016
Y1 + Y2 scores + AD] 0.845 (0.795,0.894)  0.820(0.762,0.872) 0.735(0.643,0.813) 0.851 (0.798,0.895) 0.812 0.0020
Y1+ Y2 + Y3 scores + AD] 0.853 (0.804,0.902) 0.827(0.771,0.877) 0.726 (0.634,0.805) 0.883 (0.833,0.922) 0.890 0.0025

“The model is run on the ADJ including the C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for liver damage.
PAUC, is the bootstrapped-cross validated estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors,

respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively.

Table 5. HCC odds ratios® and 95% confidence intervals (OR,
95%Cl) associated with the lifestyle (X-set) and the NMR clusters
(Y-set) PLS scores in the sensitivity analysis (N=271, 92 cases, 179
controls)

PLS lifestyle variables X-scores PLS NMR variables Y-scores

Factor OR® (95% CI) P-Wald® Factor OR' (95% CI) P-Wald®

1 0.80 (0.60,1.08) 0.15 1 0.96 (0.94,1.04) 0.56
2 1.56 (1.02,2.40) 0.04 2 1.18 (1.03,1.36)  0.02
3 0.86 (0.67,1.11) 026 3 0.86 (0.73,0.99) <0.05

The sensitivity analysis was conducted excluding sets where cases were di-
agnosed within the first 2 years of follow-up (X-set = 21, Y-set = 285).

*Models were adjusted for C-reactive protein concentration, alpha-
fetoprotein concentration and a composite score for liver damage. Cases
and controls were matched on age at blood collection (= 1 year), sex, study
centre, date (+ 2 months) and time of the day at blood collection (+ 3h),
fasting status at blood collection (<3/3-6/>6 h); among women, additional
matching criteria included menopausal status (pre-/peri-/postmenopausal)
and hormone replacement therapy use at time of blood collection (yes/no).

PORs expressing the change in HCC risk associated to 18D increase in the
score.

“Wald’s test was for continuous exposure compared with a Chi-square
distribution with 1 degree of freedom (dof).
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time (53), and the Human Metabolome Database (HMDB) and other
related resources (18,54), that offer richly annotated information
continuously increasing the metabolite coverage for users, are mostly
exploited through time consuming interactive procedures. In addi-
tion, individual metabolites often overlap in NMR signals, which can
hinder annotations. These challenges, as well as large variability in
metabolite concentrations, and disentangling informative signals from
noise, are not specific to NMR and pertain to any type of untargeted
technique. Such investigations may profit from complementary tar-
geted metabolomic analytical strategies (54).

Throughout the different steps of this work, the scaling prob-
lem was first tackled by normalising spectra to total intensity. NMR
data were also centred and Pareto-scaled, together with correction
for potential batch effects (16). The PC-PR2 method offered a way
to investigate major sources of systematic variability in NMR and
lifestyle data (15). The variable ‘country of origin’ emerged as the
variable accounting for the largest proportion of total variability,
and the residual method was used to control for this variable in
the following steps of the analysis. While this may lead to remov-
ing regional gradients of dietary variability, this step is instrumental
to avoid unwanted systematic regional-specific bias in the data in
country-specific questionnaire assessments. In addition, technical
aspects like storage and handling of biological samples, fasting status
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Figure 3. Variable importance plot (VIP) displaying the variable importance for projection statistic of the predictor variables for the PLS analyses. (A) Results
from the main PLS model run on all observations (N = 336, X-set = 21, Y-set = 285). (B) Results from the PLS sensitivity analysis run on a subsample (N = 271, 92
cases, 179 controls) excluding sets where cases were diagnosed within the first 2 years of follow-up (X-set = 21, Y-set = 285). The horizontal line corresponds to
Wold's criterion (0.8), the threshold used to rule if a variable has an important contribution to the construction of theY variables (see Supplementary Appendix,

available at Mutagenesis Online for further details).
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Table 6. Results from the mediation analysis (N = 336, X-set = 21, Y-set = 285): natural indirect effect (NIE) and 95%CI®

Model” Natural indirect effect (NIE)

Exposure (A) Mediator (M) QOutcome A*M interaction term Estimate (95%CI) P value
X1 score Y1 score HCC No 0.91 (0.77, 1.06) 0.23
X2 score Y2 score HCC No 133 (0:97, 1.25) 0.12
X3 score Y3 score HCC No 1.08 (0.94, 1.23) 0.28
X1 score Y1 score HCC Yes 0.96 (0.79, 1.17) 0.70
X2 score Y2 score HEC Yes 1.15 (1.01, 1.31) 0.04
X3 score Y3 score HCC Yes 1.13 (1.01, 1.28) 0.04

*The standard errors used to compute the 95% CI were obtained using the delta method.

"Models were adjusted for the C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for liver damage, as well as for the other

Y-scores, as potential mediator outcome confounders. Additionally, the outcome and the mediator models were adjusted for centre and age at blood collection.

at blood collection are specific to each country (15). In any case,
variability due to ‘country of origin’ is not exploited in conditional
logistic models, as cases and controls were also matched on centre.

One of the limitations of this study is the restricted sample size
which raises concerns with regards to power to detect associations.
While a larger sample size would possibly result in more statistically
significant findings, we used the data that was available with NMR
profiles measured. In this work, we have developed a framework to
analyse complex data integrating lifestyle and metabolomics in relation
to risk of disease. The approach described in this study has merits but
also pitfalls among which it is worth mentioning that statistical meth-
ods are used repeatedly on the same set of data, notably the PLS model,
the conditional logistic regression, the AUC estimation and mediation
analysis. To partially address this, a cross-validation approach was
devised for AUC estimation which involved conditional logistic regres-
sion, whereby PLS was done without knowledge of the case—control
status. However, conditional logistic regression models and mediation
analyses were implemented on the same data, and our analysis did not
account for this limitation. This may have led to spuriously increase the
nominal level of statistical significance of statistical tests.

Conclusion

The MITM emerged as a method for the identification of relevant
biomarkers, with great potential to unravel utmost important steps in
the aetiology of disease. The analytical strategy for MITM was devel-
oped to use all potentially informative aspects of high-throughput data
by integrating metabolomic, dietary and lifestyle exposures together
with disease indicators. While the framework was applied towards the
investigation of HCC determinants, it can be easily extended to similar
aetiological contexts and applied to other —omics settings.

Supplementary data

Supplementary Tables 1-3 and Appendix are available at
Mutagenesis Online.
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Supplementary Tables

A Statistical framework to model the meeting-in-the-middle principle using metabolomic data:
application to hepatocellular carcinoma in the EPIC study.

Supplementary Table 1: Summary statistics of the predictors variables (X-set) of the study subjects in the EPIC liver
nested case—control study (N=336, 114 Cases, 222 Controls).

Mean /N*  sd/%* p5 p95 N missing

Dietary Variables (g/day)

Potatoes and other tubers 100.57 78.15 9.34 26697 0
Vegetables 194.20 143.22 45.03 473.45 0
Legumes 9.85 18.03 0.00  41.18 0
Fruits, nuts and seeds 232.80 197.94 2355 585.22 0
Dairy products 334.40 261.46 4992 777.48 0
Cereal and cereral products 227.04 117.67 76.39  458.94 0
Meat and meat products 115.97 62.29 37.83  236.32 0
Fish and shellfish 32.88 32.26 378 8143 0
Egg and egg products 18.67 18.72 1.88 55.57 0
Fat 34.61 18.48 11.01  70.76 0
Sugar and confectionary 47.26 51.51 1.93  138.73 0
Cakes and biscuits 41.33 49.68 0.00 147.26 0
Non-alcoholic beverages 1053.91 793.31 85.00 2391.90 0
Anthropometric variables
BMI (kg/m2) 27.41 4.41 21.22  36.16 0
Height (cm) 169.70 9.99 152.00 184.80 0
Lifestyle Variables
Lifetime alcohol intake (g/day) 23.27 41.38 0 91.998 61
Physical activity (Mets/h) 77.13 49.45 11,5  173.63 0
Highest Education Level
None or primary school completed 167 49.7 - - -
Technical/professional school 75 22.32 - - -
Secondary school 27 8.04 - - -
Longer education (incl. university degree) 62 18.45 - - -
Unspecified or Unknown 5 1.49 - - -
Smoking status
Never 124 36.9 - - -
Former 125 37.2 - - -
Current smoker 85 25.3 - - -
Unspecified or Unknown 2 0.6 - - -
Pathology variables indicative of lifestyle
Hepatitis status 1
No 291 86.87 - - -
Yes 44 13.13 - - -
Diabetes 0
No 307 91.37 - - -
Yes 29 8.63 - - -

*Mean and standard deviation (sd), were reported for continuous variables and frequencies and percentages (%) were
reported for categorical variables.
p5: Sth percentile, p95:95th percentile.
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Supplementary Table 2: Results from the sensitivity analysis run on a subsample (N=271, 92 cases, 179 controls)
excluding sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). Lifestyle
and NMR cluster variables contributing to each PLS factor.

PLS Lifestyle Variable* Loading Cs* Metabolite** Loading

Factor value (ppm) value
1 Dairy Products 0.33 7.03 Histidine 0.09
Cakes and Biscuits 0.34 5.22 -0.07
Lifetime Alcohol Consumption -0.34 3.88 -0.06
Smoking Status -0.26 3.82 -0.07
Diabetes -0.59 3.76 Glucose -0.06

3.71 -0.06

3.54 -0.05

3.50 -0.07

3.48 -0.08

3.44 Acetoacetate -0.08

3.23 Choline + Glycerphosphocholine -0.05

3.03 Creatine 0.10

3.01 Albumin 0.10

2.28 Acetoacetate 0.10

2.22 CH,-CH,-COOC bond of lipids + Acetone ~ -0.03

2.06 Proline + Glutamate 0.09

1.91 Lysine + Arginine -0.03

1.87 Lysine 0.09

1.16 Ethanol -0.04

1.08 Unknown 1 0.09

0.91 CH; bond of lipids 0.09

2 Cereal and Cereal Products -0.24 7.17 . 0.14
BMI 0.34 6.87 Tyrosine 0.14

Height -0.39 5.27 CH=CH bond of lipids -0.14

Hepatitis 0.55 5.22 Glucose 0.13

5.18 Mannose + Lipid O-CH2 -0.13

4.27 Lipid O-CH, -0.12

4.25 Threonine -0.14

4.05 Creatinine -0.14

3.88 0.13

3.82 0.13

3.76 0.13

375 Glucose 0.12

3.71 0.12

3.54 0.15

3.50 0.13

3.48 0.13

3.44 Acetoacetate 0.13

3.23 Choline + Glycerphosphocholine 0.12

2.80 Aspartate -0.13

2.76 =CH-CH2-CH= bond of lipids -0.12

2.19 CH,-CH,-COOC bond of lipids -0.16

2.02 Proline + Glutamate -0.14

1.53 CH,-CH,-COOC bond of lipids -0.13

1.25 CH, bond of lipids -0.12

0.86 Cholesterol + CH3 bond of lipids -0.12

3 Vegetables 0.39 5.25 Glucose 0.17
Sugar and Confectionnary -0.21 4.28 Lipid O-CH2 -0.07
Lifetime Alcohol Consumption -0.29 4.14 Proline -0.08
4.07 Choline + Lipid O-CH2 + Myo-inositol -0.07

3.88 0.16

3.82 0.16

Glucose
3.76 0.16
3.75 0.14




3.71

3.69

3.63 Myo-inositol
3.54

3.50 Glucose

3.48

3.44 Acetoacetate
3.41

3.35 Proline

3.34

3.28 Myo-inositol
3.23 Choline + Glycerphosphocholine
1.91 Lysine + Arginine
1.16 Ethanol

0.68

0.66 Cholesterol

0.15
0.16
-0.16
0.12
0.17
0.17
0.16
-0.10
-0.15
-0.12
-0.09
0.15
-0.07
-0.16
-0.06
-0.08

*Relevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading

values <10th percentile (pctl) and >90th pctl or <5th pctl and >95th pctl respectively.
1 CS: 'H chemical shift (in ppm) of the cluster (center value).

**Some of the identified clusters were found to be background noise during the annotation phase and were removed

from this table.

Supplementary Table 3: Results from the sensitivity analysis (N=271, 92 cases, 179 controls) conducted excluding
sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). Area under the curve
(AUCQ), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC models (with 95% CI).

AUC

AUC,**

Sensitivity

Specificity

Accuracy

PPV

Adjustment Covariate (ADJ)"

X1 scores + ADJ
X1+X2 scores + ADJ
X1+X2+X3 scores + ADJ

Y1 scores + ADJ
Y1+Y2 scores + ADJ
Y1+Y2+Y3 scores + ADJ

0.846 (0.793, 0.899)

0.853 (0.800, 0.905)
0.860 (0.811, 0.910)
0.861 (0.810, 0.912)

0.847 (0.794, 0.900)
0.848 (0.794, 0.901)
0.853 (0.800, 0.907)

0.827 (0.765,0.879)

0.834 (0.774, 0.890)
0.837 (0.772, 0.893)
0.837 (0.773, 0.893)

0.827 (0.768, 0.884)
0.827 (0.764, 0.883)
0.826 (0.763, 0.882)

0.750 (0.649, 0.834)

0.728 (0.626, 0.816)
0.750 (0.649, 0.834)
0.761 (0.661, 0.844)

0.739 (0.637, 0.825)
0.717 (0.614, 0.806)
0.717 (0.614, 0.806)

0.838 (0.776, 0.889)

0.872 (0.813,0.917)
0.832 (0.769, 0.884)
0.838 (0.776, 0.889)

0.838 (0.776, 0.889)
0.899 (0.846, 0.939)
0.911 (0.859, 0.948)

0.808

0.823
0.804
0.812

0.804
0.838
0.845

0.0018

0.0023
0.0018
0.0019

0.0018
0.0028
0.0032

*The model is run on the adjustment covariates (ADJ) including the C-reactive protein concentration, alpha-
fetoprotein concentration and a composite score for liver damage. ** AUC, is the bootstrapped-cross validated

estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors,

respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively.
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Mathematical Appendix
A statistical framework to model the
meeting-in-the-middle principle using metabolomic data:
application to hepatocellular carcinoma in the EPIC

study.

1 PLS regression

1.1 Introduction

PLS (partial least squares) regression is a widely used method in multivariate statistics to relate
two sets of variables while reducing their dimensionality. It was first developed as a method
to predict a set of variables Y from another set X; and also to depict their common structure.
The main aim of PLS is to regress a set Y of q variables (y1,42,...,y,) of interest, which
are called responses, on a set X of p predictor variables (z,z,,...,2,) that may display high
levels of correlation. PLS combines and generalizes features of principal component analysis
(PCA) and multiple linear regression (MLR); and results in a set of PLS latent factors as linear
combinations of variables, in turn, in the X- and Y-sets. By simultaneously decomposing X
and Y, PLS finds components that explain as much as possible of the inter-relations of X and
Y. The latent factors obtained from the decomposition can be used to predict Y. The following
details of the algorithm are adapted from Michel Tenenhaus’ book La régression PLS, Théorie

et Pratique [1].
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1.2 The PLS algorithm

Two different, but closely related, techniques exist under the name of PLS regression. The
canonical or symmetric PLS regression assumes that the X- and Y- sets play a symmetrical
role. The version presented here is the regression mode where latent variables are computed
from a succession of singular value decompositions (SVD) followed by deflation of both the
X- and Y- matrices. These sets are assumed to play the asymmetric roles of predictors and
responses, respectively. Next, we briefly describe the landmark algorithm NIPALS Nonlinear
estimation by Iterative Partial Least Squares. As a first step, two substitute matrices X, and
Yy are initialized with Xy = X, and Yy = Y{(,,), where variables were standardized to have
means and standard deviations equal to zero and one, respectively. For h = 1,..., H, where
H = min(p, q), the PLS factors are obtained iteratively. PLS regression focuses on finding two
sets of weights, wppx1) and cpigx1), in order to create respectively a linear combination of the
columns of X and Y, known as the PLS factors, such that these two linear combinations have
maximum covariance and are unique. These weights define a first pair of vectors, called the X-
and Y-scores, t;, = Xwy, and u, = Y¢, where we have tJu, maximal. PLS can be written as
the following optimisation problem where maximum covariance is sought between £j(1,,) and

Up(1xn) for each h=1---H:
Max cov(Xwy, Yeyp,) (1)

under the following normality constraints

l[wnll =1 (2)
llenll =1 (3)

and the following orthogonality constraint
th(t,...,tho1) =0 (4)

By construetion we also have the following property:

’u;l;(tl, . ,thfl) =0 (5)
The first pair of X- and Y- scores can equivalently be obtained via a singular value decom-
position. Indeed, the SVD of the cross-product matrix X ;Y,_; leads to the identification of

the first left and right singular vectors and of the weights wy and ¢,. The scores t;, and u; are

obtained as follows:

th = Xp_qwp (6)
up = Yyp_10h (7)
Mathematical Appendix 2
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The vector t;, is then normalized (a scaling of uy is optional). Regressing the predictor and

response matrices on the t;, vector yields the corresponding loadings.

pn=Xj_itn (8)

cn =Y, 1ty (9)

Next is the deflation step, where information based on the extracted latent factor h is subtracted

from the current data matrices.

Xn = Xno1 — trp], (10)

Yh = Yhfl — thC}; (11)
The described steps of the algorithm are iterated until one of the following criteria is met:

e If H is specified, and the algorithm stops when the H-th PLS factor is extracted and its

associated statistics computed.

e If H is not specified, the algorithm stops when Xy becomes a null matrix. In this case

however, H cannot exceed min(p, q).

Algorithm 1 PLS1 classic algorithm steps - When Y is univariate.
L Xg+— X<y

2: for (h=1;h < H;h++) do

3: wy, = X;{—lyh—l/y;_lyh—l
4: wWp, = "k m

5: t, = Xh—1“41'1/1,“;!1‘1”Jll

6: pr = Xioalnfilt,

— T
o Xp=Xpo —tapy,
8: cy = y;lr_ﬁh/t;';th
9: up, = Yh-1/c,

10: Yh = Yn—1 — Culp

When Y is univariate, the PLS algorithm carried out is PLS1 (See Algorithm 1, following
the notation of M. Tenenhaus [1]). PLS2 (Algorithm 2) is used when Y is multivariate. When
there are missing data in either the X- or Y- sets, the coordinates of the vectors wy, t;,, cn, us,
and py, are computed as slopes of the least squares straight line that passes through the origin,

using the available data as follows:

Mathematical Appendix 3
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Algorithm 2 PLS52 classic algorithm steps - When Y is multivariate.

1: X(](—X,YD(—Y
2: for (h=1;h < H;h++) do

3

4:

10:

11:

12:

up = Yp—1[, 1] i.e. the first column of the matrix
while wj, has not converged do
wp = X}I—1“h/u;';uh
wy = “n/\fulw,
th, = Xh—lwh/w;wh
cp = Yilate fiT4,
up = Yn-10n/feTe,,
Ph = XPI—1th/t;';th
Xy = Xn1—thp],
Y=Y, 1 —tyc},

wp = (Whi, ..., Whp)T, Is a normalized vector, where wy; is the slope of the least squares
line passing through the origin of the plane defined by (un, Xn-1;). Xn—1; is the j-th X
variable of the h — 1 PLS factor.

th = (tn1, ..., thn)T, where tp; is the slope of the least squares line passing through the
origin of the plane defined by (wp, Th—1:). Th-1; is the i-th = observation of the h — 1

PLS factor.

¢h = (Chiy ..., Cnqg)T, where cpp is the slope of the least squares line passing through the
origin of the plane defined by (¢, Yj—1%). Yi—14 is the k-th Y variable of the h — 1 PLS

factor.

up = (Upt, -« Upn )T, where uy; is the slope of the least squares line passing through the
origin of the plane defined by (¢, Ya—1:). Yn—1. is the i-th y observation of the h —1 PLS

factor.

Pr = (Pht,- .., Prp)T, wWhere py; is the slope of the least squares line passing through the
origin of the plane defined by (¢, Xj—1;). Xp—1; is the j-th X variable of the h —1 PLS

factor.

Mathematical Appendix 4
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1.3 Tools for interpretation
1.3.1 Choice of number of components

The number of PLS latent factors or components to be retained can be decided based on a
cross-validation.

For each model with a number h of extracted factors, this is done by running the PLS analysis
on only a part of the data called the training set, and then evaluating how well the model
fits observations in the test set. This includes the part of the data not involved in the PLS
modelling of the training set.

The dataset comprised of n observations is split into z approximately equal sets of observations.
The training set consists of the data in the first z — 1 folds and the remaining fold is used as
test set. Predicted values for the Y-set are computed on this test set along with the sum of the
squared error of prediction. This process is repeated z times so that each fold can in turn serve
as a test set. In practice, for each number of possible latent factors h =1,..., H, we compute
the prediction of y; by the PLS model with results obtained on the training set with a number
h of components applied to observations in the test set in order to yield gj(_;. The Prediction
Error Sum of Squares (PRESS) is the resulting sum of all squared errors of prediction statistic

computed across all test sets as defined in the following equation:

PRESS, =Y (yi — i)’ (12)

The Residual Sum of Squares (RSS) is computed in a standard way:

RSS), = Z(yz — Gni)’ (13)
Different criteria can be used to determine the number of components h to retain. One such
criterion, Q7 was first introduced by H. Wold [2] and is mainly used in the software SIMCA-P.

It is based on the following statistic:

PRESS;,
RSS}L*I

As pointed out by M. Tenenhaus, the initial value for RSS when y is univariate centred-scaled

Qr=1- (14)

and h =0 is:

n

RSS; =) (yi—9)’=n-—1 (15)

i=1

In the software SIMCA-P the PLS component is kept when the following condition is met:

V/PRESS), <0.95\/RSSy_, (16)
= @Q; > 0.0975 (17)

[S23

Mathematical Appendix

71



The default threshold 0.0975 is equal to 1 — 0.95%. In SAS, the criteria to select the number h
of components to be retained is by minimizing the PRESS), statistic.
The above described formulae can be generalized for multivariate Y, thus we have for any given

variable yp, k=1,...,q:

PRESSy,
~ RSSi-)

i=1 PRESSyy,
> k=1 BSSk(n-1)

th =1

G=1-

The criteria for keeping a PLS factor are identical to what was established for the univariate
case. One can alternately use one of the following rules, where the equivalence defined in

formula (17) still holds true:
e Q7 = 0.0975
e At least one value of Q3, > 0.0975

If the criteria are met by several values of h, the one retained is the smallest h, to achieve a
better dimensionality reduction.

The Q* and PRESS criteria are relatively robust to the choice of number of folds (blocks) used
for cross-validation. A number of folds between 5 and 10 is recommended (Tenenhaus 1998,
p.238) [1]. The default choice in the SIMCA-P and SAS softwares is 7, and is the parameter

used in this study.

1.3.2 Variable Importance in the Projection (VIP)

The Variable Importance in the Projection (VIP) is a measure of the explanatory power of a
given variable z; over Y. The VIF,; of a given component h of the j-th variable z; is defined

as:

h

p
S RA(Y, t)u 20
RA(Yity,... ty) & R(Y. tr)uy (20)

VIBL] =

and one has:

P
Y VIR, =p (21)
j=1

where Rd(Y;tq,...,t,) is the redundancy of ¥ with respect to the t scores (t1,...,t;). It

describes the amount of variance of ¥ explained by the component t;, of the X-set. It is defined

Mathematical Appendix 6
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as follows:

RA(Y,t) = =Y cor®(ye, tn) (22)

k=1

Q| =

It can be equivalently computed as:

q

1
Rd(Y,t),) = Tia Z cor? (yp, up,) (23)
k=1

where 7, = cor(Xwn, Yep) is called a canonical correlation and szl is the Ath largest eigenvalue
of the crossproduct matrix decomposition.

The contribution of a variable z; to the construction of a component ?; is measured by the

2

weight w;;.

For each I, with [ =1,...,h, the sum of these weights across the p variables z;
equals 1. To measure the contribution of the variable z; to the construction of ¥ through
the components ¢;, one should consider the explanatory power of the component t;, measured
by the redundancy Rd(Y';t;). An equal weight wlzj indicates an explanatory power of the z;
variable over the Y-set whose importance increases with the level of redundancy Rd(Y;t;).

The VIP enables the ranking of the predictors z; according to their explanatory power on Y,
and summarizes their contribution to the model. A VIP is considered small if its value is less

than 0.8 and high when its value is greater than 1. Variables with a high VIP (VIP > 1) are

the most important for the reconstruction and prediction of Y.

2 Statistical Recoupling of Variables (SRV)

The SRV procedure was introduced by Blaise et al.(2009) [3] and for which a matlab toolbox was
later implemented [4]. The SRV is an "intelligent bucketing" algorithm that aims at regrouping
variables (typically the smallest unit of the NMR. spectrum) in clusters corresponding to a wider
biological and chemical entity.

SRV exploits the spectral structure of data, without forming any metabolic hypothesis to reduce
the dimensionality of spectra. A typical NMR 'H 9 ppm spectrum is often partitioned into
9,000 buckets of 0.001 ppm width. The main idea of the algorithm is to exploit the spectral
dependency landscape L which is the covariance to correlation ratio between two neighbouring
variables along the chemical shift axis to assemble them within a cluster. If one considers a
matrix Z of serum spectra acquired by NMR with n observations and r columns (z1,..., z-)

corresponding to neighbouring bins of NMR signals. The first bin-variable starts the first

Mathematical Appendix 7
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cluster, then L is computed for each z; as follows with i =1,...,7 :
L(z) = 2o i) (24)

cor(z;, zip1)

sd(z) * sd(z;11)

where sd is the standard deviation.

The variable then joins a cluster according to the following rules:

e L(z;) values are used to locate local minima i.e. borders between clusters.

If L(z;_1) > L(z;) then z;_; and z; are associated in the same cluster, otherwise z; and

z;+1 start a new cluster.

e The minimum number of variables belonging to a cluster is set a priori as it is based on
the resolution of the NMR spectra. When acquired at 700 MHz, the typical peak base
width of a well-resolved singlet is equal to 7 Hz. Therefore, the threshold was set to 10

in our analysis, meaning that if a cluster has less than 10 variables, it is discarded.

e The super-cluster intensity is computed as the mean of the intensities of the signal in the

bins assigned to the super-cluster.

e If two neighbouring clusters have a correlation > 0.9, they are aggregated to form a
super-cluster. In these analyses, the association is limited to 3 clusters per super-cluster

(this value is empirical and was discussed in the original paper [3]).
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CHAPTER IV:

A REFINEMENT OF THE “MEETING-IN-THE MIDDLE”
FRAMEWORK WITH AN APPLICATION IN TARGETED
METABOLOMICS
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CONTEXT

The MITM principle [162,180] was used as a research strategy to identify biomarkers
that are related to specific exposures and that are also predictive of disease outcome, by
looking at associations between exposures, contender intermediate markers and
disease. This strategy is particularly of interest in epidemiological studies with
metabolomic data. A first implementation of the MITM principle was presented as a
proof of concept [220], it explored intermediate biomarkers separately, relating them to
nutrient variables and to colon and breast cancer in a nested case-control study. In our
first MITM paper [208], we set-up a single statistical framework by integrating
multivariate methods, namely PLS, and mediation analyses, to fully exploit data
originating from different high-dimensional sets. Building on these previous
implementations of the MITM, and using targeted metabolomic data, we further refined
and developed the analytical scheme by focusing on a restricted set of exposures and by
adapting the mediation analysis to matched case-control study designs. The application
looked yet again into determinants of HCC, the most common form of liver cancer,
which ranks as the 2nd most frequent cause of cancer death worldwide [209]. HCC being
a multi-factorial disease strongly associated with lifestyle factors and with dietary
habits [221], components of a modified Healthy Lifestyle Index (HLI) scores’ link with
serum metabolites are jointly investigated to possibly identify modifiable lifestyle
exposure patterns and metabolite signatures related to HCC that may ultimately lead to

the identification of targeted cancer prevention schemes.

OBJECTIVES

- To apply the MITM approach in order to explore the components from a
modified HLI with respect to serum metabolites in a nested case-control study
on HCC within the EPIC cohort. Targeted metabolites were acquired through the
BiocratesKit from pre-diagnostic sera samples.

- To further establish and tune the analytical framework previously developed to
yield exposure-specific metabolomics profiles through multiple PLS.

- To develop and adapt the mediation analysis structure to accommodate the

matched nested case-control design.
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APPROACH

Following a similar scheme as in the previous MITM implementation, for 147 HCC cases
and their matched controls, 132 metabolites levels were acquired from pre-diagnostic
serum samples using standard targeted metabolite profiling protocols (BiocratesKit).
Through PLS analysis, this metabolomics set, including an additional liver damage score,
was linked to a set of 7 lifestyle variables corresponding to components of HLI,
including diet, Body Mass Index (BMI) (kg/m2), physical activity (hourly Metabolic
Equivalent of Task Met-h/week), lifetime alcohol consumption (g/day), smoking,
diabetes at baseline and hepatitis infection. A series of multiple PLS was further applied
using each HLI variable separately to yield metabolite patterns that are specific to each
exposure under scrutiny. Mediation analyses were then performed to assess the
mediating role of the metabolomic profiles in the relationships between the overall
lifestyle profile first, then for each individual HLI component in turn and HCC. Estimates
of the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE) were computed by
adapting formulae from VanderWeele & Vansteelandt (AJE, 2010) [192], to
accommodate conditional logistic regressions for the matched design. Total effects were
also presented. Statistical significance controlled for multiple testing through False

Discovery Rate (FDR) in the multiple PLS results.

MAIN FINDINGS

In the overall analysis, the lifestyle PLS factor scored high for study subjects
characterised, on average, by low propensity towards smoking, alcohol drinking and
obesity. Its metabolic counterpart was positively related to sphingolipids with hydroxyl
group including SM(OH) C14:1, SM(OH) C16:1 and SM(OH) C22:2, and negatively with
glutamic acid, hexoses, PC aaC32:1 and liver damage score. Both components displayed
decreased HCC risks quantified with total effects through with odds ratios (OR) equal to
0.53[95% CI: 0.39, 0.71] and mediator effects adjusted for the exposure OR=0.30[0.19,
0.47] per 1-SD change in components’ scores, respectively. There was evidence of
mediation between this overall “healthy” pattern and HCC through its metabolic
counterpart with NIE=0.62 [0.50, 0.77]. Results from multiple PLS, showed that specific
metabolic signatures of BM], alcohol intake, diet, smoking and diabetes were found to be

mediators of the relationship between corresponding HLI variables and HCC risk. Their
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respective NIE was equal to 1.56[1.24, 2.96], 1.09[1.03, 1.15], 0.85[0.74, 0.97],
1.22[1.04, 1.44] and 5.11[1.99, 13.14].

CONCLUSION

Using a multiple PLS scheme within a MITM framework, we were able to yield lifestyle-
specific metabolomic signatures. These metabolic profiles bridged healthy behaviours
to HCC risk through mediation analyses. The models were fine-tuned and metabolomic
signals specific to BMI, alcohol intake, diet, smoking and diabetes were found to be
mediators on the pathway between each of these exposures and risk of developing HCC.
Future studies applying the MITM should utilize larger sample sizes for improved
power. Nevertheless, the present work clearly offers the utility of the MITM in exploring

environment-disease associations in an integrated setting with highly-dimensional data.
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Abstract

Background: The “meeting-in-the-middle” (MITM) is a principle to identify exposure
biomarkers that are also predictors of disease. The MITM statistical framework was applied
in a nested case-control study on hepatocellular carcinoma (HCC) within the EPIC cohort
where the components of a modified healthy lifestyle index (HLI) were related to serum
metabolites.

Methods: Lifestyle and targeted metabolomic data were available from 147 HCC cases and
147 matched controls. Partial Least Squares (PLS) analysis related 7 modified HLI variables
(diet, BMI, physical activity, lifetime alcohol, smoking, diabetes, hepatitis) to 132 serum-
measured metabolites, and a liver function score. Exposure-specific signatures were also
extracted with PLS models. Mediation analysis evaluated the role of metabolomic PLS scores
in the relationship between the modified HLI and HCC risk.

Results: The overall PLS factor's lifestyle component was negatively associated with lifetime
alcohol, BMI, smoking, diabetes and positively associated with physical activity. Its
metabolic counterpart was positively related to SM(OH) C14:1, C16:1 and C22:2, and
negatively to glutamate, hexoses, and PC aaC32:1. The lifestyle and metabolomics
components were inversely related to HCC risk. The PLS scores expressing metabolic
signatures mediated the association between smoking and lifetime alcohol and HCC with
Natural Indirect Effects respectively equal to 1.22(95% confidence interval [Cl]=1.04 to 1.44)
and 1.09(95%CI=1.03 to 1.15).

Conclusions: This study refined the analytical framework of the MITM principle as a way to
investigate the relations between lifestyle factors and disease risk using metabolomics.
Relevant metabolomic signatures were identified as mediators in the relationship between

specific lifestyle exposures and HCC.
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Key Messages:

- This work presents a flexible analytical framework for the “meeting-in-the-middle”
principle, a promising tool to potentially identify causal pathways. The statistical
strategy relied on an integrative approach to relate exposures to a wide array of
metabolomics data in relation to hepatocellular carcinoma outcome.

- Using an individual Partial Least Square approach, exposure-specific metabolic
signatures were identified and were shown to be predictive for disease outcome. This
was especially noteworthy for BMI, alcohol, smoking as well as diabetes- specific
metabolic profiles.

- The approach can be further extended to similar aetiological contexts and/or using
other types of -Omics data.
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Introduction

Metabolomics have become a focal point in epidemiological studies, as a result of
large scale collection of biological samples and technological advances in the fields of
molecular biology and chemometrics[1-4]. Metabolomics offers a broad spectrum of
potential biomarkers to explore in search of causal and mechanistic pathways in disease
development and aetiology. Such endeavours have revealed a number of mechanistic
insights in the understanding of disease progression at metabolic levels and led to

biomarker discovery[5].

Metabolomic datasets raise challenges from the processing of complex high-
dimensional data, to the analytical approaches to fully exploit them[1]. New statistical
methodologies are increasingly sought to address the multivariate nature of metabolomic
data[6] and to discover relevant pathological processes that metabolomics may help
investigate. In this scenario, the “meeting-in-the-middle” (MITM) principle[7,8] is used as a
research strategy to identify biomarkers that are related to specific exposures and that are,

at the same time, predictive of the outcome.

The MITM has been previously implemented in a nested case-control study where
intermediate biomarkers were related to nutrients and to colon and breast cancer
indicators[9]. The implementation to multivariate modelling was further extended in a
Partial Least Squares (PLS) analysis to integrate a set of 21 lifestyle variables and 285
metabolic variables from *H NMR spectra in relation to hepatocellular carcinoma (HCC)

risk[10].
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Since HCC is a multi-factorial disease strongly associated with lifestyle factors[11],
the MITM was applied to identify metabolite signatures related to HCC. The lifestyle
components of a modified healthy lifestyle index (HLI)[12,13] were related to specific

metabolic signals.

In this study an in-depth proof of concept of the MITM is revisited with a focused
strategy to explore the mediating role of metabolic signatures on the path from exposure to
disease in a HCC case-control study nested within the European Prospective Investigation

into Cancer and nutrition (EPIC) using targeted metabolomic data.
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Material and Methods

The nested case-control design

Within a nested case-control study of HCC[14,15] in EPIC, this study focused on 147
cases and 147 matched controls with available biological samples identified in the period
between subjects’ recruitment into the cohort (1993-1998) and 2010[15,16]. Cases of HCC
originated from all participating EPIC centres except for Norway and France that were not a
part of this study. All subjects were cancer-free at the time of blood collection. Information
on population, data collection of dietary and lifestyle data, follow-up, case ascertainment

and matching criteria can be read in Supplementary Methods.

The lifestyle variables (X-set of predictors)

The lifestyle variables were the predictors, referred to as the X-set, and included
body mass index (BMI) (continuous, kg/m?), average lifetime alcohol intake (continuous,
g/day), the diet score (continuous) described in the Supplementary Methods, physical
activity (continuous metabolic equivalents of task in MET-h/week), smoking (never, ex-
smokers quit>10 years, ex-smokers quit <=10 vy, current smokers <=15 cig/day, current
smokers > 15 cig/day), hepatitis infection (yes/no) and self-reported diabetes at baseline
(yes/no). These are the components of a healthy lifestyle index (HLI)[12,13], hereby
modified to include hepatitis and diabetes status, as detailed in Supplementary Methods.

The metabolites set (M-set of responses)

Metabolomic data

Metabolic biomarkers from serum samples were measured by tandem mass

spectrometry at IARC, Lyon, France, using the BIOCRATES AbsolutelDQ p180 Kit (Biocrates,
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Innsbruck, Austria). Details of the sample preparation and mass spectrometry analyses are
provided elsewhere[15,17]. Out of 145 metabolites measured in serum, this study included
132 metabolites with at most 40% of missing values. Metabolite nomenclature has been
previously described[18] and can be found in Supplementary Methods. Measurements that
were below the limit of detection were set to half that value and those below limit of
guantification were set to half that limit (applicable to a total of 16 metabolites for 0.3% to
29.3% of participants). Additionally, measurements that were above the highest

concentration calibration standards were set to the highest values.

Liver function score

A composite score indicative of liver function identifying the number of abnormal
values for six circulating liver blood biomarker tests indicating possible underlying liver
dysfunction[10,14,15] was included in the set of metabolites, the M-set, as detailed in
Supplementary Methods. These biomarkers were acquired at the same time as the

metabolites from the pre-diagnostic blood samples collected at recruitment.

Statistical analyses

Modified HLI and HCC risk

The association between the modified HLI and HCC risk was evaluated through conditional
logistic regression models. Odds ratios, and their 95% confidence intervals (OR, 95%Cl) were
computed to express a change in HCC risk reflecting one standard deviation (1-SD) increase

in the index. Unadjusted and liver function score adjusted ORs were estimated.

Principal Component Partial R-squared (PC-PR2) analyses
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Sources of systematic variability within the X-set of HLI variables and the M-set of
metabolites were identified and quantified through the PC-PR2 method[10,19] as described
in Supplementary Methods. For both X- and M-sets, residuals on country and batch (M-set

only) were computed in univariate linear regression models and used in the PLS analyses.

Primary PLS analyses: overall and individual PLS

Exposure variables were related to metabolomic data through PLS analysis that extracts
linear combinations, referred to as PLS factors, of predictors (the X-set of lifestyle variables)
and responses (the M-set of metabolites), allowing a simultaneous decomposition of both
sets with the aim of maximizing their covariance[20,21]. An overall PLS was conducted using
the entire X-set, then a series of individual PLS analyses was further applied using each HLI
variable separately as the predictor to yield exposure-specific metabolomics signatures. In
an attempt to yield even more specific metabolic signatures, sensitivity PLS analyses using
mutually adjusted lifestyle residuals and country for the X-set and with country and batch
residuals for the M-set were computed and presented in Supplementary Tables. More

details on the process are provided in Supplementary Material.

Mediation analyses

Mediation analysis assessed whether the metabolic profiles mediated the relation between
individual lifestyle factors and HCC risk. For the overall and individual PLS analyses,
mediating effects were computed for each extracted pair of lifestyle variable and M-score,
adapting the formulae from VanderWeele and Vansteelandt[22] to accommodate
continuous exposures and mediators and conditional logistic regression for our matched

setting. For each examined lifestyle variable, estimates of the natural direct effect (NDE),
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the natural indirect effect (NIE), and the total effect (TE) were obtained, along with the
effect of the corresponding M-score adjusted for its counterpart lifestyle exposure and for
confounding variables and referred to as the mediator effect (ME). For more details, see
Supplementary Methods.

All statistical tests were two-sided and p-values < 0.05 were considered statistically
significant. Statistical analyses were performed using PROC PLS in SAS[23] for PLS analyses
and the R Software[24] for linear and conditional logistic regressions and mediation

analyses.
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Results

Study population characteristics by case-control status are presented in Table 1. One
PLS factor was retained after 7-fold cross validation for PLS analysis. The lifestyle PLS factor
identified a ‘healthy’ behavior profile with positive loadings for physical activity, negative
loadings for BMI, lifetime alcohol consumption and smoking (Table 2). The corresponding
metabolomics PLS factor was characterized by glutamic acid, hexoses and sphingomyelins.
The PLS lifestyle factor was inversely associated with HCC risk, with TE=0.53 (95%CI=0.39-
0.71, Py,,e=2.64E-05) (Table 4), whereas the HLI score was not related to HCC with OR=0.93,
95%Cl=0.84 to 1.02, P,,,.=0.117 (results not shown). The PLS metabolic profile showed a
strong inverse association with HCC risk, with ME (Mediator Effect) equal to 0.30
(95%ClI=0.19 to 0.47, P,a,e=1.94E-07). The association of the lifestyle factor with HCC risk
was mediated by the metabolic profile, with NIE=0.62 (0.50 to 0.77, Pyaiwe=2.12E-05), with an

estimated mediated proportion of 52% (Table 4).

Individual PLS analyses yielded metabolite signatures for each component of the
modified HLI (Table 3). For lifetime alcohol, the signature was negatively related to SM
C16:1, SM C18:1, SM(OH) C14:1, SM(OH) C16:1 and SM(OH) C22:2 and positively related to
glutamic acid and PC aaC32:1. Metabolites associated with smoking included SM C16:1 and
C18:1, SM(OH) C14:1 and C22:2, LysoPC aC28:1 and PC aeC30:2 with negative loadings and
hexoses with positive loadings. In the sensitivity analysis, smoking was negatively associated
with serine, lysine and biogenic taurine and positively with PC aaC36:1 and aaC40:3
(Supplementary Table 3). Different phosphatidylcholines characterized the metabolic
signature related to diet. The metabolic profile of BMI included glutamic acid, tyrosine, PC

aaC38:3, the liver function score with positive loadings and glutamine, LysoPC aC17:0 and
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236  LysoPC aC18:2 with negative values. Hexoses and amino acids valine, isoleucine and

237  phenylalanine were positively associated with diabetes status.

238  All PLS metabolic signatures, with the exception of physical activity and hepatitis infection,
239  were associated with HCC risk, with strong evidence of mediation (Table 4). In particular, for
240  both diabetes and BMI, a positive association for the NIE, equal to 5.11 (1.99 to 13.14,

241  Pyaue=6.99E-04) and 1.56 (1.24 to 1.96, P,,,.=1.72E-04), respectively, was observed,

242  together with a lack of association for the NDE, thus suggesting that the relationship

243  between these two variables and HCC risk was fully mediated by the corresponding

244 metabolic signatures. As for smoking, diet and lifetime alcohol, the mediated proportions
245  were 56%, 38% and 24%, respectively, with NIE equal to 1.22 (1.04 to 1.44, P,4,.=0.018),
246  0.85(0.74t0 0.97, Py4,.=0.025) and 1.09 (1.03 to 1.15, P,4,.=0.002), respectively.

247  Noteworthy, the NIE estimate for smoking in the sensitivity analysis was 1.98 (1.34 to 2.92,
248  Pyae=5.65E-04), and the relation between smoking and HCC was fully mediated by the M-

249  score (Supplementary Table 4).

250 The TE estimates showed strong associations for lifetime alcohol (1.40, 95%CI=1.14
251  to 1.72, Py4u.=1.40E-03), diet score (0.66, 0.47 to 0.92, P,,,.=0.014) and hepatitis infection
252  (16.70, 4.82 to 57.84, Py,,e=8.92E-06) (Table 4). Most of these associations remained

253  statistically significant after FDR correction. With the exception of smoking and, to a lesser
254  extent, lifetime alcohol, the PLS metabolic profiles and estimated associations were virtually

255  unchanged in the sensitivity analysis (Supplementary Tables 3 and 4).

90



256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

Discussion

This study extended the statistical framework of the MITM[10] with a focused
strategy to comprehensively explore the mediating role of metabolite signatures in the

relationship between HLI and HCC.

In a previous implementation of the MITM[10], 21 lifestyle variables were related to
285 metabolic variables acquired from pre-diagnostic sera *H NMR spectra. In this study,
the X-set of predictors was restricted to the original components of the HLI, most of which
have been previously associated with HCC risk[11,25—-34]. Variables from the existing
index[12,13] were complemented by indicators of hepatitis infection and diabetes status at
baseline, which are well-known HCC risk factors[25,26,35]. Alcohol use at recruitment was
replaced by lifetime alcohol intake, mainly to address reverse causality. A more focused

methodology was further developed building on a similar analytical structure.

PLS analysis was used to relate the sets of HLI variables to metabolites. Preliminarily,
an overall factor depicted a lifestyle pattern characterized by low propensity towards
smoking, alcohol drinking and obesity, low prevalence of baseline diabetes or hepatitis
infection and high levels of physical activity. Mediation analyses indicated the metabolite
signature mediated 52% of the association between the healthy lifestyle factor and risk of
HCC. In a second phase, individual PLS models were related to specific components of the
HLI. The specific metabolite signatures were found to mediate the relation with HCC risk for
BMI, lifetime alcohol consumption, smoking, diabetes and diet, with a proportion mediated
of 100, 24, 56, 100 and 38%, respectively. These findings suggested that varying proportion
of the total effect on HCC is exerted via the metabolite signatures, possibly through specific

underlying mechanisms by which the exposure is acting.
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Specifically, a recent IARC handbook evaluation on body fatness and obesity
reported a positive relationship between BMI and risk of liver cancer[36]. Our study
suggests that the increase in HCC risk is entirely mediated by a BMI-specific metabolic
signature characterized by phosphatidylcholines (LysoPC aC18:2, LysoPC aC17:0 and PC
aeC36:2) and tyrosine. PCs are required for lipoprotein assembly and secretion; in particular
acyl-alkyl-PCs were correlated with high-density cholesterol[37,38]. Tyrosine levels
imbalance has been previously related to insulin resistance and type 2 diabetes[39-41].
Correlation studies conducted in the EPIC-Potsdam cohort exploring the association
between lifestyle factors and blood metabolite levels, acquired with the same targeted
technology showed similar findings, with serum acyl-alkyl-phosphatidylcholines (PC ae),
LysoPC aC17:0, aC18:2 and PC aeC36:2 negatively associated with obesity and BMI whereas

tyrosine was positively related to BMI[42—-44].

The metabolic signature fully mediated the association between diabetes, a well-
established HCC risk factor[11], and HCC. The contributing metabolites were hexoses,
phenylalanine and LysoPCs, consistently with previous studies based on targeted[41] and
untargeted[45] approaches. These metabolites were further linked with insulin resistance
and involved in glycolysis and gluconeogenesis, and their metabolic alterations was
associated with an increased diabetes risk[41].

The metabolomics signature of lifetime alcohol intake was negatively associated with
sphingomyelins and positively associated to phosphatidylcholines. Similar metabolites
patterns were observed in a study that focused on alcohol-dependent patients [46]. As

ethanol has been hypothesised to induce lipogenesis in the liver tissues[47], alcohol can
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lead to hepatic injuries causing a disruption of the metabolism of fatty acids and
phospholipids[48].

The identification of specific metabolic signatures for alcohol and smoking was particularly
challenging in our study, as these two factors are strongly correlated[49-51]. An overlap
between the smoking and alcohol-specific metabolite signatures was observed in the
preliminary analysis, where four common sphingomyelins , i.e. SM C16:1, SM C18:1, SM(OH)
C14:1 and SM(OH) C22:2,were identified. In the sensitivity analysis, the different lifestyle
exposures were mutually adjusted for prior to PLS, thus leading to a new list of metabolites
associated with smoking which included serine, SM(OH) C22:2 and PC aaC36:1, consistently
to what was reported in the KORA study[52]. As a result, the estimated proportion of
mediation increased from 57 to 100 %, resulting in a metabolic signature capturing smoking-

related metabolic features that is more predictive of HCC.

The application of mediation analysis in this study was another challenging aspect of
the analytical framework. A temporal sequence among, in turn, lifestyle exposures,
metabolites and outcome is required[53,54] for the NDE and NIE to have a causal
interpretation. In our study, while cancer occurrence was assessed during follow-up,
lifestyle exposures were assessed at baseline, at the same time of the collection of biological
samples that provided metabolomics data. In this respect it is worth noticing that lifestyle
and metabolomics reflect different exposure windows. The metabolites likely reflect
exogenous and endogenous exposures in a limited timeframe, i.e. between weeks and a few
months as the reliability studies that of serum metabolomics data seem to
indicate[17,18,55]. The diet score was derived from questionnaires that covered the dietary

habits of participants over the past 12 months prior to baseline[56,57]. While lifetime
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alcohol reflected the history of exposure across adult life, other exposures such as BMI,
smoking, physical activity, hepatitis infection and diabetes status were the result of one
point in time assessment at recruitment. Our analytical framework study consistently relied
on the hypothesis that lifestyle factors were stable over time in the middle-age study

populations recruited in EPIC.

Another key aspect of mediation analysis is what is referred to as the ‘cross-world
assumption’, whereby NDE and NIE cannot be identified in the presence of a mediator-
outcome confounder that is affected by the exposure[58]. In our study the composite liver
function score, an index compiled from measures of circulating biomarkers of hepatic
function indicating underlying liver impairment[14] was likely affected by lifestyle exposure,
and was, in turn, likely influencing metabolite levels and HCC risk. The use of weighting-
based estimation methods to look at joint mediators to compute randomized interventional
effects has been proposed as a solution in the presence of mediator-outcome
confounder[58]. In this study the liver function was added to the list of mediators. In this
way, the metabolic signatures comprised of relevant information on the liver function, and

the link with relevant lifestyle factors was evaluated.

This study was characterized by limited sample size, a direct consequence of the fact
that HCC is a rare disease. Findings from this comprehensive approach suggested that
certain exposure-specific metabolite profiles are intermediate biomarkers on the metabolic
pathway towards hepatocellular carcinogenesis, but replication of these findings in an

independent setting is warranted.

This study further refined an endeavor for high-throughput data to integrate

metabolomics, lifestyle exposures together with disease indicators. Metabolomics lends
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itself as a promising tool to identify metabolites bridging the link between exposure(s) and
disease, as advocated by the MITM principle[7,8]. The framework we developed allows th
identification of informative metabolic signatures, which are useful to elucidate the

underlying biological mechanisms in the relationship between lifestyle exposure to risk of

cancer risk[59].

e
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Tables and Figures

Table 1: Baseline characteristics of the study population of the EPIC nested case-control study on

hepatocellular carcinoma.

Cases
(N=147)

Controls
(N=147)

Characteristics

Mean (sd) or Frequency

Sex
Male
Female
Age at blood collection (y)
Height (cm)
Weight (kg)
BMI (kg/m2)

Total energy (kcal/d)
Alcohol at recruitment (g/d)
Physical Activity (Met-h/week)
Education Level
None or Primary School completed
Technical/Professional School
Secondary School
Longer Education (incl. university degree)
Unknown
Lifetime Alcohol Consumption (g/d)*
Dietscore*
Hepatitis Infection*
Yes
No
Diabetes at Baseline*
Yes
No
Smoking Status*
Current > 15 cigarettes/d
Current <= 15 cigarettes/d
Ex-smokers quit <=10y
Ex-smokers quit >10y
Never

102
45
60.08 (7.15)
167.70 (10.31)
79.78 (17.04)

28.24 (4.74)
2260.84
(1001.13)

21.56 (34.25)
77.87 (53.44)

79

33

6

22

7
31.59 (46.32)
25.69 (6.69)

41
106

19
128

25
34
17
29
42

102

45
60.06 (7.17)
169.30 (9.91)
78.28 (12.88)

27.33 (4.10)
2276.57
(640.07)

14.73 (18.92)
83.27 (52.23)

77

33

12

25

0
18.13 (18.81)
27.35 (6.16)

142

10
137

23
10
25
29
60

*Missing values were imputed with the EM algorithm. See also frequencies in Supplementary Table

1.
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Table 2: Exposure variables of the modified HLI and corresponding metabolites contributing to the
first PLS factor (N=294, X-set= 7, M-set=133). Results from the overall analysis using residuals based
on country (X- and M-sets) and batch (M-set only).

Exposure Variable Loadings Metabolites Loadings*
BMI -0.385 Glutamic Acid -0.192
Lifetime Alcohol -0.695 Hexoses -0.191
Diet score -0.058 SM(OH) C14:1 0.196
Physical activity 0.297 SM(OH) C16:1 0.179
Smoking -0.409 SM(OH) C22:2 0.214
Hepatitis Infection -0.176 PCaaC32:1 -0.184
Diabetes -0.282 Liver function score -0.186

* Metabolite variables contributing to each PLS factor were selected based on extreme loading

values, i.e. below or above the 2.5" and 97.5" percentiles.

Table 3: Metabolites contributing to the PLS factor of each HLI component (N=294, X-set=1, M-
set=133)*. Results from multiple PLS models performed using residuals based on country (X- and M-

sets) and batch residuals (M-set only).

‘ Metabolite ‘ Loadings ‘ Metabolite Loadings ‘ Metabolite Loadings

BMI Lifetime alcohol Diet score

Glutamine -0.186 Glutamic Acid 0.170 PCaaC36:1 -0.178

Glutamic Acid 0.230 SM C16:1 -0.171 PC aaC38:0 0.195

Tyrosine 0.243 SM C18:1 -0.167 PC aaC38:6 0.230

LysoPCaC17:0 -0.218 SM(OH) C14:1 -0.180 PC 2aC40:6 0.204

LysoPC aC18:2 -0.236 SM(OH) C16:1 -0.184 PCaaC42:2 0.263

PC aeC36:2 -0.203 SM(OH) C22:2 -0.211 PCaeC34:1 -0.195

Liver function score 0.191 PCaaC32:1 0.211 PC aeC40:6 0.167
Physical activity Smoking Hepatitis infection

Biogenic Creatinine -0.199 Hexoses 0.136 SM C20:2 -0.179

Biogenic Taurine -0.181 SM Ci16:1 -0.238 SM(OH) C16:1 -0.178

Glutamic Acid -0.212 SM C18:1 -0.194 PCaaC32:2 0.188

PC aaC34:2 -0.188 SM(OH) C14:1 -0.214 PCaaC34:1 0.184

PC aeC34:2 0.209 SM(OH) C22:2 -0.182 PC aaC34:3 0.180

PC aeC34:3 0.176 LysoPC aC28:1 -0.204 PCaaC34:4 0.197

PC aeC36:3 0.193 PC aeC30:2 -0.264 PC aaC36:5 0.189
Diabetes status

Biogenic Alpha AAA 0.236

Isoleucine 0.168

Phenylalanine 0.158

Valine 0.211

Hexoses 0.551

Lyso PC aCi16:1 -0.145

Liver function score 0.226

* Metabolite variables contributing to each PLS factor were selected based on extreme loading
values, i.e. below or above the 2.5" and 97.5" percentiles.
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Supplementary material:

Supplementary Table 1: Descriptive statistics of the different components of the modified healthy lifestyle index
(HLI) and its scoring, in the current nested case-control study on HCC (Cases=147, Controls=147).

HLI variable Scoring details Frequency Missing Frequency after EM
BMI (kg/m’) 0
5th quintile (>30) 0 76
4th quintile (26-29.9) 1 107
3rd quintile (24-25.9) 2 52
2nd quintile (22-23.9) 3 34
1st quintile (<22) 4 25
Lifetime alcohol consumption (g/day) 42
m:>30; w:>20 0 65 85
m: 15-30 ; w: 10-20 1 55 76
m: 5-15; w: 5-10 2 54 55
0.1-5 3 59 59
Never 4 19 19
Diet score 12
1st quintile (6-21) 0 65 65
2nd quintile (22-25) 1 55 65
3rd quintile (26-28) 2 52 54
4th quintile (29-33) 3 77 77
5th quintile (34-46) 4 33 33

Physical activity (METs-h/week) 0

1st quintile (<45) 0 51
2nd quintile (46-69) 1 59
3rd quintile (70-96) 2 44
4th quintile (97-133) 3 60
5th quintile (>=134) 4 80

Smoking 7

Current > 15 cigarettes/day 0 48 48
Current <= 15 cigarettes/day 1 43 44
Ex smokers quit <= 10-years 2 36 42
Ex smokers quit > 10 years 3 58 58
Never 4 102 102

Hepatitis Infection 76
Yes 0 41 46
No 4 177 248

Diabetes at baseline 29
Yes 0 29 29
No 4 236 265

Supplementary Table 2: PC-PR2 results* identifying the sources of variability in the modified HLI variables and in

Metabolomic data.

Modified Healthy Lifestyle Index - 7 original variables

Country Age at recruitment Sex R’
6,165 0,645 3,602 10,697
Metabolomic data - 132 metabolites
Country Age at blood collection Batch Sex BMI Diet score
13,146 0,539 7,103 4,028 1,263 0,667
Physical Activity Alcohol at recruitment ~ Smoking Hepatitis Diabetes R’
0,555 2,498 0,312 2,664 0,969 29,458

the
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* 6 and 21 components were retained to account for 80% (threshold used) of total modified HLI and metabolites
variables’ variability, respectively. The R? value represents the amount of variability in modified HLI/metabolites
variable explained by the ensemble of investigated predictors.

Supplementary Table 3: Metabolites contributing™ to two selected modified HLI variable-specific PLS factors:

smoking and lifetime alcohol (N=294, X-set= 1 in turn, M-set=133) — Results reported from the primary analysis,
using residuals based on country (X- and M-sets) and batch (M-set only), and from the sensitivity analysis, using
mutually adjusted lifestyle residuals as well as residuals for country and batch (the latter only in the M-set).

Primary Analysis

Lifetime Alcohol Smoking
Metabolites Loadings Metabolites Loadings
SM C16:1 -0,173 Lysine -0,173
SM C18:1 -0,175 SM C16:1 -0,218
SM(OH) C14:1 -0,205 SM C18:1 -0,176
SM(OH) C16:1 -0,193 SM(OH) C14:1 -0,196
SM(OH) C22:2 -0,212 SM(OH) C22:2 -0,171
LysoPC aC28:1 -0,170 LysoPC aC28:1 -0,170
PC aeC30:2 -0,177 PC aeC30:2 -0,235
Sensitivity Analysis
Lifetime Alcohol Smoking
Metabolites Loadings Metabolites Loadings
SM C18:1 -0.161 Biogenic Taurine -0.201
SM(OH) C16:1 -0.168 Lysine -0.211
SM(OH) C22:1 -0.168 Serine -0.189
SM(OH) C22:2 -0.203 SM(OH) C14:1 -0.195
LysoPC aC16:1 0.162 PC aaC36:1 0.23
PCaaC32:1 0.234 PC aaC40:3 0.202
Acylcarnitine C2 0.152 PC aeC30:2 -0.206

* Metabolite variables contributing to each PLS factor were selected based on extreme loading values, i.e. below or

above the 2.5" and 97.5" percentiles.
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Supplementary Methods

Material and Methods

The EPIC Study

EPIC is a multicentre prospective study designed to investigate the link between diet,
lifestyle and environmental factors with cancer incidence and other chronic disease
outcomes. Over 520,000 healthy men and women aged 25-85 were enrolled between 1992
and 2000 across 23 EPIC administrative centres in 10 European countries including
Denmark, France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the
United Kingdoml. In most of EPIC centers, participants were recruited amongst the general
population with the following exceptions: for France, women were enrolled from a health
insurance scheme for school and university employees; in Utrecht, The Netherlands and in
Florence, Italy, participants came from breast cancer screening programs; some centers in
Italy (Turin and Ragusa) and Spain recruited blood donors; and the Oxford sub-cohort
(United Kingdom) included mostly health-conscious individuals recruited throughout the UK.
Finally, the French, Norwegian and Naples (Italy) cohorts comprised only women. Extensive

details of the study design and recruitment methods have been previously published™.

Data collection of dietary and lifestyle data

During the enrolment period, participants gave informed consent and completed
guestionnaires on diet, lifestyle and medical history. Approval for this study was obtained
from the ethical review boards of the participating institutions and the International Agency
for Research on Cancer (IARC). Biological samples were collected for approximately 80% of
the cohort prior to disease onset. Serum samples were stored at IARC, Lyon, France in -
196°C liquid nitrogen for all countries, with the exception of samples originating from
Sweden (-80°C freezers) and Denmark (-150°C nitrogen vapour). Usual diet over the
previous 12 months was assessed for each individual through validated country-specific
dietary questionnaires (DQs)*. Nutrient intakes were then estimated using a common
harmonized food composition database across EPIC countries (EPIC Nutrient Database,
ENDB)**. Information on sociodemographic data including education, smoking and alcohol
drinking histories as well as physical activity were gathered in lifestyle questionnaires.
Anthropometric characteristics were directly measured by trained study personnel for most

of the participants’, but were self-reported in baseline questionnaires for a subset of
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participants from the EPIC-Oxford sub-cohort, although the accuracy of these self-reported

data have been validated.

Follow-up and case ascertainment in the nested case-control study

Follow-up started at date of entry to the study and finished at date of diagnosis, death or
last completed follow-up (from December 2004 up to June 2010), whichever came first.
Cancer incidence was determined through population cancer registries or through active
follow-up as detailed elsewhere®. Incident HCC cases were defined as first primary invasive
tumours and identified through the 10th Revision of International Statistical Classification of
Diseases, Injury and Causes of Death (ICD10) as C22.0 with morphology codes ICD-0O-2
“8170/3”and “8180/3”. Metastatic cases and other types of primary liver cancer were

excluded.

Matching criteria for the nested case-control study

For each HCC case, one control (n=147) was selected by incidence density sampling7 from all
cohort members alive and free of cancer (except for non-melanoma skin cancer), and
matched by age at blood collection (+1 year), sex, study centre, time of the day at blood
collection (+3 hours), fasting status at blood collection (<3, 3-6,and >6 hours); among
women, the pair was additionally matched by menopausal status (pre-, peri-, and

postmenopausal), and hormone replacement therapy use at time of blood collection

(yes/no).

Modified Healthy Lifestyle Index (HLI) construction

The overall HLI had five initial components and was determined for the entire EPIC cohort as
an unweighted sum of the scores of its individual components, each assigned scores of 0 to
4, where a higher score indicated a healthier behaviour®®. This study utilized a modified
version of the HLI and included smoking, quintiles of physical activity, BMI, quintiles of the
diet score and lifetime alcohol consumption instead of alcohol at recruitment to avoid
reverse causality with respect to HCC outcome. In addition, two components reflecting two

10-12 \yere added to the modified index to make it more

major risk factors of liver cancer
HCC-specific: diabetes at baseline (No=4, Yes=0); and hepatitis infection (No=4, Yes=0,

assessed from biomarker measures of hepatitis B and hepatitis C viruses’ (HBV, HCV)
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seropositivity [ARCHITECT HBsAg and anti-HCV chemiluminescent microparticle
immunoassays; Abbott Diagnostics, France])'?. To some extent hepatitis infection can reflect
certain lifestyle exposures and behaviours. Missing values in some of the index components
were imputed by an expectation-maximization (EM) algorithm that preserved the variance-
covariance structure of the data®®. Descriptive and scoring details on the modified HLI
components can be viewed in Supplementary Table 1.

Metabolomic data homenclature

Fatty acids side chains are labelled “Cx:y”, where x and y are the numbers of carbon atoms
and double bonds, respectively. Measured metabolites included 12 acylcarnitines
(abbreviated according to the fatty acid side chain), 21 amino acids and 6 biogenic amines
(labelled with their full name), 78 phosphatidylcholines (PC) of which there were 11 “LysoPC
a” (PCs having one fatty acid side chain with an acyl bound), 34 “PC aa” and 33 “PC ae” (PCs
having respectively two acyl side chains [diacyl] and one acyl and one alkyl side chains), a
total of 14 sphingomyelins “SM” of which 5 had a hydroxyl group “SM(OH)” (additionally
labelled according to the fatty acid side chain) and finally 1 sum of hexoses (including
glucose, fructose and galactose). PCs were separated by type of bond and number of fatty

acids side chains.

Liver function score construction

This score includes the following tests: alanine aminotransferase >55 U/L, aspartate
aminotransferase >34 U/L, gamma-glutamyltransferase: men>64 U/L and women>36 U/L,
alkaline phosphatase >150 U/L, albumin<35 g/L, total bilirubin > 20.5 umol/L; cut-points
were provided by the clinical biochemistry laboratory that conducted the analyses (Centre
de Biologie République, Lyon, France) based on assay specifications as previously

described®*.

The diet score (included in the X-set, continuous and in the modified HLI, categorical)

An a priori score for diet was proposed within EPIC based on dietary components that have
been posited to affect risk of cancer”®, The diet score combined six dietary items including
cereal fiber, red and processed meats, ratio of polyunsaturated to saturated fatty acids,

margarine (used as a surrogate marker for trans-fat from industrial sources), glycaemic load,
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and fruits and vegetables. Details of the diet score computation are provided elsewhere®.

The resulting continuous variable was included in the X-set as previously mentioned.

Statistical Analyses

Principal Component Partial R2 (PC-PR2)

PC-PR2 combines aspects of PCA with the partial R? statistic in multiple linear regression
models. Briefly, the set under scrutiny is reduced through PCA and a number of components
explaining an amount of total variability above a designated threshold (here, 80%), is
retained. Multiple linear models are then fitted where each component’s variability is
explained by regressing it on a list of relevant covariates, yielding an R statistic for each of
the latter. The R? guantifies the amount of variability each independent variable explains,
conditional on all other covariates included in the model. Finally, an overall partial R is
computed as a weighed mean for each covariate, using the eigenvalues as components’

weights.

In this study, PC-PR2 was applied to the X-set of 7 exposure variables where the covariates
explored for systematic variability were country, age at recruitment and sex. With the
similar objective of identifying sources of variability in the metabolite data, another PC-PR2
analysis was run on the M-set and the examined covariates included country, age at blood
collection, batch, sex, BMI, diet score, physical activity, alcohol at recruitment, smoking,

hepatitis and diabetes at baseline.

After running PC-PR2, a total of 6 and 21 principal components were retained explaining
around 80% of total variability among the modified HLI original variables and the
metabolites set, respectively. The ensemble of explanatory systematic variables accounted
for 10.7 and 29.5% of total variance within the X- and M- sets, respectively. “Country of
origin” was the highest contributor with consistently 6.2 and 13.1% in the X- and M-sets,
followed by “Batch” with 7.1% in the M-set (Supplementary Table 2). PLS analyses were
carried out controlling for these two variables in the respective sets. Sensitivity analyses
were also conducted where mutually adjusted lifestyle residuals and country residuals were
used in the X-set. Country and batch residuals were used in the M-set (Supplementary

Tables 3-4).
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Details on the PLS procedure

PLS is a multivariate method that generalizes features of PCA with those of multiple linear

15,16

regression~". Mathematical and computational details of the PLS method and its

applicability within the MITM framework have been thoroughly described previously®’.

18,19 consisting of

Missing values in the M-set were imputed through a simple EM algorithm
the two following steps. First, the missing values were replaced by the average of the non-
missing values for each related variable and a PLS model is run. In a second step, the missing
data are assigned their predicted values based on the first model and PLS is then rerun. The
number of PLS factors to retain was selected after carrying a 7-fold cross-validation to
minimize the predicted residual sum of squares (PRESS) statistic, a measure of PLS
performance. Details of the process can be found elsewhere®’. PLS factor loadings, i.e. the
coefficients quantifying how much each original variable contributes to the PLS factor,
characterize each extracted HLI and metabolomics profile. As the M-set was particularly
dense in metabolite variables, the interpretation of the metabolomics profile mainly
focused on those most significantly contributing to the PLS component, reporting variables
with loading values lower than the 5" and larger than the 95t percentiles. One PLS factor

was retained in each one of the individual PLS analyses. All lifestyle and metabolomic

components of PLS factors where mirrored in their respective PLS-scores (X- and M-scores).

Details on the mediation analyses

The NDE and NIE were produced through two main models: a linear mediator model and a
conditional logistic outcome model. HCC being a rare outcome, direct and indirect effects
were estimated taking into account the nested case-control design. This is done by running
the mediator regression only for the controls®®. After testing, there was no exposure-
mediator interaction, the models can then be simply written as follows:
Let x be the exposure, m the mediator, c a set of different confounders, y HCC and j the pair
number ranging among the set {1,..., n=147}:
E[M|x,c] =By + Bix+ B¢

logit[P(Y = 1|x,m,c,j)] = 6 ; + 6,x + 6;m + 03¢

Thus, NDE and NIE are given as follows for a one standard deviation increase in x and m:

NDEy . =~ exp(6,sd(x))
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NIEx|C = exp(0; By sd(x))

95% Cl for NDE and NIE were computed through the following formulae:

95%CI(NDEy.) = exp <10g(N DEy) * 1.96 * sd(x) * /6191)

95%CI(NIEy).) = exp (log(N IE y\c) £ 1.96 * sd(x) * Jég&fl + /?5652),

where 62,69, and 6f1 are the estimated variances of the coefficients 8;, 8, and 3,
respectively.
The total effect of X (TE) was computed from the following conditional logistic regressions:
logit[P(Y = 1]x,c,j)] =y + v1x +VaC
with TE given by:
TEyc = exp(yy sd(x))
Usually TE can be written as the product of NDE and NIE. However, in our setting employing
conditional logistic regression, this is no longer the case because discordant pairs in the
model adjusted for the mediator are not the same as the model not including the mediator
(TE).
The mediator effect (ME), corresponding to the “independent” effect of the M-score
adjusted for its counterpart lifestyle exposure and for confounding variables was given by:
MEy, |y = exp(8, sd(m))
To control for potential confounding, mediation analyses models were adjusted for the
modified HLI variables except the one under scrutiny (multiple PLS), with the exception of
the models from the overall PLS. P-values for NDE and NIE were inferred from the 95%Cl,
whereas for the ME and TE, p-values associated with Wald’s test for continuous exposure
compared with a chi-square distribution with 1 degree of freedom are reported. The false
discovery rate (FDR) correction?* was applied to mediation results stemming from the

multiple PLS analyses.

For each mediation analysis the estimates for the NDE, NIE, TE and ME were reported for an
increase in the exposure as follows: an increase of 1-SD for the overall PLS analysis and for
smoking, an increase of 1-SD among the controls for BMI, physical activity and the diet
score, an increase of 1 unit (0 to 1) for diabetes and hepatitis, and finally an increase of 12

g/day (corresponding to one alcohol unit) for lifetime alcohol.
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Since TE=NDE*NIE does not hold in our setting, the mediated proportion was computed

using the following formula:

% ) . log(NIE)
o mediated = min|{max |0, log(NDE) + log(NIE) *+100),100

Indeed, the proportion mediated makes real sense only when NDE and NIE have the same
direction of association and is bounded between 0% and 100%. In this case our formula

reduces to:

log(NIE)
log(NDE) + log(NIE)

%mediated =

When NDE and NIE have opposite directions, the mediated proportion is not well-defined.
For example, if NDE = 0.5 and NIE = 2 sothat TE = 1, it is not clear what the mediated
proportion would be. In our results, NDE and NIE always had the same direction when they
were both statistically significant. For example, in our analyses for diabetes (or equivalently
for BMI), the NIE is significantly associated with an increased risk of HCC and the NDE was
not significant and had the opposite direction of association. This suggested that TE=NIE and

using our first formula above we get the appropriate value of 100%.
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CHAPTER V:

FATTY ACIDS AND BREAST CANCER IN EPIC
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CONTEXT

Breast cancer (BC) is the most frequent cancer affecting women as one in five new
cancer cases detected in women is BC, and it is the main cause of cancer death in women
worldwide. BC incidence is on the rise and is expected to keep rising as the world
population ages [209,222]. BC is a multifactorial disease whose aetiology embraces
environmental, lifestyle and dietary risk factors [13,20,22,25,81,88,223-228]. Diet can
account for about 40% of causes of cancer although there is no consensus around this
estimate [2,229]. Nonetheless, intakes of some fatty acids (FA) have been suggested to
affect BC risk. While a high dietary intake of w-3 polyunsaturated FA (PUFA) from
marine origins have been hypothesized to decrease BC risk [230], effects of trans FA
(TFA) have been postulated to increase the development of many non-communicable
diseases (NCDs) and cancers, including BC, due to a high ratio of cis monounsaturated to
saturated FA (MUFA to SFA) [231-233]. Many studies were conducted investigating the
relation between TFA and BC [234], but results from epidemiological data based on
dietary questionnaires were inconsistent. This is due to the lack of reliable data on FA in
food composition tables, expressly for TFA, hence biomarkers offer a promising
objective measure [231]. An investigation into the French arm of EPIC - the E3N sub-
cohort - in a nested case-control study with FA biomarker data showed a statistically
significant link between industrially produced TFA and increased risk of BC [35]. The
following work aims to confirm the findings from the latter study by extending the
analysis to a larger nested case-control sample including subjects from all EPIC

countries, providing a wider geographical gradient of FA intake.

OBJECTIVES
- To assess the association between biomarkers of dietary FA intake and risk of BC
within a large nested case-control study in EPIC.
- To investigate this association by different hormonal receptor status (different
BC subtypes) and by menopausal status.
- To confirm the findings from the French arm of EPIC - E3N - where evidence

showed the detrimental effects of total trans monounsaturated FA, trans
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palmitoleic and trans elaidic acids on BC risk, using a larger sample size from the
whole EPIC cohort with more variability.

- To provide the necessary evidence on the effects of individual FA, particularly
TFAs, prior to moving to more complex frameworks exploring the lipidome in

multivariate and pathway analyses.

APPROACH

Within a nested case-control study on BC within EPIC, including 2,982 cases and as
many matched controls, sixty fatty acids levels were measured by gas chromatography
in pre-diagnostic plasma. For each plasma phospholipid FA, conditional logistic
regressions were applied to estimate the odds ratios and associated 95% confidence
interval (OR, 95%CI). The models were adjusted for date at blood collection, education
level, BMI, height, menopausal hormone use at baseline, alcohol, age at first birth and
parity combined, energy intake, and family history of BC. This univariate multivariable
approach was additionally used in subgroup analyses where the relationships between
FA were investigated by menopausal status and by oestrogen receptor (ER) and

progesterone receptor (PR) status in tumours.

MAIN FINDINGS

After controlling for multiple testing through the FDR correction, evidence of an
increased overall BC risk was found associated with high levels of palmitoleic acid with
OR=1.37 (1.14, 1.64, p-trend<.001, g-value=0.004) comparing the highest quartile with
the lowest. High levels of the desaturation index Dlis (16:1n-7/16:0) which is a
biomarker of endogenous hepatic synthesis of MUFA, were associated with a
statistically significant increase in BC risk by 28%. Contrariwise, high levels of plasma
phospholipid n-6 PUFA were associated with a decrease in BC risk with OR=0.81 (0.69,
0.96, p-trend=0.035) but this association did not withstand FDR correction. In subgroup
analyses by menopausal status, the results did not markedly differ, whereas specific
associations emerged by hormonal receptor status. Specifically, ER- BC cases
significantly arose by two-fold in participants with high levels of industrial TFA. This

increase was not however present in ER+, PR- and PR+ subtypes.
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CONCLUSION

Findings from this study carried out on data from all EPIC participating sub-cohorts
showed that an early increase in endogenous synthesis of MUFA might increase BC risk.
This confirmed early findings from E3N, where specific MUFA were linked with an
increased BC risk. These results were consistent and independent from menopausal and
hormonal receptor status. Dietary industrially-produced TFA increased ER- BC risk.
These results may contribute to issue guidelines for BC prevention, by considerably
lowering or eliminating TFA in industrially processed foods. This latter measure would
likewise benefit the ER- BC subtype that has one of the highest mortality rates. This
analysis is a first stepping stone looking into the associations between FA and BC.
Future analyses will look into the complex lipid interactions at the heart of the lipidome,
and disentangle these associations when considering the common metabolic pathways

shared by numerous FA, with the scope of looking at BC outcome.
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Abstract

Intakes of specific fatty acids have been postulated to impact breast cancer risk but epidemiological
data based on dietary questionnaires remain conflicting. We assessed the association between
plasma phospholipid fatty acids and breast cancer risk in a case-control study nested within the
European Prospective Investigation into Cancer and Nutrition (EPIC) study. Sixty fatty acids were
measured by gas chromatography in pre-diagnostic plasma phospholipids from 2,982 incident breast
cancer cases matched to 2,982 controls. Conditional logistic regression models were used to estimate
relative risk of breast cancer by fatty acid level. The false discovery rate (g-values) was computed to
control for multiple comparisons. Subgroup analyses were performed by estrogen receptor (ER) and
progesterone receptor (PR) expression in the tumours. A high level of palmitoleic acid (odds ratio, OR
for the highest quartile compared with the lowest OR[Q4-Q1]=1.37; 95%ClI=1.14-1.64; p for
trend=0.0001, g-value=0.004) as well as a high desaturation index (Dly) (16:1n-7/16:0) (OR[Q4-
Q1]=1.28; 95%CI=1.07-1.54; p for trend=0.002, g-value=0.037), as biomarkers of endogenous
synthesis of monounsaturated fatty acids, were significantly associated with increased risk of breast
cancer. Levels of industrial trans-fatty acids were positively associated with ER-negative tumors (OR
for the highest tertile compared with the lowest [T3-T1]=2.01; 95% CI=1.03-3.90; p for trend=0.047),
while no association was found for ER-positive tumors (P-heterogeneity =0.01). These findings
suggest that increased endogenous synthesis of palmitoleic acid estimated many years prior to
diagnosis is associated with higher breast cancer risk. Dietary trans fatty acids derived from industrial

processes may specifically increase ER-negative breast cancer risk.
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Introduction

Breast cancer is the most frequently diagnosed cancer among women worldwide with an estimated
1.8 million new cancer cases diagnosed in 2013 (25% of all cancers) (1). While multiple risk factors for
breast cancer such as family history, obesity, alcohol, breastfeeding, and reproductive history, are

well established, very few additional modifiable risk factors have been identified.

Variation in diet has been suggested to account for up to 25-40% of preventable causes of cancers
(2). A potential link between dietary fat and breast cancer has been a focus of intense research;
however, overall findings to date are conflicting (3-5). Epidemiological studies indicate that, rather
than total fat intake, subtypes of fatty acids could diversely affect breast cancer risk. A high dietary
intake of cis monounsaturated fat (MUFA) (6), or long-chain n-3 polyunsaturated fatty acids (PUFA)
from marine sources (7), may reduce breast cancer risk. Conversely, a positive association has been
reported between dietary intake of saturated fatty acids (SFA) and ER-positive breast cancer (8).
Finally, a high estimated intake of industrial trans fatty acids (ITFA) derived from industrially-
produced hydrogenated vegetable oils may increase the risk of postmenopausal breast cancer (9).
However, overall data on specific fatty acids are still discrepant.

Epidemiological data on biomarkers of exposure to fatty acids and breast cancer risk are also limited.
Meta-analyses of prospective and/or case-control studies have suggested a protective effect of n-3
PUFA on breast cancer risk (7), while some SFA and MUFA have been associated with an increased
risk of breast cancer (10). One prospective study showed a significant association between high
blood levels of ITFA and increased risk of breast cancer (11). However, in general prospective studies
have not shown clear associations between patterns of fatty acids and risk of breast cancer, overall
and by hormonal receptor status (12). More epidemiological prospective studies that integrate
reliable biomarkers of exposure to fatty acids are needed to further investigate the contribution of
different types of fatty acids to the etiology of breast cancer, overall and by hormone receptor

subtypes.
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The purpose of the current study was to investigate associations between plasma phospholipid fatty
acids and risk of breast cancer, overall and by hormonal receptor status, in a large case-control study

nested within the prospective EPIC cohort.
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Materials and Methods

The EPIC STUDY

The EPIC study includes 519,978 participants in 10 European countries: Denmark, France, Germany,
Greece, ltaly, the Netherlands, Norway, Spain, Sweden, and the United Kingdom. Participants gave
informed consent and completed questionnaires on diet, lifestyle, and medical history. In most
centers, participants were recruited from the general population. Exceptions were the French cohort
(women of the health insurance scheme covering teachers), the Utrecht cohort (women attending
breast cancer screening), the Ragusa cohort (blood donors and their spouses), and one-half of the
Oxford cohort (vegetarians and health-conscious volunteers). Following a standardized protocol,
blood samples were collected (1993-2002), aliquoted into plasma, serum, white blood cells and

erythrocytes, and stored in liquid nitrogen.

Outcome assessment

Incident breast cancer cases were identified through population cancer registries or by active follow
up using health insurance records, cancer and pathology registries, and contacts with participant.
Subjects were followed up until cancer diagnosis (except non-melanoma skin cancer), death,

emigration, or the end of the follow-up period.

Nested case-control study

Of 367,993 women, the present analysis excluded women with prevalent cancers at any site
(n=19,853), missing diagnosis or censoring date (n=2,892), missing dietary or lifestyle information
(n=3,339), in the top or bottom 1% of the ratio of energy intake to energy requirement (n=6,753),
and non-first breast cancer cases (n=217), which left 334,939 women. Within this group, 11,576
women with invasive breast cancer were identified after a median follow-up of 11.5 years. We
designed a case-control study nested among those who provided a blood sample. Within this

subgroup, 3,858 women with invasive breast cancer were identified. Due to flooding that occurred in
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the Danish Biobank, samples from Denmark were not included, leading to a total of 2,982 cases. For
each case, one matched control was chosen randomly among cohort women without breast cancer.
Controls were matched to cases by center, age at blood donation (+ 3 months), menopausal status
(pre; surgical post; natural post), time of the day at blood collection (+ 1 hour), fasting status (< 3hrs;
3-6 hrs.; >6 hrs.) and phase of the menstrual cycle (early follicular; late follicular; peri-ovulatory;
midluteal; other luteal).

The EPIC study was approved by the Ethical Committee of the International Agency for Research on
Cancer and individual EPIC centers.

Fatty acid analyses

Fatty acids measured in plasma and erythrocyte membrane phospholipids are highly correlated, and
exhibit similar coefficient correlations with dietary fatty acids estimated through questionnaires (13),
suggesting that both matrices can be used as biomarkers of habitual intake. In the present study,
fatty acid concentrations were determined in plasma phospholipids, as our previous cross-sectional
study within the EPIC study showed that some specific fatty acids measured in this fraction are
reliable biomarkers of specific food intakes (14,15).

As previously described (11), total lipids were extracted from plasma samples (200 ul) with
chloroform-methanol 2:1 (v/v) containing antioxidant butylated hydroxytoluene and L-A-
phosphatidylcholine-dimyristoyl-ds; as an internal standard. Phospholipids were purified by
adsorption chromatography. Fatty acid methyl esters were formed by transmethylation. Analyses
were carried out on 7890A gas chromatographs (7890N GC Agilent Technologies). Samples form
cases and controls were processed in the same batch, and laboratory staff was blinded to any
participant characteristics. Human plasma were used as quality control samples and included in each
batch. Fatty acids were identified by their retention times compared with those of commercial
standards. The relative concentration of each fatty acid, expressed as percent of total fatty acids, was

guantified by integrating the area under the peak and dividing the result by the total area. Fatty acids
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were also expressed as absolute concentrations in plasma (umol/liter) based on the quantity of the
methyl deuterated internal standard.

Coefficients of variation for fatty acids ranged from 1.81% for large peaks to 9.75% for the smallest
peaks.

We calculated the percentage of the following groups: saturated fatty acids (SFA), cis-
monounsaturated fatty acids (cis-MUFA), ruminant trans fatty acids, industrial trans fatty acids, cis-n-
6 polyunsaturated fatty acids (cis-n-6 PUFA), long-chain n-6 PUFA (20:2n-6, 20:3n-6, 20:4n-6, 22:4n-6,
22:5n-6), n-3 PUFA, long-chain n-3 PUFA (20:3n-3, 20:4n-3, 20:5n-3, 22:5n-3, 24:5n-3, 24:6n-3, 22:6n-
3), and ratio of long-chain n-6/long-chain n-3 PUFA. We also determined the desaturation indexes
(DI) as the ratio of product to substrate, either oleic acid to stearic acid (Dlg) or the ratio of
palmitoleic acid to palmitic acid (Dly), as biomarkers of endogenous lipogenesis (16).

Hormonal receptor status

Information on estrogen receptor (ER) expression was available for 2,047 cases (1,649 ER-positive,
398 ER-negative), and on progesterone receptor (PR) expression for 1,729 cases (1,150 PR-positive,
579 PR-negative). Immunohistochemical measurement of ER and PR expression was performed in
each EPIC centre. To standardize the quantification of the receptor status, the following criteria were
applied for a positive receptor status: >10% cells stained, any ‘plus system’ description, >20fmo/mg,

an Allred score of >3, an IRS >2, or an H-score>10.

Statistical analyses

Baseline characteristics of cases and controls were compared using paired t-tests for continuous
variables. For categorical variables, the statistical significance of case — control differences was tested
using a chi-square test. All missing values were excluded from calculations.

In order to evaluate the association between fatty acids and breast cancer risk (overall and specific
breast cancer subtypes by receptor status), odds ratios (OR) and their 95% confidence intervals (Cl)

were estimated using conditional logistic regression models. Plasma fatty acids were categorized into
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quartiles (overall cancer risk; cancer by time between blood collection and breast cancer diagnosis or
by menopausal status at the time of blood collection) or tertiles (analyses by hormonal receptor
subtypes) based on the distribution of plasma levels in controls.

Multivariable models included potential confounding factors related to fatty acids and breast cancer
risk: date of blood collection, body mass index (BMI, kg/mz) (as a continuous variable), years of
education (low; medium; high), height (as a continuous variable), menopausal hormone use at
baseline (ever; never), alcohol intake at recruitment (as a continuous variable), age at first birth and
parity combined (nulliparous; first birth before age 30y, 1-2 children; first birth before age 30y, >3
children; first birth after age 30y), energy intake (as a continuous variable), and family history of
breast cancer (yes; no). Tests for trend were computed using the quartile-or tertile-specific means of

each fatty acid.

Additionally, a forward selection procedure was run on all fatty acids including groupings, to select
fatty acids that mostly contribute to the aetiological model. Adjustment variables mentioned above
were forced into the model and fatty acids considered as explanatory effects are tested. Chi-Square
statistic was computed for each variable not in the model, if it is significant at the entry level=0.05,
the corresponding fatty acid was then added to the model. The procedure was repeated until none

of the remaining variables meets with the entry criterion.

Sub-analyses were conducted according to hormonal receptor status (ER-positive, ER-negative, PR-
positive, PR-negative), and tests of heterogeneity of associations were performed. Formal tests of
heterogeneity were based on chi-square statistics, calculated as the deviations of logistic beta-
coefficients observed in each of the subgroups relative to the overall beta-coefficient.

The false discovery rate (FDR, g-values) was computed for results from the multivariable models
from the main analysis using the Benjamini-Hochberg correction to control for multiple comparisons

(17).
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Statistical tests were 2-sided, and P<0.05 was considered significant. All analyses were performed

with the SAS 9.2 software (SAS Institute Inc., Cary N. Base SAS® 9.3 Procedures Guide. 2011).
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Results

Characteristics of participants

Baseline characteristics of cases and controls are presented in Table 1. Cases had a significantly
higher BMI, adult height, a lower number of full term pregnancies and an older age at first full term

pregnancy.

Plasma phospholipid fatty acids in cases and controls

Mean plasma phospholipid fatty acid levels in cases and controls are provided in Table 2. Palmitic
acid is the main SFA, oleic acid the main cis-MUFA, and linoleic acid the main n-6 PUFA, with a ratio
of n-6 to n-3 PUFA higher than 2. Elaidic acid, the main ITFA, represents a higher percentage than

vaccenic acid, the natural trans fatty acid.

Plasma phospholipid fatty acids and overall breast cancer risk

Table 3 presents OR and 95% Cl of overall breast cancer according to quartiles of fatty acids,
expressed as percent of total fatty acids. SFA were not statistically significantly associated with breast
cancer risk. Higher levels of cis-MUFA were associated with increased risk of breast cancer (OR for
the highest quartile compared with the lowest [Q4-Q1]=1.17; 95%CI=0.98-1.39; p for trend=0.042, g-
value=0.259). Only palmitoleic acid remained statistically significantly related to breast cancer risk
after FDR correction (OR [Q4-Q1]=1.37; 95%Cl=1.14-1.64; p for trend=0.0001, g-value=0.004).
Consistently, palmitoleic acid (16:1n-7) was the only fatty acid retained by the forward selection

procedure (data not shown).

No significant association was found between overall breast cancer and levels of trans-MUFA or trans

PUFA from natural ruminant sources or industrial sources (Table 3).

Levels of individual cis n-6 or n-3 PUFAs were not significantly associated with breast cancer

incidence (Table 3). However, levels of total cis n-6 PUFA were inversely associated with breast
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cancer risk (OR [Q4-Q1]=0.81; 95%Cl=0.69-0.96; p for trend=0.035), while no further association was
detected with total cis n-3 PUFA. However, the association with n-6 PUFA did not withstand
correction for multiple testing (g-value=0.259). Further, the ratio of n-6 to n-3 PUFA was not

associated with breast cancer development (Table 3).

A higher Dlg was positively associated with breast cancer (OR [Q4-Q1]=1.16; 95%Cl=0.97-1.40; p for
trend=0.031, g-value=0.259). Particularly, increased risk of breast cancer was associated with a high
Dlss, even after controlling for multiple testing (OR for the highest quartile compared with the lowest

[Q4-Q1]=1.28; 95%CI=1.07-1.54; p for trend=0.002, g-value=0.037).

Plasma phospholipid fatty acids and breast cancer risk by hormonal receptor status

Table 4 presents OR and 95% of breast cancer according to fatty acid groupings, presented by
subgroup of hormonal receptor expression. Although not statistically significant, the positive
association between breast cancer risk and Dl remained irrespective of hormonal receptor status.
Increased risk of ER-negative breast cancer was specifically associated with high levels of ITFA (OR for
the highest tertile compared with the lowest [T3-T1]=2.01; 95%ClI=1.03-3.90; p for trend=0.047),
while no significant association was found with ER-positive breast cancer (p for

heterogeneity=0.015).
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Discussion

In this large prospective study, we found evidence that higher levels of MUFA, particularly
palmitoleic acid, as well as higher DIy, were associated with increased risk of breast cancer. In

addition, higher levels of ITFA were specifically associated with ER-negative breast cancer.

Nutritional epidemiology has been limited by the assessment of dietary fatty acids through dietary
assessment methodologies, prone to substantial measurement error. Measurement of plasma
phospholipid fatty acid offer specific biomarkers of past dietary intakes of fatty acids that cannot be
endogenously synthesized, irrespective of the source and quality of food (14,15). In contrast, weaker
associations were found between dietary intakes and SFA, and MUFA because of endogenous
synthesis and complex fatty acid metabolism (15).

Accumulating evidence supports a role of early increased de novo synthesis of MUFA in the
development of breast cancer (16, 18). Stearoyl-CoA desaturase-1 (SCD-1) is the key enzyme in the
synthesis of MUFA from SFA, suggesting the implication of SCD-1 activity in the biological alterations
of breast cancer (16, 18). In agreement with our findings, some epidemiological studies reported a
significant association between increased risk of breast cancer and increasing levels of plasma/serum
phospholipid or erythrocyte membrane MUFA (palmitoleic acid and/or oleic acid) (19-21). Lipid
imaging and profiling for tissue samples from different types of cancer reported abundant amounts
of MUFA relative to PUFA in the cancer microenvironment compared with the adjacent normal
tissue, leading to decreased in membrane fluidity, which, in turns, influences many crucial
membrane-associated functions (22). MUFA can serve as mediators of signal transduction and
cellular differentiation, and unbalanced levels of these mediators have been also implicated in
carcinogenesis (16,18). On the other hand, data available from epidemiological studies have
generally shown a negative association between estimated dietary intake of MUFA with breast
cancer risk, at least in Mediterranean countries (23,24), suggesting the role of endogenously

synthesized MUFA in breast cancer development, rather than exogenous dietary MUFA. Thus, these
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data support the hypothesis that increased endogenous synthesis of MUFA, rather than exogenous
dietary MUFA, may stimulate breast cancer development, and might represent a specific target for

breast cancer prevention.

There are limited data on the impact of SFA and MUFA in the DI measured in plasma phospholipids.
In a controlled cross-over study, a high dietary intake of SFA has been shown to increase the Dl
measured in blood cholesterol esters and phospholipids (25). As a consequence, a high Dl in plasma
phospholipids that is positively associated with breast cancer risk may be the result of a diet rich in
SFA, with concomitant increased hepatic desaturation of dietary SFA to MUFA. In a large cross
sectional study within EPIC, a weak correlation was found between dietary intake of oleic acid, the
main dietary MUFA, and plasma phospholipid Dlyg, suggesting that dietary MUFA may not be a strong
determinant in the Dl;g compared with endogenous synthesis from stearic acid. These data may
suggest the effect of dietary SFA rather than dietary MUFA in high DI measured in plasma

phospholipids.

We found no significant association between breast cancer risk overall or by hormonal receptor
status and levels of n-3 PUFA from marine sources. In contrast, prospective studies conducted in
Asian populations consistently reported an inverse association between breast cancer risk and
dietary intake or biomarkers of n-3 PUFA (7). Because n-3 PUFA intake in Asian populations is higher
compared to Western populations, it was suggested that n-3 PUFA intake from fish might be too low
in the EPIC population to reveal a possible protective effect on breast cancer (11). However, in a
prospective study conducted in Japan with high intakes of n-3 PUFA, no significant inverse
association was found between n-3 PUFA and breast cancer risk, while a negative trend was reported
between EPA and ER+PR+ breast cancer (26). Because of the competition between n-3 PUFA and n-6
PUFA for eicosanoids production as an underlying mechanism, ratio of n-3/n-6 PUFA in diet and
blood phospholipids has been suggested to play a determinant role in breast cancer risk. Indeed,

data from a meta-analysis of prospective studies reported a decreased risk of breast cancer
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associated with increasing ratio of n-3/n-6 PUFA measured in diet or in serum phospholipids (27).
However, no significant association remained among European populations (27). In agreement with
this latter finding, we failed to report a significant inverse association between n-3/n-6 ratio and
breast cancer risk within the EPIC study. In a prospective study conducted in a French population,
breast cancer risk was not related to any dietary PUFA overall (28); however, opposite associations
were seen according to food sources of PUFA (28), emphasizing the importance of considering food
sources of PUFA. If long chain n-3 PUFA originates mainly from fish sources, we cannot distinguish
the contribution of different food sources (vegetable oils, meat, processed foods) to n-6 PUFA levels
in plasma phospholipids. This high level of heterogeneity between epidemiological studies may
suggest that other micronutrients and biochemical pathways may modulate the relationship
between PUFA and breast cancer. In support of this hypothesis, one prospective study showed that
antioxidant supplementation modified the association between PUFA and breast cancer risk (29).
Further epidemiological studies should incorporate markers of micronutrient intake and other

metabolic factors linked to breast cancer (e.g. insulin, inflammatory markers).

Trans fatty acids are classified as natural or industrially produced. Natural trans fatty acids are
produced by the gut bacteria of ruminant animals and are found in small amounts in the food
products from these animals. ITFA are formed when fats and oils are partially hydrogenated during
industrial processing techniques, and these fatty acids are found in fast foods, industrially-produced
products, snack, deep-fried foods, and baked goods. There is evidence that ITFA significantly
increases the risk of coronary heart disease more than any other dietary component (30). The
average intake of ITFA in many European countries is now relatively low; however, as the majority of
the European countries still do not limit the content of ITFA in food, a large number of products

containing high levels of ITFA are still available in Europe (31).

Some epidemiological studies have reported a positive association between intake of ITFA and risk of

breast cancer (11), ovarian cancer (32), colon cancer, and prostate cancer (33). In the current study,
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we confirm and refine our previous data on breast cancer (11) by reporting a positive association
between plasma phospholipid ITFA isomers and breast cancer risk restricted to the subtype of ER-
negative tumours. Few mechanistic data on the effect of ITFA on cancer development are available.
One study showed that elaidic acid, the main ITFA, induces hepatic de novo fatty acid synthesis in
vitro through upregulating the SREBP-1 pathway, while cis MUFA and SFA did not show an effect
(34). In contrast to ITFA, we found no significant association between natural trans fatty acids and

breast cancer risk, overall or by hormonal receptor status.

This study had several strengths including its prospective design, based on a very large number of
incident breast cancer cases with detailed clinical and epidemiologic data. Additionally, we were able
to separate trans fatty acid isomers from natural and industrial processes. The major limitation of the
study is the single collection of blood samples at baseline. Finally, given the longer lifespan of fatty
acids in adipose tissue and erythrocytes compared with plasma, it might be suggested that fatty acids
measured in these matrices offer a better measure of longer-term intake than fatty acids measured
in plasma phospholipids. However, there are data suggesting that plasma fatty acids are correlated

with erythrocyte levels (13).

These findings suggest that increased endogenous synthesis of MUFA estimated several years prior
to diagnosis may be associated with breast cancer development. The identification of
dietary/lifestyle factors as potential regulators of endogenous MUFA synthesis could provide new
strategies for breast cancer prevention. ITFA may also specifically increase ER-negative breast cancer
risk. The poor prognosis and high burden of ER-negative breast cancer mortality make this subtype a
priority for prevention. Eliminating ITFA in industrial processes and in foods could offer a relatively

straightforward public health action for reducing non-communicable disease risk.
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Table 1. Baseline characteristics of control and cancer subjects in the EPIC Study

Characteristic Controls Cases pt
(n=2,982) (n=2,982) value

Mean age (years) 53.95(8.17) 53.94(8.17) -

Mean Body Mass Index (kg/m?) 25.30(4.23)  25.53(4.47) 0.03

Mean adult height (cm)
Age at menarche (years)
Age (years) at menarche (%)
<12
12-13
>13
Full term pregnancy (%)
Age at first full term pregnancy (years) —among parous
women
Number of full term pregnancy — among parous women
Combined age at first birth and parity (%)
Nulliparous
First birth before age 30 years, 1-2 children
First birth before age 30 years, >3 children
First birth after age 30 years
Age (years) at menopause (%)
Pre-menopausal
<45
45-54
55+

Ever use of menopausal hormones (%)

149

161.23 (6.51)

12.98 (1.56)

491 (16.7)
649 (22.1)
1802 (61.2)
2553 (87.4)

25.24 (4.25)

2.32(1.05)

368 (12.9)
1360 (47.8)
741 (26.1)

375 (13.2)

753 (25.2)
47 (1.6)
826 (27.7)
1356 (45.5)

888 (31.2)

161.58 (6.55) 0.02

12.95(1.51) 0.34
0.76

473 (16.2)

669 (22.9)

1782 (60.9)

2500 (85.7)  0.04

25.62 (4.32) 0.03

2.24(0.98) 0.006
0.05

418 (14.7)

1309 (46.0)

705 (24.7)

416 (14.6)
0.49

753 (25.3)

49 (1.6)
821 (27.5)
1359 (45.6)

897 (31.4) 0.96



Years of education (%)

Low

Medium

High
Family history of breast cancer (%)
Smoking status (%)

Never

Former

Smoker

Mean Physical activity (at work and leisure expressed as

Metabolic Equivalent Tasks (METS) units)
Physical activity (%)

Inactive

Moderately inactive

Moderately active

Active

Mean alcohol intake (g/d)

Mean alcohol intake — consumers only (g/d)

Mean energy intake (kcal/d)

998 (44.9)
606 (27.2)
620 (27.9)

152 (11.0)

1689 (57.9)

705 (24.2)

522 (17.9)
103.28

(53.18)

356 (12.5)
903 (31.6)
1313 (45.9)
286 (10.0)

8.34 (12.07)

10.09 (12.59)

1949.66

(544.34)

979 (44.7)
581 (26.6)
627 (28.7)

183 (13.2)

1653 (56.7)

727 (24.9)

535 (18.4)
101.20

(53.28)

406 (14.3)
907 (31.9)
1279 (44.9)

255 (8.9)

8.62 (12.31)

10.50 (12.84)

1973.61

(535.32)

0.66

0.34

0.63

0.11

0.13

0.35

0.43

0.07

Data are presented as means (SD) or percentages. All missing values were excluded from calculations.

'Baseline characteristics of cases and controls were compared using paired t-tests for continuous

variables. For categorical variables, the statistical significance of case — control differences was tested

using a chi-square test. - No p-value was computed for comparing mean ages between cases and

controls because control subjects were matched to cases by age at blood donation.
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Table 2. Mean plasma phospholipid fatty acids at baseline among control and case subjects in the

EPIC Study
Fatty acids (% of total fatty acids) Controls Cases
(n=2,982) (n=2,982)
Mean (SD) Mean (SD)
14:0 (myristic acid) 0.27 (0.09) 0.27 (0.09)
15:0 (pentanoic acid) 0.18 (0.06) 0.18 (0.06)
16:0 (palmitic acid) 25.53 (2.23) 25.62 (2.23)
17:0 (heptanoic acid) 0.39 (0.08) 0.39 (0.08)
18:0 (stearic acid) 14.09 (1.64) 14.03 (1.55)
16:1n-7 (palmitoleic acid) 0.64 (0.25) 0.66 (0.27)
18:1n-5 0.16 (0.12) 0.16 (0.13)
18:1n-7 (cis-vaccenic acid) 1.50(0.39) 1.52 (0.34)
18:1n-9 (oleic acid) 10.32 (2.09) 10.42 (2.10)
16:1n-7/9 (palmitelaidic acid) 0.44 (0.47) 0.43 (0.44)
18:1n-9/12 (elaidic acid) 0.36 (0.24) 0.36 (0.22)
18:1n-7 (vaccenic acid) 0.30(0.15) 0.29(0.14)
18:2n-6 (linoleic acid) 22.10 (3.22) 21.97 (3.25)
18:3n-6 (y-linolenic acid) 0.10(0.05) 0.11(0.47)
20:3n-6 (di-homo-y-linolenic acid) 3.34(0.83) 3.34 (0.84)
20:4n-6 (arachidonic acid) 10.97 (2.21) 10.98 (2.17)
22:4n-6 (adrenic acid) 0.37 (0.54) 0.38 (0.57)
22:5n-6 (osbond acid) 0.25 (0.10) 0.26 (0.11)
CLAO9cis,11trans (conjugated linoleic acid) 0.22(0.38) 0.22 (0.36)
18:2ct, 18:2tc, 18:2tt (trans linoleic acid) 0.18 (0.11) 0.18 (0.10)
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18:3n-3ccc (a-linolenic acid) 0.20 (0.09)

20:5n-3 (eicosapentaenoic acid, EPA) 1.18 (0.77)
22:5n-3 (docosapentaenoic acid, DPA) 1.00 (0.28)
22:6n-3 (docosahexaenoic acid, DHA) 4.73 (1.47)
18:3n-3cct, ctt, ttt (trans a-linolenic acid) 0.03 (0.03)
20:3n-9 (mead acid) 0.19 (0.14)
Total SFA 40.54 (2.24)

(10:0, 12:0, 14:0, 15:0, 16:0, 17:0, 18:0, 20:0, 22:0, 24:0)

Total cis-MUFA 13.00 (2.37)
(14:1, 15:1, 16:1n-7, 17:1, 18:1n-5, 18:1n-7, 18:1n-9, 20:1, 22:1,

24:1)

Total trans ruminant fatty acids 0.94 (0.65)
(trans 16:1n-7/9, trans 18:1n-7, CLA)

Total trans industrial fatty acids 0.57 (0.30)
(18 :1n-9/12, trans 18:2n-6, trans 18:3n-3)

Total cis-n-6 PUFA 37.50 (3.23)
(18:2, 18:3, 20:2, 20:3, 20:4, 22:4, 22:5)

Total long-chain n-6 PUFA 15.30(2.53)
(20:2, 20:3, 20:4, 22:4, 22:5)

Total cis-n-3 PUFA 7.19(2.17)
(18:3, 18:4, 20:4, 20:5, 22:5, 24:5, 24:6, 22:6)

Total long-chain n-3 PUFA 6.98 (2.16)

(20:4, 20:5, 22:5, 24:5, 24:6, 22:6)

Long-chain n-6/n-3 PUFA 2.39(0.80)
Desaturation index,s (18:1n-9cis/18:0) 0.75(0.20)
Desaturation index,s (16:1n-7/9cis/16:0) 0.03 (0.01)

0.20 (0.09)
1.16 (0.73)
1.00 (0.31)
4.73 (1.47)
0.03 (0.03)
0.20 (0.14)

40.56 (2.08)

13.13 (2.39)

0.93 (0.61)

0.57 (0.28)

37.39 (3.20)

15.32 (2.48)

7.17 (2.14)

6.97 (2.14)

2.40 (0.83)

0.76 (0.20)

0.03 (0.01)
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GENERAL DISCUSSION
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In this work we have explored aspects of nutritional epidemiology by combining
self-reported dietary and lifestyle information together with biomarker measurements
to deeply investigate features of the diet and cancer association. Our main objective was
to develop novel statistical frameworks for the application of multivariate statistical
techniques. This work was made possible by exploiting the availability of data and the
unique features of the European Prospective Investigation into Cancer and nutrition
study. Different themes were tackled, ranging from nutrient patterns to use of
metabolomics and fatty acids, different endpoints, including carcinomas of the breast
and the liver. This thesis focused on the use of multivariate analytical solutions to make
full use of available exposure data, thus extracting relevant information that could
improve our understanding of cancer aetiology in the field of nutritional epidemiology.
Our approach progressively moved from conventional statistical modelling harbouring
multivariable regressions coupled with multiple testing corrections, towards a more
holistic scheme embracing multivariate contexts, using increasingly complex
mathematical techniques. Evaluations primarily focused on nutrients and cancer
association and then moved towards integration of dietary biomarkers, of features of
untargeted and targeted metabolomics. These different features were evaluated
together with lifestyle exposures, the common denominator of all investigations carried
out throughout this thesis, using a methodological challenging integrative strategy to

fully exploit a large amount of epidemiological information.

In this chapter, we will discuss different aspects pertaining to the data from
different sources exploited within this thesis, addressing some strengths and
weaknesses of questionnaire, biomarker and metabolomic data. Advances in lab
technology, the importance of the validation of the findings, the necessity of replication
as well as the rationale and evolution of the statistical framework that has been
developed will be touched upon. Features of mediation analysis, that holds a central part
in our MITM implementation, are extensively explained. Finally, future perspectives are
evoked whereby the tools investigating the diet-cancer relation can be further extended

to embrace Mendelian randomisation or through more complex pathway analyses.

A large part of the evidence assessed in this thesis relied on dietary information
originating from validated questionnaire data, whereby nutrients and total energy were

estimated from harmonised food composition tables, the ENDB, compiled from national
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databases of the ten EPIC countries following standardized procedures [203,235,236].
Thus, analysis described in Chapter 2 featured 23 nutrients and total energy, the
predictors set in the MITM implementation outlined in Chapter 3 included 13 main
EPIC food groups, and the diet score used in the study presented in Chapter 4 was
constructed based on six dietary items known to be related to cancer risks [86]. In
addition the variables for alcohol consumption (e.g. alcohol at baseline and lifetime
alcohol intake), used either as part of the main exposures (Chapters 3 and 4) or as
adjustment confounders (Chapters 2 and 5) were also appraised from lifestyle
questionnaires [199].

Standard dietary assessment methods, like food frequency questionnaires are
feasible and cost-effective to be administered in large epidemiological studies, but are
prone to exposure misclassification [133]. Measurement error may account for some of
the lack of consistency that has been pointed out in findings within and across studies
relying on data from FFQs examining diet and cancer risk [143]. Some of the early
results found in large cohorts were not confirmed with long-term follow-up [237] and
many strong findings on the nutrition-cancer relationship unveiled in case-control
studies could not be replicated in clinical trials [238,239] or in cohort studies [240].
Questionnaires are nonetheless a valuable tool for large-scale dietary assessment and
remain the standard measure for diet in epidemiologic research [5,143]. Much research
is taking on the challenge of evaluating FFQs and enhancing the quality of their reporting
[143,241].

Regardless, new strategies are sought to move from traditional nutritional
epidemiology that focuses on self-reported dietary and lifestyle factors towards ways to
investigate the aetiology of diseases not relying on study participants’ capacity to recall
previous habits, yet exploiting objective measures to assess exposure [143]. Biomarkers
measured in biological specimens are increasingly being used for this scope [139,163].
Dietary biomarkers and -omics technologies provide a very promising means to
quantify dietary and other environmental exposures [242].

The work developed in this thesis utilized biomarker measurements, either to
estimate the diet-disease risk associations, or as a complementary tool to combine
evidence from different sources. In Chapters 3 and 4 analytical frameworks that
integrated, respectively, untargeted NMR and targeted MS data with dietary and lifestyle

questionnaire data are described. Metabolic profiles were identified that were the
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overlap signals in the MITM principle: biomarker signatures that are related to specific
exposures and are predictive of cancer risk at the same time. The evaluation outlined in
Chapter 5 used biomarker data as the primary exposure of interest where 60 plasma
fatty acids concentrations were examined in relation with breast cancer risk. These were
quantified through an improved gas chromatography procedure that allowed a good
separation of trans fatty acids. Combining questionnaire with biomarker data provided
us with an unprecedented opportunity to deeply investigate the complex relationships
between diet and the risk of cancer, using increasingly sophisticated statistical
techniques.

An interesting property of dietary biomarkers measured in biological samples is
that some of them reflect a great number of endogenous factors influencing foods and
nutrients (e.g. involvement in metabolic pathways, genetic characteristics, excretion,
tissue turnover, absorption effects, etc.) that affect the correlation of a biomarker with
its corresponding dietary exposure [139]. Additionally, they also reflect more closely the
dietary compound’s bioavailable dose, the latter being the relevant parameter in any
metabolic process they are involved in [243]. With all this in mind, valuable additional

information of dietary exposure can be obtained through biomarker assessment.

Different classes of dietary biomarkers can be identified: the “recovery”
biomarkers provide unbiased estimates of absolute dietary intakes and are therefore
suitable to be used as reference measurements to assess the accuracy of dietary
assessments [165]. These markers often reflect the short-term nutritional status and
display moderate correlation values with estimates of dietary intake [139,163].
However, only a few recovery biomarkers are available, i.e. urinary doubly labelled
water for total energy intake, and urinary nitrogen and potassium for dietary protein
and potassium intakes, respectively [244]. Blood samples are usually collected in cohort
studies at recruitment, largely because collecting many replicates of biosamples requires
considerable resources. This may not be sufficient to describe the evolution of long-term
dietary exposure using biomarker measurements. A repeated sampling of biospecimens
would be a valuable asset to monitor changes in diet overtime in prospective designs
and to better depict dietary intake / nutrient state at baseline and during follow-up [5].
In addition, the potential for bias in biosamples collected in nested case-control studies
within prospective design is reduced but not absent. While these samples are collected

before diagnosis, the impact of preclinical conditions may impact the biochemical
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parameters, thus causing spurious associations [63]. Concentration values of dietary
biomarkers may be difficult to compare across different studies, mainly due to
heterogeneity in laboratory processes that may introduce systematic bias affecting the
biomarker measurement [139,242]. These include the type of biological specimens
obtained, the differences in sample handling (e.g. procedures of collection, storage,
thawing), the methodologies employed to measure the biomarker (machinery, precision,

limits of detection and quantification, day-to-day drifts, etc.) [139].

With recent advances in technology, many elements related to the laboratory
settings have improved [245-247]. For example, a method (the group-batch profile -
GBP method) has been developed to adjust NMR data for systematic variations
introduced by sample work-up prior to spectral data acquisition [248]. The PC-PR2
method has been conceived to identify and quantify the contribution of relevant sources
of variation in metabolomics data prior to investigation of etiological hypotheses [183].
This technique has been used in studies described in Chapters 3 and 4. Considerable
efforts are currently underway to harmonize metabolomics data in order to allow
pooling data together from different studies, to ensure a better comparability of results
in international settings. Such harmonisation efforts have started in international
collaborations such as the The COnsortium of METabolomics Studies (COMETS), a
partnership among prospective cohort studies involved in the acquirement of
metabolomics profiling. International consortia face the need to provide
interdisciplinary solutions to investigate complex data, at a time when epidemiologic

investigations are accumulating —omics data [249].

The unique attributes of metabolomics data and the increase in the amount of
information they bring make them an appealing opportunity to take on the challenge
brought by highly dimensional, collinear, nonlinear and non-normal data. With such
overwhelming sets of data to process, there is an increased demand for statistical

methodologies and modelling approaches that are needed for better analysis of data.

After pre-processing and exploratory steps, data analyses of metabolomics
currently rely mostly on regression-based methods including multivariable regression
models, multiple testing correction procedures, use of multivariate dimension reduction
techniques, and to a lesser extent variable selection approaches [179,242]. Univariate

approaches are employed in the first instance to uncover simple associations between
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metabolites and exposure or response variables or alternately with disease outcomes.
Multivariate techniques of dimension reduction applied to large metabolomics sets
mainly aim to summarize information into a restricted number of latent variables
known as the principal components. PCA and its derivatives are the most widely used
methods, while Discriminant Analysis (DA) partitions observations with respect to the
investigated outcome by maximising the ratio of intergroup to intragroup variation. PLS-
based multivariate approaches combine PCA and MLR to identify latent factors
capturing as much variation in predictors and responses by extracting linear
combinations maximising the covariance of the latter sets. Variable selection techniques
entail a penalisation introduced in regression approaches to ensure sparsity by
shrinking the values of some of the regression coefficient estimates towards zero. These
are known as regularized linear regressions and mainly comprise ridge regression,
Lasso and its variants as well as Elastic Net. These methods are progressively being
applied to —omics data. In particular, multivariate approaches are subject to over-fitting
making validation a mandatory step for analytical strategies employing these methods.
Cross-validation techniques that do not call for the appraisal of additional independent
samples are typically used to internally validate the findings. In this procedure, the data
is randomly partitioned into a training set used to build a given model and a test set that
is removed, usually with a 90%-10% fold proportion. The process is then iterated until
each sample has served as a test set once. It is a model validation technique evaluating
the accurate predictive performance of the model in practice and its robustness in face
of data perturbations [242,250,251]. Yet cross-validation does not guarantee good
performance across different populations and may even lead to an overestimation of the
discriminatory classifier performance likely due to biases introduced in the process
[251,252]. The direction is now in favour of an external independent validation of
results that would produce more conservative results, but alas even such external
validations can possibly be subject to some biases, selective reporting and optimism
causing them to be inflated [251,253]. Validation has become an issue of special concern
with the exponential growth of ~omics that powered expectations for a cutting-edge era
of personalized medicine. The current recommendation is to adopt routine external
validation of biomarkers and metabolites, preferably in much larger studies than in
current practice, and if possible by different teams [252]. Given the inherent complexity

of biomarker data, it is essential to differentiate true signals from false positives and
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assess the generalizability of metabolic signatures that arise from analyses [251,252]. In
Chapter 3, an internal cross validation procedure was performed to evaluate the
predictive performance of the PLS models. The receiver operating characteristic (ROC)
curve and the associated area under the curve (AUC) were determined from conditional
logistic models including progressively the PLS scores, separately for lifestyle and
metabolomic signatures. The AUC unavoidably increases with the number of covariates
added to the conditional logistic model. A resampling scheme was devised to compute
objective unbiased estimates of the AUC inspired from the work of Uno et al [254]. For
each one of the 1000 drawn bootstrap samples, a 10-fold cross-validation was
performed, repeated 10 times to remove variation due to random partitioning of data
and to yield more stable estimates. The predicted values from each of the conditional
logistic models in the training set were used to derive AUC values in the test set. A

replication of these findings in independent studies is needed.

Another motivation for a replication of our findings in external studies or using
larger samples is the small sample size we had at hand. In the nested case-control
studies on hepatocellular carcinoma presented in Chapter 3 and Chapter 4, the sample
sizes were very modest with 114 cases and 222 controls, and 147 cases and 147
controls, respectively. We made a rather opportunistic use of the available data that
were at our disposal within different nested case-control studies in EPIC where
metabolomic data was accessible to investigate the diet-cancer associations or to
implement statistical strategies in proof-of-concept designs. In Chapter 5, we looked
into associations between levels of 60 plasma phospholipids fatty acids in one of the
largest nested case-control studies to date to ascertain fatty acids from biomarkers
collected within a prospective study. Due to a flooding that occurred in the Danish
Biobank, samples from Denmark were not included, when these will be added to the
fold, there will be possibly more power to detect associations that did not withstand

multiple correction testing.

Throughout this thesis, we moved from a multivariate problem with dietary data
(Chapter 2) to a higher-level multivariate problem integrating biomarkers (Chapter 3)
and then onto a more specific and more tightly defined problem (Chapter 4). We first
employed TT, a dimension reduction technique to take on one set of nutrients (Chapter

2), then made use of PLS to best summarise information from two sets of data and then
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applied a multiple PLS scheme in a more carefully controlled context. We also improved
on our usage of mediation analysis from a generic use to evaluate the mediating role
played by the extracted metabolic signatures (Chapter 3) to a more refined use adapted
to our study design (Chapter 4). More specifically, in the different stages of the
development of the statistical framework for the MITM implementation different factors
and exposures were considered. We first embraced a multitude of exposures in the first
application of the MITM, with 13 main EPIC food groups out of 21 diverse lifestyle
exposures in Chapter 3. In the next exercise presented in Chapter 4, we simplified the
exposure to diet by using a diet score constructed based on 6 dietary items, this may
have been a simplification but it reduced the dilution / dispersion of information by
having one factor for diet, and possibly resulted in a more specific metabolic factor in
relation to dietary exposure. The framework developed is flexible and can accommodate
other statistical methods that can fit like block parts and replace those in use (e.g.
sparse-PLS or canonical correlation analysis instead of PLS) and can be tailored to be
used with other -omics datasets and disease endpoints. This stems from the conceptual
strength of the MITM [162] sustaining that any past exposure may leave alterations,
either metabolic, genetic, epigenetic inter alia, that are only expressed far later in time,
depending on subsequent exposures. The MITM sets the challenge to first identify these
changes that can be recognised as overlap biomarkers mirroring previous exposures
and related to pathophysiological conditions, and then to monitor those complex
changes at the molecular level and relate them and interpret their effects with respect to
the mechanisms of carcinogenesis. These will ultimately lead to a better understanding
of the underlying ecology of cancer development in an attempt to connect the external

exposures to the palette of internal biochemical modifications.

In our evaluation of whether the metabolic signals mediated the association
between a given exposure or a lifestyle profile and HCC risk, we resorted to mediation
analysis (Chapters 3 and 4). Mediation analysis is an increasingly utilised technique,
widely used across many disciplines, to explore various causal pathways, beyond the
estimation of simple associations. Mediation analysis investigates the mechanisms that
underlie an observed relationship between an exposure variable and an outcome
variable and examines how they relate to a third intermediate variable, the mediator
[195]. Rather than hypothesizing only a direct causal relationship between the

independent variable and the dependent variable, a mediational model hypothesizes
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that the exposure variable causes the mediator variable, which in turn causes the
outcome variable. The direct and the indirect (through the mediator) levels of
association levels are then estimated from the outcome and mediator models [193].
Although mediation analysis has become very popular in social sciences, its use remains
challenging. Over simplistic regression models, the possibly greatest merit of mediation
analysis is that it allows the synergistic structure of the relationship between exposure,
mediator and outcome variables to be captured and quantified. By introducing more
complex functional relationships between variables, thus mimicking features of pathway
analysis, the interpretation of model parameters needs to account for the large amount
of underlying hypotheses subjacent each mediation model. Very strong assumptions are
required for such an ambitious causal endeavour, they must be met and confounders
must be accounted for in order to have a causal interpretation of the findings [192,193].
We were faced with some of these challenges that we addressed especially in Chapter 4.
One such example relates to temporality; the exposure must precede the mediator that
in turn precedes the outcome to satisfy the chronological ordering assumption. In EPIC
and most observational epidemiology settings, most variables of interest, including the
exposures and mediators under study, were simultaneously assessed at baseline,
together with the collection of biological samples. Yet, lifestyle and metabolomics reflect
exposure windows of different nature and time length, thus our working assumption
was to consider these factors as relatively stable in EPIC. A number of issues still require
further investigation including intermediate confounders, multiple mediators and their
inter-correlations and mediator-outcome confounders that are affected by the exposure
to mention a few. These scenarios may not be trivial to handle, and current research is
focusing on such challenging aspects and solutions are emerging [192-194,255-257].
Nonetheless, mediation analysis remains a tightly controlled environment where every
variable entering the DAG and every association arrow that is drawn has to comply with

strict hypotheses [258].

To overcome challenges related to confounding and reverse causality in
aetiological models, a Mendelian randomization (MR) method was developed as a way
to use genetic variants as an instrumental variable for the exposure of interest
[259,260]. The rationale is that, due to the random heritability of genetic traits brought
by the random assortment of alleles at the time of gamete formation [260], if a genetic

variant alters some dietary or lifestyle exposure, including the level of a biomarker, then
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the direct association of the variant with cancer risk would strongly suggest that the
biomarker-cancer relationship is not confounded by other factors, and that the primary
link between the exposure of interest and cancer is causal [261]. Aside from establishing
causal associations, MR provides estimates of the magnitude of effect between exposure
and outcome [259]. MR could be used in the diet-biomarker-cancer relationship by
including information on genetic variations upstream (for instance, with single-
nucleotide polymorphisms). The current knowledge on how genetic variations influence
dietary habits, nutrient metabolism or how they affect mechanism, bioavailability,
adsorption or biotransformation of nutrients is progressively growing [262]. It is
noteworthy to remember that MR, similarly to mediation analysis, also embraces a
series of assumptions to account for in order to be implemented. Bias can arise when the
genetic variant targets an exposure that is different from the one of interest [259]. In
this case the instrumental variable is invalid, either because 1) the variant is not
predictive of the exposure, 2) is also related to confounding factors of the exposure-
outcome association or 3) is also indirectly related to the outcome, conditional to the
exposure and confounders. The latter assumptions refer to pleiotropy (multiple effects
of a single gene), which in essence requires that the genetic variant be strictly linked to
the exposure of interest, and nothing else [260,263]. Current MR developments are
striving to fill the methodological gap in order to obtain causal estimates and to evaluate
MR performance when using invalid instruments [264]. New research is also joining
efforts between mediation analysis and MR to focus into causal pathways, by
investigating more complex networks of relationships between variables, through the
integration of regression-based methods and structural equation models along with the
use of genetic variants as instrumental variables [263]. In the context of MR this new
development allows to estimate the direct and indirect effects even in the presence of
unmeasured confounding. Both mediation and MR analyses tackle causality with
different approaches but both are rigorous concepts limiting variables amongst them,
and where a set of assumptions on the exposure, mediator, instrument and outcome are
required for mediation effects to be interpreted as causal irrespective of the statistical

models used [193,195].

Alternatively, pathway analysis has been suggested as a valuable way to
investigate etiological mechanisms [197,265]. Pathway analysis employs what is

referred to as mixed-method research to search for mechanisms, exploiting the principle
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is that quantitative and qualitative studies have complementary strengths that can be
used to explore underlying relationships between some explanatory variable and an
outcome, controlling for other factors [265]. A critical aspect of pathway analysis is the
need for an a priori knowledge of the expected relationship between the exposure and
the outcome, the nature of the outcome, and the state of knowledge about causal
pathways, which is often limited and uncertain. Another degree of complexity is that
mechanisms in the context of pathway analysis are treated analogously to mediators or
intermediate variables in standard mediation approaches [266-268], i.e. that the
mechanism is caused by the exposure and causes the outcome [265]. The
implementation of pathway analysis is not straightforward and many approaches are
being developed to adequately apply it [269-271]. A number of metabolic pathway
analysis tools which includes pathway enrichment analysis [272] can reveal underlying
complex biological processes and connectivities, and are now used for metabolomics

data [273,274].

Statistical innovations and new methodologies to analyse increasingly high-
dimensional, biologically complex data will be key to pursue the investigation of the
diet-disease relationship, a relation that evolves in time and crystallizes many already-
established components, but that will inevitably pick up new contributing factors along

the way.
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