
HAL Id: tel-01455083
https://theses.hal.science/tel-01455083v1

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebras of Relations : from algorithms to formal proofs
Paul Brunet

To cite this version:
Paul Brunet. Algebras of Relations : from algorithms to formal proofs. Computation and Language
[cs.CL]. Université de Lyon, 2016. English. �NNT : 2016LYSE1198�. �tel-01455083�

https://theses.hal.science/tel-01455083v1
https://hal.archives-ouvertes.fr

No d’ordre NNT : 2016LYSE1198

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale ED512
InfoMaths

Spécialité de doctorat : Informatique

Soutenue publiquement le 04/10/2016, par :
Paul Brunet

Algebras of Relations :
From algorithms to formal proofs.

Après avis de :

Struth Georg, Professeur, University of Sheffield Rapporteur
Kozen Dexter, Professeur, Cornell University Rapporteur
Weil Pascal, Directeur de recherche CNRS, LaBRI Rapporteur

Devant le jury composé de :

Struth Georg, Professeur, University of Sheffield Examinateur
Muscholl Anca, Professeur, Université de Bordeaux Examinatrice
Carton Olivier, Professeur, Université Paris Diderot Examinateur
Schnoebelen Philippe, Directeur de recherche CNRS, LSV – ENS de Cachan Examinateur
Silva Alexandra, Senior Lecturer, University College London Examinatrice
Petrisan Daniela, Docteur, IRIF Examinatrice
Malbos Philippe, Maître de Conférences, Université Claude Bernard Lyon 1 Examinateur

Pous Damien, Chargé de recherche CNRS, LIP – ENS de Lyon Directeur de thèse

UNIVERSITE CLAUDE BERNARD - LYON 1
Président de l’Université M. le Professeur Frédéric FLEURY
Président du Conseil Académique M. le Professeur Hamda BEN HADID
Vice-président du Conseil d’Administration M. le Professeur Didier REVEL
Vice-président du Conseil Formation et Vie Universitaire M. le Professeur Philippe CHEVALIER
Vice-président de la Commission Recherche M. Fabrice VALLÉE
Directeur Général des Services M. Alain HELLEU

COMPOSANTES SANTE

Faculté de Médecine Lyon Est – Claude Bernard Directeur : M. le Professeur J. ETIENNE
Faculté de Médecine et de Maïeutique Lyon Sud – Charles
Mérieux

Directeur : Mme la Professeure C. BURILLON

Faculté d’Odontologie Directeur : M. le Professeur D. BOURGEOIS
Institut des Sciences Pharmaceutiques et Biologiques Directeur : Mme la Professeure C. VINCIGUERRA
Institut des Sciences et Techniques de la Réadaptation Directeur : M. le Professeur Y. MATILLON
Département de formation et Centre de Recherche en Bi-
ologie Humaine

Directeur : Mme la Professeure A-M. SCHOTT

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

Faculté des Sciences et Technologies Directeur : M. F. DE MARCHI
Département Biologie Directeur : M. le Professeur F. THEVENARD
Département Chimie Biochimie Directeur : Mme C. FELIX
Département GEP Directeur : M. Hassan HAMMOURI
Département Informatique Directeur : M. le Professeur S. AKKOUCHE
Département Mathématiques Directeur : M. le Professeur G. TOMANOV
Département Mécanique Directeur : M. le Professeur H. BEN HADID
Département Physique Directeur : M. le Professeur J-C PLENET
UFR Sciences et Techniques des Activités Physiques et
Sportives

Directeur : M. Y.VANPOULLE

Observatoire des Sciences de l’Univers de Lyon Directeur : M. B. GUIDERDONI
Polytech Lyon Directeur : M. le Professeur E.PERRIN
Ecole Supérieure de Chimie Physique Electronique Directeur : M. G. PIGNAULT
Institut Universitaire de Technologie de Lyon 1 Directeur : M. le Professeur C. VITON
Ecole Supérieure du Professorat et de l’Education Directeur : M. le Professeur A. MOUGNIOTTE
Institut de Science Financière et d’Assurances Directeur : M. N. LEBOISNE

i

Résumé

Les algèbres de relations apparaissent naturellement dans de nombreux cadres, en informa-
tique comme en mathématiques. Elles constituent en particulier un formalisme tout à fait
adapté à la sémantique des programmes impératifs. Les algèbres de Kleene constituent un
point de départ : ces algèbres jouissent de résultats de décidabilité très satisfaisants, et ad-
mettent une axiomatisation complète. L’objectif de cette thèse a été d’étendre les résultats
connus sur les algèbres de Kleene à des extensions de celles-ci.

Nous nous sommes tout d’abord intéressés à une extension connue : les algèbres de
Kleene avec converse. La décidabilité de ces algèbres était déjà connue, mais l’algorithme
prouvant ce résultat était trop compliqué pour être utilisé en pratique. Nous avons donné
un algorithme plus simple, plus efficace, et dont la correction est plus facile à établir. Ceci
nous a permis de placer ce problème dans la classe de complexité PSpace-complete.

Nous avons ensuite étudié les allégories de Kleene. Sur cette extension, peu de résul-
tats étaient connus. En suivant des résultats sur des algèbres proches, nous avons établi
l’équivalence du problème d’égalité dans les allégories de Kleene à l’égalité de certains en-
sembles de graphes. Nous avons ensuite développé un modèle d’automate original (les auto-
mates de Petri), basé sur les réseaux de Petri, et avons établi l’équivalence de notre problème
original avec le problème de comparaison de ces automates. Nous avons enfin développé un
algorithme pour effectuer cette comparaison dans le cadre restreint des treillis de Kleene
sans identité. Cet algorithme utilise un espace exponentiel. Néanmoins, nous avons pu
établir que la comparaison d’automates de Petri dans ce cas est ExpSpace-complète.

Enfin, nous nous sommes intéressés aux algèbres de Kleene Nominales. Nous avons
réalisé que les descriptions existantes de ces algèbres n’étaient pas adaptées à la sémantique
relationnelle des programmes. Nous les avons donc modifiées pour nos besoins, et ce faisant
avons trouvé diverses variations naturelles de ce modèle. Nous avons donc étudié en détail
et en Coq les ponts que l’on peut établir entre ces variantes, et entre le modèle “classique”
et notre nouvelle version.

Abstract

Algebras of relations appear naturally in many contexts, in computer science as well as
in mathematics. They constitute a framework well suited to the semantics of imperative
programs. Kleene algebras are a starting point: these algebras enjoy very strong decidability
properties, and a complete axiomatisation. The goal of this thesis was to export known
results from Kleene algebra to some of its extensions.

We first considered a known extension: Kleene algebras with converse. Decidability
of these algebras was already known, but the algorithm witnessing this result was too
complicated to be practical. We proposed a simpler algorithm, which is more efficient, and
whose correctness is easier to establish. It allowed us to prove that this problem lies in the
complexity class PSpace-complete.

Then we studied Kleene allegories. Few results were known about this extension. Follow-
ing results about closely related algebras, we established the equivalence between equality
in Kleene allegories and the equality of certain sets of graphs. We then developed a new
automaton model (so-called Petri automata), based on Petri nets. We proved the equiva-
lence between the original problem and comparing these automata. In the restricted setting
of identity-free Kleene lattices, we also provided an algorithm performing this comparison.
This algorithm uses exponential space. However, we proved that the problem of comparing
Petri automata lies in the class ExpSpace-complete.

Finally, we studied Nominal Kleene algebras. We realised that existing descriptions of
these algebra were not suited to relational semantics of programming languages. We thus
modified them accordingly, and doing so uncovered several natural variations of this model.
We then studied formally the bridges one could build between these variations, and between
the existing model and our new version of it. This study was conducted using the proof
assistant Coq.

Remerciements

Merci Papa et Maman, de m’avoir soutenu, supporté, et de ne pas m’avoir (encore) renié.
Merci Manon, Lilly et Simon, pour vos nombreuses délicates attentions. Merci Marguerite,
sans toi ma vie serait moins facile et moins amusante. Merci Papy et Papy, je devrais vous
appeler plus souvent...

Merci Damien, tu as été un directeur de thèse idéal (le mot n’est pas trop fort). Merci à mes
camarades évadés avant moi, Val (Magnolias for ever), JM (qui est très gentil), Matthieu
(on s’est croisé plusieurs fois au labo), Gaupy (“juste une bière alors”...), qui m’ont servi
d’exemples, que dis-je, de modèles. Merci à tous les plumeux passés, présents et futurs, en
particulier Colin, Anupam, Denis, Laure D (qui m’a amené des chocolats dans les moments
les plus difficiles), Simon, Pierre (le père du GdT du vendredi soir), Patrick, Daniel. Merci
aux assistantes du labo, et tout spécialement à Catherine qui a su gérer gentiment mon
inaptitude totale à de nombreuses choses... Merci à Dominique et aux MILIP. Grâce à vous
tous, ça a été un plaisir immense de passer ces 3 ans au LIP.

Merci à Sylvain, Manu, Romuald et Laure G, avec qui ça a été très agréable de donner des
TD à Lyon 1. Merci aux thésards du LIP, longue vie aux JDD!

Merci aux faggots: Jésus, le grand singe et le vieil homme. Merci aux vieux lyonnais: p’tit
Sam, Sabin, Inglorious Gorieux, Alvaro le magnifique. Merci Nico & Caro, merci Victor &
Pauline, on a bien ri.

Merci Georg, Pascal et Dexter, d’avoir accepté le travail de rapporter cette thèse (et donc
de la lire!). Je suis particulièrement reconnaissant pour les très nombreuses et pertinentes
remarques que Georg a disséminé dans tout le manuscrit. Merci Alexandra, Daniela, Olivier,
Philippe, Philippe, Anca et encore Georg de participer à mon jury de thèse. Je suis honoré
d’avoir tous vos noms sur la première page!

iii

Introduction

In many contexts in computer science and mathematics binary relations appear naturally.
Indeed, a vast number of objects of interest either are relations, like orders or bisimulations,
or can be seen as relations, like graphs or computer programs. A major benefit of rela-
tional approaches is the surprisingly small number of relational operators needed to express
complex notions.

The question that has motivated us during this thesis was the computation of universal
laws of relation algebra, that is to say checking whether or not some universally quantified
equation over relations holds. This has wide ranging applications. Two of them seem of
particular interest to the author:

Program verification: giving formal guarantees that computer programs do not have
bugs is a major challenge of modern computer science. Because the programs we
want to check are often millions of lines long, we need automated methods. One
may encode programs and some of their properties as relational equations, and use
the algebraic theory of relations to check whether a given program satisfies some
property;

Automated reasoning: since the beginning of the twentieth century mathematicians have
been increasingly concerned with the degree of confidence one could have with math-
ematical proofs. This concern is heightened when one deals with large proofs, as it is
common place in computer science: proofs by case analysis often require long and te-
dious work. For these reasons automatic proof checkers and proof assistants have been
developed, giving formal guarantees of correctness. In this context, it is of paramount
importance to ease the use of these tools by providing powerful decision procedures,
discharging the burden of proof to the machine.

Kleene Algebra, introduced by Stephen C. Kleene under the name “algebra of regular
events [35]”, provide an algebraic framework allowing to express properties of the opera-
tions of union (∪), sequence or product (·), and iteration or reflexive transitive closure (�),
as well as the constants empty relation (0) and identity relation (1). It is well known that
the corresponding equational theory is decidable, and that it is complete for both language
and relation models.

As expressive as it may be, one may wish to integrate other usual operations in such a
setting. Theories obtained this way, by addition of a finite set of equations to the axioms of
Kleene Algebra, are called extensions of Kleene Algebra. In this thesis, we studied several
such extensions.

Kleene algebra with converse The converse operator is of course very natural in rela-
tional theory. It exchanges the direction of a relation, thus allowing to express properties
such as

• a relation R is symmetric: R = RN;

• R is an equivalence relation: R = (R ∪RN)
�;

• R is a partial function: RN ·R ⊆ 1.

v

vi INTRODUCTION

1 e+

0 e · f
e ∪ f

e ∩ f eN

1 e++

0 e · f
e ∪ f

e ∩ f eN

KA (Chapter 1)

KAC (Chapter 2)

KAl (Chapter 4)

KL

KL− (Chapter 3)

Figure 1: Overview

Bloom, Ésik, Stefanescu and Bernátsky [6, 26] gave a complete axiomatisation of this al-
gebra, and proved that its equational theory is decidable. In Chapter 2 we reformulate
some of their proofs, and give a new algorithm to compare expressions. We establish that
the equivalence problem in Kleene algebra with converse is PSpace-complete, and discuss
time-efficient algorithms. This chapter is adapted from [18].

Kleene allegories and lattices Kleene lattices (KL) are Kleene algebra extended with
an intersection operator. This operator is invaluable as it allows to express the conjunction
of properties. When the converse is added, we get what we call Kleene allegories (KAl). Fol-
lowing work by Freyd and Scedrov [27], and by Andréka, Bredikhin, Mikulás and Németi [2,
3], we showed that the equivalence problem in KAl is equivalent to testing the equality of
certain sets of graphs. We designed Petri-net based automata, called Petri automata, to
recognise these sets of graphs. We obtained a Kleene theorem for them: for every expres-
sion over the signature of Kleene allegories one can produce an automaton recognising the
same set of graphs, and vice versa. For the smaller signature of identity-free Kleene lattices
(where the operations are restricted to 0, ·, ∪, ∩ and the non-zero iteration +) we showed
how to compare these automata. In Chapter 3 we present the automaton model and estab-
lish the Kleene theorem. In Chapter 4 we detail how this applies to Kleene allegories, and
provide the comparison algorithm. Some of these results have been published in [16].

It is worth mentioning however that in Chapter 3 we use a rather different point of view,
making everything about the definition and manipulation of sets of graphs. This stems
from our realisation that what started out as a technical development actually produced an
algebraic formalism well suited to discuss sets of series parallel graphs, and a corresponding
operational framework to manipulate these sets.

Figure 1 summarises the algebras studied in the first four chapters.

Nominal Kleene algebra The last chapter goes in an rather different direction. The
theory of nominal sets is getting a lot of attention these days, as it deals elegantly with
crucial issues in computer science. Indeed it provides a purely algebraic and modular way
of expressing properties of binders and variables in a vast array of models. It has been
imported to Kleene algebra by Gabbay and Ciancia [28], and refined by Kozen, Silva,
Petrisan and Mamouras [39, 40]. However, when trying to apply this to relational models,
we ran into some problems that could only be solved by changing the formalism proposed
by these authors. In Chapter 5 we investigate the relationship between the existing theory
and several natural variations thereof. The goal here is to pave the way for a more extensive
study of relational nominal Kleene algebras. This chapter is adapted from [17].

Contents

Introduction v

Contents vii

1 Preliminaries 1
1.0 Notations and basic definitions . 1
1.1 Algebra of relations . 2
1.2 Regular languages and automata . 3
1.3 Kleene Algebra . 13

2 Algorithms for Kleene Algebra with Converse 17
2.1 Introduction . 17
2.2 Preliminary material . 19

2.2.1 Languages with converse . 19
2.2.2 Relations with converse: theory KAC 20

2.3 Confluence of the reduction relation . 22
2.4 Closure of an automaton . 23

2.4.1 Original construction . 24
2.4.2 Intuitions . 24
2.4.3 New construction . 25
2.4.4 Example . 29

2.5 Analysis and consequences . 29
2.5.1 Relationship with Bloom et al’s construction 29
2.5.2 Complexity . 35
2.5.3 A polynomial-space algorithm . 35
2.5.4 Time-efficient algorithms . 36

2.6 Conclusion . 39

3 A Kleene theorem for graph languages 41
3.1 Introduction . 41
3.2 Regular and recognisable sets of graphs . 41

3.2.1 Graphs . 41
3.2.2 Regular graph expressions . 44
3.2.3 Petri automata . 45
3.2.4 Building automata from expressions 48

3.3 Boxes . 52
3.3.1 Categories of boxes . 52
3.3.2 Templates . 57
3.3.3 Atomic boxes and templates . 58

3.4 Main theorem . 59
3.4.1 A regular language of runs. 60
3.4.2 Computing the expression. 61

3.5 Relationship with Branching Automata . 62
3.5.1 Definitions and Kleene Theorem . 63
3.5.2 Comparison with Petri automata . 64

3.6 Conclusion . 66

vii

viii CONTENTS

4 Petri automata for Kleene Allegories 67
4.1 Introduction . 67
4.2 Graphs and expressions . 68
4.3 From allegoric expressions to graph expressions 71
4.4 Petri automata . 72
4.5 Comparing automata . 76

4.5.1 Restriction . 76
4.5.2 Intuitions . 76
4.5.3 Simulations . 78
4.5.4 The problems with converse and unit 82

4.6 Complexity . 83
4.7 Relationship with standard Petri net notions 85

5 A formal exploration of Nominal Kleene Algebra 87
5.1 Introduction . 87
5.2 Expressions and proofs . 88

5.2.1 Atoms and letters . 88
5.2.2 Expressions and sets of expressions 88
5.2.3 Proofs . 90
5.2.4 Theories . 91

5.3 Ordering theories . 94
5.3.1 Definitions . 94
5.3.2 Embeddings . 94

5.4 Relational interpretation of literate expressions 97
5.5 Future work . 98

List of definitions 99

Author’s Contributions 101

Bibliography 103

First chapter

Preliminaries

“In the beginning was the Word.”
— John, The Holy Bible.

In this section, we recall some well known results about regular languages and Kleene
algebra.

1.0 Notations and basic definitions

Given a set X, we write P (X) for the powerset, the set of all subsets, of X, and Pf (X)
for the set of finite subsets of X. The set of natural numbers is written . Composition
of two functions f and g is written f ◦ g; it maps x to f (g (x)). We write BA or A → B
for the set of functions from A to B. If f ∈ XB and A ⊆ B, then f�A is the restriction
of f to A. The set of partial functions from A to B is written A ⇀ B. If f is a partial
function, its domain, written dom (f), is the set of elements of A where f is defined. Let R
be an equivalence relation over some set X and x ∈ X, then [x]R := {y ∈ X | x R y} is the
equivalence class of x. The set X/R := {[x]R | x ∈ R} is the quotient of X by R.

1.0.1 Words and languages

An alphabet Σ is a finite set whose elements are called letters. We denote the empty word by
ε, and the set of all words by Σ�. For any word w, |w| is the size of w, meaning its number of
letters; for any 1 � i � |w|, we write w(i) for the ith letter of w and w|i := w(1)w(2) · · ·w(i)
for its prefix of size i. The set of words of size strictly less than n is written Σ<n. Given
two words u, v ∈ Σ�, their concatenation is

uv := u(1) · · ·u (|u|) v(1) · · · v (|v|) .

The set of all suffixes of w is suffixes(w) := {v | ∃u : uv = w}. The mirror image of a
word w is the word obtained by reversing the order of its letters: wN := w (|w|) · · ·w(1).
A language is a subset of Σ�. Given two languages L,M ⊆ Σ�, their concatenation is

L ·M := {uv | u ∈ L and v ∈ M} .

The mirror image of L is the set of mirror images of words of L: LN := {wN | w ∈ L}. The
nth power of a language L is defined recursively as follows:

L0 := {ε} Ln+1 := L · Ln.

The star of a language L may then be defined as:

L� :=
⋃
n∈

Ln.

1.0.2 Binary relations

Given a set O, a binary relation over O is a subset of O ×O. We write Rel 〈O〉 for the set
of binary relations over O. We denote by R · S the composition of two relations: R · S :=
{〈x, y〉 | ∃z, x R z and z R y}. The identity relation is defined as IdO := {〈x, x〉 | x ∈ O}.
As for languages, the nth power of a relation R is defined recursively as follows:

R0 := IdO Rn+1 := R ·Rn.

1

2 CHAPTER 1. PRELIMINARIES

A relation R is called reflexive if IdO ⊆ R, and transitive if R · R ⊆ R. The reflexive-
transitive closure of R, denoted by R�, is the smallest relation containing R that is both
reflexive and transitive. It may be explicitly expressed in two different yet equivalent ways:

R� =
⋃
n∈

Rn R� = lim
n→+∞ (IdO ∪R)

n
.

(The second equation is very useful when O is finite: is provides an effective way of com-
puting R�.)

Finally, for a set E ⊆ O and a relation R over O, we write E ·R for the set of successors of
E by the R, i.e. {y | ∃x ∈ E, x R y}.

1.0.3 Algebraic structures

Definition 1.1 ((Commutative, Idempotent) Monoid).
A monoid is a structure 〈M, ·, 1〉 satisfying the following laws:

x · (y · z) = (x · y) · z x · 1 = x 1 · x = x.

A monoid is called commutative (respectively idempotent) if it also satisfies the first (resp.
second) law below.

x · y = y · x x · x = x.

∗

Definition 1.2 (Group).
A group is a structure

〈
G, ·, 1,_−1

〉
such that 〈G, ·, 1〉 is a monoid and the following laws

hold:

x · x−1 = 1 x−1 · x = 1

∗

Definition 1.3 ((Idempotent) Semi-ring).
A semi-ring is a structure 〈S, ·,+, 1, 0〉 such that 〈S, ·, 1〉 is a monoid, 〈S,+, 0〉 is a commu-
tative monoid, and the following laws hold:

a · (b+ c) = (a · b) + (a · c) (a+ b) · c = (a · c) + (b · c) 0 · a = 0 a · 0 = 0.

S is called idempotent if 〈S,+, 0〉 is idempotent. Such a semi-ring may be equipped with a
pre-order relation ≤, defined by: a ≤ b

Δ⇐=⇒ a+ b = b. ∗

1.1 Algebra of relations

As we pointed out earlier, for every set O the algebra Rel 〈O〉 comes equipped with the
operations of composition and reflexive transitive closure, as well as an identity relation.
We may extend this signature with:

• the binary unions and intersections;

• the constants empty relation (0) and universal relation (�);

• the unary reciprocal or converse (N) and the transitive closure (+);

• and many others, for instance the boolean complement, the residuals...

1.2. REGULAR LANGUAGES AND AUTOMATA 3

These algebras give rise to an (in)equational theory: a pair of terms e, f made from those
operations and some variables a, b, . . . is a valid (in)equation of the algebra of relations if
the corresponding (in)equality holds universally. Here are valid equations and inequations:
they hold whatever the relations we assign to variables a, b, and c.

(a ∪ b)� · b · (a ∪ b)� = (a� · b · a�)+ (1.1)

a� ≤ 1 ∪ a · aN · a+ (1.2)
a · b ∩ c ≤ a · (b ∩ aN · c) (1.3)

a+ ∩ 1 ≤ (a · a)+ (1.4)

In most of the thesis, we will investigate how to establish such laws by restricting the
signature to more manageable fragments.

We generalise the notion of valid equation slightly to make it more formal. For a signature
Θ, a compatible class of models is a family X of sets X equipped with all the operations in Θ
(but possibly with more operations). For any X in X we get a notion of interpretation. Let
Σ be a finite set of variables, and ϕ be a map from Σ to X. We can define an interpretation
function ϕ̂ by extending ϕ to terms over the signature Θ using only variables from Σ. Let
e and f be such terms, then e = f is a universal law for the class X , written X |= e = f , if
for every model X in X and every map ϕ : Σ → X we have ϕ̂ (e) = ϕ̂ (f).

(This can be extended to inequalities if every model in the class X admits a partial ordering.)

Two such classes will be of particular interest to us:

• the class Rel of binary relations, containing the algebra Rel 〈O〉 for every set O;

• the class Lang of languages, containing for every finite alphabet A the algebra P (A�).

Both classes are compatible with every signature we will use in this thesis.

1.2 Regular languages and automata

The theory of regular languages and finite state automata is a cornerstone of theoretical
computer science. Most definitions and results have been around for decades, yet this line of
research is still very much active. We include this section mainly to make our notations and
definitions explicit. For the sake of completeness, we also include some proofs of classical
results, especially when the intuitions behind these proofs are useful for the rest of this
thesis. Extensive surveys of these notions include [22, 21, 56].

When dealing with languages, one is often interested in two things: specifying them and
comparing them. Regular expressions provide a natural way of specifying languages in a
compositional manner. On the other hand automata are very useful to compare languages,
starting with the so-called “word problem”: given a word u and a language L, is it the case
that u ∈ L?

Let us fix for the remainder of this section an alphabet Σ.

1.2.1 Regular languages

Definition 1.4 (Regular expression).
A regular expression is a term over the following syntax, where a denotes any letter from Σ:

e, f ::= 0 | 1 | a | e+ f | e · f | e�.

The set of regular expressions over Σ is written Reg 〈Σ〉. The size of an expression e, written
|e|, is the number of operators it uses (also: the number of inner nodes in its syntax tree). ∗

4 CHAPTER 1. PRELIMINARIES

0

1

2

3

a
a

b
b

a
a

b
b

Figure 1.1: Deterministic automaton

0 1 2
a b

a, b a, b

Figure 1.2: Non-deterministic automaton

These expressions can be interpreted as languages in a straightforward way:

Definition 1.5 (Regular languages).
We define the function �� : Reg 〈Σ〉 → P (Σ�) by structural induction on regular expressions:

�a� := {a} �0� := ∅ �1� := {ε} �e�� := �e�
�

�e+ f� := �e� ∪ �f� �e · f� := �e� · �f� .

A language L is called regular if there is an expression e ∈ Reg 〈Σ〉 such that L = �e�. ∗

1.2.2 Finite state automata

Elementary definitions and results

Definition 1.6 (Finite state automaton).
A deterministic automaton is a tuple 〈Q,Σ, q0, F, δ〉; with Q a finite set of states, Σ an
alphabet, q0 ∈ Q an initial state, F ⊆ Q a set of final states and δ : Q×Σ → Q a transition
function. A non-deterministic automaton is a tuple 〈Q,Σ, I, F,Δ〉; with Q, Σ and F same
as before, I ⊆ Q a set of initial states and Δ ⊆ Q× Σ×Q a set of transitions. ∗

Two examples of automata are displayed in Figures 1.1 and 1.2.

As functions are a special case of relations, we will implicitly work with non-deterministic
automata in the following, highlighting the differences only when relevant.
Remark. The definition we gave of a deterministic automaton is not completely standard:
in many textbooks δ is considered to be a partial function (instead of a total one). In this
setting our deterministic automata are called complete deterministic automata. However,
this difference is very minor, as every partial function δ : Q×Σ ⇀ Q may be seen as a total
function δ′ : (Q ∪ {⊥})× Σ → (Q ∪ {⊥}).

Definition 1.7 (Relation induced by a letter, by a word).
For any a ∈ Σ, the relation induced on Q by a is Δ(a) := {〈p, q〉 | 〈p, a, q〉 ∈ Δ}. This can
be extended to words by induction:

Δ̂ (ε) := IdQ Δ̂ (au) := Δ (a) · Δ̂ (u) . ∗

Definition 1.8 (Path).
Let A = 〈Q,Σ, I, F,Δ〉 be an automaton, p, q ∈ Q two states and w ∈ Σ� a word. Let n
be the length of u. A path in A from p to q labelled by w is a sequence of states q0, . . . qn
such that q0 = p, qn = q and ∀0 � i < n, 〈qi, w(i+ 1), qi+1〉 ∈ Δ.

We use the compact notation p
w−−→A q to denote the existence of such a path, or equiva-

lently the fact that p Δ̂ (w) q. ∗

Notice that if A is deterministic, then for every state p and every word w there is exactly
one state q such that p

w−−→A q. Furthermore, the path from p to q labelled with w is
unique. For these reasons, we will use the notation q = δ(p, w) in the following, thus
implicitly extending the transition function δ to words.

1.2. REGULAR LANGUAGES AND AUTOMATA 5

Definition 1.9 (Language of an automaton, Recognisable language).
Let A = 〈Q,Σ, I, F,Δ〉 be an automaton and w ∈ Σ� a word. We say that w is accepted
by A if there is a pair of states 〈p, q〉 ∈ I × F such that p

w−−→A q. The set of words
accepted by A , written L (A), is called the language recognised by the automaton A .

A language L is called recognisable if there is an automaton A such that L = L (A). ∗

We may now state the following fundamental property of finite state automata:

Proposition 1.10 (Determinisation). A language is recognised by a non-deterministic au-
tomaton if and only if it is recognised by a deterministic automaton. �
Proof. As a deterministic automaton is a special case of a non-deterministic one, we just
need to establish the “only if” part.

Let A = 〈Q,Σ, I, F,Δ〉 be an automaton. The determinised of A is defined as the automa-
ton A d := 〈P (Q) ,Σ, I, F ′, δ〉 where:

F ′ := {A ⊆ Q | A ∩ F �= ∅} δ := [A, a �→ A ·Δ(a)] .

It is a simple exercise to check that L (A) = L (A ′).

This construction is broadly known as the “powerset construction” for obvious reasons.
It produces an automaton on exponential size, which is unavoidable, as shown later on
in Example 1.15.

Definition 1.11 (Accessible state, accessible automaton).
Let A = 〈Q,Σ, I, F,Δ〉 be an automaton. A state q ∈ Q is called accessible if there exists
a state i ∈ I and a word w ∈ Σ� such that i

w−−→A q. We say that A is accessible if each
of its states are accessible. ∗

Remark. It is very easy to modify the powerset construction to produce accessible deter-
ministic automata: instead of taking as states P (Q), we only produce those we need. More
precisely, we start from the initial state I (which is always accessible), then add δ (I, a) for
every a ∈ Σ, and so on until we have a set of states stable under δ (_, a).

In the following we will denote by A d the accessible deterministic automaton obtained by
the construction we sketched here.

Finite state automata are very versatile structures, and support a number of operations.
This entails a number of closure properties of recognisable languages, as summarised in the
following proposition.

Proposition 1.12 (Closure properties of recognisable languages.). Recognisable languages
are closed under union, concatenation, star, intersection, mirror image and complementa-
tion. �
Proof. We give constructions performing each of the above operations. In each case the
correctness of the construction being both easy and well known, we forgo the proof.

First, we describe the binary operations. Let A1 and A2 be two non-deterministic automata,
with Ai = 〈Qi,Σ, Ii, Fi,Δi〉, such that Q1 ∩Q2 = ∅1.

union A ∪ := 〈Q1 ∪Q2,Σ, I1 ∪ I2, F1 ∪ F2,Δ1 ∪Δ2〉;

concatenation A · := 〈Q1 ∪Q2,Σ, I1, F
′,Δ1 ∪Δ2 ∪Δ′〉, where:

F ′ :=
{

F1 ∪ F2 if I2 ∩ F2 �= ∅
F2 otherwise, Δ′ :=

{
〈f, a, q〉

∣∣∣∣ f ∈ F1 and
∃i ∈ I2 : 〈i, a, q〉 ∈ Δ2

}
;

1This hypothesis is not restrictive as the language of an automaton is preserved by bijective renaming
of the states.

6 CHAPTER 1. PRELIMINARIES

intersection A ∩ := 〈Q1 ×Q2,Σ, I1 × I2, F1 × F2,Δ
′〉, where:

Δ′ := {〈〈p1, p2〉 , a, 〈q1, q2〉〉 | ∀i ∈ {1, 2} , 〈pi, a, qi〉 ∈ Δi} .

Now for the unary operations, we first present the constructions for the star and mirror
image, the complementation being slightly different. Let A = 〈Q,Σ, I, F,Δ〉 be a non-
deterministic finite state automaton, and let q0 /∈ Q be a fresh state.

star A � := 〈Q ∪ {q0} ,Σ, {q0} , {q0} ,Δ ∪Δi ∪Δf 〉, where:

Δi := {〈q0, a, q〉 | ∃p ∈ I : 〈p, a, q〉 ∈ Δ} ,
Δf := {〈p, a, q0〉 | ∃q ∈ F : 〈p, a, q〉 ∈ Δ ∪Δi} ;

mirror A N := 〈Q,Σ, F, I,Δ′〉 with Δ′ := {〈q, a, p〉 | 〈p, a, q〉 ∈ Δ}.

For the complementation, we need to use a deterministic automaton. As stated in the
previous lemma, this is not restrictive for recognisable languages. However, it does have a
negative impact on the computational complexity of the construction, as the determinisation
procedure is exponential. It is also worth mentioning that for this construction we really
need the transition function δ to be total. Let A = 〈Q,Σ, q0, F, δ〉 be a deterministic
automaton. The complemented automaton is simply Ā := 〈Q,Σ, q0, Q \ F, δ〉.

Minimal automaton An important result of automata theory is the existence of a unique
minimal deterministic automaton for every recognisable language. In the following, the size
of an automaton A , written |A |, is the cardinality of its set of states.

Proposition 1.13. Let L be a recognisable language, there exists a deterministic automaton
A m such that L (A m) = L, and for every deterministic automaton A recognising L, either
|A m| < |A | or A m = A (up-to bijective renaming of states). �
Proof. We begin by defining an equivalence relation ∼L on words:

u ∼L v
Δ⇐=⇒ ∀w, (uw ∈ L ⇔ vw ∈ L) .

Let A = 〈Q,Σ, I, F,Δ〉 be an automaton, we may define another equivalence relation ∼A

as follows:

u ∼A v
Δ⇐=⇒ ∀i ∈ I, ∀q ∈ Q,

(
i

u−−→A q ⇔ i
v−−→A q

)
.

If A is accessible and deterministic with initial state q0 and transition function δ, this
equivalence relation may be reformulated as δ (q0, u) = δ (q0, v). In this case, one can see
that the equivalence classes of ∼A are in bijection with Q (hence there are only finitely
many of them).

Furthermore, suppose L (A) = L. Then whenever u ∼A v, it must be the case that u ∼L v.
Indeed, we can prove this by contraposition: suppose there exists w ∈ Σ� such that uw ∈ L
and vw /∈ L. This means δ (q0, uw) ∈ F but δ (q0, vw) /∈ F , hence δ (q0, uw) �= δ (q0, vw). As
δ (q0, uw) = δ (δ (q0, u) , w) and δ (q0, vw) = δ (δ (q0, v) , w) this entails δ (q0, u) �= δ (q0, v).

Let us now define explicitly A m as 〈Σ�/ ∼L,Σ, [ε]∼L
, Fm, δm〉, with Fm := Σ�/ ∼L ∩ P (L),

and δm ([u]∼L
, a) := [ua]∼L

. We immediately obtain that L (A m) = L and that ∼A m=∼L.

Let A = 〈Q,Σ, q0, F, δ〉 be a deterministic automaton recognising L such that |A | � |A m|.
Remember that ∼A ⊆∼L. This means that ∼A has more equivalence classes that ∼L. As
we also know that the states of A are in bijection with Σ�/ ∼A , this means that

|A | � |Σ�/ ∼L| = |A m| .

Hence A and A m have the same size. We also get ∼A =∼L, which allows us to conclude
that A and A m are equal up-to bijective renaming.

1.2. REGULAR LANGUAGES AND AUTOMATA 7

The above proof follows Myhill-Nerode. It does not provide directly an algorithm to com-
pute this minimal automaton, but several algorithms follow nonetheless the intuitions from
this proof. However, there is a simpler and more surprising algorithm due to Brzozowski [19].
It relies on the following lemma:

Lemma 1.14. If A = 〈Q,Σ, q0, F, δ〉 is an accessible deterministic automaton, then (A N)
d

is the minimal automaton for the language L (A)
N. �

Proof. By unfolding the definitions, we get that (A N)
d
= 〈Q′,Σ, q′0, F

′, δ′〉, where:

Q′ ⊆ P (Q) , q′0 = F, F ′ = {S ∈ Q′ | q0 ∈ S} ,

δ′ (S, a) =
{
q ∈ Q

∣∣∣ ∃p ∈ S, p
a−−→A N q

}
We call this automaton A ′. From the definition of δ′, we have for any word u and any
state S of A ′:

δ′(S, u) = {q ∈ Q | δ(q, uN) ∈ S} .

Let L = L (A). To show that A ′ is minimal for LN, we only need to check that ∼LN⊆∼A ′ .
Let u, v ∈ Σ� such that u ∼LN v. By definition we have that for any word w, uw ∈ LN

exactly when vw ∈ LN. This may be reformulated as wNuN ∈ L ⇔ wNvN ∈ L, and finally
as:

∀w ∈ Σ�, wuN ∈ L ⇔ wvN ∈ L.

We need to check that δ′ (q′0, u) = δ′ (q′0, v). We already know that:

δ′ (q′0, u) = δ′ (F, u) = {q ∈ Q | δ (q, uN) ∈ F} .

Because of the accessibility hypothesis, we can also devise a function ω : Q → Σ� such that
for any q ∈ Q, δ (q0, ω (q)) = q. Hence we get that:

δ (q, uN) = δ (δ (q0, ω (q)) , uN) = δ (q0, ω (q)uN)

Which means that δ (q, uN) ∈ F ⇔ ω (q)uN ∈ L. Hence we have:

δ′ (q′0, u) = {q ∈ Q | ω (q)uN ∈ L}
= {q ∈ Q | ω (q) vN ∈ L}
= δ′ (q′0, v) .

With this lemma, it is immediate to check that from any non-deterministic automaton A

recognising the language L, the automaton
((

(A N)
d
)N)d

is the minimal automaton for L.

Remark. A co-algebraic study of this construction was done by Bonchi et al [8].

The following example highlights the unavoidable exponential blowup when moving from
non-deterministic to deterministic automata.

Example 1.15.
Consider the following automaton, using n+ 1 states:

0 1 n
a a, b a, b

a, b

. . .

8 CHAPTER 1. PRELIMINARIES

This automaton recognises the language L denoted by the expression (a+ b)
�
a (a+ b)

n−1,
whose size is also linear in n (as (a+ b)

n is a shorthand for an expression of size 4n − 1).
However, the minimal automaton for this language has states {X ⊆ {0, . . . , n} | 0 ∈ X} and
transition function:

δ (X, a) = {0} ∪ {i+ 1 | i ∈ X \ {n}} δ (X, b) = {0} ∪ {i+ 1 | i ∈ X \ {0, n}} .

This automaton has 2n states. We may see that it is minimal by realising that for any pair
of words u, v ∈ Σ<n if u �= v then there is a word w such that auw ∈ L � avw ∈ L:

• if |u| > |v| then take w = an−1−|u|, and check that auw ∈ L and avw /∈ L;

• if |u| = |v|, we consider the first difference between the two and decompose them as
u = u1au2 and v = u1bu

′
2, with |u2| = |u′

2|. Now take w = an−1−|u2|, and check that
auw ∈ L and avw /∈ L. •

Comparing automata The previous section already gives an algorithm to test whether
two automata recognise the same language: one simply minimises both automata, and
checks if the resulting automata are isomorphic (which is a simple enough operation). How-
ever, this approach is not very efficient, and doesn’t seem to leave much room for optimi-
sation. There is a range of methods to decide this problem, but we will only present here a
quick overview of the bisimulation up-to family of algorithms.

First recall the notion of simulation [47]:

Definition 1.16 (Simulation).
A relation S between the states of two automata A and B is a simulation if for all p S q
we have (a) if p x−−→A p′, then there exists a q′ such that q

x−−→B q′ and p′ S q′, and (b) if
p ∈ FA then q ∈ FB. We say that A is simulated by B if there is a simulation S such that
for any p0 ∈ IA , there is q0 ∈ IB such that p0 S q0. ∗

Definition 1.17 (Progress, Bisimulation, Bisimilarity).
Let A = 〈Q,Σ, I, F,Δ〉 be an automaton, and R,S ⊆ Rel 〈P (Q)〉 be two binary relations
on sets of states. We say that R progresses to S, and write R � S, if whenever X R Y the
following holds:

• X ∩ F �= ∅ if and only if Y ∩ F �= ∅.

• for every letter a ∈ Σ, (X ·Δ(a)) S (Y ·Δ(a)).

A bisimulation is a relation R such that R � R. Two sets of states X,Y ⊆ Q are said to
be bisimilar if there exists a bisimulation relating them. ∗

It is a simple exercise to check that bisimilarity is an equivalence relation, and is itself a
bisimulation. The relevance of these notions is outlined by the following result:

Lemma 1.18. Let A1,A2 be two automata with disjoint sets of states. For i ∈ {1, 2} we
write Ai = 〈Qi,Σ, Ii, Fi,Δi〉. Then L (A1) = L (A2) if and only if I1 and I2 are bisimilar
in the automaton A1 ∪ A2. �
Proof. We begin by defining two functions δ1, δ2 : Σ� → P (Q1 ∪Q2) by induction on
words.

δi (ε) := Ii

δi (wa) := δi (w) ·Δi (a) .

Notice that for every word w ∈ Σ�, we have δi (w) ⊆ Qi, and w ∈ L (Ai) ⇔ δi (w)∩Fi �= ∅.

1.2. REGULAR LANGUAGES AND AUTOMATA 9

Suppose L (A1) = L (A2). We need to find a bisimulation relating I1 and I2. Let R be the
following relation:

R := {〈δ1 (w) , δ2 (w)〉 | w ∈ Σ�} .

As 〈I1, I2〉 = 〈δ1 (ε) , δ2 (ε)〉, we have I1 R I2. Suppose X and Y are related by R, then
there must be some word w ∈ Σ� such that X = δ1 (w) and Y = δ2 (w), which means
X ⊆ Q1 and Y ⊆ Q2.

X ∩ F �= ∅ ⇔ X ∩ F1 �= ∅
⇔ w ∈ L (A1) = L (A2)

⇔ Y ∩ F2 �= ∅ ⇔ Y ∩ F �= ∅.

Furthermore, ∀a ∈ Σ, as X ⊆ Q1, X ·Δ(a) = X ·Δ1 (a) = δ1 (wa) and for the same reason
Y · Δ(a) = δ2 (wa), thus these two sets are related by R. Hence we have R � R, so it is
indeed a bisimulation.

Now suppose that we have a bisimulation R ∈ Rel 〈P (Q1 ∪Q2)〉 such that I1 R I2. We
will show that L (A1) = L (A2) by induction on words, but we need a sightly more general
statement to do so: for every word w ∈ Σ�, for every pair of sets of states 〈X,Y 〉 ∈
P (Q1)× P (Q2) such that X R Y , we have :

∃ 〈p1, q1〉 ∈ X × F1 : p1
w−−→A1

q1 ⇔ ∃〈p2, q2〉 ∈ Y × F2 : p2
w−−→A2

q2.

For w = ε, this is equivalent to checking whether X ∩ F1 �= ∅ ⇔ Y ∩ F2 �= ∅, which is
enforced by the fact that R is a bisimulation. Now consider the case aw. The definition of
bisimulation tell us that X ·Δ(a) and Y ·Δ(a) are again related by R. Because X ⊆ Q1,
we get that X · Δ(a) = X · Δ1 (a) ⊆ Q1, and for the same reason Y · Δ(a) ⊆ Q2. Hence
the induction hypothesis applies to this pair, and we get:

∃ 〈p1, q1〉 ∈ X × F1 : p1
aw−−−→A1

q1

⇔∃〈p1, p′1, q1〉 ∈ X ×Q1 × F1 : p1
a−−→A1 p′1 and p′1

w−−→A1 q1

⇔∃〈p′1, q1〉 ∈ X ·Δ1 (a)× F1 : p′1
w−−→A1 q1

⇔∃〈p′2, q2〉 ∈ Y ·Δ2 (a)× F2 : p′2
w−−→A2 q2

⇔∃〈p2, q2〉 ∈ Y × F2 : p2
aw−−−→A2

q2.

We conclude by noticing that w ∈ L (Ai) if and only if ∃ 〈pi, qi〉 ∈ Ii ×Fi : pi
w−−→Ai qi.

It is then straightforward to devise an algorithm from this result:

1. start with a relation R containing only the pair 〈I1, I2〉,

2. choose a pair 〈X,Y 〉 ∈ R that has not been processed yet,

3. if X ∩ F1 = ∅ and Y ∩ F2 �= ∅ (or the converse) return false,

4. otherwise for every a ∈ Σ enrich R with the pair 〈X ·Δ1 (a) , Y (Δ)2 (a)〉

5. go to step 2.

The algorithm stops either when the relation R is a bisimulation, or when a counter example
to language equality has been found.

The strength of the approach relies in its potential for optimisation, in particular via the
so-called up-to techniques [58, 53]. A function g : Rel 〈P (Q)〉 → Rel 〈P (Q)〉 is called an
up-to technique if every relation R such that R � g (R) is contained in a bisimulation. We
discuss this in more details in Section 2.5.4.

10 CHAPTER 1. PRELIMINARIES

Syntactic monoid Another important way of studying automata and recognisable lan-
guages is through monoids. We recommend the lecture notes by Pin [50] on this topic. We
recall here a few definitions and basic results.

Definition 1.19 (Recognition by monoid).
A monoid 〈M, ·, 1〉 recognises a language L if there is a subset P ⊆ M and a monoid
homomorphism ϕ : Σ� → M such that for every word u ∈ Σ�, u ∈ L if and only if
ϕ (u) ∈ P . Equivalently, P and ϕ should satisfy L = {u ∈ Σ� | ϕ (u) ∈ P}. ∗

Remark. It is straightforward to see that morphisms from Σ� to M are exactly the functions
obtained as follows: take any map f from Σ to M , and define the morphism f̂ inductively
on words as:

f̂ (ε) := 1 f̂ (au) := f (a) · f̂ (u) .

Given an automaton, the monoid of binary relations on states recognises the language of
that automaton.

Definition 1.20 (Transition monoid).
Let A = 〈Q,Σ, I, F,Δ〉 be an automaton. The transition monoid of A is

MA :=
〈{

Δ̂ (u)
∣∣∣ u ∈ Σ�

}
, ·, IdQ

〉
. ∗

Lemma 1.21. The transition monoid of A recognises the language of A . �
Proof. Consider the function Δ : a �→ Δ(a) and the subset P defined by

P := {R ∈ MA | R ∩ (I × F) �= ∅} .

Clearly, Δ̂ is a morphism from Σ� to MA . Let u be any word. Δ̂ (u) ∈ P means there
exists 〈i, f〉 ∈ I × F such that i Δ̂ (u) f , which in turn is equivalent to the existence of a
path in A from i to f labelled with u. Hence we get L (A) =

{
u

∣∣∣ Δ̂ (u) ∈ P
}

.

Notice that the transition monoid of any automaton is finite. This prompts the following
fundamental lemma:

Lemma 1.22. A language is recognisable if and only if is is recognised by a finite monoid.
�

Proof. Lemma 1.21 proves the “only if” direction. For the other direction, suppose we have
a finite monoid 〈M, ·, 1〉, a map ϕ : Σ → M and a subset P ⊆ M . We build the following
deterministic automaton:

AM := 〈M,Σ, 1, P, [x, a �→ x · ϕ (a)]〉 .

It is then straightforward to check that the language recognised by this automaton is ex-
actly {u | ϕ̂ (u) ∈ P}.

As for deterministic automata, there is a unique minimal monoid recognising every recog-
nisable language, called the syntactic monoid.

Definition 1.23 (Syntactic congruence, syntactic monoid).
Let L be a recognisable language. The syntactic congruence of L is the following relation:

u ≡L v
Δ⇐=⇒ (∀x, y ∈ Σ�, xuy ∈ L ⇔ xvy ∈ L) .

The syntactic monoid of L is the quotient of 〈Σ�, ·, ε〉 by ≡L. We write it Σ�/ ≡L. ∗

1.2. REGULAR LANGUAGES AND AUTOMATA 11

By construction, the syntactic congruence is an equivalence relation and a congruence.

Lemma 1.24. The syntactic monoid recognises L. �
Proof. Let ϕ : u �→ [u]L be the function mapping any word to its equivalence class with
respect to ≡L, and P = {[u]L | u ∈ L}. We conclude by noticing that u ≡L v and v ∈ L
entails u ∈ L, thus u ∈ [v]L ∈ P implies u ∈ L.

Lemma 1.25. A finite monoid 〈M, ·, 1〉 recognises L if and only if there exists a sub-monoid
M ′ ⊆ M and a surjective homomorphism M ′ → Σ�/ ≡L. �
Proof. Let 〈M, ·, 1〉 be a finite monoid, and ϕ and P ⊆ M be such that L = {u | ϕ̂ (u) ∈ P}.
Consider the sub-monoid M ′ := {ϕ (u) | u ∈ Σ�}. This sub-monoid is generated by the
images of letters in Σ by ϕ. Notice also that ϕ (a) = ϕ (b) ⇒ a ≡L b. Indeed if a and b are
not syntactically congruent, there must be x, y ∈ Σ� such that xay ∈ L but xby /∈ L (or the
symmetric). This entails ϕ̂ (x) · ϕ (a) · ϕ̂ (y) �= ϕ̂ (x) · ϕ (b) · ϕ̂ (y), hence ϕ (a) �= ϕ (b). This
means that the map ψ : ϕ (a) �→ [a]L is well defined. It is then a simple exercise to check
that this map yields a surjective homomorphism from M ′ to Σ�/ ≡L.

On the other hand, if we have such a homomorphism ψ, then for every letter a ∈ Σ, we
choose an element ϕ (a) ∈ M ′ such that ψ (ϕ (a)) = [a]L. From this definition we immedi-
ately get that ψ (ϕ̂ (u)) = [u]L. Hence we get u ∈ L ⇔ ϕ̂ (u) ∈ {x | ∃u ∈ L : ψ (x) = [u]L}.

This lemma entails that the syntactic monoid is the smallest monoid recognising L (both in
the sense of cardinality and of division ordering), and as such it is unique up to isomorphism.

Finally we have a simple way to build the syntactic monoid from the minimal automaton:

Lemma 1.26. The syntactic monoid of a recognisable language is the transition monoid of
its minimal automaton. �
Proof. Let A m be a minimal automaton. Recall from the proof of Proposition 1.13 that
the states of A m are the equivalence classes of the relation ∼L defined as

u ∼L v
Δ⇐=⇒ ∀x ∈ Σ�, ux ∈ L ⇔ vx ∈ L.

First notice that ∀q, δm (q, u) = δm (q, v) means that for every word x, [xu]∼L
= [xv]∼L

.
Hence we get

∀q, δm (q, u) = δm (q, v)

⇔ ∀x, xu ∼L xv

⇔ ∀x, y, xuy ∈ L ⇔ xvy ∈ L

⇔ u ≡L v.

This proves (in non-deterministic notation) that
{
v
∣∣∣ Δ̂ (u) = Δ̂ (v)

}
= [u]L for every

word u, thus proving that MA m and Σ�/ ≡L are isomorphic.

1.2.3 Kleene theorem

The fundamental theorem of regular languages is the so-called Kleene theorem:

Theorem 1.27 (Kleene theorem). A language is regular if and only if it is recognisable. �
Proof (Sketch). To prove that regular languages are recognisable, we proceed by induction.

• The automaton A1 = 〈{•} ,Σ, {•} , {•} , ∅〉 recognises the language {ε} = �1�.

• The automaton Aa = 〈{•, ◦} ,Σ, {•} , {◦} , {〈•, a, ◦〉}〉 recognises �a�.

12 CHAPTER 1. PRELIMINARIES

• For every other operation, we may rely on Proposition 1.12 to conclude.

For the other direction, we need to introduce generalised automata, which are simply au-
tomata whose transitions are labelled with regular expressions instead of letters. To go from
one state to another along a transition labelled with e ∈ Reg 〈Σ〉 in such an automaton one
has to read a word belonging to �e�. It is easy to see every automaton as a generalised
automaton. In this setting we may also restrict ourselves to automata with a single initial
state • without incoming transitions and a single final state ◦ without outgoing transitions.
Simply add two fresh states, and transitions labelled with 1 going from the first new state
to the previously initial states, and from the previously final states to the other new state.
We may further require that there is at most one transition between any pair of states: two
transitions 〈p, e, q〉 and 〈p, f, q〉 may be merged as 〈p, e+ f, q〉. Then the algorithm removes
successively every state that is neither initial nor final, updating the set of transitions to
preserve the language. To remove state q, for every pair of states p, r (with p �= q, ◦ and
r �= q, •), we replace the label of the transition between p and r by

δ (p, r) + δ (p, q) (δ (q, q))
�
δ (q, r)

where δ (x, y) is either the label of the transition between x and y or 0 if there is no such
transition. When every state except • and ◦ has been removed, we get an automaton of the
shape

〈{•, ◦} ,Reg 〈Σ〉 , {•} , {◦} , {〈•, e, ◦〉}〉 .

By construction it recognises the same language than the initial automaton, and it is clear
that the language it recognises is exactly �e�.

Remark. There exists a large number of methods to get an automaton from an expression,
most of them more efficient than what we described here. In particular, one might be
interested in:

• Glushkov’s construction [30], as well as McNaughton and Yamada’s [45], yield a non
deterministic automaton whose states are the occurrences of letters in the expression;

• Thompson’s construction [60], is related to the one presented here, but uses so-called
ε-transitions to get a more compact automaton; a improvement on this construction
was proposed by Ilie and Yu [33];

• Brzozowski [20] proposed yet another method, by introducing derivatives of regular
expressions; this method was an inspiration for the more efficient construction by
Antimirov [4].

Generally speaking, the non-deterministic automaton produced from a regular expression is
linear in the size of the expression. On the other hand, the extraction of an expression from
an automaton is an exponential operation. The algorithm we presented can be traced back
to Kleene, and most of the existing algorithms for this problem follow the same method:
the optimisations focus on choosing in which order states should be eliminated.

1.2.4 On space complexity

We will outline here a few results about the space complexity of some problems regarding
regular expressions and automata. Let us begin with a simple technical lemma.

Lemma 1.28. Let A = 〈Q,Σ, I, F,Δ〉 be an automaton. The language of A is not empty
if and only if it contains a word of length smaller than |Q|. �

1.3. KLEENE ALGEBRA 13

Proof. Let u be a word of minimum size accepted by A . Let q0, . . . , q|u| ∈ Q an accepting
run in A labelled by u:〈

q0, q|u|
〉
∈ I × F ; ∀0 < i � |u| , 〈qi−1, u(i), qi〉 ∈ Δ.

If |u| � |Q|, then there must be 0 � i1 < i2 � |u| such that qi1 = qi2 . Hence we may build
a run (q′i)0�i�|u|−(i2−i1)

as follows:

q′i =
{

qi for i � i1
qi+(i2−i1) otherwise.

This run is accepting, hence the word v = u (1) . . . u (i1)u (i2 + 1) . . . u (|u|) is accepted
by A , which breaks the assumption that u has minimum length among words in L (A).

Using this lemma, we get a upper-bound on the complexity of the comparison of two de-
terministic automata:

Proposition 1.29. The problem of testing L (A) = L (B) for deterministic automata A
and B lies in the complexity class LogSpace. �
Proof. First, notice that this problem is equivalent to testing whether L (A) ∩ L (B) = ∅
and L (A)∩L (B) = ∅. Looking at the proof of Proposition 1.12, we know that there is an
automaton of size |A | × |B| recognising the language L (A) ∩ L (B). By Lemma 1.28 we
know that this language is empty if and only if it does not contain a word of length smaller
than |A | × |B|.
The non-deterministic LogSpace algorithm will thus guess such a word one letter at a
time, and simulate its reading in both automata. It only needs to store at any given time
a counter of size log |A | + log |B|, a letter of constant size, and a state of logarithmic size
in each automata.

Because of the exponential blowup between non-deterministic and deterministic automata,
this yields a PSpace upper-bound on the complexity of comparing arbitrary automata.
Because the conversion between expressions and non-deterministic automata is linear this
upper-bound may be transferred to the problem of comparing the languages of two regular
expressions. Meyer and Stockmeyer [46] showed that this problem is actually PSpace-
complete, by encoding the computation of a polynomial space Turing machine as regular
expression. They also show in the same paper that adding a squaring operator e2 to regular
expressions yields a ExpSpace-complete comparison problem.

1.3 Kleene Algebra

Kleene algebra was introduced by Stephen C. Kleene [35], under the name algebra of regu-
lar event, as the equational theory of the set of regular languages. It provides an algebraic
framework allowing one to express properties of the operations of union, sequence or prod-
uct, and iteration, by studying the equivalence of expressions built with them.

The problem of giving an axiomatisation of this algebra was left open by Kleene, and has
since been studied by several authors. Volodimir N. Redko [55] showed that any complete set
of identities axiomatising this algebra must be infinite. For this reason, the axiomatisations
that were proposed later on relied either on inference rules or on axiom schemes (i.e. finite
presentations of an infinite set of identities).

Arto Salomaa [57] was the first to give a complete axiomatisation, that consisted in a dozen
identities and an inference rule. However, this inference rule had a side condition which is not
stable under substitution, hence this system is not appropriate to deal with Kleene algebra
other than Reg 〈Σ〉. Then, John H. Conway [22] proposed several other systems, introducing
inference schemes (a set of inference rules indexed over the family of finite monoids). But

14 CHAPTER 1. PRELIMINARIES

Conway could only postulate the completeness of these systems. Building on the systems
of Salomaa and Conway, and using a remark by Maurice Boffa [7], Daniel Krob [41] proved
during his PhD the completeness of a number of axiomatisations, including some of those
proposed by Conway. In particular, he gave an axiomatisation without inference rules,
using a dozen identities together with a set of identities indexed over finite simple groups.
Zoltán Ésik [25] later simplified and generalised some of Krob’s proofs. Independently
of Krob’s results, Dexter Kozen [36] proposed yet another axiomatisation, which he proved
complete. This later proof relied on an algebraic presentation of the automaton minimisation
algorithm, representing an automaton as a matrix over a Kleene algebra. This makes the
technical development considerably more palatable than the proofs by Krob, as it follows
a well-known algorithm using relatively simple objects. We will follow this presentation in
this thesis.

Definition 1.30 (Kleene Algebra, KA).
A Kleene Algebra is an algebraic structure 〈K,+, ·,_�, 0, 1〉 such that 〈K,+, ·, 0, 1〉 is an
idempotent semi-ring, and the operation _� satisfies the following axioms.

1 + a · a� ≤ a� (1.5)
1 + a� · a ≤ a� (1.6)

b+ a · x ≤ x ⇒ a� · b ≤ x (1.7)
b+ x · a ≤ x ⇒ b · a� ≤ x. (1.8)

The axiomatic theory KA consists in the axioms of an idempotent semi-ring together with
axioms and implications (1.5) to (1.8). ∗

Kleene Algebras are thus the models of KA. We say that e = f is a logical consequence of
the axioms of KA, and write KA � e = f , if there is a proof of this equality using only
the axioms of KA. Alternatively, KA � _ = _ is the smallest congruence over Reg 〈Σ〉
satisfying the axioms of KA.

Algebras of languages and algebras of relations are Kleene algebras. Notice that in the
case of languages, the interpretation defined by ∀a ∈ Σ, ϕ (a) := {a} yields the regular
language of the expression: ϕ̂ (e) = �e�. This interpretation is usually called the standard
interpretation of an expression. We define the class KA of all Kleene algebras. It can easily
be seen that the relations KA |= _ = _ and KA � _ = _ coincide.

We now relate Lang |= e = f with �e� = �f� for any regular expressions e and f .

Lemma 1.31. For any pair e, f ∈ Reg 〈Σ〉, Lang |= e = f if and only if �e� = �f�. �
Proof. As �_� is a particular language interpretation, the “only if” direction is obvious.
The other direction follows easily from the equation:

ϕ̂ (e) =
⋃

u∈�e�

ϕ̂ (u) . (1.9)

This equation may be proved by structural induction on e, and entails that the equality of
regular languages implies the equality of every language interpretation.

We now do the same for relational interpretations.

Lemma 1.32. For any pair e, f ∈ Reg 〈Σ〉, Rel |= e = f if and only if �e� = �f�. �
Proof. For the “if” direction, as (1.9) holds also for relational interpretations, we may
conclude by the same argument as before.

Now suppose that for every set O and every map ϕ : Σ → Rel 〈O〉 we have ϕ̂ (e) = ϕ̂ (f).
We will choose a specific interpretation that will prove the equality of the corresponding

1.3. KLEENE ALGEBRA 15

regular languages. Let O = Σ� and ϕ : a �→ {〈w,wa〉 | w ∈ Σ�}. Notice that for any
expression e and every pair of words u, v we have

ϕ̂ (e) = {〈u, uv〉 | u ∈ Σ�, v ∈ �e�} .

Then u ∈ �e� is equivalent to 〈ε, u〉 ∈ ϕ̂ (e). Hence if ϕ̂ (e) = ϕ̂ (f), we get �e� = �f�.

(This last construction is the so-called Cayley construction, see [54].)

KA is complete with respect to the algebra of regular languages.

Theorem 1.33 ([36]). For any e, f ∈ Reg 〈Σ〉 ,KA � e = f if and only if �e� = �f�. �

The proof of this theorem being very involved, we direct the interested reader to [36]. Put
together, these results yield the fundamental theorem of Kleene algebra: for any pair of
expressions e, f ∈ Reg 〈Σ〉, we have:

KA � e = f

Rel � e = f Lang � e = f

�e� = �f�

⇐=⇒

⇐=⇒ ⇐=⇒

⇐=⇒⇐
=
=⇒

This has several consequences:

• By Kleene’s theorem the equality of two regular languages can be reduced to the
equivalence of two finite automata, which is decidable. Hence, the theory KA is
decidable, and PSpace-complete.

• By Lemmas 1.31 and 1.32 this means that the equational theories of both relational
and language Kleene algebra are also decidable.

Second chapter

Algorithms for Kleene Algebra with
Converse

2.1 Introduction

The focus of this chapter is the extension of Kleene Algebra by an operation of converse.
The converse of a word is its mirror image (the word obtained by reversing the order of the
letters), and the converse RN of a relation R is its reciprocal (x RN y

Δ⇐=⇒ y R x).

The question that arises once this theory is defined is its decidability: given two formal
expressions built with the connectives product, sum, iteration and converse, can one decide
automatically if they are equivalent, meaning that their equality can be proved using the
axioms of the theory? Bloom, Ésik, Stefanescu and Bernátsky gave an affirmative answer
to that question in two articles, [6] and [26], in 1995.

Although the algorithm they define proves the decidability result, it is too costly (in terms of
time and memory consumption) to be used in concrete applications. In this chapter, beside
some simplifications of the proofs given in [6], we give a new and more efficient algorithm
to decide this problem, which we place in the complexity class PSpace.

Recall that for Kleene Algebra, we know of several axiomatisations, that are complete for
both the language and relation models. The decidability of these theories can be reduced
to the problem of comparing the languages of finite state automata.

Now let us add a unary operation of converse to regular expressions. We shall denote by
RegN 〈X〉 the set of regular expressions with converse over a finite alphabet X. While doing
so, several questions arise:

1. Can the converse on languages and on relations be encoded with the same system of
axioms?

2. What axioms do we need to add to KA to model these operations?

3. Are the resulting theories complete for languages and relations?

4. Are these theories decidable?

There is a simple answer to the first question: no. Indeed the equation a ≤ a · aN · a, which
was proposed by Bloom Ésik and Stefanescu, is valid for any relation a (because if 〈x, y〉 ∈ a,
then 〈x, y〉 ∈ a, 〈y, x〉 ∈ aN, and 〈x, y〉 ∈ a, so that 〈x, y〉 ∈ a · aN · a). But this equation is
not satisfied for all languages a (for instance, with the language a = {x}, a · aN · a = {xxx}
and x /∈ {xxx}). This means that there are two distinct theories corresponding to these
two families of models. Let us begin by considering the case of languages.

Theorem 2.1 (Completeness of KAC− [6, Theorem 5.1]). A complete axiomatisation of
the class Lang of languages equipped with concatenation, union, star, and converse consists
of the axioms of KA together with axioms (2.1) to (2.4).

(a+ b)
N
= aN + bN (2.1)

(a · b)N = bN · aN (2.2)
(a�)

N
= (aN)� (2.3)

aNN = a (2.4)

17

18 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

We call this theory KAC−; it is decidable. �

As before, we write Lang |= e = f if e and f have the same language interpretations.
To prove this result, one first associates to any expression e ∈ RegN 〈X〉 an expression
e ∈ Reg 〈X〉, where X is an alphabet obtained by adding to X a disjoint copy of itself.
Then, one proves that the following implications hold.

Lang |= e = f ⇒ �e� = �f� (2.5)

�e� = �f� ⇒ KAC− � e = f (2.6)

(That KAC− � e = f entails Lang |= e = f is obvious; decidability comes from that of
regular languages equivalence.) We reformulate Bloom et al.’s proofs of these implications
in elementary terms in Section 2.2.1.

As stated before, the equation a ≤ a · aN · a provides a difference between languages with
converse and relations with converse. It turns out that it is the only difference, in the sense
that the following theorem holds:

Theorem 2.2 (Completeness and decidability of KAC). A complete axiomatisation of the
class Rel of relations equipped with composition, union, star, and converse consists of the
axioms of KAC− together with the axiom (2.7).

a ≤ a · aN · a (2.7)

We call this theory KAC; it is decidable. �

(Completeness was established in [26, Theorem 1.1] and decidability in [6, Corollary 5.15].)

The proof of this result also relies on a translation into regular languages. Ésik et al.
define a notion of closure, written �, for languages over X, and they prove the following
implications:

Rel |= e = f ⇒ �
�e� =

�
�f� (2.8)

�
�e� =

�
�f� ⇒ KAC � e = f (2.9)

(Again, that KAC � e = f entails Rel |= e = f is obvious.) The first implication (2.8)
was proven in [6]; we give a new formulation of this proof in Section 2.2.2. The second
implication (2.9) was proved in [26].

The last consideration is the decidability of KAC. To this end, Bloom et al. propose a con-
struction to obtain an automaton recognising �L, when given an automaton recognising L.
Decidability follows: to decide whether KAC � e = f one can build two automata recog-
nising �

�e� and �
�f� and check if they are equivalent. Unfortunately, their construction

tends to produce huge automata, which makes it inappropriate for practical applications.
We propose a new and simpler construction in Section 2.4, which we analyse in Section 2.5:

• we compare it to Bloom et al.’s construction by exhibiting a bisimulation relation and
by showing how our construction makes it possible to share more states (Section 2.5.1);

• we give a simple bound on the size of the produced automata (Section 2.5.2);

• we use this bound to provide a PSpace algorithm, to deduce that the problem of
equivalence in KAC is PSpace-complete (Section 2.5.3);

• we finally provide algorithms that are not PSpace but time-efficient in practice, using
“up to techniques” [9, 53] for bisimulations (Section 2.5.4).

2.2. PRELIMINARY MATERIAL 19

2.2 Preliminary material

2.2.1 Languages with converse: theory KAC
−

The following construction is due to Ésik et al., here we merely reformulate it slightly.

We consider regular expressions with converse over a finite alphabet X. The alphabet X
is defined as X ∪ X ′, where X ′ := {x′ | x ∈ X} is a disjoint copy of X. As a shorthand,
we use ′ as an internal operation on X going from X to X ′ and from X ′ to X such that if
x ∈ X, x′ := x′ ∈ X ′ and (x′)′ := x ∈ X. An important operation in the following is the
translation of an expression e ∈ RegN 〈X〉 to an expression e ∈ Reg 〈X〉. We proceed to its
definition in two steps.

Let τ(e) denote the normal form of an expression e ∈ RegN 〈X〉 in the following convergent
term rewriting system:

(a+ b)
N → aN + bN 0N → 0 (a�)

N → (aN)�

(a · b)N → bN · aN 1N → 1 aNN → a

The corresponding equations being derivable in KAC−, one easily obtains that:

∀e ∈ RegN 〈X〉 , KAC− � τ(e) = e (2.10)

We finally denote by e the expression obtained by further applying the substitution ν
defined as [xN �→ x′, (∀x ∈ X)], i.e., e := ν(τ(e)). (Note that e ∈ Reg 〈X〉: it is regular, all
occurrences of the converse operation having been eliminated.)

As explained in the introduction, Bloom et al.’s proof [6] amounts to proving the implica-
tions (2.5) and (2.6). It is worth noticing that this proof is rather simple, especially when
compared to other completeness proofs. Completeness is obtained relatively to Kleene Al-
gebra, which allows one to use any complete axiomatisation of KA as a basis to build an
axiomatisation of KAC−. We include a syntactic and elementary presentation of this proof,
for the sake of completeness.

Lemma 2.3. For all e, f ∈ RegN 〈X〉, Lang |= e = f entails �e� = �f�. �
Proof. Let us write X• := X�{•} and consider the following interpretations (which appear
in [6, proof of Proposition 4.3]):

μ : X −→ P (X�
•) η : X −→ P (X�

•)
x �−→ {x · •} x ∈ X �−→ {x · •}

x′ ∈ X ′ �−→ {• · x}

One can check that η̂ is injective modulo equality of denoted languages, in the sense that
for any expression e ∈ Reg 〈X〉, we have

η̂(e) = η̂(f) implies that �e� = �f� . (2.11)

By a simple induction on e, we get μ̂(τ(e)) = η̂(ν(τ(e))) = η̂(e). Using (2.10), we further
obtain that Lang |= τ(e) = e. We thus deduce that μ̂(e) = η̂(e). All in all, we obtain:

Lang |= e = f ⇒ μ̂(e) = μ̂(f) ⇒ η̂(e) = η̂(f) ⇒ �e� = �f� .

The second implication is even more immediate, using the completeness of KA with respect
to language equivalence.

Lemma 2.4. For all e, f ∈ RegN 〈X〉, if �e� = �f� then KAC− � e = f . �

20 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

Proof. By completeness of KA [41, 36], if �e� = �f�, then we know that there is a proof π1

of KA � e = f . As the axioms of KA are contained in those of KAC−, the same proof can
be seen as a proof of KAC− � e = f . By substituting x′ by (xN) everywhere in this proof,
we get a new proof π2 of KAC− � τ(e) = τ(f). By (2.10) and transitivity we thus get
KAC− � e = f .

We finally deduce the following theorem:

Theorem 2.5. Lang |= e = f ⇔ �e� = �f� ⇔ KAC− � e = f . �

Since the regular expressions e and f can be computed easily from e and f , the problem
of equivalence in KAC− thus reduces to an equality of regular languages, which makes it
decidable.

2.2.2 Relations with converse: theory KAC

We now move to the equational theory generated by relational models. It turns out that
this theory is characterised using “closed” languages on the extended alphabet X. To define
this closure operation, we first define a mirror operation w on words over X, such that ε := ε
and for any x ∈ X and w ∈ X�, wx := x′w. Accordingly with the axiom (2.7) of KAC we
define a reduction relation � on words over X by the following word rewriting rule:

www � w (2.12)

More formally:

Definition 2.6 (Reduction relation).
Let u, v be two words over X, u reduces to v, written u�v, if there are words u1, u2, w ∈ X�

such that: u = u1wwwu2 and v = u1wu2.

We call www a pattern of root w. The last two thirds of the pattern are ww. ∗

Following [6, 26], we extend this relation into a closure operation on languages.

Definition 2.7 (Closure by �).
The closure of a language L ⊆ X� is the smallest language containing L that is downward-
closed with respect to �:

�L := {v | ∃u ∈ L : u�� v} .

(As usual �� is the reflexive transitive closure of the relation �.) ∗

Example 2.8.
If X = {a, b, c, d}, then X = {a, b, c, d, a′, b′, c′, d′}, and ab′ = ba′. We have the reduction
cab′ba′ab′d′ � cab′d′, by triggering a pattern of root ab′. For L = {aa′a, b, cab′ba′ab′d′}, we
have �L = L ∪ {a, cab′d′}. •

Now we define a family of languages which plays a prominent role in the sequel.

Definition 2.9 (Language Γ(w)).
For any word w ∈ X�, we define inductively a regular language Γ(w) by:

Γ(ε) := {ε} ∀x ∈ X, ∀w ∈ X�, Γ(wx) := ({x′}Γ(w) {x})� . ∗

An equivalent operator called G is used in [6]: we actually have Γ(w) = G(w), and our
recursive definition directly corresponds to [6, Proposition 5.11.(2)]. By using such a simple
recursive definition, we avoid the need for the notion of admissible maps, which is extensively
used in [6].

2.2. PRELIMINARY MATERIAL 21

0 1 2 n· · ·
v (n)′

v (n)

v (n− 1)′

v (n− 1)

v (n− 2)′

v (n− 2)

v (1)′

v (1)

Figure 2.1: Automaton G (v) recognising Γ(v), with |v| = n.

Instead, we just have the following property to establish, which illustrates why these lan-
guages are of interest: if u is a word in Γ(w), then wu reduces to w. More precisely, w can
be decomposed as w = vt and u reduces to tt. Therefore, in the context of recognition by
an automaton, Γ(w) contains all the words that could potentially be skipped after reading
w, in an automaton recognising a language closed by �.

Proposition 2.10. For all words u and v, u ∈ Γ(v) ⇔ ∃t ∈ suffixes(v) : u�� tt. �
Proof. As the proof of the implication from left to right is routine but a bit lengthy, we
omit it here.

For the converse implication, we first define the language: Γ′(v) :=
{
tt

∣∣ t ∈ suffixes(v)
}
.

We thus have to show that the upward closure of Γ′(v) is contained in Γ(v). We first check
that this language satisfies Γ′(ε) = ε and Γ′(vx) = ε+ x′Γ′(v)x, which allows us to deduce
that Γ′(v) ⊆ Γ(v) by a straightforward induction.

It thus suffices to show that Γ(v) is upward-closed with respect to �. For this, we in-
troduce the family of automata G (v) depicted in Figure 2.1. One can check that G (v)
recognises Γ(v) by a simple induction on v. One can moreover notice that in this automa-

ton, if p
x−−→G (v) q, then q

x′
−−→G (v) p. More generally, for any word u, if p

u−−→G (v) q,

then q
u−−→G (v) p. So if u1wu2 ∈ Γ(v), then by definition of the automaton we have

0
u1−−−→G (v) q1

w−−→G (v) q2
u2−−−→G (v) 0 , and thus, by the previous remark:

0
u1

G (v)
�� q1

w

G (v)
�� q2

w

G (v)
�� q1

w

G (v)
�� q2

u2

G (v)
�� 0 ,

i.e., u1wwwu2 ∈ Γ(v). In other words, for any words v and w and any u ∈ Γ(v), if w � u
then w is also in Γ(v), meaning exactly that Γ(v) is upward-closed with respect to �.

Since Γ′(v) ⊆ Γ(v), we deduce that Γ(v) contains the upward closure of Γ′(v), as expected.

We now have enough material to embark in the proof of the implication (2.8) from the
introduction:

Lemma 2.11. If two expressions e, f ∈ RegN 〈X〉 are equal for all interpretations in all
relational models, then �

�e� =
�

�f�. �
Proof. Bloom et al. [6] consider specific relational interpretations: for any word u ∈ X�

and for any letter x ∈ X, they define

ϕu(x) := {〈i− 1, i〉 | u(i) = x} ∪ {〈i, i− 1〉 | u(i) = x′} ⊆ {0, . . . , n}2 ,

where n := |u|. The key property of those interpretations is the following:

〈0, n〉 ∈ ϕ̂u(v) ⇔ v �� u . (2.13)

We give a new proof of this property, by using the automaton Φ(u) depicted in Figure 2.2.
By definition of Φ(u) and ϕu, we have that

(i, j) ∈ ϕu(x) ⇔ i
x−−→Φ(u) j .

22 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

0 1 2 n· · ·
u (1)

u (1)′

u (2)

u (2)′

u (3)

u (3)′

u (n)

u (n)′

Figure 2.2: Automaton Φ(u), with |u| = n.

0 1′ 2′ n′· · ·

1 2 n· · ·x

x

x′

u (1)

u (1)′

u (2)

u (2)′

u (n)

u (n)′

u (1)

u (1)′

u (2)

u (2)′

u (n)

u (n)′

Figure 2.3: Automaton Φ′(xu), with |u| = n, language equivalent to Φ(xu).

Therefore, proving (2.13) amounts to proving

v ∈ L(Φ(u)) ⇔ v �� u . (2.14)

First notice that i
x−−→Φ(u) j ⇔ j

x′
−−→Φ(u) i. We extend this to paths (as in the proof of

Proposition 2.10) and then prove that if s � t and i
t−−→Φ(u) j then i

s−−→Φ(u) j. As u is
clearly in L(Φ(u)), any v such that v �� u is also in L(Φ(u)).

We proceed by induction on u for the other implication. The case u = ε being trivial,
we consider v ∈ L(Φ(xu)). We introduce a second automaton Φ′(xu) given in Figure 2.3,
that recognises the same language as Φ(xu). The upper part of this automaton is actually
the automaton G (xu) (as given in Figure 2.1), recognising the language Γ(xu). Moreover,
the lower part starting from state 1 is the automaton Φ(u). This allows us to obtain that
L(Φ(xu)) = Γ(xu)xL(Φ(u)). Hence, for any v ∈ L(Φ(xu)), there are v1 ∈ Γ(xu) and
v2 ∈ L(Φ(u)) such that v = v1xv2. By induction, we get v2 �� u, and by Proposition 2.10
we know that v1 �� ww, with w ∈ suffixes(xu). That means that xu = tw, for some word
t, so xu = tw = w t. If we put everything back together:

v = v1xv2 �� v1xu�� wwxu = www t� w t = xu .

This concludes the proof of (2.14), and thus (2.13).

We follow Bloom et al.’s proof [6] to deduce that the implication (2.8) from the introduction
holds: we first prove that for all e ∈ Reg 〈X〉, we have

u ∈ �
�e� ⇔ ∃v ∈ �e� , v �� u (by definition)

⇔ ∃v ∈ �e� , 〈0, n〉 ∈ ϕ̂u(v) (by (2.13))
⇔ 〈0, n〉 ∈ ϕ̂u(e) .

(For the last line, we use the fact that for any relational interpretation ϕ, we have ϕ̂(e) =⋃
v∈�e� ϕ̂(v).)

Furthermore, as ϕu(x
′) = ϕu(x)

N, we can prove that ϕ̂u(e) = ϕ̂u(e). Therefore, for all
expressions e, f ∈ RegN 〈X〉 such that Rel |= e = f , we have ϕ̂u(e) = ϕ̂u(e) = ϕ̂u(f) =
ϕ̂u(f), and we deduce that �

�e� =
�

�f� thanks to the above characterisation.

2.3 Confluence of the reduction relation

When considering � as a rewriting relation, we wondered whether it is confluent or not. It
turns out that it is confluent. This property is not required for the proofs to come, but we
include the result here for the sake of completeness.

2.4. CLOSURE OF AN AUTOMATON 23

First, notice that the irreflexive part of this relation is terminating: either |uwwwv| > |uwv|,
or w = ε and the two words are equal. By Newman’s lemma [5], it thus suffices to establish
local confluence:

Lemma 2.12 (Local confluence). Let m,m1,m2 ∈ X� such that m � m1 and m � m2.
There exists n ∈ X� such that m1 �� n and m2 �� n. �

As we were trying to prove this lemma, it became obvious that the proof would be long and
repetitive: the only strategy we could find was an exhaustive study of all critical pairs, and
there are many of them. We thus used the proof assistant Coq to help us in that task:

• the statement of the lemma is short and involves very few notions, so that the encoding
of the problem in Coq was immediate;

• this allowed us to get assurance that no critical pair was overlooked, something difficult
to achieve with a pen-and-paper case analysis: there are thirty-five key cases, and this
disjunction is not trivial to establish;

• we were able to mechanise a significant part of the proof, using the tactic language
of Coq to implement pattern recognition and automatic reduction. For instance, in
a case like ⎧⎪⎪⎨⎪⎪⎩

m = u1w1w1w1v1
w1 = xw2w2w2y
m1 = u1xw2w2w2yv1
m2 = u1w1w1xw2yu1,

one only needs to recognise the patterns in m1 and m2 and reduce them as much as
possible using relation � to get n = u1xw2yv1.

Then the proof is just an exploration of the possible sub-cases, with the automatic tactic
dealing swiftly with the administrative cases, and leaving only the subtle cases to be explic-
itly proven. Of the more than thirty-five cases that arise naturally, seventeen are ruled-out
using size considerations, and twelve are mere questions of rewriting that were solved au-
tomatically. All in all, we only had to solve six sub-cases by hand, by using appropriate
pumping lemmas.

By instrumenting the proof script to keep track of the uses of the relation �, we were
actually able to establish a slightly stronger result: four steps suffice to join all critical
pairs.

Lemma 2.13. Let m,m1,m2 ∈ X� such that m �m1 and m �m2. There exists n ∈ X∗

and k1, k2 � 4 such that m1 �k1 n and m2 �k2 n. �

Corollary 2.14 (Confluence). Let m,m1,m2 ∈ X� such that m��m1 and m��m2. There
exists n ∈ X∗ such that m1 �� n and m2 �� n. �

The Coq proof is available online [12]; note that the converse of the reduction relation �
is also confluent, albeit not terminating; this is much easier to prove.

2.4 Closure of an automaton

The problem here is the following: given two regular expressions e, f ∈ RegN 〈X〉, how to
decide �

�e� =
�

�f�? We follow the approach proposed by Bloom et al.: given an automaton
recognising a language L, we show how to construct an automaton recognising �L. To solve
the initial problem, it then suffices to build two automata recognising �e� and �f�, to apply
a construction to obtain two automata for �

�e� and �
�f�, and to check those for language

equivalence.

As a starting point, we first recall the construction proposed in [6].

24 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

2.4.1 Original construction

This construction uses the transition monoid of the input automaton, which is assumed to
be deterministic. It is a simple observation that in this case the relation induced by a word
u on the states of the automaton (written Δ̂ (u) in Definition 1.20) is in fact a function.
Following [6], we denote this function by uA in the following.

This monoid is finite, and its subsets form a Kleene Algebra. Bloom et al. [6] then proceed
to define the closure automaton in the following way:

Theorem 2.15 (Closure automaton of [6]). Let L ⊆ X� be a regular language, recognised
by the deterministic automaton A = 〈Q,X, q0, Qf , δ〉. Let MA be the transition monoid
of A . Then the following deterministic automaton recognises �L:

B := 〈P (MA)× P (MA) ,X, 〈{εA } , {εA }〉 ,T , δ1〉
with T := {〈F,G〉 | ∃uA ∈ F : uA (q0) ∈ Qf} ,

and δ1 (〈F,G〉 , x) :=
〈
F · {xA } ·

(
({x′

A } ·G · {xA })�
)
, ({x′

A } ·G · {xA })�
〉

. �

An important idea in this construction, which leads to the presented one, is the tran-
sition rule for the second component above. Let us write δ2(G, x) for the expression
({x′

A } ·G · {xA })�, so that the definition of δ1 can be reformulated as

δ1 (〈F,G〉 , x) = 〈F · {xA } · δ2(G, x), δ2(G, x)〉 .

With that in mind, one can see the second component as some kind of history, that runs on
its own, and is used at each step to enrich the first component. At this point, it might be
interesting to notice that the formula for δ2(G, x) closely resembles the definition of Γ(wx)
we gave in Section 2.2.2: Γ(wx) = (x′Γ(w)x)�.

2.4.2 Intuitions

Let us try to build a closure automaton. One way would be to simply add transitions to
the initial automaton. This idea comes naturally when one realises that if u �� v, then v
is obtained by erasing some subwords from u: at each reduction step u1wwwu2 � u1wu2

we just erase ww. To “erase” such subwords using an automaton, it suffices to allow one to
jump along certain paths.

Suppose for instance that we start from the following automaton:

q0 q1 q2 q3 q4 q5 q6
a b b′ a′ a b

We can detect the pattern ababab, and allow one to “jump” over it when reading the last
letter of the root of the pattern, in this case the b in second position. The automaton thus
becomes:

q0 q1 q2 q3 q4 q5 q6
a b b′ a′ a b

b

However, this approach is too naive, and it quickly leads to errors. If for instance we slightly
modify the above example by adding a transition labelled by b′ between q0 and q1, the same
method leads to the following automaton, by detecting the patterns b′bb′ between q0 and q3
and abb′a′ab between q0 and q6.

2.4. CLOSURE OF AN AUTOMATON 25

q0 q1 q2 q3 q4 q5 q6
a

b′
b b′ a′ a b

b′

b

The problem is that the word b′b is now wrongly recognised in the produced automaton.
What happens here is that we can use the jump from q1 to q6, even though we did not read
the prerequisite for doing so, in this case the a constituting the beginning of the root ab of
pattern ababab. (Note that the dual idea, consisting in enabling a jump when reading the
first letter of the root of the pattern, would lead to similar problems.)

A way to prevent that, which was implicitly introduced in the original construction, consists
in using a notion of history. The states of the closure automaton will be pairs of a state in
the initial automaton and a history. That will allow us to distinguish between the state q1
after reading a and the state q1 after reading b′, and to specify which jumps are possible
considering what has been read previously. In the construction given in [6], the history is
given by an element of P (MA), in the second component of the states (the “G” part). We
will define a history as a relation over states containing the jumps we are allowed to make
after having read some word w, using Γ(w).

2.4.3 New construction

We have shown in Proposition 2.10 that u ∈ Γ(w) ⇔ ∃v ∈ suffixes(w) : u �� vv, so
we do have a characterisation of the words “we are allowed to jump over” after having
read some word w. The problem is that we want a finite number of possible histories,
and there are infinitely many Γ(w) (for instance, all the Γ(an) are different). To get that,
we will project Γ(w) on the automaton. Let us consider a non-deterministic automaton
A = 〈Q,X, I,T ,Δ〉 recognising a language L.

Definition 2.16 (History of a word).
Let R� (Q) be the set of reflexive transitive binary relations over states of A . Given a letter
x ∈ X, we denote by hx the following increasing function on binary relations over states:

hx : R� (Q) → R� (Q)
R �→ (Δ(x′) ·R ·Δ(x))

�

For any word w ∈ X� we call history of the word w the relation [w] defined inductively by

[ε] := IdQ [wx] := hx([w]). ∗

One can notice right away the strong relationship between [·] and Γ:

Proposition 2.17. ∀w, q1, q2, 〈q1, q2〉 ∈ [w] ⇔ ∃u ∈ Γ(w) : q1
u−−→A q2. �

This result is straightforward once one realises that [w] = Δ̂ (Γ (w)). By composing Propo-
sitions 2.10 and 2.17 we eventually obtain that 〈q1, q2〉 ∈ [w] if and only if ∃u : q1

u−−→A q2
and u�� vv, with v a suffix of w.

We now have all the tools required to define an automaton for the closure of A :

Theorem 2.18 (Closure Automaton). The closure of the language L is recognised by the
automaton

A ′ := 〈Q× R� (Q),X, I × {IdQ} ,T × R� (Q),Δ′〉 ,

where Δ′ := {〈〈q1, R〉 , x, 〈q2, hx(R)〉〉 | 〈q1, q2〉 ∈ Δ(x) · hx(R)} . �

26 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

We shall write L′ for the language recognised by A ′. One can read the set of transitions as
“from a state q1 with a history R, perform a step x in the automaton A , and then a jump
compatible with hx(R), which becomes the new history”. An example of this construction
is given in Section 2.4.4. It is useful to notice at this point that if 〈p,R〉 is an accessible
state in A ′, then there is some word u such that 〈i, IdQ〉 = 〈i, [ε]〉 u−−→A ′ 〈p,R〉, from which
we can deduce by induction on u that R = [u]. One can see, from the definition of Δ′ and
Proposition 2.17 that:

∃ 〈q2, v〉 ∈ Q× Γ(ux) : q1
x−−→A q2

v−−→A q3 ⇔ 〈q1, [u]〉 x−−→A ′ 〈q3, [ux]〉 . (2.15)

Now we prove the correctness of this construction. The following property of [·] is proved
by exhibiting a simulation:

Proposition 2.19. For all words u, v ∈ X� such that u� v, we have [u] ⊆ [v]. �
Proof. First, notice that Γ(u) ⊆ Γ(v) ⇒ [u] ⊆ [v], using Proposition 2.17. Indeed, if
Γ(u) ⊆ Γ(v), then for any states p, q ∈ Q we have

〈p, q〉 ∈ [u] ⇔ ∃w ∈ Γ(u) : p
w−−→A q (Proposition 2.17)

⇒ ∃w ∈ Γ(v) : p
w−−→A q (Γ(u) ⊆ Γ(v))

⇔ 〈p, q〉 ∈ [v]. (Proposition 2.17)

It thus suffices to prove u � v ⇒ Γ(u) ⊆ Γ(v), which can be rewritten as Γ(u1wwwu2) ⊆
Γ(u1wu2). We can drop u2 (it is clear that Γ(w1) ⊆ Γ(w2) ⇒ ∀x ∈ X,Γ(w1x) ⊆ Γ(w2x),
from the definition of Γ): we now have to prove that Γ(u1www) ⊆ Γ(u1w). The proof of this
inclusion relies on the fact that the automaton G (u1www) is simulated by the automaton
G (u1w).

First, we give in Figure 2.4 an abstract view of the automata recognising Γ(uwww) and
Γ(uw) defined as before. With the notations of this figure, now define a relation � as follows
(this relation is also represented in dashed lines in Figure 2.4):

ai � bi for all i � n+m ,

an+m+i � bn+m−i for all i � n ,

a2n+m+i � bm+i for all i � n ;

One easily checks that this relation is a simulation, thus establishing in particular that the
language recognised by the left-hand side automaton (for Γ(uwww)) is contained in that of
the right-hand side (for Γ(uw)).

We define an order relation � on the states of the produced automaton (Q × R� (Q)), by
〈p,R〉 � 〈q, S〉 when p = q and R ⊆ S.

Proposition 2.20. The relation � is a simulation for the automaton A ′. �
Proof. Suppose that 〈p,R〉 � 〈q, S〉 and 〈p,R〉 x−−→A ′ 〈p′, hx(R)〉, i.e., p and p′ are related
by Δ(x) · hx(R). We have p = q and R ⊆ S, hence hx(R) ⊆ hx(S), and thus p and p′ are
also related by Δ(x) ·hx(S) meaning that 〈p, S〉 x−−→A ′ 〈p′, hx(S)〉. It remains to check that
〈p′, hx(R)〉 � 〈p′, hx(S)〉, i.e., hx(R) ⊆ hx(S), which we just proved.

We may now prove that L′ = �L.

Lemma 2.21. L′ ⊆ �L �
Proof. We prove by induction on u that for all q0, q such that 〈q0, [ε]〉 u−−→A ′ 〈q, [u]〉, there
exists v such that v �� u and q0

v−−→A q. The case u = ε is trivial.

2.4. CLOSURE OF AN AUTOMATON 27

a0

am

an+m

a2n+m

a3n+m

b0

bm

bn+m

u u u u

w w w w

w w

w w

...

...

...

...

...

Figure 2.4: Automata G (uwww) and G (uw), with |u| = m and |w| = n

If 〈q0, [ε]〉 u−−→A ′ 〈q1, [u]〉 x−−→A ′ 〈q, [ux]〉, by induction there exists a word v1 such that
q0

v1−−→A q1 and v1 �� u. We also know (by (2.15) and Proposition 2.10) that there are
some q2, v2 and v3 ∈ suffixes(ux) such that q1

x−−→A q2, v2 �� v3v3 and q2
v2−−→A q. We

get:
q0

v1−−→A q1
x−−→A q2

v2−−→A q and v1xv2 �� uxv2 �� uxv3v3 � ux.

By choosing q ∈ T , we obtain the desired result.

Lemma 2.22. L ⊆ L′ �
Proof. First notice that for all R ∈ R� (Q), hx(R) is a reflexive relation, hence q1

x−−→A q2
entails ∀R, 〈q1, R〉 x−−→A ′ 〈q2, hx(R)〉. This means that the binary relation S defined by
p S 〈q,R〉 ⇔ p = q is a simulation between A and A ′, and thus

L = L(A) ⊆ L(A ′) = L′.

Lemma 2.23. L′ is downward-closed for �. �

A technical lemma is required to establish this closure property:

Lemma 2.24. If 〈q1, [uw]〉 x−−→A ′ 〈q2, [uwx]〉 wx wx−−−−−−→A ′ 〈q3, [uwx wx wx]〉, then we have
〈q1, [uw]〉 x−−→A ′ 〈q3, [uwx]〉. �
Proof. If |w| = n and |u| = m, the premise can be equivalently stated:

〈q1, [(uw)|m+n−1]〉
w(n)−−−−→A ′ 〈q2, [uw]〉 ww−−−→A ′ 〈q3, [uwww]〉 .

(Recall that u|i denotes the prefix of length i of a word u.) Let us write Γi = Γ (uw(ww)|i)
and xi = (uwww)(n + m + i) for 0 � i � 2n. Notice that Γi = Γ ((uwww)|m+n+i). By
Proposition 2.17 and the definition of A ′, we can show that there are vi ∈ Γi such that the
execution above can be lifted into an execution in A :

q1
x0v0x1v1···xivi···x2nv2n−−−−−−−−−−−−−−−−−→A q3.

Then one can prove using Proposition 2.10 that:

∀i, ∃ti ∈ Γ(uw) : (ww)|ivi �� ti(ww)|i. (2.16)

As vi is in Γ (uw(ww)|i), we know that there is some suffix t of uw(ww)|i such that vi�� tt.
We will do a case analysis on the size of t:

28 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

• if n+ i � |t|, then there is a suffix s of u such that t = sw(ww)|i, so

(ww)|ivi �� (ww)|i(ww)|iw ssw(ww)|i.

– If i < n then there is a word p such that w = (ww)|ip so

(ww)|ivi �� (ww)|i(ww)|i(ww)|ipssw(ww)|i
� (ww)|ipssw(ww)|i = swsw(ww)|i.

– Otherwise we can write (ww)|i = ww1 and w = w1w2, so

(ww)|ivi �� ww1ww1w ssw(ww)|i = w2 w1w1w1ww ssw(ww)|i
� w2 w1ww ssw(ww)|i = www ssw(ww)|i
� swsw(ww)|i.

As s ∈ suffixes(u) we know that sw ∈ suffixes(uw), hence swsw ∈ Γ(uw).

• If i � |t| < n+ i then w = w1w2 and t = w2(ww)|i so

(ww)|ivi �� (ww)|i(ww)|iw2w2(ww)|i
– If i < n then there is a word p such that w = (ww)|ip. As w = w2 w1, we can

also compare (ww)|i with w2:
∗ If (ww)|i = w2w3 then

(ww)|ivi �� w2w3w3w2w2w2(ww)|i
� w2w3w3w2(ww)|i = (ww)|i(ww)|i(ww)|i
= (ww)|i (ww)|i(ww)|i

And as w = (ww)|ip, w = p(ww)|i we know that

(ww)|i ∈ suffixes(w) ⊆ suffixes(uw),

hence (ww)|i (ww)|i ∈ Γ(uw).
∗ If on the other hand w2 = (ww)|iw3, we have

(ww)|ivi �� (ww)|i(ww)|i(ww)|iw3w3(ww)|i(ww)|i
� (ww)|iw3w3(ww)|i(ww)|i = w2w2(ww)|i

w2 ∈ suffixes(w) ⊆ suffixes(uw) so w2w2 ∈ Γ(uw).
– Otherwise we can write (ww)|i = ww3 and w = w3w4, so

(ww)|ivi �� ww3w3w3w4w2w2(ww)|i
� ww3w4w2w2(ww)|i = ww1w2w2w2(ww)|i
� ww1w2(ww)|i = ww(ww)|i

And obviously ww ∈ Γ(uw).

• If |t| < i then (ww)|i = st. In this case we have (ww)|ivi �� sttt� st = εε(ww)|i, and
ε ∈ suffixes(uw) so εε ∈ Γ(uw).

In all cases, we have shown that (ww)ivi �� ti(ww)|i with ti ∈ Γ(uw).

We deduce that v0x1v1 · · ·xivi · · ·x2nv2n �� t0t1 · · · t2nww ∈ Γ(uw)2n+2 ⊆ Γ(uw). By
Proposition 2.10, this means that v0x1v1 · · ·xivi · · ·x2nv2n is in Γ(uw), so that

〈q1, q3〉 ∈ Δ(w(n)) · [uw], and 〈q1, [uw|n−1]〉
w(n)−−−−→A ′ 〈q2, [uw]〉 .

2.5. ANALYSIS AND CONSEQUENCES 29

With this intermediate lemma, one can obtain a succinct proof of Lemma 2.23:
Proof. The statement of the lemma is equivalent to saying that if u � v with u ∈ L′

then v is also in L′. Consider u = u1w · w · wu2 and v = u1wu2 with |w| = n � 1 (the
case where w = ε does not hold any interest since it implies that u = v). By combining
Lemma 2.24, Proposition 2.19 and Proposition 2.20 we can build the following diagram:

〈q0, [ε]〉
u1w|n−1

�� 〈q1, [u1w|n−1]〉
w(n)

��

w(n)

Lem. 2.24
��

〈q2, [u1w]〉 ww �� 〈q3, [u1www]〉
u2 �� 〈qf , [u]〉

〈q3, [u1w]〉
u2

Prop. 2.20
��

�

Prop. 2.19

〈qf , [v]〉

�

Lemmas 2.22 and 2.23 tell us that L′ is closed and contains L, so by definition of the
closure of a language, we get �L ⊆ L′. Lemma 2.21 gives us the other inclusion, thus
proving Theorem 2.18.

2.4.4 Example

Let us illustrate this construction on a simple example: consider the automaton depicted in
Figure 2.5. It recognises the language �(a+ b′)b(b′a′)�ab�, which is not closed. Informally,
we observe that

• when starting with an a, and by firing the starred expression only once, a pattern of
root ab appears, so that the word ab should belong to the closure. Such a behaviour
is no longer possible if we fire the starred expression more than once;

• when starting with a b, and by firing the starred expression at least once, a pattern
of root b′ appears, so that the language �b′a′(b′a′)�ab� is contained in the closure.

Now the first step to build the closure automaton consists in computing the values of [·];
they are summarised in Figure 2.6. We can then build the closure automaton as described
in Theorem 2.18. The resulting non-deterministic automaton is drawn in Figure 2.7. Due
to the history component, the states B and C are duplicated; moreover, “jumps” have been
used to obtain the two red transitions, from 〈A, [ε]〉 to 〈D, [b′]〉, and from 〈B, [a]〉 to 〈F, [ab]〉.
Using those transitions, one can notice that the word ab is now accepted, as well as all words
from �b′a′(b′a′)�ab�.

The determinised version of this automaton is finally given in Figure 2.8.

2.5 Analysis and consequences

2.5.1 Relationship with Bloom et al’s construction

As suggested by an anonymous referee, one can also formally relate our construction to the
one from [6]: we give below an explicit and rather natural bisimulation relation between
the automata produced by both these methods. This results in an alternative correctness
proof of the proposed construction, by reducing it to the correctness of the one from [6].

We first make the two constructions comparable: the original construction, because it
considers the transition monoid, takes as input a deterministic automaton. It returns a
deterministic automaton. Instead, our construction does not require determinism in its
input, but produces a non-deterministic automaton. We thus have to ask of both methods
to accept as their input a non-deterministic automaton, and to return a deterministic
automaton.

30 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

A B C

D

E F

a

b′

b′ a′

b a b

Figure 2.5: Initial automaton.
[ε] = IdQ (= [a′] = [aa′] = [ba′] = [aba′])
[a] = IdQ ∪ {〈D,E〉} (= [aa] = [b′a] = [ba] = [aba])
[b] = IdQ ∪ {〈A,C〉} (= [bb] = [b′b] = [b′a′] = [abb])
[b′] = IdQ ∪ {〈B,D〉} (= [ab′] = [bb′] = [b′b′] = [abb′])
[ab] = IdQ ∪ {〈A,C〉 , 〈C,F 〉 , 〈A,F 〉}

Figure 2.6: Computation of [·].

A, ε

B, a

B, b′

C, ab

C, b

D, b′ E, a F, ab

a

b′

b′

b

b′

b′ a′

b

a

b

a

b

Figure 2.7: Closure automaton.

A, ε

B, a

{B,D} , b′

{C,F} , ab

C, b

D, b′ E, a F, ab

a

b′

b′

b′ a′

b

a

a′

b

a

b

Figure 2.8: Determinised version.

2.5. ANALYSIS AND CONSEQUENCES 31

For our construction, the straightforward thing to do would be to determinise the automaton
afterwards. We can actually do better, by noticing that from a state 〈p, [u]〉, reading some
letter x, there may be a lot of accessible states, but all of their histories (second components)
will be equal to [ux]. So in order to get a deterministic automaton, one only has to perform
the power-set construction on the first component of the automaton. This way, we get an
automaton A1 with states in P (Q)× R� (Q) and a transition function

δ1 (〈P,R〉 , x) = 〈P · (Δ(x) · hx(R)) , hx(R)〉 .

The original construction can also be adjusted quite easily: first build a deterministic au-
tomaton D with the usual powerset construction, then apply the construction as described
in Theorem 2.15 to get an automaton which we call A2. An important thing here is to un-
derstand the shape of the resulting transition monoid MD : its elements are functions over
sets of states (because of the power-set construction) induced by words; more precisely,
they are sup-semilattice homomorphisms, and they are in bijection with binary relations
on states induced by words. (The relation induced by u is the set of pairs 〈p, q〉 such that
p

u−→ q.)

Define the following KA-homomorphism from P (MD) to P
(
Q2

)
:

i(F) = {〈p, q〉 | ∃uD ∈ F : q ∈ uD ({p})} .

(That i is a KA-homomorphism comes from the fact that the elements of MD are themselves
sup-semilattice homomorphisms on P (Q).) We can check that for all x ∈ X, we have

i ({xD}) = {〈p, q〉 | q ∈ xD({p})} = {〈p, q〉 | q ∈ δ({p} , x)}

=
{
〈p, q〉

∣∣∣ p x−−→A q
}
= Δ(x) ,

The following lemma follows:

Lemma 2.25. The relation below is a bisimulation between A1 and A2.

{〈〈I · i(F), i(G)〉 , 〈F,G〉〉 | ∀F,G}

�
Proof. Consider a non-deterministic automaton A = 〈Q,X, I, Qf ,Δ〉. Its determinisation
is D = 〈P (Q) ,X, I,T , δ〉 with

T = {P | P ∩Qf �= ∅} and δ(P, x) = P ·Δ(x).

We can build two automata recognising its closure. The first one, derived from our con-
struction, is A1 = 〈P (Q)× R� (Q),X, 〈I, IdQ〉 ,T1, δ1〉 where:

• R� (Q) is the set reflexive transitive relations over Q,

• T1 := {〈P,R〉 | P ∩Qf �= ∅, R ∈ R� (Q)},

• and δ1(〈P,R〉 , x) := 〈P · hx(R), hx(R)〉.

The one given by the original construction is A2 = 〈P (MD)× P (MD) ,X, 〈ε, ε〉 ,T2, δ2〉
where

• MD is the transition monoid of D , a set of endomorphisms of P (Q) induced by words,

• w := {wD} is a singleton containing the interpretation of a word w in MD ,

• T2 := {〈F,G〉 | ∃qf ∈ Qf , ∃f ∈ F : qf ∈ f(I)},

32 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

• and δ2(〈F,G〉 , x) := 〈F � x� (x′ �G� x)�, (x′ �G� x)�〉.

(A � B := {g · f | f ∈ A ∧ g ∈ B}.) The fact that the elements of MD are semilattice-
homomorphisms can be easily checked, as uD(P) is the only state of D (i.e. a set of states
of A) such that P

u−−→D uD(P). Then is is straightforward that:

uD(P1 ∪ P2) = {q ∈ Q | ∃p ∈ P1 ∪ P2 : p
u−−→A q}

= {q ∈ Q | ∃p ∈ P1 : p
u−−→A q} ∪ {q ∈ Q | ∃p ∈ P2 : p

u−−→A q}
= uD(P1) ∪ uD(P2).

Now, to give the bisimulation we need the following morphism i from P (MD) to P
(
Q2

)
defined by

i(F) := {〈p, q〉 | ∃f ∈ F : q ∈ f({p})}.
Note that i is a KA-homomorphism because the elements of the transition monoid of the
determinised automaton are semilattice-homomorphisms from P (Q) to P (Q). Let’s check
that:

εD = IdP(Q), meaning that i(ε) = IdQ;

i(F1 ∪ F2) = {〈p, q〉 | ∃f ∈ F1 ∪ F2 : q ∈ f({p})}
= {〈p, q〉 | ∃f ∈ F1 : q ∈ f({p})} ∪ {〈p, q〉 | ∃f ∈ F2 : q ∈ f({p})}
= i(F1) ∪ i(F2);

i(F1 � F2) = {〈p, q〉 | ∃f ∈ F1 � F2 : q ∈ f({p})}
= {〈p, q〉 | ∃ 〈f, g〉 ∈ F1 × F2 : q ∈ g · f({p})}
= {〈p, q〉 | ∃f ∈ F1 : ∃p′ ∈ f({p}) : ∃g ∈ F2 : q ∈ g({p′})}

(g is a semilattice homomorphism)

= {〈p, q〉 | ∃p′ : 〈p, p′〉 ∈ i(F1) ∧ 〈p′, q〉 ∈ i(F2)}
= i(F1) · i(F2)

For the � operation, recall that

∀F ∈ P (MD) , ∃n1(F) ∈ : ∀n1(F) � m,F � = (F ∪ ε)m;

and that
∀R ∈ Rel 〈Q〉 , ∃n2(R) ∈ : ∀n2(R) � m,R� = (R ∪ IdQ)

m.

Then, if we write m = max(n1(F), n2(uD(F))),

i(F �) = i((F ∪ ε)m)

= (i(F) ∪ i(ε))m

= (i(F))�

We can also check that, for any x ∈ X:

i (x) = {〈p, q〉 | q ∈ xD({p})}
= {〈p, q〉 | q ∈ δ({p}, x)}
= {〈p, q〉 | p x−−→A q}
= Δ(x).

The bisimulation ∼ can thus be expressed:

∼ := {〈〈I · i(F), i(G)〉 , 〈F,G〉〉}

where 〈F,G〉 are states of A2. We now prove that it is indeed a bisimulation.

2.5. ANALYSIS AND CONSEQUENCES 33

1. We need the inital states to be related. This is obvious as εD = IdP(Q), meaning that
i(ε) = IdQ. Furthermore, [ε] = IdQ and I = I · IdQ. That means 〈I, [ε]〉 ∼ 〈ε, ε〉.

2. For the final states, it isn’t much more complicated:

〈F,G〉 ∈ T2 ⇔ ∃qf ∈ Qf : ∃f ∈ F : qf ∈ f(I)

⇔ ∃qf ∈ Qf : qf ∈ I · i(F)

⇔ I · i(F) ∩Qf �= ∅
⇔ 〈I · i(F), i(G)〉 ∈ T1.

3. What remains to be shown is that this relation is stable under transitions from both
sides. Suppose that 〈Q,R〉 ∼ 〈F,G〉, and consider x ∈ X. After reading x we get
in A2 the state 〈F � x�G′, G′〉, with G′ = (x′ � G � x)�, and in A1 the state
〈Q · (Δ(x) · hx(R)), hx(R)〉. We will prove that they are still related in two steps, first
by looking at the second component, and then dealing with the first one.

a) We know that R = i(G), and that i(x) = Δ(x).

hx(R) = (Δ(x′) ·R ·Δ(x))�

= (i(x′) · i(G) · i(x))�

= i(G′) (i is a morphism)

b) Now the first component comes quite easily:

Q · (Δ(x) · hx(R)) = (I · i(F)) · (i(x) · i(G′))
= I · (i(F) · i(x) · i(G′))
= I · i(F � x�G′).

This tight relationship between both constructions may lead to believe the automata built by
both constructions are isomorphic. However, it is not the case: the construction presented in
this chapter produces a smaller automaton than the one given in [6]. Indeed, by unfolding
the above bisimulation, one can find a surjective morphism from A2 to A1. But such a
morphism cannot be found in general in the other direction, thus no bijection. This is
illustrated in Example 2.26 below.

Intuitively, a major difference comes from the difference between the determinised automa-
ton and the automaton induced by the right Cayley graph of the transition monoid. In a
deterministic automaton, we can define an equivalence relation u ∼ v, that holds if reading
u and reading v in the automaton lead to the same state. In an automaton obtained by
a power-set construction, u ∼ v is equivalent to saying that for any state p in the original
automaton, p can be reached from the initial state by reading u if and only if it can be
reached by reading v. In an automaton built by the monoid construction, u ∼ v corresponds
to saying that for any pair of states p, q in the original automaton, there is a path from p
to q labelled by u if and only if there is a path from p to q labelled by v. This second
equivalence relation strictly contains the first one.

Example 2.26.
Consider the following deterministic automaton D over the alphabet {a, b, a′, b′}:

A B

C

D

E

a

b

a′

b′

a

b

34 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

By applying the determinised version of our construction, we build the following automaton:

A, ε {B,E} , a

C, aa′

D, ab′

E, aaa′
a

b

a′

b′

a

b

However, the use of the method from [6] give rise to this automaton:

{aD , aa′aD , 0D} , {εD , a′aD , 0D} {
aa′D , 0D

}
, {εD , a′aD , 0D}

{εD} , {εD}

{bD , aa′aD , 0D} , {εD , a′aD , 0D}

{aa′aD , 0D} , {εD , a′aD , 0D}

{
ab′D , 0D

}
, {εD , a′aD , 0D}

a

b

b′

a′

a′

b′

a

b

Notice that this automaton is just like the previous one, except that state 〈{B,E} , [a]〉 has
been duplicated. This happens because:

aD = Δ(a) = {〈A,B〉 , 〈C,E〉} �= {〈A,B〉 , 〈D,E〉} = Δ(b) = bD .

Thus the monoid will differentiate the state we get after reading a and the state we get
after reading b. •

Another important difference is the fact that the construction in [6] uses sets of relations
when we simply use relations. This is particularly visible when looking at the histories.
Consider the following automaton A :

0

1

2

3

4

5

6

a a a′ a′ a a

a a′ a

The history induced by a in this automaton is

[a] = (Δ(a′) ·Δ(a))
�
= IdQ ∪ {〈2, 6〉 ; 〈2, 5〉 ; 〈3, 5〉} ;

and the one induced by aa is

[aa] = (Δ(a′) · [a] ·Δ(a))
�
= IdQ ∪ {〈2, 6〉 ; 〈2, 5〉 ; 〈3, 5〉} = [a].

However, if we do this with the monoid approach, we can see that

a′aA = {〈2, 6〉 ; 〈2, 5〉 ; 〈3, 5〉} �= {〈2, 6〉} = a′a′aaA .

Thus the history we get after a is {εA ; a′aA ; 0A } which is a different set that the one we
get after aa which is {εA ; a′aA ; a′a′aaA ; 0A }. This will induce some duplication in the
closure automaton. Indeed on this example, our deterministic closure automaton will have
7 states, whereas [6]’s construction produces an automaton with 11 states. In general, our
construction always yields an automaton at least as small as the previous construction.

2.5. ANALYSIS AND CONSEQUENCES 35

2.5.2 Complexity

A relevant complexity measure of the final algorithm for deciding equality in KAC is the
size of the produced automata. In the following the size of an automaton is its number of
states. In order to give a fair comparison, we will consider the generic algorithms given in
the previous subsection, taking as their input a non-deterministic automaton, and returning
a deterministic automaton.

Let us begin by evaluating the size of the automaton produced by the method in [6], given
a non-deterministic automaton of size n. As explained above, the states of the constructed
transition monoid (MD) are in bijection with some binary relations on Q. There are thus
at most 2n

2

elements in this monoid. We deduce that the final automaton, whose states are
pairs of subsets of MD has at most 22

n2

× 22
n2

= 22
n2+1

states.

Now with our deterministic construction, the states belong to the set P (Q)× R� (Q). Since
R� (Q) is the set of reflexive (transitive) relations on Q, we know that R� (Q) has less than
2n×(n−1) elements. Hence we have |P (Q)× R� (Q)| � 2n × 2n×(n−1) = 2n

2

, which is
significantly smaller than the 22

n2+1

states we get with the other construction.

2.5.3 A polynomial-space algorithm

The above upper-bound on the number of states of the automata produced by the presented
construction allows us to show that the problem of checking equivalence in KAC is PSpace-
complete.

Consider PSpace-hardness first. Using the language-theoretic characterisation from Ésik et
al. [6, 26], KAC is easily shown to be a conservative extension of KA. Indeed, for any regular
expression e, we have e = e and �

�e� = �e�, so that for two regular expressions e, f , we
have KAC � e = f iff �

�e� =
�

�f� iff �e� = �f� iff KA � e = f . This is sufficient to conclude
since language equivalence of regular expressions is known to be PSpace-complete [46].

Now recall Proposition 1.29, stating that the equivalence of two deterministic automata
A and B is in LogSpace. The algorithm to show that relies on the fact that A and
B are different if and only if there is a word w in the difference of L(A) and L(B) such
that |w| � |A | × |B|. With that in mind, we can give a non-deterministic algorithm, by
simulating a computation in both automata with a letter chosen non-deterministically at
each step, with a counter to stop us at size |A | × |B|. The resulting algorithm will only
have to store the counter of size log(|A | × |B|) and the two current states.

For deciding KAC, the first step is to compute e and f from the regular expressions with
converse e and f . It is obvious that such a transformation can be done in linear time
and space, by a single sweep of both e and f . Then we have to build automata for e
and f . Once again this is a very light operation: if one considers for instance the position
automaton (also called Glushkov’s construction [30]), we obtain automata of respective sizes
n = |e| + 1 = |e| + 1 and m = |f | + 1 = |f | + 1, where |·| denotes the number of variable
leaves of a regular expression (possibly with converse).

Our construction then produces closed automata of size at most 2n
2

and 2m
2

, so that the
non-deterministic algorithm to check their equivalence needs to scan all words of size smaller
than by 2n

2 × 2m
2

= 2n
2+m2

. The counter used to bound the recursion depth can thus be
stored in polynomial space (n2 +m2). It is worth mentioning here that with the automata
constructed in [6], the counter would have size 2n

2+1 + 2m
2+1 which is not a polynomial.

Now the last two important things to worry about are the representation of the states of the
closure automata, in particular their “history” component, and the way to compute their
transition function. Let us focus on the automaton for e and let Q be the set of states of
the Glushkov automaton built out of it.

36 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

input : Two regular expressions with converse e, f ∈ RegN 〈X〉
output: A Boolean, saying whether or not KAC � e = f .

1 A1 = 〈Q1,X, I1,T1,Δ1〉 ← Glushkov’s automaton recognising �e�;
2 A2 = 〈Q2,X, I2,T2,Δ2〉 ← Glushkov’s automaton recognising �f�;
3 N ← (2(|e|+1)2 × 2(|f |+1)2); /* N gets a value � |�A1| · |�A2| */

4 〈〈P1, R1〉 , 〈P2, R2〉〉 ← 〈〈I1, IdQ1
〉 , 〈I2, IdQ1

〉〉;
5 while N > 0 do
6 N ← N − 1; /* N bounds the recursion depth */

7 f1 ← is_empty(P1 ∩ T1);
8 f2 ← is_empty(P2 ∩ T2);
9 if f1 = f2 then

10 x ←random(X); /* Non-deterministic choice */

11 〈R1, R2〉 ← 〈hx(R1), hx(R2)〉;
12 〈P1, P2〉 ← 〈P1 ·Δ1(x) ·R1, P2 ·Δ2(x) ·R2〉;
13 else
14 return false; /* A difference appeared for some word, e �= f */

15 end
16 end
17 return true; /* There was no difference, KAC � e = f */

Algorithm 1: A PSpace algorithm for KAC

• States are pairs of a set of states in Q and a binary relation (set of pairs) over Q.
Such a pair can be stored in polynomial space (recall that |Q| = n = |e|+ 1).

• For computing the transition function, the image of a pair 〈{q1, · · · , qk} , R〉 (with
R ⊆ Q2) by a letter x ∈ X is done in two steps: first the relation becomes R′ =
hx(R) := (Δ(x′) ·R ·Δ(x))

�, then the set of states becomes

{q | ∃i, 1 � i � k : 〈qi, q〉 ∈ Δ(x) ·R′} .

Those computations take place in PSpace. (The composition of two relations on Q
can be performed in space O

(
|Q|2

)
, and the same holds for the reflexive and transitive

closure of a relation R by building the powers (R+ IdQ)
2k and keeping a copy of the

previous iteration to stop when the fixed-point is reached.)

Summing up, we obtain Algorithm 1, which is PSpace.

2.5.4 Time-efficient algorithms

While the previous algorithm matches the theoretical complexity of the problem, it cannot
be used in practice. Indeed, it systematically requires exponential time (except when there
exists a small counter-example to the starting equation). This is similar to the case of
regular expressions without converse (i.e., Kleene algebra), where one usually implements
algorithms that are not PSpace but that require less than exponential time in most cases.

Such algorithms include the standard algorithm by Hopcroft and Karp [32], antichain-
based algorithms [62, 1, 24], and more recent algorithms relying on “bisimulations up to
congruence” [9]. We show how to exploit the latter technique with the automata produced
by the presented construction.

To apply this technique, one needs to work with a single non-deterministic automaton, to
be determinised by the powerset construction. The global decision procedure for deciding
KAC � e = f still starts by constructing two automata recognising the languages �e� and
�f� (as in the first two lines in Algorithm 1). Then one can either consider the disjoint union

2.5. ANALYSIS AND CONSEQUENCES 37

of their closures, or take their union and build the closure afterwards. The first approach
makes it possible to use the algorithms from [9] off-the-shelf. A drawback is that depending
on the constructions used to build the automata for �e� and �f�, it might be natural that
they share some states (e.g., when using Antimirov’s partial derivatives [4]), and we loose
this sharing when computing their closures.

Here we describe the second approach: this enables some additional optimisations, and the
above drawback disappears as one can always take an overlapping union. (Note however
that if the automata were actually disjoint, taking the closure after the union potentially
results in bigger automata: the history part—R� (Q)—being shared, parts of one of the
underlying automata can be duplicated just because of the history related to the other
automaton.) We thus assume a non-deterministic automaton 〈Q,X,T ,Δ〉 with two sets of
initial states Ie, If such that �e� = L (〈Q,X, Ie,T ,Δ〉) and �f� = L (〈Q,X, If ,T ,Δ〉).
We thus need an algorithm for checking whether 〈Ie, IdQ〉 and 〈If , IdQ〉 are equivalent in
the closure of 〈Q,X,T ,Δ〉. Due to the shape of the determinisation of this automaton, we
consider stratified relations, i.e., relations indexed by histories.

Definition 2.27 (Stratified relation).
A stratified relation R is a function from histories in R� (Q) to relations on sets of states:

R : R� (Q) → Rel 〈P (Q)〉

We write P RR P ′ for 〈P, P ′〉 ∈ R(R). ∗

One can then define an appropriate notion of (stratified) bisimulation:

Definition 2.28 (Progression, Bisimulation).
Given two stratified relations R,R′, we say that R progresses to R′, denoted R � R′, if
whenever P RR P ′ then

1. P ∩ T = ∅ if and only if P ′ ∩ T = ∅ and

2. for all x ∈ X, (P ·Δ(x) · hx(R))R′
hx(R) (P

′ ·Δ(x) · hx(R)).

A bisimulation is a stratified relation R such that R � R. ∗

Proposition 2.29 (Coinduction). The languages �
�e� and �

�f� are equivalent if and only
if there exists a bisimulation R such that Ie RIdQ

If . �
Proof. Simple adaptation of the same result in [9], to work with stratified relations.

Accordingly, we obtain Algorithm 2 (where we assume g to be the identity function, for
now). This algorithm works as follows: the variable R contains a relation which is a
bisimulation candidate and the variable L contains a queue of triples 〈R,P,Q〉 that remain
to be processed (R being a history, and P,Q being sets of states). To process such a pair,
one first checks whether it already belongs to the bisimulation candidate: in that case, the
pair can be skipped since it was already processed. Otherwise, one checks that both sets
are either accepting or non-accepting (line 8), and one adds all derivatives of the pair to L
(line 9). The triple 〈R,P,Q〉 is finally added to the bisimulation candidate (line 10), and
we proceed with the remainder of the queue. When the queue L becomes empty, then R
is a bisimulation thanks to the main loop invariant (line 5—recall that for now, g is the
identity function), so that the starting expressions are equivalent.

This algorithm can be enhanced by exploiting up-to techniques [58, 53]: an up-to technique
is a function g on (stratified) relations such that any relation R satisfying R � g(R) is con-
tained in a bisimulation. Intuitively, such relations, that are not necessarily bisimulations,
are constrained enough to contain only language equivalent pairs.

38 CHAPTER 2. ALGORITHMS FOR KLEENE ALGEBRA WITH CONVERSE

input : Two regular expressions with converse e, f ∈ RegN 〈X〉
output: A Boolean, saying whether or not KAC � e = f .

1 〈Q,X, Ie, If ,T ,Δ〉 ← Antimirov’s automaton recognising �e� and �f�;
2 L ← {〈IdQ, Ie, If 〉} ; /* Set of elements to be processed */

3 R ← (_ �→ ∅) ; /* Stratified relation meant to become a bisimulation */

4 while L �= ∅ do
5 // R � g(R) ∪ L
6 Pick 〈R,P, P ′〉 from L;
7 if 〈P, P ′〉 �∈ g(R)(R) then
8 if is_empty(P ∩ T) = is_empty(P ′ ∩ T) then
9 foreach x ∈ X do Add (hx(R), P ·Δ(x) · hx(R), P ′ ·Δ(x) · hx(R)) to L

;
10 Add (P, P ′) to R(R);
11 else
12 return false ; /* A difference appeared for some word, e �= f */

13 end
14 return true ; /* There was no difference, R is a bisimulation up to g,

KAC � e = f */

Algorithm 2: Time-efficient algorithms for KAC, g may range over various up-to
techniques.

Examples of such up-to techniques include:

1. equivalence closure (in the present context of stratified relations, the function e as-
sociating to a stratified relation R the stratified relation e(R) mapping any history
R to the smallest equivalence relation that contains R(R)). This technique is implic-
itly used in the algorithm by Hopcroft and Karp [32], via a disjoint-set forest data
structure: we get their algorithm by choosing g = e in Algorithm 2.

2. congruence closure: the function c mapping any history R to the smallest equivalence
relation S that contains R(R) and that satisfies the following rule.

Pi S P ′
i , i = 1, 2

(P1 ∪ P2) S (P ′
1 ∪ P ′

2)

This is the key up-to technique introduced in [9]; it allows one to avoid exploring
large parts of the automaton, and to stop much earlier than with other algorithms
(some sets of states that are accessible through the power-set construction need not
be visited at all.)

Proposition 2.30. The above functions e and c are valid up-to techniques in the present
setting. �

Proof. Following the same arguments as in [9]. In particular, it holds that R � e(R)
(resp. R � c(R)) entails e(R) � e(R) (resp. c(R) � c(R)).

The resulting algorithms (Algorithm 2 with g instantiated with either e or c) require ex-
ponential time (and space) in worst case, as the final bisimulation candidate, R, can be
exponentially large. However in practice, like in the simpler case of Kleene algebra without
converse, those worst cases are hard to reach, so that such algorithms can usually cope with
expressions with up to a thousand of nodes [9].

2.6. CONCLUSION 39

2.6 Conclusion

Building on the work of Bernátsky, Bloom, Ésik and Stefanescu, we gave new and more
efficient algorithms to decide the theory KAC. These algorithms rely on a more compact
construction for the closure of an automaton. The first one (Algorithm 1) is PSpace, which
allowed us to show that the equational theory of KAC is PSpace-complete. The other ones
(the two main instances of Algorithm 2) are not PSpace, but they seem to work well in
practice; they are variants of the standard Hopcroft and Karp’s algorithm [32], and of its
recent optimisation using bisimulations up to congruence [9].

As an exercise, we have implemented and tested the various constructions and algorithms
in an OCaml program which is available online [12].

To prove the correctness of the main automata construction, we used the family of regular
languages Γ(w) (corresponding to G(wN) in [6]). We established the main properties of
this family using a proper finite automata characterisation. Moreover, this family allowed
us to reformulate the proof of the completeness of the reduction from equality in Rel to
equivalence of closed automata (implication (2.8) from the introduction).

To continue this work, we would like to implement one of the presented algorithms in the
proof assistant Coq, as a tactic to automatically prove the equalities in KAC—as it has
already been done for the theories KA [11] and KAT [52]. The simplifications we propose in
this paper give us hope that such a task is feasible. The main difficulty certainly lies in the
formalisation of the completeness proof of KAC (implication (2.9) from the introduction),
whose key step consists in proving that for all expression e ∈ Reg 〈X〉, there exists a proof
of e = �e in KAC (where �e is a regular expression for the regular language �

�e�). This is
established in [26], but the proof uses yet another automaton construction for the closure,
which is even more complicated than the one used in [6], and which seems quite difficult
to formalise in Coq. We hope to find an alternative completeness proof, by exploiting our
simpler construction.

Third chapter

A Kleene theorem for graph languages

“The Tao produced One; One produced Two; Two produced Three; Three pro-
duced All things.”

— Lao Tzu, Tao Te Ching.

3.1 Introduction

Petri Automata are automata based on Petri nets, whose operational semantics is designed
to recognise sets of graphs. We introduced them in [16] to study Kleene allegory expres-
sions: terms built from a finite alphabet of variables, with the constants 0 and 1, the unary
operators converse and Kleene star, and the binary operators union, composition and inter-
section. To any such expression, one can associate a set of graphs such that two expressions
are universally equivalent when interpreted as binary relations if and only if their associated
sets of graphs are equal. The construction of these sets of graphs from expressions is a direct
adaptation of the independent developments of Freyd and Scedrov [27] and Andréka and
Bredikhin [2]. A small extension of this study will be the object of Chapter 4.

Independently of this original intent, these models of expressions and Petri automata are
relatively simple to define, and capture an interesting class of graph languages. For these
reasons, we purposely give in this chapter a presentation of these notions without mentioning
the original goal of studying relational equivalence.

For the usual notion of finite state automata, the well known Kleene Theorem states that
the languages recognisable by automata are exactly those specifiable by regular expressions.
In this chapter we provide a similar theorem for Petri automata and what we call graph
expressions.

3.2 Regular and recognisable sets of graphs

We start by describing the graphs we consider, before proceeding to the definition of regular
sets of such graphs. Then we present Petri automata and the sets of graphs they recognise.

3.2.1 Graphs

We introduce a few definitions and results about graphs. Unless otherwise stated, all graphs
are directed, acyclic and their edges are labelled with some fixed alphabet Σ. The relation
≡ relates isomorphic graphs. We will generally consider graphs up-to ≡.

DAGs and trees Given a directed acyclic graph (DAG) G = 〈V,E〉, we may define its
minimum minG (resp. maximum maxG) to be the set of vertices in V with no incoming
(resp. outgoing) edge. A vertex v is reachable (respectively co-reachable) from another
vertex v′ if there is a path in G from v′ to v (resp. from v to v′). A sub-graph C of G is
connected if there is a non-directed path between any two vertices. It is called a connected
component if there does not exist a connected sub-graph of G containing C, apart from C
itself.

A tree is a graph T = 〈V,E〉 such that either minT or maxT contains a single node, called
the root, and for any two nodes x, y ∈ V there exists at most one path from x to y. If
minT is a singleton, then T is a top-down tree, otherwise it is a bottom-up tree. A tree is
said to be proper if its root has degree one and if it does not contain a node with exactly

41

42 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

a

b

→SP
a ∩ b

a b →SP
a · b

Figure 3.1: The SP-rewriting system

G ∩ F :=
G

F

G · F := G F

Figure 3.2: Elementary graph construc-
tions

one incoming edge and one outgoing edge. There is only a finite number of proper trees
with leaves chosen from a finite set.

Two-Terminal Series Parallel graphs We use the SP-rewriting system, enriched with
labels, as presented in Figure 3.1. (Note that the second rule can only be applied if the
middle vertex on the left-hand side has no other adjacent edge.) We write G →�

SP F if G
reduces to F in a finite number of SP-reduction steps. Valdes et al. [61] showed that that
system (without the labels) has the Church-Rosser property. This property can be extended
to labelled graphs without difficulty, modulo the congruence generated by the associativity
of · and the associativity and commutativity of ∩.

A graph G is Two Terminal Series Parallel (TTSP) if G →�
SP

e , for some term e.
This term is built out of letters from Σ and the operators · and ∩, and is called the term
representation of G (written W (G)). Any TTSP graph has a single source (vertex of in-
degree zero) called its input and a single sink (vertex of out-degree zero) called its output.
When convenient, we will represent such a graph as 〈V,E, ι, f〉, where 〈V,E〉 is the TTSP
graph, and ι and f are its input and output.

The class of TTSP graph is stable under sequential and parallel composition. The sequen-
tial composition (written _ · _) of two TTSP graphs with disjoint sets of vertices can be
performed by identifying the output of the first graph and the input of the second one.
Their parallel composition (written _ ∩ _) consists in merging their inputs and merging
their outputs. See Figure 3.2 for a graphical description of these constructions.

Technical result The following lemma will be instrumental later on. Let T = 〈VT , ET 〉
be a proper unlabelled top down tree with root r and set of leaves F ⊆ VT , and G = 〈V,E〉
be a connected DAG. Let ϕ : F ⇀ V be a partial function defined on F ′ ⊆ F . The gluing
of T and G along ϕ is the graph

T ·ϕ G := 〈VT ∪ V,ET ∪ E ∪ {〈f, ϕ (f)〉}〉 .

Lemma 3.1. If T ·ϕ G →�
SP T ′ and if T ′ is a tree, then there is a node c in G such that

for every 〈f,M〉 ∈ F ′ ×maxG every path from ϕ (f) to M in G visits c. �

This lemma makes intuitive sense. The maximal elements of G will remain in T ′ as leaves,
and because G is connected there will be a subtree of T ′ whose leaves are exactly maxG.
The root of this tree must be a node accessible from F ′, hence coming from G. Because
paths are preserved during SP-rewriting, this vertex has the desired property.

However, writing a formal proof of this lemma proved to be a bit of a challenge. We present
one here, and apologise for its rather tedious nature...
Proof. We begin by defining a family of sets of vertices Vi, a family of functions []i and a
family of relations →i, allowing to trace vertices and paths during the SP-reduction. 〈Vi,→i〉
is meant to be the graph obtained from T ·ϕ G after i steps of SP-reduction. [x]i ∈ Vi is

3.2. REGULAR AND RECOGNISABLE SETS OF GRAPHS 43

c

T Gϕ

→�
SP

c

T ′

Figure 3.3: Illustration of Lemma 3.1

either x if x was not deleted during the reduction, or a vertex x was merged with at a
certain step.

Initialisation V0 := VT ∪ V ; →0:= ET ∪ E ∪ {〈f, ϕ (f)〉}; [x]0 := x.

At step i+ 1 Let us examine what rule of Figure 3.1 was executed:

• if this step uses the first rule (parallel reduction), then Vi+1 = Vi, →i+1=→i,
and [x]i+1 = [x]i;

• otherwise, let a, b, c be the three vertices in the left hand side of the rewriting
rule, then Vi+1 = Vi \ {b}, →i+1=→i \ {〈a, b〉 , 〈b, c〉} ∪ {〈a, c〉}, and for every
x ∈ V0 if [x]i = b then [x]i+1 = c otherwise [x]i+1 = [x]i.

Notice that Vi+1 ⊆ Vi, and if x ∈ Vi then [x]i = x. It is also immediate to check that the
maximal vertices of G, who do not have outgoing edges in T ·ϕ G, are never deleted. This
means that for every i we have maxG ⊆ Vi, and thus if m ∈ maxG, then [m]i = m.

We need to establish an intermediary result: for every pair of vertices x, y ∈ V0 and every
step i we have:

if x, y ∈ Vi, x →i y ⇒ x →+
0 y (3.1)

x →�
0 [x]i (3.2)

if x ∈ Vi, x →0 y ⇒ [x]i →i [y]i (3.3)
if x /∈ Vi, x →0 y ⇒ [x]i = [y]i (3.4)

We prove this by induction on i. The initialisation being trivial, we only show the induction
step, and only in the case where the reduction step is of the second kind. Hence we suppose
that step i+ 1 is:

a b c →SP
a c

1. For (3.1) we simply check that →i+1⊆→i ∪ →2
i .

2. If [x]i �= b then [x]i+1 = [x]i, so the induction hypothesis (IH) allows to conclude. If
on the other hand [x]i = b, by IH we know that x →�

0 b, and because b →i c and (3.1)
we know that b →+

0 c. Hence we obtain x →�
0 c = [x]i+1.

3. If x →0 y and x ∈ Vi+1, then x ∈ Vi so the IH applies and we get [x]i →i [y]i.
We also know that [x]i+1 = [x]i. Either [y]i = b or [y]i+1 = [y]i, and in both cases
[x]i+1 →i+1 [y]i+1.

44 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

4. If x →0 y and x /∈ Vi+1, then either x /∈ Vi or x = b. In the first case we apply the
IH and get [x]i = [y]i which means [x]i+1 = [y]i+1. In the second case the IH gives us
[x]i →i [y]i, which imposes that [y]i = c, hence [y]i+1 = c = [x]i+1.

Furthermore, equations (3.3) and (3.4) allows us to check that every path in 〈V0,→0〉 from
x to m ∈ maxG visits [x]i, for every i. This can be proved by induction on paths: if the
path is trivial, meaning x = m, then [m]i = m; for a path x →0 y →�

0 m we know that
either x ∈ Vi, thus [x]i = x, or [x]i = [y]i, allowing us to conclude.

We will now prove that if the graph is a tree at step i, then there is a vertex c in V ∩ Vi

such that for every leaf f in F ′ we have [f]i = c.

First, the representative of every f ∈ F ′ is in G. By construction, f will be deleted because
it has exactly one incoming edge and one outgoing edge. By (3.2) its representative must
be reachable from f , thus has to be in G.

To prove that they are all sent to the same vertex, we use the fact that trees have no non-
oriented cycles. Consider the cycle build by linking two leaves f, f ′ ∈ F ′ first through G
(which is possible because G is connected) and then through T (by going back to their most
recent ancestor). At each reduction step, if a vertex of the cycle is deleted, then its new
representative is another vertex of the cycle: indeed, when a node is deleted it only has two
incident edges, and every node of the cycle has two distinct neighbours in the cycle. This
means that if the graph is a tree at step i, the cycle must have been reduced to either a
single vertex, or two vertices linked by an edge. In the latter case, it must be the case that
the most recent common ancestor of f and f ′ is represented by the source of this edge, and
f and f ′ are represented by its target.

Finally, every path from ϕ (f) to m ∈ maxG can be extend to a path from f to m, and all
of those must visit [f]i = c.

3.2.2 Regular graph expressions

Definition 3.2 (Regular graph expressions).
Regular graph expressions, or simply expressions in the remaining of this chapter, are terms
over the following syntax, where a denotes any letter from Σ:

e, f ::= 0 | a | e ∪ f | e · f | e ∩ f | e+.

We denote by GReg 〈Σ〉 the set of expressions over the finite alphabet Σ. ∗

We assign to each expression a set of TTSP graphs, called the graph language of the
expression.

Definition 3.3 (Graph language of an expression, regular sets).
The graph language of an expression is defined as follows by structural induction:

G (a) :=
{

a
}

G (e · f) := {E · F | E ∈ G (e) and F ∈ G (f)}
G (0) := ∅ G (e ∩ f) := {E ∩ F | E ∈ G (e) and F ∈ G (f)}

G (e ∪ f) := G (e) ∪ G (f) G
(
e+

)
:= {E1 · ... · En | n > 0, ∀i, Ei ∈ G (e)}

A set of graphs S is said to be regular if there is an expression e ∈ GReg 〈Σ〉 such that
G (e) = S. ∗

Example 3.4.

3.2. REGULAR AND RECOGNISABLE SETS OF GRAPHS 45

G (a · ((b ∪ c) ∩ a)) :=

{
a b

a
,

a c

a

}

G
(
(a ∩ b)

+
)
:=

⎧⎨⎩ a

b

,
a

b

a

b

, . . .

⎫⎬⎭
G

((
a+

)
∩
(
b+

))
:=

⎧⎪⎨⎪⎩
a

b

,
a

b

a

,

a

b b

, . . .

⎫⎪⎬⎪⎭
•

Remark. Notice that the graphs produced by this construction are exactly TTSP graphs
labelled with Σ.

Remark. If e does not contain the operators 0, ∪ nor _+, then G (e) is a singleton set. In
this case, we may identify G (e) and the only graph it contains. Notice that if e is such
an expression, e is equivalent to W (G (e)), modulo associativity of · and associativity and
commutativity of ∩. Conversely, any TTSP graph G is isomorphic to G (W (G)).

3.2.3 Petri automata

A Petri automaton is essentially a safe Petri net where the arcs coming out of transitions
are labelled by letters from Σ.

Definition 3.5 (Petri Automaton).
A Petri automaton A over the alphabet Σ is a tuple 〈P,T , ι〉 where:

• P is a finite set of places,

• T ⊆ P (P)× P (Σ× P) is a set of transitions,

• ι ∈ P is the initial place of the automaton.

For each transition t = 〈▹t, ◃t〉 ∈ T , ▹t is assumed to be non-empty; ▹t ⊆ P is the input of
t; and ◃t ⊆ Σ × P is the output of t. Transitions with empty outputs are called final, and
transitions with input {ι} are called initial. ∗

We write π2 (
◃t) := {p | ∃a, 〈a, p〉 ∈ ◃t} for the set of places appearing in the output of t.

We will add a few constraints on this definition along the way, but we need more definitions
to state them. An example of such an automaton is described in Figure 3.4. The graph-
ical representation used here draws round vertices for places and rectangular vertices for
transitions, with the incoming and outgoing arcs to and from the transition corresponding
respectively to the inputs and outputs of said transition. The initial place is denoted by an
unmarked incoming arc.

Runs and reachable states. We define the operational semantics of Petri automata.
Let us fix a Petri automaton A = 〈P,T , ι〉 for the remainder of this section. A state of
this automaton is a set of places. In a given state S ⊆ P , a transition t = 〈▹t, ◃t〉 is enabled
if ▹t ⊆ S. In that case, we may fire t, leading to a new state S′ = (S \ ▹t) ∪ π2 (

◃t). This
will be denoted in the following by A � t : S → S′. We extend this notation to sequences
of transitions in the natural way:

A � t1 : S0 → S1, A � t2; . . . ; tn : S1 → Sn

A � t1; t2; . . . ; tn : S0 → Sn

46 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

A

B

C D

E

F

G

H I

0

1

2

3 4

5 6

7

8

b

a

c

b

a

c

b
d

a b

Figure 3.4: A Petri automaton.

A
B

G

C

E
G

D

E
G

C

E
G

D

E
G

F

G

0
1

2
3

2
4

7

b

a

c

b

a
c

b

a
d

Figure 3.5: An accepting run in the automaton from Figure 3.4.

In that case we say that 〈S0, t1; t2; . . . ; tn, Sn〉 is a valid run, or simply run, from S0 to Sn.
If S0 = {ι} then the run is initial and if Sn = ∅ it is final. A run that is both initial and
final is called accepting. A state S is reachable in A if there is an initial run leading to S.

We write RunA for the set of runs of an automaton A , and RunA (A,B) for the set of runs
from state A to state B in A . The set of its accepting runs is then equal to RunA ({ι} , ∅),
and written Runacc

A .

Example 3.6 (Accepting run).
The triple 〈{A} , 0; 1; 2; 3; 2; 4; 7, ∅〉 is a valid run in the automaton from Figure 3.4. It is
easy enough to check that:

A � 0 : {A} → {B,G}; A � 1 : {B,G} → {C,E,G};
A � 2 : {C,E,G} → {D,E,G}; A � 3 : {D,E,G} → {C,E,G};
A � 4 : {D,E,G} → {F,G}; A � 7 : {F,G} → ∅.

Thus we can prove that A � 0; 1; 2; 3; 2; 4; 7 : {A} → ∅. Furthermore, as A is the initial
place, this run is accepting. It can be represented graphically as in Figure 3.5. •

We may now state the first constraint we impose on Petri automata.

Constraint 1 (Safety). We impose on every Petri automaton A that for any states S
and S′ and every transition t, if S is reachable and A � t : S → S′, then

(S \ ▹t) ∩ π2 (
◃t) = ∅. 	

This constraint corresponds to the classic Petri net property of safety, also called one-
boundedness.

Remark. Constraint 1 is quite easily decidable: the set of transitions is finite, and because
reachable states are subsets of a fixed finite set, there is only finitely many of those. Thus
checking the constraint only entails a finite number of tests.

Traces. The graph language of a Petri automaton can be obtained by extracting from
every accepting run a graph, called its trace. Consider an accepting run 〈{ι} , t0; . . . ; tn, ∅〉.
Its trace is constructed by creating a vertex k for each transition tk =

〈
▹tk,

◃tk
〉

of the run.
We add an edge 〈k, a, l〉 whenever there is some place q such that 〈a, q〉 ∈ ◃tk, and tl is the

3.2. REGULAR AND RECOGNISABLE SETS OF GRAPHS 47

0

1

2

3

4

5

6

b

a

c

b

a c

b

a

d

Figure 3.6: Trace of the run from Example 3.6.

first transition after tk in the run with q among its inputs. The definition we give here is
a generalisation for arbitrary valid runs, that coincides with the informal presentation we
just gave on accepting runs.

Definition 3.7 (Trace of a run).
Let R = 〈S, t0; . . . ; tn, S′〉 be a run in A . For every k and p ∈ π2

(
◃tk

)
, we define

ν (k, p) = {l | l > k and p ∈ ▹tl} .

The trace of R, denoted by G (R), is the graph with vertices {0, . . . , n} ∪ S′ and the set of
edges defined by:

ER = {〈k, a, l〉 | 〈a, p〉 ∈ ◃tk and (p = l ∧ ν (k, p) = ∅) ∨ (l = min (ν (k, p)))} . ∗

The trace of the run given in Example 3.6 is presented in Figure 3.6. We can now define
the language of a Petri automaton:

Definition 3.8 (Language of a Petri automaton, recognisable sets).
The language of an automaton A , is the set of traces of accepting runs of A :

G (A) := {G (R) | R ∈ Runacc
A } . ∗

A set of graphs S is called recognisable is there is an automaton A such that S ≡ G (A).

This allows us to state the second constraint we ask of Petri automata.

Constraint 2 (Series Parallel). Every graph G ∈ G (A) should be a Two Terminal Series
Parallel graph. 	

Despite its infinitary formulation, this property is decidable. In fact, the procedure we de-
scribe later on would fail (in finite time) if it is given an automaton violating this constraint,
and succeed otherwise: hence it may be used to decide this property. See Section 3.4 for
more details.

Because of this constraint, we may restrict further the set of runs we consider:

Definition 3.9 (Proper run).
A run R = 〈S0, t1; . . . ; tn, Sn〉 ∈ RunA is proper if for all 1 � i � n:

◃ti = ∅ ⇒ (i = n ∧ Sn = ∅) . ∗

If R is accepting and if G (R) is TTSP, then R must be proper, as we prove in the next
lemma. As every sub run of a proper run is proper, this means that we may restrict ourselves
to proper runs without impacting the set of accepting runs.

Lemma 3.10. Let R = 〈{ι} , t0; . . . ; tn, ∅〉 be an accepting run in A . Then G (R) is TTSP
only if R is proper. �

48 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

Proof. For an accepting run, because the last state is empty we know that the run must
contain a final transition. Hence we may reformulate the definition of proper as ◃tn = ∅
and ∀0 � i < n, ◃ti �= ∅.
The proof relies on the following observation: the node i in G (R) is a sink if and only if
◃ti = ∅. To prove this, remember that the edges coming out of i in G (R) are:

{〈i, a,min {l | l > i and p ∈ ▹tl}〉 | ∀ 〈a, p〉 ∈ ◃ti} .

Because the run ends in state ∅, we know that ∀ 〈a, p〉 ∈ ◃ti there is a later transition tj
consuming the place p (otherwise p would remain in the last state). This entails that if ti
is not final, then i has a successor in G (R). On the other hand, if ◃ti is empty, then there
cannot be a transition coming out of node i.

As a TTSP graph has a single sink, it can only use a single final transition. Lastly, notice
that 〈i, a, j〉 ∈ ER entails i < j. This means that the sink can only be the maximal node
(for the ordering of natural numbers).

3.2.4 Building automata from expressions

In this section, we show how to produce from any expression e ∈ GReg 〈Σ〉 a Petri automa-
ton A (e) such that:

G (e) ≡ G (A (e)) .

The construction goes by induction, providing automata for the base cases 0 and a ∈ Σ, and
then showing how to combine two automata A1 and A2 to get automata for the languages
G (A1) · G (A2), G (A1) ∩ G (A2), G (A1) + G (A2), and G (A1)

+, thus proving that recog-
nisable languages are closed under union, iteration and sequential and parallel products.

The automaton for the base cases. We need the automaton for 0 to have no accepting
run. A good choice for A (0) is then the automaton: .

Let a ∈ Σ. We want an automaton whose set of traces is simply the graph G (a). This
yields the following automaton A (a): a .

Sequence, union, and iteration of automata. Let A1 = 〈P1,T1, ι1〉 and A2 =
〈P2,T2, ι2〉 be two Petri automata with disjoint sets of places.

Computing the “union” of A1 and A2 is quite easy. We simply put the two automata side
by side, add a new initial place ι, and for every initial transition 〈{ιi} , ◃t〉 we add a new
transition 〈{ι} , ◃t〉. Formally:

A1 ∪ A2 := 〈P1 ∪ P2 ∪ {ι} ,T1 ∪ T2 ∪ {〈{ι} , ◃t〉 | 〈{ιi} , ◃t〉 ∈ Ti, i ∈ {1, 2}} , ι〉 .

This means the transitions in this automaton follow from the set of rules:

Ai � t : S → T

A1 ∪ A2 � t : S → T
i ∈ 1, 2

Ai � 〈{ιi} , S〉 : {ιi} → S

A1 ∪ A2 � 〈{ι} , S〉 : {ι} → S
i ∈ 1, 2

Lemma 3.11. G (A1 ∪ A2) = G (A1) ∪ G (A2) . �
Proof. Let G ∈ G (A1) ∪ G (A2). There is an accepting run R = 〈{ιi} , t0; t1 . . . tn; ∅〉
in Ai, for either i = 1 or i = 2, such that G ≡ G (R). By definition of a valid run,
we know that there is a state S such that Ai � t0 : {ιi} → S and Ai � t1; . . . ; tn : S → ∅.
Because A1 ∪A2 contains in particular all places and transitions of Ai, we can deduce that
A1 ∪ A2 � t1; . . . ; tn : S → ∅. Furthermore Ai � t0 : {ιi} → S entails t0 = 〈{ιi} , ◃t0〉, thus
in A1 ∪ A2 we have the transition t0

′ = 〈{ι} , ◃t0〉. Hence: A1 ∪ A2 � t0
′ : {ι} → S. This

3.2. REGULAR AND RECOGNISABLE SETS OF GRAPHS 49

proves that R′ = 〈{ι} , t0′; t1 . . . tn; ∅〉 is an accepting run in A1 ∪ A2. As G (R′) = G (R),
we have proved that G ∈ G (A1 ∪ A2).

Now take G ∈ G (A1 ∪ A2), and R = 〈{ι} , t0; t1 . . . tn; ∅〉 such that R ≡ G (G). Neces-
sarily, t0 is of the shape 〈{ι} , ◃t0〉, and thus was produced from t0

′ = 〈{ιi} , ◃t0〉 ∈ Ti,
for either i = 1 or i = 2. If S0 is the state reached after the first transition, meaning
A1 ∪ A2 � t0 : {ιi} → S0, it follows that S0 ⊆ Pi. Because we assumed P1 ∩ P2 = ∅,
it is straightforward that A1 ∪ A2 � t : S → T and S ⊆ Pi entails Ai � t : S → T and
T ⊆ Pi. This result extends to sequences of transitions, allowing us to check that be-
cause A1 ∪ A2 � t1; . . . ; tn : S0 → ∅ and S0 ⊆ Pi we have Ai � t1; . . . ; tn : S0 → ∅. Thus
R′ = 〈{ιi} , t0′; t1 . . . tn; ∅〉 is an accepting run in Ai, and as G (R) = G (R′), we get
G ∈ G (Ai) ⊆ G (A1) ∪ G (A2).

For the sequence we want that every accepting run R1 in A1 can be followed by any accepting
run R2 in A2. Because of Lemma 3.10, we know that R1 must end with a final transition,
and the definition of accepting run imposes that R2 starts with an initial transition. Thus it
suffices to put A1 in front of A2, declare ι1 initial, remove the final transitions 〈▹t, ∅〉 in A1

and replace them with 〈▹t, ◃t〉, for every initial transition 〈{ι2} , ◃t〉 in A2. This yields the
following definition:

A1 · A2 := 〈P1 ∪ P2,T , ι1〉 ,

where T := (T1 \ P (P1)× {∅}) ∪ T2 ∪ {〈▹t, ◃t〉 | 〈〈▹t, ∅〉 , 〈{ι2} , ◃t〉〉 ∈ T1 × T2}. We may
present this transition system with inference rules as follows:

A1 � t : S → T , T �= ∅
A1 · A2 � t : S → T

A2 � t : S → T

A1 · A2 � t : S → T

A1 � 〈▹t, ∅〉 : S → ∅, A2 � 〈{ι2} , ◃t〉 : {ι2} → T

A1 · A2 � 〈▹t, ◃t〉 : S → T

Remark. The inference system above is not entirely faithful to the above definition, in the
sense that the last rule should be:

A1 � 〈▹t, ∅〉 : S → S′, A2 � 〈{ι2} , ◃t〉 : {ι2} → T

A1 · A2 � 〈▹t, ◃t〉 : S → S′ ∪ T .

However, the application of this rule in the case where S′ �= ∅ cannot yield an accepting
run without A1 violating Constraint 2. Indeed if there was an accepting run in A1 · A2

using this rule, this run would need at least another occurrence of the same rule to consume
the remaining places in P1, thus allowing one to build an accepting run in A1 with several
final transitions. This contradicts Lemma 3.10, thus violating Constraint 2. Phenomena of
the same nature occur in the construction of A +

1 and A1 ∩ A2, thus explaining the slight
discrepancies between the definitions of the automata and the inference systems given. This
inference system should thus be construed as a way to get intuitions rather than a formal
definition.

Lemma 3.12. G (A1 · A2) = G (A1) · G (A2) . �
Proof. Let G ∈ G (A1) · G (A2). There are two accepting runs Ri =

〈
{ιi} , ti0; · · · ; tini

, ∅
〉

(with i ∈ {1, 2}) such that G ≡ G (R1) · G (R2). Let us name some intermediary states: we
call S1 and S2 the states such that:

A1 � t10; . . . ; t
1
n1−1 : {ι1} → S1; A1 � t1n1

: S1 → ∅;

A2 � t20 : {ι2} → S2; A2 � t21; . . . ; t
2
n2

: S2 → ∅.

50 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

Because of Lemma 3.10, we know that in R1, only t1n1
is a final transition. Using the

inference rules above, we obtain:

A1 · A2 � t10; . . . ; t
1
n1−1 : {ι1} → S1; A1 · A2 � t21; . . . ; t

2
n2

: S2 → ∅;

A1 · A2 �
〈
▹

t1n1
,
◃

t20
〉
: S1 → S2.

Thus we obtain R =
〈
{ι1} , t10; . . . ; t1n1−1;

〈
▹

t1n1
,
◃

t20
〉
; t21; . . . ; t

2
n2
, ∅

〉
which is accepting in

A1 · A2 and satisfies G (R) ≡ G (R1) · G (R2) ≡ G.

For the other direction, let G ∈ G (A1 · A2) be a graph, and R = 〈{ι1} , t0; . . . ; tn, ∅〉 be the
corresponding accepting run. We can extract from this run two runs R1 and R2 respectively
in A1 and A2 as follows:

R0
1 :=ε, Rk+1

1 :=

⎧⎨⎩ Rk
1 ; tk (if tk ∈ T1)

Rk
1 ;

〈
▹tk, ∅

〉 (
if

〈〈
▹tk, ∅

〉
,
〈
{ι2} , ◃tk

〉〉
∈ T1 × T2

)
Rk

1 (otherwise)
,

R0
2 :=ε, Rk+1

2 :=

⎧⎨⎩ Rk
2 ; tk (if tk ∈ T2)

Rk
2 ;

〈
{ι2} , ◃tk

〉 (
if

〈〈
▹tk, ∅

〉
,
〈
{ι2} , ◃tk

〉〉
∈ T1 × T2

)
Rk

2 (otherwise)
,

R1 :=Rn+1
1 , R2 :=Rn+1

2 .

Using these definitions, we may prove that ∀k � n, A1 · A2 � t0; . . . ; tk : {ι1} → S entails
A1 � Rk+1

1 : {ι1} → (S \ P2). This means R1 is an accepting run in A1. By Lemma 3.10
this entails there is a single final transition in R1, hence a single transition ti in R such
that

〈〈
▹ti, ∅

〉
,
〈
{ι2} , ◃ti

〉
∈ T1 × T2

〉
. Again by Lemma 3.10 we know that ti marks the

end of R1, and clearly R2 cannot begin before ti has been fired (no place in P2 can ap-
pear before that). From this we can deduce that R has almost the shape R1;R2 (but
with the two transitions in the middle merged into ti). We can also check that ∀k � i,
A1 · A2 � t0; . . . ; tk : {ι1} → S entails A2 � Rk+1

2 : {ι2} → (S \ P1), thus proving that R2 is
an accepting run in A2. Finally we get that G (R) ≡ G (R1) · G (R2) ∈ G (A1) · G (A2).

Then iterating the automaton A1 can be done by looping the previous construction on itself:
we keep the places and transitions of the automaton, but simply add a transition 〈▹t, ◃t〉
for every pair of an initial transition 〈{ι1} , ◃t〉 and a final transition 〈▹t, ∅〉 in T1.

A +
1 := 〈P1,T1 ∪ {〈▹t, ◃t〉 | 〈〈▹t, ∅〉 , 〈{ι1} , ◃t〉〉 ∈ T1 × T1} , ι1〉 .

As an inference system, we get:

A1 � t : S → T

A +
1 � t : S → T

A1 � 〈▹t, ∅〉 : S → ∅, A1 � 〈{ι1} , ◃t〉 : {ι1} → T

A +
1 � t : S → T

Lemma 3.13. G
(
A +

1

)
= G (A1)

+
. �

Proof. The proof follows the same scheme as the previous one.

Parallelisation of automata. We still have A1 and A2 with disjoint sets of places. We
can get an automaton whose traces are obtained by the parallel product of traces of A1

and A2 by merging the initial transitions of the two automata, and then merging their final
transitions. This yields the following automaton:

A1 ∩ A2 :=
〈
P1 ∪ P2 ∪ {ι} , (T1 \ P (P1)× {∅}) ∪ (T1 \ P (P2)× {∅}) ∪ T i ∪ Tf , ι

〉
,

where T i := {〈{ι} , ◃t1 ∪ ◃t2〉 | 〈〈{ι1} , ◃t1〉 , 〈{ι2} , ◃t2〉〉 ∈ T1 × T2}
and T f := {〈▹t1 ∪ ▹t2, ∅〉 | 〈〈▹t1, ∅〉 , 〈▹t2, ∅〉〉 ∈ T1 × T2}.

3.2. REGULAR AND RECOGNISABLE SETS OF GRAPHS 51

Notice that because P1 and P2 are of empty intersection, the set of states of this automaton
(i.e. P (P1 ∪ P2 ∪ {ι})) is isomorphic to P (P1) × P (P2) × P ({ι}). For clarity, we use the
later notation. Presented as an inference system, the definition above stands for:

A1 � t : S → T , ◃t �= ∅
A1 ∩ A2 � t : 〈S,X, ∅〉 → 〈T,X, ∅〉

A2 � t : S → T , ◃t �= ∅
A1 ∩ A2 � t : 〈X,S, ∅〉 → 〈X,T, ∅〉

A1 � 〈{ι1} , ◃t \ (Σ× P2)〉 : {ι1} → S1, A2 � 〈{ι2} , ◃t \ (Σ× P1)〉 : {ι2} → S2

A1 ∩ A2 � t : 〈∅, ∅, {ι}〉 → 〈S1, S2, ∅〉

A1 � 〈▹t \ P2, ∅〉 : S1 → ∅, A2 � 〈▹t \ P1, ∅〉 : S2 → ∅, ◃t = ∅
A1 ∩ A2 � t : 〈S1, S2, ∅〉 → 〈∅, ∅, ∅〉

Lemma 3.14. G (A1 ∩ A2) = G (A1) ∩ G (A2) . �
Proof. Let G ∈ G (A1)∩G (A2). There are two accepting runs in A1 and A2, that we call
Ri =

〈
{ιi} , ti0; . . . ; tini

, ∅
〉

(with i ∈ {1, 2}), such that G ≡ G (R1) ∩ G (R2). We build the
following run:

R :=
〈
{ι} ,

〈
{ι} , ◃t10 ∪ ◃t20

〉
; t11; . . . ; t

1
n1−1; t

2
1; . . . ; t

2
n2−1;

〈
▹

t1n1
∪ ▹t2n2

, ∅
〉
, ∅

〉
.

It is a simple exercise to check that indeed R is an accepting run in A1 ∩ A2, and that its
trace does satisfy G (R) ≡ G.

For the other direction, the presentation as an inference system simplifies the reasoning:
quite clearly, by projecting an accepting run in A1 ∩ A2 on the first (respectively second)
component, we get an accepting run in A1 (resp. A2). From that remark, one can deduce
that the parallel product of the traces of these two projected runs is isomorphic to the trace
of the whole run.

Conclusion. We now formally define the function A (_):

Definition 3.15 (A (e)).
We define A (e) by induction on e:

A (a) :=
a

; A (0) := ;

A (e · f) :=A (e) · A (f) ; A (e+ f) :=A (e) ∪ A (f) ;

A (e ∩ f) :=A (e) ∩ A (f) ; A
(
e+

)
:=A (e)

+
. ∗

It is then straightforward to check that the automaton produced by this function recognises
the intended language, using Lemmas 3.11 to 3.14.

Lemma 3.16 (Correctness of A (_)). ∀e ∈ GReg 〈Σ〉 ,G (A (e)) ≡ G (e) . �

This construction allows us to state the first half of a Kleene theorem:

Theorem 3.17. Regular sets of graphs are recognisable. �
Proof. If S is a regular set of graphs, then there is an expression e ∈ GReg 〈Σ〉 such that
S ≡ G (e). By Lemma 3.16, G (A (e)) ≡ G (e) ≡ S, thus proving S is recognisable.

Naturally, we would like to establish the converse as well, to fully equate these two classes
of graph languages. This will be the focus of Section 3.4.
Remark. If e is an expression without intersection, it can be shown that the transitions
in A (e) are all of the form 〈{p} , {〈x, q〉}〉, with only one input, one output and a label
in Σ. As a consequence, the accessible configurations are singletons, and the resulting
Petri automaton has the structure of a non-deterministic finite-state automaton (NFA).
Actually, in that case, the construction we described above is just a variation on Thompson’s
construction [60], with inlined epsilon transition elimination.

52 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

3.3 Boxes

To get a full Kleene theorem, a key ingredient is the ability to represent the labelling of a
fragment of execution of some automaton. As Petri automata have crucially a concurrent
component, words will not do the trick. For that reason, we introduce boxes, which represent
“slices” of TTSP graphs, with distinguished inputs and outputs. Recall the following run,
that we used as an example of run from the automaton displayed in Figure 3.4:

A
B

G

C

E
G

D

E
G

C

E
G

D

E
G

F

G

0
1

2
3

2
4

7

b

a

c

b

a
c

b

a
d

We will abstract each transition by a box, and the run itself by the sequential composition
of those boxes:

A
B

G G

C

E
G

D

E
G

C

E
G

D

E
F

G
∅

b

a

c

b

a
c

b

a
d

These boxes allow us to represent any subrun as a single box. For instance, the subrun
firing transitions 2 and 3 in sequence, and looping from state {C,E,G} back to itself can
be represented as the box:

G

C

E

G

D

E

G

C

E

a
c

b

=
G

C

E

G

C

E

a
c

b

In this section, we describe the formal definition of these boxes, and we study some of their
properties.

3.3.1 Categories of boxes

We fix a finite set P of ports, which will be instantiated in the next section with the set of
places of some Petri automaton.

Definition 3.18 (Box).
Let S, S′ ⊆ P be two sets of ports. A box labelled over Σ from S to S′ is a triple

〈−→p , G,←−p
〉

where G is a DAG labelled with Σ, −→p is a map from S to the vertices of G, and ←−p is a
bijective map from S′ to maxG.

The set of boxes labelled by Σ is written BΣ , and the boxes from S to S′ are denoted by
BΣ (S, S′), or simply B (S, S′) if the set of labels is clear from the context. ∗

As for graphs, we consider boxes up to renaming of internal nodes. We use graphical
representations for boxes, as illustrated in Figure 3.7. Inside the rectangle is the DAG, with
on the left the input ports and on the right the output ports. The maps −→p and ←−p are
represented by the arrows going from the ports to vertices inside the rectangle.

3.3. BOXES 53

a
b

c

c

a

A

B

C

D

E

F

G

b

a

b
E

F

G

A

D

C

Figure 3.7: Examples of boxes

A A

B B

C C

D D

E E

Figure 3.8: idσ.

Definition 3.19 (Identity box).
If S = {p1, . . . , pn} ⊆ P is a set of ports, the identity box on S is defined as idS :=
〈[pi �→ i], 〈{1, . . . , n} , ∅〉 , [pi �→ i]〉 . ∗

The box id{A,B,C,D,E} is represented in Figure 3.8.

One of the most interesting features of boxes is their ability to compose. Intuitively, if the
set S of output ports of β1 is equal to the set of input ports of β2, we may compose them by
putting the graph of β1 to the left of the graph of β2, and for every port p ∈ S, we identify
the node ←−p1 (p) with the node −→p2 (p).

Definition 3.20 (Composition of boxes).
Let S1, S2, S3 ⊆ P and for i ∈ {1, 2}, let βi be a box from Si to Si+1, with βi =〈−→pi , 〈Vi, Ei〉 ,←−pi

〉
, such that V1 ∩ V2 = ∅. The composition of β1 and β2, written β1 � β2

may be defined as
〈−→p , 〈V ′

1 ∪ V2, E
′
1 ∪ E ∪ E2〉 ,←−p

〉
with:

• V ′
1 := V1 \ ←−p1 (S2), and E′

1 := E1 ∩ (V ′
1 × Σ× V ′

1);

• E :=
{〈

x, a,−→p2 (p)
〉 ∣∣ 〈x, a, y〉 ∈ E1, y = ←−p1 (p)

}
;

• ←−p := ←−p2 and −→p (p) :=
{ −→p2 (q), if −→p1 (p) = ←−p1 (q),−→p1 (p), otherwise. ∗

For instance the two boxes in Figure 3.7 may be composed, thus yielding the following box:

a
b

c

c

a b

a

b
A

B

C

D

A

D

C

It can be used to define a category of sets of ports and boxes:

Lemma 3.21. One may form a category Box Σ
P whose objects are subsets of P , and whose

morphisms between S and S′ are the boxes from S to S′, i.e. BΣ (S, S′). �
Proof. To give a high level proof of the associativity of box composition, notice that the
computation of β � γ may be split in two steps:

1. compute an intermediate box β
ε−→ γ (with ε being a fresh label), build by keeping

the input port map of β, the output map of γ, the disjoint union of their vertices
and edges, and simply adding edges x

ε−→ y whenever 〈x, y〉 ∈ maxβ × γ such that←−pβ (x) = −→pγ (y).

54 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

2. collapse all edges labelled by ε by identifying their source and target vertices. The
effect of this will be the destruction of all the nodes from maxβ, and the redirection
of their incoming arrows to the corresponding vertices in γ.

Suppose we have three boxes β, γ, δ with the appropriate input and output sets of ports
(the input ports of γ should be exactly the output ports of β...). We may now describe the
two ways in which to compose them by the following diagram:

β, γ, δ ��

��

(1)

β, γ
ε2−→ δ ��

��

(2)

β, γ � δ

��

β
ε1−→ γ, δ ��

��

(3)

β
ε1−→ γ

ε2−→ δ ��

��

(4)

β
ε1−→ γ � δ

��

β � γ, δ �� β � γ
ε2−→ δ �� β � γ � δ

The commutation of square (1) is clear: the box β
ε1−→ γ

ε2−→ δ could even be described in
one step (just put edges with ε1 between maxβ and γ and with ε2 between max γ and δ.

Squares (2) and (3) commute as well. For instance for square (3), notice that collapsing
edges ε1 in β

ε1−→ γ doesn’t affect the set maxβ
ε1−→ γ = max γ. Hence this has no bearing

on the computation of β � γ
ε2−→ δ.

Finally, for square (4), an additional step could be added: replacing both labels ε1 and ε2 by
a common label ε, before collapsing the resulting graph along ε-edges. This clearly produces
the same result. The point is then to show that the collapsing operation is confluent. This
is true, because one could compute the normal form from the beginning, as the set of
equivalence classes of the smallest equivalence relation on vertices containing all pairs x, y
of vertices linked by an ε-edge.

The fact that for any box β =
〈−→p , 〈V,E〉 ,←−p

〉
∈ B (A,B), we have idA � β = β is straight-

forward from the definitions. The vertices of the composite box are exactly those of β,
because the image of A through the output map of idA is the set of vertices of idA itself.
As idA has no edge, the edges of idA � β are again simply those of β. By definition the
output map is that of β, but so is the input map, because for every port pi ∈ A, the images
of pi via the input and output maps of idA are both equal to i. The fact that β � idB is
also equal to β follows from a similar argument.

We actually need to enforce a stronger typing discipline on boxes. Intuitively, this stems
from our desire to use these boxes to represent fragments of series-parallel graphs. However
in the current setting, we may very well have two boxes that are indeed fragments of series
parallel graphs, which are allowed to be composed, but whose composition cannot be a part
of a SP-graph. For instance consider the four boxes below, called β1 through β4:

a

b

c

d

A

B

C

D

a

b

c

dA

B

C

D

e

B

C

D E

B

C

D

E

According to their interfaces, β1 and β2 can both compose with β3 and β4. Indeed β1 � β4,
β2 � β3 and β2 � β4 all yield boxes containing TTSP graphs. However the composition
β1 � β3 produces the box shown in Figure 3.9. The graph contained in this box is not
TTSP, and is in fact the forbidden subgraph of the class of TTSP graphs [61]. To prevent
this situation statically, we introduce typing. The types we use are top-down trees with
leaves labelled with ports:

3.3. BOXES 55

a

b

c

d

A

B

C

D

� e

B

C

D E

=

a

b

c

d

e

A E

Figure 3.9: An example of “bad” composition

A

B

C

D

E

σ :

F

G

I

H

τ :

Figure 3.10: Example of types

Definition 3.22 (Type).
A type over S ⊆ P is a triple τ = 〈V,E, λ〉 such that 〈V,E〉 is a proper unlabelled top-down
tree, and λ is a bijective function from S to max 〈V,E〉. The set of types over subsets of P
is written TP . ∗

As before, types are considered up to bijective renaming of internal vertices. It is then a
simple observation to notice that TP is finite (recall that P was assumed to be finite as
well). We present two examples of such types in Figure 3.10.

We may forget about the label information in a box: the a-erasing of a box β is the box �β�a
where all labels are replaced by an arbitrary letter a ∈ Σ. When the labels are not relevant
(or, in the next section when we label edges with expressions rather than letters), we can
define SP-reductions of boxes. Given a box β =

〈−→p , G,←−p
〉
, if G →SP G′, and if no vertex

in the image of −→p was erased in the reduction, we write β →SP

〈−→p , G′,←−p
〉
. Composition

commutes with SP-reductions: if β →SP β′, then β� γ →SP β′ � γ and γ � β →SP γ � β′.

A type τ = 〈V,E, λ〉 over S may be seen as a box from {ι} to S labelled with Σ �= ∅: if r
is the root of τ and a ∈ Σ, we can build the box τ

a
from {ι} to S as 〈[ι �→ r], 〈V,E′〉 , λ〉,

with E′ = {〈x, a, y〉 | 〈x, y〉 ∈ E}. It is quite clear that for any type τ , τ
a
=

⌊
τ

a

⌋
a
, and

that for any two boxes β ∈ B (S1, S2) and γ ∈ B (S2, S3), we have �β � γ�a = �β�a � �γ�a.

We may now use these to type boxes, in the following way.

Definition 3.23 (Typed boxes).
Let β ∈ B (S, S′) be a box, σ and τ be types respectively over S and S′. β has the type
σ → τ if

⌊
σ

a
� β

⌋
a

→�
SP τ

a
. We write BΣ (σ, τ) for the set of boxes over Σ of type

σ → τ , and BΣ for the set of typed boxes over Σ. ∗

Remark. Notice that the type of a box is not unique: a single box may have multiple types.
However, given an input type σ and a box β, there is at most one output type τ such
that β ∈ B (σ, τ).

56 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

Example 3.24.
Consider the following type σ and box β:

A

B

C

D

E

σ :

a

b
c

d

a

bA

B

C

D

E

F

G

I

H

β :

First, we glue them together, and erase the labels. This yields the graph:

F

G

I

H

Then, we apply as many reductions steps as much as possible:

F

G

I

H

F

G

I

H

→�
SP

The last graph is the box corresponding to a tree τ . Hence we can state that β has the type
σ → τ . •

The composition of typed boxes is a typed box and the identity box can be typed.

Lemma 3.25. B (σ, τ)�B (τ, θ) ⊆ B (σ, θ) and if σ is a type over S, then idS ∈ B (σ, σ). �
Proof. Let β, γ ∈ B (σ, τ)× B (τ, θ), we show that β � γ ∈ B (σ, θ):⌊
σ

a
� (β � γ)

⌋
a
=

⌊
σ

a
� β

⌋
a
� �γ�a →�

SP τ
a
� �γ�a =

⌊
τ

a
� γ

⌋
a
→�

SP θ
a
.⌊

σ
a
� idS

⌋
a
=

⌊
σ

a

⌋
a
= σ

a
.

For this reason we write idσ := idS .

Corollary 3.26. There is a category TBox Σ
P of typed boxes, with TP as the set of objects,

and BΣ (τ, σ) as the set of morphisms between τ and σ. �

Remark. It is clear that whenever we have a category C, we can form a typed Kleene
algebra [38, 48] K whose atomic types are the objects of the category, and where the set of
elements of type a → b is the set HomC (a, b) of homomorphisms from a to b. The product
in this algebra is the pointwise composition of homomorphisms, and the sum is the union.
This means that P (B) and P (B) are typed Kleene algebras.

3.3. BOXES 57

3.3.2 Templates

Another important notion we need for the second direction of our Kleene theorem is that
of template. In the proof of the classical Kleene theorem, one moves from automata to
generalised automata, which are labelled with regular expressions rather than with letters.
This allows for the label of a single transition to represent many paths in the original
automaton. Finite templates will serve this function in our proof. A finite template is
a finite set of boxes sharing the same input an output ports, and labelled with graph
expressions.

Definition 3.27 ((Finite) Template).
Let S and S′ be sets of of ports. A template (respectively finite template) from S to S′ is
a set (resp. finite set) Γ ⊆ BGReg〈Σ〉 (S, S′) of boxes from S to S′ labelled with expressions.
If furthermore σ is a type over S, τ is a type over S′ and Γ ⊆ BGReg〈Σ〉 (σ, τ), we say that
Γ has type σ → τ . We write BT (S, S′) for the set of finite templates from S to S′, and
BT (σ, τ) for finite templates of type σ → τ . ∗

From such sets of boxes, one may extract “standard” boxes, as follows:

Definition 3.28 (Boxes generated by a template).
Let Γ ∈ BT (S, S′) be a template from S to S′. Then β ∈ BΣ (S, S′) is generated by Γ if
it can be obtained from a box

〈−→p , G,←−p
〉
∈ Γ by replacing each edge x

e−−→ y by a TTSP
graph G′ ∈ G (e) with input vertex x and output vertex y. We write �βΓ� for the set of boxes
generated by Γ. ∗

For instance in the example below the template Γ can generate all boxes of the shapes βn

and δn, for n > 0:

Γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ a

b
a ∪ b

a+ · b
A

B

C

D

E

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
βn =

a

b
a

a a b
A

B

C

D

E

. . .

n

δn =

a

b
b

a a b
A

B

C

D

E

. . .

n

Remark. If Γ has the type σ → τ , then �βΓ� ⊆ BΣ (σ, τ).

As per Lemma 3.21, Corollary 3.26 and the subsequent remark, the set of templates and the
set of typed templates form typed Kleene algebras. Hence, we define the regular operations
on templates.

Definition 3.29 (Regular operations on templates).

• 1S := {idS} and 0 := ∅.

• Let Γ,Δ ⊆ B (S, S′)× B (S′, S′′), then Γ ·Δ := Γ�Δ.

• Let Γ,Δ ⊆ B (S, S′), then Γ +Δ := Γ ∪Δ.

• Let Γ ⊆ B (S, S), then Γ� :=
⋃

n∈ Γ� · · · � Γ︸ ︷︷ ︸
n

. ∗

These operations are compatible with types. One can easily check that 1σ is the unit of the
product, 0 is the unit of the sum, and that these definitions are compatible with the sets of
generated boxes:

�β1σ� = {idσ} �β0� = ∅ �βΓ ·Δ� = �βΓ� � �βΔ� �βΓ +Δ� = �βΓ� ∪ �βΔ�. �βΓ�� = �βΓ��.

58 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

a

b

c

a

b

a

A

B

C

D

E

A

B

C

D

E

a

b

A

B

A

B

a

b

A

B

C

D

E

A

B

C

D

E

a

b

A

B

C

D

E

A

B

D

C

E

atomic non-atomic

Figure 3.11: Atomic and non-atomic boxes

Furthermore, if Γ1,Γ2 and Γ3 are finite templates of appropriate type, then Γ1 + Γ2 and
Γ1 · Γ2 are also finite typed templates.

However the Kleene star of a set of typed boxes yields an infinite set of boxes. Worse, the
language it generates cannot always be represented as a finite template. For instance, the
star of the box δ below yields all boxes δn, for n ∈ :

a

b

A

B

A

B

δ =

a a a
. . .

n

b b b
. . .

n

A

B

A

B

δn =

This set of boxes cannot be represented by a finite number of boxes, as the two branches
have no way to synchronise. (This means that we cannot ensure there will be exactly the
same number of iterations on both branches.) Fortunately, it is possible to define this
operation for a rich enough class of templates, namely for atomic templates.

3.3.3 Atomic boxes and templates

Definition 3.30 (support).
Let β ∈ B (S, S), the support of β is support (β) :=

{
p
∣∣ −→p (p) �= ←−p (p)

}
. The support of a

template Γ ∈ BT (S, S) is then defined as
⋃

β∈Γ support (β). ∗

Intuitively, the support constitutes the irreflexive part of a box. In particular, support (idσ)
is always empty. Notice that if Γ,Γ′ are templates with type σ → σ and disjoint support,
then Γ� Γ′ = Γ′ � Γ.

Definition 3.31 (Atomic box, atomic template).
A box α =

〈−→p , G,←−p
〉
∈ B (S, S) is atomic if its graph has a single non-trivial connected

component C, and if for every vertex v outside C, there is a unique port p ∈ S such that−→p (p) = ←−p (p) = v. An atomic template is a finite template exclusively composed of atomic
boxes. ∗

Atomic templates with singleton support can be easily iterated. Indeed, the non-trivial
connected component of an atomic box with singleton support is TTSP, and may thus be
SP-reduced to a graph with only two vertices, joined by a single edge labelled with some
expression e. If we then replace e with e+, and put the resulting box α′ in a template
α� := {idσ, α

′}, we easily get �βα�� = �βα��. Now if Γ = {α1, . . . , αn} is an atomic template
with singleton support, it must be that every αi has the same singleton support. We may
thus reduce their graphs, yielding expressions e1, . . . , ei, and use the label (e1 + · · ·+ ei)

+

to do the same construction.

3.4. MAIN THEOREM 59

Lemma 3.32. The non-trivial connected component of an atomic box of type σ → σ always
contains a vertex c, such that for every port p mapped inside that component, all paths from−→p (p) to a maximal vertex visit c. �
Proof. This is a direct consequence of Lemma 3.1

This lemma allows us to split an atomic box into the product α = α1 � α2 of two typed
boxes such that α2 � α1 has singleton support. Furthermore if support (Γ) ⊆ support (α)
then

{
α2

}
� Γ�

{
α1

}
has singleton support.

Another important property is that the supports of atomic boxes of the same type are either
disjoint or comparable:

Lemma 3.33. For every two atomic boxes β, γ ∈ B (σ, σ), exactly one of three things can
happen:

• support (β) ⊆ support (γ);

• support (γ) ⊆ support (β);

• support (β) ∩ support (γ) = ∅. �
Proof. To prove this result one realises that the support of any atomic box β ∈ B (σ, σ)
has to be the set of leaves reachable from some vertex in σ.

Proposition 3.34. For any atomic template Γ with type σ → σ, there is a finite template Γ�

with the same type such that �βΓ�� = �βΓ��. �
Proof. Let Γ = {α1, . . . , αn} be an atomic template of type σ → σ, indexed in such a way
that i < j entails either support (αi) ⊆ support (αj) or support (αi)∩ support (αj) = ∅. We
define ∅� = 1σ. Then for every k � n, we split {α1, . . . , αk−1} into Γ1 and Γ2, such that
support (Γ1) ⊆ support (αk) and support (Γ2) ∩ support (αk) = ∅. We obtain:

�β{α1, . . . , αk−1, αk}�� =�β(Γ1 + αk) + Γ2�
� (commutativity)

=(�βΓ1� ∪ �βαk�)
� � �βΓ2�

� (support (Γ2) ∩ support (Γ1 ∪ αk) = ∅)
=�βΓ�

1��βαk · Γ�
1�

� � �βΓ�
2� (regular laws)

=�βΓ�
1� (�β1σ� ∪ �βαkΓ

�
1��βαkΓ

�
1�

�)� �βΓ�
2� (regular laws)

=�βΓ�
1�

(
�β1σ� ∪ �βα1

kα
2
kΓ

�
1��βα

1
kα

2
kΓ

�
1�

�
)
� �βΓ�

2� (αk = α1
kα

2
k)

=�βΓ�
1�

(
�β1σ� ∪ �βα1

k��βα
2
kΓ

�
1α

1
k�

��βα2
kΓ

�
1�
)
� �βΓ�

2� (regular laws)

As we noticed earlier, because we have support (Γ1) ⊆ support (αk) the template α2
kΓ

�
1α

1
k

has a singleton support. This means we can compute its star, thus reduce the last expression
into a single finite template.

3.4 Main theorem

We will now establish the full Kleene Theorem of Petri automata and graph expressions,
by extracting expressions from Petri automata.

Theorem 3.35. The class of the regular sets of graphs coincide with the class of recognisable
sets of graphs. �

Let us fix an automaton A = 〈P,T , ι〉. We assume that ι is never in the output of a
transition (if it is not the case, it is easy to modify A to enforce this). We also add a new
place f /∈ P , which is not connected to any transition, but will be useful in the following.
For the sake of clarity, we now take the set of places P to be the previous P with the
addition of f . We start by building a finite state automaton whose states are types, and
transitions are typed boxes. Then, using a procedure similar to the proof of the classical
Kleene’s Theorem, we reduce it into a single box template from which we can extract a
regular graph expression.

60 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

3.4.1 A regular language of runs.

We can associate a box to every transition of a proper run, as illustrated in Example 3.38.

Definition 3.36 (Box of a transition).
Suppose t ∈ T is a non-final transition in A , and S, S′ ⊆ P are two states such that
A � t : S → S′. The box of t from S (written box (t, S)) is built as follows. Its set of input
ports (respectively output ports) is S (resp. S′). The vertices of its graph are the places in
S′, together with an additional node ∗. Places in ▹t are mapped by −→p to ∗, and the others
are mapped to themselves. ←−p sends every place in S′ (seen as a port) to itself (seen as a
vertex). Finally, we put edges 〈∗, a, q〉 whenever 〈a, q〉 ∈ ←−p . For final transitions t = 〈▹t, ∅〉
we adapt the construction from state ▹t to reach the state {f}, by defining box (t, ▹t) to be
〈[_ �→ ∗], 〈{∗} , ∅〉 , [f �→ ∗]〉. ∗

We extend this construction to runs in a straightforward way: if S0, . . . , Sn are states and
R = 〈S0, t1; . . . ; tn, Sn〉 is a proper run in A we define box (R) := box (t1, S0)�box (t2, S1)�
· · · � box (tn, Sn−1). With this definition, accepting runs will yield boxes in B ({ι} , {f}).
This actually amounts to computing the trace of R:

Lemma 3.37. If box (R) =
〈−→p , G,←−p

〉
, then G is isomorphic to G (R). �

Proof. The vertex k in G (R) (produced by tk) is equivalent to the vertex ∗ coming from
the same transition.

Example 3.38.
Recall the accepting run from Example 3.6:

A

B

G

C

E

G

D

E

G

C

E

G

D

E

G

F

G

0

1

2

3

2

4

7

b

a

c

b

a
c

b

a

d

The transitions of this run yield the following boxes:

box (0, {A}) = ∗1

B

G

b

a

A

B

G

; box (1, {B,G}) =
∗2

C

E

G

c

b

B

C

E

G G

;

box (2, {C,E,G}) 1 =

∗i D

E

G

a
C D

E E

G G

; box (3, {D,E,G}) =
∗4

C

E

G

c

b

D

E

C

E

G G

;

box (4, {D,E,G}) =

∗6 F

G

d
D

E

F

G G

; box (7, {F,G}) = ∗7

F

G

f .

3.4. MAIN THEOREM 61

We may then compute the translation of the run:

box (R) =
∗1

∗2
∗3

∗4
∗5

∗6
∗7

b

a

c

b

a c

b

a

d

A f .

The graph of this box is exactly the trace of this run (see Figure 3.6). Notice also that the
only vertices in the composite box are the ∗i vertices, one for each transition. •

This equivalence with traces yields another property: because of Constraint 2, we know
that every trace in A is TTSP. That means that all the boxes βi can be typed, starting
with the type τι = ι and ending with type τf = f .

Lemma 3.39. Let R = 〈{ι} , t1; . . . ; tn, ∅〉 be an accepting run, with intermediary
states {ι} = S0, S1, . . . , Sn−1, Sn = ∅. There exists a sequence τ0, . . . , τn of types over P
such that τ0 = τι, τn = τf and ∀1 � i � n, box (ti, Si−1) ∈ B (τi−1, τi) �
Proof. Simply put, if G (R) is TTSP, then for every k it must be the case that
G (〈{ι} , t1; . . . ; tk, Sk〉) SP-reduces to a tree τk. Using Lemma 3.37 we can use these trees
to types the boxes of every transition in R.

The fact that τn = τf = f is quite straightforward, as this is the only type over {f}.

Consider the finite state automaton Aut with states TP (the set of types over P), initial
state τι, a single final state τf and two kinds of transitions. For every non-final transition
t, states S, S′ and types τ, σ such that A � t : S → S′ and box (t, S) ∈ B (τ, σ), there is
a transition 〈τ, box (t, S) , σ〉 in Aut. There are also transitions 〈τ, box (t, ▹t) , τf 〉 for every
final transition 〈▹t, ∅〉 and every type τ over ▹t.

This automaton captures exactly the accepting runs of A . Indeed, Lemma 3.39 assures us
that for every accepting run in A we can find a corresponding accepting run in Aut. On
the other hand every accepting run in Aut stems by construction from an accepting run
in A .

This means we could extract a regular expression e ∈ Reg 〈B〉 from this automaton using
the standard Kleene Theorem. We could then get back the language of A by extracting the
graphs of boxes β1 � · · · � βn, whenever β1 . . . βn is a word in �e�. However, this is not yet
what we are looking for: we want a graph expression over the alphabet Σ. To get this, we
will replay the classic proof of Kleene’s theorem, with some modifications to suit our needs.

Remark. The automaton above should be built from the state τι, exploring all initial runs.
This construction will fail if either Constraint 1 or Constraint 2 are not satisfied. This
means that the two constraints we imposed are decidable.

3.4.2 Computing the expression.

A classical way of proving Kleene’s theorem is to move from automata to “generalised au-
tomata”, that is automata with expressions labelling transitions. We do a similar step
here, by replacing boxes with box templates as transition labels. The transformation is
straightforward: for every pair of states σ, τ , we put in the generalised automaton a tran-
sition labelled with {β | 〈σ, β, τ〉 ∈ Aut}. This ensures that there is exactly one transition

1Two instances of this box have to be used, one with i = 3 and one with i = 5.

62 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

between any pair of states. Notice that in the resulting generalised automaton, if the tran-
sition from σ to τ is labelled with Γ, all boxes in Γ have type σ → τ , therefore Γ itself has
this type.

Then, we proceed to remove non-initial non-final states, in an arbitrary order. Notice that
the automaton Aut we are considering has a single initial state and a single final state,
respectively τι and τf . These states are distinct, there is no outgoing transition from τf ,
nor is there an incoming transition in τι (remember that ι does not appear in the output of
transitions). At the end of this procedure, the only remaining states will thus be τι and τf .
There will be exactly one transition from τι to τf of the shape 〈τι, {β1, · · · , βn} , τf 〉. As
any βi has type τι → τf , its graph Gi must be TTSP, thus we get that e = W (G1) + · · ·+
W (Gn) is a graph expression and �β{β1, · · · , βn}� ≡ G (e).

We will maintain an invariant throughout the construction: the boxes generated by tem-
plates labelling any transition of the automaton should stem from runs in A . More precisely,
we require every template labelling a transition to be A -valid:

Definition 3.40 (A -validity).
A template γ ∈ BT (τ, σ) is A -valid if for every β ∈ �βγ� there exists a run R in A such
that box (R) ≡ β. ∗

Now we only need to show how to remove one state, while preserving typing and the language
of the automaton. The idea when removing a state τ is to add transitions to replace every
run going through τ . For every pair of states σ, χ with transitions labelled with β, δ, γ
and Γ′ as below, we will define a template Γ. We will then replace Γ′ with Γ + Γ′ on the
transition going from σ to χ.

σ

τ

γ

χ

β δ

Γ′
σ χ

Γ + Γ′
�→

We would like Γ to be β · γ� · δ. However, remember that we can only compute the star
of atomic templates. But in this case, we can approximate γ with a good-enough atomic
template:

Lemma 3.41. For any A -valid template γ ∈ BT (τ, τ) there exists an A -valid atomic
template At(γ) ∈ BT (τ, τ) such that �βγ� ⊆ �βAt(γ)��. �
Proof. From any connected component of the graph of any box in γ stems an A -valid
atomic box. Every box in γ is equal to the product (in any order) of the boxes corresponding
to its connected components. We then take At(γ) to be the set of all these atomic boxes.

We then define Γ to be β · At(γ)� · δ. Hence we get �ββ� � �βγ�� � �βδ� ⊆ �βΓ�. The lemma
also ensures that for every graph produced by a run in the automaton where τ is removed,
there is a run in A yielding the same graph. Both theses properties allow us to conclude
that this step is valid, preserving both the invariant and the language of the automaton.

3.5 Relationship with Branching Automata

Between 1998 and 2001, Lodaya and Weil introduced another kind of Petri net-based au-
tomata called “branching automata” [42, 43, 44]. They obtained a Kleene Theorem for this
model, using expressions from GReg 〈Σ〉 as well. In this section we recall the definition of
branching automata and describe precisely the relationship between their result and our
own.

3.5. RELATIONSHIP WITH BRANCHING AUTOMATA 63

a

c

b

a

d

Figure 3.12: Example of branching automaton

a
...τ

... τ

Figure 3.13: Prescribed transitions of branching automata

3.5.1 Definitions and Kleene Theorem

Definition 3.42 (Branching automaton).
A branching automaton over the alphabet Σ is a tuple 〈Q, Tseq, Tfork, Tjoin, I, F 〉, where Q
is a set of states, I and F are subsets of Q, respectively the input and output states, and
the transitions are split in three sets:

• Tseq ⊆ Q× Σ×Q is the set of sequential transitions;

• Tfork ⊆ Q× Mns (Q) is the set of opening transitions;

• Tseq ⊆ Mns (Q)×Q is the set of closing transitions.

(Here Mns (Q) represents the set of multisets over Q with cardinality at least 2.) ∗

An example of such an automaton is displayed on Figure 3.12. These automata can be seen
as labelled Petri nets of a particular shape: transitions are restricted to the three types
described on Figure 3.13.

These automata run on terms over the signature 〈Σ, ·,∩〉, quotiented by associativity of
both operations and by commutativity of ∩.

Definition 3.43 (Runs and language of a branching automaton).
Let t be a term, there is a run on t from state p to state q if:

• t = a ∈ Σ and 〈p, a, q〉 ∈ Tseq;

• t = t1 ∩ · · · ∩ tn with n � 2, there are two transitions 〈p, [p1, . . . , pn]〉 ∈ Tfork and
〈[q1, . . . , qn] , q〉 ∈ Tjoin, and for every 1 � i � n there is a run on ti from pi to qi;

• t = t1 · · · · · tn with n � 2, there are states p = p0, p1, . . . , pn = q, and for every
0 � i < n there is a run on ti from pi to pi+1.

The language of a branching automaton B, written L (B) is then defined as the set of
terms t such that there exists a pair of states 〈qi, qf 〉 ∈ I × F such that there is a run on t
in B from qi to qf . ∗

We can also associate a set of such terms to any expressions in GReg 〈Σ〉.

64 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

0

1

2

3

4

5

6

13

12

11

10

9

8

7

a

b

c

d

Figure 3.14: Example of branching automaton

Definition 3.44 (Term language of an expression).
The term language of an expression e ∈ GReg 〈Σ〉, denoted by L (e) is defined by induction
as follows:

L (a) := {a} L (0) := ∅ L (e ∪ f) := L (e) ∪ L (f)

L (e · f) := {u · v | u ∈ L (e) , v ∈ L (f)} L (e ∩ f) := {u ∩ v | u ∈ L (e) , v ∈ L (f)}

L
(
e+

)
:= {u1 · · · · · un | n > 0, ∀i, ui ∈ L (e)} .

∗

To make these two classes of term languages coincide, Lodaya and Weil impose some re-
strictions on the runs of the automaton, that corresponds to a safety constraint over the
underlying Petri net, much like Constraint 1. Here we only consider branching automata
implicitly satisfying those constraints.

Theorem 3.45 (Kleene Theorem for branching automata). For every set of terms T the
following are equivalent:

(i) there is an expression e ∈ GReg 〈Σ〉 such that T = L (e);

(ii) there is a branching automaton B such that T = L (B). �

3.5.2 Comparison with Petri automata

At first glance the two Kleene theorems and the fact that both branching automata (BA)
and Petri automata (PA) are Petri net-based seem to mean they are completely equivalent.
Indeed the same set of regular-like expressions may be used to describe their semantics.
However they still exhibit some deep differences.

The first difference comes from the runs in the two models. In some sense, the runs in
BA require a “global” view of the term being read. Consider the BA in Figure 3.14, and
the term t = b ∩ c ∩ a ∩ d. t is accepted by this automaton, but in order to reach that
conclusion, one must: 1) refactor t as (a ∩ b) ∩ (c ∩ d); 2) “match” the opening transition
〈0, [1, 2]〉 with the closing transition 〈[11, 12], 13〉; 3) read the subterms (a ∩ b) and (c ∩ d)
respectively from state 1 to state 12 and from 2 to 11. This means that the run is built as
a nesting of runs (rather than a sequential process), and that it needs to manipulate the
term as a whole (rather than using a partial, local view of it).

By contrast, to fire a transition in a PA, one simply needs to see one vertex of the graph and
the edges coming out of it. Furthermore, the matching of transitions is somewhat automatic
in our model, and knowledge of it is not needed to compute a run. For these reasons, our
notion of language of a run could be defined using standard Petri net notions (namely
pomset-traces, see Section 4.7 for more details), whereas runs in a branching automaton
rely crucially on the use of terms.

3.5. RELATIONSHIP WITH BRANCHING AUTOMATA 65

Another difference stems from the way the automata are labelled. BA do not label their
opening and closing transitions, making these “silent transitions”. This complicates greatly
the task of comparing automata using simulation-based methods. In our case though, every
transition is labelled, allowing use to define an algorithm to compare automata (see Chap-
ter 4).

These differences make the task of converting from one model to the other rather subtle.
To translate a BA into a PA, one would need some kind of epsilon elimination procedure.
We believe such a procedure could be devised using boxes to keep track of the order in
which opening and closing transitions are combined. However we do not have a precise
formulation of this algorithm yet.

The other direction is slightly easier. First, one modifies the transitions as sketched below:

p1

pn

...

q1

qm

...t

a1

am

p1

pn

...

qi1

qim

...

q1

qm

...t

a1

am

�→

This yields an automaton whose pomset-trace language (when seen as a Petri net) is the
language of the original PA. However, it’s branching automaton language is not the same,
as illustrated by the following example:

A 0

B

C

D

1 E

2

b

a

c

d

A

Bt

Ct

Dt

B

C

D

1 E

2

b

a

c

d

The pomset-trace language of this branching automaton corresponds to the set
{((a ∩ b) · d) ∩ c}, but its language is empty, as no factorisation of that term has three
parallel subterms. To solve this problem, one need to saturate the automaton by splitting
opening and closing transitions to allow for every factorisation. Formally, it means that for
an opening transition 〈p, [q1, . . . , qn]〉, for every tree2 with n leaves labelled with [q1, . . . , qn]
there should be a sequence of opening transitions of that shape.

In the case of the above example, one would add three states BCt, BDt and CDt, and six
transitions:

2We consider here trees where no vertex has out-degree one.

66 CHAPTER 3. A KLEENE THEOREM FOR GRAPH LANGUAGES

A

Bt

Ct

Dt

BCt

A

Bt

Ct

Dt

CDt

A

Bt

Dt

Ct

BDt

This procedure will allow for the pomset-trace and the BA languages to coincide, thus
producing a BA with the same language as the original PA.

This translation gives rise to a different proof of Theorem 3.35: first translate the PA
into an equivalent BA, and use Theorem 3.45 to obtain an expression describing its lan-
guage. Conversely, one could obtain Theorem 3.45 through the translation from BA to PA
and Theorem 3.35.

We found out about this work by Lodaya and Weil after having proved our theorem. Nev-
ertheless we feel that the tools and techniques we developed to obtain this result bring an
interesting new point of view on the matter, and could prove useful in the future.

3.6 Conclusion

In this chapter we provided two ways of defining sets of series-parallel graphs: either as
the language G (e) of some expression e, or as the set G (A) of traces of a Petri automa-
ton A . These definitions are very different: G (e) is defined inductively in a compositional
manner, which makes is suited to equational reasoning, whereas G (A) has a more opera-
tional flavour, making it better suited for complexity analysis and algorithmic manipulation.
With Theorem 3.35 however, we showed that we can define the same sets of graphs using
both methods.

A lot of research has been done in this area, yielding results similar to our own, but with dif-
ferent perspectives and very different methods. For instance Courcelle et al. [23] developed
a complete algebraic language to describe graphs. However it seems that they use quite
a different approach to describe sets of graph: in our case sets of graphs are inductively
generated from expressions, whereas Courcelle tends to use the set of solutions of some
equation.

The results by Bossut, Dauchet and Warin [10] could also be relevant here, as they provide a
Kleene theorem for a class of graphs very similar to our own. The main difficulty in relating
this work to our own stems from the very different style of automata and expressions used.

Fourth chapter

Petri automata for Kleene Allegories

“I dislike Allegory – the conscious and intentional allegory – yet any attempt to
explain the purport of myth or fairytale must use allegorical language.”

— J. R. R. Tolkien.

4.1 Introduction

We consider in this chapter binary relations and the operations of union (∪), intersection (∩),
composition (·), converse (_N), transitive closure (_+), reflexive-transitive closure (_�), and
the constants identity (1), empty relation (0) and universal relation (�). This model gives
rise to an (in)equational theory: a pair of terms e, f made from those operations and some
variables a, b, . . . is a valid equation, denoted Rel |= e = f , if the corresponding equality
holds universally. Similarly, an inequation Rel |= e ≤ f is valid when the corresponding
containment holds universally. Here are valid equations and inequations: they hold whatever
the relations we assign to variables a, b, and c.

Rel |= (a ∪ b)� · b · (a ∪ b)� = (a� · b · a�)+ (4.1)

Rel |= a� ≤ 1 ∪ a · aN · a+ (4.2)
Rel |= a · b ∩ c ≤ a · (b ∩ aN · c) (4.3)

Rel |= a+ ∩ 1 ≤ (a · a)+ (4.4)

Various fragments of this theory have been studied in the literature:

• Kleene algebra [22], where one removes intersection, converse, and �, so that terms
are plain regular expressions. The equational theory is decidable [35], and actually
PSpace-complete [46]. The equational theory is not finitely based [55], but finite
quasi-equational axiomatisations exist [41, 36]. Equation (4.1) lies in this fragment,
and one can notice that the two expressions recognise the same language.

• Kleene algebra with converse, where one only removes intersection and �, is also a
decidable fragment [6]. It remains PSpace [15]. Inequation (4.2) belongs to this
fragment; it can be axiomatised relatively to Kleene algebra [26].

• (representable, distributive) allegories [27], sometimes called positive relation alge-
bras, where transitive and reflexive-transitive closures are not allowed. They are
decidable [27, page 208]; and not finitely based. Inequation (4.3) is known as the
modularity law in this setting.

To the best of our knowledge, the decidability of the whole theory, bounded Kleene allegories,
is open. Here we obtain several important steps towards the resolution of this problem:

1. we give a characterisation of the full (in)equational theory in terms of graph languages,
and we relate this to the construction from the previous chapter;

2. we design a way to recognise such graph languages with Petri automata;

3. we show how to associate such a graph automaton to any term of Kleene allegories;

4. using these graph automata, we give a decision procedure for the fragment where the
maximal relation, converse and identity are forbidden.

67

68 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

The latter fragment was studied recently by Andréka et al. [3]; its decidability was open as
far as we know. The restriction to this fragment allows us to exploit simplifying assumptions
about the produced automata, and to obtain a coinductive algorithm for language inclusion
(Section 4.5). We actually show that language inclusion for these automata is ExpSpace-
complete (Section 4.6).

The next problem, which remains open, consists in obtaining the decidability of language
inclusion in the full automata model: together with the presented results, this would entail
decidability of Kleene allegories. We outline some of the difficulties arising with converse
or unit in the presence of intersection in Section 4.5.4.

4.2 Graphs and expressions

We consider the following set of expressions:

Definition 4.1 (Allegoric regular expressions).
Allegoric regular expressions over Σ, or simply expressions in the remaining of this chapter,
are terms e, f . . . built on the signature 〈0, 1,�,∪, ·,∩,_N,_�〉. We denote by AReg 〈Σ〉
the set of expressions over the finite alphabet Σ. ∗

Ground terms are the expressions u, v, w . . . built with the sub-signature 〈∩, ·,_N, 1,�〉.
The set of ground terms over Σ is written WΣ. If σ : Σ → Rel 〈S〉 is an interpretation of
the alphabet Σ into some algebra of relations, we write σ̂ for the unique homomorphism
extending σ into a function from AReg 〈Σ〉 to Rel 〈S〉. An inequation between two expres-
sions e and f is valid, written Rel |= e ≤ f , if for any relational interpretation σ we have
σ̂(e) ⊆ σ̂(f).

We let G range over 2-pointed labelled directed graphs1, which we simply call graphs in the
sequel. Those are tuples 〈V,E, ι, o〉 with V a finite set of vertices, E ⊆ V × Σ× V a set of
edges labelled with Σ, and ι, o ∈ V the two distinguished vertices, respectively called input
and output.

Definition 4.2 (Graph of a ground term: G (w)).
To each ground term w, we associate a graph G (w), by induction on w. The graph of
a ∈ Σ has one edge labelled by a linking its input to its output. The graph for 1 has only
one vertex, both input and output. The graph of � has an input distinct from its output,
without any edge2. The composition of two graphs with disjoint sets of vertices can be
performed by identifying the output of the first graph and the input of the second one.
The intersection on graphs consists in merging their inputs and merging their outputs. The
converse consists simply in exchanging the input and the output of a graph. ∗

See Figure 4.1 for a graphical description of this construction. Those graphs were introduced
independently by Freyd and Scedrov [27, page 208], and Andréka and Bredikhin [2]. Notice
that the constructions for variables, products and intersections are the same as in the
previous chapter. We investigate this relationship in Section 4.3.

Definition 4.3 (Graph homomorphism, preorders
 and �).
A graph homomorphism from 〈V1, E1, ι1, o1〉 to 〈V2, E2, ι2, o2〉 is a map ϕ : V1 → V2 such
that ϕ(ι1) = ι2, ϕ(o1) = o2, and 〈p, x, q〉 ∈ E1 entails 〈ϕ(p), x, ϕ(q)〉 ∈ E2. We denote by

the relation on graphs defined by G
 G′ if there exists a graph homomorphism from G′

to G. This relation gives rise to a preorder on ground terms, written � and defined by u�v
if G (u)
 G (v). ∗

1Notice that in contrast with the previous chapter, we do not require graphs to be acyclic here.
2The author would like to thank Florent Bréhard for the idea of the graph of �. It’s so simple once you

have the good definition!

4.2. GRAPHS AND EXPRESSIONS 69

G (1) := G (�) :=

G (a) :=
a G (wN) := G (w)

G (u · v) := G (u) G (v) G (u ∩ v) :=
G (u)

G (v)

Figure 4.1: Inductive construction of the graph of a ground term.

Given a set S of graphs, we write �S for its downward closure: �S := {G | G
 G′, G′ ∈ S}.
Similarly, we write �S for the downward closure of a set of ground terms w.r.t. �.

A significant number of the results presented in [2, 3] rely on [2, Lemma 3]. We restate it
here with � added to the signature of ground terms.

Lemma 4.4. Let S be a base set, i, j ∈ S, v ∈ WΣ, G (v) = 〈Vv, Ev, ιv, ov〉 and σ a map
from Σ to Rel 〈S〉. Then 〈i, j〉 ∈ σ̂(v) if and only if there exists a function ϕ : Vv → S such
that ϕ(ιv) = i; ϕ(ov) = j and if 〈p, a, q〉 ∈ Ev then 〈ϕ(p), ϕ(q)〉 ∈ σ(a). �
Proof. Because this lemma was stated without �, we formally need to reprove it in our
context. Fortunately, the proof in [2] relies on an induction, hence we may reuse their proof,
only looking at the case v = �, which holds trivially.

The above preorder on ground terms precisely characterises inclusion under arbitrary rela-
tional interpretations:

Theorem 4.5. For all ground terms u, v, we have Rel |= u ≤ v ⇔ u� v . �
Proof. This lemma already exists as [2, Theorem 1], or [27, page 208], but without the �
operation. As the proof of [2, Theorem 1] mainly relies on [2, Lemma 3], we may replay it
word for word, deferring to Lemma 4.4 instead.

To extend this result to bounded Kleene allegories, we introduce the following generalisation
of the language of a regular expression. Sets of words become sets of ground terms, and
sets of graphs.

Definition 4.6 (Terms of an expression).
The set of terms of an expression e ∈ AReg 〈Σ〉, written �e�, is the set of ground terms
defined inductively as follows:

�1� := {1} ��� := {�} �0� := ∅
�a� := {a} �e · f� := {w · w′ | w ∈ �e� and w′ ∈ �f�}

�e ∪ f� := �e� ∪ �f� �e ∩ f� := {w ∩ w′ | w ∈ �e� and w′ ∈ �f�}
�eN� := {wN | w ∈ �e�} �e�� :=

⋃
n∈ {w1 · · · · · wn | ∀i, wi ∈ �e�} . ∗

Notice that if e ∈ AReg 〈Σ〉 is a regular expression (meaning it never uses the extra operators
�,N and ∩), �e� is the rational language denoted by e.

Definition 4.7 (Graphs of an expression).
The set of graphs of an expression e ∈ AReg 〈Σ〉, written G (e), is the set of graphs defined
inductively as follows:

G (1) := {G (1)} G (�) := {G (�)} G (0) := ∅
G (a) := {G (a)} G (e · f) := {G ·G′ | G ∈ G (e) and G′ ∈ G (f)}

G (e ∪ f) := G (e) ∪G (f) G (e ∩ f) := {G ∩G′ | G ∈ G (e) and G′ ∈ G (f)}
G (eN) := {GN | G ∈ G (e)} G (e�) :=

⋃
n∈ {G1 · · · · ·Gn | ∀i, Gi ∈ G (e)} . ∗

70 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

It is a simple matter to check that G (e) = {G (w) | w ∈ �e�}.
To obtain the characterisation announced in the introduction, we need a slight refinement
of a lemma established by Andréka, Mikulás, and Németi [3]:

Lemma 4.8. For any expression e ∈ AReg 〈Σ〉, any set S and any relational interpretation
σ : Σ → Rel 〈S〉, we have

σ̂(e) =
⋃

u∈�e�

σ̂(u) =
⋃

w∈��e�

σ̂(w). �

Proof. The first equality is [3, Lemma 2.1] (extended with �); for the second one, we use
the fact that σ̂(w) ⊆ σ̂(u) whenever w � u, thanks to Theorem 4.5.

Theorem 4.9. The following properties are equivalent, for all expressions e, f ∈ AReg 〈Σ〉:

(i) Rel |= e ≤ f , (ii) �e� ⊆ �
�f�, (iii) G (e) ⊆ �

G (f). �
Proof. The implication (ii) ⇒ (i) follows easily from Lemma 4.8, and (iii) ⇒ (ii) is a
matter of unfolding definitions. For (i) ⇒ (iii), we mainly use Lemma 4.4:

Let e, f ∈ AReg 〈Σ〉 two expressions such that Rel |= e ≤ f , and u ∈ �e� such that
G (u) = 〈Vu, Eu, ιu, ou〉; we can build an interpretation σ : Σ → Rel 〈Vu〉 by specifying:

σ(a) := {〈p, q〉 | 〈p, a, q〉 ∈ Eu} .

It is quite simple to check that σ̂(u) = {〈ιu, ou〉}. By Lemma 4.8 and Rel |= e ≤ f , we
know that

σ̂(u) ⊆ σ̂(f) =
⋃

v∈�f�

σ̂(v).

Thus there is some v ∈ �f� such that 〈ιu, ou〉 ∈ σ̂(v). By Lemma 4.4 we get that there is a
map ϕ : Vv → Vu such that ϕ(ιv) = ιu; ϕ(ov) = ou and

〈p, a, q〉 ∈ Ev ⇒ 〈ϕ(p), ϕ(q)〉 ∈ σ(a).

Using the definition of σ, we rewrite this last condition as

〈p, a, q〉 ∈ Ev ⇒ 〈ϕ(p), a, ϕ(q)〉 ∈ Eu.

Thus ϕ is a graph homomorphism from G (v) to G (u), proving that G (u)
 G (v), hence
G (u) ∈ �

G (f).

A simple corollary of this theorem is that in order to decide the validity of the law e ≤ f ,
we “only” have to test whether �

G (e) ⊆ �
G (f). Similarly, if we are interested in e = f ,

we can test if �
G (e) =

�
G (f) holds. In Section 4.4 we will show how Petri automata can

be used to describe the languages �
G (e).

A connection with Kleene algebra with converse.

It is interesting to notice that the order � we define here is strongly related with the
reduction relation we defined in Chapter 2, Definition 2.6.

Remember that we associated with every word u over the alphabet X = X ∪ {x′ | x ∈ X}
a function ϕ̂u : X� → Rel 〈{0, . . . , |u|}〉 satisfying the equation:

〈0, n〉 ∈ ϕ̂u(v) ⇔ v �� u . (2.13)

Notice that the graphs of words over X are isomorphic to the words themselves. Using (2.13)
and Lemma 4.4, we obtain that for all words u, v ∈ X�,

v �� u ⇔ u� v . (4.5)

4.3. FROM ALLEGORIC EXPRESSIONS TO GRAPH EXPRESSIONS 71

This is consistent with [6]: homomorphisms between such linear graphs are precisely what
Bloom et al. define as the set of admissible functions γ from the prefixes of the word v to
the prefixes of u such that γ(v) = u and they show that v�∗u if and only if there exists such
a map [6, Proposition 5.13]. This can be extended to regular expressions with converse, and
we get that the languages �

�e� and �
�e� are isomorphic.

4.3 From allegoric expressions to graph expressions

We may relate these graph languages to those we defined in the previous chapter.

Recall (Chapter 2) that one can always see an expression with converse as an expression
without converse on a duplicated alphabet. We may also remove � and 1 from our signature
in the same fashion. We do this in two steps.

Definition 4.10 (Converse-normal form).
An expression e ∈ AReg 〈Σ〉 is in converse-normal form if the converse operator is only
applied to letters in e. ∗

By using the following rewriting system, we associate with every expression a converse-
normal expression denoting the same set of graphs.

(a ∪ b)
N → aN ∪ bN 0N → 0 (a�)

N → (aN)�

(a · b)N → bN · aN 1N → 1 aNN → a

(a ∩ b)
N → aN ∩ bN �N → �

Definition 4.11 (Translation between allegoric and graph expressions).
Let e ∈ AReg 〈Σ〉 be an expression in converse-normal form. Consider the following alpha-
bet:

Σ• := Σ ∪ {a′ | a ∈ Σ} ∪ {1,�} .
We define the translated of e to be the expression �e� ∈ GReg 〈Σ•〉 obtained by replacing
aN with a′, e� with e+ ∪ 1, and seeing 1 and � as letters. ∗

Now we can use the graph construction from the previous chapter with expressions from
GReg 〈Σ•〉, thus yielding two-terminal series parallel graphs labelled with Σ•. Hence we
simply need to provide a way to transform such graphs into graphs labelled with Σ, with
distinguished inputs and outputs. This is the purpose of the function G!:
Definition 4.12 (G!).
Let G = 〈V,E〉 be a TTSP graph labelled with Σ•. Let ≡G be the smallest equivalence
relation on V containing all pairs 〈i, j〉 such that 〈i, 1, j〉 ∈ E, and [i]G be the equivalence
class of i. Then G! is the graph defined as 〈V/ ≡G, E

′, [ι]G, [o]G〉 where ι is the source
of G, o is its sink, and:

E′ := {〈[i]G, x, [j]G〉 | x ∈ Σ and ∃ 〈k, l〉 ∈ [i]G × [j]G : 〈k, x, l〉 ∈ E or 〈l, x′, k〉 ∈ E} . ∗
Lemma 4.13. Let G1, G2 be a pair of TTSP graphs over Σ•. We pose Gk = 〈Vk, Ek〉
(k ∈ {1, 2}), its source and sink being denoted respectively by ιk and ok. The following hold:

 G1! · G2! = G1 ·G2!
 G1! ∩ G2! = G1 ∩G2! . �

TTSP〈Σ•〉×TTSP〈Σ•〉 Graph〈Σ〉×Graph〈Σ〉

TTSP〈Σ•〉 Graph〈Σ〉

�� × ��

��

·/∩ ·/∩

72 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

Proof. For the first equation, notice that every path (directed or not) in G1 ·G2 that joins
two vertices i, j such that i ∈ V1 and j ∈ V2 must visit the vertex o1/ι2. This means that
we can represent the equivalence classes of ≡G1·G2

as:

{[i]G1
| i ∈ V1 \ [o1]G1

} ∪ {[i]G2
| i ∈ V2 \ [ι2]G2

} ∪ {[o1]G1
∪ [ι2]G2

} .

This happens to be exactly the vertices of G1! · G2!. We deduce easily from this the
equality of the sets of edges and that of the inputs and outputs.

The second equation is established in a similar manner. We notice here that every path in
G1 ∩ G2 that goes from V1 to V2 either visits ι1/ι2 or o1/o2. We may thus represent the
equivalence classes of ≡G1∩G2

as:

{[i]Gk
| k ∈ {1, 2} , i ∈ Vk \ ([ιk]Gk

∪ [ok]Gk
)} ∪ {[ι1]G1

∪ [ι2]G2
, [o1]G1

∪ [o2]G2
} .

Again, this is the set of vertices of G1! ∩ G2!, and it is immediate to check the equality
from here.

Proposition 4.14. If e ∈ AReg 〈Σ〉 is in converse-normal form, G (e) = G (�e�)!. �
Proof. We perform a structural induction on e. The base cases, namely 0, 1,�, a and aN,
are immediate to check by merely unfolding the various definitions. The case of e∪f doesn’t
hold any difficulty either:

 G (�e ∪ f�)! = G (�e� ∪ �f�)! = G (�e�) ∪ G (�f�)! = G (�e�)! ∪ G (�f�)!
= G (e) ∪G (f) = G (e ∪ f)

For the case of the sequential and parallel products, as one would expect, Lemma 4.13 will
prove useful:

G (e · f) = {G ·G′ | 〈G,G′〉 ∈ G (e)×G (f)}
= { G! · G′! | 〈G,G′〉 ∈ G (�e�)× G (�f�)}
= { G ·G′! | 〈G,G′〉 ∈ G (�e�)× G (�f�)}
= { G! | G ∈ G (�e · f�)} = G (�e · f�)!

G (e ∩ f) = {G ∩G′ | 〈G,G′〉 ∈ G (e)×G (f)}
= { G! ∩ G′! | 〈G,G′〉 ∈ G (�e�)× G (�f�)}
= { G ∩G′! | 〈G,G′〉 ∈ G (�e�)× G (�f�)}
= { G! | G ∈ G (�e ∩ f�)} = G (�e ∩ f�)!

The case of e� then follows simply from the cases of ∪ and ·.

4.4 Petri automata

In this section we implicitly consider converse normal expressions without loss of generality.

Proposition 4.14 allows us to associate with every allegorical expression a Petri automaton
whose graph language is closely related to the set of graphs of the expression.

Lemma 4.15. For all e ∈ AReg 〈Σ〉, G (e) = G (A �e�)!. �
Proof. This is immediate using Proposition 4.14 and Lemma 3.16.

However, remember that the set of graphs we are interested in is not directly G (e),
but rather �

G (e). We show how to describe directly from a Petri automaton A the
set � G (A)!. This is done by giving a way to read a graph with an automaton:

Definition 4.16 (Reading, language of a run).
A reading of G = 〈V,E, ι, o〉 along a run R = 〈S0, t0; . . . ; tn, Sn+1〉 (with intermediary
states S1, . . .) is a sequence (ρk)0�k�n+1 such that for all k, ρk is a map from Sk to V ,
ρ0(S0) = {ι}, and ∀0 � k � n, the following holds:

4.4. PETRI AUTOMATA 73

• all tokens in the input of the transition are mapped to the same vertex in the graph:

∀p, q ∈ ▹tk, ρk(p) = ρk(q);

• a final transition may only be fired from the output of a graph:

◃tk = ∅ ⇒ ∀p ∈ ▹tk, ρk(p) = o;

• the images of tokens in Sk+1 that are not in the input of the transition are unchanged:

∀p ∈ Sk+1 \ ▹tk, ρk(p) = ρk+1(p);

• each pair in the output of the transition can be “validated” by the graph:

∀p ∈ ▹tk, ∀ 〈x, q〉 ∈ ◃tk, x ∈ Σ ⇒〈ρk(p), x, ρk+1(q)〉 ∈ E,

x = y′ ⇒〈ρk+1(q), y, ρk(p)〉 ∈ E,

x = 1 ⇒ρk(p) = ρk+1(q).

The language of a run R, denoted by L (R), is the set of graphs that can be read along R. ∗

Notice that there is no “validation” required for transitions labelled with �. This means
that such a transition allows the reading map to jump to any vertex in the graph.

Example 4.17.
The following automaton (on the left) can read the following graph (on the right):

A

B

C

D

E

F

t0

t1

t2

t3a

b

c

�

a′

1

2

a b c

Let R be the run 〈{A} , t0; t1; t2; t3, ∅〉. To read the graph above along R, one should use
the following reading:

[A �→ 1] ;

⎡⎣ B �→ 2
C �→ 2
D �→ 2

⎤⎦ ;

⎡⎣ E �→ 1
C �→ 2
D �→ 2

⎤⎦ ;

[
E �→ 1
F �→ 1

]
; [] .

One can easily check that this is indeed a valid reading along R. •

The language of a Petri automaton is finally obtained by considering all accepting runs.

Definition 4.18 (Language recognised by a Petri automaton).
The language recognised by A , written L (A), is the following set of graphs:

L (A) :=
⋃

R∈Runacc
A

L (R) . ∗

To avoid confusions between the languages L (A) and G (A), we write “G is produced by
A ” when G ∈ G (A), reserving language theoretic terminology like “G is accepted by A ”
or “A recognises G” to cases where we mean G ∈ L (A).

74 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

Lemma 4.19. For any accepting run R, we have G ∈ L (R) if and only if G
 G (R)!. �
Proof. Let us fix a Petri automaton A = 〈P,T , ιA 〉. Let G = 〈V,E, ι, o〉 and R =
〈{ι} , t0; . . . ; tn, ∅〉, with intermediary states S1,

Remember that for every k and p ∈ π2

(
◃tk

)
, we defined (Definition 3.7):

ν (k, p) = {l | l > k and p ∈ ▹tl} .

G (R), is then the graph with vertices {0, . . . , n} and the set of edges defined by:

ER = {〈k, a, l〉 | 〈a, p〉 ∈ ◃tk and l = min ν (k, p)} .

Finally, we get G (R)! = 〈{[i] | 0 � i � j} , E′, [0], [n]〉. (It is quite easy to check that the
source of G (R) is the vertex 0, and that its sink is n.)

It will prove convenient in the following to use the notation N (k, p) = min ν(k − 1, p) =
min

{
l
∣∣ l � k and p ∈ ▹tl

}
. Notice that ∀k, p ∈ Sk, k � N (k, p) � n, and that whenever

p ∈ ▹tk, we have N (k, p) = k.

Suppose there exists a graph homomorphism ϕ from G (R)! to G. We build a reading
(ρk)k of G along R by letting ρk(p) := ϕ([N (k, p)]) for 0 � k � n and p ∈ Sk. We now have
to check that ρ is truly a reading of G in A :

• for the initialisation of the reading:

ρ0(ιA) = ϕ([N (0, ιA)]) (by definition)
= ϕ([0]) = {ι} (ϕ is a homomorphism)

• for the final transition:

p ∈ Sn, ρn(p) = ϕ([N (n, p)])

= ϕ([n]) = {o} . (ϕ is a homomorphism)

• for all p ∈ ▹tk, ρk(p) = ϕ([N (k, p)]) = ϕ([k]) which does not depend on p.

• for all p ∈ Sk+1 \ ▹tk, we have N (k, p) = N (k + 1, p) (since p /∈ ▹tk). Hence

ρk(p) = ϕ([N (k, p)]) = ϕ([N (k + 1, p)])

= ρk+1(p).

• for all p ∈ ▹tk and 〈x, q〉 ∈ ◃tk, we know that ρk(p) = ϕ([k]) and that
〈k, x,N (k + 1, q)〉 ∈ ER.

– If x ∈ Σ, we also have 〈[k], x, [N (k + 1, q)]〉 ∈ E′. Because ϕ is a homomorphism
we can deduce that:

〈ϕ([k]), x, ϕ([N (k + 1, q)])〉 ∈ E,

which can be rewritten 〈ρk(p), x, ρk+1(q)〉 ∈ E.

– If x = y′, y ∈ Σ, we also have 〈[N (k + 1, q)], y, [k]〉 ∈ E′. Because ϕ is a
homomorphism we can get like before 〈ρk+1(q), y, ρk(p)〉 ∈ E.

– If finally x = 1, then we know that k ≡ N (k + 1, q), thus proving that

ρk(p) = ϕ([k]) = ϕ([N (k + 1, q)]) = ρk+1(q).

4.4. PETRI AUTOMATA 75

If on the other hand we have a reading (ρk)0�k�n of G, we define ϕ : {0, . . . , n} → V by
ϕ([k]) := ρk(p) for any p ∈ ▹tk. As (ρk)k is a reading, ϕ is well defined3. Let us check that
ϕ is a homomorphism from G (R)! to G:

• ϕ([0]) = ρ0(ιA) = ι;

• ϕ([n]) = ρn(p) with p ∈ Sn, and since (ρk)k is a reading and tn is final, ρn(p) = o.

• if 〈[k], x, [l]〉 ∈ E′ is an edge of G (R)!, then it was produced from some edge (i, y, j) ∈
ER, with either x = y and 〈i, j〉 ∈ [k] × [l] or y = x′ and 〈i, j〉 ∈ [l] × [k]. There is
some p ∈ ▹ti and q such that 〈y, q〉 ∈ ◃tj and j = N (i+ 1, q).
By definition of N we know that ∀i+ 1 �m < j, q /∈ ▹tm. Thus, because (ρk)k is a
reading, ρi+1(q) = ρj(q) and either 〈ρi(p), x, ρi+1(q)〉 ∈ E or 〈ρi+1(q), x, ρi(p)〉 ∈ E,
and thus 〈ϕ([k]), x, ϕ([l])〉 ∈ E.

As an immediate corollary, we obtain the following characterisation of the language of a
Petri automaton.

Corollary 4.20. L (A) =
� G (A)!. �

The left-hand side language is defined through readings along accepting runs, which is a
local and incremental notion and which allows us to define simulations in Section 4.5.3. By
contrast, the right-hand side language is defined globally.

Corollary 4.21. The (in)equational theory of bounded Kleene allegories is co-recursively
enumerable. �
Proof. Construct Petri automata for the two expressions and enumerate all potential
counter-examples, i.e., graphs. A graph is a counter-example if it can be read in one
automaton but not in the other, which is a decidable property.

We also obtain a Kleene Theorem for Bounded Kleene Allegories:

Corollary 4.22. For every set of graphs G, there is an allegorical expression e such that
�
G (e) = G if and only if there is a Petri automaton A with L (A) = G. �

Proof. Let e ∈ AReg 〈Σ〉 in converse-normal form (wlog), we have:
�
G (e) =

� G (A �e�)! (Lemma 4.15)
= L (A �e�) . (Corollary 4.20)

On the other hand, let A be any Petri automaton over Σ•, because of the Kleene theorem we
proved in Chapter 3 (Theorem 3.35) we know how to build an expression eA ∈ GReg 〈Σ•〉
such that:

G (A) = G (eA) . (4.6)

From that expression, we may build an expression e′A ∈ AReg 〈Σ〉 by replacing every
occurrence of a′ with aN, and simply looking at 1 and � as constants rather than letters.
By design, we get:

�e′A � = eA . (4.7)

Hence we obtain:

L (A) =
� G (A)! (Corollary 4.20)

=
� G (eA)! (Equation (4.6))

=
� G (�e′A �)! (Equation (4.7))

=
�
G (e′A). (Proposition 4.14)

3It is not difficult to check that k ≡ l ⇒ ∀〈p, q〉 ∈ ▹tk × ▹tl, ρk(p) = ρl(q).

76 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

Together with Theorem 4.9, this proves that from a decidability stand point, language
equivalence of Petri automata and equivalence of allegorical expressions in relational models
are equivalent.

4.5 Comparing automata

4.5.1 Restriction

The above results hold for the whole syntax of regular expressions with converse, intersection
and �. However, in the remainder of the chapter, we have to focus on expressions without
converse, �, nor identity (what we called graph expressions in the previous chapter). This
is because in combination with intersection, the converse and identity operations operations
introduce cycles in the graphs associated to ground terms. Consider for instance the graphs
for a ∩ 1 and a ∩ bN:

G(a ∩ 1) =

a

G(a ∩ bN) =
a

b

.

We thus work with expressions from GReg 〈Σ〉. Accordingly, ground terms are restricted to
the following syntax:

u, v, w ::= x ∈ Σ | u · v | u ∩ v.

Every expression in GReg 〈Σ〉 is evidently in converse normal form, and �e� = e. In partic-
ular, the alphabet is still Σ, rather than Σ•. Hence we get automata labelled with Σ. For
clarity, we call such automata simple Petri automata in the following. Furthermore in such
an automaton A for every run R ∈ Runacc

A we have G (R)! = G (R). This allows us to
obtain:

L (A) =
�G (A). (4.8)

These observations allow us to state the following fact, which will be the basis for the
algorithm we present next.

Fact 4.23. For every pair of expressions e, f ∈ GReg 〈Σ〉, the following are equivalent:

(i) Rel |= e ≤ f , (ii) ∀R ∈ Runacc
A (e),G (R) ∈ L (A (f)). �

4.5.2 Intuitions

In this section, we show how the notion of simulation relation, that allows one to compare
NFA, can be adapted to handle simple Petri automata. Consider two automata A1 =
〈P1,T1, ι1〉 and A2 = 〈P2,T2, ι2〉, we try to show that for any accepting run R in A1,
G (R) is recognised by some accepting run R′ in A2. Leaving non-determinism aside, the
first idea that comes to mind is to find a relation between the states in A1 and the states
in A2, that satisfy some conditions on the initial and final states, and such that if Sk �
S′
k and A1 � t : Sk → Sk+1, then there is a state S′

k+1 in A2 such that Sk+1 � S′
k+1,

A2 � t′ : S′
k → S′

k+1, and these transition steps are compatible in some sense. However,
such a definition will not give us the result we are looking for. Consider these two runs:

4.5. COMPARING AUTOMATA 77

A

B B

C D

1

2

a

b
c

W

Y Y

X Z

1′
2′

b

a
c

3

3′

The graphs produced by the first and the second runs correspond respectively to the ground
terms a∩(b ·c) and (a ·c)∩b. These two terms are incomparable, but the relation � depicted
below satisfies the previously stated conditions.

{A} {B,C} {B,D} ∅

{W} {X,Y } {Y, Z} ∅

� � � �

1

1′

2

2′

3

3′

The problem here is that in Petri automata, runs are token firing games. To adequately
compare two runs, we need to closely track the tokens. For this reason, we will relate a
state Sk in A1 not only to a state S′

k in A2, but to a map ηk from S′
k to Sk. This will enable

us to associate with each token situated on some place in P2 another token placed on A1.

We want to find a reading of G (R) in A2, i.e., a run in A2 together with a sequence of
maps associating places in A2 to vertices in G (R). Consider the picture below. Since we
already have a reading of G (R) along R (by defining ρk(p) = N (k, p), as in the proof
of Lemma 4.19), it suffices to find maps from the places in A2 to the places in A1 (the maps
ηk): the reading of G (R) in A2 will be obtained by composing ηk with ρk.

S0 S1 · · · Sn Sn+1

S′
0 S′

1 · · · S′
n S′

n+1

t0 t1 tn−1 tn

t
′
0 t

′
1 t

′
n−1 t

′
n

η0 η1 ηn ηn+1

G (R)

ρ0
ρ1 ρn−1

ρn

We need to impose some constraints on the maps (ηk) to ensure that (ρk ◦ ηk)0�k�n is
indeed a correct reading in A2. First, we need to ascertain that a transition t

′
k in A2 may

be fired from the reading state ρk ◦ ηk to reach the reading state ρk+1 ◦ ηk+1. Furthermore,
as for NFA, we want transitions tk and t

′
k to be related: specifically, we require t

′
k to be

included (via the homomorphisms ηk and ηk+1) in the transition tk. This is meaningful
because transition tk contains a lot of information about the vertex k of G (R) and about
ρ: the labels of the outgoing edges from k are the labels on the output of tk, and the only
places that will ever be mapped to k in the reading ρ are exactly the places in the input
of tk.

This already shows an important difference between the simulations for NFA and Petri
automata. For NFA, we relate a transition p

a−→ p′ to a transition q
a−→ q′ with the same label

a. Here the transitions A1 � tk : Sk → Sk+1 and A2 � t
′
k : S′

k → S′
k+1 may have different

78 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

labels. Consider the step represented below, corresponding to a square in the above diagram.
The output of transition 0 has a label b that does not appear in 0′, and 0′ has two outputs
labelled by a. Nevertheless this satisfies the conditions informally stated above, indeed,
a ∩ b ≤ a ∩ a holds.

A

B

C

0

a

b

X

Y

Z

0′

a

a

However this definition is not yet satisfactory. Consider the two runs below:

A B

C

D

0 1
a

b

c

X

Y

Z Z

T T

U

0′
1′

2′a

a
b

c

Their produced graphs correspond respectively to the ground terms a·(b∩c) and (a·b)∩(a·c).
The problem is that a · (b∩ c) ≤ (a · b)∩ (a · c), but with the previous definition, we cannot
relate these runs: they do not have the same length. The solution here consists in grouping
the transitions 1′ and 2′ together, and considering these two steps as a single step in a
parallel run. This last modification gives us a notion of simulation that suits our needs.

4.5.3 Simulations

Before getting to the notion of simulation, we need to define what is a parallel run, and a
parallel reading.

A set of transitions T ⊆ T is compatible if their inputs are pairwise disjoint. If furthermore
all transitions in T are enabled in a state S, one can observe that the state S′ reached after
firing them successively does not depend on the order in which they are fired. In that case
we write A � T : S → S′.

A parallel run is a sequence R = 〈S0, T0; . . . ;Tn, Sn+1〉, where the Tk ⊆ T are compatible
sets of transitions such that A � Tk : Sk → Sk+1. We define a parallel reading ρ along some
parallel run R = 〈S0, T0; . . . ;Tn, ∅〉 by requiring that: ρ0(S0) = {ι}, ρn(Sn) = {o}, and
∀k � n the following holds:

• ∀p ∈ Sk \⋃
t∈Tk

▹t, ρk+1(p) = ρk(p);

• ∀t ∈ Tk, ∀p, q ∈ ▹t, ρk(p) = ρk(q);

• ∀t ∈ Tk, ∀p ∈ ▹t, ∀ 〈x, q〉 ∈ ◃t,

x ∈ Σ ⇒〈ρk(p), x, ρk+1(q)〉 ∈ E,

x = y′ and y ∈ Σ ⇒〈ρk+1(q), y, ρk(p)〉 ∈ E,

x = 1 ⇒ρk(p) = ρk+1(q).

4.5. COMPARING AUTOMATA 79

A

B

G

C

E

G

D

E

G

C

E

G

D

E

G

F

G

b

a

c

b

a
c

b

a

d

α

β

γ

δ

ε

ζ

ε

η

θ

η

ι

κ

b

b

c

b

a b

c a

d

Figure 4.2: Embedding of a parallel run into the run from Figure 3.5.

Remark. We defined parallel readings for arbitrary Petri automata for the sake of generality.
However, we will only use them for simple Petri automata in the following.

Definition 4.24 (Simulation).
A relation � ⊆ P (P1)× P (P2 ⇀ P1) between the states of A1 and the partial maps from
the places of A2 to the places of A1 is called a simulation between A1 and A2 if:

• if S � E and η ∈ E then the range of η must be included in S;

• {ι1} � {[ι2 �→ ι1]};

• if S � E and A1 � t : S → S′, then S′ � E′ where E′ is the set of all η′ such that
there is some η ∈ E and a compatible set of transitions T ⊆ T2 such that:

– A2 � T : dom (η) → dom (η′);

– ∀t′ ∈ T, η(▹t′) ⊆ ▹t and ∀ 〈x, q〉 ∈ ◃t′,〈x, η′(q)〉 ∈ ◃t;
– ∀p ∈ dom (η) ,

(
∀t′ ∈ T, p /∈ ▹t′

)
⇒ η(p) = η′(p).

• if S � E and S = ∅, then there must be some η ∈ E such that dom (η) = ∅. ∗

We will now prove that the language of A1 is contained in the language of A2 if and only
if there exists such a simulation. We first introduce the following notion of embedding.

Definition 4.25 (Embedding).
Let R =

〈
S0, t0; . . . ; tn−1, Sn

〉
be a run in A1, and R = 〈S′

0, T0; . . . ;Tn−1, S
′
n〉 a parallel run

in A2. An embedding of R into R is a sequence (ηi)0�i�n of maps such that for any i < n,
we have:

• ηi is a map from S′
i to Si;

• the image of Ti by ηi is included in ti, meaning that for any
t ∈ Ti, for any p ∈ ▹t and 〈x, q〉 ∈ ◃t, ηi(p) is contained in the
input of ti and 〈x, ηi+1(q)〉 is in the output of ti;

• the image of the tokens in Si that do not appear in the input
of Ti are preserved (ηi(p) = ηi+1(p)) and their image is not in
the input of ti.

Si Si+1

S′
i

S′
i+1

ti

Ti

ηi ηi+1

∗

Figure 4.2 illustrates the embedding of some parallel run, into the run presented in Fig-
ure 3.5. Notice that it is necessary to have a parallel run instead of a simple one: to
find something that matches the second transition in the upper run, we need to fire two
transitions in parallel in the lower run.

There is a close relationship between simulations and embeddings:

80 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

Lemma 4.26. Let A1 and A2 be two Petri automata, the following are equivalent:

(i) there exists a simulation � between A1 and A2;

(ii) for any accepting run R in A1, there is an accepting parallel run R in A2 that can be
embedded into R. �

Proof. If we have a simulation �, let R = 〈S0, t0; . . . ; tn, ∅〉 be an accepting run in A1. By
the definition of simulation, we can find a sequence of sets of maps (Ek)0�k�n+1 such that
E0 = {[ι2 �→ ι1]} and ∀k, Sk � Ek. Furthermore, we can extract from this a sequence of
maps (ηk)0�k�n+1 and a sequence of parallel transitions (Tk)0�k�n such that:

• ∀k,A2 � Tk : dom (ηk) → dom (ηk+1)

• the parallel run 〈dom (η0) , T0; . . . ;Tn; dom (ηn+1)〉 is accepting, and can be embedded
into R using (ηk).

This follows directly from the definitions of embedding and simulation.

On the other hand, if we have property (ii), then we can define a relation � by saying that
S � E if there is an accepting run R = 〈S0, t0; . . . ; tn, Sn+1〉 in A1 such that there is an
index k0: S = Sk0

; and the following holds: η ∈ E if there is an accepting parallel run R in
A2 visiting successively the states S′

0, . . . , S
′
n+1 and (η′k)0�k�n+1 an embedding of R into

R such that η = η′k0
. It is then immediate to check that � is indeed a simulation.

If η is an embedding of R into R, and ρ is a reading of G (R) along R, then we can easily
check that (ρi ◦ ηi)0�i�n is a parallel reading of G (R) along R in A2. Thus, it is clear
that once we have such a run R with the sequence of maps η, we have that G (R) is indeed
in the language of A2. The more difficult question is the completeness of this approach:
if G (R) is recognised by A2, is it always the case that we can find a run R that may be
embedded into R? The answer is affirmative, thanks to Lemma 4.27 below. If (ρj)0�j�n+1

is a reading of G along R = 〈S0, t0; . . . ; tn, Sn+1〉, we write active(j) for the only position
in ρj(

▹tj)
4. A binary relation " is a topological ordering on G = 〈V,E, ι, o〉 if 〈V,"〉 is a

linear order and (p, x, q) ∈ E entails p " q.

Lemma 4.27. Let G ∈ L (A2) and " be any topological ordering on G. Then there exists a
run R and a reading (ρj)0�j�n+1 of G along R such that ∀k, active(k) " active(k+1). �

The proof of this result is achieved by taking any run R accepting G, and then exchanging
transitions in R according to ", while preserving the existence of a reading. However we
need to introduce some lemmas first.

Let us fix A = 〈P,T , ι〉 a Petri automaton, and R = 〈S0, t0; . . . ; tn, Sn+1〉 a run of A .

Definition 4.28 (Exchangeable transitions).
Two transitions tk and tk+1 are exchangeable in R if for all p ∈ Sk, p is in ▹tk+1 implies
that there is no x ∈ Σ such that (x, p) ∈ ◃tk. ∗

As the name might suggests, two exchangeable transitions may be exchanged in a run, and
any graph read along the initial run can still be read along the permuted run.

Lemma 4.29. Suppose tk and tk+1 are exchangeable for some 0 � k < n. We write C ′ =

Sk \ ▹tk+1 ∪ π2

(
◃tk+1

)
. Then A � tk+1 : Sk → C ′ and A � tk : C ′ → Sk+2. Furthermore,

for any graph G, if G ∈ L (R), then G ∈ L (R[k ↔ k + 1]), where:

R[k ↔ k + 1] :=
〈
S0, t0; · · · ; tk+1; tk; · · · ; tn, Sn

〉
. �

4Recall that if (ρj)0�j�n+1 is a reading along R then for any p, q ∈ ▹tj , we have ρj(p) = ρj(q).

4.5. COMPARING AUTOMATA 81

Proof. The fact that Sk

tk+1−−−→A C ′ and C ′ tk−→A Sk+2 is trivial to check, with the definition
of exchangeable.

Let (ρj)0�j�n+1 be a reading of G along R. If
(
ρ′j

)
0�j�n+1

is defined by:

ρ′j(p) =

⎧⎪⎨⎪⎩
ρj(p) if j �= k + 1,

ρk+2(p) if j = k + 1 and (x, p) ∈ ◃tk+1 for some x,

ρk(p) otherwise.

Then
(
ρ′j

)
0�j�n+1

is a reading of G along R[k ↔ k + 1].

Recall that if (ρj)0�j�n is a reading of G along ξ we write active(j) for the only position
in ρj(

▹t
j
).

Lemma 4.30. Let " be any topological ordering on G. If (ρj)0�j�n+1 is a reading of G
along R, and if active(k + 1) " active(k) for some k, then tk and tk+1 are exchangeable. �
Proof. Let G = 〈V,E, ι, o〉. As (ρi)0�j�n+1 is a reading, for any 〈x, p〉 ∈ ◃tk,
〈active(k), x, ρk+1(p)〉 ∈ E, thus

active(k) � ρk+1(p).

We know that active(k + 1) " active(k), meaning by transitivity that active(k + 1) �
ρk+1(p). Hence

active(k + 1) �= ρk+1(p)

and because (ρi)0�j�n+1 is a reading we can infer that p /∈ ▹tk+1, thus proving that tk and
tk+1 are exchangeable.
Proof (Proof of Lemma 4.27). Because G is in L (A), we can find a reading ρ′ along some
run R. If that reading is not in the correct order, then by Lemma 4.30 we can exchange two
transitions and Lemma 4.29 ensures that we can find a corresponding reading. We repeat
this process until we get a reading in the correct order.

(Notice that if G contains cycles, this lemma cannot apply because of the lack of a topological
ordering.)

Lemma 4.27 enables us to build an embedding from any reading of G (R) in A2.

Lemma 4.31. Let R a accepting run of A1. Then G (R) is in L (A2) if and only if there
is an accepting parallel run in A2 that can be embedded into R. �
Proof. Let R = 〈S0, t0; . . . ; tn, Sn+1〉 be a run. For all indexes k and places p ∈ Sk, define
ρ1k(p) := N (k, p) = min

{
l
∣∣ l � k and p ∈ ▹tl

}
. We have that

(
ρ1k

)
0�k�n+1

is a reading of
G (R) along R.

• Assume an embedding (ηk)0�k�n+1 of an accepting parallel run R into R. We define
a parallel reading (ρ2k) of G (R) in A2 by letting ρ2k(p) := ρ1k(ηk(p)).

• On the other hand, notice that the natural ordering on is a topological ordering on
G (R), and that ∀0 � k � n, ρ1k(

▹tk) = {k}. By Lemma 4.27 we gather that G (R)
is in L (A2) if and only if there exists a reading (ρ2j)0�j�n′ of G (R) along some run

R′ =
〈
S′
0, t

′
0; . . . ; t

′
n′ , S′

n′+1

〉
such that ∀j, active(j) � active(j + 1) (with active(j)

the only position in ρ2j

(
▹tj

)
).

Now, suppose we have such a reading; we can build an embedding (ηk)0�k�n+1 as
follows. For k � n, define Tk :=

{
t
′
j

∣∣∣ active(j) = k
}
. We describe the construction

incrementally:

82 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

A

B C D

E

a

1

b
b

c

Figure 4.3: A Petri automaton for 1 ∩ a · b+ · c.

– η0 = [ι2 �→ ι1].
– For all p ∈ dom (ηk) \

⋃
t∈Tk

▹t we simply set ηk(p) = ηk−1(p).

– Otherwise, ∀t′j ∈ Tk, let q ∈ ▹

t
′
j . Then, for all 〈x, p〉 in

◃

t
′
j , because ρ2 is a

reading and by construction of G (R) we also know that there is some p′ ∈ Sk+1

that satisfies 〈x, p′〉 ∈ ◃tk and ρ1k+1(p
′) = ρ2j+1(p). That p′ is a good choice for

p, hence we define ηk(p) = p′.

It is then administrative to check that (ηk)0�k�n+1 is indeed an embedding.

For the if direction, we build a parallel reading from the embedding, as explained above.
For the other direction, we consider a reading of G (R) in A2 along some run R′. Notice
that the natural ordering on is a topological ordering on G (R); we may thus change the
order of the transitions in R′ (using Lemma 4.27) and group them adequately to obtain a
parallel reading R that embeds in R.

So we know that the existence of embeddings is equivalent to the inclusion of languages, and
we previously established that it is also equivalent to the existence of a simulation relation.
Hence, the following characterisation holds:

Proposition 4.32. Let A1 and A2 be two simple Petri automata. L (A1) ⊆ L (A2) if
and only if there exists a simulation relation � between A1 and A2. �
Proof. By Lemmas 4.19, 4.26 and 4.31.

As Petri automata are finite, there are finitely many relations in P (P (P1)× P (P2 ⇀ P1)).
The existence of a simulation thus is decidable, allowing us to prove the main result:

Theorem 4.33. Given two expressions e, f ∈ GReg 〈Σ〉, testing whether Rel |= e = f is
decidable. �
Proof. By Proposition 4.32, Theorems 4.9 and 3.17, and reasoning by double inclusion.

In practice, we can build the simulation on-the-fly, starting from the pair 〈{ι1} , {[ι2 �→ ι1]}〉
and progressing from there. We have implemented this algorithm in OCaml [13]. Even
though its theoretical worst case time complexity is huge5, we get a result almost instanta-
neously on simple one-line examples.

4.5.4 The problems with converse and unit

The previous algorithm is not complete in presence of converse, unit or �. More precisely,
Lemma 4.31 does not hold for general automata. Indeed, it is not possible to compare two
runs just by relating the tokens at each step, and checking each transition independently.
Consider the automaton from Figure 4.3. This automaton has in particular an accepting
run recognising 1 ∩ abc. Let us try to test if this is smaller than the following runs from
another automaton (we represent the transitions simply as arrows, because they only have
a single input and a single output):

5A quick analysis gives a O
(
2n+(n+1)m

)
complexity bound, where n and m are the numbers of places

of the automata.

4.6. COMPLEXITY 83

x0 x1 x2 x3 x4 x5 x6
a b c a b c

y0 y1 y2 y3 y4 y5 y6 y7
a b c a b b c

It stands to reason that we would reach a point where:

• for the first run: {D,E} � {[x3 �→ D]};

• for the second run: {D,E} � {[y3 �→ D]}.

So if it were possible to relate the end of the runs just with this information, they should
both be bigger than 1 ∩ abc or both smaller or incomparable. But in fact the first run
(recognising abcabc) is bigger than 1∩abc but the second (recognising abcabbc) is not. This
highlights the need for having some memory of previously fired transition when trying to
compare runs of general Petri automata, thus preventing our local approach to bear fruits.
The same kind of example could be found with the converse operation instead of 1.

4.6 Complexity

The previous notion of simulation actually allows us to decide language inclusion of simple
automata in ExpSpace. We now show that this problem is in fact ExpSpace-complete.

Lemma 4.34. Comparing simple Petri automata is ExpSpace-easy. �
Proof. Our measure for the size of an automaton here is its number of places (the number
of transitions is at most exponential in this number). Here is a non-deterministic semi-
algorithm that tries to refute the existence of a simulation relation between A1 and A2.

1: start with S := {ι1} and E := {[ι2 �→ ι1]};

2: if S = ∅, check if there is some η ∈ E such that dom (η) = ∅, if not return FALSE;

3: choose non-deterministically a transition t ∈ T1 such that ▹t ⊆ S;

4: fire t, which means that S := S \ ▹t ∪ π2 (
◃t);

5: have E progress along t as well, according to the conditions from Definition 4.24.

6: go to step 2.

All these computations can be done in exponential space. In particular as S is a set of
places in P1, it can be stored in space |P1| × log(|P1|). Similarly, E, being a set of partial
functions from P2 to P1, each of which of size |P2| × log(|P1| + 1), can be stored in space
|P1 + 1||P2| × |P2| × log(|P1| + 1). This non-deterministic ExpSpace semi-algorithm can
then be turned into an ExpSpace algorithm by Savitch’ theorem [59].

One can check that the number of places in A (e) is linear in the size of e. (The exponential
upper-bound on the number of transitions is asymptotically reached, consider for instance
the automaton for (x1 ∪ y1) ∩ (x2 ∪ y2) ∩ · · · ∩ (xn ∪ yn).) Therefore, the previous Lemma
gives us a ExpSpace algorithm for deciding the (in)equational theory of identity-free rela-
tional Kleene lattices.

To get ExpSpace-hardness, we perform a reduction from the problem RSQ(X): deciding
whether a regular expressions with squaring e (e2 := e·e) denotes the universal language X�.
This problem was shown in [46] to be ExpSpace-complete. The proof will follow the
method used in [34] to obtain a complexity lower bound on the trace equivalence of finite
nets without hidden transitions. To avoid confusion, the regular language denoted by the

84 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

expression e will be written �βe�. Any word u can be seen uniquely as a linear graph λ(u).
By extension, the set of graphs of words from �βe� will be denoted by λ�βe�.

First, notice that if u and v are just words over X, λ(u)
 λ(v) is equivalent to u = v.
Because of this, it is straightforward to check that for any regular expressions with squaring
e, f the following holds

�
(λ�βe�) =

�
(λ�βf�) ⇔ �βe� = �βf�. (4.9)

We first reduce to the containment of Petri automata with 1.

Lemma 4.35. The problem of deciding whether the language of a regular expression with
squaring is X� is polynomial-time reducible to the containment of languages recognised by
Petri automata. �
Proof. Given an expression e on this signature, we can build in linear time a Petri au-
tomaton A , with a linear number of places and transitions. The closure of the language
denoted by e is be exactly the language recognised by A .

The automata we produce here only have one final transition, and this transition has a
single input. The construction is a straightforward adaptation of Thompson’s algorithm for
NFA [60]. We describe it graphically.

• 1: 0 1
1

• x: ι f
x

• e1 ∪ e2:
ι1 f1e1

ι2 f2e2

ι fn

1

1

1

1

• e1 · e2: ι1 fn1 = ι2e1 fn2e2

• e�1: ι1 f1e1ι fn
1 1

1

1

• e21:

ι1 f1e1

ι fn

◦ •

1

1

1

1

1

X X

The only interesting case is for computing an automaton for e = (e1)
2. The transitions

labelled by X are a shorthand for a set of transitions, containing for each letter x in X a
transition with one output, labelled by x. This construction is linear: the automaton for
e1 is not copied. Furthermore, a run in this automaton will start by sending one token in ◦
and one in ι1, the initial state of the automaton for e1. Then it will perform a run in this

4.7. RELATIONSHIP WITH STANDARD PETRI NET NOTIONS 85

automaton until a single token reaches the final state for e1, f1. At this point the tokens
from ◦ and f1 will be sent to • and ι1, starting a new run of e1. When a token is finally
sent to f1, it can be consumed together with the one in •, to reach the final state.

The automaton for e has at most 4× |e| places, and at most (2× |X|+ 4)× |e| transitions.
It is quite obvious that this construction can be performed in linear time and space. By
further analysing this construction, one can prove that

1. λ�βe� ⊆ L (A (e));

2. for every G ∈ G (A (e)), there is a word w ∈ �βe� such that G
 λ(w).

By combining Items 1 and 2 we establish that

L (A (e)) = �λ�βe�.

Thus by Equation (4.5), we get that �βe� = �βf� is equivalent to L (A (e)) = L (A (f)).
Hence L (A (X�)) ⊆ L (A (e)) is equivalent to �βe� = X�.

The previous automata are not simple, as they use 1 as a label. We can now get rid of this
label, to obtain ExpSpace-hardness for simple Petri automata.

Lemma 4.36. The problem of deciding whether the language of a regular expression with
squaring is X� is polynomial-time reducible to the containment of languages recognised by
simple Petri automata. �
Proof. We use a similar trick as in [34]: we reuse the previous automaton A (e) by consid-
ering it as a simple automaton over the alphabet X ∪{1} (thus forgetting about the special
semantics of 1, and seeing it simply as a standard letter). Notice that w ∈ �βe� is equivalent
to the existence of a word u ∈ (X ∪ 1)

� such that λ(u) ∈ L (A (e)) and w can be obtained
by erasing from u the occurences of the letter 1. By carefully analysing the automaton A (e),
we may actually impose that u does not contain more that ne := (2× |X|+ 4) × |e| con-
secutive 1. By adding to each place of A (e) a transition looping on that place and labelled
by 1, one obtains an automaton A ′(e) such that w ∈ �βe� iff the the word w′ ∈ (1neX)�1ne

obtained from w by inserting 1s as necessary is accepted by A ′(e). As a consequence
�βe� = X� iff L (B) ⊆ L (A ′(e)), where B is a simple Petri automaton recognising the
regular language (1neX)�1ne (there are automata of linear size for this language).

By combining Lemma 4.34 and Lemma 4.36 we get:

Theorem 4.37. Comparing simple Petri automata is ExpSpace-complete. �

This proof does not allow us to deduce that also the (in)equational theory of Kleene al-
legories is ExpSpace-hard: the Petri automata we construct are not associated to some
expressions of polynomial size, a priori.

4.7 Relationship with standard Petri net notions

Our notion of Petri automaton is really close to the standard notion of labelled (safe) Petri
net, where the transitions themselves are labelled, rather than their outputs. We motivate
this design choice, and we relate some of the notions we introduced to the standard ones [49].

Any Petri automaton can be translated into a safe Petri net whose transitions are labelled
by Σ�{τ}, the additional label τ standing for silent actions. For each automaton transition
〈{p1, . . . , pn} , {〈x1, q1〉 , . . . , 〈xm, qm〉}〉 with m > 1, we introduce m fresh places r1, . . . , rm
and m+1 transitions: a silent transition t0 with preset {p1, . . . , pn} and postset {r1, . . . , rm};
and for each 1 � k � m a transition tk labelled by xk, with preset {rk} and postset {qk}.

86 CHAPTER 4. PETRI AUTOMATA FOR KLEENE ALLEGORIES

The inductive construction from Section 3.2.4 is actually simpler to write using labelled
Petri nets, as one can freely use τ -labelled transitions to assemble automata into larger
ones, one does not need to perform the τ -elimination steps on the fly.

On the other side, we could not define an appropriate notion of simulation for Petri nets: we
need to fire several transitions at once in the small net, to provide enough information for
the larger net to answer; delimiting which transitions to group and which to separate is non-
trivial; similarly, defining a notion of parallel step is delicate in presence of τ -transitions. By
switching to our notion of Petri automata, we impose strong constraints about how those
τ -transitions should be used, resulting in a more fitted model.

To describe a run in a Petri net N , one may use a process p : K → N , where K is an
occurrence net (a partially ordered Petri net) [31]. The graphical representation (Figures 3.5
and 4.2) we used to describe runs in an automaton are in fact a mere adaptation of this
notion to our setting (with labels on arcs rather than on transitions).

Our notion G (R) of trace of a run actually corresponds to the standard notion of pomset-
trace[34], via dualisation. Let R be a run in a Petri automaton, and let R′ be the corre-
sponding run in the corresponding labelled Petri net. Let G (R) = 〈V,E, ι, ω〉. It is not
difficult to check that the pomset-trace of R′ is isomorphic to 〈E,<E〉, where <E is the
transitive closure of the relation < defined on E by ∀x, y, z ∈ V, a, b ∈ X, 〈x, a, y〉 < 〈y, b, z〉.
The correspondence is even stronger: two graphs produced by accepting runs in (possibly
different) automata G (R1) = 〈V1, E1, ι1, o1〉 and G (R2) = 〈V2, E2, ι2, o2〉 are isomorphic if
and only if their pomset-traces (E1, <E1) and (E2, <E2) are isomorphic. The proof of this
relies on the fact that accepting runs produce graphs satisfying the following properties:

∀ 〈x, a, y〉 ∈ E, x �= ι ⇔ (∃ 〈z, b〉 ∈ V ×X : 〈z, b, x〉 ∈ E) ,

∀ 〈x, a, y〉 ∈ E, y �= o ⇔ (∃ 〈z, b〉 ∈ V ×X : 〈y, b, z〉 ∈ E) .

Hence, pomset-trace language equivalence corresponds exactly to equivalence of the sets of
produced graphs in our setting (up to isomorphism).

Jategaonkar and Meyer showed that the pomset-trace equivalence problem for safe Petri nets
is ExpSpace-complete [34]. However this equivalence is too strong and does not coincide
with the one discussed in the present paper, even for simple Petri automata. Pomset-trace
equivalence for Petri nets corresponds to equivalence of the sets of graphs produced by Petri
automata (G (A) = G (B), up to graph isomorphism). However, for the equational theory
we consider, we need to compare the languages, which are downward-closed sets of graphs,
(�G (A) =

�G (B), i.e., L (A) = L (B)) rather than the sets of graphs themselves.

Also note that the class of sets of traces of Petri automata ({G (A) | A a Petri automaton})
is not downward closed. Intuitively, the width of any graph in G (A) is bounded by the
number number of places of A , but �G (A) usually contains graphs of arbitrary width. As
a consequence, one cannot easily reduce our problem to pomset-trace equivalence of safe
Petri nets.

Fifth chapter

A formal exploration of
Nominal Kleene Algebra

“What’s in a name? That which we call a rose by any other name would smell
as sweet.”

— William Shakespeare, Romeo and Juliet.

5.1 Introduction

Gabbay and Ciancia introduced a nominal extension of Kleene algebra [28], as a framework
for trace semantics with dynamic allocation of resources. The associated semantics extends
formal languages into nominal languages, where words have a nominal structure. Kozen et
al. recently proved the completeness of the proposed axiomatisation [40], and proposed a
coalgebraic treatment [39] yielding decidability of the equational theory.

They use the following syntax for nominal regular expressions:

e, f ::= a ∈ Σ | 0 | 1 | e+ f | e · f | e� | νa.e ,

where Σ is the alphabet, and νa.e makes it possible to generate a fresh letter (or name) a
before continuing as e. For instance, the expression νa.νb.(a·b) denotes the language of all
words of length two consisting of two distinct letters.

While such a syntax is natural from a nominal point of view, other choices are possible. For
instance, one might expect expressions to be typed or classified according to their set of free
names. Similarly, name permutations, which are available in any model, can be reified at
the syntactic level. We first list four axiomatisations of the corresponding presentations—
one of them corresponding to Gabbay and Ciancia’s axiomatisation, and we prove that all
choices are in fact equivalent.

Recall from Section 1.3 that Kleene algebra are complete not only with respect to language
models, but also relational models. There, the letters from the alphabet are interpreted as
binary relations, and the regular operations correspond to standard operations on binary
relations: union, composition, reflexive transitive closure. This makes it possible to interpret
imperative programs, seen as state transformers: binary relations between memory states.
Kozen actually designed an extension of Kleene algebra, Kleene algebra with tests [37],
which makes it possible to represent not only the control flow of such programs, but also
the tests and conditions appearing in while loops and branching statements.

Extending Kleene algebra with names seems appropriate to model imperative programs
with local variables, where part of the memory is visible only locally. The previous notion
of nominal Kleene algebra is however not really appropriate for this purpose: letters of
the alphabet (i.e., atomic programs, instructions) are equated with names bound by the
νa.e construct (i.e., memory locations). In contrast, the instruction x ← y that assigns
to variable x the value of variable y should be an elementary construction depending on
the names x and y. For this reason, we provide an extension of the syntax where letters
are chosen from an arbitrary nominal set. The typed version of this extension is more
appropriate for modelling imperative programs with local variables; like above for plain
nominal Kleene algebra, we show that the various presentations are equivalent. We moreover
show that the extension is conservative: plain nominal Kleene algebras can be encoded into
the extended ones. Whether a converse encoding is possible remains open.

87

88 CHAPTER 5. A FORMAL EXPLORATION OF NOMINAL KLEENE ALGEBRA

Outline. We define the various theories in Section 5.2 and we compare them in Section 5.3.
In Section 5.4 we provide a relational interpretation for our extended model. We conclude
in Section 5.5.

5.2 Expressions and proofs

5.2.1 Atoms and letters

Let A be an infinite set of atoms with decidable equality. We consider in this paper finitely
supported permutations of atoms, simply called permutations in the following. They are
bijections π such that there is a finite set A ⊆ A such that a /∈ A ⇒ π (a) = a. The inverse
of a permutation π is written π−1. The identity permutation is denoted by (), and the
permutation exchanging a and b, and leaving every other atom unchanged, is written (a b).
Finally, if π is a permutation and A is a finite set of atoms, π (A) := {π (a) | a ∈ A} is the
image of A under π.

We consider as letters an arbitrary nominal set L [29, 51], which we assume to be decidable.
Such a set is specified through the data of its set of elements, a function � () : L → Pf (A)
mapping every element to its support, and an action of the group of permutations on L.
These functions must satisfy the following axioms:

∀x ∈ L, ∀π, (∀a ∈ � (x) , π(a) = a) ⇒ π (x) = x. (5.1)
∀x ∈ L, ∀π, � (π (x)) = π (� (x)) . (5.2)
∀x ∈ L, ∀π, π′, π (π′ (x)) = π ◦ π′ (x) . (5.3)

5.2.2 Expressions and sets of expressions

We define a single type for expressions, containing all possible operators, and we define
several fragments of it afterwards. Doing so makes it possible to share several definitions,
enabling important code-reuse in our proof scripts.

Definition 5.1 (Nominal expressions).
The set E of expressions is composed of terms formed over the following syntax, where the
letter A is a finite set of atoms, π denotes a permutation, a is an atom and l is a letter:

e, f := 0 | 1 | e+ f | e · f | e� | νa.e | l | a | 〈π〉 e | ⊥A | idA | wa.e.

∗

Product (·), sum (+) and Kleene star (·�) are the regular operations, together with the
associated constants 0 and 1, νa is name restriction. Variables can be either letters l or
atoms a. We include a syntactic construction for explicit permutations 〈π〉. The remaining
entries (⊥A, idA, and wa) are for the presheaf presentation; we will discuss them in a
moment.

Untyped expressions

Definition 5.2 (Untyped expression).
An expression e is untyped if it neither contains the operator wa nor the constants ⊥A and
idA. The set of untyped expressions is written U. ∗

We define freshness only for untyped expressions:

5.2. EXPRESSIONS AND PROOFS 89

Definition 5.3 (Freshness).
An atom a is fresh for e if the judgement a # e can be inferred in the following system.

a # 1 a # 0

a /∈ � (l)

a # l

a �= b

a # b

a # e a # f

a # e+ f

a # e a # f

a # e · f
a # e

a # e� a # νa.e

a # e

a # νb.e

π−1 (a) # e

a # 〈π〉 e .

∗

Accordingly, the support of an untyped expression e, written � (e), is the unique set such
that ∀a, a # e ⇔ a /∈ � (e).

Typed expressions For the presheaf approach, we replace freshness assumptions with
type derivations. In order to enforce uniqueness of types, we replace the constants 0 and
1 from the untyped syntax by the annotated constants ⊥A and idA, and we use explicit
weakenings (wa).

Definition 5.4 (Typed expressions).
For any e ∈ E and A ∈ Pf (A), e has the type A if the judgement e : A can be inferred in
the following system:

idA : A ⊥A : A
l ∈ L
l : � (l)

a ∈ A
a : {a}

e : A f : A

e+ f : A

e : A f : A

e · f : A
e : A
e� : A

e : A ∪ {a} a /∈ A

νa.e : A

e : A \ {a} a ∈ A

wa.e : A

e : π−1 (A)

〈π〉 e : A

If this is the case, then e is typed. The set of typed expressions is written T. ∗
Remark. This type system is syntax directed and yields a simple decision procedure.

Expressions over letters or atoms A significant motivation for this work was to study
the differences between having atoms or letters as variables in expressions. Hence we define
two other subsets.

Definition 5.5 (Atomic expressions, literate expressions).
An expression e is called atomic (respectively literate) if it does not contain letters (re-
spectively atoms) as variables. The set of atomic expressions is EA, and the set of literate
expressions is EL. ∗

Intuitively, there are two main differences between having atoms or letters as variables.
First, a letter may depend on many atoms. Second, two letters with the same support can
still be different, whereas the following equivalence holds :

∀a, b ∈ A, a = b ⇔ (∀c ∈ A, c # a ⇔ c # b) .

Positive expressions For the sake of proofs, we also define the classes of expressions
without 0 or ⊥A as a sub-expression. A motivation for excluding these is that in any
reasonable system 0 ≡ 0 · e. Hence if there is an atom a not fresh for e, we would have two
equivalent expressions with different sets of fresh variables.

Definition 5.6 (Positive expression).
An expression e is positive if it does not contain 0 nor ⊥A as a sub-expression. The set of
positive expressions is E+. ∗

For concision, we write E
+
L for EL ∩ E+, and E

+
A for EA ∩ E+.

90 CHAPTER 5. A FORMAL EXPLORATION OF NOMINAL KLEENE ALGEBRA

Explicit permutations Our syntax includes for explicit permutations 〈π〉, while per-
mutations are usually considered as external operations. This allows one to manipulate
permutations inside the expressions, and we shall see that this addition does not raise the
complexity of the problem.

Nevertheless, we need to formally define the semantics of permutations on expressions.

Definition 5.7 (Action of a permutation on an expression).
Let e ∈ E be an expression and π a permutation. The action of π on e, written π �� e, is
defined as follows:

π �� 1 := 1 π �� 0 := 0 π �� idA := idπ(A) π �� ⊥A := ⊥π(A) π �� a := π (a)

π �� l := π (l) π �� (e�) := (π �� e)
�

π �� (e · f) := π �� e · π �� f

π �� (e+ f) := π �� e+ π �� f π �� (wa.e) := wπ(a). (π �� e)

π �� (νa.e) := νπ(a). (π �� e) π �� (〈π′〉 e) := 〈()〉 (π ◦ π′) �� e

∗

Expressions without explicit substitutions are called clean.

Definition 5.8 (Clean expressions).
An expression e is clean if it never uses the operator 〈π〉. The set of clean expressions
is C. ∗

Applying permutations preserves all classes we have listed so far:

Lemma 5.9. For any subset of expressions S chosen from {T,U,EA,EL,E+,C}, for any
permutation π, and for any expression e ∈ E, e ∈ S ⇔ π �� e ∈ S. Furthermore, if e has
the type A then π �� e : π (A), and if a is fresh for e then π (a) # π �� e. �

(Note the equivalence in the first point, which is why we keep a residual empty permutation
when we apply a permutation to an expression of the shape 〈π〉 e.)

5.2.3 Proofs

A generic framework for proofs We now describe a generic framework for defining
equational theories over E. Given a relation Ax ⊆ E×E, we define the judgement Ax � e = f
to hold if it can be inferred in the system displayed in Table 5.1 (where Ax � e ≤ f is a
shorthand for Ax � e + f = f). Notice that we have “hardwired” some laws of Kleene
Algebra in this system, on the basis that they should hold for any reasonable equational
system for Nominal Kleene Algebra. However, as we have two sets of constants, we should
not put inside the generic system the Kleene Algebra laws dealing with them. For instance
when we consider expressions over the untyped syntax, the fact that e · 1 = e will be stated
inside Ax. It is a simple matter to check that whatever Ax, the relation Ax � _ = _ is an
equivalence relation and Ax � _ ≤ _ is a preorder.

Sets of axioms In Tables 5.2-5.6, we present a number of possible sets of axioms, which
may be combined to axiomatise the different subsets we consider. All the axioms displayed
here are implicitly universally quantified.

The first groups of axioms correspond to the axioms of KA for 1, declined in a typed and
an untyped fashion. We then do the same for 0 and ⊥A, first with the KA axioms, and
then for their interactions with 〈π〉, νa and wa, always separating between the typed and
untyped cases. These sets of axioms for constants are presented in Tables 5.2 and 5.3.

5.2. EXPRESSIONS AND PROOFS 91

Ax � f = e

Ax � e = f

Ax � e = f Ax � f = g

Ax � e = f Ax � e = f
〈e, f〉 ∈ Ax

(a) Equivalence and axiom rules.

Ax � 0 = 0 Ax � 1 = 1 Ax � idA = idA Ax � ⊥A = ⊥A

Ax � l = l Ax � a = a

Ax � e = g Ax � f = h

Ax � e+ f = g + h

Ax � e = g Ax � f = h

Ax � e · f = g · h

Ax � e = f

Ax � e� = f�

Ax � e = f

Ax � νa.e = νa.f

Ax � e = f

Ax � wa.e = wa.f

Ax � e = f

Ax � 〈π〉 e = 〈π〉 f

(b) Congruence rules.

Ax � e+ f = f + e Ax � e+ (f + g) = (e+ f) + g Ax � e+ e = e

Ax � e · (f + g) = (e · f) + (e · g) Ax � (e+ f) · e = (e · g) + (f · g)

Ax � e · (f · g) = (e · f) · g
Ax � f + e · g ≤ g

Ax � e� · f ≤ g

Ax � f + g · e ≤ g

Ax � f · e� ≤ g

(c) Constant-free Kleene algebra axioms.

Table 5.1: Modular deduction system

We then introduce sets of axioms to handle permutations. The axiom propagating wa is set
apart, as it only makes sense for typed expressions. This group is displayed in Table 5.4.
Notice that no law speaks about zeros, as it already has been dealt with in (5.3a).

The sets of axioms in Table 5.5 are simple distributive laws of the restriction and weakening
operators. The next group, displayed in Table 5.6, constitutes the core of the nominal
theory of expressions. The untyped axioms are mostly the classic nominal axioms, taken
from [40]. The only new axiom here is (5.6b), where we use syntactic permutations rather
than semantic ones. The typed axioms are for the most part straightforward reformulations
of the previous ones. Notice that in the typed case, we do not need to use freshness
conditions, but rather typing statements. The last law of the set (5.6f) reflects the fact that
for an untyped expression e, if a �= b then a # e ⇔ a # νb.e.

5.2.4 Theories

A theory is given by a relation Ax, listing the axioms, and a set S from which we take
expressions. As expressions may be typed or untyped, atomic or literate, clean or not and
positive or not, there are 16 theories, listed in Table 5.7.

Notice that every subset of expressions mentioned in this table is associated with a single
theory. In the following, for concision, we may refer to a theory by simply giving its base
set. It is also worth mentioning that for every set S, the theories for EL ∩ S and EA ∩ S
use the same set of axioms.

The theory EA∩U∩C corresponds precisely to the axiomatisation of NKA given in [40]. In
our view, the best theory for defining the interpretation of a program would be E

+
L ∩U∩C,

but a relational interpretation is best defined in E
+
L ∩ T.

92 CHAPTER 5. A FORMAL EXPLORATION OF NOMINAL KLEENE ALGEBRA

e · 1 = e

1 · e = e

1 + e · e� ≤ e�

1 + e� · e ≤ e�

(a) Untyped identity axioms

e · idA = e (if e : A)
idA · e = e (if e : A)

idA + e · e� ≤ e� (if e : A)
idA + e� · e ≤ e� (if e : A)

(b) Typed identity axioms

Table 5.2: Identity axioms

e+ 0 = e

e · 0 = e (if e ∈ U)
0 · e = e (if e ∈ U)
〈π〉 0 = 0

νa.0 = 0

(a) Untyped zero axioms

e+⊥A = e (if e : A)
e · ⊥A = e (if e : A)
⊥A · e = e (if e : A)
〈π〉⊥A = ⊥π(A)

νa.⊥A = ⊥A\{a} (if a ∈ A)
wa.⊥A = ⊥A∪{a} (if a /∈ A)

(b) Typed zero axioms

Table 5.3: Zero axioms

〈π〉 (e+ f) = 〈π〉 e+ 〈π〉 f
〈π〉 (e · f) = 〈π〉 e · 〈π〉 f
〈π〉 (e�) = (〈π〉 e)�

〈π〉 (νa.e) =νπ(a). 〈π〉 e
〈π〉 〈π′〉 e = 〈π ◦ π′〉 e

〈π〉 1 = 1

〈π〉 idA = idπ(A)

〈()〉 e = e

〈π〉 a = π (a)
(if a ∈ A)

〈π〉 l = π (l)
(if l ∈ L)

(a) General permutation axioms

〈π〉 (wa.e) = wπ(a). 〈π〉 e

(b) Permutation vs. wa

Table 5.4: Permutation axioms

wa. (e+ f) = wa.e+ wa.f

wa. (e
�) = (wa.e

�)

wa. (e · f) = wa.e · wa.f

wa. (idA) = idA∪{a} (if a /∈ A)
wa. (wb.e) = wb. (wa.e)

(a) Weakening

νa. (e+ f) = νa.e+ νa.f

νa. (νb.e) = νb. (νa.e)

(b) Restriction

Table 5.5: Distributive laws of νa, wa

5.2. EXPRESSIONS AND PROOFS 93

νb.e = νa.(a b) �� e (if a # e)

(a) Untyped α-conversion with ��

νb.e = νa.〈(a b)〉 e (if a # e)

(b) Untyped α-conversion with 〈π〉

νb.e = νa.(a b) �� e
(if νb.e : A and a /∈ A)

(c) Typed α-conversion with ��

νb.e = νa.〈(a b)〉 e (if νb.e : A and a /∈ A)

(d) Typed α-conversion with 〈π〉

νa.e = e (if a # e)
νa.f · e = νa. (f · e) (if a # e)
e · νa.f = νa. (e · f) (if a # e)

(e) Untyped nominal axioms

νa.wa.e = e (if νa.wa.e : A)
(νa.f) · e = νa. (f · wa.e)

e · (νa.f) = νa. (wa.e · f)
νb.wa.e = wa.νb.e (if a �= b)

(f) Typed nominal axioms

Table 5.6: Nominal axioms

Name Set Axioms
NKAmpu E

+
L ∩ U (5.2a) (5.4a) (5.5b)(5.6b) (5.6e)NKAspu E
+
A ∩ U

NKAnmpu E
+
L ∩ U ∩ C (5.2a) (5.5b)(5.6a) (5.6e)NKAnspu E
+
A ∩ U ∩ C

NKAmu EL ∩ U (5.2a)(5.3a)(5.4a) (5.5b)(5.6b) (5.6e)NKAsu EA ∩ U

NKAnmu EL ∩ U ∩ C (5.2a)(5.3a) (5.5b)(5.6a) (5.6e)NKAnsu EA ∩ U ∩ C

NKAmpt E
+
L ∩ T (5.2b) (5.4a) (5.4b)(5.5a) (5.5b)(5.6d) (5.6f)NKAspt E
+
A ∩ T

NKAnmpt E
+
L ∩ T ∩ C (5.2b) (5.5a) (5.5b)(5.6c) (5.6f)NKAnspt E
+
A ∩ T ∩ C

NKAmt EL ∩ T (5.2b)(5.3b)(5.4a) (5.4b)(5.5a) (5.5b)(5.6d) (5.6f)NKAst EA ∩ T

NKAnmt EL ∩ T ∩ C (5.2b)(5.3b) (5.5a) (5.5b)(5.6c) (5.6f)NKAnst EA ∩ T ∩ C

Table 5.7: Theories

94 CHAPTER 5. A FORMAL EXPLORATION OF NOMINAL KLEENE ALGEBRA

A difficulty is that if we have a theory 〈S,Ax〉, with two expressions e, f ∈ S such that
Ax � e = f , it may be the case that the proof uses expressions outside of S. This is
generally what happens in systems with 0 (or ⊥A): if e /∈ S and 0 ∈ S, then:

Ax � 0 = 0 · e Ax � 0 · e = 0
Ax � 0 = 0 .

This is a bad property when one wants to prove results by structural induction on proofs.
This phenomenon disappears with stable theories:

Definition 5.10 (Stable theory).
A theory 〈S,Ax〉 is stable if for any expressions e, f ∈ E such that Ax � e = f , e ∈ S if and
only if f ∈ S. ∗

All of our positive theories (those included in E+) are stable.

5.3 Ordering theories

5.3.1 Definitions

We define two preorders to compare theories. The first one is the strongest one:

Definition 5.11 (Embedding preorder).
A theory 〈S,Ax〉 can be embedded into 〈S′, Ax′〉, written 〈S,Ax〉 � 〈S′, Ax′〉 if there is a
function ϕ such that for any e ∈ S, ϕ (e) ∈ S′, and for any e, f ∈ S, Ax � e = f ⇔ Ax′ �
ϕ (e) = ϕ (f). In that case we say that ϕ is an embedding of 〈S,Ax〉 into 〈S′, Ax′〉. ∗

When a theory can be embedded into a second one, then every model of the latter one gives
rise to a model former one.

However, some intuitively equivalent theory cannot be compared using this preorder. For
instance, E+

A ∩ T cannot be embedded into E
+
A ∩ U. Indeed, while the typed expressions

id{a} and id{a,b} are not equal (they have different types), they have the same untyped
behaviour and both of them should be mapped to the untyped constant 1.

To this end, we introduce a slightly weaker preorder:

Definition 5.12 (Reduction preorder).
A theory 〈S,Ax〉 reduces to 〈S′, Ax′〉, which we denote by 〈S,Ax〉 $ 〈S′, Ax′〉, if for any pair
e, f ∈ S there is a pair of expressions e′, f ′ ∈ S′ such that Ax � e = f ⇔ Ax′ � e′ = f ′. ∗

Lemma 5.13. If 〈S,Ax〉 $ 〈S′, Ax′〉 and if 〈S′, Ax′〉 is decidable, then so is 〈S,Ax〉. �

Remark. This lemma assumes an effective proof of 〈S,Ax〉 $ 〈S′, Ax′〉: there must be a
way to build the pair e′, f ′ from the pair e, f . Our (Coq) proofs below have this property.

5.3.2 Embeddings

We summarise the results we obtained using Coq on Figure 5.1. (The scripts are available
online [14]). A plain arrow is drawn between two theories if the source of the arrow can be
embedded into the target of the arrow, and a dashed arrow when the source reduces to the
target. Thanks to the decidability result for EA ∩ U ∩ C [39], this ensures that all atomic
theories are decidable.

We discuss in more details how we obtained some of these results.

5.3. ORDERING THEORIES 95

E
+
L ∩ T

E
+
L ∩ U

EL ∩ T

EL ∩ U

E
+
L ∩ T ∩ C

E
+
L ∩ U ∩ C

EL ∩ T ∩ C

EL ∩ U ∩ C

E
+
A ∩ T

E
+
A ∩ U

EA ∩ T

EA ∩ U

E
+
A ∩ T ∩ C

E
+
A ∩ U ∩ C

EA ∩ T ∩ C

EA ∩ U ∩ C

Figure 5.1: The two cubes as sets

Reducing to positive fragments The first step consists in getting rid of the constants
0 and ⊥A, so that we can focus on stable theories (Definition 5.10). We only present
here the untyped case. In other words we choose a theory 〈S,Ax〉, with S taken from
the set {EA ∩ U,EA ∩ U ∩ C,EL ∩ U,EL ∩ U ∩ C}, the corresponding positive theory being
〈S ∩ E+, Ax \ (5.3a)〉.

Definition 5.14 (Removing zeros).
If e is an untyped expression, extract (e) is the unique normal form of e with respect to the
following confluent rewriting system:

e+ 0 → e 0 + f → f e · 0 → 0 0 · f → 0 νa.0 → 0 〈π〉 0 → 0 0� → 1.

∗

The interesting property of this function is that if Ax � e = 0, then extract (e) is syn-
tactically equal to 0, and extract (e) ∈ E+ otherwise. Furthermore, for every e ∈ S,
Ax � extract (e) = e. The formal proof then relies on two key observations:

1. If 〈e, f〉 ∈ Ax \ (5.3a), then Ax \ (5.3a) � extract (e) = extract (f).

2. If 〈e, f〉 ∈ (5.3a), then extract (e) = extract (f).

This allows to prove by induction on proofs that:

Ax � e = f ⇒ Ax \ (5.3a) � extract (e) = extract (f) .

Because the positive axiomatisation is included in Ax, we also get:

Ax \ (5.3a) � extract (e) = extract (f) ⇒ Ax � extract (e) = extract (f) .

The fact that extract (e) is provably equal to e with the axioms Ax allows to close the proof
of equivalence, with the entailment:

Ax � extract (e) = extract (f) ⇒ Ax � e = f.

However, if Ax � e = 0 then extract (e) /∈ E+. This means that we cannot directly use
extract () as an embedding between theories. We obtain the reduction as follows: when
given the pair e, f , we compute extract (e) and extract (f). If both of these are equal to
zero, then when map the pair to equal positive expressions, say 1, 1. If both of them are
non-zero, then we produce extract (e) , extract (f). Otherwise we produce different positive
expressions, say 1, a in the atomic case and 1, l in the literate case.

96 CHAPTER 5. A FORMAL EXPLORATION OF NOMINAL KLEENE ALGEBRA

From presheaves to freshness, and back Let 〈S,Ax〉 be a positive untyped theory,
meaning S ⊆ E+ ∩ U, and 〈S′, Ax′〉 be the corresponding positive typed theory. We show
here how to transport S into S′, and vice versa. This corresponds to the vertical arrows on
Figure 5.1. The key tools in this case are the erasure and retyping functions.

Definition 5.15 (Erasure).
The erasure of e ∈ T, written �e�, is the expression obtained from e by removing all
weakenings (wa), and replacing all idA with 1 and all ⊥A with 0. ∗

Lemma 5.16. If e ∈ S′ then �e� ∈ S, and if e : A then � (�e�) ⊆ A. �

Definition 5.17 (Retyping).
Let e ∈ U, we define the retyping of e, written e!, by structural induction:

 0! := ⊥∅ 1! := id∅ a! := a l! := l e�! := e!�

 e+ f! := w�(f)\�(e). e!+ w�(e)\�(f). f! e · f! := w�(f)\�(e). e! · w�(e)\�(f). f!

 〈π〉 e! := 〈π〉 e! νa.e! := νa. e! (if a ∈ � (e)) νa.e! := νa.wa. e! (if a /∈ � (e))

The notation wA.e is justified by the law wa.wb.e = wb.wa.e, holding in every typed theory.
∗

Lemma 5.18. e ∈ S entails e! ∈ S′. Furthermore, e! has the type � (e). �

These functions allow one to go back and forth between S and S′:

Lemma 5.19. If e ∈ S, then e = � e!�. If e : A, then:

(5.6f) (5.5a) (5.4b) � e = wA\�(e�). �e�! .

Furthermore, if S ⊆ C, we may remove the axiom (5.4b). �

From this lemma, we obtain that the retyping function is an embedding of S into S′. But it
also shows a problem for the other direction. For instance the expressions e and wa.e have
different types, and are thus different, but they will be mapped to the same expression. For
this reason, we cannot use the erasure function to embed S′ into S.

Nevertheless, we can use it to show that S′ reduces to S. Given a pair of expressions
e, f ∈ S′, if e and f have the same type, then we produce the pair �e� , �f� which is
equiprovable. If it is not the case, we purposely produce different expressions, as in the
previous section.

From atomic to literate We assume there is an atom α ∈ A and an element λ ∈ L
with � (λ) = {α}. We show the transformation from E

+
A ∩ U to E

+
L ∩ U, which corre-

sponds to the central horizontal top arrow on Figure 5.1. Let NKApu be the set of axioms
(5.2a), (5.4a), (5.5b), (5.6b), (5.6e) corresponding to the theory of these sets.

Definition 5.20 (From atoms to letters.).
Given an expression e ∈ E

+
A ∩U, we obtain the expression e� ∈ E

+
L ∩U by replacing every

atomic variable a by (a α) �� λ. We write E+
A ∩ U� for the set of expressions f ∈ E

+
L ∩ U,

such that there is an expression e ∈ E
+
A ∩ U such that f = e�. ∗

For any expression e, e ∈ E+
A ∩ U� if and only if for each literate variable l in e there is

an atom β such that � (l) = {β} and (α β) �� l = λ. This amounts to having l in the orbit
of λ. It is also worth noting that _� preserves freshness: a # e ⇔ a # e�. As for typed
and untyped expressions, we define an inverse operation.

5.4. RELATIONAL INTERPRETATION OF LITERATE EXPRESSIONS 97

Definition 5.21 (Going back).
The inverse operation is only defined on expression from E+

A ∩ U�, and who thus have a
singleton support. The expression �e� is then obtained by replacing every variable by the
single atom in its support. ∗

The function �_� is the inverse of _�, _� preserves NKApu-equality, and �_� preserves
NKApu-equality on the image of _�.

Lemma 5.22. ∀e ∈ E
+
A ∩ U, NKApu � e = �e��. �

Lemma 5.23. ∀e, f ∈ E
+
A ∩ U, if NKApu � e = f then NKApu � e� = f�. �

Lemma 5.24. ∀e, f ∈ E+
A ∩ U�, if NKApu � e = f then NKApu � �e� = �f�. �

By putting all together, we obtain that _� is an embedding of E+
A ∩ U into E

+
L ∩ U.

5.4 Relational interpretation of literate expressions

Our main motivation for developing the typed syntax was to define a relational interpre-
tation of expressions. As explained in the introduction, the classical way of interpreting
a program as a relation is to consider memory states as functions, associating values to
memory cells. A program is then simply a relation between memory states. Furthermore,
in most high level programming languages, one cannot access every part of the memory:
a variable should be declared before it is used. There are also constructs allowing one to
declare a local variable, which is hidden from the rest of the program. Both of these consid-
erations can be encoded by considering functions with a finite domain: the set of memory
locations that are visible in the current scope.

Let us be more precise. Consider that the set A of atoms corresponds to memory locations,
and that locations may contain values from an arbitrary set V. A memory state of domain
A ∈ Pf (A) is then a function from A to V, and an expression of type A will be interpreted
as a binary relation over memory states of domain A (whence the presheaf structure).

Regular operations are interpreted using the standard operations on binary relations; in
particular, idA is interpreted as the identity relation on VA. To interpret letters, we need
to fix an equivariant map ϕ1 that assign to a letter x a relation between memory states
with domain � (x). Several choices are possible for the operations of restriction (νa) and
weakening (wa), yielding slightly different theories. Here is a possibility which gives rise to
a model of our theory: if R is a relation over VA, then we define

νa.R :=
{〈

f�A\{a}, g�A\{a}
〉 ∣∣∣ 〈f, g〉 ∈ R

}
; (if a ∈ A)

wa.R := {〈f, g〉 | 〈f�A, f�A〉 ∈ R and f(a) = g(a)} . (if a /∈ A)

Note that this model is not free: for all relations R,S we have νa.(R · S) ⊆ (νa.R) · (νa.S),
which is not an inequation provable from the axioms.

Example. Consider the program swap (x, y) that exchanges the contents of the variables
x and y. The natural implementation of this program is the following:

let t in t ← x;x ← y; y ← t.

The instruction x ← y may be represented by a nominal element assign (x, y) with support
{x, y}, and such that π (assign (x, y)) = assign (π (x) , π (y)). Accordingly, the program

1ϕ is equivariant if for every x ∈ L and every permutation π, ϕ (π (x)) = π (ϕ (x)).

98 CHAPTER 5. A FORMAL EXPLORATION OF NOMINAL KLEENE ALGEBRA

swap is represented by the following expression, where the location is hidden using a top-
level restriction.

νt. (assign (t, x) · assign (x, y) · assign (y, t)) .

Alternatively, one can obtain an expression with a single letter using explicit permutations:
let a1 and a2 be two atoms, and set a := assign (a1, a2). The instruction x ← y may be
represented by 〈(x a1) (y a2)〉 a, and the program swap by

νt. (〈(t a1) (x a2)〉 a) · (〈(x a1) (y a2)〉 a) · (〈(y a1) (t a2)〉 a) .

5.5 Future work

We leave two questions for future work. First, is it possible to reduce the literate theory of
nominal Kleene algebra to that of atomic nominal Kleene algebra? If not, is there a free
language theoretic model for which we could obtain decidability?

Second, is there a free relational model for our literate theory?

List of definitions

1.1 – (Commutative, Idempotent) Monoid . 2
1.2 – Group . 2
1.3 – (Idempotent) Semi-ring . 2
1.4 – Regular expression . 3
1.5 – Regular languages . 4
1.6 – Finite state automaton . 4
1.7 – Relation induced by a letter, by a word . 4
1.8 – Path . 4
1.9 – Language of an automaton, Recognisable language 5
1.11 – Accessible state, accessible automaton . 5
1.16 – Simulation . 8
1.17 – Progress, Bisimulation, Bisimilarity . 8
1.19 – Recognition by monoid . 10
1.20 – Transition monoid . 10
1.23 – Syntactic congruence, syntactic monoid 10
1.30 – Kleene Algebra, KA . 14

2.6 – Reduction relation . 20
2.7 – Closure by � . 20
2.9 – Language Γ(w) . 20
2.16 – History of a word . 25
2.27 – Stratified relation . 37
2.28 – Progression, Bisimulation . 37

3.2 – Regular graph expressions . 44
3.3 – Graph language of an expression, regular sets 44
3.5 – Petri Automaton . 45
3.7 – Trace of a run . 47
3.8 – Language of a Petri automaton, recognisable sets 47
3.9 – Proper run . 47
3.15 – A (e) . 51
3.18 – Box . 52
3.19 – Identity box . 53
3.20 – Composition of boxes . 53
3.22 – Type . 55
3.23 – Typed boxes . 55
3.27 – (Finite) Template . 57
3.28 – Boxes generated by a template . 57
3.29 – Regular operations on templates . 57
3.30 – support . 58
3.31 – Atomic box, atomic template . 58
3.36 – Box of a transition . 60
3.40 – A -validity . 62
3.42 – Branching automaton . 63
3.43 – Runs and language of a branching automaton 63
3.44 – Term language of an expression . 64

99

100 List of definitions

4.1 – Allegoric regular expressions . 68
4.2 – Graph of a ground term: G (w) . 68
4.3 – Graph homomorphism, preorders
 and � 68
4.6 – Terms of an expression . 69
4.7 – Graphs of an expression . 69
4.10 – Converse-normal form . 71
4.11 – Translation between allegoric and graph expressions 71
4.12 – G! . 71
4.16 – Reading, language of a run . 72
4.18 – Language recognised by a Petri automaton 73
4.24 – Simulation . 79
4.25 – Embedding . 79
4.28 – Exchangeable transitions . 80

5.1 – Nominal expressions . 88
5.2 – Untyped expression . 88
5.3 – Freshness . 89
5.4 – Typed expressions . 89
5.5 – Atomic expressions, literate expressions . 89
5.6 – Positive expression . 89
5.7 – Action of a permutation on an expression 90
5.8 – Clean expressions . 90
5.10 – Stable theory . 94
5.11 – Embedding preorder . 94
5.12 – Reduction preorder . 94
5.14 – Removing zeros . 95
5.15 – Erasure . 96
5.17 – Retyping . 96
5.20 – From atoms to letters. 96
5.21 – Going back . 97

Author’s Contributions

[1] Paul Brunet and Damien Pous. “Kleene Algebra with Converse”. In: Proceedings RAM-
iCS. Ed. by Peter Höfner, Peter Jipsen, Wolfram Kahl, and Martin Eric Müller.
Vol. 8428. Lecture Notes in Computer Science. Springer International Publishing,
2014, pp. 101–118. isbn: 978-3-319-06250-1. doi: 10.1007/978-3-319-06251-8_7.

[2] Paul Brunet and Damien Pous. “Decidability of Identity-free Relational Kleene Lat-
tices”. In: Proceedings JFLA. Ed. by David Baelde and Jade Alglave. Le Val d’Ajol,
France, Jan. 2015.

[3] Paul Brunet and Damien Pous. “Petri Automata for Kleene Allegories”. In: Proceedings
LICS. July 2015, pp. 68–79. doi: 10.1109/LICS.2015.17.

[4] Paul Brunet and Damien Pous. “A formal exploration of Nominal Kleene Algebra”. In:
Proceedings MFCS. Ed. by Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Aug. 2016.

[5] Paul Brunet and Damien Pous. “Algorithms for Kleene algebra with converse”. In:
Journal of Logical and Algebraic Methods in Programming 85.4 (2016). Relational
and algebraic methods in computer science, pp. 574–594. issn: 2352-2208. doi: http:
//dx.doi.org/10.1016/j.jlamp.2015.07.005.

[6] Paul Brunet, Damien Pous, and Insa Stucke. “Cardinalities of Relations in Coq”. In:
Proceedings ITP. Ed. by Jasmin Christian Blanchette and Stephan Merz. Lecture
Notes in Computer Science. Springer, Aug. 2016.

101

Bibliography

[1] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, and Tomáš Vojnar.
“When Simulation Meets Antichains”. In: Proceedings TACAS. Vol. 6015. Lecture
Notes in Computer Science. Springer Verlag, 2010, pp. 158–174 (cit. on p. 36).

[2] Hajnal Andréka and Dmitry A. Bredikhin. “The equational theory of union-free alge-
bras of relations”. In: Algebra Universalis 33.4 (1995), pp. 516–532. issn: 0002-5240
(cit. on pp. vi, 41, 68–69).

[3] Hajnal Andréka, Szabolcs Mikulás, and István Németi. “The equational theory of
Kleene lattices”. In: Theoretical Computer Science 412.52 (2011), pp. 7099–7108 (cit.
on pp. vi, 68–70).

[4] Valentin M. Antimirov. “Partial Derivatives of Regular Expressions and Finite Au-
tomaton Constructions”. In: Theoretical Computer Science 155.2 (1996), pp. 291–319
(cit. on pp. 12, 37).

[5] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1999. isbn: 9780521779203 (cit. on p. 23).

[6] Stephen L. Bloom, Zoltán Ésik, and Gheorghe Stefanescu. “Notes on equational theo-
ries of relations”. In: Algebra Universalis 33.1 (1995), pp. 98–126 (cit. on pp. vi, 17–25,
29, 33–35, 39, 67, 71).

[7] Maurice Boffa. “Une remarque sur les systèmes complets d’identités rationnelles”. In:
Informatique Théorique et Applications 24 (1990), pp. 419–428 (cit. on p. 14).

[8] Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva.
“Logic and Program Semantics: Essays Dedicated to Dexter Kozen on the Occa-
sion of His 60th Birthday”. In: ed. by Robert L. Constable and Alexandra Silva.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. Chap. Brzozowski’s Algorithm
(Co)Algebraically, pp. 12–23. isbn: 978-3-642-29485-3. doi: 10.1007/978-3-642-
29485-3_2 (cit. on p. 7).

[9] Filippo Bonchi and Damien Pous. “Checking NFA equivalence with bisimulations up
to congruence”. In: Proceedings POPL. ACM, 2013, pp. 457–468. isbn: 978-1-4503-
1832-7 (cit. on pp. 18, 36–39).

[10] Francis Bossut, Max Dauchet, and Bruno Warin. “A Kleene theorem for a class of
planar acyclic graphs”. In: Information and Computation 117.2 (1995), pp. 251–265
(cit. on p. 66).

[11] Thomas Braibant and Damien Pous. “Deciding Kleene Algebras in Coq”. In: Logical
Methods in Computer Science 8.1 (2012), pp. 1–16 (cit. on p. 39).

[12] Paul Brunet. KAC software. http://perso.ens-lyon.fr/paul.brunet/kac. 2014
(cit. on pp. 23, 39).

[13] Paul Brunet. RKLM software.
http://perso.ens-lyon.fr/paul.brunet/rklm. 2014 (cit. on p. 82).

[14] Paul Brunet. Coq library of NKA proofs. http://perso.ens-lyon.fr/paul.brunet/
nka. 2016 (cit. on p. 94).

103

104 BIBLIOGRAPHY

[15] Paul Brunet and Damien Pous. “Kleene Algebra with Converse”. In: Proceedings RAM-
iCS. Ed. by Peter Höfner, Peter Jipsen, Wolfram Kahl, and Martin Eric Müller.
Vol. 8428. Lecture Notes in Computer Science. Springer International Publishing,
2014, pp. 101–118. isbn: 978-3-319-06250-1. doi: 10.1007/978-3-319-06251-8_7
(cit. on p. 67).

[16] Paul Brunet and Damien Pous. “Petri Automata for Kleene Allegories”. In: Proceedings
LICS. July 2015, pp. 68–79. doi: 10.1109/LICS.2015.17 (cit. on pp. vi, 41).

[17] Paul Brunet and Damien Pous. “A formal exploration of Nominal Kleene Algebra”. In:
Proceedings MFCS. Ed. by Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Aug. 2016 (cit. on p. vi).

[18] Paul Brunet and Damien Pous. “Algorithms for Kleene algebra with converse”. In:
Journal of Logical and Algebraic Methods in Programming 85.4 (2016). Relational
and algebraic methods in computer science, pp. 574–594. issn: 2352-2208. doi: http:
//dx.doi.org/10.1016/j.jlamp.2015.07.005 (cit. on p. vi).

[19] Janusz A Brzozowski. “Canonical regular expressions and minimal state graphs for
definite events”. In: Mathematical theory of Automata 12.6 (1962), pp. 529–561 (cit.
on p. 7).

[20] Janusz A. Brzozowski. “Derivatives of regular expressions”. In: Journal of the ACM
11 (1964), pp. 481–494 (cit. on p. 12).

[21] Olivier Carton. Langages formels, calculabilité et complexité. Vol. 101. Vuibert, 2008
(cit. on p. 3).

[22] John Horton Conway. Regular algebra and finite machines. Chapman and Hall Math-
ematics Series, 1971 (cit. on pp. 3, 13, 67).

[23] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order
logic. A language-theoretic approach. Encyclopedia of Mathematics and its applica-
tions, Vol. 138. Collection Encyclopedia of Mathematics and Applications, Vol. 138.
Cambridge University Press, June 2012, p. 728 (cit. on p. 66).

[24] Laurent Doyen and Jean-François Raskin. “Antichain Algorithms for Finite Au-
tomata”. In: Proceedings TACAS. Vol. 6015. Lecture Notes in Computer Science.
Springer Verlag, 2010, pp. 2–22 (cit. on p. 36).

[25] Zoltán Ésik. “Group Axioms for Iteration”. In: Information and Computation 148.2
(1999), pp. 131–180. issn: 0890-5401. doi: 10.1006/inco.1998.2746 (cit. on p. 14).

[26] Zoltán Ésik and Laszlo Bernátsky. “Equational properties of Kleene algebras of rela-
tions with conversion”. In: Theoretical Computer Science 137.2 (1995), pp. 237–251
(cit. on pp. vi, 17–18, 20, 35, 39, 67).

[27] Peter J. Freyd and Andre Scedrov. Categories, Allegories. North Holland, 1990 (cit.
on pp. vi, 41, 67–69).

[28] Murdoch James Gabbay and Vincenzo Ciancia. “Freshness and Name-Restriction in
Sets of Traces with Names”. In: Proceedings FoSSaCS. Springer, 2011, pp. 365–380
(cit. on pp. vi, 87).

[29] Murdoch Gabbay and Andrew M Pitts. “A new approach to abstract syntax involving
binders”. In: Proceedings LICS. IEEE. 1999, pp. 214–224 (cit. on p. 88).

[30] Victor M. Glushkov. “The abstract theory of automata”. In: Russian Mathematical
Surveys 16.5 (1961), p. 1 (cit. on pp. 12, 35).

[31] Ursula Goltz and Wolfgang Reisig. “The non-sequential behaviour of Petri nets”. In:
Information and Control 57.2 (1983), pp. 125–147 (cit. on p. 86).

[32] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of
finite automata. Tech. rep. Cornell University, 1971 (cit. on pp. 36, 38–39).

BIBLIOGRAPHY 105

[33] Lucian Ilie and Sheng Yu. “Follow automata”. In: Information and Computation 186.1
(2003), pp. 140–162. issn: 0890-5401. doi: http://dx.doi.org/10.1016/S0890-
5401(03)00090-7 (cit. on p. 12).

[34] Lalita Jategaonkar and Albert R. Meyer. “Deciding true concurrency equivalences on
safe, finite nets”. In: Theoretical Computer Science 154.1 (1996). Twentieth Interna-
tional Colloquium on Automata, Languages and Programming, pp. 107–143. issn:
0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(95)00132-8 (cit. on
pp. 83, 85–86).

[35] Stephen Cole Kleene. Representation of Events in Nerve Nets and Finite Automata.
Memorandum. Rand Corporation, 1951 (cit. on pp. v, 13, 67).

[36] Dexter Kozen. “A Completeness Theorem for Kleene Algebras and the Algebra of
Regular Events”. In: Proceedings LICS. IEEE Computer Society, 1991, pp. 214–225
(cit. on pp. 14–15, 20, 67).

[37] Dexter Kozen. “Kleene algebra with tests”. In: Transactions on Programming Lan-
guages and Systems 19.3 (May 1997), pp. 427–443. doi: 10.1145/256167.256195
(cit. on p. 87).

[38] Dexter Kozen. Typed Kleene algebra. Tech. rep. Cornell University, 1998 (cit. on p. 56).

[39] Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. “Nom-
inal Kleene Coalgebra”. In: Proceedings ICALP. Springer, 2015, pp. 286–298 (cit. on
pp. vi, 87, 94).

[40] Dexter Kozen, Konstantinos Mamouras, and Alexandra Silva. “Completeness and In-
completeness in Nominal Kleene Algebra”. In: Proceedings RAMiCS. Springer, 2015,
pp. 51–66 (cit. on pp. vi, 87, 91).

[41] Daniel Krob. “A Complete System of B-Rational Identities”. In: Proceedings ICALP.
Vol. 443. Lecture Notes in Computer Science. Springer Verlag, 1990, pp. 60–73 (cit. on
pp. 14, 20, 67).

[42] Kamal Lodaya and Pascal Weil. “Series-parallel posets: Algebra, automata and lan-
guages”. In: Proceedings STACS. Ed. by Michel Morvan, Christoph Meinel, and Daniel
Krob. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 555–565. isbn: 978-3-
540-69705-3. doi: 10.1007/BFb0028590 (cit. on p. 62).

[43] Kamal Lodaya and Pascal Weil. “Series–parallel languages and the bounded-width
property”. In: Theoretical Computer Science 237.1 (2000), pp. 347–380. issn: 0304-
3975. doi: http://dx.doi.org/10.1016/S0304-3975(00)00031-1 (cit. on p. 62).

[44] Kamal Lodaya and Pascal Weil. “Rationality in Algebras with a Series Operation”.
In: Information and Computation 171.2 (2001), pp. 269–293. issn: 0890-5401. doi:
http://dx.doi.org/10.1006/inco.2001.3077 (cit. on p. 62).

[45] Robert McNaughton and Hideki Yamada. “Regular Expressions and State Graphs
for Automata”. In: IRE Transactions on Electronic Computers EC-9.1 (Mar. 1960),
pp. 39–47. issn: 0367-9950. doi: 10.1109/TEC.1960.5221603 (cit. on p. 12).

[46] Albert R. Meyer and Larry J. Stockmeyer. “The equivalence problem for regular
expressions with squaring requires exponential space”. In: Proceedings SWAT. IEEE.
1972, pp. 125–129 (cit. on pp. 13, 35, 67, 83).

[47] Robin Milner. Communication and Concurrency. Prentice Hall, 1989 (cit. on p. 8).

[48] Bernhard Möller. “Typed Kleene Algebras”. In: Proceedings MPC. Lecture Notes in
Computer Science. Citeseer. 1999 (cit. on p. 56).

[49] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of
the IEEE 77.4 (Apr. 1989), pp. 541–580. issn: 0018-9219. doi: 10.1109/5.24143
(cit. on p. 85).

106 BIBLIOGRAPHY

[50] Jean-Éric Pin. Mathematical Foundations of Automata Theory. Lecture notes. Oct.
2015 (cit. on p. 10).

[51] Andrew M Pitts. Nominal Sets: Names and Symmetry in Computer Science. Vol. 57.
Cambridge University Press, 2013 (cit. on p. 88).

[52] Damien Pous. “Kleene Algebra with Tests and Coq Tools for While Programs”. In:
Proceedings ITP. Vol. 7998. Lecture Notes in Computer Science. Springer Verlag,
2013, pp. 180–196 (cit. on p. 39).

[53] Damien Pous and Davide Sangiorgi. “Advanced Topics in Bisimulation and Coin-
duction”. In: Cambridge University Press, 2011. Chap. about “Enhancements of the
coinductive proof method”, pp. 233–289. isbn: 9781107004979 (cit. on pp. 9, 18, 37).

[54] Vaughan Pratt. “Dynamic algebras: Examples, constructions, applications”. In: Studia
Logica 50.3 (1991), pp. 571–605. issn: 1572-8730. doi: 10.1007/BF00370685 (cit. on
p. 15).

[55] Volodimir Nikiforovych Redko. “On defining relations for the algebra of regular
events”. In: Ukrainskii Matematicheskii Zhurnal (1964), pp. 120–126 (cit. on pp. 13,
67).

[56] Jacques Sakarovitch. Elements of automata theory. Cambridge University Press, 2009
(cit. on p. 3).

[57] Arto Salomaa. “Two Complete Axiom Systems for the Algebra of Regular Events”.
In: Journal of the ACM 13.1 (1966), pp. 158–169 (cit. on p. 13).

[58] Davide Sangiorgi. “On the Bisimulation Proof Method”. In: Mathematical Structures
in Computer Science 8 (1998), pp. 447–479 (cit. on pp. 9, 37).

[59] Walter J Savitch. “Relationships between nondeterministic and deterministic tape
complexities”. In: Journal of computer and system sciences 4.2 (1970), pp. 177–192
(cit. on p. 83).

[60] Ken Thompson. “Regular Expression Search Algorithm”. In: Communications of the
ACM 11 (1968), pp. 419–422 (cit. on pp. 12, 51, 84).

[61] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. “The Recognition of Series
Parallel Digraphs”. In: Proceedings STOC. STOC ’79. Atlanta, Georgia, USA: ACM,
1979, pp. 1–12. doi: 10.1145/800135.804393 (cit. on pp. 42, 54).

[62] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-Francois Raskin.
“Antichains: A New Algorithm for Checking Universality of Finite Automata”. In:
Proceedings CAV. Vol. 4144. Lecture Notes in Computer Science. Springer Verlag,
2006, pp. 17–30 (cit. on p. 36).

